Previsão de Preço Ankr Network - Projeção ANKR
Previsão de Preço Ankr Network até $0.007547 até 2026
| Ano | Preço Mínimo | Preço Máximo |
|---|---|---|
| 2026 | $0.002528 | $0.007547 |
| 2027 | $0.002433 | $0.006393 |
| 2028 | $0.004392 | $0.010758 |
| 2029 | $0.009649 | $0.031741 |
| 2030 | $0.0082061 | $0.023726 |
| 2031 | $0.0097021 | $0.021659 |
| 2032 | $0.0148096 | $0.040177 |
| 2033 | $0.034414 | $0.107017 |
| 2034 | $0.027667 | $0.061978 |
| 2035 | $0.032711 | $0.073026 |
Calculadora de lucro do investimento
Se você abrir um short de $10,000.00 em Ankr Network hoje e fechar em Apr 06, 2026, nossa previsão mostra que pode lucrar cerca de $3,954.44, com um retorno de 39.54% nos próximos 90 dias.
Previsão de preço de longo prazo de Ankr para os anos 2027, 2028, 2029, 2030, 2031, 2032 e 2037
[
'name' => 'Ankr Network'
'name_with_ticker' => 'Ankr Network <small>ANKR</small>'
'name_lang' => 'Ankr'
'name_lang_with_ticker' => 'Ankr <small>ANKR</small>'
'name_with_lang' => 'Ankr/Ankr Network'
'name_with_lang_with_ticker' => 'Ankr/Ankr Network <small>ANKR</small>'
'image' => '/uploads/coins/ankr.png?1754652982'
'price_for_sd' => 0.007317
'ticker' => 'ANKR'
'marketcap' => '$73.12M'
'low24h' => '$0.006919'
'high24h' => '$0.007476'
'volume24h' => '$12.46M'
'current_supply' => '10B'
'max_supply' => '10B'
'algo' => null
'proof' => null
'ico_price_and_roi' => '0.0066 USD 1.11x'
'price' => '$0.007317'
'change_24h_pct' => '5.7606%'
'ath_price' => '$0.2135'
'ath_days' => 1726
'ath_exchange' => null
'ath_pair' => null
'ath_date' => '16 de abr. de 2021'
'ath_pct' => '-96.58%'
'fdv' => '$73.12M'
'new_prediction' => true
'change_24h_pct_is_increased' => true
'change_30d_pct' => '-71.78%'
'change_30d_pct_is_increased' => false
'max_price' => '$0.360816'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.00738'
'next_week_prediction_price_date' => '13 de janeiro de 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.006467'
'next_month_prediction_price_date' => '5 de fevereiro de 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.002528'
'current_year_max_price_prediction' => '$0.007547'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.0082061'
'grand_prediction_max_price' => '$0.023726'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.007456437892353
107 => 0.0074842775247561
108 => 0.0075470016380871
109 => 0.007011030957212
110 => 0.0072516660576525
111 => 0.0073930166347015
112 => 0.0067543895852161
113 => 0.0073803930312757
114 => 0.0070017009000851
115 => 0.0068731671029941
116 => 0.0070462209277371
117 => 0.0069787816839344
118 => 0.0069208013822781
119 => 0.0068884473777259
120 => 0.0070155190073634
121 => 0.0070095909639574
122 => 0.0068016771143298
123 => 0.0065304619731434
124 => 0.0066214906768591
125 => 0.0065884190954006
126 => 0.0064685634178758
127 => 0.0065493316730978
128 => 0.0061936691529788
129 => 0.0055817702728431
130 => 0.0059860094160303
131 => 0.0059704466487452
201 => 0.0059625991957647
202 => 0.0062663737395206
203 => 0.0062371728264096
204 => 0.006184172883177
205 => 0.0064675900323553
206 => 0.0063641389604066
207 => 0.0066829507880145
208 => 0.0068929408771332
209 => 0.0068396805980649
210 => 0.0070371772918512
211 => 0.0066235877943406
212 => 0.0067609656350831
213 => 0.0067892790176627
214 => 0.0064640927087282
215 => 0.0062419504569284
216 => 0.0062271361013404
217 => 0.0058419720498075
218 => 0.0060477235772008
219 => 0.0062287764067301
220 => 0.0061420661516527
221 => 0.0061146162752904
