Previsão de Preço Bifrost - Projeção BFC
Previsão de Preço Bifrost até $0.024123 até 2026
| Ano | Preço Mínimo | Preço Máximo |
|---|---|---|
| 2026 | $0.008081 | $0.024123 |
| 2027 | $0.007779 | $0.020437 |
| 2028 | $0.01404 | $0.034388 |
| 2029 | $0.030842 | $0.101457 |
| 2030 | $0.02623 | $0.075839 |
| 2031 | $0.031012 | $0.069232 |
| 2032 | $0.047337 | $0.128422 |
| 2033 | $0.1100025 | $0.342071 |
| 2034 | $0.088436 | $0.1981093 |
| 2035 | $0.104559 | $0.233422 |
Calculadora de lucro do investimento
Se você abrir um short de $10,000.00 em Bifrost hoje e fechar em Apr 06, 2026, nossa previsão mostra que pode lucrar cerca de $3,954.83, com um retorno de 39.55% nos próximos 90 dias.
Previsão de preço de longo prazo de Bifrost para os anos 2027, 2028, 2029, 2030, 2031, 2032 e 2037
[
'name' => 'Bifrost'
'name_with_ticker' => 'Bifrost <small>BFC</small>'
'name_lang' => 'Bifrost'
'name_lang_with_ticker' => 'Bifrost <small>BFC</small>'
'name_with_lang' => 'Bifrost'
'name_with_lang_with_ticker' => 'Bifrost <small>BFC</small>'
'image' => '/uploads/coins/bifrost.png?1717201112'
'price_for_sd' => 0.02339
'ticker' => 'BFC'
'marketcap' => '$32.54M'
'low24h' => '$0.02276'
'high24h' => '$0.02344'
'volume24h' => '$1.59M'
'current_supply' => '1.39B'
'max_supply' => '2.37B'
'algo' => 'SHA-256'
'proof' => null
'ico_price_and_roi' => '—'
'price' => '$0.02339'
'change_24h_pct' => '2.0142%'
'ath_price' => '$0.7788'
'ath_days' => 1601
'ath_exchange' => null
'ath_pair' => null
'ath_date' => '19 de ago. de 2021'
'ath_pct' => '-97.00%'
'fdv' => '$55.4M'
'new_prediction' => true
'change_24h_pct_is_increased' => true
'change_30d_pct' => null
'change_30d_pct_is_increased' => false
'max_price' => '$1.15'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.02359'
'next_week_prediction_price_date' => '13 de janeiro de 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.020673'
'next_month_prediction_price_date' => '5 de fevereiro de 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.008081'
'current_year_max_price_prediction' => '$0.024123'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.02623'
'grand_prediction_max_price' => '$0.075839'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.02383382937705
107 => 0.023922816244264
108 => 0.024123308199878
109 => 0.022410126390615
110 => 0.023179294726599
111 => 0.023631109062663
112 => 0.021589795455181
113 => 0.023590758855967
114 => 0.022380303706802
115 => 0.021969457048749
116 => 0.022522607948886
117 => 0.022307044505146
118 => 0.022121715714528
119 => 0.02201829906501
120 => 0.022424472037034
121 => 0.022405523582407
122 => 0.0217409457654
123 => 0.020874031094772
124 => 0.021164996113739
125 => 0.021059285794537
126 => 0.020676177960845
127 => 0.020934346384137
128 => 0.019797503304008
129 => 0.017841623872609
130 => 0.019133737735199
131 => 0.019083992757038
201 => 0.019058909083295
202 => 0.020029896939627
203 => 0.019936558861742
204 => 0.019767149336411
205 => 0.02067306662206
206 => 0.020342394626491
207 => 0.021361447800713
208 => 0.022032662129482
209 => 0.021862420464198
210 => 0.022493700784666
211 => 0.021171699360109
212 => 0.021610815203856
213 => 0.021701316370663
214 => 0.020661887743377
215 => 0.019951830125615
216 => 0.01990447737776
217 => 0.018673335320529
218 => 0.01933100147007
219 => 0.019909720465592
220 => 0.019632558977146
221 => 0.019544817929867
222 => 0.019993067911701
223 => 0.020027900774291
224 => 0.019233707815819
225 => 0.019398845680705
226 => 0.020087498029167
227 => 0.019381493408424
228 => 0.018009841755519
301 => 0.017669653181031
302 => 0.017624265754275
303 => 0.016701647359567
304 => 0.017692386208254
305 => 0.017259902150652
306 => 0.018626114106662
307 => 0.01784574116453
308 => 0.017812100846707
309 => 0.017761248572355
310 => 0.016967112807144
311 => 0.017140978069764
312 => 0.017718932683142
313 => 0.01792515340032
314 => 0.017903642890001
315 => 0.017716100390234
316 => 0.017801956386255
317 => 0.017525384308861
318 => 0.017427720951983
319 => 0.017119468533254
320 => 0.016666422634627
321 => 0.016729421445523
322 => 0.015831818974434
323 => 0.015342757508816
324 => 0.01520739174086
325 => 0.015026374978623
326 => 0.015227838065821
327 => 0.015829276179411
328 => 0.015103814212208
329 => 0.013860060554679
330 => 0.013934812268749
331 => 0.014102757176283
401 => 0.013789792952161
402 => 0.013493598579126
403 => 0.013751115555471
404 => 0.013224120734661
405 => 0.01416644198263
406 => 0.014140954833697
407 => 0.014492193922186
408 => 0.014711830932369
409 => 0.014205638732223
410 => 0.014078332762775
411 => 0.014150852028706
412 => 0.012952270101528
413 => 0.014394244207759
414 => 0.014406714459709
415 => 0.014299936591604
416 => 0.015067743287216
417 => 0.016688054899872
418 => 0.016078428494307
419 => 0.015842362724017
420 => 0.015393601522132
421 => 0.01599154917884
422 => 0.015945636128241
423 => 0.015737999901427
424 => 0.015612420863585
425 => 0.015843804091272
426 => 0.01558374992107
427 => 0.015537037046291
428 => 0.015254007849239
429 => 0.015152979302899
430 => 0.015078181789252
501 => 0.014995837076178
502 => 0.015177468994195
503 => 0.014765867172299
504 => 0.014269515724917
505 => 0.014228249472664
506 => 0.0143421892233
507 => 0.01429177936546
508 => 0.014228008129659
509 => 0.014106251473451
510 => 0.014070128874474
511 => 0.014187509796957
512 => 0.014054993579206
513 => 0.014250528477029
514 => 0.014197353804261
515 => 0.013900324404725
516 => 0.013530115798534
517 => 0.0135268201654
518 => 0.01344705932846
519 => 0.013345471910495
520 => 0.013317212614822
521 => 0.013729428193996
522 => 0.014582702106311
523 => 0.01441518402021
524 => 0.014536233005362
525 => 0.015131674205729
526 => 0.015320947057783
527 => 0.015186605670568
528 => 0.015002710893932
529 => 0.015010801330822
530 => 0.015639225451323
531 => 0.015678419492878
601 => 0.01577745019141
602 => 0.015904732625096
603 => 0.01520828241941
604 => 0.014977998588765
605 => 0.014868877334145
606 => 0.014532826105156
607 => 0.014895228544766
608 => 0.014684072162825
609 => 0.014712564372878
610 => 0.014694008783703
611 => 0.014704141390116
612 => 0.014166178584637
613 => 0.014362183956461
614 => 0.014036287009937
615 => 0.01359994758219
616 => 0.013598484819428
617 => 0.013705278276207
618 => 0.013641753349286
619 => 0.013470809404318
620 => 0.013495091184868
621 => 0.013282357236759
622 => 0.013520920937841
623 => 0.013527762091166
624 => 0.013435902071597
625 => 0.01380344236856
626 => 0.013954023928111
627 => 0.013893559695398
628 => 0.013949781596358
629 => 0.014422145152986
630 => 0.014499161023383
701 => 0.014533366385631
702 => 0.014487535731561
703 => 0.013958415535044
704 => 0.013981884265752
705 => 0.013809686291561
706 => 0.013664197149146
707 => 0.013670015951852
708 => 0.013744816283319
709 => 0.014071473717813
710 => 0.014758905031199
711 => 0.014784992547036
712 => 0.014816611377257
713 => 0.014688001704397
714 => 0.014649211796433
715 => 0.014700385697562
716 => 0.014958548755448
717 => 0.015622614230918
718 => 0.015387889140445
719 => 0.015197053988177
720 => 0.015364467865504
721 => 0.015338695811323
722 => 0.015121153737955
723 => 0.015115048056502
724 => 0.014697515265302
725 => 0.014543162899157
726 => 0.014414174508932
727 => 0.014273322554134
728 => 0.014189820793929
729 => 0.014318117448475
730 => 0.014347460411331
731 => 0.014066937533924
801 => 0.014028703302301
802 => 0.014257784339499
803 => 0.01415697431603
804 => 0.014260659925136
805 => 0.014284715875847
806 => 0.014280842313727
807 => 0.014175585071268
808 => 0.014242672898795
809 => 0.01408399018685
810 => 0.013911446570982
811 => 0.013801374493905
812 => 0.013705322007714
813 => 0.013758617509656
814 => 0.013568628776606
815 => 0.013507847557185
816 => 0.014219945052353
817 => 0.014745979128371
818 => 0.014738330384574
819 => 0.014691770623803
820 => 0.014622592263599
821 => 0.014953487927514
822 => 0.014838210494674
823 => 0.014922084458817
824 => 0.01494343390287
825 => 0.015008052239979
826 => 0.015031147741362
827 => 0.014961337095326
828 => 0.014727044040578
829 => 0.014143208024061
830 => 0.013871430782337
831 => 0.01378173976576
901 => 0.013784999863865
902 => 0.013695071804408
903 => 0.013721559648211
904 => 0.013685860413295
905 => 0.013618254698937
906 => 0.013754443047302
907 => 0.013770137485769
908 => 0.013738349497931
909 => 0.013745836719809
910 => 0.013482645757336
911 => 0.013502655594592
912 => 0.013391238278023
913 => 0.013370348874322
914 => 0.013088695600251
915 => 0.01258970599894
916 => 0.012866194676159
917 => 0.012532235234269
918 => 0.012405759733315
919 => 0.013004475083859
920 => 0.012944380668443
921 => 0.012841525151666
922 => 0.012689380405384
923 => 0.012632948439019
924 => 0.012290085675576
925 => 0.01226982751441
926 => 0.012439759558046
927 => 0.012361341766913
928 => 0.012251213489021
929 => 0.011852340030024
930 => 0.011403874199648
1001 => 0.011417410564111
1002 => 0.011560059200751
1003 => 0.011974829350569
1004 => 0.011812771477439
1005 => 0.011695196631083
1006 => 0.011673178396647
1007 => 0.011948782698904
1008 => 0.012338820527485
1009 => 0.012521817550051
1010 => 0.01234047305839
1011 => 0.012132154270652
1012 => 0.012144833670005
1013 => 0.012229184033432
1014 => 0.012238048063978
1015 => 0.012102453948678
1016 => 0.012140622897888
1017 => 0.012082640773796
1018 => 0.011726804585271
1019 => 0.01172036863699
1020 => 0.011633040697692
1021 => 0.011630396442396
1022 => 0.011481829832676
1023 => 0.011461044336983
1024 => 0.011166056316034
1025 => 0.011360218324729
1026 => 0.01122998464326
1027 => 0.011033691766266
1028 => 0.010999850800285
1029 => 0.010998833499983
1030 => 0.011200382394372
1031 => 0.011357863108551
1101 => 0.011232250113907
1102 => 0.011203650469932
1103 => 0.011509019844813
1104 => 0.011470158808356
1105 => 0.01143650540141
1106 => 0.012303896917908
1107 => 0.011617288849196
1108 => 0.011317888541019
1109 => 0.010947323805074
1110 => 0.011067981551647
1111 => 0.011093405911681
1112 => 0.010202264521047
1113 => 0.0098407285698513
1114 => 0.0097166630555959
1115 => 0.0096452615981129
1116 => 0.009677800138891
1117 => 0.0093523753788773
1118 => 0.0095710661996352
1119 => 0.0092892758649335
1120 => 0.0092420327982957
1121 => 0.0097459088238662
1122 => 0.0098160202292233
1123 => 0.0095169031920637
1124 => 0.0097089847525698
1125 => 0.0096393333085969
1126 => 0.0092941063514347
1127 => 0.0092809212209887
1128 => 0.0091076984691991
1129 => 0.0088366384051825
1130 => 0.0087127566824144
1201 => 0.0086482380056064
1202 => 0.0086748596691013
1203 => 0.0086613989414019
1204 => 0.0085735585879764
1205 => 0.0086664338476381
1206 => 0.0084291759379093
1207 => 0.0083346979265385
1208 => 0.0082920244006755
1209 => 0.0080814443497355
1210 => 0.0084165708561547
1211 => 0.0084825949997318
1212 => 0.0085487492312676
1213 => 0.0091245766513747
1214 => 0.0090958099407376
1215 => 0.0093558469949412
1216 => 0.0093457424331923
1217 => 0.0092715756530124
1218 => 0.0089586782072768
1219 => 0.0090833935522863
1220 => 0.0086995391054148
1221 => 0.0089871489565762
1222 => 0.0088558958313807
1223 => 0.0089427721429188
1224 => 0.008786560701452
1225 => 0.0088730145629721
1226 => 0.0084982517735082
1227 => 0.0081483035537615
1228 => 0.0082891329330129
1229 => 0.0084422305740523
1230 => 0.008774185268379
1231 => 0.0085764757910048
]
'min_raw' => 0.0080814443497355
'max_raw' => 0.024123308199878
'avg_raw' => 0.016102376274807
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.008081'
'max' => '$0.024123'
'avg' => '$0.0161023'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.015309145650265
'max_diff' => 0.00073271819987837
'year' => 2026
]
1 => [
'items' => [
101 => 0.0086475795952916
102 => 0.0084093937535638
103 => 0.0079179483276574
104 => 0.0079207298553972
105 => 0.007845131683342
106 => 0.0077798038251726
107 => 0.0085991851028086
108 => 0.0084972820884334
109 => 0.0083349129717634
110 => 0.0085522504867185
111 => 0.0086097179752828
112 => 0.0086113539938924
113 => 0.0087699178345104
114 => 0.0088545433846724
115 => 0.0088694590046766
116 => 0.0091189626338876
117 => 0.0092025929593667
118 => 0.0095470544342083
119 => 0.008847363497987
120 => 0.0088329538235999
121 => 0.0085553088712575
122 => 0.0083792220530889
123 => 0.0085673656863463
124 => 0.0087340352612453
125 => 0.0085604877595392
126 => 0.0085831493994743
127 => 0.0083501760577857
128 => 0.0084334530650248
129 => 0.0085051824422834
130 => 0.0084655776962191
131 => 0.0084062874744695
201 => 0.0087203702567784
202 => 0.0087026484753002
203 => 0.0089951295829182
204 => 0.0092231395218311
205 => 0.0096317740940149
206 => 0.0092053426153391
207 => 0.0091898017573445
208 => 0.0093417161370733
209 => 0.0092025697020666
210 => 0.0092905054458192
211 => 0.009617606286215
212 => 0.0096245174115338
213 => 0.0095087471579617
214 => 0.0095017025275107
215 => 0.009523937471097
216 => 0.0096541682301779
217 => 0.009608661601368
218 => 0.0096613230243137
219 => 0.0097271769400876
220 => 0.0099995766572102
221 => 0.010065251306804
222 => 0.0099056959566934
223 => 0.0099201020183429
224 => 0.0098604239375094
225 => 0.0098027756591884
226 => 0.009932360569999
227 => 0.010169179541503
228 => 0.010167706302972
301 => 0.010222643701258
302 => 0.010256869245265
303 => 0.010109948155761
304 => 0.010014307928932
305 => 0.010050982477644
306 => 0.010109625879702
307 => 0.010031965212732
308 => 0.0095526076002753
309 => 0.0096980140784119
310 => 0.0096738113304364
311 => 0.0096393436741647
312 => 0.009785551012326
313 => 0.0097714489578852
314 => 0.0093490376776021
315 => 0.0093760790772557
316 => 0.0093506821546789
317 => 0.0094327448072461
318 => 0.0091981380495213
319 => 0.0092703015080969
320 => 0.009315561752825
321 => 0.0093422203846755
322 => 0.0094385296429144
323 => 0.0094272288630573
324 => 0.0094378271705714
325 => 0.0095806283758382
326 => 0.010302867868621
327 => 0.010342177770682
328 => 0.010148601436015
329 => 0.01022593136359
330 => 0.010077474812841
331 => 0.010177134689931
401 => 0.01024531944675
402 => 0.0099372056418618
403 => 0.0099189611419784
404 => 0.0097698918582361
405 => 0.0098499932476034
406 => 0.0097225461776263
407 => 0.0097538172306894
408 => 0.0096663806401635
409 => 0.0098237490946587
410 => 0.0099997114793697
411 => 0.010044166526713
412 => 0.0099272244362543
413 => 0.0098425506559029
414 => 0.0096938913908831
415 => 0.0099411150616988
416 => 0.01001341079705
417 => 0.0099407353229782
418 => 0.0099238948276453
419 => 0.0098919821194195
420 => 0.0099306652595565
421 => 0.010013017058949
422 => 0.0099741814711545
423 => 0.0099998330610878
424 => 0.0099020756520666
425 => 0.010109996792755
426 => 0.010440225603114
427 => 0.010441287342738
428 => 0.010402451545605
429 => 0.010386560774147
430 => 0.010426408658758
501 => 0.010448024501514
502 => 0.010576885253496
503 => 0.010715157974411
504 => 0.011360416429807
505 => 0.011179230437575
506 => 0.011751742125799
507 => 0.012204524539846
508 => 0.012340294188044
509 => 0.012215392500158
510 => 0.011788110572956
511 => 0.011767146083152
512 => 0.012405685676167
513 => 0.012225268994174
514 => 0.012203809003932
515 => 0.011975510964984
516 => 0.012110463381265
517 => 0.012080947308191
518 => 0.01203435474287
519 => 0.012291834552267
520 => 0.012773813770077
521 => 0.012698692789008
522 => 0.012642618461403
523 => 0.012396917080828
524 => 0.012544884191324
525 => 0.0124921959374
526 => 0.012718578113051
527 => 0.012584474327175
528 => 0.012223902160363
529 => 0.01228132446639
530 => 0.012272645200351
531 => 0.012451263880398
601 => 0.012397646986236
602 => 0.012262175641246
603 => 0.012772166417508
604 => 0.012739050453215
605 => 0.012786001319219
606 => 0.012806670542437
607 => 0.013117092940903
608 => 0.013244263065145
609 => 0.013273132909775
610 => 0.013393934692114
611 => 0.013270127251382
612 => 0.013765445287521
613 => 0.014094802878945
614 => 0.01447736866997
615 => 0.015036400114648
616 => 0.015246601109178
617 => 0.015208630180952
618 => 0.01563248144217
619 => 0.016394132736893
620 => 0.01536258168406
621 => 0.016448807447495
622 => 0.016104920911871
623 => 0.015289572122161
624 => 0.015237073272434
625 => 0.01578923693922
626 => 0.017013882808368
627 => 0.016707122907965
628 => 0.017014384557671
629 => 0.016655947522125
630 => 0.016638148102166
701 => 0.016996976070901
702 => 0.017835397178546
703 => 0.017437094738049
704 => 0.016866030521832
705 => 0.017287695452343
706 => 0.016922410266287
707 => 0.016099320505217
708 => 0.01670688833445
709 => 0.016300625029578
710 => 0.016419194260085
711 => 0.017273099299821
712 => 0.017170355186288
713 => 0.017303315583049
714 => 0.017068643962945
715 => 0.01684942366545
716 => 0.016440232700662
717 => 0.016319091428859
718 => 0.016352570518179
719 => 0.016319074838285
720 => 0.016090136254145
721 => 0.016040696988698
722 => 0.015958296046968
723 => 0.015983835544379
724 => 0.015828897666681
725 => 0.016121297453696
726 => 0.016175569430784
727 => 0.016388353611654
728 => 0.016410445571197
729 => 0.017003046486128
