Previsão de Preço KCCPad - Projeção KCCPAD
Previsão de Preço KCCPad até $0.001246 até 2026
| Ano | Preço Mínimo | Preço Máximo |
|---|---|---|
| 2026 | $0.000417 | $0.001246 |
| 2027 | $0.0004019 | $0.001056 |
| 2028 | $0.000725 | $0.001776 |
| 2029 | $0.001593 | $0.005242 |
| 2030 | $0.001355 | $0.003918 |
| 2031 | $0.0016023 | $0.003577 |
| 2032 | $0.002445 | $0.006635 |
| 2033 | $0.005683 | $0.017674 |
| 2034 | $0.004569 | $0.010236 |
| 2035 | $0.0054025 | $0.01206 |
Calculadora de lucro do investimento
Se você abrir um short de $10,000.00 em KCCPad hoje e fechar em Apr 06, 2026, nossa previsão mostra que pode lucrar cerca de $3,959.85, com um retorno de 39.6% nos próximos 90 dias.
Previsão de preço de longo prazo de KCCPad para os anos 2027, 2028, 2029, 2030, 2031, 2032 e 2037
[
'name' => 'KCCPad'
'name_with_ticker' => 'KCCPad <small>KCCPAD</small>'
'name_lang' => 'KCCPad'
'name_lang_with_ticker' => 'KCCPad <small>KCCPAD</small>'
'name_with_lang' => 'KCCPad'
'name_with_lang_with_ticker' => 'KCCPad <small>KCCPAD</small>'
'image' => '/uploads/coins/kccpad.png?1717095945'
'price_for_sd' => 0.001208
'ticker' => 'KCCPAD'
'marketcap' => '$382.12K'
'low24h' => '$0.001196'
'high24h' => '$0.001209'
'volume24h' => '$18.96'
'current_supply' => '316.17M'
'max_supply' => '316.17M'
'algo' => null
'proof' => null
'ico_price_and_roi' => '—'
'price' => '$0.001208'
'change_24h_pct' => '0.1199%'
'ath_price' => '$0.4426'
'ath_days' => 1531
'ath_exchange' => null
'ath_pair' => null
'ath_date' => '28 de out. de 2021'
'ath_pct' => '-99.73%'
'fdv' => '$382.12K'
'new_prediction' => true
'change_24h_pct_is_increased' => true
'change_30d_pct' => null
'change_30d_pct_is_increased' => false
'max_price' => '$0.059591'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.001218'
'next_week_prediction_price_date' => '13 de janeiro de 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.0010681'
'next_month_prediction_price_date' => '5 de fevereiro de 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.000417'
'current_year_max_price_prediction' => '$0.001246'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.001355'
'grand_prediction_max_price' => '$0.003918'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.0012314819552869
107 => 0.00123607986188
108 => 0.0012464391802092
109 => 0.0011579199393076
110 => 0.0011976624796841
111 => 0.0012210074987828
112 => 0.0011155338531958
113 => 0.0012189226239331
114 => 0.0011563790162611
115 => 0.0011351507764437
116 => 0.0011637318047499
117 => 0.001152593750223
118 => 0.0011430179049893
119 => 0.001137674418815
120 => 0.0011586611716301
121 => 0.0011576821145266
122 => 0.001123343713568
123 => 0.0010785506693298
124 => 0.0010935846852577
125 => 0.0010881226863265
126 => 0.0010683276975877
127 => 0.0010816671299416
128 => 0.0010229270207874
129 => 0.00092186771603272
130 => 0.00098863058828385
131 => 0.00098606029032621
201 => 0.00098476422954224
202 => 0.0010349346828487
203 => 0.0010301119513926
204 => 0.0010213586465754
205 => 0.0010681669362803
206 => 0.0010510812808777
207 => 0.0011037352449419
208 => 0.0011384165511195
209 => 0.0011296202500501
210 => 0.0011622381861394
211 => 0.0010939310386203
212 => 0.001116619933019
213 => 0.0011212960827092
214 => 0.0010675893292512
215 => 0.0010309010099025
216 => 0.0010284543172794
217 => 0.00096484182749066
218 => 0.00099882310607375
219 => 0.001028725224986
220 => 0.0010144044305252
221 => 0.0010098708948205
222 => 0.001033031745532
223 => 0.0010348315419916
224 => 0.00099379599197978
225 => 0.0010023285822541
226 => 0.0010379109021231
227 => 0.0010014319990882
228 => 0.00093055944928647
301 => 0.00091298207704598
302 => 0.00091063693157385
303 => 0.00086296570397865
304 => 0.00091415668110857
305 => 0.00089181044775846
306 => 0.00096240193116245
307 => 0.00092208045443181
308 => 0.00092034227615947
309 => 0.00091771476476551
310 => 0.00087668216990071
311 => 0.00088566570041866
312 => 0.00091552832409065
313 => 0.00092618364464335
314 => 0.00092507220741324
315 => 0.00091538198094316
316 => 0.00091981811699917
317 => 0.00090552777711049
318 => 0.0009004815606681
319 => 0.00088455431350471
320 => 0.00086114566018887
321 => 0.00086440077700605
322 => 0.00081802210958003
323 => 0.00079275255006415
324 => 0.0007857582690376
325 => 0.00077640522413776
326 => 0.00078681472034654
327 => 0.00081789072464238
328 => 0.0007804064703195
329 => 0.00071614234549764
330 => 0.00072000472890017
331 => 0.00072868235765374
401 => 0.00071251165387972
402 => 0.00069720743986191
403 => 0.00071051321228027
404 => 0.00068328365541425
405 => 0.00073197291951025
406 => 0.00073065601136654
407 => 0.00074880435809764
408 => 0.00076015289175015
409 => 0.0007339981958125
410 => 0.000727420360514
411 => 0.00073116739444597
412 => 0.00066923727017168
413 => 0.00074374334570499
414 => 0.00074438767734013
415 => 0.00073887051869495
416 => 0.00077854270379942
417 => 0.0008622633884347
418 => 0.00083076429921817
419 => 0.00081856689980852
420 => 0.00079537963461453
421 => 0.00082627528876195
422 => 0.00082390298457071
423 => 0.00081317452534829
424 => 0.00080668591973574
425 => 0.00081864137452837
426 => 0.00080520450658177
427 => 0.00080279087587812
428 => 0.00078816689987012
429 => 0.00078294680578378
430 => 0.00077908205594018
501 => 0.00077482734610486
502 => 0.00078421217579395
503 => 0.00076294491704131
504 => 0.00073729868784071
505 => 0.00073516648137873
506 => 0.00074105369088578
507 => 0.00073844903893011
508 => 0.00073515401130725
509 => 0.00072886290622783
510 => 0.00072699646973895
511 => 0.00073306148286153
512 => 0.00072621443665837
513 => 0.00073631762630904
514 => 0.00073357011775904
515 => 0.00071822275834265
516 => 0.00069909426618962
517 => 0.00069892398248609
518 => 0.00069480278022873
519 => 0.00068955380952708
520 => 0.00068809366595806
521 => 0.00070939263724001
522 => 0.00075348087036906
523 => 0.00074482529526383
524 => 0.00075107983533638
525 => 0.0007818459821475
526 => 0.00079162561504844
527 => 0.00078468426325865
528 => 0.00077518251280485
529 => 0.00077560054160262
530 => 0.0008080708992787
531 => 0.00081009603565801
601 => 0.00081521290195476
602 => 0.00082178952117232
603 => 0.00078580428994951
604 => 0.00077390564044813
605 => 0.00076826740020243
606 => 0.00075090380251927
607 => 0.0007696289539782
608 => 0.00075871861011401
609 => 0.00076019078825171
610 => 0.00075923203030823
611 => 0.0007597555769763
612 => 0.00073195930986865
613 => 0.00074208680867389
614 => 0.00072524787764948
615 => 0.00070270243926651
616 => 0.0007026268590516
617 => 0.00070814482315573
618 => 0.00070486252218864
619 => 0.00069602993468187
620 => 0.00069728456204857
621 => 0.00068629270613532
622 => 0.00069861917237041
623 => 0.00069897265131582
624 => 0.00069422629038815
625 => 0.00071321691234786
626 => 0.00072099738565963
627 => 0.00071787322922013
628 => 0.00072077818651547
629 => 0.00074518497348703
630 => 0.00074916434470617
701 => 0.0007509317185392
702 => 0.0007485636717351
703 => 0.00072122429777714
704 => 0.00072243691526817
705 => 0.00071353953270333
706 => 0.00070602218201913
707 => 0.00070632283662318
708 => 0.00071018773206205
709 => 0.00072706595711671
710 => 0.00076258518671852
711 => 0.00076393311551769
712 => 0.00076556684454414
713 => 0.00075892164754714
714 => 0.00075691739254688
715 => 0.00075956152223433
716 => 0.0007729006773604
717 => 0.00080721260588994
718 => 0.00079508447873095
719 => 0.00078522412256514
720 => 0.00079387431325549
721 => 0.00079254268420115
722 => 0.00078130239487838
723 => 0.00078098691739403
724 => 0.00075941320844575
725 => 0.00075143789945716
726 => 0.00074477313432476
727 => 0.00073749538478828
728 => 0.00073318089091068
729 => 0.00073980991440907
730 => 0.00074132605051546
731 => 0.00072683157478072
801 => 0.000724856031297
802 => 0.00073669253306698
803 => 0.00073148372994728
804 => 0.00073684111312799
805 => 0.0007380840719807
806 => 0.00073788392697764
807 => 0.00073244533829345
808 => 0.0007359117325397
809 => 0.00072771267676544
810 => 0.00071879743506929
811 => 0.00071311006630633
812 => 0.00070814708274066
813 => 0.00071090083447319
814 => 0.00070108421236191
815 => 0.00069794367737894
816 => 0.00073473739616541
817 => 0.00076191731183212
818 => 0.00076152210509389
819 => 0.00075911638571389
820 => 0.00075554197469756
821 => 0.00077263918693093
822 => 0.00076668286005837
823 => 0.00077101658552592
824 => 0.0007721197005433
825 => 0.00077545849746391
826 => 0.00077665183038373
827 => 0.00077304474947702
828 => 0.00076093894538624
829 => 0.00073077243257736
830 => 0.00071672983943187
831 => 0.00071209554979598
901 => 0.00071226399742247
902 => 0.0007076174599004
903 => 0.00070898607344386
904 => 0.00070714151196273
905 => 0.00070364835876482
906 => 0.00071068514210667
907 => 0.00071149606583464
908 => 0.00070985359651936
909 => 0.00071024045750136
910 => 0.00069664151307861
911 => 0.00069767541128772
912 => 0.00069191853467798
913 => 0.00069083918971384
914 => 0.000676286306953
915 => 0.0006505037656681
916 => 0.00066478979631178
917 => 0.00064753428021411
918 => 0.00064099935480419
919 => 0.00067193467530534
920 => 0.00066882962713925
921 => 0.0006635151344109
922 => 0.00065565389202834
923 => 0.0006527380807594
924 => 0.00063502253452297
925 => 0.00063397580554256
926 => 0.00064275610861732
927 => 0.0006387043008601
928 => 0.00063301402822937
929 => 0.00061240443757455
930 => 0.00058923243407757
1001 => 0.00058993185120913
1002 => 0.00059730243439106
1003 => 0.00061873339905111
1004 => 0.00061035995039898
1005 => 0.0006042849173276
1006 => 0.00060314724624816
1007 => 0.00061738758168314
1008 => 0.00063754063976616
1009 => 0.00064699600371945
1010 => 0.00063762602520541
1011 => 0.00062686229840396
1012 => 0.00062751743658005
1013 => 0.00063187577735855
1014 => 0.00063233377735075
1015 => 0.000625327697732
1016 => 0.00062729986810633
1017 => 0.00062430396096868
1018 => 0.00060591808439493
1019 => 0.00060558554218996
1020 => 0.00060107335156645
1021 => 0.00060093672422763
1022 => 0.00059326036235834
1023 => 0.00059218638626864
1024 => 0.00057694450385531
1025 => 0.00058697675701643
1026 => 0.00058024764831288
1027 => 0.00057010529426035
1028 => 0.00056835674859881
1029 => 0.0005683041852048
1030 => 0.00057871811502787
1031 => 0.00058685506418316
1101 => 0.00058036470403976
1102 => 0.00057888697484545
1103 => 0.00059466525658583
1104 => 0.00059265732641213
1105 => 0.00059091847183148
1106 => 0.0006357361544555
1107 => 0.0006002594614912
1108 => 0.00058478959841992
1109 => 0.0005656427052219
1110 => 0.00057187703019419
1111 => 0.00057319069406714
1112 => 0.0005271458674128
1113 => 0.00050846548697365
1114 => 0.00050205508436222
1115 => 0.00049836580702955
1116 => 0.00050004705703708
1117 => 0.00048323252365175
1118 => 0.0004945321681734
1119 => 0.00047997220355884
1120 => 0.00047753117810899
1121 => 0.00050356619847333
1122 => 0.00050718881946264
1123 => 0.0004917335928621
1124 => 0.00050165835031356
1125 => 0.00049805949529721
1126 => 0.00048022179236253
1127 => 0.00047954052331568
1128 => 0.00047059019100863
1129 => 0.00045658465407394
1130 => 0.00045018374787607
1201 => 0.00044685010035299
1202 => 0.00044822562829251
1203 => 0.00044753011927444
1204 => 0.00044299145247112
1205 => 0.00044779027034283
1206 => 0.00043553127368906
1207 => 0.00043064964244407
1208 => 0.0004284447228637
1209 => 0.00041756415773195
1210 => 0.00043487997546584
1211 => 0.00043829140969834
1212 => 0.00044170956551012
1213 => 0.00047146227817761
1214 => 0.00046997591673304
1215 => 0.00048341190030461
1216 => 0.00048288980269021
1217 => 0.00047905764252709
1218 => 0.00046289038915866
1219 => 0.00046933436819773
1220 => 0.00044950080233214
1221 => 0.00046436145843003
1222 => 0.00045757967558279
1223 => 0.00046206853082752
1224 => 0.00045399716435374
1225 => 0.00045846419181888
1226 => 0.00043910038731073
1227 => 0.0004210187391171
1228 => 0.00042829532218643
1229 => 0.00043620580016101
1230 => 0.00045335773196219
1231 => 0.00044314218288177
]
'min_raw' => 0.00041756415773195
'max_raw' => 0.0012464391802092
'avg_raw' => 0.00083200166897056
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.000417'
'max' => '$0.001246'
'avg' => '$0.000832'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.00079101584226805
'max_diff' => 3.7859180209178E-5
'year' => 2026
]
1 => [
'items' => [
101 => 0.00044681608062377
102 => 0.00043450913819113
103 => 0.0004091164006483
104 => 0.00040926012078515
105 => 0.00040535400132504
106 => 0.00040197854380873
107 => 0.00044431556158064
108 => 0.00043905028417149
109 => 0.00043066075372249
110 => 0.00044189047361517
111 => 0.00044485978979441
112 => 0.00044494432205167
113 => 0.00045313723580434
114 => 0.0004575097953428
115 => 0.00045828047791321
116 => 0.00047117220472266
117 => 0.0004754933415032
118 => 0.00049329149235207
119 => 0.00045713881421534
120 => 0.00045639427360004
121 => 0.00044204849880334
122 => 0.00043295018162954
123 => 0.00044267146836418
124 => 0.00045128320132309
125 => 0.00044231608935148
126 => 0.00044348700486891
127 => 0.00043144938968699
128 => 0.00043575227069209
129 => 0.00043945849147435
130 => 0.00043741213419997
131 => 0.00043434863831542
201 => 0.00045057713742737
202 => 0.00044966146190747
203 => 0.0004647738133721
204 => 0.00047655497203339
205 => 0.00049766891448845
206 => 0.00047563541484189
207 => 0.00047483242653954
208 => 0.00048268176599838
209 => 0.00047549213981023
210 => 0.00048003573538368
211 => 0.00049693687099786
212 => 0.00049729396536092
213 => 0.00049131217468945
214 => 0.00049094818218347
215 => 0.00049209705051555
216 => 0.00049882600822076
217 => 0.00049647470363857
218 => 0.00049919569282883
219 => 0.00050259833147651
220 => 0.0005166730876122
221 => 0.00052006646366665
222 => 0.0005118223191181
223 => 0.00051256667306506
224 => 0.00050948313669707
225 => 0.00050650447920219
226 => 0.00051320006625269
227 => 0.00052543638318956
228 => 0.00052536026169696
301 => 0.0005281988493863
302 => 0.00052996726600063
303 => 0.00052237592733185
304 => 0.00051743424499973
305 => 0.00051932920045328
306 => 0.00052235927549027
307 => 0.00051834658795712
308 => 0.00049357842164481
309 => 0.00050109150110737
310 => 0.00049984095731398
311 => 0.00049806003088088
312 => 0.00050561449037741
313 => 0.00050488584432975
314 => 0.00048306006630856
315 => 0.00048445728180391
316 => 0.00048314503561055
317 => 0.0004873851715216
318 => 0.00047526315855609
319 => 0.00047899180810128
320 => 0.0004813303821421
321 => 0.00048270782021792
322 => 0.00048768407106591
323 => 0.00048710016546457
324 => 0.00048764777467389
325 => 0.00049502624099993
326 => 0.00053234399169318
327 => 0.00053437511452644
328 => 0.0005243731228472
329 => 0.00052836872124249
330 => 0.00052069804606485
331 => 0.00052584742170066
401 => 0.00052937049373072
402 => 0.00051345040867466
403 => 0.00051250772455813
404 => 0.00050480538977542
405 => 0.00050894418820511
406 => 0.00050235906231333
407 => 0.00050397482186925
408 => 0.00049945701729152
409 => 0.00050758816604551
410 => 0.00051668005380526
411 => 0.00051897702370289
412 => 0.00051293468480992
413 => 0.00050855963324188
414 => 0.00050087848391997
415 => 0.00051365240642788
416 => 0.00051738789064743
417 => 0.00051363278551952
418 => 0.00051276264561072
419 => 0.00051111373205584
420 => 0.0005131124704163
421 => 0.00051736754639813
422 => 0.00051536093114402
423 => 0.00051668633587137
424 => 0.00051163525980211
425 => 0.00052237844038082
426 => 0.00053944119662702
427 => 0.00053949605617839
428 => 0.00053748943010787
429 => 0.00053666836195317
430 => 0.00053872728207378
501 => 0.00053984416177789
502 => 0.00054650233190655
503 => 0.00055364681372781
504 => 0.00058698699300598
505 => 0.00057762520407755
506 => 0.00060720659454929
507 => 0.00063060163374962
508 => 0.00063761678306473
509 => 0.00063116317578311
510 => 0.00060908573388973
511 => 0.00060800250926444
512 => 0.0006409955283087
513 => 0.00063167348925269
514 => 0.00063056466236946
515 => 0.00061876861772448
516 => 0.00062574154107822
517 => 0.00062421646045414
518 => 0.00062180904607954
519 => 0.00063511289810041
520 => 0.00066001652144042
521 => 0.00065613505819818
522 => 0.00065323772594375
523 => 0.00064054245940555
524 => 0.00064818784545198
525 => 0.00064546546991857
526 => 0.0006571625228723
527 => 0.00065023344782396
528 => 0.00063160286563836
529 => 0.00063456984725862
530 => 0.00063412139395546
531 => 0.00064335053115682
601 => 0.00064058017325024
602 => 0.00063358043711154
603 => 0.00065993140356322
604 => 0.00065822031837362
605 => 0.00066064624596394
606 => 0.00066171421431349
607 => 0.00067775358323652
608 => 0.00068432439948172
609 => 0.00068581608980771
610 => 0.00069205785703549
611 => 0.00068566078895296
612 => 0.0007112536223153
613 => 0.00072827136311802
614 => 0.00074803834478532
615 => 0.00077692321786504
616 => 0.00078778419734303
617 => 0.00078582225861318
618 => 0.00080772243972372
619 => 0.00084707657836569
620 => 0.00079377685521061
621 => 0.00084990159311474
622 => 0.00083213314908555
623 => 0.000790004487933
624 => 0.00078729189881907
625 => 0.00081582191727539
626 => 0.00087909875229899
627 => 0.0008632486228055
628 => 0.00087912467743269
629 => 0.00086060441640378
630 => 0.00085968472934268
701 => 0.00087822518969251
702 => 0.00092154598588778
703 => 0.00090096589947117
704 => 0.00087145929914874
705 => 0.00089324651365327
706 => 0.00087437241213794
707 => 0.00083184377889549
708 => 0.00086323650251019
709 => 0.00084224508224234
710 => 0.00084837149464178
711 => 0.00089249233780669
712 => 0.00088718360122782
713 => 0.00089405359793665
714 => 0.00088192823356468
715 => 0.0008706012312468
716 => 0.00084945854026623
717 => 0.00084319923178895
718 => 0.00084492907946574
719 => 0.00084319837456235
720 => 0.00083136923327009
721 => 0.00082881473133428
722 => 0.00082455711619265
723 => 0.00082587672915583
724 => 0.00081787116708031
725 => 0.00083297931675034
