Previsão de Preço Komodo - Projeção KMD
Previsão de Preço Komodo até $0.0412024 até 2026
| Ano | Preço Mínimo | Preço Máximo |
|---|---|---|
| 2026 | $0.013803 | $0.0412024 |
| 2027 | $0.013287 | $0.0349072 |
| 2028 | $0.02398 | $0.058736 |
| 2029 | $0.052678 | $0.173288 |
| 2030 | $0.04480092 | $0.129532 |
| 2031 | $0.052968 | $0.118248 |
| 2032 | $0.080852 | $0.219345 |
| 2033 | $0.187883 | $0.584255 |
| 2034 | $0.151049 | $0.338369 |
| 2035 | $0.178587 | $0.398683 |
Calculadora de lucro do investimento
Se você abrir um short de $10,000.00 em Komodo hoje e fechar em Apr 06, 2026, nossa previsão mostra que pode lucrar cerca de $3,954.59, com um retorno de 39.55% nos próximos 90 dias.
Previsão de preço de longo prazo de Komodo para os anos 2027, 2028, 2029, 2030, 2031, 2032 e 2037
[
'name' => 'Komodo'
'name_with_ticker' => 'Komodo <small>KMD</small>'
'name_lang' => 'Komodo'
'name_lang_with_ticker' => 'Komodo <small>KMD</small>'
'name_with_lang' => 'Komodo'
'name_with_lang_with_ticker' => 'Komodo <small>KMD</small>'
'image' => '/uploads/coins/komodo.png?1717211283'
'price_for_sd' => 0.03995
'ticker' => 'KMD'
'marketcap' => '$5.62M'
'low24h' => '$0.02593'
'high24h' => '$0.03996'
'volume24h' => '$9.27K'
'current_supply' => '140.66M'
'max_supply' => '140.66M'
'algo' => 'Equihash'
'proof' => null
'ico_price_and_roi' => ''
'price' => '$0.03995'
'change_24h_pct' => '3.8171%'
'ath_price' => '$11.54'
'ath_days' => 2937
'ath_exchange' => null
'ath_pair' => null
'ath_date' => '22 de dez. de 2017'
'ath_pct' => '-99.65%'
'fdv' => '$5.62M'
'new_prediction' => true
'change_24h_pct_is_increased' => true
'change_30d_pct' => null
'change_30d_pct_is_increased' => false
'max_price' => '$1.96'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.040292'
'next_week_prediction_price_date' => '13 de janeiro de 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.035309'
'next_month_prediction_price_date' => '5 de fevereiro de 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.013803'
'current_year_max_price_prediction' => '$0.0412024'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.04480092'
'grand_prediction_max_price' => '$0.129532'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.04070801986729
107 => 0.040860008836463
108 => 0.04120244774476
109 => 0.038276344766322
110 => 0.039590079097771
111 => 0.040361774937236
112 => 0.036875225059995
113 => 0.040292857056276
114 => 0.038225407823459
115 => 0.037523684501796
116 => 0.038468462509398
117 => 0.038100281601008
118 => 0.037783741276284
119 => 0.037607106336234
120 => 0.038300847033674
121 => 0.038268483200939
122 => 0.037133388770661
123 => 0.035652704358731
124 => 0.036149670649184
125 => 0.035969118136779
126 => 0.035314772540085
127 => 0.035755722466268
128 => 0.033814002151008
129 => 0.030473373270443
130 => 0.032680295035174
131 => 0.032595330947901
201 => 0.032552488202283
202 => 0.034210928913641
203 => 0.034051508105981
204 => 0.033762157779025
205 => 0.035309458394419
206 => 0.03474467285567
207 => 0.036485208805885
208 => 0.037631638353504
209 => 0.037340866737117
210 => 0.038419089267827
211 => 0.036161119748785
212 => 0.036911126648998
213 => 0.037065702031667
214 => 0.035290364945006
215 => 0.034077591321705
216 => 0.033996713147662
217 => 0.031893930815357
218 => 0.033017220164209
219 => 0.034005668306326
220 => 0.033532278352926
221 => 0.033382417235803
222 => 0.034148025182277
223 => 0.034207519476707
224 => 0.032851043258787
225 => 0.033133097618508
226 => 0.034309311186179
227 => 0.033103460054455
228 => 0.03076068828018
301 => 0.030179648488806
302 => 0.030102127069949
303 => 0.028526301072896
304 => 0.030218476346016
305 => 0.029479796491821
306 => 0.031813277300479
307 => 0.030480405577282
308 => 0.030422948141272
309 => 0.03033609279957
310 => 0.028979714267354
311 => 0.029276674963556
312 => 0.030263817546125
313 => 0.030616041140543
314 => 0.030579301333962
315 => 0.030258980008937
316 => 0.030405621471223
317 => 0.029933238227927
318 => 0.029766429872912
319 => 0.029239936820233
320 => 0.028466137480213
321 => 0.02857373902443
322 => 0.027040640056238
323 => 0.026205326370647
324 => 0.025974122551733
325 => 0.025664947142408
326 => 0.0260090447369
327 => 0.027036296979485
328 => 0.025797212831207
329 => 0.023672889970631
330 => 0.023800565394222
331 => 0.024087414163857
401 => 0.023552873379337
402 => 0.023046975387397
403 => 0.023486812646587
404 => 0.022586709046108
405 => 0.024196187383679
406 => 0.024152655505158
407 => 0.024752569499932
408 => 0.025127708032339
409 => 0.024263135167684
410 => 0.024045697430277
411 => 0.024169559847498
412 => 0.022122389997775
413 => 0.024585272048155
414 => 0.0246065711544
415 => 0.024424195275667
416 => 0.025735603934543
417 => 0.028503085243387
418 => 0.027461847453322
419 => 0.02705864870943
420 => 0.026292167602555
421 => 0.027313458168321
422 => 0.027235038987485
423 => 0.026880397712153
424 => 0.026665909562284
425 => 0.027061110554983
426 => 0.026616939785793
427 => 0.026537154510649
428 => 0.026053742550517
429 => 0.025881186474593
430 => 0.025753432825634
501 => 0.025612788610944
502 => 0.025923014702195
503 => 0.02522000156578
504 => 0.02437223664049
505 => 0.024301754159896
506 => 0.0244963624857
507 => 0.024410262788418
508 => 0.02430134194767
509 => 0.024093382399858
510 => 0.024031685244375
511 => 0.024232171068491
512 => 0.024005834262114
513 => 0.024339806549127
514 => 0.024248984566589
515 => 0.023741660355016
516 => 0.023109346551915
517 => 0.023103717632744
518 => 0.022967486661069
519 => 0.022793976036177
520 => 0.022745709349717
521 => 0.023449770779424
522 => 0.024907156868133
523 => 0.024621037106626
524 => 0.024827787957048
525 => 0.025844797512283
526 => 0.026168074267348
527 => 0.025938620083833
528 => 0.025624529045319
529 => 0.025638347456974
530 => 0.026711691617399
531 => 0.026778634776094
601 => 0.026947778541435
602 => 0.02716517607992
603 => 0.02597564382469
604 => 0.025582320594726
605 => 0.025395942227627
606 => 0.024821968994467
607 => 0.025440949917684
608 => 0.025080296241131
609 => 0.025128960743782
610 => 0.025097267922589
611 => 0.02511457434602
612 => 0.024195737501682
613 => 0.024530513355116
614 => 0.023973883567938
615 => 0.023228618767532
616 => 0.023226120378597
617 => 0.023408522882681
618 => 0.023300022735841
619 => 0.02300805163049
620 => 0.02304952474794
621 => 0.02268617659901
622 => 0.023093641791851
623 => 0.023105326435601
624 => 0.022948430141578
625 => 0.023576186490511
626 => 0.02383337877887
627 => 0.023730106277099
628 => 0.023826132904842
629 => 0.02463292667447
630 => 0.0247644692618
701 => 0.024822891789876
702 => 0.024744613341755
703 => 0.023840879613899
704 => 0.023880964047702
705 => 0.023586851068895
706 => 0.023338356594665
707 => 0.023348295070453
708 => 0.023476053532227
709 => 0.024033982227731
710 => 0.025208110275725
711 => 0.02525266757687
712 => 0.025306672325686
713 => 0.02508700787164
714 => 0.025020754970394
715 => 0.025108159648462
716 => 0.025549100410569
717 => 0.026683319764956
718 => 0.026282410893152
719 => 0.025956465739857
720 => 0.026242407513479
721 => 0.026198389018716
722 => 0.025826828624265
723 => 0.025816400161513
724 => 0.025103256969518
725 => 0.024839624168922
726 => 0.024619312868171
727 => 0.024378738679123
728 => 0.024236118235736
729 => 0.024455248056611
730 => 0.024505365639313
731 => 0.024026234456236
801 => 0.023960930646433
802 => 0.024352199513299
803 => 0.024180016672965
804 => 0.024357110994177
805 => 0.024398198395786
806 => 0.024391582377804
807 => 0.024211803717422
808 => 0.024326389274472
809 => 0.024055360272449
810 => 0.023760656939988
811 => 0.023572654574544
812 => 0.023408597575799
813 => 0.023499625933752
814 => 0.023175126458773
815 => 0.023071312545844
816 => 0.024287570266
817 => 0.025186032920854
818 => 0.025172968918022
819 => 0.025093445160572
820 => 0.024975288987806
821 => 0.025540456550582
822 => 0.025343563472593
823 => 0.025486819637797
824 => 0.025523284344284
825 => 0.025633652028352
826 => 0.025673098988983
827 => 0.025553862876279
828 => 0.02515369191858
829 => 0.024156503939106
830 => 0.023692310242804
831 => 0.023539118591266
901 => 0.023544686816847
902 => 0.023391090297669
903 => 0.02343633135628
904 => 0.023375357303759
905 => 0.023259887199492
906 => 0.023492495980199
907 => 0.023519301975275
908 => 0.02346500830639
909 => 0.023477796430872
910 => 0.023028268041634
911 => 0.023062444708744
912 => 0.022872144683318
913 => 0.022836465722651
914 => 0.022355403829693
915 => 0.021503132955281
916 => 0.021975373751641
917 => 0.021404973276743
918 => 0.021188953973921
919 => 0.022211555755584
920 => 0.022108914899263
921 => 0.02193323837015
922 => 0.021673376169395
923 => 0.021576990751358
924 => 0.02099138346328
925 => 0.020956782660607
926 => 0.021247025445305
927 => 0.021113088386812
928 => 0.020924990030756
929 => 0.020243716852346
930 => 0.019477740238015
1001 => 0.019500860257244
1002 => 0.019744503166761
1003 => 0.020452927785905
1004 => 0.020176134031335
1005 => 0.019975316986552
1006 => 0.019937709990603
1007 => 0.020408440280491
1008 => 0.021074622261727
1009 => 0.021387179942342
1010 => 0.021077444773371
1011 => 0.020721637688583
1012 => 0.020743294017183
1013 => 0.020887363869151
1014 => 0.020902503573555
1015 => 0.020670909738917
1016 => 0.020736102046799
1017 => 0.020637068969817
1018 => 0.020029303159178
1019 => 0.02001831060291
1020 => 0.019869155071431
1021 => 0.019864638701216
1022 => 0.019610887933581
1023 => 0.019575386447092
1024 => 0.019071548896381
1025 => 0.01940317629802
1026 => 0.019180738048221
1027 => 0.018845471137894
1028 => 0.018787670996184
1029 => 0.018785933454129
1030 => 0.019130177606725
1031 => 0.019399153604668
1101 => 0.01918460745681
1102 => 0.019135759457745
1103 => 0.019657328290972
1104 => 0.019590953902738
1105 => 0.019533474110597
1106 => 0.021014972972056
1107 => 0.019842251020413
1108 => 0.019330877312868
1109 => 0.018697955242548
1110 => 0.018904037860114
1111 => 0.018947462495619
1112 => 0.017425399009278
1113 => 0.01680789804243
1114 => 0.01659599498064
1115 => 0.016474041772711
1116 => 0.016529617380957
1117 => 0.015973794085154
1118 => 0.016347316532402
1119 => 0.015866020540811
1120 => 0.015785329701548
1121 => 0.016645946555645
1122 => 0.016765696363242
1123 => 0.016254806480685
1124 => 0.016582880490846
1125 => 0.016463916294192
1126 => 0.015874270979183
1127 => 0.015851750865287
1128 => 0.015555887573251
1129 => 0.015092918811637
1130 => 0.014881329664469
1201 => 0.014771132199523
1202 => 0.014816601821266
1203 => 0.014793610989119
1204 => 0.014643580257765
1205 => 0.014802210575021
1206 => 0.014396975665006
1207 => 0.014235607858639
1208 => 0.014162721764207
1209 => 0.013803052457119
1210 => 0.014375446270364
1211 => 0.014488215062401
1212 => 0.014601206043793
1213 => 0.0155847153946
1214 => 0.015535582046802
1215 => 0.015979723581983
1216 => 0.015962465058649
1217 => 0.0158357886982
1218 => 0.015301361970714
1219 => 0.01551437493905
1220 => 0.014858754132078
1221 => 0.015349989818543
1222 => 0.015125810365733
1223 => 0.015274194520044
1224 => 0.015007386431334
1225 => 0.015155049043862
1226 => 0.014514956726439
1227 => 0.013917247526771
1228 => 0.014157783156937
1229 => 0.014419272895512
1230 => 0.014986249275091
1231 => 0.014648562820868
]
'min_raw' => 0.013803052457119
'max_raw' => 0.04120244774476
'avg_raw' => 0.027502750100939
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.013803'
'max' => '$0.0412024'
'avg' => '$0.0275027'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.026147917542881
'max_diff' => 0.0012514777447595
'year' => 2026
]
1 => [
'items' => [
101 => 0.014770007639145
102 => 0.014363187827533
103 => 0.013523802353844
104 => 0.013528553184468
105 => 0.013399432016347
106 => 0.013287852475092
107 => 0.014687350172302
108 => 0.01451330051087
109 => 0.014235975154433
110 => 0.014607186164495
111 => 0.014705340247466
112 => 0.01470813455622
113 => 0.014978960526818
114 => 0.015123500395875
115 => 0.015148976174268
116 => 0.015575126690586
117 => 0.015717966722595
118 => 0.016306304598962
119 => 0.015111237197829
120 => 0.015086625571139
121 => 0.014612409864665
122 => 0.014311654766566
123 => 0.014633002823539
124 => 0.014917673333634
125 => 0.01462125537093
126 => 0.014659961299134
127 => 0.014262044402442
128 => 0.014404280969279
129 => 0.014526794261974
130 => 0.014459149622747
131 => 0.014357882323785
201 => 0.014894333598146
202 => 0.014864064914877
203 => 0.015363620674522
204 => 0.015753060112741
205 => 0.016451005206656
206 => 0.015722663116455
207 => 0.015696119435791
208 => 0.015955588172027
209 => 0.015717926999284
210 => 0.015868120656673
211 => 0.016426806686466
212 => 0.01643861084191
213 => 0.016240876029434
214 => 0.016228843848125
215 => 0.016266820981842
216 => 0.016489254240222
217 => 0.01641152922506
218 => 0.016501474580362
219 => 0.016613952624458
220 => 0.017079209504544
221 => 0.017191381363213
222 => 0.016918861901088
223 => 0.016943467357247
224 => 0.016841537597586
225 => 0.016743074726929
226 => 0.016964404880818
227 => 0.017368890087305
228 => 0.017366373805828
301 => 0.017460206511664
302 => 0.017518663510048
303 => 0.017267723279847
304 => 0.017104370417314
305 => 0.017167010299221
306 => 0.017267172834511
307 => 0.017134528938984
308 => 0.01631578936916
309 => 0.016564142653358
310 => 0.016522804523012
311 => 0.016463933998512
312 => 0.016713655146232
313 => 0.016689568932336
314 => 0.015968093313882
315 => 0.016014279842153
316 => 0.015970902069641
317 => 0.016111064526887
318 => 0.015710357766618
319 => 0.015833612467276
320 => 0.015910916660087
321 => 0.015956449423531
322 => 0.016120944987201
323 => 0.016101643331405
324 => 0.016119745169176
325 => 0.01636364866488
326 => 0.017597228848578
327 => 0.017664369896235
328 => 0.017333742821886
329 => 0.017465821816758
330 => 0.017212259029105
331 => 0.017382477427179
401 => 0.017498936532063
402 => 0.01697268023089
403 => 0.01694151874811
404 => 0.016686909416634
405 => 0.01682372204956
406 => 0.016606043313399
407 => 0.016659454061174
408 => 0.01651011295413
409 => 0.016778897213291
410 => 0.017079439779884
411 => 0.017155368700991
412 => 0.016955632399014
413 => 0.01681101015312
414 => 0.016557101130858
415 => 0.016979357493611
416 => 0.017102838122109
417 => 0.016978708902437
418 => 0.016949945449961
419 => 0.016895438759495
420 => 0.016961509302014
421 => 0.017102165620088
422 => 0.017035834697998
423 => 0.017079647440639
424 => 0.016912678445197
425 => 0.017267806351504
426 => 0.017831834932905
427 => 0.017833648377022
428 => 0.017767317097384
429 => 0.017740175766884
430 => 0.017808235685111
501 => 0.017845155398785
502 => 0.018065248694276
503 => 0.018301417569243
504 => 0.019403514660157
505 => 0.019094050207141
506 => 0.020071896310249
507 => 0.020845245620383
508 => 0.021077139264025
509 => 0.020863808023313
510 => 0.020134013372765
511 => 0.02009820616554
512 => 0.021188827484813
513 => 0.020880677008497
514 => 0.020844023489866
515 => 0.020454091978729
516 => 0.020684589795768
517 => 0.020634176541983
518 => 0.020554596754582
519 => 0.020994370532875
520 => 0.021817587786965
521 => 0.021689281657833
522 => 0.021593507084386
523 => 0.021173850783099
524 => 0.021426577610102
525 => 0.021336586427669
526 => 0.021723245657214
527 => 0.021494197295182
528 => 0.020878342465565
529 => 0.020976419377065
530 => 0.020961595249195
531 => 0.02126667475031
601 => 0.021175097456614
602 => 0.020943713312838
603 => 0.021814774119886
604 => 0.021758212276171
605 => 0.021838404038721
606 => 0.021873706932609
607 => 0.022403906296045
608 => 0.022621112010758
609 => 0.022670421510719
610 => 0.022876750140404
611 => 0.022665287866452
612 => 0.023511287732306
613 => 0.024073828277638
614 => 0.024727248069113
615 => 0.02568207000714
616 => 0.026041091888435
617 => 0.02597623779906
618 => 0.02670017289524
619 => 0.028001068170903
620 => 0.026239185928291
621 => 0.028094452207946
622 => 0.027507096323886
623 => 0.026114486088862
624 => 0.026024818407523
625 => 0.026967910227218
626 => 0.02905959711408
627 => 0.028535653272637
628 => 0.029060454098507
629 => 0.028448246058693
630 => 0.028417844769422
701 => 0.029030720520487
702 => 0.030462738118969
703 => 0.029782440236307
704 => 0.028807066405627
705 => 0.029527267263703
706 => 0.028903362628995
707 => 0.027497530867084
708 => 0.028535252622656
709 => 0.027841357637319
710 => 0.028043873083527
711 => 0.029502337133616
712 => 0.029326850880492
713 => 0.029553946341624
714 => 0.029153128796849
715 => 0.028778702006904
716 => 0.028079806598173
717 => 0.027872898122775
718 => 0.027930080181588
719 => 0.027872869786187
720 => 0.027481844228182
721 => 0.027397402296161
722 => 0.027256662043306
723 => 0.027300283332674
724 => 0.027035650482294
725 => 0.027535067346898
726 => 0.027627763517814
727 => 0.027991197463963
728 => 0.028028930381898
729 => 0.029041088748762
730 => 0.028483608928924
