Previsão de Preço Bifrost - Projeção BFC
Previsão de Preço Bifrost até $0.024241 até 2026
| Ano | Preço Mínimo | Preço Máximo |
|---|---|---|
| 2026 | $0.008121 | $0.024241 |
| 2027 | $0.007818 | $0.020537 |
| 2028 | $0.0141092 | $0.034557 |
| 2029 | $0.030993 | $0.101955 |
| 2030 | $0.026358 | $0.076211 |
| 2031 | $0.031164 | $0.069572 |
| 2032 | $0.04757 | $0.129053 |
| 2033 | $0.110542 | $0.343751 |
| 2034 | $0.088871 | $0.199082 |
| 2035 | $0.105073 | $0.234568 |
Calculadora de lucro do investimento
Se você abrir um short de $10,000.00 em Bifrost hoje e fechar em Apr 06, 2026, nossa previsão mostra que pode lucrar cerca de $3,954.60, com um retorno de 39.55% nos próximos 90 dias.
Previsão de preço de longo prazo de Bifrost para os anos 2027, 2028, 2029, 2030, 2031, 2032 e 2037
[
'name' => 'Bifrost'
'name_with_ticker' => 'Bifrost <small>BFC</small>'
'name_lang' => 'Bifrost'
'name_lang_with_ticker' => 'Bifrost <small>BFC</small>'
'name_with_lang' => 'Bifrost'
'name_with_lang_with_ticker' => 'Bifrost <small>BFC</small>'
'image' => '/uploads/coins/bifrost.png?1717201112'
'price_for_sd' => 0.0235
'ticker' => 'BFC'
'marketcap' => '$32.7M'
'low24h' => '$0.02276'
'high24h' => '$0.02672'
'volume24h' => '$1.59M'
'current_supply' => '1.39B'
'max_supply' => '2.37B'
'algo' => 'SHA-256'
'proof' => null
'ico_price_and_roi' => '—'
'price' => '$0.0235'
'change_24h_pct' => '3.2016%'
'ath_price' => '$0.7788'
'ath_days' => 1601
'ath_exchange' => null
'ath_pair' => null
'ath_date' => '19 de ago. de 2021'
'ath_pct' => '-97.00%'
'fdv' => '$55.67M'
'new_prediction' => true
'change_24h_pct_is_increased' => true
'change_30d_pct' => null
'change_30d_pct_is_increased' => false
'max_price' => '$1.15'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.023706'
'next_week_prediction_price_date' => '13 de janeiro de 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.020774'
'next_month_prediction_price_date' => '5 de fevereiro de 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.008121'
'current_year_max_price_prediction' => '$0.024241'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.026358'
'grand_prediction_max_price' => '$0.076211'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.023950896482118
107 => 0.024040320435406
108 => 0.024241797168266
109 => 0.022520200545266
110 => 0.023293146885572
111 => 0.023747180445223
112 => 0.021695840304834
113 => 0.023706632046209
114 => 0.022490231378266
115 => 0.022077366721841
116 => 0.022633234590935
117 => 0.02241661234175
118 => 0.022230373252386
119 => 0.022126448640527
120 => 0.022534616654691
121 => 0.022515575128964
122 => 0.021847733035793
123 => 0.020976560249978
124 => 0.02126895443217
125 => 0.02116272488457
126 => 0.020777735300182
127 => 0.021037171796239
128 => 0.019894744765408
129 => 0.017929258437052
130 => 0.019227718910038
131 => 0.019177729594282
201 => 0.019152522714442
202 => 0.02012827987308
203 => 0.020034483336825
204 => 0.019864241705063
205 => 0.02077460867911
206 => 0.020442312487419
207 => 0.02146637105138
208 => 0.02214088225356
209 => 0.021969804394536
210 => 0.022604185440382
211 => 0.021275690603574
212 => 0.0217169632984
213 => 0.021807908989226
214 => 0.020763374891962
215 => 0.020049829610157
216 => 0.020002244274873
217 => 0.018765055088819
218 => 0.019425951565767
219 => 0.020007513115726
220 => 0.019728990264295
221 => 0.019640818250165
222 => 0.020091269948177
223 => 0.02012627390297
224 => 0.019328180024128
225 => 0.019494129013886
226 => 0.020186163887898
227 => 0.019476691510639
228 => 0.01809830257328
301 => 0.017756443059096
302 => 0.017710832698183
303 => 0.016783682582499
304 => 0.017779287746499
305 => 0.017344679411853
306 => 0.018717601933592
307 => 0.017933395952306
308 => 0.017899590399825
309 => 0.017848488349055
310 => 0.017050451944396
311 => 0.017225171199157
312 => 0.017805964612476
313 => 0.018013198245454
314 => 0.01799158207972
315 => 0.0178031184079
316 => 0.017889396111769
317 => 0.017611465566462
318 => 0.017513322506291
319 => 0.017203556012013
320 => 0.016748284840603
321 => 0.016811593089328
322 => 0.015909581770583
323 => 0.015418118130767
324 => 0.015282087472652
325 => 0.015100181591509
326 => 0.01530263422596
327 => 0.015907026485849
328 => 0.015178001191452
329 => 0.013928138459389
330 => 0.014003257339248
331 => 0.014172027159297
401 => 0.01385752571616
402 => 0.013559876494337
403 => 0.013818658343667
404 => 0.013289075027443
405 => 0.014236024772948
406 => 0.014210412436128
407 => 0.014563376742273
408 => 0.014784092566463
409 => 0.014275414049303
410 => 0.01414748277785
411 => 0.014220358244222
412 => 0.013015889117208
413 => 0.014464945918021
414 => 0.014477477421408
415 => 0.014370175081313
416 => 0.015141753093137
417 => 0.016770023359301
418 => 0.01615740258815
419 => 0.015920177309
420 => 0.015469211879924
421 => 0.01607009653849
422 => 0.016023957971973
423 => 0.015815301876652
424 => 0.015689106019155
425 => 0.015921625755969
426 => 0.015660294250581
427 => 0.015613351931304
428 => 0.015328932550232
429 => 0.015227407771446
430 => 0.015152242867051
501 => 0.015069493692863
502 => 0.015252017751312
503 => 0.014838394221827
504 => 0.014339604793283
505 => 0.014298135849276
506 => 0.014412635249666
507 => 0.014361977788472
508 => 0.014297893320841
509 => 0.014175538619769
510 => 0.014139238593655
511 => 0.014257196068255
512 => 0.01412402895678
513 => 0.01432052428375
514 => 0.014267088427396
515 => 0.013968600077585
516 => 0.01359657307918
517 => 0.013593261258541
518 => 0.013513108651981
519 => 0.013411022256502
520 => 0.0133826241567
521 => 0.013796864458118
522 => 0.014654329484885
523 => 0.014485988582732
524 => 0.014607632136807
525 => 0.015205998027808
526 => 0.015396200551067
527 => 0.015261199305252
528 => 0.015076401273465
529 => 0.015084531448998
530 => 0.015716042265781
531 => 0.015755428820797
601 => 0.015854945938738
602 => 0.015982853558826
603 => 0.015282982526041
604 => 0.015051567586292
605 => 0.014941910349427
606 => 0.014604208502574
607 => 0.014968390992036
608 => 0.014756197451276
609 => 0.014784829609488
610 => 0.01476618287889
611 => 0.014776365254683
612 => 0.014235760081196
613 => 0.014432728193043
614 => 0.014105230504503
615 => 0.013666747862889
616 => 0.013665277915322
617 => 0.013772595920659
618 => 0.013708758971731
619 => 0.013536975383562
620 => 0.013561376431466
621 => 0.013347597575841
622 => 0.01358733305513
623 => 0.013594207810861
624 => 0.013501896592855
625 => 0.013871242175822
626 => 0.01402256336252
627 => 0.013961802141331
628 => 0.014018300193264
629 => 0.01449298390723
630 => 0.014570378064509
701 => 0.014604751436801
702 => 0.014558695671528
703 => 0.014026976540167
704 => 0.014050560544687
705 => 0.01387751676775
706 => 0.013731313011143
707 => 0.013737160394669
708 => 0.013812328130724
709 => 0.014140590042602
710 => 0.014831397884053
711 => 0.014857613536662
712 => 0.014889387672389
713 => 0.014760146293987
714 => 0.014721165857587
715 => 0.014772591114902
716 => 0.015032022219201
717 => 0.015699349454313
718 => 0.015463471440137
719 => 0.015271698942952
720 => 0.015439935124477
721 => 0.01541403648301
722 => 0.015195425885556
723 => 0.015189290214191
724 => 0.014769706583642
725 => 0.014614596068884
726 => 0.014484974112933
727 => 0.0143434303209
728 => 0.014259518416392
729 => 0.014388445238995
730 => 0.014417932328741
731 => 0.014136031577866
801 => 0.01409760954718
802 => 0.014327815785596
803 => 0.014226510603023
804 => 0.014330705495547
805 => 0.014354879604379
806 => 0.01435098701608
807 => 0.014245212770648
808 => 0.014312630120453
809 => 0.014153167990085
810 => 0.013979776873746
811 => 0.013869164144171
812 => 0.013772639866967
813 => 0.013826197145984
814 => 0.013635275225462
815 => 0.013574195460588
816 => 0.014289790639278
817 => 0.01481840849172
818 => 0.01481072217879
819 => 0.014763933725587
820 => 0.014694415574818
821 => 0.01502693653347
822 => 0.014911092880442
823 => 0.014995378817081
824 => 0.015016833125425
825 => 0.015081768855159
826 => 0.015104977797124
827 => 0.015034824254859
828 => 0.014799380398482
829 => 0.014212676693722
830 => 0.01393956453538
831 => 0.013849432974084
901 => 0.013852709085153
902 => 0.013762339316669
903 => 0.013788957263576
904 => 0.013753082681005
905 => 0.01368514490061
906 => 0.013822002179488
907 => 0.013837773705965
908 => 0.013805829581752
909 => 0.013813353579398
910 => 0.01354886987443
911 => 0.013568977996091
912 => 0.01345701341947
913 => 0.013436021411106
914 => 0.013152984711279
915 => 0.01265154417071
916 => 0.012929390906196
917 => 0.012593791120892
918 => 0.01246669439703
919 => 0.013068350520194
920 => 0.013007960932772
921 => 0.012904600209827
922 => 0.01275170815833
923 => 0.012694999009191
924 => 0.01235045217096
925 => 0.012330094505672
926 => 0.012500861222246
927 => 0.012422058258271
928 => 0.012311389051833
929 => 0.011910556404475
930 => 0.011459887797714
1001 => 0.011473490650151
1002 => 0.011616839948974
1003 => 0.012033647368588
1004 => 0.011870793498903
1005 => 0.011752641147914
1006 => 0.01173051476422
1007 => 0.012007472780868
1008 => 0.012399426398923
1009 => 0.012583322267047
1010 => 0.012401087046737
1011 => 0.012191745037886
1012 => 0.012204486715967
1013 => 0.01228925139187
1014 => 0.012298158960799
1015 => 0.012161898833743
1016 => 0.012200255261361
1017 => 0.012141988340424
1018 => 0.011784404354187
1019 => 0.011777936793787
1020 => 0.011690179916744
1021 => 0.011687522673384
1022 => 0.011538226333554
1023 => 0.011517338743575
1024 => 0.011220901799203
1025 => 0.011416017493682
1026 => 0.011285144129859
1027 => 0.011087887100673
1028 => 0.01105387991449
1029 => 0.011052857617409
1030 => 0.011255396480519
1031 => 0.011413650709143
1101 => 0.011287420728055
1102 => 0.011258680608226
1103 => 0.011565549897709
1104 => 0.011526497983447
1105 => 0.011492679277553
1106 => 0.012364331251411
1107 => 0.011674350698251
1108 => 0.01137347979436
1109 => 0.01100109491696
1110 => 0.011122345310769
1111 => 0.011147894550283
1112 => 0.010252376047555
1113 => 0.009889064302528
1114 => 0.009764389402749
1115 => 0.0096926372352819
1116 => 0.0097253355990037
1117 => 0.0093983124162619
1118 => 0.0096180774035286
1119 => 0.0093349029698557
1120 => 0.0092874278545212
1121 => 0.0097937788205091
1122 => 0.0098642345993669
1123 => 0.0095636483578648
1124 => 0.0097566733854013
1125 => 0.009686679827168
1126 => 0.0093397571827612
1127 => 0.009326507289535
1128 => 0.0091524337014923
1129 => 0.008880042243494
1130 => 0.0087555520379502
1201 => 0.0086907164580295
1202 => 0.0087174688819251
1203 => 0.0087039420377658
1204 => 0.0086156702297166
1205 => 0.0087090016744759
1206 => 0.0084705784003315
1207 => 0.0083756363314603
1208 => 0.0083327532015904
1209 => 0.0081211388226556
1210 => 0.0084579114048823
1211 => 0.0085242598461302
1212 => 0.0085907390143034
1213 => 0.0091693947859954
1214 => 0.0091404867789059
1215 => 0.0094018010842245
1216 => 0.009391646890846
1217 => 0.009317115817958
1218 => 0.0090026814812102
1219 => 0.0091280094035847
1220 => 0.0087422695387994
1221 => 0.0090312920732578
1222 => 0.0088993942584005
1223 => 0.0089866972893773
1224 => 0.0088297185678842
1225 => 0.008916597073851
1226 => 0.008539993522915
1227 => 0.0081883264260059
1228 => 0.0083298475316047
1229 => 0.008483697158292
1230 => 0.0088172823491061
1231 => 0.0086186017614753
]
'min_raw' => 0.0081211388226556
'max_raw' => 0.024241797168266
'avg_raw' => 0.016181467995461
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.008121'
'max' => '$0.024241'
'avg' => '$0.016181'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.015384341177344
'max_diff' => 0.00073631716826625
'year' => 2026
]
1 => [
'items' => [
101 => 0.0086900548137321
102 => 0.0084506990497683
103 => 0.007956839740117
104 => 0.0079596349301767
105 => 0.0078836654346967
106 => 0.0078180166988741
107 => 0.008641422616974
108 => 0.008539019074937
109 => 0.0083758524329452
110 => 0.0085942574672358
111 => 0.0086520072248562
112 => 0.0086536512792691
113 => 0.0088129939544376
114 => 0.0088980351687388
115 => 0.0089130240513491
116 => 0.0091637531935531
117 => 0.0092477942948226
118 => 0.0095939476970095
119 => 0.0088908200158552
120 => 0.0088763395639679
121 => 0.0085973308739611
122 => 0.0084203791518059
123 => 0.0086094469097658
124 => 0.0087769351329957
125 => 0.0086025351999284
126 => 0.0086253081494035
127 => 0.0083911904882588
128 => 0.0084748765358582
129 => 0.0085469582337788
130 => 0.0085071589569534
131 => 0.008447577513239
201 => 0.0087632030087013
202 => 0.008745394181301
203 => 0.0090393118988743
204 => 0.0092684417779804
205 => 0.0096790834832035
206 => 0.0092505574565669
207 => 0.0092349402649196
208 => 0.0093876008183485
209 => 0.0092477709232872
210 => 0.009336138590202
211 => 0.0096648460859047
212 => 0.0096717911573184
213 => 0.0095554522629197
214 => 0.0095483730306226
215 => 0.0095707171878999
216 => 0.0097015876149803
217 => 0.0096558574665164
218 => 0.0097087775520645
219 => 0.0097749549293835
220 => 0.010048692620602
221 => 0.01011468985122
222 => 0.0099543507964586
223 => 0.0099688276178633
224 => 0.0099088564099772
225 => 0.0098509249745962
226 => 0.0099811463811259
227 => 0.010219128561067
228 => 0.010217648086277
301 => 0.010272855326311
302 => 0.01030724897949
303 => 0.010159606242351
304 => 0.010063496249447
305 => 0.010100350936364
306 => 0.010159282383335
307 => 0.010081240262369
308 => 0.0095995281391414
309 => 0.0097456488254391
310 => 0.0097213271983027
311 => 0.0096866902436494
312 => 0.0098336157236397
313 => 0.0098194444026675
314 => 0.0093949583208513
315 => 0.0094221325425674
316 => 0.0093966108752777
317 => 0.0094790766035328
318 => 0.009243317503332
319 => 0.009315835414692
320 => 0.0093613179688838
321 => 0.0093881075427162
322 => 0.0094848898531816
323 => 0.0094735335661057
324 => 0.009484183930432
325 => 0.0096276865472695
326 => 0.010353473539082
327 => 0.010392976523688
328 => 0.010198449379952
329 => 0.010276159136996
330 => 0.010126973396727
331 => 0.010227122783627
401 => 0.010295642450626
402 => 0.0099860152510334
403 => 0.0099676811377374
404 => 0.0098178796548497
405 => 0.0098983744865639
406 => 0.0097703014215234
407 => 0.0098017260718787
408 => 0.0097138600099335
409 => 0.0098720014274765
410 => 0.010048828104981
411 => 0.010093501506816
412 => 0.0099759850196975
413 => 0.0098908953383096
414 => 0.0097415058880761
415 => 0.0099899438731755
416 => 0.010062594711029
417 => 0.0099895622692526
418 => 0.0099726390567027
419 => 0.0099405695995001
420 => 0.0099794427436503
421 => 0.010062199038963
422 => 0.010023172698363
423 => 0.010048950283885
424 => 0.0099507127096041
425 => 0.01015965511824
426 => 0.010491505947883
427 => 0.010492572902563
428 => 0.010453546351596
429 => 0.010437577527779
430 => 0.010477621137401
501 => 0.010499343152945
502 => 0.01062883684372
503 => 0.010767788733177
504 => 0.011416216571813
505 => 0.01123414062945
506 => 0.011809464383033
507 => 0.012264470775678
508 => 0.012400907297814
509 => 0.012275392117283
510 => 0.011846011464885
511 => 0.011824944001609
512 => 0.012466619976129
513 => 0.012285317122705
514 => 0.012263751725192
515 => 0.012034332330959
516 => 0.012169947607095
517 => 0.012140286556848
518 => 0.012093465137965
519 => 0.012352209637791
520 => 0.012836556243184
521 => 0.01276106628256
522 => 0.012704716528832
523 => 0.012457808311165
524 => 0.012606502207148
525 => 0.012553555158832
526 => 0.012781049279422
527 => 0.012646286801997
528 => 0.012283943575274
529 => 0.012341647928429
530 => 0.012332926031535
531 => 0.012512422051578
601 => 0.012458541801726
602 => 0.012322405048004
603 => 0.012834900799142
604 => 0.012801622175714
605 => 0.012848803655182
606 => 0.01286957440158
607 => 0.01318152153411
608 => 0.013309316293112
609 => 0.013338327940768
610 => 0.013459723077819
611 => 0.01333530751917
612 => 0.013833058460557
613 => 0.014164033792007
614 => 0.01454847867132
615 => 0.01511025596904
616 => 0.015321489429713
617 => 0.01528333199572
618 => 0.015709265131375
619 => 0.016474657508186
620 => 0.015438039678479
621 => 0.016529600770265
622 => 0.016184025131284
623 => 0.015364671507901
624 => 0.0153119147941
625 => 0.015866790580746
626 => 0.017097451670712
627 => 0.016789185025718
628 => 0.017097955884509
629 => 0.016737758276399
630 => 0.016719871429173
701 => 0.01708046189066
702 => 0.017923001158687
703 => 0.017522742334559
704 => 0.016948873162682
705 => 0.017372609228803
706 => 0.017005529833408
707 => 0.016178397216529
708 => 0.016788949300024
709 => 0.016380690509313
710 => 0.016499842128674
711 => 0.017357941382836
712 => 0.017254692610327
713 => 0.017388306082533
714 => 0.017152481801362
715 => 0.016932184736672
716 => 0.016520983905953
717 => 0.016399247611933
718 => 0.016432891143988
719 => 0.01639923093987
720 => 0.016169167854213
721 => 0.01611948575277
722 => 0.016036680073743
723 => 0.016062345016166
724 => 0.015906646113938
725 => 0.016200482111477
726 => 0.016255020661894
727 => 0.016468849997014
728 => 0.016491050467938
729 => 0.017086562122578
730 => 0.016758564310369
