Previsão de Preço QANplatform - Projeção QANX
Previsão de Preço QANplatform até $0.020134 até 2026
| Ano | Preço Mínimo | Preço Máximo |
|---|---|---|
| 2026 | $0.006745 | $0.020134 |
| 2027 | $0.006493 | $0.017058 |
| 2028 | $0.011718 | $0.0287025 |
| 2029 | $0.025742 | $0.08468 |
| 2030 | $0.021892 | $0.063298 |
| 2031 | $0.025884 | $0.057784 |
| 2032 | $0.03951 | $0.107187 |
| 2033 | $0.091812 | $0.2855072 |
| 2034 | $0.073813 | $0.16535 |
| 2035 | $0.087269 | $0.194824 |
Calculadora de lucro do investimento
Se você abrir um short de $10,000.00 em QANplatform hoje e fechar em Apr 06, 2026, nossa previsão mostra que pode lucrar cerca de $3,954.75, com um retorno de 39.55% nos próximos 90 dias.
Previsão de preço de longo prazo de QANplatform para os anos 2027, 2028, 2029, 2030, 2031, 2032 e 2037
[
'name' => 'QANplatform'
'name_with_ticker' => 'QANplatform <small>QANX</small>'
'name_lang' => 'QANplatform'
'name_lang_with_ticker' => 'QANplatform <small>QANX</small>'
'name_with_lang' => 'QANplatform'
'name_with_lang_with_ticker' => 'QANplatform <small>QANX</small>'
'image' => '/uploads/coins/qanplatform.png?1717208807'
'price_for_sd' => 0.01952
'ticker' => 'QANX'
'marketcap' => '$33.2M'
'low24h' => '$0.01884'
'high24h' => '$0.01987'
'volume24h' => '$323K'
'current_supply' => '1.7B'
'max_supply' => '2.1B'
'algo' => null
'proof' => null
'ico_price_and_roi' => '—'
'price' => '$0.01952'
'change_24h_pct' => '2.0172%'
'ath_price' => '$0.2034'
'ath_days' => 1501
'ath_exchange' => null
'ath_pair' => null
'ath_date' => '27 de nov. de 2021'
'ath_pct' => '-90.40%'
'fdv' => '$41.01M'
'new_prediction' => true
'change_24h_pct_is_increased' => true
'change_30d_pct' => null
'change_30d_pct_is_increased' => false
'max_price' => '$0.9626074'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.019689'
'next_week_prediction_price_date' => '13 de janeiro de 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.017254'
'next_month_prediction_price_date' => '5 de fevereiro de 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.006745'
'current_year_max_price_prediction' => '$0.020134'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.021892'
'grand_prediction_max_price' => '$0.063298'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.019892726412018
107 => 0.019966998631381
108 => 0.020134337734038
109 => 0.018704443423453
110 => 0.019346423989414
111 => 0.019723527426472
112 => 0.018019760378703
113 => 0.019689849429967
114 => 0.018679552144733
115 => 0.018336642071969
116 => 0.018798325309979
117 => 0.018618406903125
118 => 0.018463723622075
119 => 0.018377407693453
120 => 0.018716416909328
121 => 0.018700601724204
122 => 0.018145916848179
123 => 0.017422353039252
124 => 0.0176652048037
125 => 0.017576974480929
126 => 0.017257216409267
127 => 0.01747269474183
128 => 0.016523837216309
129 => 0.014891377160973
130 => 0.015969830277132
131 => 0.015928311005291
201 => 0.01590737510568
202 => 0.016717802816218
203 => 0.016639898891599
204 => 0.016498502505576
205 => 0.017254619553753
206 => 0.016978626659959
207 => 0.017829171726528
208 => 0.018389395717176
209 => 0.0182473047918
210 => 0.018774198162802
211 => 0.017670799617861
212 => 0.018037304353825
213 => 0.018112840471953
214 => 0.017245289186747
215 => 0.01665264493712
216 => 0.016613122322309
217 => 0.015585558864865
218 => 0.016134474969629
219 => 0.01661749842613
220 => 0.016386167674601
221 => 0.016312935269476
222 => 0.016687063745087
223 => 0.016716136731836
224 => 0.016053269552949
225 => 0.016191100629713
226 => 0.016765879132329
227 => 0.016176617686177
228 => 0.015031778951613
301 => 0.014747843116808
302 => 0.014709960842469
303 => 0.013939904339241
304 => 0.014766817066982
305 => 0.01440584750144
306 => 0.015546146033907
307 => 0.014894813627705
308 => 0.014866735989476
309 => 0.014824292521197
310 => 0.014161473078236
311 => 0.014306588411871
312 => 0.014788973882565
313 => 0.01496109445297
314 => 0.014943140867334
315 => 0.014786609930594
316 => 0.014858268991866
317 => 0.014627430187838
318 => 0.014545916201642
319 => 0.014288635639017
320 => 0.013910504287529
321 => 0.013963085771168
322 => 0.01321390862042
323 => 0.012805717146851
324 => 0.012692735126845
325 => 0.012541650847848
326 => 0.012709800498177
327 => 0.013211786295681
328 => 0.012606284921664
329 => 0.011568195286894
330 => 0.011630586242762
331 => 0.011770760196557
401 => 0.011509546961004
402 => 0.011262330555517
403 => 0.011477265162787
404 => 0.011037412899641
405 => 0.011823914241139
406 => 0.011802641583996
407 => 0.01209580064719
408 => 0.012279119025635
409 => 0.01185662951335
410 => 0.011750374543543
411 => 0.011810902203364
412 => 0.010810514813552
413 => 0.01201404765482
414 => 0.012024455856809
415 => 0.011935334512376
416 => 0.012576178595444
417 => 0.013928559494998
418 => 0.01341973940119
419 => 0.013222708881699
420 => 0.012848153720118
421 => 0.01334722623404
422 => 0.013308905251715
423 => 0.013135603236839
424 => 0.013030789637507
425 => 0.013223911908037
426 => 0.013006859650999
427 => 0.012967871101438
428 => 0.012731642911058
429 => 0.01264732019479
430 => 0.012584891012649
501 => 0.012516162617277
502 => 0.012667760331419
503 => 0.012324219966834
504 => 0.011909943964821
505 => 0.011875501397782
506 => 0.011970600353598
507 => 0.011928526144934
508 => 0.011875299962658
509 => 0.011773676685405
510 => 0.011743527229882
511 => 0.011841498333896
512 => 0.011730894669534
513 => 0.011894096401193
514 => 0.011849714560545
515 => 0.011601801206471
516 => 0.011292809378015
517 => 0.011290058702609
518 => 0.011223486920017
519 => 0.011138697745751
520 => 0.011115111337183
521 => 0.011459163969664
522 => 0.012171342622271
523 => 0.012031524911773
524 => 0.012132557536703
525 => 0.012629538055693
526 => 0.012787513217954
527 => 0.012675386189628
528 => 0.012521899797561
529 => 0.012528652419855
530 => 0.013053161885039
531 => 0.013085874897006
601 => 0.013168530124629
602 => 0.01327476545049
603 => 0.012693478524997
604 => 0.012501273857939
605 => 0.012410196623578
606 => 0.012129713993072
607 => 0.012432190463309
608 => 0.012255950377436
609 => 0.012279731186239
610 => 0.012264243903309
611 => 0.012272701007034
612 => 0.011823694397986
613 => 0.01198728880723
614 => 0.011715281372204
615 => 0.01135109395097
616 => 0.011349873067034
617 => 0.011439007422437
618 => 0.011385986820015
619 => 0.011243309742184
620 => 0.011263576347673
621 => 0.011086019558064
622 => 0.011285134956701
623 => 0.011290844873865
624 => 0.0112141745995
625 => 0.011520939343731
626 => 0.011646621109739
627 => 0.011596155092716
628 => 0.011643080279452
629 => 0.012037334968883
630 => 0.012101615685799
701 => 0.012130164934107
702 => 0.012091912723425
703 => 0.011650286531432
704 => 0.011669874530986
705 => 0.011526150787097
706 => 0.011404719368746
707 => 0.011409575988656
708 => 0.011472007522668
709 => 0.011744649693259
710 => 0.012318409068133
711 => 0.012340182816997
712 => 0.012366573235805
713 => 0.012259230139751
714 => 0.012226854434846
715 => 0.012269566346494
716 => 0.012485040200862
717 => 0.013039297454878
718 => 0.012843385923711
719 => 0.012684106799328
720 => 0.012823837532756
721 => 0.01280232708159
722 => 0.012620757226401
723 => 0.012615661165303
724 => 0.0122671705618
725 => 0.012138341520432
726 => 0.012030682330779
727 => 0.011913121306192
728 => 0.011843427190135
729 => 0.011950509027807
730 => 0.011974999911038
731 => 0.011740863601497
801 => 0.01170895168767
802 => 0.011900152452224
803 => 0.011816012124427
804 => 0.011902552538146
805 => 0.011922630656459
806 => 0.011919397616972
807 => 0.011831545451297
808 => 0.011887539801909
809 => 0.011755096469992
810 => 0.011611084238877
811 => 0.011519213407705
812 => 0.01143904392261
813 => 0.011483526612418
814 => 0.011324953945469
815 => 0.011274223357874
816 => 0.011868570175835
817 => 0.012307620560567
818 => 0.01230123659409
819 => 0.012262375839984
820 => 0.012204636641998
821 => 0.012480816218894
822 => 0.012384600776689
823 => 0.012454605549963
824 => 0.012472424702852
825 => 0.012526357911862
826 => 0.012545634398367
827 => 0.012487367467768
828 => 0.012291816531969
829 => 0.011804522192385
830 => 0.011577685361882
831 => 0.01150282542955
901 => 0.011505546445911
902 => 0.011430488667522
903 => 0.011452596547112
904 => 0.011422800449218
905 => 0.011366373848257
906 => 0.011480042428815
907 => 0.011493141673828
908 => 0.011466610068888
909 => 0.011472859222309
910 => 0.011253188865198
911 => 0.01126988992535
912 => 0.011176896300154
913 => 0.011159461116485
914 => 0.010924381329871
915 => 0.010507903412525
916 => 0.010738672607225
917 => 0.010459935871087
918 => 0.010354374045561
919 => 0.010854087309369
920 => 0.010803929957571
921 => 0.01071808237417
922 => 0.010591095906115
923 => 0.010543995389869
924 => 0.010257827563367
925 => 0.010240919241532
926 => 0.010382751743527
927 => 0.010317300924015
928 => 0.010225383185255
929 => 0.0098924664530207
930 => 0.009518157821047
1001 => 0.0095294558458261
1002 => 0.0096485164573973
1003 => 0.0099947012430514
1004 => 0.0098594408582387
1005 => 0.009761307897123
1006 => 0.0097429305433721
1007 => 0.0099729616011617
1008 => 0.010298503740931
1009 => 0.010451240829315
1010 => 0.01029988301342
1011 => 0.010126011304204
1012 => 0.0101365940695
1013 => 0.010206996465852
1014 => 0.010214394762273
1015 => 0.010101222153873
1016 => 0.010133079580225
1017 => 0.010084685236493
1018 => 0.0097876892383323
1019 => 0.0097823175225101
1020 => 0.0097094299148541
1021 => 0.0097072229070617
1022 => 0.0095832229037731
1023 => 0.0095658744461415
1024 => 0.0093196649133498
1025 => 0.0094817207734244
1026 => 0.0093730222108009
1027 => 0.0092091878375284
1028 => 0.0091809427298234
1029 => 0.0091800936477788
1030 => 0.0093483149164341
1031 => 0.009479755009957
1101 => 0.0093749130688356
1102 => 0.0093510425911179
1103 => 0.0096059168428806
1104 => 0.0095734817711134
1105 => 0.0095453932081468
1106 => 0.010269355012892
1107 => 0.009696282752992
1108 => 0.0094463905378547
1109 => 0.0091371014683777
1110 => 0.0092378075489703
1111 => 0.0092590277998313
1112 => 0.0085152433412842
1113 => 0.008213490079084
1114 => 0.0081099397308287
1115 => 0.0080503450414208
1116 => 0.008077503089727
1117 => 0.0078058897616194
1118 => 0.0079884184101775
1119 => 0.0077532242269394
1120 => 0.0077137931567315
1121 => 0.0081343494913296
1122 => 0.0081928674484345
1123 => 0.0079432116633209
1124 => 0.0081035310929641
1125 => 0.0080453970391687
1126 => 0.0077572559561628
1127 => 0.0077462510862143
1128 => 0.0076016720194108
1129 => 0.0073754337758872
1130 => 0.0072720368278144
1201 => 0.0072181867995246
1202 => 0.0072404063707131
1203 => 0.0072291714755901
1204 => 0.0071558561853366
1205 => 0.0072333738222076
1206 => 0.0070353482925013
1207 => 0.0069564929309721
1208 => 0.0069208757935999
1209 => 0.0067451167380613
1210 => 0.0070248275558299
1211 => 0.0070799341106344
1212 => 0.0071351492423751
1213 => 0.0076157592672064
1214 => 0.0075917493485557
1215 => 0.0078087873198538
1216 => 0.0078003536233963
1217 => 0.0077384508782001
1218 => 0.0074772933787245
1219 => 0.0075813861033306
1220 => 0.0072610048765939
1221 => 0.0075010562754709
1222 => 0.0073915068418095
1223 => 0.0074640175017532
1224 => 0.0073336367971519
1225 => 0.0074057948623656
1226 => 0.0070930019190969
1227 => 0.0068009202697881
1228 => 0.0069184624518649
1229 => 0.0070462442463613
1230 => 0.0073233077350253
1231 => 0.0071582910069012
]
'min_raw' => 0.0067451167380613
'max_raw' => 0.020134337734038
'avg_raw' => 0.01343972723605
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.006745'
'max' => '$0.020134'
'avg' => '$0.013439'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.012777663261939
'max_diff' => 0.00061155773403841
'year' => 2026
]
1 => [
'items' => [
101 => 0.0072176372623079
102 => 0.0070188372411385
103 => 0.0066086560130472
104 => 0.0066109775942527
105 => 0.0065478801485946
106 => 0.0064933547431682
107 => 0.0071772451631793
108 => 0.0070921925787433
109 => 0.0069566724168515
110 => 0.0071380715389008
111 => 0.0071860363459618
112 => 0.0071874018365883
113 => 0.0073197459534464
114 => 0.0073903780323376
115 => 0.0074028272423791
116 => 0.0076110735697393
117 => 0.0076808749918349
118 => 0.0079683771707799
119 => 0.0073843853939225
120 => 0.0073723584675846
121 => 0.0071406241965512
122 => 0.0069936546582879
123 => 0.007150687326574
124 => 0.0072897968335786
125 => 0.0071449467167001
126 => 0.0071638610840115
127 => 0.0069694116367915
128 => 0.0070389181644758
129 => 0.0070987865496579
130 => 0.0070657307462613
131 => 0.0070162446086577
201 => 0.0072783914403881
202 => 0.0072636000887802
203 => 0.0075077172452171
204 => 0.0076980240256451
205 => 0.0080390877975781
206 => 0.0076831699715094
207 => 0.0076701989112823
208 => 0.0077969931056263
209 => 0.0076808555803044
210 => 0.0077542504873768
211 => 0.0080272627433679
212 => 0.0080330310621299
213 => 0.0079364042908072
214 => 0.0079305245429908
215 => 0.0079490827714044
216 => 0.0080577788948783
217 => 0.008019797129442
218 => 0.0080637505899856
219 => 0.0081187150654346
220 => 0.0083460714403463
221 => 0.0084008862926261
222 => 0.0082677146198285
223 => 0.0082797385308222
224 => 0.0082299286695517
225 => 0.0081818129676802
226 => 0.0082899700387534
227 => 0.0084876292119723
228 => 0.0084863995845142
301 => 0.0085322526707557
302 => 0.0085608187636167
303 => 0.0084381921813994
304 => 0.0083583667854803
305 => 0.0083889769216976
306 => 0.0084379231961111
307 => 0.0083731043045867
308 => 0.007973012079067
309 => 0.0080943745022993
310 => 0.0080741738607542
311 => 0.0080454056907119
312 => 0.0081674365457399
313 => 0.0081556663720762
314 => 0.0078031039743562
315 => 0.0078256738751723
316 => 0.0078044765247787
317 => 0.0078729695004704
318 => 0.0076771567348423
319 => 0.0077373874227304
320 => 0.0077751635455462
321 => 0.0077974139720945
322 => 0.0078777977700475
323 => 0.0078683656591441
324 => 0.0078772114567905
325 => 0.0079963994086189
326 => 0.008599211168601
327 => 0.0086320208826676
328 => 0.0084704538510143
329 => 0.008534996693391
330 => 0.0084110885499957
331 => 0.0084942689167694
401 => 0.0085511788111637
402 => 0.0082940139415392
403 => 0.0082787863069462
404 => 0.0081543667505666
405 => 0.0082212227726811
406 => 0.0081148500343788
407 => 0.0081409501835977
408 => 0.0080679718910114
409 => 0.0081993182878337
410 => 0.0083461839686476
411 => 0.0083832880395227
412 => 0.0082856832033572
413 => 0.0082150108695013
414 => 0.0080909335321642
415 => 0.0082972769093996
416 => 0.0083576180011036
417 => 0.0082969599633328
418 => 0.008282904170577
419 => 0.008256268468703
420 => 0.0082885550606447
421 => 0.0083572893705593
422 => 0.008324875539327
423 => 0.0083462854459141
424 => 0.0082646929598036
425 => 0.0084382327759006
426 => 0.0087138557684936
427 => 0.0087147419414837
428 => 0.0086823279355288
429 => 0.0086690648226615
430 => 0.0087023235598176
501 => 0.00872036506038
502 => 0.0088279177177337
503 => 0.0089433260041611
504 => 0.0094818861203374
505 => 0.0093306605947982
506 => 0.0098085031689545
507 => 0.010186414605019
508 => 0.010299733720631
509 => 0.010195485466345
510 => 0.0098388578198114
511 => 0.0098213599660905
512 => 0.01035431223432
513 => 0.010203728807785
514 => 0.010185817388351
515 => 0.0099952701473954
516 => 0.010107907166535
517 => 0.010083271798164
518 => 0.010044383663986
519 => 0.010259287250142
520 => 0.01066156757885
521 => 0.01059886841706
522 => 0.010552066401314
523 => 0.010346993592177
524 => 0.010470493227948
525 => 0.01042651737313
526 => 0.010615465553195
527 => 0.010503536837039
528 => 0.010202587990226
529 => 0.010250515086021
530 => 0.010243271001908
531 => 0.010392353739643
601 => 0.010347602802236
602 => 0.010234532663152
603 => 0.01066019262842
604 => 0.010632552637921
605 => 0.010671739825067
606 => 0.010688991236753
607 => 0.010948082956642
608 => 0.01105422454427
609 => 0.011078320542932
610 => 0.011179146841893
611 => 0.011075811892763
612 => 0.011489225365855
613 => 0.011764121202116
614 => 0.012083426861944
615 => 0.012550018252223
616 => 0.012725460931179
617 => 0.012693768781552
618 => 0.013047533048528
619 => 0.013683239572545
620 => 0.012822263245601
621 => 0.013728873408487
622 => 0.013441851098235
623 => 0.012761326363938
624 => 0.012717508593909
625 => 0.013178367845029
626 => 0.014200509307955
627 => 0.013944474464524
628 => 0.014200928089236
629 => 0.013901761313673
630 => 0.013886905161691
701 => 0.0141863982267
702 => 0.014886180097611
703 => 0.014553739961672
704 => 0.014077105509139
705 => 0.014429044971636
706 => 0.014124162438761
707 => 0.013437176760947
708 => 0.013944278679505
709 => 0.013605194067996
710 => 0.013704156984364
711 => 0.014416862402725
712 => 0.014331107801203
713 => 0.014442082196235
714 => 0.01424621529371
715 => 0.014063244721376
716 => 0.013721716560541
717 => 0.013620606909253
718 => 0.013648549979325
719 => 0.013620593062055
720 => 0.013429511194874
721 => 0.013388247083849
722 => 0.013319471757652
723 => 0.013340788107059
724 => 0.013211470372877
725 => 0.013455519655685
726 => 0.013500817353128
727 => 0.013678416069134
