Previsão de Preço DeHive - Projeção DHV
Previsão de Preço DeHive até $0.012657 até 2026
| Ano | Preço Mínimo | Preço Máximo |
|---|---|---|
| 2026 | $0.00424 | $0.012657 |
| 2027 | $0.004081 | $0.010723 |
| 2028 | $0.007366 | $0.018043 |
| 2029 | $0.016182 | $0.053233 |
| 2030 | $0.013762 | $0.039791 |
| 2031 | $0.016271 | $0.036325 |
| 2032 | $0.024837 | $0.067381 |
| 2033 | $0.057716 | $0.179479 |
| 2034 | $0.0464013 | $0.103944 |
| 2035 | $0.05486 | $0.122472 |
Calculadora de lucro do investimento
Se você abrir um short de $10,000.00 em DeHive hoje e fechar em Apr 06, 2026, nossa previsão mostra que pode lucrar cerca de $3,954.86, com um retorno de 39.55% nos próximos 90 dias.
Previsão de preço de longo prazo de DeHive para os anos 2027, 2028, 2029, 2030, 2031, 2032 e 2037
[
'name' => 'DeHive'
'name_with_ticker' => 'DeHive <small>DHV</small>'
'name_lang' => 'DeHive'
'name_lang_with_ticker' => 'DeHive <small>DHV</small>'
'name_with_lang' => 'DeHive'
'name_with_lang_with_ticker' => 'DeHive <small>DHV</small>'
'image' => '/uploads/coins/dehive.png?1717376170'
'price_for_sd' => 0.01227
'ticker' => 'DHV'
'marketcap' => '$52.63K'
'low24h' => '$0.01185'
'high24h' => '$0.01233'
'volume24h' => '$13.93K'
'current_supply' => '4.29M'
'max_supply' => '5.61M'
'algo' => null
'proof' => null
'ico_price_and_roi' => '—'
'price' => '$0.01227'
'change_24h_pct' => '0.5791%'
'ath_price' => '$7.48'
'ath_days' => 1704
'ath_exchange' => null
'ath_pair' => null
'ath_date' => '8 de mai. de 2021'
'ath_pct' => '-99.84%'
'fdv' => '$68.9K'
'new_prediction' => true
'change_24h_pct_is_increased' => true
'change_30d_pct' => null
'change_30d_pct_is_increased' => false
'max_price' => '$0.605127'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.012377'
'next_week_prediction_price_date' => '13 de janeiro de 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.010846'
'next_month_prediction_price_date' => '5 de fevereiro de 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.00424'
'current_year_max_price_prediction' => '$0.012657'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.013762'
'grand_prediction_max_price' => '$0.039791'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.012505230641076
107 => 0.012551920632891
108 => 0.0126571155685
109 => 0.011758236361302
110 => 0.012161806735627
111 => 0.012398866521113
112 => 0.01132782178598
113 => 0.01237769541037
114 => 0.011742588874131
115 => 0.011527024176751
116 => 0.011817253643284
117 => 0.011704150937918
118 => 0.011606911873459
119 => 0.011552650804712
120 => 0.011765763293476
121 => 0.01175582134115
122 => 0.011407127946181
123 => 0.010952271627004
124 => 0.011104936337869
125 => 0.011049471817172
126 => 0.010848461239102
127 => 0.010983918098612
128 => 0.010387434642478
129 => 0.0093612158587129
130 => 0.0100391674212
131 => 0.010013067023513
201 => 0.0099999060194411
202 => 0.010509367881445
203 => 0.010460394878698
204 => 0.010371508399168
205 => 0.0108468287692
206 => 0.010673330440177
207 => 0.011208011408877
208 => 0.011560186875861
209 => 0.011470863785751
210 => 0.01180208651466
211 => 0.011108453424468
212 => 0.011338850513301
213 => 0.011386335033992
214 => 0.010840963389616
215 => 0.010468407467607
216 => 0.010443562235058
217 => 0.0097976016076634
218 => 0.010142668560805
219 => 0.01044631319973
220 => 0.010300890981461
221 => 0.010254854651522
222 => 0.010490044277117
223 => 0.010508320525289
224 => 0.010091620130145
225 => 0.010178265337481
226 => 0.010539590255638
227 => 0.010169160876607
228 => 0.0094494771024464
301 => 0.0092709855760478
302 => 0.0092471715161747
303 => 0.0087630883402404
304 => 0.0092829132333322
305 => 0.0090559957370566
306 => 0.0097728253889022
307 => 0.0093633761362026
308 => 0.0093457255972745
309 => 0.0093190442189137
310 => 0.0089023738321628
311 => 0.0089935981660768
312 => 0.0092968417458651
313 => 0.009405042471417
314 => 0.0093937562492795
315 => 0.0092953556868901
316 => 0.0093404029604596
317 => 0.0091952899967819
318 => 0.0091440475890421
319 => 0.0089823124548808
320 => 0.0087446064881349
321 => 0.0087776609607464
322 => 0.0083067032414731
323 => 0.008050100480395
324 => 0.0079790762180986
325 => 0.0078840996062477
326 => 0.0079898040791303
327 => 0.0083053690774271
328 => 0.0079247307386321
329 => 0.0072721530054431
330 => 0.0073113740391462
331 => 0.0073994920570474
401 => 0.0072352847136475
402 => 0.0070798762439971
403 => 0.0072149912996704
404 => 0.006938485511338
405 => 0.0074329064605453
406 => 0.007419533759468
407 => 0.0076038233145461
408 => 0.0077190633553388
409 => 0.0074534723707178
410 => 0.0073866769563201
411 => 0.0074247266600434
412 => 0.0067958498142596
413 => 0.0075524306595618
414 => 0.0075589736021297
415 => 0.0075029489555279
416 => 0.0079058048988383
417 => 0.0087559565931431
418 => 0.008436095328473
419 => 0.0083122353789348
420 => 0.0080767775243217
421 => 0.0083905111354897
422 => 0.0083664212891587
423 => 0.0082574778682472
424 => 0.0081915885473557
425 => 0.0083129916413751
426 => 0.0081765453604982
427 => 0.0081520358591596
428 => 0.0080035349476485
429 => 0.0079505268786
430 => 0.0079112818145885
501 => 0.0078680768552522
502 => 0.007963376229543
503 => 0.0077474153097233
504 => 0.0074869876113307
505 => 0.0074653358660761
506 => 0.007525118238365
507 => 0.0074986689889014
508 => 0.0074652092372455
509 => 0.0074013254591132
510 => 0.0073823725068023
511 => 0.0074439604071474
512 => 0.0073744312584555
513 => 0.0074770253047992
514 => 0.0074491254009812
515 => 0.0072932788062264
516 => 0.0070990362473625
517 => 0.0070973070811511
518 => 0.0070554578404655
519 => 0.0070021565403769
520 => 0.0069873293380608
521 => 0.0072036122865481
522 => 0.0076513115171129
523 => 0.0075634174456184
524 => 0.0076269299200199
525 => 0.0079393484334691
526 => 0.0080386568841421
527 => 0.007968170098104
528 => 0.0078716834379394
529 => 0.0078759283613085
530 => 0.0082056524875894
531 => 0.0082262169768977
601 => 0.008278176807024
602 => 0.0083449598725827
603 => 0.0079795435429468
604 => 0.007858717285044
605 => 0.0078014631008641
606 => 0.0076251423737478
607 => 0.0078152891613461
608 => 0.0077044987711098
609 => 0.0077194481798914
610 => 0.0077097123578107
611 => 0.0077150287750002
612 => 0.0074327682598137
613 => 0.0075356091563717
614 => 0.0073646162195241
615 => 0.0071356758719431
616 => 0.0071349083836212
617 => 0.007190941209352
618 => 0.0071576106920426
619 => 0.0070679191269689
620 => 0.0070806593904554
621 => 0.0069690412763787
622 => 0.0070942118504155
623 => 0.007097801294597
624 => 0.0070496038055056
625 => 0.00724244634502
626 => 0.0073214540908035
627 => 0.0072897294709933
628 => 0.0073192282069063
629 => 0.007567069841107
630 => 0.0076074788415703
701 => 0.0076254258503074
702 => 0.0076013792361227
703 => 0.0073237582970102
704 => 0.0073360719661952
705 => 0.0072457224319633
706 => 0.0071693865963367
707 => 0.0071724396294331
708 => 0.0072116861719092
709 => 0.0073830781246814
710 => 0.0077437623851832
711 => 0.0077574500892125
712 => 0.0077740399857945
713 => 0.0077065605389816
714 => 0.0076862080921315
715 => 0.007713058222939
716 => 0.007848512267306
717 => 0.0081969368448322
718 => 0.0080737803286394
719 => 0.0079736521639292
720 => 0.0080614915587394
721 => 0.0080479693724163
722 => 0.007933828511602
723 => 0.0079306249577969
724 => 0.0077115521528537
725 => 0.0076305659249126
726 => 0.007562887771131
727 => 0.0074889849939843
728 => 0.0074451729504483
729 => 0.0075124881615373
730 => 0.0075278839467636
731 => 0.0073806980612488
801 => 0.0073606371689237
802 => 0.007480832340263
803 => 0.0074279389266842
804 => 0.0074823411142436
805 => 0.0074949628884107
806 => 0.0074929304920657
807 => 0.0074377036935195
808 => 0.007472903608026
809 => 0.0073896453166186
810 => 0.0072991144297042
811 => 0.0072413613641263
812 => 0.0071909641545771
813 => 0.007218927455538
814 => 0.0071192433935094
815 => 0.0070873524558227
816 => 0.0074609786690143
817 => 0.0077369803698577
818 => 0.0077329671958188
819 => 0.0077085380309614
820 => 0.0076722412472583
821 => 0.0078458569314994
822 => 0.007785372698665
823 => 0.0078293800316788
824 => 0.0078405817449128
825 => 0.0078744859571318
826 => 0.0078866037988346
827 => 0.0078499752648266
828 => 0.0077270454308969
829 => 0.0074207159725621
830 => 0.0072781187827867
831 => 0.0072310593350168
901 => 0.0072327698565646
902 => 0.0071855860361712
903 => 0.0071994837859076
904 => 0.0071807529659763
905 => 0.0071452813244984
906 => 0.0072167371816332
907 => 0.0072249718035106
908 => 0.0072082931526214
909 => 0.0072122215786818
910 => 0.0070741294728644
911 => 0.0070846283157494
912 => 0.0070261694244373
913 => 0.0070152090870487
914 => 0.0068674301004095
915 => 0.0066056182046715
916 => 0.006750687409606
917 => 0.0065754642098622
918 => 0.0065091045290545
919 => 0.0068232409369505
920 => 0.0067917103543854
921 => 0.0067377437030487
922 => 0.0066579157780862
923 => 0.0066283068242015
924 => 0.0064484121934535
925 => 0.0064377830589684
926 => 0.0065269436955307
927 => 0.0064857991295874
928 => 0.0064280165763373
929 => 0.006218734025789
930 => 0.0059834311479015
1001 => 0.0059905334627238
1002 => 0.0060653789302141
1003 => 0.0062830022212287
1004 => 0.0061979730365081
1005 => 0.0061362833873959
1006 => 0.0061247307705012
1007 => 0.0062693359579798
1008 => 0.0064739825939855
1009 => 0.0065699982168889
1010 => 0.0064748496506294
1011 => 0.0063655481008731
1012 => 0.0063722007797522
1013 => 0.0064164580718819
1014 => 0.0064211088875203
1015 => 0.0063499648150098
1016 => 0.0063699914546927
1017 => 0.0063395691577401
1018 => 0.0061528675774968
1019 => 0.0061494907379473
1020 => 0.006103671159186
1021 => 0.0061022837605509
1022 => 0.0060243332268483
1023 => 0.0060134274083367
1024 => 0.0058586518924108
1025 => 0.0059605256056967
1026 => 0.0058921940674345
1027 => 0.0057892023214932
1028 => 0.0057714465056729
1029 => 0.0057709127444086
1030 => 0.0058766622389574
1031 => 0.0059592898612825
1101 => 0.0058933827237979
1102 => 0.0058783769461488
1103 => 0.0060385993931251
1104 => 0.0060182096262874
1105 => 0.0060005522197058
1106 => 0.0064556587323151
1107 => 0.0060954064151808
1108 => 0.0059383158424268
1109 => 0.0057438864279531
1110 => 0.005807193625704
1111 => 0.0058205333824463
1112 => 0.0053529656891733
1113 => 0.0051632735342442
1114 => 0.0050981783350706
1115 => 0.0050607151276352
1116 => 0.0050777875816969
1117 => 0.0049070423935901
1118 => 0.0050217859838626
1119 => 0.0048739350836937
1120 => 0.0048491473991319
1121 => 0.0051135231238459
1122 => 0.0051503094614793
1123 => 0.004993367516516
1124 => 0.0050941496517754
1125 => 0.0050576046485539
1126 => 0.0048764695630192
1127 => 0.0048695515350913
1128 => 0.0047786643163762
1129 => 0.0046364434183204
1130 => 0.0045714446516128
1201 => 0.0045375927295663
1202 => 0.0045515606923635
1203 => 0.0045444980629465
1204 => 0.0044984096286541
1205 => 0.0045471397980509
1206 => 0.0044226543519382
1207 => 0.0043730832442487
1208 => 0.0043506931249463
1209 => 0.0042402051264063
1210 => 0.0044160406663194
1211 => 0.0044506824828001
1212 => 0.0044853925543606
1213 => 0.0047875200297225
1214 => 0.0047724265948568
1215 => 0.0049088638952418
1216 => 0.004903562192641
1217 => 0.0048646480644334
1218 => 0.0047004757585892
1219 => 0.0047659119136088
1220 => 0.004564509599495
1221 => 0.0047154139072552
1222 => 0.004646547483108
1223 => 0.0046921300999776
1224 => 0.0046101684448271
1225 => 0.0046555294089012
1226 => 0.0044588973426143
1227 => 0.0042752850858034
1228 => 0.00434917601792
1229 => 0.0044295039115839
1230 => 0.0046036752522137
1231 => 0.0044999402386169
]
'min_raw' => 0.0042402051264063
'max_raw' => 0.0126571155685
'avg_raw' => 0.0084486603474532
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.00424'
'max' => '$0.012657'
'avg' => '$0.008448'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.0080324648735937
'max_diff' => 0.00038444556850003
'year' => 2026
]
1 => [
'items' => [
101 => 0.0045372472721615
102 => 0.0044122749549092
103 => 0.0041544213678403
104 => 0.0041558807911403
105 => 0.0041162156344154
106 => 0.0040819391477975
107 => 0.004511855452799
108 => 0.0044583885643011
109 => 0.0043731960750529
110 => 0.0044872296073265
111 => 0.0045173818832152
112 => 0.0045182402761206
113 => 0.0046014361976359
114 => 0.0046458378758624
115 => 0.0046536638640977
116 => 0.0047845744441689
117 => 0.0048284539438565
118 => 0.0050091873930104
119 => 0.0046420707036821
120 => 0.0046345101770533
121 => 0.0044888342929792
122 => 0.0043964443442548
123 => 0.0044951603118114
124 => 0.0045826091829932
125 => 0.0044915515731696
126 => 0.0045034417746815
127 => 0.0043812043731734
128 => 0.0044248984924082
129 => 0.0044625337541267
130 => 0.0044417537747042
131 => 0.0044106451397463
201 => 0.00457543937281
202 => 0.0045661410363468
203 => 0.0047196012147788
204 => 0.0048392343979092
205 => 0.0050536384490683
206 => 0.0048298966445478
207 => 0.0048217426038979
208 => 0.0049014496591995
209 => 0.0048284417411216
210 => 0.0048745802251992
211 => 0.0050462048259853
212 => 0.0050498309833574
213 => 0.0049890881753347
214 => 0.0049853919699462
215 => 0.0049970582906805
216 => 0.0050653882956119
217 => 0.0050415116923199
218 => 0.0050691423021311
219 => 0.0051036948027948
220 => 0.0052466185954969
221 => 0.0052810770380511
222 => 0.0051973608872984
223 => 0.0052049195183814
224 => 0.0051736073799401
225 => 0.0051433602465458
226 => 0.0052113513851771
227 => 0.005335606527395
228 => 0.0053348335426041
301 => 0.0053636583204238
302 => 0.0053816159182082
303 => 0.0053045287627528
304 => 0.0052543478591246
305 => 0.0052735904106695
306 => 0.0053043596696381
307 => 0.0052636123546837
308 => 0.0050121010507931
309 => 0.0050883935137892
310 => 0.0050756947174358
311 => 0.0050576100872022
312 => 0.005134322748697
313 => 0.005126923625354
314 => 0.004905291154895
315 => 0.004919479346569
316 => 0.0049061539858235
317 => 0.0049492109525046
318 => 0.0048261165236199
319 => 0.0048639795408912
320 => 0.0048877268703801
321 => 0.0049017142298846
322 => 0.004952246163637
323 => 0.0049463168244485
324 => 0.0049518775875879
325 => 0.0050268031054068
326 => 0.0054057506632024
327 => 0.0054263759426725
328 => 0.0053248095232199
329 => 0.0053653833044822
330 => 0.0052874905169692
331 => 0.005339780467063
401 => 0.0053755559228965
402 => 0.0052138935172096
403 => 0.0052043209187252
404 => 0.0051261066399701
405 => 0.0051681345630899
406 => 0.0051012651154917
407 => 0.0051176725389383
408 => 0.0050717959526081
409 => 0.0051543646740653
410 => 0.0052466893345365
411 => 0.0052700141897829
412 => 0.0052086565376113
413 => 0.0051642295537727
414 => 0.0050862304053104
415 => 0.0052159447275276
416 => 0.0052538771483162
417 => 0.0052157454846695
418 => 0.0052069095450092
419 => 0.0051901654553193
420 => 0.0052104618827914
421 => 0.0052536705602062
422 => 0.0052332941458764
423 => 0.0052467531265274
424 => 0.0051954613711261
425 => 0.0053045542818088
426 => 0.0054778200786117
427 => 0.0054783771564802
428 => 0.0054580006323139
429 => 0.0054496629976434
430 => 0.0054705705479889
501 => 0.0054819120363787
502 => 0.0055495232204071
503 => 0.0056220727146179
504 => 0.0059606295482754
505 => 0.0058655641441414
506 => 0.0061659519077986
507 => 0.0064035196283821
508 => 0.0064747558002077
509 => 0.006409221874049
510 => 0.0061850338527333
511 => 0.0061740341188622
512 => 0.0065090656724489
513 => 0.0064144039131434
514 => 0.0064031441980852
515 => 0.0062833598534551
516 => 0.0063541672367112
517 => 0.0063386806233114
518 => 0.0063142342464289
519 => 0.0064493298011964
520 => 0.006702216619658
521 => 0.0066628018374432
522 => 0.006633380530919
523 => 0.0065044649301434
524 => 0.0065821009161522
525 => 0.0065544562285538
526 => 0.0066732353502286
527 => 0.0066028732298281
528 => 0.0064136867572142
529 => 0.0064438153265448
530 => 0.0064392614539007
531 => 0.0065329798302242
601 => 0.006504847899885
602 => 0.0064337682430006
603 => 0.0067013522800048
604 => 0.0066839768610224
605 => 0.0067086112325657
606 => 0.0067194560447623
607 => 0.0068823297327271
608 => 0.0069490538713096
609 => 0.0069642014189382
610 => 0.0070275841899615
611 => 0.0069626243978548
612 => 0.0072225098818285
613 => 0.0073953185639326
614 => 0.00759604474085
615 => 0.0078893596354364
616 => 0.0079996487491153
617 => 0.0079797260078888
618 => 0.0082021140134076
619 => 0.0086017403159172
620 => 0.0080605019093793
621 => 0.0086304272656932
622 => 0.0084499954779889
623 => 0.0080221949551711
624 => 0.0079946496449385
625 => 0.0082843611258569
626 => 0.0089269133068372
627 => 0.0087659612732681
628 => 0.0089271765667046
629 => 0.0087391103634565
630 => 0.0087297712913188
701 => 0.0089180426109845
702 => 0.0093579488115188
703 => 0.0091489658652823
704 => 0.0088493375671315
705 => 0.0090705784397534
706 => 0.0088789191210122
707 => 0.0084470570338226
708 => 0.0087658381962814
709 => 0.00855267831131
710 => 0.0086148896979474
711 => 0.0090629200710173
712 => 0.0090090118711882
713 => 0.0090787740735319
714 => 0.0089556456123899
715 => 0.0088406242141072
716 => 0.0086259282326111
717 => 0.0085623673368741
718 => 0.0085799332817744
719 => 0.0085623586320642
720 => 0.0084422382035751
721 => 0.0084162982084796
722 => 0.0083730637468633
723 => 0.0083864639143531