731 => 0.016978613560768
801 => 0.016958930284628
802 => 0.015382429385418
803 => 0.015599657299744
804 => 0.01593759576456
805 => 0.015785354944225
806 => 0.015570122043137
807 => 0.01539630993545
808 => 0.015132966819104
809 => 0.015503617198304
810 => 0.015990983032679
811 => 0.016503410869774
812 => 0.017119059340441
813 => 0.016981653768727
814 => 0.016491901749851
815 => 0.016513871667654
816 => 0.016649681054666
817 => 0.016473795558901
818 => 0.016421923492507
819 => 0.016642554629293
820 => 0.016644073994675
821 => 0.016441696475326
822 => 0.016216790897264
823 => 0.01621584853468
824 => 0.016175828759394
825 => 0.016744877705518
826 => 0.017057797088549
827 => 0.017093672791519
828 => 0.017055382367896
829 => 0.017070118832256
830 => 0.016888037937979
831 => 0.017304220867885
901 => 0.017686151480593
902 => 0.01758378591763
903 => 0.017430325386626
904 => 0.01730808668202
905 => 0.017554990363627
906 => 0.017543996131347
907 => 0.01768281564988
908 => 0.017676517994659
909 => 0.017629838211842
910 => 0.017583787584712
911 => 0.017766373115958
912 => 0.017713791415193
913 => 0.017661128040523
914 => 0.017555503580264
915 => 0.01756985969865
916 => 0.01741642566477
917 => 0.017345440060033
918 => 0.016277986883079
919 => 0.015992728514158
920 => 0.01608247660399
921 => 0.016112024005471
922 => 0.015987879197748
923 => 0.016165870961838
924 => 0.016138131133944
925 => 0.016246050577022
926 => 0.016178627194304
927 => 0.016181394273449
928 => 0.01637967206584
929 => 0.016437232952504
930 => 0.016407957020973
1001 => 0.016428460879898
1002 => 0.016900963654667
1003 => 0.016833788869883
1004 => 0.01679810360431
1005 => 0.016807988666751
1006 => 0.016928723256278
1007 => 0.016962522349482
1008 => 0.016819313216559
1009 => 0.016886851471527
1010 => 0.017174420789303
1011 => 0.017275053775511
1012 => 0.017596225960913
1013 => 0.017459786308174
1014 => 0.017710227195747
1015 => 0.018479997102554
1016 => 0.019094942568138
1017 => 0.018529413304291
1018 => 0.019658682339003
1019 => 0.020537980266548
1020 => 0.020504231347541
1021 => 0.020350905415346
1022 => 0.019349848102181
1023 => 0.018428660237683
1024 => 0.019199273002038
1025 => 0.019201237452453
1026 => 0.019135041132572
1027 => 0.018723901475012
1028 => 0.019120734363686
1029 => 0.019152233517303
1030 => 0.019134602367578
1031 => 0.018819382556096
1101 => 0.01833810016632
1102 => 0.018432141593255
1103 => 0.018586183368968
1104 => 0.018294550151063
1105 => 0.018201355667263
1106 => 0.018374621943624
1107 => 0.01893292198752
1108 => 0.018827378598233
1109 => 0.018824622433805
1110 => 0.019276181810535
1111 => 0.018952962749409
1112 => 0.018433327756811
1113 => 0.018302113068037
1114 => 0.017836389319693
1115 => 0.018158066371525
1116 => 0.01816964295595
1117 => 0.017993463722121
1118 => 0.018447623730657
1119 => 0.018443438566225
1120 => 0.018874595901533
1121 => 0.019698806791343
1122 => 0.019455047074272
1123 => 0.019171581044299
1124 => 0.019202401661418
1125 => 0.019540427759442
1126 => 0.019336049464191
1127 => 0.01940954532414
1128 => 0.019540316514655
1129 => 0.01961921402076
1130 => 0.019191049524453
1201 => 0.019091223898889
1202 => 0.018887015703018
1203 => 0.018833741596441
1204 => 0.019000064911035
1205 => 0.018956244593929
1206 => 0.018168669988856
1207 => 0.018086364060602
1208 => 0.018088888265916
1209 => 0.017881926095888
1210 => 0.017566259109983
1211 => 0.018395813101444
1212 => 0.018329188306329
1213 => 0.018255639688872
1214 => 0.018264648974848
1215 => 0.018624730246348
1216 => 0.018415864924338
1217 => 0.018971167615254
1218 => 0.018857014075929
1219 => 0.01873993292906
1220 => 0.018723748748184
1221 => 0.018678682495534
1222 => 0.018524133546781
1223 => 0.018337506404211
1224 => 0.01821427899932
1225 => 0.016801709573728
1226 => 0.017063874242579
1227 => 0.017365470797032
1228 => 0.017469580719056
1229 => 0.017291493493246
1230 => 0.018531165515911
1231 => 0.018757665540229
]
'min_raw' => 0.0078180166988741
'max_raw' => 0.020537980266548
'avg_raw' => 0.014177998482711
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.007818'
'max' => '$0.020537'
'avg' => '$0.014177'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -0.00030312212378153
'max_diff' => -0.0037038169017185
'year' => 2027
]
2 => [
'items' => [
101 => 0.018071582192339
102 => 0.017943244010548
103 => 0.018539579345743
104 => 0.01817991623959
105 => 0.018341872514268
106 => 0.01799181163376
107 => 0.018703108317065
108 => 0.018697689428086
109 => 0.018420978952917
110 => 0.018654852751699
111 => 0.018614211423809
112 => 0.01830180597885
113 => 0.018713012126898
114 => 0.018713216080017
115 => 0.018446888263871
116 => 0.018135875681267
117 => 0.018080273977287
118 => 0.018038385562376
119 => 0.018331570532007
120 => 0.018594439259012
121 => 0.019083572789285
122 => 0.019206552580322
123 => 0.019686550891967
124 => 0.019400735268076
125 => 0.019527433632215
126 => 0.019664982629065
127 => 0.019730928676352
128 => 0.019623473131158
129 => 0.020369108084329
130 => 0.020432062520041
131 => 0.020453170597782
201 => 0.02020174668684
202 => 0.020425069966256
203 => 0.020320584399507
204 => 0.02059242681726
205 => 0.020635055179422
206 => 0.020598950473219
207 => 0.020612481388212
208 => 0.0199762134947
209 => 0.019943219647841
210 => 0.01949334620478
211 => 0.019676672958124
212 => 0.019333952379828
213 => 0.019442632605619
214 => 0.019490537813604
215 => 0.019465514851549
216 => 0.019687037977697
217 => 0.019498698066286
218 => 0.019001638074126
219 => 0.018504442658303
220 => 0.018498200774864
221 => 0.018367297998106
222 => 0.018272679266549
223 => 0.018290906191027
224 => 0.018355140250261
225 => 0.018268945866255
226 => 0.018287339808249
227 => 0.018592801803541
228 => 0.018654060028242
229 => 0.018445880645576
301 => 0.01761001038403
302 => 0.017404885725225
303 => 0.017552325262176
304 => 0.017481858659836
305 => 0.014109224341614
306 => 0.014901574747688
307 => 0.014430787042076
308 => 0.014647747676723
309 => 0.014167195339178
310 => 0.014396540102561
311 => 0.014354188499094
312 => 0.015628264504708
313 => 0.015608371560315
314 => 0.015617893260085
315 => 0.015163397721409
316 => 0.015887421455418
317 => 0.016244101581843
318 => 0.016178089583176
319 => 0.016194703381067
320 => 0.01590922328914
321 => 0.015620657331403
322 => 0.01530059327429
323 => 0.015895232731293
324 => 0.015829118974508
325 => 0.015980760145594
326 => 0.016366426339167
327 => 0.016423217151174
328 => 0.016499544578427
329 => 0.016472186629113
330 => 0.017123963973752
331 => 0.017045029436751
401 => 0.017235238959907
402 => 0.016843963539543
403 => 0.016401198261196
404 => 0.016485353465523
405 => 0.016477248642613
406 => 0.016374064944685
407 => 0.016280915315851
408 => 0.016125847428588
409 => 0.016616505169618
410 => 0.016596585361379
411 => 0.016919063902533
412 => 0.016862062687995
413 => 0.016481394626743
414 => 0.016494990261022
415 => 0.016586427435386
416 => 0.01690289253987
417 => 0.016996840929468
418 => 0.01695332029221
419 => 0.017056330412497
420 => 0.017137745411512
421 => 0.017066554882886
422 => 0.018074462640684
423 => 0.017655909068563
424 => 0.017859909167338
425 => 0.017908561988857
426 => 0.017783938809594
427 => 0.017810965114755
428 => 0.017851902602846
429 => 0.018100467014154
430 => 0.018752771952118
501 => 0.019041673368752
502 => 0.019910847534841
503 => 0.019017684127803
504 => 0.018964687507506
505 => 0.019121252021364
506 => 0.019631549268288
507 => 0.020045097257137
508 => 0.020182294983194
509 => 0.02020042792758
510 => 0.020457819982395
511 => 0.020605352308137
512 => 0.020426565816857
513 => 0.020275062985223
514 => 0.019732398647534
515 => 0.019795213522248
516 => 0.020227945718509
517 => 0.020839205433528
518 => 0.021363729859748
519 => 0.021180059687207
520 => 0.022581333452756
521 => 0.02272026402292
522 => 0.022701068310286
523 => 0.023017572824761
524 => 0.022389375818552
525 => 0.022120809427654
526 => 0.020307819617053
527 => 0.020817195802938
528 => 0.021557604003738
529 => 0.021459608201974
530 => 0.020921903975385
531 => 0.021363321962875
601 => 0.021217375371794
602 => 0.021102261240079
603 => 0.021629621393438
604 => 0.021049767242059
605 => 0.021551819515012
606 => 0.020907932281883
607 => 0.021180898677084
608 => 0.021025949749269
609 => 0.021126220695392
610 => 0.020540038793231
611 => 0.020856328318876
612 => 0.020526880109101
613 => 0.020526723907754
614 => 0.020519451320264
615 => 0.020907045678067
616 => 0.02091968511616
617 => 0.020633252300121
618 => 0.020591972856408
619 => 0.020744604595246
620 => 0.020565912803382
621 => 0.020649521568123
622 => 0.020568445227693
623 => 0.020550193235733
624 => 0.020404758258477
625 => 0.020342100871457
626 => 0.020366670447389
627 => 0.020282801818247
628 => 0.020232267935528
629 => 0.020509398859071
630 => 0.020361338986052
701 => 0.020486706560054
702 => 0.020343834386829
703 => 0.019848577187991
704 => 0.019563749535689
705 => 0.01862825459745
706 => 0.018893559801457
707 => 0.019069457426191
708 => 0.019011323262266
709 => 0.019136217941313
710 => 0.019143885460254
711 => 0.019103280926945
712 => 0.019056266079136
713 => 0.019033381851307
714 => 0.019203942136849
715 => 0.019302958123401
716 => 0.01908711110604
717 => 0.019036541169893
718 => 0.019254774421685
719 => 0.01938789657921
720 => 0.02037079579549
721 => 0.020297979446825
722 => 0.020480734192487
723 => 0.020460158812725
724 => 0.020651714901293
725 => 0.020964828148457
726 => 0.020328181369131
727 => 0.020438681236433
728 => 0.020411589220785
729 => 0.02070737274372
730 => 0.020708296147593
731 => 0.02053095915011
801 => 0.02062709641341
802 => 0.020573435230424
803 => 0.020670408240823
804 => 0.020297006940095
805 => 0.020751769418202
806 => 0.021009590439042
807 => 0.021013170284167
808 => 0.021135375401851
809 => 0.021259542879061
810 => 0.021497871538858
811 => 0.021252896022093
812 => 0.020812208915317
813 => 0.020844025101016
814 => 0.020585650411555
815 => 0.020589993736764
816 => 0.020566808726405
817 => 0.020636388687777
818 => 0.020312275828795
819 => 0.020388344468971
820 => 0.020281847927268
821 => 0.02043844973375
822 => 0.020269972077181
823 => 0.020411576156195
824 => 0.020472687782448
825 => 0.02069819099896
826 => 0.020236665068751
827 => 0.019295582454497
828 => 0.019493409429537
829 => 0.019200807794479
830 => 0.019227889189817
831 => 0.019282597918371
901 => 0.019105269029545
902 => 0.019139097793257
903 => 0.019137889191768
904 => 0.019127474117074
905 => 0.019081344024324
906 => 0.019014446263275
907 => 0.019280946353248
908 => 0.019326229911629
909 => 0.019426889652465
910 => 0.019726384763037
911 => 0.01969645813891
912 => 0.019745269704505
913 => 0.019638714330876
914 => 0.019232831987991
915 => 0.019254873351969
916 => 0.01898001718998
917 => 0.019419860962442
918 => 0.019315700151469
919 => 0.019248546999028
920 => 0.019230223639215
921 => 0.019530461140238
922 => 0.01962029690619
923 => 0.019564317285503
924 => 0.019449501450286
925 => 0.019669981796157
926 => 0.019728973035392
927 => 0.019742178998344
928 => 0.020132827898313
929 => 0.019764011932284
930 => 0.019852789601023
1001 => 0.020545407629817
1002 => 0.019917298652455
1003 => 0.020250021986265
1004 => 0.020233736910484
1005 => 0.020403946909318
1006 => 0.020219774722522
1007 => 0.020222057757506
1008 => 0.020373192705446
1009 => 0.020160950928395
1010 => 0.020108396879635
1011 => 0.020035793837672
1012 => 0.02019431992367
1013 => 0.020289349142707
1014 => 0.02105521485688
1015 => 0.021549999035955
1016 => 0.021528519149841
1017 => 0.021724805100262
1018 => 0.021636376481824
1019 => 0.021350817146597
1020 => 0.021838232111578
1021 => 0.02168399362235
1022 => 0.021696708856002
1023 => 0.02169623559437
1024 => 0.021798790705945
1025 => 0.021726121010356
1026 => 0.021582881580961
1027 => 0.021677970598898
1028 => 0.021960350987225
1029 => 0.02283686837708
1030 => 0.023327379120754
1031 => 0.022807339014407
1101 => 0.023166055716151
1102 => 0.022950953518935
1103 => 0.022911863050964
1104 => 0.023137163648615
1105 => 0.023362858605137
1106 => 0.023348482812113
1107 => 0.023184639863242
1108 => 0.023092089138786
1109 => 0.023792914231136
1110 => 0.024309270220935
1111 => 0.024274058204125
1112 => 0.024429472594762
1113 => 0.02488577405246
1114 => 0.024927492539195
1115 => 0.024922236968755
1116 => 0.024818833346507
1117 => 0.025268121389841
1118 => 0.025642925380062
1119 => 0.024794898395574
1120 => 0.025117815969779
1121 => 0.025262784072594
1122 => 0.025475640257624
1123 => 0.025834764320609
1124 => 0.026224868305964
1125 => 0.026280033286766
1126 => 0.026240891092999
1127 => 0.0259836070281
1128 => 0.026410463463784
1129 => 0.026660505952792
1130 => 0.026809400532876
1201 => 0.027186972414273
1202 => 0.025263679346244
1203 => 0.023902276918825
1204 => 0.023689674270894
1205 => 0.024122010115647
1206 => 0.024236013630095
1207 => 0.02419005895637
1208 => 0.022657676751016
1209 => 0.023681606595717
1210 => 0.024783269014148
1211 => 0.024825588354301
1212 => 0.025377103595642
1213 => 0.025556699565597
1214 => 0.026000741623632
1215 => 0.025972966672002
1216 => 0.026081083846881
1217 => 0.026056229580705
1218 => 0.026878723989128
1219 => 0.02778605746322
1220 => 0.027754639390156
1221 => 0.027624199468173
1222 => 0.02781792499563
1223 => 0.028754390376657
1224 => 0.028668175650924
1225 => 0.028751925913221
1226 => 0.029856071374329
1227 => 0.031291617536629
1228 => 0.030624662217762
1229 => 0.032071763348479
1230 => 0.032982636802731
1231 => 0.034557898255787
]
'min_raw' => 0.014109224341614
'max_raw' => 0.034557898255787
'avg_raw' => 0.0243335612987
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.0141092'
'max' => '$0.034557'
'avg' => '$0.024333'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 0.0062912076427397
'max_diff' => 0.014019917989239
'year' => 2028
]
3 => [
'items' => [
101 => 0.034360667763538
102 => 0.03497390548741
103 => 0.034007584019167
104 => 0.031788714602291
105 => 0.031437570023579
106 => 0.032140570362556
107 => 0.033868828098163
108 => 0.032086141376115
109 => 0.032446776578209
110 => 0.032342913615745
111 => 0.032337379199864
112 => 0.032548605343929
113 => 0.032242210805148
114 => 0.030993904334832
115 => 0.031565995833862
116 => 0.031345083831996
117 => 0.031590202168147
118 => 0.03291300473386
119 => 0.032328162187884
120 => 0.031712078074448
121 => 0.032484784272706
122 => 0.033468704793746
123 => 0.033407132815814
124 => 0.033287657443537
125 => 0.033961133861537
126 => 0.035073519593997
127 => 0.035374192987554
128 => 0.03559614393968
129 => 0.035626747226086
130 => 0.035941980095906
131 => 0.034246893505973
201 => 0.036937039457108
202 => 0.037401553349087
203 => 0.037314243989523
204 => 0.037830531630725
205 => 0.03767862670973
206 => 0.03745854031236
207 => 0.038276966041195
208 => 0.037338706986636
209 => 0.03600696638222
210 => 0.035276347147795
211 => 0.036238485493058
212 => 0.03682602980651
213 => 0.037214359222865
214 => 0.037331867469619
215 => 0.034378478252657
216 => 0.032786765267189
217 => 0.033807035041847
218 => 0.035051834582189
219 => 0.034239978581675
220 => 0.034271801799848
221 => 0.033114308495119
222 => 0.0351542470558
223 => 0.034857045166092
224 => 0.036398929095635
225 => 0.036030946121458
226 => 0.03728829261041
227 => 0.0369571911416
228 => 0.038331574826999
301 => 0.038879853689058
302 => 0.039800499231245
303 => 0.04047772983978
304 => 0.040875412606469
305 => 0.040851537224827
306 => 0.042427354471216
307 => 0.041498150095882
308 => 0.040330850403806
309 => 0.040309737635159
310 => 0.04091429868645
311 => 0.042181292796731
312 => 0.042509805935512
313 => 0.042693399963504
314 => 0.04241221931868
315 => 0.041403634565932
316 => 0.040968132783337
317 => 0.04133919291981
318 => 0.040885418258464
319 => 0.041668760630629
320 => 0.042744457020513
321 => 0.042522329969767
322 => 0.043264867397264
323 => 0.044033315517508
324 => 0.045132230842621
325 => 0.045419528001322
326 => 0.045894419279723
327 => 0.046383238398856
328 => 0.046540233925877
329 => 0.046839987099811
330 => 0.046838407252622
331 => 0.047741733617988
401 => 0.048738130572674
402 => 0.049114247356426
403 => 0.049979107161463
404 => 0.04849806505364
405 => 0.049621452505409
406 => 0.050634776107117
407 => 0.049426649934732
408 => 0.051091770406068
409 => 0.051156423260726
410 => 0.052132604606655
411 => 0.051143057798839
412 => 0.050555468063103
413 => 0.052251817613473
414 => 0.053072627726386
415 => 0.052825393040403
416 => 0.050943924872583
417 => 0.049848829698946
418 => 0.046982754401456
419 => 0.050377744396572
420 => 0.052031344989978
421 => 0.050939642446527
422 => 0.051490233708899
423 => 0.054494081106585
424 => 0.055637751710908
425 => 0.055399876220069
426 => 0.055440073262257
427 => 0.05605717716126
428 => 0.058793755694763
429 => 0.057153934404094
430 => 0.058407516337879
501 => 0.059072411675432
502 => 0.059690003519972
503 => 0.05817339314169
504 => 0.056200305322976
505 => 0.055575345586198
506 => 0.050831094143686
507 => 0.050584135252864
