Previsão de Preço Bifrost - Projeção BFC
Previsão de Preço Bifrost até $0.024029 até 2026
| Ano | Preço Mínimo | Preço Máximo |
|---|---|---|
| 2026 | $0.00805 | $0.024029 |
| 2027 | $0.007749 | $0.020358 |
| 2028 | $0.013985 | $0.034255 |
| 2029 | $0.030722 | $0.101063 |
| 2030 | $0.026128 | $0.075544 |
| 2031 | $0.030891 | $0.068963 |
| 2032 | $0.047153 | $0.127923 |
| 2033 | $0.109574 | $0.340741 |
| 2034 | $0.088092 | $0.197339 |
| 2035 | $0.104153 | $0.232514 |
Calculadora de lucro do investimento
Se você abrir um short de $10,000.00 em Bifrost hoje e fechar em Apr 06, 2026, nossa previsão mostra que pode lucrar cerca de $3,954.46, com um retorno de 39.54% nos próximos 90 dias.
Previsão de preço de longo prazo de Bifrost para os anos 2027, 2028, 2029, 2030, 2031, 2032 e 2037
[
'name' => 'Bifrost'
'name_with_ticker' => 'Bifrost <small>BFC</small>'
'name_lang' => 'Bifrost'
'name_lang_with_ticker' => 'Bifrost <small>BFC</small>'
'name_with_lang' => 'Bifrost'
'name_with_lang_with_ticker' => 'Bifrost <small>BFC</small>'
'image' => '/uploads/coins/bifrost.png?1717201112'
'price_for_sd' => 0.02329
'ticker' => 'BFC'
'marketcap' => '$32.4M'
'low24h' => '$0.02276'
'high24h' => '$0.02344'
'volume24h' => '$1.6M'
'current_supply' => '1.39B'
'max_supply' => '2.37B'
'algo' => 'SHA-256'
'proof' => null
'ico_price_and_roi' => '—'
'price' => '$0.02329'
'change_24h_pct' => '1.5866%'
'ath_price' => '$0.7788'
'ath_days' => 1601
'ath_exchange' => null
'ath_pair' => null
'ath_date' => '19 de ago. de 2021'
'ath_pct' => '-97.01%'
'fdv' => '$55.16M'
'new_prediction' => true
'change_24h_pct_is_increased' => true
'change_30d_pct' => null
'change_30d_pct_is_increased' => false
'max_price' => '$1.14'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.023499'
'next_week_prediction_price_date' => '13 de janeiro de 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.020592'
'next_month_prediction_price_date' => '5 de fevereiro de 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.00805'
'current_year_max_price_prediction' => '$0.024029'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.026128'
'grand_prediction_max_price' => '$0.075544'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.023741176301379
107 => 0.023829817235641
108 => 0.024029529786653
109 => 0.022323007904391
110 => 0.023089186128676
111 => 0.023539244054253
112 => 0.021505865973251
113 => 0.0234990507074
114 => 0.022293301155089
115 => 0.021884051647284
116 => 0.022435052195021
117 => 0.022220326745702
118 => 0.02203571841348
119 => 0.021932703792126
120 => 0.022337297782672
121 => 0.022318422989419
122 => 0.021656428692575
123 => 0.020792884118683
124 => 0.021082718022565
125 => 0.020977418648077
126 => 0.020595800131043
127 => 0.020852964934729
128 => 0.019720541287427
129 => 0.017772265260503
130 => 0.019059356081198
131 => 0.019009804484686
201 => 0.018984818322739
202 => 0.019952031501914
203 => 0.019859056272141
204 => 0.019690305319687
205 => 0.020592700887465
206 => 0.020263314366293
207 => 0.021278406011322
208 => 0.021947011020749
209 => 0.021777431163252
210 => 0.022406257406266
211 => 0.021089395210329
212 => 0.021526804008478
213 => 0.021616953355554
214 => 0.020581565466234
215 => 0.019874268169576
216 => 0.019827099503668
217 => 0.018600743462833
218 => 0.019255852961047
219 => 0.019832322209202
220 => 0.019556238175157
221 => 0.019468838217754
222 => 0.019915345645387
223 => 0.019950043096592
224 => 0.019158937532055
225 => 0.019323433429978
226 => 0.020009408669481
227 => 0.019306148613973
228 => 0.017939829203
301 => 0.017600963098235
302 => 0.017555752113318
303 => 0.016636720361385
304 => 0.017623607751707
305 => 0.017192804958894
306 => 0.01855370581958
307 => 0.017776366546614
308 => 0.017742857004205
309 => 0.017692202416072
310 => 0.01690115382246
311 => 0.0170743431907
312 => 0.017650051028217
313 => 0.017855470070455
314 => 0.017834043181401
315 => 0.017647229745736
316 => 0.017732751979944
317 => 0.017457255065639
318 => 0.017359971371226
319 => 0.017052917271669
320 => 0.016601632571179
321 => 0.016664386476672
322 => 0.015770273399938
323 => 0.015283113141561
324 => 0.015148273602711
325 => 0.014967960536029
326 => 0.015168640443388
327 => 0.015767740489931
328 => 0.015045098727634
329 => 0.013806180113602
330 => 0.01388064123332
331 => 0.014047933261622
401 => 0.01373618567363
402 => 0.013441142744587
403 => 0.0136976586338
404 => 0.013172712484659
405 => 0.014111370495785
406 => 0.014085982427143
407 => 0.014435856087469
408 => 0.014654639267401
409 => 0.014150414869553
410 => 0.014023603797062
411 => 0.014095841147195
412 => 0.012901918660187
413 => 0.014338287148711
414 => 0.014350708923046
415 => 0.014244346149709
416 => 0.015009168026947
417 => 0.016623180741843
418 => 0.016015924234988
419 => 0.015780776161109
420 => 0.015333759500772
421 => 0.015929382659448
422 => 0.01588364809403
423 => 0.015676819044893
424 => 0.015551728190629
425 => 0.015782211925105
426 => 0.015523168705276
427 => 0.015476637424964
428 => 0.0151947084928
429 => 0.015094072690966
430 => 0.015019565949716
501 => 0.01493754134848
502 => 0.015118467179549
503 => 0.014708465443571
504 => 0.014214043542947
505 => 0.014172937711629
506 => 0.014286434525959
507 => 0.014236220634462
508 => 0.014172697306835
509 => 0.014051413974847
510 => 0.014015431801054
511 => 0.014132356409811
512 => 0.014000355343653
513 => 0.01419513010724
514 => 0.014142162148923
515 => 0.013846287439512
516 => 0.013477518004739
517 => 0.01347423518325
518 => 0.013394784413431
519 => 0.013293591912563
520 => 0.013265442473793
521 => 0.013676055581091
522 => 0.014526012424584
523 => 0.014359145558463
524 => 0.014479723970439
525 => 0.015072850416524
526 => 0.0152613874778
527 => 0.015127568337451
528 => 0.014944388444537
529 => 0.014952447430172
530 => 0.015578428576584
531 => 0.015617470252842
601 => 0.015716115973423
602 => 0.015842903601647
603 => 0.015149160818783
604 => 0.014919772207486
605 => 0.014811075157458
606 => 0.014476330314424
607 => 0.014837323928782
608 => 0.014626988408983
609 => 0.014655369856689
610 => 0.014636886401638
611 => 0.014646979617941
612 => 0.014111108121741
613 => 0.01430635153038
614 => 0.013981721495436
615 => 0.013547078320078
616 => 0.013545621243749
617 => 0.013651999545159
618 => 0.013588721568897
619 => 0.013418442161801
620 => 0.013442629547883
621 => 0.013230722594642
622 => 0.013468358888706
623 => 0.013475173447316
624 => 0.013383670529965
625 => 0.013749782028459
626 => 0.01389977820811
627 => 0.013839549027728
628 => 0.013895552368256
629 => 0.014366079630109
630 => 0.014442796104334
701 => 0.01447686849458
702 => 0.014431216005378
703 => 0.013904152742844
704 => 0.013927530239783
705 => 0.013756001678455
706 => 0.013611078119366
707 => 0.013616874301706
708 => 0.013691383849821
709 => 0.014016771416368
710 => 0.01470153036752
711 => 0.014727516469164
712 => 0.014759012382425
713 => 0.014630902674617
714 => 0.014592263560897
715 => 0.014643238525495
716 => 0.014900397984632
717 => 0.015561881931647
718 => 0.015328069325745
719 => 0.015137976037636
720 => 0.01530473910009
721 => 0.015279067233757
722 => 0.015062370846656
723 => 0.0150562889008
724 => 0.014640379251928
725 => 0.014486626924545
726 => 0.014358139971621
727 => 0.014217835573265
728 => 0.014134658422873
729 => 0.014262456329213
730 => 0.014291685222454
731 => 0.014012252866716
801 => 0.013974167269167
802 => 0.014202357762829
803 => 0.014101939634367
804 => 0.014205222169739
805 => 0.014229184603887
806 => 0.014225326100088
807 => 0.014120478041025
808 => 0.014187305067257
809 => 0.014029239228123
810 => 0.013857366368785
811 => 0.013747722192586
812 => 0.013652043106662
813 => 0.013705131424433
814 => 0.013515881265121
815 => 0.013455336330304
816 => 0.014164665574426
817 => 0.014688654713633
818 => 0.014681035704026
819 => 0.014634656942497
820 => 0.014565747510452
821 => 0.014895356830468
822 => 0.014780527534121
823 => 0.014864075441522
824 => 0.01488534189045
825 => 0.014949709026312
826 => 0.01497271474484
827 => 0.014903175484949
828 => 0.01466979323525
829 => 0.014088226858317
830 => 0.013817506139947
831 => 0.013728163793675
901 => 0.013731411218276
902 => 0.013641832750619
903 => 0.013668217623969
904 => 0.013632657168427
905 => 0.013565314268628
906 => 0.013700973190138
907 => 0.013716606617092
908 => 0.013684942203808
909 => 0.013692400319405
910 => 0.013430232501462
911 => 0.013450164551262
912 => 0.013339180365135
913 => 0.013318372168171
914 => 0.013037813810141
915 => 0.012540764011308
916 => 0.012816177849653
917 => 0.012483516661978
918 => 0.012357532829566
919 => 0.012953920697699
920 => 0.012894059896963
921 => 0.012791604226967
922 => 0.012640050937412
923 => 0.0125838383481
924 => 0.012242308450184
925 => 0.012222129041824
926 => 0.012391400481314
927 => 0.012313287536264
928 => 0.012203587377728
929 => 0.011806264523638
930 => 0.011359542086564
1001 => 0.011373025828942
1002 => 0.011515119924609
1003 => 0.01192827767176
1004 => 0.011766849792246
1005 => 0.011649732013488
1006 => 0.011627799374074
1007 => 0.01190233227543
1008 => 0.01229085384727
1009 => 0.012473139476097
1010 => 0.012292499954027
1011 => 0.012084990997394
1012 => 0.01209762110608
1013 => 0.012181643560782
1014 => 0.012190473132758
1015 => 0.012055406134255
1016 => 0.012093426703174
1017 => 0.012035669982313
1018 => 0.011681217092996
1019 => 0.011674806164211
1020 => 0.011587817708847
1021 => 0.01158518373299
1022 => 0.01143719467013
1023 => 0.011416489977236
1024 => 0.011122648710633
1025 => 0.011316055922145
1026 => 0.011186328518997
1027 => 0.010990798722853
1028 => 0.010957089312299
1029 => 0.010956075966712
1030 => 0.011156841347689
1031 => 0.011313709861777
1101 => 0.011188585182716
1102 => 0.011160096718734
1103 => 0.011464278982163
1104 => 0.011425569016459
1105 => 0.011392046435811
1106 => 0.012256066001854
1107 => 0.011572127095044
1108 => 0.011273890693807
1109 => 0.010904766513719
1110 => 0.011024955208041
1111 => 0.011050280731874
1112 => 0.010162603618398
1113 => 0.0098024731240136
1114 => 0.0096788899095724
1115 => 0.0096077660224512
1116 => 0.0096401780709299
1117 => 0.0093160183868902
1118 => 0.0095338590556712
1119 => 0.0092531641698289
1120 => 0.0092061047587572
1121 => 0.0097080219860672
1122 => 0.0097778608360894
1123 => 0.0094799066046645
1124 => 0.0096712414556477
1125 => 0.0096018607789278
1126 => 0.0092579758780035
1127 => 0.0092448420042342
1128 => 0.0090722926490892
1129 => 0.008802286320426
1130 => 0.00867888618299
1201 => 0.0086146183200042
1202 => 0.0086411364928278
1203 => 0.0086277280931787
1204 => 0.0085402292156773
1205 => 0.0086327434264146
1206 => 0.008396407847492
1207 => 0.0083022971156799
1208 => 0.0082597894814728
1209 => 0.0080500280522106
1210 => 0.0083838517674977
1211 => 0.0084496192448096
1212 => 0.0085155163043684
1213 => 0.0090891052179945
1214 => 0.0090604503368152
1215 => 0.0093194765071831
1216 => 0.0093094112265211
1217 => 0.0092355327667865
1218 => 0.0089238516975826
1219 => 0.0090480822165864
1220 => 0.0086657199888018
1221 => 0.0089522117679622
1222 => 0.0088214688841362
1223 => 0.0089080074674251
1224 => 0.0087524032918021
1225 => 0.0088385210673308
1226 => 0.0084652151534928
1227 => 0.0081166273437068
1228 => 0.0082569092542772
1229 => 0.0084094117342497
1230 => 0.0087400759677391
1231 => 0.0085431350781935
]
'min_raw' => 0.0080500280522106
'max_raw' => 0.024029529786653
'avg_raw' => 0.016039778919432
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.00805'
'max' => '$0.024029'
'avg' => '$0.016039'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.015249631947789
'max_diff' => 0.00072986978665258
'year' => 2026
]
1 => [
'items' => [
101 => 0.0086139624692336
102 => 0.0083767025656113
103 => 0.0078871676144973
104 => 0.0078899383291573
105 => 0.007814634042027
106 => 0.0077495601433406
107 => 0.0085657561084396
108 => 0.0084642492380307
109 => 0.008302511324925
110 => 0.0085190039488262
111 => 0.0085762480347856
112 => 0.0085778776934372
113 => 0.0087358251233521
114 => 0.0088201216950114
115 => 0.0088349793311286
116 => 0.0090835130247798
117 => 0.009166818240653
118 => 0.0095099406350394
119 => 0.0088129697198535
120 => 0.0087986160625097
121 => 0.0085220504440154
122 => 0.008346648156437
123 => 0.0085340603887091
124 => 0.0087000820421814
125 => 0.0085272091995724
126 => 0.0085497827432722
127 => 0.0083177150762998
128 => 0.0084006683474438
129 => 0.0084721188795654
130 => 0.008432668095396
131 => 0.0083736083620549
201 => 0.0086864701598826
202 => 0.0086688172711339
203 => 0.0089601613699327
204 => 0.0091872849291628
205 => 0.0095943309504956
206 => 0.0091695572074458
207 => 0.0091540767639264
208 => 0.0093054005824702
209 => 0.0091667950737649
210 => 0.0092543889707671
211 => 0.0095802182194922
212 => 0.0095871024780828
213 => 0.0094717822768248
214 => 0.0094647650320979
215 => 0.0094869135382143
216 => 0.0096166380303338
217 => 0.0095713083067563
218 => 0.0096237650104884
219 => 0.0096893629217511
220 => 0.0099607036956713
221 => 0.010026123037644
222 => 0.0098671879526909
223 => 0.0098815380113414
224 => 0.0098220919267034
225 => 0.0097646677538004
226 => 0.0098937489083594
227 => 0.010129647255413
228 => 0.010128179744039
301 => 0.010182903575346
302 => 0.010216996068894
303 => 0.010070646129356
304 => 0.0099753777001525
305 => 0.010011909677997
306 => 0.010070325106132
307 => 0.0099929663419557
308 => 0.0095154722133914
309 => 0.0096603134295548
310 => 0.0096362047688116
311 => 0.0096018711041999
312 => 0.0097475100670762
313 => 0.0097334628338182
314 => 0.0093126936607977
315 => 0.0093396299380722
316 => 0.0093143317450345
317 => 0.0093960753822627
318 => 0.0091623806490948
319 => 0.0092342635750592
320 => 0.0092793478723635
321 => 0.0093059028698296
322 => 0.0094018377296095
323 => 0.0093905808810903
324 => 0.0094011379881002
325 => 0.0095433840592897
326 => 0.01026281587441
327 => 0.01030197296077
328 => 0.010109149146501
329 => 0.01018617845702
330 => 0.010038299025282
331 => 0.010137571478514
401 => 0.010205491169768
402 => 0.0098985751451957
403 => 0.009880401570089
404 => 0.0097319117873328
405 => 0.0098117017856948
406 => 0.009684750161197
407 => 0.0097158996492694
408 => 0.0096288029650553
409 => 0.0097855596558639
410 => 0.0099608379937151
411 => 0.010005120223808
412 => 0.0098886327411329
413 => 0.0098042881267772
414 => 0.0096562067688119
415 => 0.0099024693673165
416 => 0.009974484055836
417 => 0.0099020911048153
418 => 0.0098853160762466
419 => 0.0098535274274207
420 => 0.0098920601883697
421 => 0.0099740918483764
422 => 0.0099354072324041
423 => 0.009960959102789
424 => 0.0098635817218561
425 => 0.010070694577275
426 => 0.010399639636104
427 => 0.010400697248256
428 => 0.010362012423759
429 => 0.010346183427051
430 => 0.010385876404577
501 => 0.010407408216593
502 => 0.010535768027462
503 => 0.010673503218605
504 => 0.011316253257097
505 => 0.011135771618294
506 => 0.011706057689815
507 => 0.012157079930009
508 => 0.012292321779031
509 => 0.012167905641552
510 => 0.011742284756062
511 => 0.011721401764888
512 => 0.012357459060313
513 => 0.012177743741086
514 => 0.012156367175713
515 => 0.011928956636425
516 => 0.012063384430487
517 => 0.012033983099989
518 => 0.011987571661435
519 => 0.012244050528185
520 => 0.012724156070715
521 => 0.01264932711951
522 => 0.012593470778651
523 => 0.012348724552544
524 => 0.012496116446709
525 => 0.012443633016303
526 => 0.012669135140137
527 => 0.012535552677461
528 => 0.012176382220788
529 => 0.012233581299854
530 => 0.012224935774122
531 => 0.012402860081065
601 => 0.012349451620473
602 => 0.012214506915016
603 => 0.012722515122165
604 => 0.012689527894883
605 => 0.012736296241239
606 => 0.012756885113664
607 => 0.013066100757246
608 => 0.013192776512625
609 => 0.013221534126867
610 => 0.013341866297022
611 => 0.013218540152854
612 => 0.01371193265958
613 => 0.014040009886302
614 => 0.014421088467839
615 => 0.014977946699731
616 => 0.01518733054615
617 => 0.015149507228416
618 => 0.015571710784502
619 => 0.01633040118973
620 => 0.015302860251102
621 => 0.016384863354542
622 => 0.016042313664319
623 => 0.015230134511007
624 => 0.015177839748497
625 => 0.015727856900714
626 => 0.016947742007141
627 => 0.016642174623803
628 => 0.016948241805914
629 => 0.016591198180267
630 => 0.016573467954853
701 => 0.016930900993952
702 => 0.017766062772468
703 => 0.017369308717067
704 => 0.016800464490562
705 => 0.017220490215217
706 => 0.016856625060975
707 => 0.016036735029026
708 => 0.016641940962184
709 => 0.016237256989954
710 => 0.016355365287234
711 => 0.017205950804664
712 => 0.017103606104837
713 => 0.017236049623277
714 => 0.01700229027988
715 => 0.016783922192682
716 => 0.0163763219417
717 => 0.016255651601833
718 => 0.016289000542508
719 => 0.016255635075755
720 => 0.01602758648137
721 => 0.015978339409125
722 => 0.01589625879782
723 => 0.015921699011437
724 => 0.015767363448654
725 => 0.01605862654298
726 => 0.016112687539889
727 => 0.016324644530613
728 => 0.01634665060853
729 => 0.016936947810679
