Previsão de Preço Bonfida - Projeção FIDA
Previsão de Preço Bonfida até $0.039545 até 2026
| Ano | Preço Mínimo | Preço Máximo |
|---|---|---|
| 2026 | $0.013247 | $0.039545 |
| 2027 | $0.012753 | $0.033503 |
| 2028 | $0.023016 | $0.056373 |
| 2029 | $0.050559 | $0.166317 |
| 2030 | $0.042998 | $0.124321 |
| 2031 | $0.050837 | $0.113491 |
| 2032 | $0.07760007 | $0.210521 |
| 2033 | $0.180325 | $0.560752 |
| 2034 | $0.144973 | $0.324757 |
| 2035 | $0.1714032 | $0.382645 |
Calculadora de lucro do investimento
Se você abrir um short de $10,000.00 em Bonfida hoje e fechar em Apr 06, 2026, nossa previsão mostra que pode lucrar cerca de $3,954.44, com um retorno de 39.54% nos próximos 90 dias.
Previsão de preço de longo prazo de FIDA para os anos 2027, 2028, 2029, 2030, 2031, 2032 e 2037
[
'name' => 'Bonfida'
'name_with_ticker' => 'Bonfida <small>FIDA</small>'
'name_lang' => 'FIDA'
'name_lang_with_ticker' => 'FIDA <small>FIDA</small>'
'name_with_lang' => 'FIDA/Bonfida'
'name_with_lang_with_ticker' => 'FIDA/Bonfida <small>FIDA</small>'
'image' => '/uploads/coins/bonfida.png?1717082446'
'price_for_sd' => 0.03834
'ticker' => 'FIDA'
'marketcap' => '$38.04M'
'low24h' => '$0.03702'
'high24h' => '$0.03894'
'volume24h' => '$6.29M'
'current_supply' => '990.91M'
'max_supply' => '1B'
'algo' => null
'proof' => null
'ico_price_and_roi' => '—'
'price' => '$0.03834'
'change_24h_pct' => '2.8205%'
'ath_price' => '$18.77'
'ath_days' => 1525
'ath_exchange' => null
'ath_pair' => null
'ath_date' => '3 de nov. de 2021'
'ath_pct' => '-99.79%'
'fdv' => '$38.39M'
'new_prediction' => true
'change_24h_pct_is_increased' => true
'change_30d_pct' => null
'change_30d_pct_is_increased' => false
'max_price' => '$1.89'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.038672'
'next_week_prediction_price_date' => '13 de janeiro de 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.033889'
'next_month_prediction_price_date' => '5 de fevereiro de 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.013247'
'current_year_max_price_prediction' => '$0.039545'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.042998'
'grand_prediction_max_price' => '$0.124321'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.039070466167624
107 => 0.039216341105715
108 => 0.039545004789792
109 => 0.036736609594086
110 => 0.037997496586807
111 => 0.038738149565897
112 => 0.035391852461184
113 => 0.038672004031302
114 => 0.036687721681844
115 => 0.036014226449517
116 => 0.036920999053595
117 => 0.036567628887921
118 => 0.036263821970066
119 => 0.036094292489838
120 => 0.036760126213433
121 => 0.036729064274384
122 => 0.035639631069826
123 => 0.034218509865458
124 => 0.034695484788357
125 => 0.034522195327204
126 => 0.033894171965201
127 => 0.034317383883361
128 => 0.032453772778432
129 => 0.029247526734478
130 => 0.031365671081087
131 => 0.03128412482784
201 => 0.031243005509125
202 => 0.032834732444391
203 => 0.032681724626954
204 => 0.032404013940048
205 => 0.033889071590652
206 => 0.033347005571338
207 => 0.035017525316049
208 => 0.036117837662359
209 => 0.035838762859959
210 => 0.036873611939935
211 => 0.034706473327227
212 => 0.035426309843859
213 => 0.035574667152286
214 => 0.033870746209763
215 => 0.032706758598166
216 => 0.032629133894903
217 => 0.030610939783766
218 => 0.031689042787642
219 => 0.032637728816119
220 => 0.032183381829488
221 => 0.032039549146751
222 => 0.032774359129352
223 => 0.032831460158222
224 => 0.03152955064869
225 => 0.031800258861834
226 => 0.03292915711214
227 => 0.031771813522381
228 => 0.029523283978481
301 => 0.02896561756324
302 => 0.028891214583616
303 => 0.027378779036403
304 => 0.029002883499692
305 => 0.028293918378173
306 => 0.030533530702347
307 => 0.02925427615406
308 => 0.029199130047297
309 => 0.02911576861875
310 => 0.027813952865338
311 => 0.028098967780628
312 => 0.02904640076805
313 => 0.029384455531558
314 => 0.029349193650123
315 => 0.029041757829541
316 => 0.029182500373878
317 => 0.028729119600617
318 => 0.028569021413274
319 => 0.028063707495544
320 => 0.027321035633012
321 => 0.027424308710569
322 => 0.025952881420231
323 => 0.025151169737898
324 => 0.024929266510618
325 => 0.024632528241125
326 => 0.024962783887748
327 => 0.025948713051592
328 => 0.024759473303455
329 => 0.022720605170743
330 => 0.022843144619581
331 => 0.023118454378832
401 => 0.022605416463825
402 => 0.022119869133279
403 => 0.022542013143488
404 => 0.021678117837734
405 => 0.023222851999224
406 => 0.023181071269223
407 => 0.023756852638906
408 => 0.024116900545592
409 => 0.023287106687575
410 => 0.023078415776284
411 => 0.023197295603828
412 => 0.021232476862614
413 => 0.023596285029603
414 => 0.02361672734079
415 => 0.023441687861516
416 => 0.024700342736049
417 => 0.027356497105611
418 => 0.02635714498822
419 => 0.025970165642788
420 => 0.025234517624242
421 => 0.026214724930497
422 => 0.026139460302993
423 => 0.025799085114156
424 => 0.025593225137912
425 => 0.025972528456153
426 => 0.025546225259218
427 => 0.02546964949102
428 => 0.025005683650998
429 => 0.024840068955211
430 => 0.024717454427761
501 => 0.024582467880893
502 => 0.024880214566731
503 => 0.024205481404783
504 => 0.023391819356381
505 => 0.023324172161002
506 => 0.023510952015046
507 => 0.023428315833756
508 => 0.023323776530758
509 => 0.02312418253175
510 => 0.023064967255895
511 => 0.023257388175255
512 => 0.023040156176134
513 => 0.023360693824077
514 => 0.023273525319993
515 => 0.022786609142078
516 => 0.022179731304937
517 => 0.022174328819217
518 => 0.022043577984684
519 => 0.021877047138387
520 => 0.021830722066656
521 => 0.022506461352404
522 => 0.023905221450726
523 => 0.023630611373933
524 => 0.023829045297588
525 => 0.024805143804701
526 => 0.025115416167806
527 => 0.024895192193678
528 => 0.024593736035068
529 => 0.024606998576131
530 => 0.025637165527086
531 => 0.025701415776189
601 => 0.025863755427755
602 => 0.026072407757198
603 => 0.02493072658762
604 => 0.024553225495714
605 => 0.024374344535405
606 => 0.023823460413299
607 => 0.024417541709755
608 => 0.024071395979408
609 => 0.024118102864453
610 => 0.024087684944294
611 => 0.024104295185552
612 => 0.023222420214544
613 => 0.023543729103995
614 => 0.023009490756398
615 => 0.022294205580034
616 => 0.022291807693312
617 => 0.022466872726883
618 => 0.02236273719462
619 => 0.022082511154868
620 => 0.022122315941185
621 => 0.021773584128482
622 => 0.02216465829724
623 => 0.02217587290507
624 => 0.022025288048144
625 => 0.022627791762951
626 => 0.022874638026504
627 => 0.022775519847835
628 => 0.02286768363086
629 => 0.023642022662414
630 => 0.023768273711338
701 => 0.023824346087593
702 => 0.023749216531577
703 => 0.022881837126883
704 => 0.022920309091863
705 => 0.022638027339388
706 => 0.022399529004665
707 => 0.022409067687295
708 => 0.022531686833956
709 => 0.023067171838942
710 => 0.024194068463371
711 => 0.024236833366517
712 => 0.024288665676671
713 => 0.024077837622444
714 => 0.024014249863936
715 => 0.024098138530801
716 => 0.024521341653527
717 => 0.025609934983704
718 => 0.025225153396116
719 => 0.024912319975924
720 => 0.025186759224716
721 => 0.025144511453491
722 => 0.024787897747692
723 => 0.024777888788709
724 => 0.024093433070982
725 => 0.023840405376441
726 => 0.023628956496087
727 => 0.023398059838754
728 => 0.023261176560561
729 => 0.023471491488203
730 => 0.023519593000528
731 => 0.023059735735563
801 => 0.02299705888958
802 => 0.023372588258858
803 => 0.023207331784585
804 => 0.023377302166538
805 => 0.023416736753131
806 => 0.023410386876434
807 => 0.023237840137707
808 => 0.023347816283554
809 => 0.023087689913159
810 => 0.022804841555073
811 => 0.02262440192469
812 => 0.022466944415336
813 => 0.02255431099301
814 => 0.022242865096111
815 => 0.022143227285525
816 => 0.023310558839882
817 => 0.024172879210015
818 => 0.024160340730317
819 => 0.02408401595979
820 => 0.023970612832702
821 => 0.024513045508436
822 => 0.024324072810494
823 => 0.024461566237444
824 => 0.024496564085183
825 => 0.024602492029614
826 => 0.024640352164934
827 => 0.024525912540444
828 => 0.024141839183031
829 => 0.023184764892957
830 => 0.022739244227355
831 => 0.022592214986973
901 => 0.022597559220612
902 => 0.022450141399122
903 => 0.022493562554354
904 => 0.022435041293338
905 => 0.022324216182786
906 => 0.02254746785473
907 => 0.022573195530188
908 => 0.022521085922298
909 => 0.022533359621351
910 => 0.022101914324322
911 => 0.022134716173206
912 => 0.021952071310367
913 => 0.021917827600401
914 => 0.021456117291852
915 => 0.020638130554277
916 => 0.021091374610787
917 => 0.020543919526282
918 => 0.020336589990481
919 => 0.021318055766602
920 => 0.021219543824303
921 => 0.021050934201198
922 => 0.020801525427302
923 => 0.020709017286971
924 => 0.02014696711084
925 => 0.020113758188013
926 => 0.020392325431935
927 => 0.020263776233779
928 => 0.020083244474179
929 => 0.019429376741119
930 => 0.018694212920993
1001 => 0.018716402895648
1002 => 0.018950244828621
1003 => 0.019630171786621
1004 => 0.019364512561274
1005 => 0.019171773745197
1006 => 0.019135679558653
1007 => 0.019587473871546
1008 => 0.020226857478123
1009 => 0.020526841960928
1010 => 0.020229566449133
1011 => 0.019888072347633
1012 => 0.01990885751126
1013 => 0.020047131892953
1014 => 0.020061662575375
1015 => 0.019839385021459
1016 => 0.019901954850888
1017 => 0.01980690555848
1018 => 0.019223588226421
1019 => 0.019213037865604
1020 => 0.019069882385054
1021 => 0.019065547693996
1022 => 0.018822004509773
1023 => 0.018787931134765
1024 => 0.018304361360475
1025 => 0.018622648450297
1026 => 0.018409158181266
1027 => 0.018087377988574
1028 => 0.018031902962067
1029 => 0.018030235315783
1030 => 0.018360631624943
1031 => 0.018618787577058
1101 => 0.018412871935899
1102 => 0.018365988935914
1103 => 0.018866576719823
1104 => 0.018802872361362
1105 => 0.018747704797783
1106 => 0.020169607688975
1107 => 0.01904406059813
1108 => 0.01855325782254
1109 => 0.017945796186828
1110 => 0.018143588758503
1111 => 0.018185266559533
1112 => 0.016724430828835
1113 => 0.016131769954827
1114 => 0.015928391076821
1115 => 0.015811343657173
1116 => 0.015864683636095
1117 => 0.015331219337301
1118 => 0.015689716168776
1119 => 0.015227781178634
1120 => 0.01515033627427
1121 => 0.015976333259408
1122 => 0.016091265914486
1123 => 0.015600927501148
1124 => 0.015915804141089
1125 => 0.015801625494334
1126 => 0.015235699728206
1127 => 0.015214085526608
1128 => 0.014930123870418
1129 => 0.014485778864292
1130 => 0.014282701273124
1201 => 0.014176936700444
1202 => 0.014220577224442
1203 => 0.014198511240086
1204 => 0.014054515766159
1205 => 0.014206764892097
1206 => 0.013817831289007
1207 => 0.013662954794405
1208 => 0.013593000674901
1209 => 0.013247799715975
1210 => 0.013797167953189
1211 => 0.013905400416679
1212 => 0.014013846131557
1213 => 0.014957792040532
1214 => 0.014910635170483
1215 => 0.015336910309399
1216 => 0.01532034604137
1217 => 0.015198765466552
1218 => 0.014685837020428
1219 => 0.014890281156983
1220 => 0.014261033882341
1221 => 0.014732508725158
1222 => 0.014517347296156
1223 => 0.01465976242958
1224 => 0.01440368717863
1225 => 0.014545409795593
1226 => 0.013931066348932
1227 => 0.013357401082485
1228 => 0.013588260732037
1229 => 0.013839231573102
1230 => 0.014383400302713
1231 => 0.014059297896651
]
'min_raw' => 0.013247799715975
'max_raw' => 0.039545004789792
'avg_raw' => 0.026396402252884
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.013247'
'max' => '$0.039545'
'avg' => '$0.026396'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.025096070284025
'max_diff' => 0.0012011347897924
'year' => 2026
]
1 => [
'items' => [
101 => 0.01417585737754
102 => 0.013785402628384
103 => 0.012979782952991
104 => 0.012984342672864
105 => 0.012860415637184
106 => 0.012753324584712
107 => 0.014096524956747
108 => 0.013929476757629
109 => 0.013663307315062
110 => 0.014019585691091
111 => 0.014113791348611
112 => 0.014116473251243
113 => 0.014376404757518
114 => 0.014515130249012
115 => 0.014539581218159
116 => 0.014948589059474
117 => 0.015085683092939
118 => 0.015650354014508
119 => 0.01450336036028
120 => 0.014479738780771
121 => 0.014024599258477
122 => 0.013735942577967
123 => 0.014044363828348
124 => 0.014317582952487
125 => 0.01403308893826
126 => 0.014070237850521
127 => 0.013688327880436
128 => 0.013824842724207
129 => 0.013942427698198
130 => 0.013877504186886
131 => 0.013780310548117
201 => 0.014295182100057
202 => 0.014266131029299
203 => 0.014745591255311
204 => 0.015119364788017
205 => 0.015789233778638
206 => 0.015090190565865
207 => 0.015064714652747
208 => 0.015313745789946
209 => 0.01508564496757
210 => 0.015229796813538
211 => 0.015766008687674
212 => 0.015777337999623
213 => 0.015587557427485
214 => 0.015576009262423
215 => 0.015612458697274
216 => 0.015825944175674
217 => 0.015751345789775
218 => 0.015837672930537
219 => 0.015945626341948
220 => 0.016392167422844
221 => 0.01649982696569
222 => 0.016238270091647
223 => 0.016261885748845
224 => 0.016164056298056
225 => 0.016069554274393
226 => 0.016281981022675
227 => 0.016670195080417
228 => 0.016667780020912
301 => 0.016757838136506
302 => 0.016813943596439
303 => 0.0165730978907
304 => 0.016416316192406
305 => 0.01647643627181
306 => 0.016572569588023
307 => 0.016445261533015
308 => 0.015659457242676
309 => 0.015897820066993
310 => 0.01585814483768
311 => 0.015801642486465
312 => 0.016041318149521
313 => 0.016018200847126
314 => 0.01532574788986
315 => 0.015370076481526
316 => 0.01532844365834
317 => 0.015462967827328
318 => 0.015078380220973
319 => 0.015196676778451
320 => 0.01527087127034
321 => 0.015314572396051
322 => 0.015472450828263
323 => 0.015453925616469
324 => 0.015471299275087
325 => 0.015705391311696
326 => 0.01688934850218
327 => 0.016953788679803
328 => 0.016636461677297
329 => 0.0167632275558
330 => 0.016519864789724
331 => 0.016683235844979
401 => 0.01679501017181
402 => 0.016289923481828
403 => 0.016260015526033
404 => 0.016015648315253
405 => 0.01614695741266
406 => 0.015938035197227
407 => 0.015989297401105
408 => 0.015845963810103
409 => 0.016103935736474
410 => 0.016392388434942
411 => 0.016465262977917
412 => 0.016273561429812
413 => 0.016134756875237
414 => 0.015891061802466
415 => 0.016296332139584
416 => 0.016414845536546
417 => 0.016295709639162
418 => 0.016268103248567
419 => 0.016215789188274
420 => 0.016279201923763
421 => 0.016414200087135
422 => 0.016350537446313
423 => 0.016392587742167
424 => 0.016232335376449
425 => 0.01657317762065
426 => 0.017114517132594
427 => 0.017116257627643
428 => 0.017052594643656
429 => 0.017026545122247
430 => 0.01709186720721
501 => 0.017127301758651
502 => 0.0173385414034
503 => 0.017565209958375
504 => 0.018622973201205
505 => 0.018325957515326
506 => 0.019264467990982
507 => 0.020006707926892
508 => 0.020229273229453
509 => 0.020024523623604
510 => 0.01932408628235
511 => 0.019289719484775
512 => 0.020336468589626
513 => 0.020040714023359
514 => 0.020005534958785
515 => 0.019631289147683
516 => 0.01985251477329
517 => 0.019804129483786
518 => 0.019727750937214
519 => 0.02014983402016
520 => 0.02093993587182
521 => 0.02081679108871
522 => 0.020724869220641
523 => 0.020322094352816
524 => 0.020564654786271
525 => 0.020478283661857
526 => 0.020849388824809
527 => 0.020629554347262
528 => 0.020038473391637
529 => 0.020132604982049
530 => 0.020118377181524
531 => 0.02041118430812
601 => 0.020323290876636
602 => 0.020101214578388
603 => 0.020937235389586
604 => 0.020882948848299
605 => 0.020959914752213
606 => 0.020993797523365
607 => 0.021502668658802
608 => 0.021711136880931
609 => 0.021758462817104
610 => 0.021956491504615
611 => 0.021753535682958
612 => 0.022565503674632
613 => 0.023105415009449
614 => 0.023732549808423
615 => 0.024648962307666
616 => 0.024993541884671
617 => 0.024931296668297
618 => 0.025626110166352
619 => 0.02687467457752
620 => 0.025183667233617
621 => 0.026964302072833
622 => 0.026400573641155
623 => 0.025063983670688
624 => 0.02497792303395
625 => 0.025883077280079
626 => 0.027890622280126
627 => 0.027387755027001
628 => 0.027891444790805
629 => 0.027303863926271
630 => 0.027274685583826
701 => 0.02786290729972
702 => 0.0292373194012
703 => 0.028584387730854
704 => 0.027648250075999
705 => 0.028339479552429
706 => 0.027740672609677
707 => 0.026391392972147
708 => 0.02738737049389
709 => 0.026721388688907
710 => 0.026915757585141
711 => 0.028315552281898
712 => 0.028147125280587
713 => 0.028365085416204
714 => 0.02798039148185
715 => 0.027621026686497
716 => 0.026950245609193
717 => 0.02675166040131
718 => 0.026806542208422
719 => 0.026751633204612
720 => 0.026376337356656
721 => 0.026295292254023
722 => 0.026160213532299
723 => 0.026202080076434
724 => 0.025948092560919
725 => 0.026427419479194
726 => 0.02651638677904
727 => 0.026865200937612
728 => 0.026901415980702
729 => 0.027872858447267
730 => 0.02733780426111
731 => 0.02769676480354