508 => 0.050445509743825
509 => 0.049571495518302
510 => 0.048884759749686
511 => 0.048338641969618
512 => 0.046905465830146
513 => 0.047389120705891
514 => 0.04510493706668
515 => 0.04656627681255
516 => 0.042920664570826
517 => 0.045956838775686
518 => 0.044304387193882
519 => 0.045413963988521
520 => 0.045410092779613
521 => 0.04336701010904
522 => 0.042188602662702
523 => 0.042939529751813
524 => 0.043744583200006
525 => 0.04387520041345
526 => 0.044918973223078
527 => 0.045210267778424
528 => 0.044327631676484
529 => 0.042845117360264
530 => 0.04318947162337
531 => 0.042181624334551
601 => 0.04041541072718
602 => 0.041683936175125
603 => 0.04211706653618
604 => 0.042308361578514
605 => 0.040571493346668
606 => 0.040025731638979
607 => 0.039735172685189
608 => 0.04262090948219
609 => 0.042778996658112
610 => 0.04197020031482
611 => 0.045626036479717
612 => 0.044798608162154
613 => 0.045723048317731
614 => 0.043158225083344
615 => 0.04325620478489
616 => 0.042041976362616
617 => 0.042721863144317
618 => 0.042241341080784
619 => 0.042666935011128
620 => 0.042922034258186
621 => 0.044136063437524
622 => 0.045970701038792
623 => 0.043954727962436
624 => 0.043076339623802
625 => 0.043621286808847
626 => 0.045072552974923
627 => 0.047271295505476
628 => 0.045969595673572
629 => 0.046547267954674
630 => 0.046673463649244
701 => 0.045713638384745
702 => 0.047306685632059
703 => 0.048160412593787
704 => 0.049036159802618
705 => 0.049796546566166
706 => 0.048686367109317
707 => 0.049874418266119
708 => 0.048917058752998
709 => 0.04805820829972
710 => 0.04805951082134
711 => 0.047520741386196
712 => 0.046476807716286
713 => 0.046284290330739
714 => 0.047285790082621
715 => 0.048088898041252
716 => 0.048155045859352
717 => 0.048599687690427
718 => 0.048862822145881
719 => 0.051441897523284
720 => 0.052479222975306
721 => 0.053747644902472
722 => 0.054241766727446
723 => 0.05572889626814
724 => 0.054527918385274
725 => 0.054268079265811
726 => 0.050660789436454
727 => 0.051251482943927
728 => 0.052197240242837
729 => 0.050676384625969
730 => 0.051641017462164
731 => 0.051831456417746
801 => 0.05062470653407
802 => 0.051269283787526
803 => 0.049557477706184
804 => 0.046008013733539
805 => 0.047310637200129
806 => 0.048269806529856
807 => 0.04690095363161
808 => 0.049354569469794
809 => 0.047921217750038
810 => 0.047466914067892
811 => 0.045694513432883
812 => 0.046531018306651
813 => 0.047662403126017
814 => 0.046963338845251
815 => 0.04841400219287
816 => 0.050468528370882
817 => 0.051932706074483
818 => 0.052045107457798
819 => 0.051103739286671
820 => 0.052612287788634
821 => 0.052623275917551
822 => 0.050921627044735
823 => 0.049879376584955
824 => 0.04964257508758
825 => 0.050234151655692
826 => 0.05095243482044
827 => 0.052084967174445
828 => 0.052769332756732
829 => 0.054553795235877
830 => 0.055036619618185
831 => 0.055567097231136
901 => 0.056275978915275
902 => 0.057127173130617
903 => 0.055264808645962
904 => 0.055338803858819
905 => 0.0536045958369
906 => 0.051751345854892
907 => 0.053157731580365
908 => 0.054996393832767
909 => 0.054574602680525
910 => 0.054527142559486
911 => 0.054606957318733
912 => 0.054288940564354
913 => 0.052850562570546
914 => 0.052128218146779
915 => 0.053060226743155
916 => 0.053555547833199
917 => 0.054323747647319
918 => 0.054229050805497
919 => 0.056207851028032
920 => 0.056976752958697
921 => 0.056780034941664
922 => 0.056816235791082
923 => 0.058208296009006
924 => 0.059756553270358
925 => 0.061206700506153
926 => 0.062681852559677
927 => 0.060903499182989
928 => 0.060000561011895
929 => 0.060932162722474
930 => 0.060437841741598
1001 => 0.063278356722843
1002 => 0.063475027817167
1003 => 0.066315337396848
1004 => 0.069011129405739
1005 => 0.067317950745085
1006 => 0.06891454195964
1007 => 0.070641385530173
1008 => 0.073972746948003
1009 => 0.072850861621185
1010 => 0.071991515043028
1011 => 0.071179436679001
1012 => 0.072869242840731
1013 => 0.075043151472483
1014 => 0.075511390570324
1015 => 0.07627011678993
1016 => 0.075472408942643
1017 => 0.076433160180063
1018 => 0.079825034223641
1019 => 0.078908519916166
1020 => 0.077606922262524
1021 => 0.080284481060883
1022 => 0.081253479181262
1023 => 0.088054415458343
1024 => 0.096640878440823
1025 => 0.093086026384321
1026 => 0.090879414998491
1027 => 0.091398021015683
1028 => 0.094533506626769
1029 => 0.095540525089712
1030 => 0.092803101767354
1031 => 0.09377000596269
1101 => 0.099097743142912
1102 => 0.10195590320583
1103 => 0.098074137938279
1104 => 0.087364501518154
1105 => 0.077489727634902
1106 => 0.080108962335603
1107 => 0.07981202240486
1108 => 0.08553601135626
1109 => 0.078886661353044
1110 => 0.078998619353889
1111 => 0.084840974334995
1112 => 0.083282334189357
1113 => 0.080757536768971
1114 => 0.077508161450179
1115 => 0.071501390642552
1116 => 0.066181026227041
1117 => 0.076615486052607
1118 => 0.076165533171095
1119 => 0.075513934719384
1120 => 0.07696399656335
1121 => 0.084005085270414
1122 => 0.083842765385936
1123 => 0.082810169097221
1124 => 0.083593384281326
1125 => 0.080620235360408
1126 => 0.081386483534671
1127 => 0.077488163420267
1128 => 0.079250366920206
1129 => 0.080752119687651
1130 => 0.081053618789546
1201 => 0.081732911661039
1202 => 0.075928428448555
1203 => 0.078534471000286
1204 => 0.080065276846264
1205 => 0.073149040342945
1206 => 0.079928565087989
1207 => 0.075827385309635
1208 => 0.074435383295208
1209 => 0.076309530625313
1210 => 0.075579173588103
1211 => 0.074951255495515
1212 => 0.074600866410848
1213 => 0.075977033367984
1214 => 0.075912833534558
1215 => 0.073661157290187
1216 => 0.07072393741947
1217 => 0.071709764819038
1218 => 0.071351604482594
1219 => 0.070053585219717
1220 => 0.070928293479452
1221 => 0.067076520983296
1222 => 0.060449746601371
1223 => 0.064827596741659
1224 => 0.064659054273443
1225 => 0.064574067518176
1226 => 0.067863900903712
1227 => 0.067547659333062
1228 => 0.066973677785687
1229 => 0.070043043598477
1230 => 0.068922683788013
1231 => 0.072375368733894
]
'min_raw' => 0.030993904334832
'max_raw' => 0.10195590320583
'avg_raw' => 0.06647490377033
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.030993'
'max' => '$0.101955'
'avg' => '$0.066474'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072435
'min_diff' => 0.016884679993218
'max_diff' => 0.067398004950042
'year' => 2029
]
4 => [
'items' => [
101 => 0.074649530344913
102 => 0.074072729398937
103 => 0.076211589386077
104 => 0.071732476291233
105 => 0.073220257990514
106 => 0.073526887736759
107 => 0.070005168100793
108 => 0.067599400365046
109 => 0.067438963084832
110 => 0.063267693366263
111 => 0.06549595198061
112 => 0.067456727349628
113 => 0.066517668110184
114 => 0.066220390008572
115 => 0.067739119357951
116 => 0.067857137635435
117 => 0.065166308401784
118 => 0.06572581700694
119 => 0.068059060901005
120 => 0.065667025247296
121 => 0.061019690708946
122 => 0.059867087489009
123 => 0.059713308972777
124 => 0.056587357626191
125 => 0.059944109947552
126 => 0.058478797603909
127 => 0.063107701740339
128 => 0.060463696522921
129 => 0.060349718742504
130 => 0.060177424610499
131 => 0.057486789155069
201 => 0.058075867321005
202 => 0.060034052863712
203 => 0.06073275552589
204 => 0.060659875113922
205 => 0.060024456686269
206 => 0.06031534798858
207 => 0.059378285750588
208 => 0.059047389571089
209 => 0.058002990208426
210 => 0.056468011668
211 => 0.056681459848616
212 => 0.053640265711048
213 => 0.051983261736512
214 => 0.051524624875321
215 => 0.050911316496784
216 => 0.051593899688628
217 => 0.053631650390162
218 => 0.051173690711185
219 => 0.046959691247402
220 => 0.047212959795481
221 => 0.047781979026908
222 => 0.046721615453583
223 => 0.045718070321
224 => 0.04659057139359
225 => 0.044805044268612
226 => 0.047997751449505
227 => 0.04791139766772
228 => 0.049101441469069
301 => 0.04984560028021
302 => 0.048130555144806
303 => 0.047699225931228
304 => 0.047944930654102
305 => 0.043883978899025
306 => 0.048769575072881
307 => 0.048811825911471
308 => 0.048450048580233
309 => 0.051051477716952
310 => 0.056541304601525
311 => 0.054475810899773
312 => 0.053675989308578
313 => 0.052155527879049
314 => 0.05418145245783
315 => 0.054025893059526
316 => 0.053322394466247
317 => 0.052896916321982
318 => 0.053680872848662
319 => 0.052799775432664
320 => 0.052641506125813
321 => 0.051682566325
322 => 0.051340268445091
323 => 0.051086844722077
324 => 0.05080785010394
325 => 0.051423242710424
326 => 0.050028682102492
327 => 0.04834697871979
328 => 0.048207163279801
329 => 0.048593206002309
330 => 0.0484224108351
331 => 0.04820634557825
401 => 0.047793818161051
402 => 0.047671430088622
403 => 0.048069131949765
404 => 0.047620149735994
405 => 0.04828264744974
406 => 0.048102484729272
407 => 0.047096110418092
408 => 0.045841795418872
409 => 0.045830629384364
410 => 0.045560389275271
411 => 0.045216197865468
412 => 0.045120451689294
413 => 0.04651709178686
414 => 0.049408094990902
415 => 0.048840521886105
416 => 0.049250651621553
417 => 0.051268083999634
418 => 0.051909365086318
419 => 0.051454198960565
420 => 0.05083113949421
421 => 0.050858550948649
422 => 0.052987733758112
423 => 0.053120528278229
424 => 0.05345605718943
425 => 0.053887306660782
426 => 0.051527642610312
427 => 0.050747410984073
428 => 0.050377693953959
429 => 0.049239108599704
430 => 0.050466975289337
501 => 0.049751549951782
502 => 0.049848085272228
503 => 0.049785216518146
504 => 0.049819547109041
505 => 0.04799685902278
506 => 0.048660950763748
507 => 0.047556769441677
508 => 0.046078394601595
509 => 0.046073438570746
510 => 0.046435268718444
511 => 0.046220037988178
512 => 0.04564085762712
513 => 0.045723127463754
514 => 0.04500235712645
515 => 0.045810642032671
516 => 0.045833820751599
517 => 0.045522587035128
518 => 0.046767861454984
519 => 0.047278051400846
520 => 0.047073190701393
521 => 0.047263677828056
522 => 0.048864107111049
523 => 0.049125046915802
524 => 0.049240939140357
525 => 0.04908565891223
526 => 0.0472929307374
527 => 0.047372445855222
528 => 0.04678901667975
529 => 0.046296080506727
530 => 0.046315795368538
531 => 0.046569228638689
601 => 0.047675986593101
602 => 0.050005093461216
603 => 0.050093481364306
604 => 0.050200610081308
605 => 0.049764863750681
606 => 0.049633438487833
607 => 0.049806822333268
608 => 0.050681512414311
609 => 0.052931452778793
610 => 0.052136173585521
611 => 0.051489599222132
612 => 0.052056819254021
613 => 0.051969500176129
614 => 0.051232439283909
615 => 0.051211752439522
616 => 0.049797096934731
617 => 0.049274131004757
618 => 0.048837101530349
619 => 0.048359876753239
620 => 0.048076961908649
621 => 0.048511647692437
622 => 0.04861106547424
623 => 0.047660617410981
624 => 0.047531074851985
625 => 0.048307231257289
626 => 0.047965673761342
627 => 0.048316974116142
628 => 0.048398478811854
629 => 0.048385354678632
630 => 0.048028729425235
701 => 0.048256031727032
702 => 0.047718394021204
703 => 0.047133793766689
704 => 0.046760855226191
705 => 0.046435416886487
706 => 0.046615988991942
707 => 0.04597228240716
708 => 0.045766347715434
709 => 0.048179026821647
710 => 0.049961298818078
711 => 0.049935383877392
712 => 0.049777633340752
713 => 0.049543248041833
714 => 0.050664365669799
715 => 0.05027379070567
716 => 0.050557966625704
717 => 0.050630301324179
718 => 0.050849236670644
719 => 0.050927487238876
720 => 0.050690959673164
721 => 0.049897144273225
722 => 0.047919031770282
723 => 0.046998215060349
724 => 0.046694330208656
725 => 0.046705375845855
726 => 0.046400687861996
727 => 0.0464904321284
728 => 0.046369478468579
729 => 0.046140421498712
730 => 0.046601845369518
731 => 0.046655020172168
801 => 0.046547318327117
802 => 0.04657268601049
803 => 0.045680960733528
804 => 0.04574875666961
805 => 0.045371260282415
806 => 0.045300484260603
807 => 0.044346206266144
808 => 0.042655564474154
809 => 0.043592344141486
810 => 0.042460846034503
811 => 0.042032330556395
812 => 0.044060856181931
813 => 0.04385724847167
814 => 0.043508760577847
815 => 0.042993274351642
816 => 0.042802075496015
817 => 0.041640411775427
818 => 0.041571774485579
819 => 0.042147526393062
820 => 0.041881836698172
821 => 0.041508707741991
822 => 0.040157272486179
823 => 0.03863781181381
824 => 0.038683674780519
825 => 0.039166986949829
826 => 0.040572282265623
827 => 0.040023209073887
828 => 0.039624850173393
829 => 0.039550249525955
830 => 0.040484032815675
831 => 0.041805531804275
901 => 0.042425549562854
902 => 0.041811130794322
903 => 0.041105319595689
904 => 0.041148279052935
905 => 0.041434069075821
906 => 0.041464101566373
907 => 0.041004691034626
908 => 0.041134012408301
909 => 0.040937561416295
910 => 0.039731942040979
911 => 0.03971013620954
912 => 0.039414257771599
913 => 0.039405298690088
914 => 0.038901935656814
915 => 0.038831511688875
916 => 0.037832053834359
917 => 0.038489900020839
918 => 0.038048651337423
919 => 0.037383585491474
920 => 0.037268927888953
921 => 0.037265481142969
922 => 0.037948355060757
923 => 0.038481920241521
924 => 0.038056327047186
925 => 0.037959427726613
926 => 0.038994058961033
927 => 0.03886239270558
928 => 0.038748370577514
929 => 0.041687206064174
930 => 0.03936088845629
1001 => 0.038346481197686
1002 => 0.037090959584449
1003 => 0.037499763752608
1004 => 0.037585904797422
1005 => 0.034566601642369
1006 => 0.033341670728394
1007 => 0.032921320599266
1008 => 0.032679403157074
1009 => 0.032789647973289
1010 => 0.031687066480646
1011 => 0.032428019478717
1012 => 0.031473277104981
1013 => 0.031313211439024
1014 => 0.033020409073148
1015 => 0.033257955650632
1016 => 0.032244508151147
1017 => 0.032895305508063
1018 => 0.032659317339685
1019 => 0.031489643422702
1020 => 0.031444970482612
1021 => 0.030858069227096
1022 => 0.029939682408691
1023 => 0.029519954989071
1024 => 0.029301357304693
1025 => 0.029391554969651
1026 => 0.029345948270154
1027 => 0.029048333706376
1028 => 0.029363007188575
1029 => 0.028559146473616
1030 => 0.028239042659773
1031 => 0.028094459193412
1101 => 0.027380986540389
1102 => 0.028516438814078
1103 => 0.028740137216045
1104 => 0.028964276372968
1105 => 0.030915254707684
1106 => 0.030817789343489
1107 => 0.031698828768253
1108 => 0.031664593196334
1109 => 0.031413306480499
1110 => 0.030353169161049
1111 => 0.030775721001451
1112 => 0.02947517211583
1113 => 0.030449631769665
1114 => 0.030004929078063
1115 => 0.030299277342304
1116 => 0.029770012622885
1117 => 0.030062929571416
1118 => 0.028793184405815
1119 => 0.027607514235974
1120 => 0.028084662524188
1121 => 0.028603377282002
1122 => 0.029728083043006
1123 => 0.029058217570373
1124 => 0.02929912652475
1125 => 0.02849212185526
1126 => 0.026827040712615
1127 => 0.026836464891055
1128 => 0.026580328433023
1129 => 0.026358989136749
1130 => 0.029135159677988
1201 => 0.028789898986424
1202 => 0.028239771261017
1203 => 0.02897613908268
1204 => 0.029170846422457
1205 => 0.029176389466694
1206 => 0.029713624420975
1207 => 0.030000346812379
1208 => 0.03005088287659
1209 => 0.030896233684881
1210 => 0.031179584125373
1211 => 0.032346664488506
1212 => 0.029976020420687
1213 => 0.029927198566156
1214 => 0.028986501288033
1215 => 0.028389896202412
1216 => 0.029027351348663
1217 => 0.029592049586937
1218 => 0.029004048036386
1219 => 0.029080828625498
1220 => 0.028291484585376
1221 => 0.02857363793763
1222 => 0.028816666414753
1223 => 0.02868248037424
1224 => 0.028481597376913
1225 => 0.029545750771132
1226 => 0.02948570706618
1227 => 0.030476671171658
1228 => 0.031249198556401
1229 => 0.032633705735649
1230 => 0.031188900318112
1231 => 0.031136245866116
]
'min_raw' => 0.026358989136749
'max_raw' => 0.076211589386077
'avg_raw' => 0.051285289261413
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.026358'
'max' => '$0.076211'
'avg' => '$0.051285'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -0.0046349151980831
'max_diff' => -0.025744313819751
'year' => 2030
]
5 => [
'items' => [
101 => 0.031650951580421
102 => 0.03117950532661
103 => 0.031477443085247
104 => 0.032585703356633
105 => 0.032609119149794
106 => 0.032216874444806
107 => 0.03219300631886
108 => 0.03226834120514
109 => 0.032709579987123
110 => 0.0325553975988
111 => 0.032733821361988
112 => 0.032956943009976
113 => 0.033879868747673
114 => 0.034102383018482
115 => 0.033561788700839
116 => 0.033610598314944
117 => 0.0334084012005
118 => 0.033213081321469
119 => 0.033652131885353
120 => 0.03445450542041
121 => 0.034449513896291
122 => 0.034635648960512
123 => 0.034751609563495
124 => 0.034253821767142
125 => 0.03392978021588
126 => 0.034054038365933
127 => 0.034252729853859
128 => 0.033989605394296
129 => 0.032365479338767
130 => 0.032858135434441
131 => 0.032776133370468
201 => 0.03265935245958
202 => 0.033154721973376
203 => 0.033106942375309
204 => 0.031675757913793
205 => 0.031767377699553
206 => 0.03168132961642
207 => 0.031959368576805
208 => 0.031164490310303
209 => 0.031408989511492
210 => 0.031562337118441
211 => 0.031652660037005
212 => 0.031978968353864
213 => 0.031940679839117
