Previsão de Preço Ankr Network - Projeção ANKR
Previsão de Preço Ankr Network até $0.00778 até 2026
| Ano | Preço Mínimo | Preço Máximo |
|---|---|---|
| 2026 | $0.0026064 | $0.00778 |
| 2027 | $0.0025091 | $0.006591 |
| 2028 | $0.004528 | $0.011091 |
| 2029 | $0.009947 | $0.032721 |
| 2030 | $0.008459 | $0.024459 |
| 2031 | $0.0100019 | $0.022328 |
| 2032 | $0.015267 | $0.041418 |
| 2033 | $0.035477 | $0.110323 |
| 2034 | $0.028522 | $0.063893 |
| 2035 | $0.033722 | $0.075282 |
Calculadora de lucro do investimento
Se você abrir um short de $10,000.00 em Ankr Network hoje e fechar em Apr 06, 2026, nossa previsão mostra que pode lucrar cerca de $3,955.35, com um retorno de 39.55% nos próximos 90 dias.
Previsão de preço de longo prazo de Ankr para os anos 2027, 2028, 2029, 2030, 2031, 2032 e 2037
[
'name' => 'Ankr Network'
'name_with_ticker' => 'Ankr Network <small>ANKR</small>'
'name_lang' => 'Ankr'
'name_lang_with_ticker' => 'Ankr <small>ANKR</small>'
'name_with_lang' => 'Ankr/Ankr Network'
'name_with_lang_with_ticker' => 'Ankr/Ankr Network <small>ANKR</small>'
'image' => '/uploads/coins/ankr.png?1754652982'
'price_for_sd' => 0.007543
'ticker' => 'ANKR'
'marketcap' => '$75.33M'
'low24h' => '$0.007095'
'high24h' => '$0.007523'
'volume24h' => '$11.8M'
'current_supply' => '10B'
'max_supply' => '10B'
'algo' => null
'proof' => null
'ico_price_and_roi' => '0.0066 USD 1.14x'
'price' => '$0.007543'
'change_24h_pct' => '6.1403%'
'ath_price' => '$0.2135'
'ath_days' => 1726
'ath_exchange' => null
'ath_pair' => null
'ath_date' => '16 de abr. de 2021'
'ath_pct' => '-96.48%'
'fdv' => '$75.33M'
'new_prediction' => true
'change_24h_pct_is_increased' => true
'change_30d_pct' => '-70.91%'
'change_30d_pct_is_increased' => false
'max_price' => '$0.371964'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.007608'
'next_week_prediction_price_date' => '13 de janeiro de 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.006667'
'next_month_prediction_price_date' => '5 de fevereiro de 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.0026064'
'current_year_max_price_prediction' => '$0.00778'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.008459'
'grand_prediction_max_price' => '$0.024459'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.0076868121789296
107 => 0.0077155119452929
108 => 0.0077801739843559
109 => 0.0072276439402815
110 => 0.0074757137086411
111 => 0.0076214314565584
112 => 0.0069630733702109
113 => 0.0076084178339739
114 => 0.0072180256214825
115 => 0.0070855206410687
116 => 0.0072639211409922
117 => 0.0071943982926718
118 => 0.0071346266302046
119 => 0.0071012730155404
120 => 0.0072322706533395
121 => 0.0072261594569602
122 => 0.0070118218959749
123 => 0.0067322272851863
124 => 0.0068260684139472
125 => 0.0067919750521031
126 => 0.0066684163106489
127 => 0.0067516799838497
128 => 0.0063850289058539
129 => 0.0057542247830268
130 => 0.0061709533086192
131 => 0.0061549097136973
201 => 0.0061468198056186
202 => 0.0064599797750708
203 => 0.0064298766698377
204 => 0.0063752392390692
205 => 0.0066674128513856
206 => 0.0065607655526005
207 => 0.0068894273981924
208 => 0.0071059053462147
209 => 0.0070509995362683
210 => 0.007254598092712
211 => 0.0068282303240214
212 => 0.0069698525938746
213 => 0.0069990407474114
214 => 0.0066638074743625
215 => 0.0064348019101453
216 => 0.0064195298498665
217 => 0.0060224657604244
218 => 0.006234574192015
219 => 0.0064212208341715
220 => 0.0063318315769431
221 => 0.0063035336085327
222 => 0.006448101792061
223 => 0.0064593359780639
224 => 0.0062031953466519
225 => 0.0062564550948414
226 => 0.0064785570984877
227 => 0.0062508586942045
228 => 0.0058084778890055
301 => 0.005698761332923
302 => 0.0056841231218643
303 => 0.0053865631200387
304 => 0.0057060931178306
305 => 0.0055666097109229
306 => 0.0060072361220765
307 => 0.0057555526791524
308 => 0.0057447031089612
309 => 0.0057283023923314
310 => 0.0054721802067113
311 => 0.0055282546879481
312 => 0.0057146548039637
313 => 0.0057811644653057
314 => 0.0057742269627302
315 => 0.005713741341705
316 => 0.0057414313492738
317 => 0.0056522321870565
318 => 0.0056207341063576
319 => 0.005521317499442
320 => 0.0053752025518148
321 => 0.0053955207314575
322 => 0.0051060287871522
323 => 0.0049482982113943
324 => 0.0049046404668801
325 => 0.004846259506333
326 => 0.0049112347517197
327 => 0.0051052086928467
328 => 0.0048712349659803
329 => 0.0044701034226165
330 => 0.0044942121118675
331 => 0.0045483771786806
401 => 0.0044474409350122
402 => 0.004351913251317
403 => 0.004434966821884
404 => 0.0042650020989371
405 => 0.0045689166034326
406 => 0.0045606965677966
407 => 0.0046739771011256
408 => 0.0047448137433669
409 => 0.0045815582166361
410 => 0.0045404998931532
411 => 0.0045638885802058
412 => 0.0041773256821703
413 => 0.0046423866652849
414 => 0.0046464085319789
415 => 0.0046119708675984
416 => 0.0048596014839599
417 => 0.0053821793224089
418 => 0.0051855645189396
419 => 0.0051094293243223
420 => 0.0049646962637005
421 => 0.0051575444735803
422 => 0.0051427367399623
423 => 0.0050757705528752
424 => 0.0050352691939778
425 => 0.0051098941895858
426 => 0.0050260223311837
427 => 0.0050109566407701
428 => 0.0049196749484968
429 => 0.0048870915374076
430 => 0.0048629680770201
501 => 0.0048364105174557
502 => 0.0048949898761232
503 => 0.0047622413426263
504 => 0.0046021596247282
505 => 0.0045888505619932
506 => 0.0046255980543494
507 => 0.0046093400245108
508 => 0.0045887727248012
509 => 0.0045495041484849
510 => 0.0045378540007322
511 => 0.0045757113290802
512 => 0.0045329726125947
513 => 0.0045960359168675
514 => 0.0045788861875571
515 => 0.0044830891937239
516 => 0.004363690670818
517 => 0.0043626277735173
518 => 0.00433690355761
519 => 0.0043041399009904
520 => 0.0042950258012497
521 => 0.0044279722818261
522 => 0.0047031675178659
523 => 0.0046491401081674
524 => 0.0046881804486262
525 => 0.0048802202840385
526 => 0.0049412639728767
527 => 0.0048979366084383
528 => 0.0048386274396796
529 => 0.0048412367421059
530 => 0.0050439141258606
531 => 0.0050565548656763
601 => 0.0050884939371332
602 => 0.0051295446699358
603 => 0.004904927725743
604 => 0.0048306573042339
605 => 0.0047954638581568
606 => 0.0046870816658169
607 => 0.0048039625682685
608 => 0.0047358610717492
609 => 0.0047450502903081
610 => 0.0047390657996666
611 => 0.0047423337362263
612 => 0.0045688316531348
613 => 0.0046320466932123
614 => 0.0045269394283248
615 => 0.0043862125994846
616 => 0.0043857408338091
617 => 0.0044201835258002
618 => 0.0043996956648612
619 => 0.0043445633578655
620 => 0.0043523946418571
621 => 0.0042837843536266
622 => 0.0043607251730777
623 => 0.0043629315604721
624 => 0.0043333051539886
625 => 0.0044518431021401
626 => 0.0045004081962156
627 => 0.004480907460809
628 => 0.0044990399726345
629 => 0.0046513851909595
630 => 0.0046762241088344
701 => 0.0046872559153876
702 => 0.0046724747560406
703 => 0.0045018245635614
704 => 0.0045093936252585
705 => 0.0044538568726765
706 => 0.0044069341690635
707 => 0.0044088108311309
708 => 0.0044329352003125
709 => 0.0045382877354039
710 => 0.0047599959346327
711 => 0.0047684095987268
712 => 0.0047786072050528
713 => 0.0047371284152187
714 => 0.0047246180153061
715 => 0.0047411224619989
716 => 0.004824384404766
717 => 0.0050385567269597
718 => 0.004962853924208
719 => 0.0049013063671865
720 => 0.0049553001677966
721 => 0.00494698824541
722 => 0.0048768272556448
723 => 0.0048748580703405
724 => 0.0047401966991557
725 => 0.0046904154563197
726 => 0.0046488145237446
727 => 0.0046033873913923
728 => 0.0045764566646026
729 => 0.004617834500748
730 => 0.0046272981014426
731 => 0.0045368247395499
801 => 0.0045244935546345
802 => 0.0045983760549592
803 => 0.0045658631211836
804 => 0.0045993034798538
805 => 0.0046070619299114
806 => 0.0046058126407599
807 => 0.0045718654038114
808 => 0.0045935023603212
809 => 0.0045423245078884
810 => 0.0044866762800326
811 => 0.0044511761776678
812 => 0.0044201976299491
813 => 0.0044373863287072
814 => 0.0043761117561671
815 => 0.0043565087871981
816 => 0.0045861722463026
817 => 0.0047558271128414
818 => 0.0047533602638912
819 => 0.004738343955329
820 => 0.0047160327667526
821 => 0.0048227522023538
822 => 0.0047855732849128
823 => 0.0048126240537536
824 => 0.0048195096097408
825 => 0.0048403501139172
826 => 0.0048477988028584
827 => 0.004825283691431
828 => 0.0047497202274913
829 => 0.0045614232597122
830 => 0.0044737705129131
831 => 0.0044448436464974
901 => 0.0044458950831517
902 => 0.004416891766407
903 => 0.0044254345430258
904 => 0.0044139209373274
905 => 0.0043921169535749
906 => 0.0044360399941525
907 => 0.0044411017154076
908 => 0.0044308495528956
909 => 0.0044332643083008
910 => 0.0043483807814569
911 => 0.0043548342916455
912 => 0.0043189003268429
913 => 0.0043121631416328
914 => 0.0042213252077401
915 => 0.0040603926406799
916 => 0.0041495649049335
917 => 0.004041857349233
918 => 0.0040010668658534
919 => 0.0041941626699507
920 => 0.0041747812068632
921 => 0.004141608566977
922 => 0.0040925393188013
923 => 0.004074339057338
924 => 0.0039637600301895
925 => 0.0039572264313494
926 => 0.0040120323830891
927 => 0.0039867413221189
928 => 0.0039512230940429
929 => 0.0038225796723768
930 => 0.0036779418740509
1001 => 0.0036823075800216
1002 => 0.0037283141725871
1003 => 0.0038620845453058
1004 => 0.0038098181464337
1005 => 0.0037718982743641
1006 => 0.0037647970221927
1007 => 0.0038536840605969
1008 => 0.0039794778423491
1009 => 0.0040384974702701
1010 => 0.0039800108114532
1011 => 0.0039128244869497
1012 => 0.0039169138072108
1013 => 0.00394411822286
1014 => 0.003946977022295
1015 => 0.0039032456319089
1016 => 0.0039155557621445
1017 => 0.0038968555486548
1018 => 0.0037820923729861
1019 => 0.0037800166710562
1020 => 0.0037518519369409
1021 => 0.0037509991199853
1022 => 0.003703083881233
1023 => 0.0036963802081091
1024 => 0.0036012415933193
1025 => 0.0036638621176802
1026 => 0.003621859557664
1027 => 0.0035585517923173
1028 => 0.0035476375097094
1029 => 0.0035473094131949
1030 => 0.0036123123328486
1031 => 0.0036631025207175
1101 => 0.0036225902101784
1102 => 0.0036133663423668
1103 => 0.0037118531189889
1104 => 0.0036993197789368
1105 => 0.0036884659872831
1106 => 0.0039682143889115
1107 => 0.0037467716999826
1108 => 0.0036502100481028
1109 => 0.0035306966673412
1110 => 0.003569610826756
1111 => 0.0035778106119126
1112 => 0.003290402475087
1113 => 0.0031738010297713
1114 => 0.0031337878077717
1115 => 0.003110759632807
1116 => 0.0031212538613081
1117 => 0.0030162988845385
1118 => 0.0030868303647227
1119 => 0.0029959482264636
1120 => 0.0029807115402284
1121 => 0.0031432200615723
1122 => 0.0031658321729562
1123 => 0.0030693618807598
1124 => 0.0031313114254716
1125 => 0.003108847659396
1126 => 0.0029975061398765
1127 => 0.0029932537128036
1128 => 0.0029373864521524
1129 => 0.0028499650072666
1130 => 0.0028100110611232
1201 => 0.0027892026990757
1202 => 0.0027977886348034
1203 => 0.0027934473229655
1204 => 0.0027651173266468
1205 => 0.0027950711651926
1206 => 0.0027185514854887
1207 => 0.0026880807324696
1208 => 0.002674317800247
1209 => 0.0026064021802013
1210 => 0.0027144861339073
1211 => 0.0027357800343932
1212 => 0.002757115890441
1213 => 0.0029428299507298
1214 => 0.0029335522011002
1215 => 0.0030174185393039
1216 => 0.0030141596476216
1217 => 0.0029902396094213
1218 => 0.0028893249029096
1219 => 0.0029295477062935
1220 => 0.0028057481694893
1221 => 0.0028985072000132
1222 => 0.0028561758521918
1223 => 0.0028841949287333
1224 => 0.0028338141027334
1225 => 0.0028616969320151
1226 => 0.00274082960815
1227 => 0.0026279654017739
1228 => 0.0026733852531312
1229 => 0.0027227618259467
1230 => 0.0028298228167273
1231 => 0.0027660581738524
]
'min_raw' => 0.0026064021802013
'max_raw' => 0.0077801739843559
'avg_raw' => 0.0051932880822786
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.0026064'
'max' => '$0.00778'
'avg' => '$0.005193'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.0049374578197987
'max_diff' => 0.00023631398435586
'year' => 2026
]
1 => [
'items' => [
101 => 0.0027889903506383
102 => 0.0027121713972055
103 => 0.0025536719540243
104 => 0.0025545690436597
105 => 0.0025301873574244
106 => 0.0025091180207325
107 => 0.0027733823101373
108 => 0.0027405168683496
109 => 0.0026881500881836
110 => 0.0027582451044089
111 => 0.0027767793392564
112 => 0.0027773069828664
113 => 0.0028284464972901
114 => 0.0028557396653054
115 => 0.0028605502044634
116 => 0.0029410193353515
117 => 0.0029679915266117
118 => 0.003079086165165
119 => 0.002853424030686
120 => 0.0028487766675275
121 => 0.0027592314850341
122 => 0.0027024405146435
123 => 0.0027631200113636
124 => 0.0028168737618802
125 => 0.0027609017639007
126 => 0.0027682105252034
127 => 0.0026930726909961
128 => 0.0027199309311616
129 => 0.0027430648657877
130 => 0.0027302916668369
131 => 0.0027111695697779
201 => 0.0028124665673376
202 => 0.0028067509937491
203 => 0.0029010810866846
204 => 0.0029746181397374
205 => 0.0031064096851287
206 => 0.0029688783370642
207 => 0.0029638661481032
208 => 0.003012861099178
209 => 0.0029679840257399
210 => 0.0029963447870489
211 => 0.0031018403280262
212 => 0.0031040692825693
213 => 0.0030667314221258
214 => 0.0030644594099245
215 => 0.0030716305544542
216 => 0.0031136321719508
217 => 0.0030989555162181
218 => 0.0031159397137994
219 => 0.0031371787129461
220 => 0.0032250322185657
221 => 0.003246213401344
222 => 0.003194754108377
223 => 0.0031994003063666
224 => 0.0031801531182078
225 => 0.0031615605756129
226 => 0.0032033538961434
227 => 0.0032797320108627
228 => 0.003279256866575
301 => 0.0032969751046115
302 => 0.0033080134201224
303 => 0.0032606288894088
304 => 0.0032297833022917
305 => 0.0032416114631481
306 => 0.0032605249499413
307 => 0.0032354780742906
308 => 0.0030808771549334
309 => 0.0031277731979214
310 => 0.0031199674032688
311 => 0.0031088510024666
312 => 0.0031560053363274
313 => 0.0031514571857927
314 => 0.0030152224195523
315 => 0.0030239437272744
316 => 0.0030157527911607
317 => 0.0030422193814518
318 => 0.0029665547430083
319 => 0.0029898286761844
320 => 0.0030044258688929
321 => 0.0030130237275391
322 => 0.003044085088576
323 => 0.0030404403963672
324 => 0.003043858529391
325 => 0.0030899143279135
326 => 0.0033228487523991
327 => 0.003335526859183
328 => 0.0032730952245793
329 => 0.003298035431194
330 => 0.0032501556883175
331 => 0.0032822976804769
401 => 0.0033042884151942
402 => 0.0032049165135816
403 => 0.0031990323544864
404 => 0.0031509549948793
405 => 0.0031767890446913
406 => 0.0031356852139064
407 => 0.0031457706562301
408 => 0.0031175708802601
409 => 0.0031683248624866
410 => 0.0032250757009874
411 => 0.0032394132039512
412 => 0.0032016974063365
413 => 0.0031743886832713
414 => 0.0031264435616215
415 => 0.0032061773674519
416 => 0.0032294939621204
417 => 0.0032060548953063
418 => 0.0032006235513717
419 => 0.00319033116443
420 => 0.0032028071299167
421 => 0.0032293669749384
422 => 0.0032168418425095
423 => 0.0032251149131432
424 => 0.0031935864990408
425 => 0.0032606445756601
426 => 0.0033671489397365
427 => 0.0033674913686822
428 => 0.0033549661687382
429 => 0.0033498411267802
430 => 0.0033626927420155
501 => 0.0033696642160798
502 => 0.0034112239831675
503 => 0.0034558192690667
504 => 0.0036639260099109
505 => 0.0036054904698344
506 => 0.0037901351506368
507 => 0.0039361651200404
508 => 0.0039799531227479
509 => 0.0039396702206417
510 => 0.0038018645885761
511 => 0.0037951031868305
512 => 0.0040010429811736
513 => 0.0039428555566316
514 => 0.0039359343476332
515 => 0.003862304377457
516 => 0.0039058288090803
517 => 0.0038963093774194
518 => 0.0038812824888361
519 => 0.0039643240724352
520 => 0.0041197705037594
521 => 0.0040955427196701
522 => 0.004077457802742
523 => 0.0039982149612034
524 => 0.0040459368513391
525 => 0.0040289440003143
526 => 0.0041019560722463
527 => 0.0040587053382492
528 => 0.0039424147296618
529 => 0.0039609343923782
530 => 0.003958135182615
531 => 0.0040157427211874
601 => 0.003998450368015
602 => 0.0039547585731257
603 => 0.0041192392047563
604 => 0.0041085587474276
605 => 0.0041237011940273
606 => 0.0041303673673162
607 => 0.0042304838293159
608 => 0.0042714983404277
609 => 0.0042808093525102
610 => 0.0043197699658903
611 => 0.004279839976957
612 => 0.0044395884022899
613 => 0.0045458117835572
614 => 0.0046691957071044
615 => 0.004849492781879
616 => 0.0049172861498355
617 => 0.004905039884709
618 => 0.0050417390691011
619 => 0.0052873844648015
620 => 0.0049546918424507
621 => 0.0053050179816269
622 => 0.0051941087706735
623 => 0.0049311450266745
624 => 0.0049142132616999
625 => 0.0050922953622078
626 => 0.0054872643213674
627 => 0.0053883290767988
628 => 0.005487426143985
629 => 0.0053718241512617
630 => 0.0053660835379529
701 => 0.0054818116132269
702 => 0.0057522165691136
703 => 0.00562375731055
704 => 0.0054395794638967
705 => 0.0055755735197408
706 => 0.0054577628829129
707 => 0.0051923025450186
708 => 0.0053882534228818
709 => 0.0052572266512144
710 => 0.0052954672289532
711 => 0.0055708660142369
712 => 0.0055377293037767
713 => 0.0055806112754889
714 => 0.0055049257178335
715 => 0.0054342234724664
716 => 0.005302252481071
717 => 0.0052631823766101
718 => 0.005273979947888
719 => 0.00526317702587
720 => 0.0051893404690603
721 => 0.0051733954716473
722 => 0.0051468197773925
723 => 0.0051550566962961
724 => 0.0051050866161036
