Previsão de Preço Bifrost - Projeção BFC
Previsão de Preço Bifrost até $0.024122 até 2026
| Ano | Preço Mínimo | Preço Máximo |
|---|---|---|
| 2026 | $0.008081 | $0.024122 |
| 2027 | $0.007779 | $0.020436 |
| 2028 | $0.014039 | $0.034387 |
| 2029 | $0.030841 | $0.101452 |
| 2030 | $0.026228 | $0.075835 |
| 2031 | $0.03101 | $0.069229 |
| 2032 | $0.047335 | $0.128416 |
| 2033 | $0.109997 | $0.342055 |
| 2034 | $0.088432 | $0.19810034 |
| 2035 | $0.104554 | $0.233411 |
Calculadora de lucro do investimento
Se você abrir um short de $10,000.00 em Bifrost hoje e fechar em Apr 06, 2026, nossa previsão mostra que pode lucrar cerca de $3,954.56, com um retorno de 39.55% nos próximos 90 dias.
Previsão de preço de longo prazo de Bifrost para os anos 2027, 2028, 2029, 2030, 2031, 2032 e 2037
[
'name' => 'Bifrost'
'name_with_ticker' => 'Bifrost <small>BFC</small>'
'name_lang' => 'Bifrost'
'name_lang_with_ticker' => 'Bifrost <small>BFC</small>'
'name_with_lang' => 'Bifrost'
'name_with_lang_with_ticker' => 'Bifrost <small>BFC</small>'
'image' => '/uploads/coins/bifrost.png?1717201112'
'price_for_sd' => 0.02338
'ticker' => 'BFC'
'marketcap' => '$32.54M'
'low24h' => '$0.02276'
'high24h' => '$0.02344'
'volume24h' => '$1.58M'
'current_supply' => '1.39B'
'max_supply' => '2.37B'
'algo' => 'SHA-256'
'proof' => null
'ico_price_and_roi' => '—'
'price' => '$0.02338'
'change_24h_pct' => '1.9994%'
'ath_price' => '$0.7788'
'ath_days' => 1601
'ath_exchange' => null
'ath_pair' => null
'ath_date' => '19 de ago. de 2021'
'ath_pct' => '-97.00%'
'fdv' => '$55.4M'
'new_prediction' => true
'change_24h_pct_is_increased' => true
'change_30d_pct' => null
'change_30d_pct_is_increased' => false
'max_price' => '$1.15'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.023589'
'next_week_prediction_price_date' => '13 de janeiro de 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.020672'
'next_month_prediction_price_date' => '5 de fevereiro de 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.008081'
'current_year_max_price_prediction' => '$0.024122'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.026228'
'grand_prediction_max_price' => '$0.075835'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.023832749290607
107 => 0.02392173212517
108 => 0.024122214995017
109 => 0.022409110822647
110 => 0.023178244301945
111 => 0.023630038162972
112 => 0.021588817062452
113 => 0.023589689784841
114 => 0.022379289490319
115 => 0.021968461450755
116 => 0.022521587283549
117 => 0.022306033608577
118 => 0.022120713216572
119 => 0.022017301253625
120 => 0.022423455818958
121 => 0.022404508223026
122 => 0.021739960522937
123 => 0.020873085138601
124 => 0.021164036971798
125 => 0.02105833144311
126 => 0.020675240970857
127 => 0.020933397694635
128 => 0.019796606133244
129 => 0.017840815337155
130 => 0.019132870644544
131 => 0.019083127920695
201 => 0.019058045383678
202 => 0.020028989237395
203 => 0.019935655389346
204 => 0.019766253541209
205 => 0.02067212977307
206 => 0.020341472762686
207 => 0.021360479756099
208 => 0.022031663667201
209 => 0.02186142971682
210 => 0.022492681429325
211 => 0.021170739914395
212 => 0.021609835858567
213 => 0.0217003329241
214 => 0.020660951400984
215 => 0.019950925961166
216 => 0.019903575359212
217 => 0.0186724890941
218 => 0.019330125439942
219 => 0.019908818209442
220 => 0.019631669281224
221 => 0.01954393221014
222 => 0.019992161878463
223 => 0.02002699316252
224 => 0.019232836194783
225 => 0.019397966576056
226 => 0.020086587716605
227 => 0.019380615090134
228 => 0.018009025596874
301 => 0.017668852438837
302 => 0.017623467068919
303 => 0.01670089048485
304 => 0.017691584435858
305 => 0.017259119977296
306 => 0.018625270020174
307 => 0.017844932442492
308 => 0.017811293649159
309 => 0.017760443679298
310 => 0.01696634390223
311 => 0.017140201285735
312 => 0.01771812970773
313 => 0.017924341079527
314 => 0.017902831544009
315 => 0.017715297543174
316 => 0.017801149648427
317 => 0.017524590104552
318 => 0.01742693117352
319 => 0.01711869272398
320 => 0.016665667356201
321 => 0.016728663312157
322 => 0.01583110151805
323 => 0.015342062215411
324 => 0.015206702581875
325 => 0.015025694022842
326 => 0.015227147980264
327 => 0.01582855883826
328 => 0.015103129747085
329 => 0.013859432453199
330 => 0.013934180779719
331 => 0.014102118076431
401 => 0.013789168035024
402 => 0.013492987084738
403 => 0.013750492391092
404 => 0.013223521452301
405 => 0.01416579999675
406 => 0.014140314002828
407 => 0.014491537174085
408 => 0.014711164230897
409 => 0.014204994970049
410 => 0.014077694769774
411 => 0.014150210749322
412 => 0.012951683138724
413 => 0.014393591898482
414 => 0.014406061585313
415 => 0.0142992885561
416 => 0.015067060456732
417 => 0.016687298641129
418 => 0.016077699862229
419 => 0.015841644789818
420 => 0.01539290392461
421 => 0.015990824483904
422 => 0.015944913513964
423 => 0.015737286696677
424 => 0.015611713349746
425 => 0.015843086091754
426 => 0.015583043706523
427 => 0.015536332948649
428 => 0.015253316577735
429 => 0.015152292609744
430 => 0.015077498485723
501 => 0.014995157504294
502 => 0.015176781191231
503 => 0.014765198022047
504 => 0.014268869068006
505 => 0.014227604685831
506 => 0.014341539273018
507 => 0.01429113169962
508 => 0.014227363353763
509 => 0.014105612215247
510 => 0.01406949125325
511 => 0.014186866856339
512 => 0.014054356643875
513 => 0.014249882680571
514 => 0.014196710417538
515 => 0.013899694478593
516 => 0.013529502649283
517 => 0.013526207165498
518 => 0.01344644994311
519 => 0.013344867128819
520 => 0.013316609113783
521 => 0.013728806012431
522 => 0.014582041256618
523 => 0.014414530761995
524 => 0.014535574261526
525 => 0.015130988478064
526 => 0.015320252752771
527 => 0.015185917453554
528 => 0.015002031010545
529 => 0.015010121080798
530 => 0.015638516722771
531 => 0.015677708988155
601 => 0.015776735198876
602 => 0.015904011864457
603 => 0.015207593220062
604 => 0.014977319825275
605 => 0.014868203515743
606 => 0.014532167515711
607 => 0.014894553532196
608 => 0.014683406719307
609 => 0.014711897638168
610 => 0.014693342889883
611 => 0.014703475037113
612 => 0.014165536610694
613 => 0.01436153310007
614 => 0.014035650922338
615 => 0.013599331268346
616 => 0.013597868571872
617 => 0.013704657189053
618 => 0.013641135140915
619 => 0.013470198942676
620 => 0.01349447962284
621 => 0.013281755315273
622 => 0.013520308205276
623 => 0.013527149048578
624 => 0.013435293191863
625 => 0.013802816832868
626 => 0.013953391568458
627 => 0.013892930075826
628 => 0.013949149428957
629 => 0.014421491579311
630 => 0.014498503959552
701 => 0.014532707771702
702 => 0.014486879194557
703 => 0.013957782976375
704 => 0.013981250643542
705 => 0.013809060472911
706 => 0.013663577923681
707 => 0.013669396462694
708 => 0.013744193404406
709 => 0.014070836035645
710 => 0.014758236196452
711 => 0.014784322530072
712 => 0.014815939927411
713 => 0.014687336082802
714 => 0.014648547932695
715 => 0.014699719514757
716 => 0.014957870873373
717 => 0.015621906255143
718 => 0.015387191801794
719 => 0.015196365297673
720 => 0.015363771588243
721 => 0.015338000701984
722 => 0.015120468487051
723 => 0.015114363082291
724 => 0.014696849212579
725 => 0.014542503841277
726 => 0.014413521296466
727 => 0.014272675724708
728 => 0.014189177748583
729 => 0.014317468589062
730 => 0.014346810222172
731 => 0.014066300057324
801 => 0.014028067558376
802 => 0.014257138214223
803 => 0.0141563327592
804 => 0.014260013669547
805 => 0.014284068530105
806 => 0.014280195143525
807 => 0.014174942671048
808 => 0.014242027458331
809 => 0.014083351937468
810 => 0.013910816140823
811 => 0.013800749051924
812 => 0.013704700918578
813 => 0.013757994005308
814 => 0.013568013882048
815 => 0.013507235417072
816 => 0.014219300641855
817 => 0.014745310879393
818 => 0.014737662482216
819 => 0.014691104831411
820 => 0.014621929606189
821 => 0.014952810274782
822 => 0.014837538066012
823 => 0.014921408229208
824 => 0.014942756705761
825 => 0.015007372114537
826 => 0.015030466569292
827 => 0.014960659086891
828 => 0.014726376649688
829 => 0.014142567091083
830 => 0.013870802165589
831 => 0.013781115213573
901 => 0.013784375163939
902 => 0.013694451179785
903 => 0.013720937823228
904 => 0.013685240206108
905 => 0.013617637555462
906 => 0.01375381973213
907 => 0.013769513459367
908 => 0.013737726912076
909 => 0.013745213794653
910 => 0.013482034759302
911 => 0.013502043689765
912 => 0.013390631422336
913 => 0.013369742965288
914 => 0.013088102455002
915 => 0.012589135466586
916 => 0.012865611614066
917 => 0.01253166730634
918 => 0.012405197536922
919 => 0.013003885755262
920 => 0.012943794063167
921 => 0.012840943207531
922 => 0.012688805356049
923 => 0.012632375947032
924 => 0.012289528721227
925 => 0.012269271478108
926 => 0.012439195820871
927 => 0.012360781583425
928 => 0.012250658296258
929 => 0.011851802913157
930 => 0.011403357406072
1001 => 0.011416893157103
1002 => 0.011559535329281
1003 => 0.011974286682808
1004 => 0.011812236153714
1005 => 0.01169466663554
1006 => 0.011672649398913
1007 => 0.011948241211509
1008 => 0.012338261364601
1009 => 0.012521250094223
1010 => 0.012339913820618
1011 => 0.012131604473339
1012 => 0.012144283298095
1013 => 0.012228629838986
1014 => 0.012237493467837
1015 => 0.012101905497306
1016 => 0.012140072716799
1017 => 0.012082093220305
1018 => 0.01172627315734
1019 => 0.011719837500718
1020 => 0.011632513518893
1021 => 0.011629869383428
1022 => 0.011481309506356
1023 => 0.011460524952607
1024 => 0.011165550299739
1025 => 0.011359703509522
1026 => 0.011229475729901
1027 => 0.011033191748383
1028 => 0.010999352315986
1029 => 0.010998335061786
1030 => 0.011199874822509
1031 => 0.011357348400076
1101 => 0.011231741097883
1102 => 0.011203142749969
1103 => 0.011508498286313
1104 => 0.011469639010935
1105 => 0.011435987129074
1106 => 0.01230333933767
1107 => 0.01161676238423
1108 => 0.011317375644087
1109 => 0.010946827701161
1110 => 0.011067479979842
1111 => 0.011092903187711
1112 => 0.01020180218126
1113 => 0.0098402826139227
1114 => 0.0097162227219899
1115 => 0.0096448245002332
1116 => 0.0096773615664502
1117 => 0.0093519515538304
1118 => 0.0095706324640958
1119 => 0.0092888548993907
1120 => 0.0092416139736844
1121 => 0.0097454671649191
1122 => 0.0098155753930117
1123 => 0.0095164719110493
1124 => 0.0097085447669243
1125 => 0.0096388964793716
1126 => 0.0092936851669869
1127 => 0.0092805006340563
1128 => 0.0091072857322661
1129 => 0.0088362379519785
1130 => 0.0087123618432042
1201 => 0.0086478460902128
1202 => 0.008674466547284
1203 => 0.0086610064295894
1204 => 0.0085731700568575
1205 => 0.0086660411076568
1206 => 0.0084287939498323
1207 => 0.0083343202199564
1208 => 0.0082916486279453
1209 => 0.0080810781199392
1210 => 0.0084161894393068
1211 => 0.0084822105908434
1212 => 0.0085483618244435
1213 => 0.0091241631495669
1214 => 0.0090953977425614
1215 => 0.0093554230125699
1216 => 0.0093453189087331
1217 => 0.0092711554895966
1218 => 0.00895827222355
1219 => 0.0090829819167882
1220 => 0.0086991448651903
1221 => 0.00898674168263
1222 => 0.0088554945054807
1223 => 0.008942366880013
1224 => 0.0087861625176378
1225 => 0.0088726124612963
1226 => 0.008497866655096
1227 => 0.008147934294082
1228 => 0.0082887572913165
1229 => 0.0084418479943735
1230 => 0.0087737876453868
1231 => 0.008576087127686
]
'min_raw' => 0.0080810781199392
'max_raw' => 0.024122214995017
'avg_raw' => 0.016101646557478
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.008081'
'max' => '$0.024122'
'avg' => '$0.0161016'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.015308451880061
'max_diff' => 0.00073268499501727
'year' => 2026
]
1 => [
'items' => [
101 => 0.0086471877097354
102 => 0.0084090126619634
103 => 0.0079175895070706
104 => 0.0079203709087589
105 => 0.0078447761626141
106 => 0.0077794512649313
107 => 0.0085987954103635
108 => 0.0084968970139649
109 => 0.008334535255436
110 => 0.0085518629212267
111 => 0.0086093278055156
112 => 0.0086109637499852
113 => 0.0087695204049071
114 => 0.0088541421200618
115 => 0.0088690570641293
116 => 0.0091185493864923
117 => 0.009202175922065
118 => 0.0095466217868189
119 => 0.00884696255875
120 => 0.0088325535373714
121 => 0.0085549211671678
122 => 0.0083788423287905
123 => 0.0085669774358735
124 => 0.0087336394577459
125 => 0.0085600998207559
126 => 0.0085827604337251
127 => 0.0083497976497754
128 => 0.0084330708831197
129 => 0.0085047970097916
130 => 0.0084651940585102
131 => 0.0084059065236374
201 => 0.008719975072541
202 => 0.0087022540941673
203 => 0.008994721947311
204 => 0.0092227215534133
205 => 0.0096313376073534
206 => 0.0092049254534303
207 => 0.0091893852997065
208 => 0.0093412927950753
209 => 0.009202152665819
210 => 0.009290084424555
211 => 0.0096171704416013
212 => 0.0096240812537261
213 => 0.0095083162465573
214 => 0.0095012719353503
215 => 0.0095235058713075
216 => 0.0096537307286731
217 => 0.0096082261621039
218 => 0.0096608851985724
219 => 0.0097267361300201
220 => 0.0099991235027041
221 => 0.010064795176095
222 => 0.0099052470566138
223 => 0.0099196524654184
224 => 0.0098599770890385
225 => 0.0098023314231859
226 => 0.0099319104615492
227 => 0.010168718701041
228 => 0.010167245529273
301 => 0.010222180437941
302 => 0.010256404430935
303 => 0.010109489999509
304 => 0.010013854106843
305 => 0.010050526993561
306 => 0.010109167738055
307 => 0.010031510590462
308 => 0.009552174701231
309 => 0.0096975745899286
310 => 0.009673372938758
311 => 0.0096389068444697
312 => 0.0097851075568992
313 => 0.0097710061415264
314 => 0.0093486140038111
315 => 0.0093756541780197
316 => 0.0093502584063646
317 => 0.0094323173400683
318 => 0.0091977212141045
319 => 0.0092698814024219
320 => 0.0093151395960749
321 => 0.0093417970198263
322 => 0.009438101913583
323 => 0.0094268016458476
324 => 0.0094373994730743
325 => 0.0095801942069661
326 => 0.010302400969756
327 => 0.010341709090395
328 => 0.010148141528098
329 => 0.010225467951284
330 => 0.010077018128196
331 => 0.010176673488962
401 => 0.010244855155827
402 => 0.0099367553138461
403 => 0.0099185116407555
404 => 0.0097694491124409
405 => 0.009849546871824
406 => 0.0097221055774128
407 => 0.0097533752133541
408 => 0.0096659425852244
409 => 0.0098233039081952
410 => 0.0099992583187539
411 => 0.010043711351511
412 => 0.0099267745605606
413 => 0.0098421046174021
414 => 0.0096934520892292
415 => 0.0099406645565185
416 => 0.010012957015617
417 => 0.0099402848350067
418 => 0.0099234451028407
419 => 0.0098915338408149
420 => 0.0099302152279337
421 => 0.010012563295359
422 => 0.0099737294674915
423 => 0.0099993798949623
424 => 0.0099016269160497
425 => 0.010109538634299
426 => 0.010439752479557
427 => 0.010440814171065
428 => 0.010401980133869
429 => 0.010386090082539
430 => 0.010425936161349
501 => 0.010447551024532
502 => 0.010576405936883
503 => 0.010714672391642
504 => 0.011359901605622
505 => 0.011178723824263
506 => 0.011751209567764
507 => 0.012203971462903
508 => 0.012339734958378
509 => 0.012214838930707
510 => 0.011787576366799
511 => 0.01176661282705
512 => 0.012405123483131
513 => 0.012224714977147
514 => 0.012203255959415
515 => 0.011974968266333
516 => 0.012109914566926
517 => 0.012080399831443
518 => 0.012033809377574
519 => 0.012291277518664
520 => 0.012773234894443
521 => 0.01269811731766
522 => 0.012642045531196
523 => 0.012396355285161
524 => 0.012544315690177
525 => 0.012491629823946
526 => 0.012718001740553
527 => 0.012583904031907
528 => 0.012223348205278
529 => 0.012280767909076
530 => 0.012272089036359
531 => 0.012450699621877
601 => 0.012397085157492
602 => 0.012261619951707
603 => 0.012771587616528
604 => 0.012738473152964
605 => 0.012785421891278
606 => 0.012806090177822
607 => 0.013116498508761
608 => 0.013243662869988
609 => 0.013272531406312
610 => 0.013393327714233
611 => 0.013269525884128
612 => 0.013764821473756
613 => 0.01409416413956
614 => 0.014476712593711
615 => 0.015035718704555
616 => 0.015245910173328
617 => 0.015207940965845
618 => 0.015631773019238
619 => 0.016393389797929
620 => 0.015361885492275
621 => 0.016448062030817
622 => 0.016104191079226
623 => 0.015288879238978
624 => 0.015236382768361
625 => 0.015788521412542
626 => 0.017013111783961
627 => 0.01670636578511
628 => 0.017013613510527
629 => 0.016655192718404
630 => 0.016637394105068
701 => 0.016996205812663
702 => 0.017834588925269
703 => 0.017436304534791
704 => 0.016865266197702
705 => 0.017286912019468
706 => 0.016921643387176
707 => 0.016098590926368
708 => 0.016706131222225
709 => 0.016299886328137
710 => 0.016418450185398
711 => 0.017272316528405
712 => 0.017169577070964
713 => 0.01730253144231
714 => 0.017067870456907
715 => 0.016848660093899
716 => 0.016439487672569
717 => 0.01631835189057
718 => 0.016351829462705
719 => 0.016318335300747
720 => 0.016089407091502
721 => 0.016039970066512
722 => 0.015957572858976
723 => 0.015983111199004
724 => 0.015828180342683
725 => 0.016120566878909
726 => 0.016174836396534
727 => 0.016387610934585
728 => 0.016409701892978
729 => 0.017002275952795
730 => 0.01667589611845
