Previsão de Preço Contentos - Projeção COS
Previsão de Preço Contentos até $0.00144 até 2026
| Ano | Preço Mínimo | Preço Máximo |
|---|---|---|
| 2026 | $0.000482 | $0.00144 |
| 2027 | $0.000464 | $0.00122 |
| 2028 | $0.000838 | $0.002053 |
| 2029 | $0.001841 | $0.006058 |
| 2030 | $0.001566 | $0.004528 |
| 2031 | $0.001851 | $0.004134 |
| 2032 | $0.002826 | $0.007668 |
| 2033 | $0.006568 | $0.020426 |
| 2034 | $0.005281 | $0.01183 |
| 2035 | $0.006243 | $0.013938 |
Calculadora de lucro do investimento
Se você abrir um short de $10,000.00 em Contentos hoje e fechar em Apr 06, 2026, nossa previsão mostra que pode lucrar cerca de $3,957.49, com um retorno de 39.57% nos próximos 90 dias.
Previsão de preço de longo prazo de Contentos para os anos 2027, 2028, 2029, 2030, 2031, 2032 e 2037
[
'name' => 'Contentos'
'name_with_ticker' => 'Contentos <small>COS</small>'
'name_lang' => 'Contentos'
'name_lang_with_ticker' => 'Contentos <small>COS</small>'
'name_with_lang' => 'Contentos'
'name_with_lang_with_ticker' => 'Contentos <small>COS</small>'
'image' => '/uploads/coins/contentos.png?1717217763'
'price_for_sd' => 0.001396
'ticker' => 'COS'
'marketcap' => '$7.23M'
'low24h' => '$0.00137'
'high24h' => '$0.001401'
'volume24h' => '$895.71K'
'current_supply' => '5.18B'
'max_supply' => '9.9B'
'algo' => null
'proof' => null
'ico_price_and_roi' => '—'
'price' => '$0.001396'
'change_24h_pct' => '0.5163%'
'ath_price' => '$0.08468'
'ath_days' => 2374
'ath_exchange' => null
'ath_pair' => null
'ath_date' => '8 de jul. de 2019'
'ath_pct' => '-98.35%'
'fdv' => '$13.83M'
'new_prediction' => true
'change_24h_pct_is_increased' => true
'change_30d_pct' => null
'change_30d_pct_is_increased' => false
'max_price' => '$0.06887'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.001408'
'next_week_prediction_price_date' => '13 de janeiro de 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.001234'
'next_month_prediction_price_date' => '5 de fevereiro de 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.000482'
'current_year_max_price_prediction' => '$0.00144'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.001566'
'grand_prediction_max_price' => '$0.004528'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.001423238056799
107 => 0.0014285519110677
108 => 0.0014405242960671
109 => 0.0013382215770795
110 => 0.0013841524944549
111 => 0.001411132605268
112 => 0.0012892354830696
113 => 0.0014087230910913
114 => 0.0013364407143449
115 => 0.0013119069900324
116 => 0.0013449384177468
117 => 0.0013320660382424
118 => 0.001320999122236
119 => 0.0013148235929506
120 => 0.0013390782279185
121 => 0.0013379467202067
122 => 0.0012982614297774
123 => 0.0012464935861919
124 => 0.0012638685737208
125 => 0.0012575560778601
126 => 0.0012346787785331
127 => 0.0012500953160639
128 => 0.0011822086869096
129 => 0.0010654132698895
130 => 0.0011425718999133
131 => 0.0011396013765898
201 => 0.0011381035040276
202 => 0.0011960860819827
203 => 0.001190512394998
204 => 0.001180396098543
205 => 0.0012344929848154
206 => 0.0012147468936202
207 => 0.0012755996939197
208 => 0.0013156812839093
209 => 0.0013055152961844
210 => 0.0013432122253007
211 => 0.0012642688583409
212 => 0.0012904906781868
213 => 0.0012958949589152
214 => 0.0012338254376361
215 => 0.0011914243191196
216 => 0.0011885966479227
217 => 0.0011150789516492
218 => 0.0011543515115844
219 => 0.0011889097391184
220 => 0.0011723590299564
221 => 0.0011671195698741
222 => 0.0011938868351344
223 => 0.0011959668808913
224 => 0.0011485416172017
225 => 0.0011584028312855
226 => 0.0011995257333056
227 => 0.0011573666396651
228 => 0.0010754584073705
301 => 0.0010551440332916
302 => 0.0010524337213212
303 => 0.00099733952766574
304 => 0.0010565015369045
305 => 0.0010306757344285
306 => 0.0011122591350095
307 => 0.0010656591341382
308 => 0.0010636503012389
309 => 0.0010606136556798
310 => 0.0010131918072881
311 => 0.0010235741782702
312 => 0.0010580867606944
313 => 0.0010704012389155
314 => 0.0010691167379475
315 => 0.0010579176302123
316 => 0.0010630445243848
317 => 0.0010465290119269
318 => 0.0010406970407374
319 => 0.0010222897354532
320 => 0.00099523608183323
321 => 0.00099899805829878
322 => 0.00094539769150416
323 => 0.00091619336688767
324 => 0.00090810999474064
325 => 0.00089730057167825
326 => 0.00090933094783832
327 => 0.00094524584839956
328 => 0.0009019248585515
329 => 0.0008276540600711
330 => 0.00083211786161106
331 => 0.00084214669835676
401 => 0.00082345802742853
402 => 0.00080577076881623
403 => 0.00082114840516698
404 => 0.0007896788887562
405 => 0.00084594963906761
406 => 0.00084442767296864
407 => 0.00086540192892488
408 => 0.00087851756160938
409 => 0.00084829027450812
410 => 0.00084068819354543
411 => 0.00084501868435709
412 => 0.00077344531752776
413 => 0.0008595528578831
414 => 0.00086029751946778
415 => 0.00085392127488254
416 => 0.0008997708818497
417 => 0.00099652785340146
418 => 0.00096012398866353
419 => 0.00094602731192436
420 => 0.0009192295191386
421 => 0.00095493598693014
422 => 0.00095219428731142
423 => 0.00093979528187685
424 => 0.00093229632470278
425 => 0.00094611338322659
426 => 0.00093058423824506
427 => 0.00092779477709402
428 => 0.00091089367748233
429 => 0.00090486075387199
430 => 0.0009003942174085
501 => 0.00089547699963501
502 => 0.00090632315674901
503 => 0.00088174433779791
504 => 0.00085210469163421
505 => 0.00084964047576111
506 => 0.00085644439244281
507 => 0.00085343416580318
508 => 0.00084962606395408
509 => 0.00084235536044932
510 => 0.00084019829803346
511 => 0.0008472077044271
512 => 0.00083929449328246
513 => 0.00085097086738129
514 => 0.00084779553970966
515 => 0.00083005841745707
516 => 0.00080795139600662
517 => 0.00080775459714466
518 => 0.00080299167563594
519 => 0.00079692537898455
520 => 0.00079523787403419
521 => 0.00081985334352523
522 => 0.00087080662869268
523 => 0.00086080327960553
524 => 0.00086803172450545
525 => 0.00090358851915815
526 => 0.00091489095494813
527 => 0.00090686875373726
528 => 0.00089588746993202
529 => 0.00089637059068849
530 => 0.00093389696171169
531 => 0.00093623743544163
601 => 0.00094215105749173
602 => 0.0009497517330155
603 => 0.00090816318164521
604 => 0.00089441177365895
605 => 0.00088789559365598
606 => 0.00086782828132588
607 => 0.00088946915723256
608 => 0.00087685994559644
609 => 0.00087856135903816
610 => 0.00087745331130221
611 => 0.0008780583802919
612 => 0.0008459339102461
613 => 0.00085763837871835
614 => 0.00083817742976424
615 => 0.00081212140370872
616 => 0.00081203405477296
617 => 0.0008184112302365
618 => 0.00081461783673189
619 => 0.00080440991234804
620 => 0.00080585989982672
621 => 0.00079315648376494
622 => 0.00080740232453939
623 => 0.00080781084427873
624 => 0.00080232541960438
625 => 0.00082427310286462
626 => 0.00083326508660394
627 => 0.0008296544625741
628 => 0.00083301175559682
629 => 0.00086121896392252
630 => 0.00086581796964639
701 => 0.00086786054419567
702 => 0.0008651237648889
703 => 0.00083352733158432
704 => 0.00083492876775978
705 => 0.00082464595897172
706 => 0.00081595806912149
707 => 0.00081630553915352
708 => 0.00082077224388316
709 => 0.00084027860540626
710 => 0.00088132859326881
711 => 0.00088288641030105
712 => 0.00088477452998884
713 => 0.00087709459832565
714 => 0.00087477825744899
715 => 0.00087783410896362
716 => 0.00089325032609897
717 => 0.00093290502203321
718 => 0.00091888840404196
719 => 0.00090749267543341
720 => 0.00091748980168948
721 => 0.00091595082246242
722 => 0.00090296028901212
723 => 0.00090259568800449
724 => 0.00087766270098858
725 => 0.00086844554338544
726 => 0.00086074299659997
727 => 0.00085233201659032
728 => 0.00084734570570199
729 => 0.00085500694546423
730 => 0.00085675916164298
731 => 0.00084000772700729
801 => 0.00083772456836512
802 => 0.00085140415149346
803 => 0.00084538427698494
804 => 0.00085157586720265
805 => 0.00085301236924364
806 => 0.00085278105932959
807 => 0.00084649561896452
808 => 0.00085050177121869
809 => 0.00084102602684611
810 => 0.00083072257805171
811 => 0.00082414961964843
812 => 0.00081841384166515
813 => 0.00082159638465565
814 => 0.00081025120000392
815 => 0.00080662164710038
816 => 0.00084914457697625
817 => 0.0008805567224741
818 => 0.00088009997743798
819 => 0.00087731965949593
820 => 0.00087318867100093
821 => 0.00089294811856022
822 => 0.00088606432213319
823 => 0.00089107285919429
824 => 0.00089234774208398
825 => 0.00089620642862091
826 => 0.00089758557739255
827 => 0.00089341683192425
828 => 0.00087942601296327
829 => 0.00084456222231964
830 => 0.00082833303366203
831 => 0.0008229771310865
901 => 0.00082317180797282
902 => 0.0008178017503724
903 => 0.00081938347300483
904 => 0.00081725169179051
905 => 0.00081321461390387
906 => 0.00082134710647233
907 => 0.00082228430048144
908 => 0.00082038607953991
909 => 0.00082083317928824
910 => 0.00080511672063315
911 => 0.00080631160885034
912 => 0.00079965831941796
913 => 0.00079841090785599
914 => 0.00078159197153912
915 => 0.00075179478790997
916 => 0.00076830532012312
917 => 0.00074836291894178
918 => 0.00074081042943773
919 => 0.00077656274009684
920 => 0.0007729741997214
921 => 0.00076683217849966
922 => 0.00075774684900331
923 => 0.00075437701191671
924 => 0.00073390294853932
925 => 0.0007326932316501
926 => 0.00074284073030615
927 => 0.0007381580088305
928 => 0.00073158169439337
929 => 0.00070776295013239
930 => 0.00068098279546785
1001 => 0.00068179112000312
1002 => 0.00069030938893942
1003 => 0.00071507740471679
1004 => 0.00070540011246155
1005 => 0.00069837912589624
1006 => 0.00069706430616264
1007 => 0.00071352202789022
1008 => 0.00073681315213406
1009 => 0.00074774082651973
1010 => 0.00073691183308193
1011 => 0.000724472068495
1012 => 0.00072522921932509
1013 => 0.00073026620458812
1014 => 0.00073079552052012
1015 => 0.00072269851260249
1016 => 0.00072497777290281
1017 => 0.0007215153680867
1018 => 0.00070026659612132
1019 => 0.00069988227321705
1020 => 0.00069466748189401
1021 => 0.00069450958008524
1022 => 0.00068563791915409
1023 => 0.00068439671246293
1024 => 0.00066678149121281
1025 => 0.00067837588318344
1026 => 0.00067059897378244
1027 => 0.00065887733692766
1028 => 0.00065685652231574
1029 => 0.0006567957741883
1030 => 0.00066883127432812
1031 => 0.0006782352413569
1101 => 0.00067073425645105
1102 => 0.00066902642758848
1103 => 0.00068726157179615
1104 => 0.00068494098347869
1105 => 0.00068293136896196
1106 => 0.00073472768741731
1107 => 0.00069372685964277
1108 => 0.00067584815848764
1109 => 0.0006537198707349
1110 => 0.00066092495280771
1111 => 0.00066244316946512
1112 => 0.00060922862634345
1113 => 0.00058763949282644
1114 => 0.00058023091577274
1115 => 0.00057596717493643
1116 => 0.00057791021517622
1117 => 0.00055847746285811
1118 => 0.00057153659380394
1119 => 0.00055470947290612
1120 => 0.00055188835132742
1121 => 0.00058197732797299
1122 => 0.00058616403329597
1123 => 0.00056830224768075
1124 => 0.00057977240560614
1125 => 0.00057561316689527
1126 => 0.00055499792559715
1127 => 0.00055421057501501
1128 => 0.00054386657159239
1129 => 0.00052768020922973
1130 => 0.00052028260729191
1201 => 0.00051642987197376
1202 => 0.00051801958565434
1203 => 0.0005172157777714
1204 => 0.0005119703876186
1205 => 0.00051751643739493
1206 => 0.0005033485720024
1207 => 0.00049770681384485
1208 => 0.00049515856257288
1209 => 0.0004825837665651
1210 => 0.00050259585905064
1211 => 0.00050653849337598
1212 => 0.0005104888959089
1213 => 0.00054487445290353
1214 => 0.00054315664764865
1215 => 0.00055868477054764
1216 => 0.00055808137624617
1217 => 0.00055365250405647
1218 => 0.00053496782080221
1219 => 0.0005424152025249
1220 => 0.00051949331916254
1221 => 0.00053666795271419
1222 => 0.00052883016719106
1223 => 0.00053401798954471
1224 => 0.00052468981718576
1225 => 0.00052985241292
1226 => 0.00050747343823662
1227 => 0.00048657626655794
1228 => 0.00049498589846791
1229 => 0.00050412813011211
1230 => 0.00052395081771404
1231 => 0.00051214458851195
]
'min_raw' => 0.0004825837665651
'max_raw' => 0.0014405242960671
'avg_raw' => 0.0009615540313161
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.000482'
'max' => '$0.00144'
'avg' => '$0.000961'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.0009141862334349
'max_diff' => 4.3754296067098E-5
'year' => 2026
]
1 => [
'items' => [
101 => 0.00051639055497597
102 => 0.0005021672780877
103 => 0.000472820595189
104 => 0.00047298669422717
105 => 0.00046847234641545
106 => 0.00046457129080054
107 => 0.00051350067595772
108 => 0.00050741553345432
109 => 0.00049771965527889
110 => 0.00051069797351558
111 => 0.00051412964685096
112 => 0.00051422734176646
113 => 0.00052369598773307
114 => 0.00052874940578279
115 => 0.00052964009261682
116 => 0.00054453921162891
117 => 0.00054953319979764
118 => 0.00057010273028894
119 => 0.00052832065856754
120 => 0.00052746018429589
121 => 0.00051088060506838
122 => 0.00050036557380951
123 => 0.00051160057825467
124 => 0.00052155325846204
125 => 0.00051118986258541
126 => 0.00051254310330367
127 => 0.00049863109105984
128 => 0.00050360398081599
129 => 0.00050788730339458
130 => 0.00050552230442875
131 => 0.00050198178650965
201 => 0.00052073725218391
202 => 0.0005196789953073
203 => 0.00053714451612946
204 => 0.00055076013858171
205 => 0.00057516176809978
206 => 0.00054969739561196
207 => 0.00054876937266679
208 => 0.00055784094581539
209 => 0.00054953181098705
210 => 0.00055478289737697
211 => 0.00057431573690089
212 => 0.00057472843502058
213 => 0.0005678152097842
214 => 0.00056739453940029
215 => 0.00056872229992934
216 => 0.0005764990348198
217 => 0.00057378160469414
218 => 0.00057692628363246
219 => 0.00058085875279786
220 => 0.00059712511259833
221 => 0.00060104687687672
222 => 0.00059151902288188
223 => 0.00059237928141876
224 => 0.00058881560247924
225 => 0.00058537313327644
226 => 0.00059311130131209
227 => 0.00060725295549131
228 => 0.00060716498099461
301 => 0.00061044556988971
302 => 0.00061248934959349
303 => 0.00060371595096668
304 => 0.00059800479106743
305 => 0.00060019481318335
306 => 0.00060369670623918
307 => 0.00059905919646268
308 => 0.00057043433781861
309 => 0.00057911729136817
310 => 0.00057767202332279
311 => 0.00057561378587556
312 => 0.00058434456281294
313 => 0.00058350245807846
314 => 0.00055827815189545
315 => 0.00055989293013723
316 => 0.00055837635190865
317 => 0.0005632767264279
318 => 0.00054926717468135
319 => 0.00055357641844282
320 => 0.00055627913573336
321 => 0.00055787105698074
322 => 0.0005636221681169
323 => 0.00056294734160415
324 => 0.00056358021995337
325 => 0.00057210759953124
326 => 0.00061523615919284
327 => 0.00061758355153742
328 => 0.0006060241331143
329 => 0.00061064189277489
330 => 0.00060177680401959
331 => 0.00060772799749195
401 => 0.00061179965292182
402 => 0.00059340062496856
403 => 0.00059231115394187
404 => 0.00058340947581179
405 => 0.00058819273342207
406 => 0.00058058222663572
407 => 0.00058244957879686
408 => 0.00057722829936146
409 => 0.00058662556279882
410 => 0.00059713316350888
411 => 0.00059978779840597
412 => 0.00059280459688391
413 => 0.00058774829876653
414 => 0.00057887110492056
415 => 0.00059363407612758
416 => 0.00059795121880191
417 => 0.00059361140001498
418 => 0.00059260576917513
419 => 0.00059070010055076
420 => 0.00059301006578247
421 => 0.00059792770671575
422 => 0.00059560863806618
423 => 0.00059714042376595
424 => 0.00059130283624898
425 => 0.00060371885532668
426 => 0.00062343848169978
427 => 0.00062350188352305
428 => 0.00062118280237284
429 => 0.00062023388433148
430 => 0.00062261340232521
501 => 0.00062390419322386
502 => 0.00063159911808661
503 => 0.00063985607904366
504 => 0.00067838771303593
505 => 0.00066756818439773
506 => 0.00070175574233283
507 => 0.0007287936619607
508 => 0.00073690115183216
509 => 0.00072944264263729
510 => 0.00070392748558238
511 => 0.00070267559025078
512 => 0.00074080600711226
513 => 0.00073003241786516
514 => 0.0007287509337055
515 => 0.00071511810734831
516 => 0.0007231767961838
517 => 0.00072141424272165
518 => 0.00071863196585457
519 => 0.00073400738277955
520 => 0.00076278879069018
521 => 0.00075830293835698
522 => 0.00075495445768294
523 => 0.00074028239009738
524 => 0.00074911825190882
525 => 0.00074597197075755
526 => 0.00075949039126276
527 => 0.00075148237842515
528 => 0.0007299507973305
529 => 0.00073337977258884
530 => 0.00073286148987668
531 => 0.00074352771136698
601 => 0.00074032597642749
602 => 0.00073223629974374
603 => 0.00076269041896688
604 => 0.00076071289785924
605 => 0.00076351657066561
606 => 0.00076475083414144
607 => 0.00078328771985079
608 => 0.00079088168881173
609 => 0.000792605652717
610 => 0.00079981933589126
611 => 0.00079242616970811
612 => 0.00082200410567885
613 => 0.00084167170717897
614 => 0.00086451663840689
615 => 0.00089789922306951
616 => 0.00091045138370883
617 => 0.00090818394823937
618 => 0.0009334942429404
619 => 0.0009789762799019
620 => 0.00091737716829049
621 => 0.00098224118239163
622 => 0.00096170598441827
623 => 0.00091301739943585
624 => 0.00090988242856369
625 => 0.00094285490359988
626 => 0.001015984679747
627 => 0.00099766650025322
628 => 0.0010160146417264
629 => 0.00099461056007903
630 => 0.00099354766701747
701 => 0.0010149750932556
702 => 0.0010650414426091
703 => 0.0010412567967403
704 => 0.0010071556746529
705 => 0.00103233541253
706 => 0.0010105223933061
707 => 0.00096137155591509
708 => 0.00099765249268659
709 => 0.00097339246348908
710 => 0.000980472829743
711 => 0.0010314638027092
712 => 0.0010253284339365
713 => 0.0010332681692482
714 => 0.0010192547442421
715 => 0.0010061639955721
716 => 0.00098172914104789
717 => 0.00097449518524703
718 => 0.00097649439037992
719 => 0.00097449419454025
720 => 0.00096082311800183
721 => 0.000957870850325
722 => 0.00095295027485512
723 => 0.0009544753669455
724 => 0.000945223245497