725 => 0.0051993904817722
726 => 0.0052168941102431
727 => 0.0052855205993869
728 => 0.0052926456291495
729 => 0.0054837694245781
730 => 0.0053785016497609
731 => 0.0054491243614907
801 => 0.0054428072014268
802 => 0.0049368442483828
803 => 0.0050065614791633
804 => 0.0051150196117856
805 => 0.0050661593700508
806 => 0.0049970824197735
807 => 0.0049412990787529
808 => 0.0048567816129671
809 => 0.0049757383230464
810 => 0.0051321537471649
811 => 0.0052966125824299
812 => 0.005494199097231
813 => 0.005450100087288
814 => 0.005292918839974
815 => 0.0052999698759075
816 => 0.0053435566055682
817 => 0.0052871078303856
818 => 0.0052704599845732
819 => 0.0053412694471987
820 => 0.0053417570730516
821 => 0.0052768059351416
822 => 0.0052046246312874
823 => 0.0052043221889887
824 => 0.0051914782231565
825 => 0.0053741090642502
826 => 0.005474537560791
827 => 0.0054860515260708
828 => 0.0054737625791892
829 => 0.005478492107113
830 => 0.0054200549777669
831 => 0.0055536249264598
901 => 0.0056762019200793
902 => 0.0056433486673138
903 => 0.0055940969710532
904 => 0.0055548656226985
905 => 0.0056341070084316
906 => 0.0056305785142624
907 => 0.0056751313169739
908 => 0.0056731101444934
909 => 0.0056581287126572
910 => 0.0056433492023479
911 => 0.0057019482901243
912 => 0.0056850726939173
913 => 0.0056681708852481
914 => 0.0056342717204247
915 => 0.0056388791799297
916 => 0.0055896359876689
917 => 0.0055668538337139
918 => 0.0052242649002608
919 => 0.0051327139428258
920 => 0.0051615177377264
921 => 0.0051710006948979
922 => 0.0051311576008965
923 => 0.0051882823628435
924 => 0.0051793795292041
925 => 0.0052140152469113
926 => 0.0051923763541959
927 => 0.0051932644219009
928 => 0.0052568997914786
929 => 0.0052753734099912
930 => 0.0052659775785153
1001 => 0.0052725580968108
1002 => 0.0054242033634666
1003 => 0.0054026442558908
1004 => 0.0053911914096801
1005 => 0.0053943639263506
1006 => 0.0054331125432924
1007 => 0.00544396004044
1008 => 0.0053979984327854
1009 => 0.0054196741926562
1010 => 0.0055119668271227
1011 => 0.0055442640258752
1012 => 0.0056473411807585
1013 => 0.0056035521733137
1014 => 0.0056839287916224
1015 => 0.0059309791138949
1016 => 0.0061283400059081
1017 => 0.0059468387733289
1018 => 0.0063092669177532
1019 => 0.006591469215417
1020 => 0.0065806378212001
1021 => 0.0065314293231457
1022 => 0.0062101495099917
1023 => 0.0059145030359153
1024 => 0.0061618238652926
1025 => 0.0061624543369487
1026 => 0.0061412092583671
1027 => 0.0060092578999147
1028 => 0.0061366176371142
1029 => 0.0061467269905504
1030 => 0.0061410684409202
1031 => 0.006039901643771
1101 => 0.0058854386432737
1102 => 0.0059156203438387
1103 => 0.0059650585850542
1104 => 0.0058714616805358
1105 => 0.0058415517983057
1106 => 0.0058971599599593
1107 => 0.0060763410432279
1108 => 0.0060424678973613
1109 => 0.0060415833326306
1110 => 0.0061865070150971
1111 => 0.0060827729349392
1112 => 0.005916001031738
1113 => 0.0058738889267286
1114 => 0.0057244193240581
1115 => 0.005827658511015
1116 => 0.0058313739055604
1117 => 0.005774830857943
1118 => 0.0059205891884257
1119 => 0.00591924599975
1120 => 0.0060576218412788
1121 => 0.0063221444786892
1122 => 0.0062439121184385
1123 => 0.0061529363951236
1124 => 0.0061628279787311
1125 => 0.0062713142363969
1126 => 0.0062057209685118
1127 => 0.0062293087649758
1128 => 0.0062712785334419
1129 => 0.0062965999368083
1130 => 0.0061591846184609
1201 => 0.0061271465344197
1202 => 0.0060616078583108
1203 => 0.0060445100410513
1204 => 0.0060978899252326
1205 => 0.00608382621169
1206 => 0.0058310616410356
1207 => 0.0058046463370334
1208 => 0.0058054564566948
1209 => 0.0057390339188021
1210 => 0.00563772360528
1211 => 0.0059039610602916
1212 => 0.0058825784666633
1213 => 0.0058589737381791
1214 => 0.0058618651827317
1215 => 0.0059774298383276
1216 => 0.005910396501927
1217 => 0.0060886156132959
1218 => 0.0060519791217553
1219 => 0.0060144030424488
1220 => 0.0060092088836933
1221 => 0.0059947452990008
1222 => 0.0059451442854272
1223 => 0.0058852480809783
1224 => 0.0058456994186808
1225 => 0.0053923487112309
1226 => 0.0054764879655138
1227 => 0.005573282508032
1228 => 0.0056066955962295
1229 => 0.0055495401967524
1230 => 0.0059474011289648
1231 => 0.0060200941551634
]
'min_raw' => 0.0025091180207325
'max_raw' => 0.006591469215417
'avg_raw' => 0.0045502936180747
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.0025091'
'max' => '$0.006591'
'avg' => '$0.00455'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -9.7284159468795E-5
'max_diff' => -0.0011887047689389
'year' => 2027
]
2 => [
'items' => [
101 => 0.0057999022371592
102 => 0.0057587133196774
103 => 0.0059501014675377
104 => 0.0058346710181284
105 => 0.0058866493424295
106 => 0.0057743006359138
107 => 0.0060025845338524
108 => 0.0060008453930303
109 => 0.0059120378007065
110 => 0.0059870973696104
111 => 0.0059740539223881
112 => 0.0058737903693779
113 => 0.0060057630673197
114 => 0.0060058285241314
115 => 0.0059203531473633
116 => 0.0058205366202641
117 => 0.0058026917827799
118 => 0.0057892480948522
119 => 0.0058833430193123
120 => 0.0059677082343561
121 => 0.0061246909836421
122 => 0.0061641601766307
123 => 0.0063182110644782
124 => 0.0062264812613666
125 => 0.0062671438949862
126 => 0.0063112889358609
127 => 0.0063324536918364
128 => 0.0062979668577378
129 => 0.0065372712964401
130 => 0.0065574759231651
131 => 0.0065642503597367
201 => 0.0064835582494375
202 => 0.0065552317296067
203 => 0.0065216980818117
204 => 0.0066089433174587
205 => 0.0066226244844112
206 => 0.0066110370227241
207 => 0.0066153796410573
208 => 0.0064111755188207
209 => 0.0064005864578202
210 => 0.0062562038597124
211 => 0.0063150408356636
212 => 0.0062050479292525
213 => 0.006239927812928
214 => 0.0062553025333044
215 => 0.0062472716518874
216 => 0.0063183673900056
217 => 0.0062579214887054
218 => 0.0060983948169481
219 => 0.0059388246822556
220 => 0.0059368214091976
221 => 0.0058948094093799
222 => 0.0058644424283933
223 => 0.0058702921862578
224 => 0.0058909074959684
225 => 0.0058632442291163
226 => 0.0058691475896625
227 => 0.0059671827086137
228 => 0.0059868429525648
229 => 0.0059200297618655
301 => 0.0056517651601104
302 => 0.0055859323539489
303 => 0.0056332516694965
304 => 0.0056106360844189
305 => 0.0045282212123184
306 => 0.0047825185308317
307 => 0.0046314236992921
308 => 0.0047010551492045
309 => 0.0045468264520195
310 => 0.0046204324701348
311 => 0.0046068401262503
312 => 0.0050157426892149
313 => 0.0050093582381213
314 => 0.0050124141370022
315 => 0.0048665481213158
316 => 0.0050989166449981
317 => 0.0052133897354659
318 => 0.005192203813023
319 => 0.0051975358532691
320 => 0.0051059137359465
321 => 0.0050133012393739
322 => 0.0049105797277138
323 => 0.0051014235996156
324 => 0.0050802050188737
325 => 0.0051288728088913
326 => 0.0052526487016213
327 => 0.0052708751720047
328 => 0.0052953717330346
329 => 0.0052865914596893
330 => 0.0054957731925929
331 => 0.0054704399045127
401 => 0.0055314858399015
402 => 0.0054059097192406
403 => 0.0052638084189181
404 => 0.0052908172304679
405 => 0.0052882160647245
406 => 0.005255100239332
407 => 0.0052252047528763
408 => 0.0051754371909287
409 => 0.0053329091211444
410 => 0.0053265160483551
411 => 0.0054300124656788
412 => 0.0054117184686063
413 => 0.0052895466788555
414 => 0.0052939100682273
415 => 0.0053232559587258
416 => 0.0054248224208066
417 => 0.0054549742619243
418 => 0.0054410067277755
419 => 0.0054740668450771
420 => 0.0055001962138228
421 => 0.0054773482914967
422 => 0.0058008266896295
423 => 0.0056664959058896
424 => 0.0057319677952168
425 => 0.0057475824550386
426 => 0.005707585832246
427 => 0.0057162596675581
428 => 0.0057293981645772
429 => 0.0058091725456955
430 => 0.0060185236046532
501 => 0.0061112437635647
502 => 0.0063901969363821
503 => 0.006103544645094
504 => 0.0060865358844141
505 => 0.0061367837744173
506 => 0.0063005588170532
507 => 0.0064332831065021
508 => 0.0064773154103603
509 => 0.0064831350062093
510 => 0.0065657425354594
511 => 0.0066130916306863
512 => 0.0065557118086147
513 => 0.0065070884173268
514 => 0.006332925465091
515 => 0.0063530853010423
516 => 0.0064919665791991
517 => 0.0066881445646621
518 => 0.0068564856850299
519 => 0.0067975384919575
520 => 0.0072472639648672
521 => 0.0072918524085424
522 => 0.0072856917273435
523 => 0.0073872708376856
524 => 0.0071856569898825
525 => 0.0070994631638624
526 => 0.0065176013464222
527 => 0.0066810807832877
528 => 0.0069187077455826
529 => 0.0068872569260675
530 => 0.0067146858742621
531 => 0.0068563547744123
601 => 0.0068095146056265
602 => 0.0067725698211048
603 => 0.0069418210410977
604 => 0.0067557223722586
605 => 0.0069168512690028
606 => 0.0067102017922633
607 => 0.0067978077577701
608 => 0.0067480783747247
609 => 0.006780259380159
610 => 0.0065921298799559
611 => 0.00669363999168
612 => 0.0065879067255739
613 => 0.0065878565942389
614 => 0.0065855225265293
615 => 0.0067099172452101
616 => 0.0067139737525204
617 => 0.0066220458674653
618 => 0.0066087976230454
619 => 0.0066577833263517
620 => 0.006600433897156
621 => 0.0066272673341237
622 => 0.0066012466546261
623 => 0.0065953888515918
624 => 0.0065487128803918
625 => 0.0065286035886163
626 => 0.0065364889600741
627 => 0.006509572122101
628 => 0.0064933537535976
629 => 0.0065822962848236
630 => 0.006534777878321
701 => 0.0065750134075172
702 => 0.0065291599438695
703 => 0.0063702118614637
704 => 0.0062787991384266
705 => 0.0059785609452569
706 => 0.0060637081243955
707 => 0.0061201607922556
708 => 0.0061015031858646
709 => 0.0061415869439276
710 => 0.0061440477611259
711 => 0.006131016122774
712 => 0.0061159271550189
713 => 0.0061085826799879
714 => 0.0061633223796531
715 => 0.0061951006177624
716 => 0.0061258265727146
717 => 0.0061095966332068
718 => 0.0061796365174749
719 => 0.0062223608064178
720 => 0.0065378129512677
721 => 0.0065144432374802
722 => 0.0065730966330121
723 => 0.0065664931607849
724 => 0.006627971263521
725 => 0.0067284619789097
726 => 0.0065241362568785
727 => 0.0065596001371713
728 => 0.0065509052127041
729 => 0.0066458341181052
730 => 0.006646130475786
731 => 0.0065892158549475
801 => 0.0066200701942383
802 => 0.0066028481484907
803 => 0.0066339707128557
804 => 0.0065141311207048
805 => 0.0066600828080601
806 => 0.0067428280098715
807 => 0.006743976927079
808 => 0.0067831974960311
809 => 0.0068230478655886
810 => 0.0068995371797185
811 => 0.0068209146201322
812 => 0.0066794802891882
813 => 0.0066896913910522
814 => 0.0066067684945686
815 => 0.0066081624434397
816 => 0.0066007214351199
817 => 0.0066230524612207
818 => 0.0065190315251514
819 => 0.0065434450309327
820 => 0.0065092659798735
821 => 0.0065595258385893
822 => 0.0065054545388634
823 => 0.0065509010197482
824 => 0.0065705142143234
825 => 0.0066428873245478
826 => 0.0064947649716384
827 => 0.0061927334670545
828 => 0.0062562241510961
829 => 0.006162316442313
830 => 0.0061710079582928
831 => 0.0061885662038163
901 => 0.006131654185374
902 => 0.006142511204989
903 => 0.0061421233158486
904 => 0.006138780696792
905 => 0.0061239756827487
906 => 0.0061025054833032
907 => 0.0061880361497153
908 => 0.0062025694766132
909 => 0.0062348752620088
910 => 0.0063309953661225
911 => 0.0063213907010534
912 => 0.0063370563082749
913 => 0.0063028583756691
914 => 0.0061725943023043
915 => 0.0061796682682074
916 => 0.0060914558000434
917 => 0.0062326194708692
918 => 0.0061991900503482
919 => 0.0061776378854671
920 => 0.0061717571775999
921 => 0.00626811554486
922 => 0.0062969474785766
923 => 0.0062789813523236
924 => 0.0062421323032229
925 => 0.0063128933709396
926 => 0.0063318260474908
927 => 0.0063360643755604
928 => 0.0064614394204656
929 => 0.0063430714478276
930 => 0.006371563795318
1001 => 0.006593852956939
1002 => 0.0063922673611563
1003 => 0.0064990517471376
1004 => 0.0064938252071229
1005 => 0.0065484524856044
1006 => 0.0064893441758367
1007 => 0.0064900768941769
1008 => 0.0065385822166961
1009 => 0.0064704652391989
1010 => 0.0064535985176394
1011 => 0.0064302972626067
1012 => 0.0064811747005113
1013 => 0.0065116734235465
1014 => 0.0067574707323663
1015 => 0.006916267003583
1016 => 0.0069093732386541
1017 => 0.0069723693455169
1018 => 0.006943989022397
1019 => 0.0068523414726919
1020 => 0.0070087726648105
1021 => 0.0069592712902651
1022 => 0.0069633521234385
1023 => 0.0069632002346239
1024 => 0.0069961143212114
1025 => 0.0069727916743324
1026 => 0.0069268203433135
1027 => 0.006957338258236
1028 => 0.0070479655552019
1029 => 0.0073292754657688
1030 => 0.0074867002185827
1031 => 0.0073197982979811
1101 => 0.0074349250079063
1102 => 0.0073658900057923
1103 => 0.0073533442922948
1104 => 0.0074256523739249
1105 => 0.0074980870212798
1106 => 0.0074934732473869
1107 => 0.0074408894129675
1108 => 0.0074111861391694
1109 => 0.0076361092796955
1110 => 0.0078018288181693
1111 => 0.0077905278566433
1112 => 0.0078404066255497
1113 => 0.007986852233751
1114 => 0.0080002413848488
1115 => 0.0079985546595566
1116 => 0.0079653682515472
1117 => 0.0081095629711867
1118 => 0.0082298527431747
1119 => 0.0079576865569406
1120 => 0.0080613238777415
1121 => 0.008107850010035
1122 => 0.0081761641759233
1123 => 0.0082914216245603
1124 => 0.0084166217843086
1125 => 0.0084343264596469
1126 => 0.0084217641452476
1127 => 0.0083391912743327
1128 => 0.0084761867830778
1129 => 0.0085564355391607
1130 => 0.0086042218369479
1201 => 0.0087253999372546
1202 => 0.0081081373395887
1203 => 0.0076712081930191
1204 => 0.0076029753974489
1205 => 0.007741729470363
1206 => 0.0077783178128475
1207 => 0.0077635690978699
1208 => 0.0072717656195457
1209 => 0.0076003861539166
1210 => 0.0079539542177002
1211 => 0.0079675362069814
1212 => 0.0081445397724711
1213 => 0.0082021793890158
1214 => 0.0083446904596227
1215 => 0.0083357763533546
1216 => 0.008370475531201
1217 => 0.0083624987911201
1218 => 0.008626470540173
1219 => 0.0089176705795623
1220 => 0.0089075872481577
1221 => 0.008865723797173
1222 => 0.0089278981606644
1223 => 0.0092284478082069
1224 => 0.0092007780128711
1225 => 0.0092276568621323
1226 => 0.0095820218348208
1227 => 0.010042746707145
1228 => 0.0098286937479297
1229 => 0.010293127077348
1230 => 0.010585463239664
1231 => 0.011091028404266
]
'min_raw' => 0.0045282212123184
'max_raw' => 0.011091028404266
'avg_raw' => 0.0078096248082921
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.004528'
'max' => '$0.011091'
'avg' => '$0.0078096'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 0.0020191031915859
'max_diff' => 0.0044995591888488
'year' => 2028
]
3 => [
'items' => [
101 => 0.011027729155697
102 => 0.011224541964268
103 => 0.010914410289806
104 => 0.01020228527729
105 => 0.010089588768154
106 => 0.010315210033374
107 => 0.010869877898116
108 => 0.010297741568418
109 => 0.010413484002764
110 => 0.010380150173886
111 => 0.010378373955805
112 => 0.010446164975565
113 => 0.010347830565661
114 => 0.009947198489687
115 => 0.010130805809166
116 => 0.010059906205568
117 => 0.010138574601676
118 => 0.010563115490157
119 => 0.010375415843569
120 => 0.010177689513369
121 => 0.010425682210425
122 => 0.010741462133313
123 => 0.01072170119325
124 => 0.010683356710095
125 => 0.010899502553987
126 => 0.011256512163307
127 => 0.011353010426126
128 => 0.011424243470918
129 => 0.011434065304303
130 => 0.011535236292401
131 => 0.010991214391026
201 => 0.011854591119981
202 => 0.012003672430771
203 => 0.01197565132313
204 => 0.012141348925772
205 => 0.012092596487732
206 => 0.012021961854036
207 => 0.012284627799115
208 => 0.011983502489131
209 => 0.01155609302223
210 => 0.011321607735488
211 => 0.011630396876459
212 => 0.011818963629594
213 => 0.011943594258318
214 => 0.011981307411266
215 => 0.011033445262598
216 => 0.010522600135311
217 => 0.01085004600505
218 => 0.01124955256524
219 => 0.010988995111912
220 => 0.010999208470782
221 => 0.010627722015632
222 => 0.011282420873531
223 => 0.011187036756819
224 => 0.011681889723052
225 => 0.011563789091217
226 => 0.011967322475098
227 => 0.011861058611246
228 => 0.012302153968964
301 => 0.012478118849338
302 => 0.012773591270232
303 => 0.012990941985832
304 => 0.013118574483288
305 => 0.013110911906878
306 => 0.013616655448058
307 => 0.013318436151158
308 => 0.012943802429359
309 => 0.012937026487286
310 => 0.013131054600407
311 => 0.013537684296494
312 => 0.013643117460468
313 => 0.013702040215672
314 => 0.01361179796496
315 => 0.013288102291745
316 => 0.013148332141224
317 => 0.013267420358999
318 => 0.013121785702028
319 => 0.013373191977827
320 => 0.013718426491983
321 => 0.013647136930015
322 => 0.013885447247345
323 => 0.014132073354805
324 => 0.014484759765145
325 => 0.014576965052748
326 => 0.014729376886902
327 => 0.014886258728926
328 => 0.0149366449485
329 => 0.015032847875592
330 => 0.01503234083868
331 => 0.015322254834677
401 => 0.01564203895015
402 => 0.015762750050722
403 => 0.016040318570439
404 => 0.015564992207585
405 => 0.015925532713965
406 => 0.016250749275634
407 => 0.015863012683707
408 => 0.016397417244639
409 => 0.016418166962754
410 => 0.016731463071078
411 => 0.016413877445019
412 => 0.016225296114035
413 => 0.016769723350537
414 => 0.017033154540983
415 => 0.016953806922546
416 => 0.016349967628369
417 => 0.015998507259273
418 => 0.015078667681705
419 => 0.016168257395447
420 => 0.016698964761243
421 => 0.016348593224502
422 => 0.016525300247739
423 => 0.017489356469075
424 => 0.017856406660143