728 => 0.013696854956991
729 => 0.014191464853108
730 => 0.013919042033908
731 => 0.014101806780882
801 => 0.014085458581664
802 => 0.012776075398462
803 => 0.012956496848322
804 => 0.013237176004933
805 => 0.013110730425331
806 => 0.012931965959483
807 => 0.012787604068566
808 => 0.012568881042066
809 => 0.012876729501661
810 => 0.013281517489995
811 => 0.013707121048377
812 => 0.014218455837123
813 => 0.014104331864868
814 => 0.013697562000179
815 => 0.013715809399163
816 => 0.013828607639598
817 => 0.013682523669434
818 => 0.013639440654735
819 => 0.013822688694963
820 => 0.013823950623504
821 => 0.013655863360993
822 => 0.013469065128357
823 => 0.013468282436941
824 => 0.013435043495701
825 => 0.013907674447479
826 => 0.014167573682579
827 => 0.014197370711034
828 => 0.014165568105153
829 => 0.014177807665957
830 => 0.014026578027541
831 => 0.014372244135203
901 => 0.014689461538428
902 => 0.014604440498002
903 => 0.014476981871951
904 => 0.014375454937062
905 => 0.014580523978715
906 => 0.014571392577099
907 => 0.014686690921145
908 => 0.014681460322264
909 => 0.014642689825751
910 => 0.014604441882619
911 => 0.014756090653786
912 => 0.014712418243095
913 => 0.014668677997087
914 => 0.014580950237421
915 => 0.014592873896964
916 => 0.014465437278441
917 => 0.01440647926761
918 => 0.013519892244754
919 => 0.013282967222181
920 => 0.013357508657336
921 => 0.013382049633257
922 => 0.013278939559805
923 => 0.01342677291833
924 => 0.013403733245998
925 => 0.013493367133284
926 => 0.013437367771959
927 => 0.013439666005281
928 => 0.013604348186616
929 => 0.013652156124465
930 => 0.013627840621418
1001 => 0.013644870366266
1002 => 0.01403731364848
1003 => 0.013981520763378
1004 => 0.013951881905162
1005 => 0.013960092071443
1006 => 0.014060369744128
1007 => 0.014088442017522
1008 => 0.013969497822549
1009 => 0.014025592592506
1010 => 0.014264437003499
1011 => 0.014348019029923
1012 => 0.014614772736621
1013 => 0.014501451020847
1014 => 0.0147094579346
1015 => 0.015348800272694
1016 => 0.015859551171488
1017 => 0.015389843537283
1018 => 0.016327772519184
1019 => 0.017058084769516
1020 => 0.017030054168949
1021 => 0.016902707335677
1022 => 0.016071266255031
1023 => 0.015306161776532
1024 => 0.015946204160848
1025 => 0.015947835760512
1026 => 0.015892855552073
1027 => 0.015551378199396
1028 => 0.015880972880395
1029 => 0.015907134909261
1030 => 0.015892491130141
1031 => 0.01563068124448
1101 => 0.015230945939629
1102 => 0.015309053261366
1103 => 0.015436994647717
1104 => 0.015194774911985
1105 => 0.015117371029808
1106 => 0.015261279573467
1107 => 0.015724982885672
1108 => 0.01563732246055
1109 => 0.015635033292587
1110 => 0.016010081765064
1111 => 0.015741627999297
1112 => 0.015310038444827
1113 => 0.015201056390357
1114 => 0.014814243516096
1115 => 0.015081416546128
1116 => 0.01509103162784
1117 => 0.014944703689734
1118 => 0.015321912150545
1119 => 0.015318436108173
1120 => 0.015676539401643
1121 => 0.016361098401304
1122 => 0.016158640620002
1123 => 0.015923204247692
1124 => 0.015948802709304
1125 => 0.016229554650808
1126 => 0.016059805618031
1127 => 0.01612084855375
1128 => 0.016229462255014
1129 => 0.016294991597713
1130 => 0.015939374045329
1201 => 0.015856462582715
1202 => 0.015686854828174
1203 => 0.015642607330894
1204 => 0.015780749307985
1205 => 0.015744353777649
1206 => 0.015090223517454
1207 => 0.015021863265717
1208 => 0.015023959777042
1209 => 0.014852064673696
1210 => 0.014589883381543
1211 => 0.01527888016329
1212 => 0.015223544079212
1213 => 0.015162457325063
1214 => 0.01516994010389
1215 => 0.015469010254579
1216 => 0.015295534463775
1217 => 0.01575674828575
1218 => 0.015661936589309
1219 => 0.01556469333061
1220 => 0.015551251350156
1221 => 0.015513820991962
1222 => 0.015385458366493
1223 => 0.015230452782841
1224 => 0.01512810467016
1225 => 0.013954876889635
1226 => 0.014172621141349
1227 => 0.014423116054932
1228 => 0.014509585895305
1229 => 0.014361673249816
1230 => 0.015391298859275
1231 => 0.015579421379843
]
'min_raw' => 0.0064933547431682
'max_raw' => 0.017058084769516
'avg_raw' => 0.011775719756342
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.006493'
'max' => '$0.017058'
'avg' => '$0.011775'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -0.00025176199489309
'max_diff' => -0.0030762529645228
'year' => 2027
]
2 => [
'items' => [
101 => 0.015009585994115
102 => 0.014902993059671
103 => 0.015398287074312
104 => 0.015099564236253
105 => 0.01523407911194
106 => 0.014943331526408
107 => 0.015534108173508
108 => 0.015529607445279
109 => 0.015299781986261
110 => 0.015494028890446
111 => 0.015460273710663
112 => 0.015200801333466
113 => 0.015542333910678
114 => 0.015542503306575
115 => 0.015321301299107
116 => 0.01506298578173
117 => 0.015016805068363
118 => 0.014982014104347
119 => 0.015225522667516
120 => 0.015443851683823
121 => 0.015850107854815
122 => 0.015952250308612
123 => 0.016350919105786
124 => 0.0161135312479
125 => 0.016218762210613
126 => 0.016333005306467
127 => 0.01638777764777
128 => 0.016298529056863
129 => 0.016917825797498
130 => 0.01697011341717
131 => 0.016987645003759
201 => 0.016778821627251
202 => 0.01696430566131
203 => 0.016877523824359
204 => 0.017103306055417
205 => 0.017138711592179
206 => 0.01710872436213
207 => 0.017119962638337
208 => 0.016591502121636
209 => 0.016564098655993
210 => 0.0161904504575
211 => 0.016342714860254
212 => 0.016058063857528
213 => 0.016148329622723
214 => 0.016188117911937
215 => 0.016167334767617
216 => 0.01635132366113
217 => 0.016194895515196
218 => 0.015782055918909
219 => 0.015369103844749
220 => 0.015363919567841
221 => 0.015255196575925
222 => 0.015176609766378
223 => 0.015191748373913
224 => 0.015245098801428
225 => 0.015173508942545
226 => 0.015188786268636
227 => 0.015442491674033
228 => 0.015493370483741
229 => 0.015320464408718
301 => 0.014626221567275
302 => 0.014455852632608
303 => 0.014578310444283
304 => 0.014519783497596
305 => 0.011718598505198
306 => 0.012376695368598
307 => 0.011985676559224
308 => 0.012165876016494
309 => 0.011766747065953
310 => 0.011957232321291
311 => 0.011922056650038
312 => 0.012980256931882
313 => 0.012963734589988
314 => 0.01297164296071
315 => 0.012594155821007
316 => 0.013195503084447
317 => 0.013491748370166
318 => 0.013436921252092
319 => 0.013450720056507
320 => 0.013213610879028
321 => 0.012973938695843
322 => 0.012708105359407
323 => 0.013201990840512
324 => 0.013147079205919
325 => 0.013273026739092
326 => 0.013593346777252
327 => 0.013640515119648
328 => 0.013703909850163
329 => 0.013681187352018
330 => 0.014222529443665
331 => 0.014156969344477
401 => 0.014314950320593
402 => 0.013989971466676
403 => 0.013622227046192
404 => 0.013692123238055
405 => 0.013685391672709
406 => 0.013599691119722
407 => 0.013522324492416
408 => 0.013393530855864
409 => 0.013801052979787
410 => 0.013784508325778
411 => 0.014052347043119
412 => 0.014005003948183
413 => 0.013688835173376
414 => 0.013700127203022
415 => 0.01377607152915
416 => 0.014038915708997
417 => 0.014116945757372
418 => 0.014080799130005
419 => 0.014166355515841
420 => 0.014233975794791
421 => 0.014174847581777
422 => 0.015011978387691
423 => 0.014664343312519
424 => 0.014833778229329
425 => 0.014874187458619
426 => 0.014770680067506
427 => 0.014793127114317
428 => 0.014827128273781
429 => 0.015033576655936
430 => 0.015575356947034
501 => 0.015815307749938
502 => 0.016537211579438
503 => 0.015795383176033
504 => 0.015751366148566
505 => 0.015881402827666
506 => 0.016305236796864
507 => 0.016648714420198
508 => 0.016762665763558
509 => 0.016777726314715
510 => 0.016991506610199
511 => 0.017114041488804
512 => 0.016965548059347
513 => 0.016839715425793
514 => 0.016388998551321
515 => 0.016441170256803
516 => 0.016800581571378
517 => 0.017308271222437
518 => 0.017743921759151
519 => 0.017591372125148
520 => 0.018755218149333
521 => 0.018870608728747
522 => 0.018854665481696
523 => 0.01911754239402
524 => 0.018595785257009
525 => 0.018372723972368
526 => 0.016866921869428
527 => 0.017289990839485
528 => 0.017904946433431
529 => 0.017823554754607
530 => 0.017376957564473
531 => 0.017743582975135
601 => 0.017622365148933
602 => 0.017526755620076
603 => 0.01796476140659
604 => 0.017483156052032
605 => 0.017900142051611
606 => 0.017365353193983
607 => 0.017592068959026
608 => 0.01746337412578
609 => 0.017546655455136
610 => 0.01705979450544
611 => 0.017322492856014
612 => 0.017048865390384
613 => 0.017048735655338
614 => 0.017042695313868
615 => 0.017364616813732
616 => 0.017375114662286
617 => 0.017137214187489
618 => 0.017102929012367
619 => 0.017229699274381
620 => 0.017081284498747
621 => 0.017150726838155
622 => 0.017083387836466
623 => 0.017068228408809
624 => 0.016947435510078
625 => 0.016895394608034
626 => 0.016915801186654
627 => 0.016846143013512
628 => 0.016804171444547
629 => 0.017034346112392
630 => 0.016911373072582
701 => 0.017015498730359
702 => 0.016896834401616
703 => 0.016485492138606
704 => 0.016248924853284
705 => 0.015471937449905
706 => 0.015692290113654
707 => 0.01583838415769
708 => 0.015790100077007
709 => 0.015893832965772
710 => 0.015900201322659
711 => 0.01586647670309
712 => 0.01582742791402
713 => 0.015808421123034
714 => 0.01595008217107
715 => 0.016032321177546
716 => 0.015853046649495
717 => 0.01581104513589
718 => 0.015992301581767
719 => 0.016102867909044
720 => 0.016919227547801
721 => 0.016858748988955
722 => 0.01701053830334
723 => 0.016993449155937
724 => 0.017152548539348
725 => 0.017412608790807
726 => 0.0168838335856
727 => 0.016975610677553
728 => 0.016953109054049
729 => 0.017198775879226
730 => 0.017199542824239
731 => 0.017052253290577
801 => 0.017132101336275
802 => 0.017087532347683
803 => 0.017168074533929
804 => 0.016857941260929
805 => 0.017235650110625
806 => 0.017449786689382
807 => 0.017452759975986
808 => 0.017554259014823
809 => 0.017657387916711
810 => 0.017855334863248
811 => 0.017651867283807
812 => 0.017285848915563
813 => 0.017312274259518
814 => 0.017097677824137
815 => 0.017101285228986
816 => 0.017082028619186
817 => 0.017139819154766
818 => 0.016870623033645
819 => 0.016933802825211
820 => 0.016845350747039
821 => 0.016975418400009
822 => 0.016835487106366
823 => 0.016953098203084
824 => 0.017003855253558
825 => 0.017191149862529
826 => 0.016807823540337
827 => 0.016026195220476
828 => 0.016190502969638
829 => 0.015947478902533
830 => 0.015969971705201
831 => 0.016015410746295
901 => 0.015868127947382
902 => 0.015896224864
903 => 0.015895221044423
904 => 0.01588657066962
905 => 0.015848256725291
906 => 0.015792693925831
907 => 0.016014039017551
908 => 0.016051649861826
909 => 0.016135254109652
910 => 0.01638400364188
911 => 0.016359147697692
912 => 0.016399688773925
913 => 0.016311187832137
914 => 0.015974077010064
915 => 0.015992383749592
916 => 0.015764098414336
917 => 0.016129416340374
918 => 0.016042904233527
919 => 0.015987129315449
920 => 0.0159719106123
921 => 0.016221276746504
922 => 0.016295891002193
923 => 0.016249396405224
924 => 0.016154034630377
925 => 0.016337157429262
926 => 0.016386153364913
927 => 0.016397121748005
928 => 0.016721580237316
929 => 0.016415255373273
930 => 0.016488990812655
1001 => 0.017064253662007
1002 => 0.016542569638492
1003 => 0.01681891730069
1004 => 0.016805391520669
1005 => 0.016946761633555
1006 => 0.016793795045128
1007 => 0.016795691249321
1008 => 0.016921218332322
1009 => 0.016744938183175
1010 => 0.016701288739213
1011 => 0.016640987345003
1012 => 0.016772653233179
1013 => 0.016851580978404
1014 => 0.017487680638881
1015 => 0.017898630029217
1016 => 0.017880789632381
1017 => 0.018043817463642
1018 => 0.017970371932495
1019 => 0.017733196938469
1020 => 0.018138025732862
1021 => 0.01800992096356
1022 => 0.018020481765094
1023 => 0.018020088691533
1024 => 0.018105267164006
1025 => 0.018044910409767
1026 => 0.017925941051668
1027 => 0.018004918463641
1028 => 0.018239453142262
1029 => 0.018967455981103
1030 => 0.019374856014473
1031 => 0.018942929987547
1101 => 0.019240866777201
1102 => 0.019062210869142
1103 => 0.019029743776094
1104 => 0.019216870097352
1105 => 0.019404323958464
1106 => 0.019392383957897
1107 => 0.019256302080592
1108 => 0.019179432881052
1109 => 0.019761512213039
1110 => 0.020190378349384
1111 => 0.02016113255404
1112 => 0.020290213983445
1113 => 0.020669201052515
1114 => 0.020703850880491
1115 => 0.020699485798583
1116 => 0.020613602584611
1117 => 0.020986764571801
1118 => 0.021298062866675
1119 => 0.020593723101981
1120 => 0.020861926463892
1121 => 0.020982331594026
1122 => 0.021159122047656
1123 => 0.02145739717645
1124 => 0.021781403079891
1125 => 0.021827221067181
1126 => 0.021794711012606
1127 => 0.021581020409541
1128 => 0.02193555153528
1129 => 0.02214322755396
1130 => 0.022266893870503
1201 => 0.022580491073142
1202 => 0.020983075175119
1203 => 0.019852344805777
1204 => 0.01967576493066
1205 => 0.020034847050371
1206 => 0.020129534141713
1207 => 0.020091365893921
1208 => 0.018818626061718
1209 => 0.019669064218843
1210 => 0.020584064169037
1211 => 0.020619213043579
1212 => 0.021077281150393
1213 => 0.021226446902818
1214 => 0.021595251769162
1215 => 0.021572182924358
1216 => 0.021661981040345
1217 => 0.021641338008567
1218 => 0.022324471362443
1219 => 0.023078068898053
1220 => 0.023051974211688
1221 => 0.022943635649783
1222 => 0.023104536888682
1223 => 0.023882330305852
1224 => 0.023810723551885
1225 => 0.023880283413915
1226 => 0.024797345687274
1227 => 0.025989657093229
1228 => 0.025435708739055
1229 => 0.026637617273267
1230 => 0.02739415498512
1231 => 0.028702508730309
]
'min_raw' => 0.011718598505198
'max_raw' => 0.028702508730309
'avg_raw' => 0.020210553617754
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.011718'
'max' => '$0.0287025'
'avg' => '$0.02021'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 0.0052252437620302
'max_diff' => 0.011644423960794
'year' => 2028
]
3 => [
'items' => [
101 => 0.028538696397633
102 => 0.029048028909493
103 => 0.028245438133478
104 => 0.026402527481392
105 => 0.026110879816321
106 => 0.026694765827488
107 => 0.028130192611181
108 => 0.02664955912982
109 => 0.026949089354718
110 => 0.026862824629797
111 => 0.026858227949207
112 => 0.02703366455126
113 => 0.026779184609825
114 => 0.02574238754835
115 => 0.02621754553174
116 => 0.026034064215393
117 => 0.026237650415318
118 => 0.027336321170983
119 => 0.026850572640864
120 => 0.02633887602339
121 => 0.026980657136272
122 => 0.027797865032888
123 => 0.027746725631381
124 => 0.027647493817847
125 => 0.02820685835513
126 => 0.029130764692289
127 => 0.029380492862667
128 => 0.029564837092572
129 => 0.029590255047355
130 => 0.029852075778787
131 => 0.028444199718557
201 => 0.030678535182963
202 => 0.031064343195395
203 => 0.030991827279161
204 => 0.031420636647696
205 => 0.031294470053629
206 => 0.031111674453759
207 => 0.031791428513255
208 => 0.031012145337367
209 => 0.029906050978218
210 => 0.029299225736723
211 => 0.030098342165919
212 => 0.03058633468391
213 => 0.030908866696148
214 => 0.031006464688172
215 => 0.028553489129403
216 => 0.027231471351488
217 => 0.028078869590167
218 => 0.029112753925658
219 => 0.028438456438871
220 => 0.028464887623739
221 => 0.027503516609844
222 => 0.029197813928328
223 => 0.028950969060308
224 => 0.030231600672255
225 => 0.029925967660353
226 => 0.030970273026063
227 => 0.030695272424788
228 => 0.031836784545606
301 => 0.032292164635807
302 => 0.033056818681506
303 => 0.033619301310225
304 => 0.033949601868386
305 => 0.033929771861801
306 => 0.035238587228322
307 => 0.03446682453321
308 => 0.033497308697649
309 => 0.033479773214967
310 => 0.03398189920435
311 => 0.035034217526558
312 => 0.035307068356898
313 => 0.035459554748063
314 => 0.035226016531904
315 => 0.034388323439092
316 => 0.034026611808815
317 => 0.034334800597606
318 => 0.03395791219188
319 => 0.034608527316372
320 => 0.035501960846191
321 => 0.035317470355303
322 => 0.035934194405983
323 => 0.036572438917176
324 => 0.037485157233535
325 => 0.037723775599293
326 => 0.038118202684047
327 => 0.038524197716806
328 => 0.038654592379455
329 => 0.038903556249541
330 => 0.038902244087053
331 => 0.039652513466757
401 => 0.040480083826478
402 => 0.040792472478975
403 => 0.041510792960181
404 => 0.040280694309068
405 => 0.041213738266292
406 => 0.042055367271313
407 => 0.041051942475236
408 => 0.042434929788636
409 => 0.042488628052099
410 => 0.043299408076871
411 => 0.042477527195106
412 => 0.041989496951051
413 => 0.043398421979383
414 => 0.044080156419871
415 => 0.043874812458257
416 => 0.042312134771295
417 => 0.041402589331084
418 => 0.039022133475839
419 => 0.041841886264417
420 => 0.043215305594417
421 => 0.042308577947024
422 => 0.042765878631171
423 => 0.045260762883635
424 => 0.04621065327518
425 => 0.046013082713974
426 => 0.046046468886529
427 => 0.046559012500077
428 => 0.048831913145471
429 => 0.047469938393326
430 => 0.048511117059121
501 => 0.049063354469209
502 => 0.049576303352224
503 => 0.048316663014698
504 => 0.046677889443368
505 => 0.046158821062293
