Previsão de Preço Privapp Network - Projeção BPRIVA
Previsão de Preço Privapp Network até $0.013716 até 2026
| Ano | Preço Mínimo | Preço Máximo |
|---|---|---|
| 2026 | $0.004595 | $0.013716 |
| 2027 | $0.004423 | $0.01162 |
| 2028 | $0.007983 | $0.019553 |
| 2029 | $0.017537 | $0.057689 |
| 2030 | $0.014914 | $0.043122 |
| 2031 | $0.017633 | $0.039366 |
| 2032 | $0.026916 | $0.073022 |
| 2033 | $0.062548 | $0.1945045 |
| 2034 | $0.050285 | $0.112646 |
| 2035 | $0.059453 | $0.132725 |
Calculadora de lucro do investimento
Se você abrir um short de $10,000.00 em Privapp Network hoje e fechar em Apr 06, 2026, nossa previsão mostra que pode lucrar cerca de $3,954.47, com um retorno de 39.54% nos próximos 90 dias.
Previsão de preço de longo prazo de Privapp Network para os anos 2027, 2028, 2029, 2030, 2031, 2032 e 2037
[
'name' => 'Privapp Network'
'name_with_ticker' => 'Privapp Network <small>BPRIVA</small>'
'name_lang' => 'Privapp Network'
'name_lang_with_ticker' => 'Privapp Network <small>BPRIVA</small>'
'name_with_lang' => 'Privapp Network'
'name_with_lang_with_ticker' => 'Privapp Network <small>BPRIVA</small>'
'image' => '/uploads/coins/privapp-network.png?1718416732'
'price_for_sd' => 0.0133
'ticker' => 'BPRIVA'
'marketcap' => '$42.69K'
'low24h' => '$2.71'
'high24h' => '$2.97'
'volume24h' => '$26.98'
'current_supply' => '3.21M'
'max_supply' => '10M'
'algo' => null
'proof' => null
'ico_price_and_roi' => '—'
'price' => '$0.0133'
'change_24h_pct' => '-2.9355%'
'ath_price' => '$4.78'
'ath_days' => 575
'ath_exchange' => null
'ath_pair' => null
'ath_date' => '10 de jun. de 2024'
'ath_pct' => '-99.72%'
'fdv' => '$133K'
'new_prediction' => true
'change_24h_pct_is_increased' => false
'change_30d_pct' => null
'change_30d_pct_is_increased' => false
'max_price' => '$0.655785'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.013413'
'next_week_prediction_price_date' => '13 de janeiro de 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.011754'
'next_month_prediction_price_date' => '5 de fevereiro de 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.004595'
'current_year_max_price_prediction' => '$0.013716'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.014914'
'grand_prediction_max_price' => '$0.043122'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.013552109520158
107 => 0.01360270817769
108 => 0.013716709536743
109 => 0.012742580405424
110 => 0.013179935786457
111 => 0.013436841098157
112 => 0.012276133553602
113 => 0.01341389764196
114 => 0.012725622984489
115 => 0.012492012228205
116 => 0.012806538335665
117 => 0.012683967205701
118 => 0.012578587745776
119 => 0.012519784196489
120 => 0.012750737456828
121 => 0.012739963211185
122 => 0.012362078851174
123 => 0.011869144108077
124 => 0.012034589187892
125 => 0.011974481439339
126 => 0.011756643204531
127 => 0.011903439872903
128 => 0.011257021637487
129 => 0.010144892661348
130 => 0.010879599128417
131 => 0.010851313728642
201 => 0.010837050947434
202 => 0.011389162551641
203 => 0.011336089760279
204 => 0.011239762124265
205 => 0.011754874071955
206 => 0.011566851281815
207 => 0.012146293217285
208 => 0.012527951151941
209 => 0.012431150354372
210 => 0.012790101486628
211 => 0.012038400708379
212 => 0.012288085553913
213 => 0.012339545254529
214 => 0.011748517670479
215 => 0.011344773125308
216 => 0.01131784796717
217 => 0.010617810565268
218 => 0.01099176489486
219 => 0.011320829229618
220 => 0.011163232949693
221 => 0.011113342675523
222 => 0.011368221266375
223 => 0.011388027515771
224 => 0.010936442930555
225 => 0.011030341665646
226 => 0.011421915000339
227 => 0.011020475022285
228 => 0.010240542719775
301 => 0.010047108725345
302 => 0.010021301064792
303 => 0.0094966927304543
304 => 0.010060034909794
305 => 0.0098141209518802
306 => 0.010590960198427
307 => 0.010147233787072
308 => 0.010128105628343
309 => 0.010099190610934
310 => 0.0096476385462717
311 => 0.0097464997508019
312 => 0.010075129451647
313 => 0.010192388231187
314 => 0.010180157179808
315 => 0.01007351898683
316 => 0.010122337405499
317 => 0.0099650762694995
318 => 0.0099095440892705
319 => 0.0097342692531382
320 => 0.009476663664933
321 => 0.0095124853019598
322 => 0.0090021012255566
323 => 0.0087240168925989
324 => 0.0086470468143289
325 => 0.0085441192088651
326 => 0.0086586727612459
327 => 0.0090006553715945
328 => 0.008588151787856
329 => 0.0078809433272983
330 => 0.0079234477608024
331 => 0.0080189426032065
401 => 0.007840988596148
402 => 0.0076725700630149
403 => 0.0078189963133467
404 => 0.007519342765644
405 => 0.0080551543028347
406 => 0.0080406621023481
407 => 0.0082403795090496
408 => 0.0083652669020738
409 => 0.0080774418939267
410 => 0.0080050546827392
411 => 0.0080462897280469
412 => 0.0073647662813095
413 => 0.008184684503586
414 => 0.0081917751904201
415 => 0.0081310604248658
416 => 0.0085676415660929
417 => 0.009488963947155
418 => 0.0091423254072925
419 => 0.0090080964874525
420 => 0.0087529272127157
421 => 0.0090929251208501
422 => 0.009066818586299
423 => 0.0089487549364496
424 => 0.0088773496726397
425 => 0.0090089160606144
426 => 0.0088610471411889
427 => 0.0088344858200939
428 => 0.0086735531132607
429 => 0.0086161074588929
430 => 0.0085735769833763
501 => 0.0085267551087908
502 => 0.0086300324968422
503 => 0.0083959923482457
504 => 0.008113762872277
505 => 0.0080902985451154
506 => 0.0081550856154132
507 => 0.0081264221596366
508 => 0.0080901613155168
509 => 0.0080209294890389
510 => 0.0080003898850268
511 => 0.0080671336336668
512 => 0.0079917838328545
513 => 0.0081029665684691
514 => 0.0080727310164033
515 => 0.0079038376804001
516 => 0.0076933340514184
517 => 0.0076914601275742
518 => 0.0076461074660052
519 => 0.0075883440326788
520 => 0.0075722755669757
521 => 0.0078066647029598
522 => 0.0082918431997701
523 => 0.0081965910515088
524 => 0.0082654204904604
525 => 0.0086039932071028
526 => 0.0087116152924866
527 => 0.0086352276854499
528 => 0.0085306636175558
529 => 0.0085352639058715
530 => 0.0088925909795617
531 => 0.0089148770308415
601 => 0.0089711866926728
602 => 0.0090435605212345
603 => 0.0086475532614073
604 => 0.008516611999546
605 => 0.0084545647653315
606 => 0.0082634832992524
607 => 0.0084695482783319
608 => 0.0083494830396045
609 => 0.0083656839423214
610 => 0.0083551330831735
611 => 0.0083608945657142
612 => 0.0080550045325901
613 => 0.0081664547835537
614 => 0.0079811471251951
615 => 0.0077330409724137
616 => 0.0077322092335924
617 => 0.0077929328629939
618 => 0.00775681207211
619 => 0.007659611952592
620 => 0.0076734187707979
621 => 0.0075524565150973
622 => 0.0076881057787323
623 => 0.0076919957142369
624 => 0.0076397633588721
625 => 0.007848749765493
626 => 0.0079343716668023
627 => 0.0078999912115757
628 => 0.0079319594424123
629 => 0.0082005492083067
630 => 0.0082443410595406
701 => 0.0082637905071314
702 => 0.0082377308239178
703 => 0.0079368687702757
704 => 0.0079502132817189
705 => 0.0078523001109707
706 => 0.0077695737995242
707 => 0.0077728824181397
708 => 0.0078154144958909
709 => 0.0080011545739039
710 => 0.0083920336181065
711 => 0.0084068671921052
712 => 0.0084248459165174
713 => 0.00835171740895
714 => 0.0083296611513221
715 => 0.0083587590483364
716 => 0.0085055526658951
717 => 0.0088831457043346
718 => 0.008749679105959
719 => 0.0086411686839483
720 => 0.0087363615782514
721 => 0.00872170737832
722 => 0.0085980111834334
723 => 0.0085945394432259
724 => 0.0083571268971729
725 => 0.0082693608845192
726 => 0.0081960170351736
727 => 0.0081159274663778
728 => 0.0080684476853691
729 => 0.0081413982081731
730 => 0.0081580828558636
731 => 0.0079985752627956
801 => 0.0079768349672613
802 => 0.0081070923109711
803 => 0.0080497709104877
804 => 0.0081087273923872
805 => 0.0081224058019072
806 => 0.008120203262934
807 => 0.0080603531375084
808 => 0.0080984998226983
809 => 0.00800827154015
810 => 0.0079101618347287
811 => 0.0078475739551205
812 => 0.0077929577290848
813 => 0.0078232619856031
814 => 0.0077152328444541
815 => 0.0076806721480035
816 => 0.0080855765840835
817 => 0.0083846838444721
818 => 0.0083803347064466
819 => 0.0083538604472237
820 => 0.0083145250681258
821 => 0.0085026750379092
822 => 0.0084371273506141
823 => 0.0084848187698138
824 => 0.0084969582376027
825 => 0.0085337007504259
826 => 0.0085468330406345
827 => 0.0085071381386621
828 => 0.0083739171993188
829 => 0.008041943284742
830 => 0.00788740853136
831 => 0.0078364094887641
901 => 0.0078382632071015
902 => 0.0077871293799931
903 => 0.0078021905837339
904 => 0.0077818917079757
905 => 0.007743450548115
906 => 0.0078208883523061
907 => 0.007829812337856
908 => 0.007811737429045
909 => 0.0078159947243912
910 => 0.0076663421993303
911 => 0.0076777199557825
912 => 0.0076143671620413
913 => 0.0076024892769442
914 => 0.0074423389311254
915 => 0.0071586093793435
916 => 0.0073158230933247
917 => 0.0071259310344289
918 => 0.0070540160343909
919 => 0.0073944504594939
920 => 0.0073602802853946
921 => 0.0073017958007544
922 => 0.0072152850587369
923 => 0.0071831973830003
924 => 0.0069882428229478
925 => 0.0069767238674978
926 => 0.0070733486116757
927 => 0.0070287596168921
928 => 0.0069661397810429
929 => 0.0067393370832684
930 => 0.0064843357591773
1001 => 0.0064920326462704
1002 => 0.0065731438229955
1003 => 0.0068089855086562
1004 => 0.006716838081966
1005 => 0.0066499840666323
1006 => 0.0066374643191847
1007 => 0.0067941751703589
1008 => 0.0070159538567088
1009 => 0.0071200074543257
1010 => 0.0070168934992421
1011 => 0.0068984417396916
1012 => 0.0069056513494428
1013 => 0.0069536136531557
1014 => 0.0069586538131255
1015 => 0.0068815538946958
1016 => 0.0069032570701184
1017 => 0.0068702879620715
1018 => 0.0066679566068438
1019 => 0.0066642970742274
1020 => 0.0066146416966207
1021 => 0.0066131381515211
1022 => 0.0065286619670976
1023 => 0.0065168431649405
1024 => 0.0063491105734299
1025 => 0.0064595126731032
1026 => 0.0063854607410127
1027 => 0.0062738470122675
1028 => 0.006254604763362
1029 => 0.0062540263181242
1030 => 0.0063686286611726
1031 => 0.006458173478
1101 => 0.0063867489060758
1102 => 0.0063704869155559
1103 => 0.0065441224294726
1104 => 0.0065220257276039
1105 => 0.006502890126294
1106 => 0.0069960960078361
1107 => 0.0066056850672606
1108 => 0.0064354436132923
1109 => 0.0062247374860312
1110 => 0.00629334446354
1111 => 0.0063078009617473
1112 => 0.0058010907083185
1113 => 0.0055955184216092
1114 => 0.0055249737596388
1115 => 0.0054843743093197
1116 => 0.0055028759886459
1117 => 0.0053178368193833
1118 => 0.0054421862013931
1119 => 0.0052819579217833
1120 => 0.0052550951292788
1121 => 0.0055416031416962
1122 => 0.0055814690578685
1123 => 0.005411388674108
1124 => 0.0055206078139952
1125 => 0.0054810034356125
1126 => 0.0052847045757542
1127 => 0.0052772074031843
1128 => 0.0051787115355459
1129 => 0.0050245845752501
1130 => 0.0049541444186165
1201 => 0.0049174585734522
1202 => 0.0049325958681599
1203 => 0.0049249419887468
1204 => 0.0048749952482931
1205 => 0.004927804877444
1206 => 0.0047928980974088
1207 => 0.004739177130581
1208 => 0.0047149126161818
1209 => 0.004595175083956
1210 => 0.0047857307452495
1211 => 0.0048232726110813
1212 => 0.0048608884459861
1213 => 0.0051883086074108
1214 => 0.0051719516214258
1215 => 0.005319810808555
1216 => 0.0053140652724387
1217 => 0.0052718934371094
1218 => 0.0050939774007854
1219 => 0.0051648915618158
1220 => 0.0049466287966719
1221 => 0.0051101661007431
1222 => 0.0050355345046461
1223 => 0.00508493308303
1224 => 0.0049961099850054
1225 => 0.0050452683548681
1226 => 0.0048321751801815
1227 => 0.004633191771961
1228 => 0.0047132685041167
1229 => 0.0048003210698551
1230 => 0.0049890732129571
1231 => 0.0048766539936969
]
'min_raw' => 0.004595175083956
'max_raw' => 0.013716709536743
'avg_raw' => 0.0091559423103493
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.004595'
'max' => '$0.013716'
'avg' => '$0.009155'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.008704904916044
'max_diff' => 0.0004166295367427
'year' => 2026
]
1 => [
'items' => [
101 => 0.0049170841959842
102 => 0.0047816497862559
103 => 0.0045022099140598
104 => 0.0045037915133894
105 => 0.0044608057769806
106 => 0.0044236598247031
107 => 0.0048895666933653
108 => 0.0048316238093495
109 => 0.0047392994070475
110 => 0.0048628792883546
111 => 0.0048955557704487
112 => 0.0048964860239562
113 => 0.0049866467152994
114 => 0.0050347654924315
115 => 0.0050432466354598
116 => 0.0051851164313391
117 => 0.00523266931561
118 => 0.0054285329159857
119 => 0.0050306829503791
120 => 0.0050224894921498
121 => 0.0048646183107153
122 => 0.0047644939116049
123 => 0.0048714739139826
124 => 0.0049662435918625
125 => 0.0048675630687765
126 => 0.004880448661832
127 => 0.0047479781220839
128 => 0.0047953301067256
129 => 0.0048361160149002
130 => 0.0048135964336911
131 => 0.0047798835306609
201 => 0.0049584735590155
202 => 0.0049483968097158
203 => 0.0051147039498866
204 => 0.0052443522583875
205 => 0.0054767052046282
206 => 0.005234232792393
207 => 0.0052253961339506
208 => 0.0053117758876696
209 => 0.0052326560913197
210 => 0.0052826570714903
211 => 0.0054686492737106
212 => 0.0054725789958609
213 => 0.0054067510866833
214 => 0.0054027454524274
215 => 0.0054153884224634
216 => 0.00548943869286
217 => 0.0054635632530485
218 => 0.0054935069670844
219 => 0.0055309520400007
220 => 0.0056858407379646
221 => 0.0057231838786705
222 => 0.0056324594069538
223 => 0.005640650810951
224 => 0.0056067173680865
225 => 0.0055739380874642
226 => 0.0056476211232736
227 => 0.005782278319459
228 => 0.0057814406240303
301 => 0.0058126784761834
302 => 0.0058321393992865
303 => 0.0057485988710617
304 => 0.0056942170590577
305 => 0.0057150705061847
306 => 0.0057484156222696
307 => 0.0057042571344526
308 => 0.0054316904914442
309 => 0.0055143697993084
310 => 0.0055006079196682
311 => 0.0054810093295588
312 => 0.0055641440129564
313 => 0.0055561254699343
314 => 0.0053159389752512
315 => 0.0053313149353577
316 => 0.0053168740383121
317 => 0.0053635355309959
318 => 0.0052301362175848
319 => 0.005271168947932
320 => 0.0052969042917478
321 => 0.0053120626069635
322 => 0.0053668248356768
323 => 0.0053603991202005
324 => 0.0053664254041807
325 => 0.00544762333267
326 => 0.0058582945912051
327 => 0.0058806465217121
328 => 0.0057705774410611
329 => 0.0058145478677645
330 => 0.0057301342637692
331 => 0.0057868016816532
401 => 0.0058255720897732
402 => 0.0056503760705999
403 => 0.0056400020993572
404 => 0.0055552400903906
405 => 0.0056007863928437
406 => 0.0055283189507458
407 => 0.0055460999262331
408 => 0.005496382768653
409 => 0.0055858637537098
410 => 0.0056859173989427
411 => 0.0057111949009667
412 => 0.0056447006757904
413 => 0.0055965544745798
414 => 0.0055120256055985
415 => 0.0056525989985631
416 => 0.0056937069425624
417 => 0.0056523830760334
418 => 0.0056428074332143
419 => 0.005624661607375
420 => 0.005646657155947
421 => 0.005693483059871
422 => 0.0056714008283191
423 => 0.005685986531298
424 => 0.0056304008722541
425 => 0.0057486265264527
426 => 0.0059363973178731
427 => 0.0059370010316711
428 => 0.0059149186810878
429 => 0.005905883059
430 => 0.0059285408907676
501 => 0.0059408318350286
502 => 0.0060141031082292
503 => 0.0060927261036298
504 => 0.0064596253172641
505 => 0.0063566014862465
506 => 0.0066821362955147
507 => 0.0069395920642412
508 => 0.007016791792106
509 => 0.0069457716749983
510 => 0.0067028156908042
511 => 0.0066908951111369
512 => 0.0070539739248936
513 => 0.0069513875299442
514 => 0.0069391852046921
515 => 0.0068093730801644
516 => 0.0068861081233047
517 => 0.0068693250437347
518 => 0.0068428321315772
519 => 0.0069892372484795
520 => 0.0072632945576456
521 => 0.0072205801559189
522 => 0.007188695836494
523 => 0.0070489880301598
524 => 0.0071331233344412
525 => 0.0071031643640922
526 => 0.0072318871131439
527 => 0.0071556346081637
528 => 0.0069506103371059
529 => 0.0069832611280407
530 => 0.0069783260266752
531 => 0.0070798900630725
601 => 0.0070494030603204
602 => 0.0069723729500889
603 => 0.0072623578595567
604 => 0.0072435278525167
605 => 0.0072702244973606
606 => 0.007281977186042
607 => 0.0074584858903278
608 => 0.0075307958588251
609 => 0.0075472114876382
610 => 0.0076159003650569
611 => 0.0075455024457938
612 => 0.007827144315712
613 => 0.0080144197249489
614 => 0.008231949749882
615 => 0.0085498195828679
616 => 0.0086693415805309
617 => 0.008647751001453
618 => 0.0088887562810246
619 => 0.0093218374111684
620 => 0.0087352890801184
621 => 0.0093529258969647
622 => 0.0091573892117111
623 => 0.0086937752485297
624 => 0.0086639239749504
625 => 0.0089778887334856
626 => 0.0096742323499287
627 => 0.0094998061718736
628 => 0.0096745176486695
629 => 0.0094707074306406
630 => 0.0094605865354681
701 => 0.0096646190412928
702 => 0.010141352112385
703 => 0.009914874100381
704 => 0.0095901623354865
705 => 0.00982992444961
706 => 0.00962222031742
707 => 0.00915420477487
708 => 0.0094996727914625
709 => 0.0092686681671298
710 => 0.0093360875973913
711 => 0.0098216249583942
712 => 0.0097632038185458
713 => 0.0098388061831615
714 => 0.0097053699884732
715 => 0.0095807195416777
716 => 0.0093480502260703
717 => 0.0092791683121776
718 => 0.0092982047950659
719 => 0.0092791588786421
720 => 0.0091489825349011