425 => 0.017780062786275
426 => 0.017792963644232
427 => 0.017991017264899
428 => 0.018869296089061
429 => 0.018343011059279
430 => 0.018745336245023
501 => 0.018958728072851
502 => 0.019156938294992
503 => 0.018670196634396
504 => 0.018036952885616
505 => 0.017836378008613
506 => 0.016313755680241
507 => 0.016234496575636
508 => 0.016190006038424
509 => 0.015909499494616
510 => 0.015689098188391
511 => 0.015513826886706
512 => 0.015053862650642
513 => 0.015209087077922
514 => 0.014476000087633
515 => 0.014945003165012
516 => 0.013774978627506
517 => 0.014749409829808
518 => 0.014219071228345
519 => 0.014575179335816
520 => 0.014573936908177
521 => 0.013918228978144
522 => 0.013540030328377
523 => 0.01378103322772
524 => 0.01403940746665
525 => 0.014081327817641
526 => 0.014416316762672
527 => 0.014509804976667
528 => 0.014226531323715
529 => 0.013750732469594
530 => 0.01386124969159
531 => 0.0135377907004
601 => 0.01297094126001
602 => 0.01337806242434
603 => 0.013517071489696
604 => 0.013578465812129
605 => 0.013021034490604
606 => 0.012845877466958
607 => 0.012752625337278
608 => 0.013678775085908
609 => 0.013729511659803
610 => 0.013469936174329
611 => 0.01464324198263
612 => 0.014377686742417
613 => 0.014674377008349
614 => 0.013851221412081
615 => 0.013882667064384
616 => 0.013492972013457
617 => 0.013711175202544
618 => 0.013556956221515
619 => 0.013693546541192
620 => 0.013775418215623
621 => 0.014165049321426
622 => 0.014753858791163
623 => 0.014106851427272
624 => 0.013824941053508
625 => 0.013999836663867
626 => 0.014465606721726
627 => 0.015171272201714
628 => 0.01475350403472
629 => 0.014938902453068
630 => 0.014979403759676
701 => 0.014671356979953
702 => 0.015182630325876
703 => 0.015456625865533
704 => 0.015737688593833
705 => 0.015981727485618
706 => 0.015625425959448
707 => 0.016006719666267
708 => 0.015699464245971
709 => 0.015423824370484
710 => 0.015424242402396
711 => 0.015251329482047
712 => 0.014916288910441
713 => 0.014854502288592
714 => 0.015175924098239
715 => 0.015433673950818
716 => 0.015454903463215
717 => 0.015597607025268
718 => 0.015682057523328
719 => 0.016509787209196
720 => 0.016842706936191
721 => 0.017249794876512
722 => 0.017408378571487
723 => 0.017885658637959
724 => 0.017500216221491
725 => 0.017416823330142
726 => 0.016259098006001
727 => 0.016448675462972
728 => 0.016752207263086
729 => 0.016264103133587
730 => 0.016573692857671
731 => 0.016634812427212
801 => 0.016247517542042
802 => 0.016454388474235
803 => 0.015905000611286
804 => 0.014765833945271
805 => 0.015183898544023
806 => 0.015491734807727
807 => 0.015052414503484
808 => 0.015839879144795
809 => 0.015379858557911
810 => 0.015234054116751
811 => 0.01466521900875
812 => 0.014933687283255
813 => 0.015296794468619
814 => 0.015072436443805
815 => 0.015538013032821
816 => 0.016197393647608
817 => 0.016667307540499
818 => 0.016703381694251
819 => 0.016401258542908
820 => 0.01688541282106
821 => 0.016888939356413
822 => 0.016342811352829
823 => 0.016008310991487
824 => 0.015932311805596
825 => 0.016122172672471
826 => 0.016352698815107
827 => 0.016716174290787
828 => 0.016935814908277
829 => 0.017508521150307
830 => 0.017663479038626
831 => 0.017833730777592
901 => 0.018061239604543
902 => 0.018334422283363
903 => 0.017736714134403
904 => 0.017760462193429
905 => 0.01720388464095
906 => 0.016609101704832
907 => 0.017060467812606
908 => 0.017650568955804
909 => 0.01751519910155
910 => 0.017499967227592
911 => 0.017525583014621
912 => 0.01742351856528
913 => 0.016961884843596
914 => 0.016730055278546
915 => 0.01702917456349
916 => 0.01718814315117
917 => 0.017434689567144
918 => 0.017404297517411
919 => 0.018039374607808
920 => 0.018286146361402
921 => 0.018223011586874
922 => 0.01823462990481
923 => 0.018681398377336
924 => 0.019178296803729
925 => 0.019643707751569
926 => 0.020117143757577
927 => 0.019546398173813
928 => 0.019256608765071
929 => 0.019555597463892
930 => 0.019396949851727
1001 => 0.020308586089167
1002 => 0.020371705804298
1003 => 0.021283276120062
1004 => 0.022148464897496
1005 => 0.021605055327856
1006 => 0.022117466076322
1007 => 0.022671680078248
1008 => 0.023740848805945
1009 => 0.023380790392266
1010 => 0.023104991290222
1011 => 0.022844362471443
1012 => 0.023386689669663
1013 => 0.024084384946285
1014 => 0.024234661826427
1015 => 0.024478167782444
1016 => 0.024222151044184
1017 => 0.024530495006099
1018 => 0.025619084684863
1019 => 0.025324938144414
1020 => 0.024907202770561
1021 => 0.025766539772681
1022 => 0.02607753049316
1023 => 0.028260226236587
1024 => 0.031015969775329
1025 => 0.029875073855102
1026 => 0.029166882940936
1027 => 0.029333324604278
1028 => 0.030339628856821
1029 => 0.030662821844237
1030 => 0.029784271893136
1031 => 0.03009459058831
1101 => 0.031804477108576
1102 => 0.032721776366972
1103 => 0.031475960764344
1104 => 0.028038804926457
1105 => 0.024869590270687
1106 => 0.025710208708993
1107 => 0.025614908665517
1108 => 0.027451968418855
1109 => 0.025317922846705
1110 => 0.025353854701075
1111 => 0.027228902904633
1112 => 0.026728672190388
1113 => 0.025918362498021
1114 => 0.024875506428184
1115 => 0.022947690530579
1116 => 0.021240170228948
1117 => 0.024589010758888
1118 => 0.024444602665765
1119 => 0.024235478346844
1120 => 0.024700861888989
1121 => 0.026960632268223
1122 => 0.026908537246819
1123 => 0.026577135299758
1124 => 0.026828500755761
1125 => 0.025874296918249
1126 => 0.026120216973994
1127 => 0.024869088250894
1128 => 0.025434650685486
1129 => 0.025916623937349
1130 => 0.026013387203397
1201 => 0.026231399782657
1202 => 0.024368506162644
1203 => 0.025204890706347
1204 => 0.025696188267138
1205 => 0.023476488013924
1206 => 0.025652311930013
1207 => 0.024336077329284
1208 => 0.023889327536617
1209 => 0.024490817277634
1210 => 0.024256416140592
1211 => 0.024054891807459
1212 => 0.023942437766944
1213 => 0.024384105448747
1214 => 0.024363501123483
1215 => 0.023640847072051
1216 => 0.022698174321105
1217 => 0.023014566238501
1218 => 0.022899618088721
1219 => 0.022483031165312
1220 => 0.022763760452792
1221 => 0.021527570744569
1222 => 0.01940077060312
1223 => 0.020805799922211
1224 => 0.020751707821804
1225 => 0.020724432131897
1226 => 0.021780272833036
1227 => 0.021678778112011
1228 => 0.021494564199512
1229 => 0.022479647932346
1230 => 0.022120079118616
1231 => 0.023228185477466
]
'min_raw' => 0.009947198489687
'max_raw' => 0.032721776366972
'avg_raw' => 0.021334487428329
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.009947'
'max' => '$0.032721'
'avg' => '$0.021334'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072434
'min_diff' => 0.0054189772773686
'max_diff' => 0.021630747962706
'year' => 2029
]
4 => [
'items' => [
101 => 0.023958055993231
102 => 0.023772937221595
103 => 0.024459383969443
104 => 0.023021855269256
105 => 0.023499344639817
106 => 0.023597754537318
107 => 0.022467492151994
108 => 0.021695383903577
109 => 0.021643893086086
110 => 0.020305163786403
111 => 0.021020302172448
112 => 0.021649594357731
113 => 0.021348212236027
114 => 0.02125280365983
115 => 0.021740225384024
116 => 0.021778102226479
117 => 0.020914506204506
118 => 0.021094075164003
119 => 0.021842907575963
120 => 0.021075206508528
121 => 0.019583688737758
122 => 0.01921377170876
123 => 0.019164417958169
124 => 0.018161173637038
125 => 0.019238491333465
126 => 0.018768213288655
127 => 0.020253815997413
128 => 0.019405247697618
129 => 0.019368667614226
130 => 0.019313371453047
131 => 0.018449837622349
201 => 0.018638896650834
202 => 0.019267357656021
203 => 0.019491599622792
204 => 0.019468209348497
205 => 0.01926427785424
206 => 0.019357636648013
207 => 0.01905689544491
208 => 0.018950697466708
209 => 0.018615507435447
210 => 0.018122870688102
211 => 0.018191374849337
212 => 0.017215332547429
213 => 0.016683532898865
214 => 0.016536337765149
215 => 0.016339502280635
216 => 0.016558570856884
217 => 0.017212567542221
218 => 0.016423708786567
219 => 0.015071265782006
220 => 0.015152549911031
221 => 0.015335171215475
222 => 0.014994857622804
223 => 0.014672779367695
224 => 0.014952800279478
225 => 0.014379752349504
226 => 0.015404421320044
227 => 0.015376706895992
228 => 0.015758640123105
301 => 0.015997470808078
302 => 0.015447043401568
303 => 0.015308612397345
304 => 0.015387468988689
305 => 0.014084145189003
306 => 0.015652130763095
307 => 0.015665690767451
308 => 0.015549581777631
309 => 0.016384485689712
310 => 0.018146393357262
311 => 0.017483492820158
312 => 0.017226797695916
313 => 0.01673882007709
314 => 0.017389021280932
315 => 0.017339095973196
316 => 0.017113314798002
317 => 0.016976761638765
318 => 0.017228365021608
319 => 0.016945585195259
320 => 0.016894790168177
321 => 0.016587027569593
322 => 0.016477170324205
323 => 0.016395836393262
324 => 0.016306295727001
325 => 0.016503800124629
326 => 0.016056229175737
327 => 0.015516502487295
328 => 0.015471630053075
329 => 0.015595526789182
330 => 0.015540711706482
331 => 0.015471367619548
401 => 0.015338970872853
402 => 0.015299691586318
403 => 0.015427330211957
404 => 0.015283233645404
405 => 0.015495855978699
406 => 0.015438034468973
407 => 0.015115048215932
408 => 0.014712487759816
409 => 0.014708904127358
410 => 0.014622173137419
411 => 0.014511708181641
412 => 0.014480979358039
413 => 0.014929217699329
414 => 0.015857057651155
415 => 0.015674900467283
416 => 0.01580652770085
417 => 0.016454003413735
418 => 0.016659816472588
419 => 0.016513735238364
420 => 0.01631377023506
421 => 0.016322567680366
422 => 0.017005908630178
423 => 0.017048527767014
424 => 0.017156212576346
425 => 0.017294617988061
426 => 0.016537306278461
427 => 0.016286898366947
428 => 0.01616824120637
429 => 0.015802823077894
430 => 0.016196895200873
501 => 0.015967286250664
502 => 0.015998268342606
503 => 0.015978091214584
504 => 0.015989109290855
505 => 0.015404134904184
506 => 0.015617268825338
507 => 0.015262892343415
508 => 0.014788422014747
509 => 0.014786831423834
510 => 0.014902957364594
511 => 0.014833881111022
512 => 0.014647998688771
513 => 0.014674402409511
514 => 0.014443078032525
515 => 0.014702489377141
516 => 0.014709928366286
517 => 0.014610040868377
518 => 0.015009699836625
519 => 0.015173440442007
520 => 0.015107692351086
521 => 0.015168827380677
522 => 0.015682469920664
523 => 0.015766216066476
524 => 0.015803410572487
525 => 0.015753574861761
526 => 0.015178215823401
527 => 0.015203735443368
528 => 0.015016489404586
529 => 0.014858286233316
530 => 0.0148646135305
531 => 0.014945950525506
601 => 0.015301153953046
602 => 0.016048658625917
603 => 0.016077025881834
604 => 0.016111407823536
605 => 0.015971559187654
606 => 0.015929379500901
607 => 0.015985025395229
608 => 0.016265748848431
609 => 0.016987845785741
610 => 0.016732608500863
611 => 0.016525096615252
612 => 0.016707140483736
613 => 0.01667911625709
614 => 0.016442563581612
615 => 0.016435924335875
616 => 0.015981904121168
617 => 0.015814063185332
618 => 0.01567380273667
619 => 0.015520641988323
620 => 0.015429843162709
621 => 0.015569351426181
622 => 0.01560125861665
623 => 0.015296221360381
624 => 0.015254645909503
625 => 0.015503745917659
626 => 0.015394126291454
627 => 0.015506872795442
628 => 0.015533030951489
629 => 0.015528818885892
630 => 0.015414363406399
701 => 0.015487313915916
702 => 0.015314764213315
703 => 0.015127142327865
704 => 0.015007451254203
705 => 0.014903004917717
706 => 0.014960957815656
707 => 0.014754366316284
708 => 0.014688273537769
709 => 0.01546259992473
710 => 0.01603460315219
711 => 0.016026285998725
712 => 0.015975657466002
713 => 0.015900433736
714 => 0.016260245764042
715 => 0.016134894448141
716 => 0.016226098003912
717 => 0.016249313136657
718 => 0.016319578351525
719 => 0.016344692126341
720 => 0.016268780856209
721 => 0.016014013361864
722 => 0.015379156988522
723 => 0.015083629632969
724 => 0.01498610068324
725 => 0.014989645675328
726 => 0.014891858967977
727 => 0.014920661535785
728 => 0.014881842610318
729 => 0.014808328956791
730 => 0.014956418554707
731 => 0.014973484501317
801 => 0.014938918619624
802 => 0.014947060136066
803 => 0.014660869398933
804 => 0.014682627859104
805 => 0.014561473987943
806 => 0.014538759097631
807 => 0.01423249266141
808 => 0.013689897275614
809 => 0.013990547790353
810 => 0.013627404246408
811 => 0.013489876283793
812 => 0.014140912268825
813 => 0.014075566312855
814 => 0.013963722441439
815 => 0.013798282045309
816 => 0.013736918593084
817 => 0.013364093682672
818 => 0.013342065198021
819 => 0.013526847290741
820 => 0.013441576712914
821 => 0.013321824527153
822 => 0.012888094249408
823 => 0.012400437814064
824 => 0.012415157096548
825 => 0.012570271535461
826 => 0.013021287686631
827 => 0.01284506787371
828 => 0.012717218377547
829 => 0.012693276010057
830 => 0.012992964865932
831 => 0.013417087383751
901 => 0.013616076179905
902 => 0.013418884326296
903 => 0.013192360942433
904 => 0.0132061483712
905 => 0.013297869957913
906 => 0.013307508599803
907 => 0.013160065163889
908 => 0.013201569627444
909 => 0.013138520552056
910 => 0.01275158849278
911 => 0.012744590118802
912 => 0.012649630751334
913 => 0.012646755419426
914 => 0.012485205846637
915 => 0.012462603944665
916 => 0.012141837462535
917 => 0.012352966932443
918 => 0.012211352368823
919 => 0.01199790581795
920 => 0.011961107552127
921 => 0.011960001351821
922 => 0.012179163233792
923 => 0.01235040589825
924 => 0.012213815814788
925 => 0.012182716900471
926 => 0.01251477194398
927 => 0.012472514912945
928 => 0.012435920596597
929 => 0.013379111864096
930 => 0.012632502377738
1001 => 0.012306938026706
1002 => 0.01190399031931
1003 => 0.012035192124677
1004 => 0.012062838272823
1005 => 0.011093821673321
1006 => 0.010700691759586
1007 => 0.01056578438798
1008 => 0.010488143288311
1009 => 0.010523525312386
1010 => 0.010169662280485
1011 => 0.010407464090277
1012 => 0.010101048615948
1013 => 0.010049677064514
1014 => 0.010597585890208
1015 => 0.010673824202466
1016 => 0.010348567876985
1017 => 0.01055743509216
1018 => 0.010481696936466
1019 => 0.010106301229789
1020 => 0.010091963875018
1021 => 0.0099036035052049
1022 => 0.009608856000202
1023 => 0.0094741484812843
1024 => 0.0094039916358476
1025 => 0.0094329397176044
1026 => 0.0094183026816422
1027 => 0.0093227861211165
1028 => 0.0094237775790839
1029 => 0.0091657861365287
1030 => 0.0090630518653248
1031 => 0.0090166491784391
1101 => 0.0087876669237379
1102 => 0.0091520795198383
1103 => 0.009223873392019
1104 => 0.0092958087203062
1105 => 0.0099219566407113
1106 => 0.0098906760600835
1107 => 0.010173437274698
1108 => 0.010162449693863
1109 => 0.010081801615027
1110 => 0.0097415606363824
1111 => 0.0098771746262577
1112 => 0.0094597758445148
1113 => 0.0097725193921548
1114 => 0.0096297962974947
1115 => 0.0097242645702837
1116 => 0.0095544020979483
1117 => 0.0096484110035883
1118 => 0.0092408983824901
1119 => 0.0088603688307659
1120 => 0.0090135050307299
1121 => 0.0091799815933393
1122 => 0.009540945198516
1123 => 0.0093259582531579
1124 => 0.0094032756882651
1125 => 0.0091442752234382
1126 => 0.0086098832846752
1127 => 0.0086129078850138
1128 => 0.0085307033275963
1129 => 0.0084596665879258
1130 => 0.0093506520899973
1201 => 0.0092398439584183
1202 => 0.0090632857029569
1203 => 0.0092996159440382
1204 => 0.0093621054108453
1205 => 0.0093638843981155
1206 => 0.009536304841442
1207 => 0.0096283256629534
1208 => 0.0096445447315859
1209 => 0.0099158520245504
1210 => 0.010006790650522
1211 => 0.010381353980785
1212 => 0.0096205183391619
1213 => 0.0096048494298045
1214 => 0.009302941595183
1215 => 0.009111466873492
1216 => 0.009316052033191
1217 => 0.0094972865560249
1218 => 0.0093085730569967
1219 => 0.0093332150560104
1220 => 0.0090798826020244
1221 => 0.0091704370339246
1222 => 0.0092484347096762
1223 => 0.0092053689776176
1224 => 0.0091408974923209
1225 => 0.0094824273919238
1226 => 0.0094631569365217
1227 => 0.0097811974307704
1228 => 0.010029132739331
1229 => 0.01047347713601
1230 => 0.010009780593878
1231 => 0.0099928816488563
]
'min_raw' => 0.0084596665879258
'max_raw' => 0.024459383969443
'avg_raw' => 0.016459525278684
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.008459'
'max' => '$0.024459'
'avg' => '$0.016459'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -0.0014875319017612
'max_diff' => -0.008262392397529
'year' => 2030
]
5 => [
'items' => [
101 => 0.010158071547123
102 => 0.01000676536081
103 => 0.010102385647648
104 => 0.010458071229516
105 => 0.010465586305379
106 => 0.010339699102048
107 => 0.010332038854284
108 => 0.010356216868739
109 => 0.010497828254588
110 => 0.010448344885094
111 => 0.010505608293038
112 => 0.010577217061521
113 => 0.010873421289453
114 => 0.010944835126013
115 => 0.010771336527002
116 => 0.010787001507911
117 => 0.010722108269238
118 => 0.010659422213789
119 => 0.010800331311874
120 => 0.0110578454582
121 => 0.011056243476061
122 => 0.011115981752649
123 => 0.011153198204064
124 => 0.010993437950481
125 => 0.010889439899946
126 => 0.010929319370089
127 => 0.01099308751131
128 => 0.010908640221336
129 => 0.010387392427832
130 => 0.010545505710943
131 => 0.010519187929289
201 => 0.010481708207862
202 => 0.010640692336684
203 => 0.010625357929615
204 => 0.010166032903627
205 => 0.010195437401515
206 => 0.010167821088534
207 => 0.010257055045539
208 => 0.01000194643429
209 => 0.010080416124928
210 => 0.010129631579288
211 => 0.010158619859997
