Previsão de Preço Komodo - Projeção KMD
Previsão de Preço Komodo até $0.040939 até 2026
| Ano | Preço Mínimo | Preço Máximo |
|---|---|---|
| 2026 | $0.013714 | $0.040939 |
| 2027 | $0.013203 | $0.034684 |
| 2028 | $0.023827 | $0.058361 |
| 2029 | $0.052342 | $0.172183 |
| 2030 | $0.044515 | $0.128706 |
| 2031 | $0.05263 | $0.117494 |
| 2032 | $0.080336 | $0.217945 |
| 2033 | $0.186684 | $0.580527 |
| 2034 | $0.150085 | $0.33621 |
| 2035 | $0.177447 | $0.396139 |
Calculadora de lucro do investimento
Se você abrir um short de $10,000.00 em Komodo hoje e fechar em Apr 06, 2026, nossa previsão mostra que pode lucrar cerca de $3,954.56, com um retorno de 39.55% nos próximos 90 dias.
Previsão de preço de longo prazo de Komodo para os anos 2027, 2028, 2029, 2030, 2031, 2032 e 2037
[
'name' => 'Komodo'
'name_with_ticker' => 'Komodo <small>KMD</small>'
'name_lang' => 'Komodo'
'name_lang_with_ticker' => 'Komodo <small>KMD</small>'
'name_with_lang' => 'Komodo'
'name_with_lang_with_ticker' => 'Komodo <small>KMD</small>'
'image' => '/uploads/coins/komodo.png?1717211283'
'price_for_sd' => 0.03969
'ticker' => 'KMD'
'marketcap' => '$5.58M'
'low24h' => '$0.02593'
'high24h' => '$0.03981'
'volume24h' => '$9.57K'
'current_supply' => '140.66M'
'max_supply' => '140.66M'
'algo' => 'Equihash'
'proof' => null
'ico_price_and_roi' => ''
'price' => '$0.03969'
'change_24h_pct' => '2.702%'
'ath_price' => '$11.54'
'ath_days' => 2937
'ath_exchange' => null
'ath_pair' => null
'ath_date' => '22 de dez. de 2017'
'ath_pct' => '-99.66%'
'fdv' => '$5.58M'
'new_prediction' => true
'change_24h_pct_is_increased' => true
'change_30d_pct' => null
'change_30d_pct_is_increased' => false
'max_price' => '$1.95'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.0400357'
'next_week_prediction_price_date' => '13 de janeiro de 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.0350841'
'next_month_prediction_price_date' => '5 de fevereiro de 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.013714'
'current_year_max_price_prediction' => '$0.040939'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.044515'
'grand_prediction_max_price' => '$0.128706'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.040448248888388
107 => 0.040599267967023
108 => 0.040939521662413
109 => 0.038032091089009
110 => 0.03933744205879
111 => 0.040104213458692
112 => 0.036639912378556
113 => 0.040035735364914
114 => 0.037981479191175
115 => 0.037284233791916
116 => 0.038222982866922
117 => 0.037857151439429
118 => 0.037542631060412
119 => 0.037367123284775
120 => 0.038056436999505
121 => 0.038024279690805
122 => 0.03689642866348
123 => 0.035425192975423
124 => 0.035918987964
125 => 0.035739587615297
126 => 0.035089417608493
127 => 0.035527553691253
128 => 0.033598224118375
129 => 0.030278912866063
130 => 0.032471751552593
131 => 0.032387329648512
201 => 0.032344760296245
202 => 0.033992617963563
203 => 0.033834214471395
204 => 0.033546710582019
205 => 0.035084137374101
206 => 0.034522955913683
207 => 0.036252384943712
208 => 0.037391498755345
209 => 0.037102582646244
210 => 0.0381739246919
211 => 0.035930364003211
212 => 0.036675584867962
213 => 0.036829173855356
214 => 0.035065165766136
215 => 0.033860131241723
216 => 0.033779769177344
217 => 0.031690405375998
218 => 0.032806526653922
219 => 0.033788667190258
220 => 0.033318298090537
221 => 0.033169393285443
222 => 0.033930115641158
223 => 0.033989230283343
224 => 0.032641410176827
225 => 0.032921664656883
226 => 0.03409037242715
227 => 0.032892216219668
228 => 0.030564394426235
301 => 0.02998706243681
302 => 0.029910035707081
303 => 0.028344265562981
304 => 0.030025642520963
305 => 0.029291676420703
306 => 0.031610266537161
307 => 0.030285900297489
308 => 0.030228809515874
309 => 0.030142508426066
310 => 0.028794785381889
311 => 0.029089851076296
312 => 0.030070694384279
313 => 0.030420670326558
314 => 0.03038416496851
315 => 0.030065887716973
316 => 0.030211593412883
317 => 0.029742224599126
318 => 0.029576480701921
319 => 0.029053347370892
320 => 0.02828448589355
321 => 0.028391400797676
322 => 0.026868085027513
323 => 0.026038101747442
324 => 0.025808373314522
325 => 0.025501170853009
326 => 0.025843072649984
327 => 0.026863769665331
328 => 0.025632592511871
329 => 0.023521825639299
330 => 0.023648686324913
331 => 0.02393370462021
401 => 0.023402574912508
402 => 0.022899905218506
403 => 0.023336935734559
404 => 0.022442575984903
405 => 0.024041783723102
406 => 0.023998529635512
407 => 0.024594615385969
408 => 0.024967360038641
409 => 0.024108304291746
410 => 0.023892254094536
411 => 0.024015326105801
412 => 0.021981219905884
413 => 0.024428385513086
414 => 0.024449548702878
415 => 0.024268336623335
416 => 0.025571376761408
417 => 0.028321197881154
418 => 0.027286604564608
419 => 0.026885978761692
420 => 0.026124388817494
421 => 0.027139162199402
422 => 0.027061243436602
423 => 0.026708865241408
424 => 0.026495745809468
425 => 0.026888424897416
426 => 0.026447088524885
427 => 0.026367812385266
428 => 0.025887485232464
429 => 0.025716030292407
430 => 0.025589091880606
501 => 0.025449345161925
502 => 0.025757591600624
503 => 0.025059064617336
504 => 0.024216709552935
505 => 0.024146676843738
506 => 0.024340043311169
507 => 0.024254493043771
508 => 0.024146267261971
509 => 0.023939634770977
510 => 0.023878331324903
511 => 0.024077537784438
512 => 0.023852645306081
513 => 0.024184486408424
514 => 0.024094243990192
515 => 0.023590157177723
516 => 0.022961878372546
517 => 0.02295628537332
518 => 0.022820923735328
519 => 0.022648520337587
520 => 0.022600561656391
521 => 0.023300130243475
522 => 0.024748216282411
523 => 0.024463922343206
524 => 0.024669353849896
525 => 0.025679873539779
526 => 0.026001087361806
527 => 0.025773097399298
528 => 0.025461010676808
529 => 0.025474740908731
530 => 0.026541235714553
531 => 0.026607751687403
601 => 0.026775816091929
602 => 0.026991826346739
603 => 0.025809884879747
604 => 0.025419071571926
605 => 0.025233882545183
606 => 0.02466357201999
607 => 0.025278603026682
608 => 0.024920250797336
609 => 0.02496860475613
610 => 0.024937114177031
611 => 0.024954310162603
612 => 0.024041336711947
613 => 0.024373976252894
614 => 0.02382089849957
615 => 0.02308038947376
616 => 0.023077907027849
617 => 0.023259145562838
618 => 0.023151337790362
619 => 0.022861229846621
620 => 0.022902438310759
621 => 0.02254140880333
622 => 0.022946273829611
623 => 0.022957883909888
624 => 0.022801988821623
625 => 0.023425739255215
626 => 0.02368129031679
627 => 0.023578676830098
628 => 0.023674090681017
629 => 0.02447573603989
630 => 0.024606439211625
701 => 0.024664488926743
702 => 0.024586709998599
703 => 0.023688743286576
704 => 0.023728571928704
705 => 0.023436335779491
706 => 0.023189427028493
707 => 0.023199302083668
708 => 0.023326245277571
709 => 0.023880613650469
710 => 0.025047249209431
711 => 0.025091522176094
712 => 0.025145182303223
713 => 0.024926919598769
714 => 0.024861089478613
715 => 0.024947936399295
716 => 0.025386063376457
717 => 0.026513044912033
718 => 0.026114694368795
719 => 0.025790829176446
720 => 0.026074946263565
721 => 0.026031208664986
722 => 0.02566201931702
723 => 0.025651657401646
724 => 0.024943065005923
725 => 0.024681114531093
726 => 0.024462209107672
727 => 0.024223170099966
728 => 0.024081459763538
729 => 0.024299191246488
730 => 0.024348989012761
731 => 0.023872915319998
801 => 0.023808028234827
802 => 0.024196800289102
803 => 0.024025716202898
804 => 0.02420168042824
805 => 0.024242505637912
806 => 0.024235931838871
807 => 0.024057300403992
808 => 0.024171154753718
809 => 0.023901855275001
810 => 0.023609032539372
811 => 0.023422229877541
812 => 0.023259219779316
813 => 0.023349667256014
814 => 0.023027238516643
815 => 0.02292408707371
816 => 0.024132583461835
817 => 0.025025312737268
818 => 0.025012332100043
819 => 0.024933315809289
820 => 0.024815913629097
821 => 0.025377474675723
822 => 0.025181838035846
823 => 0.025324180037345
824 => 0.025360412050801
825 => 0.02547007544315
826 => 0.025509270680027
827 => 0.025390795451341
828 => 0.02499317811334
829 => 0.024002353511364
830 => 0.023541121984463
831 => 0.023388907898168
901 => 0.023394440591109
902 => 0.023241824220763
903 => 0.023286776581616
904 => 0.023226191624152
905 => 0.023111458371791
906 => 0.02334258280099
907 => 0.023369217738382
908 => 0.023315270534876
909 => 0.023327977054219
910 => 0.022881317250338
911 => 0.022915275825133
912 => 0.022726190165428
913 => 0.022690738883695
914 => 0.022212746801532
915 => 0.02136591454192
916 => 0.021835141817742
917 => 0.021268381251889
918 => 0.021053740437776
919 => 0.022069816668289
920 => 0.021967830796314
921 => 0.021793275315684
922 => 0.021535071379283
923 => 0.021439301027625
924 => 0.020857430688163
925 => 0.02082305068435
926 => 0.021111441336408
927 => 0.0209783589734
928 => 0.020791460933504
929 => 0.02011453517855
930 => 0.019353446507568
1001 => 0.019376418990512
1002 => 0.019618507136193
1003 => 0.020322411069797
1004 => 0.020047383625276
1005 => 0.0198478480587
1006 => 0.019810481045098
1007 => 0.020278207453476
1008 => 0.020940138313042
1009 => 0.021250701462483
1010 => 0.02094294281333
1011 => 0.020589406248086
1012 => 0.020610924380682
1013 => 0.020754074876548
1014 => 0.020769117969624
1015 => 0.020539002009797
1016 => 0.020603778304576
1017 => 0.020505377189538
1018 => 0.01990148972818
1019 => 0.019890567318952
1020 => 0.019742363596934
1021 => 0.019737876047131
1022 => 0.019485744544827
1023 => 0.019450469604752
1024 => 0.01894984720364
1025 => 0.019279358384076
1026 => 0.019058339584353
1027 => 0.018725212120106
1028 => 0.018667780819706
1029 => 0.018666054365466
1030 => 0.01900810178531
1031 => 0.019275361360826
1101 => 0.019062184301001
1102 => 0.019013648016742
1103 => 0.019531888551348
1104 => 0.019465937719452
1105 => 0.019408824724368
1106 => 0.020880869664689
1107 => 0.019715631229326
1108 => 0.019207520762022
1109 => 0.018578637571174
1110 => 0.018783405109219
1111 => 0.018826552638146
1112 => 0.017314201928871
1113 => 0.016700641434469
1114 => 0.01649009059433
1115 => 0.016368915609078
1116 => 0.016424136571477
1117 => 0.015871860163047
1118 => 0.016242999043321
1119 => 0.015764774356383
1120 => 0.015684598431341
1121 => 0.016539723412255
1122 => 0.016658709057782
1123 => 0.016151079328023
1124 => 0.016477059792316
1125 => 0.016358854744496
1126 => 0.015772972146053
1127 => 0.015750595740253
1128 => 0.015456620447123
1129 => 0.014996606038209
1130 => 0.014786367109501
1201 => 0.014676872850052
1202 => 0.014722052315501
1203 => 0.014699208195255
1204 => 0.014550134858294
1205 => 0.014707752904431
1206 => 0.014305103928825
1207 => 0.014144765862375
1208 => 0.014072344877575
1209 => 0.013714970736114
1210 => 0.01428371192018
1211 => 0.014395761098254
1212 => 0.014508031047822
1213 => 0.015485264308864
1214 => 0.015436444496775
1215 => 0.015877751821848
1216 => 0.015860603430708
1217 => 0.015734735432892
1218 => 0.015203719054389
1219 => 0.015415372718404
1220 => 0.01476393563885
1221 => 0.015252036592267
1222 => 0.01502928770071
1223 => 0.015176724967967
1224 => 0.014911619467558
1225 => 0.015058339797422
1226 => 0.014422332115125
1227 => 0.013828437090267
1228 => 0.014067437785146
1229 => 0.014327258873525
1230 => 0.014890617194313
1231 => 0.014555085626057
]
'min_raw' => 0.013714970736114
'max_raw' => 0.040939521662413
'avg_raw' => 0.027327246199263
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.013714'
'max' => '$0.040939'
'avg' => '$0.027327'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.025981059263886
'max_diff' => 0.0012434916624129
'year' => 2026
]
1 => [
'items' => [
101 => 0.014675755465855
102 => 0.014271531702419
103 => 0.01343750261764
104 => 0.013442223131684
105 => 0.013313925927302
106 => 0.013203058411018
107 => 0.014593625462917
108 => 0.014420686468401
109 => 0.014145130814336
110 => 0.014513973007448
111 => 0.01461150073762
112 => 0.01461427721499
113 => 0.01488337495789
114 => 0.015026992471513
115 => 0.015052305680764
116 => 0.015475736793458
117 => 0.015617665317241
118 => 0.016202248820229
119 => 0.015014807528882
120 => 0.014990352956904
121 => 0.014519163373506
122 => 0.014220327490503
123 => 0.014539624922081
124 => 0.014822478858013
125 => 0.014527952433748
126 => 0.014566411366965
127 => 0.014171033706082
128 => 0.0143123626156
129 => 0.014434094111536
130 => 0.014366881134527
131 => 0.014266260054798
201 => 0.01479928806089
202 => 0.014769212531833
203 => 0.015265580465367
204 => 0.015652534765168
205 => 0.016346026046767
206 => 0.0156223317419
207 => 0.015595957445007
208 => 0.015853770427712
209 => 0.015617625847417
210 => 0.01576686107073
211 => 0.016321981945123
212 => 0.016333710774451
213 => 0.016137237771466
214 => 0.016125282371378
215 => 0.016163017160781
216 => 0.016384031000936
217 => 0.016306801974117
218 => 0.016396173359152
219 => 0.016507933644642
220 => 0.016970221570807
221 => 0.017081677624738
222 => 0.016810897197026
223 => 0.016835345637848
224 => 0.016734066324795
225 => 0.016636231777412
226 => 0.016856149552341
227 => 0.017258053608519
228 => 0.017255553384245
301 => 0.01734878731338
302 => 0.017406871278839
303 => 0.017157532379026
304 => 0.016995221923693
305 => 0.01705746208035
306 => 0.017156985446259
307 => 0.017025187994128
308 => 0.016211673065056
309 => 0.016458441527001
310 => 0.016417367188572
311 => 0.016358872335839
312 => 0.016606999932529
313 => 0.016583067420517
314 => 0.015866195770232
315 => 0.015912087567399
316 => 0.015868986602416
317 => 0.016008254637903
318 => 0.015610104916462
319 => 0.015732573089198
320 => 0.01580938397907
321 => 0.015854626183294
322 => 0.01601807204782
323 => 0.015998893562103
324 => 0.01601687988622
325 => 0.016259226955204
326 => 0.017484935266654
327 => 0.017551647865673
328 => 0.017223130629115
329 => 0.017354366785404
330 => 0.017102422063522
331 => 0.017271554243204
401 => 0.017387270185051
402 => 0.016864372094741
403 => 0.016833409463413
404 => 0.016580424876042
405 => 0.016716364463516
406 => 0.016500074805443
407 => 0.016553144722043
408 => 0.016404756608677
409 => 0.016671825668957
410 => 0.016970450376686
411 => 0.017045894770905
412 => 0.016847433050568
413 => 0.016703733685779
414 => 0.016451444938723
415 => 0.016871006747698
416 => 0.016993699406557
417 => 0.016870362295393
418 => 0.016841782391767
419 => 0.016787623526039
420 => 0.016853272451157
421 => 0.016993031195988
422 => 0.016927123552864
423 => 0.016970656712291
424 => 0.016804753199757
425 => 0.017157614920577
426 => 0.017718044254035
427 => 0.017719846125982
428 => 0.017653938127592
429 => 0.017626969994658
430 => 0.017694595600638
501 => 0.017731279717735
502 => 0.017949968527059
503 => 0.01818463033241
504 => 0.019279694587016
505 => 0.018972204926293
506 => 0.019943811078643
507 => 0.020712225397883
508 => 0.020942639253538
509 => 0.020730669348145
510 => 0.020005531752187
511 => 0.019969953042278
512 => 0.021053614755836
513 => 0.020747430686905
514 => 0.020711011066175
515 => 0.020323567833532
516 => 0.020552594769802
517 => 0.020502503219217
518 => 0.020423431256057
519 => 0.020860398696305
520 => 0.021678362736099
521 => 0.021550875369679
522 => 0.021455711964615
523 => 0.021038733625276
524 => 0.021289847721042
525 => 0.021200430801314
526 => 0.021584622633847
527 => 0.021357035903145
528 => 0.020745111041442
529 => 0.020842562092599
530 => 0.020827832562261
531 => 0.021130965252873
601 => 0.021039972343367
602 => 0.020810064736296
603 => 0.021675567023935
604 => 0.021619366119553
605 => 0.021699046152652
606 => 0.021734123767409
607 => 0.022260939758034
608 => 0.022476759413161
609 => 0.02252575425333
610 => 0.02273076623361
611 => 0.022520653368499
612 => 0.023361254636877
613 => 0.023920205429905
614 => 0.024569455539351
615 => 0.02551818445123
616 => 0.025874915298329
617 => 0.025810475063775
618 => 0.026529790497068
619 => 0.027822384341212
620 => 0.026071745236349
621 => 0.027915172464653
622 => 0.027331564687563
623 => 0.025947841146737
624 => 0.025858745663737
625 => 0.026795819310945
626 => 0.028874158470456
627 => 0.028353558083326
628 => 0.028875009986189
629 => 0.02826670864295
630 => 0.028236501354092
701 => 0.028845466147702
702 => 0.030268345580914
703 => 0.029592388898033
704 => 0.028623239241744
705 => 0.029338844266309
706 => 0.028718920967913
707 => 0.02732206027102
708 => 0.028353159990021
709 => 0.027663692971954
710 => 0.027864916101909
711 => 0.029314073223407
712 => 0.029139706804554
713 => 0.029365353096445
714 => 0.028967093297449
715 => 0.02859505584538
716 => 0.027900620313231
717 => 0.027695032187419
718 => 0.027751849349108
719 => 0.027695004031656
720 => 0.02730647373361
721 => 0.027222570652739
722 => 0.027082728508743
723 => 0.027126071436621
724 => 0.026863127293646
725 => 0.027359357218472
726 => 0.027451461865283
727 => 0.02781257662243
728 => 0.027850068754469
729 => 0.028855768212975
730 => 0.028301845851323
