Previsão de Preço Bifrost - Projeção BFC
Previsão de Preço Bifrost até $0.024145 até 2026
| Ano | Preço Mínimo | Preço Máximo |
|---|---|---|
| 2026 | $0.008088 | $0.024145 |
| 2027 | $0.007786 | $0.020456 |
| 2028 | $0.014053 | $0.03442 |
| 2029 | $0.03087 | $0.10155 |
| 2030 | $0.026254 | $0.0759087 |
| 2031 | $0.03104 | $0.069296 |
| 2032 | $0.047381 | $0.12854 |
| 2033 | $0.1101036 | $0.342385 |
| 2034 | $0.088518 | $0.198291 |
| 2035 | $0.104655 | $0.233636 |
Calculadora de lucro do investimento
Se você abrir um short de $10,000.00 em Bifrost hoje e fechar em Apr 06, 2026, nossa previsão mostra que pode lucrar cerca de $3,954.83, com um retorno de 39.55% nos próximos 90 dias.
Previsão de preço de longo prazo de Bifrost para os anos 2027, 2028, 2029, 2030, 2031, 2032 e 2037
[
'name' => 'Bifrost'
'name_with_ticker' => 'Bifrost <small>BFC</small>'
'name_lang' => 'Bifrost'
'name_lang_with_ticker' => 'Bifrost <small>BFC</small>'
'name_with_lang' => 'Bifrost'
'name_with_lang_with_ticker' => 'Bifrost <small>BFC</small>'
'image' => '/uploads/coins/bifrost.png?1717201112'
'price_for_sd' => 0.02341
'ticker' => 'BFC'
'marketcap' => '$32.59M'
'low24h' => '$0.02274'
'high24h' => '$0.02344'
'volume24h' => '$1.63M'
'current_supply' => '1.39B'
'max_supply' => '2.37B'
'algo' => 'SHA-256'
'proof' => null
'ico_price_and_roi' => '—'
'price' => '$0.02341'
'change_24h_pct' => '2.9496%'
'ath_price' => '$0.7788'
'ath_days' => 1601
'ath_exchange' => null
'ath_pair' => null
'ath_date' => '19 de ago. de 2021'
'ath_pct' => '-96.99%'
'fdv' => '$55.49M'
'new_prediction' => true
'change_24h_pct_is_increased' => true
'change_30d_pct' => null
'change_30d_pct_is_increased' => false
'max_price' => '$1.15'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.023612'
'next_week_prediction_price_date' => '13 de janeiro de 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.020692'
'next_month_prediction_price_date' => '5 de fevereiro de 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.008088'
'current_year_max_price_prediction' => '$0.024145'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.026254'
'grand_prediction_max_price' => '$0.0759087'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.023855736790741
107 => 0.023944805452285
108 => 0.024145481694702
109 => 0.022430725174887
110 => 0.023200600509678
111 => 0.023652830141304
112 => 0.021609640213363
113 => 0.023612442845785
114 => 0.022400875078866
115 => 0.021989650781637
116 => 0.022543310123175
117 => 0.022327548539326
118 => 0.022142049399478
119 => 0.022038537692163
120 => 0.022445084007437
121 => 0.022426118135902
122 => 0.021760929456874
123 => 0.020893217941642
124 => 0.021184450407814
125 => 0.021078642922535
126 => 0.020695182946446
127 => 0.020953588671196
128 => 0.019815700635544
129 => 0.017858023412478
130 => 0.01915132495131
131 => 0.019101534248907
201 => 0.019076427518926
202 => 0.02004830788113
203 => 0.019954884009399
204 => 0.019785318767398
205 => 0.020692068747802
206 => 0.020361092807446
207 => 0.021381082667885
208 => 0.022052913958777
209 => 0.021882515811941
210 => 0.022514376388268
211 => 0.021191159815627
212 => 0.021630679282824
213 => 0.021721263635866
214 => 0.020680879593795
215 => 0.019970169310206
216 => 0.019922773036981
217 => 0.018690499347148
218 => 0.019348770005691
219 => 0.019928020944119
220 => 0.019650604696301
221 => 0.019562782999816
222 => 0.020011445000953
223 => 0.020046309880972
224 => 0.019251386921735
225 => 0.019416676576896
226 => 0.020105961916039
227 => 0.019399308354874
228 => 0.018026395916733
301 => 0.017685894650075
302 => 0.017640465504419
303 => 0.016716999063746
304 => 0.017708648572883
305 => 0.01727576698759
306 => 0.018643234728813
307 => 0.017862144488903
308 => 0.017828473249806
309 => 0.017777574233413
310 => 0.016982708520007
311 => 0.017156733594892
312 => 0.017735219448576
313 => 0.017941629718279
314 => 0.01792009943608
315 => 0.017732384552301
316 => 0.017818319464839
317 => 0.017541493169845
318 => 0.017443740043441
319 => 0.017135204287396
320 => 0.016681741961187
321 => 0.016744798678892
322 => 0.015846371155801
323 => 0.015356860158063
324 => 0.01522136996554
325 => 0.015040186817574
326 => 0.015241835084213
327 => 0.015843826023509
328 => 0.015117697231216
329 => 0.013872800348841
330 => 0.013947620772672
331 => 0.014115720050639
401 => 0.013802468158236
402 => 0.013506001531315
403 => 0.013763755210325
404 => 0.013236275990077
405 => 0.014179463394344
406 => 0.014153952818311
407 => 0.014505514756304
408 => 0.014725353650908
409 => 0.014218696172533
410 => 0.014091273186869
411 => 0.014163859110555
412 => 0.012964175479169
413 => 0.01440747500914
414 => 0.014419956723409
415 => 0.014313080707965
416 => 0.015081593150801
417 => 0.016703394110227
418 => 0.016093207352499
419 => 0.015856924596914
420 => 0.015407750905825
421 => 0.016006248179906
422 => 0.015960292927268
423 => 0.01575246584683
424 => 0.01562677138012
425 => 0.015858367289035
426 => 0.015598074084047
427 => 0.015551318272053
428 => 0.01526802892219
429 => 0.015166907513133
430 => 0.015092041247627
501 => 0.015009620845511
502 => 0.015191419714693
503 => 0.014779439559494
504 => 0.014282631879237
505 => 0.014241327696158
506 => 0.014355372177142
507 => 0.014304915983919
508 => 0.014241086131316
509 => 0.014119217559671
510 => 0.014083061757774
511 => 0.014200550573638
512 => 0.014067912550551
513 => 0.014263627178783
514 => 0.014210403629288
515 => 0.013913101208332
516 => 0.013542552316367
517 => 0.013539253653976
518 => 0.013459419503024
519 => 0.013357738708642
520 => 0.013329453437787
521 => 0.013742047914412
522 => 0.014596106133114
523 => 0.014428434068902
524 => 0.014549594319019
525 => 0.015145582832891
526 => 0.015335029659451
527 => 0.015200564789253
528 => 0.015016500981493
529 => 0.015024598854895
530 => 0.015653600605913
531 => 0.015692830673574
601 => 0.015791952398456
602 => 0.015919351826725
603 => 0.015222261462778
604 => 0.014991765961442
605 => 0.014882544405505
606 => 0.014546184287282
607 => 0.014908919837448
608 => 0.014697569366251
609 => 0.014726087765576
610 => 0.014707515120604
611 => 0.014717657040635
612 => 0.014179199754243
613 => 0.014375385288922
614 => 0.014049188786707
615 => 0.013612448287517
616 => 0.013610984180223
617 => 0.01371787579867
618 => 0.013654292481348
619 => 0.013483191409312
620 => 0.01350749550902
621 => 0.013294566021599
622 => 0.013533349004006
623 => 0.013540196445535
624 => 0.013448251990711
625 => 0.013816130120811
626 => 0.013966850090873
627 => 0.013906330281067
628 => 0.013962603859684
629 => 0.014435401600164
630 => 0.014512488261474
701 => 0.014546725064368
702 => 0.014500852283997
703 => 0.013971245734453
704 => 0.013994736036986
705 => 0.013822379783058
706 => 0.013676756910944
707 => 0.013682581062137
708 => 0.013757450148052
709 => 0.014084407837257
710 => 0.014772471018982
711 => 0.01479858251376
712 => 0.014830230407158
713 => 0.014701502519752
714 => 0.01466267695715
715 => 0.01471389789595
716 => 0.014972298250362
717 => 0.015636974116922
718 => 0.015402033273471
719 => 0.015211022710674
720 => 0.015378590470325
721 => 0.015352794727166
722 => 0.015135052694988
723 => 0.015128941401357
724 => 0.014711024825267
725 => 0.014556530582586
726 => 0.014427423629709
727 => 0.014286442207589
728 => 0.014202863694816
729 => 0.01433127827619
730 => 0.014360648210307
731 => 0.014079867483831
801 => 0.014041598108332
802 => 0.014270889710646
803 => 0.01416998702532
804 => 0.014273767939444
805 => 0.014297846001736
806 => 0.014293968879142
807 => 0.014188614887063
808 => 0.014255764379913
809 => 0.014096935811095
810 => 0.013924233597785
811 => 0.013814060345422
812 => 0.013717919570373
813 => 0.013771264060105
814 => 0.013581100694531
815 => 0.013520263606651
816 => 0.014233015642647
817 => 0.014759533235013
818 => 0.014751877460696
819 => 0.014705274903447
820 => 0.014636032956359
821 => 0.014967232770651
822 => 0.014851849377901
823 => 0.014935800436732
824 => 0.014957169504619
825 => 0.015021847237162
826 => 0.015044963967308
827 => 0.014975089153207
828 => 0.014740580742597
829 => 0.014156208079746
830 => 0.013884181027706
831 => 0.013794407569563
901 => 0.013797670664263
902 => 0.013707659945357
903 => 0.013734172136072
904 => 0.013698440087381
905 => 0.013630772231672
906 => 0.013767085760698
907 => 0.01378279462507
908 => 0.01375097741857
909 => 0.0137584715225
910 => 0.013495038641987
911 => 0.013515066871746
912 => 0.013403547143382
913 => 0.013382638538704
914 => 0.013100726376534
915 => 0.012601278117427
916 => 0.012878020935588
917 => 0.012543754527179
918 => 0.012417162773352
919 => 0.013016428446912
920 => 0.012956278794329
921 => 0.012853328735533
922 => 0.0127010441419
923 => 0.012644560304793
924 => 0.012301382391137
925 => 0.012281105609215
926 => 0.012451193849806
927 => 0.012372703979152
928 => 0.012262474474316
929 => 0.011863234381584
930 => 0.011414356333501
1001 => 0.011427905140226
1002 => 0.011570684895648
1003 => 0.011985836291011
1004 => 0.011823629458651
1005 => 0.011705946540665
1006 => 0.011683908067661
1007 => 0.011959765697966
1008 => 0.012350162038808
1009 => 0.012533327267305
1010 => 0.012351816088675
1011 => 0.012143305819921
1012 => 0.012155996873837
1013 => 0.012240424769844
1014 => 0.012249296947968
1015 => 0.012113578198211
1016 => 0.012151782231291
1017 => 0.012093746811593
1018 => 0.011737583548033
1019 => 0.011731141684001
1020 => 0.011643733475215
1021 => 0.011641086789391
1022 => 0.011492383621246
1023 => 0.011471579020086
1024 => 0.011176319854098
1025 => 0.011370660331279
1026 => 0.011240306942519
1027 => 0.011043833638402
1028 => 0.011009961566717
1029 => 0.01100894333134
1030 => 0.011210677484042
1031 => 0.011368302950249
1101 => 0.011242574495525
1102 => 0.011213948563529
1103 => 0.01151959862571
1104 => 0.011480701869235
1105 => 0.011447017528985
1106 => 0.01231520632839
1107 => 0.011627967148044
1108 => 0.011328291639172
1109 => 0.010957386290108
1110 => 0.01107815494203
1111 => 0.011103602671451
1112 => 0.010211642167665
1113 => 0.0098497739023655
1114 => 0.0097255943504326
1115 => 0.0096541272626541
1116 => 0.0096866957119819
1117 => 0.0093609718302983
1118 => 0.0095798636657655
1119 => 0.0092978143169818
1120 => 0.0092505278257903
1121 => 0.0097548670006251
1122 => 0.0098250428504966
1123 => 0.009525650873017
1124 => 0.0097179089897173
1125 => 0.009648193524014
1126 => 0.009302649243536
1127 => 0.0092894519936734
1128 => 0.0091160700201983
1129 => 0.0088447608050754
1130 => 0.0087207652135661
1201 => 0.008656187232929
1202 => 0.0086828333663396
1203 => 0.0086693602659021
1204 => 0.0085814391719908
1205 => 0.0086743998000883
1206 => 0.0084369238092826
1207 => 0.0083423589562697
1208 => 0.0082996462060517
1209 => 0.0080888725956036
1210 => 0.0084243071412765
1211 => 0.0084903919724671
1212 => 0.0085566070111899
1213 => 0.0091329637163442
1214 => 0.0091041705641218
1215 => 0.0093644466373782
1216 => 0.0093543327877885
1217 => 0.0092800978355029
1218 => 0.0089669127828671
1219 => 0.0090917427628609
1220 => 0.0087075354873259
1221 => 0.008995409701712
1222 => 0.0088640359321808
1223 => 0.0089509920980834
1224 => 0.0087946370712691
1225 => 0.008881170398849
1226 => 0.0085060631375281
1227 => 0.0081557932548082
1228 => 0.00829675208063
1229 => 0.0084499904448953
1230 => 0.0087822502630316
1231 => 0.0085843590564336
]
'min_raw' => 0.0080888725956036
'max_raw' => 0.024145481694702
'avg_raw' => 0.016117177145153
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.008088'
'max' => '$0.024145'
'avg' => '$0.016117'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.015323217404396
'max_diff' => 0.00073339169470246
'year' => 2026
]
1 => [
'items' => [
101 => 0.0086555282174212
102 => 0.0084171234416863
103 => 0.0079252262923878
104 => 0.007928010376833
105 => 0.0078523427169753
106 => 0.007786954811199
107 => 0.0086070892420249
108 => 0.008505092561145
109 => 0.0083425741991584
110 => 0.0085601114849004
111 => 0.0086176317960315
112 => 0.0086192693184254
113 => 0.0087779789066528
114 => 0.00886268224234
115 => 0.0088776115723801
116 => 0.0091273445386035
117 => 0.0092110517348241
118 => 0.0095558298293709
119 => 0.0088554957560962
120 => 0.0088410728367247
121 => 0.0085631726806241
122 => 0.0083869240081974
123 => 0.0085752405780124
124 => 0.0087420633510933
125 => 0.0085683563292004
126 => 0.0085910387991042
127 => 0.0083578513145981
128 => 0.0084412048678181
129 => 0.0085130001767873
130 => 0.0084733590271077
131 => 0.008414014307384
201 => 0.0087283857861225
202 => 0.0087106477152603
203 => 0.0090033976636307
204 => 0.009231617183135
205 => 0.0096406273612057
206 => 0.0092138039182061
207 => 0.0091982487754737
208 => 0.0093503027908066
209 => 0.0092110284561466
210 => 0.0092990450280651
211 => 0.0096264465307387
212 => 0.0096333640085777
213 => 0.0095174873421083
214 => 0.0095104362364227
215 => 0.00953269161777
216 => 0.0096630420814552
217 => 0.0096174936241784
218 => 0.009670203452085
219 => 0.0097361178990036
220 => 0.010008767998606
221 => 0.010074503014567
222 => 0.0099148010054788
223 => 0.0099292203087919
224 => 0.0098694873734747
225 => 0.0098117861064098
226 => 0.0099414901281784
227 => 0.010178526777299
228 => 0.010177052184607
301 => 0.010232040079869
302 => 0.010266297083073
303 => 0.010119240947663
304 => 0.010023512810915
305 => 0.010060221069884
306 => 0.010118918375377
307 => 0.010041186324815
308 => 0.0095613880997585
309 => 0.0097069282316113
310 => 0.0096827032371222
311 => 0.0096482038991096
312 => 0.0097945456271162
313 => 0.009780430610447
314 => 0.0093576310610981
315 => 0.0093846973164776
316 => 0.0093592770497339
317 => 0.00944141513208
318 => 0.0092065927301457
319 => 0.0092788225194276
320 => 0.0093241243661531
321 => 0.0093508075018996
322 => 0.0094472052850133
323 => 0.0094358941177839
324 => 0.0094465021669767
325 => 0.0095894346312631
326 => 0.010312337987125
327 => 0.010351684021789
328 => 0.010157929756971
329 => 0.010235330764132
330 => 0.010086737756122
331 => 0.010186489237886
401 => 0.010254736668295
402 => 0.0099463396535007
403 => 0.0099280783837646
404 => 0.0097788720795538
405 => 0.0098590470959597
406 => 0.0097314828800703
407 => 0.0097627826766427
408 => 0.009675265716759
409 => 0.0098327788200967
410 => 0.01000890294469
411 => 0.010053398853915
412 => 0.0099363492734379
413 => 0.0098515976632294
414 => 0.0097028017546193
415 => 0.009950252666771
416 => 0.010022614854414
417 => 0.0099498725790048
418 => 0.0099330166043424
419 => 0.0099010745628152
420 => 0.0099397932594522
421 => 0.0100222207544
422 => 0.0099833494699792
423 => 0.010009024638163
424 => 0.0099111773731656
425 => 0.010119289629363
426 => 0.010449821977146
427 => 0.010450884692692
428 => 0.010412013198741
429 => 0.010396107820914
430 => 0.010435992332627
501 => 0.010457628044083
502 => 0.010586607241396
503 => 0.01072500705887
504 => 0.011370858618449
505 => 0.011189506084936
506 => 0.011762544010476
507 => 0.012215742609917
508 => 0.012351637053916
509 => 0.012226620559764
510 => 0.01179894588653
511 => 0.011777962126731
512 => 0.012417088648133
513 => 0.012236506131988
514 => 0.012215026416301
515 => 0.011986518531948
516 => 0.012121594992853
517 => 0.012092051789401
518 => 0.012045416397448
519 => 0.012303132875348
520 => 0.012785555115466
521 => 0.012710365085217
522 => 0.0126542392156
523 => 0.012408311992937
524 => 0.012556415110814
525 => 0.012503678427267
526 => 0.012730268687314
527 => 0.012596041636851
528 => 0.01223513804182
529 => 0.012292613128883
530 => 0.012283925885097
531 => 0.012462708746621
601 => 0.012409042569255
602 => 0.012273446702655
603 => 0.012783906248695
604 => 0.012750759845101
605 => 0.012797753867075
606 => 0.012818442088887
607 => 0.013129149819255
608 => 0.013256436834849
609 => 0.013285333215862
610 => 0.013406246035945
611 => 0.013282324794749
612 => 0.013778098113879
613 => 0.014107758441925
614 => 0.014490675877116
615 => 0.015050221168434
616 => 0.015260615374053
617 => 0.015222609543973
618 => 0.015646850397848
619 => 0.016409201781917
620 => 0.015376702555154
621 => 0.01646392674804
622 => 0.016119724121179
623 => 0.015303625884833
624 => 0.015251078779578
625 => 0.015803749980327
626 => 0.017029521510956
627 => 0.016722479645119
628 => 0.017030023721454
629 => 0.016671257220244
630 => 0.016653441439538
701 => 0.017012599233272
702 => 0.017851790995005
703 => 0.017453122445639
704 => 0.016881533322583
705 => 0.017303585836136
706 => 0.01693796488978
707 => 0.016114118566782
708 => 0.016722244855991
709 => 0.016315608124837
710 => 0.016434286340985
711 => 0.017288976267223
712 => 0.017186137714069
713 => 0.017319220324444
714 => 0.017084333000511
715 => 0.016864911201626
716 => 0.01645534411953
717 => 0.016334091497935
718 => 0.016367601360331
719 => 0.016334074892111
720 => 0.016104925873794
721 => 0.016055441165106
722 => 0.015972964482651
723 => 0.01599852745528
724 => 0.01584344716286
725 => 0.016136115715879
726 => 0.016190437578306
727 => 0.016403417344662
728 => 0.016425529610538
729 => 0.017018675228261