730 => 0.016611822031277
731 => 0.016829944474109
801 => 0.016810433549774
802 => 0.015247736896002
803 => 0.015463062707102
804 => 0.015798042096213
805 => 0.015647134335472
806 => 0.015433786068763
807 => 0.015261495904385
808 => 0.015000458687779
809 => 0.015367863557377
810 => 0.015850961891746
811 => 0.016358902779524
812 => 0.016969160474583
813 => 0.016832958061229
814 => 0.016347494436401
815 => 0.016369271979979
816 => 0.016503892185233
817 => 0.016329546787894
818 => 0.016278128926592
819 => 0.016496828160665
820 => 0.016498334222095
821 => 0.016297728772112
822 => 0.016074792524864
823 => 0.016073858413848
824 => 0.016034189061959
825 => 0.016598255269842
826 => 0.016908434650651
827 => 0.016943996216782
828 => 0.016906041073911
829 => 0.016920648502016
830 => 0.016740161954659
831 => 0.017152700680293
901 => 0.017531287010787
902 => 0.017429817786897
903 => 0.017277700995587
904 => 0.017156532644371
905 => 0.017401274374136
906 => 0.017390376410169
907 => 0.017527980389462
908 => 0.017521737878122
909 => 0.017475466835433
910 => 0.017429819439382
911 => 0.017610806204977
912 => 0.017558684923044
913 => 0.017506482682364
914 => 0.017401783096917
915 => 0.017416013509456
916 => 0.017263922983254
917 => 0.017193558946644
918 => 0.016135452662962
919 => 0.015852692089342
920 => 0.015941654321925
921 => 0.015970942998794
922 => 0.015847885234787
923 => 0.016024318457428
924 => 0.015996821526568
925 => 0.016103795999376
926 => 0.016036962993057
927 => 0.016039705842949
928 => 0.016236247464232
929 => 0.016293304333039
930 => 0.016264284749058
1001 => 0.016284609070945
1002 => 0.016752974490464
1003 => 0.016686387905291
1004 => 0.016651015109038
1005 => 0.016660813615342
1006 => 0.016780491021897
1007 => 0.016813994161588
1008 => 0.016672039004493
1009 => 0.016738985877212
1010 => 0.017024037164427
1011 => 0.017123788982447
1012 => 0.017442148901977
1013 => 0.017306903949765
1014 => 0.017555151912816
1015 => 0.018318181517267
1016 => 0.018927742362936
1017 => 0.018367165018092
1018 => 0.019486545884056
1019 => 0.020358144453858
1020 => 0.020324691049026
1021 => 0.020172707677943
1022 => 0.01918041587887
1023 => 0.018267294171126
1024 => 0.01903115925285
1025 => 0.019033106502033
1026 => 0.018967489814075
1027 => 0.018559950200604
1028 => 0.018953308318919
1029 => 0.018984531657884
1030 => 0.01896705489102
1031 => 0.018654595224899
1101 => 0.018177527066931
1102 => 0.018270745043058
1103 => 0.01842343798955
1104 => 0.018134358386756
1105 => 0.018041979937712
1106 => 0.018213729050203
1107 => 0.018767140475997
1108 => 0.018662521251645
1109 => 0.018659789220897
1110 => 0.019107394628132
1111 => 0.018787005755845
1112 => 0.018271920820262
1113 => 0.018141855080892
1114 => 0.017680209328909
1115 => 0.01799906969413
1116 => 0.018010544911018
1117 => 0.01783590834766
1118 => 0.018286091614902
1119 => 0.018281943096841
1120 => 0.01870932510815
1121 => 0.01952631899642
1122 => 0.019284693701831
1123 => 0.019003709772981
1124 => 0.019034260516887
1125 => 0.019369326771866
1126 => 0.019166738065287
1127 => 0.019239590376671
1128 => 0.019369216501167
1129 => 0.019447423160511
1130 => 0.019023007782139
1201 => 0.018924056255307
1202 => 0.018721636158673
1203 => 0.018668828533812
1204 => 0.018833695478886
1205 => 0.018790258863694
1206 => 0.018009580463473
1207 => 0.017927995226996
1208 => 0.017930497329722
1209 => 0.017725347373434
1210 => 0.017412444448465
1211 => 0.018234734652821
1212 => 0.018168693241467
1213 => 0.018095788634532
1214 => 0.018104719032894
1215 => 0.018461647340604
1216 => 0.01825461089682
1217 => 0.018805051215225
1218 => 0.018691897233511
1219 => 0.018575841279136
1220 => 0.018559798811091
1221 => 0.018515127170085
1222 => 0.018361931491491
1223 => 0.018176938503955
1224 => 0.018054790109766
1225 => 0.016654589503665
1226 => 0.016914458591565
1227 => 0.017213414289381
1228 => 0.017316612598278
1229 => 0.017140084749805
1230 => 0.018368901886898
1231 => 0.018593418619022
]
'min_raw' => 0.0077495601433406
'max_raw' => 0.020358144453858
'avg_raw' => 0.014053852298599
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.007749'
'max' => '$0.020358'
'avg' => '$0.014053'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -0.00030046790887008
'max_diff' => -0.0036713853327945
'year' => 2027
]
2 => [
'items' => [
101 => 0.017913342792556
102 => 0.017786128372737
103 => 0.018377242043083
104 => 0.018020728239157
105 => 0.018181266383235
106 => 0.017834270725408
107 => 0.018539339112871
108 => 0.018533967673071
109 => 0.018259680145656
110 => 0.018491506085587
111 => 0.018451220623568
112 => 0.018141550680657
113 => 0.018549156202409
114 => 0.018549358369663
115 => 0.018285362588051
116 => 0.017977073311236
117 => 0.01792195847001
118 => 0.017880436840782
119 => 0.018171054607767
120 => 0.018431621588908
121 => 0.018916472140777
122 => 0.019038375089282
123 => 0.019514170412836
124 => 0.019230857463714
125 => 0.019356446424543
126 => 0.019492791007166
127 => 0.019558159613982
128 => 0.019451644977049
129 => 0.020190750959696
130 => 0.020253154150254
131 => 0.020274077400262
201 => 0.020024855021446
202 => 0.020246222825059
203 => 0.02014265216068
204 => 0.020412114256635
205 => 0.020454369353946
206 => 0.020418580789792
207 => 0.02043199322463
208 => 0.01980129665567
209 => 0.01976859171138
210 => 0.019322657475349
211 => 0.019504378972711
212 => 0.019164659343531
213 => 0.019272387937444
214 => 0.019319873675165
215 => 0.019295069820571
216 => 0.019514653233519
217 => 0.019327962474586
218 => 0.018835254866958
219 => 0.018342413021472
220 => 0.018336225793563
221 => 0.018206469235027
222 => 0.018112679009305
223 => 0.018130746334166
224 => 0.018194417943535
225 => 0.01810897829962
226 => 0.018127211179549
227 => 0.018429998471416
228 => 0.01849072030342
229 => 0.01828436379272
301 => 0.017455812625157
302 => 0.017252484090374
303 => 0.017398632608996
304 => 0.017328783030265
305 => 0.013985680361487
306 => 0.014771092744573
307 => 0.014304427376628
308 => 0.014519488248418
309 => 0.014043143750157
310 => 0.014270480312082
311 => 0.014228499550096
312 => 0.015491419420057
313 => 0.015471700663377
314 => 0.015481138988707
315 => 0.015030623129313
316 => 0.015748307126166
317 => 0.016101864070097
318 => 0.016036430089389
319 => 0.016052898412614
320 => 0.015769918057451
321 => 0.015483878857109
322 => 0.015166617362812
323 => 0.01575605000451
324 => 0.015690515156704
325 => 0.015840828518877
326 => 0.016223117720533
327 => 0.016279411257652
328 => 0.016355070342413
329 => 0.016327951946307
330 => 0.016974022161669
331 => 0.01689577879568
401 => 0.017084322795561
402 => 0.016696473482939
403 => 0.016257585170712
404 => 0.016341003490526
405 => 0.016332969635521
406 => 0.016230689440466
407 => 0.016138355453628
408 => 0.015984645380481
409 => 0.016471006796728
410 => 0.016451261411428
411 => 0.016770916247926
412 => 0.016714414150614
413 => 0.016337079316353
414 => 0.016350555903778
415 => 0.016441192430836
416 => 0.016754886485854
417 => 0.016848012239303
418 => 0.016804872679885
419 => 0.01690698081719
420 => 0.016987682925632
421 => 0.016917115759499
422 => 0.017916198018958
423 => 0.017501309409058
424 => 0.017703523230747
425 => 0.017751750035707
426 => 0.017628218088903
427 => 0.017655007744817
428 => 0.017695586773783
429 => 0.017941974691476
430 => 0.018588567880421
501 => 0.018874939602296
502 => 0.019736503056889
503 => 0.018851160417281
504 => 0.018798627848959
505 => 0.018953821443855
506 => 0.019459650397455
507 => 0.01986957725425
508 => 0.020005573641896
509 => 0.020023547809579
510 => 0.020278686073673
511 => 0.020424926568605
512 => 0.02024770557761
513 => 0.020097529343552
514 => 0.01955961671372
515 => 0.01962188156531
516 => 0.020050824647687
517 => 0.020656732016166
518 => 0.021176663572238
519 => 0.020994601662746
520 => 0.022383605516494
521 => 0.022521319575021
522 => 0.022502291944961
523 => 0.022816025064886
524 => 0.022193328712474
525 => 0.021927113957645
526 => 0.020129999149928
527 => 0.020634915107536
528 => 0.021368840104594
529 => 0.021271702379156
530 => 0.020738706428421
531 => 0.021176259247014
601 => 0.021031590601646
602 => 0.020917484438736
603 => 0.021440226891594
604 => 0.0208654500916
605 => 0.021363106266332
606 => 0.020724857074644
607 => 0.020995433306213
608 => 0.020841841150875
609 => 0.020941234098925
610 => 0.020360184955555
611 => 0.020673704969147
612 => 0.020347141492231
613 => 0.020346986658623
614 => 0.020339777751771
615 => 0.020723978234158
616 => 0.020736506998095
617 => 0.020452582261116
618 => 0.02041166427078
619 => 0.020562959527041
620 => 0.02038583240625
621 => 0.020468709071243
622 => 0.020388342656004
623 => 0.020370250483159
624 => 0.020226088971793
625 => 0.020163980228893
626 => 0.020188334667329
627 => 0.020105200413373
628 => 0.020055109018267
629 => 0.020329813312502
630 => 0.020183049889632
701 => 0.020307319713064
702 => 0.020165698565161
703 => 0.019674777965136
704 => 0.01939244433667
705 => 0.018465140831586
706 => 0.018728122955311
707 => 0.018902480375416
708 => 0.018844855249111
709 => 0.018968656318377
710 => 0.018976256698559
711 => 0.018936007708939
712 => 0.018889404535173
713 => 0.0188667206875
714 => 0.019035787503521
715 => 0.019133936480748
716 => 0.018919979475125
717 => 0.018869852342284
718 => 0.019086174687859
719 => 0.019218131193694
720 => 0.020192423892826
721 => 0.02012024514275
722 => 0.020301399641076
723 => 0.020281004424607
724 => 0.020470883199027
725 => 0.020781254746446
726 => 0.020150182609293
727 => 0.02025971491147
728 => 0.020232860120447
729 => 0.020526053687138
730 => 0.02052696900545
731 => 0.020351184816114
801 => 0.020446480276925
802 => 0.020393288964994
803 => 0.020489412854891
804 => 0.020119281151538
805 => 0.020570061612973
806 => 0.020825625086956
807 => 0.02082917358604
808 => 0.020950308644431
809 => 0.021073388879425
810 => 0.021309630672467
811 => 0.021066800224038
812 => 0.02062997188638
813 => 0.020661509481412
814 => 0.020405397186873
815 => 0.020409702480814
816 => 0.020386720484342
817 => 0.02045569118576
818 => 0.02013441634194
819 => 0.02020981890563
820 => 0.020104254874907
821 => 0.020259485435884
822 => 0.020092483012804
823 => 0.020232847170253
824 => 0.020293423687463
825 => 0.020516952340085
826 => 0.020059467649066
827 => 0.019126625395088
828 => 0.019322720146494
829 => 0.019032680606255
830 => 0.019059524869962
831 => 0.019113754554885
901 => 0.018937978403203
902 => 0.018971510953601
903 => 0.018970312934936
904 => 0.018959989057302
905 => 0.018914262891453
906 => 0.018847950904325
907 => 0.019112117451288
908 => 0.01915700449524
909 => 0.019256782833618
910 => 0.019553655488335
911 => 0.019523990909389
912 => 0.019572375068421
913 => 0.01946675272092
914 => 0.019064424387731
915 => 0.019086272751883
916 => 0.018813823300809
917 => 0.019249815688604
918 => 0.019146566936356
919 => 0.019080001794108
920 => 0.019061838878325
921 => 0.019359447422931
922 => 0.01944849656392
923 => 0.019393007115121
924 => 0.01927919663675
925 => 0.019497746400271
926 => 0.019556221097115
927 => 0.019569311425274
928 => 0.019956539703473
929 => 0.019590953184456
930 => 0.019678953493201
1001 => 0.020365506781233
1002 => 0.019742897686866
1003 => 0.020072707609992
1004 => 0.020056565130503
1005 => 0.020225284727015
1006 => 0.020042725199033
1007 => 0.020044988243178
1008 => 0.020194799814825
1009 => 0.019984416481106
1010 => 0.019932322609049
1011 => 0.019860355297907
1012 => 0.020017493288915
1013 => 0.020111690407784
1014 => 0.020870850005711
1015 => 0.021361301727856
1016 => 0.021340009925123
1017 => 0.021534577145515
1018 => 0.021446922830697
1019 => 0.021163863926109
1020 => 0.021647010960885
1021 => 0.021494123023351
1022 => 0.021506726919163
1023 => 0.021506257801531
1024 => 0.021607914914295
1025 => 0.021535881533164
1026 => 0.02139389634488
1027 => 0.021488152739034
1028 => 0.021768060532395
1029 => 0.022636902911607
1030 => 0.023123118617644
1031 => 0.022607632115593
1101 => 0.022963207802069
1102 => 0.022749989094755
1103 => 0.022711240912929
1104 => 0.022934568720873
1105 => 0.02315828743458
1106 => 0.02314403751968
1107 => 0.022981629221611
1108 => 0.02288988889499
1109 => 0.023584577383428
1110 => 0.024096412028
1111 => 0.024061508336623
1112 => 0.024215561879072
1113 => 0.024667867844398
1114 => 0.024709221033384
1115 => 0.024704011482064
1116 => 0.024601513288402
1117 => 0.025046867250617
1118 => 0.025418389361154
1119 => 0.024577787918027
1120 => 0.024897877943289
1121 => 0.025041576668285
1122 => 0.025252569030071
1123 => 0.025608548510829
1124 => 0.025995236645826
1125 => 0.026049918587935
1126 => 0.026011119133237
1127 => 0.025756087913471
1128 => 0.026179206684934
1129 => 0.026427059737901
1130 => 0.026574650558926
1201 => 0.026948916324276
1202 => 0.02504246410269
1203 => 0.023692982463428
1204 => 0.023482241418706
1205 => 0.023910791620131
1206 => 0.024023796890622
1207 => 0.023978244607784
1208 => 0.022459280333292
1209 => 0.023474244386158
1210 => 0.024566260366441
1211 => 0.024608209147619
1212 => 0.025154895180326
1213 => 0.025332918561993
1214 => 0.025773072474098
1215 => 0.025745540727055
1216 => 0.025852711200274
1217 => 0.025828074564415
1218 => 0.026643367001249
1219 => 0.027542755631176
1220 => 0.027511612662802
1221 => 0.027382314906167
1222 => 0.027574344123314
1223 => 0.028502609573742
1224 => 0.028417149766217
1225 => 0.028500166689778
1226 => 0.02959464397058
1227 => 0.0310176201232
1228 => 0.030356504835838
1229 => 0.031790934778615
1230 => 0.032693832391729
1231 => 0.034255300452253
]
'min_raw' => 0.013985680361487
'max_raw' => 0.034255300452253
'avg_raw' => 0.02412049040687
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.013985'
'max' => '$0.034255'
'avg' => '$0.02412'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 0.0062361202181464
'max_diff' => 0.013897155998395
'year' => 2028
]
3 => [
'items' => [
101 => 0.034059796960683
102 => 0.034667665018063
103 => 0.033709804907963
104 => 0.031510364479705
105 => 0.031162294612813
106 => 0.031859139300863
107 => 0.033572263969323
108 => 0.03180518690856
109 => 0.032162664296506
110 => 0.032059710784729
111 => 0.03205422482961
112 => 0.032263601423486
113 => 0.031959889753721
114 => 0.03072251377441
115 => 0.031289595893826
116 => 0.031070618253999
117 => 0.031313590271251
118 => 0.032624810039078
119 => 0.032045088524146
120 => 0.031434399000918
121 => 0.0322003391859
122 => 0.033175644246986
123 => 0.033114611409055
124 => 0.032996182193722
125 => 0.033663761479804
126 => 0.034766406878034
127 => 0.035064447498387
128 => 0.03528445499116
129 => 0.035314790307356
130 => 0.035627262917472
131 => 0.033947018939642
201 => 0.036613609284184
202 => 0.037074055773615
203 => 0.036987510917153
204 => 0.037499277811605
205 => 0.037348703008984
206 => 0.03713054374445
207 => 0.037941803128096
208 => 0.037011759710002
209 => 0.035691680167227
210 => 0.034967458421848
211 => 0.035921172037465
212 => 0.036503571662504
213 => 0.036888500767081
214 => 0.037004980081546
215 => 0.0340774514966
216 => 0.032499675957493
217 => 0.033511011988827
218 => 0.034744911745739
219 => 0.033940164564191
220 => 0.03397170913012
221 => 0.032824351133071
222 => 0.034846427469515
223 => 0.034551827955634
224 => 0.036080210754786
225 => 0.03571544993373
226 => 0.036961786774959
227 => 0.036633584515368
228 => 0.037995933745392
301 => 0.038539411737382
302 => 0.039451995871528
303 => 0.040123296475491
304 => 0.040517497030073
305 => 0.040493830707385
306 => 0.042055849694574
307 => 0.041134781670615
308 => 0.039977703153458
309 => 0.039956775253618
310 => 0.040556042613583
311 => 0.041811942599099
312 => 0.042137579192742
313 => 0.042319565624427
314 => 0.042040847069308
315 => 0.041041093742841
316 => 0.040609405325337
317 => 0.040977216364268
318 => 0.040527415070018
319 => 0.041303898295846
320 => 0.042370175612775
321 => 0.042149993563347
322 => 0.042886029143048
323 => 0.043647748534838
324 => 0.044737041476055
325 => 0.04502182298729
326 => 0.045492555996091
327 => 0.045977094889885
328 => 0.046132715723882
329 => 0.046429844182292
330 => 0.04642827816865
331 => 0.047323694777119
401 => 0.048311367025005
402 => 0.048684190433917
403 => 0.049541477305107
404 => 0.048073403581109
405 => 0.049186954364777
406 => 0.05019140504563
407 => 0.048993857535276
408 => 0.050644397785515
409 => 0.050708484523227
410 => 0.0516761181754
411 => 0.050695236092745
412 => 0.050112791443151
413 => 0.051794287322613
414 => 0.05260791021206
415 => 0.052362840376276
416 => 0.050497846825367
417 => 0.049412340585402
418 => 0.046571361376897
419 => 0.04993662397054
420 => 0.051575745213848
421 => 0.05049360189733
422 => 0.051039372041664
423 => 0.054016916982587
424 => 0.055150573314332
425 => 0.054914780722185
426 => 0.054954625788781
427 => 0.055566326168073
428 => 0.058278942519406
429 => 0.056653479923733
430 => 0.057896085173203
501 => 0.058555158516976
502 => 0.059167342569228
503 => 0.057664012019653
504 => 0.055708201062967
505 => 0.055088713633626
506 => 0.050386004071216
507 => 0.05014120761566