731 => 0.028673464794875
801 => 0.028640223698751
802 => 0.025977830631683
803 => 0.026344684905832
804 => 0.026915395031195
805 => 0.026658290893298
806 => 0.026294805795415
807 => 0.026001272090037
808 => 0.025556538511026
809 => 0.026182492483132
810 => 0.027005555393667
811 => 0.02787094298814
812 => 0.028910649480459
813 => 0.028678599094891
814 => 0.027851506398471
815 => 0.027888609172641
816 => 0.028117963923155
817 => 0.027820928682163
818 => 0.027733327190778
819 => 0.028105928823451
820 => 0.028108494726117
821 => 0.027766719783448
822 => 0.027386899478824
823 => 0.02738530801788
824 => 0.027317722663301
825 => 0.028278731927388
826 => 0.028807189853641
827 => 0.028867776703233
828 => 0.028803111875932
829 => 0.028827998801505
830 => 0.028520500777995
831 => 0.029223350074033
901 => 0.02986835409267
902 => 0.029695479237174
903 => 0.029436315253178
904 => 0.029229878656896
905 => 0.029646849335739
906 => 0.029628282287783
907 => 0.029862720545256
908 => 0.029852085071716
909 => 0.029773252303397
910 => 0.02969548205254
911 => 0.030003832306435
912 => 0.029915032385267
913 => 0.029826094533294
914 => 0.029647716055459
915 => 0.029671960653149
916 => 0.029412841417469
917 => 0.029292961002553
918 => 0.02749024719556
919 => 0.027008503160959
920 => 0.027160069641049
921 => 0.027209969261716
922 => 0.027000313640486
923 => 0.02730090594522
924 => 0.027254058952933
925 => 0.027436313195347
926 => 0.027322448657246
927 => 0.027327121697607
928 => 0.027661973025683
929 => 0.027759181790783
930 => 0.027709740628282
1001 => 0.027744367523754
1002 => 0.028542329714798
1003 => 0.028428885008626
1004 => 0.028368619769509
1005 => 0.028385313652604
1006 => 0.028589210100918
1007 => 0.028646289974113
1008 => 0.028404438540456
1009 => 0.028518497074695
1010 => 0.029004143837302
1011 => 0.029174092718988
1012 => 0.029716487969239
1013 => 0.029486068826626
1014 => 0.0299090131352
1015 => 0.031208999747416
1016 => 0.032247519005486
1017 => 0.031292453777142
1018 => 0.033199562139957
1019 => 0.034684519558856
1020 => 0.034627524419792
1021 => 0.034368587746123
1022 => 0.032678003204343
1023 => 0.031122302103801
1024 => 0.032423712132963
1025 => 0.032427029694764
1026 => 0.032315237419096
1027 => 0.031620905196114
1028 => 0.032291076162788
1029 => 0.03234427190042
1030 => 0.032314496433235
1031 => 0.031782153545822
1101 => 0.030969364350154
1102 => 0.031128181413445
1103 => 0.031388327002896
1104 => 0.03089581713001
1105 => 0.030738430383398
1106 => 0.031031042289404
1107 => 0.031973898818669
1108 => 0.031795657253408
1109 => 0.031791002645808
1110 => 0.032553595648184
1111 => 0.032007743636353
1112 => 0.031130184605216
1113 => 0.030908589376272
1114 => 0.030122075597955
1115 => 0.030665323466105
1116 => 0.030684873989754
1117 => 0.030387342684227
1118 => 0.031154327630871
1119 => 0.031147259729562
1120 => 0.031875397785757
1121 => 0.033267324273036
1122 => 0.032855663118205
1123 => 0.032376945983743
1124 => 0.032428995809645
1125 => 0.032999853929877
1126 => 0.032654700078961
1127 => 0.032778819810249
1128 => 0.032999666059798
1129 => 0.033132908085455
1130 => 0.032409824332631
1201 => 0.032241238920754
1202 => 0.031896372333492
1203 => 0.031806403078116
1204 => 0.032087289717563
1205 => 0.03201328601194
1206 => 0.030683230843945
1207 => 0.030544232678532
1208 => 0.030548495553821
1209 => 0.030198978057889
1210 => 0.029665879982781
1211 => 0.031066829894532
1212 => 0.030954314010337
1213 => 0.030830105182224
1214 => 0.030845320054942
1215 => 0.031453424929035
1216 => 0.031100693392029
1217 => 0.032038487994722
1218 => 0.031845705617094
1219 => 0.031647979098915
1220 => 0.031620647271206
1221 => 0.03154453943094
1222 => 0.031283537328191
1223 => 0.030968361605326
1224 => 0.030760255293038
1225 => 0.028374709526884
1226 => 0.028817452945001
1227 => 0.029326788890212
1228 => 0.029502609617463
1229 => 0.029201856097076
1230 => 0.03129541291029
1231 => 0.03167792591408
]
'min_raw' => 0.013203058411018
'max_raw' => 0.034684519558856
'avg_raw' => 0.023943788984937
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.013203'
'max' => '$0.034684'
'avg' => '$0.023943'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -0.00051191232509591
'max_diff' => -0.0062550021035573
'year' => 2027
]
2 => [
'items' => [
101 => 0.030519269074895
102 => 0.030302531687931
103 => 0.031309622177297
104 => 0.030702223500404
105 => 0.030975735087417
106 => 0.030384552639133
107 => 0.031585789732755
108 => 0.031576638318724
109 => 0.031109329958135
110 => 0.031504295784516
111 => 0.03143566075255
112 => 0.030908070764375
113 => 0.031602515276425
114 => 0.031602859712239
115 => 0.031153085575332
116 => 0.030627847851644
117 => 0.03053394775221
118 => 0.03046320664099
119 => 0.030958337110566
120 => 0.031402269541355
121 => 0.032228317734871
122 => 0.032436005877142
123 => 0.033246626523008
124 => 0.032763941396798
125 => 0.032977909461428
126 => 0.033210202063215
127 => 0.033321571678789
128 => 0.033140100866634
129 => 0.034399328394433
130 => 0.034505645779513
131 => 0.034541293079089
201 => 0.034116688641679
202 => 0.034493836762005
203 => 0.034317381646338
204 => 0.034776468836662
205 => 0.034848459570024
206 => 0.034787485980011
207 => 0.034810336975077
208 => 0.033735808423058
209 => 0.033680088449046
210 => 0.032920342649686
211 => 0.033229944678683
212 => 0.032651158525085
213 => 0.032834697576549
214 => 0.03291559984161
215 => 0.032873341089505
216 => 0.033247449112879
217 => 0.032929380867791
218 => 0.032089946473744
219 => 0.031250283376356
220 => 0.031239742090144
221 => 0.031018673617886
222 => 0.030858881603154
223 => 0.030889663214118
224 => 0.030998141626062
225 => 0.030852576640649
226 => 0.030883640310619
227 => 0.031399504208271
228 => 0.031502957033972
229 => 0.031151383910612
301 => 0.029739767088559
302 => 0.029393352779655
303 => 0.029642348515201
304 => 0.029523344590989
305 => 0.023827643287499
306 => 0.025165763823222
307 => 0.024370698039175
308 => 0.024737100931682
309 => 0.023925544647456
310 => 0.024312861843598
311 => 0.02424133850003
312 => 0.026392996723608
313 => 0.026359401539956
314 => 0.026375481776552
315 => 0.025607930186959
316 => 0.026830660710478
317 => 0.027433021734331
318 => 0.027321540740135
319 => 0.02734959810461
320 => 0.026867479624429
321 => 0.026380149737299
322 => 0.025839625892941
323 => 0.026843852384993
324 => 0.026732199541794
325 => 0.026988290992666
326 => 0.027639603656354
327 => 0.027735511920178
328 => 0.027864413599363
329 => 0.027818211523222
330 => 0.028918932420056
331 => 0.028785627856659
401 => 0.029106853500105
402 => 0.028446067980088
403 => 0.027698326441851
404 => 0.027840447662757
405 => 0.027826760246318
406 => 0.027652503725352
407 => 0.027495192729759
408 => 0.027233314244196
409 => 0.028061936523242
410 => 0.028028295971954
411 => 0.028572897394432
412 => 0.028476633803033
413 => 0.027833761979974
414 => 0.027856722272902
415 => 0.028011141277179
416 => 0.028545587214107
417 => 0.028704247156041
418 => 0.028630749549432
419 => 0.028804712932661
420 => 0.028942206497708
421 => 0.028821980007543
422 => 0.030524133573043
423 => 0.029817280738915
424 => 0.030161795892018
425 => 0.030243960726032
426 => 0.030033497231446
427 => 0.030079139227289
428 => 0.030148274414292
429 => 0.030568049731716
430 => 0.031669661627605
501 => 0.032157558037368
502 => 0.033625418458525
503 => 0.032117045032383
504 => 0.032027544395545
505 => 0.032291950382534
506 => 0.033153739838559
507 => 0.033852139248899
508 => 0.034083838624938
509 => 0.034114461522421
510 => 0.034549144954953
511 => 0.034798297392114
512 => 0.034496362952934
513 => 0.034240505129583
514 => 0.033324054164581
515 => 0.033430135859193
516 => 0.034160933538916
517 => 0.035193228305292
518 => 0.036079044606808
519 => 0.035768862611832
520 => 0.038135332279137
521 => 0.038369958080488
522 => 0.038337540381102
523 => 0.038872052873581
524 => 0.037811154427586
525 => 0.037357599787983
526 => 0.034295824495101
527 => 0.03515605846421
528 => 0.036406459058079
529 => 0.036240963850719
530 => 0.035332889516147
531 => 0.036078355750997
601 => 0.035831881300871
602 => 0.035637476675823
603 => 0.03652808195036
604 => 0.035548824866958
605 => 0.036396690219579
606 => 0.035309294134798
607 => 0.035770279497058
608 => 0.035508601910086
609 => 0.035677939378856
610 => 0.034687995996562
611 => 0.035222145416131
612 => 0.034665773624588
613 => 0.034665509831917
614 => 0.034653227893782
615 => 0.035307796839201
616 => 0.035329142309012
617 => 0.034845414869348
618 => 0.034775702188049
619 => 0.035033466508705
620 => 0.0347316919978
621 => 0.034872890392106
622 => 0.034735968753322
623 => 0.034705144808421
624 => 0.034459534371187
625 => 0.034353718641626
626 => 0.034395211715722
627 => 0.034253574462687
628 => 0.034168232894489
629 => 0.034636251307851
630 => 0.034386207949401
701 => 0.034597928577042
702 => 0.034356646200572
703 => 0.033520256361997
704 => 0.033039239721171
705 => 0.031459376849484
706 => 0.031907424000081
707 => 0.032204479724465
708 => 0.032106302809328
709 => 0.032317224812464
710 => 0.03233017371042
711 => 0.032261600817105
712 => 0.032182202191377
713 => 0.032143555331393
714 => 0.032431597362939
715 => 0.032598815457301
716 => 0.0322342932405
717 => 0.032148890785311
718 => 0.03251744287232
719 => 0.03274225943249
720 => 0.034402178599273
721 => 0.034279206425929
722 => 0.034587842448952
723 => 0.034553094769165
724 => 0.034876594490866
725 => 0.035405379814665
726 => 0.034330211400681
727 => 0.034516823460822
728 => 0.034471070493177
729 => 0.034970589396851
730 => 0.034972148840344
731 => 0.034672662304771
801 => 0.034835018814319
802 => 0.034744395864708
803 => 0.034908163783082
804 => 0.034277564057582
805 => 0.035045566454207
806 => 0.035480974324113
807 => 0.035487019962809
808 => 0.035693399837533
809 => 0.03590309374297
810 => 0.036305582933965
811 => 0.035891868537884
812 => 0.03514763661362
813 => 0.035201367754697
814 => 0.034765024849805
815 => 0.034772359852868
816 => 0.034733205031663
817 => 0.034850711597537
818 => 0.034303350140824
819 => 0.034431814780664
820 => 0.0342519635326
821 => 0.034516432499333
822 => 0.034231907609414
823 => 0.034471048429711
824 => 0.034574253680107
825 => 0.034955083275918
826 => 0.03417565876847
827 => 0.032586359435382
828 => 0.032920449423589
829 => 0.032426304088829
830 => 0.032472039120905
831 => 0.032564431164375
901 => 0.032264958322693
902 => 0.032322088303412
903 => 0.032320047218483
904 => 0.03230245825125
905 => 0.032224553798939
906 => 0.032111576930162
907 => 0.032561642002925
908 => 0.032638116828881
909 => 0.032808110893754
910 => 0.033313897922743
911 => 0.033263357871267
912 => 0.03334579079211
913 => 0.033165840188751
914 => 0.032480386513284
915 => 0.032517609945679
916 => 0.032053433147248
917 => 0.032796240849407
918 => 0.032620334180953
919 => 0.03250692600746
920 => 0.032475981536603
921 => 0.032983022313806
922 => 0.033134736861236
923 => 0.033040198536462
924 => 0.032846297674228
925 => 0.033218644651362
926 => 0.033318268994385
927 => 0.033340571210783
928 => 0.034000298663812
929 => 0.03337744264675
930 => 0.033527370280713
1001 => 0.034697062882164
1002 => 0.033636313099193
1003 => 0.034198215916776
1004 => 0.034170713697856
1005 => 0.034458164165577
1006 => 0.034147134369453
1007 => 0.034150989956541
1008 => 0.034406226498296
1009 => 0.034047792807555
1010 => 0.033959039585063
1011 => 0.033836427643853
1012 => 0.034104146331817
1013 => 0.034264631577376
1014 => 0.035558024793161
1015 => 0.036393615796454
1016 => 0.036357340587287
1017 => 0.036688828094731
1018 => 0.03653948993655
1019 => 0.036057237630367
1020 => 0.036880383512618
1021 => 0.036619905713587
1022 => 0.036641379186859
1023 => 0.036640579943111
1024 => 0.036813774908102
1025 => 0.036691050402321
1026 => 0.036449147804013
1027 => 0.036609734037891
1028 => 0.03708661774188
1029 => 0.038566879391641
1030 => 0.039395253421705
1031 => 0.038517010234894
1101 => 0.039122810625012
1102 => 0.038759546259691
1103 => 0.038693530318333
1104 => 0.039074017731624
1105 => 0.039455171137764
1106 => 0.039430893313565
1107 => 0.039154195513151
1108 => 0.038997895946644
1109 => 0.04018144862843
1110 => 0.041053470083076
1111 => 0.040994004065975
1112 => 0.041256467726074
1113 => 0.042027069149818
1114 => 0.042097523286514
1115 => 0.04208864768466
1116 => 0.041914019755731
1117 => 0.042672776932647
1118 => 0.043305745518693
1119 => 0.041873598435669
1120 => 0.042418941296703
1121 => 0.04266376327687
1122 => 0.043023234579164
1123 => 0.04362972292052
1124 => 0.04428853012232
1125 => 0.044381692684108
1126 => 0.044315589388281
1127 => 0.043881088329005
1128 => 0.04460196303042
1129 => 0.045024234523916
1130 => 0.045275687534782
1201 => 0.045913330532546
1202 => 0.042665275214072
1203 => 0.040366140220833
1204 => 0.040007097091727
1205 => 0.040737225413438
1206 => 0.040929754429209
1207 => 0.040852146224362
1208 => 0.038264260761262
1209 => 0.039993472410339
1210 => 0.041853958748499
1211 => 0.041925427605817
1212 => 0.042856825967635
1213 => 0.043160127453552
1214 => 0.04391002521599
1215 => 0.043863118906774
1216 => 0.044045707078448
1217 => 0.044003733219767
1218 => 0.045392760915078
1219 => 0.046925064735616
1220 => 0.046872005926738
1221 => 0.04665171912314
1222 => 0.046978882590965
1223 => 0.048560384345417
1224 => 0.048414785006916
1225 => 0.048556222362147
1226 => 0.050420902060179
1227 => 0.052845250915214
1228 => 0.051718897471405
1229 => 0.054162760344998
1230 => 0.055701042480321
1231 => 0.05836134237202
]
'min_raw' => 0.023827643287499
'max_raw' => 0.05836134237202
'avg_raw' => 0.041094492829759
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.023827'
'max' => '$0.058361'
'avg' => '$0.041094'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 0.010624584876481
'max_diff' => 0.023676822813164
'year' => 2028
]
3 => [
'items' => [
101 => 0.058028259723326
102 => 0.059063894948982
103 => 0.057431972265717
104 => 0.053684747918952
105 => 0.053091735322278
106 => 0.05427896155829
107 => 0.057197641411685
108 => 0.054187041943007
109 => 0.054796082294507
110 => 0.054620678632303
111 => 0.054611332116562
112 => 0.05496805060738
113 => 0.054450611831263
114 => 0.0523424731719
115 => 0.053308620696147
116 => 0.05293554473882
117 => 0.053349500328129
118 => 0.055583447915357
119 => 0.054595766436385
120 => 0.053555324231015
121 => 0.054860269649157
122 => 0.056521913594348
123 => 0.056417930902519
124 => 0.056216161018978
125 => 0.057353527288173
126 => 0.059232123147833
127 => 0.059739900059889
128 => 0.060114730595328
129 => 0.060166413393351
130 => 0.060698778333669
131 => 0.057836117876338
201 => 0.062379233540457
202 => 0.063163704114613
203 => 0.063016256159646
204 => 0.063888162187252
205 => 0.063631625315809
206 => 0.06325994363849
207 => 0.064642100151977
208 => 0.063057569243544
209 => 0.060808527105918
210 => 0.059574658108206
211 => 0.061199516337766
212 => 0.06219176055882
213 => 0.062847570870351
214 => 0.063046018674369
215 => 0.058058338058691
216 => 0.05537025483629
217 => 0.057093285362912
218 => 0.059195501522607
219 => 0.057824439959427
220 => 0.057878182976941
221 => 0.055923409496488
222 => 0.059368455600755
223 => 0.058866541360762
224 => 0.061470473325718
225 => 0.060849024064421
226 => 0.062972429497787
227 => 0.062413265684116
228 => 0.064734323412234
301 => 0.06566025618011
302 => 0.067215041407301
303 => 0.068358747749538
304 => 0.069030353989315
305 => 0.06899003326981
306 => 0.071651271784708
307 => 0.070082032409065
308 => 0.068110697911933
309 => 0.068075042690361
310 => 0.069096024760451
311 => 0.071235723086609
312 => 0.071790515731237
313 => 0.072100569133379
314 => 0.071625711554961
315 => 0.0699224146811
316 => 0.069186939726878
317 => 0.069813585696636
318 => 0.069047251523924
319 => 0.070370159301417
320 => 0.072186794237769
321 => 0.071811666307166
322 => 0.073065662736851
323 => 0.074363417117304
324 => 0.076219264167148
325 => 0.076704451307795
326 => 0.077506447201269
327 => 0.078331964417581
328 => 0.078597098299148
329 => 0.07910332114527
330 => 0.079100653100992
331 => 0.08062618972051
401 => 0.082308903853774
402 => 0.08294408948416
403 => 0.084404663816891
404 => 0.081903481456718
405 => 0.083800657008421
406 => 0.085511956845442
407 => 0.083471674631135
408 => 0.086283728338771
409 => 0.086392914011988
410 => 0.088041488046359
411 => 0.086370342433954
412 => 0.085378021503793
413 => 0.088242814847386
414 => 0.089628998106207
415 => 0.089211468427516
416 => 0.086034046956702
417 => 0.08418465137467
418 => 0.079344426414727
419 => 0.085077881961937
420 => 0.087870480911792
421 => 0.086026814800064
422 => 0.086956652747167
423 => 0.092029547085592
424 => 0.093960976804079
425 => 0.093559252924347
426 => 0.093627137647083
427 => 0.09466930206525
428 => 0.09929083302583
429 => 0.096521504548002
430 => 0.098638552404543
501 => 0.099761426954068
502 => 0.10080441541415
