Previsão de Preço Ankr Network - Projeção ANKR
Previsão de Preço Ankr Network até $0.007667 até 2026
| Ano | Preço Mínimo | Preço Máximo |
|---|---|---|
| 2026 | $0.002568 | $0.007667 |
| 2027 | $0.002472 | $0.006495 |
| 2028 | $0.004462 | $0.010929 |
| 2029 | $0.0098027 | $0.032246 |
| 2030 | $0.008336 | $0.0241042 |
| 2031 | $0.009856 | $0.0220044 |
| 2032 | $0.015045 | $0.040817 |
| 2033 | $0.034962 | $0.108721 |
| 2034 | $0.0281082 | $0.062965 |
| 2035 | $0.033232 | $0.074189 |
Calculadora de lucro do investimento
Se você abrir um short de $10,000.00 em Ankr Network hoje e fechar em Apr 06, 2026, nossa previsão mostra que pode lucrar cerca de $3,955.07, com um retorno de 39.55% nos próximos 90 dias.
Previsão de preço de longo prazo de Ankr para os anos 2027, 2028, 2029, 2030, 2031, 2032 e 2037
[
'name' => 'Ankr Network'
'name_with_ticker' => 'Ankr Network <small>ANKR</small>'
'name_lang' => 'Ankr'
'name_lang_with_ticker' => 'Ankr <small>ANKR</small>'
'name_with_lang' => 'Ankr/Ankr Network'
'name_with_lang_with_ticker' => 'Ankr/Ankr Network <small>ANKR</small>'
'image' => '/uploads/coins/ankr.png?1754652982'
'price_for_sd' => 0.007434
'ticker' => 'ANKR'
'marketcap' => '$74.6M'
'low24h' => '$0.00718'
'high24h' => '$0.007553'
'volume24h' => '$10.21M'
'current_supply' => '10B'
'max_supply' => '10B'
'algo' => null
'proof' => null
'ico_price_and_roi' => '0.0066 USD 1.13x'
'price' => '$0.007434'
'change_24h_pct' => '0.7721%'
'ath_price' => '$0.2135'
'ath_days' => 1726
'ath_exchange' => null
'ath_pair' => null
'ath_date' => '16 de abr. de 2021'
'ath_pct' => '-96.49%'
'fdv' => '$74.6M'
'new_prediction' => true
'change_24h_pct_is_increased' => true
'change_30d_pct' => '-71.33%'
'change_30d_pct_is_increased' => false
'max_price' => '$0.366563'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.007497'
'next_week_prediction_price_date' => '13 de janeiro de 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.00657'
'next_month_prediction_price_date' => '5 de fevereiro de 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.002568'
'current_year_max_price_prediction' => '$0.007667'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.008336'
'grand_prediction_max_price' => '$0.0241042'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.0075752066430424
107 => 0.0076034897148475
108 => 0.0076672129197939
109 => 0.0071227051104544
110 => 0.0073671731309385
111 => 0.007510775189417
112 => 0.0068619758649232
113 => 0.0074979505128207
114 => 0.0071132264409144
115 => 0.0069826453125477
116 => 0.0071584555991379
117 => 0.0070899421594726
118 => 0.0070310383272925
119 => 0.0069981689768398
120 => 0.0071272646478383
121 => 0.0071212421804836
122 => 0.0069100166063399
123 => 0.0066344814555253
124 => 0.0067269600962717
125 => 0.0066933617390967
126 => 0.00657159695842
127 => 0.0066536517186604
128 => 0.0062923240815255
129 => 0.0056706786620112
130 => 0.0060813566676565
131 => 0.0060655460111709
201 => 0.0060575735612146
202 => 0.0063661867321507
203 => 0.0063365206966824
204 => 0.0062826765518169
205 => 0.0065706080684744
206 => 0.006465509191669
207 => 0.0067893991655736
208 => 0.0070027340502773
209 => 0.0069486254228558
210 => 0.0071492679130566
211 => 0.0067290906173739
212 => 0.0068686566604126
213 => 0.0068974210284527
214 => 0.0065670550382533
215 => 0.0063413744269711
216 => 0.0063263241031459
217 => 0.0059350250238864
218 => 0.006144053833571
219 => 0.0063279905358936
220 => 0.0062398991295458
221 => 0.006212012021952
222 => 0.0063544812066731
223 => 0.0063655522824919
224 => 0.0061131305805615
225 => 0.0061656170455486
226 => 0.0063844943296933
227 => 0.0061601018995694
228 => 0.005724144062134
301 => 0.0056160204908614
302 => 0.0056015948133408
303 => 0.0053083551126608
304 => 0.0056232458249068
305 => 0.005485787590465
306 => 0.0059200165060641
307 => 0.0056719872782903
308 => 0.0056612952340107
309 => 0.0056451326409002
310 => 0.0053927291169454
311 => 0.0054479894476108
312 => 0.0056316832031283
313 => 0.0056972272045553
314 => 0.0056903904282203
315 => 0.0056307830035125
316 => 0.0056580709773043
317 => 0.0055701669059606
318 => 0.0055391261488041
319 => 0.0054411529807853
320 => 0.0052971594895761
321 => 0.0053171826676922
322 => 0.0050318938836602
323 => 0.0048764534126979
324 => 0.004833429539008
325 => 0.0047758962170184
326 => 0.004839928080817
327 => 0.0050310856963797
328 => 0.0048005090556607
329 => 0.0044052015782186
330 => 0.004428960231184
331 => 0.00448233887039
401 => 0.0043828681293647
402 => 0.0042887274209308
403 => 0.004370575129037
404 => 0.0042030781395984
405 => 0.0045025800813373
406 => 0.0044944793931578
407 => 0.0046061151959622
408 => 0.0046759233544531
409 => 0.0045150381497913
410 => 0.0044745759558987
411 => 0.0044976250604441
412 => 0.0041166747048234
413 => 0.0045749834245767
414 => 0.0045789468974168
415 => 0.0045450092366657
416 => 0.0047890444812401
417 => 0.0053040349637937
418 => 0.0051102748288128
419 => 0.0050352450481172
420 => 0.0048926133801683
421 => 0.0050826616090798
422 => 0.0050680688703136
423 => 0.005002074971481
424 => 0.0049621616555536
425 => 0.005035703163959
426 => 0.0049530490488144
427 => 0.0049382020985512
428 => 0.0048482457335976
429 => 0.0048161354040631
430 => 0.0047923621944247
501 => 0.0047661902265202
502 => 0.0048239190660695
503 => 0.0046930979207895
504 => 0.0045353404441368
505 => 0.0045222246169127
506 => 0.0045584385690338
507 => 0.0045424165910319
508 => 0.0045221479098461
509 => 0.0044834494776156
510 => 0.0044719684794341
511 => 0.0045092761537358
512 => 0.0044671579646217
513 => 0.004529305646956
514 => 0.0045124049161492
515 => 0.0044179988077161
516 => 0.0043003338429905
517 => 0.0042992863779939
518 => 0.0042739356543529
519 => 0.0042416476962894
520 => 0.0042326659250046
521 => 0.0043636821433521
522 => 0.0046348817943461
523 => 0.0045816388135984
524 => 0.0046201123237488
525 => 0.0048093639150562
526 => 0.0048695213049389
527 => 0.004826823014506
528 => 0.0047683749610456
529 => 0.004770946378769
530 => 0.0049706810708721
531 => 0.0049831382786191
601 => 0.005014613623748
602 => 0.0050550683371701
603 => 0.0048337126271329
604 => 0.0047605205447324
605 => 0.0047258380755489
606 => 0.0046190294942685
607 => 0.0047342133921037
608 => 0.0046671006675014
609 => 0.0046761564669474
610 => 0.0046702588656782
611 => 0.0046734793547653
612 => 0.0045024963644407
613 => 0.0045647935795136
614 => 0.0044612123767114
615 => 0.0043225287736949
616 => 0.0043220638576289
617 => 0.0043560064729942
618 => 0.0043358160772003
619 => 0.0042814842412612
620 => 0.0042892018221173
621 => 0.0042215876929976
622 => 0.0042974114015858
623 => 0.0042995857542378
624 => 0.004270389496286
625 => 0.0043872063810216
626 => 0.0044350663540113
627 => 0.004415848751583
628 => 0.0044337179957947
629 => 0.0045838512998261
630 => 0.0046083295791585
701 => 0.0046192012138936
702 => 0.0046046346635642
703 => 0.0044364621569888
704 => 0.0044439213227801
705 => 0.0043891909134376
706 => 0.0043429494848916
707 => 0.0043447988995291
708 => 0.0043685730047666
709 => 0.004472395916672
710 => 0.0046908851140819
711 => 0.0046991766194101
712 => 0.0047092261657481
713 => 0.004668349610294
714 => 0.0046560208500331
715 => 0.0046722856671403
716 => 0.0047543387220712
717 => 0.0049654014565406
718 => 0.004890797789773
719 => 0.0048301438474158
720 => 0.0048833537070485
721 => 0.0048751624662307
722 => 0.0048060201503551
723 => 0.0048040795558341
724 => 0.0046713733455332
725 => 0.0046223148811592
726 => 0.0045813179563658
727 => 0.0045365503847433
728 => 0.0045100106676629
729 => 0.0045507877351841
730 => 0.0045601139329863
731 => 0.00447095416219
801 => 0.0044588020148871
802 => 0.0045316118083667
803 => 0.004499570932879
804 => 0.0045325257678936
805 => 0.0045401715722983
806 => 0.0045389404216913
807 => 0.0045054860678111
808 => 0.0045268088753512
809 => 0.004476374078884
810 => 0.0044215338127875
811 => 0.0043865491396872
812 => 0.0043560203723637
813 => 0.0043729595068172
814 => 0.0043125745854544
815 => 0.0042932562338021
816 => 0.0045195851879349
817 => 0.0046867768197991
818 => 0.0046843457872567
819 => 0.0046695475018653
820 => 0.0046475602514962
821 => 0.0047527302177565
822 => 0.0047160911044513
823 => 0.0047427491206812
824 => 0.0047495347046452
825 => 0.0047700726236168
826 => 0.0047774131643554
827 => 0.0047552249519101
828 => 0.0046807586008815
829 => 0.0044951955341664
830 => 0.0044088154256926
831 => 0.0043803085511218
901 => 0.0043813447218701
902 => 0.0043527625069597
903 => 0.0043611812502158
904 => 0.0043498348116218
905 => 0.004328347401923
906 => 0.0043716327198182
907 => 0.004376620949475
908 => 0.0043665176390572
909 => 0.0043688973344058
910 => 0.0042852462393269
911 => 0.0042916060504051
912 => 0.0042561938141559
913 => 0.0042495544467601
914 => 0.0041600353972182
915 => 0.004001439424961
916 => 0.004089316988875
917 => 0.0039831732491223
918 => 0.0039429750065378
919 => 0.0041332672348233
920 => 0.0041141671729883
921 => 0.004081476169724
922 => 0.004033119362494
923 => 0.0040151833523077
924 => 0.0039062098322661
925 => 0.0038997710953509
926 => 0.0039537813144161
927 => 0.0039288574566957
928 => 0.0038938549210532
929 => 0.0037670792851062
930 => 0.0036245414963312
1001 => 0.0036288438162137
1002 => 0.0036741824348132
1003 => 0.0038060105831369
1004 => 0.0037545030449367
1005 => 0.0037171337349916
1006 => 0.0037101355865562
1007 => 0.0037977320658413
1008 => 0.0039216994360595
1009 => 0.0039798621525523
1010 => 0.0039222246669359
1011 => 0.0038560138268824
1012 => 0.0038600437739249
1013 => 0.003886853206151
1014 => 0.003889670498413
1015 => 0.0038465740481225
1016 => 0.0038587054464404
1017 => 0.0038402767430772
1018 => 0.0037271798245542
1019 => 0.0037251342599324
1020 => 0.0036973784521926
1021 => 0.0036965380173651
1022 => 0.0036493184643892
1023 => 0.0036427121225145
1024 => 0.0035489548340587
1025 => 0.0036106661652435
1026 => 0.003569273444275
1027 => 0.0035068848502197
1028 => 0.0034961290330889
1029 => 0.0034958057002379
1030 => 0.0035598648364984
1031 => 0.0036099175969392
1101 => 0.003569993488378
1102 => 0.003560903542755
1103 => 0.0036579603807722
1104 => 0.0036456090134418
1105 => 0.0036349128089915
1106 => 0.0039105995177425
1107 => 0.0036923719756639
1108 => 0.003597212311325
1109 => 0.0034794341563755
1110 => 0.0035177833175161
1111 => 0.0035258640492348
1112 => 0.0032426288176893
1113 => 0.0031277203195261
1114 => 0.0030882880531918
1115 => 0.0030655942264261
1116 => 0.0030759360882544
1117 => 0.0029725049624849
1118 => 0.0030420123895949
1119 => 0.0029524497774939
1120 => 0.0029374343141132
1121 => 0.0030975833592284
1122 => 0.003119867163279
1123 => 0.0030247975321638
1124 => 0.003085847625715
1125 => 0.0030637100131335
1126 => 0.0029539850714181
1127 => 0.0029497943857266
1128 => 0.002894738266992
1129 => 0.0028085861021377
1130 => 0.002769212251028
1201 => 0.0027487060075107
1202 => 0.0027571672832447
1203 => 0.0027528890033143
1204 => 0.0027249703328283
1205 => 0.0027544892688261
1206 => 0.0026790805854182
1207 => 0.0026490522400762
1208 => 0.0026354891331375
1209 => 0.0025685595862511
1210 => 0.0026750742590519
1211 => 0.0026960589914301
1212 => 0.0027170850702137
1213 => 0.0029001027309108
1214 => 0.0028909596857849
1215 => 0.0029736083608794
1216 => 0.0029703967853464
1217 => 0.0029468240443897
1218 => 0.002847374527821
1219 => 0.0028870133326081
1220 => 0.0027650112527114
1221 => 0.002856423506305
1222 => 0.0028147067712319
1223 => 0.0028423190362135
1224 => 0.0027926696940789
1225 => 0.0028201476899873
1226 => 0.0027010352499593
1227 => 0.0025898097294184
1228 => 0.0026345701257594
1229 => 0.0026832297955543
1230 => 0.0027887363579229
1231 => 0.0027258975197864
]
'min_raw' => 0.0025685595862511
'max_raw' => 0.0076672129197939
'avg_raw' => 0.0051178862530225
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.002568'
'max' => '$0.007667'
'avg' => '$0.005117'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.0048657704137489
'max_diff' => 0.00023288291979389
'year' => 2026
]
1 => [
'items' => [
101 => 0.0027484967421798
102 => 0.002672793130226
103 => 0.0025165949550975
104 => 0.0025174790198056
105 => 0.0024934513335243
106 => 0.0024726879044776
107 => 0.0027331153162602
108 => 0.0027007270508569
109 => 0.0026491205888081
110 => 0.0027181978890197
111 => 0.0027364630235998
112 => 0.0027369830063036
113 => 0.0027873800213948
114 => 0.0028142769173831
115 => 0.0028190176118789
116 => 0.0028983184040244
117 => 0.0029248989835489
118 => 0.0030343806287857
119 => 0.0028119949036766
120 => 0.002807415016013
121 => 0.0027191699482936
122 => 0.0026632035312466
123 => 0.0027230020167501
124 => 0.002775975311599
125 => 0.002720815976227
126 => 0.0027280186209495
127 => 0.0026539717198958
128 => 0.002680440002792
129 => 0.0027032380536849
130 => 0.0026906503099893
131 => 0.0026718058484234
201 => 0.0027716321055209
202 => 0.0027659995168732
203 => 0.0028589600224781
204 => 0.0029314293842667
205 => 0.0030613074360398
206 => 0.0029257729183186
207 => 0.0029208335017919
208 => 0.0029691170906475
209 => 0.002924891591583
210 => 0.0029528405803794
211 => 0.003056804421855
212 => 0.0030590010140013
213 => 0.0030222052654016
214 => 0.0030199662407553
215 => 0.0030270332667753
216 => 0.0030684250589087
217 => 0.003053961494896
218 => 0.0030706990973441
219 => 0.0030916297255008
220 => 0.0031782076779593
221 => 0.0031990813291887
222 => 0.0031483691784485
223 => 0.0031529479178604
224 => 0.0031339801814039
225 => 0.0031156575856519
226 => 0.0031568441051021
227 => 0.0032321132789204
228 => 0.0032316450332966
301 => 0.0032491060185988
302 => 0.0032599840677874
303 => 0.0032132875174511
304 => 0.0031828897802618
305 => 0.0031945462069585
306 => 0.0032131850870903
307 => 0.0031885018693402
308 => 0.0030361456150082
309 => 0.0030823607700173
310 => 0.0030746683084182
311 => 0.0030637133076657
312 => 0.0031101830033986
313 => 0.0031057008878816
314 => 0.0029714441267932
315 => 0.0029800388090431
316 => 0.0029719667978873
317 => 0.0029980491173098
318 => 0.0029234830607393
319 => 0.0029464190775303
320 => 0.0029608043322498
321 => 0.0029692773577924
322 => 0.00299988773606
323 => 0.002996295961474
324 => 0.0029996644663087
325 => 0.0030450515764393
326 => 0.0032746040045048
327 => 0.0032870980366855
328 => 0.00322557285275
329 => 0.0032501509502017
330 => 0.0032029663777336
331 => 0.0032346416973406
401 => 0.0032563131465498
402 => 0.0031583840347534
403 => 0.0031525853083075
404 => 0.0031052059883244
405 => 0.0031306649511815
406 => 0.0030901579107116
407 => 0.0031000969215668
408 => 0.0030723065807484
409 => 0.0031223236612199
410 => 0.0031782505290556
411 => 0.0031923798644898
412 => 0.0031552116660237
413 => 0.0031282994408306
414 => 0.0030810504388296
415 => 0.00315962658217
416 => 0.0031826046410473
417 => 0.0031595058882088
418 => 0.0031541534024584
419 => 0.0031440104516331
420 => 0.0031563052774248
421 => 0.0031824794976038
422 => 0.0031701362187293
423 => 0.0031782891718865
424 => 0.0031472185217401
425 => 0.0032133029759523
426 => 0.0033182609933311
427 => 0.0033185984505194
428 => 0.00330625510511
429 => 0.0033012044741096
430 => 0.0033138694955564
501 => 0.003320739750145
502 => 0.0033616961071363
503 => 0.0034056439099613
504 => 0.003610729129817
505 => 0.0035531420207433
506 => 0.0037351058283735
507 => 0.0038790155751658
508 => 0.0039221678158182
509 => 0.0038824697848878
510 => 0.0037466649655202
511 => 0.003740001733191
512 => 0.0039429514686419
513 => 0.0038856088726902
514 => 0.0038787881533644
515 => 0.0038062272235249
516 => 0.003849119719906
517 => 0.0038397385017525
518 => 0.0038249297899523
519 => 0.0039067656851304
520 => 0.004059955175363
521 => 0.0040360791567083
522 => 0.0040182568163592
523 => 0.0039401645089547
524 => 0.0039871935205605
525 => 0.0039704473903091
526 => 0.0040423993932262
527 => 0.0039997766206301
528 => 0.0038851744461279
529 => 0.0039034252201511
530 => 0.0039006666523729
531 => 0.0039574377817729
601 => 0.0039403964978731
602 => 0.0038973390681887
603 => 0.0040594315903392
604 => 0.0040489062035567
605 => 0.0040638287955759
606 => 0.0040703981820792
607 => 0.0041690610439216
608 => 0.004209480061559
609 => 0.0042186558861972
610 => 0.0042570508268337
611 => 0.0042177005850971
612 => 0.0043751296082902
613 => 0.0044798107224753
614 => 0.0046014032234423
615 => 0.0047790825483382
616 => 0.0048458916181247
617 => 0.0048338231576526
618 => 0.0049685375939626
619 => 0.0052106164414779
620 => 0.0048827542140346
621 => 0.0052279939356441
622 => 0.0051186950257668
623 => 0.0048595492766511
624 => 0.0048428633455357
625 => 0.0050183598555809
626 => 0.0054075942239479
627 => 0.0053100954293316
628 => 0.0054077536970479
629 => 0.0052938301403326
630 => 0.0052881728755185
701 => 0.0054022206841804
702 => 0.0056686996055413
703 => 0.0055421054588157
704 => 0.0053606017073264
705 => 0.005494621252915
706 => 0.0053785211196027
707 => 0.005116915024869
708 => 0.0053100208738409
709 => 0.0051808964919713
710 => 0.0052185818512305
711 => 0.0054899820961181
712 => 0.0054573265006173
713 => 0.0054995858650221
714 => 0.0054249991929677
715 => 0.0053553234800303
716 => 0.0052252685876462
717 => 0.00518676574564
718 => 0.0051974065459834
719 => 0.0051867604725878
720 => 0.0051139959555651
721 => 0.005098282465042
722 => 0.0050720926257463
723 => 0.0050802099520637
724 => 0.0050309653920801
