Previsão de Preço Bifrost - Projeção BFC
Previsão de Preço Bifrost até $0.023853 até 2026
| Ano | Preço Mínimo | Preço Máximo |
|---|---|---|
| 2026 | $0.00799 | $0.023853 |
| 2027 | $0.007692 | $0.0202086 |
| 2028 | $0.013883 | $0.0340038 |
| 2029 | $0.030496 | $0.100321 |
| 2030 | $0.025936 | $0.074989 |
| 2031 | $0.030664 | $0.068457 |
| 2032 | $0.0468075 | $0.126984 |
| 2033 | $0.10877 | $0.33824 |
| 2034 | $0.087446 | $0.19589 |
| 2035 | $0.103388 | $0.2308078 |
Calculadora de lucro do investimento
Se você abrir um short de $10,000.00 em Bifrost hoje e fechar em Apr 06, 2026, nossa previsão mostra que pode lucrar cerca de $3,954.68, com um retorno de 39.55% nos próximos 90 dias.
Previsão de preço de longo prazo de Bifrost para os anos 2027, 2028, 2029, 2030, 2031, 2032 e 2037
[
'name' => 'Bifrost'
'name_with_ticker' => 'Bifrost <small>BFC</small>'
'name_lang' => 'Bifrost'
'name_lang_with_ticker' => 'Bifrost <small>BFC</small>'
'name_with_lang' => 'Bifrost'
'name_with_lang_with_ticker' => 'Bifrost <small>BFC</small>'
'image' => '/uploads/coins/bifrost.png?1717201112'
'price_for_sd' => 0.02312
'ticker' => 'BFC'
'marketcap' => '$32.18M'
'low24h' => '$0.02274'
'high24h' => '$0.02344'
'volume24h' => '$1.63M'
'current_supply' => '1.39B'
'max_supply' => '2.37B'
'algo' => 'SHA-256'
'proof' => null
'ico_price_and_roi' => '—'
'price' => '$0.02312'
'change_24h_pct' => '0.139%'
'ath_price' => '$0.7788'
'ath_days' => 1601
'ath_exchange' => null
'ath_pair' => null
'ath_date' => '19 de ago. de 2021'
'ath_pct' => '-97.03%'
'fdv' => '$54.78M'
'new_prediction' => true
'change_24h_pct_is_increased' => true
'change_30d_pct' => null
'change_30d_pct_is_increased' => false
'max_price' => '$1.14'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.023326'
'next_week_prediction_price_date' => '13 de janeiro de 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.020441'
'next_month_prediction_price_date' => '5 de fevereiro de 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.00799'
'current_year_max_price_prediction' => '$0.023853'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.025936'
'grand_prediction_max_price' => '$0.074989'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.023566895183346
107 => 0.023654885415178
108 => 0.023853131900387
109 => 0.022159137389887
110 => 0.022919691192036
111 => 0.023366445296544
112 => 0.021347993999322
113 => 0.023326547004213
114 => 0.022129648714257
115 => 0.021723403457836
116 => 0.022270359176864
117 => 0.022057210001227
118 => 0.021873956856554
119 => 0.021771698453138
120 => 0.022173322367891
121 => 0.022154586132224
122 => 0.021497451455844
123 => 0.020640246058743
124 => 0.020927952326818
125 => 0.020823425942365
126 => 0.020444608840938
127 => 0.020699885828749
128 => 0.019575775167157
129 => 0.017641801200077
130 => 0.018919443641955
131 => 0.01887025579775
201 => 0.018845453056211
202 => 0.019805566039839
203 => 0.019713273330038
204 => 0.019545761158017
205 => 0.020441532348534
206 => 0.020114563814173
207 => 0.021122203793599
208 => 0.021785900654117
209 => 0.021617565661946
210 => 0.022241775767188
211 => 0.020934580498149
212 => 0.021368778330953
213 => 0.021458265902521
214 => 0.02043047867109
215 => 0.019728373558765
216 => 0.019681551152357
217 => 0.018464197643629
218 => 0.019114498061857
219 => 0.019686735518638
220 => 0.019412678184261
221 => 0.019325919819427
222 => 0.01976914948977
223 => 0.019803592231161
224 => 0.019018294077366
225 => 0.019181582430699
226 => 0.019862522008524
227 => 0.019164424500448
228 => 0.017808135075838
301 => 0.017471756546366
302 => 0.017426877449848
303 => 0.016514592199403
304 => 0.017494234968162
305 => 0.017066594646805
306 => 0.018417505298054
307 => 0.01764587237914
308 => 0.017612608826249
309 => 0.017562326087351
310 => 0.016777084486264
311 => 0.016949002492195
312 => 0.017520484127761
313 => 0.017724395213532
314 => 0.017703125616692
315 => 0.017517683555976
316 => 0.017602577981755
317 => 0.017329103457143
318 => 0.017232533910622
319 => 0.016927733858256
320 => 0.016479761984442
321 => 0.016542055221067
322 => 0.015654505720825
323 => 0.015170921647276
324 => 0.015037071949253
325 => 0.014858082539093
326 => 0.015057289279403
327 => 0.015651991404606
328 => 0.014934654468518
329 => 0.01370483060693
330 => 0.013778745116529
331 => 0.013944809074184
401 => 0.013635349987717
402 => 0.013342472933309
403 => 0.013597105770251
404 => 0.013076013187615
405 => 0.014007780623246
406 => 0.013982578925361
407 => 0.014329884205253
408 => 0.014547061324191
409 => 0.014046538376965
410 => 0.013920658209296
411 => 0.013992365273735
412 => 0.012807207228018
413 => 0.014233031508331
414 => 0.014245362095916
415 => 0.014139780118898
416 => 0.014898987530779
417 => 0.016501151972578
418 => 0.015898353262658
419 => 0.01566493138249
420 => 0.015221196217659
421 => 0.015812446978409
422 => 0.015767048144932
423 => 0.015561737402953
424 => 0.015437564825596
425 => 0.015666356606716
426 => 0.015409214991988
427 => 0.015363025292204
428 => 0.015083165966402
429 => 0.014983268919879
430 => 0.014909309123649
501 => 0.014827886655139
502 => 0.015007484331456
503 => 0.014600492368879
504 => 0.014109699959925
505 => 0.014068895881568
506 => 0.014181559529443
507 => 0.014131714252081
508 => 0.014068657241557
509 => 0.013948264235912
510 => 0.013912546202927
511 => 0.014028612482203
512 => 0.013897580419985
513 => 0.014090925365473
514 => 0.014038346238564
515 => 0.013744643509788
516 => 0.013378581167054
517 => 0.013375322444362
518 => 0.013296454913083
519 => 0.013196005254186
520 => 0.013168062457058
521 => 0.013575661302952
522 => 0.014419378715547
523 => 0.014253736799008
524 => 0.014373430059374
525 => 0.014962202435599
526 => 0.015149355468998
527 => 0.015016518678854
528 => 0.014834683487488
529 => 0.014842683313079
530 => 0.015464069207231
531 => 0.015502824283242
601 => 0.01560074585746
602 => 0.015726602752964
603 => 0.015037952652379
604 => 0.014810247955271
605 => 0.014702348837206
606 => 0.014370061315778
607 => 0.014728404919459
608 => 0.014519613447397
609 => 0.01454778655031
610 => 0.014529438780079
611 => 0.014539457903296
612 => 0.014007520175259
613 => 0.014201330325532
614 => 0.013879083360606
615 => 0.01344763084849
616 => 0.013446184468383
617 => 0.013551781859485
618 => 0.013488968399231
619 => 0.01331993899277
620 => 0.013343948822161
621 => 0.013133597452362
622 => 0.013369489286989
623 => 0.013376253820745
624 => 0.013285422615298
625 => 0.013648846533342
626 => 0.013797741609091
627 => 0.013737954563873
628 => 0.013793546790618
629 => 0.014260619968468
630 => 0.014336773276289
701 => 0.014370595545218
702 => 0.014325278185446
703 => 0.013802084030891
704 => 0.013825289916439
705 => 0.013655020525636
706 => 0.013511160832954
707 => 0.013516914466216
708 => 0.013590877048706
709 => 0.013913875984286
710 => 0.014593608202388
711 => 0.014619403543187
712 => 0.014650668248739
713 => 0.014523498978877
714 => 0.014485143510241
715 => 0.014535744273759
716 => 0.014791015956256
717 => 0.015447644029223
718 => 0.015215547813522
719 => 0.015026849977364
720 => 0.015192388852246
721 => 0.015166905439994
722 => 0.014951799794992
723 => 0.014945762495969
724 => 0.014532905989775
725 => 0.014380282339723
726 => 0.014252738594058
727 => 0.014113464153405
728 => 0.014030897596464
729 => 0.014157757353754
730 => 0.014186771681207
731 => 0.013909390604763
801 => 0.013871584589002
802 => 0.014098099963712
803 => 0.013998418992647
804 => 0.014100943343357
805 => 0.014124729872159
806 => 0.014120899693172
807 => 0.014016821311093
808 => 0.014083157768168
809 => 0.013926252271336
810 => 0.013755641109974
811 => 0.013646801818476
812 => 0.013551825101207
813 => 0.013604523704027
814 => 0.013416662807359
815 => 0.013356562325622
816 => 0.014060684469128
817 => 0.014580827067125
818 => 0.014573263987751
819 => 0.014527225687129
820 => 0.014458822110931
821 => 0.014786011808597
822 => 0.014672025460295
823 => 0.014754960052563
824 => 0.014776070387049
825 => 0.014839965011512
826 => 0.01486280184783
827 => 0.014793773067277
828 => 0.014562104048585
829 => 0.013984806880436
830 => 0.013716073490279
831 => 0.013627386995418
901 => 0.013630610581067
902 => 0.013541689698159
903 => 0.01356788088333
904 => 0.013532581472812
905 => 0.013465732929136
906 => 0.01360039599483
907 => 0.013615914658678
908 => 0.013584482690041
909 => 0.013591886056509
910 => 0.013331642780966
911 => 0.013351428511987
912 => 0.013241259047414
913 => 0.013220603600919
914 => 0.012942104788032
915 => 0.012448703771953
916 => 0.012722095830456
917 => 0.012391876668525
918 => 0.012266817668265
919 => 0.012858827524831
920 => 0.012799406155029
921 => 0.012697702599777
922 => 0.012547261844681
923 => 0.012491461905222
924 => 0.012152439137185
925 => 0.012132407863433
926 => 0.012300436701657
927 => 0.012222897174336
928 => 0.012114002311462
929 => 0.011719596156626
930 => 0.011276153055201
1001 => 0.011289537815049
1002 => 0.011430588815061
1003 => 0.011840713620912
1004 => 0.011680470764034
1005 => 0.011564212732795
1006 => 0.011542441098248
1007 => 0.011814958686614
1008 => 0.012200628168353
1009 => 0.012381575660317
1010 => 0.012202262191238
1011 => 0.011996276532883
1012 => 0.012008813925461
1013 => 0.012092219581435
1014 => 0.012100984336585
1015 => 0.011966908848664
1016 => 0.012004650313162
1017 => 0.011947317577438
1018 => 0.011595466684124
1019 => 0.011589102817195
1020 => 0.011502752933614
1021 => 0.011500138293456
1022 => 0.011353235600497
1023 => 0.011332682898261
1024 => 0.011040998685034
1025 => 0.011232986117481
1026 => 0.011104211027588
1027 => 0.010910116592146
1028 => 0.010876654638317
1029 => 0.010875648731579
1030 => 0.011074940318056
1031 => 0.01123065727926
1101 => 0.01110645112541
1102 => 0.011078171791814
1103 => 0.011380121089854
1104 => 0.01134169528935
1105 => 0.011308418793932
1106 => 0.012166095696323
1107 => 0.011487177502718
1108 => 0.01119113041901
1109 => 0.010824715935105
1110 => 0.010944022338687
1111 => 0.010969161950897
1112 => 0.010088001168281
1113 => 0.0097305143485152
1114 => 0.0096078383435782
1115 => 0.0095372365683528
1116 => 0.0095694106838843
1117 => 0.0092476306170733
1118 => 0.0094638721437214
1119 => 0.009185237805255
1120 => 0.0091385238516566
1121 => 0.0096367565650054
1122 => 0.0097060827364346
1123 => 0.0094103157511644
1124 => 0.0096002460360333
1125 => 0.0095313746745114
1126 => 0.009190014191259
1127 => 0.0091769767316765
1128 => 0.0090056940405816
1129 => 0.0087376697958825
1130 => 0.0086151755240045
1201 => 0.0085513794436664
1202 => 0.0085777029497747
1203 => 0.0085643929795737
1204 => 0.0084775364208018
1205 => 0.0085693714958519
1206 => 0.0083347708279718
1207 => 0.0082413509517159
1208 => 0.0081991553609358
1209 => 0.0079909337650816
1210 => 0.0083223069206496
1211 => 0.0083875916068255
1212 => 0.0084530049240007
1213 => 0.0090223831904419
1214 => 0.0089939386612968
1215 => 0.0092510633517212
1216 => 0.0092410719590733
1217 => 0.0091677358322204
1218 => 0.0088583427762355
1219 => 0.0089816613339502
1220 => 0.0086021059812634
1221 => 0.0088864946587515
1222 => 0.008756711542701
1223 => 0.0088426148566648
1224 => 0.0086881529525684
1225 => 0.0087736385478711
1226 => 0.00840307302782
1227 => 0.0080570441591939
1228 => 0.0081962962771414
1229 => 0.0083476792547617
1230 => 0.0086759161219079
1231 => 0.008480420951731
]
'min_raw' => 0.0079909337650816
'max_raw' => 0.023853131900387
'avg_raw' => 0.015922032832734
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.00799'
'max' => '$0.023853'
'avg' => '$0.015922'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.015137686234918
'max_diff' => 0.0007245119003869
'year' => 2026
]
1 => [
'items' => [
101 => 0.0085507284074174
102 => 0.0083152102001938
103 => 0.0078292688662416
104 => 0.0078320192414187
105 => 0.0077572677539976
106 => 0.0076926715549699
107 => 0.0085028759237164
108 => 0.0084021142030271
109 => 0.0082415635884767
110 => 0.0084564669660802
111 => 0.0085132908300938
112 => 0.0085149085256174
113 => 0.0086716964824579
114 => 0.0087553742431295
115 => 0.008770122811128
116 => 0.0090168320488447
117 => 0.0090995257311537
118 => 0.0094401293053369
119 => 0.0087482747697605
120 => 0.0087340264808878
121 => 0.0084594910973149
122 => 0.0082853764168203
123 => 0.00847141287845
124 => 0.0086362157869444
125 => 0.0084646119830682
126 => 0.0084870198171004
127 => 0.0082566557309424
128 => 0.0083390000521062
129 => 0.0084099260744704
130 => 0.0083707648937598
131 => 0.0083121387108134
201 => 0.0086227038278355
202 => 0.0086051805268186
203 => 0.0088943859036507
204 => 0.0091198421761663
205 => 0.0095239001216435
206 => 0.0091022445915209
207 => 0.0090868777880743
208 => 0.0092370907566777
209 => 0.0090995027343309
210 => 0.009186453615077
211 => 0.0095098909905
212 => 0.0095167247125767
213 => 0.0094022510630376
214 => 0.0093952853310598
215 => 0.0094172712476583
216 => 0.0095460434478933
217 => 0.0095010464843611
218 => 0.0095531181097442
219 => 0.0096182344746348
220 => 0.009887583368589
221 => 0.009952522475045
222 => 0.0097947541134234
223 => 0.0098089988300203
224 => 0.0097499891319355
225 => 0.0096929865029749
226 => 0.0098211200883129
227 => 0.01005528673399
228 => 0.010053829995441
301 => 0.010108152105689
302 => 0.010141994330344
303 => 0.0099967187280991
304 => 0.0099021496529693
305 => 0.0099384134539607
306 => 0.0099964000614687
307 => 0.0099196091786698
308 => 0.0094456202770379
309 => 0.0095893982312648
310 => 0.0095654665492986
311 => 0.0095313849239869
312 => 0.009675954768764
313 => 0.0096620106545548
314 => 0.0092443302973948
315 => 0.0092710688386996
316 => 0.0092459563566524
317 => 0.0093270999236774
318 => 0.0090951207154211
319 => 0.0091664759574769
320 => 0.0092112292963805
321 => 0.009237589356806
322 => 0.0093328199703258
323 => 0.0093216457569769
324 => 0.0093321253655347
325 => 0.0094733272254346
326 => 0.010187477778182
327 => 0.010226347417083
328 => 0.010034939099229
329 => 0.01011140294685
330 => 0.0099646090802233
331 => 0.010063152786323
401 => 0.010130573887298
402 => 0.0098259108963253
403 => 0.0098078707312464
404 => 0.009660470994115
405 => 0.0097396752637016
406 => 0.0096136555758009
407 => 0.0096445763992301
408 => 0.0095581190812929
409 => 0.0097137250400996
410 => 0.009887716680767
411 => 0.0099316738403376
412 => 0.0098160414782543
413 => 0.0097323160275619
414 => 0.0095853217170241
415 => 0.0098297765314303
416 => 0.0099012625687881
417 => 0.0098294010457086
418 => 0.0098127491606058
419 => 0.0097811938684252
420 => 0.0098194437650134
421 => 0.0099008732404763
422 => 0.0098624726036143
423 => 0.0098878369007938
424 => 0.0097911743554952
425 => 0.0099967668203683
426 => 0.010323297133108
427 => 0.010324346981457
428 => 0.010285946137601
429 => 0.010270233339653
430 => 0.010309634935807
501 => 0.010331008685382
502 => 0.010458426222327
503 => 0.010595150316008
504 => 0.011233182003821
505 => 0.011054025259008
506 => 0.011620124929111
507 => 0.01206783626932
508 => 0.012202085324204
509 => 0.012078582510616
510 => 0.011656086056824
511 => 0.011635356365175
512 => 0.012266744440543
513 => 0.012088348389846
514 => 0.012067128747267
515 => 0.011841387601379
516 => 0.011974828577184
517 => 0.011945643078314
518 => 0.011899572340545
519 => 0.012154168426801
520 => 0.012630749572322
521 => 0.012556469931443
522 => 0.01250102362526
523 => 0.012258074051744
524 => 0.012404383959752
525 => 0.012352285803892
526 => 0.012576132543774
527 => 0.012443530693881
528 => 0.012086996864304
529 => 0.012143776051815
530 => 0.012135193991847
531 => 0.012311812177865
601 => 0.012258795782355
602 => 0.012124841689741
603 => 0.012629120669778
604 => 0.012596375597761
605 => 0.012642800623315
606 => 0.012663238355306
607 => 0.012970184084062
608 => 0.013095929927966
609 => 0.013124476436023
610 => 0.013243925262199
611 => 0.013121504440412
612 => 0.013611275012125
613 => 0.013936943863409
614 => 0.014315224992941
615 => 0.01486799539557
616 => 0.01507584218037
617 => 0.01503829651906
618 => 0.015457400729652
619 => 0.016210521679922
620 => 0.015190523795662
621 => 0.016264584044536
622 => 0.015924548970365
623 => 0.015118331926473
624 => 0.015066421053521
625 => 0.015612400596017
626 => 0.016823330672688
627 => 0.016520006422737
628 => 0.016823826802498
629 => 0.016469404191137
630 => 0.016451804121175
701 => 0.016806613287351
702 => 0.01763564424376
703 => 0.017241802712131
704 => 0.016677134302634
705 => 0.017094076668993
706 => 0.016732882605059
707 => 0.015919011287162
708 => 0.0165197744764
709 => 0.016118061240507
710 => 0.016235302518991
711 => 0.017079643990503
712 => 0.016978050590801
713 => 0.017109521857312
714 => 0.016877478513122
715 => 0.016660713439772
716 => 0.016256105333178
717 => 0.016136320819754
718 => 0.016169424949869
719 => 0.016136304414991
720 => 0.015909929897893
721 => 0.015861044342479
722 => 0.015779566275063
723 => 0.015804819735134
724 => 0.015651617131143
725 => 0.015940742098147
726 => 0.015994406239783
727 => 0.016204807279747
728 => 0.016226651813695