721 => 0.0091208709658645
722 => 0.0090740171192073
723 => 0.0090885390854647
724 => 0.0090004401461728
725 => 0.0091667010467862
726 => 0.0091975605350261
727 => 0.009318551353484
728 => 0.0093311130216279
729 => 0.0096680707288368
730 => 0.0094824800860504
731 => 0.0096069903123567
801 => 0.0095958529457801
802 => 0.0087038231689123
803 => 0.0088267370017193
804 => 0.0090179523530815
805 => 0.0089318100964791
806 => 0.0088100250998271
807 => 0.0087116771853321
808 => 0.0085626700382817
809 => 0.0087723947363264
810 => 0.0090481604125199
811 => 0.0093381068942589
812 => 0.0096864585940222
813 => 0.0096087105498958
814 => 0.0093315947015402
815 => 0.0093440259160642
816 => 0.0094208707927488
817 => 0.0093213496953489
818 => 0.0092919989808431
819 => 0.0094168384552866
820 => 0.0094176981561365
821 => 0.0093031871060516
822 => 0.0091759290291831
823 => 0.0091753958131944
824 => 0.0091527514675829
825 => 0.0094747358094202
826 => 0.0096517946411419
827 => 0.0096720941508543
828 => 0.0096504283224003
829 => 0.0096587666398862
830 => 0.0095557400069325
831 => 0.0097912283382658
901 => 0.010007335718479
902 => 0.0099494143241214
903 => 0.0098625819199673
904 => 0.0097934157276434
905 => 0.0099331209673431
906 => 0.0099269001129357
907 => 0.010005448209041
908 => 0.010001884813686
909 => 0.0099754720433091
910 => 0.0099494152674046
911 => 0.010052727438542
912 => 0.010022975192397
913 => 0.0099931767327961
914 => 0.0099334113601507
915 => 0.009941534466891
916 => 0.0098547170555757
917 => 0.0098145513486068
918 => 0.0092105554868013
919 => 0.0090491480563927
920 => 0.0090999301197504
921 => 0.0091166488935635
922 => 0.0090464041730004
923 => 0.0091471170578997
924 => 0.0091314210614695
925 => 0.0091924850017286
926 => 0.0091543349029428
927 => 0.0091559005963043
928 => 0.0092680919023748
929 => 0.009300661515823
930 => 0.0092840963475542
1001 => 0.0092956980235889
1002 => 0.0095630537510473
1003 => 0.0095250443161576
1004 => 0.0095048525614286
1005 => 0.0095104458154814
1006 => 0.0095787609360185
1007 => 0.0095978854399016
1008 => 0.0095168535730939
1009 => 0.00955506866992
1010 => 0.0097177837019878
1011 => 0.0097747247543383
1012 => 0.0099564532601854
1013 => 0.0098792517609349
1014 => 0.010020958454012
1015 => 0.010456516517158
1016 => 0.010804470436325
1017 => 0.010484477632456
1018 => 0.011123450693341
1019 => 0.011620982876483
1020 => 0.011601886762611
1021 => 0.011515130518353
1022 => 0.010948703355424
1023 => 0.010427468635144
1024 => 0.010863503611454
1025 => 0.01086461515428
1026 => 0.010827159363114
1027 => 0.010594524661049
1028 => 0.010819064179747
1029 => 0.010836887311334
1030 => 0.010826911097199
1031 => 0.010648550616566
1101 => 0.010376227129166
1102 => 0.010429438486754
1103 => 0.010516599775965
1104 => 0.010351585271739
1105 => 0.010298853139057
1106 => 0.010396892206411
1107 => 0.010712794508675
1108 => 0.01065307500833
1109 => 0.01065151549083
1110 => 0.010907020838318
1111 => 0.010724134151022
1112 => 0.010430109652379
1113 => 0.010355864588765
1114 => 0.010092344630404
1115 => 0.01027435880427
1116 => 0.010280909170354
1117 => 0.010181221867467
1118 => 0.010438198727601
1119 => 0.010435830640594
1120 => 0.010679791923333
1121 => 0.011146154268256
1122 => 0.011008227974565
1123 => 0.010847834701341
1124 => 0.010865273897363
1125 => 0.011056538834127
1126 => 0.010940895687206
1127 => 0.010982481769131
1128 => 0.011056475888611
1129 => 0.011101118378064
1130 => 0.01085885053014
1201 => 0.010802366305778
1202 => 0.010686819406002
1203 => 0.010656675376635
1204 => 0.010750785915538
1205 => 0.010725991113511
1206 => 0.010280358637449
1207 => 0.010233787564225
1208 => 0.010235215832552
1209 => 0.010118110654596
1210 => 0.00993949714975
1211 => 0.010408882776027
1212 => 0.01037118454119
1213 => 0.010329568607541
1214 => 0.010334666321955
1215 => 0.010538410713367
1216 => 0.01042022867701
1217 => 0.010734434990321
1218 => 0.010669843618211
1219 => 0.010603595721131
1220 => 0.010594438243795
1221 => 0.010568938455424
1222 => 0.010481490193048
1223 => 0.010375891161402
1224 => 0.010306165533879
1225 => 0.0095068929231544
1226 => 0.00965523327055
1227 => 0.0098258853185805
1228 => 0.0098847937217154
1229 => 0.0097840268218157
1230 => 0.010485469084437
1231 => 0.010613629345084
]
'min_raw' => 0.0044236598247031
'max_raw' => 0.011620982876483
'avg_raw' => 0.0080223213505929
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.004423'
'max' => '$0.01162'
'avg' => '$0.008022'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -0.00017151525925292
'max_diff' => -0.00209572666026
'year' => 2027
]
2 => [
'items' => [
101 => 0.010225423555898
102 => 0.010152806103079
103 => 0.010490229872555
104 => 0.010286722091183
105 => 0.010378361632673
106 => 0.01018028706812
107 => 0.010582759291265
108 => 0.01057969312725
109 => 0.010423122342199
110 => 0.010555454897573
111 => 0.010532458859533
112 => 0.010355690828827
113 => 0.010588363153133
114 => 0.010588478555703
115 => 0.010437782579234
116 => 0.01026180267031
117 => 0.010230341619054
118 => 0.01020663994313
119 => 0.010372532473335
120 => 0.010521271197185
121 => 0.010798037086812
122 => 0.01086762260726
123 => 0.011139219526137
124 => 0.01097749678476
125 => 0.011049186381352
126 => 0.011127015579566
127 => 0.011164329759264
128 => 0.011103528305836
129 => 0.011525430114604
130 => 0.011561051554002
131 => 0.011572995114507
201 => 0.011430732198394
202 => 0.011557094964953
203 => 0.011497974011175
204 => 0.011651790308631
205 => 0.011675910668097
206 => 0.011655481581736
207 => 0.011663137764544
208 => 0.011303118999339
209 => 0.011284450127113
210 => 0.011029898729627
211 => 0.011133630305652
212 => 0.010939709096257
213 => 0.011001203509366
214 => 0.011028309660724
215 => 0.011014150945515
216 => 0.011139495133322
217 => 0.011032926967561
218 => 0.010751676056686
219 => 0.01047034851919
220 => 0.010466816681121
221 => 0.010392748106342
222 => 0.010339210093112
223 => 0.010349523413823
224 => 0.010385868901196
225 => 0.010337097627314
226 => 0.010347505451363
227 => 0.010520344677549
228 => 0.010555006351728
229 => 0.010437212439678
301 => 0.009964252885218
302 => 0.0098481874242242
303 => 0.0099316129759084
304 => 0.009891740935497
305 => 0.0079834069536725
306 => 0.0084317417159841
307 => 0.0081653564242285
308 => 0.0082881190224675
309 => 0.0080162086197219
310 => 0.0081459785159573
311 => 0.0081220147545605
312 => 0.0088429237851674
313 => 0.0088316677822325
314 => 0.008837055435183
315 => 0.008579888722398
316 => 0.0089895622787017
317 => 0.0091913822039215
318 => 0.0091540307070267
319 => 0.0091634312740887
320 => 0.0090018983863946
321 => 0.0088386194266293
322 => 0.0086575179317978
323 => 0.0089939821243734
324 => 0.0089565730497943
325 => 0.0090423760075186
326 => 0.0092605970873611
327 => 0.0092927309703091
328 => 0.0093359192348611
329 => 0.0093204393163692
330 => 0.0096892337773157
331 => 0.0096445703347109
401 => 0.0097521963808391
402 => 0.0095308014383456
403 => 0.0092802720459133
404 => 0.0093278894929918
405 => 0.0093233035499228
406 => 0.0092649192311543
407 => 0.0092122124787093
408 => 0.0091244705859237
409 => 0.0094020989180539
410 => 0.0093908277147783
411 => 0.0095732953944699
412 => 0.0095410424596879
413 => 0.009325649467582
414 => 0.009333342270433
415 => 0.0093850800666409
416 => 0.0095641451700485
417 => 0.0096173038844217
418 => 0.0095926786499155
419 => 0.0096509647534383
420 => 0.0096970317131469
421 => 0.0096567500543183
422 => 0.01022705339683
423 => 0.0099902236876087
424 => 0.010105652840033
425 => 0.010133182012738
426 => 0.01006266661573
427 => 0.010077958880374
428 => 0.010101122494417
429 => 0.010241767422984
430 => 0.010610860411484
501 => 0.010774329183589
502 => 0.011266133049876
503 => 0.010760755377661
504 => 0.010730768358053
505 => 0.010819357085425
506 => 0.011108098017661
507 => 0.011342095423182
508 => 0.011419725862228
509 => 0.011429986006286
510 => 0.01157562587071
511 => 0.011659103924975
512 => 0.01155794136046
513 => 0.011472216679196
514 => 0.011165161511447
515 => 0.011200703983198
516 => 0.011445556367784
517 => 0.011791424782747
518 => 0.012088215864259
519 => 0.011984289971727
520 => 0.012777171171503
521 => 0.012855782103831
522 => 0.012844920614779
523 => 0.013024008017498
524 => 0.012668555993616
525 => 0.012516593366847
526 => 0.011490751328302
527 => 0.01177897109758
528 => 0.012197915458779
529 => 0.012142466601614
530 => 0.011838218008096
531 => 0.012087985064419
601 => 0.01200540426466
602 => 0.011940269361611
603 => 0.012238664979504
604 => 0.011910566740214
605 => 0.01219464242786
606 => 0.011830312420067
607 => 0.01198476469645
608 => 0.011897090114359
609 => 0.011953826313965
610 => 0.011622147650381
611 => 0.011801113406206
612 => 0.011614702086554
613 => 0.011614613703317
614 => 0.011610498663104
615 => 0.011829810754001
616 => 0.011836962513411
617 => 0.011674890546876
618 => 0.011651533444459
619 => 0.011737896894049
620 => 0.011636787913202
621 => 0.011684096168968
622 => 0.011638220832075
623 => 0.011627893327458
624 => 0.01154560201359
625 => 0.011510148652929
626 => 0.011524050829165
627 => 0.011476595534609
628 => 0.011448002003106
629 => 0.011604810689999
630 => 0.011521034134236
701 => 0.011591970731303
702 => 0.011511129526033
703 => 0.01123089868773
704 => 0.011069734969234
705 => 0.010540404893091
706 => 0.010690522246053
707 => 0.010790050206375
708 => 0.010757156216082
709 => 0.010827825235515
710 => 0.010832163739358
711 => 0.010809188520755
712 => 0.010782586160921
713 => 0.010769637603356
714 => 0.010866145542889
715 => 0.010922171650095
716 => 0.010800039168705
717 => 0.010771425237131
718 => 0.010894907918935
719 => 0.010970232283502
720 => 0.011526385070361
721 => 0.011485183475561
722 => 0.011588591393105
723 => 0.011576949248514
724 => 0.011685337220273
725 => 0.011862505745926
726 => 0.011502272596176
727 => 0.011564796615047
728 => 0.01154946716951
729 => 0.011716830036285
730 => 0.011717352524887
731 => 0.01161701012586
801 => 0.011671407368242
802 => 0.011641044319855
803 => 0.011695914452103
804 => 0.011484633203143
805 => 0.011741950957974
806 => 0.011887833543774
807 => 0.011889859123619
808 => 0.011959006311492
809 => 0.012029263859106
810 => 0.012164117103609
811 => 0.012025502875309
812 => 0.01177614937242
813 => 0.011794151889922
814 => 0.011647956022413
815 => 0.011650413601358
816 => 0.011637294852345
817 => 0.011676665205668
818 => 0.011493272781711
819 => 0.011536314617054
820 => 0.011476055795521
821 => 0.011564665624137
822 => 0.011469336096275
823 => 0.011549459777187
824 => 0.011584038501727
825 => 0.011711634739705
826 => 0.01145049002818
827 => 0.010917998283439
828 => 0.011029934504022
829 => 0.010864372041379
830 => 0.010879695477638
831 => 0.010910651257586
901 => 0.010810313446672
902 => 0.010829454738986
903 => 0.01082877087733
904 => 0.010822877727024
905 => 0.010796775987175
906 => 0.010758923300323
907 => 0.010909716754302
908 => 0.010935339500536
909 => 0.010992295691428
910 => 0.01116175868177
911 => 0.011144825332823
912 => 0.011172444327514
913 => 0.011112152217177
914 => 0.010882492255714
915 => 0.010894963896549
916 => 0.010739442335494
917 => 0.010988318655452
918 => 0.010929381457879
919 => 0.010891384263195
920 => 0.010881016376583
921 => 0.011050899432901
922 => 0.011101731105941
923 => 0.011070056218489
924 => 0.01100509010022
925 => 0.011129844252805
926 => 0.011163223201082
927 => 0.011170695516633
928 => 0.011391735955777
929 => 0.011183049221728
930 => 0.011233282192781
1001 => 0.011625185493305
1002 => 0.011269783278689
1003 => 0.011458047758186
1004 => 0.011448833191596
1005 => 0.011545142928784
1006 => 0.011440932982076
1007 => 0.01144222478926
1008 => 0.011527741311296
1009 => 0.011407648779082
1010 => 0.011377912179241
1011 => 0.011336831279537
1012 => 0.011426529921125
1013 => 0.011480300200036
1014 => 0.011913649158141
1015 => 0.01219361234819
1016 => 0.012181458407759
1017 => 0.01229252267207
1018 => 0.012242487203766
1019 => 0.012080909477922
1020 => 0.012356702953633
1021 => 0.012269430358229
1022 => 0.012276625004958
1023 => 0.012276357219847
1024 => 0.012334385866288
1025 => 0.012293267252038
1026 => 0.01221221824261
1027 => 0.012266022357467
1028 => 0.012425801343269
1029 => 0.012921760217815
1030 => 0.013199305374592
1031 => 0.012905051650881
1101 => 0.013108023929282
1102 => 0.012986312888659
1103 => 0.012964194371988
1104 => 0.013091675962358
1105 => 0.013219380692375
1106 => 0.013211246453156
1107 => 0.013118539376873
1108 => 0.013066171501836
1109 => 0.013462718596142
1110 => 0.013754887740223
1111 => 0.013734963763323
1112 => 0.013822901717733
1113 => 0.0140810902717
1114 => 0.01410469579735
1115 => 0.014101722043685
1116 => 0.014043213285379
1117 => 0.014297433446779
1118 => 0.014509508377998
1119 => 0.014029670198312
1120 => 0.014212386295593
1121 => 0.014294413438408
1122 => 0.014414853620416
1123 => 0.014618056395583
1124 => 0.014838788506288
1125 => 0.014870002446946
1126 => 0.014847854662325
1127 => 0.014702275901717
1128 => 0.014943803611133
1129 => 0.015085284878786
1130 => 0.015169533735933
1201 => 0.015383174819984
1202 => 0.014294920010116
1203 => 0.013524599165919
1204 => 0.01340430244253
1205 => 0.013648930559977
1206 => 0.013713437043675
1207 => 0.01368743456098
1208 => 0.012820368416329
1209 => 0.013399737518722
1210 => 0.014023089958158
1211 => 0.01404703546404
1212 => 0.014359098728906
1213 => 0.014460719319852
1214 => 0.014711971151137
1215 => 0.014696255280682
1216 => 0.01475743110331
1217 => 0.014743367841105
1218 => 0.015208758951246
1219 => 0.015722154456979
1220 => 0.015704377203113
1221 => 0.015630570524944
1222 => 0.015740186027934
1223 => 0.016270065208657
1224 => 0.016221282424837
1225 => 0.01626867074401
1226 => 0.016893428160764
1227 => 0.017705701673251
1228 => 0.017328319075774
1229 => 0.018147130723382
1230 => 0.018662529252211
1231 => 0.019553857714619
]
'min_raw' => 0.0079834069536725
'max_raw' => 0.019553857714619
'avg_raw' => 0.013768632334146
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.007983'
'max' => '$0.019553'
'avg' => '$0.013768'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 0.0035597471289695
'max_diff' => 0.0079328748381364
'year' => 2028
]
3 => [
'items' => [
101 => 0.01944225900124
102 => 0.019789246630785
103 => 0.019242474012938
104 => 0.017986973561384
105 => 0.017788285809063
106 => 0.018186063720785
107 => 0.019163961902153
108 => 0.018155266227009
109 => 0.018359324048363
110 => 0.018300555382085
111 => 0.01829742384961
112 => 0.018416941707325
113 => 0.018243574821078
114 => 0.0175372469384
115 => 0.017860952844615
116 => 0.017735954448591
117 => 0.017874649488227
118 => 0.018623129414959
119 => 0.018292208597818
120 => 0.017943610398784
121 => 0.018380829900505
122 => 0.018937560571118
123 => 0.018902721366292
124 => 0.018835118747272
125 => 0.019216191171129
126 => 0.019845611171596
127 => 0.020015740868508
128 => 0.02014132713262
129 => 0.020158643356644
130 => 0.020337011226061
131 => 0.019377882237713
201 => 0.020900044574401
202 => 0.021162879961061
203 => 0.02111347780178
204 => 0.021405608272249
205 => 0.021319656077202
206 => 0.021195124832065
207 => 0.021658213765692
208 => 0.021127319672639
209 => 0.020373782345259
210 => 0.01996037686418
211 => 0.020504782550134
212 => 0.020837232105406
213 => 0.021056960113677
214 => 0.021123449676217
215 => 0.019452336690789
216 => 0.018551699475818
217 => 0.019128997604787
218 => 0.019833341165119
219 => 0.019373969573672
220 => 0.019391976070352
221 => 0.018737032901679
222 => 0.019891289102877
223 => 0.019723123683185
224 => 0.020595566178026
225 => 0.020387350774844
226 => 0.021098793761364
227 => 0.020911446979962
228 => 0.021689112995143
301 => 0.021999345023066
302 => 0.022520272881707
303 => 0.022903469535081
304 => 0.023128489939327
305 => 0.023114980558286
306 => 0.024006623504627
307 => 0.023480852810801
308 => 0.022820360904719
309 => 0.022808414689963
310 => 0.023150492807366
311 => 0.023867394696894
312 => 0.02405327692635
313 => 0.024157159734096
314 => 0.023998059597847
315 => 0.023427373192025
316 => 0.023180953695436
317 => 0.02339091024599
318 => 0.023134151426435
319 => 0.023577389182787
320 => 0.024186049292735
321 => 0.024060363386933
322 => 0.024480512526143
323 => 0.024915322684246
324 => 0.02553712073888
325 => 0.025699681775477
326 => 0.025968388987328
327 => 0.026244976974045
328 => 0.026333809581123
329 => 0.026503418591174
330 => 0.026502524667969
331 => 0.027013652835761
401 => 0.027577443033157
402 => 0.027790260780901
403 => 0.028279623457
404 => 0.027441607023495
405 => 0.028077252114747
406 => 0.028650619898285
407 => 0.027967027189572
408 => 0.02890920048186
409 => 0.028945782935789
410 => 0.029498134557426
411 => 0.02893822037113
412 => 0.028605745114617
413 => 0.029565588722485
414 => 0.030030026809542
415 => 0.029890134277998
416 => 0.028825545205601
417 => 0.028205908703093
418 => 0.026584200457073
419 => 0.028505183927066
420 => 0.029440838939443
421 => 0.028823122085157
422 => 0.029134662536015
423 => 0.03083432621857
424 => 0.031481448103813
425 => 0.031346851275406
426 => 0.031369595923754
427 => 0.031718771146938
428 => 0.033267206380844
429 => 0.03233934809624