214 => 0.031976588286028
215 => 0.032460417377728
216 => 0.034907458893455
217 => 0.035040645964063
218 => 0.034384784117506
219 => 0.034646787988903
220 => 0.034143797849769
221 => 0.03448145849991
222 => 0.034712477341087
223 => 0.03366854762018
224 => 0.033606732877155
225 => 0.033101666718794
226 => 0.033373060663888
227 => 0.032941253383328
228 => 0.033047203786
301 => 0.032750957223539
302 => 0.033284142053866
303 => 0.033880325542718
304 => 0.034030945036002
305 => 0.033634729994942
306 => 0.033347844193371
307 => 0.032844167231871
308 => 0.033681793244019
309 => 0.033926740616162
310 => 0.03368050663975
311 => 0.033623448847097
312 => 0.033515324433121
313 => 0.03364638795266
314 => 0.033925406580168
315 => 0.0337938265481
316 => 0.033880737477422
317 => 0.033549522637006
318 => 0.034253986555615
319 => 0.035372844796841
320 => 0.035376442109039
321 => 0.035244861367705
322 => 0.035191021363298
323 => 0.035326031188893
324 => 0.035399268480886
325 => 0.035835865500292
326 => 0.036304351496907
327 => 0.038490571226657
328 => 0.037876689474843
329 => 0.03981643367787
330 => 0.041350519498204
331 => 0.041810524758279
401 => 0.04138734156393
402 => 0.039939654715968
403 => 0.039868624292652
404 => 0.042032079641129
405 => 0.041420804412652
406 => 0.041348095169286
407 => 0.04057459166408
408 => 0.04103182803593
409 => 0.040931823734153
410 => 0.040773962051422
411 => 0.041646337197549
412 => 0.043279345593632
413 => 0.043024825920847
414 => 0.04283483879194
415 => 0.042002370497494
416 => 0.042503702349276
417 => 0.042325187679235
418 => 0.043092199989937
419 => 0.042637838888481
420 => 0.04141617340159
421 => 0.04161072765704
422 => 0.041581321172717
423 => 0.042186504536305
424 => 0.042004843512131
425 => 0.041545848942192
426 => 0.043273764148465
427 => 0.043161562946139
428 => 0.043320638598271
429 => 0.043390668619918
430 => 0.044442420156695
501 => 0.044873289109017
502 => 0.044971103904617
503 => 0.045380396084723
504 => 0.04496092034232
505 => 0.046639122393067
506 => 0.04775502883101
507 => 0.049051211582701
508 => 0.050945282964001
509 => 0.051657471324509
510 => 0.051528820871734
511 => 0.052964884176297
512 => 0.055545458012704
513 => 0.052050428625501
514 => 0.05573070305682
515 => 0.054565570662676
516 => 0.051803062715998
517 => 0.051625189772061
518 => 0.053495992226928
519 => 0.057645252013761
520 => 0.056605909497674
521 => 0.057646952005783
522 => 0.056432520621845
523 => 0.056372213867602
524 => 0.057587969784126
525 => 0.060428649750492
526 => 0.059079149179768
527 => 0.05714430920052
528 => 0.058572964931752
529 => 0.057335331121512
530 => 0.05454659575515
531 => 0.05660511473204
601 => 0.055228641715439
602 => 0.055630369719013
603 => 0.058523511265
604 => 0.058175400819883
605 => 0.058625887970023
606 => 0.057830789941328
607 => 0.057088043007076
608 => 0.055701650697183
609 => 0.055291208282539
610 => 0.055404639799775
611 => 0.055291152071512
612 => 0.05451547831573
613 => 0.054347971642021
614 => 0.054068786513871
615 => 0.05415531765912
616 => 0.053630367939708
617 => 0.054621056520385
618 => 0.054804937050877
619 => 0.055525877583322
620 => 0.055600728021029
621 => 0.057608537141944
622 => 0.056502669618006
623 => 0.057244581029072
624 => 0.057178217489325
625 => 0.051862934639859
626 => 0.052595333719378
627 => 0.053734716847617
628 => 0.053221426292742
629 => 0.052495753539642
630 => 0.051909733883402
701 => 0.051021854180613
702 => 0.05227152781207
703 => 0.053914715749461
704 => 0.055642401978795
705 => 0.057718103780853
706 => 0.057254831302466
707 => 0.055603598177433
708 => 0.055677671289196
709 => 0.056135562119416
710 => 0.055542551890512
711 => 0.055367661597073
712 => 0.05611153487872
713 => 0.056116657525186
714 => 0.055434327589151
715 => 0.05467604273031
716 => 0.054672865489064
717 => 0.054537936022596
718 => 0.056456524274183
719 => 0.057511553821404
720 => 0.057632511258728
721 => 0.057503412422134
722 => 0.057553097440589
723 => 0.056939198993051
724 => 0.058342388798194
725 => 0.059630094524483
726 => 0.059284961882017
727 => 0.058767558987465
728 => 0.058355422660455
729 => 0.059187875661254
730 => 0.059150807839531
731 => 0.059618847538334
801 => 0.059597614554068
802 => 0.059440230407224
803 => 0.059284967502701
804 => 0.059900567369012
805 => 0.059723284493746
806 => 0.059545726249207
807 => 0.059189606006978
808 => 0.059238008662428
809 => 0.058720695104781
810 => 0.058481362182355
811 => 0.054882369269051
812 => 0.05392060076213
813 => 0.054223192713011
814 => 0.054322813840037
815 => 0.053904250953285
816 => 0.054504362612904
817 => 0.054410835846428
818 => 0.054774693783458
819 => 0.054547371141277
820 => 0.054556700541805
821 => 0.055225207962162
822 => 0.055419278510326
823 => 0.055320572663188
824 => 0.055389702855085
825 => 0.056982778949311
826 => 0.056756294472418
827 => 0.056635979108071
828 => 0.056669307286245
829 => 0.057076372384257
830 => 0.057190328386769
831 => 0.056707488796576
901 => 0.056935198738574
902 => 0.057904758770905
903 => 0.058244049909875
904 => 0.059326904356484
905 => 0.058866888541361
906 => 0.059711267479036
907 => 0.062306600463456
908 => 0.064379932034793
909 => 0.062473210637741
910 => 0.066280620031318
911 => 0.069245234384657
912 => 0.069131447547952
913 => 0.068614498462682
914 => 0.065239363839756
915 => 0.062133514639317
916 => 0.064731689376807
917 => 0.064738312658533
918 => 0.064515127144375
919 => 0.063128941084059
920 => 0.064466890874209
921 => 0.064573092469831
922 => 0.064513647817566
923 => 0.063450862215207
924 => 0.061828185036017
925 => 0.06214525227269
926 => 0.062664614874358
927 => 0.061681353119012
928 => 0.061367141410249
929 => 0.061951320758064
930 => 0.063833668335324
1001 => 0.06347782142954
1002 => 0.06346852882874
1003 => 0.064990992794257
1004 => 0.063901237163234
1005 => 0.062149251505934
1006 => 0.061706852021615
1007 => 0.06013663188828
1008 => 0.061221188527306
1009 => 0.061260219789946
1010 => 0.060666219202652
1011 => 0.062197451379869
1012 => 0.062183340805788
1013 => 0.063637017864224
1014 => 0.066415902423783
1015 => 0.065594049518917
1016 => 0.0646383240079
1017 => 0.064742237870341
1018 => 0.065881916460058
1019 => 0.065192840768384
1020 => 0.065440637191516
1021 => 0.065881541390494
1022 => 0.066147549840772
1023 => 0.064703963347984
1024 => 0.064367394281791
1025 => 0.06367889209205
1026 => 0.063499274722249
1027 => 0.064060045389723
1028 => 0.063912302131164
1029 => 0.061256939363458
1030 => 0.060979439179933
1031 => 0.060987949714383
1101 => 0.060290162308497
1102 => 0.059225869026354
1103 => 0.062022768226176
1104 => 0.061798138077851
1105 => 0.061550163779093
1106 => 0.061580539215769
1107 => 0.062794578362702
1108 => 0.062090374347034
1109 => 0.063962616139456
1110 => 0.063577739511674
1111 => 0.063182992250662
1112 => 0.063128426154894
1113 => 0.062976482137658
1114 => 0.062455409566677
1115 => 0.061826183125611
1116 => 0.061410713326558
1117 => 0.056648136885725
1118 => 0.057532043370511
1119 => 0.058548897210646
1120 => 0.058899911081475
1121 => 0.058299477566002
1122 => 0.062479118341554
1123 => 0.063242778987267
1124 => 0.060929601079049
1125 => 0.060496899938852
1126 => 0.062507486156268
1127 => 0.061294856882998
1128 => 0.061840903770501
1129 => 0.060660649071397
1130 => 0.063058835500309
1201 => 0.063040565337782
1202 => 0.062107616651438
1203 => 0.062896138492579
1204 => 0.062759113418111
1205 => 0.06170581664898
1206 => 0.063092226886622
1207 => 0.063092914528803
1208 => 0.06219497170225
1209 => 0.061146371065798
1210 => 0.060958906038842
1211 => 0.060817676323413
1212 => 0.061806169918044
1213 => 0.062692450184052
1214 => 0.06434159803158
1215 => 0.064756232983235
1216 => 0.066374580803356
1217 => 0.065410933472399
1218 => 0.06583810585289
1219 => 0.066301861899136
1220 => 0.06652420360177
1221 => 0.066161909728841
1222 => 0.068675870032028
1223 => 0.06888812530737
1224 => 0.068959292665191
1225 => 0.068111599395595
1226 => 0.068864549424077
1227 => 0.068512269040834
1228 => 0.069428804731722
1229 => 0.069572529230968
1230 => 0.069450799693254
1231 => 0.069496420117852
]
'min_raw' => 0.031164490310303
'max_raw' => 0.069572529230968
'avg_raw' => 0.050368509770636
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.031164'
'max' => '$0.069572'
'avg' => '$0.050368'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 0.0048055011735543
'max_diff' => -0.0066390601551088
'year' => 2031
]
6 => [
'items' => [
101 => 0.06735119849207
102 => 0.067239957433827
103 => 0.065723177711387
104 => 0.066341276659751
105 => 0.065185770302038
106 => 0.065552193271103
107 => 0.065713709024461
108 => 0.065629342360845
109 => 0.066376223046903
110 => 0.06574122188611
111 => 0.064065349418921
112 => 0.062389020361398
113 => 0.062367975415589
114 => 0.061926627564409
115 => 0.061607613904897
116 => 0.061669067253337
117 => 0.061885636868724
118 => 0.061595026485148
119 => 0.061657042944805
120 => 0.062686929388608
121 => 0.062893465770099
122 => 0.06219157444682
123 => 0.059373379501421
124 => 0.058681787392913
125 => 0.059178890085641
126 => 0.05894130701603
127 => 0.047570234942337
128 => 0.050241699656555
129 => 0.048654406037736
130 => 0.049385903965156
131 => 0.047765688208032
201 => 0.048538940090115
202 => 0.048396148702132
203 => 0.052691784908207
204 => 0.052624714457303
205 => 0.052656817532861
206 => 0.05112445409235
207 => 0.053565550661286
208 => 0.054768122610137
209 => 0.054545558547821
210 => 0.054601573127352
211 => 0.053639057065836
212 => 0.052666136792293
213 => 0.051587018477576
214 => 0.053591886923265
215 => 0.05336897977635
216 => 0.053880248571912
217 => 0.055180549069897
218 => 0.055372023257587
219 => 0.055629366507581
220 => 0.055537127271398
221 => 0.05773464009449
222 => 0.057468506791957
223 => 0.058109811479285
224 => 0.056790599081548
225 => 0.055297785032719
226 => 0.055581520179633
227 => 0.055554194203332
228 => 0.055206303161714
229 => 0.054892242684601
301 => 0.054369420476199
302 => 0.056023707306711
303 => 0.055956546282475
304 => 0.05704380519871
305 => 0.056851621624196
306 => 0.055568172678292
307 => 0.05561401130848
308 => 0.055922298125786
309 => 0.056989282320442
310 => 0.057306035875239
311 => 0.05715930300821
312 => 0.057506608820696
313 => 0.057781105174087
314 => 0.057541081336462
315 => 0.060939312711751
316 => 0.059528130120866
317 => 0.060215930696718
318 => 0.060379967081302
319 => 0.059959791331503
320 => 0.060050912406269
321 => 0.060188936005533
322 => 0.06102698827247
323 => 0.063226279913292
324 => 0.064200331209928
325 => 0.067130812594701
326 => 0.064119449809191
327 => 0.063940768003757
328 => 0.064468636193214
329 => 0.066189138989034
330 => 0.067583444906435
331 => 0.068046016618676
401 => 0.068107153106675
402 => 0.068974968390023
403 => 0.069472383926642
404 => 0.068869592788817
405 => 0.068358790414373
406 => 0.06652915971224
407 => 0.066740944447931
408 => 0.068199931260024
409 => 0.070260836066
410 => 0.072029306790126
411 => 0.071410049979965
412 => 0.076134542314321
413 => 0.076602956431452
414 => 0.076538236746106
415 => 0.077605353814297
416 => 0.07548734374855
417 => 0.074581853410931
418 => 0.068469231685581
419 => 0.070186629059804
420 => 0.072682967002449
421 => 0.072352567314953
422 => 0.0705396599737
423 => 0.072027931537341
424 => 0.071535862415846
425 => 0.071147747083757
426 => 0.072925778659917
427 => 0.070970759904418
428 => 0.072663464194851
429 => 0.070492553433586
430 => 0.071412878692911
501 => 0.070890457564594
502 => 0.071228528060141
503 => 0.069252174851092
504 => 0.070318567069433
505 => 0.069207809428837
506 => 0.06920728278509
507 => 0.069182762748611
508 => 0.070489564186918
509 => 0.070532178934905
510 => 0.069566450697529
511 => 0.069427274171013
512 => 0.069941882734914
513 => 0.069339410882782
514 => 0.069621303670482
515 => 0.069347949128153
516 => 0.069286411262947
517 => 0.068796067083182
518 => 0.068584813328245
519 => 0.068667651368894
520 => 0.068384882430221
521 => 0.068214503916471
522 => 0.069148870173861
523 => 0.068649675974765
524 => 0.069072361503397
525 => 0.068590657996354
526 => 0.066920863772717
527 => 0.06596054745695
528 => 0.062806460958505
529 => 0.063700955976832
530 => 0.064294007099405
531 => 0.064098003706932
601 => 0.064519094837207
602 => 0.064544946412645
603 => 0.064408045393677
604 => 0.064249531551818
605 => 0.064172375779967
606 => 0.06474743169081
607 => 0.065081271002546
608 => 0.064353527713555
609 => 0.064183027643155
610 => 0.064918816288133
611 => 0.065367646936518
612 => 0.068681560268038
613 => 0.06843605486464
614 => 0.069052225249167
615 => 0.068982853919775
616 => 0.069628698646399
617 => 0.070684381820083
618 => 0.068537882754326
619 => 0.068910440771788
620 => 0.068819098149527
621 => 0.069816352948048
622 => 0.069819466268675
623 => 0.06922156220039
624 => 0.069545695695693
625 => 0.069364773270752
626 => 0.069691724545752
627 => 0.0684327759903
628 => 0.069966039435742
629 => 0.070835301007994
630 => 0.070847370705768
701 => 0.071259393792129
702 => 0.071678033110639
703 => 0.07248157482672
704 => 0.071655622768301
705 => 0.070169815420017
706 => 0.070277085911435
707 => 0.069405957606772
708 => 0.069420601430955
709 => 0.069342431549806
710 => 0.069577025247489
711 => 0.068484256114594
712 => 0.068740726845888
713 => 0.068381666320185
714 => 0.068909660244328
715 => 0.068341626062473
716 => 0.068819054101349
717 => 0.069025096215938
718 => 0.06978539605454
719 => 0.06822932915813
720 => 0.065056403419882
721 => 0.065723390878068
722 => 0.064736864036677
723 => 0.064828170851821
724 => 0.065012625149782
725 => 0.064414748420398
726 => 0.064528804459104
727 => 0.064524729574801
728 => 0.064489614423312
729 => 0.064334083594905
730 => 0.064108533122878
731 => 0.065007056782661
801 => 0.06515973346134
802 => 0.065499114805407
803 => 0.066508883480783
804 => 0.066407983778128
805 => 0.066572555379447
806 => 0.066213296497797
807 => 0.064844835840961
808 => 0.06491914983849
809 => 0.063992453098502
810 => 0.065475417086267
811 => 0.065124231639796
812 => 0.064897820097859
813 => 0.064836041610954
814 => 0.065848313307565
815 => 0.066151200864606
816 => 0.065962461665086
817 => 0.065575352060468
818 => 0.066318716940015
819 => 0.066517610021736
820 => 0.066562134847838
821 => 0.067879234888317
822 => 0.066635746108945
823 => 0.066935066217355
824 => 0.069270276258481
825 => 0.067152562988138
826 => 0.06827436293808
827 => 0.068219456668096
828 => 0.068793331562845
829 => 0.068172382176573
830 => 0.068180079588417
831 => 0.068689641617302
901 => 0.067974053647729
902 => 0.067796864003127
903 => 0.067552077778164
904 => 0.068086559545045
905 => 0.068406957191758
906 => 0.070989126918128
907 => 0.072657326322608
908 => 0.072584905386897
909 => 0.073246697172988
910 => 0.072948553912036
911 => 0.071985770676203
912 => 0.073629124260862
913 => 0.073109098425842
914 => 0.073151968723849
915 => 0.073150373089216
916 => 0.073496144808058
917 => 0.073251133855746
918 => 0.072768192118881
919 => 0.073088791381759
920 => 0.074040856576173
921 => 0.07699609615256
922 => 0.078649887371223
923 => 0.076896535844635
924 => 0.078105974249363
925 => 0.077380742173492
926 => 0.077248945931521
927 => 0.078008562626487
928 => 0.07876950892992
929 => 0.078721039940052
930 => 0.078168631998785
1001 => 0.077856590769596
1002 => 0.080219471498498
1003 => 0.08196040176893
1004 => 0.081841681995831
1005 => 0.082365672464551
1006 => 0.083904124687128
1007 => 0.084044781477849
1008 => 0.084027061955178
1009 => 0.083678429423356
1010 => 0.085193235429749
1011 => 0.086456913250758
1012 => 0.083597731065202
1013 => 0.084686470212018
1014 => 0.085175240292009
1015 => 0.085892899780983
1016 => 0.087103711632578
1017 => 0.088418974455393
1018 => 0.088604967039662
1019 => 0.088472996400558
1020 => 0.08760554521275
1021 => 0.089044721487822
1022 => 0.089887757196923
1023 => 0.090389765669164
1024 => 0.091662775628521
1025 => 0.085178258769626
1026 => 0.080588195435501
1027 => 0.079871390764559
1028 => 0.08132904124987
1029 => 0.081713412058302
1030 => 0.081558472667383
1031 => 0.076391939074525
1101 => 0.079844190034431
1102 => 0.083558521793785
1103 => 0.083701204403755
1104 => 0.085560676545502
1105 => 0.086166196897193
1106 => 0.087663315697885
1107 => 0.08756967050928
1108 => 0.087934195112885
1109 => 0.087850397219202
1110 => 0.090623494541927
1111 => 0.093682632697829
1112 => 0.093576704470954
1113 => 0.093136917166963
1114 => 0.093790076308268
1115 => 0.096947434722327
1116 => 0.096656755755198
1117 => 0.096939125611788
1118 => 0.10066182912289
1119 => 0.10550187323571
1120 => 0.10325318681282
1121 => 0.10813218930841
1122 => 0.11120326275457
1123 => 0.11651436672479
1124 => 0.11584939034998
1125 => 0.11791696415091
1126 => 0.11465894385431
1127 => 0.1071778706988
1128 => 0.10599396223554
1129 => 0.10836417696032
1130 => 0.11419111857902
1201 => 0.10818066583243
1202 => 0.10939657259503
1203 => 0.1090463913656
1204 => 0.10902773169606
1205 => 0.10973989538811
1206 => 0.10870686480883
1207 => 0.10449811239018
