Previsão de Preço Datamine FLUX - Projeção FLUX
Previsão de Preço Datamine FLUX até $0.025884 até 2026
| Ano | Preço Mínimo | Preço Máximo |
|---|---|---|
| 2026 | $0.008671 | $0.025884 |
| 2027 | $0.008347 | $0.021929 |
| 2028 | $0.015065 | $0.036899 |
| 2029 | $0.033094 | $0.108865 |
| 2030 | $0.028145 | $0.081376 |
| 2031 | $0.033276 | $0.074287 |
| 2032 | $0.050794 | $0.137799 |
| 2033 | $0.118034 | $0.367048 |
| 2034 | $0.094894 | $0.212574 |
| 2035 | $0.112194 | $0.250465 |
Calculadora de lucro do investimento
Se você abrir um short de $10,000.00 em Datamine FLUX hoje e fechar em Apr 06, 2026, nossa previsão mostra que pode lucrar cerca de $3,954.62, com um retorno de 39.55% nos próximos 90 dias.
Previsão de preço de longo prazo de FLUX para os anos 2027, 2028, 2029, 2030, 2031, 2032 e 2037
[
'name' => 'Datamine FLUX'
'name_with_ticker' => 'Datamine FLUX <small>FLUX</small>'
'name_lang' => 'FLUX'
'name_lang_with_ticker' => 'FLUX <small>FLUX</small>'
'name_with_lang' => 'FLUX/Datamine FLUX'
'name_with_lang_with_ticker' => 'FLUX/Datamine FLUX <small>FLUX</small>'
'image' => '/uploads/coins/flux.png?1717594432'
'price_for_sd' => 0.02509
'ticker' => 'FLUX'
'marketcap' => '$126.09K'
'low24h' => '$0.0247'
'high24h' => '$0.02543'
'volume24h' => '$8.59'
'current_supply' => '5.02M'
'max_supply' => '5.02M'
'algo' => null
'proof' => null
'ico_price_and_roi' => '—'
'price' => '$0.02509'
'change_24h_pct' => '0.8478%'
'ath_price' => '$456.44'
'ath_days' => 2013
'ath_exchange' => null
'ath_pair' => null
'ath_date' => '3 de jul. de 2020'
'ath_pct' => '-99.99%'
'fdv' => '$126.09K'
'new_prediction' => true
'change_24h_pct_is_increased' => true
'change_30d_pct' => null
'change_30d_pct_is_increased' => false
'max_price' => '$1.23'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.025313'
'next_week_prediction_price_date' => '13 de janeiro de 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.022182'
'next_month_prediction_price_date' => '5 de fevereiro de 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.008671'
'current_year_max_price_prediction' => '$0.025884'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.028145'
'grand_prediction_max_price' => '$0.081376'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.025574113562684
107 => 0.025669598019324
108 => 0.02588472937569
109 => 0.024046455489841
110 => 0.024871786495702
111 => 0.025356591138588
112 => 0.023166226124686
113 => 0.025313294664823
114 => 0.024014455231279
115 => 0.02357360961962
116 => 0.024167150158726
117 => 0.023935846833399
118 => 0.023736985816871
119 => 0.023626017952782
120 => 0.024061848618022
121 => 0.024041516596558
122 => 0.023328413037138
123 => 0.022398198513695
124 => 0.022710409041013
125 => 0.022596980029449
126 => 0.022185898658907
127 => 0.022462917868499
128 => 0.021243065465672
129 => 0.019144372809019
130 => 0.020530833462699
131 => 0.020477456235711
201 => 0.020450541017399
202 => 0.021492427879681
203 => 0.021392274498293
204 => 0.021210495130367
205 => 0.022182560138262
206 => 0.021827743334261
207 => 0.022921205118839
208 => 0.023641429770837
209 => 0.023458757502263
210 => 0.024136132268615
211 => 0.022717601740986
212 => 0.023188780680698
213 => 0.023285890007146
214 => 0.022170565006954
215 => 0.021408660830106
216 => 0.021357850507853
217 => 0.02003681366206
218 => 0.020742500882046
219 => 0.021363476432312
220 => 0.021066077333384
221 => 0.020971929663209
222 => 0.021452909691996
223 => 0.021490285959548
224 => 0.0206381030984
225 => 0.020815298900354
226 => 0.021554234850854
227 => 0.020796679610316
228 => 0.019324873523897
301 => 0.018959845265154
302 => 0.018911143766632
303 => 0.017921158178164
304 => 0.018984238198853
305 => 0.018520175281049
306 => 0.019986144478065
307 => 0.01914879073488
308 => 0.019112694088609
309 => 0.019058128713544
310 => 0.01820600722176
311 => 0.018392567673315
312 => 0.019012723028242
313 => 0.01923400144543
314 => 0.019210920293636
315 => 0.019009683928678
316 => 0.019101808906059
317 => 0.018805042255445
318 => 0.018700247774449
319 => 0.018369487566434
320 => 0.017883361435492
321 => 0.017950960255584
322 => 0.016987817188366
323 => 0.016463045727474
324 => 0.016317795903476
325 => 0.016123561768417
326 => 0.016339735165868
327 => 0.016985088725069
328 => 0.016206655413277
329 => 0.014872086100958
330 => 0.014952295990624
331 => 0.015132503798173
401 => 0.014796687740999
402 => 0.014478866025789
403 => 0.014755186221473
404 => 0.014189711610527
405 => 0.015200838703319
406 => 0.01517349054911
407 => 0.015550376201623
408 => 0.015786050534611
409 => 0.015242897497544
410 => 0.015106295977564
411 => 0.015184110411538
412 => 0.013898011151746
413 => 0.015445274453996
414 => 0.015458655251285
415 => 0.015344080741176
416 => 0.016167950683229
417 => 0.01790657323244
418 => 0.017252433493497
419 => 0.0169991308151
420 => 0.016517602238304
421 => 0.017159210476547
422 => 0.017109944974497
423 => 0.016887147690843
424 => 0.016752399198519
425 => 0.01700067742724
426 => 0.016721634778407
427 => 0.016671511051098
428 => 0.016367815798755
429 => 0.016259410410922
430 => 0.016179151377513
501 => 0.01609079406782
502 => 0.016285688275734
503 => 0.015844032360134
504 => 0.015311438621984
505 => 0.015267159215401
506 => 0.015389418550062
507 => 0.015335327895611
508 => 0.015266900250157
509 => 0.015136253239825
510 => 0.015097493062692
511 => 0.015223444834612
512 => 0.015081252627558
513 => 0.015291064974676
514 => 0.015234007625707
515 => 0.014915289912534
516 => 0.014518049637511
517 => 0.014514513365823
518 => 0.014428928600174
519 => 0.014319923533364
520 => 0.014289600817476
521 => 0.014731915305313
522 => 0.015647493057776
523 => 0.015467743237049
524 => 0.015597630904027
525 => 0.01623654967101
526 => 0.016439642734076
527 => 0.016295492088434
528 => 0.016098169793855
529 => 0.016106850973389
530 => 0.016781160987486
531 => 0.016823216875939
601 => 0.016929478538318
602 => 0.017066054804017
603 => 0.016318751617055
604 => 0.016071653060487
605 => 0.015954564055879
606 => 0.015593975240835
607 => 0.015982839363312
608 => 0.015756264891966
609 => 0.015786837529037
610 => 0.015766927059037
611 => 0.015777799521997
612 => 0.01520055607269
613 => 0.015410873246595
614 => 0.015061180153291
615 => 0.014592980356249
616 => 0.014591410786357
617 => 0.014706002023385
618 => 0.014637838671645
619 => 0.014454412844753
620 => 0.014480467617718
621 => 0.014252200390429
622 => 0.014508183392022
623 => 0.014515524068557
624 => 0.014416956669455
625 => 0.014811333802257
626 => 0.014972910435347
627 => 0.01490803126174
628 => 0.014968358339572
629 => 0.015475212653622
630 => 0.015557852022416
701 => 0.015594554971184
702 => 0.015545377882043
703 => 0.014977622705988
704 => 0.015002805062327
705 => 0.014818033640264
706 => 0.014661921259353
707 => 0.014668164935888
708 => 0.014748426992865
709 => 0.015098936102991
710 => 0.015836561861612
711 => 0.015864554219954
712 => 0.015898481774859
713 => 0.015760481358436
714 => 0.015718859112356
715 => 0.015773769598548
716 => 0.016050783050966
717 => 0.016763336859004
718 => 0.016511472753375
719 => 0.016306703315
720 => 0.016486341317899
721 => 0.016458687455402
722 => 0.016225261026063
723 => 0.016218709523642
724 => 0.015770689574797
725 => 0.015605066800629
726 => 0.015466660013885
727 => 0.015315523415961
728 => 0.015225924574567
729 => 0.015363589116894
730 => 0.015395074626523
731 => 0.015094068698762
801 => 0.015053042703063
802 => 0.015298850641337
803 => 0.015190679732346
804 => 0.015301936194753
805 => 0.015327748648371
806 => 0.015323592248827
807 => 0.015210649396491
808 => 0.015282635802566
809 => 0.015112366492019
810 => 0.014927224190423
811 => 0.014809114936777
812 => 0.014706048948052
813 => 0.014763235948827
814 => 0.014559374732999
815 => 0.014494155427139
816 => 0.015258248427933
817 => 0.015822692143004
818 => 0.015814484907842
819 => 0.015764525474527
820 => 0.015690295890521
821 => 0.016045352694549
822 => 0.015921658003611
823 => 0.016011656226305
824 => 0.016034564551195
825 => 0.016103901151089
826 => 0.016128683025869
827 => 0.016053774988165
828 => 0.015802374464385
829 => 0.015175908261569
830 => 0.014884286553045
831 => 0.014788046531889
901 => 0.014791544673872
902 => 0.014695050301581
903 => 0.014723472218795
904 => 0.014685166318665
905 => 0.01461262421101
906 => 0.014758756678098
907 => 0.014775597083612
908 => 0.01474148801964
909 => 0.014749521938972
910 => 0.014467113457461
911 => 0.014488584360952
912 => 0.014369031641927
913 => 0.01434661694834
914 => 0.014044398085293
915 => 0.01350897356208
916 => 0.013805650722856
917 => 0.01344730643176
918 => 0.01331159601892
919 => 0.013954028006005
920 => 0.013889545652792
921 => 0.013779179893895
922 => 0.013615925934247
923 => 0.013555373452581
924 => 0.013187475742566
925 => 0.0131657383832
926 => 0.013348078422358
927 => 0.013263934768224
928 => 0.013145765210127
929 => 0.012717767049355
930 => 0.012236555411326
1001 => 0.01225108016589
1002 => 0.012404144634686
1003 => 0.012849200221266
1004 => 0.01267530930405
1005 => 0.01254914944844
1006 => 0.012525523499836
1007 => 0.012821251710892
1008 => 0.013239769086513
1009 => 0.013436128075355
1010 => 0.013241542280923
1011 => 0.013018012597523
1012 => 0.013031617813615
1013 => 0.013122127221029
1014 => 0.013131638480014
1015 => 0.012986143635344
1016 => 0.013027099581877
1017 => 0.012964883754002
1018 => 0.012583065333174
1019 => 0.0125761594487
1020 => 0.012482455050575
1021 => 0.01247961771864
1022 => 0.012320203161772
1023 => 0.012297899963285
1024 => 0.011981372684851
1025 => 0.012189711898049
1026 => 0.012049968892136
1027 => 0.011839343220181
1028 => 0.011803031274946
1029 => 0.011801939694025
1030 => 0.012018205164084
1031 => 0.012187184710116
1101 => 0.012052399781553
1102 => 0.012021711866015
1103 => 0.012349378517824
1104 => 0.012307679949634
1105 => 0.012271569258507
1106 => 0.013202295445865
1107 => 0.012465553043101
1108 => 0.01214429130371
1109 => 0.011746668895265
1110 => 0.011876136756441
1111 => 0.011903417537069
1112 => 0.010947207321583
1113 => 0.010559272956249
1114 => 0.010426148501064
1115 => 0.010349533495002
1116 => 0.010384447915335
1117 => 0.010035261486371
1118 => 0.010269920541645
1119 => 0.009967554610157
1120 => 0.0099168619777592
1121 => 0.010457529719212
1122 => 0.0105327604769
1123 => 0.010211802692238
1124 => 0.010417909548336
1125 => 0.010343172337216
1126 => 0.0099727378062096
1127 => 0.0099585899318571
1128 => 0.0097727189056017
1129 => 0.0094818667412347
1130 => 0.0093489394975135
1201 => 0.0092797098348563
1202 => 0.0093082753429279
1203 => 0.0092938317479279
1204 => 0.009199577520529
1205 => 0.0092992342899124
1206 => 0.009044652425158
1207 => 0.0089432758753073
1208 => 0.0088974864396579
1209 => 0.008671530381503
1210 => 0.0090311269531426
1211 => 0.0091019720078338
1212 => 0.009172956649168
1213 => 0.0097908294887087
1214 => 0.0097599623077358
1215 => 0.010038986590804
1216 => 0.010028144220257
1217 => 0.0099485619748322
1218 => 0.0096128175720287
1219 => 0.0097466393069176
1220 => 0.0093347568074445
1221 => 0.0096433671813373
1222 => 0.00950253029457
1223 => 0.0095957500882521
1224 => 0.0094281324939217
1225 => 0.009520898991385
1226 => 0.0091187719984794
1227 => 0.0087432714705836
1228 => 0.0088943838445526
1229 => 0.0090586602768531
1230 => 0.0094148534389369
1231 => 0.0092027077301296
]
'min_raw' => 0.008671530381503
'max_raw' => 0.02588472937569
'avg_raw' => 0.017278129878597
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.008671'
'max' => '$0.025884'
'avg' => '$0.017278'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.016426979618497
'max_diff' => 0.00078621937569036
'year' => 2026
]
1 => [
'items' => [
101 => 0.0092790033491341
102 => 0.0090234257972013
103 => 0.0084960963054455
104 => 0.0084990809331011
105 => 0.0084179627792919
106 => 0.0083478648509564
107 => 0.0092270752167728
108 => 0.0091177315095245
109 => 0.0089435066225748
110 => 0.0091767135571787
111 => 0.0092383771721797
112 => 0.0092401326486099
113 => 0.0094102744081547
114 => 0.0095010790957233
115 => 0.0095170838154773
116 => 0.009784805550277
117 => 0.0098745423444468
118 => 0.010244155499606
119 => 0.0094933749524002
120 => 0.0094779131210953
121 => 0.0091799952569963
122 => 0.0089910510376896
123 => 0.009192932429341
124 => 0.0093717717827861
125 => 0.0091855522942206
126 => 0.0092098686281193
127 => 0.0089598841794113
128 => 0.0090492418569628
129 => 0.0091262087266493
130 => 0.0090837121451119
131 => 0.0090200927056927
201 => 0.0093571089952607
202 => 0.0093380932154258
203 => 0.0096519305322426
204 => 0.0098965891634231
205 => 0.01033506116846
206 => 0.0098774927731414
207 => 0.0098608171621463
208 => 0.010023823934475
209 => 0.0098745173889592
210 => 0.0099688739718386
211 => 0.010319858864211
212 => 0.010327274621912
213 => 0.010203051125755
214 => 0.010195492114724
215 => 0.010219350596018
216 => 0.010359090466158
217 => 0.010310261061758
218 => 0.010366767684738
219 => 0.010437430082035
220 => 0.010729719717491
221 => 0.010800189759058
222 => 0.010628984092579
223 => 0.010644442047353
224 => 0.010580406428389
225 => 0.010518548822834
226 => 0.010657595686544
227 => 0.010911706562947
228 => 0.010910125752374
301 => 0.01096907453649
302 => 0.011005799140636
303 => 0.010848150255587
304 => 0.010745526628331
305 => 0.010784879057132
306 => 0.01084780444777
307 => 0.010764473201036
308 => 0.010250114143405
309 => 0.010406137824106
310 => 0.010380167854469
311 => 0.01034318345965
312 => 0.010500066477091
313 => 0.01048493472734
314 => 0.010031680074837
315 => 0.010060695967109
316 => 0.010033444627349
317 => 0.010121499281212
318 => 0.00986976214868
319 => 0.0099471947951712
320 => 0.0099957598251646
321 => 0.010024365000925
322 => 0.010127706510523
323 => 0.010115580577135
324 => 0.010126952745478
325 => 0.010280180923066
326 => 0.011055156463744
327 => 0.011097336672535
328 => 0.010889625897757
329 => 0.010972602255367
330 => 0.010813305793691
331 => 0.010920242575608
401 => 0.010993406005896
402 => 0.010662794532944
403 => 0.010643217867166
404 => 0.010483263932327
405 => 0.010569214116656
406 => 0.010432461193352
407 => 0.010466015577317
408 => 0.010372194594534
409 => 0.010541053683972
410 => 0.010729864384014
411 => 0.010777565423205
412 => 0.010652084525682
413 => 0.010561228086281
414 => 0.010401714108665
415 => 0.010666989408442
416 => 0.010744563990214
417 => 0.010666581942188
418 => 0.010648511797719
419 => 0.010614268906602
420 => 0.010655776588946
421 => 0.010744141502382
422 => 0.010702470241049
423 => 0.010729994843313
424 => 0.010625099442731
425 => 0.010848202443928
426 => 0.01120254370249
427 => 0.011203682967577
428 => 0.01116201148162
429 => 0.011144960407392
430 => 0.01118771788082
501 => 0.011210912056152
502 => 0.01134918188484
503 => 0.011497550919935
504 => 0.012189924468244
505 => 0.011995508746457
506 => 0.012609823748003
507 => 0.013095667155407
508 => 0.01324135034993
509 => 0.013107328665892
510 => 0.01264884772451
511 => 0.012626352462227
512 => 0.013311516554313
513 => 0.013117926315795
514 => 0.013094899372922
515 => 0.012849931605392
516 => 0.01299473789585
517 => 0.012963066635947
518 => 0.012913072002778
519 => 0.01318935231768
520 => 0.013706524403463
521 => 0.013625918283885
522 => 0.01356574955483
523 => 0.013302107698965
524 => 0.013460878982736
525 => 0.013404343569649
526 => 0.013647255582531
527 => 0.01350335988726
528 => 0.013116459679337
529 => 0.013178074812688
530 => 0.013168761809235
531 => 0.013360422760384
601 => 0.013302890900166
602 => 0.013157527790174
603 => 0.013704756765498
604 => 0.013669222759688
605 => 0.013719601855722
606 => 0.013741780291821
607 => 0.014074868925845
608 => 0.014211324681557
609 => 0.014242302527098
610 => 0.014371924941157
611 => 0.014239077403353
612 => 0.01477056227326
613 => 0.015123968698747
614 => 0.015534468448078
615 => 0.016134318913781
616 => 0.016359868237813
617 => 0.01631912477124
618 => 0.016773924548338
619 => 0.017591189638151
620 => 0.016484317412395
621 => 0.017649856553812
622 => 0.017280860318436
623 => 0.016405976882318
624 => 0.01634964470323
625 => 0.016942125923775
626 => 0.018256192246739
627 => 0.017927033536853
628 => 0.01825673063247
629 => 0.017872121457541
630 => 0.017853022370265
701 => 0.018238051023308
702 => 0.019137691457962
703 => 0.018710306009975
704 => 0.018097544171075
705 => 0.018549997977289
706 => 0.018158040617723
707 => 0.017274850984665
708 => 0.017926781835391
709 => 0.017490854241432
710 => 0.017618081088535
711 => 0.018534336051701
712 => 0.018424089830423
713 => 0.018566758649282
714 => 0.018314951918289
715 => 0.018079724725264
716 => 0.017640655701284
717 => 0.017510669009124
718 => 0.017546592654406
719 => 0.01751065120715
720 => 0.017264996123485
721 => 0.017211946931557
722 => 0.017123529287538
723 => 0.017150933612574
724 => 0.016984682574324
725 => 0.017298432632719
726 => 0.017356667408313
727 => 0.017584988536229
728 => 0.017608693593156
729 => 0.018244564684454
730 => 0.017894337572747