731 => 0.016894859889608
801 => 0.016875273708949
802 => 0.015306549518798
803 => 0.01552270587123
804 => 0.015858977322014
805 => 0.015707487489241
806 => 0.015493316308861
807 => 0.015320361597572
808 => 0.015058317524443
809 => 0.015427139525262
810 => 0.015912101236492
811 => 0.016422001322283
812 => 0.017034612865384
813 => 0.016897885100549
814 => 0.016410548975609
815 => 0.016432410518174
816 => 0.016567549972115
817 => 0.016392532100548
818 => 0.016340915913468
819 => 0.01656045870063
820 => 0.016561970571147
821 => 0.016360591358293
822 => 0.016136795215213
823 => 0.016135857501202
824 => 0.016096035139155
825 => 0.016662277028146
826 => 0.016973652813579
827 => 0.017009351545572
828 => 0.016971250004483
829 => 0.016985913775452
830 => 0.016804731066606
831 => 0.017218861010965
901 => 0.017598907601116
902 => 0.017497046996444
903 => 0.017344343469703
904 => 0.017222707755456
905 => 0.017468393487806
906 => 0.01745745348889
907 => 0.017595588225696
908 => 0.01758932163613
909 => 0.017542872119652
910 => 0.017497048655303
911 => 0.017678733511798
912 => 0.017626411190897
913 => 0.01757400759898
914 => 0.017468904172801
915 => 0.017483189474002
916 => 0.017330512313678
917 => 0.01725987687328
918 => 0.016197689327824
919 => 0.015913838107698
920 => 0.016003143479874
921 => 0.016032545127208
922 => 0.015909012712444
923 => 0.016086126462341
924 => 0.01605852347203
925 => 0.016165910560123
926 => 0.016098819769688
927 => 0.016101573199129
928 => 0.016298872908535
929 => 0.016356149853549
930 => 0.016327018337033
1001 => 0.016347421052631
1002 => 0.016817593022127
1003 => 0.016750749603318
1004 => 0.016715240369314
1005 => 0.016725076669808
1006 => 0.016845215688615
1007 => 0.016878848054534
1008 => 0.016736345356831
1009 => 0.016803550452866
1010 => 0.017089701222185
1011 => 0.017189837796715
1012 => 0.017509425674335
1013 => 0.0173736590637
1014 => 0.017622864553361
1015 => 0.018388837268165
1016 => 0.01900074927403
1017 => 0.018438009705103
1018 => 0.019561708177352
1019 => 0.020436668622969
1020 => 0.020403086183743
1021 => 0.02025051659185
1022 => 0.019254397386542
1023 => 0.018337753642516
1024 => 0.019104565057143
1025 => 0.019106519817135
1026 => 0.019040650036567
1027 => 0.018631538486636
1028 => 0.01902641384143
1029 => 0.019057757613117
1030 => 0.019040213435954
1031 => 0.018726548569835
1101 => 0.018247640294227
1102 => 0.018341217824937
1103 => 0.018494499729168
1104 => 0.018204305106503
1105 => 0.018111570341049
1106 => 0.018283981913539
1107 => 0.018839527923478
1108 => 0.018734505168358
1109 => 0.018731762599791
1110 => 0.019181094482775
1111 => 0.018859469826448
1112 => 0.018342398137276
1113 => 0.018211830716422
1114 => 0.017748404333145
1115 => 0.018068494586742
1116 => 0.018080014065124
1117 => 0.017904703904471
1118 => 0.018356623590623
1119 => 0.018352459071156
1120 => 0.018781489553789
1121 => 0.019601634700092
1122 => 0.019359077423439
1123 => 0.019077009700847
1124 => 0.019107678283183
1125 => 0.019444036934889
1126 => 0.019240666815746
1127 => 0.019313800128537
1128 => 0.019443926238861
1129 => 0.01952243455207
1130 => 0.019096382145086
1201 => 0.018997048948576
1202 => 0.018793848089731
1203 => 0.018740836778581
1204 => 0.018906339638186
1205 => 0.018862735481983
1206 => 0.018079045897571
1207 => 0.017997145975593
1208 => 0.017999657729274
1209 => 0.017793716481329
1210 => 0.017479606646651
1211 => 0.018305068537661
1212 => 0.018238772395481
1213 => 0.018165586585429
1214 => 0.018174551429568
1215 => 0.018532856458956
1216 => 0.018325021447073
1217 => 0.018877584889652
1218 => 0.018763994457435
1219 => 0.018647490859248
1220 => 0.018631386513192
1221 => 0.01858654256751
1222 => 0.018432755992069
1223 => 0.018247049461083
1224 => 0.018124429923702
1225 => 0.016718828550874
1226 => 0.016979699989664
1227 => 0.017279808800812
1228 => 0.017383405159809
1229 => 0.017206196419094
1230 => 0.018439753273252
1231 => 0.018665135997357
]
'min_raw' => 0.0077794512649313
'max_raw' => 0.020436668622969
'avg_raw' => 0.01410805994395
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.007779'
'max' => '$0.020436'
'avg' => '$0.014108'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -0.00030162685500793
'max_diff' => -0.0036855463720482
'year' => 2027
]
2 => [
'items' => [
101 => 0.017982437024693
102 => 0.017854731921323
103 => 0.018448125598569
104 => 0.018090236671763
105 => 0.01825139403359
106 => 0.017903059965684
107 => 0.018610847899096
108 => 0.018605455740913
109 => 0.0183301102487
110 => 0.018562830373234
111 => 0.018522389524635
112 => 0.018211525142073
113 => 0.018620702854502
114 => 0.018620905801543
115 => 0.018355891751815
116 => 0.018046413360768
117 => 0.017991085934003
118 => 0.017949404150129
119 => 0.018241142869896
120 => 0.018502714893797
121 => 0.018989435581072
122 => 0.019111808726051
123 => 0.019589439257747
124 => 0.019305033531531
125 => 0.019431106906291
126 => 0.019567977388762
127 => 0.019633598131304
128 => 0.019526672652735
129 => 0.020268629469028
130 => 0.020331273357293
131 => 0.020352277311161
201 => 0.020102093647279
202 => 0.020324315297022
203 => 0.020220345146315
204 => 0.020490846594714
205 => 0.020533264675759
206 => 0.020497338070181
207 => 0.020510802238628
208 => 0.019877672986074
209 => 0.019844841894306
210 => 0.019397187628463
211 => 0.019579610050687
212 => 0.019238580076074
213 => 0.019346724194022
214 => 0.019394393090778
215 => 0.019369493564299
216 => 0.019589923940736
217 => 0.019402513089814
218 => 0.018907905041034
219 => 0.018413162236621
220 => 0.018406951143721
221 => 0.018276694096255
222 => 0.018182542108705
223 => 0.018200679121729
224 => 0.01826459632127
225 => 0.018178827124873
226 => 0.018197130331533
227 => 0.018501085515717
228 => 0.018562041560197
229 => 0.018354889103993
301 => 0.017523142100378
302 => 0.017319029299411
303 => 0.017465741533013
304 => 0.01739562253483
305 => 0.01403962505828
306 => 0.014828066885181
307 => 0.014359601524591
308 => 0.014575491915806
309 => 0.014097310091161
310 => 0.014325523521538
311 => 0.014283380833968
312 => 0.015551171959935
313 => 0.015531377145292
314 => 0.015540851875543
315 => 0.015088598314385
316 => 0.015809050517332
317 => 0.016163971179127
318 => 0.016098284810537
319 => 0.016114816654354
320 => 0.015830744804958
321 => 0.015543602311996
322 => 0.015225117096388
323 => 0.015816823261025
324 => 0.015751035636279
325 => 0.015901928777807
326 => 0.016285692521605
327 => 0.016342203190656
328 => 0.016418154102935
329 => 0.016390931107437
330 => 0.017039493304667
331 => 0.016960948143231
401 => 0.017150219383306
402 => 0.016760874082429
403 => 0.01632029291749
404 => 0.016404032993261
405 => 0.016395968150569
406 => 0.016293293446706
407 => 0.016200603314953
408 => 0.016046300360869
409 => 0.016534537740133
410 => 0.016514716194161
411 => 0.016835603983421
412 => 0.016778883949731
413 => 0.016400093683007
414 => 0.016413622251487
415 => 0.016504608376123
416 => 0.016819512392347
417 => 0.016912997344662
418 => 0.016869691390019
419 => 0.016972193372483
420 => 0.01705320676008
421 => 0.016982367406661
422 => 0.017985303264097
423 => 0.017568814371645
424 => 0.017771808159915
425 => 0.017820220982309
426 => 0.01769621255576
427 => 0.017723105543069
428 => 0.017763841090943
429 => 0.018011179360794
430 => 0.018660266548789
501 => 0.018947742845865
502 => 0.019812629469451
503 => 0.018923871941256
504 => 0.018871136747578
505 => 0.019026928945559
506 => 0.019534708951151
507 => 0.019946216952333
508 => 0.020082737896791
509 => 0.020100781393316
510 => 0.02035690376086
511 => 0.020503708325537
512 => 0.020325803768753
513 => 0.020175048284263
514 => 0.019635060851276
515 => 0.019697565866982
516 => 0.020128163441948
517 => 0.020736407878659
518 => 0.021258344882405
519 => 0.021075580735034
520 => 0.022469942168092
521 => 0.022608187408724
522 => 0.022589086386472
523 => 0.022904029618282
524 => 0.022278931440213
525 => 0.022011689858382
526 => 0.020207643331157
527 => 0.020714506819206
528 => 0.021451262666133
529 => 0.0213537502671
530 => 0.020818698477521
531 => 0.021257938997643
601 => 0.02111271234537
602 => 0.020998166059262
603 => 0.02152292480181
604 => 0.020945931008478
605 => 0.021445506711668
606 => 0.020804795704877
607 => 0.021076415586264
608 => 0.020922231004814
609 => 0.021022007325164
610 => 0.020438716995162
611 => 0.020753446298659
612 => 0.020425623221403
613 => 0.02042546779058
614 => 0.02041823107798
615 => 0.020803913474582
616 => 0.020816490563689
617 => 0.020531470689866
618 => 0.020490394873201
619 => 0.020642273696119
620 => 0.020464463371609
621 => 0.020547659703322
622 => 0.020466983303743
623 => 0.020448821346893
624 => 0.020304103784708
625 => 0.020241755479827
626 => 0.020266203856689
627 => 0.020182748942457
628 => 0.020132464337936
629 => 0.020408228204496
630 => 0.020260898694876
701 => 0.020385647844144
702 => 0.020243480443955
703 => 0.019750666295512
704 => 0.019467243667327
705 => 0.018536363424814
706 => 0.018800359906837
707 => 0.018975389847543
708 => 0.018917542453184
709 => 0.019041821040237
710 => 0.019049450736133
711 => 0.019009046500612
712 => 0.018962263571982
713 => 0.018939492229582
714 => 0.019109211159614
715 => 0.019207738710974
716 => 0.018992956443691
717 => 0.01894263596359
718 => 0.019159792694267
719 => 0.019292258174533
720 => 0.020270308854892
721 => 0.020197851701429
722 => 0.020379704937623
723 => 0.020359231053993
724 => 0.020549842217017
725 => 0.020861410910272
726 => 0.020227904640906
727 => 0.02033785942427
728 => 0.020310901050616
729 => 0.020605225505304
730 => 0.020606144354125
731 => 0.020429682140943
801 => 0.020525345169481
802 => 0.020471948691329
803 => 0.020568443344317
804 => 0.020196883991969
805 => 0.020649403175775
806 => 0.020905952393301
807 => 0.020909514579436
808 => 0.021031116872442
809 => 0.021154671844867
810 => 0.021391824855067
811 => 0.021148057776128
812 => 0.020709544531364
813 => 0.020741203771247
814 => 0.020484103616288
815 => 0.020488425516341
816 => 0.020465354875141
817 => 0.020534591606061
818 => 0.020212077560887
819 => 0.020287770962657
820 => 0.020181799756919
821 => 0.020337629063564
822 => 0.020169982489121
823 => 0.020310888050472
824 => 0.020371698219657
825 => 0.020596089053102
826 => 0.020136839780575
827 => 0.01920039942545
828 => 0.019397250541339
829 => 0.019106092278618
830 => 0.01913304008435
831 => 0.019187478940642
901 => 0.019011024796116
902 => 0.019044686686183
903 => 0.019043484046594
904 => 0.019033120348341
905 => 0.018987217810368
906 => 0.018920650048766
907 => 0.019185835522511
908 => 0.019230895701979
909 => 0.019331058899159
910 => 0.019629076632624
911 => 0.019599297633308
912 => 0.01964786841671
913 => 0.019541838669257
914 => 0.019137958500234
915 => 0.019159891136538
916 => 0.01888639081038
917 => 0.019324064880907
918 => 0.019220417883991
919 => 0.019153595990815
920 => 0.019135363018162
921 => 0.019434119479944
922 => 0.019523512095743
923 => 0.019467808616492
924 => 0.019353559155419
925 => 0.019572951895501
926 => 0.01963165213731
927 => 0.01964479295667
928 => 0.020033514827709
929 => 0.019666518191099
930 => 0.019754857929164
1001 => 0.020444059347856
1002 => 0.019819048764397
1003 => 0.020150130809854
1004 => 0.020133926066597
1005 => 0.020303296437847
1006 => 0.020120032752604
1007 => 0.020122304525622
1008 => 0.020272693941149
1009 => 0.020061499129915
1010 => 0.020009204324614
1011 => 0.019936959425633
1012 => 0.020094703519531
1013 => 0.020189263969671
1014 => 0.020951351750802
1015 => 0.021443695212837
1016 => 0.021422321284687
1017 => 0.021617638977665
1018 => 0.021529646568073
1019 => 0.021245495866277
1020 => 0.021730506465757
1021 => 0.021577028818376
1022 => 0.021589681329151
1023 => 0.021589210402068
1024 => 0.021691259620327
1025 => 0.021618948396517
1026 => 0.021476415551792
1027 => 0.02157103550585
1028 => 0.021852022942149
1029 => 0.02272421656617
1030 => 0.0232123076732
1031 => 0.022694832868661
1101 => 0.023051780059568
1102 => 0.022837738938313
1103 => 0.022798841299409
1104 => 0.023023030513489
1105 => 0.02324761214111
1106 => 0.023233307262324
1107 => 0.023070272533065
1108 => 0.022978178351359
1109 => 0.023675546349046
1110 => 0.024189355210388
1111 => 0.024154316890663
1112 => 0.024308964638858
1113 => 0.024763015210633
1114 => 0.024804527904569
1115 => 0.024799298259292
1116 => 0.024696404715969
1117 => 0.025143476469799
1118 => 0.025516431592324
1119 => 0.02467258783357
1120 => 0.024993912490178
1121 => 0.025138165480963
1122 => 0.025349971669369
1123 => 0.025707324212048
1124 => 0.026095503856479
1125 => 0.026150396714375
1126 => 0.026111447604833
1127 => 0.025855432694502
1128 => 0.026280183493384
1129 => 0.026528992549738
1130 => 0.026677152648902
1201 => 0.027052862008894
1202 => 0.025139056338324
1203 => 0.023784369562381
1204 => 0.023572815660404
1205 => 0.024003018839021
1206 => 0.024116459986417
1207 => 0.024070732002145
1208 => 0.022545908873088
1209 => 0.023564787782199
1210 => 0.024661015818629
1211 => 0.024703126402038
1212 => 0.025251921078123
1213 => 0.02543063112051
1214 => 0.02587248276692
1215 => 0.025844844826134
1216 => 0.02595242867064
1217 => 0.02592769700788
1218 => 0.026746134140015
1219 => 0.027648991835849
1220 => 0.027617728744754
1221 => 0.027487932268851
1222 => 0.027680702169155
1223 => 0.028612548067367
1224 => 0.028526758629586
1225 => 0.028610095760864
1226 => 0.029708794591389
1227 => 0.031137259359158
1228 => 0.030473594059012
1229 => 0.031913556795784
1230 => 0.032819937009437
1231 => 0.034387427867488
]
'min_raw' => 0.01403962505828
'max_raw' => 0.034387427867488
'avg_raw' => 0.024213526462884
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.014039'
'max' => '$0.034387'
'avg' => '$0.024213'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 0.006260173793349
'max_diff' => 0.013950759244519
'year' => 2028
]
3 => [
'items' => [
101 => 0.034191170292005
102 => 0.034801382980264
103 => 0.033839828271698
104 => 0.03163190429856
105 => 0.031282491878218
106 => 0.031982024392275
107 => 0.033701756818701
108 => 0.031927863898159
109 => 0.032286720125661
110 => 0.032183369507999
111 => 0.032177862392796
112 => 0.032388046581052
113 => 0.032083163453516
114 => 0.030841014744506
115 => 0.031410284177817
116 => 0.031190461911052
117 => 0.031434371104863
118 => 0.032750648428059
119 => 0.032168690847342
120 => 0.031555645810451
121 => 0.032324540332296
122 => 0.033303607279429
123 => 0.03324233902943
124 => 0.03312345301629
125 => 0.03379360724769
126 => 0.034900505701198
127 => 0.035199695905303
128 => 0.035420551997299
129 => 0.035451004320991
130 => 0.035764682181032
131 => 0.034077957270592
201 => 0.036754833021628
202 => 0.037217055516631
203 => 0.03713017684473
204 => 0.037643917694631
205 => 0.037492762104243
206 => 0.037273761369356
207 => 0.03808814989226
208 => 0.037154519168515
209 => 0.035829347896998
210 => 0.035102332728528
211 => 0.03605972494901
212 => 0.036644370969675
213 => 0.037030784798863
214 => 0.037147713390098
215 => 0.0342088929239
216 => 0.032625031687074
217 => 0.033640268580873
218 => 0.034878927659216
219 => 0.034071076456871
220 => 0.034102742694538
221 => 0.032950959179555
222 => 0.03498083494313
223 => 0.034685099118319
224 => 0.036219377100584
225 => 0.035853209346766
226 => 0.037104353480974
227 => 0.036774885300031
228 => 0.038142489298808
301 => 0.03868806356032
302 => 0.039604167657252
303 => 0.04027805756017
304 => 0.040673778600623
305 => 0.040650020993667
306 => 0.042218064903382
307 => 0.041293444193104
308 => 0.040131902664627
309 => 0.040110894042993
310 => 0.040712472859762
311 => 0.041973217024623
312 => 0.042300109643489
313 => 0.042482798021924
314 => 0.042203004410923
315 => 0.04119939489808
316 => 0.04076604139885
317 => 0.041135271135653
318 => 0.040683734895816
319 => 0.041463213124468
320 => 0.042533603219973
321 => 0.042312571898032
322 => 0.043051446468412
323 => 0.043816103916883
324 => 0.044909598411112
325 => 0.045195478363887
326 => 0.045668027054784
327 => 0.046154434881875
328 => 0.046310655966878
329 => 0.046608930490705
330 => 0.046607358436732
331 => 0.047506228790475
401 => 0.048497710626352
402 => 0.048871972066538
403 => 0.049732565611349
404 => 0.048258829324654
405 => 0.049376675227175
406 => 0.050385000212746
407 => 0.049182833596588
408 => 0.050839740208064
409 => 0.050904074137157
410 => 0.051875440085695
411 => 0.050890774605653
412 => 0.050306083386767
413 => 0.051994065027596
414 => 0.052810826172669
415 => 0.052564811068751
416 => 0.050692623980665
417 => 0.049602930793517
418 => 0.046750993536634
419 => 0.050129236411933
420 => 0.051774679971796
421 => 0.050688362679355
422 => 0.051236237934359
423 => 0.054225267676512
424 => 0.055363296676981
425 => 0.055126594600306
426 => 0.055166593354816
427 => 0.055780653146782
428 => 0.05850373243326
429 => 0.056872000204318
430 => 0.058119398353504
501 => 0.058781013834003
502 => 0.059395559164522
503 => 0.057886430061813
504 => 0.055923075272699
505 => 0.055301198394959
506 => 0.050580349833595
507 => 0.05033460916437