725 => 0.0051239000512143
726 => 0.005141149542887
727 => 0.0052087796376974
728 => 0.0052158012184949
729 => 0.0054041500698878
730 => 0.0053004106876144
731 => 0.0053700080216708
801 => 0.0053637825810373
802 => 0.0048651657508331
803 => 0.0049338707507017
804 => 0.0050407541696805
805 => 0.0049926033343076
806 => 0.0049245293186505
807 => 0.0048695559011096
808 => 0.0047862655522147
809 => 0.0049034951188349
810 => 0.0050576395329659
811 => 0.0052197105752143
812 => 0.0054144283131603
813 => 0.0053709695808151
814 => 0.0052160704625462
815 => 0.0052230191238379
816 => 0.0052659730137455
817 => 0.0052103438235427
818 => 0.0051939376893411
819 => 0.0052637190628395
820 => 0.0052641996088077
821 => 0.0052001915024671
822 => 0.0051290582056294
823 => 0.0051287601545183
824 => 0.0051161026714122
825 => 0.0052960818784584
826 => 0.0053950522443836
827 => 0.0054063990373382
828 => 0.0053942885148112
829 => 0.0053989493742824
830 => 0.0053413606990137
831 => 0.0054729913332867
901 => 0.0055937886202161
902 => 0.0055614123668614
903 => 0.0055128757605271
904 => 0.0054742140157421
905 => 0.005552304888478
906 => 0.0055488276248415
907 => 0.005592733561296
908 => 0.0055907417344054
909 => 0.0055759778193616
910 => 0.0055614128941273
911 => 0.0056191611763368
912 => 0.0056025305984695
913 => 0.0055858741887213
914 => 0.0055524672090025
915 => 0.0055570077723774
916 => 0.0055084795465725
917 => 0.0054860281688147
918 => 0.0051484133157238
919 => 0.0050581915950943
920 => 0.0050865771850368
921 => 0.0050959224582774
922 => 0.0050566578498372
923 => 0.0051129532120901
924 => 0.0051041796395145
925 => 0.0051383124780378
926 => 0.0051169877624041
927 => 0.005117862936172
928 => 0.0051805743779422
929 => 0.0051987797762817
930 => 0.0051895203637506
1001 => 0.0051960053388933
1002 => 0.0053454488539184
1003 => 0.0053242027650164
1004 => 0.0053129162037375
1005 => 0.0053160426583455
1006 => 0.0053542286805395
1007 => 0.0053649186818744
1008 => 0.0053196243950457
1009 => 0.0053409854425572
1010 => 0.0054319380717409
1011 => 0.0054637663444821
1012 => 0.0055653469126347
1013 => 0.0055221936818329
1014 => 0.0056014033045977
1015 => 0.0058448666804265
1016 => 0.0060393620714227
1017 => 0.0058604960720006
1018 => 0.0062176620887265
1019 => 0.0064957670651697
1020 => 0.0064850929329657
1021 => 0.0064365988976388
1022 => 0.0061199837757616
1023 => 0.0058286298201446
1024 => 0.0060723597755606
1025 => 0.0060729810933405
1026 => 0.0060520444740169
1027 => 0.0059220089295233
1028 => 0.0060475195189369
1029 => 0.006057482093737
1030 => 0.0060519057011114
1031 => 0.0059522077540326
1101 => 0.0057999874161038
1102 => 0.0058297309057711
1103 => 0.0058784513485969
1104 => 0.0057862133861786
1105 => 0.0057567377682908
1106 => 0.00581153854991
1107 => 0.0059881180864836
1108 => 0.00595473674795
1109 => 0.0059538650262963
1110 => 0.0060966845484337
1111 => 0.0059944565929653
1112 => 0.0058301060664277
1113 => 0.0057886053909598
1114 => 0.0056413059512537
1115 => 0.0057430461989213
1116 => 0.0057467076493102
1117 => 0.0056909855554228
1118 => 0.0058346276072447
1119 => 0.0058333039204494
1120 => 0.0059696706703564
1121 => 0.0062303526791661
1122 => 0.0061532561817785
1123 => 0.0060636013433917
1124 => 0.0060733493101834
1125 => 0.0061802604458557
1126 => 0.0061156195326844
1127 => 0.0061388648557532
1128 => 0.0061802252612752
1129 => 0.0062051790208477
1130 => 0.0060697588481974
1201 => 0.006038185928057
1202 => 0.0059735988140389
1203 => 0.0059567492415672
1204 => 0.0060093540982806
1205 => 0.0059954945770936
1206 => 0.0057463999185829
1207 => 0.0057203681408189
1208 => 0.0057211664982781
1209 => 0.005655708355347
1210 => 0.0055558689756228
1211 => 0.0058182409044385
1212 => 0.0057971687666618
1213 => 0.0057739067574103
1214 => 0.0057767562208124
1215 => 0.0058906429825016
1216 => 0.0058245829093025
1217 => 0.0060002144409353
1218 => 0.0059641098779987
1219 => 0.0059270793692577
1220 => 0.0059219606249729
1221 => 0.0059077070384021
1222 => 0.0058588261865252
1223 => 0.0057997996206
1224 => 0.0057608251689826
1225 => 0.0053140567023202
1226 => 0.0053969743310001
1227 => 0.0054923635046167
1228 => 0.005525291465101
1229 => 0.0054689659101471
1230 => 0.0058610502627431
1231 => 0.0059326878521812
]
'min_raw' => 0.0024726879044776
'max_raw' => 0.0064957670651697
'avg_raw' => 0.0044842274848237
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.002472'
'max' => '$0.006495'
'avg' => '$0.004484'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -9.5871681773475E-5
'max_diff' => -0.0011714458546242
'year' => 2027
]
2 => [
'items' => [
101 => 0.0057156929209688
102 => 0.0056751020291836
103 => 0.0058637113948509
104 => 0.0057499568907963
105 => 0.0058011805370068
106 => 0.0056904630317362
107 => 0.0059154324546791
108 => 0.0059137185646031
109 => 0.0058262003779134
110 => 0.0059001701500049
111 => 0.0058873160817973
112 => 0.0057885082645725
113 => 0.0059185648387254
114 => 0.0059186293451636
115 => 0.0058343949932842
116 => 0.0057360277115599
117 => 0.0057184419649191
118 => 0.0057051934671379
119 => 0.0057979222187003
120 => 0.0058810625273959
121 => 0.0060357660296479
122 => 0.0060746621657786
123 => 0.0062264763745592
124 => 0.0061360784049301
125 => 0.006176150654017
126 => 0.0062196547489665
127 => 0.0062405122118955
128 => 0.0062065260953259
129 => 0.0064423560507835
130 => 0.0064622673246672
131 => 0.0064689434025686
201 => 0.0063894228684706
202 => 0.0064600557147624
203 => 0.0064270089450965
204 => 0.0065129874591102
205 => 0.0065264699879363
206 => 0.0065150507656754
207 => 0.0065193303331321
208 => 0.006318091069404
209 => 0.006307655751958
210 => 0.0061653694581257
211 => 0.0062233521745895
212 => 0.0061149562653443
213 => 0.0061493297247675
214 => 0.006164481218159
215 => 0.006156566937851
216 => 0.0062266304303819
217 => 0.0061670621487047
218 => 0.0060098516594265
219 => 0.0058525983382557
220 => 0.0058506241509042
221 => 0.0058092221271916
222 => 0.0057792960472062
223 => 0.0057850608718961
224 => 0.0058053768660212
225 => 0.0057781152446952
226 => 0.0057839328938044
227 => 0.0058805446318102
228 => 0.0058999194268639
229 => 0.0058340763030504
301 => 0.0055697066598218
302 => 0.0055048296862525
303 => 0.0055514619682878
304 => 0.0055291747409785
305 => 0.0044624755503648
306 => 0.0047130807026268
307 => 0.0045641796308996
308 => 0.0046328000953604
309 => 0.0044808106588725
310 => 0.0045533479844134
311 => 0.004539952989025
312 => 0.0049429186579166
313 => 0.0049366269032581
314 => 0.0049396384332609
315 => 0.0047958902597266
316 => 0.0050248850033549
317 => 0.0051376960484508
318 => 0.0051168177263723
319 => 0.0051220723502337
320 => 0.0050317805028936
321 => 0.0049405126557113
322 => 0.0048392825671652
323 => 0.0050273555592668
324 => 0.0050064450530581
325 => 0.0050544062309381
326 => 0.0051763850100512
327 => 0.0051943468486279
328 => 0.005218487741826
329 => 0.0052098349500802
330 => 0.0054159795540862
331 => 0.0053910140823552
401 => 0.0054511736861706
402 => 0.0053274208168023
403 => 0.0051873826983819
404 => 0.0052139993665026
405 => 0.0052114359673248
406 => 0.0051788009536595
407 => 0.0051493395225324
408 => 0.0051002945404126
409 => 0.0052554801211313
410 => 0.0052491798699562
411 => 0.0053511736132391
412 => 0.0053331452283995
413 => 0.0052127472621464
414 => 0.005217047299065
415 => 0.0052459671138693
416 => 0.0053460589231077
417 => 0.0053757729868597
418 => 0.0053620082486291
419 => 0.0053945883630346
420 => 0.0054203383570625
421 => 0.0053978221658306
422 => 0.0057166039512284
423 => 0.0055842235285427
424 => 0.0056487448254626
425 => 0.0056641327745965
426 => 0.0056247168664638
427 => 0.0056332647655599
428 => 0.0056462125035275
429 => 0.0057248286330394
430 => 0.0059311401046389
501 => 0.0060225140510007
502 => 0.0062974170769412
503 => 0.0060149267167421
504 => 0.0059981649078292
505 => 0.0060476832440771
506 => 0.0062090804217448
507 => 0.0063398776749784
508 => 0.0063832706697505
509 => 0.0063890057703499
510 => 0.0064704139132542
511 => 0.0065170755425949
512 => 0.0064605288234589
513 => 0.0064126113996794
514 => 0.0062409771354307
515 => 0.006260844268862
516 => 0.0063977091169159
517 => 0.0065910387760913
518 => 0.0067569357361866
519 => 0.006698844402854
520 => 0.0071420402700913
521 => 0.0071859813300351
522 => 0.0071799100963355
523 => 0.007280014370194
524 => 0.0070813277724657
525 => 0.0069963854025654
526 => 0.0064229716905864
527 => 0.0065840775544111
528 => 0.006818254388896
529 => 0.0067872602067339
530 => 0.0066171947299662
531 => 0.0067568067262723
601 => 0.0067106466342227
602 => 0.0066742382544393
603 => 0.006841032100339
604 => 0.0066576354152587
605 => 0.0068164248666712
606 => 0.0066127757527681
607 => 0.0066991097591714
608 => 0.0066501024016309
609 => 0.0066818161680754
610 => 0.0064964181374591
611 => 0.0065964544144969
612 => 0.0064922562994456
613 => 0.0064922068959721
614 => 0.0064899067168072
615 => 0.0066124953370798
616 => 0.0066164929475858
617 => 0.0065258997719832
618 => 0.0065128438800475
619 => 0.0065611183554038
620 => 0.0065046015878667
621 => 0.006531045427685
622 => 0.006505402544836
623 => 0.006499629791785
624 => 0.0064536315133212
625 => 0.00643381419021
626 => 0.0064415850732314
627 => 0.0064150590433145
628 => 0.0063990761508012
629 => 0.0064867273172027
630 => 0.0064398988348323
701 => 0.0064795501806644
702 => 0.00643436246769
703 => 0.0062777221671711
704 => 0.0061876366739016
705 => 0.0058917576667849
706 => 0.0059756685861664
707 => 0.0060313016125285
708 => 0.0060129148976477
709 => 0.0060524166759257
710 => 0.0060548417642919
711 => 0.0060419993335007
712 => 0.0060271294438618
713 => 0.0060198916039421
714 => 0.0060738365328528
715 => 0.0061051533797882
716 => 0.0060368851309978
717 => 0.0060208908354805
718 => 0.006089913804201
719 => 0.0061320177752472
720 => 0.0064428898412747
721 => 0.0064198594345198
722 => 0.0064776612359854
723 => 0.0064711536401813
724 => 0.0065317391366664
725 => 0.0066307708180783
726 => 0.0064294117200743
727 => 0.0064643606970141
728 => 0.0064557920149582
729 => 0.0065493426388153
730 => 0.0065496346936516
731 => 0.006493546421449
801 => 0.0065239527837383
802 => 0.0065069807864633
803 => 0.0065376514794422
804 => 0.0064195518493966
805 => 0.0065633844507249
806 => 0.0066449282673099
807 => 0.0066460605032823
808 => 0.0066847116251718
809 => 0.0067239834035337
810 => 0.0067993621622481
811 => 0.006721881130865
812 => 0.0065825002980332
813 => 0.0065925631439663
814 => 0.0065108442126744
815 => 0.0065122179226732
816 => 0.0065048849510403
817 => 0.006526891750911
818 => 0.0064243811044185
819 => 0.0064484401482549
820 => 0.0064147573459944
821 => 0.0064642874771801
822 => 0.0064110012436482
823 => 0.0064557878828803
824 => 0.0064751163116722
825 => 0.0065464386300257
826 => 0.006400466879237
827 => 0.0061028205979601
828 => 0.0061653894548969
829 => 0.0060728452008098
830 => 0.0060814105238664
831 => 0.0060987138396017
901 => 0.0060426281320109
902 => 0.0060533275175554
903 => 0.0060529452602134
904 => 0.0060496511729515
905 => 0.0060350611142743
906 => 0.0060139026426373
907 => 0.0060981914814052
908 => 0.0061125137975877
909 => 0.0061443505323017
910 => 0.0062390750597474
911 => 0.0062296098456974
912 => 0.0062450480025209
913 => 0.0062113465928567
914 => 0.0060829738356027
915 => 0.0060899450939416
916 => 0.0060030133907492
917 => 0.006142127493202
918 => 0.0061091834375247
919 => 0.0060879441905158
920 => 0.0060821488651892
921 => 0.0061771081964166
922 => 0.006205521516625
923 => 0.0061878162422181
924 => 0.0061515022078643
925 => 0.0062212358891042
926 => 0.0062398936803762
927 => 0.0062440704717691
928 => 0.0063676251848192
929 => 0.006250975807707
930 => 0.006279054472173
1001 => 0.0064981161969284
1002 => 0.0062994574410269
1003 => 0.0064046914146468
1004 => 0.0063995407592493
1005 => 0.0064533748992298
1006 => 0.0063951247884701
1007 => 0.0063958468684051
1008 => 0.0064436479376672
1009 => 0.0063765199568568
1010 => 0.0063598981247853
1011 => 0.0063369351828262
1012 => 0.0063870739265114
1013 => 0.0064171298357703
1014 => 0.0066593583907645
1015 => 0.0068158490842549
1016 => 0.0068090554105357
1017 => 0.0068711368711054
1018 => 0.0068431686045177
1019 => 0.0067528516940502
1020 => 0.0069070116472444
1021 => 0.0068582289877273
1022 => 0.006862250570907
1023 => 0.0068621008873802
1024 => 0.0068945370913049
1025 => 0.0068715530680898
1026 => 0.0068262491990713
1027 => 0.0068563240215688
1028 => 0.0069456354924407
1029 => 0.0072228610384378
1030 => 0.0073780001267277
1031 => 0.0072135214705244
1101 => 0.0073269766451165
1102 => 0.0072589439685734
1103 => 0.0072465804074487
1104 => 0.0073178386413641
1105 => 0.0073892216033849
1106 => 0.0073846748173012
1107 => 0.0073328544524298
1108 => 0.0073035824432069
1109 => 0.0075252399038845
1110 => 0.0076885533450755
1111 => 0.0076774164632535
1112 => 0.0077265710377079
1113 => 0.0078708903885997
1114 => 0.0078840851413763
1115 => 0.0078824229058044
1116 => 0.0078497183343176
1117 => 0.0079918194775066
1118 => 0.0081103627511865
1119 => 0.0078421481709443
1120 => 0.0079442807719139
1121 => 0.007990131386996
1122 => 0.0080574536932011
1123 => 0.0081710377082976
1124 => 0.0082944200753645
1125 => 0.0083118676948865
1126 => 0.0082994877738902
1127 => 0.0082181137861135
1128 => 0.0083531202444159
1129 => 0.0084322038613984
1130 => 0.0084792963455151
1201 => 0.0085987150497928
1202 => 0.0079904145447853
1203 => 0.0075598292128443
1204 => 0.0074925870955341
1205 => 0.00762932658525
1206 => 0.0076653836982111
1207 => 0.0076508491211883
1208 => 0.0071661861829829
1209 => 0.0074900354454678
1210 => 0.0078384700218821
1211 => 0.0078518548130066
1212 => 0.0080262884473831
1213 => 0.0080830911890123
1214 => 0.0082235331282244
1215 => 0.0082147484466885
1216 => 0.0082489438239673
1217 => 0.0082410828989123
1218 => 0.0085012220177633
1219 => 0.0087881940968891
1220 => 0.0087782571663043
1221 => 0.0087370015346304
1222 => 0.0087982731827966
1223 => 0.0090944591222513
1224 => 0.0090671910672293
1225 => 0.0090936796599958
1226 => 0.009442899574921
1227 => 0.0098969351402773
1228 => 0.0096859900357438
1229 => 0.010143680214763
1230 => 0.010431771921341
1231 => 0.01092999673863
]
'min_raw' => 0.0044624755503648
'max_raw' => 0.01092999673863
'avg_raw' => 0.0076962361444977
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.004462'
'max' => '$0.010929'
'avg' => '$0.007696'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 0.0019897876458872
'max_diff' => 0.0044342296734608
'year' => 2028
]
3 => [
'items' => [
101 => 0.010867616537697
102 => 0.011061571802925
103 => 0.010755942958885
104 => 0.010054157355189
105 => 0.0099430970970767
106 => 0.010165442546311
107 => 0.010712057137102
108 => 0.010148227707611
109 => 0.010262289666864
110 => 0.010229439814926
111 => 0.010227689385919
112 => 0.010294496141603
113 => 0.010197589458077
114 => 0.0098027741962119
115 => 0.0099837157040637
116 => 0.0099138454983573
117 => 0.0099913717007575
118 => 0.010409748640874
119 => 0.010224774222788
120 => 0.010029918699436
121 => 0.010274310767621
122 => 0.010585505852647
123 => 0.010566031823498
124 => 0.010528244067435
125 => 0.010741251669859
126 => 0.011093077823692
127 => 0.011188175019322
128 => 0.011258373824958
129 => 0.011268053054237
130 => 0.011367755131416
131 => 0.010831631934266
201 => 0.011682473216763
202 => 0.011829390002234
203 => 0.011801775735643
204 => 0.01196506755949
205 => 0.011917022962601
206 => 0.011847413879674
207 => 0.012106266153639
208 => 0.011809512909839
209 => 0.011388309040459
210 => 0.011157228267249
211 => 0.011461534070166
212 => 0.011647363005199
213 => 0.011770184110315
214 => 0.011807349702512
215 => 0.010873249651914
216 => 0.010369821532205
217 => 0.010692513185124
218 => 0.011086219272672
219 => 0.010829444877071
220 => 0.010839509947241
221 => 0.010473417138238
222 => 0.01111861036296
223 => 0.011024611137047
224 => 0.011512279287364
225 => 0.01139589336951
226 => 0.011793567814925
227 => 0.011688846805925
228 => 0.01212353785941
301 => 0.012296947889436
302 => 0.012588130318965
303 => 0.012802325299452
304 => 0.012928104688892
305 => 0.012920553366136
306 => 0.013418953970138
307 => 0.013125064546749
308 => 0.012755870166554
309 => 0.012749192605009
310 => 0.012940403606037
311 => 0.013341129408016
312 => 0.013445031778145
313 => 0.013503099028426
314 => 0.013414167013286
315 => 0.013095171107442
316 => 0.012957430292644
317 => 0.013074789457587
318 => 0.01293126928365
319 => 0.013179025368514
320 => 0.013519247390877
321 => 0.013448992888643
322 => 0.013683843156468
323 => 0.013926888476699
324 => 0.014274454200477
325 => 0.014365320750994
326 => 0.014515519703653
327 => 0.014670123763725
328 => 0.014719778421124
329 => 0.014814584569034
330 => 0.014814084893837
331 => 0.015099789601753
401 => 0.015414930742123
402 => 0.015533889227078
403 => 0.015807427703824
404 => 0.015339002648328
405 => 0.015694308433801
406 => 0.016014803146178
407 => 0.015632696137636
408 => 0.016159341629397
409 => 0.016179790080437
410 => 0.016488537413633
411 => 0.016175562842607
412 => 0.015989719541382
413 => 0.016526242188561
414 => 0.016785848597225
415 => 0.016707653034189
416 => 0.016112580938487
417 => 0.015766223454946
418 => 0.01485973911315
419 => 0.015933508973217
420 => 0.016456510949759
421 => 0.016111226489716
422 => 0.016285367887364
423 => 0.017235426887395
424 => 0.017597147842841