724 => 0.0083051704778265
725 => 0.0084585879886333
726 => 0.0084870636305495
727 => 0.008598708100956
728 => 0.0086102994002399
729 => 0.0089212276611624
730 => 0.0087499735999835
731 => 0.0088648656095866
801 => 0.0088545885868422
802 => 0.0080314666897052
803 => 0.0081448856246647
804 => 0.0083213298946392
805 => 0.0082418419901803
806 => 0.0081294646905804
807 => 0.0080387139958639
808 => 0.0079012174136335
809 => 0.0080947412127349
810 => 0.0083492044295915
811 => 0.0086167530073476
812 => 0.0089381950930444
813 => 0.0088664529615153
814 => 0.008610743871146
815 => 0.0086222147941443
816 => 0.0086931235264784
817 => 0.0086012902753681
818 => 0.0085742068568177
819 => 0.0086894026806637
820 => 0.008690195970992
821 => 0.0085845307171706
822 => 0.0084671031240853
823 => 0.0084666110981827
824 => 0.0084457159922091
825 => 0.0087428275563904
826 => 0.0089062088753228
827 => 0.0089249402802363
828 => 0.0089049481025281
829 => 0.0089126422982668
830 => 0.0088175743086418
831 => 0.0090348715413881
901 => 0.0092342849706251
902 => 0.009180837911743
903 => 0.0091007131725317
904 => 0.0090368899584196
905 => 0.0091658031908291
906 => 0.0091600628875182
907 => 0.0092325432682852
908 => 0.0092292551395466
909 => 0.0092048827136197
910 => 0.0091808387821591
911 => 0.0092761702525975
912 => 0.0092487163200878
913 => 0.009221219744038
914 => 0.0091660711512548
915 => 0.0091735667609352
916 => 0.0090934558563898
917 => 0.0090563928863215
918 => 0.0084990547429941
919 => 0.0083501157795479
920 => 0.0083969750093802
921 => 0.0084124022845404
922 => 0.0083475838567781
923 => 0.0084405168317013
924 => 0.0084260333259999
925 => 0.0084823801741166
926 => 0.0084471771097091
927 => 0.0084486218557517
928 => 0.0085521465620897
929 => 0.0085822002247652
930 => 0.0085669146893656
1001 => 0.008577620154402
1002 => 0.0088243230776706
1003 => 0.0087892498110972
1004 => 0.0087706178372662
1005 => 0.0087757790213506
1006 => 0.008838816907616
1007 => 0.0088564640740294
1008 => 0.0087816917898917
1009 => 0.0088169548313444
1010 => 0.008967100386304
1011 => 0.0090196428330375
1012 => 0.0091873331012054
1013 => 0.0091160952948308
1014 => 0.0092468553715314
1015 => 0.0096487672679138
1016 => 0.0099698423009319
1017 => 0.0096745684315815
1018 => 0.01026418184106
1019 => 0.01072328045536
1020 => 0.010705659485874
1021 => 0.010625605023329
1022 => 0.010102933456717
1023 => 0.0096219632885269
1024 => 0.01002431525729
1025 => 0.010025340935203
1026 => 0.0099907785442578
1027 => 0.0097761145024625
1028 => 0.0099833087009146
1029 => 0.009999755023969
1030 => 0.0099905494564888
1031 => 0.0098259670389508
1101 => 0.0095746801072854
1102 => 0.0096237809722369
1103 => 0.009704209190658
1104 => 0.0095519417941029
1105 => 0.0095032831346966
1106 => 0.0095937488402216
1107 => 0.0098852481927013
1108 => 0.0098301419286558
1109 => 0.0098287028813996
1110 => 0.010064470847679
1111 => 0.0098957118657346
1112 => 0.0096244002913867
1113 => 0.0095558905407038
1114 => 0.0093127270794776
1115 => 0.0094806809482651
1116 => 0.0094867253090002
1117 => 0.0093947386915123
1118 => 0.0096318644984286
1119 => 0.0096296793423727
1120 => 0.0098547950045212
1121 => 0.010285131600968
1122 => 0.010157859893821
1123 => 0.010009856745531
1124 => 0.010025948791432
1125 => 0.010202438816415
1126 => 0.010095728918435
1127 => 0.010134102541757
1128 => 0.01020238073334
1129 => 0.010243574661575
1130 => 0.010020021619098
1201 => 0.0099679007111182
1202 => 0.0098612796253449
1203 => 0.0098334641742435
1204 => 0.0099203048238839
1205 => 0.0098974253808291
1206 => 0.0094862173038854
1207 => 0.0094432437719046
1208 => 0.0094445617087784
1209 => 0.0093365027193327
1210 => 0.009171686823299
1211 => 0.0096048131574298
1212 => 0.0095700270511999
1213 => 0.0095316258821529
1214 => 0.0095363298062472
1215 => 0.0097243352678799
1216 => 0.0096152826056295
1217 => 0.009905216981602
1218 => 0.0098456151901271
1219 => 0.0097844848375991
1220 => 0.0097760347608037
1221 => 0.009752504790477
1222 => 0.0096718117671104
1223 => 0.0095743700924964
1224 => 0.0095100306586629
1225 => 0.0087725005842979
1226 => 0.008909381876085
1227 => 0.0090668513251637
1228 => 0.0091212091479664
1229 => 0.0090282263306155
1230 => 0.0096754832954764
1231 => 0.0097937433800798
]
'min_raw' => 0.0040819391477975
'max_raw' => 0.01072328045536
'avg_raw' => 0.0074026098015787
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.004081'
'max' => '$0.010723'
'avg' => '$0.0074026'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -0.00015826597860881
'max_diff' => -0.0019338351131401
'year' => 2027
]
2 => [
'items' => [
101 => 0.0094355258699017
102 => 0.0093685179996719
103 => 0.0096798763202931
104 => 0.0094920891909518
105 => 0.0095766497237958
106 => 0.0093938761039256
107 => 0.0097652579887584
108 => 0.0097624286810308
109 => 0.0096179527397905
110 => 0.0097400628159982
111 => 0.0097188431852757
112 => 0.0095557302034441
113 => 0.0097704289612218
114 => 0.009770535449127
115 => 0.0096314804968611
116 => 0.0094690947556578
117 => 0.0094400640205107
118 => 0.0094181932613079
119 => 0.0095712708577338
120 => 0.0097085197520282
121 => 0.0099639059174235
122 => 0.01002811606723
123 => 0.010278732556634
124 => 0.010129502639489
125 => 0.010195654328909
126 => 0.010267471345501
127 => 0.010301903064239
128 => 0.010245798426264
129 => 0.010635108992171
130 => 0.010667978732101
131 => 0.010678999671578
201 => 0.010547726339185
202 => 0.010664327783256
203 => 0.010609773829009
204 => 0.010751708062434
205 => 0.010773965162543
206 => 0.01075511419057
207 => 0.010762178945449
208 => 0.010429971056537
209 => 0.01041274432496
210 => 0.010177856617564
211 => 0.01027357509453
212 => 0.010094633989748
213 => 0.010151378057372
214 => 0.010176390301703
215 => 0.010163325324697
216 => 0.010278986873603
217 => 0.01018065092894
218 => 0.0099211262030464
219 => 0.0096615307698152
220 => 0.0096582717606129
221 => 0.0095899248652831
222 => 0.0095405225783179
223 => 0.0095500392114277
224 => 0.0095835770677805
225 => 0.0095385732971382
226 => 0.0095481771333539
227 => 0.0097076648045592
228 => 0.0097396489196054
229 => 0.0096309543996779
301 => 0.0091945302176249
302 => 0.0090874306286619
303 => 0.0091644116893314
304 => 0.0091276197005466
305 => 0.0073667014798504
306 => 0.0077804030957338
307 => 0.0075345956435553
308 => 0.0076478750265762
309 => 0.0073969692694331
310 => 0.0075167146478393
311 => 0.0074946020488487
312 => 0.0081598220048685
313 => 0.0081494355102354
314 => 0.0081544069755751
315 => 0.0079171059818221
316 => 0.0082951329082948
317 => 0.0084813625656839
318 => 0.008446896412443
319 => 0.0084555708006697
320 => 0.0083065160713134
321 => 0.0081558501511728
322 => 0.0079887384584181
323 => 0.0082992113279269
324 => 0.0082646920447861
325 => 0.008343866860665
326 => 0.0085452307096005
327 => 0.0085748823012631
328 => 0.0086147343411545
329 => 0.0086004502217148
330 => 0.0089407558978479
331 => 0.008899542635059
401 => 0.0089988547405153
402 => 0.0087945622047642
403 => 0.0085633858089364
404 => 0.0086073248840575
405 => 0.0086030931977876
406 => 0.0085492189746686
407 => 0.0085005837349159
408 => 0.0084196197636216
409 => 0.00867580174921
410 => 0.0086654012284383
411 => 0.0088337735704484
412 => 0.0088040121235164
413 => 0.0086052578970434
414 => 0.0086123564431247
415 => 0.0086600975769666
416 => 0.008825330186292
417 => 0.0088743824746337
418 => 0.0088516595002781
419 => 0.0089054430951227
420 => 0.0089479514555541
421 => 0.0089107814907227
422 => 0.009437029808217
423 => 0.0092184948168887
424 => 0.0093250072511054
425 => 0.0093504098390584
426 => 0.0092853416441757
427 => 0.0092994526057284
428 => 0.0093208268674738
429 => 0.0094506071992827
430 => 0.0097911883421908
501 => 0.0099420294119705
502 => 0.01039584221277
503 => 0.0099295041609344
504 => 0.0099018335908371
505 => 0.0099835789800948
506 => 0.010250015135128
507 => 0.010465936613706
508 => 0.01053757022496
509 => 0.010547037789229
510 => 0.010681427206053
511 => 0.010758456713562
512 => 0.010665108796058
513 => 0.010586006209908
514 => 0.010302670564891
515 => 0.010335467437299
516 => 0.010561405365097
517 => 0.010880555995789
518 => 0.011154420438886
519 => 0.011058522656053
520 => 0.011790155045786
521 => 0.011862693408778
522 => 0.011852670952459
523 => 0.01201792413851
524 => 0.011689930217425
525 => 0.011549706461578
526 => 0.010603109086886
527 => 0.010869064337969
528 => 0.011255645914423
529 => 0.011204480393173
530 => 0.010923734518997
531 => 0.011154207467966
601 => 0.011078005903481
602 => 0.011017902567966
603 => 0.011293247599564
604 => 0.010990494426772
605 => 0.01125262571993
606 => 0.010916439625054
607 => 0.011058960709047
608 => 0.010978058848803
609 => 0.01103041226734
610 => 0.010724355252329
611 => 0.010889496188515
612 => 0.010717484846451
613 => 0.010717403290678
614 => 0.010713606130769
615 => 0.010915976711892
616 => 0.010922576009277
617 => 0.010773023844062
618 => 0.010751471040611
619 => 0.010831163051252
620 => 0.010737864578162
621 => 0.010781518346507
622 => 0.010739186806334
623 => 0.010729657085002
624 => 0.010653722644084
625 => 0.010621007999075
626 => 0.010633836254336
627 => 0.010590046805713
628 => 0.010563662078984
629 => 0.010708357544528
630 => 0.010631052594286
701 => 0.010696509452195
702 => 0.010621913101294
703 => 0.01036332964899
704 => 0.010214615571099
705 => 0.0097261754003954
706 => 0.0098646964268989
707 => 0.0099565360107811
708 => 0.0099261830288559
709 => 0.0099913929790759
710 => 0.0099953963404062
711 => 0.0099741959208529
712 => 0.0099496485509521
713 => 0.0099377002488391
714 => 0.010026753103729
715 => 0.010078451283374
716 => 0.0099657533416788
717 => 0.0099393497907514
718 => 0.010053293632029
719 => 0.010122799309385
720 => 0.010635990179117
721 => 0.010597971341903
722 => 0.010693391162491
723 => 0.010682648355029
724 => 0.010782663528575
725 => 0.010946146067757
726 => 0.010613740355164
727 => 0.010671434493145
728 => 0.010657289222864
729 => 0.010811723574701
730 => 0.010812205701891
731 => 0.010719614593396
801 => 0.01076980973543
802 => 0.010741792184179
803 => 0.01079242368609
804 => 0.010597463577153
805 => 0.010834903945194
806 => 0.010969517333555
807 => 0.010971386440583
808 => 0.011035192118308
809 => 0.011100022382252
810 => 0.011224458428366
811 => 0.011096551928463
812 => 0.010866460586584
813 => 0.010883072438278
814 => 0.010748169968721
815 => 0.010750437703607
816 => 0.010738332357063
817 => 0.010774661413288
818 => 0.010605435762034
819 => 0.01064515268414
820 => 0.01058954876061
821 => 0.010671313621075
822 => 0.01058334814743
823 => 0.010657282401587
824 => 0.010689189974721
825 => 0.010806929606509
826 => 0.010565957908084
827 => 0.010074600302646
828 => 0.010177889628444
829 => 0.010025116602387
830 => 0.010039256327596
831 => 0.01006782082284
901 => 0.0099752339480337
902 => 0.009992896605999
903 => 0.0099922655715663
904 => 0.0099868276577374
905 => 0.0099627422357255
906 => 0.0099278136086527
907 => 0.010066958508446
908 => 0.010090601938337
909 => 0.010143158354184
910 => 0.010299530598387
911 => 0.01028390532368
912 => 0.010309390795014
913 => 0.010253756154187
914 => 0.01004183705902
915 => 0.010053345285461
916 => 0.0099098375173345
917 => 0.010139488537904
918 => 0.010085104144988
919 => 0.010050042173083
920 => 0.010040475189202
921 => 0.010197235049953
922 => 0.010244140057199
923 => 0.010214912004361
924 => 0.010154964415272
925 => 0.010270081508237
926 => 0.010300881985914
927 => 0.010307777076988
928 => 0.010511742494209
929 => 0.010319176478038
930 => 0.010365529032072
1001 => 0.010727158426725
1002 => 0.01039921046722
1003 => 0.010572931815482
1004 => 0.010564429059487
1005 => 0.010653299022848
1006 => 0.010557139128572
1007 => 0.010558331145708
1008 => 0.0106372416526
1009 => 0.010526426077255
1010 => 0.010498986582397
1011 => 0.010461079116775
1012 => 0.010543848681143
1013 => 0.010593465291635
1014 => 0.010993338732822
1015 => 0.011251675212274
1016 => 0.011240460144387
1017 => 0.011342944871146
1018 => 0.011296774563089
1019 => 0.011147678459258
1020 => 0.011402167328164
1021 => 0.011321636401775
1022 => 0.011328275273502
1023 => 0.011328028174365
1024 => 0.011381574200277
1025 => 0.011343631933497
1026 => 0.01126884383098
1027 => 0.011318491663645
1028 => 0.011465927977237
1029 => 0.011923574818525
1030 => 0.012179680053924
1031 => 0.011908156961779
1101 => 0.012095449954901
1102 => 0.011983140898345
1103 => 0.011962731001863
1104 => 0.012080364842388
1105 => 0.012198204585378
1106 => 0.012190698703185
1107 => 0.012105153100912
1108 => 0.012056830560827
1109 => 0.012422745023587
1110 => 0.012692344566559
1111 => 0.012673959685147
1112 => 0.012755104572617
1113 => 0.012993348471948
1114 => 0.013015130508333
1115 => 0.013012386472403
1116 => 0.012958397422502
1117 => 0.013192979481273
1118 => 0.013388671961778
1119 => 0.012945900517344
1120 => 0.01311450208708
1121 => 0.013190192763739
1122 => 0.013301329133484
1123 => 0.013488834817864
1124 => 0.013692515724527
1125 => 0.013721318437977
1126 => 0.013700881534447
1127 => 0.013566548501267
1128 => 0.013789418579756
1129 => 0.013919970644788
1130 => 0.013997711411884
1201 => 0.014194849062409
1202 => 0.013190660203589
1203 => 0.012479845417892
1204 => 0.012368841424816
1205 => 0.012594572409753
1206 => 0.01265409587031
1207 => 0.012630102037996
1208 => 0.011830015372241
1209 => 0.012364629134102
1210 => 0.012939828590263
1211 => 0.012961924343948
1212 => 0.013249881218556
1213 => 0.013343651780679
1214 => 0.013575494808109
1215 => 0.013560992963619
1216 => 0.01361744305137
1217 => 0.013604466153775
1218 => 0.014033906541779
1219 => 0.014507643062262
1220 => 0.014491239072948
1221 => 0.014423133843132
1222 => 0.014524281723076
1223 => 0.015013228580905
1224 => 0.01496821418945
1225 => 0.015011941836432
1226 => 0.01558843773765
1227 => 0.01633796441482
1228 => 0.015989734022026
1229 => 0.016745293773792
1230 => 0.017220878587026
1231 => 0.018043353345128
]
'min_raw' => 0.0073667014798504
'max_raw' => 0.018043353345128
'avg_raw' => 0.012705027412489
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.007366'
'max' => '$0.018043'
'avg' => '$0.012705'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 0.0032847623320529
'max_diff' => 0.0073200728897684
'year' => 2028
]
3 => [
'items' => [
101 => 0.01794037545464
102 => 0.018260558842371
103 => 0.017756023538533
104 => 0.016597508497512
105 => 0.016414169057653
106 => 0.016781219259145
107 => 0.017683576363277
108 => 0.016752800822719
109 => 0.016941095502329
110 => 0.016886866621934
111 => 0.016883976995356
112 => 0.016994262288891
113 => 0.016834287718525
114 => 0.016182522539976
115 => 0.016481222680429
116 => 0.016365880211441
117 => 0.016493861280134
118 => 0.017184522324458
119 => 0.016879164613459
120 => 0.016557495070168
121 => 0.016960940061641
122 => 0.017474664174527
123 => 0.017442516242794
124 => 0.017380135818438
125 => 0.017731771004399
126 => 0.018312569312163
127 => 0.018469556760915
128 => 0.018585441686117
129 => 0.018601420259411
130 => 0.018766009494961
131 => 0.017880971693577
201 => 0.019285549413757
202 => 0.019528081185355
203 => 0.019482495264206
204 => 0.019752059121041
205 => 0.019672746596185
206 => 0.019557835191423
207 => 0.019985151242383
208 => 0.019495267872585
209 => 0.018799940103758
210 => 0.018418469537756
211 => 0.01892082075142
212 => 0.019227589107964
213 => 0.019430343477507
214 => 0.019491696827224
215 => 0.017949674658719
216 => 0.017118610234366
217 => 0.017651313002203
218 => 0.018301247144146
219 => 0.017877361276603
220 => 0.017893976800089
221 => 0.017289626948218
222 => 0.018354718695993
223 => 0.018199543787174
224 => 0.019004591488628
225 => 0.018812460393765
226 => 0.019468945542529
227 => 0.019296071001646
228 => 0.020013663555565
301 => 0.020299930653366
302 => 0.020780617664491
303 => 0.021134212986622
304 => 0.021341850922978
305 => 0.021329385120109
306 => 0.022152150068761
307 => 0.021666994323759
308 => 0.021057524365606
309 => 0.021046500976917
310 => 0.0213621541045
311 => 0.022023676464708
312 => 0.022195199587951
313 => 0.022291057614229
314 => 0.022144247710142
315 => 0.021617645920368
316 => 0.021390261937475
317 => 0.021583999678848
318 => 0.021347075069223
319 => 0.02175607341474
320 => 0.022317715500468
321 => 0.022201738630739
322 => 0.02258943191802
323 => 0.022990653683833
324 => 0.023564418828942
325 => 0.023714422284335
326 => 0.02396237229198
327 => 0.024217594297181
328 => 0.024299564726825
329 => 0.024456071710947
330 => 0.024455246841887
331 => 0.024926891172674
401 => 0.025447129475141
402 => 0.025643507390778
403 => 0.026095067579444
404 => 0.02532178658091
405 => 0.02590832910111
406 => 0.026437405136442
407 => 0.025806618875875
408 => 0.026676010781718
409 => 0.026709767299337
410 => 0.027219450637807
411 => 0.026702788930755
412 => 0.02639599685835
413 => 0.027281694076034
414 => 0.027710255060471
415 => 0.027581169004213
416 => 0.026598817742331
417 => 0.026027047172888
418 => 0.024530613306349
419 => 0.026303203862397
420 => 0.027166581015072
421 => 0.026596581804082
422 => 0.026884056251231
423 => 0.028452423620975
424 => 0.029049556371106
425 => 0.028925356933352
426 => 0.028946344593835
427 => 0.02926854658708
428 => 0.030697367665006