726 => 0.00083578352246166
727 => 0.00084677797387638
728 => 0.00084791945429494
729 => 0.00087853884498872
730 => 0.00086167419913255
731 => 0.00087298845959634
801 => 0.00087197640564651
802 => 0.00079091754376545
803 => 0.00080208673974427
804 => 0.00081946250360052
805 => 0.00081163474553557
806 => 0.00080056812704503
807 => 0.00079163123925937
808 => 0.0007780909404204
809 => 0.00079714865101784
810 => 0.0008222075138919
811 => 0.00084855498841085
812 => 0.00088020975269046
813 => 0.00087314477780533
814 => 0.00084796322461124
815 => 0.00084909285069239
816 => 0.00085607575463458
817 => 0.00084703225956572
818 => 0.00084436515631991
819 => 0.00085570933560477
820 => 0.00085578745673285
821 => 0.00084538182271323
822 => 0.00083381786471135
823 => 0.00083376941130509
824 => 0.00083171171667323
825 => 0.00086097047570759
826 => 0.0008770598347823
827 => 0.00087890445387091
828 => 0.00087693567722048
829 => 0.00087769338121528
830 => 0.00086833133767454
831 => 0.00088973019298089
901 => 0.00090936789873744
902 => 0.0009041045740963
903 => 0.00089621410223353
904 => 0.00088992896133822
905 => 0.00090262399464601
906 => 0.00090205870479665
907 => 0.00090919638050922
908 => 0.00090887257430968
909 => 0.00090647244242911
910 => 0.00090410465981256
911 => 0.00091349265024516
912 => 0.00091078905976709
913 => 0.00090808126986625
914 => 0.00090265038267822
915 => 0.00090338853044456
916 => 0.00089549942098301
917 => 0.00089184955796501
918 => 0.00083696437542017
919 => 0.00082229726121911
920 => 0.0008269118339234
921 => 0.00082843107107498
922 => 0.00082204792417827
923 => 0.00083119971713226
924 => 0.00082977341989453
925 => 0.00083532230809057
926 => 0.0008318556036504
927 => 0.00083199787840986
928 => 0.00084219271698908
929 => 0.00084515232200057
930 => 0.00084364704300478
1001 => 0.00084470128881549
1002 => 0.00086899593855381
1003 => 0.00086554201626018
1004 => 0.00086370718888092
1005 => 0.00086421544860441
1006 => 0.00087042325249571
1007 => 0.00087216109865175
1008 => 0.00086479772237233
1009 => 0.00086827033319288
1010 => 0.00088305626932683
1011 => 0.00088823051016221
1012 => 0.00090474420313223
1013 => 0.00089772889285108
1014 => 0.00091060579848765
1015 => 0.00095018501635384
1016 => 0.00098180363425891
1017 => 0.00095272584653876
1018 => 0.0010107894117147
1019 => 0.0010560002259279
1020 => 0.0010542649595759
1021 => 0.0010463814083728
1022 => 0.00099491009838276
1023 => 0.00094754543153591
1024 => 0.00098716798656329
1025 => 0.0009872689926045
1026 => 0.00098386537998815
1027 => 0.00096272583434461
1028 => 0.00098312976962237
1029 => 0.00098474935990851
1030 => 0.00098384282003209
1031 => 0.00096763517995148
1101 => 0.00094288910922098
1102 => 0.00094772443220799
1103 => 0.00095564478989865
1104 => 0.00094064990043054
1105 => 0.00093585812467308
1106 => 0.00094476694747883
1107 => 0.00097347303078588
1108 => 0.0009680463120197
1109 => 0.00096790459846162
1110 => 0.00099112240263023
1111 => 0.00097450346556125
1112 => 0.00094778542111571
1113 => 0.0009410387625255
1114 => 0.00091709266962405
1115 => 0.00093363232128414
1116 => 0.00093422755390241
1117 => 0.00092516895571933
1118 => 0.00094852047643348
1119 => 0.00094830528805915
1120 => 0.00097047408156206
1121 => 0.001012852488521
1122 => 0.0010003191082685
1123 => 0.00098574415066271
1124 => 0.0009873288526742
1125 => 0.0010047091223624
1126 => 0.00099420061455594
1127 => 0.00099797954723105
1128 => 0.0010047034024952
1129 => 0.00100876007132
1130 => 0.00098674516045891
1201 => 0.00098161243164228
1202 => 0.00097111266982648
1203 => 0.00096837347795608
1204 => 0.00097692531487033
1205 => 0.00097467220798428
1206 => 0.0009341775269057
1207 => 0.00092994560742271
1208 => 0.00093007539435146
1209 => 0.00091943403159468
1210 => 0.00090320339917089
1211 => 0.0009458565320999
1212 => 0.00094243088859549
1213 => 0.00093864924329037
1214 => 0.00093911247326248
1215 => 0.00095762675261816
1216 => 0.00094688753559834
1217 => 0.00097543950416857
1218 => 0.00096957007778127
1219 => 0.00096355012275451
1220 => 0.00096271798159749
1221 => 0.00096040081251062
1222 => 0.00095245437753108
1223 => 0.00094285857978657
1224 => 0.00093652260294189
1225 => 0.0008638925968164
1226 => 0.00087737230348398
1227 => 0.00089287947729111
1228 => 0.00089823249154823
1229 => 0.00088907579024412
1230 => 0.00095281593990932
1231 => 0.00096446187946851
]
'min_raw' => 0.00040197854380873
'max_raw' => 0.0010560002259279
'avg_raw' => 0.00072898938486833
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.0004019'
'max' => '$0.001056'
'avg' => '$0.000728'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -1.5585613923217E-5
'max_diff' => -0.00019043895428125
'year' => 2027
]
2 => [
'items' => [
101 => 0.00092918556889787
102 => 0.00092258681151237
103 => 0.00095324855334494
104 => 0.0009347557747744
105 => 0.00094308307183239
106 => 0.00092508401038099
107 => 0.00096165671366162
108 => 0.00096137809093866
109 => 0.00094715048333053
110 => 0.00095917555985447
111 => 0.00095708590688583
112 => 0.0009410229729373
113 => 0.00096216593731873
114 => 0.00096217642396528
115 => 0.00094848266097731
116 => 0.00093249134375755
117 => 0.00092963247393671
118 => 0.00092747869956183
119 => 0.00094255337536493
120 => 0.00095606928255271
121 => 0.00098121903495162
122 => 0.00098754228024808
123 => 0.0010122223276025
124 => 0.00099752656105262
125 => 0.0010040410040221
126 => 0.0010111133533897
127 => 0.0010145040977536
128 => 0.0010089790617701
129 => 0.0010473173340242
130 => 0.0010505542588567
131 => 0.0010516395717538
201 => 0.0010387121220576
202 => 0.0010501947230951
203 => 0.0010448223943334
204 => 0.0010587997012954
205 => 0.0010609915214982
206 => 0.0010591351277627
207 => 0.0010598308460906
208 => 0.0010271158940564
209 => 0.0010254194512083
210 => 0.0010022883326005
211 => 0.0010117144344097
212 => 0.00099409278888209
213 => 0.00099968079420197
214 => 0.0010021439337025
215 => 0.0010008573294094
216 => 0.0010122473720632
217 => 0.0010025635089755
218 => 0.00097700620211233
219 => 0.00095144193217803
220 => 0.0009511209935932
221 => 0.00094439037256635
222 => 0.00093952536633866
223 => 0.00094046253913348
224 => 0.0009437652582998
225 => 0.0009393334062967
226 => 0.00094027916662216
227 => 0.0009559850895929
228 => 0.00095913480043517
229 => 0.00094843085232168
301 => 0.00090545295607371
302 => 0.00089490607253256
303 => 0.00090248696326815
304 => 0.00089886378576843
305 => 0.00072545322855724
306 => 0.00076619346673886
307 => 0.0007419870006191
308 => 0.00075314245389304
309 => 0.00072843392021879
310 => 0.00074022612757335
311 => 0.00073804853745742
312 => 0.00080355763486217
313 => 0.00080253480041101
314 => 0.00080302437713559
315 => 0.00077965560448627
316 => 0.00081688269384795
317 => 0.00083522209671036
318 => 0.00083182796132793
319 => 0.00083268219207991
320 => 0.00081800367755899
321 => 0.00080316649724179
322 => 0.00078670978084434
323 => 0.00081728432579919
324 => 0.0008138849583251
325 => 0.00082168188425685
326 => 0.00084151166217368
327 => 0.00084443167229793
328 => 0.00084835619551675
329 => 0.00084694953330938
330 => 0.0008804619339574
331 => 0.00087640336111699
401 => 0.00088618335393129
402 => 0.00086606516670243
403 => 0.00084329952821712
404 => 0.00084762653182838
405 => 0.00084720980658505
406 => 0.00084190441594249
407 => 0.00083711494649043
408 => 0.0008291418292774
409 => 0.00085436995193875
410 => 0.00085334573623066
411 => 0.00086992659802411
412 => 0.00086699576964422
413 => 0.00084742298042795
414 => 0.00084812202642389
415 => 0.00085282344669663
416 => 0.00086909511594044
417 => 0.00087392565523173
418 => 0.0008716879569683
419 => 0.0008769844227787
420 => 0.00088117053340093
421 => 0.00087751013382236
422 => 0.00092933367275539
423 => 0.00090781292626586
424 => 0.00091830198836447
425 => 0.00092080356786984
426 => 0.00091439582456938
427 => 0.00091578543464716
428 => 0.00091789031526893
429 => 0.00093067073822641
430 => 0.00096421026611201
501 => 0.00097906469470126
502 => 0.0010237549760166
503 => 0.00097783124119055
504 => 0.00097510631681728
505 => 0.00098315638599938
506 => 0.0010093943120782
507 => 0.001030657686762
508 => 0.0010377119748581
509 => 0.0010386443154836
510 => 0.0010518786289122
511 => 0.0010594642905641
512 => 0.001050271635165
513 => 0.0010424818222253
514 => 0.0010145796791828
515 => 0.001017809428215
516 => 0.0010400591962587
517 => 0.0010714883041254
518 => 0.0010984577483163
519 => 0.0010890139889407
520 => 0.0011610632067217
521 => 0.00116820659237
522 => 0.0011672196074467
523 => 0.0011834933030319
524 => 0.0011511933313757
525 => 0.0011373844677103
526 => 0.001044166068201
527 => 0.001070356636134
528 => 0.0011084261647427
529 => 0.001103387519878
530 => 0.0010757404106009
531 => 0.0010984367755047
601 => 0.0010909326474866
602 => 0.0010850138303721
603 => 0.0011121290789927
604 => 0.0010823147493013
605 => 0.0011081287439973
606 => 0.0010750220287881
607 => 0.001089057127238
608 => 0.0010810901265565
609 => 0.0010862457523963
610 => 0.0010561060690836
611 => 0.0010723687105997
612 => 0.0010554294897299
613 => 0.0010554214583337
614 => 0.0010550475240941
615 => 0.0010749764423274
616 => 0.0010756263236355
617 => 0.0010608988229502
618 => 0.0010587763600147
619 => 0.0010666242179153
620 => 0.0010574364316709
621 => 0.0010617353390274
622 => 0.0010575666411954
623 => 0.0010566281795072
624 => 0.0010491503571095
625 => 0.0010459287056136
626 => 0.0010471919981768
627 => 0.0010428797293864
628 => 0.0010402814314586
629 => 0.0010545306572381
630 => 0.0010469178707162
701 => 0.0010533638885209
702 => 0.0010460178376802
703 => 0.0010205532249442
704 => 0.0010059082568764
705 => 0.00095780796398908
706 => 0.0009714491473837
707 => 0.00098049326608715
708 => 0.00097750418490961
709 => 0.00098392588789983
710 => 0.00098432012830852
711 => 0.00098223236720489
712 => 0.00097981500730564
713 => 0.00097863837019507
714 => 0.00098740805921653
715 => 0.00099249915886764
716 => 0.00098140096439374
717 => 0.00097880081270875
718 => 0.00099002170006997
719 => 0.00099686643487822
720 => 0.0010474041109781
721 => 0.0010436601166981
722 => 0.0010530568076191
723 => 0.0010519988844254
724 => 0.001061848113521
725 => 0.0010779474404974
726 => 0.0010452130073117
727 => 0.0010508945730412
728 => 0.0010495015843308
729 => 0.0010647098698093
730 => 0.0010647573484165
731 => 0.001055639221562
801 => 0.0010605823060545
802 => 0.0010578232118972
803 => 0.0010628092679534
804 => 0.0010436101133718
805 => 0.0010669926112316
806 => 0.0010802489807831
807 => 0.0010804330454872
808 => 0.0010867164594456
809 => 0.0010931007719381
810 => 0.0011053549038111
811 => 0.0010927590108511
812 => 0.0010701002256016
813 => 0.0010717361167092
814 => 0.001058451279208
815 => 0.0010586745997265
816 => 0.0010574824972968
817 => 0.0010610600864255
818 => 0.0010443951930003
819 => 0.0010483064101779
820 => 0.0010428306832252
821 => 0.0010508826698802
822 => 0.0010422200632805
823 => 0.0010495009125895
824 => 0.0010526430857873
825 => 0.0010642377725332
826 => 0.0010405075186208
827 => 0.00099211992449658
828 => 0.0010022915834244
829 => 0.00098724690090361
830 => 0.00098863934355005
831 => 0.00099145229930146
901 => 0.00098233458936927
902 => 0.00098407396109227
903 => 0.00098401181849456
904 => 0.00098347630715959
905 => 0.00098110443866356
906 => 0.00097766476008444
907 => 0.00099136738086642
908 => 0.00099369572315037
909 => 0.00099887133962701
910 => 0.0010142704636073
911 => 0.0010127317279853
912 => 0.0010152414696263
913 => 0.0010097627177156
914 => 0.00098889348713774
915 => 0.00099002678676302
916 => 0.00097589452227593
917 => 0.00099850994585041
918 => 0.00099315431503897
919 => 0.00098970150501439
920 => 0.00098875937380913
921 => 0.0010041966692392
922 => 0.0010088157499819
923 => 0.001005937448838
924 => 0.0010000339692186
925 => 0.001011370395295
926 => 0.0010144035446676
927 => 0.0010150825549539
928 => 0.0010351685284173
929 => 0.0010162051377432
930 => 0.0010207698143584
1001 => 0.0010563821182654
1002 => 0.0010240866727837
1003 => 0.0010411942905297
1004 => 0.0010403569616648
1005 => 0.0010491086400134
1006 => 0.0010396390685979
1007 => 0.0010397564552847
1008 => 0.0010475273527683
1009 => 0.0010366145287414
1010 => 0.0010339123600449
1011 => 0.0010301793333441
1012 => 0.0010383302605753
1013 => 0.0010432163728157
1014 => 0.0010825948490194
1015 => 0.0011080351405236
1016 => 0.0011069307103754
1017 => 0.0011170231345233
1018 => 0.0011124764050087
1019 => 0.0010977938160393
1020 => 0.001122855205059
1021 => 0.0011149247329601
1022 => 0.0011155785114444
1023 => 0.0011155541777766
1024 => 0.0011208272484285
1025 => 0.0011170907946018
1026 => 0.0011097258605703
1027 => 0.0011146150474875
1028 => 0.0011291341847152
1029 => 0.0011742020321717
1030 => 0.0011994225966779
1031 => 0.0011726837225206
1101 => 0.0011911278398665
1102 => 0.0011800679417699
1103 => 0.0011780580292823
1104 => 0.0011896422979851
1105 => 0.0012012468434168
1106 => 0.0012005076840406
1107 => 0.0011920833799572
1108 => 0.0011873247043393
1109 => 0.0012233589903914
1110 => 0.0012499084385266
1111 => 0.0012480979441535
1112 => 0.0012560888775119
1113 => 0.0012795505050023
1114 => 0.0012816955421894
1115 => 0.0012814253168069
1116 => 0.0012761086183273
1117 => 0.001299209637469
1118 => 0.0013184809140607
1119 => 0.0012748779562435
1120 => 0.0012914813917757
1121 => 0.0012989352089153
1122 => 0.0013098796239243
1123 => 0.0013283446865413
1124 => 0.0013484026421593
1125 => 0.001351239057008
1126 => 0.0013492264849379
1127 => 0.001335997724021
1128 => 0.0013579453783994
1129 => 0.0013708017995985
1130 => 0.0013784575042085
1201 => 0.0013978710973119
1202 => 0.0012989812411524
1203 => 0.001228982085818
1204 => 0.0012180507069125
1205 => 0.0012402800957721
1206 => 0.0012461418083383
1207 => 0.0012437789593529
1208 => 0.0011649885459792
1209 => 0.0012176358916921
1210 => 0.0012742800089647
1211 => 0.0012764559401995
1212 => 0.0013048131696788
1213 => 0.0013140474459994
1214 => 0.0013368787325972
1215 => 0.0013354506294042
1216 => 0.0013410096843657
1217 => 0.0013397317538995
1218 => 0.0013820219046274
1219 => 0.0014286742210284
1220 => 0.0014270587996567
1221 => 0.0014203519772089
1222 => 0.0014303127522271
1223 => 0.001478462942319
1224 => 0.0014740300444064
1225 => 0.0014783362271352
1226 => 0.0015351080148793
1227 => 0.0016089194146394
1228 => 0.0015746266089075
1229 => 0.0016490321298568
1230 => 0.0016958664612271
1231 => 0.0017768615945719
]
'min_raw' => 0.00072545322855724
'max_raw' => 0.0017768615945719
'avg_raw' => 0.0012511574115646
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.000725'
'max' => '$0.001776'
'avg' => '$0.001251'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 0.00032347468474851
'max_diff' => 0.00072086136864401
'year' => 2028
]
3 => [
'items' => [
101 => 0.0017667206049677
102 => 0.0017982514160091
103 => 0.0017485661170878
104 => 0.0016344786277088
105 => 0.0016164238458052
106 => 0.0016525699763961
107 => 0.0017414317113659
108 => 0.0016497714041298
109 => 0.001668314164905
110 => 0.0016629738485543
111 => 0.0016626892857909
112 => 0.0016735498890712
113 => 0.0016577960175621
114 => 0.0015936119109668
115 => 0.0016230271087801
116 => 0.0016116684882706
117 => 0.0016242717245672
118 => 0.0016922861928899
119 => 0.001662215375182
120 => 0.0016305382114816
121 => 0.0016702684044873
122 => 0.001720858592959
123 => 0.0017176927498837
124 => 0.001711549691098
125 => 0.0017461777918331
126 => 0.0018033732691659
127 => 0.0018188329768589
128 => 0.0018302450170181
129 => 0.0018318185445481
130 => 0.0018480268560485
131 => 0.0017608706800903
201 => 0.0018991897696653
202 => 0.0019230736554471
203 => 0.0019185844748058
204 => 0.0019451304086648
205 => 0.0019373199215181
206 => 0.0019260037510705
207 => 0.001968084702719
208 => 0.0019198422874117
209 => 0.0018513682524341
210 => 0.0018138020425825
211 => 0.0018632722580947
212 => 0.0018934819924355
213 => 0.0019134487051347
214 => 0.0019194906203333
215 => 0.0017676363659281
216 => 0.0016857953450268
217 => 0.0017382545011153
218 => 0.0018022582920809
219 => 0.0017605151357998
220 => 0.0017621513884958
221 => 0.0017026366175475
222 => 0.0018075240287243
223 => 0.0017922428151578
224 => 0.0018715217781727
225 => 0.0018526012173958
226 => 0.0019172501341428
227 => 0.0019002259077421
228 => 0.0019708925197194
301 => 0.0019990833444593
302 => 0.0020464201267491
303 => 0.0020812412564968
304 => 0.0021016888899068
305 => 0.002100461290694
306 => 0.0021814850012347
307 => 0.0021337081498817
308 => 0.002073689164443
309 => 0.0020726036103539
310 => 0.0021036882933882
311 => 0.0021688332613617
312 => 0.0021857244037365
313 => 0.002195164247992
314 => 0.0021807067979114
315 => 0.0021288484499655
316 => 0.0021064562782502
317 => 0.0021255350573153
318 => 0.0021022033499769
319 => 0.0021424804225638
320 => 0.0021977894459442
321 => 0.0021863683513317
322 => 0.002224547358275
323 => 0.0022640586139126
324 => 0.0023205614840359
325 => 0.0023353334265813
326 => 0.0023597508858823
327 => 0.0023848844722205
328 => 0.0023929567027832
329 => 0.0024083690955934
330 => 0.0024082878646756
331 => 0.0024547341477829
401 => 0.0025059658363719
402 => 0.0025253046127979
403 => 0.0025697730628433
404 => 0.002493622400501
405 => 0.0025513835526434
406 => 0.0026034855577312
407 => 0.0025413673993519
408 => 0.0026269828090031
409 => 0.0026303070613512
410 => 0.0026804993250728
411 => 0.0026296198501167
412 => 0.0025994077803008
413 => 0.0026866288938278
414 => 0.0027288324432241
415 => 0.0027161203906821
416 => 0.0026193810431655
417 => 0.0025630745935651
418 => 0.0024157097542578
419 => 0.0025902697721046
420 => 0.0026752928648123
421 => 0.0026191608538955
422 => 0.0026474705751978
423 => 0.0028019192351654
424 => 0.0028607232850709
425 => 0.0028484924537619
426 => 0.0028505592629165
427 => 0.0028822888608765
428 => 0.0030229953720399