725 => 0.00096268391025615
726 => 0.00096592476349829
727 => 0.00097863117921139
728 => 0.00097995040144264
729 => 0.0010153375883391
730 => 0.00099584692045406
731 => 0.0010089229432147
801 => 0.0010077533006627
802 => 0.00091407262870912
803 => 0.00092698099875275
804 => 0.00094706237167097
805 => 0.00093801574039097
806 => 0.00092522592034675
807 => 0.00091489745491428
808 => 0.00089924877364427
809 => 0.0009212739920255
810 => 0.00095023481207597
811 => 0.00098068489563175
812 => 0.0010172686758555
813 => 0.0010091036019917
814 => 0.00098000098730762
815 => 0.00098130650934287
816 => 0.00098937673286083
817 => 0.00097892506014795
818 => 0.00097584265782403
819 => 0.00098895325811503
820 => 0.00098904354361378
821 => 0.00097701763103076
822 => 0.00096365302991351
823 => 0.00096359703174685
824 => 0.00096121893006476
825 => 0.00099503361908529
826 => 0.0010136282789959
827 => 0.0010157601267879
828 => 0.0010134847886538
829 => 0.0010143604759967
830 => 0.0010035406531001
831 => 0.0010282715597229
901 => 0.0010509670852732
902 => 0.0010448841996065
903 => 0.0010357650892591
904 => 0.0010285012786314
905 => 0.0010431730766699
906 => 0.0010425197645988
907 => 0.0010507688596567
908 => 0.0010503946330558
909 => 0.001047620772652
910 => 0.0010448842986698
911 => 0.001055734108692
912 => 0.0010526095376482
913 => 0.0010494801132826
914 => 0.0010432035736265
915 => 0.001044056659608
916 => 0.0010349391238035
917 => 0.0010307209345503
918 => 0.0009672894890331
919 => 0.00095033853410864
920 => 0.00095567164959638
921 => 0.00095742744968923
922 => 0.00095005037238286
923 => 0.00096062720622452
924 => 0.00095897881787393
925 => 0.00096539173267112
926 => 0.00096138522192223
927 => 0.00096154965052089
928 => 0.00097333194435522
929 => 0.00097675239438079
930 => 0.00097501272589137
1001 => 0.00097623113006901
1002 => 0.0010043087400865
1003 => 0.0010003170018135
1004 => 0.0009981964704142
1005 => 0.00099878387210377
1006 => 0.001005958303454
1007 => 0.0010079667525226
1008 => 0.00099945681268762
1009 => 0.0010034701495092
1010 => 0.0010205584283272
1011 => 0.0010265383588006
1012 => 0.0010456234263425
1013 => 0.0010375157504407
1014 => 0.0010523977404504
1015 => 0.0010981399040962
1016 => 0.0011346819095333
1017 => 0.0011010763711711
1018 => 0.0011681811105601
1019 => 0.0012204317757776
1020 => 0.0012184263082186
1021 => 0.0012093151961582
1022 => 0.0011498292029639
1023 => 0.0010950893051403
1024 => 0.0011408815540486
1025 => 0.0011409982879083
1026 => 0.0011370646931159
1027 => 0.0011126334736944
1028 => 0.0011362145396378
1029 => 0.0011380863190185
1030 => 0.0011370386203116
1031 => 0.0011183072616631
1101 => 0.0010897079391406
1102 => 0.0010952961783044
1103 => 0.0011044498280517
1104 => 0.0010871200594287
1105 => 0.001081582148306
1106 => 0.0010918781787139
1107 => 0.0011250541339512
1108 => 0.0011187824117888
1109 => 0.0011186186317772
1110 => 0.001145451718812
1111 => 0.0011262450194377
1112 => 0.0010953666638963
1113 => 0.0010875694718866
1114 => 0.0010598946930702
1115 => 0.0010790097613729
1116 => 0.0010796976786512
1117 => 0.0010692285510931
1118 => 0.001096216175899
1119 => 0.0010959674801853
1120 => 0.0011215882133607
1121 => 0.001170565432484
1122 => 0.0011560804587666
1123 => 0.001139236010294
1124 => 0.0011410674688889
1125 => 0.0011611540492496
1126 => 0.0011490092442315
1127 => 0.0011533766007926
1128 => 0.0011611474387324
1129 => 0.0011658357782005
1130 => 0.0011403928889889
1201 => 0.0011344609344396
1202 => 0.0011223262372648
1203 => 0.0011191605212768
1204 => 0.0011290439789269
1205 => 0.0011264400370238
1206 => 0.0010796398618677
1207 => 0.0010747489831702
1208 => 0.0010748989794373
1209 => 0.0010626006324037
1210 => 0.0010438427012361
1211 => 0.0010931374243668
1212 => 0.0010891783682202
1213 => 0.0010848078766409
1214 => 0.0010853432369217
1215 => 0.0011067404054795
1216 => 0.0010943289671331
1217 => 0.0011273268101719
1218 => 0.0011205434456491
1219 => 0.0011135861134222
1220 => 0.0011126243981829
1221 => 0.0011099464188473
1222 => 0.0011007626312731
1223 => 0.0010896726559173
1224 => 0.0010823500935901
1225 => 0.0009984107485274
1226 => 0.0010139894027183
1227 => 0.001031911224326
1228 => 0.0010380977653278
1229 => 0.0010275152588486
1230 => 0.0011011804931301
1231 => 0.0011146398412891
]
'min_raw' => 0.00046457129080054
'max_raw' => 0.0012204317757776
'avg_raw' => 0.00084250153328909
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.000464'
'max' => '$0.00122'
'avg' => '$0.000842'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -1.8012475764559E-5
'max_diff' => -0.00022009252028945
'year' => 2027
]
2 => [
'items' => [
101 => 0.0010738705977837
102 => 0.0010662443369211
103 => 0.0011016804695226
104 => 0.0010803081496729
105 => 0.0010899321039926
106 => 0.001069130378775
107 => 0.0011113978784533
108 => 0.0011110758709232
109 => 0.0010946328588936
110 => 0.0011085303800641
111 => 0.0011061153437596
112 => 0.0010875512236754
113 => 0.0011119863941722
114 => 0.0011119985137119
115 => 0.0010961724721353
116 => 0.0010776911203398
117 => 0.0010743870911488
118 => 0.0010718979489872
119 => 0.001089319927608
120 => 0.0011049404191623
121 => 0.0011340062812965
122 => 0.0011413141296249
123 => 0.0011698371481617
124 => 0.0011528530793836
125 => 0.0011603818970924
126 => 0.0011685554937316
127 => 0.0011724742165345
128 => 0.0011660888680175
129 => 0.0012103968563479
130 => 0.0012141378081247
131 => 0.0012153921168963
201 => 0.0012004517125274
202 => 0.0012137222884522
203 => 0.0012075134254522
204 => 0.0012236671621062
205 => 0.0012262002742748
206 => 0.0012240548183861
207 => 0.0012248588681709
208 => 0.0011870498165956
209 => 0.0011850892178128
210 => 0.0011583563142914
211 => 0.001169250170076
212 => 0.0011488846288428
213 => 0.0011553427517562
214 => 0.0011581894308011
215 => 0.0011567024872157
216 => 0.0011698660923371
217 => 0.001158674338837
218 => 0.0011291374612557
219 => 0.0010995925363719
220 => 0.0010992216239067
221 => 0.001091442966696
222 => 0.0010858204222648
223 => 0.0010869035237928
224 => 0.0010907205148483
225 => 0.0010855985718058
226 => 0.001086691598043
227 => 0.0011048431163768
228 => 0.0011084832739279
229 => 0.0010961125962678
301 => 0.0010464425403822
302 => 0.0010342533840799
303 => 0.0010430147079085
304 => 0.00103882735942
305 => 0.00083841475620306
306 => 0.00088549872456671
307 => 0.00085752302938551
308 => 0.00087041551682485
309 => 0.000841859576316
310 => 0.0008554879678719
311 => 0.0008529713015807
312 => 0.00092868092939353
313 => 0.00092749882769042
314 => 0.00092806463722027
315 => 0.00090105707415172
316 => 0.00094408085545517
317 => 0.00096527591721038
318 => 0.00096135327536779
319 => 0.00096234051980957
320 => 0.0009453763894025
321 => 0.00092822888708436
322 => 0.00090920966803186
323 => 0.00094454502618488
324 => 0.00094061633755295
325 => 0.00094962733577706
326 => 0.00097254484136286
327 => 0.0009759195311155
328 => 0.00098045514836579
329 => 0.00097882945244878
330 => 0.0010175601246866
331 => 0.0010128695847254
401 => 0.0010241724364714
402 => 0.0010009216128804
403 => 0.00097461109899868
404 => 0.00097961186753208
405 => 0.00097913025330868
406 => 0.00097299875147362
407 => 0.0009674635057749
408 => 0.00095824888123234
409 => 0.00098740531679284
410 => 0.00098622161875499
411 => 0.0010053843140894
412 => 0.0010019971215525
413 => 0.00097937662080487
414 => 0.00098018451641438
415 => 0.00098561800264976
416 => 0.0010044233605489
417 => 0.0010100060711397
418 => 0.0010074199371615
419 => 0.0010135411244639
420 => 0.0010183790613269
421 => 0.0010141486948477
422 => 0.001074041763139
423 => 0.0010491699854543
424 => 0.0010612923168411
425 => 0.0010641834214479
426 => 0.0010567779177909
427 => 0.0010583839063629
428 => 0.0010608165414438
429 => 0.0010755870252962
430 => 0.0011143490487988
501 => 0.0011315164851461
502 => 0.0011831655644233
503 => 0.0011300909685397
504 => 0.0011269417416645
505 => 0.0011362453004951
506 => 0.0011665687776411
507 => 0.0011911431077285
508 => 0.0011992958307457
509 => 0.0012003733476792
510 => 0.0012156683980421
511 => 0.0012244352356743
512 => 0.0012138111766282
513 => 0.0012048083989721
514 => 0.0011725615668736
515 => 0.0011762942254942
516 => 0.0012020085418907
517 => 0.0012383315283665
518 => 0.0012695004295254
519 => 0.0012585861666854
520 => 0.0013418542878855
521 => 0.0013501099819827
522 => 0.001348969311997
523 => 0.0013677770117624
524 => 0.0013304475578495
525 => 0.0013144884930776
526 => 0.0012067549016872
527 => 0.0012370236464718
528 => 0.0012810210446373
529 => 0.0012751978240083
530 => 0.0012432457374067
531 => 0.0012694761910025
601 => 0.0012608035827416
602 => 0.0012539631367794
603 => 0.0012853005458179
604 => 0.0012508437773102
605 => 0.0012806773120134
606 => 0.0012424154951682
607 => 0.0012586360221187
608 => 0.001249428466523
609 => 0.001255386883429
610 => 0.001220554099947
611 => 0.0012393490243959
612 => 0.0012197721692979
613 => 0.0012197628873196
614 => 0.0012193307271583
615 => 0.0012423628103639
616 => 0.0012431138857704
617 => 0.0012260931414819
618 => 0.0012236401863159
619 => 0.0012327100472104
620 => 0.0012220916155033
621 => 0.0012270599128674
622 => 0.0012222421001692
623 => 0.0012211575090521
624 => 0.0012125153025036
625 => 0.0012087920023001
626 => 0.0012102520042475
627 => 0.0012052682649183
628 => 0.0012022653817028
629 => 0.0012187333781052
630 => 0.0012099351919445
701 => 0.0012173849298924
702 => 0.0012088950132689
703 => 0.0011794652633714
704 => 0.0011625399029913
705 => 0.0011069498335741
706 => 0.0011227151083016
707 => 0.0011331675017562
708 => 0.0011297129857818
709 => 0.0011371346228151
710 => 0.0011375902510529
711 => 0.0011351774011987
712 => 0.0011323836301728
713 => 0.0011310237769427
714 => 0.0011411590088135
715 => 0.0011470428520508
716 => 0.0011342165392744
717 => 0.0011312115136501
718 => 0.0011441796240271
719 => 0.0011520901638657
720 => 0.0012104971454855
721 => 0.001206170167635
722 => 0.0012170300329132
723 => 0.0012158073787411
724 => 0.0012271902476648
725 => 0.0012457964275956
726 => 0.0012079648614264
727 => 0.0012145311131963
728 => 0.0012129212198992
729 => 0.0012304976127799
730 => 0.0012305524843599
731 => 0.001220014558822
801 => 0.0012257273392144
802 => 0.0012225386219213
803 => 0.001228301065051
804 => 0.0012061123782078
805 => 0.0012331358036621
806 => 0.0012484563445435
807 => 0.0012486690702685
808 => 0.001255930885055
809 => 0.0012633093094541
810 => 0.0012774715525627
811 => 0.0012629143321803
812 => 0.0012367273098294
813 => 0.0012386179282595
814 => 0.0012232644866366
815 => 0.0012235225807641
816 => 0.0012221448540843
817 => 0.0012262795155609
818 => 0.0012070197038897
819 => 0.001211539943193
820 => 0.0012052115816979
821 => 0.0012145173565743
822 => 0.001204505881107
823 => 0.0012129204435599
824 => 0.0012165518897674
825 => 0.0012299520044524
826 => 0.0012025266732728
827 => 0.0011466045664657
828 => 0.0011583600713065
829 => 0.0011409727562719
830 => 0.0011425820184766
831 => 0.0011458329842421
901 => 0.0011352955405462
902 => 0.0011373057527304
903 => 0.0011372339338055
904 => 0.0011366150371107
905 => 0.0011338738410301
906 => 0.0011298985643839
907 => 0.0011457348430164
908 => 0.0011484257353462
909 => 0.0011544072556643
910 => 0.0011722042028271
911 => 0.0011704258681246
912 => 0.0011733264058067
913 => 0.0011669945483325
914 => 0.0011428757351846
915 => 0.0011441855027776
916 => 0.0011278526799048
917 => 0.0011539895886623
918 => 0.0011478000236782
919 => 0.0011438095708674
920 => 0.0011427207388467
921 => 0.0011605618011991
922 => 0.0011659001266794
923 => 0.0011625736404818
924 => 0.0011557509202414
925 => 0.0011688525600591
926 => 0.0011723580061605
927 => 0.0011731427462667
928 => 0.0011963563400333
929 => 0.0011744401282874
930 => 0.001179715578283
1001 => 0.0012208731332055
1002 => 0.0011835489102452
1003 => 0.0012033203835768
1004 => 0.001202352672843
1005 => 0.0012124670895692
1006 => 0.0012015229954537
1007 => 0.0012016586606166
1008 => 0.0012106395774596
1009 => 0.0011980274994705
1010 => 0.0011949045715964
1011 => 0.0011905902691051
1012 => 0.0012000103907593
1013 => 0.0012056573276555
1014 => 0.0012511674918208
1015 => 0.0012805691333872
1016 => 0.0012792927305855
1017 => 0.0012909566628672
1018 => 0.001285701954545
1019 => 0.0012687331152503
1020 => 0.0012976968547968
1021 => 0.0012885315157099
1022 => 0.0012892870951284
1023 => 0.0012892589724247
1024 => 0.0012953531216696
1025 => 0.001291034858409
1026 => 0.0012825231182617
1027 => 0.0012881736085978
1028 => 0.0013049535448085
1029 => 0.0013570389816781
1030 => 0.0013861866821905
1031 => 0.0013552842535083
1101 => 0.0013766003350133
1102 => 0.0013638182818067
1103 => 0.001361495402506
1104 => 0.0013748834769371
1105 => 0.0013882949854203
1106 => 0.0013874407303095
1107 => 0.0013777046638393
1108 => 0.0013722050069338
1109 => 0.0014138502515423
1110 => 0.0014445337583617
1111 => 0.0014424413489014
1112 => 0.0014516765637709
1113 => 0.0014787914402622
1114 => 0.0014812704847539
1115 => 0.0014809581821281
1116 => 0.001474813611694
1117 => 0.0015015117289113
1118 => 0.0015237837680026
1119 => 0.0014733913211722
1120 => 0.0014925801052396
1121 => 0.0015011945686315
1122 => 0.0015138431566869
1123 => 0.0015351834448859
1124 => 0.0015583646581019
1125 => 0.0015616427358197
1126 => 0.0015593167828085
1127 => 0.0015440281495481
1128 => 0.0015693933096584
1129 => 0.0015842516255648
1130 => 0.0015930994126606
1201 => 0.0016155359286041
1202 => 0.0015012477686247
1203 => 0.0014203489285012
1204 => 0.0014077154064225
1205 => 0.0014334061703583
1206 => 0.0014401806199281
1207 => 0.001437449847801
1208 => 0.0013463908482412
1209 => 0.0014072359996349
1210 => 0.001472700266529
1211 => 0.001475215015632
1212 => 0.0015079877964324
1213 => 0.0015186599572627
1214 => 0.0015450463414336
1215 => 0.0015433958659195
1216 => 0.001549820530566
1217 => 0.0015483436114234
1218 => 0.0015972188317913
1219 => 0.0016511354578976
1220 => 0.0016492684965799
1221 => 0.0016415173436646
1222 => 0.0016530291275118
1223 => 0.0017086768637102
1224 => 0.0017035537118979
1225 => 0.0017085304174946
1226 => 0.0017741422346415
1227 => 0.0018594469301047
1228 => 0.0018198143346106
1229 => 0.0019058056628606
1230 => 0.0019599326457895
1231 => 0.0020535396659305
]
'min_raw' => 0.00083841475620306
'max_raw' => 0.0020535396659305
'avg_raw' => 0.0014459772110668
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.000838'
'max' => '$0.002053'
'avg' => '$0.001445'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 0.00037384346540251
'max_diff' => 0.00083310789015282
'year' => 2028
]
3 => [
'items' => [
101 => 0.0020418196059845
102 => 0.0020782601320054
103 => 0.0020208382526309
104 => 0.0018889860107108
105 => 0.0018681198887168
106 => 0.0019098943933631
107 => 0.0020125929367395
108 => 0.0019066600507591
109 => 0.0019280901356256
110 => 0.0019219182697424
111 => 0.0019215893972382
112 => 0.0019341411231015
113 => 0.0019159341900828
114 => 0.0018417558695999
115 => 0.0018757513567416
116 => 0.0018626240665588
117 => 0.001877189773721
118 => 0.0019557948879204
119 => 0.0019210416932209
120 => 0.0018844320257254
121 => 0.0019303486731004
122 => 0.0019888163438807
123 => 0.0019851575421197
124 => 0.0019780579374431
125 => 0.0020180780372823
126 => 0.0020841795174278
127 => 0.0021020464818938
128 => 0.0021152355097887
129 => 0.0021170540539049
130 => 0.0021357861885211
131 => 0.0020350587795841
201 => 0.0021949157644304
202 => 0.0022225186497533
203 => 0.002217330451335
204 => 0.0022480098966644
205 => 0.0022389832255861
206 => 0.0022259049954349
207 => 0.0022745384419872
208 => 0.0022187841200318
209 => 0.00213964787929
210 => 0.0020962321724817
211 => 0.002153405477452
212 => 0.002188319219724
213 => 0.0022113949824348
214 => 0.0022183776942883
215 => 0.0020428779616057
216 => 0.0019482933393512
217 => 0.0020089209978014
218 => 0.0020828909254082
219 => 0.0020346478729014
220 => 0.0020365389092235
221 => 0.0019677569943999
222 => 0.002088976598654
223 => 0.0020713159219315
224 => 0.0021629395440089
225 => 0.0021410728312746
226 => 0.0022157883382702
227 => 0.0021961132412889
228 => 0.0022777834688382
301 => 0.0023103639337408
302 => 0.0023650716050566
303 => 0.0024053147907769
304 => 0.0024289463591612
305 => 0.0024275276084352
306 => 0.0025211676555748
307 => 0.0024659513913107
308 => 0.0023965867499206
309 => 0.0023953321624005
310 => 0.002431257093081
311 => 0.0025065458922638
312 => 0.0025260671824845
313 => 0.0025369769205744
314 => 0.002520268276919
315 => 0.0024603349794455
316 => 0.0024344560854652
317 => 0.0024565056529202
318 => 0.0024295409266637
319 => 0.0024760896091483
320 => 0.0025400108924618
321 => 0.0025268114002297
322 => 0.0025709353237831
323 => 0.0026165989426887
324 => 0.0026818999686051
325 => 0.0026989720748697
326 => 0.0027271916173309
327 => 0.0027562387961603
328 => 0.0027655679671569
329 => 0.0027833802492612
330 => 0.0027832863697421
331 => 0.0028369648807681
401 => 0.0028961739407149
402 => 0.0029185239901519
403 => 0.0029699166964434
404 => 0.0028819084879344
405 => 0.0029486637250539
406 => 0.0030088786199277
407 => 0.0029370879398905
408 => 0.0030360346672386
409 => 0.0030398765444435
410 => 0.0030978843289496
411 => 0.0030390823264058
412 => 0.0030041658849979
413 => 0.0031049683430404
414 => 0.0031537434772396
415 => 0.0031390520098736
416 => 0.0030272492178113
417 => 0.0029621751973837
418 => 0.0027918639340835
419 => 0.0029936049823616
420 => 0.0030918671621108
421 => 0.0030269947425041
422 => 0.0030597126175504
423 => 0.0032382107349965
424 => 0.0033061712612227
425 => 0.0032920359468476
426 => 0.0032944245822899
427 => 0.0033310948486707
428 => 0.0034937110044881
429 => 0.0033962676345093
430 => 0.0034707594397247
501 => 0.0035102696246107
502 => 0.0035469688862593
503 => 0.003456847098571