506 => 0.042218421752139
507 => 0.042013306855759
508 => 0.041898169648803
509 => 0.041172245845429
510 => 0.04060186858324
511 => 0.040148283407598
512 => 0.038957940454714
513 => 0.039359646258429
514 => 0.037462488035413
515 => 0.038676222635339
516 => 0.03564831230292
517 => 0.0381700460026
518 => 0.036797580999026
519 => 0.037719154336598
520 => 0.037715939054041
521 => 0.036019030354478
522 => 0.035040288830151
523 => 0.035663981022642
524 => 0.036332628561741
525 => 0.036441114375359
526 => 0.037308033363286
527 => 0.037549971818455
528 => 0.036816887004266
529 => 0.035585565591454
530 => 0.035871573472199
531 => 0.035034492889577
601 => 0.03356754136637
602 => 0.034621131560853
603 => 0.034980873576341
604 => 0.035139756144431
605 => 0.033697177801878
606 => 0.033243888366748
607 => 0.033002560874952
608 => 0.035399346842554
609 => 0.035530648188298
610 => 0.034858891939334
611 => 0.037895293883192
612 => 0.037208062607355
613 => 0.037975868318215
614 => 0.035845621254814
615 => 0.035926999561394
616 => 0.034918506462857
617 => 0.035483195210505
618 => 0.035084091404435
619 => 0.035437573940058
620 => 0.035649449914447
621 => 0.03665777752919
622 => 0.038181559484262
623 => 0.03650716700831
624 => 0.035777610228797
625 => 0.036230223151624
626 => 0.037435591009747
627 => 0.039261785016448
628 => 0.038180641408901
629 => 0.038660434582921
630 => 0.038765248046932
701 => 0.037968052776839
702 => 0.039291178743164
703 => 0.040000252697573
704 => 0.040727615852617
705 => 0.041359164899888
706 => 0.040437091013434
707 => 0.041423842246039
708 => 0.0406286949376
709 => 0.039915365601112
710 => 0.039916447427265
711 => 0.039468965514408
712 => 0.038601912921896
713 => 0.038442015120864
714 => 0.039273823674701
715 => 0.039940855362315
716 => 0.039995795286973
717 => 0.040365098302562
718 => 0.040583648023064
719 => 0.042725732387921
720 => 0.043587296439717
721 => 0.044640800653681
722 => 0.045051199917264
723 => 0.04628635456437
724 => 0.045288866872477
725 => 0.045073054135844
726 => 0.04207697297797
727 => 0.042567581099728
728 => 0.043353092039306
729 => 0.042089925764042
730 => 0.042891114024899
731 => 0.04304928555908
801 => 0.042047003857365
802 => 0.042582365820287
803 => 0.041160603170526
804 => 0.038212550024797
805 => 0.03929446076906
806 => 0.040091111244057
807 => 0.038954192789942
808 => 0.040992075114123
809 => 0.039801586330766
810 => 0.039424258539982
811 => 0.037952168301061
812 => 0.038646938227882
813 => 0.039586624502054
814 => 0.039006007634871
815 => 0.040210874814338
816 => 0.041917288066804
817 => 0.043133379769177
818 => 0.043226736189815
819 => 0.042444870697005
820 => 0.043697815139031
821 => 0.043706941471421
822 => 0.042293615022387
823 => 0.041427960441788
824 => 0.041231281899723
825 => 0.041722623458901
826 => 0.042319202818398
827 => 0.043259842192285
828 => 0.043828250865606
829 => 0.045310359224959
830 => 0.045711375251623
831 => 0.046151970284465
901 => 0.046740741122817
902 => 0.047447711472004
903 => 0.045900900595828
904 => 0.045962358275555
905 => 0.044521989404714
906 => 0.042982748696431
907 => 0.044150840524955
908 => 0.045677965206006
909 => 0.04532764111685
910 => 0.045288222500349
911 => 0.045354513679492
912 => 0.045090380756784
913 => 0.043895717336596
914 => 0.043295764845967
915 => 0.044069856623083
916 => 0.044481251951759
917 => 0.045119290229092
918 => 0.045040638544057
919 => 0.046684156626159
920 => 0.047322778055457
921 => 0.047159391365691
922 => 0.047189458448729
923 => 0.048345652041937
924 => 0.049631577106933
925 => 0.05083601562306
926 => 0.052061222213502
927 => 0.050584187848097
928 => 0.049834240888159
929 => 0.050607994721021
930 => 0.050197430045931
1001 => 0.052556656450394
1002 => 0.052720004167898
1003 => 0.055079059973438
1004 => 0.057318084844036
1005 => 0.055911793439111
1006 => 0.057237862893199
1007 => 0.058672115123825
1008 => 0.06143902037574
1009 => 0.060507224027795
1010 => 0.05979348262838
1011 => 0.059119000454706
1012 => 0.060522490787092
1013 => 0.062328058678401
1014 => 0.062716960708674
1015 => 0.063347130569727
1016 => 0.062684584014334
1017 => 0.063482548363196
1018 => 0.066299713157979
1019 => 0.065538490362627
1020 => 0.064457431620557
1021 => 0.066681312662655
1022 => 0.067486126566672
1023 => 0.073134732029376
1024 => 0.080266329758292
1025 => 0.077313801469925
1026 => 0.075481071883844
1027 => 0.0759118068095
1028 => 0.078516024880282
1029 => 0.079352417070867
1030 => 0.077078814775179
1031 => 0.077881889542706
1101 => 0.08230691046835
1102 => 0.08468079222329
1103 => 0.081456741945227
1104 => 0.072561715095739
1105 => 0.064360094108953
1106 => 0.066535533318455
1107 => 0.066288906023836
1108 => 0.071043038975838
1109 => 0.065520335450711
1110 => 0.065613323614312
1111 => 0.070465767001047
1112 => 0.069171218297406
1113 => 0.067074215190779
1114 => 0.064375404552314
1115 => 0.059386403477343
1116 => 0.054967506096653
1117 => 0.063633981471475
1118 => 0.06326026729435
1119 => 0.062719073784534
1120 => 0.063923441377374
1121 => 0.069771508542499
1122 => 0.069636691665997
1123 => 0.068779055481864
1124 => 0.069429564968671
1125 => 0.066960177732575
1126 => 0.067596595050219
1127 => 0.064358794930285
1128 => 0.065822415806973
1129 => 0.067069715963924
1130 => 0.067320129937026
1201 => 0.067884325404881
1202 => 0.063063336904708
1203 => 0.0652278192045
1204 => 0.066499249771062
1205 => 0.060754880216292
1206 => 0.066385702054521
1207 => 0.062979414220652
1208 => 0.06182326896911
1209 => 0.063379866239756
1210 => 0.062773258769545
1211 => 0.062251733287843
1212 => 0.061960713108108
1213 => 0.063103706348299
1214 => 0.063050384347472
1215 => 0.061180225561091
1216 => 0.058740679661682
1217 => 0.059559471340889
1218 => 0.05926199664762
1219 => 0.058183909984216
1220 => 0.05891041022667
1221 => 0.05571127083226
1222 => 0.050207317780974
1223 => 0.053843397757295
1224 => 0.053703412633501
1225 => 0.053632825786264
1226 => 0.0563652393946
1227 => 0.056102580873666
1228 => 0.055625853086211
1229 => 0.058175154504545
1230 => 0.05724462519391
1231 => 0.060112297269007
]
'min_raw' => 0.02574238754835
'max_raw' => 0.08468079222329
'avg_raw' => 0.05521158988582
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.025742'
'max' => '$0.08468'
'avg' => '$0.055211'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072435
'min_diff' => 0.014023789043151
'max_diff' => 0.055978283492981
'year' => 2029
]
4 => [
'items' => [
101 => 0.062001131567067
102 => 0.061522062091691
103 => 0.063298519878544
104 => 0.059578334647451
105 => 0.060814030953295
106 => 0.061068706249328
107 => 0.05814369652076
108 => 0.056145555056043
109 => 0.056012301800827
110 => 0.052547799861863
111 => 0.054398508833175
112 => 0.056027056140389
113 => 0.055247108360609
114 => 0.055000200193809
115 => 0.056261600470147
116 => 0.056359622074781
117 => 0.054124719101256
118 => 0.054589426199625
119 => 0.056527332050949
120 => 0.054540595944325
121 => 0.050680692220657
122 => 0.049723382729843
123 => 0.049595659997054
124 => 0.046999360732794
125 => 0.049787354727573
126 => 0.048570320635258
127 => 0.052414916750574
128 => 0.050218904068488
129 => 0.050124238350878
130 => 0.049981137234269
131 => 0.047746395205748
201 => 0.04823566168473
202 => 0.049862057978252
203 => 0.050442374498446
204 => 0.050381842730997
205 => 0.049854087749136
206 => 0.050095691277289
207 => 0.049317402132859
208 => 0.049042572037273
209 => 0.04817513265763
210 => 0.0469002364058
211 => 0.04707751854901
212 => 0.044551615479384
213 => 0.043175369427229
214 => 0.042794442658624
215 => 0.04228505146362
216 => 0.042851979749538
217 => 0.04454445991335
218 => 0.042502969756096
219 => 0.039002978075366
220 => 0.039213333539074
221 => 0.039685939810927
222 => 0.038805241149932
223 => 0.037971733778736
224 => 0.0386964008134
225 => 0.0372134081987
226 => 0.039865152383332
227 => 0.039793430134565
228 => 0.040781836383835
301 => 0.041399907095642
302 => 0.039975454207697
303 => 0.039617208158508
304 => 0.039821281389501
305 => 0.036448405459931
306 => 0.040506200462247
307 => 0.040541292441931
308 => 0.040240813606921
309 => 0.042401464175288
310 => 0.046961110798357
311 => 0.045245588327398
312 => 0.044581286174702
313 => 0.043318447296824
314 => 0.045001105121643
315 => 0.044871903254248
316 => 0.044287603411535
317 => 0.043934217043535
318 => 0.044585342261992
319 => 0.043853535423285
320 => 0.043722082806346
321 => 0.042925622969554
322 => 0.042641323044433
323 => 0.04243083869818
324 => 0.042199116114719
325 => 0.042710238392163
326 => 0.04155196806774
327 => 0.040155207603127
328 => 0.040039082083652
329 => 0.040359714852782
330 => 0.040217858720744
331 => 0.040038402931067
401 => 0.039695772956698
402 => 0.039594121962434
403 => 0.039924438379741
404 => 0.039551530403245
405 => 0.040101776435914
406 => 0.03995213996153
407 => 0.039116282779511
408 => 0.038074495256751
409 => 0.038065221162575
410 => 0.03784076974967
411 => 0.03755489712884
412 => 0.037475373905605
413 => 0.038635371377002
414 => 0.041036531426991
415 => 0.040565126254287
416 => 0.040905764803111
417 => 0.042581369320958
418 => 0.043113993609996
419 => 0.042735949505534
420 => 0.042218459418603
421 => 0.042241226356121
422 => 0.044009646638069
423 => 0.044119940841865
424 => 0.044398618712601
425 => 0.044756798530852
426 => 0.042796949077396
427 => 0.04214891762311
428 => 0.041841844368653
429 => 0.04089617759723
430 => 0.041915998134868
501 => 0.041321792380656
502 => 0.041401971037858
503 => 0.041349754582171
504 => 0.041378268297837
505 => 0.03986441116679
506 => 0.040415981139355
507 => 0.03949888908121
508 => 0.038271005763768
509 => 0.038266889468336
510 => 0.038567412170739
511 => 0.038388649507895
512 => 0.037907603778591
513 => 0.037975934053967
514 => 0.03737728894118
515 => 0.038048620409479
516 => 0.03806787179385
517 => 0.037809372610883
518 => 0.038843651363688
519 => 0.039267396212603
520 => 0.039097246512785
521 => 0.03925545805608
522 => 0.04058471526748
523 => 0.040801442192496
524 => 0.040897697976412
525 => 0.040768727977413
526 => 0.039279754437752
527 => 0.039345796745841
528 => 0.038861222108848
529 => 0.038451807603807
530 => 0.038468182036912
531 => 0.038678674312664
601 => 0.039597906426079
602 => 0.041532376217068
603 => 0.041605787931557
604 => 0.041694765071088
605 => 0.041332850328286
606 => 0.0412236933788
607 => 0.041367699570972
608 => 0.042094184714878
609 => 0.043962901743797
610 => 0.043302372338363
611 => 0.042765351649993
612 => 0.043236463573431
613 => 0.043163939585515
614 => 0.042551764141942
615 => 0.042534582416154
616 => 0.041359622015608
617 => 0.04092526590808
618 => 0.040562285433638
619 => 0.040165920231393
620 => 0.039930941653221
621 => 0.040291975545148
622 => 0.040374548267859
623 => 0.039585141353368
624 => 0.039477548107881
625 => 0.040122194834787
626 => 0.039838509845128
627 => 0.040130286892041
628 => 0.040197981669742
629 => 0.040187081251389
630 => 0.039890881541172
701 => 0.040079670403662
702 => 0.039633128463205
703 => 0.039147581171388
704 => 0.038837832249874
705 => 0.038567535233621
706 => 0.038717511727993
707 => 0.038182872910183
708 => 0.038011831192212
709 => 0.040015712984934
710 => 0.041496002010578
711 => 0.041474478021886
712 => 0.041343456276246
713 => 0.041148784539016
714 => 0.042079943264764
715 => 0.04175554618382
716 => 0.04199157216449
717 => 0.04205165068255
718 => 0.042233490262225
719 => 0.042298482282318
720 => 0.042102031257735
721 => 0.04144271762476
722 => 0.039799770737046
723 => 0.039034974525765
724 => 0.038782579037354
725 => 0.038791753133991
726 => 0.038538690593786
727 => 0.038613228853344
728 => 0.038512769228998
729 => 0.038322523004279
730 => 0.038705764559717
731 => 0.038749929578839
801 => 0.038660476420404
802 => 0.038681545877467
803 => 0.037940911931572
804 => 0.037997220721906
805 => 0.037683686221951
806 => 0.037624902282924
807 => 0.036832314369609
808 => 0.035428129993718
809 => 0.036206184445437
810 => 0.035266404078772
811 => 0.034910495013919
812 => 0.036595313171715
813 => 0.036426204158254
814 => 0.036136763037129
815 => 0.035708619294171
816 => 0.035549816615193
817 => 0.034584981808543
818 => 0.034527974220972
819 => 0.03500617240388
820 => 0.034785500396263
821 => 0.034475593322544
822 => 0.033353141316311
823 => 0.032091133630218
824 => 0.032129225709563
825 => 0.032530646874022
826 => 0.033697833048705
827 => 0.03324179321773
828 => 0.032910931087904
829 => 0.032848970556667
830 => 0.033624536328261
831 => 0.034722124381118
901 => 0.03523708813837
902 => 0.034726774694615
903 => 0.034140554087656
904 => 0.034176234619717
905 => 0.034413601214358
906 => 0.034438545087272
907 => 0.034056975736594
908 => 0.034164385273754
909 => 0.034001220365073
910 => 0.032999877621678
911 => 0.032981766506742
912 => 0.03273602084868
913 => 0.032728579767819
914 => 0.032310505099328
915 => 0.032252013563192
916 => 0.031421900933584
917 => 0.031968283580205
918 => 0.031601798787228
919 => 0.03104941975919
920 => 0.030954189406551
921 => 0.030951326667157
922 => 0.031518496419262
923 => 0.031961655871429
924 => 0.031608173947108
925 => 0.031527692964899
926 => 0.032387019299469
927 => 0.032277662190462
928 => 0.032182959639339
929 => 0.034623847409436
930 => 0.032691694274556
1001 => 0.031849165224303
1002 => 0.030806375532688
1003 => 0.03114591311448
1004 => 0.031217458671809
1005 => 0.028709737440444
1006 => 0.027692355249197
1007 => 0.0273432280204
1008 => 0.027142300364292
1009 => 0.027233865620271
1010 => 0.026318102321119
1011 => 0.026933510403476
1012 => 0.026140536793956
1013 => 0.02600759218776
1014 => 0.027425527232163
1015 => 0.027622824610136
1016 => 0.026781092700215
1017 => 0.027321620850402
1018 => 0.027125617829241
1019 => 0.026154130050519
1020 => 0.026117026363152
1021 => 0.025629567945236
1022 => 0.024866789911746
1023 => 0.024518179882374
1024 => 0.024336620752306
1025 => 0.024411535587889
1026 => 0.024373656354587
1027 => 0.024126468734787
1028 => 0.024387824859606
1029 => 0.0237201679605
1030 => 0.023454301603599
1031 => 0.023334215938239
1101 => 0.022741632011386
1102 => 0.023684696562278
1103 => 0.023870492159218
1104 => 0.02405665383088
1105 => 0.025677064084719
1106 => 0.025596112967669
1107 => 0.026327871641007
1108 => 0.026299436844579
1109 => 0.026090727417239
1110 => 0.025210216674322
1111 => 0.025561172562854
1112 => 0.024480984888608
1113 => 0.025290334939775
1114 => 0.024920981375689
1115 => 0.025165456128221
1116 => 0.024725868479768
1117 => 0.024969154434551
1118 => 0.023914551187815
1119 => 0.022929777514681
1120 => 0.023326079188086
1121 => 0.02375690442967
1122 => 0.024691043325656
1123 => 0.024134677905686
1124 => 0.024334767949213
1125 => 0.023664499798066
1126 => 0.022281545149617
1127 => 0.022289372522739
1128 => 0.02207663507938
1129 => 0.021892798868142
1130 => 0.024198583166914
1201 => 0.023911822440306
1202 => 0.023454906752773
1203 => 0.024066506557644
1204 => 0.024228223253446
1205 => 0.024232827100429
1206 => 0.024679034530387
1207 => 0.024917175515743
1208 => 0.024959148896574
1209 => 0.025661265928563
1210 => 0.025896606296538
1211 => 0.026865939965613
1212 => 0.024896970916934
1213 => 0.024856421295093
1214 => 0.024075113021133
1215 => 0.023579594961793
1216 => 0.024109041566591
1217 => 0.024578058981772
1218 => 0.024089686699604
1219 => 0.024153457809554
1220 => 0.023497857922224
1221 => 0.023732204033103
1222 => 0.023934054473621
1223 => 0.023822604524587
1224 => 0.023655758556645
1225 => 0.024539604902331
1226 => 0.024489734827686
1227 => 0.025312792864329
1228 => 0.025954425461337
1229 => 0.027104345780721
1230 => 0.025904343980741
1231 => 0.025860611145575
]
'min_raw' => 0.021892798868142
'max_raw' => 0.063298519878544
'avg_raw' => 0.042595659373343
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.021892'
'max' => '$0.063298'
'avg' => '$0.042595'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -0.003849588680207
'max_diff' => -0.021382272344745
'year' => 2030
]
5 => [
'items' => [
101 => 0.026288106624294
102 => 0.025896540849208
103 => 0.026143996902671
104 => 0.027064476784852
105 => 0.02708392507429
106 => 0.026758141168509
107 => 0.026738317188235
108 => 0.026800887551026
109 => 0.02716736412024
110 => 0.027039305946269
111 => 0.027187498107224
112 => 0.027372814673697
113 => 0.028139362565227
114 => 0.02832417466674
115 => 0.027875177074153
116 => 0.027915716529551
117 => 0.027747779104664
118 => 0.027585553656473
119 => 0.027950212772882
120 => 0.028616634475513
121 => 0.028612488700688
122 => 0.028767085582311
123 => 0.028863398158813
124 => 0.028449954075353
125 => 0.02818081717978
126 => 0.028284021391168
127 => 0.028449047172673
128 => 0.028230505754388
129 => 0.026881566882501
130 => 0.027290748765683
131 => 0.02722264089235
201 => 0.027125646998523
202 => 0.027537082546172
203 => 0.027497398583898
204 => 0.026308709844864
205 => 0.026384805841246
206 => 0.026313337494442
207 => 0.026544266344013
208 => 0.025884069933487
209 => 0.026087141902874
210 => 0.026214506738393
211 => 0.026289525604976
212 => 0.026560545191992
213 => 0.026528744171552
214 => 0.02655856839591
