Previsão de Preço Bifrost - Projeção BFC
Previsão de Preço Bifrost até $0.023842 até 2026
| Ano | Preço Mínimo | Preço Máximo |
|---|---|---|
| 2026 | $0.007987 | $0.023842 |
| 2027 | $0.007689 | $0.020199 |
| 2028 | $0.013876 | $0.033989 |
| 2029 | $0.030483 | $0.100277 |
| 2030 | $0.025925 | $0.074957 |
| 2031 | $0.030651 | $0.068427 |
| 2032 | $0.046787 | $0.126929 |
| 2033 | $0.108723 | $0.338093 |
| 2034 | $0.0874083 | $0.1958054 |
| 2035 | $0.103343 | $0.2307075 |
Calculadora de lucro do investimento
Se você abrir um short de $10,000.00 em Bifrost hoje e fechar em Apr 06, 2026, nossa previsão mostra que pode lucrar cerca de $3,954.64, com um retorno de 39.55% nos próximos 90 dias.
Previsão de preço de longo prazo de Bifrost para os anos 2027, 2028, 2029, 2030, 2031, 2032 e 2037
[
'name' => 'Bifrost'
'name_with_ticker' => 'Bifrost <small>BFC</small>'
'name_lang' => 'Bifrost'
'name_lang_with_ticker' => 'Bifrost <small>BFC</small>'
'name_with_lang' => 'Bifrost'
'name_with_lang_with_ticker' => 'Bifrost <small>BFC</small>'
'image' => '/uploads/coins/bifrost.png?1717201112'
'price_for_sd' => 0.02311
'ticker' => 'BFC'
'marketcap' => '$32.4M'
'low24h' => '$0.02274'
'high24h' => '$0.02344'
'volume24h' => '$1.63M'
'current_supply' => '1.39B'
'max_supply' => '2.37B'
'algo' => 'SHA-256'
'proof' => null
'ico_price_and_roi' => '—'
'price' => '$0.02311'
'change_24h_pct' => '0.0636%'
'ath_price' => '$0.7788'
'ath_days' => 1601
'ath_exchange' => null
'ath_pair' => null
'ath_date' => '19 de ago. de 2021'
'ath_pct' => '-97.01%'
'fdv' => '$55.16M'
'new_prediction' => true
'change_24h_pct_is_increased' => true
'change_30d_pct' => null
'change_30d_pct_is_increased' => false
'max_price' => '$1.13'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.023316'
'next_week_prediction_price_date' => '13 de janeiro de 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.020432'
'next_month_prediction_price_date' => '5 de fevereiro de 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.007987'
'current_year_max_price_prediction' => '$0.023842'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.025925'
'grand_prediction_max_price' => '$0.074957'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.023556654741132
107 => 0.02364460673887
108 => 0.023842767080713
109 => 0.022149508655844
110 => 0.022909731977155
111 => 0.023356291955133
112 => 0.021338717728637
113 => 0.023316410999671
114 => 0.022120032793827
115 => 0.021713964061766
116 => 0.022260682113998
117 => 0.022047625557343
118 => 0.021864452041031
119 => 0.021762238071608
120 => 0.022163687470098
121 => 0.022144959375823
122 => 0.021488110241922
123 => 0.020631277323345
124 => 0.020918858575401
125 => 0.020814377610441
126 => 0.02043572511511
127 => 0.020690891178286
128 => 0.019567268972649
129 => 0.01763413536865
130 => 0.018911222640935
131 => 0.018862056170156
201 => 0.018837264206067
202 => 0.01979695999509
203 => 0.019704707388924
204 => 0.019537268005394
205 => 0.020432649959524
206 => 0.02010582350168
207 => 0.021113025634759
208 => 0.021776434101354
209 => 0.02160817225521
210 => 0.022232111124574
211 => 0.020925483866616
212 => 0.021359493028923
213 => 0.021448941715764
214 => 0.020421601085197
215 => 0.0197198010562
216 => 0.019672998995372
217 => 0.018456174459093
218 => 0.019106192304509
219 => 0.019678181108909
220 => 0.019404242859726
221 => 0.019317522193707
222 => 0.01976055926898
223 => 0.019794987044085
224 => 0.019010030123206
225 => 0.019173247523409
226 => 0.019853891214893
227 => 0.019156097048736
228 => 0.017800396967922
301 => 0.01746416460386
302 => 0.017419305008502
303 => 0.016507416170241
304 => 0.017486633258184
305 => 0.01705917875791
306 => 0.018409502402583
307 => 0.017638204778677
308 => 0.017604955679684
309 => 0.017554694789972
310 => 0.016769794397228
311 => 0.016941637700217
312 => 0.017512871011826
313 => 0.017716693492812
314 => 0.017695433138177
315 => 0.017510071656964
316 => 0.017594929193859
317 => 0.017321573501194
318 => 0.017225045916708
319 => 0.016920378308065
320 => 0.016472601089934
321 => 0.016534867258492
322 => 0.015647703422093
323 => 0.015164329478675
324 => 0.015030537941902
325 => 0.014851626307398
326 => 0.015050746487086
327 => 0.015645190198411
328 => 0.014928164964284
329 => 0.013698875493845
330 => 0.013772757885626
331 => 0.013938749684078
401 => 0.013629425065808
402 => 0.013336675274263
403 => 0.01359119746647
404 => 0.013070331312408
405 => 0.014001693870329
406 => 0.013976503123251
407 => 0.014323657489769
408 => 0.014540740239478
409 => 0.014040434782774
410 => 0.013914609313383
411 => 0.013986285219197
412 => 0.012801642156144
413 => 0.014226846877919
414 => 0.014239172107535
415 => 0.014133636008692
416 => 0.014892513524778
417 => 0.016493981783552
418 => 0.01589144500569
419 => 0.015658124553531
420 => 0.015214582203421
421 => 0.015805576050004
422 => 0.015760196943526
423 => 0.01555497541452
424 => 0.015430856793448
425 => 0.015659549158459
426 => 0.015402519278596
427 => 0.015356349649464
428 => 0.015076611929976
429 => 0.014976758291374
430 => 0.014902830632641
501 => 0.014821443544357
502 => 0.015000963180712
503 => 0.014594148066958
504 => 0.014103568920348
505 => 0.014062782572447
506 => 0.014175397264973
507 => 0.014125573646708
508 => 0.014062544036131
509 => 0.013942203344447
510 => 0.013906500831896
511 => 0.014022516677289
512 => 0.013891541551984
513 => 0.014084802483956
514 => 0.014032246204075
515 => 0.013738671096938
516 => 0.013372767818021
517 => 0.01336951051133
518 => 0.013290677250089
519 => 0.013190271239238
520 => 0.013162340583998
521 => 0.013569762317362
522 => 0.01441311311232
523 => 0.014247543171596
524 => 0.014367184422059
525 => 0.014955700961042
526 => 0.015142772671474
527 => 0.015009993602445
528 => 0.014828237423302
529 => 0.014836233772757
530 => 0.015457349658225
531 => 0.015496087894126
601 => 0.015593966918817
602 => 0.015719769126155
603 => 0.015031418262339
604 => 0.014803812508973
605 => 0.014695960275942
606 => 0.014363817142273
607 => 0.014722005036135
608 => 0.014513304289516
609 => 0.014541465150468
610 => 0.01452312535283
611 => 0.014533140122472
612 => 0.014001433535513
613 => 0.014195159470125
614 => 0.013873052530069
615 => 0.013441787495535
616 => 0.013440341743918
617 => 0.013545893250148
618 => 0.013483107084012
619 => 0.013314151125319
620 => 0.013338150521802
621 => 0.013127890555262
622 => 0.013363679888619
623 => 0.013370441483005
624 => 0.013279649746131
625 => 0.013642915746825
626 => 0.013791746123706
627 => 0.013731985057548
628 => 0.013787553127994
629 => 0.014254423350137
630 => 0.014330543567322
701 => 0.014364351139576
702 => 0.0143190534714
703 => 0.013796086658609
704 => 0.013819282460583
705 => 0.013649087056355
706 => 0.013505289874532
707 => 0.013511041007688
708 => 0.01358497145147
709 => 0.01390783003543
710 => 0.014587266891819
711 => 0.014613051023857
712 => 0.014644302144064
713 => 0.01451718813263
714 => 0.014478849330464
715 => 0.014529428106605
716 => 0.014784588866772
717 => 0.015440931617393
718 => 0.015208936253665
719 => 0.015020320411732
720 => 0.015185787355573
721 => 0.015160315016542
722 => 0.014945302840659
723 => 0.014939268165002
724 => 0.014526591055932
725 => 0.014374033724911
726 => 0.014246545400393
727 => 0.014107331478185
728 => 0.014024800798607
729 => 0.014151605431962
730 => 0.014180607151918
731 => 0.013903346604923
801 => 0.013865557016881
802 => 0.014091973964641
803 => 0.013992336307607
804 => 0.014094816108762
805 => 0.014118592301685
806 => 0.014114763787012
807 => 0.014010730629756
808 => 0.014077038261878
809 => 0.013920200944653
810 => 0.013749663918375
811 => 0.013640871920442
812 => 0.013545936473081
813 => 0.013598612176957
814 => 0.01341083291084
815 => 0.01335075854436
816 => 0.014054574728084
817 => 0.0145744913103
818 => 0.014566931517285
819 => 0.014520913221527
820 => 0.014452539368502
821 => 0.014779586893549
822 => 0.014665650075344
823 => 0.014748548630328
824 => 0.014769649791813
825 => 0.014833516652364
826 => 0.014856343565469
827 => 0.014787344779755
828 => 0.014555776427409
829 => 0.01397873011022
830 => 0.013710113491862
831 => 0.01362146553364
901 => 0.013624687718555
902 => 0.013535805474135
903 => 0.013561985278539
904 => 0.013526701206553
905 => 0.013459881710346
906 => 0.013594486261359
907 => 0.013609998181935
908 => 0.013578579871324
909 => 0.013585980020832
910 => 0.013325849827909
911 => 0.013345626961504
912 => 0.013235505368491
913 => 0.013214858897336
914 => 0.012936481099583
915 => 0.012443294479357
916 => 0.012716567741746
917 => 0.012386492068816
918 => 0.012261487410015
919 => 0.012853240022567
920 => 0.012793844472929
921 => 0.012692185110574
922 => 0.012541809725984
923 => 0.012486034033082
924 => 0.012147158579446
925 => 0.012127136009815
926 => 0.012295091835044
927 => 0.012217586000708
928 => 0.012108738455545
929 => 0.011714503680665
930 => 0.011271253267051
1001 => 0.011284632210865
1002 => 0.011425621920469
1003 => 0.011835568516193
1004 => 0.011675395289096
1005 => 0.01155918777506
1006 => 0.011537425600867
1007 => 0.011809824773099
1008 => 0.0121953266712
1009 => 0.01237619553667
1010 => 0.012196959984058
1011 => 0.011991063831946
1012 => 0.012003595776694
1013 => 0.012086965190693
1014 => 0.012095726137325
1015 => 0.011961708908766
1016 => 0.011999433973595
1017 => 0.011942126150467
1018 => 0.011590428145717
1019 => 0.011584067044057
1020 => 0.011497754681795
1021 => 0.011495141177768
1022 => 0.011348302317932
1023 => 0.011327758546392
1024 => 0.011036201077706
1025 => 0.011228105086513
1026 => 0.011099385952818
1027 => 0.010905375856566
1028 => 0.010871928442845
1029 => 0.0108709229732
1030 => 0.011070127962187
1031 => 0.011225777260233
1101 => 0.011101625077258
1102 => 0.011073358031783
1103 => 0.01137517612483
1104 => 0.011336767021357
1105 => 0.011303504985461
1106 => 0.012160809204447
1107 => 0.011482186018837
1108 => 0.011186267575455
1109 => 0.01082001230838
1110 => 0.010939266870159
1111 => 0.01096439555854
1112 => 0.010083617663699
1113 => 0.0097262861814562
1114 => 0.0096036634825033
1115 => 0.0095330923856254
1116 => 0.0095652525206487
1117 => 0.0092436122758276
1118 => 0.009459759839786
1119 => 0.009181246575344
1120 => 0.0091345529201998
1121 => 0.0096325691381949
1122 => 0.0097018651855603
1123 => 0.0094062267189048
1124 => 0.0095960744740178
1125 => 0.0095272330389327
1126 => 0.0091860208858814
1127 => 0.0091729890914215
1128 => 0.0090017808272075
1129 => 0.0087338730461651
1130 => 0.0086114320013033
1201 => 0.0085476636420574
1202 => 0.0085739757099028
1203 => 0.0085606715232376
1204 => 0.0084738527059485
1205 => 0.0085656478762182
1206 => 0.0083311491485624
1207 => 0.0082377698657253
1208 => 0.0081955926100506
1209 => 0.007987461492013
1210 => 0.0083186906571391
1211 => 0.0083839469753841
1212 => 0.0084493318687346
1213 => 0.0090184627251887
1214 => 0.0089900305559474
1215 => 0.0092470435188611
1216 => 0.0092370564677388
1217 => 0.0091637522073818
1218 => 0.0088544935909014
1219 => 0.0089777585634257
1220 => 0.0085983681376258
1221 => 0.0088826332406764
1222 => 0.0087529065188386
1223 => 0.0088387725055297
1224 => 0.0086843777192353
1225 => 0.0087698261687751
1226 => 0.0083994216692898
1227 => 0.0080535431594023
1228 => 0.0081927347686042
1229 => 0.0083440519662979
1230 => 0.0086721462058028
1231 => 0.0084767359834724
]
'min_raw' => 0.007987461492013
'max_raw' => 0.023842767080713
'avg_raw' => 0.015915114286363
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.007987'
'max' => '$0.023842'
'avg' => '$0.015915'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.015131108507987
'max_diff' => 0.00072419708071331
'year' => 2026
]
1 => [
'items' => [
101 => 0.008547012888701
102 => 0.008311597020397
103 => 0.0078258668408676
104 => 0.0078286160209336
105 => 0.0077538970150202
106 => 0.0076893288847575
107 => 0.0084991811981758
108 => 0.0083984632611317
109 => 0.0082379824100897
110 => 0.0084527924064649
111 => 0.0085095915789996
112 => 0.0085112085715915
113 => 0.0086679283998983
114 => 0.0087515698003593
115 => 0.0087663119597131
116 => 0.00901291399571
117 => 0.0090955717454166
118 => 0.0094360273182957
119 => 0.0087444734119001
120 => 0.0087302313142876
121 => 0.0084558152236342
122 => 0.0082817762005951
123 => 0.0084677318244386
124 => 0.0086324631216899
125 => 0.0084609338842266
126 => 0.0084833319814594
127 => 0.0082530679946185
128 => 0.0083353765349865
129 => 0.0084062717381092
130 => 0.0083671275739723
131 => 0.0083085268656604
201 => 0.0086189570338863
202 => 0.0086014413472093
203 => 0.00889052105662
204 => 0.0091158793623939
205 => 0.0095197617339566
206 => 0.0090982894243668
207 => 0.0090829292982046
208 => 0.0092330769952814
209 => 0.0090955487585865
210 => 0.0091824618568643
211 => 0.0095057586901528
212 => 0.0095125894427957
213 => 0.0093981655350993
214 => 0.0093912028299172
215 => 0.0094131791930507
216 => 0.0095418954383427
217 => 0.0094969180271869
218 => 0.0095489670260651
219 => 0.0096140550961648
220 => 0.0098832869508669
221 => 0.0099481978395555
222 => 0.0097904980324795
223 => 0.0098047365593686
224 => 0.0097457525025656
225 => 0.0096887746427621
226 => 0.0098168525506523
227 => 0.010050917444699
228 => 0.010049461339141
301 => 0.010103759844989
302 => 0.010137587364299
303 => 0.0099923748881632
304 => 0.0098978469058096
305 => 0.0099340949492158
306 => 0.0099920563600019
307 => 0.0099152988448822
308 => 0.0094415159040237
309 => 0.0095852313829087
310 => 0.0095613100998944
311 => 0.0095272432839545
312 => 0.0096717503092923
313 => 0.0096578122541713
314 => 0.0092403133902258
315 => 0.0092670403129238
316 => 0.0092419387429173
317 => 0.0093230470509062
318 => 0.0090911686437804
319 => 0.0091624928800874
320 => 0.0092072267724759
321 => 0.0092335753787548
322 => 0.0093287646120423
323 => 0.009317595254186
324 => 0.0093280703090755
325 => 0.009469210813015
326 => 0.010183051048369
327 => 0.01022190379738
328 => 0.010030578651526
329 => 0.010107009273573
330 => 0.0099602791927827
331 => 0.010058780079023
401 => 0.010126171883738
402 => 0.0098216412769313
403 => 0.0098036089507835
404 => 0.0096562732627549
405 => 0.0097354431159815
406 => 0.009609478186984
407 => 0.0096403855744938
408 => 0.0095539658245587
409 => 0.0097095041684413
410 => 0.0098834202051172
411 => 0.0099273582641339
412 => 0.0098117761473847
413 => 0.0097280870776255
414 => 0.0095811566400219
415 => 0.0098255052323151
416 => 0.0098969602070901
417 => 0.0098251299097519
418 => 0.0098084852603357
419 => 0.0097769436797681
420 => 0.0098151769557598
421 => 0.0098965710479517
422 => 0.0098581870971869
423 => 0.0098835403729052
424 => 0.0097869198300512
425 => 0.0099924229595351
426 => 0.010318811386177
427 => 0.010319860778338
428 => 0.01028147662067
429 => 0.01026577065035
430 => 0.010305155125463
501 => 0.010326519587577
502 => 0.010453881758216
503 => 0.010590546441645
504 => 0.011228300887735
505 => 0.011049221991288
506 => 0.011615075676041
507 => 0.012062592473775
508 => 0.012196783193878
509 => 0.012073334045544
510 => 0.011651021177689
511 => 0.011630300493642
512 => 0.012261414214112
513 => 0.01208309568124
514 => 0.012061885259159
515 => 0.011836242203798
516 => 0.011969625195953
517 => 0.011940452378958
518 => 0.011894401660149
519 => 0.01214888711764
520 => 0.012625261175989
521 => 0.012551013811588
522 => 0.012495591598298
523 => 0.012252747592827
524 => 0.012398993925293
525 => 0.012346918407466
526 => 0.012570667879991
527 => 0.012438123649125
528 => 0.012081744742972
529 => 0.012138499258417
530 => 0.012129920927582
531 => 0.012306462368305
601 => 0.012253469009828
602 => 0.012119573123826
603 => 0.012623632981246
604 => 0.012590902137834
605 => 0.01263730699048
606 => 0.012657735841733
607 => 0.012964548194413
608 => 0.013090239398406
609 => 0.013118773502247
610 => 0.013238170424734
611 => 0.013115802798048
612 => 0.013605360551432
613 => 0.013930887890946
614 => 0.014309004647275
615 => 0.014861534856475
616 => 0.015069291326324
617 => 0.015031761979602
618 => 0.015450684078277
619 => 0.016203477777481
620 => 0.015183923109406
621 => 0.016257516650561
622 => 0.015917629330665
623 => 0.015111762609503
624 => 0.015059874293205
625 => 0.015605616593081
626 => 0.016816020488455
627 => 0.016512828040951
628 => 0.016816516402683
629 => 0.016462247797365
630 => 0.016444655375101
701 => 0.016799310367265
702 => 0.017627981087694
703 => 0.017234310690676
704 => 0.016669887644609
705 => 0.01708664883843
706 => 0.016725611722914
707 => 0.015912094053732
708 => 0.0165125961954
709 => 0.016111057514583
710 => 0.016228247848616
711 => 0.017072222431322
712 => 0.016970673176651
713 => 0.017102087315404
714 => 0.016870144800213
715 => 0.016653473917047
716 => 0.016249041623428
717 => 0.016129309159558
718 => 0.016162398905049
719 => 0.016129292761924
720 => 0.015903016610568
721 => 0.015854152297227
722 => 0.015772709634197
723 => 0.015797952120969
724 => 0.01564481608758
725 => 0.015933815422103
726 => 0.015987456245243
727 => 0.016197765860364
728 => 0.016219600902282
729 => 0.016805310186823