212 => 0.010263345407368
213 => 0.010251057073122
214 => 0.010262581547258
215 => 0.01041786188749
216 => 0.011203216562605
217 => 0.011245961684784
218 => 0.01103546906988
219 => 0.011119556717751
220 => 0.010958126821786
221 => 0.011066495792434
222 => 0.011140639089877
223 => 0.010805599785666
224 => 0.010785760932457
225 => 0.010623664757888
226 => 0.010710766060505
227 => 0.010572181625236
228 => 0.010606185398173
301 => 0.010511107884645
302 => 0.010682228479252
303 => 0.010873567893474
304 => 0.010921907785729
305 => 0.010794746340838
306 => 0.01070267307439
307 => 0.010541022749326
308 => 0.01080985084252
309 => 0.010888464369357
310 => 0.01080943791913
311 => 0.01079112576385
312 => 0.010756424262685
313 => 0.010798487851367
314 => 0.010888036223207
315 => 0.010845806864746
316 => 0.010873700099995
317 => 0.010767399850605
318 => 0.010993490837773
319 => 0.011352577737153
320 => 0.011353732260251
321 => 0.011311502674159
322 => 0.011294223237378
323 => 0.011337553355415
324 => 0.011361058166956
325 => 0.011501179823302
326 => 0.011651535943255
327 => 0.01235318234956
328 => 0.012156162846353
329 => 0.012778705279158
330 => 0.013271055516489
331 => 0.013418689824798
401 => 0.013282873207885
402 => 0.012818251898094
403 => 0.012795455360042
404 => 0.013489795754927
405 => 0.013293612790568
406 => 0.013270277451206
407 => 0.013022028866077
408 => 0.013168774526074
409 => 0.013136679097603
410 => 0.013086014893601
411 => 0.013365995390483
412 => 0.013890093886616
413 => 0.013808408221029
414 => 0.013747433660958
415 => 0.013480260888152
416 => 0.01364115857258
417 => 0.013583865988947
418 => 0.013830031287006
419 => 0.013684208417665
420 => 0.013292126511661
421 => 0.013354566847511
422 => 0.01334512911636
423 => 0.013539356954687
424 => 0.013481054578652
425 => 0.01333374464172
426 => 0.013888302574933
427 => 0.013852292667364
428 => 0.013903346483286
429 => 0.013925821951947
430 => 0.014263371593487
501 => 0.014401654881243
502 => 0.014433047608553
503 => 0.014564406036707
504 => 0.014429779291196
505 => 0.014968382260484
506 => 0.015326521806707
507 => 0.015742519319336
508 => 0.016350403494879
509 => 0.016578973568126
510 => 0.016537684430245
511 => 0.016998575274455
512 => 0.017826785876473
513 => 0.01670508947236
514 => 0.017886238509583
515 => 0.017512300361419
516 => 0.016625699738985
517 => 0.016568613111235
518 => 0.017169029346392
519 => 0.018500694768051
520 => 0.01816712768355
521 => 0.018501240364304
522 => 0.018111480174764
523 => 0.018092125296197
524 => 0.018482310581859
525 => 0.019393999769703
526 => 0.018960890410716
527 => 0.018339921941838
528 => 0.018798435395918
529 => 0.018401228608577
530 => 0.017506210545517
531 => 0.018166872611087
601 => 0.017725106702413
602 => 0.017854037480131
603 => 0.018782563712444
604 => 0.018670840979597
605 => 0.018815420541148
606 => 0.018560241399316
607 => 0.018321863842787
608 => 0.017876914431377
609 => 0.0177451868464
610 => 0.017781591611826
611 => 0.017745168806006
612 => 0.017496223699618
613 => 0.017442464027596
614 => 0.017352862218961
615 => 0.017380633566127
616 => 0.017212155951959
617 => 0.017530108019146
618 => 0.0175891227246
619 => 0.017820501724097
620 => 0.017844524259395
621 => 0.01848891147952
622 => 0.018133993827162
623 => 0.01837210323048
624 => 0.018350804484274
625 => 0.016644915062881
626 => 0.016879971573959
627 => 0.0172456457404
628 => 0.017080910024078
629 => 0.01684801226342
630 => 0.0166599348345
701 => 0.016374978297782
702 => 0.016776049151107
703 => 0.017303414674099
704 => 0.017857899119344
705 => 0.018524075849046
706 => 0.018375392958128
707 => 0.017845445408765
708 => 0.017869218468702
709 => 0.018016174170882
710 => 0.017825853184226
711 => 0.017769723809754
712 => 0.018008462856754
713 => 0.018010106921363
714 => 0.017791119625155
715 => 0.017547755319673
716 => 0.017546735614347
717 => 0.017503431286807
718 => 0.018119183918433
719 => 0.018457785606214
720 => 0.018496605744034
721 => 0.018455172701636
722 => 0.018471118635236
723 => 0.018274093773695
724 => 0.01872443418127
725 => 0.01913771107331
726 => 0.01902694403787
727 => 0.018860888505284
728 => 0.018728617275261
729 => 0.018995785139717
730 => 0.018983888575274
731 => 0.019134101460193
801 => 0.019127286936061
802 => 0.019076775992655
803 => 0.019026945841775
804 => 0.019224516757471
805 => 0.019167619506642
806 => 0.019110633878668
807 => 0.018996340477702
808 => 0.019011874849105
809 => 0.018845847988348
810 => 0.018769036365689
811 => 0.017613973857757
812 => 0.017305303412881
813 => 0.017402417418405
814 => 0.017434389870588
815 => 0.017300056097406
816 => 0.017492656220634
817 => 0.017462639695443
818 => 0.017579416435881
819 => 0.017506459398312
820 => 0.017509453580582
821 => 0.017724004671993
822 => 0.017786289766595
823 => 0.017754611064778
824 => 0.017776797741648
825 => 0.018288080345713
826 => 0.018215392309312
827 => 0.018176778238701
828 => 0.018187474600153
829 => 0.018318118267515
830 => 0.018354691361496
831 => 0.018199728592351
901 => 0.018272809930109
902 => 0.018583980990879
903 => 0.018692873251391
904 => 0.019040405075697
905 => 0.018892767379847
906 => 0.019163762760191
907 => 0.019996710170235
908 => 0.020662126196955
909 => 0.020050182119303
910 => 0.021272133912154
911 => 0.022223598661463
912 => 0.022187079859637
913 => 0.022021169972819
914 => 0.02093795265173
915 => 0.019941159923004
916 => 0.020775019366638
917 => 0.020777145045845
918 => 0.020705515780123
919 => 0.020260632562551
920 => 0.020690034808492
921 => 0.020724119199415
922 => 0.020705041004269
923 => 0.020363950084441
924 => 0.019843167294001
925 => 0.019944927004675
926 => 0.020111611486601
927 => 0.01979604298829
928 => 0.01969519973211
929 => 0.019882686531563
930 => 0.020486808063827
1001 => 0.02037260238759
1002 => 0.020369620015842
1003 => 0.020858240329527
1004 => 0.020508493635792
1005 => 0.019946210520507
1006 => 0.019804226618294
1007 => 0.019300279417256
1008 => 0.019648357544011
1009 => 0.019660884256122
1010 => 0.01947024542337
1011 => 0.019961679811114
1012 => 0.019957151156716
1013 => 0.020423694967523
1014 => 0.021315551507933
1015 => 0.021051785643338
1016 => 0.02074505464046
1017 => 0.020778404805201
1018 => 0.02114417379719
1019 => 0.02092302151494
1020 => 0.021002549417565
1021 => 0.021144053422185
1022 => 0.021229426301518
1023 => 0.020766120961679
1024 => 0.020658102324506
1025 => 0.020437134102241
1026 => 0.020379487617619
1027 => 0.020559461624001
1028 => 0.020512044831895
1029 => 0.019659831434475
1030 => 0.019570770392774
1031 => 0.019573501767773
1101 => 0.019349553543794
1102 => 0.019007978748494
1103 => 0.019905616916171
1104 => 0.019833524008868
1105 => 0.019753939018754
1106 => 0.019763687725938
1107 => 0.020153322030746
1108 => 0.019927314456953
1109 => 0.020528192633794
1110 => 0.020404670144687
1111 => 0.020277979769827
1112 => 0.020260467300938
1113 => 0.020211702315332
1114 => 0.020044469035037
1115 => 0.019842524799918
1116 => 0.019709183723782
1117 => 0.018180680161679
1118 => 0.018464361531909
1119 => 0.018790711089989
1120 => 0.018903365649674
1121 => 0.018710662229874
1122 => 0.020052078140592
1123 => 0.020297167753685
1124 => 0.019554775328825
1125 => 0.019415904017817
1126 => 0.020061182520622
1127 => 0.019672000701342
1128 => 0.019847249250734
1129 => 0.01946845774278
1130 => 0.020238132842952
1201 => 0.020232269208248
1202 => 0.01993284821038
1203 => 0.020185916787431
1204 => 0.020141939894457
1205 => 0.019803894325305
1206 => 0.020248849490456
1207 => 0.020249070182666
1208 => 0.019960883982192
1209 => 0.01962434559211
1210 => 0.019564180476645
1211 => 0.019518854144189
1212 => 0.019836101751504
1213 => 0.020120544964215
1214 => 0.020649823263618
1215 => 0.020782896403431
1216 => 0.021302289727298
1217 => 0.020993016291737
1218 => 0.02113011319996
1219 => 0.021278951287377
1220 => 0.021350309739824
1221 => 0.021234034970867
1222 => 0.022040866593654
1223 => 0.0221089879033
1224 => 0.022131828389177
1225 => 0.02185976930556
1226 => 0.022101421448033
1227 => 0.021988360413248
1228 => 0.022282513816499
1229 => 0.022328640826068
1230 => 0.022289572889979
1231 => 0.022304214330882
]
'min_raw' => 0.01000194643429
'max_raw' => 0.022328640826068
'avg_raw' => 0.016165293630179
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.0100019'
'max' => '$0.022328'
'avg' => '$0.016165'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 0.0015422798463647
'max_diff' => -0.0021307431433742
'year' => 2031
]
6 => [
'items' => [
101 => 0.021615725875685
102 => 0.021580024117217
103 => 0.021093228107225
104 => 0.021291601079511
105 => 0.020920752316087
106 => 0.021038352279134
107 => 0.021090189222312
108 => 0.021063112544917
109 => 0.021302816789728
110 => 0.021099019213296
111 => 0.02056116390167
112 => 0.020023162051723
113 => 0.020016407876744
114 => 0.019874761486175
115 => 0.019772377089623
116 => 0.019792099956681
117 => 0.019861605912685
118 => 0.019768337277105
119 => 0.019788240869346
120 => 0.020118773117484
121 => 0.020185059002599
122 => 0.019959793665409
123 => 0.019055320830955
124 => 0.018833360928681
125 => 0.018992901304779
126 => 0.018916651280721
127 => 0.015267213967641
128 => 0.01612459513148
129 => 0.01561516835784
130 => 0.015849935652732
131 => 0.015329942832269
201 => 0.015578110661353
202 => 0.015532283124959
203 => 0.01691092666466
204 => 0.016889401042049
205 => 0.016899704218482
206 => 0.016407906762556
207 => 0.017191353463603
208 => 0.017577307480371
209 => 0.017505877663701
210 => 0.017523855009662
211 => 0.017214944644257
212 => 0.016902695146064
213 => 0.016556362397715
214 => 0.017199805836126
215 => 0.01712826590972
216 => 0.017292352761641
217 => 0.017709671825738
218 => 0.017771123643167
219 => 0.017853715508974
220 => 0.017824112204372
221 => 0.018529383021458
222 => 0.018443970071982
223 => 0.018649790705236
224 => 0.018226402046984
225 => 0.01774729759175
226 => 0.017838359685585
227 => 0.017829589673674
228 => 0.01771793735629
229 => 0.017617142636469
301 => 0.017449347826702
302 => 0.017980275433763
303 => 0.017958720742504
304 => 0.0183076661394
305 => 0.018245986651024
306 => 0.017834075932117
307 => 0.017848787404026
308 => 0.017947729122707
309 => 0.018290167540756
310 => 0.018391826578218
311 => 0.018344734061654
312 => 0.01845619855532
313 => 0.01854429554634
314 => 0.018467262181027
315 => 0.019557892184872
316 => 0.019104986568817
317 => 0.019325729614785
318 => 0.019378375530555
319 => 0.019243524124335
320 => 0.019272768565677
321 => 0.019317065925678
322 => 0.019586030821288
323 => 0.020291872532988
324 => 0.020604485022273
325 => 0.021544995120315
326 => 0.020578526906813
327 => 0.020521180682667
328 => 0.020690594952009
329 => 0.021242773942664
330 => 0.021690263151055
331 => 0.02183872113775
401 => 0.021858342311466
402 => 0.022136859363806
403 => 0.022296500144172
404 => 0.022103040067927
405 => 0.021939102909423
406 => 0.021351900356291
407 => 0.021419870650715
408 => 0.021888118576402
409 => 0.0225495463511
410 => 0.023117120191622
411 => 0.022918375614617
412 => 0.024434656445362
413 => 0.024584989496278
414 => 0.024564218329491
415 => 0.024906699392037
416 => 0.024226944227939
417 => 0.023936335725651
418 => 0.021974547983857
419 => 0.022525730319019
420 => 0.023326906212981
421 => 0.02322086757916
422 => 0.022639032229472
423 => 0.023116678817335
424 => 0.022958753917997
425 => 0.02283419199758
426 => 0.023404834302529
427 => 0.022777389647544
428 => 0.023320646972577
429 => 0.022623913833944
430 => 0.022919283463103
501 => 0.022751617376171
502 => 0.022860117882799
503 => 0.022225826138082
504 => 0.02256807456697
505 => 0.022211587478232
506 => 0.022211418456936
507 => 0.022203548984694
508 => 0.022622954463688
509 => 0.022636631261301
510 => 0.022326689978637
511 => 0.022282022597613
512 => 0.022447181316383
513 => 0.02225382371184
514 => 0.022344294518027
515 => 0.022256563980396
516 => 0.022236813988487
517 => 0.022079442692774
518 => 0.022011642811566
519 => 0.022038228891975
520 => 0.021947476893475
521 => 0.021892795531736
522 => 0.022192671485534
523 => 0.022032459860381
524 => 0.022168116756221
525 => 0.022013518602146
526 => 0.021477614044914
527 => 0.021169409666962
528 => 0.020157135636729
529 => 0.020444215295981
530 => 0.020634549407071
531 => 0.020571643984491
601 => 0.020706789173359
602 => 0.020715085990352
603 => 0.020671148911809
604 => 0.020620275403544
605 => 0.020595512993203
606 => 0.020780071712428
607 => 0.020887214260899
608 => 0.020653651981461
609 => 0.020598931607272
610 => 0.020835075967111
611 => 0.020979123890196
612 => 0.022042692820723
613 => 0.021963900199067
614 => 0.022161654217152
615 => 0.022139390149499
616 => 0.022346667865137
617 => 0.022685479328108
618 => 0.021996580890714
619 => 0.02211614983913
620 => 0.022086834294228
621 => 0.022406893726512
622 => 0.022407892917124
623 => 0.022216001299316
624 => 0.022320028858416
625 => 0.022261963528773
626 => 0.022366895427437
627 => 0.021962847875567
628 => 0.022454934179507
629 => 0.0227339154045
630 => 0.02273778905908
701 => 0.022870023945594
702 => 0.023004382248822
703 => 0.023262271311724
704 => 0.022997189862827
705 => 0.02252033414142
706 => 0.022554761584271
707 => 0.022275181249284
708 => 0.022279881045226
709 => 0.022254793166161
710 => 0.022330083779762
711 => 0.021979369931294
712 => 0.022061681770533
713 => 0.021946444713581
714 => 0.022115899336273
715 => 0.021933594174109
716 => 0.022086820157385
717 => 0.022152947412245
718 => 0.022396958406295
719 => 0.021897553551889
720 => 0.020879233247018
721 => 0.021093296521042
722 => 0.020776680124453
723 => 0.020805984177401
724 => 0.020865183028061
725 => 0.020673300184413
726 => 0.020709905384058
727 => 0.020708597588739
728 => 0.020697327715216
729 => 0.020647411576716
730 => 0.020575023300284
731 => 0.020863395913653
801 => 0.020912396039973
802 => 0.021021317250952
803 => 0.021345392892863
804 => 0.021313010094007
805 => 0.021365827782491
806 => 0.021250527065088
807 => 0.020811332646991
808 => 0.020835183016922
809 => 0.020537768521709
810 => 0.021013711693631
811 => 0.020901002068377
812 => 0.020828337439756
813 => 0.020808510222604
814 => 0.021133389185348
815 => 0.021230598062855
816 => 0.021170024013838
817 => 0.021045784872076
818 => 0.021284360752263
819 => 0.021348193593093
820 => 0.02136248341209
821 => 0.021785194129394
822 => 0.021386108245457
823 => 0.021482172184293
824 => 0.022231635612432
825 => 0.021551975701994
826 => 0.021912006714777
827 => 0.021894385070213
828 => 0.022078564753568
829 => 0.021879276960375
830 => 0.021881747371416
831 => 0.022045286452823
901 => 0.021815625307416
902 => 0.021758757978081
903 => 0.021680196169897
904 => 0.021851733003941
905 => 0.021954561578007
906 => 0.022783284365713
907 => 0.023318677080922
908 => 0.023295434271157
909 => 0.023507830043693
910 => 0.023412143802843
911 => 0.023103147690385
912 => 0.02363056637629
913 => 0.023463669035934
914 => 0.023477427849893
915 => 0.02347691574615
916 => 0.023587887887068
917 => 0.02350925395478
918 => 0.023354258402634
919 => 0.023457151683488
920 => 0.023762707942604
921 => 0.024711163946512
922 => 0.025241932491669
923 => 0.024679211013641
924 => 0.025067368754044
925 => 0.024834612424546
926 => 0.024792313675576
927 => 0.025036105421181
928 => 0.025280323891963
929 => 0.02526476823116
930 => 0.025087478162129
1001 => 0.024987331500702
1002 => 0.025745675572618
1003 => 0.026304410566751
1004 => 0.026266308585958
1005 => 0.026434478337751
1006 => 0.026928229930307
1007 => 0.026973372388034
1008 => 0.026967685475948
1009 => 0.026855795184344
1010 => 0.027341957748962
1011 => 0.027747523113583
1012 => 0.026829895814658
1013 => 0.027179316277466
1014 => 0.027336182380844
1015 => 0.027566508360679
1016 => 0.027955106895777
1017 => 0.028377227975564
1018 => 0.028436920524568
1019 => 0.028394565804498
1020 => 0.028116165605155
1021 => 0.02857805552761
1022 => 0.028848619811533
1023 => 0.029009734650855
1024 => 0.029418295076424
1025 => 0.027337151132495
1026 => 0.025864014009416
1027 => 0.02563396237529
1028 => 0.02610178141962
1029 => 0.026225141570823
1030 => 0.026175415248553
1031 => 0.024517265484761
1101 => 0.025625232559945
1102 => 0.026817311972326
1103 => 0.026863104597452
1104 => 0.027459884476494
1105 => 0.027654220467945
1106 => 0.028134706492301
1107 => 0.028104651960655
1108 => 0.028221642661383
1109 => 0.028194748525282
1110 => 0.029084747707133
1111 => 0.030066548970872
1112 => 0.030032552315045
1113 => 0.029891406767238
1114 => 0.030101031974624
1115 => 0.03111435609502
1116 => 0.031021065448202
1117 => 0.031111689365108
1118 => 0.032306455611499
1119 => 0.033859821685325
1120 => 0.033138127188629
1121 => 0.034703996584462
1122 => 0.035689628365969
1123 => 0.037394176615857
1124 => 0.037180758779894
1125 => 0.037844326905022
1126 => 0.036798696311874
1127 => 0.034397717113195
1128 => 0.034017752964425
1129 => 0.034778450812487
1130 => 0.036648552244138
1201 => 0.034719554663279
1202 => 0.035109788361555
1203 => 0.034997401030199
1204 => 0.034991412386926
1205 => 0.035219974543067
1206 => 0.034888433214584
1207 => 0.0335376741992
1208 => 0.034156719095878
1209 => 0.033917676132293
1210 => 0.034182912122224
1211 => 0.035614281368238
1212 => 0.034981438904994
1213 => 0.034314790777914
1214 => 0.035150915470335
1215 => 0.036215589527402
1216 => 0.036148964138314
1217 => 0.036019683036231
1218 => 0.036748433839735