731 => 0.028857614522563
801 => 0.028824159941991
802 => 0.026144668175419
803 => 0.026513878499496
804 => 0.027088253899179
805 => 0.026829498560169
806 => 0.026463679050234
807 => 0.02616826018196
808 => 0.025720670388396
809 => 0.026350644427638
810 => 0.02717899329897
811 => 0.028049938676258
812 => 0.029096322480468
813 => 0.028862781796619
814 => 0.028030377258888
815 => 0.028067718318379
816 => 0.028298546054985
817 => 0.027999603163169
818 => 0.027911439068313
819 => 0.028286433662204
820 => 0.028289016043878
821 => 0.027945046118388
822 => 0.027562786492038
823 => 0.027561184810246
824 => 0.027493165401927
825 => 0.028460346560327
826 => 0.028992198404402
827 => 0.029053174361203
828 => 0.028988094236679
829 => 0.02901314099367
830 => 0.028703668124159
831 => 0.029411031332534
901 => 0.03006017776351
902 => 0.029886192653018
903 => 0.029625364238949
904 => 0.029417601843945
905 => 0.029837250435538
906 => 0.029818564144343
907 => 0.030054508035738
908 => 0.030043804257947
909 => 0.029964465201569
910 => 0.029886195486465
911 => 0.030196526059644
912 => 0.030107155838325
913 => 0.030017646800368
914 => 0.029838122721596
915 => 0.02986252302548
916 => 0.029601739647114
917 => 0.029481089323647
918 => 0.027666797939301
919 => 0.027181959997722
920 => 0.027334499883929
921 => 0.027384719975165
922 => 0.027173717881653
923 => 0.027476240681758
924 => 0.027429092823813
925 => 0.027612517558504
926 => 0.027497921747645
927 => 0.027502624799696
928 => 0.027839626645029
929 => 0.027937459714438
930 => 0.027887701025727
1001 => 0.027922550305672
1002 => 0.028725637253045
1003 => 0.028611463970403
1004 => 0.028550811689558
1005 => 0.028567612785857
1006 => 0.028772818719289
1007 => 0.028830265176822
1008 => 0.028586860499566
1009 => 0.028701651552466
1010 => 0.029190417286558
1011 => 0.029361457631746
1012 => 0.029907336309561
1013 => 0.029675437345005
1014 => 0.0301010979308
1015 => 0.031409433453145
1016 => 0.032454622398326
1017 => 0.031493423450077
1018 => 0.033412779843893
1019 => 0.0349072741118
1020 => 0.034849912932588
1021 => 0.034589313288703
1022 => 0.032887871297876
1023 => 0.031322179010846
1024 => 0.032631947091753
1025 => 0.032635285959947
1026 => 0.032522775720221
1027 => 0.031823984284141
1028 => 0.032498459292964
1029 => 0.032551996669831
1030 => 0.032522029975523
1031 => 0.031986268219883
1101 => 0.031168259044345
1102 => 0.031328096079208
1103 => 0.0315899124029
1104 => 0.031094239481543
1105 => 0.030935841949288
1106 => 0.031230333098114
1107 => 0.032179244939297
1108 => 0.031999858652393
1109 => 0.031995174151485
1110 => 0.032762664758484
1111 => 0.032213307118712
1112 => 0.031330112136086
1113 => 0.031107093755062
1114 => 0.030315528745611
1115 => 0.030862265517097
1116 => 0.030881941600166
1117 => 0.030582499457937
1118 => 0.031354410215608
1119 => 0.031347296922084
1120 => 0.032080111302738
1121 => 0.033480977166037
1122 => 0.033066672197837
1123 => 0.032584880596073
1124 => 0.032637264701817
1125 => 0.033211789046836
1126 => 0.032864418512722
1127 => 0.032989335378743
1128 => 0.033211599970199
1129 => 0.033345697716743
1130 => 0.032617970099736
1201 => 0.032448301980976
1202 => 0.03210122055541
1203 => 0.032010673490062
1204 => 0.032293364069094
1205 => 0.032218885089124
1206 => 0.030880287901574
1207 => 0.03074039704759
1208 => 0.030744687300364
1209 => 0.030392925096575
1210 => 0.029856403303194
1211 => 0.031266350542146
1212 => 0.03115311204666
1213 => 0.031028105511606
1214 => 0.031043418098872
1215 => 0.031655428407756
1216 => 0.031300431521342
1217 => 0.032244248926718
1218 => 0.032050228441921
1219 => 0.031851232063795
1220 => 0.03182372470276
1221 => 0.031747128074755
1222 => 0.031484449736975
1223 => 0.031167249859584
1224 => 0.030957807025148
1225 => 0.028556940557211
1226 => 0.029002527408462
1227 => 0.029515134464308
1228 => 0.029692084365842
1229 => 0.029389399314707
1230 => 0.031496401587681
1231 => 0.031881371206532
]
'min_raw' => 0.013287852475092
'max_raw' => 0.0349072741118
'avg_raw' => 0.024097563293446
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.013287'
'max' => '$0.0349072'
'avg' => '$0.024097'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -0.00051519998202684
'max_diff' => -0.0062951736329591
'year' => 2027
]
2 => [
'items' => [
101 => 0.030715273120084
102 => 0.030497143779581
103 => 0.031510702110929
104 => 0.03089940253466
105 => 0.031174670696423
106 => 0.030579691494324
107 => 0.031788643298577
108 => 0.031779433111377
109 => 0.031309123554108
110 => 0.031706625971371
111 => 0.031637550144317
112 => 0.031106571812482
113 => 0.031805476258785
114 => 0.031805822906671
115 => 0.031353160183211
116 => 0.030824549222821
117 => 0.030730046068337
118 => 0.030658850636146
119 => 0.031157160984464
120 => 0.031603944484589
121 => 0.0324352978113
122 => 0.032644319790103
123 => 0.033460146488752
124 => 0.032974361411588
125 => 0.033189703644325
126 => 0.033423488099979
127 => 0.033535572965159
128 => 0.033352936692154
129 => 0.034620251362822
130 => 0.034727251550545
131 => 0.03476312778794
201 => 0.034335796411456
202 => 0.034715366691928
203 => 0.034537778327742
204 => 0.034999813915886
205 => 0.035072266995673
206 => 0.035010901814686
207 => 0.035033899565805
208 => 0.033952470064018
209 => 0.033896392239355
210 => 0.033131767120977
211 => 0.03344335750854
212 => 0.032860854213908
213 => 0.033045572009084
214 => 0.033126993853142
215 => 0.033084463702455
216 => 0.033460974361546
217 => 0.033140863385273
218 => 0.032296037887772
219 => 0.031450982218129
220 => 0.031440373232564
221 => 0.031217884991219
222 => 0.03105706674348
223 => 0.031088046043328
224 => 0.031197221136687
225 => 0.031050721288584
226 => 0.031081984458908
227 => 0.031601161391694
228 => 0.031705278622964
229 => 0.031351447589881
301 => 0.029930764934478
302 => 0.02958212584733
303 => 0.029832720709359
304 => 0.029712952505685
305 => 0.02398067167295
306 => 0.025327386026477
307 => 0.024527214087709
308 => 0.024895970131234
309 => 0.024079201785271
310 => 0.024469006450462
311 => 0.024397023762188
312 => 0.026562500590486
313 => 0.026528689648328
314 => 0.026544873157104
315 => 0.02577239211733
316 => 0.027002975388836
317 => 0.027609204958722
318 => 0.027497007999614
319 => 0.027525245557033
320 => 0.027040030765071
321 => 0.026549571096917
322 => 0.026005575843733
323 => 0.027016251784303
324 => 0.026903881872526
325 => 0.027161618020726
326 => 0.027817113612794
327 => 0.027913637828712
328 => 0.028043367353757
329 => 0.027996868553805
330 => 0.029104658615627
331 => 0.028970497929706
401 => 0.029293786582112
402 => 0.028628757296144
403 => 0.027876213533913
404 => 0.028019247500604
405 => 0.028005472179405
406 => 0.027830096529966
407 => 0.027671775235227
408 => 0.027408214886235
409 => 0.028242158830037
410 => 0.028208302228879
411 => 0.028756401247632
412 => 0.028659519422118
413 => 0.028012518880329
414 => 0.028035626631253
415 => 0.028191037361427
416 => 0.028728915673007
417 => 0.028888594577432
418 => 0.028814624946799
419 => 0.028989705575882
420 => 0.029128082166497
421 => 0.029007083545179
422 => 0.030720168859521
423 => 0.030008776401115
424 => 0.030355504135505
425 => 0.030438196657119
426 => 0.030226381501842
427 => 0.03027231662449
428 => 0.030341895818729
429 => 0.030764367061147
430 => 0.031873053844291
501 => 0.032364083673459
502 => 0.033841371141497
503 => 0.032323310481612
504 => 0.032233235044414
505 => 0.032499339127215
506 => 0.033366663257713
507 => 0.034069548001868
508 => 0.034302735421898
509 => 0.03433355498896
510 => 0.034771030090943
511 => 0.035021782660972
512 => 0.034717909106825
513 => 0.034460408086572
514 => 0.033538071394231
515 => 0.033644834377809
516 => 0.034380325462904
517 => 0.03541924994081
518 => 0.036310755224522
519 => 0.035998581146262
520 => 0.03838024900283
521 => 0.038616381642568
522 => 0.038583755746839
523 => 0.03912170104141
524 => 0.03805398918234
525 => 0.037597521676644
526 => 0.034516082729912
527 => 0.035381841383682
528 => 0.036640272431161
529 => 0.036473714363153
530 => 0.035559808098516
531 => 0.036310061944668
601 => 0.036062004560523
602 => 0.035866351409738
603 => 0.036762676422715
604 => 0.035777130251944
605 => 0.036630440854204
606 => 0.035536061180438
607 => 0.036000007131156
608 => 0.035736648970988
609 => 0.035907073976578
610 => 0.034910772876249
611 => 0.035448352766145
612 => 0.034888407785431
613 => 0.034888142298603
614 => 0.034875781482119
615 => 0.035534554268753
616 => 0.035556036825674
617 => 0.035069202741001
618 => 0.034999042343622
619 => 0.035258462105285
620 => 0.034954749506521
621 => 0.035096854719939
622 => 0.034959053728671
623 => 0.034928031823003
624 => 0.034680844000703
625 => 0.034574348690286
626 => 0.034616108245547
627 => 0.034473561354915
628 => 0.034387671697164
629 => 0.034858695867381
630 => 0.034607046654295
701 => 0.034820127016317
702 => 0.034577295050907
703 => 0.033735533661942
704 => 0.033251427785684
705 => 0.031661418553252
706 => 0.032112343199169
707 => 0.032411306705927
708 => 0.032312499268727
709 => 0.032524775877236
710 => 0.032537807936959
711 => 0.032468794647629
712 => 0.032388886099735
713 => 0.03234999103784
714 => 0.032639882963079
715 => 0.032808174982994
716 => 0.032441311693446
717 => 0.032355360757668
718 => 0.032726279798478
719 => 0.032952540199099
720 => 0.034623119872546
721 => 0.034499357934436
722 => 0.034809976112039
723 => 0.034775005272066
724 => 0.03510058260755
725 => 0.035632763951818
726 => 0.034550690478676
727 => 0.034738501018328
728 => 0.034692454211184
729 => 0.03519518117746
730 => 0.035196750636175
731 => 0.034895340706818
801 => 0.03505873991934
802 => 0.034967534961533
803 => 0.035132354647379
804 => 0.034497705018299
805 => 0.035270639760325
806 => 0.035708843952239
807 => 0.035714928417869
808 => 0.035922633727033
809 => 0.036133674350623
810 => 0.036538748449841
811 => 0.036122377053851
812 => 0.035373365445402
813 => 0.035427441664239
814 => 0.034988296432258
815 => 0.034995678542946
816 => 0.034956272257549
817 => 0.035074533486392
818 => 0.034523656707624
819 => 0.034652946386524
820 => 0.034471940078945
821 => 0.034738107545965
822 => 0.03445175535051
823 => 0.03469243200602
824 => 0.03479630007198
825 => 0.035179575471495
826 => 0.03439514526237
827 => 0.032795638964707
828 => 0.033131874580615
829 => 0.032634555693949
830 => 0.032680584450336
831 => 0.032773569863661
901 => 0.032472173716141
902 => 0.032529670603004
903 => 0.032527616409606
904 => 0.032509914480666
905 => 0.032431509702225
906 => 0.032317807261572
907 => 0.032770762789367
908 => 0.032847728759957
909 => 0.033018814578512
910 => 0.033527849925913
911 => 0.033476985290828
912 => 0.033559947621006
913 => 0.033378841320041
914 => 0.032688985452213
915 => 0.032726447944833
916 => 0.032259290061568
917 => 0.033006868301123
918 => 0.032829831906446
919 => 0.032715695391108
920 => 0.03268455218543
921 => 0.033194849332999
922 => 0.033347538237479
923 => 0.033252392758778
924 => 0.033057246606126
925 => 0.033431984909
926 => 0.033532249069909
927 => 0.033554694517937
928 => 0.034218658941687
929 => 0.0335918027535
930 => 0.033742693268411
1001 => 0.034919897992153
1002 => 0.033852335750867
1003 => 0.034417847279555
1004 => 0.034390168433005
1005 => 0.034679464995216
1006 => 0.03436643767097
1007 => 0.034370318019814
1008 => 0.03462719376841
1009 => 0.034266458107293
1010 => 0.034177134884563
1011 => 0.034053735492107
1012 => 0.034323173551058
1013 => 0.034484689481764
1014 => 0.035786389262877
1015 => 0.036627346686197
1016 => 0.036590838506583
1017 => 0.036924454927804
1018 => 0.036774157674468
1019 => 0.036288808197033
1020 => 0.037117240572951
1021 => 0.036855089906128
1022 => 0.036876701288588
1023 => 0.036875896911853
1024 => 0.037050204187682
1025 => 0.03692669150773
1026 => 0.036683235337229
1027 => 0.036844852904831
1028 => 0.037324799301273
1029 => 0.038814567642383
1030 => 0.039648261742873
1031 => 0.038764378210716
1101 => 0.039374069235526
1102 => 0.039008471875765
1103 => 0.038942031959917
1104 => 0.03932496297931
1105 => 0.039708564268762
1106 => 0.039684130524977
1107 => 0.03940565568698
1108 => 0.039248352317033
1109 => 0.040439506134769
1110 => 0.0413171279769
1111 => 0.041257280050918
1112 => 0.041521429332614
1113 => 0.042296979793503
1114 => 0.042367886408132
1115 => 0.042358953804459
1116 => 0.042183204361761
1117 => 0.04294683450846
1118 => 0.04358386821163
1119 => 0.042142523443666
1120 => 0.042691368662719
1121 => 0.04293776296424
1122 => 0.043299542900768
1123 => 0.043909926295048
1124 => 0.044572964557436
1125 => 0.044666725437582
1126 => 0.044600197606247
1127 => 0.044162906048777
1128 => 0.044888410427174
1129 => 0.045313393876867
1130 => 0.045566461795586
1201 => 0.046208199930972
1202 => 0.042939284611563
1203 => 0.040625383872853
1204 => 0.040264034859371
1205 => 0.040998852287634
1206 => 0.041192617783408
1207 => 0.041114511155022
1208 => 0.038510005502953
1209 => 0.040250322676128
1210 => 0.042122757624441
1211 => 0.042194685476537
1212 => 0.043132065562431
1213 => 0.043437314942906
1214 => 0.044192028777267
1215 => 0.044144821221441
1216 => 0.044328582029988
1217 => 0.044286338602397
1218 => 0.045684287056803
1219 => 0.047226431799368
1220 => 0.047173032230653
1221 => 0.04695133067808
1222 => 0.047280595289382
1223 => 0.048872253929983
1224 => 0.048725719508166
1225 => 0.048868065217189
1226 => 0.050744720456407
1227 => 0.053184639218486
1228 => 0.052051051989662
1229 => 0.054510610095272
1230 => 0.05605877154718
1231 => 0.058736156695374
]
'min_raw' => 0.02398067167295
'max_raw' => 0.058736156695374
'avg_raw' => 0.041358414184162
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.02398'
'max' => '$0.058736'
'avg' => '$0.041358'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 0.010692819197858
'max_diff' => 0.023828882583574
'year' => 2028
]
3 => [
'items' => [
101 => 0.058400934888421
102 => 0.059443221279053
103 => 0.057800817891071
104 => 0.054029527727776
105 => 0.053432706623515
106 => 0.054627557588162
107 => 0.057564982092894
108 => 0.054535047637102
109 => 0.055147999431313
110 => 0.054971469273345
111 => 0.054962062731432
112 => 0.05532107217709
113 => 0.054800310251489
114 => 0.052678632483308
115 => 0.05365098490134
116 => 0.05327551293654
117 => 0.053692127074775
118 => 0.05594042175409
119 => 0.054946397083714
120 => 0.053899272841479
121 => 0.055212599016712
122 => 0.056884914545621
123 => 0.056780264045262
124 => 0.056577198334049
125 => 0.057721869115979
126 => 0.059612529890656
127 => 0.060123567900761
128 => 0.060500805712108
129 => 0.060552820432808
130 => 0.061088604382984
131 => 0.058207559047946
201 => 0.062779851985143
202 => 0.063569360668353
203 => 0.063420965757692
204 => 0.064298471431476
205 => 0.064040287002079
206 => 0.063666218271777
207 => 0.065057251415535
208 => 0.063462544166803
209 => 0.061199057995288
210 => 0.059957264714915
211 => 0.061592558279117
212 => 0.062591174994895
213 => 0.063251197120072
214 => 0.063450919416354
215 => 0.058431206396021
216 => 0.055725859484109
217 => 0.057459955837779
218 => 0.059575673070194
219 => 0.058195806131895
220 => 0.058249894303443
221 => 0.05628256667208
222 => 0.059749737912131
223 => 0.059244600225956
224 => 0.061865255435406
225 => 0.061239815037599
226 => 0.063376857627657
227 => 0.062814102693598
228 => 0.06515006696167
301 => 0.066081946351912
302 => 0.067646716883574
303 => 0.068797768456426
304 => 0.069473687956113
305 => 0.069433108284662
306 => 0.072111438084179
307 => 0.07053212057512
308 => 0.068548125567184
309 => 0.068512241356914
310 => 0.069539780484951
311 => 0.071693220605723
312 => 0.07225157629776
313 => 0.072563620957324
314 => 0.072085713698849
315 => 0.07037147773347
316 => 0.069631279334994
317 => 0.070261949816108
318 => 0.069490694011837
319 => 0.070822097906167
320 => 0.072650399825607
321 => 0.072272862709132
322 => 0.073534912685981
323 => 0.074841001640489
324 => 0.076708767505562
325 => 0.077197070665862
326 => 0.078004217221331
327 => 0.078835036160741
328 => 0.079101872812881
329 => 0.079611346776366
330 => 0.079608661597096
331 => 0.081143995677613
401 => 0.082837516713762
402 => 0.083476781699807
403 => 0.084946736285938
404 => 0.08242949057054
405 => 0.084338850361704
406 => 0.08606114068771
407 => 0.08400775515935
408 => 0.086837868732727
409 => 0.086947755629606
410 => 0.088606917308745
411 => 0.08692503909002
412 => 0.085926345172487
413 => 0.088809537091832
414 => 0.090204622841909
415 => 0.089784411660402
416 => 0.086586583820744
417 => 0.084725310856776
418 => 0.079854000497328
419 => 0.085624278043041
420 => 0.088434811914254
421 => 0.086579305216993
422 => 0.087515114866713
423 => 0.092620588878285
424 => 0.094564422826929
425 => 0.094160118954036
426 => 0.094228439653147
427 => 0.095277297168753
428 => 0.099928509009338
429 => 0.097141395060213
430 => 0.099272039243151
501 => 0.10040212523517
502 => 0.10145181208494