729 => 0.016812615715123
730 => 0.01648987664494
731 => 0.016706397877169
801 => 0.016687030180182
802 => 0.015135805094478
803 => 0.015349550224713
804 => 0.015682070570442
805 => 0.015532270605412
806 => 0.015320488502653
807 => 0.015149463099637
808 => 0.014890342125822
809 => 0.015255049920489
810 => 0.015734601888125
811 => 0.016238814042975
812 => 0.016844591909738
813 => 0.016709389341909
814 => 0.016227489447126
815 => 0.016249107124378
816 => 0.016382739098907
817 => 0.016209673550147
818 => 0.016158633141177
819 => 0.016375726930493
820 => 0.016377221936107
821 => 0.016178089106589
822 => 0.015956789407503
823 => 0.015955862153684
824 => 0.015916484009733
825 => 0.016476409475467
826 => 0.016784311866771
827 => 0.016819612379725
828 => 0.01678193586099
829 => 0.016796436057723
830 => 0.01661727444039
831 => 0.017026784768887
901 => 0.01740259194269
902 => 0.017301867592162
903 => 0.01715086747191
904 => 0.017030588602977
905 => 0.017273533713159
906 => 0.017262715749834
907 => 0.017399309594874
908 => 0.017393112909059
909 => 0.017347181536526
910 => 0.017301869232516
911 => 0.017481527396046
912 => 0.017429788730171
913 => 0.017377969699858
914 => 0.017274038701467
915 => 0.01728816465026
916 => 0.017137190602307
917 => 0.017067343099622
918 => 0.016017004246827
919 => 0.015736319384548
920 => 0.015824628556089
921 => 0.015853702228306
922 => 0.015731547816535
923 => 0.015906685864121
924 => 0.015879390784922
925 => 0.015985579970999
926 => 0.015919237577737
927 => 0.015921960292697
928 => 0.016117059125592
929 => 0.016173697146791
930 => 0.016144890592084
1001 => 0.01616506571557
1002 => 0.016629992920911
1003 => 0.016563895139846
1004 => 0.016528782011034
1005 => 0.016538508587682
1006 => 0.016657307456798
1007 => 0.016690564653973
1008 => 0.016549651572602
1009 => 0.016616106996385
1010 => 0.016899065756407
1011 => 0.016998085308335
1012 => 0.01731410818601
1013 => 0.017179856050715
1014 => 0.017426281655345
1015 => 0.0181837099513
1016 => 0.018788796084159
1017 => 0.01823233387014
1018 => 0.019343497495882
1019 => 0.020208697765478
1020 => 0.020175489938064
1021 => 0.020024622258617
1022 => 0.019039614754222
1023 => 0.018133196163043
1024 => 0.01889145380313
1025 => 0.018893386757792
1026 => 0.018828251754043
1027 => 0.018423703839828
1028 => 0.018814174363537
1029 => 0.018845168495728
1030 => 0.018827820023706
1031 => 0.01851765408639
1101 => 0.018044088028356
1102 => 0.018136621702539
1103 => 0.018288193748486
1104 => 0.018001236244267
1105 => 0.0179095359343
1106 => 0.018080024257226
1107 => 0.018629373156345
1108 => 0.018525521929128
1109 => 0.018522809953889
1110 => 0.018967129543697
1111 => 0.018649092607564
1112 => 0.018137788848504
1113 => 0.018008677906074
1114 => 0.017550421039998
1115 => 0.017866940689651
1116 => 0.017878331668353
1117 => 0.01770497709099
1118 => 0.018151855617046
1119 => 0.018147737552757
1120 => 0.018571982204155
1121 => 0.019382978638615
1122 => 0.019143127086234
1123 => 0.01886420582659
1124 => 0.018894532301161
1125 => 0.019227138875087
1126 => 0.019026037347822
1127 => 0.019098354859156
1128 => 0.019227029413873
1129 => 0.019304661967542
1130 => 0.018883362171386
1201 => 0.018785137035803
1202 => 0.018584202880738
1203 => 0.018531782910295
1204 => 0.018695439586967
1205 => 0.018652321834739
1206 => 0.017877374300701
1207 => 0.017796387971627
1208 => 0.017798871706718
1209 => 0.01759522773157
1210 => 0.017284621789316
1211 => 0.018100875660243
1212 => 0.018035319050942
1213 => 0.017962949627952
1214 => 0.017971814469334
1215 => 0.018326122609293
1216 => 0.018120605995127
1217 => 0.018667005597398
1218 => 0.018554682265447
1219 => 0.018439478263865
1220 => 0.018423553561647
1221 => 0.018379209849782
1222 => 0.018227138762227
1223 => 0.01804350378595
1224 => 0.017922252068422
1225 => 0.01653233016646
1226 => 0.01679029158666
1227 => 0.017087052686678
1228 => 0.017189493429208
1229 => 0.017014261450426
1230 => 0.018234057988801
1231 => 0.018456926570614
]
'min_raw' => 0.0076926715549699
'max_raw' => 0.020208697765478
'avg_raw' => 0.013950684660224
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.007692'
'max' => '$0.0202086'
'avg' => '$0.01395'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -0.00029826221011169
'max_diff' => -0.0036444341349091
'year' => 2027
]
2 => [
'items' => [
101 => 0.017781843098945
102 => 0.017655562544872
103 => 0.018242336920903
104 => 0.017888440241906
105 => 0.018047799894789
106 => 0.017703351490326
107 => 0.018403244055609
108 => 0.018397912046903
109 => 0.018125638031217
110 => 0.018355762164823
111 => 0.018315772433532
112 => 0.018008375740404
113 => 0.018412989079075
114 => 0.018413189762243
115 => 0.018151131941893
116 => 0.017845105779558
117 => 0.017790395529747
118 => 0.017749178705803
119 => 0.018037663082736
120 => 0.018296317273027
121 => 0.018777608595346
122 => 0.018898616668976
123 => 0.019370919236321
124 => 0.019089686053462
125 => 0.019214353080844
126 => 0.019349696774295
127 => 0.019414585518035
128 => 0.019308852792232
129 => 0.020042533086811
130 => 0.020104478183057
131 => 0.020125247838005
201 => 0.019877854970679
202 => 0.020097597739886
203 => 0.01999478737529
204 => 0.020262271382428
205 => 0.020304216290154
206 => 0.020268690445543
207 => 0.020282004421311
208 => 0.019655937719961
209 => 0.019623472858731
210 => 0.01918081217226
211 => 0.019361199673979
212 => 0.019023973885712
213 => 0.019130911656982
214 => 0.019178048807618
215 => 0.019153427035135
216 => 0.019371398512675
217 => 0.019186078228136
218 => 0.018696987527759
219 => 0.018207763574949
220 => 0.018201621766734
221 => 0.018072817735479
222 => 0.017979716012517
223 => 0.017997650707321
224 => 0.018060854911067
225 => 0.017976042469296
226 => 0.017994141503848
227 => 0.018294706070645
228 => 0.018354982150988
229 => 0.018150140478598
301 => 0.017327671605442
302 => 0.017125835680963
303 => 0.017270911340898
304 => 0.017201574519518
305 => 0.013883013165098
306 => 0.014662659930402
307 => 0.014199420296761
308 => 0.014412902432574
309 => 0.013940054721947
310 => 0.01416572243353
311 => 0.014124049847266
312 => 0.015377698774451
313 => 0.015358124770791
314 => 0.01536749381051
315 => 0.014920285133821
316 => 0.015632700698825
317 => 0.015983662223781
318 => 0.01591870858605
319 => 0.015935056017296
320 => 0.015654152986864
321 => 0.015370213565868
322 => 0.015055281050019
323 => 0.015640386737631
324 => 0.015575332973255
325 => 0.015724542903127
326 => 0.016104025765761
327 => 0.016159906058799
328 => 0.016235009739324
329 => 0.0162080904161
330 => 0.016849417907764
331 => 0.016771748916909
401 => 0.016958908837977
402 => 0.016573906680482
403 => 0.016138240194537
404 => 0.016221046150504
405 => 0.016213071271061
406 => 0.01611154190261
407 => 0.016019885728456
408 => 0.015867304022458
409 => 0.01635009511808
410 => 0.016330494681278
411 => 0.016647802970091
412 => 0.016591715647875
413 => 0.016217150783221
414 => 0.01623052844064
415 => 0.01632049961586
416 => 0.016631890880573
417 => 0.016724333009073
418 => 0.01668151013197
419 => 0.016782868705727
420 => 0.016862978389703
421 => 0.016792929248644
422 => 0.017784677365473
423 => 0.017372834402928
424 => 0.017573563797288
425 => 0.017621436575076
426 => 0.017498811461427
427 => 0.017525404457702
428 => 0.0175656856009
429 => 0.017810264814541
430 => 0.018452111440702
501 => 0.018736380942231
502 => 0.019591619763191
503 => 0.018712776317352
504 => 0.018660629384291
505 => 0.018814683721684
506 => 0.019316799445811
507 => 0.019723717078884
508 => 0.019858715133416
509 => 0.019876557354897
510 => 0.020129822679699
511 => 0.020274989640757
512 => 0.020099069607729
513 => 0.019949995799333
514 => 0.019416031921379
515 => 0.019477839694187
516 => 0.019903633957019
517 => 0.020505093432425
518 => 0.021021208233517
519 => 0.020840482818591
520 => 0.022219290162212
521 => 0.022355993278409
522 => 0.022337105327892
523 => 0.02264853537074
524 => 0.022030410157312
525 => 0.021766149652959
526 => 0.019982227248767
527 => 0.020483436679096
528 => 0.021211974021076
529 => 0.02111554937199
530 => 0.020586466080385
531 => 0.021020806876396
601 => 0.020877200226142
602 => 0.020763931702842
603 => 0.021282836766265
604 => 0.020712279333586
605 => 0.021206282274232
606 => 0.020572718393048
607 => 0.020841308357063
608 => 0.020688843703253
609 => 0.020787507019634
610 => 0.020210723288097
611 => 0.020521941789001
612 => 0.020197775575268
613 => 0.020197621878275
614 => 0.02019046589114
615 => 0.020571846004023
616 => 0.020584282795813
617 => 0.020302442316158
618 => 0.020261824699865
619 => 0.020412009315858
620 => 0.020236182463943
621 => 0.020318450741313
622 => 0.020238674286257
623 => 0.020220714925874
624 => 0.020077611686814
625 => 0.020015958876721
626 => 0.020040134532156
627 => 0.019957610556753
628 => 0.01990788687655
629 => 0.020180574599621
630 => 0.020034888549376
701 => 0.020158246122989
702 => 0.02001766459889
703 => 0.019530347787908
704 => 0.01925008673663
705 => 0.018329590454978
706 => 0.018590642058582
707 => 0.01876371954185
708 => 0.018706517434662
709 => 0.018829409695178
710 => 0.018836954281884
711 => 0.018797000755252
712 => 0.018750739689776
713 => 0.0187282223615
714 => 0.01889604807837
715 => 0.018993476555767
716 => 0.018781090182774
717 => 0.018731331027182
718 => 0.018946065376452
719 => 0.019077053205459
720 => 0.02004419373914
721 => 0.019972544844582
722 => 0.020152369509537
723 => 0.020132124011898
724 => 0.020320608909086
725 => 0.020628702056328
726 => 0.020002262543786
727 => 0.020110990782515
728 => 0.02008433312928
729 => 0.020375374397283
730 => 0.020376282996354
731 => 0.020201789217596
801 => 0.020296385125899
802 => 0.020243584284988
803 => 0.020339002540976
804 => 0.019971587929913
805 => 0.020419059266232
806 => 0.020672746679508
807 => 0.020676269129488
808 => 0.020796514949993
809 => 0.020918691667795
810 => 0.021153199238266
811 => 0.020912151378934
812 => 0.020478529745531
813 => 0.020509835826874
814 => 0.020255603621866
815 => 0.020259877311163
816 => 0.020237064022761
817 => 0.02030552841856
818 => 0.019986612014704
819 => 0.020061461057248
820 => 0.019956671959371
821 => 0.020110762991481
822 => 0.019944986513091
823 => 0.020084320274153
824 => 0.02014445210644
825 => 0.020366339862124
826 => 0.019912213511165
827 => 0.018986219139908
828 => 0.019180874383343
829 => 0.018892963988464
830 => 0.018919611191662
831 => 0.018973442782993
901 => 0.018798956982887
902 => 0.018832243374868
903 => 0.018831054150714
904 => 0.018820806059423
905 => 0.018775415563854
906 => 0.018709590365043
907 => 0.018971817697178
908 => 0.019016375230742
909 => 0.019115421108345
910 => 0.019410114456632
911 => 0.019380667641791
912 => 0.019428696618534
913 => 0.019323849631975
914 => 0.01892447474266
915 => 0.0189461627206
916 => 0.018675713288158
917 => 0.019108505108305
918 => 0.019006014292721
919 => 0.018939937797172
920 => 0.018921908213167
921 => 0.019217332049264
922 => 0.019305727491226
923 => 0.019250645383793
924 => 0.019137670374446
925 => 0.019354615790455
926 => 0.019412661231587
927 => 0.019425655465223
928 => 0.019810041147233
929 => 0.019447138354855
930 => 0.019534492663924
1001 => 0.020216006046894
1002 => 0.019597967450958
1003 => 0.019925356279131
1004 => 0.019909332299641
1005 => 0.0200768133459
1006 => 0.019895593965442
1007 => 0.019897840396852
1008 => 0.020046552219782
1009 => 0.019837713284796
1010 => 0.019786001827585
1011 => 0.019714562819813
1012 => 0.01987054727974
1013 => 0.019964052908896
1014 => 0.020717639607578
1015 => 0.021204490982655
1016 => 0.021183355480484
1017 => 0.021376494406327
1018 => 0.021289483551284
1019 => 0.02100850254805
1020 => 0.021488102858588
1021 => 0.021336337253005
1022 => 0.021348848625134
1023 => 0.021348382951238
1024 => 0.021449293811372
1025 => 0.021377789218623
1026 => 0.021236846326518
1027 => 0.021330410795827
1028 => 0.021608263819763
1029 => 0.022470728131632
1030 => 0.022953374586686
1031 => 0.022441672209009
1101 => 0.022794637657163
1102 => 0.022582984162719
1103 => 0.022544520426632
1104 => 0.022766208812015
1105 => 0.022988285233569
1106 => 0.022974139925579
1107 => 0.022812923847281
1108 => 0.022721856975357
1109 => 0.023411445839206
1110 => 0.02391952316725
1111 => 0.023884875699671
1112 => 0.024037798353604
1113 => 0.024486783995273
1114 => 0.024527833615476
1115 => 0.024522662306845
1116 => 0.024420916540087
1117 => 0.024863001212463
1118 => 0.025231796023898
1119 => 0.0243973653348
1120 => 0.024715105617709
1121 => 0.024857749467659
1122 => 0.025067192959909
1123 => 0.025420559238141
1124 => 0.025804408742076
1125 => 0.025858689270628
1126 => 0.025820174638058
1127 => 0.025567015571784
1128 => 0.025987028279267
1129 => 0.0262330618728
1130 => 0.026379569247371
1201 => 0.026751087572779
1202 => 0.024858630387515
1203 => 0.02351905513056
1204 => 0.023309861110485
1205 => 0.023735265376456
1206 => 0.023847441088857
1207 => 0.023802223199844
1208 => 0.022294409459287
1209 => 0.02330192278319
1210 => 0.024385922405584
1211 => 0.024427563245807
1212 => 0.024970236122141
1213 => 0.025146952655587
1214 => 0.025583875450796
1215 => 0.025556545810994
1216 => 0.025662929558667
1217 => 0.025638473777387
1218 => 0.026447781250561
1219 => 0.027340567576795
1220 => 0.027309653225204
1221 => 0.027181304627839
1222 => 0.027371924181613
1223 => 0.028293375347084
1224 => 0.028208542889721
1225 => 0.028290950396037
1226 => 0.029377393250839
1227 => 0.030789923506775
1228 => 0.030133661387174
1229 => 0.03155756135237
1230 => 0.032453830902768
1231 => 0.034003836414179
]
'min_raw' => 0.013883013165098
'max_raw' => 0.034003836414179
'avg_raw' => 0.023943424789638
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.013883'
'max' => '$0.0340038'
'avg' => '$0.023943'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 0.0061903416101276
'max_diff' => 0.013795138648701
'year' => 2028
]
3 => [
'items' => [
101 => 0.033809768090212
102 => 0.034413173861339
103 => 0.03346234528703
104 => 0.031279050686258
105 => 0.03093353595837
106 => 0.031625265193429
107 => 0.033325814019868
108 => 0.031571708859145
109 => 0.031926562048608
110 => 0.03182436430617
111 => 0.031818918622788
112 => 0.032026758208286
113 => 0.031725276049337
114 => 0.030496983498175
115 => 0.031059902735999
116 => 0.030842532584674
117 => 0.031083720973588
118 => 0.032385315234901
119 => 0.031809849385843
120 => 0.031203642860909
121 => 0.031963960371173
122 => 0.032932105835181
123 => 0.032871521031968
124 => 0.032753961191252
125 => 0.033416639858136
126 => 0.034511190869199
127 => 0.034807043609226
128 => 0.035025436053472
129 => 0.035055548681763
130 => 0.035365727468053
131 => 0.033697817959051
201 => 0.036344833184792
202 => 0.036801899591957
203 => 0.036715990050872
204 => 0.037224000126142
205 => 0.037074530675025
206 => 0.036857972891397
207 => 0.037663276917541
208 => 0.03674006083625
209 => 0.035429671838531
210 => 0.034710766517826
211 => 0.035657479036568
212 => 0.03623560333605
213 => 0.036617706722396
214 => 0.036733330976231
215 => 0.033827293026306
216 => 0.032261099747549
217 => 0.03326501168279
218 => 0.034489853530083
219 => 0.033691013900746
220 => 0.033722326901812
221 => 0.032583391521738
222 => 0.034590624039148
223 => 0.034298187144844
224 => 0.035815350269804
225 => 0.035453267114038
226 => 0.03669045474651
227 => 0.036364661780207
228 => 0.03771701016849
301 => 0.038256498553947
302 => 0.039162383517791
303 => 0.03982875618481
304 => 0.040220062960562
305 => 0.040196570369501
306 => 0.04174712276329
307 => 0.040832816188847
308 => 0.039684231645832
309 => 0.039663457375187
310 => 0.040258325585583
311 => 0.04150500616045
312 => 0.041828252295048
313 => 0.04200890278624
314 => 0.041732230270491
315 => 0.040739816012875
316 => 0.040311296568092
317 => 0.040676407550451
318 => 0.04022990819337
319 => 0.041000691349285
320 => 0.042059141252754
321 => 0.041840575533252
322 => 0.042571207964343
323 => 0.043327335665749
324 => 0.044408632238579
325 => 0.044691323203013
326 => 0.045158600617448
327 => 0.045639582569535
328 => 0.045794061009719
329 => 0.046089008283874
330 => 0.046087453766149
331 => 0.046976297229058
401 => 0.047956719093836
402 => 0.048326805650971
403 => 0.049177799282413
404 => 0.047720502510943
405 => 0.048825878852321
406 => 0.049822955981609
407 => 0.048634199523407
408 => 0.050272623356307
409 => 0.05033623964099
410 => 0.051296770010976
411 => 0.050323088465643
412 => 0.049744919472125
413 => 0.0514140716927
414 => 0.052221721874434
415 => 0.05197845106682
416 => 0.050127148209121
417 => 0.049049610539825
418 => 0.046229486617785
419 => 0.049570045223729
420 => 0.051197133875254
421 => 0.050122934442589
422 => 0.050664698153976
423 => 0.053620385295828
424 => 0.054745719592875
425 => 0.05451165792577
426 => 0.054551210494528
427 => 0.055158420454952
428 => 0.057851123816106
429 => 0.056237593545728
430 => 0.057471076979606
501 => 0.05812531214528
502 => 0.05873300222808
503 => 0.057240707447147
504 => 0.055299253863316
505 => 0.05468431401664
506 => 0.050016126479168