504 => 0.0033395999769404
505 => 0.0033024628918207
506 => 0.0030205444588699
507 => 0.0030058693801251
508 => 0.0029976318137252
509 => 0.0029456951228011
510 => 0.0029048871103917
511 => 0.0028724350638193
512 => 0.0027872712026121
513 => 0.0028160115057581
514 => 0.002680278086073
515 => 0.0027671155178905
516 => 0.002550481702675
517 => 0.0027309007812951
518 => 0.0026327068794511
519 => 0.0026986414436228
520 => 0.0026984114041398
521 => 0.002577004966927
522 => 0.0025069802676304
523 => 0.0025516027314243
524 => 0.0025994415547469
525 => 0.0026072032428819
526 => 0.0026692275260407
527 => 0.0026865371702628
528 => 0.0026340881401598
529 => 0.0025459924483693
530 => 0.0025664550683234
531 => 0.0025065655932902
601 => 0.0024016115919098
602 => 0.0024769913880222
603 => 0.0025027293646307
604 => 0.0025140967213612
605 => 0.0024108865150521
606 => 0.0023784556274272
607 => 0.0023611896949771
608 => 0.0025326693067931
609 => 0.0025420633470217
610 => 0.0024940021090287
611 => 0.0027112434621107
612 => 0.0026620750532494
613 => 0.0027170082125001
614 => 0.0025645983000416
615 => 0.0025704205639447
616 => 0.0024982672689097
617 => 0.0025386682928444
618 => 0.0025101141513131
619 => 0.0025354042893612
620 => 0.002550563093832
621 => 0.0026227045492213
622 => 0.0027317245208332
623 => 0.0026119290214917
624 => 0.0025597324069254
625 => 0.0025921148930374
626 => 0.0026783537208678
627 => 0.0028090099595152
628 => 0.0027316588365341
629 => 0.0027659859514058
630 => 0.0027734848988983
701 => 0.0027164490445062
702 => 0.0028111129528217
703 => 0.0028618441103362
704 => 0.0029138837806121
705 => 0.0029590683681943
706 => 0.002893097991927
707 => 0.002963695751015
708 => 0.0029068064193722
709 => 0.0028557708077776
710 => 0.0028558482077338
711 => 0.0028238328230692
712 => 0.0027617989810835
713 => 0.0027503589888514
714 => 0.0028098712731543
715 => 0.002857594489331
716 => 0.0028615252019941
717 => 0.0028879472265768
718 => 0.0029035835085564
719 => 0.003056840328451
720 => 0.0031184814892195
721 => 0.0031938551337997
722 => 0.0032232174161896
723 => 0.0033115873592222
724 => 0.0032402214531675
725 => 0.0032247809904799
726 => 0.0030104244142709
727 => 0.0030455252916166
728 => 0.0031017251829781
729 => 0.0030113511297797
730 => 0.0030686726652945
731 => 0.0030799891506412
801 => 0.0030082802540341
802 => 0.0030465830740705
803 => 0.0029448621400485
804 => 0.0027339417592236
805 => 0.0028113477675003
806 => 0.0028683446441727
807 => 0.0027870030734971
808 => 0.0029328046905796
809 => 0.0028476303958363
810 => 0.0028206342334898
811 => 0.0027153125793495
812 => 0.0027650203459015
813 => 0.0028322508119097
814 => 0.0027907102002972
815 => 0.0028769132067473
816 => 0.0029989996533828
817 => 0.0030860057256289
818 => 0.0030926849714973
819 => 0.0030367458959972
820 => 0.0031263886214845
821 => 0.0031270415708745
822 => 0.0030259242103235
823 => 0.0029639903900098
824 => 0.0029499188957247
825 => 0.0029850722473279
826 => 0.0030277549058409
827 => 0.0030950535619885
828 => 0.0031357207304263
829 => 0.0032417591375125
830 => 0.0032704500901106
831 => 0.0033019727484626
901 => 0.0033440967412488
902 => 0.0033946773949586
903 => 0.0032840098041997
904 => 0.0032884068338908
905 => 0.0031853547056732
906 => 0.0030752287275026
907 => 0.0031588006175371
908 => 0.0032680597466546
909 => 0.0032429955817144
910 => 0.0032401753511442
911 => 0.0032449181966966
912 => 0.0032260206348508
913 => 0.0031405476629987
914 => 0.0030976236716236
915 => 0.0031530065715755
916 => 0.0031824401180907
917 => 0.0032280889818606
918 => 0.0032224617958704
919 => 0.0033400483666117
920 => 0.0033857389523685
921 => 0.0033740493453215
922 => 0.0033762005143443
923 => 0.0034589211373901
924 => 0.0035509234830107
925 => 0.0036370958204631
926 => 0.0037247540233078
927 => 0.0036190786384207
928 => 0.0035654231951266
929 => 0.0036207819166369
930 => 0.0035914077997731
1001 => 0.0037602001882015
1002 => 0.0037718870069526
1003 => 0.00394066718977
1004 => 0.0041008596812341
1005 => 0.0040002456474921
1006 => 0.0040951201495552
1007 => 0.0041977346587681
1008 => 0.0043956946956438
1009 => 0.0043290287195421
1010 => 0.0042779636266373
1011 => 0.0042297073605869
1012 => 0.0043301209897712
1013 => 0.0044593015195699
1014 => 0.0044871257684128
1015 => 0.0045322116812195
1016 => 0.0044848093567464
1017 => 0.0045419002353794
1018 => 0.0047434561239573
1019 => 0.0046889939436805
1020 => 0.0046116488924551
1021 => 0.004770757908854
1022 => 0.0048283388433681
1023 => 0.0052324719971577
1024 => 0.005742706797725
1025 => 0.0055314662399078
1026 => 0.0054003424089805
1027 => 0.0054311596195473
1028 => 0.0056174800961764
1029 => 0.0056773203197534
1030 => 0.0055146539639092
1031 => 0.0055721104707713
1101 => 0.0058887014725811
1102 => 0.0060585423875966
1103 => 0.0058278756123274
1104 => 0.0051914751277367
1105 => 0.0046046848168428
1106 => 0.0047603280308039
1107 => 0.004742682920512
1108 => 0.0050828204564248
1109 => 0.0046876950386927
1110 => 0.0046943479373717
1111 => 0.0050415191573153
1112 => 0.0049488998278558
1113 => 0.004798868375919
1114 => 0.0046057802124767
1115 => 0.0042488388838602
1116 => 0.0039326859950592
1117 => 0.0045527346156598
1118 => 0.0045259969916543
1119 => 0.0044872769498004
1120 => 0.0045734442130001
1121 => 0.0049918479840938
1122 => 0.0049822024229292
1123 => 0.0049208422840089
1124 => 0.0049673834085765
1125 => 0.0047907094917593
1126 => 0.0048362423829134
1127 => 0.0046045918662595
1128 => 0.0047093075743672
1129 => 0.0047985464758057
1130 => 0.004816462506474
1201 => 0.0048568282383848
1202 => 0.0045119074787704
1203 => 0.0046667667734958
1204 => 0.0047577321007933
1205 => 0.0043467474427162
1206 => 0.0047496082555196
1207 => 0.0045059031757249
1208 => 0.0044231860113152
1209 => 0.0045345537760352
1210 => 0.0044911536498151
1211 => 0.004453840769832
1212 => 0.0044330195416847
1213 => 0.0045147957368835
1214 => 0.0045109807796337
1215 => 0.0043771790522131
1216 => 0.0042026401532491
1217 => 0.0042612211367855
1218 => 0.004239938116267
1219 => 0.004162805704344
1220 => 0.0042147836369772
1221 => 0.0039858991270903
1222 => 0.0035921152242115
1223 => 0.0038522609323804
1224 => 0.0038422456055999
1225 => 0.0038371954236783
1226 => 0.004032687733468
1227 => 0.0040138956586567
1228 => 0.0039797878588616
1229 => 0.0041621792878531
1230 => 0.0040956039627603
1231 => 0.004300773427577
]
'min_raw' => 0.0018417558695999
'max_raw' => 0.0060585423875966
'avg_raw' => 0.0039501491285983
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.001841'
'max' => '$0.006058'
'avg' => '$0.00395'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072435
'min_diff' => 0.0010033411133969
'max_diff' => 0.0040050027216662
'year' => 2029
]
4 => [
'items' => [
101 => 0.0044359113066342
102 => 0.0044016359692529
103 => 0.0045287337976843
104 => 0.0042625707243292
105 => 0.0043509794206887
106 => 0.0043692003304792
107 => 0.0041599286059312
108 => 0.0040169702745013
109 => 0.0040074365836393
110 => 0.0037595665378114
111 => 0.0038919767155555
112 => 0.0040084921924649
113 => 0.0039526903209916
114 => 0.0039350251155166
115 => 0.0040252728191726
116 => 0.004032285838666
117 => 0.0038723882510104
118 => 0.0039056360227821
119 => 0.004044284758052
120 => 0.0039021424303893
121 => 0.0036259831065579
122 => 0.0035574917760464
123 => 0.0035483537700105
124 => 0.0033625998495472
125 => 0.0035620686942552
126 => 0.0034749951981075
127 => 0.0037500593291375
128 => 0.0035929441726917
129 => 0.0035861712523194
130 => 0.0035759329898052
131 => 0.0034160469170647
201 => 0.0034510518057049
202 => 0.0035674133869399
203 => 0.0036089325100316
204 => 0.003604601725337
205 => 0.003566843151711
206 => 0.0035841288333618
207 => 0.0035284456300339
208 => 0.0035087827319932
209 => 0.0034467212170704
210 => 0.003355507935065
211 => 0.0033681917013714
212 => 0.0031874743224653
213 => 0.00308900990304
214 => 0.0030617562494832
215 => 0.0030253115249386
216 => 0.0030658727780962
217 => 0.0031869623728368
218 => 0.0030409026309891
219 => 0.0027904934484909
220 => 0.0028055434670355
221 => 0.0028393563903147
222 => 0.0027763462314788
223 => 0.0027167124041825
224 => 0.0027685591787713
225 => 0.0026624575070609
226 => 0.0028521782704342
227 => 0.0028470468554712
228 => 0.0029177630238035
301 => 0.0029619832951035
302 => 0.0028600698862398
303 => 0.0028344389395137
304 => 0.0028490394916305
305 => 0.0026077248882725
306 => 0.002898042472417
307 => 0.0029005531509404
308 => 0.002879055197146
309 => 0.0030336403481532
310 => 0.0033598632330959
311 => 0.0032371250614953
312 => 0.0031895971316707
313 => 0.0030992465023313
314 => 0.0032196333514365
315 => 0.0032103895197526
316 => 0.0031685854072591
317 => 0.0031433021495862
318 => 0.0031898873270754
319 => 0.0031375297305599
320 => 0.0031281248675352
321 => 0.0030711416301973
322 => 0.0030508012070398
323 => 0.0030357419675095
324 => 0.003019163224477
325 => 0.0030557318004414
326 => 0.0029728625963094
327 => 0.0028729304598945
328 => 0.0028646221840323
329 => 0.0028875620641589
330 => 0.0028774128748761
331 => 0.0028645735936187
401 => 0.0028400599091281
402 => 0.0028327872225917
403 => 0.002856419925629
404 => 0.0028297399817721
405 => 0.0028691076922647
406 => 0.0028584018533255
407 => 0.0027985999072846
408 => 0.0027240645410014
409 => 0.0027234010198983
410 => 0.0027073424974951
411 => 0.0026868895547996
412 => 0.0026812000140416
413 => 0.0027641927880279
414 => 0.0029359853464147
415 => 0.0029022583565558
416 => 0.0029266295632098
417 => 0.0030465117788775
418 => 0.0030846187302543
419 => 0.0030575713187797
420 => 0.0030205471537415
421 => 0.0030221760291024
422 => 0.0031486988090147
423 => 0.0031565898796018
424 => 0.0031765280692196
425 => 0.0032021542774102
426 => 0.0030619355728454
427 => 0.003015571740727
428 => 0.0029936019849019
429 => 0.0029259436403259
430 => 0.002998907364363
501 => 0.0029563945269848
502 => 0.0029621309611924
503 => 0.0029583951008893
504 => 0.0029604351332326
505 => 0.0028521252396143
506 => 0.0028915876722484
507 => 0.0028259737241295
508 => 0.0027381240131097
509 => 0.0027378295100743
510 => 0.0027593306023898
511 => 0.0027465409113427
512 => 0.002712124181588
513 => 0.0027170129156073
514 => 0.0026741824614308
515 => 0.0027222133082147
516 => 0.0027235906610378
517 => 0.0027050961687681
518 => 0.0027790943152183
519 => 0.0028094114161957
520 => 0.0027972379451934
521 => 0.0028085572930182
522 => 0.0029036598652527
523 => 0.002919165734143
524 => 0.0029260524168439
525 => 0.0029168251743354
526 => 0.0028102955934564
527 => 0.0028150206333671
528 => 0.0027803514256154
529 => 0.0027510595984163
530 => 0.0027522311178888
531 => 0.0027672909247402
601 => 0.002833057984506
602 => 0.0029714608846032
603 => 0.0029767131734907
604 => 0.0029830791008424
605 => 0.0029571856750443
606 => 0.0029493759700568
607 => 0.0029596789867911
608 => 0.0030116558391889
609 => 0.0031453544151336
610 => 0.0030980964089671
611 => 0.003059674914339
612 => 0.0030933809234884
613 => 0.0030881921475763
614 => 0.0030443936570785
615 => 0.0030431643793257
616 => 0.002959101072836
617 => 0.0029280247824556
618 => 0.0029020551081938
619 => 0.0028736969018553
620 => 0.0028568852065622
621 => 0.0028827156113113
622 => 0.0028886233304938
623 => 0.0028321446990717
624 => 0.0028244468703046
625 => 0.0028705685398998
626 => 0.0028502721127001
627 => 0.0028711474914022
628 => 0.0028759907583267
629 => 0.002875210880802
630 => 0.0028540190797757
701 => 0.0028675261018012
702 => 0.0028355779680737
703 => 0.0028008391710996
704 => 0.0027786779829336
705 => 0.0027593394070038
706 => 0.0027700695728943
707 => 0.0027318184907455
708 => 0.0027195811997239
709 => 0.0028629502266566
710 => 0.0029688584683285
711 => 0.0029673185205503
712 => 0.0029579444844931
713 => 0.0029440165683658
714 => 0.0030106369253725
715 => 0.0029874277251075
716 => 0.0030043143574939
717 => 0.0030086127141659
718 => 0.0030216225452301
719 => 0.0030262724416028
720 => 0.0030122172252039
721 => 0.0029650462022691
722 => 0.002847500498002
723 => 0.0027927826553571
724 => 0.0027747248558866
725 => 0.0027753812226007
726 => 0.0027572756984754
727 => 0.002762608586763
728 => 0.0027554211375627
729 => 0.0027418098476081
730 => 0.0027692291140952
731 => 0.0027723889291297
801 => 0.0027659889446958
802 => 0.0027674963727128
803 => 0.002714507235069
804 => 0.0027185358841177
805 => 0.0026961038542786
806 => 0.002691898119106
807 => 0.002635191901053
808 => 0.0025347286160744
809 => 0.0025903950281596
810 => 0.0025231578302427
811 => 0.0024976940845818
812 => 0.0026182354961156
813 => 0.0026061364816959
814 => 0.0025854282283246
815 => 0.0025547964056102
816 => 0.0025434347645982
817 => 0.0024744050304679
818 => 0.0024703263855162
819 => 0.0025045393857108
820 => 0.0024887512633184
821 => 0.00246657876005
822 => 0.0023862722008025
823 => 0.0022959810396203
824 => 0.0022987063622264
825 => 0.0023274263006717
826 => 0.0024109333951127
827 => 0.0023783057286272
828 => 0.0023546339822327
829 => 0.002350200975703
830 => 0.002405689333549
831 => 0.0024842169850715
901 => 0.0025210604022086
902 => 0.0024845496947769
903 => 0.0024426081599555
904 => 0.0024451609468417
905 => 0.0024621434943271
906 => 0.0024639281199475
907 => 0.0024366284924382
908 => 0.0024443131776735
909 => 0.0024326394380986
910 => 0.0023609977198755
911 => 0.0023597019483712
912 => 0.0023421199153404
913 => 0.0023415875383678
914 => 0.0023116761141389
915 => 0.0023074912991213
916 => 0.0022481003508211
917 => 0.0022871916528447
918 => 0.0022609712598327
919 => 0.0022214509427983
920 => 0.0022146376252454
921 => 0.0022144328086925
922 => 0.0022550113377056
923 => 0.0022867174691072
924 => 0.0022614273747951
925 => 0.0022556693105481
926 => 0.0023171503723814
927 => 0.0023093263468507
928 => 0.0023025507912008
929 => 0.0024771856951765
930 => 0.0023389485417482
1001 => 0.0022786692525527
1002 => 0.0022040621854466
1003 => 0.0022283546226978
1004 => 0.0022334733961568
1005 => 0.0020540568487013
1006 => 0.0019812675777436
1007 => 0.0019562890429567
1008 => 0.0019419135430422
1009 => 0.0019484646388694
1010 => 0.0018829457576774
1011 => 0.0019269755294207
1012 => 0.0018702417164816
1013 => 0.0018607301081146
1014 => 0.0019621771936204
1015 => 0.0019762929629233
1016 => 0.0019160707056515
1017 => 0.0019547431439178
1018 => 0.0019407199802153
1019 => 0.0018712142548686
1020 => 0.0018685596474098
1021 => 0.0018336841176752
1022 => 0.0017791106668737
1023 => 0.0017541691354563
1024 => 0.0017411793693418
1025 => 0.0017465392000061
1026 => 0.0017438291056087
1027 => 0.0017261439064871
1028 => 0.0017448428005208
1029 => 0.0016970748531811
1030 => 0.001678053271658
1031 => 0.0016694616645813
1101 => 0.0016270648618969
1102 => 0.0016945370289115
1103 => 0.0017078298958054
1104 => 0.0017211489537534
1105 => 0.0018370822598837
1106 => 0.0018312905595336
1107 => 0.0018836447100264
1108 => 0.0018816103240114
1109 => 0.0018666780722098
1110 => 0.0018036813580952
1111 => 0.0018287907255328
1112 => 0.0017515079954218
1113 => 0.0018094134715358
1114 => 0.0017829878304279
1115 => 0.0018004789356954
1116 => 0.001769028351315
1117 => 0.0017864344032739
1118 => 0.0017109821276788
1119 => 0.0016405258543702
1120 => 0.0016688795154964
1121 => 0.001699703187775
1122 => 0.0017665367630008
1123 => 0.0017267312369613
1124 => 0.0017410468093387
1125 => 0.0016930920382724
1126 => 0.0015941476479595
1127 => 0.0015947076624633
1128 => 0.0015794872236344
1129 => 0.0015663345422658
1130 => 0.0017313033804638
1201 => 0.0017107868976625
1202 => 0.0016780965674494
1203 => 0.0017218538735016
1204 => 0.0017334239997437
1205 => 0.0017337533849721
1206 => 0.0017656775859283
1207 => 0.0017827155377013
1208 => 0.001785718550548
1209 => 0.0018359519705206
1210 => 0.0018527895503005
1211 => 0.0019221411584707
1212 => 0.0017812699865309
1213 => 0.0017783688374477
1214 => 0.0017224696285328
1215 => 0.0016870174665075
1216 => 0.0017248970683974
1217 => 0.0017584532245904
1218 => 0.0017235123118432
1219 => 0.001728074857405
1220 => 0.0016811695368193
1221 => 0.0016979359818282
1222 => 0.001712377502954
1223 => 0.0017044037438217
1224 => 0.0016924666404664
1225 => 0.001755702002452
1226 => 0.0017521340155074
1227 => 0.001811020238363
1228 => 0.0018569262600732
1229 => 0.0019391980576607
1230 => 0.0018533431479523
1231 => 0.0018502142538002
]
'min_raw' => 0.0015663345422658
'max_raw' => 0.0045287337976843
'avg_raw' => 0.003047534169975
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.001566'
'max' => '$0.004528'
'avg' => '$0.003047'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -0.00027542132733416
'max_diff' => -0.0015298085899124
'year' => 2030
]
5 => [
'items' => [
101 => 0.0018807996960277
102 => 0.0018527848678287
103 => 0.0018704892722114
104 => 0.0019363456044056
105 => 0.0019377370449298
106 => 0.0019144286233794
107 => 0.0019130103038098
108 => 0.0019174869411347
109 => 0.0019437067457722
110 => 0.0019345447403787
111 => 0.0019451472449737
112 => 0.001958405839321
113 => 0.0020132490070693
114 => 0.0020264715091427
115 => 0.0019943476841856
116 => 0.001997248105904
117 => 0.0019852329135513
118 => 0.0019736263882886
119 => 0.0019997161620824
120 => 0.0020473957364864
121 => 0.0020470991243286
122 => 0.0020581598588318
123 => 0.0020650506047953
124 => 0.0020354704787858
125 => 0.0020162149044451
126 => 0.0020235987169113
127 => 0.0020354055938434
128 => 0.0020197699058514
129 => 0.0019232591964091
130 => 0.0019525343805259
131 => 0.0019476615584055
201 => 0.0019407220671506
202 => 0.0019701584911584
203 => 0.0019673192762522
204 => 0.0018822737668514
205 => 0.0018877181044337
206 => 0.001882604855052
207 => 0.0018991268098768
208 => 0.0018518926280477
209 => 0.0018664215442513
210 => 0.001875533944294
211 => 0.001880901217924
212 => 0.0019002914906493
213 => 0.0018980162659467