503 => 0.098874112938849
504 => 0.095520564223708
505 => 0.094458354573224
506 => 0.086394811643991
507 => 0.085975069216332
508 => 0.08573945507219
509 => 0.084253941221657
510 => 0.083086734251627
511 => 0.082158527933442
512 => 0.079722637368657
513 => 0.080544678927954
514 => 0.076662377777558
515 => 0.079146136473277
516 => 0.072949890095806
517 => 0.078110308201419
518 => 0.075301727241953
519 => 0.077187613819692
520 => 0.077181034139083
521 => 0.073708519028583
522 => 0.071705644782388
523 => 0.072981954205095
524 => 0.074350259219805
525 => 0.074572262104911
526 => 0.076346305272898
527 => 0.076841402588153
528 => 0.075341234609048
529 => 0.072821486662106
530 => 0.073406766640848
531 => 0.071693784102299
601 => 0.068691848092413
602 => 0.070847890943488
603 => 0.071584058767357
604 => 0.071909192416933
605 => 0.068957133125891
606 => 0.06802953200432
607 => 0.067535684950523
608 => 0.072440412878005
609 => 0.07270910494567
610 => 0.071334438338267
611 => 0.077548061754964
612 => 0.076141727406884
613 => 0.07771294743397
614 => 0.073353658617392
615 => 0.073520189320746
616 => 0.071456432134276
617 => 0.072611998258394
618 => 0.071795281367502
619 => 0.072518639935092
620 => 0.072952218077987
621 => 0.07501563662221
622 => 0.078133869126679
623 => 0.074707430700648
624 => 0.073214482410924
625 => 0.074140699133209
626 => 0.076607336320066
627 => 0.080344417922988
628 => 0.078131990398281
629 => 0.07911382816429
630 => 0.079328316037241
701 => 0.077696953889042
702 => 0.080404568572343
703 => 0.081855601277746
704 => 0.083344060584579
705 => 0.084636448095019
706 => 0.082749537205508
707 => 0.084768802335336
708 => 0.083141631088974
709 => 0.081681890267115
710 => 0.081684104091387
711 => 0.080768387350425
712 => 0.078994070777076
713 => 0.07866685957805
714 => 0.080369053557601
715 => 0.081734051930831
716 => 0.081846479734752
717 => 0.082602212970321
718 => 0.083049448114459
719 => 0.08743296051371
720 => 0.089196045463005
721 => 0.091351912365513
722 => 0.092191744022041
723 => 0.094719336211878
724 => 0.092678100237584
725 => 0.092236465994569
726 => 0.08610535411113
727 => 0.087109323338572
728 => 0.088716774940328
729 => 0.086131860395982
730 => 0.087771393709058
731 => 0.088095072315123
801 => 0.086044025988895
802 => 0.087139578452214
803 => 0.084230115918307
804 => 0.078197287459275
805 => 0.080411284834993
806 => 0.08204153212698
807 => 0.079714968233273
808 => 0.083885243962287
809 => 0.081449054973362
810 => 0.080676900021567
811 => 0.0776644482615
812 => 0.07908620953235
813 => 0.081009162008835
814 => 0.079821000945587
815 => 0.082286613555107
816 => 0.085778578565053
817 => 0.088267160781251
818 => 0.088458203222963
819 => 0.086858211580007
820 => 0.089422208398854
821 => 0.0894408843165
822 => 0.086548685430606
823 => 0.084777229716826
824 => 0.084374751251481
825 => 0.085380221368465
826 => 0.086601047710507
827 => 0.088525950588427
828 => 0.08968912908327
829 => 0.092722081695617
830 => 0.093542711710952
831 => 0.09444433529833
901 => 0.095649182461485
902 => 0.097095910397324
903 => 0.093930552035976
904 => 0.094056317624638
905 => 0.09110877974592
906 => 0.08795891280282
907 => 0.090349269176176
908 => 0.093474342158555
909 => 0.092757446963499
910 => 0.092676781609215
911 => 0.092812438360417
912 => 0.092271922794952
913 => 0.089827190924798
914 => 0.088599461884438
915 => 0.090183545573585
916 => 0.091025415554913
917 => 0.092331082477176
918 => 0.092170131469722
919 => 0.095533389243079
920 => 0.096840249514169
921 => 0.09650589873312
922 => 0.096567427323434
923 => 0.098933435420461
924 => 0.10156492303103
925 => 0.10402965843371
926 => 0.10653689314815
927 => 0.10351432384085
928 => 0.10197964955276
929 => 0.10356304168052
930 => 0.10272287152967
1001 => 0.10755073842711
1002 => 0.10788500945621
1003 => 0.11271252724392
1004 => 0.11729441647458
1005 => 0.11441661394187
1006 => 0.11713025211114
1007 => 0.12006527303737
1008 => 0.12572740459405
1009 => 0.12382059788195
1010 => 0.12236001382395
1011 => 0.12097976894663
1012 => 0.12385183942863
1013 => 0.12754671222126
1014 => 0.12834255243174
1015 => 0.12963211760709
1016 => 0.12827629750574
1017 => 0.12990923347912
1018 => 0.13567421501359
1019 => 0.13411646611408
1020 => 0.13190421225614
1021 => 0.13645511150289
1022 => 0.13810206424911
1023 => 0.14966124113797
1024 => 0.16425517944594
1025 => 0.15821319315748
1026 => 0.15446273729455
1027 => 0.15534418338434
1028 => 0.16067339561842
1029 => 0.16238496944727
1030 => 0.15773232176559
1031 => 0.15937571558272
1101 => 0.16843097709003
1102 => 0.17328883436113
1103 => 0.1666912116897
1104 => 0.14848863240473
1105 => 0.13170502300103
1106 => 0.13615679199067
1107 => 0.13565209954172
1108 => 0.14538084836445
1109 => 0.13407931431801
1110 => 0.13426960316695
1111 => 0.14419953221241
1112 => 0.14155039738516
1113 => 0.13725913824058
1114 => 0.13173635394177
1115 => 0.12152697636972
1116 => 0.11248424594459
1117 => 0.13021912272471
1118 => 0.12945436258917
1119 => 0.1283468765818
1120 => 0.13081146684869
1121 => 0.14277881759852
1122 => 0.14250293142921
1123 => 0.14074788437837
1124 => 0.14207907209815
1125 => 0.1370257745971
1126 => 0.13832812442457
1127 => 0.13170236439155
1128 => 0.13469748464265
1129 => 0.13724993112575
1130 => 0.13776237254685
1201 => 0.1389169292345
1202 => 0.12905136874871
1203 => 0.13348071576919
1204 => 0.13608254217003
1205 => 0.12432739583577
1206 => 0.13585018072268
1207 => 0.12887963128954
1208 => 0.12651372211779
1209 => 0.12969910713272
1210 => 0.12845775949451
1211 => 0.12739052168957
1212 => 0.12679498465693
1213 => 0.12913397985378
1214 => 0.12902486293214
1215 => 0.1251978128107
1216 => 0.12020558193779
1217 => 0.12188113848313
1218 => 0.12127239308178
1219 => 0.11906622121758
1220 => 0.12055291467985
1221 => 0.11400626907036
1222 => 0.10274310556428
1223 => 0.11018389637643
1224 => 0.10989743402418
1225 => 0.10975298671615
1226 => 0.11534453536312
1227 => 0.11480703697969
1228 => 0.11383147215057
1229 => 0.11904830420444
1230 => 0.11714409032849
1231 => 0.12301242880497
]
'min_raw' => 0.052678632483308
'max_raw' => 0.17328883436113
'avg_raw' => 0.11298373342222
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.052678'
'max' => '$0.173288'
'avg' => '$0.112983'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072435
'min_diff' => 0.028697960810359
'max_diff' => 0.11455267766576
'year' => 2029
]
4 => [
'items' => [
101 => 0.12687769606593
102 => 0.12589733926025
103 => 0.12953264180164
104 => 0.12191973992179
105 => 0.12444844054966
106 => 0.12496960224444
107 => 0.11898392930669
108 => 0.11489497836258
109 => 0.11462229195206
110 => 0.10753261450712
111 => 0.11131986297233
112 => 0.11465248489472
113 => 0.1130564176158
114 => 0.11255115039645
115 => 0.11513245104103
116 => 0.11533304020846
117 => 0.1107595859336
118 => 0.1117105518998
119 => 0.11567623806381
120 => 0.11161062678337
121 => 0.1037118081793
122 => 0.10175279195578
123 => 0.10149142307973
124 => 0.096178415710007
125 => 0.10188370278724
126 => 0.099393192085839
127 => 0.10726068555066
128 => 0.10276681547777
129 => 0.10257309372071
130 => 0.10228025487211
131 => 0.09770712995142
201 => 0.098708353671802
202 => 0.10203657380903
203 => 0.10322412024907
204 => 0.10310024942609
205 => 0.10202026371465
206 => 0.10251467564293
207 => 0.10092200255741
208 => 0.10035959654229
209 => 0.098584488456613
210 => 0.095975569956789
211 => 0.096338356075617
212 => 0.091169405866807
213 => 0.088353087456097
214 => 0.087573567638492
215 => 0.086531161160016
216 => 0.087691310223974
217 => 0.09115476288031
218 => 0.086977104164298
219 => 0.079814801324381
220 => 0.080245267929031
221 => 0.081212398582995
222 => 0.079410157007542
223 => 0.077704486607045
224 => 0.079187428634863
225 => 0.07615266650262
226 => 0.081579135087929
227 => 0.081432364320199
228 => 0.083455016238236
301 => 0.08471982199158
302 => 0.081804854215847
303 => 0.081071747703161
304 => 0.08148935849062
305 => 0.074587182413445
306 => 0.082890961199236
307 => 0.082962772622997
308 => 0.082347879614772
309 => 0.086769385467798
310 => 0.096100141919943
311 => 0.092589536013837
312 => 0.091230123298368
313 => 0.088645878732536
314 => 0.092089231179248
315 => 0.091824835436006
316 => 0.09062913761596
317 => 0.089905975843592
318 => 0.091238423582531
319 => 0.089740870823191
320 => 0.089471869197616
321 => 0.087842012023286
322 => 0.087260227165826
323 => 0.086829496818886
324 => 0.086355305029594
325 => 0.08740125395554
326 => 0.085030996083306
327 => 0.082172697448636
328 => 0.081935060844383
329 => 0.082591196401949
330 => 0.082300905261274
331 => 0.081933671042084
401 => 0.081232520907364
402 => 0.081024504640094
403 => 0.081700456593574
404 => 0.080937346248543
405 => 0.082063357131407
406 => 0.081757144476292
407 => 0.080046665476727
408 => 0.077914775342834
409 => 0.077895797048852
410 => 0.077436484816505
411 => 0.076851481630555
412 => 0.076688747127284
413 => 0.079062539393542
414 => 0.083976218343072
415 => 0.083011545590907
416 => 0.083708620517986
417 => 0.087137539238802
418 => 0.088227489388966
419 => 0.087453868589264
420 => 0.086394888723779
421 => 0.086441478463446
422 => 0.090060333238815
423 => 0.090286036772178
424 => 0.090856316786264
425 => 0.091589287765478
426 => 0.08757869671648
427 => 0.086252579985705
428 => 0.085624192308508
429 => 0.083689001479379
430 => 0.085775938877872
501 => 0.08455996982734
502 => 0.084724045595674
503 => 0.084617191036301
504 => 0.084675540851192
505 => 0.081577618279368
506 => 0.082706338442524
507 => 0.080829622252401
508 => 0.078316909945105
509 => 0.078308486452381
510 => 0.078923469229834
511 => 0.078557653409527
512 => 0.077573252443063
513 => 0.077713081954107
514 => 0.076488028301831
515 => 0.077861825647806
516 => 0.077901221240006
517 => 0.077372234430558
518 => 0.079488758789535
519 => 0.080355900546327
520 => 0.080007710096353
521 => 0.080331470576152
522 => 0.083051632098996
523 => 0.083495137116187
524 => 0.083692112748527
525 => 0.083428191495462
526 => 0.080381190135319
527 => 0.080516337602491
528 => 0.079524715160132
529 => 0.078686898690937
530 => 0.078720406955937
531 => 0.07915115352962
601 => 0.081032249079848
602 => 0.084990903768664
603 => 0.085141131820365
604 => 0.085323212601489
605 => 0.08458259855819
606 => 0.084359222276009
607 => 0.084653913250516
608 => 0.08614057581546
609 => 0.089964675557444
610 => 0.088612983305593
611 => 0.087514036464494
612 => 0.088478109118079
613 => 0.088329697689711
614 => 0.087076955878301
615 => 0.087041795588041
616 => 0.084637383526162
617 => 0.083748527132699
618 => 0.083005732200574
619 => 0.082194619525845
620 => 0.081713764743523
621 => 0.08245257623376
622 => 0.082621551162938
623 => 0.08100612692732
624 => 0.080785950573203
625 => 0.082105140875363
626 => 0.081524614407754
627 => 0.082121700276053
628 => 0.082260229319206
629 => 0.082237922952664
630 => 0.08163178664744
701 => 0.082018119853145
702 => 0.081104326650182
703 => 0.08011071378926
704 => 0.079476850688261
705 => 0.078923721062899
706 => 0.079230629527132
707 => 0.078136556891413
708 => 0.077786541035914
709 => 0.081887238855825
710 => 0.084916468425323
711 => 0.084872422227676
712 => 0.084604302327262
713 => 0.084205930541382
714 => 0.086111432438018
715 => 0.085447593678943
716 => 0.085930591841754
717 => 0.086053535145559
718 => 0.086425647498021
719 => 0.086558645679889
720 => 0.086156632801108
721 => 0.084807428478181
722 => 0.081445339583943
723 => 0.07988027812789
724 => 0.079363781779232
725 => 0.07938255544054
726 => 0.078864694052364
727 => 0.079017227440102
728 => 0.078811649164955
729 => 0.078422333646554
730 => 0.079206590390933
731 => 0.079296968674866
801 => 0.079113913779558
802 => 0.079157029834087
803 => 0.077641413484701
804 => 0.077756642503999
805 => 0.077115032681952
806 => 0.07699473857504
807 => 0.075372804816262
808 => 0.07249931405953
809 => 0.074091506875256
810 => 0.072168361850048
811 => 0.071440037688599
812 => 0.074887810991252
813 => 0.074541750178011
814 => 0.073949444494762
815 => 0.073073300941917
816 => 0.07274833077559
817 => 0.070773914918041
818 => 0.070657255896078
819 => 0.071635829708792
820 => 0.071184251564894
821 => 0.070550064824843
822 => 0.068253104738859
823 => 0.065670561104864
824 => 0.065748511863884
825 => 0.066569970943925
826 => 0.068958474007995
827 => 0.068025244539341
828 => 0.067348175852257
829 => 0.067221381239776
830 => 0.068808481277474
831 => 0.071054560338553
901 => 0.072108370380825
902 => 0.071064076633621
903 => 0.0698644482056
904 => 0.069937464029471
905 => 0.070423205594017
906 => 0.070474250164435
907 => 0.069693415381589
908 => 0.069913215799194
909 => 0.06957931886588
910 => 0.067530194002458
911 => 0.067493131831524
912 => 0.066990243543439
913 => 0.066975016285936
914 => 0.066119477856539
915 => 0.065999782116209
916 => 0.064301058637171
917 => 0.065419163575282
918 => 0.064669197485942
919 => 0.063538821690189
920 => 0.063343944476937
921 => 0.063338086232585
922 => 0.06449872942742
923 => 0.065405600783791
924 => 0.064682243467154
925 => 0.064517549027848
926 => 0.066276054763845
927 => 0.066052268879804
928 => 0.065858471747488
929 => 0.070853448593844
930 => 0.06689953465705
1001 => 0.06517540249909
1002 => 0.063041461549798
1003 => 0.063736283483151
1004 => 0.063882692673567
1005 => 0.058750949362287
1006 => 0.056669001740018
1007 => 0.055954555772597
1008 => 0.055543382017563
1009 => 0.055730759060927
1010 => 0.053856762012785
1011 => 0.055116119022187
1012 => 0.053493395983524
1013 => 0.053221341185294
1014 => 0.056122970995234
1015 => 0.056526715832212
1016 => 0.054804214923976
1017 => 0.05591033935463
1018 => 0.055509243259795
1019 => 0.053521212912524
1020 => 0.053445284776219
1021 => 0.052447761030605
1022 => 0.050886829527376
1023 => 0.050173441945016
1024 => 0.049801903498209
1025 => 0.049955207502502
1026 => 0.049877692306751
1027 => 0.049371853221181
1028 => 0.049906686411022
1029 => 0.04854040861931
1030 => 0.047996345793803
1031 => 0.047750605237682
1101 => 0.046537955057523
1102 => 0.048467820762139
1103 => 0.048848028617757
1104 => 0.049228985600301
1105 => 0.052544956042975
1106 => 0.052379299530494
1107 => 0.053876753725327
1108 => 0.053818565408957
1109 => 0.053391467215441
1110 => 0.051589610191241
1111 => 0.052307798286074
1112 => 0.050097326961387
1113 => 0.051753562375282
1114 => 0.050997725698425
1115 => 0.051498013234533
1116 => 0.050598451135502
1117 => 0.051096305943115
1118 => 0.048938190005105
1119 => 0.046922971707702
1120 => 0.047733954378466
1121 => 0.048615585288705
1122 => 0.050527185737481
1123 => 0.049388652280551
1124 => 0.04979811196438
1125 => 0.048426490566278
1126 => 0.045596443837712
1127 => 0.045612461594853
1128 => 0.045177120561583
1129 => 0.044800922348005
1130 => 0.04951942654396
1201 => 0.04893260595868
1202 => 0.047997584157216
1203 => 0.049249147994765
1204 => 0.049580081338402
1205 => 0.049589502545458
1206 => 0.050502611213795
1207 => 0.050989937473771
1208 => 0.051075830839284
1209 => 0.052512627057932
1210 => 0.052994222198622
1211 => 0.05497784442523
1212 => 0.050948591245371
1213 => 0.050865611427656
1214 => 0.049266760064596
1215 => 0.048252743253304
1216 => 0.049336190663195
1217 => 0.050295977163038
1218 => 0.049296583306541
1219 => 0.049427083045844
1220 => 0.048085478446975
1221 => 0.048565038962707
1222 => 0.048978101082633
1223 => 0.048750032458679
1224 => 0.048408602689974
1225 => 0.050217285615312
1226 => 0.050115232636378
1227 => 0.051799519757894
1228 => 0.053112542013642
1229 => 0.055465712626747
1230 => 0.053010056418414
1231 => 0.052920562545833
]
'min_raw' => 0.044800922348005
'max_raw' => 0.12953264180164
'avg_raw' => 0.08716678207482
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.04480092'
'max' => '$0.129532'
'avg' => '$0.087166'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -0.0078777101353031
'max_diff' => -0.0437561925595
'year' => 2030
]
5 => [
'items' => [
101 => 0.053795379505581
102 => 0.052994088268704
103 => 0.053500476670777
104 => 0.055384125626439
105 => 0.055423924160657
106 => 0.05475724743499
107 => 0.054716680095646
108 => 0.054844722653454
109 => 0.055594671913875
110 => 0.055332616598671
111 => 0.055635873643854
112 => 0.056015101222492
113 => 0.0575837472769
114 => 0.057961942529992
115 => 0.057043124136736
116 => 0.057126083150074
117 => 0.056782419848867
118 => 0.05645044540599
119 => 0.057196675472604
120 => 0.058560425586528
121 => 0.058551941767848
122 => 0.058868305286765
123 => 0.059065397138153
124 => 0.058219334631942
125 => 0.05766857905098
126 => 0.057879773786209
127 => 0.058217478767063
128 => 0.057770260612392
129 => 0.055009822990158
130 => 0.055847163427306
131 => 0.055707789034709
201 => 0.055509302951146
202 => 0.05635125523566
203 => 0.056270046883862
204 => 0.053837541464426
205 => 0.053993262569133
206 => 0.053847011380567
207 => 0.054319578891002