508 => 0.05019666748003
509 => 0.049326964672502
510 => 0.048643616497433
511 => 0.048100192657527
512 => 0.046674086221519
513 => 0.047155355279878
514 => 0.044882439272427
515 => 0.046336570386797
516 => 0.042708941557428
517 => 0.045730138642099
518 => 0.044085838425888
519 => 0.045189941797761
520 => 0.045186089685109
521 => 0.043153085321198
522 => 0.041980490831812
523 => 0.042727713678509
524 => 0.043528795884791
525 => 0.043658768777596
526 => 0.044697392768426
527 => 0.044987250399119
528 => 0.044108968245961
529 => 0.042633767013114
530 => 0.042976422613747
531 => 0.041973546927002
601 => 0.040216045861038
602 => 0.041478313809638
603 => 0.041909307585294
604 => 0.042099658989798
605 => 0.040371358541783
606 => 0.039828289017788
607 => 0.039539163360009
608 => 0.042410665128343
609 => 0.042567972477261
610 => 0.041763165839179
611 => 0.04540096815821
612 => 0.044577621455377
613 => 0.045497501447281
614 => 0.042945330209536
615 => 0.043042826587772
616 => 0.041834587823465
617 => 0.042511120796933
618 => 0.042032969096961
619 => 0.042456463618306
620 => 0.042710304488267
621 => 0.043918344992482
622 => 0.045743932524155
623 => 0.043737904025753
624 => 0.042863848682142
625 => 0.043406107701444
626 => 0.044850214927905
627 => 0.047038111298481
628 => 0.045742832611582
629 => 0.046317655297569
630 => 0.046443228482376
701 => 0.04548813793248
702 => 0.047073326849382
703 => 0.047922842468002
704 => 0.048794269710218
705 => 0.049550905567797
706 => 0.048446202506581
707 => 0.049628393135046
708 => 0.048675756173242
709 => 0.047821142336704
710 => 0.047822438433125
711 => 0.047286326689549
712 => 0.046247542631945
713 => 0.046055974913915
714 => 0.047052534375439
715 => 0.047851680689048
716 => 0.04791750220709
717 => 0.048359950667924
718 => 0.048621787109464
719 => 0.051188140185939
720 => 0.052220348623283
721 => 0.053482513561762
722 => 0.053974197937018
723 => 0.055453991627933
724 => 0.054258938039552
725 => 0.054000380678466
726 => 0.050410885221133
727 => 0.050998664901184
728 => 0.051939756881249
729 => 0.050426403481258
730 => 0.051386277887616
731 => 0.051575777428351
801 => 0.050374980311818
802 => 0.051016377935139
803 => 0.049313016008741
804 => 0.045781061159399
805 => 0.047077258924793
806 => 0.048031696775572
807 => 0.046669596281171
808 => 0.049111108696816
809 => 0.047684827546643
810 => 0.047232764895607
811 => 0.045469107321945
812 => 0.046301485807308
813 => 0.047427289627273
814 => 0.046731673755276
815 => 0.048175181136918
816 => 0.05021957255868
817 => 0.051676527631442
818 => 0.051788374550845
819 => 0.050851650047469
820 => 0.052352757042226
821 => 0.052363690967887
822 => 0.050670436145599
823 => 0.049633326995029
824 => 0.049397693613924
825 => 0.049986351998571
826 => 0.050701091949866
827 => 0.051828037643805
828 => 0.052509027324418
829 => 0.05428468724244
830 => 0.054765129904097
831 => 0.055292990728144
901 => 0.055998375575321
902 => 0.056845370941319
903 => 0.054992193299988
904 => 0.055065823502433
905 => 0.053340170141816
906 => 0.051496062042272
907 => 0.052895510218506
908 => 0.054725102548143
909 => 0.054305392046205
910 => 0.054258166040829
911 => 0.054337587082469
912 => 0.054021139070471
913 => 0.052589856440314
914 => 0.051871075263753
915 => 0.052798486362152
916 => 0.053291364086632
917 => 0.054055774453846
918 => 0.053961544741342
919 => 0.055930583755605
920 => 0.056695692775899
921 => 0.056499945147647
922 => 0.056535967422175
923 => 0.057921160757046
924 => 0.059461780632161
925 => 0.060904774447903
926 => 0.062372649735302
927 => 0.060603068784195
928 => 0.059704584709802
929 => 0.060631590929528
930 => 0.060139708380784
1001 => 0.062966211407708
1002 => 0.063161912344716
1003 => 0.065988210983299
1004 => 0.068670704940696
1005 => 0.066985878547926
1006 => 0.068574593950061
1007 => 0.070292919187337
1008 => 0.073607847358264
1009 => 0.072491496170875
1010 => 0.071636388656788
1011 => 0.070828316187826
1012 => 0.072509786717845
1013 => 0.074672971692567
1014 => 0.075138901017394
1015 => 0.075893884522315
1016 => 0.075100111681881
1017 => 0.076056123636973
1018 => 0.079431265931386
1019 => 0.078519272690231
1020 => 0.07722409567756
1021 => 0.079888446366888
1022 => 0.080852664523955
1023 => 0.087620052515218
1024 => 0.096164159401042
1025 => 0.09262684304668
1026 => 0.090431116637042
1027 => 0.090947164426634
1028 => 0.094067183025066
1029 => 0.095069233974442
1030 => 0.092345314066362
1031 => 0.093307448627491
1101 => 0.098608904654296
1102 => 0.1014529657216
1103 => 0.097590348783838
1104 => 0.086933541846153
1105 => 0.077107479158408
1106 => 0.079713793456568
1107 => 0.079418318298505
1108 => 0.085114071429198
1109 => 0.078497521953045
1110 => 0.078608927677137
1111 => 0.084422462950665
1112 => 0.082871511408914
1113 => 0.080359168542143
1114 => 0.07712582204166
1115 => 0.071148681987167
1116 => 0.06585456235602
1117 => 0.076237550115635
1118 => 0.075789816803202
1119 => 0.07514143261644
1120 => 0.076584341461582
1121 => 0.083590697236769
1122 => 0.08342917805879
1123 => 0.082401675456299
1124 => 0.083181027124296
1125 => 0.080222544426633
1126 => 0.08098501278122
1127 => 0.077105922659875
1128 => 0.078859433399837
1129 => 0.080353778182701
1130 => 0.080653790022014
1201 => 0.08132973201497
1202 => 0.075553881692709
1203 => 0.078147068917348
1204 => 0.079670323463039
1205 => 0.072788204009131
1206 => 0.079534286089137
1207 => 0.075453336988705
1208 => 0.074068201570221
1209 => 0.075933103933495
1210 => 0.07520634966885
1211 => 0.074581529028551
1212 => 0.074232868375482
1213 => 0.075602246849308
1214 => 0.075538363706743
1215 => 0.073297794738655
1216 => 0.070375063857059
1217 => 0.071356028276293
1218 => 0.070999634706195
1219 => 0.069708018432473
1220 => 0.070578411850618
1221 => 0.066745639733136
1222 => 0.060151554515168
1223 => 0.06450780919245
1224 => 0.064340098126068
1225 => 0.064255530601307
1226 => 0.067529135593249
1227 => 0.067214454008191
1228 => 0.066643303849939
1229 => 0.069697528811915
1230 => 0.068582695615671
1231 => 0.07201834883876
]
'min_raw' => 0.030841014744506
'max_raw' => 0.1014529657216
'avg_raw' => 0.066146990233055
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.030841'
'max' => '$0.101452'
'avg' => '$0.066146'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072435
'min_diff' => 0.016801389686226
'max_diff' => 0.067065537854116
'year' => 2029
]
4 => [
'items' => [
101 => 0.074281292255604
102 => 0.073707336606542
103 => 0.075835645827839
104 => 0.071378627715243
105 => 0.072859070347718
106 => 0.073164187522466
107 => 0.06965984014998
108 => 0.067265939807239
109 => 0.06710629394684
110 => 0.062955600652316
111 => 0.065172867507025
112 => 0.067123970582433
113 => 0.066189543621028
114 => 0.065893731960258
115 => 0.067404969581408
116 => 0.067522405687446
117 => 0.064844850024454
118 => 0.06540159863395
119 => 0.067723332887305
120 => 0.065343096887722
121 => 0.060718687149874
122 => 0.059571769597422
123 => 0.05941874965404
124 => 0.056308218288609
125 => 0.059648412112476
126 => 0.058190327996729
127 => 0.062796398247844
128 => 0.060165435623257
129 => 0.06005202008295
130 => 0.059880575859332
131 => 0.057203213018674
201 => 0.057789385325493
202 => 0.059737911349923
203 => 0.060433167387157
204 => 0.060360646486409
205 => 0.059728362509389
206 => 0.060017818876251
207 => 0.059085379065306
208 => 0.058756115161004
209 => 0.057716867707858
210 => 0.056189461051169
211 => 0.056401856314911
212 => 0.053375664060319
213 => 0.051726833907838
214 => 0.051270459452863
215 => 0.05066017645847
216 => 0.051339392540981
217 => 0.053367091237883
218 => 0.050921256409143
219 => 0.046728044150634
220 => 0.046980063352257
221 => 0.04754627567313
222 => 0.046491142759052
223 => 0.045492548006471
224 => 0.046360745125287
225 => 0.044584025813216
226 => 0.047760983713617
227 => 0.047675055905732
228 => 0.048859229349243
301 => 0.049599717305155
302 => 0.0478931323026
303 => 0.047463930789553
304 => 0.047708423477506
305 => 0.043667503959847
306 => 0.048529000014226
307 => 0.048571042433983
308 => 0.048211049711336
309 => 0.050799646278442
310 => 0.056262392438551
311 => 0.054207087594663
312 => 0.053411211437191
313 => 0.051898250280056
314 => 0.053914181191194
315 => 0.05375938915064
316 => 0.053059360840116
317 => 0.052635981533689
318 => 0.053416070887298
319 => 0.052539319829911
320 => 0.052381831248496
321 => 0.05142762179439
322 => 0.051087012433038
323 => 0.050834838821942
324 => 0.050557220454193
325 => 0.05116957739526
326 => 0.049781896004537
327 => 0.048108488283408
328 => 0.047969362537919
329 => 0.048353500953276
330 => 0.048183548300222
331 => 0.047968548870002
401 => 0.0475580564061
402 => 0.047436272060844
403 => 0.047832012101561
404 => 0.04738524466867
405 => 0.048044474352582
406 => 0.0478652003554
407 => 0.046863790380256
408 => 0.045615662781767
409 => 0.045604551828104
410 => 0.045335644784349
411 => 0.044993151233683
412 => 0.044897877363078
413 => 0.046287627985539
414 => 0.049164370182297
415 => 0.048599596854467
416 => 0.049007703464123
417 => 0.051015184065672
418 => 0.051653301781857
419 => 0.051200380941556
420 => 0.05058039496041
421 => 0.050607671197098
422 => 0.052726350977192
423 => 0.052858490436251
424 => 0.053192364219488
425 => 0.053621486383667
426 => 0.051273462301692
427 => 0.050497079473992
428 => 0.050129186218148
429 => 0.048996217382757
430 => 0.050218027138319
501 => 0.049506130916863
502 => 0.049602190038975
503 => 0.049539631409683
504 => 0.049573792651473
505 => 0.047760095689137
506 => 0.048420911537106
507 => 0.047322177022516
508 => 0.045851094846216
509 => 0.045846163262934
510 => 0.046206208541502
511 => 0.045992039521236
512 => 0.04541571619449
513 => 0.045497580202885
514 => 0.044780365347988
515 => 0.045584663071864
516 => 0.045607727452669
517 => 0.045298029018584
518 => 0.046537160633912
519 => 0.047044833867747
520 => 0.046840983724049
521 => 0.047030531198242
522 => 0.048623065736037
523 => 0.04888271835285
524 => 0.04899803889355
525 => 0.048843524646056
526 => 0.047059639806136
527 => 0.047138762684451
528 => 0.046558211502233
529 => 0.046067706930236
530 => 0.046087324540758
531 => 0.046339507651896
601 => 0.047440806088578
602 => 0.049758423723486
603 => 0.049846375618574
604 => 0.049952975881159
605 => 0.049519379040227
606 => 0.049388602084039
607 => 0.049561130645648
608 => 0.050431505974773
609 => 0.05267034762588
610 => 0.051878991459173
611 => 0.051235606577447
612 => 0.051800028574039
613 => 0.05171314023175
614 => 0.050979715181489
615 => 0.050959130383076
616 => 0.049551453221453
617 => 0.04903106702606
618 => 0.048596193370957
619 => 0.048121322692249
620 => 0.047839803436102
621 => 0.048272344961758
622 => 0.048371272326356
623 => 0.047425512720977
624 => 0.047296609181466
625 => 0.048068936890857
626 => 0.047729064261233
627 => 0.048078631689237
628 => 0.048159734331068
629 => 0.048146674937781
630 => 0.04779180887833
701 => 0.048017989922366
702 => 0.047483004325408
703 => 0.046901287840954
704 => 0.04653018896609
705 => 0.046206355978649
706 => 0.046386037341365
707 => 0.045745506091802
708 => 0.04554058725372
709 => 0.047941364873881
710 => 0.049714845114603
711 => 0.049689058009528
712 => 0.049532085639287
713 => 0.049298856537791
714 => 0.050414443813304
715 => 0.050025795513387
716 => 0.050308569624229
717 => 0.05038054750343
718 => 0.050598402865422
719 => 0.050676267432033
720 => 0.050440906631316
721 => 0.049651007037208
722 => 0.047682652350089
723 => 0.046766377929763
724 => 0.046463992109298
725 => 0.04647498325956
726 => 0.046171798268693
727 => 0.046261099836301
728 => 0.046140742827851
729 => 0.045912815771334
730 => 0.046371963487907
731 => 0.046424875984985
801 => 0.04631770542153
802 => 0.046342947968855
803 => 0.045455621476596
804 => 0.04552308298263
805 => 0.045147448744436
806 => 0.045077021853113
807 => 0.044127451209173
808 => 0.042445149170966
809 => 0.043377307805143
810 => 0.042251391256396
811 => 0.041824989598967
812 => 0.043843508726176
813 => 0.04364090539081
814 => 0.043294136550216
815 => 0.042781193162019
816 => 0.042590937469744
817 => 0.041435004111114
818 => 0.041366705401621
819 => 0.041939617186984
820 => 0.04167523811073
821 => 0.041303949759483
822 => 0.039959180988164
823 => 0.038447215651561
824 => 0.038492852381198
825 => 0.038973780423656
826 => 0.040372143569086
827 => 0.039825778896238
828 => 0.039429385057275
829 => 0.039355152406793
830 => 0.040284329444164
831 => 0.041599309620653
901 => 0.042216268898438
902 => 0.041604880991485
903 => 0.040902551483439
904 => 0.040945299026312
905 => 0.041229679277811
906 => 0.041259563621323
907 => 0.040802419312226
908 => 0.040931102757498
909 => 0.040735620837068
910 => 0.039535948652219
911 => 0.039514250386596
912 => 0.039219831485107
913 => 0.039210916597779
914 => 0.038710036600109
915 => 0.038639960026015
916 => 0.037645432389398
917 => 0.038300033491527
918 => 0.037860961440319
919 => 0.037199176292524
920 => 0.037085084283602
921 => 0.037081654540044
922 => 0.037761159914378
923 => 0.0382920930756
924 => 0.037868599286633
925 => 0.037772177959968
926 => 0.038801705469995
927 => 0.038670688709993
928 => 0.038557229040798
929 => 0.041481567568677
930 => 0.03916672543488
1001 => 0.038157322137974
1002 => 0.036907993877567
1003 => 0.037314781458815
1004 => 0.037400497579137
1005 => 0.034396088321202
1006 => 0.033177199859433
1007 => 0.032758923272197
1008 => 0.032518199182679
1009 => 0.032627900173095
1010 => 0.031530757596146
1011 => 0.032268055552919
1012 => 0.031318022820435
1013 => 0.03115874674116
1014 => 0.032857522953314
1015 => 0.033093897739129
1016 => 0.032085449466954
1017 => 0.032733036510635
1018 => 0.032498212446463
1019 => 0.031334308404874
1020 => 0.031289855831584
1021 => 0.03070584969672
1022 => 0.029791993181528
1023 => 0.029374336232042
1024 => 0.029156816866486
1025 => 0.029246569596082
1026 => 0.029201187869519
1027 => 0.028905041406314
1028 => 0.029218162638134
1029 => 0.028418267281461
1030 => 0.028099742505239
1031 => 0.027955872253538
1101 => 0.027245919084232
1102 => 0.028375770294205
1103 => 0.028598365216061
1104 => 0.028821398718675
1105 => 0.030762753087493
1106 => 0.030665768509438
1107 => 0.031542461861656
1108 => 0.031508395170124
1109 => 0.031258348024581
1110 => 0.030203440248293
1111 => 0.030623907685998
1112 => 0.029329774267889
1113 => 0.030299427017255
1114 => 0.029856917996111
1115 => 0.030149814272082
1116 => 0.029623160358494
1117 => 0.029914632379281
1118 => 0.02865115072976
1119 => 0.027471329343104
1120 => 0.027946123910227
1121 => 0.028462279904036
1122 => 0.029581437612714
1123 => 0.028914876514276
1124 => 0.02915459709074
1125 => 0.028351573288325
1126 => 0.026694705811535
1127 => 0.026704083501519
1128 => 0.026449210537035
1129 => 0.026228963083658
1130 => 0.028991439074765
1201 => 0.028647881516988
1202 => 0.028100467512372
1203 => 0.028833202910918
1204 => 0.029026949780368
1205 => 0.029032465481366
1206 => 0.029567050313507
1207 => 0.029852358334251
1208 => 0.029902645109502
1209 => 0.030743825893347
1210 => 0.031025778596648
1211 => 0.032187101878108
1212 => 0.029828151942027
1213 => 0.029779570920443
1214 => 0.028843514000628
1215 => 0.028249851903608
1216 => 0.028884162552312
1217 => 0.029446075195025
1218 => 0.028860974192763
1219 => 0.028937376031502
1220 => 0.028151925740474
1221 => 0.028432687260645
1222 => 0.028674516904478
1223 => 0.028540992789243
1224 => 0.028341100726096
1225 => 0.02940000476629
1226 => 0.029340257250464
1227 => 0.030326333036791
1228 => 0.031095049627189
1229 => 0.03247272718171
1230 => 0.031035048833612
1231 => 0.030982654120354
]
'min_raw' => 0.026228963083658
'max_raw' => 0.075835645827839
'avg_raw' => 0.051032304455749
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.026228'
'max' => '$0.075835'
'avg' => '$0.051032'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -0.0046120516608476
'max_diff' => -0.025617319893765
'year' => 2030
]
5 => [
'items' => [
101 => 0.031494820846833
102 => 0.031025700186591
103 => 0.031322168250369
104 => 0.032424961593257
105 => 0.032448261878833
106 => 0.032057952074709
107 => 0.032034201687657
108 => 0.03210916495506
109 => 0.032548227153677
110 => 0.032394805330462
111 => 0.032572348948452
112 => 0.032794369961393
113 => 0.033712743005876
114 => 0.033934159637764
115 => 0.033396232013639
116 => 0.033444800855177
117 => 0.033243601157311
118 => 0.033049244770196
119 => 0.033486129544958
120 => 0.034284545057827
121 => 0.034279578156359
122 => 0.034464795036365
123 => 0.034580183618189
124 => 0.034084851355395
125 => 0.033762408266189
126 => 0.033886053464178
127 => 0.034083764828403
128 => 0.033821938333446
129 => 0.032205823916741
130 => 0.032696049792981
131 => 0.032614452236354
201 => 0.032498247393115
202 => 0.032991173302479
203 => 0.03294362939602
204 => 0.031519504813236
205 => 0.031610672648465
206 => 0.031525049031253
207 => 0.031801716455407
208 => 0.031010759237742
209 => 0.031254052350717
210 => 0.031406643510445
211 => 0.031496520875784
212 => 0.031821219548878
