Previsão de Preço QANplatform - Projeção QANX
Previsão de Preço QANplatform até $0.020268 até 2026
| Ano | Preço Mínimo | Preço Máximo |
|---|---|---|
| 2026 | $0.00679 | $0.020268 |
| 2027 | $0.006536 | $0.017172 |
| 2028 | $0.011796 | $0.028894 |
| 2029 | $0.025914 | $0.085246 |
| 2030 | $0.022039 | $0.063721 |
| 2031 | $0.026057 | $0.05817 |
| 2032 | $0.039774 | $0.1079036 |
| 2033 | $0.092426 | $0.287416 |
| 2034 | $0.0743066 | $0.166455 |
| 2035 | $0.087853 | $0.196126 |
Calculadora de lucro do investimento
Se você abrir um short de $10,000.00 em QANplatform hoje e fechar em Apr 06, 2026, nossa previsão mostra que pode lucrar cerca de $3,954.71, com um retorno de 39.55% nos próximos 90 dias.
Previsão de preço de longo prazo de QANplatform para os anos 2027, 2028, 2029, 2030, 2031, 2032 e 2037
[
'name' => 'QANplatform'
'name_with_ticker' => 'QANplatform <small>QANX</small>'
'name_lang' => 'QANplatform'
'name_lang_with_ticker' => 'QANplatform <small>QANX</small>'
'name_with_lang' => 'QANplatform'
'name_with_lang_with_ticker' => 'QANplatform <small>QANX</small>'
'image' => '/uploads/coins/qanplatform.png?1717208807'
'price_for_sd' => 0.01965
'ticker' => 'QANX'
'marketcap' => '$33.42M'
'low24h' => '$0.01853'
'high24h' => '$0.01975'
'volume24h' => '$293.78K'
'current_supply' => '1.7B'
'max_supply' => '2.1B'
'algo' => null
'proof' => null
'ico_price_and_roi' => '—'
'price' => '$0.01965'
'change_24h_pct' => '5.943%'
'ath_price' => '$0.2034'
'ath_days' => 1501
'ath_exchange' => null
'ath_pair' => null
'ath_date' => '27 de nov. de 2021'
'ath_pct' => '-90.34%'
'fdv' => '$41.28M'
'new_prediction' => true
'change_24h_pct_is_increased' => true
'change_30d_pct' => null
'change_30d_pct_is_increased' => false
'max_price' => '$0.969043'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.019821'
'next_week_prediction_price_date' => '13 de janeiro de 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.017369'
'next_month_prediction_price_date' => '5 de fevereiro de 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.00679'
'current_year_max_price_prediction' => '$0.020268'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.022039'
'grand_prediction_max_price' => '$0.063721'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.020025729886859
107 => 0.020100498692917
108 => 0.020268956630754
109 => 0.018829501996057
110 => 0.019475774866868
111 => 0.019855399630891
112 => 0.018140241136169
113 => 0.019821496462105
114 => 0.018804444293364
115 => 0.018459241511683
116 => 0.018924011580209
117 => 0.0187428902325
118 => 0.018587172733543
119 => 0.018500279693559
120 => 0.018841555537084
121 => 0.01882563461107
122 => 0.018267241092277
123 => 0.017538839510042
124 => 0.017783314990007
125 => 0.017694494756166
126 => 0.017372598770687
127 => 0.01758951779903
128 => 0.016634316178416
129 => 0.01499094143721
130 => 0.01607660512918
131 => 0.016034808258014
201 => 0.016013732380235
202 => 0.016829578639211
203 => 0.016751153846186
204 => 0.016608812078908
205 => 0.017369984552506
206 => 0.017092146360428
207 => 0.0179483782015
208 => 0.018512347869634
209 => 0.018369306919288
210 => 0.018899723118069
211 => 0.017788947211294
212 => 0.01815790241093
213 => 0.018233943566226
214 => 0.017360591802335
215 => 0.016763985112221
216 => 0.016724198247804
217 => 0.015689764464612
218 => 0.016242350641935
219 => 0.01672860361041
220 => 0.016495726173266
221 => 0.016422004133681
222 => 0.016798634045559
223 => 0.016827901415329
224 => 0.016160602282957
225 => 0.016299354903192
226 => 0.016877976395278
227 => 0.016284775126182
228 => 0.015132281959205
301 => 0.014846447719331
302 => 0.014808312162761
303 => 0.014033107034421
304 => 0.014865548530009
305 => 0.01450216550914
306 => 0.015650088118068
307 => 0.01499440088028
308 => 0.014966135513965
309 => 0.014923408267151
310 => 0.014256157189868
311 => 0.014402242769775
312 => 0.014887853486847
313 => 0.015061124861495
314 => 0.015043051237549
315 => 0.01488547372941
316 => 0.014957611905708
317 => 0.014725229705244
318 => 0.014643170713642
319 => 0.014384169964045
320 => 0.01400351041292
321 => 0.014056443458224
322 => 0.013302257282456
323 => 0.012891336626207
324 => 0.012777599204405
325 => 0.012625504770556
326 => 0.012794778675416
327 => 0.013300120767778
328 => 0.012690570990083
329 => 0.011645540651171
330 => 0.011708348755185
331 => 0.01184945991701
401 => 0.011586500200492
402 => 0.011337630897344
403 => 0.011554002565027
404 => 0.011111209434038
405 => 0.011902969351421
406 => 0.011881554464537
407 => 0.012176673599632
408 => 0.012361217651262
409 => 0.011935903359102
410 => 0.011828937964796
411 => 0.011889870314699
412 => 0.010882794299292
413 => 0.012094374003853
414 => 0.01210485179545
415 => 0.012015134582545
416 => 0.012660263371898
417 => 0.014021686338147
418 => 0.013509464255132
419 => 0.013311116382594
420 => 0.012934056931909
421 => 0.013436466262372
422 => 0.013397889064599
423 => 0.013223428346301
424 => 0.013117913959524
425 => 0.013312327452409
426 => 0.013093823976277
427 => 0.013054574747889
428 => 0.012816767127444
429 => 0.012731880626502
430 => 0.012669034040634
501 => 0.012599846124771
502 => 0.012752457426611
503 => 0.012406620138954
504 => 0.011989574272888
505 => 0.011954901421623
506 => 0.012050636212433
507 => 0.012008280694117
508 => 0.011954698639697
509 => 0.011852395905605
510 => 0.011822044869752
511 => 0.011920671012045
512 => 0.011809327847658
513 => 0.011973620751887
514 => 0.011928942172678
515 => 0.011679371261119
516 => 0.011368313502331
517 => 0.011365544435812
518 => 0.011298527551918
519 => 0.011213171474223
520 => 0.011189427366091
521 => 0.011535780346684
522 => 0.012252720651039
523 => 0.012111968114367
524 => 0.012213676247013
525 => 0.012713979595392
526 => 0.012873010985196
527 => 0.012760134271578
528 => 0.012605621664046
529 => 0.012612419434613
530 => 0.013140435788697
531 => 0.013173367521023
601 => 0.013256575384432
602 => 0.013363521003451
603 => 0.012778347572943
604 => 0.01258485781866
605 => 0.012493171638677
606 => 0.012210813691348
607 => 0.012515312530002
608 => 0.012337894096659
609 => 0.012361833904793
610 => 0.01234624307334
611 => 0.012354756721561
612 => 0.011902748038388
613 => 0.012067436245659
614 => 0.011793610159267
615 => 0.01142698776801
616 => 0.0114257587212
617 => 0.011515489032066
618 => 0.011462113932015
619 => 0.011318482910178
620 => 0.01133888501891
621 => 0.011160141078304
622 => 0.011360587769564
623 => 0.011366335863436
624 => 0.011289152968896
625 => 0.011597968753095
626 => 0.011724490831851
627 => 0.011673687397247
628 => 0.011720926327447
629 => 0.012117817017725
630 => 0.012182527517795
701 => 0.012211267647391
702 => 0.01217275968107
703 => 0.011728180760683
704 => 0.011747899726298
705 => 0.011603215040356
706 => 0.011480971727232
707 => 0.011485860818675
708 => 0.01154870977214
709 => 0.01182317483796
710 => 0.012400770388379
711 => 0.0124226897173
712 => 0.012449256583385
713 => 0.012341195787581
714 => 0.012308603617564
715 => 0.012351601102569
716 => 0.012568515622775
717 => 0.013126478660463
718 => 0.012929257257846
719 => 0.012768913187584
720 => 0.012909578165655
721 => 0.01288792389485
722 => 0.012705140057164
723 => 0.012700009923621
724 => 0.012349189299574
725 => 0.012219498902663
726 => 0.012111119899846
727 => 0.011992772858076
728 => 0.011922612764686
729 => 0.012030410555325
730 => 0.01205506518547
731 => 0.011819363432254
801 => 0.011787238154239
802 => 0.011979717293891
803 => 0.011895014400875
804 => 0.011982133426872
805 => 0.012002345788197
806 => 0.011999091132493
807 => 0.01191065158412
808 => 0.011967020314948
809 => 0.011833691462213
810 => 0.011688716360209
811 => 0.011596231277399
812 => 0.011515525776281
813 => 0.011560305878933
814 => 0.011400672989504
815 => 0.0113496032154
816 => 0.01194792385728
817 => 0.012389909748468
818 => 0.012383483098564
819 => 0.012344362520077
820 => 0.012286237275764
821 => 0.012564263399114
822 => 0.012467404657047
823 => 0.01253787748472
824 => 0.012555815777098
825 => 0.012610109585458
826 => 0.012629514955236
827 => 0.01257085844987
828 => 0.012374000053574
829 => 0.01188344764674
830 => 0.011655094177137
831 => 0.011579733728641
901 => 0.011582472937814
902 => 0.011506913320455
903 => 0.011529169014111
904 => 0.01149917369845
905 => 0.011442369827232
906 => 0.011556798399954
907 => 0.011569985226984
908 => 0.011543276230791
909 => 0.011549567166275
910 => 0.011328428085359
911 => 0.011345240809392
912 => 0.011251625425518
913 => 0.011234073669591
914 => 0.010997422131181
915 => 0.010578159627697
916 => 0.010810471753423
917 => 0.010529871373575
918 => 0.010423603757936
919 => 0.010926658122363
920 => 0.010876165416731
921 => 0.01078974385334
922 => 0.010661908349252
923 => 0.010614492917283
924 => 0.010326411762536
925 => 0.01030939039106
926 => 0.010452171190198
927 => 0.010386282764183
928 => 0.01029375046016
929 => 0.0099586078348378
930 => 0.0095817965620655
1001 => 0.0095931701258393
1002 => 0.0097130267808852
1003 => 0.010061526170303
1004 => 0.009925361429757
1005 => 0.0098265723481803
1006 => 0.0098080721227898
1007 => 0.010039641176396
1008 => 0.010367359902466
1009 => 0.010521118196445
1010 => 0.010368748396821
1011 => 0.010193714175185
1012 => 0.010204367697226
1013 => 0.010275240806499
1014 => 0.010282688568192
1015 => 0.010168759283716
1016 => 0.010200829709951
1017 => 0.010152111799918
1018 => 0.0098531300759732
1019 => 0.0098477224446683
1020 => 0.0097743475078806
1021 => 0.0097721257439557
1022 => 0.009647296672244
1023 => 0.0096298322222089
1024 => 0.0093819765237423
1025 => 0.0095451158950492
1026 => 0.009435690569978
1027 => 0.0092707607942709
1028 => 0.0092423268387732
1029 => 0.0092414720797359
1030 => 0.0094108180817641
1031 => 0.0095431369884175
1101 => 0.0094375940703566
1102 => 0.0094135639937777
1103 => 0.0096701423438339
1104 => 0.0096374904100257
1105 => 0.0096092140459301
1106 => 0.010338016284997
1107 => 0.0097611124436277
1108 => 0.0095095494402706
1109 => 0.0091981924530975
1110 => 0.0092995718581192
1111 => 0.0093209339883306
1112 => 0.0085721765604946
1113 => 0.0082684057652733
1114 => 0.0081641630757143
1115 => 0.0081041699340978
1116 => 0.0081315095620789
1117 => 0.0078580802176192
1118 => 0.0080418292592001
1119 => 0.0078050625593051
1120 => 0.0077653678515622
1121 => 0.0081887360407402
1122 => 0.0082476452509833
1123 => 0.0079963202584294
1124 => 0.0081577115894694
1125 => 0.008099188849327
1126 => 0.0078091212448132
1127 => 0.0077980427959136
1128 => 0.0076524970683379
1129 => 0.0074247461878882
1130 => 0.0073206579241508
1201 => 0.0072664478526606
1202 => 0.0072888159846907
1203 => 0.0072775059726601
1204 => 0.0072037004937738
1205 => 0.0072817364163163
1206 => 0.0070823868808898
1207 => 0.0070030042896147
1208 => 0.0069671490147978
1209 => 0.0067902148279757
1210 => 0.0070717958021997
1211 => 0.0071272708013854
1212 => 0.0071828551034567
1213 => 0.0076666785039723
1214 => 0.0076425080541533
1215 => 0.0078609971490308
1216 => 0.0078525070645795
1217 => 0.0077901904354318
1218 => 0.0075272868276454
1219 => 0.0076320755199028
1220 => 0.0073095522129129
1221 => 0.0075512086039629
1222 => 0.0074409267188998
1223 => 0.0075139221876895
1224 => 0.0073826697530697
1225 => 0.0074553102696685
1226 => 0.0071404259816792
1227 => 0.0068463914640963
1228 => 0.0069647195373743
1229 => 0.0070933556854841
1230 => 0.007372271630467
1231 => 0.0072061515946418
]
'min_raw' => 0.0067902148279757
'max_raw' => 0.020268956630754
'avg_raw' => 0.013529585729365
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.00679'
'max' => '$0.020268'
'avg' => '$0.013529'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.012863095172024
'max_diff' => 0.00061564663075414
'year' => 2026
]
1 => [
'items' => [
101 => 0.0072658946412185
102 => 0.0070657654360516
103 => 0.0066528417217108
104 => 0.0066551788250906
105 => 0.0065916595076714
106 => 0.006536769543449
107 => 0.0072252324790815
108 => 0.0071396112300472
109 => 0.007003184975543
110 => 0.0071857969385607
111 => 0.0072340824400241
112 => 0.0072354570603694
113 => 0.0073686860346901
114 => 0.0074397903621677
115 => 0.0074523228080694
116 => 0.0076619614777656
117 => 0.0077322295946468
118 => 0.0080216540233645
119 => 0.0074337576567595
120 => 0.0074216503179652
121 => 0.0071883666633707
122 => 0.0070404144815583
123 => 0.0071984970758381
124 => 0.0073385366739439
125 => 0.0071927180840428
126 => 0.0072117589134854
127 => 0.0070160093703596
128 => 0.007085980621155
129 => 0.0071462492884854
130 => 0.0071129724728141
131 => 0.0070631554691381
201 => 0.0073270550238897
202 => 0.00731216477678
203 => 0.0075579141091893
204 => 0.0077494932875057
205 => 0.0080928374239232
206 => 0.0077345399186369
207 => 0.0077214821334407
208 => 0.0078491240782684
209 => 0.0077322100533301
210 => 0.0078060956813562
211 => 0.0080809333069808
212 => 0.0080867401929268
213 => 0.0079894673715815
214 => 0.0079835483115625
215 => 0.0080022306209499
216 => 0.0081116534905634
217 => 0.0080734177776953
218 => 0.0081176651126361
219 => 0.0081729970825188
220 => 0.0084018735702227
221 => 0.0084570549165504
222 => 0.0083229928532218
223 => 0.0083350971565111
224 => 0.0082849542647403
225 => 0.0082365168595783
226 => 0.0083453970726676
227 => 0.0085443778021341
228 => 0.0085431399533432
301 => 0.0085892996149467
302 => 0.0086180567017185
303 => 0.0084946102338201
304 => 0.0084142511224707
305 => 0.0084450659191452
306 => 0.0084943394500866
307 => 0.0084290871771529
308 => 0.0080263199208129
309 => 0.0081484937775145
310 => 0.008128158073763
311 => 0.0080991975587147
312 => 0.0082220443163707
313 => 0.0082101954469081
314 => 0.0078552758044835
315 => 0.0078779966084575
316 => 0.0078566575318268
317 => 0.0079256084539851
318 => 0.0077284864772559
319 => 0.007789119869661
320 => 0.0078271485649748
321 => 0.0078495477586648
322 => 0.0079304690055439
323 => 0.0079209738312122
324 => 0.0079298787721756
325 => 0.0080498636188803
326 => 0.0086567057996851
327 => 0.0086897348806645
328 => 0.0085270876061031
329 => 0.0085920619842148
330 => 0.0084673253865749
331 => 0.0085510619002331
401 => 0.0086083522962012
402 => 0.0083494680131309
403 => 0.0083341385660325
404 => 0.0082088871360829
405 => 0.0082761901599342
406 => 0.0081691062097281
407 => 0.0081953808654711
408 => 0.0081219146374304
409 => 0.0082541392209237
410 => 0.0084019868508922
411 => 0.0084393390009021
412 => 0.0083410815753378
413 => 0.0082699367237493
414 => 0.0081450298009309
415 => 0.0083527527973102
416 => 0.0084134973316951
417 => 0.0083524337321308
418 => 0.0083382839618457
419 => 0.0083114701727236
420 => 0.0083439726339649
421 => 0.0084131665039152
422 => 0.0083805359526568
423 => 0.0084020890066393
424 => 0.0083199509902708
425 => 0.0084946510997376
426 => 0.0087721169174417
427 => 0.0087730090154159
428 => 0.0087403782882666
429 => 0.008727026497756
430 => 0.0087605076040092
501 => 0.0087786697306847
502 => 0.0088869414889228
503 => 0.0090031213992494
504 => 0.0095452823474775
505 => 0.0093930457227071
506 => 0.0098740831692743
507 => 0.010254521334614
508 => 0.010368598105855
509 => 0.01026365284404
510 => 0.0099046407724042
511 => 0.0098870259274123
512 => 0.010423541533423
513 => 0.010271951300754
514 => 0.010253920124934
515 => 0.010062098878362
516 => 0.010175488992609
517 => 0.010150688911291
518 => 0.010111540769668
519 => 0.010327881208828
520 => 0.010732851198092
521 => 0.010669732827481
522 => 0.010622617891797
523 => 0.010416173958579
524 => 0.010540499317298
525 => 0.010496229438354
526 => 0.010686440932658
527 => 0.010573763857132
528 => 0.010270802855648
529 => 0.010319050393707
530 => 0.01031175787539
531 => 0.010461837385601
601 => 0.010416787241838
602 => 0.010302961111791
603 => 0.010731467054695
604 => 0.010703642262238
605 => 0.010743091456309
606 => 0.010760458211545
607 => 0.011021282227869
608 => 0.011128133481919
609 => 0.011152390587283
610 => 0.011253891014458
611 => 0.01114986516419
612 => 0.011566042734437
613 => 0.011842776534016
614 => 0.012164217082819
615 => 0.012633928119693
616 => 0.012810543814628
617 => 0.012778639770164
618 => 0.013134769317585
619 => 0.013774726197984
620 => 0.01290799335276
621 => 0.013820665143373
622 => 0.013531723791768
623 => 0.012846649044944
624 => 0.012802538307749
625 => 0.01326647888018
626 => 0.014295454417205
627 => 0.014037707715724
628 => 0.014295875998473
629 => 0.01399470898323
630 => 0.013979753502489
701 => 0.01428124898876
702 => 0.014985709626097
703 => 0.01465104678361
704 => 0.01417122553621
705 => 0.014525518078445
706 => 0.014218597090134
707 => 0.013527018201695
708 => 0.014037510621679
709 => 0.013696158878423
710 => 0.013795783464362
711 => 0.014513254056446
712 => 0.014426926096615
713 => 0.01453864247039
714 => 0.014341465994803
715 => 0.014157272074728
716 => 0.013813460444488
717 => 0.013711674770483
718 => 0.013739804668913
719 => 0.013711660830702
720 => 0.013519301383375
721 => 0.013477761379039
722 => 0.013408526218571
723 => 0.013429985089846
724 => 0.013299802732704
725 => 0.013545483737678
726 => 0.013591084297135
727 => 0.013769870444459