208 => 0.052968568072306
209 => 0.05338412990094
210 => 0.053644766384209
211 => 0.053798283275159
212 => 0.054352891552786
213 => 0.054287814672671
214 => 0.054348846282546
215 => 0.05517118394711
216 => 0.059330285662265
217 => 0.05955665639208
218 => 0.058441924127265
219 => 0.058887237679937
220 => 0.058032333038176
221 => 0.058606236251553
222 => 0.058998886254585
223 => 0.057224576393138
224 => 0.057119513278318
225 => 0.056261080140994
226 => 0.056722353484854
227 => 0.055988434428045
228 => 0.056168512493187
301 => 0.055664998524127
302 => 0.056571223419805
303 => 0.057584523666284
304 => 0.057840523324985
305 => 0.057167098437727
306 => 0.05667949443849
307 => 0.055823422442573
308 => 0.057247089250592
309 => 0.057663412810717
310 => 0.057244902480165
311 => 0.057147924491945
312 => 0.056964151379503
313 => 0.057186912826501
314 => 0.057661145423199
315 => 0.057437506088297
316 => 0.057585223809017
317 => 0.057022276183483
318 => 0.058219614713836
319 => 0.060121276455246
320 => 0.060127390608698
321 => 0.059903750068297
322 => 0.059812241177568
323 => 0.060041709943662
324 => 0.060166187335966
325 => 0.060908247248139
326 => 0.061704507098872
327 => 0.06542030438685
328 => 0.064376923377389
329 => 0.067673799785054
330 => 0.070281200977694
331 => 0.071063046587531
401 => 0.070343785415159
402 => 0.067883231798201
403 => 0.067762505299063
404 => 0.071439611221739
405 => 0.070400660376462
406 => 0.070277080479331
407 => 0.068962399165383
408 => 0.069739538648374
409 => 0.069569566843496
410 => 0.06930125803419
411 => 0.070783986031732
412 => 0.073559520479089
413 => 0.073126927406672
414 => 0.072804016745527
415 => 0.07138911622627
416 => 0.072241202368335
417 => 0.071937790813781
418 => 0.073241439401875
419 => 0.07246918685764
420 => 0.070392789301973
421 => 0.070723462456609
422 => 0.070673481874507
423 => 0.071702078712487
424 => 0.071393319473069
425 => 0.070613191677602
426 => 0.073550034004088
427 => 0.073359331798981
428 => 0.073629703925229
429 => 0.073748730096739
430 => 0.075536334267904
501 => 0.076268658499877
502 => 0.076434908921675
503 => 0.07713056030206
504 => 0.076417600481607
505 => 0.079269948095158
506 => 0.081166592819072
507 => 0.083369643266342
508 => 0.086588892093941
509 => 0.087799359432835
510 => 0.087580699342537
511 => 0.090021497062844
512 => 0.09440755631035
513 => 0.088467247318691
514 => 0.094722407111105
515 => 0.092742095740119
516 => 0.088046813103793
517 => 0.08774449225576
518 => 0.090924192170432
519 => 0.0979764605464
520 => 0.096209947304386
521 => 0.097979349929228
522 => 0.095915247779996
523 => 0.095812747710667
524 => 0.097879101095002
525 => 0.10270724840856
526 => 0.10041357660028
527 => 0.09712503563172
528 => 0.099553243107543
529 => 0.097449705071992
530 => 0.092709845134672
531 => 0.096208596485002
601 => 0.093869081095738
602 => 0.094551876061804
603 => 0.099469189433386
604 => 0.09887752527892
605 => 0.099643193481425
606 => 0.098291809145029
607 => 0.097029403081086
608 => 0.094673028415231
609 => 0.093975422044539
610 => 0.09416821534815
611 => 0.093975326505752
612 => 0.092656956536407
613 => 0.09237225466705
614 => 0.09189773907838
615 => 0.092044811301024
616 => 0.091152583169892
617 => 0.092836401997076
618 => 0.093148933609162
619 => 0.094374276532749
620 => 0.094501495699994
621 => 0.097914058300519
622 => 0.096034476165935
623 => 0.097295462137128
624 => 0.097182667683004
625 => 0.088148574115864
626 => 0.089393392500934
627 => 0.091329939262573
628 => 0.090457527571382
629 => 0.089224141552933
630 => 0.088228116213062
701 => 0.086719035974336
702 => 0.088843037431023
703 => 0.091635873484194
704 => 0.094572326631184
705 => 0.098100282683261
706 => 0.097312883962373
707 => 0.094506373946786
708 => 0.094632271935928
709 => 0.095410523765774
710 => 0.094402616934489
711 => 0.094105365533264
712 => 0.095369685987851
713 => 0.095378392667964
714 => 0.094218674048961
715 => 0.092929859030206
716 => 0.092924458848218
717 => 0.092695126664107
718 => 0.095956045466085
719 => 0.097749221091095
720 => 0.097954805786655
721 => 0.09773538360307
722 => 0.097819830492977
723 => 0.096776421106712
724 => 0.099161345550272
725 => 0.10134998806426
726 => 0.10076338511699
727 => 0.099883983908495
728 => 0.099183498488231
729 => 0.10059837301372
730 => 0.10053537087832
731 => 0.10133087218123
801 => 0.1012947836471
802 => 0.10102728647924
803 => 0.10076339467015
804 => 0.10180969586421
805 => 0.10150837792341
806 => 0.10120659195261
807 => 0.10060131398706
808 => 0.10068358131518
809 => 0.099804331947709
810 => 0.099397550958602
811 => 0.093280540886499
812 => 0.091645875916163
813 => 0.092160174792504
814 => 0.09232949533636
815 => 0.09161808704639
816 => 0.092638063788412
817 => 0.092479101493591
818 => 0.093097530792909
819 => 0.092711163015774
820 => 0.092727019684118
821 => 0.093863244934377
822 => 0.094193095958375
823 => 0.094025331065346
824 => 0.09414282784578
825 => 0.096850491558588
826 => 0.096465548364838
827 => 0.096261054965361
828 => 0.096317701034549
829 => 0.097009567166136
830 => 0.09720325190849
831 => 0.09638259604515
901 => 0.096769622094456
902 => 0.098417529891483
903 => 0.098994204356939
904 => 0.10083467243123
905 => 0.10005280888156
906 => 0.10148795326524
907 => 0.10589909782389
908 => 0.10942302532533
909 => 0.10618227596254
910 => 0.11265352004948
911 => 0.11769231181599
912 => 0.11749891459544
913 => 0.1166202847016
914 => 0.11088375423864
915 => 0.10560491337977
916 => 0.11002088790963
917 => 0.11003214513686
918 => 0.10965280900842
919 => 0.10729678489361
920 => 0.1095708244762
921 => 0.10975132948017
922 => 0.1096502946781
923 => 0.10784393651327
924 => 0.10508596146636
925 => 0.10562486318887
926 => 0.10650759520363
927 => 0.1048363993425
928 => 0.10430235100354
929 => 0.10529524847252
930 => 0.10849457099598
1001 => 0.10788975760533
1002 => 0.10787396348346
1003 => 0.11046161164943
1004 => 0.10860941401202
1005 => 0.10563166046539
1006 => 0.10487973842312
1007 => 0.10221092172845
1008 => 0.10405428292546
1009 => 0.10412062221327
1010 => 0.10311103212436
1011 => 0.10571358313694
1012 => 0.10568960017119
1013 => 0.10816033501903
1014 => 0.11288345208247
1015 => 0.11148659395634
1016 => 0.10986219993337
1017 => 0.11003881660323
1018 => 0.11197586554447
1019 => 0.11080468153607
1020 => 0.11122584747128
1021 => 0.11197522805939
1022 => 0.11242734797427
1023 => 0.10997376350521
1024 => 0.10940171559696
1025 => 0.10823150633821
1026 => 0.1079262205856
1027 => 0.10887933160963
1028 => 0.10862822052871
1029 => 0.10411504665301
1030 => 0.10364339487193
1031 => 0.1036578597587
1101 => 0.10247186892937
1102 => 0.10066294824423
1103 => 0.10541668379973
1104 => 0.10503489230614
1105 => 0.10461342404553
1106 => 0.10466505150259
1107 => 0.10672848698818
1108 => 0.10553159020055
1109 => 0.108713736478
1110 => 0.10805958286743
1111 => 0.10738865268509
1112 => 0.10729590969686
1113 => 0.10703765881774
1114 => 0.10615202046229
1115 => 0.10508255892948
1116 => 0.10437640779035
1117 => 0.096281718870558
1118 => 0.097784046049432
1119 => 0.099512336527295
1120 => 0.10010893547456
1121 => 0.09908841169187
1122 => 0.1061923169614
1123 => 0.10749026890908
1124 => 0.10355868779625
1125 => 0.10282324949544
1126 => 0.10624053217396
1127 => 0.104179492973
1128 => 0.10510757879899
1129 => 0.103101564879
1130 => 0.10717763029335
1201 => 0.10714657750417
1202 => 0.10556089599587
1203 => 0.10690110314841
1204 => 0.10666820917478
1205 => 0.10487797865727
1206 => 0.10723438379393
1207 => 0.10723555254148
1208 => 0.10570936856543
1209 => 0.10392711980604
1210 => 0.1036084958227
1211 => 0.10336845545236
1212 => 0.10504854358263
1213 => 0.10655490534673
1214 => 0.10935787113097
1215 => 0.11006260332596
1216 => 0.11281321999965
1217 => 0.11117536169556
1218 => 0.11190140306795
1219 => 0.1126896236825
1220 => 0.11306752563097
1221 => 0.11245175468528
1222 => 0.11672459457852
1223 => 0.11708535318194
1224 => 0.11720631242112
1225 => 0.11576553484998
1226 => 0.11704528255134
1227 => 0.11644653098266
1228 => 0.11800431622638
1229 => 0.1182485968434
1230 => 0.11804169985132
1231 => 0.11811923837487
]
'min_raw' => 0.052968568072306
'max_raw' => 0.1182485968434
'avg_raw' => 0.085608582457852
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.052968'
'max' => '$0.118248'
'avg' => '$0.0856085'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 0.0081676457243005
'max_diff' => -0.011284044958238
'year' => 2031
]
6 => [
'items' => [
101 => 0.1144731233066
102 => 0.11428405300552
103 => 0.11170606603449
104 => 0.1127566147807
105 => 0.11079266425377
106 => 0.11141545319679
107 => 0.11168997262872
108 => 0.11154657925632
109 => 0.11281601123058
110 => 0.11173673472464
111 => 0.10888834657598
112 => 0.10603918238588
113 => 0.10600341345035
114 => 0.10525327881102
115 => 0.1047110688608
116 => 0.10481551773314
117 => 0.10518360918276
118 => 0.10468967471659
119 => 0.10479508067806
120 => 0.10654552195473
121 => 0.10689656046919
122 => 0.10570359443745
123 => 0.10091366367587
124 => 0.099738202652345
125 => 0.10058310072565
126 => 0.10017929386501
127 => 0.080852508822379
128 => 0.085393050289892
129 => 0.082695214732115
130 => 0.083938501478584
131 => 0.081184709975225
201 => 0.082498963619206
202 => 0.082256268960021
203 => 0.089557325275392
204 => 0.089443329323302
205 => 0.089497893153036
206 => 0.086893419394535
207 => 0.091042416810996
208 => 0.093086362131466
209 => 0.09270808225049
210 => 0.092803287146811
211 => 0.091167351599096
212 => 0.089513732585116
213 => 0.08767961460847
214 => 0.091087179105244
215 => 0.090708316102269
216 => 0.091577291520489
217 => 0.093787340674387
218 => 0.094112778807459
219 => 0.094550170958576
220 => 0.094393397008094
221 => 0.098128388544959
222 => 0.097676056425577
223 => 0.098766046688456
224 => 0.096523854019955
225 => 0.093986600184664
226 => 0.094468849189675
227 => 0.094422404732491
228 => 0.09383111348607
229 => 0.093297322187219
301 => 0.092408710069398
302 => 0.095220410300033
303 => 0.095106260405436
304 => 0.096954214514212
305 => 0.096627570675417
306 => 0.094446163176641
307 => 0.094524072572215
308 => 0.095048050699426
309 => 0.096861544980383
310 => 0.097399913555077
311 => 0.097150519781001
312 => 0.097740816345694
313 => 0.098207362682097
314 => 0.097799407382472
315 => 0.10357519412357
316 => 0.10117668478222
317 => 0.10234570154648
318 => 0.1026245051565
319 => 0.10191035557203
320 => 0.10206522904512
321 => 0.10229982015636
322 => 0.10372421144617
323 => 0.10746222634158
324 => 0.10911776769323
325 => 0.11409854553264
326 => 0.10898029803023
327 => 0.10867660240485
328 => 0.1095737908988
329 => 0.11249803475941
330 => 0.11486785974818
331 => 0.11565406741544
401 => 0.11575797773754
402 => 0.11723295558741
403 => 0.11807838538425
404 => 0.11705385448067
405 => 0.11618567181274
406 => 0.11307594925902
407 => 0.11343590811211
408 => 0.11591566765585
409 => 0.1194184740685
410 => 0.12242424637545
411 => 0.1213717296753
412 => 0.12940168913646
413 => 0.13019782681759
414 => 0.13008782633227
415 => 0.13190154645106
416 => 0.12830168137294
417 => 0.12676266930794
418 => 0.11637338275984
419 => 0.11929234850636
420 => 0.12353523664379
421 => 0.12297367448879
422 => 0.11989237571066
423 => 0.12242190893402
424 => 0.12158556614456
425 => 0.12092590788662
426 => 0.12394793024729
427 => 0.1206250925239
428 => 0.12350208879566
429 => 0.11981231131841
430 => 0.12137653748292
501 => 0.12048860705884
502 => 0.12106320686388
503 => 0.1177041081446
504 => 0.11951659627601
505 => 0.11762870267943
506 => 0.11762780757205
507 => 0.11758613221627
508 => 0.11980723066045
509 => 0.11987966060098
510 => 0.11823826549483
511 => 0.11800171481663
512 => 0.11887636665518
513 => 0.11785237842391
514 => 0.11833149607242
515 => 0.1178668904094
516 => 0.11776229788856
517 => 0.11692888688758
518 => 0.11656983051324
519 => 0.11671062576936
520 => 0.11623001897529
521 => 0.11594043599756
522 => 0.1175285268733
523 => 0.11668007398179
524 => 0.11739848929915
525 => 0.11657976437378
526 => 0.11374170708098
527 => 0.11210951031998
528 => 0.10674868318194
529 => 0.1082690071082
530 => 0.10927698344421
531 => 0.10894384727117
601 => 0.10965955267744
602 => 0.10970349117666
603 => 0.10947080805333
604 => 0.10920139080507
605 => 0.10907025338832
606 => 0.11004764425388
607 => 0.11061505254879
608 => 0.10937814735451
609 => 0.10908835777363
610 => 0.11033893721646
611 => 0.11110178995415
612 => 0.11673426595933
613 => 0.1163169939442
614 => 0.11736426481666
615 => 0.1172463581881
616 => 0.11834406490577
617 => 0.12013835146369
618 => 0.11649006520103
619 => 0.11712328154798
620 => 0.11696803152281
621 => 0.11866301058889
622 => 0.11866830212852
623 => 0.11765207750792
624 => 0.11820298936111
625 => 0.11789548547814
626 => 0.11845118655631
627 => 0.11631142102204
628 => 0.11891742446936
629 => 0.12039486049684
630 => 0.12041537469752
701 => 0.12111566764889
702 => 0.12182720584571
703 => 0.12319294145259
704 => 0.12178911622089
705 => 0.11926377128868
706 => 0.11944609303597
707 => 0.11796548422621
708 => 0.11799037352779
709 => 0.11785751248532
710 => 0.1182562384751
711 => 0.11639891895449
712 => 0.11683482813362
713 => 0.11622455273016
714 => 0.11712195492844
715 => 0.11615649850899
716 => 0.11696795665655
717 => 0.11731815509277
718 => 0.11861039486167
719 => 0.11596563364443
720 => 0.1105727864879
721 => 0.11170642834216
722 => 0.11002968299407
723 => 0.11018487215985
724 => 0.11049837897291
725 => 0.10948220081874
726 => 0.1096760555871
727 => 0.10966912973064
728 => 0.10960944644131
729 => 0.10934509925675
730 => 0.10896174353964
731 => 0.11048891472594
801 => 0.11074841086938
802 => 0.11132523865147
803 => 0.11304148686495
804 => 0.1128699931965
805 => 0.11314970648494
806 => 0.1125390939468
807 => 0.11021319672422
808 => 0.11033950413363
809 => 0.10876444871428
810 => 0.11128496094319
811 => 0.11068807037825
812 => 0.11030325114803
813 => 0.11019824965574
814 => 0.11191875211658
815 => 0.11243355341843
816 => 0.11211276379415
817 => 0.11145481491581
818 => 0.11271827126734
819 => 0.11305631888607
820 => 0.11313199528118
821 => 0.11537059769237
822 => 0.1132571082882
823 => 0.11376584619406
824 => 0.11773487410996
825 => 0.11413551347865
826 => 0.11604217508038
827 => 0.11594885391676
828 => 0.1169242374743
829 => 0.11586884399573
830 => 0.11588192686278
831 => 0.11674800138366
901 => 0.11553175591644
902 => 0.11523059643466
903 => 0.11481454676752
904 => 0.11572297599484
905 => 0.1162675382319
906 => 0.1206563099257
907 => 0.1234916565922
908 => 0.12336856671571
909 => 0.12449337777221
910 => 0.12398664008917
911 => 0.12235025043998
912 => 0.12514336803469
913 => 0.12425950875872
914 => 0.12433237304354
915 => 0.12432966103122
916 => 0.12491735018142
917 => 0.12450091855758
918 => 0.12368008908117
919 => 0.12422499399412
920 => 0.12584316677851
921 => 0.13086602475287
922 => 0.13367688261933
923 => 0.13069680757989
924 => 0.1327524234373
925 => 0.13151978641368
926 => 0.13129577959871
927 => 0.13258685826598
928 => 0.13388019679555
929 => 0.13379781672248
930 => 0.13285891936368
1001 => 0.13232856006933
1002 => 0.13634461832953
1003 => 0.13930358164388
1004 => 0.13910180018298
1005 => 0.13999239792853
1006 => 0.14260722045462
1007 => 0.14284628705638
1008 => 0.14281617015945
1009 => 0.14222361864296
1010 => 0.14479825099751
1011 => 0.14694605460402
1012 => 0.14208646008735
1013 => 0.14393693006253
1014 => 0.14476766565281
1015 => 0.14598743196748
1016 => 0.14804538219691
1017 => 0.1502808619904
1018 => 0.15059698334399
1019 => 0.15037268011582
1020 => 0.14889832109909
1021 => 0.15134440976395
1022 => 0.15277727113599
1023 => 0.15363050729259
1024 => 0.15579417222077
1025 => 0.144772795993
1026 => 0.13697131810105
1027 => 0.13575300467351
1028 => 0.13823049293621
1029 => 0.13888378683349
1030 => 0.13862044488266
1031 => 0.12983917223593
1101 => 0.13570677309035
1102 => 0.14201981824782
1103 => 0.14226232802301
1104 => 0.14542277042839
1105 => 0.14645194002649
1106 => 0.14899651041148
1107 => 0.14883734684108
1108 => 0.14945690923687
1109 => 0.1493144825714
1110 => 0.15402776338708
1111 => 0.15922721205574
1112 => 0.15904717168158
1113 => 0.15829968941837
1114 => 0.1594098280439
1115 => 0.16477621627674
1116 => 0.16428216524288
1117 => 0.16476209373911
1118 => 0.17108936790202
1119 => 0.17931572435806
1120 => 0.17549375587154
1121 => 0.18378632774547
1122 => 0.18900606216976
1123 => 0.19803305312596
1124 => 0.19690282939938
1125 => 0.2004169707355
1126 => 0.19487949304398
1127 => 0.18216432495536
1128 => 0.18015210093363
1129 => 0.18418062438276
1130 => 0.1940843561849
1201 => 0.18386872062392
1202 => 0.18593533039304
1203 => 0.1853401466405
1204 => 0.1853084318277
1205 => 0.18651885723898
1206 => 0.18476307204838
1207 => 0.17760968732214
1208 => 0.18088804138701
1209 => 0.17962211144308
1210 => 0.18102675509721
1211 => 0.18860703757944
1212 => 0.18525561400268