1219 => 0.037952116663173
1220 => 0.038277467293558
1221 => 0.038517634477408
1222 => 0.038550749474404
1223 => 0.038891854524309
1224 => 0.037057646701427
1225 => 0.039968581622139
1226 => 0.040471219669991
1227 => 0.040376744549207
1228 => 0.040935405585153
1229 => 0.040771033336515
1230 => 0.040532883737455
1231 => 0.041418480310039
]
'min_raw' => 0.015267213967641
'max_raw' => 0.041418480310039
'avg_raw' => 0.02834284713884
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.015267'
'max' => '$0.041418'
'avg' => '$0.028342'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.0052652675333502
'max_diff' => 0.01908983948397
'year' => 2032
]
7 => [
'items' => [
101 => 0.04040321530353
102 => 0.0389621744451
103 => 0.038171590929609
104 => 0.03921269507736
105 => 0.039848461050864
106 => 0.04026866191704
107 => 0.040395814445253
108 => 0.037200031033397
109 => 0.03547768102068
110 => 0.036581687632049
111 => 0.037928651892384
112 => 0.037050164246951
113 => 0.037084599299455
114 => 0.035832106779558
115 => 0.03803946968858
116 => 0.03771787547958
117 => 0.039386306804764
118 => 0.038988122279011
119 => 0.040348663256567
120 => 0.039990387220483
121 => 0.041477571015324
122 => 0.04207084889498
123 => 0.043067054791252
124 => 0.043799867903836
125 => 0.044230189780027
126 => 0.044204354868678
127 => 0.045909504527653
128 => 0.044904037347147
129 => 0.043640933598011
130 => 0.043618088036231
131 => 0.044272267366226
201 => 0.045643247776563
202 => 0.04599872305001
203 => 0.046197385233038
204 => 0.04589312718425
205 => 0.044801764622292
206 => 0.044330519801373
207 => 0.044732034042073
208 => 0.044241016628209
209 => 0.045088650439692
210 => 0.046252632707671
211 => 0.046012274972218
212 => 0.046815754845392
213 => 0.047647271985579
214 => 0.048836378841818
215 => 0.049147255406538
216 => 0.049661122546444
217 => 0.050190060629969
218 => 0.050359941287116
219 => 0.050684296172482
220 => 0.05068258666213
221 => 0.051660051940783
222 => 0.052738226412716
223 => 0.053145212316075
224 => 0.054081053959514
225 => 0.052478457940927
226 => 0.053694045430321
227 => 0.054790535773883
228 => 0.053483254783298
301 => 0.055285037071415
302 => 0.055354996194736
303 => 0.056411295897588
304 => 0.05534053378621
305 => 0.054704718662468
306 => 0.05654029310103
307 => 0.057428469751797
308 => 0.057160943716365
309 => 0.055125057377334
310 => 0.053940084204746
311 => 0.050838780847828
312 => 0.054512408640432
313 => 0.056301725577018
314 => 0.055120423478736
315 => 0.05571620354487
316 => 0.058966586403363
317 => 0.060204121749172
318 => 0.059946723048269
319 => 0.059990219191578
320 => 0.060657970801321
321 => 0.063619149176451
322 => 0.061844742454496
323 => 0.063201209907679
324 => 0.06392067535374
325 => 0.064588954956287
326 => 0.06294787146437
327 => 0.060812845953691
328 => 0.060136593752185
329 => 0.055002966265981
330 => 0.05473573866111
331 => 0.054585735708671
401 => 0.05363998831188
402 => 0.052896889920017
403 => 0.052305950489333
404 => 0.050755148953766
405 => 0.051278498947763
406 => 0.048806844977505
407 => 0.050388121597638
408 => 0.046443302180933
409 => 0.049728665012107
410 => 0.047940591390217
411 => 0.04914123473723
412 => 0.0491370458057
413 => 0.046926280739529
414 => 0.045651157586851
415 => 0.046463715688273
416 => 0.047334842473939
417 => 0.047476179864091
418 => 0.048605618480443
419 => 0.048920820521065
420 => 0.047965743622604
421 => 0.046361554566721
422 => 0.046734171096746
423 => 0.045643606524763
424 => 0.043732434060324
425 => 0.045105071490154
426 => 0.045573750259305
427 => 0.045780745503803
428 => 0.043901326884668
429 => 0.043310772750372
430 => 0.042996366684503
501 => 0.046118945223719
502 => 0.046290007124919
503 => 0.045414830252661
504 => 0.049370712702945
505 => 0.048475374670091
506 => 0.049475686615933
507 => 0.046700360052227
508 => 0.046806381264434
509 => 0.045492497192594
510 => 0.046228184479059
511 => 0.045708224417294
512 => 0.046168748216516
513 => 0.046444784282959
514 => 0.047758452759351
515 => 0.049743664995932
516 => 0.047562234495961
517 => 0.046611753988464
518 => 0.04720142674961
519 => 0.04877180301871
520 => 0.051151003452479
521 => 0.049742468909817
522 => 0.050367552621382
523 => 0.050504105604321
524 => 0.049465504379345
525 => 0.051189298161089
526 => 0.052113093252801
527 => 0.053060715864439
528 => 0.053883510026341
529 => 0.052682214554683
530 => 0.053967772908299
531 => 0.052931839806883
601 => 0.052002500722117
602 => 0.052003910145894
603 => 0.051420922162542
604 => 0.050291309483586
605 => 0.050082991574219
606 => 0.051166687646399
607 => 0.052035709269889
608 => 0.052107286053132
609 => 0.052588421075839
610 => 0.052873151826192
611 => 0.055663900252336
612 => 0.056786362355614
613 => 0.058158887768381
614 => 0.058693563767947
615 => 0.060302746834687
616 => 0.059003200816836
617 => 0.058722035861346
618 => 0.054818684101203
619 => 0.055457857733257
620 => 0.056481236389257
621 => 0.054835559238307
622 => 0.05587936260792
623 => 0.05608543150386
624 => 0.054779639758444
625 => 0.055477119549601
626 => 0.053624820012633
627 => 0.049784040064088
628 => 0.051193574047117
629 => 0.052231465502635
630 => 0.050750266424517
701 => 0.053405258441723
702 => 0.051854266915431
703 => 0.05136267706232
704 => 0.049444809780895
705 => 0.050349969312246
706 => 0.051574210539034
707 => 0.050817771794198
708 => 0.052387495769582
709 => 0.05461064354882
710 => 0.056194991047044
711 => 0.056316617575037
712 => 0.055297988276717
713 => 0.05693034822808
714 => 0.056942238188237
715 => 0.055100929494714
716 => 0.053973138172381
717 => 0.053716901611054
718 => 0.054357030779387
719 => 0.055134265764106
720 => 0.056359748707408
721 => 0.057100282384093
722 => 0.059031201464172
723 => 0.059553652803453
724 => 0.060127668427974
725 => 0.060894730322196
726 => 0.061815784796844
727 => 0.059800570041976
728 => 0.059880638281017
729 => 0.058004098203832
730 => 0.055998746008291
731 => 0.057520558354026
801 => 0.059510125557863
802 => 0.059053716643027
803 => 0.059002361316519
804 => 0.059088726730925
805 => 0.05874460931406
806 => 0.057188178991165
807 => 0.056406549426777
808 => 0.057415050979807
809 => 0.057951024672002
810 => 0.058782273126779
811 => 0.058679804209201
812 => 0.060821010959139
813 => 0.061653019155434
814 => 0.061440155855184
815 => 0.061479327825271
816 => 0.062985638922772
817 => 0.064660966659697
818 => 0.066230132164293
819 => 0.067826354712795
820 => 0.06590204612895
821 => 0.064925000904927
822 => 0.065933062177727
823 => 0.065398170676889
824 => 0.068471815899828
825 => 0.068684628426271
826 => 0.071758051389675
827 => 0.074675095758344
828 => 0.072842952454661
829 => 0.074570581068487
830 => 0.076439152269968
831 => 0.080043929282376
901 => 0.078829967202181
902 => 0.077900091273963
903 => 0.077021363014925
904 => 0.078849857027801
905 => 0.08120218536446
906 => 0.081708854357856
907 => 0.082529851689609
908 => 0.081666673382048
909 => 0.082706276577534
910 => 0.08637653268239
911 => 0.085384797084611
912 => 0.083976373106312
913 => 0.086873687805952
914 => 0.087922214732727
915 => 0.095281325822643
916 => 0.10457250756338
917 => 0.10072589731353
918 => 0.098338182202104
919 => 0.098899351890648
920 => 0.10229217693601
921 => 0.1033818446577
922 => 0.10041975215917
923 => 0.1014660133057
924 => 0.10723101508925
925 => 0.11032375358272
926 => 0.10612339929839
927 => 0.094534788416397
928 => 0.083849559936966
929 => 0.086683763691821
930 => 0.086362452941602
1001 => 0.0925562281594
1002 => 0.085361144518593
1003 => 0.085482291274283
1004 => 0.091804147204263
1005 => 0.090117584426193
1006 => 0.08738556872436
1007 => 0.083869506675019
1008 => 0.077369740780438
1009 => 0.071612716868227
1010 => 0.082903566523499
1011 => 0.082416684555286
1012 => 0.081711607313448
1013 => 0.083280680417832
1014 => 0.090899654023549
1015 => 0.090724012021726
1016 => 0.089606667219467
1017 => 0.090454163404155
1018 => 0.0872369985456
1019 => 0.088066135183132
1020 => 0.083847867342183
1021 => 0.085754700576718
1022 => 0.087379707045674
1023 => 0.087705951152949
1024 => 0.088440995785077
1025 => 0.082160119882125
1026 => 0.084980048765722
1027 => 0.086636492793231
1028 => 0.079152618414996
1029 => 0.086488560659264
1030 => 0.082050783806342
1031 => 0.080544535689289
1101 => 0.082572500345802
1102 => 0.081782200546898
1103 => 0.081102747187763
1104 => 0.080723600538875
1105 => 0.082212713964326
1106 => 0.082143245043153
1107 => 0.079706766454654
1108 => 0.076528479459529
1109 => 0.077595216898807
1110 => 0.077207661186401
1111 => 0.075803109288958
1112 => 0.076749607681592
1113 => 0.072581707772306
1114 => 0.065411052606967
1115 => 0.070148207052298
1116 => 0.069965831759185
1117 => 0.069873869866337
1118 => 0.073433710506671
1119 => 0.0730915139686
1120 => 0.072470423901203
1121 => 0.075791702482805
1122 => 0.074579391123019
1123 => 0.078315449077399
1124 => 0.080776258479233
1125 => 0.080152117616083
1126 => 0.082466520752631
1127 => 0.077619792374901
1128 => 0.079229681124992
1129 => 0.079561476965176
1130 => 0.075750718420657
1201 => 0.073147501554244
1202 => 0.072973896668099
1203 => 0.068460277367121
1204 => 0.070871416365042
1205 => 0.072993118903501
1206 => 0.071976988038347
1207 => 0.071655311362485
1208 => 0.073298687736303
1209 => 0.073426392155116
1210 => 0.070514717872684
1211 => 0.071120147156734
1212 => 0.073644887915468
1213 => 0.071056530167432
1214 => 0.066027773868836
1215 => 0.064780572778788
1216 => 0.064614173162899
1217 => 0.061231664889925
1218 => 0.064863916719349
1219 => 0.063278341457509
1220 => 0.068287154711555
1221 => 0.065426147443648
1222 => 0.065302815138551
1223 => 0.065116380270482
1224 => 0.062204915670276
1225 => 0.062842341384494
1226 => 0.064961241541229
1227 => 0.06571728898827
1228 => 0.06563842704543
1229 => 0.064950857774499
1230 => 0.065265623465807
1231 => 0.064251653502467
]
'min_raw' => 0.03547768102068
'max_raw' => 0.11032375358272
'avg_raw' => 0.072900717301698
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.035477'
'max' => '$0.110323'
'avg' => '$0.07290071'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.02021046705304
'max_diff' => 0.068905273272677
'year' => 2033
]
8 => [
'items' => [
101 => 0.063893599604452
102 => 0.062763483011833
103 => 0.06110252382336
104 => 0.061333490385772
105 => 0.058042695619794
106 => 0.056249695975592
107 => 0.055753417305432
108 => 0.055089772726782
109 => 0.055828377726482
110 => 0.058033373211689
111 => 0.055373680840641
112 => 0.050813824826208
113 => 0.051087879942292
114 => 0.051703600420438
115 => 0.050556209382811
116 => 0.049470300058927
117 => 0.050414410113436
118 => 0.048482339008601
119 => 0.051937081982879
120 => 0.05184364086723
121 => 0.053131355408169
122 => 0.05393658973718
123 => 0.052080785306518
124 => 0.051614055510836
125 => 0.051879926014143
126 => 0.047485678828338
127 => 0.052772251664646
128 => 0.052817970166064
129 => 0.052426500600415
130 => 0.055241437431124
131 => 0.061181832144735
201 => 0.058946816701651
202 => 0.058081351168389
203 => 0.056436100557008
204 => 0.058628299311359
205 => 0.058459972650652
206 => 0.057698735654948
207 => 0.057238337144742
208 => 0.058086635516386
209 => 0.057133223588793
210 => 0.05696196460859
211 => 0.055924321520166
212 => 0.055553930147351
213 => 0.055279707120624
214 => 0.054977814512796
215 => 0.055643714378714
216 => 0.054134697676121
217 => 0.052314971463525
218 => 0.052163680918659
219 => 0.052581407414637
220 => 0.052396594536247
221 => 0.052162796105699
222 => 0.051716411230571
223 => 0.051583978373625
224 => 0.052014320911413
225 => 0.051528489276778
226 => 0.052245360318301
227 => 0.052050411061291
228 => 0.050961440358982
301 => 0.049604179675314
302 => 0.049592097208279
303 => 0.049299677620336
304 => 0.048927237309512
305 => 0.048823632935321
306 => 0.050334899797982
307 => 0.05346317697528
308 => 0.052849021312048
309 => 0.053292811719937
310 => 0.055475821291241
311 => 0.056169734388571
312 => 0.055677211308319
313 => 0.055003015338569
314 => 0.055032676539636
315 => 0.057336608261269
316 => 0.057480301656687
317 => 0.057843368509662
318 => 0.058310012018416
319 => 0.055756682715683
320 => 0.054912414959094
321 => 0.054512354057831
322 => 0.053280321324992
323 => 0.054608963000855
324 => 0.053834820394439
325 => 0.053939278680521
326 => 0.053871250084675
327 => 0.05390839829808
328 => 0.05193611631181
329 => 0.052654712207517
330 => 0.051459907156937
331 => 0.049860197317372
401 => 0.049854834529059
402 => 0.050246361245985
403 => 0.050013465834316
404 => 0.049386750269801
405 => 0.049475772257726
406 => 0.048695845970163
407 => 0.049570469430058
408 => 0.049595550501334
409 => 0.049258772828213
410 => 0.05060625094296
411 => 0.051158313826009
412 => 0.050936639547084
413 => 0.051142760567661
414 => 0.052874542252602
415 => 0.05315689823018
416 => 0.053282302104031
417 => 0.0531142775259
418 => 0.051174414357785
419 => 0.051260455538226
420 => 0.05062914244537
421 => 0.050095749408042
422 => 0.050117082332257
423 => 0.050391315689685
424 => 0.051588908845147
425 => 0.054109173038845
426 => 0.054204815222706
427 => 0.054320736339626
428 => 0.053849226899828
429 => 0.053707015141048
430 => 0.053894629158849
501 => 0.054841107880805
502 => 0.057275708120145
503 => 0.05641515779408
504 => 0.055715516983725
505 => 0.056329290596214
506 => 0.056234804959488
507 => 0.055437251098535
508 => 0.055414866417994
509 => 0.053884105565433
510 => 0.053318218131979
511 => 0.052845320236644
512 => 0.052328928080252
513 => 0.05202279350032
514 => 0.052493155350773
515 => 0.05260073267113
516 => 0.051572278264596
517 => 0.051432103729255
518 => 0.052271961798361
519 => 0.051902371575212
520 => 0.052282504285117
521 => 0.052370698334533
522 => 0.052356497061296
523 => 0.051970602421161
524 => 0.052216560157239
525 => 0.051634796787885
526 => 0.051002216501746
527 => 0.050598669690333
528 => 0.050246521574659
529 => 0.050441913816204
530 => 0.04974537615231
531 => 0.049522539735098
601 => 0.05213323521048
602 => 0.054061784027852
603 => 0.054033742164258
604 => 0.053863044531413
605 => 0.053609422473755
606 => 0.054822553847574
607 => 0.054399923134263
608 => 0.054707422290174
609 => 0.054785693731053
610 => 0.055022597808742
611 => 0.055107270653922
612 => 0.054851330506715
613 => 0.053992364112232
614 => 0.051851901525254
615 => 0.050855510412947
616 => 0.050526684749679
617 => 0.05053863693801
618 => 0.050208942226925
619 => 0.05030605209522
620 => 0.050175171377758
621 => 0.049927314962333
622 => 0.050426609380992
623 => 0.050484148411493
624 => 0.050367607128054
625 => 0.05039505681916
626 => 0.049430144767718
627 => 0.04950350493531
628 => 0.049095026199996
629 => 0.04901844136141
630 => 0.047985842688849
701 => 0.046156444462837
702 => 0.04717010866403
703 => 0.045945744851745
704 => 0.045482059723893
705 => 0.047677073001311
706 => 0.047456754548449
707 => 0.04707966512728
708 => 0.046521871281049
709 => 0.046314980117612
710 => 0.045057974902353
711 => 0.044983704328374
712 => 0.045606710055052
713 => 0.045319214348508
714 => 0.044915461493382
715 => 0.043453109579886
716 => 0.041808941861038
717 => 0.0418585689496
718 => 0.042381548110138
719 => 0.04390218055275
720 => 0.043308043150213
721 => 0.042876989647732
722 => 0.042796266284137
723 => 0.043806688185327
724 => 0.045236646865442
725 => 0.04590755148463
726 => 0.045242705382691
727 => 0.04447896597864
728 => 0.044525451257337
729 => 0.044834696990736
730 => 0.044867194344817
731 => 0.044370078506459
801 => 0.044510013703084
802 => 0.044297439343468
803 => 0.042992870890885
804 => 0.042969275384409
805 => 0.042649113247137
806 => 0.042639418864861
807 => 0.042094743201174
808 => 0.042018539310659
809 => 0.040937052720958
810 => 0.041648890469342
811 => 0.041171427080885
812 => 0.040451777132253
813 => 0.040327709209856
814 => 0.040323979578293
815 => 0.041062899164754
816 => 0.041640255763754
817 => 0.041179732760947
818 => 0.041074880600071
819 => 0.042194427362603
820 => 0.042051954832176
821 => 0.041928574539675
822 => 0.045108609749562
823 => 0.042591363739694
824 => 0.041493700800013
825 => 0.040135134471618
826 => 0.04057749051863
827 => 0.040670701437297
828 => 0.037403594317495
829 => 0.036078129365884
830 => 0.035623279743584
831 => 0.035361507355321
901 => 0.035480800319783
902 => 0.0342877264018
903 => 0.035089491806306
904 => 0.034056390641361
905 => 0.033883187869056
906 => 0.035730500728654
907 => 0.035987543521222
908 => 0.034890919111191
909 => 0.035595129509796
910 => 0.035339773030005
911 => 0.034074100195654
912 => 0.034025760803041
913 => 0.033390690665315
914 => 0.032396928873583
915 => 0.031942753068574
916 => 0.031706214365989
917 => 0.031803814844723
918 => 0.031754465056051
919 => 0.031432424303485
920 => 0.031772924055021
921 => 0.030903087894059
922 => 0.030556712126017
923 => 0.03040026222745
924 => 0.029628232568694
925 => 0.030856875078922
926 => 0.031098933131467
927 => 0.031341468113152
928 => 0.033452569543049
929 => 0.033347104881522
930 => 0.034300454058353
1001 => 0.034263408662438
1002 => 0.033991498033973
1003 => 0.032844351819607
1004 => 0.033301583854738
1005 => 0.03189429472024
1006 => 0.032948731426166
1007 => 0.032467530547911
1008 => 0.032786036925183
1009 => 0.032213333740285
1010 => 0.032530291329143
1011 => 0.031156334075487
1012 => 0.029873352124124
1013 => 0.030389661513931
1014 => 0.030950948867791