214 => 0.0019001500594872
215 => 0.0019289007150966
216 => 0.0020743116651356
217 => 0.002082226062315
218 => 0.0020432526760487
219 => 0.002058821775146
220 => 0.0020289325094668
221 => 0.0020489973737579
222 => 0.0020627252443136
223 => 0.0020006916369901
224 => 0.0019970184093592
225 => 0.0019670057800483
226 => 0.0019831328670378
227 => 0.0019574735120589
228 => 0.0019637694202446
301 => 0.0019461655120901
302 => 0.0019778490418651
303 => 0.0020132761512763
304 => 0.0020222264381726
305 => 0.0019986820866894
306 => 0.0019816344245672
307 => 0.0019517043457296
308 => 0.0020014787338718
309 => 0.0020160342818116
310 => 0.0020014022797749
311 => 0.0019980117251875
312 => 0.0019915866303709
313 => 0.0019993748394262
314 => 0.0020159550091715
315 => 0.0020081361073073
316 => 0.0020133006297399
317 => 0.0019936187958591
318 => 0.0020354802710384
319 => 0.0021019663681356
320 => 0.0021021801318093
321 => 0.0020943611877983
322 => 0.0020911618443705
323 => 0.002099184555419
324 => 0.002103536547054
325 => 0.0021294805234712
326 => 0.0021573194438205
327 => 0.0022872315380183
328 => 0.0022507527418192
329 => 0.0023660184802965
330 => 0.0024571787140491
331 => 0.0024845136821976
401 => 0.0024593667977106
402 => 0.0023733406642886
403 => 0.0023691198117736
404 => 0.0024976791744027
405 => 0.0024613552660682
406 => 0.0024570346527535
407 => 0.0024110706268767
408 => 0.0024382410589252
409 => 0.00243229848687
410 => 0.0024229178461603
411 => 0.0024747571378002
412 => 0.0025717956640246
413 => 0.002556671299691
414 => 0.002545381663315
415 => 0.0024959137630793
416 => 0.0025257044880767
417 => 0.0025150965815089
418 => 0.0025606748800682
419 => 0.0025336753056846
420 => 0.002461080076737
421 => 0.0024726411062239
422 => 0.0024708936798745
423 => 0.0025068555903209
424 => 0.0024960607174344
425 => 0.0024687858076919
426 => 0.0025714639968914
427 => 0.0025647966464109
428 => 0.0025742494250238
429 => 0.002578410830506
430 => 0.0026409092348791
501 => 0.0026665128314249
502 => 0.0026723252960949
503 => 0.0026966467325602
504 => 0.0026717201565993
505 => 0.0027714442327902
506 => 0.0028377549243959
507 => 0.002914778205013
508 => 0.0030273299199007
509 => 0.00306965040586
510 => 0.0030620055888674
511 => 0.0031473410145603
512 => 0.0033006868776304
513 => 0.0030930011721199
514 => 0.0033116947243228
515 => 0.0032424588706338
516 => 0.0030783019070372
517 => 0.003067732133865
518 => 0.0031789011355142
519 => 0.0034254632815522
520 => 0.0033637022604544
521 => 0.0034255643004575
522 => 0.0033533989447982
523 => 0.0033498153266323
524 => 0.0034220593902092
525 => 0.0035908615825754
526 => 0.0035106699884378
527 => 0.0033956956744559
528 => 0.0034805909187017
529 => 0.003407046801452
530 => 0.0032413313215863
531 => 0.0033636550329656
601 => 0.003281860650745
602 => 0.0033057325999055
603 => 0.003477652225337
604 => 0.0034569664011621
605 => 0.0034837357731001
606 => 0.003436488532306
607 => 0.0033923521591984
608 => 0.0033099683411828
609 => 0.0032855785541415
610 => 0.0032923190138271
611 => 0.0032855752139044
612 => 0.0032394822248711
613 => 0.0032295284482779
614 => 0.0032129383845376
615 => 0.0032180803389988
616 => 0.0031868861655727
617 => 0.0032457560158728
618 => 0.0032566827788479
619 => 0.0032995233465582
620 => 0.003303971196416
621 => 0.003423281567692
622 => 0.0033575674201225
623 => 0.0034016541437987
624 => 0.0033977106122727
625 => 0.0030818596862058
626 => 0.0031253811570415
627 => 0.0031930869078719
628 => 0.0031625855588958
629 => 0.00311946378766
630 => 0.003084640645344
701 => 0.0030318800238861
702 => 0.0031061395854101
703 => 0.0032037830121901
704 => 0.0033064475948554
705 => 0.0034297923640777
706 => 0.0034022632474787
707 => 0.0033041417501916
708 => 0.0033085434088821
709 => 0.0033357527309179
710 => 0.0033005141866539
711 => 0.0032901216520124
712 => 0.0033343249562464
713 => 0.0033346293601089
714 => 0.0032940831562129
715 => 0.0032490234704594
716 => 0.0032488346687308
717 => 0.0032408167328759
718 => 0.0033548253177748
719 => 0.0034175185119012
720 => 0.0034247061855726
721 => 0.0034170347241947
722 => 0.0034199871652096
723 => 0.0033835073768978
724 => 0.0034668893552335
725 => 0.0035434089041773
726 => 0.0035229000304587
727 => 0.0034921543132462
728 => 0.0034676638685721
729 => 0.003517130860011
730 => 0.0035149281727505
731 => 0.0035427405726715
801 => 0.0035414788415589
802 => 0.0035321265775427
803 => 0.0035229003644575
804 => 0.0035594812564566
805 => 0.003548946547032
806 => 0.0035383954742939
807 => 0.0035172336826292
808 => 0.0035201099215766
809 => 0.0034893695130457
810 => 0.0034751475934739
811 => 0.0032612840462706
812 => 0.0032041327182649
813 => 0.003222113689478
814 => 0.0032280334920771
815 => 0.0032031611608876
816 => 0.0032388216946357
817 => 0.0032332640382249
818 => 0.0032548856281991
819 => 0.0032413773974835
820 => 0.003241931779984
821 => 0.0032816566062599
822 => 0.0032931888923293
823 => 0.0032873234785574
824 => 0.0032914314133086
825 => 0.0033860970357989
826 => 0.0033726386115169
827 => 0.0033654890918535
828 => 0.003367469557661
829 => 0.0033916586538611
830 => 0.0033984302801214
831 => 0.0033697384238226
901 => 0.0033832696691188
902 => 0.0034408839942191
903 => 0.0034610457473158
904 => 0.00352539238501
905 => 0.0034980567896472
906 => 0.0035482324579925
907 => 0.00370245535634
908 => 0.0038256592789528
909 => 0.0037123558601006
910 => 0.0039386041740541
911 => 0.0041147709398599
912 => 0.0041080093659672
913 => 0.0040772906155382
914 => 0.0038767294363041
915 => 0.0036921700489741
916 => 0.0038465618132811
917 => 0.0038469553896393
918 => 0.0038336930001621
919 => 0.003751321438149
920 => 0.0038308266483547
921 => 0.0038371374832203
922 => 0.003833605093882
923 => 0.0037704510104169
924 => 0.0036740263977914
925 => 0.0036928675362905
926 => 0.0037237297055009
927 => 0.0036653011806627
928 => 0.0036466297266677
929 => 0.0036813435120338
930 => 0.0037931985613879
1001 => 0.0037720530122397
1002 => 0.0037715008164955
1003 => 0.0038619704428599
1004 => 0.0037972137149503
1005 => 0.0036931051833846
1006 => 0.0036668164061415
1007 => 0.0035735089571706
1008 => 0.0036379567445245
1009 => 0.0036402761056572
1010 => 0.0036049787111639
1011 => 0.0036959693724127
1012 => 0.0036951308774507
1013 => 0.0037815129681339
1014 => 0.0039466430818885
1015 => 0.0038978059816918
1016 => 0.0038410137476246
1017 => 0.0038471886381455
1018 => 0.0039149119462319
1019 => 0.0038739648881901
1020 => 0.003888689735755
1021 => 0.0039148896584116
1022 => 0.0039306967222578
1023 => 0.003844914244915
1024 => 0.0038249142459961
1025 => 0.003784001267254
1026 => 0.0037733278347771
1027 => 0.0038066506022852
1028 => 0.0037978712303576
1029 => 0.003640081172335
1030 => 0.003623591233336
1031 => 0.0036240969562229
1101 => 0.0035826322205562
1102 => 0.0035193885459876
1103 => 0.0036855891466703
1104 => 0.0036722409124595
1105 => 0.0036575054949622
1106 => 0.0036593104995265
1107 => 0.0037314525472218
1108 => 0.0036896065162978
1109 => 0.0038008610479389
1110 => 0.0037779904608509
1111 => 0.0037545333295026
1112 => 0.0037512908394286
1113 => 0.0037422618451279
1114 => 0.0037112980641301
1115 => 0.0036739074379404
1116 => 0.0036492189078094
1117 => 0.0033662115454726
1118 => 0.0034187360657442
1119 => 0.003479160738556
1120 => 0.003500019093474
1121 => 0.0034643394340326
1122 => 0.0037127069145549
1123 => 0.0037580860465749
1124 => 0.0036206296956787
1125 => 0.0035949172247319
1126 => 0.0037143926198695
1127 => 0.0036423343513285
1128 => 0.0036747821852403
1129 => 0.0036046477163392
1130 => 0.0037471555425274
1201 => 0.0037460698716577
1202 => 0.0036906311085853
1203 => 0.0037374875715059
1204 => 0.0037293451079925
1205 => 0.0036667548810233
1206 => 0.0037491397643625
1207 => 0.0037491806262368
1208 => 0.0036958220221222
1209 => 0.0036335108542168
1210 => 0.0036223710891194
1211 => 0.0036139787725353
1212 => 0.003672718189819
1213 => 0.0037253837676822
1214 => 0.0038233813511815
1215 => 0.0038480202720384
1216 => 0.0039441876204487
1217 => 0.0038869246467736
1218 => 0.0039123085813241
1219 => 0.0039398664330554
1220 => 0.0039530786805819
1221 => 0.0039315500322458
1222 => 0.0040809375083868
1223 => 0.0040935503884871
1224 => 0.0040977793780837
1225 => 0.0040474067616481
1226 => 0.0040921494349006
1227 => 0.0040712158198074
1228 => 0.0041256792707542
1229 => 0.0041342198352869
1230 => 0.0041269862809671
1231 => 0.0041296971909534
]
'min_raw' => 0.0018518926280477
'max_raw' => 0.0041342198352869
'avg_raw' => 0.0029930562316673
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.001851'
'max' => '$0.004134'
'avg' => '$0.002993'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 0.00028555808578193
'max_diff' => -0.00039451396239734
'year' => 2031
]
6 => [
'items' => [
101 => 0.0040022213338238
102 => 0.0039956110381429
103 => 0.0039054791874888
104 => 0.0039422085828513
105 => 0.0038735447387068
106 => 0.003895318751001
107 => 0.0039049165281499
108 => 0.0038999031940363
109 => 0.0039442852077568
110 => 0.003906551429448
111 => 0.0038069657844837
112 => 0.003707353007477
113 => 0.0037061024502045
114 => 0.0036798761643302
115 => 0.0036609193632269
116 => 0.0036645711156481
117 => 0.0036774403674857
118 => 0.0036601713789151
119 => 0.0036638565931866
120 => 0.0037250557045475
121 => 0.0037373287498788
122 => 0.0036956201464546
123 => 0.0035281540851835
124 => 0.0034870574936908
125 => 0.0035165969086749
126 => 0.0035024789708945
127 => 0.0028267738867876
128 => 0.0029855207734233
129 => 0.0028911987639193
130 => 0.0029346666854457
131 => 0.002838388338308
201 => 0.0028843374119427
202 => 0.0028758522958339
203 => 0.0031311125918822
204 => 0.0031271270534585
205 => 0.0031290347197919
206 => 0.0030379768352985
207 => 0.0031830345177875
208 => 0.0032544951482872
209 => 0.0032412696874448
210 => 0.0032445982510075
211 => 0.0031874025009423
212 => 0.0031295884996763
213 => 0.0030654638747613
214 => 0.0031845995018101
215 => 0.0031713536537953
216 => 0.0032017348634357
217 => 0.0032790028335674
218 => 0.0032903808356817
219 => 0.0033056729859077
220 => 0.0033001918386211
221 => 0.0034307750041599
222 => 0.0034149605211977
223 => 0.0034530688749994
224 => 0.0033746770999416
225 => 0.003285969365448
226 => 0.0033028298057009
227 => 0.0033012060097215
228 => 0.0032805332231968
229 => 0.003261870755865
301 => 0.0032308030058753
302 => 0.0033291059640048
303 => 0.003325115043427
304 => 0.0033897234086435
305 => 0.0033783032525193
306 => 0.0033020366549357
307 => 0.0033047605313887
308 => 0.0033230799095851
309 => 0.0033864834866901
310 => 0.0034053059852195
311 => 0.0033965866539538
312 => 0.0034172246643116
313 => 0.003433536106219
314 => 0.0034192731302798
315 => 0.0036212067916244
316 => 0.0035373498566684
317 => 0.0035782211432932
318 => 0.0035879687043256
319 => 0.0035630005317102
320 => 0.0035684152343072
321 => 0.0035766170333236
322 => 0.0036264167508742
323 => 0.0037571056193913
324 => 0.0038149868296283
325 => 0.0039891253064349
326 => 0.0038101806008635
327 => 0.0037995627625816
328 => 0.0038309303607327
329 => 0.003933168081048
330 => 0.0040160221506628
331 => 0.00404350962552
401 => 0.0040471425490911
402 => 0.0040987108792559
403 => 0.004128268884414
404 => 0.0040924491275922
405 => 0.0040620956341706
406 => 0.0039533731883487
407 => 0.003965958107494
408 => 0.0040526557205411
409 => 0.0041751212054341
410 => 0.0042802093318343
411 => 0.0042434111326599
412 => 0.0045241554168804
413 => 0.0045519900659233
414 => 0.0045481442174276
415 => 0.0046115556902984
416 => 0.0044856968301716
417 => 0.0044318897290668
418 => 0.0040686584039751
419 => 0.0041707115903127
420 => 0.0043190518900278
421 => 0.0042994184951129
422 => 0.0041916898043122
423 => 0.0042801276099621
424 => 0.0042508873057084
425 => 0.0042278242645621
426 => 0.0043334805270436
427 => 0.0042173071263252
428 => 0.0043178929714876
429 => 0.0041888905846394
430 => 0.0042435792237341
501 => 0.0042125353071921
502 => 0.0042326245257941
503 => 0.0041151833643372
504 => 0.0041785517643363
505 => 0.0041125470305613
506 => 0.0041125157357234
507 => 0.004111058677567
508 => 0.0041887129541435
509 => 0.0041912452573148
510 => 0.0041338586295956
511 => 0.0041255883199937
512 => 0.0041561679892368
513 => 0.0041203672053812
514 => 0.0041371181668198
515 => 0.0041208745749387
516 => 0.0041172178002639
517 => 0.0040880799975059
518 => 0.0040755266309173
519 => 0.0040804491294171
520 => 0.0040636461043153
521 => 0.0040535216738994
522 => 0.0041090446735291
523 => 0.0040793809746184
524 => 0.0041044982862337
525 => 0.0040758739395906
526 => 0.0039766494830915
527 => 0.0039195844488793
528 => 0.0037321586486645
529 => 0.0037853123731045
530 => 0.0038205533473996
531 => 0.0038089062056053
601 => 0.0038339287730251
602 => 0.0038354649554398
603 => 0.0038273298636967
604 => 0.0038179104696281
605 => 0.0038133256295206
606 => 0.0038474972713926
607 => 0.0038673350596638
608 => 0.0038240902506336
609 => 0.003813958596937
610 => 0.0038576814864779
611 => 0.0038843524238399
612 => 0.0040812756402162
613 => 0.0040666869322934
614 => 0.0041033017262902
615 => 0.004099179462386
616 => 0.0041375575996887
617 => 0.0042002896343677
618 => 0.0040727378677125
619 => 0.0040948764439956
620 => 0.0040894485763454
621 => 0.0041487086120873
622 => 0.0041488936154504
623 => 0.0041133642637648
624 => 0.0041326253017115
625 => 0.0041218743187286
626 => 0.0041413027980612
627 => 0.0040664920912048
628 => 0.0041576034568391
629 => 0.004209257730067
630 => 0.0042099749497009
701 => 0.0042344586652573
702 => 0.0042593355382638
703 => 0.0043070845296806
704 => 0.0042580038448089
705 => 0.0041697124706331
706 => 0.0041760868226692
707 => 0.0041243216222945
708 => 0.0041251918046649
709 => 0.0041205467029741
710 => 0.0041344870028153
711 => 0.0040695512030889
712 => 0.0040847915054928
713 => 0.0040634549928802
714 => 0.0040948300625841
715 => 0.0040610756740675
716 => 0.0040894459588633
717 => 0.0041016896332913
718 => 0.0041468690555181
719 => 0.0040544026366703
720 => 0.0038658573492134
721 => 0.0039054918545275
722 => 0.0038468693079448
723 => 0.0038522950478228
724 => 0.0038632559058765
725 => 0.0038277281787549
726 => 0.0038345057494824
727 => 0.0038342636069629
728 => 0.0038321769535466
729 => 0.0038229348195764
730 => 0.003809531896819
731 => 0.0038629250158821
801 => 0.0038719975472442
802 => 0.0038921646606131
803 => 0.0039521683105154
804 => 0.0039461725309066
805 => 0.003955951896211
806 => 0.0039346035966604
807 => 0.0038532853342105
808 => 0.0038577013070955
809 => 0.0038026340544586
810 => 0.0038907564671551
811 => 0.0038698879166695
812 => 0.0038564338264136
813 => 0.0038527627532359
814 => 0.0039129151405803
815 => 0.0039309136776469
816 => 0.0039196981971839
817 => 0.0038966949195464
818 => 0.0039408680129189
819 => 0.0039526868691922
820 => 0.0039553326752491
821 => 0.0040335989273546
822 => 0.0039597068893122
823 => 0.0039774934372927
824 => 0.0041162590072425
825 => 0.0039904177836378
826 => 0.0040570786863754
827 => 0.0040538159820729
828 => 0.0040879174442315
829 => 0.0040510186668288
830 => 0.0040514760713975
831 => 0.0040817558595612
901 => 0.0040392333580739
902 => 0.0040287041887103
903 => 0.0040141582166459
904 => 0.0040459188144948
905 => 0.004064957856497
906 => 0.0042183985523986
907 => 0.0043175282396968
908 => 0.0043132247585353
909 => 0.0043525505205728
910 => 0.0043348339045922
911 => 0.0042776222781836
912 => 0.0043752755482485
913 => 0.0043443739676136
914 => 0.0043469214563757
915 => 0.0043468266387168
916 => 0.0043673734883759
917 => 0.0043528141623013
918 => 0.0043241162361241
919 => 0.0043431672587967
920 => 0.004399741985269
921 => 0.0045753516721637
922 => 0.0046736251794689
923 => 0.0045694354836281
924 => 0.0046413041406635
925 => 0.0045982085558631
926 => 0.0045903768061223
927 => 0.0046355156337925
928 => 0.0046807334710052
929 => 0.0046778532902569
930 => 0.0046450274624021
1001 => 0.0046264849851715
1002 => 0.0047668948349473
1003 => 0.0048703464204428
1004 => 0.0048632917158602
1005 => 0.0048944288875748
1006 => 0.0049858485867653
1007 => 0.0049942068583503
1008 => 0.0049931539082433
1009 => 0.0049724370600244
1010 => 0.0050624516262255
1011 => 0.0051375433610061
1012 => 0.004967641708229
1013 => 0.0050323380334306
1014 => 0.0050613822981989
1015 => 0.005104027895924
1016 => 0.0051759781675182
1017 => 0.0052541352463366
1018 => 0.0052651875142302
1019 => 0.00525734540126
1020 => 0.0052057987068042
1021 => 0.0052913191150551
1022 => 0.0053414149645081
1023 => 0.0053712458964343
1024 => 0.0054468921764052
1025 => 0.0050615616656903
1026 => 0.0047888055780373
1027 => 0.0047462107763046
1028 => 0.0048328289805859
1029 => 0.0048556695102876
1030 => 0.0048464625214044
1031 => 0.0045394507468524
1101 => 0.0047445944228492
1102 => 0.0049653117692515
1103 => 0.0049737904214265
1104 => 0.0050842861400176
1105 => 0.0051202680753634
1106 => 0.0052092316118341
1107 => 0.0052036669184057
1108 => 0.0052253281238173
1109 => 0.005220348587813
1110 => 0.0053851348056422
1111 => 0.005566918474898
1112 => 0.0055606238844684
1113 => 0.0055344903312461
1114 => 0.0055733031142142
1115 => 0.0057609233420081
1116 => 0.0057436502779857
1117 => 0.0057604295883674
1118 => 0.0059816444107491
1119 => 0.0062692551472868
1120 => 0.0061356310845192
1121 => 0.0064255568514367
1122 => 0.0066080497534067
1123 => 0.0069236523572455
1124 => 0.0068841373568693
1125 => 0.0070069991345449
1126 => 0.0068133972591664
1127 => 0.006368848219903
1128 => 0.0062984966327742
1129 => 0.006439342291792
1130 => 0.0067855976009688
1201 => 0.006428437479888
1202 => 0.0065006905072163
1203 => 0.006479881630485
1204 => 0.006478772813876
1205 => 0.0065210918339576
1206 => 0.0064597058881176
1207 => 0.0062096085016447
1208 => 0.0063242266600321
1209 => 0.0062799670846626
1210 => 0.0063290763833049