801 => 0.027664655993957
802 => 0.025092951628243
803 => 0.025447309799499
804 => 0.025998579910253
805 => 0.025750233472587
806 => 0.025399129713844
807 => 0.025115594603667
808 => 0.024686009918795
809 => 0.025290642113309
810 => 0.02608566915363
811 => 0.026921579178439
812 => 0.027925870302252
813 => 0.027701724214654
814 => 0.026902804654449
815 => 0.026938643602309
816 => 0.027160185875871
817 => 0.02687326850237
818 => 0.026788650967632
819 => 0.027148560725989
820 => 0.027151039226692
821 => 0.026820906113356
822 => 0.026454023571604
823 => 0.026452486320358
824 => 0.026387203115719
825 => 0.027315477663349
826 => 0.027825934805403
827 => 0.027884457894097
828 => 0.027821995735246
829 => 0.027846034941153
830 => 0.027549011177348
831 => 0.028227919421746
901 => 0.028850952763873
902 => 0.028683966519017
903 => 0.028433630399485
904 => 0.028234225622456
905 => 0.028636993090724
906 => 0.028619058489377
907 => 0.028845511111152
908 => 0.028835237912175
909 => 0.028759090412786
910 => 0.028683969238484
911 => 0.028981816203277
912 => 0.028896041060692
913 => 0.02881013268562
914 => 0.028637830287498
915 => 0.028661249045042
916 => 0.02841095614957
917 => 0.028295159203501
918 => 0.026553850970347
919 => 0.02608851651156
920 => 0.026234920205051
921 => 0.026283120102318
922 => 0.026080605949512
923 => 0.026370959223019
924 => 0.026325707972903
925 => 0.026501754116008
926 => 0.026391768128831
927 => 0.026396281992109
928 => 0.026719727328912
929 => 0.02681362488622
930 => 0.026765867830727
1001 => 0.026799315235378
1002 => 0.027570096558304
1003 => 0.027460516102383
1004 => 0.027402303669195
1005 => 0.027418428911019
1006 => 0.027615380064764
1007 => 0.027670515634679
1008 => 0.027436902350644
1009 => 0.027547075725897
1010 => 0.028016179974642
1011 => 0.028180339912702
1012 => 0.028704259633749
1013 => 0.028481689224318
1014 => 0.02889022684345
1015 => 0.030145932203925
1016 => 0.031149076534074
1017 => 0.030226543551376
1018 => 0.032068690364035
1019 => 0.033503065897955
1020 => 0.033448012175886
1021 => 0.033197895623843
1022 => 0.031564897213321
1023 => 0.030062187729324
1024 => 0.031319268021103
1025 => 0.031322472577287
1026 => 0.031214488265374
1027 => 0.030543806978232
1028 => 0.031191150010368
1029 => 0.031242533749454
1030 => 0.031213772519605
1031 => 0.030699562749248
1101 => 0.029914459471764
1102 => 0.030067866772913
1103 => 0.030319151061619
1104 => 0.029843417479705
1105 => 0.029691391774569
1106 => 0.02997403648449
1107 => 0.03088477663122
1108 => 0.030712606482039
1109 => 0.03070811042365
1110 => 0.031444727333351
1111 => 0.030917468597883
1112 => 0.030069801730259
1113 => 0.029855754666831
1114 => 0.029096031791042
1115 => 0.02962077508739
1116 => 0.029639659664443
1117 => 0.02935226312378
1118 => 0.030093122375601
1119 => 0.030086295227169
1120 => 0.030789630824426
1121 => 0.032134144325594
1122 => 0.031736505523808
1123 => 0.031274094860308
1124 => 0.031324371720688
1125 => 0.031875784785183
1126 => 0.031542387858854
1127 => 0.031662279718088
1128 => 0.031875603314495
1129 => 0.032004306736735
1130 => 0.031305853278861
1201 => 0.031143010366939
1202 => 0.030809890919244
1203 => 0.030722986273309
1204 => 0.030994305112692
1205 => 0.03092282218435
1206 => 0.029638072488866
1207 => 0.029503808997408
1208 => 0.029507926667007
1209 => 0.029170314733855
1210 => 0.02865537549965
1211 => 0.030008605061717
1212 => 0.029899921789447
1213 => 0.029779943868279
1214 => 0.029794640479037
1215 => 0.030382031566725
1216 => 0.030041315071905
1217 => 0.030947165715719
1218 => 0.030760950055714
1219 => 0.030569958666686
1220 => 0.030543557838982
1221 => 0.030470042448826
1222 => 0.030217930822107
1223 => 0.029913490883285
1224 => 0.029712473265539
1225 => 0.027408185992066
1226 => 0.0278358483066
1227 => 0.028327834816825
1228 => 0.028497666588643
1229 => 0.028207157590948
1230 => 0.03022940188801
1231 => 0.030598885407914
]
'min_raw' => 0.012753324584712
'max_raw' => 0.033503065897955
'avg_raw' => 0.023128195241334
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.012753'
'max' => '$0.033503'
'avg' => '$0.023128'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -0.00049447513126314
'max_diff' => -0.0060419388918369
'year' => 2027
]
2 => [
'items' => [
101 => 0.029479695725311
102 => 0.029270341031909
103 => 0.030243127146855
104 => 0.029656418201277
105 => 0.029920613203546
106 => 0.02934956811558
107 => 0.030509887647709
108 => 0.030501047956941
109 => 0.030049657451938
110 => 0.030431169615778
111 => 0.030364872488758
112 => 0.029855253720334
113 => 0.030526043471659
114 => 0.030526376175007
115 => 0.030091922628017
116 => 0.029584575999243
117 => 0.029493874405011
118 => 0.029425542937801
119 => 0.029903807851408
120 => 0.030332618677452
121 => 0.031130529313501
122 => 0.031331143005292
123 => 0.032114151599965
124 => 0.031647908105834
125 => 0.031854587807918
126 => 0.03207896786116
127 => 0.032186543909987
128 => 0.032011254511272
129 => 0.033227589157995
130 => 0.033330285069709
131 => 0.03336471812059
201 => 0.032954576921345
202 => 0.033318878301018
203 => 0.033148433749863
204 => 0.033591883121109
205 => 0.033661421644766
206 => 0.033602524989133
207 => 0.033624597614132
208 => 0.03258667056929
209 => 0.032532848576513
210 => 0.031798981885972
211 => 0.032098037986837
212 => 0.031538966940403
213 => 0.031716254128297
214 => 0.031794400631466
215 => 0.031753581332986
216 => 0.032114946170079
217 => 0.031807712236591
218 => 0.03099687137218
219 => 0.030185809594717
220 => 0.030175627374778
221 => 0.029962089125201
222 => 0.029807740082239
223 => 0.02983747318374
224 => 0.029942256511579
225 => 0.029801649884739
226 => 0.029831655437512
227 => 0.0303299475395
228 => 0.030429876466897
229 => 0.03009027892685
301 => 0.028726745799869
302 => 0.028392131350344
303 => 0.02863264558097
304 => 0.028517695269831
305 => 0.023016005797613
306 => 0.024308546131397
307 => 0.023540562555585
308 => 0.023894484720545
309 => 0.023110572358023
310 => 0.023484696425786
311 => 0.023415609371293
312 => 0.025493975978969
313 => 0.02546152514309
314 => 0.025477057640965
315 => 0.02473565104767
316 => 0.025916731882172
317 => 0.026498574771541
318 => 0.026390891137966
319 => 0.026417992788584
320 => 0.025952296638902
321 => 0.025481566597656
322 => 0.02495945453708
323 => 0.025929474210629
324 => 0.025821624581718
325 => 0.026068992827367
326 => 0.026698119924102
327 => 0.026790761278918
328 => 0.026915272199266
329 => 0.026870643897612
330 => 0.027933871101302
331 => 0.027805107271536
401 => 0.028115391053389
402 => 0.02747711377283
403 => 0.026754842444041
404 => 0.026892122610815
405 => 0.026878901426817
406 => 0.026710580579957
407 => 0.026558628045546
408 => 0.026305669888112
409 => 0.027106066928996
410 => 0.027073572270833
411 => 0.027599623015587
412 => 0.027506638436668
413 => 0.026885664661456
414 => 0.02690784286132
415 => 0.027057001913889
416 => 0.027573243097896
417 => 0.02772649862969
418 => 0.027655504561186
419 => 0.027823542255417
420 => 0.027956352397488
421 => 0.02784022116448
422 => 0.029484394524777
423 => 0.028801619114215
424 => 0.029134399098602
425 => 0.029213765164025
426 => 0.029010470656333
427 => 0.029054557955621
428 => 0.029121338200972
429 => 0.029526814773832
430 => 0.030590902626607
501 => 0.03106217989311
502 => 0.032480040801795
503 => 0.031023046876623
504 => 0.030936594886744
505 => 0.031191994451695
506 => 0.032024428900913
507 => 0.032699038835413
508 => 0.032922845869867
509 => 0.032952425664121
510 => 0.033372302539168
511 => 0.033612968133704
512 => 0.033321318442679
513 => 0.03307417586653
514 => 0.032188941835233
515 => 0.032291410084768
516 => 0.03299731471119
517 => 0.033994446573586
518 => 0.03485008944541
519 => 0.034550473133862
520 => 0.036836334094821
521 => 0.037062967872195
522 => 0.037031654412109
523 => 0.037547959884596
524 => 0.036523198665491
525 => 0.036085093390509
526 => 0.033127610896681
527 => 0.033958542843304
528 => 0.035166351226642
529 => 0.035006493258058
530 => 0.034129350525267
531 => 0.034849424053992
601 => 0.034611345226614
602 => 0.034423562577562
603 => 0.035283831296328
604 => 0.034337930502153
605 => 0.035156915142643
606 => 0.034106558869904
607 => 0.034551841755935
608 => 0.034299077653914
609 => 0.034462647005525
610 => 0.033506423918279
611 => 0.034022378685153
612 => 0.033484958503675
613 => 0.033484703696534
614 => 0.033472840116242
615 => 0.034105112576466
616 => 0.034125730958694
617 => 0.033658480655278
618 => 0.033591142586734
619 => 0.033840126719451
620 => 0.033548631509087
621 => 0.033685020283368
622 => 0.033552762586119
623 => 0.033522988592695
624 => 0.033285744347465
625 => 0.033183533003454
626 => 0.033223612705103
627 => 0.033086800020873
628 => 0.033004365429894
629 => 0.033456441801248
630 => 0.033214915632742
701 => 0.033419424451951
702 => 0.033186360841392
703 => 0.032378460826211
704 => 0.031913828984093
705 => 0.030387780747788
706 => 0.030820566134547
707 => 0.031107503293718
708 => 0.031012670564324
709 => 0.031216407962457
710 => 0.031228915784015
711 => 0.031162678679025
712 => 0.031085984596946
713 => 0.031048654159238
714 => 0.031326884657657
715 => 0.031488406826797
716 => 0.031136301276364
717 => 0.031053807872378
718 => 0.031409806024146
719 => 0.031626964691071
720 => 0.033230342276729
721 => 0.033111558886342
722 => 0.03340968188615
723 => 0.033376117811442
724 => 0.03368859820996
725 => 0.034199371597466
726 => 0.033160826486181
727 => 0.033341082007312
728 => 0.033296887516238
729 => 0.03377939138136
730 => 0.03378089770576
731 => 0.033491612535764
801 => 0.033648438719535
802 => 0.033560902646055
803 => 0.033719092162043
804 => 0.033109972461745
805 => 0.033851814506299
806 => 0.034272391142316
807 => 0.034278230849315
808 => 0.034477580836885
809 => 0.034680131969828
810 => 0.035068911231027
811 => 0.034669289127244
812 => 0.033950407864965
813 => 0.034002308770129
814 => 0.033580828949084
815 => 0.033587914101022
816 => 0.033550093004702
817 => 0.033663596961798
818 => 0.033134880197446
819 => 0.033258968965255
820 => 0.03308524396366
821 => 0.033340704363086
822 => 0.03306587120242
823 => 0.033296866204316
824 => 0.033396555989529
825 => 0.033764413443133
826 => 0.033011538357427
827 => 0.031476375092511
828 => 0.031799085022852
829 => 0.03132177168756
830 => 0.031365948854001
831 => 0.031455193760956
901 => 0.031165921818398
902 => 0.031221105789031
903 => 0.031219134229277
904 => 0.031202144392434
905 => 0.031126893587962
906 => 0.031017765033559
907 => 0.031452499606301
908 => 0.031526369481568
909 => 0.031690573063747
910 => 0.032179131543958
911 => 0.032130313030783
912 => 0.032209938051233
913 => 0.032036117078666
914 => 0.031374011910388
915 => 0.031409967406509
916 => 0.030961601793725
917 => 0.031679107346965
918 => 0.031509192561347
919 => 0.031399647393699
920 => 0.031369756979777
921 => 0.031859526501962
922 => 0.032006073219197
923 => 0.031914755139401
924 => 0.031727459093565
925 => 0.032087122870675
926 => 0.032183353724433
927 => 0.032204896263732
928 => 0.032842151518083
929 => 0.032240511753428
930 => 0.032385332424565
1001 => 0.033515181959897
1002 => 0.032490564339929
1003 => 0.033033327144926
1004 => 0.033006761730022
1005 => 0.033284420814966
1006 => 0.032983985580795
1007 => 0.032987709835591
1008 => 0.033234252292766
1009 => 0.032888027875831
1010 => 0.032802297841232
1011 => 0.032683862412445
1012 => 0.032942461838329
1013 => 0.0330974804987
1014 => 0.034346817052631
1015 => 0.035153945443139
1016 => 0.035118905871057
1017 => 0.035439101968553
1018 => 0.035294850693971
1019 => 0.034829025276782
1020 => 0.035624132462565
1021 => 0.035372527280286
1022 => 0.035393269305813
1023 => 0.035392497286587
1024 => 0.035559792737096
1025 => 0.035441248578007
1026 => 0.035207585872135
1027 => 0.035362702080875
1028 => 0.035823341765772
1029 => 0.037253181481845
1030 => 0.038053338729816
1031 => 0.03720501101081
1101 => 0.037790176111819
1102 => 0.037439285566858
1103 => 0.037375518316749
1104 => 0.037743045243545
1105 => 0.038111215477573
1106 => 0.038087764625309
1107 => 0.037820491941155
1108 => 0.03766951638367
1109 => 0.038812753885469
1110 => 0.039655071802252
1111 => 0.039597631367299
1112 => 0.039851154766554
1113 => 0.040595507307951
1114 => 0.040663561575806
1115 => 0.040654988302266
1116 => 0.040486308698658
1117 => 0.041219220442055
1118 => 0.041830628312752
1119 => 0.040447264244045
1120 => 0.040974031171843
1121 => 0.041210513817102
1122 => 0.041557740501581
1123 => 0.042143570120248
1124 => 0.042779936469751
1125 => 0.042869925648973
1126 => 0.042806074019936
1127 => 0.042386373305993
1128 => 0.04308269295905
1129 => 0.043490580681105
1130 => 0.043733468485244
1201 => 0.044349391543865
1202 => 0.041211974253411
1203 => 0.03899115435547
1204 => 0.038644341259379
1205 => 0.039349599328032
1206 => 0.039535570256409
1207 => 0.039460605608368
1208 => 0.036960870905124
1209 => 0.038631180673498
1210 => 0.040428293540634
1211 => 0.040497327964834
1212 => 0.04139700024198
1213 => 0.041689970414231
1214 => 0.042414324520075
1215 => 0.042369015973534
1216 => 0.042545384671316
1217 => 0.042504840561976
1218 => 0.043846554012299
1219 => 0.045326663194381
1220 => 0.045275411719864
1221 => 0.045062628513083
1222 => 0.045378647860082
1223 => 0.046906279154129
1224 => 0.046765639344366
1225 => 0.046902258939881
1226 => 0.04870342232909
1227 => 0.051045190947567
1228 => 0.049957204314559
1229 => 0.052317822248466
1230 => 0.05380370610688
1231 => 0.056373388596749
]
'min_raw' => 0.023016005797613
'max_raw' => 0.056373388596749
'avg_raw' => 0.039694697197181
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.023016'
'max' => '$0.056373'
'avg' => '$0.039694'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 0.010262681212901
'max_diff' => 0.022870322698794
'year' => 2028
]
3 => [
'items' => [
101 => 0.056051651693065
102 => 0.057052010229169
103 => 0.055475675486951
104 => 0.051856092289004
105 => 0.051283279392721
106 => 0.052430065317012
107 => 0.055249326610149
108 => 0.052341276745992
109 => 0.052929571446059
110 => 0.052760142532863
111 => 0.052751114386105
112 => 0.05309568202772
113 => 0.052595868692119
114 => 0.050559539248177
115 => 0.051492777032171
116 => 0.051132409106012
117 => 0.051532264187294
118 => 0.053690117148194
119 => 0.05273607891739
120 => 0.051731077141011
121 => 0.052991572396339
122 => 0.054596616009533
123 => 0.05449617526476
124 => 0.054301278238926
125 => 0.055399902569077
126 => 0.057214508095759
127 => 0.057704988677946
128 => 0.058067051416282
129 => 0.058116973750798
130 => 0.058631204822876
131 => 0.055866054745399
201 => 0.060254418932446
202 => 0.061012168201434
203 => 0.060869742744354
204 => 0.061711949165871
205 => 0.061464150671946
206 => 0.061105129532641
207 => 0.062440205853189
208 => 0.060909648586784
209 => 0.058737215238924
210 => 0.057545375338428
211 => 0.059114886262384
212 => 0.06007333181526
213 => 0.060706803357125
214 => 0.06089849146294
215 => 0.05608070547454
216 => 0.053484186033454
217 => 0.055148525226035
218 => 0.057179133907538
219 => 0.055854774611645
220 => 0.0559066869887
221 => 0.054018498668257
222 => 0.057346196676497
223 => 0.056861379067042
224 => 0.059376613682522
225 => 0.058776332755519
226 => 0.060827408943597
227 => 0.060287291844228
228 => 0.06252928772617
301 => 0.063423680583092
302 => 0.064925505390997
303 => 0.066030253833219
304 => 0.066678983248962
305 => 0.066640035968163
306 => 0.069210625109048
307 => 0.067694838502212
308 => 0.065790653280553
309 => 0.065756212577521
310 => 0.066742417086331
311 => 0.068809231184804
312 => 0.069345126009616
313 => 0.069644618108569
314 => 0.069185935533628
315 => 0.067540657809312
316 => 0.0668302352297
317 => 0.067435535850453
318 => 0.066695305205348
319 => 0.067973150970836
320 => 0.069727906139979
321 => 0.069365556136605
322 => 0.070576837871336
323 => 0.071830387036228
324 => 0.073623018642439
325 => 0.074091678925258
326 => 0.074866356551205
327 => 0.075663754296648
328 => 0.075919856962012
329 => 0.076408836414183
330 => 0.076406259251103
331 => 0.077879831742332
401 => 0.0795052278329
402 => 0.080118777229083
403 => 0.081529600234295
404 => 0.079113615279004
405 => 0.080946167620427
406 => 0.082599175704151
407 => 0.080628391321211
408 => 0.083344658459225
409 => 0.083450124957001
410 => 0.085042543857815
411 => 0.083428322231292
412 => 0.08246980258224
413 => 0.08523701289379
414 => 0.086575978797241
415 => 0.086172671370256
416 => 0.083103481937153
417 => 0.08131708204336
418 => 0.076641728950498
419 => 0.082179886649216
420 => 0.084877361713987
421 => 0.083096496128397
422 => 0.083994661143004
423 => 0.088894758231713
424 => 0.090760397945302
425 => 0.090372357926681
426 => 0.090437930302146
427 => 0.091444595627842
428 => 0.095908704062702
429 => 0.093233706811311
430 => 0.095278641979764
501 => 0.09636326821955
502 => 0.09737072951794
503 => 0.094896722980508