429 => 0.0029386807689994
430 => 0.003003136123816
501 => 0.0030373230115996
502 => 0.003069077698229
503 => 0.002991098224039
504 => 0.0028896480738638
505 => 0.0028575145527157
506 => 0.0026135796316508
507 => 0.0026008817596538
508 => 0.0025937540593169
509 => 0.0025488149169262
510 => 0.0025135050608741
511 => 0.0024854253523707
512 => 0.0024117358119468
513 => 0.0024366038686607
514 => 0.0023191581214274
515 => 0.0023942957484855
516 => 0.0022068495000744
517 => 0.0023629603057465
518 => 0.0022779962917066
519 => 0.0023350473420346
520 => 0.0023348482962945
521 => 0.0022297992245887
522 => 0.0021692091123469
523 => 0.0022078194900698
524 => 0.0022492128798843
525 => 0.0022559288181177
526 => 0.0023095964284902
527 => 0.0023245739049638
528 => 0.0022791914520174
529 => 0.0022029650932152
530 => 0.0022206707378268
531 => 0.002168850308024
601 => 0.0020780369980386
602 => 0.0021432607027184
603 => 0.0021655309431799
604 => 0.0021753667500753
605 => 0.0020860622896838
606 => 0.0020580008893346
607 => 0.0020430612352467
608 => 0.002191437008816
609 => 0.0021995653686315
610 => 0.0021579795305812
611 => 0.0023459514618998
612 => 0.0023034076246312
613 => 0.0023509395143534
614 => 0.0022190641361601
615 => 0.0022241019532008
616 => 0.0021616700357674
617 => 0.0021966277378279
618 => 0.0021719207607509
619 => 0.0021938035009601
620 => 0.0022069199252157
621 => 0.0022693415981858
622 => 0.0023636730609825
623 => 0.0022600178818234
624 => 0.0022148538358942
625 => 0.0022428733559764
626 => 0.0023174930303245
627 => 0.0024305456566728
628 => 0.0023636162264785
629 => 0.0023933183710633
630 => 0.0023998069682986
701 => 0.0023504556843355
702 => 0.0024323653089064
703 => 0.0024762613421466
704 => 0.0025212895892468
705 => 0.002560386354541
706 => 0.0025033043171626
707 => 0.0025643902795462
708 => 0.0025151657769889
709 => 0.0024710063094596
710 => 0.0024710732811436
711 => 0.0024433714020955
712 => 0.0023896955207785
713 => 0.0023797968647279
714 => 0.0024312909235657
715 => 0.0024725842822481
716 => 0.002475985401051
717 => 0.0024988475261469
718 => 0.0025123770962801
719 => 0.0026449852761437
720 => 0.0026983213830773
721 => 0.0027635397650348
722 => 0.0027889460003139
723 => 0.0028654096598644
724 => 0.0028036590447025
725 => 0.0027902989106827
726 => 0.0026048230836856
727 => 0.0026351947399658
728 => 0.0026838226920994
729 => 0.0026056249407055
730 => 0.0026552234153237
731 => 0.0026650152048526
801 => 0.0026029678110358
802 => 0.002636110004983
803 => 0.002548094163835
804 => 0.0023655915658
805 => 0.0024325684864692
806 => 0.0024818860442694
807 => 0.0024115038084775
808 => 0.0025376612419659
809 => 0.00246396267374
810 => 0.0024406037657675
811 => 0.002349472337715
812 => 0.0023924828637855
813 => 0.0024506552161471
814 => 0.0024147114656495
815 => 0.0024893001449134
816 => 0.0025949376068254
817 => 0.0026702211530034
818 => 0.0026760004888795
819 => 0.0026275982122928
820 => 0.0027051631694221
821 => 0.0027057281454552
822 => 0.0026182345569512
823 => 0.0025646452211589
824 => 0.0025524696113139
825 => 0.0025828866718755
826 => 0.0026198185986965
827 => 0.0026780499537849
828 => 0.002713237942094
829 => 0.0028049895533372
830 => 0.0028298149086148
831 => 0.0028570904474874
901 => 0.0028935389788859
902 => 0.0029373047860414
903 => 0.0028415476915739
904 => 0.0028453522994507
905 => 0.0027561846189298
906 => 0.0026608961643543
907 => 0.0027332082235035
908 => 0.0028277466215711
909 => 0.0028060594085987
910 => 0.0028036191541098
911 => 0.00280772298529
912 => 0.002791371534947
913 => 0.0027174145310588
914 => 0.0026802737867014
915 => 0.0027281948225368
916 => 0.0027536627203634
917 => 0.0027931612088584
918 => 0.0027882921864394
919 => 0.0028900360509745
920 => 0.002929570640158
921 => 0.0029194560004644
922 => 0.0029213173375905
923 => 0.0029928928228892
924 => 0.0030724994831626
925 => 0.0031470616255327
926 => 0.0032229094392701
927 => 0.0031314719394191
928 => 0.0030850456160758
929 => 0.003132945731086
930 => 0.0031075292558187
1001 => 0.0032535798617214
1002 => 0.0032636920887926
1003 => 0.0034097321335741
1004 => 0.0035483415261968
1005 => 0.0034612834501357
1006 => 0.0035433752946795
1007 => 0.0036321643175998
1008 => 0.0038034527483131
1009 => 0.0037457688308485
1010 => 0.0037015838540929
1011 => 0.0036598292645591
1012 => 0.0037467139370245
1013 => 0.0038584896801347
1014 => 0.0038825651046259
1015 => 0.0039215764898217
1016 => 0.0038805607883736
1017 => 0.0039299596830365
1018 => 0.0041043594881708
1019 => 0.0040572351213538
1020 => 0.0039903109448538
1021 => 0.0041279828414719
1022 => 0.0041778057656721
1023 => 0.0045274891401769
1024 => 0.0049689788451889
1025 => 0.0047861992083362
1026 => 0.0046727419894798
1027 => 0.0046994071271522
1028 => 0.004860624222053
1029 => 0.0049124020361603
1030 => 0.0047716520885338
1031 => 0.0048213673495027
1101 => 0.0050953033253378
1102 => 0.005242261187455
1103 => 0.0050426726716258
1104 => 0.0044920158722481
1105 => 0.0039842851549932
1106 => 0.0041189582046214
1107 => 0.0041036904601848
1108 => 0.0043980004920108
1109 => 0.0040561112207903
1110 => 0.0040618677592937
1111 => 0.0043622638108981
1112 => 0.0042821232944221
1113 => 0.004152305921353
1114 => 0.0039852329654811
1115 => 0.0036763831541741
1116 => 0.0034028262633853
1117 => 0.0039393343226116
1118 => 0.0039161991195211
1119 => 0.0038826959170012
1120 => 0.0039572536687842
1121 => 0.0043192849478555
1122 => 0.004310938955092
1123 => 0.0042578460072936
1124 => 0.0042981165402589
1125 => 0.004145246302219
1126 => 0.0041846444433525
1127 => 0.0039842047278535
1128 => 0.004074811850361
1129 => 0.0041520273915743
1130 => 0.0041675295546685
1201 => 0.0042024567196798
1202 => 0.0039040079187642
1203 => 0.0040380026683789
1204 => 0.0041167120301673
1205 => 0.003761100270136
1206 => 0.0041096827290505
1207 => 0.003898812589129
1208 => 0.0038272400964764
1209 => 0.0039236030288742
1210 => 0.0038860503004027
1211 => 0.0038537646696332
1212 => 0.0038357487329262
1213 => 0.0039065070352904
1214 => 0.0039032060759107
1215 => 0.0037874317596482
1216 => 0.0036364088836485
1217 => 0.0036870971179909
1218 => 0.0036686816072496
1219 => 0.0036019414206749
1220 => 0.0036469162481854
1221 => 0.0034488698690685
1222 => 0.0031081413673529
1223 => 0.0033332370523825
1224 => 0.0033245711133658
1225 => 0.0033202013539446
1226 => 0.0034893545400565
1227 => 0.0034730943642399
1228 => 0.0034435819859125
1229 => 0.003601399402703
1230 => 0.0035437939226307
1231 => 0.0037213204386556
]
'min_raw' => 0.0015936119109668
'max_raw' => 0.005242261187455
'avg_raw' => 0.0034179365492109
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.001593'
'max' => '$0.005242'
'avg' => '$0.003417'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072435
'min_diff' => 0.00086815868240955
'max_diff' => 0.0034653995928831
'year' => 2029
]
4 => [
'items' => [
101 => 0.0038382508838048
102 => 0.0038085935406113
103 => 0.003918567189448
104 => 0.0036882648725343
105 => 0.0037647620640878
106 => 0.0037805280292465
107 => 0.0035994519602772
108 => 0.0034757547300965
109 => 0.0034675055350951
110 => 0.00325303158449
111 => 0.00336760183773
112 => 0.003468418919342
113 => 0.0034201353609714
114 => 0.0034048502288216
115 => 0.0034829386540344
116 => 0.0034890067934556
117 => 0.0033506525715803
118 => 0.0033794207954165
119 => 0.0034993890711331
120 => 0.0033763979026754
121 => 0.0031374461528554
122 => 0.0030781828151336
123 => 0.0030702759934415
124 => 0.0029095491213055
125 => 0.0030821430747388
126 => 0.0030068011888348
127 => 0.0032448053036713
128 => 0.0031088586297184
129 => 0.0031029982403174
130 => 0.0030941394022057
131 => 0.0029557951438147
201 => 0.0029860837441661
202 => 0.003086767664818
203 => 0.0031226928219921
204 => 0.0031189455337727
205 => 0.0030862742586789
206 => 0.0031012310011129
207 => 0.0030530501224585
208 => 0.0030360364514074
209 => 0.0029823366255911
210 => 0.0029034127165968
211 => 0.0029143875702109
212 => 0.0027580186549289
213 => 0.0026728205707568
214 => 0.0026492388639507
215 => 0.0026177044200622
216 => 0.0026528007632979
217 => 0.0027575756814387
218 => 0.002631194900922
219 => 0.0024145239173072
220 => 0.0024275462126118
221 => 0.0024568034438072
222 => 0.0024022827870306
223 => 0.0023506835609634
224 => 0.0023955449016513
225 => 0.0023037385495706
226 => 0.0024678978028461
227 => 0.002463457755096
228 => 0.002524646173177
301 => 0.0025629085467157
302 => 0.0024747261632994
303 => 0.0024525485323407
304 => 0.0024651819188519
305 => 0.0022563801810379
306 => 0.0025075826165465
307 => 0.0025097550256402
308 => 0.0024911535400723
309 => 0.0026249110819755
310 => 0.0029071812154149
311 => 0.0028009798369252
312 => 0.0027598554532203
313 => 0.0026816779697356
314 => 0.0027858448247593
315 => 0.0027778464355496
316 => 0.0027416746862441
317 => 0.0027197978994014
318 => 0.002760106549938
319 => 0.0027148032115238
320 => 0.0027066654870922
321 => 0.0026573597309678
322 => 0.0026397598193004
323 => 0.0026267295453745
324 => 0.0026123844941103
325 => 0.002644026102635
326 => 0.0025723220549179
327 => 0.0024858540026055
328 => 0.002478665119653
329 => 0.0024985142575379
330 => 0.0024897324916184
331 => 0.0024786230759364
401 => 0.0024574121759302
402 => 0.0024511193549975
403 => 0.002471567970186
404 => 0.0024484826758665
405 => 0.0024825462851559
406 => 0.0024732828682547
407 => 0.0024215381744639
408 => 0.0023570451276613
409 => 0.002356471004266
410 => 0.0023425760831222
411 => 0.0023248788119301
412 => 0.0023199558359432
413 => 0.002391766804667
414 => 0.0025404133608037
415 => 0.0025112304850235
416 => 0.0025323181035561
417 => 0.0026360483155536
418 => 0.0026690210306713
419 => 0.0026456177784823
420 => 0.0026135819634363
421 => 0.0026149913767138
422 => 0.0027244674546267
423 => 0.00273129534332
424 => 0.0027485472152877
425 => 0.0027707207461446
426 => 0.0026493940266683
427 => 0.0026092768991372
428 => 0.0025902671784995
429 => 0.002531724596623
430 => 0.0025948577521151
501 => 0.0025580727660411
502 => 0.0025630363174166
503 => 0.0025598037980718
504 => 0.0025615689722161
505 => 0.0024678519169892
506 => 0.0025019974862905
507 => 0.0024452238546851
508 => 0.0023692103351046
509 => 0.0023689555111332
510 => 0.0023875597123623
511 => 0.0023764932054888
512 => 0.0023467135200381
513 => 0.0023509435838002
514 => 0.0023138837741618
515 => 0.0023554433156798
516 => 0.0023566350946234
517 => 0.0023406324073754
518 => 0.0024046606151955
519 => 0.0024308930241814
520 => 0.002420359712624
521 => 0.0024301539789629
522 => 0.0025124431652649
523 => 0.0025258598931611
524 => 0.0025318187174333
525 => 0.0025238346823015
526 => 0.0024316580742281
527 => 0.0024357464987613
528 => 0.0024057483522486
529 => 0.0023804030795721
530 => 0.0023814167575607
531 => 0.0023944475223713
601 => 0.0024513536365431
602 => 0.002571109199019
603 => 0.0025756538350748
604 => 0.0025811620665508
605 => 0.0025587573209226
606 => 0.0025519998352565
607 => 0.0025609147031051
608 => 0.0026058885959227
609 => 0.0027215736585424
610 => 0.002680682831067
611 => 0.0026474379518259
612 => 0.0026766026736754
613 => 0.0026721129933474
614 => 0.0026342155731237
615 => 0.0026331519187593
616 => 0.0025604146528119
617 => 0.0025335253417386
618 => 0.0025110546207757
619 => 0.0024865171800972
620 => 0.0024719705627605
621 => 0.002494320778309
622 => 0.0024994325370449
623 => 0.0024505634001332
624 => 0.0024439027173498
625 => 0.0024838103094655
626 => 0.0024662484660804
627 => 0.0024843112575147
628 => 0.0024885019800672
629 => 0.0024878271772158
630 => 0.0024694905957568
701 => 0.002481177785974
702 => 0.0024535340969913
703 => 0.0024234757371704
704 => 0.0024043003763067
705 => 0.0023875673307106
706 => 0.0023968517969376
707 => 0.0023637543701148
708 => 0.0023531658371545
709 => 0.0024772184288985
710 => 0.00256885741221
711 => 0.0025675249450996
712 => 0.0025594138942479
713 => 0.002547362517949
714 => 0.002605006962683
715 => 0.0025849247907747
716 => 0.0025995362487596
717 => 0.0026032554780577
718 => 0.0026145124649829
719 => 0.002618535870238
720 => 0.0026063743451226
721 => 0.0025655587814303
722 => 0.0024638502773365
723 => 0.002416504694124
724 => 0.0024008798630608
725 => 0.0024014477959941
726 => 0.0023857816703276
727 => 0.0023903960464429
728 => 0.0023841769786261
729 => 0.0023723995687352
730 => 0.0023961245750647
731 => 0.0023988586610305
801 => 0.0023933209610605
802 => 0.0023946252898711
803 => 0.0023487754993018
804 => 0.0023522613592983
805 => 0.0023328516478762
806 => 0.0023292125609722
807 => 0.0022801465006942
808 => 0.0021932188626726
809 => 0.0022413852124065
810 => 0.0021832070351416
811 => 0.0021611740778681
812 => 0.0022654746707729
813 => 0.0022550057840934
814 => 0.0022370876008137
815 => 0.0022105828732665
816 => 0.0022007520119978
817 => 0.0021410228110017
818 => 0.002137493691164
819 => 0.0021670970960017
820 => 0.0021534361432601
821 => 0.0021342509918034
822 => 0.002064764317995
823 => 0.0019866382903874
824 => 0.0019889964240781
825 => 0.0020138468598737
826 => 0.0020861028534872
827 => 0.0020578711867411
828 => 0.0020373887885957
829 => 0.0020335530511216
830 => 0.0020815653362692
831 => 0.0021495127786376
901 => 0.0021813921983586
902 => 0.0021498006616075
903 => 0.002113510005197
904 => 0.002115718849298
905 => 0.0021304132995223
906 => 0.0021319574784726
907 => 0.0021083359918891
908 => 0.0021149853019987
909 => 0.0021048843919165
910 => 0.0020428951253872
911 => 0.0020417739361258
912 => 0.0020265607704076
913 => 0.0020261001217957
914 => 0.0020002187318069
915 => 0.0019965977464379
916 => 0.0019452086757271
917 => 0.0019790331176894
918 => 0.001956345457884
919 => 0.0019221498030793
920 => 0.0019162544593019
921 => 0.0019160772381491
922 => 0.001951188529625
923 => 0.0019786228218057
924 => 0.0019567401194397
925 => 0.0019517578522894
926 => 0.0020049554307815
927 => 0.0019981855540117
928 => 0.00199232288439
929 => 0.0021434288304276
930 => 0.0020238166831949
1001 => 0.0019716589597787
1002 => 0.0019071038725682
1003 => 0.0019281233344789
1004 => 0.0019325524439437
1005 => 0.0017773090961314
1006 => 0.0017143268892583
1007 => 0.0016927137692938
1008 => 0.0016802751131896
1009 => 0.0016859435649711
1010 => 0.0016292521917093
1011 => 0.00166734973213
1012 => 0.0016182597948878
1013 => 0.0016100297071566
1014 => 0.0016978085960221
1015 => 0.0017100225156109
1016 => 0.0016579141400777
1017 => 0.0016913761527497
1018 => 0.0016792423617981
1019 => 0.0016191013009651
1020 => 0.001616804354809
1021 => 0.0015866276845435
1022 => 0.0015394070389329
1023 => 0.0015178259367897
1024 => 0.0015065863114178
1025 => 0.0015112239999022
1026 => 0.0015088790426889
1027 => 0.0014935766106819
1028 => 0.0015097561601792
1029 => 0.0014684240970651
1030 => 0.0014519653364981
1031 => 0.0014445312961903
1101 => 0.0014078467111918
1102 => 0.0014662281996334
1103 => 0.001477730088327
1104 => 0.0014892546392944
1105 => 0.0015895679873209
1106 => 0.0015845566159361
1107 => 0.0016298569726181
1108 => 0.0016280966840594
1109 => 0.0016151762885166
1110 => 0.0015606672650233
1111 => 0.0015823935902578
1112 => 0.0015155233382067
1113 => 0.0015656270777785
1114 => 0.0015427618234201
1115 => 0.0015578963122796
1116 => 0.0015306831366884
1117 => 0.0015457440316651
1118 => 0.0014804576128282
1119 => 0.001419494073523
1120 => 0.001444027581376
1121 => 0.0014706983101593
1122 => 0.0015285272457366
1123 => 0.0014940848087851
1124 => 0.0015064716115256
1125 => 0.0014649778958707
1126 => 0.0013793645083807
1127 => 0.0013798490708563
1128 => 0.00136667931638
1129 => 0.0013552987256968
1130 => 0.001498040936991
1201 => 0.0014802886865961
1202 => 0.001452002798949
1203 => 0.0014898645836012
1204 => 0.0014998758404105
1205 => 0.0015001608468177
1206 => 0.0015277838275458
1207 => 0.0015425262173121
1208 => 0.0015451246274056
1209 => 0.0015885899844153
1210 => 0.001603158998763
1211 => 0.0016631667069772
1212 => 0.0015412754285398
1213 => 0.0015387651578732
1214 => 0.0014903973765561
1215 => 0.0014597217649804
1216 => 0.0014924977619248
1217 => 0.0015215328208478
1218 => 0.0014912995767717
1219 => 0.0014952474001894
1220 => 0.0014546617401641
1221 => 0.0014691692038904
1222 => 0.0014816649860178
1223 => 0.0014747655495952
1224 => 0.001464436759334
1225 => 0.0015191522771275
1226 => 0.0015160650131818
1227 => 0.0015670173612554
1228 => 0.0016067383602162
1229 => 0.0016779254913318
1230 => 0.0016036380089436
1231 => 0.0016009306778194
]
'min_raw' => 0.0013552987256968
'max_raw' => 0.003918567189448
'avg_raw' => 0.0026369329575724
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.001355'
'max' => '$0.003918'
'avg' => '$0.002636'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -0.00023831318526996
'max_diff' => -0.0013236939980071
'year' => 2030
]
5 => [
'items' => [
101 => 0.0016273952738283
102 => 0.0016031549471712
103 => 0.0016184739968709
104 => 0.0016754573555937
105 => 0.0016766613241703
106 => 0.0016564932992861
107 => 0.001655266073139
108 => 0.0016591395629321
109 => 0.001681826713636
110 => 0.0016738991260743
111 => 0.0016830731311027
112 => 0.001694545364868
113 => 0.0017419993878476
114 => 0.0017534403921331
115 => 0.0017256446831998
116 => 0.0017281543245012
117 => 0.0017177579663509
118 => 0.0017077152146436
119 => 0.0017302898538553
120 => 0.0017715454507204
121 => 0.0017712888017935
122 => 0.0017808592983719
123 => 0.0017868216384541
124 => 0.0017612269101219
125 => 0.0017445656831219
126 => 0.0017509546577351
127 => 0.0017611707672754
128 => 0.0017476417111005
129 => 0.0016641341091204
130 => 0.0016894649810749
131 => 0.0016852486853653
201 => 0.0016792441675558
202 => 0.0017047145551839
203 => 0.0017022578741617
204 => 0.0016286707397361
205 => 0.0016333815493292
206 => 0.0016289572196702
207 => 0.0016432531339311
208 => 0.001602382920886
209 => 0.0016149543231536
210 => 0.0016228389888062
211 => 0.0016274831174485
212 => 0.0016442608946132