730 => 0.016691980589426
731 => 0.016911155558615
801 => 0.016891550486416
802 => 0.015321313208241
803 => 0.015537678050853
804 => 0.015874273846928
805 => 0.015722637897041
806 => 0.015508260141248
807 => 0.015335138609237
808 => 0.015072841785655
809 => 0.015442019527882
810 => 0.015927449001236
811 => 0.016437840903063
812 => 0.017051043330906
813 => 0.016914183687475
814 => 0.016426377510209
815 => 0.016448260138979
816 => 0.016583529939535
817 => 0.016408343257257
818 => 0.016356677284603
819 => 0.016576431828277
820 => 0.016577945157044
821 => 0.016376371707066
822 => 0.016152359704968
823 => 0.0161514210865
824 => 0.016111560314425
825 => 0.016678348363045
826 => 0.016990024481051
827 => 0.017025757645689
828 => 0.016987619354364
829 => 0.01700229726904
830 => 0.016820939803287
831 => 0.017235469190112
901 => 0.01761588234817
902 => 0.017513923495469
903 => 0.017361072680965
904 => 0.01723931964492
905 => 0.017485242349544
906 => 0.017474291798625
907 => 0.0176125597711
908 => 0.017606287137194
909 => 0.017559792818572
910 => 0.017513925155928
911 => 0.017695785253668
912 => 0.017643412466103
913 => 0.017590958329132
914 => 0.017485753527112
915 => 0.017500052606973
916 => 0.017347228184317
917 => 0.017276524613627
918 => 0.016213312552029
919 => 0.015929187547713
920 => 0.016018579057969
921 => 0.016048009064194
922 => 0.0159243574982
923 => 0.016101642080355
924 => 0.016074012466017
925 => 0.016181503132622
926 => 0.016114347630829
927 => 0.016117103716047
928 => 0.016314593727757
929 => 0.016371925918339
930 => 0.016342766303482
1001 => 0.016363188698195
1002 => 0.016833814164603
1003 => 0.016766906273035
1004 => 0.016731362789163
1005 => 0.016741208577104
1006 => 0.016861463474095
1007 => 0.016895128279579
1008 => 0.016752488133161
1009 => 0.016819758050805
1010 => 0.017106184822307
1011 => 0.017206417981982
1012 => 0.017526314113017
1013 => 0.017390416550853
1014 => 0.017639862407714
1015 => 0.018406573929345
1016 => 0.019019076145225
1017 => 0.018455793794777
1018 => 0.019580576112555
1019 => 0.020456380487386
1020 => 0.020422765656751
1021 => 0.020270048906279
1022 => 0.019272968909999
1023 => 0.018355441031796
1024 => 0.019122992062204
1025 => 0.019124948707629
1026 => 0.019059015393409
1027 => 0.018649509241425
1028 => 0.019044765466976
1029 => 0.019076139470801
1030 => 0.01905857837168
1031 => 0.018744610965091
1101 => 0.018265240766107
1102 => 0.018358908555538
1103 => 0.018512338305398
1104 => 0.018221863780114
1105 => 0.018129039568814
1106 => 0.01830161743815
1107 => 0.018857699291178
1108 => 0.018752575238026
1109 => 0.018749830024158
1110 => 0.019199595303079
1111 => 0.018877660428794
1112 => 0.018360090006329
1113 => 0.018229396648741
1114 => 0.0177655232749
1115 => 0.018085922266472
1116 => 0.018097452855784
1117 => 0.017921973602498
1118 => 0.018374329180612
1119 => 0.018370160644324
1120 => 0.0187996049415
1121 => 0.019620541145789
1122 => 0.019377749914364
1123 => 0.019095410127827
1124 => 0.019126108291057
1125 => 0.019462791372163
1126 => 0.019259225095599
1127 => 0.019332428947966
1128 => 0.019462680569365
1129 => 0.019541264606521
1130 => 0.019114801257449
1201 => 0.019015372250681
1202 => 0.018811975397672
1203 => 0.018758912955303
1204 => 0.018924575448065
1205 => 0.018880929234165
1206 => 0.018096483754401
1207 => 0.018014504837152
1208 => 0.018017019013505
1209 => 0.017810879128198
1210 => 0.017496466323863
1211 => 0.018322724401042
1212 => 0.01825636431397
1213 => 0.018183107913705
1214 => 0.018192081404742
1215 => 0.018550732031561
1216 => 0.018342696555715
1217 => 0.018895792964595
1218 => 0.018782092970529
1219 => 0.018665477000645
1220 => 0.018649357121398
1221 => 0.018604469922199
1222 => 0.018450535014357
1223 => 0.018264649363083
1224 => 0.018141911554973
1225 => 0.016734954431646
1226 => 0.016996077489843
1227 => 0.017296475766182
1228 => 0.017400172047404
1229 => 0.01722279238281
1230 => 0.018457539044657
1231 => 0.018683139158091
]
'min_raw' => 0.007786954811199
'max_raw' => 0.020456380487386
'avg_raw' => 0.014121667649292
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.007786'
'max' => '$0.020456'
'avg' => '$0.014121'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -0.00030191778440451
'max_diff' => -0.0036891012073166
'year' => 2027
]
2 => [
'items' => [
101 => 0.017999781698967
102 => 0.017871953419666
103 => 0.018465919445367
104 => 0.018107685322476
105 => 0.018268998126079
106 => 0.017920328078076
107 => 0.018628798697107
108 => 0.018623401338003
109 => 0.018347790265665
110 => 0.018580734856702
111 => 0.018540255001525
112 => 0.018229090779655
113 => 0.018638663157954
114 => 0.018638866300744
115 => 0.01837359663592
116 => 0.018063819742402
117 => 0.018008438950445
118 => 0.017966716963068
119 => 0.018258737074788
120 => 0.018520561393834
121 => 0.019007751539824
122 => 0.019130242717878
123 => 0.019608333940524
124 => 0.019323653895277
125 => 0.019449848872111
126 => 0.019586851370834
127 => 0.019652535406822
128 => 0.019545506794979
129 => 0.020288179253946
130 => 0.020350883564379
131 => 0.020371907777277
201 => 0.020121482802713
202 => 0.020343918792821
203 => 0.020239848359355
204 => 0.020510610715634
205 => 0.020553069710366
206 => 0.02051710845235
207 => 0.020530585607448
208 => 0.01989684568012
209 => 0.019863982921643
210 => 0.019415896877982
211 => 0.019598495252859
212 => 0.019257136343195
213 => 0.019365384769836
214 => 0.01941309964487
215 => 0.019388176101947
216 => 0.019608819091006
217 => 0.019421227475922
218 => 0.018926142360797
219 => 0.018430922360064
220 => 0.018424705276352
221 => 0.018294322591518
222 => 0.018200079791163
223 => 0.018218234297954
224 => 0.018282213147817
225 => 0.018196361224102
226 => 0.018214682084829
227 => 0.018518930444163
228 => 0.018579945282828
229 => 0.01837259302101
301 => 0.017540043769021
302 => 0.017335734094292
303 => 0.01748258783685
304 => 0.0174124012065
305 => 0.01405316675584
306 => 0.014842369061793
307 => 0.014373451850374
308 => 0.014589550475239
309 => 0.014110907427903
310 => 0.014339340977923
311 => 0.014297157642292
312 => 0.015566171596072
313 => 0.015546357688655
314 => 0.015555841557607
315 => 0.015103151782453
316 => 0.01582429888614
317 => 0.016179561881027
318 => 0.016113812155692
319 => 0.016130359945036
320 => 0.015846014098646
321 => 0.015558594646949
322 => 0.01523980224148
323 => 0.015832079126909
324 => 0.015766228047753
325 => 0.015917266730867
326 => 0.016301400627894
327 => 0.016357965803414
328 => 0.01643398997294
329 => 0.016406740719934
330 => 0.01705592847754
331 => 0.016977307556615
401 => 0.017166761355261
402 => 0.016777040517551
403 => 0.016336034397042
404 => 0.016419855242974
405 => 0.016411782621466
406 => 0.016309008884346
407 => 0.016216229349798
408 => 0.016061777565248
409 => 0.016550485866129
410 => 0.016530645201599
411 => 0.016851842498084
412 => 0.016795067755986
413 => 0.016415912133121
414 => 0.016429453750367
415 => 0.016520527634225
416 => 0.016835735386121
417 => 0.016929310507864
418 => 0.016885962783149
419 => 0.016988563632273
420 => 0.017069655160048
421 => 0.016998747479655
422 => 0.018002650702957
423 => 0.017585760092753
424 => 0.01778894967546
425 => 0.017837409193673
426 => 0.017713281156764
427 => 0.017740200083278
428 => 0.017780974921978
429 => 0.018028551758033
430 => 0.018678265012774
501 => 0.018966018590551
502 => 0.019831739426805
503 => 0.01894212466164
504 => 0.018889338603067
505 => 0.019045281067941
506 => 0.019553550844679
507 => 0.019965455759374
508 => 0.020102108382942
509 => 0.020120169283036
510 => 0.020376538689345
511 => 0.020523484852035
512 => 0.020345408700234
513 => 0.020194507806933
514 => 0.019653999537637
515 => 0.019716564841564
516 => 0.020147577742588
517 => 0.020756408851818
518 => 0.021278849281619
519 => 0.02109590885199
520 => 0.022491615194241
521 => 0.022629993777126
522 => 0.022610874331287
523 => 0.022926121336593
524 => 0.022300420229996
525 => 0.022032920884538
526 => 0.020227134292863
527 => 0.020734486668046
528 => 0.021471953141134
529 => 0.021374346688064
530 => 0.020838778822771
531 => 0.021278443005367
601 => 0.021133076277031
602 => 0.021018419507121
603 => 0.021543684397387
604 => 0.020966134073847
605 => 0.021466191634854
606 => 0.020824862640429
607 => 0.021096744508463
608 => 0.020942411210721
609 => 0.021042283768737
610 => 0.020458430835304
611 => 0.020773463705956
612 => 0.020445324432153
613 => 0.020445168851412
614 => 0.020437925158756
615 => 0.020823979559193
616 => 0.020836568779331
617 => 0.020551273994112
618 => 0.02051015855842
619 => 0.020662183873646
620 => 0.02048420204501
621 => 0.020567478622425
622 => 0.020486724407704
623 => 0.020468544933027
624 => 0.020323687785814
625 => 0.020261279343865
626 => 0.02028575130202
627 => 0.020202215892675
628 => 0.020151882786937
629 => 0.020427912637159
630 => 0.020280441023198
701 => 0.020405310497278
702 => 0.020263005971779
703 => 0.01976971648727
704 => 0.019486020488287
705 => 0.018554242380007
706 => 0.018818493495648
707 => 0.018993692258705
708 => 0.01893578906856
709 => 0.019060187526552
710 => 0.019067824581551
711 => 0.019027381374765
712 => 0.018980553322403
713 => 0.018957760016267
714 => 0.019127642646
715 => 0.019226265230546
716 => 0.019011275798435
717 => 0.018960906782514
718 => 0.019178272968269
719 => 0.019310866216012
720 => 0.020289860259634
721 => 0.020217333218774
722 => 0.020399361858621
723 => 0.020378868227231
724 => 0.020569663241228
725 => 0.020881532453122
726 => 0.020247415145337
727 => 0.020357475983842
728 => 0.020330491607916
729 => 0.020625099948587
730 => 0.020626019683669
731 => 0.020449387266659
801 => 0.020545142565454
802 => 0.020491694584576
803 => 0.02058828230995
804 => 0.020216364575925
805 => 0.020669320229929
806 => 0.020926116897932
807 => 0.020929682519916
808 => 0.021051402102485
809 => 0.021175076247898
810 => 0.02141245800027
811 => 0.021168455799664
812 => 0.020729519593908
813 => 0.020761209370208
814 => 0.020503861233374
815 => 0.020508187302048
816 => 0.020485094408427
817 => 0.020554397920537
818 => 0.020231572799559
819 => 0.020307339210199
820 => 0.020201265791615
821 => 0.020357245400946
822 => 0.020189437125659
823 => 0.020330478595233
824 => 0.020391347417903
825 => 0.020615954683965
826 => 0.02015626244984
827 => 0.01921891886603
828 => 0.01941595985154
829 => 0.019124520756736
830 => 0.019151494554547
831 => 0.019205985918973
901 => 0.019029361578403
902 => 0.019063055936511
903 => 0.019061852136936
904 => 0.019051478442542
905 => 0.019005531630004
906 => 0.018938899661524
907 => 0.01920434091571
908 => 0.019249444557259
909 => 0.019349704365262
910 => 0.019648009547002
911 => 0.019618201824825
912 => 0.019666819456405
913 => 0.019560687439642
914 => 0.019156417714411
915 => 0.019178371505491
916 => 0.018904607378933
917 => 0.01934270360104
918 => 0.019238956633057
919 => 0.019172070287885
920 => 0.019153819728907
921 => 0.019452864351494
922 => 0.019542343189522
923 => 0.019486585982365
924 => 0.019372226323787
925 => 0.019591830675654
926 => 0.01965058753585
927 => 0.019663741029979
928 => 0.02005283783653
929 => 0.019685487219138
930 => 0.019773912163896
1001 => 0.020463778340879
1002 => 0.01983816491338
1003 => 0.020169566298771
1004 => 0.020153345925485
1005 => 0.020322879660239
1006 => 0.020139439210916
1007 => 0.020141713175137
1008 => 0.020292247646389
1009 => 0.020080849130551
1010 => 0.020028503885125
1011 => 0.019956189303474
1012 => 0.020114085546934
1013 => 0.020208737203856
1014 => 0.020971560044662
1015 => 0.021464378388771
1016 => 0.021442983844737
1017 => 0.021638489928297
1018 => 0.021550412647023
1019 => 0.021265987872176
1020 => 0.021751466280934
1021 => 0.021597840599123
1022 => 0.021610505313677
1023 => 0.021610033932368
1024 => 0.021712181580582
1025 => 0.021639800610128
1026 => 0.021497130287609
1027 => 0.021591841505843
1028 => 0.021873099964115
1029 => 0.022746134848655
1030 => 0.023234696736217
1031 => 0.022716722809567
1101 => 0.023074014288223
1102 => 0.022859766717
1103 => 0.022820831559996
1104 => 0.023045237012225
1105 => 0.023270035256491
1106 => 0.023255716580161
1107 => 0.023092524598341
1108 => 0.023000341588654
1109 => 0.023698382221577
1110 => 0.024212686669102
1111 => 0.024177614553722
1112 => 0.024332411464948
1113 => 0.024786899983997
1114 => 0.024828452718344
1115 => 0.024823218028895
1116 => 0.024720225241238
1117 => 0.025167728211034
1118 => 0.025541043061503
1119 => 0.024696385386643
1120 => 0.025018019971849
1121 => 0.025162412099567
1122 => 0.025374422582271
1123 => 0.025732119803675
1124 => 0.026120673860622
1125 => 0.026175619664553
1126 => 0.026136632987265
1127 => 0.025880371141815
1128 => 0.02630553162734
1129 => 0.026554580668521
1130 => 0.026702883673158
1201 => 0.027078955417651
1202 => 0.025163303816191
1203 => 0.023807310398615
1204 => 0.023595552445679
1205 => 0.024026170569946
1206 => 0.0241397211352
1207 => 0.024093949044726
1208 => 0.022567655171717
1209 => 0.023587516824311
1210 => 0.024684802210099
1211 => 0.024726953410602
1212 => 0.025276277417883
1213 => 0.025455159832206
1214 => 0.02589743765961
1215 => 0.025869773061087
1216 => 0.025977460673883
1217 => 0.02595270515659
1218 => 0.026771931699273
1219 => 0.027675660232171
1220 => 0.027644366986757
1221 => 0.027514445317723
1222 => 0.027707401151176
1223 => 0.028640145846562
1224 => 0.02855427366194
1225 => 0.028637691174725
1226 => 0.029737449737772
1227 => 0.031167292308565
1228 => 0.030502986880585
1229 => 0.031944338510565
1230 => 0.03285159295887
1231 => 0.034420595715353
]
'min_raw' => 0.01405316675584
'max_raw' => 0.034420595715353
'avg_raw' => 0.024236881235596
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.014053'
'max' => '$0.03442'
'avg' => '$0.024236'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 0.0062662119446405
'max_diff' => 0.013964215227967
'year' => 2028
]
3 => [
'items' => [
101 => 0.03422414884274
102 => 0.034834950101965
103 => 0.033872467941063
104 => 0.031662414349894
105 => 0.031312664909346
106 => 0.032012872146389
107 => 0.033734263313437
108 => 0.031958659412628
109 => 0.03231786176921
110 => 0.032214411466349
111 => 0.032208899039345
112 => 0.032419285957426
113 => 0.032114108759707
114 => 0.030870761955871
115 => 0.03144058046898
116 => 0.031220546176136
117 => 0.03146469062869
118 => 0.03278223754629
119 => 0.032199718647623
120 => 0.031586082307871
121 => 0.032355718454725
122 => 0.033335729745345
123 => 0.033274402400027
124 => 0.03315540171727
125 => 0.0338262023353
126 => 0.034934168430146
127 => 0.035233647213415
128 => 0.03545471632865
129 => 0.035485198024647
130 => 0.03579917843769
131 => 0.034110826623505
201 => 0.036790284312567
202 => 0.037252952636943
203 => 0.037165990167598
204 => 0.037680226538083
205 => 0.037528925152969
206 => 0.037309713184398
207 => 0.038124887212829
208 => 0.037190355970385
209 => 0.035863906525947
210 => 0.035136190126533
211 => 0.036094505784489
212 => 0.036679715716195
213 => 0.03706650225471
214 => 0.037183543627562
215 => 0.034241888568719
216 => 0.032656499643671
217 => 0.033672715768105
218 => 0.034912569575406
219 => 0.034103939173003
220 => 0.034135635953838
221 => 0.032982741504343
222 => 0.035014575152374
223 => 0.034718554080266
224 => 0.036254311926011
225 => 0.035887790990898
226 => 0.037140141896326
227 => 0.036810355932078
228 => 0.038179279031589
301 => 0.038725379518098
302 => 0.039642367228699
303 => 0.040316907121429
304 => 0.040713009848332
305 => 0.040689229326353
306 => 0.042258785667938
307 => 0.041333273129427
308 => 0.0401706112545
309 => 0.040149582369334
310 => 0.040751741429405
311 => 0.042013701625043
312 => 0.042340909542998
313 => 0.042523774130609
314 => 0.04224371064912
315 => 0.041239133120648
316 => 0.040805361637177
317 => 0.041174947508664
318 => 0.040722975746712
319 => 0.04150320580872
320 => 0.042574628332005
321 => 0.042353383817811
322 => 0.043092971057932
323 => 0.043858366044611
324 => 0.044952915251602
325 => 0.045239070945349
326 => 0.045712075425587
327 => 0.046198952409629
328 => 0.046355324175201
329 => 0.046653886394986
330 => 0.046652312824713
331 => 0.047552050169593
401 => 0.04854448832354
402 => 0.048919110751659
403 => 0.049780534368318
404 => 0.048305376612674
405 => 0.049424300715721
406 => 0.050433598265157
407 => 0.049230272118266
408 => 0.050888776872721
409 => 0.050953172854084
410 => 0.051925475718234
411 => 0.050939860494728
412 => 0.050354605321206
413 => 0.05204421507794
414 => 0.052861764017015
415 => 0.052615511623131
416 => 0.050741518746699
417 => 0.04965077451328
418 => 0.046796086465572
419 => 0.050177587771428
420 => 0.051824618417765
421 => 0.050737253335218
422 => 0.051285657034605
423 => 0.054277569797965
424 => 0.055416696466246
425 => 0.05517976608234
426 => 0.055219803417014
427 => 0.055834455490608
428 => 0.058560161279999
429 => 0.05692685518963
430 => 0.058175456496906
501 => 0.058837710128118
502 => 0.059452848208584
503 => 0.057942263499347
504 => 0.055977014987527
505 => 0.055354538288313
506 => 0.050629136307383
507 => 0.050383158612894