430 => 0.033048660988633
501 => 0.033424877989141
502 => 0.033774329306013
503 => 0.032916187316997
504 => 0.031799757197897
505 => 0.031446136914629
506 => 0.028761702317866
507 => 0.028621965839196
508 => 0.02854352751927
509 => 0.028048985007456
510 => 0.027660410059765
511 => 0.027351400834498
512 => 0.026540468349432
513 => 0.026814134257969
514 => 0.025521677131538
515 => 0.026348545399161
516 => 0.024285752617907
517 => 0.026003707742353
518 => 0.025068702873952
519 => 0.025696533496208
520 => 0.025694343054312
521 => 0.024538307824858
522 => 0.023871530830349
523 => 0.024296427082599
524 => 0.024751949593318
525 => 0.02482585658812
526 => 0.025416453413621
527 => 0.025581276292782
528 => 0.02508185527408
529 => 0.02424300582251
530 => 0.024437851417991
531 => 0.023867582290575
601 => 0.022868207579865
602 => 0.023585975944506
603 => 0.023831053622241
604 => 0.023939293886497
605 => 0.022956523637474
606 => 0.02264771588825
607 => 0.022483309233712
608 => 0.024116142524462
609 => 0.024205592818042
610 => 0.02374795246909
611 => 0.025816530241593
612 => 0.025348347383049
613 => 0.025871422343628
614 => 0.024420171222476
615 => 0.024475610969673
616 => 0.023788565431589
617 => 0.024173265024516
618 => 0.023901371751682
619 => 0.024142185099083
620 => 0.024286527626605
621 => 0.024973460427277
622 => 0.026011551411502
623 => 0.024870855574047
624 => 0.024373838062602
625 => 0.02468218493137
626 => 0.025503353276373
627 => 0.026747465353887
628 => 0.02601092596391
629 => 0.026337789637932
630 => 0.026409194809553
701 => 0.025866097931554
702 => 0.026767490110444
703 => 0.027250553502008
704 => 0.027746076585869
705 => 0.028176325395343
706 => 0.027548153769389
707 => 0.028220387454026
708 => 0.027678685769428
709 => 0.027192723358253
710 => 0.027193460362634
711 => 0.026888609043326
712 => 0.026297921198428
713 => 0.026188989297052
714 => 0.026755666804595
715 => 0.027210088501085
716 => 0.027247516848542
717 => 0.027499108048748
718 => 0.027647997129435
719 => 0.029107312525057
720 => 0.029694261249267
721 => 0.030411971038859
722 => 0.030691559449812
723 => 0.03153302032879
724 => 0.030853472328904
725 => 0.030706447844572
726 => 0.028665338991928
727 => 0.028999570452204
728 => 0.029534707268644
729 => 0.028674163200928
730 => 0.029219980341953
731 => 0.029327736207579
801 => 0.028644922242799
802 => 0.029009642684038
803 => 0.028041053324181
804 => 0.026032664012697
805 => 0.026769726021876
806 => 0.027312451753022
807 => 0.026537915217077
808 => 0.027926241979054
809 => 0.027115210145589
810 => 0.026858151990774
811 => 0.025855276480992
812 => 0.026328595117391
813 => 0.02696876535039
814 => 0.026573214574174
815 => 0.02739404182707
816 => 0.028556552123803
817 => 0.02938502618994
818 => 0.029448626141535
819 => 0.02891597282046
820 => 0.02976955316683
821 => 0.029775770567779
822 => 0.028812928450095
823 => 0.028223193014141
824 => 0.028089203882279
825 => 0.028423935003788
826 => 0.028830360380075
827 => 0.029471179921342
828 => 0.029858413749098
829 => 0.030868114198935
830 => 0.031141310190281
831 => 0.03144146975692
901 => 0.031842575503732
902 => 0.032324205794183
903 => 0.031270426137905
904 => 0.03131229476814
905 => 0.030331029742785
906 => 0.029282407335555
907 => 0.030078181030014
908 => 0.031118549278182
909 => 0.030879887652547
910 => 0.030853033344249
911 => 0.030898194842043
912 => 0.030718251770275
913 => 0.029904375925668
914 => 0.029495652571639
915 => 0.030023009974785
916 => 0.030303276964579
917 => 0.0307379466239
918 => 0.030684364413625
919 => 0.031804026775923
920 => 0.032239093713079
921 => 0.032127784972991
922 => 0.032148268459961
923 => 0.032935936368178
924 => 0.033811985078374
925 => 0.034632520300282
926 => 0.035467203970815
927 => 0.03446096022773
928 => 0.033950051711477
929 => 0.034477178886878
930 => 0.034197477787758
1001 => 0.035804723268036
1002 => 0.0359160054579
1003 => 0.037523134716036
1004 => 0.039048491755399
1005 => 0.038090442328585
1006 => 0.038993839786576
1007 => 0.03997093779247
1008 => 0.041855918374277
1009 => 0.041221123228741
1010 => 0.040734880095768
1011 => 0.040275382684619
1012 => 0.041231523854061
1013 => 0.04246158419382
1014 => 0.042726527409632
1015 => 0.043155836635347
1016 => 0.042704470477943
1017 => 0.043248091298185
1018 => 0.045167311672732
1019 => 0.044648721386102
1020 => 0.04391223981154
1021 => 0.045427279973361
1022 => 0.045975567118354
1023 => 0.049823733442126
1024 => 0.054682202385709
1025 => 0.052670764340638
1026 => 0.051422199837363
1027 => 0.051715642111979
1028 => 0.053489790500622
1029 => 0.0540595906544
1030 => 0.052510677414542
1031 => 0.053057779756221
1101 => 0.05607236744879
1102 => 0.057689597026301
1103 => 0.055493182037132
1104 => 0.049433360193094
1105 => 0.04384592770377
1106 => 0.045327966405303
1107 => 0.045159949209564
1108 => 0.048398747607757
1109 => 0.044636353179276
1110 => 0.044699702252253
1111 => 0.048005475571373
1112 => 0.047123551925134
1113 => 0.045694948566473
1114 => 0.043856358089275
1115 => 0.04045755354314
1116 => 0.037447137573951
1117 => 0.043351256546923
1118 => 0.043096660200865
1119 => 0.042727966962708
1120 => 0.043548453867451
1121 => 0.047532505377611
1122 => 0.047440660095186
1123 => 0.04685638726827
1124 => 0.047299553057941
1125 => 0.045617259460869
1126 => 0.046050824825948
1127 => 0.043845042625917
1128 => 0.044842148301932
1129 => 0.045691883425284
1130 => 0.04586248033184
1201 => 0.046246843873206
1202 => 0.042962499495439
1203 => 0.044437073697772
1204 => 0.045303247892724
1205 => 0.041389841368243
1206 => 0.045225892428296
1207 => 0.042905326366829
1208 => 0.042117691391835
1209 => 0.043178138122647
1210 => 0.042764881000331
1211 => 0.042409586793837
1212 => 0.042211326521883
1213 => 0.042990001563757
1214 => 0.042953675442336
1215 => 0.041679611939517
1216 => 0.040017648037562
1217 => 0.040575457675163
1218 => 0.040372800204329
1219 => 0.039638343386693
1220 => 0.040133278603126
1221 => 0.037953834390939
1222 => 0.034204213901523
1223 => 0.036681328050813
1224 => 0.036585961850647
1225 => 0.03653787388801
1226 => 0.038399356708795
1227 => 0.038220418087292
1228 => 0.037895642737092
1229 => 0.039632378632695
1230 => 0.038998446668406
1231 => 0.04095207560919
]
'min_raw' => 0.0175372469384
'max_raw' => 0.057689597026301
'avg_raw' => 0.037613421982351
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.017537'
'max' => '$0.057689'
'avg' => '$0.037613'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072434
'min_diff' => 0.0095538399847272
'max_diff' => 0.038135739311682
'year' => 2029
]
4 => [
'items' => [
101 => 0.042238861982388
102 => 0.041912491334966
103 => 0.043122720138537
104 => 0.040588308482597
105 => 0.041430138371753
106 => 0.041603638345183
107 => 0.03961094758133
108 => 0.038249694658741
109 => 0.038158914608224
110 => 0.035798689632663
111 => 0.037059502763537
112 => 0.038168966142714
113 => 0.037637619281925
114 => 0.037469410739335
115 => 0.038328751703445
116 => 0.038395529856115
117 => 0.036872980898429
118 => 0.037189567039587
119 => 0.038509783876281
120 => 0.03715630096263
121 => 0.034526704751583
122 => 0.033874528534232
123 => 0.033787516204845
124 => 0.03201876257864
125 => 0.033918110067577
126 => 0.033088993989308
127 => 0.035708161746225
128 => 0.034212107170352
129 => 0.034147615247713
130 => 0.034050126247735
131 => 0.032527686935368
201 => 0.032861004388711
202 => 0.033969002369303
203 => 0.034364348531269
204 => 0.034323110687601
205 => 0.033963572574732
206 => 0.03412816728167
207 => 0.033597950382025
208 => 0.03341071975925
209 => 0.032819768411932
210 => 0.03195123318585
211 => 0.032072008336073
212 => 0.030351212788601
213 => 0.029413632044806
214 => 0.029154122052039
215 => 0.028807094444042
216 => 0.029193319743768
217 => 0.030346337991021
218 => 0.028955553358367
219 => 0.026571150657878
220 => 0.026714457323002
221 => 0.027036424851405
222 => 0.026436440492255
223 => 0.02586860564919
224 => 0.026362291975338
225 => 0.025351989118116
226 => 0.027158515124921
227 => 0.027109653659168
228 => 0.027783014839686
301 => 0.028204081404626
302 => 0.027233659294358
303 => 0.026989600757926
304 => 0.027128627592119
305 => 0.024830823708997
306 => 0.027595235240264
307 => 0.027619141985981
308 => 0.027414437914945
309 => 0.028886401713715
310 => 0.03199270444614
311 => 0.030823988407464
312 => 0.030371426232659
313 => 0.029511105207534
314 => 0.030657431892705
315 => 0.030569411888766
316 => 0.030171352050358
317 => 0.029930604218066
318 => 0.030374189480795
319 => 0.029875639095074
320 => 0.02978608574655
321 => 0.029243489889499
322 => 0.02904980785507
323 => 0.028906413387483
324 => 0.028748550168319
325 => 0.029096757092731
326 => 0.028307674391577
327 => 0.027356118008716
328 => 0.027277006391463
329 => 0.027495440522261
330 => 0.027398799679892
331 => 0.027276543712291
401 => 0.027043123775708
402 => 0.026973873066752
403 => 0.027198904275192
404 => 0.026944857160998
405 => 0.027319717516653
406 => 0.027217776241885
407 => 0.026648340567794
408 => 0.025938612885788
409 => 0.025932294820714
410 => 0.025779385155812
411 => 0.025584631707438
412 => 0.025530455753456
413 => 0.026320715089953
414 => 0.02795652826603
415 => 0.027635378997874
416 => 0.027867442256818
417 => 0.02900896380937
418 => 0.029371819184175
419 => 0.029114273033839
420 => 0.028761727978504
421 => 0.028777238171742
422 => 0.029981991348468
423 => 0.03005713032632
424 => 0.030246982282599
425 => 0.030490995698575
426 => 0.029155829573723
427 => 0.028714351967331
428 => 0.028505155385177
429 => 0.02786091088141
430 => 0.028555673345374
501 => 0.028150865010317
502 => 0.028205487484938
503 => 0.028169914526683
504 => 0.028189339767323
505 => 0.027158010164085
506 => 0.027533772466417
507 => 0.026908994758493
508 => 0.026072487542172
509 => 0.026069683276666
510 => 0.026274417232782
511 => 0.026152633464444
512 => 0.025824916475193
513 => 0.025871467126735
514 => 0.025463634436326
515 => 0.0259209853994
516 => 0.025934100588541
517 => 0.025757995555682
518 => 0.026462607816569
519 => 0.026751288034764
520 => 0.0266353719296
521 => 0.026743155051817
522 => 0.027648724199868
523 => 0.027796371483753
524 => 0.027861946654222
525 => 0.027774084612838
526 => 0.026759707193466
527 => 0.026804699145481
528 => 0.026474578054224
529 => 0.026195660519416
530 => 0.026206815758078
531 => 0.026350215627712
601 => 0.02697645126869
602 => 0.028294327256523
603 => 0.028344339686906
604 => 0.028404956211497
605 => 0.028158398342564
606 => 0.028084034130053
607 => 0.028182139721387
608 => 0.028677064651789
609 => 0.029950145943592
610 => 0.029500153988828
611 => 0.029134303525063
612 => 0.029455253014362
613 => 0.02940584535617
614 => 0.028988794998917
615 => 0.028977089784418
616 => 0.028176636809786
617 => 0.027880727570496
618 => 0.027633443661724
619 => 0.027363416088854
620 => 0.02720333469225
621 => 0.027449292473127
622 => 0.0275055459277
623 => 0.026967754941207
624 => 0.026894456016954
625 => 0.027333627745549
626 => 0.027140364641767
627 => 0.027339140536701
628 => 0.027385258249394
629 => 0.02737783223547
630 => 0.027176043358995
701 => 0.027304657571429
702 => 0.02700044661728
703 => 0.026669662895651
704 => 0.026458643489806
705 => 0.026274501070543
706 => 0.02637667398717
707 => 0.026012446195433
708 => 0.025895922394399
709 => 0.027261085970168
710 => 0.02826954698157
711 => 0.028254883559069
712 => 0.028165623745726
713 => 0.028033001768789
714 => 0.028667362528125
715 => 0.028446363924016
716 => 0.028607158873556
717 => 0.028648087936757
718 => 0.028771967884021
719 => 0.028816244317327
720 => 0.028682410183917
721 => 0.028233246485732
722 => 0.027113973255058
723 => 0.026592948544759
724 => 0.026421001712007
725 => 0.026427251652804
726 => 0.026254850384658
727 => 0.02630563028461
728 => 0.026237191207769
729 => 0.026107584153423
730 => 0.026368671116788
731 => 0.026398758957122
801 => 0.026337818140116
802 => 0.026352171908611
803 => 0.025847607971962
804 => 0.02588596887221
805 => 0.025672370504961
806 => 0.025632323386069
807 => 0.0250923653138
808 => 0.024135751320603
809 => 0.024665808333602
810 => 0.024025573999194
811 => 0.023783107555621
812 => 0.024930905988228
813 => 0.024815698860567
814 => 0.024618514337347
815 => 0.024326837330648
816 => 0.024218651491611
817 => 0.023561348581102
818 => 0.023522511618574
819 => 0.023848288689694
820 => 0.023697953780677
821 => 0.023486826632134
822 => 0.022722145501729
823 => 0.021862390733932
824 => 0.021888341326146
825 => 0.022161813321476
826 => 0.022956970030622
827 => 0.022646288548008
828 => 0.022420885567712
829 => 0.022378674365091
830 => 0.022907035941027
831 => 0.02365477826615
901 => 0.024005602235305
902 => 0.023657946336554
903 => 0.023258577959192
904 => 0.023282885661827
905 => 0.023444593917416
906 => 0.023461587168647
907 => 0.023201639410717
908 => 0.023274813181922
909 => 0.023163655532312
910 => 0.022481481241838
911 => 0.022469142872121
912 => 0.022301726299692
913 => 0.022296656992415
914 => 0.022011839638692
915 => 0.021971991722057
916 => 0.021406469579063
917 => 0.021778697966141
918 => 0.021529026706957
919 => 0.02115271322787
920 => 0.021087836642235
921 => 0.02108588637373
922 => 0.021472276174597
923 => 0.02177418277635
924 => 0.021533369845404
925 => 0.02147854140899
926 => 0.022063965667005
927 => 0.021989465093912
928 => 0.02192494807809
929 => 0.023587826142244
930 => 0.022271528398473
1001 => 0.02169754745054
1002 => 0.020987137031447
1003 => 0.021218450246104
1004 => 0.02126719133913
1005 => 0.019558782342315
1006 => 0.018865681025076
1007 => 0.018627834771972
1008 => 0.018490950890658
1009 => 0.018553330594252
1010 => 0.017929458116061
1011 => 0.018348710739304
1012 => 0.017808489907818
1013 => 0.017717920127389
1014 => 0.018683901894605
1015 => 0.018818312614329
1016 => 0.018244874725847
1017 => 0.018613114681414
1018 => 0.018479585754607
1019 => 0.017817750443446
1020 => 0.017792473202691
1021 => 0.017460387508186
1022 => 0.016940737700748
1023 => 0.016703243794683
1024 => 0.016579554906388
1025 => 0.016630591352347
1026 => 0.016604785763529
1027 => 0.016436386840919
1028 => 0.016614438192652
1029 => 0.016159590564873
1030 => 0.015978466574535
1031 => 0.015896657070144
1101 => 0.015492953620437
1102 => 0.016135425336659
1103 => 0.016262000358401
1104 => 0.016388824772036
1105 => 0.017492744706025
1106 => 0.017437595985768
1107 => 0.017936113558373
1108 => 0.017916742082216
1109 => 0.01777455679506
1110 => 0.017174700456893
1111 => 0.017413792501875
1112 => 0.016677904350573
1113 => 0.017229281789059
1114 => 0.016977656152206
1115 => 0.017144206908127
1116 => 0.016844733631706
1117 => 0.017010474507826
1118 => 0.016292015991679
1119 => 0.015621129538286
1120 => 0.015891113831528
1121 => 0.016184617634731
1122 => 0.016821008663453
1123 => 0.016441979416858
1124 => 0.016578292666616
1125 => 0.016121666098489
1126 => 0.015179515059511
1127 => 0.015184847532074
1128 => 0.015039918120604
1129 => 0.014914677949053
1130 => 0.016485515485326
1201 => 0.016290157006424
1202 => 0.015978878838179
1203 => 0.016395537036077
1204 => 0.016505708076857
1205 => 0.016508844491505
1206 => 0.016812827557188
1207 => 0.016975063373834
1208 => 0.017003658139689
1209 => 0.017481982061528
1210 => 0.017642309930884
1211 => 0.018302677734311
1212 => 0.01696129879827
1213 => 0.016933673981802
1214 => 0.016401400271381
1215 => 0.016063823869318
1216 => 0.01642451441644
1217 => 0.01674403700202
1218 => 0.016411328728781
1219 => 0.016454773405411
1220 => 0.016008139731853
1221 => 0.016167790254082
1222 => 0.016305302791074
1223 => 0.01622937645076
1224 => 0.016115711044434
1225 => 0.01671783979379
1226 => 0.016683865329989
1227 => 0.017244581464269
1228 => 0.017681699788135
1229 => 0.018465093968751
1230 => 0.017647581302016
1231 => 0.017617787891122
]
'min_raw' => 0.014914677949053
'max_raw' => 0.043122720138537
'avg_raw' => 0.029018699043795
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.014914'
'max' => '$0.043122'
'avg' => '$0.029018'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -0.0026225689893472
'max_diff' => -0.014566876887764
'year' => 2030
]
5 => [
'items' => [
101 => 0.017909023261628
102 => 0.017642265344266
103 => 0.017810847139868
104 => 0.018437932835215
105 => 0.018451182167809
106 => 0.018229238776059
107 => 0.018215733500501
108 => 0.018258360156681
109 => 0.018508025813348
110 => 0.018420784961458
111 => 0.018521742283933
112 => 0.018647990961602
113 => 0.019170209020771
114 => 0.019296114026876
115 => 0.018990230136303
116 => 0.019017848026785
117 => 0.01890343905501
118 => 0.018792921421815
119 => 0.019041348921432
120 => 0.019495355059837
121 => 0.019492530711213
122 => 0.019597851310704
123 => 0.019663465171664
124 => 0.019381802448141
125 => 0.019198450372153
126 => 0.019268759225082
127 => 0.019381184612044
128 => 0.019232301187322
129 => 0.018313323720424
130 => 0.018592082779373
131 => 0.018545683641342
201 => 0.018479605626459
202 => 0.018759900015812
203 => 0.018732864938176
204 => 0.017923059402067
205 => 0.017974900525081
206 => 0.01792621203246
207 => 0.018083534512845
208 => 0.017633769414037
209 => 0.017772114129216
210 => 0.017858882637676
211 => 0.017909989955745
212 => 0.018094624633229