425 => 0.017521912412729
426 => 0.017534625961937
427 => 0.017729804023797
428 => 0.018595331036603
429 => 0.01807668718777
430 => 0.018473170976989
501 => 0.018683464549161
502 => 0.018878796938783
503 => 0.018399122325307
504 => 0.017775072700994
505 => 0.017577409989153
506 => 0.016076894754978
507 => 0.015998786420631
508 => 0.015954941845638
509 => 0.015678508002244
510 => 0.015461306722938
511 => 0.015288580201468
512 => 0.014835294228624
513 => 0.014988264938109
514 => 0.014265821705531
515 => 0.014728015283919
516 => 0.013574978440722
517 => 0.014535261786411
518 => 0.014012623220079
519 => 0.014363560961052
520 => 0.014362336572334
521 => 0.013716148926291
522 => 0.013343441377645
523 => 0.013580945133637
524 => 0.013835568013132
525 => 0.013876879718675
526 => 0.014207004928278
527 => 0.01429913577826
528 => 0.014019975001635
529 => 0.013551084315016
530 => 0.01365999692726
531 => 0.013341234267034
601 => 0.012782614966016
602 => 0.013183825100564
603 => 0.013320815880464
604 => 0.01338131881306
605 => 0.012831980888369
606 => 0.012659366985725
607 => 0.012567468792328
608 => 0.013480171687229
609 => 0.013530171612122
610 => 0.013274364927093
611 => 0.014430635400011
612 => 0.014168935780854
613 => 0.014461318373416
614 => 0.013650114249267
615 => 0.013681103339241
616 => 0.013297066306746
617 => 0.013512101383579
618 => 0.013360121522177
619 => 0.013494728674389
620 => 0.013575411646419
621 => 0.013959385662215
622 => 0.014539646152886
623 => 0.01390203274866
624 => 0.013624215457647
625 => 0.013796571742488
626 => 0.014255579241865
627 => 0.014950999099582
628 => 0.014539296547184
629 => 0.014722003148775
630 => 0.014761916413172
701 => 0.014458342193091
702 => 0.01496219231409
703 => 0.015232209687204
704 => 0.015509191639796
705 => 0.015749687308374
706 => 0.015398558956967
707 => 0.015774316625245
708 => 0.015471522274771
709 => 0.015199884440091
710 => 0.015200296402559
711 => 0.015029894020868
712 => 0.014699717934261
713 => 0.014638828398081
714 => 0.014955583454792
715 => 0.015209591013458
716 => 0.015230512292604
717 => 0.015371143928461
718 => 0.015454368281941
719 => 0.01627008008406
720 => 0.016598166118795
721 => 0.016999343511717
722 => 0.017155624715379
723 => 0.01762597510849
724 => 0.017246128966062
725 => 0.017163946863803
726 => 0.016023030660557
727 => 0.016209855624923
728 => 0.016508980418802
729 => 0.016027963118234
730 => 0.016333057880524
731 => 0.01639329004939
801 => 0.016011618334424
802 => 0.016215485688449
803 => 0.015674074438617
804 => 0.014551447438626
805 => 0.014963442118861
806 => 0.015266808879423
807 => 0.014833867107248
808 => 0.015609898476712
809 => 0.01515655697121
810 => 0.015012869478196
811 => 0.014452293339659
812 => 0.014716863698494
813 => 0.015074698897102
814 => 0.014853598347169
815 => 0.015312415186694
816 => 0.015962222193442
817 => 0.016425313363127
818 => 0.016460863752909
819 => 0.016163127155501
820 => 0.016640251952978
821 => 0.016643727286238
822 => 0.016105528565572
823 => 0.015775884845867
824 => 0.015700989099174
825 => 0.01588809335859
826 => 0.016115272470872
827 => 0.016473470612555
828 => 0.016689922247636
829 => 0.01725431331485
830 => 0.017407021355278
831 => 0.017574801193524
901 => 0.017799006798806
902 => 0.018068223113084
903 => 0.017479193143937
904 => 0.0175025964027
905 => 0.016954099851105
906 => 0.016367952623363
907 => 0.016812765304936
908 => 0.01739429871514
909 => 0.017260894308302
910 => 0.017245883587328
911 => 0.01727112745638
912 => 0.017170544890204
913 => 0.016715613671156
914 => 0.016487150060971
915 => 0.016781926405393
916 => 0.016938586913468
917 => 0.01718155369926
918 => 0.017151602914505
919 => 0.017777459261978
920 => 0.018020648113692
921 => 0.017958429998786
922 => 0.017969879629291
923 => 0.018410161429107
924 => 0.01889984534136
925 => 0.019358498944668
926 => 0.019825061089584
927 => 0.019262602213657
928 => 0.018977020284102
929 => 0.019271667938395
930 => 0.019115323745561
1001 => 0.020013723852282
1002 => 0.02007592712644
1003 => 0.020974262268608
1004 => 0.021826889290283
1005 => 0.021291369534369
1006 => 0.021796340543857
1007 => 0.022342507861509
1008 => 0.023396153229713
1009 => 0.023041322537393
1010 => 0.022769527787981
1011 => 0.02251268306309
1012 => 0.023047136162637
1013 => 0.023734701537107
1014 => 0.023882796533348
1015 => 0.024122767003902
1016 => 0.023870467396308
1017 => 0.024174334483765
1018 => 0.025247118828454
1019 => 0.024957243028789
1020 => 0.024545572793406
1021 => 0.025392433002234
1022 => 0.025698908419723
1023 => 0.027849913402085
1024 => 0.030565646045899
1025 => 0.029441314898898
1026 => 0.028743406274015
1027 => 0.028907431355476
1028 => 0.029899124983646
1029 => 0.030217625502232
1030 => 0.029351831299003
1031 => 0.029657644448384
1101 => 0.031342704968358
1102 => 0.032246685874111
1103 => 0.031018958383266
1104 => 0.027631706928404
1105 => 0.024508506392891
1106 => 0.025336919814462
1107 => 0.025243003441118
1108 => 0.027053390754249
1109 => 0.024950329586836
1110 => 0.024985739743294
1111 => 0.026833563948827
1112 => 0.026340596130518
1113 => 0.025542051399404
1114 => 0.024514336653151
1115 => 0.022614510892594
1116 => 0.020931782235908
1117 => 0.024232000640935
1118 => 0.024089689222252
1119 => 0.023883601198629
1120 => 0.024342227794149
1121 => 0.026569188358562
1122 => 0.026517849709584
1123 => 0.026191259417997
1124 => 0.026438975275731
1125 => 0.025498625611855
1126 => 0.0257409751316
1127 => 0.02450801166197
1128 => 0.025065362643345
1129 => 0.025540338081056
1130 => 0.025635696432308
1201 => 0.025850543666797
1202 => 0.024014697571287
1203 => 0.024838938570562
1204 => 0.025323102936698
1205 => 0.023135630716444
1206 => 0.025279863644163
1207 => 0.023982739575154
1208 => 0.023542476183982
1209 => 0.024135232839903
1210 => 0.023904234994616
1211 => 0.023705636611887
1212 => 0.02359481530197
1213 => 0.024030070369914
1214 => 0.024009765200752
1215 => 0.023297603430228
1216 => 0.022368617432007
1217 => 0.022680415625936
1218 => 0.022567136418958
1219 => 0.022156597959561
1220 => 0.022433251312592
1221 => 0.021215009956901
1222 => 0.019119089023112
1223 => 0.020503718591768
1224 => 0.020450411859562
1225 => 0.020423532187915
1226 => 0.02146404304041
1227 => 0.021364021930612
1228 => 0.02118248263692
1229 => 0.022153263848067
1230 => 0.021798915647149
1231 => 0.022890933307444
]
'min_raw' => 0.0098027741962119
'max_raw' => 0.032246685874111
'avg_raw' => 0.021024730035161
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.0098027'
'max' => '$0.032246'
'avg' => '$0.021024'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072435
'min_diff' => 0.005340298645847
'max_diff' => 0.02131668913548
'year' => 2029
]
4 => [
'items' => [
101 => 0.023610206765788
102 => 0.023427775750693
103 => 0.024104255914816
104 => 0.02268759882658
105 => 0.023158155484875
106 => 0.023255136559986
107 => 0.022141284558612
108 => 0.021380386621157
109 => 0.0213296434036
110 => 0.020010351238248
111 => 0.020715106464025
112 => 0.021335261897956
113 => 0.021038255571109
114 => 0.020944232240841
115 => 0.021424577044008
116 => 0.02146190394909
117 => 0.020610846557511
118 => 0.020787808338702
119 => 0.02152576838372
120 => 0.020769213638978
121 => 0.019299351352461
122 => 0.018934805182969
123 => 0.018886168004039
124 => 0.017897489879855
125 => 0.018959165901159
126 => 0.018495715866711
127 => 0.019959748972549
128 => 0.019123501114261
129 => 0.019087452140478
130 => 0.01903295882937
131 => 0.018181962726105
201 => 0.018368276789096
202 => 0.018987613110912
203 => 0.019208599287859
204 => 0.019185548619117
205 => 0.018984578025058
206 => 0.019076581333882
207 => 0.018780206620081
208 => 0.018675550540131
209 => 0.018345227163887
210 => 0.017859743054971
211 => 0.017927252597963
212 => 0.016965381544373
213 => 0.016441303144016
214 => 0.016296245150039
215 => 0.016102267538103
216 => 0.016318155437462
217 => 0.01696265668453
218 => 0.016185251441999
219 => 0.014852444682317
220 => 0.014932548639566
221 => 0.015112518448426
222 => 0.014777145900234
223 => 0.014459743929055
224 => 0.014735699191359
225 => 0.014170971397201
226 => 0.015180763104331
227 => 0.015153451068562
228 => 0.01552983897188
301 => 0.015765202052082
302 => 0.015222766351918
303 => 0.015086345240229
304 => 0.015164056905441
305 => 0.013879656184362
306 => 0.015424876031103
307 => 0.015438239156504
308 => 0.01532381596383
309 => 0.016146597828909
310 => 0.017882924196326
311 => 0.017229648373337
312 => 0.01697668022931
313 => 0.016495787602595
314 => 0.017136548475114
315 => 0.017087348037531
316 => 0.01686484500007
317 => 0.016730274468762
318 => 0.016978224798855
319 => 0.016699550678919
320 => 0.016649493149526
321 => 0.016346198984532
322 => 0.016237936766635
323 => 0.016157783730546
324 => 0.016069543113488
325 => 0.016264179926527
326 => 0.015823107301575
327 => 0.015291216954765
328 => 0.015246996027561
329 => 0.015369093895515
330 => 0.015315074678063
331 => 0.015246737404331
401 => 0.015116262938228
402 => 0.015077553951281
403 => 0.015203339379928
404 => 0.015061334964731
405 => 0.015270870214734
406 => 0.015213888220848
407 => 0.014895591435041
408 => 0.014498875791364
409 => 0.014495344189996
410 => 0.014409872455309
411 => 0.014301011350425
412 => 0.014270728681451
413 => 0.01471245900887
414 => 0.015626827566751
415 => 0.015447315139854
416 => 0.015577031265461
417 => 0.016215106218678
418 => 0.016417931058722
419 => 0.016273970791428
420 => 0.016076909098474
421 => 0.016085578812859
422 => 0.016758998272315
423 => 0.016800998617969
424 => 0.016907119941609
425 => 0.01704351583237
426 => 0.016297199601417
427 => 0.016050427385496
428 => 0.015933493019191
429 => 0.015573380430267
430 => 0.015961730983702
501 => 0.015735455747044
502 => 0.015765988007132
503 => 0.015746103832696
504 => 0.0157569619365
505 => 0.01518048084697
506 => 0.01539052025704
507 => 0.015041288999984
508 => 0.014573707549834
509 => 0.014572140052858
510 => 0.01468657995036
511 => 0.014618506621292
512 => 0.014435323043096
513 => 0.014461343405777
514 => 0.014233377648782
515 => 0.014489022576129
516 => 0.014496353557904
517 => 0.014397916335802
518 => 0.014791772618582
519 => 0.014953135858994
520 => 0.014888342370676
521 => 0.014948589775127
522 => 0.015454774691641
523 => 0.01553730491943
524 => 0.015573959394972
525 => 0.015524847253533
526 => 0.014957841906184
527 => 0.014982991004432
528 => 0.014798463608178
529 => 0.014642557403362
530 => 0.014648792833934
531 => 0.014728948889598
601 => 0.015078995085771
602 => 0.015815646669267
603 => 0.015843602058375
604 => 0.015877484805491
605 => 0.015739666644868
606 => 0.015698099368881
607 => 0.015752937335332
608 => 0.016029584938792
609 => 0.016741197683986
610 => 0.016489666212817
611 => 0.016285167211437
612 => 0.016464567968182
613 => 0.016436950627871
614 => 0.016203832482534
615 => 0.016197289632618
616 => 0.015749861379337
617 => 0.015584457341547
618 => 0.015446233347293
619 => 0.015295296353995
620 => 0.015205815844915
621 => 0.015343298575027
622 => 0.015374742502051
623 => 0.015074134109875
624 => 0.015033162296807
625 => 0.015278645598941
626 => 0.015170617550212
627 => 0.015281727077297
628 => 0.01530750544066
629 => 0.015303354530433
630 => 0.015190560840617
701 => 0.015262452174949
702 => 0.015092407737415
703 => 0.014907509951446
704 => 0.014789556683536
705 => 0.014686626813055
706 => 0.014743738287517
707 => 0.014540146309202
708 => 0.014475013137842
709 => 0.015238097008484
710 => 0.015801795268261
711 => 0.015793598872315
712 => 0.015743705419934
713 => 0.015669573870214
714 => 0.016024161754193
715 => 0.015900630425624
716 => 0.015990509788546
717 => 0.016013387858635
718 => 0.01608263288636
719 => 0.01610738203196
720 => 0.016032572924569
721 => 0.015781504423001
722 => 0.015155865587972
723 => 0.014864629021386
724 => 0.014768516103484
725 => 0.014772009625505
726 => 0.014675642692388
727 => 0.014704027073054
728 => 0.014665771763151
729 => 0.014593325461149
730 => 0.014739264932517
731 => 0.014756083097072
801 => 0.014722019080608
802 => 0.01473004238962
803 => 0.014448006882229
804 => 0.014469449429307
805 => 0.014350054602389
806 => 0.014327669511668
807 => 0.014025849786117
808 => 0.013491132392835
809 => 0.013787417734987
810 => 0.013429546705691
811 => 0.013294015524266
812 => 0.01393559905771
813 => 0.013871201865709
814 => 0.013760981865791
815 => 0.01359794351405
816 => 0.013537471003455
817 => 0.013170059172347
818 => 0.013148350521299
819 => 0.01333044974575
820 => 0.013246417219317
821 => 0.0131284037266
822 => 0.012700970818812
823 => 0.012220394712287
824 => 0.012234900284149
825 => 0.012387762602198
826 => 0.012832230408219
827 => 0.012658569147036
828 => 0.012532575909514
829 => 0.012508981163469
830 => 0.012804318809169
831 => 0.013222283452985
901 => 0.013418383112432
902 => 0.013224054305556
903 => 0.013000819835622
904 => 0.013014407083438
905 => 0.013104796955963
906 => 0.013114295653521
907 => 0.012968992962469
908 => 0.013009894818885
909 => 0.012947761158845
910 => 0.01256644700187
911 => 0.012559550237931
912 => 0.012465969594287
913 => 0.012463136009589
914 => 0.012303931989967
915 => 0.012281658247096
916 => 0.011965549003143
917 => 0.01217361306478
918 => 0.012034054616087
919 => 0.011823707115397
920 => 0.011787443126994
921 => 0.011786352987712
922 => 0.01200233283808
923 => 0.012171089214479
924 => 0.012036482295052
925 => 0.012005834908744
926 => 0.012333068814412
927 => 0.012291425317112
928 => 0.012255362317023
929 => 0.013184859303408
930 => 0.01244908990913
1001 => 0.012128252456976
1002 => 0.011731155184555
1003 => 0.011860452058794
1004 => 0.011887696809962
1005 => 0.010932749451954
1006 => 0.010545327427741
1007 => 0.010412378788723
1008 => 0.010335864967349
1009 => 0.010370733276549
1010 => 0.010022008014687
1011 => 0.010256357158042
1012 => 0.0099543905582815
1013 => 0.0099037648751474
1014 => 0.010443718562002
1015 => 0.010518849963165
1016 => 0.01019831606431
1017 => 0.010404150717099
1018 => 0.010329512210682
1019 => 0.0099595669089377
1020 => 0.0099454377195445
1021 => 0.0097598121713354
1022 => 0.0094693441325769
1023 => 0.0093365924445663
1024 => 0.0092674542128474
1025 => 0.0092959819947319
1026 => 0.0092815574752465
1027 => 0.0091874277284838
1028 => 0.0092869528821466
1029 => 0.0090327072411708
1030 => 0.0089314645783379
1031 => 0.0088857356163482
1101 => 0.0086600779761491
1102 => 0.009019199632114
1103 => 0.0090899511224345
1104 => 0.0091608420150472
1105 => 0.0097778988359725
1106 => 0.0097470724209835
1107 => 0.010025728199411
1108 => 0.010014900148276
1109 => 0.0099354230063443
1110 => 0.0096001220178896
1111 => 0.0097337670157222
1112 => 0.0093224284854373
1113 => 0.009630631280628
1114 => 0.0094899803957594
1115 => 0.0095830770749719
1116 => 0.0094156808515587
1117 => 0.0095083248332162
1118 => 0.0091067289254967
1119 => 0.0087317243174752
1120 => 0.00888263711881
1121 => 0.0090466965928332
1122 => 0.009402419334092
1123 => 0.0091905538040471
1124 => 0.0092667486601739
1125 => 0.009011508647014
1126 => 0.0084848755941599
1127 => 0.0084878562800469
1128 => 0.00840684525819
1129 => 0.0083368399075028
1130 => 0.0092148891087891
1201 => 0.0091056898107054
1202 => 0.0089316950208598
1203 => 0.0091645939613462
1204 => 0.009226176137814
1205 => 0.0092279292958037
1206 => 0.0093978463507909
1207 => 0.0094885311134969
1208 => 0.009504514695974
1209 => 0.0097718828532973
1210 => 0.0098615011329608
1211 => 0.010230626143641
1212 => 0.0094808371449604
1213 => 0.009465395733945
1214 => 0.0091678713270549
1215 => 0.0089791766445305
1216 => 0.0091807914134027
1217 => 0.009359394575463
1218 => 0.0091734210251545
1219 => 0.0091977052447089
1220 => 0.0089480509480171
1221 => 0.0090372906117579
1222 => 0.0091141558320525
1223 => 0.0090717153753346
1224 => 0.0090081799574867
1225 => 0.0093447511529377
1226 => 0.0093257604870572
1227 => 0.0096391833219995
1228 => 0.0098835188349189
1229 => 0.010321411754268
1230 => 0.0098644476650531
1231 => 0.0098477940773744
]
'min_raw' => 0.0083368399075028
'max_raw' => 0.024104255914816
'avg_raw' => 0.01622054791116
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.008336'
'max' => '$0.0241042'
'avg' => '$0.01622'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -0.0014659342887091
'max_diff' => -0.0081424299592942
'year' => 2030
]
5 => [
'items' => [
101 => 0.010010585568253
102 => 0.0098614762104317
103 => 0.009955708177495
104 => 0.010306229527553
105 => 0.010313635491336
106 => 0.010189576055935
107 => 0.010182027028016
108 => 0.010205853999646
109 => 0.010345409316707
110 => 0.010296644400824
111 => 0.01035307639606
112 => 0.01042364547022
113 => 0.010715549081614
114 => 0.010785926054086
115 => 0.010614946497256
116 => 0.01063038403686
117 => 0.010566432989112
118 => 0.010504657078292
119 => 0.010643520304169
120 => 0.010897295578823
121 => 0.01089571685601
122 => 0.010954587787044
123 => 0.010991263889365
124 => 0.010833823209656
125 => 0.010731335116421
126 => 0.010770635572854
127 => 0.010833477858544
128 => 0.010750256666572
129 => 0.010236576917918
130 => 0.01039239453967
131 => 0.010366458868318
201 => 0.010329523318427
202 => 0.010486199142001
203 => 0.010471087376605
204 => 0.010018431333087
205 => 0.010047408904354
206 => 0.010020193555173
207 => 0.010108131916115
208 => 0.0098567272503518
209 => 0.0099340576323042
210 => 0.0099825585229375