504 => 0.091678076825682
505 => 0.090658596478875
506 => 0.082919424142935
507 => 0.082516566613327
508 => 0.082290430474126
509 => 0.080864674104054
510 => 0.079744420144716
511 => 0.078853552603886
512 => 0.076515650141184
513 => 0.077304623592499
514 => 0.073578495025117
515 => 0.07596234003664
516 => 0.070015348872577
517 => 0.074968179829805
518 => 0.072272579117376
519 => 0.074082602497824
520 => 0.074076287496764
521 => 0.070743460584925
522 => 0.068821155576499
523 => 0.070046123145098
524 => 0.071359385616683
525 => 0.071572458034352
526 => 0.073275137108419
527 => 0.073750318239027
528 => 0.072310497229199
529 => 0.069892110699153
530 => 0.070453846732558
531 => 0.068809772013712
601 => 0.065928594307353
602 => 0.067997906436597
603 => 0.068704460578752
604 => 0.069016515139429
605 => 0.066183207770721
606 => 0.065292921081378
607 => 0.0648189399182
608 => 0.069526366297003
609 => 0.069784249740448
610 => 0.068464881582739
611 => 0.074428550763206
612 => 0.073078788756944
613 => 0.074586803617659
614 => 0.070402875075365
615 => 0.070562706780088
616 => 0.068581967957737
617 => 0.069691049345238
618 => 0.068907186367914
619 => 0.069601446529283
620 => 0.070017583207466
621 => 0.071997997010067
622 => 0.074990792974248
623 => 0.071702189228939
624 => 0.070269297483435
625 => 0.071158255463456
626 => 0.073525667709767
627 => 0.077112418448532
628 => 0.074988989821097
629 => 0.075931331387796
630 => 0.076137191098262
701 => 0.074571453441992
702 => 0.077170149429263
703 => 0.07856281172061
704 => 0.079991395060676
705 => 0.08123179394686
706 => 0.079420787459433
707 => 0.081358823998562
708 => 0.079797108657526
709 => 0.078396088549453
710 => 0.078398213318641
711 => 0.077519332939209
712 => 0.075816391458005
713 => 0.075502342921061
714 => 0.077136063070201
715 => 0.078446151915937
716 => 0.078554057108174
717 => 0.079279389607969
718 => 0.079708633909829
719 => 0.083915811597387
720 => 0.085607973266921
721 => 0.087677116525447
722 => 0.088483164435168
723 => 0.090909079659256
724 => 0.088949956092603
725 => 0.088526087385493
726 => 0.082641610562676
727 => 0.083605193312758
728 => 0.085147982267545
729 => 0.082667050584296
730 => 0.084240630705561
731 => 0.084551288754483
801 => 0.08258274947504
802 => 0.083634231359752
803 => 0.080841807216608
804 => 0.075051660189754
805 => 0.077176595518105
806 => 0.078741263165269
807 => 0.076508289510637
808 => 0.080510808358551
809 => 0.078172619476359
810 => 0.077431525853564
811 => 0.074540255412088
812 => 0.07590482376526
813 => 0.077750422001661
814 => 0.07661005686539
815 => 0.07897648574984
816 => 0.082327980153753
817 => 0.084716454650924
818 => 0.084899812065011
819 => 0.083364182978693
820 => 0.085825038389771
821 => 0.085842963034864
822 => 0.083067108078278
823 => 0.081366912373395
824 => 0.080980624332003
825 => 0.081945647595632
826 => 0.083117363990799
827 => 0.084964834170211
828 => 0.086081221707061
829 => 0.088992168316968
830 => 0.089779787006229
831 => 0.090645141154661
901 => 0.091801521162302
902 => 0.093190051851223
903 => 0.090152025752959
904 => 0.090272732193432
905 => 0.087443764355064
906 => 0.084420606504741
907 => 0.08671480647119
908 => 0.08971416774269
909 => 0.089026110953008
910 => 0.088948690508444
911 => 0.08907889022156
912 => 0.088560117871974
913 => 0.086213729761396
914 => 0.085035388341431
915 => 0.086555749400143
916 => 0.087363753639363
917 => 0.088616897749019
918 => 0.088462421286841
919 => 0.091690385935461
920 => 0.092944675389331
921 => 0.092623774472959
922 => 0.092682827964483
923 => 0.094953659108041
924 => 0.097479290371721
925 => 0.099844877336557
926 => 0.10225125400151
927 => 0.099350273009429
928 => 0.097877333769283
929 => 0.099397031085918
930 => 0.098590658298423
1001 => 0.10322431552108
1002 => 0.10354513989367
1003 => 0.10817846205016
1004 => 0.11257603650242
1005 => 0.10981399877969
1006 => 0.11241847594731
1007 => 0.11523543035024
1008 => 0.12066979242786
1009 => 0.11883969046328
1010 => 0.11743786103976
1011 => 0.11611313900813
1012 => 0.11886967526226
1013 => 0.12241591511644
1014 => 0.12317974121557
1015 => 0.12441743130019
1016 => 0.12311615151376
1017 => 0.12468339968524
1018 => 0.13021647441434
1019 => 0.12872138878074
1020 => 0.12659812683401
1021 => 0.13096595793049
1022 => 0.13254665902479
1023 => 0.14364084712419
1024 => 0.15764771787774
1025 => 0.1518487814117
1026 => 0.14824919441672
1027 => 0.14909518274388
1028 => 0.15421001778058
1029 => 0.15585274045762
1030 => 0.15138725394096
1031 => 0.15296453927053
1101 => 0.16165553651171
1102 => 0.16631797769103
1103 => 0.15998575632012
1104 => 0.14251540869733
1105 => 0.12640695032682
1106 => 0.13067963886001
1107 => 0.13019524857731
1108 => 0.13953264088897
1109 => 0.12868573148284
1110 => 0.12886836561878
1111 => 0.13839884531498
1112 => 0.13585627672582
1113 => 0.13173764123897
1114 => 0.12643702092383
1115 => 0.11663833402327
1116 => 0.10795936377884
1117 => 0.12498082307564
1118 => 0.12424682679925
1119 => 0.12318389141888
1120 => 0.12554933908627
1121 => 0.13703528151511
1122 => 0.13677049336575
1123 => 0.13508604625568
1124 => 0.13636368454263
1125 => 0.13151366506997
1126 => 0.13276362552097
1127 => 0.12640439866472
1128 => 0.12927903478851
1129 => 0.13172880449698
1130 => 0.13222063203542
1201 => 0.13332874459285
1202 => 0.12386004411464
1203 => 0.12811121264291
1204 => 0.13060837587265
1205 => 0.11932610155311
1206 => 0.13038536158464
1207 => 0.12369521510527
1208 => 0.12142447890754
1209 => 0.12448172605103
1210 => 0.12329031386595
1211 => 0.12226600763128
1212 => 0.12169442715252
1213 => 0.12393933203864
1214 => 0.12383460454246
1215 => 0.1201615044315
1216 => 0.11537009507146
1217 => 0.11697824932534
1218 => 0.11639399180838
1219 => 0.11427656719619
1220 => 0.11570345572598
1221 => 0.10942016077254
1222 => 0.0986100783824
1223 => 0.10575154993111
1224 => 0.10547661104491
1225 => 0.105337974391
1226 => 0.11070459288408
1227 => 0.11018871634492
1228 => 0.10925239537488
1229 => 0.11425937092731
1230 => 0.11243175749735
1231 => 0.1180640314486
]
'min_raw' => 0.050559539248177
'max_raw' => 0.16631797769103
'avg_raw' => 0.1084387584696
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.050559'
'max' => '$0.166317'
'avg' => '$0.108438'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072434
'min_diff' => 0.027543533450564
'max_diff' => 0.10994458909428
'year' => 2029
]
4 => [
'items' => [
101 => 0.12177381134554
102 => 0.12083289116487
103 => 0.12432195708886
104 => 0.11701529795133
105 => 0.11944227702454
106 => 0.11994247404788
107 => 0.1141975856262
108 => 0.11027312012668
109 => 0.11001140302005
110 => 0.10320692066854
111 => 0.10684182021685
112 => 0.110040381397
113 => 0.10850851881008
114 => 0.10802357687816
115 => 0.11050104003729
116 => 0.11069356014279
117 => 0.10630408133499
118 => 0.10721679297585
119 => 0.11102295224391
120 => 0.10712088752789
121 => 0.099539813183312
122 => 0.097659601929303
123 => 0.097408747088849
124 => 0.092309465046543
125 => 0.097785246635876
126 => 0.095394921230309
127 => 0.102945930546
128 => 0.098632834521752
129 => 0.098446905572623
130 => 0.098165846696166
131 => 0.093776683993665
201 => 0.094737631679671
202 => 0.097931968144421
203 => 0.09907174338182
204 => 0.098952855486656
205 => 0.09791631415308
206 => 0.098390837467641
207 => 0.096862232536558
208 => 0.096322450320232
209 => 0.094618749166713
210 => 0.092114779130495
211 => 0.092462971521772
212 => 0.087501951680625
213 => 0.084798924769917
214 => 0.084050762546355
215 => 0.083050288753157
216 => 0.084163768723456
217 => 0.087487897734735
218 => 0.083478292893823
219 => 0.076604106635156
220 => 0.077017256942345
221 => 0.077945483017173
222 => 0.076215739867562
223 => 0.074578683142794
224 => 0.07600197114637
225 => 0.073089287807776
226 => 0.078297466883132
227 => 0.078156600234897
228 => 0.080097887322556
301 => 0.081311813977691
302 => 0.078514106051027
303 => 0.077810490073278
304 => 0.078211301711767
305 => 0.071586778146499
306 => 0.079556522417317
307 => 0.079625445096722
308 => 0.079035287271485
309 => 0.083278930057447
310 => 0.092234339961204
311 => 0.088864954524882
312 => 0.087560226643724
313 => 0.085079937987892
314 => 0.08838477535682
315 => 0.08813101541038
316 => 0.086983416696979
317 => 0.086289345414388
318 => 0.087568193033949
319 => 0.086130882041944
320 => 0.085872701493115
321 => 0.08430840827042
322 => 0.083750026760725
323 => 0.083336623320755
324 => 0.082881506753531
325 => 0.083885380492845
326 => 0.081610470528971
327 => 0.078867152124713
328 => 0.078639074882515
329 => 0.079268816200979
330 => 0.078990202546286
331 => 0.078637740987527
401 => 0.077964795884662
402 => 0.077765147447839
403 => 0.078413908011862
404 => 0.077681495160171
405 => 0.078762210219433
406 => 0.078468315522006
407 => 0.076826643632761
408 => 0.074780512633983
409 => 0.074762297776188
410 => 0.074321462208829
411 => 0.073759991833726
412 => 0.073603803620074
413 => 0.075882105800582
414 => 0.080598123130386
415 => 0.079672256083815
416 => 0.080341289911634
417 => 0.083632274177387
418 => 0.08467837911212
419 => 0.0839358786078
420 => 0.082919498122049
421 => 0.082964213705204
422 => 0.086437493504309
423 => 0.086654117704967
424 => 0.087201457174415
425 => 0.087904943070772
426 => 0.084055685297908
427 => 0.08278291401026
428 => 0.08217980436351
429 => 0.080322460084327
430 => 0.082325446652762
501 => 0.081158392155771
502 => 0.081315867679674
503 => 0.081213311538145
504 => 0.081269314126236
505 => 0.078296011090938
506 => 0.079379326444794
507 => 0.07757810455654
508 => 0.075166470644814
509 => 0.075158386002314
510 => 0.07574862998565
511 => 0.075397529768112
512 => 0.074452728110331
513 => 0.074586932726481
514 => 0.073411159072276
515 => 0.074729692936171
516 => 0.074767503769446
517 => 0.074259796410822
518 => 0.076291179750762
519 => 0.077123439162586
520 => 0.076789255302994
521 => 0.077099991932131
522 => 0.079710730039639
523 => 0.080136394265653
524 => 0.080325446197048
525 => 0.08007214165356
526 => 0.077147711432137
527 => 0.077277422348095
528 => 0.076325689711343
529 => 0.075521575924401
530 => 0.075553736258858
531 => 0.075967155272821
601 => 0.077772580353502
602 => 0.081571991000173
603 => 0.081716175856881
604 => 0.08189093210938
605 => 0.08118011060501
606 => 0.080965720037646
607 => 0.0812485565349
608 => 0.082675415410268
609 => 0.086345683826121
610 => 0.085048365838973
611 => 0.083993626121464
612 => 0.084918917209506
613 => 0.084776475899173
614 => 0.083574127892097
615 => 0.083540381988083
616 => 0.081232691748594
617 => 0.080379591210619
618 => 0.079666676547619
619 => 0.078888192346731
620 => 0.078426680817419
621 => 0.079135772279682
622 => 0.079297949886825
623 => 0.077747509011788
624 => 0.077536189649597
625 => 0.078802313136743
626 => 0.078245139395891
627 => 0.078818206405601
628 => 0.078951162867531
629 => 0.078929753814913
630 => 0.078348000438468
701 => 0.078718792692479
702 => 0.077841758473252
703 => 0.076888115486122
704 => 0.076279750674391
705 => 0.075748871688274
706 => 0.07604343420464
707 => 0.074993372618786
708 => 0.074657436783907
709 => 0.07859317661991
710 => 0.081500549953098
711 => 0.081458275593387
712 => 0.08120094130073
713 => 0.080818594740198
714 => 0.082647444377875
715 => 0.082010309733111
716 => 0.082473878421558
717 => 0.082591876108684
718 => 0.082949019568986
719 => 0.083076667658526
720 => 0.082690826474637
721 => 0.081395896334974
722 => 0.078169053545198
723 => 0.076666949515861
724 => 0.076171230166659
725 => 0.076189248623497
726 => 0.075692219145959
727 => 0.075838616602393
728 => 0.075641308085052
729 => 0.075267653487264
730 => 0.076020362086157
731 => 0.076107104740214
801 => 0.075931413559034
802 => 0.075972795192316
803 => 0.074518147250834
804 => 0.074628740974496
805 => 0.074012941067577
806 => 0.073897486008608
807 => 0.07234079746775
808 => 0.069582898072007
809 => 0.07111104205302
810 => 0.069265259013516
811 => 0.068566233008279
812 => 0.071875313396224
813 => 0.071543173504877
814 => 0.070974694388632
815 => 0.070133795294276
816 => 0.069821897640439
817 => 0.067926906230523
818 => 0.067814940028639
819 => 0.068754148940466
820 => 0.068320736343863
821 => 0.067712060912047
822 => 0.065507500198448
823 => 0.063028844051395
824 => 0.063103659100198
825 => 0.063892073503538
826 => 0.066184494713419
827 => 0.065288806087429
828 => 0.064638973712431
829 => 0.064517279642483
830 => 0.066040535711671
831 => 0.068196262181586
901 => 0.069207680809608
902 => 0.068205395666478
903 => 0.067054024460915
904 => 0.067124103091257
905 => 0.067590304823144
906 => 0.067639296033428
907 => 0.066889871741479
908 => 0.067100830289885
909 => 0.066780364964402
910 => 0.064813669853449
911 => 0.06477809857535
912 => 0.064295439877879
913 => 0.064280825164341
914 => 0.063459702315089
915 => 0.063344821552324
916 => 0.06171443229654
917 => 0.06278755944197
918 => 0.062067762094519
919 => 0.060982857708882
920 => 0.060795819783872
921 => 0.060790197197992
922 => 0.06190415142186
923 => 0.062774542238289
924 => 0.06208028327755
925 => 0.061922213969835
926 => 0.063609980633206
927 => 0.063395196940957
928 => 0.063209195648676
929 => 0.06800324052042
930 => 0.064208379920448
1001 => 0.06255360409579
1002 => 0.06050550477937
1003 => 0.061172376244209
1004 => 0.061312895860231
1005 => 0.05638758620189
1006 => 0.054389388686909
1007 => 0.053703682600253
1008 => 0.053309049052921
1009 => 0.053488888515936
1010 => 0.051690276387261
1011 => 0.05289897348403
1012 => 0.051341527413496
1013 => 0.051080416511403
1014 => 0.053865323016063
1015 => 0.054252826486998
1016 => 0.052599616292095
1017 => 0.053661244867642
1018 => 0.053276283588408
1019 => 0.051368225356234
1020 => 0.051295351566491
1021 => 0.050337955017077
1022 => 0.048839814805745
1023 => 0.048155124528698
1024 => 0.047798531887658
1025 => 0.047945668961203
1026 => 0.04787127195435
1027 => 0.047385781160559
1028 => 0.047899099718355
1029 => 0.046587782921059
1030 => 0.046065606006378
1031 => 0.045829750808429
1101 => 0.04466588167425
1102 => 0.046518115041682
1103 => 0.046883028348887
1104 => 0.047248660648035
1105 => 0.050431240184345
1106 => 0.050272247504587
1107 => 0.051709463897021
1108 => 0.051653616310882
1109 => 0.051243698914398
1110 => 0.049514324846771
1111 => 0.050203622526999
1112 => 0.048082071407902
1113 => 0.049671681757782
1114 => 0.048946249977812
1115 => 0.049426412543256
1116 => 0.048563036956075
1117 => 0.049040864653925
1118 => 0.046969562831417
1119 => 0.045035410333562
1120 => 0.04581376976013
1121 => 0.046659935473007
1122 => 0.048494638337538
1123 => 0.047401904447393
1124 => 0.047794892875132
1125 => 0.046478447427675
1126 => 0.043762244445517
1127 => 0.043777617859417
1128 => 0.043359789206311
1129 => 0.042998724246045
1130 => 0.047527418079615
1201 => 0.046964203413356
1202 => 0.046066794554384
1203 => 0.047268011973728
1204 => 0.047585632925286
1205 => 0.047594675147255
1206 => 0.048471052368499
1207 => 0.048938775048576
1208 => 0.049021213198166
1209 => 0.050400211691176
1210 => 0.050862433796604
1211 => 0.052766261232737
1212 => 0.048899092046968
1213 => 0.048819450242448
1214 => 0.047284915566208
1215 => 0.046311689414502
1216 => 0.047351553193446
1217 => 0.048272730546029
1218 => 0.047313539114324
1219 => 0.047438789265669
1220 => 0.046151153137424
1221 => 0.04661142246436
1222 => 0.047007868413692
1223 => 0.046788974262487
1224 => 0.046461279123536
1225 => 0.048197204508085
1226 => 0.048099256794743
1227 => 0.049715790421587
1228 => 0.050975993983141
1229 => 0.053234504053778
1230 => 0.050877631056276
1231 => 0.050791737236525
]
'min_raw' => 0.042998724246045
'max_raw' => 0.12432195708886
'avg_raw' => 0.083660340667454
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.042998'
'max' => '$0.124321'
'avg' => '$0.08366'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -0.0075608150021324
'max_diff' => -0.041996020602164
'year' => 2030
]
5 => [
'items' => [
101 => 0.05163136310239
102 => 0.050862305254258
103 => 0.051348323267303
104 => 0.053156199038067
105 => 0.05319439660429
106 => 0.052554538155272
107 => 0.052515602710499
108 => 0.052638494524917
109 => 0.053358275720422
110 => 0.05310676205407
111 => 0.053397820036319
112 => 0.053761792499959
113 => 0.055267336930701
114 => 0.055630318595956
115 => 0.054748461333802
116 => 0.054828083170837
117 => 0.054498244347268
118 => 0.054179624176569
119 => 0.054895835789562
120 => 0.05620472658948
121 => 0.056196584047746
122 => 0.056500221272125
123 => 0.056689384747447
124 => 0.055877356635238
125 => 0.055348756193292
126 => 0.055551455238454
127 => 0.05587557542588
128 => 0.055446347430055
129 => 0.052796953402074
130 => 0.053600610306218
131 => 0.053466842500553
201 => 0.053276340878566
202 => 0.054084424110177
203 => 0.054006482511157
204 => 0.05167182902021
205 => 0.051821285961936
206 => 0.051680917991854
207 => 0.052134475619775
208 => 0.050837811653901
209 => 0.051236656756639