508 => 0.050245083879091
509 => 0.049374542213522
510 => 0.048690534925814
511 => 0.048146586935067
512 => 0.046719104970727
513 => 0.047200838229519
514 => 0.044925729917001
515 => 0.046381263590462
516 => 0.042750135789271
517 => 0.045774246921648
518 => 0.044128360721756
519 => 0.045233529039016
520 => 0.04522967321087
521 => 0.043194707944861
522 => 0.042020982448068
523 => 0.042768926016704
524 => 0.043570780894116
525 => 0.043700879150213
526 => 0.044740504929331
527 => 0.045030642137602
528 => 0.044151512851331
529 => 0.042674888736544
530 => 0.043017874840199
531 => 0.042014031845625
601 => 0.040254835609896
602 => 0.041518321059016
603 => 0.041949730542879
604 => 0.042140265547809
605 => 0.040410298095023
606 => 0.039866704761937
607 => 0.039577300232592
608 => 0.04245157166239
609 => 0.042609030739616
610 => 0.041803447838061
611 => 0.045444758941592
612 => 0.044620618092763
613 => 0.045541385340315
614 => 0.042986752446302
615 => 0.043084342863123
616 => 0.041874938711289
617 => 0.042552124223902
618 => 0.042073511330295
619 => 0.04249741432656
620 => 0.042751500034704
621 => 0.043960705735217
622 => 0.045788054108374
623 => 0.043780090727017
624 => 0.042905192327194
625 => 0.043447974373829
626 => 0.044893474490998
627 => 0.0470834811623
628 => 0.045786953134898
629 => 0.046362330256985
630 => 0.046488024561415
701 => 0.045532012794085
702 => 0.047118730679802
703 => 0.047969065685231
704 => 0.048841333448765
705 => 0.049598699107454
706 => 0.04849293052243
707 => 0.049676261414106
708 => 0.048722705601437
709 => 0.047867267460686
710 => 0.047868564807236
711 => 0.047331935965585
712 => 0.046292149965302
713 => 0.04610039747367
714 => 0.047097918150808
715 => 0.047897835268312
716 => 0.047963720273455
717 => 0.048406595490931
718 => 0.048668684482656
719 => 0.051237512894266
720 => 0.052270716931878
721 => 0.05353409927152
722 => 0.054026257893137
723 => 0.055507478895575
724 => 0.054311272637218
725 => 0.054052465888733
726 => 0.050459508240517
727 => 0.051047854854131
728 => 0.051989854549532
729 => 0.050475041468534
730 => 0.051435841706519
731 => 0.051625524026029
801 => 0.050423568699692
802 => 0.051065584972913
803 => 0.049360580095798
804 => 0.045825218555455
805 => 0.047122666547833
806 => 0.048078024986496
807 => 0.046714610699678
808 => 0.04915847803738
809 => 0.047730821190356
810 => 0.047278322509464
811 => 0.045512963827876
812 => 0.046346145170699
813 => 0.047473034866874
814 => 0.046776748049626
815 => 0.048221647743406
816 => 0.050268011050472
817 => 0.051726371406129
818 => 0.051838326205704
819 => 0.050900698199572
820 => 0.05240325306326
821 => 0.052414197535066
822 => 0.050719309510709
823 => 0.049681200032966
824 => 0.049445339375421
825 => 0.050034565541173
826 => 0.050749994883545
827 => 0.051878027555071
828 => 0.052559674073474
829 => 0.054337046676092
830 => 0.054817952741094
831 => 0.055346322704923
901 => 0.05605238791986
902 => 0.056900200241798
903 => 0.05504523514738
904 => 0.055118936368669
905 => 0.053391618556487
906 => 0.051545731751739
907 => 0.052946529743504
908 => 0.05477788677739
909 => 0.054357771450347
910 => 0.054310499893877
911 => 0.054389997539823
912 => 0.054073244302916
913 => 0.052640581151811
914 => 0.051921106686271
915 => 0.052849412304329
916 => 0.053342765426197
917 => 0.054107913093301
918 => 0.054013592493022
919 => 0.055984530712621
920 => 0.056750377706679
921 => 0.056554441273158
922 => 0.056590498292399
923 => 0.057977027693521
924 => 0.059519133549088
925 => 0.060963519181617
926 => 0.062432810284831
927 => 0.060661522512498
928 => 0.05976217181955
929 => 0.060690072168414
930 => 0.060197715182164
1001 => 0.063026944467729
1002 => 0.06322283416497
1003 => 0.066051858865055
1004 => 0.068736940179431
1005 => 0.0670504887141
1006 => 0.068640736486465
1007 => 0.070360719107081
1008 => 0.073678844639372
1009 => 0.07256141669316
1010 => 0.07170548439869
1011 => 0.070896632516251
1012 => 0.072579724881987
1013 => 0.074744996322449
1014 => 0.075211375052013
1015 => 0.075967086764293
1016 => 0.075172548302862
1017 => 0.076129482364115
1018 => 0.079507880098469
1019 => 0.078595007208705
1020 => 0.0772985809536
1021 => 0.079965501500105
1022 => 0.080930649678494
1023 => 0.087704565046455
1024 => 0.096256913014991
1025 => 0.092716184798273
1026 => 0.09051834053557
1027 => 0.091034886070868
1028 => 0.094157914033729
1029 => 0.095160931495447
1030 => 0.092434384273644
1031 => 0.093397446846396
1101 => 0.098704016308484
1102 => 0.10155082056976
1103 => 0.097684478006125
1104 => 0.087017392214418
1105 => 0.077181851953834
1106 => 0.079790680131091
1107 => 0.079494919977154
1108 => 0.085196166856145
1109 => 0.078573235492191
1110 => 0.078684748670906
1111 => 0.084503891297629
1112 => 0.08295144381018
1113 => 0.080436677702964
1114 => 0.077200212529424
1115 => 0.07121730731934
1116 => 0.065918081329114
1117 => 0.076311083834807
1118 => 0.075862918668313
1119 => 0.075213909092873
1120 => 0.076658209672844
1121 => 0.083671323317312
1122 => 0.083509648348574
1123 => 0.082481154684753
1124 => 0.083261258064034
1125 => 0.080299921808832
1126 => 0.081063125590171
1127 => 0.077180293954006
1128 => 0.078935496014925
1129 => 0.080431282144337
1130 => 0.080731583355309
1201 => 0.081408177317387
1202 => 0.075626755990353
1203 => 0.078222444432579
1204 => 0.079747168209271
1205 => 0.072858410716253
1206 => 0.079610999622678
1207 => 0.075526114307551
1208 => 0.074139642878679
1209 => 0.076006344003934
1210 => 0.075278888759996
1211 => 0.074653465458863
1212 => 0.074304468510694
1213 => 0.075675167796797
1214 => 0.07561122303676
1215 => 0.073368492963429
1216 => 0.070442943008141
1217 => 0.071424853601039
1218 => 0.071068116277179
1219 => 0.069775254195476
1220 => 0.070646487137781
1221 => 0.066810018180774
1222 => 0.060209572742548
1223 => 0.064570029176151
1224 => 0.064402156346722
1225 => 0.064317507253696
1226 => 0.067594269749385
1227 => 0.067279284643198
1228 => 0.066707583591125
1229 => 0.069764754457321
1230 => 0.068648845966409
1231 => 0.072087812994294
]
'min_raw' => 0.030870761955871
'max_raw' => 0.10155082056976
'avg_raw' => 0.066210791262817
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.03087'
'max' => '$0.10155'
'avg' => '$0.06621'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072434
'min_diff' => 0.016817595200031
'max_diff' => 0.06713022485441
'year' => 2029
]
4 => [
'items' => [
101 => 0.074352939097301
102 => 0.073778429848425
103 => 0.075908791896608
104 => 0.071447474837919
105 => 0.072929345407842
106 => 0.07323475687852
107 => 0.069727029443385
108 => 0.067330820102057
109 => 0.067171020257777
110 => 0.063016323477902
111 => 0.06523572896217
112 => 0.067188713943087
113 => 0.066253385694985
114 => 0.065957288713772
115 => 0.067469983975188
116 => 0.067587533352359
117 => 0.064907395095541
118 => 0.065464680708073
119 => 0.06778865435336
120 => 0.065406122534914
121 => 0.060777252396038
122 => 0.05962922860246
123 => 0.05947606106612
124 => 0.056362529487021
125 => 0.059705945041836
126 => 0.058246454554193
127 => 0.062856967517276
128 => 0.06022346723944
129 => 0.060109942305973
130 => 0.05993833271855
131 => 0.05725838747005
201 => 0.057845125160066
202 => 0.059795530604353
203 => 0.060491457239764
204 => 0.060418866390132
205 => 0.059785972553636
206 => 0.060075708111043
207 => 0.059142368930074
208 => 0.058812787439499
209 => 0.057772537596714
210 => 0.056243657704172
211 => 0.056456257830395
212 => 0.053427146710085
213 => 0.051776726204646
214 => 0.051319911560932
215 => 0.050709039927761
216 => 0.051388911137367
217 => 0.053418565618869
218 => 0.050970371698958
219 => 0.046773114944106
220 => 0.04702537722685
221 => 0.047592135678832
222 => 0.046535985053046
223 => 0.045536427121743
224 => 0.046405461646313
225 => 0.044627028627824
226 => 0.047807050812552
227 => 0.047721040124365
228 => 0.048906355743579
301 => 0.049647557925399
302 => 0.04793932686336
303 => 0.047509711370805
304 => 0.0477544398803
305 => 0.043709622757845
306 => 0.048575807891098
307 => 0.048617890862203
308 => 0.048257550914288
309 => 0.050848644271135
310 => 0.056316659436366
311 => 0.054259372180806
312 => 0.053462728373616
313 => 0.051948307913806
314 => 0.053966183259114
315 => 0.053811241916353
316 => 0.053110538404631
317 => 0.052686750734413
318 => 0.053467592510829
319 => 0.052589995797121
320 => 0.052432355312595
321 => 0.051477225490902
322 => 0.051136287600195
323 => 0.050883870759044
324 => 0.050605984618904
325 => 0.051218932199142
326 => 0.049829912342354
327 => 0.048154890562363
328 => 0.048015630625343
329 => 0.048400139555313
330 => 0.048230022977124
331 => 0.048014816172615
401 => 0.047603927774722
402 => 0.047482025964308
403 => 0.047878147709801
404 => 0.047430949354472
405 => 0.048090814887915
406 => 0.047911367974844
407 => 0.046908992105599
408 => 0.045659660645442
409 => 0.045648538974885
410 => 0.045379372561108
411 => 0.045036548663722
412 => 0.044941182898218
413 => 0.046332273982588
414 => 0.049211790895381
415 => 0.0486464728244
416 => 0.04905497306681
417 => 0.051064389951918
418 => 0.05170312315442
419 => 0.051249765456509
420 => 0.050629181477724
421 => 0.050656484023273
422 => 0.052777207342328
423 => 0.052909474254406
424 => 0.053243670070302
425 => 0.053673206137455
426 => 0.051322917306112
427 => 0.050545785630675
428 => 0.050177537529229
429 => 0.049043475906727
430 => 0.0502664641395
501 => 0.049553881269841
502 => 0.049650033044255
503 => 0.049587414075029
504 => 0.049621608266503
505 => 0.047806161931543
506 => 0.048467615158952
507 => 0.047367820877421
508 => 0.045895319792153
509 => 0.04589038345219
510 => 0.046250776006718
511 => 0.046036400413122
512 => 0.045459521202857
513 => 0.045541464171882
514 => 0.044823557538778
515 => 0.04562863103526
516 => 0.045651717662448
517 => 0.045341720513653
518 => 0.046582047313717
519 => 0.047090210215713
520 => 0.046886163451594
521 => 0.047075893750796
522 => 0.048669964342507
523 => 0.048929867403132
524 => 0.049045299174429
525 => 0.04889063589267
526 => 0.047105030434936
527 => 0.047184229629967
528 => 0.046603118486319
529 => 0.046112140805921
530 => 0.046131777338298
531 => 0.046384203688653
601 => 0.047486564365266
602 => 0.049806417421487
603 => 0.04989445414918
604 => 0.050001157231356
605 => 0.049567142171472
606 => 0.049436239076446
607 => 0.049608934047741
608 => 0.050480148883578
609 => 0.052721149973873
610 => 0.051929030517132
611 => 0.051285025068729
612 => 0.051849991469601
613 => 0.05176301932054
614 => 0.051028886856785
615 => 0.051008282203632
616 => 0.049599247289341
617 => 0.0490783591637
618 => 0.048643066058114
619 => 0.048167737350429
620 => 0.04788594655935
621 => 0.048318905286071
622 => 0.048417928069489
623 => 0.047471256246691
624 => 0.047342228375316
625 => 0.048115301021143
626 => 0.047775100572768
627 => 0.048125005170487
628 => 0.048206186038584
629 => 0.048193114049067
630 => 0.04783790570919
701 => 0.048064304912562
702 => 0.047528803303736
703 => 0.046946525733878
704 => 0.046575068921484
705 => 0.046250923586073
706 => 0.046430778257596
707 => 0.045789629193781
708 => 0.045584512704486
709 => 0.047987605956603
710 => 0.049762796779548
711 => 0.04973698480193
712 => 0.04957986102648
713 => 0.049346406967555
714 => 0.050463070265072
715 => 0.050074047100605
716 => 0.050357093956728
717 => 0.050429141261051
718 => 0.050647206751975
719 => 0.050725146421618
720 => 0.050489558607375
721 => 0.049698897128148
722 => 0.047728643895751
723 => 0.046811485697474
724 => 0.046508808215564
725 => 0.046519809967165
726 => 0.046216332544026
727 => 0.046305720246045
728 => 0.046185247149152
729 => 0.045957100249209
730 => 0.046416690829426
731 => 0.046469654362413
801 => 0.046362380429292
802 => 0.046387647323915
803 => 0.045499464974969
804 => 0.045566991549929
805 => 0.045190994999691
806 => 0.045120500179227
807 => 0.044170013641991
808 => 0.04248608896605
809 => 0.043419146699044
810 => 0.042292144165358
811 => 0.041865331228976
812 => 0.043885797286779
813 => 0.04368299853358
814 => 0.043335895222604
815 => 0.042822457083001
816 => 0.042632017882617
817 => 0.041474969586809
818 => 0.04140660500088
819 => 0.041980069379215
820 => 0.041715435300318
821 => 0.041343788828783
822 => 0.039997722982085
823 => 0.038484299303311
824 => 0.038529980051131
825 => 0.0390113719651
826 => 0.040411083879511
827 => 0.039864192219289
828 => 0.039467416044939
829 => 0.039393111794531
830 => 0.040323185054869
831 => 0.04163943357462
901 => 0.042256987930687
902 => 0.041645010319229
903 => 0.040942003390402
904 => 0.040984792164739
905 => 0.041269446710697
906 => 0.041299359878678
907 => 0.040841774638292
908 => 0.04097058220314
909 => 0.040774911733725
910 => 0.039574082424107
911 => 0.039552363229767
912 => 0.039257660351198
913 => 0.039248736865157
914 => 0.038747373751634
915 => 0.038677229586292
916 => 0.037681742693825
917 => 0.038336975181059
918 => 0.037897479629872
919 => 0.037235056167714
920 => 0.037120854113155
921 => 0.037117421061492
922 => 0.037797581841953
923 => 0.03832902710633
924 => 0.03790512484315
925 => 0.037808610514823
926 => 0.038839131039273
927 => 0.038707987909134
928 => 0.038594418804216
929 => 0.041521577956417
930 => 0.039204503078373
1001 => 0.038194126177535
1002 => 0.036943592897379
1003 => 0.037350772839134
1004 => 0.03743657163558
1005 => 0.034429264522371
1006 => 0.033209200401078
1007 => 0.032790520371797
1008 => 0.032549564095679
1009 => 0.032659370896445
1010 => 0.031561170088033
1011 => 0.032299179193851
1012 => 0.03134823012237
1013 => 0.03118880041588
1014 => 0.032889215155672
1015 => 0.033125817933036
1016 => 0.032116396978083
1017 => 0.032764608641571
1018 => 0.032529558081574
1019 => 0.031364531414811
1020 => 0.031320035965497
1021 => 0.030735466536783
1022 => 0.029820728575791
1023 => 0.029402668781922
1024 => 0.029184939611513
1025 => 0.029274778910681
1026 => 0.029229353411894
1027 => 0.028932921305317
1028 => 0.029246344553252
1029 => 0.028445677670206
1030 => 0.028126845665966
1031 => 0.027982836646497
1101 => 0.027272198703127
1102 => 0.028403139693156
1103 => 0.028625949315411
1104 => 0.028849197941451
1105 => 0.030792424812819
1106 => 0.030695346689827
1107 => 0.031572885642706
1108 => 0.031538786092688
1109 => 0.031288497768138
1110 => 0.030232572497295
1111 => 0.030653445490195
1112 => 0.029358063836233
1113 => 0.030328651848772
1114 => 0.029885716012573
1115 => 0.030178894797
1116 => 0.029651732907736
1117 => 0.029943486063236
1118 => 0.028678785742539
1119 => 0.027497826377887
1120 => 0.027973078900576
1121 => 0.028489732744458
1122 => 0.029609969918944
1123 => 0.028942765899576
1124 => 0.029182717694718
1125 => 0.028378919348438
1126 => 0.026720453766416
1127 => 0.026729840501501
1128 => 0.026474721703344
1129 => 0.026254261813781
1130 => 0.029019402307268
1201 => 0.0286755133765
1202 => 0.028127571372393
1203 => 0.02886101351924
1204 => 0.029054947264159
1205 => 0.029060468285238
1206 => 0.029595568742696
1207 => 0.029881151952764
1208 => 0.029931487231326
1209 => 0.030773479362747
1210 => 0.031055704019055
1211 => 0.032218147436457
1212 => 0.029856922212648
1213 => 0.029808294333011
1214 => 0.028871334554349
1215 => 0.028277099849973
1216 => 0.028912022312947
1217 => 0.029474476939583
1218 => 0.028888811587434
1219 => 0.028965287118355
1220 => 0.028179079233712
1221 => 0.028460111557952
1222 => 0.028702174454731
1223 => 0.028568521550929
1224 => 0.028368436685065
1225 => 0.029428362074347
1226 => 0.029368556930003
1227 => 0.030355583820082
1228 => 0.031125041863869
1229 => 0.032504048235413
1230 => 0.031064983197479
1231 => 0.031012537947731
]
'min_raw' => 0.026254261813781
'max_raw' => 0.075908791896608
'avg_raw' => 0.051081526855195
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.026254'
'max' => '$0.0759087'
'avg' => '$0.051081'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -0.0046165001420897
'max_diff' => -0.025642028673155
'year' => 2030
]
5 => [
'items' => [
101 => 0.031525198676498
102 => 0.031055625533368
103 => 0.031352379550713
104 => 0.03245623657542
105 => 0.032479559334917
106 => 0.032088873063665
107 => 0.032065099768553
108 => 0.032140135340587
109 => 0.03257962102968
110 => 0.03242605122588
111 => 0.032603766090749
112 => 0.032826001250535
113 => 0.033745260097165
114 => 0.033966890292952
115 => 0.033428443819272
116 => 0.033477059507116
117 => 0.033275665745274
118 => 0.033081121894791
119 => 0.033518428059829
120 => 0.034317613671711
121 => 0.034312641979497
122 => 0.034498037507505
123 => 0.034613537385555
124 => 0.034117727357888
125 => 0.033794973261317
126 => 0.033918737719319
127 => 0.034116639782903
128 => 0.033854560747356
129 => 0.032236887533135
130 => 0.032727586248965
131 => 0.032645909988709
201 => 0.032529593061933
202 => 0.033022994415161
203 => 0.032975404650981
204 => 0.03154990645143
205 => 0.031641162221147
206 => 0.031555456017035
207 => 0.031832390296362
208 => 0.031040670173464
209 => 0.031284197950951
210 => 0.03143693629006
211 => 0.031526900345186
212 => 0.031851912201232
213 => 0.031813775811198