728 => 0.013788432615375
729 => 0.014286349490812
730 => 0.014012105242974
731 => 0.014196091961533
801 => 0.014179634457675
802 => 0.012861496692036
803 => 0.013043124446113
804 => 0.013325680233528
805 => 0.013198389234293
806 => 0.013018429542881
807 => 0.012873102443238
808 => 0.01265291702682
809 => 0.012962823772142
810 => 0.013370318187333
811 => 0.013798767346212
812 => 0.014313520937504
813 => 0.01419863392832
814 => 0.013789144385878
815 => 0.01380751378762
816 => 0.013921066201093
817 => 0.01377400550832
818 => 0.013730634439055
819 => 0.013915107682184
820 => 0.013916378048025
821 => 0.013747166948111
822 => 0.013559119775861
823 => 0.013558331851343
824 => 0.013524870673361
825 => 0.014000661652459
826 => 0.014262298583069
827 => 0.014292294835514
828 => 0.014260279596282
829 => 0.014272600991223
830 => 0.014120360226077
831 => 0.014468337469603
901 => 0.014787675799645
902 => 0.014702086305526
903 => 0.014573775486577
904 => 0.014471569738998
905 => 0.014678009879542
906 => 0.01466881742505
907 => 0.014784886657917
908 => 0.014779621087066
909 => 0.014740591369637
910 => 0.0147020876994
911 => 0.014854750399634
912 => 0.014810785993655
913 => 0.014766753298809
914 => 0.014678438988229
915 => 0.014690442369782
916 => 0.014562153705505
917 => 0.014502801499321
918 => 0.013610286724163
919 => 0.013371777612479
920 => 0.013446817434316
921 => 0.013471522492072
922 => 0.01336772302101
923 => 0.013516544798617
924 => 0.013493351082218
925 => 0.013583584264856
926 => 0.013527210489813
927 => 0.013529524089205
928 => 0.013695307341449
929 => 0.013743434924868
930 => 0.013718956847504
1001 => 0.01373610045383
1002 => 0.014131167625758
1003 => 0.014075001707447
1004 => 0.014045164682773
1005 => 0.014053429742517
1006 => 0.01415437787528
1007 => 0.014182637840891
1008 => 0.014062898380808
1009 => 0.014119368202389
1010 => 0.01435980953559
1011 => 0.01444395039441
1012 => 0.014712487625859
1013 => 0.014598408237071
1014 => 0.014807805892432
1015 => 0.01545142289609
1016 => 0.015965588693522
1017 => 0.015492740577404
1018 => 0.016436940585767
1019 => 0.017172135729725
1020 => 0.017143917715569
1021 => 0.01701571943685
1022 => 0.016178719311628
1023 => 0.015408499317429
1024 => 0.016052821047845
1025 => 0.016054463556441
1026 => 0.015999115748378
1027 => 0.015655355266001
1028 => 0.015987153628735
1029 => 0.016013490577855
1030 => 0.015998748889908
1031 => 0.015735188534058
1101 => 0.015332780584772
1102 => 0.015411410134834
1103 => 0.015540206941835
1104 => 0.015296367716353
1105 => 0.015218446309072
1106 => 0.015363317030362
1107 => 0.015830120679371
1108 => 0.015741874153535
1109 => 0.015739569680114
1110 => 0.01611712573999
1111 => 0.015846877082816
1112 => 0.015412401905267
1113 => 0.015302691192912
1114 => 0.014913292074045
1115 => 0.015182251432439
1116 => 0.015191930800928
1117 => 0.015044624509034
1118 => 0.015424354999003
1119 => 0.015420855715688
1120 => 0.015781353300489
1121 => 0.016470489285918
1122 => 0.016266677864704
1123 => 0.016029667356452
1124 => 0.016055436970288
1125 => 0.016338066029237
1126 => 0.016167182048403
1127 => 0.016228633119356
1128 => 0.016337973015682
1129 => 0.016403940489892
1130 => 0.016045945265931
1201 => 0.015962479454334
1202 => 0.015791737696327
1203 => 0.015747194358709
1204 => 0.015886259957962
1205 => 0.015849621085819
1206 => 0.015191117287487
1207 => 0.015122299976681
1208 => 0.015124410505355
1209 => 0.014951366105248
1210 => 0.014687431859669
1211 => 0.015381035298354
1212 => 0.015325329235253
1213 => 0.015263834052898
1214 => 0.01527136686185
1215 => 0.015572436606181
1216 => 0.015397800950082
1217 => 0.015862098464041
1218 => 0.015766652853232
1219 => 0.015668759422655
1220 => 0.015655227568642
1221 => 0.015617546949745
1222 => 0.015488326087206
1223 => 0.01533228413072
1224 => 0.015229251714925
1225 => 0.014048179691818
1226 => 0.014267379789327
1227 => 0.014519549520793
1228 => 0.014606597501588
1229 => 0.014457695906901
1230 => 0.01549420562973
1231 => 0.015683585944147
]
'min_raw' => 0.006536769543449
'max_raw' => 0.017172135729725
'avg_raw' => 0.011854452636587
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.006536'
'max' => '$0.017172'
'avg' => '$0.011854'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -0.00025344528452671
'max_diff' => -0.0030968209010288
'year' => 2027
]
2 => [
'items' => [
101 => 0.015109940618806
102 => 0.015002635000218
103 => 0.01550124056822
104 => 0.015200520458663
105 => 0.015335934705583
106 => 0.015043243171375
107 => 0.015637969772107
108 => 0.015633438951849
109 => 0.015402076871655
110 => 0.015597622517536
111 => 0.015563641649422
112 => 0.015302434430702
113 => 0.015646250506847
114 => 0.015646421035332
115 => 0.01542374006339
116 => 0.015163697439295
117 => 0.01511720796004
118 => 0.015082184382404
119 => 0.015327321052469
120 => 0.015547109824328
121 => 0.015956082238499
122 => 0.016058907620366
123 => 0.016460241931269
124 => 0.016221266889739
125 => 0.016327201430404
126 => 0.016442208359652
127 => 0.016497346910773
128 => 0.016407501600619
129 => 0.017030938981243
130 => 0.017083576197795
131 => 0.017101225001195
201 => 0.01689100542418
202 => 0.017077729611074
203 => 0.016990367547681
204 => 0.017217659366749
205 => 0.017253301626187
206 => 0.017223113900453
207 => 0.017234427316173
208 => 0.016702433493701
209 => 0.016674846807515
210 => 0.016298700383905
211 => 0.01645198283186
212 => 0.016165428642427
213 => 0.016256297927731
214 => 0.016296352242859
215 => 0.016275430141699
216 => 0.016460649191484
217 => 0.016303175161415
218 => 0.015887575304933
219 => 0.015471862218549
220 => 0.015466643279382
221 => 0.015357193361682
222 => 0.015278081117938
223 => 0.015293320942741
224 => 0.015347028073107
225 => 0.015274959561887
226 => 0.015290339032722
227 => 0.015545740721464
228 => 0.0155969597087
229 => 0.015422897577523
301 => 0.0147240130038
302 => 0.01455250497639
303 => 0.01467578154534
304 => 0.01461686328541
305 => 0.011796949470731
306 => 0.012459446393117
307 => 0.012065813218105
308 => 0.012247217495342
309 => 0.011845419954471
310 => 0.012037178800988
311 => 0.012001767943949
312 => 0.013067043390436
313 => 0.013050410579577
314 => 0.013058371825947
315 => 0.012678360793829
316 => 0.013283728686416
317 => 0.01358195467863
318 => 0.013526760984499
319 => 0.01354065204821
320 => 0.013301957550354
321 => 0.013060682910446
322 => 0.012793072202888
323 => 0.013290259819848
324 => 0.013234981044118
325 => 0.013361770666968
326 => 0.013684232376272
327 => 0.01373171608788
328 => 0.013795534677813
329 => 0.013772660256238
330 => 0.014317621780324
331 => 0.014251623343986
401 => 0.014410660586516
402 => 0.014083508912446
403 => 0.013713305739715
404 => 0.013783669259998
405 => 0.013776892687167
406 => 0.013690619137241
407 => 0.013612735233919
408 => 0.013483080478542
409 => 0.013893327309849
410 => 0.013876672037697
411 => 0.014146301534208
412 => 0.014098641901658
413 => 0.013780359211202
414 => 0.013791726739758
415 => 0.013868178832346
416 => 0.014132780397709
417 => 0.014211332157757
418 => 0.014174943852757
419 => 0.014261072271625
420 => 0.01432914466216
421 => 0.014269621115815
422 => 0.01511234900801
423 => 0.014762389632387
424 => 0.014932957397064
425 => 0.014973636803895
426 => 0.014869437358692
427 => 0.014892034487254
428 => 0.014926262979677
429 => 0.015134091683043
430 => 0.015679494336396
501 => 0.015921049458885
502 => 0.016647779963012
503 => 0.015900991668572
504 => 0.015856680341697
505 => 0.015987586450649
506 => 0.016414254188808
507 => 0.016760028315723
508 => 0.016874741541809
509 => 0.016889902788345
510 => 0.017105112426472
511 => 0.017228466577625
512 => 0.017078980315828
513 => 0.01695230636082
514 => 0.016498575977328
515 => 0.016551096504684
516 => 0.016912910856066
517 => 0.017423994938151
518 => 0.017862558249816
519 => 0.017708988663545
520 => 0.018880616203557
521 => 0.01899677828848
522 => 0.018980728444313
523 => 0.019245362961003
524 => 0.018720117337255
525 => 0.018495564656948
526 => 0.016979694707703
527 => 0.017405592331909
528 => 0.018024659540784
529 => 0.017942723674306
530 => 0.017493140519508
531 => 0.017862217200678
601 => 0.017740188907788
602 => 0.017643940130227
603 => 0.018084874438976
604 => 0.017600049053924
605 => 0.018019823036696
606 => 0.017481458561785
607 => 0.01770969015648
608 => 0.017580134865011
609 => 0.01766397301629
610 => 0.017173856897004
611 => 0.017438311658075
612 => 0.017162854709497
613 => 0.017162724107038
614 => 0.017156643379631
615 => 0.017480717258069
616 => 0.017491285295611
617 => 0.017251794209796
618 => 0.017217279802777
619 => 0.017344897655262
620 => 0.01719549057317
621 => 0.017265397206524
622 => 0.017197607973879
623 => 0.017182347189751
624 => 0.017060746665412
625 => 0.01700835781605
626 => 0.017028900833779
627 => 0.016958776923618
628 => 0.016916524731254
629 => 0.017148238355098
630 => 0.017024443113179
701 => 0.0171292649588
702 => 0.017009807236143
703 => 0.016595714724163
704 => 0.016357565741574
705 => 0.015575383372839
706 => 0.015797209322318
707 => 0.015944280156318
708 => 0.015895673246559
709 => 0.0160000996971
710 => 0.016006510633046
711 => 0.015972560529474
712 => 0.015933250658814
713 => 0.01591411678775
714 => 0.01605672498658
715 => 0.016139513845972
716 => 0.015959040682064
717 => 0.015916758344848
718 => 0.016099226677756
719 => 0.016210532255421
720 => 0.017032350103697
721 => 0.01697146718306
722 => 0.01712427136619
723 => 0.017107067960141
724 => 0.017267231087675
725 => 0.017529030111206
726 => 0.016996719496209
727 => 0.017089110213057
728 => 0.017066458142899
729 => 0.017313767505189
730 => 0.017314539578024
731 => 0.017166265261312
801 => 0.017246647173877
802 => 0.017201780195446
803 => 0.017282860889607
804 => 0.016970654054537
805 => 0.017350888279008
806 => 0.01756645658253
807 => 0.017569449748634
808 => 0.017671627413648
809 => 0.017775445839033
810 => 0.017974716265882
811 => 0.017769888294983
812 => 0.017401422714937
813 => 0.01742802473968
814 => 0.017211993504915
815 => 0.017215625029001
816 => 0.017196239668824
817 => 0.017254416593976
818 => 0.016983420618035
819 => 0.01704702283193
820 => 0.016957979360024
821 => 0.017088916649939
822 => 0.016948049770699
823 => 0.017066447219385
824 => 0.0171175436333
825 => 0.017306090500673
826 => 0.016920201245086
827 => 0.016133346930537
828 => 0.016298753247141
829 => 0.016054104312497
830 => 0.016076747502843
831 => 0.016122490350978
901 => 0.015974222814044
902 => 0.016002507587644
903 => 0.016001497056494
904 => 0.015992788844977
905 => 0.015954218732257
906 => 0.015898284437948
907 => 0.016121109450807
908 => 0.016158971762522
909 => 0.016243134991316
910 => 0.016493547671745
911 => 0.016468525539832
912 => 0.01650933767514
913 => 0.016420245012914
914 => 0.016080880255919
915 => 0.016099309394957
916 => 0.015869497735848
917 => 0.016237258190506
918 => 0.016150167660642
919 => 0.016094019829481
920 => 0.016078699373543
921 => 0.016329732778571
922 => 0.016404845907822
923 => 0.016358040446328
924 => 0.016262041079269
925 => 0.016446388243687
926 => 0.016495711767903
927 => 0.016506753485993
928 => 0.01683338131628
929 => 0.016525008353324
930 => 0.016599236790471
1001 => 0.017178345867651
1002 => 0.016653173846239
1003 => 0.016931369178714
1004 => 0.016917752964848
1005 => 0.017060068283326
1006 => 0.01690607895486
1007 => 0.016907987837141
1008 => 0.017034354198675
1009 => 0.016856895434194
1010 => 0.016812954148501
1011 => 0.016752249577028
1012 => 0.016884795788006
1013 => 0.016964251246937
1014 => 0.017604603892321
1015 => 0.018018300904867
1016 => 0.018000341226504
1017 => 0.018164459067631
1018 => 0.018090522477056
1019 => 0.017851761722602
1020 => 0.018259297216683
1021 => 0.018130335934347
1022 => 0.018140967345774
1023 => 0.01814057164411
1024 => 0.018226319622873
1025 => 0.018165559321233
1026 => 0.018045794529783
1027 => 0.018125299987536
1028 => 0.018361402773342
1029 => 0.019094273065002
1030 => 0.019504396989455
1031 => 0.019069583089784
1101 => 0.019369511895387
1102 => 0.019189661487586
1103 => 0.019156977318402
1104 => 0.019345354772886
1105 => 0.019534061957166
1106 => 0.019522042125331
1107 => 0.019385050399765
1108 => 0.019307667250028
1109 => 0.019893638385088
1110 => 0.020325371935642
1111 => 0.020295930601873
1112 => 0.020425875074296
1113 => 0.020807396064362
1114 => 0.020842277562317
1115 => 0.020837883295317
1116 => 0.020751425863128
1117 => 0.021127082824609
1118 => 0.021440462470932
1119 => 0.020731413465571
1120 => 0.021001410044679
1121 => 0.021122620207788
1122 => 0.021300592688665
1123 => 0.021600862095557
1124 => 0.021927034313968
1125 => 0.021973158641948
1126 => 0.021940431223994
1127 => 0.021725311877972
1128 => 0.022082213411401
1129 => 0.022291277959313
1130 => 0.022415771113237
1201 => 0.022731465037904
1202 => 0.02112336876049
1203 => 0.019985078287766
1204 => 0.019807317793336
1205 => 0.020168800748845
1206 => 0.02026412092144
1207 => 0.020225697479388
1208 => 0.018944448063495
1209 => 0.019800572280322
1210 => 0.020721689952659
1211 => 0.020757073833824
1212 => 0.021218204600258
1213 => 0.021368367680198
1214 => 0.021739638388969
1215 => 0.021716415305049
1216 => 0.021806813814428
1217 => 0.021786032762605
1218 => 0.022473733570332
1219 => 0.023232369685813
1220 => 0.023206100529449
1221 => 0.023097037612074
1222 => 0.023259014642367
1223 => 0.02404200841393
1224 => 0.023969922894664
1225 => 0.024039947836401
1226 => 0.024963141620669
1227 => 0.026163424863002
1228 => 0.025605772790471
1229 => 0.026815717327802
1230 => 0.027577313277648
1231 => 0.028894414722415
]
'min_raw' => 0.011796949470731
'max_raw' => 0.028894414722415
'avg_raw' => 0.020345682096573
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.011796'
'max' => '$0.028894'
'avg' => '$0.020345'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 0.0052601799272822
'max_diff' => 0.01172227899269
'year' => 2028
]
3 => [
'items' => [
101 => 0.028729507134669
102 => 0.02924224506178
103 => 0.028434288135351
104 => 0.026579055717235
105 => 0.026285458085523
106 => 0.026873247979285
107 => 0.028318272077401
108 => 0.026827739028032
109 => 0.027129271922645
110 => 0.027042430428711
111 => 0.027037803014552
112 => 0.027214412591953
113 => 0.026958231188597
114 => 0.02591450206517
115 => 0.026392836971702
116 => 0.026208128892761
117 => 0.026413076277245
118 => 0.027519092784577
119 => 0.027030096522545
120 => 0.026514978683325
121 => 0.027161050767507
122 => 0.027983722545124
123 => 0.027932241223764
124 => 0.027832345942803
125 => 0.028395450411235
126 => 0.029325534018957
127 => 0.029576931880745
128 => 0.029762508642714
129 => 0.029788096542845
130 => 0.03005166781698
131 => 0.028634378647442
201 => 0.030883652958066
202 => 0.031272040496562
203 => 0.031199039736339
204 => 0.031630716139532
205 => 0.031503705991139
206 => 0.0313196882134
207 => 0.032003987132664
208 => 0.031219493641803
209 => 0.030106003896511
210 => 0.029495121399913
211 => 0.030299580749918
212 => 0.030790836003204
213 => 0.031115524475923
214 => 0.031213775011586
215 => 0.028744398771168
216 => 0.027413541935468
217 => 0.028266605908847
218 => 0.0293074028317
219 => 0.028628596967984
220 => 0.028655204872692
221 => 0.027687406098076
222 => 0.029393031548567
223 => 0.029144536266999
224 => 0.030433730227357
225 => 0.030126053742289
226 => 0.03117734137074
227 => 0.030900502105684
228 => 0.032049646417057
301 => 0.032508071194704
302 => 0.033277837744493
303 => 0.033844081152031
304 => 0.034176590111448
305 => 0.034156627520734
306 => 0.035474193673249
307 => 0.034697270945366
308 => 0.033721272892518
309 => 0.033703620166976
310 => 0.034209103388546
311 => 0.035268457548406
312 => 0.035543132669082
313 => 0.035696638589671
314 => 0.03546153892871
315 => 0.034618244990146
316 => 0.034254114943072
317 => 0.034564364293042
318 => 0.034184955998059
319 => 0.034839921158366
320 => 0.035739328216476
321 => 0.035553604215618
322 => 0.03617445170519
323 => 0.036816963541837
324 => 0.037735784325255
325 => 0.037975998101875
326 => 0.038373062340117
327 => 0.038781771870076
328 => 0.038913038356068
329 => 0.039163666807425
330 => 0.039162345871773
331 => 0.039917631579178
401 => 0.040750735103697
402 => 0.041065212397812
403 => 0.041788335595251
404 => 0.040550012460896
405 => 0.041489294783135
406 => 0.042336550949556
407 => 0.041326417219677
408 => 0.042718651235341
409 => 0.042772708527299
410 => 0.043588909456094
411 => 0.042761533449583
412 => 0.042270240217994
413 => 0.043688585369073
414 => 0.044374877910226
415 => 0.044168161011597
416 => 0.042595035206156
417 => 0.041679408512849
418 => 0.039283036845266
419 => 0.04212164260107
420 => 0.043504244661457
421 => 0.042591454600831
422 => 0.043051812813584
423 => 0.04556337795071
424 => 0.046519619343128
425 => 0.046320727818137
426 => 0.046354337211827
427 => 0.046870307710166
428 => 0.049158405049947
429 => 0.047787324086269
430 => 0.048835464109578
501 => 0.04939139379859
502 => 0.049907772276043
503 => 0.048639709938512
504 => 0.04698997946892
505 => 0.046467440578226
506 => 0.042500695618428