503 => 0.098243165396083
504 => 0.094911016754818
505 => 0.093855585406045
506 => 0.08584349853994
507 => 0.08542643462383
508 => 0.085192324009387
509 => 0.083716289700929
510 => 0.082556531054305
511 => 0.081634247919431
512 => 0.079213901556466
513 => 0.080030697403954
514 => 0.076173170466932
515 => 0.078641079498878
516 => 0.072484373364146
517 => 0.077611861180661
518 => 0.074821202680395
519 => 0.076695054808804
520 => 0.076688517115256
521 => 0.073238161241497
522 => 0.071248067980602
523 => 0.072516232862033
524 => 0.07387580628198
525 => 0.074096392495212
526 => 0.07585911492267
527 => 0.076351052862582
528 => 0.074860457938263
529 => 0.07235678931409
530 => 0.072938334432884
531 => 0.071236282987331
601 => 0.068253503297464
602 => 0.070395787745064
603 => 0.071127257845073
604 => 0.071450316712169
605 => 0.068517095461746
606 => 0.067595413661531
607 => 0.067104718004757
608 => 0.071978147284476
609 => 0.072245124741563
610 => 0.070879230324295
611 => 0.077053202609772
612 => 0.075655842533873
613 => 0.077217036100182
614 => 0.072885565308821
615 => 0.07305103332615
616 => 0.071000445638621
617 => 0.072148637723318
618 => 0.071337132565813
619 => 0.07205587514953
620 => 0.072486686490724
621 => 0.074536937696991
622 => 0.077635271756073
623 => 0.074230698536627
624 => 0.072747277230528
625 => 0.073667583465754
626 => 0.076118480246698
627 => 0.079831714328925
628 => 0.077633405016446
629 => 0.078608977359612
630 => 0.078822096516401
701 => 0.077201144615213
702 => 0.079891481137624
703 => 0.081333254336239
704 => 0.082812215305092
705 => 0.084096355674801
706 => 0.082221485771083
707 => 0.084227865320105
708 => 0.082611077577261
709 => 0.081160651831485
710 => 0.081162851528632
711 => 0.080252978270968
712 => 0.078489984182835
713 => 0.078164861023801
714 => 0.079856192755624
715 => 0.081212480634834
716 => 0.081324191000747
717 => 0.082075101659265
718 => 0.082519482851981
719 => 0.086875022647536
720 => 0.088626856784224
721 => 0.090768966406042
722 => 0.091603438826423
723 => 0.094114901636851
724 => 0.092086691446394
725 => 0.091647875413648
726 => 0.085555888128775
727 => 0.086553450705394
728 => 0.088150644641032
729 => 0.085582225268491
730 => 0.087211296191721
731 => 0.087532909300407
801 => 0.08549495136103
802 => 0.086583512751416
803 => 0.083692616434509
804 => 0.077698285395874
805 => 0.07989815454164
806 => 0.081517998700872
807 => 0.079206281360304
808 => 0.083349945217457
809 => 0.080929302334692
810 => 0.080162074752206
811 => 0.077168846416543
812 => 0.078581534971052
813 => 0.080492216468776
814 => 0.079311637443748
815 => 0.081761516185513
816 => 0.085231197842648
817 => 0.087703899614637
818 => 0.08789372295303
819 => 0.086303941371794
820 => 0.088851576501576
821 => 0.08887013324218
822 => 0.08599639040839
823 => 0.084236238923761
824 => 0.083836328803063
825 => 0.084835382691565
826 => 0.086048418547727
827 => 0.087961038000747
828 => 0.089116793879181
829 => 0.092130392244585
830 => 0.092945785555627
831 => 0.093841655592657
901 => 0.095038814238217
902 => 0.096476310137388
903 => 0.093331150946689
904 => 0.093456113984646
905 => 0.09052738529396
906 => 0.087397618665783
907 => 0.089772721405652
908 => 0.092877852291353
909 => 0.092165531835308
910 => 0.092085381232617
911 => 0.092220172314421
912 => 0.091683105952774
913 => 0.089253974703656
914 => 0.088034080197515
915 => 0.089608055338717
916 => 0.090444553076692
917 => 0.091741888118022
918 => 0.091581964190757
919 => 0.094923759933612
920 => 0.096222280708627
921 => 0.095890063527542
922 => 0.095951199484114
923 => 0.098302109321843
924 => 0.10091680456288
925 => 0.10336581169554
926 => 0.10585704693818
927 => 0.10285376561861
928 => 0.10132888458117
929 => 0.10290217257407
930 => 0.1020673638194
1001 => 0.10686442254405
1002 => 0.10719656048211
1003 => 0.11199327232481
1004 => 0.11654592304535
1005 => 0.11368648469699
1006 => 0.11638280626757
1007 => 0.11929909788047
1008 => 0.12492509755301
1009 => 0.12303045878835
1010 => 0.1215791951874
1011 => 0.12020775809695
1012 => 0.12306150097266
1013 => 0.12673279559261
1014 => 0.12752355729053
1015 => 0.12880489333537
1016 => 0.12745772515853
1017 => 0.12908024084182
1018 => 0.13480843417334
1019 => 0.133260625771
1020 => 0.13106248901706
1021 => 0.13558434751076
1022 => 0.13722079052135
1023 => 0.14870620458152
1024 => 0.16320701427128
1025 => 0.15720358384227
1026 => 0.15347706084549
1027 => 0.15435288214404
1028 => 0.15964808695936
1029 => 0.16134873868464
1030 => 0.15672578104552
1031 => 0.15835868783769
1101 => 0.16735616480639
1102 => 0.17218302252648
1103 => 0.16562750140912
1104 => 0.14754107864207
1105 => 0.13086457085271
1106 => 0.13528793167138
1107 => 0.13478645982741
1108 => 0.14445312637217
1109 => 0.1332237110525
1110 => 0.13341278560704
1111 => 0.14327934857877
1112 => 0.14064711873362
1113 => 0.13638324349501
1114 => 0.13089570186064
1115 => 0.12075147361332
1116 => 0.11176644776194
1117 => 0.12938815258437
1118 => 0.12862827262944
1119 => 0.12752785384679
1120 => 0.12997671676982
1121 => 0.14186770000217
1122 => 0.1415935743513
1123 => 0.13984972682066
1124 => 0.14117241980309
1125 => 0.13615136902007
1126 => 0.13744540813405
1127 => 0.13086192920867
1128 => 0.13383793663331
1129 => 0.13637409513376
1130 => 0.13688326650119
1201 => 0.13803045559095
1202 => 0.1282278504224
1203 => 0.13262893235371
1204 => 0.13521415566275
1205 => 0.12353402270129
1206 => 0.13498327698859
1207 => 0.12805720887524
1208 => 0.12570639733152
1209 => 0.12887145537927
1210 => 0.12763802917994
1211 => 0.12657760176298
1212 => 0.12598586504385
1213 => 0.12830993435941
1214 => 0.12820151374798
1215 => 0.12439888526531
1216 => 0.11943851142463
1217 => 0.12110337570428
1218 => 0.1204985149033
1219 => 0.11830642133194
1220 => 0.11978362772465
1221 => 0.1132787583682
1222 => 0.10208746873412
1223 => 0.10948077746486
1224 => 0.1091961431211
1225 => 0.10905261757784
1226 => 0.11460848475295
1227 => 0.11407441631973
1228 => 0.11310507688382
1229 => 0.11828861865303
1230 => 0.11639655617879
1231 => 0.12222744689841
]
'min_raw' => 0.0523424731719
'max_raw' => 0.17218302252648
'avg_raw' => 0.11226274784919
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.052342'
'max' => '$0.172183'
'avg' => '$0.112262'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072435
'min_diff' => 0.028514829884401
'max_diff' => 0.11382168015446
'year' => 2029
]
4 => [
'items' => [
101 => 0.12606804864472
102 => 0.12509394781141
103 => 0.12870605231705
104 => 0.12114173081473
105 => 0.1236542949899
106 => 0.12417213098414
107 => 0.11822465455222
108 => 0.11416179652034
109 => 0.11389085020958
110 => 0.10684641427863
111 => 0.11060949509224
112 => 0.11392085048136
113 => 0.11233496822153
114 => 0.11183292527496
115 => 0.11439775380919
116 => 0.11459706295257
117 => 0.11005279336165
118 => 0.11099769090791
119 => 0.11493807075193
120 => 0.11089840344581
121 => 0.10304998974593
122 => 0.10110347463555
123 => 0.10084377363843
124 => 0.095564670279017
125 => 0.10123355008285
126 => 0.098758932131941
127 => 0.10657622058837
128 => 0.10211102734702
129 => 0.10191854179085
130 => 0.10162757164121
131 => 0.097083629302755
201 => 0.098078463892277
202 => 0.10138544558543
203 => 0.10256541390937
204 => 0.10244233354599
205 => 0.10136923957102
206 => 0.10186049649763
207 => 0.10027798677176
208 => 0.099719169650467
209 => 0.097955389100899
210 => 0.095363118949848
211 => 0.095723590013669
212 => 0.090587624540054
213 => 0.08778927796371
214 => 0.087014732512993
215 => 0.085978977965812
216 => 0.087131723745135
217 => 0.090573074995167
218 => 0.086422075264233
219 => 0.079305477384321
220 => 0.079733197042996
221 => 0.080694156124934
222 => 0.078903415233124
223 => 0.077208629264517
224 => 0.078682108161889
225 => 0.075666711823718
226 => 0.081058552366175
227 => 0.08091271818996
228 => 0.082922462915006
301 => 0.08417919753569
302 => 0.081282831107678
303 => 0.08055440278364
304 => 0.080969348662233
305 => 0.074111217592453
306 => 0.082362007292781
307 => 0.082433360464731
308 => 0.081822391286729
309 => 0.086215682087601
310 => 0.095486895979204
311 => 0.091998692379468
312 => 0.090647954514139
313 => 0.088080200844764
314 => 0.091501580151079
315 => 0.091238871602186
316 => 0.090050803914831
317 => 0.089332256870522
318 => 0.090656201831516
319 => 0.089168205438404
320 => 0.088900920398795
321 => 0.087281463867754
322 => 0.086703391566749
323 => 0.086275409848807
324 => 0.085804244029967
325 => 0.08684351841912
326 => 0.084488385925368
327 => 0.081648327014387
328 => 0.081412206845802
329 => 0.082064155391163
330 => 0.081775716691702
331 => 0.08141082591228
401 => 0.080714150042273
402 => 0.080507461193766
403 => 0.081179099680238
404 => 0.080420858987968
405 => 0.08153968443292
406 => 0.081235425819329
407 => 0.079535861936872
408 => 0.077417576080191
409 => 0.077398718892811
410 => 0.076942337679674
411 => 0.07636106758737
412 => 0.076199371545349
413 => 0.078558015879019
414 => 0.083440339061433
415 => 0.082481822196633
416 => 0.08317444886421
417 => 0.086581486550882
418 => 0.087664481378277
419 => 0.08689579730193
420 => 0.085843575127858
421 => 0.085889867563399
422 => 0.089485629261518
423 => 0.089709892507978
424 => 0.090276533381719
425 => 0.091004827037167
426 => 0.087019828860684
427 => 0.085702174507651
428 => 0.085077796774504
429 => 0.083154955021004
430 => 0.085228575000161
501 => 0.084020365439567
502 => 0.084183394187607
503 => 0.084077221501574
504 => 0.084135198967514
505 => 0.081057045236857
506 => 0.082178562673311
507 => 0.080313822413323
508 => 0.077817144532115
509 => 0.077808774792409
510 => 0.078419833166794
511 => 0.078056351734993
512 => 0.077078232547981
513 => 0.077217169761903
514 => 0.075999933571333
515 => 0.077364964274211
516 => 0.077404108470455
517 => 0.076878497296122
518 => 0.078981515431844
519 => 0.079843123677949
520 => 0.07949715514332
521 => 0.079818849603278
522 => 0.082521652899809
523 => 0.082962327768719
524 => 0.083158046436141
525 => 0.082895809349551
526 => 0.079868251885932
527 => 0.080002536933612
528 => 0.079017242353266
529 => 0.078184772260659
530 => 0.078218066698633
531 => 0.07864606453977
601 => 0.080515156213757
602 => 0.084448549452691
603 => 0.084597818850836
604 => 0.084778737715882
605 => 0.084042849769201
606 => 0.083820898922983
607 => 0.084113709379519
608 => 0.085590885072071
609 => 0.089390582002604
610 => 0.088047515334129
611 => 0.08695558122658
612 => 0.087913501822222
613 => 0.087766037454952
614 => 0.086521289792306
615 => 0.086486353871176
616 => 0.084097285136657
617 => 0.083214100821969
618 => 0.082476045903415
619 => 0.081670109199765
620 => 0.081192322906599
621 => 0.081926419802889
622 => 0.08209431644865
623 => 0.080489200755093
624 => 0.080270429417168
625 => 0.081581201541355
626 => 0.08100437960001
627 => 0.081597655271179
628 => 0.081735300315915
629 => 0.081713136293478
630 => 0.081110867939136
701 => 0.081494735828293
702 => 0.080586773833912
703 => 0.079599501536505
704 => 0.078969683319997
705 => 0.078420083392831
706 => 0.078725033375358
707 => 0.077637942369315
708 => 0.077290160077663
709 => 0.081364690024748
710 => 0.084374589105238
711 => 0.084330823980557
712 => 0.084064415039536
713 => 0.08366858539226
714 => 0.085561927667902
715 => 0.084902325077642
716 => 0.085382241073697
717 => 0.085504399836704
718 => 0.08587413762046
719 => 0.086006287098117
720 => 0.085606839592925
721 => 0.084266244977099
722 => 0.08092561065437
723 => 0.079370536359269
724 => 0.078857335940075
725 => 0.078875989800606
726 => 0.078361433052651
727 => 0.07851299307574
728 => 0.078308726661744
729 => 0.077921895490988
730 => 0.078701147640626
731 => 0.078790949191635
801 => 0.07860906242854
802 => 0.078651903345646
803 => 0.077145958632071
804 => 0.077260452337904
805 => 0.076622936834669
806 => 0.076503410363176
807 => 0.074891826685822
808 => 0.072036672598601
809 => 0.073618705119435
810 => 0.071707832301703
811 => 0.07098415581118
812 => 0.074409927762531
813 => 0.074066075274739
814 => 0.073477549284721
815 => 0.072606996685922
816 => 0.072284100258836
817 => 0.070322283784449
818 => 0.070206369201258
819 => 0.071178698419465
820 => 0.070730001941068
821 => 0.070099862150754
822 => 0.067817559706483
823 => 0.065251496114751
824 => 0.065328949444884
825 => 0.066145166530104
826 => 0.06851842778725
827 => 0.067591153556247
828 => 0.066918405462408
829 => 0.066792419967165
830 => 0.068369392208626
831 => 0.070601138316192
901 => 0.071648223657357
902 => 0.070610593884717
903 => 0.069418620671862
904 => 0.069491170558257
905 => 0.069973812449517
906 => 0.0700245312881
907 => 0.069248679263358
908 => 0.069467077063743
909 => 0.069135310834244
910 => 0.0670992620962
911 => 0.067062436430909
912 => 0.066562757234872
913 => 0.066547627147401
914 => 0.065697548184125
915 => 0.065578616260844
916 => 0.063890732883155
917 => 0.065001702833731
918 => 0.064256522519425
919 => 0.063133360015499
920 => 0.062939726376476
921 => 0.062933905515468
922 => 0.064087142272459
923 => 0.064988226590779
924 => 0.064269485250031
925 => 0.064105841778959
926 => 0.065853125923782
927 => 0.065630768089505
928 => 0.065438207639075
929 => 0.070401309930265
930 => 0.066472627191087
1001 => 0.064759497275434
1002 => 0.062639173690266
1003 => 0.063329561741196
1004 => 0.063475036647438
1005 => 0.058376040642163
1006 => 0.056307378597862
1007 => 0.055597491740143
1008 => 0.055188941817198
1009 => 0.055375123147331
1010 => 0.053513084677603
1011 => 0.054764405324534
1012 => 0.053152037403944
1013 => 0.052881718674958
1014 => 0.05576483225103
1015 => 0.056166000662236
1016 => 0.054454491586778
1017 => 0.055553557481372
1018 => 0.055155020909833
1019 => 0.053179676824166
1020 => 0.053104233209741
1021 => 0.052113074984255
1022 => 0.05056210428742
1023 => 0.049853269060867
1024 => 0.049484101520489
1025 => 0.049636427242581
1026 => 0.049559406696247
1027 => 0.049056795532714
1028 => 0.049588215779805
1029 => 0.048230656646495
1030 => 0.047690065661013
1031 => 0.047445893254487
1101 => 0.046240981385485
1102 => 0.048158531995807
1103 => 0.048536313622706
1104 => 0.048914839596113
1105 => 0.052209649763964
1106 => 0.052045050359015
1107 => 0.053532948816592
1108 => 0.0534751318186
1109 => 0.053050759076142
1110 => 0.05126040028164
1111 => 0.051974005387052
1112 => 0.049777639791451
1113 => 0.051423306234018
1114 => 0.050672292794304
1115 => 0.051169387834599
1116 => 0.050275566130896
1117 => 0.050770243966719
1118 => 0.048625899661218
1119 => 0.046623541120481
1120 => 0.047429348649763
1121 => 0.048305353589362
1122 => 0.05020475550032
1123 => 0.049073487391879
1124 => 0.049480334181658
1125 => 0.04811746554123
1126 => 0.045305478251845
1127 => 0.045321393794522
1128 => 0.044888830812524
1129 => 0.044515033240847
1130 => 0.049203427142616
1201 => 0.048620351248392
1202 => 0.047691296122031
1203 => 0.048934873327848
1204 => 0.04926369487929
1205 => 0.049273055966591
1206 => 0.050180337794581
1207 => 0.050664554268818
1208 => 0.050749899521117
1209 => 0.052177527080581
1210 => 0.05265604900765
1211 => 0.054627013102292
1212 => 0.050623471884012
1213 => 0.050541021587225
1214 => 0.048952373009392
1215 => 0.04794482696579
1216 => 0.049021360548991
1217 => 0.049975022342218
1218 => 0.048982005939629
1219 => 0.049111672918087
1220 => 0.047778629530034
1221 => 0.048255129815742
1222 => 0.048665556053313
1223 => 0.048438942808665
1224 => 0.048099691813222
1225 => 0.049896832950589
1226 => 0.049795431204565
1227 => 0.051468970347777
1228 => 0.052773613785843
1229 => 0.055111768059768
1230 => 0.052671782184188
1231 => 0.052582859400817
]
'min_raw' => 0.044515033240847
'max_raw' => 0.12870605231705
'avg_raw' => 0.08661054277895
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.044515'
'max' => '$0.128706'
'avg' => '$0.08661'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -0.0078274399310528
'max_diff' => -0.043476970209426
'year' => 2030
]
5 => [
'items' => [
101 => 0.053452093871937
102 => 0.052655915932382
103 => 0.053159072907052
104 => 0.055030701692372
105 => 0.055070246259331
106 => 0.054407823812458
107 => 0.054367515346365
108 => 0.054494740823395
109 => 0.055239904416172
110 => 0.054979521360291
111 => 0.055280843224649
112 => 0.055657650830032
113 => 0.057216286849011
114 => 0.05759206871645
115 => 0.056679113599134
116 => 0.056761543224303
117 => 0.056420072949248
118 => 0.056090216942156
119 => 0.056831685074499
120 => 0.058186732659948
121 => 0.058178302979246
122 => 0.058492647680709
123 => 0.058688481825549
124 => 0.057847818316542
125 => 0.057300577284233
126 => 0.057510424317872
127 => 0.057845974294534
128 => 0.05740160998287
129 => 0.054658787601703
130 => 0.055490784699977
131 => 0.055352299700245
201 => 0.055155080220275
202 => 0.055991659736232
203 => 0.055910969601069
204 => 0.05349398678175
205 => 0.053648714179961
206 => 0.053503396267308
207 => 0.053972948172337