508 => 0.050003795947065
509 => 0.049137434813838
510 => 0.048456712279408
511 => 0.047915376446422
512 => 0.046494749564103
513 => 0.046974169433946
514 => 0.044709986691403
515 => 0.046158530572373
516 => 0.042544840244671
517 => 0.045554428930969
518 => 0.043916446638223
519 => 0.045016307694409
520 => 0.045012470382797
521 => 0.042987277467093
522 => 0.041819188458012
523 => 0.042563540237303
524 => 0.04336154443142
525 => 0.043491017927107
526 => 0.044525651194821
527 => 0.044814395100472
528 => 0.043939487586185
529 => 0.042469954544823
530 => 0.042811293553851
531 => 0.041812271233889
601 => 0.040061523044994
602 => 0.041318940959389
603 => 0.041748278720127
604 => 0.041937898734101
605 => 0.040216238965111
606 => 0.039675256086642
607 => 0.039387241341432
608 => 0.042247709888324
609 => 0.042404412812465
610 => 0.041602698496997
611 => 0.045226523224584
612 => 0.044406340081181
613 => 0.045322685602111
614 => 0.042780320616528
615 => 0.042877442382726
616 => 0.041673846055345
617 => 0.042347779574343
618 => 0.041871465085006
619 => 0.042293332405948
620 => 0.042546197938697
621 => 0.043749596767764
622 => 0.045568169812551
623 => 0.043569849112516
624 => 0.042699152167031
625 => 0.043239327655025
626 => 0.044677886163044
627 => 0.046857375941148
628 => 0.045567074126191
629 => 0.046139688160923
630 => 0.046264778853687
701 => 0.045313358064907
702 => 0.046892456182723
703 => 0.04773870769263
704 => 0.04860678663472
705 => 0.049360515257116
706 => 0.048260056815784
707 => 0.04943770509253
708 => 0.048488728464378
709 => 0.047637398325525
710 => 0.047638689441932
711 => 0.04710463760988
712 => 0.046069844890419
713 => 0.045879013236382
714 => 0.046871743600065
715 => 0.047667819339823
716 => 0.047733387950696
717 => 0.048174136384074
718 => 0.048434966766878
719 => 0.050991459100063
720 => 0.052019701464885
721 => 0.053277016764956
722 => 0.053766811932741
723 => 0.055240919786489
724 => 0.054050457973401
725 => 0.053792894071784
726 => 0.050217190595596
727 => 0.050802711839507
728 => 0.051740187845406
729 => 0.050232649229639
730 => 0.051188835493786
731 => 0.051377606917123
801 => 0.050181423644342
802 => 0.050820356814363
803 => 0.049123539745271
804 => 0.045605155787791
805 => 0.046896373149851
806 => 0.047847143747391
807 => 0.046490276875532
808 => 0.04892240822534
809 => 0.047501607300164
810 => 0.047051281617355
811 => 0.045294400576019
812 => 0.046123580798977
813 => 0.047245058923244
814 => 0.046552115828273
815 => 0.047990076796268
816 => 0.050026613017131
817 => 0.051477970005947
818 => 0.051589387173977
819 => 0.050656261863535
820 => 0.052151601128644
821 => 0.052162493042692
822 => 0.050475744243008
823 => 0.049442619995058
824 => 0.049207891992211
825 => 0.049794288564457
826 => 0.050506282257942
827 => 0.051628897868741
828 => 0.0523072709708
829 => 0.054076108239677
830 => 0.054554704888096
831 => 0.055080537503272
901 => 0.055783212037919
902 => 0.056626952978817
903 => 0.054780895834332
904 => 0.054854243126164
905 => 0.053135220273621
906 => 0.051298197822865
907 => 0.052692268874908
908 => 0.054514831329953
909 => 0.054096733489013
910 => 0.054049688940943
911 => 0.054128804821727
912 => 0.053813572703457
913 => 0.052387789515571
914 => 0.051671770124489
915 => 0.052595617815013
916 => 0.053086601746796
917 => 0.053848075006693
918 => 0.05375420735466
919 => 0.055715680695898
920 => 0.056477849924427
921 => 0.056282854420709
922 => 0.056318738286222
923 => 0.057698609268528
924 => 0.059233309592964
925 => 0.060670758968343
926 => 0.062132994212865
927 => 0.06037021255358
928 => 0.059475180740254
929 => 0.060398625107776
930 => 0.059908632527948
1001 => 0.06272427523288
1002 => 0.062919224224757
1003 => 0.065734663326673
1004 => 0.068406850290644
1005 => 0.066728497535776
1006 => 0.068311108588948
1007 => 0.070022831475126
1008 => 0.073325022639593
1009 => 0.072212960827887
1010 => 0.07136113890835
1011 => 0.070556171310361
1012 => 0.072231181096768
1013 => 0.074386054428046
1014 => 0.074850193504483
1015 => 0.075602276123085
1016 => 0.074811553209913
1017 => 0.075763891863557
1018 => 0.079126065789731
1019 => 0.078217576716148
1020 => 0.076927376184755
1021 => 0.079581489592853
1022 => 0.080542002917639
1023 => 0.08728338845572
1024 => 0.095794666170294
1025 => 0.092270941308397
1026 => 0.090083651576728
1027 => 0.090597716546876
1028 => 0.093705747043306
1029 => 0.094703947794802
1030 => 0.091990494051802
1031 => 0.092948931786488
1101 => 0.098230017936124
1102 => 0.10106315121787
1103 => 0.097215375680693
1104 => 0.0865995155786
1105 => 0.076811207743293
1106 => 0.079407507754463
1107 => 0.079113167905766
1108 => 0.084787036144635
1109 => 0.078195909552201
1110 => 0.078306887220131
1111 => 0.08409808504545
1112 => 0.08255309275192
1113 => 0.080050403104065
1114 => 0.076829480147365
1115 => 0.070875306162591
1116 => 0.065601528219851
1117 => 0.075944621244088
1118 => 0.075498608265189
1119 => 0.074852715376322
1120 => 0.076290080107585
1121 => 0.083269515239496
1122 => 0.083108616669478
1123 => 0.082085062058199
1124 => 0.082861419209658
1125 => 0.079914303941782
1126 => 0.080673842650881
1127 => 0.076809657225322
1128 => 0.078556430420313
1129 => 0.080045033456096
1130 => 0.080343892554674
1201 => 0.081017237363894
1202 => 0.075263579692295
1203 => 0.077846803068329
1204 => 0.079364204786451
1205 => 0.072508528620429
1206 => 0.079228690111328
1207 => 0.075163421312966
1208 => 0.073783608024513
1209 => 0.075641344840837
1210 => 0.074917382996807
1211 => 0.074294963115777
1212 => 0.07394764212763
1213 => 0.075311759014608
1214 => 0.075248121331358
1215 => 0.073016161340585
1216 => 0.070104660518948
1217 => 0.071081855761446
1218 => 0.070726831568592
1219 => 0.069440178094658
1220 => 0.070307227184957
1221 => 0.066489181794784
1222 => 0.059920433145722
1223 => 0.064259949709505
1224 => 0.064092883042285
1225 => 0.064008640452803
1226 => 0.067269667215057
1227 => 0.066956194736554
1228 => 0.06638723911854
1229 => 0.069429728778553
1230 => 0.068319179125388
1231 => 0.071741631478037
]
'min_raw' => 0.03072251377441
'max_raw' => 0.10106315121787
'avg_raw' => 0.065892832496142
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.030722'
'max' => '$0.101063'
'avg' => '$0.065892'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072435
'min_diff' => 0.016736833412923
'max_diff' => 0.066807850765621
'year' => 2029
]
4 => [
'items' => [
101 => 0.073995879947832
102 => 0.073424129618593
103 => 0.075544261200163
104 => 0.071104368366176
105 => 0.072579122668044
106 => 0.072883067485738
107 => 0.069392184928422
108 => 0.067007482710817
109 => 0.066848450260498
110 => 0.06271370524738
111 => 0.064922452658892
112 => 0.066866058976845
113 => 0.065935222380488
114 => 0.065640547322034
115 => 0.067145978288454
116 => 0.067262963167689
117 => 0.064595695523628
118 => 0.065150304928209
119 => 0.067463118341455
120 => 0.065092027964263
121 => 0.060485386676792
122 => 0.059342875945701
123 => 0.059190443953523
124 => 0.056091864237134
125 => 0.05941922397588
126 => 0.057966742282221
127 => 0.062555114549089
128 => 0.059934260918188
129 => 0.059821281156393
130 => 0.059650495675913
131 => 0.056983420113302
201 => 0.057567340160019
202 => 0.059508379328843
203 => 0.06020096397165
204 => 0.060128721719227
205 => 0.059498867177985
206 => 0.059787211361589
207 => 0.058858354280429
208 => 0.058530355512584
209 => 0.057495101178094
210 => 0.055973563302703
211 => 0.056185142476411
212 => 0.05317057781322
213 => 0.051528082989658
214 => 0.051073462070229
215 => 0.050465523976854
216 => 0.051142130295538
217 => 0.053162037930289
218 => 0.050725600775469
219 => 0.046548500169724
220 => 0.046799551033562
221 => 0.047363587786937
222 => 0.0463125090285
223 => 0.045317751193993
224 => 0.046182612423843
225 => 0.044412719831444
226 => 0.047577470850966
227 => 0.047491873205
228 => 0.048671496678188
301 => 0.049409139444282
302 => 0.047709111683116
303 => 0.047281559298546
304 => 0.047525112567969
305 => 0.043499719546014
306 => 0.048342536189118
307 => 0.04838441706855
308 => 0.048025807552235
309 => 0.050604457909498
310 => 0.05604621446454
311 => 0.053998806754383
312 => 0.053205988605785
313 => 0.051698840725753
314 => 0.053707025790309
315 => 0.053552828509918
316 => 0.052855489930409
317 => 0.052433737381693
318 => 0.053210829384342
319 => 0.052337447082869
320 => 0.052180563622583
321 => 0.051230020544144
322 => 0.050890719912095
323 => 0.050639515232074
324 => 0.050362963562232
325 => 0.05097296763352
326 => 0.049590618155263
327 => 0.047923640197875
328 => 0.047785049017669
329 => 0.048167711451277
330 => 0.047998411810273
331 => 0.047784238476122
401 => 0.047375323254591
402 => 0.047254006843454
403 => 0.047648226325294
404 => 0.04720317551472
405 => 0.047859872228894
406 => 0.047681287059325
407 => 0.046683724819234
408 => 0.045440392923236
409 => 0.045429324661385
410 => 0.045161450843865
411 => 0.044820273262156
412 => 0.04472536546401
413 => 0.046109776223359
414 => 0.048975465063285
415 => 0.048412861773885
416 => 0.04881940030838
417 => 0.050819167532121
418 => 0.05145483339745
419 => 0.051003652822811
420 => 0.050386049024639
421 => 0.050413220457366
422 => 0.052523759597104
423 => 0.052655391334409
424 => 0.052987982268572
425 => 0.053415455609158
426 => 0.05107645338116
427 => 0.05030305366277
428 => 0.049936573969615
429 => 0.048807958360186
430 => 0.050025073534765
501 => 0.049315912644606
502 => 0.049411602677074
503 => 0.049349284417897
504 => 0.04938331440135
505 => 0.047576586238558
506 => 0.048234863022243
507 => 0.047140350194485
508 => 0.045674920382949
509 => 0.045670007748375
510 => 0.046028669618675
511 => 0.04581532350378
512 => 0.045241214594227
513 => 0.045322764055112
514 => 0.044608304967389
515 => 0.04540951232406
516 => 0.045432488084192
517 => 0.045123979609814
518 => 0.046358350088075
519 => 0.046864072680168
520 => 0.046661005793441
521 => 0.046849824966061
522 => 0.048436240480561
523 => 0.048694895429586
524 => 0.048809772872156
525 => 0.048655852317457
526 => 0.046878821729442
527 => 0.046957640592538
528 => 0.046379320072277
529 => 0.045890700174571
530 => 0.045910242408005
531 => 0.046161456551567
601 => 0.047258523450013
602 => 0.049567236062168
603 => 0.049654850018152
604 => 0.049761040688684
605 => 0.049329109864474
606 => 0.049198835394871
607 => 0.049370701046971
608 => 0.050237732117754
609 => 0.052467971428447
610 => 0.051679655903373
611 => 0.051038743110626
612 => 0.051600996418713
613 => 0.05151444192902
614 => 0.050783834930652
615 => 0.05076332922557
616 => 0.049361060806513
617 => 0.048842674100095
618 => 0.048409471367639
619 => 0.047936425292842
620 => 0.047655987723054
621 => 0.048086867286844
622 => 0.0481854145411
623 => 0.047243288844386
624 => 0.047114880593198
625 => 0.04788424077433
626 => 0.047545674043253
627 => 0.047893898322217
628 => 0.047974689341949
629 => 0.047961680126997
630 => 0.047608177575611
701 => 0.047833489560267
702 => 0.04730055954782
703 => 0.046721078202784
704 => 0.046351405207614
705 => 0.046028816489321
706 => 0.046207807459197
707 => 0.045569737334052
708 => 0.045365605859203
709 => 0.047757158929546
710 => 0.049523824896136
711 => 0.049498136873305
712 => 0.049341767640746
713 => 0.049109434679504
714 => 0.050220735514527
715 => 0.049833580524766
716 => 0.050115268127699
717 => 0.050186969445037
718 => 0.050403987737563
719 => 0.050481553123789
720 => 0.05024709665399
721 => 0.049460232104901
722 => 0.047499440461406
723 => 0.046586686658303
724 => 0.046285462700162
725 => 0.046296411618935
726 => 0.045994391561059
727 => 0.046083350003693
728 => 0.04596345544508
729 => 0.045736404156677
730 => 0.046193787681951
731 => 0.046246496872417
801 => 0.046139738092292
802 => 0.046164883649735
803 => 0.04528096654757
804 => 0.04534816884508
805 => 0.044973977912886
806 => 0.044903821624039
807 => 0.043957899531983
808 => 0.042282061432307
809 => 0.043210638417068
810 => 0.04208904799716
811 => 0.041664284710272
812 => 0.043675048046153
813 => 0.043473223177124
814 => 0.043127786732508
815 => 0.042616814235658
816 => 0.042427289566156
817 => 0.041275797670477
818 => 0.04120776138631
819 => 0.041778471862705
820 => 0.041515108614797
821 => 0.041145246871273
822 => 0.039805645128511
823 => 0.038299489242753
824 => 0.038344950621586
825 => 0.038824030785819
826 => 0.04021702097609
827 => 0.039672755609776
828 => 0.03927788484179
829 => 0.039203937416718
830 => 0.040129544260916
831 => 0.041439471866084
901 => 0.042054060590451
902 => 0.041445021829941
903 => 0.040745390894842
904 => 0.040787974188084
905 => 0.04107126176037
906 => 0.041101031278747
907 => 0.04064564346322
908 => 0.040773832465841
909 => 0.040579101649011
910 => 0.03938403898557
911 => 0.039362424091573
912 => 0.039069136440975
913 => 0.039060255807475
914 => 0.038561300349776
915 => 0.038491493032128
916 => 0.037500786686435
917 => 0.038152872603305
918 => 0.037715487606316
919 => 0.037056245247162
920 => 0.036942591615961
921 => 0.036939175050566
922 => 0.037616069549522
923 => 0.038144962696977
924 => 0.037723096105599
925 => 0.037627045260283
926 => 0.038652616998761
927 => 0.038522103646745
928 => 0.038409079925621
929 => 0.041322182216453
930 => 0.039016234441053
1001 => 0.038010709592081
1002 => 0.036766181647488
1003 => 0.037171406221702
1004 => 0.037256792993477
1005 => 0.034263927629755
1006 => 0.03304972252443
1007 => 0.032633053088637
1008 => 0.032393253937497
1009 => 0.03250253342188
1010 => 0.031409606415034
1011 => 0.032144071438978
1012 => 0.03119768903387
1013 => 0.031039024943859
1014 => 0.032731273918476
1015 => 0.032966740477319
1016 => 0.031962166983569
1017 => 0.032607265792232
1018 => 0.032373343996667
1019 => 0.031213912043923
1020 => 0.031169630271533
1021 => 0.03058786807365
1022 => 0.029677522885322
1023 => 0.029261470706434
1024 => 0.029044787119338
1025 => 0.029134194990453
1026 => 0.029088987634891
1027 => 0.028793979060419
1028 => 0.029105897181056
1029 => 0.028309075276295
1030 => 0.027991774373389
1031 => 0.027848456916871
1101 => 0.027141231613039
1102 => 0.028266741575956
1103 => 0.028488481217452
1104 => 0.028710657754541
1105 => 0.03064455282353
1106 => 0.030547940891014
1107 => 0.031421265709039
1108 => 0.031387329912552
1109 => 0.031138243527527
1110 => 0.030087389041829
1111 => 0.030506240910148
1112 => 0.029217079963494
1113 => 0.030183006999151
1114 => 0.029742198238155
1115 => 0.030033969113644
1116 => 0.029509338771595
1117 => 0.029799690864341
1118 => 0.028541063912449
1119 => 0.027365775774132
1120 => 0.02783874602979
1121 => 0.028352918788401
1122 => 0.02946777633785
1123 => 0.028803776378773
1124 => 0.029042575872675
1125 => 0.028242637542655
1126 => 0.026592136276736
1127 => 0.026601477934657
1128 => 0.02634758427302
1129 => 0.026128183080284
1130 => 0.028880044761598
1201 => 0.028537807261031
1202 => 0.027992496594814
1203 => 0.02872241659133
1204 => 0.028915419023796
1205 => 0.028920913531719
1206 => 0.029453444319215
1207 => 0.029737656095963
1208 => 0.029787749653459
1209 => 0.030625698353672
1210 => 0.030906567705173
1211 => 0.032063428813887
1212 => 0.029713542712383
1213 => 0.029665148354508
1214 => 0.02873268806256
1215 => 0.028141307003792
1216 => 0.028773180429602
1217 => 0.029332934025545
1218 => 0.028750081167093
1219 => 0.028826189445711
1220 => 0.028043757104067
1221 => 0.028323439849341
1222 => 0.028564340306906
1223 => 0.028431329233713
1224 => 0.028232205219335
1225 => 0.029287040614024
1226 => 0.029227522667122
1227 => 0.030209809637218
1228 => 0.030975572574423
1229 => 0.032347956654392
1230 => 0.030915802322944
1231 => 0.030863608926808
]
'min_raw' => 0.026128183080284
'max_raw' => 0.075544261200163
'avg_raw' => 0.050836222140223
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.026128'
'max' => '$0.075544'
'avg' => '$0.050836'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -0.0045943306941262
'max_diff' => -0.025518890017711
'year' => 2030
]
5 => [
'items' => [
101 => 0.03137380774612
102 => 0.030906489596392
103 => 0.031201818535746
104 => 0.032300374596494
105 => 0.032323585354976
106 => 0.031934775245035
107 => 0.03191111611451
108 => 0.031985791349241
109 => 0.032423166531497
110 => 0.032270334203635
111 => 0.032447195642678
112 => 0.0326683635804
113 => 0.03358320794408
114 => 0.033803773822972
115 => 0.033267913087561
116 => 0.03331629531219
117 => 0.03311586868744
118 => 0.03292225907927
119 => 0.033357465204024
120 => 0.03415281295101
121 => 0.034147865133955
122 => 0.034332370351904
123 => 0.034447315574163
124 => 0.033953886535183
125 => 0.033632682374695
126 => 0.033755852488577
127 => 0.033952804182972
128 => 0.033691983708534
129 => 0.032082078916504
130 => 0.032570421189289
131 => 0.032489137156381
201 => 0.032373378809043
202 => 0.032864410740568
203 => 0.032817049512892
204 => 0.031398396868888
205 => 0.031489214408349
206 => 0.031403919784259
207 => 0.031679524164333
208 => 0.030891606055412
209 => 0.031133964359007
210 => 0.031285969215053
211 => 0.031375501243021
212 => 0.031698952320727