507 => 0.049773127044931
508 => 0.049636724098858
509 => 0.048776722818446
510 => 0.048100997386218
511 => 0.047563635434433
512 => 0.046153437203088
513 => 0.046629337709364
514 => 0.044381776059845
515 => 0.045819686354513
516 => 0.042232523692608
517 => 0.045220019350557
518 => 0.043594061288694
519 => 0.044685848397233
520 => 0.044682039254864
521 => 0.042671713036626
522 => 0.041512198828385
523 => 0.042251086410844
524 => 0.04304323255221
525 => 0.043171755598548
526 => 0.044198793747958
527 => 0.044485418019348
528 => 0.04361693309583
529 => 0.04215818771967
530 => 0.042497021000113
531 => 0.041505332382771
601 => 0.039767436225632
602 => 0.041015623586445
603 => 0.041441809630351
604 => 0.041630037666623
605 => 0.039921016394799
606 => 0.039384004806535
607 => 0.039098104342907
608 => 0.041937574534448
609 => 0.042093127121282
610 => 0.041297298094119
611 => 0.0448945207605
612 => 0.044080358482846
613 => 0.044989977221586
614 => 0.042466275431395
615 => 0.042562684238395
616 => 0.041367923366803
617 => 0.042036909620945
618 => 0.041564091698951
619 => 0.041982862142661
620 => 0.042233871419965
621 => 0.043428436243055
622 => 0.04523365936198
623 => 0.043250008093711
624 => 0.042385702829717
625 => 0.042921912954462
626 => 0.044349911177601
627 => 0.046513401583541
628 => 0.045232571718922
629 => 0.045800982262938
630 => 0.045925154679981
701 => 0.04498071815671
702 => 0.046548224305284
703 => 0.047388263584702
704 => 0.048249970063748
705 => 0.048998165655037
706 => 0.047905785546686
707 => 0.049074788849159
708 => 0.048132778544227
709 => 0.047287697917468
710 => 0.047288979555944
711 => 0.04675884813412
712 => 0.045731651703478
713 => 0.045542220921647
714 => 0.046527663771203
715 => 0.047317895614761
716 => 0.047382982894352
717 => 0.047820495846524
718 => 0.048079411504878
719 => 0.050617136935514
720 => 0.051637831096881
721 => 0.05288591659665
722 => 0.053372116237054
723 => 0.054835402842453
724 => 0.053653680066266
725 => 0.053398006910253
726 => 0.049848552242956
727 => 0.050429775245882
728 => 0.051360369353244
729 => 0.049863897397027
730 => 0.050813064412884
731 => 0.05100045008792
801 => 0.049813047852587
802 => 0.050447290691101
803 => 0.048762929751905
804 => 0.045270373827628
805 => 0.046552112518428
806 => 0.047495903623435
807 => 0.046148997347985
808 => 0.048563274714257
809 => 0.047152903717682
810 => 0.046705883821515
811 => 0.044961899832467
812 => 0.045784993143198
813 => 0.046898238631522
814 => 0.046210382348417
815 => 0.047637787418001
816 => 0.049659373671559
817 => 0.051100076423388
818 => 0.051210675691396
819 => 0.050284400341558
820 => 0.051768762501083
821 => 0.051779574458901
822 => 0.050105207879159
823 => 0.049079667671979
824 => 0.048846662779152
825 => 0.049428754684733
826 => 0.050135521718201
827 => 0.051249896342905
828 => 0.051923289589662
829 => 0.053679142037024
830 => 0.054154225365045
831 => 0.054676197906276
901 => 0.055373714191729
902 => 0.056211261331922
903 => 0.054378755870766
904 => 0.054451564728956
905 => 0.052745161016293
906 => 0.050921623926267
907 => 0.05230546127049
908 => 0.054114644513893
909 => 0.053699615878887
910 => 0.053652916679183
911 => 0.053731451779807
912 => 0.05341853374258
913 => 0.052003217057486
914 => 0.051292453878583
915 => 0.052209519714393
916 => 0.052696899392222
917 => 0.05345278276856
918 => 0.053359604187664
919 => 0.055306678589162
920 => 0.056063252825111
921 => 0.055869688759918
922 => 0.055905309206293
923 => 0.057275050721782
924 => 0.058798484995834
925 => 0.060225382228341
926 => 0.06167688337991
927 => 0.05992704208864
928 => 0.05903858059614
929 => 0.059955246069695
930 => 0.059468850466426
1001 => 0.062263823877117
1002 => 0.062457341771906
1003 => 0.065252113074207
1004 => 0.067904683835267
1005 => 0.066238651665986
1006 => 0.067809644961881
1007 => 0.069508802296353
1008 => 0.072786752472893
1009 => 0.071682854173112
1010 => 0.070837285375771
1011 => 0.070038226948043
1012 => 0.071700940689192
1013 => 0.073839995354679
1014 => 0.074300727242015
1015 => 0.075047288912624
1016 => 0.074262370601196
1017 => 0.075207718251396
1018 => 0.078545210863407
1019 => 0.077643390898779
1020 => 0.076362661574215
1021 => 0.0789972914552
1022 => 0.079950753767264
1023 => 0.08664265160542
1024 => 0.095091449054604
1025 => 0.091593591432847
1026 => 0.089422358331862
1027 => 0.089932649612931
1028 => 0.09301786443153
1029 => 0.094008737511441
1030 => 0.091315202905811
1031 => 0.092266604864432
1101 => 0.09750892319621
1102 => 0.1003212587875
1103 => 0.096501729307466
1104 => 0.085963798956789
1105 => 0.076247345911301
1106 => 0.078824586796547
1107 => 0.078532407661256
1108 => 0.084164624716221
1109 => 0.077621882790875
1110 => 0.077732045785101
1111 => 0.083480731124141
1112 => 0.081947080433102
1113 => 0.079462762728759
1114 => 0.076265484179853
1115 => 0.07035501906973
1116 => 0.065119955296181
1117 => 0.075387120919295
1118 => 0.074944382067997
1119 => 0.074303230601096
1120 => 0.075730043810849
1121 => 0.082658243749416
1122 => 0.082498526316437
1123 => 0.081482485496377
1124 => 0.08225314350342
1125 => 0.079327662654047
1126 => 0.080081625680891
1127 => 0.076245806775495
1128 => 0.077979757118682
1129 => 0.079457432498729
1130 => 0.079754097708631
1201 => 0.080422499574642
1202 => 0.074711078811572
1203 => 0.077275339055687
1204 => 0.078781601710412
1205 => 0.071976252238059
1206 => 0.07864708183221
1207 => 0.074611655682851
1208 => 0.073241971437692
1209 => 0.075086070831621
1210 => 0.074367423504361
1211 => 0.073749572732771
1212 => 0.073404801386199
1213 => 0.074758904455278
1214 => 0.074695733928602
1215 => 0.072480158487509
1216 => 0.069590030643012
1217 => 0.070560052412838
1218 => 0.070207634409858
1219 => 0.06893042610423
1220 => 0.069791110291504
1221 => 0.066001092713048
1222 => 0.059480564457285
1223 => 0.063788225152224
1224 => 0.063622384901302
1225 => 0.06353876072653
1226 => 0.06677584868378
1227 => 0.066464677369016
1228 => 0.065899898385722
1229 => 0.068920053495297
1230 => 0.067817656253483
1231 => 0.071214984795296
]
'min_raw' => 0.030496983498175
'max_raw' => 0.1003212587875
'avg_raw' => 0.065409121142838
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.030496'
'max' => '$0.100321'
'avg' => '$0.0654091'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072435
'min_diff' => 0.016613970333078
'max_diff' => 0.066317422373321
'year' => 2029
]
4 => [
'items' => [
101 => 0.073452685098367
102 => 0.072885131919487
103 => 0.07498969987027
104 => 0.070582399755246
105 => 0.072046328063267
106 => 0.072348041658634
107 => 0.068882785250051
108 => 0.066515588844432
109 => 0.066357723832192
110 => 0.062253331484608
111 => 0.06444586474719
112 => 0.066375203285071
113 => 0.065451199848145
114 => 0.065158687963831
115 => 0.066653067742701
116 => 0.066769193850017
117 => 0.064121506296731
118 => 0.064672044380419
119 => 0.066967879708741
120 => 0.064614195220652
121 => 0.060041370732474
122 => 0.058907247035161
123 => 0.058755934027893
124 => 0.055680100612295
125 => 0.058983034603639
126 => 0.05754121540329
127 => 0.062095904981547
128 => 0.059494290721737
129 => 0.059382140330777
130 => 0.059212608565956
131 => 0.056565111684073
201 => 0.057144745244001
202 => 0.059071535477886
203 => 0.059759035940181
204 => 0.059687324009439
205 => 0.059062093154583
206 => 0.059348320638236
207 => 0.058426282185123
208 => 0.058100691216759
209 => 0.057073036559748
210 => 0.055562668110787
211 => 0.055772694107243
212 => 0.052780259000449
213 => 0.051149821533716
214 => 0.050698537931745
215 => 0.050095062638749
216 => 0.050766702071875
217 => 0.052771781807771
218 => 0.050353230244885
219 => 0.046206793231982
220 => 0.046456001161642
221 => 0.047015897389091
222 => 0.045972534473325
223 => 0.044985079036365
224 => 0.04584359142401
225 => 0.04408669140013
226 => 0.047228210363288
227 => 0.047143241079339
228 => 0.048314205078575
301 => 0.049046432897897
302 => 0.047358884835931
303 => 0.046934471061962
304 => 0.047176236436145
305 => 0.043180393339918
306 => 0.047987659448866
307 => 0.048029232885803
308 => 0.047673255878789
309 => 0.050232976674114
310 => 0.055634785949188
311 => 0.053602408012631
312 => 0.052815409846647
313 => 0.051319325757821
314 => 0.053312768977499
315 => 0.053159703640786
316 => 0.052467484139866
317 => 0.052048827625853
318 => 0.052820215089631
319 => 0.051953244182524
320 => 0.05179751238484
321 => 0.050853947128743
322 => 0.050517137261801
323 => 0.050267776645103
324 => 0.049993255107788
325 => 0.050598781212601
326 => 0.049226579395501
327 => 0.047571838522681
328 => 0.04743426472365
329 => 0.047814118078386
330 => 0.047646061245672
331 => 0.047433460132192
401 => 0.047027546708089
402 => 0.046907120866126
403 => 0.047298446430194
404 => 0.046856662684059
405 => 0.047508538666686
406 => 0.047331264469355
407 => 0.046341025213614
408 => 0.045106820467433
409 => 0.04509583345636
410 => 0.044829926068296
411 => 0.044491253030154
412 => 0.044397041938733
413 => 0.045771289905308
414 => 0.048615942068339
415 => 0.048057468781979
416 => 0.048461022966018
417 => 0.050446110139237
418 => 0.051077109657949
419 => 0.05062924114561
420 => 0.050016171102593
421 => 0.050043143073103
422 => 0.052138188999014
423 => 0.052268854443578
424 => 0.052599003867719
425 => 0.053023339177958
426 => 0.050701507283821
427 => 0.049933784999688
428 => 0.049569995589855
429 => 0.048449665011789
430 => 0.049657845490348
501 => 0.048953890464938
502 => 0.049048878048394
503 => 0.048987017260057
504 => 0.049020797433497
505 => 0.047227332244713
506 => 0.047880776697751
507 => 0.04679429855694
508 => 0.045339626289288
509 => 0.045334749717773
510 => 0.045690778694448
511 => 0.045478998727707
512 => 0.044909104282566
513 => 0.044990055098673
514 => 0.04428084076913
515 => 0.045076166559019
516 => 0.045098973656861
517 => 0.044792729906065
518 => 0.046018039019198
519 => 0.046520049162606
520 => 0.046318472965455
521 => 0.046505906039253
522 => 0.048080675868383
523 => 0.048337432062556
524 => 0.048451466203645
525 => 0.048298675561214
526 => 0.046534689940884
527 => 0.046612930204191
528 => 0.04603885506527
529 => 0.045553822067429
530 => 0.04557322084368
531 => 0.045822590854446
601 => 0.04691160431682
602 => 0.049203368947537
603 => 0.049290339740015
604 => 0.049395750877615
605 => 0.048966990805603
606 => 0.048837672665203
607 => 0.049008276672235
608 => 0.049868942972272
609 => 0.05208281036459
610 => 0.051300281768914
611 => 0.050664073839845
612 => 0.051222199714064
613 => 0.051136280610463
614 => 0.050411036910143
615 => 0.050390681734974
616 => 0.048998707199622
617 => 0.048484125907629
618 => 0.048054103264297
619 => 0.047584529763805
620 => 0.047306150852466
621 => 0.047733867381235
622 => 0.047831691211957
623 => 0.0468964815466
624 => 0.04676901592493
625 => 0.047532728325564
626 => 0.047196646972113
627 => 0.047542314978553
628 => 0.047622512921133
629 => 0.047609599205262
630 => 0.047258691673562
701 => 0.047482349670055
702 => 0.046953331832692
703 => 0.046378104390471
704 => 0.046011145120269
705 => 0.045690924486935
706 => 0.045868601505641
707 => 0.045235215376495
708 => 0.045032582406236
709 => 0.047406579373307
710 => 0.049160276457651
711 => 0.049134777007504
712 => 0.048979555662663
713 => 0.048748928229728
714 => 0.049852071139064
715 => 0.04946775820749
716 => 0.04974737797563
717 => 0.049818552942226
718 => 0.050033978129585
719 => 0.050110974117645
720 => 0.049878238764575
721 => 0.049097150493443
722 => 0.047150752785427
723 => 0.046244699398145
724 => 0.045945686688829
725 => 0.045956555232906
726 => 0.045656752267928
727 => 0.04574505767734
728 => 0.045626043250253
729 => 0.045400658718033
730 => 0.045854684645894
731 => 0.045907006904535
801 => 0.045801031827767
802 => 0.0458259927947
803 => 0.044948564421603
804 => 0.045015273395136
805 => 0.044643829353542
806 => 0.044574188073567
807 => 0.04363520988175
808 => 0.041971673907881
809 => 0.042893434320749
810 => 0.041780077361132
811 => 0.041358432210414
812 => 0.043354434774637
813 => 0.043154091477683
814 => 0.042811190840434
815 => 0.042303969331189
816 => 0.042115835939476
817 => 0.040972797007224
818 => 0.040905260169231
819 => 0.041471781128703
820 => 0.041210351198703
821 => 0.040843204565726
822 => 0.03951343667814
823 => 0.038018337301477
824 => 0.038063464953799
825 => 0.038539028248203
826 => 0.039921792665129
827 => 0.039381522685369
828 => 0.038989550616169
829 => 0.038916146030245
830 => 0.039834958105994
831 => 0.04113526969026
901 => 0.041745346792766
902 => 0.041140778912499
903 => 0.040446283883896
904 => 0.040488554578307
905 => 0.040769762570619
906 => 0.040799313554544
907 => 0.040347268686165
908 => 0.040474516668746
909 => 0.040281215347407
910 => 0.039094925495154
911 => 0.039073469273493
912 => 0.038782334612242
913 => 0.038773519170404
914 => 0.038278226484672
915 => 0.038208931614141
916 => 0.037225497924503
917 => 0.037872796957134
918 => 0.037438622750769
919 => 0.036784219810436
920 => 0.036671400496863
921 => 0.036668009012064
922 => 0.037339934509966
923 => 0.037864945116477
924 => 0.037446175396975
925 => 0.037350829649355
926 => 0.038368872789126
927 => 0.038239317519921
928 => 0.038127123492331
929 => 0.041018841049831
930 => 0.038729820959535
1001 => 0.037731677547467
1002 => 0.036496285532739
1003 => 0.036898535402122
1004 => 0.036983295359881
1005 => 0.034012400260609
1006 => 0.032807108488836
1007 => 0.032393497773226
1008 => 0.032155458958795
1009 => 0.032263936235634
1010 => 0.031179032274414
1011 => 0.031908105679009
1012 => 0.030968670553242
1013 => 0.030811171197221
1014 => 0.032490997575773
1015 => 0.032724735602946
1016 => 0.031727536562316
1017 => 0.03236789977826
1018 => 0.032135695174444
1019 => 0.030984774472131
1020 => 0.030940817766902
1021 => 0.0303633262153
1022 => 0.029459663761442
1023 => 0.029046665771528
1024 => 0.028831572832568
1025 => 0.028920324371261
1026 => 0.028875448877456
1027 => 0.028582605925425
1028 => 0.028892234292677
1029 => 0.028101261761623
1030 => 0.027786290126459
1031 => 0.027644024746142
1101 => 0.026941991098152
1102 => 0.028059238827884
1103 => 0.028279350705358
1104 => 0.028499896271226
1105 => 0.030419594849254
1106 => 0.030323692133307
1107 => 0.031190605978946
1108 => 0.031156919301056
1109 => 0.030909661429207
1110 => 0.029866521139821
1111 => 0.030282298266982
1112 => 0.02900260089569
1113 => 0.029961437177225
1114 => 0.029523864340293
1115 => 0.0298134933609
1116 => 0.029292714267053
1117 => 0.029580934920029
1118 => 0.028331547397119
1119 => 0.027164886907582
1120 => 0.027634385145514
1121 => 0.028144783423783
1122 => 0.029251456938133
1123 => 0.028592331322844
1124 => 0.028829377818401
1125 => 0.028035311739391
1126 => 0.02639692660463
1127 => 0.026406199686565
1128 => 0.026154169827742
1129 => 0.025936379232758
1130 => 0.028668039828649
1201 => 0.028328314652387
1202 => 0.027787007046144
1203 => 0.028511568787809
1204 => 0.028703154412646
1205 => 0.028708608586048
1206 => 0.029237230129121
1207 => 0.02951935554142
1208 => 0.029569081368139
1209 => 0.03040087878779
1210 => 0.030679686311184
1211 => 0.031828055041724
1212 => 0.029495419171287
1213 => 0.029447380070569
1214 => 0.028521764857405
1215 => 0.027934725055818
1216 => 0.028561959974854
1217 => 0.029117604487015
1218 => 0.028539030281251
1219 => 0.028614579858155
1220 => 0.027837891258167
1221 => 0.028115520886067
1222 => 0.028354652922365
1223 => 0.028222618267453
1224 => 0.0280249559985
1225 => 0.029072047973504
1226 => 0.029012966940688
1227 => 0.029988043060352
1228 => 0.030748184623992
1229 => 0.032110494197594
1230 => 0.030688853138736
1231 => 0.03063704288804
]
'min_raw' => 0.025936379232758
'max_raw' => 0.07498969987027
'avg_raw' => 0.050463039551514
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.025936'
'max' => '$0.074989'
'avg' => '$0.050463'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -0.0045606042654176
'max_diff' => -0.02533155891723
'year' => 2030
]
5 => [
'items' => [
101 => 0.031143496399221
102 => 0.03067960877579
103 => 0.030972769740942
104 => 0.032063261433857
105 => 0.032086301804954
106 => 0.031700345903238
107 => 0.031676860451543
108 => 0.031750987504362
109 => 0.032185151968042
110 => 0.032033441563906
111 => 0.03220900468441
112 => 0.032428549054918
113 => 0.033336677656224
114 => 0.033555624387544
115 => 0.033023697341301
116 => 0.033071724397842
117 => 0.032872769080824
118 => 0.032680580737486
119 => 0.033112592066455
120 => 0.033902101261349
121 => 0.033897189765623
122 => 0.034080340552972
123 => 0.034194441976188
124 => 0.033704635140399
125 => 0.033385788900997
126 => 0.033508054837898
127 => 0.033703560733606
128 => 0.033444654910882
129 => 0.031846568236182
130 => 0.032331325647114
131 => 0.032250638310508
201 => 0.032135729731267
202 => 0.032623157056477
203 => 0.032576143501874
204 => 0.031167905016197
205 => 0.031258055875032
206 => 0.031173387388512
207 => 0.03144696859
208 => 0.030664834493092
209 => 0.030905413673548
210 => 0.031056302680239
211 => 0.031145177464365
212 => 0.031466254126636