213 => 0.031783119907248
214 => 0.03181885122166
215 => 0.032300293636586
216 => 0.034735264160197
217 => 0.034867794233338
218 => 0.034215167682597
219 => 0.034475879117128
220 => 0.033975370174151
221 => 0.03431136518069
222 => 0.034541244430817
223 => 0.033502464302734
224 => 0.033440954485176
225 => 0.03293837976375
226 => 0.033208434951757
227 => 0.032778757729983
228 => 0.032884185490735
301 => 0.032589400280645
302 => 0.033119954967657
303 => 0.033713197547601
304 => 0.033863074051154
305 => 0.033468813496197
306 => 0.033183342871372
307 => 0.032682150494049
308 => 0.033515644587338
309 => 0.033759383660488
310 => 0.03351436432975
311 => 0.03345758799704
312 => 0.033349996949146
313 => 0.033480413946466
314 => 0.03375805620515
315 => 0.033627125243202
316 => 0.033713607450276
317 => 0.033384026456977
318 => 0.034085015330985
319 => 0.03519835436507
320 => 0.035201933932114
321 => 0.035071002264399
322 => 0.035017427846933
323 => 0.035151771683606
324 => 0.035224647703928
325 => 0.035659091037283
326 => 0.036125266042959
327 => 0.038300701386359
328 => 0.037689847847077
329 => 0.039620023500969
330 => 0.041146541841257
331 => 0.041604277944953
401 => 0.041183182267701
402 => 0.039742636702963
403 => 0.039671956665072
404 => 0.041824739921439
405 => 0.041216480047796
406 => 0.041144129471293
407 => 0.040374441575529
408 => 0.040829422449626
409 => 0.040729911458294
410 => 0.040572828490233
411 => 0.041440900303767
412 => 0.043065853245398
413 => 0.042812589090732
414 => 0.042623539147861
415 => 0.041795177329808
416 => 0.042294036165586
417 => 0.042116402089177
418 => 0.0428796308108
419 => 0.042427511023697
420 => 0.041211871881013
421 => 0.041405466421284
422 => 0.04137620499598
423 => 0.041978403055247
424 => 0.04179763814533
425 => 0.041340907746146
426 => 0.043060299332898
427 => 0.042948651607013
428 => 0.043106942556095
429 => 0.043176627127191
430 => 0.044223190486969
501 => 0.044651934009177
502 => 0.044749266294931
503 => 0.045156539480815
504 => 0.044739132967049
505 => 0.046409056627915
506 => 0.047519458419645
507 => 0.048809247241492
508 => 0.050693975372764
509 => 0.051402650584832
510 => 0.051274634750877
511 => 0.052703614109903
512 => 0.055271458253645
513 => 0.051793669469802
514 => 0.05545578950392
515 => 0.054296404582327
516 => 0.051547523789674
517 => 0.051370528273803
518 => 0.05323210226175
519 => 0.057360894197158
520 => 0.056326678645709
521 => 0.057362585803303
522 => 0.056154145078521
523 => 0.056094135810998
524 => 0.057303894534591
525 => 0.06013056173278
526 => 0.058787718102956
527 => 0.056862422480836
528 => 0.058284030807292
529 => 0.057052502111276
530 => 0.054277523275975
531 => 0.056325887800568
601 => 0.054956204777035
602 => 0.055355951099657
603 => 0.058234821090148
604 => 0.057888427836347
605 => 0.058336692781917
606 => 0.057545516886122
607 => 0.056806433842462
608 => 0.055426880456442
609 => 0.055018462710002
610 => 0.055131334681787
611 => 0.055018406776258
612 => 0.054246559335531
613 => 0.054079878954194
614 => 0.053802071016197
615 => 0.053888175312631
616 => 0.053365815113618
617 => 0.054351616734279
618 => 0.054534590201928
619 => 0.055251974412412
620 => 0.055326455620975
621 => 0.057324360435848
622 => 0.056223948037242
623 => 0.056962199679263
624 => 0.056896163503706
625 => 0.051607100371787
626 => 0.052335886605566
627 => 0.053469649279608
628 => 0.052958890731731
629 => 0.052236797644127
630 => 0.051653668759705
701 => 0.050770168871815
702 => 0.052013677997907
703 => 0.053648760266265
704 => 0.055367924005597
705 => 0.057433386594334
706 => 0.056972399389163
707 => 0.055329311619206
708 => 0.05540301933629
709 => 0.055858651440385
710 => 0.05526856646704
711 => 0.055094538888574
712 => 0.055834742723479
713 => 0.055839840100481
714 => 0.055160876024497
715 => 0.054406331703155
716 => 0.054403170134897
717 => 0.054268906260948
718 => 0.056178030323428
719 => 0.057227855523578
720 => 0.057348216290897
721 => 0.057219754284953
722 => 0.057269194212566
723 => 0.056658324059919
724 => 0.058054592080955
725 => 0.059335945693653
726 => 0.058992515553322
727 => 0.058477664951496
728 => 0.058067561648577
729 => 0.058895908248425
730 => 0.058859023278272
731 => 0.059324754187674
801 => 0.059303625943432
802 => 0.059147018155625
803 => 0.05899252114628
804 => 0.059605084324785
805 => 0.059428675966839
806 => 0.059251993597988
807 => 0.05889763005854
808 => 0.058945793948906
809 => 0.058431032243295
810 => 0.058192879924387
811 => 0.054611640455313
812 => 0.053654616248801
813 => 0.053955715546194
814 => 0.054054845252936
815 => 0.053638347091802
816 => 0.054235498465269
817 => 0.054142433056254
818 => 0.054504496121288
819 => 0.054278294837205
820 => 0.054287578216806
821 => 0.054952787962094
822 => 0.055145901181156
823 => 0.055047682239326
824 => 0.055116471419435
825 => 0.056701689040951
826 => 0.056476321787577
827 => 0.056356599925958
828 => 0.056389763699821
829 => 0.056794820789567
830 => 0.056908214659399
831 => 0.056427756864876
901 => 0.056654343538266
902 => 0.057619120835433
903 => 0.057956738287775
904 => 0.059034251130082
905 => 0.058576504523406
906 => 0.059416718230768
907 => 0.061999248717237
908 => 0.064062352767345
909 => 0.062165037021485
910 => 0.065953664874792
911 => 0.068903655104979
912 => 0.068790429566479
913 => 0.068276030535342
914 => 0.064917545087822
915 => 0.061827016706817
916 => 0.064412374928294
917 => 0.064418965538085
918 => 0.064196880974019
919 => 0.06281753282017
920 => 0.064148882648176
921 => 0.06425456036277
922 => 0.06419540894457
923 => 0.063137865949066
924 => 0.061523193261549
925 => 0.061838696439709
926 => 0.062355497081627
927 => 0.061377085650569
928 => 0.061064423914307
929 => 0.061645721568347
930 => 0.063518783727842
1001 => 0.0631646921765
1002 => 0.063155445415098
1003 => 0.064670399229927
1004 => 0.063586019246005
1005 => 0.061842675945167
1006 => 0.061402458769832
1007 => 0.059839984363216
1008 => 0.060919191001209
1009 => 0.060958029726836
1010 => 0.060366959280432
1011 => 0.061890638054318
1012 => 0.061876597086178
1013 => 0.063323103312326
1014 => 0.066088279933792
1015 => 0.065270481140747
1016 => 0.064319470120691
1017 => 0.064422871387246
1018 => 0.065556928065286
1019 => 0.064871251509748
1020 => 0.065117825579826
1021 => 0.0655565548459
1022 => 0.065821251105157
1023 => 0.064384785668983
1024 => 0.064049876861727
1025 => 0.063364770979099
1026 => 0.063186039642428
1027 => 0.063744044088625
1028 => 0.06359702963164
1029 => 0.060954765482338
1030 => 0.060678634177317
1031 => 0.060687102730217
1101 => 0.059992757434414
1102 => 0.058933714196349
1103 => 0.061716816593798
1104 => 0.06149329452179
1105 => 0.061246543453527
1106 => 0.061276769051447
1107 => 0.062484819474088
1108 => 0.061784089220948
1109 => 0.063647095446351
1110 => 0.063264117373501
1111 => 0.062871317358192
1112 => 0.062817020431095
1113 => 0.062665825937323
1114 => 0.062147323761186
1115 => 0.061521201226351
1116 => 0.061107780895048
1117 => 0.056368697730605
1118 => 0.057248243999947
1119 => 0.05826008180966
1120 => 0.058609364166888
1121 => 0.058011892525247
1122 => 0.062170915583231
1123 => 0.062930809173268
1124 => 0.060629041922413
1125 => 0.060198475250316
1126 => 0.062199143462572
1127 => 0.06099249595884
1128 => 0.061535849255886
1129 => 0.060361416626035
1130 => 0.06274777305971
1201 => 0.062729593021926
1202 => 0.061801246470922
1203 => 0.062585878618788
1204 => 0.062449529474247
1205 => 0.06140142850458
1206 => 0.062780999729912
1207 => 0.062781683980028
1208 => 0.061888170608681
1209 => 0.060844742606176
1210 => 0.060658202323998
1211 => 0.060517669279537
1212 => 0.061501286741781
1213 => 0.062383195082738
1214 => 0.064024207861639
1215 => 0.064436797463756
1216 => 0.066047162148466
1217 => 0.065088268385955
1218 => 0.065513333571123
1219 => 0.065974801958765
1220 => 0.066196046873738
1221 => 0.065835540157446
1222 => 0.068337099365349
1223 => 0.06854830760829
1224 => 0.068619123905203
1225 => 0.067775612215162
1226 => 0.068524848022288
1227 => 0.068174305400216
1228 => 0.069086319919302
1229 => 0.069229335441081
1230 => 0.069108206382059
1231 => 0.069153601766018
]
'min_raw' => 0.031010759237742
'max_raw' => 0.069229335441081
'avg_raw' => 0.050120047339411
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.03101'
'max' => '$0.069229'
'avg' => '$0.05012'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 0.0047817961540833
'max_diff' => -0.0066063103867577
'year' => 2031
]
6 => [
'items' => [
101 => 0.067018962287357
102 => 0.066908269969268
103 => 0.065398972357757
104 => 0.066014022290613
105 => 0.06486421592125
106 => 0.065228831365293
107 => 0.065389550378844
108 => 0.065305599886889
109 => 0.066048796291003
110 => 0.065416927522511
111 => 0.063749321953618
112 => 0.062081262046703
113 => 0.062060320913344
114 => 0.061621150183556
115 => 0.061303710184051
116 => 0.061364860389745
117 => 0.061580361690556
118 => 0.061291184856688
119 => 0.061352895395831
120 => 0.062377701520783
121 => 0.062583219080559
122 => 0.061884790111546
123 => 0.059080497018137
124 => 0.058392316458977
125 => 0.058886966997687
126 => 0.058650555899759
127 => 0.047335576099312
128 => 0.049993862765959
129 => 0.048414399095523
130 => 0.049142288622489
131 => 0.047530065215108
201 => 0.048299502728979
202 => 0.048157415715526
203 => 0.052431862011074
204 => 0.052365122411477
205 => 0.052397067126023
206 => 0.050872262669244
207 => 0.053301317571846
208 => 0.054497957362857
209 => 0.054276491185078
210 => 0.054332229450724
211 => 0.053374461377223
212 => 0.052406340414552
213 => 0.051332545274201
214 => 0.053327523919882
215 => 0.053105716349904
216 => 0.05361446311159
217 => 0.054908349367332
218 => 0.055098879033486
219 => 0.055354952836959
220 => 0.055263168606988
221 => 0.057449841336118
222 => 0.057185020840489
223 => 0.057823162040898
224 => 0.056510457175767
225 => 0.055025007017782
226 => 0.055307342529791
227 => 0.055280151349586
228 => 0.054933976416989
229 => 0.054621465166368
301 => 0.054101221983584
302 => 0.055747348395419
303 => 0.055680518669278
304 => 0.056762414254438
305 => 0.056571178700788
306 => 0.055294060870235
307 => 0.0553396733834
308 => 0.055646439455056
309 => 0.056708160331652
310 => 0.057023351375296
311 => 0.056877342325689
312 => 0.057222934916026
313 => 0.057496077208484
314 => 0.057257237382586
315 => 0.060638705648678
316 => 0.059234484269451
317 => 0.059918891999177
318 => 0.060082119209952
319 => 0.05966401614185
320 => 0.059754687726173
321 => 0.059892030469894
322 => 0.060725948715304
323 => 0.062914391487447
324 => 0.063883637893996
325 => 0.066799663529872
326 => 0.063803155472493
327 => 0.063625355085151
328 => 0.06415061935771
329 => 0.065862635098632
330 => 0.067250063055186
331 => 0.067710352951015
401 => 0.067771187859306
402 => 0.068634722303374
403 => 0.069129684142749
404 => 0.068529866508654
405 => 0.068021583867281
406 => 0.06620097853625
407 => 0.06641171856066
408 => 0.067863508348023
409 => 0.069914246932664
410 => 0.071673993981271
411 => 0.071057791898225
412 => 0.075758978820986
413 => 0.076225082301751
414 => 0.076160681871639
415 => 0.07722253496632
416 => 0.075114972816
417 => 0.074213949164645
418 => 0.068131480343599
419 => 0.069840405981634
420 => 0.072324429758201
421 => 0.071995659896761
422 => 0.070191695432072
423 => 0.071672625512459
424 => 0.071182983714918
425 => 0.07079678291394
426 => 0.072566043651927
427 => 0.070620668793285
428 => 0.072305023155852
429 => 0.070144821263445
430 => 0.071060606657435
501 => 0.070540762576251
502 => 0.070877165406472
503 => 0.068910561334841
504 => 0.069971693155278
505 => 0.068866414762433
506 => 0.068865890716563
507 => 0.068841491634781
508 => 0.070141846762408
509 => 0.070184251296436
510 => 0.069223286892392
511 => 0.069084796908684
512 => 0.069596866963991
513 => 0.068997367040586
514 => 0.06927786928154
515 => 0.069005863167713
516 => 0.068944628862165
517 => 0.068456703497402
518 => 0.068246491834474
519 => 0.068328921243995
520 => 0.068047547174027
521 => 0.067878009119126
522 => 0.068807766248451
523 => 0.068311034520548
524 => 0.068731634987014
525 => 0.068252307671465
526 => 0.066590750362804
527 => 0.065635171183943
528 => 0.062496643454326
529 => 0.063386726025114
530 => 0.063976851690403
531 => 0.063781815161546
601 => 0.064200829094649
602 => 0.064226553147052
603 => 0.064090327446058
604 => 0.063932595535901
605 => 0.063855820365158
606 => 0.064428039587158
607 => 0.064760232105542
608 => 0.064036078695778
609 => 0.063866419683853
610 => 0.06459857876273
611 => 0.065045195377891
612 => 0.068342761532039
613 => 0.068098467180341
614 => 0.068711598062757
615 => 0.068642568934657
616 => 0.069285227778838
617 => 0.070335703381182
618 => 0.068199792764019
619 => 0.068570512992926
620 => 0.068479620953978
621 => 0.069471956402038
622 => 0.069475054364989
623 => 0.068880099693046
624 => 0.069202634272744
625 => 0.06902260431863
626 => 0.069347942778221
627 => 0.068095204480335
628 => 0.069620904502418
629 => 0.070485878101001
630 => 0.070497888260256
701 => 0.07090787888113
702 => 0.071324453096993
703 => 0.072124031028374
704 => 0.071302153302458
705 => 0.06982367528172
706 => 0.069930416619362
707 => 0.069063585496758
708 => 0.069078157084534
709 => 0.069000372806986
710 => 0.069233809279236
711 => 0.068146430658722
712 => 0.068401636247535
713 => 0.068044346928715
714 => 0.068569736315724
715 => 0.068004504185279
716 => 0.068479577123085
717 => 0.068684602854125
718 => 0.06944115221555
719 => 0.067892761229465
720 => 0.064735487191985
721 => 0.065399184472911
722 => 0.064417524062125
723 => 0.064508380470588
724 => 0.064691924875373
725 => 0.064096997407471
726 => 0.064210490820028
727 => 0.064206436036691
728 => 0.06417149410446
729 => 0.06401673049287
730 => 0.063792292637017
731 => 0.064686383976407
801 => 0.064838307517482
802 => 0.065176014729949
803 => 0.066180802325257
804 => 0.066080400349963
805 => 0.066244160137306
806 => 0.065886673441008
807 => 0.064524963253132
808 => 0.064598910667719
809 => 0.063676785222893
810 => 0.065152433909104
811 => 0.064802980822598
812 => 0.064577686144401
813 => 0.064516212404114
814 => 0.065523490673524
815 => 0.065824884118884
816 => 0.065637075949497
817 => 0.065251875914846
818 => 0.065991573855544
819 => 0.066189485819124
820 => 0.066233791009057
821 => 0.067544393936961
822 => 0.066307039153744
823 => 0.066604882748313
824 => 0.068928573449938
825 => 0.066821306630962
826 => 0.067937572862631
827 => 0.06788293743936
828 => 0.068453981471092
829 => 0.067836095161232
830 => 0.067843754602573
831 => 0.068350803016877
901 => 0.06763874496565
902 => 0.067462429378471
903 => 0.067218850657579
904 => 0.067750695883497
905 => 0.068069513043144
906 => 0.070638945204495
907 => 0.072298915561071
908 => 0.072226851870032
909 => 0.072885379108554
910 => 0.072588706556181
911 => 0.071630672626306
912 => 0.073265919724812
913 => 0.0727484591212
914 => 0.072791117944647
915 => 0.072789530181108
916 => 0.073133596245319
917 => 0.072889793905634
918 => 0.072409234468317
919 => 0.072728252249578
920 => 0.073675621008977
921 => 0.076616282706977
922 => 0.078261915951763
923 => 0.076517213519323
924 => 0.077720685894723
925 => 0.076999031310536
926 => 0.076867885205225
927 => 0.077623754792886
928 => 0.078380947430201
929 => 0.078332717532637
930 => 0.07778303456022
1001 => 0.07747253259679
1002 => 0.079823757489669
1003 => 0.081556099938672
1004 => 0.081437965797421
1005 => 0.081959371477622
1006 => 0.083490234681161
1007 => 0.08363019762709
1008 => 0.083612565512914
1009 => 0.083265652747806
1010 => 0.084772986379397
1011 => 0.086030430613883
1012 => 0.083185352465956
1013 => 0.084268720979879
1014 => 0.084755080009732
1015 => 0.085469199361779
1016 => 0.086674038408982
1017 => 0.087982813182018
1018 => 0.08816788828491
1019 => 0.088036568642749
1020 => 0.087173396498177
1021 => 0.088605473471764
1022 => 0.089444350576553
1023 => 0.089943882695094
1024 => 0.091210613033495
1025 => 0.084758083597524
1026 => 0.080190662551223
1027 => 0.079477393800483
1028 => 0.08092785385302
1029 => 0.081310328601672
1030 => 0.081156153510073
1031 => 0.076015105870707
1101 => 0.079450327248626
1102 => 0.083146336609651
1103 => 0.08328831538168
1104 => 0.08513861494772
1105 => 0.085741148332764
1106 => 0.087230882007734
1107 => 0.087137698760754
1108 => 0.087500425203769
1109 => 0.087417040676066
1110 => 0.090176458608514
1111 => 0.093220506365531
1112 => 0.093115100671185
1113 => 0.092677482790575
1114 => 0.093327419968217
1115 => 0.096469203473442
1116 => 0.096179958394336
1117 => 0.09646093535085
1118 => 0.10016527516667
1119 => 0.10498144386343
1120 => 0.10274384996835
1121 => 0.10759878487037
1122 => 0.11065470904215
1123 => 0.11593961390878
1124 => 0.11527791779077
1125 => 0.11733529247293
1126 => 0.11409334363939
1127 => 0.10664917381163
1128 => 0.10547110544125
1129 => 0.10782962815219
1130 => 0.11362782609577
1201 => 0.10764702226491
1202 => 0.10885693109048
1203 => 0.10850847726732
1204 => 0.10848990964392
1205 => 0.10919856030922
1206 => 0.10817062555847