429 => 0.0298411849553
430 => 0.030495704556316
501 => 0.030842859392649
502 => 0.031165316151785
503 => 0.030373464264853
504 => 0.02934327659457
505 => 0.029016972915055
506 => 0.026539906616006
507 => 0.026410964557787
508 => 0.026338585473164
509 => 0.025882245582843
510 => 0.025523687431066
511 => 0.025238548676363
512 => 0.024490259434381
513 => 0.024742785087289
514 => 0.023550168215673
515 => 0.024313162226386
516 => 0.022409716902546
517 => 0.023994962729423
518 => 0.023132185498137
519 => 0.023711517204626
520 => 0.023709495970879
521 => 0.022642762621947
522 => 0.02202749308844
523 => 0.022419566781839
524 => 0.022839900904011
525 => 0.02290809870116
526 => 0.0234530728624
527 => 0.023605163436621
528 => 0.0231443218963
529 => 0.02237027222902
530 => 0.022550066312536
531 => 0.022023849567076
601 => 0.021101674961292
602 => 0.02176399686279
603 => 0.0219901426802
604 => 0.022090021556411
605 => 0.021183168744091
606 => 0.020898215901728
607 => 0.02074650939944
608 => 0.02225320891872
609 => 0.022335749319568
610 => 0.021913460958793
611 => 0.023822244392522
612 => 0.023390227914232
613 => 0.023872896167088
614 => 0.022533751883969
615 => 0.022584908998982
616 => 0.021950936634614
617 => 0.022305918796611
618 => 0.022055028846121
619 => 0.022277239745924
620 => 0.022410432043056
621 => 0.023044300378797
622 => 0.024002200487621
623 => 0.022949621587083
624 => 0.022490997886912
625 => 0.022775525451101
626 => 0.02353325984914
627 => 0.024681266249879
628 => 0.024001623354859
629 => 0.024303237330584
630 => 0.024369126566408
701 => 0.023867983057368
702 => 0.024699744125881
703 => 0.025145491639711
704 => 0.02560273635445
705 => 0.025999749128552
706 => 0.025420102760357
707 => 0.026040407463368
708 => 0.025540551371261
709 => 0.025092128782468
710 => 0.025092808854434
711 => 0.024811506814076
712 => 0.024266448664543
713 => 0.024165931579077
714 => 0.02468883415158
715 => 0.02510815249567
716 => 0.025142689562889
717 => 0.025374845743532
718 => 0.025512233379837
719 => 0.026858818985066
720 => 0.027400426855029
721 => 0.028062694706308
722 => 0.028320685357752
723 => 0.029097144723831
724 => 0.028470090724776
725 => 0.028334423647725
726 => 0.026450987203541
727 => 0.026759399815764
728 => 0.027253198165324
729 => 0.026459129756448
730 => 0.026962783392527
731 => 0.027062215289132
801 => 0.026432147615768
802 => 0.026768693983729
803 => 0.02587492660947
804 => 0.024021682173995
805 => 0.024701807316715
806 => 0.025202608349405
807 => 0.024487903527435
808 => 0.02576898425792
809 => 0.025020603342045
810 => 0.024783402520331
811 => 0.023857997546629
812 => 0.024294753072113
813 => 0.024885471174066
814 => 0.024520476065409
815 => 0.025277895720163
816 => 0.026350603947738
817 => 0.027115079711587
818 => 0.027173766668203
819 => 0.026682259967946
820 => 0.027469902591861
821 => 0.027475639708487
822 => 0.026587175611096
823 => 0.026042996298433
824 => 0.025919357613633
825 => 0.026228231289055
826 => 0.026603260952245
827 => 0.027194578204436
828 => 0.027551898835657
829 => 0.028483601533664
830 => 0.028735693569734
831 => 0.029012666287846
901 => 0.029382787254467
902 => 0.029827212371963
903 => 0.028854835516018
904 => 0.028893469861242
905 => 0.027988005996459
906 => 0.027020388000286
907 => 0.027754689444096
908 => 0.028714690901849
909 => 0.028494465506733
910 => 0.028469685650986
911 => 0.028511358494994
912 => 0.028345315738965
913 => 0.02759431050728
914 => 0.02721716038147
915 => 0.027703780265024
916 => 0.027962397076174
917 => 0.028363489196512
918 => 0.028314046126653
919 => 0.029347216354493
920 => 0.029748675063586
921 => 0.029645964746413
922 => 0.029664865916635
923 => 0.03039168773328
924 => 0.031200063075697
925 => 0.031957213258391
926 => 0.032727418944585
927 => 0.031798905928239
928 => 0.031327464281259
929 => 0.031813871721796
930 => 0.031555777087167
1001 => 0.033038865413586
1002 => 0.033141551231496
1003 => 0.034624532313749
1004 => 0.036032057950909
1005 => 0.03514801631665
1006 => 0.035981627759647
1007 => 0.036883246500586
1008 => 0.038622615334226
1009 => 0.03803685710279
1010 => 0.037588175477511
1011 => 0.037164173509636
1012 => 0.038046454296366
1013 => 0.039181494433715
1014 => 0.039425971208021
1015 => 0.039822116979712
1016 => 0.039405618139179
1017 => 0.039907245116758
1018 => 0.041678208773675
1019 => 0.041199678760848
1020 => 0.040520089215094
1021 => 0.041918094937073
1022 => 0.042424027773247
1023 => 0.045974929376603
1024 => 0.050458089331268
1025 => 0.048602031672022
1026 => 0.047449916788321
1027 => 0.047720691114521
1028 => 0.049357789365423
1029 => 0.049883573364711
1030 => 0.048454311206032
1031 => 0.048959150763062
1101 => 0.051740866357025
1102 => 0.053233167525066
1103 => 0.051206422096081
1104 => 0.045614711839401
1105 => 0.040458899612049
1106 => 0.041826453183994
1107 => 0.041671415049063
1108 => 0.04466002142869
1109 => 0.041188265978302
1110 => 0.041246721436274
1111 => 0.044297129030842
1112 => 0.043483332581836
1113 => 0.042165086557622
1114 => 0.040468524266885
1115 => 0.037332271959438
1116 => 0.034554405829867
1117 => 0.040002441014319
1118 => 0.039767511830556
1119 => 0.039427299557913
1120 => 0.040184405155867
1121 => 0.043860695031357
1122 => 0.043775944650738
1123 => 0.043236805969263
1124 => 0.043645737907411
1125 => 0.042093398811708
1126 => 0.042493471942775
1127 => 0.040458082905051
1128 => 0.041378163755457
1129 => 0.042162258193709
1130 => 0.042319676760904
1201 => 0.042674348830787
1202 => 0.039643714825978
1203 => 0.041004380519398
1204 => 0.041803644137148
1205 => 0.038192542034694
1206 => 0.041732264259161
1207 => 0.039590958230506
1208 => 0.038864166803044
1209 => 0.039842695712633
1210 => 0.039461362044915
1211 => 0.039133513750076
1212 => 0.038950568768407
1213 => 0.039669092403314
1214 => 0.039635572416925
1215 => 0.038459928290789
1216 => 0.036926348453629
1217 => 0.037441068185022
1218 => 0.037254065681084
1219 => 0.036576344483008
1220 => 0.037033046742142
1221 => 0.035021961124643
1222 => 0.03156199284687
1223 => 0.033847753872861
1224 => 0.03375975455979
1225 => 0.033715381315689
1226 => 0.035433067552926
1227 => 0.03526795165498
1228 => 0.034968264683388
1229 => 0.036570840496758
1230 => 0.035985878767191
1231 => 0.037788592983398
]
'min_raw' => 0.016182522539976
'max_raw' => 0.053233167525066
'avg_raw' => 0.034707845032521
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.016182'
'max' => '$0.053233'
'avg' => '$0.0347078'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072435
'min_diff' => 0.0088158210601261
'max_diff' => 0.035189814179937
'year' => 2029
]
4 => [
'items' => [
101 => 0.038975977158437
102 => 0.038674818123793
103 => 0.039791558679543
104 => 0.037452926288045
105 => 0.038229726158855
106 => 0.038389823535631
107 => 0.036551064959982
108 => 0.035294966657907
109 => 0.035211199221727
110 => 0.033033297866937
111 => 0.034196715191261
112 => 0.035220474291185
113 => 0.034730173129237
114 => 0.034574958428694
115 => 0.035367916671804
116 => 0.035429536318521
117 => 0.034024601843201
118 => 0.034316732209109
119 => 0.035534964397576
120 => 0.034286035883621
121 => 0.031859571792321
122 => 0.031257775149188
123 => 0.031177484383681
124 => 0.029545364158411
125 => 0.031297990078485
126 => 0.030532921896918
127 => 0.032949763115564
128 => 0.031569276373253
129 => 0.031509766348935
130 => 0.031419808218958
131 => 0.03001497491903
201 => 0.0303225441299
202 => 0.031344951030947
203 => 0.031709757331479
204 => 0.031671705045563
205 => 0.03133994067936
206 => 0.031491820707299
207 => 0.031002562218796
208 => 0.030829794863471
209 => 0.03028449356666
210 => 0.029483051303675
211 => 0.029594496765874
212 => 0.028006629934127
213 => 0.027141475809719
214 => 0.026902012550631
215 => 0.026581792272721
216 => 0.026938182283095
217 => 0.028002131706897
218 => 0.02671878297233
219 => 0.024518571583361
220 => 0.024650808036816
221 => 0.024947904086373
222 => 0.02439426756351
223 => 0.023870297057811
224 => 0.024325846901445
225 => 0.023393588331065
226 => 0.025060563080686
227 => 0.025015476085351
228 => 0.025636821186983
301 => 0.026025361030318
302 => 0.025129902482698
303 => 0.024904697079549
304 => 0.025032984312198
305 => 0.022912682119859
306 => 0.025463547262583
307 => 0.025485607250264
308 => 0.02529671624273
309 => 0.026654973182105
310 => 0.029521318975149
311 => 0.028442884389314
312 => 0.02802528192182
313 => 0.02723141932585
314 => 0.028289194100084
315 => 0.02820797350128
316 => 0.02784066315149
317 => 0.027618512705859
318 => 0.028027831713438
319 => 0.027567793551087
320 => 0.027485158056125
321 => 0.026984476864963
322 => 0.026805756459261
323 => 0.026673438985943
324 => 0.026527770449067
325 => 0.026849078943078
326 => 0.026120951623996
327 => 0.025242901456384
328 => 0.025169901085581
329 => 0.025371461527625
330 => 0.025282286036431
331 => 0.025169474147638
401 => 0.024954085529442
402 => 0.024890184327473
403 => 0.025097832233417
404 => 0.024863409854231
405 => 0.025209312844367
406 => 0.025115246370735
407 => 0.024589798695658
408 => 0.023934896346866
409 => 0.023929066342257
410 => 0.023787968705465
411 => 0.023608259650839
412 => 0.023558268703028
413 => 0.024287481764246
414 => 0.025796930977457
415 => 0.025500589978846
416 => 0.02571472672059
417 => 0.026768067551048
418 => 0.027102892925986
419 => 0.026865241805628
420 => 0.0265399302944
421 => 0.02655424234991
422 => 0.027665930262269
423 => 0.027735264873739
424 => 0.02791045106873
425 => 0.028135614836905
426 => 0.026903588168984
427 => 0.026496214004645
428 => 0.026303177525323
429 => 0.025708699883531
430 => 0.026349793053543
501 => 0.025976255517723
502 => 0.026026658493165
503 => 0.025993833489287
504 => 0.026011758161021
505 => 0.02506009712727
506 => 0.025406832390138
507 => 0.02483031776521
508 => 0.024058429399236
509 => 0.024055841758774
510 => 0.024244760342813
511 => 0.024132384176642
512 => 0.023829982802931
513 => 0.023872937490772
514 => 0.023496609226235
515 => 0.02391863055573
516 => 0.023930732617395
517 => 0.023768231417882
518 => 0.024418413503691
519 => 0.024684793634745
520 => 0.024577831864113
521 => 0.024677288911779
522 => 0.025512904285237
523 => 0.025649146051566
524 => 0.025709655644543
525 => 0.025628580805938
526 => 0.024692562426845
527 => 0.024734078822216
528 => 0.02442945905955
529 => 0.024172087460137
530 => 0.024182380974377
531 => 0.024314703432441
601 => 0.024892563367417
602 => 0.02610863553387
603 => 0.02615478458365
604 => 0.026210718578245
605 => 0.025983206912051
606 => 0.025914587216533
607 => 0.026005114307167
608 => 0.02646180707485
609 => 0.027636544864207
610 => 0.027221314071349
611 => 0.026883724973304
612 => 0.027179881625657
613 => 0.02713429063038
614 => 0.026749456749084
615 => 0.026738655743765
616 => 0.026000036486724
617 => 0.025726985764943
618 => 0.02549880414433
619 => 0.025249635771453
620 => 0.025101920407812
621 => 0.025328878341797
622 => 0.025380786306587
623 => 0.024884538817383
624 => 0.024816902118302
625 => 0.025222148530232
626 => 0.025043814693451
627 => 0.025227235467047
628 => 0.025269790659875
629 => 0.0252629382937
630 => 0.02507673728659
701 => 0.025195416255928
702 => 0.02491470511354
703 => 0.024609473907643
704 => 0.024414755414857
705 => 0.024244837704241
706 => 0.024339117925766
707 => 0.024003026150918
708 => 0.023895503627953
709 => 0.025155210491478
710 => 0.026085769495695
711 => 0.026072238799232
712 => 0.025989874164325
713 => 0.02586749702391
714 => 0.026452854424789
715 => 0.026248927610913
716 => 0.026397301406663
717 => 0.02643506876491
718 => 0.026549379183523
719 => 0.026590235332864
720 => 0.026466739673134
721 => 0.026052273155353
722 => 0.025019461999338
723 => 0.024538685618192
724 => 0.02438002140445
725 => 0.024385788547273
726 => 0.024226705002548
727 => 0.024273562236094
728 => 0.024210409968951
729 => 0.024090814853158
730 => 0.024331733264376
731 => 0.024359496866959
801 => 0.02430326363102
802 => 0.024316508593756
803 => 0.02385092141771
804 => 0.023886318999503
805 => 0.023689220765974
806 => 0.023652267223242
807 => 0.023154020052189
808 => 0.022271302966586
809 => 0.022760413919431
810 => 0.022169636667801
811 => 0.021945900370873
812 => 0.023005033202398
813 => 0.022898725641885
814 => 0.022716773309072
815 => 0.022447627886653
816 => 0.0223477992314
817 => 0.021741271923991
818 => 0.021705435054972
819 => 0.022006046366138
820 => 0.021867324589439
821 => 0.021672506676907
822 => 0.020966895946092
823 => 0.020173555864972
824 => 0.020197501815263
825 => 0.020449848534451
826 => 0.021183580654079
827 => 0.020896898821246
828 => 0.02068890786223
829 => 0.020649957407792
830 => 0.021137503893388
831 => 0.021827484314653
901 => 0.022151207690868
902 => 0.021830407656664
903 => 0.02146188985047
904 => 0.021484319821786
905 => 0.021633536372146
906 => 0.021649216921781
907 => 0.021409349714191
908 => 0.021476870928098
909 => 0.021374300029905
910 => 0.020744822617027
911 => 0.020733437366722
912 => 0.020578953457907
913 => 0.020574275746544
914 => 0.020311460079833
915 => 0.020274690351301
916 => 0.019752853893276
917 => 0.020096328230215
918 => 0.019865943678208
919 => 0.019518699816113
920 => 0.019458834843404
921 => 0.019457035230035
922 => 0.0198135770341
923 => 0.020092161831645
924 => 0.019869951316127
925 => 0.019819358289113
926 => 0.020359559455468
927 => 0.020290813933006
928 => 0.020231280753915
929 => 0.0217657041357
930 => 0.020551088296468
1001 => 0.020021446462714
1002 => 0.019365914117188
1003 => 0.019579358754372
1004 => 0.019624334675581
1005 => 0.018047897553177
1006 => 0.017408337208951
1007 => 0.017188864200135
1008 => 0.017062554380669
1009 => 0.017120115351499
1010 => 0.016544436028749
1011 => 0.016931302054494
1012 => 0.016432812421954
1013 => 0.016349239012833
1014 => 0.01724060022683
1015 => 0.017364627932501
1016 => 0.016835487207721
1017 => 0.017175281213132
1018 => 0.01705206718328
1019 => 0.016441357595952
1020 => 0.016418032981792
1021 => 0.016111600378351
1022 => 0.01563209269101
1023 => 0.015412944810986
1024 => 0.01529881069234
1025 => 0.015345904654123
1026 => 0.015322092505947
1027 => 0.015166702131938
1028 => 0.015330999300291
1029 => 0.014911287927426
1030 => 0.014744155476907
1031 => 0.01466866562645
1101 => 0.014296147625347
1102 => 0.014888989424609
1103 => 0.015005786727488
1104 => 0.015122814157134
1105 => 0.016141458034184
1106 => 0.016090569464744
1107 => 0.01655057734874
1108 => 0.016532702288269
1109 => 0.016401500588119
1110 => 0.015847982196821
1111 => 0.016068604762076
1112 => 0.015389562798581
1113 => 0.015898347207997
1114 => 0.015666159250884
1115 => 0.015819844226137
1116 => 0.015543504783417
1117 => 0.015696442440794
1118 => 0.015033483700895
1119 => 0.014414422157659
1120 => 0.01466355059419
1121 => 0.014934381695992
1122 => 0.01552161253118
1123 => 0.015171862690292
1124 => 0.015297645958581
1125 => 0.014876293065676
1126 => 0.014006921694111
1127 => 0.01401184224166
1128 => 0.01387810839643
1129 => 0.01376254282869
1130 => 0.0152120356668
1201 => 0.01503176831929
1202 => 0.014744535893841
1203 => 0.015129007909468
1204 => 0.015230668412791
1205 => 0.015233562544403
1206 => 0.015514063402346
1207 => 0.015663766760512
1208 => 0.015690152626241
1209 => 0.016131526786836
1210 => 0.016279469583601
1211 => 0.01688882502583
1212 => 0.015651065476491
1213 => 0.015625574633103
1214 => 0.015134418219182
1215 => 0.014822919056597
1216 => 0.015155746833343
1217 => 0.015450586808017
1218 => 0.015143579719058
1219 => 0.015183668363603
1220 => 0.014771536430075
1221 => 0.014918854203701
1222 => 0.015045744116195
1223 => 0.014975682964761
1224 => 0.014870798030064
1225 => 0.015426413292405
1226 => 0.01539506330183
1227 => 0.015912465007661
1228 => 0.016315816637107
1229 => 0.017038694864803
1230 => 0.016284333749708
1231 => 0.01625684183236
]
'min_raw' => 0.01376254282869
'max_raw' => 0.039791558679543
'avg_raw' => 0.026777050754117
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.013762'
'max' => '$0.039791'
'avg' => '$0.026777'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -0.0024199797112868
'max_diff' => -0.013441608845522
'year' => 2030
]
5 => [
'items' => [
101 => 0.016525579734278
102 => 0.016279428441229
103 => 0.016434987561582
104 => 0.017013631885579
105 => 0.01702585772833
106 => 0.016821059110154
107 => 0.016808597095626
108 => 0.016847930910498
109 => 0.017078310292773
110 => 0.016997808657763
111 => 0.017090967187849
112 => 0.017207463356215
113 => 0.01768934090193
114 => 0.017805519946814
115 => 0.017523265099676
116 => 0.017548749552099
117 => 0.017443178491201
118 => 0.017341198169174
119 => 0.017570435040059
120 => 0.017989369927264
121 => 0.017986763755073
122 => 0.018083948505974
123 => 0.018144493800664
124 => 0.017884589073993
125 => 0.017715400653891
126 => 0.017780278259897
127 => 0.017884018964751
128 => 0.017746636547495
129 => 0.01689864862647
130 => 0.017155873992031
131 => 0.017113059113524
201 => 0.017052085520062
202 => 0.017310727614199
203 => 0.017285780953258
204 => 0.01653853160522
205 => 0.016586368084037
206 => 0.016541440699937
207 => 0.016686610269244
208 => 0.01627158880808
209 => 0.016399246614322
210 => 0.016479312393679
211 => 0.016526471752815
212 => 0.016696843695488