213 => 0.018072959884871
214 => 0.018093277922052
215 => 0.018367042407012
216 => 0.019751649227315
217 => 0.019827010321581
218 => 0.019455904731389
219 => 0.019604154094936
220 => 0.019319547735496
221 => 0.019510605891285
222 => 0.019641323029125
223 => 0.019050637418687
224 => 0.019015660850355
225 => 0.018729879819229
226 => 0.018883442357891
227 => 0.018639113317343
228 => 0.018699063117626
301 => 0.018531438249704
302 => 0.018833129638186
303 => 0.019170467488611
304 => 0.019255692351504
305 => 0.019031502428843
306 => 0.018869174150001
307 => 0.018584179166614
308 => 0.019058132175515
309 => 0.019196730478774
310 => 0.019057404177631
311 => 0.019025119229316
312 => 0.018963939310598
313 => 0.019038098838288
314 => 0.019195975642648
315 => 0.019121523857239
316 => 0.019170700573174
317 => 0.01898328964284
318 => 0.019381895690222
319 => 0.020014978023234
320 => 0.020017013486454
321 => 0.019942561299722
322 => 0.019912097069006
323 => 0.01998848953073
324 => 0.020029929307432
325 => 0.020276968520665
326 => 0.020542051438941
327 => 0.021779077753793
328 => 0.021431725714623
329 => 0.022529289052186
330 => 0.023397319151435
331 => 0.023657603423844
401 => 0.023418154140549
402 => 0.022599011077194
403 => 0.022558820010577
404 => 0.023782965580511
405 => 0.023437088387586
406 => 0.023395947396059
407 => 0.022958276755021
408 => 0.023216994310438
409 => 0.023160408985911
410 => 0.023071086282896
411 => 0.02356470135621
412 => 0.024488704708134
413 => 0.024344690120488
414 => 0.024237189911455
415 => 0.023766155288312
416 => 0.024049823340836
417 => 0.023948814580636
418 => 0.024382812316199
419 => 0.024125721671879
420 => 0.02343446802767
421 => 0.023544552448912
422 => 0.0235279134101
423 => 0.023870343649788
424 => 0.023767554591475
425 => 0.023507842196759
426 => 0.02448554656513
427 => 0.024422059881725
428 => 0.024512069483716
429 => 0.024551694494152
430 => 0.025146805914096
501 => 0.025390604021405
502 => 0.025445950460051
503 => 0.025677539805973
504 => 0.025440188306152
505 => 0.026389763534188
506 => 0.027021175651582
507 => 0.027754593318105
508 => 0.02882631365298
509 => 0.02922929041286
510 => 0.029156496268093
511 => 0.02996906239462
512 => 0.031429225661659
513 => 0.029451637012027
514 => 0.03153404266205
515 => 0.030874777075782
516 => 0.029311670230422
517 => 0.0292110245774
518 => 0.030269578681122
519 => 0.032617349801118
520 => 0.032029259763759
521 => 0.032618311705742
522 => 0.031931151326082
523 => 0.03189702802139
524 => 0.032584937859872
525 => 0.0341922766935
526 => 0.033428690263839
527 => 0.032333901877845
528 => 0.033142276585269
529 => 0.032441987602151
530 => 0.030864040524642
531 => 0.03202881006239
601 => 0.031249961843225
602 => 0.031477271159426
603 => 0.033114294271183
604 => 0.03291732331935
605 => 0.033172221970041
606 => 0.032722332523431
607 => 0.032302064839244
608 => 0.031517603997221
609 => 0.03128536381535
610 => 0.031349546646493
611 => 0.031285332009526
612 => 0.030846433377982
613 => 0.030751653260288
614 => 0.030593682245052
615 => 0.03064264406818
616 => 0.030345612343486
617 => 0.030906172577869
618 => 0.031010217497011
619 => 0.031418146488751
620 => 0.031460499029926
621 => 0.032596575465416
622 => 0.031970843655737
623 => 0.032390638576755
624 => 0.032353088167756
625 => 0.029345547495516
626 => 0.029759960064395
627 => 0.030404655971742
628 => 0.030114221339347
629 => 0.029703614720377
630 => 0.029372027860225
701 => 0.028869639860598
702 => 0.029576741322566
703 => 0.030506504553198
704 => 0.031484079359797
705 => 0.032658571436689
706 => 0.032396438477721
707 => 0.03146212304738
708 => 0.031504035755067
709 => 0.031763123621947
710 => 0.031427581293722
711 => 0.031328623310564
712 => 0.031749528314664
713 => 0.031752426856102
714 => 0.031366344855835
715 => 0.030937285364798
716 => 0.030935487589864
717 => 0.030859140597657
718 => 0.03194473328639
719 => 0.032541699499393
720 => 0.032610140713654
721 => 0.032537092860362
722 => 0.032565206079929
723 => 0.032217844593835
724 => 0.033011809944196
725 => 0.033740431064722
726 => 0.033545145039701
727 => 0.03325238352665
728 => 0.033019184880201
729 => 0.033490210849757
730 => 0.033469236804796
731 => 0.033734067194869
801 => 0.033722052958641
802 => 0.033633000459234
803 => 0.033545148220046
804 => 0.03389347241806
805 => 0.033793160642947
806 => 0.033692693055941
807 => 0.033491189929382
808 => 0.033518577550894
809 => 0.033225866587247
810 => 0.033090445101921
811 => 0.031054030884199
812 => 0.03050983446347
813 => 0.030681049735571
814 => 0.030737418248749
815 => 0.030500583269041
816 => 0.030840143792028
817 => 0.030787223644204
818 => 0.030993104982136
819 => 0.030864479260525
820 => 0.030869758105006
821 => 0.03124801892637
822 => 0.031357829652048
823 => 0.031301979030687
824 => 0.031341094891441
825 => 0.032242503392748
826 => 0.032114351929283
827 => 0.032046274018471
828 => 0.032065132065018
829 => 0.032295461263519
830 => 0.032359940863591
831 => 0.032086736267184
901 => 0.032215581134226
902 => 0.032764186225244
903 => 0.032956166958741
904 => 0.033568877304083
905 => 0.033308587059324
906 => 0.033786361068678
907 => 0.03525487548827
908 => 0.036428026420108
909 => 0.035349148340677
910 => 0.037503490627128
911 => 0.039180955119176
912 => 0.039116571238008
913 => 0.038824066503367
914 => 0.03691431777687
915 => 0.035156938525999
916 => 0.036627060891617
917 => 0.036630808535861
918 => 0.036504523720867
919 => 0.035720179580816
920 => 0.036477230244958
921 => 0.036537322177473
922 => 0.036503686674999
923 => 0.035902331861814
924 => 0.034984174211028
925 => 0.035163580018233
926 => 0.035457450390213
927 => 0.034901092468272
928 => 0.034723302401296
929 => 0.035053847961748
930 => 0.036118934629426
1001 => 0.035917586164529
1002 => 0.035912328142397
1003 => 0.036773782260266
1004 => 0.036157167025306
1005 => 0.035165842899998
1006 => 0.034915520484399
1007 => 0.034027044546407
1008 => 0.034640718041421
1009 => 0.034662803058005
1010 => 0.034326700356377
1011 => 0.035193115781868
1012 => 0.035185131611193
1013 => 0.036007664108779
1014 => 0.037580037315065
1015 => 0.03711500918618
1016 => 0.036574232067203
1017 => 0.036633029534159
1018 => 0.03727789262215
1019 => 0.036887993678358
1020 => 0.037028204057018
1021 => 0.037277680396949
1022 => 0.037428195666979
1023 => 0.0366113727031
1024 => 0.036420932197061
1025 => 0.03603135775724
1026 => 0.035929725057642
1027 => 0.036247025310139
1028 => 0.036163427903989
1029 => 0.034660946897878
1030 => 0.034503929273014
1031 => 0.0345087447794
1101 => 0.034113916495898
1102 => 0.033511708593913
1103 => 0.035094275004365
1104 => 0.034967172773603
1105 => 0.034826861747773
1106 => 0.034844049047833
1107 => 0.035530987488459
1108 => 0.035132528501673
1109 => 0.036191897024186
1110 => 0.03597412270349
1111 => 0.035750763293206
1112 => 0.035719888219011
1113 => 0.035633913902181
1114 => 0.035339075980137
1115 => 0.034983041472256
1116 => 0.034747956650972
1117 => 0.032053153240483
1118 => 0.032553293078519
1119 => 0.033128658373
1120 => 0.033327272167023
1121 => 0.03298752952869
1122 => 0.035352491090254
1123 => 0.035784592356888
1124 => 0.034475729434985
1125 => 0.034230894622817
1126 => 0.035368542419779
1127 => 0.034682401726424
1128 => 0.034991370838629
1129 => 0.034323548615111
1130 => 0.035680511815158
1201 => 0.035670174029109
1202 => 0.035142284695886
1203 => 0.035588453145496
1204 => 0.03551092039771
1205 => 0.034914934640636
1206 => 0.035699405626698
1207 => 0.03569979471452
1208 => 0.035191712708597
1209 => 0.034598384159132
1210 => 0.034492311028283
1211 => 0.034412399173108
1212 => 0.034971717420941
1213 => 0.035473200413006
1214 => 0.036406335933062
1215 => 0.036640948373557
1216 => 0.037556656347843
1217 => 0.037011396834168
1218 => 0.037253103314287
1219 => 0.037515509889926
1220 => 0.03764131725197
1221 => 0.037436320906715
1222 => 0.038858792311222
1223 => 0.03897889248116
1224 => 0.039019161029278
1225 => 0.038539511675123
1226 => 0.038965552564941
1227 => 0.038766222141587
1228 => 0.039284824527569
1229 => 0.039366148003539
1230 => 0.039297269912559
1231 => 0.039323083267436
]
'min_raw' => 0.017633769414037
'max_raw' => 0.039366148003539
'avg_raw' => 0.028499958708788
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.017633'
'max' => '$0.039366'
'avg' => '$0.028499'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 0.0027190914649846
'max_diff' => -0.0037565721349983
'year' => 2031
]
6 => [
'items' => [
101 => 0.038109254864841
102 => 0.038046311458711
103 => 0.037188073649875
104 => 0.037537811900749
105 => 0.036883993004131
106 => 0.037091325711329
107 => 0.037182715993124
108 => 0.037134978896267
109 => 0.037557585576711
110 => 0.037198283565493
111 => 0.036250026483169
112 => 0.035301511048838
113 => 0.035289603210204
114 => 0.035039875839032
115 => 0.034859368689525
116 => 0.034894140770355
117 => 0.035016682118595
118 => 0.034852246363597
119 => 0.03488733706903
120 => 0.035470076587368
121 => 0.035586940841862
122 => 0.035189790443278
123 => 0.033595174284433
124 => 0.033203851479261
125 => 0.03348512655135
126 => 0.033350695183326
127 => 0.026916613927981
128 => 0.028428205880848
129 => 0.027530069271267
130 => 0.027943971942241
131 => 0.027027207035206
201 => 0.027464735300608
202 => 0.027383939805962
203 => 0.029814534934915
204 => 0.029776584535151
205 => 0.029794749383227
206 => 0.028927693856266
207 => 0.030308936853838
208 => 0.030989386822334
209 => 0.030863453642755
210 => 0.030895148310931
211 => 0.030350528902205
212 => 0.029800022489583
213 => 0.029189426155656
214 => 0.030323838672104
215 => 0.030197711365343
216 => 0.030487002027881
217 => 0.03122274963428
218 => 0.031331091264155
219 => 0.0314767035134
220 => 0.031424511887431
221 => 0.03266792816092
222 => 0.032517342245875
223 => 0.032880210974607
224 => 0.032133762468689
225 => 0.0312890851307
226 => 0.031449630678069
227 => 0.031434168850832
228 => 0.031237322043841
229 => 0.031059617548104
301 => 0.030763789630635
302 => 0.031699832935803
303 => 0.031661831287029
304 => 0.032277033808596
305 => 0.03216829078715
306 => 0.031442078276006
307 => 0.031468015097913
308 => 0.031642452690046
309 => 0.03224618318811
310 => 0.032425411505043
311 => 0.032342385807626
312 => 0.032538901475059
313 => 0.032694219446009
314 => 0.032558407020893
315 => 0.034481224557478
316 => 0.033682736657917
317 => 0.03407191410432
318 => 0.03416473063212
319 => 0.033926983047881
320 => 0.0339785419858
321 => 0.034056639727777
322 => 0.034530833923958
323 => 0.035775256703934
324 => 0.036326403082113
325 => 0.037984554153948
326 => 0.036280638047733
327 => 0.036179534717496
328 => 0.036478217796899
329 => 0.037451728009182
330 => 0.038240666599073
331 => 0.0385024030443
401 => 0.038536995836334
402 => 0.039028030807488
403 => 0.039309482895693
404 => 0.038968406246488
405 => 0.0386793794985
406 => 0.037644121562528
407 => 0.037763955487531
408 => 0.038589492397213
409 => 0.039755611906019
410 => 0.040756263758631
411 => 0.040405870356084
412 => 0.043079124678325
413 => 0.04334416692511
414 => 0.043307546656446
415 => 0.043911352338198
416 => 0.042712921022809
417 => 0.042200568416967
418 => 0.038741870362008
419 => 0.039713623436991
420 => 0.041126123600536
421 => 0.040939173907287
422 => 0.039913378532283
423 => 0.040755485600854
424 => 0.040477058668862
425 => 0.040257451795656
426 => 0.0412635134547
427 => 0.040157307333845
428 => 0.041115088348277
429 => 0.039886724290292
430 => 0.040407470923632
501 => 0.040111869948868
502 => 0.040303160007033
503 => 0.039184882235697
504 => 0.039788277776452
505 => 0.039159778997421
506 => 0.039159481007167
507 => 0.039145606861785
508 => 0.039885032888124
509 => 0.039909145544297
510 => 0.039362708593621
511 => 0.03928395849208
512 => 0.039575138892079
513 => 0.039234242903947
514 => 0.03939374599122
515 => 0.039239074089973
516 => 0.039204254187113
517 => 0.03892680327701
518 => 0.038807269796266
519 => 0.038854141954064
520 => 0.038694143115246
521 => 0.038597738027447
522 => 0.039126429463341
523 => 0.038843970956494
524 => 0.039083138646141
525 => 0.03881057687842
526 => 0.037865759041987
527 => 0.037322384312987
528 => 0.035537711004625
529 => 0.036043842140996
530 => 0.036379407608041
531 => 0.036268503223185
601 => 0.036506768756156
602 => 0.036521396324768
603 => 0.036443933771169
604 => 0.03635424205767
605 => 0.036310585091801
606 => 0.036635968347905
607 => 0.03682486427997
608 => 0.036413086091946
609 => 0.036316612223881
610 => 0.03673294270687
611 => 0.036986904060987
612 => 0.038862012011231
613 => 0.038723097957758
614 => 0.039071744971468
615 => 0.039032492668149
616 => 0.039397930282343
617 => 0.039995266336091
618 => 0.038780715121034
619 => 0.038991519215947
620 => 0.038939834920051
621 => 0.039504110510285
622 => 0.039505872117084
623 => 0.039167560713084
624 => 0.039350964813668
625 => 0.03924859367615
626 => 0.039433592157934
627 => 0.038721242675882
628 => 0.039588807451647
629 => 0.040080660774867
630 => 0.040087490158737
701 => 0.040320624730353
702 => 0.04055750295736
703 => 0.041012170086353
704 => 0.040544822537903
705 => 0.039704109793609
706 => 0.039764806538261
707 => 0.039271896963886
708 => 0.039280182862883
709 => 0.039235952084661
710 => 0.039368691979642
711 => 0.038750371618218
712 => 0.038895490171163
713 => 0.038692323347227
714 => 0.038991077570949
715 => 0.038669667412066
716 => 0.038939809996319
717 => 0.039056394580314
718 => 0.039486594205142
719 => 0.038606126577695
720 => 0.036810793482912
721 => 0.037188194265745
722 => 0.036629988863743
723 => 0.036681652898936
724 => 0.036786022472297
725 => 0.036447726537436
726 => 0.036512262740878
727 => 0.036509957053556
728 => 0.036490087885855
729 => 0.036402084047589
730 => 0.036274461071075
731 => 0.036782871729228
801 => 0.03686926060708
802 => 0.037061292381228
803 => 0.037632648684694
804 => 0.037575556716468
805 => 0.037668676085367
806 => 0.037465397025903
807 => 0.036691082431486
808 => 0.036733131439303
809 => 0.036208779638039
810 => 0.037047883526766
811 => 0.036849172650285
812 => 0.036721062455527
813 => 0.036686106401955
814 => 0.037258878987185
815 => 0.037430261521796
816 => 0.03732346742728
817 => 0.037104429623747
818 => 0.037525046959244
819 => 0.037637586413802
820 => 0.037662779847382
821 => 0.038408033120507
822 => 0.037704431226619
823 => 0.037873795195679
824 => 0.039195124535211
825 => 0.03799686115524
826 => 0.038631607992073
827 => 0.038600540437473
828 => 0.038925255440535
829 => 0.038573904329501
830 => 0.038578259747613
831 => 0.038866584672232
901 => 0.038461684315279
902 => 0.038361425292771
903 => 0.038222918171244
904 => 0.038525343403915
905 => 0.038706633653385
906 => 0.040167699921093
907 => 0.041111615362749
908 => 0.041070637504027
909 => 0.041445098425411
910 => 0.041276400350659
911 => 0.04073162976698
912 => 0.041661486725624
913 => 0.041367241077041
914 => 0.041391498330802
915 => 0.041390595474606
916 => 0.041586243107512
917 => 0.041447608828756
918 => 0.04117434643481
919 => 0.041355750764533
920 => 0.041894456770576
921 => 0.043566616742851
922 => 0.044502379616509
923 => 0.043510282642878
924 => 0.044194617850581
925 => 0.043784260579526
926 => 0.043709686456304
927 => 0.044139499538716
928 => 0.044570064952031
929 => 0.044542639796588
930 => 0.0442300714163
1001 => 0.044053509469404
1002 => 0.04539049568389
1003 => 0.046375564351756
1004 => 0.046308389272592
1005 => 0.046604878225518
1006 => 0.047475378961365
1007 => 0.04755496663918
1008 => 0.047544940421078
1009 => 0.047347674057497
1010 => 0.048204795080743
1011 => 0.048919820517945
1012 => 0.047302012593901
1013 => 0.047918052672716
1014 => 0.048194612911668
1015 => 0.048600685394175
1016 => 0.049285797737814
1017 => 0.05003001146008
1018 => 0.050135251440297
1019 => 0.050060578638137
1020 => 0.049569749682763
1021 => 0.050384077217984
1022 => 0.050861091189785
1023 => 0.051145142093722
1024 => 0.051865447924543
1025 => 0.048196320853551
1026 => 0.045599130345256
1027 => 0.0451935415435
1028 => 0.046018322320862
1029 => 0.046235810434349
1030 => 0.04614814124851
1031 => 0.043224767205193
1101 => 0.045178150584168
1102 => 0.047279826854806
1103 => 0.047360560799707
1104 => 0.048412703884767
1105 => 0.048755324802064
1106 => 0.049602437893084
1107 => 0.049549450738597
1108 => 0.049755709295747
1109 => 0.049708294025358
1110 => 0.051277392645766
1111 => 0.053008341437475
1112 => 0.052948404184899
1113 => 0.052699559816434
1114 => 0.053069136137874
1115 => 0.054855660790664
1116 => 0.054691186229109
1117 => 0.05485095925575
1118 => 0.056957372505506
1119 => 0.059696009363981
1120 => 0.058423637588574
1121 => 0.06118431822609
1122 => 0.062922020350014
1123 => 0.065927196491588
1124 => 0.065550933637858
1125 => 0.066720826656772
1126 => 0.064877344601255
1127 => 0.060644337172597
1128 => 0.05997444754371
1129 => 0.061315583545048
1130 => 0.064612635538202
1201 => 0.061211747644572
1202 => 0.061899742836127
1203 => 0.061701600174676
1204 => 0.061691041994299
1205 => 0.062094004796053
1206 => 0.061509486234982
1207 => 0.059128052464296
1208 => 0.060219449527524
1209 => 0.05979800870822
1210 => 0.060265628717732
1211 => 0.062789181047908
1212 => 0.061673458408763