1207 => 0.10398263446199
1208 => 0.10590196610152
1209 => 0.10516081998162
1210 => 0.10598317685775
1211 => 0.11042109775245
1212 => 0.10845898713809
1213 => 0.10639206299477
1214 => 0.10898444455767
1215 => 0.1122854371262
1216 => 0.11207886694372
1217 => 0.11167803445006
1218 => 0.1139375062299
1219 => 0.11766949164708
1220 => 0.11867823230902
1221 => 0.11942286404286
1222 => 0.1195255361783
1223 => 0.12058312298372
1224 => 0.1148962121848
1225 => 0.12392148567291
1226 => 0.12547990108616
1227 => 0.12518698357817
1228 => 0.12691909672185
1229 => 0.12640946509551
1230 => 0.1256710888277
1231 => 0.12841685659146
]
'min_raw' => 0.047335576099312
'max_raw' => 0.12841685659146
'avg_raw' => 0.087876216345387
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.047335'
'max' => '$0.128416'
'avg' => '$0.087876'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.01632481686157
'max_diff' => 0.059187521150381
'year' => 2032
]
7 => [
'items' => [
101 => 0.12526905542234
102 => 0.12080114795992
103 => 0.11834996556084
104 => 0.12157788027519
105 => 0.12354905515254
106 => 0.1248518763562
107 => 0.12524610926524
108 => 0.11533767088156
109 => 0.10999757213994
110 => 0.11342051420896
111 => 0.11759673977201
112 => 0.11487301304093
113 => 0.1149797779721
114 => 0.11109645943637
115 => 0.11794032729467
116 => 0.1169432333137
117 => 0.12211615865077
118 => 0.12088159850376
119 => 0.12509991830434
120 => 0.12398909332956
121 => 0.12860006569449
122 => 0.13043950740796
123 => 0.13352821633111
124 => 0.13580028318829
125 => 0.13713448430454
126 => 0.13705438387398
127 => 0.14234115339292
128 => 0.13922373011326
129 => 0.13530751175376
130 => 0.13523667971914
131 => 0.13726494470077
201 => 0.14151563167495
202 => 0.14261777296237
203 => 0.14323371958516
204 => 0.1422903758911
205 => 0.13890663634877
206 => 0.13744555477034
207 => 0.13869043860677
208 => 0.13716805264891
209 => 0.13979611791824
210 => 0.14340501285748
211 => 0.14265979032365
212 => 0.14515095752426
213 => 0.14772905349846
214 => 0.1514158465311
215 => 0.15237971075138
216 => 0.15397294165503
217 => 0.15561289960398
218 => 0.15613960989908
219 => 0.15714526328102
220 => 0.15713996299129
221 => 0.16017056714606
222 => 0.16351341737877
223 => 0.16477526595446
224 => 0.16767681717551
225 => 0.16270801239194
226 => 0.1664769078978
227 => 0.16987654598565
228 => 0.16582335730668
301 => 0.1714097336288
302 => 0.17162663996239
303 => 0.17490166807649
304 => 0.17158179966338
305 => 0.16961047239707
306 => 0.17530162035024
307 => 0.17805538757529
308 => 0.17722593047621
309 => 0.1709137209968
310 => 0.16723974433638
311 => 0.1576242387589
312 => 0.16901422047435
313 => 0.17456194831763
314 => 0.17089935372191
315 => 0.17274655339559
316 => 0.18282427585865
317 => 0.18666122008838
318 => 0.18586316251086
319 => 0.18599802110431
320 => 0.18806836656521
321 => 0.1972494184989
322 => 0.19174791936511
323 => 0.19595360931565
324 => 0.19818429210067
325 => 0.2002562745887
326 => 0.19516814045489
327 => 0.18854855270634
328 => 0.18645185139498
329 => 0.17053518087122
330 => 0.16970664904786
331 => 0.16924156902833
401 => 0.16630930529204
402 => 0.16400534920995
403 => 0.16217315779306
404 => 0.15736494037649
405 => 0.15898757260788
406 => 0.15132427759883
407 => 0.15622698217512
408 => 0.14399617830395
409 => 0.15418235520816
410 => 0.14863848222783
411 => 0.15236104383213
412 => 0.15234805616538
413 => 0.14549364001262
414 => 0.14154015582373
415 => 0.1440594698208
416 => 0.14676037440905
417 => 0.14719858709156
418 => 0.15070038039106
419 => 0.15167765563015
420 => 0.14871646603108
421 => 0.14374272207927
422 => 0.14489800936026
423 => 0.14151674396385
424 => 0.13559120641515
425 => 0.13984703093259
426 => 0.14130015653824
427 => 0.14194193958843
428 => 0.13611485396186
429 => 0.13428385714581
430 => 0.1333090498045
501 => 0.14299051849829
502 => 0.14352089120802
503 => 0.14080742943792
504 => 0.15307253393978
505 => 0.15029656304695
506 => 0.15339800266362
507 => 0.14479317914866
508 => 0.14512189499486
509 => 0.14104823364446
510 => 0.14332921179853
511 => 0.14171708995859
512 => 0.14314493130475
513 => 0.14400077352043
514 => 0.14807376642308
515 => 0.15422886224457
516 => 0.14746539710577
517 => 0.14451845849019
518 => 0.14634672263308
519 => 0.15121563097144
520 => 0.15859227633888
521 => 0.15422515381253
522 => 0.15616320863118
523 => 0.156586587391
524 => 0.15336643291973
525 => 0.15871100802742
526 => 0.16157520924688
527 => 0.16451328703512
528 => 0.16706433765558
529 => 0.16333975415678
530 => 0.16732559239857
531 => 0.16411371037085
601 => 0.16123232015374
602 => 0.16123669003331
603 => 0.15942915185972
604 => 0.15592681888392
605 => 0.15528093494775
606 => 0.15864090474984
607 => 0.16133528234078
608 => 0.16155720418437
609 => 0.16304895006084
610 => 0.16393174990433
611 => 0.17258438847871
612 => 0.17606455129171
613 => 0.18032002850334
614 => 0.18197777670282
615 => 0.18696700444763
616 => 0.18293779783843
617 => 0.18206605364363
618 => 0.16996381909866
619 => 0.17194555932742
620 => 0.17511851664315
621 => 0.17001613999612
622 => 0.17325242357345
623 => 0.17389133450548
624 => 0.16984276319011
625 => 0.17200528005809
626 => 0.1662622763983
627 => 0.15435404403053
628 => 0.15872426529419
629 => 0.16194221914482
630 => 0.15734980222913
701 => 0.16558153179943
702 => 0.16077272532185
703 => 0.15924856453188
704 => 0.15330226988763
705 => 0.15610869206585
706 => 0.15990441824597
707 => 0.15755910076719
708 => 0.16242598668686
709 => 0.16931879510018
710 => 0.17423102084935
711 => 0.17460812054702
712 => 0.17144988848387
713 => 0.17651097552064
714 => 0.17654784001439
715 => 0.17083891316176
716 => 0.16734222725197
717 => 0.16654777285618
718 => 0.16853247569883
719 => 0.17094227134617
720 => 0.17474184743412
721 => 0.17703785168749
722 => 0.18302461307372
723 => 0.18464445905093
724 => 0.18642417867327
725 => 0.18880243293393
726 => 0.19165813694572
727 => 0.18541001914324
728 => 0.18565826851148
729 => 0.17984010772489
730 => 0.17362256851576
731 => 0.17834090574828
801 => 0.18450950402571
802 => 0.18309442076517
803 => 0.18293519499084
804 => 0.18320296857773
805 => 0.18213604201158
806 => 0.17731037269504
807 => 0.17488695177457
808 => 0.1780137830426
809 => 0.1796755547023
810 => 0.18225281762479
811 => 0.18193511557018
812 => 0.18857386808068
813 => 0.19115348656081
814 => 0.19049350976549
815 => 0.19061496137906
816 => 0.19528523741869
817 => 0.20047954489028
818 => 0.20534469928667
819 => 0.21029374330191
820 => 0.20432747757706
821 => 0.20129817579009
822 => 0.2044236419814
823 => 0.20276522562617
824 => 0.21229497792158
825 => 0.21295479729411
826 => 0.22248386047996
827 => 0.23152807614307
828 => 0.22584756632902
829 => 0.23120403122789
830 => 0.236997484735
831 => 0.24817399650418
901 => 0.24441014053474
902 => 0.2415270858493
903 => 0.23880261310237
904 => 0.24447180839086
905 => 0.25176513756188
906 => 0.25333605081069
907 => 0.25588153040879
908 => 0.25320526985782
909 => 0.25642853091104
910 => 0.26780805880156
911 => 0.26473320991567
912 => 0.26036643019108
913 => 0.26934947455917
914 => 0.27260040339528
915 => 0.29541712449177
916 => 0.32422417738782
917 => 0.31229786833155
918 => 0.30489482344073
919 => 0.30663471459265
920 => 0.31715407513
921 => 0.32053255986679
922 => 0.31134867371868
923 => 0.31459257756562
924 => 0.33246680669583
925 => 0.34205575715026
926 => 0.32903267446528
927 => 0.29310250584037
928 => 0.25997324945485
929 => 0.26876062007815
930 => 0.26776440495333
1001 => 0.28696803429824
1002 => 0.26465987578666
1003 => 0.26503548796353
1004 => 0.28463622802631
1005 => 0.27940708661931
1006 => 0.27093654723782
1007 => 0.2600350937664
1008 => 0.23988274876208
1009 => 0.22203325480204
1010 => 0.25704022295063
1011 => 0.25553065882803
1012 => 0.25334458627362
1013 => 0.25820945418569
1014 => 0.28183187184988
1015 => 0.28128729866441
1016 => 0.27782300190217
1017 => 0.28045064046342
1018 => 0.27047590949358
1019 => 0.27304662478491
1020 => 0.25996800161138
1021 => 0.26588008549737
1022 => 0.27091837326462
1023 => 0.27192988412702
1024 => 0.27420886974903
1025 => 0.25473518713054
1026 => 0.26347829890896
1027 => 0.26861405795999
1028 => 0.2454105117269
1029 => 0.26815539845605
1030 => 0.25439619364118
1031 => 0.24972611287069
1101 => 0.2560137613918
1102 => 0.25356345864819
1103 => 0.25145683223583
1104 => 0.2502812985013
1105 => 0.25489825363276
1106 => 0.25468286715742
1107 => 0.24712863244998
1108 => 0.23727444122413
1109 => 0.24058183125232
1110 => 0.23938022544813
1111 => 0.23502545100351
1112 => 0.23796004318172
1113 => 0.22503758439202
1114 => 0.20280516569531
1115 => 0.21749258248376
1116 => 0.21692713291424
1117 => 0.21664200760019
1118 => 0.22767919538633
1119 => 0.22661822445194
1120 => 0.22469255181696
1121 => 0.23499008451544
1122 => 0.23123134655913
1123 => 0.24281489127043
1124 => 0.25044456299398
1125 => 0.24850943145086
1126 => 0.25568517458427
1127 => 0.24065802683859
1128 => 0.24564944253518
1129 => 0.24667816639244
1130 => 0.23486301456039
1201 => 0.22679181241805
1202 => 0.2262535552536
1203 => 0.21225920301896
1204 => 0.21973487302424
1205 => 0.22631315326464
1206 => 0.22316266752466
1207 => 0.22216531785746
1208 => 0.22726056100841
1209 => 0.22765650503904
1210 => 0.2186289391803
1211 => 0.22050605598816
1212 => 0.22833394512166
1213 => 0.22030881326629
1214 => 0.20471729296916
1215 => 0.20085038036584
1216 => 0.20033446294322
1217 => 0.18984708927431
1218 => 0.20110878595636
1219 => 0.19619275355993
1220 => 0.21172244099712
1221 => 0.20285196682039
1222 => 0.20246957840782
1223 => 0.20189154223804
1224 => 0.19286462649325
1225 => 0.19484094735094
1226 => 0.20141053888405
1227 => 0.20375464315481
1228 => 0.20351013387469
1229 => 0.20137834430151
1230 => 0.20235426665158
1231 => 0.19921048072811
]
'min_raw' => 0.10999757213994
'max_raw' => 0.34205575715026
'avg_raw' => 0.2260266646451
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.109997'
'max' => '$0.342055'
'avg' => '$0.226026'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.062661996040632
'max_diff' => 0.2136389005588
'year' => 2033
]
8 => [
'items' => [
101 => 0.19810034448629
102 => 0.19459644914006
103 => 0.18944669095691
104 => 0.19016279641758
105 => 0.17995977794923
106 => 0.17440063197249
107 => 0.1728619336345
108 => 0.1708043219103
109 => 0.17309434635384
110 => 0.17993087407985
111 => 0.17168457119202
112 => 0.15754686330172
113 => 0.15839656363541
114 => 0.16030558800692
115 => 0.15674813372008
116 => 0.15338130179209
117 => 0.15630848899377
118 => 0.15031815578654
119 => 0.16102949115585
120 => 0.16073977955229
121 => 0.16473230299343
122 => 0.16722890983601
123 => 0.16147503934993
124 => 0.1600279564828
125 => 0.16085228065017
126 => 0.14722803836839
127 => 0.16361891173455
128 => 0.16376066068806
129 => 0.16254692008977
130 => 0.17127455414581
131 => 0.18969258422137
201 => 0.1827629804434
202 => 0.18007962841219
203 => 0.17497857423933
204 => 0.18177542605404
205 => 0.18125353388207
206 => 0.17889333955872
207 => 0.17746588666771
208 => 0.1800960123875
209 => 0.17713998498471
210 => 0.17660900123697
211 => 0.17339181744168
212 => 0.17224342919929
213 => 0.17139320826328
214 => 0.17045719855372
215 => 0.17252180273393
216 => 0.16784313804028
217 => 0.1622011270749
218 => 0.16173205491054
219 => 0.1630272043976
220 => 0.16245419716211
221 => 0.16172931157234
222 => 0.16034530757063
223 => 0.15993470314789
224 => 0.16126896832485
225 => 0.15976266073255
226 => 0.16198529963781
227 => 0.1613808648398
228 => 0.15800454119239
301 => 0.1537963918526
302 => 0.15375893049658
303 => 0.15285229162407
304 => 0.15169755070587
305 => 0.15137632819931
306 => 0.15606196945223
307 => 0.16576110661632
308 => 0.16385693391033
309 => 0.16523289383788
310 => 0.17200125484382
311 => 0.1741527132759
312 => 0.1726256590409
313 => 0.17053533301943
314 => 0.17062729675579
315 => 0.17777057355587
316 => 0.17821609096777
317 => 0.17934176973828
318 => 0.18078858507516
319 => 0.17287205794898
320 => 0.17025442904007
321 => 0.1690140512425
322 => 0.16519416771262
323 => 0.16931358460753
324 => 0.16691337679389
325 => 0.16723724683072
326 => 0.16702632604436
327 => 0.16714150305611
328 => 0.16102649711932
329 => 0.16325448388744
330 => 0.1595500237603
331 => 0.15459016749523
401 => 0.15457354031788
402 => 0.15578745811214
403 => 0.15506537230751
404 => 0.15312225797377
405 => 0.15339826819364
406 => 0.15098012823601
407 => 0.15369187416633
408 => 0.15376963733652
409 => 0.15272546744355
410 => 0.15690328619803
411 => 0.15861494195052
412 => 0.15792764695868
413 => 0.1585667195017
414 => 0.16393606088309
415 => 0.16481149780904
416 => 0.16520030906344
417 => 0.16467935349017
418 => 0.15866486120552
419 => 0.15893162951394
420 => 0.1569742606703
421 => 0.15532049025988
422 => 0.15538663240341
423 => 0.15623688536947
424 => 0.15994998993895
425 => 0.16776399960594
426 => 0.16806053556083
427 => 0.16841994578873
428 => 0.16695804376676
429 => 0.16651712012842
430 => 0.16709881221944
501 => 0.17003334340925
502 => 0.1775817543469
503 => 0.17491364178012
504 => 0.17274442473168
505 => 0.17464741289988
506 => 0.1743544627875
507 => 0.17188166902444
508 => 0.17181226593941
509 => 0.16706618410812
510 => 0.16531166571814
511 => 0.16384545882805
512 => 0.16224439918038
513 => 0.16129523735323
514 => 0.16275358130606
515 => 0.1630871218227
516 => 0.15989842728233
517 => 0.15946381999911
518 => 0.16206777679353
519 => 0.1609218724936
520 => 0.16210046348313
521 => 0.16237390670247
522 => 0.16232987604623
523 => 0.16113342035083
524 => 0.16189600553225
525 => 0.16009226424061
526 => 0.15813096649912
527 => 0.15687978073322
528 => 0.15578795520677
529 => 0.15639376346612
530 => 0.15423416763775
531 => 0.15354326946818
601 => 0.1616376588315
602 => 0.16761707128353
603 => 0.16753012825837
604 => 0.16700088495264
605 => 0.16621453675341
606 => 0.16997581714062
607 => 0.16866546226289
608 => 0.16961885492025
609 => 0.16986153336532
610 => 0.17059604792845
611 => 0.17085857375111
612 => 0.17006503837912
613 => 0.16740183674856
614 => 0.1607653914948
615 => 0.15767610831444
616 => 0.15665659340883
617 => 0.15669365083932
618 => 0.15567144147491
619 => 0.15597252794494
620 => 0.15556673588789
621 => 0.15479826390348
622 => 0.15634631248658
623 => 0.15652471066471
624 => 0.15616337762761
625 => 0.1562484846383
626 => 0.15325680141849
627 => 0.1534842525961
628 => 0.15221777553608
629 => 0.15198032635493
630 => 0.14877878263198
701 => 0.14310678385559
702 => 0.14624962177196
703 => 0.14245351551888
704 => 0.14101587256044
705 => 0.14782145072633
706 => 0.14713835943583
707 => 0.14596920407914
708 => 0.14423977963327
709 => 0.14359831928354
710 => 0.13970100926023
711 => 0.13947073539271
712 => 0.14140234747648
713 => 0.14051097496253
714 => 0.13925915036378
715 => 0.13472516856252
716 => 0.12962747186812
717 => 0.12978133928834
718 => 0.13140282176081
719 => 0.13611750073622
720 => 0.13427539409576
721 => 0.13293892459236
722 => 0.1326886440285
723 => 0.13582142928307
724 => 0.14025497675708
725 => 0.14233509803685
726 => 0.14027376102282
727 => 0.13790580805137
728 => 0.1380499343767
729 => 0.13900874224942
730 => 0.13910949940003
731 => 0.13756820544511
801 => 0.13800207066524
802 => 0.1373429897224
803 => 0.13329821119274
804 => 0.13322505397527
805 => 0.13223240009323
806 => 0.13220234292819
807 => 0.13051359104572
808 => 0.13027732298357
809 => 0.12692420362101
810 => 0.12913123693963
811 => 0.12765087486395
812 => 0.12541962003379
813 => 0.12503495086007
814 => 0.1250233872402
815 => 0.12731438705132
816 => 0.12910446527295
817 => 0.12767662639606
818 => 0.12735153516128
819 => 0.13082265904065
820 => 0.13038092688701
821 => 0.12999838969082
822 => 0.13985800120836
823 => 0.13205334933714
824 => 0.12865007564734
825 => 0.12443787819206
826 => 0.12580939092324
827 => 0.12609838880742
828 => 0.11596881323313
829 => 0.1118592456842
830 => 0.1104489969672
831 => 0.10963737889257
901 => 0.11000724344084
902 => 0.1063081506426
903 => 0.10879400218036
904 => 0.10559090049362
905 => 0.10505389007205
906 => 0.11078143267609
907 => 0.11157838676963
908 => 0.10817833301238
909 => 0.11036171794324
910 => 0.10956999221599
911 => 0.10564580847858
912 => 0.10549593352416
913 => 0.10352691606646
914 => 0.10044578502206
915 => 0.099037625456994
916 => 0.098304243729303
917 => 0.098606851323473
918 => 0.098453843663916
919 => 0.097455365186934
920 => 0.098511075281439
921 => 0.095814172239507
922 => 0.094740243717785
923 => 0.094255175119475
924 => 0.091861518441813
925 => 0.09567089067993
926 => 0.096421385000046
927 => 0.097173358025812
928 => 0.10371876982132
929 => 0.10339177954516
930 => 0.10634761239093
1001 => 0.10623275416197
1002 => 0.10538970275304
1003 => 0.10183300753398
1004 => 0.1032506428563
1005 => 0.098887381683633
1006 => 0.10215663362711
1007 => 0.10066468356733
1008 => 0.10165220381114
1009 => 0.099876553371671
1010 => 0.10085927163968
1011 => 0.096599355044849
1012 => 0.09262150486724
1013 => 0.094222307899395