213 => 0.031660999070016
214 => 0.031696593093374
215 => 0.032176185653693
216 => 0.034601800247495
217 => 0.034733821098018
218 => 0.034083702145682
219 => 0.034343411844111
220 => 0.033844826015395
221 => 0.034179530022447
222 => 0.034408526003512
223 => 0.033373737198474
224 => 0.033312463721164
225 => 0.032811820051376
226 => 0.033080837601613
227 => 0.032652811336139
228 => 0.032757834009963
301 => 0.032464181458239
302 => 0.032992697585703
303 => 0.033583660739311
304 => 0.033732961369754
305 => 0.03334021568902
306 => 0.033055841932967
307 => 0.032556575295877
308 => 0.033386866840241
309 => 0.033629669390489
310 => 0.033385591501809
311 => 0.033329033321794
312 => 0.033221855672865
313 => 0.033351771566676
314 => 0.033628347035656
315 => 0.033497919152032
316 => 0.033584069067009
317 => 0.033255754428522
318 => 0.033954049880726
319 => 0.035063111112778
320 => 0.035066676925988
321 => 0.03493624833931
322 => 0.034882879771764
323 => 0.035016707416765
324 => 0.03508930342428
325 => 0.035522077488421
326 => 0.035986461301723
327 => 0.038153537931873
328 => 0.037545031485824
329 => 0.039467790792059
330 => 0.040988443764242
331 => 0.041444421100505
401 => 0.041024943406535
402 => 0.039589932875204
403 => 0.039519524412457
404 => 0.041664035992085
405 => 0.041058113245987
406 => 0.040986040663369
407 => 0.040219310152863
408 => 0.040672542845993
409 => 0.040573414207483
410 => 0.040416934802056
411 => 0.041281671208086
412 => 0.042900380564623
413 => 0.042648089531246
414 => 0.042459765978275
415 => 0.041634586989317
416 => 0.042131529051069
417 => 0.041954577501177
418 => 0.042714873655741
419 => 0.042264491056399
420 => 0.041053522785244
421 => 0.041246373473829
422 => 0.041217224480211
423 => 0.041817108703348
424 => 0.041637038349604
425 => 0.041182062853617
426 => 0.042894847992018
427 => 0.042783629252142
428 => 0.042941311997143
429 => 0.043010728817993
430 => 0.044053270949078
501 => 0.044480367102557
502 => 0.044577325406767
503 => 0.04498303371977
504 => 0.044567231014348
505 => 0.04623073829834
506 => 0.047336873573853
507 => 0.048621706617563
508 => 0.050499193024988
509 => 0.051205145281901
510 => 0.051077621325423
511 => 0.052501110092077
512 => 0.055059087763376
513 => 0.051594661748173
514 => 0.055242710754465
515 => 0.054087780557824
516 => 0.051349461837896
517 => 0.051173146394989
518 => 0.053027567624659
519 => 0.057140495430637
520 => 0.056110253663681
521 => 0.057142180537094
522 => 0.055938383025234
523 => 0.055878604332369
524 => 0.05708371477887
525 => 0.05989952102427
526 => 0.058561837025999
527 => 0.056643939000904
528 => 0.058060085056836
529 => 0.056833288285058
530 => 0.054068971799446
531 => 0.056109465857218
601 => 0.054745045590711
602 => 0.055143255961048
603 => 0.058011064419049
604 => 0.057666002118102
605 => 0.058112544687436
606 => 0.057324408740616
607 => 0.056588165488654
608 => 0.055213912784726
609 => 0.054807064308933
610 => 0.054919502590768
611 => 0.054807008590104
612 => 0.054038126832291
613 => 0.053872086889897
614 => 0.053595346378197
615 => 0.053681119834588
616 => 0.053160766709299
617 => 0.05414278056716
618 => 0.054325050992655
619 => 0.055039678785246
620 => 0.05511387381336
621 => 0.057104102043637
622 => 0.056007917778827
623 => 0.056743332823657
624 => 0.056677550380053
625 => 0.051408809507865
626 => 0.052134795513558
627 => 0.053264201911458
628 => 0.052755405860078
629 => 0.052036087283368
630 => 0.051455198965252
701 => 0.050575093764427
702 => 0.051813824933665
703 => 0.05344262469684
704 => 0.055155182863283
705 => 0.057212709289008
706 => 0.056753493343034
707 => 0.05511671883794
708 => 0.055190143346574
709 => 0.05564402476747
710 => 0.055056207087934
711 => 0.054882848178674
712 => 0.055620207915445
713 => 0.055625285706706
714 => 0.05494893042626
715 => 0.054197285303754
716 => 0.054194135883246
717 => 0.054060387893726
718 => 0.055962176495447
719 => 0.057007967933878
720 => 0.057127866236917
721 => 0.056999897822784
722 => 0.057049147786499
723 => 0.056440624790918
724 => 0.057831527906928
725 => 0.05910795815224
726 => 0.058765847579542
727 => 0.058252975197183
728 => 0.057844447641354
729 => 0.058669611470581
730 => 0.058632868224194
731 => 0.059096809647581
801 => 0.05907576258476
802 => 0.058919756533795
803 => 0.058765853151009
804 => 0.059376062667305
805 => 0.059200332126277
806 => 0.05902432862718
807 => 0.058671326664954
808 => 0.058719305494363
809 => 0.058206521666652
810 => 0.057969284404562
811 => 0.054401805194505
812 => 0.053448458178832
813 => 0.053748400557131
814 => 0.053847149376067
815 => 0.053432251533099
816 => 0.054027108461405
817 => 0.053934400639237
818 => 0.054295072543027
819 => 0.054069740396093
820 => 0.054078988106002
821 => 0.054741641904257
822 => 0.054934013121021
823 => 0.054836171567549
824 => 0.054904696437789
825 => 0.056483823149925
826 => 0.056259321829089
827 => 0.056140059976872
828 => 0.056173096324986
829 => 0.056576597056796
830 => 0.056689555231379
831 => 0.056210943508239
901 => 0.056436659563693
902 => 0.057397729880185
903 => 0.057734050099089
904 => 0.058807422794965
905 => 0.058351434996078
906 => 0.059188420335624
907 => 0.061761027920058
908 => 0.063816204869409
909 => 0.061926179213007
910 => 0.065700249955283
911 => 0.068638905386438
912 => 0.068526114896404
913 => 0.068013692349657
914 => 0.064668111269483
915 => 0.061589457679703
916 => 0.064164882134091
917 => 0.064171447420666
918 => 0.063950216176003
919 => 0.062576167915678
920 => 0.063902402274966
921 => 0.06400767394223
922 => 0.063948749802558
923 => 0.062895270222994
924 => 0.06128680162057
925 => 0.061601092535354
926 => 0.062115907465131
927 => 0.061141255401418
928 => 0.060829795010811
929 => 0.061408859134713
930 => 0.063274724394729
1001 => 0.062921993375545
1002 => 0.062912782143136
1003 => 0.064421915024438
1004 => 0.063341701572685
1005 => 0.061605056750288
1006 => 0.061166531029102
1007 => 0.059610060145213
1008 => 0.060685120128674
1009 => 0.060723809623586
1010 => 0.060135010257491
1011 => 0.061652834573788
1012 => 0.061638847555506
1013 => 0.063079795845494
1014 => 0.065834347780489
1015 => 0.065019691230042
1016 => 0.064072334296254
1017 => 0.064175338262315
1018 => 0.065305037534556
1019 => 0.064621995566033
1020 => 0.064867622220252
1021 => 0.065304665749197
1022 => 0.06556834496139
1023 => 0.064137398881473
1024 => 0.063803776900181
1025 => 0.063121303411862
1026 => 0.062943258817731
1027 => 0.06349911923369
1028 => 0.063352669652923
1029 => 0.060720557921352
1030 => 0.060445487600471
1031 => 0.060453923614503
1101 => 0.059762246213768
1102 => 0.05870727215605
1103 => 0.061479680990505
1104 => 0.061257017761261
1105 => 0.061011214788942
1106 => 0.061041324250519
1107 => 0.062244732959902
1108 => 0.061546695134863
1109 => 0.063402543098879
1110 => 0.063021036549373
1111 => 0.062629745796429
1112 => 0.062575657495365
1113 => 0.062425043938839
1114 => 0.061908534012678
1115 => 0.061284817239404
1116 => 0.060872985400267
1117 => 0.056152111297913
1118 => 0.057028278071248
1119 => 0.058036228078857
1120 => 0.058384168382377
1121 => 0.05778899241647
1122 => 0.061932035187453
1123 => 0.062689009025065
1124 => 0.060396085894756
1125 => 0.05996717359651
1126 => 0.06196015460632
1127 => 0.060758143425384
1128 => 0.061299408986559
1129 => 0.060129488899732
1130 => 0.062506676194365
1201 => 0.062488566010058
1202 => 0.061563786461236
1203 => 0.062345403803283
1204 => 0.062209578555444
1205 => 0.061165504722455
1206 => 0.062539775197152
1207 => 0.062540456818162
1208 => 0.061650376608861
1209 => 0.060610957788011
1210 => 0.060425134252819
1211 => 0.060285141180932
1212 => 0.061264979272606
1213 => 0.062143499041727
1214 => 0.063778206528541
1215 => 0.064189210830417
1216 => 0.065793387982748
1217 => 0.064838178594503
1218 => 0.06526161054428
1219 => 0.065721305823868
1220 => 0.065941700645637
1221 => 0.065582579110603
1222 => 0.068074526533831
1223 => 0.068284923247648
1224 => 0.068355467445866
1225 => 0.067515196795537
1226 => 0.068261553800824
1227 => 0.067912358074796
1228 => 0.068820868344553
1229 => 0.068963334355292
1230 => 0.068842670712571
1231 => 0.068887891673053
]
'min_raw' => 0.030891606055412
'max_raw' => 0.068963334355292
'avg_raw' => 0.049927470205352
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.030891'
'max' => '$0.068963'
'avg' => '$0.049927'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 0.0047634229751281
'max_diff' => -0.0065809268448713
'year' => 2031
]
6 => [
'items' => [
101 => 0.066761454156977
102 => 0.066651187153917
103 => 0.065147688743003
104 => 0.06576037545875
105 => 0.0646149870105
106 => 0.064978201486249
107 => 0.065138302966324
108 => 0.065054675038812
109 => 0.06579501584639
110 => 0.065165574918314
111 => 0.06350437681945
112 => 0.061842726128276
113 => 0.061821865457399
114 => 0.061384382160984
115 => 0.061068161866738
116 => 0.061129077113927
117 => 0.061343750390323
118 => 0.061055684665659
119 => 0.061117158093319
120 => 0.062138026587782
121 => 0.062342754483845
122 => 0.061647009100669
123 => 0.058853490991636
124 => 0.058167954640669
125 => 0.058660704574967
126 => 0.058425201843533
127 => 0.047153697787774
128 => 0.049801770473092
129 => 0.048228375603528
130 => 0.04895346834784
131 => 0.047347439614641
201 => 0.048113920705301
202 => 0.047972379635264
203 => 0.052230402151088
204 => 0.052163918986222
205 => 0.052195740959032
206 => 0.050676795285072
207 => 0.05309651698756
208 => 0.054288558908583
209 => 0.05406794367417
210 => 0.054123467775703
211 => 0.053169379751215
212 => 0.052204978616642
213 => 0.051135309338131
214 => 0.053122622642486
215 => 0.052901667327611
216 => 0.053408459322722
217 => 0.054697374056685
218 => 0.054887171647372
219 => 0.055142261533993
220 => 0.055050829968174
221 => 0.05722910080645
222 => 0.056965297835241
223 => 0.05760098709456
224 => 0.05629332605828
225 => 0.054813583471405
226 => 0.05509483416074
227 => 0.055067747457682
228 => 0.054722902639081
229 => 0.054411592155902
301 => 0.053893347912592
302 => 0.055533149384139
303 => 0.055466576439023
304 => 0.056544315037863
305 => 0.056353814271924
306 => 0.055081603533538
307 => 0.055127040788945
308 => 0.055432628167962
309 => 0.056490269575874
310 => 0.05680424955546
311 => 0.056658801518977
312 => 0.057003066232863
313 => 0.057275159025915
314 => 0.057037236898456
315 => 0.060405712489916
316 => 0.059006886575043
317 => 0.059688664592984
318 => 0.059851264632994
319 => 0.059434768049619
320 => 0.059525091244929
321 => 0.059661906274225
322 => 0.060492620340982
323 => 0.062672654421205
324 => 0.063638176675342
325 => 0.066542998014941
326 => 0.063558003492854
327 => 0.063380886271049
328 => 0.063904132311511
329 => 0.065609569944423
330 => 0.066991666962286
331 => 0.067450188278201
401 => 0.067510789439461
402 => 0.068371005910039
403 => 0.068864065948886
404 => 0.068266553004571
405 => 0.067760223346477
406 => 0.065946613359136
407 => 0.066156543653467
408 => 0.06760275520355
409 => 0.069645614199478
410 => 0.071398599741236
411 => 0.070784765302227
412 => 0.075467888772291
413 => 0.075932201335503
414 => 0.07586804835229
415 => 0.076925821470263
416 => 0.074826357242836
417 => 0.073928795610408
418 => 0.067869697565643
419 => 0.069572056968824
420 => 0.072046536337411
421 => 0.071719029714157
422 => 0.069921996653666
423 => 0.071397236530516
424 => 0.070909476092213
425 => 0.070524759197325
426 => 0.072287221873849
427 => 0.070349321763034
428 => 0.072027204301389
429 => 0.069875302590477
430 => 0.070787569246238
501 => 0.070269722571055
502 => 0.0706048328348
503 => 0.068645785080373
504 => 0.069702839695466
505 => 0.068601808133112
506 => 0.068601286100793
507 => 0.068576980768029
508 => 0.069872339518417
509 => 0.069914581120762
510 => 0.068957309047047
511 => 0.068819351185825
512 => 0.069329453705407
513 => 0.068732257251038
514 => 0.069011681713327
515 => 0.068740720733346
516 => 0.068679721709441
517 => 0.068193671108836
518 => 0.067984267145856
519 => 0.068066379835416
520 => 0.067786086893955
521 => 0.067617200258086
522 => 0.06854338496534
523 => 0.068048561838439
524 => 0.06846754622438
525 => 0.067990060636555
526 => 0.066334887558587
527 => 0.06538298001831
528 => 0.062256511508655
529 => 0.063143174099621
530 => 0.06373103231475
531 => 0.063536745178157
601 => 0.0639541491267
602 => 0.063979774339127
603 => 0.063844072060525
604 => 0.063686946206444
605 => 0.063610466030282
606 => 0.064180486604362
607 => 0.064511402733625
608 => 0.063790031751167
609 => 0.063621024623029
610 => 0.064350370514278
611 => 0.064795271086611
612 => 0.068080166944679
613 => 0.067836811249439
614 => 0.068447586288347
615 => 0.068378822392073
616 => 0.069019011936942
617 => 0.070065451278516
618 => 0.067937747508056
619 => 0.068307043312147
620 => 0.068216500509269
621 => 0.069205023089489
622 => 0.069208109149083
623 => 0.068615440481877
624 => 0.06893673578132
625 => 0.068757397559446
626 => 0.069081485965387
627 => 0.067833561085762
628 => 0.069353398883979
629 => 0.070215048979383
630 => 0.070227012991794
701 => 0.070635428298538
702 => 0.071050401904009
703 => 0.071846907603126
704 => 0.071028187792365
705 => 0.069555390553571
706 => 0.069661721757106
707 => 0.068798221274877
708 => 0.068812736873987
709 => 0.068735251468328
710 => 0.068967791003541
711 => 0.067884590436909
712 => 0.068138815444827
713 => 0.067782898945002
714 => 0.068306269619185
715 => 0.067743209290036
716 => 0.068216456846788
717 => 0.068420694803877
718 => 0.069174337262465
719 => 0.067631895686134
720 => 0.064486752897882
721 => 0.065147900043143
722 => 0.064170011483314
723 => 0.064260518792611
724 => 0.064443357961521
725 => 0.063850716393829
726 => 0.063963773728663
727 => 0.06395973452509
728 => 0.063924926850857
729 => 0.063770757890197
730 => 0.063547182395841
731 => 0.064437838352448
801 => 0.064589178155045
802 => 0.064925587789185
803 => 0.065926514671551
804 => 0.065826498472522
805 => 0.065989629042771
806 => 0.065633515923856
807 => 0.06427703785884
808 => 0.064350701143983
809 => 0.063432118797873
810 => 0.064902097573341
811 => 0.064553987196538
812 => 0.064329558172022
813 => 0.064268320633362
814 => 0.065271728619868
815 => 0.065571964015924
816 => 0.06538487746515
817 => 0.065001157491326
818 => 0.065738013277695
819 => 0.065935164800678
820 => 0.065979299756005
821 => 0.067284866931368
822 => 0.066052266458066
823 => 0.066348965642985
824 => 0.068663727987205
825 => 0.066564557956366
826 => 0.067676535138779
827 => 0.06762210964215
828 => 0.068190959541416
829 => 0.067575447346926
830 => 0.067583077358261
831 => 0.06808817753158
901 => 0.06737885543345
902 => 0.067203217306734
903 => 0.06696057449262
904 => 0.067490376200328
905 => 0.067807968363229
906 => 0.07036752795047
907 => 0.072021120173926
908 => 0.071949333374467
909 => 0.072605330342268
910 => 0.07230979770003
911 => 0.071355444840671
912 => 0.072984408800664
913 => 0.072468936444975
914 => 0.07251143135968
915 => 0.072509849696832
916 => 0.07285259374999
917 => 0.072609728176296
918 => 0.072131015200907
919 => 0.072448807214569
920 => 0.073392535882423
921 => 0.076321898624574
922 => 0.077961208823975
923 => 0.076223210092191
924 => 0.077422058344646
925 => 0.076703176586483
926 => 0.076572534386145
927 => 0.077325499682876
928 => 0.078079782945683
929 => 0.078031738362698
930 => 0.077484167446774
1001 => 0.077174858530467
1002 => 0.079517049270838
1003 => 0.081242735510165
1004 => 0.08112505527779
1005 => 0.081644457551831
1006 => 0.083169438692921
1007 => 0.083308863856777
1008 => 0.083291299490782
1009 => 0.082945719674655
1010 => 0.084447261651883
1011 => 0.085699874386405
1012 => 0.082865727931982
1013 => 0.083944933800125
1014 => 0.084429424084176
1015 => 0.085140799562952
1016 => 0.086341009236021
1017 => 0.087644755280868
1018 => 0.087829119266457
1019 => 0.087698304196053
1020 => 0.086838448632902
1021 => 0.088265023112098
1022 => 0.089100676984723
1023 => 0.089598289742272
1024 => 0.09086015290055
1025 => 0.08443241613123
1026 => 0.079882544566659
1027 => 0.07917201642091
1028 => 0.080616903345431
1029 => 0.08099790850467
1030 => 0.08084432580272
1031 => 0.075723031700571
1101 => 0.079145053867338
1102 => 0.082826861986983
1103 => 0.082968295231494
1104 => 0.084811485359166
1105 => 0.085411703619652
1106 => 0.08689571326488
1107 => 0.086802888057519
1108 => 0.087164220790381
1109 => 0.087081156652507
1110 => 0.089829972025194
1111 => 0.0928623235843
1112 => 0.092757322892096
1113 => 0.092321386478319
1114 => 0.092968826390982
1115 => 0.096098538166522
1116 => 0.095810404458839
1117 => 0.096090301812682
1118 => 0.099780408378869
1119 => 0.10457807182645
1120 => 0.10234907547751
1121 => 0.10718535617829
1122 => 0.1102295385192
1123 => 0.11549413710347
1124 => 0.11483498343203
1125 => 0.11688445302748
1126 => 0.11365496079062
1127 => 0.10623939382672
1128 => 0.10506585196903
1129 => 0.10741531248693
1130 => 0.11319123191319
1201 => 0.10723340822945
1202 => 0.10843866820118
1203 => 0.10809155324824
1204 => 0.10807305696754
1205 => 0.108778984772
1206 => 0.10775499967292