208 => 0.052630558588572
209 => 0.053043468583407
210 => 0.053302441861376
211 => 0.053454979111626
212 => 0.054006048255302
213 => 0.053941386651708
214 => 0.054002028799234
215 => 0.054819118862445
216 => 0.058951680010719
217 => 0.059176606196038
218 => 0.058068987396643
219 => 0.058511459260186
220 => 0.057662010040142
221 => 0.058232250992373
222 => 0.058622395369339
223 => 0.056859407950277
224 => 0.056755015277014
225 => 0.055902060077873
226 => 0.056360389888039
227 => 0.055631154204985
228 => 0.055810083134025
301 => 0.055309782249685
302 => 0.056210224232585
303 => 0.057217058284005
304 => 0.057471424326475
305 => 0.056802296780203
306 => 0.056317804339047
307 => 0.05546719521411
308 => 0.056881777145941
309 => 0.057295444011412
310 => 0.05687960433
311 => 0.056783245189541
312 => 0.056600644792487
313 => 0.056821984726984
314 => 0.057293191092823
315 => 0.057070978872509
316 => 0.057217753958902
317 => 0.056658398683382
318 => 0.057848096611144
319 => 0.059737623236827
320 => 0.059743698373897
321 => 0.059521484955775
322 => 0.059430560012735
323 => 0.059658564464765
324 => 0.05978224752676
325 => 0.06051957211576
326 => 0.061310750776065
327 => 0.065002836365414
328 => 0.063966113506044
329 => 0.067241951484069
330 => 0.069832714010362
331 => 0.070609570411683
401 => 0.069894899076386
402 => 0.067450047044123
403 => 0.067330090939638
404 => 0.070983732065742
405 => 0.069951411100253
406 => 0.069828619806226
407 => 0.068522327896945
408 => 0.06929450820273
409 => 0.069125621042654
410 => 0.06885902439823
411 => 0.070332290631121
412 => 0.073090113499711
413 => 0.072660280942943
414 => 0.072339430878673
415 => 0.070933559295094
416 => 0.071780208001195
417 => 0.07147873261344
418 => 0.072774062200243
419 => 0.072006737648084
420 => 0.069943590253623
421 => 0.070272153276414
422 => 0.070222491636496
423 => 0.071244524666942
424 => 0.070937735719622
425 => 0.070162586170745
426 => 0.07308068756096
427 => 0.072891202288012
428 => 0.073159849082688
429 => 0.073278115709883
430 => 0.075054312603392
501 => 0.075781963638702
502 => 0.075947153163042
503 => 0.076638365368035
504 => 0.075929955173701
505 => 0.078764101038944
506 => 0.080648642662335
507 => 0.082837634735528
508 => 0.086036340500065
509 => 0.087239083457213
510 => 0.087021818707339
511 => 0.089447040911687
512 => 0.093805111303238
513 => 0.087902709335473
514 => 0.094117952939682
515 => 0.092150278573027
516 => 0.08748495804664
517 => 0.087184566405256
518 => 0.090343975631211
519 => 0.097351241212509
520 => 0.095596000660142
521 => 0.097354112157255
522 => 0.095303181708283
523 => 0.095201335724892
524 => 0.097254503043111
525 => 0.10205184039445
526 => 0.099772805244333
527 => 0.096505249514288
528 => 0.098917961816555
529 => 0.096827847134349
530 => 0.092118233769075
531 => 0.095594658460772
601 => 0.093270072272309
602 => 0.093948510103901
603 => 0.09883444451595
604 => 0.098246555960913
605 => 0.099007338188145
606 => 0.097664577470218
607 => 0.096410227225745
608 => 0.094068889345162
609 => 0.093375734625284
610 => 0.093567297652764
611 => 0.093375639696161
612 => 0.092065682669981
613 => 0.091782797574899
614 => 0.09131131002295
615 => 0.091457443730397
616 => 0.090570909194184
617 => 0.092243983031401
618 => 0.092554520278664
619 => 0.093772043894611
620 => 0.093898451235398
621 => 0.097289237175447
622 => 0.095421649259511
623 => 0.096674588473304
624 => 0.096562513796901
625 => 0.087586069688936
626 => 0.088822944487176
627 => 0.090747133520545
628 => 0.089880288969189
629 => 0.088654773583958
630 => 0.087665104202406
701 => 0.086165653890465
702 => 0.088276101410129
703 => 0.091051115477416
704 => 0.093968830171615
705 => 0.097474273200456
706 => 0.096691899124274
707 => 0.093903298352526
708 => 0.094028392946073
709 => 0.094801678500469
710 => 0.093800203447125
711 => 0.093504848902778
712 => 0.094761101321553
713 => 0.094769752441537
714 => 0.093617434360362
715 => 0.092336843685118
716 => 0.09233147796343
717 => 0.092103609221809
718 => 0.095343719051204
719 => 0.097125451845318
720 => 0.097329724638757
721 => 0.097111702658759
722 => 0.097195610665877
723 => 0.096158859610785
724 => 0.09852856508375
725 => 0.10070324116532
726 => 0.10012038152028
727 => 0.099246592053989
728 => 0.098550576656682
729 => 0.099956422412367
730 => 0.099893822313872
731 => 0.1006842472669
801 => 0.10064838902531
802 => 0.100382598843
803 => 0.10012039101249
804 => 0.10116001542182
805 => 0.10086062028779
806 => 0.10056076011042
807 => 0.099959344618413
808 => 0.10004108697223
809 => 0.099167448378005
810 => 0.098763263189335
811 => 0.0926852877276
812 => 0.091061054080647
813 => 0.091572071050303
814 => 0.091740311105263
815 => 0.091033442540597
816 => 0.092046910482693
817 => 0.091888962577445
818 => 0.092503445480329
819 => 0.092119543240354
820 => 0.092135298722193
821 => 0.093264273353373
822 => 0.093592019491806
823 => 0.093425325160563
824 => 0.093542072156218
825 => 0.096232457395264
826 => 0.095849970647949
827 => 0.095646782186681
828 => 0.095703066779067
829 => 0.096390517890153
830 => 0.096582966667818
831 => 0.095767547673716
901 => 0.096152103985215
902 => 0.097789495952119
903 => 0.098362490472176
904 => 0.10019121392723
905 => 0.099414339700553
906 => 0.10084032596594
907 => 0.10522332159119
908 => 0.10872476177688
909 => 0.10550469267899
910 => 0.11193464167427
911 => 0.11694127928851
912 => 0.11674911619788
913 => 0.11587609312422
914 => 0.11017616930877
915 => 0.10493101443271
916 => 0.10931880920757
917 => 0.10932999459881
918 => 0.10895307913631
919 => 0.1066120895698
920 => 0.10887161777378
921 => 0.10905097091722
922 => 0.10895058085074
923 => 0.10715574963884
924 => 0.10441537411852
925 => 0.10495083693565
926 => 0.10582793595327
927 => 0.1041674045309
928 => 0.1036367641263
929 => 0.10462332559691
930 => 0.10780223221347
1001 => 0.10720127833176
1002 => 0.10718558499727
1003 => 0.10975672054732
1004 => 0.10791634237926
1005 => 0.10495759083657
1006 => 0.1042104670509
1007 => 0.10155868093466
1008 => 0.10339027905049
1009 => 0.10345619500594
1010 => 0.10245304743639
1011 => 0.10503899073318
1012 => 0.10501516081045
1013 => 0.10747012910388
1014 => 0.11216310643695
1015 => 0.11077516211217
1016 => 0.10916113387037
1017 => 0.1093366234924
1018 => 0.11126131150081
1019 => 0.11009760119457
1020 => 0.11051607953437
1021 => 0.11126067808372
1022 => 0.11170991287588
1023 => 0.10927198551914
1024 => 0.10870358803274
1025 => 0.10754084625597
1026 => 0.10723750863002
1027 => 0.10818453754579
1028 => 0.10793502888551
1029 => 0.10345065502513
1030 => 0.1029820130059
1031 => 0.10299638558756
1101 => 0.10181796294749
1102 => 0.10002058556755
1103 => 0.10474398600621
1104 => 0.10436463084704
1105 => 0.10394585211107
1106 => 0.10399715011671
1107 => 0.10604741815624
1108 => 0.1048581591523
1109 => 0.10801999913
1110 => 0.1073700198842
1111 => 0.10670337112333
1112 => 0.10661121995796
1113 => 0.10635461706083
1114 => 0.10547463024882
1115 => 0.10441199329432
1116 => 0.10371034833292
1117 => 0.095667314228847
1118 => 0.097160054574385
1119 => 0.098877316274364
1120 => 0.099470108131702
1121 => 0.098456096639777
1122 => 0.105514669603
1123 => 0.10680433890148
1124 => 0.10289784647333
1125 => 0.10216710124106
1126 => 0.10556257713877
1127 => 0.1035146900924
1128 => 0.10443685350399
1129 => 0.10244364060456
1130 => 0.1064936953334
1201 => 0.10646284070206
1202 => 0.10488727793791
1203 => 0.10621893279719
1204 => 0.10598752499497
1205 => 0.10420871851468
1206 => 0.10655008667163
1207 => 0.10655124796102
1208 => 0.10503480305621
1209 => 0.10326392739987
1210 => 0.10294733665873
1211 => 0.10270882806326
1212 => 0.10437819501035
1213 => 0.10587494419513
1214 => 0.10866002335241
1215 => 0.1093602584244
1216 => 0.11209332252766
1217 => 0.11046591592464
1218 => 0.11118732419332
1219 => 0.11197051491839
1220 => 0.11234600535288
1221 => 0.11173416383981
1222 => 0.11597973736624
1223 => 0.11633819385289
1224 => 0.11645838121222
1225 => 0.11502679770656
1226 => 0.11629837892588
1227 => 0.1157034481837
1228 => 0.11725129269832
1229 => 0.11749401448209
1230 => 0.11728843776632
1231 => 0.11736548149159
]
'min_raw' => 0.052630558588572
'max_raw' => 0.11749401448209
'avg_raw' => 0.08506228653533
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.05263'
'max' => '$0.117494'
'avg' => '$0.085062'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 0.0081155253477251
'max_diff' => -0.011212037834965
'year' => 2031
]
6 => [
'items' => [
101 => 0.11374263345727
102 => 0.11355476967464
103 => 0.11099323366834
104 => 0.11203707852483
105 => 0.11008566059841
106 => 0.11070447532471
107 => 0.11097724295978
108 => 0.11083476462665
109 => 0.11209609594684
110 => 0.11102370665171
111 => 0.10819349498474
112 => 0.1053625122285
113 => 0.10532697154606
114 => 0.10458162375734
115 => 0.10404287382335
116 => 0.10414665617381
117 => 0.10451239871341
118 => 0.10402161620206
119 => 0.10412634953416
120 => 0.10586562068156
121 => 0.10621441910626
122 => 0.1050290657748
123 => 0.10026970110331
124 => 0.099101741074962
125 => 0.099941247581683
126 => 0.099540017542614
127 => 0.080336562936731
128 => 0.084848129747515
129 => 0.082167509946879
130 => 0.083402862880399
131 => 0.080666644207082
201 => 0.081972511175497
202 => 0.081731365229057
203 => 0.08898583115383
204 => 0.088872562646606
205 => 0.088926778286978
206 => 0.086338924513924
207 => 0.090461445842286
208 => 0.092492348089709
209 => 0.092116482134424
210 => 0.092211079497656
211 => 0.090585583381286
212 => 0.088942516642543
213 => 0.087120102763119
214 => 0.090505922493926
215 => 0.09012947713773
216 => 0.090992907344079
217 => 0.0931888534629
218 => 0.093512214870484
219 => 0.093946815881486
220 => 0.093791042356048
221 => 0.097502199709603
222 => 0.097052754067083
223 => 0.098135788751221
224 => 0.095907904235911
225 => 0.093386841434099
226 => 0.093866013052971
227 => 0.093819864972818
228 => 0.093232346946181
229 => 0.092701961941438
301 => 0.091819020343589
302 => 0.094612778209951
303 => 0.094499356742578
304 => 0.096335518461319
305 => 0.096010959042008
306 => 0.093843471806688
307 => 0.093920884037329
308 => 0.09444151849144
309 => 0.096243440281617
310 => 0.096778373353132
311 => 0.096530571041009
312 => 0.097117100733303
313 => 0.09758066988735
314 => 0.097175317881815
315 => 0.10291424746846
316 => 0.10053104378731
317 => 0.10169260067928
318 => 0.10196962515373
319 => 0.10126003278763
320 => 0.10141391796324
321 => 0.10164701207309
322 => 0.10306231386356
323 => 0.10677647528263
324 => 0.10842145209199
325 => 0.11337044598466
326 => 0.10828485966716
327 => 0.10798310202132
328 => 0.10887456526669
329 => 0.1117801485859
330 => 0.11413485095855
331 => 0.1149160415816
401 => 0.11501928881849
402 => 0.1164848543599
403 => 0.11732488919705
404 => 0.11630689615497
405 => 0.11544425364012
406 => 0.11235437522705
407 => 0.11271203706682
408 => 0.11517597246667
409 => 0.11865642634403
410 => 0.12164301785031
411 => 0.12059721759803
412 => 0.12857593530298
413 => 0.12936699257329
414 => 0.12925769403648
415 => 0.13105984022334
416 => 0.1274829470431
417 => 0.12595375590951
418 => 0.11563076674324
419 => 0.1185311056297
420 => 0.12274691853211
421 => 0.12218893988599
422 => 0.11912730386726
423 => 0.12164069532484
424 => 0.12080968950795
425 => 0.1201542407417
426 => 0.12315697860488
427 => 0.11985534497864
428 => 0.12271398221107
429 => 0.11904775039166
430 => 0.12060199472549
501 => 0.11971973047127
502 => 0.12029066356999
503 => 0.11695300034095
504 => 0.11875392240215
505 => 0.11687807606232
506 => 0.11687718666692
507 => 0.11683577725499
508 => 0.11904270215502
509 => 0.11911466989678
510 => 0.11748374906118
511 => 0.117248707889
512 => 0.11811777829262
513 => 0.11710032445988
514 => 0.11757638470444
515 => 0.11711474383972
516 => 0.11701081875743
517 => 0.11618272602032
518 => 0.11582596090028
519 => 0.11596585769655
520 => 0.11548831780915
521 => 0.11520058275361
522 => 0.11677853951026
523 => 0.11593550086978
524 => 0.11664933174773
525 => 0.11583583136966
526 => 0.11301588463404
527 => 0.11139410344598
528 => 0.10606748547159
529 => 0.10757810772148
530 => 0.10857965183601
531 => 0.10824864151213
601 => 0.10895977977181
602 => 0.10900343788533
603 => 0.10877223958791
604 => 0.10850454157783
605 => 0.10837424099116
606 => 0.10934539481097
607 => 0.1099091822909
608 => 0.10868017018683
609 => 0.10839222984655
610 => 0.10963482893939
611 => 0.11039281366819
612 => 0.11598934703086
613 => 0.11557473776279
614 => 0.11661532566268
615 => 0.11649817143428
616 => 0.11758887333202
617 => 0.11937170996982
618 => 0.11574670459621
619 => 0.11637588018582
620 => 0.11622162086103
621 => 0.11790578372006
622 => 0.11791104149268
623 => 0.11690130172851
624 => 0.11744869803582
625 => 0.11714315643412
626 => 0.11769531140483
627 => 0.11556920040324
628 => 0.11815857410367
629 => 0.11962658213627
630 => 0.11964696542922
701 => 0.12034278958584
702 => 0.12104978722838
703 => 0.12240680763672
704 => 0.12101194066572
705 => 0.11850271077244
706 => 0.11868386906598
707 => 0.11721270849764
708 => 0.11723743897258
709 => 0.11710542575919
710 => 0.11750160735008
711 => 0.11565613998321
712 => 0.11608926748555
713 => 0.11548288644589
714 => 0.11637456203186
715 => 0.11541526650061
716 => 0.11622154647252
717 => 0.11656951017979
718 => 0.11785350375074
719 => 0.11522561960619
720 => 0.10986718594335
721 => 0.11099359366401
722 => 0.10932754816774
723 => 0.1094817470215
724 => 0.10979325324667
725 => 0.10878355965241
726 => 0.1089761773711
727 => 0.10896929571075
728 => 0.10890999327971
729 => 0.10864733297962
730 => 0.10826642357875
731 => 0.10978384939411
801 => 0.11004168960912
802 => 0.11061483646745
803 => 0.1123201327486
804 => 0.11214973343646
805 => 0.11242766178437
806 => 0.11182094576139
807 => 0.10950989083771
808 => 0.10963539223888
809 => 0.10807038775518
810 => 0.11057481578419
811 => 0.10998173417009
812 => 0.10959937059525
813 => 0.10949503915128
814 => 0.11120456253208
815 => 0.11171607872111
816 => 0.11139733615868
817 => 0.11074358586393
818 => 0.11199897969377
819 => 0.11233487012182
820 => 0.1124100636015
821 => 0.11463438077009
822 => 0.11253437822214
823 => 0.11303986970767
824 => 0.11698356997879
825 => 0.11340717802632
826 => 0.1153016726066
827 => 0.11520894695537
828 => 0.11617810627644
829 => 0.1151294476034
830 => 0.11514244698446
831 => 0.11600299480503
901 => 0.11479451059165
902 => 0.11449527290547
903 => 0.11408187818519
904 => 0.11498451043318
905 => 0.1155255976433
906 => 0.11988636317215
907 => 0.12270361657886
908 => 0.1225813121785
909 => 0.12369894545356
910 => 0.1231954414268
911 => 0.12156949410672
912 => 0.12434478791894
913 => 0.12346656883353
914 => 0.1235389681479
915 => 0.1235362734418
916 => 0.12412021235835
917 => 0.12370643811876
918 => 0.12289084661946
919 => 0.12343227431876
920 => 0.12504012102171
921 => 0.13003092652245
922 => 0.13282384740004
923 => 0.12986278917872
924 => 0.13190528748964
925 => 0.13068051631965
926 => 0.13045793896428
927 => 0.13174077884297
928 => 0.13302586416305
929 => 0.13294400978374
930 => 0.13201110383122
1001 => 0.13148412893026
1002 => 0.13547455942991
1003 => 0.13841464064684
1004 => 0.1382141468184
1005 => 0.13909906137305
1006 => 0.14169719787488
1007 => 0.1419347389157
1008 => 0.14190481420437
1009 => 0.14131604394986
1010 => 0.14387424674656
1011 => 0.14600834452687
1012 => 0.14117976064714
1013 => 0.14301842217774
1014 => 0.1438438565768
1015 => 0.14505583916997
1016 => 0.14710065695651
1017 => 0.14932187143383
1018 => 0.1496359755153
1019 => 0.14941310363824
1020 => 0.14794815298099
1021 => 0.15037863236668
1022 => 0.15180235018905
1023 => 0.15265014157108
1024 => 0.15479999945685
1025 => 0.14384895417864
1026 => 0.13609726002845
1027 => 0.13488672105108
1028 => 0.13734839966366
1029 => 0.13799752468228
1030 => 0.1377358632012
1031 => 0.12901062668197
1101 => 0.13484078448653
1102 => 0.14111354407065
1103 => 0.14135450631289
1104 => 0.14449478091792
1105 => 0.14551738305352
1106 => 0.14804571571577
1107 => 0.14788756781936
1108 => 0.14850317658805
1109 => 0.14836165879299
1110 => 0.15304486264655
1111 => 0.15821113195953
1112 => 0.15803224048095
1113 => 0.15728952814268
1114 => 0.15839258261628
1115 => 0.16372472619834
1116 => 0.16323382786316
1117 => 0.16371069378117
1118 => 0.16999759157086
1119 => 0.17817145299824
1120 => 0.17437387372295
1121 => 0.18261352802633
1122 => 0.187799953645
1123 => 0.19676934046607
1124 => 0.19564632906091
1125 => 0.19913804552995
1126 => 0.19363590426612
1127 => 0.18100187575815
1128 => 0.17900249238565
1129 => 0.18300530852985
1130 => 0.19284584143129
1201 => 0.1826953951293
1202 => 0.18474881719623
1203 => 0.18415743150281
1204 => 0.18412591907244
1205 => 0.18532862036952
1206 => 0.18358403940942
1207 => 0.17647630273384
1208 => 0.1797337365661
1209 => 0.17847588492864
1210 => 0.17987156509945
1211 => 0.18740347535903
1212 => 0.18407343829496