213 => 0.016676852514441
214 => 0.016695601015605
215 => 0.016948217630064
216 => 0.018225865778446
217 => 0.01829540534819
218 => 0.017952967073865
219 => 0.018089764410162
220 => 0.017827143438761
221 => 0.01800344265627
222 => 0.018124062103375
223 => 0.017579006015693
224 => 0.017546731331565
225 => 0.017283026429996
226 => 0.01742472650709
227 => 0.017199271495837
228 => 0.017254590269517
301 => 0.017099914155704
302 => 0.017378300364861
303 => 0.017689579403541
304 => 0.017768220781494
305 => 0.017561349173343
306 => 0.017411560495538
307 => 0.017148580920771
308 => 0.017585921814491
309 => 0.017713813619537
310 => 0.017585250053284
311 => 0.017555459065814
312 => 0.017499005198389
313 => 0.017567436020663
314 => 0.0177131170933
315 => 0.017644416589751
316 => 0.017689794482693
317 => 0.017516860748281
318 => 0.017884675113272
319 => 0.018468852844224
320 => 0.018470731071152
321 => 0.018402030197282
322 => 0.018373919279875
323 => 0.018444410545583
324 => 0.018482649165527
325 => 0.018710604992941
326 => 0.018955210677916
327 => 0.020096678679876
328 => 0.019776159032584
329 => 0.020788937350158
330 => 0.021589913506554
331 => 0.021830091233414
401 => 0.021609139025938
402 => 0.020853273459764
403 => 0.020816187089041
404 => 0.021945769363114
405 => 0.021626610632543
406 => 0.021588647717096
407 => 0.0211847864361
408 => 0.021423518472361
409 => 0.021371304274043
410 => 0.021288881607592
411 => 0.021744365702561
412 => 0.022596991266998
413 => 0.022464101576909
414 => 0.022364905587832
415 => 0.021930257639218
416 => 0.022192012786418
417 => 0.02209880679209
418 => 0.022499278893709
419 => 0.022262048092253
420 => 0.021624192691257
421 => 0.021725773266265
422 => 0.021710419566704
423 => 0.022026397615687
424 => 0.02193154884844
425 => 0.021691898822631
426 => 0.022594077085511
427 => 0.022535494647299
428 => 0.022618551150874
429 => 0.022655115192356
430 => 0.023204255202807
501 => 0.023429220294568
502 => 0.023480291308966
503 => 0.023693990746715
504 => 0.023474974272279
505 => 0.024351196326122
506 => 0.024933832862953
507 => 0.025610595182684
508 => 0.026599526828374
509 => 0.026971374275282
510 => 0.026904203362276
511 => 0.027654000049517
512 => 0.029001368029446
513 => 0.027176544953744
514 => 0.029098088083474
515 => 0.028489749713884
516 => 0.027047390383125
517 => 0.026954519446524
518 => 0.02793130193145
519 => 0.030097711471186
520 => 0.029555050452695
521 => 0.030098599070209
522 => 0.029464520735595
523 => 0.029433033401849
524 => 0.030067803300786
525 => 0.031550977769157
526 => 0.030846377175198
527 => 0.029836159448603
528 => 0.030582088497192
529 => 0.029935895722829
530 => 0.028479842544222
531 => 0.029554635490042
601 => 0.028835952055513
602 => 0.029045702089021
603 => 0.030556267772308
604 => 0.030374512512834
605 => 0.030609720648677
606 => 0.030194584445382
607 => 0.029806781770534
608 => 0.029082919279326
609 => 0.028868619281668
610 => 0.028927844091315
611 => 0.028868589932794
612 => 0.028463595521602
613 => 0.028376137017065
614 => 0.028230369011192
615 => 0.028275548611454
616 => 0.028001462114478
617 => 0.028518719963432
618 => 0.028614727578258
619 => 0.028991144705001
620 => 0.029030225579816
621 => 0.030078541919834
622 => 0.029501146895992
623 => 0.029888513327873
624 => 0.029853863628172
625 => 0.027078650683439
626 => 0.027461050541312
627 => 0.028055944716476
628 => 0.027787945696925
629 => 0.027409057785391
630 => 0.027103085482144
701 => 0.026639506155449
702 => 0.027291985155519
703 => 0.028149925657206
704 => 0.029051984366756
705 => 0.030135748801052
706 => 0.029893865195726
707 => 0.029031724144508
708 => 0.029070399162271
709 => 0.029309472904025
710 => 0.028999850686314
711 => 0.028908537049767
712 => 0.029296927812579
713 => 0.029299602446307
714 => 0.028943344665736
715 => 0.028547429337116
716 => 0.028545770437433
717 => 0.028475321128793
718 => 0.029477053511098
719 => 0.030027905034798
720 => 0.030091059274248
721 => 0.030023654251296
722 => 0.030049595769421
723 => 0.029729067404965
724 => 0.030461700196377
725 => 0.031134036495651
726 => 0.030953836005075
727 => 0.030683689852694
728 => 0.03046850543032
729 => 0.030903145393824
730 => 0.030883791560435
731 => 0.03112816422461
801 => 0.031117078068998
802 => 0.031034904733357
803 => 0.030953838939744
804 => 0.031275255648158
805 => 0.031182692797929
806 => 0.031089986172027
807 => 0.030904048841107
808 => 0.030929320812471
809 => 0.030659221304632
810 => 0.030534260913392
811 => 0.028655156451058
812 => 0.028152998337212
813 => 0.028310987502199
814 => 0.0283630016375
815 => 0.028144461782821
816 => 0.028457791796148
817 => 0.028408959645469
818 => 0.028598936977906
819 => 0.028480247388456
820 => 0.028485118450608
821 => 0.028834159225891
822 => 0.028935487247881
823 => 0.028883950998079
824 => 0.028920045220881
825 => 0.029751821350929
826 => 0.02963356938394
827 => 0.029570750383326
828 => 0.029588151675809
829 => 0.029800688310517
830 => 0.029860186964166
831 => 0.029608086987761
901 => 0.029726978794006
902 => 0.03023320501538
903 => 0.030410355542939
904 => 0.030975734989827
905 => 0.030735551751971
906 => 0.031176418479944
907 => 0.03253149249919
908 => 0.033614019389753
909 => 0.032618482923875
910 => 0.034606405699427
911 => 0.036154288730779
912 => 0.036094878401902
913 => 0.035824969192206
914 => 0.034062745513611
915 => 0.032441121011292
916 => 0.033797678765295
917 => 0.033801136909989
918 => 0.033684607395848
919 => 0.03296085259157
920 => 0.033659422297489
921 => 0.033714872223912
922 => 0.033683835010441
923 => 0.033128933898934
924 => 0.032281702464531
925 => 0.032447249458827
926 => 0.032718418812553
927 => 0.032205038654097
928 => 0.03204098258667
929 => 0.032345994028961
930 => 0.033328804447681
1001 => 0.033143009831055
1002 => 0.03313815798276
1003 => 0.033933066141865
1004 => 0.033364083451864
1005 => 0.03244933753658
1006 => 0.032218352128955
1007 => 0.0313985095423
1008 => 0.031964777737082
1009 => 0.031985156721304
1010 => 0.031675017418143
1011 => 0.032474503631757
1012 => 0.032467136225551
1013 => 0.033226129397559
1014 => 0.034677039277619
1015 => 0.034247933831146
1016 => 0.033748930883438
1017 => 0.033803186339705
1018 => 0.034398234781075
1019 => 0.034038454909788
1020 => 0.034167834259977
1021 => 0.034398038949933
1022 => 0.034536927155044
1023 => 0.033783202464357
1024 => 0.033607473184139
1025 => 0.033247992749408
1026 => 0.033154211014006
1027 => 0.03344700032729
1028 => 0.033369860687639
1029 => 0.031983443946592
1030 => 0.031838555683202
1031 => 0.031842999199388
1101 => 0.031478670772034
1102 => 0.030922982471478
1103 => 0.032383298146915
1104 => 0.032266014361072
1105 => 0.032136542138546
1106 => 0.032152401747048
1107 => 0.032786275287064
1108 => 0.032418596622474
1109 => 0.033396130613636
1110 => 0.033195179012415
1111 => 0.032989073760882
1112 => 0.032960583737
1113 => 0.032881250799234
1114 => 0.032609188637147
1115 => 0.032280657228025
1116 => 0.032063732334819
1117 => 0.029577098196392
1118 => 0.030038603028399
1119 => 0.030569522270134
1120 => 0.030752793464855
1121 => 0.030439295404304
1122 => 0.03262156745137
1123 => 0.033020289583266
1124 => 0.031812534237753
1125 => 0.031586612524933
1126 => 0.032636378841251
1127 => 0.032003241423798
1128 => 0.03228834316411
1129 => 0.031672109143871
1130 => 0.032924249097639
1201 => 0.0329147098891
1202 => 0.03242759916622
1203 => 0.032839301813608
1204 => 0.03276775834712
1205 => 0.032217811540689
1206 => 0.032941683392326
1207 => 0.032942042423733
1208 => 0.032473208943662
1209 => 0.031925714079784
1210 => 0.031827834929375
1211 => 0.031754096137755
1212 => 0.032270207941641
1213 => 0.032732952171166
1214 => 0.033594004458289
1215 => 0.03381049346137
1216 => 0.034655464452882
1217 => 0.034152325368327
1218 => 0.034375360407768
1219 => 0.034617496493314
1220 => 0.034733585436985
1221 => 0.03454442473295
1222 => 0.035857012486704
1223 => 0.03596783510977
1224 => 0.036004992976673
1225 => 0.035562395771298
1226 => 0.035955525680836
1227 => 0.035771593215258
1228 => 0.036250134392783
1229 => 0.036325175759739
1230 => 0.036261618391601
1231 => 0.03628543770592
]
'min_raw' => 0.01627158880808
'max_raw' => 0.036325175759739
'avg_raw' => 0.02629838228391
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.016271'
'max' => '$0.036325'
'avg' => '$0.026298'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 0.0025090459793905
'max_diff' => -0.0034663829198043
'year' => 2031
]
6 => [
'items' => [
101 => 0.035165375614439
102 => 0.035107294486197
103 => 0.034315354181374
104 => 0.034638075709317
105 => 0.034034763281274
106 => 0.034226079867013
107 => 0.034310410395075
108 => 0.034266360912931
109 => 0.034656321900299
110 => 0.03432477539727
111 => 0.033449769664483
112 => 0.032574525536969
113 => 0.032563537559907
114 => 0.032333101230475
115 => 0.032166537970814
116 => 0.032198623963774
117 => 0.032311699188006
118 => 0.032159965833222
119 => 0.032192345837542
120 => 0.032730069656084
121 => 0.032837906333022
122 => 0.032471435170278
123 => 0.031000000570322
124 => 0.030638906828679
125 => 0.030898453849372
126 => 0.03077440709045
127 => 0.024837348365988
128 => 0.026232172247664
129 => 0.025403415260916
130 => 0.025785344609685
131 => 0.024939398331796
201 => 0.025343128235448
202 => 0.025268574064099
203 => 0.027511409589994
204 => 0.027476390798176
205 => 0.027493152440666
206 => 0.026693075572401
207 => 0.027967619748001
208 => 0.028595506040028
209 => 0.028479300998026
210 => 0.028508547303559
211 => 0.028005998876865
212 => 0.027498018207953
213 => 0.026934589468464
214 => 0.027981370424537
215 => 0.027864986251368
216 => 0.028131929670913
217 => 0.028810841946374
218 => 0.028910814357873
219 => 0.029045178292747
220 => 0.028997018386771
221 => 0.030144382733237
222 => 0.030005429340326
223 => 0.030340267037622
224 => 0.029651480490088
225 => 0.028872053131334
226 => 0.029020196790833
227 => 0.029005929365127
228 => 0.028824288660503
229 => 0.028660311554073
301 => 0.02838733587213
302 => 0.029251071322596
303 => 0.029216005240674
304 => 0.029783684347142
305 => 0.029683341550933
306 => 0.029013227799802
307 => 0.02903716104352
308 => 0.029198123609448
309 => 0.029755216887961
310 => 0.029920600102826
311 => 0.029843988008319
312 => 0.030025323153388
313 => 0.030168643058421
314 => 0.030043321926868
315 => 0.031817604870784
316 => 0.031080798889895
317 => 0.031439912998317
318 => 0.031525559597153
319 => 0.03130617763519
320 => 0.03135375372726
321 => 0.031425818543039
322 => 0.031863381992706
323 => 0.033011675094636
324 => 0.033520246292786
325 => 0.03505030783488
326 => 0.033478016534432
327 => 0.033384723275452
328 => 0.033660333562615
329 => 0.034558641661287
330 => 0.035286636001471
331 => 0.035528153723112
401 => 0.035560074277049
402 => 0.036013177578641
403 => 0.036272887941237
404 => 0.035958158920028
405 => 0.035691459028055
406 => 0.034736173119018
407 => 0.034846750064147
408 => 0.035608515562199
409 => 0.036684554195963
410 => 0.03760790728647
411 => 0.037284581216279
412 => 0.039751330899208
413 => 0.039995899054501
414 => 0.039962107643275
415 => 0.040519270297655
416 => 0.039413415892912
417 => 0.038940641709964
418 => 0.035749122571872
419 => 0.036645809269302
420 => 0.03794919604458
421 => 0.037776687917422
422 => 0.036830133601587
423 => 0.037607189240142
424 => 0.037350270345259
425 => 0.037147627753291
426 => 0.038075972751299
427 => 0.037055219291678
428 => 0.037939013247984
429 => 0.036805538357344
430 => 0.037286058142532
501 => 0.037013291872333
502 => 0.037189805078129
503 => 0.036157912483802
504 => 0.036714696679924
505 => 0.036134748430707
506 => 0.036134473459725
507 => 0.03612167106998
508 => 0.0368039776133
509 => 0.036826227605182
510 => 0.036322002038761
511 => 0.036249335257156
512 => 0.036518022434951
513 => 0.036203460119036
514 => 0.036350641846821
515 => 0.036207918103634
516 => 0.036175787982821
517 => 0.035919769713691
518 => 0.03580947000398
519 => 0.035852721362231
520 => 0.035705082178918
521 => 0.035616124230629
522 => 0.036103975095026
523 => 0.035843336058026
524 => 0.036064028424516
525 => 0.035812521619304
526 => 0.03494068945614
527 => 0.034439289559647
528 => 0.032792479422314
529 => 0.0332595127344
530 => 0.033569156303494
531 => 0.033466819105756
601 => 0.033686679005736
602 => 0.033700176617967
603 => 0.033628697923277
604 => 0.033545934751814
605 => 0.033505650217036
606 => 0.033805898134769
607 => 0.033980202156894
608 => 0.033600233178149
609 => 0.03351121176276
610 => 0.033895381378933
611 => 0.034129724622871
612 => 0.035859983470014
613 => 0.035731800305955
614 => 0.036053514893068
615 => 0.036017294767671
616 => 0.036354502908118
617 => 0.036905695702955
618 => 0.035784966635122
619 => 0.035979486449403
620 => 0.03593179468306
621 => 0.03645248088254
622 => 0.03645410640802
623 => 0.036141929021227
624 => 0.036311165447107
625 => 0.036216702316939
626 => 0.03638740996061
627 => 0.03573008834165
628 => 0.03653063512006
629 => 0.036984493557323
630 => 0.036990795382165
701 => 0.037205920679384
702 => 0.037424500440576
703 => 0.037844045257899
704 => 0.037412799563329
705 => 0.03663703053972
706 => 0.036693038557506
707 => 0.036238205462807
708 => 0.036245851289301
709 => 0.036205037268261
710 => 0.036327523217739
711 => 0.035756967119578
712 => 0.035890875495405
713 => 0.035703402985081
714 => 0.035979078920778
715 => 0.035682497184832
716 => 0.035931771684646
717 => 0.036039350295185
718 => 0.036436317684075
719 => 0.035623864778729
720 => 0.033967218306501
721 => 0.03431546547986
722 => 0.033800380556237
723 => 0.033848053626985
724 => 0.033944360817009
725 => 0.03363219770439
726 => 0.033691748588887
727 => 0.03368962101224
728 => 0.033671286706102
729 => 0.033590081024199
730 => 0.033472316719384
731 => 0.033941453463825
801 => 0.034021168938434
802 => 0.034198366563834
803 => 0.034725586502726
804 => 0.034672904798129
805 => 0.03475883084407
806 => 0.034571254768234
807 => 0.033856754743162
808 => 0.033895555532086
809 => 0.033411709072454
810 => 0.034185993522026
811 => 0.034002632744312
812 => 0.033884418858088
813 => 0.033852163103987
814 => 0.034380689919132
815 => 0.034538833425866
816 => 0.034440289005085
817 => 0.034238171523064
818 => 0.034626296839215
819 => 0.034730142800124
820 => 0.03475339008108
821 => 0.035441073725651
822 => 0.034791823957599
823 => 0.034948104829757
824 => 0.036167363581989
825 => 0.035061664139921
826 => 0.035647377794425
827 => 0.035618710158943
828 => 0.035918341445118
829 => 0.035594131647895
830 => 0.035598150616894
831 => 0.035864202900235
901 => 0.035490580451064
902 => 0.035398066278385
903 => 0.035270258611428
904 => 0.035549321976479
905 => 0.035716607842877
906 => 0.037064809068111
907 => 0.037935808545058
908 => 0.037897996160666
909 => 0.038243530572191
910 => 0.038087864155066
911 => 0.037585176231445
912 => 0.038443203220805
913 => 0.038171687579997
914 => 0.038194070999534
915 => 0.038193237887541
916 => 0.038373772052369
917 => 0.038245847050875
918 => 0.037993693741699
919 => 0.038161084875832
920 => 0.038658176700782
921 => 0.040201164978066
922 => 0.04106464165991
923 => 0.040149182597606
924 => 0.040780654000298
925 => 0.04040199617495
926 => 0.040333182783989
927 => 0.04072979349025
928 => 0.04112709841105
929 => 0.041101791805191
930 => 0.040813368834524
1001 => 0.040650446016856
1002 => 0.041884152175385
1003 => 0.042793125857353
1004 => 0.04273113994608
1005 => 0.043004725599542
1006 => 0.043807981539793
1007 => 0.043881421196239
1008 => 0.043872169487518
1009 => 0.043690141636382
1010 => 0.044481051425524
1011 => 0.04514084228636
1012 => 0.043648007448135
1013 => 0.044216459411888
1014 => 0.044471655812795
1015 => 0.044846359842687
1016 => 0.045478548348802
1017 => 0.046165272746163
1018 => 0.046262383105499
1019 => 0.046193478658391
1020 => 0.045740565458189
1021 => 0.046491987488107
1022 => 0.046932152890218
1023 => 0.047194261314169
1024 => 0.047858924666626
1025 => 0.044473231818888
1026 => 0.042076670141406
1027 => 0.041702412428697
1028 => 0.042463480204448
1029 => 0.042664167707512
1030 => 0.042583270826668
1031 => 0.039885722772807
1101 => 0.041688210396464
1102 => 0.043627535522055
1103 => 0.043702032898279
1104 => 0.044672899605526
1105 => 0.044989053602576
1106 => 0.045770728556318
1107 => 0.045721834575134
1108 => 0.045912159987205
1109 => 0.045868407470947
1110 => 0.047316295721673
1111 => 0.04891353147571
1112 => 0.048858224280446
1113 => 0.048628602743168
1114 => 0.048969629882317
1115 => 0.050618148350668
1116 => 0.050466379187072
1117 => 0.050613810001839
1118 => 0.052557506182455
1119 => 0.055084587704814
1120 => 0.053910504622842
1121 => 0.056457927077415
1122 => 0.058061394479508
1123 => 0.060834425549802
1124 => 0.060487228402335
1125 => 0.061566749048559
1126 => 0.059865673046138
1127 => 0.055959658700399
1128 => 0.055341516978564
1129 => 0.05657905235952
1130 => 0.059621412336664
1201 => 0.056483237617
1202 => 0.05711808627562
1203 => 0.056935249819229
1204 => 0.056925507241473
1205 => 0.057297341808499
1206 => 0.056757976375441
1207 => 0.054560504571175
1208 => 0.055567592949287
1209 => 0.055178707762142
1210 => 0.055610204870591
1211 => 0.057938816801946
1212 => 0.056909281959919
1213 => 0.055824750636462