731 => 0.018129300156434
801 => 0.018108282891396
802 => 0.016424938259257
803 => 0.01665688829729
804 => 0.017017729766538
805 => 0.016855171173751
806 => 0.016625351356402
807 => 0.016439759531734
808 => 0.016158568939624
809 => 0.016554339298232
810 => 0.017074735234317
811 => 0.017621891692879
812 => 0.01827926432673
813 => 0.018132546407515
814 => 0.017609602568748
815 => 0.017633061447344
816 => 0.017778075004099
817 => 0.017590269272231
818 => 0.0175348816955
819 => 0.01777046560159
820 => 0.017772087938477
821 => 0.017555994746882
822 => 0.017315846709061
823 => 0.017314840480014
824 => 0.017272108456238
825 => 0.017879723389641
826 => 0.018213850166213
827 => 0.018252157262675
828 => 0.018211271793406
829 => 0.018227006987841
830 => 0.018032585978535
831 => 0.01847697475205
901 => 0.018884789836122
902 => 0.018775486681892
903 => 0.018611625715343
904 => 0.018481102562873
905 => 0.018744739575256
906 => 0.018733000234098
907 => 0.018881227927133
908 => 0.018874503462772
909 => 0.01882466006473
910 => 0.018775488461957
911 => 0.018970448308846
912 => 0.018914303003901
913 => 0.01885807048979
914 => 0.018745287573974
915 => 0.018760616645359
916 => 0.018596783971716
917 => 0.018520987480415
918 => 0.017381190112468
919 => 0.017076599011799
920 => 0.017172429572593
921 => 0.017203979481446
922 => 0.017071421044091
923 => 0.01726147579179
924 => 0.017231855960679
925 => 0.01734708939651
926 => 0.017275096548657
927 => 0.017278051160245
928 => 0.017489766775288
929 => 0.017551228719038
930 => 0.017519968678388
1001 => 0.017541862139327
1002 => 0.018046387706029
1003 => 0.017974660304263
1004 => 0.017936556551655
1005 => 0.017947111551533
1006 => 0.018076028650976
1007 => 0.018112118400207
1008 => 0.017959203596733
1009 => 0.018031319102041
1010 => 0.018338377770824
1011 => 0.018445830926882
1012 => 0.01878876982058
1013 => 0.018643083283284
1014 => 0.018910497227656
1015 => 0.019732436524522
1016 => 0.020389058508732
1017 => 0.019785201796001
1018 => 0.020991004449698
1019 => 0.021929894777718
1020 => 0.021893858603125
1021 => 0.02173014135751
1022 => 0.02066123968075
1023 => 0.019677620421369
1024 => 0.020500459698521
1025 => 0.020502557285057
1026 => 0.020431874661409
1027 => 0.019992870956459
1028 => 0.020416598284073
1029 => 0.020450232220587
1030 => 0.020431406160125
1031 => 0.020094823048838
1101 => 0.019580922848859
1102 => 0.019681337717831
1103 => 0.019845819321616
1104 => 0.019534421331194
1105 => 0.019434910804985
1106 => 0.01961991980586
1107 => 0.020216057354838
1108 => 0.020103361004393
1109 => 0.020100418047241
1110 => 0.020582580825133
1111 => 0.020237456333402
1112 => 0.019682604270902
1113 => 0.019542496807521
1114 => 0.019045209700215
1115 => 0.019388687676507
1116 => 0.019401048837392
1117 => 0.019212929460037
1118 => 0.019697869121589
1119 => 0.019693400317236
1120 => 0.020153778352137
1121 => 0.021033848244775
1122 => 0.020773568271913
1123 => 0.020470890981854
1124 => 0.020503800395615
1125 => 0.02086473543721
1126 => 0.020646505871716
1127 => 0.020724982745018
1128 => 0.020864616653063
1129 => 0.020948861256702
1130 => 0.020491678893602
1201 => 0.020385087815203
1202 => 0.020167039877184
1203 => 0.020110155240212
1204 => 0.020287750736009
1205 => 0.020240960597408
1206 => 0.019400009929684
1207 => 0.019312125905902
1208 => 0.019314821183442
1209 => 0.019093832626983
1210 => 0.018756772035053
1211 => 0.019642547145803
1212 => 0.019571407007995
1213 => 0.019492873801665
1214 => 0.019502493671336
1215 => 0.019886978625208
1216 => 0.019663957935007
1217 => 0.02025689499228
1218 => 0.020135004958624
1219 => 0.020009988905538
1220 => 0.019992707878919
1221 => 0.01994458736435
1222 => 0.019779564215035
1223 => 0.019580288845885
1224 => 0.019448709986234
1225 => 0.017940406907381
1226 => 0.018220339185421
1227 => 0.018542375754676
1228 => 0.018653541487902
1229 => 0.018463384808784
1230 => 0.019787072759746
1231 => 0.020028923303761
]
'min_raw' => 0.0083478648509564
'max_raw' => 0.021929894777718
'avg_raw' => 0.015138879814337
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.008347'
'max' => '$0.021929'
'avg' => '$0.015138'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -0.00032366553054658
'max_diff' => -0.0039548345979725
'year' => 2027
]
2 => [
'items' => [
101 => 0.019296342230418
102 => 0.019159306222684
103 => 0.019796056817599
104 => 0.019412018369271
105 => 0.019584950859038
106 => 0.019211165405176
107 => 0.019970668589918
108 => 0.019964882448166
109 => 0.019669418555144
110 => 0.019919142614277
111 => 0.019875746913595
112 => 0.019542168906069
113 => 0.019981243607749
114 => 0.019981461383323
115 => 0.019697083810228
116 => 0.019364993063109
117 => 0.019305623081157
118 => 0.019260895774992
119 => 0.019573950683555
120 => 0.019854634735675
121 => 0.020376918169193
122 => 0.020508232633528
123 => 0.021020761729926
124 => 0.02071557560761
125 => 0.02085086066281
126 => 0.02099773172747
127 => 0.021068147116873
128 => 0.02095340901854
129 => 0.021749577670637
130 => 0.021816798698852
131 => 0.021839337328152
201 => 0.021570873738257
202 => 0.02180933224077
203 => 0.02169776540436
204 => 0.021988031318539
205 => 0.022033548720183
206 => 0.021994997100319
207 => 0.022009445042044
208 => 0.021330055551253
209 => 0.021294825622091
210 => 0.020814463038157
211 => 0.021010214341771
212 => 0.020644266662269
213 => 0.020760312441118
214 => 0.02081146431471
215 => 0.020784745478788
216 => 0.021021281826774
217 => 0.020820177609803
218 => 0.020289430516621
219 => 0.019758538821749
220 => 0.019751873908975
221 => 0.019612099496732
222 => 0.019511068197641
223 => 0.019530530410124
224 => 0.019599117785409
225 => 0.019507081774704
226 => 0.019526722323932
227 => 0.019852886305415
228 => 0.019918296165806
229 => 0.019696007902914
301 => 0.018803488451361
302 => 0.018584461939234
303 => 0.018741893852666
304 => 0.018666651537959
305 => 0.015065444663552
306 => 0.015911494801238
307 => 0.015408800538573
308 => 0.01564046518266
309 => 0.015127344512527
310 => 0.015372232591273
311 => 0.01532701070501
312 => 0.016687434289964
313 => 0.016666193146886
314 => 0.016676360158021
315 => 0.016191062226542
316 => 0.016964155008663
317 => 0.017345008312653
318 => 0.017274522502167
319 => 0.017292262262109
320 => 0.016987434411666
321 => 0.016679311557934
322 => 0.016337555893379
323 => 0.016972495675846
324 => 0.016901901210819
325 => 0.017063819514504
326 => 0.017475623349867
327 => 0.017536263028915
328 => 0.017617763372502
329 => 0.017588551300916
330 => 0.018284501360315
331 => 0.018200217216095
401 => 0.018403317753461
402 => 0.017985524538825
403 => 0.017512751859167
404 => 0.017602610489467
405 => 0.017593956380772
406 => 0.017483779644357
407 => 0.017384317013056
408 => 0.017218739755363
409 => 0.017742650699527
410 => 0.017721380871968
411 => 0.018065714656683
412 => 0.018004850315555
413 => 0.017598383349469
414 => 0.017612900396681
415 => 0.017710534515837
416 => 0.018048447317002
417 => 0.018148762843246
418 => 0.018102292694607
419 => 0.018212284089556
420 => 0.018299216803413
421 => 0.018223201499977
422 => 0.019299417894544
423 => 0.018852497813974
424 => 0.019070323551594
425 => 0.019122273706513
426 => 0.018989204477083
427 => 0.019018062428094
428 => 0.019061774360556
429 => 0.019327184654787
430 => 0.020023698063939
501 => 0.020332179111525
502 => 0.021260259563374
503 => 0.020306564054786
504 => 0.020249975710091
505 => 0.020417151024814
506 => 0.020962032497342
507 => 0.021403607752712
508 => 0.021550103740006
509 => 0.021569465603112
510 => 0.021844301814144
511 => 0.022001832804916
512 => 0.021810929469215
513 => 0.021649158880621
514 => 0.02106971671198
515 => 0.021136788720769
516 => 0.021598848349213
517 => 0.022251534789566
518 => 0.022811607655839
519 => 0.02261548965858
520 => 0.024111731539936
521 => 0.024260077810872
522 => 0.024239581152838
523 => 0.024577536034916
524 => 0.023906764417306
525 => 0.023619996555189
526 => 0.021684135518049
527 => 0.02222803350674
528 => 0.023018621175311
529 => 0.022913983932824
530 => 0.022339838035439
531 => 0.022811172114691
601 => 0.022655334328111
602 => 0.022532418600119
603 => 0.023095519378435
604 => 0.022476366941772
605 => 0.023012444656128
606 => 0.022324919442452
607 => 0.022616385509072
608 => 0.022450935273031
609 => 0.022558001852568
610 => 0.021932092816326
611 => 0.022269818139199
612 => 0.021918042332557
613 => 0.021917875545022
614 => 0.021910110074593
615 => 0.022323972751095
616 => 0.022337468798118
617 => 0.022031623654871
618 => 0.02198754659153
619 => 0.022150522596426
620 => 0.021959720378176
621 => 0.0220489955352
622 => 0.021962424431737
623 => 0.02194293545288
624 => 0.021787643953578
625 => 0.02172074010585
626 => 0.021746974828444
627 => 0.021657422195305
628 => 0.021603463494578
629 => 0.021899376330898
630 => 0.021741282039542
701 => 0.021875146113356
702 => 0.021722591106252
703 => 0.021193768986575
704 => 0.020889637793357
705 => 0.019890741831124
706 => 0.020174027486886
707 => 0.020361846169737
708 => 0.020299772096175
709 => 0.020433131225664
710 => 0.020441318393116
711 => 0.020397961980684
712 => 0.020347760809388
713 => 0.0203233256555
714 => 0.020505445273235
715 => 0.020611171841195
716 => 0.020380696287251
717 => 0.020326699089658
718 => 0.020559722599599
719 => 0.02070186680605
720 => 0.021751379762552
721 => 0.021673628452852
722 => 0.021868768982274
723 => 0.021846799153337
724 => 0.022051337516496
725 => 0.0223856712959
726 => 0.021705877241177
727 => 0.021823865983567
728 => 0.021794937868691
729 => 0.022110767441549
730 => 0.022111753427002
731 => 0.021922397821216
801 => 0.022025050567056
802 => 0.021967752620459
803 => 0.022071297754242
804 => 0.021672590036708
805 => 0.022158172998826
806 => 0.022433467248072
807 => 0.02243728970899
808 => 0.022567776998262
809 => 0.022700359641477
810 => 0.022954840479614
811 => 0.022693262309021
812 => 0.022222708644247
813 => 0.022256681098965
814 => 0.021980795657477
815 => 0.021985433341591
816 => 0.021960677020328
817 => 0.022034972604008
818 => 0.021688893739323
819 => 0.021770117757132
820 => 0.021656403656552
821 => 0.021823618791321
822 => 0.021643722947961
823 => 0.021794923918678
824 => 0.021860177245248
825 => 0.022100963425095
826 => 0.021608158633421
827 => 0.020603296303246
828 => 0.020814530547827
829 => 0.020502098508
830 => 0.020531015282798
831 => 0.020589431769962
901 => 0.020400084822379
902 => 0.02043620625297
903 => 0.020434915741286
904 => 0.02042379480879
905 => 0.020374538354798
906 => 0.020303106751416
907 => 0.0205876682738
908 => 0.020636020821499
909 => 0.020743502545418
910 => 0.021063295250254
911 => 0.02103134041781
912 => 0.02108346007532
913 => 0.020969683155615
914 => 0.020536293067783
915 => 0.020559828234655
916 => 0.020266344326638
917 => 0.020735997502049
918 => 0.020624777430992
919 => 0.020553073127653
920 => 0.020533507944151
921 => 0.020854093353247
922 => 0.020950017532209
923 => 0.020890244021112
924 => 0.02076764680598
925 => 0.021003069701646
926 => 0.021066058936832
927 => 0.021080159903636
928 => 0.021497284136894
929 => 0.021103472514603
930 => 0.02119826688624
1001 => 0.021937825513499
1002 => 0.021267147890689
1003 => 0.021622420785387
1004 => 0.021605032025943
1005 => 0.021786777617091
1006 => 0.021590123582712
1007 => 0.021592561345156
1008 => 0.021753939117583
1009 => 0.021527313140844
1010 => 0.021471197361955
1011 => 0.021393673815329
1012 => 0.021562943643245
1013 => 0.021664413249665
1014 => 0.022482183756194
1015 => 0.023010500798278
1016 => 0.022987565162144
1017 => 0.023197153942697
1018 => 0.023102732277444
1019 => 0.022797819813169
1020 => 0.023318268209574
1021 => 0.023153576560465
1022 => 0.023167153539917
1023 => 0.023166648204064
1024 => 0.023276153753127
1025 => 0.02319855903558
1026 => 0.02304561188236
1027 => 0.023147145340412
1028 => 0.023448663411952
1029 => 0.024384584757717
1030 => 0.024908338742116
1031 => 0.024353054110212
1101 => 0.024736082013742
1102 => 0.024506401758421
1103 => 0.024464662023633
1104 => 0.02470523185259
1105 => 0.024946222767186
1106 => 0.024930872687758
1107 => 0.024755925658782
1108 => 0.02465710252123
1109 => 0.025405424426955
1110 => 0.025956775259762
1111 => 0.025919176829268
1112 => 0.026085124073806
1113 => 0.026572350316326
1114 => 0.026616896177824
1115 => 0.02661128442315
1116 => 0.026500872857548
1117 => 0.026980610367631
1118 => 0.027380815838721
1119 => 0.026475315770208
1120 => 0.026820118342431
1121 => 0.026974911325948
1122 => 0.027202193350758
1123 => 0.027585656223504
1124 => 0.02800219861181
1125 => 0.028061102272671
1126 => 0.02801930730649
1127 => 0.027744586404142
1128 => 0.028200372055811
1129 => 0.028467360601069
1130 => 0.028626346169846
1201 => 0.029029507119589
1202 => 0.026975867274716
1203 => 0.025522198919992
1204 => 0.025295187615176
1205 => 0.025756824030298
1206 => 0.025878553871484
1207 => 0.025829484725138
1208 => 0.024193248830151
1209 => 0.025286573171816
1210 => 0.026462898234126
1211 => 0.026508085670504
1212 => 0.027096978592493
1213 => 0.027288746267429
1214 => 0.02776288225759
1215 => 0.027733224922312
1216 => 0.027848669490765
1217 => 0.027822130783699
1218 => 0.028700367864361
1219 => 0.029669193783799
1220 => 0.029635646422887
1221 => 0.029496366234339
1222 => 0.029703221065133
1223 => 0.030703153239689
1224 => 0.030611095508642
1225 => 0.030700521752895
1226 => 0.031879498140404
1227 => 0.033412335151601
1228 => 0.03270017846558
1229 => 0.034245353556679
1230 => 0.035217959370314
1231 => 0.036899980555677
]
'min_raw' => 0.015065444663552
'max_raw' => 0.036899980555677
'avg_raw' => 0.025982712609615
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.015065'
'max' => '$0.036899'
'avg' => '$0.025982'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 0.006717579812596
'max_diff' => 0.014970085777959
'year' => 2028
]
3 => [
'items' => [
101 => 0.03668938321914
102 => 0.03734418172336
103 => 0.03631237003375
104 => 0.033943121830856
105 => 0.03356817923363
106 => 0.034318823808335
107 => 0.03616421024842
108 => 0.034260706022163
109 => 0.034645782448006
110 => 0.034534880411458
111 => 0.034528970913233
112 => 0.03475451242479
113 => 0.034427352698823
114 => 0.033094445120322
115 => 0.033705308808676
116 => 0.033469425002519
117 => 0.033731155671752
118 => 0.035143608147668
119 => 0.034519129239404
120 => 0.033861291438095
121 => 0.034686366026831
122 => 0.035736969504681
123 => 0.035671224627153
124 => 0.035543652085522
125 => 0.036262771823214
126 => 0.037450546947569
127 => 0.037771597790815
128 => 0.038008590959704
129 => 0.038041268313661
130 => 0.038377865368284
131 => 0.036567898172196
201 => 0.039440362595642
202 => 0.039936357851343
203 => 0.039843131300168
204 => 0.040394409152209
205 => 0.040232209223569
206 => 0.03999720697536
207 => 0.040871099631006
208 => 0.039869252220808
209 => 0.038447255951115
210 => 0.037667120673664
211 => 0.038694465738729
212 => 0.039321829520563
213 => 0.039736477072524
214 => 0.039861949171211
215 => 0.036708400773313
216 => 0.035008813090658
217 => 0.036098229309428
218 => 0.037427392283817
219 => 0.036560514604763
220 => 0.036594494568565
221 => 0.03535855480968
222 => 0.037536745527956
223 => 0.037219401461771
224 => 0.038865783038512
225 => 0.038472860862185
226 => 0.039815421125853
227 => 0.039461880014335
228 => 0.040929409402028
301 => 0.041514846606551
302 => 0.04249788678897
303 => 0.043221015148851
304 => 0.043645649953015
305 => 0.043620156472138
306 => 0.045302771118452
307 => 0.044310592047599
308 => 0.043064181295954
309 => 0.043041637657832
310 => 0.043687171447886
311 => 0.045040033178292
312 => 0.045390810541649
313 => 0.045586847233837
314 => 0.045286610215664
315 => 0.044209670944367
316 => 0.043744654027227
317 => 0.044140861913468
318 => 0.043656333715127
319 => 0.044492765320064
320 => 0.045641364565792
321 => 0.045404183363602
322 => 0.046197044562328
323 => 0.047017572491578
324 => 0.04819096428262
325 => 0.048497732347371
326 => 0.049004808293059
327 => 0.049526756006943
328 => 0.049694391545758
329 => 0.050014459803607
330 => 0.050012772885898
331 => 0.050977320124005
401 => 0.052041245597179
402 => 0.052442852833371
403 => 0.053366326528242
404 => 0.051784910188153
405 => 0.052984432648112
406 => 0.054066431932989
407 => 0.052776427779964
408 => 0.054554397972491
409 => 0.054623432526099
410 => 0.055665772323994
411 => 0.054609161250685
412 => 0.053981748968176
413 => 0.055793064718947
414 => 0.056669503354834
415 => 0.056405512905011
416 => 0.054396532547039
417 => 0.053227219809479
418 => 0.050166902831701
419 => 0.053791980487734
420 => 0.055557650069023
421 => 0.054391959889378
422 => 0.054979866211843
423 => 0.058187292477943
424 => 0.059408472734602
425 => 0.059154475777911
426 => 0.059197397082446
427 => 0.05985632378295
428 => 0.062778367650546
429 => 0.061027411232636
430 => 0.062365951807043
501 => 0.063075908901242
502 => 0.063735356616672
503 => 0.062115961448166
504 => 0.06000915212758
505 => 0.059341837177911
506 => 0.054276054974255
507 => 0.054012359010978
