Previsão de Preço Bifrost - Projeção BFC
Previsão de Preço Bifrost até $0.025724 até 2026
| Ano | Preço Mínimo | Preço Máximo |
|---|---|---|
| 2026 | $0.008617 | $0.025724 |
| 2027 | $0.008296 | $0.021794 |
| 2028 | $0.014972 | $0.036671 |
| 2029 | $0.032889 | $0.108191 |
| 2030 | $0.027971 | $0.080873 |
| 2031 | $0.03307 | $0.073827 |
| 2032 | $0.050479 | $0.136946 |
| 2033 | $0.1173041 | $0.364776 |
| 2034 | $0.0943069 | $0.211259 |
| 2035 | $0.1115000038 | $0.248915 |
Calculadora de lucro do investimento
Se você abrir um short de $10,000.00 em Bifrost hoje e fechar em Apr 06, 2026, nossa previsão mostra que pode lucrar cerca de $3,954.46, com um retorno de 39.54% nos próximos 90 dias.
Previsão de preço de longo prazo de Bifrost para os anos 2027, 2028, 2029, 2030, 2031, 2032 e 2037
[
'name' => 'Bifrost'
'name_with_ticker' => 'Bifrost <small>BFC</small>'
'name_lang' => 'Bifrost'
'name_lang_with_ticker' => 'Bifrost <small>BFC</small>'
'name_with_lang' => 'Bifrost'
'name_with_lang_with_ticker' => 'Bifrost <small>BFC</small>'
'image' => '/uploads/coins/bifrost.png?1717201112'
'price_for_sd' => 0.02494
'ticker' => 'BFC'
'marketcap' => '$37.16M'
'low24h' => '$0.02276'
'high24h' => '$0.02672'
'volume24h' => '$1.58M'
'current_supply' => '1.39B'
'max_supply' => '2.37B'
'algo' => 'SHA-256'
'proof' => null
'ico_price_and_roi' => '—'
'price' => '$0.02494'
'change_24h_pct' => '8.9205%'
'ath_price' => '$0.7788'
'ath_days' => 1601
'ath_exchange' => null
'ath_pair' => null
'ath_date' => '19 de ago. de 2021'
'ath_pct' => '-96.90%'
'fdv' => '$63.27M'
'new_prediction' => true
'change_24h_pct_is_increased' => true
'change_30d_pct' => null
'change_30d_pct_is_increased' => false
'max_price' => '$1.22'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.025156'
'next_week_prediction_price_date' => '13 de janeiro de 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.0220452'
'next_month_prediction_price_date' => '5 de fevereiro de 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.008617'
'current_year_max_price_prediction' => '$0.025724'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.027971'
'grand_prediction_max_price' => '$0.080873'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.025415840140887
107 => 0.025510733662023
108 => 0.025724533610526
109 => 0.023897636459101
110 => 0.024717859645208
111 => 0.025199663922527
112 => 0.02302285466941
113 => 0.025156635402569
114 => 0.023865834244173
115 => 0.023427716943831
116 => 0.024017584171177
117 => 0.023787712339016
118 => 0.02359008203625
119 => 0.023479800931588
120 => 0.02391293432208
121 => 0.023892728131707
122 => 0.023184037837293
123 => 0.022259580238142
124 => 0.022569858552704
125 => 0.022457131532149
126 => 0.022048594267583
127 => 0.022323899056923
128 => 0.021111596093236
129 => 0.019025891854236
130 => 0.020403771961368
131 => 0.020350725076089
201 => 0.020323976431046
202 => 0.021359415249746
203 => 0.021259881698966
204 => 0.021079227329665
205 => 0.02204527640842
206 => 0.021692655499481
207 => 0.022779350052897
208 => 0.023495117368774
209 => 0.02331357562482
210 => 0.023986758245006
211 => 0.022577006738397
212 => 0.023045269639479
213 => 0.023141777974408
214 => 0.022033355512744
215 => 0.021276166618826
216 => 0.021225670752187
217 => 0.01991280955719
218 => 0.020614129410512
219 => 0.021231261858848
220 => 0.020935703307508
221 => 0.020842138299714
222 => 0.021320141632758
223 => 0.021357286585557
224 => 0.020510377725289
225 => 0.020686476895455
226 => 0.021420839709095
227 => 0.020667972836732
228 => 0.019205275483835
301 => 0.018842506316944
302 => 0.018794106222918
303 => 0.017810247470723
304 => 0.018866748287324
305 => 0.018405557368416
306 => 0.01986245395533
307 => 0.019030282438378
308 => 0.018994409187522
309 => 0.018940181507392
310 => 0.018093333636684
311 => 0.018278739500379
312 => 0.018895056829413
313 => 0.019114965795723
314 => 0.019092027488876
315 => 0.01889203653827
316 => 0.018983591371338
317 => 0.018688661354207
318 => 0.01858451542672
319 => 0.018255802231978
320 => 0.017772684645046
321 => 0.017839865108641
322 => 0.016882682754335
323 => 0.016361159006197
324 => 0.016216808106284
325 => 0.016023776050082
326 => 0.016238611590671
327 => 0.016879971176989
328 => 0.016106355443863
329 => 0.014780045532253
330 => 0.014859759017862
331 => 0.015038851552882
401 => 0.014705113798689
402 => 0.014389259022832
403 => 0.014663869124332
404 => 0.014101894130348
405 => 0.015106763546037
406 => 0.015079584644457
407 => 0.015454137821918
408 => 0.01568835361039
409 => 0.015148562046225
410 => 0.015012805927589
411 => 0.015090138782536
412 => 0.013811998951332
413 => 0.015349686529416
414 => 0.015362984515445
415 => 0.015249119085622
416 => 0.016067890250174
417 => 0.017795752788509
418 => 0.017145661398478
419 => 0.016893926363142
420 => 0.01641537787695
421 => 0.017053015321403
422 => 0.017004054714363
423 => 0.016782636281568
424 => 0.016648721722546
425 => 0.016895463403588
426 => 0.016618147697695
427 => 0.016568334176791
428 => 0.016266518437755
429 => 0.016158783950661
430 => 0.01607902162545
501 => 0.015991211142676
502 => 0.016184899186665
503 => 0.015745976597202
504 => 0.015216678982421
505 => 0.015172673612832
506 => 0.01529417630726
507 => 0.015240420409787
508 => 0.015172416250276
509 => 0.015042577789938
510 => 0.015004057492316
511 => 0.015129229772197
512 => 0.014987917566209
513 => 0.015196431423819
514 => 0.015139727192147
515 => 0.014822981963492
516 => 0.014428200134485
517 => 0.014424685748124
518 => 0.014339630650636
519 => 0.014231300195866
520 => 0.014201165141614
521 => 0.014640742227533
522 => 0.015550653639951
523 => 0.015372016257359
524 => 0.015501100073777
525 => 0.016136064691606
526 => 0.016337900849562
527 => 0.016194642325397
528 => 0.015998541221718
529 => 0.01600716867505
530 => 0.016677305510161
531 => 0.01671910112256
601 => 0.016824705151318
602 => 0.016960436171966
603 => 0.016217757905131
604 => 0.01597218859547
605 => 0.015855824232886
606 => 0.015497467034803
607 => 0.015883924549711
608 => 0.015658752305535
609 => 0.015689135734254
610 => 0.015669348486442
611 => 0.015680153661755
612 => 0.015106482664556
613 => 0.015315498224675
614 => 0.014967969316743
615 => 0.014502667120971
616 => 0.014501107264855
617 => 0.014614989318077
618 => 0.014547247816616
619 => 0.014364957177976
620 => 0.014390850702807
621 => 0.014163996178838
622 => 0.014418394949351
623 => 0.014425690195806
624 => 0.014327732811964
625 => 0.014719669218204
626 => 0.01488024588363
627 => 0.014815768235135
628 => 0.014875721959927
629 => 0.015379439447105
630 => 0.01546156737625
701 => 0.015498043177309
702 => 0.015449170436007
703 => 0.014884928990906
704 => 0.014909955498336
705 => 0.014726327592162
706 => 0.014571181361677
707 => 0.014577386397262
708 => 0.014657151727329
709 => 0.015005491601908
710 => 0.015738552332203
711 => 0.015766371451057
712 => 0.015800089034649
713 => 0.01566294267708
714 => 0.015621578023323
715 => 0.015676148678751
716 => 0.015951447746548
717 => 0.016659591691888
718 => 0.016409286326261
719 => 0.016205784167771
720 => 0.016384310424554
721 => 0.016356827706658
722 => 0.016124845909979
723 => 0.016118334953586
724 => 0.015673087716692
725 => 0.015508489951002
726 => 0.015370939738062
727 => 0.01522073849637
728 => 0.015131694165505
729 => 0.015268506727639
730 => 0.015299797379318
731 => 0.015000654321136
801 => 0.014959882227678
802 => 0.01520416890644
803 => 0.015096667447042
804 => 0.015207235363941
805 => 0.015232888069096
806 => 0.015228757392734
807 => 0.015116513522658
808 => 0.015188054418284
809 => 0.015018838872762
810 => 0.014834842382359
811 => 0.014717464084869
812 => 0.014615035952337
813 => 0.014671869033424
814 => 0.01446926947666
815 => 0.014404453800927
816 => 0.015163817972567
817 => 0.015724768450698
818 => 0.015716612008585
819 => 0.01566696176489
820 => 0.015593191573943
821 => 0.015946050997594
822 => 0.015823121830041
823 => 0.015912563070511
824 => 0.015935329620048
825 => 0.01600423710865
826 => 0.016028865613026
827 => 0.015954421167205
828 => 0.015704576514405
829 => 0.015081987394144
830 => 0.014792170478016
831 => 0.014696526068411
901 => 0.014700002561045
902 => 0.014604105374438
903 => 0.014632351393704
904 => 0.01459428256165
905 => 0.014522189403577
906 => 0.014667417484066
907 => 0.014684153667449
908 => 0.014650255698117
909 => 0.014658239897019
910 => 0.014377579188959
911 => 0.01439891721303
912 => 0.014280104383499
913 => 0.014257828410272
914 => 0.013957479923434
915 => 0.013425369042792
916 => 0.013720210123921
917 => 0.013364083558847
918 => 0.013229213032455
919 => 0.013867669127722
920 => 0.013803585843773
921 => 0.013693903117986
922 => 0.013531659506664
923 => 0.01347148177302
924 => 0.013105860913355
925 => 0.013084258082455
926 => 0.013265469653098
927 => 0.013181846748356
928 => 0.013064408519627
929 => 0.012639059159692
930 => 0.012160825650793
1001 => 0.012175260514358
1002 => 0.012327377695688
1003 => 0.012769678916202
1004 => 0.012596864177458
1005 => 0.012471485101679
1006 => 0.012448005369667
1007 => 0.012741903373949
1008 => 0.013157830623544
1009 => 0.013352974383206
1010 => 0.013159592843985
1011 => 0.012937446544129
1012 => 0.012950967560074
1013 => 0.013040916821637
1014 => 0.013050369217213
1015 => 0.012905774813016
1016 => 0.012946477290831
1017 => 0.012884646505117
1018 => 0.012505191087324
1019 => 0.012498327942082
1020 => 0.01240520346301
1021 => 0.012402383690794
1022 => 0.012243955720903
1023 => 0.012221790552755
1024 => 0.011907222202646
1025 => 0.012114272043288
1026 => 0.01197539388079
1027 => 0.011766071731858
1028 => 0.011729984514484
1029 => 0.011728899689153
1030 => 0.01194382673253
1031 => 0.01211176049565
1101 => 0.011977809725885
1102 => 0.011947311732137
1103 => 0.012272950516115
1104 => 0.01223151001259
1105 => 0.012195622803801
1106 => 0.013120588900273
1107 => 0.01238840605891
1108 => 0.012069132548541
1109 => 0.011673970951064
1110 => 0.01180263755978
1111 => 0.011829749504742
1112 => 0.010879457096041
1113 => 0.010493923584183
1114 => 0.010361623011437
1115 => 0.010285482161366
1116 => 0.01032018050286
1117 => 0.0099731551236161
1118 => 0.010206361917738
1119 => 0.009905867272638
1120 => 0.0098554883674928
1121 => 0.010392810017075
1122 => 0.010467575185626
1123 => 0.010148603748867
1124 => 0.010353435048052
1125 => 0.010279160371599
1126 => 0.0099110183908563
1127 => 0.009896958075061
1128 => 0.0097122373699405
1129 => 0.0094231852354036
1130 => 0.0092910806536161
1201 => 0.0092222794404365
1202 => 0.0092506681619033
1203 => 0.0092363139556205
1204 => 0.0091426430500659
1205 => 0.0092416830622797
1206 => 0.0089886767572319
1207 => 0.0088879276079516
1208 => 0.0088424215545842
1209 => 0.0086178638963547
1210 => 0.0089752349918416
1211 => 0.009045641599695
1212 => 0.0091161869303155
1213 => 0.0097302358700245
1214 => 0.009699559720281
1215 => 0.009976857174072
1216 => 0.009966081904935
1217 => 0.0098869921791929
1218 => 0.0095533256359152
1219 => 0.0096863191730314
1220 => 0.0092769857375722
1221 => 0.0095836861793863
1222 => 0.009443720905859
1223 => 0.0095363637796143
1224 => 0.0093697835393311
1225 => 0.0094619759222334
1226 => 0.00906233761833
1227 => 0.0086891609932076
1228 => 0.0088393381608617
1229 => 0.0090025979169439
1230 => 0.0093565866659424
1231 => 0.0091457538873827
]
'min_raw' => 0.0086178638963547
'max_raw' => 0.025724533610526
'avg_raw' => 0.017171198753441
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.008617'
'max' => '$0.025724'
'avg' => '$0.017171'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.016325316103645
'max_diff' => 0.00078135361052637
'year' => 2026
]
1 => [
'items' => [
101 => 0.0092215773270228
102 => 0.008967581496919
103 => 0.0084435155490929
104 => 0.0084464817054442
105 => 0.0083658655767684
106 => 0.0082962014714451
107 => 0.0091699705681932
108 => 0.0090613035687672
109 => 0.0088881569271673
110 => 0.0091199205875229
111 => 0.0091812025779048
112 => 0.0091829471900186
113 => 0.0093520359739282
114 => 0.0094422786882115
115 => 0.0094581843577383
116 => 0.0097242492126249
117 => 0.0098134306425026
118 => 0.010180756330741
119 => 0.0094346222243953
120 => 0.0094192560834823
121 => 0.009123181977512
122 => 0.0089354070987592
123 => 0.0091360390841086
124 => 0.0093137716341311
125 => 0.0091287046232688
126 => 0.0091528704679095
127 => 0.0089044331263572
128 => 0.0089932377858988
129 => 0.0090697283219754
130 => 0.0090274947438598
131 => 0.0089642690332924
201 => 0.0092991995918645
202 => 0.0092803014971464
203 => 0.009592196533309
204 => 0.0098353410178258
205 => 0.010271099401355
206 => 0.009816362811544
207 => 0.009799790402797
208 => 0.0099617883565966
209 => 0.0098134058414599
210 => 0.009907178469036
211 => 0.010255991181334
212 => 0.010263361044293
213 => 0.010139906344198
214 => 0.010132394114477
215 => 0.010156104940077
216 => 0.010294979986208
217 => 0.010246452777891
218 => 0.010302609691915
219 => 0.010372834772806
220 => 0.010663315482191
221 => 0.010733349397806
222 => 0.010563203291284
223 => 0.010578565579658
224 => 0.010514926265203
225 => 0.010453451484839
226 => 0.010591637813428
227 => 0.010844176044984
228 => 0.010842605017752
301 => 0.010901188978831
302 => 0.010937686301247
303 => 0.010781013075763
304 => 0.010679024567006
305 => 0.010718133450961
306 => 0.010780669408085
307 => 0.010697853882904
308 => 0.010186678097604
309 => 0.010341736176828
310 => 0.010315926930493
311 => 0.010279171425199
312 => 0.010435083522888
313 => 0.010420045420716
314 => 0.0099695958767697
315 => 0.0099984321950931
316 => 0.0099713495087958
317 => 0.010058859208819
318 => 0.0098086800304764
319 => 0.009885633460752
320 => 0.0099338979308273
321 => 0.0099623260744868
322 => 0.010065028022745
323 => 0.010052977134499
324 => 0.010064278922612
325 => 0.01021655879957
326 => 0.010986738161083
327 => 0.011028657324425
328 => 0.010822232032915
329 => 0.010904694865314
330 => 0.010746384259746
331 => 0.010852659229853
401 => 0.010925369865308
402 => 0.010596804485136
403 => 0.010577348975694
404 => 0.010418384965942
405 => 0.010503803220601
406 => 0.010367896635649
407 => 0.010401243357786
408 => 0.010308003015577
409 => 0.010475817067586
410 => 0.0106634592534
411 => 0.010710865079751
412 => 0.010586160760113
413 => 0.01049586661428
414 => 0.010337339838937
415 => 0.010600973399331
416 => 0.010678067886478
417 => 0.01060056845481
418 => 0.010582610143097
419 => 0.01054857917485
420 => 0.010589829973885
421 => 0.010677648013344
422 => 0.01063623464768
423 => 0.01066358890531
424 => 0.01055934268281
425 => 0.010781064941119
426 => 0.011133213247682
427 => 0.011134345462069
428 => 0.011092931873172
429 => 0.011075986324863
430 => 0.011118479180259
501 => 0.011141529811163
502 => 0.011278943913655
503 => 0.011426394720448
504 => 0.012114483297926
505 => 0.011921270778801
506 => 0.012531783899312
507 => 0.013014620512429
508 => 0.013159402100816
509 => 0.013026209852
510 => 0.012570566363703
511 => 0.012548210320405
512 => 0.013229134059639
513 => 0.013036741915023
514 => 0.013013857481607
515 => 0.012770405773927
516 => 0.012914315885247
517 => 0.012882840632867
518 => 0.012833155407164
519 => 0.013107725874696
520 => 0.013621697278842
521 => 0.013541590015512
522 => 0.013481793659506
523 => 0.013219783433943
524 => 0.013377572111835
525 => 0.013321386585881
526 => 0.013562795261595
527 => 0.013419790109959
528 => 0.013035284355304
529 => 0.01309651816408
530 => 0.013087262797069
531 => 0.013277737594317
601 => 0.013220561788059
602 => 0.013076098303258
603 => 0.013619940580458
604 => 0.013584626487986
605 => 0.013634693797186
606 => 0.013656734975078
607 => 0.013987762185634
608 => 0.014123373442109
609 => 0.014154159571538
610 => 0.014282979776639
611 => 0.014150954407483
612 => 0.0146791500166
613 => 0.015030369275595
614 => 0.015438328518495
615 => 0.016034466621479
616 => 0.016258620062787
617 => 0.016218128749934
618 => 0.016670113855986
619 => 0.017482321044498
620 => 0.016382299044624
621 => 0.017540624881553
622 => 0.017173912295097
623 => 0.016304443349485
624 => 0.016248459799753
625 => 0.016837274264463
626 => 0.018143208075898
627 => 0.017816086467913
628 => 0.018143743129661
629 => 0.017761514229223
630 => 0.017742533342638
701 => 0.018125179125118
702 => 0.019019251852816
703 => 0.018594511413701
704 => 0.017985541843602
705 => 0.018435195497548
706 => 0.018045663889019
707 => 0.017167940151972
708 => 0.017815836324184
709 => 0.017382606604847
710 => 0.017509046068708
711 => 0.018419630500698
712 => 0.018310066572733
713 => 0.018451852440866
714 => 0.018201604094794
715 => 0.01796783267902
716 => 0.017531480971386
717 => 0.017402298742635
718 => 0.017438000063172
719 => 0.017402281050833
720 => 0.017158146280691
721 => 0.017105425400323
722 => 0.017017554956622
723 => 0.017044789681399
724 => 0.016879567539835
725 => 0.017191375857602
726 => 0.017249250229025
727 => 0.01747615832004
728 => 0.017499716670788
729 => 0.018131652474429
730 => 0.017783592853033
731 => 0.018017101297088