730 => 0.016676651860438
731 => 0.016895625554907
801 => 0.016876038486613
802 => 0.015307243202787
803 => 0.015523409351301
804 => 0.015859696041713
805 => 0.015708199343508
806 => 0.015494018457014
807 => 0.015321055907518
808 => 0.015058999958702
809 => 0.015427838674321
810 => 0.015912822363736
811 => 0.016422745557905
812 => 0.017035384864208
813 => 0.016898650902949
814 => 0.016411292692217
815 => 0.016433155225535
816 => 0.016568300803917
817 => 0.016393275000641
818 => 0.016341656474346
819 => 0.01656120921106
820 => 0.016562721150094
821 => 0.016361332810851
822 => 0.016137526525458
823 => 0.016136588768951
824 => 0.016096764602178
825 => 0.016663032152924
826 => 0.016974422049728
827 => 0.017010122399567
828 => 0.016972019131738
829 => 0.016986683567261
830 => 0.016805492647319
831 => 0.017219641359808
901 => 0.017599705173451
902 => 0.017497839952515
903 => 0.017345129505339
904 => 0.017223488278631
905 => 0.017469185145317
906 => 0.017458244650606
907 => 0.017596385647599
908 => 0.017590118774034
909 => 0.017543667152491
910 => 0.017497841611449
911 => 0.017679534701797
912 => 0.017627210009679
913 => 0.017574804042861
914 => 0.017469695853456
915 => 0.017483981802058
916 => 0.017331297722493
917 => 0.017260659080939
918 => 0.016198423397755
919 => 0.015914559313657
920 => 0.0160038687331
921 => 0.016033271712899
922 => 0.015909733699718
923 => 0.016086855476308
924 => 0.016059251235045
925 => 0.016166643189859
926 => 0.016099549358908
927 => 0.016102302913134
928 => 0.016299611564048
929 => 0.01635689110482
930 => 0.016327758268081
1001 => 0.016348161908318
1002 => 0.016818355185736
1003 => 0.016751508737622
1004 => 0.01671599789436
1005 => 0.016725834640629
1006 => 0.016845979104067
1007 => 0.016879612994186
1008 => 0.016737103838343
1009 => 0.016804311980074
1010 => 0.017090475717581
1011 => 0.017190616830243
1012 => 0.0175102191914
1013 => 0.017374446427902
1014 => 0.017623663211411
1015 => 0.018389670639656
1016 => 0.019001610377021
1017 => 0.018438845305061
1018 => 0.019562594702676
1019 => 0.020437594800996
1020 => 0.020404010839833
1021 => 0.020251434333574
1022 => 0.019255269984718
1023 => 0.018338584698927
1024 => 0.019105430865005
1025 => 0.019107385713585
1026 => 0.019041512947837
1027 => 0.018632382857207
1028 => 0.019027276107524
1029 => 0.019058621299693
1030 => 0.019041076327438
1031 => 0.018727397246207
1101 => 0.018248467266754
1102 => 0.018342049038342
1103 => 0.018495337889222
1104 => 0.018205130115103
1105 => 0.018112391146963
1106 => 0.018284810533046
1107 => 0.01884038172001
1108 => 0.018735354205319
1109 => 0.018732611512461
1110 => 0.019181963758906
1111 => 0.018860324526736
1112 => 0.018343229404173
1113 => 0.018212656066079
1114 => 0.017749208680585
1115 => 0.018069313440488
1116 => 0.018080833440926
1117 => 0.017905515335318
1118 => 0.018357455502209
1119 => 0.018353290794009
1120 => 0.018782340720055
1121 => 0.019602523034863
1122 => 0.019359954765654
1123 => 0.019077874259916
1124 => 0.019108544232134
1125 => 0.019444918127421
1126 => 0.019241538791661
1127 => 0.019314675418811
1128 => 0.019444807426376
1129 => 0.019523319297536
1130 => 0.019097247582103
1201 => 0.01899790988387
1202 => 0.018794699816079
1203 => 0.018741686102488
1204 => 0.018907196462586
1205 => 0.018863590330268
1206 => 0.018079865229497
1207 => 0.017997961595861
1208 => 0.018000473463373
1209 => 0.01779452288229
1210 => 0.017480398812336
1211 => 0.018305898112802
1212 => 0.01823959896612
1213 => 0.018166409839328
1214 => 0.018175375089749
1215 => 0.018533696357314
1216 => 0.018325851926468
1217 => 0.018878440410904
1218 => 0.018764844830834
1219 => 0.018648335952771
1220 => 0.018632230876876
1221 => 0.018587384898892
1222 => 0.018433591353932
1223 => 0.018247876406833
1224 => 0.018125251312405
1225 => 0.016719586238534
1226 => 0.016980469499867
1227 => 0.017280591911773
1228 => 0.017384192965698
1229 => 0.017206976193985
1230 => 0.018440588952228
1231 => 0.018665981890547
]
'min_raw' => 0.0077798038251726
'max_raw' => 0.020437594800996
'avg_raw' => 0.014108699313084
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.007779'
'max' => '$0.020437'
'avg' => '$0.0141086'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -0.00030164052456292
'max_diff' => -0.0036857133988826
'year' => 2027
]
2 => [
'items' => [
101 => 0.01798325197836
102 => 0.017855541087469
103 => 0.018448961656973
104 => 0.018091056510848
105 => 0.018252221176233
106 => 0.017903871322029
107 => 0.018611691331982
108 => 0.018606298929429
109 => 0.018330940958717
110 => 0.018563671629992
111 => 0.018523228948638
112 => 0.018212350477881
113 => 0.018621546734009
114 => 0.018621749690246
115 => 0.018356723630235
116 => 0.018047231213806
117 => 0.017991901279633
118 => 0.017950217606765
119 => 0.018241969547963
120 => 0.018503553426157
121 => 0.018990296171332
122 => 0.019112674862192
123 => 0.019590327039828
124 => 0.019305908424508
125 => 0.019431987512841
126 => 0.019568864198203
127 => 0.019634487914639
128 => 0.01952755759027
129 => 0.020269548031618
130 => 0.020332194758867
131 => 0.020353199664622
201 => 0.020103004662561
202 => 0.02032523638326
203 => 0.020221261520686
204 => 0.020491775228055
205 => 0.020534195231463
206 => 0.020498266997712
207 => 0.020511731776348
208 => 0.019878573830741
209 => 0.019845741251087
210 => 0.019398066697811
211 => 0.019580497387314
212 => 0.019239451957419
213 => 0.019347600976396
214 => 0.019395272033479
215 => 0.019370371378568
216 => 0.019590811744782
217 => 0.019403392400508
218 => 0.018908761936377
219 => 0.018413996710507
220 => 0.018407785336123
221 => 0.018277522385483
222 => 0.018183366131019
223 => 0.018201503966002
224 => 0.018265424062234
225 => 0.018179650978826
226 => 0.018197955014977
227 => 0.018501923974235
228 => 0.018562882781207
229 => 0.018355720936973
301 => 0.017523936239064
302 => 0.017319814187823
303 => 0.017466533070339
304 => 0.017396410894403
305 => 0.014040261325985
306 => 0.014828738884614
307 => 0.014360252293445
308 => 0.014576152468687
309 => 0.014097948973118
310 => 0.014326172745996
311 => 0.014284028148543
312 => 0.015551876730072
313 => 0.01553208101834
314 => 0.015541556177981
315 => 0.015089282120952
316 => 0.015809766974377
317 => 0.016164703720972
318 => 0.016099014375513
319 => 0.016115546968544
320 => 0.015831462245176
321 => 0.015544306739081
322 => 0.015225807089907
323 => 0.015817540070326
324 => 0.015751749464123
325 => 0.015902649444041
326 => 0.01628643057979
327 => 0.016342943809872
328 => 0.016418898164203
329 => 0.016391673934974
330 => 0.017040265524669
331 => 0.016961716803612
401 => 0.01715099662135
402 => 0.016761633675568
403 => 0.016321032543746
404 => 0.016404776414569
405 => 0.016396711206383
406 => 0.016294031849361
407 => 0.016201337516945
408 => 0.01604702756994
409 => 0.01653528707584
410 => 0.016515464631567
411 => 0.016836366963276
412 => 0.016779644359068
413 => 0.016400836925788
414 => 0.016414366107374
415 => 0.016505356355448
416 => 0.016820274642941
417 => 0.016913763831941
418 => 0.016870455914696
419 => 0.01697296254249
420 => 0.017053979601568
421 => 0.01698313703775
422 => 0.01798611834766
423 => 0.017569610580173
424 => 0.017772613568004
425 => 0.017821028584439
426 => 0.017697014537899
427 => 0.017723908743983
428 => 0.017764646137969
429 => 0.018011995617047
430 => 0.018661112221299
501 => 0.018948601546635
502 => 0.019813527366384
503 => 0.018924729560211
504 => 0.018871991976603
505 => 0.019027791234997
506 => 0.019535594252886
507 => 0.019947120903373
508 => 0.020083648034881
509 => 0.020101692349127
510 => 0.020357826323989
511 => 0.020504637541764
512 => 0.020326724922449
513 => 0.020175962605807
514 => 0.019635950700902
515 => 0.019698458549298
516 => 0.020129075638698
517 => 0.020737347640696
518 => 0.021259308298325
519 => 0.021076535868189
520 => 0.022470960492902
521 => 0.022609211998728
522 => 0.02259011011083
523 => 0.022905067615685
524 => 0.022279941108527
525 => 0.022012687415462
526 => 0.02020855912989
527 => 0.020715445588699
528 => 0.021452234824976
529 => 0.021354718006737
530 => 0.02081964196892
531 => 0.021258902395169
601 => 0.021113669161308
602 => 0.020999117684029
603 => 0.02152390020834
604 => 0.020946880265982
605 => 0.021446478609654
606 => 0.020805738566211
607 => 0.021077370757254
608 => 0.020923179188247
609 => 0.021022960030403
610 => 0.02043964326602
611 => 0.020754386832867
612 => 0.020426548898858
613 => 0.020426393460992
614 => 0.020419156420428
615 => 0.020804856295933
616 => 0.020817433955026
617 => 0.020532401164268
618 => 0.020491323486071
619 => 0.020643209192049
620 => 0.020465390809278
621 => 0.020548590911401
622 => 0.020467910855614
623 => 0.020449748075674
624 => 0.020305023954973
625 => 0.020242672824503
626 => 0.020267122309351
627 => 0.02018366361299
628 => 0.0201333767296
629 => 0.020409153093619
630 => 0.020261816907111
701 => 0.020386571709939
702 => 0.020244397866805
703 => 0.019751561384309
704 => 0.019468125911574
705 => 0.018537203482106
706 => 0.018801211928297
707 => 0.018976249801259
708 => 0.018918399785289
709 => 0.019042684004576
710 => 0.019050314046246
711 => 0.019009907979628
712 => 0.018963122930822
713 => 0.018940350556439
714 => 0.019110077178035
715 => 0.019208609194607
716 => 0.018993817193515
717 => 0.018943494432919
718 => 0.019160661005014
719 => 0.019293132488539
720 => 0.02027122749359
721 => 0.02019876705641
722 => 0.020380628534088
723 => 0.020360153722594
724 => 0.020550773524005
725 => 0.020862356337374
726 => 0.02022882135787
727 => 0.020338781124321
728 => 0.020311821528929
729 => 0.020606159322232
730 => 0.020607078212694
731 => 0.020430608002346
801 => 0.020526275366278
802 => 0.020472876468228
803 => 0.020569375494298
804 => 0.020197799303095
805 => 0.020650338994809
806 => 0.020906899838998
807 => 0.020910462186568
808 => 0.021032069990521
809 => 0.021155630562386
810 => 0.021392794320222
811 => 0.0211490161939
812 => 0.020710483075969
813 => 0.020742143750631
814 => 0.020485031944041
815 => 0.020489354039961
816 => 0.020466282353212
817 => 0.0205355222219
818 => 0.020212993560576
819 => 0.020288690392728
820 => 0.020182714384436
821 => 0.020338550753175
822 => 0.020170896581086
823 => 0.020311808528196
824 => 0.020372621453263
825 => 0.02059702245597
826 => 0.020137752370531
827 => 0.01920126957647
828 => 0.019398129613538
829 => 0.019106958155693
830 => 0.019133907182684
831 => 0.019188348506113
901 => 0.019011886364788
902 => 0.019045549780391
903 => 0.0190443470863
904 => 0.01903398291837
905 => 0.01898807830012
906 => 0.018921507521706
907 => 0.019186705013504
908 => 0.019231767235072
909 => 0.019331934971591
910 => 0.019629966211047
911 => 0.019600185862165
912 => 0.019648758846767
913 => 0.019542724294107
914 => 0.019138825821468
915 => 0.019160759451746
916 => 0.018887246730711
917 => 0.019324940636374
918 => 0.019221288942236
919 => 0.019154464020731
920 => 0.019136230221769
921 => 0.019435000223022
922 => 0.019524396890043
923 => 0.019468690886343
924 => 0.01935443624755
925 => 0.019573838930384
926 => 0.019632541832454
927 => 0.019645683247348
928 => 0.020034422735039
929 => 0.019667409466353
930 => 0.019755753207924
1001 => 0.020444985860826
1002 => 0.019819946952248
1003 => 0.020151044002153
1004 => 0.020134838524506
1005 => 0.020304216571524
1006 => 0.020120944580876
1007 => 0.020123216456849
1008 => 0.020273612687938
1009 => 0.020062408305477
1010 => 0.020010111130205
1011 => 0.019937862957128
1012 => 0.020095614199897
1013 => 0.020190178935462
1014 => 0.020952301253971
1015 => 0.021444667028728
1016 => 0.021423292131923
1017 => 0.021618618676587
1018 => 0.02153062227923
1019 => 0.021246458699887
1020 => 0.021731491279768
1021 => 0.021578006676869
1022 => 0.021590659761048
1023 => 0.021590188812623
1024 => 0.021692242655694
1025 => 0.021619928154781
1026 => 0.021477388850549
1027 => 0.021572013092729
1028 => 0.021853013263217
1029 => 0.022725246414549
1030 => 0.023213359641587
1031 => 0.022695861385388
1101 => 0.023052824752936
1102 => 0.02283877393146
1103 => 0.022799874529738
1104 => 0.023024073903943
1105 => 0.023248665709475
1106 => 0.023234360182399
1107 => 0.023071318064501
1108 => 0.02297921970914
1109 => 0.023676619311142
1110 => 0.024190451458005
1111 => 0.024155411550363
1112 => 0.024310066307105
1113 => 0.02476413745619
1114 => 0.024805652031457
1115 => 0.024800422149175
1116 => 0.024697523942777
1117 => 0.025144615957641
1118 => 0.025517587982276
1119 => 0.024673705981011
1120 => 0.024995045199866
1121 => 0.025139304728113
1122 => 0.025351120515453
1123 => 0.025708489253144
1124 => 0.026096686489653
1125 => 0.026151581835261
1126 => 0.026112630960568
1127 => 0.025856604447789
1128 => 0.026281374496132
1129 => 0.026530194828369
1130 => 0.026678361642063
1201 => 0.027054088028986
1202 => 0.025140195625848
1203 => 0.023785447456282
1204 => 0.023573883966804
1205 => 0.024004106641982
1206 => 0.024117552930464
1207 => 0.024071822873826
1208 => 0.022546930640665
1209 => 0.02356585572478
1210 => 0.024662133441633
1211 => 0.024704245933469
1212 => 0.025253065480611
1213 => 0.025431783622034
1214 => 0.025873655292907
1215 => 0.025846016099585
1216 => 0.025953604819728
1217 => 0.025928872036144
1218 => 0.026747346259377
1219 => 0.027650244872201
1220 => 0.027618980364281
1221 => 0.027489178006076
1222 => 0.027681956642601
1223 => 0.028613844771532
1224 => 0.028528051445823
1225 => 0.028611392353891
1226 => 0.029710140976813
1227 => 0.031138670481781
1228 => 0.030474975104706
1229 => 0.031915003099759
1230 => 0.03282142439004
1231 => 0.034388986285871
]
'min_raw' => 0.014040261325985
'max_raw' => 0.034388986285871
'avg_raw' => 0.024214623805928
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.01404'
'max' => '$0.034388'
'avg' => '$0.024214'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 0.0062604575008122
'max_diff' => 0.013951391484876
'year' => 2028
]
3 => [
'items' => [
101 => 0.034192719816108
102 => 0.034802960158855
103 => 0.033841361873184
104 => 0.031633337838206
105 => 0.031283909582694
106 => 0.031983473799161
107 => 0.033703284162868
108 => 0.031929310850523
109 => 0.032288183341182
110 => 0.03218482803973
111 => 0.032179320674947
112 => 0.03238951438863
113 => 0.032084617443966
114 => 0.030842412441494
115 => 0.031411707673767
116 => 0.031191875444784
117 => 0.031435795692419
118 => 0.032752132668543
119 => 0.032170148713844
120 => 0.031557075894107
121 => 0.032326005261808
122 => 0.033305116579689
123 => 0.033243845553048
124 => 0.033124954152062
125 => 0.033795138754466
126 => 0.034902087371973
127 => 0.035201291135205
128 => 0.035422157236272
129 => 0.035452610940045
130 => 0.035766303015786
131 => 0.034079501663947
201 => 0.036756498729447
202 => 0.037218742172107
203 => 0.037131859562915
204 => 0.037645623695254
205 => 0.037494461254582
206 => 0.037275450594708
207 => 0.03808987602523
208 => 0.037156202989879
209 => 0.035830971662365
210 => 0.035103923545988
211 => 0.036061359154932
212 => 0.036646031671417
213 => 0.037032463012657
214 => 0.037149396903028
215 => 0.034210443251183
216 => 0.03262651023468
217 => 0.033641793138429
218 => 0.034880508352086
219 => 0.034072620538391
220 => 0.034104288211154
221 => 0.032952452498007
222 => 0.03498242025438
223 => 0.034686671026992
224 => 0.036221018541849
225 => 0.03585483419352
226 => 0.037106035028859
227 => 0.036776551916608
228 => 0.038144217894408
301 => 0.038689816881031
302 => 0.039605962495272
303 => 0.040279882938492
304 => 0.040675621912794
305 => 0.040651863229157
306 => 0.042219978201716
307 => 0.041295315588162
308 => 0.040133721419293
309 => 0.04011271184556
310 => 0.040714317925535
311 => 0.041975119226593
312 => 0.042302026660044
313 => 0.042484723317811
314 => 0.042204917026724
315 => 0.041201262030878
316 => 0.040767888892318
317 => 0.041137135362399
318 => 0.0406855786592
319 => 0.041465092213356
320 => 0.042535530818322
321 => 0.042314489479369
322 => 0.043053397535118
323 => 0.043818089637423
324 => 0.044911633688191
325 => 0.045197526596881
326 => 0.045670096703412
327 => 0.046156526574225
328 => 0.046312754739077
329 => 0.046611042780533
330 => 0.046609470655316
331 => 0.047508381745345
401 => 0.048499908514606
402 => 0.048874186916104
403 => 0.049734819462519
404 => 0.048261016386946
405 => 0.049378912949597
406 => 0.050387283631875
407 => 0.04918506253422
408 => 0.050842044235748
409 => 0.050906381080417
410 => 0.051877791050699
411 => 0.050893080946186
412 => 0.050308363229432
413 => 0.051996421368614
414 => 0.052813219528831
415 => 0.05256719327565
416 => 0.050694921341125
417 => 0.049605178769712
418 => 0.046753112264678
419 => 0.050131508239995
420 => 0.051777026370409
421 => 0.050690659846696
422 => 0.05123855993109
423 => 0.054227725134346
424 => 0.055365805709632
425 => 0.055129092905756
426 => 0.055169093472987
427 => 0.055783181093787
428 => 0.058506383788647
429 => 0.056874577610543
430 => 0.058122032291092
501 => 0.058783677755623
502 => 0.059398250936982
503 => 0.057889053441414
504 => 0.055925609674193
505 => 0.055303704613353
506 => 0.050582642105856