730 => 0.016482711355342
731 => 0.016699138503343
801 => 0.016679779222134
802 => 0.015129228184952
803 => 0.015342880437248
804 => 0.015675256294051
805 => 0.015525521421086
806 => 0.015313831343278
807 => 0.015142880255345
808 => 0.014883871876479
809 => 0.015248421195917
810 => 0.01572776478548
811 => 0.01623175784675
812 => 0.016837272486933
813 => 0.016702128668211
814 => 0.016220438171739
815 => 0.016242046455536
816 => 0.01637562036342
817 => 0.016202630016241
818 => 0.016151611785685
819 => 0.01636861124198
820 => 0.016370105597975
821 => 0.016171059296963
822 => 0.015949855758477
823 => 0.015948928907574
824 => 0.015909567874473
825 => 0.016469250037713
826 => 0.016777018637246
827 => 0.016812303811189
828 => 0.016774643663902
829 => 0.016789137559915
830 => 0.016610053793065
831 => 0.017019386178443
901 => 0.017395030054042
902 => 0.017294349470921
903 => 0.017143414964233
904 => 0.017023188359666
905 => 0.017266027903741
906 => 0.017255214641108
907 => 0.017391749132494
908 => 0.017385555139303
909 => 0.017339643725172
910 => 0.017294351110562
911 => 0.017473931207846
912 => 0.017422215023796
913 => 0.017370418510228
914 => 0.017266532672618
915 => 0.017280652483311
916 => 0.017129744037594
917 => 0.017059926885505
918 => 0.016010044432853
919 => 0.015729481535606
920 => 0.015817752334464
921 => 0.015846813373399
922 => 0.015724712040965
923 => 0.015899773986416
924 => 0.015872490767654
925 => 0.015978633811707
926 => 0.015912320245978
927 => 0.015915041777847
928 => 0.016110055835114
929 => 0.016166669245588
930 => 0.016137875208095
1001 => 0.016158041564953
1002 => 0.016622766747068
1003 => 0.016556697687246
1004 => 0.016521599816021
1005 => 0.016531322166214
1006 => 0.016650069414064
1007 => 0.016683312160103
1008 => 0.01654246030921
1009 => 0.016608886856346
1010 => 0.016891722663267
1011 => 0.016990699188569
1012 => 0.017306584745906
1013 => 0.017172390946731
1014 => 0.017418709472888
1015 => 0.01817580864612
1016 => 0.018780631852975
1017 => 0.018224411436575
1018 => 0.019335092232194
1019 => 0.020199916549281
1020 => 0.020166723151551
1021 => 0.02001592102812
1022 => 0.019031341535661
1023 => 0.018125316807446
1024 => 0.01888324496444
1025 => 0.018885177079181
1026 => 0.018820070378322
1027 => 0.018415698250926
1028 => 0.018805999104816
1029 => 0.018836979769233
1030 => 0.018819638835583
1031 => 0.018509607673609
1101 => 0.018036247392612
1102 => 0.018128740858454
1103 => 0.01828024704232
1104 => 0.017993414228761
1105 => 0.017901753765016
1106 => 0.018072168006235
1107 => 0.018621278198659
1108 => 0.01851747209756
1109 => 0.018514761300747
1110 => 0.018958887821886
1111 => 0.018640989081253
1112 => 0.018129907497264
1113 => 0.018000852656969
1114 => 0.017542794915678
1115 => 0.017859177029133
1116 => 0.017870563058152
1117 => 0.01769728380796
1118 => 0.01814396815342
1119 => 0.01813985187854
1120 => 0.018563912184364
1121 => 0.019374556219321
1122 => 0.019134808888814
1123 => 0.018856008827869
1124 => 0.018886322124781
1125 => 0.019218784172312
1126 => 0.019017770029005
1127 => 0.019090056116458
1128 => 0.019218674758661
1129 => 0.019296273578924
1130 => 0.018875156848724
1201 => 0.018776974394572
1202 => 0.018576127550738
1203 => 0.018523730358165
1204 => 0.018687315921662
1205 => 0.018644216905243
1206 => 0.017869606106502
1207 => 0.01778865496814
1208 => 0.017791137623982
1209 => 0.017587582137553
1210 => 0.017277111161835
1211 => 0.018093010348764
1212 => 0.018027482225551
1213 => 0.017955144248999
1214 => 0.017964005238372
1215 => 0.018318159422029
1216 => 0.018112732110293
1217 => 0.018658894287417
1218 => 0.018546619762938
1219 => 0.018431465820557
1220 => 0.018415548038045
1221 => 0.018371223594701
1222 => 0.018219218586075
1223 => 0.018035663404075
1224 => 0.01791446437364
1225 => 0.016525146429679
1226 => 0.016782995758788
1227 => 0.017079627908221
1228 => 0.017182024137527
1229 => 0.017006868301696
1230 => 0.018226134806061
1231 => 0.018448906545553
]
'min_raw' => 0.0076893288847575
'max_raw' => 0.020199916549281
'avg_raw' => 0.013944622717019
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.007689'
'max' => '$0.020199'
'avg' => '$0.013944'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -0.0002981326072555
'max_diff' => -0.0036428505314319
'year' => 2027
]
2 => [
'items' => [
101 => 0.017774116415591
102 => 0.017647890733775
103 => 0.018234410140747
104 => 0.017880667239261
105 => 0.01803995764614
106 => 0.017695658913662
107 => 0.018395247357027
108 => 0.01838991766522
109 => 0.018117761959829
110 => 0.018347786098384
111 => 0.018307813743694
112 => 0.018000550622598
113 => 0.018404988146021
114 => 0.018405188741987
115 => 0.018143244792724
116 => 0.017837351606888
117 => 0.017782665130135
118 => 0.017741466215996
119 => 0.018029825238801
120 => 0.018288367036973
121 => 0.018769449225423
122 => 0.01889040471783
123 => 0.019362502057158
124 => 0.01908139107759
125 => 0.019206003933836
126 => 0.019341288816856
127 => 0.019406149364712
128 => 0.019300462582589
129 => 0.020033824073583
130 => 0.020095742253039
131 => 0.02011650288302
201 => 0.019869217514468
202 => 0.020088864799603
203 => 0.019986099108842
204 => 0.020253466887071
205 => 0.020295393568621
206 => 0.020259883160933
207 => 0.020273191351425
208 => 0.019647396692693
209 => 0.019614945938308
210 => 0.019172477599668
211 => 0.019352786718225
212 => 0.019015707463524
213 => 0.019122598767491
214 => 0.019169715435781
215 => 0.019145104362114
216 => 0.019362981125254
217 => 0.019177741367303
218 => 0.018688863189833
219 => 0.01819985181783
220 => 0.018193712678394
221 => 0.018064964615914
222 => 0.017971903348124
223 => 0.017989830249826
224 => 0.018053006989667
225 => 0.017968231401156
226 => 0.017986322571196
227 => 0.018286756534702
228 => 0.018347006423486
229 => 0.018142253760246
301 => 0.017320142271672
302 => 0.017118394050265
303 => 0.017263406670971
304 => 0.017194099978282
305 => 0.013876980626956
306 => 0.014656288615023
307 => 0.014193250271312
308 => 0.014406639643464
309 => 0.013933997397733
310 => 0.014159567050699
311 => 0.014117912572281
312 => 0.015371016755693
313 => 0.015351451257458
314 => 0.01536081622608
315 => 0.014913801873445
316 => 0.015625907874954
317 => 0.015976716897802
318 => 0.015911791484152
319 => 0.015928131812005
320 => 0.015647350841405
321 => 0.015363534799632
322 => 0.01504873913033
323 => 0.015633590573972
324 => 0.015568565077186
325 => 0.015717710171378
326 => 0.016097028138624
327 => 0.01615288415019
328 => 0.01622795519617
329 => 0.016201047570107
330 => 0.016842096387934
331 => 0.016764461146319
401 => 0.016951539741428
402 => 0.016566704877602
403 => 0.016131227700321
404 => 0.016213997674901
405 => 0.016206026260755
406 => 0.016104541009512
407 => 0.016012924662401
408 => 0.015860409257209
409 => 0.016342990567271
410 => 0.01632339864738
411 => 0.016640569057309
412 => 0.016584506106525
413 => 0.016210104000258
414 => 0.016223475844729
415 => 0.016313407925083
416 => 0.016624663882016
417 => 0.016717065841955
418 => 0.01667426157253
419 => 0.016775576103294
420 => 0.016855650977483
421 => 0.016785632274638
422 => 0.017776949450556
423 => 0.017365285444722
424 => 0.017565927616826
425 => 0.01761377959262
426 => 0.017491207762841
427 => 0.017517789203752
428 => 0.017558052843723
429 => 0.017802525781197
430 => 0.018444093507942
501 => 0.018728239486819
502 => 0.019583106683784
503 => 0.018704645118776
504 => 0.018652520844944
505 => 0.018806508241634
506 => 0.019308405783135
507 => 0.019715146599683
508 => 0.019850085993973
509 => 0.019867920462535
510 => 0.020121075736824
511 => 0.02026617961898
512 => 0.02009033602788
513 => 0.019941326996015
514 => 0.019407595139556
515 => 0.019469376055244
516 => 0.019894985299154
517 => 0.020496183424435
518 => 0.021012073959931
519 => 0.020831427075
520 => 0.022209635290191
521 => 0.022346279005251
522 => 0.02232739926205
523 => 0.022638693980269
524 => 0.022020837358672
525 => 0.02175669168253
526 => 0.019973544440029
527 => 0.020474536081541
528 => 0.021202756854686
529 => 0.021106374104673
530 => 0.020577520713817
531 => 0.02101167277721
601 => 0.020868128527862
602 => 0.020754909222745
603 => 0.021273588808129
604 => 0.020703279297816
605 => 0.021197067581057
606 => 0.020563779000215
607 => 0.020832252254754
608 => 0.020679853850888
609 => 0.020778474295435
610 => 0.020201941191757
611 => 0.020513024459952
612 => 0.020188999105054
613 => 0.020188845474846
614 => 0.020181692597178
615 => 0.020562906990267
616 => 0.02057533837794
617 => 0.020293620365464
618 => 0.020253020398603
619 => 0.02040313975539
620 => 0.020227389304915
621 => 0.020309621834532
622 => 0.020229880044465
623 => 0.020211928487902
624 => 0.020068887431002
625 => 0.020007261410694
626 => 0.020031426561164
627 => 0.019948938444621
628 => 0.019899236370679
629 => 0.020171805603687
630 => 0.020026182857902
701 => 0.020149486829372
702 => 0.020008966391681
703 => 0.019521861332803
704 => 0.0192417220624
705 => 0.018321625760842
706 => 0.018582563930588
707 => 0.01875556620709
708 => 0.018698388955738
709 => 0.0188212278163
710 => 0.018828769124683
711 => 0.01878883295892
712 => 0.018742591995107
713 => 0.018720084451208
714 => 0.018887837243345
715 => 0.018985223385479
716 => 0.018772929300008
717 => 0.018723191766092
718 => 0.018937832807581
719 => 0.019068763718895
720 => 0.020035484004315
721 => 0.019963866243105
722 => 0.020143612769465
723 => 0.020123376069032
724 => 0.020311779064524
725 => 0.020619738337106
726 => 0.019993571029179
727 => 0.020102252022599
728 => 0.020075605952823
729 => 0.020366520755661
730 => 0.020367428959921
731 => 0.020193011003348
801 => 0.020287565807214
802 => 0.020234787909671
803 => 0.020330164703892
804 => 0.019962909744241
805 => 0.020410186642373
806 => 0.020663763821727
807 => 0.020667284741109
808 => 0.02078747831161
809 => 0.020909601940381
810 => 0.02114400761108
811 => 0.020903064493449
812 => 0.020469631280169
813 => 0.020500923758187
814 => 0.020246802023828
815 => 0.020251073856094
816 => 0.020228270480672
817 => 0.020296705126872
818 => 0.019977927300668
819 => 0.020052743819314
820 => 0.019948000255085
821 => 0.020102024330546
822 => 0.019936319886441
823 => 0.020075593103281
824 => 0.020135698806689
825 => 0.020357490146248
826 => 0.019903561125256
827 => 0.01897796912316
828 => 0.019172539783719
829 => 0.018884754493557
830 => 0.018911390117837
831 => 0.018965198317912
901 => 0.018790788336523
902 => 0.018824060264682
903 => 0.018822871557277
904 => 0.018812627919054
905 => 0.018767257146862
906 => 0.018701460550849
907 => 0.018963573938239
908 => 0.019008112110371
909 => 0.019107114949909
910 => 0.019401680246105
911 => 0.019372246226687
912 => 0.019420254333563
913 => 0.019315452905806
914 => 0.018916251555493
915 => 0.018937930109431
916 => 0.018667598194454
917 => 0.019100201955054
918 => 0.018997755674453
919 => 0.018931707890897
920 => 0.018913686141226
921 => 0.019208981607815
922 => 0.019297338639609
923 => 0.019242280466815
924 => 0.019129354548112
925 => 0.019346205695573
926 => 0.019404225914418
927 => 0.019417214501714
928 => 0.019801433157931
929 => 0.01943868805646
930 => 0.01952600440776
1001 => 0.020207221655055
1002 => 0.019589451613313
1003 => 0.019916698182339
1004 => 0.019900681165694
1005 => 0.020068089436988
1006 => 0.019886948801167
1007 => 0.019889194256443
1008 => 0.020037841460134
1009 => 0.019829093271215
1010 => 0.019777404284006
1011 => 0.019705996318381
1012 => 0.019861912998916
1013 => 0.019955377997391
1014 => 0.020708637242627
1015 => 0.021195277067844
1016 => 0.02117415074961
1017 => 0.021367205751457
1018 => 0.021280232704944
1019 => 0.020999373795422
1020 => 0.021478765706881
1021 => 0.021327066047485
1022 => 0.021339571983091
1023 => 0.021339106511543
1024 => 0.021439973523226
1025 => 0.021368500001123
1026 => 0.02122761835245
1027 => 0.02132114216551
1028 => 0.021598874454924
1029 => 0.022460964003131
1030 => 0.022943400735475
1031 => 0.022431920706078
1101 => 0.022784732781366
1102 => 0.02257317125599
1103 => 0.022534724233419
1104 => 0.022756316289306
1105 => 0.022978296212754
1106 => 0.022964157051276
1107 => 0.022803011025648
1108 => 0.0227119837247
1109 => 0.023401272943863
1110 => 0.023909129498806
1111 => 0.023874497086473
1112 => 0.024027353291449
1113 => 0.024476143836925
1114 => 0.024517175619977
1115 => 0.024512006558418
1116 => 0.024410305002899
1117 => 0.024852197577737
1118 => 0.025220832138027
1119 => 0.024386764031237
1120 => 0.024704366247549
1121 => 0.024846948114956
1122 => 0.025056300598443
1123 => 0.025409513329636
1124 => 0.025793196040762
1125 => 0.025847452982982
1126 => 0.025808955086043
1127 => 0.025555906024111
1128 => 0.025975736224911
1129 => 0.02622166291031
1130 => 0.026368106623533
1201 => 0.026739463514357
1202 => 0.024847828652029
1203 => 0.02350883547612
1204 => 0.023299732356406
1205 => 0.023724951772919
1206 => 0.023837078741992
1207 => 0.023791880501354
1208 => 0.022284721945935
1209 => 0.023291797478526
1210 => 0.024375326074277
1211 => 0.024416948820449
1212 => 0.024959385890997
1213 => 0.025136025636414
1214 => 0.025572758577057
1215 => 0.02554544081271
1216 => 0.025651778333818
1217 => 0.025627333179225
1218 => 0.026436288986795
1219 => 0.027328687373646
1220 => 0.027297786455162
1221 => 0.027169493628674
1222 => 0.027360030353187
1223 => 0.028281081123639
1224 => 0.028196285528234
1225 => 0.028278657226299
1226 => 0.029364627992809
1227 => 0.030776544466813
1228 => 0.030120567510542
1229 => 0.031543848753366
1230 => 0.032439728850826
1231 => 0.033989060843654
]
'min_raw' => 0.013876980626956
'max_raw' => 0.033989060843654
'avg_raw' => 0.023933020735305
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.013876'
'max' => '$0.033989'
'avg' => '$0.023933'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 0.0061876517421985
'max_diff' => 0.013789144294372
'year' => 2028
]
3 => [
'items' => [
101 => 0.033795076847531
102 => 0.034398220422815
103 => 0.033447805008789
104 => 0.031265459107539
105 => 0.030920094514982
106 => 0.031611523175306
107 => 0.033311333068091
108 => 0.031557990112672
109 => 0.031912689108995
110 => 0.031810535774192
111 => 0.031805092457104
112 => 0.032012841730779
113 => 0.03171149057384
114 => 0.030483731748432
115 => 0.031046406382888
116 => 0.030829130684669
117 => 0.031070214270819
118 => 0.032371242954838
119 => 0.031796027160983
120 => 0.031190084048894
121 => 0.031950071180995
122 => 0.032917795960072
123 => 0.032857237482566
124 => 0.032739728724724
125 => 0.033402119440118
126 => 0.03449619483968
127 => 0.034791919023831
128 => 0.035010216570756
129 => 0.035040316114309
130 => 0.035350360119675
131 => 0.033683175361676
201 => 0.036329040388961
202 => 0.036785908188626
203 => 0.03670003597752
204 => 0.037207825308912
205 => 0.037058420806244
206 => 0.036841957122727
207 => 0.037646911222872
208 => 0.036724096303502
209 => 0.035414276704624
210 => 0.034695683767385
211 => 0.03564198491438
212 => 0.036219858003491
213 => 0.036601795355762
214 => 0.036717369367786
215 => 0.033812594168574
216 => 0.032247081442416
217 => 0.033250557151243
218 => 0.034474866772206
219 => 0.033676374259915
220 => 0.033707673654651
221 => 0.032569233172265
222 => 0.034575593493806
223 => 0.034283283671104
224 => 0.03579978754837
225 => 0.035437861727357
226 => 0.036674511768926
227 => 0.036348860368325
228 => 0.037700621125296
301 => 0.038239875088713
302 => 0.039145366421468
303 => 0.039811449531856
304 => 0.040202586274415
305 => 0.040179103891509
306 => 0.041728982529079
307 => 0.040815073245139
308 => 0.03966698779263
309 => 0.039646222548957
310 => 0.040240832273308
311 => 0.041486971132337
312 => 0.0418100768079
313 => 0.041990648801653
314 => 0.041714096507464
315 => 0.040722113480215
316 => 0.040293780238517
317 => 0.040658732570453
318 => 0.040212427229207
319 => 0.040982875459358
320 => 0.042040865438218
321 => 0.041822394691329
322 => 0.042552709643213
323 => 0.04330850878704
324 => 0.044389335507775
325 => 0.044671903635473
326 => 0.045138978005454
327 => 0.045619750958102
328 => 0.045774162273298
329 => 0.046068981385025
330 => 0.04606742754278
331 => 0.046955884779583
401 => 0.047935880625008
402 => 0.0483058063697
403 => 0.049156430221794
404 => 0.047699766684498
405 => 0.048804662710482
406 => 0.049801306583261
407 => 0.04861306667133
408 => 0.050250778565535
409 => 0.050314367207253
410 => 0.051274480201267
411 => 0.05030122174644
412 => 0.049723303982714
413 => 0.051391730912294
414 => 0.052199030148561
415 => 0.051955865048579
416 => 0.050105366631167
417 => 0.049028297180622
418 => 0.046209398677366
419 => 0.049548505721826
420 => 0.051174887360095
421 => 0.050101154695629
422 => 0.050642682996286
423 => 0.053597085813532
424 => 0.054721931122923
425 => 0.054487971161832
426 => 0.054527506543947
427 => 0.055134452655508
428 => 0.057825985965497
429 => 0.056213156816898
430 => 0.057446104269447
501 => 0.058100055152556
502 => 0.058707481177866
503 => 0.057215834838671
504 => 0.055275224868014
505 => 0.054660552229042
506 => 0.049994393143105
507 => 0.049751499298581