1213 => 0.1805655147582
1214 => 0.18496522934385
1215 => 0.19056757791733
1216 => 0.19021699301199
1217 => 0.18953671176251
1218 => 0.19337142154748
1219 => 0.19970523864769
1220 => 0.20141724395855
1221 => 0.20268101127861
1222 => 0.20285526344052
1223 => 0.20465016900534
1224 => 0.19499850940887
1225 => 0.21031594106066
1226 => 0.21296083837141
1227 => 0.21246370729675
1228 => 0.21540339934336
1229 => 0.21453846737046
1230 => 0.21328531664539
1231 => 0.2179453538297
]
'min_raw' => 0.080336562936731
'max_raw' => 0.2179453538297
'avg_raw' => 0.14914095838321
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.080336'
'max' => '$0.217945'
'avg' => '$0.14914'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.027706004348158
'max_diff' => 0.10045133934761
'year' => 2032
]
7 => [
'items' => [
101 => 0.2126029972435
102 => 0.20502019465339
103 => 0.20086011918162
104 => 0.20633844214656
105 => 0.20968386281412
106 => 0.21189497306667
107 => 0.2125640536931
108 => 0.1957477402686
109 => 0.18668468000829
110 => 0.19249399772695
111 => 0.19958176628141
112 => 0.19495913649668
113 => 0.19514033483245
114 => 0.18854967956518
115 => 0.20016489303115
116 => 0.19847265412848
117 => 0.20725199254905
118 => 0.20515673297639
119 => 0.21231594264641
120 => 0.21043068280905
121 => 0.21825629099048
122 => 0.22137813796393
123 => 0.22662020490905
124 => 0.23047629069292
125 => 0.23274065802038
126 => 0.23260471389947
127 => 0.24157726535419
128 => 0.23628646523841
129 => 0.22963997334715
130 => 0.22951975927825
131 => 0.23296207161026
201 => 0.24017621390586
202 => 0.24204673604161
203 => 0.24309210273417
204 => 0.24149108725504
205 => 0.23574830292442
206 => 0.23326859776704
207 => 0.23538137840511
208 => 0.23279762923806
209 => 0.23725790517236
210 => 0.24338281669367
211 => 0.24211804668504
212 => 0.24634598319896
213 => 0.25072145269898
214 => 0.25697857059863
215 => 0.258614412918
216 => 0.26131839806642
217 => 0.26410168699698
218 => 0.26499560438974
219 => 0.26670237005879
220 => 0.26669337456124
221 => 0.2718368277835
222 => 0.27751021596715
223 => 0.27965178866724
224 => 0.28457621700409
225 => 0.27614330604979
226 => 0.28253976587893
227 => 0.28830953275858
228 => 0.28143057882509
301 => 0.2909116142317
302 => 0.29127974135205
303 => 0.2968380238087
304 => 0.29120363970082
305 => 0.28785796040315
306 => 0.29751681117455
307 => 0.30219042481189
308 => 0.3007826943492
309 => 0.29006979601986
310 => 0.28383442969436
311 => 0.2675152733082
312 => 0.2868460189827
313 => 0.29626146131517
314 => 0.29004541229882
315 => 0.29318042585669
316 => 0.31028404329686
317 => 0.31679599344086
318 => 0.31544155333288
319 => 0.31567043141515
320 => 0.31918416151259
321 => 0.33476597581117
322 => 0.32542899149983
323 => 0.33256676615572
324 => 0.33635261609605
325 => 0.33986912450833
326 => 0.33123369125166
327 => 0.31999911946445
328 => 0.3164406589842
329 => 0.28942734872908
330 => 0.28802118861744
331 => 0.28723186833577
401 => 0.28225531561138
402 => 0.27834510836252
403 => 0.27523556638154
404 => 0.26707519963562
405 => 0.26982908386229
406 => 0.25682316247019
407 => 0.2651438900753
408 => 0.24438612549456
409 => 0.26167380865771
410 => 0.25226490868651
411 => 0.25858273196561
412 => 0.25856068967537
413 => 0.24692757395084
414 => 0.24021783557786
415 => 0.24449354201604
416 => 0.24907743872378
417 => 0.24982116054253
418 => 0.25576430227605
419 => 0.25742290538648
420 => 0.25239726052912
421 => 0.24395596696216
422 => 0.24591668693236
423 => 0.24017810165024
424 => 0.23012145167482
425 => 0.23734431325943
426 => 0.23981051577122
427 => 0.24089973129689
428 => 0.23101017106012
429 => 0.22790265652093
430 => 0.22624824185483
501 => 0.24267934892337
502 => 0.24357948205972
503 => 0.23897427366819
504 => 0.25979025228166
505 => 0.2550789552252
506 => 0.26034262833307
507 => 0.24573877214636
508 => 0.24629665911939
509 => 0.23938295956343
510 => 0.24325416934119
511 => 0.24051812304518
512 => 0.24294141384719
513 => 0.24439392436231
514 => 0.25130648944821
515 => 0.26175273904718
516 => 0.25027398273811
517 => 0.24527252423543
518 => 0.24837540096122
519 => 0.25663877057432
520 => 0.26915819853228
521 => 0.2617464452042
522 => 0.26503565547147
523 => 0.26575420158808
524 => 0.26028904908198
525 => 0.26935970650059
526 => 0.27422074550111
527 => 0.27920716566535
528 => 0.28353673457765
529 => 0.27721547979803
530 => 0.2839801285285
531 => 0.27852901577299
601 => 0.27363880410561
602 => 0.27364622053812
603 => 0.27057851932458
604 => 0.26463446166813
605 => 0.26353828623807
606 => 0.26924072925692
607 => 0.27381354853467
608 => 0.27419018783272
609 => 0.27672193554482
610 => 0.27822019776176
611 => 0.29290520427656
612 => 0.29881163537755
613 => 0.30603390752483
614 => 0.30884738955115
615 => 0.31731496176124
616 => 0.310476709499
617 => 0.30899721060744
618 => 0.28845765014752
619 => 0.29182100202219
620 => 0.29720605288871
621 => 0.28854644765287
622 => 0.29403897400865
623 => 0.29512331505889
624 => 0.2882521975806
625 => 0.29192235830922
626 => 0.28217549954083
627 => 0.26196519393324
628 => 0.26938220634815
629 => 0.27484362402491
630 => 0.26704950761223
701 => 0.281020159608
702 => 0.27285879312487
703 => 0.2702720317644
704 => 0.26018015345018
705 => 0.26494313154247
706 => 0.27138512761157
707 => 0.26740472300329
708 => 0.27566466022623
709 => 0.28736293417869
710 => 0.29569982084148
711 => 0.29633982347991
712 => 0.29097976388377
713 => 0.29956929359404
714 => 0.29963185894057
715 => 0.28994283433813
716 => 0.28400836071785
717 => 0.28266003582509
718 => 0.28602841576188
719 => 0.2901182508424
720 => 0.29656678086308
721 => 0.30046349249952
722 => 0.3106240497912
723 => 0.31337320526832
724 => 0.31639369364581
725 => 0.32042999760226
726 => 0.32527661538908
727 => 0.31467249158963
728 => 0.31509381319675
729 => 0.30521939993879
730 => 0.29466717323857
731 => 0.30267499795041
801 => 0.31314416352487
802 => 0.31074252537469
803 => 0.31047229202178
804 => 0.31092674956489
805 => 0.30911599282982
806 => 0.30092600722689
807 => 0.29681304772912
808 => 0.30211981480912
809 => 0.30494012533511
810 => 0.30931418100399
811 => 0.30877498631769
812 => 0.32004208398145
813 => 0.32442013743424
814 => 0.32330004401355
815 => 0.32350616815951
816 => 0.3314324248127
817 => 0.34024805237005
818 => 0.34850505090203
819 => 0.35690442445509
820 => 0.34677865180374
821 => 0.34163740892222
822 => 0.34694185923372
823 => 0.3441272432329
824 => 0.36030086164298
825 => 0.3614206878903
826 => 0.37759313676368
827 => 0.39294271652391
828 => 0.3833019204928
829 => 0.39239275691915
830 => 0.40222523770102
831 => 0.42119368839176
901 => 0.41480578151726
902 => 0.40991274496266
903 => 0.40528884906154
904 => 0.41491044240896
905 => 0.42728846854172
906 => 0.42995457681546
907 => 0.43427469075066
908 => 0.4297326191862
909 => 0.43520304409282
910 => 0.45451604783972
911 => 0.44929750374671
912 => 0.4418863322118
913 => 0.45713209382938
914 => 0.46264947569238
915 => 0.50137335108226
916 => 0.55026384336548
917 => 0.53002285852794
918 => 0.51745862606679
919 => 0.52041151872274
920 => 0.53826467145696
921 => 0.54399853748445
922 => 0.52841191303959
923 => 0.5339173722953
924 => 0.56425299407905
925 => 0.58052708188276
926 => 0.55842468474373
927 => 0.49744504763091
928 => 0.44121903730247
929 => 0.45613270713182
930 => 0.45444195979822
1001 => 0.48703380095898
1002 => 0.44917304319597
1003 => 0.44981052125738
1004 => 0.48307632717798
1005 => 0.47420158047865
1006 => 0.45982562741743
1007 => 0.4413239976692
1008 => 0.40712202388598
1009 => 0.37682838191359
1010 => 0.43624119003054
1011 => 0.43367920170936
1012 => 0.42996906295489
1013 => 0.43822557527402
1014 => 0.47831685544382
1015 => 0.47739262167309
1016 => 0.47151311797196
1017 => 0.4759726697097
1018 => 0.45904384643619
1019 => 0.46340678965591
1020 => 0.44121013081517
1021 => 0.45124394762554
1022 => 0.45979478307873
1023 => 0.46151148989324
1024 => 0.46537931800355
1025 => 0.43232915028174
1026 => 0.44716770528689
1027 => 0.45588396616783
1028 => 0.41650358240745
1029 => 0.45510554259848
1030 => 0.43175382039169
1031 => 0.42382789514361
1101 => 0.4344991093289
1102 => 0.4303405267828
1103 => 0.42676522170982
1104 => 0.42477014004756
1105 => 0.43260590200631
1106 => 0.43224035434517
1107 => 0.4194195269248
1108 => 0.40269528019871
1109 => 0.40830848635467
1110 => 0.40626915593412
1111 => 0.3988783594112
1112 => 0.40385886389947
1113 => 0.38192724270873
1114 => 0.34419502835654
1115 => 0.36912208492658
1116 => 0.36816242036405
1117 => 0.36767851397431
1118 => 0.38641050805345
1119 => 0.38460985904337
1120 => 0.38134166345808
1121 => 0.39881833643632
1122 => 0.39243911570484
1123 => 0.41209837086583
1124 => 0.42504722779577
1125 => 0.4217629788267
1126 => 0.43394144135656
1127 => 0.40843780328742
1128 => 0.41690908882563
1129 => 0.41865500903436
1130 => 0.3986026770046
1201 => 0.38490446749043
1202 => 0.38399095308685
1203 => 0.36024014551881
1204 => 0.37292763521184
1205 => 0.3840921010977
1206 => 0.37874518833593
1207 => 0.37705251549002
1208 => 0.3857000139638
1209 => 0.38637199865602
1210 => 0.37105067645948
1211 => 0.37423646450731
1212 => 0.38752173025998
1213 => 0.37390170989683
1214 => 0.34744023514892
1215 => 0.34087742355292
1216 => 0.3400018235094
1217 => 0.32220295795792
1218 => 0.34131598200507
1219 => 0.33297263481129
1220 => 0.3593291686278
1221 => 0.34427445786474
1222 => 0.34362547937321
1223 => 0.34264445319882
1224 => 0.32732423435678
1225 => 0.33067838863249
1226 => 0.34182810829706
1227 => 0.34580645388396
1228 => 0.34539147984562
1229 => 0.341773468588
1230 => 0.34342977561452
1231 => 0.33809423358646
]
'min_raw' => 0.18668468000829
'max_raw' => 0.58052708188276
'avg_raw' => 0.38360588094553
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.186684'
'max' => '$0.580527'
'avg' => '$0.3836058'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.10634811707156
'max_diff' => 0.36258172805306
'year' => 2033
]
8 => [
'items' => [
101 => 0.33621014264664
102 => 0.33026343338055
103 => 0.32152341357976
104 => 0.32273876693872
105 => 0.30542250076277
106 => 0.29598767990631
107 => 0.29337624584218
108 => 0.28988412707228
109 => 0.29377068994941
110 => 0.30537344595637
111 => 0.29137806054997
112 => 0.26738395393285
113 => 0.26882604062451
114 => 0.27206598126128
115 => 0.26602837331901
116 => 0.26031428409967
117 => 0.26528222107717
118 => 0.25511560179478
119 => 0.27329456862996
120 => 0.27280287852304
121 => 0.27957887317942
122 => 0.28381604169547
123 => 0.27405074006558
124 => 0.27159479311384
125 => 0.27299381211412
126 => 0.24987114439293
127 => 0.27768925791933
128 => 0.27792983012028
129 => 0.27586990488014
130 => 0.29068219154505
131 => 0.32194073647607
201 => 0.31018001450096
202 => 0.3056259074825
203 => 0.29696854671136
204 => 0.30850396591568
205 => 0.30761822570136
206 => 0.30361257254521
207 => 0.30118994101797
208 => 0.30565371388885
209 => 0.30063683016088
210 => 0.29973565998859
211 => 0.29427554922734
212 => 0.29232653810478
213 => 0.29088356786201
214 => 0.28929499940805
215 => 0.2927989855709
216 => 0.28485849193811
217 => 0.27528303503316
218 => 0.27448693939939
219 => 0.27668502943767
220 => 0.27571253822429
221 => 0.27448228348561
222 => 0.27213339214952
223 => 0.27143652626623
224 => 0.27370100231567
225 => 0.27114454088301
226 => 0.27491673898456
227 => 0.27389090982618
228 => 0.26816071153672
301 => 0.26101876287692
302 => 0.2609551845531
303 => 0.25941646342949
304 => 0.2574566707303
305 => 0.25691150123537
306 => 0.26486383528163
307 => 0.28132492876406
308 => 0.27809322223288
309 => 0.28042846140026
310 => 0.29191552683265
311 => 0.2955669195055
312 => 0.29297524747429
313 => 0.28942760695059
314 => 0.28958368512906
315 => 0.30170704674233
316 => 0.30246316593533
317 => 0.30437363520275
318 => 0.30682912810993
319 => 0.29339342853423
320 => 0.28895086488729
321 => 0.28684573176733
322 => 0.28036273654688
323 => 0.28735409108213
324 => 0.28328052819409
325 => 0.28383019100041
326 => 0.28347222237671
327 => 0.28366769745098
328 => 0.27328948723824
329 => 0.27707076157709
330 => 0.27078365959853
331 => 0.26236593580956
401 => 0.26233771664779
402 => 0.26439794261976
403 => 0.26317243959498
404 => 0.25987464246586
405 => 0.26034307898289
406 => 0.25623908218167
407 => 0.26084137849982
408 => 0.26097335589042
409 => 0.25920122111915
410 => 0.26629169359178
411 => 0.26919666594908
412 => 0.26803020887983
413 => 0.26911482421157
414 => 0.27822751422953
415 => 0.27971328031699
416 => 0.28037315946885
417 => 0.2794890088226
418 => 0.2692813874567
419 => 0.26973413887043
420 => 0.26641214940173
421 => 0.26360541836329
422 => 0.26371767288547
423 => 0.26516069748871
424 => 0.27146247056338
425 => 0.28472418048919
426 => 0.28522745268669
427 => 0.28583743327155
428 => 0.28335633568125
429 => 0.28260801290712
430 => 0.2835952438047
501 => 0.28857564478525
502 => 0.30138658827291
503 => 0.29685834523023
504 => 0.29317681315022
505 => 0.29640650931831
506 => 0.29590932290843
507 => 0.29171256925831
508 => 0.29159478036107
509 => 0.28353986832319
510 => 0.28056215074426
511 => 0.278073747057
512 => 0.27535647519195
513 => 0.27374558534656
514 => 0.27622064428541
515 => 0.27678671954876
516 => 0.27137495992234
517 => 0.2706373570824
518 => 0.27505671681428
519 => 0.27311192136662
520 => 0.27511219171314
521 => 0.27557627159154
522 => 0.27550154404245
523 => 0.27347095423676
524 => 0.27476519162585
525 => 0.27170393436991
526 => 0.26837527689005
527 => 0.26625180080059
528 => 0.26439878627431
529 => 0.26542694643133
530 => 0.26176174320618
531 => 0.26058917092849
601 => 0.27432673311969
602 => 0.284474818014
603 => 0.28432726084056
604 => 0.28342904449583
605 => 0.28209447720409
606 => 0.28847801287536
607 => 0.28625411669031
608 => 0.28787218697768
609 => 0.28828405377601
610 => 0.28953065052821
611 => 0.28997620171851
612 => 0.28862943656622
613 => 0.28410952822164
614 => 0.27284634636691
615 => 0.26760330480916
616 => 0.26587301376534
617 => 0.26593590655849
618 => 0.26420104255756
619 => 0.26471203775698
620 => 0.26402333928077
621 => 0.26271911098088
622 => 0.26534641400903
623 => 0.265649186208
624 => 0.2650359422873
625 => 0.26518038343038
626 => 0.26010298568686
627 => 0.26048900920977
628 => 0.2583395811807
629 => 0.25793658933699
630 => 0.25250302245161
701 => 0.24287667110605
702 => 0.24821060420403
703 => 0.24176796308617
704 => 0.23932803727289
705 => 0.25087826658663
706 => 0.24971894391702
707 => 0.24773468745211
708 => 0.24479955858521
709 => 0.24371089073739
710 => 0.23709648952434
711 => 0.23670567541421
712 => 0.23998395125925
713 => 0.23847113975535
714 => 0.23634657945735
715 => 0.22865163742122
716 => 0.21999997486486
717 => 0.22026111417502
718 => 0.2230130470643
719 => 0.23101466308858
720 => 0.22788829327853
721 => 0.22562007611038
722 => 0.22519530721714
723 => 0.23051217922991
724 => 0.23803666704711
725 => 0.24156698838001
726 => 0.23806854715656
727 => 0.23404972624851
728 => 0.23429433325576
729 => 0.23592159408912
730 => 0.23609259619448
731 => 0.2334767569248
801 => 0.23421310035685
802 => 0.23309452735091
803 => 0.22622984687822
804 => 0.2261056865766
805 => 0.22442098328067
806 => 0.22436997113442
807 => 0.22150387055911
808 => 0.22110288327621
809 => 0.21541206662408
810 => 0.21915777937789
811 => 0.21664535192138
812 => 0.21285853112269
813 => 0.21220568178966
814 => 0.21218605635037
815 => 0.21607427459298
816 => 0.2191123432839
817 => 0.21668905667265
818 => 0.21613732128471
819 => 0.22202841177046
820 => 0.22127871680767
821 => 0.2206294858049
822 => 0.23736293169238
823 => 0.22411710354537
824 => 0.21834116642784
825 => 0.21119234742418
826 => 0.21352003893925
827 => 0.21401051774238
828 => 0.19681889671006
829 => 0.18984425819833
830 => 0.18745082509481
831 => 0.18607337050555
901 => 0.18670109385886
902 => 0.1804231011548
903 => 0.18464201608035
904 => 0.17920580506414
905 => 0.17829440659631
906 => 0.18801502531061
907 => 0.18936759261767
908 => 0.18359712027601
909 => 0.18730269767397
910 => 0.18595900379809
911 => 0.17929899329914
912 => 0.1790446298858
913 => 0.17570287072812
914 => 0.17047366473843
915 => 0.16808377728281
916 => 0.16683910314597
917 => 0.16735267995304
918 => 0.16709299980368
919 => 0.16539841117464
920 => 0.16719013164028
921 => 0.16261302624057
922 => 0.16079038599016
923 => 0.15996714167399
924 => 0.15590469718339
925 => 0.16236985294519
926 => 0.16364357007616
927 => 0.16491979682334
928 => 0.17602847934055
929 => 0.1754735209548
930 => 0.18049007448627
1001 => 0.18029514044089
1002 => 0.17886433811093
1003 => 0.17282801843641
1004 => 0.17523398787162
1005 => 0.1678287879207
1006 => 0.17337726722858
1007 => 0.1708451729825
1008 => 0.17252116361692
1009 => 0.16950758133825
1010 => 0.17117542219903
1011 => 0.1639456156597
1012 => 0.15719452403939
1013 => 0.15991136038405
1014 => 0.16286487219862
1015 => 0.16926883835342