801 => 0.017996214103985
802 => 0.016323287377997
803 => 0.016553801920481
804 => 0.016912410209137
805 => 0.016750857661179
806 => 0.016522460155842
807 => 0.016338016924382
808 => 0.016058566568432
809 => 0.016451887578063
810 => 0.016969062880701
811 => 0.017512833089932
812 => 0.018166137367087
813 => 0.018020327457726
814 => 0.017500620020899
815 => 0.017523933716869
816 => 0.017668049811751
817 => 0.017481406374551
818 => 0.017426361581207
819 => 0.017660487502416
820 => 0.017662099798962
821 => 0.01744734396785
822 => 0.017208682161471
823 => 0.017207682159788
824 => 0.017165214596543
825 => 0.017769069114382
826 => 0.018101128042616
827 => 0.018139198063598
828 => 0.018098565626878
829 => 0.018114203439128
830 => 0.017920985665208
831 => 0.018362624199438
901 => 0.018767915391972
902 => 0.01865928869459
903 => 0.018496441833018
904 => 0.018366726464009
905 => 0.018628731876065
906 => 0.018617065187501
907 => 0.018764375526974
908 => 0.01875769267907
909 => 0.018708157752527
910 => 0.018659290463638
911 => 0.018853043740375
912 => 0.018797245908257
913 => 0.018741361406694
914 => 0.018629276483321
915 => 0.018644510685941
916 => 0.018481691942176
917 => 0.018406364541232
918 => 0.017273621166735
919 => 0.016970915123612
920 => 0.017066152606928
921 => 0.017097507259276
922 => 0.016965769201381
923 => 0.017154647735672
924 => 0.017125211216175
925 => 0.017239731493752
926 => 0.017168184196214
927 => 0.017171120522262
928 => 0.017381525868828
929 => 0.017442607436064
930 => 0.017411540857979
1001 => 0.01743329882437
1002 => 0.017934701976383
1003 => 0.017863418482137
1004 => 0.017825550546551
1005 => 0.017836040223502
1006 => 0.017964159479047
1007 => 0.018000025875547
1008 => 0.017848057433288
1009 => 0.017919726629176
1010 => 0.018224884969094
1011 => 0.018331673117599
1012 => 0.018672489626408
1013 => 0.018527704715935
1014 => 0.018793463685251
1015 => 0.01961031615302
1016 => 0.020262874426165
1017 => 0.01966275487007
1018 => 0.020861095035905
1019 => 0.021794174746695
1020 => 0.021758361593269
1021 => 0.021595657563171
1022 => 0.020533371119644
1023 => 0.019555839296511
1024 => 0.020373586174755
1025 => 0.020375670779719
1026 => 0.020305425597654
1027 => 0.019869138804802
1028 => 0.020290243762969
1029 => 0.02032366954532
1030 => 0.020304959995837
1031 => 0.019970459934686
1101 => 0.019459740167253
1102 => 0.019559533587319
1103 => 0.019722997245118
1104 => 0.019413526438813
1105 => 0.019314631764702
1106 => 0.019498495779357
1107 => 0.020090943944164
1108 => 0.019978945050426
1109 => 0.019976020306687
1110 => 0.020455199069022
1111 => 0.020112210488439
1112 => 0.019560792301929
1113 => 0.019421551937522
1114 => 0.018927342447429
1115 => 0.01926869470255
1116 => 0.019280979362514
1117 => 0.01909402422092
1118 => 0.0195759626813
1119 => 0.019571521533544
1120 => 0.020029050374603
1121 => 0.02090367367872
1122 => 0.020645004530094
1123 => 0.020344200453364
1124 => 0.020376906196897
1125 => 0.020735607478799
1126 => 0.020518728495407
1127 => 0.020596719689969
1128 => 0.020735489429785
1129 => 0.020819212659275
1130 => 0.020364859712601
1201 => 0.020258928306518
1202 => 0.020042229826542
1203 => 0.019985697237985
1204 => 0.020162193628363
1205 => 0.020115693065208
1206 => 0.019279946884413
1207 => 0.019192606758472
1208 => 0.019195285355442
1209 => 0.018975664455966
1210 => 0.018640689869211
1211 => 0.01952098308291
1212 => 0.019450283218155
1213 => 0.019372236039199
1214 => 0.01938179637329
1215 => 0.019763901821452
1216 => 0.01954226136473
1217 => 0.02013152884508
1218 => 0.020010393166122
1219 => 0.019886150814086
1220 => 0.01986897673652
1221 => 0.019821154030845
1222 => 0.019657152179041
1223 => 0.019459110088005
1224 => 0.01932834554539
1225 => 0.017829377073143
1226 => 0.018107576902494
1227 => 0.018427620447449
1228 => 0.018538098196674
1229 => 0.018349118361797
1230 => 0.019664614254768
1231 => 0.019904968030847
]
'min_raw' => 0.0082962014714451
'max_raw' => 0.021794174746695
'avg_raw' => 0.01504518810907
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.008296'
'max' => '$0.021794'
'avg' => '$0.015045'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -0.00032166242490964
'max_diff' => -0.0039303588638312
'year' => 2027
]
2 => [
'items' => [
101 => 0.019176920765214
102 => 0.019040732847787
103 => 0.019673542711961
104 => 0.019291881006005
105 => 0.019463743248828
106 => 0.019092271083466
107 => 0.01984707384457
108 => 0.019841323512171
109 => 0.019547688190108
110 => 0.019795866753587
111 => 0.019752739620808
112 => 0.019421226065391
113 => 0.019857583415587
114 => 0.019857799843388
115 => 0.019575182230085
116 => 0.019245146730698
117 => 0.019186144178498
118 => 0.019141693681293
119 => 0.01945281115138
120 => 0.019731758102222
121 => 0.020250809220924
122 => 0.020381311004516
123 => 0.020890668153872
124 => 0.02058737077158
125 => 0.020721818572792
126 => 0.020867780679809
127 => 0.020937760281492
128 => 0.020823732275862
129 => 0.021614973588579
130 => 0.02168177859838
131 => 0.021704177740305
201 => 0.021437375621526
202 => 0.021674358348815
203 => 0.021563481978759
204 => 0.021851951491301
205 => 0.021897187194232
206 => 0.021858874163157
207 => 0.021873232689264
208 => 0.021198047813392
209 => 0.021163035915694
210 => 0.020685646206253
211 => 0.020880186041537
212 => 0.02051650314401
213 => 0.020631830737165
214 => 0.020682666041346
215 => 0.02065611256332
216 => 0.020891185031939
217 => 0.02069132541148
218 => 0.020163863013126
219 => 0.019636256907995
220 => 0.019629633243123
221 => 0.019490723868664
222 => 0.01939031783345
223 => 0.019409659597928
224 => 0.019477822498733
225 => 0.019386356081742
226 => 0.019405875079272
227 => 0.019730020492671
228 => 0.019795025543628
229 => 0.019574112981361
301 => 0.018687117166326
302 => 0.018469446168456
303 => 0.018625903765122
304 => 0.018551127111075
305 => 0.014972207434745
306 => 0.015813021525833
307 => 0.015313438344257
308 => 0.015543669259044
309 => 0.015033724197093
310 => 0.015277096709167
311 => 0.015232154692728
312 => 0.016584158869699
313 => 0.016563049184097
314 => 0.016573153273495
315 => 0.016090858760454
316 => 0.016859167015452
317 => 0.017237663289334
318 => 0.017167613702391
319 => 0.017185243674265
320 => 0.016882302346569
321 => 0.016576086407744
322 => 0.016236445805293
323 => 0.0168674560638
324 => 0.016797298494759
325 => 0.016958214716244
326 => 0.01736746997443
327 => 0.017427734365808
328 => 0.017508730318961
329 => 0.01747969903544
330 => 0.018171341989647
331 => 0.018087579464285
401 => 0.018289423050284
402 => 0.017874215479975
403 => 0.017404368702307
404 => 0.017493671214294
405 => 0.017485070664264
406 => 0.017375575791134
407 => 0.017276728715518
408 => 0.01711217618461
409 => 0.017632844741597
410 => 0.017611706549036
411 => 0.017953909316142
412 => 0.017893421653076
413 => 0.017489470235277
414 => 0.01750389743919
415 => 0.017600927318981
416 => 0.017936748840808
417 => 0.018036443532958
418 => 0.017990260979408
419 => 0.018099571658115
420 => 0.018185966361611
421 => 0.018110421502718
422 => 0.019179977394627
423 => 0.01873582321913
424 => 0.018952300873863
425 => 0.019003929518956
426 => 0.018871683830183
427 => 0.018900363184715
428 => 0.018943804592174
429 => 0.019207572311567
430 => 0.01989977512906
501 => 0.020206347044944
502 => 0.021128683779872
503 => 0.020180890515017
504 => 0.020124652385039
505 => 0.020290793082901
506 => 0.020832302385562
507 => 0.021271144813987
508 => 0.021416734164922
509 => 0.021435976201067
510 => 0.021709111502019
511 => 0.021865667562853
512 => 0.021675945692312
513 => 0.021515176271736
514 => 0.020939320162669
515 => 0.021005977075297
516 => 0.021465177102829
517 => 0.022113824188464
518 => 0.022670430868166
519 => 0.022475526608636
520 => 0.023962508527888
521 => 0.024109936711406
522 => 0.024089566903368
523 => 0.024425430245676
524 => 0.023758809908574
525 => 0.023473816799303
526 => 0.021549936445275
527 => 0.022090468350697
528 => 0.022876163219553
529 => 0.022772173557456
530 => 0.022201580942008
531 => 0.022669998022501
601 => 0.022515124686934
602 => 0.022392969661471
603 => 0.022952585514032
604 => 0.022337264896389
605 => 0.022870024925697
606 => 0.022186754677413
607 => 0.022476416914876
608 => 0.022311990619506
609 => 0.022418394583939
610 => 0.021796359182052
611 => 0.022131994385855
612 => 0.021782395654108
613 => 0.02178222989879
614 => 0.02177451248741
615 => 0.022185813844952
616 => 0.022199226367455
617 => 0.02189527404279
618 => 0.021851469764178
619 => 0.022013437140958
620 => 0.021823815762072
621 => 0.02191253841179
622 => 0.021826503080749
623 => 0.02180713471555
624 => 0.021652804286391
625 => 0.021586314494105
626 => 0.021612386854891
627 => 0.021523388446305
628 => 0.021469763685919
629 => 0.021763845172854
630 => 0.021606729297598
701 => 0.021739764911612
702 => 0.02158815403901
703 => 0.021062604700859
704 => 0.020760355718905
705 => 0.019767641737587
706 => 0.020049174191231
707 => 0.020235830499263
708 => 0.020174140590572
709 => 0.020306674385266
710 => 0.020314810883866
711 => 0.020271722796189
712 => 0.020221832310584
713 => 0.020197548381309
714 => 0.020378540894677
715 => 0.020483613140615
716 => 0.020254563956914
717 => 0.020200900937911
718 => 0.020432482308785
719 => 0.020573746811238
720 => 0.021616764527682
721 => 0.021539494406345
722 => 0.021733427247406
723 => 0.021711593385644
724 => 0.021914865899
725 => 0.022247130548963
726 => 0.021571543612931
727 => 0.021688802144988
728 => 0.021660053060822
729 => 0.021973928023325
730 => 0.021974907906697
731 => 0.02178672418746
801 => 0.02188874163459
802 => 0.021831798294304
803 => 0.021934702606555
804 => 0.021538462416765
805 => 0.022021040196444
806 => 0.022294630700897
807 => 0.022298429505317
808 => 0.022428109233079
809 => 0.022559871347028
810 => 0.022812777250693
811 => 0.02255281793864
812 => 0.022085176442786
813 => 0.022118938648314
814 => 0.021844760610398
815 => 0.021849369592749
816 => 0.021824766483744
817 => 0.021898602265905
818 => 0.021554665218804
819 => 0.021635386556307
820 => 0.021522376211099
821 => 0.021688556482568
822 => 0.02150977398105
823 => 0.021660039197144
824 => 0.021724888683039
825 => 0.021964184682101
826 => 0.021474429767423
827 => 0.020475786342902
828 => 0.020685713298118
829 => 0.020375214841947
830 => 0.020403952656217
831 => 0.020462007614631
901 => 0.020273832500011
902 => 0.020309730381801
903 => 0.020308447856854
904 => 0.020297395749737
905 => 0.020248444134757
906 => 0.020177454608253
907 => 0.020460255032418
908 => 0.020508308335211
909 => 0.020615124874777
910 => 0.020932938442172
911 => 0.020901181372229
912 => 0.020952978470894
913 => 0.020839905695337
914 => 0.020409197777975
915 => 0.020432587290086
916 => 0.020140919699269
917 => 0.020607666278721
918 => 0.020497134527953
919 => 0.020425873989181
920 => 0.020406429890953
921 => 0.02072503125671
922 => 0.020820361778809
923 => 0.02076095819483
924 => 0.02063911971101
925 => 0.020873085618258
926 => 0.020935685024809
927 => 0.020949698723358
928 => 0.021364241452488
929 => 0.020972867056921
930 => 0.021067074763861
1001 => 0.021802056400631
1002 => 0.021135529476614
1003 => 0.02148860365359
1004 => 0.021471322509936
1005 => 0.021651943311498
1006 => 0.021456506332282
1007 => 0.021458929007868
1008 => 0.021619308043343
1009 => 0.02139408461253
1010 => 0.021338316123737
1011 => 0.02126127235589
1012 => 0.021429494604393
1013 => 0.021530336234333
1014 => 0.022343045711631
1015 => 0.02286809309802
1016 => 0.022845299406263
1017 => 0.02305359108092
1018 => 0.022959753773754
1019 => 0.022656728355884
1020 => 0.023173955794176
1021 => 0.023010283390985
1022 => 0.023023776345042
1023 => 0.023023274136618
1024 => 0.02313210197625
1025 => 0.023054987477946
1026 => 0.022902986886147
1027 => 0.023003891972554
1028 => 0.023303544004952
1029 => 0.024233673107965
1030 => 0.024754185676583
1031 => 0.02420233759776
1101 => 0.024582995012992
1102 => 0.024354736205958
1103 => 0.024313254790609
1104 => 0.024552335777737
1105 => 0.024791835244483
1106 => 0.024776580163836
1107 => 0.024602715849412
1108 => 0.024504504309837
1109 => 0.025248194990776
1110 => 0.025796133616051
1111 => 0.025758767875235
1112 => 0.02592368810321
1113 => 0.026407898993334
1114 => 0.026452169168799
1115 => 0.026446592144228
1116 => 0.026336863895224
1117 => 0.026813632399282
1118 => 0.02721136107331
1119 => 0.026311464975934
1120 => 0.02665413362931
1121 => 0.026807968627905
1122 => 0.027033844046629
1123 => 0.027414933739134
1124 => 0.027828898224242
1125 => 0.027887437341326
1126 => 0.0278459010364
1127 => 0.027572880330509
1128 => 0.028025845209738
1129 => 0.028291181412657
1130 => 0.028449183049384
1201 => 0.028849848911158
1202 => 0.026808918660484
1203 => 0.025364246788242
1204 => 0.025138640414077
1205 => 0.025597419847475
1206 => 0.025718396325364
1207 => 0.025669630858819
1208 => 0.02404352132279
1209 => 0.025130079283901
1210 => 0.026299124289668
1211 => 0.026344032069425
1212 => 0.026929280442891
1213 => 0.027119861303432
1214 => 0.02759106295433
1215 => 0.027561589162772
1216 => 0.02767631926631
1217 => 0.027649944802355
1218 => 0.028522746637429
1219 => 0.029485576673842
1220 => 0.029452236931293
1221 => 0.02931381872187
1222 => 0.029519393366674
1223 => 0.03051313714739
1224 => 0.030421649144481
1225 => 0.030510521946378
1226 => 0.031682201868787
1227 => 0.033205552437444
1228 => 0.032497803156406
1229 => 0.034033415446889
1230 => 0.035000001984437
1231 => 0.036671613454215
]
'min_raw' => 0.014972207434745
'max_raw' => 0.036671613454215
'avg_raw' => 0.02582191044448
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.014972'
'max' => '$0.036671'
'avg' => '$0.025821'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 0.0066760059633001
'max_diff' => 0.01487743870752
'year' => 2028
]
3 => [
'items' => [
101 => 0.036462319465339
102 => 0.037113065543671
103 => 0.036087639544277
104 => 0.03373305417688
105 => 0.033360432029499
106 => 0.034106431004851
107 => 0.035940396692241
108 => 0.034048672898826
109 => 0.034431366158447
110 => 0.034321150473931
111 => 0.03431527754849
112 => 0.034539423225673
113 => 0.034214288230267
114 => 0.032889629768314
115 => 0.033496712935165
116 => 0.033262288969916
117 => 0.033522399836825
118 => 0.034926110907649
119 => 0.034305496782945
120 => 0.033651730217167
121 => 0.034471698573068
122 => 0.035515800061827
123 => 0.035450462067091
124 => 0.03532367904814
125 => 0.036038348287821
126 => 0.037218772493334
127 => 0.037537836412755
128 => 0.037773362875098
129 => 0.037805837995002
130 => 0.038140351913197
131 => 0.036341586266705
201 => 0.039196273543265
202 => 0.039689199176782
203 => 0.039596549587355
204 => 0.040144415683528
205 => 0.039983219580013
206 => 0.039749671716913
207 => 0.040618156013808
208 => 0.039622508850487
209 => 0.038209313050645
210 => 0.037434005885008
211 => 0.038454992902964
212 => 0.039078474047292
213 => 0.039490555422845
214 => 0.039615250998101
215 => 0.036481219323413
216 => 0.034792150072122
217 => 0.035874824096981
218 => 0.03719576112948
219 => 0.036334248394794
220 => 0.036368018062934
221 => 0.035139727304837
222 => 0.037304437606774
223 => 0.036989057523861
224 => 0.038625249951912
225 => 0.038234759497693
226 => 0.039569010906144
227 => 0.039217657794664
228 => 0.040676104916526
301 => 0.041257918959317
302 => 0.042234875289286
303 => 0.04295352834254
304 => 0.043375535161053
305 => 0.043350199454577
306 => 0.045022400712487
307 => 0.04403636205296
308 => 0.042797665105124
309 => 0.042775260985377
310 => 0.043416799687132
311 => 0.044761288808464
312 => 0.045109895276104
313 => 0.045304718733746
314 => 0.045006339826514
315 => 0.043936065531624
316 => 0.043473926517505
317 => 0.043867682346991
318 => 0.043386152803353
319 => 0.044217407888999
320 => 0.045358898668095
321 => 0.045123185336155
322 => 0.045911139664712
323 => 0.046726589499555
324 => 0.047892719387524
325 => 0.048197588921904
326 => 0.048701526669084
327 => 0.049220244145858
328 => 0.04938684221957
329 => 0.049704929634633
330 => 0.049703253156943
331 => 0.050661830991987
401 => 0.051719172028724
402 => 0.052118293792591
403 => 0.053036052280901
404 => 0.051464423031763
405 => 0.05265652187081
406 => 0.053731824863799
407 => 0.052449804306018
408 => 0.054216770972439
409 => 0.054285378284063
410 => 0.055321267235242
411 => 0.054271195330912
412 => 0.053647665986069
413 => 0.055447771841291
414 => 0.056318786361829
415 => 0.056056429699692
416 => 0.05405988254668
417 => 0.052897806467691
418 => 0.049856429221242
419 => 0.05345907194738
420 => 0.055213814128753
421 => 0.054055338188344
422 => 0.054639606068165
423 => 0.057827182170972
424 => 0.059040804770653
425 => 0.058788379753782
426 => 0.058831035426363
427 => 0.059485884152342
428 => 0.062389844035114
429 => 0.060649723960094
430 => 0.061979980556392
501 => 0.062685543858471
502 => 0.063340910374912
503 => 0.061731537341247
504 => 0.059637766670834
505 => 0.058974581609001
506 => 0.053940150587136
507 => 0.053678086589022
508 => 0.053530982125529
