Previsão de Preço QANplatform - Projeção QANX
Previsão de Preço QANplatform até $0.020169 até 2026
| Ano | Preço Mínimo | Preço Máximo |
|---|---|---|
| 2026 | $0.006756 | $0.020169 |
| 2027 | $0.0065047 | $0.017087 |
| 2028 | $0.011739 | $0.028752 |
| 2029 | $0.025787 | $0.084828 |
| 2030 | $0.021931 | $0.0634092 |
| 2031 | $0.025929 | $0.057885 |
| 2032 | $0.039579 | $0.107374 |
| 2033 | $0.091973 | $0.2860066 |
| 2034 | $0.073942 | $0.165639 |
| 2035 | $0.087422 | $0.195164 |
Calculadora de lucro do investimento
Se você abrir um short de $10,000.00 em QANplatform hoje e fechar em Apr 06, 2026, nossa previsão mostra que pode lucrar cerca de $3,954.57, com um retorno de 39.55% nos próximos 90 dias.
Previsão de preço de longo prazo de QANplatform para os anos 2027, 2028, 2029, 2030, 2031, 2032 e 2037
[
'name' => 'QANplatform'
'name_with_ticker' => 'QANplatform <small>QANX</small>'
'name_lang' => 'QANplatform'
'name_lang_with_ticker' => 'QANplatform <small>QANX</small>'
'name_with_lang' => 'QANplatform'
'name_with_lang_with_ticker' => 'QANplatform <small>QANX</small>'
'image' => '/uploads/coins/qanplatform.png?1717208807'
'price_for_sd' => 0.01955
'ticker' => 'QANX'
'marketcap' => '$33.26M'
'low24h' => '$0.01884'
'high24h' => '$0.01987'
'volume24h' => '$320.82K'
'current_supply' => '1.7B'
'max_supply' => '2.1B'
'algo' => null
'proof' => null
'ico_price_and_roi' => '—'
'price' => '$0.01955'
'change_24h_pct' => '3.3149%'
'ath_price' => '$0.2034'
'ath_days' => 1501
'ath_exchange' => null
'ath_pair' => null
'ath_date' => '27 de nov. de 2021'
'ath_pct' => '-90.38%'
'fdv' => '$41.07M'
'new_prediction' => true
'change_24h_pct_is_increased' => true
'change_30d_pct' => null
'change_30d_pct_is_increased' => false
'max_price' => '$0.964291'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.019724'
'next_week_prediction_price_date' => '13 de janeiro de 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.017284'
'next_month_prediction_price_date' => '5 de fevereiro de 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.006756'
'current_year_max_price_prediction' => '$0.020169'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.021931'
'grand_prediction_max_price' => '$0.0634092'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.019927523536555
107 => 0.020001925675749
108 => 0.020169557494422
109 => 0.01873716195754
110 => 0.019380265500677
111 => 0.019758028581616
112 => 0.018051281238793
113 => 0.01972429167426
114 => 0.018712227138035
115 => 0.018368717233742
116 => 0.018831208065885
117 => 0.018650974938812
118 => 0.018496021079798
119 => 0.018409554164024
120 => 0.018749156387899
121 => 0.018733313538243
122 => 0.018177658386032
123 => 0.017452828891374
124 => 0.017696105461498
125 => 0.017607720802842
126 => 0.017287403398024
127 => 0.0175032586536
128 => 0.016552741349887
129 => 0.014917425732439
130 => 0.015997765320398
131 => 0.015956173421445
201 => 0.01593520089995
202 => 0.016747046241907
203 => 0.016669006044737
204 => 0.016527362322701
205 => 0.017284801999991
206 => 0.017008326328778
207 => 0.017860359201593
208 => 0.01842156315766
209 => 0.018279223681356
210 => 0.018807038714571
211 => 0.017701710062324
212 => 0.018068855902512
213 => 0.018144524151333
214 => 0.017275455311947
215 => 0.016681774386133
216 => 0.01664218263684
217 => 0.01561282172575
218 => 0.016162698015743
219 => 0.01664656639551
220 => 0.016414830991305
221 => 0.016341470485232
222 => 0.016716253400807
223 => 0.016745377243146
224 => 0.016081350551415
225 => 0.016219422727616
226 => 0.016795206654965
227 => 0.016204914449957
228 => 0.015058073119309
301 => 0.014773640612986
302 => 0.014735692073512
303 => 0.013964288557738
304 => 0.014792647753126
305 => 0.014431046765693
306 => 0.015573339952348
307 => 0.014920868210372
308 => 0.014892741457654
309 => 0.014850223745623
310 => 0.014186244873319
311 => 0.014331614048295
312 => 0.014814843326266
313 => 0.014987264976613
314 => 0.014969279985873
315 => 0.014812475239179
316 => 0.014884259649245
317 => 0.014653017053075
318 => 0.014571360479469
319 => 0.014313629871758
320 => 0.013934837078321
321 => 0.01398751053952
322 => 0.013237022899195
323 => 0.012828117401352
324 => 0.012714937748837
325 => 0.012563589187391
326 => 0.012732032971576
327 => 0.013234896862004
328 => 0.012628336321622
329 => 0.011588430820412
330 => 0.011650930912947
331 => 0.01179135006443
401 => 0.011529679904607
402 => 0.011282031058646
403 => 0.011497341637823
404 => 0.011056719968128
405 => 0.011844597088118
406 => 0.011823287220022
407 => 0.01211695908836
408 => 0.012300598134385
409 => 0.011877369587145
410 => 0.011770928752045
411 => 0.011831562289184
412 => 0.010829424983153
413 => 0.012035063090501
414 => 0.012045489498919
415 => 0.011956212259992
416 => 0.012598177332254
417 => 0.013952923868656
418 => 0.013443213727109
419 => 0.013245838554231
420 => 0.01287062820631
421 => 0.013370573717129
422 => 0.013332185702263
423 => 0.013158580540816
424 => 0.013053583597492
425 => 0.013247043684949
426 => 0.013029611751729
427 => 0.012990555001892
428 => 0.012753913592048
429 => 0.012669443375231
430 => 0.012606904989557
501 => 0.012538056371824
502 => 0.012689919266536
503 => 0.01234577796789
504 => 0.011930777298311
505 => 0.011896274483005
506 => 0.011991539789583
507 => 0.01194939198309
508 => 0.011896072695523
509 => 0.011794271654913
510 => 0.011764069460798
511 => 0.011862211939648
512 => 0.011751414803089
513 => 0.011914902013513
514 => 0.011870442538438
515 => 0.01162209552476
516 => 0.011312563195876
517 => 0.011309807708883
518 => 0.01124311947636
519 => 0.011158181985598
520 => 0.011134554318775
521 => 0.011479208781395
522 => 0.012192633204378
523 => 0.012052570919347
524 => 0.012153780274442
525 => 0.01265163013093
526 => 0.012809881629441
527 => 0.01269755846419
528 => 0.012543803587804
529 => 0.012550568022046
530 => 0.013075994979423
531 => 0.013108765214252
601 => 0.013191565025589
602 => 0.01329798618238
603 => 0.01271568244737
604 => 0.012523141568493
605 => 0.01243190501832
606 => 0.012150931756775
607 => 0.012453937330524
608 => 0.012277388958693
609 => 0.012301211365804
610 => 0.012285696991921
611 => 0.012294168889139
612 => 0.011844376860406
613 => 0.012008257435303
614 => 0.011735774194376
615 => 0.011370949722455
616 => 0.011369726702901
617 => 0.011459016975557
618 => 0.011405903627453
619 => 0.011262976973372
620 => 0.011283279029989
621 => 0.011105411651193
622 => 0.011304875350168
623 => 0.011310595255339
624 => 0.011233790866373
625 => 0.01154109221533
626 => 0.011666993828731
627 => 0.011616439534604
628 => 0.011663446804688
629 => 0.012058391139633
630 => 0.012122784298858
701 => 0.012151383486613
702 => 0.012113064363688
703 => 0.011670665662121
704 => 0.01169028792576
705 => 0.011546312774754
706 => 0.011424668943881
707 => 0.011429534059178
708 => 0.011492074800838
709 => 0.011765193887632
710 => 0.012339956904542
711 => 0.012361768740887
712 => 0.012388205322834
713 => 0.012280674458095
714 => 0.012248242120358
715 => 0.012291028745329
716 => 0.012506879514877
717 => 0.013062106297065
718 => 0.01286585206989
719 => 0.012706294328317
720 => 0.012846269484135
721 => 0.012824721406058
722 => 0.012642833941873
723 => 0.012637728966548
724 => 0.012288628769837
725 => 0.012159574375739
726 => 0.012051726864477
727 => 0.01193396019761
728 => 0.011864144169917
729 => 0.011971413319271
730 => 0.011995947042899
731 => 0.011761401173093
801 => 0.011729433437715
802 => 0.011920968658023
803 => 0.011836681148718
804 => 0.011923372942268
805 => 0.011943486182
806 => 0.011940247487156
807 => 0.011852241647083
808 => 0.011908333945173
809 => 0.01177565893827
810 => 0.011631394795404
811 => 0.01153936326023
812 => 0.011459053539578
813 => 0.011503614040224
814 => 0.011344763991847
815 => 0.011293944664352
816 => 0.011889331136697
817 => 0.012329149525301
818 => 0.012322754391744
819 => 0.012283825660907
820 => 0.012225985463289
821 => 0.012502648144157
822 => 0.012406264398187
823 => 0.012476391626512
824 => 0.012494241949351
825 => 0.012548269500411
826 => 0.01256757970609
827 => 0.012509210852728
828 => 0.012313317851688
829 => 0.011825171118044
830 => 0.011597937495805
831 => 0.011522946615591
901 => 0.011525672391659
902 => 0.011450483319309
903 => 0.011472629870854
904 => 0.011442781652476
905 => 0.011386256347928
906 => 0.011500123761952
907 => 0.01151324592067
908 => 0.011486667905623
909 => 0.011492927990304
910 => 0.011272873377329
911 => 0.01128960365162
912 => 0.011196447358387
913 => 0.011178981676422
914 => 0.010943490679176
915 => 0.010526284242588
916 => 0.010757457107667
917 => 0.010478232794476
918 => 0.010372486316132
919 => 0.010873073697661
920 => 0.010822828608688
921 => 0.010736830857382
922 => 0.010609622259698
923 => 0.010562439353411
924 => 0.010275770951107
925 => 0.010258833052582
926 => 0.010400913653462
927 => 0.010335348344851
928 => 0.010243269820037
929 => 0.0099097707370095
930 => 0.0095348073499352
1001 => 0.0095461251376552
1002 => 0.0096653940146417
1003 => 0.010012184360079
1004 => 0.0098766873725829
1005 => 0.0097783827535055
1006 => 0.0097599732533783
1007 => 0.0099904066903693
1008 => 0.010316518281009
1009 => 0.010469522543002
1010 => 0.010317899966176
1011 => 0.010143724113857
1012 => 0.010154325390934
1013 => 0.010224850937875
1014 => 0.010232262175681
1015 => 0.010118891601388
1016 => 0.01015080475398
1017 => 0.010102325756993
1018 => 0.0098048102419747
1019 => 0.0097994291297399
1020 => 0.0097264140242685
1021 => 0.0097242031558928
1022 => 0.0095999862470144
1023 => 0.0095826074427913
1024 => 0.0093359672307857
1025 => 0.0094983065652231
1026 => 0.0093894178628801
1027 => 0.0092252969042009
1028 => 0.0091970023890637
1029 => 0.009196151821772
1030 => 0.0093646673495607
1031 => 0.0094963373631664
1101 => 0.0093913120284766
1102 => 0.0093673997955984
1103 => 0.0096227198832357
1104 => 0.0095902280747896
1105 => 0.009562090378225
1106 => 0.010287318564891
1107 => 0.0097132438648836
1108 => 0.0094629145286423
1109 => 0.009153084438792
1110 => 0.0092539666783462
1111 => 0.0092752240484887
1112 => 0.0085301385334701
1113 => 0.0082278574328216
1114 => 0.008124125950302
1115 => 0.0080644270155641
1116 => 0.0080916325697762
1117 => 0.0078195441251557
1118 => 0.0080023920598682
1119 => 0.0077667864658905
1120 => 0.0077272864213333
1121 => 0.0081485784092977
1122 => 0.0082071987282708
1123 => 0.0079571062356258
1124 => 0.0081177061022007
1125 => 0.0080594703580755
1126 => 0.0077708252475702
1127 => 0.0077598011274786
1128 => 0.0076149691573933
1129 => 0.0073883351692055
1130 => 0.0072847573552019
1201 => 0.007230813130365
1202 => 0.0072530715688847
1203 => 0.0072418170212496
1204 => 0.0071683734850618
1205 => 0.007246026718774
1206 => 0.0070476547951709
1207 => 0.006968661496801
1208 => 0.0069329820565579
1209 => 0.0067569155564983
1210 => 0.0070371156552211
1211 => 0.0070923186045373
1212 => 0.0071476303207168
1213 => 0.0076290810471463
1214 => 0.0076050291294195
1215 => 0.0078224467519107
1216 => 0.0078139983029061
1217 => 0.0077519872750396
1218 => 0.00749037294879
1219 => 0.0075946477564061
1220 => 0.0072737061064667
1221 => 0.0075141774125122
1222 => 0.0074044363507549
1223 => 0.0074770738491425
1224 => 0.0073464650775824
1225 => 0.0074187493644677
1226 => 0.0071054092717146
1227 => 0.0068128167019158
1228 => 0.0069305644933124
1229 => 0.0070585698086538
1230 => 0.0073361179474618
1231 => 0.0071708125657102
]
'min_raw' => 0.0067569155564983
'max_raw' => 0.020169557494422
'avg_raw' => 0.01346323652546
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.006756'
'max' => '$0.020169'
'avg' => '$0.013463'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.012800014443502
'max_diff' => 0.00061262749442178
'year' => 2026
]
1 => [
'items' => [
101 => 0.0072302626318766
102 => 0.00703111486204
103 => 0.0066202161291191
104 => 0.006622541771324
105 => 0.0065593339531796
106 => 0.0065047131698103
107 => 0.0071897998773298
108 => 0.0071045985156316
109 => 0.006968841296644
110 => 0.0071505577290363
111 => 0.0071986064379884
112 => 0.0071999743171837
113 => 0.0073325499354771
114 => 0.0074033055667258
115 => 0.0074157765534059
116 => 0.0076243871532764
117 => 0.0076943106747126
118 => 0.0079823157635614
119 => 0.0073973024457565
120 => 0.007385254481455
121 => 0.0071531148518939
122 => 0.007005888228844
123 => 0.007163195584732
124 => 0.0073025484274534
125 => 0.0071574449331618
126 => 0.0071763923862143
127 => 0.006981602800519
128 => 0.0070512309117032
129 => 0.0071112040209745
130 => 0.0070780903950913
131 => 0.0070285176944266
201 => 0.0072911230835091
202 => 0.0072763058582982
203 => 0.0075208500338837
204 => 0.0077114897062743
205 => 0.0080531500801161
206 => 0.0076966096688541
207 => 0.007683615919148
208 => 0.0078106319067887
209 => 0.0076942912292267
210 => 0.0077678145215022
211 => 0.0080413043410648
212 => 0.0080470827499926
213 => 0.0079502869553935
214 => 0.0079443969224953
215 => 0.007962987613678
216 => 0.0080718738726049
217 => 0.0080338256679991
218 => 0.0080778560136316
219 => 0.0081329166350617
220 => 0.0083606707105162
221 => 0.0084155814470505
222 => 0.0082821768252249
223 => 0.0082942217689075
224 => 0.008244324778306
225 => 0.0081961249105923
226 => 0.0083044711741872
227 => 0.0085024761004579
228 => 0.008501244322088
301 => 0.0085471776163171
302 => 0.0085757936780898
303 => 0.0084529525927237
304 => 0.0083729875631423
305 => 0.0084036512437909
306 => 0.008452683136916
307 => 0.0083877508616857
308 => 0.0079869587794088
309 => 0.0081085334944743
310 => 0.0080882975171876
311 => 0.0080594790247523
312 => 0.0081817233408601
313 => 0.0081699325783545
314 => 0.0078167534648859
315 => 0.0078393628458433
316 => 0.0078181284162265
317 => 0.007886741202474
318 => 0.0076905859136014
319 => 0.0077509219593326
320 => 0.0077887641615999
321 => 0.0078110535094528
322 => 0.0078915779178465
323 => 0.0078821293079307
324 => 0.0078909905789877
325 => 0.0080103870189799
326 => 0.0086142532405501
327 => 0.0086471203466345
328 => 0.0084852706956959
329 => 0.0085499264389026
330 => 0.0084258015506023
331 => 0.0085091274196828
401 => 0.0085661368630601
402 => 0.0083085221507237
403 => 0.0082932678793648
404 => 0.0081686306834968
405 => 0.0082356036527447
406 => 0.0081290448431444
407 => 0.0081551906477514
408 => 0.00808208469872
409 => 0.0082136608517272
410 => 0.0083607834356564
411 => 0.0083979524104038
412 => 0.0083001768400931
413 => 0.0082293808834641
414 => 0.0081050865052615
415 => 0.0083117908262933
416 => 0.0083722374689631
417 => 0.0083114733258123
418 => 0.0082973929461215
419 => 0.0082707106520502
420 => 0.0083030537209441
421 => 0.0083719082635655
422 => 0.008339437732809
423 => 0.0083608850904308
424 => 0.0082791498795957
425 => 0.0084529932582344
426 => 0.0087290983812001
427 => 0.0087299861043182
428 => 0.0086975153985334
429 => 0.0086842290853174
430 => 0.0087175459999398
501 => 0.008735619059391
502 => 0.0088433598520025
503 => 0.0089589700150571
504 => 0.0094984722013673
505 => 0.0093469821463043
506 => 0.0098256605811273
507 => 0.010204233074457
508 => 0.010317750412238
509 => 0.010213319802883
510 => 0.0098560683295107
511 => 0.0098385398678689
512 => 0.010372424396768
513 => 0.010221577563894
514 => 0.010203634813114
515 => 0.010012754259573
516 => 0.010125588307732
517 => 0.010100909846224
518 => 0.010061953687422
519 => 0.010277233191222
520 => 0.010680217204201
521 => 0.010617408366618
522 => 0.010570524482981
523 => 0.010365092952574
524 => 0.010488808618672
525 => 0.010444755839592
526 => 0.010634034535105
527 => 0.01052191002892
528 => 0.010220434750773
529 => 0.010268445682493
530 => 0.010261188926748
531 => 0.01041053244576
601 => 0.010365703228287
602 => 0.010252435302553
603 => 0.010678839848655
604 => 0.010651151509218
605 => 0.010690407244104
606 => 0.010707688832625
607 => 0.010967233765746
608 => 0.011073561020335
609 => 0.011097699168647
610 => 0.011198701836861
611 => 0.01109518613025
612 => 0.01150932276214
613 => 0.011784699456804
614 => 0.012104563658411
615 => 0.012571971228352
616 => 0.012747720798411
617 => 0.012715973211653
618 => 0.013070356296733
619 => 0.013707174823129
620 => 0.012844692443176
621 => 0.013752888483537
622 => 0.013465364102787
623 => 0.012783648968369
624 => 0.012739754550606
625 => 0.013201419954509
626 => 0.014225349386717
627 => 0.013968866677261
628 => 0.014225768900547
629 => 0.013926078810918
630 => 0.013911196671982
701 => 0.014211213621815
702 => 0.014912219578173
703 => 0.014579197925123
704 => 0.014101729725216
705 => 0.014454284813799
706 => 0.014148868968635
707 => 0.013460681588968
708 => 0.013968670549766
709 => 0.013628992798373
710 => 0.013728128824492
711 => 0.014442080934669
712 => 0.014356176327889
713 => 0.014467344843614
714 => 0.014271135323146
715 => 0.014087844691628
716 => 0.013745719116557
717 => 0.013644432600366
718 => 0.013672424549534
719 => 0.013644418728946
720 => 0.013453002613991
721 => 0.013411666322191
722 => 0.01334277069154
723 => 0.013364124328327
724 => 0.013234580386576
725 => 0.013479056569804
726 => 0.013524433503728
727 => 0.01370234288226