213 => 0.0016422922161113
214 => 0.0016441385187934
215 => 0.0016690155331597
216 => 0.0017948349350642
217 => 0.001801683007505
218 => 0.0017679605942417
219 => 0.0017814320331952
220 => 0.0017555698162843
221 => 0.0017729312957583
222 => 0.0017848095790807
223 => 0.0017311339008094
224 => 0.0017279555754944
225 => 0.0017019866160146
226 => 0.001715940863882
227 => 0.0016937386521791
228 => 0.0016991862983306
301 => 0.0016839542047737
302 => 0.0017113689404965
303 => 0.0017420228748538
304 => 0.001749767269233
305 => 0.0017293951017927
306 => 0.0017146443099747
307 => 0.0016887467787552
308 => 0.0017318149503374
309 => 0.0017444093961868
310 => 0.001731748797075
311 => 0.0017288150596212
312 => 0.0017232556324475
313 => 0.0017299945183772
314 => 0.0017443408041299
315 => 0.0017375753607032
316 => 0.0017420440552783
317 => 0.0017250139996559
318 => 0.001761235383042
319 => 0.0018187636570096
320 => 0.0018189486198173
321 => 0.0018121831399223
322 => 0.0018094148513136
323 => 0.0018163566442495
324 => 0.0018201222821499
325 => 0.0018425707675973
326 => 0.0018666588868695
327 => 0.0019790676290428
328 => 0.0019475037040514
329 => 0.0020472394273336
330 => 0.002126117435387
331 => 0.0021497695010849
401 => 0.0021280107135585
402 => 0.0020535750768172
403 => 0.0020499229093647
404 => 0.0021611611765714
405 => 0.0021297312710501
406 => 0.0021259927837975
407 => 0.0020862215957034
408 => 0.0021097312936245
409 => 0.0021045893778227
410 => 0.0020964726121784
411 => 0.0021413274781121
412 => 0.0022252917829184
413 => 0.002212205158602
414 => 0.0022024366006209
415 => 0.0021596336231322
416 => 0.0021854105759716
417 => 0.0021762318967905
418 => 0.0022156693274861
419 => 0.0021923074671881
420 => 0.0021294931586036
421 => 0.0021394965442844
422 => 0.0021379845526627
423 => 0.0021691012330949
424 => 0.0021597607779927
425 => 0.0021361606788951
426 => 0.0022250048020526
427 => 0.0022192357588718
428 => 0.0022274149431154
429 => 0.0022310156729691
430 => 0.002285093525126
501 => 0.0023072474908564
502 => 0.002312276828937
503 => 0.0023333213829317
504 => 0.0023117532212625
505 => 0.0023980412457782
506 => 0.0024554177470353
507 => 0.0025220635058132
508 => 0.0026194508720789
509 => 0.0026560694226783
510 => 0.0026494546092724
511 => 0.0027232925989084
512 => 0.002855977824958
513 => 0.0026762740870728
514 => 0.0028655025594207
515 => 0.0028055950098231
516 => 0.0026635552874181
517 => 0.0026544096038336
518 => 0.0027506005529613
519 => 0.0029639428200909
520 => 0.0029105030018829
521 => 0.0029640302284892
522 => 0.0029015878753869
523 => 0.0028984870862499
524 => 0.002960997542773
525 => 0.0031070566317067
526 => 0.0030376694334974
527 => 0.0029381858704253
528 => 0.0030116429852621
529 => 0.0029480076342554
530 => 0.0028046193780242
531 => 0.0029104621374611
601 => 0.0028396880984539
602 => 0.002860343725591
603 => 0.0030091002287404
604 => 0.0029912014527206
605 => 0.0030143641262723
606 => 0.0029734826137263
607 => 0.0029352928345855
608 => 0.002864008775809
609 => 0.0028429050802669
610 => 0.0028487373824833
611 => 0.0028429021900675
612 => 0.0028030194143164
613 => 0.0027944067326902
614 => 0.002780051885983
615 => 0.0027845010532208
616 => 0.0027575097417527
617 => 0.0028084479231825
618 => 0.0028179024985216
619 => 0.0028549710590744
620 => 0.0028588196400012
621 => 0.0029620550535029
622 => 0.0029051947225468
623 => 0.0029433415416369
624 => 0.0029399293310857
625 => 0.0026666337189047
626 => 0.0027042914429557
627 => 0.0027628750439341
628 => 0.0027364832111015
629 => 0.002699171334214
630 => 0.0026690399930911
701 => 0.002623387930202
702 => 0.0026876423320482
703 => 0.002772130037782
704 => 0.0028609623876446
705 => 0.0029676886354783
706 => 0.0029438685793923
707 => 0.0028589672146786
708 => 0.0028627758278791
709 => 0.002886319176051
710 => 0.0028558284010297
711 => 0.0028468360762252
712 => 0.0028850837687094
713 => 0.002885347159547
714 => 0.0028502638379517
715 => 0.0028112751461786
716 => 0.0028111117821365
717 => 0.0028041741210215
718 => 0.0029028220698872
719 => 0.0029570684673307
720 => 0.0029632877293752
721 => 0.0029566498614426
722 => 0.0029592045133623
723 => 0.0029276397299277
724 => 0.0029997874646134
725 => 0.0030659973606325
726 => 0.0030482516941313
727 => 0.0030216484173508
728 => 0.0030004576260077
729 => 0.0030432598171439
730 => 0.0030413539029495
731 => 0.003065419074951
801 => 0.0030643273397419
802 => 0.0030562351275346
803 => 0.0030482519831297
804 => 0.0030799042483217
805 => 0.0030707889042662
806 => 0.0030616594015637
807 => 0.0030433487862368
808 => 0.0030458375029669
809 => 0.0030192388196172
810 => 0.0030069330516267
811 => 0.0028218838267157
812 => 0.0027724326271616
813 => 0.0027879909812134
814 => 0.0027931131953397
815 => 0.0027715919699203
816 => 0.0028024478788225
817 => 0.0027976390181045
818 => 0.0028163474820685
819 => 0.0028046592460109
820 => 0.0028051389352957
821 => 0.0028395115453465
822 => 0.0028494900602757
823 => 0.0028444149070462
824 => 0.0028479693704021
825 => 0.0029298804781931
826 => 0.002918235338035
827 => 0.0029120490894223
828 => 0.0029137627225656
829 => 0.0029346927668001
830 => 0.0029405520364478
831 => 0.0029157258992272
901 => 0.0029274340490586
902 => 0.0029772858650553
903 => 0.0029947311792857
904 => 0.0030504082480834
905 => 0.0030267556396772
906 => 0.0030701710260677
907 => 0.0032036151224363
908 => 0.0033102195002447
909 => 0.0032121817087999
910 => 0.0034079470726593
911 => 0.0035603784892974
912 => 0.003554527917639
913 => 0.0035279479743459
914 => 0.0033544088591023
915 => 0.0031947155779327
916 => 0.003328305788566
917 => 0.003328646337486
918 => 0.0033171708199173
919 => 0.0032458973658642
920 => 0.0033146906582104
921 => 0.0033201512199363
922 => 0.0033170947574504
923 => 0.0032624495673373
924 => 0.0031790164621539
925 => 0.0031953190911961
926 => 0.0032220231301318
927 => 0.0031714668133804
928 => 0.003155311006863
929 => 0.0031853477249467
930 => 0.0032821322890112
1001 => 0.0032638357278096
1002 => 0.0032633579306544
1003 => 0.0033416383784242
1004 => 0.003285606471799
1005 => 0.0031955247195566
1006 => 0.003172777889083
1007 => 0.003092041965003
1008 => 0.0031478065553366
1009 => 0.0031498134236669
1010 => 0.0031192717274415
1011 => 0.0031980030098804
1012 => 0.0031972774872523
1013 => 0.0032720211223231
1014 => 0.0034149028801512
1015 => 0.0033726457135771
1016 => 0.0033235052264182
1017 => 0.0033288481598903
1018 => 0.0033874469525956
1019 => 0.0033520167848456
1020 => 0.0033647577201964
1021 => 0.003387427667664
1022 => 0.0034011050098343
1023 => 0.0033268802008343
1024 => 0.0033095748472734
1025 => 0.0032741741672414
1026 => 0.0032649387906061
1027 => 0.0032937719058327
1028 => 0.0032861753986595
1029 => 0.0031496447541547
1030 => 0.0031353765421546
1031 => 0.0031358141278463
1101 => 0.0030999360303556
1102 => 0.0030452133199523
1103 => 0.0031890213355691
1104 => 0.0031774715393231
1105 => 0.0031647214581509
1106 => 0.0031662832703435
1107 => 0.0032287054558169
1108 => 0.0031924974358464
1109 => 0.0032887623913157
1110 => 0.0032689732104607
1111 => 0.0032486765117881
1112 => 0.003245870889779
1113 => 0.003238058392423
1114 => 0.0032112664320871
1115 => 0.0031789135300343
1116 => 0.0031575513417387
1117 => 0.0029126742052215
1118 => 0.0029581219773743
1119 => 0.0030104054965414
1120 => 0.0030284535578448
1121 => 0.0029975811000975
1122 => 0.0032124854648888
1123 => 0.0032517505632062
1124 => 0.0031328140192039
1125 => 0.0031105658479682
1126 => 0.0032139440512911
1127 => 0.003151594357216
1128 => 0.0031796704206403
1129 => 0.0031189853283026
1130 => 0.0032422927508378
1201 => 0.0032413533548745
1202 => 0.0031933839824839
1203 => 0.0032339273675484
1204 => 0.0032268819566697
1205 => 0.003172724653384
1206 => 0.0032440096339506
1207 => 0.0032440449904116
1208 => 0.0031978755124297
1209 => 0.0031439596699452
1210 => 0.0031343207907443
1211 => 0.0031270591900676
1212 => 0.0031778845120181
1213 => 0.0032234543367522
1214 => 0.0033082484828647
1215 => 0.0033295677458566
1216 => 0.0034127782486178
1217 => 0.0033632304456694
1218 => 0.0033851943449649
1219 => 0.0034090392646335
1220 => 0.0034204713959905
1221 => 0.0034018433514263
1222 => 0.0035311035130237
1223 => 0.0035420170310915
1224 => 0.0035456762392981
1225 => 0.0035020904400816
1226 => 0.0035408048311692
1227 => 0.0035226916496652
1228 => 0.0035698171159519
1229 => 0.0035772069907938
1230 => 0.0035709480297051
1231 => 0.0035732936926212
]
'min_raw' => 0.001602382920886
'max_raw' => 0.0035772069907938
'avg_raw' => 0.0025897949558399
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.0016023'
'max' => '$0.003577'
'avg' => '$0.002589'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 0.00024708419518913
'max_diff' => -0.00034136019865417
'year' => 2031
]
6 => [
'items' => [
101 => 0.0034629929477529
102 => 0.0034572732722486
103 => 0.0033792850908991
104 => 0.0034110658512586
105 => 0.0033516532430581
106 => 0.0033704935931362
107 => 0.0033787982399331
108 => 0.0033744603637309
109 => 0.0034128626877659
110 => 0.0033802128672597
111 => 0.0032940446228164
112 => 0.0032078529018926
113 => 0.0032067708350467
114 => 0.0031840780763377
115 => 0.0031676753681771
116 => 0.0031708351116862
117 => 0.0031819704599439
118 => 0.0031670281614934
119 => 0.0031702168584616
120 => 0.00322317047431
121 => 0.0032337899443205
122 => 0.0031977008359301
123 => 0.0030527978581091
124 => 0.0030172383038903
125 => 0.0030427978062862
126 => 0.0030305820103837
127 => 0.0024459162096077
128 => 0.0025832747670296
129 => 0.0025016609764654
130 => 0.0025392723660273
131 => 0.0024559658196499
201 => 0.0024957240700514
202 => 0.0024883821729411
203 => 0.0027092506685403
204 => 0.0027058021107762
205 => 0.0027074527528843
206 => 0.0026286633043415
207 => 0.0027541770352368
208 => 0.0028160096124036
209 => 0.0028045660479908
210 => 0.0028074461466116
211 => 0.0027579565100831
212 => 0.0027079319207448
213 => 0.0026524469524396
214 => 0.0027555311654014
215 => 0.0027440699606262
216 => 0.0027703578407691
217 => 0.0028372153214866
218 => 0.0028470603394891
219 => 0.0028602921435228
220 => 0.0028555494836807
221 => 0.0029685388822266
222 => 0.0029548551205346
223 => 0.0029878290491253
224 => 0.0029199991762762
225 => 0.0028432432366769
226 => 0.002857832031454
227 => 0.0028564270132013
228 => 0.0028385395182394
229 => 0.0028223914875916
301 => 0.0027955095662426
302 => 0.0028805679431667
303 => 0.0028771147283984
304 => 0.0029330182615738
305 => 0.0029231367690671
306 => 0.002857145743696
307 => 0.0028595026260771
308 => 0.0028753537927693
309 => 0.0029302148616765
310 => 0.0029465013621546
311 => 0.0029389568062283
312 => 0.0029568142104955
313 => 0.0029709279747233
314 => 0.0029585866819832
315 => 0.0031333133616998
316 => 0.0030607546623799
317 => 0.0030961192675682
318 => 0.0031045535175253
319 => 0.0030829493636134
320 => 0.0030876345310102
321 => 0.0030947312829845
322 => 0.0031378213712863
323 => 0.0032509022312077
324 => 0.0033009849742994
325 => 0.0034516613779299
326 => 0.0032968262996711
327 => 0.0032876390268984
328 => 0.0033147803971838
329 => 0.003403243396832
330 => 0.0034749343491399
331 => 0.0034987183739706
401 => 0.0035018618254835
402 => 0.0035464822371981
403 => 0.0035720578250715
404 => 0.0035410641455826
405 => 0.0035148002473893
406 => 0.0034207262240558
407 => 0.0034316155484117
408 => 0.0035066321948005
409 => 0.0036125976262832
410 => 0.0037035269903193
411 => 0.0036716866962421
412 => 0.0039146056643065
413 => 0.0039386900877551
414 => 0.0039353623991771
415 => 0.0039902303000357
416 => 0.0038813286904851
417 => 0.0038347711425328
418 => 0.0035204788002866
419 => 0.0036087821286397
420 => 0.0037371362022737
421 => 0.0037201480593252
422 => 0.003626933900138
423 => 0.0037034562790209
424 => 0.0036781555874861
425 => 0.0036581998823461
426 => 0.0037496208361966
427 => 0.0036490997420721
428 => 0.0037361334274652
429 => 0.0036245118257004
430 => 0.0036718321400235
501 => 0.0036449708409876
502 => 0.0036623533934608
503 => 0.0035607353468865
504 => 0.0036155659781794
505 => 0.0035584542123583
506 => 0.0035584271339451
507 => 0.0035571663885492
508 => 0.0036243581277653
509 => 0.0036265492479689
510 => 0.0035768944511671
511 => 0.0035697384191943
512 => 0.0035961980200261
513 => 0.0035652207572325
514 => 0.003579714823525
515 => 0.0035656597677351
516 => 0.0035624956786321
517 => 0.0035372836783334
518 => 0.0035264216553863
519 => 0.0035306809344637
520 => 0.0035161418191637
521 => 0.0035073814762927
522 => 0.0035554237358576
523 => 0.0035297566945913
524 => 0.0035514898936663
525 => 0.0035267221703719
526 => 0.0034408664506502
527 => 0.0033914899183305
528 => 0.0032293164226057
529 => 0.0032753086248177
530 => 0.0033058015024666
531 => 0.0032957236065855
601 => 0.003317374826566
602 => 0.0033187040356289
603 => 0.0033116650033052
604 => 0.0033035147056302
605 => 0.0032995475914618
606 => 0.0033291152102777
607 => 0.0033462802082007
608 => 0.0033088618706807
609 => 0.003300095277738
610 => 0.0033379272828937
611 => 0.0033610047841838
612 => 0.0035313960875824
613 => 0.00351877294947
614 => 0.0035504545489664
615 => 0.0035468876870569
616 => 0.0035800950506037
617 => 0.0036343750555239
618 => 0.0035240086285931
619 => 0.0035431644241244
620 => 0.0035384678654321
621 => 0.0035897436617313
622 => 0.0035899037391704
623 => 0.003559161337873
624 => 0.0035758272923548
625 => 0.0035665248137696
626 => 0.0035833356498785
627 => 0.0035186043597645
628 => 0.0035974400838124
629 => 0.0036421348592857
630 => 0.0036427554462865
701 => 0.0036639404151411
702 => 0.0036854655704481
703 => 0.003726781231614
704 => 0.0036843132990823
705 => 0.0036079176226278
706 => 0.0036134331437113
707 => 0.0035686423865581
708 => 0.0035693953272779
709 => 0.0035653760707063
710 => 0.0035774381622332
711 => 0.0035212513105444
712 => 0.0035344382523311
713 => 0.0035159764566071
714 => 0.003543124291786
715 => 0.0035139177088315
716 => 0.0035384656006092
717 => 0.003549059656925
718 => 0.003588151952804
719 => 0.0035081437449451
720 => 0.0033450015930414
721 => 0.0033792960512789
722 => 0.003328571853774
723 => 0.0033332665713737
724 => 0.0033427506480839
725 => 0.0033120096524694
726 => 0.0033178740656725
727 => 0.0033176645475657
728 => 0.0033158590337116
729 => 0.0033078621134787
730 => 0.0032962649969985
731 => 0.0033424643396514
801 => 0.0033503145082214
802 => 0.0033677644605223
803 => 0.0034196836821543
804 => 0.0034144957275737
805 => 0.0034229574967408
806 => 0.0034044855021598
807 => 0.0033341234342234
808 => 0.0033379444330344
809 => 0.003290296516633
810 => 0.0033665459961728
811 => 0.0033484891129739
812 => 0.0033368477229085
813 => 0.0033336712617724
814 => 0.0033857191811125
815 => 0.0034012927343303
816 => 0.0033915883410673
817 => 0.0033716843473624
818 => 0.0034099058993632
819 => 0.0034201323742408
820 => 0.003422421704828
821 => 0.0034901429667177
822 => 0.0034262065710783
823 => 0.0034415966969818
824 => 0.0035616660659759
825 => 0.0034527797167386
826 => 0.0035104592443849
827 => 0.0035076361316564
828 => 0.0035371430262315
829 => 0.0035052157050595
830 => 0.00350561148247
831 => 0.0035318116058825
901 => 0.0034950182577668
902 => 0.0034859077073473
903 => 0.0034733215471939
904 => 0.0035008029674336
905 => 0.0035172768359895
906 => 0.0036500441178275
907 => 0.0037358178368184
908 => 0.0037320941734649
909 => 0.0037661214861101
910 => 0.0037507918701089
911 => 0.003701288496293
912 => 0.0037857847191035
913 => 0.0037590465787341
914 => 0.0037612508385394
915 => 0.0037611687958793
916 => 0.0037789473217361
917 => 0.0037663496067886
918 => 0.0037415182174981
919 => 0.0037580024525416
920 => 0.0038069547373987
921 => 0.0039589041316349
922 => 0.0040439370257111
923 => 0.003953785044641
924 => 0.0040159706740001
925 => 0.00397868145539
926 => 0.0039719048951103
927 => 0.0040109620658297
928 => 0.0040500876009561
929 => 0.0040475954735129
930 => 0.0040191923441296
1001 => 0.0040031481370437
1002 => 0.0041246402483019
1003 => 0.0042141535663128
1004 => 0.0042080493581293
1005 => 0.0042349913478562
1006 => 0.0043140938629787
1007 => 0.0043213260056165
1008 => 0.0043204149218731
1009 => 0.0043024893017492
1010 => 0.0043803760006469
1011 => 0.0044453504551535
1012 => 0.0042983400386115
1013 => 0.004354319680723
1014 => 0.0043794507456183
1015 => 0.0044163506049356
1016 => 0.0044786068527382
1017 => 0.0045462336505061
1018 => 0.0045557968212006
1019 => 0.004549011293953
1020 => 0.0045044096029192
1021 => 0.0045784076519923
1022 => 0.0046217539736716
1023 => 0.0046475657162686
1024 => 0.0047130200008303
1025 => 0.0043796059465195
1026 => 0.0041435989071245
1027 => 0.00410674299994
1028 => 0.0041816909364867
1029 => 0.0042014541096554
1030 => 0.004193487599332
1031 => 0.0039278402196717
1101 => 0.0041053444214631
1102 => 0.0042963240176135
1103 => 0.0043036603216905
1104 => 0.0043992687007184
1105 => 0.0044304027080498
1106 => 0.004507379984844
1107 => 0.0045025650352218
1108 => 0.0045213077771452
1109 => 0.0045169991453561
1110 => 0.0046595833411393
1111 => 0.0048168748830461
1112 => 0.0048114283771063
1113 => 0.0047888158569682
1114 => 0.004822399305381
1115 => 0.0049847410330149
1116 => 0.0049697952082075
1117 => 0.0049843138039255
1118 => 0.0051757238499847
1119 => 0.0054245841376232
1120 => 0.0053089635488507
1121 => 0.0055598269575587
1122 => 0.0057177321756426
1123 => 0.0059908129226142
1124 => 0.0059566218681423
1125 => 0.0060629301989793
1126 => 0.0058954127447492
1127 => 0.0055107588089738
1128 => 0.0054498858512412
1129 => 0.0055717550541706
1130 => 0.0058713585977497
1201 => 0.0055623194723849
1202 => 0.0056248376849528
1203 => 0.0056068324355274
1204 => 0.0056058730123029
1205 => 0.0056424902945256
1206 => 0.0055893750168325
1207 => 0.0053729738202551
1208 => 0.0054721492133863
1209 => 0.0054338528313048
1210 => 0.0054763455224086
1211 => 0.0057056610509771
1212 => 0.0056042751895976