509 => 0.052603509291544
510 => 0.051874769700222
511 => 0.051295248920837
512 => 0.049774413336175
513 => 0.050287650701402
514 => 0.047863756202506
515 => 0.049414478005353
516 => 0.045545883858137
517 => 0.048767764019834
518 => 0.047014241128737
519 => 0.048191684589262
520 => 0.04818757659995
521 => 0.046019529880335
522 => 0.044769045778442
523 => 0.045565902917738
524 => 0.046420197025661
525 => 0.046558803370481
526 => 0.047666417980761
527 => 0.047975529410394
528 => 0.047038907347574
529 => 0.045465715843207
530 => 0.045831132348994
531 => 0.044761640624615
601 => 0.042887397515047
602 => 0.044233511637484
603 => 0.044693134183344
604 => 0.044896129683715
605 => 0.04305302684373
606 => 0.042473883915697
607 => 0.042165553080293
608 => 0.04522779441126
609 => 0.045395550903989
610 => 0.044537284968808
611 => 0.048416728379941
612 => 0.047538690855838
613 => 0.048519673894678
614 => 0.045797974631208
615 => 0.045901947208327
616 => 0.044613451159835
617 => 0.045334922849653
618 => 0.044825009913408
619 => 0.045276635066838
620 => 0.045547337321684
621 => 0.046835621940653
622 => 0.048782474160783
623 => 0.046643195179086
624 => 0.045711080691721
625 => 0.046289359277271
626 => 0.047829391355252
627 => 0.050162618786185
628 => 0.048781301186495
629 => 0.049394306480943
630 => 0.049528220867073
701 => 0.048509688408218
702 => 0.050200173530763
703 => 0.051106118241411
704 => 0.052035430055692
705 => 0.052842325465307
706 => 0.051664242481063
707 => 0.052924960145766
708 => 0.051909044254642
709 => 0.050997662676849
710 => 0.0509990448665
711 => 0.050427321889591
712 => 0.049319536580097
713 => 0.04911524397255
714 => 0.05017799991632
715 => 0.05103022953986
716 => 0.05110042325356
717 => 0.051572261362291
718 => 0.051851490294719
719 => 0.054588313425841
720 => 0.055689086329366
721 => 0.057035090599233
722 => 0.05755943511899
723 => 0.059137524135544
724 => 0.057863089088553
725 => 0.057587357049564
726 => 0.053759429284387
727 => 0.05438625224149
728 => 0.055389856275232
729 => 0.053775978345253
730 => 0.054799612428332
731 => 0.055001699479866
801 => 0.05372113939075
802 => 0.054405141864082
803 => 0.052588634087513
804 => 0.048822069066369
805 => 0.050204366794361
806 => 0.051222203198547
807 => 0.04976962515145
808 => 0.052373315078338
809 => 0.05085229317412
810 => 0.05037020225241
811 => 0.048489393688996
812 => 0.049377062931967
813 => 0.050577648293284
814 => 0.049835826123019
815 => 0.051375218511478
816 => 0.053555408674489
817 => 0.05510914201722
818 => 0.055228418370491
819 => 0.054229471923165
820 => 0.055830289980197
821 => 0.055841950192089
822 => 0.054036220884223
823 => 0.052930221737498
824 => 0.05267893640432
825 => 0.053306696433991
826 => 0.054068913000905
827 => 0.055270716085197
828 => 0.055996940519022
829 => 0.05789054868276
830 => 0.058402904757867
831 => 0.058965828747753
901 => 0.05971806879757
902 => 0.060621325847766
903 => 0.05864505084439
904 => 0.058723571934512
905 => 0.056883292014758
906 => 0.054916688997665
907 => 0.056409095547112
908 => 0.05836021858399
909 => 0.057912628803531
910 => 0.0578622658098
911 => 0.057946962395726
912 => 0.057609494318175
913 => 0.056083138710565
914 => 0.055316612479914
915 => 0.056305626879151
916 => 0.056831244016378
917 => 0.057646430357587
918 => 0.057545941434537
919 => 0.059645773904868
920 => 0.060461705307201
921 => 0.060252955138811
922 => 0.060291370193648
923 => 0.061768575023609
924 => 0.063411530604869
925 => 0.064950375313802
926 => 0.066515754246648
927 => 0.064628628845323
928 => 0.063670462948244
929 => 0.064659045574733
930 => 0.06413448971781
1001 => 0.067148743265064
1002 => 0.067357443640743
1003 => 0.070371479223157
1004 => 0.073232157895549
1005 => 0.071435416875801
1006 => 0.07312966273043
1007 => 0.074962127756102
1008 => 0.07849725009736
1009 => 0.077306745259928
1010 => 0.076394837212044
1011 => 0.075533088513102
1012 => 0.077326250756848
1013 => 0.07963312533696
1014 => 0.080130004026547
1015 => 0.080935137325945
1016 => 0.080088638108644
1017 => 0.081108153177053
1018 => 0.084707489366158
1019 => 0.083734916955643
1020 => 0.082353707783893
1021 => 0.08519503802127
1022 => 0.086223304388785
1023 => 0.093440216263282
1024 => 0.1025518656206
1025 => 0.098779582956352
1026 => 0.096438005375856
1027 => 0.096988331650235
1028 => 0.10031559754673
1029 => 0.10138420975054
1030 => 0.098479353407862
1031 => 0.099505397776538
1101 => 0.1051590031264
1102 => 0.10819198100722
1103 => 0.10407278966179
1104 => 0.092708104109238
1105 => 0.082229345010114
1106 => 0.085008783787874
1107 => 0.084693681686503
1108 => 0.090767775333295
1109 => 0.083711721425303
1110 => 0.083830527276854
1111 => 0.090030226747685
1112 => 0.088376253218624
1113 => 0.08569702792647
1114 => 0.082248906319755
1115 => 0.075874734617098
1116 => 0.070228952983127
1117 => 0.081301630913203
1118 => 0.0808241569065
1119 => 0.08013270378711
1120 => 0.08167145788127
1121 => 0.089143210979538
1122 => 0.088970962886918
1123 => 0.08787520840342
1124 => 0.088706328521616
1125 => 0.085551328551343
1126 => 0.086364443881697
1127 => 0.082227685121135
1128 => 0.084097672847215
1129 => 0.085691279512294
1130 => 0.086011219644059
1201 => 0.086732061097472
1202 => 0.080572549801554
1203 => 0.083337989539671
1204 => 0.084962426299152
1205 => 0.077623161922299
1206 => 0.084817352639956
1207 => 0.080465326413568
1208 => 0.078988183347091
1209 => 0.080976961887301
1210 => 0.080201932956031
1211 => 0.07953560859215
1212 => 0.079163788148199
1213 => 0.080624127614652
1214 => 0.080556001033058
1215 => 0.078166602226266
1216 => 0.075049728887161
1217 => 0.076095853887644
1218 => 0.075715786867494
1219 => 0.07433837495685
1220 => 0.075266584275276
1221 => 0.071179220192914
1222 => 0.064147122731908
1223 => 0.068792741713619
1224 => 0.068613890436284
1225 => 0.068523705511992
1226 => 0.07201475978127
1227 => 0.071679175465605
1228 => 0.071070086646621
1229 => 0.074327188563036
1230 => 0.073138302549341
1231 => 0.076802169106774
]
'min_raw' => 0.032889629768314
'max_raw' => 0.10819198100722
'avg_raw' => 0.070540805387766
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.032889'
'max' => '$0.108191'
'avg' => '$0.07054'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072435
'min_diff' => 0.017917422333569
'max_diff' => 0.071520367553004
'year' => 2029
]
4 => [
'items' => [
101 => 0.079215428585531
102 => 0.078603347920952
103 => 0.080873030125019
104 => 0.07611995449478
105 => 0.07769873555885
106 => 0.078024120148058
107 => 0.074286996430974
108 => 0.071734081209889
109 => 0.071563830870007
110 => 0.067137427690032
111 => 0.069501976540097
112 => 0.071582681676473
113 => 0.07058618538539
114 => 0.070270724429113
115 => 0.071882346039599
116 => 0.072007582841339
117 => 0.069152170489657
118 => 0.069745901136721
119 => 0.072221856634484
120 => 0.069683513410825
121 => 0.064751927163265
122 => 0.063528825589356
123 => 0.063365641293162
124 => 0.060048492819312
125 => 0.063610559085012
126 => 0.062055621702593
127 => 0.066967650262645
128 => 0.064161925892881
129 => 0.064040976723031
130 => 0.063858144313416
131 => 0.061002937592296
201 => 0.061628046406368
202 => 0.063706003311105
203 => 0.064447441744575
204 => 0.064370103641538
205 => 0.063695820188646
206 => 0.06400450370049
207 => 0.063010126556376
208 => 0.062658991290618
209 => 0.061550711804525
210 => 0.059921847129989
211 => 0.060148350753391
212 => 0.05692114361751
213 => 0.055162789889036
214 => 0.054676100751724
215 => 0.054025279697171
216 => 0.054749612721604
217 => 0.056912001345171
218 => 0.054303701888811
219 => 0.049831955421815
220 => 0.050100715003967
221 => 0.050704537989626
222 => 0.04957931785054
223 => 0.048514391421463
224 => 0.049440258551333
225 => 0.047545520623275
226 => 0.050933508016014
227 => 0.050841872451765
228 => 0.052104704640044
301 => 0.052894379523299
302 => 0.051074434577675
303 => 0.050616723345504
304 => 0.050877456465164
305 => 0.046568118787388
306 => 0.051752539814817
307 => 0.05179737490315
308 => 0.051413469656671
309 => 0.054174013802736
310 => 0.059999622986242
311 => 0.057807794476821
312 => 0.056959052229605
313 => 0.055345592597222
314 => 0.057495431759619
315 => 0.057330357654662
316 => 0.056583829949552
317 => 0.056132327664194
318 => 0.056964234468783
319 => 0.0560292452048
320 => 0.055861295441202
321 => 0.054843702604943
322 => 0.054480468259922
323 => 0.054211544011645
324 => 0.053915484838242
325 => 0.054568517601419
326 => 0.053088659446446
327 => 0.051304095583834
328 => 0.051155728407906
329 => 0.051565383225218
330 => 0.051384141463772
331 => 0.051154860692081
401 => 0.05071710125802
402 => 0.050587227385185
403 => 0.051009254466054
404 => 0.050532810497461
405 => 0.051235829526367
406 => 0.051044647250321
407 => 0.049976718597466
408 => 0.04864568409818
409 => 0.048633835099197
410 => 0.048347065899661
411 => 0.047981822208012
412 => 0.04788021976864
413 => 0.049362284604109
414 => 0.052430114459062
415 => 0.051827826051588
416 => 0.052263041150986
417 => 0.054403868691812
418 => 0.05508437339011
419 => 0.054601367273895
420 => 0.0539401987115
421 => 0.053969286772758
422 => 0.056228699899796
423 => 0.056369616725077
424 => 0.056725668081071
425 => 0.057183294693624
426 => 0.054679303064846
427 => 0.053851348992223
428 => 0.053459018419471
429 => 0.052250792106435
430 => 0.053553760599549
501 => 0.052794576657285
502 => 0.052897016508513
503 => 0.052830302421014
504 => 0.052866732823975
505 => 0.05093256100449
506 => 0.051637271558433
507 => 0.050465553581644
508 => 0.048896754742239
509 => 0.048891495578438
510 => 0.049275456871866
511 => 0.049047061670128
512 => 0.048432456054828
513 => 0.048519757881625
514 => 0.047754902015587
515 => 0.048612625231924
516 => 0.048637221664688
517 => 0.048306951505898
518 => 0.049628392463661
519 => 0.05016978790225
520 => 0.049952397008662
521 => 0.050154535177636
522 => 0.051852853854087
523 => 0.052129753901188
524 => 0.052252734611119
525 => 0.052087956751633
526 => 0.050185577325394
527 => 0.050269955942489
528 => 0.049650841636334
529 => 0.04912775528829
530 => 0.049148675998985
531 => 0.049417610378345
601 => 0.050592062585802
602 => 0.053063628018655
603 => 0.053157422120141
604 => 0.053271103307309
605 => 0.05280870478751
606 => 0.052669240969381
607 => 0.052853229744159
608 => 0.053781419772002
609 => 0.056168976524749
610 => 0.055325054508774
611 => 0.054638932773358
612 => 0.05524084651241
613 => 0.055148186610238
614 => 0.054366043786284
615 => 0.054344091642223
616 => 0.052842909496868
617 => 0.052287956637994
618 => 0.051824196491617
619 => 0.051317782518539
620 => 0.051017563340148
621 => 0.051478836445333
622 => 0.051584335062112
623 => 0.050575753355951
624 => 0.050438287396239
625 => 0.051261916989238
626 => 0.050899468313365
627 => 0.051272255764795
628 => 0.051358745651238
629 => 0.05134481878749
630 => 0.050966380742913
701 => 0.051207585867341
702 => 0.050637063841361
703 => 0.050016706827744
704 => 0.049620957702664
705 => 0.049275614102528
706 => 0.049467230803372
707 => 0.048784152252693
708 => 0.048565621676675
709 => 0.051125870998472
710 => 0.053017154699802
711 => 0.052989654685754
712 => 0.052822255422667
713 => 0.05257353407342
714 => 0.053763224256115
715 => 0.05334875998507
716 => 0.053650317371904
717 => 0.053727076383177
718 => 0.053959402791965
719 => 0.054042439513977
720 => 0.053791444867345
721 => 0.052949076176833
722 => 0.050849973490091
723 => 0.049872835522993
724 => 0.049550363718331
725 => 0.049562084955969
726 => 0.049238760895995
727 => 0.049333994322025
728 => 0.049205642596871
729 => 0.048962575481047
730 => 0.049452222093915
731 => 0.049508649304674
801 => 0.049394359934389
802 => 0.049421279218427
803 => 0.048475012046099
804 => 0.048546954684027
805 => 0.048146368934016
806 => 0.048071263935023
807 => 0.047058618041987
808 => 0.045264569057106
809 => 0.046258646347279
810 => 0.04505794076917
811 => 0.044603215373081
812 => 0.046755814673856
813 => 0.046539753407869
814 => 0.046169950440074
815 => 0.045622934777013
816 => 0.045420041346558
817 => 0.044187325091365
818 => 0.044114489638723
819 => 0.044725457100935
820 => 0.044443516639231
821 => 0.044047565451796
822 => 0.042613470387833
823 => 0.041001072723381
824 => 0.041049740873701
825 => 0.041562614571038
826 => 0.043053864016487
827 => 0.042471207059273
828 => 0.042048482751595
829 => 0.041969319195814
830 => 0.042960216836554
831 => 0.044362544597676
901 => 0.045020485407879
902 => 0.044368486046927
903 => 0.043619504287204
904 => 0.043665091336471
905 => 0.043968361551887
906 => 0.044000230963517
907 => 0.043512720834507
908 => 0.043649952080216
909 => 0.043441485269295
910 => 0.042162124835473
911 => 0.042138985262121
912 => 0.041825009579187
913 => 0.04181550252029
914 => 0.041281351558715
915 => 0.041206620146779
916 => 0.040146030991926
917 => 0.04084411398541
918 => 0.040375876564384
919 => 0.039670132324854
920 => 0.039548461751948
921 => 0.039544804187605
922 => 0.040269445720077
923 => 0.040835646127197
924 => 0.040384021754792
925 => 0.040281195639566
926 => 0.041379109535124
927 => 0.041239389984207
928 => 0.041118393754207
929 => 0.044236981527533
930 => 0.041768375958507
1001 => 0.040691923027332
1002 => 0.039359608112136
1003 => 0.039793416566638
1004 => 0.039884826381974
1005 => 0.036680849178741
1006 => 0.035380996026419
1007 => 0.034934935408475
1008 => 0.034678221216477
1009 => 0.034795209097384
1010 => 0.033625188802727
1011 => 0.034411461791086
1012 => 0.033398323115266
1013 => 0.033228467119227
1014 => 0.035040084575391
1015 => 0.0352921605611
1016 => 0.034216726092193
1017 => 0.034907329118257
1018 => 0.034656906860906
1019 => 0.033415690469979
1020 => 0.033368285133615
1021 => 0.032745486379514
1022 => 0.031770926926947
1023 => 0.031325527106203
1024 => 0.031093559012421
1025 => 0.031189273568883
1026 => 0.031140877360222
1027 => 0.030825059362251
1028 => 0.031158979678182
1029 => 0.030305951256378
1030 => 0.029966268465498
1031 => 0.029812841629439
1101 => 0.029055729806603
1102 => 0.03026063140589
1103 => 0.0304980121999
1104 => 0.030735860707405
1105 => 0.032806169579162
1106 => 0.032702742798561
1107 => 0.033637670524308
1108 => 0.033601340952107
1109 => 0.033334684419899
1110 => 0.032209704373384
1111 => 0.032658101369084
1112 => 0.031278005112685
1113 => 0.032312067065403
1114 => 0.031840164373642
1115 => 0.032152516290627
1116 => 0.031590879380251
1117 => 0.031901712435873
1118 => 0.030554303992407
1119 => 0.029296112946447
1120 => 0.029802445752228
1121 => 0.030352887418291
1122 => 0.031546385200245
1123 => 0.030835547767456
1124 => 0.031091191788026
1125 => 0.030234827113409
1126 => 0.028467902181197
1127 => 0.028477902784426
1128 => 0.028206099878157
1129 => 0.027971222483267
1130 => 0.030917195997563
1201 => 0.030550817622111
1202 => 0.029967041631244
1203 => 0.030748448993355
1204 => 0.0309550655025
1205 => 0.030960947584047
1206 => 0.0315310422244
1207 => 0.031835301836151
1208 => 0.031888928911459
1209 => 0.032785985145764
1210 => 0.033086666563045
1211 => 0.0343251307668
1212 => 0.031809487533838
1213 => 0.03175767951692
1214 => 0.030759444997407
1215 => 0.030126348883668
1216 => 0.030802793629952
1217 => 0.031402031331243
1218 => 0.030778064983154
1219 => 0.030859541815566
1220 => 0.030021917973181
1221 => 0.030321329082969
1222 => 0.03057922226575
1223 => 0.030436828808479
1224 => 0.030223658911023
1225 => 0.031352900673354
1226 => 0.031289184427589
1227 => 0.032340760317827
1228 => 0.033160538923181
1229 => 0.03462972873693
1230 => 0.033096552575686
1231 => 0.033040677542547
]
'min_raw' => 0.027971222483267
'max_raw' => 0.080873030125019
'avg_raw' => 0.054422126304143
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.027971'
'max' => '$0.080873'
'avg' => '$0.054422'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -0.0049184072850469
'max_diff' => -0.0273189508822
'year' => 2030
]
5 => [
'items' => [
101 => 0.033586864954118
102 => 0.033086582944598
103 => 0.033402743905467
104 => 0.034578790318305
105 => 0.034603638325818
106 => 0.034187402185116
107 => 0.034162074178127
108 => 0.034242016882073
109 => 0.034710243796051
110 => 0.034546630925148
111 => 0.034735967881529
112 => 0.034972736644713
113 => 0.035952112637121
114 => 0.036188236873228
115 => 0.035614577395867
116 => 0.03566637242368
117 => 0.035451808031842
118 => 0.03524454151781
119 => 0.03571044637251
120 => 0.036561896651856
121 => 0.036556599823858
122 => 0.036754119738838
123 => 0.036877173009527
124 => 0.03634893829123
125 => 0.036005076913347
126 => 0.036136935246095
127 => 0.036347779591661
128 => 0.036068561266518
129 => 0.034345096417225
130 => 0.034867885557139
131 => 0.034780867881175
201 => 0.03465694412889
202 => 0.035182612651683
203 => 0.035131910640283
204 => 0.033613188553485
205 => 0.033710412214
206 => 0.033619101046296
207 => 0.033914146109656
208 => 0.033070649542922
209 => 0.033330103405813
210 => 0.03349283043639
211 => 0.033588677907527
212 => 0.033934944696502
213 => 0.033894314285412