728 => 0.013720814024131
729 => 0.014216289110961
730 => 0.013943389759256
731 => 0.014126474205376
801 => 0.014110097409257
802 => 0.012798423802473
803 => 0.012979160852494
804 => 0.013260330983915
805 => 0.013133664220827
806 => 0.012954587053278
807 => 0.012809972638972
808 => 0.012590867013715
809 => 0.012899253973713
810 => 0.013304750032814
811 => 0.01373109807336
812 => 0.014243327308647
813 => 0.014129003706337
814 => 0.013721522304106
815 => 0.013739801622145
816 => 0.013852797173613
817 => 0.013706457667733
818 => 0.013663299290562
819 => 0.013846867875332
820 => 0.013848132011288
821 => 0.013679750724052
822 => 0.01349262573674
823 => 0.013491841676211
824 => 0.013458544592131
825 => 0.013932002288206
826 => 0.014192356149075
827 => 0.014222205299642
828 => 0.014190347063416
829 => 0.014202608034131
830 => 0.014051113858998
831 => 0.014397384619151
901 => 0.014715156911297
902 => 0.014629987148787
903 => 0.01450230556719
904 => 0.014400601037469
905 => 0.014606028793801
906 => 0.014596881419185
907 => 0.014712381447544
908 => 0.014707141699097
909 => 0.014668303383736
910 => 0.014629988535826
911 => 0.014781902576875
912 => 0.014738153772717
913 => 0.014694337014583
914 => 0.014606455798136
915 => 0.014618400315004
916 => 0.014490740779431
917 => 0.014431679636973
918 => 0.013543541761891
919 => 0.013306202300927
920 => 0.013380874126836
921 => 0.013405458030779
922 => 0.013302167593208
923 => 0.013450259547548
924 => 0.013427179573332
925 => 0.013516970251672
926 => 0.013460872934103
927 => 0.013463175187584
928 => 0.013628145437344
929 => 0.013676037002683
930 => 0.013651678966019
1001 => 0.013668738499954
1002 => 0.014061868259098
1003 => 0.01400597777893
1004 => 0.013976287075279
1005 => 0.0139845116031
1006 => 0.014084964685359
1007 => 0.014113086063856
1008 => 0.013993933807108
1009 => 0.014050126700202
1010 => 0.014289388907053
1011 => 0.014373117138383
1012 => 0.014640337460956
1013 => 0.014526817518465
1014 => 0.014735188285936
1015 => 0.015375648986315
1016 => 0.015887293310287
1017 => 0.015416764045367
1018 => 0.01635633368883
1019 => 0.017087923429526
1020 => 0.017059843796752
1021 => 0.016932274203486
1022 => 0.016099378734022
1023 => 0.01533293590525
1024 => 0.0159740978764
1025 => 0.01597573233012
1026 => 0.01592065594818
1027 => 0.015578581270143
1028 => 0.015908752490874
1029 => 0.01593496028337
1030 => 0.015920290888787
1031 => 0.015658023035172
1101 => 0.015257588497904
1102 => 0.015335832447981
1103 => 0.015463997634342
1104 => 0.015221354198503
1105 => 0.015143814918469
1106 => 0.015287975192504
1107 => 0.015752489632434
1108 => 0.015664675868314
1109 => 0.01566238269605
1110 => 0.016038087217786
1111 => 0.015769163862333
1112 => 0.015336819354764
1113 => 0.015227646664679
1114 => 0.014840157162414
1115 => 0.015107797541819
1116 => 0.015117429442603
1117 => 0.014970845542021
1118 => 0.015348713830426
1119 => 0.015345231707626
1120 => 0.015703961409194
1121 => 0.016389717865869
1122 => 0.016186905937604
1123 => 0.015951057730907
1124 => 0.015976700970337
1125 => 0.016257944013969
1126 => 0.016087898049635
1127 => 0.016149047764012
1128 => 0.016257851456552
1129 => 0.016323495425706
1130 => 0.015967255813379
1201 => 0.015884199318835
1202 => 0.015714294879867
1203 => 0.015669969983157
1204 => 0.015808353603524
1205 => 0.015771894408723
1206 => 0.015116619918638
1207 => 0.015048140088512
1208 => 0.015050240267135
1209 => 0.014878044478243
1210 => 0.014615404568458
1211 => 0.015305606569959
1212 => 0.015250173689867
1213 => 0.015188980080411
1214 => 0.015196475948403
1215 => 0.015496069244138
1216 => 0.015322290002788
1217 => 0.015784310597775
1218 => 0.015689333053056
1219 => 0.015591919692698
1220 => 0.015578454199013
1221 => 0.015540958366193
1222 => 0.015412371203866
1223 => 0.015257094478467
1224 => 0.015154567334518
1225 => 0.013979287298695
1226 => 0.014197412437054
1227 => 0.014448345526005
1228 => 0.014534966622759
1229 => 0.014386795242763
1230 => 0.015418221913064
1231 => 0.015606673504802
]
'min_raw' => 0.0065047131698103
'max_raw' => 0.017087923429526
'avg_raw' => 0.011796318299668
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.0065047'
'max' => '$0.017087'
'avg' => '$0.011796'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -0.00025220238668799
'max_diff' => -0.0030816340648958
'year' => 2027
]
2 => [
'items' => [
101 => 0.015035841341033
102 => 0.014929061950115
103 => 0.015425222352156
104 => 0.015125976976583
105 => 0.01526072715088
106 => 0.014969470978454
107 => 0.015561281034859
108 => 0.015556772433783
109 => 0.015326544955205
110 => 0.015521131643569
111 => 0.015487317417922
112 => 0.015227391161633
113 => 0.015569521160806
114 => 0.015569690853017
115 => 0.015348101910463
116 => 0.015089334537616
117 => 0.015043073043164
118 => 0.015008221221451
119 => 0.015252155739195
120 => 0.01547086666504
121 => 0.015877833475001
122 => 0.015980154600318
123 => 0.016379520764334
124 => 0.016141717658448
125 => 0.016247132695221
126 => 0.016361575629506
127 => 0.016416443780702
128 => 0.016327039072716
129 => 0.016947419111103
130 => 0.016999798194296
131 => 0.017017360447814
201 => 0.016808171789398
202 => 0.016993980279286
203 => 0.016907046640198
204 => 0.017133223818245
205 => 0.017168691287738
206 => 0.017138651602869
207 => 0.017149909537502
208 => 0.016620524617277
209 => 0.016593073216435
210 => 0.016218771418097
211 => 0.016371302167619
212 => 0.016086153242377
213 => 0.016176576903931
214 => 0.016216434792355
215 => 0.016195615293357
216 => 0.016379926027342
217 => 0.01622322425126
218 => 0.015809662500022
219 => 0.015395988074162
220 => 0.015390794728717
221 => 0.015281881554348
222 => 0.015203157277722
223 => 0.015218322366294
224 => 0.015271766116435
225 => 0.015200051029809
226 => 0.015215355079588
227 => 0.015469504276268
228 => 0.015520472085153
229 => 0.015347263556153
301 => 0.014651806318346
302 => 0.014481139367766
303 => 0.01460381138737
304 => 0.014545182063089
305 => 0.011739097129828
306 => 0.012398345161652
307 => 0.01200664236709
308 => 0.012187157036203
309 => 0.011787329913903
310 => 0.011978148373399
311 => 0.011942911171505
312 => 0.013002962498109
313 => 0.012986411254697
314 => 0.012994333459046
315 => 0.012616186004274
316 => 0.013218585167549
317 => 0.013515348656951
318 => 0.013460425633167
319 => 0.013474248574983
320 => 0.013236724636982
321 => 0.012996633209968
322 => 0.012730334867603
323 => 0.013225084272247
324 => 0.013170076584104
325 => 0.013296244429561
326 => 0.01361712478389
327 => 0.013664375634971
328 => 0.013727881257995
329 => 0.013705119012779
330 => 0.014247408040899
331 => 0.014181733261455
401 => 0.014339990583991
402 => 0.014014443264523
403 => 0.013646055571311
404 => 0.01371607402829
405 => 0.01370933068783
406 => 0.013623480224129
407 => 0.013545978264134
408 => 0.013416959336784
409 => 0.013825194314129
410 => 0.013808620719573
411 => 0.014076927950732
412 => 0.014029502041427
413 => 0.013712780212002
414 => 0.013724091994101
415 => 0.013800169164974
416 => 0.014063473122002
417 => 0.014141639663548
418 => 0.014105429807106
419 => 0.014191135851473
420 => 0.014258874414424
421 => 0.014199642772058
422 => 0.015038237919476
423 => 0.014689994747618
424 => 0.014859726046521
425 => 0.014900205961195
426 => 0.01479651751096
427 => 0.014819003823011
428 => 0.014853064458615
429 => 0.015059873968245
430 => 0.015602601962331
501 => 0.015842972496437
502 => 0.016566139107968
503 => 0.015823013069699
504 => 0.015778919045949
505 => 0.015909183190226
506 => 0.016333758546154
507 => 0.0166778369938
508 => 0.016791987665245
509 => 0.016807074560899
510 => 0.017021228809124
511 => 0.017143978030467
512 => 0.016995224850574
513 => 0.016869172105722
514 => 0.016417666819904
515 => 0.016469929786146
516 => 0.016829969796859
517 => 0.017338547518244
518 => 0.017774960111684
519 => 0.017622143631976
520 => 0.01878802550053
521 => 0.018903617925597
522 => 0.018887646790003
523 => 0.019150983536765
524 => 0.018628313722039
525 => 0.018404862249993
526 => 0.016896426139918
527 => 0.01732023515854
528 => 0.017936266456538
529 => 0.017854732404249
530 => 0.017407354009079
531 => 0.017774620735054
601 => 0.017653190869955
602 => 0.017557414097221
603 => 0.017996186060356
604 => 0.01751373826313
605 => 0.017931453670707
606 => 0.017395729339777
607 => 0.017622841684783
608 => 0.017493921733569
609 => 0.017577348741839
610 => 0.017089636156186
611 => 0.017352794028851
612 => 0.0170786879235
613 => 0.017078557961517
614 => 0.017072507054049
615 => 0.017394991671421
616 => 0.017405507883216
617 => 0.017167191263731
618 => 0.017132846115658
619 => 0.017259838129105
620 => 0.017111163740619
621 => 0.017180727551246
622 => 0.017113270757577
623 => 0.017098084812465
624 => 0.016977080618135
625 => 0.016924948684137
626 => 0.016945390958732
627 => 0.016875610936825
628 => 0.016833565949573
629 => 0.017064143247827
630 => 0.016940955098832
701 => 0.017045262897227
702 => 0.016926390996262
703 => 0.016514329197495
704 => 0.01627734809955
705 => 0.015499001559828
706 => 0.015719739672957
707 => 0.015866089270332
708 => 0.015817720729273
709 => 0.015921635071609
710 => 0.015928014568271
711 => 0.015894230956296
712 => 0.015855113861578
713 => 0.01583607382318
714 => 0.015977982670186
715 => 0.016060365532305
716 => 0.015880777410334
717 => 0.01583870242606
718 => 0.016020275932706
719 => 0.016131035666868
720 => 0.016948823313401
721 => 0.016888238963127
722 => 0.017040293793238
723 => 0.017023174752839
724 => 0.017182552439029
725 => 0.017443067597914
726 => 0.016913367438716
727 => 0.0170053050707
728 => 0.016982764086487
729 => 0.017228860641554
730 => 0.017229628928137
731 => 0.01708208174994
801 => 0.01716206946892
802 => 0.017117422518533
803 => 0.017198105592279
804 => 0.016887429822192
805 => 0.017265799374781
806 => 0.017480310529503
807 => 0.017483289017094
808 => 0.017584965601967
809 => 0.017688274900908
810 => 0.017886568103882
811 => 0.017682744611101
812 => 0.017316085989405
813 => 0.017342557557591
814 => 0.017127585741846
815 => 0.017131199456907
816 => 0.017111909162702
817 => 0.017169800787716
818 => 0.016900133778355
819 => 0.016963424086449
820 => 0.016874817284489
821 => 0.017005112456817
822 => 0.016864936389956
823 => 0.016982753216542
824 => 0.017033599053207
825 => 0.017221221285134
826 => 0.016837224433749
827 => 0.016054228859475
828 => 0.016218824022092
829 => 0.015975374847911
830 => 0.015997906995858
831 => 0.016043425520675
901 => 0.015895885089008
902 => 0.015924031153837
903 => 0.01592302557834
904 => 0.015914360071968
905 => 0.015875979107409
906 => 0.015820319115357
907 => 0.016042051392451
908 => 0.016079728027066
909 => 0.016163478518668
910 => 0.016412663173174
911 => 0.01638776375001
912 => 0.016428375742258
913 => 0.016339719991208
914 => 0.016002019481878
915 => 0.016020358244261
916 => 0.01579167358349
917 => 0.016157630537739
918 => 0.016070967100577
919 => 0.016015094618859
920 => 0.015999849294568
921 => 0.016249651629635
922 => 0.016324396403459
923 => 0.016277820476347
924 => 0.016182291891004
925 => 0.016365735015354
926 => 0.016414816656586
927 => 0.016425804225997
928 => 0.016750830270616
929 => 0.016443969571302
930 => 0.01651783399156
1001 => 0.017094103112882
1002 => 0.016571506539546
1003 => 0.016848337599736
1004 => 0.016834788159899
1005 => 0.016976405562841
1006 => 0.016823171399356
1007 => 0.016825070920462
1008 => 0.01695081758028
1009 => 0.016774229075095
1010 => 0.016730503277842
1011 => 0.016670096402106
1012 => 0.016801992605333
1013 => 0.016881058414016
1014 => 0.01751827076456
1015 => 0.017929939003426
1016 => 0.017912067399479
1017 => 0.018075380405312
1018 => 0.018001806400409
1019 => 0.017764216530733
1020 => 0.018169753467272
1021 => 0.018041424612165
1022 => 0.01805200388706
1023 => 0.01805161012592
1024 => 0.018136937595863
1025 => 0.018076475263261
1026 => 0.01795729779937
1027 => 0.01803641336168
1028 => 0.018271358297409
1029 => 0.019000634586904
1030 => 0.01940874726013
1031 => 0.018976065691534
1101 => 0.019274523643715
1102 => 0.019095555223848
1103 => 0.019063031338109
1104 => 0.019250484987948
1105 => 0.019438266750586
1106 => 0.019426305864109
1107 => 0.019289985947134
1108 => 0.019212982285025
1109 => 0.019796079812636
1110 => 0.020225696138173
1111 => 0.020196399184956
1112 => 0.020325706408577
1113 => 0.020705356416451
1114 => 0.020740066855243
1115 => 0.020735694137765
1116 => 0.020649660693562
1117 => 0.021023475430097
1118 => 0.021335318259959
1119 => 0.020629746436974
1120 => 0.020898418950553
1121 => 0.021019034697987
1122 => 0.021196134400299
1123 => 0.021494931283456
1124 => 0.021819503950524
1125 => 0.021865402084405
1126 => 0.021832835161988
1127 => 0.021618770763076
1128 => 0.021973922048338
1129 => 0.022181961341923
1130 => 0.022305843980358
1201 => 0.022619989739323
1202 => 0.02101977957978
1203 => 0.01988707129325
1204 => 0.019710182537803
1205 => 0.020069892777812
1206 => 0.020164745499467
1207 => 0.020126510486303
1208 => 0.018851544328482
1209 => 0.019703470104842
1210 => 0.020620070608252
1211 => 0.020655280966561
1212 => 0.021114150343781
1213 => 0.021263577022695
1214 => 0.021633027016741
1215 => 0.021609917819023
1216 => 0.021699873013339
1217 => 0.021679193871973
1218 => 0.022363522189068
1219 => 0.023118437946563
1220 => 0.023092297614366
1221 => 0.022983769542468
1222 => 0.023144952236023
1223 => 0.023924106199446
1224 => 0.023852374188182
1225 => 0.023922055727007
1226 => 0.024840722161077
1227 => 0.026035119204144
1228 => 0.025480201862137
1229 => 0.026684212821129
1230 => 0.027442073897935
1231 => 0.028752716265975
]
'min_raw' => 0.011739097129828
'max_raw' => 0.028752716265975
'avg_raw' => 0.020245906697902
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.011739'
'max' => '$0.028752'
'avg' => '$0.020245'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 0.005234383960018
'max_diff' => 0.011664792836449
'year' => 2028
]
3 => [
'items' => [
101 => 0.028588617386446
102 => 0.029098840842386
103 => 0.028294846143621
104 => 0.026448711801119
105 => 0.0261565539747
106 => 0.026741461341806
107 => 0.02817939902941
108 => 0.026696175566838
109 => 0.026996229741562
110 => 0.026909814119055
111 => 0.026905209397775
112 => 0.0270809528803
113 => 0.026826027792733
114 => 0.025787417125837
115 => 0.026263406273904
116 => 0.026079604004959
117 => 0.026283546325721
118 => 0.02738413891866
119 => 0.026897540698471
120 => 0.026384949001531
121 => 0.027027852742697
122 => 0.027846490130895
123 => 0.027795261274374
124 => 0.027695855880724
125 => 0.028256198880036
126 => 0.029181721349806
127 => 0.029431886354334
128 => 0.029616553046279
129 => 0.029642015463129
130 => 0.029904294181486
131 => 0.028493955410133
201 => 0.030732199260338
202 => 0.03111868214303
203 => 0.031046039379158
204 => 0.031475598837585
205 => 0.031349211548044
206 => 0.031166096195058
207 => 0.03184703930658
208 => 0.031066392978495
209 => 0.029958363796418
210 => 0.029350477072799
211 => 0.030150991347284
212 => 0.030639837480614
213 => 0.030962933678292
214 => 0.031060702392489
215 => 0.028603435994233
216 => 0.027279105691815
217 => 0.028127986232188
218 => 0.029163679078047
219 => 0.028488202084081
220 => 0.028514679503397
221 => 0.027551626822233
222 => 0.029248887870955
223 => 0.029001611212369
224 => 0.03028448295454
225 => 0.029978315317582
226 => 0.031024447422529
227 => 0.030748965779592
228 => 0.031892474677453
301 => 0.032348651336078
302 => 0.033114642944136
303 => 0.03367810948917
304 => 0.034008987821811
305 => 0.033989123127813
306 => 0.035300227924669
307 => 0.034527115232476
308 => 0.033555903482409
309 => 0.033538337325984
310 => 0.034041341653521
311 => 0.035095500731539
312 => 0.035368828843078
313 => 0.035521581969322
314 => 0.035287635239105
315 => 0.034448476821215
316 => 0.034086132470999
317 => 0.034394860355509
318 => 0.034017312682043
319 => 0.034669065887613
320 => 0.035564062245833
321 => 0.03537924903706
322 => 0.035997051885244
323 => 0.03663641283836
324 => 0.037550727716813
325 => 0.037789763483022
326 => 0.03818488051485
327 => 0.038591585729785
328 => 0.038722208483809
329 => 0.038971607851102
330 => 0.038970293393329
331 => 0.039721875173178
401 => 0.040550893150902
402 => 0.040863828245682
403 => 0.041583405240788
404 => 0.040351154853655
405 => 0.041285830927367
406 => 0.042128932142316
407 => 0.041123752116871
408 => 0.042509158605038
409 => 0.042562950799575
410 => 0.043375149072048
411 => 0.042551830524535
412 => 0.042062946599148
413 => 0.043474336173499
414 => 0.044157263130172
415 => 0.043951559972978
416 => 0.042386148789915
417 => 0.041475012337728
418 => 0.039090392497259
419 => 0.041915077706206
420 => 0.043290899474286
421 => 0.04238258574391
422 => 0.042840686356057
423 => 0.045339934756312
424 => 0.046291486732779
425 => 0.046093570573524
426 => 0.046127015146461
427 => 0.046640455321072
428 => 0.048917331811968
429 => 0.04755297464104
430 => 0.048595974576727
501 => 0.049149177981799
502 => 0.049663024134791
503 => 0.048401180385787
504 => 0.046759540208499
505 => 0.046239563852986
506 => 0.042292271844331