1207 => 0.10358310016784
1208 => 0.10549505712586
1209 => 0.10475675872465
1210 => 0.10557595584458
1211 => 0.10999682483825
1212 => 0.10804225327579
1213 => 0.10598327091125
1214 => 0.10856569172115
1215 => 0.11185400082823
1216 => 0.11164822435397
1217 => 0.11124893198601
1218 => 0.11349972215793
1219 => 0.1172173681023
1220 => 0.11822223286236
1221 => 0.11896400348467
1222 => 0.11906628112117
1223 => 0.12011980434232
1224 => 0.11445474446018
1225 => 0.12344533998219
1226 => 0.12499776746866
1227 => 0.12470597544273
1228 => 0.1264314332578
1229 => 0.12592375979796
1230 => 0.12518822060619
1231 => 0.12792343825848
]
'min_raw' => 0.047153697787774
'max_raw' => 0.12792343825848
'avg_raw' => 0.087538568023126
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.047153'
'max' => '$0.127923'
'avg' => '$0.087538'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.016262091732362
'max_diff' => 0.058960103903185
'year' => 2032
]
7 => [
'items' => [
101 => 0.12478773194081
102 => 0.12033699159734
103 => 0.11789522741925
104 => 0.12111073946046
105 => 0.12307434045812
106 => 0.12437215580909
107 => 0.12476487395014
108 => 0.11489450693247
109 => 0.1095749265456
110 => 0.11298471658447
111 => 0.11714489576303
112 => 0.11443163445479
113 => 0.11453798916119
114 => 0.11066959156816
115 => 0.11748716311334
116 => 0.11649390028401
117 => 0.12164694959963
118 => 0.12041713302465
119 => 0.12461924470132
120 => 0.12351268786876
121 => 0.12810594341397
122 => 0.12993831740838
123 => 0.13301515853125
124 => 0.13527849538622
125 => 0.1366075700782
126 => 0.13652777741892
127 => 0.14179423349092
128 => 0.13868878834122
129 => 0.13478761733598
130 => 0.13471705746054
131 => 0.13673752920417
201 => 0.14097188368947
202 => 0.14206979020016
203 => 0.14268337016047
204 => 0.14174365109238
205 => 0.13837291295165
206 => 0.13691744531251
207 => 0.13815754591001
208 => 0.13664100944233
209 => 0.13925897685053
210 => 0.14285400526967
211 => 0.1421116461174
212 => 0.14459324146272
213 => 0.14716143157369
214 => 0.15083405877701
215 => 0.15179421952495
216 => 0.15338132872965
217 => 0.1550149854395
218 => 0.15553967194643
219 => 0.1565414612888
220 => 0.15653618136447
221 => 0.15955514097592
222 => 0.16288514691674
223 => 0.16414214706958
224 => 0.16703254960966
225 => 0.16208283655157
226 => 0.16583725076433
227 => 0.16922382636334
228 => 0.16518621132208
301 => 0.1707511230128
302 => 0.17096719592339
303 => 0.17422964033972
304 => 0.17092252791505
305 => 0.16895877511395
306 => 0.17462805586985
307 => 0.17737124224696
308 => 0.17654497218538
309 => 0.1702570162188
310 => 0.16659715614313
311 => 0.15701859639083
312 => 0.16836481418042
313 => 0.17389122589203
314 => 0.17024270414755
315 => 0.17208280629363
316 => 0.1821218069475
317 => 0.18594400841934
318 => 0.1851490172324
319 => 0.18528335765632
320 => 0.18734574819266
321 => 0.19649152361001
322 => 0.19101116298252
323 => 0.19520069333704
324 => 0.1974228051306
325 => 0.19948682640409
326 => 0.19441824249701
327 => 0.18782408930619
328 => 0.18573544418693
329 => 0.16987993056457
330 => 0.16905458222352
331 => 0.16859128918907
401 => 0.165670292141
402 => 0.16337518858964
403 => 0.16155003703386
404 => 0.15676029431512
405 => 0.15837669187833
406 => 0.15074284168165
407 => 0.15562670851045
408 => 0.1434428992708
409 => 0.15358993764942
410 => 0.14806736598916
411 => 0.15177562432994
412 => 0.15176268656593
413 => 0.14493460725617
414 => 0.14099631360869
415 => 0.14350594760155
416 => 0.14619647445689
417 => 0.14663300338715
418 => 0.15012134168503
419 => 0.15109486192239
420 => 0.14814505015388
421 => 0.14319041690541
422 => 0.14434126520588
423 => 0.14097299170461
424 => 0.13507022195242
425 => 0.13930969424092
426 => 0.14075723647665
427 => 0.14139655359261
428 => 0.13559185747901
429 => 0.13376789593404
430 => 0.13279683411201
501 => 0.14244110352939
502 => 0.14296943837879
503 => 0.14026640259028
504 => 0.1524843806667
505 => 0.14971907593536
506 => 0.15280859883638
507 => 0.14423683778523
508 => 0.14456429060079
509 => 0.14050628155061
510 => 0.14277849546245
511 => 0.14117256790644
512 => 0.14259492303283
513 => 0.143447476831
514 => 0.14750482000182
515 => 0.15363626599103
516 => 0.14689878823257
517 => 0.14396317269075
518 => 0.14578441206237
519 => 0.1506346125091
520 => 0.1579829144631
521 => 0.15363257180797
522 => 0.15556318000471
523 => 0.15598493200891
524 => 0.15277715039346
525 => 0.15810118994679
526 => 0.16095438599584
527 => 0.16388117475643
528 => 0.16642242343049
529 => 0.16271215096398
530 => 0.16668267434981
531 => 0.16348313339256
601 => 0.16061281439145
602 => 0.16061716748056
603 => 0.15881657444249
604 => 0.1553276985419
605 => 0.15468429629688
606 => 0.15803135602825
607 => 0.16071538096508
608 => 0.16093645011449
609 => 0.1624224642297
610 => 0.16330187207592
611 => 0.17192126446585
612 => 0.17538805538843
613 => 0.17962718170557
614 => 0.18127856031017
615 => 0.186248617858
616 => 0.18223489273979
617 => 0.18136649806295
618 => 0.16931076414534
619 => 0.17128488989897
620 => 0.17444565570534
621 => 0.1693628840093
622 => 0.17258673275767
623 => 0.17322318879105
624 => 0.16919017337202
625 => 0.17134438116363
626 => 0.1656234439472
627 => 0.15376096678883
628 => 0.15811439627494
629 => 0.16131998572523
630 => 0.15674521433333
701 => 0.1649453149852
702 => 0.16015498546882
703 => 0.15863668098849
704 => 0.15271323389611
705 => 0.15550887290933
706 => 0.1592900147044
707 => 0.15695370867996
708 => 0.16180189447878
709 => 0.16866821853384
710 => 0.17356156995214
711 => 0.17393722071305
712 => 0.17079112358017
713 => 0.17583276431374
714 => 0.1758694871624
715 => 0.17018249581922
716 => 0.16669924528683
717 => 0.16590784343705
718 => 0.16788492042127
719 => 0.17028545686867
720 => 0.174070433779
721 => 0.17635761605509
722 => 0.18232137440338
723 => 0.18393499641808
724 => 0.1857078777926
725 => 0.18807699404534
726 => 0.19092172553568
727 => 0.18469761498546
728 => 0.18494491050082
729 => 0.17914910493512
730 => 0.17295545548559
731 => 0.17765566336848
801 => 0.18380055993291
802 => 0.18239091387153
803 => 0.18223229989316
804 => 0.18249904460892
805 => 0.18143621751337
806 => 0.17662908995041
807 => 0.1742149805825
808 => 0.17732979757209
809 => 0.1789851841775
810 => 0.18155254443761
811 => 0.18123606309515
812 => 0.18784930741082
813 => 0.19041901417777
814 => 0.18976157322283
815 => 0.18988255818074
816 => 0.1945348895371
817 => 0.19970923883029
818 => 0.20455569975889
819 => 0.2094857279758
820 => 0.20354238653804
821 => 0.20052472429028
822 => 0.20363818144821
823 => 0.20198613725513
824 => 0.2114792732167
825 => 0.21213655735372
826 => 0.22162900685351
827 => 0.23063847176868
828 => 0.22497978827679
829 => 0.23031567193694
830 => 0.23608686515636
831 => 0.24722043321899
901 => 0.24347103917914
902 => 0.24059906210512
903 => 0.23788505764745
904 => 0.24353247008777
905 => 0.25079777597263
906 => 0.25236265327399
907 => 0.25489835233134
908 => 0.25223237482307
909 => 0.25544325108399
910 => 0.26677905521557
911 => 0.26371602087531
912 => 0.25936601970479
913 => 0.26831454836447
914 => 0.27155298609989
915 => 0.29428203811004
916 => 0.32297840516316
917 => 0.31109792077266
918 => 0.30372332073064
919 => 0.30545652666837
920 => 0.31593546848284
921 => 0.31930097200866
922 => 0.31015237326685
923 => 0.31338381300532
924 => 0.33118936367248
925 => 0.34074147033495
926 => 0.32776842646824
927 => 0.29197631295835
928 => 0.25897434969378
929 => 0.26772795644932
930 => 0.26673556909928
1001 => 0.28586541200346
1002 => 0.26364296851931
1003 => 0.26401713747495
1004 => 0.28354256527153
1005 => 0.27833351588598
1006 => 0.26989552300602
1007 => 0.25903595637985
1008 => 0.23896104308303
1009 => 0.22118013254567
1010 => 0.25605259280857
1011 => 0.25454882891058
1012 => 0.25237115594097
1013 => 0.25721733148602
1014 => 0.28074898432186
1015 => 0.28020650355947
1016 => 0.27675551772524
1017 => 0.27937306006491
1018 => 0.26943665517825
1019 => 0.27199749296527
1020 => 0.25896912201419
1021 => 0.26485848979691
1022 => 0.269877418863
1023 => 0.27088504317953
1024 => 0.27315527221525
1025 => 0.2537564136679
1026 => 0.2624659316351
1027 => 0.26758195746935
1028 => 0.24446756662758
1029 => 0.26712506028084
1030 => 0.25341872269916
1031 => 0.24876658586165
1101 => 0.25503007524093
1102 => 0.25258918733838
1103 => 0.25049065525352
1104 => 0.24931963829281
1105 => 0.25391885361685
1106 => 0.25370429472473
1107 => 0.24617908578537
1108 => 0.23636275749073
1109 => 0.2396574394764
1110 => 0.2384604506232
1111 => 0.23412240860455
1112 => 0.23704572514793
1113 => 0.22417291854755
1114 => 0.20202592386185
1115 => 0.21665690693201
1116 => 0.21609362999926
1117 => 0.21580960022719
1118 => 0.22680437963375
1119 => 0.22574748528653
1120 => 0.22382921169718
1121 => 0.23408717800576
1122 => 0.23034288231401
1123 => 0.24188191936896
1124 => 0.24948227547147
1125 => 0.24755457931811
1126 => 0.25470275096824
1127 => 0.23973334229503
1128 => 0.24470557938784
1129 => 0.24573035056144
1130 => 0.23396059629381
1201 => 0.22592040627256
1202 => 0.22538421726302
1203 => 0.21144363577262
1204 => 0.21889058188035
1205 => 0.22544358627959
1206 => 0.22230520570604
1207 => 0.2213116881729
1208 => 0.22638735378202
1209 => 0.22678177646998
1210 => 0.21778889738535
1211 => 0.21965880171449
1212 => 0.22745661361273
1213 => 0.21946231686178
1214 => 0.20393070413565
1215 => 0.20007864943822
1216 => 0.19956471433413
1217 => 0.1891176364844
1218 => 0.20033606215242
1219 => 0.19543891871321
1220 => 0.21090893616088
1221 => 0.20207254516214
1222 => 0.20169162600726
1223 => 0.20111581083596
1224 => 0.19212357936734
1225 => 0.19409230657285
1226 => 0.20063665564956
1227 => 0.2029717531275
1228 => 0.20272818332966
1229 => 0.20060458476883
1230 => 0.20157675731539
1231 => 0.19844505081554
]
'min_raw' => 0.1095749265456
'max_raw' => 0.34074147033495
'avg_raw' => 0.22515819844028
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.109574'
'max' => '$0.340741'
'avg' => '$0.225158'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.062421228757827
'max_diff' => 0.21281803207648
'year' => 2033
]
8 => [
'items' => [
101 => 0.1973391800696
102 => 0.19384874780172
103 => 0.18871877662446
104 => 0.1894321305806
105 => 0.17926831534847
106 => 0.1737305293755
107 => 0.17219774320503
108 => 0.17014803747833
109 => 0.17242926292092
110 => 0.17923952253693
111 => 0.17102490456284
112 => 0.15694151823472
113 => 0.15778795374997
114 => 0.15968964304376
115 => 0.15614585762571
116 => 0.1527919621349
117 => 0.15570790215402
118 => 0.14974058570879
119 => 0.16041076472697
120 => 0.16012216628736
121 => 0.16409934918589
122 => 0.16658636327235
123 => 0.16085460098343
124 => 0.1594130782681
125 => 0.16023423512031
126 => 0.14666234150282
127 => 0.16299023592971
128 => 0.16313144023874
129 => 0.16192236321717
130 => 0.1706164629323
131 => 0.18896372508893
201 => 0.1820607470487
202 => 0.1793877053079
203 => 0.17430625100467
204 => 0.18107698715683
205 => 0.18055710026028
206 => 0.17820597455284
207 => 0.17678400638902
208 => 0.17940402633078
209 => 0.17645935692376
210 => 0.17593041338415
211 => 0.17272559103039
212 => 0.17158161526023
213 => 0.17073466114299
214 => 0.16980224787989
215 => 0.17185891919537
216 => 0.16719823141686
217 => 0.16157789884884
218 => 0.16111062900865
219 => 0.1624008021202
220 => 0.16182999656043
221 => 0.16110789621124
222 => 0.1597292099923
223 => 0.15932018324211
224 => 0.16064932174866
225 => 0.15914880186835
226 => 0.16136290068929
227 => 0.16076078832167
228 => 0.15739743758163
301 => 0.15320545728761
302 => 0.15316813987002
303 => 0.1522649845919
304 => 0.15111468055491
305 => 0.15079469228721
306 => 0.15546232981883
307 => 0.16512419981864
308 => 0.16322734354872
309 => 0.16459801660139
310 => 0.17134037141552
311 => 0.17348356326125
312 => 0.17196237645343
313 => 0.16988008212817
314 => 0.16997169251066
315 => 0.17708752257342
316 => 0.17753132816598
317 => 0.17865268172127
318 => 0.18009393793429
319 => 0.17220782861868
320 => 0.16960025747108
321 => 0.16836464559881
322 => 0.1645594392742
323 => 0.16866302806156
324 => 0.16627204260836
325 => 0.16659466823369
326 => 0.16638455787195
327 => 0.16649929233706
328 => 0.16040778219448
329 => 0.16262720833009
330 => 0.15893698191486
331 => 0.15399618299222
401 => 0.15397961970176
402 => 0.15518887323845
403 => 0.15446956191673
404 => 0.15253391364517
405 => 0.15280886334614
406 => 0.15040001464995
407 => 0.15310134119148
408 => 0.15317880557088
409 => 0.15213864771014
410 => 0.15630041395859
411 => 0.15800549298626
412 => 0.15732083879998
413 => 0.1579574558234
414 => 0.16330616649053
415 => 0.16417823970988
416 => 0.16456555702799
417 => 0.16404660313143
418 => 0.15805522043563
419 => 0.15832096373551
420 => 0.1563711157244
421 => 0.15472369962494
422 => 0.15478958762936
423 => 0.15563657365358
424 => 0.15933541129646
425 => 0.16711939705751
426 => 0.16741479362712
427 => 0.16777282288681
428 => 0.16631653795654
429 => 0.1658773084868
430 => 0.16645676553214
501 => 0.16938002132146
502 => 0.1768994288678
503 => 0.17424156803658
504 => 0.17208068580872
505 => 0.17397636209221
506 => 0.17368453758717
507 => 0.17122124508282
508 => 0.17115210866647
509 => 0.16642426278837
510 => 0.16467648581508
511 => 0.16321591255736
512 => 0.16162100468915
513 => 0.16067548984309
514 => 0.16212823037546
515 => 0.16246048932353
516 => 0.15928404675994
517 => 0.15885110937588
518 => 0.16144506094159
519 => 0.16030355956978
520 => 0.16147762203855
521 => 0.16175001460223
522 => 0.16170615312574
523 => 0.16051429459298
524 => 0.16127394968003
525 => 0.15947713893508
526 => 0.1575233771222
527 => 0.15627699880924
528 => 0.15518936842309
529 => 0.15579284897478
530 => 0.15364155099922
531 => 0.15295330747976
601 => 0.16101659562932
602 => 0.16697303328036
603 => 0.1668864243179
604 => 0.16635921453298
605 => 0.16557588773318
606 => 0.16932271608701
607 => 0.16801739600873
608 => 0.16896712542882
609 => 0.16920887142625
610 => 0.16994056375124
611 => 0.17020208086634
612 => 0.16941159450919
613 => 0.1667586257448
614 => 0.16014767982066
615 => 0.15707026664706
616 => 0.15605466904141
617 => 0.15609158408548
618 => 0.15507330237398
619 => 0.1553732319742
620 => 0.15496899909907
621 => 0.154203479828
622 => 0.15574558031696
623 => 0.15592329303266
624 => 0.1555633483518
625 => 0.15564812835433
626 => 0.15266794013126
627 => 0.15289451736923
628 => 0.15163290651616
629 => 0.15139636969016
630 => 0.14820712731462
701 => 0.14255692215828
702 => 0.14568768429358
703 => 0.14190616388591
704 => 0.14047404480815
705 => 0.14725347378208
706 => 0.14657300714519
707 => 0.14540834405457
708 => 0.14368556460647
709 => 0.14304656895106
710 => 0.13916423363018
711 => 0.13893484454797
712 => 0.14085903476487
713 => 0.13997108718711
714 => 0.1387240724959
715 => 0.13420751169217
716 => 0.12912940196689
717 => 0.12928267817964
718 => 0.13089793040166
719 => 0.13559449408362
720 => 0.1337594654017
721 => 0.13242813103844
722 => 0.13217881213197
723 => 0.13529956023099
724 => 0.13971607260804
725 => 0.14178820140145
726 => 0.13973478469866
727 => 0.13737593015431
728 => 0.13751950270054
729 => 0.13847462652901
730 => 0.13857499653866
731 => 0.13703962472445
801 => 0.13747182289666
802 => 0.13681527435204
803 => 0.13278603714564
804 => 0.13271316102143
805 => 0.13172432123075
806 => 0.13169437955488
807 => 0.13001211639329
808 => 0.12977675614804
809 => 0.12643652053463
810 => 0.12863507373054
811 => 0.12716039967595
812 => 0.12493771803523
813 => 0.12455452688259
814 => 0.12454300769383
815 => 0.12682520475632
816 => 0.12860840492911
817 => 0.12718605226249
818 => 0.12686221013145
819 => 0.13031999685086
820 => 0.12987996197239
821 => 0.12949889460556
822 => 0.1393206223654
823 => 0.13154595844451
824 => 0.1281557612127
825 => 0.12395974835734
826 => 0.12532599130118
827 => 0.12561387876373
828 => 0.11552322423475
829 => 0.11142944694906
830 => 0.11002461685535
831 => 0.10921611727504
901 => 0.10958456068628
902 => 0.10589968097698
903 => 0.10837598108392
904 => 0.10518518673078
905 => 0.10465023967374
906 => 0.11035577524071
907 => 0.1111496671836
908 => 0.10776267751234
909 => 0.10993767318511
910 => 0.10914898951946
911 => 0.10523988374183
912 => 0.10509058465456
913 => 0.10312913278706
914 => 0.10005984042634
915 => 0.098657091457387
916 => 0.097926527615129
917 => 0.09822797249485
918 => 0.098075552739297
919 => 0.097080910733622
920 => 0.098132564454776
921 => 0.095446023770547
922 => 0.094376221623158
923 => 0.093893016812404
924 => 0.091508557323638
925 => 0.095303292744212
926 => 0.096050903426882
927 => 0.096799987133546
928 => 0.10332024937889
929 => 0.10299451550318
930 => 0.10593899110074
1001 => 0.10582457419356
1002 => 0.1049847620558
1003 => 0.10144173278895
1004 => 0.10285392110629
1005 => 0.098507424968303
1006 => 0.10176411540789
1007 => 0.10027789789391
1008 => 0.10126162377141
1009 => 0.099492795944671
1010 => 0.1004717382971
1011 => 0.096228189654271
1012 => 0.092265623639937
1013 => 0.093860275878618