1016 => 0.1654546889432
1017 => 0.16682640130007
1018 => 0.16223139452642
1019 => 0.15275058305358
1020 => 0.1528042434169
1021 => 0.15134582712251
1022 => 0.15008554251189
1023 => 0.16589278988491
1024 => 0.16392690879847
1025 => 0.16079453457539
1026 => 0.16498734194859
1027 => 0.16609598676687
1028 => 0.16612754832627
1029 => 0.16918651235373
1030 => 0.17081908200354
1031 => 0.17110682948028
1101 => 0.17592017547079
1102 => 0.17753354555724
1103 => 0.18417878861064
1104 => 0.17068056987488
1105 => 0.17040258294277
1106 => 0.16504634334671
1107 => 0.16164933151608
1108 => 0.16527893965302
1109 => 0.16849427697142
1110 => 0.16514625283991
1111 => 0.16558343411084
1112 => 0.1610889852579
1113 => 0.16269553923935
1114 => 0.16407931995437
1115 => 0.1633152775784
1116 => 0.16217146916152
1117 => 0.16823065597854
1118 => 0.16788877291218
1119 => 0.17353122697629
1120 => 0.17792992341502
1121 => 0.18581317379428
1122 => 0.17758659106039
1123 => 0.17728678168786
1124 => 0.18021746639526
1125 => 0.17753309688468
1126 => 0.17922952575408
1127 => 0.18553985287673
1128 => 0.18567318014515
1129 => 0.18343977661666
1130 => 0.18330387380898
1201 => 0.18373282338738
1202 => 0.18624519446609
1203 => 0.18536729481382
1204 => 0.18638322251713
1205 => 0.18765365566654
1206 => 0.19290870582502
1207 => 0.19417568062734
1208 => 0.19109758870882
1209 => 0.19137550594513
1210 => 0.19022421507209
1211 => 0.18911208251437
1212 => 0.19161199409021
1213 => 0.19618063163096
1214 => 0.19615221037393
1215 => 0.19721204548176
1216 => 0.19787231397379
1217 => 0.19503795825992
1218 => 0.19319289691234
1219 => 0.19390041083731
1220 => 0.19503174101098
1221 => 0.19353353570967
1222 => 0.18428591855383
1223 => 0.18709105485884
1224 => 0.18662414301353
1225 => 0.18595920376739
1226 => 0.18877979001355
1227 => 0.18850773758924
1228 => 0.18035871126556
1229 => 0.18088038549135
1230 => 0.18039043600307
1231 => 0.18197356303394
]
'min_raw' => 0.15008554251189
'max_raw' => 0.33621014264664
'avg_raw' => 0.24314784257927
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.150085'
'max' => '$0.33621'
'avg' => '$0.243147'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.036599137496403
'max_diff' => -0.24431693923612
'year' => 2034
]
9 => [
'items' => [
101 => 0.17744760282963
102 => 0.17883975770567
103 => 0.17971290419328
104 => 0.18022719418231
105 => 0.18208516227463
106 => 0.18186715116358
107 => 0.18207161039787
108 => 0.18482648659339
109 => 0.198759705031
110 => 0.19951805936865
111 => 0.19578364525501
112 => 0.19727547003535
113 => 0.19441149268332
114 => 0.19633409986672
115 => 0.19764949887267
116 => 0.19170546370145
117 => 0.19135349651508
118 => 0.18847769850975
119 => 0.19002298946429
120 => 0.18756432044526
121 => 0.18816759182194
122 => 0.18648079246049
123 => 0.18951669547269
124 => 0.19291130677196
125 => 0.19376891964342
126 => 0.19151290940417
127 => 0.18987940931263
128 => 0.18701152126027
129 => 0.1917808830064
130 => 0.19317558972463
131 => 0.19177355720575
201 => 0.19144867563611
202 => 0.1908330256487
203 => 0.19157928869131
204 => 0.19316799385232
205 => 0.19241878983717
206 => 0.19291365228845
207 => 0.1910277469241
208 => 0.1950388965496
209 => 0.20140956749063
210 => 0.20143005023941
211 => 0.20068084218577
212 => 0.20037428239213
213 => 0.20114301532092
214 => 0.2015600213997
215 => 0.20404596272988
216 => 0.20671347682143
217 => 0.2191616011591
218 => 0.21566621765706
219 => 0.22671093411167
220 => 0.23544587085033
221 => 0.23806509644577
222 => 0.23565553214205
223 => 0.22741254282116
224 => 0.22700810243982
225 => 0.23932660858556
226 => 0.23584606637606
227 => 0.23543206695524
228 => 0.23102781258071
301 => 0.23363127239357
302 => 0.23306185754205
303 => 0.23216300834219
304 => 0.23713022830655
305 => 0.24642842065304
306 => 0.24497921017795
307 => 0.24389744178523
308 => 0.23915744758637
309 => 0.24201198281011
310 => 0.24099553749196
311 => 0.24536283163089
312 => 0.2427757433304
313 => 0.23581969784562
314 => 0.2369274710165
315 => 0.23676003333025
316 => 0.24020588904846
317 => 0.23917152869325
318 => 0.23655805787
319 => 0.24639664044245
320 => 0.24575777761526
321 => 0.24666353903983
322 => 0.24706228323053
323 => 0.25305085506711
324 => 0.25550418133562
325 => 0.2560611293501
326 => 0.25839159955813
327 => 0.25600314512831
328 => 0.26555866578673
329 => 0.27191252944448
330 => 0.2792928690498
331 => 0.29007752886144
401 => 0.2941326607143
402 => 0.29340013744116
403 => 0.30157694342672
404 => 0.3162704820226
405 => 0.29637012169573
406 => 0.31732524944177
407 => 0.31069109793596
408 => 0.29496164405896
409 => 0.29394885266737
410 => 0.30460102145558
411 => 0.32822650659459
412 => 0.3223085905253
413 => 0.32823618618524
414 => 0.32132133098514
415 => 0.32097795014148
416 => 0.32790034710242
417 => 0.34407490492187
418 => 0.33639097879608
419 => 0.32537418651878
420 => 0.33350881449607
421 => 0.32646184691786
422 => 0.31058305664213
423 => 0.32230406520641
424 => 0.31446656057458
425 => 0.31675396109081
426 => 0.33322723008609
427 => 0.33124512277771
428 => 0.33381015317294
429 => 0.32928294166389
430 => 0.32505381223871
501 => 0.31715982810734
502 => 0.31482280857475
503 => 0.3154686766964
504 => 0.31482248851458
505 => 0.31040587694254
506 => 0.30945211009406
507 => 0.30786245689446
508 => 0.30835515689185
509 => 0.30536614380714
510 => 0.3110070290596
511 => 0.31205402706977
512 => 0.31615899294572
513 => 0.31658518412066
514 => 0.32801745565465
515 => 0.32172075260525
516 => 0.32594512464197
517 => 0.32556725704567
518 => 0.29530254902035
519 => 0.29947275875846
520 => 0.30596029642705
521 => 0.303037669501
522 => 0.29890575881695
523 => 0.29556901940053
524 => 0.29051351798555
525 => 0.29762903914483
526 => 0.30698519281799
527 => 0.31682247161781
528 => 0.32864131753177
529 => 0.32600348871031
530 => 0.31660152651447
531 => 0.31702329167044
601 => 0.31963047790616
602 => 0.31625393484305
603 => 0.31525812637579
604 => 0.31949366911444
605 => 0.31952283696946
606 => 0.3156377161065
607 => 0.31132011523693
608 => 0.31130202433164
609 => 0.31053374895997
610 => 0.32145800546702
611 => 0.32746524197899
612 => 0.32815396196394
613 => 0.32741888563657
614 => 0.32770178734084
615 => 0.32420630877495
616 => 0.3321959362246
617 => 0.33952800846467
618 => 0.33756285647745
619 => 0.33461681428581
620 => 0.33227014977954
621 => 0.33701005689785
622 => 0.33679899629518
623 => 0.33946396921001
624 => 0.33934307064496
625 => 0.33844694048841
626 => 0.33756288848108
627 => 0.34106805476141
628 => 0.34005862316392
629 => 0.33904762364035
630 => 0.33701990931955
701 => 0.33729550937252
702 => 0.33434997585659
703 => 0.33298723727368
704 => 0.31249491865374
705 => 0.30701870151267
706 => 0.30874163090393
707 => 0.30930886399538
708 => 0.30692560727762
709 => 0.31034258520246
710 => 0.30981005281235
711 => 0.31188182482125
712 => 0.31058747161598
713 => 0.31064059232301
714 => 0.31444700911452
715 => 0.31555202810276
716 => 0.31499000652674
717 => 0.31538362717361
718 => 0.32445444884375
719 => 0.32316486807081
720 => 0.32247980398748
721 => 0.32266957142037
722 => 0.3249873608377
723 => 0.32563621532794
724 => 0.32288697325859
725 => 0.32418353171168
726 => 0.32970411304715
727 => 0.33163600407672
728 => 0.33780167288281
729 => 0.33518238718796
730 => 0.33999019944089
731 => 0.35476777520242
801 => 0.3665731252512
802 => 0.35571643746962
803 => 0.37739545943193
804 => 0.39427568770059
805 => 0.39362779642415
806 => 0.39068433817879
807 => 0.37146664707901
808 => 0.35378224120936
809 => 0.36857599763886
810 => 0.36861370996636
811 => 0.36734291316914
812 => 0.35945010340297
813 => 0.36706826049793
814 => 0.36767296214305
815 => 0.36733449002493
816 => 0.36128309128288
817 => 0.35204372388919
818 => 0.353849074162
819 => 0.356806274737
820 => 0.35120767711186
821 => 0.34941858593963
822 => 0.35274484681732
823 => 0.36346275241922
824 => 0.36143659444978
825 => 0.36138368327685
826 => 0.37005244629481
827 => 0.3638474828101
828 => 0.35387184541047
829 => 0.35135286540457
830 => 0.34241218337189
831 => 0.34858754429748
901 => 0.34880978454341
902 => 0.34542760247513
903 => 0.35414629084504
904 => 0.35406594659682
905 => 0.36234304359855
906 => 0.37816574433019
907 => 0.37348619313603
908 => 0.36804438423094
909 => 0.36863605974392
910 => 0.37512527974167
911 => 0.37120174919655
912 => 0.3726126781364
913 => 0.37512314413174
914 => 0.37663777059809
915 => 0.36841812830419
916 => 0.36650173649454
917 => 0.36258147141412
918 => 0.36155874742986
919 => 0.36475172153884
920 => 0.36391048567056
921 => 0.3487911061113
922 => 0.34721104682392
923 => 0.34725950498646
924 => 0.34328637078063
925 => 0.33722638745526
926 => 0.35315166181152
927 => 0.35187263940664
928 => 0.35046069766012
929 => 0.35063365246764
930 => 0.35754627430807
1001 => 0.35353660454485
1002 => 0.36419696878231
1003 => 0.36200551837497
1004 => 0.35975786553378
1005 => 0.35944717144595
1006 => 0.35858201686282
1007 => 0.35561507988743
1008 => 0.35203232520438
1009 => 0.34966668022973
1010 => 0.32254902920114
1011 => 0.32758190749593
1012 => 0.33337177521279
1013 => 0.33537041434721
1014 => 0.33195160380616
1015 => 0.35575007536549
1016 => 0.36009828544715
1017 => 0.34692727348306
1018 => 0.34446351491345
1019 => 0.35591159896714
1020 => 0.34900700481141
1021 => 0.35211614313696
1022 => 0.34539588668486
1023 => 0.35905092896893
1024 => 0.35894690042518
1025 => 0.35363478056356
1026 => 0.35812454789478
1027 => 0.35734434033323
1028 => 0.35134697009263
1029 => 0.35924105630288
1030 => 0.35924497167115
1031 => 0.35413217179978
1101 => 0.34816154088583
1102 => 0.34709413309843
1103 => 0.34628998471668
1104 => 0.35191837193024
1105 => 0.35696476630641
1106 => 0.36635485513321
1107 => 0.36871574656727
1108 => 0.37793046300787
1109 => 0.37244354802389
1110 => 0.37487582636884
1111 => 0.37751640857907
1112 => 0.37878240079484
1113 => 0.37671953441612
1114 => 0.39103378197697
1115 => 0.39224234304832
1116 => 0.39264756312153
1117 => 0.38782087938221
1118 => 0.39210810424212
1119 => 0.39010225370813
1120 => 0.39532091955624
1121 => 0.39613927299649
1122 => 0.39544615674636
1123 => 0.39570591504513
1124 => 0.38349122995825
1125 => 0.3828578340989
1126 => 0.37422143661293
1127 => 0.37774083242549
1128 => 0.37116149064293
1129 => 0.37324786769691
1130 => 0.37416752282257
1201 => 0.3736871471749
1202 => 0.37793981378427
1203 => 0.37432417840391
1204 => 0.36478192216966
1205 => 0.35523706615407
1206 => 0.35511723826186
1207 => 0.35260424615366
1208 => 0.3507878131369
1209 => 0.35113772257735
1210 => 0.35237084908491
1211 => 0.35071614158257
1212 => 0.351069257324
1213 => 0.35693333142949
1214 => 0.35810932967069
1215 => 0.35411282815494
1216 => 0.33806629787678
1217 => 0.33412843909684
1218 => 0.33695889389673
1219 => 0.33560611880702
1220 => 0.2708603308609
1221 => 0.28607139335099
1222 => 0.27703349653825
1223 => 0.2811985752032
1224 => 0.27197322290943
1225 => 0.27637604456616
1226 => 0.27556300417146
1227 => 0.30002194252747
1228 => 0.29964004984721
1229 => 0.29982284166394
1230 => 0.29109771198991
1231 => 0.30499708047373
]
'min_raw' => 0.17744760282963
'max_raw' => 0.39613927299649
'avg_raw' => 0.28679343791306
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.177447'
'max' => '$0.396139'
'avg' => '$0.286793'
'bar_min_pct' => 61.631153054958
'bar_max_pct' => 60.119598047091
'min_diff' => 0.027362060317741
'max_diff' => 0.059929130349844
'year' => 2035
]
10 => [
'items' => [
101 => 0.31184440919398
102 => 0.31057715088362
103 => 0.31089609249833
104 => 0.30541561885347
105 => 0.29987590462854
106 => 0.29373150899719
107 => 0.30514703660999
108 => 0.303877824809
109 => 0.30678894003248
110 => 0.31419272568815
111 => 0.31528296125019
112 => 0.31674824890165
113 => 0.31622304758488
114 => 0.32873547370713
115 => 0.32722013634408
116 => 0.33087166339671
117 => 0.32336019520742
118 => 0.31486025595612
119 => 0.31647581652384
120 => 0.31632022504965
121 => 0.31433936700364
122 => 0.31255113692986
123 => 0.3095742376877
124 => 0.31899358738808
125 => 0.318611178992
126 => 0.32480192642345
127 => 0.32370765168123
128 => 0.31639981713822
129 => 0.31666081787858
130 => 0.31841617329015
131 => 0.32449147841189
201 => 0.32629504261034
202 => 0.32545955981401
203 => 0.32743708562178
204 => 0.32900004139001
205 => 0.32763336880258
206 => 0.34698257058323
207 => 0.33894743298226
208 => 0.34286370314085
209 => 0.34379771049767
210 => 0.34140527029323
211 => 0.34192410490671
212 => 0.34270999797217
213 => 0.34748178677196
214 => 0.36000434131084
215 => 0.3655504954722
216 => 0.38223637390907
217 => 0.36508996457529
218 => 0.36407256760432
219 => 0.36707819817606
220 => 0.37687457519811
221 => 0.38481361864758
222 => 0.38744745737417
223 => 0.38779556264183
224 => 0.39273681918721
225 => 0.39556905529004
226 => 0.39213682067465
227 => 0.38922836120805
228 => 0.37881062040997
229 => 0.38001650227392
301 => 0.38832383250099
302 => 0.40005842574603
303 => 0.41012792752661
304 => 0.40660193896062
305 => 0.43350274275915
306 => 0.43616984757584
307 => 0.435801339928
308 => 0.44187740161884
309 => 0.42981765653096
310 => 0.42466188185934
311 => 0.38985720315715
312 => 0.39963589820807
313 => 0.4138498057472
314 => 0.41196854178498
315 => 0.40164602219122
316 => 0.41012009696986
317 => 0.40731830283922
318 => 0.40510841156184
319 => 0.41523235191201
320 => 0.40410066362845
321 => 0.41373875864128
322 => 0.40137780209401
323 => 0.40661804537938
324 => 0.40364342984855
325 => 0.40556837065217
326 => 0.39431520604725
327 => 0.40038714051293
328 => 0.39406259361081
329 => 0.39405959495209
330 => 0.39391998022869
331 => 0.40136078161171
401 => 0.40160342587768
402 => 0.3961046624132
403 => 0.39531220469114
404 => 0.3982423362335
405 => 0.39481191960006
406 => 0.39641698995206
407 => 0.39486053554591
408 => 0.39451014487514
409 => 0.39171817239639
410 => 0.39051531388566
411 => 0.39098698570156
412 => 0.3893769266304
413 => 0.38840680780164
414 => 0.39372699917612
415 => 0.39088463554064
416 => 0.39329136618375
417 => 0.39054859286231
418 => 0.38104094556075
419 => 0.37557299705608
420 => 0.35761393266281
421 => 0.36270710104659
422 => 0.3660838769543
423 => 0.36496785253694
424 => 0.36736550482954
425 => 0.36751270120738
426 => 0.36673320000589
427 => 0.36583063747484
428 => 0.36539131994957
429 => 0.36866563285686
430 => 0.37056648170784
501 => 0.36642278159207
502 => 0.36545197063147
503 => 0.36964148022847
504 => 0.37219707866244
505 => 0.39106618163214
506 => 0.38966829753774
507 => 0.39317671229378
508 => 0.39278171863326
509 => 0.39645909623188
510 => 0.4024700544299
511 => 0.39024809572298
512 => 0.39236940515097
513 => 0.39184930906742
514 => 0.39752758173114
515 => 0.39754530867859
516 => 0.39414090056593
517 => 0.39598648543402
518 => 0.39495633059163
519 => 0.39681795962561
520 => 0.38964962794341
521 => 0.39837988215874
522 => 0.40332937373367
523 => 0.40339809742899
524 => 0.40574411715392
525 => 0.40812780906674
526 => 0.41270309811759
527 => 0.40800020673835
528 => 0.39954016296435
529 => 0.40015095079906
530 => 0.39519083022977
531 => 0.39527421075266
601 => 0.39482911898683
602 => 0.39616487288103
603 => 0.38994275080723
604 => 0.39140307042135
605 => 0.38935861440996
606 => 0.39236496090288
607 => 0.38913062904338
608 => 0.39184905826134
609 => 0.39302224219445
610 => 0.39735131616449
611 => 0.38849122129814
612 => 0.37042488808998
613 => 0.37422265036346
614 => 0.3686054616532
615 => 0.36912535385448
616 => 0.37017561884129
617 => 0.36677136639371
618 => 0.36742079048038
619 => 0.36739758848208
620 => 0.36719764619544
621 => 0.36631206865535
622 => 0.36502780601605
623 => 0.37014391309583
624 => 0.37101323938257
625 => 0.37294564403126
626 => 0.37869516950317
627 => 0.37812065632537
628 => 0.37905771115467
629 => 0.37701212572365
630 => 0.36922024269574
701 => 0.36964337943204
702 => 0.36436685755013
703 => 0.3728107115035
704 => 0.37081109543392
705 => 0.36952192994558
706 => 0.36917016919806
707 => 0.37493394663152
708 => 0.37665855917576
709 => 0.37558389637263
710 => 0.3733797316105
711 => 0.37761237955661
712 => 0.3787448575859
713 => 0.37899837765248
714 => 0.38649781828324
715 => 0.37941751307535
716 => 0.38112181291107
717 => 0.39441827371551
718 => 0.38236021855205
719 => 0.38874763929885
720 => 0.38843500829183
721 => 0.39170259660736
722 => 0.3881669706762
723 => 0.38821079899703
724 => 0.39111219605561
725 => 0.38703770715655
726 => 0.38602880640547
727 => 0.38463501724374
728 => 0.38767830488762
729 => 0.38950261819406
730 => 0.4042052436335
731 => 0.41370381018856
801 => 0.41329145236372
802 => 0.41705963098127
803 => 0.4153620320015
804 => 0.40988003709185
805 => 0.41923713394457
806 => 0.41627615698281
807 => 0.41652025632595
808 => 0.41651117093621
809 => 0.41847996176268
810 => 0.41708489302509
811 => 0.41433506934244
812 => 0.41616053063188
813 => 0.42158149804717