507 => 0.04208679815306
508 => 0.04197145954366
509 => 0.041244265926361
510 => 0.040672890938259
511 => 0.040218512333928
512 => 0.039026087187225
513 => 0.03942849567023
514 => 0.037528018864855
515 => 0.038743876576171
516 => 0.035710669706176
517 => 0.038236814519737
518 => 0.036861948747426
519 => 0.037785134136637
520 => 0.037781913229783
521 => 0.036082036232053
522 => 0.03510158265529
523 => 0.035726365834228
524 => 0.036396182997399
525 => 0.036504858578588
526 => 0.037373294014656
527 => 0.037615655677906
528 => 0.036881288523476
529 => 0.035647813235742
530 => 0.035934321412507
531 => 0.035095776576233
601 => 0.033626259004824
602 => 0.034681692179925
603 => 0.035042063470025
604 => 0.035201223961633
605 => 0.033756122205386
606 => 0.033302039858888
607 => 0.033060290227732
608 => 0.035461268745821
609 => 0.035592799768945
610 => 0.034919868458033
611 => 0.037961581793321
612 => 0.037273148386022
613 => 0.038042297172255
614 => 0.035908323798502
615 => 0.035989844455155
616 => 0.03497958726158
617 => 0.035545263784572
618 => 0.035145461850727
619 => 0.035499562711639
620 => 0.035711809307657
621 => 0.036721900727967
622 => 0.038248348141225
623 => 0.036571026753353
624 => 0.035840193804973
625 => 0.036293598455788
626 => 0.037501074789873
627 => 0.039330463245589
628 => 0.038247428459931
629 => 0.038728060906683
630 => 0.038833057714449
701 => 0.038034467959632
702 => 0.039359908388945
703 => 0.040070222682873
704 => 0.040798858169611
705 => 0.041431511946842
706 => 0.04050782513317
707 => 0.041496302429102
708 => 0.040699764218313
709 => 0.039985187098628
710 => 0.039986270817153
711 => 0.039538006151669
712 => 0.03866943687731
713 => 0.038509259376875
714 => 0.039342522962327
715 => 0.040010721447505
716 => 0.040065757475199
717 => 0.040435706489871
718 => 0.040654638505976
719 => 0.042800469887449
720 => 0.043663541020326
721 => 0.044718888064507
722 => 0.045130005214316
723 => 0.046367320441585
724 => 0.045368087905736
725 => 0.045151897661137
726 => 0.042150575642508
727 => 0.042642041954922
728 => 0.043428926940541
729 => 0.042163551086094
730 => 0.042966140816368
731 => 0.043124589030299
801 => 0.042120554098761
802 => 0.042656852537484
803 => 0.041232602885642
804 => 0.03827939289161
805 => 0.039363196155889
806 => 0.040161240162632
807 => 0.039022332966893
808 => 0.04106378003346
809 => 0.039871208801193
810 => 0.039493220974079
811 => 0.038018555698116
812 => 0.038714540943299
813 => 0.039655870952957
814 => 0.039074238448347
815 => 0.040281213227971
816 => 0.041990611404335
817 => 0.043208830341233
818 => 0.043302350064523
819 => 0.042519116902428
820 => 0.043774253043213
821 => 0.043783395339735
822 => 0.042367596645548
823 => 0.041500427828558
824 => 0.041303405248799
825 => 0.041795606281589
826 => 0.042393229200719
827 => 0.043335513977291
828 => 0.043904916932992
829 => 0.04538961785347
830 => 0.04579133535284
831 => 0.046232701091512
901 => 0.046822501830531
902 => 0.047530708839528
903 => 0.04598119222209
904 => 0.046042757405961
905 => 0.044599868986319
906 => 0.043057935778802
907 => 0.04422807087862
908 => 0.045757866865083
909 => 0.045406929975514
910 => 0.045367442406447
911 => 0.045433849544679
912 => 0.045169254590471
913 => 0.043972501418937
914 => 0.043371499468264
915 => 0.044146945316582
916 => 0.044559060273839
917 => 0.045198214632344
918 => 0.045119425366747
919 => 0.046765818354089
920 => 0.04740555688463
921 => 0.047241884392562
922 => 0.047272004070101
923 => 0.048430220121751
924 => 0.049718394576484
925 => 0.050924939942933
926 => 0.052152289712013
927 => 0.05067267166111
928 => 0.049921412865016
929 => 0.050696520177935
930 => 0.050285237327275
1001 => 0.052648590581587
1002 => 0.052812224033221
1003 => 0.055175406390193
1004 => 0.05741834784948
1005 => 0.056009596505372
1006 => 0.057337985571311
1007 => 0.058774746651275
1008 => 0.061546491880609
1009 => 0.060613065598542
1010 => 0.059898075695134
1011 => 0.059222413691219
1012 => 0.060628359063043
1013 => 0.062437085323369
1014 => 0.062826667636079
1015 => 0.063457939814566
1016 => 0.062794234307176
1017 => 0.063593594486064
1018 => 0.066415687174197
1019 => 0.065653132818562
1020 => 0.064570183046831
1021 => 0.06679795418745
1022 => 0.067604175902998
1023 => 0.073262662124311
1024 => 0.080406734719125
1025 => 0.077449041754362
1026 => 0.075613106286978
1027 => 0.076044594670785
1028 => 0.078653368140292
1029 => 0.079491223380367
1030 => 0.077213644011823
1031 => 0.078018123548718
1101 => 0.08245088489169
1102 => 0.084828919132184
1103 => 0.081599229220985
1104 => 0.072688642847346
1105 => 0.064472675268697
1106 => 0.066651919840396
1107 => 0.066404861135798
1108 => 0.071167310200582
1109 => 0.065634946149374
1110 => 0.065728096971458
1111 => 0.070589028439381
1112 => 0.069292215261202
1113 => 0.067191543995834
1114 => 0.064488012493676
1115 => 0.05949028446554
1116 => 0.055063657379063
1117 => 0.063745292486978
1118 => 0.063370924594596
1119 => 0.062828784408213
1120 => 0.064035258727313
1121 => 0.069893555557152
1122 => 0.069758502853768
1123 => 0.068899366459333
1124 => 0.069551013842431
1125 => 0.067077307058908
1126 => 0.067714837622279
1127 => 0.064471373817456
1128 => 0.065937554916249
1129 => 0.067187036898758
1130 => 0.067437888905644
1201 => 0.068003071285978
1202 => 0.063173649726719
1203 => 0.065341918222459
1204 => 0.066615572824422
1205 => 0.060861154996799
1206 => 0.066501826485834
1207 => 0.063089580241865
1208 => 0.061931412616444
1209 => 0.063490732747092
1210 => 0.06288306417569
1211 => 0.062360626421494
1212 => 0.062069097178033
1213 => 0.063214089786098
1214 => 0.06316067451237
1215 => 0.061287244372086
1216 => 0.058843431124868
1217 => 0.059663655066069
1218 => 0.05936566001859
1219 => 0.0582856875244
1220 => 0.059013458589108
1221 => 0.055808723136641
1222 => 0.050295142358325
1223 => 0.053937582706027
1224 => 0.053797352714853
1225 => 0.05372664239438
1226 => 0.056463835646021
1227 => 0.056200717672668
1228 => 0.055723155974575
1229 => 0.058276916729306
1230 => 0.0573447597009
1231 => 0.060217448018631
]
'min_raw' => 0.025787417125837
'max_raw' => 0.084828919132184
'avg_raw' => 0.05530816812901
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.025787'
'max' => '$0.084828'
'avg' => '$0.0553081'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072435
'min_diff' => 0.014048319996008
'max_diff' => 0.056076202866209
'year' => 2029
]
4 => [
'items' => [
101 => 0.062109586338519
102 => 0.061629678856333
103 => 0.063409244091687
104 => 0.059682551369055
105 => 0.060920409202553
106 => 0.06117552998644
107 => 0.058245403718003
108 => 0.056243767027144
109 => 0.056110280680192
110 => 0.052639718500769
111 => 0.054493664803618
112 => 0.056125060828614
113 => 0.055343748734087
114 => 0.055096408665994
115 => 0.056360015432363
116 => 0.05645820850017
117 => 0.054219396148137
118 => 0.054684916130091
119 => 0.056626211841098
120 => 0.054636000459026
121 => 0.050769344842842
122 => 0.049810360789332
123 => 0.049682414639011
124 => 0.047081573827907
125 => 0.049874444689348
126 => 0.048655281714043
127 => 0.052506602945215
128 => 0.05030674891302
129 => 0.050211917602485
130 => 0.050068566167882
131 => 0.047829915042384
201 => 0.048320037365167
202 => 0.049949278613835
203 => 0.050530610246076
204 => 0.050469972594124
205 => 0.049941294442887
206 => 0.050183320593253
207 => 0.049403670035424
208 => 0.049128359196431
209 => 0.048259402458358
210 => 0.046982276108816
211 => 0.047159868360791
212 => 0.044629546884062
213 => 0.043250893449214
214 => 0.042869300348809
215 => 0.042359018107073
216 => 0.042926938085822
217 => 0.044622378801236
218 => 0.042577317590634
219 => 0.039071203589421
220 => 0.039281927015021
221 => 0.039755359987999
222 => 0.038873120774927
223 => 0.03803815540048
224 => 0.03876409005068
225 => 0.037278503328082
226 => 0.03993488604595
227 => 0.039863038337858
228 => 0.040853173545475
301 => 0.041472325410417
302 => 0.040045380814522
303 => 0.039686508107522
304 => 0.039890938311284
305 => 0.036512162417007
306 => 0.040577055470898
307 => 0.040612208834826
308 => 0.040311204390645
309 => 0.042475634452349
310 => 0.047043256985209
311 => 0.045324733656156
312 => 0.044659269480505
313 => 0.043394221596139
314 => 0.045079822790945
315 => 0.044950394918659
316 => 0.044365072996118
317 => 0.044011068471049
318 => 0.044663332662859
319 => 0.043930245719395
320 => 0.043798563160467
321 => 0.0430007101254
322 => 0.042715912891881
323 => 0.042505060358288
324 => 0.042272932436745
325 => 0.042784948788996
326 => 0.041624652373434
327 => 0.040225448641526
328 => 0.040109119990812
329 => 0.040430313623153
330 => 0.040288209350896
331 => 0.040108439650228
401 => 0.039765210334288
402 => 0.039663381528183
403 => 0.039994275747712
404 => 0.039620715466196
405 => 0.040171924010454
406 => 0.040022025786176
407 => 0.039184706490525
408 => 0.038141096632836
409 => 0.038131806316057
410 => 0.037906962284081
411 => 0.037620589603833
412 => 0.037540927275508
413 => 0.038702953859236
414 => 0.041108314111026
415 => 0.040636084338207
416 => 0.040977318745122
417 => 0.04265585429504
418 => 0.043189410271034
419 => 0.042810704877239
420 => 0.042292309576682
421 => 0.042315116339006
422 => 0.044086630009939
423 => 0.044197117144613
424 => 0.044476282489431
425 => 0.04483508884964
426 => 0.042871811151905
427 => 0.042222646135997
428 => 0.041915035737156
429 => 0.040967714768931
430 => 0.041989319216
501 => 0.041394074054157
502 => 0.04147439296296
503 => 0.041422085168234
504 => 0.041450648761192
505 => 0.039934143532843
506 => 0.040486678332885
507 => 0.039567982061929
508 => 0.038337950883614
509 => 0.0383338273878
510 => 0.038634875776108
511 => 0.038455800414718
512 => 0.037973913221664
513 => 0.038042363022994
514 => 0.037442670737079
515 => 0.038115176524283
516 => 0.038134461583919
517 => 0.037875510224208
518 => 0.038911598177311
519 => 0.039336084257065
520 => 0.039165636924827
521 => 0.039324125217858
522 => 0.040655707617257
523 => 0.040872813649373
524 => 0.040969237807619
525 => 0.040840042209322
526 => 0.039348464099698
527 => 0.03941462193154
528 => 0.038929199657897
529 => 0.038519068989207
530 => 0.038535472065103
531 => 0.038746332542064
601 => 0.039667172611758
602 => 0.041605026251941
603 => 0.041678566381033
604 => 0.04176769916281
605 => 0.041405151344776
606 => 0.041295803453742
607 => 0.041440061547102
608 => 0.042167817486851
609 => 0.044039803347695
610 => 0.043378118518741
611 => 0.042840158453063
612 => 0.043312094463655
613 => 0.043239443613981
614 => 0.042626197329502
615 => 0.042608985548777
616 => 0.041431969862166
617 => 0.040996853962177
618 => 0.040633238548285
619 => 0.040236180008736
620 => 0.040000790396968
621 => 0.040362455823308
622 => 0.040445172985412
623 => 0.039654385209889
624 => 0.039546603758146
625 => 0.040192378125978
626 => 0.03990819690359
627 => 0.040200484338171
628 => 0.040268297530189
629 => 0.040257378044404
630 => 0.039960660210226
701 => 0.040149779309478
702 => 0.03970245626063
703 => 0.039216059630757
704 => 0.038905768884479
705 => 0.038634999054257
706 => 0.038785237893299
707 => 0.038249663864642
708 => 0.038078322953898
709 => 0.040085710013966
710 => 0.041568588418285
711 => 0.041547026779002
712 => 0.04141577584507
713 => 0.041220763580526
714 => 0.042153551125043
715 => 0.041828586596209
716 => 0.04206502544263
717 => 0.042125209052352
718 => 0.042307366712835
719 => 0.042372472419478
720 => 0.042175677755183
721 => 0.041515210825364
722 => 0.039869390031566
723 => 0.039103256009245
724 => 0.038850419020908
725 => 0.038859609165228
726 => 0.038606103958265
727 => 0.038680772603022
728 => 0.038580137250825
729 => 0.03838955824007
730 => 0.038773470176423
731 => 0.0388177124507
801 => 0.038728102817349
802 => 0.03874920912992
803 => 0.038007279638551
804 => 0.038063686926394
805 => 0.037749603979795
806 => 0.037690717213634
807 => 0.036896742874962
808 => 0.035490102245584
809 => 0.036269517700169
810 => 0.035328093433428
811 => 0.034971561798707
812 => 0.036659327105428
813 => 0.036489922279956
814 => 0.036199974857255
815 => 0.035771082188743
816 => 0.035612001725992
817 => 0.034645479193073
818 => 0.034588371885631
819 => 0.035067406551249
820 => 0.034846348535643
821 => 0.034535899360514
822 => 0.033411483917926
823 => 0.032147268679297
824 => 0.032185427390778
825 => 0.032587550736625
826 => 0.033756778598397
827 => 0.033299941044955
828 => 0.032968500158326
829 => 0.032906431243337
830 => 0.033683353664501
831 => 0.034782861660727
901 => 0.035298726212452
902 => 0.034787520108732
903 => 0.03420027406207
904 => 0.034236017007895
905 => 0.034473798813341
906 => 0.034498786319039
907 => 0.034116549512532
908 => 0.034224146934599
909 => 0.034060696611564
910 => 0.033057602280808
911 => 0.033039459485211
912 => 0.032793283959363
913 => 0.032785829862276
914 => 0.032367023881445
915 => 0.032308430029658
916 => 0.031476865335011
917 => 0.032024203735237
918 => 0.031657077872921
919 => 0.031103732602175
920 => 0.03100833566893
921 => 0.031005467921921
922 => 0.031573629789239
923 => 0.032017564433018
924 => 0.031663464184476
925 => 0.031582842421828
926 => 0.032443671923177
927 => 0.032334123522495
928 => 0.032239255314016
929 => 0.034684412779175
930 => 0.032748879847486
1001 => 0.031904877012912
1002 => 0.030860263233335
1003 => 0.031200394747365
1004 => 0.031272065454943
1005 => 0.028759957620849
1006 => 0.02774079578542
1007 => 0.027391057849804
1008 => 0.027189778723288
1009 => 0.027281504148746
1010 => 0.026364138961099
1011 => 0.026980623539017
1012 => 0.026186262829465
1013 => 0.026053085671435
1014 => 0.027473501022524
1015 => 0.027671143520682
1016 => 0.026827939220829
1017 => 0.027369412883711
1018 => 0.027173067006503
1019 => 0.026199879863876
1020 => 0.026162711273308
1021 => 0.02567440017432
1022 => 0.024910287860065
1023 => 0.02456106802858
1024 => 0.024379191308277
1025 => 0.02445423718778
1026 => 0.024416291694662
1027 => 0.02416867168474
1028 => 0.024430484983777
1029 => 0.023761660193463
1030 => 0.023495328772873
1031 => 0.023375033049035
1101 => 0.022781412551513
1102 => 0.023726126747303
1103 => 0.02391224734507
1104 => 0.024098734657909
1105 => 0.025721979395883
1106 => 0.025640886676016
1107 => 0.026373925369859
1108 => 0.026345440834188
1109 => 0.026136366324264
1110 => 0.025254315357985
1111 => 0.025605885152097
1112 => 0.024523807971896
1113 => 0.025334573769398
1114 => 0.024964574117807
1115 => 0.025209476515009
1116 => 0.024769119922881
1117 => 0.025012831442843
1118 => 0.023956383443419
1119 => 0.022969887166182
1120 => 0.023366882065764
1121 => 0.023798460923483
1122 => 0.024734233851266
1123 => 0.024176895215437
1124 => 0.024377335264189
1125 => 0.023705894654131
1126 => 0.022320520888055
1127 => 0.02232836195312
1128 => 0.022115252381217
1129 => 0.021931094596586
1130 => 0.024240912262215
1201 => 0.02395364992268
1202 => 0.023495934980597
1203 => 0.024108604619444
1204 => 0.02427060419633
1205 => 0.024275216096539
1206 => 0.024722204049749
1207 => 0.024960761600505
1208 => 0.025002808402793
1209 => 0.025706153604983
1210 => 0.02594190563941
1211 => 0.026912934904337
1212 => 0.024940521659032
1213 => 0.024899901106228
1214 => 0.024117226137691
1215 => 0.023620841299044
1216 => 0.024151214032269
1217 => 0.024621051870809
1218 => 0.024131825309002
1219 => 0.024195707969838
1220 => 0.023538961281891
1221 => 0.023773717320028
1222 => 0.023975920845126
1223 => 0.023864275943541
1224 => 0.023697138122194
1225 => 0.024582530526009
1226 => 0.024532573216705
1227 => 0.02535707097822
1228 => 0.025999825943722
1229 => 0.027151757748095
1230 => 0.025949656858669
1231 => 0.02590584752434
]
'min_raw' => 0.021931094596586
'max_raw' => 0.063409244091687
'avg_raw' => 0.042670169344136
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.021931'
'max' => '$0.0634092'
'avg' => '$0.04267'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -0.0038563225292505
'max_diff' => -0.021419675040497
'year' => 2030
]
5 => [
'items' => [
101 => 0.026334090794644
102 => 0.025941840077597
103 => 0.026189728990736
104 => 0.027111819011841
105 => 0.027131301320976
106 => 0.026804947541419
107 => 0.026785088884274
108 => 0.026847768697557
109 => 0.027214886321724
110 => 0.027086604143455
111 => 0.027235055527856
112 => 0.027420696257217
113 => 0.028188585023894
114 => 0.028373720405864
115 => 0.027923937409366
116 => 0.027964547777943
117 => 0.027796316590433
118 => 0.02763380737123
119 => 0.027999104363434
120 => 0.028666691796618
121 => 0.028662538769844
122 => 0.028817406078298
123 => 0.028913887128474
124 => 0.028499719832672
125 => 0.028230112152458
126 => 0.028333496892634
127 => 0.028498811343603
128 => 0.028279887644238
129 => 0.026928589156432
130 => 0.02733848679635
131 => 0.027270259786097
201 => 0.027173096226809
202 => 0.027585251473392
203 => 0.0275454980944
204 => 0.026354730055162
205 => 0.026430959161596
206 => 0.026359365799603
207 => 0.026590698598828
208 => 0.025929347347269
209 => 0.02613277453798
210 => 0.026260362164982
211 => 0.026335512257461
212 => 0.026607005922395
213 => 0.026575149274383
