Previsão de Preço QANplatform - Projeção QANX
Previsão de Preço QANplatform até $0.020172 até 2026
| Ano | Preço Mínimo | Preço Máximo |
|---|---|---|
| 2026 | $0.006757 | $0.020172 |
| 2027 | $0.0065056 | $0.01709 |
| 2028 | $0.01174 | $0.028757 |
| 2029 | $0.025791 | $0.084841 |
| 2030 | $0.021934 | $0.063418 |
| 2031 | $0.025933 | $0.057894 |
| 2032 | $0.039585 | $0.10739 |
| 2033 | $0.091987 | $0.286049 |
| 2034 | $0.073953 | $0.165664 |
| 2035 | $0.087435 | $0.195194 |
Calculadora de lucro do investimento
Se você abrir um short de $10,000.00 em QANplatform hoje e fechar em Apr 06, 2026, nossa previsão mostra que pode lucrar cerca de $3,954.46, com um retorno de 39.54% nos próximos 90 dias.
Previsão de preço de longo prazo de QANplatform para os anos 2027, 2028, 2029, 2030, 2031, 2032 e 2037
[
'name' => 'QANplatform'
'name_with_ticker' => 'QANplatform <small>QANX</small>'
'name_lang' => 'QANplatform'
'name_lang_with_ticker' => 'QANplatform <small>QANX</small>'
'name_with_lang' => 'QANplatform'
'name_with_lang_with_ticker' => 'QANplatform <small>QANX</small>'
'image' => '/uploads/coins/qanplatform.png?1717208807'
'price_for_sd' => 0.01955
'ticker' => 'QANX'
'marketcap' => '$33.17M'
'low24h' => '$0.01886'
'high24h' => '$0.01987'
'volume24h' => '$331.23K'
'current_supply' => '1.7B'
'max_supply' => '2.1B'
'algo' => null
'proof' => null
'ico_price_and_roi' => '—'
'price' => '$0.01955'
'change_24h_pct' => '3.5052%'
'ath_price' => '$0.2034'
'ath_days' => 1501
'ath_exchange' => null
'ath_pair' => null
'ath_date' => '27 de nov. de 2021'
'ath_pct' => '-90.41%'
'fdv' => '$40.97M'
'new_prediction' => true
'change_24h_pct_is_increased' => true
'change_30d_pct' => null
'change_30d_pct_is_increased' => false
'max_price' => '$0.964436'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.019727'
'next_week_prediction_price_date' => '13 de janeiro de 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.017287'
'next_month_prediction_price_date' => '5 de fevereiro de 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.006757'
'current_year_max_price_prediction' => '$0.020172'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.021934'
'grand_prediction_max_price' => '$0.063418'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.019930519248008
107 => 0.020004932572102
108 => 0.020172589590923
109 => 0.018739978721529
110 => 0.019383178942642
111 => 0.019760998812835
112 => 0.018053994894098
113 => 0.019727256833797
114 => 0.018715040153564
115 => 0.018371478609309
116 => 0.018834038967857
117 => 0.018653778746276
118 => 0.018498801592996
119 => 0.01841232167862
120 => 0.018751974955015
121 => 0.018736129723697
122 => 0.018180391039656
123 => 0.017455452581132
124 => 0.017698765723106
125 => 0.017610367777554
126 => 0.017290002219311
127 => 0.017505889924482
128 => 0.016555229729176
129 => 0.01491966827417
130 => 0.01600017026995
131 => 0.015958572118472
201 => 0.015937596444171
202 => 0.016749563831118
203 => 0.016671511902137
204 => 0.016529846886752
205 => 0.017287400430208
206 => 0.017010883196314
207 => 0.017863044155523
208 => 0.018424332477573
209 => 0.018281971603326
210 => 0.018809865983156
211 => 0.017704371166474
212 => 0.018071572199822
213 => 0.018147251823877
214 => 0.017278052337074
215 => 0.016684282163003
216 => 0.016644684461868
217 => 0.015615168806599
218 => 0.016165127759684
219 => 0.016649068879551
220 => 0.016417298638482
221 => 0.016343927104099
222 => 0.016718766360919
223 => 0.016747894581455
224 => 0.016083768066363
225 => 0.016221860999002
226 => 0.016797731484147
227 => 0.016207350540308
228 => 0.01506033680461
301 => 0.014775861539451
302 => 0.014737907295159
303 => 0.01396638781403
304 => 0.01479487153694
305 => 0.014433216189907
306 => 0.015575681097889
307 => 0.014923111269612
308 => 0.014894980288589
309 => 0.014852456184857
310 => 0.014188377496381
311 => 0.014333768524755
312 => 0.014817070446748
313 => 0.014989518017301
314 => 0.014971530322871
315 => 0.014814702003666
316 => 0.014886497205107
317 => 0.014655219846158
318 => 0.014573550997092
319 => 0.01431578164465
320 => 0.013936931907162
321 => 0.013989613286781
322 => 0.013239012825391
323 => 0.012830045856644
324 => 0.012716849189793
325 => 0.012565477876066
326 => 0.012733946982463
327 => 0.013236886468592
328 => 0.012630234743756
329 => 0.011590172913195
330 => 0.011652682401391
331 => 0.011793122662133
401 => 0.011531413165345
402 => 0.011283727090248
403 => 0.011499070037138
404 => 0.011058382128637
405 => 0.011846377690464
406 => 0.011825064618849
407 => 0.012118780634979
408 => 0.012302447287525
409 => 0.011879155116192
410 => 0.011772698279805
411 => 0.011833340932004
412 => 0.010831052974328
413 => 0.012036872325667
414 => 0.01204730030149
415 => 0.011958009641485
416 => 0.012600071220577
417 => 0.013955021416491
418 => 0.013445234650043
419 => 0.013247829805687
420 => 0.012872563052266
421 => 0.013372583720065
422 => 0.013334189934316
423 => 0.013160558674746
424 => 0.013055545947195
425 => 0.013249035117573
426 => 0.013031570497736
427 => 0.012992507876485
428 => 0.012755830892256
429 => 0.012671347977003
430 => 0.012608800189911
501 => 0.012539941222142
502 => 0.012691826946455
503 => 0.01234763391293
504 => 0.011932570856158
505 => 0.011898062854031
506 => 0.011993342481876
507 => 0.011951188339289
508 => 0.011897861036215
509 => 0.011796044691819
510 => 0.011765837957399
511 => 0.01186399519004
512 => 0.01175318139731
513 => 0.011916693184823
514 => 0.011872227026139
515 => 0.011623842678369
516 => 0.011314263817384
517 => 0.011311507916158
518 => 0.01124480965837
519 => 0.011159859398926
520 => 0.011136228180148
521 => 0.011480934454791
522 => 0.012194466127113
523 => 0.01205438278647
524 => 0.012155607356403
525 => 0.012653532054831
526 => 0.012811807343343
527 => 0.012699467292513
528 => 0.012545689302104
529 => 0.012552454753245
530 => 0.013077960698236
531 => 0.013110735859427
601 => 0.013193548118087
602 => 0.013299985273207
603 => 0.012717594000277
604 => 0.012525024176664
605 => 0.012433773910869
606 => 0.012152758410517
607 => 0.012455809535198
608 => 0.012279234622789
609 => 0.012303060611131
610 => 0.012287543904967
611 => 0.012296017075768
612 => 0.011846157429645
613 => 0.012010062640765
614 => 0.011737538437339
615 => 0.01137265912123
616 => 0.011371435917819
617 => 0.011460739613513
618 => 0.01140761828086
619 => 0.011264670140566
620 => 0.011284975249199
621 => 0.011107081131539
622 => 0.01130657481596
623 => 0.011312295581006
624 => 0.01123547964601
625 => 0.011542827191684
626 => 0.011668747731919
627 => 0.011618185837947
628 => 0.01166520017465
629 => 0.012060203881712
630 => 0.012124606721183
701 => 0.012153210208264
702 => 0.012114885324812
703 => 0.011672420117296
704 => 0.011692045330757
705 => 0.011548048535917
706 => 0.011426386418285
707 => 0.011431252264956
708 => 0.011493802408387
709 => 0.011766962553268
710 => 0.012341811974499
711 => 0.012363627089825
712 => 0.012390067645992
713 => 0.012282520616101
714 => 0.0122500834028
715 => 0.0122928764599
716 => 0.012508759678368
717 => 0.013064069927989
718 => 0.012867786197848
719 => 0.012708204469905
720 => 0.012848200668236
721 => 0.012826649350829
722 => 0.012644734543439
723 => 0.012639628800682
724 => 0.012290476123618
725 => 0.012161402328729
726 => 0.012053538604714
727 => 0.011935754233943
728 => 0.011865927710782
729 => 0.011973212985944
730 => 0.011997750397736
731 => 0.011763169268568
801 => 0.01173119672747
802 => 0.011922760741333
803 => 0.011838460561058
804 => 0.011925165387015
805 => 0.011945281650377
806 => 0.011942042468659
807 => 0.011854023398638
808 => 0.011910124129103
809 => 0.01177742917712
810 => 0.011633143346976
811 => 0.01154109797667
812 => 0.01146077618303
813 => 0.011505343382471
814 => 0.011346469454112
815 => 0.01129564248693
816 => 0.011891118463928
817 => 0.012331002970582
818 => 0.012324606875642
819 => 0.012285672292636
820 => 0.01222782339988
821 => 0.012504527671544
822 => 0.012408129436173
823 => 0.012478267206747
824 => 0.012496120213032
825 => 0.012550155886072
826 => 0.012569468994661
827 => 0.012511091366689
828 => 0.012315168916987
829 => 0.011826948800077
830 => 0.01159968101773
831 => 0.011524678864111
901 => 0.011527405049946
902 => 0.011452204674396
903 => 0.01147435455524
904 => 0.011444501849769
905 => 0.011387968047753
906 => 0.011501852579505
907 => 0.011514976710881
908 => 0.011488394700352
909 => 0.011494655726114
910 => 0.011274568032254
911 => 0.011291300821612
912 => 0.011198130524162
913 => 0.011180662216575
914 => 0.010945135817886
915 => 0.010527866662512
916 => 0.010759074279886
917 => 0.010479807990809
918 => 0.01037404561556
919 => 0.010874708250562
920 => 0.010824455608228
921 => 0.01073844492885
922 => 0.010611217207854
923 => 0.010564027208545
924 => 0.010277315711281
925 => 0.010260375266476
926 => 0.010402477226382
927 => 0.010336902061315
928 => 0.010244809694305
929 => 0.009911260476246
930 => 0.0095362407207971
1001 => 0.0095475602099239
1002 => 0.0096668470166416
1003 => 0.010013689495191
1004 => 0.0098781721383859
1005 => 0.0097798527411414
1006 => 0.0097614404735077
1007 => 0.0099919085516364
1008 => 0.010318069166744
1009 => 0.010471096429919
1010 => 0.010319451059619
1011 => 0.010145249023385
1012 => 0.010155851894156
1013 => 0.010226388043226
1014 => 0.010233800395166
1015 => 0.010120412777836
1016 => 0.010152330727943
1017 => 0.010103844443092
1018 => 0.0098062842024639
1019 => 0.0098009022812847
1020 => 0.0097278761994274
1021 => 0.0097256649986912
1022 => 0.0096014294162422
1023 => 0.0095840479994575
1024 => 0.0093373707099441
1025 => 0.0094997344489095
1026 => 0.0093908293772904
1027 => 0.0092266837462512
1028 => 0.0091983849775898
1029 => 0.009197534282432
1030 => 0.0093660751432179
1031 => 0.0094977649508219
1101 => 0.0093927238276375
1102 => 0.0093688080000251
1103 => 0.0096241664700189
1104 => 0.009591669777068
1105 => 0.0095635278505538
1106 => 0.010288865061022
1107 => 0.009714704060168
1108 => 0.0094643370918316
1109 => 0.0091544604251176
1110 => 0.0092553578303334
1111 => 0.0092766183961037
1112 => 0.0085314208721239
1113 => 0.0082290943294538
1114 => 0.0081253472529448
1115 => 0.0080656393436455
1116 => 0.0080928489876779
1117 => 0.0078207196399082
1118 => 0.0080035950622134
1119 => 0.007767954049566
1120 => 0.0077284480669535
1121 => 0.008149803387887
1122 => 0.0082084325192729
1123 => 0.0079583024301375
1124 => 0.0081189264397455
1125 => 0.0080606819410209
1126 => 0.0077719934383971
1127 => 0.0077609676610458
1128 => 0.0076161139183207
1129 => 0.0073894458601676
1130 => 0.0072858524752756
1201 => 0.0072319001409849
1202 => 0.0072541619256233
1203 => 0.0072429056860883
1204 => 0.0071694511091085
1205 => 0.0072471160164579
1206 => 0.0070487142715355
1207 => 0.0069697090980759
1208 => 0.0069340242941303
1209 => 0.0067579313259332
1210 => 0.0070381735472331
1211 => 0.0070933847952276
1212 => 0.0071487048264364
1213 => 0.0076302279295189
1214 => 0.007606172396059
1215 => 0.0078236227030161
1216 => 0.0078151729839532
1217 => 0.0077531526339476
1218 => 0.0074914989791265
1219 => 0.0075957894624103
1220 => 0.0072747995652025
1221 => 0.0075153070213819
1222 => 0.0074055494622131
1223 => 0.0074781978802208
1224 => 0.0073475694741992
1225 => 0.0074198646276062
1226 => 0.0071064774303294
1227 => 0.0068138408749892
1228 => 0.0069316063674517
1229 => 0.0070596309258761
1230 => 0.007337220788591
1231 => 0.0071718905564246
]
'min_raw' => 0.0067579313259332
'max_raw' => 0.020172589590923
'avg_raw' => 0.013465260458428
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.006757'
'max' => '$0.020172'
'avg' => '$0.013465'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.012801938674067
'max_diff' => 0.00061271959092331
'year' => 2026
]
1 => [
'items' => [
101 => 0.0072313495597399
102 => 0.0070321718519507
103 => 0.0066212113484822
104 => 0.0066235373403017
105 => 0.0065603200201043
106 => 0.0065056910255739
107 => 0.0071908807224133
108 => 0.0071056665523651
109 => 0.0069698889249483
110 => 0.0071516326748342
111 => 0.0071996886069652
112 => 0.0072010566917943
113 => 0.0073336522402259
114 => 0.0074044185081929
115 => 0.0074168913696407
116 => 0.0076255333300143
117 => 0.0076954673630775
118 => 0.0079835157478301
119 => 0.0073984144847723
120 => 0.0073863647092962
121 => 0.007154190182105
122 => 0.0070069414264262
123 => 0.0071642724303831
124 => 0.0073036462220652
125 => 0.0071585209143155
126 => 0.0071774712157451
127 => 0.0069826523472645
128 => 0.0070522909256666
129 => 0.007112273050716
130 => 0.00707915444685
131 => 0.0070295742939042
201 => 0.007292219160545
202 => 0.0072773997078556
203 => 0.0075219806458509
204 => 0.0077126489771689
205 => 0.0080543607129319
206 => 0.0076977667028276
207 => 0.0076847709997666
208 => 0.0078118060817644
209 => 0.0076954479146683
210 => 0.0077689822597256
211 => 0.0080425131931066
212 => 0.0080482924707046
213 => 0.0079514821247605
214 => 0.0079455912064116
215 => 0.0079641846923393
216 => 0.0080730873201749
217 => 0.0080350333957694
218 => 0.0080790703604989
219 => 0.0081341392592111
220 => 0.008361927573014
221 => 0.0084168465642981
222 => 0.0082834218877099
223 => 0.0082954686421131
224 => 0.0082455641504798
225 => 0.0081973570368635
226 => 0.0083057195881894
227 => 0.0085037542806086
228 => 0.0085025223170651
301 => 0.008548462516462
302 => 0.0085770828800972
303 => 0.0084542233279886
304 => 0.0083742462772368
305 => 0.008404914567567
306 => 0.0084539538316734
307 => 0.0083890117951519
308 => 0.0079881594616637
309 => 0.0081097524530979
310 => 0.0080895134337297
311 => 0.0080606906090006
312 => 0.0081829533021384
313 => 0.0081711607671235
314 => 0.0078179285601175
315 => 0.0078405413399509
316 => 0.007819303718155
317 => 0.0078879268189862
318 => 0.0076917420420216
319 => 0.0077520871580913
320 => 0.0077899350491898
321 => 0.0078122277478081
322 => 0.0078927642614638
323 => 0.0078833142311352
324 => 0.0078921768343101
325 => 0.0080115912232101
326 => 0.0086155482241967
327 => 0.0086484202712044
328 => 0.0084865462893522
329 => 0.008551211752279
330 => 0.0084270682042417
331 => 0.0085104065997286
401 => 0.0085674246133551
402 => 0.0083097711737106
403 => 0.0082945146091719
404 => 0.0081698586765514
405 => 0.0082368417138687
406 => 0.0081302668852461
407 => 0.0081564166203608
408 => 0.008083299681287
409 => 0.0082148956141825
410 => 0.0083620403151002
411 => 0.0083992148774723
412 => 0.0083014246085266
413 => 0.0082306180091171
414 => 0.0081063049456979
415 => 0.0083130403406614
416 => 0.0083734960702957
417 => 0.0083127227924504
418 => 0.0082986402960513
419 => 0.0082719539908215
420 => 0.0083043019218601
421 => 0.0083731668154085
422 => 0.008340691403346
423 => 0.0083621419851564
424 => 0.008280394487039
425 => 0.0084542639996125
426 => 0.0087304106295561
427 => 0.0087312984861259
428 => 0.0086988228990088
429 => 0.0086855345884567
430 => 0.0087188565116223
501 => 0.0087369322880028
502 => 0.0088446892773246
503 => 0.0089603168200948
504 => 0.0094999001099537
505 => 0.0093483872813388
506 => 0.0098271376760552
507 => 0.010205767080318
508 => 0.010319301483199
509 => 0.010214855174755
510 => 0.0098575499956459
511 => 0.0098400188989444
512 => 0.010373983686888
513 => 0.010223114177158
514 => 0.010205168729038
515 => 0.010014259480358
516 => 0.010127110490898
517 => 0.010102428319468
518 => 0.010063466304374
519 => 0.010278778171215
520 => 0.01068182276492
521 => 0.010619004485263
522 => 0.010572113553555
523 => 0.010366651140556
524 => 0.010490385404873
525 => 0.010446326003323
526 => 0.010635633153167
527 => 0.010523491791266
528 => 0.010221971192237
529 => 0.010269989341457
530 => 0.010262731494802
531 => 0.010412097464676
601 => 0.010367261508011
602 => 0.010253976554672
603 => 0.010680445202315
604 => 0.01065275270048
605 => 0.010692014336695
606 => 0.010709298523163
607 => 0.010968882473763
608 => 0.011075225712564
609 => 0.011099367489572
610 => 0.011200385341552
611 => 0.01109685407339
612 => 0.011511052962581
613 => 0.011786471054718
614 => 0.012106383341621
615 => 0.012573861177102
616 => 0.012749637167655
617 => 0.012717884808271
618 => 0.013072321167882
619 => 0.013709235427425
620 => 0.0128466233902
621 => 0.013754955959984
622 => 0.013467388355594
623 => 0.012785570738707
624 => 0.012741669722281
625 => 0.013203404528502
626 => 0.014227487888374
627 => 0.013970966621783
628 => 0.014227907465269
629 => 0.013928172323126
630 => 0.013913287946953
701 => 0.014213349998437
702 => 0.014914461337261
703 => 0.014581389620951
704 => 0.014103849643086
705 => 0.014456457731397
706 => 0.014150995972964
707 => 0.013462705137852
708 => 0.013970770464805
709 => 0.013631041649539
710 => 0.013730192578811
711 => 0.014444252017653
712 => 0.014358334496804
713 => 0.014469519724531
714 => 0.014273280707818
715 => 0.014089962522156
716 => 0.01374778551523
717 => 0.013646483772602
718 => 0.01367447992981
719 => 0.013646469899097
720 => 0.013455025008491
721 => 0.013413682502593
722 => 0.013344776514838
723 => 0.013366133361725
724 => 0.013236569945588
725 => 0.013481082881005
726 => 0.013526466636459
727 => 0.013704402760169
