Previsão de Preço Bonfida - Projeção FIDA
Previsão de Preço Bonfida até $0.039365 até 2026
| Ano | Preço Mínimo | Preço Máximo |
|---|---|---|
| 2026 | $0.013187 | $0.039365 |
| 2027 | $0.012695 | $0.033351 |
| 2028 | $0.022911 | $0.056117 |
| 2029 | $0.05033 | $0.165563 |
| 2030 | $0.0428036 | $0.123757 |
| 2031 | $0.0506071 | $0.112976 |
| 2032 | $0.077247 | $0.209566 |
| 2033 | $0.1795075 | $0.5582084 |
| 2034 | $0.144315 | $0.323284 |
| 2035 | $0.170625 | $0.3809095 |
Calculadora de lucro do investimento
Se você abrir um short de $10,000.00 em Bonfida hoje e fechar em Apr 06, 2026, nossa previsão mostra que pode lucrar cerca de $3,954.45, com um retorno de 39.54% nos próximos 90 dias.
Previsão de preço de longo prazo de FIDA para os anos 2027, 2028, 2029, 2030, 2031, 2032 e 2037
[
'name' => 'Bonfida'
'name_with_ticker' => 'Bonfida <small>FIDA</small>'
'name_lang' => 'FIDA'
'name_lang_with_ticker' => 'FIDA <small>FIDA</small>'
'name_with_lang' => 'FIDA/Bonfida'
'name_with_lang_with_ticker' => 'FIDA/Bonfida <small>FIDA</small>'
'image' => '/uploads/coins/bonfida.png?1717082446'
'price_for_sd' => 0.03816
'ticker' => 'FIDA'
'marketcap' => '$37.78M'
'low24h' => '$0.03702'
'high24h' => '$0.03872'
'volume24h' => '$5.72M'
'current_supply' => '990.91M'
'max_supply' => '1B'
'algo' => null
'proof' => null
'ico_price_and_roi' => '—'
'price' => '$0.03816'
'change_24h_pct' => '2.3961%'
'ath_price' => '$18.77'
'ath_days' => 1525
'ath_exchange' => null
'ath_pair' => null
'ath_date' => '3 de nov. de 2021'
'ath_pct' => '-99.80%'
'fdv' => '$38.12M'
'new_prediction' => true
'change_24h_pct_is_increased' => true
'change_30d_pct' => null
'change_30d_pct_is_increased' => false
'max_price' => '$1.88'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.038496'
'next_week_prediction_price_date' => '13 de janeiro de 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.033735'
'next_month_prediction_price_date' => '5 de fevereiro de 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.013187'
'current_year_max_price_prediction' => '$0.039365'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.0428036'
'grand_prediction_max_price' => '$0.123757'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.038893199527633
107 => 0.039038412616437
108 => 0.039365585120279
109 => 0.036569931896423
110 => 0.037825098117868
111 => 0.038562390679796
112 => 0.035231276062071
113 => 0.038496545254154
114 => 0.036521265793563
115 => 0.035850826276936
116 => 0.036753484762384
117 => 0.036401717872741
118 => 0.03609928935747
119 => 0.035930529049568
120 => 0.036593341818499
121 => 0.036562420810596
122 => 0.03547793047421
123 => 0.034063257039875
124 => 0.03453806787951
125 => 0.034365564650096
126 => 0.033740390693337
127 => 0.034161682456401
128 => 0.032306526742749
129 => 0.029114827760014
130 => 0.031223361872392
131 => 0.031142185602709
201 => 0.031101252846485
202 => 0.032685757956335
203 => 0.032533444350775
204 => 0.032256993665226
205 => 0.033735313459701
206 => 0.033195706848511
207 => 0.034858647276894
208 => 0.03595396739527
209 => 0.035676158783356
210 => 0.03670631264883
211 => 0.034549006562273
212 => 0.03526557710813
213 => 0.035413261304507
214 => 0.033717071222911
215 => 0.032558364740339
216 => 0.032481092228172
217 => 0.030472054866981
218 => 0.031545266408946
219 => 0.032489648153365
220 => 0.032037362584772
221 => 0.031894182485403
222 => 0.032625658561106
223 => 0.032682500516858
224 => 0.031386497901892
225 => 0.031655977884609
226 => 0.032779754209856
227 => 0.031627661604526
228 => 0.029389333865627
301 => 0.028834197639078
302 => 0.028760132233266
303 => 0.027254558758456
304 => 0.028871294496224
305 => 0.028165546020864
306 => 0.03039499699836
307 => 0.0291215465568
308 => 0.029066650653477
309 => 0.028983667444127
310 => 0.027687758159901
311 => 0.027971479933815
312 => 0.028914614322352
313 => 0.029251135297351
314 => 0.029216033402623
315 => 0.028909992449323
316 => 0.02905009643056
317 => 0.02859877269153
318 => 0.028439400885788
319 => 0.027936379628195
320 => 0.027197077342702
321 => 0.027299881859904
322 => 0.025835130583378
323 => 0.025037056347692
324 => 0.024816159917704
325 => 0.024520767979626
326 => 0.024849525223117
327 => 0.025830981127048
328 => 0.024647137079422
329 => 0.022617519496773
330 => 0.022739502971791
331 => 0.023013563622936
401 => 0.022502853412619
402 => 0.022019509059214
403 => 0.022439737759533
404 => 0.021579762033789
405 => 0.023117487580809
406 => 0.023075896414188
407 => 0.023649065405808
408 => 0.024007479738879
409 => 0.023181450739168
410 => 0.02297370667956
411 => 0.023092047137354
412 => 0.021136142976655
413 => 0.023489226307919
414 => 0.023509575870282
415 => 0.023335330562755
416 => 0.024588274793355
417 => 0.027232377923028
418 => 0.026237559966843
419 => 0.025852336385677
420 => 0.025120026076282
421 => 0.026095786083267
422 => 0.026020862938958
423 => 0.025682032066633
424 => 0.025477106097835
425 => 0.025854688478719
426 => 0.025430319462324
427 => 0.025354091126099
428 => 0.024892230345821
429 => 0.024727367060589
430 => 0.024605308847599
501 => 0.02447093474829
502 => 0.024767330527427
503 => 0.02409565869779
504 => 0.02328568831605
505 => 0.023218348042809
506 => 0.023404280457844
507 => 0.023322019205231
508 => 0.02321795420758
509 => 0.023019265786647
510 => 0.022960319176462
511 => 0.023151867062732
512 => 0.022935620667069
513 => 0.02325470400342
514 => 0.023167930991619
515 => 0.022683224001442
516 => 0.02207909963017
517 => 0.022073721656072
518 => 0.021943564051244
519 => 0.021777788772169
520 => 0.021731673881955
521 => 0.022404347270505
522 => 0.023796761053385
523 => 0.023523396910168
524 => 0.023720930519127
525 => 0.024692600369005
526 => 0.025001464995149
527 => 0.024782240199371
528 => 0.024482151777714
529 => 0.024495354145293
530 => 0.025520847125038
531 => 0.025584805864289
601 => 0.025746408964506
602 => 0.025954114617316
603 => 0.02481761337019
604 => 0.024441825038757
605 => 0.024263755679381
606 => 0.023715370974019
607 => 0.024306756863801
608 => 0.023962181631494
609 => 0.024008676602698
610 => 0.023978396691706
611 => 0.023994931570626
612 => 0.02311705775518
613 => 0.023436908833839
614 => 0.022905094379431
615 => 0.022193054523953
616 => 0.022190667516684
617 => 0.022364938262566
618 => 0.0222612752037
619 => 0.021982320577714
620 => 0.022021944765707
621 => 0.021674795184361
622 => 0.022064095010228
623 => 0.022075258736252
624 => 0.021925357097988
625 => 0.022525127192761
626 => 0.022770853489955
627 => 0.022672185020445
628 => 0.022763930647104
629 => 0.023534756424484
630 => 0.023660434659683
701 => 0.023716252629921
702 => 0.023641463944266
703 => 0.02277801992729
704 => 0.02281631734109
705 => 0.022535316329356
706 => 0.022297900085598
707 => 0.022307395490264
708 => 0.022429458301507
709 => 0.022962513757094
710 => 0.024084297538042
711 => 0.024126868412516
712 => 0.024178465554258
713 => 0.023968594048147
714 => 0.023905294793704
715 => 0.023988802849238
716 => 0.024410085856773
717 => 0.025493740129374
718 => 0.025110704334601
719 => 0.024799290271144
720 => 0.025072484361425
721 => 0.025030428272592
722 => 0.024675432559093
723 => 0.024665469011765
724 => 0.023984118738564
725 => 0.023732239056157
726 => 0.02352174954067
727 => 0.023291900484726
728 => 0.023155638259752
729 => 0.023364998967386
730 => 0.023412882238304
731 => 0.022955111392066
801 => 0.022892718917245
802 => 0.023266544471953
803 => 0.023102037782947
804 => 0.02327123699216
805 => 0.023310492660061
806 => 0.023304171593394
807 => 0.023132407716599
808 => 0.023241884889595
809 => 0.022982938738742
810 => 0.022701373692144
811 => 0.022521752734537
812 => 0.022365009625761
813 => 0.022451979812473
814 => 0.022141946976975
815 => 0.022042761233171
816 => 0.023204796486699
817 => 0.024063204422463
818 => 0.02405072283111
819 => 0.023974744353754
820 => 0.023861855748075
821 => 0.024401827352128
822 => 0.024213712042349
823 => 0.024350581647773
824 => 0.024385420706753
825 => 0.024490868045431
826 => 0.024528556405504
827 => 0.024414636005116
828 => 0.024032305227207
829 => 0.02307957327958
830 => 0.022636073986108
831 => 0.022489711832198
901 => 0.022495031818511
902 => 0.022348282846524
903 => 0.022391506995602
904 => 0.022333251251441
905 => 0.022222928965577
906 => 0.022445167722201
907 => 0.022470778668604
908 => 0.022418905487253
909 => 0.022431123499298
910 => 0.022001635713035
911 => 0.022034288736626
912 => 0.021852472551925
913 => 0.02181838420912
914 => 0.021358768726742
915 => 0.020544493277379
916 => 0.020995680919956
917 => 0.020450709694306
918 => 0.020244320833491
919 => 0.021221333600537
920 => 0.021123268616842
921 => 0.020955423992579
922 => 0.020707146811409
923 => 0.020615058389828
924 => 0.020055558291953
925 => 0.020022500041354
926 => 0.020299803397634
927 => 0.020171837440136
928 => 0.019992124771312
929 => 0.019341223702011
930 => 0.01860939539418
1001 => 0.018631484690684
1002 => 0.018864265659256
1003 => 0.019541107720168
1004 => 0.019276653817483
1005 => 0.019084789476826
1006 => 0.019048859053242
1007 => 0.019498603529835
1008 => 0.020135086188594
1009 => 0.020433709611586
1010 => 0.020137782868729
1011 => 0.019797838160361
1012 => 0.019818529019607
1013 => 0.019956176036504
1014 => 0.019970640791756
1015 => 0.019749371733489
1016 => 0.019811657677301
1017 => 0.019717039633105
1018 => 0.019136368870531
1019 => 0.019125866377763
1020 => 0.018983360408046
1021 => 0.018979045383918
1022 => 0.01873660717965
1023 => 0.018702688398977
1024 => 0.018221312629455
1025 => 0.018538155618694
1026 => 0.018325633976516
1027 => 0.018005313732966
1028 => 0.017950090402242
1029 => 0.017948430322236
1030 => 0.018277327590066
1031 => 0.018534312262626
1101 => 0.01832933088147
1102 => 0.018282660594378
1103 => 0.018780977161094
1104 => 0.018717561835723
1105 => 0.018662644572937
1106 => 0.020078096147505
1107 => 0.018957655777171
1108 => 0.018469079823205
1109 => 0.017864374302114
1110 => 0.018061269468971
1111 => 0.01810275817362
1112 => 0.016648550401761
1113 => 0.016058578489827
1114 => 0.015856122362274
1115 => 0.015739605998558
1116 => 0.015792703968624
1117 => 0.015261660051081
1118 => 0.015618530346325
1119 => 0.015158691201758
1120 => 0.015081597672725
1121 => 0.015903847026351
1122 => 0.016018258220397
1123 => 0.015530144521825
1124 => 0.015843592534738
1125 => 0.015729931928002
1126 => 0.015166573824073
1127 => 0.015145057688285
1128 => 0.014862384394728
1129 => 0.014420055426647
1130 => 0.014217899218963
1201 => 0.014112614510801
1202 => 0.014156057033347
1203 => 0.014134091164584
1204 => 0.013990749012624
1205 => 0.014142307368945
1206 => 0.013755138396783
1207 => 0.013600964592436
1208 => 0.013531327861817
1209 => 0.013187693114409
1210 => 0.013734568812601
1211 => 0.013842310214503
1212 => 0.013950263900251
1213 => 0.014889927031567
1214 => 0.014842984116987
1215 => 0.015267325202665
1216 => 0.015250836088389
1217 => 0.015129807136884
1218 => 0.01461920589878
1219 => 0.014822722451696
1220 => 0.014196330135314
1221 => 0.014665665849285
1222 => 0.014451480629356
1223 => 0.014593249610976
1224 => 0.01433833619923
1225 => 0.014479415806407
1226 => 0.013867859697837
1227 => 0.013296797208481
1228 => 0.013526609424551
1229 => 0.013776441585634
1230 => 0.014318141366913
1231 => 0.013995509446109
]
'min_raw' => 0.013187693114409
'max_raw' => 0.039365585120279
'avg_raw' => 0.026276639117344
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.013187'
'max' => '$0.039365'
'avg' => '$0.026276'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.024982206885591
'max_diff' => 0.0011956851202786
'year' => 2026
]
1 => [
'items' => [
101 => 0.014111540084894
102 => 0.01372285686826
103 => 0.012920892370472
104 => 0.012925431402437
105 => 0.012802066636198
106 => 0.012695461466618
107 => 0.014032567603284
108 => 0.013866277318669
109 => 0.013601315513671
110 => 0.013955977418825
111 => 0.014049755655789
112 => 0.014052425390359
113 => 0.014311177561211
114 => 0.014449273641178
115 => 0.014473613673815
116 => 0.014880765805361
117 => 0.015017237829389
118 => 0.015579346782116
119 => 0.014437557153617
120 => 0.014414042747593
121 => 0.013960968239151
122 => 0.013673621223073
123 => 0.013980643135178
124 => 0.014252622636633
125 => 0.013969419400401
126 => 0.014006399764307
127 => 0.01362622255822
128 => 0.013762118020396
129 => 0.013879169499517
130 => 0.013814540552714
131 => 0.013717787891274
201 => 0.014230323419127
202 => 0.014201404156003
203 => 0.014678689022681
204 => 0.015050766707225
205 => 0.015717596434769
206 => 0.015021724851457
207 => 0.014996364525122
208 => 0.01524426578297
209 => 0.015017199876998
210 => 0.015160697691524
211 => 0.015694476718381
212 => 0.015705754628101
213 => 0.015516835109533
214 => 0.015505339339659
215 => 0.015541623399753
216 => 0.015754140273036
217 => 0.015679880347527
218 => 0.015765815813357
219 => 0.015873279429268
220 => 0.016317794508306
221 => 0.016424965588964
222 => 0.016164595424801
223 => 0.016188103935384
224 => 0.016090718346666
225 => 0.015996645088202
226 => 0.016208108034932
227 => 0.016594560726396
228 => 0.016592156624259
301 => 0.016681806137112
302 => 0.016737657040922
303 => 0.016497904076407
304 => 0.016341833712468
305 => 0.016401681021018
306 => 0.016497378170693
307 => 0.016370647725152
308 => 0.015588408708021
309 => 0.015825690056197
310 => 0.015786194837395
311 => 0.015729948843039
312 => 0.015968537073472
313 => 0.015945524656607
314 => 0.015256213428148
315 => 0.015300340896529
316 => 0.015258896965655
317 => 0.01539281078494
318 => 0.015009968091289
319 => 0.015127727925371
320 => 0.015201585789378
321 => 0.01524508863868
322 => 0.015402250760544
323 => 0.015383809599502
324 => 0.015401104432081
325 => 0.015634134369544
326 => 0.016812719827011
327 => 0.016876867633059
328 => 0.016560980375122
329 => 0.016687171104067
330 => 0.016444912499372
331 => 0.016607542323696
401 => 0.016718809519148
402 => 0.016216014458349
403 => 0.016186242197961
404 => 0.015942983705827
405 => 0.016073697040635
406 => 0.015865722726335
407 => 0.015916752348431
408 => 0.015774069076367
409 => 0.016030870558127
410 => 0.01631801451765
411 => 0.016390558421484
412 => 0.016199726642611
413 => 0.016061551858279
414 => 0.015818962454597
415 => 0.016222394039378
416 => 0.016340369729123
417 => 0.016221774363304
418 => 0.016194293225683
419 => 0.01614221651955
420 => 0.016205341545072
421 => 0.01633972720818
422 => 0.016276353411172
423 => 0.016318212920598
424 => 0.016158687636003
425 => 0.016497983444614
426 => 0.017036866844672
427 => 0.017038599442919
428 => 0.016975225304303
429 => 0.016949293972196
430 => 0.017014319684281
501 => 0.017049593465592
502 => 0.017259874694799
503 => 0.017485514831711
504 => 0.018538478896175
505 => 0.018242810800377
506 => 0.019177063159482
507 => 0.019915935478048
508 => 0.020137490979416
509 => 0.01993367034315
510 => 0.019236410956658
511 => 0.019202200084705
512 => 0.020244199983443
513 => 0.019949787285431
514 => 0.019914767831816
515 => 0.019542220011651
516 => 0.019762441914314
517 => 0.019714276153741
518 => 0.019638244144328
519 => 0.020058412193817
520 => 0.0208449292738
521 => 0.020722343210974
522 => 0.020630838401678
523 => 0.020229890963994
524 => 0.020471350876332
525 => 0.020385371626409
526 => 0.020754793047861
527 => 0.020535955981479
528 => 0.019947556819681
529 => 0.020041261325586
530 => 0.020027098078026
531 => 0.020318576709198
601 => 0.020231082059065
602 => 0.020010013343348
603 => 0.020842241043926
604 => 0.020788200806144
605 => 0.020864817508
606 => 0.020898546549608
607 => 0.021405108885452
608 => 0.021612631266261
609 => 0.021659742479895
610 => 0.021856872691306
611 => 0.021654837700653
612 => 0.022463121711771
613 => 0.023000583414485
614 => 0.023624872839714
615 => 0.024537127483151
616 => 0.024880143667911
617 => 0.024818180864353
618 => 0.025509841923588
619 => 0.026752741472274
620 => 0.025069406399
621 => 0.026841962318614
622 => 0.026280791579606
623 => 0.02495026585245
624 => 0.024864595681489
625 => 0.025765643151641
626 => 0.027764079717832
627 => 0.027263494024081
628 => 0.027764898496697
629 => 0.027179983545724
630 => 0.027150937588358
701 => 0.027736490483083
702 => 0.029104666738435
703 => 0.028454697484837
704 => 0.027522807180805
705 => 0.028210900479483
706 => 0.02761481038414
707 => 0.026271652564218
708 => 0.027263111235635
709 => 0.026600151057176
710 => 0.026793638082152
711 => 0.028187081769389
712 => 0.028019418938346
713 => 0.028236390166875
714 => 0.027853441627646
715 => 0.027495707306564
716 => 0.026827969630565
717 => 0.026630285423771
718 => 0.026684918226596
719 => 0.026630258350467
720 => 0.026256665257572
721 => 0.026175987864731
722 => 0.026041522008772
723 => 0.02608319860018
724 => 0.025830363451603
725 => 0.026307515615374
726 => 0.02639607926162
727 => 0.026743310815224
728 => 0.026779361547016
729 => 0.027746396481271
730 => 0.027213769889845