214 => 0.026605025668426
215 => 0.027007579101853
216 => 0.02904355622847
217 => 0.029154369971342
218 => 0.02860868257322
219 => 0.028826673925562
220 => 0.028408178198534
221 => 0.028689117183765
222 => 0.028881328502384
223 => 0.028012762513657
224 => 0.027961331672751
225 => 0.027541108664991
226 => 0.027766912706714
227 => 0.027407642240448
228 => 0.027495794646122
301 => 0.027249312834869
302 => 0.027692931021086
303 => 0.028188965084574
304 => 0.02831428287799
305 => 0.027984625716215
306 => 0.027745932205625
307 => 0.027326865031558
308 => 0.028023783081552
309 => 0.028227583157563
310 => 0.028022712606513
311 => 0.027975239623325
312 => 0.027885278405965
313 => 0.027994325320862
314 => 0.028226473218581
315 => 0.028116996557115
316 => 0.028189307820744
317 => 0.027913731850843
318 => 0.02849985693928
319 => 0.029430764638403
320 => 0.029433757658875
321 => 0.029324280407289
322 => 0.02927948467466
323 => 0.029391814978422
324 => 0.029452749560183
325 => 0.029816005164695
326 => 0.030205792901077
327 => 0.032024762189062
328 => 0.031514002891719
329 => 0.033127900654986
330 => 0.034404284247333
331 => 0.034787015877189
401 => 0.034434920786637
402 => 0.033230422501661
403 => 0.033171324069438
404 => 0.03497135303325
405 => 0.034462762404423
406 => 0.034402267167447
407 => 0.033758700054328
408 => 0.034139127925519
409 => 0.034055922769549
410 => 0.033924579360316
411 => 0.034650409237712
412 => 0.036009097972918
413 => 0.035797333591834
414 => 0.035639261304822
415 => 0.034946634557285
416 => 0.035363750563087
417 => 0.035215223542751
418 => 0.035853389879688
419 => 0.035475354278802
420 => 0.034458909330197
421 => 0.034620781538509
422 => 0.034596314879864
423 => 0.035099836981045
424 => 0.034948692144457
425 => 0.034566801424733
426 => 0.03600445412253
427 => 0.035911100952979
428 => 0.036043454403896
429 => 0.036101720486156
430 => 0.036976794349023
501 => 0.0373352841114
502 => 0.037416667563706
503 => 0.03775720511137
504 => 0.037408194679297
505 => 0.038804485247808
506 => 0.039732937000055
507 => 0.04081138148798
508 => 0.042387278743389
509 => 0.042979830689288
510 => 0.042872791483988
511 => 0.044067618797572
512 => 0.046214696920565
513 => 0.043306777359957
514 => 0.046368823718257
515 => 0.045399415194245
516 => 0.043100965022726
517 => 0.042952971928627
518 => 0.044509509070335
519 => 0.047961758639495
520 => 0.047097009277511
521 => 0.047963173059663
522 => 0.046952746998785
523 => 0.046902570828322
524 => 0.0479140989212
525 => 0.050277589445733
526 => 0.049154783691645
527 => 0.047544966319893
528 => 0.048733630415662
529 => 0.047703899570238
530 => 0.045383627771982
531 => 0.047096348019971
601 => 0.045951100765605
602 => 0.046285344799122
603 => 0.048692484185127
604 => 0.048402850805702
605 => 0.048777663218007
606 => 0.048116129120838
607 => 0.04749815195973
608 => 0.046344651696935
609 => 0.046003157135997
610 => 0.046097533946953
611 => 0.046003110367537
612 => 0.045357737571718
613 => 0.045218369377907
614 => 0.044986082949029
615 => 0.045058078226319
616 => 0.044621311782236
617 => 0.045445580302773
618 => 0.045598571803614
619 => 0.04619840569457
620 => 0.046260682439002
621 => 0.047931211287215
622 => 0.047011112069716
623 => 0.047628394062359
624 => 0.047573178550853
625 => 0.043150779407453
626 => 0.043760146990256
627 => 0.044708131719015
628 => 0.044281065883672
629 => 0.043677294710512
630 => 0.043189717116023
701 => 0.042450987203004
702 => 0.043490735369527
703 => 0.044857893643615
704 => 0.046295355828988
705 => 0.04802237245846
706 => 0.047636922451451
707 => 0.046263070454387
708 => 0.046324700451376
709 => 0.046705672842251
710 => 0.046212278981076
711 => 0.046066767499224
712 => 0.046685681799125
713 => 0.046689943921759
714 => 0.046122234655838
715 => 0.045491329696466
716 => 0.045488686181649
717 => 0.045376422737948
718 => 0.046972718416024
719 => 0.04785051963527
720 => 0.047951158130409
721 => 0.047843745862701
722 => 0.047885084581501
723 => 0.047374311393053
724 => 0.048541787436763
725 => 0.049613178905885
726 => 0.04932602310522
727 => 0.048895535738421
728 => 0.048552631815684
729 => 0.049245245838667
730 => 0.049214404826499
731 => 0.049603821236064
801 => 0.049586155058348
802 => 0.049455208966503
803 => 0.049326027781717
804 => 0.049838216577413
805 => 0.049690714429753
806 => 0.049542983170517
807 => 0.049246685513593
808 => 0.049286957286152
809 => 0.048856544249066
810 => 0.04865741548375
811 => 0.045662996630104
812 => 0.044862790066952
813 => 0.045114551341426
814 => 0.045197437689962
815 => 0.044849186768185
816 => 0.045348489131691
817 => 0.045270673387231
818 => 0.045573408928238
819 => 0.045384272905466
820 => 0.045392035113814
821 => 0.045948243828735
822 => 0.046109713584958
823 => 0.046027588763722
824 => 0.046085106173441
825 => 0.04741057060384
826 => 0.047222131947804
827 => 0.047122027667506
828 => 0.047149757237274
829 => 0.047488441817518
830 => 0.047583255008495
831 => 0.047181524855924
901 => 0.047370983118251
902 => 0.048177672353403
903 => 0.04845996793105
904 => 0.049360919905335
905 => 0.048978179493514
906 => 0.049680716084028
907 => 0.051840074050893
908 => 0.053565118611031
909 => 0.051978696343047
910 => 0.05514652099464
911 => 0.057613126883362
912 => 0.057518454441006
913 => 0.057088344650685
914 => 0.054280179424485
915 => 0.051696063915951
916 => 0.05385778626618
917 => 0.053863296941013
918 => 0.053677603073992
919 => 0.052524274414097
920 => 0.053637469736612
921 => 0.053725831138782
922 => 0.05367637225076
923 => 0.052792117871341
924 => 0.051442024871495
925 => 0.051705829811999
926 => 0.05213794768602
927 => 0.051319858401267
928 => 0.051058429305011
929 => 0.051544475733872
930 => 0.053110618599457
1001 => 0.052814548362766
1002 => 0.052806816772372
1003 => 0.054073530798256
1004 => 0.053166836929719
1005 => 0.051709157237119
1006 => 0.051341073890305
1007 => 0.050034625979766
1008 => 0.050936994204983
1009 => 0.050969468830953
1010 => 0.050475250975982
1011 => 0.05174926029226
1012 => 0.051737520072126
1013 => 0.05294700230667
1014 => 0.055259078078336
1015 => 0.054575283502315
1016 => 0.053780104807042
1017 => 0.053866562779131
1018 => 0.054814793336499
1019 => 0.054241471495516
1020 => 0.054447642026876
1021 => 0.054814481272707
1022 => 0.055035804497823
1023 => 0.053834717773008
1024 => 0.053554687002835
1025 => 0.052981842324504
1026 => 0.05283239784058
1027 => 0.053298967878284
1028 => 0.053176043157512
1029 => 0.050966739464388
1030 => 0.050735854936007
1031 => 0.050742935834866
1101 => 0.05016236571029
1102 => 0.049276856917518
1103 => 0.051603921153941
1104 => 0.051417025328513
1105 => 0.051210706801829
1106 => 0.051235979644111
1107 => 0.052246079357617
1108 => 0.051660170512525
1109 => 0.053217905205774
1110 => 0.052897681782633
1111 => 0.052569245837002
1112 => 0.052523845984912
1113 => 0.052397426166683
1114 => 0.05196388557123
1115 => 0.051440359250471
1116 => 0.051094681826432
1117 => 0.047132143130221
1118 => 0.047867567263211
1119 => 0.048713605692196
1120 => 0.049005654767596
1121 => 0.048506084614944
1122 => 0.051983611645773
1123 => 0.05261898934459
1124 => 0.050694388850212
1125 => 0.050334374678634
1126 => 0.052007214114926
1127 => 0.050998287438538
1128 => 0.051452607059138
1129 => 0.050470616538947
1130 => 0.052465945462976
1201 => 0.052450744399665
1202 => 0.05167451638167
1203 => 0.052330578987099
1204 => 0.052216571964498
1205 => 0.051340212443947
1206 => 0.052493727622911
1207 => 0.052494299752049
1208 => 0.051747197161381
1209 => 0.050874744897268
1210 => 0.050718771038848
1211 => 0.050601265688667
1212 => 0.051423707946203
1213 => 0.052161107102599
1214 => 0.053533224115898
1215 => 0.053878206933737
1216 => 0.055224697838571
1217 => 0.054422928064195
1218 => 0.054778342220519
1219 => 0.055164194563611
1220 => 0.05534918636614
1221 => 0.055047752151127
1222 => 0.057139406764102
1223 => 0.057316006500079
1224 => 0.05737521886397
1225 => 0.056669924697036
1226 => 0.057296390993428
1227 => 0.05700328815973
1228 => 0.057765860306701
1229 => 0.057885441356356
1230 => 0.057784160461518
1231 => 0.057822117374137
]
'min_raw' => 0.025929347347269
'max_raw' => 0.057885441356356
'avg_raw' => 0.041907394351813
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.025929'
'max' => '$0.057885'
'avg' => '$0.0419073'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 0.0039982527506828
'max_diff' => -0.0055238027353303
'year' => 2031
]
6 => [
'items' => [
101 => 0.056037259155121
102 => 0.055944704840588
103 => 0.054682720194574
104 => 0.055196988265944
105 => 0.054235588756028
106 => 0.054540458444135
107 => 0.054674842097747
108 => 0.054604647703305
109 => 0.055226064211098
110 => 0.054697733232469
111 => 0.053303380914211
112 => 0.051908648705597
113 => 0.051891138978843
114 => 0.051523930607383
115 => 0.051258506212385
116 => 0.051309636367298
117 => 0.051489825702222
118 => 0.051248033280673
119 => 0.051299631952998
120 => 0.052156513713736
121 => 0.052328355239851
122 => 0.051744370591294
123 => 0.049399587958754
124 => 0.048824172419286
125 => 0.049237769698069
126 => 0.049040096837887
127 => 0.039579185570805
128 => 0.041801886337325
129 => 0.040481233017645
130 => 0.041089850827691
131 => 0.039741805769817
201 => 0.040385163528529
202 => 0.040266358842159
203 => 0.043840395900227
204 => 0.043784592227492
205 => 0.043811302492565
206 => 0.042536351947389
207 => 0.044567382784535
208 => 0.04556794160842
209 => 0.045382764799129
210 => 0.04542936981255
211 => 0.044628541272187
212 => 0.043819056263361
213 => 0.042921212809722
214 => 0.044589294969777
215 => 0.044403832708691
216 => 0.044829216408408
217 => 0.045911086926179
218 => 0.046070396469547
219 => 0.046284510111392
220 => 0.046207765612437
221 => 0.048036130932155
222 => 0.047814703827994
223 => 0.048348279440095
224 => 0.047250673923524
225 => 0.046008629095851
226 => 0.046244701212087
227 => 0.046221965568921
228 => 0.045932514736667
229 => 0.045671211467529
301 => 0.045236215146153
302 => 0.046612607874328
303 => 0.046556728843152
304 => 0.047461345405617
305 => 0.047301445641225
306 => 0.046233595880504
307 => 0.046271734343615
308 => 0.046528233836754
309 => 0.047415981511168
310 => 0.047679525463404
311 => 0.047557441404318
312 => 0.047846405316707
313 => 0.048074790611051
314 => 0.047875086993395
315 => 0.050702469081756
316 => 0.049528342914277
317 => 0.050100603838789
318 => 0.050237084697327
319 => 0.049887491848063
320 => 0.049963306019087
321 => 0.050078143830064
322 => 0.050775416530763
323 => 0.052605261854881
324 => 0.053415687892754
325 => 0.055853894613413
326 => 0.053348393291984
327 => 0.053199727212366
328 => 0.053638921869545
329 => 0.055070407324965
330 => 0.05623049183399
331 => 0.056615358792515
401 => 0.056666225314545
402 => 0.057388261314209
403 => 0.057802118884042
404 => 0.057300587152417
405 => 0.056875591522427
406 => 0.0553533099282
407 => 0.055529518167767
408 => 0.05674341820108
409 => 0.058458123496489
410 => 0.059929519024629
411 => 0.059414287593985
412 => 0.063345139713089
413 => 0.063734867644607
414 => 0.063681019845884
415 => 0.064568878073175
416 => 0.062806660301187
417 => 0.0620532780623
418 => 0.056967480401536
419 => 0.05839638209722
420 => 0.060473374628351
421 => 0.060198476878533
422 => 0.058690109384257
423 => 0.059928374792626
424 => 0.059518965524479
425 => 0.059196047448286
426 => 0.060675397756076
427 => 0.0590487913243
428 => 0.060457147984905
429 => 0.058650916000095
430 => 0.059416641127761
501 => 0.058981978511341
502 => 0.059263258494411
503 => 0.057618901460875
504 => 0.058506156601661
505 => 0.057581988729995
506 => 0.057581550554093
507 => 0.057561149497104
508 => 0.058648428899732
509 => 0.058683885042017
510 => 0.057880383920687
511 => 0.057764586856057
512 => 0.058192749295693
513 => 0.0576914832148
514 => 0.057926022459118
515 => 0.057698587169581
516 => 0.057647386695386
517 => 0.057239412605958
518 => 0.057063646150751
519 => 0.057132568706781
520 => 0.056897300491037
521 => 0.056755542881028
522 => 0.057532950340486
523 => 0.057117612895425
524 => 0.057469293920253
525 => 0.057068509006778
526 => 0.055679213882999
527 => 0.054880215565785
528 => 0.052255965864693
529 => 0.053000199824551
530 => 0.053493627709903
531 => 0.053330549796737
601 => 0.053680904256991
602 => 0.05370241317539
603 => 0.05358850936892
604 => 0.05345662335301
605 => 0.053392428534219
606 => 0.053870884119659
607 => 0.054148643691081
608 => 0.053543149799411
609 => 0.053401291052353
610 => 0.054013478807065
611 => 0.05438691298379
612 => 0.057144141130188
613 => 0.056939876763373
614 => 0.057452540239221
615 => 0.057394822199303
616 => 0.057932175195687
617 => 0.058810520242456
618 => 0.057024599173238
619 => 0.05733457331835
620 => 0.057258574816317
621 => 0.058088306533637
622 => 0.05809089686549
623 => 0.057593431252784
624 => 0.05786311543189
625 => 0.057712585121511
626 => 0.057984613737757
627 => 0.05693714868822
628 => 0.058212848051691
629 => 0.058936087386527
630 => 0.058946129565393
701 => 0.059288939270124
702 => 0.059637253784329
703 => 0.060305813162545
704 => 0.059618608026131
705 => 0.058382392883796
706 => 0.058471643624122
707 => 0.057746851138484
708 => 0.057759035031112
709 => 0.057693996457395
710 => 0.057889182112996
711 => 0.056979980963383
712 => 0.057193368655912
713 => 0.056894624636775
714 => 0.057333923907196
715 => 0.056861310510994
716 => 0.057258538167538
717 => 0.057429968455797
718 => 0.058062549910103
719 => 0.056767877715857
720 => 0.054127953470187
721 => 0.054682897552614
722 => 0.053862091664787
723 => 0.053938060374734
724 => 0.054091529259157
725 => 0.053594086392847
726 => 0.053688982815513
727 => 0.05368559244752
728 => 0.053656376087777
729 => 0.053526971986095
730 => 0.053339310436834
731 => 0.054086896289909
801 => 0.054213925694013
802 => 0.054496296323721
803 => 0.055336439783907
804 => 0.055252489640287
805 => 0.055389415807589
806 => 0.055090506753177
807 => 0.053951925908476
808 => 0.054013756326221
809 => 0.053242730026176
810 => 0.054476579447726
811 => 0.054184387618686
812 => 0.053996009645684
813 => 0.053944608970441
814 => 0.054786834983762
815 => 0.055038842207223
816 => 0.054881808217138
817 => 0.05455972692206
818 => 0.055178218223397
819 => 0.055343700403582
820 => 0.055380745760977
821 => 0.056476593763003
822 => 0.055441991490938
823 => 0.055691030540886
824 => 0.05763396211725
825 => 0.055871991283718
826 => 0.056805346530878
827 => 0.056759663648476
828 => 0.057237136609904
829 => 0.056720496929248
830 => 0.056726901297276
831 => 0.057150864940204
901 => 0.056555484465958
902 => 0.05640805988768
903 => 0.056204393888664
904 => 0.056649091146544
905 => 0.056915667040716
906 => 0.059064072969322
907 => 0.060452041178415
908 => 0.060391785817952
909 => 0.060942407019271
910 => 0.060694347124965
911 => 0.059893296291356
912 => 0.061260592386583
913 => 0.060827922691955
914 => 0.060863591455887
915 => 0.060862263862712
916 => 0.061149951384998
917 => 0.060946098409284
918 => 0.060544283269072
919 => 0.060811026911072
920 => 0.061603160165215
921 => 0.064061966091689
922 => 0.06543794646299
923 => 0.063979130345605
924 => 0.064985402169051
925 => 0.064381997646295
926 => 0.064272341094781
927 => 0.064904354162809
928 => 0.065537473486047
929 => 0.065497146522207
930 => 0.065037534404573
1001 => 0.064777911181547
1002 => 0.066743865206459
1003 => 0.068192346642862
1004 => 0.068093569919642
1005 => 0.068529538252023
1006 => 0.069809554759887
1007 => 0.069926583427677
1008 => 0.069911840505409
1009 => 0.069621772741613
1010 => 0.070882115224753
1011 => 0.071933515097805
1012 => 0.069554630435158
1013 => 0.070460478572807
1014 => 0.070867142986402
1015 => 0.071464246997454
1016 => 0.07247166155035
1017 => 0.073565980958309
1018 => 0.073720729721196
1019 => 0.073610928068518
1020 => 0.072889195002084
1021 => 0.074086612356218
1022 => 0.074788031359378
1023 => 0.075205710324071
1024 => 0.07626487468338
1025 => 0.070869654407375
1026 => 0.067050649336172
1027 => 0.066454256547202
1028 => 0.067667044735561
1029 => 0.067986847309027
1030 => 0.067857935292661
1031 => 0.063559297876272
1101 => 0.066431625110828
1102 => 0.069522007703078
1103 => 0.069640721884425
1104 => 0.071187832026958
1105 => 0.071691634507554
1106 => 0.072937260956655
1107 => 0.072859346683116
1108 => 0.073162636901227
1109 => 0.073092915732337
1110 => 0.075400176431702
1111 => 0.077945427614631
1112 => 0.077857293659569
1113 => 0.077491383687978
1114 => 0.078034822392713
1115 => 0.080661794379188
1116 => 0.080419944895042
1117 => 0.0806548810682
1118 => 0.083752229089908
1119 => 0.087779222110747
1120 => 0.085908279549079
1121 => 0.08996768655868
1122 => 0.092522868091305
1123 => 0.096941790341278
1124 => 0.09638851951193
1125 => 0.098108773516295
1126 => 0.095398049256292
1127 => 0.089173678427563
1128 => 0.088188647917982
1129 => 0.090160703943108
1130 => 0.095008811250467
1201 => 0.09000801979105
1202 => 0.091019673390246
1203 => 0.09072831708562
1204 => 0.090712791946331
1205 => 0.091305323367685
1206 => 0.09044582563665
1207 => 0.086944077259728
1208 => 0.088548907904939