210 => 0.051486808666135
211 => 0.051634150062586
212 => 0.052166448219508
213 => 0.052103989174556
214 => 0.052162565677578
215 => 0.05295182332279
216 => 0.056943617651756
217 => 0.057160882209684
218 => 0.056090992065668
219 => 0.056518392075552
220 => 0.055697877518682
221 => 0.056248694437679
222 => 0.056625549384424
223 => 0.054922614345122
224 => 0.054821777584052
225 => 0.053997876471732
226 => 0.054440594261348
227 => 0.053736198425533
228 => 0.053909032524922
301 => 0.053425773315625
302 => 0.05429554367641
303 => 0.055268082088419
304 => 0.055513783697998
305 => 0.054867448544389
306 => 0.054399459297614
307 => 0.053577824345519
308 => 0.054944221582182
309 => 0.055343797774384
310 => 0.054942122778549
311 => 0.054849045905243
312 => 0.054672665398512
313 => 0.05488646586355
314 => 0.055341621596628
315 => 0.055126978558315
316 => 0.055268754066644
317 => 0.054728452027162
318 => 0.055877625450332
319 => 0.05770278940997
320 => 0.057708657610545
321 => 0.057494013415226
322 => 0.057406185635075
323 => 0.057626423605171
324 => 0.057745893669314
325 => 0.058458102879868
326 => 0.059222331738459
327 => 0.062788654362331
328 => 0.061787245240418
329 => 0.064951498833799
330 => 0.067454012599258
331 => 0.068204407055855
401 => 0.067514079464573
402 => 0.065152506065563
403 => 0.065036636008126
404 => 0.068565823696819
405 => 0.067568666527727
406 => 0.067450057855392
407 => 0.066188261974254
408 => 0.066934139616466
409 => 0.06677100523475
410 => 0.066513489632403
411 => 0.067936572215457
412 => 0.070600455771476
413 => 0.070185264537529
414 => 0.069875343541554
415 => 0.068517359953839
416 => 0.069335169390258
417 => 0.069043963114057
418 => 0.070295170080687
419 => 0.069553982791283
420 => 0.06756111208144
421 => 0.067878483310571
422 => 0.06783051328775
423 => 0.068817732958208
424 => 0.068521394117435
425 => 0.06777264837302
426 => 0.070591350907083
427 => 0.070408320042968
428 => 0.070667815961602
429 => 0.070782054090162
430 => 0.072497748651536
501 => 0.073200613817229
502 => 0.073360176515227
503 => 0.074027844061092
504 => 0.073343564338455
505 => 0.076081171112178
506 => 0.07790151987292
507 => 0.080015948632812
508 => 0.083105697355887
509 => 0.084267471457537
510 => 0.084057607364711
511 => 0.086400219583732
512 => 0.090609841667968
513 => 0.084908492345637
514 => 0.090912027026009
515 => 0.089011377260344
516 => 0.084504970857182
517 => 0.08421481141186
518 => 0.087266602148536
519 => 0.094035180278509
520 => 0.092339728225529
521 => 0.094037953430689
522 => 0.092056883522326
523 => 0.091958506703608
524 => 0.093941737287071
525 => 0.098575663645602
526 => 0.096374258932796
527 => 0.093218005470407
528 => 0.095548533910292
529 => 0.093529614495438
530 => 0.088980423993811
531 => 0.092338431745296
601 => 0.090093027592433
602 => 0.090748355896488
603 => 0.095467861447148
604 => 0.094899998053029
605 => 0.095634865867753
606 => 0.094337843409605
607 => 0.093126219912027
608 => 0.090864634677455
609 => 0.090195090784302
610 => 0.090380128628704
611 => 0.090194999088736
612 => 0.088929662935034
613 => 0.088656413713116
614 => 0.088200986371929
615 => 0.088342142348509
616 => 0.08748580570711
617 => 0.089101889877608
618 => 0.089401849340538
619 => 0.090577900629591
620 => 0.090700002175821
621 => 0.093975288275793
622 => 0.092171315730875
623 => 0.093381576261502
624 => 0.093273319168229
625 => 0.084602638348558
626 => 0.085797381663444
627 => 0.087656027330301
628 => 0.086818709976716
629 => 0.085634939140834
630 => 0.084678980721083
701 => 0.083230605963392
702 => 0.085269165621268
703 => 0.087949654794724
704 => 0.090767983804741
705 => 0.094154021446044
706 => 0.093398297262328
707 => 0.090704684186315
708 => 0.09082551770122
709 => 0.091572462944123
710 => 0.090605100987432
711 => 0.090319807061255
712 => 0.091533267939652
713 => 0.091541624377816
714 => 0.090428557537045
715 => 0.089191587432609
716 => 0.089186404482706
717 => 0.088966297600336
718 => 0.09209604004773
719 => 0.093817081941145
720 => 0.094014396620627
721 => 0.093803801091094
722 => 0.093884850952174
723 => 0.092883414594966
724 => 0.095172401140816
725 => 0.097273001552595
726 => 0.096709995769456
727 => 0.095865970064543
728 => 0.095193662936794
729 => 0.096551621576387
730 => 0.096491153815791
731 => 0.097254654640522
801 => 0.097220017832918
802 => 0.096963281222279
803 => 0.096710004938329
804 => 0.097714216775138
805 => 0.097425019893286
806 => 0.097135373808798
807 => 0.09655444424376
808 => 0.096633402219867
809 => 0.095789522247891
810 => 0.095399104759535
811 => 0.089528162477197
812 => 0.087959254860783
813 => 0.088452865134966
814 => 0.088615374453813
815 => 0.087932583848539
816 => 0.088911530181986
817 => 0.088758962432879
818 => 0.089352514295506
819 => 0.088981688860763
820 => 0.088996907665954
821 => 0.090087426201215
822 => 0.090404008371399
823 => 0.090242992124512
824 => 0.090355762384517
825 => 0.092954505428995
826 => 0.092585047271195
827 => 0.092388779988438
828 => 0.092443147367076
829 => 0.093107181932619
830 => 0.093293075356028
831 => 0.092505431858545
901 => 0.092876889085271
902 => 0.094458506811729
903 => 0.095011983504178
904 => 0.096778415422593
905 => 0.096028003747827
906 => 0.097405416853917
907 => 0.10163911514731
908 => 0.10502128629371
909 => 0.10191090193334
910 => 0.10812182852681
911 => 0.11295792578432
912 => 0.11277230831664
913 => 0.11192902289884
914 => 0.10642325474546
915 => 0.10135676480434
916 => 0.10559509877461
917 => 0.10560590315953
918 => 0.10524182651269
919 => 0.10298057772761
920 => 0.10516313995651
921 => 0.10533638382033
922 => 0.10523941332585
923 => 0.10350571918412
924 => 0.10085868866992
925 => 0.1013759120963
926 => 0.10222313461978
927 => 0.1006191656337
928 => 0.10010660035473
929 => 0.10105955672786
930 => 0.1041301807184
1001 => 0.1035496970399
1002 => 0.10353453826514
1003 => 0.10601809360515
1004 => 0.10424040396649
1005 => 0.10138243594008
1006 => 0.10066076132145
1007 => 0.098099302603567
1008 => 0.09986851126361
1009 => 0.099932181933623
1010 => 0.098963204431392
1011 => 0.10146106312405
1012 => 0.10143804491646
1013 => 0.10380938998793
1014 => 0.10834251112805
1015 => 0.10700184414558
1016 => 0.10544279430911
1017 => 0.10561230625409
1018 => 0.10747143389947
1019 => 0.10634736288532
1020 => 0.10675158665931
1021 => 0.10747082205838
1022 => 0.10790475463224
1023 => 0.10554987003456
1024 => 0.10500083378769
1025 => 0.10387769831212
1026 => 0.10358469323086
1027 => 0.10449946364072
1028 => 0.10425845395704
1029 => 0.099926830660353
1030 => 0.099474151924925
1031 => 0.099488034935465
1101 => 0.09834975273153
1102 => 0.096613599151499
1103 => 0.10117610709948
1104 => 0.100809673859
1105 => 0.10040515992119
1106 => 0.10045471057044
1107 => 0.10243514063292
1108 => 0.10128639118257
1109 => 0.10434052987266
1110 => 0.10371269077379
1111 => 0.10306874997109
1112 => 0.10297973773724
1113 => 0.10273187546664
1114 => 0.10188186351529
1115 => 0.10085542300624
1116 => 0.1001776780734
1117 => 0.092408612650687
1118 => 0.093850506002569
1119 => 0.095509272871194
1120 => 0.096081872547153
1121 => 0.095102401178734
1122 => 0.10192053901487
1123 => 0.10316627849874
1124 => 0.099392852344514
1125 => 0.098686998379033
1126 => 0.10196681468333
1127 => 0.099988684510603
1128 => 0.10087943640626
1129 => 0.098954118023086
1130 => 0.10286621633658
1201 => 0.10283641270199
1202 => 0.10131451809929
1203 => 0.10260081299601
1204 => 0.10237728760354
1205 => 0.10065907234536
1206 => 0.10292068682499
1207 => 0.10292180855756
1208 => 0.1014570180913
1209 => 0.099746463510583
1210 => 0.099440656753046
1211 => 0.099210272440599
1212 => 0.10082277598821
1213 => 0.10226854162684
1214 => 0.10495875304462
1215 => 0.10563513611289
1216 => 0.10827510425775
1217 => 0.1067031317652
1218 => 0.1073999668107
1219 => 0.10815647982591
1220 => 0.10851917998526
1221 => 0.10792817953917
1222 => 0.11202913672237
1223 => 0.11237538315872
1224 => 0.1124914765938
1225 => 0.1111086569054
1226 => 0.11233692444168
1227 => 0.1117622587374
1228 => 0.1132573792532
1229 => 0.11349183324074
1230 => 0.11329325905424
1231 => 0.11336767845049
]
'min_raw' => 0.050837811653901
'max_raw' => 0.11349183324074
'avg_raw' => 0.082164822447319
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.050837'
'max' => '$0.113491'
'avg' => '$0.082164'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 0.0078390874078561
'max_diff' => -0.010830123848127
'year' => 2031
]
6 => [
'items' => [
101 => 0.10986823495305
102 => 0.10968677034667
103 => 0.10721248756257
104 => 0.10822077608607
105 => 0.10633582901992
106 => 0.1069335651517
107 => 0.10719704154315
108 => 0.10705941642841
109 => 0.10827778320636
110 => 0.10724192254922
111 => 0.10450811596375
112 => 0.10177356455451
113 => 0.10173923448909
114 => 0.10101927537188
115 => 0.10049887679722
116 => 0.10059912402483
117 => 0.10095240833038
118 => 0.10047834327115
119 => 0.10057950908724
120 => 0.10225953569874
121 => 0.10259645305427
122 => 0.10145147623806
123 => 0.096854229101603
124 => 0.095726053122995
125 => 0.096536963643717
126 => 0.096149400644138
127 => 0.077600070472862
128 => 0.0819579604505
129 => 0.079368650205747
130 => 0.080561923494965
131 => 0.077918908233711
201 => 0.07918029364868
202 => 0.078947361820955
203 => 0.085954719945658
204 => 0.085845309686846
205 => 0.085897678587877
206 => 0.083397974495226
207 => 0.087380070989181
208 => 0.089341794913662
209 => 0.088978732024832
210 => 0.089070107132068
211 => 0.087499980049547
212 => 0.085912880850164
213 => 0.084152543585232
214 => 0.087423032639213
215 => 0.08705941008552
216 => 0.087893429396426
217 => 0.090014575327319
218 => 0.090326922123092
219 => 0.090746719384121
220 => 0.090596251949246
221 => 0.094180996698639
222 => 0.09374686045658
223 => 0.094793003890421
224 => 0.092641007475917
225 => 0.090205819263531
226 => 0.090668668930405
227 => 0.090624092785483
228 => 0.09005658729851
229 => 0.089544268719755
301 => 0.088691402630992
302 => 0.091389997136268
303 => 0.091280439127566
304 => 0.093054055941197
305 => 0.092740551941393
306 => 0.090646895503261
307 => 0.090721670852537
308 => 0.091224571012224
309 => 0.092965114206914
310 => 0.093481825932315
311 => 0.093242464473707
312 => 0.093809015291823
313 => 0.094256793958325
314 => 0.093865249398215
315 => 0.099408694674975
316 => 0.097106669708408
317 => 0.098228660659726
318 => 0.098496248890461
319 => 0.097810827264208
320 => 0.097959470671834
321 => 0.098184624931483
322 => 0.099551717506349
323 => 0.10313936399422
324 => 0.10472830820177
325 => 0.10950872524729
326 => 0.1045963685045
327 => 0.10430488958474
328 => 0.1051659870494
329 => 0.10797259791366
330 => 0.11024709240758
331 => 0.11100167344995
401 => 0.11110140379148
402 => 0.11251704799056
403 => 0.11332846884528
404 => 0.11234515154965
405 => 0.11151189309923
406 => 0.10852726475764
407 => 0.10887274361505
408 => 0.11125275034772
409 => 0.11461465003931
410 => 0.11749950972074
411 => 0.11648933240782
412 => 0.12419627223141
413 => 0.12496038383489
414 => 0.12485480831797
415 => 0.12659556826576
416 => 0.123140514269
417 => 0.12166341174687
418 => 0.11169205303409
419 => 0.11449359810595
420 => 0.11856580839686
421 => 0.11802683609485
422 => 0.1150694881311
423 => 0.11749726630712
424 => 0.11669456691849
425 => 0.11606144460664
426 => 0.118961900654
427 => 0.11577273008576
428 => 0.11853399398085
429 => 0.11499264447378
430 => 0.11649394681269
501 => 0.1156417349953
502 => 0.1161932204843
503 => 0.11296924758429
504 => 0.11470882510362
505 => 0.11289687544029
506 => 0.11289601634022
507 => 0.11285601745098
508 => 0.11498776819447
509 => 0.11505728450969
510 => 0.11348191748935
511 => 0.11325488248986
512 => 0.11409434987683
513 => 0.11311155342354
514 => 0.11357139769839
515 => 0.11312548163818
516 => 0.11302509654059
517 => 0.11222521100394
518 => 0.11188059832143
519 => 0.11201572983382
520 => 0.11155445631698
521 => 0.1112765223381
522 => 0.11280072938708
523 => 0.11198640704714
524 => 0.11267592280946
525 => 0.11189013257448
526 => 0.10916624126752
527 => 0.10759970257226
528 => 0.10245452439827
529 => 0.10391369054584
530 => 0.10488111921129
531 => 0.10456138404313
601 => 0.10524829890543
602 => 0.10529046989908
603 => 0.10506714687508
604 => 0.10480856742274
605 => 0.10468270524568
606 => 0.10562077879653
607 => 0.10616536206691
608 => 0.1049782136204
609 => 0.10470008134935
610 => 0.10590035397303
611 => 0.10663251958011
612 => 0.1120384190544
613 => 0.11163793256052
614 => 0.11264307506866
615 => 0.11252991144741
616 => 0.1135834609277
617 => 0.11530556906473
618 => 0.11180404171313
619 => 0.11241178578766
620 => 0.11226278097545
621 => 0.11388957644405
622 => 0.11389465512193
623 => 0.11291930997404
624 => 0.11344806040188
625 => 0.11315292641857
626 => 0.11368627341616
627 => 0.11163258381923
628 => 0.1141337560662
629 => 0.11555175955826
630 => 0.11557144853812
701 => 0.11624357093938
702 => 0.11692648622577
703 => 0.1182372826486
704 => 0.11688992882497
705 => 0.11446617045851
706 => 0.11464115798388
707 => 0.11322010934044
708 => 0.11324399742487
709 => 0.11311648095804
710 => 0.11349916747399
711 => 0.11171656198915
712 => 0.11213493593342
713 => 0.11154920996145
714 => 0.11241051253379
715 => 0.11148389334436
716 => 0.11226270912081
717 => 0.11259882019178
718 => 0.11383907727959
719 => 0.11130070636407
720 => 0.10612479623473
721 => 0.10721283529576
722 => 0.10560354006087
723 => 0.10575248646188
724 => 0.10605338189656
725 => 0.1050780813459
726 => 0.10526413795572
727 => 0.10525749070435
728 => 0.10520020828324
729 => 0.10494649494212
730 => 0.10457856040184
731 => 0.10604429836604
801 => 0.10629335580794
802 => 0.10684697964958
803 => 0.10849418867568
804 => 0.1083295936501
805 => 0.10859805496579
806 => 0.10801200542099
807 => 0.10577967161943
808 => 0.10590089808494
809 => 0.10438920211755
810 => 0.10680832218494
811 => 0.10623544262216
812 => 0.10586610344123
813 => 0.10576532582381
814 => 0.10741661796247
815 => 0.1079107104512
816 => 0.10760282516954
817 => 0.10697134347441
818 => 0.10818397500986
819 => 0.10850842405193
820 => 0.10858105622723
821 => 0.11072960680901
822 => 0.10870113633733
823 => 0.10918940934113
824 => 0.11299877593307
825 => 0.10954420609083
826 => 0.11137416878237
827 => 0.11128460163128
828 => 0.11222074862171
829 => 0.11120781025399
830 => 0.11122036683905
831 => 0.11205160194646
901 => 0.11088428215214
902 => 0.11059523735502
903 => 0.11019592403796
904 => 0.11106781005716
905 => 0.11159046629366
906 => 0.11580269171113
907 => 0.11852398143164
908 => 0.11840584306798
909 => 0.11948540656606
910 => 0.11899905332251
911 => 0.11742849040556
912 => 0.12010924979504
913 => 0.11926094535647
914 => 0.1193308785437
915 => 0.11932827562698
916 => 0.11989232391857
917 => 0.11949264400971
918 => 0.11870483388305
919 => 0.11922781901069
920 => 0.12078089786915
921 => 0.12560170230011
922 => 0.12829948832684
923 => 0.12543929219386
924 => 0.12741221718684
925 => 0.12622916521611
926 => 0.12601416948028
927 => 0.12725331217388
928 => 0.12849462382273
929 => 0.12841555763704
930 => 0.12751442912203
1001 => 0.12700540448919
1002 => 0.1308599095448
1003 => 0.13369984320999
1004 => 0.13350617877318
1005 => 0.13436095061421
1006 => 0.13687058717657
1007 => 0.13710003689204
1008 => 0.13707113150173
1009 => 0.13650241644133
1010 => 0.13897347955446
1011 => 0.14103488387765
1012 => 0.13637077533661
1013 => 0.13814680681137
1014 => 0.13894412456055
1015 => 0.14011482356987
1016 => 0.14208998903052
1017 => 0.14423554260755
1018 => 0.14453894740814
1019 => 0.14432366718287
1020 => 0.14290861692324
1021 => 0.145256307249
1022 => 0.14663152918172
1023 => 0.14745044237126
1024 => 0.14952706996578
1025 => 0.13894904852353
1026 => 0.13146139918493
1027 => 0.13029209461774
1028 => 0.13266992143575
1029 => 0.13329693540485
1030 => 0.13304418686012
1031 => 0.12461615678223
1101 => 0.1302477227836
1102 => 0.13630681428557
1103 => 0.13653956866658
1104 => 0.1395728765621
1105 => 0.14056064595237
1106 => 0.14300285639301
1107 => 0.142850095465
1108 => 0.14344473484324
1109 => 0.1433080375479
1110 => 0.14783171812111
1111 => 0.15282200956642
1112 => 0.15264921164183
1113 => 0.15193179820411
1114 => 0.15299727949628
1115 => 0.15814779505998
1116 => 0.1576736181222
1117 => 0.15813424062696
1118 => 0.16420698874689
1119 => 0.17210242514115
1120 => 0.16843420224716
1121 => 0.17639319042441
1122 => 0.18140295159415
1123 => 0.19006681551824
1124 => 0.18898205708452
1125 => 0.1923548357318
1126 => 0.18704011309223
1127 => 0.17483643562912
1128 => 0.17290515695679
1129 => 0.17677162576657
1130 => 0.18627696205092
1201 => 0.17647226890036
1202 => 0.17845574555506
1203 => 0.17788450414507
1204 => 0.17785406511795
1205 => 0.1790157989786
1206 => 0.17733064342176
1207 => 0.17046501652954
1208 => 0.17361149287485
1209 => 0.17239648725172
1210 => 0.17374462657525
1211 => 0.18101997848941
1212 => 0.17780337198543