507 => 0.050336890299806
508 => 0.050198942364028
509 => 0.049329200142071
510 => 0.048645820998057
511 => 0.048102372530497
512 => 0.046676201464168
513 => 0.047157492333363
514 => 0.04488447331867
515 => 0.046338670333423
516 => 0.042710877102009
517 => 0.045732211105588
518 => 0.04408783637064
519 => 0.045191989779841
520 => 0.045188137492614
521 => 0.043155040994118
522 => 0.041982393363427
523 => 0.042729650073832
524 => 0.043530768584697
525 => 0.043660747367799
526 => 0.044699418428469
527 => 0.044989289195342
528 => 0.044110967238944
529 => 0.042635699150829
530 => 0.042978370280415
531 => 0.041975449143923
601 => 0.040217868429025
602 => 0.04148019358288
603 => 0.041911206890925
604 => 0.042101566922045
605 => 0.040373188148451
606 => 0.039830094012859
607 => 0.039540955252071
608 => 0.042412587155209
609 => 0.042569901633205
610 => 0.04176505852175
611 => 0.045403025703883
612 => 0.044579641687453
613 => 0.045499563367787
614 => 0.042947276467114
615 => 0.04304477726383
616 => 0.04183648374284
617 => 0.042513047376392
618 => 0.042034874006861
619 => 0.042458387720733
620 => 0.042712240094615
621 => 0.043920335346529
622 => 0.045746005612775
623 => 0.043739886202319
624 => 0.042865791247024
625 => 0.043408074841193
626 => 0.044852247513759
627 => 0.047040243038536
628 => 0.045744905650354
629 => 0.046319754386974
630 => 0.046445333262685
701 => 0.045490199428637
702 => 0.047075460185386
703 => 0.047925014303563
704 => 0.048796481038359
705 => 0.049553151186238
706 => 0.048448398060517
707 => 0.049630642265179
708 => 0.048677962130417
709 => 0.047823309563274
710 => 0.047824605718433
711 => 0.047288469678583
712 => 0.046249638543884
713 => 0.046058062144117
714 => 0.047054666769139
715 => 0.047853849299598
716 => 0.047919673800633
717 => 0.048362142312976
718 => 0.048623990620793
719 => 0.051190460002908
720 => 0.052222715219343
721 => 0.053484937358408
722 => 0.053976644016516
723 => 0.055456504770827
724 => 0.054261397023307
725 => 0.054002827944551
726 => 0.050413169813355
727 => 0.051000976131242
728 => 0.051942110761053
729 => 0.050428688776759
730 => 0.051388606684072
731 => 0.051578114812817
801 => 0.050377263276851
802 => 0.051018689967942
803 => 0.049315250846164
804 => 0.045783135930668
805 => 0.047079392438996
806 => 0.048033873544348
807 => 0.046671711320339
808 => 0.049113334383917
809 => 0.047686988595505
810 => 0.047234905457251
811 => 0.045471167955645
812 => 0.046303584163921
813 => 0.047429439004666
814 => 0.046733791607759
815 => 0.048177364408322
816 => 0.050221848480724
817 => 0.051678869581848
818 => 0.05179072157009
819 => 0.050853954614899
820 => 0.052355129638959
821 => 0.052366064060139
822 => 0.050672732500519
823 => 0.049635576348762
824 => 0.049399932288887
825 => 0.049988617351193
826 => 0.05070338969409
827 => 0.051830386460558
828 => 0.05251140700323
829 => 0.054287147393134
830 => 0.054767611828175
831 => 0.055295496574571
901 => 0.056000913389382
902 => 0.056847947140721
903 => 0.054994685514449
904 => 0.055068319053772
905 => 0.053342587487541
906 => 0.051498395814082
907 => 0.0528979074125
908 => 0.054727582658205
909 => 0.054307853135229
910 => 0.054260624989598
911 => 0.054340049630554
912 => 0.054023587277315
913 => 0.052592239782255
914 => 0.051873426030945
915 => 0.05280087915908
916 => 0.053293779220495
917 => 0.054058224230345
918 => 0.053963990247405
919 => 0.05593311849738
920 => 0.056698262191973
921 => 0.056502505692551
922 => 0.056538529599588
923 => 0.057923785710622
924 => 0.059464475405739
925 => 0.060907534617129
926 => 0.062375476427789
927 => 0.060605815280294
928 => 0.059707290487122
929 => 0.060634338718235
930 => 0.060142433877657
1001 => 0.062969065000067
1002 => 0.063164774806128
1003 => 0.065991201530935
1004 => 0.06867381705741
1005 => 0.06698891430928
1006 => 0.06857770171108
1007 => 0.070296104821864
1008 => 0.073611183223423
1009 => 0.072494781443642
1010 => 0.071639635176576
1011 => 0.070831526086236
1012 => 0.072513072819529
1013 => 0.074676355828545
1014 => 0.07514230626902
1015 => 0.075897323989358
1016 => 0.075103515175597
1017 => 0.076059570456599
1018 => 0.079434865710513
1019 => 0.07852283113835
1020 => 0.077227595429005
1021 => 0.079892066865168
1022 => 0.080856328720045
1023 => 0.087624023405426
1024 => 0.096168517505243
1025 => 0.092631040841746
1026 => 0.090435214923055
1027 => 0.090951286099634
1028 => 0.094071446095509
1029 => 0.095073542457255
1030 => 0.092349499102697
1031 => 0.093311677267209
1101 => 0.098613373552941
1102 => 0.10145756351145
1103 => 0.097594771522119
1104 => 0.086937481624095
1105 => 0.07711097362486
1106 => 0.079717406039679
1107 => 0.079421917490853
1108 => 0.085117928749791
1109 => 0.078501079415434
1110 => 0.078612490188369
1111 => 0.084426288927961
1112 => 0.082875267097981
1113 => 0.080362810373281
1114 => 0.077129317339401
1115 => 0.07115190640437
1116 => 0.065857546846777
1117 => 0.076241005157404
1118 => 0.075793251553956
1119 => 0.075144837982797
1120 => 0.076587812219735
1121 => 0.083594485518922
1122 => 0.083432959020987
1123 => 0.082405409852672
1124 => 0.083184796840436
1125 => 0.080226180066045
1126 => 0.080988682975257
1127 => 0.077109417055787
1128 => 0.078863007263843
1129 => 0.080357419769551
1130 => 0.080657445205227
1201 => 0.081333417831484
1202 => 0.07555730575102
1203 => 0.078150610497407
1204 => 0.079673934076116
1205 => 0.072791502728525
1206 => 0.079537890537078
1207 => 0.075456756490389
1208 => 0.074071558298366
1209 => 0.07593654517794
1210 => 0.075209757977211
1211 => 0.0745849090204
1212 => 0.074236232566232
1213 => 0.0756056730995
1214 => 0.075541787061788
1215 => 0.073301116552407
1216 => 0.070378253214335
1217 => 0.07135926209031
1218 => 0.071002852368661
1219 => 0.069711177559635
1220 => 0.070581610423508
1221 => 0.066748664607006
1222 => 0.060154280548901
1223 => 0.064510732649131
1224 => 0.06434301398218
1225 => 0.064258442624868
1226 => 0.067532195974699
1227 => 0.067217500128453
1228 => 0.066646324086006
1229 => 0.069700687463694
1230 => 0.068585803743853
1231 => 0.072021612668763
]
'min_raw' => 0.030842412441494
'max_raw' => 0.10145756351145
'avg_raw' => 0.066149987976474
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.030842'
'max' => '$0.101457'
'avg' => '$0.066149'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072434
'min_diff' => 0.016802151115509
'max_diff' => 0.067068577225583
'year' => 2029
]
4 => [
'items' => [
101 => 0.074284658640897
102 => 0.073710676980495
103 => 0.075839082655538
104 => 0.071381862553453
105 => 0.072862372278734
106 => 0.073167503281217
107 => 0.06966299709373
108 => 0.067268988260808
109 => 0.067109335165351
110 => 0.062958453763802
111 => 0.065175821103765
112 => 0.067127012602038
113 => 0.066192543292942
114 => 0.065896718226159
115 => 0.067408024335725
116 => 0.0675254657639
117 => 0.06484778875563
118 => 0.065404562596652
119 => 0.067726402069664
120 => 0.065346058199159
121 => 0.060721438885731
122 => 0.059574469355637
123 => 0.05942144247748
124 => 0.056310770144563
125 => 0.059651115344086
126 => 0.058192965148809
127 => 0.062799244144369
128 => 0.060168162286074
129 => 0.06005474160584
130 => 0.059883289612469
131 => 0.057205805435272
201 => 0.057792004307082
202 => 0.059740618637587
203 => 0.060435906183423
204 => 0.060363381996069
205 => 0.059731069364305
206 => 0.060020538849162
207 => 0.059088056780583
208 => 0.058758777954231
209 => 0.05771948340299
210 => 0.056192007525113
211 => 0.056404412414486
212 => 0.053378083014607
213 => 0.051729178138095
214 => 0.051272783000494
215 => 0.050662472348427
216 => 0.051341719212619
217 => 0.053369509803656
218 => 0.050923564131093
219 => 0.046730161838625
220 => 0.046982192461612
221 => 0.047548430442901
222 => 0.046493249710809
223 => 0.04549460970249
224 => 0.046362846167498
225 => 0.044586046335534
226 => 0.047763148213832
227 => 0.047677216511749
228 => 0.048861443621317
301 => 0.049601965135716
302 => 0.047895302791713
303 => 0.047466081827502
304 => 0.047710585595722
305 => 0.043669482945923
306 => 0.048531199320498
307 => 0.048573243645592
308 => 0.048213234608283
309 => 0.050801948489091
310 => 0.056264942217703
311 => 0.054209544228586
312 => 0.053413632002466
313 => 0.051900602278805
314 => 0.053916624550768
315 => 0.053761825495128
316 => 0.053061765459725
317 => 0.052638366965993
318 => 0.053418491672801
319 => 0.052541700881561
320 => 0.052384205162855
321 => 0.051429952464527
322 => 0.051089327666955
323 => 0.050837142627497
324 => 0.050559511678244
325 => 0.051171896370975
326 => 0.049784152091331
327 => 0.048110668532331
328 => 0.047971536481743
329 => 0.048355692306031
330 => 0.048185731950821
331 => 0.047970722776951
401 => 0.047560211709768
402 => 0.047438421845316
403 => 0.047834179820742
404 => 0.047387392140609
405 => 0.04804665170043
406 => 0.047867369578654
407 => 0.046865914220188
408 => 0.045617730057276
409 => 0.045606618600072
410 => 0.045337699369605
411 => 0.044995190297328
412 => 0.044899912108967
413 => 0.046289725714124
414 => 0.049166598283177
415 => 0.048601799360146
416 => 0.049009924464958
417 => 0.05101749604437
418 => 0.051655642679681
419 => 0.051202701313269
420 => 0.050582687234716
421 => 0.050609964707548
422 => 0.052728740504987
423 => 0.05286088595253
424 => 0.053194774866734
425 => 0.053623916478482
426 => 0.05127578598541
427 => 0.050499367972488
428 => 0.050131458043934
429 => 0.04899843786305
430 => 0.050220302990325
501 => 0.049508374506143
502 => 0.049604437981599
503 => 0.049541876517186
504 => 0.049576039307143
505 => 0.047762260149108
506 => 0.04842310594487
507 => 0.047324321636265
508 => 0.045853172791371
509 => 0.045848240984592
510 => 0.046208302580205
511 => 0.045994123853922
512 => 0.045417774408536
513 => 0.04549964212696
514 => 0.0447823947683
515 => 0.045586728942484
516 => 0.045609794368554
517 => 0.045300081899114
518 => 0.046539269671172
519 => 0.047046965912465
520 => 0.046843106530396
521 => 0.047032662594772
522 => 0.048625269305312
523 => 0.048884933689433
524 => 0.049000259456393
525 => 0.048845738206403
526 => 0.047061772521851
527 => 0.047140898985969
528 => 0.046560321493507
529 => 0.046069794692125
530 => 0.046089413191706
531 => 0.046341607731637
601 => 0.047442956078528
602 => 0.04976067874653
603 => 0.049848634627548
604 => 0.049955239721195
605 => 0.049521623229904
606 => 0.04939084034698
607 => 0.049563376727483
608 => 0.050433791501516
609 => 0.052672734615635
610 => 0.051881342585123
611 => 0.051237928545566
612 => 0.051802376121437
613 => 0.051715483841418
614 => 0.050982025552757
615 => 0.050961439821453
616 => 0.049553698864714
617 => 0.049033289085718
618 => 0.048598395722392
619 => 0.048123503522819
620 => 0.047841971508382
621 => 0.04827453263657
622 => 0.0483734644845
623 => 0.047427662017841
624 => 0.047298752636496
625 => 0.048071115347333
626 => 0.047731227314878
627 => 0.048080810585076
628 => 0.048161916902432
629 => 0.0481488569173
630 => 0.047793974775525
701 => 0.048020166069955
702 => 0.047485156227758
703 => 0.046903413380249
704 => 0.046532297687398
705 => 0.046208450024033
706 => 0.046388139529805
707 => 0.045747579251736
708 => 0.04554265112685
709 => 0.047943537548867
710 => 0.04971709816269
711 => 0.049691309888958
712 => 0.049534330404819
713 => 0.049301090733515
714 => 0.0504167285668
715 => 0.050028062653566
716 => 0.050310849579568
717 => 0.050382830720765
718 => 0.050600695955836
719 => 0.050678564051225
720 => 0.050443192584092
721 => 0.04965325719219
722 => 0.047684813300373
723 => 0.046768497355019
724 => 0.046466097830603
725 => 0.046477089478977
726 => 0.046173890747942
727 => 0.046263196362646
728 => 0.046142833899685
729 => 0.045914896513645
730 => 0.046374065038528
731 => 0.046426979933569
801 => 0.046319804513207
802 => 0.046345048204509
803 => 0.045457681499126
804 => 0.045525146062477
805 => 0.045149494800756
806 => 0.045079064717726
807 => 0.044129451039792
808 => 0.042447072760629
809 => 0.043379273639696
810 => 0.042253306065062
811 => 0.041826885083355
812 => 0.043845495688687
813 => 0.043642883171454
814 => 0.043296098615497
815 => 0.042783131981001
816 => 0.042592867666448
817 => 0.041436881921585
818 => 0.041368580116834
819 => 0.041941517866229
820 => 0.041677126808468
821 => 0.041305821630647
822 => 0.039960991915183
823 => 0.038448958057184
824 => 0.038494596855051
825 => 0.038975546692891
826 => 0.040373973211331
827 => 0.039827583777552
828 => 0.039431171974249
829 => 0.039356935959585
830 => 0.040286155106724
831 => 0.041601194877355
901 => 0.042218182115379
902 => 0.041606766500678
903 => 0.040904405163465
904 => 0.040947154643632
905 => 0.041231547783079
906 => 0.041261433480933
907 => 0.040804268454319
908 => 0.040932957731451
909 => 0.040737466951893
910 => 0.039537740398593
911 => 0.039516041149618
912 => 0.039221608905234
913 => 0.039212693613888
914 => 0.038711790916626
915 => 0.038641711166702
916 => 0.037647138458667
917 => 0.038301769226939
918 => 0.03786267727724
919 => 0.037200862137723
920 => 0.037086764958217
921 => 0.037083335059225
922 => 0.037762871228351
923 => 0.038293828451158
924 => 0.037870315469696
925 => 0.037773889773272
926 => 0.038803463940892
927 => 0.038672441243285
928 => 0.038558976432164
929 => 0.041483447489377
930 => 0.039168500448271
1001 => 0.03815905140579
1002 => 0.036909666526547
1003 => 0.037316472543174
1004 => 0.037402192548101
1005 => 0.034397647132073
1006 => 0.033178703430982
1007 => 0.032760407887692
1008 => 0.032519672888698
1009 => 0.032629378850699
1010 => 0.031532186551882
1011 => 0.032269517922573
1012 => 0.031319442135153
1013 => 0.031160158837578
1014 => 0.03285901203729
1015 => 0.033095397535473
1016 => 0.032086903561005
1017 => 0.032734519952958
1018 => 0.032499685246694
1019 => 0.031335728457646
1020 => 0.031291273869791
1021 => 0.030707241268106
1022 => 0.029793343337464
1023 => 0.029375667460006
1024 => 0.029158138236598
1025 => 0.029247895033736
1026 => 0.0292025112505
1027 => 0.028906351366108
1028 => 0.029219486788401
1029 => 0.028419555180932
1030 => 0.028101015969351
1031 => 0.027957139197533
1101 => 0.02724715385356
1102 => 0.028377056267738
1103 => 0.028599661277466
1104 => 0.02882270488783
1105 => 0.030764147237708
1106 => 0.030667158264367
1107 => 0.031543891347822
1108 => 0.031509823112408
1109 => 0.031259764634872
1110 => 0.030204809050772
1111 => 0.030625295543819
1112 => 0.02933110347633
1113 => 0.030300800169799
1114 => 0.029858271094402
1115 => 0.030151180644263
1116 => 0.029624502863023
1117 => 0.029915988093154
1118 => 0.028652449183374
1119 => 0.027472574327894
1120 => 0.027947390412433
1121 => 0.028463569798133
1122 => 0.029582778226393
1123 => 0.028916186919791
1124 => 0.029155918360253
1125 => 0.028352858165263
1126 => 0.026695915600195
1127 => 0.02670529371517
1128 => 0.026450409199991
1129 => 0.026230151765127
1130 => 0.028992752950051
1201 => 0.028649179822444
1202 => 0.028101741009341
1203 => 0.028834509615033
1204 => 0.029028265264979
1205 => 0.029033781215945
1206 => 0.029568390275162
1207 => 0.0298537112259
1208 => 0.02990400028012
1209 => 0.030745219185792
1210 => 0.031027184667027
1211 => 0.032188560578988
1212 => 0.029829503736657
1213 => 0.029780920513409
1214 => 0.028844821172035
1215 => 0.028251132170591
1216 => 0.028885471565887
1217 => 0.029447409674158
1218 => 0.028862282155456
1219 => 0.028938687456682
1220 => 0.0281532015695
1221 => 0.028433975813621
1222 => 0.028675816417034
1223 => 0.028542286250563
1224 => 0.028342385128423
1225 => 0.029401337157537
1226 => 0.029341586933988
1227 => 0.030327707408701
1228 => 0.031096458836891
1229 => 0.032474198826964
1230 => 0.031036455324113
1231 => 0.030984058236356
]
'min_raw' => 0.026230151765127
'max_raw' => 0.075839082655538
'avg_raw' => 0.051034617210332
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.02623'
'max' => '$0.075839'
'avg' => '$0.051034'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -0.004612260676367
'max_diff' => -0.025618480855917
'year' => 2030
]
5 => [
'items' => [
101 => 0.031496248173936
102 => 0.031027106253417
103 => 0.031323587752956
104 => 0.032426431073802
105 => 0.032449732415334
106 => 0.032059404922594
107 => 0.032035653459188
108 => 0.032110620123884
109 => 0.032549702220546
110 => 0.032396273444342
111 => 0.032573825108507
112 => 0.032795856183312
113 => 0.033714270847932
114 => 0.033935697514293
115 => 0.033397745511598
116 => 0.033446316554248
117 => 0.033245107738128
118 => 0.033050742542894
119 => 0.033487647117022
120 => 0.034286098813621
121 => 0.034281131687056
122 => 0.034466356960984
123 => 0.034581750772152
124 => 0.034086396061186
125 => 0.033763938359045
126 => 0.033887589160563
127 => 0.034085309484953
128 => 0.033823471124171
129 => 0.032207283466093
130 => 0.032697531559086
131 => 0.032615930304505
201 => 0.03249972019493
202 => 0.032992668443411
203 => 0.03294512238229
204 => 0.031520933259002
205 => 0.031612105225904
206 => 0.03152647772828
207 => 0.031803157690842
208 => 0.031012164627452
209 => 0.031255468766331
210 => 0.031408066841402
211 => 0.031497948279932