222 => 0.0062548517404737
223 => 0.006265749237154
224 => 0.0060172851579787
225 => 0.0060689487078733
226 => 0.0062843942992845
227 => 0.0060635200317462
228 => 0.0056343974095261
301 => 0.0055279690661311
302 => 0.0055137695632587
303 => 0.0052251274550331
304 => 0.0055350811169437
305 => 0.005399778037278
306 => 0.0058271988447622
307 => 0.005583058371831
308 => 0.0055725339640003
309 => 0.0055566247779693
310 => 0.0053081785917641
311 => 0.0053625725169642
312 => 0.0055433862087581
313 => 0.0056079025710021
314 => 0.0056011729858531
315 => 0.0055425001230257
316 => 0.0055693602591744
317 => 0.0054828344019476
318 => 0.0054522803208809
319 => 0.005355843236472
320 => 0.0052141073638156
321 => 0.0052338166062251
322 => 0.0049530007552843
323 => 0.0047999973756664
324 => 0.0047576480567404
325 => 0.0047010167775725
326 => 0.0047640447104124
327 => 0.0049522052392612
328 => 0.0047252437209866
329 => 0.0043361341174041
330 => 0.0043595202675899
331 => 0.0044120620036471
401 => 0.0043141508261029
402 => 0.0042214861136195
403 => 0.004302050562998
404 => 0.0041371796944189
405 => 0.004431985860435
406 => 0.004424012179829
407 => 0.0045338976878288
408 => 0.0046026113510587
409 => 0.0044442486036264
410 => 0.0044044208009056
411 => 0.0044271085274081
412 => 0.0040521309458573
413 => 0.0045032540195101
414 => 0.0045071553505844
415 => 0.0044737497853599
416 => 0.0047139588952178
417 => 0.005220875040118
418 => 0.0050301527957518
419 => 0.0049562993781229
420 => 0.0048159039772238
421 => 0.0050029725130678
422 => 0.0049886085682388
423 => 0.0049236493623574
424 => 0.0048843618319553
425 => 0.0049567503113426
426 => 0.0048753920982714
427 => 0.0048607779276297
428 => 0.004772231953915
429 => 0.004740625069884
430 => 0.0047172245912537
501 => 0.0046914629635653
502 => 0.0047482866948482
503 => 0.0046195166439767
504 => 0.0044642325861094
505 => 0.0044513223968946
506 => 0.0044869685643923
507 => 0.0044711977888196
508 => 0.0044512468924886
509 => 0.0044131551980893
510 => 0.0044018542060614
511 => 0.0044385769476904
512 => 0.0043971191134601
513 => 0.004458292406192
514 => 0.0044416566554416
515 => 0.0043487307040636
516 => 0.0042329105630529
517 => 0.0042318795208569
518 => 0.0042069262614593
519 => 0.0041751445338687
520 => 0.0041663035843204
521 => 0.0042952656497839
522 => 0.0045622132657835
523 => 0.0045098050612477
524 => 0.0045476753600337
525 => 0.0047339597484482
526 => 0.0047931739537581
527 => 0.0047511451133944
528 => 0.0046936134444786
529 => 0.0046961445459328
530 => 0.0048927476746386
531 => 0.0049050095706177
601 => 0.0049359914259193
602 => 0.004975811865453
603 => 0.0047579267064355
604 => 0.0046858821745371
605 => 0.0046517434784452
606 => 0.0045466095078203
607 => 0.0046599874816339
608 => 0.0045939269916216
609 => 0.0046028408086719
610 => 0.0045970356736241
611 => 0.0046002056699017
612 => 0.0044319034561034
613 => 0.0044932239371076
614 => 0.0043912667441353
615 => 0.0042547575079774
616 => 0.0042542998811515
617 => 0.0042877103233086
618 => 0.0042678364849628
619 => 0.0042143564969774
620 => 0.0042219530768523
621 => 0.0041553990436511
622 => 0.0042300339414826
623 => 0.0042321742032959
624 => 0.0042034357022404
625 => 0.004318421059981
626 => 0.0043655306548664
627 => 0.0043466143578333
628 => 0.0043642034370396
629 => 0.004511982858755
630 => 0.0045360773525629
701 => 0.0045467785351194
702 => 0.0045324403681287
703 => 0.004366904573586
704 => 0.0043742467899866
705 => 0.0043203744776767
706 => 0.0042748580506993