1213 => 0.17441493832939
1214 => 0.17866478608769
1215 => 0.18407630269015
1216 => 0.18373765970659
1217 => 0.18308055077672
1218 => 0.18678463940932
1219 => 0.19290270863424
1220 => 0.19455639816135
1221 => 0.19577711796206
1222 => 0.19594543459835
1223 => 0.19767920056033
1224 => 0.1883563040175
1225 => 0.20315198025993
1226 => 0.20570678482469
1227 => 0.20522658745232
1228 => 0.20806614520344
1229 => 0.20723067528043
1230 => 0.20602021044321
1231 => 0.21052151346999
]
'min_raw' => 0.077600070472862
'max_raw' => 0.21052151346999
'avg_raw' => 0.14406079197142
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.07760007'
'max' => '$0.210521'
'avg' => '$0.14406'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.026762258818961
'max_diff' => 0.09702968022925
'year' => 2032
]
7 => [
'items' => [
101 => 0.20536113278621
102 => 0.19803662207944
103 => 0.19401825064332
104 => 0.19930996630319
105 => 0.20254143240124
106 => 0.20467722593221
107 => 0.2053235157642
108 => 0.18908001393723
109 => 0.18032566735841
110 => 0.18593710314665
111 => 0.19278344208891
112 => 0.18831827225899
113 => 0.18849329846264
114 => 0.18212713971117
115 => 0.19334670587841
116 => 0.19171210945924
117 => 0.20019239857341
118 => 0.19816850951774
119 => 0.20508385608741
120 => 0.20326281357712
121 => 0.21082185922424
122 => 0.21383736718587
123 => 0.21890087437978
124 => 0.2226256108838
125 => 0.22481284740182
126 => 0.2246815339254
127 => 0.23334845468669
128 => 0.2282378743129
129 => 0.22181778089211
130 => 0.22170166165727
131 => 0.22502671901332
201 => 0.23199512704668
202 => 0.23380193386351
203 => 0.234811692385
204 => 0.23326521205939
205 => 0.22771804334224
206 => 0.22532280401496
207 => 0.22736361731856
208 => 0.22486787801734
209 => 0.22917622423202
210 => 0.23509250379788
211 => 0.23387081546304
212 => 0.23795473640067
213 => 0.24218116493011
214 => 0.248225147548
215 => 0.24980526841234
216 => 0.25241714811448
217 => 0.25510563028578
218 => 0.25596909830257
219 => 0.25761772666502
220 => 0.25760903757976
221 => 0.26257729011549
222 => 0.26805742651637
223 => 0.27012605114225
224 => 0.27488273940484
225 => 0.26673707744939
226 => 0.27291565561322
227 => 0.27848888777683
228 => 0.27184425063398
301 => 0.28100233493351
302 => 0.2813579225942
303 => 0.28672687409743
304 => 0.28128441318225
305 => 0.27805269726377
306 => 0.28738254002961
307 => 0.29189695705671
308 => 0.29053717790861
309 => 0.28018919145094
310 => 0.27416621948656
311 => 0.25840294011124
312 => 0.27707522545429
313 => 0.28616995096686
314 => 0.28016563830898
315 => 0.28319386436361
316 => 0.29971488381204
317 => 0.30600501836121
318 => 0.30469671434635
319 => 0.30491779618834
320 => 0.30831183861706
321 => 0.32336289187928
322 => 0.31434395188387
323 => 0.32123859357713
324 => 0.32489548667075
325 => 0.32829221277698
326 => 0.3199509270064
327 => 0.30909903677671
328 => 0.3056617876096
329 => 0.27956862774723
330 => 0.27821036545954
331 => 0.2774479316779
401 => 0.27264089453307
402 => 0.26886388009553
403 => 0.26586025798324
404 => 0.2579778566031
405 => 0.26063793567858
406 => 0.24807503306366
407 => 0.25611233295475
408 => 0.23606163703945
409 => 0.25276045240736
410 => 0.24367204640457
411 => 0.24977466660355
412 => 0.24975337513657
413 => 0.23851651651277
414 => 0.23203533096581
415 => 0.23616539464785
416 => 0.24059315075985
417 => 0.24131153929226
418 => 0.24705224066774
419 => 0.24865434702567
420 => 0.24379988996594
421 => 0.23564613093353
422 => 0.23754006318932
423 => 0.2319969504891
424 => 0.22228285869471
425 => 0.22925968901321
426 => 0.23164188563352
427 => 0.2326939993718
428 => 0.22314130576299
429 => 0.22013964203204
430 => 0.21854158144808
501 => 0.23441299814623
502 => 0.23528247018065
503 => 0.23083412832159
504 => 0.25094105533362
505 => 0.24639023849214
506 => 0.25147461588127
507 => 0.23736820868837
508 => 0.23790709243993
509 => 0.23122889320961
510 => 0.23496823854115
511 => 0.23232538978554
512 => 0.2346661363913
513 => 0.23606917025552
514 => 0.24274627365907
515 => 0.25283669420265
516 => 0.24174893707236
517 => 0.23691784251108
518 => 0.23991502640579
519 => 0.24789692208167
520 => 0.25998990261635
521 => 0.25283061474591
522 => 0.25600778513022
523 => 0.25670185551672
524 => 0.2514228616923
525 => 0.26018454664854
526 => 0.26488000479639
527 => 0.26969657326793
528 => 0.27387866471458
529 => 0.26777272990179
530 => 0.27430695540285
531 => 0.26904152309507
601 => 0.2643178859846
602 => 0.26432504979226
603 => 0.26136184323154
604 => 0.25562025713208
605 => 0.2545614205636
606 => 0.26006962210913
607 => 0.26448667812001
608 => 0.26485048800934
609 => 0.26729599717349
610 => 0.26874322430609
611 => 0.28292801761546
612 => 0.28863325882725
613 => 0.29560951978634
614 => 0.29832716659043
615 => 0.30650630914044
616 => 0.29990098725383
617 => 0.29847188431424
618 => 0.27863195986506
619 => 0.28188074638216
620 => 0.28708236705731
621 => 0.27871773267412
622 => 0.28402316791682
623 => 0.28507057321821
624 => 0.27843350559854
625 => 0.28197865018497
626 => 0.27256379722553
627 => 0.25304191226934
628 => 0.26020628008712
629 => 0.26548166630114
630 => 0.25795303972331
701 => 0.27144781146599
702 => 0.26356444440255
703 => 0.26106579551179
704 => 0.2513176753563
705 => 0.25591841283014
706 => 0.26214097613972
707 => 0.25829615546503
708 => 0.26627473566774
709 => 0.2775745330444
710 => 0.28562744156957
711 => 0.28624564389277
712 => 0.28106816321405
713 => 0.28936510904394
714 => 0.28942554323633
715 => 0.2800665544462
716 => 0.27433422592331
717 => 0.27303182882199
718 => 0.27628547213109
719 => 0.28023599576402
720 => 0.28646487046015
721 => 0.29022884898433
722 => 0.30004330871544
723 => 0.30269882011606
724 => 0.3056164220446
725 => 0.30951523797623
726 => 0.31419676613805
727 => 0.30395384903954
728 => 0.30436081923105
729 => 0.29482275665176
730 => 0.28462996888926
731 => 0.29236502425207
801 => 0.30247758018765
802 => 0.30015774868265
803 => 0.29989672024848
804 => 0.3003356976715
805 => 0.29858662047534
806 => 0.29067560914094
807 => 0.28670274877436
808 => 0.29182875223203
809 => 0.29455299493761
810 => 0.29877805779504
811 => 0.29825722961761
812 => 0.30914053779972
813 => 0.31336946226514
814 => 0.312287522421
815 => 0.31248662539066
816 => 0.32014289113553
817 => 0.32865823327498
818 => 0.33663397488693
819 => 0.34474724182068
820 => 0.33496638186584
821 => 0.33000026438036
822 => 0.33512402998527
823 => 0.33240528783308
824 => 0.34802798667087
825 => 0.34910966844231
826 => 0.36473123758116
827 => 0.37955796687578
828 => 0.37024556385428
829 => 0.37902674046371
830 => 0.38852429890664
831 => 0.40684663006639
901 => 0.40067631351917
902 => 0.39594994774518
903 => 0.3914835549264
904 => 0.40077740936239
905 => 0.41273380462134
906 => 0.41530909764319
907 => 0.41948205617624
908 => 0.41509470052383
909 => 0.42037878715578
910 => 0.43903393491188
911 => 0.43399314931464
912 => 0.42683442341983
913 => 0.44156087091383
914 => 0.4468903150143
915 => 0.4842951447629
916 => 0.53152028743696
917 => 0.5119687682729
918 => 0.49983250940418
919 => 0.50268481811424
920 => 0.51992984154684
921 => 0.52546839574371
922 => 0.5104126961825
923 => 0.51573062379368
924 => 0.54503292777837
925 => 0.56075267373569
926 => 0.5394031472821
927 => 0.48050065053114
928 => 0.42618985847832
929 => 0.44059552617757
930 => 0.43896237052039
1001 => 0.47044404061507
1002 => 0.43387292824524
1003 => 0.4344886919857
1004 => 0.46662136967827
1005 => 0.45804892216345
1006 => 0.44416265506557
1007 => 0.4262912435956
1008 => 0.39325428658788
1009 => 0.36399253246244
1010 => 0.42138157088194
1011 => 0.41890685119009
1012 => 0.41532309034339
1013 => 0.4232983623043
1014 => 0.46202401912601
1015 => 0.46113126739355
1016 => 0.45545203635758
1017 => 0.45975968304392
1018 => 0.44340750377429
1019 => 0.44762183270427
1020 => 0.42618125537138
1021 => 0.43587329176345
1022 => 0.44413286137302
1023 => 0.44579109225715
1024 => 0.44952717111049
1025 => 0.41760278636462
1026 => 0.43193589786482
1027 => 0.44035525804026
1028 => 0.40231628246869
1029 => 0.43960334979784
1030 => 0.41704705385154
1031 => 0.40939110822318
1101 => 0.41969883041764
1102 => 0.41568190105387
1103 => 0.4122283810689
1104 => 0.41030125757829
1105 => 0.41787011113612
1106 => 0.41751701507091
1107 => 0.40513290159913
1108 => 0.38897833041624
1109 => 0.39440033476094
1110 => 0.39243046975095
1111 => 0.3852914248371
1112 => 0.39010227913747
1113 => 0.3689177115163
1114 => 0.33247076400208
1115 => 0.35654873393016
1116 => 0.35562175827973
1117 => 0.35515433512177
1118 => 0.37324826405652
1119 => 0.37150895028741
1120 => 0.36835207876506
1121 => 0.38523344641594
1122 => 0.37907152013693
1123 => 0.39806112499641
1124 => 0.4105689069275
1125 => 0.40739652884542
1126 => 0.41916015820697
1127 => 0.39452524679013
1128 => 0.40270797618171
1129 => 0.40439442536854
1130 => 0.38502513295956
1201 => 0.37179352353049
1202 => 0.37091112603297
1203 => 0.34796933871106
1204 => 0.36022465631879
1205 => 0.37100882865408
1206 => 0.36584404699106
1207 => 0.36420903141
1208 => 0.37256197142198
1209 => 0.373211066399
1210 => 0.35841163213486
1211 => 0.36148890315551
1212 => 0.37432163486535
1213 => 0.36116555124182
1214 => 0.33560542979536
1215 => 0.32926616628031
1216 => 0.3284203916716
1217 => 0.31122780624546
1218 => 0.32968978618076
1219 => 0.3216306371887
1220 => 0.34708939229118
1221 => 0.33254748791469
1222 => 0.33192061548155
1223 => 0.33097300585668
1224 => 0.31617463736364
1225 => 0.31941453957823
1226 => 0.33018446799059
1227 => 0.33402729978004
1228 => 0.33362646094101
1229 => 0.33013168946585
1230 => 0.33173157795106
1231 => 0.32657777970212
]
'min_raw' => 0.18032566735841
'max_raw' => 0.56075267373569
'avg_raw' => 0.37053917054705
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.180325'
'max' => '$0.560752'
'avg' => '$0.370539'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.10272559688555
'max_diff' => 0.3502311602657
'year' => 2033
]
8 => [
'items' => [
101 => 0.32475786627339
102 => 0.31901371888568
103 => 0.31057140908697
104 => 0.31174536404418
105 => 0.2950189392824
106 => 0.28590549533364
107 => 0.28338301416188
108 => 0.28000984691726
109 => 0.28376402237782
110 => 0.29497155542262
111 => 0.28145289275981
112 => 0.25827609384836
113 => 0.25966905895428
114 => 0.26279863797224
115 => 0.25696668817652
116 => 0.25144723713331
117 => 0.25624595200816
118 => 0.24642563677504
119 => 0.26398537615105
120 => 0.26351043441153
121 => 0.27005561936391
122 => 0.27414845783535
123 => 0.26471579023087
124 => 0.26234349983699
125 => 0.26369486425993
126 => 0.24135982055016
127 => 0.268230369789
128 => 0.26846274741464
129 => 0.26647298910336
130 => 0.2807807270379
131 => 0.31097451677517
201 => 0.29961439853363
202 => 0.29521541738912
203 => 0.28685295101776
204 => 0.29799544094347
205 => 0.2971398715671
206 => 0.29327066238208
207 => 0.29093055259432
208 => 0.29524227662996
209 => 0.29039628227057
210 => 0.2895258085246
211 => 0.28425168470882
212 => 0.28236906246393
213 => 0.28097524390316
214 => 0.27944078662154
215 => 0.28282541702187
216 => 0.27515539924952
217 => 0.26590610971719
218 => 0.26513713137128
219 => 0.26726034819361
220 => 0.26632098280463
221 => 0.2651326340512
222 => 0.26286375265336
223 => 0.2621906240096
224 => 0.26437796554622
225 => 0.26190858448131
226 => 0.26555229075673
227 => 0.26456140426528
228 => 0.25902639287282
301 => 0.25212771935414
302 => 0.25206630668936
303 => 0.25057999879586
304 => 0.24868696222558
305 => 0.24816036275854
306 => 0.2558418176261
307 => 0.27174219931536
308 => 0.26862057392587
309 => 0.27087626818681
310 => 0.28197205140798
311 => 0.28549906723215
312 => 0.2829956749421
313 => 0.27956887717298
314 => 0.27971963888352
315 => 0.29143004422286
316 => 0.2921604078396
317 => 0.29400580107486
318 => 0.29637765289024
319 => 0.28339961156244
320 => 0.27910837430408
321 => 0.27707494802229
322 => 0.27081278210939
323 => 0.27756599116892
324 => 0.27363118545118
325 => 0.2741621251746
326 => 0.2738163499832
327 => 0.27400516661892
328 => 0.26398046784603
329 => 0.26763294119621
330 => 0.26155999584267
331 => 0.25342900373438
401 => 0.25340174579774
402 => 0.25539179459708
403 => 0.25420803570062
404 => 0.25102257094746
405 => 0.25147505118068
406 => 0.24751084821563
407 => 0.25195637719485
408 => 0.2520838590591
409 => 0.2503720882525
410 => 0.25722103900977
411 => 0.26002705972323
412 => 0.25890033550864
413 => 0.25994800574872
414 => 0.2687502915541
415 => 0.27018544821103
416 => 0.27082284999691
417 => 0.26996881604338
418 => 0.26010889537466
419 => 0.26054622478394
420 => 0.25733739175128
421 => 0.25462626597717
422 => 0.25473469679015
423 => 0.25612856785972
424 => 0.26221568456999
425 => 0.27502566283162
426 => 0.27551179214268
427 => 0.27610099504907
428 => 0.27370441071912
429 => 0.27298157795298
430 => 0.27393518095048
501 => 0.27874593526889
502 => 0.2911205014829
503 => 0.28674650331338
504 => 0.28319037471623
505 => 0.28631005822132
506 => 0.28582980739859
507 => 0.28177600714748
508 => 0.28166223047603
509 => 0.27388169171581
510 => 0.27100540369045
511 => 0.26860176213003
512 => 0.26597704829471
513 => 0.26442102995192
514 => 0.26681178132413
515 => 0.26735857444949
516 => 0.26213115479098
517 => 0.26141867680751
518 => 0.26568750054234
519 => 0.26380895037443
520 => 0.26574108580792
521 => 0.26618935780205
522 => 0.26611717568641
523 => 0.264155753561
524 => 0.26540590553329
525 => 0.26244892343059
526 => 0.25923364951826
527 => 0.25718250508083
528 => 0.25539260951435
529 => 0.25638574760398
530 => 0.25284539165431
531 => 0.25171276053273
601 => 0.26498238217439
602 => 0.27478479435356
603 => 0.27464226339829
604 => 0.27377464286409
605 => 0.27248553474067
606 => 0.27865162898031
607 => 0.27650348504216
608 => 0.27806643924059
609 => 0.27846427668108
610 => 0.27966841079244
611 => 0.28009878523843
612 => 0.27879789474838
613 => 0.27443194737337
614 => 0.26355242161667
615 => 0.25848797300821
616 => 0.25681662061235
617 => 0.25687737109759
618 => 0.25520160151258
619 => 0.25569519075809
620 => 0.25502995131624
621 => 0.25377014875207
622 => 0.25630795834567
623 => 0.25660041726
624 => 0.25600806217629
625 => 0.25614758324207
626 => 0.25124313614709
627 => 0.25161601060782
628 => 0.24953979822787
629 => 0.24915053343574
630 => 0.24390204933571
701 => 0.23460359897257
702 => 0.23975584309617
703 => 0.23353265671002
704 => 0.23117584172893
705 => 0.2423326372895
706 => 0.24121280445656
707 => 0.23929613742619
708 => 0.23646098741987
709 => 0.23540940270396
710 => 0.22902030686136
711 => 0.22864280499447
712 => 0.23180941341417
713 => 0.23034813258482
714 => 0.22829594087009
715 => 0.22086311050668
716 => 0.21250614825265
717 => 0.2127583924131
718 => 0.2154165866193
719 => 0.22314564478015
720 => 0.22012576804264
721 => 0.21793481282049
722 => 0.21752451276725
723 => 0.22266027695486
724 => 0.22992845925619
725 => 0.23333852777557
726 => 0.22995925343819
727 => 0.22607732503246
728 => 0.2263136000274
729 => 0.22788543171562
730 => 0.22805060900155
731 => 0.22552387267811
801 => 0.22623513415271
802 => 0.22515466293367
803 => 0.21852381305683
804 => 0.21840388200921
805 => 0.21677656451253
806 => 0.21672728998547
807 => 0.21395881697025
808 => 0.21357148845787
809 => 0.20807451725185
810 => 0.21169264034602
811 => 0.20926579333444
812 => 0.20560796245265
813 => 0.20497735102992
814 => 0.20495839408906
815 => 0.20871416852864
816 => 0.21164875193497
817 => 0.20930800937723
818 => 0.20877506767022
819 => 0.21446549081188
820 => 0.21374133259774
821 => 0.21311421625462
822 => 0.22927767324923
823 => 0.21648303578772
824 => 0.21090384356213
825 => 0.20399853372309
826 => 0.20624693742627
827 => 0.20672070912246
828 => 0.19011468373522
829 => 0.18337762130377
830 => 0.18106571535814
831 => 0.17973518080087
901 => 0.18034152210642
902 => 0.1742773757395
903 => 0.17835258238979
904 => 0.17310154422558
905 => 0.17222119058899
906 => 0.18161069730541
907 => 0.1829171923123
908 => 0.17734327871674
909 => 0.18092263357973
910 => 0.17962470974965
911 => 0.17319155820351
912 => 0.17294585913351
913 => 0.16971792982386
914 => 0.16466684550455
915 => 0.16235836443193
916 => 0.16115608744617
917 => 0.16165217036241
918 => 0.16140133565957
919 => 0.15976446955242
920 => 0.16149515890878
921 => 0.15707396277348
922 => 0.15531340684841
923 => 0.15451820458164
924 => 0.15059413853701
925 => 0.15683907265411
926 => 0.15806940334678
927 => 0.15930215817099
928 => 0.17003244727827
929 => 0.16949639235795
930 => 0.17434206776829
1001 => 0.17415377373247
1002 => 0.1727717086107
1003 => 0.16694100320066
1004 => 0.16926501845477
1005 => 0.16211206073477
1006 => 0.16747154301244
1007 => 0.16502569911824
1008 => 0.16664460073151
1009 => 0.16373366966037
1010 => 0.16534469910454
1011 => 0.15836116039628
1012 => 0.15184003021154
1013 => 0.15446432336154
1014 => 0.15731723013991
1015 => 0.16350305894254