214 => 0.033932419053101
215 => 0.034445841290108
216 => 0.037042554779654
217 => 0.037183888165564
218 => 0.036487910883083
219 => 0.036765940079889
220 => 0.036232184820323
221 => 0.036590498301919
222 => 0.036835647285852
223 => 0.035727866166899
224 => 0.035662270558474
225 => 0.035126312301084
226 => 0.035414305910378
227 => 0.034956087370518
228 => 0.035068518172395
301 => 0.034754151848805
302 => 0.035319948641558
303 => 0.035952597371788
304 => 0.0361124294251
305 => 0.035691980104862
306 => 0.03538754708805
307 => 0.034853062996997
308 => 0.035741921952173
309 => 0.036001851398152
310 => 0.035740556653448
311 => 0.035680008951697
312 => 0.035565271166287
313 => 0.035704351115273
314 => 0.036000435766566
315 => 0.035860807712841
316 => 0.035953034502256
317 => 0.035601561084858
318 => 0.036349113158901
319 => 0.037536405760686
320 => 0.037540223100542
321 => 0.03740059429417
322 => 0.037343461194947
323 => 0.037486728823669
324 => 0.037564445635106
325 => 0.038027746875604
326 => 0.038524887565394
327 => 0.04084482624517
328 => 0.040193396747274
329 => 0.04225178435774
330 => 0.04387970170944
331 => 0.044367842943017
401 => 0.043918775976946
402 => 0.04238254214414
403 => 0.042307167183312
404 => 0.044602949110719
405 => 0.043954285562753
406 => 0.043877129097752
407 => 0.043056314668054
408 => 0.043541517655851
409 => 0.043435396644921
410 => 0.043267879437552
411 => 0.044193612938734
412 => 0.045926503412148
413 => 0.045656416180922
414 => 0.045454808591799
415 => 0.044571422823345
416 => 0.045103418367309
417 => 0.044913984943807
418 => 0.045727911148592
419 => 0.04524575929555
420 => 0.043949371298399
421 => 0.044155825359896
422 => 0.044124620243828
423 => 0.044766819321277
424 => 0.044574047098588
425 => 0.044086978373465
426 => 0.045920580580899
427 => 0.04580151665258
428 => 0.045970322081133
429 => 0.046044635451264
430 => 0.047160716803234
501 => 0.047617939622516
502 => 0.047721737207305
503 => 0.048156063522742
504 => 0.047710930772915
505 => 0.049491779146493
506 => 0.050675939399539
507 => 0.052051402469782
508 => 0.054061323705025
509 => 0.054817072682288
510 => 0.054680553393992
511 => 0.05620445273564
512 => 0.058942865978203
513 => 0.055234065004545
514 => 0.059139441435479
515 => 0.057903044347184
516 => 0.054971569092672
517 => 0.054782816646104
518 => 0.056768045723588
519 => 0.061171092746228
520 => 0.060068179406002
521 => 0.061172896717344
522 => 0.059884185293149
523 => 0.059820189908825
524 => 0.061110306879929
525 => 0.064124735503529
526 => 0.062692693458624
527 => 0.060639510036137
528 => 0.062155548724229
529 => 0.060842215709847
530 => 0.057882908849679
531 => 0.060067336028957
601 => 0.058606671783078
602 => 0.059032971263207
603 => 0.062103070250636
604 => 0.061733667817994
605 => 0.062211708771577
606 => 0.061367979001013
607 => 0.060579802351334
608 => 0.059108612103942
609 => 0.058673065200492
610 => 0.05879343469527
611 => 0.058673005551348
612 => 0.057849888128869
613 => 0.057672135999854
614 => 0.057375874663996
615 => 0.05746769844005
616 => 0.056910640454327
617 => 0.057961923967439
618 => 0.058157051451351
619 => 0.058922087922424
620 => 0.059001516546762
621 => 0.061132132229088
622 => 0.059958624914805
623 => 0.060745914936973
624 => 0.060675492307129
625 => 0.055035103050448
626 => 0.055812298924443
627 => 0.057021371806878
628 => 0.056476686112201
629 => 0.05570662797675
630 => 0.055084764744468
701 => 0.054142578358782
702 => 0.055468687603549
703 => 0.057212380244421
704 => 0.059045739469665
705 => 0.061248400452341
706 => 0.060756792162808
707 => 0.059004562254733
708 => 0.059083166008405
709 => 0.059569063484165
710 => 0.058939782104615
711 => 0.058754194740754
712 => 0.059543566630258
713 => 0.05954900260063
714 => 0.058824938322262
715 => 0.058020273379221
716 => 0.058016901803729
717 => 0.057873719449256
718 => 0.059909657115928
719 => 0.061029216976083
720 => 0.061157572709789
721 => 0.061020577612519
722 => 0.061073301588317
723 => 0.060421854373512
724 => 0.061910869525887
725 => 0.063277337078043
726 => 0.062911094583744
727 => 0.062362045020351
728 => 0.061924700597299
729 => 0.062808070136678
730 => 0.062768735081643
731 => 0.063265402176055
801 => 0.063242870487764
802 => 0.063075860024508
803 => 0.062911100548213
804 => 0.063564353248153
805 => 0.063376226961488
806 => 0.063187808462738
807 => 0.062809906318065
808 => 0.062861269495816
809 => 0.062312314733571
810 => 0.062058343142096
811 => 0.058239219769365
812 => 0.057218625210715
813 => 0.057539725034984
814 => 0.057645439434487
815 => 0.057201275374635
816 => 0.057838092540077
817 => 0.057738845259399
818 => 0.0581249583708
819 => 0.057883731661879
820 => 0.057893631690157
821 => 0.058603028006135
822 => 0.058808968774651
823 => 0.058704225637638
824 => 0.058777584140418
825 => 0.06046809987428
826 => 0.060227762596574
827 => 0.060100088207893
828 => 0.0601354548861
829 => 0.060567417901168
830 => 0.060688343961081
831 => 0.060175971747907
901 => 0.060417609445628
902 => 0.061446472094136
903 => 0.06180651579253
904 => 0.062955602447028
905 => 0.062467450012811
906 => 0.063363474932558
907 => 0.066117550058458
908 => 0.068317695836529
909 => 0.066294350854145
910 => 0.070334638388698
911 => 0.073480581779172
912 => 0.073359835232003
913 => 0.072811267234892
914 => 0.06922969432407
915 => 0.065933877533287
916 => 0.06869096822655
917 => 0.068697996617728
918 => 0.068461160082034
919 => 0.066990188699363
920 => 0.068409973466432
921 => 0.068522670825341
922 => 0.068459590272999
923 => 0.06733179996278
924 => 0.065609872609565
925 => 0.065946333092671
926 => 0.066497462227608
927 => 0.065454059797591
928 => 0.065120629499218
929 => 0.065740539861603
930 => 0.067738020212661
1001 => 0.067360408122909
1002 => 0.067350547145196
1003 => 0.0689661317976
1004 => 0.067809721851468
1005 => 0.065950576936859
1006 => 0.065481118326811
1007 => 0.063814856526356
1008 => 0.064965749486951
1009 => 0.065007168075708
1010 => 0.064376835763031
1011 => 0.066001724930073
1012 => 0.065986751290343
1013 => 0.067529341721614
1014 => 0.070478195255696
1015 => 0.069606074161398
1016 => 0.068591892215235
1017 => 0.068702161912998
1018 => 0.069911548328653
1019 => 0.069180325694142
1020 => 0.069443278451777
1021 => 0.069911150318161
1022 => 0.070193429031756
1023 => 0.068661546350135
1024 => 0.06830439121863
1025 => 0.067573777163989
1026 => 0.06738317359469
1027 => 0.067978243497433
1028 => 0.06782146360219
1029 => 0.065003687003704
1030 => 0.064709213671201
1031 => 0.064718244747898
1101 => 0.063977777551876
1102 => 0.062848387345452
1103 => 0.065816357375548
1104 => 0.065577987845417
1105 => 0.065314846332489
1106 => 0.065347079666358
1107 => 0.066635374862585
1108 => 0.065888098588306
1109 => 0.067874855039648
1110 => 0.067466437640618
1111 => 0.067047545876403
1112 => 0.066989642274833
1113 => 0.066828404683776
1114 => 0.066275460990176
1115 => 0.065607748253389
1116 => 0.065166866468276
1117 => 0.060112989609457
1118 => 0.061050959757404
1119 => 0.062130008913949
1120 => 0.06250249235877
1121 => 0.061865333651334
1122 => 0.066300619899474
1123 => 0.06711098943649
1124 => 0.064656327249769
1125 => 0.064197160177831
1126 => 0.066330722816267
1127 => 0.065043923727865
1128 => 0.065623369278581
1129 => 0.064370924937704
1130 => 0.066915795145413
1201 => 0.066896407498254
1202 => 0.065906395508955
1203 => 0.066743146863001
1204 => 0.066597740723796
1205 => 0.065480019626169
1206 => 0.066951228897851
1207 => 0.066951958599295
1208 => 0.065999093584311
1209 => 0.064886355855783
1210 => 0.064687424631615
1211 => 0.064537556676853
1212 => 0.065586510948782
1213 => 0.066527000068998
1214 => 0.068277017154695
1215 => 0.06871701302942
1216 => 0.070434346220654
1217 => 0.06941175792071
1218 => 0.06986505806934
1219 => 0.070357179503898
1220 => 0.070593120616792
1221 => 0.07020866723463
1222 => 0.072876392563159
1223 => 0.073101630317879
1224 => 0.073177150588737
1225 => 0.072277608617745
1226 => 0.073076612428406
1227 => 0.072702785005622
1228 => 0.073675380107456
1229 => 0.073827895438141
1230 => 0.073698720378941
1231 => 0.073747131152191
]
'min_raw' => 0.033070649542922
'max_raw' => 0.073827895438141
'avg_raw' => 0.053449272490531
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.03307'
'max' => '$0.073827'
'avg' => '$0.053449'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 0.0050994270596548
'max_diff' => -0.0070451346868777
'year' => 2031
]
6 => [
'items' => [
101 => 0.071470698203288
102 => 0.071352653145747
103 => 0.069743100410079
104 => 0.070399005047077
105 => 0.069172822766537
106 => 0.069561657798774
107 => 0.069733052576027
108 => 0.069643525670958
109 => 0.070436088911142
110 => 0.069762248247013
111 => 0.067983871944714
112 => 0.066205011124981
113 => 0.066182678976418
114 => 0.065714336322084
115 => 0.065375810364236
116 => 0.065441022473571
117 => 0.065670838452617
118 => 0.065362453041752
119 => 0.065428262704697
120 => 0.066521141597081
121 => 0.066740310664892
122 => 0.065995488537585
123 => 0.063004920219125
124 => 0.062271027252503
125 => 0.062798534963181
126 => 0.062546420253325
127 => 0.050479842692385
128 => 0.053314706104253
129 => 0.051630326527786
130 => 0.0524065661312
131 => 0.050687250751604
201 => 0.051507798167787
202 => 0.051356273021612
203 => 0.055914649498189
204 => 0.055843476719349
205 => 0.0558775433622
206 => 0.054251453738755
207 => 0.056841858662047
208 => 0.058117985275209
209 => 0.057881808202123
210 => 0.057941248883184
211 => 0.056919861046166
212 => 0.055887432629105
213 => 0.054742310624991
214 => 0.056869805767278
215 => 0.056633264625009
216 => 0.057175804900558
217 => 0.058555637576824
218 => 0.058758823179879
219 => 0.05903190669089
220 => 0.0589340256916
221 => 0.061265948200679
222 => 0.060983536998309
223 => 0.061664066740772
224 => 0.060264165428611
225 => 0.058680044214048
226 => 0.058981133868112
227 => 0.058952136513216
228 => 0.058582966903769
229 => 0.058249697087049
301 => 0.0576948967404
302 => 0.059450367132202
303 => 0.05937909824016
304 => 0.060532858761292
305 => 0.06032892038215
306 => 0.058966969974054
307 => 0.059015612299321
308 => 0.059342755313448
309 => 0.060475001020596
310 => 0.060811128635644
311 => 0.060655420931984
312 => 0.061023969517075
313 => 0.061315255291795
314 => 0.061060550525665
315 => 0.064666632889245
316 => 0.063169136076701
317 => 0.063899005603619
318 => 0.064073075185148
319 => 0.063627199612351
320 => 0.063723894058483
321 => 0.063870359796715
322 => 0.064759671078324
323 => 0.067093481205559
324 => 0.068127109824128
325 => 0.071236832521433
326 => 0.068041281356161
327 => 0.067851670574519
328 => 0.068411825536933
329 => 0.070237561957828
330 => 0.071717149844262
331 => 0.072208014505665
401 => 0.072272890373962
402 => 0.07319378511082
403 => 0.073721624800316
404 => 0.073081964267829
405 => 0.072539918941795
406 => 0.070598379865085
407 => 0.07082311829985
408 => 0.072371343252995
409 => 0.074558302189308
410 => 0.07643494047096
411 => 0.075777807152173
412 => 0.080791270510695
413 => 0.081288334924531
414 => 0.081219656694556
415 => 0.082352043402377
416 => 0.080104486393895
417 => 0.079143612228402
418 => 0.07265711529376
419 => 0.074479556351622
420 => 0.077128581457437
421 => 0.076777973051348
422 => 0.074854180210861
423 => 0.07643348110158
424 => 0.075911314837804
425 => 0.075499460640865
426 => 0.077386244558906
427 => 0.075311648136208
428 => 0.077107885771137
429 => 0.074804192424642
430 => 0.07578080888182
501 => 0.075226434147103
502 => 0.075585182542077
503 => 0.073487946755492
504 => 0.074619564278412
505 => 0.073440867746125
506 => 0.073440308890498
507 => 0.073414289099218
508 => 0.074801020342314
509 => 0.074846241598366
510 => 0.073821445114484
511 => 0.073673755930826
512 => 0.074219840249842
513 => 0.073580518531985
514 => 0.073879653139927
515 => 0.073589579014526
516 => 0.073524277219002
517 => 0.073003941402085
518 => 0.072779766425226
519 => 0.07286767120993
520 => 0.072567606861713
521 => 0.07238680723811
522 => 0.073378323503423
523 => 0.072848596360518
524 => 0.073297135221416
525 => 0.072785968579306
526 => 0.071014042293047
527 => 0.069994988748038
528 => 0.066647984250948
529 => 0.067597190574377
530 => 0.068226515348835
531 => 0.068018523514631
601 => 0.068465370456656
602 => 0.068492803229756
603 => 0.068347528733838
604 => 0.068179319478381
605 => 0.068097444515379
606 => 0.068707673410693
607 => 0.069061931823783
608 => 0.068289676509231
609 => 0.068108747894032
610 => 0.068889540654428
611 => 0.06936582378722
612 => 0.072882430839384
613 => 0.072621909230469
614 => 0.073275767344063
615 => 0.073202152954743
616 => 0.073887500425556
617 => 0.075007753890883
618 => 0.072729965368078
619 => 0.073125310695636
620 => 0.073028381151175
621 => 0.074086632501302
622 => 0.074089936246505
623 => 0.073455461698528
624 => 0.07379942064416
625 => 0.073607432196729
626 => 0.073954381270033
627 => 0.072618429805549
628 => 0.074245474482241
629 => 0.075167903969482
630 => 0.075180711903807
701 => 0.075617936159906
702 => 0.076062181326424
703 => 0.076914871237956
704 => 0.07603840026759
705 => 0.074461714314631
706 => 0.07457554594777
707 => 0.073651135550437
708 => 0.073666675056224
709 => 0.073583723956477
710 => 0.073832666451085
711 => 0.072673058683865
712 => 0.072945216309041
713 => 0.072564194040042
714 => 0.073124482427635
715 => 0.072521704741573
716 => 0.073028334408814
717 => 0.073246978978156
718 => 0.074053782146108
719 => 0.072402539257675
720 => 0.069035543228845
721 => 0.069743326614986
722 => 0.068696459391698
723 => 0.068793350938918
724 => 0.068989087284478
725 => 0.068354641747572
726 => 0.068475673962337
727 => 0.068471349839935
728 => 0.068434086889154
729 => 0.068269043101556
730 => 0.06802969695662
731 => 0.068983178331186
801 => 0.069145193396529
802 => 0.069505332817365
803 => 0.070576863448872
804 => 0.070469792270352
805 => 0.070644429804859
806 => 0.070263197047579
807 => 0.068811035233126
808 => 0.068889894606212
809 => 0.067906516960194
810 => 0.069480185640022
811 => 0.069107520125227
812 => 0.068867260243506
813 => 0.068801703108786
814 => 0.069875889857471
815 => 0.070197303368492
816 => 0.069997020037683
817 => 0.069586233082993
818 => 0.070375065474258
819 => 0.070586123743993
820 => 0.070633371907058
821 => 0.07203103166077
822 => 0.070711485561227
823 => 0.071029113422547
824 => 0.073507155325695
825 => 0.071259913265948
826 => 0.072450327504474
827 => 0.072392062922115
828 => 0.073001038565124
829 => 0.072342109144721
830 => 0.072350277364607
831 => 0.072891006480015
901 => 0.072131649958434
902 => 0.071943622604836
903 => 0.071683864162517
904 => 0.072251037218247
905 => 0.072591031814127
906 => 0.0753311385584
907 => 0.07710137247925
908 => 0.077024521956086
909 => 0.077726791879653
910 => 0.07741041284703
911 => 0.076388741494122
912 => 0.078132609913989
913 => 0.077580776979389
914 => 0.07762626941604
915 => 0.077624576185276
916 => 0.077991496844712
917 => 0.077731499929717
918 => 0.077219019322126
919 => 0.077559227865913
920 => 0.078569525614183
921 => 0.081705520824531
922 => 0.083460465290653
923 => 0.081599870964098
924 => 0.082883284016205
925 => 0.082113693511769
926 => 0.081973836023779
927 => 0.082779914263982
928 => 0.083587403437437
929 => 0.083535969867959
930 => 0.082949774193059
1001 => 0.082618647130472
1002 => 0.085126052184083
1003 => 0.086973465515052
1004 => 0.086847484311096
1005 => 0.087403524374076
1006 => 0.089036075196655
1007 => 0.089185335184079
1008 => 0.089166531856365
1009 => 0.088796575403867
1010 => 0.09040403370221
1011 => 0.091745003695225
1012 => 0.088710941174183
1013 => 0.089866272463401
1014 => 0.09038493790158
1015 => 0.091146492645929
1016 => 0.09243136315104
1017 => 0.09382707331466
1018 => 0.094024442034979
1019 => 0.09388439948295
1020 => 0.092963891111339
1021 => 0.094491093826658
1022 => 0.095385693359981
1023 => 0.095918406909528
1024 => 0.097269279836098
1025 => 0.090388141002752
1026 => 0.085517328921718
1027 => 0.084756681279886
1028 => 0.086303488170544
1029 => 0.086711368812056
1030 => 0.086546952636901
1031 => 0.081064410804838
1101 => 0.084727816831778
1102 => 0.088669333688839
1103 => 0.088820743403651
1104 => 0.090793949155526
1105 => 0.091436505832773
1106 => 0.093025195097023
1107 => 0.092925822150991
1108 => 0.093312642705268
1109 => 0.093223719358638
1110 => 0.096166431682667
1111 => 0.099412680373081
1112 => 0.09930027310337
1113 => 0.098833586446252
1114 => 0.099526695713972
1115 => 0.10287717225163
1116 => 0.10256871406234
1117 => 0.10286835491883
1118 => 0.10681875558131
1119 => 0.11195483838048
1120 => 0.10956861226598
1121 => 0.11474603631637
1122 => 0.11800495031263
1123 => 0.12364090509117
1124 => 0.12293525579524
1125 => 0.12512929163198
1126 => 0.12167199628206
1127 => 0.11373334732398
1128 => 0.11247702573844
1129 => 0.11499221336783
1130 => 0.12117555672626
1201 => 0.11479747788082
1202 => 0.11608775492442
1203 => 0.11571615504906
1204 => 0.1156963540709
1205 => 0.11645207687088
1206 => 0.11535586153367