508 => 0.049615155623212
509 => 0.048755528036209
510 => 0.048080096224638
511 => 0.047542967770901
512 => 0.046133382308162
513 => 0.046609076023021
514 => 0.044362490998765
515 => 0.045799776483199
516 => 0.042214172538794
517 => 0.045200370050491
518 => 0.043575118510614
519 => 0.044666431208642
520 => 0.044662623721446
521 => 0.042653171043372
522 => 0.041494160674866
523 => 0.042232727191036
524 => 0.043024529123854
525 => 0.043152996323512
526 => 0.044179588197555
527 => 0.044466087923082
528 => 0.043597980379342
529 => 0.042139868866812
530 => 0.04247855491519
531 => 0.041487297212906
601 => 0.039750156217829
602 => 0.040997801208065
603 => 0.04142380206281
604 => 0.041611948308998
605 => 0.039903669652332
606 => 0.039366891409873
607 => 0.039081115177594
608 => 0.041919351543881
609 => 0.042074836538983
610 => 0.041279353320681
611 => 0.044875012898221
612 => 0.044061204395712
613 => 0.044970427880939
614 => 0.042447822706239
615 => 0.042544189621051
616 => 0.041349947904807
617 => 0.042018643466643
618 => 0.041546030996601
619 => 0.041964619473425
620 => 0.042215519680528
621 => 0.043409565433458
622 => 0.045214004134968
623 => 0.043231214815887
624 => 0.042367285115498
625 => 0.042903262242695
626 => 0.044330639962659
627 => 0.046493190274525
628 => 0.045212916964519
629 => 0.045781080519049
630 => 0.045905198979877
701 => 0.044961172839372
702 => 0.04652799786487
703 => 0.047367672124898
704 => 0.048229004169581
705 => 0.048976874650004
706 => 0.047884969209838
707 => 0.049053464549312
708 => 0.04811186357289
709 => 0.047267150156119
710 => 0.04726843123769
711 => 0.046738530172056
712 => 0.045711780085559
713 => 0.045522431616437
714 => 0.046507446264888
715 => 0.047297334731711
716 => 0.047362393729149
717 => 0.047799716570318
718 => 0.048058519722937
719 => 0.050595142444437
720 => 0.051615393087068
721 => 0.052862936260521
722 => 0.053348924634261
723 => 0.054811575402746
724 => 0.053630366116507
725 => 0.053374804057275
726 => 0.049826891722352
727 => 0.050407862168438
728 => 0.051338051907932
729 => 0.049842230208546
730 => 0.050790984786112
731 => 0.050978289037093
801 => 0.049791402759585
802 => 0.050425370002731
803 => 0.048741740963123
804 => 0.045250702647204
805 => 0.046531884388482
806 => 0.047475265391174
807 => 0.046128944382294
808 => 0.048542172680894
809 => 0.047132414527995
810 => 0.046685588873852
811 => 0.044942362692191
812 => 0.045765098347006
813 => 0.046877860100583
814 => 0.046190302709311
815 => 0.047617087533462
816 => 0.049637795354072
817 => 0.05107787208227
818 => 0.051188423291957
819 => 0.050262550433373
820 => 0.051746267598096
821 => 0.05175707485783
822 => 0.050083435834861
823 => 0.049058341252153
824 => 0.048825437606144
825 => 0.049407276577323
826 => 0.050113736501734
827 => 0.051227626901051
828 => 0.051900727540548
829 => 0.053655817023362
830 => 0.054130693915053
831 => 0.054652439645343
901 => 0.055349652841436
902 => 0.056186836045139
903 => 0.054355126856303
904 => 0.054427904077108
905 => 0.052722241842204
906 => 0.050899497127501
907 => 0.052282733157624
908 => 0.054091130262832
909 => 0.053676281968796
910 => 0.053629603061136
911 => 0.053708104036172
912 => 0.053395321970147
913 => 0.051980620277763
914 => 0.051270165944349
915 => 0.052186833290684
916 => 0.052674001189091
917 => 0.053429556114016
918 => 0.053336418021689
919 => 0.055282646367619
920 => 0.056038891851957
921 => 0.055845411895495
922 => 0.055881016863839
923 => 0.057250163190241
924 => 0.058772935491617
925 => 0.060199212699359
926 => 0.061650083135106
927 => 0.059901002196376
928 => 0.059012926764004
929 => 0.059929193922052
930 => 0.059443009670598
1001 => 0.06223676859107
1002 => 0.062430202397191
1003 => 0.065223759297094
1004 => 0.06787517744567
1005 => 0.06620986921164
1006 => 0.0677801798692
1007 => 0.069478598874658
1008 => 0.072755124694739
1009 => 0.071651706068104
1010 => 0.070806504692876
1011 => 0.070007793477268
1012 => 0.071669784725112
1013 => 0.073807909914505
1014 => 0.074268441601592
1015 => 0.075014678871317
1016 => 0.074230101627753
1017 => 0.075175038499278
1018 => 0.07851108088206
1019 => 0.077609652782171
1020 => 0.076329479968532
1021 => 0.078962965032822
1022 => 0.079916013040175
1023 => 0.086605003070893
1024 => 0.09505012929307
1025 => 0.0915537915834
1026 => 0.089383501940895
1027 => 0.089893571486842
1028 => 0.092977445697618
1029 => 0.093967888216844
1030 => 0.091275524023577
1031 => 0.092226512572765
1101 => 0.09746655297792
1102 => 0.10027766653466
1103 => 0.096459796741686
1104 => 0.085926445401777
1105 => 0.076214214413337
1106 => 0.078790335418933
1107 => 0.07849828324324
1108 => 0.084128052950227
1109 => 0.077588154020111
1110 => 0.077698269145589
1111 => 0.083444456528086
1112 => 0.081911472249027
1113 => 0.079428234046743
1114 => 0.07623234480033
1115 => 0.07032444794436
1116 => 0.065091658945135
1117 => 0.07535436321195
1118 => 0.074911816742448
1119 => 0.074270943872897
1120 => 0.075697137094395
1121 => 0.082622326545982
1122 => 0.082462678514472
1123 => 0.081447079191148
1124 => 0.082217402326808
1125 => 0.079293192676604
1126 => 0.080046828086478
1127 => 0.076212675946328
1128 => 0.077945872842013
1129 => 0.07942290613284
1130 => 0.079719442433825
1201 => 0.080387553861464
1202 => 0.074678614862488
1203 => 0.077241760867385
1204 => 0.07874736901096
1205 => 0.071944976643796
1206 => 0.07861290758522
1207 => 0.074579234935758
1208 => 0.073210145854801
1209 => 0.075053443938539
1210 => 0.07433510888264
1211 => 0.073717526583628
1212 => 0.073372905049369
1213 => 0.07472641972468
1214 => 0.074663276647277
1215 => 0.072448663932589
1216 => 0.069559791925442
1217 => 0.070529392195032
1218 => 0.070177127327039
1219 => 0.06890047400236
1220 => 0.069760784199483
1221 => 0.065972413484379
1222 => 0.059454718571417
1223 => 0.063760507473314
1224 => 0.063594739284388
1225 => 0.063511151446543
1226 => 0.066746832803054
1227 => 0.066435796700495
1228 => 0.065871263128677
1229 => 0.068890105900601
1230 => 0.067788187679683
1231 => 0.071184039991966
]
'min_raw' => 0.030483731748432
'max_raw' => 0.10027766653466
'avg_raw' => 0.065380699141547
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.030483'
'max' => '$0.100277'
'avg' => '$0.06538'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072435
'min_diff' => 0.016606751121476
'max_diff' => 0.066288605691009
'year' => 2029
]
4 => [
'items' => [
101 => 0.073420767954792
102 => 0.072853461392849
103 => 0.074957114852932
104 => 0.070551729826926
105 => 0.072015022019195
106 => 0.072316604511987
107 => 0.068852853849398
108 => 0.066486686053522
109 => 0.066328889637825
110 => 0.062226280757784
111 => 0.0644178613064
112 => 0.066346361495417
113 => 0.065422759562538
114 => 0.065130374782412
115 => 0.066624105213557
116 => 0.066740180860993
117 => 0.064093643798307
118 => 0.064643942658569
119 => 0.066938780385432
120 => 0.064586118635799
121 => 0.060015281161377
122 => 0.058881650270948
123 => 0.058730403013203
124 => 0.05565590612896
125 => 0.058957404907714
126 => 0.057516212216121
127 => 0.062068922660723
128 => 0.059468438871442
129 => 0.059356337212808
130 => 0.059186879114043
131 => 0.056540532639909
201 => 0.057119914333652
202 => 0.059045867325979
203 => 0.059733069051054
204 => 0.059661388281051
205 => 0.059036429105616
206 => 0.059322532215821
207 => 0.058400894412919
208 => 0.058075444922482
209 => 0.057048236808728
210 => 0.055538524654994
211 => 0.055748459389574
212 => 0.052757324575353
213 => 0.051127595577026
214 => 0.050676508069772
215 => 0.050073295002827
216 => 0.050744642590772
217 => 0.052748851066241
218 => 0.050331350428278
219 => 0.046186715152443
220 => 0.046435814794636
221 => 0.046995467732295
222 => 0.045952558185442
223 => 0.044965531824109
224 => 0.045823671165308
225 => 0.044067534561175
226 => 0.047207688450862
227 => 0.047122756088326
228 => 0.048293211272587
301 => 0.049025120919464
302 => 0.047338306141975
303 => 0.046914076787069
304 => 0.047155737107772
305 => 0.043161630311554
306 => 0.047966807535632
307 => 0.048008362907805
308 => 0.047652540582261
309 => 0.050211149110879
310 => 0.055610611156278
311 => 0.053579116341942
312 => 0.052792460147575
313 => 0.051297026147041
314 => 0.053289603162667
315 => 0.053136604336911
316 => 0.052444685623759
317 => 0.052026211027126
318 => 0.052797263302553
319 => 0.051930669117343
320 => 0.051775004989264
321 => 0.050831849737345
322 => 0.05049518622324
323 => 0.050245933960357
324 => 0.049971531709944
325 => 0.050576794697574
326 => 0.049205189138627
327 => 0.047551167294689
328 => 0.04741365327513
329 => 0.047793341573489
330 => 0.047625357765935
331 => 0.047412849033288
401 => 0.047007111989355
402 => 0.04688673847562
403 => 0.047277893998331
404 => 0.046836302218974
405 => 0.047487894944164
406 => 0.047310697777182
407 => 0.046320888806712
408 => 0.04508722035529
409 => 0.045076238118365
410 => 0.044810446274128
411 => 0.044471920398421
412 => 0.044377750244222
413 => 0.045751401063537
414 => 0.048594817149611
415 => 0.048036586534734
416 => 0.048439965363757
417 => 0.050424189963848
418 => 0.051054915296502
419 => 0.050607241394932
420 => 0.049994437747141
421 => 0.050021397997613
422 => 0.052115533570396
423 => 0.052246142237351
424 => 0.052576148202795
425 => 0.053000299128065
426 => 0.050679476131586
427 => 0.049912087443187
428 => 0.049548456109519
429 => 0.04842861234486
430 => 0.049636267836896
501 => 0.048932618698651
502 => 0.049027565007478
503 => 0.048965731099297
504 => 0.048999496594354
505 => 0.047206810713854
506 => 0.047859971227912
507 => 0.046773965190725
508 => 0.04531992501683
509 => 0.045315050564315
510 => 0.045670924836938
511 => 0.04545923689422
512 => 0.04488959008336
513 => 0.044970505724186
514 => 0.044261599567116
515 => 0.045056579766814
516 => 0.045079376954366
517 => 0.044773266274618
518 => 0.045998042958381
519 => 0.046499834965041
520 => 0.046298346358105
521 => 0.046485697987251
522 => 0.048059783537042
523 => 0.048316428163826
524 => 0.048430412754051
525 => 0.048277688503214
526 => 0.046514469381511
527 => 0.046592675647346
528 => 0.046018849959327
529 => 0.045534027721213
530 => 0.04555341806818
531 => 0.04580267972105
601 => 0.046891219978136
602 => 0.04918198877622
603 => 0.049268921777577
604 => 0.049374287111237
605 => 0.04894571334687
606 => 0.048816451398639
607 => 0.048986981273696
608 => 0.049847273591355
609 => 0.05206017899946
610 => 0.051277990433253
611 => 0.050642058953436
612 => 0.051199942307131
613 => 0.051114060537664
614 => 0.050389131975004
615 => 0.0503687856447
616 => 0.048977415959273
617 => 0.048463058266525
618 => 0.04803322247946
619 => 0.047563853021131
620 => 0.047285595072828
621 => 0.047713125747398
622 => 0.047810907071066
623 => 0.046876103779161
624 => 0.046748693544691
625 => 0.047512074091992
626 => 0.04717613877482
627 => 0.047521656579326
628 => 0.047601819673768
629 => 0.04758891156925
630 => 0.047238156516198
701 => 0.047461717327347
702 => 0.046932929362293
703 => 0.046357951871681
704 => 0.045991152055034
705 => 0.045671070566074
706 => 0.045848670379394
707 => 0.045215559473352
708 => 0.045013014552504
709 => 0.047385979954807
710 => 0.049138915011166
711 => 0.049113426641208
712 => 0.048958272744165
713 => 0.048727745524979
714 => 0.049830409089406
715 => 0.049446263152014
716 => 0.049725761417934
717 => 0.049796905457116
718 => 0.050012237036506
719 => 0.050089199567763
720 => 0.049856565344389
721 => 0.049075816476867
722 => 0.047130264530377
723 => 0.046224604847369
724 => 0.045925722067021
725 => 0.045936585888428
726 => 0.045636913195804
727 => 0.04572518023417
728 => 0.045606217522014
729 => 0.045380930925362
730 => 0.045834759566892
731 => 0.045887059090122
801 => 0.045781130062341
802 => 0.04580608018307
803 => 0.044929033075918
804 => 0.044995713062629
805 => 0.044624430423341
806 => 0.044554819404354
807 => 0.043616249223513
808 => 0.04195343610023
809 => 0.042874795983704
810 => 0.041761922807273
811 => 0.041340460872578
812 => 0.043335596120645
813 => 0.043135339878177
814 => 0.042792588240368
815 => 0.042285587132347
816 => 0.042097535489592
817 => 0.040954993238131
818 => 0.040887485746689
819 => 0.041453760537749
820 => 0.041192444206001
821 => 0.040825457107992
822 => 0.03949626703989
823 => 0.038001817323636
824 => 0.038046925366794
825 => 0.038522282016309
826 => 0.039904445585352
827 => 0.039364410367254
828 => 0.038972608620334
829 => 0.038899235930654
830 => 0.03981764875814
831 => 0.041117395322468
901 => 0.041727207330261
902 => 0.041122902150804
903 => 0.040428708898746
904 => 0.040470961225417
905 => 0.040752047025383
906 => 0.040781585168621
907 => 0.04032973672575
908 => 0.040456929415701
909 => 0.040263712088922
910 => 0.039077937711135
911 => 0.039056490812772
912 => 0.038765482657268
913 => 0.038756671045973
914 => 0.038261593578075
915 => 0.038192328818007
916 => 0.03720932245644
917 => 0.037856340220441
918 => 0.037422354674306
919 => 0.03676823608944
920 => 0.036655465798857
921 => 0.036652075787748
922 => 0.037323709316166
923 => 0.037848491791617
924 => 0.037429904038686
925 => 0.037334599721327
926 => 0.038352200494301
927 => 0.038222701520303
928 => 0.038110556243999
929 => 0.041001017273378
930 => 0.038712991823138
1001 => 0.037715282130907
1002 => 0.036480426926838
1003 => 0.036882502007963
1004 => 0.036967225135268
1005 => 0.033997620968865
1006 => 0.032792852928395
1007 => 0.032379421937632
1008 => 0.032141486557392
1009 => 0.032249916697972
1010 => 0.031165484156353
1011 => 0.03189424075918
1012 => 0.030955213842938
1013 => 0.030797782924572
1014 => 0.032476879373925
1015 => 0.032710515835713
1016 => 0.031713750104565
1017 => 0.032353835065676
1018 => 0.032121731360931
1019 => 0.030971310764247
1020 => 0.030927373159374
1021 => 0.030350132543197
1022 => 0.029446862754689
1023 => 0.029034044223377
1024 => 0.028819044748014
1025 => 0.028907757721805
1026 => 0.028862901727595
1027 => 0.028570186023608
1028 => 0.028879679849107
1029 => 0.028089051016637
1030 => 0.027774216245018
1031 => 0.027632012682789
1101 => 0.026930284087075
1102 => 0.028047046342979
1103 => 0.028267062575993
1104 => 0.028487512308952
1105 => 0.030406376726934
1106 => 0.030310515683266
1107 => 0.031177052831802
1108 => 0.031143380791669
1109 => 0.030896230359936
1110 => 0.029853543342725
1111 => 0.030269139803676
1112 => 0.028989998494898
1113 => 0.029948418136589
1114 => 0.029511035436682
1115 => 0.029800538605783
1116 => 0.029279985804292
1117 => 0.029568081217736
1118 => 0.028319236586904
1119 => 0.027153083042352
1120 => 0.027622377270824
1121 => 0.028132553767478
1122 => 0.029238746402777
1123 => 0.028579907195084
1124 => 0.028816850687639
1125 => 0.028023129651441
1126 => 0.02638545643856
1127 => 0.026394725491094
1128 => 0.026142805145942
1129 => 0.025925109186759
1130 => 0.028655582803531
1201 => 0.028316005246886
1202 => 0.027774932853182
1203 => 0.028499179753516
1204 => 0.028690682129309
1205 => 0.028696133932727
1206 => 0.029224525775692
1207 => 0.029506528597003
1208 => 0.029556232816529
1209 => 0.030387668798097
1210 => 0.030666355172212
1211 => 0.031814224906023
1212 => 0.029482602627859
1213 => 0.029434584401406
1214 => 0.028509371392649
1215 => 0.027922586675456
1216 => 0.028549549044252
1217 => 0.029104952114106
1218 => 0.02852662931421
1219 => 0.028602146062815
1220 => 0.027825794954663
1221 => 0.028103303945113
1222 => 0.028342332072186
1223 => 0.02821035478984
1224 => 0.028012778410395
1225 => 0.029059415396111
1226 => 0.029000360035574
1227 => 0.029975012458753
1228 => 0.030734823720684
1229 => 0.032096541334574
1230 => 0.030675518016535
1231 => 0.03062373027877
]
'min_raw' => 0.025925109186759
'max_raw' => 0.074957114852932
'avg_raw' => 0.050441112019845
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.025925'
'max' => '$0.074957'
'avg' => '$0.050441'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -0.0045586225616727
'max_diff' => -0.025320551681731
'year' => 2030
]
5 => [
'items' => [
101 => 0.031129963722441
102 => 0.03066627767051
103 => 0.030959311249432
104 => 0.032049329094728
105 => 0.032072359454172
106 => 0.031686571260551
107 => 0.031663096013909
108 => 0.031737190856554
109 => 0.032171166664238
110 => 0.032019522182303
111 => 0.032195009015966
112 => 0.032414457988611
113 => 0.033322191983907
114 => 0.033541043577054
115 => 0.033009347667249
116 => 0.033057353854757
117 => 0.032858484989111
118 => 0.032666380156716
119 => 0.033098203765282
120 => 0.033887369897451
121 => 0.0338824605359
122 => 0.034065531739366
123 => 0.034179583582481
124 => 0.033689989580778
125 => 0.03337128188854
126 => 0.033493494697642
127 => 0.033688915640844
128 => 0.033430122319579
129 => 0.031832730056006
130 => 0.032317276826961
131 => 0.032236624551148
201 => 0.032121765902737
202 => 0.032608981427822
203 => 0.032561988301857
204 => 0.031154361733225
205 => 0.031244473419116
206 => 0.031159841723303
207 => 0.031433304046489
208 => 0.030651509807631
209 => 0.030891984450039
210 => 0.031042807891448
211 => 0.031131644057118
212 => 0.031452581203047