214 => 0.031849541589682
215 => 0.03233144837225
216 => 0.034768767508039
217 => 0.034901425410959
218 => 0.034248169379635
219 => 0.034509132279243
220 => 0.034008140578308
221 => 0.034344459663498
222 => 0.034574560640008
223 => 0.033534778573036
224 => 0.03347320942716
225 => 0.032970149955262
226 => 0.033240465620715
227 => 0.032810373960595
228 => 0.032915903410021
301 => 0.032620833869534
302 => 0.033151900294651
303 => 0.033745715077311
304 => 0.033895736141867
305 => 0.033501095309149
306 => 0.033215349338162
307 => 0.032713673543685
308 => 0.033547971570475
309 => 0.03379194573828
310 => 0.033546690078035
311 => 0.033489858982614
312 => 0.033382164159482
313 => 0.033512706948447
314 => 0.033790617002566
315 => 0.033659559753237
316 => 0.03374612537535
317 => 0.033416226489934
318 => 0.034117891491638
319 => 0.035232304379221
320 => 0.035235887398879
321 => 0.035104829443102
322 => 0.035051203351281
323 => 0.03518567676717
324 => 0.035258623078902
325 => 0.03569348544768
326 => 0.03616011009506
327 => 0.038337643720099
328 => 0.037726200991729
329 => 0.039658238365919
330 => 0.041186229085248
331 => 0.041644406691038
401 => 0.041222904852633
402 => 0.039780969832531
403 => 0.039710221621331
404 => 0.041865081310626
405 => 0.041256234749574
406 => 0.04118381438847
407 => 0.040413384102461
408 => 0.040868803821139
409 => 0.04076919684806
410 => 0.040611962368115
411 => 0.041480871466541
412 => 0.043107391730746
413 => 0.04285388329416
414 => 0.042664651006165
415 => 0.041835490204866
416 => 0.042334830207018
417 => 0.04215702479648
418 => 0.042920989678255
419 => 0.042468433806185
420 => 0.041251622138056
421 => 0.04144540340687
422 => 0.041416113757922
423 => 0.042018892657771
424 => 0.041837953393929
425 => 0.041380782462686
426 => 0.043101832461309
427 => 0.042990077047381
428 => 0.043148520673486
429 => 0.043218272457729
430 => 0.044265845263588
501 => 0.044695002323558
502 => 0.044792428489623
503 => 0.045200094504396
504 => 0.0447822853878
505 => 0.046453819747034
506 => 0.047565292559191
507 => 0.048856325426379
508 => 0.050742871442262
509 => 0.05145223019576
510 => 0.051324090886164
511 => 0.052754448544555
512 => 0.055324769461617
513 => 0.05184362623179
514 => 0.055509278505674
515 => 0.054348775317753
516 => 0.051597243135753
517 => 0.051420076901666
518 => 0.053283446441262
519 => 0.057416220737413
520 => 0.056381007649765
521 => 0.05741791397517
522 => 0.056208307668063
523 => 0.056148240519553
524 => 0.057359166096725
525 => 0.060188559711906
526 => 0.058844420863567
527 => 0.056917268228107
528 => 0.058340247744315
529 => 0.057107531196838
530 => 0.054329875799737
531 => 0.056380216041827
601 => 0.055009211912269
602 => 0.055409343803863
603 => 0.05829099056272
604 => 0.057944263200802
605 => 0.058392960513213
606 => 0.057601021501262
607 => 0.05686122558678
608 => 0.055480341574434
609 => 0.055071529895137
610 => 0.055184510735791
611 => 0.055071473907444
612 => 0.054298881993515
613 => 0.054132040843261
614 => 0.053853964950027
615 => 0.053940152296993
616 => 0.05341728826374
617 => 0.05440404072371
618 => 0.054587190675514
619 => 0.055305266827554
620 => 0.055379819875785
621 => 0.057379651738043
622 => 0.056278177954121
623 => 0.057017141665047
624 => 0.056951041795345
625 => 0.051656877181513
626 => 0.052386366354489
627 => 0.053521222581327
628 => 0.053009971389398
629 => 0.052287181818364
630 => 0.05170349048623
701 => 0.050819138432544
702 => 0.05206384696563
703 => 0.053700506326644
704 => 0.05542132825808
705 => 0.05748878305598
706 => 0.057027351212915
707 => 0.055382678628724
708 => 0.055456457439417
709 => 0.055912529016228
710 => 0.055321874885786
711 => 0.05514767945178
712 => 0.055888597238548
713 => 0.055893699532144
714 => 0.055214080572135
715 => 0.054458808467041
716 => 0.054455643849343
717 => 0.054321250473305
718 => 0.056232215951104
719 => 0.057283053743491
720 => 0.057403530602879
721 => 0.057274944690945
722 => 0.057324432305056
723 => 0.056712972947297
724 => 0.058110587716495
725 => 0.059393177238487
726 => 0.059049415848065
727 => 0.05853406865526
728 => 0.058123569793708
729 => 0.058952715362124
730 => 0.058915794815159
731 => 0.059381974937919
801 => 0.059360826314764
802 => 0.059204067473401
803 => 0.059049421446416
804 => 0.059662575463015
805 => 0.059485996953187
806 => 0.059309144168161
807 => 0.058954438832984
808 => 0.059002649179066
809 => 0.058487390968221
810 => 0.058249008943272
811 => 0.054664315246499
812 => 0.053706367957475
813 => 0.054007757675417
814 => 0.054106982996144
815 => 0.053690083108318
816 => 0.054287810454666
817 => 0.054194655280888
818 => 0.054557067568106
819 => 0.054330648105164
820 => 0.054339940438902
821 => 0.055005791801693
822 => 0.055199091285046
823 => 0.055100777607695
824 => 0.055169633137316
825 => 0.056756379755333
826 => 0.056530795127551
827 => 0.056410957790111
828 => 0.056444153551565
829 => 0.056849601332699
830 => 0.056963104574789
831 => 0.056482183362324
901 => 0.056708988586295
902 => 0.057674696444094
903 => 0.058012639539992
904 => 0.059091191680212
905 => 0.058633003561311
906 => 0.059474027683471
907 => 0.062059049108739
908 => 0.06412414309312
909 => 0.062224997321465
910 => 0.066017279435648
911 => 0.068970115032099
912 => 0.068856780283702
913 => 0.068341885097143
914 => 0.064980160275779
915 => 0.061886650974667
916 => 0.064474502862391
917 => 0.064481099829049
918 => 0.064258801056841
919 => 0.062878122474619
920 => 0.064210756434974
921 => 0.064316536079332
922 => 0.064257327607569
923 => 0.063198764575752
924 => 0.061582534481316
925 => 0.06189834197306
926 => 0.062415641086836
927 => 0.061436285944558
928 => 0.06112332263538
929 => 0.061705180970849
930 => 0.063580049762726
1001 => 0.063225616677997
1002 => 0.063216360997778
1003 => 0.064732776037268
1004 => 0.063647350131841
1005 => 0.061902325316887
1006 => 0.061461683537061
1007 => 0.059897702070551
1008 => 0.060977949640181
1009 => 0.061016825827084
1010 => 0.06042518527306
1011 => 0.061950333687129
1012 => 0.061936279175996
1013 => 0.06338418060677
1014 => 0.066152024335467
1015 => 0.065333436747573
1016 => 0.064381508444929
1017 => 0.064485009445536
1018 => 0.065620159959948
1019 => 0.064933822045969
1020 => 0.065180633945154
1021 => 0.065619786380579
1022 => 0.065884737948412
1023 => 0.064446886992297
1024 => 0.064111655154065
1025 => 0.06342588846343
1026 => 0.063246984734284
1027 => 0.063805527394816
1028 => 0.063658371137369
1029 => 0.061013558434111
1030 => 0.060737160791021
1031 => 0.06074563751213
1101 => 0.06005062249659
1102 => 0.058990557775175
1103 => 0.061776344569878
1104 => 0.061552606903202
1105 => 0.061305617835112
1106 => 0.061335872586653
1107 => 0.062545088215158
1108 => 0.061843682083772
1109 => 0.063708485242267
1110 => 0.063325137773994
1111 => 0.062931958889663
1112 => 0.062877609591327
1113 => 0.062726269265305
1114 => 0.062207266976123
1115 => 0.061580540524733
1116 => 0.061166721435409
1117 => 0.056423067263503
1118 => 0.057303461885242
1119 => 0.058316275647058
1120 => 0.05866589489904
1121 => 0.058067846975609
1122 => 0.062230881553285
1123 => 0.062991508086626
1124 => 0.060687520702695
1125 => 0.060256538734347
1126 => 0.062259136659379
1127 => 0.061051325302945
1128 => 0.061595202682792
1129 => 0.060419637272584
1130 => 0.062808295428489
1201 => 0.062790097855438
1202 => 0.061860855882499
1203 => 0.062646244834852
1204 => 0.062509764176908
1205 => 0.061460652278083
1206 => 0.062841554146949
1207 => 0.062842239057047
1208 => 0.061947863861557
1209 => 0.06090342943713
1210 => 0.060716709230482
1211 => 0.060576040637104
1212 => 0.061560606831962
1213 => 0.062443365803614
1214 => 0.06408596139535
1215 => 0.064498948954221
1216 => 0.066110866890634
1217 => 0.06515104824236
1218 => 0.065576523417407
1219 => 0.066038436907059
1220 => 0.066259895220305
1221 => 0.06589904078298
1222 => 0.06840301283012
1223 => 0.06861442479062
1224 => 0.06868530939227
1225 => 0.067840984106414
1226 => 0.068590942577047
1227 => 0.068240061844652
1228 => 0.06915295603287
1229 => 0.069296109498001
1230 => 0.069174863605867
1231 => 0.069220302775224
]
'min_raw' => 0.031040670173464
'max_raw' => 0.069296109498001
'avg_raw' => 0.050168389835732
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.03104'
'max' => '$0.069296'
'avg' => '$0.050168'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 0.0047864083596829
'max_diff' => -0.0066126823986074
'year' => 2031
]
6 => [
'items' => [
101 => 0.067083604363927
102 => 0.06697280527932
103 => 0.065462051898748
104 => 0.066077695068256
105 => 0.064926779671406
106 => 0.06529174679949
107 => 0.065452620832014
108 => 0.065368589366944
109 => 0.066112502609357
110 => 0.065480024381871
111 => 0.06381081035049
112 => 0.062141141542861
113 => 0.062120180211064
114 => 0.061680585886118
115 => 0.061362839704899
116 => 0.061424048892053
117 => 0.061639758051224
118 => 0.06135030229643
119 => 0.061412072357495
120 => 0.062437866942932
121 => 0.062643582731409
122 => 0.061944480103816
123 => 0.059137482174005
124 => 0.058448637841208
125 => 0.058943765487245
126 => 0.058707126362744
127 => 0.047381232878084
128 => 0.050042083552952
129 => 0.048461096435896
130 => 0.049189688037155
131 => 0.047575909585271
201 => 0.048346089247885
202 => 0.048203865186658
203 => 0.052482434331551
204 => 0.052415630359333
205 => 0.052447605885646
206 => 0.050921330702924
207 => 0.053352728511887
208 => 0.05455052250282
209 => 0.054328842713353
210 => 0.054384634740458
211 => 0.053425942866961
212 => 0.052456888118578
213 => 0.051382057266165
214 => 0.05337896013684
215 => 0.05315693862589
216 => 0.053666176091192
217 => 0.05496131034439
218 => 0.05515202378291
219 => 0.055408344578306
220 => 0.055316471819313
221 => 0.057505253668924
222 => 0.057240177744888
223 => 0.057878934454266
224 => 0.056564963440488
225 => 0.055078080515126
226 => 0.055360688349372
227 => 0.055333470942346
228 => 0.054986962112211
229 => 0.054674149433823
301 => 0.054153404458732
302 => 0.055801118615676
303 => 0.055734224429983
304 => 0.056817163540361
305 => 0.056625743533492
306 => 0.055347393879203
307 => 0.055393050387193
308 => 0.055700112345196
309 => 0.056762857287815
310 => 0.057078352343978
311 => 0.056932202463659
312 => 0.057278128389845
313 => 0.057551534137367
314 => 0.057312463942305
315 => 0.060697193749954
316 => 0.059291617951279
317 => 0.05997668581562
318 => 0.060140070464611
319 => 0.059721564121829
320 => 0.05981232316199
321 => 0.059949798377475
322 => 0.060784520965495
323 => 0.062975074565386
324 => 0.063945255843176
325 => 0.066864094085306
326 => 0.063864695793631
327 => 0.063686723911747
328 => 0.064212494819625
329 => 0.065926161858161
330 => 0.067314928036335
331 => 0.067775661897478
401 => 0.067836555483115
402 => 0.068700922835628
403 => 0.069196362082591
404 => 0.068595965903914
405 => 0.068087193006586
406 => 0.066264831639573
407 => 0.06647577492993
408 => 0.067928965018094
409 => 0.069981681610095
410 => 0.071743125994792
411 => 0.071126329563805
412 => 0.075832050941811
413 => 0.076298603995292
414 => 0.076234141448767
415 => 0.077297018737
416 => 0.075187423771052
417 => 0.074285531051632
418 => 0.068197195481806
419 => 0.069907769436947
420 => 0.072394189139229
421 => 0.072065102168037
422 => 0.07025939771805
423 => 0.071741756206045
424 => 0.071251642132278
425 => 0.070865068827447
426 => 0.072636036077802
427 => 0.070688784838711
428 => 0.07237476381855
429 => 0.070212478337687
430 => 0.071129147037947
501 => 0.070608801549404
502 => 0.070945528851636
503 => 0.068977027923255
504 => 0.070039183241551
505 => 0.068932838769972
506 => 0.068932314218642
507 => 0.068907891603112
508 => 0.070209500967643
509 => 0.070251946402291
510 => 0.06929005511528
511 => 0.069151431553256
512 => 0.069663995517609
513 => 0.069063917356067
514 => 0.069344690151006
515 => 0.069072421677998
516 => 0.069011128309872
517 => 0.068522732324441
518 => 0.06831231790519
519 => 0.06839482682069
520 => 0.068113181355827
521 => 0.067943479775686
522 => 0.068874133687496
523 => 0.068376922844887
524 => 0.068797928994858
525 => 0.068318139351754
526 => 0.066654979414358
527 => 0.065698478546764
528 => 0.062556923600029
529 => 0.063447864685836
530 => 0.064038559547472
531 => 0.063843334899225
601 => 0.064262752985569
602 => 0.064288501849698
603 => 0.064152144754366
604 => 0.063994260706398
605 => 0.063917411483382
606 => 0.064490182630352
607 => 0.064822695559759
608 => 0.064097843679315
609 => 0.063928021025482
610 => 0.06466088629678
611 => 0.06510793368891
612 => 0.068408680458163
613 => 0.068164150476225
614 => 0.068777872744304
615 => 0.068708777035254
616 => 0.069352055745825
617 => 0.070403544567742
618 => 0.068265573791887
619 => 0.068636651593108
620 => 0.068545671885687
621 => 0.069538964475155
622 => 0.069542065426198
623 => 0.068946536900167
624 => 0.069269382575475
625 => 0.069089178976326
626 => 0.069414831235966
627 => 0.068160884629234
628 => 0.069688056241062
629 => 0.070553864136204
630 => 0.070565885879668
701 => 0.070976271950489
702 => 0.071393247966401
703 => 0.072193597117987
704 => 0.071370926662953
705 => 0.069891022599702
706 => 0.069997866893008
707 => 0.069130199682199
708 => 0.06914478532477
709 => 0.06906692602163
710 => 0.069300587651326
711 => 0.068212160217018
712 => 0.068467611960333
713 => 0.068109978023769
714 => 0.068635874166775
715 => 0.068070096850648
716 => 0.068545628012517
717 => 0.068750851497872
718 => 0.069508130576978
719 => 0.067958246114939
720 => 0.064797926778887
721 => 0.065462264218494
722 => 0.064479656962736
723 => 0.064570601005306
724 => 0.064754322444935
725 => 0.064158821149185
726 => 0.064272424030011
727 => 0.064268365335697
728 => 0.06423338970078
729 => 0.064078476814404
730 => 0.063853822480579
731 => 0.064748776201582
801 => 0.064900846278099
802 => 0.065238879220697
803 => 0.066244635967936
804 => 0.06614413715151
805 => 0.066308054890757
806 => 0.065950223386339
807 => 0.064587199782511
808 => 0.064661218521903
809 => 0.063738203655612
810 => 0.065215275655346
811 => 0.064865485509411
812 => 0.064639973526807
813 => 0.064578440493
814 => 0.06558669031668
815 => 0.065888374466305
816 => 0.065700385149529
817 => 0.065314813576297
818 => 0.066055224980905
819 => 0.066253327837329
820 => 0.06629767576113
821 => 0.067609542810291
822 => 0.066370994556153
823 => 0.066669125431035
824 => 0.068995057411652
825 => 0.066885758061906
826 => 0.068003100970455
827 => 0.067948412849453
828 => 0.068520007672644
829 => 0.067901525390349
830 => 0.067909192219482
831 => 0.068416729699289
901 => 0.067703984843767
902 => 0.067527499194186
903 => 0.067283685533305
904 => 0.067816043742095
905 => 0.068135168411774
906 => 0.070707078878144
907 => 0.072368650332785
908 => 0.072296517133856
909 => 0.072955679544376
910 => 0.072658720841201
911 => 0.071699762854901
912 => 0.073336587205047
913 => 0.072818627493022
914 => 0.07286132746236
915 => 0.072859738167369
916 => 0.073204136095042
917 => 0.072960098599679
918 => 0.072479075646383
919 => 0.072798401131182
920 => 0.073746683660085
921 => 0.076690181726661
922 => 0.078337402240879
923 => 0.076591016983394
924 => 0.077795650148977
925 => 0.077073299504312
926 => 0.076942026904106
927 => 0.077698625553784
928 => 0.07845654852924
929 => 0.078408272112295
930 => 0.077858058951889
1001 => 0.077547257498717
1002 => 0.079900750228256
1003 => 0.081634763580678
1004 => 0.081516515495016
1005 => 0.082038424088791
1006 => 0.083570763862141
1007 => 0.083710861807108
1008 => 0.083693212686157
1009 => 0.083345965311845
1010 => 0.084854752818172
1011 => 0.08611340990054
1012 => 0.083265587577634
1013 => 0.084350001037465
1014 => 0.084836829177202
1015 => 0.085551637321738
1016 => 0.086757638477324
1017 => 0.088067675608299
1018 => 0.088252929222445
1019 => 0.088121482918007
1020 => 0.087257478214441
1021 => 0.088690936475147
1022 => 0.089530622705536
1023 => 0.090030636639855
1024 => 0.091298588782903
1025 => 0.084839835662057
1026 => 0.080268009182265
1027 => 0.07955405245947
1028 => 0.081005911530234
1029 => 0.081388755188835
1030 => 0.081234431390098
1031 => 0.076088425034813
1101 => 0.079526959801
1102 => 0.083226534089203
1103 => 0.083368649804603
1104 => 0.085220734047728
1105 => 0.085823848596787
1106 => 0.087315019170734
1107 => 0.087221746045331
1108 => 0.087584822350381
1109 => 0.087501357395455
1110 => 0.090263436880681
1111 => 0.093310420725657
1112 => 0.093204913363921
1113 => 0.092766873385929
1114 => 0.093417437450162
1115 => 0.096562251312811
1116 => 0.096272727246953
1117 => 0.096553975215333
1118 => 0.10026188799334
1119 => 0.10508270204919
1120 => 0.10284294991843
1121 => 0.10770256757086
1122 => 0.11076143928581
1123 => 0.11605144162356
1124 => 0.11538910727707
1125 => 0.11744846636732
1126 => 0.11420339056348
1127 => 0.10675204057984
1128 => 0.10557283592231
1129 => 0.10793363350891
1130 => 0.1137374240123
1201 => 0.10775085149202
1202 => 0.10896192731595
1203 => 0.10861313739718
1204 => 0.10859455186467
1205 => 0.10930388604773
1206 => 0.10827495981882