215 => 0.026960418896937
216 => 0.02899284083269
217 => 0.029103461074366
218 => 0.028558726546897
219 => 0.028776337246208
220 => 0.02835857228976
221 => 0.028639020703805
222 => 0.028830896386078
223 => 0.027963847073461
224 => 0.027912506040271
225 => 0.027493016819241
226 => 0.027718426565539
227 => 0.027359783451645
228 => 0.027447781926991
301 => 0.027201730518354
302 => 0.027644574065553
303 => 0.028139741962252
304 => 0.028264840927731
305 => 0.027935759408047
306 => 0.027697482700267
307 => 0.027279147294632
308 => 0.027974848397415
309 => 0.028178292600976
310 => 0.027973779791623
311 => 0.027926389705002
312 => 0.027836585576489
313 => 0.027945442075398
314 => 0.028177184600152
315 => 0.02806789910509
316 => 0.028140084099941
317 => 0.027864989336414
318 => 0.028450090942548
319 => 0.029379373105458
320 => 0.029382360899565
321 => 0.029273074815414
322 => 0.029228357304381
323 => 0.029340491458754
324 => 0.029401319637517
325 => 0.029763940930872
326 => 0.030153048026111
327 => 0.031968841058866
328 => 0.031458973641282
329 => 0.033070053241953
330 => 0.03434420803358
331 => 0.034726271343552
401 => 0.034374791075845
402 => 0.033172396066611
403 => 0.03311340083113
404 => 0.034910286613005
405 => 0.034402584077042
406 => 0.034342194475886
407 => 0.03369975114942
408 => 0.034079514723515
409 => 0.033996454859065
410 => 0.033865340799603
411 => 0.034589903244416
412 => 0.035946219458971
413 => 0.03573482485748
414 => 0.03557702859378
415 => 0.034885611300049
416 => 0.035301998944518
417 => 0.035153731279703
418 => 0.035790783260736
419 => 0.035413407779601
420 => 0.034398737730993
421 => 0.03456032728063
422 => 0.034535903345276
423 => 0.035038546204174
424 => 0.034887665294296
425 => 0.03450644142607
426 => 0.0359415837176
427 => 0.035848393559869
428 => 0.035980515897296
429 => 0.03603868023625
430 => 0.036912226059061
501 => 0.037270089832318
502 => 0.037351331174134
503 => 0.037691274080551
504 => 0.037342873084942
505 => 0.038736725473078
506 => 0.039663555977648
507 => 0.040740117302966
508 => 0.042313262751662
509 => 0.042904779992781
510 => 0.042797927697638
511 => 0.043990668622778
512 => 0.046133997552114
513 => 0.043231155754376
514 => 0.046287855216045
515 => 0.045320139457773
516 => 0.043025702803373
517 => 0.042877968132461
518 => 0.044431787273778
519 => 0.047878008579668
520 => 0.047014769229261
521 => 0.047879420529998
522 => 0.04687075885903
523 => 0.046820670305399
524 => 0.047830432084014
525 => 0.050189795518999
526 => 0.049068950390454
527 => 0.047461944056183
528 => 0.04864853252562
529 => 0.047620599779815
530 => 0.045304379603256
531 => 0.047014109126398
601 => 0.045870861684566
602 => 0.04620452206647
603 => 0.048607458143978
604 => 0.048318330517752
605 => 0.048692488438586
606 => 0.048032109501732
607 => 0.04741521144251
608 => 0.046263725403521
609 => 0.045922827154952
610 => 0.046017039166623
611 => 0.045922780468158
612 => 0.045278534612047
613 => 0.045139409780759
614 => 0.044907528966747
615 => 0.04497939852703
616 => 0.044543394757562
617 => 0.045366223953523
618 => 0.045518948303039
619 => 0.046117734773599
620 => 0.046179902771371
621 => 0.047847514568688
622 => 0.046929022013803
623 => 0.047545226118452
624 => 0.047490107023394
625 => 0.043075430203014
626 => 0.043683733717839
627 => 0.044630063090748
628 => 0.044203742990972
629 => 0.043601026113428
630 => 0.043114299919177
701 => 0.042376859964578
702 => 0.043414792539396
703 => 0.044779563503458
704 => 0.046214515615234
705 => 0.047938516555746
706 => 0.047553739615407
707 => 0.046182286616841
708 => 0.04624380899651
709 => 0.046624116139457
710 => 0.046131583834793
711 => 0.045986326442775
712 => 0.046604160004373
713 => 0.046608414684557
714 => 0.046041696743523
715 => 0.045411893460352
716 => 0.0454092545616
717 => 0.045297187150537
718 => 0.046890695402499
719 => 0.047766963819222
720 => 0.047867426581022
721 => 0.047760201874907
722 => 0.047801468408694
723 => 0.04729158712426
724 => 0.048457024539878
725 => 0.049526545162264
726 => 0.049239890788489
727 => 0.04881015513188
728 => 0.048467849982518
729 => 0.049159254573913
730 => 0.04912846741583
731 => 0.049517203832657
801 => 0.049499568503339
802 => 0.049368851067477
803 => 0.04923989545682
804 => 0.049751189876591
805 => 0.049603945294834
806 => 0.049456472001572
807 => 0.049160691734903
808 => 0.049200893185533
809 => 0.048771231728844
810 => 0.04857245067901
811 => 0.045583260631923
812 => 0.044784451376739
813 => 0.045035773029682
814 => 0.045118514643394
815 => 0.044770871831836
816 => 0.045269302321499
817 => 0.045191622457654
818 => 0.045493829366676
819 => 0.045305023610218
820 => 0.045312772264321
821 => 0.045868009736434
822 => 0.046029197536737
823 => 0.045947216120558
824 => 0.046004633094291
825 => 0.047327783019791
826 => 0.047139673412338
827 => 0.047039743932542
828 => 0.047067425081375
829 => 0.047405518255995
830 => 0.047500165885685
831 => 0.047099137227916
901 => 0.047288264661239
902 => 0.048093545268484
903 => 0.048375347906085
904 => 0.049274726652367
905 => 0.048892654575764
906 => 0.049593964408061
907 => 0.051749551738402
908 => 0.053471584053175
909 => 0.051887931970514
910 => 0.055050225017103
911 => 0.057512523757869
912 => 0.057418016631025
913 => 0.056988657891576
914 => 0.054185396238814
915 => 0.051605793071666
916 => 0.053763740656722
917 => 0.053769241708902
918 => 0.053583872097557
919 => 0.052432557361818
920 => 0.053543808840372
921 => 0.053632015947267
922 => 0.053582643423569
923 => 0.052699933115078
924 => 0.051352197626147
925 => 0.051615541914661
926 => 0.052046905231326
927 => 0.051230244481065
928 => 0.050969271888138
929 => 0.051454469590458
930 => 0.05301787768229
1001 => 0.052722324438735
1002 => 0.052714606349122
1003 => 0.053979108459128
1004 => 0.053073997844998
1005 => 0.051618863529485
1006 => 0.051251422923954
1007 => 0.04994725631197
1008 => 0.050848048836149
1009 => 0.050880466755445
1010 => 0.050387111895828
1011 => 0.051658896557309
1012 => 0.05164717683776
1013 => 0.05285454709367
1014 => 0.05516258555541
1015 => 0.054479985010599
1016 => 0.053686194843711
1017 => 0.053772501844266
1018 => 0.054719076616521
1019 => 0.054146755901015
1020 => 0.054352566420673
1021 => 0.05471876509765
1022 => 0.054939701851672
1023 => 0.053740712445385
1024 => 0.053461170660487
1025 => 0.05288932627442
1026 => 0.052740142748076
1027 => 0.053205898068603
1028 => 0.053083187997022
1029 => 0.050877742154856
1030 => 0.050647260793365
1031 => 0.050654329327671
1101 => 0.05007477298541
1102 => 0.049190810454002
1103 => 0.051513811207881
1104 => 0.05132724173697
1105 => 0.051121283480414
1106 => 0.051146512191661
1107 => 0.052154848085119
1108 => 0.05156996234473
1109 => 0.053124976946442
1110 => 0.052805312692348
1111 => 0.052477450256339
1112 => 0.052432129680749
1113 => 0.052305930614794
1114 => 0.051873147061032
1115 => 0.051350534913604
1116 => 0.051005461105983
1117 => 0.047049841731797
1118 => 0.047783981678866
1119 => 0.048628542769008
1120 => 0.048920081872959
1121 => 0.048421384061759
1122 => 0.051892838690217
1123 => 0.052527106902605
1124 => 0.050605867114989
1125 => 0.05024648159443
1126 => 0.051916399945114
1127 => 0.050909235040435
1128 => 0.051362761335343
1129 => 0.050382485551374
1130 => 0.052374330263782
1201 => 0.052359155744326
1202 => 0.051584283163346
1203 => 0.052239200162692
1204 => 0.05212539221734
1205 => 0.05125056298184
1206 => 0.052402063910952
1207 => 0.052402635041047
1208 => 0.051656837029036
1209 => 0.050785908227186
1210 => 0.050630206727835
1211 => 0.050512906563627
1212 => 0.051333912685578
1213 => 0.0520700242073
1214 => 0.053439745251702
1215 => 0.053784125666034
1216 => 0.055128265349874
1217 => 0.054327895613121
1218 => 0.0546826891509
1219 => 0.05506786772477
1220 => 0.055252536497556
1221 => 0.054951628642173
1222 => 0.057039630841143
1223 => 0.057215922201471
1224 => 0.057275031169674
1225 => 0.056570968576193
1226 => 0.057196340947106
1227 => 0.056903749924912
1228 => 0.057664990480534
1229 => 0.057784362719663
1230 => 0.057683258679911
1231 => 0.057721149312773
]
'min_raw' => 0.025884069933487
'max_raw' => 0.057784362719663
'avg_raw' => 0.041834216326575
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.025884'
'max' => '$0.057784'
'avg' => '$0.041834'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 0.0039912710653449
'max_diff' => -0.0055141571588819
'year' => 2031
]
6 => [
'items' => [
101 => 0.055939407784781
102 => 0.055847015087119
103 => 0.054587234098615
104 => 0.055100604163261
105 => 0.054140883433873
106 => 0.054445220763381
107 => 0.054579369758395
108 => 0.054509297936288
109 => 0.055129629336462
110 => 0.054602220920982
111 => 0.053210303398557
112 => 0.051818006649135
113 => 0.051800527497586
114 => 0.051433960339542
115 => 0.0511689994244
116 => 0.05122004029665
117 => 0.051399914987824
118 => 0.051158544780355
119 => 0.051210053351899
120 => 0.05206543883934
121 => 0.052236980298517
122 => 0.051654015394661
123 => 0.049313327184246
124 => 0.048738916426238
125 => 0.049151791488034
126 => 0.048954463801055
127 => 0.039510073026697
128 => 0.041728892548504
129 => 0.040410545332638
130 => 0.041018100383948
131 => 0.039672409260905
201 => 0.040314643598535
202 => 0.040196046367018
203 => 0.043763842498441
204 => 0.043708136269192
205 => 0.043734799893225
206 => 0.042462075646405
207 => 0.044489559929818
208 => 0.045488371593805
209 => 0.045303518137312
210 => 0.0453500417698
211 => 0.044550611623493
212 => 0.043742540124509
213 => 0.042846264470824
214 => 0.044511433852352
215 => 0.044326295442515
216 => 0.044750936343983
217 => 0.045830917716669
218 => 0.045989949076248
219 => 0.046203688836258
220 => 0.046127078347326
221 => 0.047952251004613
222 => 0.047731210552939
223 => 0.048263854443796
224 => 0.047168165548514
225 => 0.045928289559757
226 => 0.04616394945062
227 => 0.046141253508072
228 => 0.045852308110256
229 => 0.045591461124729
301 => 0.045157224387008
302 => 0.0465312136801
303 => 0.046475432224
304 => 0.047378469159417
305 => 0.047218848609449
306 => 0.04615286351099
307 => 0.046190935377323
308 => 0.046446986975129
309 => 0.047333184478678
310 => 0.047596268234659
311 => 0.047474397356814
312 => 0.047762856685016
313 => 0.047990843176594
314 => 0.047791488278217
315 => 0.050613933236961
316 => 0.049441857309914
317 => 0.050013118961505
318 => 0.05014936149934
319 => 0.049800379103547
320 => 0.049876060889072
321 => 0.04999069817209
322 => 0.050686753306294
323 => 0.052513403383621
324 => 0.053322414268441
325 => 0.055756363431318
326 => 0.053255237176432
327 => 0.053106830695157
328 => 0.053545258437614
329 => 0.054974244255907
330 => 0.056132303043821
331 => 0.056516497953786
401 => 0.056567275653504
402 => 0.057288050845394
403 => 0.057701185743723
404 => 0.057200529778829
405 => 0.056776276269445
406 => 0.055256652859118
407 => 0.05543255340666
408 => 0.056644333747049
409 => 0.058356044851353
410 => 0.059824871052034
411 => 0.059310539310317
412 => 0.063234527437993
413 => 0.063623574832798
414 => 0.063569821062244
415 => 0.064456128925625
416 => 0.062696988310272
417 => 0.061944921615464
418 => 0.056868004693656
419 => 0.058294411263934
420 => 0.060367776983753
421 => 0.060093359256013
422 => 0.058587625649055
423 => 0.05982372881807
424 => 0.059415034453874
425 => 0.059092680252088
426 => 0.060569447341907
427 => 0.058945681264402
428 => 0.060351578675014
429 => 0.058548500703758
430 => 0.059312888734389
501 => 0.058878985118914
502 => 0.059159773935353
503 => 0.057518288251906
504 => 0.058403994081882
505 => 0.057481439977449
506 => 0.057481002566683
507 => 0.057460637133695
508 => 0.058546017946329
509 => 0.058581412175663
510 => 0.057779314115207
511 => 0.057663719253568
512 => 0.058091134042765
513 => 0.057590743264727
514 => 0.057824872960349
515 => 0.057597834814695
516 => 0.057546723745954
517 => 0.057139462054389
518 => 0.05696400251977
519 => 0.057032804724329
520 => 0.0567979473302
521 => 0.056656437255075
522 => 0.057432487217996
523 => 0.057017875028573
524 => 0.057368941953591
525 => 0.056968856884355
526 => 0.055581987725617
527 => 0.054784384606551
528 => 0.052164717328533
529 => 0.052907651718892
530 => 0.053400217988321
531 => 0.053237424839213
601 => 0.053587167516083
602 => 0.05360863887595
603 => 0.053494933966495
604 => 0.053363278247848
605 => 0.053299195525028
606 => 0.053776815638937
607 => 0.054054090191015
608 => 0.053449653603145
609 => 0.053308042567574
610 => 0.053919161329768
611 => 0.054291943421676
612 => 0.057044356940155
613 => 0.056840449256527
614 => 0.05735221752757
615 => 0.057294600273975
616 => 0.057831014953107
617 => 0.05870782624773
618 => 0.056925023725467
619 => 0.057234456598659
620 => 0.057158590804001
621 => 0.057986873656998
622 => 0.057989459465655
623 => 0.057492862519486
624 => 0.05776207578037
625 => 0.057611808323624
626 => 0.057883361927829
627 => 0.056837725945096
628 => 0.058111197702635
629 => 0.058833174128452
630 => 0.058843198771825
701 => 0.059185409867703
702 => 0.059533116160646
703 => 0.060200508111113
704 => 0.059514502961375
705 => 0.058280446478252
706 => 0.058369541370355
707 => 0.057646014505823
708 => 0.057658177123132
709 => 0.057593252118737
710 => 0.057788096944252
711 => 0.056880483427221
712 => 0.057093498505556
713 => 0.056795276148472
714 => 0.057233808321497
715 => 0.056762020195288
716 => 0.057158554219218
717 => 0.057329685158635
718 => 0.05796116200927
719 => 0.056668750551011
720 => 0.054033436099055
721 => 0.054587411146956
722 => 0.05376803853731
723 => 0.053843874591904
724 => 0.053997075491403
725 => 0.053500501251912
726 => 0.053595231967954
727 => 0.053591847520167
728 => 0.053562682177567
729 => 0.053433504039269
730 => 0.05324617018162
731 => 0.053992450612172
801 => 0.054119258199552
802 => 0.05440113575816
803 => 0.055239812173203
804 => 0.055156008621988
805 => 0.055292695690995
806 => 0.054994308586818
807 => 0.053857715913872
808 => 0.053919438364326
809 => 0.053149758418138
810 => 0.054381453311459
811 => 0.054089771703143
812 => 0.05390172267276
813 => 0.053850411752558
814 => 0.054691167084215
815 => 0.054942734256672
816 => 0.054785974476842
817 => 0.054464455594997
818 => 0.055081866896664
819 => 0.055247060114499
820 => 0.05528404078388
821 => 0.056377975233561
822 => 0.055345179567522
823 => 0.055593783749443
824 => 0.057533322609602
825 => 0.055774428501506
826 => 0.056706153938584
827 => 0.056660550826904
828 => 0.057137190032643
829 => 0.056621452499977
830 => 0.056627845684801
831 => 0.057051069009161
901 => 0.056456728178826
902 => 0.056309561031001
903 => 0.056106250670312
904 => 0.056550171404916
905 => 0.056816281808502
906 => 0.058960936224859
907 => 0.060346480785948
908 => 0.060286330642438
909 => 0.060835990357775
910 => 0.06058836362171
911 => 0.059788711570322
912 => 0.061153620114862
913 => 0.06072170594117
914 => 0.060757312420874
915 => 0.060755987145921
916 => 0.061043172312833
917 => 0.060839675301942
918 => 0.060438561804935
919 => 0.060704839663431
920 => 0.061495589707089
921 => 0.063950102105776
922 => 0.065323679762046
923 => 0.063867411006154
924 => 0.064871925693752
925 => 0.064269574826373
926 => 0.064160109755385
927 => 0.064791019212249
928 => 0.065423032992599
929 => 0.065382776447061
930 => 0.064923966896794
1001 => 0.064664797023709
1002 => 0.066627318130983
1003 => 0.068073270252148
1004 => 0.06797466601127
1005 => 0.068409873062686
1006 => 0.06968765442609
1007 => 0.069804478740283
1008 => 0.069789761561871
1009 => 0.069500200309788
1010 => 0.070758342002938
1011 => 0.07180790593826
1012 => 0.06943317524616
1013 => 0.070337441606204
1014 => 0.070743395908871
1015 => 0.071339457266399
1016 => 0.072345112688032
1017 => 0.073437521212852
1018 => 0.073591999755911
1019 => 0.073482389837132
1020 => 0.072761917049496
1021 => 0.073957243492498
1022 => 0.074657437688954
1023 => 0.075074387309285
1024 => 0.076131702172642
1025 => 0.07074590294444
1026 => 0.06693356655913
1027 => 0.066338215181759
1028 => 0.067548885618679
1029 => 0.067868129757979
1030 => 0.067739442845726
1031 => 0.063448311641598
1101 => 0.066315623264039
1102 => 0.069400609479376
1103 => 0.069519116363909
1104 => 0.071063524967327
1105 => 0.071566447716047
1106 => 0.072809899072062
1107 => 0.072732120851188
1108 => 0.073034881468744
1109 => 0.072965282045851
1110 => 0.075268513843293
1111 => 0.077809320549103
1112 => 0.077721340492151
1113 => 0.077356069466731
1114 => 0.077898559227446
1115 => 0.080520944037236
1116 => 0.08027951686681
1117 => 0.080514042798161
1118 => 0.083605982280035
1119 => 0.087625943429734
1120 => 0.085758267878198
1121 => 0.089810586415868
1122 => 0.092361306131155
1123 => 0.096772512129404
1124 => 0.096220207412775
1125 => 0.097937457536969
1126 => 0.095231466700538
1127 => 0.089017964769116
1128 => 0.088034654304138
1129 => 0.09000326675641
1130 => 0.094842908375926
1201 => 0.089850849218989
1202 => 0.090860736284766
1203 => 0.090569888741884
1204 => 0.090554390712346
1205 => 0.091145887464759
1206 => 0.090287890574988
1207 => 0.086792256895365
1208 => 0.088394285210838
1209 => 0.087775665142515