213 => 0.031414922933215
214 => 0.031450240312119
215 => 0.031926105375267
216 => 0.034332867567498
217 => 0.034463862323399
218 => 0.033818796236258
219 => 0.034076487414705
220 => 0.033581776702953
221 => 0.033913879318026
222 => 0.034141095492767
223 => 0.03311434929027
224 => 0.033053552043686
225 => 0.032556799484848
226 => 0.032823726172464
227 => 0.032399026619759
228 => 0.032503233034633
301 => 0.032211862814093
302 => 0.032736271199833
303 => 0.033322641259916
304 => 0.033470781493548
305 => 0.033081088317242
306 => 0.032798924775565
307 => 0.032303538546829
308 => 0.033127376885619
309 => 0.0333682923219
310 => 0.033126111459393
311 => 0.033069992861794
312 => 0.032963648220748
313 => 0.033092554380116
314 => 0.033366980244695
315 => 0.033237566074809
316 => 0.033323046414003
317 => 0.03299728350794
318 => 0.033690151656765
319 => 0.0347905930249
320 => 0.034794131123838
321 => 0.034664716256362
322 => 0.034611762480873
323 => 0.034744549988455
324 => 0.034816581764089
325 => 0.035245992214542
326 => 0.035706766736346
327 => 0.037857000377931
328 => 0.037253223375673
329 => 0.039161038580459
330 => 0.040669872708645
331 => 0.041122306090368
401 => 0.040706088667818
402 => 0.0392822313489
403 => 0.039212370115963
404 => 0.041340214087482
405 => 0.0407390007041
406 => 0.040667488285192
407 => 0.039906716970147
408 => 0.040356427040699
409 => 0.040258068851421
410 => 0.040102805637798
411 => 0.040960821125335
412 => 0.042566949522434
413 => 0.042316619349569
414 => 0.042129759488008
415 => 0.041310993968736
416 => 0.041804073689237
417 => 0.041628497445087
418 => 0.042382884413395
419 => 0.041936002285087
420 => 0.040734445921411
421 => 0.040925797732708
422 => 0.040896875291377
423 => 0.041492097084505
424 => 0.041313426276521
425 => 0.040861986948554
426 => 0.042561459950181
427 => 0.042451105626421
428 => 0.042607562827002
429 => 0.042676440125298
430 => 0.043710879393315
501 => 0.044134656063057
502 => 0.044230860786343
503 => 0.044633415846534
504 => 0.044220844849726
505 => 0.045871422995093
506 => 0.046968961147857
507 => 0.048243808191089
508 => 0.050106702367833
509 => 0.050807167811024
510 => 0.050680634998334
511 => 0.052093060102224
512 => 0.054631156617468
513 => 0.051193656871022
514 => 0.054813352450931
515 => 0.053667398621727
516 => 0.050950362707513
517 => 0.050775417626386
518 => 0.052615425892928
519 => 0.056696387133884
520 => 0.055674152628904
521 => 0.056698059143329
522 => 0.055503617806255
523 => 0.055444303726328
524 => 0.05664004779363
525 => 0.059433968983498
526 => 0.058106681754762
527 => 0.056203690048187
528 => 0.057608829510491
529 => 0.056391567668725
530 => 0.053648736049089
531 => 0.055673370945443
601 => 0.054319555248533
602 => 0.054714670641692
603 => 0.05756018987171
604 => 0.057217809469644
605 => 0.057660881413489
606 => 0.056878871029815
607 => 0.056148350019745
608 => 0.054784778305246
609 => 0.054381091943855
610 => 0.05449265633103
611 => 0.054381036658086
612 => 0.053618130815695
613 => 0.053453381371667
614 => 0.053178791747116
615 => 0.05326389855364
616 => 0.052747589725456
617 => 0.053721971159087
618 => 0.053902824939388
619 => 0.054611898490117
620 => 0.054685516858415
621 => 0.056660276604163
622 => 0.055572612120694
623 => 0.056302311360639
624 => 0.056237040192423
625 => 0.051009249114547
626 => 0.051729592599887
627 => 0.052850221006838
628 => 0.052345379428483
629 => 0.051631651551424
630 => 0.051055278023032
701 => 0.050182013190298
702 => 0.051411116672805
703 => 0.053027257051718
704 => 0.054726504845462
705 => 0.056768039730519
706 => 0.05631239291026
707 => 0.054688339770848
708 => 0.05476119360831
709 => 0.055211547364575
710 => 0.054628298331259
711 => 0.05445628680496
712 => 0.055187915622278
713 => 0.055192953947847
714 => 0.054521855447016
715 => 0.053776052273072
716 => 0.053772927330542
717 => 0.053640218859343
718 => 0.055527226348468
719 => 0.056564889669511
720 => 0.056683856096991
721 => 0.056556882281067
722 => 0.056605749463406
723 => 0.056001956040242
724 => 0.057382048756217
725 => 0.058648558309419
726 => 0.058309106694131
727 => 0.057800220466923
728 => 0.05739486807567
729 => 0.058213618553036
730 => 0.058177160883111
731 => 0.05863749645335
801 => 0.058616612972857
802 => 0.058461819434682
803 => 0.058309112222295
804 => 0.05891457905817
805 => 0.058740214332938
806 => 0.058565578771127
807 => 0.058215320416548
808 => 0.05826292634411
809 => 0.057754127983285
810 => 0.057518734580538
811 => 0.053978982590971
812 => 0.053033045194625
813 => 0.053330656355847
814 => 0.053428637677591
815 => 0.05301696451045
816 => 0.053607198081971
817 => 0.053515210805061
818 => 0.053873079488759
819 => 0.053649498672037
820 => 0.053658674506743
821 => 0.054316178016267
822 => 0.054507054082302
823 => 0.054409972974558
824 => 0.054477965254676
825 => 0.056044818652254
826 => 0.055822062204269
827 => 0.055703727280978
828 => 0.055736506863445
829 => 0.056136871500242
830 => 0.056248951739446
831 => 0.055774059890199
901 => 0.055998021631621
902 => 0.05695162230162
903 => 0.057285328566996
904 => 0.058350358777982
905 => 0.057897915014953
906 => 0.0587283951233
907 => 0.061281007844828
908 => 0.06332021151415
909 => 0.061444875546186
910 => 0.065189613393874
911 => 0.068105428959039
912 => 0.067993515101103
913 => 0.067485075213287
914 => 0.064165496713314
915 => 0.061110771085512
916 => 0.06366617878367
917 => 0.063672693043417
918 => 0.063453181255866
919 => 0.062089812395991
920 => 0.063405738974816
921 => 0.0635101924479
922 => 0.063451726279393
923 => 0.062406434571114
924 => 0.060810467334771
925 => 0.061122315512546
926 => 0.061633129189274
927 => 0.060666052332333
928 => 0.060357012679287
929 => 0.060931576191499
930 => 0.062782939542906
1001 => 0.06243295002554
1002 => 0.062423810384823
1003 => 0.063921213958767
1004 => 0.06284939615974
1005 => 0.061126248916744
1006 => 0.060691131512368
1007 => 0.059146757857038
1008 => 0.060213462241645
1009 => 0.06025185103343
1010 => 0.059667627943435
1011 => 0.06117365540066
1012 => 0.061159777092511
1013 => 0.062589526020541
1014 => 0.065322668981761
1015 => 0.064514344118331
1016 => 0.063574350247658
1017 => 0.063676553644603
1018 => 0.064797472649612
1019 => 0.064119739431092
1020 => 0.064363457021795
1021 => 0.064797103753849
1022 => 0.06505873359414
1023 => 0.06363890913684
1024 => 0.063307880137789
1025 => 0.062630710981121
1026 => 0.062454050188107
1027 => 0.063005590336615
1028 => 0.062860278993684
1029 => 0.060248624604129
1030 => 0.059975692189312
1031 => 0.059984062636817
1101 => 0.059297761102532
1102 => 0.058250986531507
1103 => 0.0610018476045
1104 => 0.060780914962063
1105 => 0.06053702242364
1106 => 0.060566897867965
1107 => 0.061760953424419
1108 => 0.061068340900425
1109 => 0.062909764812424
1110 => 0.062531223414387
1111 => 0.062142973857857
1112 => 0.062089305942774
1113 => 0.061939862987406
1114 => 0.061427367488173
1115 => 0.060808498376645
1116 => 0.06039986738369
1117 => 0.055715684936544
1118 => 0.056585041952098
1119 => 0.057585157954108
1120 => 0.057930393990289
1121 => 0.057339843860796
1122 => 0.061450686006731
1123 => 0.062201776479854
1124 => 0.059926674444345
1125 => 0.059501095745305
1126 => 0.061478586875389
1127 => 0.06028591798549
1128 => 0.060822976713583
1129 => 0.059662149498863
1130 => 0.062020860779375
1201 => 0.06200289135134
1202 => 0.06108529938931
1203 => 0.061860841832219
1204 => 0.061726072247601
1205 => 0.060690113182399
1206 => 0.062053702529549
1207 => 0.062054378852852
1208 => 0.061171216539569
1209 => 0.060139876306743
1210 => 0.059955497032283
1211 => 0.059816592016848
1212 => 0.060788814594818
1213 => 0.061660506318166
1214 => 0.06328250850461
1215 => 0.063690318392104
1216 => 0.065282027532433
1217 => 0.064334242238278
1218 => 0.064754383183303
1219 => 0.065210505611692
1220 => 0.065429187477208
1221 => 0.065072857112465
1222 => 0.067545436581016
1223 => 0.067754198046039
1224 => 0.067824193959482
1225 => 0.066990454074498
1226 => 0.067731010231613
1227 => 0.067384528530341
1228 => 0.068285977661662
1229 => 0.068427336395734
1230 => 0.068307610576958
1231 => 0.068352480070348
]
'min_raw' => 0.030651509807631
'max_raw' => 0.068427336395734
'avg_raw' => 0.049539423101682
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.030651'
'max' => '$0.068427'
'avg' => '$0.049539'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 0.0047264006208721
'max_diff' => -0.0065297784571978
'year' => 2031
]
6 => [
'items' => [
101 => 0.066242569686848
102 => 0.066133159702799
103 => 0.064641346806921
104 => 0.065249271588916
105 => 0.064112785347569
106 => 0.064473176841806
107 => 0.064632033978529
108 => 0.064549056025368
109 => 0.065283642743967
110 => 0.064659093967006
111 => 0.063010807059281
112 => 0.06136207107689
113 => 0.061341372539662
114 => 0.060907289458106
115 => 0.060593526896423
116 => 0.060653968697128
117 => 0.060866973486361
118 => 0.060581146670851
119 => 0.060642142313728
120 => 0.061655076397316
121 => 0.061858213103865
122 => 0.061167875204379
123 => 0.058396068922658
124 => 0.057715860708574
125 => 0.058204780883743
126 => 0.057971108530504
127 => 0.04678720904363
128 => 0.049414700334945
129 => 0.047853534230819
130 => 0.048572991397399
131 => 0.046979445067089
201 => 0.047739968900832
202 => 0.047599527918623
203 => 0.051824456161939
204 => 0.051758489718618
205 => 0.051790064364169
206 => 0.050282924264715
207 => 0.052683839366458
208 => 0.053866616479691
209 => 0.053647715914625
210 => 0.053702808470825
211 => 0.052756135824945
212 => 0.051799230224705
213 => 0.050737874647323
214 => 0.052709742122585
215 => 0.052490504120236
216 => 0.052993357218281
217 => 0.054272254227987
218 => 0.054460576670723
219 => 0.054713683943539
220 => 0.054622963003637
221 => 0.05678430384954
222 => 0.056522551212115
223 => 0.057153299756936
224 => 0.055855802145232
225 => 0.054387560437986
226 => 0.054666625186096
227 => 0.054639749006756
228 => 0.054297584396716
229 => 0.053988693485985
301 => 0.053474477149092
302 => 0.055101533728719
303 => 0.05503547820294
304 => 0.056104840384147
305 => 0.055915820231388
306 => 0.054653497390191
307 => 0.054698581497416
308 => 0.055001793785188
309 => 0.056051214975184
310 => 0.056362754634418
311 => 0.056218437051552
312 => 0.056560026065577
313 => 0.056830004094555
314 => 0.056593931149362
315 => 0.059936226219524
316 => 0.058548272282393
317 => 0.05922475137403
318 => 0.059386087651339
319 => 0.058972828169548
320 => 0.059062449353436
321 => 0.059198201026715
322 => 0.060022458603963
323 => 0.062185548987515
324 => 0.063143566993735
325 => 0.066025811433226
326 => 0.063064016934573
327 => 0.062888276306147
328 => 0.063407455565143
329 => 0.065099638167683
330 => 0.066470993228412
331 => 0.066925950817427
401 => 0.066986080973347
402 => 0.067839611655348
403 => 0.068328839524866
404 => 0.067735970580467
405 => 0.067233576226055
406 => 0.065434062008034
407 => 0.065642360678685
408 => 0.067077331959614
409 => 0.069104313413313
410 => 0.070843674372062
411 => 0.070234610787157
412 => 0.074881336008097
413 => 0.075342039833583
414 => 0.075278385461239
415 => 0.076327937337617
416 => 0.074244790600529
417 => 0.073354205011357
418 => 0.067342199587897
419 => 0.069031327885375
420 => 0.071486575064785
421 => 0.071161613893886
422 => 0.069378547763253
423 => 0.07084232175651
424 => 0.070358352297895
425 => 0.069976625505973
426 => 0.071725389941145
427 => 0.06980255160939
428 => 0.071467393281531
429 => 0.069332216616428
430 => 0.07023739293831
501 => 0.069723571079557
502 => 0.070056076793809
503 => 0.068112255182503
504 => 0.069161094140361
505 => 0.068068620033594
506 => 0.068068102058623
507 => 0.068043985632165
508 => 0.069329276574006
509 => 0.069371189865476
510 => 0.068421357917489
511 => 0.06828447229462
512 => 0.068790610187025
513 => 0.068198055272743
514 => 0.068475307987639
515 => 0.068206452975036
516 => 0.068145928048746
517 => 0.067663655138599
518 => 0.067455878708538
519 => 0.067537353200504
520 => 0.067259238756445
521 => 0.06709166474406
522 => 0.068010650943325
523 => 0.067519673688856
524 => 0.067935401637473
525 => 0.067461627170974
526 => 0.065819318456378
527 => 0.064874809347514
528 => 0.061772640427742
529 => 0.062652411685161
530 => 0.063235700939019
531 => 0.063042923844098
601 => 0.06345708363882
602 => 0.063482509686549
603 => 0.063347862115426
604 => 0.063191957477487
605 => 0.063116071721806
606 => 0.063681661972621
607 => 0.064010006150112
608 => 0.063294241819047
609 => 0.063126548250886
610 => 0.063850225508024
611 => 0.064291668216824
612 => 0.06755103315337
613 => 0.06730956887126
614 => 0.067915596834383
615 => 0.067847367385992
616 => 0.06848258123917
617 => 0.069520887427712
618 => 0.06740972063143
619 => 0.067776146188609
620 => 0.067686307103991
621 => 0.068667146672783
622 => 0.068670208746854
623 => 0.068082146428793
624 => 0.068400944551636
625 => 0.068223000185234
626 => 0.068544569705945
627 => 0.067306343968559
628 => 0.068814369258487
629 => 0.069669322422873
630 => 0.06968119344839
701 => 0.070086434462981
702 => 0.070498182803782
703 => 0.071288497888227
704 => 0.070476141345021
705 => 0.069014791005108
706 => 0.069120295779517
707 => 0.068263506609914
708 => 0.068277909390646
709 => 0.068201026218329
710 => 0.068431758405948
711 => 0.067356976708545
712 => 0.067609225824682
713 => 0.067256075584921
714 => 0.067775378508957
715 => 0.067216694406543
716 => 0.067686263780864
717 => 0.06788891435635
718 => 0.068636699342648
719 => 0.067106245956061
720 => 0.063985547898226
721 => 0.06464155646479
722 => 0.063671268266481
723 => 0.063761072133382
724 => 0.063942490236702
725 => 0.063354454807533
726 => 0.063466633436293
727 => 0.063462625626284
728 => 0.063428088484828
729 => 0.063275117758696
730 => 0.063053279941468
731 => 0.063937013527225
801 => 0.064087177084124
802 => 0.064420972069783
803 => 0.0654141195318
804 => 0.065314880680314
805 => 0.065476743364467
806 => 0.065123398033781
807 => 0.063777462809854
808 => 0.063850553568003
809 => 0.062939110642686
810 => 0.064397664424979
811 => 0.064052259637363
812 => 0.063829574923795
813 => 0.063768813336539
814 => 0.064764422619018
815 => 0.065062324520599
816 => 0.064876692046987
817 => 0.064495954427843
818 => 0.065227083211572
819 => 0.06542270243025
820 => 0.065466494359153
821 => 0.06676191438388
822 => 0.065538893948214
823 => 0.065833287122857
824 => 0.06813005863318
825 => 0.06604720380612
826 => 0.067150538461219
827 => 0.067096535971328
828 => 0.067660964646068
829 => 0.067050236345561
830 => 0.067057807054797
831 => 0.067558981480256
901 => 0.066855172386983
902 => 0.066680899357799
903 => 0.066440142416149
904 => 0.066965826390326
905 => 0.067280950158204
906 => 0.069820616294397
907 => 0.071461356441224
908 => 0.071390127584306
909 => 0.072041026001704
910 => 0.07174779030312
911 => 0.070800854880723
912 => 0.072417158180282
913 => 0.071905692187299
914 => 0.071947856822329
915 => 0.071946287452507
916 => 0.072286367624708
917 => 0.072045389654814
918 => 0.071570397340272
919 => 0.071885719405628
920 => 0.072822113210035
921 => 0.075728708310985
922 => 0.077355277436739
923 => 0.075630786807234
924 => 0.076820317351617
925 => 0.076107022898058
926 => 0.075977396077174
927 => 0.076724509164664
928 => 0.077472929974711
929 => 0.077425258804623
930 => 0.076881943728363
1001 => 0.076575038827893
1002 => 0.078899025554936
1003 => 0.08061129938734
1004 => 0.0804945337912
1005 => 0.081009899158358
1006 => 0.082523027815986
1007 => 0.082661369337293
1008 => 0.082643941485352
1009 => 0.082301047590346
1010 => 0.083790919258366
1011 => 0.085033796415626
1012 => 0.082221677560809
1013 => 0.083292495607385
1014 => 0.083773220328095
1015 => 0.084479066842696
1016 => 0.085669948226438
1017 => 0.086963561274869
1018 => 0.087146492343663
1019 => 0.087016693996296
1020 => 0.086163521416671
1021 => 0.087579008250277
1022 => 0.088408167240153
1023 => 0.088901912443658
1024 => 0.090153968128379
1025 => 0.083776189120312
1026 => 0.079261680142218
1027 => 0.078556674374989
1028 => 0.079990331325632
1029 => 0.080368375230317
1030 => 0.080215986206365
1031 => 0.075134495910321
1101 => 0.078529921380219
1102 => 0.082183113690346
1103 => 0.082323447685072
1104 => 0.084152312140171
1105 => 0.084747865374438
1106 => 0.086220340975536
1107 => 0.086128237225776
1108 => 0.086486761602439
1109 => 0.086404343057021
1110 => 0.089131794041736
1111 => 0.092140577508268
1112 => 0.092036392904168
1113 => 0.091603844682544
1114 => 0.092246252552087
1115 => 0.09535163953038
1116 => 0.095065745260231
1117 => 0.095343467191264
1118 => 0.099004893450612
1119 => 0.10376526841958
1120 => 0.10155359631266
1121 => 0.10635228839316
1122 => 0.1093728106901
1123 => 0.11459649167483
1124 => 0.11394246108837
1125 => 0.11597600176258
1126 => 0.1127716098383
1127 => 0.10541367826571
1128 => 0.10424925742932
1129 => 0.10658045743161
1130 => 0.11231148516207
1201 => 0.10639996697338
1202 => 0.10759585940378
1203 => 0.10725144230337
1204 => 0.10723308977977
1205 => 0.10793353096056
1206 => 0.10691750449527