1208 => 0.10642695882132
1209 => 0.10568213858344
1210 => 0.10650857216739
1211 => 0.11096849337282
1212 => 0.10899665589666
1213 => 0.10691948529459
1214 => 0.10952471819064
1215 => 0.11284207492246
1216 => 0.11263448070005
1217 => 0.11223166114091
1218 => 0.11450233390482
1219 => 0.1182528200661
1220 => 0.11926656140482
1221 => 0.12001488453604
1222 => 0.12011806565281
1223 => 0.12118089528226
1224 => 0.11546579249714
1225 => 0.12453580739138
1226 => 0.12610194840951
1227 => 0.125807578808
1228 => 0.12754827863636
1229 => 0.12703612058956
1230 => 0.12629408393489
1231 => 0.12905346342032
]
'min_raw' => 0.047570234942337
'max_raw' => 0.12905346342032
'avg_raw' => 0.088311849181328
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.04757'
'max' => '$0.129053'
'avg' => '$0.088311'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.016405744632034
'max_diff' => 0.059480934189351
'year' => 2032
]
7 => [
'items' => [
101 => 0.12589005751072
102 => 0.12140000108377
103 => 0.1189366673247
104 => 0.12218058393011
105 => 0.12416153060394
106 => 0.12547081034348
107 => 0.12586699760157
108 => 0.11590943965753
109 => 0.11054286819718
110 => 0.1139827789754
111 => 0.11817970753479
112 => 0.11544247834708
113 => 0.11554977254898
114 => 0.11164720305848
115 => 0.11852499833978
116 => 0.11752296141866
117 => 0.12272153073801
118 => 0.12148085044882
119 => 0.12572008192145
120 => 0.12460375020259
121 => 0.12923758075432
122 => 0.13108614121736
123 => 0.13419016194026
124 => 0.13647349221967
125 => 0.13781430743288
126 => 0.13773380991675
127 => 0.143046787783
128 => 0.13991391035658
129 => 0.13597827794649
130 => 0.13590709477295
131 => 0.13794541456648
201 => 0.142217173668
202 => 0.14332477865145
203 => 0.14394377873495
204 => 0.14299575855952
205 => 0.13959524464849
206 => 0.13812691998271
207 => 0.13937797513942
208 => 0.13784804218716
209 => 0.14048913568613
210 => 0.14411592116735
211 => 0.14336700430734
212 => 0.14587052108645
213 => 0.14846139757519
214 => 0.15216646731763
215 => 0.15313510974664
216 => 0.15473623884762
217 => 0.15638432663604
218 => 0.15691364801646
219 => 0.15792428677048
220 => 0.15791896020538
221 => 0.16096458811444
222 => 0.16432401001338
223 => 0.16559211400944
224 => 0.1685080492247
225 => 0.16351461235512
226 => 0.16730219158117
227 => 0.17071868285232
228 => 0.16664540111345
301 => 0.17225947103756
302 => 0.17247745265095
303 => 0.17576871621356
304 => 0.17243239006305
305 => 0.17045129024482
306 => 0.17617065118923
307 => 0.17893806979205
308 => 0.17810450078688
309 => 0.17176099949917
310 => 0.16806880966415
311 => 0.15840563669567
312 => 0.16985208249484
313 => 0.17542731234621
314 => 0.17174656100073
315 => 0.17360291788287
316 => 0.1837305991061
317 => 0.1875865643971
318 => 0.1867845505718
319 => 0.18692007770601
320 => 0.18900068658631
321 => 0.19822725217383
322 => 0.19269848020368
323 => 0.19692501921573
324 => 0.1991667602678
325 => 0.20124901429055
326 => 0.19613565651382
327 => 0.18948325317643
328 => 0.18737615779059
329 => 0.1713805828191
330 => 0.17054794367657
331 => 0.17008055809432
401 => 0.16713375811125
402 => 0.164818380521
403 => 0.16297710629678
404 => 0.15814505288138
405 => 0.15977572906266
406 => 0.15207444444645
407 => 0.15700145342714
408 => 0.14471001722565
409 => 0.15494669053625
410 => 0.14937533465771
411 => 0.15311635028901
412 => 0.1531032982379
413 => 0.14621490237059
414 => 0.14224181939147
415 => 0.14477362250047
416 => 0.14748791640809
417 => 0.14792830146262
418 => 0.15144745436417
419 => 0.15242957429505
420 => 0.14945370505368
421 => 0.1444553045307
422 => 0.14561631897081
423 => 0.1422182914709
424 => 0.13626337898056
425 => 0.14054030109392
426 => 0.14200063034641
427 => 0.14264559493744
428 => 0.1367896224295
429 => 0.13494954872816
430 => 0.13396990892928
501 => 0.14369937201608
502 => 0.14423237396699
503 => 0.14150546062723
504 => 0.15383136749951
505 => 0.15104163515764
506 => 0.15415844968452
507 => 0.14551096907955
508 => 0.14584131448403
509 => 0.14174745858361
510 => 0.1440397443363
511 => 0.14241963065012
512 => 0.14385455030029
513 => 0.14471463522221
514 => 0.14880781936116
515 => 0.15499342812414
516 => 0.14819643414646
517 => 0.14523488653564
518 => 0.14707221401702
519 => 0.15196525922011
520 => 0.15937847317317
521 => 0.15498970130812
522 => 0.15693736373565
523 => 0.1573628413306
524 => 0.15412672343848
525 => 0.15949779345581
526 => 0.16237619351259
527 => 0.16532883636988
528 => 0.16789253343169
529 => 0.16414948588267
530 => 0.16815508330491
531 => 0.16492727886571
601 => 0.16203160459946
602 => 0.16203599614204
603 => 0.16021949737577
604 => 0.15669980212255
605 => 0.15605071631604
606 => 0.159427342652
607 => 0.16213507720572
608 => 0.16235809919274
609 => 0.16385724017011
610 => 0.16474441635814
611 => 0.17343994905834
612 => 0.17693736424359
613 => 0.18121393732942
614 => 0.1828799035608
615 => 0.18789386463532
616 => 0.18384468385364
617 => 0.18296861812098
618 => 0.17080638860837
619 => 0.17279795300972
620 => 0.17598663977366
621 => 0.17085896887864
622 => 0.17411129583439
623 => 0.17475337406916
624 => 0.17068473258376
625 => 0.17285796979673
626 => 0.167086496079
627 => 0.15511923047957
628 => 0.15951111644344
629 => 0.16274502280568
630 => 0.15812983968899
701 => 0.16640237679341
702 => 0.16156973139683
703 => 0.16003801481401
704 => 0.15406224232801
705 => 0.15688257691283
706 => 0.16069711982209
707 => 0.15834017579238
708 => 0.16323118855095
709 => 0.17015816700256
710 => 0.17509474435587
711 => 0.17547371346733
712 => 0.17229982495415
713 => 0.17738600155201
714 => 0.17742304879582
715 => 0.17168582081579
716 => 0.16817180062304
717 => 0.16737340784169
718 => 0.16936794954364
719 => 0.17178969138251
720 => 0.17560810328492
721 => 0.17791548962648
722 => 0.18393192946211
723 => 0.18555980557679
724 => 0.18734834788561
725 => 0.18973839197623
726 => 0.19260825270173
727 => 0.18632916081559
728 => 0.18657864084191
729 => 0.18073163741748
730 => 0.17448327571335
731 => 0.1792250033775
801 => 0.18542418153277
802 => 0.18400208321447
803 => 0.18384206810283
804 => 0.18411116913612
805 => 0.18303895344551
806 => 0.17818936161504
807 => 0.17575392695783
808 => 0.17889625901128
809 => 0.18056626864858
810 => 0.18315630795588
811 => 0.18283703094216
812 => 0.18950869404785
813 => 0.1921011005901
814 => 0.19143785206127
815 => 0.19155990575254
816 => 0.19625333396781
817 => 0.20147339142033
818 => 0.20636266407186
819 => 0.21133624221214
820 => 0.20534039964197
821 => 0.202296080557
822 => 0.20543704076657
823 => 0.20377040306716
824 => 0.21334739764485
825 => 0.2140104879705
826 => 0.22358679002248
827 => 0.23267584099464
828 => 0.22696717092629
829 => 0.2323501896766
830 => 0.23817236333902
831 => 0.24940428094746
901 => 0.24562176624056
902 => 0.24272441925464
903 => 0.23998644035282
904 => 0.24568373980559
905 => 0.253013224535
906 => 0.25459192534478
907 => 0.25715002376675
908 => 0.25446049606544
909 => 0.25769973593991
910 => 0.26913567609092
911 => 0.26604558411428
912 => 0.26165715675038
913 => 0.27068473318024
914 => 0.27395177799638
915 => 0.29688160948077
916 => 0.3258314689139
917 => 0.31384603701356
918 => 0.30640629266555
919 => 0.30815480906042
920 => 0.31872631771082
921 => 0.32212155076641
922 => 0.31289213691429
923 => 0.31615212191596
924 => 0.33411495978981
925 => 0.3437514459923
926 => 0.33066380337656
927 => 0.29455551646317
928 => 0.26126202688109
929 => 0.27009295954363
930 => 0.26909180583544
1001 => 0.28839063422124
1002 => 0.2659718864426
1003 => 0.26634936065911
1004 => 0.28604726837811
1005 => 0.28079220430631
1006 => 0.27227967352775
1007 => 0.2613241777763
1008 => 0.24107193061904
1009 => 0.22313395053617
1010 => 0.25831446034878
1011 => 0.25679741279406
1012 => 0.25460050312096
1013 => 0.25948948786798
1014 => 0.28322901003696
1015 => 0.28268173721363
1016 => 0.27920026673266
1017 => 0.2818409314082
1018 => 0.2718167522427
1019 => 0.27440021145997
1020 => 0.26125675302224
1021 => 0.2671981451554
1022 => 0.27226140945987
1023 => 0.2732779347319
1024 => 0.27556821807486
1025 => 0.25599799766789
1026 => 0.26478445207913
1027 => 0.2699456708663
1028 => 0.24662709661915
1029 => 0.26948473762836
1030 => 0.25565732367041
1031 => 0.2509640916923
1101 => 0.25728291026454
1102 => 0.25482046052168
1103 => 0.25270339083268
1104 => 0.25152202957034
1105 => 0.25616187254723
1106 => 0.25594541832655
1107 => 0.24835373466164
1108 => 0.23845069279737
1109 => 0.24177447870329
1110 => 0.24056691612301
1111 => 0.23619055355341
1112 => 0.23913969352129
1113 => 0.22615317362833
1114 => 0.20381054113306
1115 => 0.21857076853277
1116 => 0.21800251583392
1117 => 0.21771597705495
1118 => 0.22880788000312
1119 => 0.22774164946839
1120 => 0.22580643060731
1121 => 0.23615501174141
1122 => 0.2323776404194
1123 => 0.2440186087732
1124 => 0.25168610342165
1125 => 0.24974137876133
1126 => 0.25695269453841
1127 => 0.24185105201745
1128 => 0.24686721189018
1129 => 0.24790103548785
1130 => 0.23602731185658
1201 => 0.22791609797017
1202 => 0.22737517247855
1203 => 0.21331144539365
1204 => 0.22082417488397
1205 => 0.22743506593758
1206 => 0.22426896214877
1207 => 0.22326666827389
1208 => 0.22838717030962
1209 => 0.22878507717193
1210 => 0.21971275854298
1211 => 0.2215991808689
1212 => 0.22946587555963
1213 => 0.22140096034655
1214 => 0.20573214748397
1215 => 0.20184606525576
1216 => 0.20132759025182
1217 => 0.19078822703985
1218 => 0.20210575185228
1219 => 0.19716534898085
1220 => 0.21277202245659
1221 => 0.20385757426751
1222 => 0.20347329022316
1223 => 0.20289238852792
1224 => 0.19382072323577
1225 => 0.19580684140034
1226 => 0.20240900067373
1227 => 0.20476472548112
1228 => 0.20451900408383
1229 => 0.20237664649149
1230 => 0.20335740682662
1231 => 0.20019803606763
]
'min_raw' => 0.11054286819718
'max_raw' => 0.3437514459923
'avg_raw' => 0.22714715709474
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.110542'
'max' => '$0.343751'
'avg' => '$0.227147'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.062972633254843
'max_diff' => 0.21469798257198
'year' => 2033
]
8 => [
'items' => [
101 => 0.19908239649602
102 => 0.19556113112716
103 => 0.19038584380934
104 => 0.19110549925276
105 => 0.18085190088856
106 => 0.17526519630008
107 => 0.17371887010158
108 => 0.17165105808351
109 => 0.17395243497126
110 => 0.18082285373269
111 => 0.17253567106575
112 => 0.15832787766156
113 => 0.15918179025405
114 => 0.16110027832046
115 => 0.15752518850078
116 => 0.15414166602099
117 => 0.15708336430331
118 => 0.15106333493992
119 => 0.161827770108
120 => 0.16153662230368
121 => 0.16554893806613
122 => 0.1680579214534
123 => 0.16227552703877
124 => 0.16082127048074
125 => 0.16164968110847
126 => 0.14795789873963
127 => 0.16443002734121
128 => 0.16457247899338
129 => 0.16335272146262
130 => 0.17212362142306
131 => 0.19063295605187
201 => 0.18366899982825
202 => 0.18097234549177
203 => 0.17584600362689
204 => 0.18267654978978
205 => 0.18215207041759
206 => 0.17978017579365
207 => 0.17834564652432
208 => 0.18098881068812
209 => 0.17801812923383
210 => 0.17748451321577
211 => 0.17425138072629
212 => 0.1730972995257
213 => 0.17224286375008
214 => 0.17130221391625
215 => 0.17337705305435
216 => 0.1686751945996
217 => 0.16300521423203
218 => 0.16253381671451
219 => 0.16383538670609
220 => 0.1632595388753
221 => 0.16253105977664
222 => 0.16114019478781
223 => 0.16072755485675
224 => 0.16206843444825
225 => 0.16055465956759
226 => 0.1627883168636
227 => 0.16218088567298
228 => 0.15878782442002
301 => 0.15455881382668
302 => 0.15452116676174
303 => 0.15361003336637
304 => 0.15244956799755
305 => 0.15212675307979
306 => 0.15683562267904
307 => 0.16658284182486
308 => 0.16466922947535
309 => 0.16605201051275
310 => 0.17285392462809
311 => 0.17501604858466
312 => 0.173481424213
313 => 0.17138073572156
314 => 0.17147315535401
315 => 0.17865184385091
316 => 0.1790995698469
317 => 0.18023082899689
318 => 0.18168481669843
319 => 0.17372904460579
320 => 0.17109843920389
321 => 0.16985191242404
322 => 0.16601309240868
323 => 0.1701529306797
324 => 0.16774082420473
325 => 0.16806629977749
326 => 0.16785433338375
327 => 0.16797008136784
328 => 0.16182476122899
329 => 0.16406379289907
330 => 0.16034096848023
331 => 0.15535652449005
401 => 0.15533981488603
402 => 0.15655975049116
403 => 0.15583408505714
404 => 0.15388133803276
405 => 0.15415871653087
406 => 0.15172858901607
407 => 0.15445377801004
408 => 0.15453192667919
409 => 0.15348258047447
410 => 0.15768111012329
411 => 0.15940125114609
412 => 0.15871054899497
413 => 0.1593527896419
414 => 0.16474874870791
415 => 0.16562852547787
416 => 0.1660192642043
417 => 0.16549572607385
418 => 0.15945141786812
419 => 0.15971950863943
420 => 0.1577524364406
421 => 0.15609046771755
422 => 0.1561569377506
423 => 0.15701140571506
424 => 0.16074291742973
425 => 0.16859566384863
426 => 0.16889366983494
427 => 0.1692548617838
428 => 0.16778571260726
429 => 0.16734260315775
430 => 0.1679271788979
501 => 0.17087625757505
502 => 0.17846208859972
503 => 0.17578074927498
504 => 0.17360077866644
505 => 0.17551320060599
506 => 0.17521879823845
507 => 0.17273374598039
508 => 0.17266399884023
509 => 0.16789438903773
510 => 0.16613117289251
511 => 0.16465769750712
512 => 0.16304870085232
513 => 0.1620948337013
514 => 0.16356040717013
515 => 0.16389560116261
516 => 0.16069109915917
517 => 0.16025433737714
518 => 0.16287120288713
519 => 0.16171961794276
520 => 0.16290405161598
521 => 0.16317885038805
522 => 0.16313460145659
523 => 0.16193221451598
524 => 0.16269858009623
525 => 0.16088589703437
526 => 0.15891487646078
527 => 0.15765748813376
528 => 0.15656025005007
529 => 0.15716906151075
530 => 0.154998759818
531 => 0.15430443662694
601 => 0.16243895268142
602 => 0.16844800715164
603 => 0.1683606331198
604 => 0.16782876617172
605 => 0.16703851977216
606 => 0.17081844612878
607 => 0.16950159536815
608 => 0.17045971432307
609 => 0.17070359580922
610 => 0.17144175161541
611 => 0.17170557886948
612 => 0.17090810966786
613 => 0.16823170562454
614 => 0.16156236121347
615 => 0.15845776338656
616 => 0.15743319439251
617 => 0.15747043552951
618 => 0.15644315871929
619 => 0.15674573777922
620 => 0.15633793407042
621 => 0.15556565250426
622 => 0.15712137530027
623 => 0.15730065785995
624 => 0.15693753356986
625 => 0.15702306248547
626 => 0.15401654845592
627 => 0.15424512718778
628 => 0.1529723717624
629 => 0.15273374546343
630 => 0.14951633057956
701 => 0.14381621374102
702 => 0.1469746317933
703 => 0.14315970692693
704 => 0.14171493707449
705 => 0.14855425284812
706 => 0.14786777523754
707 => 0.14669282397287
708 => 0.14495482617112
709 => 0.1443101858803
710 => 0.14039355554156
711 => 0.14016214012674
712 => 0.14210332788053
713 => 0.14120753652435
714 => 0.13994950619755
715 => 0.13539304787838
716 => 0.13027008013613
717 => 0.13042471033045
718 => 0.13205423105305
719 => 0.13679228232484
720 => 0.13494104372383
721 => 0.13359794887829
722 => 0.133346427587
723 => 0.13649474314296
724 => 0.14095026924714
725 => 0.14304070240844
726 => 0.14096914663299
727 => 0.13858945489863
728 => 0.13873429570807
729 => 0.13969785672345
730 => 0.13979911336215
731 => 0.13825017867935
801 => 0.13868619471962
802 => 0.1380238464843
803 => 0.13395901658677
804 => 0.13388549670364
805 => 0.13288792189255
806 => 0.13285771572373
807 => 0.13116059211336
808 => 0.13092315278861
809 => 0.12755341085219
810 => 0.12977138519926
811 => 0.12828368445613
812 => 0.12604136852309
813 => 0.12565479241106
814 => 0.12564317146633
815 => 0.12794552855688
816 => 0.12974448081616
817 => 0.12830956364749
818 => 0.12798286082289
819 => 0.13147119226538
820 => 0.13102727029248
821 => 0.13064283672693
822 => 0.14055132575315
823 => 0.13270798351986
824 => 0.12928783862382
825 => 0.12505475984707
826 => 0.12643307164182
827 => 0.12672350218858
828 => 0.11654371080031
829 => 0.1124137707019
830 => 0.11099653089363
831 => 0.11018088934714
901 => 0.11055258744206
902 => 0.10683515695983
903 => 0.10933333172451
904 => 0.10611435115348
905 => 0.10557467858528
906 => 0.11133061460146
907 => 0.11213151947242
908 => 0.10871461047126
909 => 0.11090881919732
910 => 0.11011316861147
911 => 0.10616953133634
912 => 0.10601891339986
913 => 0.10404013484075
914 => 0.10094372956277
915 => 0.099528589263095
916 => 0.098791571908211
917 => 0.099095679633018
918 => 0.098941913461505
919 => 0.09793848518094
920 => 0.098999428795976
921 => 0.096289156271728
922 => 0.095209903914422
923 => 0.094722430663092
924 => 0.092316907800356
925 => 0.096145164415842
926 => 0.096899379196199
927 => 0.097655080012662
928 => 0.10423293968111
929 => 0.10390432840091
930 => 0.10687481433371
1001 => 0.10675938671274
1002 => 0.10591215600602
1003 => 0.10233782901707
1004 => 0.10376249204862
1005 => 0.099377600679321
1006 => 0.10266305943683
1007 => 0.10116371326394
1008 => 0.10215612898757
1009 => 0.10037167603397
1010 => 0.10135926597675
1011 => 0.097078231500145
1012 => 0.093080661741676
1013 => 0.09468940050882
1014 => 0.096438283530299