1016 => 0.15981883033967
1017 => 0.16114381826137
1018 => 0.15670533052398
1019 => 0.1475474625304
1020 => 0.1475992950687
1021 => 0.14619055659289
1022 => 0.1449732008706
1023 => 0.16024200831379
1024 => 0.1583430907441
1025 => 0.15531741412099
1026 => 0.15936740251663
1027 => 0.1604382837304
1028 => 0.16046877021307
1029 => 0.1634235372012
1030 => 0.16500049687244
1031 => 0.16527844284943
1101 => 0.16992783254721
1102 => 0.17148624664698
1103 => 0.17790513376889
1104 => 0.16486670286194
1105 => 0.16459818495759
1106 => 0.15942439415885
1107 => 0.15614309423989
1108 => 0.15964906757157
1109 => 0.16275488133036
1110 => 0.15952090044976
1111 => 0.1599431900797
1112 => 0.15560183497344
1113 => 0.15715366514418
1114 => 0.15849031034133
1115 => 0.15775229342784
1116 => 0.15664744638792
1117 => 0.16250024002037
1118 => 0.16217000246634
1119 => 0.16762025845202
1120 => 0.17186912274441
1121 => 0.1794838471317
1122 => 0.171537485269
1123 => 0.17124788825879
1124 => 0.17407874548636
1125 => 0.17148581325748
1126 => 0.17312445692116
1127 => 0.17921983630415
1128 => 0.17934862206554
1129 => 0.17719129463118
1130 => 0.17706002106074
1201 => 0.17747435939309
1202 => 0.17990115194725
1203 => 0.17905315606102
1204 => 0.18003447836919
1205 => 0.1812616369421
1206 => 0.1863376851041
1207 => 0.18756150313108
1208 => 0.18458825980242
1209 => 0.184856710385
1210 => 0.18374463576273
1211 => 0.18267038561187
1212 => 0.18508514306937
1213 => 0.18949815978513
1214 => 0.18947070663718
1215 => 0.19049444073845
1216 => 0.19113221860247
1217 => 0.18839440912816
1218 => 0.18661219583244
1219 => 0.1872956098152
1220 => 0.18838840365645
1221 => 0.18694123150079
1222 => 0.17800861456067
1223 => 0.18071819992252
1224 => 0.18026719242635
1225 => 0.17962490290742
1226 => 0.18234941194137
1227 => 0.18208662639856
1228 => 0.17421517915354
1229 => 0.17471908366732
1230 => 0.174245823256
1231 => 0.17577502446492
]
'min_raw' => 0.1449732008706
'max_raw' => 0.32475786627339
'avg_raw' => 0.23486553357199
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.144973'
'max' => '$0.324757'
'avg' => '$0.234865'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.035352466487813
'max_diff' => -0.2359948074623
'year' => 2034
]
9 => [
'items' => [
101 => 0.17140323137379
102 => 0.17274796548415
103 => 0.17359137011206
104 => 0.17408814191725
105 => 0.17588282231718
106 => 0.17567223728637
107 => 0.17586973205599
108 => 0.17853076931103
109 => 0.19198938258932
110 => 0.1927219052153
111 => 0.18911469589741
112 => 0.19055570487085
113 => 0.18778928275586
114 => 0.18964640045507
115 => 0.19091699321919
116 => 0.18517542883906
117 => 0.18483545065891
118 => 0.18205761053579
119 => 0.18355026447305
120 => 0.18117534473325
121 => 0.18175806696623
122 => 0.18012872480201
123 => 0.18306121629882
124 => 0.18634019745537
125 => 0.18716859758641
126 => 0.18498943349034
127 => 0.18341157507087
128 => 0.18064137546516
129 => 0.18524827914738
130 => 0.1865954781769
131 => 0.1852412028844
201 => 0.18492738770762
202 => 0.18433270851469
203 => 0.18505355170963
204 => 0.18658814104166
205 => 0.18586445705209
206 => 0.18634246307688
207 => 0.18452079702808
208 => 0.18839531545702
209 => 0.19454898317582
210 => 0.19456876822376
211 => 0.19384508033327
212 => 0.19354896284055
213 => 0.19429151053325
214 => 0.19469431219564
215 => 0.19709557527388
216 => 0.19967222622738
217 => 0.21169633194645
218 => 0.20832001117577
219 => 0.21898851308699
220 => 0.22742591296717
221 => 0.22995592026845
222 => 0.22762843259731
223 => 0.21966622300276
224 => 0.21927555901432
225 => 0.23117446170677
226 => 0.22781247669188
227 => 0.22741257927211
228 => 0.22315834636308
301 => 0.22567312490931
302 => 0.22512310595167
303 => 0.2242548741192
304 => 0.22905289640442
305 => 0.23803436579995
306 => 0.23663451956697
307 => 0.23558959929104
308 => 0.23101106281368
309 => 0.2337683644262
310 => 0.23278654213461
311 => 0.23700507377908
312 => 0.23450610908482
313 => 0.22778700634879
314 => 0.22885704560595
315 => 0.22869531132485
316 => 0.23202379136928
317 => 0.2310246642779
318 => 0.22850021572484
319 => 0.23800366811396
320 => 0.23738656677679
321 => 0.23826147538389
322 => 0.23864663721019
323 => 0.24443122120983
324 => 0.24680098018844
325 => 0.24733895696505
326 => 0.249590044711
327 => 0.24728294785124
328 => 0.25651298022245
329 => 0.26265041316198
330 => 0.26977935735066
331 => 0.28019666088988
401 => 0.28411366338607
402 => 0.28340609194486
403 => 0.29130437259725
404 => 0.30549740736068
405 => 0.28627491006494
406 => 0.30651624639322
407 => 0.30010807300916
408 => 0.28491440919365
409 => 0.28393611636546
410 => 0.29422544190338
411 => 0.31704617563562
412 => 0.31132984066632
413 => 0.31705552551181
414 => 0.31037621000189
415 => 0.31004452568913
416 => 0.31673112606601
417 => 0.3323547323142
418 => 0.32493254262781
419 => 0.31429101371678
420 => 0.32214855306416
421 => 0.31534162530053
422 => 0.30000371190995
423 => 0.3113254694927
424 => 0.30375493262221
425 => 0.30596441775289
426 => 0.32187656022229
427 => 0.31996196914207
428 => 0.32243962728624
429 => 0.31806662551338
430 => 0.31398155229844
501 => 0.30635645978124
502 => 0.30409904579942
503 => 0.30472291381075
504 => 0.30409873664142
505 => 0.29983256745626
506 => 0.29891128862691
507 => 0.29737578354918
508 => 0.29785170077941
509 => 0.29496450200542
510 => 0.30041324261765
511 => 0.30142457688942
512 => 0.30538971591974
513 => 0.30580138980771
514 => 0.31684424556694
515 => 0.31076202618241
516 => 0.31484250405911
517 => 0.31447750771087
518 => 0.28524370195975
519 => 0.2892718624602
520 => 0.2955384160925
521 => 0.29271534217526
522 => 0.28872417615385
523 => 0.28550109559877
524 => 0.28061779898092
525 => 0.28749094519514
526 => 0.29652840158922
527 => 0.30603059461594
528 => 0.31744685692919
529 => 0.31489888008082
530 => 0.30581717553298
531 => 0.30622457416481
601 => 0.30874295220131
602 => 0.30548142382527
603 => 0.30451953543458
604 => 0.30861080350723
605 => 0.30863897782192
606 => 0.30488619525642
607 => 0.30071566418682
608 => 0.30069818950936
609 => 0.29995608378807
610 => 0.3105082289611
611 => 0.31631084186406
612 => 0.31697610208201
613 => 0.31626606455088
614 => 0.31653932981623
615 => 0.31316291721985
616 => 0.32088039517112
617 => 0.32796271611867
618 => 0.32606450281301
619 => 0.3232188112209
620 => 0.32095208080071
621 => 0.32553053316374
622 => 0.32532666188717
623 => 0.32790085822367
624 => 0.32778407780857
625 => 0.32691847240102
626 => 0.3260645337265
627 => 0.32945030404613
628 => 0.32847525656789
629 => 0.32749869457159
630 => 0.32554004998386
701 => 0.32580626231297
702 => 0.32296106206964
703 => 0.32164474224957
704 => 0.30185045044857
705 => 0.29656076888219
706 => 0.29822501038437
707 => 0.2987729218989
708 => 0.2964708457023
709 => 0.29977143161337
710 => 0.29925703879532
711 => 0.30125824034063
712 => 0.30000797649719
713 => 0.30005928776143
714 => 0.30373604714064
715 => 0.30480342603047
716 => 0.3042605485123
717 => 0.30464076131728
718 => 0.31340260493018
719 => 0.31215695095641
720 => 0.31149522210965
721 => 0.31167852552254
722 => 0.31391736442168
723 => 0.31454411707737
724 => 0.31188852203409
725 => 0.31314091600831
726 => 0.31847345059809
727 => 0.32033953590919
728 => 0.32629518445047
729 => 0.32376511909692
730 => 0.32840916355202
731 => 0.34268337293556
801 => 0.35408659909129
802 => 0.34359972106023
803 => 0.36454029370313
804 => 0.38084553325237
805 => 0.38021971100067
806 => 0.37737651533828
807 => 0.35881343360869
808 => 0.34173140904117
809 => 0.35602124793298
810 => 0.35605767567104
811 => 0.35483016583721
812 => 0.34720620768298
813 => 0.35456486861933
814 => 0.35514897240172
815 => 0.35482202960931
816 => 0.34897675876779
817 => 0.3400521105794
818 => 0.34179596547282
819 => 0.34465243536192
820 => 0.33924454193981
821 => 0.33751639231563
822 => 0.3407293512609
823 => 0.35108217442915
824 => 0.34912503317901
825 => 0.34907392431154
826 => 0.35744740453668
827 => 0.35145379980561
828 => 0.34181796106763
829 => 0.33938478470519
830 => 0.33074864780252
831 => 0.33671365832205
901 => 0.33692832843135
902 => 0.33366135313073
903 => 0.34208305810794
904 => 0.34200545061397
905 => 0.35000060608447
906 => 0.3652843405008
907 => 0.360764188167
908 => 0.35550774279396
909 => 0.35607926415143
910 => 0.36234744280797
911 => 0.35855755890362
912 => 0.35992042757964
913 => 0.362345379943
914 => 0.363808413912
915 => 0.35586875607811
916 => 0.35401764203929
917 => 0.35023091236862
918 => 0.34924302528019
919 => 0.35232723758425
920 => 0.35151465660896
921 => 0.33691028623991
922 => 0.33538404827839
923 => 0.3354308558177
924 => 0.33159305789481
925 => 0.32573949488537
926 => 0.34112230897611
927 => 0.33988685372228
928 => 0.33852300673869
929 => 0.33869007021218
930 => 0.34536722843702
1001 => 0.34149413946204
1002 => 0.35179138128884
1003 => 0.34967457793267
1004 => 0.34750348655785
1005 => 0.34720337559679
1006 => 0.34636769064629
1007 => 0.34350181600637
1008 => 0.3400411001663
1009 => 0.33775603580661
1010 => 0.3115620893151
1011 => 0.31642353342075
1012 => 0.32201618172972
1013 => 0.32394674151485
1014 => 0.32064438541172
1015 => 0.34363221315342
1016 => 0.34783231079805
1017 => 0.33510994106688
1018 => 0.33273010514111
1019 => 0.34378823480051
1020 => 0.33711883081452
1021 => 0.34012206302104
1022 => 0.33363071767073
1023 => 0.34682063026867
1024 => 0.34672014523382
1025 => 0.34158897132554
1026 => 0.34592580437606
1027 => 0.34517217290931
1028 => 0.33937909020438
1029 => 0.34700428132335
1030 => 0.34700806332302
1031 => 0.34206941999763
1101 => 0.33630216580162
1102 => 0.33527111696784
1103 => 0.33449436017351
1104 => 0.33993102846569
1105 => 0.34480552825644
1106 => 0.35387576387605
1107 => 0.3561562366143
1108 => 0.36505707353137
1109 => 0.35975705852114
1110 => 0.36210648652849
1111 => 0.36465712297735
1112 => 0.36587999188749
1113 => 0.36388739262119
1114 => 0.37771405608403
1115 => 0.37888145011832
1116 => 0.37927286724009
1117 => 0.37461059411527
1118 => 0.37875178386872
1119 => 0.37681425832487
1120 => 0.38185516152988
1121 => 0.38264563951791
1122 => 0.38197613278412
1123 => 0.38222704297436
1124 => 0.3704284248994
1125 => 0.36981660430955
1126 => 0.36147438715406
1127 => 0.36487390230748
1128 => 0.35851867167117
1129 => 0.36053398077207
1130 => 0.36142230982118
1201 => 0.36095829713816
1202 => 0.36506610579366
1203 => 0.36157362926662
1204 => 0.35235640949545
1205 => 0.34313667849891
1206 => 0.34302093228648
1207 => 0.34059353985686
1208 => 0.33883897972935
1209 => 0.33917697025627
1210 => 0.34036809295795
1211 => 0.33876974951258
1212 => 0.33911083712472
1213 => 0.34477516414109
1214 => 0.34591110452809
1215 => 0.3420507352525
1216 => 0.32655079556239
1217 => 0.32274707148378
1218 => 0.32548111292036
1219 => 0.32417441720849
1220 => 0.26163405546316
1221 => 0.27632698578093
1222 => 0.26759694551088
1223 => 0.27162014971716
1224 => 0.26270903923441
1225 => 0.26696188822809
1226 => 0.26617654230814
1227 => 0.28980233946369
1228 => 0.28943345513733
1229 => 0.28961002054343
1230 => 0.2811820936713
1231 => 0.29460801002176
]
'min_raw' => 0.17140323137379
'max_raw' => 0.38264563951791
'avg_raw' => 0.27702443544585
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.1714032'
'max' => '$0.382645'
'avg' => '$0.277024'
'bar_min_pct' => 61.631153054957
'bar_max_pct' => 60.119598047091
'min_diff' => 0.026430030503192
'max_diff' => 0.057887773244516
'year' => 2035
]
10 => [
'items' => [
101 => 0.30122209919634
102 => 0.29999800731841
103 => 0.30030608487206
104 => 0.29501229179057
105 => 0.28966127603212
106 => 0.28372617604058
107 => 0.29475285822433
108 => 0.29352687939724
109 => 0.29633883373333
110 => 0.30349042533301
111 => 0.30454352436232
112 => 0.30595890013719
113 => 0.30545158867521
114 => 0.31753780587667
115 => 0.31607408522614
116 => 0.31960123085274
117 => 0.31234562469365
118 => 0.30413521761618
119 => 0.30569574758317
120 => 0.30554545599836
121 => 0.30363207162707
122 => 0.30190475376985
123 => 0.29902925620638
124 => 0.30812775599077
125 => 0.30775837351534
126 => 0.31373824643246
127 => 0.31268124580897
128 => 0.30562233695339
129 => 0.30587444726412
130 => 0.30757001026387
131 => 0.31343837316561
201 => 0.31518050282347
202 => 0.31437347895409
203 => 0.31628364459268
204 => 0.3177933616297
205 => 0.31647324180852
206 => 0.3351633545901
207 => 0.32740191669307
208 => 0.33118478752035
209 => 0.33208697992268
210 => 0.32977603305516
211 => 0.33027719468192
212 => 0.3310363179881
213 => 0.33564556605162
214 => 0.34774156666696
215 => 0.35309880299923
216 => 0.36921631282627
217 => 0.35265395909817
218 => 0.35167121756978
219 => 0.35457446779179
220 => 0.36403715227194
221 => 0.37170576925835
222 => 0.37424989192587
223 => 0.37458613973527
224 => 0.37935908298961
225 => 0.38209484505287
226 => 0.37877952213766
227 => 0.3759701330958
228 => 0.36590725026204
229 => 0.36707205635037
301 => 0.37509641521632
302 => 0.38643129474687
303 => 0.39615780057729
304 => 0.39275191723842
305 => 0.41873640293501
306 => 0.42131265855472
307 => 0.42095670332839
308 => 0.42682579702833
309 => 0.4151768412541
310 => 0.41019668697272
311 => 0.37657755489457
312 => 0.38602315970195
313 => 0.39975290101041
314 => 0.39793571826434
315 => 0.38796481312911
316 => 0.39615023675163
317 => 0.39344387972016
318 => 0.39130926364258
319 => 0.40108835370964
320 => 0.39033584247803
321 => 0.39964563648563
322 => 0.3877057293734
323 => 0.39276747502663
324 => 0.38989418338477
325 => 0.39175355521443
326 => 0.38088370549143
327 => 0.38674881255127
328 => 0.38063969775506
329 => 0.38063680123921
330 => 0.38050194219149
331 => 0.38768928865728
401 => 0.38792366776749
402 => 0.3826122078698
403 => 0.38184674351794
404 => 0.38467706642286
405 => 0.38136349956394
406 => 0.38291389664189
407 => 0.38141045951202
408 => 0.38107200414686
409 => 0.37837513421379
410 => 0.37721324849465
411 => 0.37766885382323
412 => 0.37611363795613
413 => 0.37517656414159
414 => 0.38031553462397
415 => 0.37756999000071
416 => 0.3798947405338
417 => 0.37724539389444
418 => 0.36806160417701
419 => 0.3627799095937
420 => 0.34543258215523
421 => 0.35035226269749
422 => 0.35361401598678
423 => 0.35253600654413
424 => 0.35485198796122
425 => 0.35499417041061
426 => 0.35424122124328
427 => 0.35336940256627
428 => 0.35294504944889
429 => 0.3561078299198
430 => 0.35794393043745
501 => 0.35394137656599
502 => 0.35300363419559
503 => 0.35705043714669
504 => 0.3595189846091
505 => 0.37774535211454
506 => 0.37639508393934
507 => 0.37978399208233
508 => 0.37940245303247
509 => 0.38295456866173
510 => 0.38876077647949
511 => 0.37695513254473
512 => 0.37900418412336
513 => 0.37850180399579
514 => 0.38398665849742
515 => 0.38400378161448
516 => 0.38071533735195
517 => 0.38249805633558
518 => 0.38150299150526
519 => 0.38330120814474
520 => 0.37637705028464
521 => 0.38480992714158
522 => 0.38959082491689
523 => 0.38965720768714
524 => 0.39192331528908
525 => 0.39422581185675
526 => 0.39864525351322
527 => 0.39410255602761
528 => 0.38593068547369
529 => 0.3865206681327
530 => 0.38172950341691
531 => 0.38181004376137
601 => 0.38138011309055
602 => 0.38267036739737
603 => 0.3766601885477
604 => 0.37807076551074
605 => 0.37609594950215
606 => 0.37899989125903
607 => 0.3758757299674
608 => 0.37850156173288
609 => 0.37963478367516
610 => 0.3838163970387
611 => 0.37525810227364
612 => 0.35780715990206
613 => 0.36147555956079
614 => 0.35604970831895
615 => 0.35655189150906
616 => 0.35756638147493
617 => 0.35427808757507
618 => 0.35490539042512
619 => 0.35488297875305
620 => 0.35468984707095
621 => 0.35383443482766
622 => 0.35259391783674
623 => 0.35753575571758
624 => 0.35837547027157
625 => 0.36024205170646
626 => 0.3657957319424
627 => 0.36524078832203
628 => 0.36614592439124
629 => 0.36417001743427
630 => 0.35664354816575
701 => 0.35705227165797
702 => 0.35195548316068
703 => 0.36011171536544
704 => 0.35818021192235
705 => 0.35693495908741
706 => 0.35659518031421
707 => 0.36216262704926
708 => 0.36382849437142
709 => 0.36279043764844
710 => 0.36066135302467
711 => 0.36474982490968
712 => 0.36584372750732
713 => 0.36608861195736
714 => 0.37333260025086
715 => 0.3664934704323
716 => 0.36813971695473
717 => 0.38098326238095
718 => 0.36933593896748
719 => 0.37550578594591
720 => 0.37520380404265
721 => 0.37836008898057
722 => 0.37494489655268
723 => 0.3749872319559
724 => 0.37778979915551
725 => 0.37385409896931
726 => 0.37287956425533
727 => 0.37153325152772
728 => 0.3744728761146
729 => 0.37623504810664
730 => 0.39043686018983
731 => 0.39961187847689
801 => 0.39921356673566
802 => 0.40285339044217
803 => 0.40121361652542
804 => 0.39591835399774
805 => 0.40495672144402
806 => 0.40209660380266
807 => 0.40233238842597
808 => 0.40232361251051
809 => 0.40422534070619
810 => 0.40287779198873
811 => 0.40022163514356
812 => 0.40198491601503
813 => 0.40722122981885
814 => 0.42347490853565
815 => 0.43257068247817