1210 => 0.0884620702295
1211 => 0.092166315388966
1212 => 0.09052858030579
1213 => 0.08880335943446
1214 => 0.090967169264268
1215 => 0.093722442743341
1216 => 0.093550022680724
1217 => 0.093215455693249
1218 => 0.095101392284283
1219 => 0.098216407005095
1220 => 0.099058382966988
1221 => 0.099679912408616
1222 => 0.099765610817791
1223 => 0.10064835769355
1224 => 0.09590160526172
1225 => 0.10343482327629
1226 => 0.10473560192646
1227 => 0.10449110945198
1228 => 0.1059368701765
1229 => 0.10551149069594
1230 => 0.10489518256859
1231 => 0.1071870208391
]
'min_raw' => 0.039510073026697
'max_raw' => 0.1071870208391
'avg_raw' => 0.073348546932896
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.03951'
'max' => '$0.107187'
'avg' => '$0.073348'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.01362600309321
'max_diff' => 0.049402658119433
'year' => 2032
]
7 => [
'items' => [
101 => 0.10455961320378
102 => 0.10083033884686
103 => 0.098784385177979
104 => 0.10147866201154
105 => 0.10312396285649
106 => 0.10421140205422
107 => 0.10454046049841
108 => 0.096270082140732
109 => 0.091812806902159
110 => 0.09466986922732
111 => 0.098155682447925
112 => 0.095882241393277
113 => 0.095971355978426
114 => 0.092730026484297
115 => 0.098442468185627
116 => 0.09761021347894
117 => 0.10192795236946
118 => 0.10089748933122
119 => 0.10441843778279
120 => 0.10349125405566
121 => 0.10733994186882
122 => 0.10887528763656
123 => 0.11145337213808
124 => 0.11334982159208
125 => 0.11446345298477
126 => 0.11439659473308
127 => 0.11880935711988
128 => 0.11620730531056
129 => 0.11293851498153
130 => 0.11287939287738
131 => 0.1145723457079
201 => 0.11812031040175
202 => 0.11904024602608
203 => 0.11955436454015
204 => 0.11876697413925
205 => 0.11594263339097
206 => 0.11472309737559
207 => 0.11576217739405
208 => 0.11449147182064
209 => 0.11668506613736
210 => 0.11969733966069
211 => 0.11907531708994
212 => 0.12115464528511
213 => 0.1233065312154
214 => 0.12638382474297
215 => 0.12718834322292
216 => 0.12851818167719
217 => 0.1298870222758
218 => 0.13032665698479
219 => 0.13116605605489
220 => 0.13116163200745
221 => 0.13369121760325
222 => 0.13648142885017
223 => 0.13753466900234
224 => 0.13995653665626
225 => 0.13580917317129
226 => 0.13895499601612
227 => 0.14179260696721
228 => 0.13840949021035
301 => 0.14307232849457
302 => 0.14325337593893
303 => 0.1459869773993
304 => 0.14321594862454
305 => 0.14157052058353
306 => 0.14632080968455
307 => 0.14861932494784
308 => 0.1479269934446
309 => 0.14265831652033
310 => 0.13959172056623
311 => 0.13156584745215
312 => 0.14107284084769
313 => 0.14570342000786
314 => 0.14264632443897
315 => 0.14418814562329
316 => 0.15259982206773
317 => 0.15580244384205
318 => 0.15513632090101
319 => 0.15524888471273
320 => 0.15697696129046
321 => 0.16464020450526
322 => 0.16004821153836
323 => 0.16355861810286
324 => 0.16542052508696
325 => 0.16714996805899
326 => 0.16290300271574
327 => 0.15737776320449
328 => 0.1556276879175
329 => 0.14234235653342
330 => 0.14165079733961
331 => 0.14126260420773
401 => 0.13881510142227
402 => 0.13689203466033
403 => 0.13536274057235
404 => 0.13134941619961
405 => 0.13270379536304
406 => 0.12630739395879
407 => 0.13039958490268
408 => 0.12019077381498
409 => 0.12869297504528
410 => 0.12406561346328
411 => 0.1271727623131
412 => 0.12716192176347
413 => 0.12144067560852
414 => 0.1181407802257
415 => 0.12024360199748
416 => 0.12249799385903
417 => 0.12286376135388
418 => 0.12578663924803
419 => 0.12660235164123
420 => 0.12413070500785
421 => 0.11997921889644
422 => 0.1209435144348
423 => 0.11812123880739
424 => 0.11317530932761
425 => 0.11672756222763
426 => 0.11794045754923
427 => 0.11847614122038
428 => 0.11361238762085
429 => 0.11208409064266
430 => 0.11127043815512
501 => 0.11935136938314
502 => 0.11979406103748
503 => 0.11752918794358
504 => 0.12776662909211
505 => 0.12544958086467
506 => 0.12803829142532
507 => 0.12085601472196
508 => 0.12113038736425
509 => 0.11773018247179
510 => 0.11963407000979
511 => 0.11828846366309
512 => 0.11948025471131
513 => 0.12019460935167
514 => 0.12359425630396
515 => 0.12873179355254
516 => 0.12308646241752
517 => 0.12062671079937
518 => 0.1221527268691
519 => 0.12621670875886
520 => 0.13237384935325
521 => 0.12872869819737
522 => 0.13034635438167
523 => 0.13069974029342
524 => 0.12801194078191
525 => 0.13247295235507
526 => 0.13486364469833
527 => 0.13731600035843
528 => 0.13944531206465
529 => 0.13633647557933
530 => 0.13966337625283
531 => 0.13698248158701
601 => 0.13457744192598
602 => 0.13458108937839
603 => 0.133072372867
604 => 0.13014904451567
605 => 0.12960993791578
606 => 0.13241443853006
607 => 0.13466338243552
608 => 0.13484861622729
609 => 0.13609374712826
610 => 0.13683060276958
611 => 0.14405278976125
612 => 0.14695761311436
613 => 0.15050957612506
614 => 0.15189326589539
615 => 0.15605767602385
616 => 0.15269457662827
617 => 0.15196694891914
618 => 0.14186545211567
619 => 0.14351957165134
620 => 0.14616797662675
621 => 0.14190912333824
622 => 0.1446103854969
623 => 0.14514367186758
624 => 0.14176440913317
625 => 0.14356941936894
626 => 0.13877584733097
627 => 0.12883628032365
628 => 0.13248401793453
629 => 0.13516998063134
630 => 0.13133678068618
701 => 0.13820764322255
702 => 0.1341938271722
703 => 0.13292164018138
704 => 0.1279583851628
705 => 0.13030085047837
706 => 0.13346906835854
707 => 0.13151147805345
708 => 0.13557377187017
709 => 0.14132706328883
710 => 0.14542720136819
711 => 0.1457419590583
712 => 0.14310584496119
713 => 0.14733023462527
714 => 0.1473610046921
715 => 0.14259587589388
716 => 0.13967726103732
717 => 0.13901414560109
718 => 0.14067073797223
719 => 0.14268214693462
720 => 0.14585357825702
721 => 0.14777000778415
722 => 0.15276703959521
723 => 0.15411909312715
724 => 0.15560459004174
725 => 0.15758967202991
726 => 0.15997327192129
727 => 0.15475809105738
728 => 0.15496529991541
729 => 0.15010899570403
730 => 0.1449193381897
731 => 0.14885764134313
801 => 0.15400644882574
802 => 0.1528253067003
803 => 0.15269240408265
804 => 0.15291590942143
805 => 0.15202536683135
806 => 0.14799747570145
807 => 0.14597469399195
808 => 0.14858459846386
809 => 0.14997164653719
810 => 0.15212283713563
811 => 0.15185765748825
812 => 0.15739889344883
813 => 0.15955205018483
814 => 0.15900118055299
815 => 0.15910255382267
816 => 0.16300074124503
817 => 0.16733632738208
818 => 0.17139717593042
819 => 0.17552804549128
820 => 0.17054812100507
821 => 0.16801962247002
822 => 0.17062838753928
823 => 0.1692441400725
824 => 0.17719843661108
825 => 0.17774917484522
826 => 0.18570289619761
827 => 0.19325192487256
828 => 0.18851051521672
829 => 0.19298145096439
830 => 0.19781713249624
831 => 0.20714594673223
901 => 0.20400433028919
902 => 0.20159790132923
903 => 0.19932383758984
904 => 0.20405580323405
905 => 0.21014340144032
906 => 0.21145461178766
907 => 0.21357927347126
908 => 0.21134545150223
909 => 0.2140358440165
910 => 0.22353411181028
911 => 0.22096759600887
912 => 0.21732273098287
913 => 0.22482070118272
914 => 0.22753418745043
915 => 0.24657885514097
916 => 0.27062353479627
917 => 0.2606688795331
918 => 0.25448970377653
919 => 0.25594195665133
920 => 0.26472225969767
921 => 0.26754221436327
922 => 0.25987660548551
923 => 0.26258422813312
924 => 0.27750349512902
925 => 0.28550720320493
926 => 0.27463709259644
927 => 0.24464688854245
928 => 0.21699455076661
929 => 0.22432919594576
930 => 0.22349767480299
1001 => 0.23952656597362
1002 => 0.22090638545581
1003 => 0.22121990154162
1004 => 0.23758025320677
1005 => 0.23321559186994
1006 => 0.22614539948787
1007 => 0.21704617099534
1008 => 0.20022540555015
1009 => 0.18532678451359
1010 => 0.21454641131379
1011 => 0.21328640787372
1012 => 0.21146173617045
1013 => 0.21552234559597
1014 => 0.2352395123422
1015 => 0.23478496783046
1016 => 0.23189338755741
1017 => 0.2340866257093
1018 => 0.22576091423569
1019 => 0.22790663965537
1020 => 0.21699017049503
1021 => 0.22192487046752
1022 => 0.2261302300304
1023 => 0.22697451822406
1024 => 0.2288767426348
1025 => 0.2126224433158
1026 => 0.21992014650888
1027 => 0.22420686343249
1028 => 0.20483932041951
1029 => 0.22382402937852
1030 => 0.21233949212721
1031 => 0.20844146769216
1101 => 0.21368964406829
1102 => 0.21164442463049
1103 => 0.20988606505719
1104 => 0.20890487020283
1105 => 0.21275855171337
1106 => 0.21257877286476
1107 => 0.20627340194616
1108 => 0.19804830262265
1109 => 0.2008089159353
1110 => 0.19980595923793
1111 => 0.19617111478265
1112 => 0.19862056107272
1113 => 0.18783443924768
1114 => 0.16927747726154
1115 => 0.1815367747647
1116 => 0.18106480514638
1117 => 0.18082681666271
1118 => 0.19003933991424
1119 => 0.18915376837268
1120 => 0.1875464473532
1121 => 0.19614159507166
1122 => 0.19300425053337
1123 => 0.20267280714903
1124 => 0.20904114385914
1125 => 0.20742592767534
1126 => 0.21341537913204
1127 => 0.20087251489037
1128 => 0.20503875125909
1129 => 0.20589740680052
1130 => 0.196035532283
1201 => 0.18929865882892
1202 => 0.18884938617552
1203 => 0.1771685760045
1204 => 0.18340837051365
1205 => 0.18889913146146
1206 => 0.18626948306772
1207 => 0.18543701494478
1208 => 0.18968991404461
1209 => 0.19002040072828
1210 => 0.1824852693171
1211 => 0.18405206174406
1212 => 0.19058584662207
1213 => 0.1838874271291
1214 => 0.17087349223488
1215 => 0.16764585644939
1216 => 0.16721523033847
1217 => 0.15846162610119
1218 => 0.16786154250612
1219 => 0.16375822709327
1220 => 0.17672055131718
1221 => 0.16931654123882
1222 => 0.16899736916255
1223 => 0.1685148937569
1224 => 0.16098030498304
1225 => 0.16262990107642
1226 => 0.16811340973139
1227 => 0.17006998739563
1228 => 0.16986590031549
1229 => 0.16808653754747
1230 => 0.16890112071085
1231 => 0.16627706452199
]
'min_raw' => 0.091812806902159
'max_raw' => 0.28550720320493
'avg_raw' => 0.18866000505355
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.091812'
'max' => '$0.2855072'
'avg' => '$0.18866'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.052302733875462
'max_diff' => 0.17832018236584
'year' => 2033
]
8 => [
'items' => [
101 => 0.1653504556667
102 => 0.16242582323555
103 => 0.15812742151209
104 => 0.15872514063537
105 => 0.1502088820832
106 => 0.14556877243193
107 => 0.14428445123612
108 => 0.14256700325761
109 => 0.14447844155525
110 => 0.15018475659274
111 => 0.14330172999526
112 => 0.13150126368207
113 => 0.13221049181451
114 => 0.13380391685637
115 => 0.13083457983241
116 => 0.1280243515368
117 => 0.13046761703881
118 => 0.12546760389911
119 => 0.13440814455646
120 => 0.13416632798726
121 => 0.13749880866499
122 => 0.13958267722217
123 => 0.13478003485833
124 => 0.13357218329156
125 => 0.13426023043779
126 => 0.12288834375456
127 => 0.13656948291107
128 => 0.13668779797062
129 => 0.13567471259962
130 => 0.14295949684268
131 => 0.15833266377671
201 => 0.15254865999192
202 => 0.15030891890401
203 => 0.14605116945865
204 => 0.15172436779445
205 => 0.15128875467794
206 => 0.14931874696372
207 => 0.14812728015136
208 => 0.1503225942855
209 => 0.14785525643567
210 => 0.14741205475994
211 => 0.14472673481314
212 => 0.14376819776641
213 => 0.14305853509747
214 => 0.14227726622898
215 => 0.1440005506728
216 => 0.14009536140615
217 => 0.13538608598101
218 => 0.13499456068447
219 => 0.13607559645146
220 => 0.13559731859822
221 => 0.13499227087412
222 => 0.13383706999387
223 => 0.13349434656966
224 => 0.13460803143257
225 => 0.13335074615421
226 => 0.13520593907031
227 => 0.13470142924963
228 => 0.13188327840277
301 => 0.1283708190345
302 => 0.12833955077849
303 => 0.12758279716919
304 => 0.12661895766907
305 => 0.1263508395698
306 => 0.13026185203305
307 => 0.13835753078523
308 => 0.136768155333
309 => 0.13791664198298
310 => 0.14356605960188
311 => 0.14536183957901
312 => 0.14408723748662
313 => 0.14234248352853
314 => 0.14241924384791
315 => 0.14838159629566
316 => 0.14875346090425
317 => 0.1496930428021
318 => 0.15090067106665
319 => 0.14429290180201
320 => 0.14210801850977
321 => 0.1410726995932
322 => 0.137884318049
323 => 0.14132271419324
324 => 0.1393193080068
325 => 0.13958963594745
326 => 0.13941358452146
327 => 0.1395097205046
328 => 0.13440564549314
329 => 0.13626530216503
330 => 0.13317326226167
331 => 0.12903336792884
401 => 0.1290194895514
402 => 0.13003272282438
403 => 0.12943001202579
404 => 0.1278081327639
405 => 0.128038513058
406 => 0.12602013926417
407 => 0.1282835801804
408 => 0.1283484875669
409 => 0.12747693952369
410 => 0.13096408254981
411 => 0.13239276789285
412 => 0.13181909630044
413 => 0.13235251756463
414 => 0.13683420105864
415 => 0.13756491101773
416 => 0.13788944411356
417 => 0.13745461275754
418 => 0.13243443451176
419 => 0.13265710076441
420 => 0.13102332354387
421 => 0.12964295395571
422 => 0.12969816150015
423 => 0.13040785090395
424 => 0.13350710615307
425 => 0.14002930611375
426 => 0.1402768188346
427 => 0.14057681147271
428 => 0.13935659064927
429 => 0.13898856037298
430 => 0.13947408730408
501 => 0.14192348268834
502 => 0.14822399262099
503 => 0.14599697161388
504 => 0.14418636886945
505 => 0.14577475561131
506 => 0.14553023592259
507 => 0.14346624367386
508 => 0.14340831428578
509 => 0.13944685326222
510 => 0.13798239131991
511 => 0.13675857730784
512 => 0.13542220435514
513 => 0.13462995767315
514 => 0.13584720864637
515 => 0.13612560834603
516 => 0.13346406781919
517 => 0.13310130968011
518 => 0.13527478112767
519 => 0.13431831737878
520 => 0.13530206406367
521 => 0.13553030173299
522 => 0.13549355021147
523 => 0.13449489220847
524 => 0.13513140703917
525 => 0.13362585971036
526 => 0.13198880311617
527 => 0.13094446300131
528 => 0.13003313773948
529 => 0.13053879396128
530 => 0.12873622185974
531 => 0.12815954276585
601 => 0.13491577013657
602 => 0.13990666793701
603 => 0.13983409830638
604 => 0.1393923493433
605 => 0.13873599998968
606 => 0.14187546664497
607 => 0.14078173923789
608 => 0.14157751731052
609 => 0.14178007622871
610 => 0.14239316106722
611 => 0.14261228620056
612 => 0.14194993785541
613 => 0.13972701591002
614 => 0.13418770577121
615 => 0.13160914194851
616 => 0.13075817293764
617 => 0.13078910404496
618 => 0.1299358860224
619 => 0.1301871969686
620 => 0.12984849033125
621 => 0.12920706190204
622 => 0.13049918756327
623 => 0.13064809300874
624 => 0.13034649543966
625 => 0.13041753258517
626 => 0.12792043352717
627 => 0.12811028254514
628 => 0.12705317908826
629 => 0.12685498493367
630 => 0.12418271944721
701 => 0.11944841378687
702 => 0.12207167869287
703 => 0.11890314357328
704 => 0.11770317131236
705 => 0.12338365336161
706 => 0.12281349051591
707 => 0.12183761956791
708 => 0.12039410304648
709 => 0.11985868872706
710 => 0.11660568081382
711 => 0.11641347575219
712 => 0.11802575431259
713 => 0.11728174323208
714 => 0.11623686989602
715 => 0.11245244458991
716 => 0.10819749756568
717 => 0.1083259276707
718 => 0.109679347153
719 => 0.11361459683128
720 => 0.11207702670147
721 => 0.1109615019307
722 => 0.11075259767369
723 => 0.11336747182089
724 => 0.11706806657225
725 => 0.11880430283345
726 => 0.11708374542888
727 => 0.1151072617239
728 => 0.11522756112888
729 => 0.11602785917512
730 => 0.11611195918417
731 => 0.11482547147804
801 => 0.11518761023167
802 => 0.11463748835024
803 => 0.11126139137937
804 => 0.11120032849088
805 => 0.11037177984731
806 => 0.11034669172367
807 => 0.10893712378981
808 => 0.10873991549198
809 => 0.10594113280465
810 => 0.10778330004495
811 => 0.10654767097827
812 => 0.10468528651937
813 => 0.10436421073668
814 => 0.10435455881094
815 => 0.10626681122869
816 => 0.10776095426208
817 => 0.10656916527491
818 => 0.10629781802439
819 => 0.10919509675764
820 => 0.10882639162955
821 => 0.10850709536652
822 => 0.11673671890074
823 => 0.11022232970787
824 => 0.10738168419145
825 => 0.10386584594091
826 => 0.10501062060368
827 => 0.10525184144537
828 => 0.096796884230317
829 => 0.093366709141169
830 => 0.092189602313994
831 => 0.091512160693108
901 => 0.091820879346522
902 => 0.08873331944688
903 => 0.090808210762967
904 => 0.088134644874819
905 => 0.087686412853134
906 => 0.092467079852403
907 => 0.0931322817371
908 => 0.090294323834957
909 => 0.092116752231783
910 => 0.091455914361444
911 => 0.088180475488371
912 => 0.088055377815918
913 => 0.086411877726653
914 => 0.083840118331281
915 => 0.082664755278079
916 => 0.082052615995001
917 => 0.082305196593556
918 => 0.082177484113833
919 => 0.08134407379559
920 => 0.08222525421772
921 => 0.079974202368068
922 => 0.079077815383579
923 => 0.078672938178706
924 => 0.07667500009643
925 => 0.079854608072429
926 => 0.080481030899347
927 => 0.081108687972745
928 => 0.086572014276995
929 => 0.086299081934035
930 => 0.088766257390955
1001 => 0.088670387489544
1002 => 0.087966709083638
1003 => 0.084998005638598
1004 => 0.08618127791974
1005 => 0.082539349759726
1006 => 0.085268129964251
1007 => 0.084022828635492
1008 => 0.084847092332337
1009 => 0.083364991884548
1010 => 0.084185247466782
1011 => 0.080629578990364
1012 => 0.07730934579669
1013 => 0.078645504557473
1014 => 0.080098061938734
1015 => 0.083247576446044
1016 => 0.081371751588421