1214 => 0.057184993592844
1215 => 0.05891705030651
1216 => 0.058808661310174
1217 => 0.058598341354196
1218 => 0.059783903934047
1219 => 0.061742105978719
1220 => 0.062271400122701
1221 => 0.062662114238845
1222 => 0.062715987114293
1223 => 0.063270911213205
1224 => 0.060286944474473
1225 => 0.065022576322542
1226 => 0.065840289123514
1227 => 0.065686593007654
1228 => 0.066595446371319
1229 => 0.066328038656345
1230 => 0.065940606832331
1231 => 0.067381332732395
]
'min_raw' => 0.024837348365988
'max_raw' => 0.067381332732395
'avg_raw' => 0.046109340549192
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.024837'
'max' => '$0.067381'
'avg' => '$0.0461093'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.0085657595579082
'max_diff' => 0.031056156972656
'year' => 2032
]
7 => [
'items' => [
101 => 0.065729656748557
102 => 0.063385310629723
103 => 0.062099155983022
104 => 0.063792868172934
105 => 0.064827159104903
106 => 0.065510759617676
107 => 0.065717616719799
108 => 0.060518581318137
109 => 0.057716589588364
110 => 0.059512634162248
111 => 0.061703932498762
112 => 0.060274771701572
113 => 0.060330792099063
114 => 0.058293184379122
115 => 0.061884215569079
116 => 0.061361032530028
117 => 0.064075307062116
118 => 0.06342752366162
119 => 0.065640909175007
120 => 0.065058050590706
121 => 0.067477463986956
122 => 0.068442633493723
123 => 0.070063303312224
124 => 0.071255474628025
125 => 0.071955540427268
126 => 0.071913511102562
127 => 0.074687520570556
128 => 0.073051784103789
129 => 0.070996913588044
130 => 0.070959747463448
131 => 0.072023994021292
201 => 0.07425436284475
202 => 0.074832665030125
203 => 0.075155857058315
204 => 0.074660877216747
205 => 0.07288540251636
206 => 0.072118761542594
207 => 0.07277196186397
208 => 0.071973154001071
209 => 0.073352120478335
210 => 0.075245735982966
211 => 0.074854711869427
212 => 0.076161846855376
213 => 0.077514594051223
214 => 0.079449083296962
215 => 0.079954830419727
216 => 0.080790811181818
217 => 0.081651309991384
218 => 0.081927679017923
219 => 0.08245535324186
220 => 0.082452572138233
221 => 0.084042753928637
222 => 0.085796773687283
223 => 0.086458875540522
224 => 0.087981342243534
225 => 0.085374171368222
226 => 0.087351740426167
227 => 0.089135557218197
228 => 0.087008817300604
301 => 0.089940032810158
302 => 0.090053845266117
303 => 0.091772278226723
304 => 0.090030317209228
305 => 0.088995946317576
306 => 0.091982136324404
307 => 0.093427059604604
308 => 0.092991836953432
309 => 0.08967977108842
310 => 0.087752006693796
311 => 0.082706675435084
312 => 0.088683088253119
313 => 0.091594024602432
314 => 0.089672232466506
315 => 0.090641472635895
316 => 0.095929332722898
317 => 0.097942607480442
318 => 0.097523860404726
319 => 0.097594621767358
320 => 0.098680948283008
321 => 0.10349831830434
322 => 0.10061163852179
323 => 0.10281839705372
324 => 0.10398885382199
325 => 0.10507603929863
326 => 0.10240625537651
327 => 0.098932905720742
328 => 0.097832750083462
329 => 0.089481148112972
330 => 0.089046410961239
331 => 0.088802379824087
401 => 0.087263798023236
402 => 0.08605489418079
403 => 0.085093528961556
404 => 0.082570619538328
405 => 0.083422027407885
406 => 0.07940103635938
407 => 0.08197352393704
408 => 0.075555925133403
409 => 0.08090069211705
410 => 0.077991778444586
411 => 0.079945035740663
412 => 0.079938221009965
413 => 0.076341655047097
414 => 0.074267230858131
415 => 0.075589134689137
416 => 0.077006320528833
417 => 0.077236254163338
418 => 0.079073672596838
419 => 0.079586456586451
420 => 0.078032697158328
421 => 0.075422934662673
422 => 0.076029122968069
423 => 0.07425494647147
424 => 0.071145770403893
425 => 0.073378834936633
426 => 0.074141301349027
427 => 0.074478049953493
428 => 0.071420532382316
429 => 0.070459793979516
430 => 0.069948304915241
501 => 0.075028247538896
502 => 0.075306538263142
503 => 0.073882763571557
504 => 0.080318360185377
505 => 0.078861786466396
506 => 0.080489136179723
507 => 0.075974117733119
508 => 0.076146597518058
509 => 0.074009115429056
510 => 0.075205962572293
511 => 0.074360069587637
512 => 0.075109269150593
513 => 0.075558336279563
514 => 0.077695467628788
515 => 0.080925094724137
516 => 0.077376251472263
517 => 0.075829969647051
518 => 0.076789274194794
519 => 0.079344028621108
520 => 0.083214612352447
521 => 0.080923148880737
522 => 0.081940061457909
523 => 0.082162211616729
524 => 0.080472571287279
525 => 0.083276911801472
526 => 0.08477978066545
527 => 0.086321413144998
528 => 0.087659969431428
529 => 0.085705651231442
530 => 0.087797051845937
531 => 0.08611175213256
601 => 0.084599864066578
602 => 0.084602156976694
603 => 0.083653727507744
604 => 0.081816025901849
605 => 0.081477125530321
606 => 0.083240128061409
607 => 0.08465388913438
608 => 0.084770333267809
609 => 0.085553064039472
610 => 0.086016276047375
611 => 0.090556383431008
612 => 0.092382452178443
613 => 0.094615334477094
614 => 0.09548516797077
615 => 0.098103054934167
616 => 0.09598889859684
617 => 0.095531487574592
618 => 0.089181350105691
619 => 0.090221184760482
620 => 0.091886060371924
621 => 0.089208803291312
622 => 0.090906906689326
623 => 0.091242148270842
624 => 0.089117831120177
625 => 0.090252520696673
626 => 0.087239121593514
627 => 0.080990778589916
628 => 0.083283867993419
629 => 0.084972353639943
630 => 0.082562676433574
701 => 0.086881929558605
702 => 0.084358711050444
703 => 0.083558971919205
704 => 0.080438904440656
705 => 0.081911456188121
706 => 0.083903103511477
707 => 0.082672497019496
708 => 0.08522619026685
709 => 0.088842900950217
710 => 0.091420384362028
711 => 0.091618251533648
712 => 0.08996110237783
713 => 0.092616694475813
714 => 0.092636037565071
715 => 0.089640518830134
716 => 0.087805780284104
717 => 0.087388923826123
718 => 0.088430312987682
719 => 0.089694751680859
720 => 0.091688419081074
721 => 0.092893150536566
722 => 0.0960344512323
723 => 0.096884397132416
724 => 0.097818229989149
725 => 0.099066118669131
726 => 0.10056452898154
727 => 0.097286092522536
728 => 0.097416350914822
729 => 0.09436351627724
730 => 0.091101124646211
731 => 0.093576873231304
801 => 0.096813585171281
802 => 0.096071079876002
803 => 0.095987532862276
804 => 0.096128035765353
805 => 0.095568211020669
806 => 0.093036144448532
807 => 0.091764556467581
808 => 0.0934052293797
809 => 0.094277174014541
810 => 0.095629484101617
811 => 0.095462783339582
812 => 0.098946188896387
813 => 0.10029973496305
814 => 0.099953439957693
815 => 0.10001716657273
816 => 0.10246769707263
817 => 0.10519319097855
818 => 0.10774597568205
819 => 0.11034277792709
820 => 0.10721223146577
821 => 0.10562273303798
822 => 0.10726268968363
823 => 0.10639250560338
824 => 0.11139284144183
825 => 0.11173905384621
826 => 0.11673902810345
827 => 0.12148459905944
828 => 0.11850399096772
829 => 0.12131457014868
830 => 0.12435444068276
831 => 0.13021884414424
901 => 0.12824391937061
902 => 0.12673115794503
903 => 0.12530160570747
904 => 0.12827627697881
905 => 0.13210314404785
906 => 0.13292741456125
907 => 0.13426304768852
908 => 0.13285879276864
909 => 0.13455006314603
910 => 0.14052099076006
911 => 0.13890759341191
912 => 0.13661630981098
913 => 0.14132978370827
914 => 0.14303557158854
915 => 0.15500768426028
916 => 0.17012297105167
917 => 0.16386514306771
918 => 0.15998070729922
919 => 0.16089364184486
920 => 0.16641323289633
921 => 0.168185950359
922 => 0.16336709320311
923 => 0.16506919501641
924 => 0.17444794335464
925 => 0.17947934093183
926 => 0.17264602721516
927 => 0.15379318568402
928 => 0.13641000479219
929 => 0.14102080713954
930 => 0.14049808524321
1001 => 0.15057438030995
1002 => 0.13886911441875
1003 => 0.13906620107653
1004 => 0.14935086325427
1005 => 0.14660709170899
1006 => 0.14216253320136
1007 => 0.13644245498794
1008 => 0.12586836136724
1009 => 0.11650259176697
1010 => 0.13487102276102
1011 => 0.13407894261573
1012 => 0.13293189318565
1013 => 0.13548452756858
1014 => 0.14787939555416
1015 => 0.14759365372882
1016 => 0.14577591002276
1017 => 0.14715465260295
1018 => 0.14192083296093
1019 => 0.14326970745453
1020 => 0.13640725120752
1021 => 0.13950936803266
1022 => 0.14215299717495
1023 => 0.14268374486487
1024 => 0.14387954651089
1025 => 0.13366155237157
1026 => 0.13824913175558
1027 => 0.14094390484562
1028 => 0.1287688219881
1029 => 0.14070324260341
1030 => 0.13348367982659
1031 => 0.13103325178594
1101 => 0.13433243032332
1102 => 0.13304673723875
1103 => 0.13194137382306
1104 => 0.13132456204455
1105 => 0.13374711464536
1106 => 0.13363409967096
1107 => 0.12967033341884
1108 => 0.12449976192673
1109 => 0.1262351754377
1110 => 0.12560468343958
1111 => 0.12331969910329
1112 => 0.12485950265589
1113 => 0.11807898708698
1114 => 0.1064134624712
1115 => 0.11412006535706
1116 => 0.11382336952913
1117 => 0.1136737620386
1118 => 0.11946506111247
1119 => 0.11890836133452
1120 => 0.11789794578632
1121 => 0.12330114202937
1122 => 0.12132890271741
1123 => 0.12740687955884
1124 => 0.1314102282055
1125 => 0.13039484949394
1126 => 0.13416001824599
1127 => 0.12627515585996
1128 => 0.12889419085882
1129 => 0.12943397034227
1130 => 0.12323446742644
1201 => 0.11899944430301
1202 => 0.11871701654348
1203 => 0.11137407006959
1204 => 0.11529661280575
1205 => 0.11874828808772
1206 => 0.11709520348848
1207 => 0.11657188628885
1208 => 0.11924540036807
1209 => 0.11945315530913
1210 => 0.11471632063619
1211 => 0.11570125856074
1212 => 0.11980861343842
1213 => 0.11559776375621
1214 => 0.10741677066208
1215 => 0.10538777126366
1216 => 0.10511706534203
1217 => 0.099614258051534
1218 => 0.1055233587055
1219 => 0.10294387791599
1220 => 0.11109242682312
1221 => 0.10643801938891
1222 => 0.10623737718707
1223 => 0.10593407707117
1224 => 0.10119758351814
1225 => 0.10223457458638
1226 => 0.10568169083543
1227 => 0.10691166074764
1228 => 0.10678336480895
1229 => 0.10566479808525
1230 => 0.10617687220337
1231 => 0.10452730305044
]
'min_raw' => 0.057716589588364
'max_raw' => 0.17947934093183
'avg_raw' => 0.1185979652601
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.057716'
'max' => '$0.179479'
'avg' => '$0.118597'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.032879241222375
'max_diff' => 0.11209800819943
'year' => 2033
]
8 => [
'items' => [
101 => 0.10394480584973
102 => 0.10210628445581
103 => 0.099404165911249
104 => 0.099779912067927
105 => 0.094426308183367
106 => 0.091509380649796
107 => 0.09070201355299
108 => 0.089622368528948
109 => 0.090823962331282
110 => 0.094411142096207
111 => 0.090084242237066
112 => 0.082666075925303
113 => 0.08311192036058
114 => 0.084113600434248
115 => 0.082246976243746
116 => 0.080480373101329
117 => 0.082016291204617
118 => 0.078873116346364
119 => 0.084493438099172
120 => 0.084341424146528
121 => 0.086436332537609
122 => 0.0877463217464
123 => 0.08472722073418
124 => 0.083967924994124
125 => 0.084400454355727
126 => 0.077251707479484
127 => 0.085852127403895
128 => 0.085926504192542
129 => 0.085289644972692
130 => 0.089869103074266
131 => 0.099533188037388
201 => 0.095897170537344
202 => 0.094489194662117
203 => 0.091812631494085
204 => 0.095378992996892
205 => 0.095105152077383
206 => 0.093866739588276
207 => 0.093117743850782
208 => 0.094497791462578
209 => 0.09294674067937
210 => 0.092668129338681
211 => 0.090980047746233
212 => 0.090377479420548
213 => 0.089931361821147
214 => 0.089440230178816
215 => 0.090523544199417
216 => 0.088068612106906
217 => 0.085108204663298
218 => 0.084862078816414
219 => 0.085541653919266
220 => 0.08524099252467
221 => 0.08486063936533
222 => 0.084134441601129
223 => 0.083918994237251
224 => 0.084619093649653
225 => 0.083828722231383
226 => 0.0849949583128
227 => 0.08467780662944
228 => 0.082906223107331
301 => 0.080698174114557
302 => 0.080678517846982
303 => 0.080202797313414
304 => 0.079596895688856
305 => 0.079428347718055
306 => 0.081886940465982
307 => 0.086976153874702
308 => 0.085977019508015
309 => 0.086698996483355
310 => 0.090250408635152
311 => 0.091379295763519
312 => 0.090578038418961
313 => 0.08948122794633
314 => 0.089529482040718
315 => 0.093277615452809
316 => 0.093511381936167
317 => 0.094102034423688
318 => 0.094861189788524
319 => 0.090707325860274
320 => 0.089333835423249
321 => 0.088682999455838
322 => 0.08667867658143
323 => 0.088840166963822
324 => 0.087580759082249
325 => 0.087750696232973
326 => 0.087640024440629
327 => 0.087700458722843
328 => 0.084491867104699
329 => 0.08566090925174
330 => 0.083717149942832
331 => 0.081114674425425
401 => 0.081105950014946
402 => 0.081742902210906
403 => 0.081364018120807
404 => 0.08034445077635
405 => 0.080489275505408
406 => 0.07922045848712
407 => 0.080643332864102
408 => 0.080684135809945
409 => 0.080136251670315
410 => 0.082328385966883
411 => 0.083226505176799
412 => 0.082865876099279
413 => 0.083201202479356
414 => 0.086018538051772
415 => 0.086477886679045
416 => 0.086681898996412
417 => 0.086408549517592
418 => 0.083252698201764
419 => 0.083392673627337
420 => 0.082365626829637
421 => 0.081497880513105
422 => 0.081532585815037
423 => 0.081978720220859
424 => 0.083927015336522
425 => 0.088027087549164
426 => 0.08818268229252
427 => 0.088371267660487
428 => 0.087604196193556
429 => 0.087372840099244
430 => 0.087678058505716
501 => 0.089217830057229
502 => 0.093178540531619
503 => 0.091778560923011
504 => 0.090640355709232
505 => 0.091638868539638
506 => 0.091485155316
507 => 0.090187661016968
508 => 0.090151244673433
509 => 0.08766093827957
510 => 0.086740328707292
511 => 0.085970998442264
512 => 0.085130909876729
513 => 0.084632877215056
514 => 0.085398081735182
515 => 0.085573093062569
516 => 0.083899960005827
517 => 0.083671918152632
518 => 0.085038234723853
519 => 0.084436969742275
520 => 0.085055385686482
521 => 0.085198863490212
522 => 0.085175760259237
523 => 0.084547970563626
524 => 0.084948104994651
525 => 0.084001667779463
526 => 0.082972559458219
527 => 0.08231605246498
528 => 0.081743163040363
529 => 0.082061035389669
530 => 0.080927878505589
531 => 0.08056535881243
601 => 0.084812548452729
602 => 0.087949993105001
603 => 0.087904373417193
604 => 0.08762667530009
605 => 0.087214072227081
606 => 0.089187645572492
607 => 0.088500092081795
608 => 0.089000344693294
609 => 0.089127679978456
610 => 0.089513085535708
611 => 0.089650834895699
612 => 0.089234460656725
613 => 0.0878370578549
614 => 0.084354862933821
615 => 0.082733891798053
616 => 0.082198944323841
617 => 0.082218388648518
618 => 0.081682027370618
619 => 0.081840009804986
620 => 0.081627087527165
621 => 0.081223864244402
622 => 0.082036137488212
623 => 0.082129744412712
624 => 0.081940150131665
625 => 0.081984806448264
626 => 0.080415046777966
627 => 0.08053439219636
628 => 0.07986986174106
629 => 0.079745270291725
630 => 0.078065395168012
701 => 0.075089252884561
702 => 0.076738324610714
703 => 0.074746477860096
704 => 0.073992135314233
705 => 0.077563075602012
706 => 0.077204652239585
707 => 0.076591187246
708 => 0.075683744663182
709 => 0.07534716538218
710 => 0.073302216218867
711 => 0.073181389712919
712 => 0.074194921736529
713 => 0.073727211581141
714 => 0.073070369387288
715 => 0.070691353544178
716 => 0.068016552071447
717 => 0.068097287514706
718 => 0.068948092096731
719 => 0.0714219211656
720 => 0.070455353350715
721 => 0.069754097310929
722 => 0.069622773134356
723 => 0.071266570149951
724 => 0.07359288731314
725 => 0.074684343277696
726 => 0.073602743564832
727 => 0.072360260052158
728 => 0.07243588426646
729 => 0.072938978283968
730 => 0.072991846351842
731 => 0.07218311731446
801 => 0.072410769801325
802 => 0.072064944856797
803 => 0.069942617810569
804 => 0.069904231644274
805 => 0.069383378359983
806 => 0.069367607129535
807 => 0.068481505760015
808 => 0.06835753405309
809 => 0.066598126001399
810 => 0.067756173709
811 => 0.066979416106975
812 => 0.065808659182128
813 => 0.065606820246999
814 => 0.065600752724882
815 => 0.066802858310241
816 => 0.067742126405335
817 => 0.066992928138021
818 => 0.066822350215152
819 => 0.068643676163158
820 => 0.068411895834519
821 => 0.068211175564741
822 => 0.073384591126447
823 => 0.069289429022706
824 => 0.067503704601794
825 => 0.065293531531046
826 => 0.066013175027542
827 => 0.066164814486016
828 => 0.060849746664506
829 => 0.058693424311268
830 => 0.057953455738931
831 => 0.057527593363931
901 => 0.057721664195862
902 => 0.055780721166563
903 => 0.057085066982486
904 => 0.055404374382943
905 => 0.055122600799183
906 => 0.058127887365026
907 => 0.058546055434034
908 => 0.056762020537012
909 => 0.057907659749914
910 => 0.05749223504574
911 => 0.055433185033682
912 => 0.055354544468568
913 => 0.054321385551626
914 => 0.052704691905598
915 => 0.051965819527681
916 => 0.051581008378078
917 => 0.051739788958224
918 => 0.051659504638136
919 => 0.051135595143157
920 => 0.051689534517122
921 => 0.050274448320194
922 => 0.049710949594453
923 => 0.049456430293107
924 => 0.048200459844011
925 => 0.050199267361116
926 => 0.0505930576223
927 => 0.050987623771946
928 => 0.054422052722863
929 => 0.05425047835807
930 => 0.055801427055688
1001 => 0.055741160041311
1002 => 0.055298804349047
1003 => 0.053432578447365
1004 => 0.054176422829497
1005 => 0.051886985440377
1006 => 0.053602387598916
1007 => 0.052819549690666
1008 => 0.053337709314673
1009 => 0.052406011590139