508 => 0.053864338475985
509 => 0.052931089940774
510 => 0.052197812230386
511 => 0.05161468257023
512 => 0.050084376204723
513 => 0.050600809680467
514 => 0.04816182073361
515 => 0.049722199429348
516 => 0.045829514178717
517 => 0.049071458127209
518 => 0.047307015429148
519 => 0.048491791246362
520 => 0.048487657675148
521 => 0.046306109762143
522 => 0.045047838453665
523 => 0.045849657904079
524 => 0.04670927200343
525 => 0.046848741498961
526 => 0.047963253616993
527 => 0.048274289992779
528 => 0.04733183525325
529 => 0.045748846929217
530 => 0.04611653901277
531 => 0.045040387185327
601 => 0.043154472501316
602 => 0.044508969352284
603 => 0.044971454130227
604 => 0.045175713755344
605 => 0.043321133262384
606 => 0.042738383806594
607 => 0.042428132886074
608 => 0.0455094438764
609 => 0.045678245048116
610 => 0.044814634387535
611 => 0.048718236464286
612 => 0.047834731090108
613 => 0.048821823057137
614 => 0.046083174810154
615 => 0.046187794861267
616 => 0.04489127489236
617 => 0.045617239441453
618 => 0.045104151097084
619 => 0.045558588680007
620 => 0.045830976693495
621 => 0.047127283916233
622 => 0.049086259873406
623 => 0.046933658845192
624 => 0.045995739751385
625 => 0.046577619482126
626 => 0.048127241884303
627 => 0.050474999147312
628 => 0.049085079594592
629 => 0.049701902289725
630 => 0.04983665060808
701 => 0.048811775387523
702 => 0.050512787758561
703 => 0.0514243741072
704 => 0.052359473074688
705 => 0.053171393307279
706 => 0.051985973983806
707 => 0.053254542583108
708 => 0.052232300224573
709 => 0.051315243151495
710 => 0.051316633948531
711 => 0.050741350650523
712 => 0.049626666770272
713 => 0.049421101960435
714 => 0.050490476061182
715 => 0.051348012819876
716 => 0.051418643654646
717 => 0.051893420066089
718 => 0.052174387855795
719 => 0.054928254152101
720 => 0.056035881957652
721 => 0.057390268271958
722 => 0.057917878070411
723 => 0.059505794405172
724 => 0.058223423000593
725 => 0.057945973880718
726 => 0.054094208256064
727 => 0.054724934661321
728 => 0.055734788492184
729 => 0.054110860373782
730 => 0.05514086898818
731 => 0.055344214507228
801 => 0.054055679917723
802 => 0.054743941916271
803 => 0.052916122103588
804 => 0.049126101350467
805 => 0.050517007135094
806 => 0.051541181966404
807 => 0.050079558202279
808 => 0.052699462226822
809 => 0.05116896838148
810 => 0.050683875309168
811 => 0.048791354285909
812 => 0.049684551359073
813 => 0.050892613189876
814 => 0.050146171430702
815 => 0.051695150159783
816 => 0.053888917137701
817 => 0.055452326127247
818 => 0.055572345256537
819 => 0.054567178016527
820 => 0.056177964933535
821 => 0.05618969775769
822 => 0.054372723535046
823 => 0.053259836940632
824 => 0.053006986764847
825 => 0.053638656078154
826 => 0.054405619237096
827 => 0.055614906374066
828 => 0.056345653264182
829 => 0.058251053595401
830 => 0.05876660029292
831 => 0.059333029809502
901 => 0.060089954324048
902 => 0.060998836275223
903 => 0.05901025430873
904 => 0.05908926437744
905 => 0.057237524384033
906 => 0.055258674634701
907 => 0.056760374927341
908 => 0.058723648297148
909 => 0.05827327121689
910 => 0.058222594594992
911 => 0.058307818616502
912 => 0.057968249005927
913 => 0.056432388242337
914 => 0.055661088581859
915 => 0.056656261923405
916 => 0.057185152264367
917 => 0.058005415059114
918 => 0.057904300356015
919 => 0.060017209225491
920 => 0.060838221721122
921 => 0.060628171591634
922 => 0.060666825870598
923 => 0.062153229777269
924 => 0.063806416623767
925 => 0.065354844262729
926 => 0.066929971363596
927 => 0.065031094165244
928 => 0.064066961430384
929 => 0.065061700310381
930 => 0.064533877858691
1001 => 0.06756690222841
1002 => 0.06777690225511
1003 => 0.070809707302645
1004 => 0.073688200432463
1005 => 0.071880270471185
1006 => 0.073585066993716
1007 => 0.075428943426933
1008 => 0.078986080224779
1009 => 0.077788161692846
1010 => 0.076870574871162
1011 => 0.076003459758418
1012 => 0.07780778865739
1013 => 0.080129028961061
1014 => 0.080629001889908
1015 => 0.081439149039
1016 => 0.08058737837181
1017 => 0.081613242320979
1018 => 0.085234992849004
1019 => 0.084256363886255
1020 => 0.082866553436696
1021 => 0.085725577641954
1022 => 0.086760247387661
1023 => 0.094022101523789
1024 => 0.10319049234288
1025 => 0.099394718340878
1026 => 0.097038558928973
1027 => 0.097592312279619
1028 => 0.10094029823714
1029 => 0.10201556506693
1030 => 0.09909261915685
1031 => 0.10012505306655
1101 => 0.10581386541563
1102 => 0.10886573072196
1103 => 0.10472088771577
1104 => 0.093285430248538
1105 => 0.082741416211959
1106 => 0.0855381635376
1107 => 0.085221099184046
1108 => 0.091333018359345
1109 => 0.084233023909148
1110 => 0.084352569606738
1111 => 0.090590876797948
1112 => 0.088926603390994
1113 => 0.086230693615761
1114 => 0.08276109933679
1115 => 0.076347233413485
1116 => 0.070666293501331
1117 => 0.081807924911392
1118 => 0.081327477505248
1119 => 0.080631718462835
1120 => 0.082180054922733
1121 => 0.089698337269026
1122 => 0.089525016526639
1123 => 0.088422438392592
1124 => 0.089258734189589
1125 => 0.086084086919117
1126 => 0.086902265806092
1127 => 0.082739745986264
1128 => 0.08462137878701
1129 => 0.086224909404178
1130 => 0.086546841916251
1201 => 0.087272172304234
1202 => 0.081074303553909
1203 => 0.083856964662939
1204 => 0.085491517364407
1205 => 0.078106548793635
1206 => 0.085345540280247
1207 => 0.08096641244798
1208 => 0.079480070689415
1209 => 0.081481234056686
1210 => 0.080701378746265
1211 => 0.080030904945006
1212 => 0.079656769043701
1213 => 0.081126202560283
1214 => 0.081057651730382
1215 => 0.078653373292498
1216 => 0.075517090081204
1217 => 0.076569729671901
1218 => 0.076187295840052
1219 => 0.074801306298485
1220 => 0.075735295904486
1221 => 0.071622478360981
1222 => 0.064546589543034
1223 => 0.069221138436506
1224 => 0.069041173389038
1225 => 0.068950426851339
1226 => 0.072463221149742
1227 => 0.072125547031904
1228 => 0.071512665201513
1229 => 0.074790050243042
1230 => 0.073593760615835
1231 => 0.077280443365604
]
'min_raw' => 0.033094445120322
'max_raw' => 0.10886573072196
'avg_raw' => 0.070980087921143
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.033094'
'max' => '$0.108865'
'avg' => '$0.07098'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072435
'min_diff' => 0.01802900045677
'max_diff' => 0.071965750166288
'year' => 2029
]
4 => [
'items' => [
101 => 0.079708731064293
102 => 0.079092838757027
103 => 0.081376655074577
104 => 0.076593980362038
105 => 0.078182593053939
106 => 0.078510003928018
107 => 0.074749607820365
108 => 0.072180794693668
109 => 0.072009484144731
110 => 0.067555516187293
111 => 0.069934789918983
112 => 0.072028452341834
113 => 0.071025750516056
114 => 0.070708325072879
115 => 0.072329982820888
116 => 0.072455999516468
117 => 0.069582805502601
118 => 0.070180233520305
119 => 0.072671607668275
120 => 0.070117457283984
121 => 0.065155160305401
122 => 0.06392444204559
123 => 0.063760241543093
124 => 0.060422436012987
125 => 0.064006684524619
126 => 0.062442063997403
127 => 0.067384681495844
128 => 0.064561484888524
129 => 0.064439782525434
130 => 0.064255811553768
131 => 0.061382824450997
201 => 0.062011826038648
202 => 0.064102723115649
203 => 0.064848778748364
204 => 0.064770959033618
205 => 0.064092476579287
206 => 0.064403082372487
207 => 0.063402512890356
208 => 0.063049190981162
209 => 0.061934009846899
210 => 0.060295001656185
211 => 0.060522915797725
212 => 0.057275611702097
213 => 0.055506308083326
214 => 0.055016588160697
215 => 0.054361714213354
216 => 0.055090557915603
217 => 0.057266412497596
218 => 0.054641870238412
219 => 0.050142276625273
220 => 0.050412709868358
221 => 0.051020293073217
222 => 0.049888065790527
223 => 0.048816507688093
224 => 0.049748140519902
225 => 0.047841603388921
226 => 0.051250688976907
227 => 0.051158482765604
228 => 0.052429179056367
301 => 0.053223771524294
302 => 0.051392493138089
303 => 0.050931931576261
304 => 0.051194288373234
305 => 0.046858114926263
306 => 0.052074821176273
307 => 0.052119935468551
308 => 0.051733639508381
309 => 0.054511374538776
310 => 0.060373261850191
311 => 0.058167784049765
312 => 0.057313756384521
313 => 0.055690249168602
314 => 0.057853476139495
315 => 0.057687374059728
316 => 0.056936197462679
317 => 0.05648188351297
318 => 0.057318970895335
319 => 0.056378159122659
320 => 0.056209163476508
321 => 0.055185233729908
322 => 0.054819737396208
323 => 0.054549138461564
324 => 0.054251235623023
325 => 0.054908335052082
326 => 0.053419261297205
327 => 0.051623584324525
328 => 0.051474293213741
329 => 0.051886499096425
330 => 0.051704128678456
331 => 0.051473420094342
401 => 0.051032934577525
402 => 0.05090225193417
403 => 0.05132690712687
404 => 0.050847496173247
405 => 0.051554893150184
406 => 0.051362520314517
407 => 0.050287941292397
408 => 0.048948617970725
409 => 0.048936695183836
410 => 0.048648140171112
411 => 0.048280621977872
412 => 0.04817838682419
413 => 0.049669681001343
414 => 0.052756615317369
415 => 0.052150576247056
416 => 0.05258850158474
417 => 0.054742660815506
418 => 0.055427403257139
419 => 0.054941389291082
420 => 0.054276103398307
421 => 0.054305372601206
422 => 0.056578855892554
423 => 0.056720650256724
424 => 0.057078918870386
425 => 0.05753939528564
426 => 0.055019810415756
427 => 0.054186700380417
428 => 0.053791926626488
429 => 0.052576176261058
430 => 0.053887258799615
501 => 0.05312334715055
502 => 0.053226424930946
503 => 0.053159295391239
504 => 0.053195952659199
505 => 0.051249736068008
506 => 0.051958835103705
507 => 0.050779820424839
508 => 0.049201252120445
509 => 0.049195960205971
510 => 0.049582312562115
511 => 0.049352495062712
512 => 0.048734062080964
513 => 0.0488219075671
514 => 0.048052288673186
515 => 0.048915353235221
516 => 0.048940102838667
517 => 0.048607775970839
518 => 0.049937446008613
519 => 0.050482212907997
520 => 0.050263468244461
521 => 0.050466865199275
522 => 0.05217575990653
523 => 0.052454384308116
524 => 0.052578130862405
525 => 0.052412326872934
526 => 0.050498100657461
527 => 0.050583004730036
528 => 0.04996003498022
529 => 0.049433691188561
530 => 0.049454742179918
531 => 0.049725351308734
601 => 0.05090711724529
602 => 0.053394073989864
603 => 0.053488452180379
604 => 0.053602841300489
605 => 0.053137563261636
606 => 0.052997230953007
607 => 0.053182365490931
608 => 0.054116335686219
609 => 0.056518760598936
610 => 0.055669583182217
611 => 0.054979188724191
612 => 0.055584850792889
613 => 0.055491613864749
614 => 0.05470460036092
615 => 0.054682511513098
616 => 0.053171980975812
617 => 0.052613572229293
618 => 0.052146924084532
619 => 0.051637356492612
620 => 0.051335267743261
621 => 0.051799413359145
622 => 0.051905568953107
623 => 0.050890706452099
624 => 0.050752384443258
625 => 0.051581143068909
626 => 0.051216437296996
627 => 0.051591546227677
628 => 0.05167857471722
629 => 0.051664561125967
630 => 0.051283766413898
701 => 0.051526473607909
702 => 0.050952398739576
703 => 0.050328178543522
704 => 0.049929964948731
705 => 0.049582470771908
706 => 0.04977528073769
707 => 0.049087948415388
708 => 0.048868056972217
709 => 0.051444249871663
710 => 0.053347311265225
711 => 0.053319639998867
712 => 0.053151198281389
713 => 0.05290092805637
714 => 0.054098026860422
715 => 0.053680981573836
716 => 0.053984416865127
717 => 0.0540616538819
718 => 0.054295427069369
719 => 0.054378980890405
720 => 0.054126423211375
721 => 0.053278808793226
722 => 0.051166634251959
723 => 0.050183411301293
724 => 0.0498589313507
725 => 0.049870725580629
726 => 0.049545388067429
727 => 0.049641214545671
728 => 0.049512063528949
729 => 0.049267482748263
730 => 0.049760178563693
731 => 0.049816957166642
801 => 0.049701956076044
802 => 0.04972904299598
803 => 0.048776883083437
804 => 0.048849273733606
805 => 0.048446193394511
806 => 0.048370620690137
807 => 0.047351668693126
808 => 0.045546447530967
809 => 0.046546715291861
810 => 0.045338532495633
811 => 0.044880975363744
812 => 0.047046979661371
813 => 0.046829572905497
814 => 0.046457467043885
815 => 0.045907044920905
816 => 0.045702888001329
817 => 0.044462495186215
818 => 0.044389206161459
819 => 0.045003978334054
820 => 0.04472028212942
821 => 0.04432186521396
822 => 0.04287883953304
823 => 0.041256400898302
824 => 0.041305372122399
825 => 0.041821439665566
826 => 0.043321975648511
827 => 0.042735690280438
828 => 0.042310333519052
829 => 0.042230676983822
830 => 0.043227745294482
831 => 0.044638805846336
901 => 0.045300843886565
902 => 0.044644784295092
903 => 0.043891138361165
904 => 0.043937009297104
905 => 0.044242168083366
906 => 0.044274235957089
907 => 0.043783689930156
908 => 0.043921775763348
909 => 0.043712010755896
910 => 0.042424683292362
911 => 0.042401399620706
912 => 0.042085468700195
913 => 0.042075902437481
914 => 0.04153842512903
915 => 0.041463228338173
916 => 0.040396034519703
917 => 0.041098464722781
918 => 0.040627311421797
919 => 0.039917172263388
920 => 0.03979474400481
921 => 0.039791063663521
922 => 0.040520217794997
923 => 0.04108994413222
924 => 0.040635507335186
925 => 0.040532040885389
926 => 0.041636791878919
927 => 0.041496202244963
928 => 0.041374452528664
929 => 0.044512460850565
930 => 0.042028482401937
1001 => 0.040945326017802
1002 => 0.039604714306617
1003 => 0.04004122423973
1004 => 0.040133203296302
1005 => 0.036909273794325
1006 => 0.035601325996888
1007 => 0.03515248760178
1008 => 0.034894174759752
1009 => 0.035011891165553
1010 => 0.033834584740884
1011 => 0.034625754129112
1012 => 0.033606306280584
1013 => 0.033435392531208
1014 => 0.035258291569731
1015 => 0.03551193732172
1016 => 0.034429805742178
1017 => 0.035124709397433
1018 => 0.034872727672154
1019 => 0.033623781787954
1020 => 0.033576081241802
1021 => 0.032949404099681
1022 => 0.031968775720868
1023 => 0.031520602237979
1024 => 0.031287189596869
1025 => 0.031383500201713
1026 => 0.031334802612751
1027 => 0.031017017904455
1028 => 0.031353017660245
1029 => 0.030494677128887
1030 => 0.030152879013181
1031 => 0.029998496733972
1101 => 0.029236670108155
1102 => 0.030449075055669
1103 => 0.030687934103804
1104 => 0.030927263778051
1105 => 0.033010465195067
1106 => 0.032906394339339
1107 => 0.033847144190558
1108 => 0.033810588381268
1109 => 0.033542271284563
1110 => 0.032410285589585
1111 => 0.032861474911898
1112 => 0.031472784308207
1113 => 0.032513285730275
1114 => 0.032038444333621
1115 => 0.032352741376419
1116 => 0.031787606954447
1117 => 0.032100375677395
1118 => 0.030744576445203
1119 => 0.029478550198793
1120 => 0.029988036117959
1121 => 0.030541905578874
1122 => 0.031742835693452
1123 => 0.031027571624668
1124 => 0.031284807630931
1125 => 0.030423110070735
1126 => 0.028645181872311
1127 => 0.028655244752832
1128 => 0.028381749233776
1129 => 0.028145409174311
1130 => 0.031109728307169
1201 => 0.030741068364047
1202 => 0.030153656993703
1203 => 0.030939930455709
1204 => 0.0311478336389
1205 => 0.031153752350249
1206 => 0.031727397171472
1207 => 0.03203355151539
1208 => 0.032087512545455
1209 => 0.032990155066067
1210 => 0.033292708932833
1211 => 0.034538885491018
1212 => 0.03200757645829
1213 => 0.031955445814535
1214 => 0.030950994935765
1215 => 0.030313956308708
1216 => 0.030994613515569
1217 => 0.031597582881874
1218 => 0.030969730874746
1219 => 0.031051715092198
1220 => 0.030208875070022
1221 => 0.030510150718641
1222 => 0.030769649893444
1223 => 0.030626369701774
1224 => 0.030411872320005
1225 => 0.031548146270009
1226 => 0.031484033240657
1227 => 0.032542157665726
1228 => 0.033367041322271
1229 => 0.034845380300392
1230 => 0.033302656509169
1231 => 0.033246433522445
]
'min_raw' => 0.028145409174311
'max_raw' => 0.081376655074577
'avg_raw' => 0.054761032124444
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.028145'
'max' => '$0.081376'
'avg' => '$0.054761'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -0.0049490359460109
'max_diff' => -0.027489075647388
'year' => 2030
]
5 => [
'items' => [
101 => 0.033796022236122
102 => 0.033292624793664
103 => 0.033610754600608
104 => 0.034794124670225
105 => 0.034819127415066
106 => 0.034400299224764
107 => 0.034374813491321
108 => 0.034455254026747
109 => 0.034926396755251
110 => 0.034761765009158
111 => 0.034952281033702
112 => 0.03519052423968
113 => 0.03617599915263
114 => 0.036413593817833
115 => 0.0358363619601
116 => 0.035888479533863
117 => 0.035672578973702
118 => 0.035464021737813
119 => 0.035932827946753
120 => 0.036789580508001
121 => 0.036784250694783
122 => 0.036983000636103
123 => 0.037106820203011
124 => 0.036575295980377
125 => 0.036229293256129
126 => 0.036361972717331
127 => 0.036574130065176
128 => 0.03629317294881
129 => 0.034558975474606
130 => 0.035085020207316
131 => 0.03499746064152
201 => 0.034872765172219
202 => 0.035401707218743
203 => 0.035350689467993
204 => 0.033822509761848
205 => 0.033920338868469
206 => 0.033828459073842
207 => 0.034125341487118
208 => 0.033276592169063
209 => 0.033537661742883
210 => 0.033701402132207
211 => 0.033797846479432
212 => 0.034146269594118