1015 => 0.032167962864318
1016 => 0.031443119368134
1017 => 0.031703800498729
1018 => 0.03083056234873
1019 => 0.029028822617137
1020 => 0.02903902026835
1021 => 0.028761861863678
1022 => 0.028522356536252
1023 => 0.031526376363107
1024 => 0.031152779011112
1025 => 0.03055750052592
1026 => 0.031354304433776
1027 => 0.031564992033991
1028 => 0.031570990013778
1029 => 0.032152317576464
1030 => 0.032462572200878
1031 => 0.032517255923152
1101 => 0.033431987403452
1102 => 0.033738593330049
1103 => 0.035001459749205
1104 => 0.032436249263625
1105 => 0.032383420441758
1106 => 0.0313655170988
1107 => 0.030719946706281
1108 => 0.031409719855886
1109 => 0.032020764703011
1110 => 0.031384503965481
1111 => 0.031467586185605
1112 => 0.030613458129885
1113 => 0.030918768719344
1114 => 0.031181743328765
1115 => 0.031036544206376
1116 => 0.030819174092443
1117 => 0.03197066599381
1118 => 0.031905694308002
1119 => 0.032977990039239
1120 => 0.033813921242342
1121 => 0.035312059398879
1122 => 0.033748674132825
1123 => 0.033691698159836
1124 => 0.034248647435033
1125 => 0.033738508064016
1126 => 0.034060898537087
1127 => 0.03526011730953
1128 => 0.035285454912488
1129 => 0.034861017417292
1130 => 0.034835190357136
1201 => 0.034916708220926
1202 => 0.035394160895307
1203 => 0.03522732426024
1204 => 0.035420391838127
1205 => 0.03566182580063
1206 => 0.036660499035424
1207 => 0.03690127577134
1208 => 0.036316313131488
1209 => 0.036369128708318
1210 => 0.036150336623429
1211 => 0.035938986210884
1212 => 0.036414071073037
1213 => 0.037282297996438
1214 => 0.037276896801808
1215 => 0.037478308572117
1216 => 0.037603786436435
1217 => 0.037065143587374
1218 => 0.036714506899082
1219 => 0.036848963316965
1220 => 0.03706396205724
1221 => 0.036779242123174
1222 => 0.035021818795015
1223 => 0.035554908768142
1224 => 0.035466176529846
1225 => 0.035339811032303
1226 => 0.035875837122545
1227 => 0.035824136098497
1228 => 0.034275489704331
1229 => 0.034374629021914
1230 => 0.034281518694593
1231 => 0.034582377210749
]
'min_raw' => 0.028522356536252
'max_raw' => 0.063893599604452
'avg_raw' => 0.046207978070352
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.028522'
'max' => '$0.063893'
'avg' => '$0.0462079'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.0069553244844287
'max_diff' => -0.046430153978264
'year' => 2034
]
9 => [
'items' => [
101 => 0.033722260716811
102 => 0.033986826757373
103 => 0.034152760097861
104 => 0.034250496110169
105 => 0.034603585604835
106 => 0.03456215462798
107 => 0.034601010197142
108 => 0.035124548705561
109 => 0.037772426824425
110 => 0.037916544988221
111 => 0.037206854440947
112 => 0.037490361816556
113 => 0.036946089651635
114 => 0.037311463202253
115 => 0.037561442506104
116 => 0.036431834100257
117 => 0.036364946021561
118 => 0.035818427451807
119 => 0.036112095574799
120 => 0.035644848475633
121 => 0.035759494570159
122 => 0.035438934095199
123 => 0.036015879127173
124 => 0.036660993321114
125 => 0.036823974642835
126 => 0.036395240953258
127 => 0.036084809507077
128 => 0.035539794150058
129 => 0.036446166835239
130 => 0.036711217829594
131 => 0.036444774635202
201 => 0.036383033925162
202 => 0.036266035391201
203 => 0.03640785571723
204 => 0.036709774304956
205 => 0.036567395074545
206 => 0.03666143906463
207 => 0.036303040352167
208 => 0.03706532190057
209 => 0.038276008452479
210 => 0.03827990100771
211 => 0.038137521009823
212 => 0.038079262182307
213 => 0.03822535270048
214 => 0.038304600813643
215 => 0.038777030760996
216 => 0.039283966916946
217 => 0.04164961676319
218 => 0.040985351752665
219 => 0.043084297029392
220 => 0.04474429022935
221 => 0.045242049607313
222 => 0.044784134400976
223 => 0.043217631216191
224 => 0.043140771096548
225 => 0.045481788215201
226 => 0.044820343653805
227 => 0.044741666927926
228 => 0.043904679491
301 => 0.044399442729134
302 => 0.044291230751215
303 => 0.044120412850159
304 => 0.045064386643013
305 => 0.046831421314113
306 => 0.046556012389476
307 => 0.046350432403086
308 => 0.045449640746163
309 => 0.045992118522731
310 => 0.045798952576973
311 => 0.04662891606609
312 => 0.046137264081079
313 => 0.044815332560703
314 => 0.045025854512467
315 => 0.044994034542969
316 => 0.045648887260443
317 => 0.045452316729101
318 => 0.04495565099188
319 => 0.046825381781708
320 => 0.046703971864206
321 => 0.046876103369053
322 => 0.04695188098083
323 => 0.048089953164247
324 => 0.048556184923544
325 => 0.048662027695441
326 => 0.049104911807115
327 => 0.048651008335284
328 => 0.050466945850299
329 => 0.051674438334893
330 => 0.053077002992743
331 => 0.055126526931702
401 => 0.055897166891907
402 => 0.055757957680827
403 => 0.057311883340453
404 => 0.060104253208973
405 => 0.056322375468165
406 => 0.060304701912352
407 => 0.059043943338292
408 => 0.056054707439274
409 => 0.055862235888154
410 => 0.057886581144711
411 => 0.062376384087745
412 => 0.061251739373438
413 => 0.062378223603604
414 => 0.061064119912383
415 => 0.060998863587978
416 => 0.062314400520456
417 => 0.065388224269376
418 => 0.063927965826825
419 => 0.061834327279367
420 => 0.063380237402186
421 => 0.062041026986572
422 => 0.059023411098801
423 => 0.061250879378821
424 => 0.059761434774616
425 => 0.060196133893353
426 => 0.063326724913227
427 => 0.0629500439192
428 => 0.063437504005192
429 => 0.062577149712467
430 => 0.061773443137642
501 => 0.060273265131697
502 => 0.059829136382019
503 => 0.059951877590352
504 => 0.059829075557572
505 => 0.058989739750593
506 => 0.05880848526299
507 => 0.058506386509377
508 => 0.058600019545283
509 => 0.058031985506382
510 => 0.059103983099608
511 => 0.059302955299322
512 => 0.060083065750491
513 => 0.060164059405449
514 => 0.062336655907779
515 => 0.061140026263296
516 => 0.061942828740848
517 => 0.061871018530986
518 => 0.056119493245362
519 => 0.056912002683584
520 => 0.058144898666295
521 => 0.057589480697235
522 => 0.056804249636772
523 => 0.056170133454023
524 => 0.055209382595449
525 => 0.056561620979306
526 => 0.058339670659557
527 => 0.060209153679569
528 => 0.062455215034733
529 => 0.061953920287297
530 => 0.060167165124862
531 => 0.060247317656223
601 => 0.06074278906624
602 => 0.060101108571943
603 => 0.059911864467084
604 => 0.060716789832274
605 => 0.060722332910885
606 => 0.059984001952517
607 => 0.059163482205431
608 => 0.059160044197731
609 => 0.059014040634018
610 => 0.061090093622019
611 => 0.062231712852787
612 => 0.062362597657784
613 => 0.062222903262575
614 => 0.062276666091019
615 => 0.061612383014498
616 => 0.063130737140398
617 => 0.064524129035983
618 => 0.06415067024249
619 => 0.063590802420749
620 => 0.063144840733844
621 => 0.064045615841922
622 => 0.064005505744311
623 => 0.064511958973344
624 => 0.064488983329459
625 => 0.064318682157205
626 => 0.064150676324482
627 => 0.064816800460711
628 => 0.064624967407104
629 => 0.064432836383778
630 => 0.06404748820271
701 => 0.064099863420473
702 => 0.063540092267804
703 => 0.063281116519194
704 => 0.059386742629811
705 => 0.058346038674229
706 => 0.058673465324138
707 => 0.058781262678917
708 => 0.058328346983749
709 => 0.058977711746123
710 => 0.058876508935755
711 => 0.059270229869235
712 => 0.059024250123372
713 => 0.059034345217944
714 => 0.059757719202114
715 => 0.059967717747172
716 => 0.059860910792259
717 => 0.059935714722352
718 => 0.061659539718567
719 => 0.061414466928926
720 => 0.06128427689391
721 => 0.061320340423344
722 => 0.061760814669102
723 => 0.061884123408912
724 => 0.061361655613586
725 => 0.061608054446212
726 => 0.062657189402866
727 => 0.0630243272618
728 => 0.064196055071345
729 => 0.063698284272049
730 => 0.064611964117172
731 => 0.067420304464667
801 => 0.069663801056617
802 => 0.067600588874242
803 => 0.07172048465779
804 => 0.074928414489232
805 => 0.074805288799214
806 => 0.074245912032349
807 => 0.070593769206479
808 => 0.067233012927733
809 => 0.070044428260154
810 => 0.070051595136009
811 => 0.069810092065633
812 => 0.068310137236835
813 => 0.069757896888931
814 => 0.069872814792624
815 => 0.069808491325693
816 => 0.068658479475284
817 => 0.066902623937425
818 => 0.067245713906598
819 => 0.06780770227495
820 => 0.066743741050605
821 => 0.066403740971743
822 => 0.067035865806009
823 => 0.069072703730455
824 => 0.068687651319437
825 => 0.068677596044867
826 => 0.070325013546834
827 => 0.069145818150374
828 => 0.067250041369836
829 => 0.066771332730526
830 => 0.065072239557757
831 => 0.066245809264151
901 => 0.066288043948618
902 => 0.065645291814018
903 => 0.06730219716315
904 => 0.067286928488665
905 => 0.06885991351985
906 => 0.071866870113277
907 => 0.070977565085253
908 => 0.069943400093773
909 => 0.070055842502632
910 => 0.071289058196299
911 => 0.070543427836332
912 => 0.070811561712496
913 => 0.071288652343563
914 => 0.071576492966781
915 => 0.070014426666567
916 => 0.069650234289719
917 => 0.068905224500842
918 => 0.06871086535319
919 => 0.069317660281091
920 => 0.06915779125597
921 => 0.06628449428693
922 => 0.065984218766791
923 => 0.065993427788299
924 => 0.065238370715589
925 => 0.064086727445245
926 => 0.067113177198663
927 => 0.066870110928326
928 => 0.06660178457771
929 => 0.066634653024611
930 => 0.067948332286671
1001 => 0.067186331972284
1002 => 0.069212234697478
1003 => 0.068795770001388
1004 => 0.068368624557309
1005 => 0.068309580045769
1006 => 0.068145165492135
1007 => 0.067581326811764
1008 => 0.066900457723765
1009 => 0.066450888975997
1010 => 0.061297432499656
1011 => 0.062253884045388
1012 => 0.06335419436545
1013 => 0.063734017078719
1014 => 0.063084304044741
1015 => 0.067606981442393
1016 => 0.068433318184548
1017 => 0.065930290291949
1018 => 0.065462075971199
1019 => 0.067637677495313
1020 => 0.066325523819803
1021 => 0.066916386539541
1022 => 0.065639264524095
1023 => 0.068234277861328
1024 => 0.068214508207534
1025 => 0.067204989408317
1026 => 0.068058227784529
1027 => 0.067909956619497
1028 => 0.066770212381515
1029 => 0.068270409786597
1030 => 0.068271153865793
1031 => 0.067299513970377
1101 => 0.066164851291855
1102 => 0.065962000404472
1103 => 0.065809179510011
1104 => 0.066878801967594
1105 => 0.067837822118441
1106 => 0.06962232085791
1107 => 0.070070986239656
1108 => 0.071822157093959
1109 => 0.070779420113183
1110 => 0.071241651911057
1111 => 0.071743469914328
1112 => 0.071984059918843
1113 => 0.071592031417258
1114 => 0.074312320564671
1115 => 0.074541996316218
1116 => 0.074619004609024
1117 => 0.073701738414051
1118 => 0.074516485484013
1119 => 0.074135292311565
1120 => 0.075127051047763
1121 => 0.075282571481009
1122 => 0.075150851206849
1123 => 0.075200215847085
1124 => 0.072878928951658
1125 => 0.072758557980366
1126 => 0.071117291245668
1127 => 0.071786119571689
1128 => 0.07053577707397
1129 => 0.070932273559951
1130 => 0.071107045433015
1201 => 0.071015754524743
1202 => 0.07182393412174
1203 => 0.071136816364109
1204 => 0.069323399629101
1205 => 0.067509488829917
1206 => 0.067486716657413
1207 => 0.067009145962173
1208 => 0.06666394982095
1209 => 0.06673044684424
1210 => 0.066964791027659
1211 => 0.066650329310995
1212 => 0.066717435661859
1213 => 0.067831848213479
1214 => 0.06805533570308
1215 => 0.067295837891217
1216 => 0.064246344581579
1217 => 0.063497991274319
1218 => 0.064035892791087
1219 => 0.063778810511366
1220 => 0.051474477814741
1221 => 0.054365198269066
1222 => 0.052647630334697
1223 => 0.053439164660356
1224 => 0.051685972561425
1225 => 0.052522687723705
1226 => 0.052368176985178
1227 => 0.057016369933096
1228 => 0.056943794793595
1229 => 0.056978532672283
1230 => 0.055320403213424
1231 => 0.057961848464507
]
'min_raw' => 0.033722260716811
'max_raw' => 0.075282571481009
'avg_raw' => 0.05450241609891
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.033722'
'max' => '$0.075282'
'avg' => '$0.0545024'
'bar_min_pct' => 61.631153054957
'bar_max_pct' => 60.119598047091
'min_diff' => 0.005199904180559
'max_diff' => 0.011388971876557
'year' => 2035
]
10 => [
'items' => [
101 => 0.05926311937849
102 => 0.059022288764516
103 => 0.059082900641561
104 => 0.058041387777165
105 => 0.056988616793445
106 => 0.055820931752207
107 => 0.057990346228594
108 => 0.05774914437196
109 => 0.05830237464939
110 => 0.059709395010276
111 => 0.059916584103168
112 => 0.060195048345118
113 => 0.060095238736813
114 => 0.062473108537056
115 => 0.062185132814557
116 => 0.062879071449511
117 => 0.061451587028159
118 => 0.059836252907335
119 => 0.060143275114452
120 => 0.06011370640699
121 => 0.059737262823615
122 => 0.059397426388474
123 => 0.058831694472286
124 => 0.060621753967675
125 => 0.060549080821195
126 => 0.061725574589419
127 => 0.061517617888035
128 => 0.060128832140553
129 => 0.060178432895216
130 => 0.060512021807637
131 => 0.061666576842378
201 => 0.06200932738479
202 => 0.061850551677297
203 => 0.062226361999895
204 => 0.062523387155855
205 => 0.062263663786404
206 => 0.065940798989724
207 => 0.064413796084333
208 => 0.065158046675603
209 => 0.065335546056241
210 => 0.064880885125145
211 => 0.064979484800913
212 => 0.065128836442897
213 => 0.066035670366975
214 => 0.068415464978266
215 => 0.069469459811798
216 => 0.072640455271665
217 => 0.069381940213189
218 => 0.069188593414695
219 => 0.069759785451906
220 => 0.071621495470807
221 => 0.073130236579596
222 => 0.073630773046744
223 => 0.073696927203834
224 => 0.074635966891239
225 => 0.075174206928006
226 => 0.074521942773992
227 => 0.073969217198369
228 => 0.071989422793312
229 => 0.072218589386498
301 => 0.073797319959978
302 => 0.076027369881785
303 => 0.077940984711844
304 => 0.077270903494567
305 => 0.082383150178771
306 => 0.082890008555855
307 => 0.082819977116836
308 => 0.083974675930472
309 => 0.081682833935728
310 => 0.080703027080627
311 => 0.074088722741521
312 => 0.075947072466842
313 => 0.078648292929648
314 => 0.078290776272339
315 => 0.076329077768419
316 => 0.077939496587619
317 => 0.077407041763539
318 => 0.076987072552216
319 => 0.078911032924324
320 => 0.076795559463255
321 => 0.078627189463621
322 => 0.076278105042366
323 => 0.077273964369125
324 => 0.07670866645096
325 => 0.07707448348432
326 => 0.074935924582171
327 => 0.076089839055188
328 => 0.074887917946375
329 => 0.074887348079274
330 => 0.074860815604181
331 => 0.076274870458565
401 => 0.0763209827366
402 => 0.075275994062692
403 => 0.075125394868991
404 => 0.075682239020337
405 => 0.075030320356825
406 => 0.075335348996355
407 => 0.075039559363578
408 => 0.074972970886958
409 => 0.074442382576148
410 => 0.074213790543021
411 => 0.074303427369301
412 => 0.073997450670256
413 => 0.073813088641421
414 => 0.07482414135632
415 => 0.0742839766765
416 => 0.074741353372086
417 => 0.074220114901925
418 => 0.072413275271555
419 => 0.071374142693148
420 => 0.067961190125502
421 => 0.068929099239932
422 => 0.069570823984173
423 => 0.06935873396003
424 => 0.069814385399834
425 => 0.06984235869759
426 => 0.069694221769693
427 => 0.069522698184704
428 => 0.069439209989381
429 => 0.070061462596727
430 => 0.07042270117935
501 => 0.069635229647427
502 => 0.069450736085395
503 => 0.070246913281664
504 => 0.070732580911452
505 => 0.074318477816735
506 => 0.074052822991697
507 => 0.074719564470415
508 => 0.074644499611894
509 => 0.075343350901838
510 => 0.076485677404304
511 => 0.074163008225276
512 => 0.074566143282898
513 => 0.074467303876517
514 => 0.075546406598299
515 => 0.075549775439209
516 => 0.074902799452322
517 => 0.0752535356308
518 => 0.075057764317917
519 => 0.075411549540376
520 => 0.074049275009547
521 => 0.075708378339648
522 => 0.076648983017559
523 => 0.076662043314424
524 => 0.077107882466654
525 => 0.077560880866581
526 => 0.078430371847396
527 => 0.077536631235043
528 => 0.075928878877315
529 => 0.076044953404535
530 => 0.075102328785453
531 => 0.075118174475599
601 => 0.075033588939751
602 => 0.075287436500131
603 => 0.074104980273963
604 => 0.074382500386785
605 => 0.073993970603679
606 => 0.074565298695028
607 => 0.073950644112653
608 => 0.074467256213163
609 => 0.07469020886978
610 => 0.075512908972525
611 => 0.073829130638561
612 => 0.070395792633835
613 => 0.071117521907628
614 => 0.070050027621077
615 => 0.070148828281535
616 => 0.070348421339668
617 => 0.069701474935474
618 => 0.06982489192177
619 => 0.069820482598548
620 => 0.069782485433126
621 => 0.069614189687139
622 => 0.06937012755916
623 => 0.070342395958667
624 => 0.070507603305636
625 => 0.070874838773088
626 => 0.07196748242603
627 => 0.071858301558789
628 => 0.072036380083129
629 => 0.071647635664363
630 => 0.070166861020176
701 => 0.070247274207577
702 => 0.069244520472151
703 => 0.070849196105576
704 => 0.070469187734897
705 => 0.07022419386622
706 => 0.070157345019299
707 => 0.071252697124515
708 => 0.071580443641937
709 => 0.07137621400653
710 => 0.070957333065982
711 => 0.071761708302868
712 => 0.071976925182392
713 => 0.072025104304825
714 => 0.073450303000934
715 => 0.072104757079955
716 => 0.072428643356711
717 => 0.074955511630546
718 => 0.072663990790164
719 => 0.073877860486327
720 => 0.073818447881373
721 => 0.074439422542819
722 => 0.073767509834242
723 => 0.073775838997545
724 => 0.074327222428442
725 => 0.073552903842273
726 => 0.073361171671071
727 => 0.073096295049767
728 => 0.073674643462067
729 => 0.074021337178792
730 => 0.076815433917121
731 => 0.078620547836372
801 => 0.078542183080488
802 => 0.079258290256592
803 => 0.078935677414967
804 => 0.077893875448394
805 => 0.07967210437112