707 => 0.0042766784690761
708 => 0.0043000798292639
709 => 0.0044022749416753
710 => 0.0046173385310142
711 => 0.0046255000370202
712 => 0.0046353920203874
713 => 0.0045951563527206
714 => 0.0045830208903488
715 => 0.0045990306976458
716 => 0.0046797972742952
717 => 0.004887550837349
718 => 0.0048141168527719
719 => 0.0047544138802426
720 => 0.0048067894829566
721 => 0.0047987266694523
722 => 0.0047306684093475
723 => 0.0047287582406614
724 => 0.0045981326799782
725 => 0.0045498433843938
726 => 0.0045094892346123
727 => 0.0044654235565227
728 => 0.0044392999454562
729 => 0.0044794376850232
730 => 0.0044886176609579
731 => 0.0044008557919071
801 => 0.0043888941734468
802 => 0.0044605624101851
803 => 0.0044290238912577
804 => 0.0044614620400922
805 => 0.0044689879688711
806 => 0.0044677761210008
807 => 0.0044348462850648
808 => 0.0044558347805086
809 => 0.0044061907318124
810 => 0.0043522102851504
811 => 0.0043177741232806
812 => 0.0042877240047553
813 => 0.0043043975570363
814 => 0.0042449593876248
815 => 0.0042259439209761
816 => 0.0044487243505083
817 => 0.004613294649097
818 => 0.0046109017317786
819 => 0.0045963354630108
820 => 0.0045746929422815
821 => 0.0046782139891009
822 => 0.0046421493263577
823 => 0.0046683893818068
824 => 0.0046750685772102
825 => 0.0046952844900515
826 => 0.0047025099412759
827 => 0.0046806696092774
828 => 0.0046073707875185
829 => 0.0044247170927383
830 => 0.0043396913047538
831 => 0.0043116313785025
901 => 0.0043126513035283
902 => 0.0042845172181696
903 => 0.004292803967189
904 => 0.0042816354250405
905 => 0.0042604849081719
906 => 0.0043030915722202
907 => 0.0043080015933433
908 => 0.0042980566888427
909 => 0.0043003990738634
910 => 0.0042180595121227
911 => 0.0042243196101697
912 => 0.0041894625887492
913 => 0.0041829273174405
914 => 0.0040948118026374
915 => 0.0039387023956156
916 => 0.0040252021610125
917 => 0.0039207226081206
918 => 0.0038811546183169
919 => 0.0040684633279627
920 => 0.0040496627286492
921 => 0.0040174842750485
922 => 0.0039698856355957
923 => 0.0039522308372128
924 => 0.0038449658710687
925 => 0.0038386280846325
926 => 0.0038917914982513
927 => 0.0038672584121076
928 => 0.0038328046677556
929 => 0.0037080166982326
930 => 0.0035677137046119
1001 => 0.0035719485700761
1002 => 0.0036165763419169
1003 => 0.0037463376074188
1004 => 0.0036956376360945
1005 => 0.0036588542251836
1006 => 0.0036519657980253
1007 => 0.003738188885811
1008 => 0.0038602126193232
1009 => 0.0039174634249599
1010 => 0.0038607296153067
1011 => 0.0037955568695424
1012 => 0.0037995236325956
1013 => 0.0038259127300477
1014 => 0.0038286858510682
1015 => 0.0037862650934421
1016 => 0.0037982062882329
1017 => 0.00378006652142
1018 => 0.0036687428059729
1019 => 0.0036667293129717
1020 => 0.0036394086778636
1021 => 0.0036385814198904
1022 => 0.0035921022041197
1023 => 0.0035855994405377
1024 => 0.0034933121365381
1025 => 0.0035540559195024
1026 => 0.0035133121790817
1027 => 0.003451901751791
1028 => 0.0034413145709791
1029 => 0.0034409963075395
1030 => 0.0035040510852468
1031 => 0.0035533190877126
1101 => 0.0035140209338902
1102 => 0.0035050735060276
1103 => 0.0036006086272204
1104 => 0.0035884509122267
1105 => 0.0035779224094509
1106 => 0.0038492867323552
1107 => 0.0036344806959543
1108 => 0.0035408130033836
1109 => 0.003424881446815
1110 => 0.0034626293462114
1111 => 0.0034705833832462
1112 => 0.0031917888879324
1113 => 0.0030786819959052
1114 => 0.0030398679729048
1115 => 0.0030175299539184
1116 => 0.0030277096696737