1014 => 0.095962563869381
1015 => 0.099735882221284
1016 => 0.097488524940091
1017 => 0.098296759600396
1018 => 0.095589308785224
1019 => 0.090003064408434
1020 => 0.090034681944942
1021 => 0.089175359950522
1022 => 0.088432780284278
1023 => 0.097746660958208
1024 => 0.09658833266574
1025 => 0.094742688129952
1026 => 0.097213156684103
1027 => 0.097866387781428
1028 => 0.097884984352434
1029 => 0.09968737443752
1030 => 0.10064931034903
1031 => 0.1008188557227
1101 => 0.1036549554648
1102 => 0.10460557868929
1103 => 0.10852106121373
1104 => 0.10056769680761
1105 => 0.10040390250152
1106 => 0.097247921242958
1107 => 0.095246348034688
1108 => 0.097384970672949
1109 => 0.099279498379345
1110 => 0.097306789499771
1111 => 0.097564383633286
1112 => 0.094916183138695
1113 => 0.095862790206097
1114 => 0.096678135734286
1115 => 0.096227949857415
1116 => 0.095553999810496
1117 => 0.09912416871233
1118 => 0.098922725791284
1119 => 0.1022473491505
1120 => 0.10483913080511
1121 => 0.10948406686655
1122 => 0.10463683394044
1123 => 0.10446018150661
1124 => 0.10618698738327
1125 => 0.10460531432431
1126 => 0.10560487710007
1127 => 0.10932302185019
1128 => 0.10940158038979
1129 => 0.10808562363462
1130 => 0.10800554754647
1201 => 0.10825829143629
1202 => 0.10973862029327
1203 => 0.10922134790473
1204 => 0.10981994860849
1205 => 0.11056850795463
1206 => 0.11366486679286
1207 => 0.11441138842609
1208 => 0.11259772788444
1209 => 0.11276148112466
1210 => 0.11208312229599
1211 => 0.1114278361673
1212 => 0.11290082368773
1213 => 0.11559273733296
1214 => 0.11557599107788
1215 => 0.11620046272025
1216 => 0.11658950338004
1217 => 0.11491945607304
1218 => 0.11383231668553
1219 => 0.11424919510318
1220 => 0.11491579277143
1221 => 0.11403302646354
1222 => 0.10858418387411
1223 => 0.11023701464233
1224 => 0.10996190278321
1225 => 0.10957011004106
1226 => 0.11123204415947
1227 => 0.11107174655944
1228 => 0.10627021109938
1229 => 0.10657758982098
1230 => 0.10628890381751
1231 => 0.10722170735434
]
'min_raw' => 0.088432780284278
'max_raw' => 0.19810034448629
'avg_raw' => 0.14326656238528
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.088432'
'max' => '$0.19810034'
'avg' => '$0.143266'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.021564791855666
'max_diff' => -0.14395541266397
'year' => 2034
]
9 => [
'items' => [
101 => 0.10455493987212
102 => 0.1053752195887
103 => 0.10588969133729
104 => 0.10619271914957
105 => 0.10728746339564
106 => 0.10715900779386
107 => 0.10727947841508
108 => 0.10890269513024
109 => 0.1171123682548
110 => 0.11755920264935
111 => 0.1153588266686
112 => 0.11623783347241
113 => 0.11455033262675
114 => 0.11568316324972
115 => 0.11645821719117
116 => 0.11295589746403
117 => 0.11274851281965
118 => 0.11105404705772
119 => 0.11196455697874
120 => 0.11051587022642
121 => 0.11087132728253
122 => 0.10987743836546
123 => 0.11166624053487
124 => 0.11366639931202
125 => 0.1141717184078
126 => 0.11284244142037
127 => 0.11187995727785
128 => 0.11019015218557
129 => 0.11300033571379
130 => 0.11382211901623
131 => 0.11299601923595
201 => 0.11280459386622
202 => 0.11244184313648
203 => 0.11288155314836
204 => 0.11381764340788
205 => 0.11337620052837
206 => 0.11366778132751
207 => 0.11255657599799
208 => 0.11492000892819
209 => 0.11867370921246
210 => 0.11868577797266
211 => 0.11824433271361
212 => 0.11806370282467
213 => 0.1185166524496
214 => 0.11876235904016
215 => 0.12022711507043
216 => 0.12179885664937
217 => 0.12913348879369
218 => 0.12707395343757
219 => 0.13358167541522
220 => 0.13872843857761
221 => 0.14027172780933
222 => 0.13885197433352
223 => 0.13399507438633
224 => 0.13375677170385
225 => 0.14101503075522
226 => 0.13896424012389
227 => 0.13872030510385
228 => 0.13612524862539
301 => 0.13765924840816
302 => 0.13732374015325
303 => 0.13679412395925
304 => 0.13972088868541
305 => 0.14519953097871
306 => 0.14434563319892
307 => 0.14370823811748
308 => 0.14091535841354
309 => 0.14259729580758
310 => 0.14199839011695
311 => 0.14457166903883
312 => 0.14304731561062
313 => 0.13894870336784
314 => 0.13960142087671
315 => 0.13950276393833
316 => 0.14153311673927
317 => 0.14092365522489
318 => 0.13938375679614
319 => 0.14518080557496
320 => 0.14480437747214
321 => 0.14533806645849
322 => 0.14557301285516
323 => 0.14910157429138
324 => 0.15054711301042
325 => 0.15087527560736
326 => 0.15224842558848
327 => 0.15084111038492
328 => 0.15647137459788
329 => 0.16021517176447
330 => 0.16456378482751
331 => 0.17091827730961
401 => 0.17330762526522
402 => 0.17287601094326
403 => 0.17769391462037
404 => 0.18635158043215
405 => 0.17462597273596
406 => 0.18697306611205
407 => 0.18306411890323
408 => 0.17379607539007
409 => 0.17319932265088
410 => 0.17947574932218
411 => 0.19339625959546
412 => 0.18990932965713
413 => 0.19340196296368
414 => 0.18932762068944
415 => 0.18912529525428
416 => 0.19320408125353
417 => 0.20273438706382
418 => 0.19820689601152
419 => 0.1917156274017
420 => 0.19650867912787
421 => 0.19235649414666
422 => 0.18300045926061
423 => 0.18990666326752
424 => 0.18528868132546
425 => 0.18663645396158
426 => 0.19634276513081
427 => 0.19517487609121
428 => 0.19668623265206
429 => 0.19401872788125
430 => 0.19152685779842
501 => 0.18687559724011
502 => 0.18549858829317
503 => 0.18587914402651
504 => 0.18549839970865
505 => 0.18289606217357
506 => 0.18233408763064
507 => 0.18139743877175
508 => 0.18168774541879
509 => 0.17992657153779
510 => 0.18325027052832
511 => 0.1838671783493
512 => 0.18628588930111
513 => 0.1865370078959
514 => 0.1932730834685
515 => 0.18956296623826
516 => 0.19205203319241
517 => 0.19182938761603
518 => 0.17399694199617
519 => 0.17645409566558
520 => 0.1802766556779
521 => 0.17855459757371
522 => 0.17612001031392
523 => 0.17415395056733
524 => 0.17117516901132
525 => 0.17536774684897
526 => 0.18088054087454
527 => 0.18667682144988
528 => 0.1936406727738
529 => 0.19208642222646
530 => 0.18654663709333
531 => 0.18679514780759
601 => 0.18833134325776
602 => 0.18634183057171
603 => 0.1857550844407
604 => 0.18825073334946
605 => 0.18826791951191
606 => 0.18597874472597
607 => 0.18343474586596
608 => 0.18342408641785
609 => 0.18297140639283
610 => 0.18940815146026
611 => 0.19294771041902
612 => 0.19335351514936
613 => 0.19292039652739
614 => 0.19308708669512
615 => 0.19102749532588
616 => 0.19573511044312
617 => 0.20005528360959
618 => 0.19889738491394
619 => 0.19716153016416
620 => 0.19577883824587
621 => 0.19857166664057
622 => 0.19844730638847
623 => 0.20001755066581
624 => 0.19994631531522
625 => 0.19941830122463
626 => 0.19889740377098
627 => 0.20096270329511
628 => 0.20036793019985
629 => 0.1997722332577
630 => 0.19857747184358
701 => 0.19873985976265
702 => 0.19700430473267
703 => 0.1962013575622
704 => 0.18412695865807
705 => 0.18090028472851
706 => 0.18191546203176
707 => 0.18224968475905
708 => 0.18084543212981
709 => 0.18285876967723
710 => 0.18254499315312
711 => 0.18376571405532
712 => 0.18300306063317
713 => 0.18303436019564
714 => 0.18527716129533
715 => 0.18592825599614
716 => 0.18559710397633
717 => 0.18582903149977
718 => 0.19117370338707
719 => 0.19041386195769
720 => 0.19001021134253
721 => 0.19012202532152
722 => 0.19148770357979
723 => 0.19187001892883
724 => 0.1902501219301
725 => 0.19101407471922
726 => 0.19426688873521
727 => 0.19540518954748
728 => 0.19903809932486
729 => 0.19749477468161
730 => 0.20032761385783
731 => 0.20903479569948
801 => 0.21599069504574
802 => 0.20959376254222
803 => 0.2223673858632
804 => 0.23231348388601
805 => 0.2319317360778
806 => 0.23019740383013
807 => 0.21887403566185
808 => 0.20845410345149
809 => 0.21717081919915
810 => 0.2171930399002
811 => 0.216444266287
812 => 0.21179369768329
813 => 0.21628243658029
814 => 0.21663873637323
815 => 0.21643930323694
816 => 0.21287372319231
817 => 0.2074297414935
818 => 0.20849348248639
819 => 0.21023591193249
820 => 0.20693712948217
821 => 0.20588296860902
822 => 0.20784285423452
823 => 0.21415801407828
824 => 0.21296416969105
825 => 0.21293299358939
826 => 0.21804076614679
827 => 0.214384703322
828 => 0.20850689966688
829 => 0.20702267672526
830 => 0.20175468517488
831 => 0.20539330570267
901 => 0.20552425317775
902 => 0.20353141790048
903 => 0.20866860726649
904 => 0.2086212671621
905 => 0.2134982638954
906 => 0.22282124993314
907 => 0.2200639842055
908 => 0.21685758415391
909 => 0.21720620874335
910 => 0.22102976001067
911 => 0.21871795363126
912 => 0.21954929532378
913 => 0.22102850167545
914 => 0.22192094359404
915 => 0.21707780008516
916 => 0.21594863165891
917 => 0.21363874934307
918 => 0.21303614416286
919 => 0.21491749511184
920 => 0.21442182560589
921 => 0.20551324754953
922 => 0.20458225157578
923 => 0.20461080389313
924 => 0.20226977025069
925 => 0.19869913203352
926 => 0.20808255607652
927 => 0.20732893580494
928 => 0.20649699735068
929 => 0.20659890506435
930 => 0.21067193140767
1001 => 0.20830937043578
1002 => 0.21459062599567
1003 => 0.21329938868438
1004 => 0.21197503600835
1005 => 0.21179197012775
1006 => 0.21128220733593
1007 => 0.20953404104842
1008 => 0.20742302520775
1009 => 0.20602914969667
1010 => 0.19005099993553
1011 => 0.19301645159058
1012 => 0.19642793341029
1013 => 0.19760556326379
1014 => 0.19559114590987
1015 => 0.20961358252358
1016 => 0.21217561681646
1017 => 0.20441504782595
1018 => 0.20296336222977
1019 => 0.20970875478958
1020 => 0.20564045848531
1021 => 0.20747241206202
1022 => 0.20351273045421
1023 => 0.21155849778043
1024 => 0.21149720251375
1025 => 0.20836721730195
1026 => 0.21101265936975
1027 => 0.21055294870934
1028 => 0.20701920311403
1029 => 0.21167052381883
1030 => 0.21167283081587
1031 => 0.20866028810126
1101 => 0.20514229774099
1102 => 0.2045133641558
1103 => 0.2040395471847
1104 => 0.20735588213264
1105 => 0.21032929767704
1106 => 0.21586208683296
1107 => 0.21725316148259
1108 => 0.22268261844916
1109 => 0.21944964118103
1110 => 0.22088277812993
1111 => 0.22243865101755
1112 => 0.22318459369521
1113 => 0.22196912013146
1114 => 0.23040330165419
1115 => 0.23111540499135
1116 => 0.23135416708063
1117 => 0.22851020852556
1118 => 0.23103630935925
1119 => 0.22985443043483
1120 => 0.23292935106075
1121 => 0.23341153787745
1122 => 0.233003142798
1123 => 0.23315619650442
1124 => 0.22595911046635
1125 => 0.22558590358762
1126 => 0.22049720131462
1127 => 0.22257088510466
1128 => 0.21869423265343
1129 => 0.21992355907966
1130 => 0.22046543445489
1201 => 0.22018238951003
1202 => 0.22268812807481
1203 => 0.22055773840618
1204 => 0.21493528980215
1205 => 0.20931130936576
1206 => 0.20924070487258
1207 => 0.20776001009518
1208 => 0.20668973897389
1209 => 0.20689591116176
1210 => 0.20762248884327
1211 => 0.2066475089582
1212 => 0.20685557034941
1213 => 0.21031077574937
1214 => 0.21100369255093
1215 => 0.20864889051915
1216 => 0.19919402056523
1217 => 0.19687377176279
1218 => 0.19854152058945
1219 => 0.19774444406708
1220 => 0.15959519968321
1221 => 0.16855779877546
1222 => 0.16323252673596
1223 => 0.16568665709575
1224 => 0.16025093331592
1225 => 0.16284514561435
1226 => 0.16236608932829
1227 => 0.17677768344604
1228 => 0.17655266622639
1229 => 0.17666037006179
1230 => 0.17151938537731
1231 => 0.17970911357263
]
'min_raw' => 0.10455493987212
'max_raw' => 0.23341153787745
'avg_raw' => 0.16898323887479
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.104554'
'max' => '$0.233411'
'avg' => '$0.168983'
'bar_min_pct' => 61.631153054957
'bar_max_pct' => 60.119598047091
'min_diff' => 0.016122159587838
'max_diff' => 0.035311193391168
'year' => 2035
]
10 => [
'items' => [
101 => 0.18374366817475
102 => 0.18299697949409
103 => 0.18318490494824
104 => 0.1799557230192
105 => 0.17669163560151
106 => 0.17307126031583
107 => 0.17979747010471
108 => 0.17904963039641
109 => 0.180764905623
110 => 0.18512733347049
111 => 0.18576971754229
112 => 0.1866330882492
113 => 0.18632363130968
114 => 0.19369615108456
115 => 0.19280329029437
116 => 0.19495482790514
117 => 0.19052895180223
118 => 0.18552065288376
119 => 0.18647256677453
120 => 0.18638088981204
121 => 0.18521373685763
122 => 0.18416008335733
123 => 0.18240604714435
124 => 0.18795607727073
125 => 0.18773075618314
126 => 0.19137844268404
127 => 0.19073367866327
128 => 0.18642778673205
129 => 0.18658157250474
130 => 0.18761585573306
131 => 0.19119552179549
201 => 0.19225821040507
202 => 0.19176593070029
203 => 0.19293112024712
204 => 0.19385203855632
205 => 0.19304677340804
206 => 0.20444762975375
207 => 0.19971319933408
208 => 0.20202072777867
209 => 0.20257105971596
210 => 0.20116139603083
211 => 0.20146710160786
212 => 0.20193016225728
213 => 0.20474177584399
214 => 0.21212026344247
215 => 0.21538814537277
216 => 0.22521972939454
217 => 0.21511679326957
218 => 0.21451732685002
219 => 0.21628829201774
220 => 0.22206047261737
221 => 0.22673828284003
222 => 0.22829018236023
223 => 0.22849529150089
224 => 0.23140675816911
225 => 0.2330755565677
226 => 0.23105322953641
227 => 0.22933951912387
228 => 0.22320122113969
229 => 0.22391174584539
301 => 0.22880655647421
302 => 0.23572076479032
303 => 0.24165387482631
304 => 0.23957630648147
305 => 0.25542668641795
306 => 0.25699818684565
307 => 0.25678105629923
308 => 0.26036116814417
309 => 0.25325537520907
310 => 0.25021751106107
311 => 0.2297100427665
312 => 0.23547180486851
313 => 0.24384686446021
314 => 0.24273839391839
315 => 0.23665620177691
316 => 0.24164926093817
317 => 0.23999839943206
318 => 0.23869629646789
319 => 0.24466148257185
320 => 0.2381025154142
321 => 0.24378143374546
322 => 0.23649816224473
323 => 0.23958579663867
324 => 0.2378331060246
325 => 0.23896731165358
326 => 0.23233676872217
327 => 0.23591444874063
328 => 0.23218792547108
329 => 0.23218615861384
330 => 0.23210389540613
331 => 0.23648813350682
401 => 0.23663110335388
402 => 0.23339114477325
403 => 0.23292421612412
404 => 0.23465069606718
405 => 0.23262944021967
406 => 0.23357517310909
407 => 0.23265808550546
408 => 0.23245162976906
409 => 0.2308065553359
410 => 0.23009781203783
411 => 0.23037572854707
412 => 0.22942705622526
413 => 0.22885544683639
414 => 0.23199018791148
415 => 0.23031542221015
416 => 0.23173350604823
417 => 0.23011742053829
418 => 0.22451536406592
419 => 0.22129356214798
420 => 0.21071179678257
421 => 0.21371277231356
422 => 0.21570242219534
423 => 0.21504484292128
424 => 0.21645757765136
425 => 0.21654430809003
426 => 0.21608501362816
427 => 0.21555320948057
428 => 0.21529435663214
429 => 0.21722363369018
430 => 0.21834364395886
501 => 0.21590211017906
502 => 0.21533009297514
503 => 0.21779861842729
504 => 0.21930441752708
505 => 0.2304223920445
506 => 0.22959873658167
507 => 0.23166595015916
508 => 0.23143321363432
509 => 0.23359998279648
510 => 0.23714173463165
511 => 0.22994036286137
512 => 0.23119027199599
513 => 0.23088382314079
514 => 0.23422955138657
515 => 0.23423999638496
516 => 0.23223406517009
517 => 0.23332151302419
518 => 0.2327145294646
519 => 0.23381143079552
520 => 0.2295877361608
521 => 0.23473174030623
522 => 0.23764805918438
523 => 0.23768855227483
524 => 0.23907086427774
525 => 0.2404753733308
526 => 0.2431712061512
527 => 0.24040018801661
528 => 0.23541539614565
529 => 0.23577528201796
530 => 0.23285270036788
531 => 0.23290182949342
601 => 0.23263957437094
602 => 0.23342662173515
603 => 0.22976044879773
604 => 0.2306208922583
605 => 0.22941626637476
606 => 0.23118765337457
607 => 0.22928193378353
608 => 0.23088367536188
609 => 0.23157493392852
610 => 0.23412569292115
611 => 0.22890518460636
612 => 0.21826021475516
613 => 0.22049791647567
614 => 0.21718817986336
615 => 0.21749450858789
616 => 0.21811334136328
617 => 0.21610750186874
618 => 0.21649015283303
619 => 0.21647648184791
620 => 0.21635867268383
621 => 0.21583687636211
622 => 0.21508016846135
623 => 0.21809465983556
624 => 0.21860688066126
625 => 0.21974548410606
626 => 0.22313319563567
627 => 0.22279468336612
628 => 0.22334681092249
629 => 0.222141519567
630 => 0.21755041859701
701 => 0.21779973746813
702 => 0.21469072715016
703 => 0.21966597972222
704 => 0.21848777424303
705 => 0.21772817750592
706 => 0.21752091449858
707 => 0.22091702350982
708 => 0.22193319255347
709 => 0.22129998419803
710 => 0.2200012553874
711 => 0.22249519863852
712 => 0.2231624726415
713 => 0.22331185068265
714 => 0.22773063995745
715 => 0.22355881191649
716 => 0.22456301239035
717 => 0.23239749782578
718 => 0.22529270062094
719 => 0.22905627015623
720 => 0.22887206301215
721 => 0.23079737783415
722 => 0.22871413100101
723 => 0.22873995534226
724 => 0.23044950447208
725 => 0.22804875103806
726 => 0.22745429072592
727 => 0.22663304806231
728 => 0.22842620137374
729 => 0.22950111568659
730 => 0.23816413561062
731 => 0.24376084156324
801 => 0.24351787379758
802 => 0.24573814435916
803 => 0.24473789213582
804 => 0.24150781385345
805 => 0.24702116361537
806 => 0.24527650906234
807 => 0.24542033626394
808 => 0.24541498300831
809 => 0.24657502576573
810 => 0.24575302915574
811 => 0.24413278946124
812 => 0.24520838018387
813 => 0.24840250009936
814 => 0.25831714632461
815 => 0.26386551370385
816 => 0.25798312764164