1014 => 0.095593845232668
1015 => 0.099352665297505
1016 => 0.09711394307648
1017 => 0.097919072242621
1018 => 0.095222024313046
1019 => 0.08965724406068
1020 => 0.089688740112575
1021 => 0.088832719906077
1022 => 0.088092993466665
1023 => 0.097371087254062
1024 => 0.096217209626642
1025 => 0.094378656643117
1026 => 0.096839632872756
1027 => 0.097490354048817
1028 => 0.097508879165893
1029 => 0.099304343896047
1030 => 0.10026258374438
1031 => 0.1004314776709
1101 => 0.10325668021738
1102 => 0.10420365084564
1103 => 0.10810408884313
1104 => 0.1001812837881
1105 => 0.10001811883174
1106 => 0.096874263855139
1107 => 0.094880381326597
1108 => 0.097010786697709
1109 => 0.09889803502718
1110 => 0.09693290592142
1111 => 0.097189510296493
1112 => 0.094551485028956
1113 => 0.095494454931475
1114 => 0.096306667643287
1115 => 0.095858211523481
1116 => 0.095186851006609
1117 => 0.09874330218606
1118 => 0.098542633272671
1119 => 0.10185448237343
1120 => 0.10443630558008
1121 => 0.10906339432249
1122 => 0.10423478600419
1123 => 0.1040588123251
1124 => 0.10577898326535
1125 => 0.10420338749643
1126 => 0.10519910963467
1127 => 0.10890296809222
1128 => 0.10898122478496
1129 => 0.10767032435344
1130 => 0.10759055594305
1201 => 0.1078423287106
1202 => 0.10931696967414
1203 => 0.10880168481034
1204 => 0.10939798550015
1205 => 0.11014366864363
1206 => 0.11322813028817
1207 => 0.11397178354827
1208 => 0.11216509166623
1209 => 0.11232821571451
1210 => 0.11165246335582
1211 => 0.11099969504448
1212 => 0.11246702287921
1213 => 0.11514859333758
1214 => 0.11513191142694
1215 => 0.115753983651
1216 => 0.11614152949306
1217 => 0.11447789903802
1218 => 0.11339493678518
1219 => 0.1138102134236
1220 => 0.11447424981198
1221 => 0.11359487537251
1222 => 0.10816696896621
1223 => 0.10981344903388
1224 => 0.10953939424186
1225 => 0.10914910689182
1226 => 0.11080465533171
1227 => 0.11064497364594
1228 => 0.10586188720952
1229 => 0.10616808488449
1230 => 0.10588050810429
1231 => 0.10680972751379
]
'min_raw' => 0.088092993466665
'max_raw' => 0.1973391800696
'avg_raw' => 0.14271608676813
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.088092'
'max' => '$0.197339'
'avg' => '$0.142716'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.021481933078936
'max_diff' => -0.14340229026535
'year' => 2034
]
9 => [
'items' => [
101 => 0.10415320659888
102 => 0.10497033454037
103 => 0.10548282952517
104 => 0.10578469300839
105 => 0.10687523089951
106 => 0.10674726886492
107 => 0.10686727659977
108 => 0.10848425640097
109 => 0.11666238535497
110 => 0.11710750286992
111 => 0.11491558143226
112 => 0.11579121081286
113 => 0.1141101938812
114 => 0.11523867180926
115 => 0.11601074774741
116 => 0.11252188504458
117 => 0.11231529723785
118 => 0.11062734215133
119 => 0.11153435360416
120 => 0.11009123316628
121 => 0.11044532444353
122 => 0.10945525436322
123 => 0.11123718338678
124 => 0.1132296569189
125 => 0.11373303441828
126 => 0.11240886493506
127 => 0.11145007896218
128 => 0.10976676663755
129 => 0.11256615254848
130 => 0.11338477829857
131 => 0.11256185265591
201 => 0.11237116280323
202 => 0.11200980587696
203 => 0.11244782638338
204 => 0.11338031988693
205 => 0.11294057317111
206 => 0.11323103362425
207 => 0.11212409789839
208 => 0.11447844976893
209 => 0.11821772714497
210 => 0.11822974953317
211 => 0.11779000044695
212 => 0.11761006459539
213 => 0.11806127384406
214 => 0.11830603635189
215 => 0.11976516432446
216 => 0.12133086677325
217 => 0.12863731693226
218 => 0.12658569496485
219 => 0.13306841220858
220 => 0.1381953998729
221 => 0.13973275929743
222 => 0.13831846096521
223 => 0.13348022276959
224 => 0.13324283572168
225 => 0.14047320623741
226 => 0.13843029539477
227 => 0.13818729765053
228 => 0.13560221220294
301 => 0.13713031787153
302 => 0.13679609874585
303 => 0.13626851750541
304 => 0.13918403667231
305 => 0.14464162828255
306 => 0.14379101144912
307 => 0.14315606544195
308 => 0.14037391686852
309 => 0.1420493917251
310 => 0.14145278722028
311 => 0.14401617878757
312 => 0.14249768240918
313 => 0.13841481833588
314 => 0.13906502789685
315 => 0.13896675002975
316 => 0.14098930157063
317 => 0.14038218180088
318 => 0.13884820015078
319 => 0.14462297482774
320 => 0.1442479930812
321 => 0.14477963146503
322 => 0.14501367512305
323 => 0.14852867870598
324 => 0.14996866320633
325 => 0.15029556489839
326 => 0.15166343880133
327 => 0.15026153094958
328 => 0.15587016189993
329 => 0.15959957420922
330 => 0.16393147852027
331 => 0.17026155502481
401 => 0.17264172234701
402 => 0.1722117664243
403 => 0.17701115818589
404 => 0.18563555849697
405 => 0.17395500430822
406 => 0.18625465623158
407 => 0.18236072843895
408 => 0.1731282956914
409 => 0.17253383586569
410 => 0.17878614651308
411 => 0.19265316976639
412 => 0.18917963771991
413 => 0.19265885122046
414 => 0.18860016386276
415 => 0.18839861582615
416 => 0.19246172983465
417 => 0.20195541718433
418 => 0.19744532219005
419 => 0.19097899509508
420 => 0.19575363039481
421 => 0.19161739942655
422 => 0.18229731339689
423 => 0.18917698157542
424 => 0.18457674338611
425 => 0.18591933745186
426 => 0.195588353892
427 => 0.19442495225288
428 => 0.19593050170199
429 => 0.1932732463314
430 => 0.19079095080455
501 => 0.18615756186599
502 => 0.1847858438246
503 => 0.185164937342
504 => 0.18478565596468
505 => 0.1821933174366
506 => 0.18163350217828
507 => 0.18070045222168
508 => 0.18098964341841
509 => 0.17923523652661
510 => 0.1825461648104
511 => 0.18316070227568
512 => 0.18557011977212
513 => 0.18582027348953
514 => 0.19253046692121
515 => 0.18883460513926
516 => 0.19131410830795
517 => 0.19109231820655
518 => 0.17332839050423
519 => 0.17577610300915
520 => 0.1795839755323
521 => 0.17786853412207
522 => 0.17544330131947
523 => 0.17348479579862
524 => 0.17051745966705
525 => 0.17469392828959
526 => 0.1801855404103
527 => 0.18595954983545
528 => 0.19289664383169
529 => 0.19134836520841
530 => 0.18582986568854
531 => 0.18607742154573
601 => 0.18760771444527
602 => 0.1856258460986
603 => 0.1850413544325
604 => 0.18752741426583
605 => 0.18754453439359
606 => 0.18526415534395
607 => 0.18272993133523
608 => 0.1827193128441
609 => 0.18226837215945
610 => 0.18868038520879
611 => 0.19220634405829
612 => 0.19261058955802
613 => 0.1921791351153
614 => 0.19234518480649
615 => 0.19029350704117
616 => 0.19498303400655
617 => 0.19928660769613
618 => 0.19813315801488
619 => 0.19640397297015
620 => 0.19502659379319
621 => 0.19780869125453
622 => 0.197684808834
623 => 0.19924901973431
624 => 0.19917805809255
625 => 0.19865207279972
626 => 0.19813317679947
627 => 0.20019054078713
628 => 0.19959805299894
629 => 0.19900464491356
630 => 0.19781447415211
701 => 0.19797623812524
702 => 0.19624735164869
703 => 0.19544748965617
704 => 0.18341948442602
705 => 0.18020520840212
706 => 0.18121648507186
707 => 0.18154942360932
708 => 0.18015056656451
709 => 0.18215616822988
710 => 0.18184359733479
711 => 0.18305962783973
712 => 0.18229990477415
713 => 0.18233108407376
714 => 0.18456526761959
715 => 0.18521386060784
716 => 0.18488398097923
717 => 0.1851150173635
718 => 0.19043915332457
719 => 0.18968223144719
720 => 0.18928013178584
721 => 0.18939151614004
722 => 0.19075194702885
723 => 0.19113279340095
724 => 0.18951912056078
725 => 0.19028013800073
726 => 0.19352045367257
727 => 0.19465438077173
728 => 0.19827333175637
729 => 0.19673593705637
730 => 0.1995578915651
731 => 0.20823161764975
801 => 0.21516079022235
802 => 0.20878843676442
803 => 0.22151297976921
804 => 0.23142086172572
805 => 0.23104058071379
806 => 0.22931291232123
807 => 0.21803305212841
808 => 0.20765315660574
809 => 0.2163363799641
810 => 0.21635851528616
811 => 0.21561261869891
812 => 0.21097991905624
813 => 0.2154514107933
814 => 0.21580634156932
815 => 0.21560767471846
816 => 0.21205579476436
817 => 0.2066327305716
818 => 0.20769238433388
819 => 0.20942811881286
820 => 0.20614201133202
821 => 0.20509190087961
822 => 0.20704425600232
823 => 0.21333515099701
824 => 0.21214589373894
825 => 0.21211483742576
826 => 0.21720298429937
827 => 0.21356096922869
828 => 0.20770574996131
829 => 0.20622722987544
830 => 0.20097947962108
831 => 0.20460411941361
901 => 0.20473456374692
902 => 0.20274938557547
903 => 0.20786683622898
904 => 0.2078196780203
905 => 0.21267793578379
906 => 0.2219650999493
907 => 0.21921842851196
908 => 0.21602434846735
909 => 0.21637163353043
910 => 0.22018049349987
911 => 0.21787756981453
912 => 0.21870571722834
913 => 0.22017923999958
914 => 0.22106825287298
915 => 0.21624371825908
916 => 0.21511888845641
917 => 0.21281788144177
918 => 0.21221759166197
919 => 0.21409171386332
920 => 0.21359794887698
921 => 0.20472360040581
922 => 0.20379618161417
923 => 0.20382462422446
924 => 0.20149258557651
925 => 0.19793566688497
926 => 0.20728303683374
927 => 0.2065323122105
928 => 0.20570357032791
929 => 0.20580508647979
930 => 0.20986246296279
1001 => 0.20750897970022
1002 => 0.21376610068207
1003 => 0.21247982471448
1004 => 0.21116056062188
1005 => 0.21097819813851
1006 => 0.21047039401718
1007 => 0.20872894473956
1008 => 0.20662604009195
1009 => 0.20523752029312
1010 => 0.18932076365613
1011 => 0.19227482110444
1012 => 0.19567319492791
1013 => 0.19684629995365
1014 => 0.19483962263073
1015 => 0.20880818059111
1016 => 0.21136037073485
1017 => 0.20362962031423
1018 => 0.20218351255499
1019 => 0.20890298717506
1020 => 0.20485032255679
1021 => 0.20667523718625
1022 => 0.2027307699323
1023 => 0.21074562286607
1024 => 0.21068456311527
1025 => 0.20756660430037
1026 => 0.21020188173986
1027 => 0.20974393743376
1028 => 0.20622376961093
1029 => 0.21085721846487
1030 => 0.21085951659769
1031 => 0.20785854902862
1101 => 0.20435407590422
1102 => 0.20372755888153
1103 => 0.20325556246566
1104 => 0.20655915500185
1105 => 0.20952114573973
1106 => 0.21503267616316
1107 => 0.21641840586234
1108 => 0.22182700113149
1109 => 0.21860644598844
1110 => 0.22003407637018
1111 => 0.22158397110022
1112 => 0.22232704762928
1113 => 0.22111624430085
1114 => 0.22951801902048
1115 => 0.23022738623054
1116 => 0.23046523092007
1117 => 0.22763219975667
1118 => 0.23014859450897
1119 => 0.2289712567386
1120 => 0.23203436254325
1121 => 0.23251469664511
1122 => 0.23210787074921
1123 => 0.2322603363747
1124 => 0.22509090382613
1125 => 0.22471913092671
1126 => 0.21964998106341
1127 => 0.22171569710197
1128 => 0.21785393998023
1129 => 0.21907854294404
1130 => 0.21961833626204
1201 => 0.21933637886572
1202 => 0.22183248958742
1203 => 0.21971028555225
1204 => 0.21410944018078
1205 => 0.20850706886274
1206 => 0.20843673565443
1207 => 0.20696173017646
1208 => 0.20589557137661
1209 => 0.20610095138548
1210 => 0.20682473732486
1211 => 0.20585350362205
1212 => 0.20606076557534
1213 => 0.20950269497918
1214 => 0.21019294937441
1215 => 0.20784719523964
1216 => 0.19842865389782
1217 => 0.19611732022792
1218 => 0.19777866103411
1219 => 0.1969846471328
1220 => 0.15898198425753
1221 => 0.16791014619861
1222 => 0.16260533554495
1223 => 0.16505003635676
1224 => 0.15963519835343
1225 => 0.16221944286459
1226 => 0.16174222726488
1227 => 0.17609844746262
1228 => 0.17587429483057
1229 => 0.17598158483364
1230 => 0.17086035344448
1231 => 0.17901861410399
]
'min_raw' => 0.10415320659888
'max_raw' => 0.23251469664511
'avg_raw' => 0.168333951622
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.104153'
'max' => '$0.232514'
'avg' => '$0.168333'
'bar_min_pct' => 61.631153054957
'bar_max_pct' => 60.119598047091
'min_diff' => 0.016060213132216
'max_diff' => 0.035175516575513
'year' => 2035
]
10 => [
'items' => [
101 => 0.18303766666643
102 => 0.18229384700074
103 => 0.18248105038563
104 => 0.17926427599877
105 => 0.17601273024122
106 => 0.1724062655868
107 => 0.17910663114222
108 => 0.17836166487151
109 => 0.18007034946611
110 => 0.18441601548082
111 => 0.18505593130906
112 => 0.18591598467161
113 => 0.18560771676391
114 => 0.19295190897717
115 => 0.1920624788416
116 => 0.1942057495618
117 => 0.18979687908001
118 => 0.18480782363603
119 => 0.18575607997142
120 => 0.18566475526093
121 => 0.18450208687872
122 => 0.18345248184967
123 => 0.1817051852007
124 => 0.1872338903493
125 => 0.18700943501687
126 => 0.19064310594816
127 => 0.19000081931546
128 => 0.18571147198807
129 => 0.18586466686701
130 => 0.18689497605079
131 => 0.19046088789973
201 => 0.19151949332229
202 => 0.19102910511243
203 => 0.19218981763109
204 => 0.19310719747978
205 => 0.19230502641586
206 => 0.20366207705192
207 => 0.19894583781702
208 => 0.20124450000473
209 => 0.20179271739199
210 => 0.20038847008228
211 => 0.20069300104143
212 => 0.20115428246483
213 => 0.2039550929395
214 => 0.21130523004609
215 => 0.21456055573652
216 => 0.22435436369113
217 => 0.21429024625426
218 => 0.21369308317501
219 => 0.2154572437323
220 => 0.22120724578151
221 => 0.22586708237217
222 => 0.22741301900172
223 => 0.22761734004794
224 => 0.23051761993689
225 => 0.23218000628222
226 => 0.23016544967344
227 => 0.22845832388037
228 => 0.22234361118584
229 => 0.22305140583004
301 => 0.22792740904241
302 => 0.23481505077504
303 => 0.24072536391863
304 => 0.23865577825095
305 => 0.25444525599551
306 => 0.25601071821965
307 => 0.25579442195773
308 => 0.25936077787634
309 => 0.25228228765366
310 => 0.24925609594417
311 => 0.22882742385353
312 => 0.23456704743629
313 => 0.24290992739012
314 => 0.24180571594403
315 => 0.23574689351575
316 => 0.24072076775851
317 => 0.23907624938642
318 => 0.23777914951523
319 => 0.24372141548034
320 => 0.23718764995687
321 => 0.24284474808095
322 => 0.23558946122163
323 => 0.23866523194395
324 => 0.23691927572367
325 => 0.23804912337454
326 => 0.23144405709414
327 => 0.23500799053012
328 => 0.23129578574608
329 => 0.23129402567767
330 => 0.23121207855131
331 => 0.2355794710173
401 => 0.23572189152883
402 => 0.23249438189769
403 => 0.23202924733667
404 => 0.23374909359566
405 => 0.23173560405483
406 => 0.23267770313823
407 => 0.23176413927634
408 => 0.23155847680842
409 => 0.22991972327352
410 => 0.22921370319221
411 => 0.22949055185799
412 => 0.22854552463642
413 => 0.2279761115523
414 => 0.23109880795696
415 => 0.22943047723717
416 => 0.23084311234692
417 => 0.22923323635059
418 => 0.22365270475773
419 => 0.22044328202562
420 => 0.20990217516226
421 => 0.21289161999251
422 => 0.21487362500776
423 => 0.21421857236204
424 => 0.21562587891677
425 => 0.21571227610956
426 => 0.21525474640283
427 => 0.21472498561562
428 => 0.21446712736201
429 => 0.21638899152509
430 => 0.21750469835873
501 => 0.21507254572685
502 => 0.21450272639464
503 => 0.21696176698829
504 => 0.21846178032987
505 => 0.22953703605945
506 => 0.2287165453424
507 => 0.23077581602903
508 => 0.2305439737518
509 => 0.23270241749893
510 => 0.23623056079911
511 => 0.22905685898547
512 => 0.23030196557237
513 => 0.22999669419097
514 => 0.23332956708663
515 => 0.23333997195201
516 => 0.23134174816172
517 => 0.23242501769592
518 => 0.23182036635987
519 => 0.23291305304763
520 => 0.22870558718864
521 => 0.23382982643702
522 => 0.23673493989216
523 => 0.23677527739531
524 => 0.23815227811664
525 => 0.23955139060002
526 => 0.24223686517484
527 => 0.23947649417167
528 => 0.23451085545366
529 => 0.23486935853018
530 => 0.23195800636667
531 => 0.23200694672252
601 => 0.23174569926748
602 => 0.23252972254584
603 => 0.22887763620879
604 => 0.22973477357241
605 => 0.22853477624395
606 => 0.23029935701254
607 => 0.22840095980119
608 => 0.22999654697987
609 => 0.23068514951164
610 => 0.2332261076784
611 => 0.22802565821397
612 => 0.21742158971652
613 => 0.21965069347659
614 => 0.21635367392312
615 => 0.21665882563544
616 => 0.21727528065884
617 => 0.21527714823645
618 => 0.21565832893426
619 => 0.2156447104774
620 => 0.21552735397353
621 => 0.21500756255893
622 => 0.21425376217017
623 => 0.21725667091148
624 => 0.21776692362215
625 => 0.21890115219102
626 => 0.2222758470574
627 => 0.22193863545947
628 => 0.22248864156648
629 => 0.22128798132303
630 => 0.21671452082055
701 => 0.21696288172942
702 => 0.21386581721614
703 => 0.21882195328827
704 => 0.21764827484859
705 => 0.2168915967233
706 => 0.21668513008624
707 => 0.22006819016845
708 => 0.22108045476802
709 => 0.22044967940012
710 => 0.2191559407179
711 => 0.22164030144727
712 => 0.22230501157168
713 => 0.22245381565498
714 => 0.2268556265385
715 => 0.22269982798535
716 => 0.22370017000218
717 => 0.23150455285726
718 => 0.22442705453891
719 => 0.22817616324519
720 => 0.22799266388344
721 => 0.22991058103464
722 => 0.22783533869723
723 => 0.22786106381316
724 => 0.22956404431247
725 => 0.22717251533534
726 => 0.22658033912845
727 => 0.22576225193989
728 => 0.227548515387
729 => 0.2286192995378
730 => 0.23724903338892
731 => 0.24282423502043
801 => 0.24258220081406
802 => 0.24479394039124
803 => 0.24379753145451
804 => 0.24057986415839
805 => 0.24607202988014
806 => 0.2443340788438
807 => 0.24447735341563
808 => 0.24447202072891
809 => 0.24562760623376
810 => 0.24480876799572
811 => 0.24319475377652
812 => 0.24426621173811
813 => 0.24744805883081
814 => 0.25732460983755
815 => 0.26285165862781
816 => 0.25699187456041