1117 => 0.002925900200734
1118 => 0.0029943178476347
1119 => 0.0029061594532731
1120 => 0.0028913794115661
1121 => 0.003049017541414
1122 => 0.0030709519662738
1123 => 0.0029773728953305
1124 => 0.0030374658079515
1125 => 0.0030156752824812
1126 => 0.0029076706759145
1127 => 0.0029035456943717
1128 => 0.0028493527793421
1129 => 0.0027645513611368
1130 => 0.0027257948374911
1201 => 0.0027056101034769
1202 => 0.0027139387181238
1203 => 0.0027097275156985
1204 => 0.0026822465713065
1205 => 0.002711302691263
1206 => 0.0026370763115918
1207 => 0.0026075187691241
1208 => 0.0025941683129212
1209 => 0.0025282881286519
1210 => 0.0026331327988752
1211 => 0.0026537885197076
1212 => 0.0026744849386909
1213 => 0.0028546331358948
1214 => 0.0028456334410561
1215 => 0.0029269862993696
1216 => 0.0029238250768938
1217 => 0.0029006219238739
1218 => 0.0028027316380161
1219 => 0.0028417489612325
1220 => 0.0027216597050109
1221 => 0.0028116387410478
1222 => 0.0027705760666149
1223 => 0.0027977554095167
1224 => 0.0027488845003168
1225 => 0.0027759316792984
1226 => 0.0026586867573937
1227 => 0.0025492050989996
1228 => 0.0025932637143062
1229 => 0.0026411604678583
1230 => 0.0027450128334252
1231 => 0.002683159221257
]
'min_raw' => 0.0025282881286519
'max_raw' => 0.0075470016380871
'avg_raw' => 0.0050376448833695
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.002528'
'max' => '$0.007547'
'avg' => '$0.005037'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.0047894818713481
'max_diff' => 0.00022923163808711
'year' => 2026
]
1 => [
'items' => [
101 => 0.0027054041191367
102 => 0.0026308874349906
103 => 0.0024771382309587
104 => 0.0024780084347565
105 => 0.0024543574693246
106 => 0.002433919582094
107 => 0.0026902638526767
108 => 0.0026583833904265
109 => 0.0026075860462426
110 => 0.0026755803100389
111 => 0.0026935590726008
112 => 0.0026940709026958
113 => 0.0027436777623756
114 => 0.0027701529522793
115 => 0.0027748193192499
116 => 0.0028528767847833
117 => 0.0028790406176272
118 => 0.0029868057422672
119 => 0.0027679067173878
120 => 0.0027633986360209
121 => 0.0026765371287694
122 => 0.0026214481876444
123 => 0.0026803091156989
124 => 0.0027324518626372
125 => 0.0026781573492641
126 => 0.0026852470664909
127 => 0.0026123611183122
128 => 0.0026384144151835
129 => 0.0026608550242071
130 => 0.0026484646389023
131 => 0.0026299156323996
201 => 0.0027281767520163
202 => 0.0027226324745591
203 => 0.0028141354881596
204 => 0.0028854686307045
205 => 0.0030133103744694
206 => 0.0028799008503099
207 => 0.0028750388769947
208 => 0.0029225654460358
209 => 0.0028790333415571
210 => 0.0029065441289105
211 => 0.0030088779613116
212 => 0.0030110401139347
213 => 0.0029748212717216
214 => 0.0029726173518813
215 => 0.0029795735767191
216 => 0.0030203164028675
217 => 0.0030060796075107
218 => 0.0030225547875292
219 => 0.0030431572524192
220 => 0.0031283777824686
221 => 0.0031489241637508
222 => 0.0030990071093124
223 => 0.0031035140604307
224 => 0.0030848437118169
225 => 0.0030668083889949
226 => 0.0031073491608515
227 => 0.0031814382182504
228 => 0.0031809773140696
301 => 0.0031981645353006
302 => 0.0032088720317409
303 => 0.0031629076186526
304 => 0.0031329864758904
305 => 0.0031444601459572
306 => 0.0031628067942581
307 => 0.0031385105751832
308 => 0.0029885430559497
309 => 0.0030340336213229
310 => 0.0030264617668698
311 => 0.0030156785253597
312 => 0.0030614196406106
313 => 0.0030570077984584
314 => 0.002924855997477
315 => 0.0029333159270104