507 => 0.04229420931657
508 => 0.042178302298162
509 => 0.041447524942473
510 => 0.040873334117665
511 => 0.04041671625544
512 => 0.039218414627324
513 => 0.0396228062503
514 => 0.03771296356007
515 => 0.03893481323261
516 => 0.035886658184239
517 => 0.038425252284939
518 => 0.037043610931638
519 => 0.037971345941254
520 => 0.037968109161204
521 => 0.036259854869847
522 => 0.035274569444951
523 => 0.035902431665577
524 => 0.036575549805854
525 => 0.036684760959473
526 => 0.037557476198523
527 => 0.03780103226279
528 => 0.037063046017514
529 => 0.035823491946033
530 => 0.03611141208562
531 => 0.035268734752512
601 => 0.033791975139355
602 => 0.034852609675273
603 => 0.035214756938644
604 => 0.035374701801224
605 => 0.033922478328671
606 => 0.03346615818429
607 => 0.033223217168318
608 => 0.035636028131968
609 => 0.03576820736317
610 => 0.035091959728083
611 => 0.038148663163108
612 => 0.03745683703457
613 => 0.038229776321664
614 => 0.036085286350789
615 => 0.036167208755615
616 => 0.035151972836426
617 => 0.035720437113083
618 => 0.035318664884801
619 => 0.035674510817203
620 => 0.035887803401877
621 => 0.036902872730841
622 => 0.038436842746147
623 => 0.036751255222673
624 => 0.036016820600637
625 => 0.036472459709531
626 => 0.037685886699935
627 => 0.039524290704582
628 => 0.038435918532502
629 => 0.038918919620713
630 => 0.039024433871265
701 => 0.038221908525301
702 => 0.039553880958798
703 => 0.040267695806833
704 => 0.040999922137748
705 => 0.041635693744365
706 => 0.040707454839179
707 => 0.041700803525548
708 => 0.040900339833982
709 => 0.040182241152232
710 => 0.040183330211514
711 => 0.039732856418705
712 => 0.038860006681785
713 => 0.03869903979838
714 => 0.039536409853731
715 => 0.040207901338884
716 => 0.040263208593829
717 => 0.040634980782487
718 => 0.040854991734177
719 => 0.043011398151126
720 => 0.043878722650752
721 => 0.044939270631283
722 => 0.045352413838908
723 => 0.046595826773824
724 => 0.045591669843819
725 => 0.045374414175569
726 => 0.042358301112734
727 => 0.042852189457808
728 => 0.043642952351407
729 => 0.042371340501594
730 => 0.043177885535599
731 => 0.043337114610272
801 => 0.042328131617525
802 => 0.042867073029533
803 => 0.041435804424233
804 => 0.038468040490537
805 => 0.039557184928436
806 => 0.040359161836784
807 => 0.039214641905532
808 => 0.041266149583263
809 => 0.040067701149647
810 => 0.039687850531861
811 => 0.038205917845354
812 => 0.038905333028565
813 => 0.039851302078519
814 => 0.039266803186353
815 => 0.040479726150547
816 => 0.042197548542584
817 => 0.043421771077242
818 => 0.043515751682221
819 => 0.042728658608976
820 => 0.043989980282013
821 => 0.043999167633384
822 => 0.042576391633549
823 => 0.0417049492557
824 => 0.041506955713922
825 => 0.042001582400203
826 => 0.042602150510472
827 => 0.0435490790326
828 => 0.044121288106484
829 => 0.045613305894933
830 => 0.046017003128984
831 => 0.046460543995853
901 => 0.047053251376928
902 => 0.047764948554962
903 => 0.046207795646367
904 => 0.046269664234322
905 => 0.044819665006088
906 => 0.043270132879797
907 => 0.044446034611746
908 => 0.045983369702617
909 => 0.045630703334167
910 => 0.045591021163396
911 => 0.045657755567716
912 => 0.045391856642911
913 => 0.044189205660694
914 => 0.043585241866419
915 => 0.044364509248631
916 => 0.044778655181076
917 => 0.045420959404978
918 => 0.045341781851985
919 => 0.046996288554317
920 => 0.047639179829158
921 => 0.047474700730185
922 => 0.047504968842807
923 => 0.048668892787416
924 => 0.049963415593038
925 => 0.051175907027833
926 => 0.052409305393024
927 => 0.050922395523428
928 => 0.050167434391499
929 => 0.05094636156995
930 => 0.05053305184487
1001 => 0.052908052120808
1002 => 0.05307249198695
1003 => 0.055447320523336
1004 => 0.057701315593688
1005 => 0.056285621674516
1006 => 0.05762055727604
1007 => 0.059064398967986
1008 => 0.06184980384662
1009 => 0.060911777475221
1010 => 0.060193263975477
1011 => 0.05951427219005
1012 => 0.060927146308612
1013 => 0.062744786290927
1014 => 0.063136288533978
1015 => 0.063770671733089
1016 => 0.063103695367911
1017 => 0.063906994934731
1018 => 0.066742995393322
1019 => 0.065976683035342
1020 => 0.064888396296152
1021 => 0.06712714628583
1022 => 0.067937341204174
1023 => 0.073623713443487
1024 => 0.08080299328794
1025 => 0.077830724290644
1026 => 0.0759857410095
1027 => 0.076419355844158
1028 => 0.079040985809392
1029 => 0.07988297014785
1030 => 0.077594166466516
1031 => 0.078402610620442
1101 => 0.082857217393052
1102 => 0.085246971005661
1103 => 0.082001364613008
1104 => 0.073046865298294
1105 => 0.064790407982491
1106 => 0.066980392255761
1107 => 0.066732116002296
1108 => 0.071518035255953
1109 => 0.065958406739041
1110 => 0.066052016624803
1111 => 0.070936903620249
1112 => 0.069633699518029
1113 => 0.067522675774202
1114 => 0.06480582079202
1115 => 0.059783463078787
1116 => 0.055335020793371
1117 => 0.064059440530147
1118 => 0.063683227686769
1119 => 0.063138415737939
1120 => 0.064350835775251
1121 => 0.070238003325007
1122 => 0.070102285058083
1123 => 0.069238914687984
1124 => 0.069893773504307
1125 => 0.067407875857505
1126 => 0.068048548283923
1127 => 0.064789100117469
1128 => 0.066262506815286
1129 => 0.067518146465357
1130 => 0.067770234715171
1201 => 0.068338202413948
1202 => 0.063484980613553
1203 => 0.065663934718825
1204 => 0.066943866115282
1205 => 0.061161089501785
1206 => 0.066829559214678
1207 => 0.063400496819452
1208 => 0.062236621539724
1209 => 0.06380362627497
1210 => 0.063192963005682
1211 => 0.0626679505861
1212 => 0.062374984635114
1213 => 0.063525619968677
1214 => 0.063471941455059
1215 => 0.061589278720656
1216 => 0.059133421930777
1217 => 0.059957688080211
1218 => 0.059658224460586
1219 => 0.058572929671486
1220 => 0.059304287320346
1221 => 0.056083758366399
1222 => 0.05054300568966
1223 => 0.054203396625758
1224 => 0.054062475556458
1225 => 0.053991416763054
1226 => 0.056742099385757
1227 => 0.05647768472063
1228 => 0.055997769514267
1229 => 0.058564115652367
1230 => 0.057627364789734
1231 => 0.060514210222107
]
'min_raw' => 0.02591450206517
'max_raw' => 0.085246971005661
'avg_raw' => 0.055580736535415
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.025914'
'max' => '$0.085246'
'avg' => '$0.05558'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072435
'min_diff' => 0.014117552594438
'max_diff' => 0.056352556283246
'year' => 2029
]
4 => [
'items' => [
101 => 0.062415673333324
102 => 0.061933400782431
103 => 0.0637217360291
104 => 0.059976677507511
105 => 0.061220635722714
106 => 0.061477013786816
107 => 0.058532447339386
108 => 0.056520946229916
109 => 0.056386802038706
110 => 0.052899136316812
111 => 0.054762219193994
112 => 0.056401655026305
113 => 0.055616492487988
114 => 0.05536793348442
115 => 0.056637767527777
116 => 0.056736444508339
117 => 0.05448659889421
118 => 0.054954413040732
119 => 0.05690527579936
120 => 0.054905256304613
121 => 0.051019545127649
122 => 0.050055835031602
123 => 0.049927258340088
124 => 0.047313600126796
125 => 0.050120234748379
126 => 0.048895063522926
127 => 0.052765364744325
128 => 0.050554669443504
129 => 0.050459370787546
130 => 0.050315312891793
131 => 0.048065629298752
201 => 0.048558167030777
202 => 0.050195437467643
203 => 0.050779634004688
204 => 0.050718697519693
205 => 0.050187413949292
206 => 0.05043063284721
207 => 0.049647140033936
208 => 0.049370472414577
209 => 0.048497233304454
210 => 0.047213813051034
211 => 0.047392280508946
212 => 0.044849489161744
213 => 0.043464041479638
214 => 0.043080567821138
215 => 0.042567770818524
216 => 0.043138489607084
217 => 0.044842285753343
218 => 0.042787146120438
219 => 0.039263753371106
220 => 0.03947551527891
221 => 0.039951281413071
222 => 0.039064694369571
223 => 0.038225614138508
224 => 0.038955126322686
225 => 0.037462218366728
226 => 0.040131692207097
227 => 0.040059490420829
228 => 0.041054505189363
301 => 0.041676708343886
302 => 0.040242731513374
303 => 0.039882090218385
304 => 0.040087527890244
305 => 0.036692100792496
306 => 0.04077702635622
307 => 0.040812352962125
308 => 0.040509865114959
309 => 0.042684961869715
310 => 0.04727509445194
311 => 0.045548101936852
312 => 0.044879358236384
313 => 0.043608075972947
314 => 0.045301984107706
315 => 0.045171918392039
316 => 0.044583711899839
317 => 0.044227962778041
318 => 0.044883441442818
319 => 0.044146741717614
320 => 0.044014410203812
321 => 0.043212625208283
322 => 0.042926424443772
323 => 0.042714532791709
324 => 0.042481260902831
325 => 0.042995800561963
326 => 0.041829786001041
327 => 0.040423686746386
328 => 0.040306784807566
329 => 0.040629561338771
330 => 0.040486756751599
331 => 0.040306101114143
401 => 0.039961180303605
402 => 0.039858849667185
403 => 0.040191374591782
404 => 0.039815973339319
405 => 0.040369898336492
406 => 0.040219261387329
407 => 0.039377815634524
408 => 0.038329062683411
409 => 0.038319726582312
410 => 0.038093774479295
411 => 0.037805990503975
412 => 0.037725935585647
413 => 0.038893688841309
414 => 0.041310903132616
415 => 0.040836346128197
416 => 0.041179262198448
417 => 0.042866069867574
418 => 0.043402255301512
419 => 0.043021683580751
420 => 0.042500733536731
421 => 0.042523652694801
422 => 0.04430389669752
423 => 0.044414928332278
424 => 0.044695469453148
425 => 0.045056044074378
426 => 0.043083090997915
427 => 0.042430726782325
428 => 0.042121600425189
429 => 0.041169610892169
430 => 0.042196249986117
501 => 0.041598071351143
502 => 0.041678786085693
503 => 0.04162622050893
504 => 0.041654924868311
505 => 0.040130946034754
506 => 0.040686203823733
507 => 0.039762980055536
508 => 0.038526887066653
509 => 0.038522743249524
510 => 0.038825275257382
511 => 0.038645317381029
512 => 0.038161055362905
513 => 0.038229842496928
514 => 0.037627194821669
515 => 0.038303014835992
516 => 0.038322394935803
517 => 0.038062167418123
518 => 0.039103361395379
519 => 0.039529939417394
520 => 0.039358652090644
521 => 0.039517921441932
522 => 0.040856066114227
523 => 0.041074242083157
524 => 0.04117114143666
525 => 0.04104130913967
526 => 0.039542380270075
527 => 0.039608864139379
528 => 0.039121049619165
529 => 0.038708897754212
530 => 0.038725381667358
531 => 0.038937281301936
601 => 0.039862659433888
602 => 0.041810063158559
603 => 0.041883965706377
604 => 0.041973537750222
605 => 0.041609203232604
606 => 0.041499316455879
607 => 0.041644285478563
608 => 0.042375627927926
609 => 0.044256839265226
610 => 0.043591893536744
611 => 0.04305128230899
612 => 0.04352554410347
613 => 0.043452535217597
614 => 0.04283626674728
615 => 0.042818970143864
616 => 0.041636153916377
617 => 0.041198893688497
618 => 0.04083348631372
619 => 0.040434470999665
620 => 0.040197921346379
621 => 0.040561369123721
622 => 0.040644493930587
623 => 0.039849809013447
624 => 0.039741496395703
625 => 0.040390453253505
626 => 0.040104871535936
627 => 0.040398599414541
628 => 0.040466746801929
629 => 0.040455773502992
630 => 0.040157593390999
701 => 0.040347644502524
702 => 0.039898116966804
703 => 0.039409323288561
704 => 0.039097503374764
705 => 0.038825399143067
706 => 0.038976378385603
707 => 0.038438164953681
708 => 0.038265979644713
709 => 0.040283259462225
710 => 0.041773445752834
711 => 0.04175177785399
712 => 0.041619880092308
713 => 0.041423906772933
714 => 0.042361291258971
715 => 0.04203472524763
716 => 0.042272329306384
717 => 0.042332809511548
718 => 0.042515864877106
719 => 0.042581291436153
720 => 0.042383526933047
721 => 0.041719805105721
722 => 0.040065873416803
723 => 0.039295963750909
724 => 0.039041880737304
725 => 0.039051116172276
726 => 0.038796361646946
727 => 0.038871398271952
728 => 0.038770266970992
729 => 0.038578748753263
730 => 0.038964552675343
731 => 0.03900901298335
801 => 0.038918961737923
802 => 0.038940172066124
803 => 0.038194586215379
804 => 0.038251271488284
805 => 0.037935640685534
806 => 0.037876463715004
807 => 0.03707857653077
808 => 0.035665003728302
809 => 0.036448260279701
810 => 0.035502196508149
811 => 0.035143907822657
812 => 0.036839990734455
813 => 0.036669751052127
814 => 0.036378374717394
815 => 0.035947368390174
816 => 0.035787503950848
817 => 0.034816218224436
818 => 0.034758829482111
819 => 0.035240224915042
820 => 0.03501807748655
821 => 0.034706098363137
822 => 0.033576141602951
823 => 0.032305696088677
824 => 0.032344042853017
825 => 0.032748147933628
826 => 0.033923137956502
827 => 0.033464049027032
828 => 0.033130974741262
829 => 0.033068599939714
830 => 0.033849351171583
831 => 0.034954277737119
901 => 0.035472684560329
902 => 0.034958959142777
903 => 0.034368819044033
904 => 0.034404738137398
905 => 0.034643691773515
906 => 0.034668802422049
907 => 0.034284681885149
908 => 0.034392809566287
909 => 0.034228553731236
910 => 0.033220515974717
911 => 0.033202283768224
912 => 0.03295489504597
913 => 0.032947404213779
914 => 0.032526534283215
915 => 0.032467651670593
916 => 0.03163198887848
917 => 0.032182024658869
918 => 0.031813089535559
919 => 0.031257017281733
920 => 0.031161150215577
921 => 0.031158268335806
922 => 0.031729230205004
923 => 0.032175352636997
924 => 0.031819507319984
925 => 0.031738488239071
926 => 0.032603560060014
927 => 0.032493471785495
928 => 0.032398136049754
929 => 0.034855343682116
930 => 0.032910272102799
1001 => 0.032062109873412
1002 => 0.031012348052907
1003 => 0.031354155795022
1004 => 0.031426179708486
1005 => 0.028901691763963
1006 => 0.027877507319275
1007 => 0.027526045813434
1008 => 0.027323774747887
1009 => 0.027415952212417
1010 => 0.026494066087344
1011 => 0.027113588809982
1012 => 0.026315313350763
1013 => 0.026181479872212
1014 => 0.027608895280649
1015 => 0.027807511795893
1016 => 0.026960152036547
1017 => 0.027504294177131
1018 => 0.027306980672814
1019 => 0.026328997492322
1020 => 0.026291645728385
1021 => 0.025800928146185
1022 => 0.02503305015169
1023 => 0.024682109303289
1024 => 0.024499336262433
1025 => 0.024574751981266
1026 => 0.024536619486065
1027 => 0.024287779161066
1028 => 0.024550882722212
1029 => 0.023878761845381
1030 => 0.023611117896582
1031 => 0.023490229334201
1101 => 0.02289368337018
1102 => 0.023843053284132
1103 => 0.024030091117028
1104 => 0.024217497472233
1105 => 0.025848741846542
1106 => 0.025767249487451
1107 => 0.026503900725252
1108 => 0.026475275812765
1109 => 0.026265170946786
1110 => 0.02537877307779
1111 => 0.025732075469849
1112 => 0.024644665622474
1113 => 0.02545942701681
1114 => 0.025087603941684
1115 => 0.025333713261089
1116 => 0.024891186514016
1117 => 0.025136099087328
1118 => 0.024074444725853
1119 => 0.023083086820988
1120 => 0.023482038181447
1121 => 0.023915743935888
1122 => 0.024856128517688
1123 => 0.024296043218772
1124 => 0.024497471071432
1125 => 0.023822721483637
1126 => 0.022430520351324
1127 => 0.02243840005854
1128 => 0.022224240245084
1129 => 0.022039174898414
1130 => 0.024360375752846
1201 => 0.024071697733842
1202 => 0.023611727091804
1203 => 0.024227416074678
1204 => 0.024390214014049
1205 => 0.024394848642515
1206 => 0.024844039431188
1207 => 0.025083772635624
1208 => 0.025126026651969
1209 => 0.025832838063354
1210 => 0.026069751925383
1211 => 0.027045566593773
1212 => 0.02506343294815
1213 => 0.025022612210098
1214 => 0.024236080081288
1215 => 0.023737248970616
1216 => 0.024270235474204
1217 => 0.024742388756471
1218 => 0.02425075119989
1219 => 0.024314948685744
1220 => 0.023654965434299
1221 => 0.023890878391593
1222 => 0.024094078411321
1223 => 0.023981883303972
1224 => 0.023813921797966
1225 => 0.02470367757169
1226 => 0.024653474063955
1227 => 0.025482035095844
1228 => 0.026127957671169
1229 => 0.027285566398622
1230 => 0.026077541344017
1231 => 0.026033516109562
]
'min_raw' => 0.022039174898414
'max_raw' => 0.0637217360291
'avg_raw' => 0.042880455463757
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.022039'
'max' => '$0.063721'
'avg' => '$0.04288'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -0.0038753271667559
'max_diff' => -0.021525234976561
'year' => 2030
]
5 => [
'items' => [
101 => 0.026463869838225
102 => 0.026069686040469
103 => 0.026318796593889
104 => 0.027245430837232
105 => 0.027265009158623
106 => 0.026937047050086
107 => 0.026917090525976
108 => 0.026980079236433
109 => 0.027349006080996
110 => 0.027220091705529
111 => 0.027369274684532
112 => 0.027555830284146
113 => 0.028327503342086
114 => 0.028513551103868
115 => 0.028061551497442
116 => 0.028102362001077
117 => 0.027933301740607
118 => 0.027769991647312
119 => 0.028137088887516
120 => 0.028807966309303
121 => 0.028803792815681
122 => 0.028959423337542
123 => 0.029056379863348
124 => 0.028640171478072
125 => 0.028369235123663
126 => 0.028473129362072
127 => 0.028639258511809
128 => 0.028419255917845
129 => 0.027061297992782
130 => 0.027473215680558
131 => 0.027404652435566
201 => 0.027307010037123
202 => 0.027721196457446
203 => 0.027681247166792
204 => 0.026484610812659
205 => 0.026561215589573
206 => 0.026489269402866
207 => 0.026721742250922
208 => 0.026057131743763
209 => 0.026261561459545
210 => 0.026389777860874
211 => 0.026465298306262
212 => 0.026738129939856
213 => 0.026706116296664