212 => 0.031822661668182
213 => 0.031784560299898
214 => 0.031820293233632
215 => 0.032301757467251
216 => 0.034736838342321
217 => 0.034869374421648
218 => 0.034216718294249
219 => 0.034477441544072
220 => 0.033976909918318
221 => 0.034312920151957
222 => 0.034542809820078
223 => 0.033503982615079
224 => 0.033442470009932
225 => 0.03293987251211
226 => 0.033209939938862
227 => 0.032780243244364
228 => 0.032885675783042
301 => 0.032590877213456
302 => 0.033121455944901
303 => 0.033714725410256
304 => 0.033864608706125
305 => 0.033470330283508
306 => 0.033184846721319
307 => 0.032683631630246
308 => 0.033517163497007
309 => 0.033760913616271
310 => 0.033515883181398
311 => 0.033459104275617
312 => 0.03335150835176
313 => 0.033481931259502
314 => 0.033759586100773
315 => 0.03362864920511
316 => 0.033715135331507
317 => 0.033385539401787
318 => 0.034086560044207
319 => 0.035199949534175
320 => 0.035203529263442
321 => 0.03507259166198
322 => 0.035019014816552
323 => 0.03515336474161
324 => 0.035226244064632
325 => 0.035660707086708
326 => 0.036126903219166
327 => 0.03830243715204
328 => 0.037691555929228
329 => 0.039621819057567
330 => 0.041148406578785
331 => 0.041606163426816
401 => 0.041185048665751
402 => 0.039744437816321
403 => 0.039673754575251
404 => 0.041826635394512
405 => 0.041218347954883
406 => 0.041145994099493
407 => 0.040376271321918
408 => 0.040831272815486
409 => 0.040731757314373
410 => 0.040574667227403
411 => 0.04144277838145
412 => 0.043067804965011
413 => 0.04281452933256
414 => 0.042625470822054
415 => 0.041797071463122
416 => 0.042295952906894
417 => 0.042118310780212
418 => 0.04288157409092
419 => 0.042429433814009
420 => 0.04121373957926
421 => 0.041407342893125
422 => 0.04137808014171
423 => 0.041980305492245
424 => 0.041799532390167
425 => 0.041342781292224
426 => 0.043062250800811
427 => 0.042950598015115
428 => 0.043108896137851
429 => 0.043178583867012
430 => 0.044225194656437
501 => 0.044653957609055
502 => 0.044751294305851
503 => 0.045158585949121
504 => 0.044741160518733
505 => 0.046411159859576
506 => 0.047521611974073
507 => 0.048811459248406
508 => 0.050696272794469
509 => 0.051404980123288
510 => 0.05127695848773
511 => 0.052706002607276
512 => 0.055273963124232
513 => 0.051796016729008
514 => 0.055458302728293
515 => 0.054298865264044
516 => 0.051549859893701
517 => 0.051372856356495
518 => 0.0532345147099
519 => 0.057363493759777
520 => 0.056329231338275
521 => 0.057365185442584
522 => 0.056156689951966
523 => 0.056096677964857
524 => 0.057306491514017
525 => 0.060133286815133
526 => 0.05879038232841
527 => 0.056864999453004
528 => 0.058286672205928
529 => 0.057055087697743
530 => 0.054279983102002
531 => 0.056328440457294
601 => 0.054958695360517
602 => 0.055358459799411
603 => 0.058237460258629
604 => 0.057891051306485
605 => 0.058339336567164
606 => 0.057548124815734
607 => 0.056809008277257
608 => 0.055429392370674
609 => 0.055020956114977
610 => 0.055133833202055
611 => 0.055020900178699
612 => 0.05424901775829
613 => 0.054082329823095
614 => 0.053804509295003
615 => 0.053890617493633
616 => 0.053368233621558
617 => 0.054354079918179
618 => 0.05453706167808
619 => 0.055254478400003
620 => 0.055328962984011
621 => 0.057326958342777
622 => 0.056226496074117
623 => 0.056964781173275
624 => 0.056898742004998
625 => 0.05160943917579
626 => 0.052338258437741
627 => 0.053472072493253
628 => 0.052961290798093
629 => 0.052239164985647
630 => 0.05165600967416
701 => 0.050772469746566
702 => 0.052016035227774
703 => 0.053651191597116
704 => 0.055370433247957
705 => 0.057435989442266
706 => 0.056974981345421
707 => 0.055331819111675
708 => 0.05540553016915
709 => 0.055861182922229
710 => 0.055271071206574
711 => 0.055097035741278
712 => 0.055837273121793
713 => 0.055842370729806
714 => 0.055163375883561
715 => 0.054408797366706
716 => 0.054405635655168
717 => 0.054271365696458
718 => 0.056180576279338
719 => 0.05723044905696
720 => 0.05735081527896
721 => 0.057222347451192
722 => 0.057271789619394
723 => 0.056660891782464
724 => 0.058057223081561
725 => 0.059338634764465
726 => 0.058995189060079
727 => 0.05848031512552
728 => 0.058070193236956
729 => 0.058898577376994
730 => 0.058861690735236
731 => 0.059327442751294
801 => 0.059306313549531
802 => 0.05914969866435
803 => 0.05899519465329
804 => 0.059607785592804
805 => 0.059431369240134
806 => 0.05925467886414
807 => 0.05890029926514
808 => 0.058948465338266
809 => 0.058433680303952
810 => 0.058195517192118
811 => 0.054614115423339
812 => 0.053657047845042
813 => 0.053958160788081
814 => 0.054057294987324
815 => 0.053640777950734
816 => 0.054237956386756
817 => 0.054144886760071
818 => 0.054506966233594
819 => 0.0542807546982
820 => 0.054290038498518
821 => 0.054955278390727
822 => 0.055148400361569
823 => 0.055050176968513
824 => 0.055118969266108
825 => 0.056704258728772
826 => 0.056478881261884
827 => 0.05635915397454
828 => 0.056392319251365
829 => 0.056797394698065
830 => 0.056910793706842
831 => 0.056430314138248
901 => 0.056656911080416
902 => 0.057621732100733
903 => 0.057959364853704
904 => 0.05903692652827
905 => 0.058579159176783
906 => 0.059419410962145
907 => 0.062002058487405
908 => 0.064065256036198
909 => 0.062167854305083
910 => 0.065956653856818
911 => 0.068906777778859
912 => 0.068793547109043
913 => 0.068279124765639
914 => 0.064920487113497
915 => 0.06182981867153
916 => 0.06441529405995
917 => 0.064421884968422
918 => 0.064199790339613
919 => 0.062820379674501
920 => 0.064151789838513
921 => 0.06425747234236
922 => 0.064198318243452
923 => 0.06314072732071
924 => 0.061525981457158
925 => 0.061841498933741
926 => 0.062358322996765
927 => 0.061379867224666
928 => 0.061067191318754
929 => 0.061648515316869
930 => 0.06352166236246
1001 => 0.063167554763893
1002 => 0.063158307583433
1003 => 0.064673330055094
1004 => 0.063588900927698
1005 => 0.061845478619548
1006 => 0.061405241493824
1007 => 0.05984269627677
1008 => 0.060921951823785
1009 => 0.06096079230956
1010 => 0.060369695076185
1011 => 0.061893442902313
1012 => 0.061879401297845
1013 => 0.06332597307882
1014 => 0.066091275016495
1015 => 0.06527343916128
1016 => 0.064322385041954
1017 => 0.064425790994595
1018 => 0.065559899067429
1019 => 0.064874191437425
1020 => 0.065120776682098
1021 => 0.065559525831128
1022 => 0.065824234086267
1023 => 0.064387703550309
1024 => 0.064052779565179
1025 => 0.063367642633947
1026 => 0.063188903197276
1027 => 0.063746932931913
1028 => 0.063599911812317
1029 => 0.060957527917129
1030 => 0.060681384097996
1031 => 0.060689853034686
1101 => 0.059995476271555
1102 => 0.058936385038261
1103 => 0.061719613564305
1104 => 0.061496081362406
1105 => 0.061249319111527
1106 => 0.061279546079254
1107 => 0.062487651250042
1108 => 0.061786889240211
1109 => 0.063649979895982
1110 => 0.063266984466787
1111 => 0.062874166650007
1112 => 0.062819867262205
1113 => 0.062668665916386
1114 => 0.06215014024203
1115 => 0.061523989331683
1116 => 0.061110550264409
1117 => 0.056371252327452
1118 => 0.057250838457324
1119 => 0.058262722122942
1120 => 0.058612020309444
1121 => 0.058014521590734
1122 => 0.062173733133242
1123 => 0.062933661161218
1124 => 0.0606317895956
1125 => 0.06020120341047
1126 => 0.062201962291855
1127 => 0.060995260103554
1128 => 0.061538638025058
1129 => 0.060364152170598
1130 => 0.062750616752569
1201 => 0.062732435890876
1202 => 0.061804047267742
1203 => 0.062588714974684
1204 => 0.062452359650879
1205 => 0.061404211181881
1206 => 0.062783844928585
1207 => 0.062784529209711
1208 => 0.061890975344854
1209 => 0.060847500054794
1210 => 0.060660951318717
1211 => 0.06052041190538
1212 => 0.0615040739446
1213 => 0.062386022253133
1214 => 0.064027109401786
1215 => 0.064439717702226
1216 => 0.066050155367735
1217 => 0.065091218148711
1218 => 0.065516302597588
1219 => 0.065977791898711
1220 => 0.066199046840376
1221 => 0.065838523786128
1222 => 0.06834019636325
1223 => 0.068551414178027
1224 => 0.068622233684294
1225 => 0.06777868376679
1226 => 0.06852795352885
1227 => 0.068177395020389
1228 => 0.069089450871447
1229 => 0.069232472874606
1230 => 0.069111338326086
1231 => 0.069156735767337
]
'min_raw' => 0.031012164627452
'max_raw' => 0.069232472874606
'avg_raw' => 0.050122318751029
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.031012'
'max' => '$0.069232'
'avg' => '$0.050122'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 0.0047820128623252
'max_diff' => -0.0066066097809313
'year' => 2031
]
6 => [
'items' => [
101 => 0.067021999548047
102 => 0.066911302213446
103 => 0.065401936201439
104 => 0.066017014008002
105 => 0.064867155530078
106 => 0.065231787498283
107 => 0.065392513795526
108 => 0.065308559498983
109 => 0.06605178958433
110 => 0.06541989217991
111 => 0.063752211036095
112 => 0.062084075533668
113 => 0.062063133451269
114 => 0.061623942818517
115 => 0.061306488432814
116 => 0.0613676414098
117 => 0.061583152477006
118 => 0.061293962537811
119 => 0.06135567587364
120 => 0.062380528442214
121 => 0.062586055315927
122 => 0.061887594694516
123 => 0.059083174512162
124 => 0.058394962765057
125 => 0.058889635721044
126 => 0.058653213909101
127 => 0.0473377213203
128 => 0.049996128458965
129 => 0.048416593208146
130 => 0.049144515722646
131 => 0.047532219250231
201 => 0.048301691634566
202 => 0.048159598181811
203 => 0.052434238192798
204 => 0.052367495568602
205 => 0.052399441730864
206 => 0.050874568170826
207 => 0.053303733156795
208 => 0.054500427178831
209 => 0.054278950964332
210 => 0.054334691756004
211 => 0.053376880277007
212 => 0.052408715439652
213 => 0.051334871635526
214 => 0.053329940692487
215 => 0.053108123070318
216 => 0.053616892888114
217 => 0.054910837782035
218 => 0.055101376082883
219 => 0.055357461491472
220 => 0.055265673101894
221 => 0.057452444929769
222 => 0.057187612432628
223 => 0.057825782553228
224 => 0.056513018197071
225 => 0.055027500719342
226 => 0.055309849026633
227 => 0.055282656614139
228 => 0.054936465993095
229 => 0.054623940579644
301 => 0.054103673819739
302 => 0.055749874833073
303 => 0.055683042078248
304 => 0.05676498669429
305 => 0.056573742473955
306 => 0.05529656676516
307 => 0.055342181345457
308 => 0.055648961319575
309 => 0.056710730312749
310 => 0.057025935640668
311 => 0.056879919974015
312 => 0.057225528226409
313 => 0.057498682897518
314 => 0.057259832247537
315 => 0.060641453759819
316 => 0.05923716874209
317 => 0.059921607488779
318 => 0.060084842096917
319 => 0.059666720080626
320 => 0.059757395774132
321 => 0.059894744742148
322 => 0.060728700780251
323 => 0.062917242731357
324 => 0.063886533063594
325 => 0.066802690852069
326 => 0.063806046994674
327 => 0.063628238549521
328 => 0.064153526626754
329 => 0.065865619955241
330 => 0.06725311078923
331 => 0.06771342154513
401 => 0.067774259210425
402 => 0.068637832789375
403 => 0.069132817060136
404 => 0.068532972242651
405 => 0.068024666566202
406 => 0.066203978726388
407 => 0.066414728301415
408 => 0.067866583883053
409 => 0.069917415405983
410 => 0.07167724220531
411 => 0.071061012196342
412 => 0.07576241217418
413 => 0.076228536778486
414 => 0.076164133429784
415 => 0.077226034647034
416 => 0.075118376983214
417 => 0.074217312497987
418 => 0.068134568022965
419 => 0.069843571108523
420 => 0.072327707459614
421 => 0.071998922698514
422 => 0.070194876479197
423 => 0.07167587367448
424 => 0.071186209686655
425 => 0.07079999138328
426 => 0.072569332303142
427 => 0.070623869281235
428 => 0.072308299977769
429 => 0.07014800018626
430 => 0.071063827083115
501 => 0.070543959442897
502 => 0.0708803775187
503 => 0.068913684321708
504 => 0.069974864232026
505 => 0.068869535748603
506 => 0.068869011678984
507 => 0.068844611491449
508 => 0.07014502555042
509 => 0.070187432006197
510 => 0.069226424051801
511 => 0.069087927791807
512 => 0.069600021053833
513 => 0.069000493961438
514 => 0.069281008914591
515 => 0.069008990473604
516 => 0.068947753392953
517 => 0.068459805915693
518 => 0.068249584726095
519 => 0.068332017871269
520 => 0.06805063104959
521 => 0.067881085311322
522 => 0.068810884576704
523 => 0.068314130337206
524 => 0.068734749865042
525 => 0.068255400826656
526 => 0.066593768217177
527 => 0.065638145732019
528 => 0.062499475766137
529 => 0.063389598674953
530 => 0.063979751084397
531 => 0.063784705716596
601 => 0.06420373863917
602 => 0.064229463857371
603 => 0.064093231982708
604 => 0.063935492924231
605 => 0.063858714274082
606 => 0.064430959428727
607 => 0.064763167001884
608 => 0.064038980773905
609 => 0.063869314073132
610 => 0.064601506333036
611 => 0.065048143188604
612 => 0.068345858786546
613 => 0.06810155336357
614 => 0.068714712032723
615 => 0.068645679776263
616 => 0.069288367745372
617 => 0.070338890954664
618 => 0.068202883539264
619 => 0.068573620568998
620 => 0.068482724410876
621 => 0.069475104831005
622 => 0.069478202934355
623 => 0.068883221299409
624 => 0.069205770496188
625 => 0.06902573238322
626 => 0.069351085586963
627 => 0.0680982905157
628 => 0.069624059681627
629 => 0.070489072480314
630 => 0.070501083183863
701 => 0.070911092385275
702 => 0.071327685480041
703 => 0.072127299647833
704 => 0.071305384674893
705 => 0.069826839650384
706 => 0.069933585825482
707 => 0.069066715418591
708 => 0.069081287666744
709 => 0.069003499864057
710 => 0.069236946915513
711 => 0.068149519015628
712 => 0.068404736170211
713 => 0.068047430659245
714 => 0.068572843856598
715 => 0.068007586110159
716 => 0.068482680577996
717 => 0.068687715600684
718 => 0.069444299248489
719 => 0.067895838090219
720 => 0.064738420966901
721 => 0.065402148326205
722 => 0.064420443427136
723 => 0.064511303953159
724 => 0.064694856676071
725 => 0.064099902246399
726 => 0.064213400802412
727 => 0.064209345835314
728 => 0.064174402319535
729 => 0.064019631694148
730 => 0.0637951836669
731 => 0.064689315525994
801 => 0.064841245952157
802 => 0.065178968469319
803 => 0.066183801601021
804 => 0.066083395075567
805 => 0.06624716228441
806 => 0.06588965938702
807 => 0.064527887487226
808 => 0.064601838253067
809 => 0.063679671018047
810 => 0.065155386579805
811 => 0.064805917656287
812 => 0.064580612767865
813 => 0.064519136241624
814 => 0.065526460160303
815 => 0.06582786726464
816 => 0.065640050583896
817 => 0.065254833092201
818 => 0.065994564555583
819 => 0.066192485488419
820 => 0.066236792686238
821 => 0.06754745500991
822 => 0.066310044150489
823 => 0.066607901243158
824 => 0.068931697253103
825 => 0.066824334934012
826 => 0.067940651754222
827 => 0.067886013854905
828 => 0.068457083766023
829 => 0.067839169453912
830 => 0.067846829242374
831 => 0.06835390063582
901 => 0.067641810314533
902 => 0.067465486736833
903 => 0.067221896977095
904 => 0.067753766305931
905 => 0.068072597914187
906 => 0.070642146520722
907 => 0.072302192106196
908 => 0.072230125149271
909 => 0.072888682231868
910 => 0.072591996234467
911 => 0.071633918887046
912 => 0.073269240094007
913 => 0.072751756039379
914 => 0.0727944167961
915 => 0.072792828960604
916 => 0.07313691061769
917 => 0.072893097229024
918 => 0.072412516013031
919 => 0.072731548251994
920 => 0.073678959945598
921 => 0.076619754912689
922 => 0.078265462736624
923 => 0.076520681235276
924 => 0.07772420815135
925 => 0.077002520862194
926 => 0.076871368813417
927 => 0.077627272656652
928 => 0.078384499609499
929 => 0.078336267526185
930 => 0.077786559642452
1001 => 0.077476043607253
1002 => 0.079827375056287
1003 => 0.08155979601405
1004 => 0.081441656519028
1005 => 0.081963085829033
1006 => 0.083494018410409
1007 => 0.083633987699378
1008 => 0.083616354786125
1009 => 0.08326942629913
1010 => 0.084776828242212
1011 => 0.086034329463344
1012 => 0.083189122378118
1013 => 0.084272539989677
1014 => 0.084758921061041
1015 => 0.085473072776564
1016 => 0.086677966426377
1017 => 0.087986800512331
1018 => 0.08817188400272
1019 => 0.088040558409228
1020 => 0.087177347146193
1021 => 0.088609489020682
1022 => 0.089448404142897
1023 => 0.089947958899946
1024 => 0.091214746645834
1025 => 0.084761924784953
1026 => 0.080194296745766
1027 => 0.079480995670099
1028 => 0.080931521456648
1029 => 0.081314013538835
1030 => 0.08115983146011
1031 => 0.076018550831431
1101 => 0.079453927891601
1102 => 0.083150104753637
1103 => 0.083292089960062
1104 => 0.08514247338061
1105 => 0.08574503407212
1106 => 0.08723483526096
1107 => 0.087141647790969
1108 => 0.087504390672537
1109 => 0.087421002365896
1110 => 0.090180545353571
1111 => 0.093224731065076
1112 => 0.093119320593804
1113 => 0.092681682880605
1114 => 0.093331649513025
1115 => 0.096473575402065
1116 => 0.096184317214538
1117 => 0.096465306904766
1118 => 0.10016981459913
1119 => 0.10498620156187
1120 => 0.10274850626033
1121 => 0.1076036611852
1122 => 0.11065972384969
1123 => 0.11594486822517
1124 => 0.11528314211947
1125 => 0.11734061004066
1126 => 0.11409851428387
1127 => 0.10665400709063
1128 => 0.10547588533087
1129 => 0.1078345149287
1130 => 0.11363297564327
1201 => 0.10765190076583
1202 => 0.10886186442377
1203 => 0.10851339480889
1204 => 0.10849482634401
1205 => 0.10920350912495
1206 => 0.10817552778879