1207 => 0.11088968304449
1208 => 0.11293650632672
1209 => 0.11214612956093
1210 => 0.11302311150907
1211 => 0.11775582138833
1212 => 0.115663377537
1213 => 0.11345915791595
1214 => 0.11622373847624
1215 => 0.11974399954242
1216 => 0.11952370793142
1217 => 0.11909625013132
1218 => 0.12150580736952
1219 => 0.12548568999299
1220 => 0.12656143627365
1221 => 0.12735553018537
1222 => 0.12746502231947
1223 => 0.12859285934968
1224 => 0.12252819538672
1225 => 0.13215297284755
1226 => 0.13381490603592
1227 => 0.13350253147658
1228 => 0.13534970027061
1229 => 0.13480621635326
1230 => 0.13401879342703
1231 => 0.13694694886964
]
'min_raw' => 0.050479842692385
'max_raw' => 0.13694694886964
'avg_raw' => 0.093713395781015
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.050479'
'max' => '$0.136946'
'avg' => '$0.093713'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.017409193149463
'max_diff' => 0.063119053431503
'year' => 2032
]
7 => [
'items' => [
101 => 0.13359005494464
102 => 0.1288253666393
103 => 0.12621136440013
104 => 0.12965369341421
105 => 0.13175580362238
106 => 0.13314516475066
107 => 0.1335655845886
108 => 0.12299897798628
109 => 0.11730416307851
110 => 0.12095447414321
111 => 0.12540810557315
112 => 0.12250345523926
113 => 0.12261731203312
114 => 0.11847604398567
115 => 0.1257745159039
116 => 0.12471118993523
117 => 0.1302277269417
118 => 0.12891116111213
119 => 0.13340968289018
120 => 0.13222507134414
121 => 0.13714232764102
122 => 0.13910395430725
123 => 0.14239783078266
124 => 0.14482081972645
125 => 0.14624364517865
126 => 0.14615822407538
127 => 0.15179616736579
128 => 0.14847166918217
129 => 0.14429531593948
130 => 0.14421977888555
131 => 0.14638277140932
201 => 0.15091581035112
202 => 0.1520911613957
203 => 0.15274802228528
204 => 0.15174201696739
205 => 0.14813351245801
206 => 0.14657537850639
207 => 0.14790295377665
208 => 0.14627944330096
209 => 0.14908207785859
210 => 0.15293069371666
211 => 0.15213596976104
212 => 0.15479261279298
213 => 0.15754195884405
214 => 0.16147364717793
215 => 0.1625015360984
216 => 0.16420059739683
217 => 0.16594948958547
218 => 0.16651118662249
219 => 0.16758364055053
220 => 0.16757798818895
221 => 0.17080990028557
222 => 0.17437479941212
223 => 0.17572046630479
224 => 0.17881475312398
225 => 0.17351589538286
226 => 0.17753513984839
227 => 0.18116059896451
228 => 0.17683817714614
301 => 0.18279562862765
302 => 0.1830269429688
303 => 0.18651951489115
304 => 0.18297912415203
305 => 0.18087685143246
306 => 0.18694603400272
307 => 0.18988272027101
308 => 0.18899816646745
309 => 0.1822666683466
310 => 0.17834864771273
311 => 0.16809443198415
312 => 0.18024099346381
313 => 0.18615722924049
314 => 0.1822513467252
315 => 0.18422124667429
316 => 0.19496838205436
317 => 0.19906019538161
318 => 0.19820912681348
319 => 0.19835294339171
320 => 0.20056081159143
321 => 0.2103517150842
322 => 0.20448477875996
323 => 0.20896983174993
324 => 0.21134868768375
325 => 0.21355830165016
326 => 0.20813218810432
327 => 0.20107289410662
328 => 0.19883691936855
329 => 0.18186298368558
330 => 0.18097941661922
331 => 0.18048344365004
401 => 0.17735640423618
402 => 0.17489940782506
403 => 0.17294551305651
404 => 0.16781790970148
405 => 0.16954832531143
406 => 0.16137599577749
407 => 0.16660436260373
408 => 0.15356112733977
409 => 0.16442392124942
410 => 0.15851179639503
411 => 0.16248162922867
412 => 0.16246777885589
413 => 0.15515805797252
414 => 0.15094196351698
415 => 0.1536286229969
416 => 0.15650893522668
417 => 0.15697625619542
418 => 0.16071065618517
419 => 0.16175284695164
420 => 0.15859496027398
421 => 0.15329083528029
422 => 0.15452286254211
423 => 0.15091699652384
424 => 0.14459785502446
425 => 0.14913637277094
426 => 0.15068602227413
427 => 0.15137043577632
428 => 0.14515628586998
429 => 0.14320366505365
430 => 0.14216410611511
501 => 0.15248866656133
502 => 0.15305426928895
503 => 0.15016056576627
504 => 0.163240380081
505 => 0.16028001526586
506 => 0.16358746807136
507 => 0.1544110689816
508 => 0.15476161978449
509 => 0.15041736539707
510 => 0.15284985757084
511 => 0.15113065050531
512 => 0.15265333624156
513 => 0.1535660277936
514 => 0.15790956933161
515 => 0.16447351751666
516 => 0.15726078907018
517 => 0.15411809999787
518 => 0.15606780662318
519 => 0.1612601322957
520 => 0.16912677147983
521 => 0.16446956275195
522 => 0.16653635290085
523 => 0.16698785460329
524 => 0.1635538013066
525 => 0.16925338992316
526 => 0.17230784576615
527 => 0.17544108543048
528 => 0.17816158963963
529 => 0.17418960060713
530 => 0.17844019823417
531 => 0.17501496687826
601 => 0.1719421802581
602 => 0.17194684040701
603 => 0.17001923647394
604 => 0.16628426095988
605 => 0.16559547417028
606 => 0.16917863003395
607 => 0.17205198171049
608 => 0.172288644717
609 => 0.17387947984327
610 => 0.17482091968409
611 => 0.18404830994956
612 => 0.1877596426473
613 => 0.19229779001818
614 => 0.1940656541751
615 => 0.19938629147307
616 => 0.19508944473393
617 => 0.19415979491348
618 => 0.1812536691958
619 => 0.18336704655906
620 => 0.18675076762821
621 => 0.18130946550993
622 => 0.18476071928888
623 => 0.1854420698924
624 => 0.18112457214609
625 => 0.18343073424046
626 => 0.17730625144723
627 => 0.16460701450527
628 => 0.16926752780414
629 => 0.17269923430393
630 => 0.16780176600238
701 => 0.17658028837471
702 => 0.17145205683028
703 => 0.16982665362922
704 => 0.16348537624381
705 => 0.16647821507157
706 => 0.17052607243944
707 => 0.16802496720003
708 => 0.17321513611466
709 => 0.18056579946527
710 => 0.18580431990848
711 => 0.18620646846115
712 => 0.18283845076977
713 => 0.1882357206146
714 => 0.18827503383309
715 => 0.18218689139962
716 => 0.17845793805805
717 => 0.17761071201306
718 => 0.17972724878189
719 => 0.18229711515351
720 => 0.18634907815941
721 => 0.18879759454142
722 => 0.19518202667296
723 => 0.19690947095174
724 => 0.19880740848574
725 => 0.20134363833343
726 => 0.20438903254155
727 => 0.19772588338856
728 => 0.19799062272607
729 => 0.19178599049238
730 => 0.18515545111641
731 => 0.19018720399437
801 => 0.19676555153627
802 => 0.19525647134173
803 => 0.19508666899213
804 => 0.19537222944491
805 => 0.19423443226018
806 => 0.18908821776237
807 => 0.18650382105858
808 => 0.18983835215639
809 => 0.19161050703197
810 => 0.19435896469585
811 => 0.19402015927587
812 => 0.20109989105521
813 => 0.20385086074469
814 => 0.20314704497749
815 => 0.20327656401693
816 => 0.20825706323629
817 => 0.213796402686
818 => 0.21898472506088
819 => 0.22426250942423
820 => 0.21789993437878
821 => 0.21466941115977
822 => 0.21800248650561
823 => 0.21623390981068
824 => 0.22639667609371
825 => 0.2271003239813
826 => 0.23726235538065
827 => 0.24690733325083
828 => 0.2408494954583
829 => 0.24656176364565
830 => 0.25274004741833
831 => 0.26465895920624
901 => 0.26064508902844
902 => 0.25757052737761
903 => 0.25466508147376
904 => 0.26071085317314
905 => 0.26848864188083
906 => 0.27016390307373
907 => 0.27287846620526
908 => 0.27002443499344
909 => 0.27346180122685
910 => 0.28559721448605
911 => 0.28231811870116
912 => 0.27766127554566
913 => 0.28724101881632
914 => 0.29070789066566
915 => 0.31504021291922
916 => 0.34576077488245
917 => 0.33304226050759
918 => 0.32514746821122
919 => 0.32700293166784
920 => 0.33822104094016
921 => 0.34182394159344
922 => 0.3320300156235
923 => 0.33548939584862
924 => 0.35455092100778
925 => 0.36477681768873
926 => 0.35088867647485
927 => 0.31257184567742
928 => 0.27724197777113
929 => 0.28661304966457
930 => 0.28555066093007
1001 => 0.3060298917399
1002 => 0.28223991335116
1003 => 0.28264047557442
1004 => 0.30354319518952
1005 => 0.29796670795955
1006 => 0.28893351282952
1007 => 0.27730793009231
1008 => 0.25581696516635
1009 => 0.23678181821153
1010 => 0.27411412492247
1011 => 0.2725042879727
1012 => 0.27017300550496
1013 => 0.2753610223658
1014 => 0.30055255959775
1015 => 0.29997181312751
1016 => 0.29627740038326
1017 => 0.29907957988871
1018 => 0.28844227721387
1019 => 0.29118375232006
1020 => 0.27723638133955
1021 => 0.2835411755164
1022 => 0.28891413164978
1023 => 0.28999283214153
1024 => 0.29242319942926
1025 => 0.27165597705172
1026 => 0.28097985020562
1027 => 0.28645675215477
1028 => 0.26171190989713
1029 => 0.28596762618407
1030 => 0.27129446591303
1031 => 0.26631417493357
1101 => 0.27301948063397
1102 => 0.2704064164814
1103 => 0.2681598573673
1104 => 0.26690623878084
1105 => 0.27182987524963
1106 => 0.27160018172334
1107 => 0.26354415682375
1108 => 0.25303540074781
1109 => 0.25656248422505
1110 => 0.25528106173118
1111 => 0.25063702130662
1112 => 0.2537665438292
1113 => 0.23998571045486
1114 => 0.21627650289972
1115 => 0.23193953164331
1116 => 0.23133652207478
1117 => 0.23103245730602
1118 => 0.24280279051252
1119 => 0.2416713445625
1120 => 0.23961775908408
1121 => 0.25059930559886
1122 => 0.24659089339832
1123 => 0.2589438752997
1124 => 0.26708034812073
1125 => 0.26501667542599
1126 => 0.27266906744115
1127 => 0.25664374110466
1128 => 0.26196671168914
1129 => 0.26306376854929
1130 => 0.25046379501949
1201 => 0.24185646311275
1202 => 0.24128245220534
1203 => 0.22635852484246
1204 => 0.23433076637798
1205 => 0.24134600901547
1206 => 0.23798625219693
1207 => 0.23692265355806
1208 => 0.24235634833764
1209 => 0.24277859295846
1210 => 0.23315137085624
1211 => 0.23515317518577
1212 => 0.24350103201217
1213 => 0.23494283061214
1214 => 0.21831564326613
1215 => 0.21419187091548
1216 => 0.21364168366769
1217 => 0.2024576859922
1218 => 0.21446744110253
1219 => 0.20922486115544
1220 => 0.22578610839254
1221 => 0.21632641279046
1222 => 0.21591862421991
1223 => 0.21530219198594
1224 => 0.20567566318152
1225 => 0.20778326119187
1226 => 0.2147892379745
1227 => 0.21728904941853
1228 => 0.21702829860456
1229 => 0.21475490486617
1230 => 0.21579565287795
1231 => 0.21244304091137
]
'min_raw' => 0.11730416307851
'max_raw' => 0.36477681768873
'avg_raw' => 0.24104049038362
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.1173041'
'max' => '$0.364776'
'avg' => '$0.24104'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.06682432038612
'max_diff' => 0.22782986881909
'year' => 2033
]
8 => [
'items' => [
101 => 0.21125916384739
102 => 0.20752252218242
103 => 0.20203069120853
104 => 0.2027943639888
105 => 0.19191360981377
106 => 0.18598519745388
107 => 0.18434429104789
108 => 0.18215000242359
109 => 0.18459214178678
110 => 0.19188278600429
111 => 0.18308872228152
112 => 0.16801191686067
113 => 0.16891805855609
114 => 0.17095388990982
115 => 0.16716013165053
116 => 0.1635696578441
117 => 0.16669128351444
118 => 0.16030304230361
119 => 0.17172587833996
120 => 0.17141692263731
121 => 0.17567464952821
122 => 0.17833709353045
123 => 0.17220102208178
124 => 0.17065781670614
125 => 0.17153689662288
126 => 0.15700766377391
127 => 0.1744873012326
128 => 0.1746384658632
129 => 0.17334410252129
130 => 0.18265146984478
131 => 0.20229291793802
201 => 0.19490301508993
202 => 0.19204142134615
203 => 0.18660152954741
204 => 0.19384986238041
205 => 0.19329330351044
206 => 0.19077633323177
207 => 0.1892540617538
208 => 0.19205889362735
209 => 0.18890651204496
210 => 0.18834025769111
211 => 0.1849093723976
212 => 0.18368470244315
213 => 0.18277800556439
214 => 0.18177982139108
215 => 0.18398156694542
216 => 0.17899212185553
217 => 0.17297534019846
218 => 0.17247510990616
219 => 0.17385628972391
220 => 0.1732452204713
221 => 0.17247218434167
222 => 0.17099624784635
223 => 0.17055836901658
224 => 0.17198126278472
225 => 0.17037489868035
226 => 0.17274517641953
227 => 0.17210059202792
228 => 0.16849999601442
301 => 0.16401232027022
302 => 0.16397237054288
303 => 0.16300550816505
304 => 0.16177406355816
305 => 0.16143150384016
306 => 0.16642838890741
307 => 0.17677179145242
308 => 0.17474113403619
309 => 0.17620849212956
310 => 0.18342644165126
311 => 0.18572081075289
312 => 0.18409232190966
313 => 0.18186314594023
314 => 0.18196121836963
315 => 0.18957898747462
316 => 0.19005409838956
317 => 0.191254550395
318 => 0.19279747046969
319 => 0.18435508787016
320 => 0.1815635829084
321 => 0.18024081299072
322 => 0.17616719362065
323 => 0.18056024286554
324 => 0.17800060119967
325 => 0.17834598431021
326 => 0.17812105310637
327 => 0.17824388075345
328 => 0.17172268542449
329 => 0.17409866625843
330 => 0.17014813729295
331 => 0.16485882247586
401 => 0.16484109083792
402 => 0.16613564314603
403 => 0.16536559277733
404 => 0.16329340703495
405 => 0.16358775123922
406 => 0.16100898628634
407 => 0.16390085999454
408 => 0.16398378858487
409 => 0.16287025968579
410 => 0.16732559013495
411 => 0.16915094265517
412 => 0.16841799407969
413 => 0.16909951702922
414 => 0.1748255170197
415 => 0.17575910486105
416 => 0.17617374291082
417 => 0.17561818285314
418 => 0.16920417779768
419 => 0.16948866619635
420 => 0.16740127908796
421 => 0.16563765694481
422 => 0.16570819258156
423 => 0.16661492361797
424 => 0.17057467123304
425 => 0.1789077266491
426 => 0.17922396001075
427 => 0.17960724407025
428 => 0.17804823517712
429 => 0.17757802317724
430 => 0.17819835417709
501 => 0.18132781166012
502 => 0.1893776259459
503 => 0.18653228394829
504 => 0.18421897661384
505 => 0.18624837080933
506 => 0.18593596147985
507 => 0.18329891234142
508 => 0.18322489915507
509 => 0.17816355874282
510 => 0.17629249643355
511 => 0.17472889672134
512 => 0.17302148665441
513 => 0.17200927673384
514 => 0.17356449121303
515 => 0.17392018716517
516 => 0.17051968352593
517 => 0.17005620744519
518 => 0.17283313212197
519 => 0.1716111111059
520 => 0.17286799002559
521 => 0.17315959671626
522 => 0.17311264132279
523 => 0.1718367110338
524 => 0.17264995095122
525 => 0.17072639610805
526 => 0.16863481912469
527 => 0.16730052331917
528 => 0.16613617326019
529 => 0.16678222234533
530 => 0.1644791753207
531 => 0.16374238422634
601 => 0.17237444356567
602 => 0.17875103860992
603 => 0.17865832039257
604 => 0.17809392208963
605 => 0.17725534069547
606 => 0.18126646420794
607 => 0.17986906898114
608 => 0.18088579076492
609 => 0.18114458913057
610 => 0.18192789383831
611 => 0.18220785794401
612 => 0.181361611969
613 => 0.17852150711664
614 => 0.17144423585362
615 => 0.16814974697595
616 => 0.16706251077227
617 => 0.16710202974332
618 => 0.16601192010135
619 => 0.1663330062462
620 => 0.16590025944361
621 => 0.16508074169221
622 => 0.16673161943352
623 => 0.16692186771422
624 => 0.16653653312288
625 => 0.16662729336845
626 => 0.16343688753069
627 => 0.16367944715733
628 => 0.16232884433317
629 => 0.1620756225854
630 => 0.15866141625635
701 => 0.15261265484733
702 => 0.1559642558354
703 => 0.15191599314822
704 => 0.1503828547274
705 => 0.15764049355964
706 => 0.15691202791645
707 => 0.15566521139171
708 => 0.15382090989229
709 => 0.15313684052594
710 => 0.14898065160606
711 => 0.14873508179227
712 => 0.1507950012475
713 => 0.14984441929641
714 => 0.14850944222354
715 => 0.14367429059007
716 => 0.13823797929036
717 => 0.13840206735707
718 => 0.14013125683534
719 => 0.14515910845638
720 => 0.14319463984532
721 => 0.14176939532832
722 => 0.14150248987298
723 => 0.144843370451
724 => 0.14957141640502
725 => 0.15178970978258
726 => 0.14959144841599
727 => 0.14706620412085
728 => 0.14721990404024
729 => 0.14824240074516
730 => 0.14834985069152
731 => 0.14670617625469
801 => 0.14716886098078
802 => 0.14646600057307
803 => 0.14215254754835
804 => 0.14207453086124
805 => 0.14101593992515
806 => 0.14098388621231
807 => 0.13918295895213
808 => 0.13893099677921
809 => 0.13535514639566
810 => 0.13770878194679
811 => 0.1361300867905
812 => 0.13375062081344
813 => 0.13334039998212
814 => 0.13332806824857
815 => 0.13577124776816
816 => 0.13768023197161
817 => 0.13615754886864
818 => 0.13581086344207
819 => 0.13951255679484
820 => 0.13904148257402
821 => 0.13863353533689
822 => 0.1491480717475
823 => 0.14082499571899
824 => 0.13719565950599
825 => 0.13270366675015
826 => 0.13416628224204
827 => 0.13447447681648
828 => 0.12367204398123
829 => 0.11928949832533
830 => 0.11778557380897
831 => 0.11692004398744
901 => 0.11731447679575
902 => 0.11336967168411
903 => 0.11602064596019
904 => 0.11260477817958
905 => 0.11203209682996
906 => 0.11814009156651
907 => 0.11898998335171
908 => 0.11536408095536
909 => 0.11769249727409
910 => 0.11684818114951
911 => 0.11266333342854
912 => 0.11250350302725
913 => 0.11040369354538
914 => 0.10711789830948
915 => 0.10561620171702
916 => 0.10483410509334
917 => 0.10515681340303
918 => 0.10499364220662
919 => 0.10392883977675
920 => 0.10505467543548
921 => 0.10217863055483
922 => 0.10103336630948
923 => 0.10051607701979
924 => 0.097963421649236
925 => 0.10202583151478
926 => 0.10282617743518
927 => 0.10362810028428
928 => 0.11060829118976
929 => 0.11025958057794
930 => 0.11341175467986
1001 => 0.11328926699074
1002 => 0.11239021587503
1003 => 0.10859726710461
1004 => 0.11010906888169
1005 => 0.105455977998
1006 => 0.10894239006749
1007 => 0.10735133719502
1008 => 0.10840445349085
1009 => 0.10651085543528
1010 => 0.10755885078398
1011 => 0.10301596914378
1012 => 0.098773890188235
1013 => 0.10048102659395
1014 => 0.10233687910169