214 => 0.026736139926846
215 => 0.027140677214585
216 => 0.029186687995537
217 => 0.029298047848076
218 => 0.028749671206222
219 => 0.028968736858391
220 => 0.028548178710617
221 => 0.028830502212713
222 => 0.029023660782607
223 => 0.028150814347512
224 => 0.028099130046352
225 => 0.027676836105501
226 => 0.027903752949363
227 => 0.02754271193488
228 => 0.027631298771156
301 => 0.027383602254068
302 => 0.027829406668942
303 => 0.028327885275772
304 => 0.028453820657375
305 => 0.02812253888697
306 => 0.027882669052664
307 => 0.027461536641659
308 => 0.028161889226709
309 => 0.028366693665435
310 => 0.02816081347618
311 => 0.028113106537758
312 => 0.028022701975654
313 => 0.028132286292979
314 => 0.028365578256478
315 => 0.028255562074718
316 => 0.028328229701006
317 => 0.028051295644126
318 => 0.028640309260366
319 => 0.0295758046368
320 => 0.029578812407404
321 => 0.029468795632616
322 => 0.029423779138717
323 => 0.029536663026026
324 => 0.029597897904152
325 => 0.029962943696344
326 => 0.030354652375432
327 => 0.032182585864852
328 => 0.031669309455617
329 => 0.03329116079168
330 => 0.034573834627468
331 => 0.034958452426291
401 => 0.034604622149039
402 => 0.033394187884097
403 => 0.033334798204377
404 => 0.035143698028366
405 => 0.034632600975229
406 => 0.034571807607055
407 => 0.033925068881707
408 => 0.034307371568537
409 => 0.034223756362885
410 => 0.034091765670168
411 => 0.034821172565204
412 => 0.036186557158109
413 => 0.035973749164809
414 => 0.035814897869689
415 => 0.035118857735392
416 => 0.035538029362431
417 => 0.035388770374746
418 => 0.036030081707935
419 => 0.03565018308094
420 => 0.034628728912373
421 => 0.034791398855474
422 => 0.034766811620821
423 => 0.035272815167715
424 => 0.035120925462717
425 => 0.034737152718178
426 => 0.036181890422007
427 => 0.036088077191573
428 => 0.036221082903638
429 => 0.036279636131427
430 => 0.037159022512613
501 => 0.03751927897576
502 => 0.037601063500071
503 => 0.037943279276826
504 => 0.037592548859794
505 => 0.03899572059447
506 => 0.039928747920688
507 => 0.041012507173239
508 => 0.04259617072824
509 => 0.043191642874627
510 => 0.043084076161247
511 => 0.044284791794546
512 => 0.046442451097176
513 => 0.043520200796149
514 => 0.046597337458909
515 => 0.04562315151873
516 => 0.043313374179423
517 => 0.043164651749258
518 => 0.044728859780503
519 => 0.048198122644361
520 => 0.047329111645018
521 => 0.048199544035041
522 => 0.04718413841634
523 => 0.047133714968861
524 => 0.048150228050568
525 => 0.05052536627322
526 => 0.049397027134363
527 => 0.047779276298704
528 => 0.048973798340764
529 => 0.047938992800136
530 => 0.045607286293266
531 => 0.047328447128684
601 => 0.046177555893879
602 => 0.046513447140938
603 => 0.048932449334348
604 => 0.048641388590551
605 => 0.049018048144524
606 => 0.048353253890659
607 => 0.047732231229118
608 => 0.046573046313603
609 => 0.046229868807244
610 => 0.046324710723768
611 => 0.046229821808301
612 => 0.045581268501529
613 => 0.045441213476681
614 => 0.045207782299316
615 => 0.04528013238203
616 => 0.044841213475885
617 => 0.045669544137055
618 => 0.045823289606993
619 => 0.046426079585147
620 => 0.046488663240358
621 => 0.048167424749341
622 => 0.047242791120634
623 => 0.047863115187797
624 => 0.047807627564514
625 => 0.043363434058223
626 => 0.043975804711939
627 => 0.044928461276623
628 => 0.044499290785528
629 => 0.043892544121549
630 => 0.043402563658688
701 => 0.042660193154378
702 => 0.043705065383231
703 => 0.045078961254399
704 => 0.046523507506925
705 => 0.048259035178915
706 => 0.047871685606296
707 => 0.046491063024305
708 => 0.046552996744787
709 => 0.046935846634791
710 => 0.046440021241656
711 => 0.046293792653559
712 => 0.046915757072279
713 => 0.046920040199405
714 => 0.046349533162103
715 => 0.045715518991828
716 => 0.045712862449304
717 => 0.045600045751554
718 => 0.047204208256247
719 => 0.048086335434705
720 => 0.048187469894096
721 => 0.04807952827979
722 => 0.048121070723087
723 => 0.047607780354288
724 => 0.048781009925832
725 => 0.049857681401059
726 => 0.049569110445967
727 => 0.049136501561506
728 => 0.048791907747765
729 => 0.049487935094799
730 => 0.049456942092684
731 => 0.049848277614991
801 => 0.049830524375235
802 => 0.049698932957957
803 => 0.049569115145511
804 => 0.050083828097919
805 => 0.049935599033663
806 => 0.049787139728728
807 => 0.049489381864698
808 => 0.049529852103654
809 => 0.049097317915216
810 => 0.048897207808226
811 => 0.04588803193039
812 => 0.045083881808173
813 => 0.045336883806608
814 => 0.045420178633686
815 => 0.045070211469951
816 => 0.045571974483559
817 => 0.045493775249387
818 => 0.045798002724529
819 => 0.045607934606082
820 => 0.045615735067961
821 => 0.04617468487752
822 => 0.046336950385177
823 => 0.046254420838339
824 => 0.046312221703997
825 => 0.047644218256861
826 => 0.047454850941896
827 => 0.047354253330051
828 => 0.047382119556029
829 => 0.047722473233613
830 => 0.047817753680715
831 => 0.047414043731106
901 => 0.047604435677161
902 => 0.048415100419128
903 => 0.048698787199166
904 => 0.049604179223667
905 => 0.049219552599599
906 => 0.049925551414326
907 => 0.052095551078066
908 => 0.053829096962016
909 => 0.052234856525322
910 => 0.055418292775459
911 => 0.057897054533
912 => 0.057801915528151
913 => 0.057369686080932
914 => 0.054547681721263
915 => 0.051950831235782
916 => 0.054123206934983
917 => 0.054128744767393
918 => 0.053942135768247
919 => 0.052783123301322
920 => 0.053901804646704
921 => 0.053990601509446
922 => 0.053940898879302
923 => 0.053052286738359
924 => 0.051695540242114
925 => 0.051960645259888
926 => 0.052394892686998
927 => 0.051572771713975
928 => 0.051310054249029
929 => 0.051798496000408
930 => 0.053372357094231
1001 => 0.053074827771201
1002 => 0.053067058078166
1003 => 0.05434001469416
1004 => 0.05342885247834
1005 => 0.051963989083146
1006 => 0.051594091756685
1007 => 0.050281205440445
1008 => 0.051188020695412
1009 => 0.051220655362067
1010 => 0.050724001914348
1011 => 0.052004289773215
1012 => 0.051992491695205
1013 => 0.053207934471499
1014 => 0.055531404560314
1015 => 0.054844240124032
1016 => 0.054045142647914
1017 => 0.054132026700138
1018 => 0.055084930304917
1019 => 0.054508783032794
1020 => 0.054715969608891
1021 => 0.05508461670322
1022 => 0.055307030648221
1023 => 0.054100024756209
1024 => 0.053818613945015
1025 => 0.053242946187086
1026 => 0.053092765214389
1027 => 0.053561634591521
1028 => 0.053438104076046
1029 => 0.051217912544702
1030 => 0.050985890176647
1031 => 0.050993005971424
1101 => 0.050409574694889
1102 => 0.049519701958622
1103 => 0.051858234377991
1104 => 0.051670417496975
1105 => 0.051463082196206
1106 => 0.051488479587512
1107 => 0.052503557250542
1108 => 0.051914760943334
1109 => 0.053480172427865
1110 => 0.053158370887222
1111 => 0.05282831635133
1112 => 0.052782692760762
1113 => 0.052655649923374
1114 => 0.05221997276341
1115 => 0.051693866412615
1116 => 0.051346485429269
1117 => 0.04736441864355
1118 => 0.048103467076363
1119 => 0.048953674931929
1120 => 0.049247163276677
1121 => 0.048745131154211
1122 => 0.052239796051527
1123 => 0.052878305003695
1124 => 0.050944219738669
1125 => 0.050582431353763
1126 => 0.05226351483781
1127 => 0.051249615992832
1128 => 0.051706174580644
1129 => 0.05071934463799
1130 => 0.052724506894842
1201 => 0.052709230918011
1202 => 0.051929177511452
1203 => 0.0525884733091
1204 => 0.052473904439786
1205 => 0.051593226064968
1206 => 0.052752425970162
1207 => 0.052753000918852
1208 => 0.052002216474863
1209 => 0.051125464612131
1210 => 0.05096872208703
1211 => 0.050850637649761
1212 => 0.051677133047783
1213 => 0.052418166237266
1214 => 0.053797045285186
1215 => 0.054143728239191
1216 => 0.055496854888665
1217 => 0.054691133851444
1218 => 0.05504829955141
1219 => 0.055436053442895
1220 => 0.055621956917651
1221 => 0.055319037181667
1222 => 0.057420999837449
1223 => 0.057598469888068
1224 => 0.057657974060931
1225 => 0.056949204079961
1226 => 0.057578757712742
1227 => 0.057284210416589
1228 => 0.058050540653584
1229 => 0.05817071101974
1230 => 0.058068930994791
1231 => 0.058107074965769
]
'min_raw' => 0.026057131743763
'max_raw' => 0.05817071101974
'avg_raw' => 0.042113921381752
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.026057'
'max' => '$0.05817'
'avg' => '$0.042113'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 0.0040179568453495
'max_diff' => -0.0055510250093595
'year' => 2031
]
6 => [
'items' => [
101 => 0.056313420650681
102 => 0.056220410212164
103 => 0.054952206283257
104 => 0.055469008758377
105 => 0.054502871302128
106 => 0.054809243441823
107 => 0.05494428936178
108 => 0.054873749036983
109 => 0.055498227994916
110 => 0.05496729330805
111 => 0.053566069375668
112 => 0.052164463680762
113 => 0.052146867662986
114 => 0.051777849623912
115 => 0.051511117170687
116 => 0.051562499304021
117 => 0.051743576643764
118 => 0.051500592626521
119 => 0.051552445586202
120 => 0.052413550211373
121 => 0.052586238602834
122 => 0.05199937597494
123 => 0.049643037840072
124 => 0.049064786551349
125 => 0.049480422110462
126 => 0.049281775083564
127 => 0.03977423877728
128 => 0.042007893405162
129 => 0.040680731673019
130 => 0.041292348858966
131 => 0.039937660397312
201 => 0.040584188736518
202 => 0.040464798559702
203 => 0.04405644910269
204 => 0.044000370419616
205 => 0.044027212317586
206 => 0.042745978591279
207 => 0.044787018706572
208 => 0.045792508460795
209 => 0.045606419067531
210 => 0.045653253758677
211 => 0.044848478594037
212 => 0.044035004300331
213 => 0.043132736115814
214 => 0.044809038878928
215 => 0.044622662627112
216 => 0.045050142692719
217 => 0.046137344859195
218 => 0.046297439508088
219 => 0.04651260833972
220 => 0.04643548563034
221 => 0.048272861456794
222 => 0.048050343120814
223 => 0.048586548287631
224 => 0.047483533577506
225 => 0.046235367733881
226 => 0.046472603255138
227 => 0.046449755566714
228 => 0.046158878269712
229 => 0.045896287251981
301 => 0.04545914719202
302 => 0.046842323026293
303 => 0.046786168613397
304 => 0.047695243285815
305 => 0.047534555507185
306 => 0.046461443194523
307 => 0.046499769610706
308 => 0.046757533178582
309 => 0.047649655830094
310 => 0.047914498573405
311 => 0.047791812862545
312 => 0.048082200840054
313 => 0.048311711657406
314 => 0.048111023865103
315 => 0.050952339791018
316 => 0.049772427322723
317 => 0.050347508449992
318 => 0.050484661910271
319 => 0.050133346205793
320 => 0.050209534002422
321 => 0.050324937754383
322 => 0.051025646737919
323 => 0.052864509862496
324 => 0.053678929822807
325 => 0.056129152456174
326 => 0.053611303582376
327 => 0.0534619048501
328 => 0.053903263936004
329 => 0.055341804004197
330 => 0.056507605614269
331 => 0.056894369265039
401 => 0.05694548646626
402 => 0.057671080786665
403 => 0.058086977919588
404 => 0.057582974551142
405 => 0.057155884467737
406 => 0.055626100801352
407 => 0.055803177426199
408 => 0.057023059772953
409 => 0.058746215438454
410 => 0.060224862263245
411 => 0.059707091681248
412 => 0.06365731573282
413 => 0.064048964312315
414 => 0.063994851142143
415 => 0.064887084891356
416 => 0.063116182599412
417 => 0.062359087559989
418 => 0.057248226191448
419 => 0.058684169766682
420 => 0.060771398083294
421 => 0.060495145588886
422 => 0.058979344593589
423 => 0.060223712392265
424 => 0.059812285483044
425 => 0.059487776009623
426 => 0.06097441681662
427 => 0.059339794181489
428 => 0.060755091472087
429 => 0.058939958057519
430 => 0.059709456813653
501 => 0.059272652103204
502 => 0.059555318283636
503 => 0.057902857568649
504 => 0.05879448525924
505 => 0.05786576292532
506 => 0.057865322590011
507 => 0.057844820993015
508 => 0.058937458700286
509 => 0.058973089576693
510 => 0.058165628660136
511 => 0.05804926092715
512 => 0.058479533426797
513 => 0.057975797018256
514 => 0.058211492113333
515 => 0.05798293598258
516 => 0.057931483183419
517 => 0.05752149852573
518 => 0.057344865862434
519 => 0.057414128080975
520 => 0.057177700421974
521 => 0.057035244205463
522 => 0.05781648286598
523 => 0.057399098564743
524 => 0.057752512735682
525 => 0.057349752683473
526 => 0.055953610868316
527 => 0.055150674946487
528 => 0.052513492480069
529 => 0.05326139415613
530 => 0.053757253741119
531 => 0.053593372151238
601 => 0.053945453220059
602 => 0.0539670681382
603 => 0.053852602993685
604 => 0.05372006702023
605 => 0.053655555838051
606 => 0.054136369336993
607 => 0.054415497756568
608 => 0.053807019884218
609 => 0.053664462032237
610 => 0.054279666756166
611 => 0.054654941282371
612 => 0.057425757535326
613 => 0.057220486517688
614 => 0.057735676489555
615 => 0.057677674004958
616 => 0.058217675171673
617 => 0.059100348857733
618 => 0.05730562645453
619 => 0.057617128206894
620 => 0.05754075517084
621 => 0.058374575952391
622 => 0.058377179049856
623 => 0.05787726183888
624 => 0.058148275069181
625 => 0.057997002918886
626 => 0.058270372140126
627 => 0.0572177449981
628 => 0.058499731233009
629 => 0.059226534818835
630 => 0.059236626487329
701 => 0.05958112561874
702 => 0.059931156688298
703 => 0.060603010845034
704 => 0.059912419040516
705 => 0.058670111611947
706 => 0.058759802195661
707 => 0.058031437804833
708 => 0.058043681741833
709 => 0.057978322646554
710 => 0.058174470211488
711 => 0.057260788358268
712 => 0.057475227662978
713 => 0.05717501138063
714 => 0.057616475595328
715 => 0.057141533076961
716 => 0.05754071834145
717 => 0.057712993468402
718 => 0.058348692395674
719 => 0.057047639828532
720 => 0.054394705570616
721 => 0.054952384515349
722 => 0.054127533551354
723 => 0.054203876648501
724 => 0.054358101854651
725 => 0.05385820750217
726 => 0.053953571591142
727 => 0.053950164514817
728 => 0.053920804171701
729 => 0.053790762343785
730 => 0.053602175965315
731 => 0.054353446053313
801 => 0.054481101480723
802 => 0.054764863682692
803 => 0.055609147518013
804 => 0.055524783653281
805 => 0.055662384616882
806 => 0.055362002485936
807 => 0.054217810514038
808 => 0.054279945642986
809 => 0.05350511958936
810 => 0.054745049638455
811 => 0.054451417836552
812 => 0.054262111503678
813 => 0.054210457516842
814 => 0.055056834168488
815 => 0.055310083327989
816 => 0.055152275446707
817 => 0.054828606878206
818 => 0.05545014621375
819 => 0.055616443919302
820 => 0.055653671842752
821 => 0.05675492037699
822 => 0.055715219402471
823 => 0.055965485760776
824 => 0.057917992446594
825 => 0.056147338310062
826 => 0.057085293296482
827 => 0.057039385280779
828 => 0.057519211313166
829 => 0.057000025541051
830 => 0.057006461470935
831 => 0.057432514481463
901 => 0.056834199867242
902 => 0.056686048754643
903 => 0.056481379053667
904 => 0.056928267858058
905 => 0.057196157485248
906 => 0.059355151137152
907 => 0.060749959498354
908 => 0.060689407188849
909 => 0.061242741948552
910 => 0.060993459571341
911 => 0.060188461017955
912 => 0.061562495389469
913 => 0.061127693422282
914 => 0.061163537968172
915 => 0.061162203832384
916 => 0.061451309129516
917 => 0.061246451530387
918 => 0.060842656174302
919 => 0.061110714376011
920 => 0.061906751402527
921 => 0.064377674758229
922 => 0.065760436203461
923 => 0.06429443078298
924 => 0.065305661691433
925 => 0.064699283484776
926 => 0.064589086526437
927 => 0.065224214266322
928 => 0.06586045371324
929 => 0.06581992801101
930 => 0.065358050843805
1001 => 0.06509714815175
1002 => 0.067072790744803
1003 => 0.06852841055317
1004 => 0.068429147040839
1005 => 0.068867263902047
1006 => 0.070153588556999
1007 => 0.070271193962703
1008 => 0.070256378384714
1009 => 0.069964881115823
1010 => 0.071231434788987
1011 => 0.072288016146033
1012 => 0.06989740792024
1013 => 0.070807720237262
1014 => 0.071216388764805
1015 => 0.071816435409725
1016 => 0.072828814679201
1017 => 0.073928527086191
1018 => 0.074084038478272
1019 => 0.073973695703685
1020 => 0.073248405809419
1021 => 0.074451724247445
1022 => 0.075156599967151
1023 => 0.075576337327442
1024 => 0.076640721435502
1025 => 0.071218912562503
1026 => 0.06738108676081
1027 => 0.066781754842999
1028 => 0.068000519865431
1029 => 0.068321898482377
1030 => 0.068192351164861
1031 => 0.063872529305198
1101 => 0.066759011874916
1102 => 0.069864624417584
1103 => 0.069983923643353
1104 => 0.071538658217508
1105 => 0.072044943525577
1106 => 0.073296708641491
1107 => 0.073218410392672
1108 => 0.073523195278464
1109 => 0.073453130511359
1110 => 0.075771761798346
1111 => 0.078329556427972
1112 => 0.078240988133237
1113 => 0.077873274892776
1114 => 0.078419391759285
1115 => 0.08105930992699
1116 => 0.080816268565934
1117 => 0.081052362545986
1118 => 0.084164974844977
1119 => 0.088211813597603
1120 => 0.08633165070104
1121 => 0.090411063184281
1122 => 0.092978837102118
1123 => 0.097419536580237
1124 => 0.09686353913467
1125 => 0.098592270854144
1126 => 0.095868187666938
1127 => 0.089613142041067
1128 => 0.08862325712742
1129 => 0.09060503179242
1130 => 0.095477031427577
1201 => 0.090451595185934
1202 => 0.091468234392476
1203 => 0.091175442232599
1204 => 0.091159840582686
1205 => 0.09175529210338
1206 => 0.09089155861595
1207 => 0.087372553005476
1208 => 0.088985292539126