213 => 0.034105386163094
214 => 0.034143728222642
215 => 0.034660347721429
216 => 0.037273231863888
217 => 0.037415445382758
218 => 0.03671513400369
219 => 0.036994894586597
220 => 0.036457815444331
221 => 0.036818360270651
222 => 0.037065035883974
223 => 0.03595035622036
224 => 0.035884352124892
225 => 0.035345056265957
226 => 0.03563484331327
227 => 0.035173771284568
228 => 0.035286902232797
301 => 0.034970578238971
302 => 0.035539898448378
303 => 0.036176486905912
304 => 0.036337314289925
305 => 0.035914246683129
306 => 0.035607917854295
307 => 0.035070105341851
308 => 0.035964499535978
309 => 0.03622604765451
310 => 0.035963125735056
311 => 0.035902200981361
312 => 0.035786748683198
313 => 0.035926694732195
314 => 0.036224623207286
315 => 0.036084125640308
316 => 0.036176926758546
317 => 0.035823264591922
318 => 0.036575471937011
319 => 0.037770158229569
320 => 0.037773999341351
321 => 0.037633501017038
322 => 0.037576012129808
323 => 0.037720171936704
324 => 0.0377983727182
325 => 0.038264559099314
326 => 0.038764795659933
327 => 0.041099181418034
328 => 0.040443695238354
329 => 0.042514901156171
330 => 0.044152956124736
331 => 0.044644137186347
401 => 0.04419227372152
402 => 0.042646473217533
403 => 0.042570628870177
404 => 0.044880707443272
405 => 0.044228004438071
406 => 0.044150367492486
407 => 0.043324441561153
408 => 0.043812666079487
409 => 0.043705884215506
410 => 0.043537323819264
411 => 0.044468822190232
412 => 0.046212503985251
413 => 0.045940734825353
414 => 0.045737871754497
415 => 0.044848984830561
416 => 0.045384293298853
417 => 0.045193680206453
418 => 0.046012675017462
419 => 0.045527520634376
420 => 0.044223059570856
421 => 0.044430799294781
422 => 0.044399399853424
423 => 0.045045598131564
424 => 0.044851625448093
425 => 0.044361523573826
426 => 0.046206544270438
427 => 0.046086738888944
428 => 0.046256595528579
429 => 0.046331371674337
430 => 0.047454403259454
501 => 0.047914473366873
502 => 0.048018917335918
503 => 0.048455948354868
504 => 0.048008043606041
505 => 0.049799981952023
506 => 0.0509915163896
507 => 0.052375544954646
508 => 0.054397982679988
509 => 0.055158437973311
510 => 0.055021068531144
511 => 0.056554457732735
512 => 0.059309924042667
513 => 0.055578027054178
514 => 0.059507723644811
515 => 0.058263627074745
516 => 0.055313896487462
517 => 0.05512396861268
518 => 0.057121560413465
519 => 0.06155202676652
520 => 0.060442245195013
521 => 0.061553841971602
522 => 0.060257105285772
523 => 0.060192711379565
524 => 0.061490862365142
525 => 0.064524062901469
526 => 0.063083103024482
527 => 0.061017133702964
528 => 0.06254261329993
529 => 0.061221101696566
530 => 0.058243366186378
531 => 0.06044139656596
601 => 0.058971636247435
602 => 0.059400590445137
603 => 0.062489808024329
604 => 0.062118105192145
605 => 0.062599123075747
606 => 0.061750139101619
607 => 0.060957054197299
608 => 0.059476702328128
609 => 0.059038443120131
610 => 0.059159562198307
611 => 0.059038383099531
612 => 0.058210139833866
613 => 0.058031280779503
614 => 0.05773317451957
615 => 0.05782557011474
616 => 0.057265043132004
617 => 0.058322873359211
618 => 0.058519215970949
619 => 0.05928901659459
620 => 0.059368939849052
621 => 0.061512823628467
622 => 0.060332008469268
623 => 0.061124201224735
624 => 0.061053340048278
625 => 0.055377826093653
626 => 0.056159861841117
627 => 0.057376464047834
628 => 0.056828386402773
629 => 0.056053532843075
630 => 0.0554277970486
701 => 0.054479743335199
702 => 0.055814110731051
703 => 0.057568661962445
704 => 0.05941343816373
705 => 0.06162981589505
706 => 0.0611351461869
707 => 0.059372004523724
708 => 0.059451097770758
709 => 0.059940021101878
710 => 0.059306820964708
711 => 0.059120077882722
712 => 0.059914365470049
713 => 0.05991983529213
714 => 0.059191262009523
715 => 0.058381586133408
716 => 0.058378193561924
717 => 0.05823411956031
718 => 0.060282735730596
719 => 0.061409267485797
720 => 0.061538422536034
721 => 0.061400574321863
722 => 0.061453626628497
723 => 0.060798122621579
724 => 0.062296410397719
725 => 0.063671387426408
726 => 0.06330286421062
727 => 0.062750395521491
728 => 0.062310327600102
729 => 0.0631991981939
730 => 0.06315961818557
731 => 0.063659378201566
801 => 0.063636706200487
802 => 0.063468655704032
803 => 0.063302870212232
804 => 0.063960190947678
805 => 0.063770893132118
806 => 0.063581301284764
807 => 0.063201045809837
808 => 0.063252728844254
809 => 0.062700355546634
810 => 0.062444802384273
811 => 0.058601895980128
812 => 0.057574945818351
813 => 0.057898045244744
814 => 0.058004417965186
815 => 0.057557487938708
816 => 0.058198270789773
817 => 0.058098405461192
818 => 0.058486923035439
819 => 0.058244194122522
820 => 0.058254155801775
821 => 0.058967969779405
822 => 0.059175193013893
823 => 0.059069797604336
824 => 0.059143612936446
825 => 0.06084465610943
826 => 0.06060282216653
827 => 0.060474352704294
828 => 0.060509939623309
829 => 0.060944592624783
830 => 0.061066271734022
831 => 0.060550708797938
901 => 0.060793851259029
902 => 0.061829120998982
903 => 0.062191406816773
904 => 0.063347649240103
905 => 0.062856456908102
906 => 0.063758061691796
907 => 0.06652928741715
908 => 0.068743134280797
909 => 0.066707189213896
910 => 0.070772637047286
911 => 0.073938171339435
912 => 0.073816672860829
913 => 0.073264688736866
914 => 0.069660812105337
915 => 0.066344471098231
916 => 0.069118731169953
917 => 0.069125803329407
918 => 0.068887491928877
919 => 0.067407360287375
920 => 0.068835986556124
921 => 0.068949385721329
922 => 0.068885912344086
923 => 0.067751098884899
924 => 0.066018448481304
925 => 0.066357004222787
926 => 0.066911565433687
927 => 0.065861665367866
928 => 0.065526158681148
929 => 0.066149929444516
930 => 0.068159848811887
1001 => 0.067779885198155
1002 => 0.067769962812647
1003 => 0.069395608281838
1004 => 0.068231996962147
1005 => 0.066361274494893
1006 => 0.065888892400113
1007 => 0.064212254198354
1008 => 0.06537031417629
1009 => 0.065411990693241
1010 => 0.064777733078412
1011 => 0.066412741004743
1012 => 0.066397674118865
1013 => 0.067949870806102
1014 => 0.070917087893646
1015 => 0.070039535792974
1016 => 0.06901903817729
1017 => 0.069129994563444
1018 => 0.070346912255863
1019 => 0.069611136039498
1020 => 0.069875726296917
1021 => 0.070346511766819
1022 => 0.070630548329756
1023 => 0.069089126073112
1024 => 0.068729746810339
1025 => 0.067994582963686
1026 => 0.067802792438577
1027 => 0.068401568051979
1028 => 0.068243811832902
1029 => 0.065408487943371
1030 => 0.065112180821322
1031 => 0.065121268137726
1101 => 0.064376189790697
1102 => 0.063239766472186
1103 => 0.066226219100923
1104 => 0.065986365159458
1105 => 0.0657215849713
1106 => 0.065754019033535
1107 => 0.067050336899398
1108 => 0.066298407071576
1109 => 0.068297535757717
1110 => 0.067886574999155
1111 => 0.067465074647834
1112 => 0.067406810460066
1113 => 0.067244568785527
1114 => 0.066688181716066
1115 => 0.066016310896012
1116 => 0.065572683584158
1117 => 0.060487334447446
1118 => 0.061431145667105
1119 => 0.062516914444222
1120 => 0.062891717475138
1121 => 0.062250590955177
1122 => 0.066713497298786
1123 => 0.067528913293399
1124 => 0.065058965057447
1125 => 0.064596938589822
1126 => 0.066743787677085
1127 => 0.065448975235838
1128 => 0.066032029198849
1129 => 0.064771785444286
1130 => 0.067332503458465
1201 => 0.067312995077572
1202 => 0.066316817933618
1203 => 0.067158780034162
1204 => 0.067012468399522
1205 => 0.065887786857474
1206 => 0.067368157869406
1207 => 0.067368892114958
1208 => 0.066410093272661
1209 => 0.065290426132912
1210 => 0.065090256093683
1211 => 0.064939454858184
1212 => 0.0659949413392
1213 => 0.066941287217659
1214 => 0.06870220227843
1215 => 0.069144938163018
1216 => 0.070872965795161
1217 => 0.069844009476358
1218 => 0.070300132485269
1219 => 0.07079531853398
1220 => 0.071032728935596
1221 => 0.070645881426307
1222 => 0.073330219623575
1223 => 0.073556860013422
1224 => 0.073632850575706
1225 => 0.072727706838845
1226 => 0.073531686328707
1227 => 0.073155530950403
1228 => 0.074134182745776
1229 => 0.074287647843344
1230 => 0.074157668365383
1231 => 0.074206380609633
]
'min_raw' => 0.033276592169063
'max_raw' => 0.074287647843344
'avg_raw' => 0.053782120006203
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.033276'
'max' => '$0.074287'
'avg' => '$0.053782'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 0.0051311829947512
'max_diff' => -0.0070890072312329
'year' => 2031
]
6 => [
'items' => [
101 => 0.071915771507972
102 => 0.071796991342125
103 => 0.070177415352549
104 => 0.070837404539602
105 => 0.06960358638851
106 => 0.069994842833957
107 => 0.070167304947082
108 => 0.070077220526324
109 => 0.070874719337999
110 => 0.070196682429832
111 => 0.068407231549591
112 => 0.066617293134655
113 => 0.066594821915908
114 => 0.066123562726292
115 => 0.065782928647626
116 => 0.06584854685582
117 => 0.066079793980214
118 => 0.065769488144372
119 => 0.065835707627354
120 => 0.066935392262965
121 => 0.067155926174045
122 => 0.066406465776034
123 => 0.063397274131403
124 => 0.062658810953825
125 => 0.063189603641507
126 => 0.062935918924222
127 => 0.050794198518924
128 => 0.053646715627464
129 => 0.051951846823898
130 => 0.052732920345745
131 => 0.051002898181453
201 => 0.051828555436484
202 => 0.051676086689655
203 => 0.05626284978807
204 => 0.056191233791175
205 => 0.056225512579054
206 => 0.054589296720654
207 => 0.057195833011187
208 => 0.058479906515917
209 => 0.058242258684702
210 => 0.058302069523897
211 => 0.057274321143728
212 => 0.056235463429921
213 => 0.055083210346253
214 => 0.057223954152922
215 => 0.056985939985336
216 => 0.057531858850984
217 => 0.058920284233137
218 => 0.059124735144774
219 => 0.059399519243351
220 => 0.059301028704475
221 => 0.06164747291942
222 => 0.061363303042653
223 => 0.062048070684409
224 => 0.060639451691871
225 => 0.059045465594472
226 => 0.059348430240256
227 => 0.059319252308579
228 => 0.058947783749463
229 => 0.058612438543774
301 => 0.058054183259227
302 => 0.059820585585769
303 => 0.059748872877141
304 => 0.060909818272926
305 => 0.060704609897399
306 => 0.059334178142622
307 => 0.059383123380846
308 => 0.059712303630176
309 => 0.060851600231624
310 => 0.061189821032162
311 => 0.061033143681584
312 => 0.061403987349007
313 => 0.061697087063224
314 => 0.06144079616047
315 => 0.065069334873783
316 => 0.063562512619179
317 => 0.064296927301671
318 => 0.064472080876023
319 => 0.064023428678404
320 => 0.064120725275037
321 => 0.0642681031072
322 => 0.065162952444557
323 => 0.067511296032524
324 => 0.068551361421919
325 => 0.071680449461837
326 => 0.068464998469739
327 => 0.068274206914727
328 => 0.068837850160123
329 => 0.070674956087162
330 => 0.072163757890442
331 => 0.072657679339627
401 => 0.072722959212891
402 => 0.073649588686838
403 => 0.074180715420688
404 => 0.073537071495926
405 => 0.072991650662018
406 => 0.071038020935087
407 => 0.071264158895537
408 => 0.072822025192808
409 => 0.075022603095571
410 => 0.076910927867249
411 => 0.07624970234697
412 => 0.081294386314231
413 => 0.081794546123899
414 => 0.081725440210305
415 => 0.082864878690488
416 => 0.080603325349937
417 => 0.079636467481319
418 => 0.073109576837099
419 => 0.074943366879715
420 => 0.07760888840137
421 => 0.077256096632787
422 => 0.075320323654166
423 => 0.07690945940986
424 => 0.076384041432158
425 => 0.075969622473532
426 => 0.077868156062064
427 => 0.075780640394012
428 => 0.077588063835715
429 => 0.075270024576329
430 => 0.076252722769449
501 => 0.075694895747271
502 => 0.076055878195329
503 => 0.073945582180066
504 => 0.075084246685362
505 => 0.073898209993064
506 => 0.073897647657246
507 => 0.073871465831527
508 => 0.075266832740323
509 => 0.075312335605124
510 => 0.074281157351241
511 => 0.074132548454825
512 => 0.074682033433951
513 => 0.074038730433738
514 => 0.074339727858637
515 => 0.074047847339107
516 => 0.073982138886217
517 => 0.073458562754214
518 => 0.073232991760522
519 => 0.073321443959397
520 => 0.073019511004402
521 => 0.072837585477625
522 => 0.073835276265252
523 => 0.073302250324154
524 => 0.073753582395111
525 => 0.073239232537608
526 => 0.071456271839936
527 => 0.070430872288238
528 => 0.067063024810881
529 => 0.068018142177658
530 => 0.068651385979971
531 => 0.068442098907084
601 => 0.068891728522991
602 => 0.068919332129667
603 => 0.068773152958105
604 => 0.068603896204146
605 => 0.068521511376805
606 => 0.069135540383184
607 => 0.069492004888652
608 => 0.068714940467242
609 => 0.068532885145592
610 => 0.069318540178541
611 => 0.069797789294781
612 => 0.073336295502282
613 => 0.073074151533206
614 => 0.073732081452431
615 => 0.073658008640284
616 => 0.074347624012088
617 => 0.075474853691785
618 => 0.073182880574584
619 => 0.073580687857263
620 => 0.073483154698262
621 => 0.074547996153668
622 => 0.074551320472461
623 => 0.073912894827169
624 => 0.074258995726755
625 => 0.074065811699387
626 => 0.074414921347227
627 => 0.073070650440677
628 => 0.074707827299778
629 => 0.075636001081542
630 => 0.075648888775402
701 => 0.076088835781515
702 => 0.076535847419739
703 => 0.0773938473328
704 => 0.076511918267844
705 => 0.074925413734051
706 => 0.075039954237013
707 => 0.07410978720933
708 => 0.074125423485113
709 => 0.074041955819543
710 => 0.074292448567073
711 => 0.073125619512331
712 => 0.073399471959254
713 => 0.073016076929884
714 => 0.073579854431345
715 => 0.072973323035532
716 => 0.073483107664819
717 => 0.073703113811192
718 => 0.074514941227699
719 => 0.072853415466037
720 => 0.069465451962605
721 => 0.070177642966113
722 => 0.069124256530528
723 => 0.069221751455666
724 => 0.069418706720648
725 => 0.06878031026709
726 => 0.068902096192244
727 => 0.068897745142003
728 => 0.068860250141655
729 => 0.068694178568043
730 => 0.068453341930047
731 => 0.069412760970216
801 => 0.069575784960647
802 => 0.069938167096977
803 => 0.071016370528544
804 => 0.070908632579943
805 => 0.071084357644116
806 => 0.07070075081568
807 => 0.069239545876227
808 => 0.069318896334508
809 => 0.068329394848235
810 => 0.069912863319271
811 => 0.069537877084567
812 => 0.069296121019623
813 => 0.069230155637449
814 => 0.070311031726775
815 => 0.070634446793358
816 => 0.070432916227441
817 => 0.07001957115716
818 => 0.0708133158866
819 => 0.071025688490796
820 => 0.071073230884876
821 => 0.072479594359987
822 => 0.071151830980385
823 => 0.071471436822688
824 => 0.073964910368827
825 => 0.071703673938308
826 => 0.072901501307144
827 => 0.072842873890632
828 => 0.07345564184026
829 => 0.072792609033406
830 => 0.072800828119685
831 => 0.073344924546459
901 => 0.072580839243363
902 => 0.07239164097696
903 => 0.072130264926989
904 => 0.07270096996985
905 => 0.073043081832276
906 => 0.075800252189953
907 => 0.077581509983257
908 => 0.077504180884717
909 => 0.07821082409137
910 => 0.077892474854663
911 => 0.076864441193049
912 => 0.078619169298075
913 => 0.078063899904702
914 => 0.07810967563884
915 => 0.078107971863729
916 => 0.078477177467828
917 => 0.078215561460127
918 => 0.077699889454615
919 => 0.078042216597279
920 => 0.079058805826796
921 => 0.082214329987985
922 => 0.083980203113721
923 => 0.08210802220852
924 => 0.083399427527427
925 => 0.082625044510847
926 => 0.082484316080836
927 => 0.083295414055212
928 => 0.084107931749221
929 => 0.084056177884724
930 => 0.083466331762118
1001 => 0.08313314265425
1002 => 0.08565616220557
1003 => 0.087515080032466
1004 => 0.087388314299015
1005 => 0.087947817020043
1006 => 0.089590534313749
1007 => 0.089740723795882
1008 => 0.089721803373199
1009 => 0.08934954307108
1010 => 0.09096701158053
1011 => 0.092316332267764
1012 => 0.089263375566774
1013 => 0.090425901512373
1014 => 0.0909477968636
1015 => 0.091714094078573
1016 => 0.093006965926558
1017 => 0.094411367670792
1018 => 0.094609965475908
1019 => 0.094469050829398
1020 => 0.093542810126731
1021 => 0.095079523273268
1022 => 0.095979693794152
1023 => 0.096515724739302
1024 => 0.097875010029159
1025 => 0.090951019911614
1026 => 0.086049875561779
1027 => 0.08528449109817
1028 => 0.086840930502176
1029 => 0.087251351160641
1030 => 0.087085911107838
1031 => 0.081569227549548
1101 => 0.085255446900939
1102 => 0.089221508976909
1103 => 0.089373861573543
1104 => 0.091359355175221
1105 => 0.09200591328006
1106 => 0.093604495874006
1107 => 0.093504504097508
1108 => 0.093893733520129
1109 => 0.093804256416382
1110 => 0.096765294050388
1111 => 0.10003175827904
1112 => 0.099918651009522
1113 => 0.099449058129602
1114 => 0.10014648363377
1115 => 0.10351782477332
1116 => 0.10320744570583
1117 => 0.10350895253187
1118 => 0.10748395373586
1119 => 0.11265202073837
1120 => 0.11025093475026
1121 => 0.11546060045058
1122 => 0.11873980885642
1123 => 0.12441086071784
1124 => 0.12370081709427
1125 => 0.12590851596782
1126 => 0.1224296908175
1127 => 0.11444160508582
1128 => 0.11317745994161
1129 => 0.11570831053356
1130 => 0.12193015975708
1201 => 0.11551236235983
1202 => 0.11681067441474
1203 => 0.11643676045558
1204 => 0.11641683616973
1205 => 0.11717726512275
1206 => 0.11607422326509