1211 => 0.006594099013862
1212 => 0.0064769261915423
1213 => 0.0063534941415756
1214 => 0.0065083053239985
1215 => 0.0067054331581166
1216 => 0.0066930972525303
1217 => 0.0066691604396843
1218 => 0.0068040910004065
1219 => 0.0070269567557748
1220 => 0.0070871964739037
1221 => 0.0071316642022797
1222 => 0.0071377955507343
1223 => 0.0072009522504287
1224 => 0.0068613427586344
1225 => 0.0074003117439022
1226 => 0.0074933767989402
1227 => 0.0074758844257444
1228 => 0.007579322317643
1229 => 0.0075488882658804
1230 => 0.0075047940998328
1231 => 0.0076687651603626
]
'min_raw' => 0.0028267738867876
'max_raw' => 0.0076687651603626
'avg_raw' => 0.0052477695235751
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.002826'
'max' => '$0.007668'
'avg' => '$0.005247'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.0009748812587399
'max_diff' => 0.0035345453250757
'year' => 2032
]
7 => [
'items' => [
101 => 0.0074807855712474
102 => 0.0072139722104707
103 => 0.0070675931237787
104 => 0.0072603569131989
105 => 0.0073780710328686
106 => 0.0074558725779461
107 => 0.0074794152784776
108 => 0.0068877056767381
109 => 0.0065688070191196
110 => 0.0067732174024725
111 => 0.0070226121778142
112 => 0.0068599573580651
113 => 0.006866333119053
114 => 0.0066344300910255
115 => 0.0070431304500505
116 => 0.0069835862454516
117 => 0.0072925016842425
118 => 0.0072187765355738
119 => 0.0074706850838794
120 => 0.0074043491207358
121 => 0.0076797059949514
122 => 0.0077895533070658
123 => 0.0079740040404748
124 => 0.0081096867508201
125 => 0.0081893622335314
126 => 0.0081845788164047
127 => 0.008500292773075
128 => 0.008314127283032
129 => 0.0080802595517008
130 => 0.0080760296222843
131 => 0.0081971530342721
201 => 0.0084509944772132
202 => 0.0085168118701251
203 => 0.0085535948137889
204 => 0.0084972604551443
205 => 0.0082951911583034
206 => 0.0082079386604422
207 => 0.0082822803165682
208 => 0.0081913668593774
209 => 0.0083483089922995
210 => 0.0085638240618322
211 => 0.0085193210522127
212 => 0.0086680879411068
213 => 0.0088220460203791
214 => 0.0090422129884285
215 => 0.0090997727866358
216 => 0.0091949169442694
217 => 0.0092928515357021
218 => 0.009324305487059
219 => 0.0093843608397873
220 => 0.0093840443184343
221 => 0.0095650251660724
222 => 0.0097646526455275
223 => 0.0098400073976351
224 => 0.010013281495021
225 => 0.0097165556754961
226 => 0.0099416256181464
227 => 0.010144644340283
228 => 0.0099025970502722
301 => 0.010236202849766
302 => 0.010249156006994
303 => 0.01044473330243
304 => 0.010246478245429
305 => 0.010128755025435
306 => 0.010468617550528
307 => 0.010633066320851
308 => 0.010583533012901
309 => 0.010206582093642
310 => 0.0099871804904469
311 => 0.0094129641754778
312 => 0.010093148204858
313 => 0.010424446004328
314 => 0.010205724112377
315 => 0.010316034712384
316 => 0.010917853577694
317 => 0.011146987236718
318 => 0.011099329037407
319 => 0.01110738248857
320 => 0.011231018851909
321 => 0.011779290574744
322 => 0.011450753449582
323 => 0.011701907771717
324 => 0.011835119118574
325 => 0.011958853241483
326 => 0.011655001342189
327 => 0.011259694485679
328 => 0.01113448421037
329 => 0.010183976530759
330 => 0.01013449847819
331 => 0.010106724947944
401 => 0.0099316167683898
402 => 0.0097940297054269
403 => 0.0096846153646787
404 => 0.0093974794606675
405 => 0.0094943793993084
406 => 0.0090367446982352
407 => 0.0093295231624039
408 => 0.0085991271295148
409 => 0.0092074226495401
410 => 0.0088763550537938
411 => 0.009098658040303
412 => 0.0090978824461253
413 => 0.0086885521667357
414 => 0.0084524590040888
415 => 0.0086029067562108
416 => 0.008764198689043
417 => 0.0087903677624938
418 => 0.0089994869635609
419 => 0.0090578476375765
420 => 0.0088810120707098
421 => 0.0085839912951934
422 => 0.0086529824470233
423 => 0.008451060900599
424 => 0.0080972011572906
425 => 0.0083513494027331
426 => 0.0084381267878367
427 => 0.008476452624697
428 => 0.0081284722082193
429 => 0.0080191292063396
430 => 0.0079609159096155
501 => 0.0085390713931771
502 => 0.0085707440556788
503 => 0.0084087022362569
504 => 0.0091411466254799
505 => 0.0089753719021752
506 => 0.0091605828838998
507 => 0.0086467222231258
508 => 0.0086663523923725
509 => 0.0084230825205796
510 => 0.0085592973934849
511 => 0.0084630251117258
512 => 0.0085482925778558
513 => 0.0085994015454832
514 => 0.0088426314990838
515 => 0.0092101999449046
516 => 0.00880630105502
517 => 0.0086303165247587
518 => 0.0087394963375583
519 => 0.009030256566591
520 => 0.0094707731973179
521 => 0.0092099784857042
522 => 0.0093257147501369
523 => 0.0093509979751675
524 => 0.0091586976099685
525 => 0.0094778635860772
526 => 0.0096489072255735
527 => 0.0098243626072027
528 => 0.0099767055989231
529 => 0.0097542818694335
530 => 0.0099923071431766
531 => 0.0098005007896566
601 => 0.0096284306619729
602 => 0.0096286916213291
603 => 0.0095207495166896
604 => 0.0093115980873701
605 => 0.009273027354845
606 => 0.0094736771763873
607 => 0.0096345793316554
608 => 0.0096478320038326
609 => 0.0097369157044403
610 => 0.0097896345208248
611 => 0.010306350589149
612 => 0.010514178066328
613 => 0.01076830557145
614 => 0.010867302556537
615 => 0.011165247989264
616 => 0.010924632854392
617 => 0.010872574256422
618 => 0.010149856093835
619 => 0.010268201152471
620 => 0.010457683009947
621 => 0.010152980579874
622 => 0.010346244138924
623 => 0.010384398459362
624 => 0.010142626907896
625 => 0.010271767539866
626 => 0.0099288083088824
627 => 0.0092176755189406
628 => 0.0094786552801605
629 => 0.009670824229256
630 => 0.0093965754446361
701 => 0.0098881557761736
702 => 0.0096009846947672
703 => 0.0095099652486043
704 => 0.0091548659383472
705 => 0.0093224591437626
706 => 0.0095491313537906
707 => 0.0094090742814661
708 => 0.0096997137362145
709 => 0.01011133671485
710 => 0.010404683761997
711 => 0.010427203305772
712 => 0.010238600807182
713 => 0.010540837514818
714 => 0.010543038979274
715 => 0.010202114738388
716 => 0.0099933005391188
717 => 0.0099458575136961
718 => 0.010064379492955
719 => 0.01020828705614
720 => 0.010435189173983
721 => 0.010572301371662
722 => 0.010929817264519
723 => 0.011026550814342
724 => 0.011132831657817
725 => 0.011274855640499
726 => 0.01144539184591
727 => 0.011072268337102
728 => 0.011087093229696
729 => 0.010739645784541
730 => 0.010368348360388
731 => 0.010650116822443
801 => 0.011018491604491
802 => 0.010933986022471
803 => 0.010924477418202
804 => 0.010940468253116
805 => 0.010876753803968
806 => 0.010588575711836
807 => 0.010443854478058
808 => 0.010630581791956
809 => 0.010729819049016
810 => 0.010883727380319
811 => 0.010864754929875
812 => 0.011261206262762
813 => 0.011415255262655
814 => 0.011375842936354
815 => 0.011383095752904
816 => 0.011661994108873
817 => 0.011972186440531
818 => 0.012262722492612
819 => 0.012558268243603
820 => 0.012201976305437
821 => 0.012021073232268
822 => 0.012207719026862
823 => 0.01210868214102
824 => 0.012677777463315
825 => 0.012717180388682
826 => 0.013286234558907
827 => 0.013826334728161
828 => 0.013487107488752
829 => 0.013806983496384
830 => 0.014152955478511
831 => 0.014820391563966
901 => 0.01459562257107
902 => 0.01442345304509
903 => 0.014260753674956
904 => 0.014599305236407
905 => 0.01503484641172
906 => 0.015128657809321
907 => 0.015280668112146
908 => 0.015120847865661
909 => 0.01531333374893
910 => 0.015992893499453
911 => 0.015809270456222
912 => 0.015548496215956
913 => 0.016084943373382
914 => 0.016279081514269
915 => 0.017641644657946
916 => 0.019361936911515
917 => 0.018649724622489
918 => 0.018207631471744
919 => 0.018311533848759
920 => 0.018939726344195
921 => 0.019141481835895
922 => 0.018593040860164
923 => 0.018786759484535
924 => 0.019854168150815
925 => 0.020426798653704
926 => 0.019649089516244
927 => 0.017503420850383
928 => 0.015525016348813
929 => 0.016049778311345
930 => 0.015990286590054
1001 => 0.017137084040028
1002 => 0.015804891107369
1003 => 0.015827321819755
1004 => 0.016997833826516
1005 => 0.016685561290768
1006 => 0.016179719775702
1007 => 0.015528709551671
1008 => 0.014325256941392
1009 => 0.01325932540371
1010 => 0.015349862618477
1011 => 0.015259714852381
1012 => 0.015129167527924
1013 => 0.015419686471808
1014 => 0.016830363998069
1015 => 0.016797843315171
1016 => 0.016590963322773
1017 => 0.01674787997365
1018 => 0.016152211528122
1019 => 0.016305728849653
1020 => 0.015524702959432
1021 => 0.015877759280334
1022 => 0.016178634466995
1023 => 0.016239039615251
1024 => 0.016375135498633
1025 => 0.015212211075995
1026 => 0.015734330000092
1027 => 0.016041025952072
1028 => 0.014655362483333
1029 => 0.016013635840543
1030 => 0.01519196714907
1031 => 0.014913080454135
1101 => 0.015288564648337
1102 => 0.015142238092686
1103 => 0.015016435112721
1104 => 0.014946234888331
1105 => 0.015221949039875
1106 => 0.015209086645156
1107 => 0.014757964779419
1108 => 0.014169494695645
1109 => 0.014367004571631
1110 => 0.01429524738202
1111 => 0.014035190070009
1112 => 0.014210437298865
1113 => 0.013438737193575
1114 => 0.012111067271905
1115 => 0.01298816668979
1116 => 0.012954399316302
1117 => 0.012937372275361
1118 => 0.013596488246654
1119 => 0.013533129454407
1120 => 0.013418132626067
1121 => 0.014033078063075
1122 => 0.013808614706384
1123 => 0.014500357881488
1124 => 0.014955984675755
1125 => 0.014840422982746
1126 => 0.015268942184989
1127 => 0.01437155480026
1128 => 0.014669630892534
1129 => 0.014731063962036
1130 => 0.014025489731838
1201 => 0.01354349573639
1202 => 0.013511352232027
1203 => 0.012675641066785
1204 => 0.013122071225632
1205 => 0.013514911290883
1206 => 0.013326771385249
1207 => 0.013267211911645
1208 => 0.013571488345414
1209 => 0.013595133230269
1210 => 0.013056027349796
1211 => 0.013168124533609
1212 => 0.013635588424717
1213 => 0.013156345642942
1214 => 0.012225255201816
1215 => 0.011994331899085
1216 => 0.011963522473739
1217 => 0.011337240161973
1218 => 0.012009763298376
1219 => 0.011716188926836
1220 => 0.012643586848968
1221 => 0.012113862129581
1222 => 0.012091026755676
1223 => 0.012056507738797
1224 => 0.011517440681663
1225 => 0.011635462107677
1226 => 0.012027783302917
1227 => 0.012167767925193
1228 => 0.012153166382229
1229 => 0.01202586071503
1230 => 0.012084140597563
1231 => 0.011896400789866
]
'min_raw' => 0.0065688070191196
'max_raw' => 0.020426798653704
'avg_raw' => 0.013497802836412
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.006568'
'max' => '$0.020426'
'avg' => '$0.013497'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.003742033132332
'max_diff' => 0.012758033493341
'year' => 2033
]
8 => [
'items' => [
101 => 0.011830105956302
102 => 0.011620861225744
103 => 0.011313329277154
104 => 0.011356093480809
105 => 0.010746792220542
106 => 0.010414812555884
107 => 0.010322924960128
108 => 0.010200049026836
109 => 0.010336804123753
110 => 0.010745066146627
111 => 0.010252615529422
112 => 0.009408343487618
113 => 0.0094590856759
114 => 0.0095730883074786
115 => 0.0093606451577347
116 => 0.0091595855455042
117 => 0.0093343905658567
118 => 0.0089766613719029
119 => 0.0096163181714965
120 => 0.009599017247685
121 => 0.0098374417464623
122 => 0.0099865334785111
123 => 0.0096429253051602
124 => 0.0095565087787777
125 => 0.0096057355596173
126 => 0.0087921265263483
127 => 0.0097709525306179
128 => 0.0097794174585494
129 => 0.0097069356063926
130 => 0.010228130235804
131 => 0.011328013468543
201 => 0.010914193153686
202 => 0.010753949419988
203 => 0.010449325965091
204 => 0.01085521863199
205 => 0.010824052408084
206 => 0.010683106924143
207 => 0.010597862655678
208 => 0.010754927834056
209 => 0.010578400541913
210 => 0.010546691389599
211 => 0.010354568426472
212 => 0.010285989269673
213 => 0.010235215992194
214 => 0.010179319602569
215 => 0.010302613109569
216 => 0.010023213802095
217 => 0.0096862856271336
218 => 0.0096582736949989
219 => 0.0097356171024571
220 => 0.0097013984021963
221 => 0.0096581098690269
222 => 0.0095754602702761
223 => 0.0095509398998559
224 => 0.0096306192081288
225 => 0.009540665914681
226 => 0.0096733968991726
227 => 0.0096373014157313
228 => 0.0094356749794158
301 => 0.009184373788099
302 => 0.0091821366803742
303 => 0.0091279942509216
304 => 0.0090590357266449
305 => 0.0090398530427484
306 => 0.0093196689746134
307 => 0.009898879579388
308 => 0.0097851666783356
309 => 0.0098673359031128
310 => 0.010271527163146
311 => 0.010400007410255
312 => 0.010308815174078
313 => 0.010183985616707
314 => 0.010189477483711
315 => 0.010616057869724
316 => 0.010642663165145
317 => 0.010709886163481
318 => 0.010796286713561
319 => 0.010323529561363
320 => 0.010167210664357
321 => 0.010093138098713
322 => 0.0098650232662203
323 => 0.010111025555976
324 => 0.0099676905566036
325 => 0.0099870313450398
326 => 0.0099744356311982
327 => 0.0099813137426741
328 => 0.0096161393743848
329 => 0.0097491897211897
330 => 0.0095279677140874
331 => 0.0092317762799131
401 => 0.0092307833423677
402 => 0.0093032757762677
403 => 0.0092601544399547
404 => 0.0091441160326875
405 => 0.0091605987407539
406 => 0.0090161928741711
407 => 0.0091781322275097
408 => 0.0091827760687166
409 => 0.0091204205967851
410 => 0.0093699105139275
411 => 0.0094721267365452
412 => 0.0094310830291362
413 => 0.0094692470006193
414 => 0.0097898919627573
415 => 0.0098421710823064
416 => 0.0098653900138452
417 => 0.0098342797215021
418 => 0.0094751078019109
419 => 0.0094910386038617
420 => 0.0093741489493999
421 => 0.009275389508908
422 => 0.0092793393686026
423 => 0.009330114558844
424 => 0.009551852792554
425 => 0.010018487833214
426 => 0.010036196291901
427 => 0.010057659460422
428 => 0.0099703579675223
429 => 0.009944027001901
430 => 0.0099787643421544
501 => 0.010154007928921
502 => 0.010604782012256
503 => 0.010445448345016
504 => 0.010315907593375
505 => 0.0104295497565
506 => 0.010412055436244
507 => 0.010264385767618
508 => 0.010260241171849
509 => 0.0099768158649059
510 => 0.0098720399822112
511 => 0.0097844814122926
512 => 0.0096888697397158
513 => 0.0096321879352801
514 => 0.0097192769483128
515 => 0.0097391952360003
516 => 0.0095487735869487
517 => 0.0095228198198152
518 => 0.0096783222489675
519 => 0.0096098914276124
520 => 0.0096802742243788
521 => 0.0096966036369611
522 => 0.0096939742254371
523 => 0.0096225245887126
524 => 0.0096680644565019
525 => 0.0095603490930922
526 => 0.0094432248137086
527 => 0.0093685068205623
528 => 0.0093033054616385
529 => 0.0093394829650946
530 => 0.0092105167710247
531 => 0.0091692578899651
601 => 0.0096526365739744
602 => 0.010009713605049
603 => 0.010004521563599
604 => 0.0099729163465575
605 => 0.0099259574049183
606 => 0.010150572589851
607 => 0.010072321150743
608 => 0.010129255610821
609 => 0.010143747820442
610 => 0.010187611374192
611 => 0.010203288824458
612 => 0.010155900681066
613 => 0.0099968602838655
614 => 0.00960054673515
615 => 0.0094160617083949
616 => 0.0093551785767246
617 => 0.0093573915629272
618 => 0.0092963475242517
619 => 0.0093143277294435
620 => 0.0092900947426532
621 => 0.0092442033282613
622 => 0.0093366492995746
623 => 0.0093473028365746
624 => 0.009325724842223
625 => 0.0093308072410276
626 => 0.0091521506638783
627 => 0.0091657335354173
628 => 0.0090901023806604
629 => 0.0090759224508907
630 => 0.0088847334776233
701 => 0.0085460144981954
702 => 0.0087336976930454
703 => 0.0085070027859175
704 => 0.0084211499895997
705 => 0.0088275637745187
706 => 0.0087867711026765
707 => 0.0087169517806309
708 => 0.0086136744517038
709 => 0.0085753678857875
710 => 0.0083426293176649
711 => 0.0083288778814483
712 => 0.0084442294002798
713 => 0.0083909986433425
714 => 0.0083162425005383
715 => 0.0080454833292105
716 => 0.0077410603753571
717 => 0.0077502489907995
718 => 0.0078470802684298
719 => 0.008128630267617
720 => 0.0080186238120701
721 => 0.0079388128663922
722 => 0.007923866675375
723 => 0.0081109495479262
724 => 0.0083757110076597
725 => 0.0084999311608629
726 => 0.0083768327616607
727 => 0.0082354239487457
728 => 0.0082440308479625
729 => 0.008301288692493
730 => 0.0083073056823708
731 => 0.008215263082224
801 => 0.0082411725350227
802 => 0.0082018137070114
803 => 0.007960268652157
804 => 0.0079558998680623
805 => 0.0078966208161609
806 => 0.0078948258700283
807 => 0.0077939774148915
808 => 0.0077798680188854
809 => 0.0075796272901475
810 => 0.0077114263441875
811 => 0.0076230224584984
812 => 0.0074897769503963
813 => 0.0074668053745762
814 => 0.0074661148212681
815 => 0.0076029281649385
816 => 0.0077098276006101
817 => 0.0076245602819389
818 => 0.007605146566315
819 => 0.0078124342587565
820 => 0.0077860550104241
821 => 0.0077632107514961
822 => 0.0083520045228697
823 => 0.0078859283086765
824 => 0.0076826924765881
825 => 0.0074311495409409
826 => 0.0075130531891772
827 => 0.0075303114912755
828 => 0.0069253960750661
829 => 0.0066799819660473
830 => 0.0065957650920677
831 => 0.0065472970904406
901 => 0.0065693845674049
902 => 0.0063484830850841
903 => 0.006496932534577
904 => 0.0063056505232247
905 => 0.0062735814715359
906 => 0.0066156174031281
907 => 0.0066632097048642
908 => 0.0064601661598887
909 => 0.006590552985527
910 => 0.0065432729100381
911 => 0.0063089295042966
912 => 0.0062999793099107
913 => 0.0061823940264786
914 => 0.0059983958269049
915 => 0.0059143037123689
916 => 0.0058705078089974
917 => 0.0058885788522936
918 => 0.00587944157982
919 => 0.0058198146962403
920 => 0.00588285932299
921 => 0.0057218063534827
922 => 0.005657673763333
923 => 0.0056287065602271
924 => 0.0054857627799263
925 => 0.0057132499017725
926 => 0.0057580677305835
927 => 0.0058029738643621
928 => 0.0061938511001854
929 => 0.0061743239780913
930 => 0.0063508396517281
1001 => 0.0063439805772421
1002 => 0.0062936354477565
1003 => 0.0060812376278288
1004 => 0.0061658956132249
1005 => 0.0059053314929478
1006 => 0.0061005638484973
1007 => 0.0060114679545226