1209 => 0.08836253635507
1210 => 0.089053530770829
1211 => 0.092782542644905
1212 => 0.091133857606836
1213 => 0.089397101847527
1214 => 0.091575378986657
1215 => 0.094349074322004
1216 => 0.094175501452728
1217 => 0.093838697538501
1218 => 0.095737243568519
1219 => 0.098873085388315
1220 => 0.099720690831373
1221 => 0.10034637584091
1222 => 0.10043264723269
1223 => 0.10132129618539
1224 => 0.096542806798325
1225 => 0.10412639217591
1226 => 0.10543586787831
1227 => 0.10518974071846
1228 => 0.10664516785051
1229 => 0.10621694426764
1230 => 0.10559651548228
1231 => 0.1079036770648
]
'min_raw' => 0.03977423877728
'max_raw' => 0.1079036770648
'avg_raw' => 0.073838957921042
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.039774'
'max' => '$0.1079036'
'avg' => '$0.073838'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.013717107033517
'max_diff' => 0.049732966045063
'year' => 2032
]
7 => [
'items' => [
101 => 0.10525870248878
102 => 0.10150449407115
103 => 0.099444861083422
104 => 0.10215715194752
105 => 0.10381345333232
106 => 0.10490816318712
107 => 0.10523942172774
108 => 0.096913747326829
109 => 0.092426670587808
110 => 0.095302835333081
111 => 0.098811954824601
112 => 0.09652331346237
113 => 0.096613023870799
114 => 0.093350022732627
115 => 0.099100658021924
116 => 0.098262838830729
117 => 0.10260944627672
118 => 0.10157209352603
119 => 0.10511658316391
120 => 0.10418320025348
121 => 0.10805762052996
122 => 0.109603231674
123 => 0.11219855333999
124 => 0.11410768252236
125 => 0.11522875969407
126 => 0.11516145442574
127 => 0.11960372069847
128 => 0.1169842714784
129 => 0.11369362590121
130 => 0.11363410850458
131 => 0.11533838047781
201 => 0.11891006698953
202 => 0.11983615333609
203 => 0.12035370926479
204 => 0.11956105434373
205 => 0.11671782995296
206 => 0.1154901400765
207 => 0.11653616742084
208 => 0.11525696586487
209 => 0.11746522663105
210 => 0.12049764032206
211 => 0.11987145888633
212 => 0.12196468954361
213 => 0.12413096305961
214 => 0.12722883148093
215 => 0.12803872899999
216 => 0.12937745880136
217 => 0.13075545151681
218 => 0.13119802563906
219 => 0.13204303696113
220 => 0.13203858333436
221 => 0.13458508182924
222 => 0.13739394852758
223 => 0.1384542306808
224 => 0.14089229102781
225 => 0.13671719812337
226 => 0.1398840540514
227 => 0.14274063737002
228 => 0.13933490097445
301 => 0.14402891516094
302 => 0.14421117309494
303 => 0.14696305151169
304 => 0.1441734955402
305 => 0.1425170661089
306 => 0.14729911581145
307 => 0.14961299902937
308 => 0.14891603857313
309 => 0.14361213508794
310 => 0.14052503576445
311 => 0.13244550137786
312 => 0.14201605886868
313 => 0.14667759824547
314 => 0.1436000628271
315 => 0.14515219268258
316 => 0.15362010989428
317 => 0.15684414451146
318 => 0.15617356784879
319 => 0.15628688426615
320 => 0.15802651482521
321 => 0.16574099475614
322 => 0.16111829956128
323 => 0.16465217682866
324 => 0.16652653258894
325 => 0.16826753867807
326 => 0.1639921779738
327 => 0.15842999651506
328 => 0.15666822016259
329 => 0.14329406258134
330 => 0.14259787959821
331 => 0.14220709099328
401 => 0.13974322411733
402 => 0.13780729966277
403 => 0.13626778066023
404 => 0.13222762305829
405 => 0.13359105764888
406 => 0.12715188967781
407 => 0.1312714411556
408 => 0.12099437359463
409 => 0.12955342084411
410 => 0.12489512055834
411 => 0.12802304391565
412 => 0.12801213088573
413 => 0.12225263227591
414 => 0.11893067367544
415 => 0.12104755498823
416 => 0.12331701979378
417 => 0.12368523282308
418 => 0.12662765318257
419 => 0.12744881945779
420 => 0.12496064730729
421 => 0.12078140421239
422 => 0.12175214706495
423 => 0.11891100160252
424 => 0.1139320034627
425 => 0.11750800685169
426 => 0.11872901163446
427 => 0.11926827690564
428 => 0.11437200407692
429 => 0.11283348885088
430 => 0.11201439625393
501 => 0.12014935687496
502 => 0.12059500838142
503 => 0.11831499226562
504 => 0.12862088130903
505 => 0.1262883412149
506 => 0.12889435998624
507 => 0.12166406232592
508 => 0.12194026943343
509 => 0.11851733065038
510 => 0.12043394764804
511 => 0.11907934452954
512 => 0.12027910393501
513 => 0.12099823477585
514 => 0.12442061188833
515 => 0.1295924988933
516 => 0.12390942287394
517 => 0.12143322526916
518 => 0.1229694443365
519 => 0.12706059815342
520 => 0.13325890560835
521 => 0.12958938284247
522 => 0.13121785473343
523 => 0.13157360339593
524 => 0.12886783316149
525 => 0.13335867121637
526 => 0.13576534781348
527 => 0.13823410001057
528 => 0.14037764837043
529 => 0.13724802609403
530 => 0.14059717054351
531 => 0.13789835132081
601 => 0.13547723147924
602 => 0.13548090331864
603 => 0.13396209947511
604 => 0.13101922564667
605 => 0.13047651456091
606 => 0.13329976616584
607 => 0.13556374659007
608 => 0.13575021886155
609 => 0.13700367475192
610 => 0.13774545703621
611 => 0.14501593182644
612 => 0.1479401769316
613 => 0.15151588849305
614 => 0.1529088296623
615 => 0.15710108318469
616 => 0.15371549798717
617 => 0.15298300533336
618 => 0.14281396956373
619 => 0.14447914860133
620 => 0.1471452609064
621 => 0.14285793277365
622 => 0.14557725566697
623 => 0.14611410760925
624 => 0.14271225100426
625 => 0.14452932960253
626 => 0.13970370757178
627 => 0.12969768426667
628 => 0.13336981078068
629 => 0.13607373191941
630 => 0.13221490306337
701 => 0.13913170443053
702 => 0.1350910518636
703 => 0.13381035898541
704 => 0.12881391946761
705 => 0.13117204658942
706 => 0.13436144728679
707 => 0.13239076846344
708 => 0.1364802229208
709 => 0.14227198105008
710 => 0.14639953279817
711 => 0.14671639496937
712 => 0.14406265571984
713 => 0.14831528980315
714 => 0.14834626559974
715 => 0.14354927698125
716 => 0.14061114816217
717 => 0.13994359911259
718 => 0.14161126751912
719 => 0.14363612483322
720 => 0.14682876045801
721 => 0.14875800330098
722 => 0.15378844544409
723 => 0.15514953885393
724 => 0.15664496785362
725 => 0.15864332217042
726 => 0.16104285889527
727 => 0.155792809147
728 => 0.15600140341081
729 => 0.15111262977711
730 => 0.14588827402844
731 => 0.14985290881654
801 => 0.15503614140872
802 => 0.15384710212511
803 => 0.15371331091584
804 => 0.15393831061925
805 => 0.1530418138298
806 => 0.14898699207685
807 => 0.14695068597704
808 => 0.14957804036288
809 => 0.15097436228887
810 => 0.153139935824
811 => 0.15287298317608
812 => 0.15845126803697
813 => 0.16061882085533
814 => 0.16006426808958
815 => 0.16016631914453
816 => 0.16409056998636
817 => 0.16845514400621
818 => 0.17254314353207
819 => 0.17670163223343
820 => 0.17168841179536
821 => 0.16914300762936
822 => 0.17176921499446
823 => 0.17037571239999
824 => 0.17838319164754
825 => 0.17893761213706
826 => 0.18694451235272
827 => 0.19454401410132
828 => 0.18977090321224
829 => 0.19427173179501
830 => 0.19913974486521
831 => 0.20853093188429
901 => 0.20536831048221
902 => 0.20294579205281
903 => 0.20065652384255
904 => 0.205420127577
905 => 0.21154842768095
906 => 0.21286840482721
907 => 0.21500727207423
908 => 0.21275851469223
909 => 0.21546689526635
910 => 0.22502866881572
911 => 0.22244499319857
912 => 0.21877575847563
913 => 0.22632386037037
914 => 0.22905548910357
915 => 0.24822749011824
916 => 0.27243293335513
917 => 0.26241172091355
918 => 0.25619123096855
919 => 0.25765319365762
920 => 0.26649220212177
921 => 0.26933101110435
922 => 0.26161414969356
923 => 0.26433987560229
924 => 0.27935889334686
925 => 0.28741611449904
926 => 0.27647332594521
927 => 0.24628260632247
928 => 0.2184453840348
929 => 0.22582906891195
930 => 0.2249919881893
1001 => 0.24112804909521
1002 => 0.22238337338958
1003 => 0.22269898565506
1004 => 0.23916872321212
1005 => 0.23477487959468
1006 => 0.2276574156554
1007 => 0.21849734939822
1008 => 0.20156411971823
1009 => 0.18656588597263
1010 => 0.2159808762347
1011 => 0.21471244836692
1012 => 0.21287557684388
1013 => 0.21696333564814
1014 => 0.23681233207105
1015 => 0.23635474845857
1016 => 0.23344383497719
1017 => 0.23565173719721
1018 => 0.22727035972118
1019 => 0.22943043153717
1020 => 0.21844097447657
1021 => 0.22340866802823
1022 => 0.2276421447744
1023 => 0.22849207790889
1024 => 0.23040702065956
1025 => 0.2140440445184
1026 => 0.22139054041404
1027 => 0.22570591847915
1028 => 0.20620888338617
1029 => 0.22532052478311
1030 => 0.21375920150812
1031 => 0.20983511474334
1101 => 0.21511838061299
1102 => 0.21305948676544
1103 => 0.21128937073762
1104 => 0.21030161557965
1105 => 0.21418106294155
1106 => 0.21400008208517
1107 => 0.20765255323282
1108 => 0.19937246060329
1109 => 0.20215153147454
1110 => 0.20114186897308
1111 => 0.19748272181877
1112 => 0.19994854519367
1113 => 0.18909030697528
1114 => 0.17040927248266
1115 => 0.18275053608405
1116 => 0.1822754108601
1117 => 0.18203583117698
1118 => 0.19130994968595
1119 => 0.19041845718163
1120 => 0.18880038955677
1121 => 0.19745300473794
1122 => 0.19429468380271
1123 => 0.20402788473107
1124 => 0.21043880036645
1125 => 0.20881278478993
1126 => 0.21484228193165
1127 => 0.20221555565448
1128 => 0.20640964762742
1129 => 0.20727404417029
1130 => 0.19734623280971
1201 => 0.19056431638061
1202 => 0.1901120398743
1203 => 0.17835313139189
1204 => 0.1846346453886
1205 => 0.19016211775899
1206 => 0.18751488744276
1207 => 0.18667685340839
1208 => 0.19095818754255
1209 => 0.19129088387192
1210 => 0.18370537230468
1211 => 0.18528264036142
1212 => 0.19186011035702
1213 => 0.18511690499358
1214 => 0.17201595846876
1215 => 0.16876674259584
1216 => 0.16833323730347
1217 => 0.15952110615757
1218 => 0.1689838707372
1219 => 0.16485312041187
1220 => 0.17790211119561
1221 => 0.17044859764308
1222 => 0.17012729157098
1223 => 0.16964159031764
1224 => 0.16205662501581
1225 => 0.16371725036722
1226 => 0.16923742195569
1227 => 0.17120708136764
1228 => 0.17100162975403
1229 => 0.16921037010339
1230 => 0.17003039959872
1231 => 0.16738879887704
]
'min_raw' => 0.092426670587808
'max_raw' => 0.28741611449904
'avg_raw' => 0.18992139254342
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.092426'
'max' => '$0.287416'
'avg' => '$0.189921'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.052652431810528
'max_diff' => 0.17951243743423
'year' => 2033
]
8 => [
'items' => [
101 => 0.16645599468206
102 => 0.16351180805467
103 => 0.15918466706472
104 => 0.15978638255927
105 => 0.15121318400016
106 => 0.14654205041107
107 => 0.14524914219816
108 => 0.14352021130151
109 => 0.14544442954345
110 => 0.15118889720581
111 => 0.1442598504482
112 => 0.13238048579841
113 => 0.13309445585531
114 => 0.13469853459356
115 => 0.13170934447687
116 => 0.12888032689513
117 => 0.131339928157
118 => 0.12630648475199
119 => 0.1353068021815
120 => 0.13506336881813
121 => 0.13841813057996
122 => 0.14051593195627
123 => 0.13568117895513
124 => 0.13446525164991
125 => 0.13515789910378
126 => 0.12370997958257
127 => 0.13748259132106
128 => 0.1376016974393
129 => 0.13658183854355
130 => 0.14391532911261
131 => 0.15939128158641
201 => 0.15356860574702
202 => 0.1513138896707
203 => 0.14702767276143
204 => 0.15273880230266
205 => 0.15230027666139
206 => 0.15031709740567
207 => 0.14911766440392
208 => 0.15132765648627
209 => 0.14884382192801
210 => 0.14839765699014
211 => 0.14569438289887
212 => 0.14472943703943
213 => 0.14401502954069
214 => 0.14322853708082
215 => 0.14496334346559
216 => 0.14103204396491
217 => 0.13629128215712
218 => 0.13589713910856
219 => 0.13698540271905
220 => 0.13650392708311
221 => 0.13589483398845
222 => 0.13473190939412
223 => 0.13438689450893
224 => 0.13550802550836
225 => 0.134242333976
226 => 0.13610993077778
227 => 0.13560204778654
228 => 0.13276505468309
301 => 0.12922911088682
302 => 0.12919763357014
303 => 0.12843582027934
304 => 0.12746553651412
305 => 0.12719562576772
306 => 0.13113278739911
307 => 0.13928259414677
308 => 0.13768259207386
309 => 0.13883875754634
310 => 0.14452594737195
311 => 0.14633373399775
312 => 0.14505060987053
313 => 0.14329419042555
314 => 0.14337146396715
315 => 0.14937368091498
316 => 0.14974803182355
317 => 0.15069389579932
318 => 0.15190959830931
319 => 0.14525764926483
320 => 0.14305815776535
321 => 0.14201591666976
322 => 0.13880621749339
323 => 0.14226760287629
324 => 0.14025080184497
325 => 0.14052293720783
326 => 0.14034570869576
327 => 0.14044248744749
328 => 0.13530428640935
329 => 0.13717637681175
330 => 0.13406366341985
331 => 0.12989608960658
401 => 0.12988211843782
402 => 0.13090212622442
403 => 0.13029538568004
404 => 0.12866266247584
405 => 0.12889458310076
406 => 0.12686271438811
407 => 0.12914128875065
408 => 0.12920663011023
409 => 0.12832925486587
410 => 0.13183971305403
411 => 0.13327795063798
412 => 0.13270044345694
413 => 0.13323743119464
414 => 0.13774907938356
415 => 0.13848467489537
416 => 0.138811377831
417 => 0.1383736391771
418 => 0.13331989584139
419 => 0.1335440508485
420 => 0.13189935013548
421 => 0.13050975134726
422 => 0.13056532801131
423 => 0.13127976242365
424 => 0.13439973940336
425 => 0.14096554702447
426 => 0.14121471462415
427 => 0.1415167130237
428 => 0.14028833376052
429 => 0.13991784282074
430 => 0.14040661600214
501 => 0.14287238813087
502 => 0.14921502349655
503 => 0.14697311254795
504 => 0.14515040404931
505 => 0.1467494108013
506 => 0.14650325624526
507 => 0.14442546407109
508 => 0.14436714736507
509 => 0.1403791998725
510 => 0.13890494648567
511 => 0.13767295000968
512 => 0.13632764201999
513 => 0.13553009834856
514 => 0.13675548790498
515 => 0.13703574899492
516 => 0.13435641331366
517 => 0.13399122976078
518 => 0.13617923311558
519 => 0.13521637441612
520 => 0.13620669846627
521 => 0.13643646214074
522 => 0.13639946489724
523 => 0.13539412983139
524 => 0.13603490042284
525 => 0.13451928695115
526 => 0.13287128493847
527 => 0.13181996232853
528 => 0.13090254391365
529 => 0.1314115809709
530 => 0.12959695680831
531 => 0.12901642201753
601 => 0.13581782176425
602 => 0.14084208888452
603 => 0.14076903405077
604 => 0.14032433153845
605 => 0.13966359380976
606 => 0.14282405105053
607 => 0.14172301094318
608 => 0.14252410961626
609 => 0.14272802285056
610 => 0.14334520679606
611 => 0.14356579700782
612 => 0.14289902017812
613 => 0.14066123569771
614 => 0.13508488953471
615 => 0.13248908534277
616 => 0.13163242672289
617 => 0.13166356463669
618 => 0.13080464196815
619 => 0.13105763318825
620 => 0.1307166619463
621 => 0.13007094490385
622 => 0.13137170976311
623 => 0.13152161079568
624 => 0.13121799673454
625 => 0.13128950883693
626 => 0.128775714086
627 => 0.12896683244124
628 => 0.12790266115313
629 => 0.12770314186539
630 => 0.12501300951704
701 => 0.12024705012101
702 => 0.12288785426928
703 => 0.11969813421143
704 => 0.11849013889338
705 => 0.12420860084723
706 => 0.12363462587251
707 => 0.12265223021671
708 => 0.12119906229259
709 => 0.12066006817402
710 => 0.11738531053442
711 => 0.11719182038292
712 => 0.118814878695
713 => 0.11806589313
714 => 0.11701403373372
715 => 0.1132043056257
716 => 0.10892090987465
717 => 0.1090501986679
718 => 0.1104126671609
719 => 0.1143742280582
720 => 0.11282637767993
721 => 0.11170339447095
722 => 0.11149309347266
723 => 0.11412545076122
724 => 0.11785078782043
725 => 0.1195986326189
726 => 0.11786657150646
727 => 0.11587687296128
728 => 0.11599797669235
729 => 0.11680362555973
730 => 0.11688828786443
731 => 0.11559319865583
801 => 0.11595775868202
802 => 0.11540395866617
803 => 0.11200528899112
804 => 0.11194381783399
805 => 0.11110972948478
806 => 0.11108447362106
807 => 0.10966548126596
808 => 0.10946695442646
809 => 0.10664945897874
810 => 0.10850394301459
811 => 0.10726005248812
812 => 0.10538521606062
813 => 0.10506199355385
814 => 0.105052277095
815 => 0.10697731490028
816 => 0.10848144782702
817 => 0.10728169049638
818 => 0.10700852900852
819 => 0.10992517905021
820 => 0.10955400874655
821 => 0.10923257765737
822 => 0.11751722474664
823 => 0.11095928011641
824 => 0.10809964194324
825 => 0.10456029667337
826 => 0.10571272534017
827 => 0.10595555899296
828 => 0.097444071633882
829 => 0.093990962272341
830 => 0.092805985267141
831 => 0.092124014247533
901 => 0.092434797004822
902 => 0.089326593570104
903 => 0.091415357683174
904 => 0.088723916238605
905 => 0.088272687321715
906 => 0.09308531803022
907 => 0.093754967478328
908 => 0.090898034888924
909 => 0.092732648106694
910 => 0.0920673918509
911 => 0.088770053277267
912 => 0.088644119197335
913 => 0.086989630608141
914 => 0.084400676338172
915 => 0.083217454765879
916 => 0.082601222697828
917 => 0.08285549205923
918 => 0.082726925689335
919 => 0.081887943160124
920 => 0.082775015185831
921 => 0.080508912723616
922 => 0.079606532463934
923 => 0.079198948235699
924 => 0.077187651868492
925 => 0.080388518816272
926 => 0.081019129928444
927 => 0.081650983539313
928 => 0.087150837837142
929 => 0.086876080658849
930 => 0.089359751738442
1001 => 0.089263240847467
1002 => 0.088554857622764
1003 => 0.085566305321123
1004 => 0.086757489002734
1005 => 0.083091210781779
1006 => 0.085838235707605
1007 => 0.084584608249962
1008 => 0.08541438300314
1009 => 0.083922373179152
1010 => 0.084748113019323
1011 => 0.08116867121727
1012 => 0.077826238826618
1013 => 0.079171331192301
1014 => 0.080633600423768
1015 => 0.08380417269686
1016 => 0.08191580600766