728 => 0.013722876678813
729 => 0.014218426250583
730 => 0.013945485873824
731 => 0.014128597843092
801 => 0.014112218585044
802 => 0.012800347793916
803 => 0.0129811120142
804 => 0.013262324414024
805 => 0.013135638609077
806 => 0.012956534520796
807 => 0.012811898366556
808 => 0.012592759803075
809 => 0.012901193122991
810 => 0.013306750140453
811 => 0.013733162274047
812 => 0.014245468512931
813 => 0.014131127724314
814 => 0.013723585065264
815 => 0.013741867131239
816 => 0.013854879669368
817 => 0.013708518164219
818 => 0.013665353299035
819 => 0.013848949479733
820 => 0.013850213805727
821 => 0.013681807205674
822 => 0.013494654087799
823 => 0.013493869909401
824 => 0.01346056781976
825 => 0.013934096690892
826 => 0.014194489690846
827 => 0.014224343328647
828 => 0.014192480303161
829 => 0.014204743117072
830 => 0.014053226167767
831 => 0.014399548982923
901 => 0.014717369045887
902 => 0.014632186479777
903 => 0.014504485703764
904 => 0.014402765884766
905 => 0.014608224523124
906 => 0.014599075773379
907 => 0.014714593164897
908 => 0.014709352628757
909 => 0.014670508474818
910 => 0.014632187867024
911 => 0.014784124745363
912 => 0.014740369364433
913 => 0.014696546019311
914 => 0.01460865159165
915 => 0.014620597904141
916 => 0.014492919177467
917 => 0.014433849156326
918 => 0.013545577767173
919 => 0.013308202626886
920 => 0.013382885678237
921 => 0.013407473277886
922 => 0.013304167312629
923 => 0.013452281529683
924 => 0.013429198085846
925 => 0.01351900226245
926 => 0.013462896511752
927 => 0.013465199111331
928 => 0.013630194161126
929 => 0.01367809292602
930 => 0.013653731227604
1001 => 0.013670793326104
1002 => 0.014063982184581
1003 => 0.014008083302377
1004 => 0.013978388135313
1005 => 0.01398661389953
1006 => 0.014087082082935
1007 => 0.014115207688929
1008 => 0.013996037519981
1009 => 0.014052238860571
1010 => 0.014291537035792
1011 => 0.014375277854016
1012 => 0.014642538347912
1013 => 0.014529001339929
1014 => 0.014737403431849
1015 => 0.015377960412905
1016 => 0.015889681652544
1017 => 0.015419081652798
1018 => 0.016358792542088
1019 => 0.017090492262921
1020 => 0.017062408408926
1021 => 0.016934819638079
1022 => 0.016101798959154
1023 => 0.015335240910768
1024 => 0.015976499268017
1025 => 0.015978133967445
1026 => 0.015923049305854
1027 => 0.015580923203613
1028 => 0.015911144059097
1029 => 0.015937355791419
1030 => 0.015922684191581
1031 => 0.01566037691115
1101 => 0.01525988217642
1102 => 0.015338137888938
1103 => 0.015466322342414
1104 => 0.015223642429905
1105 => 0.015146091493364
1106 => 0.015290273439063
1107 => 0.015754857709608
1108 => 0.015667030744415
1109 => 0.015664737227417
1110 => 0.016040498228942
1111 => 0.01577153444615
1112 => 0.015339124944082
1113 => 0.015229935842029
1114 => 0.014842388088335
1115 => 0.015110068702209
1116 => 0.01511970205096
1117 => 0.01497309611437
1118 => 0.015351021207845
1119 => 0.015347538561576
1120 => 0.015706322191103
1121 => 0.016392181737781
1122 => 0.01618933932073
1123 => 0.015953455658892
1124 => 0.015979102753278
1125 => 0.016260388076273
1126 => 0.016090316548871
1127 => 0.016151475455905
1128 => 0.016260295504942
1129 => 0.016325949342376
1130 => 0.015969656176426
1201 => 0.015886587195971
1202 => 0.01571665721521
1203 => 0.015672325655123
1204 => 0.015810730078748
1205 => 0.015774265403023
1206 => 0.0151188924053
1207 => 0.015050402280577
1208 => 0.01505250277492
1209 => 0.014880281099776
1210 => 0.014617601707244
1211 => 0.015307907467048
1212 => 0.015252466253713
1213 => 0.015191263445
1214 => 0.015198760439849
1215 => 0.015498398773547
1216 => 0.015324593407903
1217 => 0.015786683458606
1218 => 0.01569169163588
1219 => 0.015594263631338
1220 => 0.01558079611338
1221 => 0.015543294643799
1222 => 0.01541468815092
1223 => 0.015259388082717
1224 => 0.015156845525828
1225 => 0.013981388809753
1226 => 0.014199546738939
1227 => 0.014450517550747
1228 => 0.014537151669281
1229 => 0.014388958014631
1230 => 0.015420539739656
1231 => 0.015609019661388
]
'min_raw' => 0.0065056910255739
'max_raw' => 0.017090492262921
'avg_raw' => 0.011798091644247
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.0065056'
'max' => '$0.01709'
'avg' => '$0.011798'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -0.00025224030035935
'max_diff' => -0.0030820973280025
'year' => 2027
]
2 => [
'items' => [
101 => 0.015038101684223
102 => 0.014931306241123
103 => 0.015427541231127
104 => 0.015128250869894
105 => 0.015263021301231
106 => 0.014971721344165
107 => 0.015563620367579
108 => 0.015559111088723
109 => 0.015328848999969
110 => 0.015523464940617
111 => 0.015489645631666
112 => 0.015229680300573
113 => 0.015571861732266
114 => 0.015572031449987
115 => 0.015350409195891
116 => 0.015091602922457
117 => 0.015045334473498
118 => 0.015010477412499
119 => 0.015254448601002
120 => 0.015473192405736
121 => 0.015880220395157
122 => 0.015982556902444
123 => 0.016381983103313
124 => 0.016144144248404
125 => 0.016249575132256
126 => 0.016364035270787
127 => 0.01641891167033
128 => 0.016329493522104
129 => 0.016949966822436
130 => 0.017002353779794
131 => 0.017019918673451
201 => 0.016810698567633
202 => 0.016996534990175
203 => 0.016909588282323
204 => 0.017135799461663
205 => 0.017171272262993
206 => 0.017141228062248
207 => 0.01715248768929
208 => 0.016623023186448
209 => 0.016595567658828
210 => 0.016221209591572
211 => 0.016373763271094
212 => 0.016088571479315
213 => 0.016179008734289
214 => 0.016218872614564
215 => 0.016198049985764
216 => 0.016382388427244
217 => 0.01622566309413
218 => 0.015812039172012
219 => 0.015398302558334
220 => 0.015393108432172
221 => 0.015284178884848
222 => 0.015205442773574
223 => 0.015220610141919
224 => 0.015274061926277
225 => 0.015202336058697
226 => 0.015217642409139
227 => 0.015471829812156
228 => 0.015522805283049
229 => 0.015349570715552
301 => 0.014654008929419
302 => 0.014483316322418
303 => 0.014606006783349
304 => 0.014547368645301
305 => 0.011740861872329
306 => 0.012400209009136
307 => 0.012008447329759
308 => 0.012188989135704
309 => 0.011789101907255
310 => 0.011979949052556
311 => 0.011944706553441
312 => 0.013004917237925
313 => 0.012988363506359
314 => 0.012996286901656
315 => 0.012618082599847
316 => 0.013220572321994
317 => 0.013517380423954
318 => 0.013462449143573
319 => 0.013476274163397
320 => 0.01323871451834
321 => 0.0129985869983
322 => 0.012732248623214
323 => 0.013227072403705
324 => 0.013172056446238
325 => 0.013298243258551
326 => 0.013619171850933
327 => 0.013666429805251
328 => 0.013729944975096
329 => 0.013707179308024
330 => 0.01424954985864
331 => 0.014183865206285
401 => 0.014342146319698
402 => 0.01401655006059
403 => 0.013648106987529
404 => 0.013718135970407
405 => 0.013711391616218
406 => 0.013625528246588
407 => 0.013548014635696
408 => 0.013418976312886
409 => 0.013827272660335
410 => 0.013810696574266
411 => 0.014079044140143
412 => 0.014031611101285
413 => 0.013714841658958
414 => 0.013726155141561
415 => 0.013802243749142
416 => 0.014065587288744
417 => 0.014143765581093
418 => 0.014107550281211
419 => 0.014193269209797
420 => 0.014261017955909
421 => 0.014201777409231
422 => 0.015040498622944
423 => 0.014692203099571
424 => 0.014861959914239
425 => 0.014902445914272
426 => 0.014798741876516
427 => 0.014821231568942
428 => 0.014855297324893
429 => 0.015062137924269
430 => 0.01560494750684
501 => 0.015845354175931
502 => 0.016568629501347
503 => 0.015825391748685
504 => 0.015781291096266
505 => 0.015911574823195
506 => 0.016336214005683
507 => 0.01668034417876
508 => 0.016794512010515
509 => 0.016809601174187
510 => 0.017023787616294
511 => 0.017146555290569
512 => 0.01699777974856
513 => 0.016871708054155
514 => 0.016420134893393
515 => 0.016472405716344
516 => 0.016832499851996
517 => 0.017341154028044
518 => 0.017777632227539
519 => 0.017624792774877
520 => 0.018790849910853
521 => 0.018906459712969
522 => 0.018890486176429
523 => 0.019153862510694
524 => 0.018631114122835
525 => 0.018407629059253
526 => 0.01689896618546
527 => 0.017322838915437
528 => 0.017938962821631
529 => 0.0178574165123
530 => 0.017409970862583
531 => 0.017777292799891
601 => 0.017655844680198
602 => 0.017560053509309
603 => 0.017998891433183
604 => 0.017516371109415
605 => 0.017934149312292
606 => 0.01739834444574
607 => 0.017625490932623
608 => 0.017496551600828
609 => 0.017579991150709
610 => 0.017092205247056
611 => 0.017355402680334
612 => 0.017081255368518
613 => 0.017081125386998
614 => 0.017075073569895
615 => 0.01739760666649
616 => 0.017408124459191
617 => 0.017169772013486
618 => 0.017135421702295
619 => 0.017262432806495
620 => 0.017113736067738
621 => 0.017183310335916
622 => 0.017115843401445
623 => 0.017100655173424
624 => 0.016979632788491
625 => 0.016927493017483
626 => 0.016947938365172
627 => 0.01687814785321
628 => 0.01683609654532
629 => 0.017066708506339
630 => 0.016943501838427
701 => 0.017047825317449
702 => 0.016928935546431
703 => 0.016516811802272
704 => 0.016279795078877
705 => 0.015501331530053
706 => 0.015722102826818
707 => 0.015868474424978
708 => 0.015820098612659
709 => 0.015924028576474
710 => 0.015930409032168
711 => 0.015896620341492
712 => 0.015857497366287
713 => 0.015838454465594
714 => 0.015980384645805
715 => 0.016062779892568
716 => 0.015883164773053
717 => 0.015841083463633
718 => 0.016022684266286
719 => 0.016133460650997
720 => 0.016951371235828
721 => 0.016890777777887
722 => 0.017042855466453
723 => 0.017025733852543
724 => 0.017185135498035
725 => 0.017445689820253
726 => 0.016915910031049
727 => 0.017007861484048
728 => 0.016985317111242
729 => 0.017231450662088
730 => 0.017232219064168
731 => 0.017084649705153
801 => 0.017164649448714
802 => 0.017119995786536
803 => 0.017200690989396
804 => 0.016889968515314
805 => 0.017268394948328
806 => 0.017482938350585
807 => 0.017485917285934
808 => 0.017587609155882
809 => 0.017690933985346
810 => 0.017889256997805
811 => 0.017685402864168
812 => 0.017318689122556
813 => 0.017345164670222
814 => 0.01713016053769
815 => 0.017133774796001
816 => 0.01711448160188
817 => 0.017172381929762
818 => 0.016902674381267
819 => 0.016965974203815
820 => 0.016877354081564
821 => 0.01700766884121
822 => 0.016867471701633
823 => 0.016985306239663
824 => 0.01703615972
825 => 0.017223810157241
826 => 0.016839755579478
827 => 0.016056642297211
828 => 0.016221262203474
829 => 0.015977776431496
830 => 0.016000311966708
831 => 0.016045837334341
901 => 0.01589827472287
902 => 0.015926425018906
903 => 0.015925419292241
904 => 0.01591675248318
905 => 0.015878365748798
906 => 0.01582269738936
907 => 0.016044462999543
908 => 0.0160821452981
909 => 0.016165908379942
910 => 0.016415130494463
911 => 0.01639022732816
912 => 0.016430845425623
913 => 0.016342176346923
914 => 0.01600442507096
915 => 0.016022766590215
916 => 0.0157940475512
917 => 0.016160059519884
918 => 0.016073383054577
919 => 0.016017502173531
920 => 0.016002254557404
921 => 0.016252094445343
922 => 0.016326850455574
923 => 0.016280267526687
924 => 0.016184724580499
925 => 0.016368195281917
926 => 0.016417284301609
927 => 0.016428273522785
928 => 0.01675334842868
929 => 0.016446441598892
930 => 0.016520317123214
1001 => 0.017096672875271
1002 => 0.016573997739812
1003 => 0.016850870416111
1004 => 0.016837318939382
1005 => 0.016978957631716
1006 => 0.016825700432487
1007 => 0.016827600239149
1008 => 0.016953365802505
1009 => 0.01677675075071
1010 => 0.016733018380142
1011 => 0.01667260242342
1012 => 0.016804518454649
1013 => 0.016883596149322
1014 => 0.017520904292218
1015 => 0.017932634417311
1016 => 0.017914760126719
1017 => 0.018078097683453
1018 => 0.018004512618144
1019 => 0.017766887031501
1020 => 0.018172484932547
1021 => 0.018044136785719
1022 => 0.018054717651001
1023 => 0.018054323830667
1024 => 0.018139664127918
1025 => 0.018079192705992
1026 => 0.017959997326112
1027 => 0.018039124781892
1028 => 0.018274105036974
1029 => 0.019003490958823
1030 => 0.019411664983768
1031 => 0.018978918370003
1101 => 0.01927742118947
1102 => 0.01909842586522
1103 => 0.019065897090154
1104 => 0.019253378919964
1105 => 0.019441188911899
1106 => 0.019429226227338
1107 => 0.019292885817343
1108 => 0.019215870579247
1109 => 0.01979905576411
1110 => 0.020228736674017
1111 => 0.020199435316578
1112 => 0.020328761978999
1113 => 0.020708469059789
1114 => 0.020743184716612
1115 => 0.020738811341783
1116 => 0.020652764964142
1117 => 0.021026635896375
1118 => 0.021338525605677
1119 => 0.020632847713837
1120 => 0.020901560617048
1121 => 0.021022194496688
1122 => 0.021199320822459
1123 => 0.021498162623854
1124 => 0.021822784084042
1125 => 0.021868689117806
1126 => 0.021836117299593
1127 => 0.021622020720305
1128 => 0.021977225395583
1129 => 0.022185295963786
1130 => 0.02230919722554
1201 => 0.022623390210145
1202 => 0.02102293949046
1203 => 0.019890060923504
1204 => 0.019713145576309
1205 => 0.020072909891683
1206 => 0.02016777687258
1207 => 0.020129536111533
1208 => 0.018854378287612
1209 => 0.019706432134267
1210 => 0.020623170430545
1211 => 0.020658386082039
1212 => 0.021117324441249
1213 => 0.021266773583527
1214 => 0.021636279117118
1215 => 0.021613166445386
1216 => 0.021703135162698
1217 => 0.021682452912629
1218 => 0.022366884105035
1219 => 0.023121913349275
1220 => 0.023095769087393
1221 => 0.022987224700433
1222 => 0.023148431624637
1223 => 0.023927702718544
1224 => 0.023855959923781
1225 => 0.023925651937856
1226 => 0.024844456475366
1227 => 0.026039033072551
1228 => 0.025484032309629
1229 => 0.026688224268002
1230 => 0.027446199274324
1231 => 0.028757038671681
]
'min_raw' => 0.011740861872329
'max_raw' => 0.028757038671681
'avg_raw' => 0.020248950272005
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.01174'
'max' => '$0.028757'
'avg' => '$0.020248'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 0.0052351708467555
'max_diff' => 0.01166654640876
'year' => 2028
]
3 => [
'items' => [
101 => 0.028592915123111
102 => 0.029103215281119
103 => 0.028299099717554
104 => 0.026452687845043
105 => 0.026160486098438
106 => 0.026745481394869
107 => 0.028183635248139
108 => 0.026700188812074
109 => 0.027000288094045
110 => 0.026913859480649
111 => 0.026909254067139
112 => 0.027085023969243
113 => 0.0268300605587
114 => 0.025791293757105
115 => 0.026267354460785
116 => 0.026083524560781
117 => 0.026287497540262
118 => 0.027388255585663
119 => 0.026901584214997
120 => 0.026388915459972
121 => 0.027031915849078
122 => 0.027850676303315
123 => 0.027799439745543
124 => 0.027700019408245
125 => 0.028260446644113
126 => 0.029186108247993
127 => 0.029436310859913
128 => 0.029621005312865
129 => 0.029646471557488
130 => 0.029908789704295
131 => 0.02849823891623
201 => 0.030736819242402
202 => 0.031123360225199
203 => 0.031050706540915
204 => 0.031480330575162
205 => 0.031353924285777
206 => 0.031170781404997
207 => 0.031851826882931
208 => 0.031071063200016
209 => 0.029962867447531
210 => 0.029354889340092
211 => 0.030155523956163
212 => 0.0306444435779
213 => 0.03096758834674
214 => 0.031065371758542
215 => 0.028607735958585
216 => 0.027283206569138
217 => 0.028132214722013
218 => 0.029168063263933
219 => 0.028492484725279
220 => 0.028518966124955
221 => 0.02755576866775
222 => 0.029253284866309
223 => 0.029005971034537
224 => 0.030289035631258
225 => 0.029982821968014
226 => 0.03102911133836
227 => 0.030753588282173
228 => 0.031897269084119
301 => 0.032353514319937
302 => 0.033119621079776
303 => 0.03368317233093
304 => 0.034014100404624
305 => 0.03399423272436
306 => 0.03530553462005
307 => 0.03453230570556
308 => 0.033560947952898
309 => 0.033543379155747
310 => 0.034046459100096
311 => 0.035100776650211
312 => 0.035374145851259
313 => 0.035526921940932
314 => 0.035292940041423
315 => 0.03445365547256
316 => 0.034091256650994
317 => 0.034400030946673
318 => 0.034022426516335
319 => 0.034674277700188
320 => 0.035569408603518
321 => 0.035384567611712
322 => 0.03600246333441
323 => 0.036641920402878
324 => 0.0375563727306
325 => 0.037795444431138
326 => 0.038190620861045
327 => 0.038597387216115
328 => 0.038728029606702
329 => 0.038977466466287
330 => 0.038976151810912
331 => 0.039727846576308
401 => 0.040556989180589
402 => 0.040869971319009
403 => 0.041589656488371
404 => 0.040357220856615
405 => 0.041292037440502
406 => 0.042135265399146
407 => 0.041129934264643
408 => 0.042515549021443
409 => 0.042569349302579
410 => 0.043381669673097
411 => 0.042558227355824
412 => 0.042069269936349
413 => 0.043480871685379
414 => 0.044163901306696
415 => 0.043958167226076
416 => 0.042392520714212
417 => 0.041481247290569
418 => 0.039096268969381
419 => 0.041921378814225
420 => 0.043297407410064
421 => 0.042388957132573
422 => 0.042847126611143
423 => 0.045346750724268
424 => 0.04629844574787
425 => 0.046100499835811
426 => 0.046133949436482
427 => 0.046647466796731
428 => 0.048924685571251
429 => 0.04756012329604
430 => 0.048603280026266
501 => 0.049156566594596
502 => 0.049670489994256
503 => 0.048408456551849
504 => 0.04676656958623
505 => 0.046246515062492
506 => 0.042298629656074