213 => 0.031428579486171
214 => 0.031463912218087
215 => 0.031939984147139
216 => 0.034347792596124
217 => 0.034478844297473
218 => 0.033833497790125
219 => 0.034091300990914
220 => 0.033596375220762
221 => 0.033928622205979
222 => 0.034155937155106
223 => 0.033128744610152
224 => 0.033067920934065
225 => 0.032570952429205
226 => 0.032837995153982
227 => 0.032413110977811
228 => 0.032517362692826
301 => 0.032225865809143
302 => 0.032750502163321
303 => 0.033337127127539
304 => 0.033485331760023
305 => 0.033095469178065
306 => 0.032813182975531
307 => 0.032317581394738
308 => 0.033141777868799
309 => 0.033382798034746
310 => 0.033140511892472
311 => 0.033084368899251
312 => 0.032977978028544
313 => 0.033106940225413
314 => 0.033381485387161
315 => 0.033252014958934
316 => 0.033337532457753
317 => 0.033011627937516
318 => 0.033704797286843
319 => 0.034805717033863
320 => 0.034809256670868
321 => 0.034679785544747
322 => 0.034626808749433
323 => 0.034759653981798
324 => 0.034831717070759
325 => 0.035261314192578
326 => 0.035722289020195
327 => 0.037873457401605
328 => 0.037269417928144
329 => 0.039178062489712
330 => 0.040687552531433
331 => 0.041140182592946
401 => 0.040723784234244
402 => 0.039299307942524
403 => 0.039229416339829
404 => 0.041358185318037
405 => 0.040756710577897
406 => 0.040685167071435
407 => 0.039924065037331
408 => 0.040373970603807
409 => 0.040275569656702
410 => 0.040120238947759
411 => 0.040978627427901
412 => 0.042585454033859
413 => 0.042335015038596
414 => 0.042148073946163
415 => 0.041328952496854
416 => 0.041822246566737
417 => 0.041646593996878
418 => 0.04240130890887
419 => 0.041954232513988
420 => 0.040752153815174
421 => 0.040943588810064
422 => 0.0409146537957
423 => 0.041510134340949
424 => 0.041331385862001
425 => 0.040879750286375
426 => 0.042579962075205
427 => 0.042469559778713
428 => 0.042626084993659
429 => 0.042694992233982
430 => 0.043729881188751
501 => 0.044153842080766
502 => 0.044250088625734
503 => 0.044652818682837
504 => 0.044240068335035
505 => 0.045891364012254
506 => 0.046989379281831
507 => 0.048264780520794
508 => 0.050128484526453
509 => 0.050829254472807
510 => 0.050702666654347
511 => 0.052115705761278
512 => 0.054654905626339
513 => 0.051215911545578
514 => 0.054837180663149
515 => 0.053690728670089
516 => 0.050972511618333
517 => 0.050797490485874
518 => 0.052638298632472
519 => 0.056721033930408
520 => 0.055698355044275
521 => 0.056722706666701
522 => 0.055527746087501
523 => 0.055468406222825
524 => 0.056664670098571
525 => 0.059459805849199
526 => 0.058131941628173
527 => 0.056228122661666
528 => 0.057633872959831
529 => 0.056416081955512
530 => 0.053672057984542
531 => 0.055697573021004
601 => 0.054343168799469
602 => 0.054738455955401
603 => 0.057585212176646
604 => 0.057242682936523
605 => 0.057685947490596
606 => 0.056903597154911
607 => 0.056172758576057
608 => 0.05480859409584
609 => 0.054404732245744
610 => 0.054516345131684
611 => 0.054404676935941
612 => 0.053641439446579
613 => 0.05347661838342
614 => 0.053201909390511
615 => 0.05328705319428
616 => 0.052770519918662
617 => 0.053745324930975
618 => 0.053926257331212
619 => 0.054635639127182
620 => 0.054709289498523
621 => 0.056684907702881
622 => 0.055596770394836
623 => 0.056326786846328
624 => 0.056261487303725
625 => 0.051031423624199
626 => 0.051752080253995
627 => 0.05287319581545
628 => 0.052368134774651
629 => 0.051654096629043
630 => 0.051077472542162
701 => 0.050203828087698
702 => 0.051433465880501
703 => 0.053050308820637
704 => 0.054750295303682
705 => 0.056792717675534
706 => 0.056336872778554
707 => 0.05471211363812
708 => 0.054784999146273
709 => 0.055235548678281
710 => 0.054652046097588
711 => 0.054479959795218
712 => 0.055211906662901
713 => 0.055216947178708
714 => 0.054545556940978
715 => 0.053799429554857
716 => 0.053796303253866
717 => 0.053663537092241
718 => 0.055551364892712
719 => 0.056589479302053
720 => 0.056708497446079
721 => 0.056581468432673
722 => 0.056630356858332
723 => 0.056026300956826
724 => 0.057406993620454
725 => 0.05867405374495
726 => 0.058334454564794
727 => 0.057825347116871
728 => 0.057419818512664
729 => 0.058238924913527
730 => 0.05820245139489
731 => 0.058662987080122
801 => 0.058642094521257
802 => 0.058487233691936
803 => 0.058334460095362
804 => 0.058940190137036
805 => 0.058765749612761
806 => 0.058591038134169
807 => 0.058240627516865
808 => 0.058288254139461
809 => 0.057779234596117
810 => 0.057543738864217
811 => 0.054002448089704
812 => 0.05305609947974
813 => 0.053353840017137
814 => 0.053451863932877
815 => 0.053040011805042
816 => 0.053630501960227
817 => 0.053538474695025
818 => 0.053896498949775
819 => 0.053672820939014
820 => 0.053682000762597
821 => 0.054339790099068
822 => 0.054530749141881
823 => 0.054433625831478
824 => 0.054501647668892
825 => 0.056069182201879
826 => 0.055846328918221
827 => 0.055727942552908
828 => 0.055760736385167
829 => 0.056161275066664
830 => 0.056273404028882
831 => 0.055798305736802
901 => 0.056022364837858
902 => 0.056976380052819
903 => 0.057310231385471
904 => 0.058375724581564
905 => 0.057923084134232
906 => 0.05875392526513
907 => 0.061307647646894
908 => 0.063347737789595
909 => 0.061471586584076
910 => 0.065217952327234
911 => 0.06813503544253
912 => 0.068023072933909
913 => 0.067514412019409
914 => 0.064193390447312
915 => 0.061137336883026
916 => 0.063693855456439
917 => 0.063700372548036
918 => 0.063480765335315
919 => 0.062116803797906
920 => 0.063433302430372
921 => 0.063537801310996
922 => 0.063479309726342
923 => 0.062433563613587
924 => 0.060836902585598
925 => 0.061148886328601
926 => 0.061659922063935
927 => 0.060692424803725
928 => 0.060383250806362
929 => 0.06095806409022
930 => 0.062810232257914
1001 => 0.062460090594691
1002 => 0.062450946980831
1003 => 0.063949001499272
1004 => 0.062876717764467
1005 => 0.06115282144271
1006 => 0.060717514886068
1007 => 0.059172469867619
1008 => 0.060239637965123
1009 => 0.06027804344511
1010 => 0.0596935663843
1011 => 0.061200248534958
1012 => 0.061186364193694
1013 => 0.0626167346557
1014 => 0.065351065756444
1015 => 0.064542389501692
1016 => 0.063601987001142
1017 => 0.063704234827485
1018 => 0.064825641113325
1019 => 0.064147613273691
1020 => 0.064391436812201
1021 => 0.064825272057197
1022 => 0.065087015632027
1023 => 0.063666573955072
1024 => 0.063335401052594
1025 => 0.062657937520019
1026 => 0.062481199929825
1027 => 0.063032979841368
1028 => 0.062887605329348
1029 => 0.06027481561323
1030 => 0.060001764550471
1031 => 0.060010138636739
1101 => 0.059323538756561
1102 => 0.058276309136437
1103 => 0.061028366051291
1104 => 0.060807337366016
1105 => 0.060563338803735
1106 => 0.060593227235378
1107 => 0.061787801866253
1108 => 0.06109488825288
1109 => 0.062937112660339
1110 => 0.0625584067045
1111 => 0.062169988369883
1112 => 0.062116297124527
1113 => 0.061966789203994
1114 => 0.06145407091504
1115 => 0.060834932771536
1116 => 0.060426124140367
1117 => 0.055739905406651
1118 => 0.056609640345149
1119 => 0.057610191113056
1120 => 0.057955577228682
1121 => 0.057364770377912
1122 => 0.061477399570519
1123 => 0.062228816554289
1124 => 0.059952725496732
1125 => 0.059526961792048
1126 => 0.061505312568116
1127 => 0.060312125206601
1128 => 0.060849417402431
1129 => 0.059688085558164
1130 => 0.062047822206956
1201 => 0.062029844967333
1202 => 0.061111854113883
1203 => 0.061887733697089
1204 => 0.061752905526048
1205 => 0.060716496113415
1206 => 0.062080678233947
1207 => 0.062081354851259
1208 => 0.061197808613656
1209 => 0.060166020041278
1210 => 0.059981560614295
1211 => 0.0598425952147
1212 => 0.060815240432865
1213 => 0.061687311094088
1214 => 0.063310018389974
1215 => 0.063718005558734
1216 => 0.065310406639649
1217 => 0.064362209328566
1218 => 0.064782532915358
1219 => 0.065238853627222
1220 => 0.065457630557129
1221 => 0.065101145290064
1222 => 0.067574799627158
1223 => 0.067783651844019
1224 => 0.067853678185768
1225 => 0.067019575861159
1226 => 0.067760453949492
1227 => 0.067413821627264
1228 => 0.068315662632468
1229 => 0.068457082817367
1230 => 0.068337304951926
1231 => 0.068382193950779
]
'min_raw' => 0.030664834493092
'max_raw' => 0.068457082817367
'avg_raw' => 0.04956095865523
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.030664'
'max' => '$0.068457'
'avg' => '$0.04956'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 0.0047284552603347
'max_diff' => -0.0065326170529023
'year' => 2031
]
6 => [
'items' => [
101 => 0.066271366356597
102 => 0.066161908810336
103 => 0.064669447400315
104 => 0.065277636456616
105 => 0.06414065616712
106 => 0.064501204329114
107 => 0.064660130523492
108 => 0.064577116498531
109 => 0.06531202255334
110 => 0.064687202275365
111 => 0.063038198831823
112 => 0.061388746118397
113 => 0.061368038583195
114 => 0.060933766799008
115 => 0.060619867839886
116 => 0.060680335915577
117 => 0.060893433301286
118 => 0.060607482232439
119 => 0.060668504391065
120 => 0.061681878812769
121 => 0.061885103825986
122 => 0.061194465825936
123 => 0.058421454597147
124 => 0.057740950686031
125 => 0.058230083402362
126 => 0.057996309468137
127 => 0.046807548167153
128 => 0.049436181669577
129 => 0.047874336902395
130 => 0.048594106828135
131 => 0.046999867758585
201 => 0.047760722203803
202 => 0.047620220169727
203 => 0.051846985054705
204 => 0.051780989934751
205 => 0.051812578306288
206 => 0.05030478302972
207 => 0.052706741846397
208 => 0.053890033131137
209 => 0.05367103740661
210 => 0.053726153912396
211 => 0.052779069733273
212 => 0.051821748151366
213 => 0.050759931186296
214 => 0.052732655862853
215 => 0.052513322554353
216 => 0.053016394250418
217 => 0.054295847216437
218 => 0.054484251525853
219 => 0.054737468828315
220 => 0.054646708450617
221 => 0.056808988864819
222 => 0.056547122439474
223 => 0.057178145180444
224 => 0.055880083526458
225 => 0.05441120355183
226 => 0.054690389613702
227 => 0.054663501750871
228 => 0.054321188396582
229 => 0.054012163206194
301 => 0.053497723331506
302 => 0.055125487217796
303 => 0.055059402976659
304 => 0.056129230026147
305 => 0.055940127703405
306 => 0.054677256110941
307 => 0.054722359816925
308 => 0.055025703915769
309 => 0.05607558130539
310 => 0.056387256395733
311 => 0.056242876075782
312 => 0.056584613583834
313 => 0.056854708976439
314 => 0.056618533406684
315 => 0.059962281424215
316 => 0.058573724122038
317 => 0.059250497289599
318 => 0.059411903702284
319 => 0.058998464570204
320 => 0.059088124713807
321 => 0.059223935400438
322 => 0.060048551295206
323 => 0.062212582007608
324 => 0.063171016479075
325 => 0.066054513874809
326 => 0.063091431838272
327 => 0.062915614812676
328 => 0.063435019766927
329 => 0.065127937987421
330 => 0.066499889197408
331 => 0.066955044563525
401 => 0.067015200858953
402 => 0.067869102583945
403 => 0.068358543128386
404 => 0.067765416454686
405 => 0.067262803701677
406 => 0.065462507206989
407 => 0.065670896428293
408 => 0.067106491513436
409 => 0.069134354127328
410 => 0.070874471213192
411 => 0.070265142858926
412 => 0.074913888083199
413 => 0.075374792183764
414 => 0.07531111013988
415 => 0.076361118272694
416 => 0.074277065959495
417 => 0.073386093218991
418 => 0.067371474283775
419 => 0.069061336871452
420 => 0.071517651384792
421 => 0.071192548948244
422 => 0.069408707691182
423 => 0.070873118009638
424 => 0.070388938162012
425 => 0.070007045427549
426 => 0.071756570077673
427 => 0.06983289585835
428 => 0.07149846126292
429 => 0.069362356403491
430 => 0.070267926219522
501 => 0.069753880994459
502 => 0.070086531254088
503 => 0.068141864633459
504 => 0.069191159537837
505 => 0.068098210515676
506 => 0.068097692315533
507 => 0.068073565405292
508 => 0.069359415082987
509 => 0.069401346594813
510 => 0.068451101740185
511 => 0.068314156611019
512 => 0.068820514529395
513 => 0.068227702022326
514 => 0.068505075263266
515 => 0.068236103375229
516 => 0.068175552137818
517 => 0.067693069576177
518 => 0.067485202822488
519 => 0.067566712732676
520 => 0.067288477387965
521 => 0.067120830528565
522 => 0.068040216225347
523 => 0.06754902553547
524 => 0.067964934207457
525 => 0.067490953783869
526 => 0.06584793113227
527 => 0.064903011430686
528 => 0.061799493950097
529 => 0.06267964765769
530 => 0.06326319047641
531 => 0.063070329578304
601 => 0.063484669414695
602 => 0.063510106515521
603 => 0.063375400411016
604 => 0.063219427998919
605 => 0.063143509254526
606 => 0.063709345376172
607 => 0.064037832289956
608 => 0.063321756805064
609 => 0.063153990337915
610 => 0.063877982188751
611 => 0.064319616799525
612 => 0.067580398632428
613 => 0.06733882938206
614 => 0.067945120794913
615 => 0.067876861686126
616 => 0.068512351676592
617 => 0.069551109232895
618 => 0.06743902467975
619 => 0.067805609527787
620 => 0.067715731388729
621 => 0.068696997343653
622 => 0.068700060748856
623 => 0.068111742791009
624 => 0.068430679500326
625 => 0.068252657778756
626 => 0.068574367090712
627 => 0.067335603077444
628 => 0.068844283929293
629 => 0.069699608755045
630 => 0.06971148494108
701 => 0.070116902120209
702 => 0.070528829454383
703 => 0.071319488101021
704 => 0.070506778413859
705 => 0.069044792802348
706 => 0.069150343441314
707 => 0.068293181812205
708 => 0.068307590854049
709 => 0.068230674259428
710 => 0.068461506749898
711 => 0.067386257828265
712 => 0.067638616600995
713 => 0.067285312841362
714 => 0.067804841514412
715 => 0.067245914543376
716 => 0.067715688046768
717 => 0.067918426717594
718 => 0.068666536777593
719 => 0.067135418079245
720 => 0.06401336340569
721 => 0.064669657149325
722 => 0.063698947151728
723 => 0.063788790057759
724 => 0.063970287026334
725 => 0.063381995969068
726 => 0.063494223363613
727 => 0.063490213811347
728 => 0.063455661656062
729 => 0.063302624431188
730 => 0.063080690177629
731 => 0.063964807936047
801 => 0.064115036771367
802 => 0.064448976862869
803 => 0.065442556061451
804 => 0.065343274069302
805 => 0.065505207117668
806 => 0.0651517081823
807 => 0.063805187859511
808 => 0.063878310391343
809 => 0.062966471247687
810 => 0.064425659085872
811 => 0.064080104145451
812 => 0.063857322627394
813 => 0.063796534626136
814 => 0.064792576715371
815 => 0.065090608119518
816 => 0.064904894948597
817 => 0.064523991816921
818 => 0.065255438433641
819 => 0.06545114269102
820 => 0.065494953656952
821 => 0.066790936820803
822 => 0.065567384719234
823 => 0.065861905871144
824 => 0.068159675823571
825 => 0.066075915547299
826 => 0.06717972983904
827 => 0.067125703873431
828 => 0.067690377914047
829 => 0.067079384120501
830 => 0.067086958120841
831 => 0.067588350414575
901 => 0.066884235364602
902 => 0.066709886576237
903 => 0.06646902497382
904 => 0.066994937470952
905 => 0.067310198228007
906 => 0.069850968396355
907 => 0.071492421798305
908 => 0.071421161977101
909 => 0.072072343350109
910 => 0.071778980177431
911 => 0.070831633107558
912 => 0.072448639039164
913 => 0.071936950704002
914 => 0.071979133668651
915 => 0.0719775636166
916 => 0.072317791626912
917 => 0.072076708900167
918 => 0.071601510099118
919 => 0.071916969239854
920 => 0.072853770109132
921 => 0.075761628751935
922 => 0.07738890497245
923 => 0.075663664680191
924 => 0.076853712331903
925 => 0.076140107798211
926 => 0.076010424626543
927 => 0.076757862495649
928 => 0.0775066086558
929 => 0.077458916762317
930 => 0.076915365498588
1001 => 0.07660832718181
1002 => 0.078933324181834
1003 => 0.08064634236616
1004 => 0.080529526010209
1005 => 0.081045115414664
1006 => 0.082558901852726
1007 => 0.082697303513233
1008 => 0.082679868085135
1009 => 0.082336825128848
1010 => 0.083827344467129
1011 => 0.085070761922316
1012 => 0.082257420595932
1013 => 0.083328704143677
1014 => 0.08380963784286
1015 => 0.084515791199859
1016 => 0.085707190278161
1017 => 0.087001365680195
1018 => 0.087184376271954
1019 => 0.087054521499237
1020 => 0.086200978032294
1021 => 0.087617080199923
1022 => 0.088446599638038
1023 => 0.088940559480221
1024 => 0.090193159452916
1025 => 0.083812607925656
1026 => 0.079296136420675
1027 => 0.078590824176533
1028 => 0.08002510436003
1029 => 0.080403312606248
1030 => 0.08025085733643
1031 => 0.075167158037949
1101 => 0.078564059551822
1102 => 0.082218839961158
1103 => 0.082359234961242
1104 => 0.08418889445201
1105 => 0.084784706582481
1106 => 0.086257822291501
1107 => 0.086165678502815
1108 => 0.086524358735571
1109 => 0.086441904361536
1110 => 0.089170541011386
1111 => 0.092180632442634
1112 => 0.092076402547874
1113 => 0.091643666290847
1114 => 0.092286353425029
1115 => 0.095393090363078
1116 => 0.095107071810267
1117 => 0.09538491447132
1118 => 0.099047932409301
1119 => 0.1038103767869
1120 => 0.10159774323191
1121 => 0.10639852137809
1122 => 0.1094203567428
1123 => 0.11464630854245
1124 => 0.11399199363878
1125 => 0.11602641832458
1126 => 0.11282063340156
1127 => 0.1054595032223
1128 => 0.10429457619416
1129 => 0.10662678960515
1130 => 0.11236030870202
1201 => 0.10644622068493
1202 => 0.10764263298826
1203 => 0.10729806616441
1204 => 0.10727970566269
1205 => 0.10798045133609
1206 => 0.10696398318838