1207 => 0.10408292926199
1208 => 0.1060041121624
1209 => 0.10526225118177
1210 => 0.10608540124917
1211 => 0.11052760267005
1212 => 0.10856359953303
1213 => 0.10649468177083
1214 => 0.10908956377423
1215 => 0.11239374026276
1216 => 0.11218697083628
1217 => 0.111785751726
1218 => 0.11404740284349
1219 => 0.11778298788799
1220 => 0.11879270151472
1221 => 0.11953805147129
1222 => 0.11964082263751
1223 => 0.1206994295215
1224 => 0.11500703350301
1225 => 0.12404101217545
1226 => 0.12560093073355
1227 => 0.12530773069663
1228 => 0.12704151452255
1229 => 0.12653139133912
1230 => 0.12579230288219
1231 => 0.12854071903268
]
'min_raw' => 0.047381232878084
'max_raw' => 0.12854071903268
'avg_raw' => 0.087960975955381
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.047381'
'max' => '$0.12854'
'avg' => '$0.08796'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.01634056270462
'max_diff' => 0.059244609534677
'year' => 2032
]
7 => [
'items' => [
101 => 0.12538988170189
102 => 0.12091766479022
103 => 0.11846411814206
104 => 0.12169514629032
105 => 0.12366822243312
106 => 0.1249723002523
107 => 0.12536691341244
108 => 0.11544891800175
109 => 0.11010366855263
110 => 0.11352991216611
111 => 0.11771016584125
112 => 0.11498381198278
113 => 0.11509067989236
114 => 0.11120361576337
115 => 0.1180540847658
116 => 0.11705602905366
117 => 0.12223394385377
118 => 0.12099819293136
119 => 0.12522058144537
120 => 0.12410868504198
121 => 0.12872410484714
122 => 0.13056532076492
123 => 0.13365700885325
124 => 0.13593126719647
125 => 0.13726675519523
126 => 0.13718657750507
127 => 0.14247844629365
128 => 0.13935801615284
129 => 0.13543802046706
130 => 0.13536712011254
131 => 0.13739734142497
201 => 0.14165212833181
202 => 0.14275533267212
203 => 0.14337187339645
204 => 0.1424276198152
205 => 0.13904061654059
206 => 0.13757812569911
207 => 0.13882421026849
208 => 0.13730035591741
209 => 0.13993095604539
210 => 0.14354333188698
211 => 0.14279739056058
212 => 0.14529096057698
213 => 0.14787154321274
214 => 0.15156189228309
215 => 0.15252668618332
216 => 0.15412145381255
217 => 0.15576299355692
218 => 0.15629021188207
219 => 0.15729683525103
220 => 0.15729152984899
221 => 0.1603250571249
222 => 0.16367113165076
223 => 0.16493419732246
224 => 0.16783854718871
225 => 0.16286494982333
226 => 0.16663748055754
227 => 0.17004039771236
228 => 0.16598329959457
301 => 0.17157506416732
302 => 0.17179217971447
303 => 0.17507036670497
304 => 0.17174729616546
305 => 0.16977406748672
306 => 0.17547070474634
307 => 0.17822712807387
308 => 0.1773968709351
309 => 0.1710785731142
310 => 0.1674010527779
311 => 0.1577762727171
312 => 0.16917724045868
313 => 0.17473031927481
314 => 0.1710641919816
315 => 0.1729131733424
316 => 0.18300061611275
317 => 0.18684126120614
318 => 0.18604243387485
319 => 0.18617742254402
320 => 0.18824976492378
321 => 0.19743967229542
322 => 0.19193286677795
323 => 0.19614261325999
324 => 0.19837544761469
325 => 0.20044942860055
326 => 0.1953563867877
327 => 0.18873041422083
328 => 0.18663169056949
329 => 0.17069966787376
330 => 0.16987033690318
331 => 0.16940480829809
401 => 0.16646971629334
402 => 0.16416353796697
403 => 0.16232957933893
404 => 0.15751672423255
405 => 0.15914092154811
406 => 0.15147023502947
407 => 0.15637766843166
408 => 0.1441350675327
409 => 0.1543310693522
410 => 0.14878184911716
411 => 0.15250800125919
412 => 0.15249500106539
413 => 0.1456339735943
414 => 0.14167667613497
415 => 0.14419842009638
416 => 0.14690192979929
417 => 0.14734056515289
418 => 0.15084573605154
419 => 0.15182395390596
420 => 0.14885990813845
421 => 0.14388136684084
422 => 0.14503776843584
423 => 0.14165324169355
424 => 0.13572198876164
425 => 0.13998191816708
426 => 0.14143644536197
427 => 0.14207884743383
428 => 0.13624614138429
429 => 0.13441337850931
430 => 0.13343763093305
501 => 0.14312843773384
502 => 0.14365932200614
503 => 0.14094324300955
504 => 0.15322017762333
505 => 0.15044152921182
506 => 0.15354596027286
507 => 0.14493283711192
508 => 0.14526187001578
509 => 0.14118427947997
510 => 0.14346745771533
511 => 0.14185378092885
512 => 0.14328299947672
513 => 0.14413966718142
514 => 0.14821658862475
515 => 0.15437762124623
516 => 0.14760763251446
517 => 0.144657851476
518 => 0.14648787904207
519 => 0.1513614836087
520 => 0.15874524400237
521 => 0.15437390923729
522 => 0.15631383337596
523 => 0.15673762049904
524 => 0.15351436007887
525 => 0.15886409021168
526 => 0.16173105405097
527 => 0.16467196571552
528 => 0.16722547691137
529 => 0.16349730092467
530 => 0.16748698364347
531 => 0.16427200364592
601 => 0.16138783422959
602 => 0.16139220832406
603 => 0.15958292671821
604 => 0.15607721562271
605 => 0.15543070870945
606 => 0.15879391931709
607 => 0.16149089572718
608 => 0.16171303162196
609 => 0.16320621633825
610 => 0.16408986767231
611 => 0.17275085201193
612 => 0.17623437156074
613 => 0.18049395332538
614 => 0.18215330047958
615 => 0.18714734050485
616 => 0.18311424758835
617 => 0.18224166256652
618 => 0.17012775500327
619 => 0.17211140668812
620 => 0.17528742442948
621 => 0.17018012636602
622 => 0.17341953144932
623 => 0.17405905863274
624 => 0.17000658233216
625 => 0.17217118502146
626 => 0.16642264203863
627 => 0.1545029237743
628 => 0.15887736026554
629 => 0.16209841794248
630 => 0.15750157148393
701 => 0.16574124083836
702 => 0.1609277961028
703 => 0.15940216520773
704 => 0.15345013515935
705 => 0.15625926422754
706 => 0.16005865151512
707 => 0.15771107189757
708 => 0.16258265209483
709 => 0.16948210885712
710 => 0.17439907261569
711 => 0.17477653603889
712 => 0.17161525775312
713 => 0.17668122638108
714 => 0.17671812643189
715 => 0.17100369312446
716 => 0.16750363454176
717 => 0.16670841386759
718 => 0.16869503102387
719 => 0.17110715100137
720 => 0.17491039191014
721 => 0.17720861073798
722 => 0.18320114655989
723 => 0.18482255493384
724 => 0.1866039911565
725 => 0.18898453932456
726 => 0.19184299776034
727 => 0.18558885343499
728 => 0.18583734224822
729 => 0.18001356964696
730 => 0.17379003340906
731 => 0.17851292163888
801 => 0.18468746973989
802 => 0.18327102158325
803 => 0.18311164223022
804 => 0.18337967409387
805 => 0.18231171844064
806 => 0.17748139460134
807 => 0.17505563620867
808 => 0.17818548341218
809 => 0.17984885790737
810 => 0.18242860668792
811 => 0.18211059819883
812 => 0.18875575401271
813 => 0.19133786062291
814 => 0.19067724725745
815 => 0.19079881601524
816 => 0.19547359669552
817 => 0.20067291425395
818 => 0.20554276125781
819 => 0.21049657879493
820 => 0.20452455840314
821 => 0.2014923347512
822 => 0.20462081556134
823 => 0.20296079960692
824 => 0.21249974367369
825 => 0.21316019946452
826 => 0.22269845375705
827 => 0.23175139287486
828 => 0.22606540401522
829 => 0.2314270354073
830 => 0.23722607689806
831 => 0.24841336879431
901 => 0.24464588245732
902 => 0.24176004696723
903 => 0.23903294637335
904 => 0.24470760979419
905 => 0.25200797363013
906 => 0.25358040207838
907 => 0.25612833687844
908 => 0.25344949498282
909 => 0.25667586498134
910 => 0.26806636881491
911 => 0.26498855413232
912 => 0.26061756249964
913 => 0.26960927132063
914 => 0.27286333578856
915 => 0.29570206439131
916 => 0.3245369026731
917 => 0.31259909028468
918 => 0.30518890490439
919 => 0.30693047424071
920 => 0.31745998106034
921 => 0.32084172446097
922 => 0.31164898014121
923 => 0.31489601284413
924 => 0.33278748227841
925 => 0.34238568160284
926 => 0.32935003771011
927 => 0.29338521321123
928 => 0.26022400252717
929 => 0.26901984886936
930 => 0.26802267286105
1001 => 0.28724482476191
1002 => 0.26491514927004
1003 => 0.26529112373768
1004 => 0.28491076938324
1005 => 0.27967658429088
1006 => 0.27119787478504
1007 => 0.26028590648967
1008 => 0.24011412386077
1009 => 0.22224741345458
1010 => 0.25728814701879
1011 => 0.25577712687006
1012 => 0.25358894577406
1013 => 0.25845850601728
1014 => 0.28210370830956
1015 => 0.28155860986468
1016 => 0.27809097166997
1017 => 0.28072114467829
1018 => 0.27073679273998
1019 => 0.27330998757395
1020 => 0.26021874962198
1021 => 0.26613653591466
1022 => 0.27117968328243
1023 => 0.27219216978158
1024 => 0.27447335356301
1025 => 0.25498088791297
1026 => 0.26373243272111
1027 => 0.26887314538704
1028 => 0.24564721854164
1029 => 0.26841404349036
1030 => 0.25464156745282
1031 => 0.24996698223003
1101 => 0.25626069540274
1102 => 0.2538080292585
1103 => 0.25169937093307
1104 => 0.25052270335613
1105 => 0.25514411169839
1106 => 0.25492851747545
1107 => 0.2473669964508
1108 => 0.23750330052117
1109 => 0.24081388063994
1110 => 0.23961111584594
1111 => 0.23525214107273
1112 => 0.23818956376525
1113 => 0.22525464082299
1114 => 0.20300077819963
1115 => 0.21770236150287
1116 => 0.21713636653794
1117 => 0.21685096621079
1118 => 0.22789879974126
1119 => 0.22683680546419
1120 => 0.22490927545224
1121 => 0.23521674047247
1122 => 0.23145437708512
1123 => 0.24304909452064
1124 => 0.25068612532299
1125 => 0.24874912727945
1126 => 0.25593179166202
1127 => 0.24089014971944
1128 => 0.24588637980684
1129 => 0.24691609590337
1130 => 0.23508954795411
1201 => 0.22701056086183
1202 => 0.22647178452997
1203 => 0.21246393426495
1204 => 0.21994681480911
1205 => 0.22653144002533
1206 => 0.22337791553432
1207 => 0.22237960388933
1208 => 0.2274797615762
1209 => 0.22787608750837
1210 => 0.21883981425423
1211 => 0.22071874160532
1212 => 0.22855418100506
1213 => 0.22052130863611
1214 => 0.2049147497855
1215 => 0.20104410741299
1216 => 0.2005276923704
1217 => 0.19003020327164
1218 => 0.20130276224452
1219 => 0.19638198816706
1220 => 0.21192665451783
1221 => 0.20304762446598
1222 => 0.20266486722674
1223 => 0.20208627352135
1224 => 0.19305065100823
1225 => 0.19502887809483
1226 => 0.2016048062232
1227 => 0.20395117146254
1228 => 0.20370642634487
1229 => 0.20157258058789
1230 => 0.20254944424838
1231 => 0.19940262603608
]
'min_raw' => 0.11010366855263
'max_raw' => 0.34238568160284
'avg_raw' => 0.22624467507773
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.1101036'
'max' => '$0.342385'
'avg' => '$0.226244'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.062722435674548
'max_diff' => 0.21384496257016
'year' => 2033
]
8 => [
'items' => [
101 => 0.19829141902997
102 => 0.19478414405709
103 => 0.1896294187564
104 => 0.19034621492523
105 => 0.18013335529732
106 => 0.17456884733455
107 => 0.17302866486949
108 => 0.17096906850856
109 => 0.17326130175883
110 => 0.18010442354917
111 => 0.17185016682075
112 => 0.15769882262866
113 => 0.15854934252732
114 => 0.16046020821799
115 => 0.15689932264507
116 => 0.15352924329277
117 => 0.15645925386641
118 => 0.15046314277835
119 => 0.16118480959622
120 => 0.16089481855592
121 => 0.1648911929222
122 => 0.16739020782728
123 => 0.16163078753674
124 => 0.16018230890879
125 => 0.16100742816495
126 => 0.14737004483648
127 => 0.16377672775944
128 => 0.16391861343466
129 => 0.16270370214214
130 => 0.1714397542991
131 => 0.18987554919331
201 => 0.18293926157598
202 => 0.18025332136014
203 => 0.17514734704643
204 => 0.1819507546567
205 => 0.18142835910192
206 => 0.17906588829059
207 => 0.17763705857254
208 => 0.18026972113836
209 => 0.17731084254625
210 => 0.17677934664656
211 => 0.17355905976769
212 => 0.17240956386565
213 => 0.17155852286253
214 => 0.17062161033965
215 => 0.17268820590106
216 => 0.16800502847563
217 => 0.1623575755981
218 => 0.16188805099762
219 => 0.16318444970057
220 => 0.16261088978005
221 => 0.16188530501339
222 => 0.16049996609258
223 => 0.16008896562786
224 => 0.16142451774912
225 => 0.15991675727174
226 => 0.16214153998808
227 => 0.16153652219208
228 => 0.15815694196527
301 => 0.15394473372181
302 => 0.15390723623304
303 => 0.15299972287639
304 => 0.15184386817116
305 => 0.15152233583453
306 => 0.15621249654836
307 => 0.1659209888613
308 => 0.16401497951574
309 => 0.1653922666036
310 => 0.17216715592475
311 => 0.17432068951191
312 => 0.17279216238098
313 => 0.17069982016872
314 => 0.17079187260724
315 => 0.17794203934161
316 => 0.17838798647026
317 => 0.17951475099636
318 => 0.18096296183601
319 => 0.17303879894921
320 => 0.17041864524788
321 => 0.16917707106359
322 => 0.16535350312567
323 => 0.16947689333878
324 => 0.16707437044278
325 => 0.16739855286332
326 => 0.16718742863665
327 => 0.16730271674057
328 => 0.16118181267184
329 => 0.16341194840924
330 => 0.15970391520387
331 => 0.15473927498815
401 => 0.15472263177331
402 => 0.15593772043271
403 => 0.15521493815168
404 => 0.15326994961785
405 => 0.15354622605899
406 => 0.15112575372284
407 => 0.15384011522467
408 => 0.15391795340009
409 => 0.15287277636961
410 => 0.15705462477288
411 => 0.15876793147576
412 => 0.15807997356445
413 => 0.15871966251475
414 => 0.16409418280916
415 => 0.16497046412391
416 => 0.16535965040003
417 => 0.16483819234733
418 => 0.15881789887959
419 => 0.15908492449515
420 => 0.15712566770245
421 => 0.15547030217402
422 => 0.15553650811391
423 => 0.15638758117798
424 => 0.16010426716355
425 => 0.16792581370956
426 => 0.16822263568351
427 => 0.16858239257484
428 => 0.16711908049847
429 => 0.16667773157423
430 => 0.16725998472713
501 => 0.17019734637243
502 => 0.17775303801006
503 => 0.17508235195764
504 => 0.17291104262533
505 => 0.17481586629056
506 => 0.1745226336178
507 => 0.17204745476076
508 => 0.17197798473408
509 => 0.16722732514487
510 => 0.16547111446203
511 => 0.16400349336535
512 => 0.162400889441
513 => 0.16145081211487
514 => 0.16291056269023
515 => 0.16324442491807
516 => 0.16005265477299
517 => 0.15961762829621
518 => 0.16222409669583
519 => 0.16107708713209
520 => 0.16225681491286
521 => 0.16253052187752
522 => 0.1624864487522
523 => 0.16128883903445
524 => 0.16205215975531
525 => 0.16024667869362
526 => 0.15828348921353
527 => 0.15703109663625
528 => 0.15593821800681
529 => 0.1565446105889
530 => 0.15438293175665
531 => 0.15369136719222
601 => 0.16179356387034
602 => 0.16777874366977
603 => 0.16769171678509
604 => 0.16716196300613
605 => 0.16637485634723
606 => 0.17013976461775
607 => 0.16882814585801
608 => 0.16978245809513
609 => 0.17002537061184
610 => 0.17076059363934
611 => 0.17102337267711
612 => 0.17022907191318
613 => 0.16756330153374
614 => 0.16092045520203
615 => 0.1578281923026
616 => 0.15680769404007
617 => 0.15684478721371
618 => 0.15582159189348
619 => 0.15612296877169
620 => 0.15571678531435
621 => 0.15494757211248
622 => 0.15649711384127
623 => 0.15667568409054
624 => 0.15631400253539
625 => 0.15639919163469
626 => 0.15340462283431
627 => 0.15363229339634
628 => 0.15236459477597
629 => 0.15212691656699
630 => 0.14892228484585
701 => 0.14324481523304
702 => 0.14639068452385
703 => 0.14259091679672
704 => 0.14115188718258
705 => 0.1479640295609
706 => 0.14728027940553
707 => 0.14610999635859
708 => 0.14437890382382
709 => 0.14373682476368
710 => 0.13983575565183
711 => 0.13960525967731
712 => 0.14153873486687
713 => 0.14064650259371
714 => 0.1393934705674
715 => 0.13485511558594
716 => 0.12975250198909
717 => 0.12990651781969
718 => 0.13152956426735
719 => 0.13624879071155
720 => 0.13440490729635
721 => 0.13306714872251
722 => 0.1328166267545
723 => 0.13595243368737
724 => 0.14039025746925
725 => 0.14247238509699
726 => 0.14040905985305
727 => 0.13803882291014
728 => 0.13818308825023
729 => 0.13914282092587
730 => 0.13924367526019
731 => 0.13770089467465
801 => 0.13813517837259
802 => 0.13747546172368
803 => 0.13342678186708
804 => 0.13335355408698
805 => 0.13235994275638
806 => 0.13232985660018
807 => 0.13063947585888
808 => 0.13040297990812
809 => 0.12704662634749
810 => 0.12925578842507
811 => 0.12777399848965
812 => 0.12554059153805
813 => 0.12515555133777
814 => 0.1251439765644
815 => 0.12743718612304
816 => 0.12922899093621
817 => 0.12779977485998
818 => 0.12747437006362
819 => 0.13094884196045
820 => 0.13050668374106
821 => 0.13012377757469
822 => 0.13999289902406
823 => 0.13218071929973
824 => 0.12877416303629
825 => 0.1245579027728
826 => 0.12593073837482
827 => 0.12622001500732
828 => 0.11608066911166
829 => 0.11196713774457
830 => 0.11055552879454
831 => 0.10974312788658
901 => 0.11011334918182
902 => 0.10641068848233
903 => 0.10889893770875
904 => 0.1056927465211
905 => 0.10515521813465
906 => 0.11088828514902
907 => 0.11168600793198
908 => 0.10828267470684
909 => 0.11046816558698
910 => 0.10967567621325
911 => 0.10574770746669
912 => 0.10559768795275
913 => 0.10362677131051
914 => 0.10054266841006
915 => 0.09913315062703
916 => 0.098399061527631
917 => 0.098701960997154
918 => 0.098548805756487
919 => 0.097549364212934
920 => 0.098606092575859
921 => 0.095906588278894
922 => 0.094831623916458
923 => 0.094346087452929
924 => 0.091950122011703
925 => 0.095763168519362
926 => 0.096514386716865
927 => 0.097267085046281
928 => 0.10381881011487
929 => 0.10349150444542
930 => 0.10645018829287
1001 => 0.10633521927923
1002 => 0.10549135471843
1003 => 0.10193122894544
1004 => 0.10335023162541
1005 => 0.098982761938421
1006 => 0.10225516718699
1007 => 0.10076177809045
1008 => 0.10175025083123
1009 => 0.099972887716314
1010 => 0.10095655384963
1011 => 0.096692528419851
1012 => 0.092710841469976
1013 => 0.094313188531294