1015 => 0.10636084020091
1016 => 0.10396420216717
1017 => 0.10482612383102
1018 => 0.10193883054108
1019 => 0.095981519769365
1020 => 0.096015237501371
1021 => 0.095098835026213
1022 => 0.094306929490725
1023 => 0.10423948487548
1024 => 0.10300421460292
1025 => 0.10103597309177
1026 => 0.10367054256925
1027 => 0.10436716455534
1028 => 0.10438699640394
1029 => 0.10630911028663
1030 => 0.10733494281038
1031 => 0.1075157502389
1101 => 0.11054023796333
1102 => 0.1115540063546
1103 => 0.11572957488437
1104 => 0.10724790808783
1105 => 0.10707323374167
1106 => 0.10370761636463
1107 => 0.1015730886158
1108 => 0.10385376930576
1109 => 0.1058741410531
1110 => 0.10377039494658
1111 => 0.10404509977559
1112 => 0.10122099250996
1113 => 0.10223047797082
1114 => 0.1030999828421
1115 => 0.10261989335931
1116 => 0.10190117616699
1117 => 0.10570849360983
1118 => 0.10549366983871
1119 => 0.10903913137133
1120 => 0.1118030721744
1121 => 0.11675654820701
1122 => 0.11158733773644
1123 => 0.11139895116114
1124 => 0.11324046015284
1125 => 0.11155372442917
1126 => 0.11261968318239
1127 => 0.11658480577221
1128 => 0.11666858256437
1129 => 0.11526521335532
1130 => 0.11517981821141
1201 => 0.11544935061918
1202 => 0.11702801035022
1203 => 0.11647637813288
1204 => 0.1171147409004
1205 => 0.11791302331615
1206 => 0.1212150578524
1207 => 0.1220111672001
1208 => 0.12007703422055
1209 => 0.12025166477304
1210 => 0.11952824594555
1211 => 0.11882943242261
1212 => 0.12040026316866
1213 => 0.12327098723184
1214 => 0.12325312860643
1215 => 0.12391908079019
1216 => 0.12433396348362
1217 => 0.12255298325071
1218 => 0.12139363060754
1219 => 0.12183820018246
1220 => 0.12254907661422
1221 => 0.12160767253659
1222 => 0.11579689046873
1223 => 0.11755951055393
1224 => 0.11726612438403
1225 => 0.11684830680112
1226 => 0.11862063492672
1227 => 0.11844968955539
1228 => 0.11332921200596
1229 => 0.11365700836532
1230 => 0.11334914638827
1231 => 0.11434391141877
]
'min_raw' => 0.094306929490725
'max_raw' => 0.21125916384739
'avg_raw' => 0.15278304666906
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.0943069'
'max' => '$0.211259'
'avg' => '$0.152783'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.022997233587781
'max_diff' => -0.15351765384134
'year' => 2034
]
9 => [
'items' => [
101 => 0.11150000385298
102 => 0.11237477066621
103 => 0.11292341621103
104 => 0.11324657265183
105 => 0.11441403530644
106 => 0.11427704703872
107 => 0.11440551992337
108 => 0.11613655884144
109 => 0.12489155966819
110 => 0.12536807504637
111 => 0.1230215390469
112 => 0.12395893389531
113 => 0.12215934077208
114 => 0.12336741969193
115 => 0.12419395660702
116 => 0.12045899522166
117 => 0.12023783504811
118 => 0.11843081436391
119 => 0.11940180492472
120 => 0.11785688912578
121 => 0.11823595742398
122 => 0.11717604941564
123 => 0.11908367280508
124 => 0.12121669216917
125 => 0.12175557709603
126 => 0.12033800285802
127 => 0.119311585687
128 => 0.11750953525753
129 => 0.12050638528305
130 => 0.12138275555787
131 => 0.12050178208308
201 => 0.12029764127932
202 => 0.11991079482507
203 => 0.12037971258333
204 => 0.12137798265714
205 => 0.12090721692549
206 => 0.12121816598507
207 => 0.12003314881922
208 => 0.12255357282927
209 => 0.12655661273031
210 => 0.12656948315816
211 => 0.1260987148889
212 => 0.12590608665596
213 => 0.12638912346883
214 => 0.1266511511246
215 => 0.1282132036036
216 => 0.12988934814848
217 => 0.13771118338029
218 => 0.13551484334678
219 => 0.1424548408875
220 => 0.14794347789632
221 => 0.14958928014625
222 => 0.14807521951729
223 => 0.14289569989357
224 => 0.14264156795062
225 => 0.15038195700525
226 => 0.14819494256504
227 => 0.1479348041564
228 => 0.14516737099924
301 => 0.14680326674839
302 => 0.1464454723509
303 => 0.14588067639058
304 => 0.14900185152246
305 => 0.15484441274013
306 => 0.15393379478316
307 => 0.15325406072064
308 => 0.15027566392628
309 => 0.15206932404549
310 => 0.15143063603234
311 => 0.15417484505828
312 => 0.15254923642298
313 => 0.14817837377967
314 => 0.14887444806217
315 => 0.14876923783467
316 => 0.1509344568612
317 => 0.15028451185348
318 => 0.14864232564067
319 => 0.15482444350105
320 => 0.15442301115395
321 => 0.15499215044193
322 => 0.15524270315772
323 => 0.1590056493582
324 => 0.16054720801569
325 => 0.16089716881972
326 => 0.16236153031591
327 => 0.1608607341717
328 => 0.16686498879808
329 => 0.17085746776665
330 => 0.17549493753974
331 => 0.18227152731258
401 => 0.18481958775413
402 => 0.18435930344217
403 => 0.18949723646779
404 => 0.198729987905
405 => 0.1862255064821
406 => 0.19939275578366
407 => 0.19522415667799
408 => 0.18534048318834
409 => 0.18470409113646
410 => 0.19139742957546
411 => 0.20624261002322
412 => 0.2025240606937
413 => 0.20624869223779
414 => 0.20190371169615
415 => 0.20168794678989
416 => 0.20603766623106
417 => 0.21620102279621
418 => 0.21137279305983
419 => 0.20445034180223
420 => 0.20956177208557
421 => 0.2051337781336
422 => 0.19515626844233
423 => 0.20252121718911
424 => 0.1975964857038
425 => 0.19903378416434
426 => 0.20938483724792
427 => 0.20813937115542
428 => 0.20975111960617
429 => 0.20690642577739
430 => 0.20424903317426
501 => 0.19928881253995
502 => 0.19782033574606
503 => 0.19822616990163
504 => 0.1978201346348
505 => 0.19504493677669
506 => 0.19444563306346
507 => 0.19344676728531
508 => 0.19375635755721
509 => 0.19187819766579
510 => 0.19542267342852
511 => 0.1960805593639
512 => 0.19865993323926
513 => 0.19892773239175
514 => 0.20611125191955
515 => 0.20215469007778
516 => 0.20480909335435
517 => 0.20457165854108
518 => 0.18555469236278
519 => 0.18817506251403
520 => 0.19225153615194
521 => 0.19041509030359
522 => 0.18781878553618
523 => 0.18572213023144
524 => 0.18254548305074
525 => 0.18701655295546
526 => 0.1928955344349
527 => 0.19907683306386
528 => 0.20650325835183
529 => 0.20484576668068
530 => 0.19893800120882
531 => 0.19920301925226
601 => 0.20084125651606
602 => 0.19871959040989
603 => 0.19809386965533
604 => 0.20075529209298
605 => 0.20077361984662
606 => 0.19833238657955
607 => 0.19561940254417
608 => 0.195608035042
609 => 0.19512528573722
610 => 0.20198959172504
611 => 0.20576426595872
612 => 0.20619702627642
613 => 0.20573513774129
614 => 0.20591290030676
615 => 0.20371650053945
616 => 0.2087368190854
617 => 0.21334395984122
618 => 0.21210914770145
619 => 0.21025798876506
620 => 0.20878345150833
621 => 0.21176179358523
622 => 0.21162917270089
623 => 0.2133037204859
624 => 0.21322775332571
625 => 0.21266466588854
626 => 0.21210916781108
627 => 0.21431165489757
628 => 0.21367737398752
629 => 0.21304210786403
630 => 0.21176798439898
701 => 0.21194115893883
702 => 0.21009031963112
703 => 0.20923403667873
704 => 0.19635759558489
705 => 0.19291658977477
706 => 0.19399920025076
707 => 0.19435562372943
708 => 0.19285809359109
709 => 0.19500516712554
710 => 0.19467054798951
711 => 0.19597235530215
712 => 0.19515904261112
713 => 0.19519242124765
714 => 0.19758420045544
715 => 0.19827854413482
716 => 0.19792539533545
717 => 0.19817272864929
718 => 0.20387242047405
719 => 0.20306210656245
720 => 0.20263164344707
721 => 0.20275088467187
722 => 0.20420727813587
723 => 0.20461498878965
724 => 0.20288749010025
725 => 0.20370218846872
726 => 0.20717107072106
727 => 0.20838498318765
728 => 0.21225920906995
729 => 0.21061336905628
730 => 0.21363437963167
731 => 0.22291993620202
801 => 0.23033788130206
802 => 0.22351603242852
803 => 0.23713814393513
804 => 0.24774491171887
805 => 0.24733780630483
806 => 0.24548827100278
807 => 0.23341274787651
808 => 0.2223006714598
809 => 0.23159639522606
810 => 0.23162009193763
811 => 0.23082158102214
812 => 0.22586209830552
813 => 0.2306490017739
814 => 0.23102896878774
815 => 0.23081628830137
816 => 0.22701386453066
817 => 0.22120826623817
818 => 0.22234266624789
819 => 0.22420083660493
820 => 0.2206829324641
821 => 0.21955874893378
822 => 0.22164882000132
823 => 0.22838346446453
824 => 0.2271103189399
825 => 0.22707707196507
826 => 0.23252412841717
827 => 0.22862521154582
828 => 0.22235697466486
829 => 0.22077416218453
830 => 0.21515624418961
831 => 0.21903656015904
901 => 0.21917620582279
902 => 0.2170509964222
903 => 0.22252942369502
904 => 0.22247893902324
905 => 0.2276798903625
906 => 0.23762215593504
907 => 0.23468173877606
908 => 0.23126235353665
909 => 0.23163413552144
910 => 0.23571166625849
911 => 0.2332462980939
912 => 0.23413286167504
913 => 0.23571032433833
914 => 0.23666204672928
915 => 0.23149719731556
916 => 0.23029302385392
917 => 0.22782970755885
918 => 0.22718707431744
919 => 0.22919339404099
920 => 0.22866479967816
921 => 0.21916446914548
922 => 0.21817163174548
923 => 0.21820208065109
924 => 0.21570554380193
925 => 0.21189772586947
926 => 0.22190444404299
927 => 0.22110076452972
928 => 0.22021356454693
929 => 0.22032224148253
930 => 0.22466581868251
1001 => 0.22214632455062
1002 => 0.22884481263722
1003 => 0.2274678048616
1004 => 0.22605548203246
1005 => 0.22586025599706
1006 => 0.22531663220157
1007 => 0.2234523439333
1008 => 0.22120110382301
1009 => 0.21971464010312
1010 => 0.20267514142319
1011 => 0.20583757326398
1012 => 0.20947566283208
1013 => 0.21073151677226
1014 => 0.20858329170514
1015 => 0.22353716895254
1016 => 0.22626938642478
1017 => 0.21799332148321
1018 => 0.21644520764215
1019 => 0.22363866303822
1020 => 0.21930013007023
1021 => 0.22125377120007
1022 => 0.21703106766193
1023 => 0.22561127524438
1024 => 0.22554590843839
1025 => 0.22220801389603
1026 => 0.22502917950631
1027 => 0.22453893255605
1028 => 0.22077045783861
1029 => 0.22573074261463
1030 => 0.225733202854
1031 => 0.22252055192907
1101 => 0.21876887898847
1102 => 0.21809816847725
1103 => 0.21759287820433
1104 => 0.22112950076778
1105 => 0.22430042549945
1106 => 0.23020073028617
1107 => 0.23168420709733
1108 => 0.23747431585195
1109 => 0.23402658800385
1110 => 0.23555492110336
1111 => 0.2372141428788
1112 => 0.23800963481381
1113 => 0.23671342339417
1114 => 0.24570784559394
1115 => 0.24646725040957
1116 => 0.24672187227543
1117 => 0.24368900371621
1118 => 0.24638290084852
1119 => 0.24512251559281
1120 => 0.24840168788306
1121 => 0.24891590396875
1122 => 0.24848038123794
1123 => 0.24864360153989
1124 => 0.24096844891719
1125 => 0.24057045176404
1126 => 0.23514373234036
1127 => 0.23735516061779
1128 => 0.23322100144964
1129 => 0.23453198590842
1130 => 0.23510985536633
1201 => 0.23480800915532
1202 => 0.2374801914546
1203 => 0.23520829060944
1204 => 0.22921237074397
1205 => 0.22321481729414
1206 => 0.22313952289608
1207 => 0.22156047293835
1208 => 0.22041910903634
1209 => 0.22063897621593
1210 => 0.22141381683452
1211 => 0.22037407389101
1212 => 0.22059595576431
1213 => 0.22428067325235
1214 => 0.22501961706637
1215 => 0.22250839726234
1216 => 0.21242548738184
1217 => 0.2099511160061
1218 => 0.21172964508206
1219 => 0.21087962273569
1220 => 0.17019631402745
1221 => 0.1797542539444
1222 => 0.17407525060272
1223 => 0.17669239662094
1224 => 0.17089560477987
1225 => 0.17366213768232
1226 => 0.17315126007285
1227 => 0.18852014461931
1228 => 0.18828018062632
1229 => 0.18839503869115
1230 => 0.18291256399576
1231 => 0.19164629505093
]
'min_raw' => 0.11150000385298
'max_raw' => 0.24891590396875
'avg_raw' => 0.18020795391086
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.1115000038'
'max' => '$0.248915'
'avg' => '$0.1802079'
'bar_min_pct' => 61.631153054957
'bar_max_pct' => 60.119598047091
'min_diff' => 0.017193074362254
'max_diff' => 0.037656740121358
'year' => 2035
]
10 => [
'items' => [
101 => 0.19594884502352
102 => 0.19515255753226
103 => 0.19535296593847
104 => 0.19190928553494
105 => 0.18842838104497
106 => 0.18456752225823
107 => 0.19174052066742
108 => 0.19094300569149
109 => 0.19277221810945
110 => 0.19742442031432
111 => 0.19810947476099
112 => 0.19903019488444
113 => 0.19870018226151
114 => 0.2065624218105
115 => 0.20561025272439
116 => 0.20790470626417
117 => 0.20318484125223
118 => 0.19784386597752
119 => 0.1988590107676
120 => 0.19876124416104
121 => 0.19751656304819
122 => 0.19639292059297
123 => 0.19452237248931
124 => 0.2004410634783
125 => 0.20020077543295
126 => 0.20409075958293
127 => 0.20340316709913
128 => 0.1988112562099
129 => 0.19897525720563
130 => 0.20007824271816
131 => 0.20389568817068
201 => 0.20502896589249
202 => 0.20450398649844
203 => 0.20574657378431
204 => 0.20672866411071
205 => 0.20586990920878
206 => 0.21802806766622
207 => 0.21297915261084
208 => 0.21543995867871
209 => 0.21602684642598
210 => 0.21452354580226
211 => 0.21484955787838
212 => 0.21534337734074
213 => 0.21834175241642
214 => 0.22621035620181
215 => 0.22969530725496
216 => 0.24017995444283
217 => 0.22940593058286
218 => 0.22876664459435
219 => 0.2306552461589
220 => 0.2368108439708
221 => 0.24179937783143
222 => 0.24345436230843
223 => 0.24367309582788
224 => 0.24677795672801
225 => 0.24855760509374
226 => 0.24640094494879
227 => 0.24457340128767
228 => 0.23802736673661
229 => 0.23878508806016
301 => 0.2440050365833
302 => 0.25137852132568
303 => 0.25770573831497
304 => 0.2554901674511
305 => 0.27239340919319
306 => 0.27406929656837
307 => 0.27383774312104
308 => 0.27765566396718
309 => 0.27007786859366
310 => 0.26683821425861
311 => 0.24496853697071
312 => 0.25111302423606
313 => 0.26004439732934
314 => 0.25886229660952
315 => 0.25237609473289
316 => 0.25770081794922
317 => 0.25594029793441
318 => 0.25455170275469
319 => 0.26091312646541
320 => 0.25391847978259
321 => 0.25997462037806
322 => 0.25220755742162
323 => 0.25550028799218
324 => 0.25363117486887
325 => 0.25484072012954
326 => 0.24776974325074
327 => 0.25158507073628
328 => 0.24761101308371
329 => 0.24760912886294
330 => 0.24752140132
331 => 0.25219686252458
401 => 0.25234932914661
402 => 0.24889415625219
403 => 0.24839621185816
404 => 0.25023737326611
405 => 0.24808185545834
406 => 0.24909040867393
407 => 0.24811240350781
408 => 0.24789223394498
409 => 0.24613788540955
410 => 0.24538206382367
411 => 0.24567844094262
412 => 0.24466675304278
413 => 0.24405717448878
414 => 0.24740014080274
415 => 0.24561412875607
416 => 0.24712640884157
417 => 0.24540297481918
418 => 0.23942880163311
419 => 0.23599299145807
420 => 0.22470833211574
421 => 0.22790864750665
422 => 0.23003045992178
423 => 0.22932920093124
424 => 0.23083577659413
425 => 0.23092826810394
426 => 0.23043846499821
427 => 0.22987133574944
428 => 0.22959528859535
429 => 0.23165271792072
430 => 0.23284712489399
501 => 0.23024341218383
502 => 0.22963339872565
503 => 0.23226589603054
504 => 0.23387171786577
505 => 0.24572820406381
506 => 0.24484983727031
507 => 0.24705436555121
508 => 0.24680616949803
509 => 0.2491168663453
510 => 0.25289387911725
511 => 0.2452141560825
512 => 0.24654709045649
513 => 0.24622028572994
514 => 0.24978825404164
515 => 0.24979939284925
516 => 0.24766021761315
517 => 0.2488198992128
518 => 0.24817259675808
519 => 0.24934235978193
520 => 0.24483810614627
521 => 0.25032380087037
522 => 0.25343383628857
523 => 0.25347701913337
524 => 0.25495115123883
525 => 0.25644895483396
526 => 0.25932385840359
527 => 0.25636877533375
528 => 0.25105286856266
529 => 0.25143665986125
530 => 0.24831994566637
531 => 0.24837233819507
601 => 0.24809266277081
602 => 0.24893198977199
603 => 0.24502229122358
604 => 0.2459398896583
605 => 0.24465524647624
606 => 0.2465442978931
607 => 0.24451199083995
608 => 0.2462201281348
609 => 0.24695730356562
610 => 0.24967749677556
611 => 0.24411021609112
612 => 0.23275815390376
613 => 0.23514449500599
614 => 0.23161490907274
615 => 0.23194158568895
616 => 0.23260152444388
617 => 0.23046244702063
618 => 0.23087051558291
619 => 0.23085593650233
620 => 0.23073030186215
621 => 0.23017384520928
622 => 0.22936687297101
623 => 0.2325816019953
624 => 0.23312784709964
625 => 0.23434208230112
626 => 0.23795482263712
627 => 0.23759382468327
628 => 0.23818262732367
629 => 0.23689727446568
630 => 0.23200120952155
701 => 0.23226708940369
702 => 0.22895156301291
703 => 0.23425729683699
704 => 0.23300082903518
705 => 0.23219077606955
706 => 0.23196974561279
707 => 0.2355914412333
708 => 0.23667510932608
709 => 0.23599984009292
710 => 0.23461484319496
711 => 0.23727444667663
712 => 0.23798604436866
713 => 0.23814534484919
714 => 0.24285765229032
715 => 0.23840871048794
716 => 0.23947961499845
717 => 0.24783450628628
718 => 0.24025777278441
719 => 0.24427133750167
720 => 0.24407489439434
721 => 0.24612809829207
722 => 0.2439064717462
723 => 0.24393401146983
724 => 0.24575711743493
725 => 0.24319689390584
726 => 0.24256294655553
727 => 0.2416871528315
728 => 0.24359941638765
729 => 0.24474573190532
730 => 0.25398419310179
731 => 0.25995266035972
801 => 0.25969355345534
802 => 0.26206130553356
803 => 0.2609946115362
804 => 0.25754997523905
805 => 0.26342954936964
806 => 0.26156900610289
807 => 0.26172238702924
808 => 0.2617166781835
809 => 0.26295377680437
810 => 0.26207717905306
811 => 0.26034931490431
812 => 0.26149635176229
813 => 0.26490264115732
814 => 0.2754758679572
815 => 0.28139278575104
816 => 0.27511966207651
817 => 0.27944677878673