1207 => 0.10282270909549
1208 => 0.10472063060758
1209 => 0.10398775196609
1210 => 0.10480093545855
1211 => 0.10918935138497
1212 => 0.10724912809713
1213 => 0.10520526047433
1214 => 0.10776872404386
1215 => 0.11103289406952
1216 => 0.11082862817559
1217 => 0.11043226696485
1218 => 0.112666534357
1219 => 0.1163568895099
1220 => 0.11735437767869
1221 => 0.11809070305214
1222 => 0.11819222988081
1223 => 0.11923801931478
1224 => 0.11361454595546
1225 => 0.12253914259775
1226 => 0.12408017390086
1227 => 0.12379052388508
1228 => 0.12550331532198
1229 => 0.12499936863192
1230 => 0.12426922894483
1231 => 0.12698436769351
]
'min_raw' => 0.046807548167153
'max_raw' => 0.12698436769351
'avg_raw' => 0.086895957930332
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.0468075'
'max' => '$0.126984'
'avg' => '$0.086895'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.01614271367406
'max_diff' => 0.058527284876144
'year' => 2032
]
7 => [
'items' => [
101 => 0.12387168021855
102 => 0.1194536122243
103 => 0.11702977274318
104 => 0.12022168009748
105 => 0.12217086653653
106 => 0.1234591547812
107 => 0.12384899002563
108 => 0.11405108018437
109 => 0.10877055019692
110 => 0.11215530937747
111 => 0.11628494918135
112 => 0.11359160559784
113 => 0.11369717956714
114 => 0.10985717941529
115 => 0.11662470398824
116 => 0.1156387325818
117 => 0.12075395398255
118 => 0.11953316534304
119 => 0.12370442982361
120 => 0.12260599609158
121 => 0.12716553310062
122 => 0.12898445585807
123 => 0.13203871026054
124 => 0.13428543223204
125 => 0.13560475034666
126 => 0.13552554343569
127 => 0.14075333908747
128 => 0.13767069063688
129 => 0.1337981576585
130 => 0.1337281157546
131 => 0.13573375545833
201 => 0.13993702605695
202 => 0.14102687296807
203 => 0.14163594871174
204 => 0.14070312800823
205 => 0.13735713405053
206 => 0.13591235082417
207 => 0.13714334799243
208 => 0.13563794423644
209 => 0.13823669346097
210 => 0.14180533120913
211 => 0.14106842162606
212 => 0.14353179987861
213 => 0.14608113721505
214 => 0.14972680410406
215 => 0.1506799164275
216 => 0.15225537485454
217 => 0.15387703908709
218 => 0.15439787393351
219 => 0.15539230926088
220 => 0.15538706809584
221 => 0.1583838658881
222 => 0.16168942665607
223 => 0.16293719932207
224 => 0.16580638376496
225 => 0.16089300595473
226 => 0.1646198594646
227 => 0.1679815746197
228 => 0.16397359922455
301 => 0.16949765956827
302 => 0.16971214631362
303 => 0.17295064151812
304 => 0.16966780620775
305 => 0.16771846907964
306 => 0.17334613232779
307 => 0.17606918130384
308 => 0.17524897679135
309 => 0.16900717995278
310 => 0.16537418646947
311 => 0.15586594177155
312 => 0.16712886834184
313 => 0.17261471133016
314 => 0.16899297294472
315 => 0.1708195671224
316 => 0.18078487268064
317 => 0.18457901583146
318 => 0.18378986057915
319 => 0.18392321482619
320 => 0.18597046560181
321 => 0.19504910298249
322 => 0.18960897302282
323 => 0.1937677485392
324 => 0.19597354807751
325 => 0.19802241761924
326 => 0.19299104157663
327 => 0.18644529527078
328 => 0.18437198264399
329 => 0.16863286243895
330 => 0.16781357288074
331 => 0.16735368082471
401 => 0.16445412646443
402 => 0.16217587099203
403 => 0.16036411765417
404 => 0.1556095358603
405 => 0.15721406764352
406 => 0.14963625662242
407 => 0.15448427157258
408 => 0.14238990221027
409 => 0.15246245240133
410 => 0.146980421275
411 => 0.15066145773758
412 => 0.15064861494813
413 => 0.14387065974685
414 => 0.13996127663907
415 => 0.14245248771081
416 => 0.14512326373231
417 => 0.14555658815622
418 => 0.14901931898248
419 => 0.14998569272493
420 => 0.14705753516961
421 => 0.14213927328754
422 => 0.14328167334914
423 => 0.13993812593828
424 => 0.13407868770845
425 => 0.13828703854109
426 => 0.13972395454348
427 => 0.14035857850943
428 => 0.13459649397142
429 => 0.13278592190864
430 => 0.13182198853459
501 => 0.14139546053084
502 => 0.14191991693769
503 => 0.1392367238096
504 => 0.15136501117937
505 => 0.14862000621726
506 => 0.15168684930248
507 => 0.14317801251762
508 => 0.14350306154147
509 => 0.13947484184735
510 => 0.14173037571032
511 => 0.14013623707523
512 => 0.14154815086381
513 => 0.14239444616715
514 => 0.14642200487005
515 => 0.15250844065216
516 => 0.14582042190709
517 => 0.14290635636566
518 => 0.14471422623823
519 => 0.1495288219472
520 => 0.1568231809009
521 => 0.15250477358765
522 => 0.15442120942196
523 => 0.15483986539546
524 => 0.1516556317188
525 => 0.1569405881385
526 => 0.15977283921873
527 => 0.16267814277526
528 => 0.16520073644864
529 => 0.16151770064579
530 => 0.16545907689728
531 => 0.16228302338515
601 => 0.15943377505038
602 => 0.15943809618399
603 => 0.15765072108271
604 => 0.15418745660024
605 => 0.15354877749366
606 => 0.15687126686236
607 => 0.15953558869514
608 => 0.15975503500253
609 => 0.16123014046696
610 => 0.16210309268601
611 => 0.17065921115373
612 => 0.17410055278137
613 => 0.17830856018239
614 => 0.17994781621539
615 => 0.1848813891689
616 => 0.18089712832373
617 => 0.18003510842771
618 => 0.1680678742019
619 => 0.17002750813596
620 => 0.17316507114094
621 => 0.16811961146022
622 => 0.17131979432291
623 => 0.17195157820914
624 => 0.16794816867094
625 => 0.17008656268241
626 => 0.16440762217758
627 => 0.15263222603641
628 => 0.15695369752058
629 => 0.16013575512451
630 => 0.15559456657884
701 => 0.16373447127868
702 => 0.15897930699477
703 => 0.15747214820491
704 => 0.15159218442476
705 => 0.15436730098843
706 => 0.15812068587664
707 => 0.15580153039355
708 => 0.1606141262439
709 => 0.16743004544041
710 => 0.17228747535486
711 => 0.17266036850874
712 => 0.16953736649628
713 => 0.17454199715198
714 => 0.17457845042263
715 => 0.16893320659848
716 => 0.16547552618905
717 => 0.164689933925
718 => 0.16665249742502
719 => 0.16903541182326
720 => 0.1727926036736
721 => 0.17506299601986
722 => 0.18098297513584
723 => 0.18258475174553
724 => 0.18434461861124
725 => 0.18669634346668
726 => 0.18952019212551
727 => 0.18334177202178
728 => 0.18358725217052
729 => 0.17783399291598
730 => 0.17168581030166
731 => 0.17635151452414
801 => 0.18245130214242
802 => 0.18105200412312
803 => 0.18089455451088
804 => 0.18115934108578
805 => 0.18010431607603
806 => 0.17533247705798
807 => 0.17293608937641
808 => 0.17602804086934
809 => 0.1776712754809
810 => 0.18021978905832
811 => 0.17990563096731
812 => 0.18647032825235
813 => 0.18902117111118
814 => 0.18836855635117
815 => 0.18848865317306
816 => 0.19310683232483
817 => 0.19824319734258
818 => 0.20305408098476
819 => 0.20794791845785
820 => 0.20204820637432
821 => 0.19905269642195
822 => 0.20214329806558
823 => 0.2005033813301
824 => 0.20992682932306
825 => 0.21057928841633
826 => 0.22000205498674
827 => 0.22894538250423
828 => 0.22332823872685
829 => 0.22862495230721
830 => 0.23435377989176
831 => 0.24540561777113
901 => 0.2416837475817
902 => 0.23883285334574
903 => 0.23613877206818
904 => 0.24174472753343
905 => 0.24895669968215
906 => 0.25051008940757
907 => 0.2530271742033
908 => 0.25038076731508
909 => 0.25356807291979
910 => 0.26482066227748
911 => 0.26178011330368
912 => 0.25746204496824
913 => 0.26634488355597
914 => 0.2695595483097
915 => 0.29212174908443
916 => 0.32060745956056
917 => 0.30881418837618
918 => 0.30149372438556
919 => 0.30321420706708
920 => 0.31361622423081
921 => 0.31695702200028
922 => 0.30787558202082
923 => 0.31108330014907
924 => 0.32875814241164
925 => 0.33824012820867
926 => 0.32536231789571
927 => 0.2898329499836
928 => 0.25707325015964
929 => 0.26576259774146
930 => 0.26477749538754
1001 => 0.28376690841719
1002 => 0.26170759721623
1003 => 0.2620790194426
1004 => 0.28146111342356
1005 => 0.27629030304265
1006 => 0.26791425245294
1007 => 0.25713440459844
1008 => 0.23720685882417
1009 => 0.21955647581117
1010 => 0.2541729415401
1011 => 0.25268021659191
1012 => 0.25051852965749
1013 => 0.25532913001109
1014 => 0.27868803981544
1015 => 0.27814954133904
1016 => 0.2747238887765
1017 => 0.27732221605287
1018 => 0.26745875311866
1019 => 0.27000079210368
1020 => 0.25706806085582
1021 => 0.26291419549842
1022 => 0.26789628121025
1023 => 0.26889650867794
1024 => 0.27115007223552
1025 => 0.25189361837416
1026 => 0.26053920081813
1027 => 0.26561767052244
1028 => 0.24267295964207
1029 => 0.2651641273612
1030 => 0.25155840635418
1031 => 0.24694042029333
1101 => 0.25315793015087
1102 => 0.25073496051266
1103 => 0.24865183349927
1104 => 0.24748941283314
1105 => 0.252054865871
1106 => 0.25184188202989
1107 => 0.2443719147437
1108 => 0.2346276469337
1109 => 0.23789814305542
1110 => 0.23670994115334
1111 => 0.23240374417908
1112 => 0.23530560100752
1113 => 0.22252729213118
1114 => 0.20054287586813
1115 => 0.21506645465238
1116 => 0.2145073126678
1117 => 0.21422536792411
1118 => 0.22513943597824
1119 => 0.22409030016523
1120 => 0.22218610839144
1121 => 0.23236877220387
1122 => 0.22865196293617
1123 => 0.2401062933088
1124 => 0.24765085611185
1125 => 0.24573731094396
1126 => 0.25283300872627
1127 => 0.2379734886806
1128 => 0.2429092251793
1129 => 0.24392647363105
1130 => 0.23224311971304
1201 => 0.22426195175912
1202 => 0.22372969884857
1203 => 0.20989145348916
1204 => 0.21728373246174
1205 => 0.22378863204432
1206 => 0.22067328994487
1207 => 0.21968706570438
1208 => 0.2247254714631
1209 => 0.22511699874158
1210 => 0.21619013530004
1211 => 0.21804631288653
1212 => 0.22578688198607
1213 => 0.21785127040548
1214 => 0.20243367337918
1215 => 0.1986098961517
1216 => 0.19809973378336
1217 => 0.18772934667484
1218 => 0.19886541923014
1219 => 0.19400422513156
1220 => 0.20936067904293
1221 => 0.20058915492707
1222 => 0.20021103205386
1223 => 0.19963944387243
1224 => 0.19071322329283
1225 => 0.19266749830885
1226 => 0.19916380610659
1227 => 0.20148176191497
1228 => 0.20123998013371
1229 => 0.19913197065434
1230 => 0.20009700659924
1231 => 0.1969882895799
]
'min_raw' => 0.10877055019692
'max_raw' => 0.33824012820867
'avg_raw' => 0.2235053392028
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.10877'
'max' => '$0.33824'
'avg' => '$0.2235053'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.061963002029766
'max_diff' => 0.21125576051516
'year' => 2033
]
8 => [
'items' => [
101 => 0.19589053689802
102 => 0.19242572747335
103 => 0.18733341479713
104 => 0.18804153210772
105 => 0.17795232822002
106 => 0.17245519446742
107 => 0.17093366029576
108 => 0.16889900121212
109 => 0.17116348045328
110 => 0.17792374677305
111 => 0.1697694313209
112 => 0.15578942943691
113 => 0.1566296513709
114 => 0.15851738059245
115 => 0.15499960967667
116 => 0.15167033472903
117 => 0.15456486918339
118 => 0.14864135809004
119 => 0.15923320860817
120 => 0.15894672873498
121 => 0.1628947156125
122 => 0.16536347282785
123 => 0.15967378671609
124 => 0.15824284604553
125 => 0.15905797488411
126 => 0.14558571090432
127 => 0.16179374422324
128 => 0.16193391196844
129 => 0.16073371063577
130 => 0.16936398801121
131 => 0.1875765651244
201 => 0.1807242610152
202 => 0.17807084175213
203 => 0.1730266897934
204 => 0.1797477227863
205 => 0.1792316523169
206 => 0.17689778594032
207 => 0.17548625627366
208 => 0.17808704296434
209 => 0.17516399002106
210 => 0.17463892939232
211 => 0.17145763325377
212 => 0.17032205527205
213 => 0.16948131854306
214 => 0.16855575001352
215 => 0.17059732355238
216 => 0.16597084932195
217 => 0.16039177493892
218 => 0.15992793527039
219 => 0.1612086373764
220 => 0.16064202203155
221 => 0.15992522253411
222 => 0.15855665708478
223 => 0.15815063295074
224 => 0.15947001441147
225 => 0.15798050966703
226 => 0.16017835505498
227 => 0.15958066272179
228 => 0.15624200193476
301 => 0.15208079446359
302 => 0.15204375098867
303 => 0.15114722566475
304 => 0.15000536587126
305 => 0.14968772659892
306 => 0.15432109956516
307 => 0.16391204294009
308 => 0.16202911126376
309 => 0.16338972237051
310 => 0.17008258236938
311 => 0.17221004130169
312 => 0.17070002134316
313 => 0.16863301288995
314 => 0.16872395077164
315 => 0.17578754438229
316 => 0.1762280920514
317 => 0.17734121388519
318 => 0.17877189000981
319 => 0.1709436716736
320 => 0.16835524239199
321 => 0.16712870099777
322 => 0.16335142823483
323 => 0.16742489307077
324 => 0.16505145955402
325 => 0.16537171682347
326 => 0.16516314885661
327 => 0.16527704106982
328 => 0.15923024797009
329 => 0.16143338156554
330 => 0.15777024465832
331 => 0.15286571554596
401 => 0.15284927384462
402 => 0.15404965039663
403 => 0.15333561945276
404 => 0.15141418054221
405 => 0.15168711187051
406 => 0.1492959462427
407 => 0.15197744267118
408 => 0.1520543383939
409 => 0.15102181620683
410 => 0.15515303143011
411 => 0.15684559367784
412 => 0.15616596545555
413 => 0.15679790915001
414 => 0.16210735557584
415 => 0.16297302701064
416 => 0.16335750107893
417 => 0.16284235676048
418 => 0.15689495608399
419 => 0.15715874859429
420 => 0.15522321418277
421 => 0.15358789156663
422 => 0.15365329589514
423 => 0.15449406429689
424 => 0.15816574921778
425 => 0.16589259367614
426 => 0.16618582177509
427 => 0.16654122278507
428 => 0.16509562826721
429 => 0.16465962312815
430 => 0.16523482644905
501 => 0.16813662296943
502 => 0.17560083144991
503 => 0.17296248165519
504 => 0.17081746220372
505 => 0.17269922255575
506 => 0.17240954029928
507 => 0.16996433052875
508 => 0.16989570163451
509 => 0.16520256230402
510 => 0.16346761555114
511 => 0.16201776418593
512 => 0.16043456434444
513 => 0.15949599040907
514 => 0.16093806654803
515 => 0.16126788642315
516 => 0.15811476174214
517 => 0.15768500249932
518 => 0.16025991217875
519 => 0.15912679043114
520 => 0.16029223424863
521 => 0.16056262721127
522 => 0.16051908771661
523 => 0.1593359784739
524 => 0.16009005702438
525 => 0.15830643645087
526 => 0.15636701696832
527 => 0.15512978816856
528 => 0.15405014194618
529 => 0.15464919241976
530 => 0.15251368686373
531 => 0.15183049565713
601 => 0.15983459217878
602 => 0.16574730433787
603 => 0.16566133116138
604 => 0.16513799156004
605 => 0.16436041506801
606 => 0.16807973840581
607 => 0.16678400052514
608 => 0.16772675809585
609 => 0.16796672946501
610 => 0.16869305052469
611 => 0.16895264787413
612 => 0.16816796438219
613 => 0.16553447074223
614 => 0.1589720549765
615 => 0.15591723272265
616 => 0.15490909049679
617 => 0.15494573455197
618 => 0.15393492792397
619 => 0.15423265577709
620 => 0.15383139032684
621 => 0.15307149064062
622 => 0.15460227075548
623 => 0.15477867890351
624 => 0.15442137653324
625 => 0.15450553417597
626 => 0.15154722315599
627 => 0.15177213711772
628 => 0.15051978759809
629 => 0.15028498716046
630 => 0.14711915662939
701 => 0.14151042894911
702 => 0.14461820853635
703 => 0.14086444781491
704 => 0.13944284175094
705 => 0.14617250375266
706 => 0.14549703233946
707 => 0.14434091890042
708 => 0.14263078616892
709 => 0.14199648130371
710 => 0.13814264573919
711 => 0.13791494057463
712 => 0.13982500554272
713 => 0.13894357628127
714 => 0.13770571577482
715 => 0.1332223105004
716 => 0.12818147856748
717 => 0.12833362959799
718 => 0.12993702444784
719 => 0.13459911122104
720 => 0.13277755326383
721 => 0.13145599206591
722 => 0.13120850337952
723 => 0.13430634244232
724 => 0.13869043373353
725 => 0.14074735127885
726 => 0.13870900846095
727 => 0.13636746998392
728 => 0.13650998858137
729 => 0.13745810096077
730 => 0.13755773416625
731 => 0.13603363333175
801 => 0.13646265878919
802 => 0.13581092988843
803 => 0.13181127082745
804 => 0.13173892967809
805 => 0.13075734884131
806 => 0.13072762696368
807 => 0.1290577130935
808 => 0.12882408059949
809 => 0.12550836525373
810 => 0.12769077913522
811 => 0.12622693048539
812 => 0.1240205652831
813 => 0.1236401870906
814 => 0.12362875246281
815 => 0.12589419619133
816 => 0.12766430610625
817 => 0.12625239475938
818 => 0.12593092991445
819 => 0.12936333343769
820 => 0.1289265288023
821 => 0.12854825880515
822 => 0.13829788644353
823 => 0.13058029539482
824 => 0.12721498519288
825 => 0.12304977476291
826 => 0.12440598828173
827 => 0.12469176239706
828 => 0.1146751821486
829 => 0.11061145678928
830 => 0.10921693938422
831 => 0.10841437490203
901 => 0.10878011361453
902 => 0.10512228416371
903 => 0.10758040604958
904 => 0.10441303493379
905 => 0.10388201485871
906 => 0.10954566677573
907 => 0.11033373085341
908 => 0.10697160466571
909 => 0.109130633957
910 => 0.10834773992323
911 => 0.10446733042066
912 => 0.10431912732002
913 => 0.10237207423462
914 => 0.099325313179744
915 => 0.09793286162215
916 => 0.097207660761137
917 => 0.097506892770274
918 => 0.097355591909804
919 => 0.09636825145139
920 => 0.097412185109141
921 => 0.094745365996756
922 => 0.093683417138182
923 => 0.093203759475791
924 => 0.090836804017169
925 => 0.094603682741707
926 => 0.095345805304329
927 => 0.096089390077653
928 => 0.10256178786255
929 => 0.10223844516002
930 => 0.10516130571658
1001 => 0.10504772873015
1002 => 0.10421408155222
1003 => 0.10069706123682
1004 => 0.10209888284968
1005 => 0.097784293816751
1006 => 0.10101707728376
1007 => 0.099541769913681
1008 => 0.10051827437791
1009 => 0.098762431303369
1010 => 0.099734187357803
1011 => 0.095521790094859
1012 => 0.09158831280075
1013 => 0.09317125888926