1017 => 0.082594934076146
1018 => 0.080319968731382
1019 => 0.07562606541341
1020 => 0.075652632396433
1021 => 0.074930577633205
1022 => 0.074306616896055
1023 => 0.082132707637842
1024 => 0.081159409541915
1025 => 0.07960858640816
1026 => 0.081684424799952
1027 => 0.082233309418728
1028 => 0.082248935392183
1029 => 0.083763413497691
1030 => 0.084571690734086
1031 => 0.084714153100275
1101 => 0.087097217121757
1102 => 0.087895988748383
1103 => 0.091186016032064
1104 => 0.084503114057697
1105 => 0.08436548408934
1106 => 0.081713636103138
1107 => 0.080031792186231
1108 => 0.081828793395009
1109 => 0.083420691150859
1110 => 0.08176310080381
1111 => 0.081979547109493
1112 => 0.079754367498686
1113 => 0.080549764505117
1114 => 0.081234867558604
1115 => 0.080856593920965
1116 => 0.080290299976768
1117 => 0.083290173688642
1118 => 0.083120909057218
1119 => 0.085914460424514
1120 => 0.088092233484096
1121 => 0.091995192130367
1122 => 0.087922251317148
1123 => 0.087773817165441
1124 => 0.089224784807965
1125 => 0.087895766612797
1126 => 0.088735660235994
1127 => 0.091859872282965
1128 => 0.091925881960448
1129 => 0.090820134813932
1130 => 0.090752849999576
1201 => 0.090965220834613
1202 => 0.092209083448706
1203 => 0.091774439631304
1204 => 0.092277420460636
1205 => 0.092906405689632
1206 => 0.095508155280968
1207 => 0.096135428299258
1208 => 0.094611480068586
1209 => 0.094749075530891
1210 => 0.094179077059305
1211 => 0.093628465677813
1212 => 0.094866159653072
1213 => 0.097128069719794
1214 => 0.097113998494662
1215 => 0.097638717664892
1216 => 0.097965613360938
1217 => 0.096562337731236
1218 => 0.095648856896176
1219 => 0.095999143574634
1220 => 0.096559259601739
1221 => 0.095817505496099
1222 => 0.091239055542157
1223 => 0.092627864785667
1224 => 0.092396699018245
1225 => 0.092067490854717
1226 => 0.093463949288411
1227 => 0.093329257465799
1228 => 0.089294714451357
1229 => 0.089552992805099
1230 => 0.089310421213493
1231 => 0.090094219651451
]
'min_raw' => 0.074306616896055
'max_raw' => 0.16645599468206
'avg_raw' => 0.12038130578906
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.0743066'
'max' => '$0.166455'
'avg' => '$0.120381'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.018120053691753
'max_diff' => -0.12096011981698
'year' => 2034
]
9 => [
'items' => [
101 => 0.08785343892494
102 => 0.088542687984526
103 => 0.08897497853339
104 => 0.089229600987683
105 => 0.090149471888842
106 => 0.090041535655701
107 => 0.090142762421041
108 => 0.091506688130545
109 => 0.098404956326434
110 => 0.098780413844166
111 => 0.096931523709721
112 => 0.097670118850686
113 => 0.096252177693034
114 => 0.097204051091546
115 => 0.097855298695845
116 => 0.09491243599973
117 => 0.094738178769887
118 => 0.093314385264687
119 => 0.094079451246595
120 => 0.092862176259189
121 => 0.093160852962627
122 => 0.092325726861647
123 => 0.093828787571463
124 => 0.095509442997058
125 => 0.095934042928657
126 => 0.094817103310383
127 => 0.094008365416845
128 => 0.092588488090616
129 => 0.094949775728165
130 => 0.095640288192321
131 => 0.094946148760151
201 => 0.094785301486471
202 => 0.094480496193492
203 => 0.094849967370284
204 => 0.095636527513146
205 => 0.095265600275258
206 => 0.09551060425078
207 => 0.094576901743091
208 => 0.09656280227386
209 => 0.09971689024971
210 => 0.099727031158298
211 => 0.099356101920973
212 => 0.099204325668842
213 => 0.099584921576205
214 => 0.099791379243088
215 => 0.10102215661815
216 => 0.10234282977792
217 => 0.10850583515974
218 => 0.10677528791019
219 => 0.11224347292377
220 => 0.11656809731456
221 => 0.11786486307645
222 => 0.11667189959305
223 => 0.11259083595898
224 => 0.11239059950735
225 => 0.11848943155728
226 => 0.11676623215897
227 => 0.11656126307371
228 => 0.11438073830735
301 => 0.11566969850752
302 => 0.11538778400383
303 => 0.11494276816804
304 => 0.11740201444022
305 => 0.1220055039233
306 => 0.12128800691612
307 => 0.12075242868398
308 => 0.11840568077522
309 => 0.11981894718141
310 => 0.1193157100835
311 => 0.12147793601828
312 => 0.12019708127369
313 => 0.11675317722871
314 => 0.11730163029913
315 => 0.11721873272087
316 => 0.11892475900726
317 => 0.11841265226226
318 => 0.11711873565989
319 => 0.12198976969671
320 => 0.12167347184048
321 => 0.12212190988487
322 => 0.12231932618041
323 => 0.12528423876138
324 => 0.12649886857918
325 => 0.12677461081291
326 => 0.12792841519698
327 => 0.12674590310874
328 => 0.13147679457852
329 => 0.13462256135076
330 => 0.13827653133638
331 => 0.14361596357993
401 => 0.14562363949601
402 => 0.14526097081178
403 => 0.14930926740074
404 => 0.15658396638252
405 => 0.1467313954676
406 => 0.15710617656492
407 => 0.15382164065212
408 => 0.14603406508914
409 => 0.14553263703237
410 => 0.15080647361923
411 => 0.16250333558092
412 => 0.15957340432423
413 => 0.16250812789884
414 => 0.15908461696204
415 => 0.15891461078841
416 => 0.16234185561406
417 => 0.17034979995858
418 => 0.16654552577381
419 => 0.16109116588363
420 => 0.1651185803473
421 => 0.16162966121925
422 => 0.15376814993679
423 => 0.15957116386102
424 => 0.15569085371021
425 => 0.15682333450085
426 => 0.16497916928527
427 => 0.16399783766635
428 => 0.16526777165009
429 => 0.16302637140874
430 => 0.16093255014693
501 => 0.15702427727257
502 => 0.15586723034999
503 => 0.1561869964932
504 => 0.15586707188977
505 => 0.15368042913545
506 => 0.15320822384084
507 => 0.15242119432871
508 => 0.1526651276839
509 => 0.1511852819475
510 => 0.15397805660383
511 => 0.15449642018989
512 => 0.15652876868669
513 => 0.15673977384969
514 => 0.16239983548461
515 => 0.15928236864956
516 => 0.16137383455165
517 => 0.16118675415572
518 => 0.14620284546558
519 => 0.14826749587894
520 => 0.15147944399913
521 => 0.15003246572468
522 => 0.14798677698537
523 => 0.14633477364549
524 => 0.14383181965956
525 => 0.14735467932979
526 => 0.15198686518177
527 => 0.15685725372716
528 => 0.16270870644395
529 => 0.16140273031598
530 => 0.15674786488881
531 => 0.15695667875149
601 => 0.15824748388536
602 => 0.15657577395498
603 => 0.15608275406086
604 => 0.15817975052274
605 => 0.15819419138489
606 => 0.1562706870771
607 => 0.15413306403656
608 => 0.15412410731797
609 => 0.15374373794489
610 => 0.15915228382851
611 => 0.16212643719884
612 => 0.16246741908966
613 => 0.16210348640078
614 => 0.16224354964876
615 => 0.16051295533356
616 => 0.16446858074629
617 => 0.16809865379583
618 => 0.16712571667335
619 => 0.1656671456156
620 => 0.16450532351381
621 => 0.16685202830941
622 => 0.16674753323891
623 => 0.16806694827454
624 => 0.16800709198722
625 => 0.16756342233644
626 => 0.16712573251819
627 => 0.16886112317335
628 => 0.16836135853418
629 => 0.1678608176225
630 => 0.16685690619513
701 => 0.16699335443131
702 => 0.16553503521642
703 => 0.16486035001946
704 => 0.15471470345339
705 => 0.15200345517237
706 => 0.15285646907412
707 => 0.15313730339908
708 => 0.15195736467262
709 => 0.15364909370497
710 => 0.15338543952727
711 => 0.15441116370019
712 => 0.15377033576871
713 => 0.15379663557055
714 => 0.15568117387811
715 => 0.15622826336619
716 => 0.155950009237
717 => 0.15614488889109
718 => 0.1606358082661
719 => 0.15999734314249
720 => 0.15965817127066
721 => 0.1597521241971
722 => 0.16089965038381
723 => 0.16122089506348
724 => 0.15985975878225
725 => 0.16050167852111
726 => 0.16323489129746
727 => 0.16419136108273
728 => 0.16724395350579
729 => 0.16594715798897
730 => 0.16832748228409
731 => 0.17564378765492
801 => 0.18148855863497
802 => 0.17611346569634
803 => 0.1868466432741
804 => 0.19520396160127
805 => 0.19488319380403
806 => 0.19342590204543
807 => 0.18391131732076
808 => 0.17515585460265
809 => 0.18248017094293
810 => 0.18249884213154
811 => 0.1818696768623
812 => 0.17796198541039
813 => 0.18173369767018
814 => 0.18203308249252
815 => 0.18186550660486
816 => 0.17886948873075
817 => 0.17429512319365
818 => 0.17518894327011
819 => 0.1766530387888
820 => 0.1738812005296
821 => 0.17299543025419
822 => 0.17464224572088
823 => 0.17994862828218
824 => 0.17894548739674
825 => 0.17891929133421
826 => 0.18321115344003
827 => 0.18013910641408
828 => 0.17520021720369
829 => 0.17395308254212
830 => 0.16952659466412
831 => 0.17258398560806
901 => 0.17269401566517
902 => 0.17101951389095
903 => 0.17533609379396
904 => 0.17529631575023
905 => 0.17939426593001
906 => 0.18722800755395
907 => 0.18491118468074
908 => 0.18221697174881
909 => 0.18250990739693
910 => 0.18572268843005
911 => 0.18378016767677
912 => 0.18447871168338
913 => 0.18572163110003
914 => 0.18647151524405
915 => 0.18240201060867
916 => 0.18145321441125
917 => 0.17951231037355
918 => 0.17900596473881
919 => 0.18058679057922
920 => 0.18017029882167
921 => 0.17268476806492
922 => 0.17190248845174
923 => 0.17192647985064
924 => 0.16995940056793
925 => 0.16695913250868
926 => 0.1748436578317
927 => 0.1742104201044
928 => 0.17351137466217
929 => 0.17359700374014
930 => 0.17701940895151
1001 => 0.17503424109331
1002 => 0.18031213520695
1003 => 0.1792271588452
1004 => 0.17811435693377
1005 => 0.17796053381284
1006 => 0.17753220001673
1007 => 0.17606328405391
1008 => 0.17428947976063
1009 => 0.17311826052191
1010 => 0.15969244433484
1011 => 0.16218419772478
1012 => 0.16505073286944
1013 => 0.16604024931446
1014 => 0.1643476129628
1015 => 0.17613011965381
1016 => 0.17828289716532
1017 => 0.17176199366076
1018 => 0.17054219886179
1019 => 0.17621008919776
1020 => 0.17279165845376
1021 => 0.17433097760847
1022 => 0.17100381155854
1023 => 0.17776435610348
1024 => 0.17771285208106
1025 => 0.17508284755925
1026 => 0.17730570937159
1027 => 0.17691943242975
1028 => 0.17395016380205
1029 => 0.17785848721517
1030 => 0.17786042569482
1031 => 0.17532910352381
1101 => 0.17237307340575
1102 => 0.17184460503896
1103 => 0.17144647511431
1104 => 0.17423306205281
1105 => 0.17673150718844
1106 => 0.18138049416876
1107 => 0.18254935995282
1108 => 0.18711152092381
1109 => 0.18439497619317
1110 => 0.18559918528712
1111 => 0.18690652460437
1112 => 0.18753331114888
1113 => 0.18651199610983
1114 => 0.19359890995814
1115 => 0.19419726262437
1116 => 0.19439788509763
1117 => 0.19200821762205
1118 => 0.194130801649
1119 => 0.19313771487538
1120 => 0.19572145077288
1121 => 0.1961266135524
1122 => 0.19578345509223
1123 => 0.19591206015351
1124 => 0.18986462940125
1125 => 0.189551038214
1126 => 0.18527520012453
1127 => 0.18701763575139
1128 => 0.18376023586408
1129 => 0.18479319092328
1130 => 0.18524850767102
1201 => 0.185010676041
1202 => 0.1871161504474
1203 => 0.18532606708196
1204 => 0.1806017427636
1205 => 0.17587613130624
1206 => 0.17581680510379
1207 => 0.17457263502104
1208 => 0.17367332793233
1209 => 0.17384656638225
1210 => 0.17445708127561
1211 => 0.17363784369687
1212 => 0.17381266957069
1213 => 0.17671594393486
1214 => 0.17729817490339
1215 => 0.17531952658
1216 => 0.16737496804402
1217 => 0.16542535345188
1218 => 0.16682669775817
1219 => 0.1661569454379
1220 => 0.13410162298627
1221 => 0.14163254551296
1222 => 0.13715792707357
1223 => 0.13922003711774
1224 => 0.13465261038794
1225 => 0.13683242582274
1226 => 0.13642989350605
1227 => 0.14853939407277
1228 => 0.14835032087749
1229 => 0.14844082021054
1230 => 0.14412105124942
1231 => 0.151002560499
]
'min_raw' => 0.08785343892494
'max_raw' => 0.1961266135524
'avg_raw' => 0.14199002623867
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.087853'
'max' => '$0.196126'
'avg' => '$0.14199'
'bar_min_pct' => 61.631153054958
'bar_max_pct' => 60.119598047091
'min_diff' => 0.013546822028885
'max_diff' => 0.029670618870348
'year' => 2035
]
10 => [
'items' => [
101 => 0.15439263940641
102 => 0.15376522602468
103 => 0.15392313245577
104 => 0.15120977680058
105 => 0.14846709142439
106 => 0.14542503124593
107 => 0.1510768030475
108 => 0.15044842250212
109 => 0.15188970138902
110 => 0.15555527939933
111 => 0.15609504968552
112 => 0.15682050642398
113 => 0.15656048182477
114 => 0.16275532270514
115 => 0.16200508659965
116 => 0.16381293975622
117 => 0.16009404865101
118 => 0.15588577036507
119 => 0.15668562648825
120 => 0.15660859391155
121 => 0.1556278807963
122 => 0.1547425368465
123 => 0.1532686886142
124 => 0.1579321625097
125 => 0.15774283398605
126 => 0.16080784271367
127 => 0.16026607264916
128 => 0.15664799956471
129 => 0.15677721975274
130 => 0.15764628761831
131 => 0.16065414142389
201 => 0.1615470772237
202 => 0.16113343378389
203 => 0.1621124971243
204 => 0.16288630886894
205 => 0.16220967596562
206 => 0.17178937098418
207 => 0.16781121371847
208 => 0.16975013988993
209 => 0.17021256235701
210 => 0.16902807693129
211 => 0.16928494940688
212 => 0.16967404121385
213 => 0.17203653047378
214 => 0.17823638588362
215 => 0.18098225964079
216 => 0.18924335631827
217 => 0.18075425304967
218 => 0.18025054479311
219 => 0.18173861776594
220 => 0.18658875604152
221 => 0.19051933756355
222 => 0.19182333821509
223 => 0.1919956834279
224 => 0.19444207533852
225 => 0.19584430155918
226 => 0.19414501901407
227 => 0.1927050549794
228 => 0.1875472825421
229 => 0.18814430874586
301 => 0.19225722724741
302 => 0.19806696688053
303 => 0.20305232788614
304 => 0.20130662821935
305 => 0.21462508440506
306 => 0.21594555493486
307 => 0.21576310860356
308 => 0.2187713369828
309 => 0.21280061626506
310 => 0.21024801748096
311 => 0.19301639154798
312 => 0.19785777556626
313 => 0.20489501156135
314 => 0.20396360698912
315 => 0.19885297810363
316 => 0.20304845101585
317 => 0.2016612964665
318 => 0.20056719012033
319 => 0.20557950339507
320 => 0.20006825905502
321 => 0.20484003268317
322 => 0.19872018364739
323 => 0.20131460242838
324 => 0.19984188485037
325 => 0.20079491361282
326 => 0.19522352694112
327 => 0.1982297119514
328 => 0.19509845976127
329 => 0.19509697514003
330 => 0.19502785257438
331 => 0.19871175688998
401 => 0.19883188887745
402 => 0.19610947802216
403 => 0.19571713608586
404 => 0.19716782985909
405 => 0.19546944738794
406 => 0.1962641098567
407 => 0.19549351690458
408 => 0.19532004019989
409 => 0.19393774830228
410 => 0.19334221894588
411 => 0.19357574135142
412 => 0.19277860899225
413 => 0.1922983079123
414 => 0.19493230860058
415 => 0.19352506828812
416 => 0.19471662884003
417 => 0.1933586952042
418 => 0.18865150559888
419 => 0.18594435107924
420 => 0.17705290627151
421 => 0.17957450898918
422 => 0.18124633419978
423 => 0.18069379597765
424 => 0.1818808618827
425 => 0.18195373808832
426 => 0.18156781086188
427 => 0.18112095657401
428 => 0.18090345261927
429 => 0.18252454890028
430 => 0.183465649855
501 => 0.1814141242258
502 => 0.18093348047478
503 => 0.18300768615373
504 => 0.18427295041966
505 => 0.19361495086871
506 => 0.19292286530118
507 => 0.19465986426074
508 => 0.19446430483432
509 => 0.19628495646958
510 => 0.19926095242844
511 => 0.19320992054252
512 => 0.19426017044897
513 => 0.19400267342572
514 => 0.19681395840623
515 => 0.19682273493108
516 => 0.19513722915116
517 => 0.19605096917866
518 => 0.19554094456246
519 => 0.1964626279779
520 => 0.19291362207648
521 => 0.1972359281729
522 => 0.19968639720631
523 => 0.19972042197122
524 => 0.20088192484493
525 => 0.20206207903434
526 => 0.20432728223113
527 => 0.20199890374662
528 => 0.19781037751606
529 => 0.19811277558105
530 => 0.1956570441846
531 => 0.19569832547304
601 => 0.19547796272008
602 => 0.19613928792984
603 => 0.19305874577048
604 => 0.19378174285798
605 => 0.19276954270161
606 => 0.19425797012351
607 => 0.19265666826341
608 => 0.19400254925286
609 => 0.19458338687125
610 => 0.19672669018762
611 => 0.19234010062092
612 => 0.1833955475484
613 => 0.18527580104647
614 => 0.1824947584321
615 => 0.18275215451424
616 => 0.18327213556443
617 => 0.18158670685353
618 => 0.18190823353761
619 => 0.18189674634191
620 => 0.18179775589522
621 => 0.18135931079317
622 => 0.18072347865147
623 => 0.18325643820517
624 => 0.18368683739129
625 => 0.18464356146688
626 => 0.18749012336368
627 => 0.18720568470363
628 => 0.18766961595941
629 => 0.18665685663291
630 => 0.18279913351473
701 => 0.18300862644011
702 => 0.18039624630369
703 => 0.18457675703336
704 => 0.18358675691253
705 => 0.18294849739429
706 => 0.18277434237131
707 => 0.18562796034447
708 => 0.18648180756701
709 => 0.18594974727748
710 => 0.18485847610096
711 => 0.18695403936524
712 => 0.18751472369004
713 => 0.18764024023312
714 => 0.19135317655302
715 => 0.18784775212783
716 => 0.18869154262789
717 => 0.19527455523879
718 => 0.18930467119435
719 => 0.19246705191699
720 => 0.19231226983685
721 => 0.19393003680543
722 => 0.19217956572635
723 => 0.1922012649133
724 => 0.19363773238437
725 => 0.19162047288953
726 => 0.19112097106982
727 => 0.19043091288339
728 => 0.19193762968818
729 => 0.19284083826971
730 => 0.20012003610323
731 => 0.20482272987543
801 => 0.2046185735363
802 => 0.20648418031124
803 => 0.20564370737213
804 => 0.20292959854619
805 => 0.20756225136176
806 => 0.20609628617249
807 => 0.20621713856155
808 => 0.20621264042959
809 => 0.20718737912356
810 => 0.20649668742539
811 => 0.20513526319026
812 => 0.20603904013255
813 => 0.20872293454498
814 => 0.21705382515309
815 => 0.22171590190701
816 => 0.21677316227863
817 => 0.22018259788836