1207 => 0.10398734689497
1208 => 0.1059067655175
1209 => 0.10516558580929
1210 => 0.10598797995416
1211 => 0.11042610197287
1212 => 0.10846390243678
1213 => 0.10639688462166
1214 => 0.1089893836698
1215 => 0.1122905258374
1216 => 0.11208394629328
1217 => 0.11168309563412
1218 => 0.11394266981192
1219 => 0.11767482436053
1220 => 0.11868361073801
1221 => 0.11942827621813
1222 => 0.11953095300662
1223 => 0.12058858774126
1224 => 0.11490141921482
1225 => 0.12392710172312
1226 => 0.12548558776286
1227 => 0.12519265698001
1228 => 0.12692484862206
1229 => 0.12641519389951
1230 => 0.12567678416891
1231 => 0.12842267636928
]
'min_raw' => 0.0473377213203
'max_raw' => 0.12842267636928
'avg_raw' => 0.087880198844792
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.047337'
'max' => '$0.128422'
'avg' => '$0.08788'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.016325556692848
'max_diff' => 0.059190203494678
'year' => 2032
]
7 => [
'items' => [
101 => 0.12527473254363
102 => 0.12080662259822
103 => 0.11835532911297
104 => 0.12158339011455
105 => 0.12355465432441
106 => 0.12485753457118
107 => 0.12525178534663
108 => 0.11534289791824
109 => 0.11000255716643
110 => 0.11342565436121
111 => 0.11760206918838
112 => 0.11487821901958
113 => 0.11498498878927
114 => 0.11110149426379
115 => 0.11794567228223
116 => 0.11694853311354
117 => 0.1221216928846
118 => 0.12088707678804
119 => 0.12510558776043
120 => 0.1239947124437
121 => 0.12860589377525
122 => 0.13044541885115
123 => 0.13353426775281
124 => 0.13580643757875
125 => 0.13714069916022
126 => 0.13706059509956
127 => 0.14234760421183
128 => 0.13923003965235
129 => 0.13531364381209
130 => 0.13524280856741
131 => 0.13727116546884
201 => 0.1415220450817
202 => 0.14262423631753
203 => 0.14324021085466
204 => 0.14229682440881
205 => 0.13891293151736
206 => 0.13745178372356
207 => 0.1386967239774
208 => 0.13717426902588
209 => 0.13980245339762
210 => 0.1434115118899
211 => 0.14266625558301
212 => 0.14515753568188
213 => 0.1477357484939
214 => 0.15142270860987
215 => 0.15238661651192
216 => 0.15397991961988
217 => 0.15561995189078
218 => 0.15614668605608
219 => 0.15715238501365
220 => 0.15714708448372
221 => 0.16017782598372
222 => 0.16352082771247
223 => 0.16478273347441
224 => 0.16768441619209
225 => 0.16271538622515
226 => 0.16648445253518
227 => 0.16988424469267
228 => 0.16583087232553
301 => 0.171417501819
302 => 0.17163441798265
303 => 0.17490959451914
304 => 0.17158957565151
305 => 0.16961815904578
306 => 0.17530956491849
307 => 0.17806345694269
308 => 0.17723396225309
309 => 0.17092146670799
310 => 0.16724732354507
311 => 0.15763138219842
312 => 0.16902188010128
313 => 0.17456985936438
314 => 0.17090709878199
315 => 0.17275438216969
316 => 0.18283256134931
317 => 0.18666967946714
318 => 0.18587158572211
319 => 0.18600645042728
320 => 0.18807688971504
321 => 0.1972583577287
322 => 0.19175660927015
323 => 0.19596248982013
324 => 0.1981932736984
325 => 0.20026535008748
326 => 0.19517698536237
327 => 0.18855709761792
328 => 0.18646030128527
329 => 0.17054290942719
330 => 0.16971434005525
331 => 0.16924923895856
401 => 0.16631684233376
402 => 0.16401278183771
403 => 0.16218050738697
404 => 0.15737207206476
405 => 0.15899477783291
406 => 0.15133113552775
407 => 0.15623406229178
408 => 0.14400270412764
409 => 0.15418934266351
410 => 0.14864521843805
411 => 0.1523679487467
412 => 0.15235496049136
413 => 0.14550023370041
414 => 0.1415465703419
415 => 0.14406599851282
416 => 0.14676702550452
417 => 0.14720525804657
418 => 0.15070721004532
419 => 0.15168452957396
420 => 0.14872320577549
421 => 0.14374923641648
422 => 0.14490457605441
423 => 0.14152315742101
424 => 0.13559735133036
425 => 0.13985336871931
426 => 0.14130656017978
427 => 0.14194837231521
428 => 0.13612102260849
429 => 0.13428994281272
430 => 0.1333150912937
501 => 0.14299699874606
502 => 0.14352739549197
503 => 0.14081381074935
504 => 0.15307947109867
505 => 0.15030337440044
506 => 0.15340495457256
507 => 0.14479974109197
508 => 0.14512847183538
509 => 0.141054625869
510 => 0.14333570739569
511 => 0.14172351249532
512 => 0.14315141855042
513 => 0.14400729955237
514 => 0.14808047704071
515 => 0.15423585180759
516 => 0.14747208015245
517 => 0.14452500798332
518 => 0.14635335498209
519 => 0.15122248397656
520 => 0.15859946364931
521 => 0.15423214320749
522 => 0.15617028585766
523 => 0.15659368380476
524 => 0.15337338339795
525 => 0.1587182007187
526 => 0.16158253174211
527 => 0.16452074268234
528 => 0.16707190891494
529 => 0.16334715662017
530 => 0.16733317549784
531 => 0.16412114790949
601 => 0.16123962710943
602 => 0.16124399718704
603 => 0.15943637709686
604 => 0.15593388539735
605 => 0.1552879721901
606 => 0.15864809426408
607 => 0.16134259396266
608 => 0.16156452586362
609 => 0.16305633934515
610 => 0.16393917919662
611 => 0.17259220990359
612 => 0.17607253043556
613 => 0.18032820050295
614 => 0.18198602383063
615 => 0.18697547768436
616 => 0.18294608847384
617 => 0.1820743047721
618 => 0.16997152176084
619 => 0.17195335180093
620 => 0.17512645291325
621 => 0.17002384502946
622 => 0.17326027527329
623 => 0.17389921516039
624 => 0.16985046036611
625 => 0.1720130752381
626 => 0.16626981130871
627 => 0.15436103926672
628 => 0.15873145858629
629 => 0.16194955827273
630 => 0.15735693323135
701 => 0.16558903585888
702 => 0.16078001144897
703 => 0.15925578158491
704 => 0.15330921745802
705 => 0.15611576682167
706 => 0.15991166502192
707 => 0.15756624125469
708 => 0.16243334773883
709 => 0.16932646853025
710 => 0.17423891689865
711 => 0.17461603368627
712 => 0.17145765849386
713 => 0.17651897489617
714 => 0.1765558410606
715 => 0.17084665548271
716 => 0.16734981110513
717 => 0.16655532070512
718 => 0.16854011349336
719 => 0.17095001835125
720 => 0.17474976663379
721 => 0.17704587494075
722 => 0.18303290764355
723 => 0.18465282703124
724 => 0.18643262730945
725 => 0.18881098935122
726 => 0.19166682278187
727 => 0.18541842181829
728 => 0.18566668243705
729 => 0.17984825797477
730 => 0.17363043699036
731 => 0.1783489880552
801 => 0.18451786588994
802 => 0.18310271849865
803 => 0.18294348550829
804 => 0.18321127123052
805 => 0.18214429631188
806 => 0.1773184082988
807 => 0.17489487755028
808 => 0.1780218505245
809 => 0.17968369749474
810 => 0.1822610772173
811 => 0.18194336076461
812 => 0.18858241413954
813 => 0.19116214952649
814 => 0.19050214282141
815 => 0.19062359993909
816 => 0.19529408763294
817 => 0.20048863050754
818 => 0.20535400538992
819 => 0.21030327369298
820 => 0.20433673758041
821 => 0.20130729850723
822 => 0.20443290634287
823 => 0.20277441482916
824 => 0.21230459900745
825 => 0.21296444828261
826 => 0.22249394332011
827 => 0.23153856886185
828 => 0.22585780161038
829 => 0.23121450926114
830 => 0.23700822532422
831 => 0.24818524360646
901 => 0.24442121706125
902 => 0.24153803171743
903 => 0.23881343549897
904 => 0.24448288771211
905 => 0.25177654741261
906 => 0.25334753185429
907 => 0.25589312681206
908 => 0.25321674497451
909 => 0.25644015210405
910 => 0.26782019570822
911 => 0.26474520747195
912 => 0.26037822984742
913 => 0.2693616813219
914 => 0.27261275748823
915 => 0.29543051262535
916 => 0.32423887104041
917 => 0.31231202149069
918 => 0.30490864109815
919 => 0.30664861110093
920 => 0.31716844836964
921 => 0.3205470862174
922 => 0.31136278386087
923 => 0.31460683471966
924 => 0.33248187389962
925 => 0.34207125891975
926 => 0.32904758603618
927 => 0.29311578907677
928 => 0.25998503129247
929 => 0.26877280015433
930 => 0.26777653988161
1001 => 0.28698103952393
1002 => 0.26467187001948
1003 => 0.26504749921888
1004 => 0.28464912757588
1005 => 0.27941974918722
1006 => 0.27094882592576
1007 => 0.26004687840676
1008 => 0.2398936201098
1009 => 0.222043317221
1010 => 0.25705187186518
1011 => 0.25554223933
1012 => 0.25335606770405
1013 => 0.25822115608913
1014 => 0.28184464430765
1015 => 0.28130004644244
1016 => 0.27783559268027
1017 => 0.28046335032458
1018 => 0.27048816730569
1019 => 0.27305899910036
1020 => 0.25997978321117
1021 => 0.26589213502938
1022 => 0.27093065112893
1023 => 0.27194220783242
1024 => 0.27422129673674
1025 => 0.25474673158219
1026 => 0.26349023959339
1027 => 0.26862623139406
1028 => 0.24542163358965
1029 => 0.26816755110394
1030 => 0.25440772272985
1031 => 0.24973743031399
1101 => 0.2560253637877
1102 => 0.25357494999778
1103 => 0.25146822811434
1104 => 0.2502926411053
1105 => 0.25490980547449
1106 => 0.25469440923797
1107 => 0.24713983217697
1108 => 0.23728519436486
1109 => 0.24059273428206
1110 => 0.23939107402179
1111 => 0.2350361022213
1112 => 0.23797082739353
1113 => 0.22504778296546
1114 => 0.20281435670837
1115 => 0.21750243912207
1116 => 0.2169369639267
1117 => 0.21665182569094
1118 => 0.22768951367605
1119 => 0.22662849465907
1120 => 0.22470273475372
1121 => 0.23500073413044
1122 => 0.2312418258303
1123 => 0.24282589550115
1124 => 0.25045591299703
1125 => 0.24852069375486
1126 => 0.25569676208881
1127 => 0.24066893332146
1128 => 0.24566057522613
1129 => 0.24668934570457
1130 => 0.23487365841665
1201 => 0.22680209049209
1202 => 0.22626380893414
1203 => 0.21226882248353
1204 => 0.21974483128186
1205 => 0.22632340964613
1206 => 0.22317278112795
1207 => 0.22217538626144
1208 => 0.22727086032587
1209 => 0.22766682230046
1210 => 0.21863884731764
1211 => 0.22051604919535
1212 => 0.22834429308426
1213 => 0.22031879753456
1214 => 0.20472657063872
1215 => 0.20085948278916
1216 => 0.20034354198545
1217 => 0.18985569303482
1218 => 0.20111790009046
1219 => 0.19620164490229
1220 => 0.21173203613595
1221 => 0.20286115995444
1222 => 0.20247875421225
1223 => 0.20190069184621
1224 => 0.19287336700681
1225 => 0.19484977743022
1226 => 0.20141966669342
1227 => 0.20376387719763
1228 => 0.20351935683649
1229 => 0.20138747065184
1230 => 0.20236343723015
1231 => 0.19921950883212
]
'min_raw' => 0.11000255716643
'max_raw' => 0.34207125891975
'avg_raw' => 0.22603690804309
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.1100025'
'max' => '$0.342071'
'avg' => '$0.226036'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.062664835846126
'max_diff' => 0.21364858255046
'year' => 2033
]
8 => [
'items' => [
101 => 0.19810932227956
102 => 0.19460526813882
103 => 0.1894552765716
104 => 0.19017141448576
105 => 0.1799679336225
106 => 0.17440853570847
107 => 0.17286976763756
108 => 0.17081206266359
109 => 0.17310219088971
110 => 0.17993902844321
111 => 0.17169235183769
112 => 0.15755400323464
113 => 0.15840374207625
114 => 0.16031285296364
115 => 0.15675523745503
116 => 0.15338825294416
117 => 0.15631557280427
118 => 0.1503249681186
119 => 0.16103678891945
120 => 0.16074706418632
121 => 0.16473976856632
122 => 0.16723648855368
123 => 0.16148235730552
124 => 0.16003520885743
125 => 0.16085957038269
126 => 0.14723471065812
127 => 0.16362632684919
128 => 0.16376808222669
129 => 0.16255428662237
130 => 0.17128231620975
131 => 0.18970118097981
201 => 0.18277126315619
202 => 0.18008778951701
203 => 0.17498650416733
204 => 0.18178366401143
205 => 0.18126174818762
206 => 0.17890144690162
207 => 0.17747392931927
208 => 0.18010417423484
209 => 0.17714801286659
210 => 0.17661700505498
211 => 0.17339967545877
212 => 0.17225123517209
213 => 0.17140097570456
214 => 0.17046492357558
215 => 0.17252962132245
216 => 0.16785074459443
217 => 0.16220847793636
218 => 0.16173938451392
219 => 0.16303459269641
220 => 0.16246155949257
221 => 0.1617366410514
222 => 0.16035257432742
223 => 0.15994195129633
224 => 0.16127627694142
225 => 0.15976990108413
226 => 0.1619926407181
227 => 0.16138817852745
228 => 0.158011701867
301 => 0.15380336181631
302 => 0.15376589876257
303 => 0.15285921880171
304 => 0.15170442555131
305 => 0.15138318848714
306 => 0.15606904209061
307 => 0.165768618814
308 => 0.163864359812
309 => 0.16524038209726
310 => 0.17200904984142
311 => 0.17416060577635
312 => 0.17263348233613
313 => 0.17054306158229
314 => 0.1706350294864
315 => 0.17777863001566
316 => 0.17822416761815
317 => 0.17934989740377
318 => 0.18079677830949
319 => 0.17287989241087
320 => 0.17026214487252
321 => 0.16902171086175
322 => 0.16520165421696
323 => 0.16932125780147
324 => 0.16692094121179
325 => 0.16724482592623
326 => 0.16703389558105
327 => 0.16714907781257
328 => 0.16103379474723
329 => 0.16326188248642
330 => 0.15955725447529
331 => 0.1545971734324
401 => 0.15458054550152
402 => 0.15579451830982
403 => 0.15507239978068
404 => 0.15312919738613
405 => 0.15340522011462
406 => 0.15098697056828
407 => 0.15369883939336
408 => 0.15377660608773
409 => 0.15273238887358
410 => 0.1569103969644
411 => 0.15862213028814
412 => 0.15793480414849
413 => 0.15857390565391
414 => 0.16394349037075
415 => 0.164818966971
416 => 0.16520779584609
417 => 0.16468681666342
418 => 0.15867205180545
419 => 0.15893883220366
420 => 0.1569813746532
421 => 0.15532752929485
422 => 0.15539367443591
423 => 0.15624396593494
424 => 0.15995723878018
425 => 0.16777160257357
426 => 0.16806815196731
427 => 0.16842757848347
428 => 0.16696561020895
429 => 0.1665246665882
430 => 0.16710638504117
501 => 0.17004104922224
502 => 0.17758980224951
503 => 0.17492156876541
504 => 0.17275225340931
505 => 0.17465532781983
506 => 0.17436236443112
507 => 0.17188945860248
508 => 0.17182005237214
509 => 0.16707375545115
510 => 0.16531915754742
511 => 0.16385288420968
512 => 0.16225175200291
513 => 0.16130254716029
514 => 0.16276095720443
515 => 0.16309451283693
516 => 0.15990567378677
517 => 0.1594710468074
518 => 0.16207512161163
519 => 0.16092916537998
520 => 0.16210780978258
521 => 0.16238126539421
522 => 0.16233723274252
523 => 0.16114072282444
524 => 0.16190334256578
525 => 0.16009951952962
526 => 0.15813813290326
527 => 0.15688689043434
528 => 0.15579501542698
529 => 0.15640085114121
530 => 0.15424115744121
531 => 0.15355022796054
601 => 0.1616449841569
602 => 0.16762466759246
603 => 0.16753772062709
604 => 0.16700845333636
605 => 0.16622206950028
606 => 0.16998352034655
607 => 0.16867310608429
608 => 0.16962654194886
609 => 0.16986923139197
610 => 0.17060377924288
611 => 0.17086631696306
612 => 0.17007274562851
613 => 0.16740942330318
614 => 0.16077267728956
615 => 0.15768325410466
616 => 0.15666369299523
617 => 0.15670075210514
618 => 0.15567849641479
619 => 0.15597959652988
620 => 0.15557378608257
621 => 0.15480527927146
622 => 0.15635339801122
623 => 0.15653180427426
624 => 0.15617045486175
625 => 0.15625556572944
626 => 0.15326374692827
627 => 0.15349120841384
628 => 0.15222467395781
629 => 0.15198721401561
630 => 0.14878552520054
701 => 0.14311326937244
702 => 0.14625624972041
703 => 0.14245997142998
704 => 0.14102226331839
705 => 0.14782814990916
706 => 0.14714502766136
707 => 0.14597581931922
708 => 0.14424631649683
709 => 0.14360482707649
710 => 0.13970734042933
711 => 0.13947705612594
712 => 0.14140875574926
713 => 0.14051734283882
714 => 0.1392654615081
715 => 0.1347312742294
716 => 0.12963334651032
717 => 0.12978722090373
718 => 0.13140877686085
719 => 0.1361236695028
720 => 0.13428147937912
721 => 0.13294494930769
722 => 0.13269465740126
723 => 0.13582758463185
724 => 0.14026133303168
725 => 0.14234154858135
726 => 0.14028011814871
727 => 0.13791205786299
728 => 0.13805619072005
729 => 0.13901504204539
730 => 0.13911580376226
731 => 0.13757443995678
801 => 0.13800832483943
802 => 0.13734921402742
803 => 0.13330425219074
804 => 0.13323109165783
805 => 0.13223839278928
806 => 0.13220833426207
807 => 0.13051950584634
808 => 0.13028322707666
809 => 0.12692995575267
810 => 0.12913708909276
811 => 0.12765665992792
812 => 0.12542530397859
813 => 0.12504061737187
814 => 0.12502905322795
815 => 0.12732015686586
816 => 0.1291103162128
817 => 0.12768241262707
818 => 0.12735730665935
819 => 0.13082858784806
820 => 0.13038683567536
821 => 0.13000428114281
822 => 0.13986433949225
823 => 0.13205933391872
824 => 0.12865590599451
825 => 0.12444351764488
826 => 0.12581509253223
827 => 0.12610410351362
828 => 0.11597406887281
829 => 0.11186431508066
830 => 0.11045400245199
831 => 0.1096423475953
901 => 0.11001222890562
902 => 0.10631296846663
903 => 0.10879893266175
904 => 0.10559568581229
905 => 0.10505865105371
906 => 0.11078645322668
907 => 0.11158344343772
908 => 0.108183235592
909 => 0.1103667194726
910 => 0.10957495786479
911 => 0.10565059628565
912 => 0.10550071453898
913 => 0.10353160784654
914 => 0.10045033716707
915 => 0.099042113785018
916 => 0.098308698820891
917 => 0.098611320129063
918 => 0.098458305535286
919 => 0.097459781807836
920 => 0.098515539746514
921 => 0.095818514482492
922 => 0.094744537290949
923 => 0.094259446709611
924 => 0.091865681552809
925 => 0.095675226429478
926 => 0.096425754761563
927 => 0.097177761866313
928 => 0.1037234702961
929 => 0.10339646520093
930 => 0.10635243200335
1001 => 0.10623756856908
1002 => 0.10539447895354
1003 => 0.1018376225471
1004 => 0.10325532211584
1005 => 0.098891863202697
1006 => 0.10216126330679
1007 => 0.10066924563269
1008 => 0.10165681063034
1009 => 0.099881079719424
1010 => 0.10086384252366
1011 => 0.096603732871866
1012 => 0.092625702420382
1013 => 0.094226578000008