1207 => 0.10277802989602
1208 => 0.10467512671078
1209 => 0.10394256652453
1210 => 0.10475539666716
1211 => 0.10914190571025
1212 => 0.10720252550098
1213 => 0.10515954599297
1214 => 0.10772189566946
1215 => 0.1109846473265
1216 => 0.11078047019153
1217 => 0.11038428121027
1218 => 0.11261757775387
1219 => 0.11630632934939
1220 => 0.11730338408306
1221 => 0.11803938950357
1222 => 0.11814087221614
1223 => 0.11918620722681
1224 => 0.1135651774161
1225 => 0.12248589608398
1226 => 0.12402625776805
1227 => 0.12373673361289
1228 => 0.1254487807964
1229 => 0.12494505308457
1230 => 0.12421523066258
1231 => 0.12692918961132
]
'min_raw' => 0.04678720904363
'max_raw' => 0.12692918961132
'avg_raw' => 0.086858199327475
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.046787'
'max' => '$0.126929'
'avg' => '$0.086858'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.016135699235999
'max_diff' => 0.058501853215586
'year' => 2032
]
7 => [
'items' => [
101 => 0.12381785468178
102 => 0.11940170645548
103 => 0.11697892019702
104 => 0.12016944058275
105 => 0.1221177800485
106 => 0.1234055084977
107 => 0.12379517434836
108 => 0.11400152195928
109 => 0.10872328650244
110 => 0.11210657491518
111 => 0.11623442028083
112 => 0.11354224702667
113 => 0.11364777512128
114 => 0.10980944355154
115 => 0.11657402745522
116 => 0.11558848447956
117 => 0.12070148318068
118 => 0.11948122500628
119 => 0.12365067696158
120 => 0.1225527205282
121 => 0.12711027629725
122 => 0.12892840868442
123 => 0.13198133593219
124 => 0.1342270816433
125 => 0.13554582647913
126 => 0.13546665398567
127 => 0.14069217802131
128 => 0.1376108690634
129 => 0.1337400188035
130 => 0.13367000733467
131 => 0.13567477553465
201 => 0.1398762197005
202 => 0.14096559304418
203 => 0.14157440412825
204 => 0.14064198876013
205 => 0.13729744872572
206 => 0.13585329329606
207 => 0.13708375556334
208 => 0.13557900594529
209 => 0.13817662594422
210 => 0.14174371302444
211 => 0.14100712364817
212 => 0.14346943149741
213 => 0.14601766107903
214 => 0.1496617438289
215 => 0.15061444199971
216 => 0.15218921584819
217 => 0.15381017542454
218 => 0.15433078395438
219 => 0.15532478717318
220 => 0.15531954828556
221 => 0.15831504388955
222 => 0.16161916830352
223 => 0.16286639877914
224 => 0.16573433648514
225 => 0.16082309366814
226 => 0.16454832776113
227 => 0.16790858216166
228 => 0.16390234833832
301 => 0.16942400833103
302 => 0.16963840187619
303 => 0.17287548986846
304 => 0.16959408103728
305 => 0.16764559094794
306 => 0.17327080882687
307 => 0.17599267456578
308 => 0.17517282645394
309 => 0.16893374184196
310 => 0.16530232699087
311 => 0.15579821387793
312 => 0.16705624640734
313 => 0.1725397056511
314 => 0.16891954100723
315 => 0.17074534148119
316 => 0.18070631684936
317 => 0.18449881134416
318 => 0.18370999900078
319 => 0.18384329530185
320 => 0.1858896564926
321 => 0.19496434896409
322 => 0.18952658288545
323 => 0.19368355130336
324 => 0.19588839236316
325 => 0.19793637161662
326 => 0.1929071818406
327 => 0.18636427983547
328 => 0.1842918681181
329 => 0.16855958697904
330 => 0.16774065342392
331 => 0.16728096120321
401 => 0.16438266677634
402 => 0.16210540126649
403 => 0.1602944351836
404 => 0.15554191938186
405 => 0.15714575395339
406 => 0.14957123569255
407 => 0.15441714405139
408 => 0.14232803001395
409 => 0.15239620341429
410 => 0.14691655437616
411 => 0.15059599133058
412 => 0.15058315412167
413 => 0.14380814412203
414 => 0.1399004597451
415 => 0.14239058831943
416 => 0.14506020381777
417 => 0.14549333995071
418 => 0.1489545661284
419 => 0.14992051995579
420 => 0.14699363476274
421 => 0.14207750999615
422 => 0.14321941365456
423 => 0.13987731910391
424 => 0.13402042695569
425 => 0.13822694914807
426 => 0.13966324077227
427 => 0.14029758897724
428 => 0.13453800821808
429 => 0.13272822289698
430 => 0.13176470837759
501 => 0.14133402044586
502 => 0.14185824896246
503 => 0.13917622175309
504 => 0.1512992390597
505 => 0.1485554268752
506 => 0.1516209373356
507 => 0.14311579786643
508 => 0.14344070564784
509 => 0.13941423632223
510 => 0.14166879009579
511 => 0.1400753441563
512 => 0.14148664443082
513 => 0.14233257199636
514 => 0.14635838061798
515 => 0.152442171682
516 => 0.1457570590588
517 => 0.14284425975629
518 => 0.14465134406136
519 => 0.14946384770055
520 => 0.15675503706145
521 => 0.15243850621093
522 => 0.15435410930294
523 => 0.1547725833593
524 => 0.15158973331679
525 => 0.15687239328248
526 => 0.15970341367435
527 => 0.16260745479929
528 => 0.16512895233868
529 => 0.16144751691276
530 => 0.16538718053153
531 => 0.16221250709904
601 => 0.1593644968384
602 => 0.15936881609435
603 => 0.15758221765506
604 => 0.15412045805303
605 => 0.1534820564695
606 => 0.15680310212828
607 => 0.15946626624242
608 => 0.15968561719456
609 => 0.16116008168646
610 => 0.16203265458458
611 => 0.17058505519146
612 => 0.17402490146472
613 => 0.1782310803747
614 => 0.17986962410739
615 => 0.18480105329235
616 => 0.18081852371439
617 => 0.17995687838892
618 => 0.1679948442444
619 => 0.16995362666544
620 => 0.17308982631591
621 => 0.1680465590215
622 => 0.17124535131969
623 => 0.17187686067904
624 => 0.16787519072867
625 => 0.17001265555111
626 => 0.16433618269685
627 => 0.15256590327822
628 => 0.15688549696819
629 => 0.16006617188353
630 => 0.15552695660495
701 => 0.1636633242999
702 => 0.15891022626123
703 => 0.15740372237192
704 => 0.15152631359228
705 => 0.15430022429406
706 => 0.15805197823679
707 => 0.15573383048839
708 => 0.16054433513795
709 => 0.16735729263646
710 => 0.17221261186852
711 => 0.17258534299042
712 => 0.16946369800533
713 => 0.17446615401601
714 => 0.17450259144674
715 => 0.16885980063106
716 => 0.16540362267564
717 => 0.16461837177231
718 => 0.16658008248634
719 => 0.16896196144495
720 => 0.17271752069559
721 => 0.17498692649604
722 => 0.18090433322378
723 => 0.18250541381896
724 => 0.18426451597576
725 => 0.18661521894426
726 => 0.18943784056581
727 => 0.18326210514979
728 => 0.18350747863088
729 => 0.17775671932037
730 => 0.17161120825478
731 => 0.17627488510479
801 => 0.18237202220326
802 => 0.18097333221613
803 => 0.18081595101993
804 => 0.18108062253803
805 => 0.18002605596468
806 => 0.17525629043749
807 => 0.17286094405005
808 => 0.17595155200789
809 => 0.17759407259034
810 => 0.18014147877089
811 => 0.17982745718991
812 => 0.18638930193954
813 => 0.18893903638936
814 => 0.18828670520781
815 => 0.18840674984444
816 => 0.19302292227465
817 => 0.19815705540531
818 => 0.2029658485907
819 => 0.20785755956136
820 => 0.2019604110595
821 => 0.19896620273582
822 => 0.2020554614309
823 => 0.20041625728283
824 => 0.20983561053722
825 => 0.21048778611967
826 => 0.21990645824761
827 => 0.22884589965163
828 => 0.22323119667249
829 => 0.22852560869005
830 => 0.23425194694678
831 => 0.24529898250891
901 => 0.24157872957098
902 => 0.23872907412432
903 => 0.23603616349666
904 => 0.24163968302529
905 => 0.24884852138047
906 => 0.25040123611677
907 => 0.25291722717228
908 => 0.25027197021817
909 => 0.2534578908539
910 => 0.26470559066249
911 => 0.26166636288801
912 => 0.25735017086801
913 => 0.26622914962633
914 => 0.2694424175228
915 => 0.29199481442174
916 => 0.32046814709969
917 => 0.30868000040504
918 => 0.30136271735055
919 => 0.30308245243663
920 => 0.31347994964748
921 => 0.31681929575154
922 => 0.30774180189907
923 => 0.31094812618856
924 => 0.32861528826248
925 => 0.33809315388472
926 => 0.32522093932254
927 => 0.28970700986493
928 => 0.25696154500109
929 => 0.26564711683048
930 => 0.2646624425297
1001 => 0.28364360415478
1002 => 0.26159387831073
1003 => 0.26196513914427
1004 => 0.28133881109035
1005 => 0.27617024756396
1006 => 0.26779783659081
1007 => 0.25702267286666
1008 => 0.23710378614057
1009 => 0.21946107268802
1010 => 0.25406249664272
1011 => 0.25257042032319
1012 => 0.25040967269918
1013 => 0.25521818271909
1014 => 0.27856694245641
1015 => 0.2780286779719
1016 => 0.27460451394643
1017 => 0.27720171218055
1018 => 0.2673425351831
1019 => 0.26988346958463
1020 => 0.25695635795216
1021 => 0.2627999522939
1022 => 0.2677798731571
1023 => 0.26877966599937
1024 => 0.27103225032371
1025 => 0.25178416390327
1026 => 0.26042598961192
1027 => 0.26550225258618
1028 => 0.24256751179242
1029 => 0.2650489065015
1030 => 0.25144909754181
1031 => 0.24683311811862
1101 => 0.25304792630291
1102 => 0.25062600950939
1103 => 0.24854378767005
1104 => 0.24738187210659
1105 => 0.25194534133378
1106 => 0.2517324500398
1107 => 0.24426572865291
1108 => 0.23452569498621
1109 => 0.23779476999046
1110 => 0.23660708439368
1111 => 0.23230275857643
1112 => 0.23520335447097
1113 => 0.2224305981094
1114 => 0.20045573465943
1115 => 0.21497300256275
1116 => 0.21441410354022
1117 => 0.21413228130901
1118 => 0.22504160691055
1119 => 0.22399292697492
1120 => 0.22208956262306
1121 => 0.23226780179748
1122 => 0.22855260758218
1123 => 0.24000196074388
1124 => 0.2475432452339
1125 => 0.24563053155223
1126 => 0.2527231460653
1127 => 0.23787008287596
1128 => 0.24280367466599
1129 => 0.24382048109626
1130 => 0.23214220390599
1201 => 0.22416450398164
1202 => 0.22363248234912
1203 => 0.20980025007506
1204 => 0.21718931690598
1205 => 0.22369138993684
1206 => 0.22057740153631
1207 => 0.21959160583646
1208 => 0.22462782227399
1209 => 0.22501917942346
1210 => 0.2160961949413
1211 => 0.21795156596931
1212 => 0.22568877158588
1213 => 0.2177566082394
1214 => 0.20234571056871
1215 => 0.19852359487404
1216 => 0.19801365418481
1217 => 0.18764777328507
1218 => 0.19877900692092
1219 => 0.19391992514035
1220 => 0.20926970626442
1221 => 0.20050199360888
1222 => 0.20012403504011
1223 => 0.19955269522894
1224 => 0.19063035332938
1225 => 0.19258377916097
1226 => 0.19907726414035
1227 => 0.20139421273533
1228 => 0.20115253601467
1229 => 0.19904544252144
1230 => 0.20001005913258
1231 => 0.1969026929334
]
'min_raw' => 0.10872328650244
'max_raw' => 0.33809315388472
'avg_raw' => 0.22340822019358
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.108723'
'max' => '$0.338093'
'avg' => '$0.2234082'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.061936077458806
'max_diff' => 0.2111639642734
'year' => 2033
]
8 => [
'items' => [
101 => 0.19580541725423
102 => 0.19234211338133
103 => 0.18725201345028
104 => 0.18795982306509
105 => 0.17787500320458
106 => 0.17238025810267
107 => 0.17085938507804
108 => 0.16882561010785
109 => 0.1710891053726
110 => 0.17784643417701
111 => 0.16969566199161
112 => 0.15572173478994
113 => 0.15656159162517
114 => 0.15844850057821
115 => 0.15493225822738
116 => 0.15160442993816
117 => 0.15449770664039
118 => 0.14857676947001
119 => 0.15916401754764
120 => 0.15887766215756
121 => 0.16282393352987
122 => 0.16529161800461
123 => 0.15960440421266
124 => 0.15817408532385
125 => 0.15898885996728
126 => 0.1455224500442
127 => 0.16172344054194
128 => 0.16186354738053
129 => 0.16066386756723
130 => 0.16929039485781
131 => 0.18749505812228
201 => 0.1806457315213
202 => 0.17799346523941
203 => 0.17295150509874
204 => 0.17966961762421
205 => 0.17915377140114
206 => 0.17682091915152
207 => 0.17541000283201
208 => 0.17800965941177
209 => 0.17508787661266
210 => 0.17456304413672
211 => 0.17138313035587
212 => 0.17024804581297
213 => 0.16940767440642
214 => 0.16848250806101
215 => 0.17052319448191
216 => 0.16589873057748
217 => 0.16032208045053
218 => 0.15985844233266
219 => 0.16113858793957
220 => 0.16057221880414
221 => 0.15985573077514
222 => 0.15848776000386
223 => 0.1580819122981
224 => 0.15940072045252
225 => 0.15791186293747
226 => 0.1601087533032
227 => 0.15951132068321
228 => 0.15617411063301
301 => 0.15201471131706
302 => 0.15197768393851
303 => 0.15108154817868
304 => 0.14994018455361
305 => 0.14962268330397
306 => 0.15425404294653
307 => 0.1638408188017
308 => 0.16195870530923
309 => 0.16331872519429
310 => 0.17000867696763
311 => 0.17213521146251
312 => 0.17062584764778
313 => 0.16855973736466
314 => 0.16865063573143
315 => 0.17571116002295
316 => 0.1761515162624
317 => 0.17726415441517
318 => 0.17869420887299
319 => 0.17086939210567
320 => 0.16828208756537
321 => 0.16705607913598
322 => 0.16328044769844
323 => 0.16735214250565
324 => 0.16497974030884
325 => 0.16529985841799
326 => 0.16509138107945
327 => 0.16520522380347
328 => 0.15916105819603
329 => 0.16136323447139
330 => 0.15770168929449
331 => 0.15279929133036
401 => 0.15278285677338
402 => 0.15398271172988
403 => 0.15326899105143
404 => 0.15134838705714
405 => 0.15162119978954
406 => 0.14923107318673
407 => 0.15191140443376
408 => 0.15198826674324
409 => 0.1509561932145
410 => 0.15508561331498
411 => 0.15677744009944
412 => 0.15609810719367
413 => 0.15672977629181
414 => 0.16203691562207
415 => 0.16290221089963
416 => 0.16328651790372
417 => 0.16277159742916
418 => 0.15682678105631
419 => 0.15709045894176
420 => 0.15515576557137
421 => 0.15352115354636
422 => 0.15358652945495
423 => 0.1544269325205
424 => 0.15809702199672
425 => 0.16582050893583
426 => 0.16611360961937
427 => 0.16646885619818
428 => 0.16502388982955
429 => 0.16458807414631
430 => 0.16516302752608
501 => 0.16806356313876
502 => 0.17552452822231
503 => 0.17288732486068
504 => 0.17074323747716
505 => 0.17262418015431
506 => 0.17233462377248
507 => 0.16989047651057
508 => 0.16982187743742
509 => 0.16513077740067
510 => 0.16339658452827
511 => 0.161947363162
512 => 0.16036485126292
513 => 0.15942668516286
514 => 0.16086813468141
515 => 0.16119781124104
516 => 0.15804605667649
517 => 0.15761648417548
518 => 0.16019027498823
519 => 0.15905764561213
520 => 0.16022258301331
521 => 0.16049285848303
522 => 0.16044933790743
523 => 0.15926674275713
524 => 0.16002049364044
525 => 0.15823764809746
526 => 0.15629907134421
527 => 0.15506238015324
528 => 0.15398320306584
529 => 0.15458199323607
530 => 0.15244741561396
531 => 0.15176452127209
601 => 0.1597651398011
602 => 0.16567528272963
603 => 0.16558934691078
604 => 0.1650662347144
605 => 0.16428899610002
606 => 0.168006703293
607 => 0.16671152844486
608 => 0.16765387636236
609 => 0.16789374345758
610 => 0.16861974891146
611 => 0.16887923345895
612 => 0.16809489093284
613 => 0.16546254161585
614 => 0.15890297739416
615 => 0.15584948254176
616 => 0.15484177838048
617 => 0.15487840651284
618 => 0.15386803910718
619 => 0.15416563758964
620 => 0.1537645464999
621 => 0.15300497701028
622 => 0.1545350919605
623 => 0.1547114234545
624 => 0.15435427634161
625 => 0.15443839741561
626 => 0.15148137186038
627 => 0.15170618809102
628 => 0.15045438275053
629 => 0.15021968433993
630 => 0.14705522944635
701 => 0.1414489389073
702 => 0.14455536808172
703 => 0.14080323846906
704 => 0.1393822501307
705 => 0.14610898791546
706 => 0.14543381001253
707 => 0.1442781989355
708 => 0.14256880930212
709 => 0.14193478005923
710 => 0.13808261908868
711 => 0.13785501286806
712 => 0.13976424786216
713 => 0.13888320160514
714 => 0.13764587898199
715 => 0.1331644218663
716 => 0.1281257803088
717 => 0.12827786522565
718 => 0.12988056335783
719 => 0.13454062433043
720 => 0.13271985788856
721 => 0.1313988709441
722 => 0.13115148979812
723 => 0.13424798276753
724 => 0.13863016905457
725 => 0.14068619281456
726 => 0.13864873571078
727 => 0.13630821469444
728 => 0.13645067136377
729 => 0.13739837176314
730 => 0.13749796167536
731 => 0.13597452310317
801 => 0.13640336213765
802 => 0.13575191643041
803 => 0.13175399532758
804 => 0.13168168561237
805 => 0.13070053129855
806 => 0.13067082233586
807 => 0.12900163408764
808 => 0.12876810311316
809 => 0.12545382853382
810 => 0.12763529409849
811 => 0.12617208152979
812 => 0.12396667505182
813 => 0.12358646214374
814 => 0.12357503248461
815 => 0.12583949181762
816 => 0.12760883257275
817 => 0.12619753473888
818 => 0.12587620957897
819 => 0.12930712163167
820 => 0.1288705067995
821 => 0.12849240117071
822 => 0.13823779233681
823 => 0.13052355478649
824 => 0.12715970690126
825 => 0.12299630636591
826 => 0.12435193057391
827 => 0.1246375805128
828 => 0.11462535273462
829 => 0.11056339317196
830 => 0.10916948172178
831 => 0.10836726597518
901 => 0.10873284576449
902 => 0.10507660573776
903 => 0.10753365950435
904 => 0.10436766469548
905 => 0.10383687536273
906 => 0.1094980662725
907 => 0.11028578791539
908 => 0.10692512266087
909 => 0.10908321379656
910 => 0.10830065995104
911 => 0.10442193658952
912 => 0.10427379788707
913 => 0.10232759084798
914 => 0.099282153691739
915 => 0.09789030719135
916 => 0.097165421449381
917 => 0.097464523434259
918 => 0.097313288318033
919 => 0.096326376885285
920 => 0.097369856926121
921 => 0.094704196617507
922 => 0.093642709203933
923 => 0.093163259965542
924 => 0.090797333011965
925 => 0.094562574927598
926 => 0.095304375018246
927 => 0.096047636684225
928 => 0.10251722204029
929 => 0.10219401983876
930 => 0.10511561033474
1001 => 0.10500208270052
1002 => 0.10416879776444
1003 => 0.10065330568783
1004 => 0.10205451817195
1005 => 0.097741803942609
1006 => 0.10097318267929
1007 => 0.099498516369473
1008 => 0.10047459651656
1009 => 0.098719516402497
1010 => 0.099690850203102
1011 => 0.095480283338707
1012 => 0.09154851524501
1013 => 0.093130773501379
1014 => 0.094850869179233