1213 => 0.18172516151211
1214 => 0.18615313240541
1215 => 0.19179146096846
1216 => 0.19143862450004
1217 => 0.19075397427709
1218 => 0.19461331173673
1219 => 0.20098780654027
1220 => 0.20271080687088
1221 => 0.20398269048974
1222 => 0.20415806175213
1223 => 0.20596449474739
1224 => 0.19625084925215
1225 => 0.2116666541172
1226 => 0.21432853776438
1227 => 0.21382821396249
1228 => 0.21678678560714
1229 => 0.21591629877756
1230 => 0.21465509993671
1231 => 0.21934506529972
]
'min_raw' => 0.080852508822379
'max_raw' => 0.21934506529972
'avg_raw' => 0.15009878706105
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.080852'
'max' => '$0.219345'
'avg' => '$0.150098'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.027883940750073
'max_diff' => 0.10109646845632
'year' => 2032
]
7 => [
'items' => [
101 => 0.21396839847172
102 => 0.2063368968129
103 => 0.20215010406888
104 => 0.20766361049314
105 => 0.21103051647157
106 => 0.21325582714788
107 => 0.21392920481396
108 => 0.19700489190074
109 => 0.18788362590594
110 => 0.19373025283308
111 => 0.20086354119683
112 => 0.19621122347512
113 => 0.19639358552181
114 => 0.18976060305824
115 => 0.20145041296424
116 => 0.19974730598771
117 => 0.20858302799467
118 => 0.20647431202661
119 => 0.21367950032254
120 => 0.21178213277207
121 => 0.21965799939369
122 => 0.22279989581963
123 => 0.22807562891592
124 => 0.23195647965765
125 => 0.23423538944203
126 => 0.23409857224655
127 => 0.24312874816064
128 => 0.23780396891442
129 => 0.23111479122706
130 => 0.23099380510678
131 => 0.23445822501744
201 => 0.24171869873301
202 => 0.24360123393186
203 => 0.24465331428785
204 => 0.24304201659948
205 => 0.23726235035807
206 => 0.23476671977861
207 => 0.23689306933769
208 => 0.23429272654623
209 => 0.23878164773161
210 => 0.24494589530097
211 => 0.24367300255398
212 => 0.24792809216444
213 => 0.25233166226278
214 => 0.25862896528012
215 => 0.26027531347731
216 => 0.26299666444225
217 => 0.26579782850239
218 => 0.26669748690502
219 => 0.26841521394325
220 => 0.26840616067387
221 => 0.27358264671993
222 => 0.27929247113118
223 => 0.28144779766368
224 => 0.28640385217977
225 => 0.27791678250183
226 => 0.28435432234498
227 => 0.29016114442558
228 => 0.28323801175391
301 => 0.29277993725877
302 => 0.29315042860366
303 => 0.29874440804384
304 => 0.29307383820443
305 => 0.28970667193488
306 => 0.29942755478899
307 => 0.30413118379715
308 => 0.30271441246049
309 => 0.29193271263387
310 => 0.28565730088592
311 => 0.26923333790502
312 => 0.2886882315183
313 => 0.2981641426903
314 => 0.29190817231315
315 => 0.29506331988332
316 => 0.31227678196615
317 => 0.31883055383816
318 => 0.3174674151031
319 => 0.31769776311015
320 => 0.32123405945291
321 => 0.33691594491068
322 => 0.32751899564113
323 => 0.33470261126073
324 => 0.33851277508292
325 => 0.3420518675837
326 => 0.33336097494345
327 => 0.32205425131305
328 => 0.31847293731534
329 => 0.29128613935084
330 => 0.28987094845051
331 => 0.28907655891348
401 => 0.28406804525114
402 => 0.2801327254599
403 => 0.27700321305284
404 => 0.26879043794522
405 => 0.2715620084555
406 => 0.25847255907333
407 => 0.26684672492644
408 => 0.24595564765669
409 => 0.26335435758865
410 => 0.25388503079495
411 => 0.26024342906019
412 => 0.26022124520764
413 => 0.24851341806933
414 => 0.24176058771207
415 => 0.2460637540398
416 => 0.2506770899289
417 => 0.25142558815579
418 => 0.25740689855639
419 => 0.25907615372136
420 => 0.25401823264143
421 => 0.24552272651513
422 => 0.2474960388264
423 => 0.24172059860106
424 => 0.23159936175525
425 => 0.23886861075775
426 => 0.24135065197353
427 => 0.24244686277318
428 => 0.23249378876723
429 => 0.22936631682281
430 => 0.22770127700163
501 => 0.24423790964631
502 => 0.24514382371192
503 => 0.24050903926891
504 => 0.26145870443963
505 => 0.25671714999795
506 => 0.26201462801835
507 => 0.24731698141743
508 => 0.2478784513106
509 => 0.24092034986949
510 => 0.244816421736
511 => 0.24206280371701
512 => 0.24450165763092
513 => 0.24596349661115
514 => 0.25292045629628
515 => 0.26343379489314
516 => 0.25188131851348
517 => 0.24684773912036
518 => 0.24997054346593
519 => 0.25828698295652
520 => 0.27088681449548
521 => 0.26342746062918
522 => 0.266737795207
523 => 0.26746095604572
524 => 0.26196070466499
525 => 0.27108961660936
526 => 0.2759818746835
527 => 0.2810003191574
528 => 0.28535769388046
529 => 0.27899584207656
530 => 0.28580393544237
531 => 0.28031781397979
601 => 0.27539619588304
602 => 0.27540365994614
603 => 0.27231625702068
604 => 0.26633402481481
605 => 0.26523080941214
606 => 0.27096987525758
607 => 0.27557206257407
608 => 0.27595112076445
609 => 0.27849912813178
610 => 0.2800070126452
611 => 0.29478633074634
612 => 0.30073069474755
613 => 0.30799935052717
614 => 0.31083090159233
615 => 0.31935285513122
616 => 0.31247068552934
617 => 0.3109816848451
618 => 0.29031021306952
619 => 0.29369516541474
620 => 0.29911480071874
621 => 0.29039958085951
622 => 0.29592738189311
623 => 0.29701868691197
624 => 0.29010344102361
625 => 0.29379717264272
626 => 0.28398771657747
627 => 0.26364761422921
628 => 0.2711122609578
629 => 0.27660875352297
630 => 0.26876458091983
701 => 0.28282495669956
702 => 0.27461117543411
703 => 0.272007801104
704 => 0.26185110967227
705 => 0.26664467706114
706 => 0.27312804559186
707 => 0.26912207761237
708 => 0.27743506266894
709 => 0.28920846650118
710 => 0.29759889519036
711 => 0.29824300812074
712 => 0.29284852458867
713 => 0.30149321887595
714 => 0.30155618603621
715 => 0.29180493556554
716 => 0.28583234894744
717 => 0.28447536470138
718 => 0.28786537740047
719 => 0.29198147864804
720 => 0.29847142309338
721 => 0.30239316059927
722 => 0.31261897208579
723 => 0.31538578347705
724 => 0.31842567035124
725 => 0.32248789668156
726 => 0.32736564092456
727 => 0.31669341421101
728 => 0.31711744167386
729 => 0.30717961192524
730 => 0.29655961560989
731 => 0.30461886901201
801 => 0.31515527075773
802 => 0.31273820855557
803 => 0.31246623968173
804 => 0.31292361588966
805 => 0.3111012299231
806 => 0.30285864573715
807 => 0.29871927156027
808 => 0.30406012031542
809 => 0.30689854373496
810 => 0.31130069092212
811 => 0.31075803336325
812 => 0.32209749176128
813 => 0.32650366240733
814 => 0.3253763754054
815 => 0.32558382334343
816 => 0.33356098483197
817 => 0.34243322903561
818 => 0.35074325652805
819 => 0.35919657341735
820 => 0.34900576996873
821 => 0.34383150845889
822 => 0.34917002556655
823 => 0.34633733324416
824 => 0.36261482355976
825 => 0.36374184167244
826 => 0.38001815494022
827 => 0.39546631437868
828 => 0.38576360221791
829 => 0.39491282276576
830 => 0.40480845073516
831 => 0.4238987225959
901 => 0.41746979063706
902 => 0.4125453295108
903 => 0.40789173754131
904 => 0.4175751236929
905 => 0.43003264528106
906 => 0.43271587611449
907 => 0.43706373513772
908 => 0.4324924930057
909 => 0.43799805064791
910 => 0.45743508838952
911 => 0.45218302921626
912 => 0.44472426087958
913 => 0.46006793542364
914 => 0.4656207515941
915 => 0.50459332351086
916 => 0.5537978054324
917 => 0.53342682682283
918 => 0.5207819030325
919 => 0.52375376006483
920 => 0.54172157118576
921 => 0.54749226184798
922 => 0.5318055353517
923 => 0.53734635234425
924 => 0.56787679873434
925 => 0.58425540368862
926 => 0.56201105822058
927 => 0.5006397912978
928 => 0.44405268039902
929 => 0.45906213036019
930 => 0.45736052453205
1001 => 0.49016168042744
1002 => 0.45205776934195
1003 => 0.4526993414817
1004 => 0.48617879054398
1005 => 0.47724704751723
1006 => 0.4627787677051
1007 => 0.4441583148532
1008 => 0.40973668557304
1009 => 0.37924848860146
1010 => 0.43904286387516
1011 => 0.43646442168435
1012 => 0.43273045528832
1013 => 0.44103999344531
1014 => 0.48138875203214
1015 => 0.48045858255052
1016 => 0.47454131888514
1017 => 0.47902951122297
1018 => 0.46199196588819
1019 => 0.46638292925866
1020 => 0.44404371671154
1021 => 0.45414197375076
1022 => 0.46274772527466
1023 => 0.46447545730341
1024 => 0.46836812578437
1025 => 0.4351056998151
1026 => 0.45003955254179
1027 => 0.45881179190594
1028 => 0.41917849532188
1029 => 0.45802836906324
1030 => 0.4345266749812
1031 => 0.42654984702615
1101 => 0.43728959500045
1102 => 0.43310430477012
1103 => 0.42950603799857
1104 => 0.42749814331397
1105 => 0.43538422892357
1106 => 0.43501633360397
1107 => 0.42211316692341
1108 => 0.40528151198899
1109 => 0.41093076786522
1110 => 0.40887834024333
1111 => 0.40144007777316
1112 => 0.40645256857882
1113 => 0.38438009583425
1114 => 0.34640555370452
1115 => 0.3714926994271
1116 => 0.37052687160635
1117 => 0.37003985742232
1118 => 0.38889215407506
1119 => 0.38707994074838
1120 => 0.38379075581522
1121 => 0.40137966931246
1122 => 0.39495947928169
1123 => 0.41474499216949
1124 => 0.42777701060413
1125 => 0.42447166918747
1126 => 0.43672834551446
1127 => 0.41106091531072
1128 => 0.41958660602584
1129 => 0.42134373906613
1130 => 0.40116262485016
1201 => 0.38737644126065
1202 => 0.38645705998923
1203 => 0.36255371749814
1204 => 0.37532269011584
1205 => 0.38655885760342
1206 => 0.38117760533869
1207 => 0.37947406163202
1208 => 0.38817709697587
1209 => 0.38885339735855
1210 => 0.37343367696246
1211 => 0.37663992511185
1212 => 0.39001051288918
1213 => 0.37630302060525
1214 => 0.34967160220373
1215 => 0.34306664223198
1216 => 0.34218541881819
1217 => 0.32427224352884
1218 => 0.34350801724014
1219 => 0.33511108652847
1220 => 0.36163689003596
1221 => 0.34648549333322
1222 => 0.34583234690408
1223 => 0.34484502028068
1224 => 0.32942641032518
1225 => 0.33280210600166
1226 => 0.34402343256322
1227 => 0.34802732829768
1228 => 0.34760968916962
1229 => 0.34396844194129
1230 => 0.34563538627622
1231 => 0.34026557777152
]
'min_raw' => 0.18788362590594
'max_raw' => 0.58425540368862
'avg_raw' => 0.38606951479728
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.187883'
'max' => '$0.584255'
'avg' => '$0.386069'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.10703111708356
'max_diff' => 0.3649103383889
'year' => 2033
]
8 => [
'items' => [
101 => 0.33836938662561
102 => 0.33238448578065
103 => 0.32358833490963
104 => 0.32481149363817
105 => 0.30738401712459
106 => 0.29788860297381
107 => 0.29526039748442
108 => 0.29174585126374
109 => 0.29565737483189
110 => 0.30733464727327
111 => 0.29324937923742
112 => 0.26910117515663
113 => 0.27055252336842
114 => 0.27381327189117
115 => 0.26773688859104
116 => 0.26198610174966
117 => 0.26698594433215
118 => 0.25675403192297
119 => 0.27504974962228
120 => 0.27455490173167
121 => 0.28137441389038
122 => 0.2856387947937
123 => 0.27581077742126
124 => 0.27333905762988
125 => 0.27474706155645
126 => 0.25147589301771
127 => 0.27947266294532
128 => 0.27971478017425
129 => 0.27764162546656
130 => 0.29254904114972
131 => 0.32400833798073
201 => 0.31217208506562
202 => 0.30758873018425
203 => 0.29887576920436
204 => 0.31048527238564
205 => 0.30959384367778
206 => 0.30556246499653
207 => 0.30312427459145
208 => 0.30761671517182
209 => 0.30256761148791
210 => 0.30166065372619
211 => 0.29616547646994
212 => 0.29420394820409
213 => 0.29275171076675
214 => 0.29115294004214
215 => 0.29467942987179
216 => 0.28668793996943
217 => 0.2770509865626
218 => 0.2762497781601
219 => 0.27846198500236
220 => 0.27748324815409
221 => 0.27624509234462
222 => 0.27388111571267
223 => 0.27317977434434
224 => 0.27545879354896
225 => 0.27288591374202
226 => 0.27668233804917
227 => 0.27564992070336
228 => 0.2698829213345
301 => 0.26269510490426
302 => 0.26263111826108
303 => 0.26108251500157
304 => 0.25911013591652
305 => 0.25856146517698
306 => 0.26656487153555
307 => 0.283131683176
308 => 0.27987922164078
309 => 0.28222945842564
310 => 0.29379029729233
311 => 0.2974651403215
312 => 0.29485682378282
313 => 0.29128639923073
314 => 0.29144347979081
315 => 0.30364470132634
316 => 0.30440567654719
317 => 0.30632841543036
318 => 0.30879967826118
319 => 0.29527769052896
320 => 0.29080659538463
321 => 0.28868794245834
322 => 0.28216331146722
323 => 0.28919956661156
324 => 0.28509984206144
325 => 0.28565303496978
326 => 0.28529276736251
327 => 0.28548949783727
328 => 0.27504463559631
329 => 0.27885019443112
330 => 0.27252271476798
331 => 0.26405092979196
401 => 0.26402252939813
402 => 0.26609598676904
403 => 0.26486261319043
404 => 0.26154363660332
405 => 0.26201508156239
406 => 0.25788472764322
407 => 0.26251658131065
408 => 0.26264940630026
409 => 0.26086589033953
410 => 0.26800189998683
411 => 0.27092552896176
412 => 0.26975158054979
413 => 0.27084316161167
414 => 0.28001437610155
415 => 0.28150968423154
416 => 0.28217380132837
417 => 0.28128397239727
418 => 0.27101079457671
419 => 0.27146645369797
420 => 0.26812312940069
421 => 0.26529837268032
422 => 0.26541134813524
423 => 0.26686364028218
424 => 0.27320588526367
425 => 0.28655276593146
426 => 0.28705927029636
427 => 0.28767316836239
428 => 0.28517613640739
429 => 0.28442300767638
430 => 0.2854165788716
501 => 0.29042896550477
502 => 0.30332218477499
503 => 0.29876485997573
504 => 0.29505968397495
505 => 0.29831012223591
506 => 0.29780974274341
507 => 0.29358603626261
508 => 0.29346749088918
509 => 0.28536084775187
510 => 0.28236400636334
511 => 0.27985962138939
512 => 0.27712489837646
513 => 0.27550366290566
514 => 0.27799461742716
515 => 0.27856432819834
516 => 0.27311781260263
517 => 0.27237547265251
518 => 0.27682321485916
519 => 0.27486592934256
520 => 0.27687904603473
521 => 0.27734610637551
522 => 0.27727089890333
523 => 0.27522726803119
524 => 0.27652981740714
525 => 0.27344889982435
526 => 0.27009886469191
527 => 0.26796175099199
528 => 0.2660968358418
529 => 0.26713159915663
530 => 0.26344285687959
531 => 0.26226275398545
601 => 0.27608854298686
602 => 0.28630180197448
603 => 0.2861532971439
604 => 0.28524931218012
605 => 0.2839061738906
606 => 0.290330706573
607 => 0.28809252784904
608 => 0.28972098987681
609 => 0.29013550180921
610 => 0.2913901045856
611 => 0.2918385172414
612 => 0.29048310275295
613 => 0.28593416617976
614 => 0.27459864873929
615 => 0.2693219347711
616 => 0.26758053127098
617 => 0.26764382798081
618 => 0.26589782215465
619 => 0.26641209912095
620 => 0.26571897761327
621 => 0.26440637316184
622 => 0.26705054953058
623 => 0.26735526622487
624 => 0.26673808386485
625 => 0.26688345265296
626 => 0.26177344631405
627 => 0.26216194899765
628 => 0.25999871668685
629 => 0.25959313670673
630 => 0.25412467379921
701 => 0.24443649909217
702 => 0.24980468833374
703 => 0.24332067061156
704 => 0.24086507485126
705 => 0.252489483257
706 => 0.25132271506397
707 => 0.24932571509943
708 => 0.24637173594062
709 => 0.24527607633616
710 => 0.23861919542312
711 => 0.2382258713857
712 => 0.24152520131711
713 => 0.24000267407677
714 => 0.23786446920519
715 => 0.23012010790666
716 => 0.22141288173721
717 => 0.22167569816359
718 => 0.22444530480439
719 => 0.23249830964486
720 => 0.22935186133529
721 => 0.22706907698537
722 => 0.22664158009687
723 => 0.23199259868175
724 => 0.23956541105241
725 => 0.2431184051846
726 => 0.23959749590564
727 => 0.23555286490519
728 => 0.23579904285317
729 => 0.23743675445143
730 => 0.23760885478441
731 => 0.2349762157979
801 => 0.23571728825183
802 => 0.23459153142923
803 => 0.22768276388687
804 => 0.22755780618997
805 => 0.22586228321615
806 => 0.22581094345434
807 => 0.22292643590785
808 => 0.22252287336243
809 => 0.21679550855177
810 => 0.22056527741421
811 => 0.21803671438304
812 => 0.21422557346734
813 => 0.21356853133697
814 => 0.21354877985713
815 => 0.21746196942203
816 => 0.22051954951577
817 => 0.21808069981954
818 => 0.21752542101882
819 => 0.22345434588268
820 => 0.2226998361504
821 => 0.22204643558832
822 => 0.23888734876396
823 => 0.2255564518726
824 => 0.21974341992697
825 => 0.21254868902943
826 => 0.21489132968865
827 => 0.2153849584961
828 => 0.19808292763525
829 => 0.19106349586983
830 => 0.18865469140964
831 => 0.18726839038731
901 => 0.18790014517126
902 => 0.18158183328515
903 => 0.18582784336785
904 => 0.18035671934809
905 => 0.1794394676016
906 => 0.18922251509114
907 => 0.19058376899757
908 => 0.18477623692428
909 => 0.18850561266937
910 => 0.187153289182
911 => 0.18045050606633
912 => 0.18019450905365
913 => 0.17683128810042
914 => 0.17156849855653
915 => 0.16916326251547
916 => 0.16791059470208
917 => 0.16842746985589
918 => 0.16816612196148
919 => 0.16646065016793
920 => 0.16826387760834
921 => 0.16365737664311
922 => 0.16182303084166
923 => 0.16099449939964
924 => 0.1569059646527
925 => 0.16341264161474
926 => 0.16469453894521
927 => 0.16597896200943
928 => 0.17715898787057
929 => 0.17660046537297
930 => 0.18164923673976
1001 => 0.18145305076854
1002 => 0.18001305939006
1003 => 0.17393797263133
1004 => 0.17635939393535
1005 => 0.16890663553399
1006 => 0.1744907488666
1007 => 0.17194239273975
1008 => 0.1736291470967
1009 => 0.17059621067439
1010 => 0.17227476291737
1011 => 0.16499852435753
1012 => 0.15820407516978
1013 => 0.16093835986527
1014 => 0.16391084003264
1015 => 0.17035593440937