1014 => 0.094892102319313
1015 => 0.09862332933842
1016 => 0.096401041307794
1017 => 0.097200260117621
1018 => 0.094523010892314
1019 => 0.088999081022073
1020 => 0.089030345865241
1021 => 0.088180609600058
1022 => 0.087446313403414
1023 => 0.096656297820915
1024 => 0.095510890670291
1025 => 0.093685834282953
1026 => 0.096128744782263
1027 => 0.096774689092483
1028 => 0.096793078218904
1029 => 0.098575362658554
1030 => 0.099526568183487
1031 => 0.099694222280017
1101 => 0.10249868535461
1102 => 0.10343870438545
1103 => 0.10731050973701
1104 => 0.0994458650404
1105 => 0.099283897858346
1106 => 0.096163121542772
1107 => 0.094183875865913
1108 => 0.096298642187585
1109 => 0.098172036454195
1110 => 0.096221333124702
1111 => 0.096476053797939
1112 => 0.093857393956411
1113 => 0.09479344163036
1114 => 0.095599691986402
1115 => 0.095154527929001
1116 => 0.094488095788887
1117 => 0.09801843948824
1118 => 0.097819243661194
1119 => 0.10110678087628
1120 => 0.10366965122949
1121 => 0.1082627730703
1122 => 0.10346961098455
1123 => 0.10329492910705
1124 => 0.10500247247946
1125 => 0.10343844296946
1126 => 0.10442685563131
1127 => 0.10810352450967
1128 => 0.10818120672946
1129 => 0.10687992946024
1130 => 0.10680074662015
1201 => 0.10705067115411
1202 => 0.10851448695581
1203 => 0.10800298473618
1204 => 0.10859490805438
1205 => 0.10933511722765
1206 => 0.11239693621047
1207 => 0.11313513040148
1208 => 0.11134170122712
1209 => 0.11150362780139
1210 => 0.11083283605944
1211 => 0.11018485964172
1212 => 0.1116414159994
1213 => 0.11430330137176
1214 => 0.11428674192101
1215 => 0.11490424758774
1216 => 0.11528894850242
1217 => 0.11363753055834
1218 => 0.11256251820106
1219 => 0.11297474634365
1220 => 0.11363390812082
1221 => 0.11276098906328
1222 => 0.10737292826468
1223 => 0.10900732172032
1224 => 0.10873527873154
1225 => 0.10834785643397
1226 => 0.109991251692
1227 => 0.10983274221028
1228 => 0.10508476783575
1229 => 0.10538871775044
1230 => 0.10510325203677
1231 => 0.10602565015842
]
'min_raw' => 0.087446313403414
'max_raw' => 0.19589053689802
'avg_raw' => 0.14166842515072
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.087446'
'max' => '$0.19589'
'avg' => '$0.141668'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.021324236793505
'max_diff' => -0.14234959131065
'year' => 2034
]
9 => [
'items' => [
101 => 0.10338863044384
102 => 0.10419975994744
103 => 0.10470849276824
104 => 0.10500814030796
105 => 0.10609067269166
106 => 0.10596365001097
107 => 0.10608277678348
108 => 0.10768788653056
109 => 0.11580598082413
110 => 0.11624783078497
111 => 0.11407199997879
112 => 0.11494120146949
113 => 0.11327252468081
114 => 0.11439271858822
115 => 0.11515912680982
116 => 0.11169587542821
117 => 0.11149080415771
118 => 0.10981524014634
119 => 0.11071559333726
120 => 0.10928306667283
121 => 0.10963455860863
122 => 0.10865175651363
123 => 0.11042060461068
124 => 0.11239845163439
125 => 0.11289813390012
126 => 0.11158368498572
127 => 0.11063193734528
128 => 0.10896098201384
129 => 0.11173981796969
130 => 0.11255243428668
131 => 0.11173554964212
201 => 0.1115462596207
202 => 0.11118755537214
203 => 0.11162236042273
204 => 0.1125480086037
205 => 0.11211149001559
206 => 0.1123998182335
207 => 0.1113010083896
208 => 0.11363807724639
209 => 0.11734990503723
210 => 0.11736183917052
211 => 0.11692531822942
212 => 0.1167467032653
213 => 0.11719460024117
214 => 0.11743756597689
215 => 0.11888598266662
216 => 0.12044019148216
217 => 0.12769300586987
218 => 0.1256564446124
219 => 0.13209157300904
220 => 0.13718092407393
221 => 0.13870699792794
222 => 0.13730308178957
223 => 0.13250036051828
224 => 0.13226471610012
225 => 0.13944200933605
226 => 0.13741409525604
227 => 0.137172881329
228 => 0.13460677268257
301 => 0.13612366071135
302 => 0.13579189504805
303 => 0.135268186718
304 => 0.13816230340957
305 => 0.14357983149661
306 => 0.14273545893899
307 => 0.14210517399404
308 => 0.13934344883846
309 => 0.14100662423577
310 => 0.14041439933281
311 => 0.14295897335111
312 => 0.14145162407189
313 => 0.13739873181238
314 => 0.13804416826321
315 => 0.13794661184211
316 => 0.13995431607554
317 => 0.13935165309895
318 => 0.13782893222353
319 => 0.14356131497457
320 => 0.14318908592391
321 => 0.14371682161434
322 => 0.14394914718604
323 => 0.14743834755068
324 => 0.14886776129811
325 => 0.14919226324419
326 => 0.15055009574943
327 => 0.1491584791345
328 => 0.15472593780003
329 => 0.15842797294239
330 => 0.16272807726522
331 => 0.16901168543996
401 => 0.17137438024029
402 => 0.17094758057227
403 => 0.17571174057653
404 => 0.18427283020286
405 => 0.17267802155667
406 => 0.1848873832155
407 => 0.18102204027817
408 => 0.17185738170832
409 => 0.17126728574065
410 => 0.17747369892803
411 => 0.1912389260325
412 => 0.18779089276674
413 => 0.19124456577969
414 => 0.18721567275744
415 => 0.18701560426071
416 => 0.19104889143826
417 => 0.20047288677165
418 => 0.19599589984194
419 => 0.18957704127597
420 => 0.19431662655258
421 => 0.19021075915807
422 => 0.18095909075831
423 => 0.18778825612068
424 => 0.18322178772629
425 => 0.18455452597059
426 => 0.19415256332469
427 => 0.19299770207698
428 => 0.19449219946878
429 => 0.19185445069007
430 => 0.18939037739594
501 => 0.18479100160797
502 => 0.18342935318363
503 => 0.18380566382114
504 => 0.18342916670277
505 => 0.18085585821985
506 => 0.18030015249797
507 => 0.1793739519488
508 => 0.17966102022776
509 => 0.17791949222581
510 => 0.18120611538354
511 => 0.18181614160324
512 => 0.1842078718558
513 => 0.18445618922489
514 => 0.19111712393414
515 => 0.18744839302874
516 => 0.18990969446307
517 => 0.18968953249611
518 => 0.17205600764921
519 => 0.1744857517912
520 => 0.17826567118044
521 => 0.17656282261915
522 => 0.17415539315868
523 => 0.17221126479115
524 => 0.16926571151702
525 => 0.17341152118602
526 => 0.17886282004306
527 => 0.18459444315991
528 => 0.19148061278399
529 => 0.18994369988775
530 => 0.18446571100871
531 => 0.18471144958815
601 => 0.18623050879168
602 => 0.18426318910203
603 => 0.18368298811891
604 => 0.18615079808619
605 => 0.18616779253716
606 => 0.18390415347568
607 => 0.18138853290042
608 => 0.18137799235836
609 => 0.18093036197501
610 => 0.18729530520822
611 => 0.19079538041815
612 => 0.19119665840031
613 => 0.19076837121273
614 => 0.19093320195312
615 => 0.18889658530736
616 => 0.19355168701966
617 => 0.19782366869272
618 => 0.19667868634676
619 => 0.19496219504134
620 => 0.19359492703915
621 => 0.19635660145785
622 => 0.19623362844326
623 => 0.1977863566596
624 => 0.19771591593871
625 => 0.19719379184062
626 => 0.19667870499346
627 => 0.19872096611968
628 => 0.19813282771304
629 => 0.197543775765
630 => 0.19636234190387
701 => 0.19652291838714
702 => 0.19480672345815
703 => 0.19401273315626
704 => 0.18207302406496
705 => 0.17888234365452
706 => 0.17988619666393
707 => 0.18021669113966
708 => 0.17882810293607
709 => 0.18081898172098
710 => 0.18050870537121
711 => 0.18171580914256
712 => 0.18096166311258
713 => 0.1809926135287
714 => 0.183210396202
715 => 0.18385422794718
716 => 0.18352676992522
717 => 0.18375611029919
718 => 0.18904116241893
719 => 0.18828979701395
720 => 0.18789064911783
721 => 0.18800121581288
722 => 0.18935165994227
723 => 0.18972971056698
724 => 0.18812788350493
725 => 0.18888331440744
726 => 0.1920998433119
727 => 0.19322544638869
728 => 0.19681783108968
729 => 0.19529172221916
730 => 0.19809296109945
731 => 0.20670301440477
801 => 0.21358132075544
802 => 0.20725574597733
803 => 0.21988687964329
804 => 0.22972202903075
805 => 0.22934453961596
806 => 0.22762955382916
807 => 0.21643249773251
808 => 0.20612879977367
809 => 0.21474828063436
810 => 0.21477025346369
811 => 0.21402983241352
812 => 0.20943114086139
813 => 0.21386980791575
814 => 0.21422213318765
815 => 0.21402492472623
816 => 0.21049911869542
817 => 0.20511586456424
818 => 0.20616773953579
819 => 0.20789073219684
820 => 0.20462874763554
821 => 0.20358634591759
822 => 0.2055243690363
823 => 0.21176908332793
824 => 0.21058855626427
825 => 0.21055772793175
826 => 0.2156085233315
827 => 0.21199324385515
828 => 0.20618100704775
829 => 0.20471334059989
830 => 0.1995041134486
831 => 0.20310214519663
901 => 0.20323163195379
902 => 0.20126102673638
903 => 0.20634091080051
904 => 0.20629409877457
905 => 0.2111166926525
906 => 0.22033568086356
907 => 0.21760917241069
908 => 0.21443853972328
909 => 0.21478327540851
910 => 0.21856417499531
911 => 0.21627815679559
912 => 0.21710022487889
913 => 0.2185629306968
914 => 0.21944541743369
915 => 0.21465629914777
916 => 0.21353972658531
917 => 0.21125561098624
918 => 0.21065972786148
919 => 0.21252009235729
920 => 0.21202995204029
921 => 0.20322074909324
922 => 0.20230013837134
923 => 0.20232837218785
924 => 0.20001345275495
925 => 0.19648264497547
926 => 0.20576139700638
927 => 0.20501618336225
928 => 0.20419352517408
929 => 0.20429429610811
930 => 0.20832188787864
1001 => 0.20598568125347
1002 => 0.21219686946322
1003 => 0.2109200358927
1004 => 0.20961045635904
1005 => 0.20942943257671
1006 => 0.20892535618433
1007 => 0.20719669067627
1008 => 0.2051092231986
1009 => 0.20373089635651
1010 => 0.18793098271445
1011 => 0.19086335478254
1012 => 0.19423678155276
1013 => 0.19540127495569
1014 => 0.1934093284095
1015 => 0.20727534486697
1016 => 0.20980879969001
1017 => 0.20213479977786
1018 => 0.20069930772164
1019 => 0.2073694554872
1020 => 0.20334654099217
1021 => 0.20515805914295
1022 => 0.2012425477484
1023 => 0.20919856461136
1024 => 0.20913795309284
1025 => 0.20604288283836
1026 => 0.20865881502332
1027 => 0.20820423243125
1028 => 0.20470990573677
1029 => 0.20930934100029
1030 => 0.2093116222628
1031 => 0.20633268443549
1101 => 0.20285393722654
1102 => 0.20223201938992
1103 => 0.20176348784294
1104 => 0.2050428291039
1105 => 0.20798307622424
1106 => 0.21345414716613
1107 => 0.21482970439036
1108 => 0.22019859581255
1109 => 0.21700168237721
1110 => 0.21841883269614
1111 => 0.21995734983549
1112 => 0.22069497152918
1113 => 0.21949305656227
1114 => 0.22783315486481
1115 => 0.22853731469555
1116 => 0.22877341339584
1117 => 0.22596117917326
1118 => 0.22845910137453
1119 => 0.22729040629904
1120 => 0.23033102621262
1121 => 0.23080783423965
1122 => 0.23040399480369
1123 => 0.23055534119737
1124 => 0.22343853859031
1125 => 0.22306949483101
1126 => 0.21803755698679
1127 => 0.22008810885252
1128 => 0.21625470042505
1129 => 0.21747031372589
1130 => 0.2180061444861
1201 => 0.21772625690509
1202 => 0.22020404397838
1203 => 0.21809741878763
1204 => 0.21253768854799
1205 => 0.20697644356356
1206 => 0.20690662666287
1207 => 0.2054424490226
1208 => 0.20438411676619
1209 => 0.20458798910513
1210 => 0.20530646181903
1211 => 0.20434235782595
1212 => 0.20454809829419
1213 => 0.2079647609085
1214 => 0.20864994822928
1215 => 0.20632141399331
1216 => 0.19697201302999
1217 => 0.19467764658239
1218 => 0.19632679168566
1219 => 0.19553860654485
1220 => 0.15781491664421
1221 => 0.16667753802296
1222 => 0.16141166934589
1223 => 0.16383842390325
1224 => 0.15846333557405
1225 => 0.16102860945726
1226 => 0.16055489703983
1227 => 0.17480572995284
1228 => 0.17458322279828
1229 => 0.17468972519835
1230 => 0.16960608815249
1231 => 0.17770446000233
]
'min_raw' => 0.10338863044384
'max_raw' => 0.23080783423965
'avg_raw' => 0.16709823234174
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.103388'
'max' => '$0.2308078'
'avg' => '$0.167098'
'bar_min_pct' => 61.631153054958
'bar_max_pct' => 60.119598047091
'min_diff' => 0.015942317040422
'max_diff' => 0.034917297341623
'year' => 2035
]
10 => [
'items' => [
101 => 0.18169400918359
102 => 0.18095564980855
103 => 0.18114147895592
104 => 0.1779483185227
105 => 0.17472064197125
106 => 0.17114065193982
107 => 0.17779183091807
108 => 0.1770523333551
109 => 0.17874847470173
110 => 0.18306223970521
111 => 0.18369745798838
112 => 0.1845511978027
113 => 0.1842451928526
114 => 0.19153547223468
115 => 0.1906525712987
116 => 0.19278010852648
117 => 0.1884036030323
118 => 0.18345117164391
119 => 0.18439246694366
120 => 0.18430181263688
121 => 0.18314767926334
122 => 0.1821057792585
123 => 0.18037130930394
124 => 0.18585942889341
125 => 0.18563662126056
126 => 0.18924361785085
127 => 0.18860604616702
128 => 0.18434818642215
129 => 0.18450025671592
130 => 0.18552300252398
131 => 0.18906273744319
201 => 0.19011357177074
202 => 0.18962678344171
203 => 0.19077897530946
204 => 0.19168962078308
205 => 0.1908933383604
206 => 0.20216701825454
207 => 0.19748540036427
208 => 0.1997671883495
209 => 0.2003113813389
210 => 0.1989174424397
211 => 0.19921973787373
212 => 0.1996776330857
213 => 0.20245788314776
214 => 0.20975406378242
215 => 0.21298549251873
216 => 0.22270740530781
217 => 0.21271716734584
218 => 0.21212438796889
219 => 0.21387559803584
220 => 0.21958339001201
221 => 0.22420901930306
222 => 0.22574360739786
223 => 0.22594642854787
224 => 0.2288254178312
225 => 0.23047560079843
226 => 0.22847583280726
227 => 0.22678123881919
228 => 0.22071141349466
229 => 0.22141401230356
301 => 0.22625422136317
302 => 0.23309130174675
303 => 0.23895822799284
304 => 0.23690383490448
305 => 0.25257740399315
306 => 0.2541313743475
307 => 0.2539166658904
308 => 0.25745684161941
309 => 0.25043031374158
310 => 0.24742633694124
311 => 0.22714762927387
312 => 0.23284511897066
313 => 0.24112675484679
314 => 0.24003064928405
315 => 0.23401630394204
316 => 0.23895366557258
317 => 0.23732121941195
318 => 0.23603364139481
319 => 0.24193228590061
320 => 0.23544648396352
321 => 0.24106205401109
322 => 0.23386002733945
323 => 0.23691321919906
324 => 0.23518007983327
325 => 0.23630163340851
326 => 0.22974505412477
327 => 0.23328282515431
328 => 0.22959787121883
329 => 0.22959612407087
330 => 0.2295147785085
331 => 0.23385011047201
401 => 0.2339914854917
402 => 0.23078766862034
403 => 0.23032594855615
404 => 0.23203316963074
405 => 0.23003446087431
406 => 0.23096964412172
407 => 0.23006278662219
408 => 0.2298586338977
409 => 0.22823191025527
410 => 0.22753107298242
411 => 0.22780588933545
412 => 0.22686779944499
413 => 0.2263025663538
414 => 0.22940233941995
415 => 0.22774625571519
416 => 0.22914852084062
417 => 0.22755046275023
418 => 0.22201089716819
419 => 0.21882503442211
420 => 0.20836130855563
421 => 0.21132880823115
422 => 0.21329626358613
423 => 0.21264601960304
424 => 0.21404299528972
425 => 0.21412875825112
426 => 0.2136745872149
427 => 0.21314871533787
428 => 0.21289274999067
429 => 0.21480050598021
430 => 0.21590802254426
501 => 0.21349372405215
502 => 0.21292808769508
503 => 0.21536907676767
504 => 0.21685807869184
505 => 0.22785203230199
506 => 0.22703756470855
507 => 0.22908171853689
508 => 0.22885157818592
509 => 0.23099417705727
510 => 0.23449642068208
511 => 0.22737538015012
512 => 0.22861134655941
513 => 0.22830831613849
514 => 0.23161672281532
515 => 0.23162705129984
516 => 0.22964349622991
517 => 0.23071881361282
518 => 0.23011860094947
519 => 0.23120326635576
520 => 0.22702668699728
521 => 0.23211330982202
522 => 0.23499709718892
523 => 0.2350371385793
524 => 0.23640403090406
525 => 0.23779287267108
526 => 0.24045863350024
527 => 0.2377185260484
528 => 0.23278933948661
529 => 0.2331452108352
530 => 0.23025523055754
531 => 0.23030381164812
601 => 0.23004448197921
602 => 0.23082274983704
603 => 0.22719747302627
604 => 0.22804831824766
605 => 0.22685712995518
606 => 0.2286087571487
607 => 0.22672429584282
608 => 0.22830817000804
609 => 0.22899171759149
610 => 0.23151402289016
611 => 0.22635174929938
612 => 0.21582552399259
613 => 0.21803826417023
614 => 0.21476544764052
615 => 0.21506835927083
616 => 0.2156802889721
617 => 0.21369682459936
618 => 0.21407520709553
619 => 0.21406168861013
620 => 0.21394519360623
621 => 0.21342921791785
622 => 0.21268095108702
623 => 0.21566181583666
624 => 0.21616832284358
625 => 0.21729422517704
626 => 0.22064414681454
627 => 0.22030941064636
628 => 0.22085537922473
629 => 0.21966353288363
630 => 0.2151236456043
701 => 0.21537018332562
702 => 0.21229585399021
703 => 0.21721560766389
704 => 0.21605054505639
705 => 0.21529942161415
706 => 0.21509447062383
707 => 0.21845269606912
708 => 0.21945752975609
709 => 0.21883138483425
710 => 0.217547143332
711 => 0.22001326666824
712 => 0.22067309723563
713 => 0.22082080896605
714 => 0.22519030668563
715 => 0.22106501534951
716 => 0.22205801397599
717 => 0.22980510579577
718 => 0.22277956254082
719 => 0.22650114949128
720 => 0.22631899717626
721 => 0.22822283512848
722 => 0.22616282689531
723 => 0.22618836316626
724 => 0.22787884229067
725 => 0.22550486923995
726 => 0.22491704012733
727 => 0.22410495841836
728 => 0.22587810912048
729 => 0.22694103277369
730 => 0.23550741678719
731 => 0.24104169153448
801 => 0.24080143407209
802 => 0.24299693753522
803 => 0.24200784311657
804 => 0.23881379632883
805 => 0.24426564472299
806 => 0.24254045177605
807 => 0.24268267458649
808 => 0.24267738104638
809 => 0.24382448353711
810 => 0.24301165629203
811 => 0.24140949035697
812 => 0.24247308287462
813 => 0.24563157241074
814 => 0.25543562084515
815 => 0.26092209623542
816 => 0.25510532813764