1015 => 0.098580474881048
1016 => 0.096359152493626
1017 => 0.097158024021642
1018 => 0.094481938132267
1019 => 0.088960408556345
1020 => 0.088991659814108
1021 => 0.088142292781913
1022 => 0.087408315656479
1023 => 0.096614298091008
1024 => 0.095469388650229
1025 => 0.09364512529839
1026 => 0.09608697428817
1027 => 0.096732637918423
1028 => 0.09675101905428
1029 => 0.098532529043979
1030 => 0.099483321244835
1031 => 0.099650902491205
1101 => 0.10245414695207
1102 => 0.10339375751966
1103 => 0.10726388046891
1104 => 0.099402653169408
1105 => 0.099240756366399
1106 => 0.096121336111064
1107 => 0.094142950469047
1108 => 0.096256797868555
1109 => 0.098129378095574
1110 => 0.096179522398514
1111 => 0.09643413238885
1112 => 0.093816610424611
1113 => 0.094752251360971
1114 => 0.095558151379809
1115 => 0.09511318075802
1116 => 0.09444703820038
1117 => 0.097975847871582
1118 => 0.097776738600416
1119 => 0.10106284729322
1120 => 0.10362460401115
1121 => 0.10821573001847
1122 => 0.10342465068902
1123 => 0.10325004471544
1124 => 0.10495684611487
1125 => 0.10339349621726
1126 => 0.10438147938755
1127 => 0.10805655065558
1128 => 0.10813419912037
1129 => 0.10683348729071
1130 => 0.10675433885766
1201 => 0.10700415479278
1202 => 0.10846733452761
1203 => 0.10795605456929
1204 => 0.10854772068108
1205 => 0.10928760821379
1206 => 0.11234809675489
1207 => 0.11308597018092
1208 => 0.11129332029919
1209 => 0.11145517651206
1210 => 0.11078467624695
1211 => 0.1101369813922
1212 => 0.11159290483744
1213 => 0.11425363354987
1214 => 0.11423708129464
1215 => 0.11485431863875
1216 => 0.11523885239065
1217 => 0.11358815203155
1218 => 0.11251360679571
1219 => 0.11292565581422
1220 => 0.11358453116808
1221 => 0.11271199141707
1222 => 0.10732627187406
1223 => 0.10895995514231
1224 => 0.10868803036345
1225 => 0.10830077641116
1226 => 0.10994345757028
1227 => 0.10978501696514
1228 => 0.10503910571164
1229 => 0.10534292355202
1230 => 0.10505758188079
1231 => 0.10597957919594
]
'min_raw' => 0.087408315656479
'max_raw' => 0.19580541725423
'avg_raw' => 0.14160686645535
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.0874083'
'max' => '$0.1958054'
'avg' => '$0.1416068'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.021314970845957
'max_diff' => -0.14228773663049
'year' => 2034
]
9 => [
'items' => [
101 => 0.1033437053365
102 => 0.10415448238279
103 => 0.10466299414565
104 => 0.10496251148055
105 => 0.10604457347517
106 => 0.10591760598921
107 => 0.10603668099797
108 => 0.10764109328221
109 => 0.11575566004808
110 => 0.11619731801337
111 => 0.1140224326635
112 => 0.11489125646305
113 => 0.11322330475878
114 => 0.11434301191217
115 => 0.11510908710903
116 => 0.11164734060218
117 => 0.1114423584406
118 => 0.10976752250632
119 => 0.11066748446984
120 => 0.10923558027632
121 => 0.10958691947953
122 => 0.10860454443816
123 => 0.11037262392371
124 => 0.11234961152032
125 => 0.11284907666084
126 => 0.11153519890941
127 => 0.11058386482862
128 => 0.10891363557167
129 => 0.11169126404946
130 => 0.11250352726306
131 => 0.11168699757659
201 => 0.11149778980671
202 => 0.11113924142468
203 => 0.11157385754092
204 => 0.11249910350316
205 => 0.11206277459398
206 => 0.11235097752562
207 => 0.11125264514378
208 => 0.11358869848206
209 => 0.11729891338509
210 => 0.11731084233268
211 => 0.11687451107153
212 => 0.11669597372035
213 => 0.11714367607309
214 => 0.11738653623374
215 => 0.11883432354792
216 => 0.12038785701843
217 => 0.12763751986556
218 => 0.12560184354808
219 => 0.13203417571042
220 => 0.13712131531703
221 => 0.1386467260514
222 => 0.1372434199519
223 => 0.13244278559063
224 => 0.13220724356623
225 => 0.13938141807752
226 => 0.13735438518007
227 => 0.13711327606689
228 => 0.13454828246286
301 => 0.13606451136348
302 => 0.13573288986117
303 => 0.13520940909631
304 => 0.13810226821727
305 => 0.1435174422444
306 => 0.14267343658909
307 => 0.1420434255197
308 => 0.13928290040709
309 => 0.14094535311048
310 => 0.14035338554499
311 => 0.14289685387826
312 => 0.14139015958235
313 => 0.13733902841223
314 => 0.13798418440378
315 => 0.13788667037353
316 => 0.13989350220612
317 => 0.1392911011026
318 => 0.13776904188987
319 => 0.14349893376828
320 => 0.14312686646103
321 => 0.14365437283628
322 => 0.14388659745634
323 => 0.1473742816707
324 => 0.14880307429988
325 => 0.14912743524124
326 => 0.15048467773217
327 => 0.14909366581165
328 => 0.15465870526844
329 => 0.15835913177815
330 => 0.16265736759138
331 => 0.16893824537139
401 => 0.17129991351804
402 => 0.17087329930582
403 => 0.17563538915596
404 => 0.18419275876134
405 => 0.17260298836763
406 => 0.18480704473437
407 => 0.18094338139127
408 => 0.17178270510911
409 => 0.17119286555381
410 => 0.17739658188973
411 => 0.19115582763723
412 => 0.18770929263356
413 => 0.19116146493381
414 => 0.18713432257264
415 => 0.18693434101098
416 => 0.19096587561808
417 => 0.20038577597507
418 => 0.19591073441515
419 => 0.18949466501379
420 => 0.19423219081466
421 => 0.19012810752863
422 => 0.18088045922464
423 => 0.18770665713319
424 => 0.18314217299067
425 => 0.18447433212478
426 => 0.19406819887659
427 => 0.19291383944679
428 => 0.19440768743976
429 => 0.19177108483298
430 => 0.18930808224418
501 => 0.18471070500721
502 => 0.1833496482553
503 => 0.18372579537584
504 => 0.18334946185547
505 => 0.18077727154346
506 => 0.18022180729049
507 => 0.17929600920008
508 => 0.17958295274024
509 => 0.17784218147848
510 => 0.18112737651111
511 => 0.18173713765821
512 => 0.18412782864042
513 => 0.18437603810901
514 => 0.19103407846512
515 => 0.1873669417208
516 => 0.18982717365424
517 => 0.18960710735352
518 => 0.17198124474174
519 => 0.17440993309534
520 => 0.17818821000915
521 => 0.17648610138081
522 => 0.17407971801242
523 => 0.17213643442033
524 => 0.16919216106737
525 => 0.1733361692719
526 => 0.17878509939473
527 => 0.18451423196903
528 => 0.19139740936941
529 => 0.18986116430266
530 => 0.18438555575536
531 => 0.18463118755486
601 => 0.1861495866868
602 => 0.18418312184983
603 => 0.18360317297945
604 => 0.18606991061773
605 => 0.18608689768415
606 => 0.183824242234
607 => 0.18130971476274
608 => 0.18129917880082
609 => 0.18085174292476
610 => 0.187213920421
611 => 0.19071247475524
612 => 0.19111357837146
613 => 0.19068547728604
614 => 0.19085023640309
615 => 0.18881450472139
616 => 0.19346758366829
617 => 0.19773770905179
618 => 0.19659322423109
619 => 0.19487747878675
620 => 0.19351080489885
621 => 0.19627127929662
622 => 0.19614835971707
623 => 0.19770041323174
624 => 0.19763000311922
625 => 0.19710810589792
626 => 0.19659324286968
627 => 0.19863461657918
628 => 0.1980467337343
629 => 0.19745793774499
630 => 0.19627701724827
701 => 0.19643752395678
702 => 0.19472207476009
703 => 0.19392842946809
704 => 0.18199390849767
705 => 0.17880461452266
706 => 0.17980803133126
707 => 0.18013838219836
708 => 0.17875039737324
709 => 0.18074041106841
710 => 0.18043026954197
711 => 0.18163684879465
712 => 0.18088303046115
713 => 0.1809139674285
714 => 0.18313078641629
715 => 0.18377433839947
716 => 0.18344702266672
717 => 0.18367626338621
718 => 0.18895901901036
719 => 0.18820798009362
720 => 0.18780900563786
721 => 0.18791952428875
722 => 0.18926938161427
723 => 0.18964726796594
724 => 0.18804613694032
725 => 0.18880123958803
726 => 0.1920163708252
727 => 0.19314148479755
728 => 0.19673230851192
729 => 0.19520686277625
730 => 0.19800688444382
731 => 0.20661319645218
801 => 0.21348851399595
802 => 0.20716568784818
803 => 0.21979133295091
804 => 0.2296222087046
805 => 0.229244883319
806 => 0.22753064273909
807 => 0.21633845206086
808 => 0.20603923133259
809 => 0.2146549667998
810 => 0.21467693008135
811 => 0.2139368307638
812 => 0.20934013746535
813 => 0.21377687580092
814 => 0.21412904797813
815 => 0.21393192520903
816 => 0.21040765123463
817 => 0.20502673627043
818 => 0.20607815417434
819 => 0.2078003981493
820 => 0.20453983100698
821 => 0.20349788224027
822 => 0.20543506323644
823 => 0.21167706403377
824 => 0.21049704994048
825 => 0.21046623500369
826 => 0.21551483569863
827 => 0.21190112715728
828 => 0.20609141592122
829 => 0.20462438721344
830 => 0.19941742360977
831 => 0.20301389191739
901 => 0.20314332240911
902 => 0.20117357347204
903 => 0.20625125019156
904 => 0.20620445850668
905 => 0.21102495683941
906 => 0.22023993915511
907 => 0.21751461544262
908 => 0.21434536047937
909 => 0.21468994636778
910 => 0.21846920305324
911 => 0.21618417818917
912 => 0.21700588906205
913 => 0.21846795929542
914 => 0.21935006256837
915 => 0.2145630252816
916 => 0.2134469378996
917 => 0.21116381480945
918 => 0.21056819061174
919 => 0.21242774672974
920 => 0.21193781939173
921 => 0.20313244427746
922 => 0.20221223358538
923 => 0.20224045513354
924 => 0.19992654159466
925 => 0.19639726804498
926 => 0.20567198821156
927 => 0.20492709838256
928 => 0.20410479766124
929 => 0.20420552480762
930 => 0.2082313664825
1001 => 0.20589617500119
1002 => 0.21210466428461
1003 => 0.21082838553221
1004 => 0.20951937504565
1005 => 0.20933842992297
1006 => 0.20883457256517
1007 => 0.20710665820822
1008 => 0.20502009779064
1009 => 0.20364236986818
1010 => 0.18784932170846
1011 => 0.19078041958297
1012 => 0.19415238050961
1013 => 0.19531636790921
1014 => 0.19332528691673
1015 => 0.20718527822158
1016 => 0.20971763219118
1017 => 0.20204696683591
1018 => 0.20061209853914
1019 => 0.20727934794824
1020 => 0.20325818151646
1021 => 0.20506891251447
1022 => 0.20115510251367
1023 => 0.20910766227588
1024 => 0.20904707709468
1025 => 0.20595335173047
1026 => 0.20856814722338
1027 => 0.20811376215953
1028 => 0.20462095384285
1029 => 0.20921839052953
1030 => 0.20922067080077
1031 => 0.20624302740111
1101 => 0.20276579180026
1102 => 0.20214414420347
1103 => 0.20167581624589
1104 => 0.20495373254593
1105 => 0.20789270205077
1106 => 0.21336139566695
1107 => 0.21473635517501
1108 => 0.22010291367121
1109 => 0.21690738937971
1110 => 0.21832392390917
1111 => 0.21986177252193
1112 => 0.2205990736994
1113 => 0.21939768099648
1114 => 0.22773415530468
1115 => 0.22843800915927
1116 => 0.2286740052684
1117 => 0.22586299303631
1118 => 0.22835982982401
1119 => 0.22719164257759
1120 => 0.23023094126101
1121 => 0.23070754210228
1122 => 0.23030387814529
1123 => 0.23045515877494
1124 => 0.22334144860773
1125 => 0.22297256520775
1126 => 0.21794281387425
1127 => 0.21999247472069
1128 => 0.21616073201106
1129 => 0.21737581709561
1130 => 0.21791141502312
1201 => 0.2176316490607
1202 => 0.22010835946967
1203 => 0.21800264966354
1204 => 0.21244533527443
1205 => 0.20688650679873
1206 => 0.20681672023534
1207 => 0.20535317881916
1208 => 0.20429530643624
1209 => 0.20449909018723
1210 => 0.20521725070565
1211 => 0.20425356564137
1212 => 0.2044592167099
1213 => 0.20787439469352
1214 => 0.2085592842822
1215 => 0.20623176185623
1216 => 0.19688642345608
1217 => 0.19459305397167
1218 => 0.19624148247757
1219 => 0.19545363982414
1220 => 0.15774634186922
1221 => 0.16660511220347
1222 => 0.16134153168627
1223 => 0.16376723175429
1224 => 0.1583944790438
1225 => 0.16095863824735
1226 => 0.16048513167055
1227 => 0.17472977221796
1228 => 0.17450736174867
1229 => 0.17461381787062
1230 => 0.16953238980015
1231 => 0.17762724269222
]
'min_raw' => 0.1033437053365
'max_raw' => 0.23070754210228
'avg_raw' => 0.16702562371939
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.103343'
'max' => '$0.2307075'
'avg' => '$0.167025'
'bar_min_pct' => 61.631153054958
'bar_max_pct' => 60.119598047091
'min_diff' => 0.015935389680024
'max_diff' => 0.034902124848051
'year' => 2035
]
10 => [
'items' => [
101 => 0.18161505830834
102 => 0.18087701977007
103 => 0.18106276816974
104 => 0.17787099524958
105 => 0.17464472120936
106 => 0.17106628677873
107 => 0.17771457564297
108 => 0.17697539941134
109 => 0.17867080373948
110 => 0.18298269429744
111 => 0.18361763656138
112 => 0.18447100540307
113 => 0.18416513342025
114 => 0.19145224498221
115 => 0.19056972769015
116 => 0.19269634044647
117 => 0.18832173666022
118 => 0.18337145723488
119 => 0.18431234351681
120 => 0.18422172860173
121 => 0.18306809672981
122 => 0.18202664945821
123 => 0.18029293317694
124 => 0.18577866803261
125 => 0.1855559572156
126 => 0.18916138647002
127 => 0.18852409182803
128 => 0.18426808223636
129 => 0.18442008645154
130 => 0.18544238784937
131 => 0.18898058465969
201 => 0.19003096237181
202 => 0.18954438556524
203 => 0.19069607677501
204 => 0.19160632654897
205 => 0.19081039013217
206 => 0.20207917131281
207 => 0.19739958770992
208 => 0.19968038419764
209 => 0.20022434072072
210 => 0.19883100752501
211 => 0.19913317160364
212 => 0.19959086784798
213 => 0.2023699098175
214 => 0.20966292006779
215 => 0.21289294466244
216 => 0.22261063302207
217 => 0.21262473608397
218 => 0.21203221428541
219 => 0.21378266340506
220 => 0.21948797519394
221 => 0.22411159452614
222 => 0.22564551580163
223 => 0.22584824882046
224 => 0.22872598710644
225 => 0.23037545302532
226 => 0.22837655398649
227 => 0.22668269634454
228 => 0.22061550852041
229 => 0.22131780203146
301 => 0.2261559078916
302 => 0.23299001738207
303 => 0.2388543942928
304 => 0.23680089389283
305 => 0.25246765239923
306 => 0.25402094751217
307 => 0.2538063323516
308 => 0.25734496978018
309 => 0.25032149511543
310 => 0.24731882362283
311 => 0.22704892759283
312 => 0.23274394157895
313 => 0.24102197886421
314 => 0.23992634958846
315 => 0.23391461763933
316 => 0.23884983385503
317 => 0.23721809703564
318 => 0.23593107850536
319 => 0.24182715989338
320 => 0.23534417620958
321 => 0.24095730614274
322 => 0.23375840894307
323 => 0.23681027410969
324 => 0.23507788783901
325 => 0.23619895406941
326 => 0.22964522379361
327 => 0.23318145756762
328 => 0.22949810484255
329 => 0.22949635845377
330 => 0.22941504823821
331 => 0.23374849638478
401 => 0.23388980997326
402 => 0.23068738524547
403 => 0.23022586581092
404 => 0.23193234505258
405 => 0.22993450478822
406 => 0.23086928167366
407 => 0.22996281822781
408 => 0.22975875421311
409 => 0.22813273742533
410 => 0.22743220468489
411 => 0.22770690162292
412 => 0.22676921935745
413 => 0.22620423187505
414 => 0.22930265800744
415 => 0.22764729391505
416 => 0.22904894971902
417 => 0.22745158602734
418 => 0.22191442753374
419 => 0.21872994912969
420 => 0.20827077003016
421 => 0.21123698024822
422 => 0.21320358069155
423 => 0.21255361925676
424 => 0.21394998792038
425 => 0.21403571361549
426 => 0.21358173992865
427 => 0.21305609655693
428 => 0.21280024243348
429 => 0.21470716945235
430 => 0.21581420477102
501 => 0.21340095535576
502 => 0.21283556478272
503 => 0.21527549318069
504 => 0.21676384809395
505 => 0.22775302453911
506 => 0.22693891085348
507 => 0.22898217644267
508 => 0.22875213609379
509 => 0.230893803949
510 => 0.23439452575589
511 => 0.22727657950527
512 => 0.22851200885431
513 => 0.22820911010816
514 => 0.23151607919437
515 => 0.23152640319089
516 => 0.22954371002835
517 => 0.23061856015728
518 => 0.23001860830228
519 => 0.23110280239263
520 => 0.22692803786887
521 => 0.23201245042082
522 => 0.23489498470547
523 => 0.23493500869681
524 => 0.23630130707053
525 => 0.23768954534889
526 => 0.24035414783414
527 => 0.2376152310318
528 => 0.23268818633256
529 => 0.23304390304559
530 => 0.23015517854116
531 => 0.23020373852197
601 => 0.22994452153869
602 => 0.23072245121845
603 => 0.2270987496868
604 => 0.22794922519332
605 => 0.22675855450381
606 => 0.22850942056877
607 => 0.2266257781114
608 => 0.22820896404121
609 => 0.22889221460507
610 => 0.23141342389505
611 => 0.22625339344934
612 => 0.21573174206716
613 => 0.21794352075039
614 => 0.21467212634643
615 => 0.2149749063536
616 => 0.21558657015515
617 => 0.21360396765038
618 => 0.2139821857293
619 => 0.21396867311805
620 => 0.21385222873432
621 => 0.21333647725109
622 => 0.21258853556208
623 => 0.21556810504677
624 => 0.21607439196294
625 => 0.21719980506191
626 => 0.22054827106944
627 => 0.22021368035303
628 => 0.22075941169354
629 => 0.21956808324135
630 => 0.21503016866368
701 => 0.21527659925781
702 => 0.21220360580019
703 => 0.21712122171017
704 => 0.21595666535333
705 => 0.21520586829419
706 => 0.21500100636051
707 => 0.21835777256761
708 => 0.21936216962764
709 => 0.21873629678241
710 => 0.21745261331722
711 => 0.21991766505734
712 => 0.22057720891081
713 => 0.22072485645656
714 => 0.22509245551327
715 => 0.22096895672586
716 => 0.22196152386804
717 => 0.22970524937056
718 => 0.22268275890085
719 => 0.22640272872288
720 => 0.22622065555788
721 => 0.22812366624192
722 => 0.22606455313707
723 => 0.22609007831183
724 => 0.22777982287814
725 => 0.22540688138179
726 => 0.22481930769654
727 => 0.22400757885866
728 => 0.22577995907968
729 => 0.22684242086432
730 => 0.23540508255632
731 => 0.24093695251417
801 => 0.24069679945003
802 => 0.24289134890856
803 => 0.24190268427772
804 => 0.23871002538819
805 => 0.24415950480935
806 => 0.24243506150459
807 => 0.24257722251543
808 => 0.24257193127551
809 => 0.24371853531972
810 => 0.24290606126968
811 => 0.2413045915183
812 => 0.24236772187673
813 => 0.24552483896522
814 => 0.25532462728006
815 => 0.26080871865097
816 => 0.2549944780935