818 => 0.27685205066993
819 => 0.27638051138464
820 => 0.27909826045007
821 => 0.28182076657546
822 => 0.28164735470499
823 => 0.27967095506019
824 => 0.27855453705013
825 => 0.2870084282498
826 => 0.29323711127745
827 => 0.29281235685258
828 => 0.2946870847464
829 => 0.30019134382578
830 => 0.30069458429438
831 => 0.30063118756219
901 => 0.29938385355305
902 => 0.30480351143507
903 => 0.30932468539006
904 => 0.29909513176888
905 => 0.30299041187314
906 => 0.30473912861002
907 => 0.30730676360065
908 => 0.31163879421542
909 => 0.31634452847744
910 => 0.31700997089784
911 => 0.31653780765622
912 => 0.31343424941349
913 => 0.31858331999407
914 => 0.32159952477962
915 => 0.32339560570479
916 => 0.32795016809166
917 => 0.30474992808926
918 => 0.28832764508881
919 => 0.28576306845765
920 => 0.29097823588411
921 => 0.29235343394429
922 => 0.29179909333058
923 => 0.27331432076494
924 => 0.28566574995561
925 => 0.2989548492271
926 => 0.29946533765168
927 => 0.30611813860896
928 => 0.30828456330817
929 => 0.31364094008133
930 => 0.31330589725578
1001 => 0.31461008976148
1002 => 0.31431027848989
1003 => 0.32423183854396
1004 => 0.33517679264954
1005 => 0.33479780369169
1006 => 0.33322433704419
1007 => 0.33556120333165
1008 => 0.34685756890117
1009 => 0.3458175805801
1010 => 0.34682784064802
1011 => 0.36014689228975
1012 => 0.37746355403699
1013 => 0.36941822609098
1014 => 0.38687427275307
1015 => 0.39786192882158
1016 => 0.41686394384723
1017 => 0.41448479797912
1018 => 0.42188214298537
1019 => 0.41022563033248
1020 => 0.38345992111154
1021 => 0.37922414517231
1022 => 0.38770427586958
1023 => 0.40855184970978
1024 => 0.38704771157914
1025 => 0.39139797071592
1026 => 0.39014509579187
1027 => 0.39007833541154
1028 => 0.39262630759453
1029 => 0.38893034104981
1030 => 0.37387230845494
1031 => 0.38077331605562
1101 => 0.37810850560739
1102 => 0.38106531147449
1103 => 0.39702197325967
1104 => 0.38996715272513
1105 => 0.38253547237908
1106 => 0.39185644875492
1107 => 0.40372525471636
1108 => 0.40298252616958
1109 => 0.4015413223524
1110 => 0.40966531281089
1111 => 0.42308376494246
1112 => 0.42671071863392
1113 => 0.42938806169915
1114 => 0.42975722207376
1115 => 0.43355980336417
1116 => 0.41311236539176
1117 => 0.44556297458142
1118 => 0.45116629835849
1119 => 0.45011310572238
1120 => 0.45634096427668
1121 => 0.45450857030448
1122 => 0.45185371893257
1123 => 0.46172619944464
1124 => 0.45040819720565
1125 => 0.43434371792426
1126 => 0.42553042687112
1127 => 0.43713647947781
1128 => 0.44422389080929
1129 => 0.44890821885539
1130 => 0.45032569369178
1201 => 0.41469964179517
1202 => 0.39549917573431
1203 => 0.40780645434553
1204 => 0.42282218365421
1205 => 0.41302895225729
1206 => 0.41341282838701
1207 => 0.39945025403093
1208 => 0.42405756166628
1209 => 0.42047248392384
1210 => 0.4390718735935
1211 => 0.43463297997941
1212 => 0.44980006023087
1213 => 0.44580605969645
1214 => 0.46238493261326
1215 => 0.46899869387484
1216 => 0.48010422838279
1217 => 0.48827350477449
1218 => 0.49307066012505
1219 => 0.49278265691148
1220 => 0.51179137634372
1221 => 0.5005825986086
1222 => 0.48650173206722
1223 => 0.48624705361605
1224 => 0.49353973392525
1225 => 0.50882319120421
1226 => 0.51278596931138
1227 => 0.51500062166116
1228 => 0.51160880449487
1229 => 0.49944247960374
1230 => 0.49418912220042
1231 => 0.49866513491247
]
'min_raw' => 0.18456752225823
'max_raw' => 0.51500062166116
'avg_raw' => 0.3497840719597
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$0.184567'
'max' => '$0.51500062'
'avg' => '$0.349784'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.073067518405256
'max_diff' => 0.26608471769241
'year' => 2036
]
11 => [
'items' => [
101 => 0.49319135599379
102 => 0.50264063407853
103 => 0.51561651114577
104 => 0.51293704384357
105 => 0.52189410130665
106 => 0.53116371347102
107 => 0.54441967519041
108 => 0.54788527445069
109 => 0.55361377824301
110 => 0.55951029036078
111 => 0.56140409113754
112 => 0.56501994443226
113 => 0.56500088710057
114 => 0.5758975043792
115 => 0.58791681067769
116 => 0.59245382055778
117 => 0.60288642460488
118 => 0.58502095577628
119 => 0.59857211910649
120 => 0.61079560763796
121 => 0.59622226069546
122 => 0.61630822430135
123 => 0.6170881167524
124 => 0.6288635668322
125 => 0.61692689227305
126 => 0.60983893302304
127 => 0.63030160579545
128 => 0.64020284858187
129 => 0.63722051367561
130 => 0.61452479778297
131 => 0.60131491766841
201 => 0.56674211341301
202 => 0.60769509348752
203 => 0.62764209546701
204 => 0.61447313986669
205 => 0.62111479507909
206 => 0.65734951235403
207 => 0.67114534666812
208 => 0.66827590957095
209 => 0.66876079720542
210 => 0.6762047789892
211 => 0.70921549369413
212 => 0.68943470826056
213 => 0.70455637755263
214 => 0.71257685641991
215 => 0.72002672417798
216 => 0.70173220351904
217 => 0.67793130094164
218 => 0.67039255600145
219 => 0.61316374676398
220 => 0.61018473871105
221 => 0.60851253121776
222 => 0.59796949951099
223 => 0.5896855645689
224 => 0.58309787194017
225 => 0.56580979923083
226 => 0.57164401627353
227 => 0.54409043667604
228 => 0.56171824046361
301 => 0.51774206212158
302 => 0.55436673020402
303 => 0.53443358848606
304 => 0.54781815704954
305 => 0.54777145955073
306 => 0.52312622524403
307 => 0.50891136842885
308 => 0.51796962844199
309 => 0.52768080222165
310 => 0.52925640749509
311 => 0.54184719778799
312 => 0.5453610167206
313 => 0.53471398131025
314 => 0.51683075357183
315 => 0.52098461950247
316 => 0.50882719046835
317 => 0.4875217637148
318 => 0.50282369316626
319 => 0.50804844465933
320 => 0.5103559925662
321 => 0.48940455229888
322 => 0.482821154889
323 => 0.47931620934803
324 => 0.51412618573024
325 => 0.51603315481554
326 => 0.5062768313569
327 => 0.55037633852247
328 => 0.54039526186217
329 => 0.55154656991488
330 => 0.52060769970803
331 => 0.52178960621464
401 => 0.50714264924133
402 => 0.51534396643636
403 => 0.5095475397837
404 => 0.514681381054
405 => 0.5177585843438
406 => 0.5324031378956
407 => 0.55453394748171
408 => 0.53021572994778
409 => 0.51961993432496
410 => 0.52619350633634
411 => 0.54369979485784
412 => 0.57022271809834
413 => 0.55452061371639
414 => 0.56148894100208
415 => 0.56301121051469
416 => 0.55143306006695
417 => 0.57064962102025
418 => 0.58094793215019
419 => 0.59151186843428
420 => 0.60068423831498
421 => 0.58729239997648
422 => 0.6016235866433
423 => 0.59007517998484
424 => 0.57971506535986
425 => 0.57973077737728
426 => 0.5732317261359
427 => 0.56063899542259
428 => 0.5583167026719
429 => 0.57039756283422
430 => 0.58008526862268
501 => 0.5808831944724
502 => 0.58624680616919
503 => 0.58942093632175
504 => 0.62053172683759
505 => 0.63304474414501
506 => 0.64834542484924
507 => 0.65430590228265
508 => 0.67224480240778
509 => 0.6577576836305
510 => 0.65462330435479
511 => 0.61110940042072
512 => 0.61823479975223
513 => 0.62964325158075
514 => 0.61129752158938
515 => 0.62293366466395
516 => 0.62523088579408
517 => 0.61067414070435
518 => 0.6184495272166
519 => 0.5978004058815
520 => 0.55498404189928
521 => 0.57069728787307
522 => 0.58226752593118
523 => 0.56575536962219
524 => 0.59535277069736
525 => 0.57806258000362
526 => 0.57258241962922
527 => 0.55120236019047
528 => 0.5612929252516
529 => 0.57494055897976
530 => 0.56650790804348
531 => 0.58400692490518
601 => 0.60879019959869
602 => 0.62645223701481
603 => 0.62780810893723
604 => 0.61645260214327
605 => 0.63464987425046
606 => 0.63478242151135
607 => 0.61425582423639
608 => 0.60168339769806
609 => 0.59882691593593
610 => 0.60596296742395
611 => 0.61462745131818
612 => 0.62828892749161
613 => 0.63654427142352
614 => 0.65806983010183
615 => 0.66389402909405
616 => 0.67029305799969
617 => 0.67884413400507
618 => 0.68911189320041
619 => 0.66664662062486
620 => 0.6675392077848
621 => 0.64661985701532
622 => 0.62426453057977
623 => 0.64122943671357
624 => 0.66340879473663
625 => 0.65832082550013
626 => 0.65774832502324
627 => 0.65871111202698
628 => 0.65487494938019
629 => 0.63752412790362
630 => 0.62881065397997
701 => 0.64005325838575
702 => 0.64602820227667
703 => 0.65529481918162
704 => 0.65415251305353
705 => 0.67802232303868
706 => 0.68729740941332
707 => 0.68492444541537
708 => 0.68536112789956
709 => 0.70215322874498
710 => 0.72082949844402
711 => 0.73832228956801
712 => 0.7561167080322
713 => 0.73466484204565
714 => 0.72377290746483
715 => 0.73501060370123
716 => 0.72904772389617
717 => 0.76331219996109
718 => 0.76568459794125
719 => 0.79994659629454
720 => 0.83246531257469
721 => 0.81204088951244
722 => 0.83130020052392
723 => 0.8521307156175
724 => 0.89231615886229
725 => 0.87878311531838
726 => 0.86841701605358
727 => 0.85862110233697
728 => 0.87900484372373
729 => 0.90522820137957
730 => 0.91087646145444
731 => 0.92002880057715
801 => 0.9104062350844
802 => 0.92199555532959
803 => 0.96291094840047
804 => 0.95185524802256
805 => 0.93615437619339
806 => 0.96845314946673
807 => 0.98014194995605
808 => 1.0621800732624
809 => 1.1657565927626
810 => 1.1228752335694
811 => 1.0962573901454
812 => 1.1025132147337
813 => 1.1403358533687
814 => 1.1524832844678
815 => 1.11946237927
816 => 1.1311259212252
817 => 1.1953931841326
818 => 1.2298705087417
819 => 1.183045671
820 => 1.0538578007708
821 => 0.93474068447214
822 => 0.9663359076282
823 => 0.96275398983622
824 => 1.0318011463258
825 => 0.95159157322491
826 => 0.95294209672701
827 => 1.0234170752906
828 => 1.0046155592568
829 => 0.97415951119839
830 => 0.93496304732764
831 => 0.86250475862849
901 => 0.7983264316788
902 => 0.92419491021315
903 => 0.91876723254177
904 => 0.91090715093685
905 => 0.92839891199894
906 => 1.0133339385934
907 => 1.0113759113226
908 => 0.99891994081969
909 => 1.0083676846642
910 => 0.97250327602326
911 => 0.98174635074745
912 => 0.93472181571233
913 => 0.95597886946626
914 => 0.97409416619776
915 => 0.97773108021816
916 => 0.98592523321155
917 => 0.91590709304453
918 => 0.94734318235493
919 => 0.96580893966156
920 => 0.88237997636022
921 => 0.96415981730166
922 => 0.91468823300053
923 => 0.89789683425046
924 => 0.92050424056886
925 => 0.91169411234016
926 => 0.90411968143721
927 => 0.89989301884812
928 => 0.91649340295996
929 => 0.91571897519939
930 => 0.8885575247967
1001 => 0.85312651998875
1002 => 0.86501832818538
1003 => 0.86069792278125
1004 => 0.84504021625328
1005 => 0.85559161993444
1006 => 0.80912857806582
1007 => 0.72919132946962
1008 => 0.78200032443641
1009 => 0.77996723557532
1010 => 0.77894205997832
1011 => 0.81862656016245
1012 => 0.81481181114694
1013 => 0.80788800432966
1014 => 0.84491305511136
1015 => 0.83139841351883
1016 => 0.87304735445699
1017 => 0.90048004064346
1018 => 0.89352222407214
1019 => 0.9193227980242
1020 => 0.86529229142816
1021 => 0.88323905839169
1022 => 0.88693786218973
1023 => 0.84445617173197
1024 => 0.81543595126367
1025 => 0.81350063341317
1026 => 0.76318357035387
1027 => 0.79006253929501
1028 => 0.8137149196359
1029 => 0.80238726495147
1030 => 0.79880126788244
1031 => 0.81712134920025
1101 => 0.81854497641953
1102 => 0.78608612495071
1103 => 0.79283534800922
1104 => 0.82098073012819
1105 => 0.79212615659344
1106 => 0.73606643358324
1107 => 0.7221628471904
1108 => 0.72030785247165
1109 => 0.68260022346693
1110 => 0.72309195131575
1111 => 0.7054162269989
1112 => 0.76125362832814
1113 => 0.72935960415087
1114 => 0.72798471651437
1115 => 0.72590637219962
1116 => 0.69344985823272
1117 => 0.70055577207241
1118 => 0.72417691193675
1119 => 0.73260520075153
1120 => 0.73172606117722
1121 => 0.72406115546495
1122 => 0.72757011004936
1123 => 0.71626654473215
1124 => 0.71227502055528
1125 => 0.69967667229785
1126 => 0.68116058074197
1127 => 0.6837353568386
1128 => 0.64705013446749
1129 => 0.62706207828759
1130 => 0.62152964777535
1201 => 0.61413145047818
1202 => 0.62236529384591
1203 => 0.64694620984177
1204 => 0.61729641001852
1205 => 0.56646390791321
1206 => 0.56951902790411
1207 => 0.57638297545039
1208 => 0.56359205460745
1209 => 0.55148652149022
1210 => 0.5620113003827
1211 => 0.54047289912765
1212 => 0.57898578834113
1213 => 0.57794412261903
1214 => 0.59229934609673
1215 => 0.60127596193617
1216 => 0.58058776864014
1217 => 0.57538474397302
1218 => 0.5783486232877
1219 => 0.52936230033875
1220 => 0.58829611842005
1221 => 0.5888057805261
1222 => 0.58444174414928
1223 => 0.61582218290008
1224 => 0.68204469646854
1225 => 0.65712912306965
1226 => 0.6474810599724
1227 => 0.62914008497185
1228 => 0.65357834518075
1229 => 0.65170186809295
1230 => 0.64321572706914
1231 => 0.63808328249956
]
'min_raw' => 0.47931620934803
'max_raw' => 1.2298705087417
'avg_raw' => 0.85459335904485
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$0.479316'
'max' => '$1.22'
'avg' => '$0.854593'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 0.29474868708979
'max_diff' => 0.71486988708052
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.01504518810907
]
1 => [
'year' => 2028
'avg' => 0.02582191044448
]
2 => [
'year' => 2029
'avg' => 0.070540805387766
]
3 => [
'year' => 2030
'avg' => 0.054422126304143
]
4 => [
'year' => 2031
'avg' => 0.053449272490531
]
5 => [
'year' => 2032
'avg' => 0.093713395781015
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.01504518810907
'min' => '$0.015045'
'max_raw' => 0.093713395781015
'max' => '$0.093713'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.093713395781015
]
1 => [
'year' => 2033
'avg' => 0.24104049038362
]
2 => [
'year' => 2034
'avg' => 0.15278304666906
]
3 => [
'year' => 2035
'avg' => 0.18020795391086
]
4 => [
'year' => 2036
'avg' => 0.3497840719597
]
5 => [
'year' => 2037
'avg' => 0.85459335904485
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.093713395781015
'min' => '$0.093713'
'max_raw' => 0.85459335904485
'max' => '$0.854593'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 0.85459335904485
]
]
]
]
'prediction_2025_max_price' => '$0.025724'
'last_price' => 0.02494318
'sma_50day_nextmonth' => '$0.022421'
'sma_200day_nextmonth' => '$0.03149'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'increase'
'sma_200day_direction_label' => 'aumentar'
'sma_200day_date_nextmonth' => '4 de fev. de 2026'
'sma_50day_date_nextmonth' => '4 de fev. de 2026'
'daily_sma3' => '$0.023219'
'daily_sma3_action' => 'BUY'
'daily_sma5' => '$0.022631'
'daily_sma5_action' => 'BUY'
'daily_sma10' => '$0.022164'
'daily_sma10_action' => 'BUY'
'daily_sma21' => '$0.021576'
'daily_sma21_action' => 'BUY'
'daily_sma50' => '$0.02147'
'daily_sma50_action' => 'BUY'
'daily_sma100' => '$0.026059'
'daily_sma100_action' => 'SELL'
'daily_sma200' => '$0.03450095'
'daily_sma200_action' => 'SELL'
'daily_ema3' => '$0.023608'
'daily_ema3_action' => 'BUY'
'daily_ema5' => '$0.023053'
'daily_ema5_action' => 'BUY'
'daily_ema10' => '$0.022432'
'daily_ema10_action' => 'BUY'
'daily_ema21' => '$0.021941'
'daily_ema21_action' => 'BUY'
'daily_ema50' => '$0.022746'
'daily_ema50_action' => 'BUY'
'daily_ema100' => '$0.026023'
'daily_ema100_action' => 'SELL'
'daily_ema200' => '$0.0304027'
'daily_ema200_action' => 'SELL'
'weekly_sma21' => '$0.029862'
'weekly_sma21_action' => 'SELL'
'weekly_sma50' => '$0.033365'
'weekly_sma50_action' => 'SELL'
'weekly_sma100' => '$0.042647'
'weekly_sma100_action' => 'SELL'
'weekly_sma200' => '$0.05476'
'weekly_sma200_action' => 'SELL'
'weekly_ema3' => '$0.023338'
'weekly_ema3_action' => 'BUY'
'weekly_ema5' => '$0.0229067'
'weekly_ema5_action' => 'BUY'
'weekly_ema10' => '$0.0240016'
'weekly_ema10_action' => 'BUY'
'weekly_ema21' => '$0.027828'
'weekly_ema21_action' => 'SELL'
'weekly_ema50' => '$0.033457'
'weekly_ema50_action' => 'SELL'
'weekly_ema100' => '$0.042021'
'weekly_ema100_action' => 'SELL'
'weekly_ema200' => '$0.065721'
'weekly_ema200_action' => 'SELL'
'rsi_14' => '74.55'
'rsi_14_action' => 'SELL'
'stoch_rsi_14' => 136
'stoch_rsi_14_action' => 'SELL'
'momentum_10' => 0
'momentum_10_action' => 'BUY'
'vwma_10' => '0.022290'
'vwma_10_action' => 'BUY'
'hma_9' => '0.023219'
'hma_9_action' => 'BUY'
'stochastic_fast_14' => 100
'stochastic_fast_14_action' => 'SELL'
'cci_20' => 353.65
'cci_20_action' => 'SELL'
'adx_14' => 15.2
'adx_14_action' => 'NEUTRAL'
'ao_5_34' => '0.001262'
'ao_5_34_action' => 'BUY'
'macd_12_26' => 0
'macd_12_26_action' => 'BUY'
'williams_percent_r_14' => -0
'williams_percent_r_14_action' => 'SELL'
'ultimate_oscillator' => 84.33
'ultimate_oscillator_action' => 'SELL'
'ichimoku_cloud' => '-0.004442'
'ichimoku_cloud_action' => 'NEUTRAL'
'sell_signals' => 14
'buy_signals' => 22
'sell_pct' => 38.89
'buy_pct' => 61.11
'overall_action' => 'bullish'
'overall_action_label' => 'Altista'
'overall_action_dir' => 1
'last_updated' => 1767706408
'last_updated_date' => '6 de janeiro de 2026'
]
Previsão de preço de Bifrost para 2026
A previsão de preço para Bifrost em 2026 sugere que o preço médio poderia variar entre $0.008617 na extremidade inferior e $0.025724 na extremidade superior. No mercado de criptomoedas, comparado ao preço médio de hoje, Bifrost poderia potencialmente ganhar 3.13% até 2026 se BFC atingir a meta de preço prevista.