817 => 0.26103387514447
818 => 0.2586101151061
819 => 0.25816964580651
820 => 0.2607083208748
821 => 0.26325143955773
822 => 0.26308945389183
823 => 0.26124328031862
824 => 0.26020042371203
825 => 0.26809728331972
826 => 0.27391555495918
827 => 0.27351878783956
828 => 0.27526998886999
829 => 0.28041156925796
830 => 0.28088165093226
831 => 0.280822431446
901 => 0.27965728496831
902 => 0.28471983857885
903 => 0.28894310986792
904 => 0.27938758722305
905 => 0.28302620515524
906 => 0.28465969797395
907 => 0.28705815006729
908 => 0.29110474077601
909 => 0.29550041159085
910 => 0.29612200764015
911 => 0.29568095549706
912 => 0.2927818924327
913 => 0.29759168788956
914 => 0.30040915326461
915 => 0.3020868894189
916 => 0.3063413491575
917 => 0.28466978586949
918 => 0.26932957622765
919 => 0.26693398097676
920 => 0.27180551812157
921 => 0.27309010361688
922 => 0.27257228881445
923 => 0.25530548819172
924 => 0.26684307484493
925 => 0.27925654797595
926 => 0.27973340003437
927 => 0.28594784423724
928 => 0.28797152200837
929 => 0.29297496413751
930 => 0.29266199747004
1001 => 0.29388025600633
1002 => 0.29360019946613
1003 => 0.30286802241131
1004 => 0.31309180740486
1005 => 0.31273779024018
1006 => 0.31126800018502
1007 => 0.31345088905337
1008 => 0.32400293081411
1009 => 0.3230314679018
1010 => 0.32397516137209
1011 => 0.33641661329501
1012 => 0.35259227057069
1013 => 0.3450770537567
1014 => 0.36138291179768
1015 => 0.37164658509809
1016 => 0.38939654678752
1017 => 0.38717416416359
1018 => 0.39408409399405
1019 => 0.38319563544153
1020 => 0.35819353368439
1021 => 0.35423685537712
1022 => 0.36215822554732
1023 => 0.38163214115477
1024 => 0.36154492264306
1025 => 0.36560854078633
1026 => 0.3644382184877
1027 => 0.36437585698595
1028 => 0.36675594186499
1029 => 0.36330350461107
1030 => 0.34923765415697
1031 => 0.35568395052951
1101 => 0.35319472592349
1102 => 0.35595670620785
1103 => 0.37086197467522
1104 => 0.36427200018858
1105 => 0.35732999739295
1106 => 0.36603680945241
1107 => 0.37712357318932
1108 => 0.3764297834395
1109 => 0.37508354134322
1110 => 0.38267223755301
1111 => 0.39520654041222
1112 => 0.39859451210816
1113 => 0.40109544355006
1114 => 0.40144027974232
1115 => 0.40499230683706
1116 => 0.38589216192257
1117 => 0.41620458242838
1118 => 0.42143870008601
1119 => 0.42045490289833
1120 => 0.42627240438945
1121 => 0.42456074787499
1122 => 0.42208082613622
1123 => 0.4313028034177
1124 => 0.42073055063968
1125 => 0.40572456883089
1126 => 0.39749199042592
1127 => 0.40833331377274
1128 => 0.4149537316306
1129 => 0.41932940669698
1130 => 0.42065348332822
1201 => 0.38737485180114
1202 => 0.36943951512556
1203 => 0.38093586030555
1204 => 0.3949621948605
1205 => 0.38581424492591
1206 => 0.38617282724398
1207 => 0.3731302546762
1208 => 0.39611617312842
1209 => 0.39276731815193
1210 => 0.41014118369396
1211 => 0.40599477124837
1212 => 0.42016248414832
1213 => 0.41643165053
1214 => 0.43191813229155
1215 => 0.43809610914598
1216 => 0.4484698938099
1217 => 0.45610089203758
1218 => 0.46058196015461
1219 => 0.46031293363293
1220 => 0.47806915797186
1221 => 0.46759893283442
1222 => 0.4544458624192
1223 => 0.45420796487279
1224 => 0.46102012642128
1225 => 0.47529654820167
1226 => 0.47899821665584
1227 => 0.48106694433082
1228 => 0.47789861588366
1229 => 0.46653393690476
1230 => 0.4616267261419
1231 => 0.46580781188744
]
'min_raw' => 0.1724062655868
'max_raw' => 0.48106694433082
'avg_raw' => 0.32673660495881
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$0.1724062'
'max' => '$0.481066'
'avg' => '$0.326736'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.068253058987916
'max_diff' => 0.24855224768571
'year' => 2036
]
11 => [
'items' => [
101 => 0.46069470330544
102 => 0.46952136320285
103 => 0.48164225251482
104 => 0.47913933680309
105 => 0.48750620876931
106 => 0.49616504103375
107 => 0.50854756006439
108 => 0.51178480906235
109 => 0.51713585855442
110 => 0.52264384620996
111 => 0.52441286340049
112 => 0.527790466111
113 => 0.52777266447749
114 => 0.53795129758451
115 => 0.54917864510758
116 => 0.55341670888384
117 => 0.56316190284917
118 => 0.54647359969588
119 => 0.55913186933906
120 => 0.57054994541425
121 => 0.55693684440539
122 => 0.57569933270037
123 => 0.57642783760415
124 => 0.58742739673039
125 => 0.5762772362954
126 => 0.56965630662167
127 => 0.58877068250672
128 => 0.5980195269003
129 => 0.59523369969936
130 => 0.57403341714697
131 => 0.56169394337858
201 => 0.52939916041999
202 => 0.56765372586525
203 => 0.58628640879266
204 => 0.57398516299951
205 => 0.58018919585684
206 => 0.61403638746201
207 => 0.62692320658189
208 => 0.62424283829062
209 => 0.62469577640923
210 => 0.63164927009401
211 => 0.66248489045123
212 => 0.6440074719691
213 => 0.65813276606302
214 => 0.6656247711179
215 => 0.67258376294686
216 => 0.6554946784269
217 => 0.63326203055496
218 => 0.62622001771084
219 => 0.57276204653644
220 => 0.56997932698061
221 => 0.56841730216889
222 => 0.5585689566838
223 => 0.55083085482138
224 => 0.54467722892307
225 => 0.52852827693769
226 => 0.5339780741753
227 => 0.50824001525881
228 => 0.52470631325278
301 => 0.48362774975491
302 => 0.51783919809204
303 => 0.49921946216582
304 => 0.51172211406408
305 => 0.51167849348943
306 => 0.48865714737533
307 => 0.47537891537995
308 => 0.48384032160393
309 => 0.49291162074329
310 => 0.49438340850914
311 => 0.50614458462846
312 => 0.50942687607772
313 => 0.49948137975091
314 => 0.48277648783224
315 => 0.48665665322693
316 => 0.47530028395207
317 => 0.45539868361433
318 => 0.4696923604255
319 => 0.47457285013744
320 => 0.4767283524296
321 => 0.45715741421167
322 => 0.45100780051785
323 => 0.44773379778752
324 => 0.48025012546962
325 => 0.48203144330151
326 => 0.47291796942063
327 => 0.51411173553727
328 => 0.50478831756814
329 => 0.51520485973252
330 => 0.48630456888733
331 => 0.48740859891702
401 => 0.4737267380832
402 => 0.48138766592787
403 => 0.47597316905049
404 => 0.48076873866478
405 => 0.48364318331872
406 => 0.4973227990938
407 => 0.51799539733032
408 => 0.49527952067199
409 => 0.48538188791461
410 => 0.49152232361089
411 => 0.50787511304723
412 => 0.53265042612719
413 => 0.51798294213421
414 => 0.52449212246026
415 => 0.52591408878823
416 => 0.51509882911158
417 => 0.53304920017819
418 => 0.54266894986134
419 => 0.55253682250954
420 => 0.56110481983845
421 => 0.54859537717468
422 => 0.56198227398308
423 => 0.55119479826091
424 => 0.54151731734937
425 => 0.54153199409322
426 => 0.53546116895198
427 => 0.52369818026763
428 => 0.52152890467761
429 => 0.5328137502462
430 => 0.54186312771335
501 => 0.54260847778514
502 => 0.54761867812476
503 => 0.55058366307658
504 => 0.57964454630599
505 => 0.59133307394509
506 => 0.60562558428968
507 => 0.61119332255065
508 => 0.62795021857151
509 => 0.61441766410611
510 => 0.61148981082376
511 => 0.57084306221607
512 => 0.5774989650235
513 => 0.58815570761731
514 => 0.57101878797632
515 => 0.58188821911336
516 => 0.58403407506584
517 => 0.57043648200444
518 => 0.57769954397585
519 => 0.55841100472758
520 => 0.51841583477644
521 => 0.53309372623557
522 => 0.54390159487434
523 => 0.52847743372623
524 => 0.55612464558675
525 => 0.53997371517213
526 => 0.53485464561208
527 => 0.51488333017825
528 => 0.52430902229659
529 => 0.53705740584955
530 => 0.52918038697248
531 => 0.54552638388274
601 => 0.56867667482581
602 => 0.5851749507755
603 => 0.58644148354301
604 => 0.575834197406
605 => 0.59283244113535
606 => 0.59295625478352
607 => 0.57378216641694
608 => 0.56203814405419
609 => 0.55936987746373
610 => 0.56603573055116
611 => 0.57412930678367
612 => 0.58689062069549
613 => 0.59460201542529
614 => 0.61470924307287
615 => 0.62014968235491
616 => 0.62612707568775
617 => 0.63411471654025
618 => 0.64370592737276
619 => 0.62272090409917
620 => 0.62355467819481
621 => 0.60401371507986
622 => 0.58313139353396
623 => 0.59897847256917
624 => 0.61969642035912
625 => 0.61494370024481
626 => 0.61440892214269
627 => 0.61530827057538
628 => 0.61172487481852
629 => 0.59551730861706
630 => 0.58737797033542
701 => 0.59787979328539
702 => 0.60346104480093
703 => 0.61211707916526
704 => 0.61105004022314
705 => 0.63334705515542
706 => 0.64201100093137
707 => 0.63979439285074
708 => 0.64020230208322
709 => 0.65588796206659
710 => 0.67333364197012
711 => 0.68967382335998
712 => 0.70629575769688
713 => 0.68625736708861
714 => 0.67608310813385
715 => 0.68658034631645
716 => 0.68101036397744
717 => 0.71301713466147
718 => 0.71523321401953
719 => 0.74723767024975
720 => 0.77761371023197
721 => 0.75853506376242
722 => 0.7765253680621
723 => 0.79598334893323
724 => 0.83352095097727
725 => 0.8208796071976
726 => 0.81119653597749
727 => 0.80204608046274
728 => 0.82108672579502
729 => 0.84558221183327
730 => 0.85085830491107
731 => 0.85940759131977
801 => 0.85041906201802
802 => 0.86124475550795
803 => 0.89946421057815
804 => 0.88913697644572
805 => 0.87447064379194
806 => 0.90464123293437
807 => 0.91555985185983
808 => 0.99219243760378
809 => 1.0889442426397
810 => 1.0488883600482
811 => 1.0240243811285
812 => 1.0298680059561
813 => 1.0651984898999
814 => 1.0765455200092
815 => 1.0457003806164
816 => 1.0565954053066
817 => 1.1166280625247
818 => 1.1488336570441
819 => 1.1050941338984
820 => 0.98441852427427
821 => 0.87315010100428
822 => 0.90266349733789
823 => 0.89931759410097
824 => 0.96381519505539
825 => 0.8888906753271
826 => 0.89015221208468
827 => 0.9559835551227
828 => 0.93842088143509
829 => 0.90997159931848
830 => 0.8733578122476
831 => 0.80567384048169
901 => 0.74572425918144
902 => 0.86329919367526
903 => 0.85822914870374
904 => 0.85088697224641
905 => 0.86722619144572
906 => 0.94656480190929
907 => 0.94473579014409
908 => 0.93310055046385
909 => 0.94192577721301
910 => 0.9084244944
911 => 0.91705853779094
912 => 0.87313247551755
913 => 0.89298889017953
914 => 0.90991055993627
915 => 0.91330783566954
916 => 0.9209620713658
917 => 0.85555746538838
918 => 0.88492221329389
919 => 0.90217125158359
920 => 0.82423946906534
921 => 0.90063079081299
922 => 0.85441891671042
923 => 0.83873391256095
924 => 0.85985170430605
925 => 0.85162208032526
926 => 0.84454673288631
927 => 0.84059856744548
928 => 0.85610514301745
929 => 0.85538174273266
930 => 0.83000997540028
1001 => 0.79691353920074
1002 => 0.80802178954279
1003 => 0.80398605805312
1004 => 0.78936004651483
1005 => 0.79921621234027
1006 => 0.75581464613642
1007 => 0.6811445072998
1008 => 0.73047388822348
1009 => 0.72857476071796
1010 => 0.7276171345111
1011 => 0.7646868009113
1012 => 0.76112340782963
1013 => 0.75465581449356
1014 => 0.78924126409127
1015 => 0.77661710974816
1016 => 0.81552177880877
1017 => 0.84114691004831
1018 => 0.83464754787981
1019 => 0.85874810766761
1020 => 0.80827770119516
1021 => 0.82504194570406
1022 => 0.8284970332631
1023 => 0.78881448501179
1024 => 0.76170642300702
1025 => 0.75989862432583
1026 => 0.7128969805306
1027 => 0.738004879262
1028 => 0.76009879111019
1029 => 0.74951752189173
1030 => 0.74616780816359
1031 => 0.76328076913638
1101 => 0.76461059276656
1102 => 0.73429047306996
1103 => 0.7405949860682
1104 => 0.76688585330894
1105 => 0.73993252366915
1106 => 0.68756660698043
1107 => 0.67457913562618
1108 => 0.67284636754094
1109 => 0.63762331517888
1110 => 0.67544702056408
1111 => 0.65893595955116
1112 => 0.7110942034581
1113 => 0.68130169426873
1114 => 0.68001739874311
1115 => 0.67807599769094
1116 => 0.64775806147695
1117 => 0.65439576270245
1118 => 0.67646049252646
1119 => 0.68433343670464
1120 => 0.68351222412573
1121 => 0.67635236331295
1122 => 0.67963011092862
1123 => 0.66907134381558
1124 => 0.66534282338623
1125 => 0.65357458730087
1126 => 0.63627853131359
1127 => 0.63868365398149
1128 => 0.60441564131145
1129 => 0.58574460926772
1130 => 0.58057671367826
1201 => 0.57366598771481
1202 => 0.58135729856457
1203 => 0.6043185643371
1204 => 0.57662240631115
1205 => 0.52913928603526
1206 => 0.53199310247114
1207 => 0.53840478069686
1208 => 0.52645666074073
1209 => 0.51514876793195
1210 => 0.52498006329084
1211 => 0.50486083927103
1212 => 0.54083609279893
1213 => 0.53986306301048
1214 => 0.55327241283093
1215 => 0.56165755446121
1216 => 0.54233251772525
1217 => 0.53747232324661
1218 => 0.54024091090517
1219 => 0.49448232401446
1220 => 0.54953296005188
1221 => 0.55000904023836
1222 => 0.54593255264507
1223 => 0.57524531683729
1224 => 0.63710439216332
1225 => 0.61383051975013
1226 => 0.60481817289522
1227 => 0.58768569493606
1228 => 0.61051370459076
1229 => 0.60876086962171
1230 => 0.60083388514872
1231 => 0.59603962020575
]
'min_raw' => 0.44773379778752
'max_raw' => 1.1488336570441
'avg_raw' => 0.79828372741579
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$0.447733'
'max' => '$1.14'
'avg' => '$0.798283'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 0.27532753220073
'max_diff' => 0.66776671271323
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.014053852298599
]
1 => [
'year' => 2028
'avg' => 0.02412049040687
]
2 => [
'year' => 2029
'avg' => 0.065892832496142
]
3 => [
'year' => 2030
'avg' => 0.050836222140223
]
4 => [
'year' => 2031
'avg' => 0.049927470205352
]
5 => [
'year' => 2032
'avg' => 0.087538568023126
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.014053852298599
'min' => '$0.014053'
'max_raw' => 0.087538568023126
'max' => '$0.087538'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.087538568023126
]
1 => [
'year' => 2033
'avg' => 0.22515819844028
]
2 => [
'year' => 2034
'avg' => 0.14271608676813
]
3 => [
'year' => 2035
'avg' => 0.168333951622
]
4 => [
'year' => 2036
'avg' => 0.32673660495881
]
5 => [
'year' => 2037
'avg' => 0.79828372741579
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.087538568023126
'min' => '$0.087538'
'max_raw' => 0.79828372741579
'max' => '$0.798283'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 0.79828372741579
]
]
]
]
'prediction_2025_max_price' => '$0.024029'
'last_price' => 0.02329966
'sma_50day_nextmonth' => '$0.021482'
'sma_200day_nextmonth' => '$0.031255'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'increase'
'sma_200day_direction_label' => 'aumentar'
'sma_200day_date_nextmonth' => '4 de fev. de 2026'
'sma_50day_date_nextmonth' => '4 de fev. de 2026'
'daily_sma3' => '$0.022671'
'daily_sma3_action' => 'BUY'
'daily_sma5' => '$0.0223028'
'daily_sma5_action' => 'BUY'
'daily_sma10' => '$0.02200055'
'daily_sma10_action' => 'BUY'
'daily_sma21' => '$0.021498'
'daily_sma21_action' => 'BUY'
'daily_sma50' => '$0.021437'
'daily_sma50_action' => 'BUY'
'daily_sma100' => '$0.026042'
'daily_sma100_action' => 'SELL'
'daily_sma200' => '$0.034492'
'daily_sma200_action' => 'SELL'
'daily_ema3' => '$0.022786'
'daily_ema3_action' => 'BUY'
'daily_ema5' => '$0.0225057'
'daily_ema5_action' => 'BUY'
'daily_ema10' => '$0.022133'
'daily_ema10_action' => 'BUY'
'daily_ema21' => '$0.021792'
'daily_ema21_action' => 'BUY'
'daily_ema50' => '$0.022682'
'daily_ema50_action' => 'BUY'
'daily_ema100' => '$0.025991'
'daily_ema100_action' => 'SELL'
'daily_ema200' => '$0.030386'
'daily_ema200_action' => 'SELL'
'weekly_sma21' => '$0.029784'
'weekly_sma21_action' => 'SELL'
'weekly_sma50' => '$0.033332'
'weekly_sma50_action' => 'SELL'
'weekly_sma100' => '$0.04263'
'weekly_sma100_action' => 'SELL'
'weekly_sma200' => '$0.054752'
'weekly_sma200_action' => 'SELL'
'weekly_ema3' => '$0.022516'
'weekly_ema3_action' => 'BUY'
'weekly_ema5' => '$0.022358'
'weekly_ema5_action' => 'BUY'
'weekly_ema10' => '$0.0237028'
'weekly_ema10_action' => 'SELL'
'weekly_ema21' => '$0.027679'
'weekly_ema21_action' => 'SELL'
'weekly_ema50' => '$0.033392'
'weekly_ema50_action' => 'SELL'
'weekly_ema100' => '$0.041989'
'weekly_ema100_action' => 'SELL'
'weekly_ema200' => '$0.0657048'
'weekly_ema200_action' => 'SELL'
'rsi_14' => '66.19'
'rsi_14_action' => 'NEUTRAL'
'stoch_rsi_14' => 121.32
'stoch_rsi_14_action' => 'SELL'
'momentum_10' => 0
'momentum_10_action' => 'BUY'
'vwma_10' => '0.022074'
'vwma_10_action' => 'BUY'
'hma_9' => '0.022726'
'hma_9_action' => 'BUY'
'stochastic_fast_14' => 100
'stochastic_fast_14_action' => 'SELL'
'cci_20' => 208.97
'cci_20_action' => 'SELL'
'adx_14' => 14
'adx_14_action' => 'NEUTRAL'
'ao_5_34' => '0.000982'
'ao_5_34_action' => 'BUY'
'macd_12_26' => 0
'macd_12_26_action' => 'BUY'
'williams_percent_r_14' => -0
'williams_percent_r_14_action' => 'SELL'
'ultimate_oscillator' => 77.81
'ultimate_oscillator_action' => 'SELL'
'ichimoku_cloud' => '-0.004442'
'ichimoku_cloud_action' => 'NEUTRAL'
'sell_signals' => 14
'buy_signals' => 21
'sell_pct' => 40
'buy_pct' => 60
'overall_action' => 'bullish'
'overall_action_label' => 'Altista'
'overall_action_dir' => 1
'last_updated' => 1767696239
'last_updated_date' => '6 de janeiro de 2026'
]
Previsão de preço de Bifrost para 2026
A previsão de preço para Bifrost em 2026 sugere que o preço médio poderia variar entre $0.00805 na extremidade inferior e $0.024029 na extremidade superior. No mercado de criptomoedas, comparado ao preço médio de hoje, Bifrost poderia potencialmente ganhar 3.13% até 2026 se BFC atingir a meta de preço prevista.