1209 => 0.087929205722525
1210 => 0.088616811495771
1211 => 0.092327536263786
1212 => 0.090686936391217
1213 => 0.088958697696976
1214 => 0.091126292546422
1215 => 0.093886385656168
1216 => 0.093713663989725
1217 => 0.093378511764768
1218 => 0.095267747308849
1219 => 0.098388210933594
1220 => 0.099231659712324
1221 => 0.099854276357231
1222 => 0.09994012467337
1223 => 0.10082441568403
1224 => 0.0960693600497
1225 => 0.10361575545986
1226 => 0.10491880948223
1227 => 0.10467388933208
1228 => 0.10612217903705
1229 => 0.10569605546629
1230 => 0.10507866926899
1231 => 0.10737451651142
]
'min_raw' => 0.039579185570805
'max_raw' => 0.10737451651142
'avg_raw' => 0.07347685104111
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.039579'
'max' => '$0.107374'
'avg' => '$0.073476'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.013649838223536
'max_diff' => 0.049489075155059
'year' => 2032
]
7 => [
'items' => [
101 => 0.10474251291329
102 => 0.10100671516579
103 => 0.098957182635811
104 => 0.10165617240236
105 => 0.10330435127103
106 => 0.10439369265936
107 => 0.10472332670527
108 => 0.096438481482686
109 => 0.091973409406295
110 => 0.094835469415106
111 => 0.098327380154686
112 => 0.096049962309231
113 => 0.096139232777051
114 => 0.092892233424314
115 => 0.098614667549065
116 => 0.097780957030335
117 => 0.10210624867631
118 => 0.10107398311237
119 => 0.10460109054281
120 => 0.10367228495013
121 => 0.10752770503651
122 => 0.1090657364903
123 => 0.11164833067669
124 => 0.11354809747325
125 => 0.11466367687294
126 => 0.11459670167022
127 => 0.11901718303123
128 => 0.1164105796125
129 => 0.11313607138931
130 => 0.11307684586649
131 => 0.11477276007542
201 => 0.118326931006
202 => 0.11924847581721
203 => 0.11976349364722
204 => 0.11897472591266
205 => 0.11614544471857
206 => 0.11492377544375
207 => 0.11596467306106
208 => 0.11469174472044
209 => 0.11688917615697
210 => 0.11990671886536
211 => 0.11928360822874
212 => 0.12136657366501
213 => 0.12352222375719
214 => 0.12660490020532
215 => 0.12741082598004
216 => 0.12874299063904
217 => 0.13011422566644
218 => 0.13055462940143
219 => 0.13139549678076
220 => 0.13139106499461
221 => 0.13392507543913
222 => 0.13672016743121
223 => 0.1377752499517
224 => 0.14020135402996
225 => 0.13604673581676
226 => 0.13919806145629
227 => 0.14204063606593
228 => 0.13865160143072
301 => 0.14332259613156
302 => 0.1435039602711
303 => 0.14624234345261
304 => 0.14346646748741
305 => 0.14181816120018
306 => 0.14657675969017
307 => 0.14887929560504
308 => 0.14818575304882
309 => 0.1429078599516
310 => 0.13983589978954
311 => 0.13179598750856
312 => 0.14131961090375
313 => 0.14595829005164
314 => 0.14289584689323
315 => 0.14444036509065
316 => 0.15286675556406
317 => 0.15607497948796
318 => 0.15540769133897
319 => 0.15552045205165
320 => 0.1572515514476
321 => 0.16492819950309
322 => 0.16032817404493
323 => 0.16384472114803
324 => 0.16570988505166
325 => 0.16744235323207
326 => 0.16318795893318
327 => 0.1576530544598
328 => 0.1558999178736
329 => 0.14259134727529
330 => 0.14189857837945
331 => 0.14150970620518
401 => 0.13905792215342
402 => 0.1371314914889
403 => 0.1355995223007
404 => 0.13157917766612
405 => 0.13293592596184
406 => 0.12652833572547
407 => 0.13062768488764
408 => 0.12040101615371
409 => 0.12891808976243
410 => 0.12428263382102
411 => 0.12739521781549
412 => 0.12738435830316
413 => 0.12165310432369
414 => 0.11834743663655
415 => 0.12045393674531
416 => 0.12271227207608
417 => 0.12307867938555
418 => 0.12600667009048
419 => 0.12682380935927
420 => 0.12434783922623
421 => 0.12018909117515
422 => 0.12115507349647
423 => 0.11832786103564
424 => 0.1133732799452
425 => 0.11693174658304
426 => 0.11814676354793
427 => 0.11868338425762
428 => 0.11381112279265
429 => 0.11228015245841
430 => 0.11146507669855
501 => 0.11956014340326
502 => 0.12000360943092
503 => 0.11773477453362
504 => 0.12799012340918
505 => 0.12566902211159
506 => 0.12826226094463
507 => 0.12106742072576
508 => 0.12134227331125
509 => 0.11793612064921
510 => 0.11984333854075
511 => 0.11849537840751
512 => 0.11968925418261
513 => 0.12040485839967
514 => 0.12381045214558
515 => 0.12895697617253
516 => 0.12330177000648
517 => 0.12083771569589
518 => 0.12236640113181
519 => 0.12643749189549
520 => 0.13260540279776
521 => 0.12895387540284
522 => 0.13057436125375
523 => 0.13092836532177
524 => 0.12823586420765
525 => 0.13270467915438
526 => 0.13509955338892
527 => 0.13755619880416
528 => 0.13968923518457
529 => 0.13657496060252
530 => 0.13990768081904
531 => 0.13722209662884
601 => 0.13481284997964
602 => 0.13481650381231
603 => 0.13330514819579
604 => 0.13037670624572
605 => 0.12983665661977
606 => 0.13264606297472
607 => 0.13489894081963
608 => 0.13508449862949
609 => 0.13633180756147
610 => 0.13706995213912
611 => 0.14430477245892
612 => 0.14721467704111
613 => 0.15077285328255
614 => 0.15215896345641
615 => 0.15633065813174
616 => 0.15296167587293
617 => 0.15223277536935
618 => 0.14211360863793
619 => 0.14377062162332
620 => 0.14642365929089
621 => 0.1421573562519
622 => 0.14486334356254
623 => 0.14539756277831
624 => 0.14201238890715
625 => 0.14382055653647
626 => 0.13901859939735
627 => 0.12906164571593
628 => 0.13271576409017
629 => 0.13540642517656
630 => 0.13156652005016
701 => 0.13844940136438
702 => 0.13442856419212
703 => 0.13315415184274
704 => 0.12818221490699
705 => 0.13052877775326
706 => 0.13370253760239
707 => 0.13174152300481
708 => 0.1358109227426
709 => 0.14157427804058
710 => 0.14568158823966
711 => 0.14599689651608
712 => 0.14335617122648
713 => 0.14758795035594
714 => 0.14761877424696
715 => 0.1428453101016
716 => 0.13992158989133
717 => 0.13925731450799
718 => 0.14091680465442
719 => 0.14293173205097
720 => 0.1461087109634
721 => 0.148028492783
722 => 0.1530342655949
723 => 0.15438868419104
724 => 0.15587677959415
725 => 0.15786533396432
726 => 0.16025310334059
727 => 0.1550287998811
728 => 0.15523637119686
729 => 0.15037157215079
730 => 0.14517283668731
731 => 0.14911802887257
801 => 0.15427584284787
802 => 0.15309263462306
803 => 0.15295949952702
804 => 0.15318339582996
805 => 0.15229129546842
806 => 0.14825635859596
807 => 0.14623003855864
808 => 0.14884450837615
809 => 0.15023398272749
810 => 0.15238893627152
811 => 0.15212329276167
812 => 0.15767422166598
813 => 0.15983114478682
814 => 0.15927931155256
815 => 0.15938086214827
816 => 0.16328586843047
817 => 0.16762903854208
818 => 0.17169699048336
819 => 0.17583508592064
820 => 0.17084645035839
821 => 0.16831352887614
822 => 0.17092685729792
823 => 0.16954018845206
824 => 0.17750839895303
825 => 0.17806010055974
826 => 0.18602773486839
827 => 0.19358996859555
828 => 0.18884026508301
829 => 0.19331902156399
830 => 0.19816316185654
831 => 0.20750829441431
901 => 0.20436118253458
902 => 0.20195054415624
903 => 0.19967250253683
904 => 0.2044127455179
905 => 0.21051099238583
906 => 0.2118244963529
907 => 0.21395287457668
908 => 0.21171514512008
909 => 0.21441024377274
910 => 0.22392512630301
911 => 0.22135412105314
912 => 0.21770288028861
913 => 0.22521396622722
914 => 0.22793219902979
915 => 0.24701018038784
916 => 0.27109691992448
917 => 0.26112485159425
918 => 0.25493486698504
919 => 0.25638966019661
920 => 0.2651853220878
921 => 0.26801020952689
922 => 0.26033119167033
923 => 0.26304355059594
924 => 0.27798891494929
925 => 0.28600662342016
926 => 0.2751174983948
927 => 0.24507483431881
928 => 0.21737412600685
929 => 0.22472160123034
930 => 0.22388862555869
1001 => 0.23994555508419
1002 => 0.22129280342822
1003 => 0.22160686792846
1004 => 0.23799583775196
1005 => 0.23362354158112
1006 => 0.22654098174575
1007 => 0.21742583653168
1008 => 0.20057564755459
1009 => 0.1856509652753
1010 => 0.21492170417404
1011 => 0.21365949668735
1012 => 0.21183163319794
1013 => 0.21589934559813
1014 => 0.23565100237316
1015 => 0.23519566275462
1016 => 0.23229902441779
1017 => 0.23449609906648
1018 => 0.22615582393714
1019 => 0.2283053027425
1020 => 0.21736973807313
1021 => 0.22231307001321
1022 => 0.22652578575328
1023 => 0.22737155080842
1024 => 0.2292771026635
1025 => 0.21299437069701
1026 => 0.22030483931407
1027 => 0.22459905472831
1028 => 0.20519763326186
1029 => 0.22421555100625
1030 => 0.21271092455928
1031 => 0.20880608154949
1101 => 0.21406343823822
1102 => 0.21201464122368
1103 => 0.21025320585997
1104 => 0.20927029466172
1105 => 0.21313071718064
1106 => 0.21295062385593
1107 => 0.20663422333925
1108 => 0.19839473635466
1109 => 0.20116017863863
1110 => 0.2001554675307
1111 => 0.19651426486527
1112 => 0.19896799582128
1113 => 0.18816300649581
1114 => 0.1695735839558
1115 => 0.18185432589514
1116 => 0.18138153068935
1117 => 0.18114312590704
1118 => 0.19037176405967
1119 => 0.18948464344221
1120 => 0.18787451083479
1121 => 0.19648469351725
1122 => 0.19334186101485
1123 => 0.20302733024278
1124 => 0.20940680669316
1125 => 0.2077887651109
1126 => 0.21378869354717
1127 => 0.20122388884344
1128 => 0.20539741295355
1129 => 0.20625757048839
1130 => 0.19637844519947
1201 => 0.18962978734643
1202 => 0.18917972880796
1203 => 0.17747848611313
1204 => 0.18372919551158
1205 => 0.18922956111028
1206 => 0.18659531283412
1207 => 0.18576138852581
1208 => 0.19002172696083
1209 => 0.19035279174456
1210 => 0.1828044795908
1211 => 0.18437401271152
1212 => 0.19091922673812
1213 => 0.18420909011134
1214 => 0.1711723907401
1215 => 0.16793910904957
1216 => 0.16750772967084
1217 => 0.1587388132913
1218 => 0.16815517239267
1219 => 0.16404467930219
1220 => 0.17702967772374
1221 => 0.16961271626529
1222 => 0.16929298588091
1223 => 0.16880966651067
1224 => 0.16126189794343
1225 => 0.16291437957394
1226 => 0.16840748019381
1227 => 0.17036748037919
1228 => 0.17016303630205
1229 => 0.16838056100403
1230 => 0.16919656906771
1231 => 0.16656792277852
]
'min_raw' => 0.091973409406295
'max_raw' => 0.28600662342016
'avg_raw' => 0.18899001641323
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.091973'
'max' => '$0.2860066'
'avg' => '$0.18899'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.05239422383549
'max_diff' => 0.17863210690875
'year' => 2033
]
8 => [
'items' => [
101 => 0.16563969306327
102 => 0.16270994475224
103 => 0.15840402409864
104 => 0.15900278877527
105 => 0.15047163325507
106 => 0.14582340694498
107 => 0.14453683916498
108 => 0.1428163869602
109 => 0.14473116881946
110 => 0.15044746556337
111 => 0.14355239891021
112 => 0.13173129076605
113 => 0.13244175950771
114 => 0.13403797183014
115 => 0.13106344072729
116 => 0.12824829667192
117 => 0.13069583602821
118 => 0.12568707667262
119 => 0.13464325646863
120 => 0.13440101690455
121 => 0.13773932688606
122 => 0.13982684062652
123 => 0.13501579729536
124 => 0.13380583290802
125 => 0.13449508361287
126 => 0.12310330478671
127 => 0.13680837551968
128 => 0.13692689754049
129 => 0.13591204004147
130 => 0.14320956711019
131 => 0.15860962538095
201 => 0.15281550399358
202 => 0.15057184506415
203 => 0.14630664779918
204 => 0.15198976991239
205 => 0.15155339480461
206 => 0.14957994107689
207 => 0.14838639010482
208 => 0.15058554436714
209 => 0.14811389055475
210 => 0.14766991361354
211 => 0.14497989640149
212 => 0.14401968264478
213 => 0.14330877860652
214 => 0.14252614311238
215 => 0.14425244199183
216 => 0.14034042161746
217 => 0.13562290854604
218 => 0.13523069837836
219 => 0.13631362513482
220 => 0.1358345106595
221 => 0.13522840456258
222 => 0.13407118296038
223 => 0.13372786003114
224 => 0.13484349299457
225 => 0.1335840084243
226 => 0.13544244651542
227 => 0.1349370541867
228 => 0.13211397372165
301 => 0.12859537022394
302 => 0.12856404727229
303 => 0.12780596992037
304 => 0.12684044443501
305 => 0.12657185733322
306 => 0.13048971109036
307 => 0.13859955111616
308 => 0.13700739546707
309 => 0.13815789109421
310 => 0.14381719089237
311 => 0.14561611211712
312 => 0.14433928044158
313 => 0.14259147449254
314 => 0.14266836908404
315 => 0.14864115110872
316 => 0.14901366619724
317 => 0.149954891648
318 => 0.1511646323425
319 => 0.14454530451292
320 => 0.14235659933853
321 => 0.14131946940216
322 => 0.13812551061796
323 => 0.14156992133739
324 => 0.13956301071555
325 => 0.13983381152427
326 => 0.13965745214233
327 => 0.13975375629024
328 => 0.13464075303385
329 => 0.13650366268894
330 => 0.13340621407008
331 => 0.12925907807436
401 => 0.12924517542033
402 => 0.13026018108004
403 => 0.12965641599647
404 => 0.1280316996808
405 => 0.12826248296499
406 => 0.12624057855385
407 => 0.12850797876827
408 => 0.12857299969327
409 => 0.12769992710459
410 => 0.13119316997583
411 => 0.1326243544304
412 => 0.1320496793495
413 => 0.13258403369475
414 => 0.13707355672244
415 => 0.13780554486758
416 => 0.13813064564923
417 => 0.13769505366942
418 => 0.13266609393417
419 => 0.13288914968321
420 => 0.13125251459652
421 => 0.12986973041263
422 => 0.12992503452824
423 => 0.13063596534812
424 => 0.13374064193409
425 => 0.14027425077859
426 => 0.14052219645823
427 => 0.14082271385505
428 => 0.13960035857427
429 => 0.13923168452522
430 => 0.13971806075876
501 => 0.14217174071992
502 => 0.14848327174763
503 => 0.14625235514945
504 => 0.14443858522885
505 => 0.14602975043808
506 => 0.14578480302608
507 => 0.14371720036248
508 => 0.14365916964207
509 => 0.13969077907805
510 => 0.13822375544242
511 => 0.13699780068766
512 => 0.13565909009983
513 => 0.13486545758938
514 => 0.13608483782496
515 => 0.13636372451212
516 => 0.1336975283159
517 => 0.13333413562629
518 => 0.13551140899396
519 => 0.13455327216179
520 => 0.13553873965433
521 => 0.13576737656579
522 => 0.13573056075709
523 => 0.13473015586298
524 => 0.13536778410998
525 => 0.13385960321969
526 => 0.13221968302295
527 => 0.13117351610806
528 => 0.13026059672092
529 => 0.13076713745609
530 => 0.12896141222589
531 => 0.12838372438268
601 => 0.13515177000699
602 => 0.14015139807841
603 => 0.14007870150618
604 => 0.13963617981878
605 => 0.13897868235355
606 => 0.14212364068504
607 => 0.14102800008777
608 => 0.14182517016612
609 => 0.14202808340818
610 => 0.14264224067834
611 => 0.14286174911382
612 => 0.14219824216339
613 => 0.13997143179717
614 => 0.13442243208335
615 => 0.13183935773732
616 => 0.13098690017863
617 => 0.13101788539184
618 => 0.13016317488739
619 => 0.13041492543639
620 => 0.13007562632032
621 => 0.12943307587976
622 => 0.13072746177705
623 => 0.13087662769367
624 => 0.13057450255849
625 => 0.13064566396491
626 => 0.1281441968849
627 => 0.12833437799409
628 => 0.12727542541106
629 => 0.12707688456761
630 => 0.12439994465126
701 => 0.1196573575608
702 => 0.12228521118298
703 => 0.11911113353952
704 => 0.11790906224081
705 => 0.12359948080843
706 => 0.12302832061189
707 => 0.12205074263277
708 => 0.12060470105655
709 => 0.12006835016974
710 => 0.11680965196956
711 => 0.11661711069541
712 => 0.11823220951568
713 => 0.11748689698228
714 => 0.11644019591347
715 => 0.1126491507446
716 => 0.10838676080288
717 => 0.10851541556279
718 => 0.10987120249867
719 => 0.11381333586751
720 => 0.11227307616071
721 => 0.11115560007097
722 => 0.11094633039057
723 => 0.11356577857652
724 => 0.11727284655099
725 => 0.11901211990364
726 => 0.11728855283368
727 => 0.11530861178715
728 => 0.11542912162449
729 => 0.11623081958295
730 => 0.11631506670298
731 => 0.11502632862292
801 => 0.11538910084363
802 => 0.11483801666779
803 => 0.11145601409783
804 => 0.11139484439579
805 => 0.11056484642296
806 => 0.11053971441421
807 => 0.10912768080973
808 => 0.10893012754754
809 => 0.10612644912155
810 => 0.10797183875186
811 => 0.10673404827515
812 => 0.10486840606149
813 => 0.10454676864066
814 => 0.1045370998314
815 => 0.10645269723486
816 => 0.10794945388088
817 => 0.10675558017044
818 => 0.10648375826884
819 => 0.10938610503383
820 => 0.10901675495251
821 => 0.10869690016413
822 => 0.11694091927336
823 => 0.11041513485957
824 => 0.10756952037641
825 => 0.10404753208596
826 => 0.10519430923274
827 => 0.10543595202723
828 => 0.09696620507481
829 => 0.093530029791054
830 => 0.092350863923203
831 => 0.091672237295296
901 => 0.09198149597129
902 => 0.088888535192748
903 => 0.090967055988778
904 => 0.088288813396027
905 => 0.087839797309597
906 => 0.092628826836027
907 => 0.093295192317525
908 => 0.090452270149927
909 => 0.092277886408817
910 => 0.091615892575379
911 => 0.088334724178257
912 => 0.088209407680128
913 => 0.086563032717098
914 => 0.083986774700969
915 => 0.082809355657366
916 => 0.082196145596637
917 => 0.08244916801892
918 => 0.0823212321396
919 => 0.081486363987874
920 => 0.082369085804795
921 => 0.080114096328399
922 => 0.079216141349213
923 => 0.078810555917512
924 => 0.076809122964858
925 => 0.079994292833804
926 => 0.080621811423699
927 => 0.081250566419066
928 => 0.086723449384473
929 => 0.086450039617727
930 => 0.088921530753145
1001 => 0.088825493152404
1002 => 0.088120583845081
1003 => 0.085146687429437
1004 => 0.086332029536106
1005 => 0.082683730774842
1006 => 0.085417284266983
1007 => 0.084169804609093
1008 => 0.084995510139798
1009 => 0.083510817144723
1010 => 0.084332507549669
1011 => 0.080770619360768
1012 => 0.077444578287091
1013 => 0.07878307430833
1014 => 0.080238172559004