817 => 0.25900506337426
818 => 0.25660014132346
819 => 0.25616309544659
820 => 0.25868203938283
821 => 0.26120539239698
822 => 0.26104466571873
823 => 0.25921284100607
824 => 0.25817808970672
825 => 0.26601357321252
826 => 0.27178662398561
827 => 0.27139294062591
828 => 0.27313053094295
829 => 0.27823214985541
830 => 0.27869857795319
831 => 0.2786398187336
901 => 0.2774837280265
902 => 0.28250693437475
903 => 0.28669738148536
904 => 0.27721612643048
905 => 0.28082646423664
906 => 0.28244726119564
907 => 0.28482707200024
908 => 0.28884221173022
909 => 0.29320371844018
910 => 0.29382048331046
911 => 0.29338285912008
912 => 0.29050632820126
913 => 0.2952787408869
914 => 0.2980743083113
915 => 0.29973900473711
916 => 0.30396039789388
917 => 0.28245727068587
918 => 0.26723628847328
919 => 0.26485931230713
920 => 0.26969298681096
921 => 0.27096758822979
922 => 0.27045379799607
923 => 0.25332119868464
924 => 0.26476911271743
925 => 0.27708610564877
926 => 0.27755925150979
927 => 0.2837253957074
928 => 0.28573334501693
929 => 0.29069789931099
930 => 0.2903873650882
1001 => 0.29159615505549
1002 => 0.29131827517533
1003 => 0.30051406659485
1004 => 0.31065839011882
1005 => 0.31030712445215
1006 => 0.3088487579234
1007 => 0.31101468090705
1008 => 0.32148470991556
1009 => 0.32052079742325
1010 => 0.32145715630365
1011 => 0.33380191056966
1012 => 0.34985184713629
1013 => 0.34239504021381
1014 => 0.35857416559721
1015 => 0.36875806740747
1016 => 0.38637007255322
1017 => 0.38416496276802
1018 => 0.3910211871284
1019 => 0.38021735603221
1020 => 0.35540957602085
1021 => 0.35148364987368
1022 => 0.35934345344059
1023 => 0.37866601356142
1024 => 0.35873491725923
1025 => 0.36276695208285
1026 => 0.3616057257824
1027 => 0.36154384896774
1028 => 0.36390543531201
1029 => 0.36047983114759
1030 => 0.34652330352734
1031 => 0.35291949788937
1101 => 0.35044962007571
1102 => 0.35319013365155
1103 => 0.36797955514661
1104 => 0.36144079936787
1105 => 0.35455275132035
1106 => 0.36319189215217
1107 => 0.37419248716194
1108 => 0.3735040896962
1109 => 0.37216831088484
1110 => 0.37969802610535
1111 => 0.39213490965009
1112 => 0.39549654929678
1113 => 0.39797804295828
1114 => 0.39832019900902
1115 => 0.40184461898045
1116 => 0.38289292452586
1117 => 0.41296975033933
1118 => 0.41816318730177
1119 => 0.41718703639874
1120 => 0.42295932300925
1121 => 0.42126096985966
1122 => 0.41880032260935
1123 => 0.42795062468759
1124 => 0.41746054174619
1125 => 0.40257118967559
1126 => 0.39440259665166
1127 => 0.40515965888717
1128 => 0.41172862142465
1129 => 0.41607028779745
1130 => 0.41738407341855
1201 => 0.38436409061781
1202 => 0.36656815126042
1203 => 0.37797514435765
1204 => 0.39189246320488
1205 => 0.38281561311696
1206 => 0.38317140845566
1207 => 0.37023020558453
1208 => 0.39303747250396
1209 => 0.3897146455531
1210 => 0.40695347765211
1211 => 0.40283929202141
1212 => 0.41689689039054
1213 => 0.41319505361852
1214 => 0.42856117109226
1215 => 0.43469113137355
1216 => 0.44498428873798
1217 => 0.45255597719595
1218 => 0.45700221748178
1219 => 0.45673528189245
1220 => 0.47435350101305
1221 => 0.46396465273132
1222 => 0.45091381082593
1223 => 0.45067776227074
1224 => 0.4574369782254
1225 => 0.47160244056603
1226 => 0.47527533885187
1227 => 0.47732798792764
1228 => 0.47418428441486
1229 => 0.46290793418051
1230 => 0.45803886332171
1231 => 0.46218745276397
]
'min_raw' => 0.17106628677873
'max_raw' => 0.47732798792764
'avg_raw' => 0.32419713735319
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$0.171066'
'max' => '$0.477327'
'avg' => '$0.324197'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.06772258144223
'max_diff' => 0.24662044582536
'year' => 2036
]
11 => [
'items' => [
101 => 0.45711408436844
102 => 0.46587214155488
103 => 0.47789882469193
104 => 0.47541536218279
105 => 0.48371720500934
106 => 0.49230873895549
107 => 0.50459501836841
108 => 0.50780710676656
109 => 0.51311656674392
110 => 0.51858174512736
111 => 0.52033701313344
112 => 0.52368836438471
113 => 0.52367070110934
114 => 0.53377022367701
115 => 0.54491030982533
116 => 0.54911543445273
117 => 0.55878488666151
118 => 0.54222628861199
119 => 0.55478617544402
120 => 0.56611550776087
121 => 0.55260821071917
122 => 0.57122487289457
123 => 0.57194771570058
124 => 0.58286178387278
125 => 0.57179828489779
126 => 0.56522881452238
127 => 0.58419462934135
128 => 0.59337158971468
129 => 0.59060741456565
130 => 0.56957190519739
131 => 0.55732833648962
201 => 0.52528455557337
202 => 0.56324179825699
203 => 0.58172966394023
204 => 0.56952402609161
205 => 0.5756798398629
206 => 0.60926396376975
207 => 0.62205062374249
208 => 0.61939108785366
209 => 0.61984050563919
210 => 0.62673995526618
211 => 0.65733591450858
212 => 0.63900210652175
213 => 0.653017615773
214 => 0.66045139134319
215 => 0.66735629638159
216 => 0.65040003192492
217 => 0.6283401810038
218 => 0.62135290020753
219 => 0.5683104159544
220 => 0.56554932429719
221 => 0.56399943988036
222 => 0.55422763786774
223 => 0.54654967820766
224 => 0.5404438796216
225 => 0.52442044078597
226 => 0.52982788102002
227 => 0.50428986386762
228 => 0.52062818222997
301 => 0.47986889021777
302 => 0.51381443977443
303 => 0.49533942046548
304 => 0.50774489904739
305 => 0.50770161750128
306 => 0.48485919827143
307 => 0.47168416756878
308 => 0.48007980991237
309 => 0.48908060495163
310 => 0.49054095366444
311 => 0.50221071937762
312 => 0.50546750014739
313 => 0.49559930237042
314 => 0.47902424448699
315 => 0.48287425239649
316 => 0.47160614728137
317 => 0.45185922648853
318 => 0.46604180975011
319 => 0.47088436723978
320 => 0.47302311650163
321 => 0.45360428785104
322 => 0.44750247028575
323 => 0.44425391381319
324 => 0.47651751755941
325 => 0.4782849906036
326 => 0.46924234861404
327 => 0.51011594786533
328 => 0.50086499351842
329 => 0.51120057606276
330 => 0.48252490453258
331 => 0.48362035380195
401 => 0.47004483135154
402 => 0.47764621680703
403 => 0.47227380257118
404 => 0.47703209998058
405 => 0.47988420382858
406 => 0.49345749866934
407 => 0.51396942499843
408 => 0.49143010104962
409 => 0.48160939483606
410 => 0.48770210573721
411 => 0.50392779775501
412 => 0.52851055173986
413 => 0.5139570666068
414 => 0.52041565617465
415 => 0.52182657067257
416 => 0.51109536953475
417 => 0.52890622643264
418 => 0.53845120933936
419 => 0.54824238674574
420 => 0.55674379174514
421 => 0.54433157517703
422 => 0.55761442612627
423 => 0.54691079300001
424 => 0.53730852756451
425 => 0.53732309023753
426 => 0.53129944886313
427 => 0.51962788467256
428 => 0.5174754691619
429 => 0.52867260646847
430 => 0.5376516502155
501 => 0.53839120726522
502 => 0.5433624672435
503 => 0.5463044076906
504 => 0.57513942344623
505 => 0.58673710531891
506 => 0.60091853117994
507 => 0.60644299577418
508 => 0.62306965357266
509 => 0.60964227704926
510 => 0.60673717967627
511 => 0.56640634639546
512 => 0.57301051808582
513 => 0.58358443416987
514 => 0.56658070637707
515 => 0.57736565794297
516 => 0.57949483583859
517 => 0.56600292621323
518 => 0.57320953809514
519 => 0.55407091354831
520 => 0.51438659471372
521 => 0.52895040642387
522 => 0.53967427396855
523 => 0.52436999273896
524 => 0.55180232448553
525 => 0.53577692259745
526 => 0.53069763955388
527 => 0.51088154550577
528 => 0.52023397910507
529 => 0.53288327946207
530 => 0.52506748248045
531 => 0.54128643476514
601 => 0.56425679663685
602 => 0.58062684441532
603 => 0.58188353341606
604 => 0.57135868940252
605 => 0.58822481910288
606 => 0.58834767044457
607 => 0.56932260724241
608 => 0.55766986196308
609 => 0.55502233371803
610 => 0.56163637835265
611 => 0.56966704955908
612 => 0.58232917977739
613 => 0.58998063987846
614 => 0.60993158980119
615 => 0.61532974481172
616 => 0.62126068054995
617 => 0.62918623972908
618 => 0.63870290559528
619 => 0.61788098246412
620 => 0.61870827628704
621 => 0.59931918976645
622 => 0.57859917014293
623 => 0.59432308225027
624 => 0.61488000566626
625 => 0.61016422472125
626 => 0.60963360303027
627 => 0.61052596153231
628 => 0.60697041670278
629 => 0.59088881921346
630 => 0.58281274163045
701 => 0.59323294213966
702 => 0.59877081496054
703 => 0.60735957275246
704 => 0.60630082706792
705 => 0.62842454477466
706 => 0.637021152489
707 => 0.63482177236609
708 => 0.63522651123974
709 => 0.65079025887905
710 => 0.66810034718279
711 => 0.68431352914658
712 => 0.70080627421251
713 => 0.68092362631274
714 => 0.67082844390047
715 => 0.68124409527611
716 => 0.67571740404529
717 => 0.70747541118071
718 => 0.7096742666904
719 => 0.74142997736043
720 => 0.77156992818597
721 => 0.75263956508575
722 => 0.77049004484698
723 => 0.78979679407971
724 => 0.82704264575683
725 => 0.81449955323684
726 => 0.80489174094184
727 => 0.79581240474768
728 => 0.8147050620637
729 => 0.83901016388318
730 => 0.84424525002373
731 => 0.85272808952823
801 => 0.84380942102151
802 => 0.85455097487875
803 => 0.89247338007274
804 => 0.88222641143899
805 => 0.86767406869667
806 => 0.89761016549081
807 => 0.90844392254698
808 => 0.98448090324981
809 => 1.0804807323181
810 => 1.040736172715
811 => 1.0160654420204
812 => 1.0218636489312
813 => 1.0569195367076
814 => 1.0681783752432
815 => 1.0375729709492
816 => 1.0483833171496
817 => 1.1079493875637
818 => 1.1399046732325
819 => 1.0965051031268
820 => 0.97676741045712
821 => 0.86636378945335
822 => 0.8956478012834
823 => 0.89232790313056
824 => 0.95632421477188
825 => 0.88198202462598
826 => 0.88323375644686
827 => 0.94855344403965
828 => 0.93112727125284
829 => 0.90289910311378
830 => 0.86656988631993
831 => 0.79941196903065
901 => 0.73992832885047
902 => 0.856589445508
903 => 0.85155880602326
904 => 0.84427369455034
905 => 0.86048592180192
906 => 0.93920789541461
907 => 0.93739309912468
908 => 0.92584829104532
909 => 0.93460492622224
910 => 0.90136402262956
911 => 0.9099309603667
912 => 0.86634630095571
913 => 0.88604838726564
914 => 0.90283853814287
915 => 0.90620940951391
916 => 0.91380415483381
917 => 0.84890788760882
918 => 0.87804440633854
919 => 0.89515938136964
920 => 0.817833301531
921 => 0.89363089339353
922 => 0.8477781879776
923 => 0.8322150910749
924 => 0.85316875077227
925 => 0.84500308921011
926 => 0.83798273290269
927 => 0.83406525345812
928 => 0.84945130856884
929 => 0.84873353070761
930 => 0.82355895824187
1001 => 0.79071975470715
1002 => 0.80174166932351
1003 => 0.79773730441239
1004 => 0.78322496940112
1005 => 0.7930045309727
1006 => 0.74994029113429
1007 => 0.67585050477672
1008 => 0.72479648707606
1009 => 0.72291212000052
1010 => 0.72196193667179
1011 => 0.75874348960216
1012 => 0.75520779198271
1013 => 0.74879046618176
1014 => 0.78310711018025
1015 => 0.77058107349681
1016 => 0.80918336704978
1017 => 0.83460933422357
1018 => 0.82816048650443
1019 => 0.85207373152575
1020 => 0.80199559197513
1021 => 0.81862954114762
1022 => 0.82205777501841
1023 => 0.78268364812015
1024 => 0.75578627583996
1025 => 0.75399252776137
1026 => 0.70735619091375
1027 => 0.73226894562239
1028 => 0.75419113880615
1029 => 0.74369210950204
1030 => 0.74036843047394
1031 => 0.75734838581049
1101 => 0.75866787376362
1102 => 0.72858340859913
1103 => 0.73483892155794
1104 => 0.76092545048866
1105 => 0.73418160796002
1106 => 0.68222269050876
1107 => 0.66933616059262
1108 => 0.66761685995593
1109 => 0.63266756877976
1110 => 0.67019730014095
1111 => 0.65381456666752
1112 => 0.70556742541481
1113 => 0.67600647005451
1114 => 0.67473215635166
1115 => 0.67280584428862
1116 => 0.64272354563625
1117 => 0.64930965721131
1118 => 0.67120289517991
1119 => 0.67901464913208
1120 => 0.67819981919506
1121 => 0.67109560637005
1122 => 0.67434787862188
1123 => 0.66387117653196
1124 => 0.66017163497031
1125 => 0.64849486416267
1126 => 0.6313332368657
1127 => 0.63371966639972
1128 => 0.59971799214038
1129 => 0.58119207539845
1130 => 0.57606434581195
1201 => 0.5692073315063
1202 => 0.57683886382359
1203 => 0.59962166966929
1204 => 0.57214077217748
1205 => 0.52502670098861
1206 => 0.52785833694553
1207 => 0.53422018222047
1208 => 0.52236492563844
1209 => 0.5111449202198
1210 => 0.52089980462349
1211 => 0.50093695156694
1212 => 0.5366325976387
1213 => 0.53566713044835
1214 => 0.54897225989996
1215 => 0.55729223039479
1216 => 0.53811739202664
1217 => 0.53329497203132
1218 => 0.53604204162742
1219 => 0.49063910037704
1220 => 0.5452618709572
1221 => 0.54573425094544
1222 => 0.54168944669594
1223 => 0.57077438574104
1224 => 0.63215267894618
1225 => 0.60905969610628
1226 => 0.60011739516157
1227 => 0.5831180745289
1228 => 0.60576865995215
1229 => 0.60402944839582
1230 => 0.5961640741617
1231 => 0.59140707128345
]
'min_raw' => 0.44425391381319
'max_raw' => 1.1399046732325
'avg_raw' => 0.79207929352286
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$0.444253'
'max' => '$1.13'
'avg' => '$0.792079'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 0.27318762703446
'max_diff' => 0.66257668530488
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.013944622717019
]
1 => [
'year' => 2028
'avg' => 0.023933020735305
]
2 => [
'year' => 2029
'avg' => 0.065380699141547
]
3 => [
'year' => 2030
'avg' => 0.050441112019845
]
4 => [
'year' => 2031
'avg' => 0.049539423101682
]
5 => [
'year' => 2032
'avg' => 0.086858199327475
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.013944622717019
'min' => '$0.013944'
'max_raw' => 0.086858199327475
'max' => '$0.086858'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.086858199327475
]
1 => [
'year' => 2033
'avg' => 0.22340822019358
]
2 => [
'year' => 2034
'avg' => 0.14160686645535
]
3 => [
'year' => 2035
'avg' => 0.16702562371939
]
4 => [
'year' => 2036
'avg' => 0.32419713735319
]
5 => [
'year' => 2037
'avg' => 0.79207929352286
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.086858199327475
'min' => '$0.086858'
'max_raw' => 0.79207929352286
'max' => '$0.792079'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 0.79207929352286
]
]
]
]
'prediction_2025_max_price' => '$0.023842'
'last_price' => 0.02311857
'sma_50day_nextmonth' => '$0.021378'
'sma_200day_nextmonth' => '$0.03123'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'increase'
'sma_200day_direction_label' => 'aumentar'
'sma_200day_date_nextmonth' => '4 de fev. de 2026'
'sma_50day_date_nextmonth' => '4 de fev. de 2026'
'daily_sma3' => '$0.02261'
'daily_sma3_action' => 'BUY'
'daily_sma5' => '$0.022266'
'daily_sma5_action' => 'BUY'
'daily_sma10' => '$0.021982'
'daily_sma10_action' => 'BUY'
'daily_sma21' => '$0.021489'
'daily_sma21_action' => 'BUY'
'daily_sma50' => '$0.021434'
'daily_sma50_action' => 'BUY'
'daily_sma100' => '$0.02604'
'daily_sma100_action' => 'SELL'
'daily_sma200' => '$0.034491'
'daily_sma200_action' => 'SELL'
'daily_ema3' => '$0.022695'
'daily_ema3_action' => 'BUY'
'daily_ema5' => '$0.022445'
'daily_ema5_action' => 'BUY'
'daily_ema10' => '$0.02210095'
'daily_ema10_action' => 'BUY'
'daily_ema21' => '$0.021775'
'daily_ema21_action' => 'BUY'
'daily_ema50' => '$0.022675'
'daily_ema50_action' => 'BUY'
'daily_ema100' => '$0.025987'
'daily_ema100_action' => 'SELL'
'daily_ema200' => '$0.030384'
'daily_ema200_action' => 'SELL'
'weekly_sma21' => '$0.029775'
'weekly_sma21_action' => 'SELL'
'weekly_sma50' => '$0.033329'
'weekly_sma50_action' => 'SELL'
'weekly_sma100' => '$0.042629'
'weekly_sma100_action' => 'SELL'
'weekly_sma200' => '$0.054751'
'weekly_sma200_action' => 'SELL'
'weekly_ema3' => '$0.022426'
'weekly_ema3_action' => 'BUY'
'weekly_ema5' => '$0.022298'
'weekly_ema5_action' => 'BUY'
'weekly_ema10' => '$0.023669'
'weekly_ema10_action' => 'SELL'
'weekly_ema21' => '$0.027662'
'weekly_ema21_action' => 'SELL'
'weekly_ema50' => '$0.033385'
'weekly_ema50_action' => 'SELL'
'weekly_ema100' => '$0.041985'
'weekly_ema100_action' => 'SELL'
'weekly_ema200' => '$0.065703'
'weekly_ema200_action' => 'SELL'
'rsi_14' => '64.92'
'rsi_14_action' => 'NEUTRAL'
'stoch_rsi_14' => 119.09
'stoch_rsi_14_action' => 'SELL'
'momentum_10' => 0
'momentum_10_action' => 'BUY'
'vwma_10' => '0.022053'
'vwma_10_action' => 'BUY'
'hma_9' => '0.022672'
'hma_9_action' => 'BUY'
'stochastic_fast_14' => 100
'stochastic_fast_14_action' => 'SELL'
'cci_20' => 190.54
'cci_20_action' => 'SELL'
'adx_14' => 13.82
'adx_14_action' => 'NEUTRAL'
'ao_5_34' => '0.000951'
'ao_5_34_action' => 'BUY'
'macd_12_26' => 0
'macd_12_26_action' => 'BUY'
'williams_percent_r_14' => -0
'williams_percent_r_14_action' => 'SELL'
'ultimate_oscillator' => 76.63
'ultimate_oscillator_action' => 'SELL'
'ichimoku_cloud' => '-0.004442'
'ichimoku_cloud_action' => 'NEUTRAL'
'sell_signals' => 14
'buy_signals' => 21
'sell_pct' => 40
'buy_pct' => 60
'overall_action' => 'bullish'
'overall_action_label' => 'Altista'
'overall_action_dir' => 1
'last_updated' => 1767691186
'last_updated_date' => '6 de janeiro de 2026'
]
Previsão de preço de Bifrost para 2026
A previsão de preço para Bifrost em 2026 sugere que o preço médio poderia variar entre $0.007987 na extremidade inferior e $0.023842 na extremidade superior. No mercado de criptomoedas, comparado ao preço médio de hoje, Bifrost poderia potencialmente ganhar 3.13% até 2026 se BFC atingir a meta de preço prevista.