1014 => 0.095966912837389
1015 => 0.099740402193903
1016 => 0.097492943063774
1017 => 0.098301214352807
1018 => 0.095593640837527
1019 => 0.090007143295366
1020 => 0.090038762264763
1021 => 0.089179401326366
1022 => 0.08843678800684
1023 => 0.097751090780466
1024 => 0.096592709993229
1025 => 0.094746981813895
1026 => 0.097217562328256
1027 => 0.097870823029637
1028 => 0.09788942044343
1029 => 0.099691892211794
1030 => 0.10065387171768
1031 => 0.10082342477505
1101 => 0.10365965304755
1102 => 0.10461031935374
1103 => 0.10852597932559
1104 => 0.10057225447758
1105 => 0.10040845274843
1106 => 0.097252328462621
1107 => 0.095250664544208
1108 => 0.097389384103613
1109 => 0.099283997668911
1110 => 0.097311199387309
1111 => 0.097568805194842
1112 => 0.094920484685333
1113 => 0.09586713465242
1114 => 0.096682517131598
1115 => 0.096232310852563
1116 => 0.095558330262617
1117 => 0.099128660962445
1118 => 0.098927208912122
1119 => 0.10225198294135
1120 => 0.104843882054
1121 => 0.10948902862127
1122 => 0.10464157602136
1123 => 0.10446491558174
1124 => 0.10619179971625
1125 => 0.10461005497678
1126 => 0.10560966305215
1127 => 0.10932797630644
1128 => 0.10940653840627
1129 => 0.1080905220127
1130 => 0.10801044229555
1201 => 0.10826319763958
1202 => 0.10974359358421
1203 => 0.10922629775318
1204 => 0.10982492558517
1205 => 0.11057351885559
1206 => 0.11367001801902
1207 => 0.11441657348418
1208 => 0.11260283074848
1209 => 0.1127665914099
1210 => 0.1120882018384
1211 => 0.11143288601252
1212 => 0.1129059402879
1213 => 0.1155979759291
1214 => 0.11558122891509
1215 => 0.11620572885815
1216 => 0.11659478714905
1217 => 0.11492466415646
1218 => 0.11383747550042
1219 => 0.11425437281076
1220 => 0.11492100068883
1221 => 0.11403819437448
1222 => 0.10858910484666
1223 => 0.11024201052021
1224 => 0.10996688619317
1225 => 0.10957507569521
1226 => 0.11123708513151
1227 => 0.11107678026688
1228 => 0.10627502720401
1229 => 0.10658241985584
1230 => 0.10629372076928
1231 => 0.10722656658024
]
'min_raw' => 0.08843678800684
'max_raw' => 0.19810932227956
'avg_raw' => 0.1432730551432
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.088436'
'max' => '$0.1981093'
'avg' => '$0.143273'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.021565769159586
'max_diff' => -0.14396193664019
'year' => 2034
]
9 => [
'items' => [
101 => 0.10455967824165
102 => 0.10537999513283
103 => 0.10589449019699
104 => 0.10619753174231
105 => 0.10729232560156
106 => 0.10716386417824
107 => 0.10728434025912
108 => 0.10890763053753
109 => 0.11711767571974
110 => 0.11756453036457
111 => 0.11536405466404
112 => 0.11624310130394
113 => 0.11455552398171
114 => 0.11568840594391
115 => 0.11646349501036
116 => 0.11296101656011
117 => 0.11275362251718
118 => 0.11105907996304
119 => 0.11196963114784
120 => 0.11052087874187
121 => 0.11087635190709
122 => 0.10988241794755
123 => 0.11167130118444
124 => 0.11367155060764
125 => 0.11417689260418
126 => 0.11284755537468
127 => 0.11188502761294
128 => 0.11019514593967
129 => 0.11300545682379
130 => 0.11382727736897
131 => 0.11300114015032
201 => 0.1128097061053
202 => 0.11244693893591
203 => 0.1128866688752
204 => 0.11382280155779
205 => 0.11338133867234
206 => 0.11367293268575
207 => 0.11256167699705
208 => 0.11492521703667
209 => 0.11867908743647
210 => 0.11869115674362
211 => 0.11824969147852
212 => 0.11806905340354
213 => 0.11852202355589
214 => 0.11876774128173
215 => 0.1202325636939
216 => 0.12180437650325
217 => 0.12913934104887
218 => 0.12707971235579
219 => 0.13358772925965
220 => 0.13873472567038
221 => 0.14027808484308
222 => 0.13885826702485
223 => 0.13400114696576
224 => 0.13376283348355
225 => 0.14102142147503
226 => 0.13897053790304
227 => 0.13872659182801
228 => 0.13613141774309
301 => 0.13766548704584
302 => 0.13732996358589
303 => 0.13680032338999
304 => 0.13972722075545
305 => 0.14520611133765
306 => 0.14435217485971
307 => 0.14371475089189
308 => 0.14092174461626
309 => 0.14260375823473
310 => 0.14200482540204
311 => 0.14457822094343
312 => 0.1430537984324
313 => 0.13895500044288
314 => 0.13960774753253
315 => 0.13950908612308
316 => 0.14153953093844
317 => 0.1409300418036
318 => 0.13939007358755
319 => 0.14518738508528
320 => 0.14481093992295
321 => 0.14534465309578
322 => 0.14557961014009
323 => 0.14910833148867
324 => 0.15055393571869
325 => 0.15088211318777
326 => 0.15225532539925
327 => 0.15084794641698
328 => 0.15647846579027
329 => 0.16022243262358
330 => 0.16457124276326
331 => 0.17092602322729
401 => 0.17331547946677
402 => 0.1728838455843
403 => 0.17770196760602
404 => 0.18636002577822
405 => 0.17463388668426
406 => 0.18698153962349
407 => 0.18307241526344
408 => 0.1738039517279
409 => 0.17320717194422
410 => 0.17948388305956
411 => 0.19340502420233
412 => 0.18991793623834
413 => 0.19341072782902
414 => 0.18933620090794
415 => 0.1891338663035
416 => 0.19321283715098
417 => 0.20274357486924
418 => 0.19821587863365
419 => 0.19172431584328
420 => 0.19651758478779
421 => 0.19236521163196
422 => 0.1830087527358
423 => 0.18991526972789
424 => 0.18529707850156
425 => 0.18664491221795
426 => 0.1963516632716
427 => 0.19518372130395
428 => 0.1966951463586
429 => 0.19402752069801
430 => 0.19153553768507
501 => 0.18688406633432
502 => 0.18550699498213
503 => 0.18588756796204
504 => 0.18550680638906
505 => 0.18290435091754
506 => 0.18234235090625
507 => 0.18140565959898
508 => 0.18169597940255
509 => 0.17993472570617
510 => 0.18325857532482
511 => 0.1838755111037
512 => 0.1862943316701
513 => 0.18654546164543
514 => 0.19328184249309
515 => 0.18957155712248
516 => 0.19206073687971
517 => 0.19183808121316
518 => 0.17400482743715
519 => 0.17646209246336
520 => 0.18028482571188
521 => 0.17856268956501
522 => 0.17612799197114
523 => 0.17416184312386
524 => 0.17118292657118
525 => 0.17537569441405
526 => 0.18088873827626
527 => 0.18668528153568
528 => 0.19364944845732
529 => 0.19209512747225
530 => 0.18655509127926
531 => 0.18680361325588
601 => 0.18833987832554
602 => 0.18635027547592
603 => 0.18576350275391
604 => 0.18825926476404
605 => 0.18827645170536
606 => 0.18598717317534
607 => 0.18344305902277
608 => 0.18343239909158
609 => 0.18297969855136
610 => 0.18941673532837
611 => 0.1929564546979
612 => 0.19336227781907
613 => 0.19292913956841
614 => 0.19309583729045
615 => 0.19103615258171
616 => 0.19574398104536
617 => 0.20006434999957
618 => 0.19890639882862
619 => 0.19717046541091
620 => 0.19578771082982
621 => 0.19858066579389
622 => 0.19845629990586
623 => 0.20002661534577
624 => 0.19995537676683
625 => 0.19942733874694
626 => 0.19890641768652
627 => 0.20097181080883
628 => 0.20037701075881
629 => 0.19978128682001
630 => 0.19858647125999
701 => 0.19874886653839
702 => 0.19701323285405
703 => 0.19621024929449
704 => 0.18413530318556
705 => 0.18090848302501
706 => 0.1819237063355
707 => 0.18225794420957
708 => 0.18085362794042
709 => 0.18286705673114
710 => 0.18255326598685
711 => 0.18377404221142
712 => 0.18301135422625
713 => 0.1830426552072
714 => 0.18528555794935
715 => 0.18593668215739
716 => 0.18560551512996
717 => 0.18583745316423
718 => 0.19118236726897
719 => 0.19042249140401
720 => 0.19001882249564
721 => 0.19013064154198
722 => 0.19149638169199
723 => 0.19187871436735
724 => 0.19025874395582
725 => 0.19102273136684
726 => 0.19427569279849
727 => 0.19541404519789
728 => 0.19904711961665
729 => 0.19750372503081
730 => 0.20033669258967
731 => 0.20904426903577
801 => 0.21600048361938
802 => 0.20960326121057
803 => 0.22237746342478
804 => 0.23232401219902
805 => 0.23194224709022
806 => 0.23020783624361
807 => 0.21888395490682
808 => 0.20846355047115
809 => 0.21718066125533
810 => 0.21720288296341
811 => 0.21645407541623
812 => 0.21180329605143
813 => 0.21629223837548
814 => 0.21664855431572
815 => 0.21644911214124
816 => 0.21288337050658
817 => 0.20743914208966
818 => 0.20850293129068
819 => 0.21024543970268
820 => 0.20694650775344
821 => 0.20589229910633
822 => 0.20785227355272
823 => 0.21416771959588
824 => 0.2129738211043
825 => 0.21294264358977
826 => 0.21805064762846
827 => 0.21439441911302
828 => 0.20851634907923
829 => 0.20703205887348
830 => 0.20176382858076
831 => 0.20540261400874
901 => 0.20553356741829
902 => 0.20354064182687
903 => 0.20867806400734
904 => 0.20863072175752
905 => 0.21350793951349
906 => 0.22283134806358
907 => 0.22007395737825
908 => 0.21686741201446
909 => 0.21721605240336
910 => 0.22103977695182
911 => 0.21872786580268
912 => 0.21955924517113
913 => 0.22103851855957
914 => 0.22193100092312
915 => 0.21708763792577
916 => 0.21595841832626
917 => 0.21364843132788
918 => 0.21304579883795
919 => 0.21492723504867
920 => 0.21443154307927
921 => 0.20552256129129
922 => 0.20459152312534
923 => 0.20462007673667
924 => 0.20227893699994
925 => 0.1987081369635
926 => 0.20809198625787
927 => 0.20733833183264
928 => 0.20650635567541
929 => 0.20660826800749
930 => 0.21068147893801
1001 => 0.20831881089622
1002 => 0.21460035111899
1003 => 0.21330905528957
1004 => 0.21198464259463
1005 => 0.2118015684176
1006 => 0.21129178252363
1007 => 0.20954353701023
1008 => 0.20743242549953
1009 => 0.20603848681883
1010 => 0.19005961293716
1011 => 0.19302519898476
1012 => 0.19643683541086
1013 => 0.19761451863387
1014 => 0.19560000998771
1015 => 0.20962308209015
1016 => 0.21218523249296
1017 => 0.20442431179793
1018 => 0.2029725604122
1019 => 0.20971825866931
1020 => 0.2056497779922
1021 => 0.20748181459199
1022 => 0.20352195353369
1023 => 0.21156808548944
1024 => 0.2115067874449
1025 => 0.20837666038398
1026 => 0.21102222234168
1027 => 0.21056249084745
1028 => 0.20702858510483
1029 => 0.2116801166048
1030 => 0.21168242370639
1031 => 0.20866974446508
1101 => 0.20515159467153
1102 => 0.20452263258343
1103 => 0.20404879413921
1104 => 0.20736527938154
1105 => 0.21033882967942
1106 => 0.21587186957815
1107 => 0.21726300727047
1108 => 0.2226927102969
1109 => 0.21945958651211
1110 => 0.22089278840994
1111 => 0.22244873180883
1112 => 0.22319470829219
1113 => 0.22197917964387
1114 => 0.23041374339884
1115 => 0.23112587900812
1116 => 0.23136465191796
1117 => 0.22852056447632
1118 => 0.23104677979145
1119 => 0.22986484730496
1120 => 0.2329399072845
1121 => 0.23342211595363
1122 => 0.23301370236595
1123 => 0.23316676300868
1124 => 0.22596935080282
1125 => 0.22559612701057
1126 => 0.22050719412052
1127 => 0.22258097188871
1128 => 0.21870414374983
1129 => 0.21993352588843
1130 => 0.22047542582113
1201 => 0.22019236804884
1202 => 0.22269822017225
1203 => 0.22056773395558
1204 => 0.21494503054543
1205 => 0.2093207952335
1206 => 0.20925018754056
1207 => 0.20776942565892
1208 => 0.20669910603357
1209 => 0.20690528756504
1210 => 0.20763189817463
1211 => 0.20665687410403
1212 => 0.20686494492447
1213 => 0.21032030691234
1214 => 0.21101325511649
1215 => 0.20865834636644
1216 => 0.19920304792327
1217 => 0.1968826939685
1218 => 0.19855051837657
1219 => 0.19775340573116
1220 => 0.15960243244555
1221 => 0.16856543771762
1222 => 0.16323992433986
1223 => 0.16569416591942
1224 => 0.16025819579573
1225 => 0.16285252566236
1226 => 0.16237344766575
1227 => 0.17678569490863
1228 => 0.17656066749133
1229 => 0.1766683762078
1230 => 0.17152715853686
1231 => 0.17971725788594
]
'min_raw' => 0.10455967824165
'max_raw' => 0.23342211595363
'avg_raw' => 0.16899089709764
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.104559'
'max' => '$0.233422'
'avg' => '$0.16899'
'bar_min_pct' => 61.631153054957
'bar_max_pct' => 60.119598047091
'min_diff' => 0.016122890234806
'max_diff' => 0.035312793674072
'year' => 2035
]
10 => [
'items' => [
101 => 0.18375199533174
102 => 0.18300527281158
103 => 0.1831932067824
104 => 0.1799638785087
105 => 0.17669964316445
106 => 0.17307910380546
107 => 0.17980561842228
108 => 0.17905774482232
109 => 0.18077309778419
110 => 0.1851357233344
111 => 0.18577813651867
112 => 0.18664154635304
113 => 0.18633207538911
114 => 0.19370492928233
115 => 0.1928120280282
116 => 0.19496366314542
117 => 0.19053758646436
118 => 0.18552906057267
119 => 0.18648101760364
120 => 0.1863893364864
121 => 0.18522213063729
122 => 0.18416842938601
123 => 0.18241431368113
124 => 0.18796459533167
125 => 0.18773926403266
126 => 0.19138711584461
127 => 0.19074232260351
128 => 0.18643623553174
129 => 0.18659002827392
130 => 0.18762435837535
131 => 0.19120418666618
201 => 0.1922669234362
202 => 0.19177462142159
203 => 0.19293986377413
204 => 0.19386082381883
205 => 0.1930555221764
206 => 0.20445689520233
207 => 0.19972225022101
208 => 0.20202988324146
209 => 0.20258024011947
210 => 0.2011705125492
211 => 0.20147623198063
212 => 0.20193931361569
213 => 0.20475105462311
214 => 0.21212987661038
215 => 0.21539790663921
216 => 0.22522993622268
217 => 0.21512654223849
218 => 0.21452704865146
219 => 0.2162980940783
220 => 0.22207053626983
221 => 0.22674855848814
222 => 0.22830052833953
223 => 0.22850564677562
224 => 0.23141724538983
225 => 0.2330861194174
226 => 0.23106370073542
227 => 0.22934991265851
228 => 0.22321133649021
229 => 0.22392189339648
301 => 0.22881692585529
302 => 0.23573144751933
303 => 0.24166482644045
304 => 0.2395871639414
305 => 0.25543826220795
306 => 0.25700983385515
307 => 0.2567926934685
308 => 0.26037296756204
309 => 0.25326685259651
310 => 0.25022885077425
311 => 0.22972045309306
312 => 0.2354824763148
313 => 0.24385791545937
314 => 0.2427493946823
315 => 0.23666692689939
316 => 0.2416602123432
317 => 0.240009276021
318 => 0.23870711404628
319 => 0.24467257048903
320 => 0.23811330608278
321 => 0.24379248177934
322 => 0.23650888020495
323 => 0.23959665452869
324 => 0.2378438844837
325 => 0.23897814151422
326 => 0.23234729809043
327 => 0.23592514024728
328 => 0.23219844809385
329 => 0.23219668115654
330 => 0.2321144142207
331 => 0.23649885101253
401 => 0.23664182733891
402 => 0.23340172192523
403 => 0.23293477211516
404 => 0.23466133030129
405 => 0.23263998285164
406 => 0.23358575860112
407 => 0.23266862943561
408 => 0.23246216434276
409 => 0.23081701535577
410 => 0.23010823993787
411 => 0.23038616904212
412 => 0.22943745372703
413 => 0.22886581843315
414 => 0.2320007015729
415 => 0.23032585997216
416 => 0.23174400807698
417 => 0.23012784932698
418 => 0.22452553897263
419 => 0.22130359104449
420 => 0.21072134611958
421 => 0.21372245765305
422 => 0.21571219770462
423 => 0.21505458862945
424 => 0.21646738738385
425 => 0.21655412175309
426 => 0.21609480647626
427 => 0.21556297822761
428 => 0.21530411364812
429 => 0.21723347813989
430 => 0.21835353916678
501 => 0.21591189473808
502 => 0.21533985161067
503 => 0.21780848893497
504 => 0.21931435627671
505 => 0.23043283465432
506 => 0.22960914186389
507 => 0.23167644912632
508 => 0.23144370205398
509 => 0.23361056941288
510 => 0.23715248175819
511 => 0.2299507836259
512 => 0.23120074940568
513 => 0.2308942866624
514 => 0.23424016653465
515 => 0.2342506120064
516 => 0.23224458988389
517 => 0.23333208702049
518 => 0.23272507595276
519 => 0.23382202699462
520 => 0.2295981409445
521 => 0.23474237821322
522 => 0.23765882925726
523 => 0.23769932418284
524 => 0.23908169883133
525 => 0.24048627153593
526 => 0.24318222652992
527 => 0.24041108281438
528 => 0.23542606503553
529 => 0.23578596721766
530 => 0.23286325311786
531 => 0.23291238446991
601 => 0.23265011746218
602 => 0.23343720049492
603 => 0.22977086140866
604 => 0.23063134386403
605 => 0.22942666338754
606 => 0.23119813066559
607 => 0.22929232470844
608 => 0.23089413887679
609 => 0.23158542877087
610 => 0.23413630336242
611 => 0.22891555845721
612 => 0.21827010618212
613 => 0.22050790931398
614 => 0.21719802270632
615 => 0.21750436531349
616 => 0.21812322613402
617 => 0.216117295736
618 => 0.21649996404181
619 => 0.21648629243713
620 => 0.216368477934
621 => 0.21584665796477
622 => 0.21508991577044
623 => 0.21810454375967
624 => 0.21861678779892
625 => 0.21975544284457
626 => 0.22314330790331
627 => 0.22280478029258
628 => 0.22335693287106
629 => 0.22215158689245
630 => 0.21756027785642
701 => 0.21780960802653
702 => 0.21470045681
703 => 0.21967593485764
704 => 0.21849767598285
705 => 0.21773804482125
706 => 0.21753077242088
707 => 0.22092703534182
708 => 0.22194325043766
709 => 0.22131001338559
710 => 0.22001122571731
711 => 0.22250528199251
712 => 0.22317258623596
713 => 0.22332197104684
714 => 0.22774096057862
715 => 0.22356894347281
716 => 0.22457318945646
717 => 0.23240802994625
718 => 0.2253029107561
719 => 0.22906665085419
720 => 0.22888243536194
721 => 0.23080783743811
722 => 0.22872449619342
723 => 0.22875032170501
724 => 0.23045994831061
725 => 0.22805908607583
726 => 0.2274645988231
727 => 0.22664331894125
728 => 0.22843655351735
729 => 0.2295115165447
730 => 0.23817492907178
731 => 0.24377188866389
801 => 0.24352890988707
802 => 0.24574928107003
803 => 0.24474898351583
804 => 0.24151875884818
805 => 0.24703235847193
806 => 0.24528762485217
807 => 0.24543145857193
808 => 0.2454261050737
809 => 0.24658620040358
810 => 0.24576416654118
811 => 0.24414385341836
812 => 0.24521949288614
813 => 0.2484137575573
814 => 0.25832885310859
815 => 0.26387747193664
816 => 0.25799481928809