1207 => 0.11158023230354
1208 => 0.11363980187796
1209 => 0.11284450315662
1210 => 0.1137269463814
1211 => 0.11848912851823
1212 => 0.11638365427929
1213 => 0.11416570820341
1214 => 0.1169475047842
1215 => 0.12048968776056
1216 => 0.12026802431582
1217 => 0.11983790458488
1218 => 0.12226246698785
1219 => 0.12626713374742
1220 => 0.12734957908048
1221 => 0.12814861809572
1222 => 0.12825879207605
1223 => 0.12939365254617
1224 => 0.12329122177668
1225 => 0.13297593612939
1226 => 0.13464821876327
1227 => 0.13433389893711
1228 => 0.13619257070426
1229 => 0.13564570232041
1230 => 0.13485337583324
1231 => 0.13779976593499
]
'min_raw' => 0.050794198518924
'max_raw' => 0.13779976593499
'avg_raw' => 0.094296982226956
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.050794'
'max' => '$0.137799'
'avg' => '$0.094296'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.017517606349862
'max_diff' => 0.063512118091644
'year' => 2032
]
7 => [
'items' => [
101 => 0.13442196744476
102 => 0.12962760774088
103 => 0.12699732718564
104 => 0.13046109279945
105 => 0.13257629359104
106 => 0.13397430676225
107 => 0.13439734470315
108 => 0.12376493610592
109 => 0.11803465757243
110 => 0.12170770041462
111 => 0.12618906618197
112 => 0.12326632756357
113 => 0.12338089338394
114 => 0.1192138361963
115 => 0.12655775827939
116 => 0.12548781060399
117 => 0.13103870103666
118 => 0.12971393648622
119 => 0.13424047214975
120 => 0.13304848360881
121 => 0.13799636139905
122 => 0.13997020380802
123 => 0.14328459241672
124 => 0.14572267016927
125 => 0.14715435605856
126 => 0.14706840300788
127 => 0.15274145576434
128 => 0.14939625475522
129 => 0.14519389388443
130 => 0.14511788643456
131 => 0.14729434867746
201 => 0.15185561645531
202 => 0.15303828682636
203 => 0.15369923822092
204 => 0.15268696815227
205 => 0.14905599220959
206 => 0.14748815520701
207 => 0.14882399775782
208 => 0.14719037710844
209 => 0.15001046466227
210 => 0.15388304721188
211 => 0.15308337422924
212 => 0.15575656111654
213 => 0.15852302831744
214 => 0.16247920066454
215 => 0.16351349061271
216 => 0.16522313256651
217 => 0.16698291572509
218 => 0.16754811064814
219 => 0.16862724312593
220 => 0.1686215555651
221 => 0.17187359392092
222 => 0.17546069293463
223 => 0.17681473977077
224 => 0.1799282958079
225 => 0.17459644020633
226 => 0.17864071392807
227 => 0.18228875005981
228 => 0.17793941099267
301 => 0.18393396163069
302 => 0.18416671644802
303 => 0.18768103785046
304 => 0.18411859984657
305 => 0.18200323553156
306 => 0.18811021304732
307 => 0.1910651870992
308 => 0.1901751248664
309 => 0.18340170732697
310 => 0.17945928779347
311 => 0.16914121543839
312 => 0.18136341785054
313 => 0.18731649611897
314 => 0.18338629029241
315 => 0.18536845750491
316 => 0.19618251909641
317 => 0.20029981359182
318 => 0.19944344511884
319 => 0.19958815729375
320 => 0.20180977466929
321 => 0.21166164957948
322 => 0.20575817776862
323 => 0.21027116076915
324 => 0.21266483067986
325 => 0.21488820469361
326 => 0.20942830082043
327 => 0.20232504610334
328 => 0.20007514716009
329 => 0.18299550877885
330 => 0.18210643942799
331 => 0.1816073778598
401 => 0.17846086526601
402 => 0.17598856826962
403 => 0.17402250590759
404 => 0.1688629711537
405 => 0.17060416267341
406 => 0.16238094115431
407 => 0.16764186686915
408 => 0.15451740676804
409 => 0.16544784713569
410 => 0.15949890538972
411 => 0.16349345977586
412 => 0.16347952315192
413 => 0.15612428205241
414 => 0.15188193248617
415 => 0.15458532274449
416 => 0.1574835716968
417 => 0.15795380283843
418 => 0.16171145825712
419 => 0.16276013911395
420 => 0.15958258715954
421 => 0.15424543150435
422 => 0.15548513103549
423 => 0.15185681001474
424 => 0.14549831698724
425 => 0.15006509768823
426 => 0.15162439740672
427 => 0.15231307299375
428 => 0.14606022537906
429 => 0.1440954449026
430 => 0.14304941226304
501 => 0.15343826739719
502 => 0.15400739233295
503 => 0.15109566869543
504 => 0.16425693563799
505 => 0.16127813558457
506 => 0.16460618506797
507 => 0.15537264129695
508 => 0.15572537510362
509 => 0.15135406750832
510 => 0.15380170767081
511 => 0.15207179449509
512 => 0.15360396253373
513 => 0.15452233773873
514 => 0.15889292804547
515 => 0.16549775225641
516 => 0.15824010759999
517 => 0.1550778478918
518 => 0.15703969602953
519 => 0.16226435614965
520 => 0.17017998367707
521 => 0.16549377286399
522 => 0.16757343364581
523 => 0.16802774700897
524 => 0.16457230864836
525 => 0.17030739061821
526 => 0.17338086763757
527 => 0.17653361909298
528 => 0.17927106484362
529 => 0.1752743408312
530 => 0.17955140843238
531 => 0.1761048469499
601 => 0.17301292500113
602 => 0.17301761417044
603 => 0.17107800636621
604 => 0.1673197718392
605 => 0.16662669573076
606 => 0.17023216517274
607 => 0.17312341022598
608 => 0.1733615470167
609 => 0.17496228883571
610 => 0.17590959135525
611 => 0.18519444384205
612 => 0.18892888832057
613 => 0.19349529633948
614 => 0.19527416961151
615 => 0.20062794039893
616 => 0.19630433567608
617 => 0.19536889659754
618 => 0.18238239987233
619 => 0.18450893798357
620 => 0.18791373068007
621 => 0.18243854364983
622 => 0.18591128960618
623 => 0.18659688322078
624 => 0.18225249888965
625 => 0.18457302227068
626 => 0.17841040015791
627 => 0.16563208057797
628 => 0.17032161654078
629 => 0.17377469349014
630 => 0.16884672692208
701 => 0.17767991625669
702 => 0.17251974940145
703 => 0.17088422424003
704 => 0.16450345747852
705 => 0.16751493377172
706 => 0.17158799857845
707 => 0.1690713180725
708 => 0.17429380800384
709 => 0.1816902465338
710 => 0.18696138909579
711 => 0.18736604196966
712 => 0.18397705044143
713 => 0.18940793099367
714 => 0.18944748902947
715 => 0.18332143358074
716 => 0.17956925872841
717 => 0.17871675670732
718 => 0.18084647389887
719 => 0.1834323437369
720 => 0.18750953974893
721 => 0.18997330390808
722 => 0.19639749415558
723 => 0.19813569584059
724 => 0.20004545250259
725 => 0.20259747635016
726 => 0.20566183530466
727 => 0.19895719236627
728 => 0.19922358032923
729 => 0.19298030965711
730 => 0.18630847956836
731 => 0.19137156695036
801 => 0.19799088018803
802 => 0.19647240241762
803 => 0.19630154264876
804 => 0.19658888138743
805 => 0.19544399873739
806 => 0.19026573694257
807 => 0.18766524628684
808 => 0.19102054268865
809 => 0.19280373339915
810 => 0.19556930668056
811 => 0.19522839139945
812 => 0.20235221117148
813 => 0.20512031212176
814 => 0.20441211344496
815 => 0.20454243904524
816 => 0.20955395359399
817 => 0.21512778846878
818 => 0.22034842036131
819 => 0.22565907135374
820 => 0.21925687430412
821 => 0.21600623347495
822 => 0.21936006505931
823 => 0.21758047481205
824 => 0.22780652823356
825 => 0.22851455798531
826 => 0.23873987194676
827 => 0.24844491250391
828 => 0.24234935041383
829 => 0.24809719091463
830 => 0.25431394904456
831 => 0.26630708410986
901 => 0.26226821814345
902 => 0.25917451011027
903 => 0.25625097096761
904 => 0.26233439182472
905 => 0.27016061557237
906 => 0.27184630920897
907 => 0.2745777768848
908 => 0.27170597261164
909 => 0.2751647445398
910 => 0.28737572930758
911 => 0.28407621343398
912 => 0.27939037046983
913 => 0.28902977018855
914 => 0.29251823147454
915 => 0.31700207970096
916 => 0.34791394946414
917 => 0.3351162324039
918 => 0.32717227644486
919 => 0.32903929452839
920 => 0.34032726293308
921 => 0.34395260012245
922 => 0.33409768391306
923 => 0.33757860692183
924 => 0.35675883493697
925 => 0.3670484118917
926 => 0.35307378431262
927 => 0.3145183410637
928 => 0.27896846157982
929 => 0.28839789045088
930 => 0.28732888584615
1001 => 0.30793564806624
1002 => 0.28399752107162
1003 => 0.28440057773746
1004 => 0.30543346597732
1005 => 0.29982225198992
1006 => 0.29073280396031
1007 => 0.27903482460942
1008 => 0.25741002784718
1009 => 0.2382563423028
1010 => 0.27582113048568
1011 => 0.2742012685121
1012 => 0.27185546832426
1013 => 0.27707579280021
1014 => 0.30242420664044
1015 => 0.30183984365662
1016 => 0.29812242449813
1017 => 0.30094205416601
1018 => 0.29023850924682
1019 => 0.29299705648769
1020 => 0.27896283029728
1021 => 0.2853068866564
1022 => 0.29071330208712
1023 => 0.29179872002818
1024 => 0.29424422207222
1025 => 0.27334767485912
1026 => 0.28272961106741
1027 => 0.28824061962123
1028 => 0.26334168248284
1029 => 0.28774844769019
1030 => 0.27298391246276
1031 => 0.26797260745069
1101 => 0.27471966946021
1102 => 0.27209033283337
1103 => 0.26982978360144
1104 => 0.26856835828885
1105 => 0.27352265598258
1106 => 0.2732915320735
1107 => 0.26518533945882
1108 => 0.25461114164364
1109 => 0.25816018951662
1110 => 0.25687078715187
1111 => 0.25219782664578
1112 => 0.25534683781148
1113 => 0.2414801863158
1114 => 0.21762333314331
1115 => 0.23338390110423
1116 => 0.23277713638194
1117 => 0.23247117809436
1118 => 0.24431480932689
1119 => 0.24317631746295
1120 => 0.24110994358174
1121 => 0.25215987606898
1122 => 0.24812650206857
1123 => 0.26055641035539
1124 => 0.26874355186915
1125 => 0.26666702795498
1126 => 0.27436707412056
1127 => 0.25824195241155
1128 => 0.26359807101569
1129 => 0.26470195963674
1130 => 0.25202352161732
1201 => 0.24336258881186
1202 => 0.24278500333559
1203 => 0.22776813940098
1204 => 0.23579002690296
1205 => 0.24284895593644
1206 => 0.23946827672443
1207 => 0.23839805468082
1208 => 0.24386558699876
1209 => 0.24429046108611
1210 => 0.23460328686836
1211 => 0.23661755714114
1212 => 0.24501739902321
1213 => 0.23640590267749
1214 => 0.21967517195769
1215 => 0.21552571941873
1216 => 0.21497210596045
1217 => 0.20371846157755
1218 => 0.21580300567876
1219 => 0.21052777833294
1220 => 0.22719215831146
1221 => 0.21767355384059
1222 => 0.21726322582645
1223 => 0.21664295485103
1224 => 0.20695647824848
1225 => 0.20907720101674
1226 => 0.21612680649362
1227 => 0.21864218514726
1228 => 0.21837981054579
1229 => 0.21609225958088
1230 => 0.21713948869846
1231 => 0.21376599883192
]
'min_raw' => 0.11803465757243
'max_raw' => 0.3670484118917
'avg_raw' => 0.24254153473207
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.118034'
'max' => '$0.367048'
'avg' => '$0.242541'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.067240459053506
'max_diff' => 0.22924864595671
'year' => 2033
]
8 => [
'items' => [
101 => 0.21257474934693
102 => 0.2088148382933
103 => 0.20328880774641
104 => 0.20405723618707
105 => 0.19310872370913
106 => 0.18714339302961
107 => 0.18549226811931
108 => 0.18328431488401
109 => 0.18574166231238
110 => 0.19307770794889
111 => 0.18422888048236
112 => 0.16905818646407
113 => 0.16996997102417
114 => 0.17201848021946
115 => 0.16820109688629
116 => 0.16458826393013
117 => 0.16772932906711
118 => 0.16130130601983
119 => 0.17279527609448
120 => 0.17248439641544
121 => 0.17676863767693
122 => 0.17944766165922
123 => 0.17327337872435
124 => 0.17172056326327
125 => 0.17260511752143
126 => 0.15798540600301
127 => 0.17557389534371
128 => 0.17572600132991
129 => 0.17442357752987
130 => 0.18378890512012
131 => 0.20355266745445
201 => 0.19611674506878
202 => 0.1932373311691
203 => 0.18776356324097
204 => 0.19505703400502
205 => 0.19449700924621
206 => 0.19196436490379
207 => 0.19043261370316
208 => 0.19325491225637
209 => 0.19008289967942
210 => 0.18951311905952
211 => 0.18606086843037
212 => 0.18482857202316
213 => 0.18391622882239
214 => 0.18291182860334
215 => 0.18512728520563
216 => 0.18010676907725
217 => 0.1740525187937
218 => 0.17354917339051
219 => 0.17493895430328
220 => 0.1743240797064
221 => 0.1735462296075
222 => 0.17206110193384
223 => 0.17162049627779
224 => 0.17305225090846
225 => 0.17143588340692
226 => 0.17382092170354
227 => 0.17317232325705
228 => 0.16954930505926
301 => 0.16503368297167
302 => 0.16499348446325
303 => 0.16402060109159
304 => 0.16278148784378
305 => 0.16243679488531
306 => 0.16746479732241
307 => 0.17787261189177
308 => 0.17582930885391
309 => 0.17730580470488
310 => 0.18456870295001
311 => 0.18687735989916
312 => 0.18523872988019
313 => 0.18299567204392
314 => 0.183094355205
315 => 0.19075956285132
316 => 0.19123763244988
317 => 0.19244556009436
318 => 0.19399808847783
319 => 0.18550313217721
320 => 0.18269424352718
321 => 0.18136323625359
322 => 0.17726424901556
323 => 0.18168465533117
324 => 0.17910907387173
325 => 0.179456607805
326 => 0.17923027587504
327 => 0.1793538684133
328 => 0.1727920632956
329 => 0.17518284020216
330 => 0.17120770989619
331 => 0.16588545664581
401 => 0.16586761458669
402 => 0.16717022852969
403 => 0.1663953827851
404 => 0.16431029280953
405 => 0.16460646999921
406 => 0.16201164616531
407 => 0.16492152859345
408 => 0.16500497360943
409 => 0.16388451037223
410 => 0.16836758573918
411 => 0.17020430537486
412 => 0.16946679246949
413 => 0.17015255950336
414 => 0.17591421732009
415 => 0.17685361894297
416 => 0.17727083909047
417 => 0.1767118193639
418 => 0.17025787203143
419 => 0.17054413203993
420 => 0.16844374603407
421 => 0.16666914119234
422 => 0.16674011607943
423 => 0.16765249365056
424 => 0.17163690001392
425 => 0.18002184831203
426 => 0.18034005097062
427 => 0.18072572187547
428 => 0.1791570044828
429 => 0.17868386430657
430 => 0.17930805832686
501 => 0.18245700404799
502 => 0.19055694737317
503 => 0.18769388642502
504 => 0.18536617330799
505 => 0.18740820525858
506 => 0.18709385044576
507 => 0.18444037947007
508 => 0.18436590537744
509 => 0.17927304620911
510 => 0.17739033213337
511 => 0.17581699533298
512 => 0.17409895261994
513 => 0.17308043931034
514 => 0.17464533865991
515 => 0.1750032496565
516 => 0.17158156987891
517 => 0.17111520756877
518 => 0.17390942513723
519 => 0.17267979416428
520 => 0.17394450011334
521 => 0.17423792274197
522 => 0.17419067494067
523 => 0.17290679898269
524 => 0.17372510323257
525 => 0.17178956973336
526 => 0.1696849677607
527 => 0.16834236282348
528 => 0.16717076194505
529 => 0.16782083420625
530 => 0.16550344529359
531 => 0.16476206594061
601 => 0.17344788016514
602 => 0.17986418452104
603 => 0.17977088891457
604 => 0.17920297590386
605 => 0.1783591723669
606 => 0.18239527456353
607 => 0.18098917726264
608 => 0.1820122305324
609 => 0.18227264052697
610 => 0.18306082315004
611 => 0.18334253069121
612 => 0.18249101484334
613 => 0.179633223654
614 => 0.17251187972081
615 => 0.1691968748962
616 => 0.16810286808831
617 => 0.16814263315796
618 => 0.16704573501787
619 => 0.16736882067965
620 => 0.16693337900974
621 => 0.16610875783157
622 => 0.16776991617222
623 => 0.16796134919621
624 => 0.16757361499014
625 => 0.16766494043186
626 => 0.16445466680904
627 => 0.16469873694023
628 => 0.1633397234348
629 => 0.16308492478569
630 => 0.15964945698681
701 => 0.15356302780207
702 => 0.15693550039439
703 => 0.15286202774428
704 => 0.1513193419285
705 => 0.15862217664354
706 => 0.15788917458725
707 => 0.15663459369523
708 => 0.15477880707836
709 => 0.15409047777023
710 => 0.14990840679261
711 => 0.14966130772877
712 => 0.15173405503069
713 => 0.15077755346973
714 => 0.14943426302268
715 => 0.14456900119062
716 => 0.13909883605855
717 => 0.13926394595966
718 => 0.14100390371213
719 => 0.14606306554271
720 => 0.14408636349111
721 => 0.14265224347264
722 => 0.14238367590267
723 => 0.14574536132514
724 => 0.15050285049282
725 => 0.15273495796747
726 => 0.1505230072502
727 => 0.14798203736609
728 => 0.14813669442922
729 => 0.1491655585826
730 => 0.14927367765777
731 => 0.14761976747913
801 => 0.14808533350659
802 => 0.14737809613864
803 => 0.143037781717
804 => 0.1429592791924
805 => 0.1418940960363
806 => 0.14186184271366
807 => 0.14004970044276
808 => 0.13979616921231
809 => 0.13619805074425
810 => 0.13856634321603
811 => 0.13697781696689
812 => 0.13458353321398
813 => 0.13417075779252
814 => 0.13415834926491
815 => 0.1366167433271
816 => 0.13853761545007
817 => 0.1370054500611
818 => 0.13665660570181
819 => 0.14038135080775
820 => 0.13990734304122
821 => 0.13949685537242
822 => 0.15007686951845
823 => 0.14170196275307
824 => 0.13805002538039
825 => 0.13353005939761
826 => 0.13500178311325
827 => 0.13531189692426
828 => 0.12444219352077
829 => 0.12003235620371
830 => 0.11851906621771
831 => 0.11764814643599
901 => 0.11804503551684
902 => 0.11407566470916
903 => 0.11674314753926
904 => 0.11330600794237
905 => 0.11272976030353
906 => 0.11887579168266
907 => 0.11973097604447
908 => 0.11608249387203
909 => 0.11842541006234
910 => 0.11757583608276
911 => 0.11336492783557
912 => 0.11320410211387
913 => 0.11109121637601
914 => 0.10778495933155
915 => 0.10627391114352
916 => 0.10548694412767
917 => 0.10581166205609
918 => 0.10564747473494
919 => 0.10457604140391
920 => 0.1057088880393
921 => 0.10281493301041
922 => 0.10166253679972
923 => 0.10114202616675
924 => 0.098573474508766
925 => 0.10266118243672
926 => 0.10346651239411
927 => 0.1042734291003
928 => 0.11129708812225
929 => 0.11094620596617
930 => 0.11411800977061
1001 => 0.11399475930734
1002 => 0.1130901094825
1003 => 0.10927354067917
1004 => 0.11079475698038
1005 => 0.10611268965475
1006 => 0.10962081284474
1007 => 0.10801985192356
1008 => 0.10907952634687
1009 => 0.10717413618676
1010 => 0.108228657773
1011 => 0.10365748600278
1012 => 0.099388990121882
1013 => 0.10110675746952