806 => 0.079109398335711
807 => 0.079155787137582
808 => 0.07915406054406
809 => 0.079528210864991
810 => 0.079263091072238
811 => 0.078740512746733
812 => 0.079087424626912
813 => 0.080117628887779
814 => 0.083315414524036
815 => 0.08510493773111
816 => 0.083207682979979
817 => 0.084516383902056
818 => 0.083731629686627
819 => 0.083589016501268
820 => 0.084410977392571
821 => 0.085234377017605
822 => 0.085181930021145
823 => 0.084584184175409
824 => 0.084246532714392
825 => 0.086803342698749
826 => 0.088687156741101
827 => 0.088558693252662
828 => 0.089125689312067
829 => 0.090790407279007
830 => 0.090942608226979
831 => 0.090923434405833
901 => 0.090546188475758
902 => 0.092185319505155
903 => 0.093552711447645
904 => 0.090458866942628
905 => 0.09163696242874
906 => 0.092165847448321
907 => 0.092942407570182
908 => 0.094252594662348
909 => 0.095675805354403
910 => 0.095877062950971
911 => 0.095734261055143
912 => 0.094795615345776
913 => 0.096352909467458
914 => 0.097265135840898
915 => 0.097808345770353
916 => 0.099185835769935
917 => 0.092169113662148
918 => 0.087202329000541
919 => 0.086426693854391
920 => 0.088003978424432
921 => 0.088419895786944
922 => 0.088252240019631
923 => 0.082661672322686
924 => 0.086397260672461
925 => 0.090416439639629
926 => 0.090570832672379
927 => 0.092582917700412
928 => 0.093238135063692
929 => 0.094858127241272
930 => 0.094756796289488
1001 => 0.095151238605023
1002 => 0.09506056314747
1003 => 0.098061257526838
1004 => 0.10137146903471
1005 => 0.10125684693602
1006 => 0.10078096486712
1007 => 0.10148773088939
1008 => 0.10490422390933
1009 => 0.10458968798024
1010 => 0.10489523284325
1011 => 0.10892347065887
1012 => 0.11416075282933
1013 => 0.11172750944662
1014 => 0.11700694744018
1015 => 0.12033007380615
1016 => 0.1260770772384
1017 => 0.12535752410409
1018 => 0.12759479036681
1019 => 0.12406937381841
1020 => 0.11597430481905
1021 => 0.11469322916323
1022 => 0.1172579750682
1023 => 0.12356315261132
1024 => 0.11705940258914
1025 => 0.11837510274813
1026 => 0.11799618101383
1027 => 0.11797598988492
1028 => 0.11874660315205
1029 => 0.11762878841559
1030 => 0.11307461008824
1031 => 0.11516176317773
1101 => 0.11435581313655
1102 => 0.11525007479479
1103 => 0.12007603614273
1104 => 0.11794236359426
1105 => 0.11569471288992
1106 => 0.11851376566678
1107 => 0.12210338858335
1108 => 0.12187875643241
1109 => 0.12144287617062
1110 => 0.12389991038439
1111 => 0.12795821106206
1112 => 0.12905515342766
1113 => 0.12986489385594
1114 => 0.12997654338033
1115 => 0.13112660287128
1116 => 0.12494244313613
1117 => 0.1347568634563
1118 => 0.1364515427277
1119 => 0.13613301326194
1120 => 0.13801657794909
1121 => 0.13746238543671
1122 => 0.1366594474364
1123 => 0.13964529811125
1124 => 0.13622226125826
1125 => 0.13136369139381
1126 => 0.12869818387455
1127 => 0.13220833919626
1128 => 0.1343518685637
1129 => 0.1357686051215
1130 => 0.13619730874787
1201 => 0.12542250185233
1202 => 0.11961547853381
1203 => 0.12333771390332
1204 => 0.12787909794909
1205 => 0.12491721551846
1206 => 0.12503331570215
1207 => 0.12081044972509
1208 => 0.12825272788601
1209 => 0.12716845055738
1210 => 0.13279368325639
1211 => 0.13145117632746
1212 => 0.13603833522322
1213 => 0.13483038255353
1214 => 0.1398445265497
1215 => 0.1418448043423
1216 => 0.14520358207445
1217 => 0.14767431264691
1218 => 0.1491251728966
1219 => 0.14903806868925
1220 => 0.15478709981423
1221 => 0.15139709701568
1222 => 0.14713845453838
1223 => 0.14706142913181
1224 => 0.14926704041623
1225 => 0.15388939658848
1226 => 0.15508790629139
1227 => 0.15575770971162
1228 => 0.15473188245752
1229 => 0.15105227738338
1230 => 0.14946344256838
1231 => 0.15081717586373
]
'min_raw' => 0.055820931752207
'max_raw' => 0.15575770971162
'avg_raw' => 0.10578932073192
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$0.05582'
'max' => '$0.155757'
'avg' => '$0.105789'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.022098671035396
'max_diff' => 0.080475138230615
'year' => 2036
]
11 => [
'items' => [
101 => 0.14916167637115
102 => 0.15201953294647
103 => 0.15594398042961
104 => 0.15513359754329
105 => 0.15784258603286
106 => 0.16064610412568
107 => 0.16465526091228
108 => 0.16570340295494
109 => 0.16743594189419
110 => 0.16921929357207
111 => 0.16979205806833
112 => 0.17088564321008
113 => 0.17087987947657
114 => 0.174175471908
115 => 0.17781061241586
116 => 0.17918279380388
117 => 0.18233804924311
118 => 0.17693478487676
119 => 0.18103322296687
120 => 0.1847301167147
121 => 0.18032252758349
122 => 0.1863973623643
123 => 0.18663323443297
124 => 0.19019462262962
125 => 0.18658447341289
126 => 0.184440778332
127 => 0.19062954570733
128 => 0.1936240952959
129 => 0.19272211258937
130 => 0.18585797965629
131 => 0.18186275987272
201 => 0.17140649907878
202 => 0.18379239166605
203 => 0.18982519864387
204 => 0.18584235614363
205 => 0.18785107023264
206 => 0.19880996297453
207 => 0.20298239979489
208 => 0.20211456210379
209 => 0.20226121238776
210 => 0.20451258356094
211 => 0.21449640319556
212 => 0.20851386704737
213 => 0.21308729177131
214 => 0.21551301975417
215 => 0.21776617109195
216 => 0.21223314352216
217 => 0.20503475595019
218 => 0.20275472443839
219 => 0.18544634095023
220 => 0.18454536442317
221 => 0.18403961899615
222 => 0.1808509656179
223 => 0.17834555750826
224 => 0.17635316395963
225 => 0.17112452830896
226 => 0.17288903935285
227 => 0.16455568542676
228 => 0.16988706995274
301 => 0.15658683587083
302 => 0.16766366603284
303 => 0.16163505097732
304 => 0.16568310384802
305 => 0.1656689805729
306 => 0.15821523180162
307 => 0.15391606506611
308 => 0.15665566143605
309 => 0.15959272621405
310 => 0.16006925509281
311 => 0.16387723624273
312 => 0.16493996192939
313 => 0.16171985348489
314 => 0.15631121808207
315 => 0.15756752072831
316 => 0.15389060613308
317 => 0.14744695473542
318 => 0.15207489766458
319 => 0.15365508085688
320 => 0.15435297977565
321 => 0.14801638868442
322 => 0.14602529418947
323 => 0.14496525218726
324 => 0.1554932437437
325 => 0.15606999088676
326 => 0.15311927095904
327 => 0.16645680483107
328 => 0.16343811014279
329 => 0.16681073170775
330 => 0.1574535244311
331 => 0.15781098235022
401 => 0.15338113046956
402 => 0.15586155151992
403 => 0.15410846986923
404 => 0.15566115801105
405 => 0.15659183288128
406 => 0.16102095786684
407 => 0.16771423952557
408 => 0.1603593942923
409 => 0.15715478290085
410 => 0.15914290578469
411 => 0.16443753901613
412 => 0.17245917938905
413 => 0.16771020683772
414 => 0.16981772021322
415 => 0.17027811812902
416 => 0.16677640158619
417 => 0.17258829267278
418 => 0.1757029323218
419 => 0.17889790811784
420 => 0.18167201608034
421 => 0.17762176452588
422 => 0.18195611426991
423 => 0.17846339349195
424 => 0.17533006188327
425 => 0.17533481385394
426 => 0.17336922916515
427 => 0.16956066115101
428 => 0.16885830277529
429 => 0.17251205974389
430 => 0.17544202682063
501 => 0.17568335294267
502 => 0.1773055332635
503 => 0.17826552286758
504 => 0.18767472603016
505 => 0.19145918537916
506 => 0.19608675063497
507 => 0.1978894480974
508 => 0.20331492115648
509 => 0.19893341102589
510 => 0.19798544374815
511 => 0.18482502076551
512 => 0.18698003929166
513 => 0.19043043188038
514 => 0.18488191646844
515 => 0.18840117240511
516 => 0.18909594807505
517 => 0.18469338003791
518 => 0.18704498185028
519 => 0.18079982463797
520 => 0.16785036688675
521 => 0.17260270912106
522 => 0.1761020326266
523 => 0.17110806652071
524 => 0.18005955747234
525 => 0.17483028125468
526 => 0.17317285174321
527 => 0.16670662830267
528 => 0.16975843685884
529 => 0.17388605162875
530 => 0.17133566558766
531 => 0.1766280995653
601 => 0.18412359751822
602 => 0.1894653357241
603 => 0.18987540805492
604 => 0.1864410282572
605 => 0.19194464380095
606 => 0.19198473163176
607 => 0.18577663081548
608 => 0.18197420363235
609 => 0.18111028417597
610 => 0.1832685243594
611 => 0.18588902637519
612 => 0.19002082767902
613 => 0.19251758867238
614 => 0.19902781716333
615 => 0.2007892983301
616 => 0.20272463208467
617 => 0.20531083481559
618 => 0.20841623428283
619 => 0.20162179703899
620 => 0.20189175269711
621 => 0.19556486681103
622 => 0.18880368187455
623 => 0.19393457844774
624 => 0.20064254318262
625 => 0.1991037286608
626 => 0.19893058059196
627 => 0.19922176761647
628 => 0.19806155172
629 => 0.19281393821987
630 => 0.1901786195719
701 => 0.19357885296927
702 => 0.19538592569299
703 => 0.19818853789419
704 => 0.19784305678442
705 => 0.20506228483612
706 => 0.20786745855889
707 => 0.20714977508045
708 => 0.2072818461125
709 => 0.21236047914501
710 => 0.2180089635777
711 => 0.22329951463208
712 => 0.22868129039905
713 => 0.22219334965768
714 => 0.21889917346977
715 => 0.22229792243161
716 => 0.2204944983916
717 => 0.23085750785579
718 => 0.23157502014679
719 => 0.24193728024745
720 => 0.25177229899795
721 => 0.24559509993342
722 => 0.25141992042412
723 => 0.25771993868938
724 => 0.26987369606421
725 => 0.26578073815471
726 => 0.26264559654086
727 => 0.25968290286466
728 => 0.26584779809045
729 => 0.27377883731181
730 => 0.27548710719755
731 => 0.27825515702176
801 => 0.27534489109263
802 => 0.27884998584899
803 => 0.29122451055561
804 => 0.28788080474693
805 => 0.28313220497107
806 => 0.29290070376496
807 => 0.29643588550439
808 => 0.32124764234077
809 => 0.35257351026926
810 => 0.33960439525013
811 => 0.33155404704703
812 => 0.33344606983157
813 => 0.3448852163515
814 => 0.34855910715334
815 => 0.33857220548783
816 => 0.342099747991
817 => 0.36153685400379
818 => 0.37196423776263
819 => 0.35780245003365
820 => 0.31873063935404
821 => 0.28270464551681
822 => 0.29226036135409
823 => 0.29117703972653
824 => 0.31205978530891
825 => 0.28780105846923
826 => 0.28820951321424
827 => 0.30952409186005
828 => 0.30383772770173
829 => 0.29462654601976
830 => 0.28277189733679
831 => 0.26085748282405
901 => 0.24144727476146
902 => 0.27951516267615
903 => 0.27787360612731
904 => 0.27549638897953
905 => 0.28078662850015
906 => 0.30647452995157
907 => 0.30588234067949
908 => 0.30211513466815
909 => 0.30497252722513
910 => 0.29412563128923
911 => 0.29692112335114
912 => 0.28269893881532
913 => 0.2891279601964
914 => 0.29460678296082
915 => 0.29570673774613
916 => 0.29818499204253
917 => 0.27700858041898
918 => 0.28651616753117
919 => 0.29210098421914
920 => 0.2668685792455
921 => 0.29160222070118
922 => 0.27663994620587
923 => 0.27156152551634
924 => 0.27839894994374
925 => 0.27573439899477
926 => 0.27344357455653
927 => 0.27216525515863
928 => 0.27718590503912
929 => 0.27695168572122
930 => 0.26873692805059
1001 => 0.25802111154561
1002 => 0.26161769129937
1003 => 0.26031102015672
1004 => 0.2555754753718
1005 => 0.25876666078498
1006 => 0.24471429524734
1007 => 0.22053793071825
1008 => 0.23650957766824
1009 => 0.23589468663447
1010 => 0.23558463069216
1011 => 0.24758688195118
1012 => 0.24643314243168
1013 => 0.24433909390632
1014 => 0.25553701652846
1015 => 0.25144962413807
1016 => 0.2640460043745
1017 => 0.27234279508101
1018 => 0.27023846058477
1019 => 0.27804163234611
1020 => 0.26170054923283
1021 => 0.2671284015526
1022 => 0.26824707439303
1023 => 0.25539883590151
1024 => 0.24662190848561
1025 => 0.24603658749126
1026 => 0.23081860488718
1027 => 0.23894792835902
1028 => 0.24610139659997
1029 => 0.24267544044412
1030 => 0.2415908850727
1031 => 0.2471316432539
1101 => 0.24756220761797
1102 => 0.23774529448814
1103 => 0.23978654158904
1104 => 0.24829888132888
1105 => 0.23957205246801
1106 => 0.22261724951074
1107 => 0.21841222395885
1108 => 0.21785119603623
1109 => 0.20644683323471
1110 => 0.21869322387334
1111 => 0.21334734617671
1112 => 0.2302349097669
1113 => 0.220588824014
1114 => 0.22017300053658
1115 => 0.21954442236242
1116 => 0.20972821619086
1117 => 0.21187734148999
1118 => 0.2190213613053
1119 => 0.22157042805855
1120 => 0.2213045395123
1121 => 0.2189863517108
1122 => 0.22004760621528
1123 => 0.21662893569076
1124 => 0.21542173197508
1125 => 0.21161146498084
1126 => 0.20601142511244
1127 => 0.20679014500318
1128 => 0.19569500069373
1129 => 0.18964977721007
1130 => 0.18797653902456
1201 => 0.18573901499345
1202 => 0.18822927331769
1203 => 0.19566356954394
1204 => 0.18669623102116
1205 => 0.17132235810952
1206 => 0.17224635406731
1207 => 0.17432229864761
1208 => 0.17045378965597
1209 => 0.16679257055473
1210 => 0.16997570351916
1211 => 0.16346159089631
1212 => 0.17510949803654
1213 => 0.17479445479128
1214 => 0.17913607427142
1215 => 0.18185097803134
1216 => 0.17559400382524
1217 => 0.17402039173306
1218 => 0.17491679269745
1219 => 0.16010128151397
1220 => 0.17792533092831
1221 => 0.1780794740478
1222 => 0.17675960707568
1223 => 0.18625036313303
1224 => 0.20627881865509
1225 => 0.19874330804493
1226 => 0.19582533057467
1227 => 0.19027825327066
1228 => 0.19766940442539
1229 => 0.19710187933663
1230 => 0.19453531565774
1231 => 0.19298304993658
]
'min_raw' => 0.14496525218726
'max_raw' => 0.37196423776263
'avg_raw' => 0.25846474497494
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$0.144965'
'max' => '$0.371964'
'avg' => '$0.258464'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 0.089144320435053
'max_diff' => 0.216206528051
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.0045502936180747
]
1 => [
'year' => 2028
'avg' => 0.0078096248082921
]
2 => [
'year' => 2029
'avg' => 0.021334487428329
]
3 => [
'year' => 2030
'avg' => 0.016459525278684
]
4 => [
'year' => 2031
'avg' => 0.016165293630179
]
5 => [
'year' => 2032
'avg' => 0.02834284713884
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.0045502936180747
'min' => '$0.00455'
'max_raw' => 0.02834284713884
'max' => '$0.028342'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.02834284713884
]
1 => [
'year' => 2033
'avg' => 0.072900717301698
]
2 => [
'year' => 2034
'avg' => 0.046207978070352
]
3 => [
'year' => 2035
'avg' => 0.05450241609891
]
4 => [
'year' => 2036
'avg' => 0.10578932073192
]
5 => [
'year' => 2037
'avg' => 0.25846474497494
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.02834284713884
'min' => '$0.028342'
'max_raw' => 0.25846474497494
'max' => '$0.258464'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 0.25846474497494
]
]
]
]
'prediction_2025_max_price' => '$0.00778'
'last_price' => 0.00754386
'sma_50day_nextmonth' => '$0.006772'
'sma_200day_nextmonth' => '$0.011081'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'increase'
'sma_200day_direction_label' => 'aumentar'
'sma_200day_date_nextmonth' => '4 de fev. de 2026'
'sma_50day_date_nextmonth' => '4 de fev. de 2026'
'daily_sma3' => '$0.007081'
'daily_sma3_action' => 'BUY'
'daily_sma5' => '$0.0069078'
'daily_sma5_action' => 'BUY'
'daily_sma10' => '$0.006671'
'daily_sma10_action' => 'BUY'
'daily_sma21' => '$0.006539'
'daily_sma21_action' => 'BUY'
'daily_sma50' => '$0.00730043'
'daily_sma50_action' => 'BUY'
'daily_sma100' => '$0.0091062'
'daily_sma100_action' => 'SELL'
'daily_sma200' => '$0.012299'
'daily_sma200_action' => 'SELL'
'daily_ema3' => '$0.007175'
'daily_ema3_action' => 'BUY'
'daily_ema5' => '$0.006992'
'daily_ema5_action' => 'BUY'
'daily_ema10' => '$0.006787'
'daily_ema10_action' => 'BUY'
'daily_ema21' => '$0.006788'
'daily_ema21_action' => 'BUY'
'daily_ema50' => '$0.007494'
'daily_ema50_action' => 'BUY'
'daily_ema100' => '$0.009081'
'daily_ema100_action' => 'SELL'
'daily_ema200' => '$0.01198'
'daily_ema200_action' => 'SELL'
'weekly_sma21' => '$0.0106076'
'weekly_sma21_action' => 'SELL'
'weekly_sma50' => '$0.015028'
'weekly_sma50_action' => 'SELL'
'weekly_sma100' => '$0.025151'
'weekly_sma100_action' => 'SELL'
'weekly_sma200' => '$0.028578'
'weekly_sma200_action' => 'SELL'
'weekly_ema3' => '$0.007197'
'weekly_ema3_action' => 'BUY'
'weekly_ema5' => '$0.007272'
'weekly_ema5_action' => 'BUY'
'weekly_ema10' => '$0.008046'
'weekly_ema10_action' => 'SELL'
'weekly_ema21' => '$0.01019'
'weekly_ema21_action' => 'SELL'
'weekly_ema50' => '$0.0152057'
'weekly_ema50_action' => 'SELL'
'weekly_ema100' => '$0.0211017'
'weekly_ema100_action' => 'SELL'
'weekly_ema200' => '$0.026053'
'weekly_ema200_action' => 'SELL'
'rsi_14' => '62.26'
'rsi_14_action' => 'NEUTRAL'
'stoch_rsi_14' => 121.18
'stoch_rsi_14_action' => 'SELL'
'momentum_10' => 0
'momentum_10_action' => 'BUY'
'vwma_10' => '0.006773'
'vwma_10_action' => 'BUY'
'hma_9' => '0.007172'
'hma_9_action' => 'BUY'
'stochastic_fast_14' => 100
'stochastic_fast_14_action' => 'SELL'
'cci_20' => 312.53
'cci_20_action' => 'SELL'
'adx_14' => 23.94
'adx_14_action' => 'NEUTRAL'
'ao_5_34' => '-0.000021'
'ao_5_34_action' => 'NEUTRAL'
'macd_12_26' => 0
'macd_12_26_action' => 'BUY'
'williams_percent_r_14' => -0
'williams_percent_r_14_action' => 'SELL'
'ultimate_oscillator' => 76.85
'ultimate_oscillator_action' => 'SELL'
'ichimoku_cloud' => '-0.001022'
'ichimoku_cloud_action' => 'SELL'
'sell_signals' => 14
'buy_signals' => 20
'sell_pct' => 41.18
'buy_pct' => 58.82
'overall_action' => 'bullish'
'overall_action_label' => 'Altista'
'overall_action_dir' => 1
'last_updated' => 1767709597
'last_updated_date' => '6 de janeiro de 2026'
]
Previsão de preço de Ankr para 2026
A previsão de preço para Ankr em 2026 sugere que o preço médio poderia variar entre $0.0026064 na extremidade inferior e $0.00778 na extremidade superior. No mercado de criptomoedas, comparado ao preço médio de hoje, Ankr poderia potencialmente ganhar 3.13% até 2026 se ANKR atingir a meta de preço prevista.