817 => 0.2620525943132
818 => 0.25961937523121
819 => 0.25917718694202
820 => 0.26172576952501
821 => 0.26427881306443
822 => 0.26411619522808
823 => 0.26226281671869
824 => 0.26121589022648
825 => 0.26914356837162
826 => 0.27498454658449
827 => 0.27458623102878
828 => 0.2763442663525
829 => 0.2815059124369
830 => 0.28197782866701
831 => 0.28191837806889
901 => 0.28074868445321
902 => 0.28583099534775
903 => 0.29007074851073
904 => 0.28047793417688
905 => 0.28413075229605
906 => 0.28577062003619
907 => 0.28817843240556
908 => 0.29224081546889
909 => 0.29665364096956
910 => 0.29727766287953
911 => 0.29683488947221
912 => 0.2939245124314
913 => 0.29875307875019
914 => 0.30158153965593
915 => 0.30326582339711
916 => 0.30753688672667
917 => 0.28578074730108
918 => 0.27038067046535
919 => 0.26797572608765
920 => 0.27286627504948
921 => 0.27415587380931
922 => 0.27363603816624
923 => 0.2563018515739
924 => 0.26788446518263
925 => 0.28034638353181
926 => 0.28082509656836
927 => 0.28706379346039
928 => 0.28909536890126
929 => 0.29411833762403
930 => 0.29380414956281
1001 => 0.29502716251392
1002 => 0.29474601301609
1003 => 0.30405000486418
1004 => 0.31431368952878
1005 => 0.31395829076536
1006 => 0.31248276466042
1007 => 0.31467417254084
1008 => 0.325267395038
1009 => 0.3242921408634
1010 => 0.32523951722207
1011 => 0.33772952355408
1012 => 0.35396830846837
1013 => 0.34642376252833
1014 => 0.36279325633361
1015 => 0.37309698497444
1016 => 0.39091621823334
1017 => 0.38868516246775
1018 => 0.39562205921187
1019 => 0.38469110701196
1020 => 0.35959143125105
1021 => 0.35561931148418
1022 => 0.36357159584754
1023 => 0.38312151098228
1024 => 0.3629558994477
1025 => 0.3670353763974
1026 => 0.36586048676145
1027 => 0.36579788188571
1028 => 0.36818725536029
1029 => 0.36472134451407
1030 => 0.3506006002211
1031 => 0.3570720541165
1101 => 0.35457311498274
1102 => 0.3573458742599
1103 => 0.37230931250578
1104 => 0.36569361977346
1105 => 0.3587245248952
1106 => 0.3674653164385
1107 => 0.37859534773497
1108 => 0.37789885037902
1109 => 0.37654735439518
1110 => 0.38416566649406
1111 => 0.39674888612541
1112 => 0.40015007982829
1113 => 0.40266077148541
1114 => 0.40300695344644
1115 => 0.40657284279598
1116 => 0.38739815704368
1117 => 0.41782887577344
1118 => 0.42308342026643
1119 => 0.4220957836803
1120 => 0.42793598873923
1121 => 0.42621765225919
1122 => 0.42372805229835
1123 => 0.43298601956398
1124 => 0.42237250717337
1125 => 0.40730796253894
1126 => 0.39904325540959
1127 => 0.40992688845243
1128 => 0.41657314336524
1129 => 0.42096589508141
1130 => 0.42229513909654
1201 => 0.3888866333153
1202 => 0.37088130161989
1203 => 0.3824225128051
1204 => 0.39650358698291
1205 => 0.38731993596565
1206 => 0.38767991769858
1207 => 0.37458644476901
1208 => 0.39766206880341
1209 => 0.39430014447814
1210 => 0.41174181382476
1211 => 0.40757921945705
1212 => 0.42180222372751
1213 => 0.41805683003832
1214 => 0.43360374984001
1215 => 0.43980583706496
1216 => 0.45022010679345
1217 => 0.45788088599943
1218 => 0.46237944207653
1219 => 0.46210936564332
1220 => 0.47993488599255
1221 => 0.46942379941885
1222 => 0.4562193974094
1223 => 0.4559805714364
1224 => 0.46281931834492
1225 => 0.47715145574659
1226 => 0.48086757045073
1227 => 0.48294437160865
1228 => 0.47976367834133
1229 => 0.46835464720194
1230 => 0.46342828540106
1231 => 0.46762568838585
]
'min_raw' => 0.17307910380546
'max_raw' => 0.48294437160865
'avg_raw' => 0.32801173770705
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$0.173079'
'max' => '$0.482944'
'avg' => '$0.328011'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.068519425563814
'max_diff' => 0.24952225565501
'year' => 2036
]
11 => [
'items' => [
101 => 0.4624926252224
102 => 0.47135373232567
103 => 0.48352192500881
104 => 0.48100924133799
105 => 0.48940876612695
106 => 0.49810139062775
107 => 0.51053223407408
108 => 0.51378211686375
109 => 0.51915404953311
110 => 0.52468353283783
111 => 0.52645945385155
112 => 0.52985023810268
113 => 0.52983236699593
114 => 0.5400507235628
115 => 0.55132188729222
116 => 0.55557649067203
117 => 0.56535971654371
118 => 0.54860628508358
119 => 0.56131395529564
120 => 0.57277659192053
121 => 0.5591103639873
122 => 0.57794607537054
123 => 0.57867742336091
124 => 0.5897199097192
125 => 0.57852623431066
126 => 0.57187946558455
127 => 0.59106843784566
128 => 0.60035337707584
129 => 0.59755667781637
130 => 0.5762736583617
131 => 0.56388602816744
201 => 0.53146521055364
202 => 0.56986906949228
203 => 0.58857446892536
204 => 0.57622521589606
205 => 0.58245346081089
206 => 0.61643274555101
207 => 0.62936985718429
208 => 0.6266790284018
209 => 0.62713373417123
210 => 0.63411436478336
211 => 0.66507032522104
212 => 0.64652079617324
213 => 0.66070121609269
214 => 0.66822245968666
215 => 0.6752086099002
216 => 0.65805283297119
217 => 0.63573341925498
218 => 0.62866392402581
219 => 0.57499732605947
220 => 0.5722037465731
221 => 0.57063562575328
222 => 0.5607488457994
223 => 0.5529805449726
224 => 0.54680290373661
225 => 0.53059092833354
226 => 0.53606199412455
227 => 0.51022348903429
228 => 0.52675404893064
301 => 0.48551517091407
302 => 0.51986013394615
303 => 0.50116773204164
304 => 0.51371917718998
305 => 0.51367538638027
306 => 0.49056419642286
307 => 0.47723414437366
308 => 0.4857285723528
309 => 0.49483527343497
310 => 0.49631280504693
311 => 0.50811988070918
312 => 0.51141498173428
313 => 0.50143067179469
314 => 0.48466058682934
315 => 0.48855589508187
316 => 0.47715520607625
317 => 0.45717593711507
318 => 0.47152539688756
319 => 0.4764249333551
320 => 0.4785888477796
321 => 0.45894153139082
322 => 0.45276791801747
323 => 0.44948113805914
324 => 0.48212436500398
325 => 0.48391263466393
326 => 0.47476359424775
327 => 0.51611812447653
328 => 0.50675832063757
329 => 0.5172155147333
330 => 0.48820243668664
331 => 0.48931077533932
401 => 0.47557551923683
402 => 0.48326634486408
403 => 0.47783071719762
404 => 0.48264500215562
405 => 0.4855306647094
406 => 0.49926366699152
407 => 0.52001694277259
408 => 0.49721241440584
409 => 0.48727615482958
410 => 0.49344055438704
411 => 0.50985716274364
412 => 0.53472916475461
413 => 0.52000443896843
414 => 0.52653902223028
415 => 0.52796653796962
416 => 0.51710907031386
417 => 0.53512949507401
418 => 0.54478678710064
419 => 0.55469317042495
420 => 0.56329460549489
421 => 0.55073634307918
422 => 0.5641754840202
423 => 0.55334590874947
424 => 0.54363066019071
425 => 0.54364539421249
426 => 0.53755087687445
427 => 0.52574198157339
428 => 0.52356424009892
429 => 0.53489312626756
430 => 0.5439778201253
501 => 0.54472607902417
502 => 0.54975583233224
503 => 0.55273238852938
504 => 0.58190668569325
505 => 0.593640829355
506 => 0.60798911810861
507 => 0.61357858520339
508 => 0.63040087722382
509 => 0.61681551017757
510 => 0.61387623056114
511 => 0.57307085264938
512 => 0.57975273099647
513 => 0.59045106293553
514 => 0.57324726420261
515 => 0.58415911473003
516 => 0.58631334516874
517 => 0.57266268570478
518 => 0.57995409273466
519 => 0.56059027741482
520 => 0.52043902103136
521 => 0.53517419490021
522 => 0.54602424267358
523 => 0.53053988669974
524 => 0.55829499545551
525 => 0.54208103390213
526 => 0.53694198649712
527 => 0.51689273036748
528 => 0.52635520749403
529 => 0.53915334329731
530 => 0.53124558331386
531 => 0.54765537263564
601 => 0.57089601064624
602 => 0.58745867329652
603 => 0.58873014887541
604 => 0.57808146640349
605 => 0.59514604802371
606 => 0.59527034487099
607 => 0.57602142709252
608 => 0.56423157213163
609 => 0.56155289227845
610 => 0.56824475973782
611 => 0.57636992222037
612 => 0.58918103884493
613 => 0.596922528311
614 => 0.61710822706975
615 => 0.62256989838453
616 => 0.62857061928419
617 => 0.63658943295994
618 => 0.6462180747593
619 => 0.62515115466118
620 => 0.62598818267033
621 => 0.60637095836634
622 => 0.58540714080298
623 => 0.60131606515682
624 => 0.62211486747394
625 => 0.61734359924176
626 => 0.61680673409748
627 => 0.61770959235619
628 => 0.61411221192418
629 => 0.59784139355532
630 => 0.58967029043119
701 => 0.60021309813205
702 => 0.60581613121867
703 => 0.61450594690018
704 => 0.61343474369767
705 => 0.63581877567517
706 => 0.64451653364364
707 => 0.64229127495725
708 => 0.64270077610939
709 => 0.65844765145222
710 => 0.67596141542537
711 => 0.69236536653092
712 => 0.70905217016159
713 => 0.68893557708779
714 => 0.67872161174389
715 => 0.68925981678471
716 => 0.68366809685408
717 => 0.71579977818738
718 => 0.71802450608778
719 => 0.7501538639348
720 => 0.78064845042438
721 => 0.76149534701754
722 => 0.77955586085547
723 => 0.79908977906649
724 => 0.83677387655955
725 => 0.82408319826642
726 => 0.81436233758217
727 => 0.8051761712064
728 => 0.82429112517152
729 => 0.8488822080788
730 => 0.85417889180657
731 => 0.86276154293446
801 => 0.85373793471013
802 => 0.86460587689849
803 => 0.90297448843919
804 => 0.89260695091179
805 => 0.87788338095806
806 => 0.90817171480882
807 => 0.91913294508649
808 => 0.99606459961607
809 => 1.0931939913478
810 => 1.0529817853849
811 => 1.0280207715039
812 => 1.0338872018491
813 => 1.0693555676722
814 => 1.0807468810648
815 => 1.0497813644423
816 => 1.0607189084051
817 => 1.1209858509957
818 => 1.1533171321006
819 => 1.1094069096898
820 => 0.98826034756321
821 => 0.8765576845778
822 => 0.906186260838
823 => 0.90282729977186
824 => 0.96757661113127
825 => 0.89235968857054
826 => 0.89362614864191
827 => 0.95971440718952
828 => 0.94208319284861
829 => 0.91352288365164
830 => 0.87676620644166
831 => 0.80881808903789
901 => 0.74863454657994
902 => 0.86666833278205
903 => 0.8615785012905
904 => 0.85420767101998
905 => 0.8706106561799
906 => 0.95025889604791
907 => 0.94842274632275
908 => 0.93674209858317
909 => 0.94560176694514
910 => 0.91196974095192
911 => 0.92063747983737
912 => 0.87653999030527
913 => 0.89647389724762
914 => 0.91346160605519
915 => 0.91687214010564
916 => 0.92455624746748
917 => 0.85889639137819
918 => 0.88837573909019
919 => 0.90569209402965
920 => 0.82745617243879
921 => 0.90414562140746
922 => 0.85775339936367
923 => 0.84200718241422
924 => 0.86320738913032
925 => 0.85494564795518
926 => 0.84784268803851
927 => 0.84387911436067
928 => 0.85944620639154
929 => 0.8587199829416
930 => 0.83324919893673
1001 => 0.80002359952435
1002 => 0.81117520128026
1003 => 0.80712371981552
1004 => 0.79244062833576
1005 => 0.80233525914989
1006 => 0.75876431260251
1007 => 0.68380276368847
1008 => 0.73332465903542
1009 => 0.73141811993402
1010 => 0.73045675646443
1011 => 0.76767109213301
1012 => 0.76409379243928
1013 => 0.75760095846614
1014 => 0.7923213823481
1015 => 0.77964796057558
1016 => 0.81870446024477
1017 => 0.84442959694292
1018 => 0.83790487015527
1019 => 0.86209948556026
1020 => 0.81143211166165
1021 => 0.82826178084856
1022 => 0.83173035234307
1023 => 0.7918929377069
1024 => 0.76467908291039
1025 => 0.76286422905612
1026 => 0.71567915513915
1027 => 0.74088504076098
1028 => 0.76306517701778
1029 => 0.75244261299888
1030 => 0.74907982657057
1031 => 0.76625957313342
1101 => 0.76759458657593
1102 => 0.73715613860827
1103 => 0.74348525580103
1104 => 0.76987872662304
1105 => 0.74282020805499
1106 => 0.69024992646117
1107 => 0.6772117697849
1108 => 0.67547223934338
1109 => 0.64011172436808
1110 => 0.67808304175838
1111 => 0.66150754414948
1112 => 0.71386934249105
1113 => 0.6839605641003
1114 => 0.68267125644179
1115 => 0.68072227881565
1116 => 0.65028602285193
1117 => 0.65694962858301
1118 => 0.67910046892893
1119 => 0.68700413831143
1120 => 0.68617972084198
1121 => 0.67899191772689
1122 => 0.68228245718547
1123 => 0.67168248308943
1124 => 0.66793941161673
1125 => 0.65612524843599
1126 => 0.63876169230617
1127 => 0.6411762012829
1128 => 0.60677445316812
1129 => 0.58803055495623
1130 => 0.58284249097178
1201 => 0.57590479498767
1202 => 0.58362612219369
1203 => 0.60667699733806
1204 => 0.57887275139799
1205 => 0.53120432197481
1206 => 0.5340692758062
1207 => 0.54050597645289
1208 => 0.52851122738081
1209 => 0.51715920402707
1210 => 0.52702886731438
1211 => 0.50683112536598
1212 => 0.5429467770715
1213 => 0.54196994990581
1214 => 0.55543163148471
1215 => 0.56384949723751
1216 => 0.54444904199371
1217 => 0.5395698799643
1218 => 0.5423492724018
1219 => 0.49641210658307
1220 => 0.55167758499738
1221 => 0.55215552314966
1222 => 0.5480631265252
1223 => 0.5774902876506
1224 => 0.63959077618693
1225 => 0.6162260744132
1226 => 0.60717855568456
1227 => 0.58997921596772
1228 => 0.61289631494467
1229 => 0.61113663930567
1230 => 0.60317871872897
1231 => 0.59836574353396
]
'min_raw' => 0.44948113805914
'max_raw' => 1.1533171321006
'avg_raw' => 0.80139913507985
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$0.449481'
'max' => '$1.15'
'avg' => '$0.801399'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 0.27640203425368
'max_diff' => 0.67037276049192
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.014108699313084
]
1 => [
'year' => 2028
'avg' => 0.024214623805928
]
2 => [
'year' => 2029
'avg' => 0.066149987976474
]
3 => [
'year' => 2030
'avg' => 0.051034617210332
]
4 => [
'year' => 2031
'avg' => 0.050122318751029
]
5 => [
'year' => 2032
'avg' => 0.087880198844792
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.014108699313084
'min' => '$0.0141086'
'max_raw' => 0.087880198844792
'max' => '$0.08788'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.087880198844792
]
1 => [
'year' => 2033
'avg' => 0.22603690804309
]
2 => [
'year' => 2034
'avg' => 0.1432730551432
]
3 => [
'year' => 2035
'avg' => 0.16899089709764
]
4 => [
'year' => 2036
'avg' => 0.32801173770705
]
5 => [
'year' => 2037
'avg' => 0.80139913507985
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.087880198844792
'min' => '$0.08788'
'max_raw' => 0.80139913507985
'max' => '$0.801399'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 0.80139913507985
]
]
]
]
'prediction_2025_max_price' => '$0.024123'
'last_price' => 0.02339059
'sma_50day_nextmonth' => '$0.021534'
'sma_200day_nextmonth' => '$0.031268'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'increase'
'sma_200day_direction_label' => 'aumentar'
'sma_200day_date_nextmonth' => '4 de fev. de 2026'
'sma_50day_date_nextmonth' => '4 de fev. de 2026'
'daily_sma3' => '$0.0227014'
'daily_sma3_action' => 'BUY'
'daily_sma5' => '$0.022321'
'daily_sma5_action' => 'BUY'
'daily_sma10' => '$0.0220096'
'daily_sma10_action' => 'BUY'
'daily_sma21' => '$0.0215026'
'daily_sma21_action' => 'BUY'
'daily_sma50' => '$0.021439'
'daily_sma50_action' => 'BUY'
'daily_sma100' => '$0.026043'
'daily_sma100_action' => 'SELL'
'daily_sma200' => '$0.034493'
'daily_sma200_action' => 'SELL'
'daily_ema3' => '$0.022831'
'daily_ema3_action' => 'BUY'
'daily_ema5' => '$0.022536'
'daily_ema5_action' => 'BUY'
'daily_ema10' => '$0.02215'
'daily_ema10_action' => 'BUY'
'daily_ema21' => '$0.02180039'
'daily_ema21_action' => 'BUY'
'daily_ema50' => '$0.022685'
'daily_ema50_action' => 'BUY'
'daily_ema100' => '$0.025993'
'daily_ema100_action' => 'SELL'
'daily_ema200' => '$0.030387'
'daily_ema200_action' => 'SELL'
'weekly_sma21' => '$0.029788'
'weekly_sma21_action' => 'SELL'
'weekly_sma50' => '$0.033334'
'weekly_sma50_action' => 'SELL'
'weekly_sma100' => '$0.042631'
'weekly_sma100_action' => 'SELL'
'weekly_sma200' => '$0.054753'
'weekly_sma200_action' => 'SELL'
'weekly_ema3' => '$0.022562'
'weekly_ema3_action' => 'BUY'
'weekly_ema5' => '$0.022389'
'weekly_ema5_action' => 'BUY'
'weekly_ema10' => '$0.023719'
'weekly_ema10_action' => 'SELL'
'weekly_ema21' => '$0.027687'
'weekly_ema21_action' => 'SELL'
'weekly_ema50' => '$0.033396'
'weekly_ema50_action' => 'SELL'
'weekly_ema100' => '$0.04199'
'weekly_ema100_action' => 'SELL'
'weekly_ema200' => '$0.0657057'
'weekly_ema200_action' => 'SELL'
'rsi_14' => '66.79'
'rsi_14_action' => 'NEUTRAL'
'stoch_rsi_14' => 122.38
'stoch_rsi_14_action' => 'SELL'
'momentum_10' => 0
'momentum_10_action' => 'BUY'
'vwma_10' => '0.022085'
'vwma_10_action' => 'BUY'
'hma_9' => '0.022753'
'hma_9_action' => 'BUY'
'stochastic_fast_14' => 100
'stochastic_fast_14_action' => 'SELL'
'cci_20' => 218.07
'cci_20_action' => 'SELL'
'adx_14' => 14.09
'adx_14_action' => 'NEUTRAL'
'ao_5_34' => '0.000998'
'ao_5_34_action' => 'BUY'
'macd_12_26' => 0
'macd_12_26_action' => 'BUY'
'williams_percent_r_14' => -0
'williams_percent_r_14_action' => 'SELL'
'ultimate_oscillator' => 78.34
'ultimate_oscillator_action' => 'SELL'
'ichimoku_cloud' => '-0.004442'
'ichimoku_cloud_action' => 'NEUTRAL'
'sell_signals' => 14
'buy_signals' => 21
'sell_pct' => 40
'buy_pct' => 60
'overall_action' => 'bullish'
'overall_action_label' => 'Altista'
'overall_action_dir' => 1
'last_updated' => 1767700444
'last_updated_date' => '6 de janeiro de 2026'
]
Previsão de preço de Bifrost para 2026
A previsão de preço para Bifrost em 2026 sugere que o preço médio poderia variar entre $0.008081 na extremidade inferior e $0.024123 na extremidade superior. No mercado de criptomoedas, comparado ao preço médio de hoje, Bifrost poderia potencialmente ganhar 3.13% até 2026 se BFC atingir a meta de preço prevista.