1015 => 0.083393196318605
1016 => 0.081514090195768
1017 => 0.082189887814409
1018 => 0.079926078919115
1019 => 0.075255194543081
1020 => 0.075281631241393
1021 => 0.074563117440888
1022 => 0.073942216612518
1023 => 0.081729928138504
1024 => 0.080761403104747
1025 => 0.079218185220878
1026 => 0.081283843683478
1027 => 0.081830036567398
1028 => 0.081845585910946
1029 => 0.083352637002897
1030 => 0.084156950440825
1031 => 0.084298714170354
1101 => 0.086670091625533
1102 => 0.087464946069284
1103 => 0.090738839031083
1104 => 0.084088710065042
1105 => 0.083951755035225
1106 => 0.081312911734184
1107 => 0.079639315594201
1108 => 0.081427504293712
1109 => 0.08301159536938
1110 => 0.081362133859541
1111 => 0.081577518710693
1112 => 0.079363251399692
1113 => 0.080154747772414
1114 => 0.080836491074678
1115 => 0.080460072494187
1116 => 0.079896555660327
1117 => 0.082881717965911
1118 => 0.082713283409685
1119 => 0.08549313517723
1120 => 0.087660228419138
1121 => 0.091544046922892
1122 => 0.087491079846187
1123 => 0.087343373616827
1124 => 0.088787225701647
1125 => 0.087464725023052
1126 => 0.088300499800752
1127 => 0.091409390685176
1128 => 0.091475076650638
1129 => 0.090374752097567
1130 => 0.090307797248515
1201 => 0.090519126615164
1202 => 0.09175688931638
1203 => 0.091324376995969
1204 => 0.091824891203021
1205 => 0.092450791883084
1206 => 0.095039782472216
1207 => 0.095663979338269
1208 => 0.094147504562729
1209 => 0.094284425255712
1210 => 0.093717222061497
1211 => 0.09316931088292
1212 => 0.094400935196359
1213 => 0.096651752836806
1214 => 0.096637750617082
1215 => 0.097159896560023
1216 => 0.097485189156785
1217 => 0.09608879520275
1218 => 0.095179794085502
1219 => 0.095528362955099
1220 => 0.096085732168426
1221 => 0.095347615631251
1222 => 0.090791618434965
1223 => 0.09217361694609
1224 => 0.091943584817564
1225 => 0.091615991093681
1226 => 0.093005601283296
1227 => 0.092871569990531
1228 => 0.088856812409471
1229 => 0.089113824163962
1230 => 0.088872442145511
1231 => 0.089652396829239
]
'min_raw' => 0.073942216612518
'max_raw' => 0.16563969306327
'avg_raw' => 0.1197909548379
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.073942'
'max' => '$0.165639'
'avg' => '$0.11979'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.018031192793777
'max_diff' => -0.12036693035689
'year' => 2034
]
9 => [
'items' => [
101 => 0.087422604910538
102 => 0.088108473886853
103 => 0.088538644479175
104 => 0.088792018262779
105 => 0.089707378109186
106 => 0.089599971196254
107 => 0.089700701544672
108 => 0.091057938550855
109 => 0.097922377580628
110 => 0.098295993851488
111 => 0.096456170690044
112 => 0.097191143754134
113 => 0.095780156192022
114 => 0.096727361595263
115 => 0.097375415475751
116 => 0.094446984603418
117 => 0.094273581932518
118 => 0.092856770722821
119 => 0.093618084814623
120 => 0.092406779354145
121 => 0.09270399134448
122 => 0.091872960709028
123 => 0.093368650396293
124 => 0.095041063873335
125 => 0.095463581563246
126 => 0.094352119426394
127 => 0.093547347590389
128 => 0.092134433354688
129 => 0.094484141217506
130 => 0.095171267402644
131 => 0.094480532036174
201 => 0.094320473558897
202 => 0.094017163033677
203 => 0.094384822320664
204 => 0.095167525165872
205 => 0.094798416958324
206 => 0.095042219432259
207 => 0.094113095809638
208 => 0.096089257467252
209 => 0.099227877768746
210 => 0.099237968946231
211 => 0.098868858749053
212 => 0.098717826808957
213 => 0.099096556270742
214 => 0.099302001467465
215 => 0.10052674309977
216 => 0.1018409396671
217 => 0.10797372161792
218 => 0.10625166098685
219 => 0.11169302997445
220 => 0.1159964463703
221 => 0.11728685278183
222 => 0.11609973960154
223 => 0.11203868953836
224 => 0.111839435048
225 => 0.1179083583735
226 => 0.11619360955975
227 => 0.11598964564464
228 => 0.11381981419034
301 => 0.11510245331868
302 => 0.11482192132613
303 => 0.1143790878518
304 => 0.11682627395926
305 => 0.12140718789063
306 => 0.12069320949489
307 => 0.12016025774297
308 => 0.11782501830599
309 => 0.11923135404167
310 => 0.11873058482278
311 => 0.12088220718311
312 => 0.11960763376112
313 => 0.11618061865098
314 => 0.11672638210286
315 => 0.11664389105503
316 => 0.11834155097395
317 => 0.1178319556048
318 => 0.11654438438049
319 => 0.12139153082482
320 => 0.12107678409597
321 => 0.12152302299636
322 => 0.12171947116071
323 => 0.12466984378507
324 => 0.12587851704788
325 => 0.12615290703934
326 => 0.12730105315686
327 => 0.126124340118
328 => 0.13083203125563
329 => 0.13396237116076
330 => 0.13759842204639
331 => 0.14291166966863
401 => 0.14490949992489
402 => 0.14454860977098
403 => 0.14857705347891
404 => 0.15581607727478
405 => 0.14601182345174
406 => 0.15633572653399
407 => 0.15306729801334
408 => 0.1453179127874
409 => 0.1448189437381
410 => 0.15006691738532
411 => 0.16170641783611
412 => 0.15879085498731
413 => 0.16171118665246
414 => 0.15830446464251
415 => 0.15813529218061
416 => 0.16154572976838
417 => 0.16951440308549
418 => 0.16572878509378
419 => 0.16030117343106
420 => 0.16430883741983
421 => 0.16083702798097
422 => 0.15301406961694
423 => 0.15878862551135
424 => 0.15492734443464
425 => 0.15605427152982
426 => 0.16417011003084
427 => 0.16319359087055
428 => 0.1644572970872
429 => 0.16222688869176
430 => 0.1601433355473
501 => 0.15625422887647
502 => 0.15510285612188
503 => 0.1554210541292
504 => 0.15510269843875
505 => 0.15292677899916
506 => 0.15245688940335
507 => 0.15167371949066
508 => 0.1519164565946
509 => 0.15044386803431
510 => 0.15322294689989
511 => 0.1537387684265
512 => 0.15576115026893
513 => 0.1559711206608
514 => 0.16160342530515
515 => 0.15850124655408
516 => 0.16058245588952
517 => 0.16039629293746
518 => 0.14548586546344
519 => 0.14754039081354
520 => 0.15073658751273
521 => 0.14929670523209
522 => 0.14726104856783
523 => 0.14561714666643
524 => 0.14312646718821
525 => 0.14663205072454
526 => 0.15124152029757
527 => 0.15608802441596
528 => 0.16191078155867
529 => 0.16061120994878
530 => 0.1559791720214
531 => 0.15618696185912
601 => 0.15747143687359
602 => 0.15580792502298
603 => 0.15531732290263
604 => 0.15740403567596
605 => 0.15741840572
606 => 0.15550433429375
607 => 0.15337719417485
608 => 0.15336828138008
609 => 0.15298977734166
610 => 0.1583717996701
611 => 0.16133136776691
612 => 0.16167067747962
613 => 0.16130852951976
614 => 0.16144790589637
615 => 0.15972579843047
616 => 0.16366202542242
617 => 0.16727429656273
618 => 0.16630613073221
619 => 0.16485471251938
620 => 0.16369858800308
621 => 0.16603378453833
622 => 0.16592980191256
623 => 0.16724274652559
624 => 0.16718318377401
625 => 0.16674168988299
626 => 0.16630614649934
627 => 0.16803302678391
628 => 0.16753571299481
629 => 0.16703762674002
630 => 0.16603863850286
701 => 0.16617441759573
702 => 0.16472324999072
703 => 0.16405187345573
704 => 0.15395598122701
705 => 0.15125802893071
706 => 0.15210685964501
707 => 0.15238631675604
708 => 0.15121216445916
709 => 0.1528955972379
710 => 0.15263323602253
711 => 0.15365393003536
712 => 0.15301624472953
713 => 0.15304241555691
714 => 0.15491771207252
715 => 0.15546211862908
716 => 0.15518522906052
717 => 0.15537915302312
718 => 0.15984804889118
719 => 0.15921271480599
720 => 0.15887520623591
721 => 0.1589686984164
722 => 0.16011059712489
723 => 0.16043026641791
724 => 0.15907580516062
725 => 0.15971457691961
726 => 0.16243438599717
727 => 0.16338616524645
728 => 0.16642378773021
729 => 0.16513335170968
730 => 0.16750200287413
731 => 0.17478242902098
801 => 0.18059853719425
802 => 0.17524980375727
803 => 0.18593034574057
804 => 0.19424667970732
805 => 0.1939274849581
806 => 0.19247733977073
807 => 0.18300941465076
808 => 0.17429688879655
809 => 0.18158528662698
810 => 0.18160386625193
811 => 0.18097778641453
812 => 0.17708925831486
813 => 0.18084247406554
814 => 0.18114039070215
815 => 0.18097363660807
816 => 0.17799231123119
817 => 0.17344037842173
818 => 0.17432981519691
819 => 0.17578673077868
820 => 0.17302848563796
821 => 0.17214705918754
822 => 0.17378579865712
823 => 0.17906615867305
824 => 0.17806793719908
825 => 0.17804186960226
826 => 0.18231268437968
827 => 0.17925570269856
828 => 0.17434103384302
829 => 0.17310001514047
830 => 0.16869523479681
831 => 0.17173763226947
901 => 0.17184712273823
902 => 0.17018083273501
903 => 0.17447624409333
904 => 0.17443666112147
905 => 0.17851451491859
906 => 0.18630983980674
907 => 0.18400437865267
908 => 0.18132337816395
909 => 0.18161487725316
910 => 0.18481190278066
911 => 0.18287890816574
912 => 0.18357402650658
913 => 0.1848108506358
914 => 0.18555705734158
915 => 0.18150750959166
916 => 0.1805633662989
917 => 0.17863198047117
918 => 0.17812811795974
919 => 0.17970119141674
920 => 0.17928674213832
921 => 0.1718379204883
922 => 0.17105947718102
923 => 0.17108335092589
924 => 0.16912591821678
925 => 0.1661403634977
926 => 0.17398622304123
927 => 0.17335609071715
928 => 0.17266047339974
929 => 0.17274568255198
930 => 0.17615130425898
1001 => 0.1741758716809
1002 => 0.17942788295676
1003 => 0.17834822732835
1004 => 0.17724088260699
1005 => 0.17708781383595
1006 => 0.17666158059244
1007 => 0.17519986820604
1008 => 0.17343476266416
1009 => 0.17226928709458
1010 => 0.15890931122469
1011 => 0.16138884503474
1012 => 0.16424132266658
1013 => 0.1652259865145
1014 => 0.16354165086596
1015 => 0.17526637604359
1016 => 0.1774085963158
1017 => 0.17091967137769
1018 => 0.16970585846283
1019 => 0.17534595341621
1020 => 0.17194428668576
1021 => 0.17347605700619
1022 => 0.17016520740698
1023 => 0.17689259818376
1024 => 0.1768413467375
1025 => 0.17422423978032
1026 => 0.17643620065936
1027 => 0.17605181802294
1028 => 0.17309711071393
1029 => 0.17698626767567
1030 => 0.176988196649
1031 => 0.17446928810353
1101 => 0.1715277543824
1102 => 0.17100187762899
1103 => 0.17060570013689
1104 => 0.17337862162926
1105 => 0.17586481436861
1106 => 0.1804910026771
1107 => 0.18165413633338
1108 => 0.18619392442802
1109 => 0.18349070165593
1110 => 0.1846890052982
1111 => 0.18598993341229
1112 => 0.18661364619023
1113 => 0.18559733968885
1114 => 0.19264949925115
1115 => 0.1932449175908
1116 => 0.19344455620973
1117 => 0.19106660768385
1118 => 0.19317878254062
1119 => 0.19219056587302
1120 => 0.19476163110762
1121 => 0.19516480696541
1122 => 0.19482333135726
1123 => 0.19495130573822
1124 => 0.18893353163799
1125 => 0.1886214783046
1126 => 0.18436660896161
1127 => 0.18610049966929
1128 => 0.18285907409883
1129 => 0.18388696353761
1130 => 0.18434004740813
1201 => 0.18410338210645
1202 => 0.18619853124839
1203 => 0.18441722646705
1204 => 0.17971607027548
1205 => 0.17501363325704
1206 => 0.1749545979908
1207 => 0.17371652932875
1208 => 0.17282163244968
1209 => 0.17299402133676
1210 => 0.17360154225987
1211 => 0.17278632222921
1212 => 0.17296029075546
1213 => 0.17584932743736
1214 => 0.17642870314025
1215 => 0.17445975812514
1216 => 0.16655415977203
1217 => 0.16461410610649
1218 => 0.16600857820834
1219 => 0.16534211035916
1220 => 0.13344398748246
1221 => 0.1409379783008
1222 => 0.13648530342842
1223 => 0.13853730086733
1224 => 0.13399227283721
1225 => 0.13616139843851
1226 => 0.13576084014374
1227 => 0.14781095561631
1228 => 0.1476228096376
1229 => 0.14771286516114
1230 => 0.14341428038388
1231 => 0.15026204265336
]
'min_raw' => 0.087422604910538
'max_raw' => 0.19516480696541
'avg_raw' => 0.14129370593798
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.087422'
'max' => '$0.195164'
'avg' => '$0.141293'
'bar_min_pct' => 61.631153054958
'bar_max_pct' => 60.119598047091
'min_diff' => 0.01348038829802
'max_diff' => 0.02952511390214
'year' => 2035
]
10 => [
'items' => [
101 => 0.15363549658487
102 => 0.15301116004372
103 => 0.15316829210033
104 => 0.15046824276443
105 => 0.14773900754073
106 => 0.14471186565136
107 => 0.15033592111576
108 => 0.14971062215395
109 => 0.15114483299689
110 => 0.15479243498134
111 => 0.15532955822944
112 => 0.15605145732186
113 => 0.1557927078855
114 => 0.16195716921332
115 => 0.1612106122721
116 => 0.16300959970136
117 => 0.15930894606987
118 => 0.15512130521657
119 => 0.15591723883848
120 => 0.1558405840302
121 => 0.15486468034044
122 => 0.15398367812493
123 => 0.15251705765694
124 => 0.15715766183665
125 => 0.15696926178169
126 => 0.16001923968036
127 => 0.15948012646086
128 => 0.1558797964377
129 => 0.15600838292882
130 => 0.15687318887816
131 => 0.15986629214301
201 => 0.16075484897803
202 => 0.16034323404918
203 => 0.16131749605462
204 => 0.16208751301985
205 => 0.16141419833006
206 => 0.17094691444249
207 => 0.16698826609396
208 => 0.16891768375493
209 => 0.16937783849829
210 => 0.1681991617992
211 => 0.16845477456998
212 => 0.16884195826741
213 => 0.17119286185984
214 => 0.17736231312583
215 => 0.18009472109466
216 => 0.18831530528351
217 => 0.1798678326498
218 => 0.17936659458283
219 => 0.18084737003311
220 => 0.18567372318917
221 => 0.18958502910587
222 => 0.19088263492709
223 => 0.1910541349575
224 => 0.19348852974131
225 => 0.19488387943261
226 => 0.19319293018361
227 => 0.19176002774485
228 => 0.18662754906761
229 => 0.18722164744978
301 => 0.19131439616389
302 => 0.19709564478426
303 => 0.20205655753694
304 => 0.20031941879621
305 => 0.2135725611591
306 => 0.21488655609015
307 => 0.21470500447722
308 => 0.21769848047882
309 => 0.21175704022644
310 => 0.20921695940857
311 => 0.19206983751625
312 => 0.19688747934598
313 => 0.20389020467567
314 => 0.20296336771941
315 => 0.19787780140161
316 => 0.20205269967885
317 => 0.20067234774725
318 => 0.19958360690795
319 => 0.2045713397556
320 => 0.19908712260484
321 => 0.20383549541439
322 => 0.19774565817051
323 => 0.20032735389966
324 => 0.19886185854122
325 => 0.19981021364248
326 => 0.19426614909858
327 => 0.19725759175191
328 => 0.19414169524925
329 => 0.1941402179086
330 => 0.19407143432061
331 => 0.19773727273799
401 => 0.19785681559717
402 => 0.19514775546795
403 => 0.19475733757986
404 => 0.19620091713844
405 => 0.19451086354943
406 => 0.19530162898666
407 => 0.19453481502896
408 => 0.19436218905551
409 => 0.19298667592916
410 => 0.19239406705381
411 => 0.19262644426348
412 => 0.1918332210482
413 => 0.19135527536885
414 => 0.19397635889527
415 => 0.19257601970131
416 => 0.1937617368301
417 => 0.19241046251241
418 => 0.18772635700511
419 => 0.18503247839434
420 => 0.17618463730784
421 => 0.17869387406426
422 => 0.18035750062976
423 => 0.17980767205978
424 => 0.1809889165835
425 => 0.18106143540358
426 => 0.18067740076756
427 => 0.18023273785693
428 => 0.18001630054344
429 => 0.18162944695445
430 => 0.18256593274205
501 => 0.18052446781206
502 => 0.18004618114209
503 => 0.18211021489868
504 => 0.18336927429785
505 => 0.19266546149696
506 => 0.19197676992296
507 => 0.1937052506248
508 => 0.19351065022347
509 => 0.19532237336757
510 => 0.19828377501684
511 => 0.19226241744295
512 => 0.19330751691489
513 => 0.19305128265924
514 => 0.19584878107421
515 => 0.1958575145589
516 => 0.19418027451372
517 => 0.19508953355233
518 => 0.19458201010119
519 => 0.1954991735733
520 => 0.19196757202711
521 => 0.19626868149754
522 => 0.1987071334099
523 => 0.19874099131707
524 => 0.19989679817077
525 => 0.20107116487396
526 => 0.20332525949494
527 => 0.20100829939839
528 => 0.19684031373622
529 => 0.19714122883852
530 => 0.19469754036979
531 => 0.19473861921444
601 => 0.19451933712231
602 => 0.19517741918759
603 => 0.19211198403328
604 => 0.19283143553689
605 => 0.19182419921873
606 => 0.19330532737985
607 => 0.19171187831774
608 => 0.19305115909533
609 => 0.19362914828107
610 => 0.19576194081969
611 => 0.19139686312567
612 => 0.18249617421776
613 => 0.18436720693663
614 => 0.18159980257898
615 => 0.18185593638853
616 => 0.18237336744722
617 => 0.18069620409311
618 => 0.18101615400758
619 => 0.18100472314518
620 => 0.18090621814849
621 => 0.18046992318496
622 => 0.17983720916952
623 => 0.18235774706794
624 => 0.18278603557278
625 => 0.18373806786533
626 => 0.18657067019829
627 => 0.18628762642787
628 => 0.1867492825608
629 => 0.18574148981469
630 => 0.18190268500361
701 => 0.18211115057389
702 => 0.17951158157196
703 => 0.18367159104133
704 => 0.18268644588954
705 => 0.18205131640143
706 => 0.18187801543617
707 => 0.18471763924242
708 => 0.1855672991909
709 => 0.18503784812957
710 => 0.18395192855621
711 => 0.18603721516036
712 => 0.18659514988445
713 => 0.18672005089333
714 => 0.19041477894182
715 => 0.18692654514793
716 => 0.18776619769218
717 => 0.19431692715305
718 => 0.18837631947092
719 => 0.1915231918515
720 => 0.191369168824
721 => 0.19297900224956
722 => 0.19123711549559
723 => 0.19125870826954
724 => 0.19268813129187
725 => 0.19068076445481
726 => 0.19018371219629
727 => 0.1894970380611
728 => 0.19099636591382
729 => 0.19189514515275
730 => 0.19913864573796
731 => 0.20381827745976
801 => 0.20361512230507
802 => 0.20547158012846
803 => 0.20463522887581
804 => 0.20193443006272
805 => 0.20654436430934
806 => 0.20508558822587
807 => 0.20520584795378
808 => 0.2052013718807
809 => 0.20617133044779
810 => 0.20548402590761
811 => 0.20412927810855
812 => 0.205028622921
813 => 0.20769935549232
814 => 0.21598939134177
815 => 0.2206286052315
816 => 0.21571010484044