507 => 0.042093125075873
508 => 0.04197776912758
509 => 0.041250466191015
510 => 0.040679005307915
511 => 0.040224558396692
512 => 0.039031953992308
513 => 0.039434422969518
514 => 0.037533660464813
515 => 0.038749700956436
516 => 0.035716038103411
517 => 0.038242562673189
518 => 0.036867490216835
519 => 0.037790814388821
520 => 0.037787592997768
521 => 0.036087460456945
522 => 0.03510685948826
523 => 0.035731736591067
524 => 0.036401654448082
525 => 0.036510346366509
526 => 0.037378912354774
527 => 0.037621310452336
528 => 0.036886832900239
529 => 0.035653172183742
530 => 0.035939723431379
531 => 0.035101052536372
601 => 0.033631314051883
602 => 0.034686905890615
603 => 0.035047331355455
604 => 0.035206515773715
605 => 0.033761196774825
606 => 0.033307046165971
607 => 0.03306526019251
608 => 0.035466599650524
609 => 0.035598150446752
610 => 0.034925117973844
611 => 0.037967288570943
612 => 0.037278751671213
613 => 0.038048016083847
614 => 0.035913721909144
615 => 0.035995254820826
616 => 0.03498484575494
617 => 0.035550607316278
618 => 0.035150745280071
619 => 0.035504899373087
620 => 0.035717177876209
621 => 0.036727421143909
622 => 0.03825409802853
623 => 0.036576524488359
624 => 0.03584558167361
625 => 0.036299054484902
626 => 0.037506712339319
627 => 0.039336375807629
628 => 0.03825317820898
629 => 0.038733882909373
630 => 0.038838895501345
701 => 0.038040185694256
702 => 0.039365825377484
703 => 0.040076246453204
704 => 0.040804991475964
705 => 0.041437740360254
706 => 0.040513914688427
707 => 0.041502540582491
708 => 0.040705882627838
709 => 0.039991198085529
710 => 0.039992281966971
711 => 0.039543949913706
712 => 0.03867525006703
713 => 0.038515048487056
714 => 0.039348437337309
715 => 0.040016736272994
716 => 0.040071780574273
717 => 0.040441785203508
718 => 0.040660750131738
719 => 0.042806904096779
720 => 0.043670104975435
721 => 0.0447256106703
722 => 0.045136789623491
723 => 0.046374290856783
724 => 0.045374908105964
725 => 0.045158685361412
726 => 0.042156912153013
727 => 0.042648452347726
728 => 0.043435455626035
729 => 0.042169889547201
730 => 0.042972599931065
731 => 0.043131071964571
801 => 0.042126886096117
802 => 0.042663265156768
803 => 0.041238801396988
804 => 0.038285147445883
805 => 0.039369113638678
806 => 0.040167277615651
807 => 0.039028199207602
808 => 0.041069953165608
809 => 0.039877202653698
810 => 0.039499158003544
811 => 0.038024271040644
812 => 0.038720360913528
813 => 0.039661832433649
814 => 0.039080112492026
815 => 0.040287268716583
816 => 0.041996923867361
817 => 0.04321532593953
818 => 0.043308859721672
819 => 0.042525508815867
820 => 0.043780833641699
821 => 0.043789977312586
822 => 0.042373965780895
823 => 0.041506666602119
824 => 0.041309614403888
825 => 0.041801889429428
826 => 0.042399602189416
827 => 0.043342028619982
828 => 0.043911517174226
829 => 0.045396441290303
830 => 0.045798219180002
831 => 0.046239651269337
901 => 0.046829540673303
902 => 0.047537854147304
903 => 0.0459881045905
904 => 0.046049679029486
905 => 0.044606573699934
906 => 0.043064408693068
907 => 0.044234719699697
908 => 0.045764745660915
909 => 0.045413756014883
910 => 0.045374262509637
911 => 0.045440679630877
912 => 0.045176044900019
913 => 0.043979111820169
914 => 0.043378019520666
915 => 0.044153581942025
916 => 0.044565758852666
917 => 0.045205009295465
918 => 0.04512620818545
919 => 0.046772848675614
920 => 0.047412683378269
921 => 0.047248986281259
922 => 0.0472791104867
923 => 0.048437500653366
924 => 0.049725868759807
925 => 0.050932595506635
926 => 0.052160129783627
927 => 0.050680289301234
928 => 0.049928917568148
929 => 0.050704141403215
930 => 0.050292796724263
1001 => 0.052656505262281
1002 => 0.052820163312988
1003 => 0.055183700927975
1004 => 0.057426979569421
1005 => 0.05601801644724
1006 => 0.057346605210364
1007 => 0.058783582279114
1008 => 0.061555744185859
1009 => 0.060622177581499
1010 => 0.059907080193413
1011 => 0.059231316616997
1012 => 0.060637473345072
1013 => 0.062446471511838
1014 => 0.06283611239059
1015 => 0.063467479468441
1016 => 0.062803674185974
1017 => 0.063603154532952
1018 => 0.066425671467248
1019 => 0.065663002476555
1020 => 0.064579889904613
1021 => 0.066807995946832
1022 => 0.067614338861968
1023 => 0.073273675725456
1024 => 0.080418822291155
1025 => 0.077460684695394
1026 => 0.075624473231201
1027 => 0.076056026480805
1028 => 0.078665192128123
1029 => 0.079503173323263
1030 => 0.077225251565432
1031 => 0.078029852040011
1101 => 0.082463279761518
1102 => 0.084841671492715
1103 => 0.081611496061123
1104 => 0.072699570155976
1105 => 0.064482367468101
1106 => 0.066661939646385
1107 => 0.066414843801367
1108 => 0.071178008806754
1109 => 0.065644813073358
1110 => 0.065737977898837
1111 => 0.070599640112256
1112 => 0.069302631983707
1113 => 0.067201644923707
1114 => 0.06449770699873
1115 => 0.059499227660424
1116 => 0.055071935117578
1117 => 0.063754875338679
1118 => 0.063380451167443
1119 => 0.06283822948094
1120 => 0.064044885169738
1121 => 0.069904062679351
1122 => 0.069768989673447
1123 => 0.068909724124743
1124 => 0.069561469470216
1125 => 0.067087390813503
1126 => 0.067725017217062
1127 => 0.064481065821212
1128 => 0.065947467331513
1129 => 0.067197137149078
1130 => 0.067448026866632
1201 => 0.068013294211027
1202 => 0.063183146643167
1203 => 0.065351741095454
1204 => 0.066625587166351
1205 => 0.060870304275121
1206 => 0.066511823728237
1207 => 0.063099064520119
1208 => 0.061940722786961
1209 => 0.06350027733074
1210 => 0.062892517408312
1211 => 0.06237000111587
1212 => 0.062078428046717
1213 => 0.063223592781914
1214 => 0.06317016947825
1215 => 0.06129645770457
1216 => 0.058852277078067
1217 => 0.059672624323816
1218 => 0.059374584478639
1219 => 0.058294449631813
1220 => 0.059022330102595
1221 => 0.055817112881147
1222 => 0.05030270324434
1223 => 0.05394569116135
1224 => 0.053805440089353
1225 => 0.053734719138973
1226 => 0.056472323873815
1227 => 0.056209166345847
1228 => 0.05573153285574
1229 => 0.058285677518202
1230 => 0.05735338035831
1231 => 0.060226500528261
]
'min_raw' => 0.025791293757105
'max_raw' => 0.084841671492715
'avg_raw' => 0.05531648262491
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.025791'
'max' => '$0.084841'
'avg' => '$0.055316'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072435
'min_diff' => 0.014050431884776
'max_diff' => 0.056084632821035
'year' => 2029
]
4 => [
'items' => [
101 => 0.062118923293953
102 => 0.06163894366711
103 => 0.063418776425117
104 => 0.059691523467489
105 => 0.06092956738858
106 => 0.061184726524862
107 => 0.058254159769537
108 => 0.056252222171947
109 => 0.056118715757947
110 => 0.052647631847721
111 => 0.054501856854953
112 => 0.056133498128274
113 => 0.055352068578831
114 => 0.055104691328021
115 => 0.056368488052829
116 => 0.056466695882033
117 => 0.054227546968571
118 => 0.054693136932304
119 => 0.056634724478962
120 => 0.054644213907729
121 => 0.050776977015879
122 => 0.049817848797967
123 => 0.049689883413457
124 => 0.047088651617062
125 => 0.049881942331738
126 => 0.048662596079245
127 => 0.052514496280859
128 => 0.050314311543852
129 => 0.050219465977293
130 => 0.05007609299262
131 => 0.04783710532993
201 => 0.04832730133297
202 => 0.049956787506035
203 => 0.05053820653006
204 => 0.050477559762428
205 => 0.049948802134824
206 => 0.050190864669064
207 => 0.049411096906098
208 => 0.049135744679533
209 => 0.048266657310895
210 => 0.046989338970511
211 => 0.04716695791999
212 => 0.044636256059164
213 => 0.043257395370873
214 => 0.042875744905446
215 => 0.042365385952805
216 => 0.04293339130716
217 => 0.044629086898758
218 => 0.042583718253402
219 => 0.039077077176868
220 => 0.039287832280593
221 => 0.039761336424912
222 => 0.038878964584517
223 => 0.038043873689438
224 => 0.038769917469643
225 => 0.037284107418283
226 => 0.039940889471078
227 => 0.039869030962095
228 => 0.040859315017077
301 => 0.041478559959331
302 => 0.040051400850365
303 => 0.039692474193909
304 => 0.039896935129734
305 => 0.036517651302916
306 => 0.040583155433575
307 => 0.040618314082121
308 => 0.040317264387838
309 => 0.042482019829056
310 => 0.04705032901418
311 => 0.045331547338925
312 => 0.044665983123815
313 => 0.043400745064367
314 => 0.045086599656179
315 => 0.044957152326957
316 => 0.04437174241277
317 => 0.044017684670079
318 => 0.044670046916989
319 => 0.043936849768314
320 => 0.043805147413501
321 => 0.043007174436914
322 => 0.042722334389729
323 => 0.042511450158602
324 => 0.042279287341188
325 => 0.042791380665034
326 => 0.041630909821713
327 => 0.040231495747028
328 => 0.040115149608588
329 => 0.040436391526078
330 => 0.040294265891237
331 => 0.040114469165728
401 => 0.039771188252008
402 => 0.039669344137943
403 => 0.040000288100913
404 => 0.039626671661952
405 => 0.04017796306958
406 => 0.04002804231105
407 => 0.039190597140902
408 => 0.038146830396985
409 => 0.03813753868359
410 => 0.037912660850733
411 => 0.037626245119982
412 => 0.037546570815991
413 => 0.038708772087575
414 => 0.041114493937997
415 => 0.040642193174714
416 => 0.040983478879515
417 => 0.042662266764258
418 => 0.043195902949905
419 => 0.042817140625199
420 => 0.042298667394098
421 => 0.04232147758497
422 => 0.044093257568162
423 => 0.044203761312404
424 => 0.044482968624245
425 => 0.044841828923937
426 => 0.042878256085992
427 => 0.042228993480884
428 => 0.041921336838866
429 => 0.040973873459555
430 => 0.041995631484771
501 => 0.041400296839518
502 => 0.04148062782269
503 => 0.041428312164516
504 => 0.041456880051448
505 => 0.039940146846348
506 => 0.040492764709136
507 => 0.039573930330254
508 => 0.03834371424093
509 => 0.038339590125229
510 => 0.038640683770245
511 => 0.038461581488394
512 => 0.037979621853074
513 => 0.038048081944486
514 => 0.037448299506623
515 => 0.038120906391854
516 => 0.038140194350619
517 => 0.037881204062661
518 => 0.038917447771222
519 => 0.039341997664114
520 => 0.03917152470847
521 => 0.0393300368271
522 => 0.040661819403739
523 => 0.040878958073478
524 => 0.040975396727201
525 => 0.040846181706886
526 => 0.039354379367813
527 => 0.039420547145184
528 => 0.038935051897844
529 => 0.038524859574071
530 => 0.038541265115846
531 => 0.038752157291535
601 => 0.039673135791433
602 => 0.041611280749818
603 => 0.041684831934224
604 => 0.041773978115362
605 => 0.041411375795391
606 => 0.041302011466051
607 => 0.041446291245779
608 => 0.042174156589328
609 => 0.044046423866449
610 => 0.043384639566187
611 => 0.042846598628788
612 => 0.043318605585682
613 => 0.043245943814381
614 => 0.042632605340379
615 => 0.042615390972201
616 => 0.041438198344418
617 => 0.041003017033305
618 => 0.040639346956983
619 => 0.040242228727488
620 => 0.040006803729519
621 => 0.040368523525147
622 => 0.04045125312215
623 => 0.039660346467229
624 => 0.039552548812664
625 => 0.040198420259978
626 => 0.03991419631653
627 => 0.040206527690781
628 => 0.040274351077179
629 => 0.040263429949864
630 => 0.039966667509992
701 => 0.040155815039583
702 => 0.039708424744508
703 => 0.039221954994463
704 => 0.03891161760207
705 => 0.038640807066926
706 => 0.038791068491425
707 => 0.03825541394974
708 => 0.038084047281259
709 => 0.040091736112512
710 => 0.041574837438451
711 => 0.041553272557799
712 => 0.041422001892869
713 => 0.041226960312064
714 => 0.042159888082853
715 => 0.04183487470199
716 => 0.042071349092344
717 => 0.042131541749489
718 => 0.042313726793796
719 => 0.042378842287802
720 => 0.042182018039297
721 => 0.041521451821258
722 => 0.039875383610655
723 => 0.039109134415144
724 => 0.038856259417735
725 => 0.038865450943613
726 => 0.038611907627125
727 => 0.038686587496845
728 => 0.038585937016101
729 => 0.038395329355538
730 => 0.038779299005504
731 => 0.038823547930737
801 => 0.03873392482634
802 => 0.038755034311829
803 => 0.038012993285945
804 => 0.038069409053515
805 => 0.037755278890719
806 => 0.03769638327209
807 => 0.036902289574983
808 => 0.035495437484836
809 => 0.036274970109214
810 => 0.03533340431784
811 => 0.034976819085597
812 => 0.036664838114655
813 => 0.036495407822498
814 => 0.036205416811901
815 => 0.035776459667807
816 => 0.035617355290436
817 => 0.034650687459853
818 => 0.034593571567449
819 => 0.035072678246514
820 => 0.03485158699918
821 => 0.03454109115412
822 => 0.033416506677772
823 => 0.032152101389233
824 => 0.032190265837126
825 => 0.032592449634313
826 => 0.033761853266511
827 => 0.033304947036523
828 => 0.032973456324272
829 => 0.032911378078441
830 => 0.03368841729462
831 => 0.03478809058026
901 => 0.03530403268208
902 => 0.034792749728571
903 => 0.03420541540101
904 => 0.034241163720083
905 => 0.03447898127135
906 => 0.034503972533429
907 => 0.034121678265131
908 => 0.034229291862355
909 => 0.034065816967777
910 => 0.033062571841506
911 => 0.033044426318497
912 => 0.032798213784997
913 => 0.032790758567334
914 => 0.032371889627255
915 => 0.032313286967034
916 => 0.031481597262981
917 => 0.032029017944777
918 => 0.031661836892304
919 => 0.031108408436974
920 => 0.031012997162675
921 => 0.031010128984557
922 => 0.031578376263843
923 => 0.032022377644469
924 => 0.031668224163916
925 => 0.031587590281371
926 => 0.032448549191514
927 => 0.032338984322384
928 => 0.032244101852334
929 => 0.034689626898853
930 => 0.032753802997834
1001 => 0.031909673284025
1002 => 0.0308649024673
1003 => 0.031205085113418
1004 => 0.031276766595277
1005 => 0.02876428111515
1006 => 0.027744966068772
1007 => 0.027395175556933
1008 => 0.027193866172057
1009 => 0.027285605386629
1010 => 0.026368102291159
1011 => 0.026984679545415
1012 => 0.026190199419344
1013 => 0.026057002240747
1014 => 0.027477631123363
1015 => 0.027675303333186
1016 => 0.026831972274141
1017 => 0.027373527336944
1018 => 0.027177151942993
1019 => 0.02620381850081
1020 => 0.026166644322674
1021 => 0.025678259815711
1022 => 0.02491403263219
1023 => 0.024564760302367
1024 => 0.024382856240474
1025 => 0.024457913401651
1026 => 0.024419962204173
1027 => 0.024172304969451
1028 => 0.02443415762697
1029 => 0.023765232291997
1030 => 0.023498860833713
1031 => 0.023378547025777
1101 => 0.022784837289082
1102 => 0.023729693504081
1103 => 0.023915842081421
1104 => 0.024102357428963
1105 => 0.025725846189875
1106 => 0.025644741279311
1107 => 0.026377890171113
1108 => 0.026349401353351
1109 => 0.026140295413185
1110 => 0.025258111847881
1111 => 0.025609734493601
1112 => 0.024527494644366
1113 => 0.02533838232457
1114 => 0.024968327050804
1115 => 0.025213266264267
1116 => 0.024772843473182
1117 => 0.02501659163038
1118 => 0.023959984814766
1119 => 0.022973340237204
1120 => 0.023370394817165
1121 => 0.023802038554283
1122 => 0.024737952157131
1123 => 0.024180529736394
1124 => 0.024380999917367
1125 => 0.023709458369412
1126 => 0.022323876339622
1127 => 0.022331718583437
1128 => 0.022118576974699
1129 => 0.021934391505565
1130 => 0.024244556406876
1201 => 0.023957250883095
1202 => 0.023499467132568
1203 => 0.024112228874252
1204 => 0.02427425280459
1205 => 0.024278865398107
1206 => 0.02472592054717
1207 => 0.024964513960364
1208 => 0.025006567083563
1209 => 0.025710018019879
1210 => 0.02594580549499
1211 => 0.026916980735079
1212 => 0.024944270976214
1213 => 0.024903644316908
1214 => 0.024120851688575
1215 => 0.023624392228224
1216 => 0.024154844692565
1217 => 0.024624753161988
1218 => 0.024135453054585
1219 => 0.024199345318922
1220 => 0.023542499902021
1221 => 0.023777291231114
1222 => 0.023979525153536
1223 => 0.023867863468335
1224 => 0.023700700521102
1225 => 0.024586226026261
1226 => 0.024536261206857
1227 => 0.025360882915404
1228 => 0.026003734506481
1229 => 0.027155839481157
1230 => 0.025953557879492
1231 => 0.025909741959291
]
'min_raw' => 0.021934391505565
'max_raw' => 0.063418776425117
'avg_raw' => 0.042676583965341
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.021934'
'max' => '$0.063418'
'avg' => '$0.042676'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -0.0038569022515401
'max_diff' => -0.021422895067599
'year' => 2030
]
5 => [
'items' => [
101 => 0.026338049607552
102 => 0.02594573992332
103 => 0.026193666101685
104 => 0.027115894740899
105 => 0.027135379978817
106 => 0.026808977138384
107 => 0.02678911549588
108 => 0.026851804731841
109 => 0.027218977544927
110 => 0.027090676081954
111 => 0.027239149783102
112 => 0.027424818419898
113 => 0.028192822623556
114 => 0.028377985836992
115 => 0.027928135224462
116 => 0.02796875169801
117 => 0.027800495220248
118 => 0.027637961570977
119 => 0.028003313478404
120 => 0.028671001270236
121 => 0.028666847619136
122 => 0.028821738208845
123 => 0.028918233763051
124 => 0.028504004205337
125 => 0.028234355994908
126 => 0.028337756276948
127 => 0.028503095579695
128 => 0.028284138969455
129 => 0.026932637340483
130 => 0.027342596600455
131 => 0.027274359333612
201 => 0.027177181167692
202 => 0.027589398373715
203 => 0.027549639018583
204 => 0.026358691970778
205 => 0.02643493253676
206 => 0.026363328412112
207 => 0.026594695987676
208 => 0.025933245314956
209 => 0.026136703086946
210 => 0.026264309894241
211 => 0.026339471284059
212 => 0.026611005762728
213 => 0.026579144325696
214 => 0.026609025211067