1014 => 0.09605512303756
1015 => 0.099832080883802
1016 => 0.097582555949806
1017 => 0.098391570180026
1018 => 0.095681507936134
1019 => 0.090089875435977
1020 => 0.090121523468679
1021 => 0.089261372628865
1022 => 0.088518076719187
1023 => 0.097840940948922
1024 => 0.096681495409281
1025 => 0.094834070686344
1026 => 0.097306922091736
1027 => 0.09796078325275
1028 => 0.097979397760784
1029 => 0.099783526312625
1030 => 0.10074639004415
1031 => 0.10091609895012
1101 => 0.10375493420722
1102 => 0.10470647434026
1103 => 0.10862573348124
1104 => 0.10066469778368
1105 => 0.1005007454924
1106 => 0.097341720182194
1107 => 0.095338216388249
1108 => 0.097478901801038
1109 => 0.09937525684407
1110 => 0.097400645219451
1111 => 0.097658487811299
1112 => 0.095007733036945
1113 => 0.095955253139172
1114 => 0.096771385095952
1115 => 0.096320764999437
1116 => 0.095646164904695
1117 => 0.099219777356289
1118 => 0.09901814013667
1119 => 0.10234597020859
1120 => 0.10494025172506
1121 => 0.10958966798587
1122 => 0.10473775973817
1123 => 0.10456093691703
1124 => 0.1062894083569
1125 => 0.10470620972029
1126 => 0.10570673660847
1127 => 0.1094284676361
1128 => 0.10950710194809
1129 => 0.10818987590772
1130 => 0.10810972258345
1201 => 0.10836271025338
1202 => 0.10984446693807
1203 => 0.10932669562265
1204 => 0.10992587369722
1205 => 0.1106751550544
1206 => 0.11377450043642
1207 => 0.11452174211524
1208 => 0.11270633223609
1209 => 0.1128702434219
1210 => 0.11219123029298
1211 => 0.11153531211846
1212 => 0.11300972038563
1213 => 0.11570423047345
1214 => 0.11568746806604
1215 => 0.11631254203262
1216 => 0.11670195793541
1217 => 0.11503029981078
1218 => 0.11394211184021
1219 => 0.11435939235133
1220 => 0.11502663297578
1221 => 0.11414301520966
1222 => 0.10868891702558
1223 => 0.11034334200549
1224 => 0.11006796479158
1225 => 0.10967579415197
1226 => 0.11133933126256
1227 => 0.11117887905002
1228 => 0.10637271234512
1229 => 0.106680387544
1230 => 0.10639142309302
1231 => 0.1073251263507
]
'min_raw' => 0.088518076719187
'max_raw' => 0.19829141902997
'avg_raw' => 0.14340474787458
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.088518'
'max' => '$0.198291'
'avg' => '$0.1434047'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.021585591833445
'max_diff' => -0.14409426257287
'year' => 2034
]
9 => [
'items' => [
101 => 0.10465578668022
102 => 0.10547685758458
103 => 0.10599182555874
104 => 0.10629514565169
105 => 0.10739094581595
106 => 0.10726236631435
107 => 0.1073829531336
108 => 0.10900773549668
109 => 0.11722532713118
110 => 0.11767259251276
111 => 0.11547009419427
112 => 0.11634994883014
113 => 0.11466082033232
114 => 0.11579474360909
115 => 0.11657054511652
116 => 0.11306484728246
117 => 0.11285726260852
118 => 0.11116116247653
119 => 0.11207255061544
120 => 0.1106224665553
121 => 0.11097826646187
122 => 0.10998341890502
123 => 0.11177394643518
124 => 0.11377603443374
125 => 0.11428184092703
126 => 0.11295128180658
127 => 0.11198786931525
128 => 0.11029643434828
129 => 0.11310932839443
130 => 0.11393190433492
131 => 0.1131050077532
201 => 0.11291339774717
202 => 0.11255029713197
203 => 0.11299043125917
204 => 0.11392742440969
205 => 0.11348555574345
206 => 0.11377741778223
207 => 0.11266514065724
208 => 0.11503085319917
209 => 0.11878817405548
210 => 0.11880025445642
211 => 0.11835838340834
212 => 0.11817757929571
213 => 0.11863096580602
214 => 0.11887690938897
215 => 0.12034307822643
216 => 0.12191633580376
217 => 0.12925804245112
218 => 0.12719652060286
219 => 0.13371051950048
220 => 0.1388622468916
221 => 0.14040702467846
222 => 0.13898590180196
223 => 0.134124317209
224 => 0.13388578467545
225 => 0.14115104456541
226 => 0.13909827587651
227 => 0.13885410557283
228 => 0.13625654607382
301 => 0.13779202545174
302 => 0.13745619358766
303 => 0.13692606656076
304 => 0.13985565425141
305 => 0.14533958088219
306 => 0.14448485948885
307 => 0.1438468496181
308 => 0.14105127608636
309 => 0.14273483576642
310 => 0.14213535241081
311 => 0.14471111334804
312 => 0.14318528962892
313 => 0.13908272413474
314 => 0.13973607121192
315 => 0.13963731911556
316 => 0.14166963026108
317 => 0.14105958090026
318 => 0.13951819718692
319 => 0.14532083741715
320 => 0.14494404623658
321 => 0.14547824998417
322 => 0.14571342299466
323 => 0.14924538784881
324 => 0.15069232083929
325 => 0.15102079996025
326 => 0.15239527439139
327 => 0.15098660178429
328 => 0.15662229657925
329 => 0.16036970476599
330 => 0.16472251221475
331 => 0.17108313382174
401 => 0.173474786385
402 => 0.1730427557563
403 => 0.17786530646594
404 => 0.1865313228919
405 => 0.17479440544688
406 => 0.18715340801594
407 => 0.18324069049412
408 => 0.17396370763667
409 => 0.17336637930909
410 => 0.17964885980815
411 => 0.19358279688871
412 => 0.19009250368743
413 => 0.19358850575802
414 => 0.1895102336416
415 => 0.18930771305664
416 => 0.1933904331842
417 => 0.20292993129974
418 => 0.19839807332778
419 => 0.19190054366783
420 => 0.19669821845598
421 => 0.19254202855064
422 => 0.18317696944961
423 => 0.190089834726
424 => 0.18546739858275
425 => 0.18681647119157
426 => 0.19653214442921
427 => 0.19536312892077
428 => 0.19687594323661
429 => 0.1942058655664
430 => 0.19171159198982
501 => 0.18705584513196
502 => 0.18567750801289
503 => 0.18605843080522
504 => 0.18567731924647
505 => 0.18307247166801
506 => 0.18250995508146
507 => 0.18157240279278
508 => 0.18186298945048
509 => 0.18010011685717
510 => 0.18342702166882
511 => 0.18404452451844
512 => 0.18646556839952
513 => 0.18671692920676
514 => 0.19345950195417
515 => 0.18974580618923
516 => 0.19223727393341
517 => 0.19201441360777
518 => 0.17416476798546
519 => 0.17662429166346
520 => 0.18045053866537
521 => 0.17872681957737
522 => 0.17628988407507
523 => 0.17432192799675
524 => 0.17134027330426
525 => 0.17553689502634
526 => 0.1810550063299
527 => 0.18685687761569
528 => 0.19382744581189
529 => 0.19227169613686
530 => 0.18672656769189
531 => 0.18697531810321
601 => 0.18851299526633
602 => 0.18652156362739
603 => 0.1859342515597
604 => 0.18843230760702
605 => 0.18844951034611
606 => 0.18615812757295
607 => 0.18361167493922
608 => 0.1836010052097
609 => 0.18314788855934
610 => 0.18959084208709
611 => 0.19313381507128
612 => 0.19354001121413
613 => 0.19310647483446
614 => 0.19327332578055
615 => 0.19121174786514
616 => 0.19592390363784
617 => 0.20024824375877
618 => 0.19908922823031
619 => 0.19735169918938
620 => 0.19596767361754
621 => 0.19876319579055
622 => 0.19863871558875
623 => 0.20021047442029
624 => 0.20013917036077
625 => 0.19961064698256
626 => 0.19908924710554
627 => 0.20115653868155
628 => 0.20056119190735
629 => 0.19996492039517
630 => 0.19876900659288
701 => 0.19893155114064
702 => 0.19719432210859
703 => 0.19639060046818
704 => 0.18430455539418
705 => 0.1810747692275
706 => 0.1820909257039
707 => 0.18242547080042
708 => 0.18101986372159
709 => 0.1830351432018
710 => 0.18272106402951
711 => 0.18394296235869
712 => 0.18317957333128
713 => 0.18321090308324
714 => 0.18545586744115
715 => 0.18610759014502
716 => 0.18577611871778
717 => 0.18600826994324
718 => 0.191358096949
719 => 0.19059752262662
720 => 0.19019348267666
721 => 0.19030540450406
722 => 0.19167240000561
723 => 0.19205508411086
724 => 0.19043362466619
725 => 0.19119831431384
726 => 0.19445426577998
727 => 0.19559366452223
728 => 0.19923007836509
729 => 0.19768526513254
730 => 0.20052083667884
731 => 0.20923641689456
801 => 0.21619902544316
802 => 0.2097959228799
803 => 0.22258186679655
804 => 0.23253755817038
805 => 0.23215544215338
806 => 0.23041943708306
807 => 0.2190851471397
808 => 0.20865516454908
809 => 0.21738028786659
810 => 0.21740253000026
811 => 0.21665303416936
812 => 0.2119979799335
813 => 0.21649104837237
814 => 0.21684769182862
815 => 0.21664806633227
816 => 0.21307904716398
817 => 0.20762981455901
818 => 0.2086945815664
819 => 0.21043869164517
820 => 0.20713672740659
821 => 0.20608154975929
822 => 0.20804332576138
823 => 0.21436457679235
824 => 0.21316958090146
825 => 0.21313837472939
826 => 0.21825107390775
827 => 0.21459148468558
828 => 0.20870801168822
829 => 0.20722235716291
830 => 0.20194928445488
831 => 0.20559141455636
901 => 0.20572248833475
902 => 0.20372773089984
903 => 0.20886987526033
904 => 0.20882248949479
905 => 0.2137041902579
906 => 0.22303616863388
907 => 0.22027624342933
908 => 0.21706675069546
909 => 0.21741571154521
910 => 0.22124295075823
911 => 0.21892891456266
912 => 0.21976105811262
913 => 0.2212416912093
914 => 0.22213499391858
915 => 0.21728717903249
916 => 0.21615692148475
917 => 0.21384481120857
918 => 0.2132416247951
919 => 0.21512479037129
920 => 0.21462864277518
921 => 0.20571147209122
922 => 0.20477957814008
923 => 0.20480815799712
924 => 0.20246486634783
925 => 0.19889078412822
926 => 0.20828325880399
927 => 0.20752891163992
928 => 0.20669617075263
929 => 0.20679817675977
930 => 0.21087513167602
1001 => 0.20851029193344
1002 => 0.2147976059787
1003 => 0.21350512322495
1004 => 0.21217949316556
1005 => 0.21199625071167
1006 => 0.21148599623625
1007 => 0.20973614378268
1008 => 0.20762309179518
1009 => 0.2062278718436
1010 => 0.19023431061166
1011 => 0.19320262254604
1012 => 0.1966173948564
1013 => 0.1977961605741
1014 => 0.19577980024587
1015 => 0.2098157619783
1016 => 0.21238026744071
1017 => 0.20461221311653
1018 => 0.20315912732004
1019 => 0.20991102604121
1020 => 0.20583880572629
1021 => 0.20767252628475
1022 => 0.20370902542888
1023 => 0.2117625531723
1024 => 0.21170119878425
1025 => 0.20856819459488
1026 => 0.21121618828185
1027 => 0.21075603421481
1028 => 0.20721888020127
1029 => 0.21187468726364
1030 => 0.21187699648586
1031 => 0.20886154807098
1101 => 0.20534016448894
1102 => 0.20471062427584
1103 => 0.20423635029209
1104 => 0.20755588395828
1105 => 0.21053216746346
1106 => 0.21607029318336
1107 => 0.21746270957197
1108 => 0.2228974034351
1109 => 0.21966130785005
1110 => 0.22109582710845
1111 => 0.22265320068858
1112 => 0.22339986285341
1113 => 0.22218321692392
1114 => 0.2306255335026
1115 => 0.23133832368774
1116 => 0.2315773160712
1117 => 0.22873061442103
1118 => 0.2312591517652
1119 => 0.23007613287822
1120 => 0.23315401937003
1121 => 0.23363667127238
1122 => 0.23322788228193
1123 => 0.23338108361388
1124 => 0.22617705574067
1125 => 0.22580348889117
1126 => 0.22070987839114
1127 => 0.22278556231997
1128 => 0.21890517070514
1129 => 0.22013568285867
1130 => 0.22067808089119
1201 => 0.22039476293982
1202 => 0.22290291837498
1203 => 0.22077047387279
1204 => 0.21514260222518
1205 => 0.20951319726771
1206 => 0.20944252467409
1207 => 0.20796040171603
1208 => 0.20688909828172
1209 => 0.2070954693297
1210 => 0.20782274782018
1211 => 0.20684682753374
1212 => 0.20705508960726
1213 => 0.21051362767076
1214 => 0.21120721281422
1215 => 0.20885013949551
1216 => 0.19938614999681
1217 => 0.19706366323521
1218 => 0.19873302066254
1219 => 0.19793517533266
1220 => 0.1597491347005
1221 => 0.16872037852548
1222 => 0.16338997007933
1223 => 0.16584646753162
1224 => 0.16040550081067
1225 => 0.16300221531541
1226 => 0.16252269696321
1227 => 0.17694819155538
1228 => 0.17672295729894
1229 => 0.17683076501836
1230 => 0.17168482167869
1231 => 0.17988244914638
]
'min_raw' => 0.10465578668022
'max_raw' => 0.23363667127238
'avg_raw' => 0.1691462289763
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.104655'
'max' => '$0.233636'
'avg' => '$0.169146'
'bar_min_pct' => 61.631153054958
'bar_max_pct' => 60.119598047091
'min_diff' => 0.016137709961031
'max_diff' => 0.03534525224241
'year' => 2035
]
10 => [
'items' => [
101 => 0.18392089521411
102 => 0.18317348632674
103 => 0.1833615930414
104 => 0.18012929645617
105 => 0.17686206071476
106 => 0.17323819345355
107 => 0.17997089090134
108 => 0.17922232987613
109 => 0.18093925954422
110 => 0.18530589510226
111 => 0.18594889877542
112 => 0.18681310223284
113 => 0.18650334681155
114 => 0.19388297763338
115 => 0.19298925564848
116 => 0.19514286849072
117 => 0.19071272347924
118 => 0.18569959388553
119 => 0.18665242592974
120 => 0.18656066054169
121 => 0.18539238182842
122 => 0.18433771204335
123 => 0.18258198400257
124 => 0.18813736732244
125 => 0.18791182890497
126 => 0.19156303372401
127 => 0.19091764780633
128 => 0.18660760269537
129 => 0.1867615367997
130 => 0.18779681762948
131 => 0.19137993640201
201 => 0.19244365001102
202 => 0.19195089548567
203 => 0.19311720889758
204 => 0.19403901546393
205 => 0.19323297360993
206 => 0.20464482647071
207 => 0.19990582953131
208 => 0.20221558366584
209 => 0.20276644641707
210 => 0.2013554230632
211 => 0.2016614235037
212 => 0.20212493079092
213 => 0.2049392562749
214 => 0.2123248606765
215 => 0.21559589459046
216 => 0.22543696151058
217 => 0.2153242807589
218 => 0.21472423613352
219 => 0.21649690945759
220 => 0.22227465752243
221 => 0.2269569796527
222 => 0.22851037603295
223 => 0.22871568300838
224 => 0.23162995788558
225 => 0.23330036589718
226 => 0.23127608826245
227 => 0.22956072491772
228 => 0.22341650633562
229 => 0.22412771636665
301 => 0.22902724820739
302 => 0.23594812551342
303 => 0.24188695823654
304 => 0.23980738600612
305 => 0.25567305417504
306 => 0.25724607036854
307 => 0.2570287303923
308 => 0.26061229537731
309 => 0.2534996486624
310 => 0.25045885439073
311 => 0.22993160594305
312 => 0.23569892546126
313 => 0.24408206308379
314 => 0.2429725233843
315 => 0.23688446476091
316 => 0.24188233989815
317 => 0.24022988607977
318 => 0.23892652719284
319 => 0.2448974669224
320 => 0.23833217341707
321 => 0.24401656925889
322 => 0.23672627279421
323 => 0.2398168853169
324 => 0.23806250417291
325 => 0.23919780378194
326 => 0.23256086546556
327 => 0.23614199627851
328 => 0.23241187865007
329 => 0.23241011008864
330 => 0.23232776753525
331 => 0.23671623438323
401 => 0.23685934212959
402 => 0.23361625849833
403 => 0.23314887948058
404 => 0.23487702467247
405 => 0.23285381925471
406 => 0.23380046433577
407 => 0.23288249216985
408 => 0.23267583729985
409 => 0.23102917613625
410 => 0.23031974923108
411 => 0.23059793380027
412 => 0.22964834645163
413 => 0.229076185726
414 => 0.23221395036585
415 => 0.23053756929584
416 => 0.23195702092418
417 => 0.23033937664461
418 => 0.22473191679756
419 => 0.22150700734171
420 => 0.21091503550243
421 => 0.21391890557675
422 => 0.21591047454375
423 => 0.21525226101204
424 => 0.21666635837298
425 => 0.21675317246612
426 => 0.21629343499906
427 => 0.21576111790822
428 => 0.21550201538739
429 => 0.217433153299
430 => 0.21855424385581
501 => 0.21611035513335
502 => 0.21553778619931
503 => 0.21800869262851
504 => 0.21951594412293
505 => 0.23064464230625
506 => 0.2298201923996
507 => 0.23188939987515
508 => 0.23165643886798
509 => 0.23382529795296
510 => 0.23737046592865
511 => 0.23016214818951
512 => 0.23141326290415
513 => 0.23110651846858
514 => 0.23445547378344
515 => 0.23446592885639
516 => 0.2324580628524
517 => 0.23354655958707
518 => 0.23293899057112
519 => 0.23403694990081
520 => 0.22980918136846
521 => 0.23495814708145
522 => 0.2378772788487
523 => 0.23791781099612
524 => 0.23930145628613
525 => 0.24070732003612
526 => 0.24340575307929
527 => 0.24063206220312
528 => 0.23564246233027
529 => 0.23600269532478
530 => 0.23307729474495
531 => 0.23312647125721
601 => 0.23286396318071
602 => 0.23365176967897
603 => 0.22998206059262
604 => 0.23084333398028
605 => 0.22963754619395
606 => 0.23141064175699
607 => 0.22950308403435
608 => 0.23110637054712
609 => 0.23179829585624
610 => 0.23435151514299
611 => 0.22912597146974
612 => 0.2184707341818
613 => 0.22071059424199
614 => 0.21739766527575
615 => 0.21770428946479
616 => 0.21832371912552
617 => 0.21631594493032
618 => 0.21669896497453
619 => 0.21668528080328
620 => 0.21656735800824
621 => 0.21604505839615
622 => 0.21528762062479
623 => 0.21830501957883
624 => 0.218817734459
625 => 0.21995743612567
626 => 0.22334841521868
627 => 0.2230095764425
628 => 0.22356223654474
629 => 0.2223557826446
630 => 0.21776025340102
701 => 0.21800981274871
702 => 0.21489780368417
703 => 0.21987785505714
704 => 0.21869851315856
705 => 0.21793818376446
706 => 0.21773072084488
707 => 0.22113010551918
708 => 0.22214725469255
709 => 0.22151343558605
710 => 0.22021345410715
711 => 0.22270980285166
712 => 0.22337772046319
713 => 0.22352724258456
714 => 0.22795029393244
715 => 0.22377444202093
716 => 0.22477961108043
717 => 0.23262165314446
718 => 0.22551000312022
719 => 0.22927720274678
720 => 0.22909281792862
721 => 0.23101998978249
722 => 0.22893473358667
723 => 0.22896058283638
724 => 0.23067178088468
725 => 0.22826871184203
726 => 0.22767367815264
727 => 0.22685164337245
728 => 0.22864652624145
729 => 0.22972247734584
730 => 0.23839385304826
731 => 0.2439959572148
801 => 0.24375275509843
802 => 0.24597516718675
803 => 0.244973950186
804 => 0.24174075638288
805 => 0.24725942395883
806 => 0.24551308662694
807 => 0.24565705255478
808 => 0.24565169413576
809 => 0.246812855794
810 => 0.24599006634023
811 => 0.24436826386925
812 => 0.24544489203584
813 => 0.24864209278901
814 => 0.25856630202894
815 => 0.26412002099789
816 => 0.25823196117355