1213 => 0.0054974734205528
1214 => 0.0056314265401448
1215 => 0.0058019948926714
1216 => 0.0057913210317111
1217 => 0.0057706092801203
1218 => 0.0058873603394054
1219 => 0.0060801988844937
1220 => 0.0061323223683431
1221 => 0.006170798858503
1222 => 0.0061761041164304
1223 => 0.0062307515702822
1224 => 0.0059368984379893
1225 => 0.0064032509056218
1226 => 0.006483777094055
1227 => 0.0064686415080981
1228 => 0.0065581429774816
1229 => 0.0065318093747558
1230 => 0.0064936561160219
1231 => 0.0066355349825032
]
'min_raw' => 0.0024459162096077
'max_raw' => 0.0066355349825032
'avg_raw' => 0.0045407255960555
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.002445'
'max' => '$0.006635'
'avg' => '$0.00454'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.00084353328872175
'max_diff' => 0.0030583279917094
'year' => 2032
]
7 => [
'items' => [
101 => 0.0064728823111165
102 => 0.0062420173214851
103 => 0.0061153602221815
104 => 0.0062821525076812
105 => 0.0063840067361873
106 => 0.0064513259020842
107 => 0.0064716966410092
108 => 0.0059597094201566
109 => 0.0056837767042301
110 => 0.005860646411564
111 => 0.0060764396614065
112 => 0.0059356996955908
113 => 0.0059412164357948
114 => 0.005740558230354
115 => 0.0060941934601417
116 => 0.006042671781702
117 => 0.0063099663405871
118 => 0.0062461743489363
119 => 0.006464142685392
120 => 0.0064067443174888
121 => 0.0066450017335556
122 => 0.0067400490673866
123 => 0.0068996483338252
124 => 0.0070170502039034
125 => 0.0070859908275532
126 => 0.007081851891099
127 => 0.0073550289880818
128 => 0.0071939459980719
129 => 0.0069915877982736
130 => 0.0069879277768712
131 => 0.0070927319559846
201 => 0.0073123727637838
202 => 0.0073693224296024
203 => 0.0074011495235787
204 => 0.0073524052212449
205 => 0.007177561180511
206 => 0.0071020644102015
207 => 0.0071663898458572
208 => 0.007087725365598
209 => 0.0072235223278803
210 => 0.0074100005617598
211 => 0.0073714935438785
212 => 0.0075002167313608
213 => 0.0076334316883308
214 => 0.0078239350598559
215 => 0.007873739695492
216 => 0.0079560648642978
217 => 0.0080408045054081
218 => 0.0080680205943354
219 => 0.0081199845527539
220 => 0.008119710677043
221 => 0.0082763075633152
222 => 0.0084490387782754
223 => 0.008514240813186
224 => 0.0086641692972018
225 => 0.0084074220224454
226 => 0.0086021677796483
227 => 0.0087778333274477
228 => 0.0085683976195208
301 => 0.0088570559506367
302 => 0.0088682638995201
303 => 0.0090374906209694
304 => 0.0088659469188635
305 => 0.0087640848161399
306 => 0.0090581568899797
307 => 0.0092004491033273
308 => 0.0091575895306546
309 => 0.008831426066377
310 => 0.0086415849403584
311 => 0.0081447340959492
312 => 0.008733275383511
313 => 0.0090199366766977
314 => 0.0088306836828799
315 => 0.0089261318847724
316 => 0.0094468663251142
317 => 0.0096451282849382
318 => 0.0096038911832505
319 => 0.0096108595746153
320 => 0.0097178381294272
321 => 0.010192239955629
322 => 0.0099079673848208
323 => 0.010125283113714
324 => 0.010240546592729
325 => 0.010347609735741
326 => 0.010084696494157
327 => 0.0097426502298175
328 => 0.009634309819776
329 => 0.0088118662024136
330 => 0.0087690544404383
331 => 0.0087450229011124
401 => 0.0085935074449913
402 => 0.0084744578000565
403 => 0.0083797851023744
404 => 0.0081313356719958
405 => 0.008215180061439
406 => 0.0078192035248417
407 => 0.0080725352804099
408 => 0.0074405471668127
409 => 0.0079668856474446
410 => 0.0076804235421108
411 => 0.0078727751414689
412 => 0.0078721040448593
413 => 0.007517923765311
414 => 0.0073136399716214
415 => 0.0074438175558046
416 => 0.0075833782595585
417 => 0.007606021514204
418 => 0.007786965609528
419 => 0.0078374632171526
420 => 0.0076844531085422
421 => 0.0074274506178862
422 => 0.0074871464348629
423 => 0.0073124302377958
424 => 0.0070062468227971
425 => 0.0072261530968987
426 => 0.0073012387674733
427 => 0.0073344008771354
428 => 0.007033304653887
429 => 0.0069386936834253
430 => 0.0068883235966145
501 => 0.0073885828764693
502 => 0.0074159882090912
503 => 0.0072757786526739
504 => 0.0079095391428958
505 => 0.0077660996252288
506 => 0.0079263567099978
507 => 0.0074817296651742
508 => 0.0074987150170562
509 => 0.0072882214485722
510 => 0.0074060837817379
511 => 0.0073227824835367
512 => 0.0073965616699564
513 => 0.0074407846100933
514 => 0.007651243638654
515 => 0.0079692887514858
516 => 0.0076198080779772
517 => 0.007467534343874
518 => 0.0075620041120916
519 => 0.0078135895539356
520 => 0.008194754376751
521 => 0.0079690971299873
522 => 0.0080692399841925
523 => 0.0080911167427908
524 => 0.0079247254433126
525 => 0.0082008894613008
526 => 0.0083488880020932
527 => 0.0085007038809633
528 => 0.0086325213548018
529 => 0.0084400652804398
530 => 0.0086460208675017
531 => 0.008480057020385
601 => 0.0083311702924942
602 => 0.0083313960922027
603 => 0.0082379972729087
604 => 0.0080570252915182
605 => 0.0080236512815414
606 => 0.0081972670961133
607 => 0.0083364905379212
608 => 0.0083479576474238
609 => 0.0084250388983673
610 => 0.0084706547886757
611 => 0.0089177525254934
612 => 0.0090975789338279
613 => 0.0093174672619997
614 => 0.0094031261580498
615 => 0.0096609287247465
616 => 0.0094527322144381
617 => 0.0094076875898155
618 => 0.008782342889586
619 => 0.0088847430492161
620 => 0.0090486955849297
621 => 0.0087850464065124
622 => 0.0089522711265426
623 => 0.0089852848285804
624 => 0.0087760877083164
625 => 0.0088878289291234
626 => 0.0085910773756231
627 => 0.0079757571244237
628 => 0.008201574488639
629 => 0.0083678520780044
630 => 0.0081305534561011
701 => 0.0085559020511379
702 => 0.0083074221828946
703 => 0.0082286659937987
704 => 0.0079214100215266
705 => 0.0080664230130721
706 => 0.0082625551605234
707 => 0.0081413682962079
708 => 0.0083928492359617
709 => 0.0087490133141698
710 => 0.0090028370462385
711 => 0.0090223224806449
712 => 0.0088591308257941
713 => 0.0091206464941678
714 => 0.0091225513503087
715 => 0.0088275606080603
716 => 0.0086468804209485
717 => 0.0086058295022823
718 => 0.0087083827456171
719 => 0.0088329013153986
720 => 0.0090292323946626
721 => 0.0091478711539936
722 => 0.0094572181171931
723 => 0.0095409185357624
724 => 0.0096328799193888
725 => 0.009755768687754
726 => 0.00990332816221
727 => 0.0095804764326659
728 => 0.0095933039337516
729 => 0.0092926688733867
730 => 0.008971397195958
731 => 0.0092152023520464
801 => 0.0095339451615913
802 => 0.0094608252089022
803 => 0.0094525977205196
804 => 0.0094664340738642
805 => 0.009411304017411
806 => 0.0091619528152885
807 => 0.0090367302026037
808 => 0.0091982993206627
809 => 0.0092841661162969
810 => 0.0094173380279541
811 => 0.0094009217789243
812 => 0.009743958321734
813 => 0.0098772519493833
814 => 0.0098431497354747
815 => 0.0098494253635495
816 => 0.010090747109475
817 => 0.010359146522546
818 => 0.01061053799131
819 => 0.010866264190851
820 => 0.010557976276141
821 => 0.010401446685606
822 => 0.010562945267642
823 => 0.010477251846757
824 => 0.010969671661485
825 => 0.011003765741069
826 => 0.01149614994824
827 => 0.011963481192867
828 => 0.011669958811226
829 => 0.011946737196575
830 => 0.012246095586402
831 => 0.012823606489528
901 => 0.012629121134434
902 => 0.012480148400406
903 => 0.01233936988658
904 => 0.012632307625892
905 => 0.013009167347721
906 => 0.013090339322286
907 => 0.013221868931161
908 => 0.013083581630104
909 => 0.013250133452381
910 => 0.013838134571596
911 => 0.013679251478755
912 => 0.013453611945188
913 => 0.013917782356581
914 => 0.014085763824047
915 => 0.015264745735304
916 => 0.016753259099579
917 => 0.016137004792663
918 => 0.015754475857959
919 => 0.015844379231322
920 => 0.016387933922598
921 => 0.016562506437872
922 => 0.016087958162602
923 => 0.016255576635967
924 => 0.017179170904094
925 => 0.017674649596493
926 => 0.017001722980549
927 => 0.015145145135818
928 => 0.013433295573966
929 => 0.013887355163359
930 => 0.013835878897032
1001 => 0.014828165717403
1002 => 0.013675462169537
1003 => 0.01369487074101
1004 => 0.014707677001976
1005 => 0.014437477655445
1006 => 0.013999789318583
1007 => 0.0134364911832
1008 => 0.012395182481173
1009 => 0.011472866324746
1010 => 0.013281740704224
1011 => 0.013203738751757
1012 => 0.013090780365342
1013 => 0.013342157030934
1014 => 0.01456277076454
1015 => 0.014534631667239
1016 => 0.014355625086906
1017 => 0.014491400000397
1018 => 0.013975987319786
1019 => 0.014108820903308
1020 => 0.013433024408249
1021 => 0.01373851264777
1022 => 0.013998850235988
1023 => 0.014051116861187
1024 => 0.014168876236559
1025 => 0.013162635267242
1026 => 0.013614407920783
1027 => 0.013879782029365
1028 => 0.012680812152399
1029 => 0.013856082249879
1030 => 0.013145118850651
1031 => 0.012903807194641
1101 => 0.013228701549065
1102 => 0.013102089903176
1103 => 0.012993236644925
1104 => 0.012932494656485
1105 => 0.013171061213093
1106 => 0.013159931798079
1107 => 0.012769590607695
1108 => 0.012260406437182
1109 => 0.012431305358207
1110 => 0.012369216178012
1111 => 0.012144196979325
1112 => 0.012295832750318
1113 => 0.011628105555969
1114 => 0.010479315623531
1115 => 0.011238241441287
1116 => 0.011209023622856
1117 => 0.01119429067388
1118 => 0.011764602450755
1119 => 0.01170978013274
1120 => 0.011610277088721
1121 => 0.01214236952789
1122 => 0.01194814862994
1123 => 0.012546691673223
1124 => 0.012940930832867
1125 => 0.01284093902968
1126 => 0.013211722864848
1127 => 0.01243524252418
1128 => 0.012693158146366
1129 => 0.012746314198643
1130 => 0.012135803589785
1201 => 0.011718749741966
1202 => 0.011690937005078
1203 => 0.01096782310652
1204 => 0.011354104714359
1205 => 0.011694016543837
1206 => 0.011531225155741
1207 => 0.011479690265524
1208 => 0.011742970843088
1209 => 0.011763429998811
1210 => 0.011296959080175
1211 => 0.011393953155372
1212 => 0.011798434572868
1213 => 0.011383761261444
1214 => 0.010578118753847
1215 => 0.010378308273084
1216 => 0.010351649871712
1217 => 0.009809748000714
1218 => 0.01039166056484
1219 => 0.010137640136312
1220 => 0.0109400876264
1221 => 0.010481733923674
1222 => 0.010461975211649
1223 => 0.010432107020451
1224 => 0.0099656696943982
1225 => 0.010067789825165
1226 => 0.01040725269317
1227 => 0.010528376868797
1228 => 0.010515742624938
1229 => 0.010405589139924
1230 => 0.010456016841286
1231 => 0.010293571645021
]
'min_raw' => 0.0056837767042301
'max_raw' => 0.017674649596493
'avg_raw' => 0.011679213150361
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.005683'
'max' => '$0.017674'
'avg' => '$0.011679'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.0032378604946224
'max_diff' => 0.01103911461399
'year' => 2033
]
8 => [
'items' => [
101 => 0.010236208865216
102 => 0.010055156153274
103 => 0.0097890586838086
104 => 0.0098260611690085
105 => 0.0092988524538062
106 => 0.0090116011646797
107 => 0.0089320937937607
108 => 0.0088257732145259
109 => 0.0089441029860935
110 => 0.0092973589377563
111 => 0.0088712573126201
112 => 0.0081407359638777
113 => 0.0081846415416849
114 => 0.0082832843393347
115 => 0.0080994641385017
116 => 0.0079254937452734
117 => 0.0080767468875213
118 => 0.0077672153617663
119 => 0.0083206897454178
120 => 0.0083057198144341
121 => 0.0085120208380331
122 => 0.0086410251018127
123 => 0.008343712039427
124 => 0.008268938608257
125 => 0.0083115329529144
126 => 0.0076075433158029
127 => 0.0084544898655141
128 => 0.0084618142944463
129 => 0.0083990980871397
130 => 0.0088500709783198
131 => 0.0098017644406821
201 => 0.0094436990783606
202 => 0.0093050453474868
203 => 0.0090414645037405
204 => 0.0093926703281506
205 => 0.0093657032005002
206 => 0.0092437476222858
207 => 0.0091699885080572
208 => 0.0093058919376014
209 => 0.00915314856916
210 => 0.0091257116630809
211 => 0.0089594738638896
212 => 0.0089001345329163
213 => 0.0088562020546304
214 => 0.0088078367127539
215 => 0.0089145186050413
216 => 0.0086727634019463
217 => 0.0083812303265686
218 => 0.0083569925057825
219 => 0.0084239152599838
220 => 0.0083943069230628
221 => 0.0083568507524565
222 => 0.0082853367221878
223 => 0.0082641200370626
224 => 0.0083330639708472
225 => 0.0082552302892854
226 => 0.0083700781262499
227 => 0.0083388458694163
228 => 0.0081643850216015
301 => 0.0079469422115457
302 => 0.0079450065144345
303 => 0.0078981588176857
304 => 0.0078384912322777
305 => 0.0078218930750266
306 => 0.0080640087697605
307 => 0.0085651810119467
308 => 0.0084667889087702
309 => 0.0085378872869435
310 => 0.0088876209389051
311 => 0.0089987907500058
312 => 0.0089198850512878
313 => 0.008811874064191
314 => 0.0088166259994583
315 => 0.0091857322395173
316 => 0.0092087529429548
317 => 0.0092669188337811
318 => 0.0093416784411717
319 => 0.0089326169356961
320 => 0.0087973592393367
321 => 0.0087332666389902
322 => 0.0085358862368812
323 => 0.008748744078439
324 => 0.0086247209296449
325 => 0.0086414558896513
326 => 0.008630557224993
327 => 0.0086365086328609
328 => 0.0083205350380478
329 => 0.0084356592089144
330 => 0.0082442429461484
331 => 0.0079879580577886
401 => 0.0079870989009778
402 => 0.0080498242643253
403 => 0.0080125127637625
404 => 0.0079121084751143
405 => 0.0079263704304219
406 => 0.0078014206947928
407 => 0.0079415415906153
408 => 0.0079455597565308
409 => 0.0078916055792024
410 => 0.0081074811521744
411 => 0.0081959255505587
412 => 0.0081604117552306
413 => 0.0081934338080059
414 => 0.0084708775448709
415 => 0.0085161129796988
416 => 0.0085362035717642
417 => 0.0085092848398899
418 => 0.0081985049702052
419 => 0.0082122893789638
420 => 0.0081111485335923
421 => 0.0080256951772132
422 => 0.0080291128633245
423 => 0.0080730469966621
424 => 0.0082649099336504
425 => 0.0086686741736044
426 => 0.0086839967313628
427 => 0.0087025681183566
428 => 0.0086270289542216
429 => 0.0086042456195061
430 => 0.0086343027188735
501 => 0.0087859353384851
502 => 0.0091759756039805
503 => 0.009038109324241
504 => 0.0089260218927963
505 => 0.0090243527887278
506 => 0.0090092155180422
507 => 0.0088814417198447
508 => 0.0088778555348932
509 => 0.0086326167643979
510 => 0.0085419575747624
511 => 0.0084661959701802
512 => 0.0083834662757833
513 => 0.0083344213398203
514 => 0.0084097766519842
515 => 0.0084270113034539
516 => 0.0082622455964221
517 => 0.0082397886393839
518 => 0.0083743398724609
519 => 0.0083151288913593
520 => 0.0083760288537839
521 => 0.0083901581674567
522 => 0.0083878830225297
523 => 0.0083260599579217
524 => 0.0083654641357125
525 => 0.0082722615082865
526 => 0.0081709176495428
527 => 0.0081062665816098
528 => 0.0080498499501186
529 => 0.0080811531762238
530 => 0.0079695628909019
531 => 0.0079338629127587
601 => 0.008352114886899
602 => 0.0086610821171629
603 => 0.0086565896112705
604 => 0.0086292426370286
605 => 0.0085886105804364
606 => 0.0087829628504639
607 => 0.0087152544057826
608 => 0.0087645179565181
609 => 0.008777057597765
610 => 0.008815011315121
611 => 0.0088285765068436
612 => 0.0087875730758266
613 => 0.0086499605531864
614 => 0.0083070432305731
615 => 0.008147414291209
616 => 0.0080947340823885
617 => 0.0080966489079252
618 => 0.0080438294714664
619 => 0.0080593871627046
620 => 0.0080384191413588
621 => 0.0079987107816391
622 => 0.0080787012969063
623 => 0.0080879194586276
624 => 0.0080692487165488
625 => 0.0080736463521991
626 => 0.0079190605821646
627 => 0.0079308134025177
628 => 0.0078653722053155
629 => 0.0078531027697455
630 => 0.0076876731218354
701 => 0.0073945905211517
702 => 0.0075569867321469
703 => 0.0073608349456275
704 => 0.0072865492918881
705 => 0.0076382060229013
706 => 0.007602909440547
707 => 0.007542497034612
708 => 0.0074531344951855
709 => 0.0074199890600493
710 => 0.0072186078887315
711 => 0.0072067092148033
712 => 0.0073065191610574
713 => 0.0072604603051117
714 => 0.0071957762275111
715 => 0.0069614970553615
716 => 0.0066980896986971
717 => 0.0067060403110752
718 => 0.006789825290362
719 => 0.0070334414175824
720 => 0.0069382563820756
721 => 0.006869198546693
722 => 0.0068562660899967
723 => 0.0070181428614823
724 => 0.0072472324073665
725 => 0.0073547160967057
726 => 0.0072482030248988
727 => 0.007125846543078
728 => 0.0071332938151811
729 => 0.0071828371800462
730 => 0.0071880434871881
731 => 0.0071084019959723
801 => 0.0071308206092469
802 => 0.0070967646856819
803 => 0.0068877635456259
804 => 0.0068839833777521
805 => 0.0068326911273837
806 => 0.0068311380184274
807 => 0.0067438771050993
808 => 0.0067316687001185
809 => 0.0065584068603467
810 => 0.0066724483279697
811 => 0.0065959552989339
812 => 0.0064806622612957
813 => 0.0064607856981503
814 => 0.0064601881846605
815 => 0.0065785683552635
816 => 0.0066710649867518
817 => 0.0065972859279235
818 => 0.0065804878663753
819 => 0.0067598472163978
820 => 0.0067370221042107
821 => 0.0067172557042628
822 => 0.0072267199512087
823 => 0.0068234392457601
824 => 0.0066475858397265
825 => 0.006429933856104
826 => 0.006500802439468
827 => 0.006515735491259
828 => 0.0059923217053655
829 => 0.0057799727976156
830 => 0.0057071026546756
831 => 0.005665164857181
901 => 0.005684276438121
902 => 0.0054931375151034
903 => 0.0056215860325172
904 => 0.005456075881755
905 => 0.005428327566363
906 => 0.0057242802186992
907 => 0.0057654603013415
908 => 0.0055897732751407
909 => 0.0057025927871076
910 => 0.0056616828637599
911 => 0.0054589130782468
912 => 0.0054511687639138
913 => 0.005349426013246
914 => 0.0051902183097294
915 => 0.0051174561171094
916 => 0.0050795609354425
917 => 0.0050951972259606
918 => 0.0050872910389963
919 => 0.005035697821103
920 => 0.0050902483018531
921 => 0.0049508943653516
922 => 0.0048954025049858
923 => 0.0048703381190599
924 => 0.0047466534795016
925 => 0.0049434907438478
926 => 0.0049822701646145
927 => 0.0050211259928197
928 => 0.0053593394493454
929 => 0.0053424432608386
930 => 0.0054951765761618
1001 => 0.0054892416403869
1002 => 0.0054456796247411
1003 => 0.005261898646335
1004 => 0.0053351504687467
1005 => 0.0051096927452243
1006 => 0.0052786210013223