211 => 0.010011125920122
212 => 0.0101143309476
213 => 0.010102221028813
214 => 0.010113578178045
215 => 0.010266603988677
216 => 0.011040556026738
217 => 0.011082680528541
218 => 0.010875244075352
219 => 0.010958110846898
220 => 0.0107990247665
221 => 0.010905820318055
222 => 0.010978887122116
223 => 0.010648712284503
224 => 0.010629161473436
225 => 0.010469418788195
226 => 0.010555255458955
227 => 0.0104186831439
228 => 0.010452193212918
301 => 0.010358496138589
302 => 0.01052713221748
303 => 0.010715693557077
304 => 0.010763331597972
305 => 0.010638016421843
306 => 0.010547279975653
307 => 0.010387976666586
308 => 0.010652901619869
309 => 0.010730373749651
310 => 0.010652494691753
311 => 0.010634448412347
312 => 0.010600250745481
313 => 0.010641703609035
314 => 0.010729951819794
315 => 0.010688335593289
316 => 0.010715823844079
317 => 0.010611066977827
318 => 0.010833875329073
319 => 0.0111877486126
320 => 0.011188886373071
321 => 0.011147269922238
322 => 0.011130241367197
323 => 0.011172942371248
324 => 0.011196105914259
325 => 0.011334193131337
326 => 0.011482366216899
327 => 0.012173825354235
328 => 0.01197966639539
329 => 0.012593170077122
330 => 0.01307837183589
331 => 0.013223862628043
401 => 0.013090017945133
402 => 0.012632142515046
403 => 0.012609676962036
404 => 0.013293936164607
405 => 0.013100601598823
406 => 0.013077605067409
407 => 0.012832960826413
408 => 0.01297757587262
409 => 0.01294594644064
410 => 0.012896017834894
411 => 0.013171933269087
412 => 0.013688422330755
413 => 0.01360792266689
414 => 0.013547833402087
415 => 0.013284539735442
416 => 0.013443101331532
417 => 0.013386640584211
418 => 0.013629231785575
419 => 0.01348552613194
420 => 0.013099136899338
421 => 0.013160670658185
422 => 0.013151369954324
423 => 0.01334277778073
424 => 0.013285321902277
425 => 0.013140150771922
426 => 0.013686657027291
427 => 0.013651169950895
428 => 0.01370148251175
429 => 0.013723631657006
430 => 0.014056280384128
501 => 0.014192555924059
502 => 0.014223492857462
503 => 0.014352944080467
504 => 0.014220271993106
505 => 0.014751054936145
506 => 0.015103994621222
507 => 0.01551395222755
508 => 0.016113010476611
509 => 0.016338261919856
510 => 0.016297572262781
511 => 0.016751771390262
512 => 0.017567957126065
513 => 0.01646254673563
514 => 0.017626546560905
515 => 0.017258037655247
516 => 0.016384309669125
517 => 0.016328051887395
518 => 0.016919750623787
519 => 0.018232081472213
520 => 0.017903357479015
521 => 0.018232619146903
522 => 0.017848517921549
523 => 0.017829444058251
524 => 0.018213964207718
525 => 0.01911241649605
526 => 0.018685595491844
527 => 0.01807364292151
528 => 0.018525499176408
529 => 0.018134059471093
530 => 0.017252036257944
531 => 0.017903106109973
601 => 0.017467754241323
602 => 0.017594813061173
603 => 0.018509857935372
604 => 0.0183997573152
605 => 0.018542237712745
606 => 0.018290763540439
607 => 0.018055847009667
608 => 0.017617357859852
609 => 0.017487542839845
610 => 0.01752341904112
611 => 0.017487525061382
612 => 0.017242194411983
613 => 0.017189215281604
614 => 0.017100914409902
615 => 0.017128282542315
616 => 0.016962251070185
617 => 0.017275586761947
618 => 0.017333744627442
619 => 0.017561764213878
620 => 0.017585437963768
621 => 0.018220469266336
622 => 0.017870704696149
623 => 0.01810535696705
624 => 0.018084367459308
625 => 0.016403246003959
626 => 0.016634889707846
627 => 0.016995254617295
628 => 0.016832910714052
629 => 0.016603394417488
630 => 0.016418047702127
701 => 0.016137228475681
702 => 0.016532476144248
703 => 0.01705218479851
704 => 0.01759861863289
705 => 0.018255123081133
706 => 0.018108598930839
707 => 0.017586345738885
708 => 0.01760977363557
709 => 0.017754595674338
710 => 0.017567037975663
711 => 0.017511723548763
712 => 0.017746996321493
713 => 0.017748616515775
714 => 0.017532808716344
715 => 0.017292977839688
716 => 0.017291972939558
717 => 0.017249297351548
718 => 0.017856109813851
719 => 0.018189795312458
720 => 0.018228051817112
721 => 0.018187220344883
722 => 0.018202934758001
723 => 0.01800877051862
724 => 0.018452572392229
725 => 0.018859848878908
726 => 0.018750690080285
727 => 0.018587045523311
728 => 0.018456694751492
729 => 0.018719983581052
730 => 0.018708259743926
731 => 0.018856291674097
801 => 0.018849576090671
802 => 0.018799798520317
803 => 0.018750691857999
804 => 0.018945394223325
805 => 0.018889323068935
806 => 0.018833164820556
807 => 0.018720530856033
808 => 0.018735839682463
809 => 0.01857222338103
810 => 0.018496526993414
811 => 0.017358234944702
812 => 0.01705404611452
813 => 0.01714975011283
814 => 0.017181258354027
815 => 0.017048874985303
816 => 0.017238678729555
817 => 0.017209098017066
818 => 0.017324179265226
819 => 0.017252281497622
820 => 0.017255232207084
821 => 0.017466668211385
822 => 0.017528048982947
823 => 0.017496830227127
824 => 0.017518694773587
825 => 0.018022554018307
826 => 0.017950921346219
827 => 0.017912867916865
828 => 0.017923408976858
829 => 0.018052155816748
830 => 0.0180881979026
831 => 0.017935485052211
901 => 0.018007505315277
902 => 0.01831415845468
903 => 0.018421469698406
904 => 0.018763955676061
905 => 0.01861846154555
906 => 0.018885522318941
907 => 0.019706376088618
908 => 0.020362130878596
909 => 0.019759071673519
910 => 0.020963281835446
911 => 0.021900932180193
912 => 0.021864943598224
913 => 0.021701442572374
914 => 0.020633952583602
915 => 0.019651632380556
916 => 0.020473384941923
917 => 0.020475479758197
918 => 0.0204048904844
919 => 0.019966466567348
920 => 0.020389634282425
921 => 0.020423223798929
922 => 0.02040442260186
923 => 0.020068284012595
924 => 0.019555062515584
925 => 0.019655344767621
926 => 0.019819609142161
927 => 0.019508622412019
928 => 0.019409243308388
929 => 0.019594007969686
930 => 0.020189358205633
1001 => 0.020076810692157
1002 => 0.02007387162174
1003 => 0.020555397611967
1004 => 0.020210728922777
1005 => 0.019656609647968
1006 => 0.019516687223143
1007 => 0.019020056878056
1008 => 0.019363081226344
1009 => 0.019375426061965
1010 => 0.019187555132031
1011 => 0.019671854338516
1012 => 0.019667391436069
1013 => 0.020127161454203
1014 => 0.021006069047142
1015 => 0.020746132823494
1016 => 0.020443855276372
1017 => 0.020476721226991
1018 => 0.020837179585208
1019 => 0.020619238233366
1020 => 0.020697611463029
1021 => 0.020837060957938
1022 => 0.020921194300552
1023 => 0.020464615733728
1024 => 0.020358165429123
1025 => 0.020140405464883
1026 => 0.020083595954895
1027 => 0.020260956902058
1028 => 0.020214228558735
1029 => 0.019374388526332
1030 => 0.019286620570121
1031 => 0.019289312288034
1101 => 0.019068615589
1102 => 0.018732000149697
1103 => 0.019616605425922
1104 => 0.019545559242198
1105 => 0.019467129753905
1106 => 0.019476736918709
1107 => 0.019860714087064
1108 => 0.019637987938106
1109 => 0.020230141909208
1110 => 0.020108412854527
1111 => 0.019983561908919
1112 => 0.019966303705183
1113 => 0.019918246742907
1114 => 0.019753441538051
1115 => 0.019554429349931
1116 => 0.019423024265194
1117 => 0.017916713187463
1118 => 0.018196275761682
1119 => 0.01851788702039
1120 => 0.018628905938119
1121 => 0.018439000397067
1122 => 0.0197609401663
1123 => 0.020002471300667
1124 => 0.019270857739983
1125 => 0.019134002714363
1126 => 0.019769912358996
1127 => 0.01938638110649
1128 => 0.019559085206009
1129 => 0.01918579340694
1130 => 0.019944293523256
1201 => 0.019938515023205
1202 => 0.019643441346456
1203 => 0.019892835597466
1204 => 0.019849497209062
1205 => 0.019516359754747
1206 => 0.019954854574764
1207 => 0.019955072062724
1208 => 0.019671070064308
1209 => 0.01933941790619
1210 => 0.019280126333593
1211 => 0.019235458098343
1212 => 0.019548099558351
1213 => 0.019828412913789
1214 => 0.020350006572685
1215 => 0.020481147611291
1216 => 0.020992999815525
1217 => 0.020688216749535
1218 => 0.020823323135087
1219 => 0.020970000228568
1220 => 0.021040322621055
1221 => 0.020925736056206
1222 => 0.021720853216152
1223 => 0.021787985466212
1224 => 0.021810494328966
1225 => 0.021542385296308
1226 => 0.021780528869008
1227 => 0.021669109377828
1228 => 0.021958991940653
1229 => 0.022004449227911
1230 => 0.021965948522793
1231 => 0.021980377383263
]
'min_raw' => 0.0098567272503518
'max_raw' => 0.022004449227911
'avg_raw' => 0.015930588239131
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.009856'
'max' => '$0.0220044'
'avg' => '$0.01593'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 0.001519887342849
'max_diff' => -0.0020998066869058
'year' => 2031
]
6 => [
'items' => [
101 => 0.021301885155528
102 => 0.021266701754188
103 => 0.02078697358042
104 => 0.020982466357202
105 => 0.020617001981221
106 => 0.020732894499545
107 => 0.020783978817358
108 => 0.020757295268742
109 => 0.020993519225486
110 => 0.020792680604887
111 => 0.0202626344642
112 => 0.019732443912796
113 => 0.019725787802307
114 => 0.019586197988763
115 => 0.019485300120721
116 => 0.01950473662965
117 => 0.01957323342226
118 => 0.019481318962614
119 => 0.019500933572761
120 => 0.019826666792663
121 => 0.019891990266892
122 => 0.019669995577935
123 => 0.01877865486809
124 => 0.018559917622136
125 => 0.01871714161678
126 => 0.018641998673862
127 => 0.015045547878149
128 => 0.015890480645693
129 => 0.015388450286424
130 => 0.015619808973281
131 => 0.015107365976599
201 => 0.015351930634054
202 => 0.015306768471893
203 => 0.016665395358726
204 => 0.016644182268618
205 => 0.016654335852281
206 => 0.016169678849034
207 => 0.016941750615079
208 => 0.017322100929835
209 => 0.01725170820927
210 => 0.017269424540484
211 => 0.016964999273202
212 => 0.016657283354309
213 => 0.016315979043117
214 => 0.016950080266824
215 => 0.016879579035217
216 => 0.017041283494982
217 => 0.017452543465048
218 => 0.017513103057865
219 => 0.017594495764745
220 => 0.017565322273256
221 => 0.018260353198219
222 => 0.018176180367244
223 => 0.018379012671717
224 => 0.017961771232493
225 => 0.017489622939089
226 => 0.017579362893974
227 => 0.017570720214676
228 => 0.017460688987599
229 => 0.017361357715623
301 => 0.017195999134194
302 => 0.017719218154299
303 => 0.017697976417593
304 => 0.018041855444047
305 => 0.017981071485858
306 => 0.017575141336718
307 => 0.017589639211408
308 => 0.017687144386138
309 => 0.018024610909172
310 => 0.018124793949682
311 => 0.018078385173714
312 => 0.018188231304103
313 => 0.018275049206775
314 => 0.018199134296007
315 => 0.019273929342109
316 => 0.018827599504518
317 => 0.019045137561817
318 => 0.019097019106674
319 => 0.018964125620474
320 => 0.018992945459072
321 => 0.019036599661611
322 => 0.019301659431064
323 => 0.019997252961768
324 => 0.020305326601452
325 => 0.021232181346527
326 => 0.020279745374269
327 => 0.020223231765247
328 => 0.020390186293167
329 => 0.020934348146064
330 => 0.021375340217314
331 => 0.02152164272879
401 => 0.021540979020873
402 => 0.02181545225841
403 => 0.021972775199543
404 => 0.02178212398801
405 => 0.02162056704825
406 => 0.021041890143213
407 => 0.021108873570656
408 => 0.021570322961468
409 => 0.022222147405224
410 => 0.022781480588741
411 => 0.022585621602603
412 => 0.024079887411941
413 => 0.024228037763408
414 => 0.02420756817511
415 => 0.024545076723481
416 => 0.023875190987385
417 => 0.023588801856779
418 => 0.021655497492375
419 => 0.022198677160312
420 => 0.022988220707483
421 => 0.022883721658378
422 => 0.022310334029864
423 => 0.022781045622808
424 => 0.022625413649668
425 => 0.022502660255276
426 => 0.023065017351902
427 => 0.022446682623806
428 => 0.022982052345568
429 => 0.022295435139717
430 => 0.022586516269954
501 => 0.022421284542421
502 => 0.022528209720174
503 => 0.021903127315874
504 => 0.022240406608216
505 => 0.021889095388441
506 => 0.021888928821181
507 => 0.021881173606533
508 => 0.022294489698646
509 => 0.022307967921571
510 => 0.022002526705014
511 => 0.021958507853819
512 => 0.022121268617899
513 => 0.021930718390273
514 => 0.02201987564247
515 => 0.021933418872616
516 => 0.021913955632664
517 => 0.021758869225326
518 => 0.021692053736855
519 => 0.021718253811508
520 => 0.021628819449655
521 => 0.021574932011656
522 => 0.021870454038788
523 => 0.021712568541016
524 => 0.021846255821857
525 => 0.021693902292658
526 => 0.021165778583182
527 => 0.020862049053056
528 => 0.01986447232295
529 => 0.020147383846118
530 => 0.020334954478671
531 => 0.020272962385731
601 => 0.020406145389122
602 => 0.020414321743862
603 => 0.02037102259182
604 => 0.02032088772072
605 => 0.020296484838101
606 => 0.020478363932238
607 => 0.020583950868153
608 => 0.020353779701019
609 => 0.020299853816997
610 => 0.020532569575068
611 => 0.020674526053055
612 => 0.021722652928061
613 => 0.021645004303756
614 => 0.02183988711299
615 => 0.021817946299391
616 => 0.022022214530734
617 => 0.022356106758786
618 => 0.021677210501422
619 => 0.021795043417234
620 => 0.021766153507436
621 => 0.022081565967267
622 => 0.022082550650538
623 => 0.021893445124849
624 => 0.021995962298211
625 => 0.021938740024452
626 => 0.02204214840719
627 => 0.021643967259038
628 => 0.022128908916488
629 => 0.022403839587312
630 => 0.022407656999943
701 => 0.022537971955929
702 => 0.022670379498543
703 => 0.022924524246326
704 => 0.022663291539465
705 => 0.022193359330314
706 => 0.022227286917943
707 => 0.021951765835659
708 => 0.021956397394829
709 => 0.021931673768997
710 => 0.022005871231226
711 => 0.021660249429512
712 => 0.021741366175555
713 => 0.021627802256076
714 => 0.021794796551452
715 => 0.021615138294773
716 => 0.021766139575847
717 => 0.021831306722987
718 => 0.022071774898881
719 => 0.021579620949675
720 => 0.02057608573135
721 => 0.02078704100093
722 => 0.020475021587042
723 => 0.020503900171739
724 => 0.02056223950882
725 => 0.020373142629898
726 => 0.020409216355269
727 => 0.020407927547952
728 => 0.020396821302763
729 => 0.020347629901287
730 => 0.020276292636926
731 => 0.020560478341691
801 => 0.020608767030652
802 => 0.02071610680451
803 => 0.021035477162249
804 => 0.021003564532239
805 => 0.021055615355827
806 => 0.020941988700187
807 => 0.020509170986405
808 => 0.020532675070613
809 => 0.020239578763922
810 => 0.020708611672978
811 => 0.020597538489181
812 => 0.020525928885014
813 => 0.020506389541059
814 => 0.020826551556141
815 => 0.020922349048978
816 => 0.020862654480172
817 => 0.020740219177983
818 => 0.020975331152934
819 => 0.021038237198853
820 => 0.021052319542648
821 => 0.021468892884011
822 => 0.021075601364878
823 => 0.021170270542515
824 => 0.021908852441929
825 => 0.021239060576496
826 => 0.021593864265757
827 => 0.021576498471477
828 => 0.021758004033
829 => 0.021561609717681
830 => 0.021564044260596
831 => 0.021725208902978
901 => 0.021498882228949
902 => 0.021442840561621
903 => 0.021365419399584
904 => 0.021534465674494
905 => 0.021635801270997
906 => 0.022452491756018
907 => 0.022980111054952
908 => 0.022957205709689
909 => 0.023166517688389
910 => 0.023072220724906
911 => 0.02276771095554
912 => 0.023287472000838
913 => 0.02312299785838
914 => 0.023136556906848
915 => 0.023136052238387
916 => 0.023245413164542
917 => 0.023167920925579
918 => 0.023015175768168
919 => 0.023116575131976
920 => 0.023417694991548
921 => 0.024352380275147
922 => 0.024875442542782
923 => 0.024320891269859
924 => 0.024703413312184
925 => 0.024474036393329
926 => 0.024432351783801
927 => 0.024672603894537
928 => 0.02491327653479
929 => 0.024897946728062
930 => 0.024723230749916
1001 => 0.024624538127115
1002 => 0.025371871731419
1003 => 0.025922494400574
1004 => 0.025884945625959
1005 => 0.026050673705595
1006 => 0.026537256473182
1007 => 0.026581743503397
1008 => 0.026576139160112
1009 => 0.026465873413984
1010 => 0.026944977339431
1011 => 0.02734465426307
1012 => 0.02644035007964
1013 => 0.026784697274479
1014 => 0.026939285824416
1015 => 0.02716626768008
1016 => 0.02754922411716
1017 => 0.027965216382008
1018 => 0.028024042249381
1019 => 0.027982302481403
1020 => 0.027707944400263
1021 => 0.02816312810028
1022 => 0.028429764036378
1023 => 0.02858853963447
1024 => 0.02899116813349
1025 => 0.026940240510672
1026 => 0.025488492001525
1027 => 0.025261780508319
1028 => 0.025722807244743
1029 => 0.025844376318518
1030 => 0.025795371977314
1031 => 0.024161297043069
1101 => 0.02525317744197
1102 => 0.026427948943276
1103 => 0.026473076701049
1104 => 0.027061191877916
1105 => 0.02725270628716
1106 => 0.027726216090557
1107 => 0.027696597923431
1108 => 0.027811890025372
1109 => 0.027785386367717
1110 => 0.028662463569256
1111 => 0.02963000996978
1112 => 0.029596506914539
1113 => 0.029457410671974
1114 => 0.029663992311616
1115 => 0.03066260388553
1116 => 0.030570667734228
1117 => 0.030659975874115
1118 => 0.031837395199041
1119 => 0.033368207807391
1120 => 0.032656991659739
1121 => 0.034200126053209
1122 => 0.03517144735586
1123 => 0.036851247112296
1124 => 0.036640927909602
1125 => 0.037294861627842
1126 => 0.036264412641837
1127 => 0.03389829348187
1128 => 0.033523846067665
1129 => 0.034273499273422
1130 => 0.036116448529687
1201 => 0.034215458242843
1202 => 0.034600026102016
1203 => 0.034489270532703
1204 => 0.034483368839095
1205 => 0.034708612480184
1206 => 0.034381884830867
1207 => 0.033050737610367
1208 => 0.033660794537022
1209 => 0.033425222260301
1210 => 0.0336866072644
1211 => 0.035097194328146
1212 => 0.034473540163068
1213 => 0.033816571161709
1214 => 0.034640556082506
1215 => 0.035689772038619
1216 => 0.035624113989708
1217 => 0.035496709931884
1218 => 0.036214879935174