316 => 0.0029253704738121
317 => 0.0029510438585825
318 => 0.0028776468945266
319 => 0.0029002233063341
320 => 0.0029143830201791
321 => 0.0029227232004138
322 => 0.0029528536503367
323 => 0.0029493181898026
324 => 0.0029526338811459
325 => 0.0029973093842377
326 => 0.003223262748095
327 => 0.0032355608911517
328 => 0.0031750003369058
329 => 0.0031991930838229
330 => 0.0031527483001141
331 => 0.0031839269945708
401 => 0.0032052586654651
402 => 0.0031088649465382
403 => 0.0031031571360934
404 => 0.003056520658241
405 => 0.0030815804598138
406 => 0.0030417085136479
407 => 0.0030514916945756
408 => 0.0030241370678196
409 => 0.0030733699497285
410 => 0.0031284199617191
411 => 0.0031423277687388
412 => 0.0031057423161574
413 => 0.0030792520373897
414 => 0.0030327438343138
415 => 0.0031100880125319
416 => 0.0031327058072639
417 => 0.0031099692108848
418 => 0.0031047006446993
419 => 0.0030947167212979
420 => 0.003106818781246
421 => 0.0031325826258964
422 => 0.0031204328725428
423 => 0.003128457998684
424 => 0.0030978744933079
425 => 0.0031629228347859
426 => 0.0032662352557889
427 => 0.0032665674221157
428 => 0.0032544176032704
429 => 0.0032494461591703
430 => 0.0032619126106183
501 => 0.0032686751491282
502 => 0.0033089893671547
503 => 0.0033522481292864
504 => 0.0035541178968785
505 => 0.0034974336739335
506 => 0.0036765445410275
507 => 0.0038181979822635
508 => 0.0038606736555359
509 => 0.0038215980347601
510 => 0.0036879224469098
511 => 0.0036813636848368
512 => 0.0038811314494626
513 => 0.0038246879060126
514 => 0.003817974126121
515 => 0.0037465508511854
516 => 0.0037887708526171
517 => 0.0037795367189739
518 => 0.0037649601872689
519 => 0.0038455130089297
520 => 0.0039963007000787
521 => 0.0039727990243351
522 => 0.0039552561136039
523 => 0.0038783881854442
524 => 0.0039246798472696
525 => 0.003908196273152
526 => 0.0039790201682961
527 => 0.0039370656617541
528 => 0.0038242602906572
529 => 0.0038422249178157
530 => 0.0038395096005605
531 => 0.0038953906372631
601 => 0.0038786165370976
602 => 0.0038362341882885
603 => 0.003995785324143
604 => 0.0039854249608507
605 => 0.0040001135872905
606 => 0.0040065799749101
607 => 0.0041036959396984
608 => 0.0041434812431079
609 => 0.0041525132035216
610 => 0.0041903061646549
611 => 0.00415157288022
612 => 0.0043065336343231
613 => 0.004409573493591
614 => 0.0045292595925133
615 => 0.0047041531516294
616 => 0.0047699147477129
617 => 0.0047580355039896
618 => 0.0048906378044789
619 => 0.0051289211908745
620 => 0.0048061993891629
621 => 0.0051460262299949
622 => 0.0050384409756771
623 => 0.0047833582730655
624 => 0.0047669339542448
625 => 0.0049396789220245
626 => 0.0053228106344727
627 => 0.0052268404859483
628 => 0.0053229676072553
629 => 0.005210830214158
630 => 0.0052052616474226
701 => 0.0053175213443679
702 => 0.0055798222452382
703 => 0.005455212919437
704 => 0.0052765548954407
705 => 0.0054084732001328
706 => 0.0052941933561457
707 => 0.0050366888827286
708 => 0.0052267670993844
709 => 0.0050996672090226
710 => 0.005136761714032
711 => 0.0054039067788907
712 => 0.0053717631779087
713 => 0.0054133599739967
714 => 0.0053399427176791
715 => 0.0052713594234398
716 => 0.0051433436116798
717 => 0.005105444440921
718 => 0.0051159184082494
719 => 0.0051054392505429
720 => 0.0050338155803893
721 => 0.0050183484556389
722 => 0.0049925692367581
723 => 0.0050005592946389
724 => 0.0049520868211664
725 => 0.005043564393533
726 => 0.0050605434370619
727 => 0.0051271131856338
728 => 0.0051340246777672