817 => 0.25911765688186
818 => 0.25671168937424
819 => 0.25627445350677
820 => 0.2587944924669
821 => 0.26131894242164
822 => 0.26115814587302
823 => 0.25932552483782
824 => 0.25829032371607
825 => 0.26612921342776
826 => 0.27190477383533
827 => 0.27151091933538
828 => 0.2732492650098
829 => 0.27835310167492
830 => 0.27881973253622
831 => 0.27876094777308
901 => 0.27760435449547
902 => 0.28262974450922
903 => 0.28682201327201
904 => 0.27733663656889
905 => 0.28094854384474
906 => 0.28257004538926
907 => 0.28495089073443
908 => 0.28896777590775
909 => 0.29333117863215
910 => 0.29394821161966
911 => 0.29351039718728
912 => 0.29063261579597
913 => 0.29540710312323
914 => 0.29820388582404
915 => 0.29986930591913
916 => 0.30409253418081
917 => 0.28258005923077
918 => 0.26735246022175
919 => 0.2649744507473
920 => 0.26981022652421
921 => 0.27108538203199
922 => 0.27057136844571
923 => 0.25343132132833
924 => 0.26488421194644
925 => 0.27720655926514
926 => 0.27767991080999
927 => 0.28384873552586
928 => 0.28585755772202
929 => 0.29082427018463
930 => 0.2905136009678
1001 => 0.29172291641479
1002 => 0.29144491573596
1003 => 0.30064470470825
1004 => 0.31079343812657
1005 => 0.31044201975929
1006 => 0.30898301925605
1007 => 0.31114988379992
1008 => 0.321624464292
1009 => 0.32066013277202
1010 => 0.32159689870212
1011 => 0.33394701942377
1012 => 0.3500039331461
1013 => 0.3425438846343
1014 => 0.35873004333377
1015 => 0.36891837224369
1016 => 0.38653803360052
1017 => 0.38433196521998
1018 => 0.39119117008715
1019 => 0.38038264239846
1020 => 0.35556407806137
1021 => 0.35163644525338
1022 => 0.35949966559849
1023 => 0.3788306255351
1024 => 0.35889086487704
1025 => 0.36292465248856
1026 => 0.36176292138508
1027 => 0.36170101767161
1028 => 0.36406363063399
1029 => 0.36063653730645
1030 => 0.34667394256775
1031 => 0.35307291745441
1101 => 0.35060196594666
1102 => 0.35334367086615
1103 => 0.36813952155151
1104 => 0.36159792327448
1105 => 0.35470688088593
1106 => 0.3633497772859
1107 => 0.37435515442449
1108 => 0.37366645770172
1109 => 0.37233009820665
1110 => 0.37986308671085
1111 => 0.39230537676124
1112 => 0.3956684777647
1113 => 0.39815105016987
1114 => 0.39849335496114
1115 => 0.40201930705245
1116 => 0.38305937400312
1117 => 0.41314927467803
1118 => 0.41834496930785
1119 => 0.41736839405692
1120 => 0.42314318996972
1121 => 0.42144409851974
1122 => 0.41898238158801
1123 => 0.42813666144411
1124 => 0.41764201830138
1125 => 0.40274619359911
1126 => 0.39457404956144
1127 => 0.4053357880583
1128 => 0.41190760622542
1129 => 0.41625115998774
1130 => 0.41756551673178
1201 => 0.38453117963373
1202 => 0.36672750410622
1203 => 0.3781394559998
1204 => 0.39206282492082
1205 => 0.38298202898576
1206 => 0.38333797899419
1207 => 0.37039115038198
1208 => 0.39320833197315
1209 => 0.38988406053802
1210 => 0.407130386624
1211 => 0.40301441249317
1212 => 0.41707812191777
1213 => 0.41337467590004
1214 => 0.42874747326274
1215 => 0.4348800983326
1216 => 0.44517773029176
1217 => 0.45275271027982
1218 => 0.45720088341509
1219 => 0.45693383178472
1220 => 0.47455970981771
1221 => 0.46416634534293
1222 => 0.45110983003468
1223 => 0.45087367886554
1224 => 0.45763583315593
1225 => 0.47180745344217
1226 => 0.4754819483937
1227 => 0.47753548978778
1228 => 0.47439041965845
1229 => 0.46310916742022
1230 => 0.458237979901
1231 => 0.46238837279927
]
'min_raw' => 0.17114065193982
'max_raw' => 0.47753548978778
'avg_raw' => 0.3243380708638
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$0.17114'
'max' => '$0.477535'
'avg' => '$0.324338'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.067752021495983
'max_diff' => 0.24672765554814
'year' => 2036
]
11 => [
'items' => [
101 => 0.45731279893202
102 => 0.46607466338139
103 => 0.47810657470364
104 => 0.47562203259493
105 => 0.48392748436098
106 => 0.49252275317984
107 => 0.50481437362848
108 => 0.50802785837114
109 => 0.51333962645288
110 => 0.51880718063391
111 => 0.52056321168214
112 => 0.52391601981764
113 => 0.52389834886377
114 => 0.53400226185013
115 => 0.54514719076622
116 => 0.54935414342635
117 => 0.55902779909559
118 => 0.54246200276734
119 => 0.55502734957647
120 => 0.56636160692933
121 => 0.55284843805667
122 => 0.5714731931831
123 => 0.57219635022005
124 => 0.58311516290652
125 => 0.57204685445738
126 => 0.56547452823158
127 => 0.58444858778363
128 => 0.59362953752359
129 => 0.59086416074487
130 => 0.56981950691529
131 => 0.55757061573881
201 => 0.52551290489531
202 => 0.56348664817948
203 => 0.58198255082392
204 => 0.56977160699572
205 => 0.57593009679448
206 => 0.60952882023951
207 => 0.62232103877113
208 => 0.61966034674091
209 => 0.6201099598953
210 => 0.62701240881977
211 => 0.65762166859895
212 => 0.63927989062218
213 => 0.65330149263211
214 => 0.66073849977953
215 => 0.66764640648696
216 => 0.65068277087984
217 => 0.62861333020027
218 => 0.62162301192496
219 => 0.5685574692834
220 => 0.56579517733694
221 => 0.56424461916138
222 => 0.55446856919526
223 => 0.54678727180735
224 => 0.54067881893619
225 => 0.52464841446384
226 => 0.5300582053958
227 => 0.50450908647231
228 => 0.52085450735438
301 => 0.48007749664743
302 => 0.51403780285959
303 => 0.49555475217396
304 => 0.50796562360931
305 => 0.50792232324805
306 => 0.4850699740652
307 => 0.4718892159729
308 => 0.48028850803209
309 => 0.48929321585619
310 => 0.49075419940517
311 => 0.50242903814603
312 => 0.50568723468878
313 => 0.49581474705358
314 => 0.4792324837361
315 => 0.48308416530359
316 => 0.47181116176887
317 => 0.45205565668409
318 => 0.46624440533401
319 => 0.47108906795833
320 => 0.47322874696757
321 => 0.45380147665178
322 => 0.447697006532
323 => 0.44444703786169
324 => 0.47672466709554
325 => 0.4784929084876
326 => 0.46944633552169
327 => 0.51033770315885
328 => 0.50108272727898
329 => 0.51142280286093
330 => 0.48273466557276
331 => 0.48383059105087
401 => 0.47024916711085
402 => 0.47785385700618
403 => 0.47247910729876
404 => 0.47723947321365
405 => 0.48009281691531
406 => 0.4936720122773
407 => 0.51419285545807
408 => 0.49164373331648
409 => 0.48181875789001
410 => 0.48791411738683
411 => 0.50414686296395
412 => 0.52874030345223
413 => 0.51418049169405
414 => 0.5206418889107
415 => 0.52205341675498
416 => 0.51131755059802
417 => 0.52913615015092
418 => 0.53868528240936
419 => 0.54848071619202
420 => 0.55698581688368
421 => 0.54456820453302
422 => 0.55785682974304
423 => 0.54714854358189
424 => 0.53754210389306
425 => 0.53755667289671
426 => 0.53153041295222
427 => 0.51985377495215
428 => 0.51770042375317
429 => 0.52890242862854
430 => 0.53788537570478
501 => 0.53862525425139
502 => 0.54359867531329
503 => 0.5465418946674
504 => 0.57538944545044
505 => 0.58699216901483
506 => 0.60117975976105
507 => 0.60670662592551
508 => 0.62334051158933
509 => 0.60990729797765
510 => 0.60700093771389
511 => 0.56665257199598
512 => 0.57325961462193
513 => 0.58383812735087
514 => 0.56682700777457
515 => 0.57761664772575
516 => 0.57974675120793
517 => 0.56624897644075
518 => 0.57345872114832
519 => 0.55431177674535
520 => 0.51461020652349
521 => 0.52918034934787
522 => 0.53990887872366
523 => 0.52459794448628
524 => 0.55204220149181
525 => 0.53600983311363
526 => 0.53092834202716
527 => 0.51110363361642
528 => 0.52046013286328
529 => 0.53311493206683
530 => 0.52529573743735
531 => 0.54152174035149
601 => 0.56450208779483
602 => 0.58087925188631
603 => 0.58213648718919
604 => 0.57160706786315
605 => 0.58848052953099
606 => 0.58860343427806
607 => 0.56957010058663
608 => 0.55791228967867
609 => 0.55526361051214
610 => 0.56188053037428
611 => 0.5699146926377
612 => 0.58258232727989
613 => 0.59023711358902
614 => 0.61019673649831
615 => 0.61559723817032
616 => 0.62153075217807
617 => 0.62945975672037
618 => 0.63898055962844
619 => 0.61814958488519
620 => 0.61897723834554
621 => 0.59957972308911
622 => 0.57885069615254
623 => 0.59458144368771
624 => 0.6151473035163
625 => 0.61042947254836
626 => 0.60989862018793
627 => 0.61079136661201
628 => 0.60723427613214
629 => 0.59114568772363
630 => 0.58306609934477
701 => 0.59349082967633
702 => 0.59903110989619
703 => 0.60762360135398
704 => 0.60656439541631
705 => 0.62869773064537
706 => 0.63729807543807
707 => 0.63509773921059
708 => 0.6355026540305
709 => 0.65107316747166
710 => 0.66839078073856
711 => 0.68461101082335
712 => 0.70111092554068
713 => 0.6812196343463
714 => 0.67112006340208
715 => 0.68154024262249
716 => 0.6760111488535
717 => 0.70778296168588
718 => 0.70998277307208
719 => 0.74175228844076
720 => 0.77190534156917
721 => 0.75296674914728
722 => 0.77082498878818
723 => 0.79014013096347
724 => 0.82740217398846
725 => 0.81485362879212
726 => 0.8052416398325
727 => 0.79615835671045
728 => 0.81505922695685
729 => 0.83937489458007
730 => 0.84461225649354
731 => 0.8530987836196
801 => 0.84417623802971
802 => 0.85492246140657
803 => 0.89286135205672
804 => 0.8826099289072
805 => 0.86805126003638
806 => 0.89800037051488
807 => 0.90883883717283
808 => 0.98490887232739
809 => 1.0809504340064
810 => 1.0411885968284
811 => 1.0165071413855
812 => 1.0223078688666
813 => 1.0573789959797
814 => 1.0686427289065
815 => 1.0380240199699
816 => 1.048839065595
817 => 1.1084310303014
818 => 1.1404002074272
819 => 1.096981770857
820 => 0.97719202636006
821 => 0.8667404111944
822 => 0.89603715323739
823 => 0.89271581187347
824 => 0.95673994370142
825 => 0.88236543585546
826 => 0.88361771182353
827 => 0.94896579489495
828 => 0.93153204668126
829 => 0.90329160732085
830 => 0.86694659765448
831 => 0.79975948577969
901 => 0.74024998714097
902 => 0.85696181819055
903 => 0.851928991809
904 => 0.84464071338543
905 => 0.86085998834298
906 => 0.93961618361536
907 => 0.9378005984054
908 => 0.92625077161938
909 => 0.93501121344108
910 => 0.90175585951339
911 => 0.91032652143089
912 => 0.86672291509425
913 => 0.88643356620586
914 => 0.90323101602141
915 => 0.90660335276238
916 => 0.91420139963555
917 => 0.84927692099932
918 => 0.87842610582444
919 => 0.89554852099994
920 => 0.81818882631824
921 => 0.89401936856646
922 => 0.84814673027019
923 => 0.83257686784853
924 => 0.8535396364259
925 => 0.84537042512434
926 => 0.83834701695944
927 => 0.83442783452595
928 => 0.84982057819283
929 => 0.84910248830247
930 => 0.82391697206064
1001 => 0.79106349281616
1002 => 0.8020901988293
1003 => 0.79808409315881
1004 => 0.78356544941102
1005 => 0.7933492623093
1006 => 0.75026630177967
1007 => 0.67614430744588
1008 => 0.72511156732087
1009 => 0.72322638108181
1010 => 0.72227578469369
1011 => 0.75907332713409
1012 => 0.75553609249219
1013 => 0.74911597698045
1014 => 0.78344753895493
1015 => 0.77091605700957
1016 => 0.80953513157669
1017 => 0.83497215181173
1018 => 0.82852050067872
1019 => 0.85244414115757
1020 => 0.80234423186503
1021 => 0.81898541207253
1022 => 0.82241513624962
1023 => 0.78302389280932
1024 => 0.75611482782533
1025 => 0.75432029997669
1026 => 0.70766368959203
1027 => 0.73258727426052
1028 => 0.75451899736077
1029 => 0.74401540396622
1030 => 0.74069028008343
1031 => 0.75767761686922
1101 => 0.75899767842418
1102 => 0.72890013507731
1103 => 0.73515836740436
1104 => 0.76125623655274
1105 => 0.73450076806206
1106 => 0.68251926326563
1107 => 0.66962713137559
1108 => 0.66790708333232
1109 => 0.63294259915864
1110 => 0.67048864527461
1111 => 0.65409878997351
1112 => 0.70587414648906
1113 => 0.67630034052418
1114 => 0.67502547285745
1115 => 0.67309832339677
1116 => 0.64300294750383
1117 => 0.64959192216347
1118 => 0.67149467746128
1119 => 0.67930982730374
1120 => 0.67849464314753
1121 => 0.67138734201131
1122 => 0.6746410280762
1123 => 0.66415977160182
1124 => 0.66045862179222
1125 => 0.64877677491168
1126 => 0.63160768718986
1127 => 0.63399515414171
1128 => 0.5999786988286
1129 => 0.58144472858409
1130 => 0.57631476989421
1201 => 0.56945477473837
1202 => 0.57708962460081
1203 => 0.59988233448464
1204 => 0.57238949062159
1205 => 0.52525493821717
1206 => 0.52808780513004
1207 => 0.53445241599754
1208 => 0.52259200575207
1209 => 0.51136712282352
1210 => 0.52112624782636
1211 => 0.50115471660878
1212 => 0.53686588013006
1213 => 0.53589999323619
1214 => 0.54921090663339
1215 => 0.5575344939481
1216 => 0.53835131998109
1217 => 0.5335268036052
1218 => 0.53627506739495
1219 => 0.49085238878367
1220 => 0.54549890472716
1221 => 0.54597149006629
1222 => 0.54192492747782
1223 => 0.57102251019583
1224 => 0.63242748549449
1225 => 0.60932446377772
1226 => 0.60037827547646
1227 => 0.58337156497615
1228 => 0.60603199695927
1229 => 0.60429202934077
1230 => 0.5964232359068
1231 => 0.59166416508581
]
'min_raw' => 0.44444703786169
'max_raw' => 1.1404002074272
'avg_raw' => 0.79242362264443
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$0.444447'
'max' => '$1.14'
'avg' => '$0.792423'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 0.27330638592187
'max_diff' => 0.66286471763938
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.013950684660224
]
1 => [
'year' => 2028
'avg' => 0.023943424789638
]
2 => [
'year' => 2029
'avg' => 0.065409121142838
]
3 => [
'year' => 2030
'avg' => 0.050463039551514
]
4 => [
'year' => 2031
'avg' => 0.04956095865523
]
5 => [
'year' => 2032
'avg' => 0.086895957930332
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.013950684660224
'min' => '$0.01395'
'max_raw' => 0.086895957930332
'max' => '$0.086895'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.086895957930332
]
1 => [
'year' => 2033
'avg' => 0.2235053392028
]
2 => [
'year' => 2034
'avg' => 0.14166842515072
]
3 => [
'year' => 2035
'avg' => 0.16709823234174
]
4 => [
'year' => 2036
'avg' => 0.3243380708638
]
5 => [
'year' => 2037
'avg' => 0.79242362264443
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.086895957930332
'min' => '$0.086895'
'max_raw' => 0.79242362264443
'max' => '$0.792423'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 0.79242362264443
]
]
]
]
'prediction_2025_max_price' => '$0.023853'
'last_price' => 0.02312862
'sma_50day_nextmonth' => '$0.021384'
'sma_200day_nextmonth' => '$0.031231'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'increase'
'sma_200day_direction_label' => 'aumentar'
'sma_200day_date_nextmonth' => '4 de fev. de 2026'
'sma_50day_date_nextmonth' => '4 de fev. de 2026'
'daily_sma3' => '$0.022614'
'daily_sma3_action' => 'BUY'
'daily_sma5' => '$0.022268'
'daily_sma5_action' => 'BUY'
'daily_sma10' => '$0.021983'
'daily_sma10_action' => 'BUY'
'daily_sma21' => '$0.02149'
'daily_sma21_action' => 'BUY'
'daily_sma50' => '$0.021434'
'daily_sma50_action' => 'BUY'
'daily_sma100' => '$0.02604'
'daily_sma100_action' => 'SELL'
'daily_sma200' => '$0.034491'
'daily_sma200_action' => 'SELL'
'daily_ema3' => '$0.02270073'
'daily_ema3_action' => 'BUY'
'daily_ema5' => '$0.022448'
'daily_ema5_action' => 'BUY'
'daily_ema10' => '$0.0221027'
'daily_ema10_action' => 'BUY'
'daily_ema21' => '$0.021776'
'daily_ema21_action' => 'BUY'
'daily_ema50' => '$0.022675'
'daily_ema50_action' => 'BUY'
'daily_ema100' => '$0.025987'
'daily_ema100_action' => 'SELL'
'daily_ema200' => '$0.030384'
'daily_ema200_action' => 'SELL'
'weekly_sma21' => '$0.029776'
'weekly_sma21_action' => 'SELL'
'weekly_sma50' => '$0.033329'
'weekly_sma50_action' => 'SELL'
'weekly_sma100' => '$0.042629'
'weekly_sma100_action' => 'SELL'
'weekly_sma200' => '$0.054751'
'weekly_sma200_action' => 'SELL'
'weekly_ema3' => '$0.022431'
'weekly_ema3_action' => 'BUY'
'weekly_ema5' => '$0.0223018'
'weekly_ema5_action' => 'BUY'
'weekly_ema10' => '$0.023671'
'weekly_ema10_action' => 'SELL'
'weekly_ema21' => '$0.027663'
'weekly_ema21_action' => 'SELL'
'weekly_ema50' => '$0.033385'
'weekly_ema50_action' => 'SELL'
'weekly_ema100' => '$0.041985'
'weekly_ema100_action' => 'SELL'
'weekly_ema200' => '$0.0657031'
'weekly_ema200_action' => 'SELL'
'rsi_14' => '65.00'
'rsi_14_action' => 'NEUTRAL'
'stoch_rsi_14' => 119.22
'stoch_rsi_14_action' => 'SELL'
'momentum_10' => 0
'momentum_10_action' => 'BUY'
'vwma_10' => '0.022054'
'vwma_10_action' => 'BUY'
'hma_9' => '0.022675'
'hma_9_action' => 'BUY'
'stochastic_fast_14' => 100
'stochastic_fast_14_action' => 'SELL'
'cci_20' => 191.57
'cci_20_action' => 'SELL'
'adx_14' => 13.83
'adx_14_action' => 'NEUTRAL'
'ao_5_34' => '0.000953'
'ao_5_34_action' => 'BUY'
'macd_12_26' => 0
'macd_12_26_action' => 'BUY'
'williams_percent_r_14' => -0
'williams_percent_r_14_action' => 'SELL'
'ultimate_oscillator' => 76.7
'ultimate_oscillator_action' => 'SELL'
'ichimoku_cloud' => '-0.004442'
'ichimoku_cloud_action' => 'NEUTRAL'
'sell_signals' => 14
'buy_signals' => 21
'sell_pct' => 40
'buy_pct' => 60
'overall_action' => 'bullish'
'overall_action_label' => 'Altista'
'overall_action_dir' => 1
'last_updated' => 1767692410
'last_updated_date' => '6 de janeiro de 2026'
]
Previsão de preço de Bifrost para 2026
A previsão de preço para Bifrost em 2026 sugere que o preço médio poderia variar entre $0.00799 na extremidade inferior e $0.023853 na extremidade superior. No mercado de criptomoedas, comparado ao preço médio de hoje, Bifrost poderia potencialmente ganhar 3.13% até 2026 se BFC atingir a meta de preço prevista.