215 => 0.02701163916049
216 => 0.029047922356247
217 => 0.029158752757787
218 => 0.028612983326292
219 => 0.028831007449348
220 => 0.028412448809714
221 => 0.028693430028599
222 => 0.028885670242412
223 => 0.028016973681862
224 => 0.02796553510934
225 => 0.027545248929311
226 => 0.027771086916232
227 => 0.027411762440714
228 => 0.02749992809837
301 => 0.027253409233421
302 => 0.027697094108912
303 => 0.028193202741371
304 => 0.028318539373854
305 => 0.027988832654605
306 => 0.027750103261137
307 => 0.027330973088558
308 => 0.028027995906482
309 => 0.028231826619828
310 => 0.028026925270518
311 => 0.0279794451507
312 => 0.02788947040944
313 => 0.027998533717397
314 => 0.028230716513989
315 => 0.028121223394859
316 => 0.028193545529064
317 => 0.027917928131733
318 => 0.028504141332557
319 => 0.029435188975354
320 => 0.029438182445767
321 => 0.029328688736428
322 => 0.029283886269642
323 => 0.029396233460057
324 => 0.029457177202134
325 => 0.029820487414986
326 => 0.030210333748292
327 => 0.032029576482554
328 => 0.031518740402591
329 => 0.033132880783663
330 => 0.034409456255194
331 => 0.034792245421226
401 => 0.034440097400098
402 => 0.033235418042483
403 => 0.033176310725972
404 => 0.034976610288755
405 => 0.034467943203325
406 => 0.034407438872079
407 => 0.033763775011295
408 => 0.034144260072338
409 => 0.034061042408109
410 => 0.033929679253976
411 => 0.034655618245627
412 => 0.036014511232977
413 => 0.035802715017281
414 => 0.035644618967207
415 => 0.034951888096853
416 => 0.035369066807848
417 => 0.035220517459394
418 => 0.035858779732096
419 => 0.035480687300988
420 => 0.034464089549865
421 => 0.034625986092482
422 => 0.034601515755756
423 => 0.035105113551586
424 => 0.034953945993344
425 => 0.034571997863856
426 => 0.036009866684477
427 => 0.035916499481112
428 => 0.036048872828769
429 => 0.036107147670189
430 => 0.03698235308321
501 => 0.037340896737476
502 => 0.037422292424184
503 => 0.037762881164975
504 => 0.037413818266044
505 => 0.038810318739396
506 => 0.039738910066113
507 => 0.040817516676968
508 => 0.042393650837552
509 => 0.042986291861988
510 => 0.042879236565448
511 => 0.044074243497833
512 => 0.046221644391816
513 => 0.043313287682663
514 => 0.046375794359443
515 => 0.045406240103915
516 => 0.043107444405592
517 => 0.042959429063641
518 => 0.044516200200112
519 => 0.047968968747135
520 => 0.047104089387082
521 => 0.047970383379933
522 => 0.046959805421358
523 => 0.046909621707895
524 => 0.047921301864137
525 => 0.050285147693013
526 => 0.04916217314715
527 => 0.047552113771
528 => 0.048740956559051
529 => 0.047711070913835
530 => 0.045390450308323
531 => 0.047103428030135
601 => 0.045958008610356
602 => 0.046292302890893
603 => 0.048699804142988
604 => 0.048410127222878
605 => 0.048784995980861
606 => 0.048123362435044
607 => 0.047505292373218
608 => 0.046351618704333
609 => 0.0460100728064
610 => 0.046104463805055
611 => 0.046010026030909
612 => 0.045364556215976
613 => 0.045225167070897
614 => 0.04499284572232
615 => 0.045064851822686
616 => 0.044628019719353
617 => 0.04545241215246
618 => 0.045605426652565
619 => 0.046205350716756
620 => 0.046267636823272
621 => 0.04793841680266
622 => 0.04701817926633
623 => 0.047635554055187
624 => 0.047580330243115
625 => 0.043157266278933
626 => 0.043766725468174
627 => 0.044714852707802
628 => 0.044287722671506
629 => 0.043683860733218
630 => 0.043196209841022
701 => 0.042457368874481
702 => 0.043497273346703
703 => 0.044864637146164
704 => 0.046302315425721
705 => 0.048029591678196
706 => 0.047644083726355
707 => 0.046270025197649
708 => 0.046331664459496
709 => 0.046712694122081
710 => 0.046219226088838
711 => 0.046073692732195
712 => 0.046692700073695
713 => 0.046696962837056
714 => 0.046129168227206
715 => 0.045498168423674
716 => 0.045495524511458
717 => 0.045383244191154
718 => 0.046979779840908
719 => 0.047857713020311
720 => 0.04795836664447
721 => 0.047850938229439
722 => 0.047892283162703
723 => 0.047381433189546
724 => 0.04854908474033
725 => 0.0496206372721
726 => 0.049333438303205
727 => 0.048902886221092
728 => 0.048559930749491
729 => 0.049252648893377
730 => 0.04922180324487
731 => 0.049611278195537
801 => 0.049593609362058
802 => 0.049462643585043
803 => 0.049333442980405
804 => 0.049845708773619
805 => 0.04969818445191
806 => 0.049550430984183
807 => 0.049254088784731
808 => 0.049294366611359
809 => 0.048863888870134
810 => 0.048664730169722
811 => 0.045669861164062
812 => 0.044869534305582
813 => 0.045121333427415
814 => 0.045204232236284
815 => 0.044855928961827
816 => 0.045355306385629
817 => 0.045277478943101
818 => 0.045580259994446
819 => 0.04539109553879
820 => 0.045398858914034
821 => 0.045955151244002
822 => 0.046116645274028
823 => 0.04603450810694
824 => 0.046092034163271
825 => 0.047417697851193
826 => 0.047229230867109
827 => 0.047129111538101
828 => 0.047156845276464
829 => 0.047495580771278
830 => 0.047590408215553
831 => 0.047188617670751
901 => 0.047378104414403
902 => 0.048184914919426
903 => 0.048467252934664
904 => 0.049368340349368
905 => 0.04898554240005
906 => 0.04968818460313
907 => 0.05184786718702
908 => 0.053573171073698
909 => 0.05198651031831
910 => 0.055154811190071
911 => 0.057621787884503
912 => 0.057527101210006
913 => 0.057096926761133
914 => 0.05428833938249
915 => 0.051703835402985
916 => 0.053865882725677
917 => 0.053871394228931
918 => 0.053685672446487
919 => 0.0525321704063
920 => 0.053645533075849
921 => 0.053733907761419
922 => 0.053684441438225
923 => 0.052800054128542
924 => 0.051449758168752
925 => 0.051713602767143
926 => 0.052145785601592
927 => 0.051327573333196
928 => 0.051066104936214
929 => 0.051552224432602
930 => 0.053118602736981
1001 => 0.05282248799195
1002 => 0.052814755239264
1003 => 0.054081659690702
1004 => 0.053174829518565
1005 => 0.051716930692476
1006 => 0.051348792011566
1007 => 0.050042147702264
1008 => 0.050944651580806
1009 => 0.050977131088698
1010 => 0.050482838937787
1011 => 0.051757039776323
1012 => 0.051745297791277
1013 => 0.052954961847701
1014 => 0.055267385194511
1015 => 0.054583487823417
1016 => 0.053788189588658
1017 => 0.053874660558004
1018 => 0.054823033663197
1019 => 0.054249625634545
1020 => 0.054455827159591
1021 => 0.054822721552492
1022 => 0.055044078049205
1023 => 0.05384281076461
1024 => 0.053562737897315
1025 => 0.052989807103047
1026 => 0.052840340153083
1027 => 0.05330698033042
1028 => 0.053184037130333
1029 => 0.050974401311827
1030 => 0.050743482074495
1031 => 0.050750564037828
1101 => 0.050169906635946
1102 => 0.049284264724333
1103 => 0.051611678789122
1104 => 0.05142475486758
1105 => 0.051218405324961
1106 => 0.051243681966518
1107 => 0.052253933528661
1108 => 0.051667936603691
1109 => 0.053225905471731
1110 => 0.052905633909293
1111 => 0.052577148589774
1112 => 0.052531741912709
1113 => 0.052405303089744
1114 => 0.051971697319985
1115 => 0.051448092297334
1116 => 0.05110236290749
1117 => 0.047139228521477
1118 => 0.047874763211028
1119 => 0.048720928825261
1120 => 0.049013021804499
1121 => 0.048513376551294
1122 => 0.051991426359955
1123 => 0.05262689957532
1124 => 0.050702009755089
1125 => 0.050341941462457
1126 => 0.052015032377276
1127 => 0.051005954028594
1128 => 0.051460341947219
1129 => 0.050478203804056
1130 => 0.052473832686566
1201 => 0.052458629338074
1202 => 0.051682284629455
1203 => 0.052338445861001
1204 => 0.052224421699685
1205 => 0.051347930435707
1206 => 0.052501619023004
1207 => 0.052502191238149
1208 => 0.051754976335293
1209 => 0.050882392915132
1210 => 0.050726395609107
1211 => 0.050608872594307
1212 => 0.05143143848987
1213 => 0.052168948499734
1214 => 0.053541271783855
1215 => 0.05388630646308
1216 => 0.055232999786354
1217 => 0.054431109481652
1218 => 0.054786577067508
1219 => 0.055172487415915
1220 => 0.055357507028325
1221 => 0.055056027498603
1222 => 0.057147996550735
1223 => 0.05732462283501
1224 => 0.057383844100316
1225 => 0.056678443906269
1226 => 0.057305004379554
1227 => 0.057011857483606
1228 => 0.05777454426831
1229 => 0.057894143294625
1230 => 0.057792847174195
1231 => 0.05783080979289
]
'min_raw' => 0.025933245314956
'max_raw' => 0.057894143294625
'avg_raw' => 0.041913694304791
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.025933'
'max' => '$0.057894'
'avg' => '$0.041913'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 0.0039988538093912
'max_diff' => -0.0055246331304916
'year' => 2031
]
6 => [
'items' => [
101 => 0.056045683255525
102 => 0.05595311502727
103 => 0.054690940666671
104 => 0.055205286048137
105 => 0.054243742010702
106 => 0.054548657529974
107 => 0.054683061385527
108 => 0.054612856438738
109 => 0.055234366364288
110 => 0.054705955961481
111 => 0.053311394029761
112 => 0.051916452150575
113 => 0.051898939791577
114 => 0.051531676217557
115 => 0.051266211921219
116 => 0.051317349762546
117 => 0.051497566185394
118 => 0.051255737415108
119 => 0.051307343844278
120 => 0.052164354420346
121 => 0.052336221779457
122 => 0.051752149340287
123 => 0.049407014215768
124 => 0.048831512173885
125 => 0.049245171628889
126 => 0.049047469052478
127 => 0.039585135523358
128 => 0.041808170429247
129 => 0.0404873185753
130 => 0.041096027879071
131 => 0.03974778016912
201 => 0.040391234644025
202 => 0.040272412097705
203 => 0.043846986441991
204 => 0.043791174380271
205 => 0.043817888660708
206 => 0.042542746451778
207 => 0.044574082614487
208 => 0.045574791852723
209 => 0.04538958720574
210 => 0.045436199225308
211 => 0.044635250296116
212 => 0.04382564359713
213 => 0.042927665170377
214 => 0.044595998093796
215 => 0.044410507952104
216 => 0.044835955599898
217 => 0.045917988755636
218 => 0.046077322248062
219 => 0.046291468077684
220 => 0.046214712041703
221 => 0.048043352220206
222 => 0.047821891828833
223 => 0.04835554765354
224 => 0.047257777133554
225 => 0.046015545588856
226 => 0.046251653193894
227 => 0.046228914132871
228 => 0.045939419787374
229 => 0.045678077236426
301 => 0.045243015521904
302 => 0.046619615163669
303 => 0.04656372773218
304 => 0.047468480285963
305 => 0.047308556483785
306 => 0.046240546192843
307 => 0.046278690389322
308 => 0.046535228442118
309 => 0.047423109571944
310 => 0.047686693142834
311 => 0.047564590730808
312 => 0.047853598083242
313 => 0.048082017710826
314 => 0.047882284071656
315 => 0.050710091201337
316 => 0.049535788527068
317 => 0.050108135479761
318 => 0.050244636855514
319 => 0.049894991451837
320 => 0.049970817020031
321 => 0.050085672094615
322 => 0.050783049616559
323 => 0.052613170021953
324 => 0.053423717891451
325 => 0.055862291148562
326 => 0.05335641317426
327 => 0.053207724745619
328 => 0.053646985427082
329 => 0.055078686078201
330 => 0.056238944983129
331 => 0.056623869798836
401 => 0.056674743967647
402 => 0.057396888511231
403 => 0.057810808296415
404 => 0.057309201169353
405 => 0.056884141649623
406 => 0.055361631210282
407 => 0.055537865939294
408 => 0.056751948458615
409 => 0.05846691152626
410 => 0.059938528249795
411 => 0.059423219364234
412 => 0.063354662409686
413 => 0.063744448929138
414 => 0.063690593035457
415 => 0.06457858473478
416 => 0.062816102047989
417 => 0.062062606552892
418 => 0.056976044342419
419 => 0.058405160845386
420 => 0.060482465611517
421 => 0.060207526536226
422 => 0.058698932288546
423 => 0.059937383845779
424 => 0.059527913030997
425 => 0.059204946410419
426 => 0.060684519109448
427 => 0.059057668149369
428 => 0.060466236528714
429 => 0.05865973301243
430 => 0.059425573251817
501 => 0.058990845292416
502 => 0.059272167560403
503 => 0.05762756333011
504 => 0.058514951852265
505 => 0.057590645050126
506 => 0.057590206808353
507 => 0.057569802684466
508 => 0.05865724553818
509 => 0.058692707010599
510 => 0.05788908509867
511 => 0.057773270626227
512 => 0.05820149743167
513 => 0.057700155995274
514 => 0.057934730497958
515 => 0.057707261017996
516 => 0.057656052846816
517 => 0.057248017426503
518 => 0.057072224548265
519 => 0.057141157465446
520 => 0.056905853881751
521 => 0.056764074961272
522 => 0.057541599288659
523 => 0.057126199405778
524 => 0.057477933298935
525 => 0.057077088135326
526 => 0.055687584158335
527 => 0.054888465727429
528 => 0.052263821521979
529 => 0.053008167362783
530 => 0.053501669425318
531 => 0.053338566996595
601 => 0.053688974125754
602 => 0.053710486277596
603 => 0.053596565347928
604 => 0.053464659505548
605 => 0.053400455036328
606 => 0.05387898254816
607 => 0.054156783875274
608 => 0.0535511989595
609 => 0.053409318886767
610 => 0.054021598671874
611 => 0.054395088987087
612 => 0.057152731628539
613 => 0.056948436554592
614 => 0.057461177099316
615 => 0.057403450382625
616 => 0.05794088415947
617 => 0.058819361248151
618 => 0.057033171700806
619 => 0.057343192444437
620 => 0.057267182517523
621 => 0.058097038968698
622 => 0.058099629689956
623 => 0.057602089293073
624 => 0.057871814013895
625 => 0.057721261074243
626 => 0.057993330584644
627 => 0.056945708069327
628 => 0.058221599209121
629 => 0.058944947268775
630 => 0.058954990957285
701 => 0.059297852196715
702 => 0.059646219073161
703 => 0.060314878956138
704 => 0.059627570511941
705 => 0.058391169528958
706 => 0.058480433686379
707 => 0.057755532242438
708 => 0.057767717966674
709 => 0.057702669615686
710 => 0.057897884613614
711 => 0.05698854678348
712 => 0.057201966554654
713 => 0.056903177625226
714 => 0.057342542935657
715 => 0.056869858491321
716 => 0.057267145863235
717 => 0.057438601922668
718 => 0.058071278473161
719 => 0.0567764116504
720 => 0.054136090544012
721 => 0.054691118051374
722 => 0.053870188771516
723 => 0.053946168901865
724 => 0.054099660857318
725 => 0.053602143210252
726 => 0.053697053898729
727 => 0.05369366302106
728 => 0.053664442269212
729 => 0.053535018714167
730 => 0.053347328953682
731 => 0.054095027191594
801 => 0.054222075692072
802 => 0.054504488770654
803 => 0.055344758529895
804 => 0.055260795766021
805 => 0.05539774251748
806 => 0.055098788527968
807 => 0.053960036520018
808 => 0.05402187623275
809 => 0.053250734024057
810 => 0.054484768930614
811 => 0.054192533176276
812 => 0.054004126884349
813 => 0.053952718482024
814 => 0.054795071107471
815 => 0.055047116215265
816 => 0.054890058618206
817 => 0.054567928904536
818 => 0.055186513183883
819 => 0.055352020241061
820 => 0.055389071167498
821 => 0.056485083908729
822 => 0.05545032610455
823 => 0.055699402592624
824 => 0.057642626250559
825 => 0.055880390539346
826 => 0.056813886098121
827 => 0.056768196348196
828 => 0.057245741088298
829 => 0.056729023741021
830 => 0.056735429071821
831 => 0.057159456449348
901 => 0.056563986471351
902 => 0.056416539730686
903 => 0.05621284311449
904 => 0.056657607223862
905 => 0.056924223192479
906 => 0.059072952091686
907 => 0.060461128954516
908 => 0.060400864535844
909 => 0.060951568512237
910 => 0.060703471327002
911 => 0.059902300071147
912 => 0.061269801712465
913 => 0.060837066974453
914 => 0.060872741100482
915 => 0.06087141330773
916 => 0.06115914407818
917 => 0.060955260457178
918 => 0.060553384911959
919 => 0.060820168653622
920 => 0.061612420989428
921 => 0.064071596549042
922 => 0.065447783771944
923 => 0.063988748350231
924 => 0.064995171446866
925 => 0.064391676214101
926 => 0.06428200317788
927 => 0.064914111256649
928 => 0.065547325756933
929 => 0.065506992730726
930 => 0.065047311519445
1001 => 0.064787649267171
1002 => 0.066753898834626
1003 => 0.06820259802174
1004 => 0.068103806449381
1005 => 0.068539840321032
1006 => 0.069820049254217
1007 => 0.069937095514967
1008 => 0.06992235037639
1009 => 0.069632239006607
1010 => 0.070892770957466
1011 => 0.071944328887821
1012 => 0.069565086606626
1013 => 0.070471070920737
1014 => 0.070877796468333
1015 => 0.071474990242235
1016 => 0.072482556240108
1017 => 0.073577040157479
1018 => 0.0737318121838
1019 => 0.073621994024602
1020 => 0.072900152459789
1021 => 0.074097749822085
1022 => 0.074799274269804
1023 => 0.075217016024319
1024 => 0.07627633960817
1025 => 0.070880308266849
1026 => 0.067060729083303
1027 => 0.0664642466384
1028 => 0.067677217145623
1029 => 0.06799706779512
1030 => 0.067868136399366
1031 => 0.063568852767339
1101 => 0.066441611799835
1102 => 0.06953245897036
1103 => 0.069651190998051
1104 => 0.071198533718183
1105 => 0.071702411935579
1106 => 0.072948225640131
1107 => 0.072870299653713
1108 => 0.073173635465546
1109 => 0.073103903815449
1110 => 0.075411511366107
1111 => 0.07795714517752
1112 => 0.07786899797325
1113 => 0.077503032994288
1114 => 0.078046553394349
1115 => 0.080673920294425
1116 => 0.080432034452963
1117 => 0.080667005944157
1118 => 0.083764819591256
1119 => 0.087792417991338
1120 => 0.085921194170232
1121 => 0.089981211431883
1122 => 0.092536777085824
1123 => 0.096956363633896
1124 => 0.096403009631155
1125 => 0.098123522241895
1126 => 0.095412390477783
1127 => 0.089187083937251
1128 => 0.088201905347695
1129 => 0.09017425783268
1130 => 0.095023093957675
1201 => 0.090021550727562
1202 => 0.09103335640899
1203 => 0.090741956304671
1204 => 0.090726428831482
1205 => 0.091319049328288
1206 => 0.090459422388665
1207 => 0.086957147592706
1208 => 0.088562219492659
1209 => 0.087942424150204