1219 => 0.03740108637654
1220 => 0.037721713211078
1221 => 0.037958393385406
1222 => 0.037991027582702
1223 => 0.038327180096888
1224 => 0.036519603306771
1225 => 0.03938827409455
1226 => 0.039883614294168
1227 => 0.039790510866388
1228 => 0.040341060651162
1229 => 0.040179074938381
1230 => 0.039944383055342
1231 => 0.040817121569506
]
'min_raw' => 0.015045547878149
'max_raw' => 0.040817121569506
'avg_raw' => 0.027931334723827
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.015045'
'max' => '$0.040817'
'avg' => '$0.027931'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.0051888206277969
'max_diff' => 0.018812672341595
'year' => 2032
]
7 => [
'items' => [
101 => 0.039816597289384
102 => 0.038396479036254
103 => 0.037617374075834
104 => 0.03864336233632
105 => 0.039269897564943
106 => 0.039683997495939
107 => 0.039809303884852
108 => 0.036659920347477
109 => 0.03496257729365
110 => 0.036050554731075
111 => 0.037377962292926
112 => 0.036512229490743
113 => 0.036546164577539
114 => 0.035311857112204
115 => 0.037487171115305
116 => 0.037170246162324
117 => 0.038814453379021
118 => 0.038422050131169
119 => 0.039762837288629
120 => 0.039409763095399
121 => 0.040875354331384
122 => 0.041460018354718
123 => 0.042441760245583
124 => 0.043163933576913
125 => 0.043588007570044
126 => 0.043562547758158
127 => 0.045242940191768
128 => 0.044252071482108
129 => 0.043007306852951
130 => 0.042984792987992
131 => 0.043629474227883
201 => 0.044980549247035
202 => 0.045330863342159
203 => 0.045526641130605
204 => 0.045226800632526
205 => 0.04415128366439
206 => 0.043686880890544
207 => 0.044082565508905
208 => 0.043598677222217
209 => 0.044434004160114
210 => 0.045581086462053
211 => 0.045344218502758
212 => 0.046136032577453
213 => 0.046955476843493
214 => 0.048127318947474
215 => 0.048433681866643
216 => 0.04894008812209
217 => 0.049461346504733
218 => 0.049628760648931
219 => 0.049948406195763
220 => 0.04994672150595
221 => 0.050909994875955
222 => 0.051972515233163
223 => 0.052373592070606
224 => 0.053295846142801
225 => 0.051716518363805
226 => 0.052914456626184
227 => 0.053995026925189
228 => 0.05270672646803
301 => 0.054482348512715
302 => 0.054551291893064
303 => 0.055592255082983
304 => 0.054537039465583
305 => 0.053910455800339
306 => 0.055719379364116
307 => 0.056594660496069
308 => 0.056331018695851
309 => 0.054324691578587
310 => 0.053156923140921
311 => 0.050100647893841
312 => 0.053720937945273
313 => 0.055484275624017
314 => 0.05432012495999
315 => 0.054907254840325
316 => 0.058110445089929
317 => 0.059330012545769
318 => 0.059076351040374
319 => 0.059119215659162
320 => 0.059777272121618
321 => 0.06269545687446
322 => 0.060946812927564
323 => 0.062283585704528
324 => 0.062992605165336
325 => 0.063651181954619
326 => 0.062033925505472
327 => 0.059929898627347
328 => 0.059263464994006
329 => 0.054204373119355
330 => 0.053941025416757
331 => 0.053793200371036
401 => 0.052861184368037
402 => 0.052128875090349
403 => 0.051546515563831
404 => 0.050018230258972
405 => 0.050533981686077
406 => 0.048098213888064
407 => 0.049656531806922
408 => 0.045768987587624
409 => 0.049006649932456
410 => 0.047244537516607
411 => 0.048427748611988
412 => 0.048423620499941
413 => 0.046244953735926
414 => 0.044988344214057
415 => 0.045789104709366
416 => 0.046647583524784
417 => 0.046786868824317
418 => 0.047899909017097
419 => 0.048210534610183
420 => 0.04726932456141
421 => 0.045688426874572
422 => 0.046055633350787
423 => 0.044980902786537
424 => 0.043097478811602
425 => 0.044450186791828
426 => 0.044912060770648
427 => 0.045116050632076
428 => 0.043263919465432
429 => 0.042681939641149
430 => 0.042372098465984
501 => 0.045449339999025
502 => 0.045617918236685
503 => 0.044755448138256
504 => 0.048653894765927
505 => 0.047771556228655
506 => 0.048757344552978
507 => 0.046022313211947
508 => 0.046126795092382
509 => 0.044831987424716
510 => 0.04555699319953
511 => 0.045044582485919
512 => 0.045498419897571
513 => 0.045770448170874
514 => 0.047065043373343
515 => 0.049021432130131
516 => 0.04687167402104
517 => 0.045934993627805
518 => 0.046516104875677
519 => 0.048063680706705
520 => 0.050408337309662
521 => 0.0490202534101
522 => 0.049636261473533
523 => 0.049770831831101
524 => 0.048747310153223
525 => 0.050446076013862
526 => 0.051356458439327
527 => 0.052290322430755
528 => 0.053101170368237
529 => 0.051917316616469
530 => 0.05318420982963
531 => 0.05216331753658
601 => 0.051247471611808
602 => 0.051248860572031
603 => 0.050674337045048
604 => 0.049561125316895
605 => 0.049355831994491
606 => 0.050423793783323
607 => 0.051280198001608
608 => 0.051350735554926
609 => 0.051824884933806
610 => 0.0521054816521
611 => 0.054855710944126
612 => 0.055961875916468
613 => 0.057314473506018
614 => 0.05784138649537
615 => 0.05942720568456
616 => 0.058146527895352
617 => 0.057869445199816
618 => 0.054022766564345
619 => 0.054652659975408
620 => 0.055661180102195
621 => 0.054039396689775
622 => 0.055068044981871
623 => 0.055271121944481
624 => 0.053984289110004
625 => 0.054671642127662
626 => 0.052846236298728
627 => 0.049061220988943
628 => 0.050450289817905
629 => 0.051473112031534
630 => 0.050013418619617
701 => 0.052629862562541
702 => 0.051101390025451
703 => 0.050616937610814
704 => 0.048726916021559
705 => 0.049618933458085
706 => 0.050825399813445
707 => 0.050079943872601
708 => 0.051626876880626
709 => 0.053817746571954
710 => 0.05537909078254
711 => 0.055498951403741
712 => 0.054495111678272
713 => 0.056103771244755
714 => 0.056115488573484
715 => 0.054300914010923
716 => 0.053189497194948
717 => 0.052936980955917
718 => 0.05356781602974
719 => 0.054333766267941
720 => 0.055541456311218
721 => 0.056271238111064
722 => 0.058174121998703
723 => 0.058688987818742
724 => 0.059254669257401
725 => 0.060010594109145
726 => 0.060918275708817
727 => 0.058932320043077
728 => 0.059011225763961
729 => 0.057161931345451
730 => 0.055185695043627
731 => 0.056685412055379
801 => 0.058646092549251
802 => 0.058196310277597
803 => 0.058145700583818
804 => 0.058230812050796
805 => 0.057891690906485
806 => 0.056357858539182
807 => 0.055587577526621
808 => 0.056581436552469
809 => 0.057109628393131
810 => 0.057928807874829
811 => 0.057827826712928
812 => 0.059937945084328
813 => 0.060757873276787
814 => 0.06054810055845
815 => 0.060586703787087
816 => 0.062071144614658
817 => 0.063722148113457
818 => 0.065268530759183
819 => 0.066841577605095
820 => 0.064945208235285
821 => 0.063982348821097
822 => 0.064975773959186
823 => 0.064448648597445
824 => 0.067477667281546
825 => 0.067687389963265
826 => 0.070716189614839
827 => 0.073590881146937
828 => 0.071785338901075
829 => 0.073487883915514
830 => 0.075329325159161
831 => 0.078881764081232
901 => 0.077685427628587
902 => 0.076769052654843
903 => 0.075903082732546
904 => 0.077705028671991
905 => 0.080023203336298
906 => 0.080522515955789
907 => 0.081331593151465
908 => 0.080480947409464
909 => 0.081505456510149
910 => 0.085122423827678
911 => 0.084145087330629
912 => 0.082757112390136
913 => 0.085612360710091
914 => 0.086645663977586
915 => 0.093897927453989
916 => 0.10305420966901
917 => 0.0992634487086
918 => 0.096910401053383
919 => 0.097463423067395
920 => 0.10080698737261
921 => 0.10188083410802
922 => 0.09896174850401
923 => 0.09999281888834
924 => 0.1056741180786
925 => 0.10872195281628
926 => 0.1045825838637
927 => 0.093162229093285
928 => 0.082632140432907
929 => 0.085425194121712
930 => 0.085108548511948
1001 => 0.091212395735376
1002 => 0.084121778178401
1003 => 0.084241165993158
1004 => 0.09047123431308
1005 => 0.088809158895735
1006 => 0.086116809582173
1007 => 0.082651797562428
1008 => 0.07624640236911
1009 => 0.07057296521873
1010 => 0.08169988198517
1011 => 0.081220069101216
1012 => 0.080525228940965
1013 => 0.082071520528045
1014 => 0.089579873552384
1015 => 0.089406781713006
1016 => 0.088305659743115
1017 => 0.089140851052434
1018 => 0.085970396507559
1019 => 0.086787494833681
1020 => 0.082630472413063
1021 => 0.084509620159774
1022 => 0.086111033009742
1023 => 0.086432540348695
1024 => 0.087156912799929
1025 => 0.080967229514238
1026 => 0.08374621558996
1027 => 0.085378609553664
1028 => 0.078003394238647
1029 => 0.085232825260011
1030 => 0.080859480899037
1031 => 0.079375102137494
1101 => 0.08137362258788
1102 => 0.08059479722474
1103 => 0.079925208911671
1104 => 0.079551567127992
1105 => 0.081019059978102
1106 => 0.080950599682611
1107 => 0.078549496551742
1108 => 0.075417355399008
1109 => 0.076468604778894
1110 => 0.076086676023666
1111 => 0.07470251694493
1112 => 0.075635273039994
1113 => 0.071527887254389
1114 => 0.06446134349359
1115 => 0.069129718756063
1116 => 0.068949991386673
1117 => 0.068859364697039
1118 => 0.072367519682372
1119 => 0.072030291527438
1120 => 0.071418219124086
1121 => 0.074691275755249
1122 => 0.07349656605605
1123 => 0.077178379839974
1124 => 0.079603460522851
1125 => 0.078988381618531
1126 => 0.08126918172221
1127 => 0.076492823441382
1128 => 0.07807933806804
1129 => 0.078406316533779
1130 => 0.074650886744484
1201 => 0.072085466224156
1202 => 0.071914381923386
1203 => 0.067466296277862
1204 => 0.069842427726008
1205 => 0.071933325069376
1206 => 0.070931947502091
1207 => 0.070614941279593
1208 => 0.072234457320076
1209 => 0.072360307586639
1210 => 0.069490908172001
1211 => 0.070087547172366
1212 => 0.072575630986869
1213 => 0.070024853844006
1214 => 0.065069110522505
1215 => 0.06384001766026
1216 => 0.063676034015761
1217 => 0.06034263669277
1218 => 0.063922151522452
1219 => 0.062359597374262
1220 => 0.067295687206119
1221 => 0.064476219166943
1222 => 0.064354677534974
1223 => 0.064170949531971
1224 => 0.061301756755163
1225 => 0.061929927626571
1226 => 0.064018063276254
1227 => 0.064763133600593
1228 => 0.064685416661583
1229 => 0.064007830272392
1230 => 0.06431802585156
1231 => 0.063318777811756
]
'min_raw' => 0.03496257729365
'max_raw' => 0.10872195281628
'avg_raw' => 0.071842265054963
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.034962'
'max' => '$0.108721'
'avg' => '$0.071842'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.019917029415501
'max_diff' => 0.06790483124677
'year' => 2033
]
8 => [
'items' => [
101 => 0.062965922531352
102 => 0.061852214205905
103 => 0.060215370637276
104 => 0.060442983774839
105 => 0.057199968361966
106 => 0.055433001445178
107 => 0.054943928290861
108 => 0.054289919229134
109 => 0.055017800354635
110 => 0.057190781306765
111 => 0.05456970525487
112 => 0.050076054211004
113 => 0.050346130295549
114 => 0.050952911071213
115 => 0.04982217911002
116 => 0.048752036203891
117 => 0.049682438637332
118 => 0.04777841945129
119 => 0.051183002693287
120 => 0.051090918257825
121 => 0.052359936352426
122 => 0.053153479409852
123 => 0.051324619575099
124 => 0.050864666272422
125 => 0.051126676577339
126 => 0.046796229872225
127 => 0.052006046469318
128 => 0.052051101179592
129 => 0.051665315396718
130 => 0.054439381899628
131 => 0.060293527473809
201 => 0.058090962426342
202 => 0.057238062667082
203 => 0.055616699601262
204 => 0.057777069619454
205 => 0.057611186909079
206 => 0.056861002383614
207 => 0.056407288441895
208 => 0.057243270291142
209 => 0.056303701039372
210 => 0.056134928584117
211 => 0.055112351131519
212 => 0.05474733750525
213 => 0.054477095947973
214 => 0.054179586546797
215 => 0.054835818151067
216 => 0.053348711001333
217 => 0.051555405561666
218 => 0.051406311618192
219 => 0.051817973104599
220 => 0.051635843541457
221 => 0.051405439651914
222 => 0.05096553588001
223 => 0.050835025827943
224 => 0.051259120182685
225 => 0.050780342382419
226 => 0.051486805107087
227 => 0.051294686336343
228 => 0.050221526500226
301 => 0.048883972009764
302 => 0.048872064969184
303 => 0.048583891048243
304 => 0.048216858232685
305 => 0.048114758099971
306 => 0.049604082739491
307 => 0.052686940171561
308 => 0.05208170149112
309 => 0.052519048465094
310 => 0.054670362718836
311 => 0.055354200827824
312 => 0.054868828735657
313 => 0.054204421479453
314 => 0.054233652026802
315 => 0.056504132751006
316 => 0.056645739848746
317 => 0.057003535300554
318 => 0.057463403569111
319 => 0.054947146290319
320 => 0.054115136535254
321 => 0.053720884155161
322 => 0.052506739419346
323 => 0.05381609042402
324 => 0.053053187665597
325 => 0.053156129312177
326 => 0.053089088429796
327 => 0.053125697284861
328 => 0.051182051042885
329 => 0.051890213578422
330 => 0.050712756012709
331 => 0.049136272508034
401 => 0.04913098758254
402 => 0.049516829686907
403 => 0.049287315705226
404 => 0.048669699481869
405 => 0.04875742895133
406 => 0.047988826485561
407 => 0.048850751206672
408 => 0.048875468123558
409 => 0.048543580156574
410 => 0.049871494112135
411 => 0.050415541543204
412 => 0.050197085773605
413 => 0.05040021410405
414 => 0.052106851890781
415 => 0.052385108315845
416 => 0.052508691439271
417 => 0.052343106425507
418 => 0.050431408309872
419 => 0.050516200250469
420 => 0.049894053250709
421 => 0.049368404596147
422 => 0.049389427785665
423 => 0.049659679523652
424 => 0.050839884713495
425 => 0.053323556958623
426 => 0.053417810504784
427 => 0.053532048552303
428 => 0.053067385001604
429 => 0.052927238028482
430 => 0.053112128061033
501 => 0.05404486477102
502 => 0.056444116824654
503 => 0.055596060908243
504 => 0.054906578247424
505 => 0.055511440424153
506 => 0.055418326633112
507 => 0.054632352530319
508 => 0.054610292855022
509 => 0.053101757260641
510 => 0.052544085999093
511 => 0.052078054151972
512 => 0.051569159540985
513 => 0.051267469757291
514 => 0.0517310023806
515 => 0.051837017775908
516 => 0.050823495593878
517 => 0.05068535626556
518 => 0.051513020357802
519 => 0.051148796249234
520 => 0.051523409777219
521 => 0.051610323329087
522 => 0.051596328245448
523 => 0.05121603644523
524 => 0.051458423098224
525 => 0.050885106404955
526 => 0.050261710610407
527 => 0.049864022932416
528 => 0.049516987687753
529 => 0.049709543011299
530 => 0.049023118442072
531 => 0.048803517407379
601 => 0.051376307954062
602 => 0.053276855993056
603 => 0.05324922127187
604 => 0.05308100201372
605 => 0.052831062318139
606 => 0.05402658012551
607 => 0.053610085626555
608 => 0.053913120173825
609 => 0.053990255184425
610 => 0.054223719629932
611 => 0.054307163102254
612 => 0.05405493897368
613 => 0.053208443991602
614 => 0.051099058978592
615 => 0.050117134560859
616 => 0.049793083147763
617 => 0.049804861801168
618 => 0.049479953958039
619 => 0.049575653879189
620 => 0.049446673430951
621 => 0.04920241566571
622 => 0.049694460782596
623 => 0.0497511643986
624 => 0.049636315188817
625 => 0.049663366335323
626 => 0.048712463931063
627 => 0.048784758975607
628 => 0.048382210980774
629 => 0.048306738084531
630 => 0.047289131807456
701 => 0.045486294783228
702 => 0.046485241500274
703 => 0.045278654339247
704 => 0.044821701498587
705 => 0.046984845175525
706 => 0.046767725546626
707 => 0.046396111121586
708 => 0.04584641593572
709 => 0.045642528644191
710 => 0.044403774003735
711 => 0.044330581771077
712 => 0.044944542020076
713 => 0.044661220490246
714 => 0.044263329760109
715 => 0.042822209869091
716 => 0.041201913973187
717 => 0.041250820521468
718 => 0.041766206499278
719 => 0.043264760739029
720 => 0.042679249672306
721 => 0.042254454675434
722 => 0.042174903341811
723 => 0.043170654834106
724 => 0.044579851812091
725 => 0.045241015505157
726 => 0.044585822365169
727 => 0.043833171764055
728 => 0.043878982118697
729 => 0.044183737884735
730 => 0.044215763406731
731 => 0.043725865239138
801 => 0.04386376870372
802 => 0.043654280730862
803 => 0.042368653428117
804 => 0.042345400506978
805 => 0.042029886833344
806 => 0.042020333204699
807 => 0.041483565737273
808 => 0.041408468258081
809 => 0.040342683872049
810 => 0.041044186382428
811 => 0.040573655329001
812 => 0.039864454044431
813 => 0.039742187475657
814 => 0.039738511994959
815 => 0.040466703139706
816 => 0.041035677044928
817 => 0.040581840418127
818 => 0.040478510615458
819 => 0.041581802575157
820 => 0.041441398616555
821 => 0.041319809693915
822 => 0.044453673678921
823 => 0.041972975796333
824 => 0.040891249926239
825 => 0.039552408747828
826 => 0.039988342186542
827 => 0.040080199767273
828 => 0.036860528077455
829 => 0.03555430767388
830 => 0.03510606205525
831 => 0.034848090364466
901 => 0.034965651303361
902 => 0.033789899735772
903 => 0.034580024234328
904 => 0.033561922760601
905 => 0.033391234735342
906 => 0.035211726288936
907 => 0.035465037053461
908 => 0.034384334634511
909 => 0.035078320537306
910 => 0.034826671601827
911 => 0.03357937518824
912 => 0.033531737639732
913 => 0.032905888143983
914 => 0.031926554871478
915 => 0.031478973286923
916 => 0.031245868911606
917 => 0.031342052319976
918 => 0.031293419045443
919 => 0.030976054032303
920 => 0.031311610036502
921 => 0.030454403107088
922 => 0.03011305640081
923 => 0.029958878012768
924 => 0.029198057523923
925 => 0.030408861260082
926 => 0.030647404849409
927 => 0.030886418443296
928 => 0.032966868596578
929 => 0.032862935186211
930 => 0.033802442598303
1001 => 0.033765935067912
1002 => 0.033497972334973
1003 => 0.03236748164243
1004 => 0.032818075083419
1005 => 0.031431218509824
1006 => 0.032470345751841
1007 => 0.031996131473576
1008 => 0.032310013427343
1009 => 0.031745625372875
1010 => 0.032057981025229
1011 => 0.030703972383822
1012 => 0.029439618165892
1013 => 0.029948431211987