1016 => 0.16651728936947
1017 => 0.16789781128106
1018 => 0.16327329397381
1019 => 0.15373159384089
1020 => 0.15378559882742
1021 => 0.15231781613921
1022 => 0.15104943759681
1023 => 0.16695820392892
1024 => 0.16497969735514
1025 => 0.16182720607037
1026 => 0.16604694093006
1027 => 0.16716270580316
1028 => 0.16719447006052
1029 => 0.17027307968703
1030 => 0.17191613419657
1031 => 0.17220572967528
1101 => 0.17704998844036
1102 => 0.17867372008109
1103 => 0.18536164091018
1104 => 0.17177673250082
1105 => 0.17149696025192
1106 => 0.16610632125313
1107 => 0.16268749277747
1108 => 0.1663404113638
1109 => 0.16957639855817
1110 => 0.16620687239554
1111 => 0.1666468613778
1112 => 0.16212354780487
1113 => 0.16374041956551
1114 => 0.16513308734192
1115 => 0.16436413805301
1116 => 0.16321298374996
1117 => 0.16931108451094
1118 => 0.16896700576736
1119 => 0.17464569739072
1120 => 0.17907264359826
1121 => 0.18700652261347
1122 => 0.17872710625863
1123 => 0.17842537141896
1124 => 0.18137487787652
1125 => 0.17867326852702
1126 => 0.18038059237952
1127 => 0.18673144634571
1128 => 0.18686562988247
1129 => 0.184617882756
1130 => 0.18448110713908
1201 => 0.18491281156238
1202 => 0.18744131785367
1203 => 0.18655778006234
1204 => 0.18758023236291
1205 => 0.18885882462111
1206 => 0.19414762431292
1207 => 0.19542273601346
1208 => 0.19232487565075
1209 => 0.19260457775623
1210 => 0.19144589294241
1211 => 0.19032661793053
1212 => 0.19284258470024
1213 => 0.19744056342333
1214 => 0.19741195963633
1215 => 0.19847860132815
1216 => 0.19914311026562
1217 => 0.19629055145573
1218 => 0.19443364056199
1219 => 0.19514569835696
1220 => 0.19628429427772
1221 => 0.19477646704547
1222 => 0.18546945887451
1223 => 0.1882926106196
1224 => 0.18782270012415
1225 => 0.18715349043556
1226 => 0.18999219134603
1227 => 0.18971839171816
1228 => 0.18151702986442
1229 => 0.18204205444104
1230 => 0.18154895834786
1231 => 0.1831422527029
]
'min_raw' => 0.15104943759681
'max_raw' => 0.33836938662561
'avg_raw' => 0.24470941211121
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.151049'
'max' => '$0.338369'
'avg' => '$0.2447094'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.036834188309125
'max_diff' => -0.24588601706301
'year' => 2034
]
9 => [
'items' => [
101 => 0.17858722540311
102 => 0.17998832112195
103 => 0.18086707522235
104 => 0.18138466813839
105 => 0.18325456866792
106 => 0.18303515742309
107 => 0.18324092975688
108 => 0.18601349860674
109 => 0.20003620041859
110 => 0.20079942513886
111 => 0.19704102747992
112 => 0.19854243321355
113 => 0.19566006252632
114 => 0.19759501727886
115 => 0.19891886417803
116 => 0.1929366546018
117 => 0.19258242697492
118 => 0.18968815971854
119 => 0.19124337500244
120 => 0.18876891566182
121 => 0.18937606143109
122 => 0.18767842893018
123 => 0.19073382943656
124 => 0.19415024196393
125 => 0.19501336268657
126 => 0.19274286366215
127 => 0.1910988727353
128 => 0.18821256623203
129 => 0.19301255827251
130 => 0.19441622222225
131 => 0.19300518542334
201 => 0.19267821736527
202 => 0.19205861348604
203 => 0.1928096692573
204 => 0.19440857756693
205 => 0.19365456193531
206 => 0.19415260254404
207 => 0.1922545853208
208 => 0.1962914957714
209 => 0.20270308110234
210 => 0.20272369539758
211 => 0.20196967570154
212 => 0.20166114708749
213 => 0.20243481705338
214 => 0.20285450127227
215 => 0.20535640807513
216 => 0.20804105375496
217 => 0.22056912374006
218 => 0.21705129182013
219 => 0.22816694080913
220 => 0.23695797597305
221 => 0.23959402303333
222 => 0.23716898377347
223 => 0.22887305546353
224 => 0.22846601764283
225 => 0.24086363698847
226 => 0.23736074167639
227 => 0.23694408342514
228 => 0.23251154358704
301 => 0.23513172361209
302 => 0.23455865180489
303 => 0.2336540299216
304 => 0.23865315088607
305 => 0.24801105905696
306 => 0.24655254131062
307 => 0.24546382547167
308 => 0.2406933895858
309 => 0.24356625750452
310 => 0.24254328426483
311 => 0.24693862649743
312 => 0.24433492312759
313 => 0.23733420379921
314 => 0.23844909142692
315 => 0.23828057840484
316 => 0.24174856445842
317 => 0.24070756112584
318 => 0.23807730579664
319 => 0.24797907474417
320 => 0.24733610894525
321 => 0.24824768744567
322 => 0.24864899249306
323 => 0.25467602476268
324 => 0.25714510704003
325 => 0.25770563194435
326 => 0.26005106914215
327 => 0.25764727533023
328 => 0.26726416445386
329 => 0.27365883456004
330 => 0.28108657295509
331 => 0.29194049513811
401 => 0.29602167028333
402 => 0.29528444252253
403 => 0.30351376244759
404 => 0.31830166742544
405 => 0.29827350092093
406 => 0.31936320888236
407 => 0.31268645083416
408 => 0.29685597761162
409 => 0.29583668176511
410 => 0.30655726202699
411 => 0.33033447723022
412 => 0.32437855450075
413 => 0.33034421898615
414 => 0.32338495447901
415 => 0.32303936833894
416 => 0.33000622304241
417 => 0.34628465880055
418 => 0.3385513841599
419 => 0.32746383868579
420 => 0.33565070972256
421 => 0.32855848437136
422 => 0.31257771566623
423 => 0.32437400011889
424 => 0.31648616064424
425 => 0.31878825154355
426 => 0.3353673168917
427 => 0.33337247988624
428 => 0.33595398368823
429 => 0.33139769704743
430 => 0.32714140686447
501 => 0.31919672516172
502 => 0.31684469657761
503 => 0.31749471266113
504 => 0.31684437446192
505 => 0.31239939806462
506 => 0.31143950583483
507 => 0.30983964339801
508 => 0.31033550766491
509 => 0.30732729822742
510 => 0.31300441096374
511 => 0.31405813311415
512 => 0.31818946233174
513 => 0.31861839063626
514 => 0.33012408370145
515 => 0.32378694130646
516 => 0.32803844354757
517 => 0.32765814917043
518 => 0.29719907196855
519 => 0.30139606406425
520 => 0.3079252666765
521 => 0.30498386974981
522 => 0.30082542267635
523 => 0.2974672537027
524 => 0.29237928431722
525 => 0.29954050352149
526 => 0.30895674526434
527 => 0.31885720206603
528 => 0.33075195220963
529 => 0.32809718244774
530 => 0.31863483798591
531 => 0.31905931184622
601 => 0.32168324222635
602 => 0.31828501397487
603 => 0.31728281012221
604 => 0.32154555480688
605 => 0.32157490998676
606 => 0.31766483769383
607 => 0.3133195078759
608 => 0.3133013007853
609 => 0.31252809131511
610 => 0.32352250672606
611 => 0.3295683235413
612 => 0.33026146669585
613 => 0.32952166948433
614 => 0.32980638806954
615 => 0.32628846047523
616 => 0.3343293997468
617 => 0.34170856078887
618 => 0.33973078799681
619 => 0.33676582542455
620 => 0.3344040899238
621 => 0.33917443816987
622 => 0.33896202207169
623 => 0.3416441102546
624 => 0.34152243524213
625 => 0.34062054986466
626 => 0.33973082020598
627 => 0.34325849773218
628 => 0.3422425832574
629 => 0.34122509078684
630 => 0.33918435386683
701 => 0.33946172390731
702 => 0.33649727327764
703 => 0.33512578277232
704 => 0.31450185623822
705 => 0.30899046916207
706 => 0.31072446373086
707 => 0.31129533976605
708 => 0.30889677704747
709 => 0.3123356998457
710 => 0.31179974737032
711 => 0.31388482493033
712 => 0.31258215899438
713 => 0.31263562085878
714 => 0.31646648361874
715 => 0.31757859937561
716 => 0.31701296832579
717 => 0.31740911692439
718 => 0.32653819417517
719 => 0.32524033132156
720 => 0.32455086754795
721 => 0.32474185372512
722 => 0.32707452869232
723 => 0.3277275503238
724 => 0.32496065178419
725 => 0.32626553713072
726 => 0.33182157332164
727 => 0.33376587154405
728 => 0.33997113815389
729 => 0.33733503060821
730 => 0.34217372009637
731 => 0.35704620195215
801 => 0.36892736955602
802 => 0.35800095681749
803 => 0.37981920806442
804 => 0.3968078463024
805 => 0.39615579407077
806 => 0.3931934320397
807 => 0.37385231907206
808 => 0.3560543385595
809 => 0.37094310500043
810 => 0.37098105952799
811 => 0.36970210128652
812 => 0.3617586014911
813 => 0.36942568471217
814 => 0.37003426993551
815 => 0.36969362404631
816 => 0.36360336137768
817 => 0.35430465595137
818 => 0.35612160073372
819 => 0.35909779335187
820 => 0.35346323982689
821 => 0.35166265856602
822 => 0.35501028170458
823 => 0.36579702096198
824 => 0.3637578503887
825 => 0.36370459940409
826 => 0.37242903585951
827 => 0.36618422220866
828 => 0.35614451822609
829 => 0.35360936056306
830 => 0.34461125874615
831 => 0.35082627972123
901 => 0.35104994726174
902 => 0.34764604378966
903 => 0.35642072623286
904 => 0.3563398659894
905 => 0.3646701210301
906 => 0.380594439967
907 => 0.37588483526921
908 => 0.37040807740922
909 => 0.37100355284262
910 => 0.37753444858846
911 => 0.37358571993468
912 => 0.3750057102901
913 => 0.37753229926299
914 => 0.37905665312202
915 => 0.37078422178078
916 => 0.36885552231901
917 => 0.36491008010175
918 => 0.36388078787243
919 => 0.36709426823404
920 => 0.36624762969269
921 => 0.35103114887104
922 => 0.34944094196148
923 => 0.3494897113371
924 => 0.34549106045279
925 => 0.33939215806804
926 => 0.35541970938862
927 => 0.35413247271214
928 => 0.35271146304551
929 => 0.35288552862151
930 => 0.35984254542566
1001 => 0.35580712434148
1002 => 0.36653595268628
1003 => 0.36433042811669
1004 => 0.36206834016409
1005 => 0.36175565070416
1006 => 0.36088493983469
1007 => 0.35789894828602
1008 => 0.35429318406073
1009 => 0.35191234619324
1010 => 0.32462053734703
1011 => 0.32968573831974
1012 => 0.33551279033124
1013 => 0.33752426533517
1014 => 0.33408349815112
1015 => 0.35803481074617
1016 => 0.36241094635788
1017 => 0.34915534614175
1018 => 0.34667576456391
1019 => 0.35819737170161
1020 => 0.35124843413839
1021 => 0.35437754029762
1022 => 0.34761412431092
1023 => 0.36135686343722
1024 => 0.36125216679047
1025 => 0.35590593087649
1026 => 0.36042453286154
1027 => 0.35963931456931
1028 => 0.35360342738963
1029 => 0.36154821182684
1030 => 0.3615521523408
1031 => 0.35640651651079
1101 => 0.35039754038587
1102 => 0.34932327738041
1103 => 0.34851396451273
1104 => 0.35417849894395
1105 => 0.35925730280243
1106 => 0.36870769764082
1107 => 0.37108375143904
1108 => 0.38035764759633
1109 => 0.37483549397247
1110 => 0.37728339315007
1111 => 0.37994093398383
1112 => 0.38121505678736
1113 => 0.3791389420522
1114 => 0.39354512007242
1115 => 0.39476144289121
1116 => 0.39516926541121
1117 => 0.39031158323823
1118 => 0.3946263419625
1119 => 0.39260760924521
1120 => 0.39785979095551
1121 => 0.3986834001109
1122 => 0.39798583245703
1123 => 0.39824725900274
1124 => 0.38595412748643
1125 => 0.38531666376588
1126 => 0.37662480070374
1127 => 0.38016679914857
1128 => 0.37354520282837
1129 => 0.37564497923151
1130 => 0.3765705406626
1201 => 0.37608707989615
1202 => 0.38036705842627
1203 => 0.37672820233382
1204 => 0.36712466282251
1205 => 0.35751850683328
1206 => 0.35739790936984
1207 => 0.35486877806062
1208 => 0.35304067935755
1209 => 0.35339283602305
1210 => 0.35463388204477
1211 => 0.35296854750667
1212 => 0.35332393106498
1213 => 0.35922566604116
1214 => 0.36040921690138
1215 => 0.35638704863516
1216 => 0.3402374626502
1217 => 0.33627431374132
1218 => 0.33912294658436
1219 => 0.33776148356084
1220 => 0.27259987843655
1221 => 0.28790863100475
1222 => 0.27881269006484
1223 => 0.28300451813407
1224 => 0.27371991781691
1225 => 0.27815101573586
1226 => 0.27733275374802
1227 => 0.30194877485876
1228 => 0.30156442954735
1229 => 0.30174839530882
1230 => 0.29296723019348
1231 => 0.30695586465683
]
'min_raw' => 0.17858722540311
'max_raw' => 0.3986834001109
'avg_raw' => 0.288635312757
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.178587'
'max' => '$0.398683'
'avg' => '$0.288635'
'bar_min_pct' => 61.631153054957
'bar_max_pct' => 60.119598047091
'min_diff' => 0.027537787806293
'max_diff' => 0.060314013485296
'year' => 2035
]
10 => [
'items' => [
101 => 0.3138471690085
102 => 0.31257177197913
103 => 0.31289276193407
104 => 0.30737709101758
105 => 0.30180179905995
106 => 0.29561794224766
107 => 0.30710678385709
108 => 0.30582942079119
109 => 0.30875923208364
110 => 0.31621056710672
111 => 0.31730780449374
112 => 0.31878250266897
113 => 0.31825392834931
114 => 0.33084671308464
115 => 0.32932164376332
116 => 0.3329966220353
117 => 0.32543691290856
118 => 0.31688238445747
119 => 0.31850832064742
120 => 0.31835172991737
121 => 0.31635815019743
122 => 0.31455843556523
123 => 0.31156241776908
124 => 0.32104226140331
125 => 0.32065739706399
126 => 0.32688790336176
127 => 0.32578660085372
128 => 0.31843183317058
129 => 0.31869451013722
130 => 0.3204611389761
131 => 0.32657546155847
201 => 0.32839060879575
202 => 0.32754976027433
203 => 0.32953998635538
204 => 0.33111297990179
205 => 0.32973753012658
206 => 0.34921099837675
207 => 0.34112425667381
208 => 0.34506567831264
209 => 0.3460056841493
210 => 0.34359787896489
211 => 0.34412004569235
212 => 0.34491098600253
213 => 0.34971342068396
214 => 0.3623163988837
215 => 0.36789817213699
216 => 0.38469121236935
217 => 0.36743468357033
218 => 0.36641075256602
219 => 0.3694356862131
220 => 0.37929497855333
221 => 0.38728500895885
222 => 0.38993576300028
223 => 0.39028610390603
224 => 0.39525909470654
225 => 0.3981095202926
226 => 0.39465524282071
227 => 0.39172810434121
228 => 0.38124345763746
229 => 0.38245708404216
301 => 0.39081776647518
302 => 0.40262772285356
303 => 0.41276189404275
304 => 0.40921326050382
305 => 0.43628682946099
306 => 0.43897106323748
307 => 0.43860018892124
308 => 0.44471527293163
309 => 0.4325780764862
310 => 0.42738918985868
311 => 0.39236098490491
312 => 0.40220248171501
313 => 0.41650767529932
314 => 0.41461432928672
315 => 0.40422551532687
316 => 0.41275401319577
317 => 0.40993422508953
318 => 0.40771014121701
319 => 0.41789910059687
320 => 0.40669592121934
321 => 0.41639591501505
322 => 0.40395557263846
323 => 0.40922947036291
324 => 0.40623575094478
325 => 0.40817305430476
326 => 0.39684761844792
327 => 0.40295854872686
328 => 0.39659338365745
329 => 0.39659036574043
330 => 0.39644985436874
331 => 0.40393844284544
401 => 0.40418264544682
402 => 0.3986485672479
403 => 0.39785102012089
404 => 0.40079996986083
405 => 0.39734752204652
406 => 0.39896290064939
407 => 0.39739645021879
408 => 0.39704380923237
409 => 0.39423390585565
410 => 0.39302332222105
411 => 0.39349802325707
412 => 0.39187762389597
413 => 0.3909012746685
414 => 0.39625563393304
415 => 0.39339501577223
416 => 0.39581720317286
417 => 0.39305681492543
418 => 0.38348810661593
419 => 0.37798504127988
420 => 0.35991063830297
421 => 0.36503651656599
422 => 0.36843497915748
423 => 0.36731178729127
424 => 0.36972483803745
425 => 0.36987297975528
426 => 0.36908847235955
427 => 0.36818011329693
428 => 0.36773797434065
429 => 0.37103331588311
430 => 0.3729463725646
501 => 0.3687760603441
502 => 0.36779901453971
503 => 0.37201543044388
504 => 0.37458744170968
505 => 0.39357772780805
506 => 0.39217086607606
507 => 0.39570181294067
508 => 0.39530428251051
509 => 0.39900527734857
510 => 0.40505483975167
511 => 0.39275438790191
512 => 0.39488932102541
513 => 0.39436588472633
514 => 0.40008062498727
515 => 0.40009846578258
516 => 0.3966721935237
517 => 0.39852963130016
518 => 0.39749286048948
519 => 0.39936644547235
520 => 0.39215207657991
521 => 0.40093839914791
522 => 0.40591967786584
523 => 0.40598884292567
524 => 0.4083499295041
525 => 0.41074893021269
526 => 0.41535360316392
527 => 0.41062050838328
528 => 0.40210613163039
529 => 0.40272084213068
530 => 0.39772886615575
531 => 0.39781278217377
601 => 0.397364831893
602 => 0.39870916440571
603 => 0.39244708196808
604 => 0.39391678019972
605 => 0.39185919406888
606 => 0.394884848235
607 => 0.3916297445108
608 => 0.3943656323095
609 => 0.3955463507873
610 => 0.39990322738944
611 => 0.3909862302942
612 => 0.37280386958938
613 => 0.37662602224935
614 => 0.37097275824165
615 => 0.37149598934905
616 => 0.37255299945763
617 => 0.36912688386355
618 => 0.36978047874959
619 => 0.36975712774098
620 => 0.36955590136405
621 => 0.36866463637517
622 => 0.36737212580989
623 => 0.3725210900882
624 => 0.37339599945324
625 => 0.37534081459339
626 => 0.38112726526975
627 => 0.38054906239327
628 => 0.38149213527421
629 => 0.37943341247026
630 => 0.37159148759537
701 => 0.37201734184471
702 => 0.36670693253152
703 => 0.37520501548782
704 => 0.37319255727456
705 => 0.37189511237265
706 => 0.37154109251042
707 => 0.37734188667878
708 => 0.37907757521026
709 => 0.37799601059517
710 => 0.37577769001533
711 => 0.38003752131623
712 => 0.38117727246449
713 => 0.38143242071418
714 => 0.38898002503774
715 => 0.38185424795245
716 => 0.38356949332101
717 => 0.39695134804816
718 => 0.38481585238036
719 => 0.39124429508944
720 => 0.39092965627083
721 => 0.39421823003416
722 => 0.39065989723596
723 => 0.39070400703562
724 => 0.39362403775017
725 => 0.3895233812419
726 => 0.38850800102279
727 => 0.38710526052238
728 => 0.39016809308679
729 => 0.39200412268915
730 => 0.40680117286904
731 => 0.41636074211272
801 => 0.41594573600028
802 => 0.41973811500908
803 => 0.4180296135314
804 => 0.41251241158008
805 => 0.42192960255989
806 => 0.41894960930187
807 => 0.41919527632537
808 => 0.41918613258649
809 => 0.42116756758754
810 => 0.41976353929344
811 => 0.41699605540523
812 => 0.41883324036329
813 => 0.42428902288308