1014 => 0.10297416702693
1015 => 0.10702318675449
1016 => 0.10461162400844
1017 => 0.1054789131632
1018 => 0.1025736396772
1019 => 0.09657923062523
1020 => 0.096613158329473
1021 => 0.095691049092127
1022 => 0.094894212080908
1023 => 0.10488862099949
1024 => 0.10364565826224
1025 => 0.10166515981537
1026 => 0.10431613568838
1027 => 0.10501709578585
1028 => 0.10503705113439
1029 => 0.10697113469975
1030 => 0.10800335544529
1031 => 0.10818528882559
1101 => 0.11122861110432
1102 => 0.11224869258976
1103 => 0.11645026386094
1104 => 0.10791577872675
1105 => 0.10774001662169
1106 => 0.10435344035539
1107 => 0.10220562014765
1108 => 0.10450050344255
1109 => 0.10653345675903
1110 => 0.10441660988177
1111 => 0.10469302539486
1112 => 0.10185133141488
1113 => 0.1028671032986
1114 => 0.1037420228841
1115 => 0.10325894371438
1116 => 0.10253575081602
1117 => 0.10636677777057
1118 => 0.10615061621588
1119 => 0.10971815659089
1120 => 0.11249930943047
1121 => 0.11748363250953
1122 => 0.11228223153789
1123 => 0.11209267181279
1124 => 0.11394564853201
1125 => 0.11224840890868
1126 => 0.1133210057639
1127 => 0.11731082057387
1128 => 0.11739511907374
1129 => 0.11598301058849
1130 => 0.11589708365883
1201 => 0.11616829454019
1202 => 0.11775678514348
1203 => 0.11720171771731
1204 => 0.11784405579546
1205 => 0.11864730939802
1206 => 0.1219699068707
1207 => 0.12277097387276
1208 => 0.12082479636337
1209 => 0.12100051440204
1210 => 0.12027259058977
1211 => 0.11956942530796
1212 => 0.12115003817241
1213 => 0.12403863924921
1214 => 0.12402066941183
1215 => 0.12469076871527
1216 => 0.12510823502991
1217 => 0.12331616400346
1218 => 0.12214959166152
1219 => 0.12259692972835
1220 => 0.12331223303896
1221 => 0.12236496650533
1222 => 0.11651799864325
1223 => 0.11829159518685
1224 => 0.11799638199756
1225 => 0.11757596251685
1226 => 0.11935932755626
1227 => 0.11918731764766
1228 => 0.11403495307429
1229 => 0.11436479073747
1230 => 0.11405501159505
1231 => 0.11505597137908
]
'min_raw' => 0.094894212080908
'max_raw' => 0.21257474934693
'avg_raw' => 0.15373448071392
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.094894'
'max' => '$0.212574'
'avg' => '$0.153734'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.023140445491523
'max_diff' => -0.15447366254477
'year' => 2034
]
9 => [
'items' => [
101 => 0.11219435379547
102 => 0.1130745680909
103 => 0.11362663024549
104 => 0.11395179909569
105 => 0.11512653195298
106 => 0.11498869061089
107 => 0.11511796354162
108 => 0.116859782251
109 => 0.12566930356304
110 => 0.12614878637094
111 => 0.12378763766224
112 => 0.12473086999977
113 => 0.12292007017395
114 => 0.12413567222833
115 => 0.12496735628099
116 => 0.12120913597066
117 => 0.12098659855453
118 => 0.1191683249137
119 => 0.120145362176
120 => 0.11859082564021
121 => 0.11897225453071
122 => 0.1179057461005
123 => 0.11982524893518
124 => 0.12197155136494
125 => 0.12251379211875
126 => 0.1210873901448
127 => 0.12005458111119
128 => 0.11824130867662
129 => 0.12125682114672
130 => 0.12213864888906
131 => 0.121252189281
201 => 0.12104677722029
202 => 0.12065752173641
203 => 0.12112935961132
204 => 0.12213384626579
205 => 0.1216601489095
206 => 0.12197303435881
207 => 0.12078063767213
208 => 0.12331675725354
209 => 0.12734472549923
210 => 0.12735767607578
211 => 0.12688397616608
212 => 0.12669014836904
213 => 0.1271761932229
214 => 0.12743985261752
215 => 0.12901163254954
216 => 0.13069821503907
217 => 0.13856875960411
218 => 0.13635874218474
219 => 0.14334195754364
220 => 0.1488647742355
221 => 0.15052082547789
222 => 0.14899733625813
223 => 0.14378556193459
224 => 0.1435298474222
225 => 0.15131843861592
226 => 0.14911780486362
227 => 0.14885604648114
228 => 0.14607137953934
301 => 0.14771746258965
302 => 0.14735744007997
303 => 0.14678912693553
304 => 0.14992973872839
305 => 0.15580868364027
306 => 0.15489239494336
307 => 0.15420842793652
308 => 0.15121148361237
309 => 0.15301631348725
310 => 0.15237364813805
311 => 0.15513494632375
312 => 0.15349921444878
313 => 0.14910113289856
314 => 0.1498015418817
315 => 0.14969567647293
316 => 0.1518743790838
317 => 0.15122038663874
318 => 0.14956797395182
319 => 0.15578859004568
320 => 0.15538465783743
321 => 0.15595734135697
322 => 0.1562094543531
323 => 0.15999583374988
324 => 0.16154699223812
325 => 0.1618991323718
326 => 0.16337261296472
327 => 0.16186247083233
328 => 0.16790411607495
329 => 0.17192145762152
330 => 0.17658780655837
331 => 0.18340659655145
401 => 0.18597052466618
402 => 0.18550737400108
403 => 0.19067730275206
404 => 0.19996754979651
405 => 0.1873851985471
406 => 0.20063444496507
407 => 0.19643988651904
408 => 0.1864946639004
409 => 0.18585430881024
410 => 0.19258932903399
411 => 0.2075269556686
412 => 0.20378524961779
413 => 0.20753307575927
414 => 0.20316103748772
415 => 0.20294392893711
416 => 0.20732073561899
417 => 0.21754738299852
418 => 0.21268908616865
419 => 0.20572352635978
420 => 0.21086678732653
421 => 0.2064112186908
422 => 0.19637157551934
423 => 0.20378238840569
424 => 0.19882698887639
425 => 0.20027323790257
426 => 0.2106887506531
427 => 0.20943552860293
428 => 0.21105731398109
429 => 0.20819490523815
430 => 0.20552096411181
501 => 0.20052985443003
502 => 0.19905223291199
503 => 0.19946059434033
504 => 0.19905203054835
505 => 0.19625955055206
506 => 0.19565651476274
507 => 0.19465142869426
508 => 0.19496294689423
509 => 0.19307309103719
510 => 0.19663963950356
511 => 0.19730162232724
512 => 0.19989705887561
513 => 0.20016652570809
514 => 0.20739477955158
515 => 0.20341357880046
516 => 0.20608451198464
517 => 0.20584559858085
518 => 0.1867102070311
519 => 0.18934689515367
520 => 0.19344875443407
521 => 0.19160087238819
522 => 0.18898839951312
523 => 0.18687868759456
524 => 0.18368225830884
525 => 0.18818117114651
526 => 0.19409676312201
527 => 0.2003165548828
528 => 0.2077892271465
529 => 0.20612141368874
530 => 0.20017685847272
531 => 0.20044352687721
601 => 0.20209196602362
602 => 0.19995708755253
603 => 0.19932747021362
604 => 0.20200546626968
605 => 0.20202390815672
606 => 0.19956747246705
607 => 0.19683759372097
608 => 0.19682615542934
609 => 0.19634039987398
610 => 0.20324745232191
611 => 0.20704563278651
612 => 0.2074810880557
613 => 0.20701632317736
614 => 0.20719519273318
615 => 0.20498511520802
616 => 0.21003669705239
617 => 0.21467252810245
618 => 0.21343002635095
619 => 0.21156733959342
620 => 0.21008361987189
621 => 0.21308050913785
622 => 0.21294706237637
623 => 0.21463203816243
624 => 0.21455559792789
625 => 0.21398900394618
626 => 0.2134300465858
627 => 0.21564624933803
628 => 0.21500801853651
629 => 0.21436879638628
630 => 0.21308673850397
701 => 0.21326099146291
702 => 0.21139862632451
703 => 0.21053701099545
704 => 0.19758038375072
705 => 0.19411794958092
706 => 0.19520730185509
707 => 0.19556594490876
708 => 0.19405908912084
709 => 0.19621953324123
710 => 0.19588283031354
711 => 0.19719274444055
712 => 0.19637436696386
713 => 0.19640795346096
714 => 0.19881462712344
715 => 0.19951329472638
716 => 0.19915794674459
717 => 0.19940682029042
718 => 0.20514200611118
719 => 0.20432664608838
720 => 0.203893502327
721 => 0.20401348610906
722 => 0.20547894905004
723 => 0.2058891986622
724 => 0.20415094222774
725 => 0.20497071401097
726 => 0.20846119821944
727 => 0.20968267014811
728 => 0.21358102220464
729 => 0.21192493296335
730 => 0.21496475643961
731 => 0.22430813745344
801 => 0.23177227672008
802 => 0.22490794578187
803 => 0.23861488699265
804 => 0.24928770686918
805 => 0.24887806626581
806 => 0.24701701325356
807 => 0.23486629157573
808 => 0.22368501633074
809 => 0.2330386278552
810 => 0.23306247213457
811 => 0.23225898860931
812 => 0.22726862144049
813 => 0.23208533464908
814 => 0.23246766785184
815 => 0.2322536629289
816 => 0.2284275601211
817 => 0.2225858083156
818 => 0.22372727263522
819 => 0.22559701447599
820 => 0.22205720310239
821 => 0.22092601888379
822 => 0.22302910556277
823 => 0.22980568903795
824 => 0.22852461518605
825 => 0.22849116117055
826 => 0.23397213836887
827 => 0.23004894156378
828 => 0.22374167015576
829 => 0.22214900094255
830 => 0.21649609818617
831 => 0.22040057825495
901 => 0.22054109354161
902 => 0.21840264971076
903 => 0.223915193087
904 => 0.22386439402932
905 => 0.22909773353125
906 => 0.23910191310639
907 => 0.23614318493024
908 => 0.2327025059701
909 => 0.23307660317274
910 => 0.23717952613521
911 => 0.23469880525148
912 => 0.23559088977747
913 => 0.23717817585844
914 => 0.23813582496118
915 => 0.23293881220424
916 => 0.23172713992874
917 => 0.22924848369225
918 => 0.22860184854646
919 => 0.23062066233222
920 => 0.23008877622542
921 => 0.22052928377587
922 => 0.21953026362638
923 => 0.21956090214809
924 => 0.21704881848138
925 => 0.21321728792047
926 => 0.22328632146572
927 => 0.22247763715601
928 => 0.22158491226527
929 => 0.22169426597057
930 => 0.22606489216135
1001 => 0.22352970824878
1002 => 0.23026991018882
1003 => 0.22888432729896
1004 => 0.22746320943627
1005 => 0.22726676765933
1006 => 0.22671975852627
1007 => 0.22484386067588
1008 => 0.22257860129754
1009 => 0.22108288084256
1010 => 0.2039372711804
1011 => 0.20711939660227
1012 => 0.21078014184028
1013 => 0.21204381642692
1014 => 0.20988221360285
1015 => 0.2249292139305
1016 => 0.22767844588686
1017 => 0.21935084296307
1018 => 0.21779308846982
1019 => 0.22503134005574
1020 => 0.22066578950916
1021 => 0.22263159665298
1022 => 0.21838259684706
1023 => 0.22701623641548
1024 => 0.22695046254727
1025 => 0.22359178175556
1026 => 0.22643051576146
1027 => 0.22593721587013
1028 => 0.22214527352835
1029 => 0.22713644775128
1030 => 0.22713892331143
1031 => 0.22390626607342
1101 => 0.2201312301391
1102 => 0.21945634287641
1103 => 0.21894790598232
1104 => 0.22250655234478
1105 => 0.22569722354576
1106 => 0.23163427161632
1107 => 0.23312698656204
1108 => 0.23895315237084
1109 => 0.23548395430256
1110 => 0.2370218048726
1111 => 0.23869135920861
1112 => 0.23949180495312
1113 => 0.23818752156673
1114 => 0.24723795521332
1115 => 0.24800208911122
1116 => 0.24825829659745
1117 => 0.24520654129351
1118 => 0.24791721427563
1119 => 0.24664898015535
1120 => 0.24994857301074
1121 => 0.25046599130178
1122 => 0.25002775641696
1123 => 0.25019199314942
1124 => 0.24246904463795
1125 => 0.24206856901583
1126 => 0.23660805549179
1127 => 0.23883325511492
1128 => 0.23467335107608
1129 => 0.23599249949856
1130 => 0.23657396755387
1201 => 0.2362702416398
1202 => 0.23895906456295
1203 => 0.23667301578804
1204 => 0.23063975720984
1205 => 0.22460485487437
1206 => 0.22452909159147
1207 => 0.22294020833142
1208 => 0.22179173675288
1209 => 0.22201297312313
1210 => 0.22279263894818
1211 => 0.22174642115778
1212 => 0.22196968476795
1213 => 0.22567734829444
1214 => 0.22642089377283
1215 => 0.22389403571528
1216 => 0.21374833599036
1217 => 0.2112585558293
1218 => 0.21304816043458
1219 => 0.21219284469855
1220 => 0.17125618664424
1221 => 0.18087364723207
1222 => 0.17515927872889
1223 => 0.17779272264061
1224 => 0.17195983212741
1225 => 0.17474359320829
1226 => 0.17422953418333
1227 => 0.18969412620721
1228 => 0.18945266787361
1229 => 0.18956824120021
1230 => 0.18405162519667
1231 => 0.19283974428276
]
'min_raw' => 0.11219435379547
'max_raw' => 0.25046599130178
'avg_raw' => 0.18133017254862
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.112194'
'max' => '$0.250465'
'avg' => '$0.18133'
'bar_min_pct' => 61.631153054958
'bar_max_pct' => 60.119598047091
'min_diff' => 0.01730014171456
'max_diff' => 0.037891241954847
'year' => 2035
]
10 => [
'items' => [
101 => 0.1971690877551
102 => 0.19636784150012
103 => 0.19656949792033
104 => 0.19310437250148
105 => 0.18960179118865
106 => 0.18571688946933
107 => 0.19293455667547
108 => 0.19213207529184
109 => 0.19397267886221
110 => 0.1986538519749
111 => 0.19934317249779
112 => 0.20026962627096
113 => 0.19993755854275
114 => 0.20784875903694
115 => 0.20689066045731
116 => 0.20919940237044
117 => 0.20445014509046
118 => 0.19907590967453
119 => 0.2000973761301
120 => 0.19999900069632
121 => 0.19874656851415
122 => 0.19761592874011
123 => 0.19573373207212
124 => 0.20168928084233
125 => 0.20144749643837
126 => 0.20536170489488
127 => 0.2046698305296
128 => 0.20004932418788
129 => 0.2002143464758
130 => 0.20132420066905
131 => 0.20516541870398
201 => 0.20630575374681
202 => 0.20577750512048
203 => 0.20702783043667
204 => 0.20801603658672
205 => 0.20715193391443
206 => 0.21938580552284
207 => 0.21430544908848
208 => 0.2167815794657
209 => 0.21737212197045
210 => 0.21585945976228
211 => 0.21618750203086
212 => 0.21668439668159
213 => 0.21970144369888
214 => 0.22761904806182
215 => 0.23112570113722
216 => 0.24167563992975
217 => 0.23083452241427
218 => 0.23019125536591
219 => 0.23209161792007
220 => 0.23828554881573
221 => 0.24330514804031
222 => 0.24497043869073
223 => 0.24519053434113
224 => 0.24831473030775
225 => 0.25010546117301
226 => 0.24793537074289
227 => 0.2460964463213
228 => 0.23950964729888
229 => 0.24027208722099
301 => 0.24552454220899
302 => 0.2529439442476
303 => 0.25931056305394
304 => 0.25708119504702
305 => 0.27408969925123
306 => 0.27577602296957
307 => 0.27554302755707
308 => 0.27938472394606
309 => 0.27175973896178
310 => 0.26849991015387
311 => 0.24649404265393
312 => 0.25267679381374
313 => 0.26166378572477
314 => 0.26047432364586
315 => 0.25394772989709
316 => 0.25930561204732
317 => 0.25753412865199
318 => 0.25613688619918
319 => 0.26253792474429
320 => 0.25549971992377
321 => 0.26159357424774
322 => 0.25377814304439
323 => 0.25709137861229
324 => 0.25521062586078
325 => 0.25642770338739
326 => 0.24931269303577
327 => 0.2531517799144
328 => 0.24915297439988
329 => 0.2491510784454
330 => 0.24906280459204
331 => 0.25376738154645
401 => 0.25392079763203
402 => 0.2504441081545
403 => 0.24994306288469
404 => 0.25179568985563
405 => 0.24962674887643
406 => 0.25064158270945
407 => 0.24965748715941
408 => 0.24943594652287
409 => 0.2476706730389
410 => 0.24691014468481
411 => 0.24720836744885
412 => 0.2461903794108
413 => 0.24557700479563
414 => 0.24894078894267
415 => 0.24714365476757
416 => 0.2486653523558
417 => 0.24693118590047
418 => 0.24091980942593
419 => 0.23746260324627
420 => 0.22610767034076
421 => 0.22932791522701
422 => 0.23146294091818
423 => 0.23075731493998
424 => 0.23227327258215
425 => 0.23236634006928
426 => 0.23187348678645
427 => 0.23130282582336
428 => 0.23102505962605
429 => 0.23309530129119
430 => 0.23429714625894
501 => 0.23167721930925
502 => 0.23106340708161
503 => 0.23371229787787
504 => 0.23532811973338
505 => 0.24725844046259
506 => 0.24637460376854
507 => 0.24859286042641
508 => 0.24834311876865
509 => 0.2506682051421
510 => 0.25446873870786
511 => 0.24674119132277
512 => 0.24808242635034
513 => 0.24775358649522
514 => 0.25134377380697
515 => 0.25135498197988
516 => 0.24920248534332
517 => 0.25036938869027
518 => 0.24971805525432
519 => 0.25089510280607
520 => 0.24636279959064
521 => 0.25188265567514
522 => 0.25501205838338
523 => 0.25505551014302
524 => 0.25653882219025
525 => 0.25804595313788
526 => 0.2609387597484
527 => 0.25796527433158
528 => 0.25261626352969
529 => 0.25300244483239
530 => 0.24986632175636
531 => 0.24991904055186
601 => 0.24963762348986
602 => 0.25048217727701
603 => 0.24654813165354
604 => 0.24747144429811
605 => 0.2461788011888
606 => 0.24807961639666
607 => 0.24603465344901
608 => 0.24775342791868
609 => 0.24849519400151
610 => 0.25123232681625
611 => 0.24563037670678
612 => 0.2342076212149
613 => 0.23660882290682
614 => 0.23305725699415
615 => 0.23338596794113
616 => 0.234050016368
617 => 0.23189761815341
618 => 0.23230822790289
619 => 0.23229355803322
620 => 0.23216714102173
621 => 0.23160721911655
622 => 0.23079522157687
623 => 0.23402996985529
624 => 0.23457961662101
625 => 0.23580141329435
626 => 0.23943665144164
627 => 0.23907340542591
628 => 0.2396658747485
629 => 0.23837251754385
630 => 0.23344596307242
701 => 0.23371349868259
702 => 0.23037732533683
703 => 0.23571609984116
704 => 0.23445180757016
705 => 0.23363671011833
706 => 0.23341430322677
707 => 0.23705855242629
708 => 0.2381489689034
709 => 0.23746949452999
710 => 0.23607587276671
711 => 0.2387520385395
712 => 0.23946806760193
713 => 0.23962836010288
714 => 0.24437001274838
715 => 0.23989336581257
716 => 0.24097093922406
717 => 0.24937785937363
718 => 0.24175394287365
719 => 0.24579250147732
720 => 0.24559483504931
721 => 0.24766082497358
722 => 0.2454253635738
723 => 0.24545307479702
724 => 0.24728753388749
725 => 0.24471136694137
726 => 0.24407347177679
727 => 0.24319222417562
728 => 0.24511639607298
729 => 0.24626985010264
730 => 0.25556584246303
731 => 0.26157147747661
801 => 0.26131075702193
802 => 0.26369325392942
803 => 0.26261991725142
804 => 0.25915382998628
805 => 0.26507001830357
806 => 0.26319788877615
807 => 0.26335222485975
808 => 0.26334648046301
809 => 0.26459128293434
810 => 0.26370922629893
811 => 0.26197060212928
812 => 0.26312478199129
813 => 0.2665522835546
814 => 0.27719135357571
815 => 0.28314511810845
816 => 0.27683292947507
817 => 0.28118699267081