731 => 0.027571101792141
801 => 0.027539138663462
802 => 0.024979102379464
803 => 0.025331852792008
804 => 0.025880621734748
805 => 0.025633402069882
806 => 0.025283891304255
807 => 0.025001642621429
808 => 0.024574007005537
809 => 0.025175895922889
810 => 0.025967315845457
811 => 0.026799433262294
812 => 0.027799167816131
813 => 0.027576038701908
814 => 0.026780743920211
815 => 0.026816420263155
816 => 0.027036957377109
817 => 0.026751341776628
818 => 0.026667108160168
819 => 0.027025384971703
820 => 0.027027852227198
821 => 0.026699216961047
822 => 0.026333999002338
823 => 0.026332468725756
824 => 0.026267481717591
825 => 0.027191544590107
826 => 0.027699685736697
827 => 0.027757943300243
828 => 0.027695764538498
829 => 0.027719694676107
830 => 0.027424018539032
831 => 0.02809984650835
901 => 0.028720053085454
902 => 0.028553824474009
903 => 0.028304624154664
904 => 0.028106124097192
905 => 0.028507064168891
906 => 0.028489210938637
907 => 0.02871463612206
908 => 0.028704409533621
909 => 0.028628607523106
910 => 0.028553827181138
911 => 0.028850322784253
912 => 0.02876493681213
913 => 0.028679418212007
914 => 0.028507897567219
915 => 0.028531210071502
916 => 0.028282052780105
917 => 0.028166781216443
918 => 0.026433373474119
919 => 0.025970150284638
920 => 0.026115889729826
921 => 0.026163870939305
922 => 0.025962275613606
923 => 0.026251311525068
924 => 0.026206265584431
925 => 0.026381512988454
926 => 0.026272026018779
927 => 0.026276519402205
928 => 0.026598497234938
929 => 0.026691968769572
930 => 0.026644428392649
1001 => 0.026677724043057
1002 => 0.027445008253492
1003 => 0.027335924975136
1004 => 0.027277976657619
1005 => 0.027294028737597
1006 => 0.027490086304122
1007 => 0.027544971718403
1008 => 0.027312418361366
1009 => 0.02742209186892
1010 => 0.027889067744442
1011 => 0.02805248287233
1012 => 0.028574025516835
1013 => 0.028352464931768
1014 => 0.028759148974577
1015 => 0.030009157073362
1016 => 0.031007750036654
1017 => 0.030089402679011
1018 => 0.031923191486049
1019 => 0.033351059113709
1020 => 0.033296255175921
1021 => 0.033047273427866
1022 => 0.0314216840956
1023 => 0.029925792555878
1024 => 0.031177169347765
1025 => 0.031180359364556
1026 => 0.031072864988341
1027 => 0.030405226649746
1028 => 0.031049632621348
1029 => 0.031100783227235
1030 => 0.031072152489982
1031 => 0.030560275741143
1101 => 0.029778734556301
1102 => 0.029931445833073
1103 => 0.030181590019653
1104 => 0.029708014888914
1105 => 0.029556678939714
1106 => 0.029838041262119
1107 => 0.030744649289078
1108 => 0.030573260293204
1109 => 0.030568784633885
1110 => 0.031302059438478
1111 => 0.030777192928996
1112 => 0.029933372011323
1113 => 0.02972029610098
1114 => 0.028964020164394
1115 => 0.029486382647556
1116 => 0.029505181543381
1117 => 0.029219088949768
1118 => 0.029956586848548
1119 => 0.029949790675577
1120 => 0.030649935168392
1121 => 0.031988348476393
1122 => 0.031592513801898
1123 => 0.031132201142151
1124 => 0.031182249891351
1125 => 0.031731161139237
1126 => 0.03139927686834
1127 => 0.031518624766134
1128 => 0.0317309804919
1129 => 0.031859099973751
1130 => 0.03116381546956
1201 => 0.03100171139233
1202 => 0.030670103341119
1203 => 0.030583592990316
1204 => 0.030853680828798
1205 => 0.030782522225702
1206 => 0.02950360156898
1207 => 0.029369947244505
1208 => 0.029374046231822
1209 => 0.029037966078014
1210 => 0.028525363174977
1211 => 0.029872452998229
1212 => 0.029764262832912
1213 => 0.029644829263656
1214 => 0.029659459194411
1215 => 0.030244185229575
1216 => 0.029905014599807
1217 => 0.030806755308018
1218 => 0.030621384527216
1219 => 0.030431259685356
1220 => 0.030404978640866
1221 => 0.030331796797439
1222 => 0.030080829026563
1223 => 0.029777770362405
1224 => 0.029577664781836
1225 => 0.027283832291799
1226 => 0.02770955425934
1227 => 0.028199308577218
1228 => 0.028368369805182
1229 => 0.028079178876069
1230 => 0.030092248047084
1231 => 0.030460055183046
]
'min_raw' => 0.012695461466618
'max_raw' => 0.033351059113709
'avg_raw' => 0.023023260290163
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.012695'
'max' => '$0.033351'
'avg' => '$0.023023'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -0.00049223164779144
'max_diff' => -0.0060145260065697
'year' => 2027
]
2 => [
'items' => [
101 => 0.029345943376752
102 => 0.029137538546679
103 => 0.030105911033048
104 => 0.029521864045046
105 => 0.029784860367981
106 => 0.029216406169092
107 => 0.030371461214643
108 => 0.030362661630442
109 => 0.029913319129621
110 => 0.03029310033435
111 => 0.030227104004072
112 => 0.029719797427328
113 => 0.030387543737992
114 => 0.030387874931831
115 => 0.02995539254434
116 => 0.029450347798318
117 => 0.029360057726354
118 => 0.029292036285893
119 => 0.029768131263418
120 => 0.030194996531557
121 => 0.030989286966688
122 => 0.031188990453955
123 => 0.031968446459773
124 => 0.031504318359333
125 => 0.031710060334793
126 => 0.031933422353134
127 => 0.032040510318594
128 => 0.031866016225535
129 => 0.033076832239462
130 => 0.033179062209482
131 => 0.033213339034143
201 => 0.032805058686827
202 => 0.033167707194449
203 => 0.032998035967389
204 => 0.033439473364175
205 => 0.033508696384547
206 => 0.033450066948972
207 => 0.03347203942825
208 => 0.032438821562944
209 => 0.03238524376597
210 => 0.031654706702515
211 => 0.03195240595573
212 => 0.031395871470941
213 => 0.031572354289008
214 => 0.031650146233622
215 => 0.03160951213641
216 => 0.031969237424843
217 => 0.031663397442654
218 => 0.030856235444908
219 => 0.030048853536416
220 => 0.030038717514234
221 => 0.029826148109203
222 => 0.029672499363393
223 => 0.029702097562818
224 => 0.029806405478146
225 => 0.029666436797733
226 => 0.029696306212291
227 => 0.030192337512827
228 => 0.030291813052616
229 => 0.02995375630081
301 => 0.028596409660956
302 => 0.028263313390889
303 => 0.028502736384227
304 => 0.028388307614227
305 => 0.022911579861248
306 => 0.024198255809359
307 => 0.023433756652378
308 => 0.02378607303683
309 => 0.023005717363649
310 => 0.023378143992836
311 => 0.023309370393268
312 => 0.025378307242322
313 => 0.025346003639154
314 => 0.025361465664522
315 => 0.024623422907611
316 => 0.025799145059414
317 => 0.026378348068994
318 => 0.02627115300691
319 => 0.026298131694609
320 => 0.025834548455261
321 => 0.025365954163621
322 => 0.024846210978049
323 => 0.025811829574643
324 => 0.025704469270361
325 => 0.025950715181366
326 => 0.0265769878651
327 => 0.026669208896759
328 => 0.026793154898521
329 => 0.026748729079966
330 => 0.02780713231475
331 => 0.027678952699448
401 => 0.027987828692533
402 => 0.02735244734028
403 => 0.026633453029253
404 => 0.026770110342084
405 => 0.02675694914393
406 => 0.026589391985705
407 => 0.026438128875246
408 => 0.026186318414449
409 => 0.026983083973346
410 => 0.02695073674672
411 => 0.027474400746264
412 => 0.027381838047744
413 => 0.026763681693092
414 => 0.02678575926823
415 => 0.026934241571154
416 => 0.027448140516917
417 => 0.027600700712927
418 => 0.027530028751662
419 => 0.027697304041951
420 => 0.027829511611031
421 => 0.027713907277124
422 => 0.029350620857292
423 => 0.028670943267533
424 => 0.029002213395615
425 => 0.029081219369206
426 => 0.02887884722917
427 => 0.028922734499941
428 => 0.028989211756593
429 => 0.029392848641404
430 => 0.030452108620421
501 => 0.030921247654502
502 => 0.032332675585444
503 => 0.030882292188452
504 => 0.030796232439958
505 => 0.03105047323136
506 => 0.031879130841644
507 => 0.032550680002926
508 => 0.032773471602325
509 => 0.032802917190073
510 => 0.03322088904145
511 => 0.033460462711945
512 => 0.033170136264942
513 => 0.032924114999552
514 => 0.032042897364211
515 => 0.032144900704978
516 => 0.032847602571014
517 => 0.033840210345724
518 => 0.034691971079663
519 => 0.034393714157496
520 => 0.036669203937054
521 => 0.036894809454155
522 => 0.036863638066391
523 => 0.03737760100895
524 => 0.036357489234704
525 => 0.03592137168748
526 => 0.032977307589589
527 => 0.033804469514283
528 => 0.035006797949341
529 => 0.03484766527246
530 => 0.03397450222459
531 => 0.034691308707192
601 => 0.034454310067433
602 => 0.034267379407172
603 => 0.035123745000118
604 => 0.034182135853114
605 => 0.034997404677806
606 => 0.033951813977263
607 => 0.034395076569993
608 => 0.03414345928416
609 => 0.034306286505149
610 => 0.033354401898356
611 => 0.033868015726489
612 => 0.0333330338745
613 => 0.033332780223445
614 => 0.033320970469411
615 => 0.033950374245803
616 => 0.033970899080355
617 => 0.033505768738625
618 => 0.03343873618968
619 => 0.03368659065631
620 => 0.033396417989074
621 => 0.033532187953749
622 => 0.033400530322993
623 => 0.033370891417176
624 => 0.033134723572981
625 => 0.033032975972131
626 => 0.033072873828137
627 => 0.032936681876835
628 => 0.032854621299898
629 => 0.033304646555223
630 => 0.03306421621527
701 => 0.033267797157369
702 => 0.033035790979884
703 => 0.03223155648844
704 => 0.031769032727785
705 => 0.030249908326025
706 => 0.030680730121896
707 => 0.030966365418276
708 => 0.030871962954526
709 => 0.031074775975564
710 => 0.031087227047877
711 => 0.031021290467304
712 => 0.030944944353999
713 => 0.030907783288247
714 => 0.031184751426872
715 => 0.031345540753663
716 => 0.030995032741575
717 => 0.030912913618471
718 => 0.03126729657077
719 => 0.031483469966952
720 => 0.03307957286702
721 => 0.032961328408838
722 => 0.033258098794571
723 => 0.03322468700345
724 => 0.033535749646928
725 => 0.034044205604132
726 => 0.033010372476614
727 => 0.033189810160291
728 => 0.033145816184075
729 => 0.033626130880566
730 => 0.03362763037062
731 => 0.033339657716575
801 => 0.033495772364156
802 => 0.033408633450657
803 => 0.033566105244879
804 => 0.032959749182009
805 => 0.033698225414492
806 => 0.034116893851953
807 => 0.034122707063614
808 => 0.034321152580212
809 => 0.034522784718265
810 => 0.0349098000488
811 => 0.034511991070749
812 => 0.03379637144516
813 => 0.03384803687069
814 => 0.033428469346042
815 => 0.033435522351933
816 => 0.033397872853736
817 => 0.033510861831947
818 => 0.032984543908805
819 => 0.033108069673377
820 => 0.03293513287961
821 => 0.033189434229475
822 => 0.032915848014539
823 => 0.033145794968847
824 => 0.033245032451464
825 => 0.033611220898752
826 => 0.032861761683136
827 => 0.031333563608567
828 => 0.031654809371452
829 => 0.031179661654835
830 => 0.031223638385023
831 => 0.031312478378847
901 => 0.031024518892226
902 => 0.031079452487627
903 => 0.031077489873037
904 => 0.031060577120795
905 => 0.030985667736802
906 => 0.030877034309642
907 => 0.031309796447842
908 => 0.031383331168046
909 => 0.031546789742035
910 => 0.032033131583216
911 => 0.031984534564552
912 => 0.032063798318264
913 => 0.031890765988957
914 => 0.031231664858511
915 => 0.031267457220925
916 => 0.030821125888084
917 => 0.031535376046365
918 => 0.031366232181242
919 => 0.031257184031052
920 => 0.031227429232949
921 => 0.031714976621485
922 => 0.031860858441504
923 => 0.031769954681033
924 => 0.03158350841622
925 => 0.03194154036255
926 => 0.032037334607233
927 => 0.032058779405862
928 => 0.032693143368942
929 => 0.032094233304493
930 => 0.03223839690966
1001 => 0.033363120203857
1002 => 0.032343151377226
1003 => 0.032883451612711
1004 => 0.032857006727771
1005 => 0.033133406045482
1006 => 0.032834333916227
1007 => 0.032838041273704
1008 => 0.03308346514292
1009 => 0.032738811581034
1010 => 0.032653470512237
1011 => 0.032535572436919
1012 => 0.032792998571162
1013 => 0.032947313896258
1014 => 0.034190982084417
1015 => 0.034994448452127
1016 => 0.034959567858113
1017 => 0.035278311193666
1018 => 0.035134714401645
1019 => 0.03467100248129
1020 => 0.035462502185692
1021 => 0.035212038561465
1022 => 0.035232686478333
1023 => 0.035231917961836
1024 => 0.035398454376036
1025 => 0.035280448063737
1026 => 0.035047845509095
1027 => 0.035202257939973
1028 => 0.035660807656226
1029 => 0.037084160045501
1030 => 0.03788068689945
1031 => 0.037036208128744
1101 => 0.037618718276755
1102 => 0.037269419757537
1103 => 0.037205941825864
1104 => 0.037571801245977
1105 => 0.037938301054573
1106 => 0.037914956601187
1107 => 0.03764889656012
1108 => 0.037498605993945
1109 => 0.038636656512057
1110 => 0.039475152747618
1111 => 0.039417972925703
1112 => 0.039670346063762
1113 => 0.040411321402711
1114 => 0.040479066901499
1115 => 0.040470532525764
1116 => 0.040302618238506
1117 => 0.041032204687508
1118 => 0.041640838539117
1119 => 0.040263750932516
1120 => 0.040788127865709
1121 => 0.041023537565389
1122 => 0.04136918884743
1123 => 0.041952360498115
1124 => 0.042585839589399
1125 => 0.042675420478651
1126 => 0.042611858550886
1127 => 0.042194062061352
1128 => 0.042887222442013
1129 => 0.043293259536393
1130 => 0.043535045334102
1201 => 0.044148173887773
1202 => 0.041024991375551
1203 => 0.038814247561158
1204 => 0.038469007991013
1205 => 0.039171066232779
1206 => 0.039356193392323
1207 => 0.03928156886644
1208 => 0.036793175711307
1209 => 0.038455907116036
1210 => 0.040244866301097
1211 => 0.040313587509161
1212 => 0.041209177882575
1213 => 0.041500818819649
1214 => 0.042221886457961
1215 => 0.042176783480859
1216 => 0.042352351976096
1217 => 0.042311991819463
1218 => 0.043647617780731
1219 => 0.045121011558385
1220 => 0.04506999261697
1221 => 0.044858174829028
1222 => 0.045172760364421
1223 => 0.046693460641433
1224 => 0.046553458928651
1225 => 0.046689458667301
1226 => 0.048482449996809
1227 => 0.050813593775212
1228 => 0.049730543447135
1229 => 0.052080451019725
1230 => 0.053559593273423
1231 => 0.05611761685503
]
'min_raw' => 0.022911579861248
'max_raw' => 0.05611761685503
'avg_raw' => 0.039514598358139
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.022911'
'max' => '$0.056117'
'avg' => '$0.039514'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 0.01021611839463
'max_diff' => 0.022766557741321
'year' => 2028
]
3 => [
'items' => [
101 => 0.055797339704081
102 => 0.056793159512756
103 => 0.055223976760024
104 => 0.051620815975593
105 => 0.051050601989111
106 => 0.052192184830165
107 => 0.054998654850872
108 => 0.052103799101834
109 => 0.052689424649597
110 => 0.052520764452444
111 => 0.052511777267297
112 => 0.052854781570818
113 => 0.05235723593866
114 => 0.050330145526495
115 => 0.051259149116671
116 => 0.050900416216088
117 => 0.051298457114595
118 => 0.053446519679283
119 => 0.052496810016018
120 => 0.051496368033917
121 => 0.05275114429532
122 => 0.05434890566399
123 => 0.054248920628992
124 => 0.054054907870593
125 => 0.055148547631509
126 => 0.056954920110159
127 => 0.057443175332545
128 => 0.057803595355772
129 => 0.057853291187629
130 => 0.058365189141542
131 => 0.055612584828459
201 => 0.059981038565214
202 => 0.060735349849453
203 => 0.060593570591015
204 => 0.061431955837175
205 => 0.061185281629974
206 => 0.060827889405737
207 => 0.062156908350557
208 => 0.06063329537662
209 => 0.058470718577656
210 => 0.057284286174825
211 => 0.058846676069644
212 => 0.059800773058517
213 => 0.060431370476197
214 => 0.06062218887377
215 => 0.055826261665624
216 => 0.05324152289475
217 => 0.05489831081279
218 => 0.056919706418192
219 => 0.055601355873808
220 => 0.05565303271918
221 => 0.053773411299316
222 => 0.057086011206543
223 => 0.056603393263411
224 => 0.059107216006118
225 => 0.058509658614138
226 => 0.060551428862976
227 => 0.060013762329285
228 => 0.062245586050108
301 => 0.063135920956559
302 => 0.064630931834054
303 => 0.065730667921328
304 => 0.066376453986375
305 => 0.066337683413312
306 => 0.068896609532367
307 => 0.06738770020203
308 => 0.065492154460502
309 => 0.065457870018408
310 => 0.066439600018036
311 => 0.068497036772784
312 => 0.069030500188803
313 => 0.06932863346194
314 => 0.068872031976037
315 => 0.067234219042461
316 => 0.066527019721644
317 => 0.067129574032517
318 => 0.066392701888401
319 => 0.067664749938953
320 => 0.069411543607163
321 => 0.069050837622248
322 => 0.070256623649754
323 => 0.071504485335833
324 => 0.073288983591902
325 => 0.073755517515817
326 => 0.074526680351353
327 => 0.075320460222915
328 => 0.075575400924693
329 => 0.076062161827841
330 => 0.07605959635761
331 => 0.077526483102036
401 => 0.079144504606838
402 => 0.079755270267617
403 => 0.081159692226763
404 => 0.078754668838541
405 => 0.080578906705425
406 => 0.08222441492499
407 => 0.080262572189283
408 => 0.082966515349723
409 => 0.083071503335376
410 => 0.084656697271257
411 => 0.083049799530829
412 => 0.082095628781963
413 => 0.084850283981629
414 => 0.086183174861922
415 => 0.085781697281352
416 => 0.082726433069821
417 => 0.080948138252264
418 => 0.076293997707264
419 => 0.081807028226726
420 => 0.084492264575451
421 => 0.082719478956384
422 => 0.08361356890586
423 => 0.088491433760563
424 => 0.090348608878874
425 => 0.089962329436899
426 => 0.090027604303892
427 => 0.091029702287619
428 => 0.095473556612906
429 => 0.092810696093458
430 => 0.094846353185096
501 => 0.095926058366394
502 => 0.096928948711406