1213 => 0.060498135242372
1214 => 0.061972251318117
1215 => 0.063849307643781
1216 => 0.063731844832316
1217 => 0.063503917882426
1218 => 0.064788730165086
1219 => 0.066910863641363
1220 => 0.067484467792577
1221 => 0.067907890650183
1222 => 0.067966273508459
1223 => 0.068567653233447
1224 => 0.065333882884984
1225 => 0.070465959477108
1226 => 0.071352127333813
1227 => 0.071185564504647
1228 => 0.072170502781731
1229 => 0.07188070895514
1230 => 0.071460843167669
1231 => 0.073022179839226
]
'min_raw' => 0.026916613927981
'max_raw' => 0.073022179839226
'avg_raw' => 0.049969396883604
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.026916'
'max' => '$0.073022'
'avg' => '$0.049969'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.0092828445139439
'max_diff' => 0.033656031835687
'year' => 2032
]
7 => [
'items' => [
101 => 0.071232233338658
102 => 0.0686916296291
103 => 0.067297804186593
104 => 0.069133305965978
105 => 0.070254182852463
106 => 0.070995011173271
107 => 0.071219185375527
108 => 0.065584911271771
109 => 0.062548350021015
110 => 0.064494750968504
111 => 0.066869494457859
112 => 0.065320691064997
113 => 0.065381401225724
114 => 0.063173214605874
115 => 0.067064869975808
116 => 0.066497888522382
117 => 0.069439389305727
118 => 0.068737376536763
119 => 0.071136056237179
120 => 0.070504403483549
121 => 0.073126358748638
122 => 0.074172327690486
123 => 0.075928672335917
124 => 0.077220646606705
125 => 0.077979318610042
126 => 0.077933770788668
127 => 0.080940007234778
128 => 0.079167334632409
129 => 0.076940440056979
130 => 0.076900162559872
131 => 0.078053502815827
201 => 0.080470587588862
202 => 0.081097302503357
203 => 0.081447550642539
204 => 0.080911133425157
205 => 0.078987024363875
206 => 0.078156203826668
207 => 0.078864086995556
208 => 0.0779984067091
209 => 0.079492813750513
210 => 0.081544953806493
211 => 0.081121194999974
212 => 0.082537757156695
213 => 0.084003749962216
214 => 0.086100185515968
215 => 0.086648271400503
216 => 0.087554236525799
217 => 0.088486772233769
218 => 0.088786277570627
219 => 0.089358126189737
220 => 0.089355112265242
221 => 0.091078416568782
222 => 0.092979274581878
223 => 0.093696804476857
224 => 0.095346724905533
225 => 0.092521293991533
226 => 0.094664415796013
227 => 0.096597565309472
228 => 0.094292784765127
301 => 0.097469387800514
302 => 0.09759272809804
303 => 0.099455020154349
304 => 0.097567230383292
305 => 0.096446266843276
306 => 0.099682446581345
307 => 0.10124833201789
308 => 0.1007766745808
309 => 0.097187338195982
310 => 0.095098190466136
311 => 0.089630487890626
312 => 0.096107217778491
313 => 0.099261843978069
314 => 0.097179168476227
315 => 0.098229548857357
316 => 0.10396008362982
317 => 0.10614190024652
318 => 0.1056880976423
319 => 0.10576478281218
320 => 0.10694205145579
321 => 0.11216270895519
322 => 0.10903436996766
323 => 0.111425867907
324 => 0.11269430979085
325 => 0.11387250930359
326 => 0.11097922367407
327 => 0.10721510158086
328 => 0.10602284610684
329 => 0.096972087442617
330 => 0.096500956148691
331 => 0.096236495876672
401 => 0.094569111270236
402 => 0.093259003704659
403 => 0.092217157527336
404 => 0.089483042036438
405 => 0.090405725753814
406 => 0.086048116315575
407 => 0.088835960409964
408 => 0.081881110528375
409 => 0.087673316174243
410 => 0.084520881980471
411 => 0.086637656757143
412 => 0.086630271529359
413 => 0.082732618041453
414 => 0.080484532851581
415 => 0.081917100231352
416 => 0.083452926179806
417 => 0.083702108772804
418 => 0.085693347204134
419 => 0.086249059048791
420 => 0.084565226215774
421 => 0.08173698672321
422 => 0.082393922252058
423 => 0.080471220074057
424 => 0.077101758462781
425 => 0.079521764617155
426 => 0.080348061118418
427 => 0.080713000726449
428 => 0.07739952221704
429 => 0.076358355330265
430 => 0.075804046815983
501 => 0.081309258256526
502 => 0.081610846166551
503 => 0.08006787977863
504 => 0.087042234162112
505 => 0.085463722967047
506 => 0.087227306716567
507 => 0.082334312238487
508 => 0.082521231216841
509 => 0.080204809217202
510 => 0.081501850753626
511 => 0.080585143601282
512 => 0.081397062615097
513 => 0.08188372352431
514 => 0.084199765421892
515 => 0.087699761652404
516 => 0.083853825995584
517 => 0.082178096755095
518 => 0.083217709751235
519 => 0.085986336158557
520 => 0.090180946889026
521 => 0.08769765291218
522 => 0.088799696610038
523 => 0.089040444131508
524 => 0.087209355089522
525 => 0.090248461753842
526 => 0.09187714370491
527 => 0.093547834378463
528 => 0.094998448278619
529 => 0.092880523784171
530 => 0.095147006585781
531 => 0.093320621535756
601 => 0.091682165337667
602 => 0.091684650199394
603 => 0.090656822692307
604 => 0.088665277382727
605 => 0.088298005871853
606 => 0.090208598652696
607 => 0.091740713129123
608 => 0.091866905415735
609 => 0.092715162712769
610 => 0.093217152643408
611 => 0.098137336385895
612 => 0.10011627498902
613 => 0.10253608365353
614 => 0.1034787355013
615 => 0.10631577960369
616 => 0.10402463607755
617 => 0.1035289327637
618 => 0.096647191761345
619 => 0.097774076464958
620 => 0.099578327603644
621 => 0.096676943198075
622 => 0.098517203796776
623 => 0.098880510221009
624 => 0.096578355266202
625 => 0.097808035697808
626 => 0.094542369046301
627 => 0.087770944261369
628 => 0.090256000285342
629 => 0.092085837979799
630 => 0.089474433972449
701 => 0.094155274580333
702 => 0.09142082412937
703 => 0.090554134613185
704 => 0.087172869813422
705 => 0.088768696642093
706 => 0.090927075277908
707 => 0.089593448219423
708 => 0.09236092461089
709 => 0.096280409240203
710 => 0.099073667396396
711 => 0.099288099073604
712 => 0.097492221212934
713 => 0.1003701269458
714 => 0.10039108934718
715 => 0.09714479992392
716 => 0.095156465727589
717 => 0.094704712014691
718 => 0.095833281361042
719 => 0.097203572892905
720 => 0.099364140716878
721 => 0.10066972660296
722 => 0.10407400216462
723 => 0.10499510152338
724 => 0.10600711045877
725 => 0.10735946648846
726 => 0.10898331663907
727 => 0.10543042495538
728 => 0.10557158796539
729 => 0.10226318442267
730 => 0.098727680764218
731 => 0.10141068733423
801 => 0.10491836151912
802 => 0.10411369718547
803 => 0.10402315601014
804 => 0.10417542115302
805 => 0.10356873052333
806 => 0.10082469129024
807 => 0.099446651965982
808 => 0.10122467426961
809 => 0.10216961399331
810 => 0.10363513309738
811 => 0.10345447693445
812 => 0.10722949676126
813 => 0.10869635531529
814 => 0.10832107012675
815 => 0.10839013163319
816 => 0.11104580897896
817 => 0.11399946836915
818 => 0.11676596015775
819 => 0.11958015442871
820 => 0.1161875333952
821 => 0.11446496966216
822 => 0.11624221573687
823 => 0.11529918395308
824 => 0.12071812430413
825 => 0.12109331997673
826 => 0.12651186847672
827 => 0.13165471623196
828 => 0.12842458570058
829 => 0.1314704533034
830 => 0.13476480744907
831 => 0.14112015108578
901 => 0.13897989493262
902 => 0.13734049226139
903 => 0.13579126465862
904 => 0.13901496136703
905 => 0.1431621956826
906 => 0.14405547023246
907 => 0.14550291626037
908 => 0.1439811037473
909 => 0.14581395929714
910 => 0.15228474478561
911 => 0.15053628142743
912 => 0.14805318237929
913 => 0.15316124606159
914 => 0.15500983445112
915 => 0.16798419588211
916 => 0.18436486313287
917 => 0.1775831593298
918 => 0.17337353693501
919 => 0.17436289805137
920 => 0.18034456321076
921 => 0.1822656842114
922 => 0.17704341508155
923 => 0.17888800882399
924 => 0.18905190170128
925 => 0.19450450413322
926 => 0.18709913764843
927 => 0.16666802521801
928 => 0.14782960647818
929 => 0.15282640343303
930 => 0.15225992172701
1001 => 0.1631797566522
1002 => 0.15049458115459
1003 => 0.15070816697702
1004 => 0.16185381252416
1005 => 0.15888034537692
1006 => 0.15406370941129
1007 => 0.14786477325113
1008 => 0.13640546642688
1009 => 0.12625563880623
1010 => 0.14616178813603
1011 => 0.14530339877994
1012 => 0.14406032378616
1013 => 0.14682665267007
1014 => 0.16025916049417
1015 => 0.15994949771204
1016 => 0.15797958108346
1017 => 0.15947374548419
1018 => 0.15380177516767
1019 => 0.1552635710666
1020 => 0.1478266223764
1021 => 0.15118843377878
1022 => 0.15405337507377
1023 => 0.15462855445492
1024 => 0.15592446297004
1025 => 0.1448510665948
1026 => 0.14982269646945
1027 => 0.15274306324208
1028 => 0.13954873991947
1029 => 0.15248225389298
1030 => 0.14465830339999
1031 => 0.14200273709088
1101 => 0.14557810728184
1102 => 0.14418478204126
1103 => 0.14298688281822
1104 => 0.14231843446923
1105 => 0.14494379173827
1106 => 0.14482131568369
1107 => 0.14052572163166
1108 => 0.1349222943016
1109 => 0.1368029884398
1110 => 0.13611971462779
1111 => 0.133643442189
1112 => 0.13531215082647
1113 => 0.12796400250115
1114 => 0.11532189523094
1115 => 0.12367365853186
1116 => 0.12335212472974
1117 => 0.12318999280632
1118 => 0.12946611210117
1119 => 0.12886280804568
1120 => 0.12776780527739
1121 => 0.13362333160445
1122 => 0.13148598572713
1123 => 0.138072782099
1124 => 0.14241127219679
1125 => 0.14131089077254
1126 => 0.14539126167925
1127 => 0.13684631583428
1128 => 0.13968460408026
1129 => 0.14026957135406
1130 => 0.1335510753185
1201 => 0.12896151605035
1202 => 0.12865544477197
1203 => 0.12069778148122
1204 => 0.12494870097912
1205 => 0.12868933422228
1206 => 0.12689786118367
1207 => 0.12633073433839
1208 => 0.12922806239615
1209 => 0.12945320960018
1210 => 0.12431982948837
1211 => 0.12538722176662
1212 => 0.12983842500613
1213 => 0.1252750628656
1214 => 0.11640919564751
1215 => 0.11421033799722
1216 => 0.11391696985368
1217 => 0.1079534935125
1218 => 0.11435727617966
1219 => 0.11156185343474
1220 => 0.12039256039164
1221 => 0.11534850793789
1222 => 0.11513106891803
1223 => 0.11480237794814
1224 => 0.10966936751317
1225 => 0.1107931705786
1226 => 0.11452886312812
1227 => 0.11586180031537
1228 => 0.11572276404631
1229 => 0.11451055619662
1230 => 0.1150654987427
1231 => 0.11327783544699
]
'min_raw' => 0.062548350021015
'max_raw' => 0.19450450413322
'avg_raw' => 0.12852642707712
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.062548'
'max' => '$0.1945045'
'avg' => '$0.128526'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.035631736093034
'max_diff' => 0.12148232429399
'year' => 2033
]
8 => [
'items' => [
101 => 0.11264657433027
102 => 0.11065414060388
103 => 0.10772581344996
104 => 0.10813301530119
105 => 0.10233123297078
106 => 0.099170114033274
107 => 0.098295157974252
108 => 0.097125130165196
109 => 0.09842731572861
110 => 0.10231479725039
111 => 0.097625669759911
112 => 0.089586489581535
113 => 0.090069658008351
114 => 0.091155194009415
115 => 0.089132304852972
116 => 0.087217810034616
117 => 0.088882307951302
118 => 0.085476001331084
119 => 0.091566829890647
120 => 0.09140209004746
121 => 0.093672374280153
122 => 0.095092029601779
123 => 0.0918201837043
124 => 0.090997323309097
125 => 0.091466061987125
126 => 0.083718855767632
127 => 0.09303926225035
128 => 0.093119865512651
129 => 0.092429691445171
130 => 0.097392520161953
131 => 0.10786563669946
201 => 0.10392522897791
202 => 0.10239938400867
203 => 0.09949875160677
204 => 0.1033636720598
205 => 0.10306690647116
206 => 0.10172481993431
207 => 0.10091312180927
208 => 0.10240870049269
209 => 0.10072780305955
210 => 0.10042586769259
211 => 0.098596467877709
212 => 0.097943455376185
213 => 0.097459990917233
214 => 0.096927744052164
215 => 0.098101748008852
216 => 0.095441300589914
217 => 0.092233061809552
218 => 0.09196633146859
219 => 0.092702797391159
220 => 0.092376966043862
221 => 0.091964771513455
222 => 0.091177779900409
223 => 0.090944296300234
224 => 0.091703004730665
225 => 0.090846467148157
226 => 0.092110335009163
227 => 0.091766632883968
228 => 0.089846740752042
301 => 0.087453844320555
302 => 0.087432542523044
303 => 0.086916996912017
304 => 0.086260372063572
305 => 0.086077714052276
306 => 0.088742128579421
307 => 0.094257386911394
308 => 0.093174609731881
309 => 0.093957027211548
310 => 0.097805746824466
311 => 0.099029139054376
312 => 0.098160804227219
313 => 0.096972173959247
314 => 0.097024467658637
315 => 0.10108637710715
316 => 0.10133971341701
317 => 0.10197981254265
318 => 0.10280252081108
319 => 0.098300915002825
320 => 0.096812442429891
321 => 0.09610712154752
322 => 0.093935006223353
323 => 0.096277446377374
324 => 0.094912606812914
325 => 0.095096770299718
326 => 0.094976833587339
327 => 0.095042327142383
328 => 0.091565127379933
329 => 0.09283203621713
330 => 0.090725554554279
331 => 0.087905212071384
401 => 0.087895757294442
402 => 0.088586032121554
403 => 0.088175429643931
404 => 0.087070508934203
405 => 0.087227457705941
406 => 0.085852421316256
407 => 0.087394412019487
408 => 0.087438630795347
409 => 0.086844880381802
410 => 0.089220529813841
411 => 0.090193835324493
412 => 0.089803016082931
413 => 0.09016641440466
414 => 0.093219604012136
415 => 0.093717407138156
416 => 0.093938498403706
417 => 0.093642265396849
418 => 0.090222221105866
419 => 0.090373914613322
420 => 0.089260888305831
421 => 0.088320498363823
422 => 0.088358109029808
423 => 0.088841591702135
424 => 0.090952988888072
425 => 0.095396299792213
426 => 0.095564920193007
427 => 0.095769293037774
428 => 0.094938005968546
429 => 0.094687281834121
430 => 0.095018051684817
501 => 0.096686725642224
502 => 0.10097900810123
503 => 0.099461828808314
504 => 0.098228338426867
505 => 0.099310442038015
506 => 0.099143860668887
507 => 0.097737746271884
508 => 0.097698281323969
509 => 0.094999498234154
510 => 0.094001819574166
511 => 0.093168084610928
512 => 0.092257667796274
513 => 0.091717942191099
514 => 0.092547206021548
515 => 0.092736868471133
516 => 0.090923668612804
517 => 0.090676536172117
518 => 0.092157234317066
519 => 0.091505634269465
520 => 0.092175821077327
521 => 0.092331310165506
522 => 0.092306272841092
523 => 0.091625927555608
524 => 0.092059559352387
525 => 0.091033890881143
526 => 0.089918630469089
527 => 0.089207163809378
528 => 0.088586314786422
529 => 0.088930797908315
530 => 0.087702778478899
531 => 0.087309910348281
601 => 0.091912654656662
602 => 0.095312751365104
603 => 0.095263312612377
604 => 0.094962366919767
605 => 0.094515222665154
606 => 0.096654014254909
607 => 0.095908902031526
608 => 0.096451033430247
609 => 0.096589028624405
610 => 0.097006698515626
611 => 0.097155979601798
612 => 0.096704748477007
613 => 0.095190361708968
614 => 0.091416653866588
615 => 0.089659982679031
616 => 0.089080251927464
617 => 0.089101324039218
618 => 0.088520061126993
619 => 0.08869126910502
620 => 0.088460521979186
621 => 0.088023542746582
622 => 0.088903815672077
623 => 0.08900525892643
624 => 0.088799792707142
625 => 0.08884818743977
626 => 0.08714701489983
627 => 0.087276351353289
628 => 0.086556189545147
629 => 0.0864211678878
630 => 0.084600661548479
701 => 0.081375370681759
702 => 0.083162494908482
703 => 0.081003900150294
704 => 0.08018640760732
705 => 0.084056290159583
706 => 0.08366786128517
707 => 0.083003039898147
708 => 0.082019630505823
709 => 0.081654874396218
710 => 0.079438731742012
711 => 0.07930779021134
712 => 0.08040617035165
713 => 0.07989930570985
714 => 0.079187475788112
715 => 0.076609299968618
716 => 0.073710576742829
717 => 0.073798070976291
718 => 0.074720100901751
719 => 0.077401027262705
720 => 0.076353542952983
721 => 0.075593581067783
722 => 0.075451263051055
723 => 0.077232670993351
724 => 0.079753736448202
725 => 0.080936563953958
726 => 0.079764417818759
727 => 0.078417919451473
728 => 0.078499874568017
729 => 0.079045085241846
730 => 0.079102379174801
731 => 0.078225947159967
801 => 0.078472657638413
802 => 0.078097881861974
803 => 0.075797883613753
804 => 0.075756283938816
805 => 0.07519182727622
806 => 0.075174735752806
807 => 0.074214454159418
808 => 0.07408010412639
809 => 0.072173406737792
810 => 0.073428400732979
811 => 0.072586616651149
812 => 0.071317849483041
813 => 0.071099113545032
814 => 0.071092538078605
815 => 0.072395278269104
816 => 0.07341317745536
817 => 0.072601259845652
818 => 0.072416401944283
819 => 0.074390200703196
820 => 0.074139016819549
821 => 0.073921493196273
822 => 0.079528002688008
823 => 0.075090012943909
824 => 0.073154796103883
825 => 0.07075959777664
826 => 0.071539486429629
827 => 0.071703820427762
828 => 0.065943800217692
829 => 0.063606960735832
830 => 0.062805045487595
831 => 0.062343531924818
901 => 0.062553849450698
902 => 0.060450419833091
903 => 0.061863959323638
904 => 0.060042567073269
905 => 0.059737204735172
906 => 0.062994079706033
907 => 0.063447254831841
908 => 0.06151386895467
909 => 0.062755415674555
910 => 0.062305213575134
911 => 0.060073789615689
912 => 0.059988565633682
913 => 0.058868915529177
914 => 0.057116879922609
915 => 0.056316152637016
916 => 0.055899126914446
917 => 0.056071199855247
918 => 0.055984194510859
919 => 0.055416425786044
920 => 0.056016738349559
921 => 0.054483187816054
922 => 0.053872515636956
923 => 0.053596689181144
924 => 0.052235574814782
925 => 0.054401713061969
926 => 0.054828469584956
927 => 0.055256066950125
928 => 0.058978010080797
929 => 0.058792072320091
930 => 0.060472859121514
1001 => 0.060407546837179
1002 => 0.059928159214472
1003 => 0.057905701689709
1004 => 0.05871181721224
1005 => 0.056230718932055
1006 => 0.058089726461854
1007 => 0.057241353059264
1008 => 0.057802890561051
1009 => 0.056793195501042