814 => 0.44122393922837
815 => 0.45070094277299
816 => 0.4406534117153
817 => 0.44758406409709
818 => 0.44342814231196
819 => 0.44267288769564
820 => 0.44702584956259
821 => 0.45138643071306
822 => 0.45110868054508
823 => 0.44794312254817
824 => 0.44615497915877
825 => 0.45969539997527
826 => 0.46967175137781
827 => 0.46899143109447
828 => 0.47199414357314
829 => 0.48081020028094
830 => 0.48161623001988
831 => 0.48151468879916
901 => 0.47951685999068
902 => 0.48819741272914
903 => 0.49543888254335
904 => 0.47905442034435
905 => 0.48529340906137
906 => 0.4880942921041
907 => 0.49220681939539
908 => 0.49914534227539
909 => 0.50668241847537
910 => 0.50774824368988
911 => 0.50699198969575
912 => 0.50202108533438
913 => 0.51026824404842
914 => 0.51509923620343
915 => 0.51797598147645
916 => 0.52527092884406
917 => 0.48811158940424
918 => 0.46180836200973
919 => 0.45770073322887
920 => 0.46605375787927
921 => 0.46825638386546
922 => 0.46736850809229
923 => 0.43776183427495
924 => 0.45754486021846
925 => 0.47882973272961
926 => 0.47964737136813
927 => 0.49030302359291
928 => 0.49377294074724
929 => 0.50235213745645
930 => 0.50181550636642
1001 => 0.50390440424028
1002 => 0.50342420279375
1003 => 0.51931535813456
1004 => 0.53684566233487
1005 => 0.53623864364337
1006 => 0.53371845500543
1007 => 0.53746136488879
1008 => 0.55555451748508
1009 => 0.55388878993087
1010 => 0.55550690236345
1011 => 0.57683974895987
1012 => 0.60457548409726
1013 => 0.59168945050367
1014 => 0.61964843554549
1015 => 0.63724713458721
1016 => 0.66768226484041
1017 => 0.66387163663654
1018 => 0.67571980950081
1019 => 0.65704981684949
1020 => 0.61417973989402
1021 => 0.60739538611575
1022 => 0.62097783418704
1023 => 0.6543689574144
1024 => 0.61992622888769
1025 => 0.62689394801034
1026 => 0.62488724443427
1027 => 0.62478031572864
1028 => 0.62886134951197
1029 => 0.62294159715685
1030 => 0.59882346111899
1031 => 0.60987666073607
1101 => 0.60560848954567
1102 => 0.61034434369466
1103 => 0.63590179532193
1104 => 0.62460223674396
1105 => 0.61269906968367
1106 => 0.6276282827015
1107 => 0.64663830110737
1108 => 0.64544868831982
1109 => 0.6431403422924
1110 => 0.65615236798791
1111 => 0.67764442227107
1112 => 0.68345363818174
1113 => 0.68774188260281
1114 => 0.68833315905799
1115 => 0.69442367402263
1116 => 0.66167344005035
1117 => 0.71364890245002
1118 => 0.72262362901327
1119 => 0.72093675238368
1120 => 0.73091178324451
1121 => 0.72797687612314
1122 => 0.72372465617711
1123 => 0.73953720184142
1124 => 0.72140939424392
1125 => 0.69567925358678
1126 => 0.68156318953779
1127 => 0.7001523613879
1128 => 0.71150411996407
1129 => 0.71900691027547
1130 => 0.72127725009039
1201 => 0.66421574748566
1202 => 0.63346276235773
1203 => 0.65317507324104
1204 => 0.67722545298971
1205 => 0.66153983897651
1206 => 0.66215468534904
1207 => 0.63979112187307
1208 => 0.67920413212761
1209 => 0.67346198804911
1210 => 0.70325224168601
1211 => 0.69614255857384
1212 => 0.72043535396375
1213 => 0.71403824679736
1214 => 0.7405922809876
1215 => 0.75118540414787
1216 => 0.76897290662192
1217 => 0.78205746585
1218 => 0.78974096929646
1219 => 0.78927968056963
1220 => 0.81972554913073
1221 => 0.80177268413788
1222 => 0.77921965454146
1223 => 0.77881174138995
1224 => 0.79049227499684
1225 => 0.81497146903898
1226 => 0.82131856789631
1227 => 0.82486573027041
1228 => 0.81943312761687
1229 => 0.79994657936056
1230 => 0.79153238662252
1231 => 0.79870152261796
]
'min_raw' => 0.29561794224766
'max_raw' => 0.82486573027041
'avg_raw' => 0.56024183625904
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$0.295617'
'max' => '$0.824865'
'avg' => '$0.560241'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.11703071684456
'max_diff' => 0.42618233015951
'year' => 2036
]
11 => [
'items' => [
101 => 0.78993428534642
102 => 0.80506899652941
103 => 0.82585218758351
104 => 0.82156054081649
105 => 0.83590687251902
106 => 0.85075381655304
107 => 0.87198561333966
108 => 0.87753639123084
109 => 0.88671161600779
110 => 0.8961559362076
111 => 0.89918919732421
112 => 0.90498063396147
113 => 0.90495011023166
114 => 0.92240299434669
115 => 0.94165406599639
116 => 0.94892089988082
117 => 0.96563058370251
118 => 0.93701583573503
119 => 0.9587204507709
120 => 0.97829855683501
121 => 0.95495673167481
122 => 0.9871279997104
123 => 0.98837713714656
124 => 1.0072376293883
125 => 0.98811890726819
126 => 0.97676627110237
127 => 1.0095409063354
128 => 1.0253995199333
129 => 1.0206227764559
130 => 0.98427152273621
131 => 0.96311353389275
201 => 0.90773899601814
202 => 0.97333252813263
203 => 1.005281224236
204 => 0.98418878333154
205 => 0.99482658364975
206 => 1.0528629728675
207 => 1.0749594723038
208 => 1.0703635548872
209 => 1.0711401892754
210 => 1.0830630592913
211 => 1.1359356309865
212 => 1.1042531604501
213 => 1.1284732220556
214 => 1.1413194553993
215 => 1.1532517528572
216 => 1.1239498015419
217 => 1.0858283934118
218 => 1.0737537432291
219 => 0.98209155577017
220 => 0.97732014084423
221 => 0.97464180105763
222 => 0.9577552475618
223 => 0.94448704213036
224 => 0.9339356725544
225 => 0.9062457278814
226 => 0.91559027136169
227 => 0.87145827889353
228 => 0.89969236373288
301 => 0.82925663814947
302 => 0.88791760342422
303 => 0.85599110701198
304 => 0.87742889069243
305 => 0.87735409628473
306 => 0.83788033967351
307 => 0.81511270065645
308 => 0.82962112636789
309 => 0.84517531041082
310 => 0.84769892444123
311 => 0.86786533005863
312 => 0.87349334039101
313 => 0.85644020633722
314 => 0.82779701429511
315 => 0.83445017452484
316 => 0.81497787457674
317 => 0.78085341790891
318 => 0.8053621984436
319 => 0.81373057369316
320 => 0.81742652493918
321 => 0.78386904102669
322 => 0.77332455101297
323 => 0.7677107530065
324 => 0.82346516451885
325 => 0.82651951703996
326 => 0.81089301770001
327 => 0.88152627648204
328 => 0.86553979463715
329 => 0.88340061164103
330 => 0.83384646996912
331 => 0.83573950491449
401 => 0.81227978010665
402 => 0.82541565841966
403 => 0.81613164301715
404 => 0.82435440926325
405 => 0.82928310144743
406 => 0.85273897674526
407 => 0.88818543184243
408 => 0.84923545116028
409 => 0.83226438680306
410 => 0.84279313968139
411 => 0.8708325960592
412 => 0.91331380778494
413 => 0.88816407542924
414 => 0.89932509957855
415 => 0.90176328683577
416 => 0.88321880529037
417 => 0.91399756927109
418 => 0.93049215893459
419 => 0.94741219485494
420 => 0.96210338795594
421 => 0.94065396042879
422 => 0.9636079225375
423 => 0.94511108099764
424 => 0.92851750196806
425 => 0.92854266757792
426 => 0.91813327305916
427 => 0.89796375951094
428 => 0.89424419175679
429 => 0.91359385294349
430 => 0.92911044879549
501 => 0.93038846994934
502 => 0.93897925468449
503 => 0.94406319259863
504 => 0.99389269543565
505 => 1.013934533688
506 => 1.0384413141303
507 => 1.0479880862391
508 => 1.0767204475792
509 => 1.0535167322688
510 => 1.0484964625031
511 => 0.97880115217571
512 => 0.99021375533742
513 => 1.0084864341517
514 => 0.97910246191911
515 => 0.99773982904262
516 => 1.0014192401062
517 => 0.97810400578656
518 => 0.99055767982849
519 => 0.95748441383014
520 => 0.88890633866239
521 => 0.91407391627284
522 => 0.93260572470915
523 => 0.90615854911503
524 => 0.95356408772045
525 => 0.92587075071611
526 => 0.91709329240035
527 => 0.88284929812071
528 => 0.89901114524848
529 => 0.92087027490415
530 => 0.90736387417353
531 => 0.93539168368585
601 => 0.97508653669906
602 => 1.0033754528256
603 => 1.005547124541
604 => 0.98735924668176
605 => 1.0165054370246
606 => 1.0167177352017
607 => 0.98384071342922
608 => 0.96370372065363
609 => 0.95912855352642
610 => 0.97055821802454
611 => 0.98443594075772
612 => 1.0063172415686
613 => 1.0195396533767
614 => 1.0540166907469
615 => 1.0633451885251
616 => 1.0735943793596
617 => 1.0872904590478
618 => 1.1037361143163
619 => 1.0677539568405
620 => 1.0691835950362
621 => 1.0356775082016
622 => 0.99987144915991
623 => 1.0270437846843
624 => 1.062567998798
625 => 1.0544187048296
626 => 1.0535017427831
627 => 1.0550438186012
628 => 1.04889951708
629 => 1.0211090690182
630 => 1.007152879979
701 => 1.0251599244431
702 => 1.0347298671745
703 => 1.0495720137641
704 => 1.0477424059172
705 => 1.0859741816019
706 => 1.1008298935641
707 => 1.0970291667324
708 => 1.097728591939
709 => 1.1246241488452
710 => 1.1545375396181
711 => 1.1825553774965
712 => 1.2110563255805
713 => 1.1766973202543
714 => 1.1592519363185
715 => 1.1772511194703
716 => 1.1677004995331
717 => 1.2225811945902
718 => 1.226381014843
719 => 1.2812577414013
720 => 1.3333422895041
721 => 1.3006289180323
722 => 1.3314761538876
723 => 1.3648399544771
724 => 1.4292041388958
725 => 1.4075285459429
726 => 1.3909253814408
727 => 1.3752354712122
728 => 1.4078836836947
729 => 1.4498850874856
730 => 1.4589317875777
731 => 1.4735908978323
801 => 1.4581786358303
802 => 1.4767410078068
803 => 1.5422743376033
804 => 1.5245666534135
805 => 1.4994188952119
806 => 1.5511511651983
807 => 1.5698728726023
808 => 1.7012716197977
809 => 1.8671679659434
810 => 1.7984857893049
811 => 1.7558525459054
812 => 1.7658723693784
813 => 1.8264520990451
814 => 1.8459083855095
815 => 1.793019491915
816 => 1.8117007432529
817 => 1.9146362748248
818 => 1.9698578849458
819 => 1.8948595211497
820 => 1.6879420099145
821 => 1.4971546147334
822 => 1.5477600232038
823 => 1.5420229403519
824 => 1.6526143275568
825 => 1.5241443310019
826 => 1.5263074362643
827 => 1.6391857362382
828 => 1.6090717410291
829 => 1.5602909254995
830 => 1.4975107686708
831 => 1.3814558423114
901 => 1.2786627576037
902 => 1.480263668549
903 => 1.4715702706816
904 => 1.4589809422802
905 => 1.4869971303299
906 => 1.6230357869657
907 => 1.6198996556161
908 => 1.5999491880381
909 => 1.6150814418607
910 => 1.5576381682411
911 => 1.5724426078119
912 => 1.4971243930352
913 => 1.5311713716808
914 => 1.560186263778
915 => 1.5660114329393
916 => 1.5791358365003
917 => 1.4669892450365
918 => 1.5173397721528
919 => 1.5469159896273
920 => 1.4132895630857
921 => 1.5442746248162
922 => 1.4650370223828
923 => 1.438142590008
924 => 1.4743524001286
925 => 1.4602414019094
926 => 1.4481095942661
927 => 1.4413398371503
928 => 1.467928325372
929 => 1.4666879406163
930 => 1.4231840132825
1001 => 1.3664349135224
1002 => 1.3854817741276
1003 => 1.3785618711045
1004 => 1.3534832498634
1005 => 1.3703832125756
1006 => 1.2959643296665
1007 => 1.1679305095782
1008 => 1.2525135729105
1009 => 1.2492572169809
1010 => 1.2476152146572
1011 => 1.3111770490472
1012 => 1.3050670452916
1013 => 1.2939773286459
1014 => 1.3532795785206
1015 => 1.3316334595885
1016 => 1.3983416976701
1017 => 1.4422800576889
1018 => 1.4311358683311
1019 => 1.4724601083014
1020 => 1.3859205753267
1021 => 1.4146655368175
1022 => 1.4205898335419
1023 => 1.3525477979624
1024 => 1.3060667174697
1025 => 1.302966959324
1026 => 1.2223751712372
1027 => 1.265426653919
1028 => 1.3033101770875
1029 => 1.2851669093699
1030 => 1.2794232928253
1031 => 1.3087661841136
1101 => 1.3110463780716
1102 => 1.2590577141857
1103 => 1.2698678036744
1104 => 1.3149476738703
1105 => 1.2687319066085
1106 => 1.1789422201215
1107 => 1.1566731364332
1108 => 1.1537020301685
1109 => 1.0933065090225
1110 => 1.158161263089
1111 => 1.1298504249397
1112 => 1.2192840234376
1113 => 1.1682000316176
1114 => 1.1659979028305
1115 => 1.1626690621868
1116 => 1.1106841422288
1117 => 1.1220655358856
1118 => 1.1598990218359
1119 => 1.1733984358477
1120 => 1.1719903363689
1121 => 1.1597136171148
1122 => 1.1653338363223
1123 => 1.1472291520407
1124 => 1.1408360112044
1125 => 1.1206575001532
1126 => 1.0910006633639
1127 => 1.0951246284154
1128 => 1.0363666746023
1129 => 1.0043522228443
1130 => 0.99549104454137
1201 => 0.98364150658056
1202 => 0.99682948138446
1203 => 1.0362002207017
1204 => 0.98871075611681
1205 => 0.90729340008464
1206 => 0.9121867219106
1207 => 0.92318056321324
1208 => 0.90269361267731
1209 => 0.88330443333449
1210 => 0.90016175167923
1211 => 0.86566414462236
1212 => 0.9273494342118
1213 => 0.92568101999943
1214 => 0.94867348136565
1215 => 0.96305113931075
1216 => 0.92991529256932
1217 => 0.92158171672271
1218 => 0.92632890026485
1219 => 0.84786853079537
1220 => 0.94226159527838
1221 => 0.94307791041979
1222 => 0.93608812457977
1223 => 0.98634951735807
1224 => 1.0924167330418
1225 => 1.0525099799577
1226 => 1.0370568789756
1227 => 1.0076805227123
1228 => 1.0468227732376
1229 => 1.0438172591115
1230 => 1.0302251844259
1231 => 1.0220046552461
]
'min_raw' => 0.7677107530065
'max_raw' => 1.9698578849458
'avg_raw' => 1.3687843189762
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$0.76771'
'max' => '$1.96'
'avg' => '$1.36'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 0.47209281075884
'max_diff' => 1.1449921546754
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.024097563293446
]
1 => [
'year' => 2028
'avg' => 0.041358414184162
]
2 => [
'year' => 2029
'avg' => 0.11298373342222
]
3 => [
'year' => 2030
'avg' => 0.08716678207482
]
4 => [
'year' => 2031
'avg' => 0.085608582457852
]
5 => [
'year' => 2032
'avg' => 0.15009878706105
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.024097563293446
'min' => '$0.024097'
'max_raw' => 0.15009878706105
'max' => '$0.150098'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.15009878706105
]
1 => [
'year' => 2033
'avg' => 0.38606951479728
]
2 => [
'year' => 2034
'avg' => 0.24470941211121
]
3 => [
'year' => 2035
'avg' => 0.288635312757
]
4 => [
'year' => 2036
'avg' => 0.56024183625904
]
5 => [
'year' => 2037
'avg' => 1.3687843189762
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.15009878706105
'min' => '$0.150098'
'max_raw' => 1.3687843189762
'max' => '$1.36'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 1.3687843189762
]
]
]
]
'prediction_2025_max_price' => '$0.0412024'
'last_price' => 0.03995097
'sma_50day_nextmonth' => '$0.03675'
'sma_200day_nextmonth' => '$0.037299'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'increase'
'sma_200day_direction_label' => 'aumentar'
'sma_200day_date_nextmonth' => '4 de fev. de 2026'
'sma_50day_date_nextmonth' => '4 de fev. de 2026'
'daily_sma3' => '$0.038022'
'daily_sma3_action' => 'BUY'
'daily_sma5' => '$0.0374029'
'daily_sma5_action' => 'BUY'
'daily_sma10' => '$0.037262'
'daily_sma10_action' => 'BUY'
'daily_sma21' => '$0.036371'
'daily_sma21_action' => 'BUY'
'daily_sma50' => '$0.03928'
'daily_sma50_action' => 'BUY'
'daily_sma100' => '$0.040016'
'daily_sma100_action' => 'SELL'
'daily_sma200' => '$0.038242'
'daily_sma200_action' => 'BUY'
'daily_ema3' => '$0.038483'
'daily_ema3_action' => 'BUY'
'daily_ema5' => '$0.037963'
'daily_ema5_action' => 'BUY'
'daily_ema10' => '$0.037533'
'daily_ema10_action' => 'BUY'
'daily_ema21' => '$0.03764'
'daily_ema21_action' => 'BUY'
'daily_ema50' => '$0.038719'
'daily_ema50_action' => 'BUY'
'daily_ema100' => '$0.040786'
'daily_ema100_action' => 'SELL'
'daily_ema200' => '$0.057427'
'daily_ema200_action' => 'SELL'
'weekly_sma21' => '$0.037424'
'weekly_sma21_action' => 'BUY'
'weekly_sma50' => '$0.085021'
'weekly_sma50_action' => 'SELL'
'weekly_sma100' => '$0.199937'
'weekly_sma100_action' => 'SELL'
'weekly_sma200' => '$0.237316'
'weekly_sma200_action' => 'SELL'
'weekly_ema3' => '$0.038081'
'weekly_ema3_action' => 'BUY'
'weekly_ema5' => '$0.037755'
'weekly_ema5_action' => 'BUY'
'weekly_ema10' => '$0.03811'
'weekly_ema10_action' => 'BUY'
'weekly_ema21' => '$0.04483'
'weekly_ema21_action' => 'SELL'
'weekly_ema50' => '$0.090073'
'weekly_ema50_action' => 'SELL'
'weekly_ema100' => '$0.163241'
'weekly_ema100_action' => 'SELL'
'weekly_ema200' => '$0.3338072'
'weekly_ema200_action' => 'SELL'
'rsi_14' => '54.31'
'rsi_14_action' => 'NEUTRAL'
'stoch_rsi_14' => 111.73
'stoch_rsi_14_action' => 'SELL'
'momentum_10' => 0
'momentum_10_action' => 'BUY'
'vwma_10' => '0.037135'
'vwma_10_action' => 'BUY'
'hma_9' => '0.037749'
'hma_9_action' => 'BUY'
'stochastic_fast_14' => 100
'stochastic_fast_14_action' => 'SELL'
'cci_20' => 113.83
'cci_20_action' => 'SELL'
'adx_14' => 5.59
'adx_14_action' => 'NEUTRAL'
'ao_5_34' => '-0.000891'
'ao_5_34_action' => 'NEUTRAL'
'macd_12_26' => 0
'macd_12_26_action' => 'BUY'
'williams_percent_r_14' => -0
'williams_percent_r_14_action' => 'SELL'
'ultimate_oscillator' => 58.83
'ultimate_oscillator_action' => 'NEUTRAL'
'ichimoku_cloud' => '0.0023056'
'ichimoku_cloud_action' => 'NEUTRAL'
'sell_signals' => 11
'buy_signals' => 23
'sell_pct' => 32.35
'buy_pct' => 67.65
'overall_action' => 'bullish'
'overall_action_label' => 'Altista'
'overall_action_dir' => 1
'last_updated' => 1767710522
'last_updated_date' => '6 de janeiro de 2026'
]
Previsão de preço de Komodo para 2026
A previsão de preço para Komodo em 2026 sugere que o preço médio poderia variar entre $0.013803 na extremidade inferior e $0.0412024 na extremidade superior. No mercado de criptomoedas, comparado ao preço médio de hoje, Komodo poderia potencialmente ganhar 3.13% até 2026 se KMD atingir a meta de preço prevista.