1010 => 0.052921651579752
1011 => 0.050686439901882
1012 => 0.048599230687364
1013 => 0.049439184604721
1014 => 0.050352310573271
1015 => 0.052332200333255
1016 => 0.051152994325944
1017 => 0.051577081396889
1018 => 0.050156460700542
1019 => 0.047225314423738
1020 => 0.047241904393343
1021 => 0.04679101139715
1022 => 0.046401374016983
1023 => 0.051288440321031
1024 => 0.050680656373037
1025 => 0.049712232196706
1026 => 0.051008506440372
1027 => 0.051351261925037
1028 => 0.051361019691828
1029 => 0.052306747918326
1030 => 0.052811483242339
1031 => 0.052900445030845
1101 => 0.054388568829051
1102 => 0.054887368297382
1103 => 0.056941852714695
1104 => 0.052768659976486
1105 => 0.052682715818289
1106 => 0.051026747677307
1107 => 0.049976506502477
1108 => 0.051098658589069
1109 => 0.052092732148754
1110 => 0.051057636313776
1111 => 0.051192797977759
1112 => 0.049803266389738
1113 => 0.050299958548917
1114 => 0.050727776748062
1115 => 0.050491560684486
1116 => 0.050137933804325
1117 => 0.052011229453125
1118 => 0.051905530771115
1119 => 0.053649986746158
1120 => 0.055009914925947
1121 => 0.05744714934037
1122 => 0.054903768173016
1123 => 0.054811077254254
1124 => 0.055717145853252
1125 => 0.054887229583
1126 => 0.055411708018063
1127 => 0.057362647756077
1128 => 0.05740386803849
1129 => 0.056713375198728
1130 => 0.056671358646676
1201 => 0.056803975349716
1202 => 0.057580715521631
1203 => 0.05730929863875
1204 => 0.057623389127055
1205 => 0.058016164092205
1206 => 0.059640847881201
1207 => 0.060032553642387
1208 => 0.059080911718857
1209 => 0.059166834329469
1210 => 0.058810894126914
1211 => 0.058467060351164
1212 => 0.05923994846616
1213 => 0.06065241668747
1214 => 0.060643629795973
1215 => 0.060971294968858
1216 => 0.06117542765704
1217 => 0.0602991407251
1218 => 0.059728710154371
1219 => 0.059947449532629
1220 => 0.060297218561987
1221 => 0.059834024150477
1222 => 0.056974973670113
1223 => 0.057842226949004
1224 => 0.057697873596877
1225 => 0.057492296869482
1226 => 0.058364326747678
1227 => 0.058280217338595
1228 => 0.055760813990404
1229 => 0.055922098018571
1230 => 0.055770622206346
1231 => 0.05626007154468
]
'min_raw' => 0.046401374016983
'max_raw' => 0.10394480584973
'avg_raw' => 0.075173089933358
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.0464013'
'max' => '$0.103944'
'avg' => '$0.075173'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.01131521557138
'max_diff' => -0.075534535082096
'year' => 2034
]
9 => [
'items' => [
101 => 0.054860797712495
102 => 0.055291204919022
103 => 0.055561152284138
104 => 0.055720153356026
105 => 0.056294574255738
106 => 0.056227172593098
107 => 0.056290384473752
108 => 0.05714209902653
109 => 0.061449778961343
110 => 0.061684236475835
111 => 0.06052968192567
112 => 0.060990903695879
113 => 0.06010545875519
114 => 0.06069986387584
115 => 0.061106540763136
116 => 0.059268846108916
117 => 0.059160029758032
118 => 0.058270930271103
119 => 0.05874868197421
120 => 0.057988544663004
121 => 0.058175055770699
122 => 0.057653554453837
123 => 0.058592152994313
124 => 0.059641652006034
125 => 0.059906796902367
126 => 0.059209314832171
127 => 0.058704291847041
128 => 0.057817637850065
129 => 0.059292163207408
130 => 0.059723359357241
131 => 0.059289898317599
201 => 0.059189455923403
202 => 0.058999117767897
203 => 0.05922983706288
204 => 0.059721010970405
205 => 0.059489382426174
206 => 0.059642377160408
207 => 0.059059319000992
208 => 0.060299430812537
209 => 0.06226902681843
210 => 0.06227535939165
211 => 0.062043729598855
212 => 0.061948951678177
213 => 0.062186617902056
214 => 0.062315542078931
215 => 0.063084111066424
216 => 0.063908816211143
217 => 0.067757355274501
218 => 0.066676700905688
219 => 0.070091353713313
220 => 0.07279190074697
221 => 0.073601676721755
222 => 0.072856720927857
223 => 0.070308267398654
224 => 0.070183228110472
225 => 0.073991693612428
226 => 0.072915627669355
227 => 0.07278763304944
228 => 0.071425986543866
301 => 0.072230888271861
302 => 0.072054844456752
303 => 0.071776950682246
304 => 0.073312647109319
305 => 0.076187333728234
306 => 0.075739286860036
307 => 0.075404840657222
308 => 0.073939394752317
309 => 0.074821920506262
310 => 0.074507669988949
311 => 0.07585788963963
312 => 0.075058049429594
313 => 0.072907475411496
314 => 0.073249961412263
315 => 0.073198195342233
316 => 0.074263537395261
317 => 0.073943748154358
318 => 0.073135751360513
319 => 0.076177508361889
320 => 0.075979993581361
321 => 0.076260024381984
322 => 0.076383302600659
323 => 0.078234766485626
324 => 0.078993251999061
325 => 0.079165441489768
326 => 0.079885944064157
327 => 0.079147514729355
328 => 0.082101758559755
329 => 0.084066158322064
330 => 0.086347909733074
331 => 0.08968216182152
401 => 0.090935871450332
402 => 0.090709400027407
403 => 0.093237391907574
404 => 0.097780137122132
405 => 0.091627618717326
406 => 0.098106235537068
407 => 0.096055180251166
408 => 0.0911921650652
409 => 0.090879044218407
410 => 0.09417233456311
411 => 0.10147653558021
412 => 0.099646916068991
413 => 0.10147952818229
414 => 0.099341688807202
415 => 0.099235527063104
416 => 0.10137569809559
417 => 0.10637632436764
418 => 0.10400071427146
419 => 0.1005946946751
420 => 0.10310964654152
421 => 0.10093096248702
422 => 0.096021777536953
423 => 0.099645516993432
424 => 0.097222425617043
425 => 0.097929612499295
426 => 0.10302259016482
427 => 0.10240978961776
428 => 0.10320281026946
429 => 0.10180314957617
430 => 0.1004956457824
501 => 0.098055092854828
502 => 0.097332565450779
503 => 0.097532246031445
504 => 0.097332466499
505 => 0.095966999565861
506 => 0.095672127111656
507 => 0.095180660102658
508 => 0.095332986279279
509 => 0.094408884518617
510 => 0.096152855470153
511 => 0.096476551846578
512 => 0.097745668469998
513 => 0.097877432367974
514 => 0.10141190409946
515 => 0.09946517646414
516 => 0.10077120943429
517 => 0.10065438555258
518 => 0.091297561350232
519 => 0.092586849169356
520 => 0.094592576415108
521 => 0.093688999009596
522 => 0.092411551962752
523 => 0.091379944980048
524 => 0.089816954914022
525 => 0.092016833417388
526 => 0.094909439718317
527 => 0.097950793637293
528 => 0.10160478109354
529 => 0.10078925363041
530 => 0.097882484883459
531 => 0.098012880406052
601 => 0.09881893421797
602 => 0.097775021293824
603 => 0.097467150992893
604 => 0.098776637566292
605 => 0.098785655280642
606 => 0.097584507300321
607 => 0.096249651127954
608 => 0.096244058031853
609 => 0.096006533269161
610 => 0.099383943934821
611 => 0.1012411783062
612 => 0.1014541072338
613 => 0.10122684649284
614 => 0.10131431013238
615 => 0.10023362637304
616 => 0.10270374898008
617 => 0.1049705777541
618 => 0.10436301921893
619 => 0.10345220260517
620 => 0.10272669330144
621 => 0.10419211228399
622 => 0.10412685948348
623 => 0.1049507789823
624 => 0.10491340123464
625 => 0.10463634809637
626 => 0.10436302911337
627 => 0.10544670798638
628 => 0.10513462587431
629 => 0.10482205901251
630 => 0.10419515831958
701 => 0.10428036453547
702 => 0.10336970518704
703 => 0.10294839250352
704 => 0.096612860613876
705 => 0.094919799473486
706 => 0.095452470973691
707 => 0.095627840262367
708 => 0.094891017884353
709 => 0.095947431900287
710 => 0.095782790894923
711 => 0.096423312735027
712 => 0.096023142497555
713 => 0.096039565623686
714 => 0.097216380966801
715 => 0.097558015467437
716 => 0.097384257403085
717 => 0.097505951595279
718 => 0.10031034289049
719 => 0.099911648127698
720 => 0.099699849481245
721 => 0.09975851915377
722 => 0.10047510125652
723 => 0.10067570512136
724 => 0.099825732449858
725 => 0.10022658447537
726 => 0.10193336152432
727 => 0.10253063689624
728 => 0.10443685317496
729 => 0.10362705861947
730 => 0.10511347157316
731 => 0.10968219823729
801 => 0.11333201322844
802 => 0.1099754925276
803 => 0.11667791295771
804 => 0.12189670866765
805 => 0.12169640259595
806 => 0.120786384851
807 => 0.11484492468409
808 => 0.10937750445631
809 => 0.11395123363577
810 => 0.11396289301204
811 => 0.11357000561929
812 => 0.11112981576572
813 => 0.1134850923018
814 => 0.11367204560013
815 => 0.11356740146796
816 => 0.11169651362856
817 => 0.10884001369566
818 => 0.10939816694505
819 => 0.11031243335358
820 => 0.10858153630628
821 => 0.10802840982092
822 => 0.10905677719383
823 => 0.11237039113818
824 => 0.11174397161646
825 => 0.11172761327118
826 => 0.11440770162832
827 => 0.11248933676388
828 => 0.10940520704498
829 => 0.10862642361629
830 => 0.1058622670958
831 => 0.10777147985009
901 => 0.10784018901821
902 => 0.10679453270436
903 => 0.10949005629191
904 => 0.10946521656751
905 => 0.11202421503814
906 => 0.11691605899806
907 => 0.11546930002609
908 => 0.11378687674862
909 => 0.11396980280742
910 => 0.11597605017245
911 => 0.11476302721738
912 => 0.11519923872952
913 => 0.11597538991409
914 => 0.11644366119448
915 => 0.11390242577646
916 => 0.11330994223917
917 => 0.11209792885535
918 => 0.11178173718682
919 => 0.11276889679845
920 => 0.11250881511765
921 => 0.10783441427868
922 => 0.10734591338289
923 => 0.10736089500794
924 => 0.10613253627852
925 => 0.10425899437628
926 => 0.109182550632
927 => 0.10878712015954
928 => 0.10835059552183
929 => 0.10840406729918
930 => 0.11054121619498
1001 => 0.10930156190681
1002 => 0.11259738600726
1003 => 0.11191986365374
1004 => 0.11122496540839
1005 => 0.11112890930377
1006 => 0.11086143276524
1007 => 0.10994415619099
1008 => 0.1088364896078
1009 => 0.10810511218515
1010 => 0.09972125157619
1011 => 0.10127724733854
1012 => 0.10306727862964
1013 => 0.10368519025823
1014 => 0.10262820965935
1015 => 0.1099858922274
1016 => 0.11133021173298
1017 => 0.1072581802628
1018 => 0.10649646943467
1019 => 0.11003582986248
1020 => 0.1079011628553
1021 => 0.10886240327793
1022 => 0.10678472725461
1023 => 0.11100640453036
1024 => 0.11097424242276
1025 => 0.10933191461159
1026 => 0.11071999883141
1027 => 0.11047878503914
1028 => 0.1086246009852
1029 => 0.11106518547211
1030 => 0.11106639597157
1031 => 0.1094856911606
1101 => 0.10763977400217
1102 => 0.10730976761286
1103 => 0.10706115212863
1104 => 0.10880125910921
1105 => 0.11036143358683
1106 => 0.11326453148961
1107 => 0.11399443927828
1108 => 0.11684331797015
1109 => 0.11514694941853
1110 => 0.11589892762581
1111 => 0.11671530634363
1112 => 0.11710670832229
1113 => 0.11646893980186
1114 => 0.12089442105559
1115 => 0.12126806726665
1116 => 0.12139334760919
1117 => 0.11990110023012
1118 => 0.12122656516758
1119 => 0.12060642401812
1120 => 0.12221985900883
1121 => 0.12247286621674
1122 => 0.12225857811263
1123 => 0.12233888659387
1124 => 0.1185625190522
1125 => 0.11836669447324
1126 => 0.11569661244402
1127 => 0.11678469060718
1128 => 0.1147505806341
1129 => 0.11539561786022
1130 => 0.11567994412335
1201 => 0.11553142821887
1202 => 0.11684620891399
1203 => 0.11572837673118
1204 => 0.11277823381214
1205 => 0.10982728712864
1206 => 0.10979024039682
1207 => 0.10901330822359
1208 => 0.10845172856456
1209 => 0.10855990873
1210 => 0.10894114974316
1211 => 0.10842957014382
1212 => 0.10853874158908
1213 => 0.11035171498598
1214 => 0.11071529387119
1215 => 0.1094797107598
1216 => 0.10451866627377
1217 => 0.10330121351306
1218 => 0.10417629441432
1219 => 0.10375806210594
1220 => 0.083740854104217
1221 => 0.088443600204779
1222 => 0.085649388161993
1223 => 0.086937089626823
1224 => 0.084084922688839
1225 => 0.085446126246522
1226 => 0.085194761652613
1227 => 0.092756638217943
1228 => 0.092638569916397
1229 => 0.092695082964311
1230 => 0.089997567943373
1231 => 0.094294782617242
]
'min_raw' => 0.054860797712495
'max_raw' => 0.12247286621674
'avg_raw' => 0.088666831964619
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.05486'
'max' => '$0.122472'
'avg' => '$0.088666'
'bar_min_pct' => 61.631153054958
'bar_max_pct' => 60.119598047091
'min_diff' => 0.0084594236955114
'max_diff' => 0.01852806036701
'year' => 2035
]
10 => [
'items' => [
101 => 0.096411745088431
102 => 0.096019951676146
103 => 0.09611855763716
104 => 0.094424180529752
105 => 0.092711488238436
106 => 0.090811848905912
107 => 0.094341143983223
108 => 0.093948746617702
109 => 0.094848764994092
110 => 0.09713776513095
111 => 0.097474829096168
112 => 0.097927846483587
113 => 0.097765471998171
114 => 0.1016338909987
115 => 0.10116539993309
116 => 0.10229432860714
117 => 0.099972036672589
118 => 0.09734414291467
119 => 0.097843619605731
120 => 0.097795515983844
121 => 0.097183101666455
122 => 0.09663024140361
123 => 0.095709884833386
124 => 0.098622029208716
125 => 0.098503801465278
126 => 0.10041777120683
127 => 0.1000794584637
128 => 0.097820123165912
129 => 0.097900815768072
130 => 0.098443512297144
131 => 0.10032179118066
201 => 0.10087939223627
202 => 0.10062108921075
203 => 0.10123247331277
204 => 0.10171568637886
205 => 0.10129315743419
206 => 0.10727527625608
207 => 0.10479108344936
208 => 0.10600186173846
209 => 0.10629062522608
210 => 0.10555096362457
211 => 0.10571136974064
212 => 0.10595434129844
213 => 0.1074296170187
214 => 0.11130116738312
215 => 0.11301585068499
216 => 0.11817455999964
217 => 0.11287347010631
218 => 0.11255892537013
219 => 0.1134881646958
220 => 0.11651687316834
221 => 0.11897135691321
222 => 0.11978565077395
223 => 0.11989327315017
224 => 0.12142094256615
225 => 0.12229657418604
226 => 0.12123544331736
227 => 0.12033624601118
228 => 0.11711543287293
229 => 0.11748825076367
301 => 0.12005659632512
302 => 0.12368453570547
303 => 0.12679768511657
304 => 0.12570756869702
305 => 0.13402438747597
306 => 0.13484896608675
307 => 0.13473503598456
308 => 0.13661354877366
309 => 0.13288508343978
310 => 0.13129109227393
311 => 0.1205306626751
312 => 0.12355390448015
313 => 0.12794836399256
314 => 0.12736674079771
315 => 0.12417536683556
316 => 0.12679526417325
317 => 0.12592904418164
318 => 0.12524582053477
319 => 0.12837580051053
320 => 0.12493425895469
321 => 0.1279140319829
322 => 0.12409244225241
323 => 0.125712548257
324 => 0.12479289773308
325 => 0.12538802433018
326 => 0.12190892640397
327 => 0.12378616319463
328 => 0.1218308271817
329 => 0.12182990009784
330 => 0.12178673594698
331 => 0.1240871800949
401 => 0.12416219749598
402 => 0.12246216579488
403 => 0.12221716466727
404 => 0.12312306224635
405 => 0.1220624934362
406 => 0.12255872690733
407 => 0.12207752384252
408 => 0.12196919489694
409 => 0.12110601142794
410 => 0.12073412825578
411 => 0.12087995322983
412 => 0.12038217741545
413 => 0.12008224948195
414 => 0.12172707273193
415 => 0.12084831002144
416 => 0.12159238974331
417 => 0.1207444169899
418 => 0.11780497398241
419 => 0.11611446922476
420 => 0.11056213387013
421 => 0.11213676928906
422 => 0.11318075420088
423 => 0.11283571719375
424 => 0.11357699019666
425 => 0.11362249833867
426 => 0.11338150292904
427 => 0.11310246111811
428 => 0.11296663899653
429 => 0.11397894581381
430 => 0.11456662399392
501 => 0.1132855320535
502 => 0.11298539013624
503 => 0.11428064481903
504 => 0.11507074942729
505 => 0.12090443793325
506 => 0.12047225944616
507 => 0.121556942638
508 => 0.12143482395642
509 => 0.12257174474506
510 => 0.1244301297359
511 => 0.1206515134369
512 => 0.12130735057169
513 => 0.12114655445173
514 => 0.12290208432643
515 => 0.12290756489907
516 => 0.12185503704397
517 => 0.12242562946954
518 => 0.12210714043097
519 => 0.12268269317003
520 => 0.12046648743898
521 => 0.12316558679478
522 => 0.1246958022034
523 => 0.12471704924583
524 => 0.12544235920497
525 => 0.12617931613058
526 => 0.12759384077387
527 => 0.12613986580602
528 => 0.12352430638046
529 => 0.12371314132278
530 => 0.12217963978856
531 => 0.1222054182264
601 => 0.12206781090492
602 => 0.12248078083528
603 => 0.12055711111538
604 => 0.12100859255366
605 => 0.12037651589619
606 => 0.12130597656048
607 => 0.12030603053106
608 => 0.12114647691097
609 => 0.1215091857073
610 => 0.12284758897432
611 => 0.1201083472803
612 => 0.11452284803582
613 => 0.11569698769464
614 => 0.11396034291256
615 => 0.11412107599902
616 => 0.11444578241414
617 => 0.11339330268541
618 => 0.1135940826502
619 => 0.11358690937699
620 => 0.11352509398379
621 => 0.11325130335765
622 => 0.11285425278193
623 => 0.11443598006989
624 => 0.11470474635809
625 => 0.11530218052367
626 => 0.11707973935697
627 => 0.1169021193118
628 => 0.11719182497486
629 => 0.11655939913903
630 => 0.1141504124197
701 => 0.11428123198854
702 => 0.11264990986881
703 => 0.11526046394936
704 => 0.11464225028546
705 => 0.11424368391462
706 => 0.11413493138765
707 => 0.11591689644547
708 => 0.11645008831965
709 => 0.11611783892484
710 => 0.11543638572281
711 => 0.11674497732426
712 => 0.11709510123176
713 => 0.11717348106257
714 => 0.11949205448278
715 => 0.11730306356062
716 => 0.11782997543229
717 => 0.12194079144136
718 => 0.11821284857496
719 => 0.12018762305434
720 => 0.12009096811981
721 => 0.12110119592073
722 => 0.12000809995379
723 => 0.12002165018837
724 => 0.12091866403683
725 => 0.11965896986396
726 => 0.11934705187164
727 => 0.11891613939925
728 => 0.1198570210181
729 => 0.12042103699619
730 => 0.12496659155547
731 => 0.12790322710324
801 => 0.12777574000928
802 => 0.12894073340218
803 => 0.12841589320856
804 => 0.12672104577752
805 => 0.12961394367768
806 => 0.12869850973808
807 => 0.12877397699981
808 => 0.12877116810456
809 => 0.12937985164577
810 => 0.12894854357179