729 => 0.0053194204799791
730 => 0.0052173075875707
731 => 0.0052858137318012
801 => 0.0052796858974564
802 => 0.0047888866887095
803 => 0.0048565144893167
804 => 0.0049617221242887
805 => 0.0049143262273394
806 => 0.004847319517985
807 => 0.0047932080075088
808 => 0.0047112235359514
809 => 0.0048266151052961
810 => 0.0049783427484591
811 => 0.0051378727411866
812 => 0.0053295375746295
813 => 0.0052867602150296
814 => 0.0051342897004446
815 => 0.0051411294163492
816 => 0.0051834098487418
817 => 0.005128652847211
818 => 0.0051125039384759
819 => 0.0051811912366649
820 => 0.0051816642483377
821 => 0.0051186597004718
822 => 0.0050486416752294
823 => 0.0050483482971471
824 => 0.0050358892658491
825 => 0.0052130466481481
826 => 0.0053104652957809
827 => 0.005321634186734
828 => 0.0053097135404307
829 => 0.0053143013240793
830 => 0.0052576155594952
831 => 0.0053871824076931
901 => 0.0055060857604328
902 => 0.005474217121899
903 => 0.0054264415023428
904 => 0.0053883859201807
905 => 0.0054652524361654
906 => 0.0054618296912077
907 => 0.0055050472433757
908 => 0.0055030866455726
909 => 0.0054885542082729
910 => 0.0054742176408981
911 => 0.0055310605100072
912 => 0.0055146906765723
913 => 0.0054982954162647
914 => 0.0054654122117288
915 => 0.0054698815853574
916 => 0.0054221142149356
917 => 0.0054000148436923
918 => 0.0050676933239988
919 => 0.0049788861550178
920 => 0.0050068266982158
921 => 0.0050160254505125
922 => 0.0049773764567625
923 => 0.0050327891856881
924 => 0.0050241531705817
925 => 0.005057750853461
926 => 0.0050367604798398
927 => 0.005037621932095
928 => 0.0050993501452954
929 => 0.0051172701081981
930 => 0.005108155870434
1001 => 0.0051145391701462
1002 => 0.0052616396177919
1003 => 0.0052407266381442
1004 => 0.0052296170345175
1005 => 0.0052326944706465
1006 => 0.0052702817888891
1007 => 0.0052808041858055
1008 => 0.0052362200506748
1009 => 0.0052572461865403
1010 => 0.0053467728044414
1011 => 0.0053781020539391
1012 => 0.0054780899794428
1013 => 0.0054356133315452
1014 => 0.0055135810571075
1015 => 0.0057532272643297
1016 => 0.0059446732369151
1017 => 0.0057686116086862
1018 => 0.0061201777568416
1019 => 0.0063939224323492
1020 => 0.0063834156557576
1021 => 0.0063356819397544
1022 => 0.0060240309045677
1023 => 0.0057372449755337
1024 => 0.0059771535827444
1025 => 0.0059777651591218
1026 => 0.005957156796998
1027 => 0.0058291600297804
1028 => 0.0059527027869479
1029 => 0.0059625091623705
1030 => 0.0059570201998596
1031 => 0.0058588853785381
1101 => 0.0057090516447269
1102 => 0.0057383287976623
1103 => 0.0057862853714083
1104 => 0.0056954935725178
1105 => 0.0056664800915032
1106 => 0.00572042167275
1107 => 0.0058942326867017
1108 => 0.0058613747213328
1109 => 0.0058605166670675
1110 => 0.0060010969768616
1111 => 0.0059004718141787
1112 => 0.0057386980763192
1113 => 0.0056978480739763
1114 => 0.0055528580855176
1115 => 0.0056530031869826
1116 => 0.0056566072308995
1117 => 0.0056017587822852
1118 => 0.0057431487256372
1119 => 0.005741845792418
1120 => 0.005876074500515
1121 => 0.0061326693763959
1122 => 0.0060567816453309
1123 => 0.005968532470664
1124 => 0.0059781276028345
1125 => 0.0060833625199405
1126 => 0.0060197350867787
1127 => 0.0060426159553699
1128 => 0.0060833278870055
1129 => 0.0061078904061817
1130 => 0.0059745934343208
1201 => 0.0059435155338488
1202 => 0.0058799410563439
1203 => 0.0058633556618368
1204 => 0.0059151357472394
1205 => 0.0059014935241532
1206 => 0.0056563043249638
1207 => 0.0056306806894287