818 => 0.27857610626471
819 => 0.27810163053758
820 => 0.28083630398725
821 => 0.28357576412077
822 => 0.28340127235328
823 => 0.28141256496917
824 => 0.28028919462947
825 => 0.28879573119835
826 => 0.29506320243723
827 => 0.29463580291639
828 => 0.29652220540357
829 => 0.30206074145016
830 => 0.30256711577507
831 => 0.30250332424901
901 => 0.30124822265003
902 => 0.30670163065769
903 => 0.31125095956126
904 => 0.30095770289324
905 => 0.3048772402838
906 => 0.30663684689803
907 => 0.30922047145947
908 => 0.31357947916039
909 => 0.31831451769327
910 => 0.31898410405887
911 => 0.31850900048982
912 => 0.31538611529272
913 => 0.32056725095615
914 => 0.32360223871521
915 => 0.32540950447127
916 => 0.32999242972829
917 => 0.30664771362944
918 => 0.290123163267
919 => 0.2875426161105
920 => 0.29279026022824
921 => 0.29417402213291
922 => 0.29361622944423
923 => 0.27501634566491
924 => 0.28744469157174
925 => 0.30081654676248
926 => 0.30133021417895
927 => 0.30802444447974
928 => 0.31020436027145
929 => 0.31559409309642
930 => 0.31525696384075
1001 => 0.31656927801425
1002 => 0.31626759971187
1003 => 0.32625094482797
1004 => 0.33726405703212
1005 => 0.33688270797604
1006 => 0.33529944279546
1007 => 0.33765086157545
1008 => 0.34901757360696
1009 => 0.34797110891095
1010 => 0.34898766022547
1011 => 0.36238965431044
1012 => 0.37981415303233
1013 => 0.37171872398495
1014 => 0.38928347562082
1015 => 0.40033955570812
1016 => 0.4194599029991
1017 => 0.41706594134857
1018 => 0.42450935223736
1019 => 0.41278025035926
1020 => 0.38584786160455
1021 => 0.38158570799107
1022 => 0.39011864746017
1023 => 0.41109604651289
1024 => 0.38945799451177
1025 => 0.39383534425014
1026 => 0.39257466723101
1027 => 0.39250749111019
1028 => 0.39507133041675
1029 => 0.39135234778172
1030 => 0.37620054349443
1031 => 0.38314452610915
1101 => 0.38046312094417
1102 => 0.38343833988671
1103 => 0.39949436944598
1104 => 0.39239561604989
1105 => 0.38491765600301
1106 => 0.39429667739398
1107 => 0.4062393946061
1108 => 0.40549204082609
1109 => 0.40404186212323
1110 => 0.41221644354238
1111 => 0.42571845711918
1112 => 0.42936799713351
1113 => 0.43206201296052
1114 => 0.4324334722273
1115 => 0.43625973353573
1116 => 0.4156849621383
1117 => 0.44833765274362
1118 => 0.45397587039879
1119 => 0.45291611915979
1120 => 0.45918276079104
1121 => 0.45733895585378
1122 => 0.45466757178381
1123 => 0.46460153172224
1124 => 0.45321304828206
1125 => 0.43704852980892
1126 => 0.42818035527663
1127 => 0.43985868287598
1128 => 0.44699023002344
1129 => 0.45170372903632
1130 => 0.45313003098964
1201 => 0.41728212307302
1202 => 0.39796208892208
1203 => 0.41034600930819
1204 => 0.42545524687177
1205 => 0.41560102956075
1206 => 0.41598729622284
1207 => 0.40193777198007
1208 => 0.42669831801947
1209 => 0.4230909147305
1210 => 0.44180612937505
1211 => 0.43733959320115
1212 => 0.45260112422334
1213 => 0.44858225163559
1214 => 0.46526436705517
1215 => 0.47191931454629
1216 => 0.48309400714374
1217 => 0.49131415650761
1218 => 0.49614118544048
1219 => 0.49585138872908
1220 => 0.51497848217736
1221 => 0.50369990342065
1222 => 0.48953135034532
1223 => 0.4892750859214
1224 => 0.49661318032906
1225 => 0.51199181309964
1226 => 0.51597926882705
1227 => 0.51820771259995
1228 => 0.51479477338906
1229 => 0.50255268449169
1230 => 0.4972666125746
1231 => 0.5017704990002
]
'min_raw' => 0.18571688946933
'max_raw' => 0.51820771259995
'avg_raw' => 0.35196230103464
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$0.185716'
'max' => '$0.5182077'
'avg' => '$0.351962'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.073522535673859
'max_diff' => 0.26774172129818
'year' => 2036
]
11 => [
'items' => [
101 => 0.49626263292506
102 => 0.50577075500503
103 => 0.51882743744612
104 => 0.51613128415375
105 => 0.52514412038024
106 => 0.53447145769664
107 => 0.54780996897602
108 => 0.55129714974809
109 => 0.55706132695871
110 => 0.56299455874202
111 => 0.56490015288574
112 => 0.56853852337724
113 => 0.5685193473688
114 => 0.5794838217355
115 => 0.59157797650348
116 => 0.59614323994806
117 => 0.60664081150879
118 => 0.58866408808983
119 => 0.60229963930483
120 => 0.61459924782074
121 => 0.59993514749473
122 => 0.62014619349697
123 => 0.62093094261402
124 => 0.63277972258444
125 => 0.62076871413284
126 => 0.61363661565478
127 => 0.6342267167247
128 => 0.64418961805033
129 => 0.64118871109027
130 => 0.61835166095117
131 => 0.60505951824305
201 => 0.57027141691307
202 => 0.61147942567257
203 => 0.63155064468523
204 => 0.61829968134277
205 => 0.6249826964902
206 => 0.66144306015964
207 => 0.67532480601124
208 => 0.67243749991483
209 => 0.67292540711602
210 => 0.68041574520603
211 => 0.71363202930168
212 => 0.69372806192413
213 => 0.70894389919683
214 => 0.71701432442149
215 => 0.72451058513984
216 => 0.70610213803311
217 => 0.68215301882104
218 => 0.67456732745095
219 => 0.61698213418631
220 => 0.61398457479707
221 => 0.61230195387654
222 => 0.60169326698406
223 => 0.59335774505048
224 => 0.58672902853081
225 => 0.56933329688087
226 => 0.57520384565567
227 => 0.54747868017703
228 => 0.56521625853073
301 => 0.52096622497929
302 => 0.55781896781777
303 => 0.53776169537939
304 => 0.55122961438315
305 => 0.5511826260825
306 => 0.52638391718897
307 => 0.51208053943503
308 => 0.52119520843563
309 => 0.5309668571276
310 => 0.5325522742521
311 => 0.54522147184737
312 => 0.54875717257271
313 => 0.53804383430883
314 => 0.52004924138903
315 => 0.52422897491134
316 => 0.51199583726861
317 => 0.49055773409058
318 => 0.50595495406642
319 => 0.51121224193414
320 => 0.51353415975761
321 => 0.4924522474648
322 => 0.48582785291182
323 => 0.48230108083587
324 => 0.51732783124735
325 => 0.51924667570331
326 => 0.50942959616936
327 => 0.55380372655651
328 => 0.54376049420323
329 => 0.55498124539351
330 => 0.52384970790408
331 => 0.52503897456035
401 => 0.51030080580784
402 => 0.51855319550445
403 => 0.51272067245382
404 => 0.51788648396867
405 => 0.52098285009123
406 => 0.53571860045528
407 => 0.55798722641657
408 => 0.53351757074486
409 => 0.52285579135677
410 => 0.52947029932502
411 => 0.54708560569413
412 => 0.57377369655426
413 => 0.55797380961718
414 => 0.56498553114038
415 => 0.56651728036342
416 => 0.55486702867962
417 => 0.57420325795159
418 => 0.58456570030569
419 => 0.59519542195568
420 => 0.60442491142633
421 => 0.59094967737609
422 => 0.60537010940877
423 => 0.59374978673935
424 => 0.583325156018
425 => 0.58334096587971
426 => 0.57680144274865
427 => 0.56413029264929
428 => 0.56179353816065
429 => 0.57394963011013
430 => 0.58369766466742
501 => 0.58450055948349
502 => 0.58989757228651
503 => 0.59309146886968
504 => 0.62439599727663
505 => 0.63698693756655
506 => 0.65238290101875
507 => 0.65838049645234
508 => 0.67643110845048
509 => 0.66185377326295
510 => 0.6586998750994
511 => 0.6149149947021
512 => 0.62208476641428
513 => 0.63356426270555
514 => 0.61510428736778
515 => 0.62681289281899
516 => 0.62912441955723
517 => 0.6144770244696
518 => 0.62230083106248
519 => 0.60152312034877
520 => 0.5584401237312
521 => 0.57425122164276
522 => 0.58589351166367
523 => 0.56927852831982
524 => 0.59906024287502
525 => 0.58166238005125
526 => 0.5761480927808
527 => 0.55463489215345
528 => 0.56478829473053
529 => 0.57852091709875
530 => 0.5700357530639
531 => 0.58764374249001
601 => 0.61258135139664
602 => 0.6303533765638
603 => 0.63171769198002
604 => 0.62029147043075
605 => 0.63860206338462
606 => 0.63873543606416
607 => 0.61808101241123
608 => 0.60543029292811
609 => 0.60255602284421
610 => 0.60973651304765
611 => 0.61845495374623
612 => 0.63220150476153
613 => 0.6405082576386
614 => 0.66216786358071
615 => 0.66802833191908
616 => 0.67446720983996
617 => 0.68307153641868
618 => 0.69340323658048
619 => 0.67079806481048
620 => 0.67169621042621
621 => 0.65064658746389
622 => 0.62815204650737
623 => 0.64522259910926
624 => 0.66754007583577
625 => 0.66242042201609
626 => 0.66184435637634
627 => 0.66281313899512
628 => 0.65895308720734
629 => 0.64149421603141
630 => 0.63272648022517
701 => 0.64403909630318
702 => 0.65005124828202
703 => 0.65937557168646
704 => 0.65822615201427
705 => 0.68224460774487
706 => 0.69157745336138
707 => 0.68918971207769
708 => 0.6896291139381
709 => 0.70652578513197
710 => 0.72531835856504
711 => 0.74292008348357
712 => 0.76082531408238
713 => 0.73923985974247
714 => 0.72828009723441
715 => 0.73958777457812
716 => 0.73358776181246
717 => 0.76806561488332
718 => 0.77045278662442
719 => 0.80492814655407
720 => 0.83764936837681
721 => 0.81709775521153
722 => 0.8364770007614
723 => 0.85743723483666
724 => 0.89787292704325
725 => 0.88425560845288
726 => 0.87382495582324
727 => 0.86396803948877
728 => 0.88447871763939
729 => 0.91086537741408
730 => 0.91654881120126
731 => 0.9257581451753
801 => 0.91607565656538
802 => 0.92773714760489
803 => 0.96890733529321
804 => 0.95778278716053
805 => 0.94198414045177
806 => 0.97448404960483
807 => 0.98624564038713
808 => 1.0687946440902
809 => 1.1730161711946
810 => 1.1298677746179
811 => 1.1030841724727
812 => 1.1093789542924
813 => 1.1474371278696
814 => 1.1596602053165
815 => 1.1264336672683
816 => 1.1381698422226
817 => 1.2028373200964
818 => 1.2375293471946
819 => 1.1904129146344
820 => 1.0604205458656
821 => 0.94056164517238
822 => 0.97235362295287
823 => 0.96874939929249
824 => 1.0382265368357
825 => 0.9575174703667
826 => 0.9588764040561
827 => 1.0297902552262
828 => 1.0108716555052
829 => 0.98022594686836
830 => 0.94078539276
831 => 0.86787588068101
901 => 0.80329789260049
902 => 0.92995019864884
903 => 0.92448872090976
904 => 0.91657969179792
905 => 0.93418038023999
906 => 1.0196443272721
907 => 1.0176741066732
908 => 1.0051405684384
909 => 1.014647146724
910 => 0.97855939773127
911 => 0.98786003234946
912 => 0.94054265891013
913 => 0.96193208785278
914 => 0.98016019494131
915 => 0.98381975731107
916 => 0.99206493819203
917 => 0.92161077031274
918 => 0.95324262326485
919 => 0.9718233733704
920 => 0.88787486842002
921 => 0.97016398134256
922 => 0.92038431999633
923 => 0.90348835527001
924 => 0.92623654589992
925 => 0.9173715538881
926 => 0.90974995432614
927 => 0.90549697081486
928 => 0.92220073138729
929 => 0.92142148099127
930 => 0.89409088663456
1001 => 0.85843924043377
1002 => 0.87040510312415
1003 => 0.86605779302818
1004 => 0.8503025804262
1005 => 0.86091969142831
1006 => 0.81416730777194
1007 => 0.73373226166859
1008 => 0.78687011691655
1009 => 0.78482436729237
1010 => 0.7837928075645
1011 => 0.8237244371609
1012 => 0.81988593235464
1013 => 0.81291900854454
1014 => 0.8501746274069
1015 => 0.83657582536335
1016 => 0.87848412898084
1017 => 0.90608764820245
1018 => 0.89908650284755
1019 => 0.92504774609486
1020 => 0.87068077243289
1021 => 0.88873930025901
1022 => 0.89246113781593
1023 => 0.84971489885318
1024 => 0.82051395921254
1025 => 0.81856658945359
1026 => 0.76793618425407
1027 => 0.7949825380373
1028 => 0.81878221011238
1029 => 0.80738401411758
1030 => 0.80377568577704
1031 => 0.8222098527179
1101 => 0.82364234536717
1102 => 0.7909813611551
1103 => 0.79777261401165
1104 => 0.82609326737528
1105 => 0.79705900621019
1106 => 0.74065017948607
1107 => 0.72666001054544
1108 => 0.72479346411879
1109 => 0.68685101637751
1110 => 0.72759490053065
1111 => 0.70980910322959
1112 => 0.76599422379705
1113 => 0.73390158425577
1114 => 0.73251813470789
1115 => 0.73042684780834
1116 => 0.69776821565465
1117 => 0.70491838053196
1118 => 0.728686617585
1119 => 0.73716739233387
1120 => 0.73628277804663
1121 => 0.72857014025672
1122 => 0.73210094634184
1123 => 0.72072698972727
1124 => 0.71671060891823
1125 => 0.70403380629232
1126 => 0.68540240848834
1127 => 0.68799321862599
1128 => 0.65107954440588
1129 => 0.63096701553379
1130 => 0.62540013262086
1201 => 0.61795586413365
1202 => 0.62624098255494
1203 => 0.65097497260477
1204 => 0.62114053299596
1205 => 0.56999147892926
1206 => 0.57306562423242
1207 => 0.57997231600668
1208 => 0.56710174157768
1209 => 0.55492082302608
1210 => 0.56551114343754
1211 => 0.54383861494341
1212 => 0.58259133753346
1213 => 0.58154318499065
1214 => 0.59598780351993
1215 => 0.6050203199197
1216 => 0.58420329393014
1217 => 0.57896786818899
1218 => 0.58195020462798
1219 => 0.53265882652794
1220 => 0.59195964632925
1221 => 0.59247248228141
1222 => 0.58808126950727
1223 => 0.61965712534406
1224 => 0.6862920299161
1225 => 0.66122129843327
1226 => 0.65151315343625
1227 => 0.6330579627003
1228 => 0.65764840859516
1229 => 0.65576024602115
1230 => 0.64722125879708
1231 => 0.6420568526807
]
'min_raw' => 0.48230108083587
'max_raw' => 1.2375293471946
'avg_raw' => 0.85991521401525
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$0.482301'
'max' => '$1.23'
'avg' => '$0.859915'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 0.29658419136654
'max_diff' => 0.71932163459468
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.015138879814337
]
1 => [
'year' => 2028
'avg' => 0.025982712609615
]
2 => [
'year' => 2029
'avg' => 0.070980087921143
]
3 => [
'year' => 2030
'avg' => 0.054761032124444
]
4 => [
'year' => 2031
'avg' => 0.053782120006203
]
5 => [
'year' => 2032
'avg' => 0.094296982226956
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.015138879814337
'min' => '$0.015138'
'max_raw' => 0.094296982226956
'max' => '$0.094296'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.094296982226956
]
1 => [
'year' => 2033
'avg' => 0.24254153473207
]
2 => [
'year' => 2034
'avg' => 0.15373448071392
]
3 => [
'year' => 2035
'avg' => 0.18133017254862
]
4 => [
'year' => 2036
'avg' => 0.35196230103464
]
5 => [
'year' => 2037
'avg' => 0.85991521401525
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.094296982226956
'min' => '$0.094296'
'max_raw' => 0.85991521401525
'max' => '$0.859915'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 0.85991521401525
]
]
]
]
'prediction_2025_max_price' => '$0.025884'
'last_price' => 0.02509851
'sma_50day_nextmonth' => '$0.023389'
'sma_200day_nextmonth' => '$0.028852'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'increase'
'sma_200day_direction_label' => 'aumentar'
'sma_200day_date_nextmonth' => '4 de fev. de 2026'
'sma_50day_date_nextmonth' => '4 de fev. de 2026'
'daily_sma3' => '$0.023932'
'daily_sma3_action' => 'BUY'
'daily_sma5' => '$0.023624'
'daily_sma5_action' => 'BUY'
'daily_sma10' => '$0.023494'
'daily_sma10_action' => 'BUY'
'daily_sma21' => '$0.023982'
'daily_sma21_action' => 'BUY'
'daily_sma50' => '$0.025178'
'daily_sma50_action' => 'SELL'
'daily_sma100' => '$0.029529'
'daily_sma100_action' => 'SELL'
'daily_sma200' => '$0.028059'
'daily_sma200_action' => 'SELL'
'daily_ema3' => '$0.024197'
'daily_ema3_action' => 'BUY'
'daily_ema5' => '$0.0239015'
'daily_ema5_action' => 'BUY'
'daily_ema10' => '$0.023764'
'daily_ema10_action' => 'BUY'
'daily_ema21' => '$0.024135'
'daily_ema21_action' => 'BUY'
'daily_ema50' => '$0.025674'
'daily_ema50_action' => 'SELL'
'daily_ema100' => '$0.02772'
'daily_ema100_action' => 'SELL'
'daily_ema200' => '$0.030257'
'daily_ema200_action' => 'SELL'
'weekly_sma21' => '$0.031339'
'weekly_sma21_action' => 'SELL'
'weekly_sma50' => '$0.026561'
'weekly_sma50_action' => 'SELL'
'weekly_sma100' => '$0.04539'
'weekly_sma100_action' => 'SELL'
'weekly_sma200' => '$0.06216'
'weekly_sma200_action' => 'SELL'
'weekly_ema3' => '$0.024451'
'weekly_ema3_action' => 'BUY'
'weekly_ema5' => '$0.0246015'
'weekly_ema5_action' => 'BUY'
'weekly_ema10' => '$0.025872'
'weekly_ema10_action' => 'SELL'
'weekly_ema21' => '$0.027895'
'weekly_ema21_action' => 'SELL'
'weekly_ema50' => '$0.032194'
'weekly_ema50_action' => 'SELL'
'weekly_ema100' => '$0.083727'
'weekly_ema100_action' => 'SELL'
'weekly_ema200' => '$0.442496'
'weekly_ema200_action' => 'SELL'
'rsi_14' => '54.72'
'rsi_14_action' => 'NEUTRAL'
'stoch_rsi_14' => 187.84
'stoch_rsi_14_action' => 'SELL'
'momentum_10' => 0
'momentum_10_action' => 'BUY'
'vwma_10' => '0.0232069'
'vwma_10_action' => 'BUY'
'hma_9' => '0.023789'
'hma_9_action' => 'BUY'
'stochastic_fast_14' => 100
'stochastic_fast_14_action' => 'SELL'
'cci_20' => 135.44
'cci_20_action' => 'SELL'
'adx_14' => 17.21
'adx_14_action' => 'NEUTRAL'
'ao_5_34' => '-0.001257'
'ao_5_34_action' => 'NEUTRAL'
'macd_12_26' => 0
'macd_12_26_action' => 'BUY'
'williams_percent_r_14' => -0
'williams_percent_r_14_action' => 'SELL'
'ultimate_oscillator' => 65.13
'ultimate_oscillator_action' => 'NEUTRAL'
'ichimoku_cloud' => '-0.004451'
'ichimoku_cloud_action' => 'SELL'
'sell_signals' => 16
'buy_signals' => 18
'sell_pct' => 47.06
'buy_pct' => 52.94
'overall_action' => 'bullish'
'overall_action_label' => 'Altista'
'overall_action_dir' => 1
'last_updated' => 1767698472
'last_updated_date' => '6 de janeiro de 2026'
]
Previsão de preço de FLUX para 2026
A previsão de preço para FLUX em 2026 sugere que o preço médio poderia variar entre $0.008671 na extremidade inferior e $0.025884 na extremidade superior. No mercado de criptomoedas, comparado ao preço médio de hoje, FLUX poderia potencialmente ganhar 3.13% até 2026 se FLUX atingir a meta de preço prevista.