816 => 0.42292733152332
817 => 0.42957918588236
818 => 0.42559044356499
819 => 0.42486557043112
820 => 0.42904342653677
821 => 0.43322859542648
822 => 0.43296201826119
823 => 0.42992380055806
824 => 0.42820758846949
825 => 0.44120332137742
826 => 0.45077835600746
827 => 0.45012540283754
828 => 0.45300732577782
829 => 0.46146874066503
830 => 0.46224234640041
831 => 0.46214488985888
901 => 0.46022742732632
902 => 0.46855878913635
903 => 0.47550895773464
904 => 0.45978359015086
905 => 0.46577160426658
906 => 0.4684598167249
907 => 0.4724069101704
908 => 0.47906631842263
909 => 0.48630020210536
910 => 0.4873231525736
911 => 0.4865973202637
912 => 0.48182637951771
913 => 0.48974178136153
914 => 0.49437843812263
915 => 0.49713946111586
916 => 0.50414095603627
917 => 0.46847641820986
918 => 0.44323128569379
919 => 0.43928889370727
920 => 0.44730590283877
921 => 0.44941992421229
922 => 0.44856776484738
923 => 0.42015207301351
924 => 0.43913929097053
925 => 0.45956794100166
926 => 0.46035268864765
927 => 0.47057969799616
928 => 0.47391003145931
929 => 0.48214411446962
930 => 0.48162907033543
1001 => 0.48363393851556
1002 => 0.48317305404043
1003 => 0.49842495892628
1004 => 0.51525007494517
1005 => 0.51466747467803
1006 => 0.51224866518458
1007 => 0.51584100975066
1008 => 0.53320633257117
1009 => 0.53160761191949
1010 => 0.5331606328539
1011 => 0.55363532712598
1012 => 0.58025534217099
1013 => 0.56788767257677
1014 => 0.59472195689517
1015 => 0.61161271644931
1016 => 0.64082353856106
1017 => 0.63716619976634
1018 => 0.64853775845553
1019 => 0.63061880001414
1020 => 0.58947324941372
1021 => 0.58296180853237
1022 => 0.59599787807279
1023 => 0.62804578299685
1024 => 0.59498857549792
1025 => 0.60167600552115
1026 => 0.59975002522457
1027 => 0.59964739791946
1028 => 0.6035642647403
1029 => 0.59788264512664
1030 => 0.57473470471672
1031 => 0.58534326939492
1101 => 0.58124679310755
1102 => 0.58579213896092
1103 => 0.61032149588835
1104 => 0.5994764824839
1105 => 0.58805214183966
1106 => 0.60238080027168
1107 => 0.62062610631687
1108 => 0.61948434785453
1109 => 0.61726885921958
1110 => 0.62975745265561
1111 => 0.65038495019739
1112 => 0.65596047989493
1113 => 0.66007622193097
1114 => 0.66064371322171
1115 => 0.66648922621019
1116 => 0.63505642961219
1117 => 0.68494108506468
1118 => 0.69355478702553
1119 => 0.69193576805826
1120 => 0.70150953526775
1121 => 0.69869269009168
1122 => 0.69461152338103
1123 => 0.70978798080676
1124 => 0.69238939704512
1125 => 0.66769429781626
1126 => 0.65414607796563
1127 => 0.67198746676867
1128 => 0.68288258033201
1129 => 0.69008355733802
1130 => 0.69226256862909
1201 => 0.6374964681344
1202 => 0.60798057743494
1203 => 0.62689992497292
1204 => 0.64998283471287
1205 => 0.6349282028831
1206 => 0.63551831594864
1207 => 0.61405436724704
1208 => 0.65188191790497
1209 => 0.64637076195389
1210 => 0.67496264877717
1211 => 0.66813896552257
1212 => 0.6914545392963
1213 => 0.68531476733171
1214 => 0.7108006174867
1215 => 0.72096761311537
1216 => 0.73803958114242
1217 => 0.75059779031854
1218 => 0.75797221094701
1219 => 0.75752947839324
1220 => 0.78675060684503
1221 => 0.76951992830547
1222 => 0.74787413510067
1223 => 0.7474826309932
1224 => 0.75869329401723
1225 => 0.78218776822039
1226 => 0.78827954355058
1227 => 0.79168401490487
1228 => 0.78646994851527
1229 => 0.76776728189444
1230 => 0.75969156527223
1231 => 0.76657230981038
]
'min_raw' => 0.28372617604058
'max_raw' => 0.79168401490487
'avg_raw' => 0.53770509547273
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$0.283726'
'max' => '$0.791684'
'avg' => '$0.537705'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.11232294466679
'max_diff' => 0.40903837538697
'year' => 2036
]
11 => [
'items' => [
101 => 0.75815775050934
102 => 0.77268364057129
103 => 0.79263079018903
104 => 0.78851178267255
105 => 0.80228100724404
106 => 0.81653070611086
107 => 0.83690841548445
108 => 0.84223590329909
109 => 0.85104203807049
110 => 0.86010644341483
111 => 0.86301768611886
112 => 0.86857615174641
113 => 0.86854685588882
114 => 0.88529766618534
115 => 0.90377432867181
116 => 0.91074884102473
117 => 0.92678634760342
118 => 0.89932267960867
119 => 0.92015418726257
120 => 0.93894472861284
121 => 0.91654187057195
122 => 0.94741899118485
123 => 0.94861787980918
124 => 0.96671967465056
125 => 0.94837003769455
126 => 0.93747408184418
127 => 0.96893029811805
128 => 0.98415097031145
129 => 0.97956637997686
130 => 0.94467742116148
131 => 0.9243705506731
201 => 0.87122355370221
202 => 0.93417846739364
203 => 0.96484196943272
204 => 0.94459801009896
205 => 0.95480788566612
206 => 1.0105096561973
207 => 1.031717283993
208 => 1.027306245664
209 => 1.0280516385297
210 => 1.0394948895426
211 => 1.0902405664472
212 => 1.0598325805704
213 => 1.0830783464077
214 => 1.095407816789
215 => 1.1068601160079
216 => 1.0787368886625
217 => 1.0421489830983
218 => 1.0305600575503
219 => 0.94258514730805
220 => 0.93800567117427
221 => 0.93543507244805
222 => 0.91922781109765
223 => 0.90649334321874
224 => 0.89636642156095
225 => 0.86979035497612
226 => 0.87875899729988
227 => 0.83640229401983
228 => 0.86350061174901
301 => 0.79589829057569
302 => 0.85219951246265
303 => 0.82155731709202
304 => 0.8421327271642
305 => 0.84206094149678
306 => 0.80417508811419
307 => 0.7823233185407
308 => 0.79624811659652
309 => 0.81117660546421
310 => 0.81359870255752
311 => 0.83295387804791
312 => 0.83835549148917
313 => 0.82198835058493
314 => 0.79449738272989
315 => 0.80088290756039
316 => 0.78219391608382
317 => 0.7494421773828
318 => 0.77296504790837
319 => 0.78099679013341
320 => 0.78454406505825
321 => 0.7523364916084
322 => 0.74221617277002
323 => 0.73682819993816
324 => 0.7903397894429
325 => 0.79327127511155
326 => 0.77827337996042
327 => 0.8460652882023
328 => 0.83072189149335
329 => 0.84786422484071
330 => 0.80030348811193
331 => 0.802120372304
401 => 0.77960435734197
402 => 0.79221182120004
403 => 0.78330127210269
404 => 0.79119326270969
405 => 0.79592368933964
406 => 0.81843600964516
407 => 0.8524565669985
408 => 0.81507341971124
409 => 0.79878504710165
410 => 0.80889026185936
411 => 0.83580178040875
412 => 0.87657410858638
413 => 0.85243606968565
414 => 0.86314812145931
415 => 0.86548822822584
416 => 0.84768973197922
417 => 0.8772303645305
418 => 0.8930614295024
419 => 0.90930082638626
420 => 0.92340103968295
421 => 0.90281445415886
422 => 0.92484505164075
423 => 0.90709227899431
424 => 0.89116620668255
425 => 0.89119035996025
426 => 0.8811997021563
427 => 0.86184154375723
428 => 0.85827160234101
429 => 0.8768428884221
430 => 0.89173530115179
501 => 0.89296191159406
502 => 0.90120711648101
503 => 0.90608654380074
504 => 0.95391156479391
505 => 0.97314718386669
506 => 0.99666813475724
507 => 1.0058308706973
508 => 1.0334074208541
509 => 1.0111371169446
510 => 1.006318796607
511 => 0.93942710614726
512 => 0.95038061671269
513 => 0.96791824398451
514 => 0.93971629516146
515 => 0.95760394049588
516 => 0.96113534059703
517 => 0.93875800373206
518 => 0.95071070621929
519 => 0.91896787214252
520 => 0.85314847403822
521 => 0.87730364033606
522 => 0.89508997327234
523 => 0.86970668313324
524 => 0.91520524823858
525 => 0.88862592578507
526 => 0.88020155659978
527 => 0.84733508890352
528 => 0.8628467965098
529 => 0.88382660315355
530 => 0.87086352181202
531 => 0.89776386201215
601 => 0.93586191779422
602 => 0.96301286112297
603 => 0.96509717341714
604 => 0.94764093582869
605 => 0.97561466796841
606 => 0.97581842606743
607 => 0.94426394193777
608 => 0.92493699610446
609 => 0.92054587334689
610 => 0.93151575892562
611 => 0.94483522517081
612 => 0.96583631109498
613 => 0.97852682748183
614 => 1.0116169636889
615 => 1.020570205778
616 => 1.0304071043806
617 => 1.0435522345007
618 => 1.0593363335521
619 => 1.0248016234169
620 => 1.0261737518313
621 => 0.99401550791897
622 => 0.95964981233997
623 => 0.98572909154
624 => 1.0198242799129
625 => 1.0120028060283
626 => 1.0111227304381
627 => 1.0126027734683
628 => 1.0067056375847
629 => 0.98003311054164
630 => 0.96663833443945
701 => 0.98392101298311
702 => 0.99310598746554
703 => 1.0073510818738
704 => 1.0055950733106
705 => 1.0422889066949
706 => 1.0565470207841
707 => 1.052899185061
708 => 1.0535704746241
709 => 1.0793841091263
710 => 1.1080941796717
711 => 1.1349849493649
712 => 1.1623393952822
713 => 1.1293625430666
714 => 1.1126189312411
715 => 1.1298940647079
716 => 1.1207276357253
717 => 1.1734006555989
718 => 1.177047621212
719 => 1.2297168322267
720 => 1.2797061852127
721 => 1.2483087682545
722 => 1.2779151182754
723 => 1.3099367996641
724 => 1.3717118183935
725 => 1.3509081653568
726 => 1.3349728931655
727 => 1.3199141379433
728 => 1.3512490170505
729 => 1.3915608384349
730 => 1.4002436186593
731 => 1.4143130397001
801 => 1.3995207638026
802 => 1.4173364308054
803 => 1.4802335639259
804 => 1.4632382033484
805 => 1.4391020591878
806 => 1.4887533050815
807 => 1.5067218979561
808 => 1.6328348929754
809 => 1.7920577586551
810 => 1.72613844675
811 => 1.6852202026476
812 => 1.6948369606054
813 => 1.7529797611175
814 => 1.7716533832817
815 => 1.7208920410558
816 => 1.7388218052827
817 => 1.8376165689886
818 => 1.8906167900013
819 => 1.8186353709867
820 => 1.6200414907499
821 => 1.4369288634854
822 => 1.485498577905
823 => 1.4799922795835
824 => 1.5861349282877
825 => 1.4628328696193
826 => 1.4649089600616
827 => 1.573246526334
828 => 1.5443439210286
829 => 1.4975254019999
830 => 1.4372706904868
831 => 1.3258842833685
901 => 1.2272262363442
902 => 1.4207173861502
903 => 1.4123736959298
904 => 1.4002907960249
905 => 1.4271799822568
906 => 1.5577462379703
907 => 1.5547362631743
908 => 1.5355883392253
909 => 1.5501118707786
910 => 1.4949793566983
911 => 1.5091882609208
912 => 1.4368998575097
913 => 1.4695772348819
914 => 1.4974249504853
915 => 1.5030157916851
916 => 1.5156122423838
917 => 1.4079769503238
918 => 1.4563020364526
919 => 1.4846884971051
920 => 1.356437435169
921 => 1.4821533859692
922 => 1.406103259356
923 => 1.3802907041489
924 => 1.4150439091897
925 => 1.4015005513867
926 => 1.3898567676403
927 => 1.3833593362442
928 => 1.4088782544549
929 => 1.4076877664187
930 => 1.3659338632174
1001 => 1.3114675985981
1002 => 1.3297482647986
1003 => 1.3231067273858
1004 => 1.2990369390265
1005 => 1.3152570701833
1006 => 1.2438318213893
1007 => 1.1209483932005
1008 => 1.2021289498832
1009 => 1.1990035867584
1010 => 1.1974276369469
1011 => 1.2584325816282
1012 => 1.2525683638206
1013 => 1.2419247510773
1014 => 1.2988414607317
1015 => 1.2780660960701
1016 => 1.3420908746657
1017 => 1.3842617347118
1018 => 1.3735658405197
1019 => 1.4132277382225
1020 => 1.3301694144261
1021 => 1.3577580578697
1022 => 1.3634440390472
1023 => 1.2981391173695
1024 => 1.2535278223779
1025 => 1.250552757608
1026 => 1.1732029199078
1027 => 1.2145225788612
1028 => 1.2508821688165
1029 => 1.233468746846
1030 => 1.2279561776614
1031 => 1.2561186980954
1101 => 1.2583071671288
1102 => 1.2084098412437
1103 => 1.2187850753381
1104 => 1.2620515262505
1105 => 1.2176948717853
1106 => 1.1315171377779
1107 => 1.1101438682437
1108 => 1.1072922801003
1109 => 1.0493262779881
1110 => 1.1115721323142
1111 => 1.0844001488157
1112 => 1.1702361191172
1113 => 1.1212070732285
1114 => 1.1190935290534
1115 => 1.1158985970431
1116 => 1.0660048644798
1117 => 1.076928420999
1118 => 1.1132399865737
1119 => 1.1261963622498
1120 => 1.1248449061183
1121 => 1.1130620400926
1122 => 1.1184561758211
1123 => 1.1010797851982
1124 => 1.0949438200109
1125 => 1.0755770260497
1126 => 1.0471131891401
1127 => 1.0510712602412
1128 => 0.99467695135521
1129 => 0.96395033880161
1130 => 0.95544561741702
1201 => 0.94407274854477
1202 => 0.95673021321819
1203 => 0.9945171933637
1204 => 0.94893807835317
1205 => 0.87079588267078
1206 => 0.87549236177912
1207 => 0.88604395593838
1208 => 0.86638113002837
1209 => 0.84777191548044
1210 => 0.86395111771657
1211 => 0.83084123927558
1212 => 0.89004512656366
1213 => 0.88844382732949
1214 => 0.91051137536666
1215 => 0.92431066602597
1216 => 0.89250776862966
1217 => 0.88450942593867
1218 => 0.88906564543986
1219 => 0.81376148618942
1220 => 0.90435741899001
1221 => 0.90514089637895
1222 => 0.89843228731195
1223 => 0.94667182469264
1224 => 1.0484722948549
1225 => 1.0101708630654
1226 => 0.99533939100966
1227 => 0.96714475178986
1228 => 1.0047124345182
1229 => 1.0018278226318
1230 => 0.98878251372498
1231 => 0.98089267019428
]
'min_raw' => 0.73682819993816
'max_raw' => 1.8906167900013
'avg_raw' => 1.3137224949697
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$0.736828'
'max' => '$1.89'
'avg' => '$1.31'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 0.45310202389758
'max_diff' => 1.0989327750965
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.023128195241334
]
1 => [
'year' => 2028
'avg' => 0.039694697197181
]
2 => [
'year' => 2029
'avg' => 0.1084387584696
]
3 => [
'year' => 2030
'avg' => 0.083660340667454
]
4 => [
'year' => 2031
'avg' => 0.082164822447319
]
5 => [
'year' => 2032
'avg' => 0.14406079197142
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.023128195241334
'min' => '$0.023128'
'max_raw' => 0.14406079197142
'max' => '$0.14406'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.14406079197142
]
1 => [
'year' => 2033
'avg' => 0.37053917054705
]
2 => [
'year' => 2034
'avg' => 0.23486553357199
]
3 => [
'year' => 2035
'avg' => 0.27702443544585
]
4 => [
'year' => 2036
'avg' => 0.53770509547273
]
5 => [
'year' => 2037
'avg' => 1.3137224949697
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.14406079197142
'min' => '$0.14406'
'max_raw' => 1.3137224949697
'max' => '$1.31'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 1.3137224949697
]
]
]
]
'prediction_2025_max_price' => '$0.039545'
'last_price' => 0.03834387
'sma_50day_nextmonth' => '$0.036912'
'sma_200day_nextmonth' => '$0.065282'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'increase'
'sma_200day_direction_label' => 'aumentar'
'sma_200day_date_nextmonth' => '4 de fev. de 2026'
'sma_50day_date_nextmonth' => '4 de fev. de 2026'
'daily_sma3' => '$0.037843'
'daily_sma3_action' => 'BUY'
'daily_sma5' => '$0.03766'
'daily_sma5_action' => 'BUY'
'daily_sma10' => '$0.038853'
'daily_sma10_action' => 'SELL'
'daily_sma21' => '$0.039472'
'daily_sma21_action' => 'SELL'
'daily_sma50' => '$0.0431061'
'daily_sma50_action' => 'SELL'
'daily_sma100' => '$0.0532051'
'daily_sma100_action' => 'SELL'
'daily_sma200' => '$0.071382'
'daily_sma200_action' => 'SELL'
'daily_ema3' => '$0.037974'
'daily_ema3_action' => 'BUY'
'daily_ema5' => '$0.037988'
'daily_ema5_action' => 'BUY'
'daily_ema10' => '$0.038516'
'daily_ema10_action' => 'SELL'
'daily_ema21' => '$0.039827'
'daily_ema21_action' => 'SELL'
'daily_ema50' => '$0.044248'
'daily_ema50_action' => 'SELL'
'daily_ema100' => '$0.053119'
'daily_ema100_action' => 'SELL'
'daily_ema200' => '$0.0705074'
'daily_ema200_action' => 'SELL'
'weekly_sma21' => '$0.062437'
'weekly_sma21_action' => 'SELL'
'weekly_sma50' => '$0.082163'
'weekly_sma50_action' => 'SELL'
'weekly_sma100' => '$0.188779'
'weekly_sma100_action' => 'SELL'
'weekly_sma200' => '$0.320031'
'weekly_sma200_action' => 'SELL'
'weekly_ema3' => '$0.0392075'
'weekly_ema3_action' => 'SELL'
'weekly_ema5' => '$0.040859'
'weekly_ema5_action' => 'SELL'
'weekly_ema10' => '$0.046313'
'weekly_ema10_action' => 'SELL'
'weekly_ema21' => '$0.058754'
'weekly_ema21_action' => 'SELL'
'weekly_ema50' => '$0.097516'
'weekly_ema50_action' => 'SELL'
'weekly_ema100' => '$0.22769'
'weekly_ema100_action' => 'SELL'
'weekly_ema200' => '$0.751313'
'weekly_ema200_action' => 'SELL'
'rsi_14' => '41.83'
'rsi_14_action' => 'NEUTRAL'
'stoch_rsi_14' => 48.47
'stoch_rsi_14_action' => 'NEUTRAL'
'momentum_10' => -0
'momentum_10_action' => 'SELL'
'vwma_10' => '0.038632'
'vwma_10_action' => 'SELL'
'hma_9' => '0.037391'
'hma_9_action' => 'BUY'
'stochastic_fast_14' => 40.02
'stochastic_fast_14_action' => 'NEUTRAL'
'cci_20' => -43.34
'cci_20_action' => 'NEUTRAL'
'adx_14' => 20.75
'adx_14_action' => 'NEUTRAL'
'ao_5_34' => '-0.003735'
'ao_5_34_action' => 'NEUTRAL'
'macd_12_26' => 0
'macd_12_26_action' => 'BUY'
'williams_percent_r_14' => -59.98
'williams_percent_r_14_action' => 'NEUTRAL'
'ultimate_oscillator' => 35.53
'ultimate_oscillator_action' => 'NEUTRAL'
'ichimoku_cloud' => '-0.007298'
'ichimoku_cloud_action' => 'SELL'
'sell_signals' => 23
'buy_signals' => 10
'sell_pct' => 69.7
'buy_pct' => 30.3
'overall_action' => 'bearish'
'overall_action_label' => 'Baixista'
'overall_action_dir' => -1
'last_updated' => 1767714142
'last_updated_date' => '6 de janeiro de 2026'
]
Previsão de preço de FIDA para 2026
A previsão de preço para FIDA em 2026 sugere que o preço médio poderia variar entre $0.013247 na extremidade inferior e $0.039545 na extremidade superior. No mercado de criptomoedas, comparado ao preço médio de hoje, FIDA poderia potencialmente ganhar 3.13% até 2026 se FIDA atingir a meta de preço prevista.