1015 => 0.10023030752797
1016 => 0.097971809318477
1017 => 0.098784050677884
1018 => 0.096063178091432
1019 => 0.090449240766751
1020 => 0.090481015042337
1021 => 0.089617433091207
1022 => 0.088871172200402
1023 => 0.098231225006228
1024 => 0.097067154479285
1025 => 0.095212360444387
1026 => 0.097695075966684
1027 => 0.098351545356773
1028 => 0.098370234117421
1029 => 0.10018155927433
1030 => 0.10114826383526
1031 => 0.10131864970407
1101 => 0.10416880897473
1102 => 0.10512414476774
1103 => 0.10905903769499
1104 => 0.10106624570726
1105 => 0.10090163941607
1106 => 0.097730012865496
1107 => 0.095718517165688
1108 => 0.097867741696972
1109 => 0.099771661233283
1110 => 0.097789172952645
1111 => 0.098048044069484
1112 => 0.09538671552797
1113 => 0.096338015254415
1114 => 0.097157402732741
1115 => 0.096704985128579
1116 => 0.096027694077889
1117 => 0.099615561543318
1118 => 0.099413119999952
1119 => 0.10275422466848
1120 => 0.10535885468228
1121 => 0.11002681730032
1122 => 0.105155554962
1123 => 0.10497802680088
1124 => 0.10671339305226
1125 => 0.10512387909221
1126 => 0.10612839704681
1127 => 0.10986497392804
1128 => 0.10994392190952
1129 => 0.10862144150101
1130 => 0.10854096844796
1201 => 0.10879496527677
1202 => 0.11028263263653
1203 => 0.10976279594963
1204 => 0.11036436412437
1205 => 0.11111663433842
1206 => 0.11422834289968
1207 => 0.11497856529916
1208 => 0.11315591381414
1209 => 0.11332047883587
1210 => 0.11263875714757
1211 => 0.11198022253862
1212 => 0.11346051216829
1213 => 0.11616577056166
1214 => 0.1161489412896
1215 => 0.11677650865415
1216 => 0.11716747792322
1217 => 0.11548915161338
1218 => 0.11439662289945
1219 => 0.11481556792778
1220 => 0.11548547015152
1221 => 0.11459832766534
1222 => 0.10912247327626
1223 => 0.11078349769897
1224 => 0.11050702201509
1225 => 0.11011328702065
1226 => 0.11178345992201
1227 => 0.11162236767126
1228 => 0.10679702933715
1229 => 0.10710593184153
1230 => 0.10681581472156
1231 => 0.10775324248856
]
'min_raw' => 0.088871172200402
'max_raw' => 0.19908239649602
'avg_raw' => 0.14397678434821
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.088871'
'max' => '$0.199082'
'avg' => '$0.143976'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.021671695996777
'max_diff' => -0.14466904949628
'year' => 2034
]
9 => [
'items' => [
101 => 0.10507325491642
102 => 0.10589760104362
103 => 0.10641462320683
104 => 0.10671915323291
105 => 0.10781932450532
106 => 0.10769023210464
107 => 0.10781129994044
108 => 0.10944256350298
109 => 0.11769293482024
110 => 0.11814198432762
111 => 0.11593070032113
112 => 0.11681406466608
113 => 0.11511819829434
114 => 0.116256644751
115 => 0.11703554090325
116 => 0.11351585896436
117 => 0.11330744624249
118 => 0.11160458042698
119 => 0.11251960406099
120 => 0.11106373566676
121 => 0.11142095484659
122 => 0.11042213887798
123 => 0.1122198087592
124 => 0.11422988301607
125 => 0.11473770715359
126 => 0.1134018404798
127 => 0.11243458497008
128 => 0.11073640292878
129 => 0.11356051750992
130 => 0.11438637467678
131 => 0.1135561796338
201 => 0.11336380530222
202 => 0.1129992562915
203 => 0.11344114609818
204 => 0.11438187688128
205 => 0.11393824561654
206 => 0.11423127188268
207 => 0.11311455792354
208 => 0.11548970720923
209 => 0.11926201588571
210 => 0.11927414447494
211 => 0.11883051081886
212 => 0.11864898548501
213 => 0.11910418053809
214 => 0.11935110518131
215 => 0.12082312251446
216 => 0.1224026557607
217 => 0.12977364821654
218 => 0.12770390303044
219 => 0.13424388603957
220 => 0.13941616348927
221 => 0.14096710334016
222 => 0.1395403116547
223 => 0.13465933437253
224 => 0.13441985034113
225 => 0.14171409109615
226 => 0.13965313398547
227 => 0.13940798969507
228 => 0.13680006862297
301 => 0.13834167297389
302 => 0.13800450148837
303 => 0.13747225980349
304 => 0.14041353351595
305 => 0.14591933533635
306 => 0.14506120448955
307 => 0.14442064961997
308 => 0.14161392464416
309 => 0.14330419998432
310 => 0.14270232531078
311 => 0.1452883608674
312 => 0.14375645069136
313 => 0.13963752020835
314 => 0.14029347346394
315 => 0.14019432744895
316 => 0.14223474541184
317 => 0.14162226258567
318 => 0.14007473034714
319 => 0.14590051710428
320 => 0.145522222917
321 => 0.14605855758447
322 => 0.14629466869179
323 => 0.14984072242899
324 => 0.15129342718405
325 => 0.15162321659663
326 => 0.15300317375772
327 => 0.15158888200535
328 => 0.15724705738777
329 => 0.16100941385339
330 => 0.16537958449731
331 => 0.1717655783992
401 => 0.17416677118006
402 => 0.17373301719644
403 => 0.17857480489051
404 => 0.18727538974987
405 => 0.17549165415576
406 => 0.1878999563495
407 => 0.1839716311357
408 => 0.17465764272133
409 => 0.17405793167215
410 => 0.18036547276399
411 => 0.19435499182737
412 => 0.1908507759698
413 => 0.19436072346916
414 => 0.19026618326932
415 => 0.19006285483691
416 => 0.19416186079084
417 => 0.20373941162738
418 => 0.19918947623406
419 => 0.19266602815781
420 => 0.19748284070122
421 => 0.19331007190117
422 => 0.18390765591019
423 => 0.19084809636198
424 => 0.18620722148423
425 => 0.18756167549603
426 => 0.19731610421102
427 => 0.19614242554102
428 => 0.19766127441972
429 => 0.194980545904
430 => 0.19247632275824
501 => 0.18780200429061
502 => 0.18641816903347
503 => 0.18680061131337
504 => 0.18641797951407
505 => 0.18380274129063
506 => 0.18323798084528
507 => 0.18229668869364
508 => 0.18258843449126
509 => 0.18081852986144
510 => 0.18415870557886
511 => 0.18477867162555
512 => 0.18720937296515
513 => 0.18746173644177
514 => 0.19423120507368
515 => 0.19050269550752
516 => 0.19300410162853
517 => 0.19278035232092
518 => 0.17485950509275
519 => 0.17732883972382
520 => 0.18117034948986
521 => 0.1794397545473
522 => 0.17699309819537
523 => 0.17501729200978
524 => 0.17202374360204
525 => 0.17623710549992
526 => 0.18177722835456
527 => 0.18760224309995
528 => 0.19460061664647
529 => 0.19303866114093
530 => 0.18747141337447
531 => 0.1877211560424
601 => 0.1892649669454
602 => 0.187265591556
603 => 0.18667593672122
604 => 0.18918395742587
605 => 0.18920122878608
606 => 0.18690070576798
607 => 0.18434409542464
608 => 0.18433338313395
609 => 0.18387845901728
610 => 0.19034711325906
611 => 0.19390421903733
612 => 0.19431203548224
613 => 0.19387676974127
614 => 0.19404428624989
615 => 0.191974484773
616 => 0.19670543716862
617 => 0.20104702692954
618 => 0.19988338812908
619 => 0.19813892814618
620 => 0.19674938174523
621 => 0.19955605515744
622 => 0.1994310784085
623 => 0.2010091069305
624 => 0.20093751844161
625 => 0.20040688680232
626 => 0.19988340707961
627 => 0.20195894500869
628 => 0.20136122341723
629 => 0.20076257339905
630 => 0.19956188913885
701 => 0.19972508207107
702 => 0.19798092329378
703 => 0.19717399563613
704 => 0.18503973975526
705 => 0.18179707008565
706 => 0.18281727997434
707 => 0.18315315955943
708 => 0.18174194556362
709 => 0.18376526392248
710 => 0.18344993189948
711 => 0.18467670433792
712 => 0.18391027017865
713 => 0.18394172490389
714 => 0.18619564434532
715 => 0.18684996674803
716 => 0.18651717309298
717 => 0.18675025036148
718 => 0.19212141763818
719 => 0.1913578094117
720 => 0.19095215776065
721 => 0.19106452604026
722 => 0.19243697443859
723 => 0.19282118505721
724 => 0.19119325766809
725 => 0.19196099763574
726 => 0.19522993697726
727 => 0.19637388074085
728 => 0.20002480011007
729 => 0.19847382467211
730 => 0.20132070721314
731 => 0.21007105357047
801 => 0.21706143571862
802 => 0.21063279140542
803 => 0.2234697380007
804 => 0.23346514227575
805 => 0.23308150201146
806 => 0.23133857207824
807 => 0.21995907005267
808 => 0.20948748262992
809 => 0.21824741015614
810 => 0.2182697410129
811 => 0.2175172554696
812 => 0.21284363238682
813 => 0.21735462351698
814 => 0.21771268961138
815 => 0.21751226781598
816 => 0.2139290119563
817 => 0.20845804255496
818 => 0.20952705688033
819 => 0.21127812415259
820 => 0.2079629884953
821 => 0.20690360178164
822 => 0.2088732032389
823 => 0.21521966951695
824 => 0.21401990682966
825 => 0.21398857617727
826 => 0.21912166973205
827 => 0.21544748253775
828 => 0.20954054057443
829 => 0.2080489598257
830 => 0.2027548530169
831 => 0.2064115114467
901 => 0.20654310807377
902 => 0.20454039362191
903 => 0.20970304981461
904 => 0.20965547502893
905 => 0.21455664872394
906 => 0.22392585203201
907 => 0.22115491758332
908 => 0.2179326222963
909 => 0.21828297513856
910 => 0.22212548107361
911 => 0.2198022142694
912 => 0.22063767721058
913 => 0.22212421650038
914 => 0.22302108256261
915 => 0.21815392991419
916 => 0.21701916380902
917 => 0.21469783060662
918 => 0.21409223810385
919 => 0.215982915561
920 => 0.21548478884966
921 => 0.20653204788683
922 => 0.20559643664363
923 => 0.20562513050472
924 => 0.20327249154781
925 => 0.19968415244048
926 => 0.20911409336595
927 => 0.20835673713769
928 => 0.20752067447642
929 => 0.20762308738192
930 => 0.21171630512731
1001 => 0.20934203212253
1002 => 0.21565442604143
1003 => 0.21435678761963
1004 => 0.21302586966875
1005 => 0.21284189626719
1006 => 0.21232960640469
1007 => 0.2105727738515
1008 => 0.20845129297426
1009 => 0.20705050753958
1010 => 0.19099314855684
1011 => 0.19397330098268
1012 => 0.19740169469916
1013 => 0.19858516247166
1014 => 0.19656075895332
1015 => 0.21065270964129
1016 => 0.2132274448254
1017 => 0.20542840400691
1018 => 0.20396952190251
1019 => 0.21074835370918
1020 => 0.20665988945127
1021 => 0.20850092465627
1022 => 0.20452161353549
1023 => 0.21260726651659
1024 => 0.21254566738805
1025 => 0.20940016575565
1026 => 0.21205872219589
1027 => 0.21159673259054
1028 => 0.20804546899458
1029 => 0.21271984790686
1030 => 0.21272216634048
1031 => 0.20969468940839
1101 => 0.20615925915164
1102 => 0.20552720772486
1103 => 0.20505104187895
1104 => 0.20838381704767
1105 => 0.21137197284263
1106 => 0.21693218995039
1107 => 0.21833016063879
1108 => 0.22378653330376
1109 => 0.22053752904773
1110 => 0.22197777055278
1111 => 0.22354135644111
1112 => 0.22429099701494
1113 => 0.22306949792781
1114 => 0.23154549060911
1115 => 0.23226112408912
1116 => 0.23250106980476
1117 => 0.22964301276226
1118 => 0.23218163635258
1119 => 0.23099389844504
1120 => 0.23408406251735
1121 => 0.23456863970108
1122 => 0.2341582200658
1123 => 0.23431203251244
1124 => 0.22707926802653
1125 => 0.22670421103206
1126 => 0.22159028229967
1127 => 0.22367424605837
1128 => 0.21977837569847
1129 => 0.22101379632151
1130 => 0.22155835796062
1201 => 0.22127390986395
1202 => 0.22379207024254
1203 => 0.22165111949456
1204 => 0.21600079846575
1205 => 0.21034893801076
1206 => 0.21027798350665
1207 => 0.20878994841247
1208 => 0.2077143715866
1209 => 0.2079215658414
1210 => 0.20865174542009
1211 => 0.2076719322221
1212 => 0.20788102504568
1213 => 0.21135335909534
1214 => 0.21204971092544
1215 => 0.20968323532452
1216 => 0.20018149430602
1217 => 0.19784974322677
1218 => 0.1995257596619
1219 => 0.19872473175519
1220 => 0.16038636835583
1221 => 0.16939339815553
1222 => 0.16404172689838
1223 => 0.16650802323223
1224 => 0.16104535268723
1225 => 0.1636524253944
1226 => 0.16317099426044
1227 => 0.17765403164096
1228 => 0.17742789893303
1229 => 0.17753613669364
1230 => 0.17236966636776
1231 => 0.18059999388185
]
'min_raw' => 0.10507325491642
'max_raw' => 0.23456863970108
'avg_raw' => 0.16982094730875
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.105073'
'max' => '$0.234568'
'avg' => '$0.16982'
'bar_min_pct' => 61.631153054958
'bar_max_pct' => 60.119598047091
'min_diff' => 0.016202082716016
'max_diff' => 0.035486243205067
'year' => 2035
]
10 => [
'items' => [
101 => 0.18465454916829
102 => 0.18390415889326
103 => 0.18409301595896
104 => 0.18084782585684
105 => 0.17756755722746
106 => 0.17392923448776
107 => 0.18068878842785
108 => 0.17993724141914
109 => 0.18166101985903
110 => 0.18604507377207
111 => 0.18669064236416
112 => 0.18755829309865
113 => 0.18724730207392
114 => 0.19465636998242
115 => 0.1937590829721
116 => 0.19592128649989
117 => 0.19147346979645
118 => 0.18644034300587
119 => 0.18739697586345
120 => 0.18730484442651
121 => 0.18613190549072
122 => 0.18507302866513
123 => 0.18331029708722
124 => 0.18888784063491
125 => 0.18866140255267
126 => 0.19232717189875
127 => 0.19167921155944
128 => 0.18735197383079
129 => 0.18750652197281
130 => 0.18854593250126
131 => 0.192143344208
201 => 0.19321130093303
202 => 0.19271658082728
203 => 0.19388754662219
204 => 0.19481303024237
205 => 0.19400377311589
206 => 0.20546114745461
207 => 0.20070324682382
208 => 0.20302221448601
209 => 0.20357527460929
210 => 0.20215862273311
211 => 0.20246584379855
212 => 0.20293119999997
213 => 0.20575675172889
214 => 0.21317181704556
215 => 0.21645589899826
216 => 0.2263362215867
217 => 0.21618320170872
218 => 0.21558076352653
219 => 0.21736050798186
220 => 0.22316130327964
221 => 0.22786230302749
222 => 0.22942189585103
223 => 0.22962802178873
224 => 0.23255392160547
225 => 0.23423099281563
226 => 0.23219864040892
227 => 0.2304764345404
228 => 0.22430770688742
229 => 0.22502175391014
301 => 0.22994082981032
302 => 0.23688931425144
303 => 0.24285183676852
304 => 0.24076396919793
305 => 0.25669292495673
306 => 0.25827221585627
307 => 0.25805400891854
308 => 0.26165186861768
309 => 0.25451084980627
310 => 0.25145792591367
311 => 0.23084879499704
312 => 0.23663912014909
313 => 0.24505569781146
314 => 0.2439417321973
315 => 0.23782938852312
316 => 0.24284720000773
317 => 0.24118815460945
318 => 0.23987959666996
319 => 0.24587435426718
320 => 0.23928287203797
321 => 0.244989942734
322 => 0.23767056553425
323 => 0.24077350640112
324 => 0.23901212709272
325 => 0.24015195537179
326 => 0.2334885425429
327 => 0.23708395836017
328 => 0.23333896142428
329 => 0.23333718580811
330 => 0.23325451479319
331 => 0.2376604870804
401 => 0.23780416567851
402 => 0.2345481455012
403 => 0.23407890212506
404 => 0.23581394082708
405 => 0.23378266491437
406 => 0.23473308612923
407 => 0.23381145220476
408 => 0.23360397299578
409 => 0.23195074335897
410 => 0.23123848657493
411 => 0.23151778081255
412 => 0.23056440559351
413 => 0.22998996253896
414 => 0.23314024361112
415 => 0.23145717551624
416 => 0.23288228928698
417 => 0.23125819228152
418 => 0.22562836447522
419 => 0.22239059096947
420 => 0.21175636812867
421 => 0.21477222053461
422 => 0.21677173379987
423 => 0.21611089467763
424 => 0.217530632823
425 => 0.21761779321449
426 => 0.21715622187091
427 => 0.216621781386
428 => 0.21636164531436
429 => 0.21830048646689
430 => 0.21942604901432
501 => 0.21697241170608
502 => 0.21639755881479
503 => 0.21887832160245
504 => 0.22039158546984
505 => 0.2315646756371
506 => 0.2307369370289
507 => 0.23281439849998
508 => 0.23258050821958
509 => 0.23475801880683
510 => 0.23831732833235
511 => 0.23108025686837
512 => 0.23233636223542
513 => 0.23202839420713
514 => 0.23539070838645
515 => 0.23540120516431
516 => 0.23338532985375
517 => 0.23447816856345
518 => 0.23386817597616
519 => 0.23497051502683
520 => 0.23072588207514
521 => 0.23589538683049
522 => 0.23882616291124
523 => 0.23886685673996
524 => 0.24025602134216
525 => 0.24166749303298
526 => 0.24437669003024
527 => 0.24159193499915
528 => 0.23658243178865
529 => 0.23694410173985
530 => 0.23400703184045
531 => 0.23405640451608
601 => 0.23379284930414
602 => 0.23458379833468
603 => 0.23089945090842
604 => 0.2317641598852
605 => 0.23055356225399
606 => 0.23233373063259
607 => 0.23041856372959
608 => 0.23202824569562
609 => 0.23272293107036
610 => 0.23528633505864
611 => 0.23003994687628
612 => 0.21934220622317
613 => 0.22159100100602
614 => 0.21826485688317
615 => 0.21857270418526
616 => 0.21919460472903
617 => 0.21717882159349
618 => 0.21756336949113
619 => 0.2175496307342
620 => 0.21743123754929
621 => 0.2169068545025
622 => 0.21614639533863
623 => 0.21917583059051
624 => 0.21969059067222
625 => 0.22083483856859
626 => 0.22423934415742
627 => 0.22389915376532
628 => 0.22445401840919
629 => 0.22324275200706
630 => 0.21862889135966
701 => 0.21887944619077
702 => 0.215755023432
703 => 0.22075494005399
704 => 0.21957089380223
705 => 0.21880753148104
706 => 0.2185992409992
707 => 0.22201218569888
708 => 0.22303339224438
709 => 0.22239704485584
710 => 0.22109187779675
711 => 0.22359818438822
712 => 0.22426876629951
713 => 0.22441888485934
714 => 0.2288595796028
715 => 0.22466707036553
716 => 0.2256762490089
717 => 0.23354957270171
718 => 0.22640955455673
719 => 0.23019178140954
720 => 0.23000666108685
721 => 0.23194152036116
722 => 0.22984794615205
723 => 0.22987389851349
724 => 0.23159192247036
725 => 0.22917926767019
726 => 0.22858186041243
727 => 0.22775654656454
728 => 0.2295585891579
729 => 0.23063883219325
730 => 0.23934479770703
731 => 0.2449692484692
801 => 0.24472507622818
802 => 0.24695635343982
803 => 0.24595114261982
804 => 0.24270505172083
805 => 0.24824573306679
806 => 0.24649242965698
807 => 0.24663696985982
808 => 0.24663159006625
809 => 0.24779738355733
810 => 0.2469713120255
811 => 0.24534304024174
812 => 0.24642396304006
813 => 0.24963391731409
814 => 0.25959771387412
815 => 0.26517358643186
816 => 0.25926203934487
817 => 0.26333974536671