503 => 0.094466166990804
504 => 0.091262124157749
505 => 0.090247269295953
506 => 0.082543210364353
507 => 0.082142180639931
508 => 0.081917070503169
509 => 0.080497782933344
510 => 0.079382611679045
511 => 0.078495786093972
512 => 0.076168490930205
513 => 0.07695388472951
514 => 0.073244661982716
515 => 0.075617691249332
516 => 0.069697682183133
517 => 0.074628041647483
518 => 0.071944671146974
519 => 0.073746482269048
520 => 0.073740195919784
521 => 0.07042249037931
522 => 0.068508907062313
523 => 0.069728316829681
524 => 0.071035620897166
525 => 0.071247726583817
526 => 0.072942680431439
527 => 0.0734157056174
528 => 0.071982417220505
529 => 0.069575003153714
530 => 0.070134190534161
531 => 0.068497575147896
601 => 0.06562946963497
602 => 0.067689393086672
603 => 0.068392741521524
604 => 0.06870338025923
605 => 0.065882927891411
606 => 0.064996680522443
607 => 0.064524849859539
608 => 0.069210918170752
609 => 0.069467631571042
610 => 0.068154249519544
611 => 0.074090860932308
612 => 0.07274722293221
613 => 0.074248395777622
614 => 0.07008345014051
615 => 0.070242556672691
616 => 0.068270804661867
617 => 0.069374854035411
618 => 0.068594547523362
619 => 0.069285657756457
620 => 0.06969990638062
621 => 0.071671334846341
622 => 0.074650552193812
623 => 0.071376869174908
624 => 0.069950478603567
625 => 0.070835403291702
626 => 0.073192074350217
627 => 0.076762551639639
628 => 0.074648757221749
629 => 0.075586823289851
630 => 0.075791748994077
701 => 0.074233115247248
702 => 0.076820020689096
703 => 0.078206364331365
704 => 0.079628466044938
705 => 0.080863237116447
706 => 0.07906044734785
707 => 0.080989690820011
708 => 0.079435061138766
709 => 0.078040397600028
710 => 0.078042512728924
711 => 0.07716761991829
712 => 0.075472404854098
713 => 0.075159781186995
714 => 0.076786088983278
715 => 0.078090233823976
716 => 0.078197649439488
717 => 0.078919691032679
718 => 0.07934698780991
719 => 0.083535077108572
720 => 0.085219561270186
721 => 0.087279316617354
722 => 0.088081707406527
723 => 0.090496616008917
724 => 0.088546381183199
725 => 0.088124435611103
726 => 0.082266657252288
727 => 0.083225868130385
728 => 0.084761657296302
729 => 0.082291981849968
730 => 0.083858422479739
731 => 0.084167671041805
801 => 0.082208063223334
802 => 0.083254774428835
803 => 0.080475019795269
804 => 0.074711143248631
805 => 0.076826437531384
806 => 0.078384006123847
807 => 0.07616116369558
808 => 0.080145522712367
809 => 0.077817942428625
810 => 0.077080211222236
811 => 0.074202058765948
812 => 0.075560435935068
813 => 0.077397660506391
814 => 0.076262469321595
815 => 0.078618161479861
816 => 0.081954449816117
817 => 0.084332087563939
818 => 0.084514613066971
819 => 0.082985951284479
820 => 0.085435641546712
821 => 0.085453484865884
822 => 0.082690224242808
823 => 0.080997742497073
824 => 0.08061320708343
825 => 0.081573851939319
826 => 0.082740252139191
827 => 0.084579340160331
828 => 0.085690662534489
829 => 0.088588401886451
830 => 0.089372447070393
831 => 0.090233875019899
901 => 0.091385008414981
902 => 0.09276723920032
903 => 0.08974299693244
904 => 0.089863155715636
905 => 0.08704702318927
906 => 0.084037581710591
907 => 0.086321372660732
908 => 0.089307125528062
909 => 0.088622190521333
910 => 0.088545121341123
911 => 0.088674730325028
912 => 0.08815831169784
913 => 0.085822569386437
914 => 0.084649574220171
915 => 0.086163037247636
916 => 0.086967375490245
917 => 0.088214833958864
918 => 0.088061058371953
919 => 0.091274377419857
920 => 0.092522976036149
921 => 0.092203531079554
922 => 0.09226231663944
923 => 0.094522844793392
924 => 0.09703701701366
925 => 0.099391871072185
926 => 0.10178732976385
927 => 0.098899510814703
928 => 0.097433254448237
929 => 0.09894605674509
930 => 0.098143342552146
1001 => 0.1027559764053
1002 => 0.1030753451654
1003 => 0.10768764547263
1004 => 0.11206526768669
1005 => 0.10931576160729
1006 => 0.11190842199969
1007 => 0.11471259559678
1008 => 0.12012230142633
1009 => 0.11830050281868
1010 => 0.11690503363645
1011 => 0.1155863220021
1012 => 0.11833035157361
1013 => 0.12186050178042
1014 => 0.1226208623236
1015 => 0.12385293688365
1016 => 0.12255756113467
1017 => 0.12411769854336
1018 => 0.12962566915515
1019 => 0.12813736687564
1020 => 0.12602373838221
1021 => 0.1303717521891
1022 => 0.13194528148333
1023 => 0.14298913413397
1024 => 0.1569324543042
1025 => 0.15115982819695
1026 => 0.1475765728907
1027 => 0.14841872288362
1028 => 0.15351035139862
1029 => 0.15514562087742
1030 => 0.15070039472284
1031 => 0.15227052375001
1101 => 0.16092208906139
1102 => 0.1655633762755
1103 => 0.1592598848307
1104 => 0.1418688019346
1105 => 0.12583342926209
1106 => 0.13008673217708
1107 => 0.12960453962188
1108 => 0.13889956724421
1109 => 0.12810187135849
1110 => 0.12828367686497
1111 => 0.13777091581492
1112 => 0.13523988311553
1113 => 0.13113993429268
1114 => 0.12586336342577
1115 => 0.11610913415455
1116 => 0.10746954127223
1117 => 0.12441377249388
1118 => 0.12368310643252
1119 => 0.12262499369702
1120 => 0.12497970909011
1121 => 0.13641353864134
1122 => 0.13614995186249
1123 => 0.1344731472586
1124 => 0.13574498877197
1125 => 0.13091697432613
1126 => 0.13216126358067
1127 => 0.12583088917713
1128 => 0.12869248278732
1129 => 0.13113113764389
1130 => 0.13162073371125
1201 => 0.1327238186504
1202 => 0.1232980786199
1203 => 0.12752995916841
1204 => 0.13001579251707
1205 => 0.11878470701242
1206 => 0.12979379006734
1207 => 0.12313399745635
1208 => 0.12087356381745
1209 => 0.12391693992274
1210 => 0.12273093329473
1211 => 0.12171127444061
1212 => 0.12114228728005
1213 => 0.12337700680661
1214 => 0.12327275446963
1215 => 0.1196163195838
1216 => 0.1148466493306
1217 => 0.11644750722666
1218 => 0.1158659005449
1219 => 0.11375808290144
1220 => 0.11517849749426
1221 => 0.10892371048285
1222 => 0.098162674525247
1223 => 0.10527174449828
1224 => 0.1049980530375
1225 => 0.10486004539205
1226 => 0.11020231499653
1227 => 0.10968877904119
1228 => 0.10875670625369
1229 => 0.11374096465375
1230 => 0.11192164328999
1231 => 0.11752836304708
]
'min_raw' => 0.050330145526495
'max_raw' => 0.1655633762755
'avg_raw' => 0.107946760901
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.05033'
'max' => '$0.165563'
'avg' => '$0.107946'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072435
'min_diff' => 0.027418565665247
'max_diff' => 0.10944575942047
'year' => 2029
]
4 => [
'items' => [
101 => 0.121221311299
102 => 0.12028466016795
103 => 0.12375789584844
104 => 0.11648438775931
105 => 0.11890035538403
106 => 0.11939828296309
107 => 0.11367945967878
108 => 0.10977279987449
109 => 0.10951227020472
110 => 0.10273866047496
111 => 0.10635706811793
112 => 0.10954111710387
113 => 0.10801620473179
114 => 0.10753346303025
115 => 0.10999968568951
116 => 0.1101913323119
117 => 0.10582176901154
118 => 0.10673033958776
119 => 0.11051922992788
120 => 0.10663486927248
121 => 0.099088191025728
122 => 0.097216510479545
123 => 0.096966793792767
124 => 0.091890647706662
125 => 0.097341585123429
126 => 0.09496210486497
127 => 0.10247885449089
128 => 0.098185327417703
129 => 0.098000242046941
130 => 0.097720458362914
131 => 0.093351209733649
201 => 0.094307797503222
202 => 0.097487640941714
203 => 0.098622244904068
204 => 0.098503896415258
205 => 0.097472057974108
206 => 0.097944428328598
207 => 0.096422758832042
208 => 0.095885425661996
209 => 0.094189454372198
210 => 0.091696845100223
211 => 0.092043457707552
212 => 0.087104946513075
213 => 0.084414183507697
214 => 0.083669415771494
215 => 0.082673481228658
216 => 0.083781909228188
217 => 0.087090956331352
218 => 0.083099543471431
219 => 0.076256546088155
220 => 0.07666782189079
221 => 0.07759183651043
222 => 0.0758699413797
223 => 0.074240312146169
224 => 0.075657142548726
225 => 0.072757674347791
226 => 0.07794222339014
227 => 0.077801995868075
228 => 0.0797344751407
301 => 0.08094289408834
302 => 0.078157879644311
303 => 0.077457456043117
304 => 0.077856449158835
305 => 0.071261981724172
306 => 0.079195566462559
307 => 0.079264176432826
308 => 0.07867669621308
309 => 0.082901085164323
310 => 0.091815863471401
311 => 0.088461765276152
312 => 0.087162957076797
313 => 0.084693921740399
314 => 0.087983764729337
315 => 0.087731156117332
316 => 0.086588764174874
317 => 0.085897841963595
318 => 0.087170887322707
319 => 0.085740097555432
320 => 0.085483088397756
321 => 0.08392589253096
322 => 0.083370044454412
323 => 0.082958516667485
324 => 0.082505465009964
325 => 0.083504784073017
326 => 0.081240195604767
327 => 0.078509323912403
328 => 0.078282281479624
329 => 0.078909165598301
330 => 0.078631816041821
331 => 0.078280953636652
401 => 0.077611061753494
402 => 0.077412319141737
403 => 0.07805813621374
404 => 0.077329046392923
405 => 0.078404858139117
406 => 0.078112296871531
407 => 0.07647807341299
408 => 0.074441225916629
409 => 0.074423093701479
410 => 0.073984258249488
411 => 0.073425335322025
412 => 0.073269855750029
413 => 0.075537821044084
414 => 0.080232441328289
415 => 0.079310775033757
416 => 0.079976773387717
417 => 0.083252826126404
418 => 0.084294184777689
419 => 0.083555053072938
420 => 0.082543284007817
421 => 0.082587796711867
422 => 0.086045317890711
423 => 0.086260959245554
424 => 0.086805815380704
425 => 0.087506109490697
426 => 0.083674316188027
427 => 0.082407319591899
428 => 0.081806946314359
429 => 0.079958028993233
430 => 0.081951927809876
501 => 0.080790168356678
502 => 0.080946929398269
503 => 0.080844838564283
504 => 0.080900587062991
505 => 0.077940774203021
506 => 0.07901917444601
507 => 0.077226124882874
508 => 0.074825432797093
509 => 0.074817384835431
510 => 0.075404950822367
511 => 0.075055443581878
512 => 0.074114928584374
513 => 0.074248524300664
514 => 0.073078085249946
515 => 0.074390636792904
516 => 0.074428276074621
517 => 0.073922872235416
518 => 0.075945038984552
519 => 0.076773522351604
520 => 0.07644085471784
521 => 0.076750181503595
522 => 0.079349074429368
523 => 0.079772807373918
524 => 0.079961001557659
525 => 0.079708846282397
526 => 0.076797684495423
527 => 0.076926806899891
528 => 0.075979392369966
529 => 0.075178926928263
530 => 0.075210941348043
531 => 0.075622484638302
601 => 0.077419718323558
602 => 0.081201890661466
603 => 0.081345421336958
604 => 0.081519384702739
605 => 0.080811788267125
606 => 0.080598370411358
607 => 0.080879923650937
608 => 0.082300308723881
609 => 0.08595392476228
610 => 0.084662492837499
611 => 0.083612538580318
612 => 0.084533631529501
613 => 0.08439183648974
614 => 0.083194943656667
615 => 0.083161350861218
616 => 0.080864130844765
617 => 0.080014900909851
618 => 0.079305220812478
619 => 0.078530268672815
620 => 0.078070851067792
621 => 0.078776725310675
622 => 0.078938167101681
623 => 0.077394760733047
624 => 0.077184400148084
625 => 0.078444779105451
626 => 0.077890133317978
627 => 0.078460600264948
628 => 0.07859295349002
629 => 0.07857164157243
630 => 0.077992527669645
701 => 0.078361637601855
702 => 0.077488582575211
703 => 0.076539266362361
704 => 0.075933661763052
705 => 0.075405191428362
706 => 0.075698417484924
707 => 0.074653120134243
708 => 0.074318708474081
709 => 0.078236591462059
710 => 0.081130773749617
711 => 0.081088691192934
712 => 0.080832524451881
713 => 0.080451912636201
714 => 0.08227246459888
715 => 0.081638220698168
716 => 0.082099686128787
717 => 0.082217148448523
718 => 0.082572671512975
719 => 0.082699740450277
720 => 0.0823156498667
721 => 0.0810265949555
722 => 0.077814392676452
723 => 0.076319103844381
724 => 0.075825633623793
725 => 0.075843570329078
726 => 0.075348795924338
727 => 0.075494529160767
728 => 0.075298115852041
729 => 0.074926156562797
730 => 0.075675450046967
731 => 0.075761799140866
801 => 0.075586905088271
802 => 0.075628098968914
803 => 0.074180050911648
804 => 0.074290142860447
805 => 0.073677136899726
806 => 0.073562205671988
807 => 0.072012579983822
808 => 0.069267193455399
809 => 0.070788404093264
810 => 0.068950995557308
811 => 0.068255141103459
812 => 0.071549207860409
813 => 0.071218574921201
814 => 0.070652675051961
815 => 0.069815591201488
816 => 0.069505108658719
817 => 0.067618715015684
818 => 0.067507256815735
819 => 0.068442204442136
820 => 0.068010758282135
821 => 0.067404844472056
822 => 0.065210286072448
823 => 0.062742875837972
824 => 0.062817351443363
825 => 0.063602188731151
826 => 0.06588420899512
827 => 0.064992584198636
828 => 0.064345700178571
829 => 0.064224558246875
830 => 0.065740903149862
831 => 0.067886848871668
901 => 0.06889367859151
902 => 0.06789594091702
903 => 0.066749793598577
904 => 0.066819554275116
905 => 0.067283640802791
906 => 0.06733240973502
907 => 0.066586385656562
908 => 0.066796387064787
909 => 0.066477375722762
910 => 0.064519603705603
911 => 0.064484193817975
912 => 0.064003724991626
913 => 0.063989176586515
914 => 0.063171779254329
915 => 0.063057419717156
916 => 0.06143442770163
917 => 0.062502685961121
918 => 0.06178615440673
919 => 0.060706172341556
920 => 0.060519983026451
921 => 0.060514385950808
922 => 0.061623286052171
923 => 0.062489727817804
924 => 0.061798618779893
925 => 0.061641266648546
926 => 0.063321375744582
927 => 0.063107566547577
928 => 0.062922409161892
929 => 0.067694702969219
930 => 0.06391706003399
1001 => 0.06226979209391
1002 => 0.060230985210362
1003 => 0.060894831012202
1004 => 0.061034713076574
1005 => 0.056131750044206
1006 => 0.054142618552599
1007 => 0.053460023583519
1008 => 0.053067180528337
1009 => 0.053246204041596
1010 => 0.051455752397297
1011 => 0.052658965513603
1012 => 0.05110858573275
1013 => 0.050848659517117
1014 => 0.053620930620483
1015 => 0.054006675949143
1016 => 0.052360966535398
1017 => 0.053417778395175
1018 => 0.053034563724036
1019 => 0.051135162544232
1020 => 0.051062619390213
1021 => 0.050109566645368
1022 => 0.04861822364706
1023 => 0.047936639878759
1024 => 0.047581665134446
1025 => 0.047728134632269
1026 => 0.047654075172129
1027 => 0.047170787098966
1028 => 0.047681776678766
1029 => 0.046376409457849
1030 => 0.045856601712421
1031 => 0.045621816613259
1101 => 0.044463228070561
1102 => 0.046307057668657
1103 => 0.046670315327435
1104 => 0.047034288716017
1105 => 0.050202428568437
1106 => 0.05004415725448
1107 => 0.051474852851392
1108 => 0.051419258651376
1109 => 0.051011201091405
1110 => 0.049289673368097
1111 => 0.049975843635326
1112 => 0.047863918207329
1113 => 0.049446316334955
1114 => 0.048724175912032
1115 => 0.049202159931557
1116 => 0.04834270156637
1117 => 0.048818361311831
1118 => 0.046756457194302
1119 => 0.044831080141128
1120 => 0.045605908072586
1121 => 0.046448234646402
1122 => 0.048274613279254
1123 => 0.047186837232824
1124 => 0.047578042632486
1125 => 0.04626757003061
1126 => 0.043563690734945
1127 => 0.043578994398118
1128 => 0.043163061475693
1129 => 0.042803634703516
1130 => 0.047311781397055
1201 => 0.046751122092461
1202 => 0.045857784867865
1203 => 0.047053552242797
1204 => 0.047369732116108
1205 => 0.047378733312605
1206 => 0.048251134322132
1207 => 0.048716734897303
1208 => 0.048798799016705
1209 => 0.050171540854667
1210 => 0.050631665811849
1211 => 0.05252685539116
1212 => 0.04867723194147
1213 => 0.048597951479838
1214 => 0.047070379141975
1215 => 0.046101568615338
1216 => 0.047136714427587
1217 => 0.048053712305745
1218 => 0.047098872822171
1219 => 0.047223554700964
1220 => 0.045941760707517
1221 => 0.046399941746161
1222 => 0.046794588980293
1223 => 0.046576687973898
1224 => 0.046250479620796
1225 => 0.047978528937042
1226 => 0.047881025622339
1227 => 0.049490224873309
1228 => 0.050744710764383
1229 => 0.052992973747363
1230 => 0.050646794120023
1231 => 0.050561290009183
]
'min_raw' => 0.042803634703516
'max_raw' => 0.12375789584844
'avg_raw' => 0.083280765275979
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.0428036'
'max' => '$0.123757'
'avg' => '$0.08328'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -0.0075265108229789
'max_diff' => -0.041805480427055
'year' => 2030
]
5 => [
'items' => [
101 => 0.051397106407932
102 => 0.050631537852713
103 => 0.051115350753083
104 => 0.052915024009395
105 => 0.052953048269413
106 => 0.052316092922621
107 => 0.052277334131882
108 => 0.052399668373762
109 => 0.053116183849489
110 => 0.052865811325973
111 => 0.053155548748843
112 => 0.053517869832758
113 => 0.055016583456786
114 => 0.055377918237668
115 => 0.054500062050729
116 => 0.05457932263547
117 => 0.054250980323864
118 => 0.053933805764969
119 => 0.05464676785374
120 => 0.055949720084274
121 => 0.055941614486071
122 => 0.056243874077783
123 => 0.056432179299366
124 => 0.055623835440486
125 => 0.055097633311982
126 => 0.055299412691162
127 => 0.055622062312653
128 => 0.055194781767475
129 => 0.052557408307034
130 => 0.053357418938863
131 => 0.053224258051205
201 => 0.053034620754263
202 => 0.053839037630867
203 => 0.05376144966073
204 => 0.051437388727808
205 => 0.051586167568336
206 => 0.051446436461871
207 => 0.051897936253154
208 => 0.050607155382288