1007 => 0.0052015291998518
1008 => 0.0052525561856977
1009 => 0.0051608050642289
1010 => 0.0052115839231607
1011 => 0.0049914662038999
1012 => 0.0047859233747941
1013 => 0.0048686398093955
1014 => 0.004958562033579
1015 => 0.0051535363273653
1016 => 0.0050374112464891
1017 => 0.0050791742167477
1018 => 0.0049392752574184
1019 => 0.0046506237441601
1020 => 0.0046522574803777
1021 => 0.0046078547336779
1022 => 0.0045694842776222
1023 => 0.0050507496089434
1024 => 0.0049908966573146
1025 => 0.0048955288122547
1026 => 0.0050231824626349
1027 => 0.0050569361139312
1028 => 0.0050578970329316
1029 => 0.0051510298410314
1030 => 0.0052007348374092
1031 => 0.0052094955584545
1101 => 0.005356042044267
1102 => 0.0054051624933164
1103 => 0.0056074826711649
1104 => 0.005196517715736
1105 => 0.0051880541629219
1106 => 0.0050249788112807
1107 => 0.0049215538451505
1108 => 0.0050320604071955
1109 => 0.0051299541355174
1110 => 0.0050280206422974
1111 => 0.0050413310045784
1112 => 0.0049044936182029
1113 => 0.0049534065450347
1114 => 0.004995536946905
1115 => 0.0049722750153027
1116 => 0.004937450777804
1117 => 0.0051219279661604
1118 => 0.0051115190402214
1119 => 0.0052833084391311
1120 => 0.005417230560359
1121 => 0.0056572429430421
1122 => 0.0054067775095838
1123 => 0.0053976495536787
1124 => 0.0054868767868217
1125 => 0.0054051488330919
1126 => 0.0054567980786961
1127 => 0.005648921451081
1128 => 0.0056529807151955
1129 => 0.0055849828112121
1130 => 0.005580845132575
1201 => 0.0055939048738506
1202 => 0.0056703961864153
1203 => 0.0056436677714645
1204 => 0.0056745985699262
1205 => 0.0057132780070317
1206 => 0.0058732725586414
1207 => 0.0059118467033755
1208 => 0.0058181315300726
1209 => 0.0058265929609376
1210 => 0.0057915409135833
1211 => 0.0057576810750399
1212 => 0.0058337930472531
1213 => 0.0059728891724574
1214 => 0.0059720238626816
1215 => 0.0060042914600867
1216 => 0.0060243939059508
1217 => 0.0059380994924121
1218 => 0.0058819250023319
1219 => 0.0059034658763044
1220 => 0.0059379102028854
1221 => 0.0058922960454231
1222 => 0.0056107443350326
1223 => 0.0056961491383722
1224 => 0.005681933603015
1225 => 0.0056616889519981
1226 => 0.0057475641421719
1227 => 0.0057392812705857
1228 => 0.0054911771091802
1229 => 0.0055070599326214
1230 => 0.0054921429962792
1231 => 0.0055403426693188
]
'min_raw' => 0.0045694842776222
'max_raw' => 0.010236208865216
'avg_raw' => 0.0074028465714191
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.004569'
'max' => '$0.010236'
'avg' => '$0.0074028'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.001114292426608
'max_diff' => -0.0074384407312768
'year' => 2034
]
9 => [
'items' => [
101 => 0.00540254589257
102 => 0.0054449312530225
103 => 0.0054715149537602
104 => 0.0054871729577203
105 => 0.0055437404048182
106 => 0.0055371028678003
107 => 0.0055433278061976
108 => 0.0056272023969913
109 => 0.0060514112949423
110 => 0.0060745000492936
111 => 0.0059608025785527
112 => 0.0060062224755302
113 => 0.0059190262055729
114 => 0.0059775616457595
115 => 0.0060176101072962
116 => 0.0058366388104881
117 => 0.0058259228647851
118 => 0.0057383667048042
119 => 0.0057854144257436
120 => 0.0057105581188782
121 => 0.0057289252382205
122 => 0.0056775691713228
123 => 0.0057699998668478
124 => 0.0058733517467228
125 => 0.0058994625130686
126 => 0.0058307763282044
127 => 0.0057810430037226
128 => 0.005693727669108
129 => 0.0058389350165212
130 => 0.0058813980700185
131 => 0.0058387119761782
201 => 0.0058288206755259
202 => 0.0058100766786628
203 => 0.005832797303069
204 => 0.0058811668071098
205 => 0.0058583566422486
206 => 0.0058734231580028
207 => 0.0058160051364714
208 => 0.0059381280594537
209 => 0.0061320886516315
210 => 0.0061327122666511
211 => 0.0061099019788346
212 => 0.0061005685005146
213 => 0.0061239732400583
214 => 0.0061366693511481
215 => 0.0062123559871371
216 => 0.006293570763042
217 => 0.0066725646854072
218 => 0.0065661447085757
219 => 0.0069024106629475
220 => 0.0071683533741862
221 => 0.0072480979650213
222 => 0.0071747366937259
223 => 0.0069237717475224
224 => 0.0069114582099701
225 => 0.0072865057942655
226 => 0.0071805376734344
227 => 0.0071679331026494
228 => 0.0070338417652545
301 => 0.0071131063531901
302 => 0.0070957700250672
303 => 0.0070684037830031
304 => 0.0072196350951651
305 => 0.0075027266110201
306 => 0.0074586041434587
307 => 0.0074256687682065
308 => 0.0072813555411948
309 => 0.007368264337382
310 => 0.0073373177796881
311 => 0.007470283830712
312 => 0.0073915176876441
313 => 0.0071797348606966
314 => 0.0072134619739333
315 => 0.0072083641886171
316 => 0.0073132762491915
317 => 0.0072817842526845
318 => 0.0072022148708707
319 => 0.0075017590349949
320 => 0.0074823083031289
321 => 0.0075098849938586
322 => 0.0075220251059553
323 => 0.0077043523600975
324 => 0.0077790460022982
325 => 0.007796002766774
326 => 0.007866955949851
327 => 0.0077942373869422
328 => 0.0080851634860343
329 => 0.008278612365922
330 => 0.0085033131946999
331 => 0.0088316614994335
401 => 0.008955123499405
402 => 0.0089328211941756
403 => 0.0091817711314372
404 => 0.0096291286348501
405 => 0.0090232449360559
406 => 0.0096612419420867
407 => 0.009459259456007
408 => 0.0089803626150218
409 => 0.0089495273042852
410 => 0.009273841805107
411 => 0.009993140153816
412 => 0.0098129640756788
413 => 0.0099934348573335
414 => 0.0097829061042633
415 => 0.0097724515771977
416 => 0.0099832099457059
417 => 0.010475658361566
418 => 0.010241714578344
419 => 0.0099062987997255
420 => 0.01015396459101
421 => 0.0099394135622124
422 => 0.0094559700452804
423 => 0.0098128262984274
424 => 0.0095742066846289
425 => 0.0096438485736517
426 => 0.010145391509867
427 => 0.010085044536864
428 => 0.01016313910791
429 => 0.010025304234105
430 => 0.0098965447274063
501 => 0.0096562055463472
502 => 0.009585052963414
503 => 0.009604716977535
504 => 0.0095850432189052
505 => 0.0094505756559337
506 => 0.0094215373985128
507 => 0.009373139030616
508 => 0.0093881397085892
509 => 0.0092971366175013
510 => 0.0094688782525822
511 => 0.0095007550134353
512 => 0.0096257342533834
513 => 0.0096387100126775
514 => 0.0099867754169647
515 => 0.0097950668412848
516 => 0.009923681505173
517 => 0.0099121769990666
518 => 0.0089907417617082
519 => 0.0091177074075242
520 => 0.0093152261083995
521 => 0.0092262442013855
522 => 0.0091004446034272
523 => 0.0089988546831281
524 => 0.0088449355657724
525 => 0.0090615737676958
526 => 0.0093464299663206
527 => 0.0096459344359589
528 => 0.010005769431919
529 => 0.0099254584497619
530 => 0.0096392075710054
531 => 0.00965204857632
601 => 0.0097314266184257
602 => 0.0096286248416433
603 => 0.0095983065907411
604 => 0.0097272613563201
605 => 0.0097281493969184
606 => 0.0096098635287205
607 => 0.0094784104323039
608 => 0.0094778596390301
609 => 0.0094544688302091
610 => 0.0097870672771896
611 => 0.0099699627935329
612 => 0.0099909314697309
613 => 0.0099685514345552
614 => 0.0099771646218625
615 => 0.0098707417507299
616 => 0.010113992875417
617 => 0.010337224162472
618 => 0.010277393408901
619 => 0.010187698603854
620 => 0.010116252371347
621 => 0.010260562947116
622 => 0.010254137024343
623 => 0.010335274431923
624 => 0.010331593570442
625 => 0.010304310112006
626 => 0.010277394383279
627 => 0.010384112205264
628 => 0.010353379186368
629 => 0.010322598430605
630 => 0.010260862912624
701 => 0.010269253794836
702 => 0.010179574476862
703 => 0.010138084720921
704 => 0.0095141783394093
705 => 0.0093474501675402
706 => 0.0093999062444751
707 => 0.0094171761470235
708 => 0.0093446158329582
709 => 0.0094486486841126
710 => 0.0094324352744582
711 => 0.0094955121668959
712 => 0.0094561044629812
713 => 0.0094577217688958
714 => 0.0095736114235008
715 => 0.0096072546832625
716 => 0.0095901434498133
717 => 0.0096021275711824
718 => 0.0098782965899507
719 => 0.0098390341868699
720 => 0.009818176817762
721 => 0.0098239544515467
722 => 0.0098945215569725
723 => 0.0099142764936707
724 => 0.009830573438726
725 => 0.0098700482833195
726 => 0.010038127161495
727 => 0.010096945256416
728 => 0.010284664381116
729 => 0.010204917960502
730 => 0.010351295966883
731 => 0.010801212054559
801 => 0.01116063615722
802 => 0.010830094898584
803 => 0.011490131490737
804 => 0.012004064654354
805 => 0.011984339043534
806 => 0.011894722908969
807 => 0.011309623665811
808 => 0.010771206618919
809 => 0.01122161534104
810 => 0.0112227635255
811 => 0.011184073016822
812 => 0.010943769590328
813 => 0.011175710978468
814 => 0.011194121643571
815 => 0.011183816566904
816 => 0.010999576493233
817 => 0.010718275953993
818 => 0.010773241406022
819 => 0.010863275937711
820 => 0.010692821786054
821 => 0.010638351356418
822 => 0.010739622248534
823 => 0.01106593816356
824 => 0.011004250030044
825 => 0.011002639103576
826 => 0.011266567098598
827 => 0.011077651613389
828 => 0.010773934696396
829 => 0.010697242169322
830 => 0.010425035364484
831 => 0.010613049574153
901 => 0.010619815870843
902 => 0.010516842409666
903 => 0.010782290425252
904 => 0.010779844275057
905 => 0.011031847659132
906 => 0.011513583481335
907 => 0.01137111049393
908 => 0.011205429910594
909 => 0.011223443983827
910 => 0.01142101390467
911 => 0.011301558620445
912 => 0.011344515573524
913 => 0.011420948884177
914 => 0.011467062998225
915 => 0.011216808872471
916 => 0.011158462664719
917 => 0.011039106800395
918 => 0.011007969083275
919 => 0.011105181944326
920 => 0.01107956979002
921 => 0.010619247189807
922 => 0.010571140916874
923 => 0.010572616267585
924 => 0.010451650756966
925 => 0.010267149318224
926 => 0.010752008083231
927 => 0.010713067138806
928 => 0.010670079349952
929 => 0.010675345108802
930 => 0.010885805865303
1001 => 0.010763727998009
1002 => 0.011088292016379
1003 => 0.011021571411489
1004 => 0.010953139674845
1005 => 0.010943680324359
1006 => 0.010917339944072
1007 => 0.010827008979244
1008 => 0.010717928911166
1009 => 0.010645904801867
1010 => 0.0098202844393234
1011 => 0.0099735147761987
1012 => 0.010149792311389
1013 => 0.010210642610149
1014 => 0.010106553963408
1015 => 0.010831119033445
1016 => 0.010963504053824
1017 => 0.010562501191836
1018 => 0.010487489929197
1019 => 0.010836036759336
1020 => 0.010625820412645
1021 => 0.010720480820688
1022 => 0.010515876794974
1023 => 0.010931616379101
1024 => 0.010928449140024
1025 => 0.010766717051894
1026 => 0.010903411905288
1027 => 0.010879657810616
1028 => 0.010697062681446
1029 => 0.010937404970384
1030 => 0.010937524177161
1031 => 0.010781860558695
1101 => 0.010600079531475
1102 => 0.010567581377284
1103 => 0.010543098383614
1104 => 0.01071445950508
1105 => 0.010868101350755
1106 => 0.011153990734512
1107 => 0.011225870118152
1108 => 0.011506420137783
1109 => 0.011339366260825
1110 => 0.011413419080771
1111 => 0.011493813892233
1112 => 0.011532358121269
1113 => 0.011469552368452
1114 => 0.011905362027934
1115 => 0.011942157716057
1116 => 0.011954494992003
1117 => 0.011807542426881
1118 => 0.011938070699386
1119 => 0.011877000843323
1120 => 0.012035887643104
1121 => 0.012060803122078
1122 => 0.012039700597781
1123 => 0.012047609164071
1124 => 0.011675722501795
1125 => 0.011656438216498
1126 => 0.011393495618117
1127 => 0.011500646670531
1128 => 0.011300332913927
1129 => 0.011363854469606
1130 => 0.011391854166094
1201 => 0.011377228713618
1202 => 0.011506704830266
1203 => 0.011396623680892
1204 => 0.011106101428677
1205 => 0.010815500023869
1206 => 0.01081185175995
1207 => 0.010735341539605
1208 => 0.010680038663841
1209 => 0.010690691959688
1210 => 0.010728235563784
1211 => 0.01067785656132
1212 => 0.010688607475776
1213 => 0.010867144288712
1214 => 0.01090294857328
1215 => 0.010781271624681
1216 => 0.010292721118155
1217 => 0.010172829598417
1218 => 0.010259005245253
1219 => 0.010217818836488
1220 => 0.0082465772691088
1221 => 0.0087096912355251
1222 => 0.0084345246425448
1223 => 0.0085613340683963
1224 => 0.0082804602310073
1225 => 0.0084145079480685
1226 => 0.0083897542293661
1227 => 0.0091344277828249
1228 => 0.0091228007295526
1229 => 0.0091283659846641
1230 => 0.0088627218579985
1231 => 0.0092859001648008
]
'min_raw' => 0.00540254589257
'max_raw' => 0.012060803122078
'avg_raw' => 0.0087316745073239
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.0054025'
'max' => '$0.01206'
'avg' => '$0.008731'
'bar_min_pct' => 61.631153054957
'bar_max_pct' => 60.119598047091
'min_diff' => 0.00083306161494778
'max_diff' => 0.0018245942568618
'year' => 2035
]
10 => [
'items' => [
101 => 0.0094943730157314
102 => 0.0094557902393494
103 => 0.0094655006929314
104 => 0.0092986429281198
105 => 0.0091299815325604
106 => 0.0089429100880825
107 => 0.0092904657091932
108 => 0.009251823457098
109 => 0.0093404548803609
110 => 0.0095658695444401
111 => 0.0095990627099928
112 => 0.0096436746611075
113 => 0.0096276844523278
114 => 0.010008636098193
115 => 0.0099625003402789
116 => 0.010073674242689
117 => 0.0098449810906476
118 => 0.0095861930813597
119 => 0.0096353802215079
120 => 0.0096306431043737
121 => 0.0095703341662445
122 => 0.0095158899534962
123 => 0.0094252556788322
124 => 0.0097120359352179
125 => 0.0097003931805309
126 => 0.0098888758456917
127 => 0.0098555597038016
128 => 0.0096330663544166
129 => 0.0096410127479169
130 => 0.0096944560631128
131 => 0.0098794239872109
201 => 0.0099343350606598
202 => 0.0099088980636103
203 => 0.0099691055488613
204 => 0.010016691090347
205 => 0.009975081560232
206 => 0.010564184759924
207 => 0.01031954803928
208 => 0.010438782274751
209 => 0.010467218937341
210 => 0.010394379024074
211 => 0.01041017539306
212 => 0.010434102587821
213 => 0.010579383828984
214 => 0.010960643843262
215 => 0.011129501308262
216 => 0.011637517322992
217 => 0.011115480046403
218 => 0.011084504514815
219 => 0.011176013539682
220 => 0.011474272719285
221 => 0.011715983770294
222 => 0.011796173270558
223 => 0.011806771636803
224 => 0.011957212470196
225 => 0.012043442350342
226 => 0.011938944996035
227 => 0.01185039442959
228 => 0.011533217291882
229 => 0.011569931409217
301 => 0.011822855270012
302 => 0.012180125120525
303 => 0.012486699819859
304 => 0.012379348045359
305 => 0.013198366306249
306 => 0.013279568621427
307 => 0.013268349087054
308 => 0.013453340045554
309 => 0.013086170665686
310 => 0.012929198642221
311 => 0.011869540067147
312 => 0.012167260903831
313 => 0.012600015624483
314 => 0.012542738914458
315 => 0.012228460868754
316 => 0.012486461411779
317 => 0.012401158363832
318 => 0.012333876310689
319 => 0.012642108439404
320 => 0.012303194552404
321 => 0.012596634699205
322 => 0.012220294675684
323 => 0.012379838419223
324 => 0.012289273674127
325 => 0.012347880163402
326 => 0.012005267824631
327 => 0.012190133126187
328 => 0.011997576820305
329 => 0.011997485523545
330 => 0.01199323483242
331 => 0.012219776472365
401 => 0.01222716398711
402 => 0.012059749372906
403 => 0.012035622311491
404 => 0.012124832703046
405 => 0.012020390698774
406 => 0.012069258455222
407 => 0.012021870853334
408 => 0.012011202906014
409 => 0.011926198886761
410 => 0.011889576818033
411 => 0.011903937274815
412 => 0.011854917632493
413 => 0.011825381524876
414 => 0.011987359357202
415 => 0.011900821135557
416 => 0.011974096133602
417 => 0.011890590025288
418 => 0.011601121471991
419 => 0.011434645045916
420 => 0.010887865782488
421 => 0.011042931703319
422 => 0.011145740569257
423 => 0.011111762239677
424 => 0.011184760839482
425 => 0.011189242360639
426 => 0.01116550977171
427 => 0.011138030474064
428 => 0.01112465507167
429 => 0.011224344362853
430 => 0.011282217351772
501 => 0.011156058814359
502 => 0.011126501634188
503 => 0.011254054880917
504 => 0.011331862287736
505 => 0.011906348463485
506 => 0.01186378867202
507 => 0.011970605396661
508 => 0.011958579472703
509 => 0.012070540417365
510 => 0.012253549243662
511 => 0.011881441129727
512 => 0.011946026231776
513 => 0.011930191456241
514 => 0.012103071383426
515 => 0.012103611095688
516 => 0.011999960943348
517 => 0.012056151372463
518 => 0.012024787416435
519 => 0.012081466324071
520 => 0.011863220260058
521 => 0.012129020407819
522 => 0.012279711963817
523 => 0.012281804316218
524 => 0.012353230917799
525 => 0.012425804481755
526 => 0.012565103117943
527 => 0.012421919518396
528 => 0.012164346161454
529 => 0.012182942125868
530 => 0.012031926960935
531 => 0.012034465553141
601 => 0.012020914348994
602 => 0.012061582532726
603 => 0.011872144639416
604 => 0.011916605334333
605 => 0.011854360101088
606 => 0.011945890922795
607 => 0.011847418889225
608 => 0.011930183820233
609 => 0.011965902420755
610 => 0.012097704825648
611 => 0.011827951566857
612 => 0.011277906411492
613 => 0.011393532571803
614 => 0.011222512398465
615 => 0.011238340966627
616 => 0.011270317193412
617 => 0.01116667178043
618 => 0.011186444058985
619 => 0.011185737654059
620 => 0.011179650238043
621 => 0.011152688063151
622 => 0.011113587575253
623 => 0.011269351884543
624 => 0.011295819275958
625 => 0.011354653008457
626 => 0.011529702289074
627 => 0.011512210737994
628 => 0.011540740183523
629 => 0.011478460564119
630 => 0.011241229939549
701 => 0.011254112703814
702 => 0.011093464426995
703 => 0.011350544870832
704 => 0.011289664828436
705 => 0.011250415069054
706 => 0.011239705408561
707 => 0.011415188602486
708 => 0.01146769592447
709 => 0.011434976885045
710 => 0.011367869180616
711 => 0.01149673581173
712 => 0.01153121508577
713 => 0.011538933723681
714 => 0.011767260686289
715 => 0.011551694664494
716 => 0.011603583548482
717 => 0.012008405809022
718 => 0.011641287880366
719 => 0.011835758434881
720 => 0.011826240113214
721 => 0.011925724668379
722 => 0.011818079475954
723 => 0.011819413867125
724 => 0.011907749412445
725 => 0.011783698070443
726 => 0.011752981213626
727 => 0.011710546095931
728 => 0.01180320162296
729 => 0.011858744420965
730 => 0.012306378581198
731 => 0.012595570663305
801 => 0.012583016072331
802 => 0.012697741532625
803 => 0.012646056661998
804 => 0.012479152580962