811 => 0.12809839108513
812 => 0.12866276198073
813 => 0.13033874177439
814 => 0.13554103447926
815 => 0.13845230639811
816 => 0.13536577225424
817 => 0.13749482217634
818 => 0.13621815088114
819 => 0.13598614172912
820 => 0.13732334241575
821 => 0.13866288369517
822 => 0.13857756070667
823 => 0.13760512252401
824 => 0.13705581686934
825 => 0.14121534331743
826 => 0.1442800115487
827 => 0.14407102172113
828 => 0.14499343485292
829 => 0.14770166833701
830 => 0.14794927526611
831 => 0.14791808248422
901 => 0.14730436287534
902 => 0.14997097044899
903 => 0.15219550140143
904 => 0.14716230451795
905 => 0.14907888000179
906 => 0.14993929248469
907 => 0.15120263328248
908 => 0.15333410096883
909 => 0.1556494402201
910 => 0.15597685457663
911 => 0.15574453842246
912 => 0.15421750994658
913 => 0.15675098178306
914 => 0.15823503016765
915 => 0.15911874701882
916 => 0.16135970591695
917 => 0.14994460609927
918 => 0.14186443108105
919 => 0.14060259507281
920 => 0.14316858821481
921 => 0.14384522014294
922 => 0.14357247066114
923 => 0.13447749906075
924 => 0.14055471192958
925 => 0.14709328198987
926 => 0.14734445509505
927 => 0.15061779998228
928 => 0.1516837352565
929 => 0.15431920693785
930 => 0.15415435746662
1001 => 0.15479605288151
1002 => 0.15464853821824
1003 => 0.15953019454389
1004 => 0.16491538640407
1005 => 0.16472891433381
1006 => 0.16395472928921
1007 => 0.16510452609861
1008 => 0.17066262121054
1009 => 0.17015092087929
1010 => 0.17064799416457
1011 => 0.17720130154205
1012 => 0.18572153332988
1013 => 0.18176303024715
1014 => 0.1903518429081
1015 => 0.19575804520477
1016 => 0.20510751306512
1017 => 0.2039369136419
1018 => 0.20757659287037
1019 => 0.20184129636287
1020 => 0.188671896287
1021 => 0.18658778831456
1022 => 0.19076022525341
1023 => 0.20101775432714
1024 => 0.19043717915943
1025 => 0.19257761573569
1026 => 0.19196116985773
1027 => 0.19192832207662
1028 => 0.19318198828001
1029 => 0.19136348006516
1030 => 0.1839545504545
1031 => 0.18735001923397
1101 => 0.18603886567441
1102 => 0.18749368830172
1103 => 0.19534476600677
1104 => 0.19187361740705
1105 => 0.18821704433046
1106 => 0.19280319842703
1107 => 0.19864294856549
1108 => 0.19827750749687
1109 => 0.19756839908122
1110 => 0.20156560609252
1111 => 0.20816782100343
1112 => 0.209952373164
1113 => 0.21126969308537
1114 => 0.21145132924623
1115 => 0.21332229458928
1116 => 0.20326164239574
1117 => 0.21922815580276
1118 => 0.22198513160212
1119 => 0.22146693441678
1120 => 0.22453119698649
1121 => 0.22362961320564
1122 => 0.22232335976136
1123 => 0.22718086772169
1124 => 0.22161212682585
1125 => 0.21370800020918
1126 => 0.20937164002138
1127 => 0.21508210892087
1128 => 0.21856929300989
1129 => 0.22087409986617
1130 => 0.22157153302828
1201 => 0.20404262218652
1202 => 0.19459551144077
1203 => 0.20065100111745
1204 => 0.20803911645057
1205 => 0.20322060104203
1206 => 0.20340947772338
1207 => 0.19653954103437
1208 => 0.2086469534091
1209 => 0.20688300526547
1210 => 0.21603437135501
1211 => 0.21385032439344
1212 => 0.22131290818547
1213 => 0.21934775977461
1214 => 0.22750498095811
1215 => 0.23075911733616
1216 => 0.23622331878079
1217 => 0.24024280760676
1218 => 0.24260312832594
1219 => 0.2424614235233
1220 => 0.2518141901198
1221 => 0.24629919041862
1222 => 0.23937105100831
1223 => 0.23924574282437
1224 => 0.24283392439747
1225 => 0.25035376860513
1226 => 0.2523035547989
1227 => 0.25339321928649
1228 => 0.25172436019225
1229 => 0.24573822328021
1230 => 0.24315343971199
1231 => 0.2453557502005
]
'min_raw' => 0.090811848905912
'max_raw' => 0.25339321928649
'avg_raw' => 0.1721025340962
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$0.090811'
'max' => '$0.253393'
'avg' => '$0.1721025'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.035951051193418
'max_diff' => 0.13092035306974
'year' => 2036
]
11 => [
'items' => [
101 => 0.24266251371975
102 => 0.24731179547422
103 => 0.25369625235609
104 => 0.25237788725686
105 => 0.25678498412324
106 => 0.26134586573983
107 => 0.26786813129357
108 => 0.26957329302811
109 => 0.27239186053381
110 => 0.27529309234837
111 => 0.27622488981682
112 => 0.27800398030386
113 => 0.27799460361881
114 => 0.2833560125481
115 => 0.28926981262613
116 => 0.29150213525079
117 => 0.29663523803523
118 => 0.28784497940226
119 => 0.29451249155058
120 => 0.30052675440702
121 => 0.29335630229062
122 => 0.30323910003201
123 => 0.30362282667341
124 => 0.30941664337725
125 => 0.30354350018693
126 => 0.30005604650826
127 => 0.31012419460541
128 => 0.31499585432592
129 => 0.31352847077122
130 => 0.30236160946628
131 => 0.29586201721759
201 => 0.27885133062506
202 => 0.29900122370089
203 => 0.30881564883768
204 => 0.30233619247617
205 => 0.30560405337745
206 => 0.32343244284738
207 => 0.3302203392548
208 => 0.32880850425303
209 => 0.32904708112755
210 => 0.33270970681996
211 => 0.3489518061849
212 => 0.33921916375651
213 => 0.34665940421786
214 => 0.35060568093078
215 => 0.35427120267013
216 => 0.34526983977833
217 => 0.33355919891238
218 => 0.32984994737088
219 => 0.30169193823714
220 => 0.3002261915777
221 => 0.29940342356108
222 => 0.29421598759916
223 => 0.29014008389138
224 => 0.28689877393436
225 => 0.27839260867003
226 => 0.28126318974564
227 => 0.26770613768898
228 => 0.27637945916241
301 => 0.2547420767335
302 => 0.27276233177859
303 => 0.262954726238
304 => 0.2695402695838
305 => 0.26951729324346
306 => 0.25739121999543
307 => 0.25039715401066
308 => 0.25485404506928
309 => 0.25963218607257
310 => 0.26040742337476
311 => 0.26660240790776
312 => 0.26833129493017
313 => 0.26309268653824
314 => 0.25429369007634
315 => 0.2563374962707
316 => 0.25035573634337
317 => 0.23987293215579
318 => 0.24740186513551
319 => 0.2499725738786
320 => 0.2511079453096
321 => 0.24079931134931
322 => 0.23756011474766
323 => 0.23583559365643
324 => 0.25296297488235
325 => 0.25390125148878
326 => 0.24910089571133
327 => 0.27079895901383
328 => 0.26588801902556
329 => 0.27137474220197
330 => 0.25615204228072
331 => 0.2567335699178
401 => 0.24952689982049
402 => 0.25356215352511
403 => 0.25071016626899
404 => 0.25323614490294
405 => 0.25475020608112
406 => 0.26195569363478
407 => 0.27284460687211
408 => 0.2608794340761
409 => 0.25566603694444
410 => 0.25890039920366
411 => 0.26751393211924
412 => 0.28056387540498
413 => 0.27283804632524
414 => 0.27626663807774
415 => 0.27701563284823
416 => 0.27131889251057
417 => 0.28077392234697
418 => 0.28584094964883
419 => 0.29103867118697
420 => 0.29555170716168
421 => 0.28896258690429
422 => 0.29601389009299
423 => 0.29033178444547
424 => 0.28523434827436
425 => 0.2852420789809
426 => 0.2820443828091
427 => 0.2758484435406
428 => 0.27470581727672
429 => 0.28064990339919
430 => 0.28541649756236
501 => 0.28580909708809
502 => 0.28844812853327
503 => 0.29000988015834
504 => 0.30531716918243
505 => 0.31147388745646
506 => 0.31900220602123
507 => 0.32193491037499
508 => 0.33076129904711
509 => 0.32363327335013
510 => 0.32209108015321
511 => 0.30068114832437
512 => 0.30418702346193
513 => 0.30980026782381
514 => 0.30077370865641
515 => 0.30649898282061
516 => 0.30762927321851
517 => 0.30046698962995
518 => 0.30429267475861
519 => 0.2941327892935
520 => 0.27306606461149
521 => 0.28079737563379
522 => 0.28649022287735
523 => 0.27836582793778
524 => 0.29292849140945
525 => 0.2844212840437
526 => 0.28172490772672
527 => 0.27120538238664
528 => 0.27617019341349
529 => 0.28288517141656
530 => 0.27873609571065
531 => 0.28734605078727
601 => 0.29954004336692
602 => 0.30823020864399
603 => 0.30889733162775
604 => 0.30331013755045
605 => 0.31226365171632
606 => 0.31232886829224
607 => 0.30222926773696
608 => 0.29604331863167
609 => 0.29463785797959
610 => 0.29814897424526
611 => 0.3024121175796
612 => 0.30913390641284
613 => 0.31319574262669
614 => 0.32378685724097
615 => 0.32665250918454
616 => 0.32980099185914
617 => 0.33400833566851
618 => 0.33906033065246
619 => 0.3280068532378
620 => 0.32844602850175
621 => 0.31815318337903
622 => 0.30715380222211
623 => 0.315500961428
624 => 0.32641376171364
625 => 0.32391035327054
626 => 0.3236286686807
627 => 0.32410238402802
628 => 0.3222148958156
629 => 0.3136778565844
630 => 0.30939060892719
701 => 0.31492225219852
702 => 0.31786207441212
703 => 0.32242148228597
704 => 0.32185943902809
705 => 0.33360398406647
706 => 0.33816755913178
707 => 0.33700000134369
708 => 0.33721486007554
709 => 0.34547699474653
710 => 0.35466618773825
711 => 0.36327307959581
712 => 0.37202837966793
713 => 0.36147352370581
714 => 0.35611441878126
715 => 0.36164364711019
716 => 0.35870976072934
717 => 0.37556874212095
718 => 0.37673602141409
719 => 0.39359378370946
720 => 0.40959380751276
721 => 0.39954447923211
722 => 0.40902054316907
723 => 0.41926967891173
724 => 0.43904192462166
725 => 0.43238332786254
726 => 0.42728294709858
727 => 0.42246311192149
728 => 0.43249242379772
729 => 0.44539497330433
730 => 0.44817405888897
731 => 0.45267723922849
801 => 0.44794269572418
802 => 0.45364493188226
803 => 0.47377633120982
804 => 0.46833664940673
805 => 0.46061142677387
806 => 0.47650323310283
807 => 0.48225441603545
808 => 0.52261922977446
809 => 0.57358147450724
810 => 0.55248277055173
811 => 0.53938612415562
812 => 0.54246414671531
813 => 0.56107383331087
814 => 0.56705067400344
815 => 0.55080356066051
816 => 0.55654231576099
817 => 0.58816342058663
818 => 0.60512712879909
819 => 0.58208813451661
820 => 0.51852446303101
821 => 0.45991585499927
822 => 0.4754614970293
823 => 0.47369910366053
824 => 0.50767203598252
825 => 0.46820691479475
826 => 0.46887140622161
827 => 0.50354686280605
828 => 0.49429604547715
829 => 0.47931090615948
830 => 0.46002526309984
831 => 0.42437396819801
901 => 0.39279662209355
902 => 0.45472706963289
903 => 0.45205651612178
904 => 0.44818915888384
905 => 0.45679554392511
906 => 0.49858570672053
907 => 0.49762230820654
908 => 0.49149365839077
909 => 0.49614218526059
910 => 0.47849599692391
911 => 0.48304382145451
912 => 0.45990657109632
913 => 0.47036557455515
914 => 0.47927875478068
915 => 0.48106820767284
916 => 0.48509993641061
917 => 0.45064925577231
918 => 0.46611659996007
919 => 0.47520221557621
920 => 0.43415307368494
921 => 0.47439080602408
922 => 0.45004954606825
923 => 0.44178775684579
924 => 0.45291116762587
925 => 0.448576363627
926 => 0.444849553697
927 => 0.44276992972134
928 => 0.45093773495219
929 => 0.45055669707553
930 => 0.43719258241518
1001 => 0.41975963963177
1002 => 0.42561070744672
1003 => 0.4234849596555
1004 => 0.41578097543317
1005 => 0.42097253061642
1006 => 0.39811154897535
1007 => 0.35878041827233
1008 => 0.38476376795986
1009 => 0.38376343726134
1010 => 0.38325902516176
1011 => 0.4027847943249
1012 => 0.400907842156
1013 => 0.39750115559028
1014 => 0.41571840896283
1015 => 0.40906886642522
1016 => 0.42956118969689
1017 => 0.44305875916398
1018 => 0.4396353389465
1019 => 0.45232986826971
1020 => 0.42574550423168
1021 => 0.43457576358556
1022 => 0.43639566780018
1023 => 0.41549361088401
1024 => 0.40121493474349
1025 => 0.40026270983374
1026 => 0.37550545312887
1027 => 0.38873057982702
1028 => 0.40036814402846
1029 => 0.39479465388744
1030 => 0.39303025341207
1031 => 0.40204419278895
1101 => 0.4027446530777
1102 => 0.38677408426267
1103 => 0.39009487124145
1104 => 0.40394310497789
1105 => 0.3897459312822
1106 => 0.36216314188664
1107 => 0.35532222875464
1108 => 0.35440952483979
1109 => 0.33585642586615
1110 => 0.35577937128122
1111 => 0.3470824717058
1112 => 0.3745558732597
1113 => 0.35886321363492
1114 => 0.35818673444302
1115 => 0.35716413692653
1116 => 0.34119471822105
1117 => 0.34469100600805
1118 => 0.35631319911169
1119 => 0.36046012854445
1120 => 0.36002756982982
1121 => 0.35625624402502
1122 => 0.35798273766615
1123 => 0.35242110009782
1124 => 0.35045717011697
1125 => 0.3442584668759
1126 => 0.33514808554701
1127 => 0.33641493994801
1128 => 0.31836489067453
1129 => 0.30853026584172
1130 => 0.30580817130627
1201 => 0.3021680727293
1202 => 0.30621933012647
1203 => 0.31831375715281
1204 => 0.30372531218321
1205 => 0.27871444654327
1206 => 0.28021764218467
1207 => 0.28359487648811
1208 => 0.2773014227063
1209 => 0.27134519687134
1210 => 0.27652365199096
1211 => 0.2659262185069
1212 => 0.28487552569482
1213 => 0.28436300004021
1214 => 0.29142612994257
1215 => 0.29584285002054
1216 => 0.28566374017093
1217 => 0.283103721571
1218 => 0.28456202451188
1219 => 0.26045952530906
1220 => 0.28945644154636
1221 => 0.2897072080821
1222 => 0.28755999275829
1223 => 0.3029999554753
1224 => 0.33558309265333
1225 => 0.3233240057933
1226 => 0.31857691682823
1227 => 0.30955269723554
1228 => 0.32157693403766
1229 => 0.32065366025857
1230 => 0.31647826608835
1231 => 0.31395297466618
]
'min_raw' => 0.23583559365643
'max_raw' => 0.60512712879909
'avg_raw' => 0.42048136122776
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$0.235835'
'max' => '$0.605127'
'avg' => '$0.420481'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 0.14502374475052
'max_diff' => 0.3517339095126
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.0074026098015787
]
1 => [
'year' => 2028
'avg' => 0.012705027412489
]
2 => [
'year' => 2029
'avg' => 0.034707845032521
]
3 => [
'year' => 2030
'avg' => 0.026777050754117
]
4 => [
'year' => 2031
'avg' => 0.02629838228391
]
5 => [
'year' => 2032
'avg' => 0.046109340549192
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.0074026098015787
'min' => '$0.0074026'
'max_raw' => 0.046109340549192
'max' => '$0.0461093'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.046109340549192
]
1 => [
'year' => 2033
'avg' => 0.1185979652601
]
2 => [
'year' => 2034
'avg' => 0.075173089933358
]
3 => [
'year' => 2035
'avg' => 0.088666831964619
]
4 => [
'year' => 2036
'avg' => 0.1721025340962
]
5 => [
'year' => 2037
'avg' => 0.42048136122776
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.046109340549192
'min' => '$0.0461093'
'max_raw' => 0.42048136122776
'max' => '$0.420481'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 0.42048136122776
]
]
]
]
'prediction_2025_max_price' => '$0.012657'
'last_price' => 0.01227267
'sma_50day_nextmonth' => '$0.011466'
'sma_200day_nextmonth' => '$0.021506'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'increase'
'sma_200day_direction_label' => 'aumentar'
'sma_200day_date_nextmonth' => '4 de fev. de 2026'
'sma_50day_date_nextmonth' => '4 de fev. de 2026'
'daily_sma3' => '$0.012178'
'daily_sma3_action' => 'BUY'
'daily_sma5' => '$0.012034'
'daily_sma5_action' => 'BUY'
'daily_sma10' => '$0.01228'
'daily_sma10_action' => 'SELL'
'daily_sma21' => '$0.011714'
'daily_sma21_action' => 'BUY'
'daily_sma50' => '$0.014322'
'daily_sma50_action' => 'SELL'
'daily_sma100' => '$0.019986'
'daily_sma100_action' => 'SELL'
'daily_sma200' => '$0.022811'
'daily_sma200_action' => 'SELL'
'daily_ema3' => '$0.012245'
'daily_ema3_action' => 'BUY'
'daily_ema5' => '$0.012222'
'daily_ema5_action' => 'BUY'
'daily_ema10' => '$0.012124'
'daily_ema10_action' => 'BUY'
'daily_ema21' => '$0.012261'
'daily_ema21_action' => 'BUY'
'daily_ema50' => '$0.01452'
'daily_ema50_action' => 'SELL'
'daily_ema100' => '$0.017799'
'daily_ema100_action' => 'SELL'
'daily_ema200' => '$0.019909'
'daily_ema200_action' => 'SELL'
'weekly_sma21' => '$0.02180081'
'weekly_sma21_action' => 'SELL'
'weekly_sma50' => '$0.01926'
'weekly_sma50_action' => 'SELL'
'weekly_sma100' => '$0.024692'
'weekly_sma100_action' => 'SELL'
'weekly_sma200' => '$0.055959'
'weekly_sma200_action' => 'SELL'
'weekly_ema3' => '$0.011998'
'weekly_ema3_action' => 'BUY'
'weekly_ema5' => '$0.012524'
'weekly_ema5_action' => 'SELL'
'weekly_ema10' => '$0.01496'
'weekly_ema10_action' => 'SELL'
'weekly_ema21' => '$0.018231'
'weekly_ema21_action' => 'SELL'
'weekly_ema50' => '$0.021331'
'weekly_ema50_action' => 'SELL'
'weekly_ema100' => '$0.06013'
'weekly_ema100_action' => 'SELL'
'weekly_ema200' => '$0.238911'
'weekly_ema200_action' => 'SELL'
'rsi_14' => '47.56'
'rsi_14_action' => 'NEUTRAL'
'stoch_rsi_14' => 64.65
'stoch_rsi_14_action' => 'NEUTRAL'
'momentum_10' => 0
'momentum_10_action' => 'SELL'
'vwma_10' => '0.012342'
'vwma_10_action' => 'SELL'
'hma_9' => '0.011973'
'hma_9_action' => 'BUY'
'stochastic_fast_14' => 55.13
'stochastic_fast_14_action' => 'NEUTRAL'
'cci_20' => 56.94
'cci_20_action' => 'NEUTRAL'
'adx_14' => 18.88
'adx_14_action' => 'NEUTRAL'
'ao_5_34' => '0.000190'
'ao_5_34_action' => 'BUY'
'macd_12_26' => 0
'macd_12_26_action' => 'NEUTRAL'
'williams_percent_r_14' => -44.87
'williams_percent_r_14_action' => 'NEUTRAL'
'ultimate_oscillator' => 43.74
'ultimate_oscillator_action' => 'NEUTRAL'
'ichimoku_cloud' => '-0.002737'
'ichimoku_cloud_action' => 'SELL'
'sell_signals' => 19
'buy_signals' => 14
'sell_pct' => 57.58
'buy_pct' => 42.42
'overall_action' => 'bearish'
'overall_action_label' => 'Baixista'
'overall_action_dir' => -1
'last_updated' => 1767695790
'last_updated_date' => '6 de janeiro de 2026'
]
Previsão de preço de DeHive para 2026
A previsão de preço para DeHive em 2026 sugere que o preço médio poderia variar entre $0.00424 na extremidade inferior e $0.012657 na extremidade superior. No mercado de criptomoedas, comparado ao preço médio de hoje, DeHive poderia potencialmente ganhar 3.13% até 2026 se DHV atingir a meta de preço prevista.