1008 => 0.0060704404371221
1009 => 0.0059644025960739
1010 => 0.0060230883155051
1011 => 0.0057686957004264
1012 => 0.0055311474558665
1013 => 0.005626743803943
1014 => 0.0057306679670705
1015 => 0.0059560020321153
1016 => 0.0058217949219403
1017 => 0.0058700608736919
1018 => 0.0057083780149467
1019 => 0.00537478009493
1020 => 0.0053766682229287
1021 => 0.0053253514507598
1022 => 0.0052810062672345
1023 => 0.0058372102229756
1024 => 0.0057680374687959
1025 => 0.0056578197381167
1026 => 0.0058053505505093
1027 => 0.0058443600389347
1028 => 0.0058454705842293
1029 => 0.0059531052566296
1030 => 0.0060105499005841
1031 => 0.0060206747680605
1101 => 0.0061900402506833
1102 => 0.0062468093264737
1103 => 0.0064806331153941
1104 => 0.006005676123888
1105 => 0.005995894697202
1106 => 0.0058074266115876
1107 => 0.0056878971721283
1108 => 0.0058156108945692
1109 => 0.0059287478179903
1110 => 0.0058109420911662
1111 => 0.0058263250320748
1112 => 0.0056681804688951
1113 => 0.0057247097088385
1114 => 0.0057734003055888
1115 => 0.0057465162199643
1116 => 0.0057062694425799
1117 => 0.0059194718804662
1118 => 0.0059074421633736
1119 => 0.0061059811750361
1120 => 0.006260756532288
1121 => 0.0065381416418879
1122 => 0.0062486758196076
1123 => 0.0062381265345213
1124 => 0.0063412474883987
1125 => 0.0062467935391929
1126 => 0.0063064851746515
1127 => 0.0065285243965865
1128 => 0.0065332157354611
1129 => 0.0064546297648618
1130 => 0.0064498478014089
1201 => 0.0064649410966989
1202 => 0.0065533429986424
1203 => 0.0065224526577873
1204 => 0.0065581997422726
1205 => 0.0066029020188002
1206 => 0.0067878095878912
1207 => 0.0068323901767974
1208 => 0.0067240824581406
1209 => 0.0067338614324652
1210 => 0.0066933513725742
1211 => 0.006654219162309
1212 => 0.0067421826561847
1213 => 0.0069029376701694
1214 => 0.0069019376215706
1215 => 0.0069392296601841
1216 => 0.0069624622912963
1217 => 0.006862730831237
1218 => 0.0067978093179659
1219 => 0.0068227043572173
1220 => 0.0068625120671236
1221 => 0.0068097952534095
1222 => 0.0064844026583623
1223 => 0.0065831059855402
1224 => 0.0065666769255517
1225 => 0.0065432799462861
1226 => 0.0066425269050137
1227 => 0.0066329542937298
1228 => 0.0063462174210971
1229 => 0.0063645733853676
1230 => 0.0063473337080813
1231 => 0.0064030386322994
]
'min_raw' => 0.0052810062672345
'max_raw' => 0.011830105956302
'avg_raw' => 0.0085555561117684
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.005281'
'max' => '$0.01183'
'avg' => '$0.008555'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.001287800751885
'max_diff' => -0.0085966926974015
'year' => 2034
]
9 => [
'items' => [
101 => 0.0062437852904772
102 => 0.0062927705458341
103 => 0.0063234936387857
104 => 0.0063415897765601
105 => 0.0064069654348391
106 => 0.0063992943559031
107 => 0.0064064885898018
108 => 0.0065034234324956
109 => 0.0069936866028203
110 => 0.0070203705454763
111 => 0.0068889690526444
112 => 0.0069414613572509
113 => 0.0068406876112115
114 => 0.0069083377020532
115 => 0.0069546221760811
116 => 0.0067454715379416
117 => 0.0067330869945274
118 => 0.0066318973193908
119 => 0.0066862709191331
120 => 0.006599758612343
121 => 0.0066209857063573
122 => 0.0065616329009486
123 => 0.0066684561336585
124 => 0.0067879011064803
125 => 0.00681807762364
126 => 0.0067386961988003
127 => 0.0066812188157256
128 => 0.0065803074652733
129 => 0.0067481252900315
130 => 0.0067972003361464
131 => 0.0067478675197062
201 => 0.0067364360281936
202 => 0.0067147733724337
203 => 0.0067410318630191
204 => 0.0067969330629058
205 => 0.0067705710893723
206 => 0.0067879836373294
207 => 0.0067216249602585
208 => 0.0068627638465001
209 => 0.0070869263647746
210 => 0.0070876470839251
211 => 0.0070612849682907
212 => 0.0070504981585528
213 => 0.0070775472889806
214 => 0.0070922203326243
215 => 0.0071796922604656
216 => 0.0072735531240747
217 => 0.007711560819835
218 => 0.0075885700115816
219 => 0.0079771964964546
220 => 0.0082845495891559
221 => 0.0083767113427351
222 => 0.0082919268659878
223 => 0.0080018837510027
224 => 0.0079876528520578
225 => 0.0084210997188901
226 => 0.0082986311258858
227 => 0.0082840638764397
228 => 0.0081290929540903
301 => 0.0082206999627209
302 => 0.0082006641661397
303 => 0.0081690366810515
304 => 0.0083438164721192
305 => 0.0086709886382983
306 => 0.0086199957879982
307 => 0.0085819319907393
308 => 0.008415147511356
309 => 0.0085155890206069
310 => 0.008479823722993
311 => 0.0086334941387608
312 => 0.0085424631886765
313 => 0.0082977033058426
314 => 0.008336682123923
315 => 0.0083307905539846
316 => 0.0084520386458349
317 => 0.0084156429782241
318 => 0.008323683715754
319 => 0.0086698703994025
320 => 0.0086473909617579
321 => 0.008679261664823
322 => 0.0086932921339466
323 => 0.0089040098677898
324 => 0.0089903341811299
325 => 0.009009931311578
326 => 0.0090919327326891
327 => 0.0090078910415191
328 => 0.0093441177269093
329 => 0.0095676888533228
330 => 0.009827378221517
331 => 0.010206854186371
401 => 0.010349540659504
402 => 0.01032376562527
403 => 0.010611479970923
404 => 0.01112849625453
405 => 0.010428269398248
406 => 0.011165609978196
407 => 0.010932176463591
408 => 0.010378709799752
409 => 0.010343073071544
410 => 0.010717887122176
411 => 0.011549188611962
412 => 0.011340957017314
413 => 0.011549529204254
414 => 0.011306218669225
415 => 0.011294136250378
416 => 0.011537712154647
417 => 0.012106840531603
418 => 0.011836468973169
419 => 0.011448825046329
420 => 0.0117350552895
421 => 0.011487096163507
422 => 0.010928374853254
423 => 0.011340797786538
424 => 0.01106502231618
425 => 0.011145508259461
426 => 0.011725147279648
427 => 0.011655403579205
428 => 0.011745658385672
429 => 0.011586361014637
430 => 0.011437552151202
501 => 0.011159789356908
502 => 0.011077557487057
503 => 0.011100283417491
504 => 0.011077546225215
505 => 0.010922140494579
506 => 0.010888580641845
507 => 0.010832646083663
508 => 0.010849982542129
509 => 0.010744809208515
510 => 0.010943293018964
511 => 0.010980133363216
512 => 0.011124573328285
513 => 0.011139569564619
514 => 0.01154183281136
515 => 0.011320272974815
516 => 0.011468914441725
517 => 0.011455618549857
518 => 0.010390705100615
519 => 0.010537440778109
520 => 0.010765715444099
521 => 0.01066287801649
522 => 0.010517489954102
523 => 0.01040008129851
524 => 0.010222195179636
525 => 0.010472566475951
526 => 0.010801778106586
527 => 0.011147918914854
528 => 0.011563784415944
529 => 0.011470968077309
530 => 0.011140144598581
531 => 0.01115498509817
601 => 0.011246723227108
602 => 0.011127914014846
603 => 0.011092874858718
604 => 0.011241909385119
605 => 0.011242935703994
606 => 0.011106231346713
607 => 0.010954309470229
608 => 0.010953672912019
609 => 0.01092663988149
610 => 0.011311027785302
611 => 0.011522402266398
612 => 0.011546636010008
613 => 0.011520771142368
614 => 0.011530725503383
615 => 0.011407731350152
616 => 0.011688859511655
617 => 0.011946850513343
618 => 0.011877703413717
619 => 0.011774042081538
620 => 0.011691470837451
621 => 0.011858252252762
622 => 0.011850825738876
623 => 0.01194459718701
624 => 0.011940343172473
625 => 0.011908811361388
626 => 0.011877704539817
627 => 0.012001039571189
628 => 0.011965521062854
629 => 0.011929947384465
630 => 0.011858598926398
701 => 0.011868296366822
702 => 0.011764652933233
703 => 0.011716702738454
704 => 0.010995646857582
705 => 0.010802957165033
706 => 0.010863581264869
707 => 0.010883540292639
708 => 0.010799681491503
709 => 0.010919913470774
710 => 0.010901175444162
711 => 0.010974074144331
712 => 0.010928530201359
713 => 0.010930399340665
714 => 0.011064334365953
715 => 0.011103216273594
716 => 0.011083440621552
717 => 0.011097290810373
718 => 0.011416462565941
719 => 0.011371086548838
720 => 0.011346981444129
721 => 0.011353658722871
722 => 0.011435213949538
723 => 0.011458044960254
724 => 0.011361308363542
725 => 0.011406929901779
726 => 0.011601180621358
727 => 0.011669157379573
728 => 0.011886106561098
729 => 0.011793942692822
730 => 0.011963113461801
731 => 0.012483086731078
801 => 0.012898477357991
802 => 0.012516466970738
803 => 0.013279278957385
804 => 0.01387323750787
805 => 0.013850440389413
806 => 0.013746869977627
807 => 0.013070663959105
808 => 0.012448409099197
809 => 0.012968951711847
810 => 0.012970278682017
811 => 0.012925563609944
812 => 0.012647842137618
813 => 0.012915899504703
814 => 0.012937176925061
815 => 0.012925267227784
816 => 0.012712338826104
817 => 0.012387236512485
818 => 0.012450760726381
819 => 0.012554814684602
820 => 0.012357818833761
821 => 0.012294866723017
822 => 0.012411906674018
823 => 0.012789033782386
824 => 0.012717740087097
825 => 0.012715878320593
826 => 0.013020902982268
827 => 0.012802571152951
828 => 0.012451561970151
829 => 0.012362927522252
830 => 0.012048334943529
831 => 0.012265625158193
901 => 0.012273445046185
902 => 0.012154437416265
903 => 0.012461218783431
904 => 0.012458391739125
905 => 0.012749634988868
906 => 0.013306382696408
907 => 0.013141725003397
908 => 0.012950246021132
909 => 0.012971065095641
910 => 0.013199398957144
911 => 0.013061343092124
912 => 0.013110988943745
913 => 0.013199323812202
914 => 0.013252618431573
915 => 0.012963396820071
916 => 0.012895965427361
917 => 0.012758024463079
918 => 0.012722038240287
919 => 0.012834388277463
920 => 0.012804788012052
921 => 0.012272787814879
922 => 0.012217190834253
923 => 0.012218895914275
924 => 0.012079094662999
925 => 0.011865864198659
926 => 0.012426221127616
927 => 0.01238121662403
928 => 0.012331535135144
929 => 0.012337620834054
930 => 0.012580852784656
1001 => 0.012439765969799
1002 => 0.01281486839077
1003 => 0.012737758609629
1004 => 0.012658671253564
1005 => 0.012647738971896
1006 => 0.012617297087227
1007 => 0.012512900537771
1008 => 0.012386835431042
1009 => 0.012303596328008
1010 => 0.011349417246946
1011 => 0.011526507334186
1012 => 0.011730233337287
1013 => 0.011800558737177
1014 => 0.011680262274296
1015 => 0.012517650575341
1016 => 0.012670649487216
1017 => 0.012207205803274
1018 => 0.012120514412289
1019 => 0.012523334048501
1020 => 0.012280384565168
1021 => 0.012389784702637
1022 => 0.012153321444104
1023 => 0.012633796529677
1024 => 0.01263013611454
1025 => 0.012443220454231
1026 => 0.012601200290381
1027 => 0.012573747406157
1028 => 0.012362720086021
1029 => 0.012640486472128
1030 => 0.01264062424079
1031 => 0.012460721981638
1101 => 0.012250635528618
1102 => 0.012213077032839
1103 => 0.012184781751543
1104 => 0.01238282579797
1105 => 0.012560391470729
1106 => 0.01289079716547
1107 => 0.012973869007373
1108 => 0.013298103936729
1109 => 0.01310503782301
1110 => 0.013190621530597
1111 => 0.013283534751737
1112 => 0.013328080766722
1113 => 0.013255495425774
1114 => 0.013759165731484
1115 => 0.013801690937345
1116 => 0.013815949271029
1117 => 0.013646114477813
1118 => 0.013796967524517
1119 => 0.013726388379692
1120 => 0.013910015707076
1121 => 0.013938810816681
1122 => 0.013914422383261
1123 => 0.01392356240555
1124 => 0.013493768653157
1125 => 0.013471481579753
1126 => 0.013167595752468
1127 => 0.013291431473297
1128 => 0.013059926528807
1129 => 0.01313333913147
1130 => 0.013165698707223
1201 => 0.013148795901239
1202 => 0.013298432959151
1203 => 0.013171210891095
1204 => 0.01283545093625
1205 => 0.01249959950383
1206 => 0.012495383162675
1207 => 0.012406959408788
1208 => 0.012343045230347
1209 => 0.012355357368592
1210 => 0.012398746949665
1211 => 0.012340523349017
1212 => 0.012352948306227
1213 => 0.012559285382966
1214 => 0.012600664812177
1215 => 0.012460041343731
1216 => 0.011895417826048
1217 => 0.011756857798558
1218 => 0.011856451998553
1219 => 0.011808852385644
1220 => 0.0095306655183547
1221 => 0.010065891730001
1222 => 0.0097478784896054
1223 => 0.0098944336218653
1224 => 0.009569824452551
1225 => 0.009724744962372
1226 => 0.0096961368009992
1227 => 0.010556764710831
1228 => 0.010543327189774
1229 => 0.010549759020006
1230 => 0.010242751004978
1231 => 0.010731823109094
]
'min_raw' => 0.0062437852904772
'max_raw' => 0.013938810816681
'avg_raw' => 0.010091298053579
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.006243'
'max' => '$0.013938'
'avg' => '$0.010091'
'bar_min_pct' => 61.631153054958
'bar_max_pct' => 60.119598047091
'min_diff' => 0.00096277902324266
'max_diff' => 0.002108704860379
'year' => 2035
]
10 => [
'items' => [
101 => 0.010972757614045
102 => 0.010928167049443
103 => 0.010939389533888
104 => 0.010746550069263
105 => 0.01055162612755
106 => 0.010335425477611
107 => 0.01073709956199
108 => 0.010692440260612
109 => 0.010794872630063
110 => 0.011055386986039
111 => 0.011093748714555
112 => 0.011145307266706
113 => 0.011126827195947
114 => 0.011567097455587
115 => 0.011513777822148
116 => 0.01164226279763
117 => 0.011377959454884
118 => 0.011078875134663
119 => 0.011135721286134
120 => 0.011130246544619
121 => 0.011060546801523
122 => 0.010997624989943
123 => 0.010892877901771
124 => 0.011224313188398
125 => 0.011210857521033
126 => 0.011428689135173
127 => 0.01139018528147
128 => 0.011133047122953
129 => 0.011142230862589
130 => 0.011203995925197
131 => 0.011417765512102
201 => 0.011481226880039
202 => 0.011451829045913
203 => 0.011521411538734
204 => 0.011576406703953
205 => 0.011528318084765
206 => 0.012209151522546
207 => 0.011926422011638
208 => 0.012064222408035
209 => 0.012097086990609
210 => 0.012012905053414
211 => 0.012031161101263
212 => 0.012058814039278
213 => 0.012226717263905
214 => 0.012667343908515
215 => 0.012862494449966
216 => 0.01344961448248
217 => 0.012846289914126
218 => 0.012810491131045
219 => 0.012916249178227
220 => 0.01326095079028
221 => 0.013540299070672
222 => 0.013632975011267
223 => 0.01364522366673
224 => 0.013819089892267
225 => 0.013918746770331
226 => 0.013797977959351
227 => 0.013695639037067
228 => 0.013329073720219
229 => 0.013371504653769
301 => 0.013663811709191
302 => 0.014076712641775
303 => 0.014431024596952
304 => 0.014306956899267
305 => 0.015253505854457
306 => 0.015347352317058
307 => 0.015334385770346
308 => 0.015548181978378
309 => 0.015123840044275
310 => 0.014942425646209
311 => 0.013717765873661
312 => 0.014061845316524
313 => 0.014561984993802
314 => 0.014495789632087
315 => 0.014132574829675
316 => 0.014430749065954
317 => 0.01433216333867
318 => 0.014254404685235
319 => 0.014610632150876
320 => 0.014218945419386
321 => 0.014558077619031
322 => 0.014123137065113
323 => 0.01430752363006
324 => 0.014202856898021
325 => 0.014270589101122
326 => 0.01387462802579
327 => 0.014088279010628
328 => 0.013865739442402
329 => 0.013865633929671
330 => 0.013860721356368
331 => 0.014122538171494
401 => 0.014131076008436
402 => 0.013937592986475
403 => 0.013909709060237
404 => 0.014012810550094
405 => 0.013892105707794
406 => 0.013948582743799
407 => 0.013893816339681
408 => 0.013881487268557
409 => 0.013783247132222
410 => 0.01374092258032
411 => 0.01375751912769
412 => 0.01370086655541
413 => 0.013666731331398
414 => 0.013853931001141
415 => 0.01375391776921
416 => 0.013838602538956
417 => 0.013742093555761
418 => 0.013407551373044
419 => 0.013215152626044
420 => 0.012583233454968
421 => 0.012762444947992
422 => 0.012881262353274
423 => 0.012841993201537
424 => 0.012926358534613
425 => 0.012931537880877
426 => 0.012904109851091
427 => 0.012872351706348
428 => 0.012856893597822
429 => 0.012972105674181
430 => 0.013038990162368
501 => 0.012893187269466
502 => 0.012859027691659
503 => 0.013006442466381
504 => 0.013096365393802
505 => 0.013760305766555
506 => 0.013711118919242
507 => 0.013834568253565
508 => 0.013820669753005
509 => 0.013950064322397
510 => 0.014161569757128
511 => 0.01373152007047
512 => 0.013806161826075
513 => 0.01378786139133
514 => 0.013987660739238
515 => 0.013988284490993
516 => 0.013868494801205
517 => 0.013933434735405
518 => 0.013897187045668
519 => 0.013962691520191
520 => 0.013710461998908
521 => 0.014017650329337
522 => 0.014191806317911
523 => 0.014194224473981
524 => 0.014276773030378
525 => 0.014360647144567
526 => 0.014521636202857
527 => 0.014356157247108
528 => 0.014058476714768
529 => 0.0140799682877
530 => 0.013905438300506
531 => 0.013908372181122
601 => 0.013892710896461
602 => 0.013939711590656
603 => 0.013720776008206
604 => 0.013772159751805
605 => 0.013700222209863
606 => 0.013806005447908
607 => 0.013692200170368
608 => 0.013787852566307
609 => 0.013829132969467
610 => 0.013981458545831
611 => 0.013669701558887
612 => 0.013034007958414
613 => 0.013167638460273
614 => 0.012969988451574
615 => 0.012988281712386
616 => 0.013025237010576
617 => 0.01290545279812
618 => 0.012928303851022
619 => 0.012927487450612
620 => 0.012920452152933
621 => 0.012889291652987
622 => 0.012844102763149
623 => 0.013024121391859
624 => 0.01305471006477
625 => 0.013122704895516
626 => 0.013325011390482
627 => 0.01330479620092
628 => 0.013337768013817
629 => 0.013265790731391
630 => 0.012991620532082
701 => 0.013006509292977
702 => 0.012820846206038
703 => 0.013117957072955
704 => 0.013047597297998
705 => 0.013002235893365
706 => 0.01298985861384
707 => 0.013192666587478
708 => 0.013253349911815
709 => 0.013215536136394
710 => 0.013137978979802
711 => 0.013286911648174
712 => 0.013326759747266
713 => 0.013335680267111
714 => 0.01359956040046
715 => 0.013350428235223
716 => 0.013410396823556
717 => 0.013878254630945
718 => 0.013453972159607
719 => 0.013678724047303
720 => 0.013667723611953
721 => 0.013782699072508
722 => 0.013658292268305
723 => 0.013659834439743
724 => 0.013761924859604
725 => 0.013618557277014
726 => 0.013583057447381
727 => 0.013534014686999
728 => 0.0136410977601
729 => 0.013705289219474
730 => 0.014222625238593
731 => 0.014556847900333
801 => 0.014542338413138
802 => 0.014674927965484
803 => 0.014615195157771
804 => 0.014422302164946
805 => 0.014751546982904
806 => 0.014647360146314
807 => 0.014655949182535
808 => 0.014655629498178