805 => 0.012764037495506
806 => 0.012673887988453
807 => 0.012681319804283
808 => 0.012681043191727
809 => 0.01274098473291
810 => 0.01269851065742
811 => 0.012614789894755
812 => 0.012670367644096
813 => 0.012835413690232
814 => 0.013347721681667
815 => 0.013634416020852
816 => 0.013330462322464
817 => 0.01354012551351
818 => 0.013414402309516
819 => 0.013391554663409
820 => 0.013523238641374
821 => 0.01365515311471
822 => 0.01364675073304
823 => 0.013550987599281
824 => 0.013496893434921
825 => 0.013906512570336
826 => 0.01420831297163
827 => 0.014187732207557
828 => 0.014278569006951
829 => 0.014545268659448
830 => 0.014569652333283
831 => 0.014566580550832
901 => 0.014506143071058
902 => 0.014768743514267
903 => 0.014987809424008
904 => 0.014492153540697
905 => 0.01468089281245
906 => 0.014765623952339
907 => 0.014890034404293
908 => 0.015099935690352
909 => 0.015327944160579
910 => 0.015360187058255
911 => 0.015337309179389
912 => 0.015186931464078
913 => 0.015436421052907
914 => 0.015582566202792
915 => 0.015669592295076
916 => 0.015890275985348
917 => 0.014766147223013
918 => 0.013970433012208
919 => 0.013846170747938
920 => 0.014098862948703
921 => 0.014165495866862
922 => 0.014138636221102
923 => 0.01324298753367
924 => 0.013841455342957
925 => 0.014485356385148
926 => 0.014510091246548
927 => 0.014832441571604
928 => 0.014937412051029
929 => 0.015196946314122
930 => 0.015180712375302
1001 => 0.015243904838274
1002 => 0.015229377985377
1003 => 0.015710110556371
1004 => 0.016240429971655
1005 => 0.016222066696616
1006 => 0.016145827006214
1007 => 0.01625905594726
1008 => 0.016806402416315
1009 => 0.016756011524493
1010 => 0.016804961983612
1011 => 0.017450314317723
1012 => 0.018289364152367
1013 => 0.017899541264949
1014 => 0.018745344762132
1015 => 0.019277733229491
1016 => 0.020198444033795
1017 => 0.0200831665065
1018 => 0.020441592466128
1019 => 0.019876795673496
1020 => 0.018579908073349
1021 => 0.018374670646339
1022 => 0.018785561172652
1023 => 0.01979569543748
1024 => 0.01875374844989
1025 => 0.018964532968445
1026 => 0.01890382701292
1027 => 0.018900592250534
1028 => 0.019024049974085
1029 => 0.018844968106953
1030 => 0.018115356364043
1031 => 0.018449733126189
1101 => 0.018320614200234
1102 => 0.018463881275035
1103 => 0.019237034589903
1104 => 0.018895205079727
1105 => 0.018535115458731
1106 => 0.018986747753744
1107 => 0.019561830862989
1108 => 0.019525843195536
1109 => 0.019456012079
1110 => 0.019849646426678
1111 => 0.020499815045001
1112 => 0.020675553009944
1113 => 0.020805279182861
1114 => 0.020823166230365
1115 => 0.021007413936389
1116 => 0.020016667584693
1117 => 0.021589007489006
1118 => 0.021860507155467
1119 => 0.021809476470681
1120 => 0.0221112369235
1121 => 0.022022451343357
1122 => 0.02189381496776
1123 => 0.022372169471768
1124 => 0.021823774634141
1125 => 0.021045397203119
1126 => 0.020618363949901
1127 => 0.021180715785529
1128 => 0.021524124428172
1129 => 0.021751095696068
1130 => 0.021819777064593
1201 => 0.020093576403682
1202 => 0.019163249986929
1203 => 0.019759578553854
1204 => 0.020487140561901
1205 => 0.020012625941003
1206 => 0.020031226015767
1207 => 0.019354692866615
1208 => 0.020546998733868
1209 => 0.02037328979788
1210 => 0.021274492065071
1211 => 0.021059412911406
1212 => 0.021794308375829
1213 => 0.021600785771018
1214 => 0.022404087283888
1215 => 0.022724546005893
1216 => 0.023262646075555
1217 => 0.023658474677261
1218 => 0.023890912803177
1219 => 0.02387695808995
1220 => 0.024797993745043
1221 => 0.02425489119777
1222 => 0.023572626398951
1223 => 0.023560286381259
1224 => 0.023913640988334
1225 => 0.02465417530666
1226 => 0.024846185081066
1227 => 0.024953492350504
1228 => 0.024789147531967
1229 => 0.024199648641412
1230 => 0.023945106009297
1231 => 0.024161983706669
]
'min_raw' => 0.0089429100880825
'max_raw' => 0.024953492350504
'avg_raw' => 0.016948201219293
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$0.008942'
'max' => '$0.024953'
'avg' => '$0.016948'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.0035403641955125
'max_diff' => 0.012892689228426
'year' => 2036
]
11 => [
'items' => [
101 => 0.023896760919296
102 => 0.024354609858672
103 => 0.024983334243691
104 => 0.024853505144431
105 => 0.025287504358193
106 => 0.025736647886389
107 => 0.026378943304006
108 => 0.026546863110302
109 => 0.02682442816469
110 => 0.027110133781027
111 => 0.027201894725012
112 => 0.027377094838828
113 => 0.027376171447747
114 => 0.027904148783059
115 => 0.028486524134005
116 => 0.028706357346967
117 => 0.029211851698499
118 => 0.028346210336136
119 => 0.02900280925326
120 => 0.029595077912242
121 => 0.028888950800632
122 => 0.029862182517471
123 => 0.029899970899645
124 => 0.030470530606044
125 => 0.029892159037595
126 => 0.029548723846477
127 => 0.030540208374885
128 => 0.031019956506712
129 => 0.030875452465086
130 => 0.029775769573268
131 => 0.029135706962612
201 => 0.027460539651668
202 => 0.029444847693324
203 => 0.030411346257355
204 => 0.029773266575476
205 => 0.030095076852137
206 => 0.031850769374267
207 => 0.032519223414022
208 => 0.032380189646599
209 => 0.032403684064603
210 => 0.032764369731156
211 => 0.034363848609874
212 => 0.033405403790116
213 => 0.034138098942579
214 => 0.034526717809517
215 => 0.034887688671093
216 => 0.034001258321074
217 => 0.032848025459947
218 => 0.032482748203406
219 => 0.029709822126289
220 => 0.029565479281768
221 => 0.029484455269102
222 => 0.028973610330318
223 => 0.02857222614064
224 => 0.028253030530568
225 => 0.027415365929861
226 => 0.027698053142697
227 => 0.026362990603361
228 => 0.027217116304317
301 => 0.025086324255323
302 => 0.026860911190553
303 => 0.025895084202274
304 => 0.02654361104907
305 => 0.026541348399996
306 => 0.025347204859422
307 => 0.024658447786358
308 => 0.025097350600141
309 => 0.025567889256664
310 => 0.025644232570603
311 => 0.026254298221101
312 => 0.026424554430838
313 => 0.025908670166833
314 => 0.025042168326246
315 => 0.025243436941011
316 => 0.024654369084304
317 => 0.023622050323593
318 => 0.024363479680092
319 => 0.024616636260749
320 => 0.024728444628779
321 => 0.02371327769023
322 => 0.023394290197791
323 => 0.023224463933381
324 => 0.024911123022399
325 => 0.025003522014713
326 => 0.024530795706134
327 => 0.026667563446661
328 => 0.02618394709822
329 => 0.026724265048311
330 => 0.025225173923819
331 => 0.025282441223569
401 => 0.024572747461233
402 => 0.024970128546387
403 => 0.02468927240359
404 => 0.024938024081703
405 => 0.025087124811922
406 => 0.025796702120494
407 => 0.026869013423607
408 => 0.025690714932911
409 => 0.02517731340697
410 => 0.025495824826184
411 => 0.026344062708496
412 => 0.027629186520696
413 => 0.026868367358346
414 => 0.02720600598305
415 => 0.027279765002051
416 => 0.02671876511879
417 => 0.027649871386594
418 => 0.028148858799803
419 => 0.02866071663486
420 => 0.029105148451109
421 => 0.028456269359543
422 => 0.029150663000682
423 => 0.028591104302903
424 => 0.028089122304879
425 => 0.028089883604361
426 => 0.027774982964214
427 => 0.027164823293896
428 => 0.02705230048916
429 => 0.027637658329458
430 => 0.028107059883784
501 => 0.02814572204408
502 => 0.028405606863277
503 => 0.028559404022252
504 => 0.0300668252573
505 => 0.030673122548079
506 => 0.031414491398623
507 => 0.031703296347168
508 => 0.032572495699987
509 => 0.031870546629666
510 => 0.031718675532835
511 => 0.029610282215839
512 => 0.029955531503383
513 => 0.030508308924342
514 => 0.02961939731191
515 => 0.030183207130749
516 => 0.030294515132112
517 => 0.029589192435466
518 => 0.02996593576294
519 => 0.028965417181781
520 => 0.026890821994575
521 => 0.027652181004091
522 => 0.028212797505767
523 => 0.02741272863436
524 => 0.028846821119417
525 => 0.028009053895324
526 => 0.027743521905206
527 => 0.026707586942763
528 => 0.027196508368243
529 => 0.027857781596884
530 => 0.027449191622848
531 => 0.028297077169066
601 => 0.029497909225327
602 => 0.030353693659403
603 => 0.030419390161934
604 => 0.029869178103927
605 => 0.03075089643829
606 => 0.030757318793762
607 => 0.029762736910675
608 => 0.02915356104514
609 => 0.029015155006774
610 => 0.029360920426716
611 => 0.029780743478343
612 => 0.03044268741948
613 => 0.030842686279658
614 => 0.031885671164
615 => 0.032167872968983
616 => 0.032477927194418
617 => 0.032892255256781
618 => 0.033389762327183
619 => 0.032301245180238
620 => 0.032344493995736
621 => 0.031330881900046
622 => 0.030247692009122
623 => 0.031069698114807
624 => 0.0321443617511
625 => 0.031897832725536
626 => 0.03187009317403
627 => 0.031916743405354
628 => 0.031730868570965
629 => 0.030890163583864
630 => 0.030467966802433
701 => 0.031012708364365
702 => 0.031302214260874
703 => 0.031751212658792
704 => 0.031695864129042
705 => 0.032852435783172
706 => 0.033301844555055
707 => 0.033186866559922
708 => 0.033208025278126
709 => 0.03402165839306
710 => 0.034926585753279
711 => 0.035774169641806
712 => 0.036636368377792
713 => 0.035596954149372
714 => 0.035069203706338
715 => 0.035613707451144
716 => 0.035324786099705
717 => 0.036985013884716
718 => 0.037099964454405
719 => 0.038760072186051
720 => 0.040335712105334
721 => 0.039346080902553
722 => 0.040279258552807
723 => 0.041288566264646
724 => 0.043235684595059
725 => 0.042579963641825
726 => 0.042077691668105
727 => 0.0416030470799
728 => 0.042590707120248
729 => 0.043861315983901
730 => 0.044134992963392
731 => 0.044578454222819
801 => 0.044112208932394
802 => 0.044673750029477
803 => 0.04665623685584
804 => 0.046120551415461
805 => 0.045359791974392
806 => 0.046924774923747
807 => 0.047491136169401
808 => 0.051466155997091
809 => 0.056484782729428
810 => 0.05440703830816
811 => 0.053117315297486
812 => 0.053420430797633
813 => 0.055253063389047
814 => 0.055841646812558
815 => 0.054241674170582
816 => 0.054806811556281
817 => 0.057920774114565
818 => 0.059591315119204
819 => 0.057322496051314
820 => 0.051062914225675
821 => 0.045291293910373
822 => 0.046822187517441
823 => 0.046648631691559
824 => 0.049994195985694
825 => 0.046107775494871
826 => 0.046173212848656
827 => 0.04958795986938
828 => 0.048676963907835
829 => 0.04720126712168
830 => 0.045302068130016
831 => 0.04179122313928
901 => 0.03868156982383
902 => 0.044780316085816
903 => 0.044517327057149
904 => 0.044136479970848
905 => 0.044984013949451
906 => 0.049099398372832
907 => 0.049004525441673
908 => 0.048400992258239
909 => 0.048858766858577
910 => 0.047121017020933
911 => 0.047568874721922
912 => 0.045290379656227
913 => 0.04632035458428
914 => 0.047198100939146
915 => 0.047374321515142
916 => 0.047771355470907
917 => 0.044378743789355
918 => 0.045901926832526
919 => 0.046796654167439
920 => 0.042754243517845
921 => 0.046716748706237
922 => 0.044319685967859
923 => 0.043506086871779
924 => 0.04460149087112
925 => 0.044174610867262
926 => 0.043807604507179
927 => 0.043602808652283
928 => 0.044407152454072
929 => 0.04436962885432
930 => 0.043053566278189
1001 => 0.0413368162972
1002 => 0.041913013941217
1003 => 0.041703675935264
1004 => 0.04094500799655
1005 => 0.041456258585327
1006 => 0.039204969730355
1007 => 0.035331744267186
1008 => 0.03789051564826
1009 => 0.037792005733496
1010 => 0.037742332567403
1011 => 0.039665178541033
1012 => 0.039480341268273
1013 => 0.039144859808282
1014 => 0.04093884661645
1015 => 0.040284017298941
1016 => 0.042302046958312
1017 => 0.043631251809949
1018 => 0.043294122464301
1019 => 0.04454424605187
1020 => 0.04192628837118
1021 => 0.042795868898474
1022 => 0.042975088239962
1023 => 0.04091670909771
1024 => 0.039510582932018
1025 => 0.039416810347778
1026 => 0.03697878135259
1027 => 0.038281156762737
1028 => 0.03942719322771
1029 => 0.03887833069701
1030 => 0.038704577216592
1031 => 0.039592246065515
1101 => 0.039661225537446
1102 => 0.038088486267306
1103 => 0.038415508563743
1104 => 0.039779245902821
1105 => 0.038381145881788
1106 => 0.035664865919263
1107 => 0.034991190933048
1108 => 0.034901310271593
1109 => 0.033074250279141
1110 => 0.035036209116929
1111 => 0.034179761507007
1112 => 0.036885269244933
1113 => 0.035339897734958
1114 => 0.035273279857858
1115 => 0.035172577165904
1116 => 0.033599951155503
1117 => 0.033944256306184
1118 => 0.035088779066202
1119 => 0.035497157680949
1120 => 0.035454560445683
1121 => 0.035083170280286
1122 => 0.03525319079618
1123 => 0.034705495475412
1124 => 0.034512092858357
1125 => 0.033901660999349
1126 => 0.033004494802713
1127 => 0.033129251264995
1128 => 0.031351730273154
1129 => 0.030383242496619
1130 => 0.030115177844538
1201 => 0.029756710588583
1202 => 0.030155667674943
1203 => 0.031346694779518
1204 => 0.029910063400905
1205 => 0.027447059670248
1206 => 0.027595090391215
1207 => 0.027927671470512
1208 => 0.027307908829487
1209 => 0.026721355502492
1210 => 0.027231316031738
1211 => 0.026187708881854
1212 => 0.028053786408683
1213 => 0.028003314241204
1214 => 0.028698872545745
1215 => 0.029133819427869
1216 => 0.0281314076803
1217 => 0.027879303836596
1218 => 0.028022913643451
1219 => 0.025649363430942
1220 => 0.028504902855214
1221 => 0.028529597678734
1222 => 0.028318145607094
1223 => 0.029838632195629
1224 => 0.033047333149099
1225 => 0.031840090780707
1226 => 0.031372610046572
1227 => 0.030483928829254
1228 => 0.031668043786661
1229 => 0.031577122233003
1230 => 0.031165940486386
1231 => 0.030917256483068
]
'min_raw' => 0.023224463933381
'max_raw' => 0.059591315119204
'avg_raw' => 0.041407889526293
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$0.023224'
'max' => '$0.059591'
'avg' => '$0.0414078'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 0.014281553845299
'max_diff' => 0.0346378227687
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.00072898938486833
]
1 => [
'year' => 2028
'avg' => 0.0012511574115646
]
2 => [
'year' => 2029
'avg' => 0.0034179365492109
]
3 => [
'year' => 2030
'avg' => 0.0026369329575724
]
4 => [
'year' => 2031
'avg' => 0.0025897949558399
]
5 => [
'year' => 2032
'avg' => 0.0045407255960555
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.00072898938486833
'min' => '$0.000728'
'max_raw' => 0.0045407255960555
'max' => '$0.00454'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.0045407255960555
]
1 => [
'year' => 2033
'avg' => 0.011679213150361
]
2 => [
'year' => 2034
'avg' => 0.0074028465714191
]
3 => [
'year' => 2035
'avg' => 0.0087316745073239
]
4 => [
'year' => 2036
'avg' => 0.016948201219293
]
5 => [
'year' => 2037
'avg' => 0.041407889526293
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.0045407255960555
'min' => '$0.00454'
'max_raw' => 0.041407889526293
'max' => '$0.0414078'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 0.041407889526293
]
]
]
]
'prediction_2025_max_price' => '$0.001246'
'last_price' => 0.00120858
'sma_50day_nextmonth' => '$0.001221'
'sma_200day_nextmonth' => '$0.001656'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'increase'
'sma_200day_direction_label' => 'aumentar'
'sma_200day_date_nextmonth' => '4 de fev. de 2026'
'sma_50day_date_nextmonth' => '4 de fev. de 2026'
'daily_sma3' => '$0.001192'
'daily_sma3_action' => 'BUY'
'daily_sma5' => '$0.001185'
'daily_sma5_action' => 'BUY'
'daily_sma10' => '$0.001194'
'daily_sma10_action' => 'BUY'
'daily_sma21' => '$0.001396'
'daily_sma21_action' => 'SELL'
'daily_sma50' => '$0.001529'
'daily_sma50_action' => 'SELL'
'daily_sma100' => '$0.001392'
'daily_sma100_action' => 'SELL'
'daily_sma200' => '$0.001873'
'daily_sma200_action' => 'SELL'
'daily_ema3' => '$0.001197'
'daily_ema3_action' => 'BUY'
'daily_ema5' => '$0.001199'
'daily_ema5_action' => 'BUY'
'daily_ema10' => '$0.001243'
'daily_ema10_action' => 'SELL'
'daily_ema21' => '$0.001355'
'daily_ema21_action' => 'SELL'
'daily_ema50' => '$0.001454'
'daily_ema50_action' => 'SELL'
'daily_ema100' => '$0.001552'
'daily_ema100_action' => 'SELL'
'daily_ema200' => '$0.001827'
'daily_ema200_action' => 'SELL'
'weekly_sma21' => '$0.0014049'
'weekly_sma21_action' => 'SELL'
'weekly_sma50' => '$0.001778'
'weekly_sma50_action' => 'SELL'
'weekly_sma100' => '$0.002569'
'weekly_sma100_action' => 'SELL'
'weekly_sma200' => '$0.010834'
'weekly_sma200_action' => 'SELL'
'weekly_ema3' => '$0.001217'
'weekly_ema3_action' => 'SELL'
'weekly_ema5' => '$0.001266'
'weekly_ema5_action' => 'SELL'
'weekly_ema10' => '$0.001353'
'weekly_ema10_action' => 'SELL'
'weekly_ema21' => '$0.001441'
'weekly_ema21_action' => 'SELL'
'weekly_ema50' => '$0.001872'
'weekly_ema50_action' => 'SELL'
'weekly_ema100' => '$0.006374'
'weekly_ema100_action' => 'SELL'
'weekly_ema200' => '$0.02195'
'weekly_ema200_action' => 'SELL'
'rsi_14' => '33.38'
'rsi_14_action' => 'NEUTRAL'
'stoch_rsi_14' => 16.87
'stoch_rsi_14_action' => 'BUY'
'momentum_10' => -0
'momentum_10_action' => 'BUY'
'vwma_10' => '0.0012057'
'vwma_10_action' => 'BUY'
'hma_9' => '0.001182'
'hma_9_action' => 'BUY'
'stochastic_fast_14' => 6.98
'stochastic_fast_14_action' => 'BUY'
'cci_20' => -58.85
'cci_20_action' => 'NEUTRAL'
'adx_14' => 29.95
'adx_14_action' => 'BUY'
'ao_5_34' => '-0.000363'
'ao_5_34_action' => 'SELL'
'macd_12_26' => -0
'macd_12_26_action' => 'NEUTRAL'
'williams_percent_r_14' => -93.02
'williams_percent_r_14_action' => 'BUY'
'ultimate_oscillator' => 40.65
'ultimate_oscillator_action' => 'NEUTRAL'
'ichimoku_cloud' => '0.000170'
'ichimoku_cloud_action' => 'NEUTRAL'
'sell_signals' => 21
'buy_signals' => 13
'sell_pct' => 61.76
'buy_pct' => 38.24
'overall_action' => 'bearish'
'overall_action_label' => 'Baixista'
'overall_action_dir' => -1
'last_updated' => 1767712435
'last_updated_date' => '6 de janeiro de 2026'
]
Previsão de preço de KCCPad para 2026
A previsão de preço para KCCPad em 2026 sugere que o preço médio poderia variar entre $0.000417 na extremidade inferior e $0.001246 na extremidade superior. No mercado de criptomoedas, comparado ao preço médio de hoje, KCCPad poderia potencialmente ganhar 3.13% até 2026 se KCCPAD atingir a meta de preço prevista.