818 => 0.26089457478882
819 => 0.2604502145573
820 => 0.26301131527912
821 => 0.26557689886872
822 => 0.26541348228538
823 => 0.26355100034351
824 => 0.26249893155327
825 => 0.27046554890183
826 => 0.27633521685646
827 => 0.27593494485271
828 => 0.27770161530185
829 => 0.28288861438157
830 => 0.28336284857183
831 => 0.283303105964
901 => 0.28212766704222
902 => 0.28723494125315
903 => 0.29149551925385
904 => 0.28185558689353
905 => 0.28552634694036
906 => 0.28717426938988
907 => 0.28959390846234
908 => 0.29367624515618
909 => 0.29811074559202
910 => 0.29873783257547
911 => 0.29829288435184
912 => 0.29536821210863
913 => 0.30022049540012
914 => 0.30306284915222
915 => 0.3047554057655
916 => 0.30904744772218
917 => 0.28718444639791
918 => 0.27170872739892
919 => 0.26929197040514
920 => 0.27420654078627
921 => 0.27550247380281
922 => 0.2749800848288
923 => 0.25756075610463
924 => 0.26920026124442
925 => 0.28172339009744
926 => 0.28220445447873
927 => 0.28847379462883
928 => 0.29051534877064
929 => 0.29556298933267
930 => 0.29524725804119
1001 => 0.29647627819254
1002 => 0.29619374774341
1003 => 0.30554343897844
1004 => 0.31585753685327
1005 => 0.31550039244069
1006 => 0.31401761884032
1007 => 0.31621979048734
1008 => 0.32686504482007
1009 => 0.32588500038783
1010 => 0.32683703007376
1011 => 0.33938838487229
1012 => 0.35570693151977
1013 => 0.34812532824672
1014 => 0.36457522580167
1015 => 0.37492956434092
1016 => 0.39283632218595
1017 => 0.39059430791111
1018 => 0.39756527733432
1019 => 0.38658063443664
1020 => 0.36135767398098
1021 => 0.35736604393926
1022 => 0.36535738836696
1023 => 0.38500332885847
1024 => 0.36473866778691
1025 => 0.36883818232894
1026 => 0.36765752186505
1027 => 0.36759460948641
1028 => 0.36999571909585
1029 => 0.36651278437391
1030 => 0.35232268174873
1031 => 0.35882592215905
1101 => 0.35631470872537
1102 => 0.3591010872534
1103 => 0.37413802297926
1104 => 0.36748983525908
1105 => 0.36048650955079
1106 => 0.36927023415137
1107 => 0.38045493398316
1108 => 0.37975501556853
1109 => 0.37839688130093
1110 => 0.38605261305776
1111 => 0.39869763900111
1112 => 0.40211553870177
1113 => 0.40463856238491
1114 => 0.40498644472398
1115 => 0.40856984902408
1116 => 0.38930098096829
1117 => 0.41988116943245
1118 => 0.42516152321955
1119 => 0.42416903555582
1120 => 0.43003792655893
1121 => 0.42831114994642
1122 => 0.42580932155784
1123 => 0.43511276214669
1124 => 0.42444711826052
1125 => 0.40930857953133
1126 => 0.40100327777815
1127 => 0.41194036909632
1128 => 0.41861926911244
1129 => 0.42303359716527
1130 => 0.42436937016685
1201 => 0.39079676834403
1202 => 0.37270299798339
1203 => 0.38430089733906
1204 => 0.39845113499723
1205 => 0.38922237568364
1206 => 0.38958412557638
1207 => 0.37642634007047
1208 => 0.39961530705369
1209 => 0.39623686961415
1210 => 0.41376420902686
1211 => 0.40958116881033
1212 => 0.42387403369399
1213 => 0.42011024336406
1214 => 0.43573352659293
1215 => 0.44196607725644
1216 => 0.45243149983952
1217 => 0.46012990729356
1218 => 0.46465055939765
1219 => 0.46437915640186
1220 => 0.48229223221817
1221 => 0.47172951724449
1222 => 0.45846025779677
1223 => 0.45822025875734
1224 => 0.46509259625217
1225 => 0.47949513030763
1226 => 0.48322949783986
1227 => 0.48531649983859
1228 => 0.48212018362848
1229 => 0.47065511356115
1230 => 0.4657045544353
1231 => 0.46992257424203
]
'min_raw' => 0.17392923448776
'max_raw' => 0.48531649983859
'avg_raw' => 0.32962286716318
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$0.173929'
'max' => '$0.485316'
'avg' => '$0.329622'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.068855979571344
'max_diff' => 0.25074786013751
'year' => 2036
]
11 => [
'items' => [
101 => 0.46476429847697
102 => 0.47366892960401
103 => 0.48589689006801
104 => 0.48337186458679
105 => 0.49181264619754
106 => 0.50054796716853
107 => 0.51303986848487
108 => 0.51630571406273
109 => 0.52170403261394
110 => 0.52726067565841
111 => 0.52904531964856
112 => 0.53245275876827
113 => 0.53243479988215
114 => 0.54270334701651
115 => 0.55402987249613
116 => 0.55830537365502
117 => 0.56813665281738
118 => 0.55130093178095
119 => 0.56407101958191
120 => 0.5755899584344
121 => 0.56185660466435
122 => 0.58078483337533
123 => 0.58151977360389
124 => 0.59261649849389
125 => 0.58136784194262
126 => 0.57468842558945
127 => 0.59397165032657
128 => 0.60330219536098
129 => 0.60049175926212
130 => 0.57910420178147
131 => 0.56665572597224
201 => 0.53407566364783
202 => 0.57266815482505
203 => 0.59146543151907
204 => 0.57905552137592
205 => 0.58531435821076
206 => 0.61946054254699
207 => 0.63246119874052
208 => 0.62975715313371
209 => 0.63021409232888
210 => 0.63722901043231
211 => 0.66833702048886
212 => 0.64969637978495
213 => 0.66394645115161
214 => 0.67150463762203
215 => 0.67852510243806
216 => 0.66128505969057
217 => 0.63885601738261
218 => 0.63175179817653
219 => 0.57782160038478
220 => 0.57501429938275
221 => 0.57343847626038
222 => 0.56350313437844
223 => 0.55569667717841
224 => 0.54948869257778
225 => 0.53319708712459
226 => 0.53869502571994
227 => 0.51272960694987
228 => 0.52934136172102
301 => 0.48789992640703
302 => 0.52241358517543
303 => 0.50362936985129
304 => 0.5162424652416
305 => 0.51619845934
306 => 0.49297375174092
307 => 0.47957822508505
308 => 0.48811437603187
309 => 0.49726580744736
310 => 0.49875059640541
311 => 0.5106156661124
312 => 0.5139269520288
313 => 0.50389360111295
314 => 0.48704114477254
315 => 0.49095558601681
316 => 0.47949889905817
317 => 0.45942149583826
318 => 0.47384143734863
319 => 0.47876503938034
320 => 0.48093958252897
321 => 0.46119576236752
322 => 0.45499182541361
323 => 0.45168890143541
324 => 0.48449246552197
325 => 0.48628951881249
326 => 0.47709554010046
327 => 0.51865319568769
328 => 0.5092474183242
329 => 0.51975597611062
330 => 0.49060039150313
331 => 0.49171417409833
401 => 0.47791145310618
402 => 0.48564005456364
403 => 0.48017772815796
404 => 0.4850156599414
405 => 0.48791549630486
406 => 0.50171595240632
407 => 0.52257116421613
408 => 0.49965462446941
409 => 0.48966955993088
410 => 0.49586423781245
411 => 0.51236148133619
412 => 0.537355649753
413 => 0.52255859899573
414 => 0.52912527885159
415 => 0.53055980626884
416 => 0.51964900885703
417 => 0.53775794641658
418 => 0.54746267317149
419 => 0.55741771471178
420 => 0.56606139834729
421 => 0.55344145220453
422 => 0.5669466035755
423 => 0.55606383555064
424 => 0.54630086759246
425 => 0.54631567398487
426 => 0.5401912215705
427 => 0.528324323287
428 => 0.52613588517263
429 => 0.53752041661281
430 => 0.5466497327087
501 => 0.54740166690883
502 => 0.55245612538071
503 => 0.55544730183931
504 => 0.58476489744076
505 => 0.59655667691953
506 => 0.61097544165921
507 => 0.61659236312237
508 => 0.63349728294869
509 => 0.61984518723848
510 => 0.61689147045587
511 => 0.57588566451435
512 => 0.58260036294009
513 => 0.59335124299172
514 => 0.57606294256661
515 => 0.58702838996812
516 => 0.58919320156511
517 => 0.57547549273361
518 => 0.58280271372773
519 => 0.56334378713698
520 => 0.52299531564069
521 => 0.53780286579957
522 => 0.548706206884
523 => 0.53314579478426
524 => 0.56103723120193
525 => 0.54474362984284
526 => 0.53957934044281
527 => 0.51943160629117
528 => 0.52894056125334
529 => 0.54180155899479
530 => 0.53385495764204
531 => 0.55034534863719
601 => 0.57370014011297
602 => 0.59034415532048
603 => 0.59162187613856
604 => 0.58092088942254
605 => 0.59806928892774
606 => 0.5981941962968
607 => 0.57885073160167
608 => 0.56700296718075
609 => 0.56431113017641
610 => 0.57103586677899
611 => 0.57920093846937
612 => 0.59207498079136
613 => 0.5998544949385
614 => 0.62013934189874
615 => 0.62562783987405
616 => 0.63165803514029
617 => 0.63971623565934
618 => 0.64939217146267
619 => 0.62822177477632
620 => 0.62906291410323
621 => 0.60934933383299
622 => 0.58828254610087
623 => 0.60426961197739
624 => 0.62517057394069
625 => 0.6203758701728
626 => 0.619836368052
627 => 0.62074366097377
628 => 0.61712861091317
629 => 0.60077787346906
630 => 0.59256663548566
701 => 0.60316122739447
702 => 0.60879178148296
703 => 0.6175242798383
704 => 0.61644781509533
705 => 0.63894179305683
706 => 0.64768227271008
707 => 0.64544608398857
708 => 0.64585759653021
709 => 0.6616818174427
710 => 0.67928160559663
711 => 0.69576612969939
712 => 0.71253489564349
713 => 0.6923194938018
714 => 0.68205535945924
715 => 0.69264532610065
716 => 0.68702614073614
717 => 0.71931564659924
718 => 0.72155130192766
719 => 0.75383847289196
720 => 0.78448284282189
721 => 0.76523566311981
722 => 0.78338488666685
723 => 0.80301475166088
724 => 0.84088394606519
725 => 0.82813093364414
726 => 0.8183623259948
727 => 0.80913103896775
728 => 0.8283398818455
729 => 0.85305175133898
730 => 0.85837445134053
731 => 0.86699925877094
801 => 0.85793132834914
802 => 0.86885265174242
803 => 0.90740972239339
804 => 0.89699126155082
805 => 0.88219537230322
806 => 0.91263247652173
807 => 0.92364754621716
808 => 1.0009570739765
809 => 1.0985635462699
810 => 1.0581538258218
811 => 1.0330702083261
812 => 1.0389654534289
813 => 1.0746080329229
814 => 1.0860552982174
815 => 1.0549376850379
816 => 1.0659289520759
817 => 1.1264919140929
818 => 1.1589820001226
819 => 1.1148560992936
820 => 0.993114488965
821 => 0.8808631643618
822 => 0.9106372703896
823 => 0.90726181076412
824 => 0.97232915806799
825 => 0.89674278470534
826 => 0.89801546538071
827 => 0.9644283365193
828 => 0.94671052110438
829 => 0.91800992925855
830 => 0.88107271044425
831 => 0.81279084518681
901 => 0.75231169294762
902 => 0.87092523800561
903 => 0.86581040625798
904 => 0.8584033719118
905 => 0.87488692532439
906 => 0.95492638175762
907 => 0.9530812132244
908 => 0.94134319242928
909 => 0.95024637774821
910 => 0.91644915782588
911 => 0.92515947094825
912 => 0.88084538317848
913 => 0.9008772015702
914 => 0.91794835067854
915 => 0.92137563660473
916 => 0.92909748679797
917 => 0.86311512234672
918 => 0.89273926684489
919 => 0.9101406763306
920 => 0.83152047520547
921 => 0.90858660773758
922 => 0.86196651617914
923 => 0.84614295689393
924 => 0.86744729487605
925 => 0.85914497364527
926 => 0.85200712537971
927 => 0.84802408340372
928 => 0.86366763794381
929 => 0.86293784742642
930 => 0.83734195591574
1001 => 0.80395315886206
1002 => 0.81515953510318
1003 => 0.81108815355445
1004 => 0.79633294160316
1005 => 0.80627617290724
1006 => 0.76249121439826
1007 => 0.68716146902767
1008 => 0.73692660623199
1009 => 0.73501070258367
1010 => 0.73404461708488
1011 => 0.77144174228656
1012 => 0.76784687159689
1013 => 0.76132214609407
1014 => 0.79621310990255
1015 => 0.78347743876276
1016 => 0.82272577631407
1017 => 0.84857726984867
1018 => 0.84202049488009
1019 => 0.8663339495005
1020 => 0.81541770737808
1021 => 0.83233004060608
1022 => 0.83581564904488
1023 => 0.79578256082513
1024 => 0.76843503690024
1025 => 0.76661126883904
1026 => 0.71919443107421
1027 => 0.74452412307284
1028 => 0.76681320381776
1029 => 0.75613846384348
1030 => 0.75275916006641
1031 => 0.7700232901819
1101 => 0.77136486094915
1102 => 0.74077690528258
1103 => 0.74713710986024
1104 => 0.77366022024511
1105 => 0.74646879552983
1106 => 0.69364029900205
1107 => 0.68053810145206
1108 => 0.67879002677748
1109 => 0.64325582787349
1110 => 0.68141365294294
1111 => 0.66475673973399
1112 => 0.71737572898061
1113 => 0.68732004452424
1114 => 0.68602440403886
1115 => 0.68406585341608
1116 => 0.65348010052015
1117 => 0.66017643657835
1118 => 0.68243607751662
1119 => 0.6903785681762
1120 => 0.68955010132949
1121 => 0.68232699313232
1122 => 0.68563369507669
1123 => 0.67498165598254
1124 => 0.67122019927538
1125 => 0.6593480072374
1126 => 0.64189916471832
1127 => 0.64432553329057
1128 => 0.60975481052227
1129 => 0.59091884595097
1130 => 0.58570529921166
1201 => 0.57873352662274
1202 => 0.58649277947676
1203 => 0.60965687600825
1204 => 0.58171606105405
1205 => 0.53381349363536
1206 => 0.53669251955923
1207 => 0.54316083601969
1208 => 0.53110717108782
1209 => 0.51969938881722
1210 => 0.52961752995887
1211 => 0.50932058065519
1212 => 0.54561362537322
1213 => 0.54463200022368
1214 => 0.55815980294773
1215 => 0.56661901560954
1216 => 0.54712326912669
1217 => 0.54222014160836
1218 => 0.54501318587752
1219 => 0.49885038569126
1220 => 0.55438731731881
1221 => 0.55486760300974
1222 => 0.55075510533405
1223 => 0.58032680691532
1224 => 0.64273232089683
1225 => 0.619252856281
1226 => 0.61016089791118
1227 => 0.59287707840396
1228 => 0.61590674168567
1229 => 0.61413842286435
1230 => 0.60614141453933
1231 => 0.60130479895217
]
'min_raw' => 0.45168890143541
'max_raw' => 1.1589820001226
'avg_raw' => 0.80533545077899
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$0.451688'
'max' => '$1.15'
'avg' => '$0.805335'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 0.27775966694765
'max_diff' => 0.67366550028398
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.014177998482711
]
1 => [
'year' => 2028
'avg' => 0.0243335612987
]
2 => [
'year' => 2029
'avg' => 0.06647490377033
]
3 => [
'year' => 2030
'avg' => 0.051285289261413
]
4 => [
'year' => 2031
'avg' => 0.050368509770636
]
5 => [
'year' => 2032
'avg' => 0.088311849181328
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.014177998482711
'min' => '$0.014177'
'max_raw' => 0.088311849181328
'max' => '$0.088311'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.088311849181328
]
1 => [
'year' => 2033
'avg' => 0.22714715709474
]
2 => [
'year' => 2034
'avg' => 0.14397678434821
]
3 => [
'year' => 2035
'avg' => 0.16982094730875
]
4 => [
'year' => 2036
'avg' => 0.32962286716318
]
5 => [
'year' => 2037
'avg' => 0.80533545077899
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.088311849181328
'min' => '$0.088311'
'max_raw' => 0.80533545077899
'max' => '$0.805335'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 0.80533545077899
]
]
]
]
'prediction_2025_max_price' => '$0.024241'
'last_price' => 0.02350548
'sma_50day_nextmonth' => '$0.021599'
'sma_200day_nextmonth' => '$0.031285'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'increase'
'sma_200day_direction_label' => 'aumentar'
'sma_200day_date_nextmonth' => '4 de fev. de 2026'
'sma_50day_date_nextmonth' => '4 de fev. de 2026'
'daily_sma3' => '$0.022739'
'daily_sma3_action' => 'BUY'
'daily_sma5' => '$0.022344'
'daily_sma5_action' => 'BUY'
'daily_sma10' => '$0.022021'
'daily_sma10_action' => 'BUY'
'daily_sma21' => '$0.0215081'
'daily_sma21_action' => 'BUY'
'daily_sma50' => '$0.021441'
'daily_sma50_action' => 'BUY'
'daily_sma100' => '$0.026044'
'daily_sma100_action' => 'SELL'
'daily_sma200' => '$0.034493'
'daily_sma200_action' => 'SELL'
'daily_ema3' => '$0.022889'
'daily_ema3_action' => 'BUY'
'daily_ema5' => '$0.022574'
'daily_ema5_action' => 'BUY'
'daily_ema10' => '$0.022171'
'daily_ema10_action' => 'BUY'
'daily_ema21' => '$0.02181'
'daily_ema21_action' => 'BUY'
'daily_ema50' => '$0.02269'
'daily_ema50_action' => 'BUY'
'daily_ema100' => '$0.025995'
'daily_ema100_action' => 'SELL'
'daily_ema200' => '$0.030388'
'daily_ema200_action' => 'SELL'
'weekly_sma21' => '$0.029794'
'weekly_sma21_action' => 'SELL'
'weekly_sma50' => '$0.033337'
'weekly_sma50_action' => 'SELL'
'weekly_sma100' => '$0.042633'
'weekly_sma100_action' => 'SELL'
'weekly_sma200' => '$0.054753'
'weekly_sma200_action' => 'SELL'
'weekly_ema3' => '$0.022619'
'weekly_ema3_action' => 'BUY'
'weekly_ema5' => '$0.022427'
'weekly_ema5_action' => 'BUY'
'weekly_ema10' => '$0.02374'
'weekly_ema10_action' => 'SELL'
'weekly_ema21' => '$0.027698'
'weekly_ema21_action' => 'SELL'
'weekly_ema50' => '$0.03340069'
'weekly_ema50_action' => 'SELL'
'weekly_ema100' => '$0.041993'
'weekly_ema100_action' => 'SELL'
'weekly_ema200' => '$0.0657069'
'weekly_ema200_action' => 'SELL'
'rsi_14' => '67.53'
'rsi_14_action' => 'NEUTRAL'
'stoch_rsi_14' => 123.66
'stoch_rsi_14_action' => 'SELL'
'momentum_10' => 0
'momentum_10_action' => 'BUY'
'vwma_10' => '0.02210083'
'vwma_10_action' => 'BUY'
'hma_9' => '0.022788'
'hma_9_action' => 'BUY'
'stochastic_fast_14' => 100
'stochastic_fast_14_action' => 'SELL'
'cci_20' => 229.42
'cci_20_action' => 'SELL'
'adx_14' => 14.19
'adx_14_action' => 'NEUTRAL'
'ao_5_34' => '0.001017'
'ao_5_34_action' => 'BUY'
'macd_12_26' => 0
'macd_12_26_action' => 'BUY'
'williams_percent_r_14' => -0
'williams_percent_r_14_action' => 'SELL'
'ultimate_oscillator' => 78.98
'ultimate_oscillator_action' => 'SELL'
'ichimoku_cloud' => '-0.004442'
'ichimoku_cloud_action' => 'NEUTRAL'
'sell_signals' => 14
'buy_signals' => 21
'sell_pct' => 40
'buy_pct' => 60
'overall_action' => 'bullish'
'overall_action_label' => 'Altista'
'overall_action_dir' => 1
'last_updated' => 1767713630
'last_updated_date' => '6 de janeiro de 2026'
]
Previsão de preço de Bifrost para 2026
A previsão de preço para Bifrost em 2026 sugere que o preço médio poderia variar entre $0.008121 na extremidade inferior e $0.024241 na extremidade superior. No mercado de criptomoedas, comparado ao preço médio de hoje, Bifrost poderia potencialmente ganhar 3.13% até 2026 se BFC atingir a meta de preço prevista.