1210 => 0.088630133291462
1211 => 0.092341415894005
1212 => 0.090700569389493
1213 => 0.088972070888536
1214 => 0.09113999159326
1215 => 0.093900499628751
1216 => 0.093727751997
1217 => 0.093392549388494
1218 => 0.095282068942003
1219 => 0.098403001667116
1220 => 0.099246577241791
1221 => 0.099869287484872
1222 => 0.099955148706617
1223 => 0.10083957265304
1224 => 0.096083802189573
1225 => 0.10363133205195
1226 => 0.10493458196288
1227 => 0.1046896249938
1228 => 0.10613813242065
1229 => 0.10571194479059
1230 => 0.10509446578141
1231 => 0.10739065815934
]
'min_raw' => 0.039585135523358
'max_raw' => 0.10739065815934
'avg_raw' => 0.073487896841349
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.039585'
'max' => '$0.10739'
'avg' => '$0.073487'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.013651890208401
'max_diff' => 0.049496514864715
'year' => 2032
]
7 => [
'items' => [
101 => 0.10475825889121
102 => 0.10102189953995
103 => 0.098972058903045
104 => 0.10167145440965
105 => 0.10331988104962
106 => 0.10440938619901
107 => 0.10473906979892
108 => 0.09645297911271
109 => 0.091987235800502
110 => 0.094849726063776
111 => 0.098342161743496
112 => 0.096064401533035
113 => 0.096153685420915
114 => 0.092906197945651
115 => 0.098629492325888
116 => 0.097795656475169
117 => 0.10212159834372
118 => 0.10108917759894
119 => 0.10461681526065
120 => 0.10368787004031
121 => 0.10754386971332
122 => 0.1090821323799
123 => 0.11166511480857
124 => 0.11356516719772
125 => 0.11468091430285
126 => 0.11461392903172
127 => 0.11903507492521
128 => 0.11642807965489
129 => 0.11315307917376
130 => 0.11309384474755
131 => 0.11479001390384
201 => 0.11834471913415
202 => 0.11926640248151
203 => 0.11978149773433
204 => 0.11899261142404
205 => 0.11616290490314
206 => 0.11494105197436
207 => 0.11598210607017
208 => 0.11470898636979
209 => 0.11690674814695
210 => 0.11992474448357
211 => 0.11930154017451
212 => 0.12138481874369
213 => 0.12354079289549
214 => 0.12662393276343
215 => 0.12742997969325
216 => 0.12876234461702
217 => 0.13013378578265
218 => 0.13057425572368
219 => 0.13141524951089
220 => 0.13141081705851
221 => 0.13394520844169
222 => 0.13674072062091
223 => 0.13779596175231
224 => 0.14022243054763
225 => 0.13606718776926
226 => 0.13921898714865
227 => 0.14206198908351
228 => 0.13867244497355
301 => 0.14334414186664
302 => 0.1435255332707
303 => 0.1462643281143
304 => 0.14348803485071
305 => 0.14183948077303
306 => 0.14659879462477
307 => 0.14890167668065
308 => 0.14820802986394
309 => 0.14292934333925
310 => 0.13985692136836
311 => 0.1318158004446
312 => 0.14134085552936
313 => 0.14598023201148
314 => 0.14291732847495
315 => 0.14446207886032
316 => 0.1528897360759
317 => 0.1560984422932
318 => 0.15543105383055
319 => 0.15554383149459
320 => 0.15727519112731
321 => 0.16495299321594
322 => 0.16035227623437
323 => 0.1638693519812
324 => 0.16573479627556
325 => 0.1674675248985
326 => 0.16321249103506
327 => 0.15767675449759
328 => 0.15592335436176
329 => 0.14261278308147
330 => 0.14191991004145
331 => 0.14153097940788
401 => 0.13907882677859
402 => 0.13715210651309
403 => 0.13561990702343
404 => 0.13159895800907
405 => 0.13295591026522
406 => 0.12654735677361
407 => 0.13064732219235
408 => 0.1204191160798
409 => 0.12893747006312
410 => 0.12430131727203
411 => 0.12741436918232
412 => 0.12740350803747
413 => 0.12167139247662
414 => 0.11836522784732
415 => 0.12047204462696
416 => 0.12273071945406
417 => 0.12309718184567
418 => 0.12602561271644
419 => 0.12684287482607
420 => 0.12436653247959
421 => 0.12020715924248
422 => 0.12117328678026
423 => 0.11834564930361
424 => 0.11339032338929
425 => 0.11694932497264
426 => 0.11816452459145
427 => 0.11870122597152
428 => 0.11382823205781
429 => 0.11229703157228
430 => 0.11148183328179
501 => 0.11957811692066
502 => 0.12002164961472
503 => 0.11775247364269
504 => 0.12800936420837
505 => 0.12568791397882
506 => 0.12828154265434
507 => 0.12108562083267
508 => 0.12136051473685
509 => 0.11795385002671
510 => 0.11986135463097
511 => 0.11851319185842
512 => 0.11970724710928
513 => 0.12042295890336
514 => 0.12382906461335
515 => 0.12897636231902
516 => 0.12332030600389
517 => 0.12085588127117
518 => 0.1223847965149
519 => 0.12645649928705
520 => 0.13262533741348
521 => 0.12897326108319
522 => 0.1305939905423
523 => 0.13094804782787
524 => 0.12825514194914
525 => 0.13272462869435
526 => 0.13511986295115
527 => 0.13757687767474
528 => 0.13971023471524
529 => 0.13659549196323
530 => 0.13992871318872
531 => 0.13724272527373
601 => 0.13483311644165
602 => 0.1348367708236
603 => 0.13332518800448
604 => 0.13039630582072
605 => 0.12985617500892
606 => 0.1326660037029
607 => 0.13491922022371
608 => 0.13510480592854
609 => 0.1363523023689
610 => 0.13709055791207
611 => 0.14432646584489
612 => 0.14723680787405
613 => 0.15079551901733
614 => 0.15218183756562
615 => 0.15635415937324
616 => 0.15298467065417
617 => 0.15225566057473
618 => 0.1421349726255
619 => 0.14379223471021
620 => 0.14644567120985
621 => 0.14217872681606
622 => 0.1448851209187
623 => 0.14541942044383
624 => 0.14203373767832
625 => 0.1438421771301
626 => 0.13903949811111
627 => 0.12908104759743
628 => 0.13273571529654
629 => 0.13542678087094
630 => 0.13158629849028
701 => 0.13847021451041
702 => 0.13444877288432
703 => 0.1331741689521
704 => 0.12820148458336
705 => 0.13054840018923
706 => 0.13372263715076
707 => 0.13176132775319
708 => 0.13583133924524
709 => 0.1415955609504
710 => 0.14570348860283
711 => 0.14601884427964
712 => 0.14337772200891
713 => 0.14761013730318
714 => 0.14764096582797
715 => 0.1428667840861
716 => 0.13994262435196
717 => 0.13927824910788
718 => 0.14093798872604
719 => 0.14295321902731
720 => 0.14613067553607
721 => 0.14805074595713
722 => 0.15305727128857
723 => 0.15441189349493
724 => 0.15590021260393
725 => 0.15788906591416
726 => 0.16027719424462
727 => 0.1550521054138
728 => 0.15525970793383
729 => 0.15039417756085
730 => 0.14519466056968
731 => 0.14914044583703
801 => 0.15429903518828
802 => 0.15311564909137
803 => 0.15298249398109
804 => 0.15320642394244
805 => 0.15231418947115
806 => 0.14827864602523
807 => 0.14625202137054
808 => 0.14886688422219
809 => 0.15025656745368
810 => 0.15241184495262
811 => 0.15214616150849
812 => 0.15769792488585
813 => 0.15985517225768
814 => 0.15930325606614
815 => 0.15940482192799
816 => 0.16331041525113
817 => 0.16765423827298
818 => 0.17172280175088
819 => 0.17586151926947
820 => 0.17087213376392
821 => 0.16833883150671
822 => 0.17095255279105
823 => 0.16956567548679
824 => 0.17753508385158
825 => 0.17808686839578
826 => 0.18605570048163
827 => 0.19361907104198
828 => 0.18886865350488
829 => 0.19334808327886
830 => 0.19819295179269
831 => 0.20753948920744
901 => 0.2043919042213
902 => 0.20198090345087
903 => 0.19970251937267
904 => 0.20444347495611
905 => 0.21054263857558
906 => 0.21185634000215
907 => 0.21398503818576
908 => 0.21174697233052
909 => 0.21444247613829
910 => 0.22395878904411
911 => 0.22138739729414
912 => 0.21773560763733
913 => 0.22524782272007
914 => 0.22796646415551
915 => 0.24704731351305
916 => 0.27113767401751
917 => 0.26116410658282
918 => 0.25497319143111
919 => 0.25642820334223
920 => 0.26522518748829
921 => 0.26805049959369
922 => 0.26037032734774
923 => 0.2630830940232
924 => 0.27803070511829
925 => 0.28604961889403
926 => 0.27515885690278
927 => 0.24511167650278
928 => 0.21740680393383
929 => 0.22475538370579
930 => 0.22392228281263
1001 => 0.23998162618185
1002 => 0.22132607045132
1003 => 0.22164018216498
1004 => 0.23803161574794
1005 => 0.23365866228832
1006 => 0.2265750377293
1007 => 0.21745852223232
1008 => 0.20060580016054
1009 => 0.18567887424864
1010 => 0.21495401342761
1011 => 0.21369161619282
1012 => 0.21186347792007
1013 => 0.21593180182086
1014 => 0.23568642786923
1015 => 0.23523101979933
1016 => 0.23233394600987
1017 => 0.23453135094554
1018 => 0.22618982201978
1019 => 0.22833962395703
1020 => 0.21740241534047
1021 => 0.22234649041333
1022 => 0.22655983945241
1023 => 0.22740573165171
1024 => 0.22931156996904
1025 => 0.21302639021387
1026 => 0.22033795781618
1027 => 0.2246328187813
1028 => 0.2052284806925
1029 => 0.22424925740699
1030 => 0.21274290146558
1031 => 0.2088374714394
1101 => 0.21409561846837
1102 => 0.21204651345747
1103 => 0.21028481329658
1104 => 0.20930175433695
1105 => 0.21316275719451
1106 => 0.21298263679631
1107 => 0.20666528673297
1108 => 0.19842456110348
1109 => 0.20119041911733
1110 => 0.20018555697084
1111 => 0.19654380692216
1112 => 0.19899790674839
1113 => 0.18819129310516
1114 => 0.16959907601088
1115 => 0.18188166411837
1116 => 0.18140879783712
1117 => 0.18117035721533
1118 => 0.19040038271231
1119 => 0.1895131287337
1120 => 0.18790275407449
1121 => 0.19651423112867
1122 => 0.19337092616319
1123 => 0.20305785141102
1124 => 0.20943828689029
1125 => 0.20782000206728
1126 => 0.21382083247486
1127 => 0.20125413889972
1128 => 0.20542829041715
1129 => 0.20628857725976
1130 => 0.19640796683855
1201 => 0.18965829445745
1202 => 0.18920816826153
1203 => 0.17750516651487
1204 => 0.18375681558461
1205 => 0.18925800805516
1206 => 0.18662336377155
1207 => 0.18578931409911
1208 => 0.19005029299227
1209 => 0.19038140754509
1210 => 0.18283196065096
1211 => 0.18440172972014
1212 => 0.19094792769101
1213 => 0.18423678232709
1214 => 0.17119812314436
1215 => 0.16796435539348
1216 => 0.16753291116534
1217 => 0.15876267655159
1218 => 0.16818045121745
1219 => 0.16406934019514
1220 => 0.17705629065596
1221 => 0.16963821420315
1222 => 0.16931843575359
1223 => 0.16883504372578
1224 => 0.1612861404999
1225 => 0.16293887054854
1226 => 0.16843279694812
1227 => 0.170393091781
1228 => 0.17018861696971
1229 => 0.16840587371156
1230 => 0.16922200444602
1231 => 0.16659296299153
]
'min_raw' => 0.091987235800502
'max_raw' => 0.28604961889403
'avg_raw' => 0.18901842734727
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.091987'
'max' => '$0.286049'
'avg' => '$0.189018'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.052402100277144
'max_diff' => 0.17865896073469
'year' => 2033
]
8 => [
'items' => [
101 => 0.16566459373519
102 => 0.16273440499408
103 => 0.15842783702996
104 => 0.15902669171909
105 => 0.15049425370735
106 => 0.1458453286278
107 => 0.14455856743763
108 => 0.14283785659667
109 => 0.14475292630575
110 => 0.15047008238251
111 => 0.14357397919161
112 => 0.13175109397621
113 => 0.13246166952288
114 => 0.13405812180445
115 => 0.13108314353932
116 => 0.12826757628238
117 => 0.1307154835781
118 => 0.12570597125399
119 => 0.13466349743559
120 => 0.13442122145556
121 => 0.13776003328635
122 => 0.13984786084346
123 => 0.13503609426652
124 => 0.13382594798482
125 => 0.13451530230496
126 => 0.12312181094878
127 => 0.13682894196973
128 => 0.136947481808
129 => 0.13593247174511
130 => 0.14323109585357
131 => 0.15863346922038
201 => 0.15283847680075
202 => 0.1505944805813
203 => 0.14632864212777
204 => 0.15201261858667
205 => 0.15157617787848
206 => 0.14960242748078
207 => 0.14840869708178
208 => 0.15060818194371
209 => 0.14813615656676
210 => 0.14769211288235
211 => 0.14500169127909
212 => 0.14404133317311
213 => 0.1433303222644
214 => 0.1425475691164
215 => 0.14427412751095
216 => 0.14036151904121
217 => 0.13564329678444
218 => 0.13525102765566
219 => 0.13633411720887
220 => 0.13585493070811
221 => 0.13524873349505
222 => 0.13409133792734
223 => 0.13374796338624
224 => 0.13486376406316
225 => 0.13360409015414
226 => 0.13546280762489
227 => 0.13495733932037
228 => 0.13213383446067
301 => 0.12861470201008
302 => 0.12858337434964
303 => 0.1278251830357
304 => 0.12685951240256
305 => 0.12659088492398
306 => 0.13050932765342
307 => 0.13862038683426
308 => 0.13702799183586
309 => 0.13817866041741
310 => 0.14383881098004
311 => 0.14563800263724
312 => 0.14436097901515
313 => 0.14261291031785
314 => 0.14268981646893
315 => 0.14866349638399
316 => 0.14903606747283
317 => 0.14997743441833
318 => 0.15118735697357
319 => 0.14456703405816
320 => 0.14237799985497
321 => 0.14134071400651
322 => 0.13814627507338
323 => 0.14159120359226
324 => 0.13958399127086
325 => 0.13985483278915
326 => 0.13967844689505
327 => 0.13977476552039
328 => 0.13466099362447
329 => 0.1365241833314
330 => 0.13342626907204
331 => 0.12927850963593
401 => 0.12926460489191
402 => 0.13027976313777
403 => 0.12967590728999
404 => 0.12805094673016
405 => 0.12828176470808
406 => 0.12625955634336
407 => 0.12852729741683
408 => 0.12859232811645
409 => 0.12771912427847
410 => 0.13121289229011
411 => 0.13264429189512
412 => 0.13206953042313
413 => 0.13260396509805
414 => 0.13709416303728
415 => 0.13782626122244
416 => 0.1381514108766
417 => 0.1377157534141
418 => 0.13268603767361
419 => 0.1329091269547
420 => 0.1312722458321
421 => 0.12988925377378
422 => 0.12994456620328
423 => 0.13065560389763
424 => 0.1337607472107
425 => 0.14029533825486
426 => 0.14054332120826
427 => 0.14084388378196
428 => 0.13962134474409
429 => 0.13925261527214
430 => 0.13973906462279
501 => 0.1421931134465
502 => 0.14850559328884
503 => 0.14627434131621
504 => 0.14446029873095
505 => 0.14605170314059
506 => 0.14580671890556
507 => 0.14373880541854
508 => 0.14368076597436
509 => 0.13971177884082
510 => 0.13824453466702
511 => 0.13701839561407
512 => 0.13567948377741
513 => 0.13488573195991
514 => 0.13610529550534
515 => 0.13638422411763
516 => 0.13371762711123
517 => 0.13335417979267
518 => 0.13553178047059
519 => 0.13457349960138
520 => 0.13555911523959
521 => 0.13578778652211
522 => 0.13575096517888
523 => 0.13475040989356
524 => 0.13538813399543
525 => 0.13387972637979
526 => 0.13223955965328
527 => 0.13119323546777
528 => 0.13028017884114
529 => 0.13078679572475
530 => 0.12898079903926
531 => 0.12840302435203
601 => 0.13517208741896
602 => 0.14017246708619
603 => 0.14009975958546
604 => 0.13965717137363
605 => 0.13899957506658
606 => 0.14214500618073
607 => 0.14104920087544
608 => 0.14184649079263
609 => 0.14204943453871
610 => 0.14266368413535
611 => 0.14288322556961
612 => 0.14221961887394
613 => 0.13999247375056
614 => 0.1344426398537
615 => 0.13185917719323
616 => 0.13100659148429
617 => 0.13103758135552
618 => 0.13018274236215
619 => 0.1304345307569
620 => 0.13009518063388
621 => 0.12945253359849
622 => 0.13074711408125
623 => 0.13089630242204
624 => 0.13059413186828
625 => 0.13066530397242
626 => 0.128163460846
627 => 0.12835367054519
628 => 0.12729455876945
629 => 0.12709598807929
630 => 0.12441864573764
701 => 0.11967534569243
702 => 0.12230359436075
703 => 0.11912903955711
704 => 0.11792678755061
705 => 0.12361806156081
706 => 0.12304681550156
707 => 0.12206909056281
708 => 0.12062283160266
709 => 0.12008640008604
710 => 0.11682721200464
711 => 0.11663464178569
712 => 0.11824998340432
713 => 0.11750455882783
714 => 0.11645770040809
715 => 0.1126660853301
716 => 0.10840305462183
717 => 0.10853172872246
718 => 0.10988771947425
719 => 0.11383044546536
720 => 0.11228995421078
721 => 0.11117231013049
722 => 0.1109630089905
723 => 0.11358285095899
724 => 0.11729047621827
725 => 0.11903001103648
726 => 0.11730618486209
727 => 0.11532594617034
728 => 0.11544647412397
729 => 0.11624829260196
730 => 0.11633255238689
731 => 0.11504362057039
801 => 0.11540644732677
802 => 0.11485528030625
803 => 0.11147276931869
804 => 0.11141159042098
805 => 0.11058146767428
806 => 0.11055633188742
807 => 0.10914408601145
808 => 0.10894650305101
809 => 0.10614240314707
810 => 0.10798807019544
811 => 0.10675009364126
812 => 0.10488417096498
813 => 0.10456248519227
814 => 0.1045528149295
815 => 0.10646870030537
816 => 0.10796568195934
817 => 0.10677162877345
818 => 0.10649976600877
819 => 0.10940254908455
820 => 0.1090331434787
821 => 0.10871324060645
822 => 0.11695849904189
823 => 0.1104317336047
824 => 0.10758569133933
825 => 0.10406317358718
826 => 0.10521012312936
827 => 0.10545180225009
828 => 0.096980782037703
829 => 0.093544090192537
830 => 0.092364747060276
831 => 0.091686018414196
901 => 0.091995323581153
902 => 0.088901897836755
903 => 0.09098073109753
904 => 0.08830208588365
905 => 0.087853002296478
906 => 0.092642751759361
907 => 0.093309217415811
908 => 0.090465867870747
909 => 0.092291758575156
910 => 0.091629665223958
911 => 0.088348003567664
912 => 0.088222668230663
913 => 0.08657604576752
914 => 0.083999400461639
915 => 0.082821804416227
916 => 0.082208502171419
917 => 0.08246156263065
918 => 0.082333607518685
919 => 0.081498613860943
920 => 0.082381468377738
921 => 0.080126139908
922 => 0.079228049938933
923 => 0.078822403535435
924 => 0.076820669706679
925 => 0.080006318403304
926 => 0.080633931328284
927 => 0.081262780844606
928 => 0.086736486550387
929 => 0.086463035681858
930 => 0.088934898357387
1001 => 0.088838846319279
1002 => 0.088133831042698
1003 => 0.085159487560186
1004 => 0.08634500785974
1005 => 0.082696160648471
1006 => 0.085430125076647
1007 => 0.084182457884712
1008 => 0.085008287544013
1009 => 0.083523371354531
1010 => 0.084345185284477
1011 => 0.080782761635702
1012 => 0.077456220557128
1013 => 0.078794917794934
1014 => 0.080250234791028
1015 => 0.083405732846433
1016 => 0.081526344236927