Previsão de preço de DeHive 2027-2032
A previsão de preço de DHV para 2027-2032 está atualmente dentro de uma faixa de preço entre $0.0074026 na extremidade inferior e $0.0461093 na extremidade superior. Considerando a volatilidade de preços no mercado, se DeHive atingir a meta de preço superior, poderia ganhar 275.71% até 2032 em comparação com o preço de hoje.
| Previsão de Preço de DeHive | Potencial Mínimo ($) | Preço Médio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2027 | $0.004081 | $0.0074026 | $0.010723 |
| 2028 | $0.007366 | $0.012705 | $0.018043 |
| 2029 | $0.016182 | $0.0347078 | $0.053233 |
| 2030 | $0.013762 | $0.026777 | $0.039791 |
| 2031 | $0.016271 | $0.026298 | $0.036325 |
| 2032 | $0.024837 | $0.0461093 | $0.067381 |
Previsão de preço de DeHive 2032-2037
A previsão de preço de DeHive para 2032-2037 é atualmente estimada entre $0.0461093 na extremidade inferior e $0.420481 na extremidade superior. Comparado ao preço atual, DeHive poderia potencialmente ganhar 3326.16% até 2037 se atingir a meta de preço superior. Por favor, note que esta informação é apenas para fins gerais e não deve ser considerada como aconselhamento de investimento a longo prazo.
| Previsão de Preço de DeHive | Potencial Mínimo ($) | Preço Médio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2032 | $0.024837 | $0.0461093 | $0.067381 |
| 2033 | $0.057716 | $0.118597 | $0.179479 |
| 2034 | $0.0464013 | $0.075173 | $0.103944 |
| 2035 | $0.05486 | $0.088666 | $0.122472 |
| 2036 | $0.090811 | $0.1721025 | $0.253393 |
| 2037 | $0.235835 | $0.420481 | $0.605127 |
DeHive Histograma de preços potenciais
Previsão de preço de DeHive baseada na análise técnica
Em 6 de janeiro de 2026, o sentimento geral de previsão de preço para DeHive é Baixista, com 14 indicadores técnicos mostrando sinais de alta e 19 indicando sinais de baixa. A previsão de preço de DHV foi atualizada pela última vez em 6 de janeiro de 2026.
Médias Móveis Simples de 50 e 200 dias e Índice de Força Relativa de 14 dias - RSI (14) de DeHive
De acordo com nossos indicadores técnicos, o SMA de 200 dias de DeHive está projetado para aumentar no próximo mês, alcançando $0.021506 até 4 de fev. de 2026. O SMA de 50 dias de curto prazo para DeHive é esperado para alcançar $0.011466 até 4 de fev. de 2026.
O oscilador de momentum Índice de Força Relativa (RSI) é uma ferramenta comumente usada para identificar se uma criptomoeda está sobrevendida (abaixo de 30) ou sobrecomprada (acima de 70). No momento, o RSI está em 47.56, sugerindo que o mercado de DHV está em um estado NEUTRAL.
Médias Móveis e Osciladores Populares de DHV para Sábado, 19 de Outubro de 2024
Médias móveis (MA) são indicadores amplamente utilizados nos mercados financeiros, projetados para suavizar movimentos de preços ao longo de um período definido. Como indicadores atrasados, eles se baseiam em dados históricos de preços. A tabela abaixo destaca dois tipos: a média móvel simples (SMA) e a média móvel exponencial (EMA).
Média Móvel Simples Diária (SMA)
| Período | Valor | Ação |
|---|---|---|
| SMA 3 | $0.012178 | BUY |
| SMA 5 | $0.012034 | BUY |
| SMA 10 | $0.01228 | SELL |
| SMA 21 | $0.011714 | BUY |
| SMA 50 | $0.014322 | SELL |
| SMA 100 | $0.019986 | SELL |
| SMA 200 | $0.022811 | SELL |
Média Móvel Exponencial Diária (EMA)
| Período | Valor | Ação |
|---|---|---|
| EMA 3 | $0.012245 | BUY |
| EMA 5 | $0.012222 | BUY |
| EMA 10 | $0.012124 | BUY |
| EMA 21 | $0.012261 | BUY |
| EMA 50 | $0.01452 | SELL |
| EMA 100 | $0.017799 | SELL |
| EMA 200 | $0.019909 | SELL |
Média Móvel Simples Semanal (SMA)
| Período | Valor | Ação |
|---|---|---|
| SMA 21 | $0.02180081 | SELL |
| SMA 50 | $0.01926 | SELL |
| SMA 100 | $0.024692 | SELL |
| SMA 200 | $0.055959 | SELL |
Média Móvel Exponencial Semanal (EMA)
| Período | Valor | Ação |
|---|---|---|
| EMA 21 | $0.018231 | SELL |
| EMA 50 | $0.021331 | SELL |
| EMA 100 | $0.06013 | SELL |
| EMA 200 | $0.238911 | SELL |
Osciladores de DeHive
Um oscilador é uma ferramenta de análise técnica que define limites altos e baixos entre dois extremos, criando um indicador de tendência que flutua dentro desses limites. Os traders usam esse indicador para identificar condições de sobrecompra ou sobrevenda de curto prazo.
| Período | Valor | Ação |
|---|---|---|
| RSI (14) | 47.56 | NEUTRAL |
| Stoch RSI (14) | 64.65 | NEUTRAL |
| Estocástico Rápido (14) | 55.13 | NEUTRAL |
| Índice de Canal de Commodities (20) | 56.94 | NEUTRAL |
| Índice Direcional Médio (14) | 18.88 | NEUTRAL |
| Oscilador Impressionante (5, 34) | 0.000190 | BUY |
| Momentum (10) | 0 | SELL |
| MACD (12, 26) | 0 | NEUTRAL |
| Williams Percent Range (14) | -44.87 | NEUTRAL |
| Oscilador Ultimate (7, 14, 28) | 43.74 | NEUTRAL |
| VWMA (10) | 0.012342 | SELL |
| Média Móvel de Hull (9) | 0.011973 | BUY |
| Nuvem Ichimoku B/L (9, 26, 52, 26) | -0.002737 | SELL |
Previsão do preço de DeHive com base nos fluxos financeiros mundiais
Definições dos fluxos financeiros mundiais, usadas na previsão do preço do DeHive
M0: o total de todas as moedas físicas, mais as contas no Banco Central que podem ser trocadas por moedas físicas.
M1: o valor de M0, mais o valor em contas de demanda, incluindo contas 'correntes'.
M2: o valor de M1, mais a maioria das contas de poupança, do mercado de moedas e de certificados de depósito (CD) de menos de US$ 100.000.
Previsões de preço de DeHive por empresas de Internet ou nichos tecnológicos
| Comparação | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Facebook stock | $0.017245 | $0.024232 | $0.03405 | $0.047846 | $0.067232 | $0.094472 |
| Amazon.com stock | $0.0256076 | $0.053431 | $0.111488 | $0.232628 | $0.485392 | $1.01 |
| Apple stock | $0.0174078 | $0.024691 | $0.035023 | $0.049677 | $0.070464 | $0.099948 |
| Netflix stock | $0.019364 | $0.030553 | $0.0482092 | $0.076066 | $0.120021 | $0.189374 |
| Google stock | $0.015893 | $0.020581 | $0.026652 | $0.034515 | $0.044697 | $0.057882 |
| Tesla stock | $0.027821 | $0.063068 | $0.142971 | $0.3241061 | $0.734724 | $1.66 |
| Kodak stock | $0.0092031 | $0.0069014 | $0.005175 | $0.00388 | $0.00291 | $0.002182 |
| Nokia stock | $0.00813 | $0.005385 | $0.003567 | $0.002363 | $0.001565 | $0.001037 |
Este cálculo mostra quanto a criptomoeda pode custar, se assumirmos que sua capitalização se comportará da mesma forma que a de algumas empresas de Internet ou nichos tecnológicos. Se você extrapolar os dados, poderá obter uma imagem em potencial do preço futuro para 2024, 2025, 2026, 2027, 2028, 2029 e 2030.
Visão geral da previsão para DeHive
Você pode fazer perguntas como: 'Devo investir em DeHive agora?', 'Devo comprar DHV hoje?', 'DeHive será um bom ou mau investimento no curto ou no longo prazo?'.
Atualizamos a previsão para DeHive regularmente com novos valores. Veja nossas previsões semelhantes. Fazemos previsões de preços futuros para uma enorme quantidade de moedas digitais, como DeHive, com métodos de análise técnica.
Se você estiver tentando encontrar criptomoedas com bom retorno, você deve explorar o máximo de fontes de informações disponíveis sobre DeHive para poder tomar sozinho uma decisão de tão grande responsabilidade sobre o seu investimento.
O preço de DeHive é de $0.01227 USD hoje, mas o preço pode tanto subir quanto descer e seu investimento pode ser perdido, porque criptomoedas são ativos de alto risco
Previsão do preço de DeHive com base no padrão de crescimento do Bitcoin
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| Se DeHive tiver 1% da média anterior do crescimento anual do Bitcoin | $0.012591 | $0.012918 | $0.013254 | $0.013599 |
| Se DeHive tiver 2% da média anterior do crescimento anual do Bitcoin | $0.01291 | $0.013581 | $0.014287 | $0.01503 |
| Se DeHive tiver 5% da média anterior do crescimento anual do Bitcoin | $0.013867 | $0.01567 | $0.0177066 | $0.0200078 |
| Se DeHive tiver 10% da média anterior do crescimento anual do Bitcoin | $0.015462 | $0.019481 | $0.024545 | $0.030926 |
| Se DeHive tiver 20% da média anterior do crescimento anual do Bitcoin | $0.018652 | $0.028349 | $0.043087 | $0.065487 |
| Se DeHive tiver 50% da média anterior do crescimento anual do Bitcoin | $0.028222 | $0.0649032 | $0.149255 | $0.343236 |
| Se DeHive tiver 100% da média anterior do crescimento anual do Bitcoin | $0.044173 | $0.158993 | $0.572269 | $2.05 |
Perguntas Frequentes sobre DeHive
DHV é um bom investimento?
A decisão de adquirir DeHive depende inteiramente da sua tolerância individual ao risco. Como você pode perceber, o valor de DeHive experimentou uma escalada de 0.5791% nas últimas 24 horas, e DeHive registrou um declínio de durante os últimos 30 dias. Consequentemente, a decisão de investir ou não em DeHive dependerá de quão alinhado esse investimento está com suas aspirações de negociação.
DeHive pode subir?
Parece que o valor médio de DeHive pode potencialmente subir para $0.012657 até o final deste ano. Observando as perspectivas de DeHive em um horizonte de cinco anos mais longo, a moeda digital poderia potencialmente crescer até $0.039791. No entanto, dada a imprevisibilidade do mercado, é vital conduzir uma pesquisa aprofundada antes de investir quaisquer fundos em um projeto, rede ou ativo específico.
Qual será o preço de DeHive na próxima semana?
Com base na nossa nova previsão experimental de DeHive, o preço de DeHive aumentará 0.86% na próxima semana e atingirá $0.012377 até 13 de janeiro de 2026.
Qual será o preço de DeHive no próximo mês?
Com base na nossa nova previsão experimental de DeHive, o preço de DeHive diminuirá -11.62% no próximo mês e atingirá $0.010846 até 5 de fevereiro de 2026.
Até onde o preço de DeHive pode subir este ano em 2026?
De acordo com nossa previsão mais recente sobre o valor de DeHive em 2026, espera-se que DHV fluctue dentro do intervalo de $0.00424 e $0.012657. No entanto, é crucial lembrar que o mercado de criptomoedas é excepcionalmente instável, e essa previsão de preço de DeHive não considera flutuações repentinas e extremas de preço.
Onde estará DeHive em 5 anos?
O futuro de DeHive parece seguir uma tendência de alta, com um preço máximo de $0.039791 projetada após um período de cinco anos. Com base na previsão de DeHive para 2030, o valor de DeHive pode potencialmente atingir seu pico mais alto de aproximadamente $0.039791, enquanto seu pico mais baixo está previsto para cerca de $0.013762.
Quanto será DeHive em 2026?
Com base na nossa nova simulação experimental de previsão de preços de DeHive, espera-se que o valor de DHV em 2026 aumente 3.13% para $0.012657 se o melhor cenário ocorrer. O preço ficará entre $0.012657 e $0.00424 durante 2026.
Quanto será DeHive em 2027?
De acordo com nossa última simulação experimental para previsão de preços de DeHive, o valor de DHV pode diminuir -12.62% para $0.010723 em 2027, assumindo as condições mais favoráveis. O preço está projetado para flutuar entre $0.010723 e $0.004081 ao longo do ano.
Quanto será DeHive em 2028?
Nosso novo modelo experimental de previsão de preços de DeHive sugere que o valor de DHV em 2028 pode aumentar 47.02%, alcançando $0.018043 no melhor cenário. O preço é esperado para variar entre $0.018043 e $0.007366 durante o ano.
Quanto será DeHive em 2029?
Com base no nosso modelo de previsão experimental, o valor de DeHive pode experimentar um 333.75% crescimento em 2029, potencialmente alcançando $0.053233 sob condições ótimas. A faixa de preço prevista para 2029 está entre $0.053233 e $0.016182.
Quanto será DeHive em 2030?
Usando nossa nova simulação experimental para previsões de preços de DeHive, espera-se que o valor de DHV em 2030 aumente 224.23%, alcançando $0.039791 no melhor cenário. O preço está previsto para variar entre $0.039791 e $0.013762 ao longo de 2030.
Quanto será DeHive em 2031?
Nossa simulação experimental indica que o preço de DeHive poderia aumentar 195.98% em 2031, potencialmente atingindo $0.036325 sob condições ideais. O preço provavelmente oscilará entre $0.036325 e $0.016271 durante o ano.
Quanto será DeHive em 2032?
Com base nos achados da nossa mais recente previsão experimental de preços de DeHive, DHV poderia ver um 449.04% aumento em valor, atingindo $0.067381 se o cenário mais positivo se desenrolar em 2032. O preço é esperado para permanecer dentro de uma faixa de $0.067381 e $0.024837 ao longo do ano.
Quanto será DeHive em 2033?
De acordo com nossa previsão experimental de preços de DeHive, espera-se que o valor de DHV seja aumentar 1362.43% em 2033, com o preço potencial mais alto sendo $0.179479. Ao longo do ano, o preço de DHV poderia variar entre $0.179479 e $0.057716.
Quanto será DeHive em 2034?
Os resultados da nossa nova simulação de previsão de preços de DeHive sugerem que DHV pode aumentar 746.96% em 2034, atingindo potencialmente $0.103944 nas melhores circunstâncias. A faixa de preço prevista para o ano é entre $0.103944 e $0.0464013.
Quanto será DeHive em 2035?
Com base em nossa previsão experimental para o preço de DeHive, DHV poderia aumentar 897.93%, com o valor potencialmente atingindo $0.122472 em 2035. A faixa de preço esperada para o ano está entre $0.122472 e $0.05486.
Quanto será DeHive em 2036?
Nossa recente simulação de previsão de preços de DeHive sugere que o valor de DHV pode aumentar 1964.7% em 2036, possivelmente atingindo $0.253393 se as condições forem ideais. A faixa de preço esperada para 2036 está entre $0.253393 e $0.090811.
Quanto será DeHive em 2037?
De acordo com a simulação experimental, o valor de DeHive poderia aumentar 4830.69% em 2037, com um pico de $0.605127 sob condições favoráveis. O preço é esperado para cair entre $0.605127 e $0.235835 ao longo do ano.
Previsões relacionadas
Previsão de Preço do Froggy Friends
Previsão de Preço do BitStarters [Old]
Previsão de Preço do Delphy
Previsão de Preço do Mir Token
Previsão de Preço do YadaCoin
Previsão de Preço do XIO
Previsão de Preço do Seba
Previsão de Preço do Seigniorage Shares
Previsão de Preço do Sekuritance
Previsão de Preço do GMD
Previsão de Preço do Soul Scanner
Previsão de Preço do Polinate
Previsão de Preço do Liquidifty
Previsão de Preço do Berry Data
Previsão de Preço do Titcoin
Previsão de Preço do Golff
Previsão de Preço do Dynamix
Previsão de Preço do SuperRareBears RARE
Previsão de Preço do Wall Street Games
Previsão de Preço do Ethermon
Previsão de Preço do DYOR
Previsão de Preço do cherryPrevisão de Preço do DIGG
Previsão de Preço do MILK2
Previsão de Preço do Hedget
Como ler e prever os movimentos de preço de DeHive?
Traders de DeHive utilizam indicadores e padrões de gráfico para prever a direção do mercado. Eles também identificam níveis-chave de suporte e resistência para avaliar quando uma tendência de baixa pode desacelerar ou uma tendência de alta pode estagnar.
Indicadores de Previsão de Preço de DeHive
Médias móveis são ferramentas populares para a previsão de preço de DeHive. Uma média móvel simples (SMA) calcula o preço médio de fechamento de DHV em um período específico, como uma SMA de 12 dias. Uma média móvel exponencial (EMA) dá mais peso aos preços recentes, reagindo mais rapidamente às mudanças de preço.
Médias móveis comumente usadas no mercado de criptomoedas incluem as de 50 dias, 100 dias e 200 dias, que ajudam a identificar níveis-chave de resistência e suporte. Um movimento de preço de DHV acima dessas médias é visto como altista, enquanto uma queda abaixo indica fraqueza.
Traders também usam RSI e níveis de retração de Fibonacci para avaliar a direção futura de DHV.
Como ler gráficos de DeHive e prever movimentos de preço?
A maioria dos traders prefere gráficos de velas em vez de gráficos de linha simples porque eles fornecem informações mais detalhadas. Velas podem representar a ação de preço de DeHive em diferentes períodos de tempo, como 5 minutos para tendências de curto prazo e semanal para tendências de longo prazo. Opções populares incluem gráficos de 1 hora, 4 horas e 1 dia.
Por exemplo, um gráfico de velas de 1 hora mostra os preços de abertura, fechamento, máximo e mínimo de DHV dentro de cada hora. A cor da vela é crucial: verde indica que o preço fechou mais alto do que abriu, enquanto vermelho significa o oposto. Alguns gráficos usam velas vazias e preenchidas para transmitir a mesma informação.
O que afeta o preço de DeHive?
A ação de preço de DeHive é impulsionada pela oferta e demanda, influenciada por fatores como reduções pela metade das recompensas de bloco, hard forks e atualizações de protocolo. Eventos do mundo real, como regulamentações, adoção por empresas e governos e hacks de exchanges de criptomoedas, também impactam o preço de DHV. A capitalização de mercado de DeHive pode mudar rapidamente.
Traders frequentemente monitoram a atividade de "baleias" de DHV, grandes detentores de DeHive, pois suas ações podem influenciar significativamente os movimentos de preço no relativamente pequeno mercado de DeHive.
Padrões de previsão de preço altistas e baixistas
Traders frequentemente identificam padrões de velas para ganhar vantagem em previsões de preço de criptomoedas. Certas formações indicam tendências altistas, enquanto outras sugerem movimentos baixistas.
Padrões de velas altistas comumente seguidos:
- Martelo
- Engolfo de Alta
- Linha de Perfuração
- Estrela da Manhã
- Três Soldados Brancos
Padrões de velas baixistas comuns:
- Harami de Baixa
- Nuvem Negra
- Estrela da Noite
- Estrela Cadente
- Homem Enforcado