817 => 0.21910282054885
818 => 0.21706840007202
819 => 0.21669868535261
820 => 0.21882956153721
821 => 0.22096416753849
822 => 0.22082820236436
823 => 0.21927858802066
824 => 0.21840325019792
825 => 0.22503160145144
826 => 0.22991525774401
827 => 0.22958222512531
828 => 0.23105212279627
829 => 0.23536778782043
830 => 0.23576235814456
831 => 0.23571265135282
901 => 0.23473466763529
902 => 0.2389840003115
903 => 0.24252886838989
904 => 0.23450829266135
905 => 0.23756242290174
906 => 0.23893352036457
907 => 0.24094669822631
908 => 0.24434326672684
909 => 0.24803284101371
910 => 0.248554587272
911 => 0.24818438333388
912 => 0.24575100991061
913 => 0.24978818612108
914 => 0.25215306926175
915 => 0.25356130305262
916 => 0.25713234963853
917 => 0.23894198779573
918 => 0.22606594556375
919 => 0.22405516563692
920 => 0.22814416568814
921 => 0.22922240239248
922 => 0.22878776652896
923 => 0.21429461035832
924 => 0.22397886216911
925 => 0.2343983028425
926 => 0.23479855599327
927 => 0.2400147458546
928 => 0.2417133510923
929 => 0.24591306763231
930 => 0.24565037421927
1001 => 0.24667293836467
1002 => 0.24643786857599
1003 => 0.25421695911169
1004 => 0.2627984511787
1005 => 0.26250130139589
1006 => 0.26126761037966
1007 => 0.26309985191435
1008 => 0.27195687137608
1009 => 0.27114145895489
1010 => 0.27193356266541
1011 => 0.28237648777053
1012 => 0.29595377589596
1013 => 0.28964576242426
1014 => 0.30333233657588
1015 => 0.3119473095102
1016 => 0.32684601439528
1017 => 0.324980623166
1018 => 0.33078057964602
1019 => 0.32164118354669
1020 => 0.30065528272594
1021 => 0.29733418359025
1022 => 0.30398310816352
1023 => 0.32032884043432
1024 => 0.30346832288479
1025 => 0.30687918362588
1026 => 0.30589685550298
1027 => 0.30584451141194
1028 => 0.30784227246826
1029 => 0.30494441585986
1030 => 0.2931380267228
1031 => 0.29854882528883
1101 => 0.29645945611459
1102 => 0.29877776698619
1103 => 0.31128873461609
1104 => 0.30575733760269
1105 => 0.29993046018329
1106 => 0.30723865755484
1107 => 0.31654450417789
1108 => 0.31596216102044
1109 => 0.31483217189441
1110 => 0.3212018614335
1111 => 0.33172272240814
1112 => 0.33456646885334
1113 => 0.33666566434135
1114 => 0.33695510793295
1115 => 0.3399365568146
1116 => 0.32390455475609
1117 => 0.34934775375396
1118 => 0.3537410913667
1119 => 0.3529153259807
1120 => 0.35779833583735
1121 => 0.35636163046752
1122 => 0.3542800697988
1123 => 0.36202067906758
1124 => 0.35314669517588
1125 => 0.34055119224512
1126 => 0.3336410502265
1127 => 0.34274088266187
1128 => 0.34829783278976
1129 => 0.3519706233359
1130 => 0.35308200753599
1201 => 0.32514907343864
1202 => 0.31009477119171
1203 => 0.31974440633406
1204 => 0.33151762718998
1205 => 0.32383915391979
1206 => 0.32414013553471
1207 => 0.3131926505187
1208 => 0.33248623669789
1209 => 0.32967532347619
1210 => 0.34425834624282
1211 => 0.34077799082349
1212 => 0.35266987978
1213 => 0.34953834687715
1214 => 0.36253716487522
1215 => 0.3677227453036
1216 => 0.37643014191399
1217 => 0.38283533830608
1218 => 0.38659659213939
1219 => 0.38637078056735
1220 => 0.40127474210416
1221 => 0.39248639669066
1222 => 0.38144616359732
1223 => 0.38124648061215
1224 => 0.3869643737725
1225 => 0.39894750920922
1226 => 0.40205456188044
1227 => 0.40379098045172
1228 => 0.40113159496463
1229 => 0.39159247588466
1230 => 0.38747353263036
1231 => 0.3909829916203
]
'min_raw' => 0.14471186565136
'max_raw' => 0.40379098045172
'avg_raw' => 0.27425142305154
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$0.144711'
'max' => '$0.40379'
'avg' => '$0.274251'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.057289260740824
'max_diff' => 0.20862617348631
'year' => 2036
]
11 => [
'items' => [
101 => 0.38669122484686
102 => 0.3941000183549
103 => 0.40427387427433
104 => 0.40217301325876
105 => 0.40919587665515
106 => 0.41646380144364
107 => 0.4268572603141
108 => 0.42957449533151
109 => 0.43406598148809
110 => 0.43868919611955
111 => 0.44017404806005
112 => 0.44300909113696
113 => 0.44299414906053
114 => 0.45153774219321
115 => 0.4609615899916
116 => 0.46451887437292
117 => 0.47269865365795
118 => 0.45869106828599
119 => 0.46931598269817
120 => 0.47889992145681
121 => 0.46747355456934
122 => 0.48322213932168
123 => 0.48383362118056
124 => 0.49306627126484
125 => 0.48370721164268
126 => 0.47814983191422
127 => 0.49419377895798
128 => 0.50195693955287
129 => 0.49961861240299
130 => 0.481823827335
131 => 0.47146649917119
201 => 0.4443593735871
202 => 0.47646893478213
203 => 0.49210856539149
204 => 0.48178332446997
205 => 0.48699077540739
206 => 0.51540093920029
207 => 0.52621769015074
208 => 0.52396788156785
209 => 0.52434806218335
210 => 0.5301845846583
211 => 0.55606693954385
212 => 0.54055763254814
213 => 0.55241391662372
214 => 0.55870244694639
215 => 0.56454358437369
216 => 0.55019959696268
217 => 0.53153828009598
218 => 0.52562745769551
219 => 0.48075668274859
220 => 0.4784209640487
221 => 0.47710985436294
222 => 0.46884349325433
223 => 0.46234839776983
224 => 0.45718325669313
225 => 0.44362838406616
226 => 0.4482027556703
227 => 0.4265991178247
228 => 0.4404203597324
301 => 0.40594043209275
302 => 0.43465634040764
303 => 0.41902757706398
304 => 0.429521871315
305 => 0.42948525771098
306 => 0.41016193477583
307 => 0.3990166453743
308 => 0.40611885756211
309 => 0.41373299280174
310 => 0.41496836062735
311 => 0.4248402857148
312 => 0.42759532781039
313 => 0.41924742164014
314 => 0.40522591223138
315 => 0.40848278907046
316 => 0.3989506448691
317 => 0.38224592880486
318 => 0.39424354751856
319 => 0.39834006204548
320 => 0.40014931623385
321 => 0.38372214653427
322 => 0.37856037316346
323 => 0.37581228833231
324 => 0.40310537090673
325 => 0.40460054758081
326 => 0.39695101231955
327 => 0.43152763705912
328 => 0.42370188198017
329 => 0.4324451677599
330 => 0.40818726163428
331 => 0.40911394631588
401 => 0.39762986480582
402 => 0.40406018308485
403 => 0.39951544138406
404 => 0.40354067691355
405 => 0.40595338649325
406 => 0.41743558357854
407 => 0.43478744865424
408 => 0.41572052623153
409 => 0.40741279508859
410 => 0.41256686476522
411 => 0.42629283150942
412 => 0.44708837374621
413 => 0.43477699419274
414 => 0.44024057537779
415 => 0.44143412480891
416 => 0.43235616931823
417 => 0.44742309091381
418 => 0.45549757660034
419 => 0.46378032813532
420 => 0.47097200921572
421 => 0.46047201503064
422 => 0.47170851392372
423 => 0.46265387932496
424 => 0.45453093603896
425 => 0.45454325519092
426 => 0.44944761421034
427 => 0.43957416771839
428 => 0.43775335269942
429 => 0.44722546237166
430 => 0.45482119731666
501 => 0.45544681842785
502 => 0.45965220757635
503 => 0.46214091355549
504 => 0.48653361538271
505 => 0.49634456184464
506 => 0.50834120146657
507 => 0.51301456869287
508 => 0.52707972854916
509 => 0.51572096964877
510 => 0.51326343071073
511 => 0.47914595357809
512 => 0.48473268854726
513 => 0.49367759027265
514 => 0.47929345171293
515 => 0.48841687685677
516 => 0.49021803424073
517 => 0.47880468418883
518 => 0.4849010475933
519 => 0.46871091383681
520 => 0.4351403493276
521 => 0.44746046454876
522 => 0.45653221625748
523 => 0.44358570803022
524 => 0.46679182292852
525 => 0.45323528967638
526 => 0.44893851946381
527 => 0.43217528695538
528 => 0.44008688742337
529 => 0.45078744033953
530 => 0.44417574271014
531 => 0.45789600804252
601 => 0.47732756281427
602 => 0.49117564591371
603 => 0.49223872978176
604 => 0.48333534009832
605 => 0.4976030788867
606 => 0.49770700378733
607 => 0.48161293614862
608 => 0.47175540933205
609 => 0.46951575849891
610 => 0.4751108453895
611 => 0.48190431378469
612 => 0.49261571999755
613 => 0.4990883984372
614 => 0.51596571096441
615 => 0.52053222782381
616 => 0.52554944537088
617 => 0.53225399526635
618 => 0.54030452642718
619 => 0.52269042256428
620 => 0.52339026374755
621 => 0.5069882541143
622 => 0.48946035453505
623 => 0.50276184543217
624 => 0.52015177535698
625 => 0.51616250621806
626 => 0.51571363194656
627 => 0.51646851396389
628 => 0.51346073531049
629 => 0.49985666393468
630 => 0.49302478445573
701 => 0.50183965198191
702 => 0.50652436176746
703 => 0.51378993809521
704 => 0.5128943024551
705 => 0.53160964680946
706 => 0.53888186370293
707 => 0.53702131942588
708 => 0.53736370434935
709 => 0.55052970566862
710 => 0.56517300693034
711 => 0.57888839091573
712 => 0.59284026859511
713 => 0.57602073550156
714 => 0.56748081388124
715 => 0.57629183311201
716 => 0.57161658228409
717 => 0.59848196031079
718 => 0.60034206079638
719 => 0.62720549615047
720 => 0.65270209513989
721 => 0.63668813813365
722 => 0.65178857830607
723 => 0.66812093550948
724 => 0.69962870238432
725 => 0.68901799495748
726 => 0.6808903593595
727 => 0.67320978299186
728 => 0.68919184315576
729 => 0.70975250823697
730 => 0.71418107856786
731 => 0.72135705434797
801 => 0.71381239325175
802 => 0.72289910652499
803 => 0.75497919728365
804 => 0.74631087358187
805 => 0.73400046042276
806 => 0.75932461107206
807 => 0.7684893227469
808 => 0.83281206887768
809 => 0.91402219290789
810 => 0.88040066830496
811 => 0.8595307030241
812 => 0.8644356399073
813 => 0.89409082806695
814 => 0.9036151332952
815 => 0.87772478845991
816 => 0.88686969594845
817 => 0.93725903531777
818 => 0.96429129920585
819 => 0.92757785392843
820 => 0.82628691448438
821 => 0.73289204240893
822 => 0.75766456810924
823 => 0.7548561324758
824 => 0.80899319143003
825 => 0.74610413692839
826 => 0.74716302731822
827 => 0.80241958331949
828 => 0.78767808151554
829 => 0.76379873654206
830 => 0.7330663880537
831 => 0.67625479947482
901 => 0.62593519116215
902 => 0.724623530977
903 => 0.72036791031108
904 => 0.71420514093918
905 => 0.72791971729504
906 => 0.79451380712868
907 => 0.79297859781398
908 => 0.78321237942455
909 => 0.79061996999744
910 => 0.76250015009945
911 => 0.76974726796356
912 => 0.73287724818403
913 => 0.74954403695242
914 => 0.7637475021925
915 => 0.76659905812534
916 => 0.7730237592461
917 => 0.71812539159704
918 => 0.74277314694007
919 => 0.75725139402175
920 => 0.6918381469836
921 => 0.75595838444743
922 => 0.71716973315411
923 => 0.70400428231917
924 => 0.72172982745217
925 => 0.71482216527518
926 => 0.70888336296694
927 => 0.70556940923737
928 => 0.71858509328601
929 => 0.71797789606804
930 => 0.69668171072904
1001 => 0.66890170509789
1002 => 0.6782255868353
1003 => 0.67483813318824
1004 => 0.66256156418108
1005 => 0.67083448941331
1006 => 0.6344047135222
1007 => 0.57172917755653
1008 => 0.61313455641904
1009 => 0.61154049437322
1010 => 0.61073669600476
1011 => 0.64185169385932
1012 => 0.63886070476074
1013 => 0.63343203025897
1014 => 0.66246186231664
1015 => 0.65186558310925
1016 => 0.68452081882905
1017 => 0.70602966908235
1018 => 0.7005743289197
1019 => 0.72080350654421
1020 => 0.67844039023894
1021 => 0.69251171816233
1022 => 0.69541179934532
1023 => 0.66210363869523
1024 => 0.63935006756745
1025 => 0.63783266378293
1026 => 0.59838110708261
1027 => 0.61945581023008
1028 => 0.63800067686938
1029 => 0.62911912488894
1030 => 0.62630749086076
1031 => 0.64067151934175
1101 => 0.64178772737431
1102 => 0.61633806594157
1103 => 0.6216298564394
1104 => 0.64369750250232
1105 => 0.62107380837836
1106 => 0.57711966625495
1107 => 0.56621843129478
1108 => 0.56476400560147
1109 => 0.53519899180165
1110 => 0.5669469039411
1111 => 0.55308808950109
1112 => 0.59686791826301
1113 => 0.57186111487013
1114 => 0.57078312155633
1115 => 0.56915357655528
1116 => 0.54370574786243
1117 => 0.54927720505228
1118 => 0.56779757730823
1119 => 0.57440585477608
1120 => 0.57371655729617
1121 => 0.56770681738043
1122 => 0.570458045539
1123 => 0.56159538104879
1124 => 0.55846578975689
1125 => 0.54858793877774
1126 => 0.53407022666436
1127 => 0.53608900357603
1128 => 0.50732561711343
1129 => 0.49165379758014
1130 => 0.48731604448459
1201 => 0.48151541975803
1202 => 0.48797124048233
1203 => 0.50724413405351
1204 => 0.4839969354342
1205 => 0.44414124400277
1206 => 0.44653663896859
1207 => 0.45191838025765
1208 => 0.44188954096928
1209 => 0.43239808623951
1210 => 0.44065013606098
1211 => 0.42376275419319
1212 => 0.45395913967595
1213 => 0.45314241207303
1214 => 0.46439775724906
1215 => 0.47143595557056
1216 => 0.45521518708326
1217 => 0.45113570767433
1218 => 0.45345956454766
1219 => 0.41505138688668
1220 => 0.46125898972034
1221 => 0.46165859498846
1222 => 0.45823693207544
1223 => 0.48284105408468
1224 => 0.53476342574229
1225 => 0.51522814095214
1226 => 0.50766348822428
1227 => 0.4932830778589
1228 => 0.51244412084649
1229 => 0.51097285170388
1230 => 0.50431921467873
1231 => 0.50029507424531
]
'min_raw' => 0.37581228833231
'max_raw' => 0.96429129920585
'avg_raw' => 0.67005179376908
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$0.375812'
'max' => '$0.964291'
'avg' => '$0.670051'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 0.23110042268095
'max_diff' => 0.56050031875413
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.011796318299668
]
1 => [
'year' => 2028
'avg' => 0.020245906697902
]
2 => [
'year' => 2029
'avg' => 0.05530816812901
]
3 => [
'year' => 2030
'avg' => 0.042670169344136
]
4 => [
'year' => 2031
'avg' => 0.041907394351813
]
5 => [
'year' => 2032
'avg' => 0.07347685104111
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.011796318299668
'min' => '$0.011796'
'max_raw' => 0.07347685104111
'max' => '$0.073476'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.07347685104111
]
1 => [
'year' => 2033
'avg' => 0.18899001641323
]
2 => [
'year' => 2034
'avg' => 0.1197909548379
]
3 => [
'year' => 2035
'avg' => 0.14129370593798
]
4 => [
'year' => 2036
'avg' => 0.27425142305154
]
5 => [
'year' => 2037
'avg' => 0.67005179376908
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.07347685104111
'min' => '$0.073476'
'max_raw' => 0.67005179376908
'max' => '$0.670051'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 0.67005179376908
]
]
]
]
'prediction_2025_max_price' => '$0.020169'
'last_price' => 0.01955693
'sma_50day_nextmonth' => '$0.018215'
'sma_200day_nextmonth' => '$0.026066'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'increase'
'sma_200day_direction_label' => 'aumentar'
'sma_200day_date_nextmonth' => '4 de fev. de 2026'
'sma_50day_date_nextmonth' => '4 de fev. de 2026'
'daily_sma3' => '$0.019295'
'daily_sma3_action' => 'BUY'
'daily_sma5' => '$0.019384'
'daily_sma5_action' => 'BUY'
'daily_sma10' => '$0.019983'
'daily_sma10_action' => 'SELL'
'daily_sma21' => '$0.018511'
'daily_sma21_action' => 'BUY'
'daily_sma50' => '$0.019995'
'daily_sma50_action' => 'SELL'
'daily_sma100' => '$0.023261'
'daily_sma100_action' => 'SELL'
'daily_sma200' => '$0.028015'
'daily_sma200_action' => 'SELL'
'daily_ema3' => '$0.019453'
'daily_ema3_action' => 'BUY'
'daily_ema5' => '$0.01951'
'daily_ema5_action' => 'BUY'
'daily_ema10' => '$0.019427'
'daily_ema10_action' => 'BUY'
'daily_ema21' => '$0.019259'
'daily_ema21_action' => 'BUY'
'daily_ema50' => '$0.020382'
'daily_ema50_action' => 'SELL'
'daily_ema100' => '$0.0228091'
'daily_ema100_action' => 'SELL'
'daily_ema200' => '$0.026023'
'daily_ema200_action' => 'SELL'
'weekly_sma21' => '$0.024952'
'weekly_sma21_action' => 'SELL'
'weekly_sma50' => '$0.02883'
'weekly_sma50_action' => 'SELL'
'weekly_sma100' => '$0.034942'
'weekly_sma100_action' => 'SELL'
'weekly_sma200' => '$0.026823'
'weekly_sma200_action' => 'SELL'
'weekly_ema3' => '$0.019289'
'weekly_ema3_action' => 'BUY'
'weekly_ema5' => '$0.019475'
'weekly_ema5_action' => 'BUY'
'weekly_ema10' => '$0.020853'
'weekly_ema10_action' => 'SELL'
'weekly_ema21' => '$0.023739'
'weekly_ema21_action' => 'SELL'
'weekly_ema50' => '$0.027837'
'weekly_ema50_action' => 'SELL'
'weekly_ema100' => '$0.030473'
'weekly_ema100_action' => 'SELL'
'weekly_ema200' => '$0.030529'
'weekly_ema200_action' => 'SELL'
'rsi_14' => '50.89'
'rsi_14_action' => 'NEUTRAL'
'stoch_rsi_14' => 63.86
'stoch_rsi_14_action' => 'NEUTRAL'
'momentum_10' => 0
'momentum_10_action' => 'BUY'
'vwma_10' => '0.020155'
'vwma_10_action' => 'SELL'
'hma_9' => '0.0190026'
'hma_9_action' => 'SELL'
'stochastic_fast_14' => 63.37
'stochastic_fast_14_action' => 'NEUTRAL'
'cci_20' => 46.79
'cci_20_action' => 'NEUTRAL'
'adx_14' => 17.26
'adx_14_action' => 'NEUTRAL'
'ao_5_34' => '0.000344'
'ao_5_34_action' => 'BUY'
'macd_12_26' => 0
'macd_12_26_action' => 'NEUTRAL'
'williams_percent_r_14' => -36.63
'williams_percent_r_14_action' => 'NEUTRAL'
'ultimate_oscillator' => 51.04
'ultimate_oscillator_action' => 'NEUTRAL'
'ichimoku_cloud' => '-0.003150'
'ichimoku_cloud_action' => 'SELL'
'sell_signals' => 18
'buy_signals' => 15
'sell_pct' => 54.55
'buy_pct' => 45.45
'overall_action' => 'bearish'
'overall_action_label' => 'Baixista'
'overall_action_dir' => -1
'last_updated' => 1767703636
'last_updated_date' => '6 de janeiro de 2026'
]
Previsão de preço de QANplatform para 2026
A previsão de preço para QANplatform em 2026 sugere que o preço médio poderia variar entre $0.006756 na extremidade inferior e $0.020169 na extremidade superior. No mercado de criptomoedas, comparado ao preço médio de hoje, QANplatform poderia potencialmente ganhar 3.13% até 2026 se QANX atingir a meta de preço prevista.