817 => 0.26229346599612
818 => 0.25985801036472
819 => 0.25941541562796
820 => 0.26196634079938
821 => 0.26452173102763
822 => 0.26435896371735
823 => 0.26250388163238
824 => 0.26145599283355
825 => 0.2693909578868
826 => 0.27523730496944
827 => 0.27483862329281
828 => 0.27659827455522
829 => 0.28176466508561
830 => 0.2822370150884
831 => 0.28217750984489
901 => 0.28100674107836
902 => 0.28609372349612
903 => 0.29033737372595
904 => 0.28073574193567
905 => 0.28439191762682
906 => 0.2860332926892
907 => 0.28844331825481
908 => 0.29250943535119
909 => 0.29692631700214
910 => 0.29755091249623
911 => 0.29710773210353
912 => 0.29419467992257
913 => 0.2990276845294
914 => 0.30185874528018
915 => 0.30354457716959
916 => 0.30781956634547
917 => 0.2860434292628
918 => 0.27062919709144
919 => 0.26822204215368
920 => 0.27311708637632
921 => 0.27440787050058
922 => 0.2738875570386
923 => 0.25653743732906
924 => 0.2681306973641
925 => 0.2806040703728
926 => 0.28108322342947
927 => 0.28732765476356
928 => 0.28936109757383
929 => 0.29438868327409
930 => 0.29407420641968
1001 => 0.29529834353133
1002 => 0.29501693560846
1003 => 0.30432947943513
1004 => 0.31460259820209
1005 => 0.31424687276571
1006 => 0.31276999039693
1007 => 0.31496341256043
1008 => 0.32556637206224
1009 => 0.32459022146027
1010 => 0.32553846862177
1011 => 0.33803995543102
1012 => 0.3542936665988
1013 => 0.34674218591545
1014 => 0.3631267261183
1015 => 0.37343992566884
1016 => 0.39127553788676
1017 => 0.38904243139483
1018 => 0.3959857043475
1019 => 0.3850447047109
1020 => 0.35992195800441
1021 => 0.35594618717209
1022 => 0.36390578106094
1023 => 0.38347366595084
1024 => 0.36328951872956
1025 => 0.36737274542454
1026 => 0.36619677586169
1027 => 0.36613411344124
1028 => 0.36852568316353
1029 => 0.36505658654546
1030 => 0.35092286284486
1031 => 0.35740026512629
1101 => 0.35489902903502
1102 => 0.35767433695779
1103 => 0.37265152919287
1104 => 0.36602975549407
1105 => 0.3590542548116
1106 => 0.36780308065494
1107 => 0.37894334237624
1108 => 0.3782462048187
1109 => 0.37689346657617
1110 => 0.38451878122223
1111 => 0.39711356700997
1112 => 0.40051788699845
1113 => 0.40303088641568
1114 => 0.40337738657785
1115 => 0.40694655359678
1116 => 0.38775424299006
1117 => 0.41821293281643
1118 => 0.42347230714511
1119 => 0.42248376275005
1120 => 0.42832933596809
1121 => 0.42660942003946
1122 => 0.42411753170543
1123 => 0.43338400864509
1124 => 0.42276074059989
1125 => 0.407682349042
1126 => 0.39941004521657
1127 => 0.41030368220161
1128 => 0.41695604617284
1129 => 0.421352835588
1130 => 0.42268330140842
1201 => 0.38924408742896
1202 => 0.37122220571785
1203 => 0.38277402527338
1204 => 0.39686804239511
1205 => 0.38767595001332
1206 => 0.38803626263176
1207 => 0.37493075453471
1208 => 0.39802758906088
1209 => 0.39466257454537
1210 => 0.41212027580443
1211 => 0.40795385529215
1212 => 0.42218993296486
1213 => 0.41844109661072
1214 => 0.43400230672214
1215 => 0.44021009473853
1216 => 0.45063393698311
1217 => 0.45830175777089
1218 => 0.46280444879952
1219 => 0.46253412411933
1220 => 0.4803760292065
1221 => 0.46985528112528
1222 => 0.45663874198533
1223 => 0.45639969648993
1224 => 0.46324472939032
1225 => 0.47759004050647
1226 => 0.4813095709631
1227 => 0.48338828106068
1228 => 0.48020466418582
1229 => 0.46878514617246
1230 => 0.46385425619256
1231 => 0.46805551731707
]
'min_raw' => 0.17323819345355
'max_raw' => 0.48338828106068
'avg_raw' => 0.32831323725712
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$0.173238'
'max' => '$0.483388'
'avg' => '$0.328313'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.068582406773335
'max_diff' => 0.2497516097883
'year' => 2036
]
11 => [
'items' => [
101 => 0.46291773598028
102 => 0.47178698797441
103 => 0.48396636533236
104 => 0.48145137207042
105 => 0.48985861747622
106 => 0.49855923200321
107 => 0.51100150154586
108 => 0.51425437154021
109 => 0.51963124194531
110 => 0.52516580780208
111 => 0.52694336119454
112 => 0.53033726216317
113 => 0.53031937462979
114 => 0.54054712363465
115 => 0.55182864751403
116 => 0.55608716161062
117 => 0.56587937995988
118 => 0.54911054919702
119 => 0.5618298999571
120 => 0.57330307272868
121 => 0.559624283167
122 => 0.57847730782857
123 => 0.57920932805431
124 => 0.59026196436848
125 => 0.57905800003516
126 => 0.57240512177835
127 => 0.59161173202565
128 => 0.60090520572177
129 => 0.5981059358117
130 => 0.57680335357908
131 => 0.56440433700897
201 => 0.53195371905329
202 => 0.57039287778416
203 => 0.58911547071634
204 => 0.57675486658644
205 => 0.58298883633615
206 => 0.61699935391913
207 => 0.62994835699679
208 => 0.627255054877
209 => 0.62771017859972
210 => 0.6346972256194
211 => 0.66568163994171
212 => 0.64711506066668
213 => 0.66130851484599
214 => 0.66883667176439
215 => 0.67582924345894
216 => 0.6586576974021
217 => 0.63631776828226
218 => 0.62924177496358
219 => 0.5755258481066
220 => 0.57272970083725
221 => 0.57116013864303
222 => 0.56126427102744
223 => 0.55348882978786
224 => 0.54730551023052
225 => 0.53107863321654
226 => 0.53655472786379
227 => 0.51069247271594
228 => 0.52723822705749
301 => 0.48596144337554
302 => 0.52033797537212
303 => 0.50162839191549
304 => 0.51419137401398
305 => 0.51414754295294
306 => 0.49101510981253
307 => 0.47767280513869
308 => 0.48617504096713
309 => 0.49529011268352
310 => 0.49676900240273
311 => 0.50858693081075
312 => 0.51188506060391
313 => 0.50189157335568
314 => 0.48510607378015
315 => 0.48900496249506
316 => 0.47759379428333
317 => 0.45759616091652
318 => 0.47195881032574
319 => 0.47686285031517
320 => 0.4790287537515
321 => 0.45936337807895
322 => 0.45318409008655
323 => 0.44989428900865
324 => 0.48256752072803
325 => 0.48435743411727
326 => 0.47519998414968
327 => 0.51659252634823
328 => 0.50722411922981
329 => 0.51769092529656
330 => 0.4886511792104
331 => 0.4897605366181
401 => 0.47601265543833
402 => 0.48371055026525
403 => 0.47826992631632
404 => 0.48308863643531
405 => 0.48597695141235
406 => 0.49972257670009
407 => 0.520494928333
408 => 0.49766943865831
409 => 0.48772404594002
410 => 0.49389411164743
411 => 0.51032580970804
412 => 0.53522067339301
413 => 0.52048241303568
414 => 0.52702300271037
415 => 0.52845183058371
416 => 0.51758438303628
417 => 0.53562137168525
418 => 0.54528754043446
419 => 0.55520302943937
420 => 0.56381237071664
421 => 0.55124256508454
422 => 0.56469405892175
423 => 0.55385452939726
424 => 0.54413035084384
425 => 0.54414509840873
426 => 0.53804497915459
427 => 0.52622522943519
428 => 0.52404548623944
429 => 0.53538478561496
430 => 0.54447782987848
501 => 0.54522677655677
502 => 0.55026115307854
503 => 0.55324044524592
504 => 0.58244155863755
505 => 0.59418648800795
506 => 0.60854796532193
507 => 0.61414257010424
508 => 0.63098032472216
509 => 0.61738247037262
510 => 0.61444048904958
511 => 0.57359760393406
512 => 0.58028562408366
513 => 0.59099378964114
514 => 0.57377417764004
515 => 0.58469605804641
516 => 0.58685226859569
517 => 0.57318906181341
518 => 0.58048717090814
519 => 0.56110555689107
520 => 0.52091739455473
521 => 0.53566611259832
522 => 0.54652613344322
523 => 0.53102754466664
524 => 0.55880816517044
525 => 0.54257930018053
526 => 0.53743552910163
527 => 0.51736784423605
528 => 0.52683901901657
529 => 0.5396489185214
530 => 0.53173388993808
531 => 0.54815876269599
601 => 0.57142076287476
602 => 0.58799864947821
603 => 0.58927129376319
604 => 0.57861282330931
605 => 0.5956930902331
606 => 0.59581750133069
607 => 0.57655089046572
608 => 0.56475019858786
609 => 0.56206905656434
610 => 0.56876707500794
611 => 0.5768997059209
612 => 0.58972259817863
613 => 0.59747120341319
614 => 0.61767545632228
615 => 0.62314214785815
616 => 0.62914838445876
617 => 0.63717456881195
618 => 0.64681206099937
619 => 0.62572577675602
620 => 0.62656357413876
621 => 0.60692831821082
622 => 0.58594523127129
623 => 0.60186877867968
624 => 0.62268669869542
625 => 0.61791104484205
626 => 0.61737368622579
627 => 0.61827737436749
628 => 0.61467668732032
629 => 0.59839091325369
630 => 0.59021229947176
701 => 0.60076479783735
702 => 0.60637298108099
703 => 0.6150707842069
704 => 0.61399859638328
705 => 0.63640320315977
706 => 0.64510895587297
707 => 0.64288165178877
708 => 0.64329152934333
709 => 0.65905287878964
710 => 0.67658274094266
711 => 0.69300177011802
712 => 0.70970391180891
713 => 0.68956882810486
714 => 0.67934547435926
715 => 0.68989336583417
716 => 0.68429650614526
717 => 0.71645772205417
718 => 0.7186844948645
719 => 0.75084338515143
720 => 0.78136600144315
721 => 0.76219529301979
722 => 0.78027240759535
723 => 0.79982428085759
724 => 0.83754301655756
725 => 0.82484067333493
726 => 0.81511087749749
727 => 0.80591626744514
728 => 0.82504879136084
729 => 0.84966247772885
730 => 0.85496403002556
731 => 0.86355457009508
801 => 0.85452266761324
802 => 0.8654005993212
803 => 0.90380447825567
804 => 0.89342741116716
805 => 0.8786903077047
806 => 0.90900648177572
807 => 0.91997778732089
808 => 0.99698015535416
809 => 1.0941988258053
810 => 1.0539496578663
811 => 1.0289657004941
812 => 1.0348375231039
813 => 1.070338490493
814 => 1.081740274474
815 => 1.0507462951831
816 => 1.0616938926415
817 => 1.1220162309817
818 => 1.1543772301289
819 => 1.110426646625
820 => 0.98916872984312
821 => 0.87736339278004
822 => 0.90701920282911
823 => 0.90365715429648
824 => 0.96846598147803
825 => 0.89317992154902
826 => 0.89444754571636
827 => 0.96059655081029
828 => 0.94294913033228
829 => 0.91436256926874
830 => 0.87757210631159
831 => 0.80956153282936
901 => 0.749322671281
902 => 0.86746495095863
903 => 0.86237044103113
904 => 0.85499283569205
905 => 0.8714108980339
906 => 0.95113234841764
907 => 0.94929451095314
908 => 0.93760312667692
909 => 0.9464709386073
910 => 0.9128079989621
911 => 0.92148370499956
912 => 0.87734568224342
913 => 0.89729791189585
914 => 0.91430123534758
915 => 0.91771490426902
916 => 0.92540607465528
917 => 0.85968586579566
918 => 0.88919231012967
919 => 0.90652458179595
920 => 0.82821674785426
921 => 0.9049766876978
922 => 0.85854182317368
923 => 0.84278113272594
924 => 0.86400082610075
925 => 0.85573149095576
926 => 0.84862200218975
927 => 0.84465478530179
928 => 0.86023618618416
929 => 0.85950929520919
930 => 0.83401509914605
1001 => 0.80075895965805
1002 => 0.81192081166579
1003 => 0.80786560618845
1004 => 0.79316901840669
1005 => 0.80307274409882
1006 => 0.75946174831152
1007 => 0.68443129676178
1008 => 0.73399871130043
1009 => 0.73209041975966
1010 => 0.73112817263067
1011 => 0.76837671471375
1012 => 0.76479612686254
1013 => 0.75829732485138
1014 => 0.79304966281133
1015 => 0.78036459197104
1016 => 0.81945699132223
1017 => 0.8452057738728
1018 => 0.83867504973212
1019 => 0.86289190417559
1020 => 0.81217795819227
1021 => 0.82902309675757
1022 => 0.83249485646953
1023 => 0.79262082435537
1024 => 0.76538195531688
1025 => 0.76356543329785
1026 => 0.71633698813248
1027 => 0.74156604232513
1028 => 0.76376656596546
1029 => 0.75313423797197
1030 => 0.749768360561
1031 => 0.76696389828393
1101 => 0.76830013883482
1102 => 0.73783371266604
1103 => 0.74416864741277
1104 => 0.77058637840191
1105 => 0.74350298837276
1106 => 0.69088438559277
1107 => 0.67783424459423
1108 => 0.67609311522321
1109 => 0.64070009781544
1110 => 0.67870631741743
1111 => 0.6621155840578
1112 => 0.71452551195337
1113 => 0.6845892422195
1114 => 0.68329874946414
1115 => 0.68134798039028
1116 => 0.65088374824027
1117 => 0.65755347897817
1118 => 0.67972467977962
1119 => 0.68763561400202
1120 => 0.68681043875025
1121 => 0.67961602880023
1122 => 0.68290959283401
1123 => 0.67229987552743
1124 => 0.6685533635243
1125 => 0.65672834108313
1126 => 0.63934882484043
1127 => 0.64176555316874
1128 => 0.60733218389416
1129 => 0.58857105679614
1130 => 0.58337822408308
1201 => 0.57643415115578
1202 => 0.5841625755977
1203 => 0.60723463848533
1204 => 0.57940483563165
1205 => 0.53169259067271
1206 => 0.53456017789245
1207 => 0.54100279498093
1208 => 0.52899702065873
1209 => 0.51763456283104
1210 => 0.52751329804688
1211 => 0.50729699087836
1212 => 0.54344583911769
1213 => 0.54246811407879
1214 => 0.55594216927264
1215 => 0.56436777250079
1216 => 0.54494948488133
1217 => 0.54006583805767
1218 => 0.5428477852378
1219 => 0.49686839521416
1220 => 0.55218467216694
1221 => 0.55266304962708
1222 => 0.54856689138194
1223 => 0.57802110116084
1224 => 0.64017867079275
1225 => 0.61679249281478
1226 => 0.60773665785074
1227 => 0.59052150896432
1228 => 0.61345967272107
1229 => 0.61169837963565
1230 => 0.60373314435281
1231 => 0.5989157452007
]
'min_raw' => 0.44989428900865
'max_raw' => 1.1543772301289
'avg_raw' => 0.80213575956877
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$0.449894'
'max' => '$1.15'
'avg' => '$0.802135'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 0.2766560955551
'max_diff' => 0.6709889490682
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.014121667649292
]
1 => [
'year' => 2028
'avg' => 0.024236881235596
]
2 => [
'year' => 2029
'avg' => 0.066210791262817
]
3 => [
'year' => 2030
'avg' => 0.051081526855195
]
4 => [
'year' => 2031
'avg' => 0.050168389835732
]
5 => [
'year' => 2032
'avg' => 0.087960975955381
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.014121667649292
'min' => '$0.014121'
'max_raw' => 0.087960975955381
'max' => '$0.08796'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.087960975955381
]
1 => [
'year' => 2033
'avg' => 0.22624467507773
]
2 => [
'year' => 2034
'avg' => 0.14340474787458
]
3 => [
'year' => 2035
'avg' => 0.1691462289763
]
4 => [
'year' => 2036
'avg' => 0.32831323725712
]
5 => [
'year' => 2037
'avg' => 0.80213575956877
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.087960975955381
'min' => '$0.08796'
'max_raw' => 0.80213575956877
'max' => '$0.802135'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 0.80213575956877
]
]
]
]
'prediction_2025_max_price' => '$0.024145'
'last_price' => 0.02341209
'sma_50day_nextmonth' => '$0.021546'
'sma_200day_nextmonth' => '$0.031272'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'increase'
'sma_200day_direction_label' => 'aumentar'
'sma_200day_date_nextmonth' => '4 de fev. de 2026'
'sma_50day_date_nextmonth' => '4 de fev. de 2026'
'daily_sma3' => '$0.0227086'
'daily_sma3_action' => 'BUY'
'daily_sma5' => '$0.022325'
'daily_sma5_action' => 'BUY'
'daily_sma10' => '$0.022011'
'daily_sma10_action' => 'BUY'
'daily_sma21' => '$0.0215036'
'daily_sma21_action' => 'BUY'
'daily_sma50' => '$0.021439'
'daily_sma50_action' => 'BUY'
'daily_sma100' => '$0.026043'
'daily_sma100_action' => 'SELL'
'daily_sma200' => '$0.034493'
'daily_sma200_action' => 'SELL'
'daily_ema3' => '$0.022842'
'daily_ema3_action' => 'BUY'
'daily_ema5' => '$0.022543'
'daily_ema5_action' => 'BUY'
'daily_ema10' => '$0.022154'
'daily_ema10_action' => 'BUY'
'daily_ema21' => '$0.0218023'
'daily_ema21_action' => 'BUY'
'daily_ema50' => '$0.022686'
'daily_ema50_action' => 'BUY'
'daily_ema100' => '$0.025993'
'daily_ema100_action' => 'SELL'
'daily_ema200' => '$0.030387'
'daily_ema200_action' => 'SELL'
'weekly_sma21' => '$0.029789'
'weekly_sma21_action' => 'SELL'
'weekly_sma50' => '$0.033335'
'weekly_sma50_action' => 'SELL'
'weekly_sma100' => '$0.042632'
'weekly_sma100_action' => 'SELL'
'weekly_sma200' => '$0.054753'
'weekly_sma200_action' => 'SELL'
'weekly_ema3' => '$0.022573'
'weekly_ema3_action' => 'BUY'
'weekly_ema5' => '$0.022396'
'weekly_ema5_action' => 'BUY'
'weekly_ema10' => '$0.023723'
'weekly_ema10_action' => 'SELL'
'weekly_ema21' => '$0.027689'
'weekly_ema21_action' => 'SELL'
'weekly_ema50' => '$0.033397'
'weekly_ema50_action' => 'SELL'
'weekly_ema100' => '$0.041991'
'weekly_ema100_action' => 'SELL'
'weekly_ema200' => '$0.065706'
'weekly_ema200_action' => 'SELL'
'rsi_14' => '66.93'
'rsi_14_action' => 'NEUTRAL'
'stoch_rsi_14' => 122.62
'stoch_rsi_14_action' => 'SELL'
'momentum_10' => 0
'momentum_10_action' => 'BUY'
'vwma_10' => '0.022093'
'vwma_10_action' => 'BUY'
'hma_9' => '0.022760'
'hma_9_action' => 'BUY'
'stochastic_fast_14' => 100
'stochastic_fast_14_action' => 'SELL'
'cci_20' => 220.2
'cci_20_action' => 'SELL'
'adx_14' => 14.11
'adx_14_action' => 'NEUTRAL'
'ao_5_34' => '0.0010017'
'ao_5_34_action' => 'BUY'
'macd_12_26' => 0
'macd_12_26_action' => 'BUY'
'williams_percent_r_14' => -0
'williams_percent_r_14_action' => 'SELL'
'ultimate_oscillator' => 78.46
'ultimate_oscillator_action' => 'SELL'
'ichimoku_cloud' => '-0.004442'
'ichimoku_cloud_action' => 'NEUTRAL'
'sell_signals' => 14
'buy_signals' => 21
'sell_pct' => 40
'buy_pct' => 60
'overall_action' => 'bullish'
'overall_action_label' => 'Altista'
'overall_action_dir' => 1
'last_updated' => 1767681030
'last_updated_date' => '6 de janeiro de 2026'
]
Previsão de preço de Bifrost para 2026
A previsão de preço para Bifrost em 2026 sugere que o preço médio poderia variar entre $0.008088 na extremidade inferior e $0.024145 na extremidade superior. No mercado de criptomoedas, comparado ao preço médio de hoje, Bifrost poderia potencialmente ganhar 3.13% até 2026 se BFC atingir a meta de preço prevista.