818 => 0.21813815142864
819 => 0.2177666146899
820 => 0.21990799220812
821 => 0.22205311792423
822 => 0.22191648268974
823 => 0.22035923157328
824 => 0.21947957993137
825 => 0.22614059686881
826 => 0.23104832068085
827 => 0.23071364681867
828 => 0.23219078840457
829 => 0.23652772178706
830 => 0.23692423662334
831 => 0.23687428486776
901 => 0.235891481474
902 => 0.24016175561103
903 => 0.24372409342447
904 => 0.23566399088427
905 => 0.23873317241709
906 => 0.24011102689002
907 => 0.24213412604729
908 => 0.24554743343639
909 => 0.24925519059603
910 => 0.24977950811189
911 => 0.24940747974348
912 => 0.24696211422684
913 => 0.25101918635365
914 => 0.25339572405549
915 => 0.25481089787084
916 => 0.25839954320409
917 => 0.24011953605017
918 => 0.22718003841132
919 => 0.2251593490064
920 => 0.22926850037099
921 => 0.23035205081596
922 => 0.22991527299025
923 => 0.21535069199006
924 => 0.22508266950164
925 => 0.23555345901619
926 => 0.23595568468508
927 => 0.24119758084995
928 => 0.24290455711381
929 => 0.24712497059757
930 => 0.24686098258506
1001 => 0.24788858610691
1002 => 0.24765235785285
1003 => 0.2554697851186
1004 => 0.2640935682919
1005 => 0.26379495410256
1006 => 0.26255518323942
1007 => 0.26439645438352
1008 => 0.27329712279914
1009 => 0.27247769188173
1010 => 0.27327369921903
1011 => 0.28376808890073
1012 => 0.29741228829647
1013 => 0.29107318782193
1014 => 0.30482721182466
1015 => 0.31348464086489
1016 => 0.32845676919511
1017 => 0.32658218498888
1018 => 0.33241072467728
1019 => 0.3232262880222
1020 => 0.30213696498124
1021 => 0.29879949888332
1022 => 0.30548119052945
1023 => 0.32190747745154
1024 => 0.30496386829808
1025 => 0.30839153836242
1026 => 0.3074043691533
1027 => 0.30735176710135
1028 => 0.30935937347646
1029 => 0.30644723571965
1030 => 0.29458266261481
1031 => 0.30002012655039
1101 => 0.2979204605964
1102 => 0.30025019651282
1103 => 0.31282282039756
1104 => 0.3072641636842
1105 => 0.30140857038527
1106 => 0.3087527838423
1107 => 0.31810449131865
1108 => 0.31751927827141
1109 => 0.3163837203597
1110 => 0.32278480085215
1111 => 0.33335751048508
1112 => 0.33621527141427
1113 => 0.33832481210785
1114 => 0.33861568212852
1115 => 0.34161182411605
1116 => 0.32550081352408
1117 => 0.35106940109364
1118 => 0.35548438984892
1119 => 0.35465455494547
1120 => 0.35956162913584
1121 => 0.35811784342857
1122 => 0.35602602446179
1123 => 0.36380478081814
1124 => 0.35488706436885
1125 => 0.34222948857836
1126 => 0.33528529216124
1127 => 0.34442997017565
1128 => 0.35001430593377
1129 => 0.35370519663943
1130 => 0.35482205793686
1201 => 0.32675146541417
1202 => 0.31162297291087
1203 => 0.32132016315696
1204 => 0.33315140452152
1205 => 0.32543509038092
1206 => 0.32573755528632
1207 => 0.31473611913351
1208 => 0.33412478750791
1209 => 0.33130002161013
1210 => 0.34595491208474
1211 => 0.34245740486013
1212 => 0.35440789914261
1213 => 0.35126093349335
1214 => 0.36432381195892
1215 => 0.36953494784215
1216 => 0.37828525603863
1217 => 0.38472201836813
1218 => 0.38850180832365
1219 => 0.38827488391235
1220 => 0.40325229480001
1221 => 0.39442063887044
1222 => 0.38332599756141
1223 => 0.38312533050328
1224 => 0.38887140244951
1225 => 0.40091359289095
1226 => 0.40403595766567
1227 => 0.4057809336139
1228 => 0.40310844220613
1229 => 0.39352231266506
1230 => 0.38938307053201
1231 => 0.39290982475476
]
'min_raw' => 0.14542503124593
'max_raw' => 0.4057809336139
'avg_raw' => 0.27560298242992
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$0.145425'
'max' => '$0.40578'
'avg' => '$0.2756029'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.057571592320995
'max_diff' => 0.20965432006149
'year' => 2036
]
11 => [
'items' => [
101 => 0.38859690739778
102 => 0.39604221274681
103 => 0.40626620722243
104 => 0.40415499279327
105 => 0.41121246609899
106 => 0.41851620850257
107 => 0.42896088817129
108 => 0.43169151420206
109 => 0.43620513519452
110 => 0.44085113384301
111 => 0.44234330339573
112 => 0.4451923180649
113 => 0.44517730235128
114 => 0.45376299981762
115 => 0.46323328999991
116 => 0.466808105306
117 => 0.47502819598589
118 => 0.46095157876291
119 => 0.47162885462706
120 => 0.48126002472608
121 => 0.4697773466875
122 => 0.48560354324284
123 => 0.48621803859215
124 => 0.49549618880427
125 => 0.48609100608578
126 => 0.48050623860995
127 => 0.49662925305417
128 => 0.50443067187353
129 => 0.50208082103509
130 => 0.48419834012808
131 => 0.47378996922452
201 => 0.44654925494508
202 => 0.47881705772036
203 => 0.49453376318748
204 => 0.4841576376578
205 => 0.48939075183179
206 => 0.51794092592214
207 => 0.52881098372886
208 => 0.5265500876925
209 => 0.52693214190513
210 => 0.53279742779213
211 => 0.55880733548704
212 => 0.54322159589131
213 => 0.55513630982572
214 => 0.56145583113484
215 => 0.5673257547175
216 => 0.55291107760689
217 => 0.53415779447966
218 => 0.528217842504
219 => 0.48312593646496
220 => 0.4807787069314
221 => 0.47946113586588
222 => 0.47115403667192
223 => 0.46462693221143
224 => 0.45943633640861
225 => 0.44581466297887
226 => 0.45041157789299
227 => 0.42870147351018
228 => 0.44259082893544
301 => 0.40794097813168
302 => 0.43679840350693
303 => 0.42109261886131
304 => 0.43163863084512
305 => 0.4316018368028
306 => 0.41218328512446
307 => 0.40098306977123
308 => 0.40812028291321
309 => 0.4157719419541
310 => 0.41701339789021
311 => 0.42693397356546
312 => 0.42970259299436
313 => 0.42131354687031
314 => 0.40722293699042
315 => 0.41049586429293
316 => 0.40091674400391
317 => 0.38412970415295
318 => 0.3961864492475
319 => 0.40030315212045
320 => 0.40212132263253
321 => 0.38561319694366
322 => 0.38042598544337
323 => 0.37766435756554
324 => 0.40509194526415
325 => 0.40659449043256
326 => 0.39890725691251
327 => 0.43365428135655
328 => 0.42578995957646
329 => 0.43457633381044
330 => 0.41019888044542
331 => 0.41113013199256
401 => 0.39958945490354
402 => 0.40605146292507
403 => 0.4014843239357
404 => 0.40552939653574
405 => 0.40795399637375
406 => 0.41949277975121
407 => 0.4369301578781
408 => 0.41776927029914
409 => 0.40942059719202
410 => 0.41460006703296
411 => 0.42839367776192
412 => 0.44929170409824
413 => 0.43691965189516
414 => 0.44241015857182
415 => 0.44360959002503
416 => 0.43448689676875
417 => 0.44962807081108
418 => 0.45774234898704
419 => 0.4660659193823
420 => 0.47329304233535
421 => 0.46274130232719
422 => 0.47403317666843
423 => 0.46493391923354
424 => 0.4567709446505
425 => 0.45678332451342
426 => 0.45166257131545
427 => 0.44174046673795
428 => 0.43991067842146
429 => 0.44942946832061
430 => 0.45706263638697
501 => 0.45769134066933
502 => 0.4619174547172
503 => 0.46441842547829
504 => 0.4889313388419
505 => 0.49879063537819
506 => 0.51084639655584
507 => 0.51554279496001
508 => 0.52967727040453
509 => 0.51826253353711
510 => 0.51579288341378
511 => 0.48150726933705
512 => 0.4871215367214
513 => 0.49611052049997
514 => 0.48165549436871
515 => 0.49082388136062
516 => 0.49263391516581
517 => 0.48116431811205
518 => 0.4872907254705
519 => 0.47102080387966
520 => 0.43728479770821
521 => 0.44966562862989
522 => 0.45878208753088
523 => 0.4457717766279
524 => 0.46909225535293
525 => 0.45546891311416
526 => 0.45115096766022
527 => 0.43430512298572
528 => 0.44225571321606
529 => 0.45300900034408
530 => 0.44636471910277
531 => 0.46015260032234
601 => 0.47967991722286
602 => 0.49359624611799
603 => 0.49466456905082
604 => 0.48571730189287
605 => 0.50005535461418
606 => 0.50015979167504
607 => 0.48398640963275
608 => 0.47408030318561
609 => 0.47182961495819
610 => 0.47745227542369
611 => 0.4842792232292
612 => 0.49504341714088
613 => 0.50154799408137
614 => 0.51850848098111
615 => 0.52309750244092
616 => 0.52813944572087
617 => 0.53487703682061
618 => 0.54296724241875
619 => 0.52526633314568
620 => 0.52596962326973
621 => 0.50948678164042
622 => 0.49187250148091
623 => 0.50523954447096
624 => 0.52271517503724
625 => 0.51870624607648
626 => 0.51825515967341
627 => 0.51901376188244
628 => 0.51599116036541
629 => 0.50232004572671
630 => 0.49545449754086
701 => 0.50431280628874
702 => 0.50902060315028
703 => 0.5163219855195
704 => 0.51542193602901
705 => 0.53422951290089
706 => 0.5415375685617
707 => 0.53966785519433
708 => 0.5400119274511
709 => 0.55324281314676
710 => 0.56795827917951
711 => 0.58174125499595
712 => 0.59576188998902
713 => 0.57885946727018
714 => 0.57027745941005
715 => 0.57913190089746
716 => 0.57443360960895
717 => 0.60143138495642
718 => 0.60330065234523
719 => 0.63029647544625
720 => 0.65591872617193
721 => 0.63982584956143
722 => 0.65500070736605
723 => 0.67141355330605
724 => 0.70307659601261
725 => 0.69241359714831
726 => 0.68424590712876
727 => 0.67652747952627
728 => 0.69258830210117
729 => 0.71325029376587
730 => 0.71770068887235
731 => 0.72491202912663
801 => 0.71733018660999
802 => 0.72646168080873
803 => 0.75869986791213
804 => 0.74998882518244
805 => 0.73761774413629
806 => 0.76306669666602
807 => 0.77227657365623
808 => 0.83691631362357
809 => 0.91852665546681
810 => 0.88473943806131
811 => 0.86376662191103
812 => 0.8686957311882
813 => 0.89849706534494
814 => 0.90806830802901
815 => 0.88205037100848
816 => 0.89124034621388
817 => 0.94187801313402
818 => 0.96904349678581
819 => 0.93214912117547
820 => 0.83035900211869
821 => 0.73650386364301
822 => 0.76139847271873
823 => 0.7585761966192
824 => 0.81298005254729
825 => 0.74978106969427
826 => 0.75084517848269
827 => 0.80637404853669
828 => 0.79155989801212
829 => 0.76756287141536
830 => 0.73667906849386
831 => 0.67958750238746
901 => 0.62901991017092
902 => 0.72819460352854
903 => 0.72391801041348
904 => 0.71772486982729
905 => 0.73150703403406
906 => 0.79842931128659
907 => 0.79688653618965
908 => 0.78707218815367
909 => 0.79451628463927
910 => 0.76625788530976
911 => 0.77354071824877
912 => 0.73648899650955
913 => 0.75323792215226
914 => 0.7675113845739
915 => 0.77037699347727
916 => 0.77683335665817
917 => 0.72166444017174
918 => 0.74643366399986
919 => 0.76098326243646
920 => 0.69524764738097
921 => 0.75968388068293
922 => 0.72070407207547
923 => 0.70747373957703
924 => 0.72528663932242
925 => 0.71834493496803
926 => 0.71237686519468
927 => 0.70904657971669
928 => 0.72212640735171
929 => 0.72151621775876
930 => 0.70011508106273
1001 => 0.67219817066469
1002 => 0.68156800213562
1003 => 0.67816385451959
1004 => 0.66582678441533
1005 => 0.67414048008207
1006 => 0.6375311718308
1007 => 0.57454675977075
1008 => 0.61615619164234
1009 => 0.61455427377763
1010 => 0.61374651414906
1011 => 0.64501485220033
1012 => 0.64200912298
1013 => 0.63655369501291
1014 => 0.66572659120251
1015 => 0.65507809166248
1016 => 0.68789425814283
1017 => 0.70950910780336
1018 => 0.70402688276231
1019 => 0.72435575334167
1020 => 0.68178386412831
1021 => 0.69592453803725
1022 => 0.69883891133175
1023 => 0.66536660219192
1024 => 0.64250089745292
1025 => 0.64097601563495
1026 => 0.60133003470574
1027 => 0.62250859770695
1028 => 0.64114485671953
1029 => 0.63221953488462
1030 => 0.6293940446281
1031 => 0.64382886157462
1101 => 0.64495057047721
1102 => 0.61937548862475
1103 => 0.62469335799938
1104 => 0.64686975731385
1105 => 0.62413456963544
1106 => 0.57996381374812
1107 => 0.56900885557958
1108 => 0.56754726221996
1109 => 0.5378365468182
1110 => 0.56974091826757
1111 => 0.55581380514593
1112 => 0.59980938862477
1113 => 0.5746793472947
1114 => 0.57359604143974
1115 => 0.57195846575355
1116 => 0.54638522567306
1117 => 0.55198413998649
1118 => 0.57059578390308
1119 => 0.57723662812769
1120 => 0.57654393366823
1121 => 0.57050457669434
1122 => 0.57326936339048
1123 => 0.56436302212668
1124 => 0.56121800765697
1125 => 0.55129147688619
1126 => 0.53670221892725
1127 => 0.53873094472756
1128 => 0.50982580722391
1129 => 0.49407675420016
1130 => 0.48971762389237
1201 => 0.48388841266419
1202 => 0.49037604881153
1203 => 0.5097439226011
1204 => 0.48638215768724
1205 => 0.44633005037969
1206 => 0.44873725027434
1207 => 0.45414551373357
1208 => 0.44406725055655
1209 => 0.43452902026401
1210 => 0.44282173764229
1211 => 0.42585113177848
1212 => 0.45619633037418
1213 => 0.4553755777936
1214 => 0.46668639129559
1215 => 0.47375927509964
1216 => 0.45745856780463
1217 => 0.45335898400173
1218 => 0.45569429325156
1219 => 0.41709683331759
1220 => 0.46353215536695
1221 => 0.46393372996031
1222 => 0.46049520448902
1223 => 0.48522057995059
1224 => 0.53739883421248
1225 => 0.51776727609374
1226 => 0.51016534342318
1227 => 0.49571406385946
1228 => 0.51496953584604
1229 => 0.51349101602963
1230 => 0.50680458870782
1231 => 0.50276061660067
]
'min_raw' => 0.37766435756554
'max_raw' => 0.96904349678581
'avg_raw' => 0.67335392717567
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$0.377664'
'max' => '$0.969043'
'avg' => '$0.673353'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 0.2322393263196
'max_diff' => 0.56326256317191
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.011854452636587
]
1 => [
'year' => 2028
'avg' => 0.020345682096573
]
2 => [
'year' => 2029
'avg' => 0.055580736535415
]
3 => [
'year' => 2030
'avg' => 0.042880455463757
]
4 => [
'year' => 2031
'avg' => 0.042113921381752
]
5 => [
'year' => 2032
'avg' => 0.073838957921042
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.011854452636587
'min' => '$0.011854'
'max_raw' => 0.073838957921042
'max' => '$0.073838'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.073838957921042
]
1 => [
'year' => 2033
'avg' => 0.18992139254342
]
2 => [
'year' => 2034
'avg' => 0.12038130578906
]
3 => [
'year' => 2035
'avg' => 0.14199002623867
]
4 => [
'year' => 2036
'avg' => 0.27560298242992
]
5 => [
'year' => 2037
'avg' => 0.67335392717567
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.073838957921042
'min' => '$0.073838'
'max_raw' => 0.67335392717567
'max' => '$0.673353'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 0.67335392717567
]
]
]
]
'prediction_2025_max_price' => '$0.020268'
'last_price' => 0.01965331
'sma_50day_nextmonth' => '$0.01827'
'sma_200day_nextmonth' => '$0.02608'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'increase'
'sma_200day_direction_label' => 'aumentar'
'sma_200day_date_nextmonth' => '4 de fev. de 2026'
'sma_50day_date_nextmonth' => '4 de fev. de 2026'
'daily_sma3' => '$0.019327'
'daily_sma3_action' => 'BUY'
'daily_sma5' => '$0.0194039'
'daily_sma5_action' => 'BUY'
'daily_sma10' => '$0.019993'
'daily_sma10_action' => 'SELL'
'daily_sma21' => '$0.018515'
'daily_sma21_action' => 'BUY'
'daily_sma50' => '$0.019996'
'daily_sma50_action' => 'SELL'
'daily_sma100' => '$0.023262'
'daily_sma100_action' => 'SELL'
'daily_sma200' => '$0.028015'
'daily_sma200_action' => 'SELL'
'daily_ema3' => '$0.0195018'
'daily_ema3_action' => 'BUY'
'daily_ema5' => '$0.019543'
'daily_ema5_action' => 'BUY'
'daily_ema10' => '$0.019445'
'daily_ema10_action' => 'BUY'
'daily_ema21' => '$0.019267'
'daily_ema21_action' => 'BUY'
'daily_ema50' => '$0.020386'
'daily_ema50_action' => 'SELL'
'daily_ema100' => '$0.022811'
'daily_ema100_action' => 'SELL'
'daily_ema200' => '$0.026024'
'daily_ema200_action' => 'SELL'
'weekly_sma21' => '$0.024957'
'weekly_sma21_action' => 'SELL'
'weekly_sma50' => '$0.028832'
'weekly_sma50_action' => 'SELL'
'weekly_sma100' => '$0.034943'
'weekly_sma100_action' => 'SELL'
'weekly_sma200' => '$0.026823'
'weekly_sma200_action' => 'SELL'
'weekly_ema3' => '$0.019338'
'weekly_ema3_action' => 'BUY'
'weekly_ema5' => '$0.019508'
'weekly_ema5_action' => 'BUY'
'weekly_ema10' => '$0.02087'
'weekly_ema10_action' => 'SELL'
'weekly_ema21' => '$0.023748'
'weekly_ema21_action' => 'SELL'
'weekly_ema50' => '$0.027841'
'weekly_ema50_action' => 'SELL'
'weekly_ema100' => '$0.030475'
'weekly_ema100_action' => 'SELL'
'weekly_ema200' => '$0.03053'
'weekly_ema200_action' => 'SELL'
'rsi_14' => '51.32'
'rsi_14_action' => 'NEUTRAL'
'stoch_rsi_14' => 64.21
'stoch_rsi_14_action' => 'NEUTRAL'
'momentum_10' => 0
'momentum_10_action' => 'BUY'
'vwma_10' => '0.020167'
'vwma_10_action' => 'SELL'
'hma_9' => '0.019031'
'hma_9_action' => 'SELL'
'stochastic_fast_14' => 64.87
'stochastic_fast_14_action' => 'NEUTRAL'
'cci_20' => 50.88
'cci_20_action' => 'NEUTRAL'
'adx_14' => 17.33
'adx_14_action' => 'NEUTRAL'
'ao_5_34' => '0.000361'
'ao_5_34_action' => 'BUY'
'macd_12_26' => 0
'macd_12_26_action' => 'NEUTRAL'
'williams_percent_r_14' => -35.13
'williams_percent_r_14_action' => 'NEUTRAL'
'ultimate_oscillator' => 51.71
'ultimate_oscillator_action' => 'NEUTRAL'
'ichimoku_cloud' => '-0.003150'
'ichimoku_cloud_action' => 'SELL'
'sell_signals' => 18
'buy_signals' => 15
'sell_pct' => 54.55
'buy_pct' => 45.45
'overall_action' => 'bearish'
'overall_action_label' => 'Baixista'
'overall_action_dir' => -1
'last_updated' => 1767677064
'last_updated_date' => '6 de janeiro de 2026'
]
Previsão de preço de QANplatform para 2026
A previsão de preço para QANplatform em 2026 sugere que o preço médio poderia variar entre $0.00679 na extremidade inferior e $0.020268 na extremidade superior. No mercado de criptomoedas, comparado ao preço médio de hoje, QANplatform poderia potencialmente ganhar 3.13% até 2026 se QANX atingir a meta de preço prevista.