Previsão de preço de Ankr 2027-2032
A previsão de preço de ANKR para 2027-2032 está atualmente dentro de uma faixa de preço entre $0.00455 na extremidade inferior e $0.028342 na extremidade superior. Considerando a volatilidade de preços no mercado, se Ankr atingir a meta de preço superior, poderia ganhar 275.71% até 2032 em comparação com o preço de hoje.
| Previsão de Preço de Ankr | Potencial Mínimo ($) | Preço Médio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2027 | $0.0025091 | $0.00455 | $0.006591 |
| 2028 | $0.004528 | $0.0078096 | $0.011091 |
| 2029 | $0.009947 | $0.021334 | $0.032721 |
| 2030 | $0.008459 | $0.016459 | $0.024459 |
| 2031 | $0.0100019 | $0.016165 | $0.022328 |
| 2032 | $0.015267 | $0.028342 | $0.041418 |
Previsão de preço de Ankr 2032-2037
A previsão de preço de Ankr para 2032-2037 é atualmente estimada entre $0.028342 na extremidade inferior e $0.258464 na extremidade superior. Comparado ao preço atual, Ankr poderia potencialmente ganhar 3326.16% até 2037 se atingir a meta de preço superior. Por favor, note que esta informação é apenas para fins gerais e não deve ser considerada como aconselhamento de investimento a longo prazo.
| Previsão de Preço de Ankr | Potencial Mínimo ($) | Preço Médio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2032 | $0.015267 | $0.028342 | $0.041418 |
| 2033 | $0.035477 | $0.07290071 | $0.110323 |
| 2034 | $0.028522 | $0.0462079 | $0.063893 |
| 2035 | $0.033722 | $0.0545024 | $0.075282 |
| 2036 | $0.05582 | $0.105789 | $0.155757 |
| 2037 | $0.144965 | $0.258464 | $0.371964 |
Ankr Histograma de preços potenciais
Previsão de preço de Ankr baseada na análise técnica
Em 6 de janeiro de 2026, o sentimento geral de previsão de preço para Ankr é Altista, com 20 indicadores técnicos mostrando sinais de alta e 14 indicando sinais de baixa. A previsão de preço de ANKR foi atualizada pela última vez em 6 de janeiro de 2026.
Médias Móveis Simples de 50 e 200 dias e Índice de Força Relativa de 14 dias - RSI (14) de Ankr
De acordo com nossos indicadores técnicos, o SMA de 200 dias de Ankr está projetado para aumentar no próximo mês, alcançando $0.011081 até 4 de fev. de 2026. O SMA de 50 dias de curto prazo para Ankr é esperado para alcançar $0.006772 até 4 de fev. de 2026.
O oscilador de momentum Índice de Força Relativa (RSI) é uma ferramenta comumente usada para identificar se uma criptomoeda está sobrevendida (abaixo de 30) ou sobrecomprada (acima de 70). No momento, o RSI está em 62.26, sugerindo que o mercado de ANKR está em um estado NEUTRAL.
Médias Móveis e Osciladores Populares de ANKR para Sábado, 19 de Outubro de 2024
Médias móveis (MA) são indicadores amplamente utilizados nos mercados financeiros, projetados para suavizar movimentos de preços ao longo de um período definido. Como indicadores atrasados, eles se baseiam em dados históricos de preços. A tabela abaixo destaca dois tipos: a média móvel simples (SMA) e a média móvel exponencial (EMA).
Média Móvel Simples Diária (SMA)
| Período | Valor | Ação |
|---|---|---|
| SMA 3 | $0.007081 | BUY |
| SMA 5 | $0.0069078 | BUY |
| SMA 10 | $0.006671 | BUY |
| SMA 21 | $0.006539 | BUY |
| SMA 50 | $0.00730043 | BUY |
| SMA 100 | $0.0091062 | SELL |
| SMA 200 | $0.012299 | SELL |
Média Móvel Exponencial Diária (EMA)
| Período | Valor | Ação |
|---|---|---|
| EMA 3 | $0.007175 | BUY |
| EMA 5 | $0.006992 | BUY |
| EMA 10 | $0.006787 | BUY |
| EMA 21 | $0.006788 | BUY |
| EMA 50 | $0.007494 | BUY |
| EMA 100 | $0.009081 | SELL |
| EMA 200 | $0.01198 | SELL |
Média Móvel Simples Semanal (SMA)
| Período | Valor | Ação |
|---|---|---|
| SMA 21 | $0.0106076 | SELL |
| SMA 50 | $0.015028 | SELL |
| SMA 100 | $0.025151 | SELL |
| SMA 200 | $0.028578 | SELL |
Média Móvel Exponencial Semanal (EMA)
| Período | Valor | Ação |
|---|---|---|
| EMA 21 | $0.01019 | SELL |
| EMA 50 | $0.0152057 | SELL |
| EMA 100 | $0.0211017 | SELL |
| EMA 200 | $0.026053 | SELL |
Osciladores de Ankr
Um oscilador é uma ferramenta de análise técnica que define limites altos e baixos entre dois extremos, criando um indicador de tendência que flutua dentro desses limites. Os traders usam esse indicador para identificar condições de sobrecompra ou sobrevenda de curto prazo.
| Período | Valor | Ação |
|---|---|---|
| RSI (14) | 62.26 | NEUTRAL |
| Stoch RSI (14) | 121.18 | SELL |
| Estocástico Rápido (14) | 100 | SELL |
| Índice de Canal de Commodities (20) | 312.53 | SELL |
| Índice Direcional Médio (14) | 23.94 | NEUTRAL |
| Oscilador Impressionante (5, 34) | -0.000021 | NEUTRAL |
| Momentum (10) | 0 | BUY |
| MACD (12, 26) | 0 | BUY |
| Williams Percent Range (14) | -0 | SELL |
| Oscilador Ultimate (7, 14, 28) | 76.85 | SELL |
| VWMA (10) | 0.006773 | BUY |
| Média Móvel de Hull (9) | 0.007172 | BUY |
| Nuvem Ichimoku B/L (9, 26, 52, 26) | -0.001022 | SELL |
Previsão do preço de Ankr com base nos fluxos financeiros mundiais
Definições dos fluxos financeiros mundiais, usadas na previsão do preço do Ankr
M0: o total de todas as moedas físicas, mais as contas no Banco Central que podem ser trocadas por moedas físicas.
M1: o valor de M0, mais o valor em contas de demanda, incluindo contas 'correntes'.
M2: o valor de M1, mais a maioria das contas de poupança, do mercado de moedas e de certificados de depósito (CD) de menos de US$ 100.000.
Previsões de preço de Ankr por empresas de Internet ou nichos tecnológicos
| Comparação | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Facebook stock | $0.01060038 | $0.014895 | $0.02093 | $0.02941 | $0.041326 | $0.058071 |
| Amazon.com stock | $0.01574 | $0.032843 | $0.06853 | $0.142993 | $0.298364 | $0.622555 |
| Apple stock | $0.01070038 | $0.015177 | $0.021528 | $0.030536 | $0.043313 | $0.061436 |
| Netflix stock | $0.011903 | $0.018781 | $0.029633 | $0.046757 | $0.073775 | $0.1164063 |
| Google stock | $0.009769 | $0.012651 | $0.016383 | $0.021216 | $0.027474 | $0.035579 |
| Tesla stock | $0.0171013 | $0.038767 | $0.087882 | $0.199224 | $0.451625 | $1.02 |
| Kodak stock | $0.005657 | $0.004242 | $0.003181 | $0.002385 | $0.001788 | $0.001341 |
| Nokia stock | $0.004997 | $0.00331 | $0.002193 | $0.001452 | $0.000962 | $0.000637 |
Este cálculo mostra quanto a criptomoeda pode custar, se assumirmos que sua capitalização se comportará da mesma forma que a de algumas empresas de Internet ou nichos tecnológicos. Se você extrapolar os dados, poderá obter uma imagem em potencial do preço futuro para 2024, 2025, 2026, 2027, 2028, 2029 e 2030.
Visão geral da previsão para Ankr
Você pode fazer perguntas como: 'Devo investir em Ankr agora?', 'Devo comprar ANKR hoje?', 'Ankr será um bom ou mau investimento no curto ou no longo prazo?'.
Atualizamos a previsão para Ankr/Ankr Network regularmente com novos valores. Veja nossas previsões semelhantes. Fazemos previsões de preços futuros para uma enorme quantidade de moedas digitais, como Ankr, com métodos de análise técnica.
Se você estiver tentando encontrar criptomoedas com bom retorno, você deve explorar o máximo de fontes de informações disponíveis sobre Ankr para poder tomar sozinho uma decisão de tão grande responsabilidade sobre o seu investimento.
O preço de Ankr é de $0.007543 USD hoje, mas o preço pode tanto subir quanto descer e seu investimento pode ser perdido, porque criptomoedas são ativos de alto risco
Previsão de curto prazo para Ankr
com base no histórico de preços de 4 horas
Previsão de longo prazo para Ankr
com base no histórico de preços de 1 mês
Previsão do preço de Ankr com base no padrão de crescimento do Bitcoin
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| Se Ankr tiver 1% da média anterior do crescimento anual do Bitcoin | $0.007739 | $0.007941 | $0.008147 | $0.008359 |
| Se Ankr tiver 2% da média anterior do crescimento anual do Bitcoin | $0.007936 | $0.008348 | $0.008782 | $0.009239 |
| Se Ankr tiver 5% da média anterior do crescimento anual do Bitcoin | $0.008524 | $0.009632 | $0.010884 | $0.012298 |
| Se Ankr tiver 10% da média anterior do crescimento anual do Bitcoin | $0.0095047 | $0.011975 | $0.015088 | $0.01901 |
| Se Ankr tiver 20% da média anterior do crescimento anual do Bitcoin | $0.011465 | $0.017426 | $0.026485 | $0.040254 |
| Se Ankr tiver 50% da média anterior do crescimento anual do Bitcoin | $0.017348 | $0.039895 | $0.091745 | $0.210983 |
| Se Ankr tiver 100% da média anterior do crescimento anual do Bitcoin | $0.027152 | $0.097731 | $0.351767 | $1.26 |
Perguntas Frequentes sobre Ankr
ANKR é um bom investimento?
A decisão de adquirir Ankr depende inteiramente da sua tolerância individual ao risco. Como você pode perceber, o valor de Ankr experimentou uma escalada de 6.1403% nas últimas 24 horas, e Ankr registrou um declínio de -70.91% durante os últimos 30 dias. Consequentemente, a decisão de investir ou não em Ankr dependerá de quão alinhado esse investimento está com suas aspirações de negociação.
Ankr pode subir?
Parece que o valor médio de Ankr pode potencialmente subir para $0.00778 até o final deste ano. Observando as perspectivas de Ankr em um horizonte de cinco anos mais longo, a moeda digital poderia potencialmente crescer até $0.024459. No entanto, dada a imprevisibilidade do mercado, é vital conduzir uma pesquisa aprofundada antes de investir quaisquer fundos em um projeto, rede ou ativo específico.
Qual será o preço de Ankr na próxima semana?
Com base na nossa nova previsão experimental de Ankr, o preço de Ankr aumentará 0.86% na próxima semana e atingirá $0.007608 até 13 de janeiro de 2026.
Qual será o preço de Ankr no próximo mês?
Com base na nossa nova previsão experimental de Ankr, o preço de Ankr diminuirá -11.62% no próximo mês e atingirá $0.006667 até 5 de fevereiro de 2026.
Até onde o preço de Ankr pode subir este ano em 2026?
De acordo com nossa previsão mais recente sobre o valor de Ankr em 2026, espera-se que ANKR fluctue dentro do intervalo de $0.0026064 e $0.00778. No entanto, é crucial lembrar que o mercado de criptomoedas é excepcionalmente instável, e essa previsão de preço de Ankr não considera flutuações repentinas e extremas de preço.
Onde estará Ankr em 5 anos?
O futuro de Ankr parece seguir uma tendência de alta, com um preço máximo de $0.024459 projetada após um período de cinco anos. Com base na previsão de Ankr para 2030, o valor de Ankr pode potencialmente atingir seu pico mais alto de aproximadamente $0.024459, enquanto seu pico mais baixo está previsto para cerca de $0.008459.
Quanto será Ankr em 2026?
Com base na nossa nova simulação experimental de previsão de preços de Ankr, espera-se que o valor de ANKR em 2026 aumente 3.13% para $0.00778 se o melhor cenário ocorrer. O preço ficará entre $0.00778 e $0.0026064 durante 2026.
Quanto será Ankr em 2027?
De acordo com nossa última simulação experimental para previsão de preços de Ankr, o valor de ANKR pode diminuir -12.62% para $0.006591 em 2027, assumindo as condições mais favoráveis. O preço está projetado para flutuar entre $0.006591 e $0.0025091 ao longo do ano.
Quanto será Ankr em 2028?
Nosso novo modelo experimental de previsão de preços de Ankr sugere que o valor de ANKR em 2028 pode aumentar 47.02%, alcançando $0.011091 no melhor cenário. O preço é esperado para variar entre $0.011091 e $0.004528 durante o ano.
Quanto será Ankr em 2029?
Com base no nosso modelo de previsão experimental, o valor de Ankr pode experimentar um 333.75% crescimento em 2029, potencialmente alcançando $0.032721 sob condições ótimas. A faixa de preço prevista para 2029 está entre $0.032721 e $0.009947.
Quanto será Ankr em 2030?
Usando nossa nova simulação experimental para previsões de preços de Ankr, espera-se que o valor de ANKR em 2030 aumente 224.23%, alcançando $0.024459 no melhor cenário. O preço está previsto para variar entre $0.024459 e $0.008459 ao longo de 2030.
Quanto será Ankr em 2031?
Nossa simulação experimental indica que o preço de Ankr poderia aumentar 195.98% em 2031, potencialmente atingindo $0.022328 sob condições ideais. O preço provavelmente oscilará entre $0.022328 e $0.0100019 durante o ano.
Quanto será Ankr em 2032?
Com base nos achados da nossa mais recente previsão experimental de preços de Ankr, ANKR poderia ver um 449.04% aumento em valor, atingindo $0.041418 se o cenário mais positivo se desenrolar em 2032. O preço é esperado para permanecer dentro de uma faixa de $0.041418 e $0.015267 ao longo do ano.
Quanto será Ankr em 2033?
De acordo com nossa previsão experimental de preços de Ankr, espera-se que o valor de ANKR seja aumentar 1362.43% em 2033, com o preço potencial mais alto sendo $0.110323. Ao longo do ano, o preço de ANKR poderia variar entre $0.110323 e $0.035477.
Quanto será Ankr em 2034?
Os resultados da nossa nova simulação de previsão de preços de Ankr sugerem que ANKR pode aumentar 746.96% em 2034, atingindo potencialmente $0.063893 nas melhores circunstâncias. A faixa de preço prevista para o ano é entre $0.063893 e $0.028522.
Quanto será Ankr em 2035?
Com base em nossa previsão experimental para o preço de Ankr, ANKR poderia aumentar 897.93%, com o valor potencialmente atingindo $0.075282 em 2035. A faixa de preço esperada para o ano está entre $0.075282 e $0.033722.
Quanto será Ankr em 2036?
Nossa recente simulação de previsão de preços de Ankr sugere que o valor de ANKR pode aumentar 1964.7% em 2036, possivelmente atingindo $0.155757 se as condições forem ideais. A faixa de preço esperada para 2036 está entre $0.155757 e $0.05582.
Quanto será Ankr em 2037?
De acordo com a simulação experimental, o valor de Ankr poderia aumentar 4830.69% em 2037, com um pico de $0.371964 sob condições favoráveis. O preço é esperado para cair entre $0.371964 e $0.144965 ao longo do ano.
Previsões relacionadas
Previsão de Preço do Terra
Previsão de Preço do cUSDT
Previsão de Preço do GMT
Previsão de Preço do Biconomy
Previsão de Preço do Celo
Previsão de Preço do Fasttoken
Previsão de Preço do Rocket Pool
Previsão de Preço do BitClout
Previsão de Preço do EthereumPoW
Previsão de Preço do 0x
Previsão de Preço do Wootrade Network
Previsão de Preço do MX Token
Previsão de Preço do Ravencoin
Previsão de Preço do Holo
Previsão de Preço do Siacoin
Previsão de Preço do Frax Share
Previsão de Preço do Saga
Previsão de Preço do Golem
Previsão de Preço do APENFT
Previsão de Preço do Qtum
Previsão de Preço do Jeo Boden
Previsão de Preço do Polymesh
Previsão de Preço do Trust Wallet Token
Previsão de Preço do AMP Token
Previsão de Preço do Raydium
Como ler e prever os movimentos de preço de Ankr?
Traders de Ankr utilizam indicadores e padrões de gráfico para prever a direção do mercado. Eles também identificam níveis-chave de suporte e resistência para avaliar quando uma tendência de baixa pode desacelerar ou uma tendência de alta pode estagnar.
Indicadores de Previsão de Preço de Ankr
Médias móveis são ferramentas populares para a previsão de preço de Ankr. Uma média móvel simples (SMA) calcula o preço médio de fechamento de ANKR em um período específico, como uma SMA de 12 dias. Uma média móvel exponencial (EMA) dá mais peso aos preços recentes, reagindo mais rapidamente às mudanças de preço.
Médias móveis comumente usadas no mercado de criptomoedas incluem as de 50 dias, 100 dias e 200 dias, que ajudam a identificar níveis-chave de resistência e suporte. Um movimento de preço de ANKR acima dessas médias é visto como altista, enquanto uma queda abaixo indica fraqueza.
Traders também usam RSI e níveis de retração de Fibonacci para avaliar a direção futura de ANKR.
Como ler gráficos de Ankr e prever movimentos de preço?
A maioria dos traders prefere gráficos de velas em vez de gráficos de linha simples porque eles fornecem informações mais detalhadas. Velas podem representar a ação de preço de Ankr em diferentes períodos de tempo, como 5 minutos para tendências de curto prazo e semanal para tendências de longo prazo. Opções populares incluem gráficos de 1 hora, 4 horas e 1 dia.
Por exemplo, um gráfico de velas de 1 hora mostra os preços de abertura, fechamento, máximo e mínimo de ANKR dentro de cada hora. A cor da vela é crucial: verde indica que o preço fechou mais alto do que abriu, enquanto vermelho significa o oposto. Alguns gráficos usam velas vazias e preenchidas para transmitir a mesma informação.
O que afeta o preço de Ankr?
A ação de preço de Ankr é impulsionada pela oferta e demanda, influenciada por fatores como reduções pela metade das recompensas de bloco, hard forks e atualizações de protocolo. Eventos do mundo real, como regulamentações, adoção por empresas e governos e hacks de exchanges de criptomoedas, também impactam o preço de ANKR. A capitalização de mercado de Ankr pode mudar rapidamente.
Traders frequentemente monitoram a atividade de "baleias" de ANKR, grandes detentores de Ankr, pois suas ações podem influenciar significativamente os movimentos de preço no relativamente pequeno mercado de Ankr.
Padrões de previsão de preço altistas e baixistas
Traders frequentemente identificam padrões de velas para ganhar vantagem em previsões de preço de criptomoedas. Certas formações indicam tendências altistas, enquanto outras sugerem movimentos baixistas.
Padrões de velas altistas comumente seguidos:
- Martelo
- Engolfo de Alta
- Linha de Perfuração
- Estrela da Manhã
- Três Soldados Brancos
Padrões de velas baixistas comuns:
- Harami de Baixa
- Nuvem Negra
- Estrela da Noite
- Estrela Cadente
- Homem Enforcado