Previsão de preço de Bifrost 2027-2032
A previsão de preço de BFC para 2027-2032 está atualmente dentro de uma faixa de preço entre $0.014177 na extremidade inferior e $0.088311 na extremidade superior. Considerando a volatilidade de preços no mercado, se Bifrost atingir a meta de preço superior, poderia ganhar 275.71% até 2032 em comparação com o preço de hoje.
| Previsão de Preço de Bifrost | Potencial Mínimo ($) | Preço Médio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2027 | $0.007818 | $0.014177 | $0.020537 |
| 2028 | $0.0141092 | $0.024333 | $0.034557 |
| 2029 | $0.030993 | $0.066474 | $0.101955 |
| 2030 | $0.026358 | $0.051285 | $0.076211 |
| 2031 | $0.031164 | $0.050368 | $0.069572 |
| 2032 | $0.04757 | $0.088311 | $0.129053 |
Previsão de preço de Bifrost 2032-2037
A previsão de preço de Bifrost para 2032-2037 é atualmente estimada entre $0.088311 na extremidade inferior e $0.805335 na extremidade superior. Comparado ao preço atual, Bifrost poderia potencialmente ganhar 3326.16% até 2037 se atingir a meta de preço superior. Por favor, note que esta informação é apenas para fins gerais e não deve ser considerada como aconselhamento de investimento a longo prazo.
| Previsão de Preço de Bifrost | Potencial Mínimo ($) | Preço Médio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2032 | $0.04757 | $0.088311 | $0.129053 |
| 2033 | $0.110542 | $0.227147 | $0.343751 |
| 2034 | $0.088871 | $0.143976 | $0.199082 |
| 2035 | $0.105073 | $0.16982 | $0.234568 |
| 2036 | $0.173929 | $0.329622 | $0.485316 |
| 2037 | $0.451688 | $0.805335 | $1.15 |
Bifrost Histograma de preços potenciais
Previsão de preço de Bifrost baseada na análise técnica
Em 6 de janeiro de 2026, o sentimento geral de previsão de preço para Bifrost é Altista, com 21 indicadores técnicos mostrando sinais de alta e 14 indicando sinais de baixa. A previsão de preço de BFC foi atualizada pela última vez em 6 de janeiro de 2026.
Médias Móveis Simples de 50 e 200 dias e Índice de Força Relativa de 14 dias - RSI (14) de Bifrost
De acordo com nossos indicadores técnicos, o SMA de 200 dias de Bifrost está projetado para aumentar no próximo mês, alcançando $0.031285 até 4 de fev. de 2026. O SMA de 50 dias de curto prazo para Bifrost é esperado para alcançar $0.021599 até 4 de fev. de 2026.
O oscilador de momentum Índice de Força Relativa (RSI) é uma ferramenta comumente usada para identificar se uma criptomoeda está sobrevendida (abaixo de 30) ou sobrecomprada (acima de 70). No momento, o RSI está em 67.53, sugerindo que o mercado de BFC está em um estado NEUTRAL.
Médias Móveis e Osciladores Populares de BFC para Sábado, 19 de Outubro de 2024
Médias móveis (MA) são indicadores amplamente utilizados nos mercados financeiros, projetados para suavizar movimentos de preços ao longo de um período definido. Como indicadores atrasados, eles se baseiam em dados históricos de preços. A tabela abaixo destaca dois tipos: a média móvel simples (SMA) e a média móvel exponencial (EMA).
Média Móvel Simples Diária (SMA)
| Período | Valor | Ação |
|---|---|---|
| SMA 3 | $0.022739 | BUY |
| SMA 5 | $0.022344 | BUY |
| SMA 10 | $0.022021 | BUY |
| SMA 21 | $0.0215081 | BUY |
| SMA 50 | $0.021441 | BUY |
| SMA 100 | $0.026044 | SELL |
| SMA 200 | $0.034493 | SELL |
Média Móvel Exponencial Diária (EMA)
| Período | Valor | Ação |
|---|---|---|
| EMA 3 | $0.022889 | BUY |
| EMA 5 | $0.022574 | BUY |
| EMA 10 | $0.022171 | BUY |
| EMA 21 | $0.02181 | BUY |
| EMA 50 | $0.02269 | BUY |
| EMA 100 | $0.025995 | SELL |
| EMA 200 | $0.030388 | SELL |
Média Móvel Simples Semanal (SMA)
| Período | Valor | Ação |
|---|---|---|
| SMA 21 | $0.029794 | SELL |
| SMA 50 | $0.033337 | SELL |
| SMA 100 | $0.042633 | SELL |
| SMA 200 | $0.054753 | SELL |
Média Móvel Exponencial Semanal (EMA)
| Período | Valor | Ação |
|---|---|---|
| EMA 21 | $0.027698 | SELL |
| EMA 50 | $0.03340069 | SELL |
| EMA 100 | $0.041993 | SELL |
| EMA 200 | $0.0657069 | SELL |
Osciladores de Bifrost
Um oscilador é uma ferramenta de análise técnica que define limites altos e baixos entre dois extremos, criando um indicador de tendência que flutua dentro desses limites. Os traders usam esse indicador para identificar condições de sobrecompra ou sobrevenda de curto prazo.
| Período | Valor | Ação |
|---|---|---|
| RSI (14) | 67.53 | NEUTRAL |
| Stoch RSI (14) | 123.66 | SELL |
| Estocástico Rápido (14) | 100 | SELL |
| Índice de Canal de Commodities (20) | 229.42 | SELL |
| Índice Direcional Médio (14) | 14.19 | NEUTRAL |
| Oscilador Impressionante (5, 34) | 0.001017 | BUY |
| Momentum (10) | 0 | BUY |
| MACD (12, 26) | 0 | BUY |
| Williams Percent Range (14) | -0 | SELL |
| Oscilador Ultimate (7, 14, 28) | 78.98 | SELL |
| VWMA (10) | 0.02210083 | BUY |
| Média Móvel de Hull (9) | 0.022788 | BUY |
| Nuvem Ichimoku B/L (9, 26, 52, 26) | -0.004442 | NEUTRAL |
Previsão do preço de Bifrost com base nos fluxos financeiros mundiais
Definições dos fluxos financeiros mundiais, usadas na previsão do preço do Bifrost
M0: o total de todas as moedas físicas, mais as contas no Banco Central que podem ser trocadas por moedas físicas.
M1: o valor de M0, mais o valor em contas de demanda, incluindo contas 'correntes'.
M2: o valor de M1, mais a maioria das contas de poupança, do mercado de moedas e de certificados de depósito (CD) de menos de US$ 100.000.
Previsões de preço de Bifrost por empresas de Internet ou nichos tecnológicos
| Comparação | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Facebook stock | $0.033029 | $0.046411 | $0.065215 | $0.091639 | $0.128768 | $0.18094 |
| Amazon.com stock | $0.049045 | $0.102336 | $0.213531 | $0.445545 | $0.929657 | $1.93 |
| Apple stock | $0.03334 | $0.047291 | $0.067079 | $0.095146 | $0.134958 | $0.191427 |
| Netflix stock | $0.037087 | $0.058518 | $0.092333 | $0.145688 | $0.229873 | $0.3627039 |
| Google stock | $0.030439 | $0.039419 | $0.051047 | $0.0661062 | $0.0856072 | $0.11086 |
| Tesla stock | $0.053285 | $0.120793 | $0.273829 | $0.62075 | $1.40 | $3.19 |
| Kodak stock | $0.017626 | $0.013218 | $0.009912 | $0.007433 | $0.005574 | $0.004179 |
| Nokia stock | $0.015571 | $0.010315 | $0.006833 | $0.004526 | $0.002998 | $0.001986 |
Este cálculo mostra quanto a criptomoeda pode custar, se assumirmos que sua capitalização se comportará da mesma forma que a de algumas empresas de Internet ou nichos tecnológicos. Se você extrapolar os dados, poderá obter uma imagem em potencial do preço futuro para 2024, 2025, 2026, 2027, 2028, 2029 e 2030.
Visão geral da previsão para Bifrost
Você pode fazer perguntas como: 'Devo investir em Bifrost agora?', 'Devo comprar BFC hoje?', 'Bifrost será um bom ou mau investimento no curto ou no longo prazo?'.
Atualizamos a previsão para Bifrost regularmente com novos valores. Veja nossas previsões semelhantes. Fazemos previsões de preços futuros para uma enorme quantidade de moedas digitais, como Bifrost, com métodos de análise técnica.
Se você estiver tentando encontrar criptomoedas com bom retorno, você deve explorar o máximo de fontes de informações disponíveis sobre Bifrost para poder tomar sozinho uma decisão de tão grande responsabilidade sobre o seu investimento.
O preço de Bifrost é de $0.0235 USD hoje, mas o preço pode tanto subir quanto descer e seu investimento pode ser perdido, porque criptomoedas são ativos de alto risco
Previsão de curto prazo para Bifrost
com base no histórico de preços de 4 horas
Previsão de longo prazo para Bifrost
com base no histórico de preços de 1 mês
Previsão do preço de Bifrost com base no padrão de crescimento do Bitcoin
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| Se Bifrost tiver 1% da média anterior do crescimento anual do Bitcoin | $0.024116 | $0.024743 | $0.025386 | $0.026046 |
| Se Bifrost tiver 2% da média anterior do crescimento anual do Bitcoin | $0.024727 | $0.026012 | $0.027365 | $0.028787 |
| Se Bifrost tiver 5% da média anterior do crescimento anual do Bitcoin | $0.02656 | $0.030012 | $0.033912 | $0.03832 |
| Se Bifrost tiver 10% da média anterior do crescimento anual do Bitcoin | $0.029615 | $0.037313 | $0.047012 | $0.059232 |
| Se Bifrost tiver 20% da média anterior do crescimento anual do Bitcoin | $0.035725 | $0.054297 | $0.082524 | $0.125426 |
| Se Bifrost tiver 50% da média anterior do crescimento anual do Bitcoin | $0.054054 | $0.1243072 | $0.285864 | $0.657391 |
| Se Bifrost tiver 100% da média anterior do crescimento anual do Bitcoin | $0.0846037 | $0.304516 | $1.09 | $3.94 |
Perguntas Frequentes sobre Bifrost
BFC é um bom investimento?
A decisão de adquirir Bifrost depende inteiramente da sua tolerância individual ao risco. Como você pode perceber, o valor de Bifrost experimentou uma escalada de 3.2016% nas últimas 24 horas, e Bifrost registrou um declínio de durante os últimos 30 dias. Consequentemente, a decisão de investir ou não em Bifrost dependerá de quão alinhado esse investimento está com suas aspirações de negociação.
Bifrost pode subir?
Parece que o valor médio de Bifrost pode potencialmente subir para $0.024241 até o final deste ano. Observando as perspectivas de Bifrost em um horizonte de cinco anos mais longo, a moeda digital poderia potencialmente crescer até $0.076211. No entanto, dada a imprevisibilidade do mercado, é vital conduzir uma pesquisa aprofundada antes de investir quaisquer fundos em um projeto, rede ou ativo específico.
Qual será o preço de Bifrost na próxima semana?
Com base na nossa nova previsão experimental de Bifrost, o preço de Bifrost aumentará 0.86% na próxima semana e atingirá $0.023706 até 13 de janeiro de 2026.
Qual será o preço de Bifrost no próximo mês?
Com base na nossa nova previsão experimental de Bifrost, o preço de Bifrost diminuirá -11.62% no próximo mês e atingirá $0.020774 até 5 de fevereiro de 2026.
Até onde o preço de Bifrost pode subir este ano em 2026?
De acordo com nossa previsão mais recente sobre o valor de Bifrost em 2026, espera-se que BFC fluctue dentro do intervalo de $0.008121 e $0.024241. No entanto, é crucial lembrar que o mercado de criptomoedas é excepcionalmente instável, e essa previsão de preço de Bifrost não considera flutuações repentinas e extremas de preço.
Onde estará Bifrost em 5 anos?
O futuro de Bifrost parece seguir uma tendência de alta, com um preço máximo de $0.076211 projetada após um período de cinco anos. Com base na previsão de Bifrost para 2030, o valor de Bifrost pode potencialmente atingir seu pico mais alto de aproximadamente $0.076211, enquanto seu pico mais baixo está previsto para cerca de $0.026358.
Quanto será Bifrost em 2026?
Com base na nossa nova simulação experimental de previsão de preços de Bifrost, espera-se que o valor de BFC em 2026 aumente 3.13% para $0.024241 se o melhor cenário ocorrer. O preço ficará entre $0.024241 e $0.008121 durante 2026.
Quanto será Bifrost em 2027?
De acordo com nossa última simulação experimental para previsão de preços de Bifrost, o valor de BFC pode diminuir -12.62% para $0.020537 em 2027, assumindo as condições mais favoráveis. O preço está projetado para flutuar entre $0.020537 e $0.007818 ao longo do ano.
Quanto será Bifrost em 2028?
Nosso novo modelo experimental de previsão de preços de Bifrost sugere que o valor de BFC em 2028 pode aumentar 47.02%, alcançando $0.034557 no melhor cenário. O preço é esperado para variar entre $0.034557 e $0.0141092 durante o ano.
Quanto será Bifrost em 2029?
Com base no nosso modelo de previsão experimental, o valor de Bifrost pode experimentar um 333.75% crescimento em 2029, potencialmente alcançando $0.101955 sob condições ótimas. A faixa de preço prevista para 2029 está entre $0.101955 e $0.030993.
Quanto será Bifrost em 2030?
Usando nossa nova simulação experimental para previsões de preços de Bifrost, espera-se que o valor de BFC em 2030 aumente 224.23%, alcançando $0.076211 no melhor cenário. O preço está previsto para variar entre $0.076211 e $0.026358 ao longo de 2030.
Quanto será Bifrost em 2031?
Nossa simulação experimental indica que o preço de Bifrost poderia aumentar 195.98% em 2031, potencialmente atingindo $0.069572 sob condições ideais. O preço provavelmente oscilará entre $0.069572 e $0.031164 durante o ano.
Quanto será Bifrost em 2032?
Com base nos achados da nossa mais recente previsão experimental de preços de Bifrost, BFC poderia ver um 449.04% aumento em valor, atingindo $0.129053 se o cenário mais positivo se desenrolar em 2032. O preço é esperado para permanecer dentro de uma faixa de $0.129053 e $0.04757 ao longo do ano.
Quanto será Bifrost em 2033?
De acordo com nossa previsão experimental de preços de Bifrost, espera-se que o valor de BFC seja aumentar 1362.43% em 2033, com o preço potencial mais alto sendo $0.343751. Ao longo do ano, o preço de BFC poderia variar entre $0.343751 e $0.110542.
Quanto será Bifrost em 2034?
Os resultados da nossa nova simulação de previsão de preços de Bifrost sugerem que BFC pode aumentar 746.96% em 2034, atingindo potencialmente $0.199082 nas melhores circunstâncias. A faixa de preço prevista para o ano é entre $0.199082 e $0.088871.
Quanto será Bifrost em 2035?
Com base em nossa previsão experimental para o preço de Bifrost, BFC poderia aumentar 897.93%, com o valor potencialmente atingindo $0.234568 em 2035. A faixa de preço esperada para o ano está entre $0.234568 e $0.105073.
Quanto será Bifrost em 2036?
Nossa recente simulação de previsão de preços de Bifrost sugere que o valor de BFC pode aumentar 1964.7% em 2036, possivelmente atingindo $0.485316 se as condições forem ideais. A faixa de preço esperada para 2036 está entre $0.485316 e $0.173929.
Quanto será Bifrost em 2037?
De acordo com a simulação experimental, o valor de Bifrost poderia aumentar 4830.69% em 2037, com um pico de $1.15 sob condições favoráveis. O preço é esperado para cair entre $1.15 e $0.451688 ao longo do ano.
Previsões relacionadas
Previsão de Preço do Request
Previsão de Preço do POL (ex-MATIC)
Previsão de Preço do Maya Protocol
Previsão de Preço do CertiK
Previsão de Preço do Badger DAO
Previsão de Preço do Electroneum
Previsão de Preço do Ondo US Dollar Yield
Previsão de Preço do Sidus
Previsão de Preço do Hard Protocol
Previsão de Preço do Solidus Ai Tech
Previsão de Preço do Chainge FinancePrevisão de Preço do Mobox
Previsão de Preço do Trias Token
Previsão de Preço do SuperRare
Previsão de Preço do CONX
Previsão de Preço do Banana Gun
Previsão de Preço do Dora Factory
Previsão de Preço do Automata
Previsão de Preço do Storm
Previsão de Preço do Adventure Gold
Previsão de Preço do Star Atlas
Previsão de Preço do Radio Caca
Previsão de Preço do CoinEx Token
Previsão de Preço do Blendr Network
Previsão de Preço do Access Protocol
Como ler e prever os movimentos de preço de Bifrost?
Traders de Bifrost utilizam indicadores e padrões de gráfico para prever a direção do mercado. Eles também identificam níveis-chave de suporte e resistência para avaliar quando uma tendência de baixa pode desacelerar ou uma tendência de alta pode estagnar.
Indicadores de Previsão de Preço de Bifrost
Médias móveis são ferramentas populares para a previsão de preço de Bifrost. Uma média móvel simples (SMA) calcula o preço médio de fechamento de BFC em um período específico, como uma SMA de 12 dias. Uma média móvel exponencial (EMA) dá mais peso aos preços recentes, reagindo mais rapidamente às mudanças de preço.
Médias móveis comumente usadas no mercado de criptomoedas incluem as de 50 dias, 100 dias e 200 dias, que ajudam a identificar níveis-chave de resistência e suporte. Um movimento de preço de BFC acima dessas médias é visto como altista, enquanto uma queda abaixo indica fraqueza.
Traders também usam RSI e níveis de retração de Fibonacci para avaliar a direção futura de BFC.
Como ler gráficos de Bifrost e prever movimentos de preço?
A maioria dos traders prefere gráficos de velas em vez de gráficos de linha simples porque eles fornecem informações mais detalhadas. Velas podem representar a ação de preço de Bifrost em diferentes períodos de tempo, como 5 minutos para tendências de curto prazo e semanal para tendências de longo prazo. Opções populares incluem gráficos de 1 hora, 4 horas e 1 dia.
Por exemplo, um gráfico de velas de 1 hora mostra os preços de abertura, fechamento, máximo e mínimo de BFC dentro de cada hora. A cor da vela é crucial: verde indica que o preço fechou mais alto do que abriu, enquanto vermelho significa o oposto. Alguns gráficos usam velas vazias e preenchidas para transmitir a mesma informação.
O que afeta o preço de Bifrost?
A ação de preço de Bifrost é impulsionada pela oferta e demanda, influenciada por fatores como reduções pela metade das recompensas de bloco, hard forks e atualizações de protocolo. Eventos do mundo real, como regulamentações, adoção por empresas e governos e hacks de exchanges de criptomoedas, também impactam o preço de BFC. A capitalização de mercado de Bifrost pode mudar rapidamente.
Traders frequentemente monitoram a atividade de "baleias" de BFC, grandes detentores de Bifrost, pois suas ações podem influenciar significativamente os movimentos de preço no relativamente pequeno mercado de Bifrost.
Padrões de previsão de preço altistas e baixistas
Traders frequentemente identificam padrões de velas para ganhar vantagem em previsões de preço de criptomoedas. Certas formações indicam tendências altistas, enquanto outras sugerem movimentos baixistas.
Padrões de velas altistas comumente seguidos:
- Martelo
- Engolfo de Alta
- Linha de Perfuração
- Estrela da Manhã
- Três Soldados Brancos
Padrões de velas baixistas comuns:
- Harami de Baixa
- Nuvem Negra
- Estrela da Noite
- Estrela Cadente
- Homem Enforcado