209 => 0.051004190884624
210 => 0.051253207829713
211 => 0.051399880723409
212 => 0.051929763789983
213 => 0.051867588128008
214 => 0.051925898863536
215 => 0.052711575567321
216 => 0.056685258723383
217 => 0.056901537530129
218 => 0.055836501585451
219 => 0.056261962438445
220 => 0.055445170638757
221 => 0.055993488445917
222 => 0.056368633563814
223 => 0.054673424912297
224 => 0.054573045657767
225 => 0.053752882667773
226 => 0.05419359180219
227 => 0.053492391881225
228 => 0.053664441814898
301 => 0.053183375201305
302 => 0.054049199326365
303 => 0.055017325233648
304 => 0.055261912070279
305 => 0.054618509404358
306 => 0.054152643471929
307 => 0.053334736360363
308 => 0.054694934115146
309 => 0.055092697389921
310 => 0.054692844833997
311 => 0.054600190259839
312 => 0.054424610009232
313 => 0.054637440440026
314 => 0.055090531085702
315 => 0.054876861904472
316 => 0.055017994163041
317 => 0.054480143528329
318 => 0.055624103035938
319 => 0.05744098604287
320 => 0.057446827618828
321 => 0.057233157285841
322 => 0.057145727989174
323 => 0.057364966717419
324 => 0.057483894733848
325 => 0.058192872579483
326 => 0.058953634054774
327 => 0.062503775913718
328 => 0.061506910285848
329 => 0.064656807341988
330 => 0.067147966950452
331 => 0.067894956791823
401 => 0.067207761286349
402 => 0.064856902583696
403 => 0.064741558240381
404 => 0.068254733649087
405 => 0.0672621006825
406 => 0.067144030149656
407 => 0.065887959163514
408 => 0.066630452683742
409 => 0.066468058459145
410 => 0.066211711231022
411 => 0.067628337145071
412 => 0.070280134393103
413 => 0.0698668269236
414 => 0.069558312070398
415 => 0.06820648979099
416 => 0.06902058874363
417 => 0.068730703699633
418 => 0.069976233814239
419 => 0.069238409366217
420 => 0.067254580511497
421 => 0.067570511795396
422 => 0.0675227594174
423 => 0.068505499972786
424 => 0.068210505651179
425 => 0.067465157041617
426 => 0.070271070838396
427 => 0.070088870403746
428 => 0.070347188963262
429 => 0.070460908781927
430 => 0.07216881906428
501 => 0.072868495259926
502 => 0.073027334005894
503 => 0.073691972276859
504 => 0.073010797200241
505 => 0.075735983176313
506 => 0.07754807283139
507 => 0.079652908215044
508 => 0.082728638436978
509 => 0.08388514145252
510 => 0.08367622953422
511 => 0.086008213085666
512 => 0.090198735690533
513 => 0.08452325396429
514 => 0.090499550003171
515 => 0.088607523676917
516 => 0.084121563293469
517 => 0.083832720330774
518 => 0.086870664785515
519 => 0.093608533194815
520 => 0.091920773578556
521 => 0.093611293764924
522 => 0.091639212170259
523 => 0.091541281697076
524 => 0.093515514163639
525 => 0.098128415931575
526 => 0.095936999213666
527 => 0.092795065991119
528 => 0.095115020588752
529 => 0.09310526121462
530 => 0.088576710848471
531 => 0.091919482980586
601 => 0.089684266452509
602 => 0.090336621466048
603 => 0.095034714144698
604 => 0.094469427203992
605 => 0.095200960849427
606 => 0.093909823112802
607 => 0.092703696873061
608 => 0.090452372678474
609 => 0.089785866573398
610 => 0.089970064882464
611 => 0.089785775293864
612 => 0.08852618009773
613 => 0.088254170635052
614 => 0.087800809613581
615 => 0.087941325151278
616 => 0.087088873795467
617 => 0.08869762562932
618 => 0.088996224145956
619 => 0.090166939571865
620 => 0.090288487131082
621 => 0.093548912928147
622 => 0.091753125188353
623 => 0.09295789464506
624 => 0.092850128725123
625 => 0.0842187876576
626 => 0.085408110301737
627 => 0.08725832310601
628 => 0.086424804745589
629 => 0.085246404797213
630 => 0.084294783657092
701 => 0.08285298032155
702 => 0.084882290828944
703 => 0.087550618353055
704 => 0.090356160320504
705 => 0.093726835168003
706 => 0.092974539781022
707 => 0.090293147898823
708 => 0.0904134331799
709 => 0.091156989457007
710 => 0.090194016518942
711 => 0.089910017000041
712 => 0.09111797228422
713 => 0.091126290808381
714 => 0.09001827406397
715 => 0.08878691621748
716 => 0.088781756783143
717 => 0.088562648547865
718 => 0.091678191038563
719 => 0.093391424391573
720 => 0.093587843834482
721 => 0.093378203798077
722 => 0.093458885927774
723 => 0.092461993188178
724 => 0.094740594371534
725 => 0.096831664147683
726 => 0.096271212778485
727 => 0.095431016503201
728 => 0.094761759700602
729 => 0.09611355714508
730 => 0.096053363732804
731 => 0.096813400477397
801 => 0.096778920820478
802 => 0.096523349049699
803 => 0.096271221905758
804 => 0.097270877532323
805 => 0.096982992765851
806 => 0.09669466083482
807 => 0.096116367005727
808 => 0.096194966741544
809 => 0.095354915537993
810 => 0.094966269413102
811 => 0.089121964187192
812 => 0.087560174862647
813 => 0.088051545577302
814 => 0.088213317575002
815 => 0.087533624859472
816 => 0.088508129614809
817 => 0.088356254080945
818 => 0.088947112938992
819 => 0.088577969976594
820 => 0.088593119732533
821 => 0.089678690475368
822 => 0.089993836280361
823 => 0.089833550580403
824 => 0.089945809190381
825 => 0.092532761475933
826 => 0.092164979587005
827 => 0.091969602788677
828 => 0.092023723497042
829 => 0.092684745270884
830 => 0.092869795277108
831 => 0.092085725397501
901 => 0.092455497285378
902 => 0.094029939052917
903 => 0.09458090456587
904 => 0.096339322004765
905 => 0.095592315023344
906 => 0.096963478667446
907 => 0.10117796824528
908 => 0.10454479414055
909 => 0.1014485219073
910 => 0.10763126890127
911 => 0.11244542429846
912 => 0.11226064899592
913 => 0.111421189649
914 => 0.10594040172024
915 => 0.10089689895426
916 => 0.10511600317644
917 => 0.10512675854077
918 => 0.10476433374635
919 => 0.10251334447475
920 => 0.104686004199
921 => 0.10485846203797
922 => 0.10476193150839
923 => 0.10303610331158
924 => 0.10040108264142
925 => 0.10091595937302
926 => 0.10175933796258
927 => 0.10016264634534
928 => 0.09965240662667
929 => 0.10060103934075
930 => 0.10365773160099
1001 => 0.10307988163541
1002 => 0.10306479163753
1003 => 0.10553707883683
1004 => 0.1037674547551
1005 => 0.10092245361747
1006 => 0.10020405330926
1007 => 0.097654216187565
1008 => 0.099415397769731
1009 => 0.099478779559502
1010 => 0.098514198405789
1011 => 0.10100072406198
1012 => 0.10097781029032
1013 => 0.10333839633037
1014 => 0.10785095024333
1015 => 0.10651636600198
1016 => 0.10496438973163
1017 => 0.10513313258385
1018 => 0.10698382517986
1019 => 0.10586485418911
1020 => 0.10626724395913
1021 => 0.10698321611475
1022 => 0.10741517989283
1023 => 0.10507097964373
1024 => 0.10452443442961
1025 => 0.10340639473282
1026 => 0.10311471904512
1027 => 0.1040253390495
1028 => 0.10378542285103
1029 => 0.099473452565498
1030 => 0.099022827679084
1031 => 0.099036647701006
1101 => 0.097903529998073
1102 => 0.096175253521691
1103 => 0.1007170609116
1104 => 0.10035229021563
1105 => 0.0999496115983
1106 => 0.099998937431271
1107 => 0.10197038208309
1108 => 0.1008268446247
1109 => 0.10386712637995
1110 => 0.10324213585031
1111 => 0.10260111667188
1112 => 0.1025125082955
1113 => 0.10226577060099
1114 => 0.10141961523947
1115 => 0.10039783179438
1116 => 0.099723161858571
1117 => 0.09198934546814
1118 => 0.093424696804664
1119 => 0.095075937680943
1120 => 0.095645939414502
1121 => 0.09467091200633
1122 => 0.10145811526441
1123 => 0.10269820270278
1124 => 0.098941896963057
1125 => 0.098239245528107
1126 => 0.10150418097551
1127 => 0.099535025778599
1128 => 0.10042173624319
1129 => 0.098505153223433
1130 => 0.10239950195287
1201 => 0.10236983354037
1202 => 0.10085484392677
1203 => 0.10213530277399
1204 => 0.10191279153874
1205 => 0.10020237199623
1206 => 0.10245372530319
1207 => 0.10245484194634
1208 => 0.10099669738196
1209 => 0.099293903759651
1210 => 0.098989484478173
1211 => 0.098760145442555
1212 => 0.10036533289917
1213 => 0.10180453895348
1214 => 0.10448254461111
1215 => 0.10515585886129
1216 => 0.10778384920478
1217 => 0.10621900890976
1218 => 0.10691268234447
1219 => 0.10766576298394
1220 => 0.10802681753613
1221 => 0.1074384985186
1222 => 0.11152084924603
1223 => 0.11186552472742
1224 => 0.11198109143489
1225 => 0.11060454573869
1226 => 0.11182724050145
1227 => 0.11125518211335
1228 => 0.11274351911679
1229 => 0.11297690936297
1230 => 0.11277923612756
1231 => 0.11285331787551
]
'min_raw' => 0.050607155382288
'max_raw' => 0.11297690936297
'avg_raw' => 0.08179203237263
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.0506071'
'max' => '$0.112976'
'avg' => '$0.081792'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 0.0078035206787715
'max_diff' => -0.01078098648547
'year' => 2031
]
6 => [
'items' => [
101 => 0.10936975170566
102 => 0.10918911042248
103 => 0.10672605370858
104 => 0.10772976752549
105 => 0.10585337265403
106 => 0.10644839679678
107 => 0.1067106777693
108 => 0.10657367707357
109 => 0.10778651599874
110 => 0.10675535514572
111 => 0.10403395211607
112 => 0.10131180764199
113 => 0.10127763333552
114 => 0.10056094074534
115 => 0.10004290327143
116 => 0.10014269566727
117 => 0.10049437708634
118 => 0.10002246290803
119 => 0.10012316972463
120 => 0.10179557388618
121 => 0.10213096261374
122 => 0.10099118067266
123 => 0.096414791709477
124 => 0.095291734378909
125 => 0.096098965716927
126 => 0.09571316112971
127 => 0.07724799113762
128 => 0.081586108929524
129 => 0.079008546646135
130 => 0.080196405934259
131 => 0.077565382299437
201 => 0.078821044681738
202 => 0.078589169689175
203 => 0.085564734724318
204 => 0.08545582087087
205 => 0.085507952168923
206 => 0.083019589485499
207 => 0.086983618806603
208 => 0.088936442192063
209 => 0.088575026556126
210 => 0.088665987085297
211 => 0.087102983827485
212 => 0.085523085457014
213 => 0.083770735019547
214 => 0.087026385535302
215 => 0.086664412773757
216 => 0.087494648055051
217 => 0.089606170133224
218 => 0.089917099780127
219 => 0.090334992378702
220 => 0.090185207629733
221 => 0.093753688031161
222 => 0.093321521508956
223 => 0.094362918484675
224 => 0.092220685894642
225 => 0.089796546376436
226 => 0.090257296047755
227 => 0.090212922149293
228 => 0.08964799149187
229 => 0.089137997354105
301 => 0.088289000804684
302 => 0.0909753515149
303 => 0.090866290581918
304 => 0.092631860317435
305 => 0.092319778716853
306 => 0.090235621408844
307 => 0.090310057494829
308 => 0.090810675945842
309 => 0.092543322120758
310 => 0.093057689473021
311 => 0.092819414021458
312 => 0.093383394341452
313 => 0.093829141391045
314 => 0.093439373308038
315 => 0.098957667415269
316 => 0.096666086967824
317 => 0.097782987333195
318 => 0.098049361489176
319 => 0.097367049689874
320 => 0.097515018687389
321 => 0.097739151399486
322 => 0.099100041337653
323 => 0.10267141031208
324 => 0.10425314531972
325 => 0.10901187313165
326 => 0.10412180424615
327 => 0.1038316477956
328 => 0.10468883837434
329 => 0.10748271536244
330 => 0.10974689024577
331 => 0.11049804767795
401 => 0.11059732553287
402 => 0.11200654681165
403 => 0.11281428616823
404 => 0.11183543028221
405 => 0.11100595240929
406 => 0.10803486562709
407 => 0.10837877701213
408 => 0.11074798541455
409 => 0.11409463182865
410 => 0.11696640261116
411 => 0.11596080857444
412 => 0.12363278123584
413 => 0.12439342598802
414 => 0.12428832947786
415 => 0.12602119142244
416 => 0.12258181335364
417 => 0.12111141259442
418 => 0.11118529494039
419 => 0.1139741291201
420 => 0.11802786338278
421 => 0.11749133645239
422 => 0.1145474062742
423 => 0.11696416937613
424 => 0.11616511191546
425 => 0.11553486214331
426 => 0.11842215852946
427 => 0.11524745754929
428 => 0.11799619331199
429 => 0.1144709112643
430 => 0.11596540204329
501 => 0.11511705679675
502 => 0.11566604014054
503 => 0.11245669473028
504 => 0.1141883796112
505 => 0.11238465094598
506 => 0.11238379574374
507 => 0.11234397833349
508 => 0.11446605710916
509 => 0.11453525802185
510 => 0.11296703860034
511 => 0.11274103368151
512 => 0.1135766923204
513 => 0.11259835491361
514 => 0.11305611282867
515 => 0.11261221993453
516 => 0.11251229029424
517 => 0.11171603391883
518 => 0.11137298477877
519 => 0.11150750318588
520 => 0.11104832251344
521 => 0.11077164954901
522 => 0.1122889411171
523 => 0.11147831343964
524 => 0.11216470079949
525 => 0.11138247577395
526 => 0.10867094303619
527 => 0.10711151188476
528 => 0.10198967790235
529 => 0.10344222366614
530 => 0.10440526301031
531 => 0.10408697851281
601 => 0.10477077677319
602 => 0.1048127564328
603 => 0.10459044664785
604 => 0.10433304039653
605 => 0.10420774926884
606 => 0.10514156668552
607 => 0.10568367912674
608 => 0.1045019168923
609 => 0.10422504653538
610 => 0.10541987340128
611 => 0.10614871709926
612 => 0.11153008946318
613 => 0.11113142001686
614 => 0.1121320020922
615 => 0.1120193519057
616 => 0.11306812132589
617 => 0.11478241608486
618 => 0.11129677551551
619 => 0.11190176219397
620 => 0.11175343343159
621 => 0.11337284796531
622 => 0.11337790360072
623 => 0.112406983692
624 => 0.1129333351259
625 => 0.11263954019519
626 => 0.11317046734374
627 => 0.11112609554334
628 => 0.11361591971993
629 => 0.11502748958732
630 => 0.1150470892363
701 => 0.11571616215054
702 => 0.11639597898149
703 => 0.11770082818893
704 => 0.1163595874453
705 => 0.11394682591466
706 => 0.114121019504
707 => 0.11270641830138
708 => 0.11273019800316
709 => 0.11260326009139
710 => 0.11298421032007
711 => 0.11120969269585
712 => 0.1116261684354
713 => 0.11104309996115
714 => 0.11190049471698
715 => 0.11097807969214
716 => 0.11175336190297
717 => 0.11208794800416
718 => 0.11332257792065
719 => 0.11079572384963
720 => 0.10564329734584
721 => 0.10672639986407
722 => 0.10512440616374
723 => 0.10527267677992
724 => 0.10557220702171
725 => 0.10460133150788
726 => 0.10478654396011
727 => 0.104779926868
728 => 0.104722904343
729 => 0.10447034212487
730 => 0.10410407694065
731 => 0.10556316470408
801 => 0.10581109214728
802 => 0.1063622041418
803 => 0.10800193961464
804 => 0.10783809137328
805 => 0.10810533465294
806 => 0.10752194407395
807 => 0.10529973859568
808 => 0.1054204150445
809 => 0.10391557779397
810 => 0.10632372206996
811 => 0.10575344171946
812 => 0.10538577826759
813 => 0.10528545788837
814 => 0.10692925794829
815 => 0.10742110868963
816 => 0.1071146203145
817 => 0.10648600371543
818 => 0.10769313341947
819 => 0.10801611040356
820 => 0.10808841303936
821 => 0.11022721543077
822 => 0.10820794833391
823 => 0.10869400599391
824 => 0.11248608910597
825 => 0.10904719299504
826 => 0.11086885296153
827 => 0.11077969218563
828 => 0.11171159178288
829 => 0.11070324921855
830 => 0.11071574883312
831 => 0.11154321254313
901 => 0.11038118899629
902 => 0.11009345562452
903 => 0.1096959540322
904 => 0.11056388421672
905 => 0.11108416910923
906 => 0.11527728323575
907 => 0.11798622619071
908 => 0.11786862383271
909 => 0.11894328924248
910 => 0.11845914263257
911 => 0.11689570551776
912 => 0.1195643020319
913 => 0.118719846436
914 => 0.11878946232931
915 => 0.11878687122229
916 => 0.11934836036997
917 => 0.11895049384911
918 => 0.11816625809635
919 => 0.11868687038778
920 => 0.12023290277105
921 => 0.12503183472678
922 => 0.1277173806266
923 => 0.12487016149154
924 => 0.12683413512512
925 => 0.12565645078033
926 => 0.12544243050181
927 => 0.12667595108021
928 => 0.12791163077309
929 => 0.12783292331864
930 => 0.12693588331446
1001 => 0.12642916817765
1002 => 0.13026618495562
1003 => 0.13309323355575
1004 => 0.13290044779399
1005 => 0.13375134144909
1006 => 0.1362495915376
1007 => 0.1364780002166
1008 => 0.13644922597296
1009 => 0.13588309123007
1010 => 0.13834294288098
1011 => 0.14039499440514
1012 => 0.1357520473943
1013 => 0.13752002083539
1014 => 0.13831372107364
1015 => 0.13947910850364
1016 => 0.14144531243967
1017 => 0.14358113142403
1018 => 0.14388315964648
1019 => 0.14366885616927
1020 => 0.14226022613519
1021 => 0.1445972647535
1022 => 0.1459662471658
1023 => 0.14678144486373
1024 => 0.1488486505897
1025 => 0.1383186226961
1026 => 0.13086494557667
1027 => 0.12970094626207
1028 => 0.13206798464032
1029 => 0.13269215378389
1030 => 0.13244055198476
1031 => 0.12405076072817
1101 => 0.12965677574741
1102 => 0.13568837654099
1103 => 0.13592007489194
1104 => 0.13893962036402
1105 => 0.13992290814509
1106 => 0.14235403803099
1107 => 0.1422019701947
1108 => 0.14279391163419
1109 => 0.14265783454825
1110 => 0.14716099072709
1111 => 0.15212864071752
1112 => 0.15195662679451
1113 => 0.15124246833382
1114 => 0.15230311543006
1115 => 0.15743026258591
1116 => 0.15695823703665
1117 => 0.15741676965071
1118 => 0.1634619651008
1119 => 0.17132157910495
1120 => 0.16766999930768
1121 => 0.17559287675398
1122 => 0.18057990813273
1123 => 0.18920446323362
1124 => 0.18812462645816
1125 => 0.19148210246903
1126 => 0.18619149326135
1127 => 0.17404318511199
1128 => 0.1721206688455
1129 => 0.17596959509688
1130 => 0.18543180471317
1201 => 0.17567159644292
1202 => 0.17764607386427
1203 => 0.17707742423409
1204 => 0.1770471233119
1205 => 0.17820358626902
1206 => 0.17652607643267
1207 => 0.16969159958112
1208 => 0.17282380004636
1209 => 0.17161430702611
1210 => 0.17295632970576
1211 => 0.18019867261554
1212 => 0.17699666017924