1017 => 0.082202243448457
1018 => 0.079938094233994
1019 => 0.075266507682309
1020 => 0.075292948354859
1021 => 0.074574326539927
1022 => 0.073953332371323
1023 => 0.081742214626656
1024 => 0.080773543994198
1025 => 0.079230094117855
1026 => 0.081296063111601
1027 => 0.081842338104884
1028 => 0.08185788978597
1029 => 0.083365167433429
1030 => 0.084169601784073
1031 => 0.084311386824991
1101 => 0.086683120770157
1102 => 0.087478094704649
1103 => 0.090752479831901
1104 => 0.084101351149691
1105 => 0.083964375531377
1106 => 0.081325135532116
1107 => 0.079651287799851
1108 => 0.081439745318383
1109 => 0.083024074531006
1110 => 0.081374365057053
1111 => 0.081589782287083
1112 => 0.079375182104517
1113 => 0.080166797463161
1114 => 0.080848643252129
1115 => 0.080472168084504
1116 => 0.079908566536965
1117 => 0.082894177603023
1118 => 0.082725717725972
1119 => 0.085505987389587
1120 => 0.087673406411367
1121 => 0.091557808770889
1122 => 0.087504232410253
1123 => 0.087356503976164
1124 => 0.088800573115764
1125 => 0.087477873625188
1126 => 0.088313774045198
1127 => 0.091423132290255
1128 => 0.091488828130311
1129 => 0.090388338165072
1130 => 0.090321373250675
1201 => 0.09053273438654
1202 => 0.091770683161047
1203 => 0.091338105820911
1204 => 0.091838695270435
1205 => 0.092464690042362
1206 => 0.095054069835338
1207 => 0.095678360537121
1208 => 0.094161657789407
1209 => 0.094298599065725
1210 => 0.093731310603659
1211 => 0.093183317057406
1212 => 0.094415126521351
1213 => 0.096666282527987
1214 => 0.096652278203305
1215 => 0.097174502640624
1216 => 0.097499844138733
1217 => 0.096103240264316
1218 => 0.095194102496618
1219 => 0.095542723766693
1220 => 0.096100176769525
1221 => 0.095361949271038
1222 => 0.090805267170129
1223 => 0.092187473437565
1224 => 0.091957406728231
1225 => 0.09162976375707
1226 => 0.093019582847262
1227 => 0.092885531405527
1228 => 0.088870170284582
1229 => 0.089127220675737
1230 => 0.088885802370245
1231 => 0.089665874304828
]
'min_raw' => 0.073953332371323
'max_raw' => 0.16566459373519
'avg_raw' => 0.11980896305326
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.073953'
'max' => '$0.165664'
'avg' => '$0.1198089'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.018033903429179
'max_diff' => -0.12038502515885
'year' => 2034
]
9 => [
'items' => [
101 => 0.087435747180743
102 => 0.088121719263976
103 => 0.088551954523991
104 => 0.088805366397363
105 => 0.089720863850131
106 => 0.08961344079068
107 => 0.089714186281926
108 => 0.091071627322014
109 => 0.097937098285263
110 => 0.098310770721985
111 => 0.096470670979294
112 => 0.097205754532136
113 => 0.09579455485578
114 => 0.096741902652734
115 => 0.097390053955385
116 => 0.094461182851033
117 => 0.09428775411245
118 => 0.092870729913038
119 => 0.093632158453449
120 => 0.092420670897005
121 => 0.092717927567321
122 => 0.091886772002748
123 => 0.093382686537557
124 => 0.095055351429091
125 => 0.095477932636231
126 => 0.094366303412895
127 => 0.093561410595263
128 => 0.09214828395568
129 => 0.094498345050888
130 => 0.095185574531941
131 => 0.094494735326987
201 => 0.094334652788064
202 => 0.094031296666068
203 => 0.094399011223402
204 => 0.095181831732597
205 => 0.094812668036886
206 => 0.095056507161731
207 => 0.094127243863637
208 => 0.096103702598311
209 => 0.099242794729672
210 => 0.099252887424167
211 => 0.098883721738526
212 => 0.098732667093747
213 => 0.099111453490062
214 => 0.099316929571432
215 => 0.10054185531957
216 => 0.10185624945051
217 => 0.10798995334455
218 => 0.10626763383552
219 => 0.11170982082598
220 => 0.1160138841559
221 => 0.11730448455467
222 => 0.11611719291525
223 => 0.11205553235302
224 => 0.11185624790866
225 => 0.11792608357749
226 => 0.11621107698496
227 => 0.11600708240788
228 => 0.11383692476207
301 => 0.11511975671
302 => 0.11483918254498
303 => 0.11439628249934
304 => 0.11684383649313
305 => 0.12142543907486
306 => 0.1207113533465
307 => 0.12017832147576
308 => 0.11784273098144
309 => 0.11924927813205
310 => 0.11874843363235
311 => 0.12090037944681
312 => 0.11962561441776
313 => 0.11619808412326
314 => 0.11674392961995
315 => 0.11666142617121
316 => 0.11835934129993
317 => 0.11784966932314
318 => 0.1165619045378
319 => 0.12140977965532
320 => 0.12109498561049
321 => 0.12154129159412
322 => 0.12173776929059
323 => 0.12468858544548
324 => 0.12589744040856
325 => 0.12617187164916
326 => 0.12732019036788
327 => 0.12614330043334
328 => 0.1308516992798
329 => 0.13398250977
330 => 0.13761910726441
331 => 0.14293315362899
401 => 0.14493128421975
402 => 0.1445703398131
403 => 0.14859938911836
404 => 0.15583950115917
405 => 0.14603377345928
406 => 0.15635922853743
407 => 0.1530903086728
408 => 0.14533975847911
409 => 0.14484071441962
410 => 0.15008947699652
411 => 0.16173072721741
412 => 0.15881472607105
413 => 0.16173549675066
414 => 0.15832826260702
415 => 0.15815906471337
416 => 0.16157001499339
417 => 0.16953988624389
418 => 0.16575369915894
419 => 0.16032527156149
420 => 0.16433353802376
421 => 0.16086120666659
422 => 0.15303707227455
423 => 0.15881249625993
424 => 0.15495063471551
425 => 0.15607773122202
426 => 0.16419478977983
427 => 0.16321812381908
428 => 0.16448202000912
429 => 0.16225127631562
430 => 0.1601674099499
501 => 0.15627771862833
502 => 0.15512617278748
503 => 0.15544441862961
504 => 0.15512601508065
505 => 0.15294976853434
506 => 0.15247980829986
507 => 0.15169652065298
508 => 0.15193929424766
509 => 0.15046648431264
510 => 0.15324598095809
511 => 0.15376188002833
512 => 0.15578456589611
513 => 0.15599456785291
514 => 0.16162771920355
515 => 0.15852507410088
516 => 0.16060659630524
517 => 0.16042040536724
518 => 0.14550773640353
519 => 0.14756257061114
520 => 0.15075924779568
521 => 0.14931914905704
522 => 0.14728318637181
523 => 0.14563903734207
524 => 0.14314798343915
525 => 0.14665409397106
526 => 0.15126425648723
527 => 0.15611148918225
528 => 0.16193512166204
529 => 0.16063535468711
530 => 0.15600262042387
531 => 0.15621044149871
601 => 0.15749510960875
602 => 0.15583134768184
603 => 0.1553406718091
604 => 0.15742769827868
605 => 0.15744207048296
606 => 0.1555277113137
607 => 0.1534002514211
608 => 0.15339133728647
609 => 0.1530127763474
610 => 0.1583956077571
611 => 0.1613556207668
612 => 0.16169498148806
613 => 0.16133277908638
614 => 0.16147217641549
615 => 0.15974981006458
616 => 0.16368662879088
617 => 0.16729944296515
618 => 0.16633113158993
619 => 0.1648794951849
620 => 0.16372319686801
621 => 0.16605874445416
622 => 0.16595474619664
623 => 0.16726788818509
624 => 0.16720831647941
625 => 0.16676675621847
626 => 0.16633114735943
627 => 0.16805828724651
628 => 0.16756089869605
629 => 0.16706273756379
630 => 0.16606359914838
701 => 0.16619939865297
702 => 0.16474801289343
703 => 0.16407653543018
704 => 0.15397912548252
705 => 0.15128076760212
706 => 0.15212972592143
707 => 0.15240922504334
708 => 0.15123489623575
709 => 0.15291858208552
710 => 0.15265618142929
711 => 0.1536770288834
712 => 0.15303924771412
713 => 0.15306542247577
714 => 0.15494100090535
715 => 0.15548548930274
716 => 0.15520855810927
717 => 0.15540251122453
718 => 0.15987207890324
719 => 0.15923664930806
720 => 0.1588990900002
721 => 0.1589925962354
722 => 0.16013466660592
723 => 0.16045438395493
724 => 0.15909971908101
725 => 0.15973858686678
726 => 0.16245880481417
727 => 0.16341072714476
728 => 0.16644880627535
729 => 0.16515817626312
730 => 0.16752718350772
731 => 0.17480870412353
801 => 0.18062568663433
802 => 0.17527614912043
803 => 0.18595829671327
804 => 0.19427588087736
805 => 0.19395663814348
806 => 0.19250627495528
807 => 0.18303692651888
808 => 0.17432309090767
809 => 0.18161258440545
810 => 0.18163116682348
811 => 0.18100499286729
812 => 0.17711588020385
813 => 0.18086966017674
814 => 0.18116762159926
815 => 0.18100084243699
816 => 0.17801906887644
817 => 0.17346645177335
818 => 0.17435602225787
819 => 0.17581315685826
820 => 0.1730544970696
821 => 0.17217293811404
822 => 0.17381192393589
823 => 0.17909307775014
824 => 0.1780947062132
825 => 0.17806863469763
826 => 0.1823400915081
827 => 0.17928265026988
828 => 0.17436724259048
829 => 0.17312603732517
830 => 0.16872059480937
831 => 0.17176344964668
901 => 0.17187295657518
902 => 0.17020641607801
903 => 0.174502473167
904 => 0.17446288424461
905 => 0.17854135106689
906 => 0.18633784782891
907 => 0.18403204009407
908 => 0.18135063656963
909 => 0.18164217947999
910 => 0.18483968561745
911 => 0.18290640041478
912 => 0.183601623253
913 => 0.18483863331442
914 => 0.1855849521977
915 => 0.18153479567789
916 => 0.18059051045174
917 => 0.17865883427811
918 => 0.17815489602086
919 => 0.17972820595853
920 => 0.17931369437581
921 => 0.17186375294187
922 => 0.17108519261094
923 => 0.17110906994477
924 => 0.16915134297412
925 => 0.16616533943557
926 => 0.17401237844987
927 => 0.17338215139778
928 => 0.17268642950797
929 => 0.17277165146974
930 => 0.17617778514502
1001 => 0.17420205559948
1002 => 0.17945485641199
1003 => 0.17837503847858
1004 => 0.17726752728971
1005 => 0.17711443550779
1006 => 0.17668813818849
1007 => 0.17522620606236
1008 => 0.17346083517156
1009 => 0.17229518439564
1010 => 0.15893320011599
1011 => 0.16141310667521
1012 => 0.16426601312099
1013 => 0.16525082499377
1014 => 0.16356623613848
1015 => 0.17529272389806
1016 => 0.17743526621098
1017 => 0.17094536579056
1018 => 0.16973137040279
1019 => 0.17537231323357
1020 => 0.1719701351294
1021 => 0.17350213572139
1022 => 0.17019078840102
1023 => 0.17691919050876
1024 => 0.17686793135786
1025 => 0.17425043097009
1026 => 0.17646272437396
1027 => 0.17607828395317
1028 => 0.173123132462
1029 => 0.17701287408204
1030 => 0.17701480334536
1031 => 0.1744955161315
1101 => 0.1715535402086
1102 => 0.17102758439995
1103 => 0.17063134735036
1104 => 0.17340468569696
1105 => 0.17589125218652
1106 => 0.18051813595149
1107 => 0.18168144446205
1108 => 0.18622191502459
1109 => 0.1835182858761
1110 => 0.18471676965977
1111 => 0.18601789334282
1112 => 0.18664169988372
1113 => 0.18562524060063
1114 => 0.19267846031651
1115 => 0.19327396816559
1116 => 0.19347363679627
1117 => 0.19109533079257
1118 => 0.19320782317331
1119 => 0.19221945794675
1120 => 0.19479090969048
1121 => 0.19519414615784
1122 => 0.19485261921554
1123 => 0.19498061283493
1124 => 0.18896193408065
1125 => 0.18864983383618
1126 => 0.18439432485722
1127 => 0.18612847622128
1128 => 0.18288656336621
1129 => 0.18391460732796
1130 => 0.18436775931073
1201 => 0.18413105843108
1202 => 0.18622652253751
1203 => 0.18444494997201
1204 => 0.17974308705401
1205 => 0.1750399431166
1206 => 0.17498089897557
1207 => 0.17374264419423
1208 => 0.17284761278501
1209 => 0.17302002758737
1210 => 0.17362763983931
1211 => 0.17281229725634
1212 => 0.17298629193534
1213 => 0.17587576292712
1214 => 0.17645522572776
1215 => 0.17448598472046
1216 => 0.16657919791604
1217 => 0.16463885260156
1218 => 0.16603353433489
1219 => 0.16536696629537
1220 => 0.1334640481629
1221 => 0.14095916555545
1222 => 0.13650582131094
1223 => 0.13855812722733
1224 => 0.13401241594158
1225 => 0.13618186762828
1226 => 0.13578124911744
1227 => 0.14783317608801
1228 => 0.14764500182524
1229 => 0.14773507088687
1230 => 0.14343583990188
1231 => 0.15028463159781
]
'min_raw' => 0.087435747180743
'max_raw' => 0.19519414615784
'avg_raw' => 0.14131494666929
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.087435'
'max' => '$0.195194'
'avg' => '$0.141314'
'bar_min_pct' => 61.631153054958
'bar_max_pct' => 60.119598047091
'min_diff' => 0.01348241480942
'max_diff' => 0.029529552422648
'year' => 2035
]
10 => [
'items' => [
101 => 0.15365859266181
102 => 0.15303416226393
103 => 0.15319131794225
104 => 0.15049086270701
105 => 0.14776121719645
106 => 0.1447336202358
107 => 0.15035852116639
108 => 0.14973312820317
109 => 0.15116755465151
110 => 0.15481570498122
111 => 0.15535290897525
112 => 0.156074916591
113 => 0.15581612825676
114 => 0.16198151629016
115 => 0.16123484711878
116 => 0.16303410499043
117 => 0.15933289503841
118 => 0.15514462465563
119 => 0.15594067793052
120 => 0.15586401159869
121 => 0.154887961201
122 => 0.15400682654412
123 => 0.15253998559857
124 => 0.1571812874019
125 => 0.1569928590247
126 => 0.16004329542758
127 => 0.15950410116302
128 => 0.15590322990101
129 => 0.15603183572258
130 => 0.1568967716785
131 => 0.15989032489759
201 => 0.16077901530966
202 => 0.1603673385026
203 => 0.16134174696918
204 => 0.16211187969132
205 => 0.16143846378191
206 => 0.17097261295081
207 => 0.16701336949732
208 => 0.16894307720831
209 => 0.16940330112689
210 => 0.16822444723693
211 => 0.16848009843407
212 => 0.16886734033695
213 => 0.17121859734153
214 => 0.17738897606324
215 => 0.1801217947959
216 => 0.188343614788
217 => 0.17989487224282
218 => 0.17939355882457
219 => 0.18087455688032
220 => 0.18570163558372
221 => 0.18961352948837
222 => 0.19091133037912
223 => 0.19108285619119
224 => 0.1935176169384
225 => 0.1949131763931
226 => 0.19322197294312
227 => 0.19178885509565
228 => 0.18665560485113
229 => 0.18724979254431
301 => 0.19134315652273
302 => 0.19712527424019
303 => 0.20208693276859
304 => 0.2003495328832
305 => 0.21360466759553
306 => 0.21491886005989
307 => 0.21473728115425
308 => 0.21773120716611
309 => 0.21178887373499
310 => 0.20924841106589
311 => 0.19209871144085
312 => 0.19691707750833
313 => 0.20392085556013
314 => 0.20299387927215
315 => 0.19790754843941
316 => 0.20208307433055
317 => 0.20070251489017
318 => 0.19961361038008
319 => 0.20460209303533
320 => 0.19911705144031
321 => 0.20386613807438
322 => 0.19777538534318
323 => 0.20035746917953
324 => 0.19889175351268
325 => 0.19984025118049
326 => 0.19429535319545
327 => 0.19728724555339
328 => 0.19417088063693
329 => 0.1941694030742
330 => 0.19410060914595
331 => 0.19776699865008
401 => 0.19788655948018
402 => 0.19517709209702
403 => 0.19478661551727
404 => 0.19623041208966
405 => 0.19454010443431
406 => 0.19533098874758
407 => 0.19456405951448
408 => 0.1943914075901
409 => 0.19301568768239
410 => 0.19242298971995
411 => 0.19265540186297
412 => 0.19186205940217
413 => 0.19138404187308
414 => 0.19400551942789
415 => 0.19260496972046
416 => 0.19379086509851
417 => 0.19243938764329
418 => 0.18775457797279
419 => 0.18506029439033
420 => 0.17621112320484
421 => 0.17872073717568
422 => 0.18038461383474
423 => 0.17983470260884
424 => 0.18101612470945
425 => 0.18108865443132
426 => 0.18070456206324
427 => 0.18025983230628
428 => 0.18004336245569
429 => 0.18165675137156
430 => 0.18259337794139
501 => 0.18055160611727
502 => 0.1800732475463
503 => 0.1821375915898
504 => 0.1833968402638
505 => 0.19269442496192
506 => 0.19200562985668
507 => 0.19373437040162
508 => 0.19353974074594
509 => 0.195351736247
510 => 0.1983135830848
511 => 0.19229132031816
512 => 0.19333657690027
513 => 0.19308030412483
514 => 0.19587822308869
515 => 0.1958869578863
516 => 0.19420946570104
517 => 0.19511886142887
518 => 0.19461126168156
519 => 0.19552856303117
520 => 0.19199643057811
521 => 0.1962981866358
522 => 0.19873700512147
523 => 0.19877086811851
524 => 0.19992684872506
525 => 0.20110139197119
526 => 0.20335582545099
527 => 0.20103851704504
528 => 0.19686990480815
529 => 0.19717086514712
530 => 0.19472680931787
531 => 0.19476789433791
601 => 0.19454857928103
602 => 0.19520676027601
603 => 0.19214086429378
604 => 0.19286042395279
605 => 0.19185303621644
606 => 0.19333438703607
607 => 0.19174069843021
608 => 0.19308018054234
609 => 0.1936582566174
610 => 0.19579136977945
611 => 0.1914256358818
612 => 0.18252360893028
613 => 0.18439492292213
614 => 0.18162710253964
615 => 0.18188327485387
616 => 0.18240078369815
617 => 0.18072336821549
618 => 0.18104336622815
619 => 0.18103193364734
620 => 0.18093341384236
621 => 0.18049705329046
622 => 0.1798642441589
623 => 0.18238516097065
624 => 0.18281351386025
625 => 0.18376568927214
626 => 0.18659871743119
627 => 0.18631563111069
628 => 0.18677735664455
629 => 0.18576941239661
630 => 0.18193003049668
701 => 0.18213852740567
702 => 0.17953856760963
703 => 0.18369920245465
704 => 0.18271390920566
705 => 0.18207868423832
706 => 0.18190535722066
707 => 0.18474540790854
708 => 0.18559519558669
709 => 0.18506566493279
710 => 0.18397958211278
711 => 0.18606518219877
712 => 0.18662320079738
713 => 0.18674812058267
714 => 0.1904434040609
715 => 0.18695464587963
716 => 0.18779442464913
717 => 0.1943461388834
718 => 0.18840463814768
719 => 0.19155198359867
720 => 0.19139793741684
721 => 0.19300801284921
722 => 0.19126586423681
723 => 0.19128746025681
724 => 0.19271709816479
725 => 0.19070942955958
726 => 0.19021230257903
727 => 0.18952552521588
728 => 0.19102507846306
729 => 0.19192399281579
730 => 0.19916858231893
731 => 0.20384891753137
801 => 0.20364573183629
802 => 0.20550246874163
803 => 0.20466599176001
804 => 0.20196478693491
805 => 0.20657541419453
806 => 0.20511641881274
807 => 0.20523669661934
808 => 0.20523221987337
809 => 0.20620232425467
810 => 0.20551491639176
811 => 0.204159964933
812 => 0.20505944494426
813 => 0.20773057900772
814 => 0.21602186110111
815 => 0.22066177240545
816 => 0.21574253261455
817 => 0.21913575835107