Previsão de preço de Komodo 2027-2032
A previsão de preço de KMD para 2027-2032 está atualmente dentro de uma faixa de preço entre $0.024097 na extremidade inferior e $0.150098 na extremidade superior. Considerando a volatilidade de preços no mercado, se Komodo atingir a meta de preço superior, poderia ganhar 275.71% até 2032 em comparação com o preço de hoje.
| Previsão de Preço de Komodo | Potencial Mínimo ($) | Preço Médio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2027 | $0.013287 | $0.024097 | $0.0349072 |
| 2028 | $0.02398 | $0.041358 | $0.058736 |
| 2029 | $0.052678 | $0.112983 | $0.173288 |
| 2030 | $0.04480092 | $0.087166 | $0.129532 |
| 2031 | $0.052968 | $0.0856085 | $0.118248 |
| 2032 | $0.080852 | $0.150098 | $0.219345 |
Previsão de preço de Komodo 2032-2037
A previsão de preço de Komodo para 2032-2037 é atualmente estimada entre $0.150098 na extremidade inferior e $1.36 na extremidade superior. Comparado ao preço atual, Komodo poderia potencialmente ganhar 3326.16% até 2037 se atingir a meta de preço superior. Por favor, note que esta informação é apenas para fins gerais e não deve ser considerada como aconselhamento de investimento a longo prazo.
| Previsão de Preço de Komodo | Potencial Mínimo ($) | Preço Médio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2032 | $0.080852 | $0.150098 | $0.219345 |
| 2033 | $0.187883 | $0.386069 | $0.584255 |
| 2034 | $0.151049 | $0.2447094 | $0.338369 |
| 2035 | $0.178587 | $0.288635 | $0.398683 |
| 2036 | $0.295617 | $0.560241 | $0.824865 |
| 2037 | $0.76771 | $1.36 | $1.96 |
Komodo Histograma de preços potenciais
Previsão de preço de Komodo baseada na análise técnica
Em 6 de janeiro de 2026, o sentimento geral de previsão de preço para Komodo é Altista, com 23 indicadores técnicos mostrando sinais de alta e 11 indicando sinais de baixa. A previsão de preço de KMD foi atualizada pela última vez em 6 de janeiro de 2026.
Médias Móveis Simples de 50 e 200 dias e Índice de Força Relativa de 14 dias - RSI (14) de Komodo
De acordo com nossos indicadores técnicos, o SMA de 200 dias de Komodo está projetado para aumentar no próximo mês, alcançando $0.037299 até 4 de fev. de 2026. O SMA de 50 dias de curto prazo para Komodo é esperado para alcançar $0.03675 até 4 de fev. de 2026.
O oscilador de momentum Índice de Força Relativa (RSI) é uma ferramenta comumente usada para identificar se uma criptomoeda está sobrevendida (abaixo de 30) ou sobrecomprada (acima de 70). No momento, o RSI está em 54.31, sugerindo que o mercado de KMD está em um estado NEUTRAL.
Médias Móveis e Osciladores Populares de KMD para Sábado, 19 de Outubro de 2024
Médias móveis (MA) são indicadores amplamente utilizados nos mercados financeiros, projetados para suavizar movimentos de preços ao longo de um período definido. Como indicadores atrasados, eles se baseiam em dados históricos de preços. A tabela abaixo destaca dois tipos: a média móvel simples (SMA) e a média móvel exponencial (EMA).
Média Móvel Simples Diária (SMA)
| Período | Valor | Ação |
|---|---|---|
| SMA 3 | $0.038022 | BUY |
| SMA 5 | $0.0374029 | BUY |
| SMA 10 | $0.037262 | BUY |
| SMA 21 | $0.036371 | BUY |
| SMA 50 | $0.03928 | BUY |
| SMA 100 | $0.040016 | SELL |
| SMA 200 | $0.038242 | BUY |
Média Móvel Exponencial Diária (EMA)
| Período | Valor | Ação |
|---|---|---|
| EMA 3 | $0.038483 | BUY |
| EMA 5 | $0.037963 | BUY |
| EMA 10 | $0.037533 | BUY |
| EMA 21 | $0.03764 | BUY |
| EMA 50 | $0.038719 | BUY |
| EMA 100 | $0.040786 | SELL |
| EMA 200 | $0.057427 | SELL |
Média Móvel Simples Semanal (SMA)
| Período | Valor | Ação |
|---|---|---|
| SMA 21 | $0.037424 | BUY |
| SMA 50 | $0.085021 | SELL |
| SMA 100 | $0.199937 | SELL |
| SMA 200 | $0.237316 | SELL |
Média Móvel Exponencial Semanal (EMA)
| Período | Valor | Ação |
|---|---|---|
| EMA 21 | $0.04483 | SELL |
| EMA 50 | $0.090073 | SELL |
| EMA 100 | $0.163241 | SELL |
| EMA 200 | $0.3338072 | SELL |
Osciladores de Komodo
Um oscilador é uma ferramenta de análise técnica que define limites altos e baixos entre dois extremos, criando um indicador de tendência que flutua dentro desses limites. Os traders usam esse indicador para identificar condições de sobrecompra ou sobrevenda de curto prazo.
| Período | Valor | Ação |
|---|---|---|
| RSI (14) | 54.31 | NEUTRAL |
| Stoch RSI (14) | 111.73 | SELL |
| Estocástico Rápido (14) | 100 | SELL |
| Índice de Canal de Commodities (20) | 113.83 | SELL |
| Índice Direcional Médio (14) | 5.59 | NEUTRAL |
| Oscilador Impressionante (5, 34) | -0.000891 | NEUTRAL |
| Momentum (10) | 0 | BUY |
| MACD (12, 26) | 0 | BUY |
| Williams Percent Range (14) | -0 | SELL |
| Oscilador Ultimate (7, 14, 28) | 58.83 | NEUTRAL |
| VWMA (10) | 0.037135 | BUY |
| Média Móvel de Hull (9) | 0.037749 | BUY |
| Nuvem Ichimoku B/L (9, 26, 52, 26) | 0.0023056 | NEUTRAL |
Previsão do preço de Komodo com base nos fluxos financeiros mundiais
Definições dos fluxos financeiros mundiais, usadas na previsão do preço do Komodo
M0: o total de todas as moedas físicas, mais as contas no Banco Central que podem ser trocadas por moedas físicas.
M1: o valor de M0, mais o valor em contas de demanda, incluindo contas 'correntes'.
M2: o valor de M1, mais a maioria das contas de poupança, do mercado de moedas e de certificados de depósito (CD) de menos de US$ 100.000.
Previsões de preço de Komodo por empresas de Internet ou nichos tecnológicos
| Comparação | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Facebook stock | $0.056137 | $0.078882 | $0.110843 | $0.155753 | $0.21886 | $0.307535 |
| Amazon.com stock | $0.08336 | $0.173935 | $0.362927 | $0.757269 | $1.58 | $3.29 |
| Apple stock | $0.056667 | $0.080378 | $0.11401 | $0.161715 | $0.22938 | $0.325359 |
| Netflix stock | $0.063036 | $0.099461 | $0.156934 | $0.247618 | $0.3907028 | $0.616467 |
| Google stock | $0.051736 | $0.066998 | $0.086762 | $0.112357 | $0.1455019 | $0.188424 |
| Tesla stock | $0.090565 | $0.2053058 | $0.465412 | $1.05 | $2.39 | $5.42 |
| Kodak stock | $0.029958 | $0.022466 | $0.016847 | $0.012633 | $0.009473 | $0.0071043 |
| Nokia stock | $0.026465 | $0.017532 | $0.011614 | $0.007694 | $0.005097 | $0.003376 |
Este cálculo mostra quanto a criptomoeda pode custar, se assumirmos que sua capitalização se comportará da mesma forma que a de algumas empresas de Internet ou nichos tecnológicos. Se você extrapolar os dados, poderá obter uma imagem em potencial do preço futuro para 2024, 2025, 2026, 2027, 2028, 2029 e 2030.
Visão geral da previsão para Komodo
Você pode fazer perguntas como: 'Devo investir em Komodo agora?', 'Devo comprar KMD hoje?', 'Komodo será um bom ou mau investimento no curto ou no longo prazo?'.
Atualizamos a previsão para Komodo regularmente com novos valores. Veja nossas previsões semelhantes. Fazemos previsões de preços futuros para uma enorme quantidade de moedas digitais, como Komodo, com métodos de análise técnica.
Se você estiver tentando encontrar criptomoedas com bom retorno, você deve explorar o máximo de fontes de informações disponíveis sobre Komodo para poder tomar sozinho uma decisão de tão grande responsabilidade sobre o seu investimento.
O preço de Komodo é de $0.03995 USD hoje, mas o preço pode tanto subir quanto descer e seu investimento pode ser perdido, porque criptomoedas são ativos de alto risco
Previsão de curto prazo para Komodo
com base no histórico de preços de 4 horas
Previsão de longo prazo para Komodo
com base no histórico de preços de 1 mês
Previsão do preço de Komodo com base no padrão de crescimento do Bitcoin
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| Se Komodo tiver 1% da média anterior do crescimento anual do Bitcoin | $0.040989 | $0.042054 | $0.043148 | $0.044269 |
| Se Komodo tiver 2% da média anterior do crescimento anual do Bitcoin | $0.042027 | $0.044212 | $0.046511 | $0.048929 |
| Se Komodo tiver 5% da média anterior do crescimento anual do Bitcoin | $0.045143 | $0.05101 | $0.057639 | $0.065131 |
| Se Komodo tiver 10% da média anterior do crescimento anual do Bitcoin | $0.050335 | $0.063419 | $0.079904 | $0.100673 |
| Se Komodo tiver 20% da média anterior do crescimento anual do Bitcoin | $0.06072 | $0.092286 | $0.140262 | $0.21318 |
| Se Komodo tiver 50% da média anterior do crescimento anual do Bitcoin | $0.091873 | $0.211278 | $0.485868 | $1.11 |
| Se Komodo tiver 100% da média anterior do crescimento anual do Bitcoin | $0.143796 | $0.517569 | $1.86 | $6.70 |
Perguntas Frequentes sobre Komodo
KMD é um bom investimento?
A decisão de adquirir Komodo depende inteiramente da sua tolerância individual ao risco. Como você pode perceber, o valor de Komodo experimentou uma escalada de 3.8171% nas últimas 24 horas, e Komodo registrou um declínio de durante os últimos 30 dias. Consequentemente, a decisão de investir ou não em Komodo dependerá de quão alinhado esse investimento está com suas aspirações de negociação.
Komodo pode subir?
Parece que o valor médio de Komodo pode potencialmente subir para $0.0412024 até o final deste ano. Observando as perspectivas de Komodo em um horizonte de cinco anos mais longo, a moeda digital poderia potencialmente crescer até $0.129532. No entanto, dada a imprevisibilidade do mercado, é vital conduzir uma pesquisa aprofundada antes de investir quaisquer fundos em um projeto, rede ou ativo específico.
Qual será o preço de Komodo na próxima semana?
Com base na nossa nova previsão experimental de Komodo, o preço de Komodo aumentará 0.86% na próxima semana e atingirá $0.040292 até 13 de janeiro de 2026.
Qual será o preço de Komodo no próximo mês?
Com base na nossa nova previsão experimental de Komodo, o preço de Komodo diminuirá -11.62% no próximo mês e atingirá $0.035309 até 5 de fevereiro de 2026.
Até onde o preço de Komodo pode subir este ano em 2026?
De acordo com nossa previsão mais recente sobre o valor de Komodo em 2026, espera-se que KMD fluctue dentro do intervalo de $0.013803 e $0.0412024. No entanto, é crucial lembrar que o mercado de criptomoedas é excepcionalmente instável, e essa previsão de preço de Komodo não considera flutuações repentinas e extremas de preço.
Onde estará Komodo em 5 anos?
O futuro de Komodo parece seguir uma tendência de alta, com um preço máximo de $0.129532 projetada após um período de cinco anos. Com base na previsão de Komodo para 2030, o valor de Komodo pode potencialmente atingir seu pico mais alto de aproximadamente $0.129532, enquanto seu pico mais baixo está previsto para cerca de $0.04480092.
Quanto será Komodo em 2026?
Com base na nossa nova simulação experimental de previsão de preços de Komodo, espera-se que o valor de KMD em 2026 aumente 3.13% para $0.0412024 se o melhor cenário ocorrer. O preço ficará entre $0.0412024 e $0.013803 durante 2026.
Quanto será Komodo em 2027?
De acordo com nossa última simulação experimental para previsão de preços de Komodo, o valor de KMD pode diminuir -12.62% para $0.0349072 em 2027, assumindo as condições mais favoráveis. O preço está projetado para flutuar entre $0.0349072 e $0.013287 ao longo do ano.
Quanto será Komodo em 2028?
Nosso novo modelo experimental de previsão de preços de Komodo sugere que o valor de KMD em 2028 pode aumentar 47.02%, alcançando $0.058736 no melhor cenário. O preço é esperado para variar entre $0.058736 e $0.02398 durante o ano.
Quanto será Komodo em 2029?
Com base no nosso modelo de previsão experimental, o valor de Komodo pode experimentar um 333.75% crescimento em 2029, potencialmente alcançando $0.173288 sob condições ótimas. A faixa de preço prevista para 2029 está entre $0.173288 e $0.052678.
Quanto será Komodo em 2030?
Usando nossa nova simulação experimental para previsões de preços de Komodo, espera-se que o valor de KMD em 2030 aumente 224.23%, alcançando $0.129532 no melhor cenário. O preço está previsto para variar entre $0.129532 e $0.04480092 ao longo de 2030.
Quanto será Komodo em 2031?
Nossa simulação experimental indica que o preço de Komodo poderia aumentar 195.98% em 2031, potencialmente atingindo $0.118248 sob condições ideais. O preço provavelmente oscilará entre $0.118248 e $0.052968 durante o ano.
Quanto será Komodo em 2032?
Com base nos achados da nossa mais recente previsão experimental de preços de Komodo, KMD poderia ver um 449.04% aumento em valor, atingindo $0.219345 se o cenário mais positivo se desenrolar em 2032. O preço é esperado para permanecer dentro de uma faixa de $0.219345 e $0.080852 ao longo do ano.
Quanto será Komodo em 2033?
De acordo com nossa previsão experimental de preços de Komodo, espera-se que o valor de KMD seja aumentar 1362.43% em 2033, com o preço potencial mais alto sendo $0.584255. Ao longo do ano, o preço de KMD poderia variar entre $0.584255 e $0.187883.
Quanto será Komodo em 2034?
Os resultados da nossa nova simulação de previsão de preços de Komodo sugerem que KMD pode aumentar 746.96% em 2034, atingindo potencialmente $0.338369 nas melhores circunstâncias. A faixa de preço prevista para o ano é entre $0.338369 e $0.151049.
Quanto será Komodo em 2035?
Com base em nossa previsão experimental para o preço de Komodo, KMD poderia aumentar 897.93%, com o valor potencialmente atingindo $0.398683 em 2035. A faixa de preço esperada para o ano está entre $0.398683 e $0.178587.
Quanto será Komodo em 2036?
Nossa recente simulação de previsão de preços de Komodo sugere que o valor de KMD pode aumentar 1964.7% em 2036, possivelmente atingindo $0.824865 se as condições forem ideais. A faixa de preço esperada para 2036 está entre $0.824865 e $0.295617.
Quanto será Komodo em 2037?
De acordo com a simulação experimental, o valor de Komodo poderia aumentar 4830.69% em 2037, com um pico de $1.96 sob condições favoráveis. O preço é esperado para cair entre $1.96 e $0.76771 ao longo do ano.
Previsões relacionadas
Previsão de Preço do Solcasino Token
Previsão de Preço do Cornucopias
Previsão de Preço do Doge Eat Doge
Previsão de Preço do Vertex
Previsão de Preço do YES Money
Previsão de Preço do Strike
Previsão de Preço do Persistence
Previsão de Preço do CEEK Smart VR Token
Previsão de Preço do TOPIA
Previsão de Preço do Measurable Data Token
Previsão de Preço do CHEQD Network
Previsão de Preço do Open Exchange Token
Previsão de Preço do ZBIT•BLUE•BITCOIN
Previsão de Preço do ThunderCore
Previsão de Preço do MEOW
Previsão de Preço do Planet Token
Previsão de Preço do IRISnet
Previsão de Preço do FIDA
Previsão de Preço do Rarible
Previsão de Preço do Ampleforth Governance Token
Previsão de Preço do Firmachain
Previsão de Preço do Dynex
Previsão de Preço do Hxro
Previsão de Preço do Steem Dollars
Previsão de Preço do Kin
Como ler e prever os movimentos de preço de Komodo?
Traders de Komodo utilizam indicadores e padrões de gráfico para prever a direção do mercado. Eles também identificam níveis-chave de suporte e resistência para avaliar quando uma tendência de baixa pode desacelerar ou uma tendência de alta pode estagnar.
Indicadores de Previsão de Preço de Komodo
Médias móveis são ferramentas populares para a previsão de preço de Komodo. Uma média móvel simples (SMA) calcula o preço médio de fechamento de KMD em um período específico, como uma SMA de 12 dias. Uma média móvel exponencial (EMA) dá mais peso aos preços recentes, reagindo mais rapidamente às mudanças de preço.
Médias móveis comumente usadas no mercado de criptomoedas incluem as de 50 dias, 100 dias e 200 dias, que ajudam a identificar níveis-chave de resistência e suporte. Um movimento de preço de KMD acima dessas médias é visto como altista, enquanto uma queda abaixo indica fraqueza.
Traders também usam RSI e níveis de retração de Fibonacci para avaliar a direção futura de KMD.
Como ler gráficos de Komodo e prever movimentos de preço?
A maioria dos traders prefere gráficos de velas em vez de gráficos de linha simples porque eles fornecem informações mais detalhadas. Velas podem representar a ação de preço de Komodo em diferentes períodos de tempo, como 5 minutos para tendências de curto prazo e semanal para tendências de longo prazo. Opções populares incluem gráficos de 1 hora, 4 horas e 1 dia.
Por exemplo, um gráfico de velas de 1 hora mostra os preços de abertura, fechamento, máximo e mínimo de KMD dentro de cada hora. A cor da vela é crucial: verde indica que o preço fechou mais alto do que abriu, enquanto vermelho significa o oposto. Alguns gráficos usam velas vazias e preenchidas para transmitir a mesma informação.
O que afeta o preço de Komodo?
A ação de preço de Komodo é impulsionada pela oferta e demanda, influenciada por fatores como reduções pela metade das recompensas de bloco, hard forks e atualizações de protocolo. Eventos do mundo real, como regulamentações, adoção por empresas e governos e hacks de exchanges de criptomoedas, também impactam o preço de KMD. A capitalização de mercado de Komodo pode mudar rapidamente.
Traders frequentemente monitoram a atividade de "baleias" de KMD, grandes detentores de Komodo, pois suas ações podem influenciar significativamente os movimentos de preço no relativamente pequeno mercado de Komodo.
Padrões de previsão de preço altistas e baixistas
Traders frequentemente identificam padrões de velas para ganhar vantagem em previsões de preço de criptomoedas. Certas formações indicam tendências altistas, enquanto outras sugerem movimentos baixistas.
Padrões de velas altistas comumente seguidos:
- Martelo
- Engolfo de Alta
- Linha de Perfuração
- Estrela da Manhã
- Três Soldados Brancos
Padrões de velas baixistas comuns:
- Harami de Baixa
- Nuvem Negra
- Estrela da Noite
- Estrela Cadente
- Homem Enforcado