Previsão de preço de QANplatform 2027-2032
A previsão de preço de QANX para 2027-2032 está atualmente dentro de uma faixa de preço entre $0.011854 na extremidade inferior e $0.073838 na extremidade superior. Considerando a volatilidade de preços no mercado, se QANplatform atingir a meta de preço superior, poderia ganhar 275.71% até 2032 em comparação com o preço de hoje.
| Previsão de Preço de QANplatform | Potencial Mínimo ($) | Preço Médio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2027 | $0.006536 | $0.011854 | $0.017172 |
| 2028 | $0.011796 | $0.020345 | $0.028894 |
| 2029 | $0.025914 | $0.05558 | $0.085246 |
| 2030 | $0.022039 | $0.04288 | $0.063721 |
| 2031 | $0.026057 | $0.042113 | $0.05817 |
| 2032 | $0.039774 | $0.073838 | $0.1079036 |
Previsão de preço de QANplatform 2032-2037
A previsão de preço de QANplatform para 2032-2037 é atualmente estimada entre $0.073838 na extremidade inferior e $0.673353 na extremidade superior. Comparado ao preço atual, QANplatform poderia potencialmente ganhar 3326.16% até 2037 se atingir a meta de preço superior. Por favor, note que esta informação é apenas para fins gerais e não deve ser considerada como aconselhamento de investimento a longo prazo.
| Previsão de Preço de QANplatform | Potencial Mínimo ($) | Preço Médio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2032 | $0.039774 | $0.073838 | $0.1079036 |
| 2033 | $0.092426 | $0.189921 | $0.287416 |
| 2034 | $0.0743066 | $0.120381 | $0.166455 |
| 2035 | $0.087853 | $0.14199 | $0.196126 |
| 2036 | $0.145425 | $0.2756029 | $0.40578 |
| 2037 | $0.377664 | $0.673353 | $0.969043 |
QANplatform Histograma de preços potenciais
Previsão de preço de QANplatform baseada na análise técnica
Em 6 de janeiro de 2026, o sentimento geral de previsão de preço para QANplatform é Baixista, com 15 indicadores técnicos mostrando sinais de alta e 18 indicando sinais de baixa. A previsão de preço de QANX foi atualizada pela última vez em 6 de janeiro de 2026.
Médias Móveis Simples de 50 e 200 dias e Índice de Força Relativa de 14 dias - RSI (14) de QANplatform
De acordo com nossos indicadores técnicos, o SMA de 200 dias de QANplatform está projetado para aumentar no próximo mês, alcançando $0.02608 até 4 de fev. de 2026. O SMA de 50 dias de curto prazo para QANplatform é esperado para alcançar $0.01827 até 4 de fev. de 2026.
O oscilador de momentum Índice de Força Relativa (RSI) é uma ferramenta comumente usada para identificar se uma criptomoeda está sobrevendida (abaixo de 30) ou sobrecomprada (acima de 70). No momento, o RSI está em 51.32, sugerindo que o mercado de QANX está em um estado NEUTRAL.
Médias Móveis e Osciladores Populares de QANX para Sábado, 19 de Outubro de 2024
Médias móveis (MA) são indicadores amplamente utilizados nos mercados financeiros, projetados para suavizar movimentos de preços ao longo de um período definido. Como indicadores atrasados, eles se baseiam em dados históricos de preços. A tabela abaixo destaca dois tipos: a média móvel simples (SMA) e a média móvel exponencial (EMA).
Média Móvel Simples Diária (SMA)
| Período | Valor | Ação |
|---|---|---|
| SMA 3 | $0.019327 | BUY |
| SMA 5 | $0.0194039 | BUY |
| SMA 10 | $0.019993 | SELL |
| SMA 21 | $0.018515 | BUY |
| SMA 50 | $0.019996 | SELL |
| SMA 100 | $0.023262 | SELL |
| SMA 200 | $0.028015 | SELL |
Média Móvel Exponencial Diária (EMA)
| Período | Valor | Ação |
|---|---|---|
| EMA 3 | $0.0195018 | BUY |
| EMA 5 | $0.019543 | BUY |
| EMA 10 | $0.019445 | BUY |
| EMA 21 | $0.019267 | BUY |
| EMA 50 | $0.020386 | SELL |
| EMA 100 | $0.022811 | SELL |
| EMA 200 | $0.026024 | SELL |
Média Móvel Simples Semanal (SMA)
| Período | Valor | Ação |
|---|---|---|
| SMA 21 | $0.024957 | SELL |
| SMA 50 | $0.028832 | SELL |
| SMA 100 | $0.034943 | SELL |
| SMA 200 | $0.026823 | SELL |
Média Móvel Exponencial Semanal (EMA)
| Período | Valor | Ação |
|---|---|---|
| EMA 21 | $0.023748 | SELL |
| EMA 50 | $0.027841 | SELL |
| EMA 100 | $0.030475 | SELL |
| EMA 200 | $0.03053 | SELL |
Osciladores de QANplatform
Um oscilador é uma ferramenta de análise técnica que define limites altos e baixos entre dois extremos, criando um indicador de tendência que flutua dentro desses limites. Os traders usam esse indicador para identificar condições de sobrecompra ou sobrevenda de curto prazo.
| Período | Valor | Ação |
|---|---|---|
| RSI (14) | 51.32 | NEUTRAL |
| Stoch RSI (14) | 64.21 | NEUTRAL |
| Estocástico Rápido (14) | 64.87 | NEUTRAL |
| Índice de Canal de Commodities (20) | 50.88 | NEUTRAL |
| Índice Direcional Médio (14) | 17.33 | NEUTRAL |
| Oscilador Impressionante (5, 34) | 0.000361 | BUY |
| Momentum (10) | 0 | BUY |
| MACD (12, 26) | 0 | NEUTRAL |
| Williams Percent Range (14) | -35.13 | NEUTRAL |
| Oscilador Ultimate (7, 14, 28) | 51.71 | NEUTRAL |
| VWMA (10) | 0.020167 | SELL |
| Média Móvel de Hull (9) | 0.019031 | SELL |
| Nuvem Ichimoku B/L (9, 26, 52, 26) | -0.003150 | SELL |
Previsão do preço de QANplatform com base nos fluxos financeiros mundiais
Definições dos fluxos financeiros mundiais, usadas na previsão do preço do QANplatform
M0: o total de todas as moedas físicas, mais as contas no Banco Central que podem ser trocadas por moedas físicas.
M1: o valor de M0, mais o valor em contas de demanda, incluindo contas 'correntes'.
M2: o valor de M1, mais a maioria das contas de poupança, do mercado de moedas e de certificados de depósito (CD) de menos de US$ 100.000.
Previsões de preço de QANplatform por empresas de Internet ou nichos tecnológicos
| Comparação | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Facebook stock | $0.027616 | $0.0388053 | $0.054527 | $0.07662 | $0.107665 | $0.151287 |
| Amazon.com stock | $0.0410077 | $0.085565 | $0.178536 | $0.372527 | $0.7773015 | $1.62 |
| Apple stock | $0.027876 | $0.03954 | $0.056085 | $0.079553 | $0.11284 | $0.160055 |
| Netflix stock | $0.0310098 | $0.048928 | $0.0772017 | $0.121812 | $0.19220071 | $0.303262 |
| Google stock | $0.02545 | $0.032958 | $0.042681 | $0.055272 | $0.071577 | $0.092692 |
| Tesla stock | $0.044552 | $0.100997 | $0.228953 | $0.519019 | $1.17 | $2.66 |
| Kodak stock | $0.014737 | $0.011051 | $0.008287 | $0.006214 | $0.00466 | $0.003494 |
| Nokia stock | $0.013019 | $0.008624 | $0.005713 | $0.003785 | $0.0025074 | $0.001661 |
Este cálculo mostra quanto a criptomoeda pode custar, se assumirmos que sua capitalização se comportará da mesma forma que a de algumas empresas de Internet ou nichos tecnológicos. Se você extrapolar os dados, poderá obter uma imagem em potencial do preço futuro para 2024, 2025, 2026, 2027, 2028, 2029 e 2030.
Visão geral da previsão para QANplatform
Você pode fazer perguntas como: 'Devo investir em QANplatform agora?', 'Devo comprar QANX hoje?', 'QANplatform será um bom ou mau investimento no curto ou no longo prazo?'.
Atualizamos a previsão para QANplatform regularmente com novos valores. Veja nossas previsões semelhantes. Fazemos previsões de preços futuros para uma enorme quantidade de moedas digitais, como QANplatform, com métodos de análise técnica.
Se você estiver tentando encontrar criptomoedas com bom retorno, você deve explorar o máximo de fontes de informações disponíveis sobre QANplatform para poder tomar sozinho uma decisão de tão grande responsabilidade sobre o seu investimento.
O preço de QANplatform é de $0.01965 USD hoje, mas o preço pode tanto subir quanto descer e seu investimento pode ser perdido, porque criptomoedas são ativos de alto risco
Previsão do preço de QANplatform com base no padrão de crescimento do Bitcoin
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| Se QANplatform tiver 1% da média anterior do crescimento anual do Bitcoin | $0.020164 | $0.020688 | $0.021226 | $0.021777 |
| Se QANplatform tiver 2% da média anterior do crescimento anual do Bitcoin | $0.020675 | $0.021749 | $0.02288 | $0.02407 |
| Se QANplatform tiver 5% da média anterior do crescimento anual do Bitcoin | $0.0222075 | $0.025093 | $0.028355 | $0.03204 |
| Se QANplatform tiver 10% da média anterior do crescimento anual do Bitcoin | $0.024761 | $0.031198 | $0.0393076 | $0.049524 |
| Se QANplatform tiver 20% da média anterior do crescimento anual do Bitcoin | $0.02987 | $0.045398 | $0.06900016 | $0.10487 |
| Se QANplatform tiver 50% da média anterior do crescimento anual do Bitcoin | $0.045195 | $0.103935 | $0.239015 | $0.549655 |
| Se QANplatform tiver 100% da média anterior do crescimento anual do Bitcoin | $0.070738 | $0.25461 | $0.916426 | $3.29 |
Perguntas Frequentes sobre QANplatform
QANX é um bom investimento?
A decisão de adquirir QANplatform depende inteiramente da sua tolerância individual ao risco. Como você pode perceber, o valor de QANplatform experimentou uma escalada de 5.943% nas últimas 24 horas, e QANplatform registrou um declínio de durante os últimos 30 dias. Consequentemente, a decisão de investir ou não em QANplatform dependerá de quão alinhado esse investimento está com suas aspirações de negociação.
QANplatform pode subir?
Parece que o valor médio de QANplatform pode potencialmente subir para $0.020268 até o final deste ano. Observando as perspectivas de QANplatform em um horizonte de cinco anos mais longo, a moeda digital poderia potencialmente crescer até $0.063721. No entanto, dada a imprevisibilidade do mercado, é vital conduzir uma pesquisa aprofundada antes de investir quaisquer fundos em um projeto, rede ou ativo específico.
Qual será o preço de QANplatform na próxima semana?
Com base na nossa nova previsão experimental de QANplatform, o preço de QANplatform aumentará 0.86% na próxima semana e atingirá $0.019821 até 13 de janeiro de 2026.
Qual será o preço de QANplatform no próximo mês?
Com base na nossa nova previsão experimental de QANplatform, o preço de QANplatform diminuirá -11.62% no próximo mês e atingirá $0.017369 até 5 de fevereiro de 2026.
Até onde o preço de QANplatform pode subir este ano em 2026?
De acordo com nossa previsão mais recente sobre o valor de QANplatform em 2026, espera-se que QANX fluctue dentro do intervalo de $0.00679 e $0.020268. No entanto, é crucial lembrar que o mercado de criptomoedas é excepcionalmente instável, e essa previsão de preço de QANplatform não considera flutuações repentinas e extremas de preço.
Onde estará QANplatform em 5 anos?
O futuro de QANplatform parece seguir uma tendência de alta, com um preço máximo de $0.063721 projetada após um período de cinco anos. Com base na previsão de QANplatform para 2030, o valor de QANplatform pode potencialmente atingir seu pico mais alto de aproximadamente $0.063721, enquanto seu pico mais baixo está previsto para cerca de $0.022039.
Quanto será QANplatform em 2026?
Com base na nossa nova simulação experimental de previsão de preços de QANplatform, espera-se que o valor de QANX em 2026 aumente 3.13% para $0.020268 se o melhor cenário ocorrer. O preço ficará entre $0.020268 e $0.00679 durante 2026.
Quanto será QANplatform em 2027?
De acordo com nossa última simulação experimental para previsão de preços de QANplatform, o valor de QANX pode diminuir -12.62% para $0.017172 em 2027, assumindo as condições mais favoráveis. O preço está projetado para flutuar entre $0.017172 e $0.006536 ao longo do ano.
Quanto será QANplatform em 2028?
Nosso novo modelo experimental de previsão de preços de QANplatform sugere que o valor de QANX em 2028 pode aumentar 47.02%, alcançando $0.028894 no melhor cenário. O preço é esperado para variar entre $0.028894 e $0.011796 durante o ano.
Quanto será QANplatform em 2029?
Com base no nosso modelo de previsão experimental, o valor de QANplatform pode experimentar um 333.75% crescimento em 2029, potencialmente alcançando $0.085246 sob condições ótimas. A faixa de preço prevista para 2029 está entre $0.085246 e $0.025914.
Quanto será QANplatform em 2030?
Usando nossa nova simulação experimental para previsões de preços de QANplatform, espera-se que o valor de QANX em 2030 aumente 224.23%, alcançando $0.063721 no melhor cenário. O preço está previsto para variar entre $0.063721 e $0.022039 ao longo de 2030.
Quanto será QANplatform em 2031?
Nossa simulação experimental indica que o preço de QANplatform poderia aumentar 195.98% em 2031, potencialmente atingindo $0.05817 sob condições ideais. O preço provavelmente oscilará entre $0.05817 e $0.026057 durante o ano.
Quanto será QANplatform em 2032?
Com base nos achados da nossa mais recente previsão experimental de preços de QANplatform, QANX poderia ver um 449.04% aumento em valor, atingindo $0.1079036 se o cenário mais positivo se desenrolar em 2032. O preço é esperado para permanecer dentro de uma faixa de $0.1079036 e $0.039774 ao longo do ano.
Quanto será QANplatform em 2033?
De acordo com nossa previsão experimental de preços de QANplatform, espera-se que o valor de QANX seja aumentar 1362.43% em 2033, com o preço potencial mais alto sendo $0.287416. Ao longo do ano, o preço de QANX poderia variar entre $0.287416 e $0.092426.
Quanto será QANplatform em 2034?
Os resultados da nossa nova simulação de previsão de preços de QANplatform sugerem que QANX pode aumentar 746.96% em 2034, atingindo potencialmente $0.166455 nas melhores circunstâncias. A faixa de preço prevista para o ano é entre $0.166455 e $0.0743066.
Quanto será QANplatform em 2035?
Com base em nossa previsão experimental para o preço de QANplatform, QANX poderia aumentar 897.93%, com o valor potencialmente atingindo $0.196126 em 2035. A faixa de preço esperada para o ano está entre $0.196126 e $0.087853.
Quanto será QANplatform em 2036?
Nossa recente simulação de previsão de preços de QANplatform sugere que o valor de QANX pode aumentar 1964.7% em 2036, possivelmente atingindo $0.40578 se as condições forem ideais. A faixa de preço esperada para 2036 está entre $0.40578 e $0.145425.
Quanto será QANplatform em 2037?
De acordo com a simulação experimental, o valor de QANplatform poderia aumentar 4830.69% em 2037, com um pico de $0.969043 sob condições favoráveis. O preço é esperado para cair entre $0.969043 e $0.377664 ao longo do ano.
Previsões relacionadas
Previsão de Preço do Gains Network
Previsão de Preço do Humans.ai
Previsão de Preço do Propy
Previsão de Preço do Stargate Finance
Previsão de Preço do TrustToken
Previsão de Preço do Sun Token
Previsão de Preço do Vulcan Forged
Previsão de Preço do Maple
Previsão de Preço do Oasys
Previsão de Preço do Maverick Protocol
Previsão de Preço do Myria
Previsão de Preço do MimbleWimbleCoin
Previsão de Preço do CYBER
Previsão de Preço do Velodrome Finance
Previsão de Preço do Ontology Gas
Previsão de Preço do DODO
Previsão de Preço do Cudos
Previsão de Preço do Acala
Previsão de Preço do WINk
Previsão de Preço do Radiant Capital
Previsão de Preço do APEX
Previsão de Preço do Metars Genesis
Previsão de Preço do Liquity
Previsão de Preço do Steem
Previsão de Preço do Alpha Finance
Como ler e prever os movimentos de preço de QANplatform?
Traders de QANplatform utilizam indicadores e padrões de gráfico para prever a direção do mercado. Eles também identificam níveis-chave de suporte e resistência para avaliar quando uma tendência de baixa pode desacelerar ou uma tendência de alta pode estagnar.
Indicadores de Previsão de Preço de QANplatform
Médias móveis são ferramentas populares para a previsão de preço de QANplatform. Uma média móvel simples (SMA) calcula o preço médio de fechamento de QANX em um período específico, como uma SMA de 12 dias. Uma média móvel exponencial (EMA) dá mais peso aos preços recentes, reagindo mais rapidamente às mudanças de preço.
Médias móveis comumente usadas no mercado de criptomoedas incluem as de 50 dias, 100 dias e 200 dias, que ajudam a identificar níveis-chave de resistência e suporte. Um movimento de preço de QANX acima dessas médias é visto como altista, enquanto uma queda abaixo indica fraqueza.
Traders também usam RSI e níveis de retração de Fibonacci para avaliar a direção futura de QANX.
Como ler gráficos de QANplatform e prever movimentos de preço?
A maioria dos traders prefere gráficos de velas em vez de gráficos de linha simples porque eles fornecem informações mais detalhadas. Velas podem representar a ação de preço de QANplatform em diferentes períodos de tempo, como 5 minutos para tendências de curto prazo e semanal para tendências de longo prazo. Opções populares incluem gráficos de 1 hora, 4 horas e 1 dia.
Por exemplo, um gráfico de velas de 1 hora mostra os preços de abertura, fechamento, máximo e mínimo de QANX dentro de cada hora. A cor da vela é crucial: verde indica que o preço fechou mais alto do que abriu, enquanto vermelho significa o oposto. Alguns gráficos usam velas vazias e preenchidas para transmitir a mesma informação.
O que afeta o preço de QANplatform?
A ação de preço de QANplatform é impulsionada pela oferta e demanda, influenciada por fatores como reduções pela metade das recompensas de bloco, hard forks e atualizações de protocolo. Eventos do mundo real, como regulamentações, adoção por empresas e governos e hacks de exchanges de criptomoedas, também impactam o preço de QANX. A capitalização de mercado de QANplatform pode mudar rapidamente.
Traders frequentemente monitoram a atividade de "baleias" de QANX, grandes detentores de QANplatform, pois suas ações podem influenciar significativamente os movimentos de preço no relativamente pequeno mercado de QANplatform.
Padrões de previsão de preço altistas e baixistas
Traders frequentemente identificam padrões de velas para ganhar vantagem em previsões de preço de criptomoedas. Certas formações indicam tendências altistas, enquanto outras sugerem movimentos baixistas.
Padrões de velas altistas comumente seguidos:
- Martelo
- Engolfo de Alta
- Linha de Perfuração
- Estrela da Manhã
- Três Soldados Brancos
Padrões de velas baixistas comuns:
- Harami de Baixa
- Nuvem Negra
- Estrela da Noite
- Estrela Cadente
- Homem Enforcado