818 => 0.21710103203911
819 => 0.21673126174036
820 => 0.21886245826031
821 => 0.22099738515764
822 => 0.22086139954382
823 => 0.21931155224607
824 => 0.21843608283349
825 => 0.22506543052933
826 => 0.22994982098363
827 => 0.22961673830001
828 => 0.2310868569412
829 => 0.23540317074076
830 => 0.23579780038079
831 => 0.23574808611661
901 => 0.23476995537845
902 => 0.2390199268583
903 => 0.24256532783793
904 => 0.23454354637349
905 => 0.23759813574232
906 => 0.23896943932271
907 => 0.24098291982616
908 => 0.24437999893399
909 => 0.24807012787584
910 => 0.24859195256842
911 => 0.24822169297742
912 => 0.24578795374429
913 => 0.24982573686485
914 => 0.2521909755192
915 => 0.25359942101035
916 => 0.25717100443291
917 => 0.23897790802677
918 => 0.22609993013494
919 => 0.22408884792688
920 => 0.22817846267888
921 => 0.22925686147492
922 => 0.22882216027243
923 => 0.21432682534065
924 => 0.22401253298834
925 => 0.23443354001983
926 => 0.23483385334079
927 => 0.24005082735374
928 => 0.24174968794334
929 => 0.24595003582817
930 => 0.24568730292435
1001 => 0.24671002079217
1002 => 0.24647491566536
1003 => 0.25425517563442
1004 => 0.26283795776007
1005 => 0.26254076330664
1006 => 0.26130688682921
1007 => 0.2631394038054
1008 => 0.2719977547459
1009 => 0.27118221974348
1010 => 0.27197444253123
1011 => 0.28241893752486
1012 => 0.29599826672868
1013 => 0.28968930497115
1014 => 0.30337793663016
1015 => 0.31199420465632
1016 => 0.32689514926882
1017 => 0.32502947761463
1018 => 0.3308303060041
1019 => 0.32168953597622
1020 => 0.30070048033779
1021 => 0.29737888194013
1022 => 0.30402880604851
1023 => 0.32037699557886
1024 => 0.30351394338194
1025 => 0.30692531687889
1026 => 0.30594284108227
1027 => 0.30589048912232
1028 => 0.30788855050275
1029 => 0.30499025825857
1030 => 0.29318209426298
1031 => 0.29859370623621
1101 => 0.29650402296639
1102 => 0.29882268235046
1103 => 0.31133553075841
1104 => 0.30580330220821
1105 => 0.29997554883232
1106 => 0.30728484484769
1107 => 0.31659209042186
1108 => 0.31600965972056
1109 => 0.31487950072288
1110 => 0.32125014781958
1111 => 0.33177259039886
1112 => 0.33461676434544
1113 => 0.33671627540623
1114 => 0.33700576250999
1115 => 0.33998765959387
1116 => 0.32395324743899
1117 => 0.3494002713217
1118 => 0.35379426938639
1119 => 0.35296837986279
1120 => 0.357852123784
1121 => 0.35641520243375
1122 => 0.3543333288433
1123 => 0.36207510176053
1124 => 0.35319978383979
1125 => 0.34060238742274
1126 => 0.3336912066001
1127 => 0.34279240701641
1128 => 0.34835019252252
1129 => 0.35202353520052
1130 => 0.35313508647539
1201 => 0.32519795321046
1202 => 0.3101413878451
1203 => 0.31979247362042
1204 => 0.33156746434867
1205 => 0.32388783677096
1206 => 0.32418886363255
1207 => 0.31323973287736
1208 => 0.33253621946798
1209 => 0.32972488368073
1210 => 0.34431009871818
1211 => 0.34082922009583
1212 => 0.35272289676408
1213 => 0.34959089309682
1214 => 0.36259166521166
1215 => 0.36777802519012
1216 => 0.37648673078644
1217 => 0.38289289007389
1218 => 0.38665470933779
1219 => 0.38642886381942
1220 => 0.40133506587389
1221 => 0.3925453993054
1222 => 0.38150350653002
1223 => 0.38130379352644
1224 => 0.38702254625964
1225 => 0.39900748312523
1226 => 0.40211500288073
1227 => 0.40385168248842
1228 => 0.401191897215
1229 => 0.39165134411598
1230 => 0.38753178165953
1231 => 0.39104176822764
]
'min_raw' => 0.1447336202358
'max_raw' => 0.40385168248842
'avg_raw' => 0.27429265136211
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$0.144733'
'max' => '$0.403851'
'avg' => '$0.274292'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.057297873055056
'max_diff' => 0.20865753633058
'year' => 2036
]
11 => [
'items' => [
101 => 0.38674935627142
102 => 0.39415926354593
103 => 0.40433464890462
104 => 0.40223347206589
105 => 0.40925739121174
106 => 0.41652640858986
107 => 0.42692142991257
108 => 0.42963907341285
109 => 0.43413123477608
110 => 0.43875514441699
111 => 0.44024021957579
112 => 0.4430756888457
113 => 0.44306074452302
114 => 0.45160562201699
115 => 0.46103088650566
116 => 0.46458870565475
117 => 0.47276971460881
118 => 0.45876002347173
119 => 0.46938653513094
120 => 0.47897191464639
121 => 0.46754383002926
122 => 0.48329478227176
123 => 0.48390635605491
124 => 0.49314039408665
125 => 0.48377992751384
126 => 0.47822171234258
127 => 0.49426807127841
128 => 0.50203239891189
129 => 0.49969372024049
130 => 0.48189626007635
131 => 0.47153737489184
201 => 0.44442617428426
202 => 0.47654056252065
203 => 0.49218254424104
204 => 0.48185575112252
205 => 0.48706398489782
206 => 0.51547841960039
207 => 0.52629679663673
208 => 0.52404664983934
209 => 0.52442688760753
210 => 0.5302642874889
211 => 0.55615053327775
212 => 0.54063889476259
213 => 0.55249696119742
214 => 0.55878643687702
215 => 0.56462845240451
216 => 0.55028230865695
217 => 0.53161818642808
218 => 0.52570647545165
219 => 0.48082895506573
220 => 0.47849288523645
221 => 0.47718157845111
222 => 0.4689139746576
223 => 0.46241790276317
224 => 0.45725198520904
225 => 0.44369507487342
226 => 0.44827013414441
227 => 0.42666324861652
228 => 0.44048656827626
301 => 0.40600145725725
302 => 0.43472168244449
303 => 0.41909056962348
304 => 0.42958644148535
305 => 0.4295498223772
306 => 0.41022359456028
307 => 0.39907662968356
308 => 0.40617990954937
309 => 0.41379518942457
310 => 0.41503074296344
311 => 0.42490415210079
312 => 0.4276596083628
313 => 0.41931044724895
314 => 0.40528682998186
315 => 0.40854419642835
316 => 0.39901061925649
317 => 0.38230339196655
318 => 0.39430281428639
319 => 0.39839994464374
320 => 0.40020947081791
321 => 0.38377983161627
322 => 0.3786172822743
323 => 0.37586878432261
324 => 0.40316596987551
325 => 0.40466137132001
326 => 0.39701068610149
327 => 0.43159250875693
328 => 0.42376557722952
329 => 0.43251017739041
330 => 0.40824862456543
331 => 0.40917544855586
401 => 0.39768964063988
402 => 0.40412092559087
403 => 0.3995755006775
404 => 0.40360134132202
405 => 0.40601441360519
406 => 0.41749833681311
407 => 0.43485281040064
408 => 0.41578302164093
409 => 0.40747404159392
410 => 0.41262888608361
411 => 0.42635691625711
412 => 0.4471555846949
413 => 0.43484235436752
414 => 0.4403067568946
415 => 0.44150048575242
416 => 0.43242116556957
417 => 0.44749035218065
418 => 0.45556605170738
419 => 0.46385004839125
420 => 0.47104281059953
421 => 0.46054123794672
422 => 0.47177942602654
423 => 0.46272343024145
424 => 0.45459926583059
425 => 0.4546115868345
426 => 0.44951517982446
427 => 0.43964024905391
428 => 0.4378191603112
429 => 0.44729269392893
430 => 0.45488957074337
501 => 0.4555152859044
502 => 0.4597213072505
503 => 0.46221038735766
504 => 0.48660675614812
505 => 0.49641917749299
506 => 0.50841762057387
507 => 0.51309169034908
508 => 0.52715896462568
509 => 0.51579849815917
510 => 0.51334058977845
511 => 0.47921798375376
512 => 0.48480555857872
513 => 0.49375180499426
514 => 0.47936550406205
515 => 0.48849030073352
516 => 0.49029172888609
517 => 0.47887666306136
518 => 0.48497394293423
519 => 0.46878137530938
520 => 0.43520576412568
521 => 0.44752773143399
522 => 0.45660084690226
523 => 0.44365239242198
524 => 0.4668619959035
525 => 0.45330342469306
526 => 0.44900600854554
527 => 0.43224025601462
528 => 0.44015304583622
529 => 0.45085520737017
530 => 0.44424251580201
531 => 0.45796484370658
601 => 0.47739931963063
602 => 0.49124948451716
603 => 0.49231272819897
604 => 0.48340800006591
605 => 0.49767788372835
606 => 0.49778182425205
607 => 0.48168533718663
608 => 0.47182632848467
609 => 0.46958634096405
610 => 0.47518226896598
611 => 0.4819767586256
612 => 0.49268977508783
613 => 0.49916342656745
614 => 0.51604327626685
615 => 0.52061047961229
616 => 0.5256284513994
617 => 0.53233400919216
618 => 0.5403857505921
619 => 0.52276899879493
620 => 0.52346894518556
621 => 0.50706446983257
622 => 0.48953393527815
623 => 0.50283742579297
624 => 0.52022996995191
625 => 0.5162401011048
626 => 0.51579115935387
627 => 0.51654615485287
628 => 0.51353792403908
629 => 0.49993180755855
630 => 0.49309890104082
701 => 0.50191509370905
702 => 0.50660050774863
703 => 0.51386717631297
704 => 0.51297140603165
705 => 0.53168956387015
706 => 0.53896287399848
707 => 0.53710205002516
708 => 0.53744448641948
709 => 0.55061246698825
710 => 0.56525796958247
711 => 0.57897541540624
712 => 0.59292939047619
713 => 0.57610732889645
714 => 0.56756612346678
715 => 0.5763784672611
716 => 0.57170251360111
717 => 0.59857193030932
718 => 0.60043231042445
719 => 0.627299784168
720 => 0.65280021606989
721 => 0.63678385168001
722 => 0.65188656190677
723 => 0.66822137435905
724 => 0.69973387780731
725 => 0.68912157526917
726 => 0.68099271784095
727 => 0.67331098684962
728 => 0.68929544960211
729 => 0.70985920557516
730 => 0.71428844165455
731 => 0.72146549620156
801 => 0.71391970091385
802 => 0.72300778019582
803 => 0.75509269356553
804 => 0.74642306675167
805 => 0.73411080296393
806 => 0.75943876060149
807 => 0.76860485001058
808 => 0.83293726580186
809 => 0.9141595981779
810 => 0.88053301923963
811 => 0.85965991656973
812 => 0.86456559081377
813 => 0.89422523704803
814 => 0.90375097406836
815 => 0.87785673712865
816 => 0.88700301937427
817 => 0.93739993379027
818 => 0.96443626144786
819 => 0.92771729702561
820 => 0.82641113047987
821 => 0.73300221832124
822 => 0.75777846808384
823 => 0.75496961025731
824 => 0.80911480765419
825 => 0.7462162990194
826 => 0.74727534859259
827 => 0.80254021133088
828 => 0.78779649343191
829 => 0.7639135586683
830 => 0.73317659017545
831 => 0.67635646109096
901 => 0.6260292882143
902 => 0.72473246388114
903 => 0.72047620346631
904 => 0.71431250764318
905 => 0.72802914571601
906 => 0.79463324666203
907 => 0.79309780655879
908 => 0.78333012001039
909 => 0.79073882416891
910 => 0.76261477700875
911 => 0.76986298433458
912 => 0.73298742187231
913 => 0.74965671616478
914 => 0.76386231661667
915 => 0.76671430122489
916 => 0.77313996817317
917 => 0.71823334763366
918 => 0.74288480828222
919 => 0.75736523188374
920 => 0.69194215124972
921 => 0.75607202793085
922 => 0.71727754552627
923 => 0.70411011552459
924 => 0.72183832534487
925 => 0.71492962473665
926 => 0.70898992964623
927 => 0.70567547772885
928 => 0.71869311842975
929 => 0.7180858299316
930 => 0.69678644312976
1001 => 0.66900226132082
1002 => 0.67832754472058
1003 => 0.67493958183645
1004 => 0.66266116728845
1005 => 0.67093533619238
1006 => 0.63450008380055
1007 => 0.57181512580004
1008 => 0.61322672914737
1009 => 0.61163242746565
1010 => 0.61082850826191
1011 => 0.64194818364478
1012 => 0.63895674490978
1013 => 0.63352725431351
1014 => 0.66256145043579
1015 => 0.65196357828611
1016 => 0.68462372307872
1017 => 0.70613580676485
1018 => 0.70067964649904
1019 => 0.72091186518277
1020 => 0.67854238041568
1021 => 0.69261582368663
1022 => 0.69551634083982
1023 => 0.66220317296251
1024 => 0.63944618128257
1025 => 0.63792854938622
1026 => 0.59847106191984
1027 => 0.61954893323467
1028 => 0.63809658773014
1029 => 0.62921370058294
1030 => 0.62640164388084
1031 => 0.64076783171117
1101 => 0.64188420754367
1102 => 0.61643072025458
1103 => 0.62172330626909
1104 => 0.64379426976883
1105 => 0.62116717461716
1106 => 0.57720642485247
1107 => 0.56630355110592
1108 => 0.56484890676829
1109 => 0.5352794484498
1110 => 0.56703213326378
1111 => 0.55317123542343
1112 => 0.59695764562204
1113 => 0.57194708294782
1114 => 0.57086892757892
1115 => 0.56923913760781
1116 => 0.54378748333414
1117 => 0.54935977808306
1118 => 0.56788293451293
1119 => 0.5744922054054
1120 => 0.57380280430316
1121 => 0.56779216094115
1122 => 0.5705438026928
1123 => 0.5616798058752
1124 => 0.55854974411076
1125 => 0.54867040819088
1126 => 0.53415051362486
1127 => 0.53616959401996
1128 => 0.50740188354759
1129 => 0.49172770806429
1130 => 0.48738930287283
1201 => 0.48158780613637
1202 => 0.48804459736641
1203 => 0.5073203882383
1204 => 0.48406969485964
1205 => 0.44420801190844
1206 => 0.44660376697481
1207 => 0.45198631730288
1208 => 0.44195597037565
1209 => 0.43246308879224
1210 => 0.44071637914719
1211 => 0.42382645859349
1212 => 0.45402738350924
1213 => 0.45321053312739
1214 => 0.46446757032331
1215 => 0.47150682669958
1216 => 0.45528361973859
1217 => 0.45120352706012
1218 => 0.45352773327965
1219 => 0.41511378170414
1220 => 0.4613283309426
1221 => 0.46172799628351
1222 => 0.45830581899073
1223 => 0.48291363974608
1224 => 0.53484381691164
1225 => 0.51530559537542
1226 => 0.50773980545073
1227 => 0.49335723327332
1228 => 0.51252115674708
1229 => 0.51104966642807
1230 => 0.50439502915939
1231 => 0.50037028377555
]
'min_raw' => 0.37586878432261
'max_raw' => 0.96443626144786
'avg_raw' => 0.67015252288524
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$0.375868'
'max' => '$0.964436'
'avg' => '$0.670152'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 0.23113516408682
'max_diff' => 0.56058457895944
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.011798091644247
]
1 => [
'year' => 2028
'avg' => 0.020248950272005
]
2 => [
'year' => 2029
'avg' => 0.05531648262491
]
3 => [
'year' => 2030
'avg' => 0.042676583965341
]
4 => [
'year' => 2031
'avg' => 0.041913694304791
]
5 => [
'year' => 2032
'avg' => 0.073487896841349
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.011798091644247
'min' => '$0.011798'
'max_raw' => 0.073487896841349
'max' => '$0.073487'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.073487896841349
]
1 => [
'year' => 2033
'avg' => 0.18901842734727
]
2 => [
'year' => 2034
'avg' => 0.11980896305326
]
3 => [
'year' => 2035
'avg' => 0.14131494666929
]
4 => [
'year' => 2036
'avg' => 0.27429265136211
]
5 => [
'year' => 2037
'avg' => 0.67015252288524
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.073487896841349
'min' => '$0.073487'
'max_raw' => 0.67015252288524
'max' => '$0.670152'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 0.67015252288524
]
]
]
]
'prediction_2025_max_price' => '$0.020172'
'last_price' => 0.01955987
'sma_50day_nextmonth' => '$0.018216'
'sma_200day_nextmonth' => '$0.026066'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'increase'
'sma_200day_direction_label' => 'aumentar'
'sma_200day_date_nextmonth' => '4 de fev. de 2026'
'sma_50day_date_nextmonth' => '4 de fev. de 2026'
'daily_sma3' => '$0.019296'
'daily_sma3_action' => 'BUY'
'daily_sma5' => '$0.019385'
'daily_sma5_action' => 'BUY'
'daily_sma10' => '$0.019983'
'daily_sma10_action' => 'SELL'
'daily_sma21' => '$0.018511'
'daily_sma21_action' => 'BUY'
'daily_sma50' => '$0.019995'
'daily_sma50_action' => 'SELL'
'daily_sma100' => '$0.023261'
'daily_sma100_action' => 'SELL'
'daily_sma200' => '$0.028015'
'daily_sma200_action' => 'SELL'
'daily_ema3' => '$0.019455'
'daily_ema3_action' => 'BUY'
'daily_ema5' => '$0.019511'
'daily_ema5_action' => 'BUY'
'daily_ema10' => '$0.019428'
'daily_ema10_action' => 'BUY'
'daily_ema21' => '$0.019259'
'daily_ema21_action' => 'BUY'
'daily_ema50' => '$0.020382'
'daily_ema50_action' => 'SELL'
'daily_ema100' => '$0.0228091'
'daily_ema100_action' => 'SELL'
'daily_ema200' => '$0.026023'
'daily_ema200_action' => 'SELL'
'weekly_sma21' => '$0.024952'
'weekly_sma21_action' => 'SELL'
'weekly_sma50' => '$0.02883'
'weekly_sma50_action' => 'SELL'
'weekly_sma100' => '$0.034942'
'weekly_sma100_action' => 'SELL'
'weekly_sma200' => '$0.026823'
'weekly_sma200_action' => 'SELL'
'weekly_ema3' => '$0.019291'
'weekly_ema3_action' => 'BUY'
'weekly_ema5' => '$0.019476'
'weekly_ema5_action' => 'BUY'
'weekly_ema10' => '$0.020853'
'weekly_ema10_action' => 'SELL'
'weekly_ema21' => '$0.023739'
'weekly_ema21_action' => 'SELL'
'weekly_ema50' => '$0.027837'
'weekly_ema50_action' => 'SELL'
'weekly_ema100' => '$0.030473'
'weekly_ema100_action' => 'SELL'
'weekly_ema200' => '$0.030529'
'weekly_ema200_action' => 'SELL'
'rsi_14' => '50.90'
'rsi_14_action' => 'NEUTRAL'
'stoch_rsi_14' => 63.87
'stoch_rsi_14_action' => 'NEUTRAL'
'momentum_10' => 0
'momentum_10_action' => 'BUY'
'vwma_10' => '0.020154'
'vwma_10_action' => 'SELL'
'hma_9' => '0.0190035'
'hma_9_action' => 'SELL'
'stochastic_fast_14' => 63.41
'stochastic_fast_14_action' => 'NEUTRAL'
'cci_20' => 46.92
'cci_20_action' => 'NEUTRAL'
'adx_14' => 17.27
'adx_14_action' => 'NEUTRAL'
'ao_5_34' => '0.000345'
'ao_5_34_action' => 'BUY'
'macd_12_26' => 0
'macd_12_26_action' => 'NEUTRAL'
'williams_percent_r_14' => -36.59
'williams_percent_r_14_action' => 'NEUTRAL'
'ultimate_oscillator' => 51.06
'ultimate_oscillator_action' => 'NEUTRAL'
'ichimoku_cloud' => '-0.003150'
'ichimoku_cloud_action' => 'SELL'
'sell_signals' => 18
'buy_signals' => 15
'sell_pct' => 54.55
'buy_pct' => 45.45
'overall_action' => 'bearish'
'overall_action_label' => 'Baixista'
'overall_action_dir' => -1
'last_updated' => 1767709088
'last_updated_date' => '6 de janeiro de 2026'
]
Previsão de preço de QANplatform para 2026
A previsão de preço para QANplatform em 2026 sugere que o preço médio poderia variar entre $0.006757 na extremidade inferior e $0.020172 na extremidade superior. No mercado de criptomoedas, comparado ao preço médio de hoje, QANplatform poderia potencialmente ganhar 3.13% até 2026 se QANX atingir a meta de preço prevista.