1014 => 0.030501569182923
1015 => 0.031700913240846
1016 => 0.030986593814321
1017 => 0.031243490091507
1018 => 0.03038293056685
1019 => 0.028607350460807
1020 => 0.02861740005138
1021 => 0.02834426573518
1022 => 0.028108237807721
1023 => 0.031068641993295
1024 => 0.030700468935754
1025 => 0.030113833353861
1026 => 0.030899068392196
1027 => 0.031106696999688
1028 => 0.031112607894252
1029 => 0.031685495108371
1030 => 0.031991245117242
1031 => 0.032045134881502
1101 => 0.032946585290966
1102 => 0.0332487395778
1103 => 0.034493270322794
1104 => 0.031965304365146
1105 => 0.031913242569822
1106 => 0.030910118259502
1107 => 0.030273920963128
1108 => 0.030953679232675
1109 => 0.031555852263236
1110 => 0.030928829454112
1111 => 0.03101070539581
1112 => 0.030168978504207
1113 => 0.030469856261023
1114 => 0.030729012717805
1115 => 0.030585921754882
1116 => 0.030371707657707
1117 => 0.03150648094182
1118 => 0.031442452585918
1119 => 0.03249917955641
1120 => 0.033322973797178
1121 => 0.034799360347471
1122 => 0.033258674016469
1123 => 0.033202525282894
1124 => 0.033751388160132
1125 => 0.033248655549753
1126 => 0.033566365205773
1127 => 0.034748172410114
1128 => 0.034773142134074
1129 => 0.034354867086067
1130 => 0.034329415011382
1201 => 0.03440974930978
1202 => 0.03488026980469
1203 => 0.034715855486134
1204 => 0.034906119898029
1205 => 0.035144048458535
1206 => 0.036128221864407
1207 => 0.036365502740659
1208 => 0.035789033227395
1209 => 0.035841081969987
1210 => 0.035625466547584
1211 => 0.035417184751197
1212 => 0.035885371812363
1213 => 0.036740992868884
1214 => 0.036735670094698
1215 => 0.036934157548914
1216 => 0.037057813588532
1217 => 0.036526991344739
1218 => 0.036181445582904
1219 => 0.03631394981564
1220 => 0.03652582696935
1221 => 0.0362452409103
1222 => 0.034513333773737
1223 => 0.035038683764314
1224 => 0.03495123983758
1225 => 0.034826709052366
1226 => 0.035354952530302
1227 => 0.035304002158197
1228 => 0.033777840704042
1229 => 0.033875540608719
1230 => 0.033783782158838
1231 => 0.034080272482415
]
'min_raw' => 0.028108237807721
'max_raw' => 0.062965922531352
'avg_raw' => 0.045537080169536
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.0281082'
'max' => '$0.062965'
'avg' => '$0.045537'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.0068543394859294
'max_diff' => -0.045756030284924
'year' => 2034
]
9 => [
'items' => [
101 => 0.033232644099282
102 => 0.033493368881069
103 => 0.033656893020063
104 => 0.033753209994182
105 => 0.034101172949868
106 => 0.034060343513192
107 => 0.034098634934757
108 => 0.034614572139225
109 => 0.037224005471155
110 => 0.037366031170022
111 => 0.036666644685343
112 => 0.036946035791184
113 => 0.036409665964087
114 => 0.036769734622383
115 => 0.037016084453636
116 => 0.03590287693655
117 => 0.035836960012046
118 => 0.035298376395876
119 => 0.03558778072427
120 => 0.035127317628887
121 => 0.035240299166179
122 => 0.034924392938357
123 => 0.035492961252133
124 => 0.036128708973518
125 => 0.036289323954378
126 => 0.035866815088832
127 => 0.035560890825485
128 => 0.035023788596766
129 => 0.03591700157323
130 => 0.03617820426772
131 => 0.035915629586673
201 => 0.035854785295704
202 => 0.035739485474262
203 => 0.035879246697881
204 => 0.03617678170175
205 => 0.036036469688534
206 => 0.036129148245242
207 => 0.035775953156782
208 => 0.036527167068989
209 => 0.037720275551046
210 => 0.037724111589909
211 => 0.037583798820359
212 => 0.03752638585814
213 => 0.037670355274589
214 => 0.037748452777078
215 => 0.038214023470398
216 => 0.038713599373485
217 => 0.041044902131149
218 => 0.040390281645655
219 => 0.042458752142076
220 => 0.044094643747467
221 => 0.044585176111053
222 => 0.044133909417885
223 => 0.042590150437504
224 => 0.042514406257035
225 => 0.044821433931955
226 => 0.044169592945228
227 => 0.044092058533998
228 => 0.043267223394963
301 => 0.043754803119952
302 => 0.043648162281734
303 => 0.043479824501558
304 => 0.044410092651739
305 => 0.046151471583268
306 => 0.045880061346241
307 => 0.045677466194659
308 => 0.044789753214988
309 => 0.045324354706622
310 => 0.045133993355068
311 => 0.045951906527642
312 => 0.045467392883204
313 => 0.044164654608651
314 => 0.044372119972755
315 => 0.044340762000333
316 => 0.044986106850727
317 => 0.044792390345083
318 => 0.044302935743567
319 => 0.046145519739392
320 => 0.046025872583694
321 => 0.046195504895326
322 => 0.04627018228496
323 => 0.047391730693247
324 => 0.047851193190575
325 => 0.047955499221492
326 => 0.04839195305785
327 => 0.047944639852443
328 => 0.04973421160298
329 => 0.05092417239268
330 => 0.052306373084739
331 => 0.054326139796359
401 => 0.055085590763815
402 => 0.054948402744126
403 => 0.056479766813598
404 => 0.059231594006127
405 => 0.055504625697487
406 => 0.059429132376271
407 => 0.058186678872377
408 => 0.055240843965426
409 => 0.055051166926531
410 => 0.057046120527364
411 => 0.061470735606844
412 => 0.060362419713003
413 => 0.061472548414603
414 => 0.060177524316229
415 => 0.060113215454424
416 => 0.061409651984693
417 => 0.064438846602741
418 => 0.062999789787368
419 => 0.060936548971325
420 => 0.062460013882309
421 => 0.061140247586393
422 => 0.058166444742367
423 => 0.060361572204726
424 => 0.058893752984277
425 => 0.059322140666366
426 => 0.062407278346119
427 => 0.062036066418229
428 => 0.062516449026218
429 => 0.06166858629692
430 => 0.060876548812076
501 => 0.059398152029138
502 => 0.05896047162579
503 => 0.059081430743184
504 => 0.058960411684459
505 => 0.058133262271573
506 => 0.057954639434614
507 => 0.057656926880703
508 => 0.057749200449913
509 => 0.05718941374968
510 => 0.058245846910854
511 => 0.058441930214825
512 => 0.059210714170312
513 => 0.059290531870914
514 => 0.061431584243992
515 => 0.060252328575824
516 => 0.061043475090067
517 => 0.060972707499273
518 => 0.055304689140413
519 => 0.056085692060914
520 => 0.057300687512997
521 => 0.056753333708721
522 => 0.05597950349054
523 => 0.055354594099208
524 => 0.054407792471073
525 => 0.055740397580958
526 => 0.057492631593702
527 => 0.059334971417103
528 => 0.061548422000033
529 => 0.061054405597328
530 => 0.059293592498099
531 => 0.059372581287456
601 => 0.059860858902316
602 => 0.059228495026373
603 => 0.059041998574148
604 => 0.059835237153628
605 => 0.059840699751769
606 => 0.059113088688769
607 => 0.058304482143664
608 => 0.058301094052716
609 => 0.058157210328227
610 => 0.060203120911176
611 => 0.061328164866907
612 => 0.061457149343332
613 => 0.061319483183949
614 => 0.061372465424921
615 => 0.060717827135733
616 => 0.062214136137862
617 => 0.063587297247839
618 => 0.063219260737057
619 => 0.062667521687922
620 => 0.062228034959933
621 => 0.063115731631032
622 => 0.063076203895632
623 => 0.063575303883463
624 => 0.063552661825074
625 => 0.063384833271266
626 => 0.063219266730743
627 => 0.063875719349124
628 => 0.063686671537337
629 => 0.063497330082081
630 => 0.06311757680684
701 => 0.06316919158398
702 => 0.06261754780037
703 => 0.062362332144571
704 => 0.058524501029324
705 => 0.057498907150581
706 => 0.057821579862722
707 => 0.057927812097753
708 => 0.057481472327389
709 => 0.058121408902811
710 => 0.058021675465392
711 => 0.058409679928279
712 => 0.058167271585063
713 => 0.058177220108024
714 => 0.058890091358516
715 => 0.059097040915305
716 => 0.058991784700434
717 => 0.059065502545358
718 => 0.060764299167261
719 => 0.060522784612084
720 => 0.06039448481821
721 => 0.06043002473793
722 => 0.060864103697437
723 => 0.060985622106266
724 => 0.060470740069109
725 => 0.06071356141433
726 => 0.061747463883663
727 => 0.062109271234118
728 => 0.06326398661939
729 => 0.062773443000297
730 => 0.063673857043372
731 => 0.066441422838018
801 => 0.068652345895767
802 => 0.066619089681601
803 => 0.070679168317804
804 => 0.073840521919777
805 => 0.073719183903024
806 => 0.073167928779093
807 => 0.069568811752181
808 => 0.066256850604204
809 => 0.069027446737785
810 => 0.069034509557108
811 => 0.068796512892113
812 => 0.067318336045992
813 => 0.068745075542002
814 => 0.068858324942039
815 => 0.068794935393464
816 => 0.067661620671312
817 => 0.065931258562158
818 => 0.066269367176385
819 => 0.066823195983718
820 => 0.065774682510644
821 => 0.065439618924325
822 => 0.066062565879747
823 => 0.06806983076627
824 => 0.067690368966766
825 => 0.067680459685656
826 => 0.069303958180777
827 => 0.068141883631174
828 => 0.066273631808784
829 => 0.065801873584416
830 => 0.06412744970233
831 => 0.06528398024178
901 => 0.065325601716963
902 => 0.064692181759962
903 => 0.066325030347318
904 => 0.066309983360128
905 => 0.067860130076383
906 => 0.070823428389344
907 => 0.069947035263148
908 => 0.068927885408682
909 => 0.069038695255823
910 => 0.070254005776948
911 => 0.069519201293035
912 => 0.069783442108689
913 => 0.070253605816826
914 => 0.070537267255454
915 => 0.068997880740106
916 => 0.06863897610601
917 => 0.067904783183058
918 => 0.06771324595382
919 => 0.068311230770126
920 => 0.068153682898145
921 => 0.065322103593141
922 => 0.065026187801009
923 => 0.065035263115883
924 => 0.06429116878654
925 => 0.06315624633119
926 => 0.066138754781151
927 => 0.06589921761244
928 => 0.065634787116888
929 => 0.065667178343774
930 => 0.066961784175312
1001 => 0.066210847413858
1002 => 0.068207335870298
1003 => 0.06779691786359
1004 => 0.067375974183659
1005 => 0.067317786944835
1006 => 0.067155759541289
1007 => 0.066600107286787
1008 => 0.065929123799953
1009 => 0.065486082382351
1010 => 0.060407449416501
1011 => 0.061350014153914
1012 => 0.062434348966828
1013 => 0.062808656999047
1014 => 0.062168377208609
1015 => 0.066625389435465
1016 => 0.06743972851815
1017 => 0.064973042318673
1018 => 0.064511626044885
1019 => 0.066655639809557
1020 => 0.065362537414437
1021 => 0.065944821343782
1022 => 0.064686241980819
1023 => 0.067243578079763
1024 => 0.067224095463399
1025 => 0.066229233960854
1026 => 0.067070084090287
1027 => 0.066923965687993
1028 => 0.065800769501856
1029 => 0.067279185402272
1030 => 0.067279918678114
1031 => 0.066322386112069
1101 => 0.06520419770576
1102 => 0.065004292029143
1103 => 0.064853689955362
1104 => 0.065907782465706
1105 => 0.06685287851442
1106 => 0.068611467951895
1107 => 0.069053619119531
1108 => 0.070779364562483
1109 => 0.069751767176226
1110 => 0.07020728778794
1111 => 0.07070181984928
1112 => 0.070938916705301
1113 => 0.070552580101733
1114 => 0.073233373119802
1115 => 0.073459714187902
1116 => 0.073535604390194
1117 => 0.072631656067813
1118 => 0.073434573749826
1119 => 0.073058915156251
1120 => 0.074036274455771
1121 => 0.074189536873485
1122 => 0.07405972905815
1123 => 0.074108376968615
1124 => 0.071820793051989
1125 => 0.071702169757945
1126 => 0.070084732726536
1127 => 0.070743850272327
1128 => 0.069511661612798
1129 => 0.069902401329684
1130 => 0.070074635673783
1201 => 0.069984670226639
1202 => 0.070781115789434
1203 => 0.070103974357979
1204 => 0.068316886788012
1205 => 0.066529312327232
1206 => 0.066506870786004
1207 => 0.06603623398379
1208 => 0.06569604977722
1209 => 0.065761581324089
1210 => 0.065992523042667
1211 => 0.065682627024707
1212 => 0.065748759052266
1213 => 0.066846991345135
1214 => 0.067067233999236
1215 => 0.066318763406242
1216 => 0.063313545971581
1217 => 0.062576058075098
1218 => 0.063106149750069
1219 => 0.062852800071709
1220 => 0.050727115117786
1221 => 0.053575864934883
1222 => 0.051883234527967
1223 => 0.052663276493654
1224 => 0.050935539152712
1225 => 0.051760105970282
1226 => 0.051607838587436
1227 => 0.056188543992693
1228 => 0.056117022578344
1229 => 0.056151256094564
1230 => 0.054517201170443
1231 => 0.057120295033993
]
'min_raw' => 0.033232644099282
'max_raw' => 0.074189536873485
'avg_raw' => 0.053711090486384
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.033232'
'max' => '$0.074189'
'avg' => '$0.053711'
'bar_min_pct' => 61.631153054958
'bar_max_pct' => 60.119598047091
'min_diff' => 0.005124406291561
'max_diff' => 0.011223614342133
'year' => 2035
]
10 => [
'items' => [
101 => 0.058402672675406
102 => 0.058165338703356
103 => 0.058225070550962
104 => 0.057198679508025
105 => 0.056161193803439
106 => 0.055010462489148
107 => 0.057148379036411
108 => 0.056910679211808
109 => 0.057455877087751
110 => 0.058842468790082
111 => 0.0590466496854
112 => 0.059321070879306
113 => 0.059222710415921
114 => 0.061566055704943
115 => 0.061282261128553
116 => 0.061966124404382
117 => 0.060559365761169
118 => 0.058967484825618
119 => 0.059270049348958
120 => 0.05924090995229
121 => 0.058869931988066
122 => 0.058535029669509
123 => 0.057977511667257
124 => 0.059741581123524
125 => 0.059669963125168
126 => 0.060829375271725
127 => 0.060624437912892
128 => 0.05925581607393
129 => 0.059304696670656
130 => 0.059633442174851
131 => 0.060771234118421
201 => 0.061109008234056
202 => 0.060952537805723
203 => 0.061322891703542
204 => 0.061615604323833
205 => 0.061359651901967
206 => 0.064983398439694
207 => 0.063478566230503
208 => 0.064212010978708
209 => 0.064386933229447
210 => 0.063938873562397
211 => 0.064036041660366
212 => 0.064183224852068
213 => 0.065076892370658
214 => 0.067422134524219
215 => 0.068460826309428
216 => 0.071585781793379
217 => 0.068374577415954
218 => 0.068184037837482
219 => 0.068746936684757
220 => 0.070581616363968
221 => 0.072068451921269
222 => 0.072561721053227
223 => 0.072626914712001
224 => 0.073552320395466
225 => 0.074082745675434
226 => 0.073439951804908
227 => 0.07289525130296
228 => 0.0709442017157
229 => 0.071170041017957
301 => 0.072725849856448
302 => 0.0749235214775
303 => 0.076809352357123
304 => 0.07614900011092
305 => 0.081187021613411
306 => 0.08168652086691
307 => 0.081617506220821
308 => 0.082755439855748
309 => 0.080496873326572
310 => 0.079531292377684
311 => 0.073013021734095
312 => 0.074844389908139
313 => 0.077506391101594
314 => 0.077154065261648
315 => 0.075220848839465
316 => 0.076807885839111
317 => 0.076283161775792
318 => 0.075869290136232
319 => 0.077765316350024
320 => 0.075680557643496
321 => 0.077485594038739
322 => 0.075170616191129
323 => 0.076152016544357
324 => 0.075594926238871
325 => 0.07595543194094
326 => 0.073847922972983
327 => 0.074985083655205
328 => 0.073800613349965
329 => 0.073800051756818
330 => 0.073773904509181
331 => 0.075167428570549
401 => 0.075212871340161
402 => 0.074183054953312
403 => 0.074034642323212
404 => 0.074583401602901
405 => 0.073940948206668
406 => 0.074241548107212
407 => 0.073950053071429
408 => 0.07388443139905
409 => 0.073361546748923
410 => 0.073136273664636
411 => 0.073224609045557
412 => 0.072923074850462
413 => 0.072741389590949
414 => 0.073737762738112
415 => 0.073205440759161
416 => 0.073656176760266
417 => 0.073142506199588
418 => 0.07136190024067
419 => 0.07033785492413
420 => 0.066974455329993
421 => 0.067928311282606
422 => 0.068560718766024
423 => 0.068351708096527
424 => 0.068800743890998
425 => 0.068828311041861
426 => 0.068682324927701
427 => 0.068513291709482
428 => 0.068431015686976
429 => 0.069044233751252
430 => 0.069400227477535
501 => 0.068624189317506
502 => 0.068442374434538
503 => 0.069226991860569
504 => 0.06970560803719
505 => 0.073239440974155
506 => 0.072977643216054
507 => 0.073634704213671
508 => 0.073560729228762
509 => 0.07424943383229
510 => 0.075375174790776
511 => 0.073086228660051
512 => 0.073483510562543
513 => 0.073386106214631
514 => 0.074449541344343
515 => 0.07445286127274
516 => 0.073815278789953
517 => 0.074160922597466
518 => 0.073967993706354
519 => 0.074316642288497
520 => 0.072974146747384
521 => 0.074609161403021
522 => 0.075536109354751
523 => 0.07554898002796
524 => 0.075988346000365
525 => 0.076434767274691
526 => 0.07729163403566
527 => 0.076410869725793
528 => 0.074826460473019
529 => 0.074940849703459
530 => 0.074011911138271
531 => 0.074027526763378
601 => 0.073944169332737
602 => 0.074194331256946
603 => 0.073029043221923
604 => 0.073302533994598
605 => 0.072919645311293
606 => 0.073482678237322
607 => 0.072876947881591
608 => 0.073386059243305
609 => 0.073605774829712
610 => 0.074416530073691
611 => 0.072757198672851
612 => 0.069373709619677
613 => 0.070084960039494
614 => 0.069032964801071
615 => 0.069130330965615
616 => 0.069327026113705
617 => 0.068689472784098
618 => 0.068811097867772
619 => 0.068806752563921
620 => 0.068769307082853
621 => 0.068603454838344
622 => 0.06836293627094
623 => 0.069321088215767
624 => 0.069483896902009
625 => 0.069845800443796
626 => 0.070922579902637
627 => 0.07081498424249
628 => 0.07099047722829
629 => 0.07060737702564
630 => 0.069148101885258
701 => 0.069227347546165
702 => 0.068239152884826
703 => 0.069820530084541
704 => 0.069446039090489
705 => 0.069204602310416
706 => 0.069138724048077
707 => 0.070218172634924
708 => 0.070541160570392
709 => 0.070339896163922
710 => 0.069927096994432
711 => 0.070719793432972
712 => 0.070931885558748
713 => 0.070979365164052
714 => 0.072383871268679
715 => 0.071057861453184
716 => 0.071377045195178
717 => 0.073867225635194
718 => 0.071608975597511
719 => 0.072805221007457
720 => 0.072746671019601
721 => 0.073358629692592
722 => 0.07269647254668
723 => 0.072704680778092
724 => 0.073248058622037
725 => 0.072484982438927
726 => 0.072296034044824
727 => 0.072035003191646
728 => 0.072604954509939
729 => 0.072946614548574
730 => 0.07570014353833
731 => 0.07747904884189
801 => 0.077401821871133
802 => 0.078107531821016
803 => 0.077789603025031
804 => 0.076762927077419