Previsão de preço de Bifrost 2027-2032
A previsão de preço de BFC para 2027-2032 está atualmente dentro de uma faixa de preço entre $0.014121 na extremidade inferior e $0.08796 na extremidade superior. Considerando a volatilidade de preços no mercado, se Bifrost atingir a meta de preço superior, poderia ganhar 275.71% até 2032 em comparação com o preço de hoje.
| Previsão de Preço de Bifrost | Potencial Mínimo ($) | Preço Médio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2027 | $0.007786 | $0.014121 | $0.020456 |
| 2028 | $0.014053 | $0.024236 | $0.03442 |
| 2029 | $0.03087 | $0.06621 | $0.10155 |
| 2030 | $0.026254 | $0.051081 | $0.0759087 |
| 2031 | $0.03104 | $0.050168 | $0.069296 |
| 2032 | $0.047381 | $0.08796 | $0.12854 |
Previsão de preço de Bifrost 2032-2037
A previsão de preço de Bifrost para 2032-2037 é atualmente estimada entre $0.08796 na extremidade inferior e $0.802135 na extremidade superior. Comparado ao preço atual, Bifrost poderia potencialmente ganhar 3326.16% até 2037 se atingir a meta de preço superior. Por favor, note que esta informação é apenas para fins gerais e não deve ser considerada como aconselhamento de investimento a longo prazo.
| Previsão de Preço de Bifrost | Potencial Mínimo ($) | Preço Médio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2032 | $0.047381 | $0.08796 | $0.12854 |
| 2033 | $0.1101036 | $0.226244 | $0.342385 |
| 2034 | $0.088518 | $0.1434047 | $0.198291 |
| 2035 | $0.104655 | $0.169146 | $0.233636 |
| 2036 | $0.173238 | $0.328313 | $0.483388 |
| 2037 | $0.449894 | $0.802135 | $1.15 |
Bifrost Histograma de preços potenciais
Previsão de preço de Bifrost baseada na análise técnica
Em 6 de janeiro de 2026, o sentimento geral de previsão de preço para Bifrost é Altista, com 21 indicadores técnicos mostrando sinais de alta e 14 indicando sinais de baixa. A previsão de preço de BFC foi atualizada pela última vez em 6 de janeiro de 2026.
Médias Móveis Simples de 50 e 200 dias e Índice de Força Relativa de 14 dias - RSI (14) de Bifrost
De acordo com nossos indicadores técnicos, o SMA de 200 dias de Bifrost está projetado para aumentar no próximo mês, alcançando $0.031272 até 4 de fev. de 2026. O SMA de 50 dias de curto prazo para Bifrost é esperado para alcançar $0.021546 até 4 de fev. de 2026.
O oscilador de momentum Índice de Força Relativa (RSI) é uma ferramenta comumente usada para identificar se uma criptomoeda está sobrevendida (abaixo de 30) ou sobrecomprada (acima de 70). No momento, o RSI está em 66.93, sugerindo que o mercado de BFC está em um estado NEUTRAL.
Médias Móveis e Osciladores Populares de BFC para Sábado, 19 de Outubro de 2024
Médias móveis (MA) são indicadores amplamente utilizados nos mercados financeiros, projetados para suavizar movimentos de preços ao longo de um período definido. Como indicadores atrasados, eles se baseiam em dados históricos de preços. A tabela abaixo destaca dois tipos: a média móvel simples (SMA) e a média móvel exponencial (EMA).
Média Móvel Simples Diária (SMA)
| Período | Valor | Ação |
|---|---|---|
| SMA 3 | $0.0227086 | BUY |
| SMA 5 | $0.022325 | BUY |
| SMA 10 | $0.022011 | BUY |
| SMA 21 | $0.0215036 | BUY |
| SMA 50 | $0.021439 | BUY |
| SMA 100 | $0.026043 | SELL |
| SMA 200 | $0.034493 | SELL |
Média Móvel Exponencial Diária (EMA)
| Período | Valor | Ação |
|---|---|---|
| EMA 3 | $0.022842 | BUY |
| EMA 5 | $0.022543 | BUY |
| EMA 10 | $0.022154 | BUY |
| EMA 21 | $0.0218023 | BUY |
| EMA 50 | $0.022686 | BUY |
| EMA 100 | $0.025993 | SELL |
| EMA 200 | $0.030387 | SELL |
Média Móvel Simples Semanal (SMA)
| Período | Valor | Ação |
|---|---|---|
| SMA 21 | $0.029789 | SELL |
| SMA 50 | $0.033335 | SELL |
| SMA 100 | $0.042632 | SELL |
| SMA 200 | $0.054753 | SELL |
Média Móvel Exponencial Semanal (EMA)
| Período | Valor | Ação |
|---|---|---|
| EMA 21 | $0.027689 | SELL |
| EMA 50 | $0.033397 | SELL |
| EMA 100 | $0.041991 | SELL |
| EMA 200 | $0.065706 | SELL |
Osciladores de Bifrost
Um oscilador é uma ferramenta de análise técnica que define limites altos e baixos entre dois extremos, criando um indicador de tendência que flutua dentro desses limites. Os traders usam esse indicador para identificar condições de sobrecompra ou sobrevenda de curto prazo.
| Período | Valor | Ação |
|---|---|---|
| RSI (14) | 66.93 | NEUTRAL |
| Stoch RSI (14) | 122.62 | SELL |
| Estocástico Rápido (14) | 100 | SELL |
| Índice de Canal de Commodities (20) | 220.2 | SELL |
| Índice Direcional Médio (14) | 14.11 | NEUTRAL |
| Oscilador Impressionante (5, 34) | 0.0010017 | BUY |
| Momentum (10) | 0 | BUY |
| MACD (12, 26) | 0 | BUY |
| Williams Percent Range (14) | -0 | SELL |
| Oscilador Ultimate (7, 14, 28) | 78.46 | SELL |
| VWMA (10) | 0.022093 | BUY |
| Média Móvel de Hull (9) | 0.022760 | BUY |
| Nuvem Ichimoku B/L (9, 26, 52, 26) | -0.004442 | NEUTRAL |
Previsão do preço de Bifrost com base nos fluxos financeiros mundiais
Definições dos fluxos financeiros mundiais, usadas na previsão do preço do Bifrost
M0: o total de todas as moedas físicas, mais as contas no Banco Central que podem ser trocadas por moedas físicas.
M1: o valor de M0, mais o valor em contas de demanda, incluindo contas 'correntes'.
M2: o valor de M1, mais a maioria das contas de poupança, do mercado de moedas e de certificados de depósito (CD) de menos de US$ 100.000.
Previsões de preço de Bifrost por empresas de Internet ou nichos tecnológicos
| Comparação | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Facebook stock | $0.032897 | $0.046227 | $0.064956 | $0.091275 | $0.128256 | $0.180222 |
| Amazon.com stock | $0.04885 | $0.101929 | $0.212682 | $0.443775 | $0.925963 | $1.93 |
| Apple stock | $0.0332082 | $0.0471033 | $0.066812 | $0.094768 | $0.134421 | $0.190667 |
| Netflix stock | $0.03694 | $0.058286 | $0.091966 | $0.1451094 | $0.228959 | $0.361262 |
| Google stock | $0.030318 | $0.039262 | $0.050844 | $0.065843 | $0.085267 | $0.11042 |
| Tesla stock | $0.053073 | $0.120313 | $0.272741 | $0.618284 | $1.40 | $3.17 |
| Kodak stock | $0.017556 | $0.013165 | $0.009872 | $0.0074035 | $0.005551 | $0.004163 |
| Nokia stock | $0.0155095 | $0.010274 | $0.0068063 | $0.0045089 | $0.002986 | $0.001978 |
Este cálculo mostra quanto a criptomoeda pode custar, se assumirmos que sua capitalização se comportará da mesma forma que a de algumas empresas de Internet ou nichos tecnológicos. Se você extrapolar os dados, poderá obter uma imagem em potencial do preço futuro para 2024, 2025, 2026, 2027, 2028, 2029 e 2030.
Visão geral da previsão para Bifrost
Você pode fazer perguntas como: 'Devo investir em Bifrost agora?', 'Devo comprar BFC hoje?', 'Bifrost será um bom ou mau investimento no curto ou no longo prazo?'.
Atualizamos a previsão para Bifrost regularmente com novos valores. Veja nossas previsões semelhantes. Fazemos previsões de preços futuros para uma enorme quantidade de moedas digitais, como Bifrost, com métodos de análise técnica.
Se você estiver tentando encontrar criptomoedas com bom retorno, você deve explorar o máximo de fontes de informações disponíveis sobre Bifrost para poder tomar sozinho uma decisão de tão grande responsabilidade sobre o seu investimento.
O preço de Bifrost é de $0.02341 USD hoje, mas o preço pode tanto subir quanto descer e seu investimento pode ser perdido, porque criptomoedas são ativos de alto risco
Previsão de curto prazo para Bifrost
com base no histórico de preços de 4 horas
Previsão de longo prazo para Bifrost
com base no histórico de preços de 1 mês
Previsão do preço de Bifrost com base no padrão de crescimento do Bitcoin
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| Se Bifrost tiver 1% da média anterior do crescimento anual do Bitcoin | $0.02402 | $0.024645 | $0.025285 | $0.025942 |
| Se Bifrost tiver 2% da média anterior do crescimento anual do Bitcoin | $0.024629 | $0.0259095 | $0.027256 | $0.028673 |
| Se Bifrost tiver 5% da média anterior do crescimento anual do Bitcoin | $0.026454 | $0.029893 | $0.033778 | $0.038168 |
| Se Bifrost tiver 10% da média anterior do crescimento anual do Bitcoin | $0.029497 | $0.037165 | $0.046825 | $0.058996 |
| Se Bifrost tiver 20% da média anterior do crescimento anual do Bitcoin | $0.035583 | $0.054081 | $0.082196 | $0.124927 |
| Se Bifrost tiver 50% da média anterior do crescimento anual do Bitcoin | $0.053839 | $0.123813 | $0.284728 | $0.654779 |
| Se Bifrost tiver 100% da média anterior do crescimento anual do Bitcoin | $0.084267 | $0.3033062 | $1.09 | $3.92 |
Perguntas Frequentes sobre Bifrost
BFC é um bom investimento?
A decisão de adquirir Bifrost depende inteiramente da sua tolerância individual ao risco. Como você pode perceber, o valor de Bifrost experimentou uma escalada de 2.9496% nas últimas 24 horas, e Bifrost registrou um declínio de durante os últimos 30 dias. Consequentemente, a decisão de investir ou não em Bifrost dependerá de quão alinhado esse investimento está com suas aspirações de negociação.
Bifrost pode subir?
Parece que o valor médio de Bifrost pode potencialmente subir para $0.024145 até o final deste ano. Observando as perspectivas de Bifrost em um horizonte de cinco anos mais longo, a moeda digital poderia potencialmente crescer até $0.0759087. No entanto, dada a imprevisibilidade do mercado, é vital conduzir uma pesquisa aprofundada antes de investir quaisquer fundos em um projeto, rede ou ativo específico.
Qual será o preço de Bifrost na próxima semana?
Com base na nossa nova previsão experimental de Bifrost, o preço de Bifrost aumentará 0.86% na próxima semana e atingirá $0.023612 até 13 de janeiro de 2026.
Qual será o preço de Bifrost no próximo mês?
Com base na nossa nova previsão experimental de Bifrost, o preço de Bifrost diminuirá -11.62% no próximo mês e atingirá $0.020692 até 5 de fevereiro de 2026.
Até onde o preço de Bifrost pode subir este ano em 2026?
De acordo com nossa previsão mais recente sobre o valor de Bifrost em 2026, espera-se que BFC fluctue dentro do intervalo de $0.008088 e $0.024145. No entanto, é crucial lembrar que o mercado de criptomoedas é excepcionalmente instável, e essa previsão de preço de Bifrost não considera flutuações repentinas e extremas de preço.
Onde estará Bifrost em 5 anos?
O futuro de Bifrost parece seguir uma tendência de alta, com um preço máximo de $0.0759087 projetada após um período de cinco anos. Com base na previsão de Bifrost para 2030, o valor de Bifrost pode potencialmente atingir seu pico mais alto de aproximadamente $0.0759087, enquanto seu pico mais baixo está previsto para cerca de $0.026254.
Quanto será Bifrost em 2026?
Com base na nossa nova simulação experimental de previsão de preços de Bifrost, espera-se que o valor de BFC em 2026 aumente 3.13% para $0.024145 se o melhor cenário ocorrer. O preço ficará entre $0.024145 e $0.008088 durante 2026.
Quanto será Bifrost em 2027?
De acordo com nossa última simulação experimental para previsão de preços de Bifrost, o valor de BFC pode diminuir -12.62% para $0.020456 em 2027, assumindo as condições mais favoráveis. O preço está projetado para flutuar entre $0.020456 e $0.007786 ao longo do ano.
Quanto será Bifrost em 2028?
Nosso novo modelo experimental de previsão de preços de Bifrost sugere que o valor de BFC em 2028 pode aumentar 47.02%, alcançando $0.03442 no melhor cenário. O preço é esperado para variar entre $0.03442 e $0.014053 durante o ano.
Quanto será Bifrost em 2029?
Com base no nosso modelo de previsão experimental, o valor de Bifrost pode experimentar um 333.75% crescimento em 2029, potencialmente alcançando $0.10155 sob condições ótimas. A faixa de preço prevista para 2029 está entre $0.10155 e $0.03087.
Quanto será Bifrost em 2030?
Usando nossa nova simulação experimental para previsões de preços de Bifrost, espera-se que o valor de BFC em 2030 aumente 224.23%, alcançando $0.0759087 no melhor cenário. O preço está previsto para variar entre $0.0759087 e $0.026254 ao longo de 2030.
Quanto será Bifrost em 2031?
Nossa simulação experimental indica que o preço de Bifrost poderia aumentar 195.98% em 2031, potencialmente atingindo $0.069296 sob condições ideais. O preço provavelmente oscilará entre $0.069296 e $0.03104 durante o ano.
Quanto será Bifrost em 2032?
Com base nos achados da nossa mais recente previsão experimental de preços de Bifrost, BFC poderia ver um 449.04% aumento em valor, atingindo $0.12854 se o cenário mais positivo se desenrolar em 2032. O preço é esperado para permanecer dentro de uma faixa de $0.12854 e $0.047381 ao longo do ano.
Quanto será Bifrost em 2033?
De acordo com nossa previsão experimental de preços de Bifrost, espera-se que o valor de BFC seja aumentar 1362.43% em 2033, com o preço potencial mais alto sendo $0.342385. Ao longo do ano, o preço de BFC poderia variar entre $0.342385 e $0.1101036.
Quanto será Bifrost em 2034?
Os resultados da nossa nova simulação de previsão de preços de Bifrost sugerem que BFC pode aumentar 746.96% em 2034, atingindo potencialmente $0.198291 nas melhores circunstâncias. A faixa de preço prevista para o ano é entre $0.198291 e $0.088518.
Quanto será Bifrost em 2035?
Com base em nossa previsão experimental para o preço de Bifrost, BFC poderia aumentar 897.93%, com o valor potencialmente atingindo $0.233636 em 2035. A faixa de preço esperada para o ano está entre $0.233636 e $0.104655.
Quanto será Bifrost em 2036?
Nossa recente simulação de previsão de preços de Bifrost sugere que o valor de BFC pode aumentar 1964.7% em 2036, possivelmente atingindo $0.483388 se as condições forem ideais. A faixa de preço esperada para 2036 está entre $0.483388 e $0.173238.
Quanto será Bifrost em 2037?
De acordo com a simulação experimental, o valor de Bifrost poderia aumentar 4830.69% em 2037, com um pico de $1.15 sob condições favoráveis. O preço é esperado para cair entre $1.15 e $0.449894 ao longo do ano.
Previsões relacionadas
Previsão de Preço do Request
Previsão de Preço do POL (ex-MATIC)
Previsão de Preço do Maya Protocol
Previsão de Preço do CertiK
Previsão de Preço do Badger DAO
Previsão de Preço do Electroneum
Previsão de Preço do Ondo US Dollar Yield
Previsão de Preço do Sidus
Previsão de Preço do Hard Protocol
Previsão de Preço do Solidus Ai Tech
Previsão de Preço do Chainge FinancePrevisão de Preço do Mobox
Previsão de Preço do Trias Token
Previsão de Preço do SuperRare
Previsão de Preço do CONX
Previsão de Preço do Banana Gun
Previsão de Preço do Dora Factory
Previsão de Preço do Automata
Previsão de Preço do Storm
Previsão de Preço do Adventure Gold
Previsão de Preço do Star Atlas
Previsão de Preço do Radio Caca
Previsão de Preço do CoinEx Token
Previsão de Preço do Blendr Network
Previsão de Preço do Access Protocol
Como ler e prever os movimentos de preço de Bifrost?
Traders de Bifrost utilizam indicadores e padrões de gráfico para prever a direção do mercado. Eles também identificam níveis-chave de suporte e resistência para avaliar quando uma tendência de baixa pode desacelerar ou uma tendência de alta pode estagnar.
Indicadores de Previsão de Preço de Bifrost
Médias móveis são ferramentas populares para a previsão de preço de Bifrost. Uma média móvel simples (SMA) calcula o preço médio de fechamento de BFC em um período específico, como uma SMA de 12 dias. Uma média móvel exponencial (EMA) dá mais peso aos preços recentes, reagindo mais rapidamente às mudanças de preço.
Médias móveis comumente usadas no mercado de criptomoedas incluem as de 50 dias, 100 dias e 200 dias, que ajudam a identificar níveis-chave de resistência e suporte. Um movimento de preço de BFC acima dessas médias é visto como altista, enquanto uma queda abaixo indica fraqueza.
Traders também usam RSI e níveis de retração de Fibonacci para avaliar a direção futura de BFC.
Como ler gráficos de Bifrost e prever movimentos de preço?
A maioria dos traders prefere gráficos de velas em vez de gráficos de linha simples porque eles fornecem informações mais detalhadas. Velas podem representar a ação de preço de Bifrost em diferentes períodos de tempo, como 5 minutos para tendências de curto prazo e semanal para tendências de longo prazo. Opções populares incluem gráficos de 1 hora, 4 horas e 1 dia.
Por exemplo, um gráfico de velas de 1 hora mostra os preços de abertura, fechamento, máximo e mínimo de BFC dentro de cada hora. A cor da vela é crucial: verde indica que o preço fechou mais alto do que abriu, enquanto vermelho significa o oposto. Alguns gráficos usam velas vazias e preenchidas para transmitir a mesma informação.
O que afeta o preço de Bifrost?
A ação de preço de Bifrost é impulsionada pela oferta e demanda, influenciada por fatores como reduções pela metade das recompensas de bloco, hard forks e atualizações de protocolo. Eventos do mundo real, como regulamentações, adoção por empresas e governos e hacks de exchanges de criptomoedas, também impactam o preço de BFC. A capitalização de mercado de Bifrost pode mudar rapidamente.
Traders frequentemente monitoram a atividade de "baleias" de BFC, grandes detentores de Bifrost, pois suas ações podem influenciar significativamente os movimentos de preço no relativamente pequeno mercado de Bifrost.
Padrões de previsão de preço altistas e baixistas
Traders frequentemente identificam padrões de velas para ganhar vantagem em previsões de preço de criptomoedas. Certas formações indicam tendências altistas, enquanto outras sugerem movimentos baixistas.
Padrões de velas altistas comumente seguidos:
- Martelo
- Engolfo de Alta
- Linha de Perfuração
- Estrela da Manhã
- Três Soldados Brancos
Padrões de velas baixistas comuns:
- Harami de Baixa
- Nuvem Negra
- Estrela da Noite
- Estrela Cadente
- Homem Enforcado