Previsão de preço de FIDA 2027-2032
A previsão de preço de FIDA para 2027-2032 está atualmente dentro de uma faixa de preço entre $0.023128 na extremidade inferior e $0.14406 na extremidade superior. Considerando a volatilidade de preços no mercado, se FIDA atingir a meta de preço superior, poderia ganhar 275.71% até 2032 em comparação com o preço de hoje.
| Previsão de Preço de FIDA | Potencial Mínimo ($) | Preço Médio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2027 | $0.012753 | $0.023128 | $0.033503 |
| 2028 | $0.023016 | $0.039694 | $0.056373 |
| 2029 | $0.050559 | $0.108438 | $0.166317 |
| 2030 | $0.042998 | $0.08366 | $0.124321 |
| 2031 | $0.050837 | $0.082164 | $0.113491 |
| 2032 | $0.07760007 | $0.14406 | $0.210521 |
Previsão de preço de FIDA 2032-2037
A previsão de preço de FIDA para 2032-2037 é atualmente estimada entre $0.14406 na extremidade inferior e $1.31 na extremidade superior. Comparado ao preço atual, FIDA poderia potencialmente ganhar 3326.16% até 2037 se atingir a meta de preço superior. Por favor, note que esta informação é apenas para fins gerais e não deve ser considerada como aconselhamento de investimento a longo prazo.
| Previsão de Preço de FIDA | Potencial Mínimo ($) | Preço Médio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2032 | $0.07760007 | $0.14406 | $0.210521 |
| 2033 | $0.180325 | $0.370539 | $0.560752 |
| 2034 | $0.144973 | $0.234865 | $0.324757 |
| 2035 | $0.1714032 | $0.277024 | $0.382645 |
| 2036 | $0.283726 | $0.537705 | $0.791684 |
| 2037 | $0.736828 | $1.31 | $1.89 |
FIDA Histograma de preços potenciais
Previsão de preço de FIDA baseada na análise técnica
Em 6 de janeiro de 2026, o sentimento geral de previsão de preço para FIDA é Baixista, com 10 indicadores técnicos mostrando sinais de alta e 23 indicando sinais de baixa. A previsão de preço de FIDA foi atualizada pela última vez em 6 de janeiro de 2026.
Médias Móveis Simples de 50 e 200 dias e Índice de Força Relativa de 14 dias - RSI (14) de FIDA
De acordo com nossos indicadores técnicos, o SMA de 200 dias de FIDA está projetado para aumentar no próximo mês, alcançando $0.065282 até 4 de fev. de 2026. O SMA de 50 dias de curto prazo para FIDA é esperado para alcançar $0.036912 até 4 de fev. de 2026.
O oscilador de momentum Índice de Força Relativa (RSI) é uma ferramenta comumente usada para identificar se uma criptomoeda está sobrevendida (abaixo de 30) ou sobrecomprada (acima de 70). No momento, o RSI está em 41.83, sugerindo que o mercado de FIDA está em um estado NEUTRAL.
Médias Móveis e Osciladores Populares de FIDA para Sábado, 19 de Outubro de 2024
Médias móveis (MA) são indicadores amplamente utilizados nos mercados financeiros, projetados para suavizar movimentos de preços ao longo de um período definido. Como indicadores atrasados, eles se baseiam em dados históricos de preços. A tabela abaixo destaca dois tipos: a média móvel simples (SMA) e a média móvel exponencial (EMA).
Média Móvel Simples Diária (SMA)
| Período | Valor | Ação |
|---|---|---|
| SMA 3 | $0.037843 | BUY |
| SMA 5 | $0.03766 | BUY |
| SMA 10 | $0.038853 | SELL |
| SMA 21 | $0.039472 | SELL |
| SMA 50 | $0.0431061 | SELL |
| SMA 100 | $0.0532051 | SELL |
| SMA 200 | $0.071382 | SELL |
Média Móvel Exponencial Diária (EMA)
| Período | Valor | Ação |
|---|---|---|
| EMA 3 | $0.037974 | BUY |
| EMA 5 | $0.037988 | BUY |
| EMA 10 | $0.038516 | SELL |
| EMA 21 | $0.039827 | SELL |
| EMA 50 | $0.044248 | SELL |
| EMA 100 | $0.053119 | SELL |
| EMA 200 | $0.0705074 | SELL |
Média Móvel Simples Semanal (SMA)
| Período | Valor | Ação |
|---|---|---|
| SMA 21 | $0.062437 | SELL |
| SMA 50 | $0.082163 | SELL |
| SMA 100 | $0.188779 | SELL |
| SMA 200 | $0.320031 | SELL |
Média Móvel Exponencial Semanal (EMA)
| Período | Valor | Ação |
|---|---|---|
| EMA 21 | $0.058754 | SELL |
| EMA 50 | $0.097516 | SELL |
| EMA 100 | $0.22769 | SELL |
| EMA 200 | $0.751313 | SELL |
Osciladores de FIDA
Um oscilador é uma ferramenta de análise técnica que define limites altos e baixos entre dois extremos, criando um indicador de tendência que flutua dentro desses limites. Os traders usam esse indicador para identificar condições de sobrecompra ou sobrevenda de curto prazo.
| Período | Valor | Ação |
|---|---|---|
| RSI (14) | 41.83 | NEUTRAL |
| Stoch RSI (14) | 48.47 | NEUTRAL |
| Estocástico Rápido (14) | 40.02 | NEUTRAL |
| Índice de Canal de Commodities (20) | -43.34 | NEUTRAL |
| Índice Direcional Médio (14) | 20.75 | NEUTRAL |
| Oscilador Impressionante (5, 34) | -0.003735 | NEUTRAL |
| Momentum (10) | -0 | SELL |
| MACD (12, 26) | 0 | BUY |
| Williams Percent Range (14) | -59.98 | NEUTRAL |
| Oscilador Ultimate (7, 14, 28) | 35.53 | NEUTRAL |
| VWMA (10) | 0.038632 | SELL |
| Média Móvel de Hull (9) | 0.037391 | BUY |
| Nuvem Ichimoku B/L (9, 26, 52, 26) | -0.007298 | SELL |
Previsão do preço de FIDA com base nos fluxos financeiros mundiais
Definições dos fluxos financeiros mundiais, usadas na previsão do preço do FIDA
M0: o total de todas as moedas físicas, mais as contas no Banco Central que podem ser trocadas por moedas físicas.
M1: o valor de M0, mais o valor em contas de demanda, incluindo contas 'correntes'.
M2: o valor de M1, mais a maioria das contas de poupança, do mercado de moedas e de certificados de depósito (CD) de menos de US$ 100.000.
Previsões de preço de FIDA por empresas de Internet ou nichos tecnológicos
| Comparação | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Facebook stock | $0.053879 | $0.0757097 | $0.106384 | $0.149488 | $0.210056 | $0.295164 |
| Amazon.com stock | $0.0800067 | $0.166938 | $0.348327 | $0.7268068 | $1.51 | $3.16 |
| Apple stock | $0.054387 | $0.077145 | $0.109424 | $0.15521 | $0.220153 | $0.312271 |
| Netflix stock | $0.06050061 | $0.09546 | $0.150621 | $0.237657 | $0.374986 | $0.591669 |
| Google stock | $0.049655 | $0.0643031 | $0.083272 | $0.107837 | $0.139648 | $0.180844 |
| Tesla stock | $0.086922 | $0.197047 | $0.44669 | $1.01 | $2.29 | $5.20 |
| Kodak stock | $0.028753 | $0.021562 | $0.016169 | $0.012125 | $0.009092 | $0.006818 |
| Nokia stock | $0.0254012 | $0.016827 | $0.011147 | $0.007384 | $0.004892 | $0.00324 |
Este cálculo mostra quanto a criptomoeda pode custar, se assumirmos que sua capitalização se comportará da mesma forma que a de algumas empresas de Internet ou nichos tecnológicos. Se você extrapolar os dados, poderá obter uma imagem em potencial do preço futuro para 2024, 2025, 2026, 2027, 2028, 2029 e 2030.
Visão geral da previsão para FIDA
Você pode fazer perguntas como: 'Devo investir em FIDA agora?', 'Devo comprar FIDA hoje?', 'FIDA será um bom ou mau investimento no curto ou no longo prazo?'.
Atualizamos a previsão para FIDA/Bonfida regularmente com novos valores. Veja nossas previsões semelhantes. Fazemos previsões de preços futuros para uma enorme quantidade de moedas digitais, como FIDA, com métodos de análise técnica.
Se você estiver tentando encontrar criptomoedas com bom retorno, você deve explorar o máximo de fontes de informações disponíveis sobre FIDA para poder tomar sozinho uma decisão de tão grande responsabilidade sobre o seu investimento.
O preço de FIDA é de $0.03834 USD hoje, mas o preço pode tanto subir quanto descer e seu investimento pode ser perdido, porque criptomoedas são ativos de alto risco
Previsão de curto prazo para FIDA
com base no histórico de preços de 4 horas
Previsão de longo prazo para FIDA
com base no histórico de preços de 1 mês
Previsão do preço de FIDA com base no padrão de crescimento do Bitcoin
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| Se FIDA tiver 1% da média anterior do crescimento anual do Bitcoin | $0.03934 | $0.040363 | $0.041412 | $0.042488 |
| Se FIDA tiver 2% da média anterior do crescimento anual do Bitcoin | $0.040337 | $0.042434 | $0.04464 | $0.04696 |
| Se FIDA tiver 5% da média anterior do crescimento anual do Bitcoin | $0.043327 | $0.048958 | $0.055321 | $0.062511 |
| Se FIDA tiver 10% da média anterior do crescimento anual do Bitcoin | $0.04831 | $0.060868 | $0.076689 | $0.096623 |
| Se FIDA tiver 20% da média anterior do crescimento anual do Bitcoin | $0.058277 | $0.088573 | $0.13462 | $0.2046044 |
| Se FIDA tiver 50% da média anterior do crescimento anual do Bitcoin | $0.088177 | $0.202779 | $0.466323 | $1.07 |
| Se FIDA tiver 100% da média anterior do crescimento anual do Bitcoin | $0.138011 | $0.496749 | $1.78 | $6.43 |
Perguntas Frequentes sobre FIDA
FIDA é um bom investimento?
A decisão de adquirir FIDA depende inteiramente da sua tolerância individual ao risco. Como você pode perceber, o valor de FIDA experimentou uma escalada de 2.8205% nas últimas 24 horas, e FIDA registrou um declínio de durante os últimos 30 dias. Consequentemente, a decisão de investir ou não em FIDA dependerá de quão alinhado esse investimento está com suas aspirações de negociação.
FIDA pode subir?
Parece que o valor médio de FIDA pode potencialmente subir para $0.039545 até o final deste ano. Observando as perspectivas de FIDA em um horizonte de cinco anos mais longo, a moeda digital poderia potencialmente crescer até $0.124321. No entanto, dada a imprevisibilidade do mercado, é vital conduzir uma pesquisa aprofundada antes de investir quaisquer fundos em um projeto, rede ou ativo específico.
Qual será o preço de FIDA na próxima semana?
Com base na nossa nova previsão experimental de FIDA, o preço de FIDA aumentará 0.86% na próxima semana e atingirá $0.038672 até 13 de janeiro de 2026.
Qual será o preço de FIDA no próximo mês?
Com base na nossa nova previsão experimental de FIDA, o preço de FIDA diminuirá -11.62% no próximo mês e atingirá $0.033889 até 5 de fevereiro de 2026.
Até onde o preço de FIDA pode subir este ano em 2026?
De acordo com nossa previsão mais recente sobre o valor de FIDA em 2026, espera-se que FIDA fluctue dentro do intervalo de $0.013247 e $0.039545. No entanto, é crucial lembrar que o mercado de criptomoedas é excepcionalmente instável, e essa previsão de preço de FIDA não considera flutuações repentinas e extremas de preço.
Onde estará FIDA em 5 anos?
O futuro de FIDA parece seguir uma tendência de alta, com um preço máximo de $0.124321 projetada após um período de cinco anos. Com base na previsão de FIDA para 2030, o valor de FIDA pode potencialmente atingir seu pico mais alto de aproximadamente $0.124321, enquanto seu pico mais baixo está previsto para cerca de $0.042998.
Quanto será FIDA em 2026?
Com base na nossa nova simulação experimental de previsão de preços de FIDA, espera-se que o valor de FIDA em 2026 aumente 3.13% para $0.039545 se o melhor cenário ocorrer. O preço ficará entre $0.039545 e $0.013247 durante 2026.
Quanto será FIDA em 2027?
De acordo com nossa última simulação experimental para previsão de preços de FIDA, o valor de FIDA pode diminuir -12.62% para $0.033503 em 2027, assumindo as condições mais favoráveis. O preço está projetado para flutuar entre $0.033503 e $0.012753 ao longo do ano.
Quanto será FIDA em 2028?
Nosso novo modelo experimental de previsão de preços de FIDA sugere que o valor de FIDA em 2028 pode aumentar 47.02%, alcançando $0.056373 no melhor cenário. O preço é esperado para variar entre $0.056373 e $0.023016 durante o ano.
Quanto será FIDA em 2029?
Com base no nosso modelo de previsão experimental, o valor de FIDA pode experimentar um 333.75% crescimento em 2029, potencialmente alcançando $0.166317 sob condições ótimas. A faixa de preço prevista para 2029 está entre $0.166317 e $0.050559.
Quanto será FIDA em 2030?
Usando nossa nova simulação experimental para previsões de preços de FIDA, espera-se que o valor de FIDA em 2030 aumente 224.23%, alcançando $0.124321 no melhor cenário. O preço está previsto para variar entre $0.124321 e $0.042998 ao longo de 2030.
Quanto será FIDA em 2031?
Nossa simulação experimental indica que o preço de FIDA poderia aumentar 195.98% em 2031, potencialmente atingindo $0.113491 sob condições ideais. O preço provavelmente oscilará entre $0.113491 e $0.050837 durante o ano.
Quanto será FIDA em 2032?
Com base nos achados da nossa mais recente previsão experimental de preços de FIDA, FIDA poderia ver um 449.04% aumento em valor, atingindo $0.210521 se o cenário mais positivo se desenrolar em 2032. O preço é esperado para permanecer dentro de uma faixa de $0.210521 e $0.07760007 ao longo do ano.
Quanto será FIDA em 2033?
De acordo com nossa previsão experimental de preços de FIDA, espera-se que o valor de FIDA seja aumentar 1362.43% em 2033, com o preço potencial mais alto sendo $0.560752. Ao longo do ano, o preço de FIDA poderia variar entre $0.560752 e $0.180325.
Quanto será FIDA em 2034?
Os resultados da nossa nova simulação de previsão de preços de FIDA sugerem que FIDA pode aumentar 746.96% em 2034, atingindo potencialmente $0.324757 nas melhores circunstâncias. A faixa de preço prevista para o ano é entre $0.324757 e $0.144973.
Quanto será FIDA em 2035?
Com base em nossa previsão experimental para o preço de FIDA, FIDA poderia aumentar 897.93%, com o valor potencialmente atingindo $0.382645 em 2035. A faixa de preço esperada para o ano está entre $0.382645 e $0.1714032.
Quanto será FIDA em 2036?
Nossa recente simulação de previsão de preços de FIDA sugere que o valor de FIDA pode aumentar 1964.7% em 2036, possivelmente atingindo $0.791684 se as condições forem ideais. A faixa de preço esperada para 2036 está entre $0.791684 e $0.283726.
Quanto será FIDA em 2037?
De acordo com a simulação experimental, o valor de FIDA poderia aumentar 4830.69% em 2037, com um pico de $1.89 sob condições favoráveis. O preço é esperado para cair entre $1.89 e $0.736828 ao longo do ano.
Previsões relacionadas
Previsão de Preço do Rarible
Previsão de Preço do Ampleforth Governance Token
Previsão de Preço do Firmachain
Previsão de Preço do Dynex
Previsão de Preço do Hxro
Previsão de Preço do Steem Dollars
Previsão de Preço do Kin
Previsão de Preço do HOPR
Previsão de Preço do DEAPCOIN
Previsão de Preço do ShapeShift FOX Token
Previsão de Preço do QnA3.AI
Previsão de Preço do ZKSwap
Previsão de Preço do PAID Network
Previsão de Preço do NKYC Token
Previsão de Preço do Biswap
Previsão de Preço do Thala
Previsão de Preço do Streamr
Previsão de Preço do Impossible Finance Launchpad
Previsão de Preço do SelfKey
Previsão de Preço do Solchat
Previsão de Preço do pSTAKE Finance
Previsão de Preço do Groestlcoin
Previsão de Preço do Games for a Living
Previsão de Preço do Fideum
Previsão de Preço do district0x
Como ler e prever os movimentos de preço de FIDA?
Traders de FIDA utilizam indicadores e padrões de gráfico para prever a direção do mercado. Eles também identificam níveis-chave de suporte e resistência para avaliar quando uma tendência de baixa pode desacelerar ou uma tendência de alta pode estagnar.
Indicadores de Previsão de Preço de FIDA
Médias móveis são ferramentas populares para a previsão de preço de FIDA. Uma média móvel simples (SMA) calcula o preço médio de fechamento de FIDA em um período específico, como uma SMA de 12 dias. Uma média móvel exponencial (EMA) dá mais peso aos preços recentes, reagindo mais rapidamente às mudanças de preço.
Médias móveis comumente usadas no mercado de criptomoedas incluem as de 50 dias, 100 dias e 200 dias, que ajudam a identificar níveis-chave de resistência e suporte. Um movimento de preço de FIDA acima dessas médias é visto como altista, enquanto uma queda abaixo indica fraqueza.
Traders também usam RSI e níveis de retração de Fibonacci para avaliar a direção futura de FIDA.
Como ler gráficos de FIDA e prever movimentos de preço?
A maioria dos traders prefere gráficos de velas em vez de gráficos de linha simples porque eles fornecem informações mais detalhadas. Velas podem representar a ação de preço de FIDA em diferentes períodos de tempo, como 5 minutos para tendências de curto prazo e semanal para tendências de longo prazo. Opções populares incluem gráficos de 1 hora, 4 horas e 1 dia.
Por exemplo, um gráfico de velas de 1 hora mostra os preços de abertura, fechamento, máximo e mínimo de FIDA dentro de cada hora. A cor da vela é crucial: verde indica que o preço fechou mais alto do que abriu, enquanto vermelho significa o oposto. Alguns gráficos usam velas vazias e preenchidas para transmitir a mesma informação.
O que afeta o preço de FIDA?
A ação de preço de FIDA é impulsionada pela oferta e demanda, influenciada por fatores como reduções pela metade das recompensas de bloco, hard forks e atualizações de protocolo. Eventos do mundo real, como regulamentações, adoção por empresas e governos e hacks de exchanges de criptomoedas, também impactam o preço de FIDA. A capitalização de mercado de FIDA pode mudar rapidamente.
Traders frequentemente monitoram a atividade de "baleias" de FIDA, grandes detentores de FIDA, pois suas ações podem influenciar significativamente os movimentos de preço no relativamente pequeno mercado de FIDA.
Padrões de previsão de preço altistas e baixistas
Traders frequentemente identificam padrões de velas para ganhar vantagem em previsões de preço de criptomoedas. Certas formações indicam tendências altistas, enquanto outras sugerem movimentos baixistas.
Padrões de velas altistas comumente seguidos:
- Martelo
- Engolfo de Alta
- Linha de Perfuração
- Estrela da Manhã
- Três Soldados Brancos
Padrões de velas baixistas comuns:
- Harami de Baixa
- Nuvem Negra
- Estrela da Noite
- Estrela Cadente
- Homem Enforcado