814 => 0.43840834723982
815 => 0.44782487497412
816 => 0.43784146044647
817 => 0.4447278861044
818 => 0.44059848459399
819 => 0.4398480495005
820 => 0.44417323371654
821 => 0.44850598859498
822 => 0.44823001084024
823 => 0.44508465328791
824 => 0.4433079206171
825 => 0.45676193564963
826 => 0.46667462474243
827 => 0.46599864580181
828 => 0.46898219700558
829 => 0.47774199561758
830 => 0.4785428818213
831 => 0.47844198856779
901 => 0.47645690854805
902 => 0.48508206788517
903 => 0.49227732754943
904 => 0.47599741987796
905 => 0.48219659559962
906 => 0.48497960530603
907 => 0.48906588923683
908 => 0.49596013516878
909 => 0.50344911485931
910 => 0.50450813870003
911 => 0.50375671060608
912 => 0.4988175271856
913 => 0.50701205812508
914 => 0.51181222216403
915 => 0.51467060999943
916 => 0.5219190059596
917 => 0.48499679222653
918 => 0.45886141419317
919 => 0.45477999751383
920 => 0.46307971882506
921 => 0.46526828914579
922 => 0.46438607919374
923 => 0.43496833509258
924 => 0.45462511917928
925 => 0.47577416606722
926 => 0.47658658709039
927 => 0.48717424216821
928 => 0.49062201666419
929 => 0.49914646675751
930 => 0.49861326008322
1001 => 0.50068882802732
1002 => 0.50021169090079
1003 => 0.51600143966392
1004 => 0.53341987735004
1005 => 0.53281673224021
1006 => 0.53031262573723
1007 => 0.53403165090776
1008 => 0.55200934527305
1009 => 0.55035424726258
1010 => 0.55196203399884
1011 => 0.57315874883397
1012 => 0.60071749331717
1013 => 0.58791368965202
1014 => 0.61569425941015
1015 => 0.63318065548817
1016 => 0.66342156937799
1017 => 0.65963525801935
1018 => 0.67140782387858
1019 => 0.65285697046034
1020 => 0.61026046126602
1021 => 0.60351940063314
1022 => 0.61701517473102
1023 => 0.65019321845229
1024 => 0.61597028006361
1025 => 0.62289353592759
1026 => 0.62089963777301
1027 => 0.62079339141387
1028 => 0.62484838280692
1029 => 0.61896640629718
1030 => 0.59500217584913
1031 => 0.60598484144137
1101 => 0.60174390682529
1102 => 0.60644953996445
1103 => 0.6318439012658
1104 => 0.62061644880851
1105 => 0.60878923968893
1106 => 0.6236231845927
1107 => 0.6425118939517
1108 => 0.64132987246629
1109 => 0.63903625673793
1110 => 0.65196524850884
1111 => 0.67332015507521
1112 => 0.67909230050914
1113 => 0.68335318026215
1114 => 0.68394068359193
1115 => 0.68999233302001
1116 => 0.65745108883319
1117 => 0.7090948790761
1118 => 0.71801233502014
1119 => 0.71633622289334
1120 => 0.72624759987123
1121 => 0.72333142133697
1122 => 0.71910633617522
1123 => 0.73481797689551
1124 => 0.71680584867372
1125 => 0.69123990032678
1126 => 0.67721391542653
1127 => 0.69568446378711
1128 => 0.70696378313761
1129 => 0.71441869572885
1130 => 0.71667454777458
1201 => 0.65997717298637
1202 => 0.62942043255609
1203 => 0.64900695283816
1204 => 0.6729038593717
1205 => 0.65731834031081
1206 => 0.65792926315071
1207 => 0.63570840877223
1208 => 0.67486991192108
1209 => 0.66916441031237
1210 => 0.69876456275117
1211 => 0.69170024881559
1212 => 0.71583802405813
1213 => 0.70948173889183
1214 => 0.73586632324202
1215 => 0.74639184827342
1216 => 0.7640658429683
1217 => 0.77706690541195
1218 => 0.78470137794956
1219 => 0.78424303285459
1220 => 0.81449461652771
1221 => 0.7966563145455
1222 => 0.77424720309087
1223 => 0.7738418929645
1224 => 0.78544788932642
1225 => 0.80977087375138
1226 => 0.81607746972775
1227 => 0.81960199651689
1228 => 0.81420406104966
1229 => 0.79484186273059
1230 => 0.786481363665
1231 => 0.79360475109586
]
'min_raw' => 0.29373150899719
'max_raw' => 0.81960199651689
'avg_raw' => 0.55666675275704
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$0.293731'
'max' => '$0.8196019'
'avg' => '$0.556666'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.11628390616756
'max_diff' => 0.4234627235204
'year' => 2036
]
11 => [
'items' => [
101 => 0.78489346038757
102 => 0.79993159210656
103 => 0.82058215892833
104 => 0.81631789854083
105 => 0.83057268168261
106 => 0.84532488258743
107 => 0.86642119244413
108 => 0.87193654903476
109 => 0.88105322374885
110 => 0.89043727670129
111 => 0.89345118160229
112 => 0.89920566121808
113 => 0.89917533227001
114 => 0.91651684391333
115 => 0.93564506827781
116 => 0.942865530156
117 => 0.95946858410628
118 => 0.93103643605682
119 => 0.95260254695731
120 => 0.97205571882433
121 => 0.94886284536433
122 => 0.98082881818249
123 => 0.98206998447057
124 => 1.00081012184
125 => 0.98181340244017
126 => 0.9705332111002
127 => 1.0030987008354
128 => 1.018856115515
129 => 1.0141098539754
130 => 0.97799056930739
131 => 0.95696759640161
201 => 0.90194642127854
202 => 0.96712137994969
203 => 0.9988662011388
204 => 0.9779083578895
205 => 0.98847827497951
206 => 1.0461443153155
207 => 1.0680998098758
208 => 1.0635332204878
209 => 1.0643048989219
210 => 1.0761516852662
211 => 1.1286868600614
212 => 1.0972065655683
213 => 1.1212720711642
214 => 1.1340363285576
215 => 1.1458924821843
216 => 1.1167775160528
217 => 1.0788993728995
218 => 1.0669017749465
219 => 0.9758245134123
220 => 0.97108354642094
221 => 0.9684222979827
222 => 0.9516435030206
223 => 0.93845996627912
224 => 0.92797592838897
225 => 0.90046268216647
226 => 0.90974759510675
227 => 0.86589722308885
228 => 0.89395113714414
301 => 0.82396488459931
302 => 0.88225151537137
303 => 0.85052875221004
304 => 0.87182973449189
305 => 0.87175541737138
306 => 0.83253355550792
307 => 0.80991120412444
308 => 0.82432704690108
309 => 0.83978197468866
310 => 0.84228948472557
311 => 0.86232720201706
312 => 0.86791929820382
313 => 0.85097498568792
314 => 0.82251457507463
315 => 0.82912527934724
316 => 0.80977723841335
317 => 0.77587054088836
318 => 0.80022292300495
319 => 0.80853789695822
320 => 0.8122102631496
321 => 0.77886692034428
322 => 0.76838971811566
323 => 0.76281174356139
324 => 0.81821036822623
325 => 0.8212452299407
326 => 0.80571844832329
327 => 0.8759009735438
328 => 0.8600165065857
329 => 0.87776334796679
330 => 0.82852542722463
331 => 0.83040638210463
401 => 0.80709636135261
402 => 0.82014841539759
403 => 0.81092364428594
404 => 0.81909393841367
405 => 0.82399117902645
406 => 0.84729737483344
407 => 0.88251763469022
408 => 0.84381620637301
409 => 0.82695343984054
410 => 0.83741500535748
411 => 0.8652755329381
412 => 0.90748565837689
413 => 0.88249641455918
414 => 0.8935862166206
415 => 0.89600884502007
416 => 0.87758270178098
417 => 0.90816505656089
418 => 0.92455438893805
419 => 0.94136645266254
420 => 0.95596389653119
421 => 0.93465134470578
422 => 0.95745883019326
423 => 0.93908002295351
424 => 0.92259233289328
425 => 0.92261733791328
426 => 0.91227436909178
427 => 0.89223356370218
428 => 0.88853773170722
429 => 0.90776391647713
430 => 0.92318149593612
501 => 0.92445136162559
502 => 0.93298732579793
503 => 0.93803882146769
504 => 0.98755034620673
505 => 1.0074642910376
506 => 1.0318146858251
507 => 1.0413005369078
508 => 1.0698495478012
509 => 1.0467939028675
510 => 1.0418056690593
511 => 0.97255510694237
512 => 0.98389488260953
513 => 1.0020509575783
514 => 0.97285449393131
515 => 0.99137293001574
516 => 0.99502886157291
517 => 0.97186240926875
518 => 0.98423661240772
519 => 0.95137439756616
520 => 0.8832339411717
521 => 0.90824091636784
522 => 0.92665446736904
523 => 0.90037605971586
524 => 0.94747908831935
525 => 0.91996247141307
526 => 0.91124102488433
527 => 0.87721555255551
528 => 0.89327426573418
529 => 0.91499390524695
530 => 0.90157369320717
531 => 0.92942264824469
601 => 0.96886419562284
602 => 0.99697259106926
603 => 0.9991304046483
604 => 0.98105858949249
605 => 1.0100187886125
606 => 1.0102297320465
607 => 0.97756250913326
608 => 0.95755401699078
609 => 0.95300804547778
610 => 0.96436477360747
611 => 0.97815393812458
612 => 0.99989560731129
613 => 1.0130336426533
614 => 1.0472906709496
615 => 1.0565596405806
616 => 1.0667434280291
617 => 1.0803521086241
618 => 1.0966928188723
619 => 1.0609402751262
620 => 1.0623607903403
621 => 1.0290685166316
622 => 0.99349094757888
623 => 1.0204898876833
624 => 1.0557874103514
625 => 1.0476901196511
626 => 1.0467790090346
627 => 1.0483112443705
628 => 1.0422061516152
629 => 1.0145930433484
630 => 1.000725913244
701 => 1.0186180489608
702 => 1.028126922807
703 => 1.0428743568815
704 => 1.0410564243512
705 => 1.0790442307682
706 => 1.0938051436502
707 => 1.0900286704799
708 => 1.0907236324292
709 => 1.117447560129
710 => 1.147170063926
711 => 1.1750091109618
712 => 1.2033281853215
713 => 1.1691884358686
714 => 1.1518543765435
715 => 1.1697387011136
716 => 1.1602490267566
717 => 1.2147795104322
718 => 1.2185550828088
719 => 1.2730816233097
720 => 1.3248338031448
721 => 1.292329186227
722 => 1.3229795759403
723 => 1.3561304713783
724 => 1.4200839272171
725 => 1.3985466532003
726 => 1.3820494388355
727 => 1.3664596509748
728 => 1.3988995247038
729 => 1.4406329040166
730 => 1.4496218742033
731 => 1.4641874399565
801 => 1.4488735285596
802 => 1.4673174480652
803 => 1.5324325885887
804 => 1.514837902832
805 => 1.4898506205706
806 => 1.5412527702893
807 => 1.5598550084518
808 => 1.6904152579434
809 => 1.8552529661014
810 => 1.7870090725412
811 => 1.7446478855917
812 => 1.7546037693457
813 => 1.8147969202564
814 => 1.8341290498938
815 => 1.7815776573546
816 => 1.8001396976141
817 => 1.9024183644235
818 => 1.9572875876743
819 => 1.8827678125799
820 => 1.6771707085918
821 => 1.4876007891947
822 => 1.5378832682636
823 => 1.5321827955841
824 => 1.6420684635473
825 => 1.5144182753956
826 => 1.516567577187
827 => 1.6287255643927
828 => 1.5988037362809
829 => 1.550334206838
830 => 1.4879546703993
831 => 1.3726403278836
901 => 1.2705031989391
902 => 1.4708176295752
903 => 1.4621797070781
904 => 1.4496707152337
905 => 1.477508122969
906 => 1.6126786731452
907 => 1.6095625544593
908 => 1.5897393972371
909 => 1.6047750872769
910 => 1.5476983776775
911 => 1.5624083453538
912 => 1.487570760351
913 => 1.5214004742659
914 => 1.5502302129966
915 => 1.5560182098783
916 => 1.5690588623954
917 => 1.4576279144323
918 => 1.507657138627
919 => 1.537044620737
920 => 1.4042709074382
921 => 1.5344201113251
922 => 1.4556881495397
923 => 1.4289653391954
924 => 1.4649440828615
925 => 1.4509231314643
926 => 1.4388687407909
927 => 1.4321421836745
928 => 1.4585610021938
929 => 1.4573285327326
930 => 1.4141022179632
1001 => 1.3577152524766
1002 => 1.3766405689329
1003 => 1.3697648240386
1004 => 1.3448462375526
1005 => 1.3616383561625
1006 => 1.2876943641011
1007 => 1.1604775690335
1008 => 1.244520880611
1009 => 1.2412853045368
1010 => 1.2396537803585
1011 => 1.3028100062224
1012 => 1.2967389923676
1013 => 1.2857200427736
1014 => 1.3446438659021
1015 => 1.323135877823
1016 => 1.3894184291636
1017 => 1.4330764043632
1018 => 1.422003329665
1019 => 1.4630638663576
1020 => 1.3770765700003
1021 => 1.4056381006387
1022 => 1.4115245925187
1023 => 1.3439167550712
1024 => 1.2977322853157
1025 => 1.2946523077245
1026 => 1.2145748017805
1027 => 1.2573515590927
1028 => 1.2949933353051
1029 => 1.2769658456192
1030 => 1.2712588809406
1031 => 1.300414525794
1101 => 1.3026801691003
1102 => 1.2510232616141
1103 => 1.261764368442
1104 => 1.3065565694747
1105 => 1.2606357199009
1106 => 1.1714190103072
1107 => 1.1492920328104
1108 => 1.1463398861312
1109 => 1.0863297682473
1110 => 1.150770663251
1111 => 1.1226404856733
1112 => 1.21150337959
1113 => 1.160745371166
1114 => 1.1585572948716
1115 => 1.1552496966316
1116 => 1.1035965091821
1117 => 1.1149052745023
1118 => 1.1524973327999
1119 => 1.1659106027054
1120 => 1.1645114887626
1121 => 1.152313111206
1122 => 1.1578974659856
1123 => 1.1399083135223
1124 => 1.1335559693757
1125 => 1.1135062238991
1126 => 1.084038636932
1127 => 1.088136285635
1128 => 1.0297532852397
1129 => 0.997943128004
1130 => 0.98913849573228
1201 => 0.97736457348764
1202 => 0.99046839157903
1203 => 1.029587893535
1204 => 0.98240147451078
1205 => 0.90150366883613
1206 => 0.90636576480033
1207 => 0.91728945086264
1208 => 0.89693323415294
1209 => 0.87766778340498
1210 => 0.89441752977491
1211 => 0.86014006305363
1212 => 0.92143171895337
1213 => 0.91977395142916
1214 => 0.94261969049801
1215 => 0.95690559997952
1216 => 0.92398120374276
1217 => 0.91570080712625
1218 => 0.92041769736205
1219 => 0.84245800876698
1220 => 0.93624872071989
1221 => 0.9370598266916
1222 => 0.93011464492508
1223 => 0.98005530357665
1224 => 1.0854456702135
1225 => 1.045793574967
1226 => 1.0304390851967
1227 => 1.0012501889192
1228 => 1.0401426601438
1229 => 1.0371563251708
1230 => 1.0236509858891
1231 => 1.0154829145522
]
'min_raw' => 0.76281174356139
'max_raw' => 1.9572875876743
'avg_raw' => 1.3600496656178
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$0.762811'
'max' => '$1.95'
'avg' => '$1.36'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 0.4690802345642
'max_diff' => 1.1376855911574
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.023943788984937
]
1 => [
'year' => 2028
'avg' => 0.041094492829759
]
2 => [
'year' => 2029
'avg' => 0.11226274784919
]
3 => [
'year' => 2030
'avg' => 0.08661054277895
]
4 => [
'year' => 2031
'avg' => 0.08506228653533
]
5 => [
'year' => 2032
'avg' => 0.14914095838321
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.023943788984937
'min' => '$0.023943'
'max_raw' => 0.14914095838321
'max' => '$0.14914'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.14914095838321
]
1 => [
'year' => 2033
'avg' => 0.38360588094553
]
2 => [
'year' => 2034
'avg' => 0.24314784257927
]
3 => [
'year' => 2035
'avg' => 0.28679343791306
]
4 => [
'year' => 2036
'avg' => 0.55666675275704
]
5 => [
'year' => 2037
'avg' => 1.3600496656178
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.14914095838321
'min' => '$0.14914'
'max_raw' => 1.3600496656178
'max' => '$1.36'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 1.3600496656178
]
]
]
]
'prediction_2025_max_price' => '$0.040939'
'last_price' => 0.03969603
'sma_50day_nextmonth' => '$0.0366044'
'sma_200day_nextmonth' => '$0.037262'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'increase'
'sma_200day_direction_label' => 'aumentar'
'sma_200day_date_nextmonth' => '4 de fev. de 2026'
'sma_50day_date_nextmonth' => '4 de fev. de 2026'
'daily_sma3' => '$0.037937'
'daily_sma3_action' => 'BUY'
'daily_sma5' => '$0.037351'
'daily_sma5_action' => 'BUY'
'daily_sma10' => '$0.037237'
'daily_sma10_action' => 'BUY'
'daily_sma21' => '$0.036359'
'daily_sma21_action' => 'BUY'
'daily_sma50' => '$0.039274'
'daily_sma50_action' => 'BUY'
'daily_sma100' => '$0.040014'
'daily_sma100_action' => 'SELL'
'daily_sma200' => '$0.03824'
'daily_sma200_action' => 'BUY'
'daily_ema3' => '$0.038355'
'daily_ema3_action' => 'BUY'
'daily_ema5' => '$0.037878'
'daily_ema5_action' => 'BUY'
'daily_ema10' => '$0.037486'
'daily_ema10_action' => 'BUY'
'daily_ema21' => '$0.037617'
'daily_ema21_action' => 'BUY'
'daily_ema50' => '$0.038709'
'daily_ema50_action' => 'BUY'
'daily_ema100' => '$0.040781'
'daily_ema100_action' => 'SELL'
'daily_ema200' => '$0.057425'
'daily_ema200_action' => 'SELL'
'weekly_sma21' => '$0.037411'
'weekly_sma21_action' => 'BUY'
'weekly_sma50' => '$0.085016'
'weekly_sma50_action' => 'SELL'
'weekly_sma100' => '$0.199934'
'weekly_sma100_action' => 'SELL'
'weekly_sma200' => '$0.237314'
'weekly_sma200_action' => 'SELL'
'weekly_ema3' => '$0.037953'
'weekly_ema3_action' => 'BUY'
'weekly_ema5' => '$0.03767'
'weekly_ema5_action' => 'BUY'
'weekly_ema10' => '$0.038064'
'weekly_ema10_action' => 'BUY'
'weekly_ema21' => '$0.0448075'
'weekly_ema21_action' => 'SELL'
'weekly_ema50' => '$0.090063'
'weekly_ema50_action' => 'SELL'
'weekly_ema100' => '$0.163236'
'weekly_ema100_action' => 'SELL'
'weekly_ema200' => '$0.3338046'
'weekly_ema200_action' => 'SELL'
'rsi_14' => '53.85'
'rsi_14_action' => 'NEUTRAL'
'stoch_rsi_14' => 107.73
'stoch_rsi_14_action' => 'SELL'
'momentum_10' => 0
'momentum_10_action' => 'BUY'
'vwma_10' => '0.037130'
'vwma_10_action' => 'BUY'
'hma_9' => '0.037672'
'hma_9_action' => 'BUY'
'stochastic_fast_14' => 100
'stochastic_fast_14_action' => 'SELL'
'cci_20' => 105.79
'cci_20_action' => 'SELL'
'adx_14' => 5.52
'adx_14_action' => 'NEUTRAL'
'ao_5_34' => '-0.000934'
'ao_5_34_action' => 'NEUTRAL'
'macd_12_26' => 0
'macd_12_26_action' => 'BUY'
'williams_percent_r_14' => -0
'williams_percent_r_14_action' => 'SELL'
'ultimate_oscillator' => 57.54
'ultimate_oscillator_action' => 'NEUTRAL'
'ichimoku_cloud' => '0.0023056'
'ichimoku_cloud_action' => 'NEUTRAL'
'sell_signals' => 11
'buy_signals' => 23
'sell_pct' => 32.35
'buy_pct' => 67.65
'overall_action' => 'bullish'
'overall_action_label' => 'Altista'
'overall_action_dir' => 1
'last_updated' => 1767702880
'last_updated_date' => '6 de janeiro de 2026'
]
Previsão de preço de Komodo para 2026
A previsão de preço para Komodo em 2026 sugere que o preço médio poderia variar entre $0.013714 na extremidade inferior e $0.040939 na extremidade superior. No mercado de criptomoedas, comparado ao preço médio de hoje, Komodo poderia potencialmente ganhar 3.13% até 2026 se KMD atingir a meta de preço prevista.