Previsão de preço de Bifrost 2027-2032
A previsão de preço de BFC para 2027-2032 está atualmente dentro de uma faixa de preço entre $0.013944 na extremidade inferior e $0.086858 na extremidade superior. Considerando a volatilidade de preços no mercado, se Bifrost atingir a meta de preço superior, poderia ganhar 275.71% até 2032 em comparação com o preço de hoje.
| Previsão de Preço de Bifrost | Potencial Mínimo ($) | Preço Médio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2027 | $0.007689 | $0.013944 | $0.020199 |
| 2028 | $0.013876 | $0.023933 | $0.033989 |
| 2029 | $0.030483 | $0.06538 | $0.100277 |
| 2030 | $0.025925 | $0.050441 | $0.074957 |
| 2031 | $0.030651 | $0.049539 | $0.068427 |
| 2032 | $0.046787 | $0.086858 | $0.126929 |
Previsão de preço de Bifrost 2032-2037
A previsão de preço de Bifrost para 2032-2037 é atualmente estimada entre $0.086858 na extremidade inferior e $0.792079 na extremidade superior. Comparado ao preço atual, Bifrost poderia potencialmente ganhar 3326.16% até 2037 se atingir a meta de preço superior. Por favor, note que esta informação é apenas para fins gerais e não deve ser considerada como aconselhamento de investimento a longo prazo.
| Previsão de Preço de Bifrost | Potencial Mínimo ($) | Preço Médio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2032 | $0.046787 | $0.086858 | $0.126929 |
| 2033 | $0.108723 | $0.2234082 | $0.338093 |
| 2034 | $0.0874083 | $0.1416068 | $0.1958054 |
| 2035 | $0.103343 | $0.167025 | $0.2307075 |
| 2036 | $0.171066 | $0.324197 | $0.477327 |
| 2037 | $0.444253 | $0.792079 | $1.13 |
Bifrost Histograma de preços potenciais
Previsão de preço de Bifrost baseada na análise técnica
Em 6 de janeiro de 2026, o sentimento geral de previsão de preço para Bifrost é Altista, com 21 indicadores técnicos mostrando sinais de alta e 14 indicando sinais de baixa. A previsão de preço de BFC foi atualizada pela última vez em 6 de janeiro de 2026.
Médias Móveis Simples de 50 e 200 dias e Índice de Força Relativa de 14 dias - RSI (14) de Bifrost
De acordo com nossos indicadores técnicos, o SMA de 200 dias de Bifrost está projetado para aumentar no próximo mês, alcançando $0.03123 até 4 de fev. de 2026. O SMA de 50 dias de curto prazo para Bifrost é esperado para alcançar $0.021378 até 4 de fev. de 2026.
O oscilador de momentum Índice de Força Relativa (RSI) é uma ferramenta comumente usada para identificar se uma criptomoeda está sobrevendida (abaixo de 30) ou sobrecomprada (acima de 70). No momento, o RSI está em 64.92, sugerindo que o mercado de BFC está em um estado NEUTRAL.
Médias Móveis e Osciladores Populares de BFC para Sábado, 19 de Outubro de 2024
Médias móveis (MA) são indicadores amplamente utilizados nos mercados financeiros, projetados para suavizar movimentos de preços ao longo de um período definido. Como indicadores atrasados, eles se baseiam em dados históricos de preços. A tabela abaixo destaca dois tipos: a média móvel simples (SMA) e a média móvel exponencial (EMA).
Média Móvel Simples Diária (SMA)
| Período | Valor | Ação |
|---|---|---|
| SMA 3 | $0.02261 | BUY |
| SMA 5 | $0.022266 | BUY |
| SMA 10 | $0.021982 | BUY |
| SMA 21 | $0.021489 | BUY |
| SMA 50 | $0.021434 | BUY |
| SMA 100 | $0.02604 | SELL |
| SMA 200 | $0.034491 | SELL |
Média Móvel Exponencial Diária (EMA)
| Período | Valor | Ação |
|---|---|---|
| EMA 3 | $0.022695 | BUY |
| EMA 5 | $0.022445 | BUY |
| EMA 10 | $0.02210095 | BUY |
| EMA 21 | $0.021775 | BUY |
| EMA 50 | $0.022675 | BUY |
| EMA 100 | $0.025987 | SELL |
| EMA 200 | $0.030384 | SELL |
Média Móvel Simples Semanal (SMA)
| Período | Valor | Ação |
|---|---|---|
| SMA 21 | $0.029775 | SELL |
| SMA 50 | $0.033329 | SELL |
| SMA 100 | $0.042629 | SELL |
| SMA 200 | $0.054751 | SELL |
Média Móvel Exponencial Semanal (EMA)
| Período | Valor | Ação |
|---|---|---|
| EMA 21 | $0.027662 | SELL |
| EMA 50 | $0.033385 | SELL |
| EMA 100 | $0.041985 | SELL |
| EMA 200 | $0.065703 | SELL |
Osciladores de Bifrost
Um oscilador é uma ferramenta de análise técnica que define limites altos e baixos entre dois extremos, criando um indicador de tendência que flutua dentro desses limites. Os traders usam esse indicador para identificar condições de sobrecompra ou sobrevenda de curto prazo.
| Período | Valor | Ação |
|---|---|---|
| RSI (14) | 64.92 | NEUTRAL |
| Stoch RSI (14) | 119.09 | SELL |
| Estocástico Rápido (14) | 100 | SELL |
| Índice de Canal de Commodities (20) | 190.54 | SELL |
| Índice Direcional Médio (14) | 13.82 | NEUTRAL |
| Oscilador Impressionante (5, 34) | 0.000951 | BUY |
| Momentum (10) | 0 | BUY |
| MACD (12, 26) | 0 | BUY |
| Williams Percent Range (14) | -0 | SELL |
| Oscilador Ultimate (7, 14, 28) | 76.63 | SELL |
| VWMA (10) | 0.022053 | BUY |
| Média Móvel de Hull (9) | 0.022672 | BUY |
| Nuvem Ichimoku B/L (9, 26, 52, 26) | -0.004442 | NEUTRAL |
Previsão do preço de Bifrost com base nos fluxos financeiros mundiais
Definições dos fluxos financeiros mundiais, usadas na previsão do preço do Bifrost
M0: o total de todas as moedas físicas, mais as contas no Banco Central que podem ser trocadas por moedas físicas.
M1: o valor de M0, mais o valor em contas de demanda, incluindo contas 'correntes'.
M2: o valor de M1, mais a maioria das contas de poupança, do mercado de moedas e de certificados de depósito (CD) de menos de US$ 100.000.
Previsões de preço de Bifrost por empresas de Internet ou nichos tecnológicos
| Comparação | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Facebook stock | $0.032485 | $0.045647 | $0.064142 | $0.09013 | $0.126648 | $0.177962 |
| Amazon.com stock | $0.048238 | $0.100652 | $0.210016 | $0.438211 | $0.914354 | $1.90 |
| Apple stock | $0.032791 | $0.046512 | $0.065974 | $0.09358 | $0.132736 | $0.188276 |
| Netflix stock | $0.036477 | $0.057555 | $0.090813 | $0.14329 | $0.226089 | $0.356733 |
| Google stock | $0.029938 | $0.03877 | $0.0502071 | $0.065018 | $0.084198 | $0.109036 |
| Tesla stock | $0.052408 | $0.118805 | $0.269322 | $0.610532 | $1.38 | $3.13 |
| Kodak stock | $0.017336 | $0.0130005 | $0.009748 | $0.00731 | $0.005482 | $0.004111 |
| Nokia stock | $0.015315 | $0.010145 | $0.006721 | $0.004452 | $0.002949 | $0.001953 |
Este cálculo mostra quanto a criptomoeda pode custar, se assumirmos que sua capitalização se comportará da mesma forma que a de algumas empresas de Internet ou nichos tecnológicos. Se você extrapolar os dados, poderá obter uma imagem em potencial do preço futuro para 2024, 2025, 2026, 2027, 2028, 2029 e 2030.
Visão geral da previsão para Bifrost
Você pode fazer perguntas como: 'Devo investir em Bifrost agora?', 'Devo comprar BFC hoje?', 'Bifrost será um bom ou mau investimento no curto ou no longo prazo?'.
Atualizamos a previsão para Bifrost regularmente com novos valores. Veja nossas previsões semelhantes. Fazemos previsões de preços futuros para uma enorme quantidade de moedas digitais, como Bifrost, com métodos de análise técnica.
Se você estiver tentando encontrar criptomoedas com bom retorno, você deve explorar o máximo de fontes de informações disponíveis sobre Bifrost para poder tomar sozinho uma decisão de tão grande responsabilidade sobre o seu investimento.
O preço de Bifrost é de $0.02311 USD hoje, mas o preço pode tanto subir quanto descer e seu investimento pode ser perdido, porque criptomoedas são ativos de alto risco
Previsão de curto prazo para Bifrost
com base no histórico de preços de 4 horas
Previsão de longo prazo para Bifrost
com base no histórico de preços de 1 mês
Previsão do preço de Bifrost com base no padrão de crescimento do Bitcoin
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| Se Bifrost tiver 1% da média anterior do crescimento anual do Bitcoin | $0.023719 | $0.024336 | $0.024968 | $0.025617 |
| Se Bifrost tiver 2% da média anterior do crescimento anual do Bitcoin | $0.02432 | $0.025584 | $0.026914 | $0.028314 |
| Se Bifrost tiver 5% da média anterior do crescimento anual do Bitcoin | $0.026123 | $0.029518 | $0.033354 | $0.037689 |
| Se Bifrost tiver 10% da média anterior do crescimento anual do Bitcoin | $0.029127 | $0.036699 | $0.046238 | $0.058257 |
| Se Bifrost tiver 20% da média anterior do crescimento anual do Bitcoin | $0.035137 | $0.0534036 | $0.081166 | $0.123361 |
| Se Bifrost tiver 50% da média anterior do crescimento anual do Bitcoin | $0.053164 | $0.122261 | $0.281159 | $0.64657 |
| Se Bifrost tiver 100% da média anterior do crescimento anual do Bitcoin | $0.083211 | $0.2995036 | $1.07 | $3.88 |
Perguntas Frequentes sobre Bifrost
BFC é um bom investimento?
A decisão de adquirir Bifrost depende inteiramente da sua tolerância individual ao risco. Como você pode perceber, o valor de Bifrost experimentou uma escalada de 0.0636% nas últimas 24 horas, e Bifrost registrou um declínio de durante os últimos 30 dias. Consequentemente, a decisão de investir ou não em Bifrost dependerá de quão alinhado esse investimento está com suas aspirações de negociação.
Bifrost pode subir?
Parece que o valor médio de Bifrost pode potencialmente subir para $0.023842 até o final deste ano. Observando as perspectivas de Bifrost em um horizonte de cinco anos mais longo, a moeda digital poderia potencialmente crescer até $0.074957. No entanto, dada a imprevisibilidade do mercado, é vital conduzir uma pesquisa aprofundada antes de investir quaisquer fundos em um projeto, rede ou ativo específico.
Qual será o preço de Bifrost na próxima semana?
Com base na nossa nova previsão experimental de Bifrost, o preço de Bifrost aumentará 0.86% na próxima semana e atingirá $0.023316 até 13 de janeiro de 2026.
Qual será o preço de Bifrost no próximo mês?
Com base na nossa nova previsão experimental de Bifrost, o preço de Bifrost diminuirá -11.62% no próximo mês e atingirá $0.020432 até 5 de fevereiro de 2026.
Até onde o preço de Bifrost pode subir este ano em 2026?
De acordo com nossa previsão mais recente sobre o valor de Bifrost em 2026, espera-se que BFC fluctue dentro do intervalo de $0.007987 e $0.023842. No entanto, é crucial lembrar que o mercado de criptomoedas é excepcionalmente instável, e essa previsão de preço de Bifrost não considera flutuações repentinas e extremas de preço.
Onde estará Bifrost em 5 anos?
O futuro de Bifrost parece seguir uma tendência de alta, com um preço máximo de $0.074957 projetada após um período de cinco anos. Com base na previsão de Bifrost para 2030, o valor de Bifrost pode potencialmente atingir seu pico mais alto de aproximadamente $0.074957, enquanto seu pico mais baixo está previsto para cerca de $0.025925.
Quanto será Bifrost em 2026?
Com base na nossa nova simulação experimental de previsão de preços de Bifrost, espera-se que o valor de BFC em 2026 aumente 3.13% para $0.023842 se o melhor cenário ocorrer. O preço ficará entre $0.023842 e $0.007987 durante 2026.
Quanto será Bifrost em 2027?
De acordo com nossa última simulação experimental para previsão de preços de Bifrost, o valor de BFC pode diminuir -12.62% para $0.020199 em 2027, assumindo as condições mais favoráveis. O preço está projetado para flutuar entre $0.020199 e $0.007689 ao longo do ano.
Quanto será Bifrost em 2028?
Nosso novo modelo experimental de previsão de preços de Bifrost sugere que o valor de BFC em 2028 pode aumentar 47.02%, alcançando $0.033989 no melhor cenário. O preço é esperado para variar entre $0.033989 e $0.013876 durante o ano.
Quanto será Bifrost em 2029?
Com base no nosso modelo de previsão experimental, o valor de Bifrost pode experimentar um 333.75% crescimento em 2029, potencialmente alcançando $0.100277 sob condições ótimas. A faixa de preço prevista para 2029 está entre $0.100277 e $0.030483.
Quanto será Bifrost em 2030?
Usando nossa nova simulação experimental para previsões de preços de Bifrost, espera-se que o valor de BFC em 2030 aumente 224.23%, alcançando $0.074957 no melhor cenário. O preço está previsto para variar entre $0.074957 e $0.025925 ao longo de 2030.
Quanto será Bifrost em 2031?
Nossa simulação experimental indica que o preço de Bifrost poderia aumentar 195.98% em 2031, potencialmente atingindo $0.068427 sob condições ideais. O preço provavelmente oscilará entre $0.068427 e $0.030651 durante o ano.
Quanto será Bifrost em 2032?
Com base nos achados da nossa mais recente previsão experimental de preços de Bifrost, BFC poderia ver um 449.04% aumento em valor, atingindo $0.126929 se o cenário mais positivo se desenrolar em 2032. O preço é esperado para permanecer dentro de uma faixa de $0.126929 e $0.046787 ao longo do ano.
Quanto será Bifrost em 2033?
De acordo com nossa previsão experimental de preços de Bifrost, espera-se que o valor de BFC seja aumentar 1362.43% em 2033, com o preço potencial mais alto sendo $0.338093. Ao longo do ano, o preço de BFC poderia variar entre $0.338093 e $0.108723.
Quanto será Bifrost em 2034?
Os resultados da nossa nova simulação de previsão de preços de Bifrost sugerem que BFC pode aumentar 746.96% em 2034, atingindo potencialmente $0.1958054 nas melhores circunstâncias. A faixa de preço prevista para o ano é entre $0.1958054 e $0.0874083.
Quanto será Bifrost em 2035?
Com base em nossa previsão experimental para o preço de Bifrost, BFC poderia aumentar 897.93%, com o valor potencialmente atingindo $0.2307075 em 2035. A faixa de preço esperada para o ano está entre $0.2307075 e $0.103343.
Quanto será Bifrost em 2036?
Nossa recente simulação de previsão de preços de Bifrost sugere que o valor de BFC pode aumentar 1964.7% em 2036, possivelmente atingindo $0.477327 se as condições forem ideais. A faixa de preço esperada para 2036 está entre $0.477327 e $0.171066.
Quanto será Bifrost em 2037?
De acordo com a simulação experimental, o valor de Bifrost poderia aumentar 4830.69% em 2037, com um pico de $1.13 sob condições favoráveis. O preço é esperado para cair entre $1.13 e $0.444253 ao longo do ano.
Previsões relacionadas
Previsão de Preço do Request
Previsão de Preço do POL (ex-MATIC)
Previsão de Preço do Maya Protocol
Previsão de Preço do CertiK
Previsão de Preço do Badger DAO
Previsão de Preço do Electroneum
Previsão de Preço do Ondo US Dollar Yield
Previsão de Preço do Sidus
Previsão de Preço do Hard Protocol
Previsão de Preço do Solidus Ai Tech
Previsão de Preço do Chainge FinancePrevisão de Preço do Mobox
Previsão de Preço do Trias Token
Previsão de Preço do SuperRare
Previsão de Preço do CONX
Previsão de Preço do Banana Gun
Previsão de Preço do Dora Factory
Previsão de Preço do Automata
Previsão de Preço do Storm
Previsão de Preço do Adventure Gold
Previsão de Preço do Star Atlas
Previsão de Preço do Radio Caca
Previsão de Preço do CoinEx Token
Previsão de Preço do Blendr Network
Previsão de Preço do Access Protocol
Como ler e prever os movimentos de preço de Bifrost?
Traders de Bifrost utilizam indicadores e padrões de gráfico para prever a direção do mercado. Eles também identificam níveis-chave de suporte e resistência para avaliar quando uma tendência de baixa pode desacelerar ou uma tendência de alta pode estagnar.
Indicadores de Previsão de Preço de Bifrost
Médias móveis são ferramentas populares para a previsão de preço de Bifrost. Uma média móvel simples (SMA) calcula o preço médio de fechamento de BFC em um período específico, como uma SMA de 12 dias. Uma média móvel exponencial (EMA) dá mais peso aos preços recentes, reagindo mais rapidamente às mudanças de preço.
Médias móveis comumente usadas no mercado de criptomoedas incluem as de 50 dias, 100 dias e 200 dias, que ajudam a identificar níveis-chave de resistência e suporte. Um movimento de preço de BFC acima dessas médias é visto como altista, enquanto uma queda abaixo indica fraqueza.
Traders também usam RSI e níveis de retração de Fibonacci para avaliar a direção futura de BFC.
Como ler gráficos de Bifrost e prever movimentos de preço?
A maioria dos traders prefere gráficos de velas em vez de gráficos de linha simples porque eles fornecem informações mais detalhadas. Velas podem representar a ação de preço de Bifrost em diferentes períodos de tempo, como 5 minutos para tendências de curto prazo e semanal para tendências de longo prazo. Opções populares incluem gráficos de 1 hora, 4 horas e 1 dia.
Por exemplo, um gráfico de velas de 1 hora mostra os preços de abertura, fechamento, máximo e mínimo de BFC dentro de cada hora. A cor da vela é crucial: verde indica que o preço fechou mais alto do que abriu, enquanto vermelho significa o oposto. Alguns gráficos usam velas vazias e preenchidas para transmitir a mesma informação.
O que afeta o preço de Bifrost?
A ação de preço de Bifrost é impulsionada pela oferta e demanda, influenciada por fatores como reduções pela metade das recompensas de bloco, hard forks e atualizações de protocolo. Eventos do mundo real, como regulamentações, adoção por empresas e governos e hacks de exchanges de criptomoedas, também impactam o preço de BFC. A capitalização de mercado de Bifrost pode mudar rapidamente.
Traders frequentemente monitoram a atividade de "baleias" de BFC, grandes detentores de Bifrost, pois suas ações podem influenciar significativamente os movimentos de preço no relativamente pequeno mercado de Bifrost.
Padrões de previsão de preço altistas e baixistas
Traders frequentemente identificam padrões de velas para ganhar vantagem em previsões de preço de criptomoedas. Certas formações indicam tendências altistas, enquanto outras sugerem movimentos baixistas.
Padrões de velas altistas comumente seguidos:
- Martelo
- Engolfo de Alta
- Linha de Perfuração
- Estrela da Manhã
- Três Soldados Brancos
Padrões de velas baixistas comuns:
- Harami de Baixa
- Nuvem Negra
- Estrela da Noite
- Estrela Cadente
- Homem Enforcado