1017 => 0.082046369140013
1018 => 0.079786513271793
1019 => 0.075123785119739
1020 => 0.075150175654709
1021 => 0.07443291651157
1022 => 0.073813099890348
1023 => 0.081587212638376
1024 => 0.080620378827623
1025 => 0.079079855686269
1026 => 0.081141907128928
1027 => 0.081687146259523
1028 => 0.081702668451056
1029 => 0.083207087954368
1030 => 0.084009996912968
1031 => 0.084151513096928
1101 => 0.086518749690525
1102 => 0.087312216172093
1103 => 0.090580392314092
1104 => 0.083941875697444
1105 => 0.083805159816321
1106 => 0.081170924421465
1107 => 0.079500250688434
1108 => 0.08128531688129
1109 => 0.082866641842325
1110 => 0.081220060595931
1111 => 0.081435069345483
1112 => 0.079224668552829
1113 => 0.080014782827179
1114 => 0.080695335680135
1115 => 0.080319574395781
1116 => 0.07975704156605
1117 => 0.082736991228712
1118 => 0.082568850790228
1119 => 0.085343848424846
1120 => 0.087507157523015
1121 => 0.091384194164692
1122 => 0.087338304314611
1123 => 0.087190856007519
1124 => 0.088632186860801
1125 => 0.087311995511849
1126 => 0.08814631087293
1127 => 0.091249773061557
1128 => 0.091315344327231
1129 => 0.090216941143387
1130 => 0.090150103209827
1201 => 0.090361063556499
1202 => 0.091596664896179
1203 => 0.091164907821901
1204 => 0.091664548039008
1205 => 0.092289355781262
1206 => 0.09487382551622
1207 => 0.095496932419638
1208 => 0.093983105688222
1209 => 0.09411978729247
1210 => 0.093553574539447
1211 => 0.093006620114653
1212 => 0.094236093785312
1213 => 0.096482981083807
1214 => 0.096469003314537
1215 => 0.09699023749454
1216 => 0.097314962070545
1217 => 0.095921006477415
1218 => 0.095013592643455
1219 => 0.095361552847637
1220 => 0.095917948791713
1221 => 0.095181121141891
1222 => 0.090633079555419
1223 => 0.092012664842733
1224 => 0.09178303439265
1225 => 0.091456012707715
1226 => 0.092843196382127
1227 => 0.092709399132673
1228 => 0.088701652057423
1229 => 0.088958215022077
1230 => 0.088717254501067
1231 => 0.089495847240335
]
'min_raw' => 0.073813099890348
'max_raw' => 0.1653504556667
'avg_raw' => 0.11958177777852
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.073813'
'max' => '$0.16535'
'avg' => '$0.119581'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.017999707011811
'max_diff' => -0.12015674753823
'year' => 2034
]
9 => [
'items' => [
101 => 0.087269948948805
102 => 0.087954620271626
103 => 0.088384039706904
104 => 0.088636971053239
105 => 0.089550732512847
106 => 0.089443513152157
107 => 0.089544067606843
108 => 0.09089893462736
109 => 0.097751387082919
110 => 0.098124350950991
111 => 0.096287740459478
112 => 0.097021430125297
113 => 0.095612906407217
114 => 0.096558457815453
115 => 0.097205380074567
116 => 0.094282062781629
117 => 0.094108962903713
118 => 0.092694625707209
119 => 0.093454610404457
120 => 0.092245420106301
121 => 0.092542113109788
122 => 0.091712533606809
123 => 0.093205611544539
124 => 0.094875104679777
125 => 0.09529688457602
126 => 0.094187363256668
127 => 0.093383996700438
128 => 0.091973549673095
129 => 0.094319154513429
130 => 0.095005080849755
131 => 0.094315551634392
201 => 0.094155772648681
202 => 0.093852991759474
203 => 0.094220009045664
204 => 0.095001345147617
205 => 0.094632881470948
206 => 0.094876258220883
207 => 0.093948757019148
208 => 0.095921467934718
209 => 0.099054607627379
210 => 0.099064681183811
211 => 0.098696215520986
212 => 0.098545447310461
213 => 0.098923515440886
214 => 0.099128601892475
215 => 0.10035120490043
216 => 0.10166310663862
217 => 0.10778517962317
218 => 0.10606612602698
219 => 0.11149799338263
220 => 0.11579389522125
221 => 0.11708204834563
222 => 0.11589700808349
223 => 0.11184304936131
224 => 0.11164414280597
225 => 0.11770246867412
226 => 0.11599071412747
227 => 0.1157871063709
228 => 0.11362106384176
301 => 0.11490146324607
302 => 0.11462142111402
303 => 0.11417936090845
304 => 0.11662227377847
305 => 0.12119518859082
306 => 0.12048245693279
307 => 0.11995043581274
308 => 0.11761927413372
309 => 0.1190231541483
310 => 0.11852325936466
311 => 0.12067112459626
312 => 0.1193987768141
313 => 0.11597774590322
314 => 0.11652255635164
315 => 0.11644020934837
316 => 0.11813490484055
317 => 0.11762619931872
318 => 0.1163408764308
319 => 0.12117955886513
320 => 0.12086536174201
321 => 0.12131082142713
322 => 0.12150692655682
323 => 0.12445214728745
324 => 0.12565870998424
325 => 0.12593262084026
326 => 0.1270787620833
327 => 0.12590410380202
328 => 0.13060357444429
329 => 0.13372844819969
330 => 0.13735814987111
331 => 0.14266211958489
401 => 0.14465646126174
402 => 0.14429620128848
403 => 0.1483176105921
404 => 0.1555439937198
405 => 0.14575685992879
406 => 0.15606273557574
407 => 0.15280001433297
408 => 0.14506416096021
409 => 0.14456606320273
410 => 0.14980487292187
411 => 0.16142404866216
412 => 0.15851357692282
413 => 0.16142880915128
414 => 0.1580280359051
415 => 0.15785915884946
416 => 0.16126364118538
417 => 0.16921839973193
418 => 0.16543939212613
419 => 0.16002125807254
420 => 0.16402192394221
421 => 0.16055617692175
422 => 0.15274687888315
423 => 0.15851135133993
424 => 0.15465681277081
425 => 0.15578177204382
426 => 0.16388343879678
427 => 0.16290862481871
428 => 0.16417012437167
429 => 0.16194361067988
430 => 0.15986369580277
501 => 0.15598138022813
502 => 0.15483201798233
503 => 0.15514966035735
504 => 0.15483186057454
505 => 0.15265974069085
506 => 0.15219067160878
507 => 0.15140886925493
508 => 0.1516511824952
509 => 0.15018116534563
510 => 0.15295539142791
511 => 0.15347031223518
512 => 0.15548916262661
513 => 0.15569876637153
514 => 0.16132123597512
515 => 0.15822447419922
516 => 0.16030204936004
517 => 0.16011621148276
518 => 0.14523182035996
519 => 0.14728275813059
520 => 0.15047337368196
521 => 0.14903600570084
522 => 0.14700390366785
523 => 0.1453628723218
524 => 0.14287654202846
525 => 0.14637600417059
526 => 0.15097742476119
527 => 0.1558154659912
528 => 0.16162805552804
529 => 0.16033075320942
530 => 0.15570680367297
531 => 0.15591423067137
601 => 0.15719646275602
602 => 0.15553585570334
603 => 0.1550461102646
604 => 0.15712917925329
605 => 0.15714352420458
606 => 0.1552327950994
607 => 0.15310936935873
608 => 0.15310047212734
609 => 0.15272262902665
610 => 0.15809525335333
611 => 0.16104965349942
612 => 0.16138837071492
613 => 0.16102685513206
614 => 0.16116598813186
615 => 0.15944688778262
616 => 0.16337624139762
617 => 0.16698220484753
618 => 0.16601572961278
619 => 0.16456684584334
620 => 0.16341274013328
621 => 0.1657438589855
622 => 0.16564005793253
623 => 0.16695070990257
624 => 0.16689125115852
625 => 0.16645052819711
626 => 0.16601574535239
627 => 0.16773961018608
628 => 0.1672431647984
629 => 0.16674594829391
630 => 0.16574870447411
701 => 0.16588424647169
702 => 0.16443561287246
703 => 0.16376540868449
704 => 0.15368714574215
705 => 0.15099390456722
706 => 0.15184125306683
707 => 0.1521202221943
708 => 0.15094812018349
709 => 0.15262861337869
710 => 0.1523667102943
711 => 0.15338562198748
712 => 0.15274905019759
713 => 0.15277517532589
714 => 0.15464719722856
715 => 0.15519065315106
716 => 0.15491424708265
717 => 0.15510783241832
718 => 0.15956892477152
719 => 0.15893470009659
720 => 0.15859778087861
721 => 0.15869110980454
722 => 0.15983101454768
723 => 0.16015012563927
724 => 0.15879802952067
725 => 0.15943568586657
726 => 0.1621507456568
727 => 0.1631008629243
728 => 0.16613318116001
729 => 0.16484499847832
730 => 0.1672095135418
731 => 0.17447722672434
801 => 0.18028317890206
802 => 0.17494378533831
803 => 0.18560567712914
804 => 0.19390748924583
805 => 0.1935888518694
806 => 0.19214123890248
807 => 0.18268984652272
808 => 0.17399253434253
809 => 0.18126820528864
810 => 0.18128675247014
811 => 0.18066176588339
812 => 0.17678002786962
813 => 0.18052668981467
814 => 0.18082408623399
815 => 0.18065762332326
816 => 0.17768150388932
817 => 0.1731375195925
818 => 0.17402540324734
819 => 0.1754797747863
820 => 0.17272634604936
821 => 0.17184645873178
822 => 0.17348233666057
823 => 0.17875347619585
824 => 0.17775699780034
825 => 0.17773097572235
826 => 0.18199433287095
827 => 0.17894268924261
828 => 0.17403660230362
829 => 0.17279775064819
830 => 0.16840066186188
831 => 0.17143774674848
901 => 0.17154704602673
902 => 0.1698836656726
903 => 0.17417157645195
904 => 0.17413206259924
905 => 0.17820279571294
906 => 0.1859845085288
907 => 0.18368307313432
908 => 0.181006754166
909 => 0.18129774424413
910 => 0.18448918717653
911 => 0.18255956792605
912 => 0.1832534724623
913 => 0.18448813686891
914 => 0.1852330405604
915 => 0.18119056406634
916 => 0.18024806942157
917 => 0.17832005614905
918 => 0.17781707347432
919 => 0.17938740005547
920 => 0.17897367448179
921 => 0.17153785984562
922 => 0.17076077584366
923 => 0.17078460790058
924 => 0.16883059322931
925 => 0.16585025183838
926 => 0.17368241106682
927 => 0.17305337906977
928 => 0.17235897642825
929 => 0.17244403678963
930 => 0.17584371165419
1001 => 0.17387172854505
1002 => 0.17911456884237
1003 => 0.17803679849145
1004 => 0.17693138739782
1005 => 0.17677858591304
1006 => 0.17635309695124
1007 => 0.17489393698374
1008 => 0.17313191364107
1009 => 0.1719684732064
1010 => 0.1586318263138
1011 => 0.16110703040136
1012 => 0.16395452708215
1013 => 0.16493747152573
1014 => 0.1632560770373
1015 => 0.17496032868637
1016 => 0.17709880824763
1017 => 0.170621214167
1018 => 0.16940952079294
1019 => 0.17503976710224
1020 => 0.17164404030811
1021 => 0.17317313587559
1022 => 0.16986806762927
1023 => 0.17658371114331
1024 => 0.17653254919151
1025 => 0.17392001218486
1026 => 0.176128110573
1027 => 0.17574439913943
1028 => 0.17279485129332
1029 => 0.17667721707104
1030 => 0.17667914267603
1031 => 0.17416463260858
1101 => 0.17122823534684
1102 => 0.17070327687105
1103 => 0.17030779117778
1104 => 0.17307587063876
1105 => 0.17555772202791
1106 => 0.18017583215998
1107 => 0.18133693477077
1108 => 0.18586879555967
1109 => 0.18317029311218
1110 => 0.1843665042957
1111 => 0.18566516074981
1112 => 0.18628778441042
1113 => 0.18527325256728
1114 => 0.19231309776077
1115 => 0.19290747639038
1116 => 0.19310676640353
1117 => 0.19073297021353
1118 => 0.19284145682417
1119 => 0.19185496576479
1120 => 0.19442154144619
1121 => 0.19482401328471
1122 => 0.19448313395583
1123 => 0.19461088486997
1124 => 0.18860361891112
1125 => 0.1882921104803
1126 => 0.18404467092246
1127 => 0.18577553393777
1128 => 0.18253976849307
1129 => 0.18356586304766
1130 => 0.18401815575034
1201 => 0.18378190370985
1202 => 0.18587339433569
1203 => 0.18409520004042
1204 => 0.17940225293298
1205 => 0.17470802723525
1206 => 0.17464909505545
1207 => 0.1734131882892
1208 => 0.17251985406482
1209 => 0.17269194192917
1210 => 0.17329840200891
1211 => 0.1724846055025
1212 => 0.17265827024767
1213 => 0.17554226213969
1214 => 0.17612062614595
1215 => 0.17415511927129
1216 => 0.16626332554824
1217 => 0.16432665957354
1218 => 0.1657186966704
1219 => 0.16505339259677
1220 => 0.13321096971472
1221 => 0.14069187464552
1222 => 0.13624697496316
1223 => 0.1382953892368
1224 => 0.1337582976623
1225 => 0.13592363557099
1226 => 0.13552377672474
1227 => 0.1475528504774
1228 => 0.1473650330362
1229 => 0.14745493130623
1230 => 0.1431638526493
1231 => 0.14999965746526
]
'min_raw' => 0.087269948948805
'max_raw' => 0.19482401328471
'avg_raw' => 0.14104698111676
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.087269'
'max' => '$0.194824'
'avg' => '$0.141046'
'bar_min_pct' => 61.631153054958
'bar_max_pct' => 60.119598047091
'min_diff' => 0.013456849058457
'max_diff' => 0.029473557618012
'year' => 2035
]
10 => [
'items' => [
101 => 0.1533672207252
102 => 0.15274397439058
103 => 0.15290083206569
104 => 0.15020549751298
105 => 0.14748102803641
106 => 0.14445917209404
107 => 0.15007340692227
108 => 0.14944919984756
109 => 0.15088090629434
110 => 0.15452213889424
111 => 0.15505832422628
112 => 0.15577896274998
113 => 0.15552066513778
114 => 0.16167436218131
115 => 0.16092910886593
116 => 0.16272495493197
117 => 0.15903076332297
118 => 0.1548504348615
119 => 0.15564497863679
120 => 0.15556845768191
121 => 0.15459425809965
122 => 0.15371479427619
123 => 0.15225073479752
124 => 0.15688323562805
125 => 0.15669516455427
126 => 0.15973981663006
127 => 0.15920164480149
128 => 0.15560760161733
129 => 0.15573596357277
130 => 0.15659925941172
131 => 0.15958713616727
201 => 0.16047414141848
202 => 0.16006324524507
203 => 0.1610358060097
204 => 0.16180447838356
205 => 0.16113233942517
206 => 0.17064840966039
207 => 0.16669667384062
208 => 0.16862272238317
209 => 0.16908207361163
210 => 0.16790545509905
211 => 0.16816062152288
212 => 0.16854712912629
213 => 0.17089392760828
214 => 0.17705260587662
215 => 0.17978024255813
216 => 0.18798647209367
217 => 0.17955375030227
218 => 0.17905338748923
219 => 0.18053157723298
220 => 0.18534950268796
221 => 0.18925397874449
222 => 0.19054931870707
223 => 0.19072051926686
224 => 0.19315066314923
225 => 0.1945435763031
226 => 0.19285557976278
227 => 0.19142517943546
228 => 0.18630166301082
229 => 0.18689472398784
301 => 0.19098032600927
302 => 0.19675147950528
303 => 0.20170372959104
304 => 0.19996962421435
305 => 0.21319962415091
306 => 0.21451132460492
307 => 0.21433009001453
308 => 0.21731833885596
309 => 0.21138727345202
310 => 0.20885162808285
311 => 0.19173444822196
312 => 0.19654367756218
313 => 0.20353417484432
314 => 0.20260895631601
315 => 0.19753227033319
316 => 0.20169987846949
317 => 0.20032193688647
318 => 0.1992350971891
319 => 0.20421412053701
320 => 0.19873947983897
321 => 0.20347956111548
322 => 0.1974003578485
323 => 0.19997754546164
324 => 0.19851460912788
325 => 0.19946130822656
326 => 0.19392692463995
327 => 0.19691314368372
328 => 0.19380268810995
329 => 0.19380121334901
330 => 0.19373254986983
331 => 0.19739198705849
401 => 0.19751132117383
402 => 0.19480699156231
403 => 0.19441725541572
404 => 0.19585831421864
405 => 0.19417121177432
406 => 0.19496059638952
407 => 0.19419512143015
408 => 0.19402279689343
409 => 0.19264968566622
410 => 0.19205811159506
411 => 0.19229008303134
412 => 0.19149824492982
413 => 0.19102113383161
414 => 0.19363764046368
415 => 0.19223974651974
416 => 0.19342339316815
417 => 0.19207447842417
418 => 0.18739855222738
419 => 0.18470937762457
420 => 0.17587698649741
421 => 0.17838184166453
422 => 0.18004256323179
423 => 0.17949369476371
424 => 0.18067287661703
425 => 0.18074526880591
426 => 0.18036190476506
427 => 0.17991801831773
428 => 0.17970195894363
429 => 0.18131228850404
430 => 0.18224713901507
501 => 0.18020923885865
502 => 0.17973178736525
503 => 0.18179221693894
504 => 0.18304907778862
505 => 0.19232903213355
506 => 0.19164154314182
507 => 0.19336700559816
508 => 0.19317274500496
509 => 0.19498130454693
510 => 0.19793753504376
511 => 0.19192669186865
512 => 0.19296996640453
513 => 0.19271417958106
514 => 0.1955067930488
515 => 0.19551551128323
516 => 0.19384120000793
517 => 0.19474887131286
518 => 0.19424223409111
519 => 0.19515779602695
520 => 0.19163236130719
521 => 0.19592596024869
522 => 0.19836015417512
523 => 0.19839395296015
524 => 0.19954774156232
525 => 0.20072005760505
526 => 0.20297021616187
527 => 0.20065730190418
528 => 0.19649659431226
529 => 0.19679698396139
530 => 0.19435756262259
531 => 0.19439856973601
601 => 0.19417967055078
602 => 0.19483660348363
603 => 0.19177652114341
604 => 0.19249471635225
605 => 0.19148923885413
606 => 0.19296778069282
607 => 0.19137711408611
608 => 0.19271405623291
609 => 0.19329103614314
610 => 0.19542010443336
611 => 0.19106264896855
612 => 0.182177502302
613 => 0.1840452678533
614 => 0.18128269589311
615 => 0.18153838244588
616 => 0.18205490997469
617 => 0.18038067525654
618 => 0.18070006647956
619 => 0.18068865557755
620 => 0.18059032258872
621 => 0.18015478947651
622 => 0.17952318029622
623 => 0.18203931687146
624 => 0.18246685750573
625 => 0.18341722737464
626 => 0.18624488346248
627 => 0.18596233393858
628 => 0.18642318393492
629 => 0.18541715098047
630 => 0.18158504942927
701 => 0.18179315098029
702 => 0.17919812130438
703 => 0.18335086663141
704 => 0.18236744172441
705 => 0.18173342128931
706 => 0.18156042293943
707 => 0.18439508823978
708 => 0.18524326452558
709 => 0.18471473798326
710 => 0.18363071462539
711 => 0.18571235993524
712 => 0.18626932040259
713 => 0.18639400331132
714 => 0.19008227968448
715 => 0.18660013698894
716 => 0.18743832334528
717 => 0.19397761402658
718 => 0.18804737973907
719 => 0.19118875710117
720 => 0.19103500302624
721 => 0.19264202538627
722 => 0.19090318028725
723 => 0.19092473535624
724 => 0.19235166234282
725 => 0.1903478007378
726 => 0.18985161642402
727 => 0.18916614134829
728 => 0.19066285109856
729 => 0.19156006090349
730 => 0.19879091300322
731 => 0.20346237322657
801 => 0.20325957281817
802 => 0.20511278892445
803 => 0.20427789809506
804 => 0.20158181537388
805 => 0.20618369982667
806 => 0.20472747103478
807 => 0.20484752076707
808 => 0.20484305251004
809 => 0.20581131735091
810 => 0.20512521297098
811 => 0.20377283081097
812 => 0.20467060520182
813 => 0.20733667418241
814 => 0.21561223410317
815 => 0.22024334707141
816 => 0.21533343528749
817 => 0.2187202266897