1010 => 0.057352002436538
1011 => 0.054929669388179
1012 => 0.052667728870767
1013 => 0.053577999765134
1014 => 0.054567568329414
1015 => 0.056713205114154
1016 => 0.055435281546282
1017 => 0.055894871184929
1018 => 0.054355322829838
1019 => 0.05117879482304
1020 => 0.051196773626588
1021 => 0.050708133997167
1022 => 0.050285878014792
1023 => 0.055582066440713
1024 => 0.0549234016896
1025 => 0.053873905612614
1026 => 0.055278697816976
1027 => 0.05565014717286
1028 => 0.055660721813826
1029 => 0.056685621943193
1030 => 0.05723261132596
1031 => 0.057329020575461
1101 => 0.058941723073454
1102 => 0.059482279678721
1103 => 0.061708755833381
1104 => 0.057186203098435
1105 => 0.057093064101007
1106 => 0.055298466124161
1107 => 0.054160303715774
1108 => 0.055376397078004
1109 => 0.056453689783641
1110 => 0.055331940611467
1111 => 0.055478417371935
1112 => 0.053972560758566
1113 => 0.054510833640706
1114 => 0.054974466759993
1115 => 0.054718475802618
1116 => 0.054335244949325
1117 => 0.056365364067063
1118 => 0.056250816790339
1119 => 0.058141310385013
1120 => 0.059615085332556
1121 => 0.062256353507336
1122 => 0.059500052474529
1123 => 0.059399601909589
1124 => 0.060381522294653
1125 => 0.059482129351826
1126 => 0.060050514645704
1127 => 0.06216477784929
1128 => 0.062209448899169
1129 => 0.061461151258291
1130 => 0.061415617278839
1201 => 0.061559336026249
1202 => 0.062401101218801
1203 => 0.062106962595691
1204 => 0.062447347257033
1205 => 0.062873003488195
1206 => 0.064633698134783
1207 => 0.065058195653272
1208 => 0.064026886760073
1209 => 0.064120002406053
1210 => 0.063734264569934
1211 => 0.063361646653525
1212 => 0.064199237313137
1213 => 0.065729950706463
1214 => 0.065720428217888
1215 => 0.066075523972323
1216 => 0.066296745685564
1217 => 0.065347100148142
1218 => 0.064728915822714
1219 => 0.064965967029174
1220 => 0.065345017070606
1221 => 0.064843046209446
1222 => 0.061744649518841
1223 => 0.062684505148424
1224 => 0.062528067215069
1225 => 0.062305280574469
1226 => 0.063250312677703
1227 => 0.063159162025925
1228 => 0.060428846122115
1229 => 0.060603632087788
1230 => 0.060439475435597
1231 => 0.06096989916212
]
'min_raw' => 0.050285878014792
'max_raw' => 0.11264657433027
'avg_raw' => 0.081466226172533
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.050285'
'max' => '$0.112646'
'avg' => '$0.081466'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.012262472006222
'max_diff' => -0.081857929802943
'year' => 2034
]
9 => [
'items' => [
101 => 0.059453484729892
102 => 0.059919923596038
103 => 0.060212469680292
104 => 0.060384781571363
105 => 0.06100729027728
106 => 0.060934246065609
107 => 0.061002749746523
108 => 0.061925765821193
109 => 0.066594064386004
110 => 0.066848149576866
111 => 0.065596941169767
112 => 0.066096774249409
113 => 0.065137204037975
114 => 0.065781369949472
115 => 0.066222091906078
116 => 0.064230554130134
117 => 0.064112628188016
118 => 0.063149097488981
119 => 0.063666844309474
120 => 0.062843071890756
121 => 0.063045196827974
122 => 0.062480037882579
123 => 0.063497211462266
124 => 0.064634569577151
125 => 0.064921911152604
126 => 0.064166039175914
127 => 0.063618738050399
128 => 0.062657857566194
129 => 0.064255823226045
130 => 0.064723117082107
131 => 0.064253368730352
201 => 0.064144517773047
202 => 0.063938245405642
203 => 0.064188279430904
204 => 0.06472057209941
205 => 0.064469552706845
206 => 0.064635355438027
207 => 0.064003486401795
208 => 0.065347414520329
209 => 0.067481895806476
210 => 0.067488758512834
211 => 0.067237737767181
212 => 0.067135025486377
213 => 0.06739258800463
214 => 0.067532305105014
215 => 0.068365215060156
216 => 0.06925896062662
217 => 0.073429681213566
218 => 0.072258559562159
219 => 0.075959070984176
220 => 0.078885695067721
221 => 0.079763261664616
222 => 0.078955941688172
223 => 0.076194143659326
224 => 0.076058636672177
225 => 0.080185928928325
226 => 0.079019779824002
227 => 0.078881070098699
228 => 0.077405432975249
301 => 0.078277717276421
302 => 0.078086935904116
303 => 0.077785778174588
304 => 0.079450035857373
305 => 0.082565377670239
306 => 0.082079822433213
307 => 0.081717377973033
308 => 0.080129251854519
309 => 0.081085658498675
310 => 0.080745100411453
311 => 0.082208354077659
312 => 0.081341555020836
313 => 0.079010945097598
314 => 0.079382102409664
315 => 0.07932600272861
316 => 0.080480530189435
317 => 0.080133969702828
318 => 0.079258331231503
319 => 0.082554729770604
320 => 0.082340679985006
321 => 0.08264415364239
322 => 0.082777752131604
323 => 0.084784211833297
324 => 0.085606194173531
325 => 0.085792798555591
326 => 0.086573618204418
327 => 0.085773371051418
328 => 0.088974930229969
329 => 0.091103780267548
330 => 0.093576549135817
331 => 0.097189929069972
401 => 0.098548593350847
402 => 0.098303162809439
403 => 0.10104278623658
404 => 0.10596582863675
405 => 0.099298250433682
406 => 0.10631922647165
407 => 0.1040964665191
408 => 0.098826342657333
409 => 0.098487008811314
410 => 0.1020559978779
411 => 0.10997167212511
412 => 0.10798888550502
413 => 0.10997491525371
414 => 0.10765810605768
415 => 0.1075430569535
416 => 0.10986239300227
417 => 0.11528164810066
418 => 0.11270716314116
419 => 0.10901600766209
420 => 0.11174149942709
421 => 0.1093804262279
422 => 0.10406026748733
423 => 0.10798736930546
424 => 0.10536142815709
425 => 0.1061278173869
426 => 0.11164715510149
427 => 0.11098305378531
428 => 0.11184246238257
429 => 0.11032562870305
430 => 0.10890866686366
501 => 0.10626380236547
502 => 0.1054807883778
503 => 0.1056971852741
504 => 0.10548068114225
505 => 0.10400090376307
506 => 0.10368134597893
507 => 0.10314873567188
508 => 0.10331381387696
509 => 0.10231235067906
510 => 0.10420231864635
511 => 0.10455311335542
512 => 0.10592847443176
513 => 0.10607126898129
514 => 0.10990163000187
515 => 0.10779193151834
516 => 0.1092072994037
517 => 0.10908069557807
518 => 0.098940562221831
519 => 0.10033778313117
520 => 0.10251142039402
521 => 0.1015321997534
522 => 0.10014781086991
523 => 0.099029842620248
524 => 0.097336006403895
525 => 0.099720048351169
526 => 0.10285480999724
527 => 0.10615077170978
528 => 0.11011065374744
529 => 0.10922685417474
530 => 0.10607674446953
531 => 0.10621805608974
601 => 0.10709158892187
602 => 0.10596028453544
603 => 0.1056266407862
604 => 0.10704575139417
605 => 0.107055524029
606 => 0.10575382160971
607 => 0.1043072175797
608 => 0.104301156256
609 => 0.10404374704139
610 => 0.10770389858512
611 => 0.10971661185111
612 => 0.1099473661834
613 => 0.10970108024599
614 => 0.10979586592856
615 => 0.10862471242619
616 => 0.11130162203782
617 => 0.11375821901638
618 => 0.11309979854859
619 => 0.11211273266738
620 => 0.11132648714947
621 => 0.11291458409181
622 => 0.11284386863486
623 => 0.11373676278486
624 => 0.11369625594861
625 => 0.11339600922941
626 => 0.11309980927134
627 => 0.11427420862417
628 => 0.11393600047083
629 => 0.11359726698682
630 => 0.11291788512712
701 => 0.11301022440519
702 => 0.11202332895483
703 => 0.11156674596223
704 => 0.10470083324928
705 => 0.10286603702221
706 => 0.10344330126596
707 => 0.10363335164367
708 => 0.10283484597429
709 => 0.1039796979849
710 => 0.10380127401175
711 => 0.10449541731676
712 => 0.10406174671599
713 => 0.10407954470871
714 => 0.10535487747727
715 => 0.10572511200563
716 => 0.10553680773635
717 => 0.10566868959186
718 => 0.10870785128835
719 => 0.10827577968203
720 => 0.10804625025268
721 => 0.10810983147324
722 => 0.10888640244705
723 => 0.10910379992052
724 => 0.1081826715492
725 => 0.10861708101409
726 => 0.11046674138084
727 => 0.11111401782749
728 => 0.11317981353489
729 => 0.1123022268018
730 => 0.11391307523145
731 => 0.11886427412551
801 => 0.12281963439898
802 => 0.11918212162932
803 => 0.12644563705946
804 => 0.13210132571123
805 => 0.13188425096074
806 => 0.13089805082586
807 => 0.12445919966008
808 => 0.11853407281947
809 => 0.12349069301582
810 => 0.12350332846004
811 => 0.12307755038936
812 => 0.12043307936002
813 => 0.12298552852976
814 => 0.12318813267572
815 => 0.12307472823078
816 => 0.12104721849287
817 => 0.11795158586952
818 => 0.11855646507423
819 => 0.11954726955074
820 => 0.11767146997324
821 => 0.11707203834953
822 => 0.11818649578454
823 => 0.1217775098466
824 => 0.12109864943949
825 => 0.12108092165077
826 => 0.12398537435398
827 => 0.12190641303861
828 => 0.11856409453809
829 => 0.11772011503695
830 => 0.1147245563806
831 => 0.11679359941435
901 => 0.11686806058969
902 => 0.11573486686521
903 => 0.11865604696345
904 => 0.11862912777458
905 => 0.12140235351757
906 => 0.12670371956216
907 => 0.1251358447584
908 => 0.12331257694591
909 => 0.12351081671086
910 => 0.12568501763493
911 => 0.12437044612406
912 => 0.12484317520489
913 => 0.12568430210285
914 => 0.12619177484439
915 => 0.12343779919292
916 => 0.12279571573067
917 => 0.1214822383076
918 => 0.12113957656514
919 => 0.12220937651962
920 => 0.12192752202821
921 => 0.11686180241623
922 => 0.11633240653138
923 => 0.11634864234737
924 => 0.11501745122351
925 => 0.11298706523715
926 => 0.11832279838125
927 => 0.11789426433624
928 => 0.11742119591646
929 => 0.11747914409859
930 => 0.11979520501167
1001 => 0.1184517727182
1002 => 0.1220235076546
1003 => 0.12128926632786
1004 => 0.12053619448163
1005 => 0.12043209701335
1006 => 0.12014222860162
1007 => 0.11914816196252
1008 => 0.11794776676167
1009 => 0.11715516187361
1010 => 0.10806944402998
1011 => 0.10975570041257
1012 => 0.11169558467363
1013 => 0.11236522494695
1014 => 0.11121975892174
1015 => 0.1191933919429
1016 => 0.1206502515317
1017 => 0.11623732880861
1018 => 0.11541185114557
1019 => 0.11924751012106
1020 => 0.1169341388686
1021 => 0.11797584980193
1022 => 0.11572424054948
1023 => 0.12029933671859
1024 => 0.12026448215116
1025 => 0.11848466640815
1026 => 0.11998895448649
1027 => 0.11972754741417
1028 => 0.1177181398238
1029 => 0.12036303852332
1030 => 0.12036435036008
1031 => 0.11865131640395
1101 => 0.11665086777456
1102 => 0.11629323480811
1103 => 0.11602380640912
1104 => 0.11790958693204
1105 => 0.11960037185221
1106 => 0.12274650340752
1107 => 0.12353751563077
1108 => 0.12662488899877
1109 => 0.1247865084796
1110 => 0.12560143875274
1111 => 0.12648616084314
1112 => 0.12691032914786
1113 => 0.12621916965745
1114 => 0.13101513131153
1115 => 0.1314200574196
1116 => 0.13155582564104
1117 => 0.12993865435546
1118 => 0.1313750809607
1119 => 0.13070302452156
1120 => 0.13245152867356
1121 => 0.13272571645062
1122 => 0.13249348915796
1123 => 0.13258052068616
1124 => 0.12848801348002
1125 => 0.12827579539168
1126 => 0.12538218669894
1127 => 0.12656135362971
1128 => 0.12435695757158
1129 => 0.12505599426941
1130 => 0.12536412298515
1201 => 0.1252031740302
1202 => 0.12662802195877
1203 => 0.12541661014228
1204 => 0.12221949518403
1205 => 0.11902150917395
1206 => 0.11898136106462
1207 => 0.1181393877973
1208 => 0.11753079534013
1209 => 0.11764803183836
1210 => 0.11806118854952
1211 => 0.117506781921
1212 => 0.11762509268433
1213 => 0.11958983965598
1214 => 0.11998385564921
1215 => 0.11864483535222
1216 => 0.11326847564013
1217 => 0.11194910348121
1218 => 0.11289744202476
1219 => 0.11244419728177
1220 => 0.090751243116161
1221 => 0.095847680921232
1222 => 0.092819550636134
1223 => 0.094215052389082
1224 => 0.091124115498533
1225 => 0.092599272592586
1226 => 0.092326864941426
1227 => 0.10052178611742
1228 => 0.100393833695
1229 => 0.10045507774852
1230 => 0.097531739503491
1231 => 0.10218869670511
]
'min_raw' => 0.059453484729892
'max_raw' => 0.13272571645062
'avg_raw' => 0.096089600590254
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.059453'
'max' => '$0.132725'
'avg' => '$0.096089'
'bar_min_pct' => 61.631153054958
'bar_max_pct' => 60.119598047091
'min_diff' => 0.0091676067150993
'max_diff' => 0.020079142120342
'year' => 2035
]
10 => [
'items' => [
101 => 0.1044828812814
102 => 0.10405828877407
103 => 0.10416514956068
104 => 0.10232892720004
105 => 0.10047285639476
106 => 0.098414188224449
107 => 0.10223893922581
108 => 0.10181369220513
109 => 0.10278905587151
110 => 0.10526968029474
111 => 0.10563496166404
112 => 0.10612590352869
113 => 0.10594993581783
114 => 0.11014220059645
115 => 0.10963448967031
116 => 0.11085792692391
117 => 0.10834122367084
118 => 0.10549333505232
119 => 0.10603462557421
120 => 0.10598249494416
121 => 0.10531881219099
122 => 0.10471966907668
123 => 0.10372226459889
124 => 0.10687819995472
125 => 0.10675007474269
126 => 0.10882427299622
127 => 0.10845763830722
128 => 0.10600916212336
129 => 0.10609660992927
130 => 0.10668473844999
131 => 0.10872025797533
201 => 0.10932453875919
202 => 0.10904461182368
203 => 0.10970717811672
204 => 0.11023084349973
205 => 0.10977294242633
206 => 0.11625585599776
207 => 0.11356369829574
208 => 0.11487583722779
209 => 0.11518877463151
210 => 0.11438719205224
211 => 0.11456102661117
212 => 0.11482433860086
213 => 0.11642311744046
214 => 0.12061877572597
215 => 0.12247700421982
216 => 0.12806757632692
217 => 0.12232270421119
218 => 0.12198182727449
219 => 0.12298885813008
220 => 0.12627111577911
221 => 0.12893107731686
222 => 0.12981354001579
223 => 0.12993017202933
224 => 0.13158573071754
225 => 0.13253466608328
226 => 0.13138470234728
227 => 0.13041022848723
228 => 0.1269197840767
229 => 0.12732381252139
301 => 0.13010716784952
302 => 0.13403882118933
303 => 0.13741258877369
304 => 0.13623121295332
305 => 0.14524427654141
306 => 0.14613788498111
307 => 0.14601441718856
308 => 0.14805019020095
309 => 0.14400959534932
310 => 0.1422821627674
311 => 0.13062092079652
312 => 0.13389725413446
313 => 0.13865959705347
314 => 0.13802928311027
315 => 0.13457074238469
316 => 0.13740996516042
317 => 0.13647122932006
318 => 0.13573080941458
319 => 0.13912281653903
320 => 0.13539316536973
321 => 0.13862239093002
322 => 0.13448087574688
323 => 0.13623660937856
324 => 0.13523997005394
325 => 0.13588491784049
326 => 0.13211456625876
327 => 0.13414895645215
328 => 0.13202992893827
329 => 0.13202892424332
330 => 0.1319821465935
331 => 0.13447517306638
401 => 0.13455647057016
402 => 0.13271412023995
403 => 0.13244860877444
404 => 0.13343034382261
405 => 0.13228098919802
406 => 0.13281876499291
407 => 0.13229727787901
408 => 0.13217988014547
409 => 0.13124443503105
410 => 0.13084141955517
411 => 0.13099945230769
412 => 0.13046000505185
413 => 0.13013496856755
414 => 0.13191748865572
415 => 0.13096516007927
416 => 0.13177153064307
417 => 0.13085256961354
418 => 0.12766705031293
419 => 0.1258350244769
420 => 0.11981787381584
421 => 0.12152433027907
422 => 0.12265571267964
423 => 0.122281790803
424 => 0.12308511968258
425 => 0.12313443755142
426 => 0.1228732671437
427 => 0.12257086526956
428 => 0.1224236727611
429 => 0.12352072512659
430 => 0.12415760094984
501 => 0.12276926203948
502 => 0.12244399365771
503 => 0.12384768094837
504 => 0.1247039293848
505 => 0.1310259867549
506 => 0.13055762832494
507 => 0.13173311607343
508 => 0.13160077419228
509 => 0.13283287262257
510 => 0.13484683283246
511 => 0.13075188861363
512 => 0.1314626293375
513 => 0.13128837212541
514 => 0.13319086667434
515 => 0.13319680605466
516 => 0.13205616553592
517 => 0.13267452526591
518 => 0.13232937382844
519 => 0.13295310912596
520 => 0.13055137311257
521 => 0.1334764283255
522 => 0.13513474614484
523 => 0.13515777188937
524 => 0.13594380137451
525 => 0.13674245285517
526 => 0.13827539482442
527 => 0.13669969993565
528 => 0.13386517822157
529 => 0.13406982153388
530 => 0.13240794249003
531 => 0.132435878977
601 => 0.13228675182013
602 => 0.13273429364366
603 => 0.13064958337537
604 => 0.13113886070848
605 => 0.13045386957693
606 => 0.13146114030056
607 => 0.13037748350974
608 => 0.13128828809331
609 => 0.13168136115792
610 => 0.13313180922861
611 => 0.13016325115038
612 => 0.12411016027517
613 => 0.12538259336377
614 => 0.12350056487826
615 => 0.12367475377999
616 => 0.12402664308342
617 => 0.12288605471997
618 => 0.12310364303565
619 => 0.12309586924987
620 => 0.12302887896374
621 => 0.1227321678788
622 => 0.12230187810313
623 => 0.12401602013319
624 => 0.12430728626634
625 => 0.12495473480011
626 => 0.12688110246807
627 => 0.12668861291117
628 => 0.1270025713648
629 => 0.12631720182332
630 => 0.12370654610733
701 => 0.12384831727295
702 => 0.12208042856591
703 => 0.12490952591112
704 => 0.12423955831751
705 => 0.12380762585152
706 => 0.12368976907635
707 => 0.12562091183715
708 => 0.12619874001814
709 => 0.12583867627236
710 => 0.12510017502501
711 => 0.12651831573821
712 => 0.1268977503665
713 => 0.12698269178677
714 => 0.12949536522903
715 => 0.12712312231987
716 => 0.12769414476617
717 => 0.13214909888667
718 => 0.12810907024102
719 => 0.13024916351801
720 => 0.13014441708861
721 => 0.13123921639231
722 => 0.13005461159091
723 => 0.13006929618716
724 => 0.13104140380072
725 => 0.12967625397801
726 => 0.12933822368376
727 => 0.12887123725328
728 => 0.12989088503988
729 => 0.13050211777325
730 => 0.13542820470322
731 => 0.13861068151683
801 => 0.13847252180517
802 => 0.13973504294564
803 => 0.13916626560849
804 => 0.13732953355095
805 => 0.14046461120756
806 => 0.13947254145979
807 => 0.13955432648443
808 => 0.13955128244173
809 => 0.14021092209575
810 => 0.13974350694579
811 => 0.13882218370603
812 => 0.13943380106894