Previsão de preço de QANplatform 2027-2032
A previsão de preço de QANX para 2027-2032 está atualmente dentro de uma faixa de preço entre $0.011798 na extremidade inferior e $0.073487 na extremidade superior. Considerando a volatilidade de preços no mercado, se QANplatform atingir a meta de preço superior, poderia ganhar 275.71% até 2032 em comparação com o preço de hoje.
| Previsão de Preço de QANplatform | Potencial Mínimo ($) | Preço Médio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2027 | $0.0065056 | $0.011798 | $0.01709 |
| 2028 | $0.01174 | $0.020248 | $0.028757 |
| 2029 | $0.025791 | $0.055316 | $0.084841 |
| 2030 | $0.021934 | $0.042676 | $0.063418 |
| 2031 | $0.025933 | $0.041913 | $0.057894 |
| 2032 | $0.039585 | $0.073487 | $0.10739 |
Previsão de preço de QANplatform 2032-2037
A previsão de preço de QANplatform para 2032-2037 é atualmente estimada entre $0.073487 na extremidade inferior e $0.670152 na extremidade superior. Comparado ao preço atual, QANplatform poderia potencialmente ganhar 3326.16% até 2037 se atingir a meta de preço superior. Por favor, note que esta informação é apenas para fins gerais e não deve ser considerada como aconselhamento de investimento a longo prazo.
| Previsão de Preço de QANplatform | Potencial Mínimo ($) | Preço Médio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2032 | $0.039585 | $0.073487 | $0.10739 |
| 2033 | $0.091987 | $0.189018 | $0.286049 |
| 2034 | $0.073953 | $0.1198089 | $0.165664 |
| 2035 | $0.087435 | $0.141314 | $0.195194 |
| 2036 | $0.144733 | $0.274292 | $0.403851 |
| 2037 | $0.375868 | $0.670152 | $0.964436 |
QANplatform Histograma de preços potenciais
Previsão de preço de QANplatform baseada na análise técnica
Em 6 de janeiro de 2026, o sentimento geral de previsão de preço para QANplatform é Baixista, com 15 indicadores técnicos mostrando sinais de alta e 18 indicando sinais de baixa. A previsão de preço de QANX foi atualizada pela última vez em 6 de janeiro de 2026.
Médias Móveis Simples de 50 e 200 dias e Índice de Força Relativa de 14 dias - RSI (14) de QANplatform
De acordo com nossos indicadores técnicos, o SMA de 200 dias de QANplatform está projetado para aumentar no próximo mês, alcançando $0.026066 até 4 de fev. de 2026. O SMA de 50 dias de curto prazo para QANplatform é esperado para alcançar $0.018216 até 4 de fev. de 2026.
O oscilador de momentum Índice de Força Relativa (RSI) é uma ferramenta comumente usada para identificar se uma criptomoeda está sobrevendida (abaixo de 30) ou sobrecomprada (acima de 70). No momento, o RSI está em 50.90, sugerindo que o mercado de QANX está em um estado NEUTRAL.
Médias Móveis e Osciladores Populares de QANX para Sábado, 19 de Outubro de 2024
Médias móveis (MA) são indicadores amplamente utilizados nos mercados financeiros, projetados para suavizar movimentos de preços ao longo de um período definido. Como indicadores atrasados, eles se baseiam em dados históricos de preços. A tabela abaixo destaca dois tipos: a média móvel simples (SMA) e a média móvel exponencial (EMA).
Média Móvel Simples Diária (SMA)
| Período | Valor | Ação |
|---|---|---|
| SMA 3 | $0.019296 | BUY |
| SMA 5 | $0.019385 | BUY |
| SMA 10 | $0.019983 | SELL |
| SMA 21 | $0.018511 | BUY |
| SMA 50 | $0.019995 | SELL |
| SMA 100 | $0.023261 | SELL |
| SMA 200 | $0.028015 | SELL |
Média Móvel Exponencial Diária (EMA)
| Período | Valor | Ação |
|---|---|---|
| EMA 3 | $0.019455 | BUY |
| EMA 5 | $0.019511 | BUY |
| EMA 10 | $0.019428 | BUY |
| EMA 21 | $0.019259 | BUY |
| EMA 50 | $0.020382 | SELL |
| EMA 100 | $0.0228091 | SELL |
| EMA 200 | $0.026023 | SELL |
Média Móvel Simples Semanal (SMA)
| Período | Valor | Ação |
|---|---|---|
| SMA 21 | $0.024952 | SELL |
| SMA 50 | $0.02883 | SELL |
| SMA 100 | $0.034942 | SELL |
| SMA 200 | $0.026823 | SELL |
Média Móvel Exponencial Semanal (EMA)
| Período | Valor | Ação |
|---|---|---|
| EMA 21 | $0.023739 | SELL |
| EMA 50 | $0.027837 | SELL |
| EMA 100 | $0.030473 | SELL |
| EMA 200 | $0.030529 | SELL |
Osciladores de QANplatform
Um oscilador é uma ferramenta de análise técnica que define limites altos e baixos entre dois extremos, criando um indicador de tendência que flutua dentro desses limites. Os traders usam esse indicador para identificar condições de sobrecompra ou sobrevenda de curto prazo.
| Período | Valor | Ação |
|---|---|---|
| RSI (14) | 50.90 | NEUTRAL |
| Stoch RSI (14) | 63.87 | NEUTRAL |
| Estocástico Rápido (14) | 63.41 | NEUTRAL |
| Índice de Canal de Commodities (20) | 46.92 | NEUTRAL |
| Índice Direcional Médio (14) | 17.27 | NEUTRAL |
| Oscilador Impressionante (5, 34) | 0.000345 | BUY |
| Momentum (10) | 0 | BUY |
| MACD (12, 26) | 0 | NEUTRAL |
| Williams Percent Range (14) | -36.59 | NEUTRAL |
| Oscilador Ultimate (7, 14, 28) | 51.06 | NEUTRAL |
| VWMA (10) | 0.020154 | SELL |
| Média Móvel de Hull (9) | 0.0190035 | SELL |
| Nuvem Ichimoku B/L (9, 26, 52, 26) | -0.003150 | SELL |
Previsão do preço de QANplatform com base nos fluxos financeiros mundiais
Definições dos fluxos financeiros mundiais, usadas na previsão do preço do QANplatform
M0: o total de todas as moedas físicas, mais as contas no Banco Central que podem ser trocadas por moedas físicas.
M1: o valor de M0, mais o valor em contas de demanda, incluindo contas 'correntes'.
M2: o valor de M1, mais a maioria das contas de poupança, do mercado de moedas e de certificados de depósito (CD) de menos de US$ 100.000.
Previsões de preço de QANplatform por empresas de Internet ou nichos tecnológicos
| Comparação | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Facebook stock | $0.027484 | $0.03862 | $0.054268 | $0.076256 | $0.107153 | $0.150568 |
| Amazon.com stock | $0.040812 | $0.085158 | $0.177688 | $0.370756 | $0.7736058 | $1.61 |
| Apple stock | $0.027744 | $0.039353 | $0.055819 | $0.079175 | $0.1123041 | $0.159294 |
| Netflix stock | $0.030862 | $0.048696 | $0.076834 | $0.121233 | $0.191286 | $0.30182 |
| Google stock | $0.025329 | $0.0328021 | $0.042478 | $0.0550096 | $0.071237 | $0.092251 |
| Tesla stock | $0.04434 | $0.100517 | $0.227864 | $0.516552 | $1.17 | $2.65 |
| Kodak stock | $0.014667 | $0.010999 | $0.008248 | $0.006185 | $0.004638 | $0.003478 |
| Nokia stock | $0.012957 | $0.008583 | $0.005686 | $0.003767 | $0.002495 | $0.001653 |
Este cálculo mostra quanto a criptomoeda pode custar, se assumirmos que sua capitalização se comportará da mesma forma que a de algumas empresas de Internet ou nichos tecnológicos. Se você extrapolar os dados, poderá obter uma imagem em potencial do preço futuro para 2024, 2025, 2026, 2027, 2028, 2029 e 2030.
Visão geral da previsão para QANplatform
Você pode fazer perguntas como: 'Devo investir em QANplatform agora?', 'Devo comprar QANX hoje?', 'QANplatform será um bom ou mau investimento no curto ou no longo prazo?'.
Atualizamos a previsão para QANplatform regularmente com novos valores. Veja nossas previsões semelhantes. Fazemos previsões de preços futuros para uma enorme quantidade de moedas digitais, como QANplatform, com métodos de análise técnica.
Se você estiver tentando encontrar criptomoedas com bom retorno, você deve explorar o máximo de fontes de informações disponíveis sobre QANplatform para poder tomar sozinho uma decisão de tão grande responsabilidade sobre o seu investimento.
O preço de QANplatform é de $0.01955 USD hoje, mas o preço pode tanto subir quanto descer e seu investimento pode ser perdido, porque criptomoedas são ativos de alto risco
Previsão do preço de QANplatform com base no padrão de crescimento do Bitcoin
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| Se QANplatform tiver 1% da média anterior do crescimento anual do Bitcoin | $0.020068 | $0.020589 | $0.021125 | $0.021674 |
| Se QANplatform tiver 2% da média anterior do crescimento anual do Bitcoin | $0.020576 | $0.021646 | $0.022771 | $0.023955 |
| Se QANplatform tiver 5% da média anterior do crescimento anual do Bitcoin | $0.0221019 | $0.024974 | $0.02822 | $0.031888 |
| Se QANplatform tiver 10% da média anterior do crescimento anual do Bitcoin | $0.024644 | $0.031049 | $0.03912 | $0.049289 |
| Se QANplatform tiver 20% da média anterior do crescimento anual do Bitcoin | $0.029728 | $0.045183 | $0.068672 | $0.104372 |
| Se QANplatform tiver 50% da média anterior do crescimento anual do Bitcoin | $0.044981 | $0.103441 | $0.237879 | $0.547042 |
| Se QANplatform tiver 100% da média anterior do crescimento anual do Bitcoin | $0.0704022 | $0.25340033 | $0.912069 | $3.28 |
Perguntas Frequentes sobre QANplatform
QANX é um bom investimento?
A decisão de adquirir QANplatform depende inteiramente da sua tolerância individual ao risco. Como você pode perceber, o valor de QANplatform experimentou uma escalada de 3.5052% nas últimas 24 horas, e QANplatform registrou um declínio de durante os últimos 30 dias. Consequentemente, a decisão de investir ou não em QANplatform dependerá de quão alinhado esse investimento está com suas aspirações de negociação.
QANplatform pode subir?
Parece que o valor médio de QANplatform pode potencialmente subir para $0.020172 até o final deste ano. Observando as perspectivas de QANplatform em um horizonte de cinco anos mais longo, a moeda digital poderia potencialmente crescer até $0.063418. No entanto, dada a imprevisibilidade do mercado, é vital conduzir uma pesquisa aprofundada antes de investir quaisquer fundos em um projeto, rede ou ativo específico.
Qual será o preço de QANplatform na próxima semana?
Com base na nossa nova previsão experimental de QANplatform, o preço de QANplatform aumentará 0.86% na próxima semana e atingirá $0.019727 até 13 de janeiro de 2026.
Qual será o preço de QANplatform no próximo mês?
Com base na nossa nova previsão experimental de QANplatform, o preço de QANplatform diminuirá -11.62% no próximo mês e atingirá $0.017287 até 5 de fevereiro de 2026.
Até onde o preço de QANplatform pode subir este ano em 2026?
De acordo com nossa previsão mais recente sobre o valor de QANplatform em 2026, espera-se que QANX fluctue dentro do intervalo de $0.006757 e $0.020172. No entanto, é crucial lembrar que o mercado de criptomoedas é excepcionalmente instável, e essa previsão de preço de QANplatform não considera flutuações repentinas e extremas de preço.
Onde estará QANplatform em 5 anos?
O futuro de QANplatform parece seguir uma tendência de alta, com um preço máximo de $0.063418 projetada após um período de cinco anos. Com base na previsão de QANplatform para 2030, o valor de QANplatform pode potencialmente atingir seu pico mais alto de aproximadamente $0.063418, enquanto seu pico mais baixo está previsto para cerca de $0.021934.
Quanto será QANplatform em 2026?
Com base na nossa nova simulação experimental de previsão de preços de QANplatform, espera-se que o valor de QANX em 2026 aumente 3.13% para $0.020172 se o melhor cenário ocorrer. O preço ficará entre $0.020172 e $0.006757 durante 2026.
Quanto será QANplatform em 2027?
De acordo com nossa última simulação experimental para previsão de preços de QANplatform, o valor de QANX pode diminuir -12.62% para $0.01709 em 2027, assumindo as condições mais favoráveis. O preço está projetado para flutuar entre $0.01709 e $0.0065056 ao longo do ano.
Quanto será QANplatform em 2028?
Nosso novo modelo experimental de previsão de preços de QANplatform sugere que o valor de QANX em 2028 pode aumentar 47.02%, alcançando $0.028757 no melhor cenário. O preço é esperado para variar entre $0.028757 e $0.01174 durante o ano.
Quanto será QANplatform em 2029?
Com base no nosso modelo de previsão experimental, o valor de QANplatform pode experimentar um 333.75% crescimento em 2029, potencialmente alcançando $0.084841 sob condições ótimas. A faixa de preço prevista para 2029 está entre $0.084841 e $0.025791.
Quanto será QANplatform em 2030?
Usando nossa nova simulação experimental para previsões de preços de QANplatform, espera-se que o valor de QANX em 2030 aumente 224.23%, alcançando $0.063418 no melhor cenário. O preço está previsto para variar entre $0.063418 e $0.021934 ao longo de 2030.
Quanto será QANplatform em 2031?
Nossa simulação experimental indica que o preço de QANplatform poderia aumentar 195.98% em 2031, potencialmente atingindo $0.057894 sob condições ideais. O preço provavelmente oscilará entre $0.057894 e $0.025933 durante o ano.
Quanto será QANplatform em 2032?
Com base nos achados da nossa mais recente previsão experimental de preços de QANplatform, QANX poderia ver um 449.04% aumento em valor, atingindo $0.10739 se o cenário mais positivo se desenrolar em 2032. O preço é esperado para permanecer dentro de uma faixa de $0.10739 e $0.039585 ao longo do ano.
Quanto será QANplatform em 2033?
De acordo com nossa previsão experimental de preços de QANplatform, espera-se que o valor de QANX seja aumentar 1362.43% em 2033, com o preço potencial mais alto sendo $0.286049. Ao longo do ano, o preço de QANX poderia variar entre $0.286049 e $0.091987.
Quanto será QANplatform em 2034?
Os resultados da nossa nova simulação de previsão de preços de QANplatform sugerem que QANX pode aumentar 746.96% em 2034, atingindo potencialmente $0.165664 nas melhores circunstâncias. A faixa de preço prevista para o ano é entre $0.165664 e $0.073953.
Quanto será QANplatform em 2035?
Com base em nossa previsão experimental para o preço de QANplatform, QANX poderia aumentar 897.93%, com o valor potencialmente atingindo $0.195194 em 2035. A faixa de preço esperada para o ano está entre $0.195194 e $0.087435.
Quanto será QANplatform em 2036?
Nossa recente simulação de previsão de preços de QANplatform sugere que o valor de QANX pode aumentar 1964.7% em 2036, possivelmente atingindo $0.403851 se as condições forem ideais. A faixa de preço esperada para 2036 está entre $0.403851 e $0.144733.
Quanto será QANplatform em 2037?
De acordo com a simulação experimental, o valor de QANplatform poderia aumentar 4830.69% em 2037, com um pico de $0.964436 sob condições favoráveis. O preço é esperado para cair entre $0.964436 e $0.375868 ao longo do ano.
Previsões relacionadas
Previsão de Preço do Gains Network
Previsão de Preço do Humans.ai
Previsão de Preço do Propy
Previsão de Preço do Stargate Finance
Previsão de Preço do TrustToken
Previsão de Preço do Sun Token
Previsão de Preço do Vulcan Forged
Previsão de Preço do Maple
Previsão de Preço do Oasys
Previsão de Preço do Maverick Protocol
Previsão de Preço do Myria
Previsão de Preço do MimbleWimbleCoin
Previsão de Preço do CYBER
Previsão de Preço do Velodrome Finance
Previsão de Preço do Ontology Gas
Previsão de Preço do DODO
Previsão de Preço do Cudos
Previsão de Preço do Acala
Previsão de Preço do WINk
Previsão de Preço do Radiant Capital
Previsão de Preço do APEX
Previsão de Preço do Metars Genesis
Previsão de Preço do Liquity
Previsão de Preço do Steem
Previsão de Preço do Alpha Finance
Como ler e prever os movimentos de preço de QANplatform?
Traders de QANplatform utilizam indicadores e padrões de gráfico para prever a direção do mercado. Eles também identificam níveis-chave de suporte e resistência para avaliar quando uma tendência de baixa pode desacelerar ou uma tendência de alta pode estagnar.
Indicadores de Previsão de Preço de QANplatform
Médias móveis são ferramentas populares para a previsão de preço de QANplatform. Uma média móvel simples (SMA) calcula o preço médio de fechamento de QANX em um período específico, como uma SMA de 12 dias. Uma média móvel exponencial (EMA) dá mais peso aos preços recentes, reagindo mais rapidamente às mudanças de preço.
Médias móveis comumente usadas no mercado de criptomoedas incluem as de 50 dias, 100 dias e 200 dias, que ajudam a identificar níveis-chave de resistência e suporte. Um movimento de preço de QANX acima dessas médias é visto como altista, enquanto uma queda abaixo indica fraqueza.
Traders também usam RSI e níveis de retração de Fibonacci para avaliar a direção futura de QANX.
Como ler gráficos de QANplatform e prever movimentos de preço?
A maioria dos traders prefere gráficos de velas em vez de gráficos de linha simples porque eles fornecem informações mais detalhadas. Velas podem representar a ação de preço de QANplatform em diferentes períodos de tempo, como 5 minutos para tendências de curto prazo e semanal para tendências de longo prazo. Opções populares incluem gráficos de 1 hora, 4 horas e 1 dia.
Por exemplo, um gráfico de velas de 1 hora mostra os preços de abertura, fechamento, máximo e mínimo de QANX dentro de cada hora. A cor da vela é crucial: verde indica que o preço fechou mais alto do que abriu, enquanto vermelho significa o oposto. Alguns gráficos usam velas vazias e preenchidas para transmitir a mesma informação.
O que afeta o preço de QANplatform?
A ação de preço de QANplatform é impulsionada pela oferta e demanda, influenciada por fatores como reduções pela metade das recompensas de bloco, hard forks e atualizações de protocolo. Eventos do mundo real, como regulamentações, adoção por empresas e governos e hacks de exchanges de criptomoedas, também impactam o preço de QANX. A capitalização de mercado de QANplatform pode mudar rapidamente.
Traders frequentemente monitoram a atividade de "baleias" de QANX, grandes detentores de QANplatform, pois suas ações podem influenciar significativamente os movimentos de preço no relativamente pequeno mercado de QANplatform.
Padrões de previsão de preço altistas e baixistas
Traders frequentemente identificam padrões de velas para ganhar vantagem em previsões de preço de criptomoedas. Certas formações indicam tendências altistas, enquanto outras sugerem movimentos baixistas.
Padrões de velas altistas comumente seguidos:
- Martelo
- Engolfo de Alta
- Linha de Perfuração
- Estrela da Manhã
- Três Soldados Brancos
Padrões de velas baixistas comuns:
- Harami de Baixa
- Nuvem Negra
- Estrela da Noite
- Estrela Cadente
- Homem Enforcado