Previsão de preço de Bifrost 2027-2032
A previsão de preço de BFC para 2027-2032 está atualmente dentro de uma faixa de preço entre $0.0141086 na extremidade inferior e $0.08788 na extremidade superior. Considerando a volatilidade de preços no mercado, se Bifrost atingir a meta de preço superior, poderia ganhar 275.71% até 2032 em comparação com o preço de hoje.
| Previsão de Preço de Bifrost | Potencial Mínimo ($) | Preço Médio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2027 | $0.007779 | $0.0141086 | $0.020437 |
| 2028 | $0.01404 | $0.024214 | $0.034388 |
| 2029 | $0.030842 | $0.066149 | $0.101457 |
| 2030 | $0.02623 | $0.051034 | $0.075839 |
| 2031 | $0.031012 | $0.050122 | $0.069232 |
| 2032 | $0.047337 | $0.08788 | $0.128422 |
Previsão de preço de Bifrost 2032-2037
A previsão de preço de Bifrost para 2032-2037 é atualmente estimada entre $0.08788 na extremidade inferior e $0.801399 na extremidade superior. Comparado ao preço atual, Bifrost poderia potencialmente ganhar 3326.16% até 2037 se atingir a meta de preço superior. Por favor, note que esta informação é apenas para fins gerais e não deve ser considerada como aconselhamento de investimento a longo prazo.
| Previsão de Preço de Bifrost | Potencial Mínimo ($) | Preço Médio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2032 | $0.047337 | $0.08788 | $0.128422 |
| 2033 | $0.1100025 | $0.226036 | $0.342071 |
| 2034 | $0.088436 | $0.143273 | $0.1981093 |
| 2035 | $0.104559 | $0.16899 | $0.233422 |
| 2036 | $0.173079 | $0.328011 | $0.482944 |
| 2037 | $0.449481 | $0.801399 | $1.15 |
Bifrost Histograma de preços potenciais
Previsão de preço de Bifrost baseada na análise técnica
Em 6 de janeiro de 2026, o sentimento geral de previsão de preço para Bifrost é Altista, com 21 indicadores técnicos mostrando sinais de alta e 14 indicando sinais de baixa. A previsão de preço de BFC foi atualizada pela última vez em 6 de janeiro de 2026.
Médias Móveis Simples de 50 e 200 dias e Índice de Força Relativa de 14 dias - RSI (14) de Bifrost
De acordo com nossos indicadores técnicos, o SMA de 200 dias de Bifrost está projetado para aumentar no próximo mês, alcançando $0.031268 até 4 de fev. de 2026. O SMA de 50 dias de curto prazo para Bifrost é esperado para alcançar $0.021534 até 4 de fev. de 2026.
O oscilador de momentum Índice de Força Relativa (RSI) é uma ferramenta comumente usada para identificar se uma criptomoeda está sobrevendida (abaixo de 30) ou sobrecomprada (acima de 70). No momento, o RSI está em 66.79, sugerindo que o mercado de BFC está em um estado NEUTRAL.
Médias Móveis e Osciladores Populares de BFC para Sábado, 19 de Outubro de 2024
Médias móveis (MA) são indicadores amplamente utilizados nos mercados financeiros, projetados para suavizar movimentos de preços ao longo de um período definido. Como indicadores atrasados, eles se baseiam em dados históricos de preços. A tabela abaixo destaca dois tipos: a média móvel simples (SMA) e a média móvel exponencial (EMA).
Média Móvel Simples Diária (SMA)
| Período | Valor | Ação |
|---|---|---|
| SMA 3 | $0.0227014 | BUY |
| SMA 5 | $0.022321 | BUY |
| SMA 10 | $0.0220096 | BUY |
| SMA 21 | $0.0215026 | BUY |
| SMA 50 | $0.021439 | BUY |
| SMA 100 | $0.026043 | SELL |
| SMA 200 | $0.034493 | SELL |
Média Móvel Exponencial Diária (EMA)
| Período | Valor | Ação |
|---|---|---|
| EMA 3 | $0.022831 | BUY |
| EMA 5 | $0.022536 | BUY |
| EMA 10 | $0.02215 | BUY |
| EMA 21 | $0.02180039 | BUY |
| EMA 50 | $0.022685 | BUY |
| EMA 100 | $0.025993 | SELL |
| EMA 200 | $0.030387 | SELL |
Média Móvel Simples Semanal (SMA)
| Período | Valor | Ação |
|---|---|---|
| SMA 21 | $0.029788 | SELL |
| SMA 50 | $0.033334 | SELL |
| SMA 100 | $0.042631 | SELL |
| SMA 200 | $0.054753 | SELL |
Média Móvel Exponencial Semanal (EMA)
| Período | Valor | Ação |
|---|---|---|
| EMA 21 | $0.027687 | SELL |
| EMA 50 | $0.033396 | SELL |
| EMA 100 | $0.04199 | SELL |
| EMA 200 | $0.0657057 | SELL |
Osciladores de Bifrost
Um oscilador é uma ferramenta de análise técnica que define limites altos e baixos entre dois extremos, criando um indicador de tendência que flutua dentro desses limites. Os traders usam esse indicador para identificar condições de sobrecompra ou sobrevenda de curto prazo.
| Período | Valor | Ação |
|---|---|---|
| RSI (14) | 66.79 | NEUTRAL |
| Stoch RSI (14) | 122.38 | SELL |
| Estocástico Rápido (14) | 100 | SELL |
| Índice de Canal de Commodities (20) | 218.07 | SELL |
| Índice Direcional Médio (14) | 14.09 | NEUTRAL |
| Oscilador Impressionante (5, 34) | 0.000998 | BUY |
| Momentum (10) | 0 | BUY |
| MACD (12, 26) | 0 | BUY |
| Williams Percent Range (14) | -0 | SELL |
| Oscilador Ultimate (7, 14, 28) | 78.34 | SELL |
| VWMA (10) | 0.022085 | BUY |
| Média Móvel de Hull (9) | 0.022753 | BUY |
| Nuvem Ichimoku B/L (9, 26, 52, 26) | -0.004442 | NEUTRAL |
Previsão do preço de Bifrost com base nos fluxos financeiros mundiais
Definições dos fluxos financeiros mundiais, usadas na previsão do preço do Bifrost
M0: o total de todas as moedas físicas, mais as contas no Banco Central que podem ser trocadas por moedas físicas.
M1: o valor de M0, mais o valor em contas de demanda, incluindo contas 'correntes'.
M2: o valor de M1, mais a maioria das contas de poupança, do mercado de moedas e de certificados de depósito (CD) de menos de US$ 100.000.
Previsões de preço de Bifrost por empresas de Internet ou nichos tecnológicos
| Comparação | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Facebook stock | $0.032867 | $0.046184 | $0.064897 | $0.091191 | $0.128138 | $0.180056 |
| Amazon.com stock | $0.0488058 | $0.101836 | $0.212487 | $0.443367 | $0.925113 | $1.93 |
| Apple stock | $0.033177 | $0.04706 | $0.066751 | $0.094681 | $0.134298 | $0.190492 |
| Netflix stock | $0.0369066 | $0.058232 | $0.091882 | $0.144976 | $0.228749 | $0.360931 |
| Google stock | $0.03029 | $0.039226 | $0.050797 | $0.065783 | $0.085188 | $0.110319 |
| Tesla stock | $0.053024 | $0.1202029 | $0.272491 | $0.617716 | $1.40 | $3.17 |
| Kodak stock | $0.01754 | $0.013153 | $0.009863 | $0.007396 | $0.005546 | $0.004159 |
| Nokia stock | $0.015495 | $0.010264 | $0.00680012 | $0.0045047 | $0.002984 | $0.001976 |
Este cálculo mostra quanto a criptomoeda pode custar, se assumirmos que sua capitalização se comportará da mesma forma que a de algumas empresas de Internet ou nichos tecnológicos. Se você extrapolar os dados, poderá obter uma imagem em potencial do preço futuro para 2024, 2025, 2026, 2027, 2028, 2029 e 2030.
Visão geral da previsão para Bifrost
Você pode fazer perguntas como: 'Devo investir em Bifrost agora?', 'Devo comprar BFC hoje?', 'Bifrost será um bom ou mau investimento no curto ou no longo prazo?'.
Atualizamos a previsão para Bifrost regularmente com novos valores. Veja nossas previsões semelhantes. Fazemos previsões de preços futuros para uma enorme quantidade de moedas digitais, como Bifrost, com métodos de análise técnica.
Se você estiver tentando encontrar criptomoedas com bom retorno, você deve explorar o máximo de fontes de informações disponíveis sobre Bifrost para poder tomar sozinho uma decisão de tão grande responsabilidade sobre o seu investimento.
O preço de Bifrost é de $0.02339 USD hoje, mas o preço pode tanto subir quanto descer e seu investimento pode ser perdido, porque criptomoedas são ativos de alto risco
Previsão de curto prazo para Bifrost
com base no histórico de preços de 4 horas
Previsão de longo prazo para Bifrost
com base no histórico de preços de 1 mês
Previsão do preço de Bifrost com base no padrão de crescimento do Bitcoin
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| Se Bifrost tiver 1% da média anterior do crescimento anual do Bitcoin | $0.023998 | $0.024622 | $0.025262 | $0.025919 |
| Se Bifrost tiver 2% da média anterior do crescimento anual do Bitcoin | $0.0246065 | $0.025885 | $0.027231 | $0.028647 |
| Se Bifrost tiver 5% da média anterior do crescimento anual do Bitcoin | $0.02643 | $0.029865 | $0.033747 | $0.038133 |
| Se Bifrost tiver 10% da média anterior do crescimento anual do Bitcoin | $0.02947 | $0.03713 | $0.046782 | $0.058942 |
| Se Bifrost tiver 20% da média anterior do crescimento anual do Bitcoin | $0.03555 | $0.054031 | $0.082121 | $0.124813 |
| Se Bifrost tiver 50% da média anterior do crescimento anual do Bitcoin | $0.05379 | $0.123699 | $0.284467 | $0.654178 |
| Se Bifrost tiver 100% da média anterior do crescimento anual do Bitcoin | $0.08419 | $0.303027 | $1.09 | $3.92 |
Perguntas Frequentes sobre Bifrost
BFC é um bom investimento?
A decisão de adquirir Bifrost depende inteiramente da sua tolerância individual ao risco. Como você pode perceber, o valor de Bifrost experimentou uma escalada de 2.0142% nas últimas 24 horas, e Bifrost registrou um declínio de durante os últimos 30 dias. Consequentemente, a decisão de investir ou não em Bifrost dependerá de quão alinhado esse investimento está com suas aspirações de negociação.
Bifrost pode subir?
Parece que o valor médio de Bifrost pode potencialmente subir para $0.024123 até o final deste ano. Observando as perspectivas de Bifrost em um horizonte de cinco anos mais longo, a moeda digital poderia potencialmente crescer até $0.075839. No entanto, dada a imprevisibilidade do mercado, é vital conduzir uma pesquisa aprofundada antes de investir quaisquer fundos em um projeto, rede ou ativo específico.
Qual será o preço de Bifrost na próxima semana?
Com base na nossa nova previsão experimental de Bifrost, o preço de Bifrost aumentará 0.86% na próxima semana e atingirá $0.02359 até 13 de janeiro de 2026.
Qual será o preço de Bifrost no próximo mês?
Com base na nossa nova previsão experimental de Bifrost, o preço de Bifrost diminuirá -11.62% no próximo mês e atingirá $0.020673 até 5 de fevereiro de 2026.
Até onde o preço de Bifrost pode subir este ano em 2026?
De acordo com nossa previsão mais recente sobre o valor de Bifrost em 2026, espera-se que BFC fluctue dentro do intervalo de $0.008081 e $0.024123. No entanto, é crucial lembrar que o mercado de criptomoedas é excepcionalmente instável, e essa previsão de preço de Bifrost não considera flutuações repentinas e extremas de preço.
Onde estará Bifrost em 5 anos?
O futuro de Bifrost parece seguir uma tendência de alta, com um preço máximo de $0.075839 projetada após um período de cinco anos. Com base na previsão de Bifrost para 2030, o valor de Bifrost pode potencialmente atingir seu pico mais alto de aproximadamente $0.075839, enquanto seu pico mais baixo está previsto para cerca de $0.02623.
Quanto será Bifrost em 2026?
Com base na nossa nova simulação experimental de previsão de preços de Bifrost, espera-se que o valor de BFC em 2026 aumente 3.13% para $0.024123 se o melhor cenário ocorrer. O preço ficará entre $0.024123 e $0.008081 durante 2026.
Quanto será Bifrost em 2027?
De acordo com nossa última simulação experimental para previsão de preços de Bifrost, o valor de BFC pode diminuir -12.62% para $0.020437 em 2027, assumindo as condições mais favoráveis. O preço está projetado para flutuar entre $0.020437 e $0.007779 ao longo do ano.
Quanto será Bifrost em 2028?
Nosso novo modelo experimental de previsão de preços de Bifrost sugere que o valor de BFC em 2028 pode aumentar 47.02%, alcançando $0.034388 no melhor cenário. O preço é esperado para variar entre $0.034388 e $0.01404 durante o ano.
Quanto será Bifrost em 2029?
Com base no nosso modelo de previsão experimental, o valor de Bifrost pode experimentar um 333.75% crescimento em 2029, potencialmente alcançando $0.101457 sob condições ótimas. A faixa de preço prevista para 2029 está entre $0.101457 e $0.030842.
Quanto será Bifrost em 2030?
Usando nossa nova simulação experimental para previsões de preços de Bifrost, espera-se que o valor de BFC em 2030 aumente 224.23%, alcançando $0.075839 no melhor cenário. O preço está previsto para variar entre $0.075839 e $0.02623 ao longo de 2030.
Quanto será Bifrost em 2031?
Nossa simulação experimental indica que o preço de Bifrost poderia aumentar 195.98% em 2031, potencialmente atingindo $0.069232 sob condições ideais. O preço provavelmente oscilará entre $0.069232 e $0.031012 durante o ano.
Quanto será Bifrost em 2032?
Com base nos achados da nossa mais recente previsão experimental de preços de Bifrost, BFC poderia ver um 449.04% aumento em valor, atingindo $0.128422 se o cenário mais positivo se desenrolar em 2032. O preço é esperado para permanecer dentro de uma faixa de $0.128422 e $0.047337 ao longo do ano.
Quanto será Bifrost em 2033?
De acordo com nossa previsão experimental de preços de Bifrost, espera-se que o valor de BFC seja aumentar 1362.43% em 2033, com o preço potencial mais alto sendo $0.342071. Ao longo do ano, o preço de BFC poderia variar entre $0.342071 e $0.1100025.
Quanto será Bifrost em 2034?
Os resultados da nossa nova simulação de previsão de preços de Bifrost sugerem que BFC pode aumentar 746.96% em 2034, atingindo potencialmente $0.1981093 nas melhores circunstâncias. A faixa de preço prevista para o ano é entre $0.1981093 e $0.088436.
Quanto será Bifrost em 2035?
Com base em nossa previsão experimental para o preço de Bifrost, BFC poderia aumentar 897.93%, com o valor potencialmente atingindo $0.233422 em 2035. A faixa de preço esperada para o ano está entre $0.233422 e $0.104559.
Quanto será Bifrost em 2036?
Nossa recente simulação de previsão de preços de Bifrost sugere que o valor de BFC pode aumentar 1964.7% em 2036, possivelmente atingindo $0.482944 se as condições forem ideais. A faixa de preço esperada para 2036 está entre $0.482944 e $0.173079.
Quanto será Bifrost em 2037?
De acordo com a simulação experimental, o valor de Bifrost poderia aumentar 4830.69% em 2037, com um pico de $1.15 sob condições favoráveis. O preço é esperado para cair entre $1.15 e $0.449481 ao longo do ano.
Previsões relacionadas
Previsão de Preço do Request
Previsão de Preço do POL (ex-MATIC)
Previsão de Preço do Maya Protocol
Previsão de Preço do CertiK
Previsão de Preço do Badger DAO
Previsão de Preço do Electroneum
Previsão de Preço do Ondo US Dollar Yield
Previsão de Preço do Sidus
Previsão de Preço do Hard Protocol
Previsão de Preço do Solidus Ai Tech
Previsão de Preço do Chainge FinancePrevisão de Preço do Mobox
Previsão de Preço do Trias Token
Previsão de Preço do SuperRare
Previsão de Preço do CONX
Previsão de Preço do Banana Gun
Previsão de Preço do Dora Factory
Previsão de Preço do Automata
Previsão de Preço do Storm
Previsão de Preço do Adventure Gold
Previsão de Preço do Star Atlas
Previsão de Preço do Radio Caca
Previsão de Preço do CoinEx Token
Previsão de Preço do Blendr Network
Previsão de Preço do Access Protocol
Como ler e prever os movimentos de preço de Bifrost?
Traders de Bifrost utilizam indicadores e padrões de gráfico para prever a direção do mercado. Eles também identificam níveis-chave de suporte e resistência para avaliar quando uma tendência de baixa pode desacelerar ou uma tendência de alta pode estagnar.
Indicadores de Previsão de Preço de Bifrost
Médias móveis são ferramentas populares para a previsão de preço de Bifrost. Uma média móvel simples (SMA) calcula o preço médio de fechamento de BFC em um período específico, como uma SMA de 12 dias. Uma média móvel exponencial (EMA) dá mais peso aos preços recentes, reagindo mais rapidamente às mudanças de preço.
Médias móveis comumente usadas no mercado de criptomoedas incluem as de 50 dias, 100 dias e 200 dias, que ajudam a identificar níveis-chave de resistência e suporte. Um movimento de preço de BFC acima dessas médias é visto como altista, enquanto uma queda abaixo indica fraqueza.
Traders também usam RSI e níveis de retração de Fibonacci para avaliar a direção futura de BFC.
Como ler gráficos de Bifrost e prever movimentos de preço?
A maioria dos traders prefere gráficos de velas em vez de gráficos de linha simples porque eles fornecem informações mais detalhadas. Velas podem representar a ação de preço de Bifrost em diferentes períodos de tempo, como 5 minutos para tendências de curto prazo e semanal para tendências de longo prazo. Opções populares incluem gráficos de 1 hora, 4 horas e 1 dia.
Por exemplo, um gráfico de velas de 1 hora mostra os preços de abertura, fechamento, máximo e mínimo de BFC dentro de cada hora. A cor da vela é crucial: verde indica que o preço fechou mais alto do que abriu, enquanto vermelho significa o oposto. Alguns gráficos usam velas vazias e preenchidas para transmitir a mesma informação.
O que afeta o preço de Bifrost?
A ação de preço de Bifrost é impulsionada pela oferta e demanda, influenciada por fatores como reduções pela metade das recompensas de bloco, hard forks e atualizações de protocolo. Eventos do mundo real, como regulamentações, adoção por empresas e governos e hacks de exchanges de criptomoedas, também impactam o preço de BFC. A capitalização de mercado de Bifrost pode mudar rapidamente.
Traders frequentemente monitoram a atividade de "baleias" de BFC, grandes detentores de Bifrost, pois suas ações podem influenciar significativamente os movimentos de preço no relativamente pequeno mercado de Bifrost.
Padrões de previsão de preço altistas e baixistas
Traders frequentemente identificam padrões de velas para ganhar vantagem em previsões de preço de criptomoedas. Certas formações indicam tendências altistas, enquanto outras sugerem movimentos baixistas.
Padrões de velas altistas comumente seguidos:
- Martelo
- Engolfo de Alta
- Linha de Perfuração
- Estrela da Manhã
- Três Soldados Brancos
Padrões de velas baixistas comuns:
- Harami de Baixa
- Nuvem Negra
- Estrela da Noite
- Estrela Cadente
- Homem Enforcado