813 => 0.14125008597956
814 => 0.14688789007257
815 => 0.15004287993398
816 => 0.14669795572139
817 => 0.14900523965292
818 => 0.14762169146333
819 => 0.14737025960028
820 => 0.14881940441623
821 => 0.15027108576833
822 => 0.150178619942
823 => 0.14912477382503
824 => 0.14852948289391
825 => 0.15303722526144
826 => 0.15635845305045
827 => 0.15613196758104
828 => 0.15713160078602
829 => 0.16006655479335
830 => 0.16033489020574
831 => 0.1603010861114
901 => 0.15963598879389
902 => 0.16252583216604
903 => 0.16493659034905
904 => 0.15948203798139
905 => 0.16155906011766
906 => 0.16249150227211
907 => 0.16386060399796
908 => 0.16617050809755
909 => 0.16867967662152
910 => 0.16903450056244
911 => 0.16878273599647
912 => 0.16712787190484
913 => 0.16987343404437
914 => 0.17148171995435
915 => 0.17243941740877
916 => 0.17486797880753
917 => 0.16249726071741
918 => 0.15374065158864
919 => 0.15237318062622
920 => 0.15515398660145
921 => 0.15588726296061
922 => 0.15559168017968
923 => 0.14573532048918
924 => 0.15232128893227
925 => 0.15940723721308
926 => 0.15967943734497
927 => 0.16322681121454
928 => 0.16438198155824
929 => 0.16723808248816
930 => 0.16705943259736
1001 => 0.1677548477233
1002 => 0.16759498382876
1003 => 0.17288530937843
1004 => 0.17872132408066
1005 => 0.17851924144891
1006 => 0.17768024528688
1007 => 0.17892629765761
1008 => 0.18494969025566
1009 => 0.18439515278813
1010 => 0.18493383870244
1011 => 0.19203575803907
1012 => 0.20126926341294
1013 => 0.196979373138
1014 => 0.20628720065195
1015 => 0.21214598468525
1016 => 0.22227814586126
1017 => 0.22100954938008
1018 => 0.22495392537267
1019 => 0.21873849691468
1020 => 0.20446661682982
1021 => 0.20220803717583
1022 => 0.20672977083947
1023 => 0.2178460118272
1024 => 0.20637968085142
1025 => 0.20869930467404
1026 => 0.20803125285708
1027 => 0.20799565521479
1028 => 0.20935427243487
1029 => 0.20738352729643
1030 => 0.19935435707217
1031 => 0.20303407846975
1101 => 0.20161316132341
1102 => 0.20318977483367
1103 => 0.21169810770365
1104 => 0.20793637092851
1105 => 0.20397368681458
1106 => 0.20894377208345
1107 => 0.21527239853731
1108 => 0.21487636446747
1109 => 0.21410789284256
1110 => 0.21843972715628
1111 => 0.22559464833417
1112 => 0.22752859477776
1113 => 0.22895619450461
1114 => 0.22915303638745
1115 => 0.23118063011724
1116 => 0.22027774761276
1117 => 0.23758090215325
1118 => 0.2405686789524
1119 => 0.24000710074482
1120 => 0.2433278889122
1121 => 0.24235082879309
1122 => 0.24093522197654
1123 => 0.24619937757374
1124 => 0.240164447977
1125 => 0.23159862519094
1126 => 0.22689924539774
1127 => 0.23308776779758
1128 => 0.23686688247749
1129 => 0.23936463688408
1130 => 0.24012045585833
1201 => 0.22112410734506
1202 => 0.21088612908219
1203 => 0.21744855577003
1204 => 0.22545516924369
1205 => 0.22023327047065
1206 => 0.22043795901619
1207 => 0.2129929036567
1208 => 0.22611389144313
1209 => 0.22420227388753
1210 => 0.2341197491476
1211 => 0.23175286408407
1212 => 0.23984018016449
1213 => 0.23771051880504
1214 => 0.24655062404036
1215 => 0.25007718135502
1216 => 0.25599881995116
1217 => 0.26035480140789
1218 => 0.26291271703592
1219 => 0.26275914937611
1220 => 0.2728948854429
1221 => 0.26691819599996
1222 => 0.25941006546209
1223 => 0.2592742670685
1224 => 0.2631628342651
1225 => 0.27131220433286
1226 => 0.27342521742292
1227 => 0.27460610347771
1228 => 0.27279753537786
1229 => 0.26631026734074
1230 => 0.26350909789351
1231 => 0.26589577542024
]
'min_raw' => 0.098414188224449
'max_raw' => 0.27460610347771
'avg_raw' => 0.18651014585108
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$0.098414'
'max' => '$0.2746061'
'avg' => '$0.18651'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.038960703494558
'max_diff' => 0.1418803870271
'year' => 2036
]
11 => [
'items' => [
101 => 0.26297707389458
102 => 0.26801557157088
103 => 0.27493450504546
104 => 0.27350577264338
105 => 0.27828181085598
106 => 0.28322450795214
107 => 0.29029278679007
108 => 0.29214069661592
109 => 0.29519522128832
110 => 0.2983393305353
111 => 0.29934913368932
112 => 0.30127716123384
113 => 0.30126699957698
114 => 0.30707724035363
115 => 0.31348611585845
116 => 0.31590531799571
117 => 0.32146813991476
118 => 0.31194200232292
119 => 0.31916768711471
120 => 0.32568543566753
121 => 0.31791470714763
122 => 0.32862484606477
123 => 0.32904069648923
124 => 0.33531954417816
125 => 0.32895472916376
126 => 0.32517532232542
127 => 0.33608632825518
128 => 0.34136582033112
129 => 0.33977559435192
130 => 0.32767389613102
131 => 0.32063018870021
201 => 0.30219544772408
202 => 0.32403219473185
203 => 0.33466823721269
204 => 0.32764635135048
205 => 0.33118778214067
206 => 0.35050868021919
207 => 0.35786482727198
208 => 0.35633480010835
209 => 0.35659334951261
210 => 0.36056259293878
211 => 0.37816440419271
212 => 0.36761699088256
213 => 0.37568009315413
214 => 0.37995673352529
215 => 0.38392911544178
216 => 0.37417420093908
217 => 0.36148320049921
218 => 0.35746342792795
219 => 0.32694816318772
220 => 0.32535971113692
221 => 0.32446806486578
222 => 0.3188463612521
223 => 0.31442924212597
224 => 0.31091658499975
225 => 0.30169832373234
226 => 0.30480921630519
227 => 0.29011723184559
228 => 0.29951664285089
301 => 0.27606788090299
302 => 0.29559670663692
303 => 0.28496805465669
304 => 0.29210490860474
305 => 0.29208000879365
306 => 0.27893879793369
307 => 0.27135922175974
308 => 0.2761892226993
309 => 0.28136736711246
310 => 0.28220750362212
311 => 0.28892110301718
312 => 0.2907947243
313 => 0.28511756434203
314 => 0.27558195743148
315 => 0.27779686143276
316 => 0.27131433680085
317 => 0.25995396173014
318 => 0.26811318143905
319 => 0.27089909778323
320 => 0.27212951715098
321 => 0.26095789301682
322 => 0.25744752616611
323 => 0.25557863630963
324 => 0.27413984104301
325 => 0.27515666573785
326 => 0.2699544468345
327 => 0.29346896957229
328 => 0.28814690886999
329 => 0.29409295461098
330 => 0.27759588211017
331 => 0.27822609249596
401 => 0.27041611399676
402 => 0.27478918009336
403 => 0.27169843792678
404 => 0.27443587956823
405 => 0.27607669080122
406 => 0.2838853877598
407 => 0.29568586941291
408 => 0.28271902883129
409 => 0.2770691907013
410 => 0.28057431850125
411 => 0.28990893573285
412 => 0.304051358669
413 => 0.29567875964801
414 => 0.29939437691758
415 => 0.30020607399467
416 => 0.29403242944706
417 => 0.30427898974946
418 => 0.30977020465843
419 => 0.31540305490821
420 => 0.32029390095122
421 => 0.31315317064942
422 => 0.32079477565583
423 => 0.31463699094553
424 => 0.30911282148032
425 => 0.30912119936512
426 => 0.30565580716435
427 => 0.29894117310785
428 => 0.29770289156686
429 => 0.3041445885208
430 => 0.30931021944689
501 => 0.30973568555166
502 => 0.31259564425205
503 => 0.31428813835102
504 => 0.33087688135507
505 => 0.33754901102058
506 => 0.34570756487861
507 => 0.34888578139722
508 => 0.35845107366454
509 => 0.35072632330362
510 => 0.34905502497208
511 => 0.32585275471482
512 => 0.32965212516963
513 => 0.3357352838525
514 => 0.32595306376094
515 => 0.33215763085235
516 => 0.3333825438269
517 => 0.32562066766544
518 => 0.32976662109414
519 => 0.31875619797702
520 => 0.29592586654885
521 => 0.30430440643474
522 => 0.31047383197679
523 => 0.3016693010436
524 => 0.31745108195894
525 => 0.30823169135028
526 => 0.30530958713613
527 => 0.29390941679137
528 => 0.2992898583613
529 => 0.30656698262514
530 => 0.30207056588658
531 => 0.31140130575945
601 => 0.32461612183686
602 => 0.33403378672952
603 => 0.33475675810037
604 => 0.32870183050893
605 => 0.33840489061624
606 => 0.33847556681605
607 => 0.32753047537684
608 => 0.32082666781285
609 => 0.31930354862938
610 => 0.32310859897479
611 => 0.32772863254517
612 => 0.33501313780972
613 => 0.33941501177775
614 => 0.35089276451282
615 => 0.35399831530997
616 => 0.35741037409186
617 => 0.36196993686443
618 => 0.36744486102081
619 => 0.35546603865427
620 => 0.35594197959821
621 => 0.34478746606858
622 => 0.33286726864311
623 => 0.34191321261545
624 => 0.35373958102779
625 => 0.35102659904703
626 => 0.350721333153
627 => 0.35123470571306
628 => 0.34918920589727
629 => 0.33993748604021
630 => 0.33529133024683
701 => 0.34128605658105
702 => 0.34447198683311
703 => 0.34941308681175
704 => 0.34880399194542
705 => 0.36153173485499
706 => 0.36647735088269
707 => 0.36521205066796
708 => 0.36544489635862
709 => 0.37439869794335
710 => 0.38435716679531
711 => 0.39368458701087
712 => 0.40317283947616
713 => 0.39173438079646
714 => 0.38592663690496
715 => 0.39191874612919
716 => 0.38873924862977
717 => 0.40700958436168
718 => 0.40827458276717
719 => 0.42654359734585
720 => 0.44388306761481
721 => 0.43299245700776
722 => 0.44326181228633
723 => 0.45436895729294
724 => 0.47579644208001
725 => 0.46858041903173
726 => 0.46305305846624
727 => 0.45782972943987
728 => 0.46869864796362
729 => 0.48268133800921
730 => 0.48569307552049
731 => 0.49057324086104
801 => 0.48544234372367
802 => 0.49162194417585
803 => 0.51343864922605
804 => 0.5075435829401
805 => 0.49917164113486
806 => 0.51639383447337
807 => 0.522626479293
808 => 0.56637044469856
809 => 0.62159900799617
810 => 0.59873402014066
811 => 0.5845409843302
812 => 0.58787668440897
813 => 0.6080442861204
814 => 0.61452147970243
815 => 0.59691423472395
816 => 0.60313341131201
817 => 0.63740168576813
818 => 0.65578551555596
819 => 0.63081780542634
820 => 0.56193288341245
821 => 0.4984178393747
822 => 0.51526488917322
823 => 0.51335495655089
824 => 0.55017194239969
825 => 0.50740298755881
826 => 0.50812310707123
827 => 0.54570142919752
828 => 0.53567617710977
829 => 0.51943655266488
830 => 0.49853640660499
831 => 0.45990055358378
901 => 0.42567970112242
902 => 0.49279467339079
903 => 0.48990055374592
904 => 0.48570943961565
905 => 0.49503631058666
906 => 0.54032494854336
907 => 0.53928089885344
908 => 0.53263918740502
909 => 0.53767686700129
910 => 0.51855342307483
911 => 0.5234819700074
912 => 0.49840777826722
913 => 0.50974236012453
914 => 0.51940170972441
915 => 0.5213409671657
916 => 0.52571021320186
917 => 0.48837548420289
918 => 0.50513768143337
919 => 0.5149839019008
920 => 0.4704983196204
921 => 0.51410456497117
922 => 0.48772556963329
923 => 0.4787721424164
924 => 0.4908267526396
925 => 0.48612905931213
926 => 0.48209025844698
927 => 0.47983653816881
928 => 0.48868811349795
929 => 0.48827517692893
930 => 0.47379228167372
1001 => 0.45489993521163
1002 => 0.46124082680444
1003 => 0.4589371214426
1004 => 0.45058819602737
1005 => 0.45621436370413
1006 => 0.43143956859397
1007 => 0.38881582128872
1008 => 0.41697437435926
1009 => 0.41589030069665
1010 => 0.41534366159714
1011 => 0.4365040359844
1012 => 0.43446995423997
1013 => 0.43077807595603
1014 => 0.45052039178748
1015 => 0.44331418093738
1016 => 0.46552202478058
1017 => 0.48014954704899
1018 => 0.47643953425094
1019 => 0.49019678964534
1020 => 0.46138690813994
1021 => 0.47095639512421
1022 => 0.47292865312893
1023 => 0.45027677467464
1024 => 0.43480275516927
1025 => 0.433770814485
1026 => 0.40694099711393
1027 => 0.42127326899084
1028 => 0.43388507513281
1029 => 0.42784499870649
1030 => 0.42593289095208
1031 => 0.43570143478383
1101 => 0.43646053430148
1102 => 0.41915298485336
1103 => 0.42275177244243
1104 => 0.43775931493753
1105 => 0.42237362087694
1106 => 0.39248173055608
1107 => 0.38506812846879
1108 => 0.38407901729055
1109 => 0.36397274044962
1110 => 0.38556354080978
1111 => 0.37613857785509
1112 => 0.40591192290055
1113 => 0.38890554788824
1114 => 0.38817243705167
1115 => 0.38706423249822
1116 => 0.36975792944139
1117 => 0.3735469099379
1118 => 0.38614205818632
1119 => 0.39063614897585
1120 => 0.3901673784875
1121 => 0.38608033508864
1122 => 0.38795136262759
1123 => 0.38192413101542
1124 => 0.37979579008719
1125 => 0.37307816067139
1126 => 0.36320510122265
1127 => 0.36457801069399
1128 => 0.3450168964995
1129 => 0.33435896329944
1130 => 0.33140898785896
1201 => 0.327464157412
1202 => 0.33185456695474
1203 => 0.34496148232071
1204 => 0.32915176160214
1205 => 0.30204710435311
1206 => 0.30367614043786
1207 => 0.30733610085515
1208 => 0.30051578883059
1209 => 0.29406093588475
1210 => 0.29967290682239
1211 => 0.28818830623159
1212 => 0.30872395996822
1213 => 0.30816852808515
1214 => 0.31582294988186
1215 => 0.32060941691589
1216 => 0.30957816003956
1217 => 0.30680382876685
1218 => 0.30838421394611
1219 => 0.28226396728442
1220 => 0.31368836847091
1221 => 0.3139601279973
1222 => 0.31163315794237
1223 => 0.32836568145464
1224 => 0.36367652507048
1225 => 0.3503911653268
1226 => 0.34524667248193
1227 => 0.33546698782322
1228 => 0.34849783697073
1229 => 0.34749727106912
1230 => 0.34297233260866
1231 => 0.34023563570911
]
'min_raw' => 0.25557863630963
'max_raw' => 0.65578551555596
'avg_raw' => 0.45568207593279
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$0.255578'
'max' => '$0.655785'
'avg' => '$0.455682'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 0.15716444808518
'max_diff' => 0.38117941207825
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.0080223213505929
]
1 => [
'year' => 2028
'avg' => 0.013768632334146
]
2 => [
'year' => 2029
'avg' => 0.037613421982351
]
3 => [
'year' => 2030
'avg' => 0.029018699043795
]
4 => [
'year' => 2031
'avg' => 0.028499958708788
]
5 => [
'year' => 2032
'avg' => 0.049969396883604
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.0080223213505929
'min' => '$0.008022'
'max_raw' => 0.049969396883604
'max' => '$0.049969'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.049969396883604
]
1 => [
'year' => 2033
'avg' => 0.12852642707712
]
2 => [
'year' => 2034
'avg' => 0.081466226172533
]
3 => [
'year' => 2035
'avg' => 0.096089600590254
]
4 => [
'year' => 2036
'avg' => 0.18651014585108
]
5 => [
'year' => 2037
'avg' => 0.45568207593279
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.049969396883604
'min' => '$0.049969'
'max_raw' => 0.45568207593279
'max' => '$0.455682'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 0.45568207593279
]
]
]
]
'prediction_2025_max_price' => '$0.013716'
'last_price' => 0.01330008
'sma_50day_nextmonth' => '$0.013082'
'sma_200day_nextmonth' => '$0.011819'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'increase'
'sma_200day_direction_label' => 'aumentar'
'sma_200day_date_nextmonth' => '4 de fev. de 2026'
'sma_50day_date_nextmonth' => '4 de fev. de 2026'
'daily_sma3' => '$0.012877'
'daily_sma3_action' => 'BUY'
'daily_sma5' => '$0.012898'
'daily_sma5_action' => 'BUY'
'daily_sma10' => '$0.01307'
'daily_sma10_action' => 'BUY'
'daily_sma21' => '$0.014513'
'daily_sma21_action' => 'SELL'
'daily_sma50' => '$0.014797'
'daily_sma50_action' => 'SELL'
'daily_sma100' => '$0.012856'
'daily_sma100_action' => 'BUY'
'daily_sma200' => '$0.01170071'
'daily_sma200_action' => 'BUY'
'daily_ema3' => '$0.013017'
'daily_ema3_action' => 'BUY'
'daily_ema5' => '$0.012993'
'daily_ema5_action' => 'BUY'
'daily_ema10' => '$0.013286'
'daily_ema10_action' => 'BUY'
'daily_ema21' => '$0.014053'
'daily_ema21_action' => 'SELL'
'daily_ema50' => '$0.014265'
'daily_ema50_action' => 'SELL'
'daily_ema100' => '$0.02641'
'daily_ema100_action' => 'SELL'
'daily_ema200' => '$0.17067'
'daily_ema200_action' => 'SELL'
'weekly_sma21' => '$0.014941'
'weekly_sma21_action' => 'SELL'
'weekly_sma50' => '$0.012538'
'weekly_sma50_action' => 'BUY'
'weekly_sma100' => '$0.8118069'
'weekly_sma100_action' => 'SELL'
'weekly_sma200' => '$0.582053'
'weekly_sma200_action' => 'SELL'
'weekly_ema3' => '$0.013174'
'weekly_ema3_action' => 'BUY'
'weekly_ema5' => '$0.013451'
'weekly_ema5_action' => 'SELL'
'weekly_ema10' => '$0.014141'
'weekly_ema10_action' => 'SELL'
'weekly_ema21' => '$0.023662'
'weekly_ema21_action' => 'SELL'
'weekly_ema50' => '$0.194524'
'weekly_ema50_action' => 'SELL'
'weekly_ema100' => '$0.433238'
'weekly_ema100_action' => 'SELL'
'weekly_ema200' => '$0.475489'
'weekly_ema200_action' => 'SELL'
'rsi_14' => '41.44'
'rsi_14_action' => 'NEUTRAL'
'stoch_rsi_14' => 30.49
'stoch_rsi_14_action' => 'NEUTRAL'
'momentum_10' => -0
'momentum_10_action' => 'BUY'
'vwma_10' => '0.012955'
'vwma_10_action' => 'BUY'
'hma_9' => '0.012786'
'hma_9_action' => 'BUY'
'stochastic_fast_14' => 30.44
'stochastic_fast_14_action' => 'NEUTRAL'
'cci_20' => -47.44
'cci_20_action' => 'NEUTRAL'
'adx_14' => 29.37
'adx_14_action' => 'SELL'
'ao_5_34' => '-0.002572'
'ao_5_34_action' => 'SELL'
'macd_12_26' => -0
'macd_12_26_action' => 'NEUTRAL'
'williams_percent_r_14' => -69.56
'williams_percent_r_14_action' => 'NEUTRAL'
'ultimate_oscillator' => 37.59
'ultimate_oscillator_action' => 'NEUTRAL'
'ichimoku_cloud' => '0.001260'
'ichimoku_cloud_action' => 'NEUTRAL'
'sell_signals' => 16
'buy_signals' => 17
'sell_pct' => 48.48
'buy_pct' => 51.52
'overall_action' => 'bullish'
'overall_action_label' => 'Altista'
'overall_action_dir' => 1
'last_updated' => 1767686327
'last_updated_date' => '6 de janeiro de 2026'
]
Previsão de preço de Privapp Network para 2026
A previsão de preço para Privapp Network em 2026 sugere que o preço médio poderia variar entre $0.004595 na extremidade inferior e $0.013716 na extremidade superior. No mercado de criptomoedas, comparado ao preço médio de hoje, Privapp Network poderia potencialmente ganhar 3.13% até 2026 se BPRIVA atingir a meta de preço prevista.