Previsão de preço de Bifrost 2027-2032
A previsão de preço de BFC para 2027-2032 está atualmente dentro de uma faixa de preço entre $0.015045 na extremidade inferior e $0.093713 na extremidade superior. Considerando a volatilidade de preços no mercado, se Bifrost atingir a meta de preço superior, poderia ganhar 275.71% até 2032 em comparação com o preço de hoje.
| Previsão de Preço de Bifrost | Potencial Mínimo ($) | Preço Médio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2027 | $0.008296 | $0.015045 | $0.021794 |
| 2028 | $0.014972 | $0.025821 | $0.036671 |
| 2029 | $0.032889 | $0.07054 | $0.108191 |
| 2030 | $0.027971 | $0.054422 | $0.080873 |
| 2031 | $0.03307 | $0.053449 | $0.073827 |
| 2032 | $0.050479 | $0.093713 | $0.136946 |
Previsão de preço de Bifrost 2032-2037
A previsão de preço de Bifrost para 2032-2037 é atualmente estimada entre $0.093713 na extremidade inferior e $0.854593 na extremidade superior. Comparado ao preço atual, Bifrost poderia potencialmente ganhar 3326.16% até 2037 se atingir a meta de preço superior. Por favor, note que esta informação é apenas para fins gerais e não deve ser considerada como aconselhamento de investimento a longo prazo.
| Previsão de Preço de Bifrost | Potencial Mínimo ($) | Preço Médio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2032 | $0.050479 | $0.093713 | $0.136946 |
| 2033 | $0.1173041 | $0.24104 | $0.364776 |
| 2034 | $0.0943069 | $0.152783 | $0.211259 |
| 2035 | $0.1115000038 | $0.1802079 | $0.248915 |
| 2036 | $0.184567 | $0.349784 | $0.51500062 |
| 2037 | $0.479316 | $0.854593 | $1.22 |
Bifrost Histograma de preços potenciais
Previsão de preço de Bifrost baseada na análise técnica
Em 6 de janeiro de 2026, o sentimento geral de previsão de preço para Bifrost é Altista, com 22 indicadores técnicos mostrando sinais de alta e 14 indicando sinais de baixa. A previsão de preço de BFC foi atualizada pela última vez em 6 de janeiro de 2026.
Médias Móveis Simples de 50 e 200 dias e Índice de Força Relativa de 14 dias - RSI (14) de Bifrost
De acordo com nossos indicadores técnicos, o SMA de 200 dias de Bifrost está projetado para aumentar no próximo mês, alcançando $0.03149 até 4 de fev. de 2026. O SMA de 50 dias de curto prazo para Bifrost é esperado para alcançar $0.022421 até 4 de fev. de 2026.
O oscilador de momentum Índice de Força Relativa (RSI) é uma ferramenta comumente usada para identificar se uma criptomoeda está sobrevendida (abaixo de 30) ou sobrecomprada (acima de 70). No momento, o RSI está em 74.55, sugerindo que o mercado de BFC está em um estado SELL.
Médias Móveis e Osciladores Populares de BFC para Sábado, 19 de Outubro de 2024
Médias móveis (MA) são indicadores amplamente utilizados nos mercados financeiros, projetados para suavizar movimentos de preços ao longo de um período definido. Como indicadores atrasados, eles se baseiam em dados históricos de preços. A tabela abaixo destaca dois tipos: a média móvel simples (SMA) e a média móvel exponencial (EMA).
Média Móvel Simples Diária (SMA)
| Período | Valor | Ação |
|---|---|---|
| SMA 3 | $0.023219 | BUY |
| SMA 5 | $0.022631 | BUY |
| SMA 10 | $0.022164 | BUY |
| SMA 21 | $0.021576 | BUY |
| SMA 50 | $0.02147 | BUY |
| SMA 100 | $0.026059 | SELL |
| SMA 200 | $0.03450095 | SELL |
Média Móvel Exponencial Diária (EMA)
| Período | Valor | Ação |
|---|---|---|
| EMA 3 | $0.023608 | BUY |
| EMA 5 | $0.023053 | BUY |
| EMA 10 | $0.022432 | BUY |
| EMA 21 | $0.021941 | BUY |
| EMA 50 | $0.022746 | BUY |
| EMA 100 | $0.026023 | SELL |
| EMA 200 | $0.0304027 | SELL |
Média Móvel Simples Semanal (SMA)
| Período | Valor | Ação |
|---|---|---|
| SMA 21 | $0.029862 | SELL |
| SMA 50 | $0.033365 | SELL |
| SMA 100 | $0.042647 | SELL |
| SMA 200 | $0.05476 | SELL |
Média Móvel Exponencial Semanal (EMA)
| Período | Valor | Ação |
|---|---|---|
| EMA 21 | $0.027828 | SELL |
| EMA 50 | $0.033457 | SELL |
| EMA 100 | $0.042021 | SELL |
| EMA 200 | $0.065721 | SELL |
Osciladores de Bifrost
Um oscilador é uma ferramenta de análise técnica que define limites altos e baixos entre dois extremos, criando um indicador de tendência que flutua dentro desses limites. Os traders usam esse indicador para identificar condições de sobrecompra ou sobrevenda de curto prazo.
| Período | Valor | Ação |
|---|---|---|
| RSI (14) | 74.55 | SELL |
| Stoch RSI (14) | 136 | SELL |
| Estocástico Rápido (14) | 100 | SELL |
| Índice de Canal de Commodities (20) | 353.65 | SELL |
| Índice Direcional Médio (14) | 15.2 | NEUTRAL |
| Oscilador Impressionante (5, 34) | 0.001262 | BUY |
| Momentum (10) | 0 | BUY |
| MACD (12, 26) | 0 | BUY |
| Williams Percent Range (14) | -0 | SELL |
| Oscilador Ultimate (7, 14, 28) | 84.33 | SELL |
| VWMA (10) | 0.022290 | BUY |
| Média Móvel de Hull (9) | 0.023219 | BUY |
| Nuvem Ichimoku B/L (9, 26, 52, 26) | -0.004442 | NEUTRAL |
Previsão do preço de Bifrost com base nos fluxos financeiros mundiais
Definições dos fluxos financeiros mundiais, usadas na previsão do preço do Bifrost
M0: o total de todas as moedas físicas, mais as contas no Banco Central que podem ser trocadas por moedas físicas.
M1: o valor de M0, mais o valor em contas de demanda, incluindo contas 'correntes'.
M2: o valor de M1, mais a maioria das contas de poupança, do mercado de moedas e de certificados de depósito (CD) de menos de US$ 100.000.
Previsões de preço de Bifrost por empresas de Internet ou nichos tecnológicos
| Comparação | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Facebook stock | $0.035049 | $0.04925 | $0.0692047 | $0.097244 | $0.136644 | $0.192008 |
| Amazon.com stock | $0.052045 | $0.108595 | $0.226591 | $0.472797 | $0.986519 | $2.05 |
| Apple stock | $0.035379 | $0.050183 | $0.071181 | $0.100966 | $0.143212 | $0.203136 |
| Netflix stock | $0.039356 | $0.062098 | $0.097981 | $0.154599 | $0.243933 | $0.384888 |
| Google stock | $0.0323013 | $0.04183 | $0.054169 | $0.070149 | $0.090843 | $0.117641 |
| Tesla stock | $0.056544 | $0.128181 | $0.290578 | $0.658718 | $1.49 | $3.38 |
| Kodak stock | $0.0187047 | $0.014026 | $0.010518 | $0.007887 | $0.005914 | $0.004435 |
| Nokia stock | $0.016523 | $0.010946 | $0.007251 | $0.0048038 | $0.003182 | $0.0021081 |
Este cálculo mostra quanto a criptomoeda pode custar, se assumirmos que sua capitalização se comportará da mesma forma que a de algumas empresas de Internet ou nichos tecnológicos. Se você extrapolar os dados, poderá obter uma imagem em potencial do preço futuro para 2024, 2025, 2026, 2027, 2028, 2029 e 2030.
Visão geral da previsão para Bifrost
Você pode fazer perguntas como: 'Devo investir em Bifrost agora?', 'Devo comprar BFC hoje?', 'Bifrost será um bom ou mau investimento no curto ou no longo prazo?'.
Atualizamos a previsão para Bifrost regularmente com novos valores. Veja nossas previsões semelhantes. Fazemos previsões de preços futuros para uma enorme quantidade de moedas digitais, como Bifrost, com métodos de análise técnica.
Se você estiver tentando encontrar criptomoedas com bom retorno, você deve explorar o máximo de fontes de informações disponíveis sobre Bifrost para poder tomar sozinho uma decisão de tão grande responsabilidade sobre o seu investimento.
O preço de Bifrost é de $0.02494 USD hoje, mas o preço pode tanto subir quanto descer e seu investimento pode ser perdido, porque criptomoedas são ativos de alto risco
Previsão de curto prazo para Bifrost
com base no histórico de preços de 4 horas
Previsão de longo prazo para Bifrost
com base no histórico de preços de 1 mês
Previsão do preço de Bifrost com base no padrão de crescimento do Bitcoin
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| Se Bifrost tiver 1% da média anterior do crescimento anual do Bitcoin | $0.025591 | $0.026256 | $0.026939 | $0.027639 |
| Se Bifrost tiver 2% da média anterior do crescimento anual do Bitcoin | $0.026239 | $0.027604 | $0.029039 | $0.030548 |
| Se Bifrost tiver 5% da média anterior do crescimento anual do Bitcoin | $0.028184 | $0.031848 | $0.035987 | $0.040664 |
| Se Bifrost tiver 10% da média anterior do crescimento anual do Bitcoin | $0.031426 | $0.039595 | $0.049887 | $0.062855 |
| Se Bifrost tiver 20% da média anterior do crescimento anual do Bitcoin | $0.03791 | $0.057618 | $0.087572 | $0.133097 |
| Se Bifrost tiver 50% da média anterior do crescimento anual do Bitcoin | $0.05736 | $0.13191 | $0.303349 | $0.69760056 |
| Se Bifrost tiver 100% da média anterior do crescimento anual do Bitcoin | $0.089778 | $0.323141 | $1.16 | $4.18 |
Perguntas Frequentes sobre Bifrost
BFC é um bom investimento?
A decisão de adquirir Bifrost depende inteiramente da sua tolerância individual ao risco. Como você pode perceber, o valor de Bifrost experimentou uma escalada de 8.9205% nas últimas 24 horas, e Bifrost registrou um declínio de durante os últimos 30 dias. Consequentemente, a decisão de investir ou não em Bifrost dependerá de quão alinhado esse investimento está com suas aspirações de negociação.
Bifrost pode subir?
Parece que o valor médio de Bifrost pode potencialmente subir para $0.025724 até o final deste ano. Observando as perspectivas de Bifrost em um horizonte de cinco anos mais longo, a moeda digital poderia potencialmente crescer até $0.080873. No entanto, dada a imprevisibilidade do mercado, é vital conduzir uma pesquisa aprofundada antes de investir quaisquer fundos em um projeto, rede ou ativo específico.
Qual será o preço de Bifrost na próxima semana?
Com base na nossa nova previsão experimental de Bifrost, o preço de Bifrost aumentará 0.86% na próxima semana e atingirá $0.025156 até 13 de janeiro de 2026.
Qual será o preço de Bifrost no próximo mês?
Com base na nossa nova previsão experimental de Bifrost, o preço de Bifrost diminuirá -11.62% no próximo mês e atingirá $0.0220452 até 5 de fevereiro de 2026.
Até onde o preço de Bifrost pode subir este ano em 2026?
De acordo com nossa previsão mais recente sobre o valor de Bifrost em 2026, espera-se que BFC fluctue dentro do intervalo de $0.008617 e $0.025724. No entanto, é crucial lembrar que o mercado de criptomoedas é excepcionalmente instável, e essa previsão de preço de Bifrost não considera flutuações repentinas e extremas de preço.
Onde estará Bifrost em 5 anos?
O futuro de Bifrost parece seguir uma tendência de alta, com um preço máximo de $0.080873 projetada após um período de cinco anos. Com base na previsão de Bifrost para 2030, o valor de Bifrost pode potencialmente atingir seu pico mais alto de aproximadamente $0.080873, enquanto seu pico mais baixo está previsto para cerca de $0.027971.
Quanto será Bifrost em 2026?
Com base na nossa nova simulação experimental de previsão de preços de Bifrost, espera-se que o valor de BFC em 2026 aumente 3.13% para $0.025724 se o melhor cenário ocorrer. O preço ficará entre $0.025724 e $0.008617 durante 2026.
Quanto será Bifrost em 2027?
De acordo com nossa última simulação experimental para previsão de preços de Bifrost, o valor de BFC pode diminuir -12.62% para $0.021794 em 2027, assumindo as condições mais favoráveis. O preço está projetado para flutuar entre $0.021794 e $0.008296 ao longo do ano.
Quanto será Bifrost em 2028?
Nosso novo modelo experimental de previsão de preços de Bifrost sugere que o valor de BFC em 2028 pode aumentar 47.02%, alcançando $0.036671 no melhor cenário. O preço é esperado para variar entre $0.036671 e $0.014972 durante o ano.
Quanto será Bifrost em 2029?
Com base no nosso modelo de previsão experimental, o valor de Bifrost pode experimentar um 333.75% crescimento em 2029, potencialmente alcançando $0.108191 sob condições ótimas. A faixa de preço prevista para 2029 está entre $0.108191 e $0.032889.
Quanto será Bifrost em 2030?
Usando nossa nova simulação experimental para previsões de preços de Bifrost, espera-se que o valor de BFC em 2030 aumente 224.23%, alcançando $0.080873 no melhor cenário. O preço está previsto para variar entre $0.080873 e $0.027971 ao longo de 2030.
Quanto será Bifrost em 2031?
Nossa simulação experimental indica que o preço de Bifrost poderia aumentar 195.98% em 2031, potencialmente atingindo $0.073827 sob condições ideais. O preço provavelmente oscilará entre $0.073827 e $0.03307 durante o ano.
Quanto será Bifrost em 2032?
Com base nos achados da nossa mais recente previsão experimental de preços de Bifrost, BFC poderia ver um 449.04% aumento em valor, atingindo $0.136946 se o cenário mais positivo se desenrolar em 2032. O preço é esperado para permanecer dentro de uma faixa de $0.136946 e $0.050479 ao longo do ano.
Quanto será Bifrost em 2033?
De acordo com nossa previsão experimental de preços de Bifrost, espera-se que o valor de BFC seja aumentar 1362.43% em 2033, com o preço potencial mais alto sendo $0.364776. Ao longo do ano, o preço de BFC poderia variar entre $0.364776 e $0.1173041.
Quanto será Bifrost em 2034?
Os resultados da nossa nova simulação de previsão de preços de Bifrost sugerem que BFC pode aumentar 746.96% em 2034, atingindo potencialmente $0.211259 nas melhores circunstâncias. A faixa de preço prevista para o ano é entre $0.211259 e $0.0943069.
Quanto será Bifrost em 2035?
Com base em nossa previsão experimental para o preço de Bifrost, BFC poderia aumentar 897.93%, com o valor potencialmente atingindo $0.248915 em 2035. A faixa de preço esperada para o ano está entre $0.248915 e $0.1115000038.
Quanto será Bifrost em 2036?
Nossa recente simulação de previsão de preços de Bifrost sugere que o valor de BFC pode aumentar 1964.7% em 2036, possivelmente atingindo $0.51500062 se as condições forem ideais. A faixa de preço esperada para 2036 está entre $0.51500062 e $0.184567.
Quanto será Bifrost em 2037?
De acordo com a simulação experimental, o valor de Bifrost poderia aumentar 4830.69% em 2037, com um pico de $1.22 sob condições favoráveis. O preço é esperado para cair entre $1.22 e $0.479316 ao longo do ano.
Previsões relacionadas
Previsão de Preço do Request
Previsão de Preço do POL (ex-MATIC)
Previsão de Preço do Maya Protocol
Previsão de Preço do CertiK
Previsão de Preço do Badger DAO
Previsão de Preço do Electroneum
Previsão de Preço do Ondo US Dollar Yield
Previsão de Preço do Sidus
Previsão de Preço do Hard Protocol
Previsão de Preço do Solidus Ai Tech
Previsão de Preço do Chainge FinancePrevisão de Preço do Mobox
Previsão de Preço do Trias Token
Previsão de Preço do SuperRare
Previsão de Preço do CONX
Previsão de Preço do Banana Gun
Previsão de Preço do Dora Factory
Previsão de Preço do Automata
Previsão de Preço do Storm
Previsão de Preço do Adventure Gold
Previsão de Preço do Star Atlas
Previsão de Preço do Radio Caca
Previsão de Preço do CoinEx Token
Previsão de Preço do Blendr Network
Previsão de Preço do Access Protocol
Como ler e prever os movimentos de preço de Bifrost?
Traders de Bifrost utilizam indicadores e padrões de gráfico para prever a direção do mercado. Eles também identificam níveis-chave de suporte e resistência para avaliar quando uma tendência de baixa pode desacelerar ou uma tendência de alta pode estagnar.
Indicadores de Previsão de Preço de Bifrost
Médias móveis são ferramentas populares para a previsão de preço de Bifrost. Uma média móvel simples (SMA) calcula o preço médio de fechamento de BFC em um período específico, como uma SMA de 12 dias. Uma média móvel exponencial (EMA) dá mais peso aos preços recentes, reagindo mais rapidamente às mudanças de preço.
Médias móveis comumente usadas no mercado de criptomoedas incluem as de 50 dias, 100 dias e 200 dias, que ajudam a identificar níveis-chave de resistência e suporte. Um movimento de preço de BFC acima dessas médias é visto como altista, enquanto uma queda abaixo indica fraqueza.
Traders também usam RSI e níveis de retração de Fibonacci para avaliar a direção futura de BFC.
Como ler gráficos de Bifrost e prever movimentos de preço?
A maioria dos traders prefere gráficos de velas em vez de gráficos de linha simples porque eles fornecem informações mais detalhadas. Velas podem representar a ação de preço de Bifrost em diferentes períodos de tempo, como 5 minutos para tendências de curto prazo e semanal para tendências de longo prazo. Opções populares incluem gráficos de 1 hora, 4 horas e 1 dia.
Por exemplo, um gráfico de velas de 1 hora mostra os preços de abertura, fechamento, máximo e mínimo de BFC dentro de cada hora. A cor da vela é crucial: verde indica que o preço fechou mais alto do que abriu, enquanto vermelho significa o oposto. Alguns gráficos usam velas vazias e preenchidas para transmitir a mesma informação.
O que afeta o preço de Bifrost?
A ação de preço de Bifrost é impulsionada pela oferta e demanda, influenciada por fatores como reduções pela metade das recompensas de bloco, hard forks e atualizações de protocolo. Eventos do mundo real, como regulamentações, adoção por empresas e governos e hacks de exchanges de criptomoedas, também impactam o preço de BFC. A capitalização de mercado de Bifrost pode mudar rapidamente.
Traders frequentemente monitoram a atividade de "baleias" de BFC, grandes detentores de Bifrost, pois suas ações podem influenciar significativamente os movimentos de preço no relativamente pequeno mercado de Bifrost.
Padrões de previsão de preço altistas e baixistas
Traders frequentemente identificam padrões de velas para ganhar vantagem em previsões de preço de criptomoedas. Certas formações indicam tendências altistas, enquanto outras sugerem movimentos baixistas.
Padrões de velas altistas comumente seguidos:
- Martelo
- Engolfo de Alta
- Linha de Perfuração
- Estrela da Manhã
- Três Soldados Brancos
Padrões de velas baixistas comuns:
- Harami de Baixa
- Nuvem Negra
- Estrela da Noite
- Estrela Cadente
- Homem Enforcado