1208 => 0.0056314665297484
1209 => 0.0055670346798579
1210 => 0.005468760643359
1211 => 0.0057270189436402
1212 => 0.0057062771878051
1213 => 0.0056833798946474
1214 => 0.0056861846824091
1215 => 0.0057982858573752
1216 => 0.0057332615146498
1217 => 0.0059061393870655
1218 => 0.0058706008936814
1219 => 0.005834150972041
1220 => 0.0058291124825785
1221 => 0.0058150823725081
1222 => 0.0057669679047027
1223 => 0.0057088667935965
1224 => 0.0056705034074121
1225 => 0.0052307396516616
1226 => 0.0053123572467408
1227 => 0.0054062508502015
1228 => 0.0054386625458612
1229 => 0.0053832200976143
1230 => 0.0057691571104852
1231 => 0.0058396715217183
]
'min_raw' => 0.002433919582094
'max_raw' => 0.0063939224323492
'avg_raw' => 0.0044139210072216
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.002433'
'max' => '$0.006393'
'avg' => '$0.004413'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -9.4368546557858E-5
'max_diff' => -0.0011530792057379
'year' => 2027
]
2 => [
'items' => [
101 => 0.005626078770552
102 => 0.0055861242877433
103 => 0.0057717765197264
104 => 0.0056598055287783
105 => 0.0057102260591462
106 => 0.0056012444510464
107 => 0.0058226866649552
108 => 0.0058209996463024
109 => 0.0057348536235927
110 => 0.0058076636520845
111 => 0.0057950111178672
112 => 0.0056977524703962
113 => 0.0058257699375572
114 => 0.0058258334326237
115 => 0.0057429197587416
116 => 0.0056460947397844
117 => 0.0056287847132998
118 => 0.0056157439336184
119 => 0.0057070188267589
120 => 0.0057888556105395
121 => 0.0059411335760959
122 => 0.0059794198746719
123 => 0.0061288538468777
124 => 0.0060398731922372
125 => 0.006079317163947
126 => 0.0061221391749283
127 => 0.0061426696217201
128 => 0.0061092163603974
129 => 0.0063413488287098
130 => 0.0063609479213904
131 => 0.0063675193276347
201 => 0.0062892455653984
202 => 0.0063587709864664
203 => 0.0063262423443886
204 => 0.006410872834358
205 => 0.0064241439758015
206 => 0.0064129037911334
207 => 0.0064171162608983
208 => 0.0062190321501672
209 => 0.0062087604440489
210 => 0.0060687050022784
211 => 0.0061257786300374
212 => 0.0060190822185521
213 => 0.0060529167497289
214 => 0.0060678306886844
215 => 0.0060600404933326
216 => 0.0061290054873183
217 => 0.006070371153813
218 => 0.0059156255073156
219 => 0.0057608377004703
220 => 0.0057588944656428
221 => 0.0057181415683321
222 => 0.005688684687842
223 => 0.0056943591280634
224 => 0.0057143565955324
225 => 0.0056875223986793
226 => 0.0056932488351062
227 => 0.0057883458348394
228 => 0.0058074168599352
229 => 0.0057426060651294
301 => 0.005482381371831
302 => 0.0054185215793714
303 => 0.0054644227317966
304 => 0.0054424849373502
305 => 0.004392510112975
306 => 0.0046391861234652
307 => 0.0044926196143577
308 => 0.0045601642049553
309 => 0.0044105577523701
310 => 0.0044819577930897
311 => 0.0044687728126808
312 => 0.0048654205378753
313 => 0.0048592274292175
314 => 0.0048621917426
315 => 0.0047206973413771
316 => 0.0049461017645168
317 => 0.0050571440886364
318 => 0.0050365931097376
319 => 0.005041765348373
320 => 0.004952889152171
321 => 0.004863052258453
322 => 0.0047634093175208
323 => 0.004948533585533
324 => 0.0049279509271067
325 => 0.0049751601401299
326 => 0.0050952264608918
327 => 0.0051129066827116
328 => 0.0051366690801325
329 => 0.0051281519521798
330 => 0.0053310644942457
331 => 0.0053064904465415
401 => 0.0053657068310727
402 => 0.0052438942353341
403 => 0.0051060517206982
404 => 0.0051322510763191
405 => 0.0051297278676909
406 => 0.0050976045258497