1213 => 0.17362360018795
1214 => 0.17785416595895
1215 => 0.18324112996556
1216 => 0.18290402343933
1217 => 0.18224989587885
1218 => 0.18593717868827
1219 => 0.19202748961694
1220 => 0.1936736761881
1221 => 0.19488885746014
1222 => 0.19505641042689
1223 => 0.19678231011809
1224 => 0.18750171249583
1225 => 0.202230259265
1226 => 0.20477347242414
1227 => 0.20429545375561
1228 => 0.20712212814723
1229 => 0.2062904488354
1230 => 0.20508547599906
1231 => 0.20956635616066
]
'min_raw' => 0.07724799113762
'max_raw' => 0.20956635616066
'avg_raw' => 0.14340717364914
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.077247'
'max' => '$0.209566'
'avg' => '$0.1434071'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.026640835755333
'max_diff' => 0.096589446797687
'year' => 2032
]
7 => [
'items' => [
101 => 0.20442938864377
102 => 0.19713810997977
103 => 0.19313797029956
104 => 0.19840567691253
105 => 0.20162248152344
106 => 0.20374858474405
107 => 0.20439194229398
108 => 0.18822213887077
109 => 0.17950751164407
110 => 0.18509348778298
111 => 0.19190876419593
112 => 0.18746385329124
113 => 0.18763808538338
114 => 0.18130081053533
115 => 0.19246947240089
116 => 0.19084229231031
117 => 0.19928410549866
118 => 0.19726939903148
119 => 0.20415336997728
120 => 0.20234058972026
121 => 0.20986533921597
122 => 0.21286716551427
123 => 0.21790769906607
124 => 0.22161553606544
125 => 0.22379284887109
126 => 0.22366213117713
127 => 0.23228972924604
128 => 0.22720233609013
129 => 0.22081137127979
130 => 0.2206957788896
131 => 0.22400575012555
201 => 0.23094254178983
202 => 0.23274115094217
203 => 0.23374632808755
204 => 0.23220686429893
205 => 0.22668486364493
206 => 0.22430049175971
207 => 0.22633204568782
208 => 0.22384762980716
209 => 0.22813642862116
210 => 0.23402586543077
211 => 0.23280972001894
212 => 0.23687511179597
213 => 0.2410823645935
214 => 0.24709892505353
215 => 0.24867187675037
216 => 0.25127190609125
217 => 0.25394819034816
218 => 0.25480774072359
219 => 0.25644888909312
220 => 0.25644023943112
221 => 0.26138595050471
222 => 0.26684122297481
223 => 0.26890046204242
224 => 0.27363556873129
225 => 0.26552686446453
226 => 0.27167740979695
227 => 0.27722535564493
228 => 0.27061086589001
301 => 0.27972739903871
302 => 0.28008137336237
303 => 0.2854259653919
304 => 0.28000819747003
305 => 0.27679114417215
306 => 0.28607865650171
307 => 0.29057259116409
308 => 0.28921898147093
309 => 0.27891794487002
310 => 0.27292229973604
311 => 0.25723053994686
312 => 0.27581810725072
313 => 0.28487156907766
314 => 0.27889449859104
315 => 0.28190898527907
316 => 0.29835504719835
317 => 0.30461664277356
318 => 0.30331427466577
319 => 0.30353435343718
320 => 0.30691299675357
321 => 0.32189576187127
322 => 0.31291774171497
323 => 0.31978110172446
324 => 0.32342140312582
325 => 0.3268027179436
326 => 0.31849927742666
327 => 0.30769662331589
328 => 0.30427496929443
329 => 0.27830019672633
330 => 0.27694809701144
331 => 0.27618912246866
401 => 0.2714038953355
402 => 0.26764401759286
403 => 0.2646540232166
404 => 0.2568073850854
405 => 0.2594553951142
406 => 0.24694949165372
407 => 0.25495032550573
408 => 0.23499060161721
409 => 0.25161365277797
410 => 0.24256648178856
411 => 0.24864141378506
412 => 0.24862021891962
413 => 0.23743434305511
414 => 0.23098256329974
415 => 0.23509388846689
416 => 0.23950155540347
417 => 0.24021668453476
418 => 0.24593133976991
419 => 0.24752617720994
420 => 0.24269374531081
421 => 0.23457698070434
422 => 0.23646231999874
423 => 0.23094435695911
424 => 0.22127433897755
425 => 0.22821951471422
426 => 0.23059090306854
427 => 0.23163824326083
428 => 0.22212889118503
429 => 0.21914084630473
430 => 0.21755003628259
501 => 0.23334944276469
502 => 0.23421496991692
503 => 0.22978681063289
504 => 0.249802510492
505 => 0.24527234116486
506 => 0.2503336502217
507 => 0.23629124521896
508 => 0.23682768400067
509 => 0.23017978443285
510 => 0.23390216397802
511 => 0.23127130609339
512 => 0.23360143249604
513 => 0.23499810065432
514 => 0.24164490936724
515 => 0.25168954865655
516 => 0.24065209779707
517 => 0.23584292239838
518 => 0.2388265077679
519 => 0.2467721887792
520 => 0.25881030224325
521 => 0.25168349678292
522 => 0.25484625202521
523 => 0.25553717334446
524 => 0.2502821308467
525 => 0.25900406315586
526 => 0.26367821753719
527 => 0.26847293275247
528 => 0.27263604962903
529 => 0.26655781805744
530 => 0.27306239711931
531 => 0.26782085460821
601 => 0.26311864911506
602 => 0.2631257804198
603 => 0.26017601822569
604 => 0.25446048228063
605 => 0.2534064497603
606 => 0.25888966004066
607 => 0.26328667542355
608 => 0.26364883467077
609 => 0.26608324831355
610 => 0.26752390923089
611 => 0.28164434470439
612 => 0.2873237006622
613 => 0.2942683096227
614 => 0.29697362618953
615 => 0.30511565914603
616 => 0.29854030627007
617 => 0.29711768731445
618 => 0.27736777860068
619 => 0.28060182504615
620 => 0.28577984544441
621 => 0.27745316224986
622 => 0.28273452619853
623 => 0.28377717931658
624 => 0.27717022474116
625 => 0.28069928464955
626 => 0.27132714782621
627 => 0.25189383562821
628 => 0.25902569798764
629 => 0.2642771492431
630 => 0.25678268080229
701 => 0.27021622540645
702 => 0.26236862597335
703 => 0.25988131370426
704 => 0.2501774217517
705 => 0.25475728521625
706 => 0.26095161612939
707 => 0.25712423979333
708 => 0.2650666203741
709 => 0.276315149432
710 => 0.28433152110015
711 => 0.28494691857715
712 => 0.27979292864972
713 => 0.28805223040075
714 => 0.28811239039712
715 => 0.27879586428172
716 => 0.27308954391067
717 => 0.27179305591617
718 => 0.27503193711788
719 => 0.27896453682721
720 => 0.28516515049151
721 => 0.28891205146604
722 => 0.29868198200487
723 => 0.30132544508282
724 => 0.30422980955756
725 => 0.30811093616865
726 => 0.31277122376569
727 => 0.30257477981368
728 => 0.30297990354044
729 => 0.2934851161117
730 => 0.28333857405385
731 => 0.29103853469144
801 => 0.30110520894225
802 => 0.29879590274643
803 => 0.29853605862455
804 => 0.2989730443628
805 => 0.29723190290604
806 => 0.28935678462682
807 => 0.28540194952785
808 => 0.29050469579156
809 => 0.29321657833362
810 => 0.29742247165534
811 => 0.2969040065278
812 => 0.30773793604458
813 => 0.31194767345378
814 => 0.31087064247968
815 => 0.31106884209911
816 => 0.3186903705952
817 => 0.32716707776973
818 => 0.33510663263871
819 => 0.34318308886325
820 => 0.33344660565512
821 => 0.32850301994482
822 => 0.33360353850915
823 => 0.33089713156392
824 => 0.34644894864364
825 => 0.34752572271594
826 => 0.36307641522228
827 => 0.37783587415281
828 => 0.36856572244172
829 => 0.37730705796847
830 => 0.3867615250322
831 => 0.40500072593014
901 => 0.39885840473054
902 => 0.39415348295409
903 => 0.38970735460936
904 => 0.39895904189174
905 => 0.41086118978121
906 => 0.41342479843925
907 => 0.41757882383915
908 => 0.41321137406121
909 => 0.41847148625992
910 => 0.4370419937318
911 => 0.43202407868649
912 => 0.42489783265207
913 => 0.43955746477061
914 => 0.44486272864644
915 => 0.48209784891524
916 => 0.5291087263607
917 => 0.50964591440821
918 => 0.49756471896829
919 => 0.50040408646646
920 => 0.51757086749091
921 => 0.52308429270957
922 => 0.50809690237361
923 => 0.51339070201162
924 => 0.54256005849194
925 => 0.55820848237864
926 => 0.53695582087679
927 => 0.47832057068596
928 => 0.42425619216661
929 => 0.43859649990064
930 => 0.43697075403516
1001 => 0.46830958862194
1002 => 0.4319044030722
1003 => 0.43251737303055
1004 => 0.46450426152818
1005 => 0.45597070807111
1006 => 0.44214744436561
1007 => 0.4243571172894
1008 => 0.39147005228295
1009 => 0.36234106168308
1010 => 0.41946972025532
1011 => 0.41700622861596
1012 => 0.41343872765316
1013 => 0.42137781500195
1014 => 0.4599277696184
1015 => 0.45903906839046
1016 => 0.45338560459769
1017 => 0.45767370705716
1018 => 0.44139571927179
1019 => 0.44559092736697
1020 => 0.42424762809283
1021 => 0.43389569073966
1022 => 0.44211778585004
1023 => 0.44376849317365
1024 => 0.44748762106094
1025 => 0.41570808046394
1026 => 0.4299761611937
1027 => 0.43835732188407
1028 => 0.40049093297577
1029 => 0.43760882512507
1030 => 0.41515486936525
1031 => 0.40753365953326
1101 => 0.41779461455398
1102 => 0.4137959104033
1103 => 0.41035805938633
1104 => 0.40843967944909
1105 => 0.41597419235602
1106 => 0.41562269832322
1107 => 0.40329477282154
1108 => 0.38721349655512
1109 => 0.39261090072003
1110 => 0.39064997318598
1111 => 0.38354331883791
1112 => 0.38833234580779
1113 => 0.36724389470353
1114 => 0.33096231066095
1115 => 0.35493103641445
1116 => 0.3540082665459
1117 => 0.35354296413389
1118 => 0.37155479909073
1119 => 0.36982337676336
1120 => 0.36668082828506
1121 => 0.38348560347069
1122 => 0.37735163447181
1123 => 0.3962550815815
1124 => 0.40870611444625
1125 => 0.40554812976303
1126 => 0.41725838635339
1127 => 0.39273524601076
1128 => 0.40088084953496
1129 => 0.40255964713198
1130 => 0.38327823515344
1201 => 0.37010665886898
1202 => 0.36922826489777
1203 => 0.34639056677553
1204 => 0.35859028077297
1205 => 0.36932552423225
1206 => 0.3641841757038
1207 => 0.36255657835312
1208 => 0.37087162023499
1209 => 0.37151777020273
1210 => 0.35678548246237
1211 => 0.35984879159447
1212 => 0.37262329990809
1213 => 0.35952690676098
1214 => 0.33408275415982
1215 => 0.3277722525218
1216 => 0.32693031527766
1217 => 0.30981573434316
1218 => 0.32819395041609
1219 => 0.32017136659468
1220 => 0.34551461276118
1221 => 0.33103868646943
1222 => 0.33041465821966
1223 => 0.32947134799509
1224 => 0.31474012119033
1225 => 0.31796532364227
1226 => 0.32868638780472
1227 => 0.33251178427932
1228 => 0.33211276408647
1229 => 0.32863384874147
1230 => 0.33022647837148
1231 => 0.32509606342427
]
'min_raw' => 0.17950751164407
'max_raw' => 0.55820848237864
'avg_raw' => 0.36885799701135
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.1795075'
'max' => '$0.5582084'
'avg' => '$0.368857'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.10225952050645
'max_diff' => 0.34864212621798
'year' => 2033
]
8 => [
'items' => [
101 => 0.32328440712606
102 => 0.31756632151357
103 => 0.30916231532468
104 => 0.31033094393001
105 => 0.29368040864199
106 => 0.28460831330628
107 => 0.28209727688566
108 => 0.27873941404055
109 => 0.28247655642894
110 => 0.29363323976755
111 => 0.28017591263878
112 => 0.25710426919824
113 => 0.25849091428119
114 => 0.26160629408394
115 => 0.25580080443181
116 => 0.25030639569388
117 => 0.25508333831604
118 => 0.24530757884218
119 => 0.26278764791212
120 => 0.2623148610311
121 => 0.26883034982015
122 => 0.27290461867123
123 => 0.26351474802969
124 => 0.26115322095625
125 => 0.26249845410271
126 => 0.24026474673573
127 => 0.2670133815864
128 => 0.26724470489135
129 => 0.26526397431392
130 => 0.27950679660045
131 => 0.30956359407271
201 => 0.29825501783177
202 => 0.29387599530775
203 => 0.28555147028854
204 => 0.29664340561525
205 => 0.2957917180433
206 => 0.29194006385005
207 => 0.28961057137607
208 => 0.29390273268551
209 => 0.28907872509059
210 => 0.28821220077168
211 => 0.28296200618683
212 => 0.28108792558867
213 => 0.2797004309231
214 => 0.27817293562871
215 => 0.28154220962002
216 => 0.2739069914908
217 => 0.26469966691662
218 => 0.26393417750291
219 => 0.26604776107668
220 => 0.26511265768308
221 => 0.26392970058762
222 => 0.2616711133332
223 => 0.26100103874189
224 => 0.26317845608966
225 => 0.26072027885535
226 => 0.26434745326842
227 => 0.26336106252878
228 => 0.25785116404047
301 => 0.25098379049834
302 => 0.25092265646901
303 => 0.24944309210411
304 => 0.24755864443141
305 => 0.24703443419919
306 => 0.25468103753238
307 => 0.27050927758849
308 => 0.2674018153278
309 => 0.26964727527669
310 => 0.28069271581187
311 => 0.28420372921002
312 => 0.28171169506293
313 => 0.27830044502041
314 => 0.27845052270989
315 => 0.29010779676078
316 => 0.29083484664424
317 => 0.29267186714453
318 => 0.29503295762935
319 => 0.28211379898213
320 => 0.27784203149941
321 => 0.27581783107746
322 => 0.269584077242
323 => 0.27630664631188
324 => 0.27238969320397
325 => 0.2729182240004
326 => 0.27257401762586
327 => 0.27276197758149
328 => 0.26278276187657
329 => 0.2664186635873
330 => 0.26037327179847
331 => 0.25227917082029
401 => 0.25225203655565
402 => 0.25423305630316
403 => 0.25305466824003
404 => 0.24988365626129
405 => 0.25033408354611
406 => 0.24638786656917
407 => 0.25081322573568
408 => 0.25094012920188
409 => 0.24923612487183
410 => 0.25605400124971
411 => 0.25884729076459
412 => 0.25772567861124
413 => 0.25876859546592
414 => 0.26753094441408
415 => 0.26895958962072
416 => 0.2695940994505
417 => 0.26874394033503
418 => 0.25892875511943
419 => 0.25936410032113
420 => 0.25616982608711
421 => 0.2534710009637
422 => 0.25357893981516
423 => 0.25496648675131
424 => 0.2610259856
425 => 0.27377784370009
426 => 0.27426176739351
427 => 0.27484829702697
428 => 0.27246258624149
429 => 0.27174303304042
430 => 0.27269230944508
501 => 0.27748123688663
502 => 0.28979965844741
503 => 0.28544550554812
504 => 0.28190551146456
505 => 0.28501104065139
506 => 0.28453296877502
507 => 0.28049756102393
508 => 0.2803843005687
509 => 0.27263906289645
510 => 0.26977582487955
511 => 0.26738308888297
512 => 0.26477028363867
513 => 0.26322132510782
514 => 0.26560122940026
515 => 0.26614554167015
516 => 0.26094183934111
517 => 0.260232593942
518 => 0.26448204959361
519 => 0.26261202259701
520 => 0.26453539173745
521 => 0.26498162987639
522 => 0.26490977525828
523 => 0.2629572523026
524 => 0.26420173220948
525 => 0.26125816623239
526 => 0.25805748034163
527 => 0.2560156421531
528 => 0.25423386752307
529 => 0.25522249964516
530 => 0.251698206647
531 => 0.25057071438689
601 => 0.26378013041871
602 => 0.27353806806657
603 => 0.2733961837886
604 => 0.27253249973615
605 => 0.27124924042612
606 => 0.27738735847517
607 => 0.27524896088243
608 => 0.27680482380025
609 => 0.27720085621219
610 => 0.27839952704582
611 => 0.2788279488396
612 => 0.27753296062072
613 => 0.27318682198867
614 => 0.26235665773606
615 => 0.257315187041
616 => 0.2556514177393
617 => 0.25571189259347
618 => 0.25404372614384
619 => 0.25453507592523
620 => 0.25387285474172
621 => 0.25261876802867
622 => 0.25514506332455
623 => 0.25543619532333
624 => 0.25484652781429
625 => 0.25498541585895
626 => 0.25010322073439
627 => 0.25047440342614
628 => 0.24840761103086
629 => 0.2480201123723
630 => 0.24279544117323
701 => 0.23353917881589
702 => 0.23866804668898
703 => 0.23247309552624
704 => 0.23012697365209
705 => 0.24123314970754
706 => 0.24011839766895
707 => 0.23821042674993
708 => 0.23538814010474
709 => 0.23434132653459
710 => 0.2279812186633
711 => 0.22760542956041
712 => 0.23075767075878
713 => 0.22930301990773
714 => 0.2272601391935
715 => 0.21986103233004
716 => 0.21154198645543
717 => 0.21179308615872
718 => 0.21443921987009
719 => 0.22213321051563
720 => 0.21912703526303
721 => 0.21694602062538
722 => 0.2165375821448
723 => 0.22165004485305
724 => 0.22888525067926
725 => 0.23227984737431
726 => 0.22891590514495
727 => 0.22505158943937
728 => 0.22528679243085
729 => 0.2268514925604
730 => 0.22701592042035
731 => 0.22450064815409
801 => 0.22520868256375
802 => 0.22413311355145
803 => 0.21753234850832
804 => 0.21741296159994
805 => 0.21579302740665
806 => 0.21574397644308
807 => 0.21298806426875
808 => 0.21260249310484
809 => 0.20713046221081
810 => 0.2107321695161
811 => 0.20831633335384
812 => 0.20467509841916
813 => 0.20404734814396
814 => 0.20402847721266
815 => 0.20776721132533
816 => 0.2106884802312
817 => 0.20835835785819
818 => 0.20782783416138
819 => 0.21349243928013
820 => 0.21277156664475
821 => 0.21214729559164
822 => 0.22823741735395
823 => 0.21550083045122
824 => 0.20994695158267
825 => 0.20307297182984
826 => 0.20531117429897
827 => 0.20578279644525
828 => 0.18925211426768
829 => 0.182545618567
830 => 0.18024420197149
831 => 0.17891970418352
901 => 0.17952329445749
902 => 0.17348666173339
903 => 0.17754337876068
904 => 0.17231616508547
905 => 0.171439805702
906 => 0.18078671128078
907 => 0.18208727858824
908 => 0.17653865440004
909 => 0.18010176936952
910 => 0.17880973435058
911 => 0.17240577066092
912 => 0.17216118635234
913 => 0.16894790248308
914 => 0.16391973544204
915 => 0.16162172818055
916 => 0.16042490604656
917 => 0.16091873818464
918 => 0.16066904154411
919 => 0.15903960206335
920 => 0.1607624391078
921 => 0.15636130238465
922 => 0.15460873427912
923 => 0.15381713992512
924 => 0.14991087776335
925 => 0.1561274779854
926 => 0.15735222654381
927 => 0.15857938823522
928 => 0.16926099294012
929 => 0.16872737015496
930 => 0.17355106024793
1001 => 0.17336362052111
1002 => 0.171987825968
1003 => 0.16618357505564
1004 => 0.16849704601848
1005 => 0.16137654198806
1006 => 0.16671170775486
1007 => 0.16427696090075
1008 => 0.16588851739435
1009 => 0.16299079351066
1010 => 0.16459451355198
1011 => 0.15764265986219
1012 => 0.15115111670188
1013 => 0.15376350316954
1014 => 0.15660346602253
1015 => 0.16276122909687
1016 => 0.15909371621024