818 => 0.21668935868554
819 => 0.21632028955609
820 => 0.2184474448386
821 => 0.22057832342484
822 => 0.22044259567094
823 => 0.21889568723916
824 => 0.21802187791739
825 => 0.22463865484941
826 => 0.22951378337907
827 => 0.22918133229662
828 => 0.23064866325566
829 => 0.23495679233422
830 => 0.23535067366593
831 => 0.2353010536714
901 => 0.23432477769348
902 => 0.23856669025258
903 => 0.24210536833873
904 => 0.23409879801192
905 => 0.23714759517867
906 => 0.23851629845293
907 => 0.24052596093551
908 => 0.24391659840217
909 => 0.24759973001313
910 => 0.2481205652064
911 => 0.24775100771251
912 => 0.2453218834072
913 => 0.2493520099648
914 => 0.25171276358416
915 => 0.25311853833959
916 => 0.25668334922077
917 => 0.23852475109839
918 => 0.22567119280649
919 => 0.22366392407158
920 => 0.22774578397597
921 => 0.22882213788053
922 => 0.22838826097123
923 => 0.21392041251931
924 => 0.22358775384367
925 => 0.23398900025554
926 => 0.23438855449063
927 => 0.23959563592421
928 => 0.24129127508447
929 => 0.24548365814627
930 => 0.2452214234443
1001 => 0.24624220200446
1002 => 0.2460075426909
1003 => 0.25377304950248
1004 => 0.26233955670458
1005 => 0.2620429258
1006 => 0.26081138903538
1007 => 0.26264043113906
1008 => 0.27148198461433
1009 => 0.27066799605333
1010 => 0.27145871660496
1011 => 0.28188340644042
1012 => 0.29543698612135
1013 => 0.2891399876024
1014 => 0.302802662476
1015 => 0.31140259208166
1016 => 0.32627528108532
1017 => 0.32441314717252
1018 => 0.33020297586082
1019 => 0.32107953882954
1020 => 0.3001302832549
1021 => 0.29681498336969
1022 => 0.30345229769665
1023 => 0.31976948730984
1024 => 0.30293841132779
1025 => 0.30634331607812
1026 => 0.30536270328096
1027 => 0.30531045059234
1028 => 0.30730472319008
1029 => 0.30441192677279
1030 => 0.29262615376459
1031 => 0.29802750408025
1101 => 0.29594178332923
1102 => 0.29825604600327
1103 => 0.31074516718055
1104 => 0.30522342900461
1105 => 0.29940672638584
1106 => 0.30670216229942
1107 => 0.31599175920117
1108 => 0.31541043292207
1109 => 0.31428241696508
1110 => 0.32064098385363
1111 => 0.33114347346823
1112 => 0.33398225420864
1113 => 0.33607778411489
1114 => 0.33636672228469
1115 => 0.33934296500775
1116 => 0.32333895777615
1117 => 0.34873772826475
1118 => 0.35312339430126
1119 => 0.35229907085363
1120 => 0.35717355407616
1121 => 0.35573935745839
1122 => 0.35366143157779
1123 => 0.36138852431783
1124 => 0.3525300360356
1125 => 0.33995652717165
1126 => 0.33305845153308
1127 => 0.34214239398584
1128 => 0.34768964065584
1129 => 0.35135601783355
1130 => 0.35246546135225
1201 => 0.32458130329997
1202 => 0.3095532886361
1203 => 0.31918607373911
1204 => 0.33093873638408
1205 => 0.32327367114175
1206 => 0.32357412718736
1207 => 0.31264575849551
1208 => 0.33190565452149
1209 => 0.32909964967172
1210 => 0.34365720779603
1211 => 0.34018292971796
1212 => 0.35205405324718
1213 => 0.34892798857726
1214 => 0.36190410824616
1215 => 0.3670806336965
1216 => 0.37577282558948
1217 => 0.38216683732953
1218 => 0.38592152332125
1219 => 0.38569610605778
1220 => 0.4005740425341
1221 => 0.39180104318952
1222 => 0.38078008837555
1223 => 0.38058075407363
1224 => 0.38628866273993
1225 => 0.39825087341621
1226 => 0.40135250060148
1227 => 0.40308588706629
1228 => 0.40043114535582
1229 => 0.39090868333381
1230 => 0.38679693251269
1231 => 0.39030026334118
]
'min_raw' => 0.14445917209404
'max_raw' => 0.40308588706629
'avg_raw' => 0.27377252958016
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$0.144459'
'max' => '$0.403085'
'avg' => '$0.273772'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.057189223145235
'max_diff' => 0.20826187378157
'year' => 2036
]
11 => [
'items' => [
101 => 0.38601599078259
102 => 0.39341184717328
103 => 0.40356793766739
104 => 0.40147074514189
105 => 0.40848134532596
106 => 0.41573657897982
107 => 0.42611188895777
108 => 0.42882437918263
109 => 0.43330802237754
110 => 0.43792316402518
111 => 0.43940542314084
112 => 0.44223551571064
113 => 0.44222059972582
114 => 0.45074927417211
115 => 0.46015666619742
116 => 0.46370773890535
117 => 0.47187323478994
118 => 0.45789010924068
119 => 0.46849647059636
120 => 0.47806367403363
121 => 0.46665725968622
122 => 0.48237834451044
123 => 0.48298875860942
124 => 0.49220528678702
125 => 0.48286256980587
126 => 0.47731489428547
127 => 0.49333082564418
128 => 0.50108043033154
129 => 0.49874618633133
130 => 0.4809824742339
131 => 0.47064323187173
201 => 0.44358344031905
202 => 0.47563693230921
203 => 0.49124925324443
204 => 0.48094204209433
205 => 0.48614039986378
206 => 0.51450095428069
207 => 0.52529881719274
208 => 0.52305293718979
209 => 0.52343245393996
210 => 0.52925878477222
211 => 0.55509594430148
212 => 0.53961371941088
213 => 0.55144930023184
214 => 0.55772684962292
215 => 0.56355778734899
216 => 0.54923884718057
217 => 0.53061011640847
218 => 0.52470961539202
219 => 0.47991719307839
220 => 0.47758555297333
221 => 0.47627673272644
222 => 0.46802480620607
223 => 0.46154105235397
224 => 0.45638493056443
225 => 0.44285372724038
226 => 0.44742011114961
227 => 0.42585419723268
228 => 0.43965130470767
301 => 0.40523158536906
302 => 0.43389735042174
303 => 0.41829587777597
304 => 0.42877184705734
305 => 0.42873529738741
306 => 0.40944571653132
307 => 0.39831988885681
308 => 0.4054096992747
309 => 0.41301053883253
310 => 0.41424374947849
311 => 0.42409843636743
312 => 0.42684866765235
313 => 0.41851533846303
314 => 0.4045183131909
315 => 0.40776950292346
316 => 0.39825400360065
317 => 0.38157845704582
318 => 0.39355512570861
319 => 0.39764448696703
320 => 0.39945058186453
321 => 0.38305209702731
322 => 0.37789933706303
323 => 0.37515605089389
324 => 0.40240147472177
325 => 0.40389404054213
326 => 0.39625786277764
327 => 0.43077411036523
328 => 0.42296202049528
329 => 0.4316900388885
330 => 0.40747449153259
331 => 0.40839955805214
401 => 0.39693552986249
402 => 0.40335461962206
403 => 0.39881781387692
404 => 0.40283602060417
405 => 0.40524451714879
406 => 0.41670666420422
407 => 0.43402822972921
408 => 0.41499460166306
409 => 0.40670137734806
410 => 0.41184644707022
411 => 0.42554844574969
412 => 0.4463076751415
413 => 0.43401779352312
414 => 0.43947183428963
415 => 0.44066329956373
416 => 0.43160119585449
417 => 0.44664180783131
418 => 0.4547021939794
419 => 0.46297048230544
420 => 0.47014960538676
421 => 0.45966794612446
422 => 0.47088482402196
423 => 0.46184600048207
424 => 0.45373724135039
425 => 0.45374953899084
426 => 0.44866279593747
427 => 0.43880659030069
428 => 0.43698895475994
429 => 0.44644452438497
430 => 0.45402699577847
501 => 0.45465152444002
502 => 0.45884957020491
503 => 0.46133393044526
504 => 0.48568403812466
505 => 0.49547785286797
506 => 0.50745354414867
507 => 0.51211875081548
508 => 0.52615935031342
509 => 0.5148204258971
510 => 0.51236717827445
511 => 0.47830927653754
512 => 0.483886256039
513 => 0.49281553831932
514 => 0.47845651711348
515 => 0.4875640110775
516 => 0.48936202330909
517 => 0.47796860306746
518 => 0.48405432109914
519 => 0.46789245829663
520 => 0.43438051417303
521 => 0.44667911620502
522 => 0.45573502696524
523 => 0.44281112572466
524 => 0.46597671847435
525 => 0.45244385742488
526 => 0.44815459016409
527 => 0.43142062934555
528 => 0.43931841470268
529 => 0.45000028248359
530 => 0.4434001300954
531 => 0.45709643731875
601 => 0.47649406101874
602 => 0.49031796281581
603 => 0.49137919034371
604 => 0.48249134761769
605 => 0.4967341723076
606 => 0.49683791573622
607 => 0.48077195130235
608 => 0.47093163754227
609 => 0.46869589755179
610 => 0.47428121439067
611 => 0.48106282013944
612 => 0.49175552226519
613 => 0.49821689821673
614 => 0.51506473984935
615 => 0.51962328272966
616 => 0.52463173929127
617 => 0.53132458180839
618 => 0.5393610552598
619 => 0.52177770886482
620 => 0.52247632799655
621 => 0.50610295929154
622 => 0.48860566665165
623 => 0.50188393069701
624 => 0.51924349460287
625 => 0.51526119146225
626 => 0.51481310100786
627 => 0.51556666486222
628 => 0.51256413834405
629 => 0.49898382218122
630 => 0.49216387242153
701 => 0.50096334756628
702 => 0.50563987698613
703 => 0.51289276628011
704 => 0.5119986945847
705 => 0.53068135850253
706 => 0.53794087676657
707 => 0.53608358134232
708 => 0.5364253683987
709 => 0.54956837945594
710 => 0.56418611081798
711 => 0.57787754521808
712 => 0.59180506035064
713 => 0.57501489725817
714 => 0.5664898879131
715 => 0.57528552148228
716 => 0.57061843450297
717 => 0.59743690063402
718 => 0.59929375304173
719 => 0.62611027989243
720 => 0.65156235712635
721 => 0.63557636343705
722 => 0.65065043546109
723 => 0.66695427336222
724 => 0.69840702187586
725 => 0.6878148426975
726 => 0.67970139944749
727 => 0.67203423478009
728 => 0.68798838732482
729 => 0.7085131496998
730 => 0.71293398693164
731 => 0.72009743213702
801 => 0.71256594540797
802 => 0.72163679160707
803 => 0.75366086462167
804 => 0.74500767740881
805 => 0.73271876049729
806 => 0.75799869051765
807 => 0.76714739891878
808 => 0.83135782569369
809 => 0.91242614189745
810 => 0.87886332666583
811 => 0.85802980418628
812 => 0.86292617614674
813 => 0.89252958088866
814 => 0.90203725492666
815 => 0.87619211939959
816 => 0.88532105819617
817 => 0.93562240850282
818 => 0.96260746908181
819 => 0.92595813223839
820 => 0.82484406542118
821 => 0.73161227798536
822 => 0.75634154629545
823 => 0.75353801470762
824 => 0.80758054039087
825 => 0.74480130175558
826 => 0.74585834312787
827 => 0.80101841101022
828 => 0.78630265058217
829 => 0.76246500334094
830 => 0.73178631919054
831 => 0.67507393410372
901 => 0.62484219309046
902 => 0.72335820489653
903 => 0.71911001532771
904 => 0.71295800728564
905 => 0.72664863546647
906 => 0.79312643976001
907 => 0.79159391120339
908 => 0.78184474642912
909 => 0.78923940198521
910 => 0.76116868446932
911 => 0.76840314753152
912 => 0.7315975095939
913 => 0.74823519508092
914 => 0.76241385845599
915 => 0.76526043504724
916 => 0.77167391745711
917 => 0.71687141246417
918 => 0.74147612828899
919 => 0.75592909368597
920 => 0.69063007021903
921 => 0.75463834194439
922 => 0.71591742277681
923 => 0.70277496124264
924 => 0.72046955431075
925 => 0.71357395418356
926 => 0.70764552211742
927 => 0.70433735516112
928 => 0.71733031142936
929 => 0.71672417448951
930 => 0.69546517621052
1001 => 0.66773367958319
1002 => 0.67704128010667
1003 => 0.67365974157727
1004 => 0.66140460971958
1005 => 0.6696630889014
1006 => 0.63329692610532
1007 => 0.57073083316333
1008 => 0.61206391061207
1009 => 0.61047263209203
1010 => 0.60967023730349
1011 => 0.64073090264386
1012 => 0.63774513636286
1013 => 0.63232594132613
1014 => 0.66130508195294
1015 => 0.65072730579971
1016 => 0.68332551946648
1017 => 0.70479681130768
1018 => 0.69935099717322
1019 => 0.71954485092963
1020 => 0.67725570842402
1021 => 0.69130246521847
1022 => 0.69419748232585
1023 => 0.66094748385593
1024 => 0.63823364465202
1025 => 0.63671889053385
1026 => 0.59733622351413
1027 => 0.61837412635028
1028 => 0.63688661023852
1029 => 0.62802056708284
1030 => 0.62521384268526
1031 => 0.63955278892826
1101 => 0.64066704785612
1102 => 0.61526182621724
1103 => 0.6205443762747
1104 => 0.64257348816518
1105 => 0.61998929917594
1106 => 0.57611190907616
1107 => 0.56522970967903
1108 => 0.56377782368073
1109 => 0.5342644358376
1110 => 0.56595691027801
1111 => 0.55212229587926
1112 => 0.59582567700077
1113 => 0.5708625400901
1114 => 0.56978642915107
1115 => 0.56815972963557
1116 => 0.5427563375363
1117 => 0.54831806593625
1118 => 0.56680609821284
1119 => 0.57340283641172
1120 => 0.57271474257209
1121 => 0.56671549676857
1122 => 0.56946192077632
1123 => 0.56061473212982
1124 => 0.55749060568044
1125 => 0.5476300032475
1126 => 0.53313764173204
1127 => 0.53515289348758
1128 => 0.50643973319277
1129 => 0.4907952795414
1130 => 0.48646510096129
1201 => 0.48067460519334
1202 => 0.4871191528662
1203 => 0.50635839241727
1204 => 0.48315178768631
1205 => 0.44336569162913
1206 => 0.44575690379437
1207 => 0.45112924757242
1208 => 0.44111792048364
1209 => 0.43164303958111
1210 => 0.43988067980448
1211 => 0.42302278641421
1212 => 0.45316644344909
1213 => 0.45235114200292
1214 => 0.46358683327428
1215 => 0.47061274160585
1216 => 0.45442029756641
1217 => 0.45034794167951
1218 => 0.45266774067094
1219 => 0.41432663075869
1220 => 0.46045354661148
1221 => 0.46085245409524
1222 => 0.45743676603556
1223 => 0.48199792471842
1224 => 0.53382963035676
1225 => 0.51432845777009
1226 => 0.50677701431847
1227 => 0.49242171479686
1228 => 0.51154929907606
1229 => 0.51008059904021
1230 => 0.50343858049017
1231 => 0.49942146694675
]
'min_raw' => 0.37515605089389
'max_raw' => 0.96260746908181
'avg_raw' => 0.66888175998785
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$0.375156'
'max' => '$0.9626074'
'avg' => '$0.668881'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 0.23069687879985
'max_diff' => 0.55952158201552
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.011775719756342
]
1 => [
'year' => 2028
'avg' => 0.020210553617754
]
2 => [
'year' => 2029
'avg' => 0.05521158988582
]
3 => [
'year' => 2030
'avg' => 0.042595659373343
]
4 => [
'year' => 2031
'avg' => 0.041834216326575
]
5 => [
'year' => 2032
'avg' => 0.073348546932896
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.011775719756342
'min' => '$0.011775'
'max_raw' => 0.073348546932896
'max' => '$0.073348'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.073348546932896
]
1 => [
'year' => 2033
'avg' => 0.18866000505355
]
2 => [
'year' => 2034
'avg' => 0.11958177777852
]
3 => [
'year' => 2035
'avg' => 0.14104698111676
]
4 => [
'year' => 2036
'avg' => 0.27377252958016
]
5 => [
'year' => 2037
'avg' => 0.66888175998785
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.073348546932896
'min' => '$0.073348'
'max_raw' => 0.66888175998785
'max' => '$0.668881'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 0.66888175998785
]
]
]
]
'prediction_2025_max_price' => '$0.020134'
'last_price' => 0.01952278
'sma_50day_nextmonth' => '$0.018195'
'sma_200day_nextmonth' => '$0.026061'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'increase'
'sma_200day_direction_label' => 'aumentar'
'sma_200day_date_nextmonth' => '4 de fev. de 2026'
'sma_50day_date_nextmonth' => '4 de fev. de 2026'
'daily_sma3' => '$0.019283'
'daily_sma3_action' => 'BUY'
'daily_sma5' => '$0.019377'
'daily_sma5_action' => 'BUY'
'daily_sma10' => '$0.01998'
'daily_sma10_action' => 'SELL'
'daily_sma21' => '$0.0185097'
'daily_sma21_action' => 'BUY'
'daily_sma50' => '$0.019994'
'daily_sma50_action' => 'SELL'
'daily_sma100' => '$0.02326'
'daily_sma100_action' => 'SELL'
'daily_sma200' => '$0.028015'
'daily_sma200_action' => 'SELL'
'daily_ema3' => '$0.019436'
'daily_ema3_action' => 'BUY'
'daily_ema5' => '$0.019499'
'daily_ema5_action' => 'BUY'
'daily_ema10' => '$0.019421'
'daily_ema10_action' => 'BUY'
'daily_ema21' => '$0.019255'
'daily_ema21_action' => 'BUY'
'daily_ema50' => '$0.020381'
'daily_ema50_action' => 'SELL'
'daily_ema100' => '$0.0228084'
'daily_ema100_action' => 'SELL'
'daily_ema200' => '$0.026022'
'daily_ema200_action' => 'SELL'
'weekly_sma21' => '$0.024951'
'weekly_sma21_action' => 'SELL'
'weekly_sma50' => '$0.028829'
'weekly_sma50_action' => 'SELL'
'weekly_sma100' => '$0.034942'
'weekly_sma100_action' => 'SELL'
'weekly_sma200' => '$0.026822'
'weekly_sma200_action' => 'SELL'
'weekly_ema3' => '$0.019272'
'weekly_ema3_action' => 'BUY'
'weekly_ema5' => '$0.019464'
'weekly_ema5_action' => 'BUY'
'weekly_ema10' => '$0.020847'
'weekly_ema10_action' => 'SELL'
'weekly_ema21' => '$0.023736'
'weekly_ema21_action' => 'SELL'
'weekly_ema50' => '$0.027836'
'weekly_ema50_action' => 'SELL'
'weekly_ema100' => '$0.030472'
'weekly_ema100_action' => 'SELL'
'weekly_ema200' => '$0.030529'
'weekly_ema200_action' => 'SELL'
'rsi_14' => '50.73'
'rsi_14_action' => 'NEUTRAL'
'stoch_rsi_14' => 63.73
'stoch_rsi_14_action' => 'NEUTRAL'
'momentum_10' => 0
'momentum_10_action' => 'BUY'
'vwma_10' => '0.020152'
'vwma_10_action' => 'SELL'
'hma_9' => '0.018992'
'hma_9_action' => 'SELL'
'stochastic_fast_14' => 62.83
'stochastic_fast_14_action' => 'NEUTRAL'
'cci_20' => 45.33
'cci_20_action' => 'NEUTRAL'
'adx_14' => 17.24
'adx_14_action' => 'NEUTRAL'
'ao_5_34' => '0.000338'
'ao_5_34_action' => 'BUY'
'macd_12_26' => 0
'macd_12_26_action' => 'NEUTRAL'
'williams_percent_r_14' => -37.17
'williams_percent_r_14_action' => 'NEUTRAL'
'ultimate_oscillator' => 50.8
'ultimate_oscillator_action' => 'NEUTRAL'
'ichimoku_cloud' => '-0.003150'
'ichimoku_cloud_action' => 'SELL'
'sell_signals' => 18
'buy_signals' => 15
'sell_pct' => 54.55
'buy_pct' => 45.45
'overall_action' => 'bearish'
'overall_action_label' => 'Baixista'
'overall_action_dir' => -1
'last_updated' => 1767700531
'last_updated_date' => '6 de janeiro de 2026'
]
Previsão de preço de QANplatform para 2026
A previsão de preço para QANplatform em 2026 sugere que o preço médio poderia variar entre $0.006745 na extremidade inferior e $0.020134 na extremidade superior. No mercado de criptomoedas, comparado ao preço médio de hoje, QANplatform poderia potencialmente ganhar 3.13% até 2026 se QANX atingir a meta de preço prevista.