817 => 0.26204071877907
818 => 0.25960760996416
819 => 0.25916544171378
820 => 0.26171390880171
821 => 0.26426683664392
822 => 0.26410422617698
823 => 0.26225093165783
824 => 0.26120405260957
825 => 0.2691313714932
826 => 0.2749720850083
827 => 0.27457378750321
828 => 0.27633174315738
829 => 0.28149315532957
830 => 0.28196505017367
831 => 0.2819056022697
901 => 0.28073596166146
902 => 0.28581804223904
903 => 0.29005760326756
904 => 0.28046522365481
905 => 0.28411787623788
906 => 0.28575766966353
907 => 0.28816537291718
908 => 0.292227571884
909 => 0.29664019740703
910 => 0.29726419103796
911 => 0.29682143769597
912 => 0.29391119254579
913 => 0.29873954004666
914 => 0.30156787277399
915 => 0.30325208018787
916 => 0.30752294996407
917 => 0.28576779646948
918 => 0.27036841752472
919 => 0.26796358213277
920 => 0.27285390946778
921 => 0.27414344978639
922 => 0.27362363770091
923 => 0.2562902366483
924 => 0.26787232536345
925 => 0.28033367897128
926 => 0.28081237031382
927 => 0.28705078448451
928 => 0.28908226785973
929 => 0.29410500895477
930 => 0.29379083513173
1001 => 0.29501379265911
1002 => 0.29473265590224
1003 => 0.30403622611789
1004 => 0.3142994456593
1005 => 0.31394406300162
1006 => 0.31246860376364
1007 => 0.31465991233523
1008 => 0.32525265477541
1009 => 0.32427744479676
1010 => 0.32522477822283
1011 => 0.33771421854061
1012 => 0.3539522675559
1013 => 0.34640806351483
1014 => 0.36277681549771
1015 => 0.37308007720067
1016 => 0.3908985029388
1017 => 0.38866754827879
1018 => 0.395604130661
1019 => 0.38467367382308
1020 => 0.35957513551344
1021 => 0.35560319575259
1022 => 0.36355511973934
1023 => 0.38310414892337
1024 => 0.36293945124125
1025 => 0.36701874331978
1026 => 0.36584390692674
1027 => 0.36578130488808
1028 => 0.36817057008255
1029 => 0.36470481630229
1030 => 0.3505847119243
1031 => 0.35705587255043
1101 => 0.35455704666203
1102 => 0.35732968028503
1103 => 0.37229244042726
1104 => 0.36567704750073
1105 => 0.35870826844351
1106 => 0.36744866387713
1107 => 0.37857819078986
1108 => 0.37788172499735
1109 => 0.37653029025975
1110 => 0.38414825711677
1111 => 0.3967309065097
1112 => 0.40013194607943
1113 => 0.40264252395862
1114 => 0.40298869023159
1115 => 0.40655441798441
1116 => 0.38738060117842
1117 => 0.41780994086807
1118 => 0.42306424723892
1119 => 0.42207665540989
1120 => 0.42791659580608
1121 => 0.42619833719653
1122 => 0.42370885005781
1123 => 0.43296639777673
1124 => 0.42235336636257
1125 => 0.40728950441367
1126 => 0.3990251718191
1127 => 0.40990831164433
1128 => 0.41655426536635
1129 => 0.42094681801457
1130 => 0.42227600179187
1201 => 0.38886900999621
1202 => 0.37086449425506
1203 => 0.38240518242295
1204 => 0.39648561848352
1205 => 0.38730238364516
1206 => 0.38766234906466
1207 => 0.37456946949684
1208 => 0.39764404780466
1209 => 0.39428227583296
1210 => 0.41172315476902
1211 => 0.40756074903913
1212 => 0.42178310876046
1213 => 0.41803788480265
1214 => 0.43358410005885
1215 => 0.43978590622152
1216 => 0.4501997040027
1217 => 0.45786013604232
1218 => 0.4623584882567
1219 => 0.46208842406264
1220 => 0.47991313660619
1221 => 0.46940252636728
1222 => 0.45619872274659
1223 => 0.45595990759655
1224 => 0.46279834459106
1225 => 0.47712983249797
1226 => 0.48084577879756
1227 => 0.48292248584032
1228 => 0.47974193671364
1229 => 0.46833342260153
1230 => 0.46340728405041
1231 => 0.46760449681994
]
'min_raw' => 0.17307126031583
'max_raw' => 0.48292248584032
'avg_raw' => 0.32799687307807
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$0.173071'
'max' => '$0.482922'
'avg' => '$0.327996'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.068516320443716
'max_diff' => 0.24951094796286
'year' => 2036
]
11 => [
'items' => [
101 => 0.4624716662734
102 => 0.47133237181462
103 => 0.48350001306728
104 => 0.48098744326467
105 => 0.48938658740927
106 => 0.49807881798319
107 => 0.51050909809641
108 => 0.51375883360994
109 => 0.51913052283744
110 => 0.52465975556052
111 => 0.52643559609418
112 => 0.52982622668388
113 => 0.52980835638701
114 => 0.54002624988484
115 => 0.55129690283477
116 => 0.55555131340715
117 => 0.56533409592877
118 => 0.54858142369008
119 => 0.56128851802396
120 => 0.57275063519232
121 => 0.55908502657658
122 => 0.57791988437494
123 => 0.57865119922254
124 => 0.5896931851644
125 => 0.57850001702378
126 => 0.57185354951174
127 => 0.59104165217911
128 => 0.60032617064028
129 => 0.59752959811986
130 => 0.57624754315564
131 => 0.56386047433618
201 => 0.53144112594854
202 => 0.56984324452533
203 => 0.58854779627893
204 => 0.57619910288528
205 => 0.58242706555244
206 => 0.61640481044077
207 => 0.62934133579818
208 => 0.62665062895698
209 => 0.62710531412034
210 => 0.63408562838865
211 => 0.66504018598365
212 => 0.6464914975517
213 => 0.66067127485183
214 => 0.66819217760283
215 => 0.67517801122242
216 => 0.65802301174809
217 => 0.63570460948899
218 => 0.62863543463074
219 => 0.57497126869343
220 => 0.57217781580473
221 => 0.57060976604802
222 => 0.560723434137
223 => 0.55295548534915
224 => 0.54677812406761
225 => 0.53056688334862
226 => 0.53603770120531
227 => 0.51020036704813
228 => 0.52673017782299
301 => 0.48549316864387
302 => 0.51983657525259
303 => 0.50114502043855
304 => 0.51369589678842
305 => 0.5136521079632
306 => 0.49054196534412
307 => 0.4772125173778
308 => 0.48570656041182
309 => 0.49481284880225
310 => 0.49629031345637
311 => 0.50809685405301
312 => 0.5113918057528
313 => 0.50140794827587
314 => 0.48463862328664
315 => 0.48853375501406
316 => 0.47713358265767
317 => 0.45715521910439
318 => 0.47150402859712
319 => 0.47640334303055
320 => 0.47856715939215
321 => 0.45892073336805
322 => 0.45274739976662
323 => 0.44946076875651
324 => 0.48210251639619
325 => 0.48389070501647
326 => 0.47474207921072
327 => 0.51609473536099
328 => 0.50673535568372
329 => 0.51719207588693
330 => 0.48818031263664
331 => 0.48928860106232
401 => 0.4755539674055
402 => 0.48324444450477
403 => 0.47780906316665
404 => 0.48262312995392
405 => 0.48550866173707
406 => 0.49924104167565
407 => 0.51999337697286
408 => 0.49718988204734
409 => 0.48725407275623
410 => 0.49341819295932
411 => 0.50983405735842
412 => 0.53470493223569
413 => 0.51998087373535
414 => 0.52651516086707
415 => 0.52794261191515
416 => 0.51708563629127
417 => 0.53510524441318
418 => 0.54476209879674
419 => 0.55466803318982
420 => 0.56326907846536
421 => 0.55071138515706
422 => 0.56414991707156
423 => 0.55332083256869
424 => 0.54360602427944
425 => 0.54362075763352
426 => 0.53752651648297
427 => 0.52571815632997
428 => 0.52354051354501
429 => 0.53486888631834
430 => 0.54395316848166
501 => 0.54470139347141
502 => 0.54973091884429
503 => 0.55270734015173
504 => 0.5818803152132
505 => 0.59361392711443
506 => 0.60796156564135
507 => 0.61355077943619
508 => 0.6303723091146
509 => 0.61678755772144
510 => 0.61384841130544
511 => 0.57304488258604
512 => 0.57972645812799
513 => 0.59042430524679
514 => 0.57322128614477
515 => 0.58413264217583
516 => 0.58628677499049
517 => 0.5726367341385
518 => 0.57992781074099
519 => 0.56056487293832
520 => 0.52041543610416
521 => 0.5351499422137
522 => 0.54599949829145
523 => 0.53051584402788
524 => 0.55826969499515
525 => 0.54205646821585
526 => 0.53691765369894
527 => 0.51686930614885
528 => 0.52633135446083
529 => 0.53912891028626
530 => 0.53122150866169
531 => 0.547630554335
601 => 0.57087013914102
602 => 0.587432051215
603 => 0.58870346917396
604 => 0.57805526927233
605 => 0.5951190775706
606 => 0.59524336878507
607 => 0.57599532331691
608 => 0.56420600264123
609 => 0.56152744417877
610 => 0.56821900838031
611 => 0.57634380265188
612 => 0.58915433871034
613 => 0.59689547735247
614 => 0.61708026134846
615 => 0.62254168515467
616 => 0.62854213411745
617 => 0.63656058440165
618 => 0.6461887898563
619 => 0.62512282445558
620 => 0.62595981453282
621 => 0.60634347922982
622 => 0.58538061169152
623 => 0.60128881509476
624 => 0.62208667486489
625 => 0.61731562285403
626 => 0.61677878203906
627 => 0.61768159938261
628 => 0.61408438197441
629 => 0.59781430095624
630 => 0.58964356812501
701 => 0.60018589805355
702 => 0.60578867722545
703 => 0.61447809910738
704 => 0.61340694444899
705 => 0.63578996204105
706 => 0.64448732585
707 => 0.64226216800649
708 => 0.64267165060111
709 => 0.65841781233698
710 => 0.67593078263242
711 => 0.69233399035407
712 => 0.70902003778269
713 => 0.68890435633997
714 => 0.67869085386611
715 => 0.6892285813432
716 => 0.6836371148146
717 => 0.71576734002465
718 => 0.71799196710623
719 => 0.75011986893528
720 => 0.78061307349043
721 => 0.76146083805185
722 => 0.7795205334348
723 => 0.79905356642004
724 => 0.83673595616895
725 => 0.82404585298398
726 => 0.81432543282355
727 => 0.80513968274068
728 => 0.82425377046638
729 => 0.84884373897048
730 => 0.85414018266647
731 => 0.86272244485119
801 => 0.85369924555305
802 => 0.86456669523486
803 => 0.90293356801103
804 => 0.89256650031316
805 => 0.87784359759288
806 => 0.90813055885604
807 => 0.91909129239959
808 => 0.99601946058898
809 => 1.0931444506722
810 => 1.0529340670207
811 => 1.0279741843072
812 => 1.0338403488012
813 => 1.0693071072912
814 => 1.0806979044596
815 => 1.0497337911128
816 => 1.0606708394148
817 => 1.1209350508662
818 => 1.1532648668024
819 => 1.1093566342874
820 => 0.98821556220429
821 => 0.87651796128969
822 => 0.90614519486076
823 => 0.9027863860139
824 => 0.96753276310487
825 => 0.89231924917718
826 => 0.89358565185591
827 => 0.95967091545752
828 => 0.94204050011685
829 => 0.91348148519796
830 => 0.87672647370389
831 => 0.80878143553003
901 => 0.74860062043189
902 => 0.86662905765335
903 => 0.86153945681957
904 => 0.85416896057568
905 => 0.87057120239547
906 => 0.95021583281479
907 => 0.94837976629912
908 => 0.93669964789575
909 => 0.94555891476086
910 => 0.91192841288258
911 => 0.92059575896891
912 => 0.87650026781902
913 => 0.89643327140915
914 => 0.91342021037845
915 => 0.91683058987247
916 => 0.92451434901078
917 => 0.85885746845342
918 => 0.88833548023894
919 => 0.90565105044675
920 => 0.82741867430202
921 => 0.90410464790664
922 => 0.85771452823629
923 => 0.84196902486396
924 => 0.86316827084248
925 => 0.85490690406771
926 => 0.84780426603849
927 => 0.84384087197938
928 => 0.8594072585506
929 => 0.8586810680112
930 => 0.83321143827525
1001 => 0.79998734455962
1002 => 0.81113844095428
1003 => 0.80708714309201
1004 => 0.79240471701133
1005 => 0.80229889942682
1006 => 0.75872992740011
1007 => 0.68377177554625
1008 => 0.7332914266912
1009 => 0.73138497398913
1010 => 0.730423654086
1011 => 0.7676363032988
1012 => 0.76405916571888
1013 => 0.75756662598389
1014 => 0.79228547642758
1015 => 0.7796126289812
1016 => 0.81866735871258
1017 => 0.84439132961521
1018 => 0.83786689851102
1019 => 0.86206041747969
1020 => 0.81139533969316
1021 => 0.82822424620374
1022 => 0.83169266051172
1023 => 0.79185705120238
1024 => 0.76464442966616
1025 => 0.76282965805629
1026 => 0.71564672244273
1027 => 0.74085146580015
1028 => 0.76303059691152
1029 => 0.75240851427927
1030 => 0.7490458802436
1031 => 0.76622484826553
1101 => 0.76755980120875
1102 => 0.73712273263146
1103 => 0.74345156300529
1104 => 0.76984383774464
1105 => 0.74278654539746
1106 => 0.6902186461505
1107 => 0.67718108032918
1108 => 0.67544162871861
1109 => 0.64008271618882
1110 => 0.67805231281891
1111 => 0.66147756636795
1112 => 0.71383699181059
1113 => 0.68392956880698
1114 => 0.68264031957651
1115 => 0.6806914302729
1116 => 0.65025655360023
1117 => 0.65691985735423
1118 => 0.67906969388234
1119 => 0.68697300509134
1120 => 0.68614862498232
1121 => 0.67896114759955
1122 => 0.68225153793954
1123 => 0.67165204420644
1124 => 0.66790914235989
1125 => 0.65609551456594
1126 => 0.6387327453068
1127 => 0.64114714486434
1128 => 0.60674695574628
1129 => 0.58800390695854
1130 => 0.58281607808351
1201 => 0.57587869649752
1202 => 0.58359967379331
1203 => 0.60664950433266
1204 => 0.57884651840786
1205 => 0.5311802491925
1206 => 0.53404507319171
1207 => 0.54048148214407
1208 => 0.52848727664246
1209 => 0.51713576773255
1210 => 0.52700498375269
1211 => 0.50680815711281
1212 => 0.54292217215201
1213 => 0.54194538925356
1214 => 0.55540646078447
1215 => 0.56382394506174
1216 => 0.54442436899552
1217 => 0.5395454280769
1218 => 0.54232469455965
1219 => 0.49638961049242
1220 => 0.55165258442065
1221 => 0.55213050091402
1222 => 0.54803828974622
1223 => 0.5774641173101
1224 => 0.63956179161566
1225 => 0.61619814866875
1226 => 0.60715103994986
1227 => 0.58995247966185
1228 => 0.61286854009615
1229 => 0.61110894420103
1230 => 0.60315138425636
1231 => 0.59833862717272
]
'min_raw' => 0.44946076875651
'max_raw' => 1.1532648668024
'avg_raw' => 0.80136281777947
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$0.44946'
'max' => '$1.15'
'avg' => '$0.801362'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 0.27638950844068
'max_diff' => 0.67034238096211
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.01410805994395
]
1 => [
'year' => 2028
'avg' => 0.024213526462884
]
2 => [
'year' => 2029
'avg' => 0.066146990233055
]
3 => [
'year' => 2030
'avg' => 0.051032304455749
]
4 => [
'year' => 2031
'avg' => 0.050120047339411
]
5 => [
'year' => 2032
'avg' => 0.087876216345387
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.01410805994395
'min' => '$0.014108'
'max_raw' => 0.087876216345387
'max' => '$0.087876'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.087876216345387
]
1 => [
'year' => 2033
'avg' => 0.2260266646451
]
2 => [
'year' => 2034
'avg' => 0.14326656238528
]
3 => [
'year' => 2035
'avg' => 0.16898323887479
]
4 => [
'year' => 2036
'avg' => 0.32799687307807
]
5 => [
'year' => 2037
'avg' => 0.80136281777947
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.087876216345387
'min' => '$0.087876'
'max_raw' => 0.80136281777947
'max' => '$0.801362'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 0.80136281777947
]
]
]
]
'prediction_2025_max_price' => '$0.024122'
'last_price' => 0.02338953
'sma_50day_nextmonth' => '$0.021533'
'sma_200day_nextmonth' => '$0.031268'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'increase'
'sma_200day_direction_label' => 'aumentar'
'sma_200day_date_nextmonth' => '4 de fev. de 2026'
'sma_50day_date_nextmonth' => '4 de fev. de 2026'
'daily_sma3' => '$0.0227011'
'daily_sma3_action' => 'BUY'
'daily_sma5' => '$0.02232'
'daily_sma5_action' => 'BUY'
'daily_sma10' => '$0.0220095'
'daily_sma10_action' => 'BUY'
'daily_sma21' => '$0.0215025'
'daily_sma21_action' => 'BUY'
'daily_sma50' => '$0.021439'
'daily_sma50_action' => 'BUY'
'daily_sma100' => '$0.026043'
'daily_sma100_action' => 'SELL'
'daily_sma200' => '$0.034493'
'daily_sma200_action' => 'SELL'
'daily_ema3' => '$0.022831'
'daily_ema3_action' => 'BUY'
'daily_ema5' => '$0.022535'
'daily_ema5_action' => 'BUY'
'daily_ema10' => '$0.02215'
'daily_ema10_action' => 'BUY'
'daily_ema21' => '$0.0218003'
'daily_ema21_action' => 'BUY'
'daily_ema50' => '$0.022685'
'daily_ema50_action' => 'BUY'
'daily_ema100' => '$0.025993'
'daily_ema100_action' => 'SELL'
'daily_ema200' => '$0.030387'
'daily_ema200_action' => 'SELL'
'weekly_sma21' => '$0.029788'
'weekly_sma21_action' => 'SELL'
'weekly_sma50' => '$0.033334'
'weekly_sma50_action' => 'SELL'
'weekly_sma100' => '$0.042631'
'weekly_sma100_action' => 'SELL'
'weekly_sma200' => '$0.054753'
'weekly_sma200_action' => 'SELL'
'weekly_ema3' => '$0.022561'
'weekly_ema3_action' => 'BUY'
'weekly_ema5' => '$0.022388'
'weekly_ema5_action' => 'BUY'
'weekly_ema10' => '$0.023719'
'weekly_ema10_action' => 'SELL'
'weekly_ema21' => '$0.027687'
'weekly_ema21_action' => 'SELL'
'weekly_ema50' => '$0.033396'
'weekly_ema50_action' => 'SELL'
'weekly_ema100' => '$0.04199'
'weekly_ema100_action' => 'SELL'
'weekly_ema200' => '$0.0657057'
'weekly_ema200_action' => 'SELL'
'rsi_14' => '66.79'
'rsi_14_action' => 'NEUTRAL'
'stoch_rsi_14' => 122.37
'stoch_rsi_14_action' => 'SELL'
'momentum_10' => 0
'momentum_10_action' => 'BUY'
'vwma_10' => '0.022084'
'vwma_10_action' => 'BUY'
'hma_9' => '0.022753'
'hma_9_action' => 'BUY'
'stochastic_fast_14' => 100
'stochastic_fast_14_action' => 'SELL'
'cci_20' => 217.96
'cci_20_action' => 'SELL'
'adx_14' => 14.09
'adx_14_action' => 'NEUTRAL'
'ao_5_34' => '0.000997'
'ao_5_34_action' => 'BUY'
'macd_12_26' => 0
'macd_12_26_action' => 'BUY'
'williams_percent_r_14' => -0
'williams_percent_r_14_action' => 'SELL'
'ultimate_oscillator' => 78.34
'ultimate_oscillator_action' => 'SELL'
'ichimoku_cloud' => '-0.004442'
'ichimoku_cloud_action' => 'NEUTRAL'
'sell_signals' => 14
'buy_signals' => 21
'sell_pct' => 40
'buy_pct' => 60
'overall_action' => 'bullish'
'overall_action_label' => 'Altista'
'overall_action_dir' => 1
'last_updated' => 1767701437
'last_updated_date' => '6 de janeiro de 2026'
]
Previsão de preço de Bifrost para 2026
A previsão de preço para Bifrost em 2026 sugere que o preço médio poderia variar entre $0.008081 na extremidade inferior e $0.024122 na extremidade superior. No mercado de criptomoedas, comparado ao preço médio de hoje, Bifrost poderia potencialmente ganhar 3.13% até 2026 se BFC atingir a meta de preço prevista.