1017 => 0.16041269252829
1018 => 0.15599434265678
1019 => 0.14687802483263
1020 => 0.14692962220148
1021 => 0.14552727531402
1022 => 0.14431544285725
1023 => 0.15951497418326
1024 => 0.15762467219384
1025 => 0.1546127233703
1026 => 0.1586443365607
1027 => 0.15971035907854
1028 => 0.15974070724097
1029 => 0.16268206815369
1030 => 0.16425187300007
1031 => 0.16452855790817
1101 => 0.16915685285663
1102 => 0.17070819627467
1103 => 0.17709796025923
1104 => 0.16411868602647
1105 => 0.1638513864149
1106 => 0.15870106962609
1107 => 0.15543465729535
1108 => 0.15892472367292
1109 => 0.16201644604187
1110 => 0.15879713805824
1111 => 0.1592175117176
1112 => 0.1548958537767
1113 => 0.15644064313766
1114 => 0.15777122384093
1115 => 0.1570365553845
1116 => 0.15593672114688
1117 => 0.16176296006516
1118 => 0.16143422083217
1119 => 0.16685974845752
1120 => 0.17108933522468
1121 => 0.17866951084051
1122 => 0.1707592024219
1123 => 0.1704709193425
1124 => 0.17328893268572
1125 => 0.17070776485151
1126 => 0.17233897382384
1127 => 0.17840669785667
1128 => 0.17853489930409
1129 => 0.17638735988158
1130 => 0.17625668191255
1201 => 0.17666914035016
1202 => 0.17908492230208
1203 => 0.1782407738586
1204 => 0.17921764380862
1205 => 0.18043923463949
1206 => 0.18549225225975
1207 => 0.18671051770108
1208 => 0.18375076427685
1209 => 0.18401799687211
1210 => 0.1829109678444
1211 => 0.18184159167466
1212 => 0.18424539313438
1213 => 0.18863838754884
1214 => 0.18861105895859
1215 => 0.18963014827513
1216 => 0.19026503247675
1217 => 0.18753964471977
1218 => 0.18576551750526
1219 => 0.18644583076995
1220 => 0.18753366649549
1221 => 0.18609306030565
1222 => 0.17720097154823
1223 => 0.1798982632484
1224 => 0.17944930201867
1225 => 0.17880992663198
1226 => 0.18152207429404
1227 => 0.1812604810357
1228 => 0.1734247473396
1229 => 0.17392636558785
1230 => 0.17345525240669
1231 => 0.17497751547571
]
'min_raw' => 0.14431544285725
'max_raw' => 0.32328440712606
'avg_raw' => 0.23379992499165
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.144315'
'max' => '$0.323284'
'avg' => '$0.233799'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.035192068786828
'max_diff' => -0.23492407525258
'year' => 2034
]
9 => [
'items' => [
101 => 0.17062555765014
102 => 0.1719641905664
103 => 0.17280376858258
104 => 0.17329828648405
105 => 0.17508482423825
106 => 0.17487519465294
107 => 0.1750717933689
108 => 0.17772075722991
109 => 0.19111830742426
110 => 0.19184750652132
111 => 0.1882566634754
112 => 0.189691134446
113 => 0.18693726386677
114 => 0.18878595563593
115 => 0.19005078359272
116 => 0.18433526926844
117 => 0.18399683360354
118 => 0.18123159682082
119 => 0.18271747843683
120 => 0.18035333394709
121 => 0.18093341231061
122 => 0.17931146263588
123 => 0.18223064912343
124 => 0.18549475321223
125 => 0.18631939480844
126 => 0.18415011779934
127 => 0.18257941828244
128 => 0.17982178735134
129 => 0.18440778904757
130 => 0.18574887569942
131 => 0.18440074489031
201 => 0.1840883535246
202 => 0.18349637245105
203 => 0.18421394510782
204 => 0.1857415718535
205 => 0.18502117129107
206 => 0.18549700855438
207 => 0.18368360758791
208 => 0.18754054693652
209 => 0.19366629484511
210 => 0.1936859901263
211 => 0.19296558568065
212 => 0.19267081170282
213 => 0.19340999038185
214 => 0.19381096449253
215 => 0.19620133279835
216 => 0.19876629322696
217 => 0.21073584436738
218 => 0.20737484230408
219 => 0.21799494014764
220 => 0.22639405869479
221 => 0.22891258709814
222 => 0.22659565947298
223 => 0.21866957522527
224 => 0.21828068371869
225 => 0.23012559989122
226 => 0.22677886854095
227 => 0.22638078549605
228 => 0.22214585447019
301 => 0.22464922321289
302 => 0.22410169974666
303 => 0.22323740716945
304 => 0.22801366034432
305 => 0.23695437990863
306 => 0.235560884919
307 => 0.23452070555161
308 => 0.22996294235537
309 => 0.23270773381277
310 => 0.23173036614781
311 => 0.23592975788934
312 => 0.23344213124957
313 => 0.22675351375937
314 => 0.22781869814066
315 => 0.22765769766428
316 => 0.23097107605952
317 => 0.22997648210838
318 => 0.22746348723266
319 => 0.23692382150114
320 => 0.23630952001489
321 => 0.23718045907353
322 => 0.23756387338182
323 => 0.24332221214126
324 => 0.24568121928472
325 => 0.24621675520651
326 => 0.24845762954063
327 => 0.24616100021169
328 => 0.25534915499643
329 => 0.26145874178458
330 => 0.26855534123548
331 => 0.27892538041936
401 => 0.28282461108072
402 => 0.28212024996241
403 => 0.28998269532
404 => 0.30411133485526
405 => 0.28497605196575
406 => 0.3051255513125
407 => 0.29874645245647
408 => 0.28362172382393
409 => 0.28264786960883
410 => 0.2928905114405
411 => 0.3156077052054
412 => 0.30991730582357
413 => 0.31561701266026
414 => 0.30896800187751
415 => 0.30863782244988
416 => 0.31529408504741
417 => 0.33084680542052
418 => 0.32345829095626
419 => 0.31286504373367
420 => 0.32068693263365
421 => 0.31391088858685
422 => 0.29864256485408
423 => 0.30991295448241
424 => 0.30237676590016
425 => 0.30457622637428
426 => 0.32041617385071
427 => 0.31851026946304
428 => 0.32097668622267
429 => 0.31662352519929
430 => 0.31255698637295
501 => 0.30496648966847
502 => 0.30271931780123
503 => 0.30334035526056
504 => 0.30271901004591
505 => 0.29847219690002
506 => 0.2975550980055
507 => 0.29602655966896
508 => 0.29650031761479
509 => 0.29362621835242
510 => 0.29905023747972
511 => 0.30005698322604
512 => 0.30400413202123
513 => 0.30441393810331
514 => 0.31540669131377
515 => 0.30935206757116
516 => 0.31341403190877
517 => 0.31305069158572
518 => 0.28394952255558
519 => 0.28795940688615
520 => 0.29419752853348
521 => 0.29138726318693
522 => 0.28741420548772
523 => 0.28420574837374
524 => 0.27934460776447
525 => 0.28618656982208
526 => 0.2951830223663
527 => 0.30464210298624
528 => 0.31600656856758
529 => 0.31347015214679
530 => 0.30442965220715
531 => 0.30483520243036
601 => 0.30734215433206
602 => 0.30409542383875
603 => 0.30313789963257
604 => 0.30721060520992
605 => 0.30723865169491
606 => 0.30350289588187
607 => 0.29935128693177
608 => 0.29933389153868
609 => 0.29859515282579
610 => 0.30909942185341
611 => 0.31487570771722
612 => 0.31553794958255
613 => 0.31483113356321
614 => 0.31510315899653
615 => 0.31174206552416
616 => 0.3194245285007
617 => 0.32647471624481
618 => 0.3245851153241
619 => 0.32175233492134
620 => 0.31949588888536
621 => 0.32405356834891
622 => 0.32385062205685
623 => 0.32641313900531
624 => 0.32629688843472
625 => 0.32543521036608
626 => 0.32458514609733
627 => 0.32795555483603
628 => 0.32698493124639
629 => 0.32601280001023
630 => 0.32406304199026
701 => 0.32432804648722
702 => 0.32149575520395
703 => 0.32018540765947
704 => 0.30048092455396
705 => 0.2952152428056
706 => 0.29687193347647
707 => 0.29741735906127
708 => 0.29512572761624
709 => 0.2984113384366
710 => 0.29789927947057
711 => 0.29989140136292
712 => 0.29864681009246
713 => 0.29869788855233
714 => 0.30235796610393
715 => 0.30342050218824
716 => 0.30288008776004
717 => 0.30325857550123
718 => 0.31198066574721
719 => 0.31074066343097
720 => 0.31008193691464
721 => 0.31026440866148
722 => 0.31249308972305
723 => 0.31311699873882
724 => 0.31047345239771
725 => 0.31172016413434
726 => 0.31702850447761
727 => 0.31888612317171
728 => 0.32481475033573
729 => 0.32229616414351
730 => 0.32691913810119
731 => 0.34112858395913
801 => 0.35248007252931
802 => 0.34204077452006
803 => 0.36288633767586
804 => 0.37911759871107
805 => 0.37849461587796
806 => 0.37566432008064
807 => 0.35718546092244
808 => 0.3401809392208
809 => 0.35440594367436
810 => 0.35444220613611
811 => 0.35322026563801
812 => 0.34563089814979
813 => 0.35295617210033
814 => 0.35353762574504
815 => 0.35321216632501
816 => 0.347393416066
817 => 0.33850925990529
818 => 0.34024520275343
819 => 0.34308871255095
820 => 0.33770535528595
821 => 0.33598504645067
822 => 0.33918342787761
823 => 0.34948927924446
824 => 0.34754101774129
825 => 0.3474901407599
826 => 0.35582562966191
827 => 0.34985921851916
828 => 0.340267098552
829 => 0.33784496175577
830 => 0.32924800787602
831 => 0.33518595454207
901 => 0.33539965067145
902 => 0.33214749796681
903 => 0.34053099282035
904 => 0.34045373743939
905 => 0.34841261808428
906 => 0.36362700865827
907 => 0.35912736471085
908 => 0.35389476835987
909 => 0.35446369666738
910 => 0.36070343596606
911 => 0.35693074714669
912 => 0.35828743235025
913 => 0.36070138246051
914 => 0.36215777849704
915 => 0.35425414369039
916 => 0.3524114283424
917 => 0.34864187944563
918 => 0.34765847450042
919 => 0.35072869342263
920 => 0.34991979920906
921 => 0.33538169033925
922 => 0.33386237707308
923 => 0.33390897224188
924 => 0.33008858679469
925 => 0.32426158199015
926 => 0.33957460270409
927 => 0.33834475283517
928 => 0.33698709376271
929 => 0.33715339925239
930 => 0.34380026253788
1001 => 0.33994474615765
1002 => 0.35019526836119
1003 => 0.34808806915505
1004 => 0.34592682824045
1005 => 0.34562807891305
1006 => 0.34479618554934
1007 => 0.3419433136713
1008 => 0.33849829944754
1009 => 0.33622360265499
1010 => 0.31014850073684
1011 => 0.31498788798096
1012 => 0.32055516188129
1013 => 0.32247696252224
1014 => 0.31918958954134
1015 => 0.34207311919336
1016 => 0.34625416057196
1017 => 0.33358951351359
1018 => 0.33122047514311
1019 => 0.34222843295453
1020 => 0.33558928872613
1021 => 0.33857889496565
1022 => 0.33211700150298
1023 => 0.34524707013904
1024 => 0.34514704101491
1025 => 0.34003914775944
1026 => 0.34435630416162
1027 => 0.34360609199674
1028 => 0.33783929309149
1029 => 0.34542988795039
1030 => 0.34543365279074
1031 => 0.34051741658751
1101 => 0.33477632900464
1102 => 0.33374995814326
1103 => 0.33297672557274
1104 => 0.33838872715332
1105 => 0.34324111084759
1106 => 0.35227019389468
1107 => 0.35454031989844
1108 => 0.36340077282197
1109 => 0.35812480451363
1110 => 0.36046357292949
1111 => 0.36300263688389
1112 => 0.36421995751462
1113 => 0.36223639887188
1114 => 0.37600032937003
1115 => 0.37716242682001
1116 => 0.37755206804288
1117 => 0.37291094812079
1118 => 0.37703334887925
1119 => 0.37510461408393
1120 => 0.3801226462034
1121 => 0.38090953771318
1122 => 0.38024306859887
1123 => 0.38049284038432
1124 => 0.36874775382787
1125 => 0.36813870912965
1126 => 0.35983434145358
1127 => 0.36321843266437
1128 => 0.35689203634952
1129 => 0.35889820179006
1130 => 0.35978250040081
1201 => 0.35932059299006
1202 => 0.36340976410397
1203 => 0.35993313329468
1204 => 0.35075773297792
1205 => 0.34157983282948
1206 => 0.34146461176928
1207 => 0.33904823266359
1208 => 0.33730163315208
1209 => 0.33763809018194
1210 => 0.33882380863996
1211 => 0.33723271703978
1212 => 0.33757225710307
1213 => 0.34321088449728
1214 => 0.34434167100834
1215 => 0.34049881661695
1216 => 0.3250692017143
1217 => 0.32128273551493
1218 => 0.32400437233015
1219 => 0.32270360522833
1220 => 0.260446995403
1221 => 0.27507326241611
1222 => 0.26638283121802
1223 => 0.27038778174161
1224 => 0.26151710186461
1225 => 0.26575065525408
1226 => 0.26496887252766
1227 => 0.28848747706205
1228 => 0.28812026640102
1229 => 0.2882960307121
1230 => 0.279906342193
1231 => 0.29327134380879
]
'min_raw' => 0.17062555765014
'max_raw' => 0.38090953771318
'avg_raw' => 0.27576754768166
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.170625'
'max' => '$0.3809095'
'avg' => '$0.275767'
'bar_min_pct' => 61.631153054958
'bar_max_pct' => 60.119598047091
'min_diff' => 0.026310114792893
'max_diff' => 0.057625130587127
'year' => 2035
]
10 => [
'items' => [
101 => 0.29985542419465
102 => 0.29863688614485
103 => 0.29894356591961
104 => 0.29367379131049
105 => 0.28834705364947
106 => 0.28243888180435
107 => 0.29341553482048
108 => 0.2921951183828
109 => 0.29499431459886
110 => 0.30211345870718
111 => 0.30316177972013
112 => 0.30457073379255
113 => 0.30406572405377
114 => 0.31609710487053
115 => 0.31464002526801
116 => 0.31815116787966
117 => 0.31092848113646
118 => 0.30275532550282
119 => 0.30430877518818
120 => 0.30415916549143
121 => 0.30225446233773
122 => 0.3005349814956
123 => 0.29767253035418
124 => 0.30672974932869
125 => 0.30636204277875
126 => 0.31231478441019
127 => 0.31126257950499
128 => 0.30423569762982
129 => 0.30448666409068
130 => 0.30617453415033
131 => 0.31201627169856
201 => 0.31375049713869
202 => 0.31294713481789
203 => 0.31484863384259
204 => 0.31635150114136
205 => 0.31503737083677
206 => 0.33364268469429
207 => 0.32591646122269
208 => 0.32968216878403
209 => 0.33058026784857
210 => 0.32827980597973
211 => 0.32877869378572
212 => 0.329534372873
213 => 0.33412270831383
214 => 0.34616382815613
215 => 0.35149675816761
216 => 0.36754114122928
217 => 0.35105393256813
218 => 0.35007564983703
219 => 0.35296572772039
220 => 0.36238547904801
221 => 0.37001930274681
222 => 0.37255188247355
223 => 0.37288660469277
224 => 0.37763789262286
225 => 0.38036124225811
226 => 0.37706096129687
227 => 0.37426431873604
228 => 0.36424709221518
229 => 0.36540661346097
301 => 0.37339456500258
302 => 0.3846780170431
303 => 0.39436039273696
304 => 0.39096996223383
305 => 0.41683655370178
306 => 0.41940112059027
307 => 0.41904678036866
308 => 0.42488924539937
309 => 0.41329314211071
310 => 0.40833558329089
311 => 0.37486898460093
312 => 0.38427173374799
313 => 0.39793918183733
314 => 0.39613024383241
315 => 0.38620457769799
316 => 0.39435286322914
317 => 0.39165878521209
318 => 0.38953385410265
319 => 0.39926857545317
320 => 0.38856484944796
321 => 0.39783240398251
322 => 0.38594666943138
323 => 0.39098544943478
324 => 0.38812519420648
325 => 0.38997612987889
326 => 0.37915559775884
327 => 0.38499409423725
328 => 0.37891269711014
329 => 0.37890981373608
330 => 0.37877556655744
331 => 0.38593030330844
401 => 0.38616361901702
402 => 0.38087625774783
403 => 0.38011426638483
404 => 0.38293174782967
405 => 0.37963321495732
406 => 0.38117657772758
407 => 0.37967996184339
408 => 0.3793430420843
409 => 0.37665840812174
410 => 0.37550179399512
411 => 0.37595533219645
412 => 0.37440717250037
413 => 0.37347435028409
414 => 0.37859000473983
415 => 0.37585691692904
416 => 0.37817111983483
417 => 0.37553379354799
418 => 0.36639167160946
419 => 0.36113394060642
420 => 0.34386531973968
421 => 0.34876267919583
422 => 0.35200963358194
423 => 0.3509365151767
424 => 0.35324198875286
425 => 0.35338352610615
426 => 0.35263399314502
427 => 0.35176612999716
428 => 0.35134370221262
429 => 0.35449213282998
430 => 0.35631990277466
501 => 0.35233550889324
502 => 0.35140202115441
503 => 0.35543046335295
504 => 0.3578878107669
505 => 0.3760314834073
506 => 0.37468734153481
507 => 0.37806087386024
508 => 0.37768106589147
509 => 0.38121706521437
510 => 0.38699692968249
511 => 0.37524484914327
512 => 0.37728460396851
513 => 0.37678450319018
514 => 0.38224447235453
515 => 0.38226151778228
516 => 0.37898799352257
517 => 0.38076262413062
518 => 0.37977207400965
519 => 0.38156213195913
520 => 0.37466938970062
521 => 0.38306400574594
522 => 0.38782321210652
523 => 0.38788929369146
524 => 0.39014511973498
525 => 0.39243716964383
526 => 0.3968365598484
527 => 0.3923144730388
528 => 0.38417967908461
529 => 0.38476698493288
530 => 0.37999755821394
531 => 0.38007773313876
601 => 0.37964975310669
602 => 0.38093415339977
603 => 0.37495124333685
604 => 0.37635542037015
605 => 0.37438956430068
606 => 0.37728033058134
607 => 0.37417034392414
608 => 0.37678426202644
609 => 0.37791234242664
610 => 0.38207498338919
611 => 0.37355551846943
612 => 0.35618375278097
613 => 0.35983550854098
614 => 0.35443427493269
615 => 0.35493417966709
616 => 0.35594406678981
617 => 0.35267069221056
618 => 0.35329514892439
619 => 0.35327283893634
620 => 0.35308058351213
621 => 0.35222905236035
622 => 0.35099416371995
623 => 0.35591357998461
624 => 0.35674948466909
625 => 0.35860759723602
626 => 0.36413607986539
627 => 0.36358365408012
628 => 0.36448468345582
629 => 0.36251774138772
630 => 0.3550254204683
701 => 0.35543228954087
702 => 0.35035862568631
703 => 0.3584778522441
704 => 0.35655511222667
705 => 0.35531550922926
706 => 0.35497727206657
707 => 0.36051945873505
708 => 0.3621777678494
709 => 0.36114442089432
710 => 0.35902499614192
711 => 0.36309491821821
712 => 0.3641838576696
713 => 0.36442763105422
714 => 0.37163875264326
715 => 0.36483065264548
716 => 0.36646942998164
717 => 0.37925470294873
718 => 0.36766022461465
719 => 0.37380207837593
720 => 0.37350146659498
721 => 0.37664343115025
722 => 0.37324373379437
723 => 0.3732858771176
724 => 0.37607572878757
725 => 0.3721578852695
726 => 0.37118777211767
727 => 0.3698475677465
728 => 0.37277385496056
729 => 0.3745280318008
730 => 0.38866540883223
731 => 0.39779879913725
801 => 0.39740229457651
802 => 0.40102560403627
803 => 0.39939326993894
804 => 0.39412203255066
805 => 0.40311939201353
806 => 0.40027225101397
807 => 0.4005069658587
808 => 0.40049822976045
809 => 0.40239132962378
810 => 0.40104989487056
811 => 0.39840578927651
812 => 0.40016106996508
813 => 0.4053736260858
814 => 0.42155356022527
815 => 0.43060806572533