Previsão de preço de QANplatform 2027-2032
A previsão de preço de QANX para 2027-2032 está atualmente dentro de uma faixa de preço entre $0.011775 na extremidade inferior e $0.073348 na extremidade superior. Considerando a volatilidade de preços no mercado, se QANplatform atingir a meta de preço superior, poderia ganhar 275.71% até 2032 em comparação com o preço de hoje.
| Previsão de Preço de QANplatform | Potencial Mínimo ($) | Preço Médio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2027 | $0.006493 | $0.011775 | $0.017058 |
| 2028 | $0.011718 | $0.02021 | $0.0287025 |
| 2029 | $0.025742 | $0.055211 | $0.08468 |
| 2030 | $0.021892 | $0.042595 | $0.063298 |
| 2031 | $0.025884 | $0.041834 | $0.057784 |
| 2032 | $0.03951 | $0.073348 | $0.107187 |
Previsão de preço de QANplatform 2032-2037
A previsão de preço de QANplatform para 2032-2037 é atualmente estimada entre $0.073348 na extremidade inferior e $0.668881 na extremidade superior. Comparado ao preço atual, QANplatform poderia potencialmente ganhar 3326.16% até 2037 se atingir a meta de preço superior. Por favor, note que esta informação é apenas para fins gerais e não deve ser considerada como aconselhamento de investimento a longo prazo.
| Previsão de Preço de QANplatform | Potencial Mínimo ($) | Preço Médio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2032 | $0.03951 | $0.073348 | $0.107187 |
| 2033 | $0.091812 | $0.18866 | $0.2855072 |
| 2034 | $0.073813 | $0.119581 | $0.16535 |
| 2035 | $0.087269 | $0.141046 | $0.194824 |
| 2036 | $0.144459 | $0.273772 | $0.403085 |
| 2037 | $0.375156 | $0.668881 | $0.9626074 |
QANplatform Histograma de preços potenciais
Previsão de preço de QANplatform baseada na análise técnica
Em 6 de janeiro de 2026, o sentimento geral de previsão de preço para QANplatform é Baixista, com 15 indicadores técnicos mostrando sinais de alta e 18 indicando sinais de baixa. A previsão de preço de QANX foi atualizada pela última vez em 6 de janeiro de 2026.
Médias Móveis Simples de 50 e 200 dias e Índice de Força Relativa de 14 dias - RSI (14) de QANplatform
De acordo com nossos indicadores técnicos, o SMA de 200 dias de QANplatform está projetado para aumentar no próximo mês, alcançando $0.026061 até 4 de fev. de 2026. O SMA de 50 dias de curto prazo para QANplatform é esperado para alcançar $0.018195 até 4 de fev. de 2026.
O oscilador de momentum Índice de Força Relativa (RSI) é uma ferramenta comumente usada para identificar se uma criptomoeda está sobrevendida (abaixo de 30) ou sobrecomprada (acima de 70). No momento, o RSI está em 50.73, sugerindo que o mercado de QANX está em um estado NEUTRAL.
Médias Móveis e Osciladores Populares de QANX para Sábado, 19 de Outubro de 2024
Médias móveis (MA) são indicadores amplamente utilizados nos mercados financeiros, projetados para suavizar movimentos de preços ao longo de um período definido. Como indicadores atrasados, eles se baseiam em dados históricos de preços. A tabela abaixo destaca dois tipos: a média móvel simples (SMA) e a média móvel exponencial (EMA).
Média Móvel Simples Diária (SMA)
| Período | Valor | Ação |
|---|---|---|
| SMA 3 | $0.019283 | BUY |
| SMA 5 | $0.019377 | BUY |
| SMA 10 | $0.01998 | SELL |
| SMA 21 | $0.0185097 | BUY |
| SMA 50 | $0.019994 | SELL |
| SMA 100 | $0.02326 | SELL |
| SMA 200 | $0.028015 | SELL |
Média Móvel Exponencial Diária (EMA)
| Período | Valor | Ação |
|---|---|---|
| EMA 3 | $0.019436 | BUY |
| EMA 5 | $0.019499 | BUY |
| EMA 10 | $0.019421 | BUY |
| EMA 21 | $0.019255 | BUY |
| EMA 50 | $0.020381 | SELL |
| EMA 100 | $0.0228084 | SELL |
| EMA 200 | $0.026022 | SELL |
Média Móvel Simples Semanal (SMA)
| Período | Valor | Ação |
|---|---|---|
| SMA 21 | $0.024951 | SELL |
| SMA 50 | $0.028829 | SELL |
| SMA 100 | $0.034942 | SELL |
| SMA 200 | $0.026822 | SELL |
Média Móvel Exponencial Semanal (EMA)
| Período | Valor | Ação |
|---|---|---|
| EMA 21 | $0.023736 | SELL |
| EMA 50 | $0.027836 | SELL |
| EMA 100 | $0.030472 | SELL |
| EMA 200 | $0.030529 | SELL |
Osciladores de QANplatform
Um oscilador é uma ferramenta de análise técnica que define limites altos e baixos entre dois extremos, criando um indicador de tendência que flutua dentro desses limites. Os traders usam esse indicador para identificar condições de sobrecompra ou sobrevenda de curto prazo.
| Período | Valor | Ação |
|---|---|---|
| RSI (14) | 50.73 | NEUTRAL |
| Stoch RSI (14) | 63.73 | NEUTRAL |
| Estocástico Rápido (14) | 62.83 | NEUTRAL |
| Índice de Canal de Commodities (20) | 45.33 | NEUTRAL |
| Índice Direcional Médio (14) | 17.24 | NEUTRAL |
| Oscilador Impressionante (5, 34) | 0.000338 | BUY |
| Momentum (10) | 0 | BUY |
| MACD (12, 26) | 0 | NEUTRAL |
| Williams Percent Range (14) | -37.17 | NEUTRAL |
| Oscilador Ultimate (7, 14, 28) | 50.8 | NEUTRAL |
| VWMA (10) | 0.020152 | SELL |
| Média Móvel de Hull (9) | 0.018992 | SELL |
| Nuvem Ichimoku B/L (9, 26, 52, 26) | -0.003150 | SELL |
Previsão do preço de QANplatform com base nos fluxos financeiros mundiais
Definições dos fluxos financeiros mundiais, usadas na previsão do preço do QANplatform
M0: o total de todas as moedas físicas, mais as contas no Banco Central que podem ser trocadas por moedas físicas.
M1: o valor de M0, mais o valor em contas de demanda, incluindo contas 'correntes'.
M2: o valor de M1, mais a maioria das contas de poupança, do mercado de moedas e de certificados de depósito (CD) de menos de US$ 100.000.
Previsões de preço de QANplatform por empresas de Internet ou nichos tecnológicos
| Comparação | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Facebook stock | $0.027432 | $0.038547 | $0.054165 | $0.076112 | $0.10695 | $0.150282 |
| Amazon.com stock | $0.040735 | $0.084996 | $0.177351 | $0.370053 | $0.772138 | $1.61 |
| Apple stock | $0.027691 | $0.039278 | $0.055713 | $0.079025 | $0.112091 | $0.158992 |
| Netflix stock | $0.0308038 | $0.0486037 | $0.076689 | $0.1210032 | $0.190924 | $0.301248 |
| Google stock | $0.025281 | $0.032739 | $0.042398 | $0.0549053 | $0.0711021 | $0.092077 |
| Tesla stock | $0.044256 | $0.100326 | $0.227432 | $0.515572 | $1.16 | $2.64 |
| Kodak stock | $0.01464 | $0.010978 | $0.008232 | $0.006173 | $0.004629 | $0.003471 |
| Nokia stock | $0.012933 | $0.008567 | $0.005675 | $0.003759 | $0.00249 | $0.00165 |
Este cálculo mostra quanto a criptomoeda pode custar, se assumirmos que sua capitalização se comportará da mesma forma que a de algumas empresas de Internet ou nichos tecnológicos. Se você extrapolar os dados, poderá obter uma imagem em potencial do preço futuro para 2024, 2025, 2026, 2027, 2028, 2029 e 2030.
Visão geral da previsão para QANplatform
Você pode fazer perguntas como: 'Devo investir em QANplatform agora?', 'Devo comprar QANX hoje?', 'QANplatform será um bom ou mau investimento no curto ou no longo prazo?'.
Atualizamos a previsão para QANplatform regularmente com novos valores. Veja nossas previsões semelhantes. Fazemos previsões de preços futuros para uma enorme quantidade de moedas digitais, como QANplatform, com métodos de análise técnica.
Se você estiver tentando encontrar criptomoedas com bom retorno, você deve explorar o máximo de fontes de informações disponíveis sobre QANplatform para poder tomar sozinho uma decisão de tão grande responsabilidade sobre o seu investimento.
O preço de QANplatform é de $0.01952 USD hoje, mas o preço pode tanto subir quanto descer e seu investimento pode ser perdido, porque criptomoedas são ativos de alto risco
Previsão do preço de QANplatform com base no padrão de crescimento do Bitcoin
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| Se QANplatform tiver 1% da média anterior do crescimento anual do Bitcoin | $0.02003 | $0.02055 | $0.021085 | $0.021633 |
| Se QANplatform tiver 2% da média anterior do crescimento anual do Bitcoin | $0.020537 | $0.0216053 | $0.022728 | $0.02391 |
| Se QANplatform tiver 5% da média anterior do crescimento anual do Bitcoin | $0.02206 | $0.024927 | $0.028166 | $0.031827 |
| Se QANplatform tiver 10% da média anterior do crescimento anual do Bitcoin | $0.024597 | $0.030991 | $0.039046 | $0.049196 |
| Se QANplatform tiver 20% da média anterior do crescimento anual do Bitcoin | $0.029671 | $0.045097 | $0.068541 | $0.104174 |
| Se QANplatform tiver 50% da média anterior do crescimento anual do Bitcoin | $0.044895 | $0.103245 | $0.237428 | $0.546005 |
| Se QANplatform tiver 100% da média anterior do crescimento anual do Bitcoin | $0.070268 | $0.252919 | $0.910339 | $3.27 |
Perguntas Frequentes sobre QANplatform
QANX é um bom investimento?
A decisão de adquirir QANplatform depende inteiramente da sua tolerância individual ao risco. Como você pode perceber, o valor de QANplatform experimentou uma escalada de 2.0172% nas últimas 24 horas, e QANplatform registrou um declínio de durante os últimos 30 dias. Consequentemente, a decisão de investir ou não em QANplatform dependerá de quão alinhado esse investimento está com suas aspirações de negociação.
QANplatform pode subir?
Parece que o valor médio de QANplatform pode potencialmente subir para $0.020134 até o final deste ano. Observando as perspectivas de QANplatform em um horizonte de cinco anos mais longo, a moeda digital poderia potencialmente crescer até $0.063298. No entanto, dada a imprevisibilidade do mercado, é vital conduzir uma pesquisa aprofundada antes de investir quaisquer fundos em um projeto, rede ou ativo específico.
Qual será o preço de QANplatform na próxima semana?
Com base na nossa nova previsão experimental de QANplatform, o preço de QANplatform aumentará 0.86% na próxima semana e atingirá $0.019689 até 13 de janeiro de 2026.
Qual será o preço de QANplatform no próximo mês?
Com base na nossa nova previsão experimental de QANplatform, o preço de QANplatform diminuirá -11.62% no próximo mês e atingirá $0.017254 até 5 de fevereiro de 2026.
Até onde o preço de QANplatform pode subir este ano em 2026?
De acordo com nossa previsão mais recente sobre o valor de QANplatform em 2026, espera-se que QANX fluctue dentro do intervalo de $0.006745 e $0.020134. No entanto, é crucial lembrar que o mercado de criptomoedas é excepcionalmente instável, e essa previsão de preço de QANplatform não considera flutuações repentinas e extremas de preço.
Onde estará QANplatform em 5 anos?
O futuro de QANplatform parece seguir uma tendência de alta, com um preço máximo de $0.063298 projetada após um período de cinco anos. Com base na previsão de QANplatform para 2030, o valor de QANplatform pode potencialmente atingir seu pico mais alto de aproximadamente $0.063298, enquanto seu pico mais baixo está previsto para cerca de $0.021892.
Quanto será QANplatform em 2026?
Com base na nossa nova simulação experimental de previsão de preços de QANplatform, espera-se que o valor de QANX em 2026 aumente 3.13% para $0.020134 se o melhor cenário ocorrer. O preço ficará entre $0.020134 e $0.006745 durante 2026.
Quanto será QANplatform em 2027?
De acordo com nossa última simulação experimental para previsão de preços de QANplatform, o valor de QANX pode diminuir -12.62% para $0.017058 em 2027, assumindo as condições mais favoráveis. O preço está projetado para flutuar entre $0.017058 e $0.006493 ao longo do ano.
Quanto será QANplatform em 2028?
Nosso novo modelo experimental de previsão de preços de QANplatform sugere que o valor de QANX em 2028 pode aumentar 47.02%, alcançando $0.0287025 no melhor cenário. O preço é esperado para variar entre $0.0287025 e $0.011718 durante o ano.
Quanto será QANplatform em 2029?
Com base no nosso modelo de previsão experimental, o valor de QANplatform pode experimentar um 333.75% crescimento em 2029, potencialmente alcançando $0.08468 sob condições ótimas. A faixa de preço prevista para 2029 está entre $0.08468 e $0.025742.
Quanto será QANplatform em 2030?
Usando nossa nova simulação experimental para previsões de preços de QANplatform, espera-se que o valor de QANX em 2030 aumente 224.23%, alcançando $0.063298 no melhor cenário. O preço está previsto para variar entre $0.063298 e $0.021892 ao longo de 2030.
Quanto será QANplatform em 2031?
Nossa simulação experimental indica que o preço de QANplatform poderia aumentar 195.98% em 2031, potencialmente atingindo $0.057784 sob condições ideais. O preço provavelmente oscilará entre $0.057784 e $0.025884 durante o ano.
Quanto será QANplatform em 2032?
Com base nos achados da nossa mais recente previsão experimental de preços de QANplatform, QANX poderia ver um 449.04% aumento em valor, atingindo $0.107187 se o cenário mais positivo se desenrolar em 2032. O preço é esperado para permanecer dentro de uma faixa de $0.107187 e $0.03951 ao longo do ano.
Quanto será QANplatform em 2033?
De acordo com nossa previsão experimental de preços de QANplatform, espera-se que o valor de QANX seja aumentar 1362.43% em 2033, com o preço potencial mais alto sendo $0.2855072. Ao longo do ano, o preço de QANX poderia variar entre $0.2855072 e $0.091812.
Quanto será QANplatform em 2034?
Os resultados da nossa nova simulação de previsão de preços de QANplatform sugerem que QANX pode aumentar 746.96% em 2034, atingindo potencialmente $0.16535 nas melhores circunstâncias. A faixa de preço prevista para o ano é entre $0.16535 e $0.073813.
Quanto será QANplatform em 2035?
Com base em nossa previsão experimental para o preço de QANplatform, QANX poderia aumentar 897.93%, com o valor potencialmente atingindo $0.194824 em 2035. A faixa de preço esperada para o ano está entre $0.194824 e $0.087269.
Quanto será QANplatform em 2036?
Nossa recente simulação de previsão de preços de QANplatform sugere que o valor de QANX pode aumentar 1964.7% em 2036, possivelmente atingindo $0.403085 se as condições forem ideais. A faixa de preço esperada para 2036 está entre $0.403085 e $0.144459.
Quanto será QANplatform em 2037?
De acordo com a simulação experimental, o valor de QANplatform poderia aumentar 4830.69% em 2037, com um pico de $0.9626074 sob condições favoráveis. O preço é esperado para cair entre $0.9626074 e $0.375156 ao longo do ano.
Previsões relacionadas
Previsão de Preço do Gains Network
Previsão de Preço do Humans.ai
Previsão de Preço do Propy
Previsão de Preço do Stargate Finance
Previsão de Preço do TrustToken
Previsão de Preço do Sun Token
Previsão de Preço do Vulcan Forged
Previsão de Preço do Maple
Previsão de Preço do Oasys
Previsão de Preço do Maverick Protocol
Previsão de Preço do Myria
Previsão de Preço do MimbleWimbleCoin
Previsão de Preço do CYBER
Previsão de Preço do Velodrome Finance
Previsão de Preço do Ontology Gas
Previsão de Preço do DODO
Previsão de Preço do Cudos
Previsão de Preço do Acala
Previsão de Preço do WINk
Previsão de Preço do Radiant Capital
Previsão de Preço do APEX
Previsão de Preço do Metars Genesis
Previsão de Preço do Liquity
Previsão de Preço do Steem
Previsão de Preço do Alpha Finance
Como ler e prever os movimentos de preço de QANplatform?
Traders de QANplatform utilizam indicadores e padrões de gráfico para prever a direção do mercado. Eles também identificam níveis-chave de suporte e resistência para avaliar quando uma tendência de baixa pode desacelerar ou uma tendência de alta pode estagnar.
Indicadores de Previsão de Preço de QANplatform
Médias móveis são ferramentas populares para a previsão de preço de QANplatform. Uma média móvel simples (SMA) calcula o preço médio de fechamento de QANX em um período específico, como uma SMA de 12 dias. Uma média móvel exponencial (EMA) dá mais peso aos preços recentes, reagindo mais rapidamente às mudanças de preço.
Médias móveis comumente usadas no mercado de criptomoedas incluem as de 50 dias, 100 dias e 200 dias, que ajudam a identificar níveis-chave de resistência e suporte. Um movimento de preço de QANX acima dessas médias é visto como altista, enquanto uma queda abaixo indica fraqueza.
Traders também usam RSI e níveis de retração de Fibonacci para avaliar a direção futura de QANX.
Como ler gráficos de QANplatform e prever movimentos de preço?
A maioria dos traders prefere gráficos de velas em vez de gráficos de linha simples porque eles fornecem informações mais detalhadas. Velas podem representar a ação de preço de QANplatform em diferentes períodos de tempo, como 5 minutos para tendências de curto prazo e semanal para tendências de longo prazo. Opções populares incluem gráficos de 1 hora, 4 horas e 1 dia.
Por exemplo, um gráfico de velas de 1 hora mostra os preços de abertura, fechamento, máximo e mínimo de QANX dentro de cada hora. A cor da vela é crucial: verde indica que o preço fechou mais alto do que abriu, enquanto vermelho significa o oposto. Alguns gráficos usam velas vazias e preenchidas para transmitir a mesma informação.
O que afeta o preço de QANplatform?
A ação de preço de QANplatform é impulsionada pela oferta e demanda, influenciada por fatores como reduções pela metade das recompensas de bloco, hard forks e atualizações de protocolo. Eventos do mundo real, como regulamentações, adoção por empresas e governos e hacks de exchanges de criptomoedas, também impactam o preço de QANX. A capitalização de mercado de QANplatform pode mudar rapidamente.
Traders frequentemente monitoram a atividade de "baleias" de QANX, grandes detentores de QANplatform, pois suas ações podem influenciar significativamente os movimentos de preço no relativamente pequeno mercado de QANplatform.
Padrões de previsão de preço altistas e baixistas
Traders frequentemente identificam padrões de velas para ganhar vantagem em previsões de preço de criptomoedas. Certas formações indicam tendências altistas, enquanto outras sugerem movimentos baixistas.
Padrões de velas altistas comumente seguidos:
- Martelo
- Engolfo de Alta
- Linha de Perfuração
- Estrela da Manhã
- Três Soldados Brancos
Padrões de velas baixistas comuns:
- Harami de Baixa
- Nuvem Negra
- Estrela da Noite
- Estrela Cadente
- Homem Enforcado