Previsão de preço de Bifrost 2027-2032
A previsão de preço de BFC para 2027-2032 está atualmente dentro de uma faixa de preço entre $0.014108 na extremidade inferior e $0.087876 na extremidade superior. Considerando a volatilidade de preços no mercado, se Bifrost atingir a meta de preço superior, poderia ganhar 275.71% até 2032 em comparação com o preço de hoje.
| Previsão de Preço de Bifrost | Potencial Mínimo ($) | Preço Médio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2027 | $0.007779 | $0.014108 | $0.020436 |
| 2028 | $0.014039 | $0.024213 | $0.034387 |
| 2029 | $0.030841 | $0.066146 | $0.101452 |
| 2030 | $0.026228 | $0.051032 | $0.075835 |
| 2031 | $0.03101 | $0.05012 | $0.069229 |
| 2032 | $0.047335 | $0.087876 | $0.128416 |
Previsão de preço de Bifrost 2032-2037
A previsão de preço de Bifrost para 2032-2037 é atualmente estimada entre $0.087876 na extremidade inferior e $0.801362 na extremidade superior. Comparado ao preço atual, Bifrost poderia potencialmente ganhar 3326.16% até 2037 se atingir a meta de preço superior. Por favor, note que esta informação é apenas para fins gerais e não deve ser considerada como aconselhamento de investimento a longo prazo.
| Previsão de Preço de Bifrost | Potencial Mínimo ($) | Preço Médio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2032 | $0.047335 | $0.087876 | $0.128416 |
| 2033 | $0.109997 | $0.226026 | $0.342055 |
| 2034 | $0.088432 | $0.143266 | $0.19810034 |
| 2035 | $0.104554 | $0.168983 | $0.233411 |
| 2036 | $0.173071 | $0.327996 | $0.482922 |
| 2037 | $0.44946 | $0.801362 | $1.15 |
Bifrost Histograma de preços potenciais
Previsão de preço de Bifrost baseada na análise técnica
Em 6 de janeiro de 2026, o sentimento geral de previsão de preço para Bifrost é Altista, com 21 indicadores técnicos mostrando sinais de alta e 14 indicando sinais de baixa. A previsão de preço de BFC foi atualizada pela última vez em 6 de janeiro de 2026.
Médias Móveis Simples de 50 e 200 dias e Índice de Força Relativa de 14 dias - RSI (14) de Bifrost
De acordo com nossos indicadores técnicos, o SMA de 200 dias de Bifrost está projetado para aumentar no próximo mês, alcançando $0.031268 até 4 de fev. de 2026. O SMA de 50 dias de curto prazo para Bifrost é esperado para alcançar $0.021533 até 4 de fev. de 2026.
O oscilador de momentum Índice de Força Relativa (RSI) é uma ferramenta comumente usada para identificar se uma criptomoeda está sobrevendida (abaixo de 30) ou sobrecomprada (acima de 70). No momento, o RSI está em 66.79, sugerindo que o mercado de BFC está em um estado NEUTRAL.
Médias Móveis e Osciladores Populares de BFC para Sábado, 19 de Outubro de 2024
Médias móveis (MA) são indicadores amplamente utilizados nos mercados financeiros, projetados para suavizar movimentos de preços ao longo de um período definido. Como indicadores atrasados, eles se baseiam em dados históricos de preços. A tabela abaixo destaca dois tipos: a média móvel simples (SMA) e a média móvel exponencial (EMA).
Média Móvel Simples Diária (SMA)
| Período | Valor | Ação |
|---|---|---|
| SMA 3 | $0.0227011 | BUY |
| SMA 5 | $0.02232 | BUY |
| SMA 10 | $0.0220095 | BUY |
| SMA 21 | $0.0215025 | BUY |
| SMA 50 | $0.021439 | BUY |
| SMA 100 | $0.026043 | SELL |
| SMA 200 | $0.034493 | SELL |
Média Móvel Exponencial Diária (EMA)
| Período | Valor | Ação |
|---|---|---|
| EMA 3 | $0.022831 | BUY |
| EMA 5 | $0.022535 | BUY |
| EMA 10 | $0.02215 | BUY |
| EMA 21 | $0.0218003 | BUY |
| EMA 50 | $0.022685 | BUY |
| EMA 100 | $0.025993 | SELL |
| EMA 200 | $0.030387 | SELL |
Média Móvel Simples Semanal (SMA)
| Período | Valor | Ação |
|---|---|---|
| SMA 21 | $0.029788 | SELL |
| SMA 50 | $0.033334 | SELL |
| SMA 100 | $0.042631 | SELL |
| SMA 200 | $0.054753 | SELL |
Média Móvel Exponencial Semanal (EMA)
| Período | Valor | Ação |
|---|---|---|
| EMA 21 | $0.027687 | SELL |
| EMA 50 | $0.033396 | SELL |
| EMA 100 | $0.04199 | SELL |
| EMA 200 | $0.0657057 | SELL |
Osciladores de Bifrost
Um oscilador é uma ferramenta de análise técnica que define limites altos e baixos entre dois extremos, criando um indicador de tendência que flutua dentro desses limites. Os traders usam esse indicador para identificar condições de sobrecompra ou sobrevenda de curto prazo.
| Período | Valor | Ação |
|---|---|---|
| RSI (14) | 66.79 | NEUTRAL |
| Stoch RSI (14) | 122.37 | SELL |
| Estocástico Rápido (14) | 100 | SELL |
| Índice de Canal de Commodities (20) | 217.96 | SELL |
| Índice Direcional Médio (14) | 14.09 | NEUTRAL |
| Oscilador Impressionante (5, 34) | 0.000997 | BUY |
| Momentum (10) | 0 | BUY |
| MACD (12, 26) | 0 | BUY |
| Williams Percent Range (14) | -0 | SELL |
| Oscilador Ultimate (7, 14, 28) | 78.34 | SELL |
| VWMA (10) | 0.022084 | BUY |
| Média Móvel de Hull (9) | 0.022753 | BUY |
| Nuvem Ichimoku B/L (9, 26, 52, 26) | -0.004442 | NEUTRAL |
Previsão do preço de Bifrost com base nos fluxos financeiros mundiais
Definições dos fluxos financeiros mundiais, usadas na previsão do preço do Bifrost
M0: o total de todas as moedas físicas, mais as contas no Banco Central que podem ser trocadas por moedas físicas.
M1: o valor de M0, mais o valor em contas de demanda, incluindo contas 'correntes'.
M2: o valor de M1, mais a maioria das contas de poupança, do mercado de moedas e de certificados de depósito (CD) de menos de US$ 100.000.
Previsões de preço de Bifrost por empresas de Internet ou nichos tecnológicos
| Comparação | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Facebook stock | $0.032866 | $0.046182 | $0.064894 | $0.091187 | $0.128133 | $0.180048 |
| Amazon.com stock | $0.0488036 | $0.101831 | $0.212477 | $0.443347 | $0.925071 | $1.93 |
| Apple stock | $0.033176 | $0.047057 | $0.066748 | $0.094677 | $0.134292 | $0.190483 |
| Netflix stock | $0.036905 | $0.05823 | $0.091878 | $0.144969 | $0.228739 | $0.360914 |
| Google stock | $0.030289 | $0.039224 | $0.050795 | $0.06578 | $0.085184 | $0.110314 |
| Tesla stock | $0.053022 | $0.120197 | $0.272478 | $0.617688 | $1.40 | $3.17 |
| Kodak stock | $0.017539 | $0.013152 | $0.009863 | $0.007396 | $0.005546 | $0.004159 |
| Nokia stock | $0.015494 | $0.010264 | $0.006799 | $0.0045045 | $0.002984 | $0.001976 |
Este cálculo mostra quanto a criptomoeda pode custar, se assumirmos que sua capitalização se comportará da mesma forma que a de algumas empresas de Internet ou nichos tecnológicos. Se você extrapolar os dados, poderá obter uma imagem em potencial do preço futuro para 2024, 2025, 2026, 2027, 2028, 2029 e 2030.
Visão geral da previsão para Bifrost
Você pode fazer perguntas como: 'Devo investir em Bifrost agora?', 'Devo comprar BFC hoje?', 'Bifrost será um bom ou mau investimento no curto ou no longo prazo?'.
Atualizamos a previsão para Bifrost regularmente com novos valores. Veja nossas previsões semelhantes. Fazemos previsões de preços futuros para uma enorme quantidade de moedas digitais, como Bifrost, com métodos de análise técnica.
Se você estiver tentando encontrar criptomoedas com bom retorno, você deve explorar o máximo de fontes de informações disponíveis sobre Bifrost para poder tomar sozinho uma decisão de tão grande responsabilidade sobre o seu investimento.
O preço de Bifrost é de $0.02338 USD hoje, mas o preço pode tanto subir quanto descer e seu investimento pode ser perdido, porque criptomoedas são ativos de alto risco
Previsão de curto prazo para Bifrost
com base no histórico de preços de 4 horas
Previsão de longo prazo para Bifrost
com base no histórico de preços de 1 mês
Previsão do preço de Bifrost com base no padrão de crescimento do Bitcoin
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| Se Bifrost tiver 1% da média anterior do crescimento anual do Bitcoin | $0.023997 | $0.024621 | $0.025261 | $0.025917 |
| Se Bifrost tiver 2% da média anterior do crescimento anual do Bitcoin | $0.0246054 | $0.025884 | $0.02723 | $0.028645 |
| Se Bifrost tiver 5% da média anterior do crescimento anual do Bitcoin | $0.026429 | $0.029864 | $0.033745 | $0.038131 |
| Se Bifrost tiver 10% da média anterior do crescimento anual do Bitcoin | $0.029469 | $0.037129 | $0.04678 | $0.058939 |
| Se Bifrost tiver 20% da média anterior do crescimento anual do Bitcoin | $0.035548 | $0.054029 | $0.082117 | $0.1248075 |
| Se Bifrost tiver 50% da média anterior do crescimento anual do Bitcoin | $0.053787 | $0.123694 | $0.284454 | $0.654148 |
| Se Bifrost tiver 100% da média anterior do crescimento anual do Bitcoin | $0.084186 | $0.303014 | $1.09 | $3.92 |
Perguntas Frequentes sobre Bifrost
BFC é um bom investimento?
A decisão de adquirir Bifrost depende inteiramente da sua tolerância individual ao risco. Como você pode perceber, o valor de Bifrost experimentou uma escalada de 1.9994% nas últimas 24 horas, e Bifrost registrou um declínio de durante os últimos 30 dias. Consequentemente, a decisão de investir ou não em Bifrost dependerá de quão alinhado esse investimento está com suas aspirações de negociação.
Bifrost pode subir?
Parece que o valor médio de Bifrost pode potencialmente subir para $0.024122 até o final deste ano. Observando as perspectivas de Bifrost em um horizonte de cinco anos mais longo, a moeda digital poderia potencialmente crescer até $0.075835. No entanto, dada a imprevisibilidade do mercado, é vital conduzir uma pesquisa aprofundada antes de investir quaisquer fundos em um projeto, rede ou ativo específico.
Qual será o preço de Bifrost na próxima semana?
Com base na nossa nova previsão experimental de Bifrost, o preço de Bifrost aumentará 0.86% na próxima semana e atingirá $0.023589 até 13 de janeiro de 2026.
Qual será o preço de Bifrost no próximo mês?
Com base na nossa nova previsão experimental de Bifrost, o preço de Bifrost diminuirá -11.62% no próximo mês e atingirá $0.020672 até 5 de fevereiro de 2026.
Até onde o preço de Bifrost pode subir este ano em 2026?
De acordo com nossa previsão mais recente sobre o valor de Bifrost em 2026, espera-se que BFC fluctue dentro do intervalo de $0.008081 e $0.024122. No entanto, é crucial lembrar que o mercado de criptomoedas é excepcionalmente instável, e essa previsão de preço de Bifrost não considera flutuações repentinas e extremas de preço.
Onde estará Bifrost em 5 anos?
O futuro de Bifrost parece seguir uma tendência de alta, com um preço máximo de $0.075835 projetada após um período de cinco anos. Com base na previsão de Bifrost para 2030, o valor de Bifrost pode potencialmente atingir seu pico mais alto de aproximadamente $0.075835, enquanto seu pico mais baixo está previsto para cerca de $0.026228.
Quanto será Bifrost em 2026?
Com base na nossa nova simulação experimental de previsão de preços de Bifrost, espera-se que o valor de BFC em 2026 aumente 3.13% para $0.024122 se o melhor cenário ocorrer. O preço ficará entre $0.024122 e $0.008081 durante 2026.
Quanto será Bifrost em 2027?
De acordo com nossa última simulação experimental para previsão de preços de Bifrost, o valor de BFC pode diminuir -12.62% para $0.020436 em 2027, assumindo as condições mais favoráveis. O preço está projetado para flutuar entre $0.020436 e $0.007779 ao longo do ano.
Quanto será Bifrost em 2028?
Nosso novo modelo experimental de previsão de preços de Bifrost sugere que o valor de BFC em 2028 pode aumentar 47.02%, alcançando $0.034387 no melhor cenário. O preço é esperado para variar entre $0.034387 e $0.014039 durante o ano.
Quanto será Bifrost em 2029?
Com base no nosso modelo de previsão experimental, o valor de Bifrost pode experimentar um 333.75% crescimento em 2029, potencialmente alcançando $0.101452 sob condições ótimas. A faixa de preço prevista para 2029 está entre $0.101452 e $0.030841.
Quanto será Bifrost em 2030?
Usando nossa nova simulação experimental para previsões de preços de Bifrost, espera-se que o valor de BFC em 2030 aumente 224.23%, alcançando $0.075835 no melhor cenário. O preço está previsto para variar entre $0.075835 e $0.026228 ao longo de 2030.
Quanto será Bifrost em 2031?
Nossa simulação experimental indica que o preço de Bifrost poderia aumentar 195.98% em 2031, potencialmente atingindo $0.069229 sob condições ideais. O preço provavelmente oscilará entre $0.069229 e $0.03101 durante o ano.
Quanto será Bifrost em 2032?
Com base nos achados da nossa mais recente previsão experimental de preços de Bifrost, BFC poderia ver um 449.04% aumento em valor, atingindo $0.128416 se o cenário mais positivo se desenrolar em 2032. O preço é esperado para permanecer dentro de uma faixa de $0.128416 e $0.047335 ao longo do ano.
Quanto será Bifrost em 2033?
De acordo com nossa previsão experimental de preços de Bifrost, espera-se que o valor de BFC seja aumentar 1362.43% em 2033, com o preço potencial mais alto sendo $0.342055. Ao longo do ano, o preço de BFC poderia variar entre $0.342055 e $0.109997.
Quanto será Bifrost em 2034?
Os resultados da nossa nova simulação de previsão de preços de Bifrost sugerem que BFC pode aumentar 746.96% em 2034, atingindo potencialmente $0.19810034 nas melhores circunstâncias. A faixa de preço prevista para o ano é entre $0.19810034 e $0.088432.
Quanto será Bifrost em 2035?
Com base em nossa previsão experimental para o preço de Bifrost, BFC poderia aumentar 897.93%, com o valor potencialmente atingindo $0.233411 em 2035. A faixa de preço esperada para o ano está entre $0.233411 e $0.104554.
Quanto será Bifrost em 2036?
Nossa recente simulação de previsão de preços de Bifrost sugere que o valor de BFC pode aumentar 1964.7% em 2036, possivelmente atingindo $0.482922 se as condições forem ideais. A faixa de preço esperada para 2036 está entre $0.482922 e $0.173071.
Quanto será Bifrost em 2037?
De acordo com a simulação experimental, o valor de Bifrost poderia aumentar 4830.69% em 2037, com um pico de $1.15 sob condições favoráveis. O preço é esperado para cair entre $1.15 e $0.44946 ao longo do ano.
Previsões relacionadas
Previsão de Preço do Request
Previsão de Preço do POL (ex-MATIC)
Previsão de Preço do Maya Protocol
Previsão de Preço do CertiK
Previsão de Preço do Badger DAO
Previsão de Preço do Electroneum
Previsão de Preço do Ondo US Dollar Yield
Previsão de Preço do Sidus
Previsão de Preço do Hard Protocol
Previsão de Preço do Solidus Ai Tech
Previsão de Preço do Chainge FinancePrevisão de Preço do Mobox
Previsão de Preço do Trias Token
Previsão de Preço do SuperRare
Previsão de Preço do CONX
Previsão de Preço do Banana Gun
Previsão de Preço do Dora Factory
Previsão de Preço do Automata
Previsão de Preço do Storm
Previsão de Preço do Adventure Gold
Previsão de Preço do Star Atlas
Previsão de Preço do Radio Caca
Previsão de Preço do CoinEx Token
Previsão de Preço do Blendr Network
Previsão de Preço do Access Protocol
Como ler e prever os movimentos de preço de Bifrost?
Traders de Bifrost utilizam indicadores e padrões de gráfico para prever a direção do mercado. Eles também identificam níveis-chave de suporte e resistência para avaliar quando uma tendência de baixa pode desacelerar ou uma tendência de alta pode estagnar.
Indicadores de Previsão de Preço de Bifrost
Médias móveis são ferramentas populares para a previsão de preço de Bifrost. Uma média móvel simples (SMA) calcula o preço médio de fechamento de BFC em um período específico, como uma SMA de 12 dias. Uma média móvel exponencial (EMA) dá mais peso aos preços recentes, reagindo mais rapidamente às mudanças de preço.
Médias móveis comumente usadas no mercado de criptomoedas incluem as de 50 dias, 100 dias e 200 dias, que ajudam a identificar níveis-chave de resistência e suporte. Um movimento de preço de BFC acima dessas médias é visto como altista, enquanto uma queda abaixo indica fraqueza.
Traders também usam RSI e níveis de retração de Fibonacci para avaliar a direção futura de BFC.
Como ler gráficos de Bifrost e prever movimentos de preço?
A maioria dos traders prefere gráficos de velas em vez de gráficos de linha simples porque eles fornecem informações mais detalhadas. Velas podem representar a ação de preço de Bifrost em diferentes períodos de tempo, como 5 minutos para tendências de curto prazo e semanal para tendências de longo prazo. Opções populares incluem gráficos de 1 hora, 4 horas e 1 dia.
Por exemplo, um gráfico de velas de 1 hora mostra os preços de abertura, fechamento, máximo e mínimo de BFC dentro de cada hora. A cor da vela é crucial: verde indica que o preço fechou mais alto do que abriu, enquanto vermelho significa o oposto. Alguns gráficos usam velas vazias e preenchidas para transmitir a mesma informação.
O que afeta o preço de Bifrost?
A ação de preço de Bifrost é impulsionada pela oferta e demanda, influenciada por fatores como reduções pela metade das recompensas de bloco, hard forks e atualizações de protocolo. Eventos do mundo real, como regulamentações, adoção por empresas e governos e hacks de exchanges de criptomoedas, também impactam o preço de BFC. A capitalização de mercado de Bifrost pode mudar rapidamente.
Traders frequentemente monitoram a atividade de "baleias" de BFC, grandes detentores de Bifrost, pois suas ações podem influenciar significativamente os movimentos de preço no relativamente pequeno mercado de Bifrost.
Padrões de previsão de preço altistas e baixistas
Traders frequentemente identificam padrões de velas para ganhar vantagem em previsões de preço de criptomoedas. Certas formações indicam tendências altistas, enquanto outras sugerem movimentos baixistas.
Padrões de velas altistas comumente seguidos:
- Martelo
- Engolfo de Alta
- Linha de Perfuração
- Estrela da Manhã
- Três Soldados Brancos
Padrões de velas baixistas comuns:
- Harami de Baixa
- Nuvem Negra
- Estrela da Noite
- Estrela Cadente
- Homem Enforcado