Previsão de preço de Bifrost 2027-2032
A previsão de preço de BFC para 2027-2032 está atualmente dentro de uma faixa de preço entre $0.014053 na extremidade inferior e $0.087538 na extremidade superior. Considerando a volatilidade de preços no mercado, se Bifrost atingir a meta de preço superior, poderia ganhar 275.71% até 2032 em comparação com o preço de hoje.
| Previsão de Preço de Bifrost | Potencial Mínimo ($) | Preço Médio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2027 | $0.007749 | $0.014053 | $0.020358 |
| 2028 | $0.013985 | $0.02412 | $0.034255 |
| 2029 | $0.030722 | $0.065892 | $0.101063 |
| 2030 | $0.026128 | $0.050836 | $0.075544 |
| 2031 | $0.030891 | $0.049927 | $0.068963 |
| 2032 | $0.047153 | $0.087538 | $0.127923 |
Previsão de preço de Bifrost 2032-2037
A previsão de preço de Bifrost para 2032-2037 é atualmente estimada entre $0.087538 na extremidade inferior e $0.798283 na extremidade superior. Comparado ao preço atual, Bifrost poderia potencialmente ganhar 3326.16% até 2037 se atingir a meta de preço superior. Por favor, note que esta informação é apenas para fins gerais e não deve ser considerada como aconselhamento de investimento a longo prazo.
| Previsão de Preço de Bifrost | Potencial Mínimo ($) | Preço Médio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2032 | $0.047153 | $0.087538 | $0.127923 |
| 2033 | $0.109574 | $0.225158 | $0.340741 |
| 2034 | $0.088092 | $0.142716 | $0.197339 |
| 2035 | $0.104153 | $0.168333 | $0.232514 |
| 2036 | $0.1724062 | $0.326736 | $0.481066 |
| 2037 | $0.447733 | $0.798283 | $1.14 |
Bifrost Histograma de preços potenciais
Previsão de preço de Bifrost baseada na análise técnica
Em 6 de janeiro de 2026, o sentimento geral de previsão de preço para Bifrost é Altista, com 21 indicadores técnicos mostrando sinais de alta e 14 indicando sinais de baixa. A previsão de preço de BFC foi atualizada pela última vez em 6 de janeiro de 2026.
Médias Móveis Simples de 50 e 200 dias e Índice de Força Relativa de 14 dias - RSI (14) de Bifrost
De acordo com nossos indicadores técnicos, o SMA de 200 dias de Bifrost está projetado para aumentar no próximo mês, alcançando $0.031255 até 4 de fev. de 2026. O SMA de 50 dias de curto prazo para Bifrost é esperado para alcançar $0.021482 até 4 de fev. de 2026.
O oscilador de momentum Índice de Força Relativa (RSI) é uma ferramenta comumente usada para identificar se uma criptomoeda está sobrevendida (abaixo de 30) ou sobrecomprada (acima de 70). No momento, o RSI está em 66.19, sugerindo que o mercado de BFC está em um estado NEUTRAL.
Médias Móveis e Osciladores Populares de BFC para Sábado, 19 de Outubro de 2024
Médias móveis (MA) são indicadores amplamente utilizados nos mercados financeiros, projetados para suavizar movimentos de preços ao longo de um período definido. Como indicadores atrasados, eles se baseiam em dados históricos de preços. A tabela abaixo destaca dois tipos: a média móvel simples (SMA) e a média móvel exponencial (EMA).
Média Móvel Simples Diária (SMA)
| Período | Valor | Ação |
|---|---|---|
| SMA 3 | $0.022671 | BUY |
| SMA 5 | $0.0223028 | BUY |
| SMA 10 | $0.02200055 | BUY |
| SMA 21 | $0.021498 | BUY |
| SMA 50 | $0.021437 | BUY |
| SMA 100 | $0.026042 | SELL |
| SMA 200 | $0.034492 | SELL |
Média Móvel Exponencial Diária (EMA)
| Período | Valor | Ação |
|---|---|---|
| EMA 3 | $0.022786 | BUY |
| EMA 5 | $0.0225057 | BUY |
| EMA 10 | $0.022133 | BUY |
| EMA 21 | $0.021792 | BUY |
| EMA 50 | $0.022682 | BUY |
| EMA 100 | $0.025991 | SELL |
| EMA 200 | $0.030386 | SELL |
Média Móvel Simples Semanal (SMA)
| Período | Valor | Ação |
|---|---|---|
| SMA 21 | $0.029784 | SELL |
| SMA 50 | $0.033332 | SELL |
| SMA 100 | $0.04263 | SELL |
| SMA 200 | $0.054752 | SELL |
Média Móvel Exponencial Semanal (EMA)
| Período | Valor | Ação |
|---|---|---|
| EMA 21 | $0.027679 | SELL |
| EMA 50 | $0.033392 | SELL |
| EMA 100 | $0.041989 | SELL |
| EMA 200 | $0.0657048 | SELL |
Osciladores de Bifrost
Um oscilador é uma ferramenta de análise técnica que define limites altos e baixos entre dois extremos, criando um indicador de tendência que flutua dentro desses limites. Os traders usam esse indicador para identificar condições de sobrecompra ou sobrevenda de curto prazo.
| Período | Valor | Ação |
|---|---|---|
| RSI (14) | 66.19 | NEUTRAL |
| Stoch RSI (14) | 121.32 | SELL |
| Estocástico Rápido (14) | 100 | SELL |
| Índice de Canal de Commodities (20) | 208.97 | SELL |
| Índice Direcional Médio (14) | 14 | NEUTRAL |
| Oscilador Impressionante (5, 34) | 0.000982 | BUY |
| Momentum (10) | 0 | BUY |
| MACD (12, 26) | 0 | BUY |
| Williams Percent Range (14) | -0 | SELL |
| Oscilador Ultimate (7, 14, 28) | 77.81 | SELL |
| VWMA (10) | 0.022074 | BUY |
| Média Móvel de Hull (9) | 0.022726 | BUY |
| Nuvem Ichimoku B/L (9, 26, 52, 26) | -0.004442 | NEUTRAL |
Previsão do preço de Bifrost com base nos fluxos financeiros mundiais
Definições dos fluxos financeiros mundiais, usadas na previsão do preço do Bifrost
M0: o total de todas as moedas físicas, mais as contas no Banco Central que podem ser trocadas por moedas físicas.
M1: o valor de M0, mais o valor em contas de demanda, incluindo contas 'correntes'.
M2: o valor de M1, mais a maioria das contas de poupança, do mercado de moedas e de certificados de depósito (CD) de menos de US$ 100.000.
Previsões de preço de Bifrost por empresas de Internet ou nichos tecnológicos
| Comparação | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Facebook stock | $0.032739 | $0.046005 | $0.064644 | $0.090836 | $0.12764 | $0.179356 |
| Amazon.com stock | $0.048616 | $0.10144 | $0.211661 | $0.441644 | $0.921517 | $1.92 |
| Apple stock | $0.033048 | $0.046877 | $0.066491 | $0.094313 | $0.133776 | $0.189751 |
| Netflix stock | $0.036763 | $0.0580065 | $0.091525 | $0.144412 | $0.22786 | $0.359528 |
| Google stock | $0.030172 | $0.039073 | $0.05060045 | $0.065527 | $0.084857 | $0.10989 |
| Tesla stock | $0.052818 | $0.119735 | $0.271431 | $0.615315 | $1.39 | $3.16 |
| Kodak stock | $0.017472 | $0.0131023 | $0.009825 | $0.007367 | $0.005525 | $0.004143 |
| Nokia stock | $0.015435 | $0.010225 | $0.006773 | $0.004487 | $0.002972 | $0.001969 |
Este cálculo mostra quanto a criptomoeda pode custar, se assumirmos que sua capitalização se comportará da mesma forma que a de algumas empresas de Internet ou nichos tecnológicos. Se você extrapolar os dados, poderá obter uma imagem em potencial do preço futuro para 2024, 2025, 2026, 2027, 2028, 2029 e 2030.
Visão geral da previsão para Bifrost
Você pode fazer perguntas como: 'Devo investir em Bifrost agora?', 'Devo comprar BFC hoje?', 'Bifrost será um bom ou mau investimento no curto ou no longo prazo?'.
Atualizamos a previsão para Bifrost regularmente com novos valores. Veja nossas previsões semelhantes. Fazemos previsões de preços futuros para uma enorme quantidade de moedas digitais, como Bifrost, com métodos de análise técnica.
Se você estiver tentando encontrar criptomoedas com bom retorno, você deve explorar o máximo de fontes de informações disponíveis sobre Bifrost para poder tomar sozinho uma decisão de tão grande responsabilidade sobre o seu investimento.
O preço de Bifrost é de $0.02329 USD hoje, mas o preço pode tanto subir quanto descer e seu investimento pode ser perdido, porque criptomoedas são ativos de alto risco
Previsão de curto prazo para Bifrost
com base no histórico de preços de 4 horas
Previsão de longo prazo para Bifrost
com base no histórico de preços de 1 mês
Previsão do preço de Bifrost com base no padrão de crescimento do Bitcoin
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| Se Bifrost tiver 1% da média anterior do crescimento anual do Bitcoin | $0.0239052 | $0.024526 | $0.025164 | $0.025818 |
| Se Bifrost tiver 2% da média anterior do crescimento anual do Bitcoin | $0.02451 | $0.025785 | $0.027125 | $0.028535 |
| Se Bifrost tiver 5% da média anterior do crescimento anual do Bitcoin | $0.026327 | $0.029749 | $0.033615 | $0.037984 |
| Se Bifrost tiver 10% da média anterior do crescimento anual do Bitcoin | $0.029355 | $0.036986 | $0.04660054 | $0.058713 |
| Se Bifrost tiver 20% da média anterior do crescimento anual do Bitcoin | $0.035412 | $0.053821 | $0.081802 | $0.124327 |
| Se Bifrost tiver 50% da média anterior do crescimento anual do Bitcoin | $0.053581 | $0.123218 | $0.283361 | $0.651635 |
| Se Bifrost tiver 100% da média anterior do crescimento anual do Bitcoin | $0.083862 | $0.301849 | $1.08 | $3.91 |
Perguntas Frequentes sobre Bifrost
BFC é um bom investimento?
A decisão de adquirir Bifrost depende inteiramente da sua tolerância individual ao risco. Como você pode perceber, o valor de Bifrost experimentou uma escalada de 1.5866% nas últimas 24 horas, e Bifrost registrou um declínio de durante os últimos 30 dias. Consequentemente, a decisão de investir ou não em Bifrost dependerá de quão alinhado esse investimento está com suas aspirações de negociação.
Bifrost pode subir?
Parece que o valor médio de Bifrost pode potencialmente subir para $0.024029 até o final deste ano. Observando as perspectivas de Bifrost em um horizonte de cinco anos mais longo, a moeda digital poderia potencialmente crescer até $0.075544. No entanto, dada a imprevisibilidade do mercado, é vital conduzir uma pesquisa aprofundada antes de investir quaisquer fundos em um projeto, rede ou ativo específico.
Qual será o preço de Bifrost na próxima semana?
Com base na nossa nova previsão experimental de Bifrost, o preço de Bifrost aumentará 0.86% na próxima semana e atingirá $0.023499 até 13 de janeiro de 2026.
Qual será o preço de Bifrost no próximo mês?
Com base na nossa nova previsão experimental de Bifrost, o preço de Bifrost diminuirá -11.62% no próximo mês e atingirá $0.020592 até 5 de fevereiro de 2026.
Até onde o preço de Bifrost pode subir este ano em 2026?
De acordo com nossa previsão mais recente sobre o valor de Bifrost em 2026, espera-se que BFC fluctue dentro do intervalo de $0.00805 e $0.024029. No entanto, é crucial lembrar que o mercado de criptomoedas é excepcionalmente instável, e essa previsão de preço de Bifrost não considera flutuações repentinas e extremas de preço.
Onde estará Bifrost em 5 anos?
O futuro de Bifrost parece seguir uma tendência de alta, com um preço máximo de $0.075544 projetada após um período de cinco anos. Com base na previsão de Bifrost para 2030, o valor de Bifrost pode potencialmente atingir seu pico mais alto de aproximadamente $0.075544, enquanto seu pico mais baixo está previsto para cerca de $0.026128.
Quanto será Bifrost em 2026?
Com base na nossa nova simulação experimental de previsão de preços de Bifrost, espera-se que o valor de BFC em 2026 aumente 3.13% para $0.024029 se o melhor cenário ocorrer. O preço ficará entre $0.024029 e $0.00805 durante 2026.
Quanto será Bifrost em 2027?
De acordo com nossa última simulação experimental para previsão de preços de Bifrost, o valor de BFC pode diminuir -12.62% para $0.020358 em 2027, assumindo as condições mais favoráveis. O preço está projetado para flutuar entre $0.020358 e $0.007749 ao longo do ano.
Quanto será Bifrost em 2028?
Nosso novo modelo experimental de previsão de preços de Bifrost sugere que o valor de BFC em 2028 pode aumentar 47.02%, alcançando $0.034255 no melhor cenário. O preço é esperado para variar entre $0.034255 e $0.013985 durante o ano.
Quanto será Bifrost em 2029?
Com base no nosso modelo de previsão experimental, o valor de Bifrost pode experimentar um 333.75% crescimento em 2029, potencialmente alcançando $0.101063 sob condições ótimas. A faixa de preço prevista para 2029 está entre $0.101063 e $0.030722.
Quanto será Bifrost em 2030?
Usando nossa nova simulação experimental para previsões de preços de Bifrost, espera-se que o valor de BFC em 2030 aumente 224.23%, alcançando $0.075544 no melhor cenário. O preço está previsto para variar entre $0.075544 e $0.026128 ao longo de 2030.
Quanto será Bifrost em 2031?
Nossa simulação experimental indica que o preço de Bifrost poderia aumentar 195.98% em 2031, potencialmente atingindo $0.068963 sob condições ideais. O preço provavelmente oscilará entre $0.068963 e $0.030891 durante o ano.
Quanto será Bifrost em 2032?
Com base nos achados da nossa mais recente previsão experimental de preços de Bifrost, BFC poderia ver um 449.04% aumento em valor, atingindo $0.127923 se o cenário mais positivo se desenrolar em 2032. O preço é esperado para permanecer dentro de uma faixa de $0.127923 e $0.047153 ao longo do ano.
Quanto será Bifrost em 2033?
De acordo com nossa previsão experimental de preços de Bifrost, espera-se que o valor de BFC seja aumentar 1362.43% em 2033, com o preço potencial mais alto sendo $0.340741. Ao longo do ano, o preço de BFC poderia variar entre $0.340741 e $0.109574.
Quanto será Bifrost em 2034?
Os resultados da nossa nova simulação de previsão de preços de Bifrost sugerem que BFC pode aumentar 746.96% em 2034, atingindo potencialmente $0.197339 nas melhores circunstâncias. A faixa de preço prevista para o ano é entre $0.197339 e $0.088092.
Quanto será Bifrost em 2035?
Com base em nossa previsão experimental para o preço de Bifrost, BFC poderia aumentar 897.93%, com o valor potencialmente atingindo $0.232514 em 2035. A faixa de preço esperada para o ano está entre $0.232514 e $0.104153.
Quanto será Bifrost em 2036?
Nossa recente simulação de previsão de preços de Bifrost sugere que o valor de BFC pode aumentar 1964.7% em 2036, possivelmente atingindo $0.481066 se as condições forem ideais. A faixa de preço esperada para 2036 está entre $0.481066 e $0.1724062.
Quanto será Bifrost em 2037?
De acordo com a simulação experimental, o valor de Bifrost poderia aumentar 4830.69% em 2037, com um pico de $1.14 sob condições favoráveis. O preço é esperado para cair entre $1.14 e $0.447733 ao longo do ano.
Previsões relacionadas
Previsão de Preço do Request
Previsão de Preço do POL (ex-MATIC)
Previsão de Preço do Maya Protocol
Previsão de Preço do CertiK
Previsão de Preço do Badger DAO
Previsão de Preço do Electroneum
Previsão de Preço do Ondo US Dollar Yield
Previsão de Preço do Sidus
Previsão de Preço do Hard Protocol
Previsão de Preço do Solidus Ai Tech
Previsão de Preço do Chainge FinancePrevisão de Preço do Mobox
Previsão de Preço do Trias Token
Previsão de Preço do SuperRare
Previsão de Preço do CONX
Previsão de Preço do Banana Gun
Previsão de Preço do Dora Factory
Previsão de Preço do Automata
Previsão de Preço do Storm
Previsão de Preço do Adventure Gold
Previsão de Preço do Star Atlas
Previsão de Preço do Radio Caca
Previsão de Preço do CoinEx Token
Previsão de Preço do Blendr Network
Previsão de Preço do Access Protocol
Como ler e prever os movimentos de preço de Bifrost?
Traders de Bifrost utilizam indicadores e padrões de gráfico para prever a direção do mercado. Eles também identificam níveis-chave de suporte e resistência para avaliar quando uma tendência de baixa pode desacelerar ou uma tendência de alta pode estagnar.
Indicadores de Previsão de Preço de Bifrost
Médias móveis são ferramentas populares para a previsão de preço de Bifrost. Uma média móvel simples (SMA) calcula o preço médio de fechamento de BFC em um período específico, como uma SMA de 12 dias. Uma média móvel exponencial (EMA) dá mais peso aos preços recentes, reagindo mais rapidamente às mudanças de preço.
Médias móveis comumente usadas no mercado de criptomoedas incluem as de 50 dias, 100 dias e 200 dias, que ajudam a identificar níveis-chave de resistência e suporte. Um movimento de preço de BFC acima dessas médias é visto como altista, enquanto uma queda abaixo indica fraqueza.
Traders também usam RSI e níveis de retração de Fibonacci para avaliar a direção futura de BFC.
Como ler gráficos de Bifrost e prever movimentos de preço?
A maioria dos traders prefere gráficos de velas em vez de gráficos de linha simples porque eles fornecem informações mais detalhadas. Velas podem representar a ação de preço de Bifrost em diferentes períodos de tempo, como 5 minutos para tendências de curto prazo e semanal para tendências de longo prazo. Opções populares incluem gráficos de 1 hora, 4 horas e 1 dia.
Por exemplo, um gráfico de velas de 1 hora mostra os preços de abertura, fechamento, máximo e mínimo de BFC dentro de cada hora. A cor da vela é crucial: verde indica que o preço fechou mais alto do que abriu, enquanto vermelho significa o oposto. Alguns gráficos usam velas vazias e preenchidas para transmitir a mesma informação.
O que afeta o preço de Bifrost?
A ação de preço de Bifrost é impulsionada pela oferta e demanda, influenciada por fatores como reduções pela metade das recompensas de bloco, hard forks e atualizações de protocolo. Eventos do mundo real, como regulamentações, adoção por empresas e governos e hacks de exchanges de criptomoedas, também impactam o preço de BFC. A capitalização de mercado de Bifrost pode mudar rapidamente.
Traders frequentemente monitoram a atividade de "baleias" de BFC, grandes detentores de Bifrost, pois suas ações podem influenciar significativamente os movimentos de preço no relativamente pequeno mercado de Bifrost.
Padrões de previsão de preço altistas e baixistas
Traders frequentemente identificam padrões de velas para ganhar vantagem em previsões de preço de criptomoedas. Certas formações indicam tendências altistas, enquanto outras sugerem movimentos baixistas.
Padrões de velas altistas comumente seguidos:
- Martelo
- Engolfo de Alta
- Linha de Perfuração
- Estrela da Manhã
- Três Soldados Brancos
Padrões de velas baixistas comuns:
- Harami de Baixa
- Nuvem Negra
- Estrela da Noite
- Estrela Cadente
- Homem Enforcado