Previsão de preço de KCCPad 2027-2032
A previsão de preço de KCCPAD para 2027-2032 está atualmente dentro de uma faixa de preço entre $0.000728 na extremidade inferior e $0.00454 na extremidade superior. Considerando a volatilidade de preços no mercado, se KCCPad atingir a meta de preço superior, poderia ganhar 275.71% até 2032 em comparação com o preço de hoje.
| Previsão de Preço de KCCPad | Potencial Mínimo ($) | Preço Médio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2027 | $0.0004019 | $0.000728 | $0.001056 |
| 2028 | $0.000725 | $0.001251 | $0.001776 |
| 2029 | $0.001593 | $0.003417 | $0.005242 |
| 2030 | $0.001355 | $0.002636 | $0.003918 |
| 2031 | $0.0016023 | $0.002589 | $0.003577 |
| 2032 | $0.002445 | $0.00454 | $0.006635 |
Previsão de preço de KCCPad 2032-2037
A previsão de preço de KCCPad para 2032-2037 é atualmente estimada entre $0.00454 na extremidade inferior e $0.0414078 na extremidade superior. Comparado ao preço atual, KCCPad poderia potencialmente ganhar 3326.16% até 2037 se atingir a meta de preço superior. Por favor, note que esta informação é apenas para fins gerais e não deve ser considerada como aconselhamento de investimento a longo prazo.
| Previsão de Preço de KCCPad | Potencial Mínimo ($) | Preço Médio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2032 | $0.002445 | $0.00454 | $0.006635 |
| 2033 | $0.005683 | $0.011679 | $0.017674 |
| 2034 | $0.004569 | $0.0074028 | $0.010236 |
| 2035 | $0.0054025 | $0.008731 | $0.01206 |
| 2036 | $0.008942 | $0.016948 | $0.024953 |
| 2037 | $0.023224 | $0.0414078 | $0.059591 |
KCCPad Histograma de preços potenciais
Previsão de preço de KCCPad baseada na análise técnica
Em 6 de janeiro de 2026, o sentimento geral de previsão de preço para KCCPad é Baixista, com 13 indicadores técnicos mostrando sinais de alta e 21 indicando sinais de baixa. A previsão de preço de KCCPAD foi atualizada pela última vez em 6 de janeiro de 2026.
Médias Móveis Simples de 50 e 200 dias e Índice de Força Relativa de 14 dias - RSI (14) de KCCPad
De acordo com nossos indicadores técnicos, o SMA de 200 dias de KCCPad está projetado para aumentar no próximo mês, alcançando $0.001656 até 4 de fev. de 2026. O SMA de 50 dias de curto prazo para KCCPad é esperado para alcançar $0.001221 até 4 de fev. de 2026.
O oscilador de momentum Índice de Força Relativa (RSI) é uma ferramenta comumente usada para identificar se uma criptomoeda está sobrevendida (abaixo de 30) ou sobrecomprada (acima de 70). No momento, o RSI está em 33.38, sugerindo que o mercado de KCCPAD está em um estado NEUTRAL.
Médias Móveis e Osciladores Populares de KCCPAD para Sábado, 19 de Outubro de 2024
Médias móveis (MA) são indicadores amplamente utilizados nos mercados financeiros, projetados para suavizar movimentos de preços ao longo de um período definido. Como indicadores atrasados, eles se baseiam em dados históricos de preços. A tabela abaixo destaca dois tipos: a média móvel simples (SMA) e a média móvel exponencial (EMA).
Média Móvel Simples Diária (SMA)
| Período | Valor | Ação |
|---|---|---|
| SMA 3 | $0.001192 | BUY |
| SMA 5 | $0.001185 | BUY |
| SMA 10 | $0.001194 | BUY |
| SMA 21 | $0.001396 | SELL |
| SMA 50 | $0.001529 | SELL |
| SMA 100 | $0.001392 | SELL |
| SMA 200 | $0.001873 | SELL |
Média Móvel Exponencial Diária (EMA)
| Período | Valor | Ação |
|---|---|---|
| EMA 3 | $0.001197 | BUY |
| EMA 5 | $0.001199 | BUY |
| EMA 10 | $0.001243 | SELL |
| EMA 21 | $0.001355 | SELL |
| EMA 50 | $0.001454 | SELL |
| EMA 100 | $0.001552 | SELL |
| EMA 200 | $0.001827 | SELL |
Média Móvel Simples Semanal (SMA)
| Período | Valor | Ação |
|---|---|---|
| SMA 21 | $0.0014049 | SELL |
| SMA 50 | $0.001778 | SELL |
| SMA 100 | $0.002569 | SELL |
| SMA 200 | $0.010834 | SELL |
Média Móvel Exponencial Semanal (EMA)
| Período | Valor | Ação |
|---|---|---|
| EMA 21 | $0.001441 | SELL |
| EMA 50 | $0.001872 | SELL |
| EMA 100 | $0.006374 | SELL |
| EMA 200 | $0.02195 | SELL |
Osciladores de KCCPad
Um oscilador é uma ferramenta de análise técnica que define limites altos e baixos entre dois extremos, criando um indicador de tendência que flutua dentro desses limites. Os traders usam esse indicador para identificar condições de sobrecompra ou sobrevenda de curto prazo.
| Período | Valor | Ação |
|---|---|---|
| RSI (14) | 33.38 | NEUTRAL |
| Stoch RSI (14) | 16.87 | BUY |
| Estocástico Rápido (14) | 6.98 | BUY |
| Índice de Canal de Commodities (20) | -58.85 | NEUTRAL |
| Índice Direcional Médio (14) | 29.95 | BUY |
| Oscilador Impressionante (5, 34) | -0.000363 | SELL |
| Momentum (10) | -0 | BUY |
| MACD (12, 26) | -0 | NEUTRAL |
| Williams Percent Range (14) | -93.02 | BUY |
| Oscilador Ultimate (7, 14, 28) | 40.65 | NEUTRAL |
| VWMA (10) | 0.0012057 | BUY |
| Média Móvel de Hull (9) | 0.001182 | BUY |
| Nuvem Ichimoku B/L (9, 26, 52, 26) | 0.000170 | NEUTRAL |
Previsão do preço de KCCPad com base nos fluxos financeiros mundiais
Definições dos fluxos financeiros mundiais, usadas na previsão do preço do KCCPad
M0: o total de todas as moedas físicas, mais as contas no Banco Central que podem ser trocadas por moedas físicas.
M1: o valor de M0, mais o valor em contas de demanda, incluindo contas 'correntes'.
M2: o valor de M1, mais a maioria das contas de poupança, do mercado de moedas e de certificados de depósito (CD) de menos de US$ 100.000.
Previsões de preço de KCCPad por empresas de Internet ou nichos tecnológicos
| Comparação | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Facebook stock | $0.001698 | $0.002386 | $0.003353 | $0.004711 | $0.00662 | $0.0093034 |
| Amazon.com stock | $0.002521 | $0.005261 | $0.010979 | $0.0229085 | $0.04780014 | $0.099737 |
| Apple stock | $0.001714 | $0.002431 | $0.003449 | $0.004892 | $0.006939 | $0.009842 |
| Netflix stock | $0.0019069 | $0.0030088 | $0.004747 | $0.00749 | $0.011819 | $0.018649 |
| Google stock | $0.001565 | $0.002026 | $0.002624 | $0.003398 | $0.0044016 | $0.00570013 |
| Tesla stock | $0.002739 | $0.00621 | $0.014079 | $0.031917 | $0.072353 | $0.16402 |
| Kodak stock | $0.0009063 | $0.000679 | $0.0005096 | $0.000382 | $0.000286 | $0.000214 |
| Nokia stock | $0.00080063 | $0.00053 | $0.000351 | $0.000232 | $0.000154 | $0.0001021 |
Este cálculo mostra quanto a criptomoeda pode custar, se assumirmos que sua capitalização se comportará da mesma forma que a de algumas empresas de Internet ou nichos tecnológicos. Se você extrapolar os dados, poderá obter uma imagem em potencial do preço futuro para 2024, 2025, 2026, 2027, 2028, 2029 e 2030.
Visão geral da previsão para KCCPad
Você pode fazer perguntas como: 'Devo investir em KCCPad agora?', 'Devo comprar KCCPAD hoje?', 'KCCPad será um bom ou mau investimento no curto ou no longo prazo?'.
Atualizamos a previsão para KCCPad regularmente com novos valores. Veja nossas previsões semelhantes. Fazemos previsões de preços futuros para uma enorme quantidade de moedas digitais, como KCCPad, com métodos de análise técnica.
Se você estiver tentando encontrar criptomoedas com bom retorno, você deve explorar o máximo de fontes de informações disponíveis sobre KCCPad para poder tomar sozinho uma decisão de tão grande responsabilidade sobre o seu investimento.
O preço de KCCPad é de $0.001208 USD hoje, mas o preço pode tanto subir quanto descer e seu investimento pode ser perdido, porque criptomoedas são ativos de alto risco
Previsão do preço de KCCPad com base no padrão de crescimento do Bitcoin
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| Se KCCPad tiver 1% da média anterior do crescimento anual do Bitcoin | $0.001239 | $0.001272 | $0.0013052 | $0.001339 |
| Se KCCPad tiver 2% da média anterior do crescimento anual do Bitcoin | $0.001271 | $0.001337 | $0.001407 | $0.00148 |
| Se KCCPad tiver 5% da média anterior do crescimento anual do Bitcoin | $0.001365 | $0.001543 | $0.001743 | $0.00197 |
| Se KCCPad tiver 10% da média anterior do crescimento anual do Bitcoin | $0.001522 | $0.001918 | $0.002417 | $0.003045 |
| Se KCCPad tiver 20% da média anterior do crescimento anual do Bitcoin | $0.001836 | $0.002791 | $0.004243 | $0.006449 |
| Se KCCPad tiver 50% da média anterior do crescimento anual do Bitcoin | $0.002779 | $0.006391 | $0.014698 | $0.033801 |
| Se KCCPad tiver 100% da média anterior do crescimento anual do Bitcoin | $0.00435 | $0.015657 | $0.056355 | $0.202841 |
Perguntas Frequentes sobre KCCPad
KCCPAD é um bom investimento?
A decisão de adquirir KCCPad depende inteiramente da sua tolerância individual ao risco. Como você pode perceber, o valor de KCCPad experimentou uma escalada de 0.1199% nas últimas 24 horas, e KCCPad registrou um declínio de durante os últimos 30 dias. Consequentemente, a decisão de investir ou não em KCCPad dependerá de quão alinhado esse investimento está com suas aspirações de negociação.
KCCPad pode subir?
Parece que o valor médio de KCCPad pode potencialmente subir para $0.001246 até o final deste ano. Observando as perspectivas de KCCPad em um horizonte de cinco anos mais longo, a moeda digital poderia potencialmente crescer até $0.003918. No entanto, dada a imprevisibilidade do mercado, é vital conduzir uma pesquisa aprofundada antes de investir quaisquer fundos em um projeto, rede ou ativo específico.
Qual será o preço de KCCPad na próxima semana?
Com base na nossa nova previsão experimental de KCCPad, o preço de KCCPad aumentará 0.86% na próxima semana e atingirá $0.001218 até 13 de janeiro de 2026.
Qual será o preço de KCCPad no próximo mês?
Com base na nossa nova previsão experimental de KCCPad, o preço de KCCPad diminuirá -11.62% no próximo mês e atingirá $0.0010681 até 5 de fevereiro de 2026.
Até onde o preço de KCCPad pode subir este ano em 2026?
De acordo com nossa previsão mais recente sobre o valor de KCCPad em 2026, espera-se que KCCPAD fluctue dentro do intervalo de $0.000417 e $0.001246. No entanto, é crucial lembrar que o mercado de criptomoedas é excepcionalmente instável, e essa previsão de preço de KCCPad não considera flutuações repentinas e extremas de preço.
Onde estará KCCPad em 5 anos?
O futuro de KCCPad parece seguir uma tendência de alta, com um preço máximo de $0.003918 projetada após um período de cinco anos. Com base na previsão de KCCPad para 2030, o valor de KCCPad pode potencialmente atingir seu pico mais alto de aproximadamente $0.003918, enquanto seu pico mais baixo está previsto para cerca de $0.001355.
Quanto será KCCPad em 2026?
Com base na nossa nova simulação experimental de previsão de preços de KCCPad, espera-se que o valor de KCCPAD em 2026 aumente 3.13% para $0.001246 se o melhor cenário ocorrer. O preço ficará entre $0.001246 e $0.000417 durante 2026.
Quanto será KCCPad em 2027?
De acordo com nossa última simulação experimental para previsão de preços de KCCPad, o valor de KCCPAD pode diminuir -12.62% para $0.001056 em 2027, assumindo as condições mais favoráveis. O preço está projetado para flutuar entre $0.001056 e $0.0004019 ao longo do ano.
Quanto será KCCPad em 2028?
Nosso novo modelo experimental de previsão de preços de KCCPad sugere que o valor de KCCPAD em 2028 pode aumentar 47.02%, alcançando $0.001776 no melhor cenário. O preço é esperado para variar entre $0.001776 e $0.000725 durante o ano.
Quanto será KCCPad em 2029?
Com base no nosso modelo de previsão experimental, o valor de KCCPad pode experimentar um 333.75% crescimento em 2029, potencialmente alcançando $0.005242 sob condições ótimas. A faixa de preço prevista para 2029 está entre $0.005242 e $0.001593.
Quanto será KCCPad em 2030?
Usando nossa nova simulação experimental para previsões de preços de KCCPad, espera-se que o valor de KCCPAD em 2030 aumente 224.23%, alcançando $0.003918 no melhor cenário. O preço está previsto para variar entre $0.003918 e $0.001355 ao longo de 2030.
Quanto será KCCPad em 2031?
Nossa simulação experimental indica que o preço de KCCPad poderia aumentar 195.98% em 2031, potencialmente atingindo $0.003577 sob condições ideais. O preço provavelmente oscilará entre $0.003577 e $0.0016023 durante o ano.
Quanto será KCCPad em 2032?
Com base nos achados da nossa mais recente previsão experimental de preços de KCCPad, KCCPAD poderia ver um 449.04% aumento em valor, atingindo $0.006635 se o cenário mais positivo se desenrolar em 2032. O preço é esperado para permanecer dentro de uma faixa de $0.006635 e $0.002445 ao longo do ano.
Quanto será KCCPad em 2033?
De acordo com nossa previsão experimental de preços de KCCPad, espera-se que o valor de KCCPAD seja aumentar 1362.43% em 2033, com o preço potencial mais alto sendo $0.017674. Ao longo do ano, o preço de KCCPAD poderia variar entre $0.017674 e $0.005683.
Quanto será KCCPad em 2034?
Os resultados da nossa nova simulação de previsão de preços de KCCPad sugerem que KCCPAD pode aumentar 746.96% em 2034, atingindo potencialmente $0.010236 nas melhores circunstâncias. A faixa de preço prevista para o ano é entre $0.010236 e $0.004569.
Quanto será KCCPad em 2035?
Com base em nossa previsão experimental para o preço de KCCPad, KCCPAD poderia aumentar 897.93%, com o valor potencialmente atingindo $0.01206 em 2035. A faixa de preço esperada para o ano está entre $0.01206 e $0.0054025.
Quanto será KCCPad em 2036?
Nossa recente simulação de previsão de preços de KCCPad sugere que o valor de KCCPAD pode aumentar 1964.7% em 2036, possivelmente atingindo $0.024953 se as condições forem ideais. A faixa de preço esperada para 2036 está entre $0.024953 e $0.008942.
Quanto será KCCPad em 2037?
De acordo com a simulação experimental, o valor de KCCPad poderia aumentar 4830.69% em 2037, com um pico de $0.059591 sob condições favoráveis. O preço é esperado para cair entre $0.059591 e $0.023224 ao longo do ano.
Previsões relacionadas
Previsão de Preço do iETH v1
Previsão de Preço do Traxx
Previsão de Preço do Sao Paulo FC Fan Token
Previsão de Preço do Curate
Previsão de Preço do EGG
Previsão de Preço do Nifty League
Previsão de Preço do Signals
Previsão de Preço do Points
Previsão de Preço do DAOhaus
Previsão de Preço do Teh Fund
Previsão de Preço do Intrepid Token
Previsão de Preço do Sync NetworkPrevisão de Preço do DogemonGo
Previsão de Preço do VeroxPrevisão de Preço do Kuma Inu
Previsão de Preço do Myriad
Previsão de Preço do GUS
Previsão de Preço do Etica
Previsão de Preço do Liquidus
Previsão de Preço do Coin of the champions
Previsão de Preço do Dash Diamond
Previsão de Preço do sEUR
Previsão de Preço do Shill Guard Token
Previsão de Preço do Privapp Network
Previsão de Preço do Meme Alliance
Como ler e prever os movimentos de preço de KCCPad?
Traders de KCCPad utilizam indicadores e padrões de gráfico para prever a direção do mercado. Eles também identificam níveis-chave de suporte e resistência para avaliar quando uma tendência de baixa pode desacelerar ou uma tendência de alta pode estagnar.
Indicadores de Previsão de Preço de KCCPad
Médias móveis são ferramentas populares para a previsão de preço de KCCPad. Uma média móvel simples (SMA) calcula o preço médio de fechamento de KCCPAD em um período específico, como uma SMA de 12 dias. Uma média móvel exponencial (EMA) dá mais peso aos preços recentes, reagindo mais rapidamente às mudanças de preço.
Médias móveis comumente usadas no mercado de criptomoedas incluem as de 50 dias, 100 dias e 200 dias, que ajudam a identificar níveis-chave de resistência e suporte. Um movimento de preço de KCCPAD acima dessas médias é visto como altista, enquanto uma queda abaixo indica fraqueza.
Traders também usam RSI e níveis de retração de Fibonacci para avaliar a direção futura de KCCPAD.
Como ler gráficos de KCCPad e prever movimentos de preço?
A maioria dos traders prefere gráficos de velas em vez de gráficos de linha simples porque eles fornecem informações mais detalhadas. Velas podem representar a ação de preço de KCCPad em diferentes períodos de tempo, como 5 minutos para tendências de curto prazo e semanal para tendências de longo prazo. Opções populares incluem gráficos de 1 hora, 4 horas e 1 dia.
Por exemplo, um gráfico de velas de 1 hora mostra os preços de abertura, fechamento, máximo e mínimo de KCCPAD dentro de cada hora. A cor da vela é crucial: verde indica que o preço fechou mais alto do que abriu, enquanto vermelho significa o oposto. Alguns gráficos usam velas vazias e preenchidas para transmitir a mesma informação.
O que afeta o preço de KCCPad?
A ação de preço de KCCPad é impulsionada pela oferta e demanda, influenciada por fatores como reduções pela metade das recompensas de bloco, hard forks e atualizações de protocolo. Eventos do mundo real, como regulamentações, adoção por empresas e governos e hacks de exchanges de criptomoedas, também impactam o preço de KCCPAD. A capitalização de mercado de KCCPad pode mudar rapidamente.
Traders frequentemente monitoram a atividade de "baleias" de KCCPAD, grandes detentores de KCCPad, pois suas ações podem influenciar significativamente os movimentos de preço no relativamente pequeno mercado de KCCPad.
Padrões de previsão de preço altistas e baixistas
Traders frequentemente identificam padrões de velas para ganhar vantagem em previsões de preço de criptomoedas. Certas formações indicam tendências altistas, enquanto outras sugerem movimentos baixistas.
Padrões de velas altistas comumente seguidos:
- Martelo
- Engolfo de Alta
- Linha de Perfuração
- Estrela da Manhã
- Três Soldados Brancos
Padrões de velas baixistas comuns:
- Harami de Baixa
- Nuvem Negra
- Estrela da Noite
- Estrela Cadente
- Homem Enforcado