805 => 0.0785153377302
806 => 0.077960801675684
807 => 0.078006516954257
808 => 0.078004815429305
809 => 0.078373533427175
810 => 0.078112262933176
811 => 0.077597271970638
812 => 0.077939147005193
813 => 0.078954393635259
814 => 0.082105750326554
815 => 0.083869291280926
816 => 0.081999582946733
817 => 0.083289282719267
818 => 0.082515922422763
819 => 0.082375379851412
820 => 0.083185406616628
821 => 0.083996851226466
822 => 0.083945165712791
823 => 0.08335609859419
824 => 0.083023349525917
825 => 0.085543036949995
826 => 0.0873994997223
827 => 0.087272901407113
828 => 0.08783166519837
829 => 0.089472212971415
830 => 0.089622204099768
831 => 0.089603308665102
901 => 0.089231540003523
902 => 0.090846872338134
903 => 0.092194410990735
904 => 0.089145486299797
905 => 0.090306476908751
906 => 0.090827682997892
907 => 0.091592968171629
908 => 0.092884132536411
909 => 0.094286679500998
910 => 0.094485015019936
911 => 0.094344286478021
912 => 0.09341926905239
913 => 0.094953952676906
914 => 0.095852934351388
915 => 0.096388257365712
916 => 0.097745747460783
917 => 0.090830901789259
918 => 0.085936230332825
919 => 0.085171856704991
920 => 0.086726240534701
921 => 0.087136119154617
922 => 0.086970897596873
923 => 0.081461499868597
924 => 0.085142850866147
925 => 0.089103675002728
926 => 0.089255826388778
927 => 0.091238697768477
928 => 0.091884401970351
929 => 0.093480873331902
930 => 0.093381013613565
1001 => 0.093769728984695
1002 => 0.093680370052484
1003 => 0.09663749707305
1004 => 0.099899647314346
1005 => 0.099786689424493
1006 => 0.099317716731296
1007 => 0.10001422115242
1008 => 0.1033811097947
1009 => 0.10307114064181
1010 => 0.10337224927074
1011 => 0.10734200072952
1012 => 0.11250324231649
1013 => 0.11010532741916
1014 => 0.11530811276495
1015 => 0.11858299035232
1016 => 0.12424655251102
1017 => 0.12353744663512
1018 => 0.12574222982236
1019 => 0.12226799912239
1020 => 0.1142904631774
1021 => 0.11302798757732
1022 => 0.11555549569965
1023 => 0.12176912778775
1024 => 0.11535980631275
1025 => 0.11665640369963
1026 => 0.11628298356498
1027 => 0.11626308559294
1028 => 0.11702251025488
1029 => 0.11592092517381
1030 => 0.11143286938216
1031 => 0.1134897189032
1101 => 0.1126954705251
1102 => 0.11357674831574
1103 => 0.1183326410852
1104 => 0.1162299475255
1105 => 0.1140149306693
1106 => 0.11679305335856
1107 => 0.12033055820851
1108 => 0.12010918751251
1109 => 0.11967963583649
1110 => 0.12210099614361
1111 => 0.12610037397897
1112 => 0.12718138973706
1113 => 0.12797937346929
1114 => 0.12808940194392
1115 => 0.12922276361492
1116 => 0.12312839226606
1117 => 0.13280031611125
1118 => 0.13447039017782
1119 => 0.13415648547078
1120 => 0.1360127025083
1121 => 0.13546655636818
1122 => 0.13467527629885
1123 => 0.13761777513201
1124 => 0.13424443766721
1125 => 0.12945640982729
1126 => 0.12682960305786
1127 => 0.1302887941103
1128 => 0.1324012013769
1129 => 0.13379736820578
1130 => 0.13421984744462
1201 => 0.12360148096542
1202 => 0.11787877035474
1203 => 0.12154696224517
1204 => 0.12602240951659
1205 => 0.1231035309305
1206 => 0.1232179454449
1207 => 0.11905639164893
1208 => 0.12639061468596
1209 => 0.12532208007999
1210 => 0.13086563950596
1211 => 0.12954262455911
1212 => 0.13406318207126
1213 => 0.13287276777793
1214 => 0.13781411095437
1215 => 0.13978534652897
1216 => 0.14309535785706
1217 => 0.14553021566417
1218 => 0.14696001073991
1219 => 0.14687417120659
1220 => 0.15253973161776
1221 => 0.14919894858289
1222 => 0.145002137729
1223 => 0.14492623066142
1224 => 0.14709981847192
1225 => 0.15165506222804
1226 => 0.1528361706579
1227 => 0.15349624914042
1228 => 0.15248531596694
1229 => 0.14885913541868
1230 => 0.14729336904309
1231 => 0.14862744735971
]
'min_raw' => 0.055010462489148
'max_raw' => 0.15349624914042
'avg_raw' => 0.10425335581478
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$0.05501'
'max' => '$0.153496'
'avg' => '$0.104253'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.021777818389866
'max_diff' => 0.07930671226693
'year' => 2036
]
11 => [
'items' => [
101 => 0.14699598421714
102 => 0.14981234730893
103 => 0.15367981537664
104 => 0.15288119851429
105 => 0.15555085494981
106 => 0.15831366850454
107 => 0.16226461597352
108 => 0.16329753994507
109 => 0.16500492399146
110 => 0.16676238302164
111 => 0.16732683149729
112 => 0.16840453877537
113 => 0.16839885872605
114 => 0.17164660214662
115 => 0.17522896371375
116 => 0.17658122227348
117 => 0.17969066626761
118 => 0.17436585239557
119 => 0.17840478488456
120 => 0.18204800309067
121 => 0.17770440815309
122 => 0.18369104184672
123 => 0.18392348926704
124 => 0.18743316933958
125 => 0.18387543621272
126 => 0.18176286563867
127 => 0.18786177772895
128 => 0.19081284917551
129 => 0.18992396243919
130 => 0.18315949048605
131 => 0.17922227766747
201 => 0.16891783228962
202 => 0.1811238929586
203 => 0.18706910905479
204 => 0.18314409381262
205 => 0.18512364319627
206 => 0.19592342276241
207 => 0.20003527958726
208 => 0.19918004211174
209 => 0.19932456316669
210 => 0.2015432464739
211 => 0.21138211010926
212 => 0.20548643495588
213 => 0.2099934577039
214 => 0.21238396631818
215 => 0.21460440394361
216 => 0.20915171091207
217 => 0.20205783739401
218 => 0.19981090987028
219 => 0.18275382840038
220 => 0.18186593323472
221 => 0.18136753077226
222 => 0.17822517374687
223 => 0.17575614188895
224 => 0.17379267608625
225 => 0.16863995547944
226 => 0.17037884742454
227 => 0.16216648623366
228 => 0.16742046389538
301 => 0.15431333714034
302 => 0.16522934178231
303 => 0.15928825674552
304 => 0.16327753556275
305 => 0.16326361734477
306 => 0.15591809024024
307 => 0.15168134350358
308 => 0.15438116342083
309 => 0.15727558468409
310 => 0.15774519479605
311 => 0.16149788751599
312 => 0.16254518339027
313 => 0.15937182799764
314 => 0.15404172107172
315 => 0.15527978334382
316 => 0.15165625421115
317 => 0.1453061587832
318 => 0.14986690818158
319 => 0.15142414854819
320 => 0.15211191460811
321 => 0.1458673250681
322 => 0.143905139458
323 => 0.14286048830351
324 => 0.1532356229783
325 => 0.15380399627633
326 => 0.15089611812373
327 => 0.16404000310978
328 => 0.16106513712846
329 => 0.16438879128946
330 => 0.15516744216938
331 => 0.15551971012396
401 => 0.15115417567184
402 => 0.15359858325991
403 => 0.15187095476359
404 => 0.1534010992829
405 => 0.15431826159875
406 => 0.15868307970962
407 => 0.16527918099383
408 => 0.15803112143771
409 => 0.15487303809499
410 => 0.15683229523908
411 => 0.16205005520168
412 => 0.16995522863725
413 => 0.16527520685695
414 => 0.16735212105112
415 => 0.16780583440707
416 => 0.1643549596101
417 => 0.17008246731329
418 => 0.17315188522162
419 => 0.17630047286902
420 => 0.17903430330183
421 => 0.17504285772372
422 => 0.17931427664355
423 => 0.17587226700111
424 => 0.17278442852342
425 => 0.17278911149979
426 => 0.17085206531661
427 => 0.16709879425318
428 => 0.16640663348357
429 => 0.17000734121733
430 => 0.17289476783151
501 => 0.1731325901173
502 => 0.17473121785225
503 => 0.17567726927861
504 => 0.18494985935155
505 => 0.18867937178578
506 => 0.19323974899429
507 => 0.19501627292578
508 => 0.2003629730405
509 => 0.19604507846011
510 => 0.19511087480682
511 => 0.1821415292208
512 => 0.18426525883396
513 => 0.18766555485404
514 => 0.18219759884977
515 => 0.1856657583845
516 => 0.18635044654232
517 => 0.18201179979708
518 => 0.18432925848557
519 => 0.17817477528756
520 => 0.16541333190929
521 => 0.17009667444782
522 => 0.17354519095224
523 => 0.16862373270142
524 => 0.17744525612927
525 => 0.17229190425593
526 => 0.17065853911659
527 => 0.16428619937132
528 => 0.16729369843724
529 => 0.17136138398713
530 => 0.1688480272365
531 => 0.17406361987647
601 => 0.18145029000242
602 => 0.18671447101798
603 => 0.18711858947076
604 => 0.18373407375049
605 => 0.18915778179191
606 => 0.1891972875838
607 => 0.18307932275658
608 => 0.17933210336487
609 => 0.17848072723486
610 => 0.18060763172975
611 => 0.18319008643478
612 => 0.18726189773392
613 => 0.18972240802384
614 => 0.19613811390612
615 => 0.19787401996517
616 => 0.19978125443022
617 => 0.20232990784487
618 => 0.20539021973047
619 => 0.19869443154843
620 => 0.19896046769541
621 => 0.19272544244979
622 => 0.18606242378178
623 => 0.1911188243938
624 => 0.19772939556923
625 => 0.19621292323755
626 => 0.19604228912152
627 => 0.19632924837473
628 => 0.19518587776
629 => 0.19001445484488
630 => 0.18741739863173
701 => 0.1907682637264
702 => 0.19254909939437
703 => 0.19531102021019
704 => 0.19497055517257
705 => 0.2020849665855
706 => 0.20484941173194
707 => 0.2041421483662
708 => 0.20427230184674
709 => 0.20927719773724
710 => 0.21484367130283
711 => 0.22005740835788
712 => 0.2253610456255
713 => 0.2189673038949
714 => 0.21572095615527
715 => 0.21907035836706
716 => 0.21729311840724
717 => 0.22750566638002
718 => 0.2282127610438
719 => 0.23842457053312
720 => 0.24811679373814
721 => 0.24202928199729
722 => 0.24776953138136
723 => 0.25397807909964
724 => 0.26595537494877
725 => 0.26192184307313
726 => 0.2588322208699
727 => 0.25591254281679
728 => 0.26198792935947
729 => 0.26980381708997
730 => 0.27148728444748
731 => 0.27421514470067
801 => 0.27134713319132
802 => 0.27480133715322
803 => 0.28699619499286
804 => 0.28370103675761
805 => 0.27902138234042
806 => 0.28864805139822
807 => 0.29213190550751
808 => 0.31658341815507
809 => 0.34745446291422
810 => 0.33467364767372
811 => 0.32674018321961
812 => 0.32860473555062
813 => 0.33987779604585
814 => 0.34349834528786
815 => 0.33365644436991
816 => 0.33713277015771
817 => 0.35628766703332
818 => 0.36656365464442
819 => 0.35260748321929
820 => 0.31410295976714
821 => 0.27860003066136
822 => 0.28801700617794
823 => 0.28694941339714
824 => 0.30752896046793
825 => 0.28362244832348
826 => 0.28402497267632
827 => 0.30503008298642
828 => 0.29942627967444
829 => 0.29034883598994
830 => 0.27866630604595
831 => 0.25707006894127
901 => 0.23794167948203
902 => 0.27545685621661
903 => 0.27383913357889
904 => 0.27149643146641
905 => 0.27670986151089
906 => 0.30202479794891
907 => 0.30144120672756
908 => 0.29772869712819
909 => 0.30054460293876
910 => 0.28985519408664
911 => 0.29261009814115
912 => 0.278594406816
913 => 0.28493008464194
914 => 0.29032935987268
915 => 0.29141334431289
916 => 0.29385561660629
917 => 0.2729866672587
918 => 0.2823562128356
919 => 0.28785994305434
920 => 0.26299388969867
921 => 0.28736842112996
922 => 0.27262338527978
923 => 0.26761869864922
924 => 0.27435684987994
925 => 0.27173098579226
926 => 0.26947342204559
927 => 0.26821366268508
928 => 0.2731614172863
929 => 0.27293059862031
930 => 0.26483511177492
1001 => 0.25427487919936
1002 => 0.25781923987954
1003 => 0.25653154041587
1004 => 0.25186475144301
1005 => 0.25500960374047
1006 => 0.24116126579578
1007 => 0.21733592013592
1008 => 0.2330756732689
1009 => 0.23246970989484
1010 => 0.23216415568338
1011 => 0.24399214514799
1012 => 0.24285515687912
1013 => 0.24079151203768
1014 => 0.25182685098717
1015 => 0.24779880382435
1016 => 0.26021229605288
1017 => 0.26838862488893
1018 => 0.26631484341957
1019 => 0.2740047202095
1020 => 0.25790089479101
1021 => 0.2632499396217
1022 => 0.26435237034785
1023 => 0.2516906766175
1024 => 0.24304118222128
1025 => 0.2424643595565
1026 => 0.2274673282472
1027 => 0.23547862132082
1028 => 0.24252822769578
1029 => 0.23915201331373
1030 => 0.23808320470191
1031 => 0.2435435161034
1101 => 0.2439678290637
1102 => 0.23429344860218
1103 => 0.23630505864791
1104 => 0.24469380694097
1105 => 0.23609368371424
1106 => 0.21938504910685
1107 => 0.21524107670927
1108 => 0.21468819440286
1109 => 0.20344941259803
1110 => 0.21551799676005
1111 => 0.21024973635538
1112 => 0.22689210785027
1113 => 0.21738607450722
1114 => 0.21697628840927
1115 => 0.21635683661966
1116 => 0.20668315285201
1117 => 0.20880107480245
1118 => 0.21584136993434
1119 => 0.21835342655199
1120 => 0.2180913984661
1121 => 0.21580686864737
1122 => 0.2168527146997
1123 => 0.21348368016823
1124 => 0.21229400395478
1125 => 0.2085390585789
1126 => 0.2030203262065
1127 => 0.20378773979124
1128 => 0.19285368690663
1129 => 0.18689623458099
1130 => 0.18524729029521
1201 => 0.18304225308214
1202 => 0.18549635511581
1203 => 0.1928227121086
1204 => 0.18398557120195
1205 => 0.16883491297086
1206 => 0.16974549334601
1207 => 0.17179129709524
1208 => 0.1679789553429
1209 => 0.16437089381989
1210 => 0.16750781058286
1211 => 0.16108827696275
1212 => 0.17256706706355
1213 => 0.17225659796026
1214 => 0.17653518106622
1215 => 0.17921066688774
1216 => 0.17304453826796
1217 => 0.17149377359506
1218 => 0.17237715963107
1219 => 0.15777675622264
1220 => 0.17534201661752
1221 => 0.17549392171883
1222 => 0.17419321801716
1223 => 0.18354617691086
1224 => 0.20328383743761
1225 => 0.19585773560189
1226 => 0.19298212451599
1227 => 0.18751558573962
1228 => 0.19479942408817
1229 => 0.19424013894858
1230 => 0.19171083944477
1231 => 0.19018111121296
]
'min_raw' => 0.14286048830351
'max_raw' => 0.36656365464442
'avg_raw' => 0.25471207147396
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$0.14286'
'max' => '$0.366563'
'avg' => '$0.254712'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 0.087850025814361
'max_diff' => 0.213067405504
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.0044842274848237
]
1 => [
'year' => 2028
'avg' => 0.0076962361444977
]
2 => [
'year' => 2029
'avg' => 0.021024730035161
]
3 => [
'year' => 2030
'avg' => 0.01622054791116
]
4 => [
'year' => 2031
'avg' => 0.015930588239131
]
5 => [
'year' => 2032
'avg' => 0.027931334723827
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.0044842274848237
'min' => '$0.004484'
'max_raw' => 0.027931334723827
'max' => '$0.027931'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.027931334723827
]
1 => [
'year' => 2033
'avg' => 0.071842265054963
]
2 => [
'year' => 2034
'avg' => 0.045537080169536
]
3 => [
'year' => 2035
'avg' => 0.053711090486384
]
4 => [
'year' => 2036
'avg' => 0.10425335581478
]
5 => [
'year' => 2037
'avg' => 0.25471207147396
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.027931334723827
'min' => '$0.027931'
'max_raw' => 0.25471207147396
'max' => '$0.254712'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 0.25471207147396
]
]
]
]
'prediction_2025_max_price' => '$0.007667'
'last_price' => 0.00743433
'sma_50day_nextmonth' => '$0.0067094'
'sma_200day_nextmonth' => '$0.011066'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'increase'
'sma_200day_direction_label' => 'aumentar'
'sma_200day_date_nextmonth' => '4 de fev. de 2026'
'sma_50day_date_nextmonth' => '4 de fev. de 2026'
'daily_sma3' => '$0.007044'
'daily_sma3_action' => 'BUY'
'daily_sma5' => '$0.006885'
'daily_sma5_action' => 'BUY'
'daily_sma10' => '$0.00666'
'daily_sma10_action' => 'BUY'
'daily_sma21' => '$0.006534'
'daily_sma21_action' => 'BUY'
'daily_sma50' => '$0.007298'
'daily_sma50_action' => 'BUY'
'daily_sma100' => '$0.0091051'
'daily_sma100_action' => 'SELL'
'daily_sma200' => '$0.012298'
'daily_sma200_action' => 'SELL'
'daily_ema3' => '$0.00712'
'daily_ema3_action' => 'BUY'
'daily_ema5' => '$0.006956'
'daily_ema5_action' => 'BUY'
'daily_ema10' => '$0.006767'
'daily_ema10_action' => 'BUY'
'daily_ema21' => '$0.006778'
'daily_ema21_action' => 'BUY'
'daily_ema50' => '$0.00749'
'daily_ema50_action' => 'SELL'
'daily_ema100' => '$0.009078'
'daily_ema100_action' => 'SELL'
'daily_ema200' => '$0.011979'
'daily_ema200_action' => 'SELL'
'weekly_sma21' => '$0.0106024'
'weekly_sma21_action' => 'SELL'
'weekly_sma50' => '$0.015026'
'weekly_sma50_action' => 'SELL'
'weekly_sma100' => '$0.02515'
'weekly_sma100_action' => 'SELL'
'weekly_sma200' => '$0.028578'
'weekly_sma200_action' => 'SELL'
'weekly_ema3' => '$0.007142'
'weekly_ema3_action' => 'BUY'
'weekly_ema5' => '$0.007236'
'weekly_ema5_action' => 'BUY'
'weekly_ema10' => '$0.008026'
'weekly_ema10_action' => 'SELL'
'weekly_ema21' => '$0.01018'
'weekly_ema21_action' => 'SELL'
'weekly_ema50' => '$0.0152015'
'weekly_ema50_action' => 'SELL'
'weekly_ema100' => '$0.021099'
'weekly_ema100_action' => 'SELL'
'weekly_ema200' => '$0.026052'
'weekly_ema200_action' => 'SELL'
'rsi_14' => '60.77'
'rsi_14_action' => 'NEUTRAL'
'stoch_rsi_14' => 118.92
'stoch_rsi_14_action' => 'SELL'
'momentum_10' => 0
'momentum_10_action' => 'BUY'
'vwma_10' => '0.006732'
'vwma_10_action' => 'BUY'
'hma_9' => '0.007139'
'hma_9_action' => 'BUY'
'stochastic_fast_14' => 100
'stochastic_fast_14_action' => 'SELL'
'cci_20' => 289.01
'cci_20_action' => 'SELL'
'adx_14' => 23.73
'adx_14_action' => 'NEUTRAL'
'ao_5_34' => '-0.000039'
'ao_5_34_action' => 'NEUTRAL'
'macd_12_26' => 0
'macd_12_26_action' => 'BUY'
'williams_percent_r_14' => -0
'williams_percent_r_14_action' => 'SELL'
'ultimate_oscillator' => 75.81
'ultimate_oscillator_action' => 'SELL'
'ichimoku_cloud' => '-0.001022'
'ichimoku_cloud_action' => 'SELL'
'sell_signals' => 15
'buy_signals' => 19
'sell_pct' => 44.12
'buy_pct' => 55.88
'overall_action' => 'bullish'
'overall_action_label' => 'Altista'
'overall_action_dir' => 1
'last_updated' => 1767714470
'last_updated_date' => '6 de janeiro de 2026'
]
Previsão de preço de Ankr para 2026
A previsão de preço para Ankr em 2026 sugere que o preço médio poderia variar entre $0.002568 na extremidade inferior e $0.007667 na extremidade superior. No mercado de criptomoedas, comparado ao preço médio de hoje, Ankr poderia potencialmente ganhar 3.13% até 2026 se ANKR atingir a meta de preço prevista.