Previsão de preço de Privapp Network 2027-2032
A previsão de preço de BPRIVA para 2027-2032 está atualmente dentro de uma faixa de preço entre $0.008022 na extremidade inferior e $0.049969 na extremidade superior. Considerando a volatilidade de preços no mercado, se Privapp Network atingir a meta de preço superior, poderia ganhar 275.71% até 2032 em comparação com o preço de hoje.
| Previsão de Preço de Privapp Network | Potencial Mínimo ($) | Preço Médio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2027 | $0.004423 | $0.008022 | $0.01162 |
| 2028 | $0.007983 | $0.013768 | $0.019553 |
| 2029 | $0.017537 | $0.037613 | $0.057689 |
| 2030 | $0.014914 | $0.029018 | $0.043122 |
| 2031 | $0.017633 | $0.028499 | $0.039366 |
| 2032 | $0.026916 | $0.049969 | $0.073022 |
Previsão de preço de Privapp Network 2032-2037
A previsão de preço de Privapp Network para 2032-2037 é atualmente estimada entre $0.049969 na extremidade inferior e $0.455682 na extremidade superior. Comparado ao preço atual, Privapp Network poderia potencialmente ganhar 3326.16% até 2037 se atingir a meta de preço superior. Por favor, note que esta informação é apenas para fins gerais e não deve ser considerada como aconselhamento de investimento a longo prazo.
| Previsão de Preço de Privapp Network | Potencial Mínimo ($) | Preço Médio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2032 | $0.026916 | $0.049969 | $0.073022 |
| 2033 | $0.062548 | $0.128526 | $0.1945045 |
| 2034 | $0.050285 | $0.081466 | $0.112646 |
| 2035 | $0.059453 | $0.096089 | $0.132725 |
| 2036 | $0.098414 | $0.18651 | $0.2746061 |
| 2037 | $0.255578 | $0.455682 | $0.655785 |
Privapp Network Histograma de preços potenciais
Previsão de preço de Privapp Network baseada na análise técnica
Em 6 de janeiro de 2026, o sentimento geral de previsão de preço para Privapp Network é Altista, com 17 indicadores técnicos mostrando sinais de alta e 16 indicando sinais de baixa. A previsão de preço de BPRIVA foi atualizada pela última vez em 6 de janeiro de 2026.
Médias Móveis Simples de 50 e 200 dias e Índice de Força Relativa de 14 dias - RSI (14) de Privapp Network
De acordo com nossos indicadores técnicos, o SMA de 200 dias de Privapp Network está projetado para aumentar no próximo mês, alcançando $0.011819 até 4 de fev. de 2026. O SMA de 50 dias de curto prazo para Privapp Network é esperado para alcançar $0.013082 até 4 de fev. de 2026.
O oscilador de momentum Índice de Força Relativa (RSI) é uma ferramenta comumente usada para identificar se uma criptomoeda está sobrevendida (abaixo de 30) ou sobrecomprada (acima de 70). No momento, o RSI está em 41.44, sugerindo que o mercado de BPRIVA está em um estado NEUTRAL.
Médias Móveis e Osciladores Populares de BPRIVA para Sábado, 19 de Outubro de 2024
Médias móveis (MA) são indicadores amplamente utilizados nos mercados financeiros, projetados para suavizar movimentos de preços ao longo de um período definido. Como indicadores atrasados, eles se baseiam em dados históricos de preços. A tabela abaixo destaca dois tipos: a média móvel simples (SMA) e a média móvel exponencial (EMA).
Média Móvel Simples Diária (SMA)
| Período | Valor | Ação |
|---|---|---|
| SMA 3 | $0.012877 | BUY |
| SMA 5 | $0.012898 | BUY |
| SMA 10 | $0.01307 | BUY |
| SMA 21 | $0.014513 | SELL |
| SMA 50 | $0.014797 | SELL |
| SMA 100 | $0.012856 | BUY |
| SMA 200 | $0.01170071 | BUY |
Média Móvel Exponencial Diária (EMA)
| Período | Valor | Ação |
|---|---|---|
| EMA 3 | $0.013017 | BUY |
| EMA 5 | $0.012993 | BUY |
| EMA 10 | $0.013286 | BUY |
| EMA 21 | $0.014053 | SELL |
| EMA 50 | $0.014265 | SELL |
| EMA 100 | $0.02641 | SELL |
| EMA 200 | $0.17067 | SELL |
Média Móvel Simples Semanal (SMA)
| Período | Valor | Ação |
|---|---|---|
| SMA 21 | $0.014941 | SELL |
| SMA 50 | $0.012538 | BUY |
| SMA 100 | $0.8118069 | SELL |
| SMA 200 | $0.582053 | SELL |
Média Móvel Exponencial Semanal (EMA)
| Período | Valor | Ação |
|---|---|---|
| EMA 21 | $0.023662 | SELL |
| EMA 50 | $0.194524 | SELL |
| EMA 100 | $0.433238 | SELL |
| EMA 200 | $0.475489 | SELL |
Osciladores de Privapp Network
Um oscilador é uma ferramenta de análise técnica que define limites altos e baixos entre dois extremos, criando um indicador de tendência que flutua dentro desses limites. Os traders usam esse indicador para identificar condições de sobrecompra ou sobrevenda de curto prazo.
| Período | Valor | Ação |
|---|---|---|
| RSI (14) | 41.44 | NEUTRAL |
| Stoch RSI (14) | 30.49 | NEUTRAL |
| Estocástico Rápido (14) | 30.44 | NEUTRAL |
| Índice de Canal de Commodities (20) | -47.44 | NEUTRAL |
| Índice Direcional Médio (14) | 29.37 | SELL |
| Oscilador Impressionante (5, 34) | -0.002572 | SELL |
| Momentum (10) | -0 | BUY |
| MACD (12, 26) | -0 | NEUTRAL |
| Williams Percent Range (14) | -69.56 | NEUTRAL |
| Oscilador Ultimate (7, 14, 28) | 37.59 | NEUTRAL |
| VWMA (10) | 0.012955 | BUY |
| Média Móvel de Hull (9) | 0.012786 | BUY |
| Nuvem Ichimoku B/L (9, 26, 52, 26) | 0.001260 | NEUTRAL |
Previsão do preço de Privapp Network com base nos fluxos financeiros mundiais
Definições dos fluxos financeiros mundiais, usadas na previsão do preço do Privapp Network
M0: o total de todas as moedas físicas, mais as contas no Banco Central que podem ser trocadas por moedas físicas.
M1: o valor de M0, mais o valor em contas de demanda, incluindo contas 'correntes'.
M2: o valor de M1, mais a maioria das contas de poupança, do mercado de moedas e de certificados de depósito (CD) de menos de US$ 100.000.
Previsões de preço de Privapp Network por empresas de Internet ou nichos tecnológicos
| Comparação | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Facebook stock | $0.018688 | $0.02626 | $0.03690099 | $0.051852 | $0.07286 | $0.102381 |
| Amazon.com stock | $0.027751 | $0.0579049 | $0.120822 | $0.2521025 | $0.526027 | $1.09 |
| Apple stock | $0.018865 | $0.026758 | $0.037955 | $0.053836 | $0.076363 | $0.108315 |
| Netflix stock | $0.020985 | $0.033111 | $0.052245 | $0.082434 | $0.130068 | $0.205228 |
| Google stock | $0.017223 | $0.0223044 | $0.028884 | $0.0374048 | $0.048439 | $0.062728 |
| Tesla stock | $0.03015 | $0.068348 | $0.15494 | $0.351238 | $0.796231 | $1.80 |
| Kodak stock | $0.009973 | $0.007479 | $0.0056085 | $0.0042058 | $0.003153 | $0.002365 |
| Nokia stock | $0.00881 | $0.005836 | $0.003866 | $0.002561 | $0.001696 | $0.001124 |
Este cálculo mostra quanto a criptomoeda pode custar, se assumirmos que sua capitalização se comportará da mesma forma que a de algumas empresas de Internet ou nichos tecnológicos. Se você extrapolar os dados, poderá obter uma imagem em potencial do preço futuro para 2024, 2025, 2026, 2027, 2028, 2029 e 2030.
Visão geral da previsão para Privapp Network
Você pode fazer perguntas como: 'Devo investir em Privapp Network agora?', 'Devo comprar BPRIVA hoje?', 'Privapp Network será um bom ou mau investimento no curto ou no longo prazo?'.
Atualizamos a previsão para Privapp Network regularmente com novos valores. Veja nossas previsões semelhantes. Fazemos previsões de preços futuros para uma enorme quantidade de moedas digitais, como Privapp Network, com métodos de análise técnica.
Se você estiver tentando encontrar criptomoedas com bom retorno, você deve explorar o máximo de fontes de informações disponíveis sobre Privapp Network para poder tomar sozinho uma decisão de tão grande responsabilidade sobre o seu investimento.
O preço de Privapp Network é de $0.0133 USD hoje, mas o preço pode tanto subir quanto descer e seu investimento pode ser perdido, porque criptomoedas são ativos de alto risco
Previsão do preço de Privapp Network com base no padrão de crescimento do Bitcoin
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| Se Privapp Network tiver 1% da média anterior do crescimento anual do Bitcoin | $0.013645 | $0.01400048 | $0.014364 | $0.014737 |
| Se Privapp Network tiver 2% da média anterior do crescimento anual do Bitcoin | $0.013991 | $0.014718 | $0.015484 | $0.016289 |
| Se Privapp Network tiver 5% da média anterior do crescimento anual do Bitcoin | $0.015028 | $0.016981 | $0.019188 | $0.021682 |
| Se Privapp Network tiver 10% da média anterior do crescimento anual do Bitcoin | $0.016757 | $0.021112 | $0.02660086 | $0.033515 |
| Se Privapp Network tiver 20% da média anterior do crescimento anual do Bitcoin | $0.020214 | $0.030723 | $0.046694 | $0.070969 |
| Se Privapp Network tiver 50% da média anterior do crescimento anual do Bitcoin | $0.030585 | $0.070336 | $0.16175 | $0.371971 |
| Se Privapp Network tiver 100% da média anterior do crescimento anual do Bitcoin | $0.047871 | $0.172304 | $0.620177 | $2.23 |
Perguntas Frequentes sobre Privapp Network
BPRIVA é um bom investimento?
A decisão de adquirir Privapp Network depende inteiramente da sua tolerância individual ao risco. Como você pode perceber, o valor de Privapp Network experimentou uma queda de -2.9355% nas últimas 24 horas, e Privapp Network registrou um declínio de durante os últimos 30 dias. Consequentemente, a decisão de investir ou não em Privapp Network dependerá de quão alinhado esse investimento está com suas aspirações de negociação.
Privapp Network pode subir?
Parece que o valor médio de Privapp Network pode potencialmente subir para $0.013716 até o final deste ano. Observando as perspectivas de Privapp Network em um horizonte de cinco anos mais longo, a moeda digital poderia potencialmente crescer até $0.043122. No entanto, dada a imprevisibilidade do mercado, é vital conduzir uma pesquisa aprofundada antes de investir quaisquer fundos em um projeto, rede ou ativo específico.
Qual será o preço de Privapp Network na próxima semana?
Com base na nossa nova previsão experimental de Privapp Network, o preço de Privapp Network aumentará 0.86% na próxima semana e atingirá $0.013413 até 13 de janeiro de 2026.
Qual será o preço de Privapp Network no próximo mês?
Com base na nossa nova previsão experimental de Privapp Network, o preço de Privapp Network diminuirá -11.62% no próximo mês e atingirá $0.011754 até 5 de fevereiro de 2026.
Até onde o preço de Privapp Network pode subir este ano em 2026?
De acordo com nossa previsão mais recente sobre o valor de Privapp Network em 2026, espera-se que BPRIVA fluctue dentro do intervalo de $0.004595 e $0.013716. No entanto, é crucial lembrar que o mercado de criptomoedas é excepcionalmente instável, e essa previsão de preço de Privapp Network não considera flutuações repentinas e extremas de preço.
Onde estará Privapp Network em 5 anos?
O futuro de Privapp Network parece seguir uma tendência de alta, com um preço máximo de $0.043122 projetada após um período de cinco anos. Com base na previsão de Privapp Network para 2030, o valor de Privapp Network pode potencialmente atingir seu pico mais alto de aproximadamente $0.043122, enquanto seu pico mais baixo está previsto para cerca de $0.014914.
Quanto será Privapp Network em 2026?
Com base na nossa nova simulação experimental de previsão de preços de Privapp Network, espera-se que o valor de BPRIVA em 2026 aumente 3.13% para $0.013716 se o melhor cenário ocorrer. O preço ficará entre $0.013716 e $0.004595 durante 2026.
Quanto será Privapp Network em 2027?
De acordo com nossa última simulação experimental para previsão de preços de Privapp Network, o valor de BPRIVA pode diminuir -12.62% para $0.01162 em 2027, assumindo as condições mais favoráveis. O preço está projetado para flutuar entre $0.01162 e $0.004423 ao longo do ano.
Quanto será Privapp Network em 2028?
Nosso novo modelo experimental de previsão de preços de Privapp Network sugere que o valor de BPRIVA em 2028 pode aumentar 47.02%, alcançando $0.019553 no melhor cenário. O preço é esperado para variar entre $0.019553 e $0.007983 durante o ano.
Quanto será Privapp Network em 2029?
Com base no nosso modelo de previsão experimental, o valor de Privapp Network pode experimentar um 333.75% crescimento em 2029, potencialmente alcançando $0.057689 sob condições ótimas. A faixa de preço prevista para 2029 está entre $0.057689 e $0.017537.
Quanto será Privapp Network em 2030?
Usando nossa nova simulação experimental para previsões de preços de Privapp Network, espera-se que o valor de BPRIVA em 2030 aumente 224.23%, alcançando $0.043122 no melhor cenário. O preço está previsto para variar entre $0.043122 e $0.014914 ao longo de 2030.
Quanto será Privapp Network em 2031?
Nossa simulação experimental indica que o preço de Privapp Network poderia aumentar 195.98% em 2031, potencialmente atingindo $0.039366 sob condições ideais. O preço provavelmente oscilará entre $0.039366 e $0.017633 durante o ano.
Quanto será Privapp Network em 2032?
Com base nos achados da nossa mais recente previsão experimental de preços de Privapp Network, BPRIVA poderia ver um 449.04% aumento em valor, atingindo $0.073022 se o cenário mais positivo se desenrolar em 2032. O preço é esperado para permanecer dentro de uma faixa de $0.073022 e $0.026916 ao longo do ano.
Quanto será Privapp Network em 2033?
De acordo com nossa previsão experimental de preços de Privapp Network, espera-se que o valor de BPRIVA seja aumentar 1362.43% em 2033, com o preço potencial mais alto sendo $0.1945045. Ao longo do ano, o preço de BPRIVA poderia variar entre $0.1945045 e $0.062548.
Quanto será Privapp Network em 2034?
Os resultados da nossa nova simulação de previsão de preços de Privapp Network sugerem que BPRIVA pode aumentar 746.96% em 2034, atingindo potencialmente $0.112646 nas melhores circunstâncias. A faixa de preço prevista para o ano é entre $0.112646 e $0.050285.
Quanto será Privapp Network em 2035?
Com base em nossa previsão experimental para o preço de Privapp Network, BPRIVA poderia aumentar 897.93%, com o valor potencialmente atingindo $0.132725 em 2035. A faixa de preço esperada para o ano está entre $0.132725 e $0.059453.
Quanto será Privapp Network em 2036?
Nossa recente simulação de previsão de preços de Privapp Network sugere que o valor de BPRIVA pode aumentar 1964.7% em 2036, possivelmente atingindo $0.2746061 se as condições forem ideais. A faixa de preço esperada para 2036 está entre $0.2746061 e $0.098414.
Quanto será Privapp Network em 2037?
De acordo com a simulação experimental, o valor de Privapp Network poderia aumentar 4830.69% em 2037, com um pico de $0.655785 sob condições favoráveis. O preço é esperado para cair entre $0.655785 e $0.255578 ao longo do ano.
Previsões relacionadas
Previsão de Preço do Meme Alliance
Previsão de Preço do Global Digital Cluster Coin
Previsão de Preço do Decentr
Previsão de Preço do Galaxy Fight Club
Previsão de Preço do DOGwifCROCS
Previsão de Preço do Hakka Finance
Previsão de Preço do Bread
Previsão de Preço do Acent
Previsão de Preço do Pollen
Previsão de Preço do VCGamers
Previsão de Preço do A2DAO
Previsão de Preço do Ribbit Meme
Previsão de Preço do Moonwell Apollo
Previsão de Preço do DRAC (Ordinals)
Previsão de Preço do TE-FOOD
Previsão de Preço do TrustFi Network Token
Previsão de Preço do RetroCraft
Previsão de Preço do CrossWallet
Previsão de Preço do İstanbul Başakşehir Fan Token
Previsão de Preço do Trisolaris
Previsão de Preço do DogeCola
Previsão de Preço do Unistake
Previsão de Preço do Forest Knight
Previsão de Preço do AirCoin
Previsão de Preço do Changer
Como ler e prever os movimentos de preço de Privapp Network?
Traders de Privapp Network utilizam indicadores e padrões de gráfico para prever a direção do mercado. Eles também identificam níveis-chave de suporte e resistência para avaliar quando uma tendência de baixa pode desacelerar ou uma tendência de alta pode estagnar.
Indicadores de Previsão de Preço de Privapp Network
Médias móveis são ferramentas populares para a previsão de preço de Privapp Network. Uma média móvel simples (SMA) calcula o preço médio de fechamento de BPRIVA em um período específico, como uma SMA de 12 dias. Uma média móvel exponencial (EMA) dá mais peso aos preços recentes, reagindo mais rapidamente às mudanças de preço.
Médias móveis comumente usadas no mercado de criptomoedas incluem as de 50 dias, 100 dias e 200 dias, que ajudam a identificar níveis-chave de resistência e suporte. Um movimento de preço de BPRIVA acima dessas médias é visto como altista, enquanto uma queda abaixo indica fraqueza.
Traders também usam RSI e níveis de retração de Fibonacci para avaliar a direção futura de BPRIVA.
Como ler gráficos de Privapp Network e prever movimentos de preço?
A maioria dos traders prefere gráficos de velas em vez de gráficos de linha simples porque eles fornecem informações mais detalhadas. Velas podem representar a ação de preço de Privapp Network em diferentes períodos de tempo, como 5 minutos para tendências de curto prazo e semanal para tendências de longo prazo. Opções populares incluem gráficos de 1 hora, 4 horas e 1 dia.
Por exemplo, um gráfico de velas de 1 hora mostra os preços de abertura, fechamento, máximo e mínimo de BPRIVA dentro de cada hora. A cor da vela é crucial: verde indica que o preço fechou mais alto do que abriu, enquanto vermelho significa o oposto. Alguns gráficos usam velas vazias e preenchidas para transmitir a mesma informação.
O que afeta o preço de Privapp Network?
A ação de preço de Privapp Network é impulsionada pela oferta e demanda, influenciada por fatores como reduções pela metade das recompensas de bloco, hard forks e atualizações de protocolo. Eventos do mundo real, como regulamentações, adoção por empresas e governos e hacks de exchanges de criptomoedas, também impactam o preço de BPRIVA. A capitalização de mercado de Privapp Network pode mudar rapidamente.
Traders frequentemente monitoram a atividade de "baleias" de BPRIVA, grandes detentores de Privapp Network, pois suas ações podem influenciar significativamente os movimentos de preço no relativamente pequeno mercado de Privapp Network.
Padrões de previsão de preço altistas e baixistas
Traders frequentemente identificam padrões de velas para ganhar vantagem em previsões de preço de criptomoedas. Certas formações indicam tendências altistas, enquanto outras sugerem movimentos baixistas.
Padrões de velas altistas comumente seguidos:
- Martelo
- Engolfo de Alta
- Linha de Perfuração
- Estrela da Manhã
- Três Soldados Brancos
Padrões de velas baixistas comuns:
- Harami de Baixa
- Nuvem Negra
- Estrela da Noite
- Estrela Cadente
- Homem Enforcado