Previsão de preço de Bifrost 2027-2032
A previsão de preço de BFC para 2027-2032 está atualmente dentro de uma faixa de preço entre $0.01395 na extremidade inferior e $0.086895 na extremidade superior. Considerando a volatilidade de preços no mercado, se Bifrost atingir a meta de preço superior, poderia ganhar 275.71% até 2032 em comparação com o preço de hoje.
| Previsão de Preço de Bifrost | Potencial Mínimo ($) | Preço Médio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2027 | $0.007692 | $0.01395 | $0.0202086 |
| 2028 | $0.013883 | $0.023943 | $0.0340038 |
| 2029 | $0.030496 | $0.0654091 | $0.100321 |
| 2030 | $0.025936 | $0.050463 | $0.074989 |
| 2031 | $0.030664 | $0.04956 | $0.068457 |
| 2032 | $0.0468075 | $0.086895 | $0.126984 |
Previsão de preço de Bifrost 2032-2037
A previsão de preço de Bifrost para 2032-2037 é atualmente estimada entre $0.086895 na extremidade inferior e $0.792423 na extremidade superior. Comparado ao preço atual, Bifrost poderia potencialmente ganhar 3326.16% até 2037 se atingir a meta de preço superior. Por favor, note que esta informação é apenas para fins gerais e não deve ser considerada como aconselhamento de investimento a longo prazo.
| Previsão de Preço de Bifrost | Potencial Mínimo ($) | Preço Médio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2032 | $0.0468075 | $0.086895 | $0.126984 |
| 2033 | $0.10877 | $0.2235053 | $0.33824 |
| 2034 | $0.087446 | $0.141668 | $0.19589 |
| 2035 | $0.103388 | $0.167098 | $0.2308078 |
| 2036 | $0.17114 | $0.324338 | $0.477535 |
| 2037 | $0.444447 | $0.792423 | $1.14 |
Bifrost Histograma de preços potenciais
Previsão de preço de Bifrost baseada na análise técnica
Em 6 de janeiro de 2026, o sentimento geral de previsão de preço para Bifrost é Altista, com 21 indicadores técnicos mostrando sinais de alta e 14 indicando sinais de baixa. A previsão de preço de BFC foi atualizada pela última vez em 6 de janeiro de 2026.
Médias Móveis Simples de 50 e 200 dias e Índice de Força Relativa de 14 dias - RSI (14) de Bifrost
De acordo com nossos indicadores técnicos, o SMA de 200 dias de Bifrost está projetado para aumentar no próximo mês, alcançando $0.031231 até 4 de fev. de 2026. O SMA de 50 dias de curto prazo para Bifrost é esperado para alcançar $0.021384 até 4 de fev. de 2026.
O oscilador de momentum Índice de Força Relativa (RSI) é uma ferramenta comumente usada para identificar se uma criptomoeda está sobrevendida (abaixo de 30) ou sobrecomprada (acima de 70). No momento, o RSI está em 65.00, sugerindo que o mercado de BFC está em um estado NEUTRAL.
Médias Móveis e Osciladores Populares de BFC para Sábado, 19 de Outubro de 2024
Médias móveis (MA) são indicadores amplamente utilizados nos mercados financeiros, projetados para suavizar movimentos de preços ao longo de um período definido. Como indicadores atrasados, eles se baseiam em dados históricos de preços. A tabela abaixo destaca dois tipos: a média móvel simples (SMA) e a média móvel exponencial (EMA).
Média Móvel Simples Diária (SMA)
| Período | Valor | Ação |
|---|---|---|
| SMA 3 | $0.022614 | BUY |
| SMA 5 | $0.022268 | BUY |
| SMA 10 | $0.021983 | BUY |
| SMA 21 | $0.02149 | BUY |
| SMA 50 | $0.021434 | BUY |
| SMA 100 | $0.02604 | SELL |
| SMA 200 | $0.034491 | SELL |
Média Móvel Exponencial Diária (EMA)
| Período | Valor | Ação |
|---|---|---|
| EMA 3 | $0.02270073 | BUY |
| EMA 5 | $0.022448 | BUY |
| EMA 10 | $0.0221027 | BUY |
| EMA 21 | $0.021776 | BUY |
| EMA 50 | $0.022675 | BUY |
| EMA 100 | $0.025987 | SELL |
| EMA 200 | $0.030384 | SELL |
Média Móvel Simples Semanal (SMA)
| Período | Valor | Ação |
|---|---|---|
| SMA 21 | $0.029776 | SELL |
| SMA 50 | $0.033329 | SELL |
| SMA 100 | $0.042629 | SELL |
| SMA 200 | $0.054751 | SELL |
Média Móvel Exponencial Semanal (EMA)
| Período | Valor | Ação |
|---|---|---|
| EMA 21 | $0.027663 | SELL |
| EMA 50 | $0.033385 | SELL |
| EMA 100 | $0.041985 | SELL |
| EMA 200 | $0.0657031 | SELL |
Osciladores de Bifrost
Um oscilador é uma ferramenta de análise técnica que define limites altos e baixos entre dois extremos, criando um indicador de tendência que flutua dentro desses limites. Os traders usam esse indicador para identificar condições de sobrecompra ou sobrevenda de curto prazo.
| Período | Valor | Ação |
|---|---|---|
| RSI (14) | 65.00 | NEUTRAL |
| Stoch RSI (14) | 119.22 | SELL |
| Estocástico Rápido (14) | 100 | SELL |
| Índice de Canal de Commodities (20) | 191.57 | SELL |
| Índice Direcional Médio (14) | 13.83 | NEUTRAL |
| Oscilador Impressionante (5, 34) | 0.000953 | BUY |
| Momentum (10) | 0 | BUY |
| MACD (12, 26) | 0 | BUY |
| Williams Percent Range (14) | -0 | SELL |
| Oscilador Ultimate (7, 14, 28) | 76.7 | SELL |
| VWMA (10) | 0.022054 | BUY |
| Média Móvel de Hull (9) | 0.022675 | BUY |
| Nuvem Ichimoku B/L (9, 26, 52, 26) | -0.004442 | NEUTRAL |
Previsão do preço de Bifrost com base nos fluxos financeiros mundiais
Definições dos fluxos financeiros mundiais, usadas na previsão do preço do Bifrost
M0: o total de todas as moedas físicas, mais as contas no Banco Central que podem ser trocadas por moedas físicas.
M1: o valor de M0, mais o valor em contas de demanda, incluindo contas 'correntes'.
M2: o valor de M1, mais a maioria das contas de poupança, do mercado de moedas e de certificados de depósito (CD) de menos de US$ 100.000.
Previsões de preço de Bifrost por empresas de Internet ou nichos tecnológicos
| Comparação | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Facebook stock | $0.032499 | $0.045667 | $0.06417 | $0.090169 | $0.1267037 | $0.178039 |
| Amazon.com stock | $0.048259 | $0.100695 | $0.2101077 | $0.4384022 | $0.914752 | $1.90 |
| Apple stock | $0.0328061 | $0.046533 | $0.0660036 | $0.093621 | $0.132794 | $0.188358 |
| Netflix stock | $0.036493 | $0.05758 | $0.090853 | $0.143352 | $0.226187 | $0.356888 |
| Google stock | $0.029951 | $0.038787 | $0.050229 | $0.065046 | $0.084234 | $0.109083 |
| Tesla stock | $0.05243 | $0.118856 | $0.269439 | $0.610798 | $1.38 | $3.13 |
| Kodak stock | $0.017344 | $0.0130061 | $0.009753 | $0.007313 | $0.005484 | $0.004112 |
| Nokia stock | $0.015321 | $0.01015 | $0.006723 | $0.004454 | $0.00295 | $0.001954 |
Este cálculo mostra quanto a criptomoeda pode custar, se assumirmos que sua capitalização se comportará da mesma forma que a de algumas empresas de Internet ou nichos tecnológicos. Se você extrapolar os dados, poderá obter uma imagem em potencial do preço futuro para 2024, 2025, 2026, 2027, 2028, 2029 e 2030.
Visão geral da previsão para Bifrost
Você pode fazer perguntas como: 'Devo investir em Bifrost agora?', 'Devo comprar BFC hoje?', 'Bifrost será um bom ou mau investimento no curto ou no longo prazo?'.
Atualizamos a previsão para Bifrost regularmente com novos valores. Veja nossas previsões semelhantes. Fazemos previsões de preços futuros para uma enorme quantidade de moedas digitais, como Bifrost, com métodos de análise técnica.
Se você estiver tentando encontrar criptomoedas com bom retorno, você deve explorar o máximo de fontes de informações disponíveis sobre Bifrost para poder tomar sozinho uma decisão de tão grande responsabilidade sobre o seu investimento.
O preço de Bifrost é de $0.02312 USD hoje, mas o preço pode tanto subir quanto descer e seu investimento pode ser perdido, porque criptomoedas são ativos de alto risco
Previsão de curto prazo para Bifrost
com base no histórico de preços de 4 horas
Previsão de longo prazo para Bifrost
com base no histórico de preços de 1 mês
Previsão do preço de Bifrost com base no padrão de crescimento do Bitcoin
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| Se Bifrost tiver 1% da média anterior do crescimento anual do Bitcoin | $0.023729 | $0.024346 | $0.024979 | $0.025628 |
| Se Bifrost tiver 2% da média anterior do crescimento anual do Bitcoin | $0.02433 | $0.025595 | $0.026926 | $0.028326 |
| Se Bifrost tiver 5% da média anterior do crescimento anual do Bitcoin | $0.026134 | $0.029531 | $0.033369 | $0.037706 |
| Se Bifrost tiver 10% da média anterior do crescimento anual do Bitcoin | $0.02914 | $0.036715 | $0.046258 | $0.058282 |
| Se Bifrost tiver 20% da média anterior do crescimento anual do Bitcoin | $0.035152 | $0.053426 | $0.0812015 | $0.123415 |
| Se Bifrost tiver 50% da média anterior do crescimento anual do Bitcoin | $0.053187 | $0.122314 | $0.281281 | $0.646851 |
| Se Bifrost tiver 100% da média anterior do crescimento anual do Bitcoin | $0.083247 | $0.299633 | $1.07 | $3.88 |
Perguntas Frequentes sobre Bifrost
BFC é um bom investimento?
A decisão de adquirir Bifrost depende inteiramente da sua tolerância individual ao risco. Como você pode perceber, o valor de Bifrost experimentou uma escalada de 0.139% nas últimas 24 horas, e Bifrost registrou um declínio de durante os últimos 30 dias. Consequentemente, a decisão de investir ou não em Bifrost dependerá de quão alinhado esse investimento está com suas aspirações de negociação.
Bifrost pode subir?
Parece que o valor médio de Bifrost pode potencialmente subir para $0.023853 até o final deste ano. Observando as perspectivas de Bifrost em um horizonte de cinco anos mais longo, a moeda digital poderia potencialmente crescer até $0.074989. No entanto, dada a imprevisibilidade do mercado, é vital conduzir uma pesquisa aprofundada antes de investir quaisquer fundos em um projeto, rede ou ativo específico.
Qual será o preço de Bifrost na próxima semana?
Com base na nossa nova previsão experimental de Bifrost, o preço de Bifrost aumentará 0.86% na próxima semana e atingirá $0.023326 até 13 de janeiro de 2026.
Qual será o preço de Bifrost no próximo mês?
Com base na nossa nova previsão experimental de Bifrost, o preço de Bifrost diminuirá -11.62% no próximo mês e atingirá $0.020441 até 5 de fevereiro de 2026.
Até onde o preço de Bifrost pode subir este ano em 2026?
De acordo com nossa previsão mais recente sobre o valor de Bifrost em 2026, espera-se que BFC fluctue dentro do intervalo de $0.00799 e $0.023853. No entanto, é crucial lembrar que o mercado de criptomoedas é excepcionalmente instável, e essa previsão de preço de Bifrost não considera flutuações repentinas e extremas de preço.
Onde estará Bifrost em 5 anos?
O futuro de Bifrost parece seguir uma tendência de alta, com um preço máximo de $0.074989 projetada após um período de cinco anos. Com base na previsão de Bifrost para 2030, o valor de Bifrost pode potencialmente atingir seu pico mais alto de aproximadamente $0.074989, enquanto seu pico mais baixo está previsto para cerca de $0.025936.
Quanto será Bifrost em 2026?
Com base na nossa nova simulação experimental de previsão de preços de Bifrost, espera-se que o valor de BFC em 2026 aumente 3.13% para $0.023853 se o melhor cenário ocorrer. O preço ficará entre $0.023853 e $0.00799 durante 2026.
Quanto será Bifrost em 2027?
De acordo com nossa última simulação experimental para previsão de preços de Bifrost, o valor de BFC pode diminuir -12.62% para $0.0202086 em 2027, assumindo as condições mais favoráveis. O preço está projetado para flutuar entre $0.0202086 e $0.007692 ao longo do ano.
Quanto será Bifrost em 2028?
Nosso novo modelo experimental de previsão de preços de Bifrost sugere que o valor de BFC em 2028 pode aumentar 47.02%, alcançando $0.0340038 no melhor cenário. O preço é esperado para variar entre $0.0340038 e $0.013883 durante o ano.
Quanto será Bifrost em 2029?
Com base no nosso modelo de previsão experimental, o valor de Bifrost pode experimentar um 333.75% crescimento em 2029, potencialmente alcançando $0.100321 sob condições ótimas. A faixa de preço prevista para 2029 está entre $0.100321 e $0.030496.
Quanto será Bifrost em 2030?
Usando nossa nova simulação experimental para previsões de preços de Bifrost, espera-se que o valor de BFC em 2030 aumente 224.23%, alcançando $0.074989 no melhor cenário. O preço está previsto para variar entre $0.074989 e $0.025936 ao longo de 2030.
Quanto será Bifrost em 2031?
Nossa simulação experimental indica que o preço de Bifrost poderia aumentar 195.98% em 2031, potencialmente atingindo $0.068457 sob condições ideais. O preço provavelmente oscilará entre $0.068457 e $0.030664 durante o ano.
Quanto será Bifrost em 2032?
Com base nos achados da nossa mais recente previsão experimental de preços de Bifrost, BFC poderia ver um 449.04% aumento em valor, atingindo $0.126984 se o cenário mais positivo se desenrolar em 2032. O preço é esperado para permanecer dentro de uma faixa de $0.126984 e $0.0468075 ao longo do ano.
Quanto será Bifrost em 2033?
De acordo com nossa previsão experimental de preços de Bifrost, espera-se que o valor de BFC seja aumentar 1362.43% em 2033, com o preço potencial mais alto sendo $0.33824. Ao longo do ano, o preço de BFC poderia variar entre $0.33824 e $0.10877.
Quanto será Bifrost em 2034?
Os resultados da nossa nova simulação de previsão de preços de Bifrost sugerem que BFC pode aumentar 746.96% em 2034, atingindo potencialmente $0.19589 nas melhores circunstâncias. A faixa de preço prevista para o ano é entre $0.19589 e $0.087446.
Quanto será Bifrost em 2035?
Com base em nossa previsão experimental para o preço de Bifrost, BFC poderia aumentar 897.93%, com o valor potencialmente atingindo $0.2308078 em 2035. A faixa de preço esperada para o ano está entre $0.2308078 e $0.103388.
Quanto será Bifrost em 2036?
Nossa recente simulação de previsão de preços de Bifrost sugere que o valor de BFC pode aumentar 1964.7% em 2036, possivelmente atingindo $0.477535 se as condições forem ideais. A faixa de preço esperada para 2036 está entre $0.477535 e $0.17114.
Quanto será Bifrost em 2037?
De acordo com a simulação experimental, o valor de Bifrost poderia aumentar 4830.69% em 2037, com um pico de $1.14 sob condições favoráveis. O preço é esperado para cair entre $1.14 e $0.444447 ao longo do ano.
Previsões relacionadas
Previsão de Preço do Request
Previsão de Preço do POL (ex-MATIC)
Previsão de Preço do Maya Protocol
Previsão de Preço do CertiK
Previsão de Preço do Badger DAO
Previsão de Preço do Electroneum
Previsão de Preço do Ondo US Dollar Yield
Previsão de Preço do Sidus
Previsão de Preço do Hard Protocol
Previsão de Preço do Solidus Ai Tech
Previsão de Preço do Chainge FinancePrevisão de Preço do Mobox
Previsão de Preço do Trias Token
Previsão de Preço do SuperRare
Previsão de Preço do CONX
Previsão de Preço do Banana Gun
Previsão de Preço do Dora Factory
Previsão de Preço do Automata
Previsão de Preço do Storm
Previsão de Preço do Adventure Gold
Previsão de Preço do Star Atlas
Previsão de Preço do Radio Caca
Previsão de Preço do CoinEx Token
Previsão de Preço do Blendr Network
Previsão de Preço do Access Protocol
Como ler e prever os movimentos de preço de Bifrost?
Traders de Bifrost utilizam indicadores e padrões de gráfico para prever a direção do mercado. Eles também identificam níveis-chave de suporte e resistência para avaliar quando uma tendência de baixa pode desacelerar ou uma tendência de alta pode estagnar.
Indicadores de Previsão de Preço de Bifrost
Médias móveis são ferramentas populares para a previsão de preço de Bifrost. Uma média móvel simples (SMA) calcula o preço médio de fechamento de BFC em um período específico, como uma SMA de 12 dias. Uma média móvel exponencial (EMA) dá mais peso aos preços recentes, reagindo mais rapidamente às mudanças de preço.
Médias móveis comumente usadas no mercado de criptomoedas incluem as de 50 dias, 100 dias e 200 dias, que ajudam a identificar níveis-chave de resistência e suporte. Um movimento de preço de BFC acima dessas médias é visto como altista, enquanto uma queda abaixo indica fraqueza.
Traders também usam RSI e níveis de retração de Fibonacci para avaliar a direção futura de BFC.
Como ler gráficos de Bifrost e prever movimentos de preço?
A maioria dos traders prefere gráficos de velas em vez de gráficos de linha simples porque eles fornecem informações mais detalhadas. Velas podem representar a ação de preço de Bifrost em diferentes períodos de tempo, como 5 minutos para tendências de curto prazo e semanal para tendências de longo prazo. Opções populares incluem gráficos de 1 hora, 4 horas e 1 dia.
Por exemplo, um gráfico de velas de 1 hora mostra os preços de abertura, fechamento, máximo e mínimo de BFC dentro de cada hora. A cor da vela é crucial: verde indica que o preço fechou mais alto do que abriu, enquanto vermelho significa o oposto. Alguns gráficos usam velas vazias e preenchidas para transmitir a mesma informação.
O que afeta o preço de Bifrost?
A ação de preço de Bifrost é impulsionada pela oferta e demanda, influenciada por fatores como reduções pela metade das recompensas de bloco, hard forks e atualizações de protocolo. Eventos do mundo real, como regulamentações, adoção por empresas e governos e hacks de exchanges de criptomoedas, também impactam o preço de BFC. A capitalização de mercado de Bifrost pode mudar rapidamente.
Traders frequentemente monitoram a atividade de "baleias" de BFC, grandes detentores de Bifrost, pois suas ações podem influenciar significativamente os movimentos de preço no relativamente pequeno mercado de Bifrost.
Padrões de previsão de preço altistas e baixistas
Traders frequentemente identificam padrões de velas para ganhar vantagem em previsões de preço de criptomoedas. Certas formações indicam tendências altistas, enquanto outras sugerem movimentos baixistas.
Padrões de velas altistas comumente seguidos:
- Martelo
- Engolfo de Alta
- Linha de Perfuração
- Estrela da Manhã
- Três Soldados Brancos
Padrões de velas baixistas comuns:
- Harami de Baixa
- Nuvem Negra
- Estrela da Noite
- Estrela Cadente
- Homem Enforcado