Previsão de preço de Ankr 2027-2032
A previsão de preço de ANKR para 2027-2032 está atualmente dentro de uma faixa de preço entre $0.004484 na extremidade inferior e $0.027931 na extremidade superior. Considerando a volatilidade de preços no mercado, se Ankr atingir a meta de preço superior, poderia ganhar 275.71% até 2032 em comparação com o preço de hoje.
| Previsão de Preço de Ankr | Potencial Mínimo ($) | Preço Médio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2027 | $0.002472 | $0.004484 | $0.006495 |
| 2028 | $0.004462 | $0.007696 | $0.010929 |
| 2029 | $0.0098027 | $0.021024 | $0.032246 |
| 2030 | $0.008336 | $0.01622 | $0.0241042 |
| 2031 | $0.009856 | $0.01593 | $0.0220044 |
| 2032 | $0.015045 | $0.027931 | $0.040817 |
Previsão de preço de Ankr 2032-2037
A previsão de preço de Ankr para 2032-2037 é atualmente estimada entre $0.027931 na extremidade inferior e $0.254712 na extremidade superior. Comparado ao preço atual, Ankr poderia potencialmente ganhar 3326.16% até 2037 se atingir a meta de preço superior. Por favor, note que esta informação é apenas para fins gerais e não deve ser considerada como aconselhamento de investimento a longo prazo.
| Previsão de Preço de Ankr | Potencial Mínimo ($) | Preço Médio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2032 | $0.015045 | $0.027931 | $0.040817 |
| 2033 | $0.034962 | $0.071842 | $0.108721 |
| 2034 | $0.0281082 | $0.045537 | $0.062965 |
| 2035 | $0.033232 | $0.053711 | $0.074189 |
| 2036 | $0.05501 | $0.104253 | $0.153496 |
| 2037 | $0.14286 | $0.254712 | $0.366563 |
Ankr Histograma de preços potenciais
Previsão de preço de Ankr baseada na análise técnica
Em 6 de janeiro de 2026, o sentimento geral de previsão de preço para Ankr é Altista, com 19 indicadores técnicos mostrando sinais de alta e 15 indicando sinais de baixa. A previsão de preço de ANKR foi atualizada pela última vez em 6 de janeiro de 2026.
Médias Móveis Simples de 50 e 200 dias e Índice de Força Relativa de 14 dias - RSI (14) de Ankr
De acordo com nossos indicadores técnicos, o SMA de 200 dias de Ankr está projetado para aumentar no próximo mês, alcançando $0.011066 até 4 de fev. de 2026. O SMA de 50 dias de curto prazo para Ankr é esperado para alcançar $0.0067094 até 4 de fev. de 2026.
O oscilador de momentum Índice de Força Relativa (RSI) é uma ferramenta comumente usada para identificar se uma criptomoeda está sobrevendida (abaixo de 30) ou sobrecomprada (acima de 70). No momento, o RSI está em 60.77, sugerindo que o mercado de ANKR está em um estado NEUTRAL.
Médias Móveis e Osciladores Populares de ANKR para Sábado, 19 de Outubro de 2024
Médias móveis (MA) são indicadores amplamente utilizados nos mercados financeiros, projetados para suavizar movimentos de preços ao longo de um período definido. Como indicadores atrasados, eles se baseiam em dados históricos de preços. A tabela abaixo destaca dois tipos: a média móvel simples (SMA) e a média móvel exponencial (EMA).
Média Móvel Simples Diária (SMA)
| Período | Valor | Ação |
|---|---|---|
| SMA 3 | $0.007044 | BUY |
| SMA 5 | $0.006885 | BUY |
| SMA 10 | $0.00666 | BUY |
| SMA 21 | $0.006534 | BUY |
| SMA 50 | $0.007298 | BUY |
| SMA 100 | $0.0091051 | SELL |
| SMA 200 | $0.012298 | SELL |
Média Móvel Exponencial Diária (EMA)
| Período | Valor | Ação |
|---|---|---|
| EMA 3 | $0.00712 | BUY |
| EMA 5 | $0.006956 | BUY |
| EMA 10 | $0.006767 | BUY |
| EMA 21 | $0.006778 | BUY |
| EMA 50 | $0.00749 | SELL |
| EMA 100 | $0.009078 | SELL |
| EMA 200 | $0.011979 | SELL |
Média Móvel Simples Semanal (SMA)
| Período | Valor | Ação |
|---|---|---|
| SMA 21 | $0.0106024 | SELL |
| SMA 50 | $0.015026 | SELL |
| SMA 100 | $0.02515 | SELL |
| SMA 200 | $0.028578 | SELL |
Média Móvel Exponencial Semanal (EMA)
| Período | Valor | Ação |
|---|---|---|
| EMA 21 | $0.01018 | SELL |
| EMA 50 | $0.0152015 | SELL |
| EMA 100 | $0.021099 | SELL |
| EMA 200 | $0.026052 | SELL |
Osciladores de Ankr
Um oscilador é uma ferramenta de análise técnica que define limites altos e baixos entre dois extremos, criando um indicador de tendência que flutua dentro desses limites. Os traders usam esse indicador para identificar condições de sobrecompra ou sobrevenda de curto prazo.
| Período | Valor | Ação |
|---|---|---|
| RSI (14) | 60.77 | NEUTRAL |
| Stoch RSI (14) | 118.92 | SELL |
| Estocástico Rápido (14) | 100 | SELL |
| Índice de Canal de Commodities (20) | 289.01 | SELL |
| Índice Direcional Médio (14) | 23.73 | NEUTRAL |
| Oscilador Impressionante (5, 34) | -0.000039 | NEUTRAL |
| Momentum (10) | 0 | BUY |
| MACD (12, 26) | 0 | BUY |
| Williams Percent Range (14) | -0 | SELL |
| Oscilador Ultimate (7, 14, 28) | 75.81 | SELL |
| VWMA (10) | 0.006732 | BUY |
| Média Móvel de Hull (9) | 0.007139 | BUY |
| Nuvem Ichimoku B/L (9, 26, 52, 26) | -0.001022 | SELL |
Previsão do preço de Ankr com base nos fluxos financeiros mundiais
Definições dos fluxos financeiros mundiais, usadas na previsão do preço do Ankr
M0: o total de todas as moedas físicas, mais as contas no Banco Central que podem ser trocadas por moedas físicas.
M1: o valor de M0, mais o valor em contas de demanda, incluindo contas 'correntes'.
M2: o valor de M1, mais a maioria das contas de poupança, do mercado de moedas e de certificados de depósito (CD) de menos de US$ 100.000.
Previsões de preço de Ankr por empresas de Internet ou nichos tecnológicos
| Comparação | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Facebook stock | $0.010446 | $0.014679 | $0.020626 | $0.028983 | $0.040726 | $0.057228 |
| Amazon.com stock | $0.015512 | $0.032367 | $0.067535 | $0.140917 | $0.294032 | $0.613516 |
| Apple stock | $0.010545 | $0.014957 | $0.021215 | $0.030093 | $0.042684 | $0.060544 |
| Netflix stock | $0.01173 | $0.0185084 | $0.0292033 | $0.046078 | $0.0727044 | $0.114716 |
| Google stock | $0.009627 | $0.012467 | $0.016145 | $0.0209081 | $0.027075 | $0.035063 |
| Tesla stock | $0.016853 | $0.0382046 | $0.0866069 | $0.196331 | $0.445068 | $1.00 |
| Kodak stock | $0.005574 | $0.00418 | $0.003135 | $0.00235 | $0.001762 | $0.001322 |
| Nokia stock | $0.004924 | $0.003262 | $0.002161 | $0.001431 | $0.000948 | $0.000628 |
Este cálculo mostra quanto a criptomoeda pode custar, se assumirmos que sua capitalização se comportará da mesma forma que a de algumas empresas de Internet ou nichos tecnológicos. Se você extrapolar os dados, poderá obter uma imagem em potencial do preço futuro para 2024, 2025, 2026, 2027, 2028, 2029 e 2030.
Visão geral da previsão para Ankr
Você pode fazer perguntas como: 'Devo investir em Ankr agora?', 'Devo comprar ANKR hoje?', 'Ankr será um bom ou mau investimento no curto ou no longo prazo?'.
Atualizamos a previsão para Ankr/Ankr Network regularmente com novos valores. Veja nossas previsões semelhantes. Fazemos previsões de preços futuros para uma enorme quantidade de moedas digitais, como Ankr, com métodos de análise técnica.
Se você estiver tentando encontrar criptomoedas com bom retorno, você deve explorar o máximo de fontes de informações disponíveis sobre Ankr para poder tomar sozinho uma decisão de tão grande responsabilidade sobre o seu investimento.
O preço de Ankr é de $0.007434 USD hoje, mas o preço pode tanto subir quanto descer e seu investimento pode ser perdido, porque criptomoedas são ativos de alto risco
Previsão de curto prazo para Ankr
com base no histórico de preços de 4 horas
Previsão de longo prazo para Ankr
com base no histórico de preços de 1 mês
Previsão do preço de Ankr com base no padrão de crescimento do Bitcoin
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| Se Ankr tiver 1% da média anterior do crescimento anual do Bitcoin | $0.007627 | $0.007825 | $0.008029 | $0.008237 |
| Se Ankr tiver 2% da média anterior do crescimento anual do Bitcoin | $0.00782 | $0.008227 | $0.008655 | $0.009105 |
| Se Ankr tiver 5% da média anterior do crescimento anual do Bitcoin | $0.00840054 | $0.009492 | $0.010726 | $0.01212 |
| Se Ankr tiver 10% da média anterior do crescimento anual do Bitcoin | $0.009366 | $0.0118014 | $0.014869 | $0.018733 |
| Se Ankr tiver 20% da média anterior do crescimento anual do Bitcoin | $0.011299 | $0.017173 | $0.02610094 | $0.039669 |
| Se Ankr tiver 50% da média anterior do crescimento anual do Bitcoin | $0.017096 | $0.039316 | $0.090413 | $0.20792 |
| Se Ankr tiver 100% da média anterior do crescimento anual do Bitcoin | $0.026758 | $0.096312 | $0.346659 | $1.24 |
Perguntas Frequentes sobre Ankr
ANKR é um bom investimento?
A decisão de adquirir Ankr depende inteiramente da sua tolerância individual ao risco. Como você pode perceber, o valor de Ankr experimentou uma escalada de 0.7721% nas últimas 24 horas, e Ankr registrou um declínio de -71.33% durante os últimos 30 dias. Consequentemente, a decisão de investir ou não em Ankr dependerá de quão alinhado esse investimento está com suas aspirações de negociação.
Ankr pode subir?
Parece que o valor médio de Ankr pode potencialmente subir para $0.007667 até o final deste ano. Observando as perspectivas de Ankr em um horizonte de cinco anos mais longo, a moeda digital poderia potencialmente crescer até $0.0241042. No entanto, dada a imprevisibilidade do mercado, é vital conduzir uma pesquisa aprofundada antes de investir quaisquer fundos em um projeto, rede ou ativo específico.
Qual será o preço de Ankr na próxima semana?
Com base na nossa nova previsão experimental de Ankr, o preço de Ankr aumentará 0.86% na próxima semana e atingirá $0.007497 até 13 de janeiro de 2026.
Qual será o preço de Ankr no próximo mês?
Com base na nossa nova previsão experimental de Ankr, o preço de Ankr diminuirá -11.62% no próximo mês e atingirá $0.00657 até 5 de fevereiro de 2026.
Até onde o preço de Ankr pode subir este ano em 2026?
De acordo com nossa previsão mais recente sobre o valor de Ankr em 2026, espera-se que ANKR fluctue dentro do intervalo de $0.002568 e $0.007667. No entanto, é crucial lembrar que o mercado de criptomoedas é excepcionalmente instável, e essa previsão de preço de Ankr não considera flutuações repentinas e extremas de preço.
Onde estará Ankr em 5 anos?
O futuro de Ankr parece seguir uma tendência de alta, com um preço máximo de $0.0241042 projetada após um período de cinco anos. Com base na previsão de Ankr para 2030, o valor de Ankr pode potencialmente atingir seu pico mais alto de aproximadamente $0.0241042, enquanto seu pico mais baixo está previsto para cerca de $0.008336.
Quanto será Ankr em 2026?
Com base na nossa nova simulação experimental de previsão de preços de Ankr, espera-se que o valor de ANKR em 2026 aumente 3.13% para $0.007667 se o melhor cenário ocorrer. O preço ficará entre $0.007667 e $0.002568 durante 2026.
Quanto será Ankr em 2027?
De acordo com nossa última simulação experimental para previsão de preços de Ankr, o valor de ANKR pode diminuir -12.62% para $0.006495 em 2027, assumindo as condições mais favoráveis. O preço está projetado para flutuar entre $0.006495 e $0.002472 ao longo do ano.
Quanto será Ankr em 2028?
Nosso novo modelo experimental de previsão de preços de Ankr sugere que o valor de ANKR em 2028 pode aumentar 47.02%, alcançando $0.010929 no melhor cenário. O preço é esperado para variar entre $0.010929 e $0.004462 durante o ano.
Quanto será Ankr em 2029?
Com base no nosso modelo de previsão experimental, o valor de Ankr pode experimentar um 333.75% crescimento em 2029, potencialmente alcançando $0.032246 sob condições ótimas. A faixa de preço prevista para 2029 está entre $0.032246 e $0.0098027.
Quanto será Ankr em 2030?
Usando nossa nova simulação experimental para previsões de preços de Ankr, espera-se que o valor de ANKR em 2030 aumente 224.23%, alcançando $0.0241042 no melhor cenário. O preço está previsto para variar entre $0.0241042 e $0.008336 ao longo de 2030.
Quanto será Ankr em 2031?
Nossa simulação experimental indica que o preço de Ankr poderia aumentar 195.98% em 2031, potencialmente atingindo $0.0220044 sob condições ideais. O preço provavelmente oscilará entre $0.0220044 e $0.009856 durante o ano.
Quanto será Ankr em 2032?
Com base nos achados da nossa mais recente previsão experimental de preços de Ankr, ANKR poderia ver um 449.04% aumento em valor, atingindo $0.040817 se o cenário mais positivo se desenrolar em 2032. O preço é esperado para permanecer dentro de uma faixa de $0.040817 e $0.015045 ao longo do ano.
Quanto será Ankr em 2033?
De acordo com nossa previsão experimental de preços de Ankr, espera-se que o valor de ANKR seja aumentar 1362.43% em 2033, com o preço potencial mais alto sendo $0.108721. Ao longo do ano, o preço de ANKR poderia variar entre $0.108721 e $0.034962.
Quanto será Ankr em 2034?
Os resultados da nossa nova simulação de previsão de preços de Ankr sugerem que ANKR pode aumentar 746.96% em 2034, atingindo potencialmente $0.062965 nas melhores circunstâncias. A faixa de preço prevista para o ano é entre $0.062965 e $0.0281082.
Quanto será Ankr em 2035?
Com base em nossa previsão experimental para o preço de Ankr, ANKR poderia aumentar 897.93%, com o valor potencialmente atingindo $0.074189 em 2035. A faixa de preço esperada para o ano está entre $0.074189 e $0.033232.
Quanto será Ankr em 2036?
Nossa recente simulação de previsão de preços de Ankr sugere que o valor de ANKR pode aumentar 1964.7% em 2036, possivelmente atingindo $0.153496 se as condições forem ideais. A faixa de preço esperada para 2036 está entre $0.153496 e $0.05501.
Quanto será Ankr em 2037?
De acordo com a simulação experimental, o valor de Ankr poderia aumentar 4830.69% em 2037, com um pico de $0.366563 sob condições favoráveis. O preço é esperado para cair entre $0.366563 e $0.14286 ao longo do ano.
Previsões relacionadas
Previsão de Preço do Terra
Previsão de Preço do cUSDT
Previsão de Preço do GMT
Previsão de Preço do Biconomy
Previsão de Preço do Celo
Previsão de Preço do Fasttoken
Previsão de Preço do Rocket Pool
Previsão de Preço do BitClout
Previsão de Preço do EthereumPoW
Previsão de Preço do 0x
Previsão de Preço do Wootrade Network
Previsão de Preço do MX Token
Previsão de Preço do Ravencoin
Previsão de Preço do Holo
Previsão de Preço do Siacoin
Previsão de Preço do Frax Share
Previsão de Preço do Saga
Previsão de Preço do Golem
Previsão de Preço do APENFT
Previsão de Preço do Qtum
Previsão de Preço do Jeo Boden
Previsão de Preço do Polymesh
Previsão de Preço do Trust Wallet Token
Previsão de Preço do AMP Token
Previsão de Preço do Raydium
Como ler e prever os movimentos de preço de Ankr?
Traders de Ankr utilizam indicadores e padrões de gráfico para prever a direção do mercado. Eles também identificam níveis-chave de suporte e resistência para avaliar quando uma tendência de baixa pode desacelerar ou uma tendência de alta pode estagnar.
Indicadores de Previsão de Preço de Ankr
Médias móveis são ferramentas populares para a previsão de preço de Ankr. Uma média móvel simples (SMA) calcula o preço médio de fechamento de ANKR em um período específico, como uma SMA de 12 dias. Uma média móvel exponencial (EMA) dá mais peso aos preços recentes, reagindo mais rapidamente às mudanças de preço.
Médias móveis comumente usadas no mercado de criptomoedas incluem as de 50 dias, 100 dias e 200 dias, que ajudam a identificar níveis-chave de resistência e suporte. Um movimento de preço de ANKR acima dessas médias é visto como altista, enquanto uma queda abaixo indica fraqueza.
Traders também usam RSI e níveis de retração de Fibonacci para avaliar a direção futura de ANKR.
Como ler gráficos de Ankr e prever movimentos de preço?
A maioria dos traders prefere gráficos de velas em vez de gráficos de linha simples porque eles fornecem informações mais detalhadas. Velas podem representar a ação de preço de Ankr em diferentes períodos de tempo, como 5 minutos para tendências de curto prazo e semanal para tendências de longo prazo. Opções populares incluem gráficos de 1 hora, 4 horas e 1 dia.
Por exemplo, um gráfico de velas de 1 hora mostra os preços de abertura, fechamento, máximo e mínimo de ANKR dentro de cada hora. A cor da vela é crucial: verde indica que o preço fechou mais alto do que abriu, enquanto vermelho significa o oposto. Alguns gráficos usam velas vazias e preenchidas para transmitir a mesma informação.
O que afeta o preço de Ankr?
A ação de preço de Ankr é impulsionada pela oferta e demanda, influenciada por fatores como reduções pela metade das recompensas de bloco, hard forks e atualizações de protocolo. Eventos do mundo real, como regulamentações, adoção por empresas e governos e hacks de exchanges de criptomoedas, também impactam o preço de ANKR. A capitalização de mercado de Ankr pode mudar rapidamente.
Traders frequentemente monitoram a atividade de "baleias" de ANKR, grandes detentores de Ankr, pois suas ações podem influenciar significativamente os movimentos de preço no relativamente pequeno mercado de Ankr.
Padrões de previsão de preço altistas e baixistas
Traders frequentemente identificam padrões de velas para ganhar vantagem em previsões de preço de criptomoedas. Certas formações indicam tendências altistas, enquanto outras sugerem movimentos baixistas.
Padrões de velas altistas comumente seguidos:
- Martelo
- Engolfo de Alta
- Linha de Perfuração
- Estrela da Manhã
- Três Soldados Brancos
Padrões de velas baixistas comuns:
- Harami de Baixa
- Nuvem Negra
- Estrela da Noite
- Estrela Cadente
- Homem Enforcado