Previsão de preço de FLUX 2027-2032
A previsão de preço de FLUX para 2027-2032 está atualmente dentro de uma faixa de preço entre $0.015138 na extremidade inferior e $0.094296 na extremidade superior. Considerando a volatilidade de preços no mercado, se FLUX atingir a meta de preço superior, poderia ganhar 275.71% até 2032 em comparação com o preço de hoje.
| Previsão de Preço de FLUX | Potencial Mínimo ($) | Preço Médio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2027 | $0.008347 | $0.015138 | $0.021929 |
| 2028 | $0.015065 | $0.025982 | $0.036899 |
| 2029 | $0.033094 | $0.07098 | $0.108865 |
| 2030 | $0.028145 | $0.054761 | $0.081376 |
| 2031 | $0.033276 | $0.053782 | $0.074287 |
| 2032 | $0.050794 | $0.094296 | $0.137799 |
Previsão de preço de FLUX 2032-2037
A previsão de preço de FLUX para 2032-2037 é atualmente estimada entre $0.094296 na extremidade inferior e $0.859915 na extremidade superior. Comparado ao preço atual, FLUX poderia potencialmente ganhar 3326.16% até 2037 se atingir a meta de preço superior. Por favor, note que esta informação é apenas para fins gerais e não deve ser considerada como aconselhamento de investimento a longo prazo.
| Previsão de Preço de FLUX | Potencial Mínimo ($) | Preço Médio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2032 | $0.050794 | $0.094296 | $0.137799 |
| 2033 | $0.118034 | $0.242541 | $0.367048 |
| 2034 | $0.094894 | $0.153734 | $0.212574 |
| 2035 | $0.112194 | $0.18133 | $0.250465 |
| 2036 | $0.185716 | $0.351962 | $0.5182077 |
| 2037 | $0.482301 | $0.859915 | $1.23 |
FLUX Histograma de preços potenciais
Previsão de preço de FLUX baseada na análise técnica
Em 6 de janeiro de 2026, o sentimento geral de previsão de preço para FLUX é Altista, com 18 indicadores técnicos mostrando sinais de alta e 16 indicando sinais de baixa. A previsão de preço de FLUX foi atualizada pela última vez em 6 de janeiro de 2026.
Médias Móveis Simples de 50 e 200 dias e Índice de Força Relativa de 14 dias - RSI (14) de FLUX
De acordo com nossos indicadores técnicos, o SMA de 200 dias de FLUX está projetado para aumentar no próximo mês, alcançando $0.028852 até 4 de fev. de 2026. O SMA de 50 dias de curto prazo para FLUX é esperado para alcançar $0.023389 até 4 de fev. de 2026.
O oscilador de momentum Índice de Força Relativa (RSI) é uma ferramenta comumente usada para identificar se uma criptomoeda está sobrevendida (abaixo de 30) ou sobrecomprada (acima de 70). No momento, o RSI está em 54.72, sugerindo que o mercado de FLUX está em um estado NEUTRAL.
Médias Móveis e Osciladores Populares de FLUX para Sábado, 19 de Outubro de 2024
Médias móveis (MA) são indicadores amplamente utilizados nos mercados financeiros, projetados para suavizar movimentos de preços ao longo de um período definido. Como indicadores atrasados, eles se baseiam em dados históricos de preços. A tabela abaixo destaca dois tipos: a média móvel simples (SMA) e a média móvel exponencial (EMA).
Média Móvel Simples Diária (SMA)
| Período | Valor | Ação |
|---|---|---|
| SMA 3 | $0.023932 | BUY |
| SMA 5 | $0.023624 | BUY |
| SMA 10 | $0.023494 | BUY |
| SMA 21 | $0.023982 | BUY |
| SMA 50 | $0.025178 | SELL |
| SMA 100 | $0.029529 | SELL |
| SMA 200 | $0.028059 | SELL |
Média Móvel Exponencial Diária (EMA)
| Período | Valor | Ação |
|---|---|---|
| EMA 3 | $0.024197 | BUY |
| EMA 5 | $0.0239015 | BUY |
| EMA 10 | $0.023764 | BUY |
| EMA 21 | $0.024135 | BUY |
| EMA 50 | $0.025674 | SELL |
| EMA 100 | $0.02772 | SELL |
| EMA 200 | $0.030257 | SELL |
Média Móvel Simples Semanal (SMA)
| Período | Valor | Ação |
|---|---|---|
| SMA 21 | $0.031339 | SELL |
| SMA 50 | $0.026561 | SELL |
| SMA 100 | $0.04539 | SELL |
| SMA 200 | $0.06216 | SELL |
Média Móvel Exponencial Semanal (EMA)
| Período | Valor | Ação |
|---|---|---|
| EMA 21 | $0.027895 | SELL |
| EMA 50 | $0.032194 | SELL |
| EMA 100 | $0.083727 | SELL |
| EMA 200 | $0.442496 | SELL |
Osciladores de FLUX
Um oscilador é uma ferramenta de análise técnica que define limites altos e baixos entre dois extremos, criando um indicador de tendência que flutua dentro desses limites. Os traders usam esse indicador para identificar condições de sobrecompra ou sobrevenda de curto prazo.
| Período | Valor | Ação |
|---|---|---|
| RSI (14) | 54.72 | NEUTRAL |
| Stoch RSI (14) | 187.84 | SELL |
| Estocástico Rápido (14) | 100 | SELL |
| Índice de Canal de Commodities (20) | 135.44 | SELL |
| Índice Direcional Médio (14) | 17.21 | NEUTRAL |
| Oscilador Impressionante (5, 34) | -0.001257 | NEUTRAL |
| Momentum (10) | 0 | BUY |
| MACD (12, 26) | 0 | BUY |
| Williams Percent Range (14) | -0 | SELL |
| Oscilador Ultimate (7, 14, 28) | 65.13 | NEUTRAL |
| VWMA (10) | 0.0232069 | BUY |
| Média Móvel de Hull (9) | 0.023789 | BUY |
| Nuvem Ichimoku B/L (9, 26, 52, 26) | -0.004451 | SELL |
Previsão do preço de FLUX com base nos fluxos financeiros mundiais
Definições dos fluxos financeiros mundiais, usadas na previsão do preço do FLUX
M0: o total de todas as moedas físicas, mais as contas no Banco Central que podem ser trocadas por moedas físicas.
M1: o valor de M0, mais o valor em contas de demanda, incluindo contas 'correntes'.
M2: o valor de M1, mais a maioria das contas de poupança, do mercado de moedas e de certificados de depósito (CD) de menos de US$ 100.000.
Previsões de preço de FLUX por empresas de Internet ou nichos tecnológicos
| Comparação | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Facebook stock | $0.035267 | $0.049556 | $0.069635 | $0.097849 | $0.137495 | $0.1932037 |
| Amazon.com stock | $0.052369 | $0.109272 | $0.2280028 | $0.475741 | $0.992662 | $2.07 |
| Apple stock | $0.03560032 | $0.050496 | $0.071625 | $0.101594 | $0.1441045 | $0.2044013 |
| Netflix stock | $0.0396015 | $0.062484 | $0.098591 | $0.155561 | $0.245452 | $0.387285 |
| Google stock | $0.0325024 | $0.04209 | $0.054507 | $0.070586 | $0.091409 | $0.118374 |
| Tesla stock | $0.056896 | $0.128979 | $0.292387 | $0.66282 | $1.50 | $3.40 |
| Kodak stock | $0.018821 | $0.014113 | $0.010583 | $0.007936 | $0.005951 | $0.004463 |
| Nokia stock | $0.016626 | $0.011014 | $0.007296 | $0.004833 | $0.0032021 | $0.002121 |
Este cálculo mostra quanto a criptomoeda pode custar, se assumirmos que sua capitalização se comportará da mesma forma que a de algumas empresas de Internet ou nichos tecnológicos. Se você extrapolar os dados, poderá obter uma imagem em potencial do preço futuro para 2024, 2025, 2026, 2027, 2028, 2029 e 2030.
Visão geral da previsão para FLUX
Você pode fazer perguntas como: 'Devo investir em FLUX agora?', 'Devo comprar FLUX hoje?', 'FLUX será um bom ou mau investimento no curto ou no longo prazo?'.
Atualizamos a previsão para FLUX/Datamine FLUX regularmente com novos valores. Veja nossas previsões semelhantes. Fazemos previsões de preços futuros para uma enorme quantidade de moedas digitais, como FLUX, com métodos de análise técnica.
Se você estiver tentando encontrar criptomoedas com bom retorno, você deve explorar o máximo de fontes de informações disponíveis sobre FLUX para poder tomar sozinho uma decisão de tão grande responsabilidade sobre o seu investimento.
O preço de FLUX é de $0.02509 USD hoje, mas o preço pode tanto subir quanto descer e seu investimento pode ser perdido, porque criptomoedas são ativos de alto risco
Previsão do preço de FLUX com base no padrão de crescimento do Bitcoin
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| Se FLUX tiver 1% da média anterior do crescimento anual do Bitcoin | $0.02575 | $0.02642 | $0.0271069 | $0.027811 |
| Se FLUX tiver 2% da média anterior do crescimento anual do Bitcoin | $0.0264032 | $0.027775 | $0.029219 | $0.030738 |
| Se FLUX tiver 5% da média anterior do crescimento anual do Bitcoin | $0.02836 | $0.032046 | $0.036211 | $0.040917 |
| Se FLUX tiver 10% da média anterior do crescimento anual do Bitcoin | $0.031622 | $0.039842 | $0.050198 | $0.063246 |
| Se FLUX tiver 20% da média anterior do crescimento anual do Bitcoin | $0.038146 | $0.057977 | $0.088117 | $0.133926 |
| Se FLUX tiver 50% da média anterior do crescimento anual do Bitcoin | $0.057718 | $0.132731 | $0.305238 | $0.701944 |
| Se FLUX tiver 100% da média anterior do crescimento anual do Bitcoin | $0.090337 | $0.325154 | $1.17 | $4.21 |
Perguntas Frequentes sobre FLUX
FLUX é um bom investimento?
A decisão de adquirir FLUX depende inteiramente da sua tolerância individual ao risco. Como você pode perceber, o valor de FLUX experimentou uma escalada de 0.8478% nas últimas 24 horas, e FLUX registrou um declínio de durante os últimos 30 dias. Consequentemente, a decisão de investir ou não em FLUX dependerá de quão alinhado esse investimento está com suas aspirações de negociação.
FLUX pode subir?
Parece que o valor médio de FLUX pode potencialmente subir para $0.025884 até o final deste ano. Observando as perspectivas de FLUX em um horizonte de cinco anos mais longo, a moeda digital poderia potencialmente crescer até $0.081376. No entanto, dada a imprevisibilidade do mercado, é vital conduzir uma pesquisa aprofundada antes de investir quaisquer fundos em um projeto, rede ou ativo específico.
Qual será o preço de FLUX na próxima semana?
Com base na nossa nova previsão experimental de FLUX, o preço de FLUX aumentará 0.86% na próxima semana e atingirá $0.025313 até 13 de janeiro de 2026.
Qual será o preço de FLUX no próximo mês?
Com base na nossa nova previsão experimental de FLUX, o preço de FLUX diminuirá -11.62% no próximo mês e atingirá $0.022182 até 5 de fevereiro de 2026.
Até onde o preço de FLUX pode subir este ano em 2026?
De acordo com nossa previsão mais recente sobre o valor de FLUX em 2026, espera-se que FLUX fluctue dentro do intervalo de $0.008671 e $0.025884. No entanto, é crucial lembrar que o mercado de criptomoedas é excepcionalmente instável, e essa previsão de preço de FLUX não considera flutuações repentinas e extremas de preço.
Onde estará FLUX em 5 anos?
O futuro de FLUX parece seguir uma tendência de alta, com um preço máximo de $0.081376 projetada após um período de cinco anos. Com base na previsão de FLUX para 2030, o valor de FLUX pode potencialmente atingir seu pico mais alto de aproximadamente $0.081376, enquanto seu pico mais baixo está previsto para cerca de $0.028145.
Quanto será FLUX em 2026?
Com base na nossa nova simulação experimental de previsão de preços de FLUX, espera-se que o valor de FLUX em 2026 aumente 3.13% para $0.025884 se o melhor cenário ocorrer. O preço ficará entre $0.025884 e $0.008671 durante 2026.
Quanto será FLUX em 2027?
De acordo com nossa última simulação experimental para previsão de preços de FLUX, o valor de FLUX pode diminuir -12.62% para $0.021929 em 2027, assumindo as condições mais favoráveis. O preço está projetado para flutuar entre $0.021929 e $0.008347 ao longo do ano.
Quanto será FLUX em 2028?
Nosso novo modelo experimental de previsão de preços de FLUX sugere que o valor de FLUX em 2028 pode aumentar 47.02%, alcançando $0.036899 no melhor cenário. O preço é esperado para variar entre $0.036899 e $0.015065 durante o ano.
Quanto será FLUX em 2029?
Com base no nosso modelo de previsão experimental, o valor de FLUX pode experimentar um 333.75% crescimento em 2029, potencialmente alcançando $0.108865 sob condições ótimas. A faixa de preço prevista para 2029 está entre $0.108865 e $0.033094.
Quanto será FLUX em 2030?
Usando nossa nova simulação experimental para previsões de preços de FLUX, espera-se que o valor de FLUX em 2030 aumente 224.23%, alcançando $0.081376 no melhor cenário. O preço está previsto para variar entre $0.081376 e $0.028145 ao longo de 2030.
Quanto será FLUX em 2031?
Nossa simulação experimental indica que o preço de FLUX poderia aumentar 195.98% em 2031, potencialmente atingindo $0.074287 sob condições ideais. O preço provavelmente oscilará entre $0.074287 e $0.033276 durante o ano.
Quanto será FLUX em 2032?
Com base nos achados da nossa mais recente previsão experimental de preços de FLUX, FLUX poderia ver um 449.04% aumento em valor, atingindo $0.137799 se o cenário mais positivo se desenrolar em 2032. O preço é esperado para permanecer dentro de uma faixa de $0.137799 e $0.050794 ao longo do ano.
Quanto será FLUX em 2033?
De acordo com nossa previsão experimental de preços de FLUX, espera-se que o valor de FLUX seja aumentar 1362.43% em 2033, com o preço potencial mais alto sendo $0.367048. Ao longo do ano, o preço de FLUX poderia variar entre $0.367048 e $0.118034.
Quanto será FLUX em 2034?
Os resultados da nossa nova simulação de previsão de preços de FLUX sugerem que FLUX pode aumentar 746.96% em 2034, atingindo potencialmente $0.212574 nas melhores circunstâncias. A faixa de preço prevista para o ano é entre $0.212574 e $0.094894.
Quanto será FLUX em 2035?
Com base em nossa previsão experimental para o preço de FLUX, FLUX poderia aumentar 897.93%, com o valor potencialmente atingindo $0.250465 em 2035. A faixa de preço esperada para o ano está entre $0.250465 e $0.112194.
Quanto será FLUX em 2036?
Nossa recente simulação de previsão de preços de FLUX sugere que o valor de FLUX pode aumentar 1964.7% em 2036, possivelmente atingindo $0.5182077 se as condições forem ideais. A faixa de preço esperada para 2036 está entre $0.5182077 e $0.185716.
Quanto será FLUX em 2037?
De acordo com a simulação experimental, o valor de FLUX poderia aumentar 4830.69% em 2037, com um pico de $1.23 sob condições favoráveis. O preço é esperado para cair entre $1.23 e $0.482301 ao longo do ano.
Previsões relacionadas
Previsão de Preço do AstroSwap
Previsão de Preço do DYOR
Previsão de Preço do Sky Hause
Previsão de Preço do Neblio
Previsão de Preço do Dexsport
Previsão de Preço do Switch
Previsão de Preço do Bezoge Earth
Previsão de Preço do Sheesha Finance (ERC20)
Previsão de Preço do Noah Platinum
Previsão de Preço do Froyo Games
Previsão de Preço do Basis Cash
Previsão de Preço do $REKT (OLD)
Previsão de Preço do Open Predict Token
Previsão de Preço do Nyzo
Previsão de Preço do BNSD Finance
Previsão de Preço do DeHive
Previsão de Preço do Froggy Friends
Previsão de Preço do BitStarters [Old]
Previsão de Preço do Delphy
Previsão de Preço do Mir Token
Previsão de Preço do YadaCoin
Previsão de Preço do XIO
Previsão de Preço do Seba
Previsão de Preço do Seigniorage Shares
Previsão de Preço do Sekuritance
Como ler e prever os movimentos de preço de FLUX?
Traders de FLUX utilizam indicadores e padrões de gráfico para prever a direção do mercado. Eles também identificam níveis-chave de suporte e resistência para avaliar quando uma tendência de baixa pode desacelerar ou uma tendência de alta pode estagnar.
Indicadores de Previsão de Preço de FLUX
Médias móveis são ferramentas populares para a previsão de preço de FLUX. Uma média móvel simples (SMA) calcula o preço médio de fechamento de FLUX em um período específico, como uma SMA de 12 dias. Uma média móvel exponencial (EMA) dá mais peso aos preços recentes, reagindo mais rapidamente às mudanças de preço.
Médias móveis comumente usadas no mercado de criptomoedas incluem as de 50 dias, 100 dias e 200 dias, que ajudam a identificar níveis-chave de resistência e suporte. Um movimento de preço de FLUX acima dessas médias é visto como altista, enquanto uma queda abaixo indica fraqueza.
Traders também usam RSI e níveis de retração de Fibonacci para avaliar a direção futura de FLUX.
Como ler gráficos de FLUX e prever movimentos de preço?
A maioria dos traders prefere gráficos de velas em vez de gráficos de linha simples porque eles fornecem informações mais detalhadas. Velas podem representar a ação de preço de FLUX em diferentes períodos de tempo, como 5 minutos para tendências de curto prazo e semanal para tendências de longo prazo. Opções populares incluem gráficos de 1 hora, 4 horas e 1 dia.
Por exemplo, um gráfico de velas de 1 hora mostra os preços de abertura, fechamento, máximo e mínimo de FLUX dentro de cada hora. A cor da vela é crucial: verde indica que o preço fechou mais alto do que abriu, enquanto vermelho significa o oposto. Alguns gráficos usam velas vazias e preenchidas para transmitir a mesma informação.
O que afeta o preço de FLUX?
A ação de preço de FLUX é impulsionada pela oferta e demanda, influenciada por fatores como reduções pela metade das recompensas de bloco, hard forks e atualizações de protocolo. Eventos do mundo real, como regulamentações, adoção por empresas e governos e hacks de exchanges de criptomoedas, também impactam o preço de FLUX. A capitalização de mercado de FLUX pode mudar rapidamente.
Traders frequentemente monitoram a atividade de "baleias" de FLUX, grandes detentores de FLUX, pois suas ações podem influenciar significativamente os movimentos de preço no relativamente pequeno mercado de FLUX.
Padrões de previsão de preço altistas e baixistas
Traders frequentemente identificam padrões de velas para ganhar vantagem em previsões de preço de criptomoedas. Certas formações indicam tendências altistas, enquanto outras sugerem movimentos baixistas.
Padrões de velas altistas comumente seguidos:
- Martelo
- Engolfo de Alta
- Linha de Perfuração
- Estrela da Manhã
- Três Soldados Brancos
Padrões de velas baixistas comuns:
- Harami de Baixa
- Nuvem Negra
- Estrela da Noite
- Estrela Cadente
- Homem Enforcado