816 => 0.42100846762499
817 => 0.42763014185087
818 => 0.42365949685911
819 => 0.42293791254766
820 => 0.42709681329939
821 => 0.43126299365633
822 => 0.43099762597849
823 => 0.42797319297507
824 => 0.42626476751359
825 => 0.43920153747246
826 => 0.44873312920602
827 => 0.4480831385504
828 => 0.45095198591605
829 => 0.45937501051172
830 => 0.46014510631997
831 => 0.46004809194858
901 => 0.45813932913665
902 => 0.46643289071905
903 => 0.47335152570242
904 => 0.45769750569515
905 => 0.46365835158775
906 => 0.4663343673554
907 => 0.4702635524404
908 => 0.47689274628669
909 => 0.48409380911059
910 => 0.48511211834953
911 => 0.48438957921392
912 => 0.4796402847066
913 => 0.48751977357505
914 => 0.49213539335744
915 => 0.49488388931128
916 => 0.50185361774408
917 => 0.46635089351775
918 => 0.44122030071048
919 => 0.43729579575346
920 => 0.44527643090709
921 => 0.44738086075272
922 => 0.44653256772068
923 => 0.41824580074255
924 => 0.4371468717794
925 => 0.45748283496786
926 => 0.45826402213475
927 => 0.46844463051183
928 => 0.47175985391664
929 => 0.47995657806304
930 => 0.47944387073595
1001 => 0.48143964262723
1002 => 0.48098084923138
1003 => 0.49616355468867
1004 => 0.51291233346164
1005 => 0.51233237651058
1006 => 0.50992454139941
1007 => 0.5135005871364
1008 => 0.53078712173832
1009 => 0.52919565464324
1010 => 0.53074162936526
1011 => 0.55112342788732
1012 => 0.57762266524303
1013 => 0.56531110901137
1014 => 0.5920236434792
1015 => 0.60883776795608
1016 => 0.63791605762594
1017 => 0.63427531254568
1018 => 0.64559527732781
1019 => 0.62775761900558
1020 => 0.58679874991222
1021 => 0.58031685209394
1022 => 0.59329377567393
1023 => 0.62519627602564
1024 => 0.59228905240649
1025 => 0.59894614088619
1026 => 0.59702889895619
1027 => 0.59692673728149
1028 => 0.60082583288308
1029 => 0.59516999134983
1030 => 0.57212707547691
1031 => 0.58268750802871
1101 => 0.57860961786684
1102 => 0.58313434102829
1103 => 0.60755240579286
1104 => 0.59675659730648
1105 => 0.58538409004635
1106 => 0.59964773791195
1107 => 0.61781026316604
1108 => 0.61667368497683
1109 => 0.61446824823695
1110 => 0.62690017966677
1111 => 0.64743408817469
1112 => 0.65298432113246
1113 => 0.65708138963237
1114 => 0.65764630615796
1115 => 0.66346529746528
1116 => 0.63217511463121
1117 => 0.68183343837777
1118 => 0.69040805910529
1119 => 0.68879638579013
1120 => 0.69832671585357
1121 => 0.69552265098777
1122 => 0.69146000094152
1123 => 0.70656760125141
1124 => 0.6892479566166
1125 => 0.66466490154011
1126 => 0.65117815132745
1127 => 0.66893859195259
1128 => 0.6797842732884
1129 => 0.68695257873648
1130 => 0.68912170363386
1201 => 0.63460408245289
1202 => 0.60522210832224
1203 => 0.62405561687497
1204 => 0.64703379712863
1205 => 0.6320474696797
1206 => 0.63263490534283
1207 => 0.61126834073824
1208 => 0.64892426398903
1209 => 0.64343811270755
1210 => 0.67190027526067
1211 => 0.66510755174425
1212 => 0.68831734041153
1213 => 0.68220542521071
1214 => 0.70757564349674
1215 => 0.71769651044227
1216 => 0.73469102123098
1217 => 0.74719225254726
1218 => 0.75453321468663
1219 => 0.75409249085504
1220 => 0.78318104010403
1221 => 0.7660285388884
1222 => 0.74448095482743
1223 => 0.74409122701352
1224 => 0.75525102613033
1225 => 0.77863890353778
1226 => 0.78470303986976
1227 => 0.78809206479464
1228 => 0.78290165514938
1229 => 0.76428384441065
1230 => 0.75624476812811
1231 => 0.7630942940353
]
'min_raw' => 0.28243888180435
'max_raw' => 0.78809206479464
'avg_raw' => 0.53526547329949
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$0.282438'
'max' => '$0.788092'
'avg' => '$0.535265'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.11181332415421
'max_diff' => 0.40718252708146
'year' => 2036
]
11 => [
'items' => [
101 => 0.75471791243728
102 => 0.76917789707303
103 => 0.78903454446398
104 => 0.78493422529944
105 => 0.79864097751228
106 => 0.81282602406019
107 => 0.833111277714
108 => 0.83841459417987
109 => 0.8471807746309
110 => 0.85620405385527
111 => 0.85910208795795
112 => 0.86463533426713
113 => 0.86460617132779
114 => 0.88128098151093
115 => 0.89967381351882
116 => 0.90661668180675
117 => 0.92258142460287
118 => 0.89524236203583
119 => 0.91597935504145
120 => 0.93468464181312
121 => 0.91238342779548
122 => 0.94312045580235
123 => 0.94431390494826
124 => 0.96233357012331
125 => 0.94406718731826
126 => 0.93322066751697
127 => 0.96453416376949
128 => 0.97968577824019
129 => 0.97512198865369
130 => 0.94039132455831
131 => 0.92017658838654
201 => 0.86727072469362
202 => 0.92994000560111
203 => 0.96046438424316
204 => 0.94031227379177
205 => 0.95047582612519
206 => 1.0059248721134
207 => 1.0270362787659
208 => 1.022645253762
209 => 1.0233872647053
210 => 1.0347785965358
211 => 1.0852940351934
212 => 1.0550240134111
213 => 1.0781643108676
214 => 1.0904378412
215 => 1.101838180184
216 => 1.0738425507534
217 => 1.0374206482017
218 => 1.0258843027761
219 => 0.93830854356207
220 => 0.93374984497273
221 => 0.93119090931183
222 => 0.91505718193849
223 => 0.9023804916229
224 => 0.89229951682861
225 => 0.86584402853449
226 => 0.87477197922475
227 => 0.83260745257345
228 => 0.85958282250588
301 => 0.7922872198723
302 => 0.84833299744517
303 => 0.81782982880107
304 => 0.83831188616549
305 => 0.83824042619687
306 => 0.80052646474677
307 => 0.77877383885264
308 => 0.79263545869724
309 => 0.80749621550741
310 => 0.80990732330227
311 => 0.82917468241209
312 => 0.83455178818915
313 => 0.81825890665161
314 => 0.79089266808648
315 => 0.79724922114772
316 => 0.77864502350774
317 => 0.7460418827438
318 => 0.76945802763669
319 => 0.77745332903833
320 => 0.78098450961957
321 => 0.74892306517426
322 => 0.73884866324172
323 => 0.73348513618525
324 => 0.78675393821897
325 => 0.7896721234419
326 => 0.77474227525159
327 => 0.8422266047781
328 => 0.82695282260532
329 => 0.8440173794598
330 => 0.79667243058365
331 => 0.79848107138914
401 => 0.77606721385471
402 => 0.78861747637949
403 => 0.77974735534082
404 => 0.7876035391916
405 => 0.7923125033995
406 => 0.81472268304046
407 => 0.8485888856987
408 => 0.81137534951574
409 => 0.79516087889316
410 => 0.80522024527376
411 => 0.8320096635531
412 => 0.87259700357139
413 => 0.84856848138422
414 => 0.85923193150012
415 => 0.86156142096657
416 => 0.84384367828999
417 => 0.8732502820162
418 => 0.8890095198519
419 => 0.90517523695654
420 => 0.91921147616539
421 => 0.89871829405321
422 => 0.92064893649551
423 => 0.90297670996654
424 => 0.88712289584886
425 => 0.88714693954071
426 => 0.87720161035742
427 => 0.85793128187267
428 => 0.8543775376402
429 => 0.87286456392593
430 => 0.88768940827917
501 => 0.88891045346632
502 => 0.89711824902828
503 => 0.90197553789484
504 => 0.94958357195105
505 => 0.96873191708278
506 => 0.99214615105023
507 => 1.0012673147345
508 => 1.0287187473059
509 => 1.0065494860081
510 => 1.0017530268752
511 => 0.93516483075209
512 => 0.9460686441369
513 => 0.96352670142748
514 => 0.93545270768661
515 => 0.95325919497259
516 => 0.95677457275581
517 => 0.93449876412194
518 => 0.94639723599416
519 => 0.91479842235258
520 => 0.8492776534865
521 => 0.87332322536205
522 => 0.89102885991444
523 => 0.86576073631919
524 => 0.91105286985225
525 => 0.88459414046165
526 => 0.87620799348782
527 => 0.84349064426565
528 => 0.85893197369226
529 => 0.87981659284028
530 => 0.86691232630437
531 => 0.89369061695174
601 => 0.93161581801767
602 => 0.95864357478203
603 => 0.9607184303414
604 => 0.94334139346099
605 => 0.97118820596062
606 => 0.97139103958862
607 => 0.93997972133147
608 => 0.92074046379792
609 => 0.91636926400656
610 => 0.92728937810959
611 => 0.94054841259494
612 => 0.96145421447715
613 => 0.97408715271303
614 => 1.0070271556395
615 => 1.0159397759675
616 => 1.0257320435703
617 => 1.0388175329112
618 => 1.0545300179155
619 => 1.0201519952383
620 => 1.021517898168
621 => 0.98950555944708
622 => 0.95529578449007
623 => 0.98125673937379
624 => 1.0151972344432
625 => 1.0074112473733
626 => 1.0065351647747
627 => 1.0080084927005
628 => 1.0021381127165
629 => 0.97558660161489
630 => 0.96225259896093
701 => 0.97945686425141
702 => 0.98860016557955
703 => 1.0027806285598
704 => 1.0010325871842
705 => 1.0375599369509
706 => 1.0517533605405
707 => 1.0481220754154
708 => 1.0487903192702
709 => 1.0744868347129
710 => 1.1030666447766
711 => 1.1298354083394
712 => 1.1570657443806
713 => 1.1242385114648
714 => 1.1075708670924
715 => 1.1247676215389
716 => 1.1156427815677
717 => 1.1680768186452
718 => 1.1717072376079
719 => 1.2241374831077
720 => 1.2739000293645
721 => 1.2426450656493
722 => 1.2721170886783
723 => 1.3039934844734
724 => 1.3654882237212
725 => 1.3447789589536
726 => 1.3289159866971
727 => 1.3139255545641
728 => 1.3451182641688
729 => 1.3852471867596
730 => 1.3938905723356
731 => 1.4078961589962
801 => 1.3931709971442
802 => 1.4109058326715
803 => 1.4735175951643
804 => 1.4565993442495
805 => 1.4325727082058
806 => 1.4819986813963
807 => 1.4998857489553
808 => 1.6254265566147
809 => 1.7839270121167
810 => 1.7183067827687
811 => 1.6775741888609
812 => 1.6871473146193
813 => 1.7450263153896
814 => 1.7636152134494
815 => 1.7130841805455
816 => 1.7309325956263
817 => 1.8292791175392
818 => 1.8820388712113
819 => 1.8103840391443
820 => 1.6126911993435
821 => 1.4304093725112
822 => 1.4787587212447
823 => 1.4732774055533
824 => 1.5789384743702
825 => 1.4561958495604
826 => 1.4582625205712
827 => 1.5661085483942
828 => 1.53733707712
829 => 1.4907309784274
830 => 1.430749648609
831 => 1.3198686128382
901 => 1.2216581873096
902 => 1.4142714482814
903 => 1.4059656142239
904 => 1.3939375356528
905 => 1.4207047229386
906 => 1.5506785863999
907 => 1.5476822681627
908 => 1.5286212202732
909 => 1.543078857101
910 => 1.4881964847898
911 => 1.5023409217828
912 => 1.4303804981385
913 => 1.4629096149585
914 => 1.4906309826715
915 => 1.4961964576617
916 => 1.508735756995
917 => 1.4015888170955
918 => 1.4496946474415
919 => 1.477952315863
920 => 1.3502831419118
921 => 1.4754287067817
922 => 1.3997236272523
923 => 1.3740281862079
924 => 1.4086237124572
925 => 1.3951418022326
926 => 1.3835508475058
927 => 1.3770828956104
928 => 1.402486031919
929 => 1.4013009452469
930 => 1.3597364837097
1001 => 1.3055173380186
1002 => 1.3237150629953
1003 => 1.3171036589067
1004 => 1.2931430776014
1005 => 1.3092896163896
1006 => 1.2381884311429
1007 => 1.115862537444
1008 => 1.1966747697649
1009 => 1.1935635867274
1010 => 1.1919947871589
1011 => 1.2527229462621
1012 => 1.2468853350013
1013 => 1.236290013401
1014 => 1.2929484862113
1015 => 1.2722673814715
1016 => 1.3360016731984
1017 => 1.3779811998052
1018 => 1.3673338339623
1019 => 1.4068157816407
1020 => 1.3241343018245
1021 => 1.3515977728143
1022 => 1.3572579561225
1023 => 1.2922493294517
1024 => 1.2478404403985
1025 => 1.2448788737971
1026 => 1.1678799801008
1027 => 1.2090121676
1028 => 1.2452067904337
1029 => 1.2278723749126
1030 => 1.2223848168095
1031 => 1.2504195610519
1101 => 1.2525981007809
1102 => 1.2029271640888
1103 => 1.2132553247011
1104 => 1.2563254713681
1105 => 1.2121700675117
1106 => 1.1263833305629
1107 => 1.1051070337051
1108 => 1.1022683835043
1109 => 1.0445653789818
1110 => 1.1065288175977
1111 => 1.079480116125
1112 => 1.1649266399843
1113 => 1.1161200438147
1114 => 1.1140160890024
1115 => 1.1108356527204
1116 => 1.0611682930467
1117 => 1.0720422882899
1118 => 1.1081891046344
1119 => 1.1210866959291
1120 => 1.1197413714903
1121 => 1.1080119655145
1122 => 1.1133816275059
1123 => 1.0960840753173
1124 => 1.089975949622
1125 => 1.0706970247555
1126 => 1.0423623311407
1127 => 1.0463024440746
1128 => 0.99016400184783
1129 => 0.95957679903002
1130 => 0.95111066442291
1201 => 0.93978939540215
1202 => 0.95238943188355
1203 => 0.99000496869442
1204 => 0.9446326507192
1205 => 0.86684499404873
1206 => 0.87152016475834
1207 => 0.8820238852722
1208 => 0.86245027158369
1209 => 0.84392548891639
1210 => 0.86003128448249
1211 => 0.82707162889465
1212 => 0.88600690218338
1213 => 0.88441286820511
1214 => 0.9063802935543
1215 => 0.92011697544209
1216 => 0.8884583709943
1217 => 0.88049631758965
1218 => 0.88503186506409
1219 => 0.81006936836844
1220 => 0.90025425829752
1221 => 0.90103418097064
1222 => 0.89435600953863
1223 => 0.94237667927977
1224 => 1.0437152704561
1225 => 1.0055876161202
1226 => 0.99082343594685
1227 => 0.96275671864482
1228 => 1.000153953013
1229 => 0.99728242890126
1230 => 0.98429630787479
1231 => 0.97644226135882
]
'min_raw' => 0.73348513618525
'max_raw' => 1.8820388712113
'avg_raw' => 1.3077620036983
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$0.733485'
'max' => '$1.88'
'avg' => '$1.30'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 0.4510462543809
'max_diff' => 1.0939468064166
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.023023260290163
]
1 => [
'year' => 2028
'avg' => 0.039514598358139
]
2 => [
'year' => 2029
'avg' => 0.107946760901
]
3 => [
'year' => 2030
'avg' => 0.083280765275979
]
4 => [
'year' => 2031
'avg' => 0.08179203237263
]
5 => [
'year' => 2032
'avg' => 0.14340717364914
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.023023260290163
'min' => '$0.023023'
'max_raw' => 0.14340717364914
'max' => '$0.1434071'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.14340717364914
]
1 => [
'year' => 2033
'avg' => 0.36885799701135
]
2 => [
'year' => 2034
'avg' => 0.23379992499165
]
3 => [
'year' => 2035
'avg' => 0.27576754768166
]
4 => [
'year' => 2036
'avg' => 0.53526547329949
]
5 => [
'year' => 2037
'avg' => 1.3077620036983
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.14340717364914
'min' => '$0.1434071'
'max_raw' => 1.3077620036983
'max' => '$1.30'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 1.3077620036983
]
]
]
]
'prediction_2025_max_price' => '$0.039365'
'last_price' => 0.0381699
'sma_50day_nextmonth' => '$0.036813'
'sma_200day_nextmonth' => '$0.065257'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'increase'
'sma_200day_direction_label' => 'aumentar'
'sma_200day_date_nextmonth' => '4 de fev. de 2026'
'sma_50day_date_nextmonth' => '4 de fev. de 2026'
'daily_sma3' => '$0.037785'
'daily_sma3_action' => 'BUY'
'daily_sma5' => '$0.037625'
'daily_sma5_action' => 'BUY'
'daily_sma10' => '$0.038836'
'daily_sma10_action' => 'SELL'
'daily_sma21' => '$0.039463'
'daily_sma21_action' => 'SELL'
'daily_sma50' => '$0.0431026'
'daily_sma50_action' => 'SELL'
'daily_sma100' => '$0.0532034'
'daily_sma100_action' => 'SELL'
'daily_sma200' => '$0.071381'
'daily_sma200_action' => 'SELL'
'daily_ema3' => '$0.037887'
'daily_ema3_action' => 'BUY'
'daily_ema5' => '$0.03793'
'daily_ema5_action' => 'BUY'
'daily_ema10' => '$0.038484'
'daily_ema10_action' => 'SELL'
'daily_ema21' => '$0.039811'
'daily_ema21_action' => 'SELL'
'daily_ema50' => '$0.044241'
'daily_ema50_action' => 'SELL'
'daily_ema100' => '$0.053116'
'daily_ema100_action' => 'SELL'
'daily_ema200' => '$0.0705057'
'daily_ema200_action' => 'SELL'
'weekly_sma21' => '$0.062428'
'weekly_sma21_action' => 'SELL'
'weekly_sma50' => '$0.082159'
'weekly_sma50_action' => 'SELL'
'weekly_sma100' => '$0.188777'
'weekly_sma100_action' => 'SELL'
'weekly_sma200' => '$0.32003'
'weekly_sma200_action' => 'SELL'
'weekly_ema3' => '$0.03912'
'weekly_ema3_action' => 'SELL'
'weekly_ema5' => '$0.0408012'
'weekly_ema5_action' => 'SELL'
'weekly_ema10' => '$0.046281'
'weekly_ema10_action' => 'SELL'
'weekly_ema21' => '$0.058739'
'weekly_ema21_action' => 'SELL'
'weekly_ema50' => '$0.0975099'
'weekly_ema50_action' => 'SELL'
'weekly_ema100' => '$0.227686'
'weekly_ema100_action' => 'SELL'
'weekly_ema200' => '$0.751311'
'weekly_ema200_action' => 'SELL'
'rsi_14' => '41.14'
'rsi_14_action' => 'NEUTRAL'
'stoch_rsi_14' => 47.2
'stoch_rsi_14_action' => 'NEUTRAL'
'momentum_10' => -0
'momentum_10_action' => 'SELL'
'vwma_10' => '0.038620'
'vwma_10_action' => 'SELL'
'hma_9' => '0.037339'
'hma_9_action' => 'BUY'
'stochastic_fast_14' => 37.54
'stochastic_fast_14_action' => 'NEUTRAL'
'cci_20' => -50.03
'cci_20_action' => 'NEUTRAL'
'adx_14' => 20.84
'adx_14_action' => 'NEUTRAL'
'ao_5_34' => '-0.003764'
'ao_5_34_action' => 'NEUTRAL'
'macd_12_26' => 0
'macd_12_26_action' => 'BUY'
'williams_percent_r_14' => -62.46
'williams_percent_r_14_action' => 'NEUTRAL'
'ultimate_oscillator' => 34.51
'ultimate_oscillator_action' => 'NEUTRAL'
'ichimoku_cloud' => '-0.007298'
'ichimoku_cloud_action' => 'SELL'
'sell_signals' => 23
'buy_signals' => 10
'sell_pct' => 69.7
'buy_pct' => 30.3
'overall_action' => 'bearish'
'overall_action_label' => 'Baixista'
'overall_action_dir' => -1
'last_updated' => 1767711849
'last_updated_date' => '6 de janeiro de 2026'
]
Previsão de preço de FIDA para 2026
A previsão de preço para FIDA em 2026 sugere que o preço médio poderia variar entre $0.013187 na extremidade inferior e $0.039365 na extremidade superior. No mercado de criptomoedas, comparado ao preço médio de hoje, FIDA poderia potencialmente ganhar 3.13% até 2026 se FIDA atingir a meta de preço prevista.