Previsão de preço de Komodo 2027-2032
A previsão de preço de KMD para 2027-2032 está atualmente dentro de uma faixa de preço entre $0.023943 na extremidade inferior e $0.14914 na extremidade superior. Considerando a volatilidade de preços no mercado, se Komodo atingir a meta de preço superior, poderia ganhar 275.71% até 2032 em comparação com o preço de hoje.
| Previsão de Preço de Komodo | Potencial Mínimo ($) | Preço Médio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2027 | $0.013203 | $0.023943 | $0.034684 |
| 2028 | $0.023827 | $0.041094 | $0.058361 |
| 2029 | $0.052342 | $0.112262 | $0.172183 |
| 2030 | $0.044515 | $0.08661 | $0.128706 |
| 2031 | $0.05263 | $0.085062 | $0.117494 |
| 2032 | $0.080336 | $0.14914 | $0.217945 |
Previsão de preço de Komodo 2032-2037
A previsão de preço de Komodo para 2032-2037 é atualmente estimada entre $0.14914 na extremidade inferior e $1.36 na extremidade superior. Comparado ao preço atual, Komodo poderia potencialmente ganhar 3326.16% até 2037 se atingir a meta de preço superior. Por favor, note que esta informação é apenas para fins gerais e não deve ser considerada como aconselhamento de investimento a longo prazo.
| Previsão de Preço de Komodo | Potencial Mínimo ($) | Preço Médio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2032 | $0.080336 | $0.14914 | $0.217945 |
| 2033 | $0.186684 | $0.3836058 | $0.580527 |
| 2034 | $0.150085 | $0.243147 | $0.33621 |
| 2035 | $0.177447 | $0.286793 | $0.396139 |
| 2036 | $0.293731 | $0.556666 | $0.8196019 |
| 2037 | $0.762811 | $1.36 | $1.95 |
Komodo Histograma de preços potenciais
Previsão de preço de Komodo baseada na análise técnica
Em 6 de janeiro de 2026, o sentimento geral de previsão de preço para Komodo é Altista, com 23 indicadores técnicos mostrando sinais de alta e 11 indicando sinais de baixa. A previsão de preço de KMD foi atualizada pela última vez em 6 de janeiro de 2026.
Médias Móveis Simples de 50 e 200 dias e Índice de Força Relativa de 14 dias - RSI (14) de Komodo
De acordo com nossos indicadores técnicos, o SMA de 200 dias de Komodo está projetado para aumentar no próximo mês, alcançando $0.037262 até 4 de fev. de 2026. O SMA de 50 dias de curto prazo para Komodo é esperado para alcançar $0.0366044 até 4 de fev. de 2026.
O oscilador de momentum Índice de Força Relativa (RSI) é uma ferramenta comumente usada para identificar se uma criptomoeda está sobrevendida (abaixo de 30) ou sobrecomprada (acima de 70). No momento, o RSI está em 53.85, sugerindo que o mercado de KMD está em um estado NEUTRAL.
Médias Móveis e Osciladores Populares de KMD para Sábado, 19 de Outubro de 2024
Médias móveis (MA) são indicadores amplamente utilizados nos mercados financeiros, projetados para suavizar movimentos de preços ao longo de um período definido. Como indicadores atrasados, eles se baseiam em dados históricos de preços. A tabela abaixo destaca dois tipos: a média móvel simples (SMA) e a média móvel exponencial (EMA).
Média Móvel Simples Diária (SMA)
| Período | Valor | Ação |
|---|---|---|
| SMA 3 | $0.037937 | BUY |
| SMA 5 | $0.037351 | BUY |
| SMA 10 | $0.037237 | BUY |
| SMA 21 | $0.036359 | BUY |
| SMA 50 | $0.039274 | BUY |
| SMA 100 | $0.040014 | SELL |
| SMA 200 | $0.03824 | BUY |
Média Móvel Exponencial Diária (EMA)
| Período | Valor | Ação |
|---|---|---|
| EMA 3 | $0.038355 | BUY |
| EMA 5 | $0.037878 | BUY |
| EMA 10 | $0.037486 | BUY |
| EMA 21 | $0.037617 | BUY |
| EMA 50 | $0.038709 | BUY |
| EMA 100 | $0.040781 | SELL |
| EMA 200 | $0.057425 | SELL |
Média Móvel Simples Semanal (SMA)
| Período | Valor | Ação |
|---|---|---|
| SMA 21 | $0.037411 | BUY |
| SMA 50 | $0.085016 | SELL |
| SMA 100 | $0.199934 | SELL |
| SMA 200 | $0.237314 | SELL |
Média Móvel Exponencial Semanal (EMA)
| Período | Valor | Ação |
|---|---|---|
| EMA 21 | $0.0448075 | SELL |
| EMA 50 | $0.090063 | SELL |
| EMA 100 | $0.163236 | SELL |
| EMA 200 | $0.3338046 | SELL |
Osciladores de Komodo
Um oscilador é uma ferramenta de análise técnica que define limites altos e baixos entre dois extremos, criando um indicador de tendência que flutua dentro desses limites. Os traders usam esse indicador para identificar condições de sobrecompra ou sobrevenda de curto prazo.
| Período | Valor | Ação |
|---|---|---|
| RSI (14) | 53.85 | NEUTRAL |
| Stoch RSI (14) | 107.73 | SELL |
| Estocástico Rápido (14) | 100 | SELL |
| Índice de Canal de Commodities (20) | 105.79 | SELL |
| Índice Direcional Médio (14) | 5.52 | NEUTRAL |
| Oscilador Impressionante (5, 34) | -0.000934 | NEUTRAL |
| Momentum (10) | 0 | BUY |
| MACD (12, 26) | 0 | BUY |
| Williams Percent Range (14) | -0 | SELL |
| Oscilador Ultimate (7, 14, 28) | 57.54 | NEUTRAL |
| VWMA (10) | 0.037130 | BUY |
| Média Móvel de Hull (9) | 0.037672 | BUY |
| Nuvem Ichimoku B/L (9, 26, 52, 26) | 0.0023056 | NEUTRAL |
Previsão do preço de Komodo com base nos fluxos financeiros mundiais
Definições dos fluxos financeiros mundiais, usadas na previsão do preço do Komodo
M0: o total de todas as moedas físicas, mais as contas no Banco Central que podem ser trocadas por moedas físicas.
M1: o valor de M0, mais o valor em contas de demanda, incluindo contas 'correntes'.
M2: o valor de M1, mais a maioria das contas de poupança, do mercado de moedas e de certificados de depósito (CD) de menos de US$ 100.000.
Previsões de preço de Komodo por empresas de Internet ou nichos tecnológicos
| Comparação | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Facebook stock | $0.055779 | $0.078379 | $0.110136 | $0.15476 | $0.217463 | $0.305572 |
| Amazon.com stock | $0.082828 | $0.172825 | $0.360611 | $0.752436 | $1.57 | $3.27 |
| Apple stock | $0.0563057 | $0.079865 | $0.113283 | $0.160683 | $0.227917 | $0.323283 |
| Netflix stock | $0.062634 | $0.098826 | $0.155933 | $0.246038 | $0.3882096 | $0.612534 |
| Google stock | $0.0514061 | $0.06657 | $0.0862088 | $0.11164 | $0.144573 | $0.187221 |
| Tesla stock | $0.089987 | $0.203995 | $0.462442 | $1.04 | $2.37 | $5.38 |
| Kodak stock | $0.029767 | $0.022322 | $0.016739 | $0.012552 | $0.009413 | $0.007059 |
| Nokia stock | $0.026296 | $0.01742 | $0.01154 | $0.007645 | $0.005064 | $0.003355 |
Este cálculo mostra quanto a criptomoeda pode custar, se assumirmos que sua capitalização se comportará da mesma forma que a de algumas empresas de Internet ou nichos tecnológicos. Se você extrapolar os dados, poderá obter uma imagem em potencial do preço futuro para 2024, 2025, 2026, 2027, 2028, 2029 e 2030.
Visão geral da previsão para Komodo
Você pode fazer perguntas como: 'Devo investir em Komodo agora?', 'Devo comprar KMD hoje?', 'Komodo será um bom ou mau investimento no curto ou no longo prazo?'.
Atualizamos a previsão para Komodo regularmente com novos valores. Veja nossas previsões semelhantes. Fazemos previsões de preços futuros para uma enorme quantidade de moedas digitais, como Komodo, com métodos de análise técnica.
Se você estiver tentando encontrar criptomoedas com bom retorno, você deve explorar o máximo de fontes de informações disponíveis sobre Komodo para poder tomar sozinho uma decisão de tão grande responsabilidade sobre o seu investimento.
O preço de Komodo é de $0.03969 USD hoje, mas o preço pode tanto subir quanto descer e seu investimento pode ser perdido, porque criptomoedas são ativos de alto risco
Previsão de curto prazo para Komodo
com base no histórico de preços de 4 horas
Previsão de longo prazo para Komodo
com base no histórico de preços de 1 mês
Previsão do preço de Komodo com base no padrão de crescimento do Bitcoin
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| Se Komodo tiver 1% da média anterior do crescimento anual do Bitcoin | $0.040727 | $0.041786 | $0.042872 | $0.043987 |
| Se Komodo tiver 2% da média anterior do crescimento anual do Bitcoin | $0.041759 | $0.04393 | $0.046214 | $0.048616 |
| Se Komodo tiver 5% da média anterior do crescimento anual do Bitcoin | $0.044855 | $0.050684 | $0.057272 | $0.064715 |
| Se Komodo tiver 10% da média anterior do crescimento anual do Bitcoin | $0.050014 | $0.063014 | $0.079394 | $0.100031 |
| Se Komodo tiver 20% da média anterior do crescimento anual do Bitcoin | $0.060332 | $0.091697 | $0.139367 | $0.211819 |
| Se Komodo tiver 50% da média anterior do crescimento anual do Bitcoin | $0.091287 | $0.20993 | $0.482767 | $1.11 |
| Se Komodo tiver 100% da média anterior do crescimento anual do Bitcoin | $0.142878 | $0.514266 | $1.85 | $6.66 |
Perguntas Frequentes sobre Komodo
KMD é um bom investimento?
A decisão de adquirir Komodo depende inteiramente da sua tolerância individual ao risco. Como você pode perceber, o valor de Komodo experimentou uma escalada de 2.702% nas últimas 24 horas, e Komodo registrou um declínio de durante os últimos 30 dias. Consequentemente, a decisão de investir ou não em Komodo dependerá de quão alinhado esse investimento está com suas aspirações de negociação.
Komodo pode subir?
Parece que o valor médio de Komodo pode potencialmente subir para $0.040939 até o final deste ano. Observando as perspectivas de Komodo em um horizonte de cinco anos mais longo, a moeda digital poderia potencialmente crescer até $0.128706. No entanto, dada a imprevisibilidade do mercado, é vital conduzir uma pesquisa aprofundada antes de investir quaisquer fundos em um projeto, rede ou ativo específico.
Qual será o preço de Komodo na próxima semana?
Com base na nossa nova previsão experimental de Komodo, o preço de Komodo aumentará 0.86% na próxima semana e atingirá $0.0400357 até 13 de janeiro de 2026.
Qual será o preço de Komodo no próximo mês?
Com base na nossa nova previsão experimental de Komodo, o preço de Komodo diminuirá -11.62% no próximo mês e atingirá $0.0350841 até 5 de fevereiro de 2026.
Até onde o preço de Komodo pode subir este ano em 2026?
De acordo com nossa previsão mais recente sobre o valor de Komodo em 2026, espera-se que KMD fluctue dentro do intervalo de $0.013714 e $0.040939. No entanto, é crucial lembrar que o mercado de criptomoedas é excepcionalmente instável, e essa previsão de preço de Komodo não considera flutuações repentinas e extremas de preço.
Onde estará Komodo em 5 anos?
O futuro de Komodo parece seguir uma tendência de alta, com um preço máximo de $0.128706 projetada após um período de cinco anos. Com base na previsão de Komodo para 2030, o valor de Komodo pode potencialmente atingir seu pico mais alto de aproximadamente $0.128706, enquanto seu pico mais baixo está previsto para cerca de $0.044515.
Quanto será Komodo em 2026?
Com base na nossa nova simulação experimental de previsão de preços de Komodo, espera-se que o valor de KMD em 2026 aumente 3.13% para $0.040939 se o melhor cenário ocorrer. O preço ficará entre $0.040939 e $0.013714 durante 2026.
Quanto será Komodo em 2027?
De acordo com nossa última simulação experimental para previsão de preços de Komodo, o valor de KMD pode diminuir -12.62% para $0.034684 em 2027, assumindo as condições mais favoráveis. O preço está projetado para flutuar entre $0.034684 e $0.013203 ao longo do ano.
Quanto será Komodo em 2028?
Nosso novo modelo experimental de previsão de preços de Komodo sugere que o valor de KMD em 2028 pode aumentar 47.02%, alcançando $0.058361 no melhor cenário. O preço é esperado para variar entre $0.058361 e $0.023827 durante o ano.
Quanto será Komodo em 2029?
Com base no nosso modelo de previsão experimental, o valor de Komodo pode experimentar um 333.75% crescimento em 2029, potencialmente alcançando $0.172183 sob condições ótimas. A faixa de preço prevista para 2029 está entre $0.172183 e $0.052342.
Quanto será Komodo em 2030?
Usando nossa nova simulação experimental para previsões de preços de Komodo, espera-se que o valor de KMD em 2030 aumente 224.23%, alcançando $0.128706 no melhor cenário. O preço está previsto para variar entre $0.128706 e $0.044515 ao longo de 2030.
Quanto será Komodo em 2031?
Nossa simulação experimental indica que o preço de Komodo poderia aumentar 195.98% em 2031, potencialmente atingindo $0.117494 sob condições ideais. O preço provavelmente oscilará entre $0.117494 e $0.05263 durante o ano.
Quanto será Komodo em 2032?
Com base nos achados da nossa mais recente previsão experimental de preços de Komodo, KMD poderia ver um 449.04% aumento em valor, atingindo $0.217945 se o cenário mais positivo se desenrolar em 2032. O preço é esperado para permanecer dentro de uma faixa de $0.217945 e $0.080336 ao longo do ano.
Quanto será Komodo em 2033?
De acordo com nossa previsão experimental de preços de Komodo, espera-se que o valor de KMD seja aumentar 1362.43% em 2033, com o preço potencial mais alto sendo $0.580527. Ao longo do ano, o preço de KMD poderia variar entre $0.580527 e $0.186684.
Quanto será Komodo em 2034?
Os resultados da nossa nova simulação de previsão de preços de Komodo sugerem que KMD pode aumentar 746.96% em 2034, atingindo potencialmente $0.33621 nas melhores circunstâncias. A faixa de preço prevista para o ano é entre $0.33621 e $0.150085.
Quanto será Komodo em 2035?
Com base em nossa previsão experimental para o preço de Komodo, KMD poderia aumentar 897.93%, com o valor potencialmente atingindo $0.396139 em 2035. A faixa de preço esperada para o ano está entre $0.396139 e $0.177447.
Quanto será Komodo em 2036?
Nossa recente simulação de previsão de preços de Komodo sugere que o valor de KMD pode aumentar 1964.7% em 2036, possivelmente atingindo $0.8196019 se as condições forem ideais. A faixa de preço esperada para 2036 está entre $0.8196019 e $0.293731.
Quanto será Komodo em 2037?
De acordo com a simulação experimental, o valor de Komodo poderia aumentar 4830.69% em 2037, com um pico de $1.95 sob condições favoráveis. O preço é esperado para cair entre $1.95 e $0.762811 ao longo do ano.
Previsões relacionadas
Previsão de Preço do Solcasino Token
Previsão de Preço do Cornucopias
Previsão de Preço do Doge Eat Doge
Previsão de Preço do Vertex
Previsão de Preço do YES Money
Previsão de Preço do Strike
Previsão de Preço do Persistence
Previsão de Preço do CEEK Smart VR Token
Previsão de Preço do TOPIA
Previsão de Preço do Measurable Data Token
Previsão de Preço do CHEQD Network
Previsão de Preço do Open Exchange Token
Previsão de Preço do ZBIT•BLUE•BITCOIN
Previsão de Preço do ThunderCore
Previsão de Preço do MEOW
Previsão de Preço do Planet Token
Previsão de Preço do IRISnet
Previsão de Preço do FIDA
Previsão de Preço do Rarible
Previsão de Preço do Ampleforth Governance Token
Previsão de Preço do Firmachain
Previsão de Preço do Dynex
Previsão de Preço do Hxro
Previsão de Preço do Steem Dollars
Previsão de Preço do Kin
Como ler e prever os movimentos de preço de Komodo?
Traders de Komodo utilizam indicadores e padrões de gráfico para prever a direção do mercado. Eles também identificam níveis-chave de suporte e resistência para avaliar quando uma tendência de baixa pode desacelerar ou uma tendência de alta pode estagnar.
Indicadores de Previsão de Preço de Komodo
Médias móveis são ferramentas populares para a previsão de preço de Komodo. Uma média móvel simples (SMA) calcula o preço médio de fechamento de KMD em um período específico, como uma SMA de 12 dias. Uma média móvel exponencial (EMA) dá mais peso aos preços recentes, reagindo mais rapidamente às mudanças de preço.
Médias móveis comumente usadas no mercado de criptomoedas incluem as de 50 dias, 100 dias e 200 dias, que ajudam a identificar níveis-chave de resistência e suporte. Um movimento de preço de KMD acima dessas médias é visto como altista, enquanto uma queda abaixo indica fraqueza.
Traders também usam RSI e níveis de retração de Fibonacci para avaliar a direção futura de KMD.
Como ler gráficos de Komodo e prever movimentos de preço?
A maioria dos traders prefere gráficos de velas em vez de gráficos de linha simples porque eles fornecem informações mais detalhadas. Velas podem representar a ação de preço de Komodo em diferentes períodos de tempo, como 5 minutos para tendências de curto prazo e semanal para tendências de longo prazo. Opções populares incluem gráficos de 1 hora, 4 horas e 1 dia.
Por exemplo, um gráfico de velas de 1 hora mostra os preços de abertura, fechamento, máximo e mínimo de KMD dentro de cada hora. A cor da vela é crucial: verde indica que o preço fechou mais alto do que abriu, enquanto vermelho significa o oposto. Alguns gráficos usam velas vazias e preenchidas para transmitir a mesma informação.
O que afeta o preço de Komodo?
A ação de preço de Komodo é impulsionada pela oferta e demanda, influenciada por fatores como reduções pela metade das recompensas de bloco, hard forks e atualizações de protocolo. Eventos do mundo real, como regulamentações, adoção por empresas e governos e hacks de exchanges de criptomoedas, também impactam o preço de KMD. A capitalização de mercado de Komodo pode mudar rapidamente.
Traders frequentemente monitoram a atividade de "baleias" de KMD, grandes detentores de Komodo, pois suas ações podem influenciar significativamente os movimentos de preço no relativamente pequeno mercado de Komodo.
Padrões de previsão de preço altistas e baixistas
Traders frequentemente identificam padrões de velas para ganhar vantagem em previsões de preço de criptomoedas. Certas formações indicam tendências altistas, enquanto outras sugerem movimentos baixistas.
Padrões de velas altistas comumente seguidos:
- Martelo
- Engolfo de Alta
- Linha de Perfuração
- Estrela da Manhã
- Três Soldados Brancos
Padrões de velas baixistas comuns:
- Harami de Baixa
- Nuvem Negra
- Estrela da Noite
- Estrela Cadente
- Homem Enforcado