Previsão de preço de QANplatform 2027-2032
A previsão de preço de QANX para 2027-2032 está atualmente dentro de uma faixa de preço entre $0.011796 na extremidade inferior e $0.073476 na extremidade superior. Considerando a volatilidade de preços no mercado, se QANplatform atingir a meta de preço superior, poderia ganhar 275.71% até 2032 em comparação com o preço de hoje.
| Previsão de Preço de QANplatform | Potencial Mínimo ($) | Preço Médio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2027 | $0.0065047 | $0.011796 | $0.017087 |
| 2028 | $0.011739 | $0.020245 | $0.028752 |
| 2029 | $0.025787 | $0.0553081 | $0.084828 |
| 2030 | $0.021931 | $0.04267 | $0.0634092 |
| 2031 | $0.025929 | $0.0419073 | $0.057885 |
| 2032 | $0.039579 | $0.073476 | $0.107374 |
Previsão de preço de QANplatform 2032-2037
A previsão de preço de QANplatform para 2032-2037 é atualmente estimada entre $0.073476 na extremidade inferior e $0.670051 na extremidade superior. Comparado ao preço atual, QANplatform poderia potencialmente ganhar 3326.16% até 2037 se atingir a meta de preço superior. Por favor, note que esta informação é apenas para fins gerais e não deve ser considerada como aconselhamento de investimento a longo prazo.
| Previsão de Preço de QANplatform | Potencial Mínimo ($) | Preço Médio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2032 | $0.039579 | $0.073476 | $0.107374 |
| 2033 | $0.091973 | $0.18899 | $0.2860066 |
| 2034 | $0.073942 | $0.11979 | $0.165639 |
| 2035 | $0.087422 | $0.141293 | $0.195164 |
| 2036 | $0.144711 | $0.274251 | $0.40379 |
| 2037 | $0.375812 | $0.670051 | $0.964291 |
QANplatform Histograma de preços potenciais
Previsão de preço de QANplatform baseada na análise técnica
Em 6 de janeiro de 2026, o sentimento geral de previsão de preço para QANplatform é Baixista, com 15 indicadores técnicos mostrando sinais de alta e 18 indicando sinais de baixa. A previsão de preço de QANX foi atualizada pela última vez em 6 de janeiro de 2026.
Médias Móveis Simples de 50 e 200 dias e Índice de Força Relativa de 14 dias - RSI (14) de QANplatform
De acordo com nossos indicadores técnicos, o SMA de 200 dias de QANplatform está projetado para aumentar no próximo mês, alcançando $0.026066 até 4 de fev. de 2026. O SMA de 50 dias de curto prazo para QANplatform é esperado para alcançar $0.018215 até 4 de fev. de 2026.
O oscilador de momentum Índice de Força Relativa (RSI) é uma ferramenta comumente usada para identificar se uma criptomoeda está sobrevendida (abaixo de 30) ou sobrecomprada (acima de 70). No momento, o RSI está em 50.89, sugerindo que o mercado de QANX está em um estado NEUTRAL.
Médias Móveis e Osciladores Populares de QANX para Sábado, 19 de Outubro de 2024
Médias móveis (MA) são indicadores amplamente utilizados nos mercados financeiros, projetados para suavizar movimentos de preços ao longo de um período definido. Como indicadores atrasados, eles se baseiam em dados históricos de preços. A tabela abaixo destaca dois tipos: a média móvel simples (SMA) e a média móvel exponencial (EMA).
Média Móvel Simples Diária (SMA)
| Período | Valor | Ação |
|---|---|---|
| SMA 3 | $0.019295 | BUY |
| SMA 5 | $0.019384 | BUY |
| SMA 10 | $0.019983 | SELL |
| SMA 21 | $0.018511 | BUY |
| SMA 50 | $0.019995 | SELL |
| SMA 100 | $0.023261 | SELL |
| SMA 200 | $0.028015 | SELL |
Média Móvel Exponencial Diária (EMA)
| Período | Valor | Ação |
|---|---|---|
| EMA 3 | $0.019453 | BUY |
| EMA 5 | $0.01951 | BUY |
| EMA 10 | $0.019427 | BUY |
| EMA 21 | $0.019259 | BUY |
| EMA 50 | $0.020382 | SELL |
| EMA 100 | $0.0228091 | SELL |
| EMA 200 | $0.026023 | SELL |
Média Móvel Simples Semanal (SMA)
| Período | Valor | Ação |
|---|---|---|
| SMA 21 | $0.024952 | SELL |
| SMA 50 | $0.02883 | SELL |
| SMA 100 | $0.034942 | SELL |
| SMA 200 | $0.026823 | SELL |
Média Móvel Exponencial Semanal (EMA)
| Período | Valor | Ação |
|---|---|---|
| EMA 21 | $0.023739 | SELL |
| EMA 50 | $0.027837 | SELL |
| EMA 100 | $0.030473 | SELL |
| EMA 200 | $0.030529 | SELL |
Osciladores de QANplatform
Um oscilador é uma ferramenta de análise técnica que define limites altos e baixos entre dois extremos, criando um indicador de tendência que flutua dentro desses limites. Os traders usam esse indicador para identificar condições de sobrecompra ou sobrevenda de curto prazo.
| Período | Valor | Ação |
|---|---|---|
| RSI (14) | 50.89 | NEUTRAL |
| Stoch RSI (14) | 63.86 | NEUTRAL |
| Estocástico Rápido (14) | 63.37 | NEUTRAL |
| Índice de Canal de Commodities (20) | 46.79 | NEUTRAL |
| Índice Direcional Médio (14) | 17.26 | NEUTRAL |
| Oscilador Impressionante (5, 34) | 0.000344 | BUY |
| Momentum (10) | 0 | BUY |
| MACD (12, 26) | 0 | NEUTRAL |
| Williams Percent Range (14) | -36.63 | NEUTRAL |
| Oscilador Ultimate (7, 14, 28) | 51.04 | NEUTRAL |
| VWMA (10) | 0.020155 | SELL |
| Média Móvel de Hull (9) | 0.0190026 | SELL |
| Nuvem Ichimoku B/L (9, 26, 52, 26) | -0.003150 | SELL |
Previsão do preço de QANplatform com base nos fluxos financeiros mundiais
Definições dos fluxos financeiros mundiais, usadas na previsão do preço do QANplatform
M0: o total de todas as moedas físicas, mais as contas no Banco Central que podem ser trocadas por moedas físicas.
M1: o valor de M0, mais o valor em contas de demanda, incluindo contas 'correntes'.
M2: o valor de M1, mais a maioria das contas de poupança, do mercado de moedas e de certificados de depósito (CD) de menos de US$ 100.000.
Previsões de preço de QANplatform por empresas de Internet ou nichos tecnológicos
| Comparação | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Facebook stock | $0.02748 | $0.038615 | $0.05426 | $0.076245 | $0.107137 | $0.150545 |
| Amazon.com stock | $0.0408066 | $0.085145 | $0.177661 | $0.37070097 | $0.773489 | $1.61 |
| Apple stock | $0.02774 | $0.039347 | $0.05581 | $0.079163 | $0.112287 | $0.15927 |
| Netflix stock | $0.030857 | $0.048688 | $0.076823 | $0.121214 | $0.191258 | $0.301775 |
| Google stock | $0.025326 | $0.032797 | $0.042472 | $0.0550014 | $0.071226 | $0.092238 |
| Tesla stock | $0.044334 | $0.100502 | $0.22783 | $0.516474 | $1.17 | $2.65 |
| Kodak stock | $0.014665 | $0.010997 | $0.008247 | $0.006184 | $0.004637 | $0.003477 |
| Nokia stock | $0.012955 | $0.008582 | $0.005685 | $0.003766 | $0.002495 | $0.001652 |
Este cálculo mostra quanto a criptomoeda pode custar, se assumirmos que sua capitalização se comportará da mesma forma que a de algumas empresas de Internet ou nichos tecnológicos. Se você extrapolar os dados, poderá obter uma imagem em potencial do preço futuro para 2024, 2025, 2026, 2027, 2028, 2029 e 2030.
Visão geral da previsão para QANplatform
Você pode fazer perguntas como: 'Devo investir em QANplatform agora?', 'Devo comprar QANX hoje?', 'QANplatform será um bom ou mau investimento no curto ou no longo prazo?'.
Atualizamos a previsão para QANplatform regularmente com novos valores. Veja nossas previsões semelhantes. Fazemos previsões de preços futuros para uma enorme quantidade de moedas digitais, como QANplatform, com métodos de análise técnica.
Se você estiver tentando encontrar criptomoedas com bom retorno, você deve explorar o máximo de fontes de informações disponíveis sobre QANplatform para poder tomar sozinho uma decisão de tão grande responsabilidade sobre o seu investimento.
O preço de QANplatform é de $0.01955 USD hoje, mas o preço pode tanto subir quanto descer e seu investimento pode ser perdido, porque criptomoedas são ativos de alto risco
Previsão do preço de QANplatform com base no padrão de crescimento do Bitcoin
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| Se QANplatform tiver 1% da média anterior do crescimento anual do Bitcoin | $0.020065 | $0.020586 | $0.021121 | $0.02167 |
| Se QANplatform tiver 2% da média anterior do crescimento anual do Bitcoin | $0.020573 | $0.021643 | $0.022768 | $0.023951 |
| Se QANplatform tiver 5% da média anterior do crescimento anual do Bitcoin | $0.022098 | $0.02497 | $0.028216 | $0.031883 |
| Se QANplatform tiver 10% da média anterior do crescimento anual do Bitcoin | $0.02464 | $0.031045 | $0.039114 | $0.049282 |
| Se QANplatform tiver 20% da média anterior do crescimento anual do Bitcoin | $0.029723 | $0.045176 | $0.068661 | $0.104356 |
| Se QANplatform tiver 50% da média anterior do crescimento anual do Bitcoin | $0.044974 | $0.103425 | $0.237843 | $0.54696 |
| Se QANplatform tiver 100% da média anterior do crescimento anual do Bitcoin | $0.070391 | $0.253362 | $0.911932 | $3.28 |
Perguntas Frequentes sobre QANplatform
QANX é um bom investimento?
A decisão de adquirir QANplatform depende inteiramente da sua tolerância individual ao risco. Como você pode perceber, o valor de QANplatform experimentou uma escalada de 3.3149% nas últimas 24 horas, e QANplatform registrou um declínio de durante os últimos 30 dias. Consequentemente, a decisão de investir ou não em QANplatform dependerá de quão alinhado esse investimento está com suas aspirações de negociação.
QANplatform pode subir?
Parece que o valor médio de QANplatform pode potencialmente subir para $0.020169 até o final deste ano. Observando as perspectivas de QANplatform em um horizonte de cinco anos mais longo, a moeda digital poderia potencialmente crescer até $0.0634092. No entanto, dada a imprevisibilidade do mercado, é vital conduzir uma pesquisa aprofundada antes de investir quaisquer fundos em um projeto, rede ou ativo específico.
Qual será o preço de QANplatform na próxima semana?
Com base na nossa nova previsão experimental de QANplatform, o preço de QANplatform aumentará 0.86% na próxima semana e atingirá $0.019724 até 13 de janeiro de 2026.
Qual será o preço de QANplatform no próximo mês?
Com base na nossa nova previsão experimental de QANplatform, o preço de QANplatform diminuirá -11.62% no próximo mês e atingirá $0.017284 até 5 de fevereiro de 2026.
Até onde o preço de QANplatform pode subir este ano em 2026?
De acordo com nossa previsão mais recente sobre o valor de QANplatform em 2026, espera-se que QANX fluctue dentro do intervalo de $0.006756 e $0.020169. No entanto, é crucial lembrar que o mercado de criptomoedas é excepcionalmente instável, e essa previsão de preço de QANplatform não considera flutuações repentinas e extremas de preço.
Onde estará QANplatform em 5 anos?
O futuro de QANplatform parece seguir uma tendência de alta, com um preço máximo de $0.0634092 projetada após um período de cinco anos. Com base na previsão de QANplatform para 2030, o valor de QANplatform pode potencialmente atingir seu pico mais alto de aproximadamente $0.0634092, enquanto seu pico mais baixo está previsto para cerca de $0.021931.
Quanto será QANplatform em 2026?
Com base na nossa nova simulação experimental de previsão de preços de QANplatform, espera-se que o valor de QANX em 2026 aumente 3.13% para $0.020169 se o melhor cenário ocorrer. O preço ficará entre $0.020169 e $0.006756 durante 2026.
Quanto será QANplatform em 2027?
De acordo com nossa última simulação experimental para previsão de preços de QANplatform, o valor de QANX pode diminuir -12.62% para $0.017087 em 2027, assumindo as condições mais favoráveis. O preço está projetado para flutuar entre $0.017087 e $0.0065047 ao longo do ano.
Quanto será QANplatform em 2028?
Nosso novo modelo experimental de previsão de preços de QANplatform sugere que o valor de QANX em 2028 pode aumentar 47.02%, alcançando $0.028752 no melhor cenário. O preço é esperado para variar entre $0.028752 e $0.011739 durante o ano.
Quanto será QANplatform em 2029?
Com base no nosso modelo de previsão experimental, o valor de QANplatform pode experimentar um 333.75% crescimento em 2029, potencialmente alcançando $0.084828 sob condições ótimas. A faixa de preço prevista para 2029 está entre $0.084828 e $0.025787.
Quanto será QANplatform em 2030?
Usando nossa nova simulação experimental para previsões de preços de QANplatform, espera-se que o valor de QANX em 2030 aumente 224.23%, alcançando $0.0634092 no melhor cenário. O preço está previsto para variar entre $0.0634092 e $0.021931 ao longo de 2030.
Quanto será QANplatform em 2031?
Nossa simulação experimental indica que o preço de QANplatform poderia aumentar 195.98% em 2031, potencialmente atingindo $0.057885 sob condições ideais. O preço provavelmente oscilará entre $0.057885 e $0.025929 durante o ano.
Quanto será QANplatform em 2032?
Com base nos achados da nossa mais recente previsão experimental de preços de QANplatform, QANX poderia ver um 449.04% aumento em valor, atingindo $0.107374 se o cenário mais positivo se desenrolar em 2032. O preço é esperado para permanecer dentro de uma faixa de $0.107374 e $0.039579 ao longo do ano.
Quanto será QANplatform em 2033?
De acordo com nossa previsão experimental de preços de QANplatform, espera-se que o valor de QANX seja aumentar 1362.43% em 2033, com o preço potencial mais alto sendo $0.2860066. Ao longo do ano, o preço de QANX poderia variar entre $0.2860066 e $0.091973.
Quanto será QANplatform em 2034?
Os resultados da nossa nova simulação de previsão de preços de QANplatform sugerem que QANX pode aumentar 746.96% em 2034, atingindo potencialmente $0.165639 nas melhores circunstâncias. A faixa de preço prevista para o ano é entre $0.165639 e $0.073942.
Quanto será QANplatform em 2035?
Com base em nossa previsão experimental para o preço de QANplatform, QANX poderia aumentar 897.93%, com o valor potencialmente atingindo $0.195164 em 2035. A faixa de preço esperada para o ano está entre $0.195164 e $0.087422.
Quanto será QANplatform em 2036?
Nossa recente simulação de previsão de preços de QANplatform sugere que o valor de QANX pode aumentar 1964.7% em 2036, possivelmente atingindo $0.40379 se as condições forem ideais. A faixa de preço esperada para 2036 está entre $0.40379 e $0.144711.
Quanto será QANplatform em 2037?
De acordo com a simulação experimental, o valor de QANplatform poderia aumentar 4830.69% em 2037, com um pico de $0.964291 sob condições favoráveis. O preço é esperado para cair entre $0.964291 e $0.375812 ao longo do ano.
Previsões relacionadas
Previsão de Preço do Gains Network
Previsão de Preço do Humans.ai
Previsão de Preço do Propy
Previsão de Preço do Stargate Finance
Previsão de Preço do TrustToken
Previsão de Preço do Sun Token
Previsão de Preço do Vulcan Forged
Previsão de Preço do Maple
Previsão de Preço do Oasys
Previsão de Preço do Maverick Protocol
Previsão de Preço do Myria
Previsão de Preço do MimbleWimbleCoin
Previsão de Preço do CYBER
Previsão de Preço do Velodrome Finance
Previsão de Preço do Ontology Gas
Previsão de Preço do DODO
Previsão de Preço do Cudos
Previsão de Preço do Acala
Previsão de Preço do WINk
Previsão de Preço do Radiant Capital
Previsão de Preço do APEX
Previsão de Preço do Metars Genesis
Previsão de Preço do Liquity
Previsão de Preço do Steem
Previsão de Preço do Alpha Finance
Como ler e prever os movimentos de preço de QANplatform?
Traders de QANplatform utilizam indicadores e padrões de gráfico para prever a direção do mercado. Eles também identificam níveis-chave de suporte e resistência para avaliar quando uma tendência de baixa pode desacelerar ou uma tendência de alta pode estagnar.
Indicadores de Previsão de Preço de QANplatform
Médias móveis são ferramentas populares para a previsão de preço de QANplatform. Uma média móvel simples (SMA) calcula o preço médio de fechamento de QANX em um período específico, como uma SMA de 12 dias. Uma média móvel exponencial (EMA) dá mais peso aos preços recentes, reagindo mais rapidamente às mudanças de preço.
Médias móveis comumente usadas no mercado de criptomoedas incluem as de 50 dias, 100 dias e 200 dias, que ajudam a identificar níveis-chave de resistência e suporte. Um movimento de preço de QANX acima dessas médias é visto como altista, enquanto uma queda abaixo indica fraqueza.
Traders também usam RSI e níveis de retração de Fibonacci para avaliar a direção futura de QANX.
Como ler gráficos de QANplatform e prever movimentos de preço?
A maioria dos traders prefere gráficos de velas em vez de gráficos de linha simples porque eles fornecem informações mais detalhadas. Velas podem representar a ação de preço de QANplatform em diferentes períodos de tempo, como 5 minutos para tendências de curto prazo e semanal para tendências de longo prazo. Opções populares incluem gráficos de 1 hora, 4 horas e 1 dia.
Por exemplo, um gráfico de velas de 1 hora mostra os preços de abertura, fechamento, máximo e mínimo de QANX dentro de cada hora. A cor da vela é crucial: verde indica que o preço fechou mais alto do que abriu, enquanto vermelho significa o oposto. Alguns gráficos usam velas vazias e preenchidas para transmitir a mesma informação.
O que afeta o preço de QANplatform?
A ação de preço de QANplatform é impulsionada pela oferta e demanda, influenciada por fatores como reduções pela metade das recompensas de bloco, hard forks e atualizações de protocolo. Eventos do mundo real, como regulamentações, adoção por empresas e governos e hacks de exchanges de criptomoedas, também impactam o preço de QANX. A capitalização de mercado de QANplatform pode mudar rapidamente.
Traders frequentemente monitoram a atividade de "baleias" de QANX, grandes detentores de QANplatform, pois suas ações podem influenciar significativamente os movimentos de preço no relativamente pequeno mercado de QANplatform.
Padrões de previsão de preço altistas e baixistas
Traders frequentemente identificam padrões de velas para ganhar vantagem em previsões de preço de criptomoedas. Certas formações indicam tendências altistas, enquanto outras sugerem movimentos baixistas.
Padrões de velas altistas comumente seguidos:
- Martelo
- Engolfo de Alta
- Linha de Perfuração
- Estrela da Manhã
- Três Soldados Brancos
Padrões de velas baixistas comuns:
- Harami de Baixa
- Nuvem Negra
- Estrela da Noite
- Estrela Cadente
- Homem Enforcado