Previsão de preço de FIDA 2027-2032
A previsão de preço de FIDA para 2027-2032 está atualmente dentro de uma faixa de preço entre $0.023023 na extremidade inferior e $0.1434071 na extremidade superior. Considerando a volatilidade de preços no mercado, se FIDA atingir a meta de preço superior, poderia ganhar 275.71% até 2032 em comparação com o preço de hoje.
| Previsão de Preço de FIDA | Potencial Mínimo ($) | Preço Médio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2027 | $0.012695 | $0.023023 | $0.033351 |
| 2028 | $0.022911 | $0.039514 | $0.056117 |
| 2029 | $0.05033 | $0.107946 | $0.165563 |
| 2030 | $0.0428036 | $0.08328 | $0.123757 |
| 2031 | $0.0506071 | $0.081792 | $0.112976 |
| 2032 | $0.077247 | $0.1434071 | $0.209566 |
Previsão de preço de FIDA 2032-2037
A previsão de preço de FIDA para 2032-2037 é atualmente estimada entre $0.1434071 na extremidade inferior e $1.30 na extremidade superior. Comparado ao preço atual, FIDA poderia potencialmente ganhar 3326.16% até 2037 se atingir a meta de preço superior. Por favor, note que esta informação é apenas para fins gerais e não deve ser considerada como aconselhamento de investimento a longo prazo.
| Previsão de Preço de FIDA | Potencial Mínimo ($) | Preço Médio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2032 | $0.077247 | $0.1434071 | $0.209566 |
| 2033 | $0.1795075 | $0.368857 | $0.5582084 |
| 2034 | $0.144315 | $0.233799 | $0.323284 |
| 2035 | $0.170625 | $0.275767 | $0.3809095 |
| 2036 | $0.282438 | $0.535265 | $0.788092 |
| 2037 | $0.733485 | $1.30 | $1.88 |
FIDA Histograma de preços potenciais
Previsão de preço de FIDA baseada na análise técnica
Em 6 de janeiro de 2026, o sentimento geral de previsão de preço para FIDA é Baixista, com 10 indicadores técnicos mostrando sinais de alta e 23 indicando sinais de baixa. A previsão de preço de FIDA foi atualizada pela última vez em 6 de janeiro de 2026.
Médias Móveis Simples de 50 e 200 dias e Índice de Força Relativa de 14 dias - RSI (14) de FIDA
De acordo com nossos indicadores técnicos, o SMA de 200 dias de FIDA está projetado para aumentar no próximo mês, alcançando $0.065257 até 4 de fev. de 2026. O SMA de 50 dias de curto prazo para FIDA é esperado para alcançar $0.036813 até 4 de fev. de 2026.
O oscilador de momentum Índice de Força Relativa (RSI) é uma ferramenta comumente usada para identificar se uma criptomoeda está sobrevendida (abaixo de 30) ou sobrecomprada (acima de 70). No momento, o RSI está em 41.14, sugerindo que o mercado de FIDA está em um estado NEUTRAL.
Médias Móveis e Osciladores Populares de FIDA para Sábado, 19 de Outubro de 2024
Médias móveis (MA) são indicadores amplamente utilizados nos mercados financeiros, projetados para suavizar movimentos de preços ao longo de um período definido. Como indicadores atrasados, eles se baseiam em dados históricos de preços. A tabela abaixo destaca dois tipos: a média móvel simples (SMA) e a média móvel exponencial (EMA).
Média Móvel Simples Diária (SMA)
| Período | Valor | Ação |
|---|---|---|
| SMA 3 | $0.037785 | BUY |
| SMA 5 | $0.037625 | BUY |
| SMA 10 | $0.038836 | SELL |
| SMA 21 | $0.039463 | SELL |
| SMA 50 | $0.0431026 | SELL |
| SMA 100 | $0.0532034 | SELL |
| SMA 200 | $0.071381 | SELL |
Média Móvel Exponencial Diária (EMA)
| Período | Valor | Ação |
|---|---|---|
| EMA 3 | $0.037887 | BUY |
| EMA 5 | $0.03793 | BUY |
| EMA 10 | $0.038484 | SELL |
| EMA 21 | $0.039811 | SELL |
| EMA 50 | $0.044241 | SELL |
| EMA 100 | $0.053116 | SELL |
| EMA 200 | $0.0705057 | SELL |
Média Móvel Simples Semanal (SMA)
| Período | Valor | Ação |
|---|---|---|
| SMA 21 | $0.062428 | SELL |
| SMA 50 | $0.082159 | SELL |
| SMA 100 | $0.188777 | SELL |
| SMA 200 | $0.32003 | SELL |
Média Móvel Exponencial Semanal (EMA)
| Período | Valor | Ação |
|---|---|---|
| EMA 21 | $0.058739 | SELL |
| EMA 50 | $0.0975099 | SELL |
| EMA 100 | $0.227686 | SELL |
| EMA 200 | $0.751311 | SELL |
Osciladores de FIDA
Um oscilador é uma ferramenta de análise técnica que define limites altos e baixos entre dois extremos, criando um indicador de tendência que flutua dentro desses limites. Os traders usam esse indicador para identificar condições de sobrecompra ou sobrevenda de curto prazo.
| Período | Valor | Ação |
|---|---|---|
| RSI (14) | 41.14 | NEUTRAL |
| Stoch RSI (14) | 47.2 | NEUTRAL |
| Estocástico Rápido (14) | 37.54 | NEUTRAL |
| Índice de Canal de Commodities (20) | -50.03 | NEUTRAL |
| Índice Direcional Médio (14) | 20.84 | NEUTRAL |
| Oscilador Impressionante (5, 34) | -0.003764 | NEUTRAL |
| Momentum (10) | -0 | SELL |
| MACD (12, 26) | 0 | BUY |
| Williams Percent Range (14) | -62.46 | NEUTRAL |
| Oscilador Ultimate (7, 14, 28) | 34.51 | NEUTRAL |
| VWMA (10) | 0.038620 | SELL |
| Média Móvel de Hull (9) | 0.037339 | BUY |
| Nuvem Ichimoku B/L (9, 26, 52, 26) | -0.007298 | SELL |
Previsão do preço de FIDA com base nos fluxos financeiros mundiais
Definições dos fluxos financeiros mundiais, usadas na previsão do preço do FIDA
M0: o total de todas as moedas físicas, mais as contas no Banco Central que podem ser trocadas por moedas físicas.
M1: o valor de M0, mais o valor em contas de demanda, incluindo contas 'correntes'.
M2: o valor de M1, mais a maioria das contas de poupança, do mercado de moedas e de certificados de depósito (CD) de menos de US$ 100.000.
Previsões de preço de FIDA por empresas de Internet ou nichos tecnológicos
| Comparação | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Facebook stock | $0.053635 | $0.075366 | $0.1059021 | $0.14881 | $0.2091032 | $0.293824 |
| Amazon.com stock | $0.079643 | $0.166181 | $0.346747 | $0.7235092 | $1.50 | $3.14 |
| Apple stock | $0.054141 | $0.076795 | $0.108927 | $0.1545058 | $0.219154 | $0.310854 |
| Netflix stock | $0.060226 | $0.095027 | $0.149938 | $0.236579 | $0.373284 | $0.588984 |
| Google stock | $0.049429 | $0.064011 | $0.082894 | $0.107348 | $0.139015 | $0.180024 |
| Tesla stock | $0.086528 | $0.196153 | $0.444664 | $1.00 | $2.28 | $5.18 |
| Kodak stock | $0.028623 | $0.021464 | $0.016096 | $0.01207 | $0.009051 | $0.006787 |
| Nokia stock | $0.025285 | $0.01675 | $0.011096 | $0.007351 | $0.004869 | $0.003226 |
Este cálculo mostra quanto a criptomoeda pode custar, se assumirmos que sua capitalização se comportará da mesma forma que a de algumas empresas de Internet ou nichos tecnológicos. Se você extrapolar os dados, poderá obter uma imagem em potencial do preço futuro para 2024, 2025, 2026, 2027, 2028, 2029 e 2030.
Visão geral da previsão para FIDA
Você pode fazer perguntas como: 'Devo investir em FIDA agora?', 'Devo comprar FIDA hoje?', 'FIDA será um bom ou mau investimento no curto ou no longo prazo?'.
Atualizamos a previsão para FIDA/Bonfida regularmente com novos valores. Veja nossas previsões semelhantes. Fazemos previsões de preços futuros para uma enorme quantidade de moedas digitais, como FIDA, com métodos de análise técnica.
Se você estiver tentando encontrar criptomoedas com bom retorno, você deve explorar o máximo de fontes de informações disponíveis sobre FIDA para poder tomar sozinho uma decisão de tão grande responsabilidade sobre o seu investimento.
O preço de FIDA é de $0.03816 USD hoje, mas o preço pode tanto subir quanto descer e seu investimento pode ser perdido, porque criptomoedas são ativos de alto risco
Previsão de curto prazo para FIDA
com base no histórico de preços de 4 horas
Previsão de longo prazo para FIDA
com base no histórico de preços de 1 mês
Previsão do preço de FIDA com base no padrão de crescimento do Bitcoin
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| Se FIDA tiver 1% da média anterior do crescimento anual do Bitcoin | $0.039162 | $0.04018 | $0.041224 | $0.042295 |
| Se FIDA tiver 2% da média anterior do crescimento anual do Bitcoin | $0.040154 | $0.042241 | $0.044437 | $0.046747 |
| Se FIDA tiver 5% da média anterior do crescimento anual do Bitcoin | $0.04313 | $0.048736 | $0.05507 | $0.062227 |
| Se FIDA tiver 10% da média anterior do crescimento anual do Bitcoin | $0.048091 | $0.060592 | $0.076341 | $0.096185 |
| Se FIDA tiver 20% da média anterior do crescimento anual do Bitcoin | $0.058013 | $0.088171 | $0.1340094 | $0.203676 |
| Se FIDA tiver 50% da média anterior do crescimento anual do Bitcoin | $0.087777 | $0.201859 | $0.4642076 | $1.06 |
| Se FIDA tiver 100% da média anterior do crescimento anual do Bitcoin | $0.137385 | $0.494495 | $1.77 | $6.40 |
Perguntas Frequentes sobre FIDA
FIDA é um bom investimento?
A decisão de adquirir FIDA depende inteiramente da sua tolerância individual ao risco. Como você pode perceber, o valor de FIDA experimentou uma escalada de 2.3961% nas últimas 24 horas, e FIDA registrou um declínio de durante os últimos 30 dias. Consequentemente, a decisão de investir ou não em FIDA dependerá de quão alinhado esse investimento está com suas aspirações de negociação.
FIDA pode subir?
Parece que o valor médio de FIDA pode potencialmente subir para $0.039365 até o final deste ano. Observando as perspectivas de FIDA em um horizonte de cinco anos mais longo, a moeda digital poderia potencialmente crescer até $0.123757. No entanto, dada a imprevisibilidade do mercado, é vital conduzir uma pesquisa aprofundada antes de investir quaisquer fundos em um projeto, rede ou ativo específico.
Qual será o preço de FIDA na próxima semana?
Com base na nossa nova previsão experimental de FIDA, o preço de FIDA aumentará 0.86% na próxima semana e atingirá $0.038496 até 13 de janeiro de 2026.
Qual será o preço de FIDA no próximo mês?
Com base na nossa nova previsão experimental de FIDA, o preço de FIDA diminuirá -11.62% no próximo mês e atingirá $0.033735 até 5 de fevereiro de 2026.
Até onde o preço de FIDA pode subir este ano em 2026?
De acordo com nossa previsão mais recente sobre o valor de FIDA em 2026, espera-se que FIDA fluctue dentro do intervalo de $0.013187 e $0.039365. No entanto, é crucial lembrar que o mercado de criptomoedas é excepcionalmente instável, e essa previsão de preço de FIDA não considera flutuações repentinas e extremas de preço.
Onde estará FIDA em 5 anos?
O futuro de FIDA parece seguir uma tendência de alta, com um preço máximo de $0.123757 projetada após um período de cinco anos. Com base na previsão de FIDA para 2030, o valor de FIDA pode potencialmente atingir seu pico mais alto de aproximadamente $0.123757, enquanto seu pico mais baixo está previsto para cerca de $0.0428036.
Quanto será FIDA em 2026?
Com base na nossa nova simulação experimental de previsão de preços de FIDA, espera-se que o valor de FIDA em 2026 aumente 3.13% para $0.039365 se o melhor cenário ocorrer. O preço ficará entre $0.039365 e $0.013187 durante 2026.
Quanto será FIDA em 2027?
De acordo com nossa última simulação experimental para previsão de preços de FIDA, o valor de FIDA pode diminuir -12.62% para $0.033351 em 2027, assumindo as condições mais favoráveis. O preço está projetado para flutuar entre $0.033351 e $0.012695 ao longo do ano.
Quanto será FIDA em 2028?
Nosso novo modelo experimental de previsão de preços de FIDA sugere que o valor de FIDA em 2028 pode aumentar 47.02%, alcançando $0.056117 no melhor cenário. O preço é esperado para variar entre $0.056117 e $0.022911 durante o ano.
Quanto será FIDA em 2029?
Com base no nosso modelo de previsão experimental, o valor de FIDA pode experimentar um 333.75% crescimento em 2029, potencialmente alcançando $0.165563 sob condições ótimas. A faixa de preço prevista para 2029 está entre $0.165563 e $0.05033.
Quanto será FIDA em 2030?
Usando nossa nova simulação experimental para previsões de preços de FIDA, espera-se que o valor de FIDA em 2030 aumente 224.23%, alcançando $0.123757 no melhor cenário. O preço está previsto para variar entre $0.123757 e $0.0428036 ao longo de 2030.
Quanto será FIDA em 2031?
Nossa simulação experimental indica que o preço de FIDA poderia aumentar 195.98% em 2031, potencialmente atingindo $0.112976 sob condições ideais. O preço provavelmente oscilará entre $0.112976 e $0.0506071 durante o ano.
Quanto será FIDA em 2032?
Com base nos achados da nossa mais recente previsão experimental de preços de FIDA, FIDA poderia ver um 449.04% aumento em valor, atingindo $0.209566 se o cenário mais positivo se desenrolar em 2032. O preço é esperado para permanecer dentro de uma faixa de $0.209566 e $0.077247 ao longo do ano.
Quanto será FIDA em 2033?
De acordo com nossa previsão experimental de preços de FIDA, espera-se que o valor de FIDA seja aumentar 1362.43% em 2033, com o preço potencial mais alto sendo $0.5582084. Ao longo do ano, o preço de FIDA poderia variar entre $0.5582084 e $0.1795075.
Quanto será FIDA em 2034?
Os resultados da nossa nova simulação de previsão de preços de FIDA sugerem que FIDA pode aumentar 746.96% em 2034, atingindo potencialmente $0.323284 nas melhores circunstâncias. A faixa de preço prevista para o ano é entre $0.323284 e $0.144315.
Quanto será FIDA em 2035?
Com base em nossa previsão experimental para o preço de FIDA, FIDA poderia aumentar 897.93%, com o valor potencialmente atingindo $0.3809095 em 2035. A faixa de preço esperada para o ano está entre $0.3809095 e $0.170625.
Quanto será FIDA em 2036?
Nossa recente simulação de previsão de preços de FIDA sugere que o valor de FIDA pode aumentar 1964.7% em 2036, possivelmente atingindo $0.788092 se as condições forem ideais. A faixa de preço esperada para 2036 está entre $0.788092 e $0.282438.
Quanto será FIDA em 2037?
De acordo com a simulação experimental, o valor de FIDA poderia aumentar 4830.69% em 2037, com um pico de $1.88 sob condições favoráveis. O preço é esperado para cair entre $1.88 e $0.733485 ao longo do ano.
Previsões relacionadas
Previsão de Preço do Rarible
Previsão de Preço do Ampleforth Governance Token
Previsão de Preço do Firmachain
Previsão de Preço do Dynex
Previsão de Preço do Hxro
Previsão de Preço do Steem Dollars
Previsão de Preço do Kin
Previsão de Preço do HOPR
Previsão de Preço do DEAPCOIN
Previsão de Preço do ShapeShift FOX Token
Previsão de Preço do QnA3.AI
Previsão de Preço do ZKSwap
Previsão de Preço do PAID Network
Previsão de Preço do NKYC Token
Previsão de Preço do Biswap
Previsão de Preço do Thala
Previsão de Preço do Streamr
Previsão de Preço do Impossible Finance Launchpad
Previsão de Preço do SelfKey
Previsão de Preço do Solchat
Previsão de Preço do pSTAKE Finance
Previsão de Preço do Groestlcoin
Previsão de Preço do Games for a Living
Previsão de Preço do Fideum
Previsão de Preço do district0x
Como ler e prever os movimentos de preço de FIDA?
Traders de FIDA utilizam indicadores e padrões de gráfico para prever a direção do mercado. Eles também identificam níveis-chave de suporte e resistência para avaliar quando uma tendência de baixa pode desacelerar ou uma tendência de alta pode estagnar.
Indicadores de Previsão de Preço de FIDA
Médias móveis são ferramentas populares para a previsão de preço de FIDA. Uma média móvel simples (SMA) calcula o preço médio de fechamento de FIDA em um período específico, como uma SMA de 12 dias. Uma média móvel exponencial (EMA) dá mais peso aos preços recentes, reagindo mais rapidamente às mudanças de preço.
Médias móveis comumente usadas no mercado de criptomoedas incluem as de 50 dias, 100 dias e 200 dias, que ajudam a identificar níveis-chave de resistência e suporte. Um movimento de preço de FIDA acima dessas médias é visto como altista, enquanto uma queda abaixo indica fraqueza.
Traders também usam RSI e níveis de retração de Fibonacci para avaliar a direção futura de FIDA.
Como ler gráficos de FIDA e prever movimentos de preço?
A maioria dos traders prefere gráficos de velas em vez de gráficos de linha simples porque eles fornecem informações mais detalhadas. Velas podem representar a ação de preço de FIDA em diferentes períodos de tempo, como 5 minutos para tendências de curto prazo e semanal para tendências de longo prazo. Opções populares incluem gráficos de 1 hora, 4 horas e 1 dia.
Por exemplo, um gráfico de velas de 1 hora mostra os preços de abertura, fechamento, máximo e mínimo de FIDA dentro de cada hora. A cor da vela é crucial: verde indica que o preço fechou mais alto do que abriu, enquanto vermelho significa o oposto. Alguns gráficos usam velas vazias e preenchidas para transmitir a mesma informação.
O que afeta o preço de FIDA?
A ação de preço de FIDA é impulsionada pela oferta e demanda, influenciada por fatores como reduções pela metade das recompensas de bloco, hard forks e atualizações de protocolo. Eventos do mundo real, como regulamentações, adoção por empresas e governos e hacks de exchanges de criptomoedas, também impactam o preço de FIDA. A capitalização de mercado de FIDA pode mudar rapidamente.
Traders frequentemente monitoram a atividade de "baleias" de FIDA, grandes detentores de FIDA, pois suas ações podem influenciar significativamente os movimentos de preço no relativamente pequeno mercado de FIDA.
Padrões de previsão de preço altistas e baixistas
Traders frequentemente identificam padrões de velas para ganhar vantagem em previsões de preço de criptomoedas. Certas formações indicam tendências altistas, enquanto outras sugerem movimentos baixistas.
Padrões de velas altistas comumente seguidos:
- Martelo
- Engolfo de Alta
- Linha de Perfuração
- Estrela da Manhã
- Três Soldados Brancos
Padrões de velas baixistas comuns:
- Harami de Baixa
- Nuvem Negra
- Estrela da Noite
- Estrela Cadente
- Homem Enforcado