809 => 0.014724904636339
810 => 0.014675816851979
811 => 0.014579059790247
812 => 0.014643291643288
813 => 0.01483403728351
814 => 0.015426117603553
815 => 0.015757453594669
816 => 0.01540617076085
817 => 0.015648480955754
818 => 0.015503181182762
819 => 0.015476775891715
820 => 0.015628964600698
821 => 0.015781419695869
822 => 0.015771708965388
823 => 0.01566103439495
824 => 0.015598517138372
825 => 0.016071918749994
826 => 0.016420712993251
827 => 0.016396927564207
828 => 0.016501908712571
829 => 0.016810136611111
830 => 0.016838317107316
831 => 0.016834767012515
901 => 0.016764918712341
902 => 0.017068409106905
903 => 0.017321586133455
904 => 0.016748750848962
905 => 0.016966879026333
906 => 0.017064803792805
907 => 0.017208586402956
908 => 0.017451171767043
909 => 0.017714683815032
910 => 0.01775194730788
911 => 0.017725507076482
912 => 0.01755171379725
913 => 0.017840051824512
914 => 0.018008953478523
915 => 0.018109530548241
916 => 0.018364577262618
917 => 0.017065408542825
918 => 0.016145792350081
919 => 0.016002181002166
920 => 0.01629422032539
921 => 0.016371228765954
922 => 0.016340186760123
923 => 0.015305075127343
924 => 0.01599673135364
925 => 0.016740895297029
926 => 0.016769481664797
927 => 0.017142025694592
928 => 0.017263341301789
929 => 0.017563288076236
930 => 0.017544526323827
1001 => 0.017617558590209
1002 => 0.017600769736911
1003 => 0.018156357975328
1004 => 0.018769254307955
1005 => 0.018748031656847
1006 => 0.018659920557572
1007 => 0.018790780565171
1008 => 0.019423355262404
1009 => 0.019365117921085
1010 => 0.019421690537531
1011 => 0.020167531755917
1012 => 0.021137231434494
1013 => 0.020686708577539
1014 => 0.021664213542672
1015 => 0.022279501102911
1016 => 0.023343577316424
1017 => 0.023210349733807
1018 => 0.023624586795175
1019 => 0.022971844555485
1020 => 0.021473016432186
1021 => 0.02123582114439
1022 => 0.021710692117299
1023 => 0.022878116066962
1024 => 0.021673925782615
1025 => 0.021917531908797
1026 => 0.021847373328068
1027 => 0.021843634875456
1028 => 0.021986316406281
1029 => 0.021779349404051
1030 => 0.020936128604316
1031 => 0.021322571727703
1101 => 0.02117334747924
1102 => 0.021338922908315
1103 => 0.022232465210527
1104 => 0.021837408859331
1105 => 0.021421249085118
1106 => 0.021943205795228
1107 => 0.022607836050983
1108 => 0.022566244684033
1109 => 0.022485540048308
1110 => 0.022940467854334
1111 => 0.023691875308548
1112 => 0.023894977724023
1113 => 0.02404490377488
1114 => 0.024065576044272
1115 => 0.024278513266751
1116 => 0.02313349615439
1117 => 0.024950667717833
1118 => 0.025264443048488
1119 => 0.02520546629098
1120 => 0.025554214365319
1121 => 0.025451603834964
1122 => 0.025302937275578
1123 => 0.025855777154248
1124 => 0.025221990845231
1125 => 0.024322410971058
1126 => 0.023828883660414
1127 => 0.024478800234782
1128 => 0.024875681607786
1129 => 0.025137994948945
1130 => 0.025217370807486
1201 => 0.023222380573376
1202 => 0.022147191484422
1203 => 0.022836375363374
1204 => 0.023677227260626
1205 => 0.023128825179645
1206 => 0.023150321502957
1207 => 0.022368444253009
1208 => 0.02374640604801
1209 => 0.023545648604962
1210 => 0.024587178574632
1211 => 0.02433860908857
1212 => 0.025187936346876
1213 => 0.024964280015708
1214 => 0.025892664941929
1215 => 0.026263022824017
1216 => 0.026884911349644
1217 => 0.027342375080638
1218 => 0.027611006533364
1219 => 0.027594878908553
1220 => 0.028659330555912
1221 => 0.028031660608573
1222 => 0.027243159224266
1223 => 0.027228897721914
1224 => 0.027637273761997
1225 => 0.028493117909517
1226 => 0.028715025844943
1227 => 0.028839042107609
1228 => 0.028649106884299
1229 => 0.027967816141972
1230 => 0.027673638253658
1231 => 0.027924286337656
]
'min_raw' => 0.010335425477611
'max_raw' => 0.028839042107609
'avg_raw' => 0.01958723379261
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$0.010335'
'max' => '$0.028839'
'avg' => '$0.019587'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.0040916401871337
'max_diff' => 0.014900231290927
'year' => 2036
]
11 => [
'items' => [
101 => 0.027617765269362
102 => 0.028146906627859
103 => 0.02887353073157
104 => 0.028723485727537
105 => 0.029225063680016
106 => 0.029744144093292
107 => 0.030486452397637
108 => 0.03068051927599
109 => 0.031001304446205
110 => 0.031331497758795
111 => 0.03143754695184
112 => 0.031640027766494
113 => 0.031638960592653
114 => 0.032249150156144
115 => 0.032922208140673
116 => 0.033176271948504
117 => 0.033760477665452
118 => 0.032760045848189
119 => 0.033518884873716
120 => 0.034203376669714
121 => 0.03338729733224
122 => 0.034512072576848
123 => 0.034555745050801
124 => 0.035215147557136
125 => 0.034546716790731
126 => 0.034149804735346
127 => 0.035295674967142
128 => 0.035850125477734
129 => 0.035683120471675
130 => 0.034412204129518
131 => 0.033672476306217
201 => 0.031736465909795
202 => 0.034029753853782
203 => 0.035146747515171
204 => 0.034409311385781
205 => 0.034781231275347
206 => 0.036810305597391
207 => 0.037582845726392
208 => 0.037422162780023
209 => 0.037449315552893
210 => 0.037866164183907
211 => 0.039714700576556
212 => 0.038607014721342
213 => 0.039453799053456
214 => 0.039902930409901
215 => 0.04032010864413
216 => 0.039295650751399
217 => 0.037962846085232
218 => 0.037540690900124
219 => 0.034335987895991
220 => 0.034169169187306
221 => 0.034075528790997
222 => 0.033485139337966
223 => 0.033021254949165
224 => 0.032652356860267
225 => 0.031684258112704
226 => 0.03201096302117
227 => 0.030468015675467
228 => 0.031455138708551
301 => 0.028992557489043
302 => 0.031043468304646
303 => 0.029927250791185
304 => 0.0306767608309
305 => 0.03067414586098
306 => 0.02929406024549
307 => 0.028498055664128
308 => 0.029005300764334
309 => 0.029549107776921
310 => 0.029637338635126
311 => 0.03034239862176
312 => 0.030539165708816
313 => 0.02994295224886
314 => 0.028941525966878
315 => 0.029174134452081
316 => 0.0284933418606
317 => 0.027300279030337
318 => 0.02815715758391
319 => 0.028449733596391
320 => 0.02857895183119
321 => 0.027405711561818
322 => 0.027037053996896
323 => 0.026840783802668
324 => 0.028790075381023
325 => 0.028896861973962
326 => 0.028350526666383
327 => 0.030820014062282
328 => 0.030261093008639
329 => 0.030885544764541
330 => 0.029153027670136
331 => 0.029219212156286
401 => 0.028399010798976
402 => 0.028858268753195
403 => 0.028533680033728
404 => 0.02882116524897
405 => 0.02899348270164
406 => 0.029813549471977
407 => 0.031052832149871
408 => 0.029691058843306
409 => 0.029097714712682
410 => 0.029465822074227
411 => 0.030446140486642
412 => 0.031931373063026
413 => 0.031052085484715
414 => 0.031442298380698
415 => 0.031527542539107
416 => 0.030879188431856
417 => 0.031955278803763
418 => 0.032531964376211
419 => 0.033123524445277
420 => 0.033637159478111
421 => 0.032887242345007
422 => 0.033689761173826
423 => 0.033043072661442
424 => 0.032462926212403
425 => 0.032463806055092
426 => 0.032099871713023
427 => 0.031394703066586
428 => 0.031264659148955
429 => 0.031941164031208
430 => 0.032483656881524
501 => 0.032528339191042
502 => 0.032828691107266
503 => 0.033006436277417
504 => 0.034748580577735
505 => 0.035449285427096
506 => 0.036306094053231
507 => 0.036639869300199
508 => 0.037644413128523
509 => 0.03683316240209
510 => 0.03665764320442
511 => 0.034220948460687
512 => 0.034619957088467
513 => 0.035258808400149
514 => 0.034231482883513
515 => 0.034883084466081
516 => 0.035011724421288
517 => 0.034196574755569
518 => 0.034631981412568
519 => 0.033475670420656
520 => 0.031078036569662
521 => 0.031957948055639
522 => 0.032605859084323
523 => 0.031681210159538
524 => 0.033338607568359
525 => 0.032370390217753
526 => 0.03206351180024
527 => 0.030866269683466
528 => 0.031431321876508
529 => 0.032195563058366
530 => 0.031723350860551
531 => 0.032703262074034
601 => 0.034091077685101
602 => 0.035080117735396
603 => 0.035156043949498
604 => 0.034520157457696
605 => 0.035539169618983
606 => 0.035546592010097
607 => 0.034397142129378
608 => 0.033693110477602
609 => 0.033533153005023
610 => 0.033932758133035
611 => 0.034417952529617
612 => 0.035182968861727
613 => 0.03564525220907
614 => 0.036850642002797
615 => 0.037176785919746
616 => 0.037535119203816
617 => 0.038013962977225
618 => 0.038588937700226
619 => 0.037330925739629
620 => 0.037380908900051
621 => 0.036209465580703
622 => 0.034957610392015
623 => 0.035907612434277
624 => 0.037149613731059
625 => 0.036864697261288
626 => 0.036832638338123
627 => 0.036886552554482
628 => 0.036671734840777
629 => 0.035700122283203
630 => 0.035212184539405
701 => 0.035841748715098
702 => 0.036176334055802
703 => 0.036695246740324
704 => 0.036631279799039
705 => 0.037967943147215
706 => 0.038487330105714
707 => 0.038354448695909
708 => 0.038378902073283
709 => 0.039319227352492
710 => 0.040365062455615
711 => 0.041344625039787
712 => 0.042341078173599
713 => 0.041139815028561
714 => 0.040529887687122
715 => 0.04115917701479
716 => 0.040825267239641
717 => 0.042744011851722
718 => 0.042876861565622
719 => 0.044795467430629
720 => 0.046616452859858
721 => 0.045472724538102
722 => 0.046551208830863
723 => 0.047717677523598
724 => 0.049967984884609
725 => 0.049210160532188
726 => 0.048629678954855
727 => 0.048081126669142
728 => 0.049222576895488
729 => 0.050691034376569
730 => 0.051007326053283
731 => 0.051519839402279
801 => 0.05098099428296
802 => 0.051629973877337
803 => 0.053921157021572
804 => 0.053302059111166
805 => 0.052422840553436
806 => 0.054231509598241
807 => 0.054886059894533
808 => 0.059480036664562
809 => 0.065280122104439
810 => 0.062878848646915
811 => 0.06138830072322
812 => 0.061738614841558
813 => 0.063856609698918
814 => 0.064536842425306
815 => 0.062687735384702
816 => 0.063340871251772
817 => 0.066939714094226
818 => 0.068870377814501
819 => 0.066248277159637
820 => 0.059014005446885
821 => 0.052343676542051
822 => 0.054112948136438
823 => 0.053912367644524
824 => 0.057778875313954
825 => 0.053287293830753
826 => 0.053362920543627
827 => 0.057309383496958
828 => 0.056256534840512
829 => 0.054551054855739
830 => 0.052356128433337
831 => 0.048298603935405
901 => 0.044704741335146
902 => 0.051753133511381
903 => 0.051449194024073
904 => 0.051009044605141
905 => 0.051988549507832
906 => 0.056744747277979
907 => 0.056635101525067
908 => 0.055937591186798
909 => 0.056466646630801
910 => 0.05445830887846
911 => 0.054975903246239
912 => 0.052342619927872
913 => 0.053532973963399
914 => 0.054547395661662
915 => 0.054751055836358
916 => 0.055209912609094
917 => 0.051289031725378
918 => 0.053049392131152
919 => 0.05408343894608
920 => 0.04941157781729
921 => 0.053991091272742
922 => 0.051220777912365
923 => 0.050280491949143
924 => 0.051546463125366
925 => 0.051053112926794
926 => 0.050628959396558
927 => 0.050392274438804
928 => 0.051321863950482
929 => 0.051278497488662
930 => 0.049757508622008
1001 => 0.047773440648894
1002 => 0.048439358985482
1003 => 0.048197424610782
1004 => 0.047320623226713
1005 => 0.047911481494173
1006 => 0.045309640710807
1007 => 0.040833308874942
1008 => 0.043790510799467
1009 => 0.043676661742189
1010 => 0.043619253884866
1011 => 0.045841509400089
1012 => 0.045627890808458
1013 => 0.045240170972889
1014 => 0.047313502447879
1015 => 0.046556708569264
1016 => 0.048888968980093
1017 => 0.050425146527811
1018 => 0.050035522211572
1019 => 0.051480304620191
1020 => 0.048454700398991
1021 => 0.049459684755102
1022 => 0.049666810638048
1023 => 0.047287917859313
1024 => 0.045662841451914
1025 => 0.045554467382768
1026 => 0.042736808841662
1027 => 0.044241979290976
1028 => 0.045566466998187
1029 => 0.044932140170831
1030 => 0.044731331247265
1031 => 0.045757220487622
1101 => 0.045836940867745
1102 => 0.044019307752556
1103 => 0.044397251234159
1104 => 0.045973338380317
1105 => 0.044357537881899
1106 => 0.041218301452985
1107 => 0.040439727415275
1108 => 0.040335851286678
1109 => 0.038224296746923
1110 => 0.040491755455371
1111 => 0.039501948965018
1112 => 0.042628735808341
1113 => 0.040842731932729
1114 => 0.040765740875292
1115 => 0.040649357599844
1116 => 0.038831855380257
1117 => 0.039229772858055
1118 => 0.040552511158797
1119 => 0.041024479086216
1120 => 0.040975248964667
1121 => 0.040546029019506
1122 => 0.040742523712439
1123 => 0.040109545843214
1124 => 0.039886028183295
1125 => 0.039180544965216
1126 => 0.038143679529353
1127 => 0.038287862027675
1128 => 0.03623356028863
1129 => 0.035114267671154
1130 => 0.034804462226676
1201 => 0.034390177438659
1202 => 0.034851256795852
1203 => 0.036227740709913
1204 => 0.034567409072202
1205 => 0.03172088693807
1206 => 0.031891967768569
1207 => 0.032276335600346
1208 => 0.031560068688677
1209 => 0.030882182168508
1210 => 0.031471549499124
1211 => 0.030265440545854
1212 => 0.032422088105095
1213 => 0.032363756832553
1214 => 0.033167621676447
1215 => 0.033670294860302
1216 => 0.032511795913893
1217 => 0.032220436561785
1218 => 0.03238640809029
1219 => 0.029643268430255
1220 => 0.032943448643099
1221 => 0.032971988738623
1222 => 0.032727611113555
1223 => 0.034484855195261
1224 => 0.038193188305836
1225 => 0.036797964222284
1226 => 0.036257691286262
1227 => 0.035230632039946
1228 => 0.036599127504918
1229 => 0.036494048405063
1230 => 0.036018840865453
1231 => 0.03573143386276
]
'min_raw' => 0.026840783802668
'max_raw' => 0.068870377814501
'avg_raw' => 0.047855580808585
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$0.02684'
'max' => '$0.06887'
'avg' => '$0.047855'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 0.016505358325057
'max_diff' => 0.040031335706893
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.00084250153328909
]
1 => [
'year' => 2028
'avg' => 0.0014459772110668
]
2 => [
'year' => 2029
'avg' => 0.0039501491285983
]
3 => [
'year' => 2030
'avg' => 0.003047534169975
]
4 => [
'year' => 2031
'avg' => 0.0029930562316673
]
5 => [
'year' => 2032
'avg' => 0.0052477695235751
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.00084250153328909
'min' => '$0.000842'
'max_raw' => 0.0052477695235751
'max' => '$0.005247'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.0052477695235751
]
1 => [
'year' => 2033
'avg' => 0.013497802836412
]
2 => [
'year' => 2034
'avg' => 0.0085555561117684
]
3 => [
'year' => 2035
'avg' => 0.010091298053579
]
4 => [
'year' => 2036
'avg' => 0.01958723379261
]
5 => [
'year' => 2037
'avg' => 0.047855580808585
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.0052477695235751
'min' => '$0.005247'
'max_raw' => 0.047855580808585
'max' => '$0.047855'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 0.047855580808585
]
]
]
]
'prediction_2025_max_price' => '$0.00144'
'last_price' => 0.00139677
'sma_50day_nextmonth' => '$0.001277'
'sma_200day_nextmonth' => '$0.002295'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'increase'
'sma_200day_direction_label' => 'aumentar'
'sma_200day_date_nextmonth' => '4 de fev. de 2026'
'sma_50day_date_nextmonth' => '4 de fev. de 2026'
'daily_sma3' => '$0.001389'
'daily_sma3_action' => 'BUY'
'daily_sma5' => '$0.00139'
'daily_sma5_action' => 'BUY'
'daily_sma10' => '$0.00131'
'daily_sma10_action' => 'BUY'
'daily_sma21' => '$0.001267'
'daily_sma21_action' => 'BUY'
'daily_sma50' => '$0.001387'
'daily_sma50_action' => 'BUY'
'daily_sma100' => '$0.0018099'
'daily_sma100_action' => 'SELL'
'daily_sma200' => '$0.002572'
'daily_sma200_action' => 'SELL'
'daily_ema3' => '$0.001389'
'daily_ema3_action' => 'BUY'
'daily_ema5' => '$0.00137'
'daily_ema5_action' => 'BUY'
'daily_ema10' => '$0.001333'
'daily_ema10_action' => 'BUY'
'daily_ema21' => '$0.001319'
'daily_ema21_action' => 'BUY'
'daily_ema50' => '$0.001452'
'daily_ema50_action' => 'SELL'
'daily_ema100' => '$0.0018084'
'daily_ema100_action' => 'SELL'
'daily_ema200' => '$0.002481'
'daily_ema200_action' => 'SELL'
'weekly_sma21' => '$0.002189'
'weekly_sma21_action' => 'SELL'
'weekly_sma50' => '$0.003102'
'weekly_sma50_action' => 'SELL'
'weekly_sma100' => '$0.0060027'
'weekly_sma100_action' => 'SELL'
'weekly_sma200' => '$0.006493'
'weekly_sma200_action' => 'SELL'
'weekly_ema3' => '$0.001365'
'weekly_ema3_action' => 'BUY'
'weekly_ema5' => '$0.001384'
'weekly_ema5_action' => 'BUY'
'weekly_ema10' => '$0.001561'
'weekly_ema10_action' => 'SELL'
'weekly_ema21' => '$0.002059'
'weekly_ema21_action' => 'SELL'
'weekly_ema50' => '$0.003316'
'weekly_ema50_action' => 'SELL'
'weekly_ema100' => '$0.004876'
'weekly_ema100_action' => 'SELL'
'weekly_ema200' => '$0.007333'
'weekly_ema200_action' => 'SELL'
'rsi_14' => '57.96'
'rsi_14_action' => 'NEUTRAL'
'stoch_rsi_14' => 95.04
'stoch_rsi_14_action' => 'SELL'
'momentum_10' => 0
'momentum_10_action' => 'SELL'
'vwma_10' => '0.001378'
'vwma_10_action' => 'BUY'
'hma_9' => '0.001434'
'hma_9_action' => 'BUY'
'stochastic_fast_14' => 96.31
'stochastic_fast_14_action' => 'SELL'
'cci_20' => 140.14
'cci_20_action' => 'SELL'
'adx_14' => 24.94
'adx_14_action' => 'NEUTRAL'
'ao_5_34' => '0.000073'
'ao_5_34_action' => 'BUY'
'macd_12_26' => 0
'macd_12_26_action' => 'NEUTRAL'
'williams_percent_r_14' => -3.69
'williams_percent_r_14_action' => 'SELL'
'ultimate_oscillator' => 77.89
'ultimate_oscillator_action' => 'SELL'
'ichimoku_cloud' => '-0.000299'
'ichimoku_cloud_action' => 'SELL'
'sell_signals' => 16
'buy_signals' => 18
'sell_pct' => 47.06
'buy_pct' => 52.94
'overall_action' => 'bullish'
'overall_action_label' => 'Altista'
'overall_action_dir' => 1
'last_updated' => 1767676444
'last_updated_date' => '6 de janeiro de 2026'
]
Previsão de preço de Contentos para 2026
A previsão de preço para Contentos em 2026 sugere que o preço médio poderia variar entre $0.000482 na extremidade inferior e $0.00144 na extremidade superior. No mercado de criptomoedas, comparado ao preço médio de hoje, Contentos poderia potencialmente ganhar 3.13% até 2026 se COS atingir a meta de preço prevista.
Previsão de preço de Contentos 2027-2032
A previsão de preço de COS para 2027-2032 está atualmente dentro de uma faixa de preço entre $0.000842 na extremidade inferior e $0.005247 na extremidade superior. Considerando a volatilidade de preços no mercado, se Contentos atingir a meta de preço superior, poderia ganhar 275.71% até 2032 em comparação com o preço de hoje.
| Previsão de Preço de Contentos | Potencial Mínimo ($) | Preço Médio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2027 | $0.000464 | $0.000842 | $0.00122 |
| 2028 | $0.000838 | $0.001445 | $0.002053 |
| 2029 | $0.001841 | $0.00395 | $0.006058 |
| 2030 | $0.001566 | $0.003047 | $0.004528 |
| 2031 | $0.001851 | $0.002993 | $0.004134 |
| 2032 | $0.002826 | $0.005247 | $0.007668 |
Previsão de preço de Contentos 2032-2037
A previsão de preço de Contentos para 2032-2037 é atualmente estimada entre $0.005247 na extremidade inferior e $0.047855 na extremidade superior. Comparado ao preço atual, Contentos poderia potencialmente ganhar 3326.16% até 2037 se atingir a meta de preço superior. Por favor, note que esta informação é apenas para fins gerais e não deve ser considerada como aconselhamento de investimento a longo prazo.
| Previsão de Preço de Contentos | Potencial Mínimo ($) | Preço Médio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2032 | $0.002826 | $0.005247 | $0.007668 |
| 2033 | $0.006568 | $0.013497 | $0.020426 |
| 2034 | $0.005281 | $0.008555 | $0.01183 |
| 2035 | $0.006243 | $0.010091 | $0.013938 |
| 2036 | $0.010335 | $0.019587 | $0.028839 |
| 2037 | $0.02684 | $0.047855 | $0.06887 |
Contentos Histograma de preços potenciais
Previsão de preço de Contentos baseada na análise técnica
Em 6 de janeiro de 2026, o sentimento geral de previsão de preço para Contentos é Altista, com 18 indicadores técnicos mostrando sinais de alta e 16 indicando sinais de baixa. A previsão de preço de COS foi atualizada pela última vez em 6 de janeiro de 2026.
Médias Móveis Simples de 50 e 200 dias e Índice de Força Relativa de 14 dias - RSI (14) de Contentos
De acordo com nossos indicadores técnicos, o SMA de 200 dias de Contentos está projetado para aumentar no próximo mês, alcançando $0.002295 até 4 de fev. de 2026. O SMA de 50 dias de curto prazo para Contentos é esperado para alcançar $0.001277 até 4 de fev. de 2026.
O oscilador de momentum Índice de Força Relativa (RSI) é uma ferramenta comumente usada para identificar se uma criptomoeda está sobrevendida (abaixo de 30) ou sobrecomprada (acima de 70). No momento, o RSI está em 57.96, sugerindo que o mercado de COS está em um estado NEUTRAL.
Médias Móveis e Osciladores Populares de COS para Sábado, 19 de Outubro de 2024
Médias móveis (MA) são indicadores amplamente utilizados nos mercados financeiros, projetados para suavizar movimentos de preços ao longo de um período definido. Como indicadores atrasados, eles se baseiam em dados históricos de preços. A tabela abaixo destaca dois tipos: a média móvel simples (SMA) e a média móvel exponencial (EMA).
Média Móvel Simples Diária (SMA)
| Período | Valor | Ação |
|---|---|---|
| SMA 3 | $0.001389 | BUY |
| SMA 5 | $0.00139 | BUY |
| SMA 10 | $0.00131 | BUY |
| SMA 21 | $0.001267 | BUY |
| SMA 50 | $0.001387 | BUY |
| SMA 100 | $0.0018099 | SELL |
| SMA 200 | $0.002572 | SELL |
Média Móvel Exponencial Diária (EMA)
| Período | Valor | Ação |
|---|---|---|
| EMA 3 | $0.001389 | BUY |
| EMA 5 | $0.00137 | BUY |
| EMA 10 | $0.001333 | BUY |
| EMA 21 | $0.001319 | BUY |
| EMA 50 | $0.001452 | SELL |
| EMA 100 | $0.0018084 | SELL |
| EMA 200 | $0.002481 | SELL |
Média Móvel Simples Semanal (SMA)
| Período | Valor | Ação |
|---|---|---|
| SMA 21 | $0.002189 | SELL |
| SMA 50 | $0.003102 | SELL |
| SMA 100 | $0.0060027 | SELL |
| SMA 200 | $0.006493 | SELL |
Média Móvel Exponencial Semanal (EMA)
| Período | Valor | Ação |
|---|---|---|
| EMA 21 | $0.002059 | SELL |
| EMA 50 | $0.003316 | SELL |
| EMA 100 | $0.004876 | SELL |
| EMA 200 | $0.007333 | SELL |
Osciladores de Contentos
Um oscilador é uma ferramenta de análise técnica que define limites altos e baixos entre dois extremos, criando um indicador de tendência que flutua dentro desses limites. Os traders usam esse indicador para identificar condições de sobrecompra ou sobrevenda de curto prazo.
| Período | Valor | Ação |
|---|---|---|
| RSI (14) | 57.96 | NEUTRAL |
| Stoch RSI (14) | 95.04 | SELL |
| Estocástico Rápido (14) | 96.31 | SELL |
| Índice de Canal de Commodities (20) | 140.14 | SELL |
| Índice Direcional Médio (14) | 24.94 | NEUTRAL |
| Oscilador Impressionante (5, 34) | 0.000073 | BUY |
| Momentum (10) | 0 | SELL |
| MACD (12, 26) | 0 | NEUTRAL |
| Williams Percent Range (14) | -3.69 | SELL |
| Oscilador Ultimate (7, 14, 28) | 77.89 | SELL |
| VWMA (10) | 0.001378 | BUY |
| Média Móvel de Hull (9) | 0.001434 | BUY |
| Nuvem Ichimoku B/L (9, 26, 52, 26) | -0.000299 | SELL |
Previsão do preço de Contentos com base nos fluxos financeiros mundiais
Definições dos fluxos financeiros mundiais, usadas na previsão do preço do Contentos
M0: o total de todas as moedas físicas, mais as contas no Banco Central que podem ser trocadas por moedas físicas.
M1: o valor de M0, mais o valor em contas de demanda, incluindo contas 'correntes'.
M2: o valor de M1, mais a maioria das contas de poupança, do mercado de moedas e de certificados de depósito (CD) de menos de US$ 100.000.
Previsões de preço de Contentos por empresas de Internet ou nichos tecnológicos
| Comparação | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Facebook stock | $0.001962 | $0.002757 | $0.003875 | $0.005445 | $0.007651 | $0.010752 |
| Amazon.com stock | $0.002914 | $0.006081 | $0.012688 | $0.026475 | $0.055243 | $0.115268 |
| Apple stock | $0.001981 | $0.00281 | $0.003986 | $0.005653 | $0.008019 | $0.011375 |
| Netflix stock | $0.0022038 | $0.003477 | $0.005486 | $0.008657 | $0.013659 | $0.021553 |
| Google stock | $0.0018088 | $0.002342 | $0.003033 | $0.003928 | $0.005087 | $0.006587 |
| Tesla stock | $0.003166 | $0.007177 | $0.016271 | $0.036886 | $0.083619 | $0.18956 |
| Kodak stock | $0.001047 | $0.000785 | $0.000589 | $0.000441 | $0.000331 | $0.000248 |
| Nokia stock | $0.000925 | $0.000612 | $0.000406 | $0.000269 | $0.000178 | $0.000118 |
Este cálculo mostra quanto a criptomoeda pode custar, se assumirmos que sua capitalização se comportará da mesma forma que a de algumas empresas de Internet ou nichos tecnológicos. Se você extrapolar os dados, poderá obter uma imagem em potencial do preço futuro para 2024, 2025, 2026, 2027, 2028, 2029 e 2030.
Visão geral da previsão para Contentos
Você pode fazer perguntas como: 'Devo investir em Contentos agora?', 'Devo comprar COS hoje?', 'Contentos será um bom ou mau investimento no curto ou no longo prazo?'.
Atualizamos a previsão para Contentos regularmente com novos valores. Veja nossas previsões semelhantes. Fazemos previsões de preços futuros para uma enorme quantidade de moedas digitais, como Contentos, com métodos de análise técnica.
Se você estiver tentando encontrar criptomoedas com bom retorno, você deve explorar o máximo de fontes de informações disponíveis sobre Contentos para poder tomar sozinho uma decisão de tão grande responsabilidade sobre o seu investimento.
O preço de Contentos é de $0.001396 USD hoje, mas o preço pode tanto subir quanto descer e seu investimento pode ser perdido, porque criptomoedas são ativos de alto risco
Previsão de curto prazo para Contentos
com base no histórico de preços de 4 horas
Previsão de longo prazo para Contentos
com base no histórico de preços de 1 mês
Previsão do preço de Contentos com base no padrão de crescimento do Bitcoin
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| Se Contentos tiver 1% da média anterior do crescimento anual do Bitcoin | $0.001433 | $0.00147 | $0.0015085 | $0.001547 |
| Se Contentos tiver 2% da média anterior do crescimento anual do Bitcoin | $0.001469 | $0.001545 | $0.001626 | $0.00171 |
| Se Contentos tiver 5% da média anterior do crescimento anual do Bitcoin | $0.001578 | $0.001783 | $0.002015 | $0.002277 |
| Se Contentos tiver 10% da média anterior do crescimento anual do Bitcoin | $0.001759 | $0.002217 | $0.002793 | $0.003519 |
| Se Contentos tiver 20% da média anterior do crescimento anual do Bitcoin | $0.002122 | $0.003226 | $0.0049038 | $0.007453 |
| Se Contentos tiver 50% da média anterior do crescimento anual do Bitcoin | $0.003212 | $0.007386 | $0.016986 | $0.039064 |
| Se Contentos tiver 100% da média anterior do crescimento anual do Bitcoin | $0.005027 | $0.018095 | $0.06513 | $0.234426 |
Perguntas Frequentes sobre Contentos
COS é um bom investimento?
A decisão de adquirir Contentos depende inteiramente da sua tolerância individual ao risco. Como você pode perceber, o valor de Contentos experimentou uma escalada de 0.5163% nas últimas 24 horas, e Contentos registrou um declínio de durante os últimos 30 dias. Consequentemente, a decisão de investir ou não em Contentos dependerá de quão alinhado esse investimento está com suas aspirações de negociação.
Contentos pode subir?
Parece que o valor médio de Contentos pode potencialmente subir para $0.00144 até o final deste ano. Observando as perspectivas de Contentos em um horizonte de cinco anos mais longo, a moeda digital poderia potencialmente crescer até $0.004528. No entanto, dada a imprevisibilidade do mercado, é vital conduzir uma pesquisa aprofundada antes de investir quaisquer fundos em um projeto, rede ou ativo específico.
Qual será o preço de Contentos na próxima semana?
Com base na nossa nova previsão experimental de Contentos, o preço de Contentos aumentará 0.86% na próxima semana e atingirá $0.001408 até 13 de janeiro de 2026.
Qual será o preço de Contentos no próximo mês?
Com base na nossa nova previsão experimental de Contentos, o preço de Contentos diminuirá -11.62% no próximo mês e atingirá $0.001234 até 5 de fevereiro de 2026.
Até onde o preço de Contentos pode subir este ano em 2026?
De acordo com nossa previsão mais recente sobre o valor de Contentos em 2026, espera-se que COS fluctue dentro do intervalo de $0.000482 e $0.00144. No entanto, é crucial lembrar que o mercado de criptomoedas é excepcionalmente instável, e essa previsão de preço de Contentos não considera flutuações repentinas e extremas de preço.
Onde estará Contentos em 5 anos?
O futuro de Contentos parece seguir uma tendência de alta, com um preço máximo de $0.004528 projetada após um período de cinco anos. Com base na previsão de Contentos para 2030, o valor de Contentos pode potencialmente atingir seu pico mais alto de aproximadamente $0.004528, enquanto seu pico mais baixo está previsto para cerca de $0.001566.
Quanto será Contentos em 2026?
Com base na nossa nova simulação experimental de previsão de preços de Contentos, espera-se que o valor de COS em 2026 aumente 3.13% para $0.00144 se o melhor cenário ocorrer. O preço ficará entre $0.00144 e $0.000482 durante 2026.
Quanto será Contentos em 2027?
De acordo com nossa última simulação experimental para previsão de preços de Contentos, o valor de COS pode diminuir -12.62% para $0.00122 em 2027, assumindo as condições mais favoráveis. O preço está projetado para flutuar entre $0.00122 e $0.000464 ao longo do ano.
Quanto será Contentos em 2028?
Nosso novo modelo experimental de previsão de preços de Contentos sugere que o valor de COS em 2028 pode aumentar 47.02%, alcançando $0.002053 no melhor cenário. O preço é esperado para variar entre $0.002053 e $0.000838 durante o ano.
Quanto será Contentos em 2029?
Com base no nosso modelo de previsão experimental, o valor de Contentos pode experimentar um 333.75% crescimento em 2029, potencialmente alcançando $0.006058 sob condições ótimas. A faixa de preço prevista para 2029 está entre $0.006058 e $0.001841.
Quanto será Contentos em 2030?
Usando nossa nova simulação experimental para previsões de preços de Contentos, espera-se que o valor de COS em 2030 aumente 224.23%, alcançando $0.004528 no melhor cenário. O preço está previsto para variar entre $0.004528 e $0.001566 ao longo de 2030.
Quanto será Contentos em 2031?
Nossa simulação experimental indica que o preço de Contentos poderia aumentar 195.98% em 2031, potencialmente atingindo $0.004134 sob condições ideais. O preço provavelmente oscilará entre $0.004134 e $0.001851 durante o ano.
Quanto será Contentos em 2032?
Com base nos achados da nossa mais recente previsão experimental de preços de Contentos, COS poderia ver um 449.04% aumento em valor, atingindo $0.007668 se o cenário mais positivo se desenrolar em 2032. O preço é esperado para permanecer dentro de uma faixa de $0.007668 e $0.002826 ao longo do ano.
Quanto será Contentos em 2033?
De acordo com nossa previsão experimental de preços de Contentos, espera-se que o valor de COS seja aumentar 1362.43% em 2033, com o preço potencial mais alto sendo $0.020426. Ao longo do ano, o preço de COS poderia variar entre $0.020426 e $0.006568.
Quanto será Contentos em 2034?
Os resultados da nossa nova simulação de previsão de preços de Contentos sugerem que COS pode aumentar 746.96% em 2034, atingindo potencialmente $0.01183 nas melhores circunstâncias. A faixa de preço prevista para o ano é entre $0.01183 e $0.005281.
Quanto será Contentos em 2035?
Com base em nossa previsão experimental para o preço de Contentos, COS poderia aumentar 897.93%, com o valor potencialmente atingindo $0.013938 em 2035. A faixa de preço esperada para o ano está entre $0.013938 e $0.006243.
Quanto será Contentos em 2036?
Nossa recente simulação de previsão de preços de Contentos sugere que o valor de COS pode aumentar 1964.7% em 2036, possivelmente atingindo $0.028839 se as condições forem ideais. A faixa de preço esperada para 2036 está entre $0.028839 e $0.010335.
Quanto será Contentos em 2037?
De acordo com a simulação experimental, o valor de Contentos poderia aumentar 4830.69% em 2037, com um pico de $0.06887 sob condições favoráveis. O preço é esperado para cair entre $0.06887 e $0.02684 ao longo do ano.
Previsões relacionadas
Previsão de Preço do Onyxcoin
Previsão de Preço do DIAdata
Previsão de Preço do PaLM AI
Previsão de Preço do Astroport
Previsão de Preço do DeFiChain
Previsão de Preço do Grok
Previsão de Preço do SmartKey
Previsão de Preço do Marinade
Previsão de Preço do MELD
Previsão de Preço do Welshcorgicoin
Previsão de Preço do Lista USD
Previsão de Preço do Cratos
Previsão de Preço do Everscale
Previsão de Preço do Komodo
Previsão de Preço do Solcasino Token
Previsão de Preço do Cornucopias
Previsão de Preço do Doge Eat Doge
Previsão de Preço do Vertex
Previsão de Preço do YES Money
Previsão de Preço do Strike
Previsão de Preço do Persistence
Previsão de Preço do CEEK Smart VR Token
Previsão de Preço do TOPIA
Previsão de Preço do Measurable Data Token
Previsão de Preço do CHEQD Network
Como ler e prever os movimentos de preço de Contentos?
Traders de Contentos utilizam indicadores e padrões de gráfico para prever a direção do mercado. Eles também identificam níveis-chave de suporte e resistência para avaliar quando uma tendência de baixa pode desacelerar ou uma tendência de alta pode estagnar.
Indicadores de Previsão de Preço de Contentos
Médias móveis são ferramentas populares para a previsão de preço de Contentos. Uma média móvel simples (SMA) calcula o preço médio de fechamento de COS em um período específico, como uma SMA de 12 dias. Uma média móvel exponencial (EMA) dá mais peso aos preços recentes, reagindo mais rapidamente às mudanças de preço.
Médias móveis comumente usadas no mercado de criptomoedas incluem as de 50 dias, 100 dias e 200 dias, que ajudam a identificar níveis-chave de resistência e suporte. Um movimento de preço de COS acima dessas médias é visto como altista, enquanto uma queda abaixo indica fraqueza.
Traders também usam RSI e níveis de retração de Fibonacci para avaliar a direção futura de COS.
Como ler gráficos de Contentos e prever movimentos de preço?
A maioria dos traders prefere gráficos de velas em vez de gráficos de linha simples porque eles fornecem informações mais detalhadas. Velas podem representar a ação de preço de Contentos em diferentes períodos de tempo, como 5 minutos para tendências de curto prazo e semanal para tendências de longo prazo. Opções populares incluem gráficos de 1 hora, 4 horas e 1 dia.
Por exemplo, um gráfico de velas de 1 hora mostra os preços de abertura, fechamento, máximo e mínimo de COS dentro de cada hora. A cor da vela é crucial: verde indica que o preço fechou mais alto do que abriu, enquanto vermelho significa o oposto. Alguns gráficos usam velas vazias e preenchidas para transmitir a mesma informação.
O que afeta o preço de Contentos?
A ação de preço de Contentos é impulsionada pela oferta e demanda, influenciada por fatores como reduções pela metade das recompensas de bloco, hard forks e atualizações de protocolo. Eventos do mundo real, como regulamentações, adoção por empresas e governos e hacks de exchanges de criptomoedas, também impactam o preço de COS. A capitalização de mercado de Contentos pode mudar rapidamente.
Traders frequentemente monitoram a atividade de "baleias" de COS, grandes detentores de Contentos, pois suas ações podem influenciar significativamente os movimentos de preço no relativamente pequeno mercado de Contentos.
Padrões de previsão de preço altistas e baixistas
Traders frequentemente identificam padrões de velas para ganhar vantagem em previsões de preço de criptomoedas. Certas formações indicam tendências altistas, enquanto outras sugerem movimentos baixistas.
Padrões de velas altistas comumente seguidos:
- Martelo
- Engolfo de Alta
- Linha de Perfuração
- Estrela da Manhã
- Três Soldados Brancos
Padrões de velas baixistas comuns:
- Harami de Baixa
- Nuvem Negra
- Estrela da Noite
- Estrela Cadente
- Homem Enforcado