407 => 0.0050686050091672
408 => 0.0050203289844539
409 => 0.0051730814701541
410 => 0.0051668799981935
411 => 0.0052672746208136
412 => 0.0052495288960841
413 => 0.0051310186032255
414 => 0.0051352512215194
415 => 0.0051637176136732
416 => 0.005262240121941
417 => 0.0052914883103188
418 => 0.0052779393841234
419 => 0.0053100086874491
420 => 0.0053353549572269
421 => 0.0053131917886952
422 => 0.0056269755171186
423 => 0.005496670636152
424 => 0.0055601803284796
425 => 0.0055753270158789
426 => 0.0055365290946061
427 => 0.0055449429744808
428 => 0.0055576877098459
429 => 0.0056350712473076
430 => 0.0058381480407143
501 => 0.0059280893701237
502 => 0.0061986822972787
503 => 0.00592062099476
504 => 0.0059041219878006
505 => 0.0059528639451047
506 => 0.006111730638515
507 => 0.0062404771719343
508 => 0.0062831898246352
509 => 0.0062888350067986
510 => 0.006368966782749
511 => 0.0064148968223545
512 => 0.0063592366774736
513 => 0.0063120705325472
514 => 0.006143127255898
515 => 0.0061626829001875
516 => 0.0062974018969421
517 => 0.0064877004147674
518 => 0.0066509963402477
519 => 0.0065938157985821
520 => 0.0070300629683194
521 => 0.007073315093289
522 => 0.0070673390481268
523 => 0.0071658738255867
524 => 0.0069703023585873
525 => 0.0068866917674264
526 => 0.0063222683884388
527 => 0.0064808483354038
528 => 0.0067113536013913
529 => 0.0066808453650875
530 => 0.006513446279504
531 => 0.0066508693530303
601 => 0.0066054329873056
602 => 0.0065695954405021
603 => 0.0067337741898595
604 => 0.0065532529108497
605 => 0.0067095527635416
606 => 0.0065090965857493
607 => 0.0065940769944799
608 => 0.0065458380044446
609 => 0.0065770545429457
610 => 0.0063945632967267
611 => 0.0064930311434619
612 => 0.0063904667105703
613 => 0.0063904180816748
614 => 0.0063881539661341
615 => 0.0065088205665907
616 => 0.0065127555000996
617 => 0.006423582700045
618 => 0.0064107315064162
619 => 0.0064582491048451
620 => 0.0064026184419636
621 => 0.0064286476789906
622 => 0.0064034068410367
623 => 0.0063977245967599
624 => 0.0063524475076081
625 => 0.0063329408926821
626 => 0.0063405899390181
627 => 0.0063144798005195
628 => 0.0062987474976291
629 => 0.0063850244151129
630 => 0.0063389301385022
701 => 0.0063779598061373
702 => 0.0063334805739304
703 => 0.006179296176422
704 => 0.0060906230989446
705 => 0.0057993830649526
706 => 0.0058819783773106
707 => 0.0059367391548549
708 => 0.0059186407182032
709 => 0.0059575231632964
710 => 0.005959910229635
711 => 0.0059472691503756
712 => 0.0059326324000157
713 => 0.0059255080394036
714 => 0.0059786071865271
715 => 0.0060094330286674
716 => 0.0059422351314862
717 => 0.0059264916043751
718 => 0.0059944323885229
719 => 0.006035876227605
720 => 0.0063418742501052
721 => 0.0063192049282378
722 => 0.0063761004774952
723 => 0.0063696949117822
724 => 0.0064293305115758
725 => 0.0065268095133534
726 => 0.006328607447182
727 => 0.0063630084725575
728 => 0.0063545741355711
729 => 0.0064466580151867
730 => 0.0064469454910076
731 => 0.0063917366052471
801 => 0.0064216662378797
802 => 0.0064049603380207
803 => 0.0064351501570038
804 => 0.0063189021656234
805 => 0.0064604796709294
806 => 0.0065407449933851
807 => 0.0065418594774652
808 => 0.0065799046032842
809 => 0.0066185606545414
810 => 0.006692757578697
811 => 0.0066164913425971
812 => 0.0064792958082219
813 => 0.0064892008826649
814 => 0.0064087631910586
815 => 0.0064101153631868
816 => 0.006402897362395
817 => 0.0064245591261168
818 => 0.0063236557046137
819 => 0.0063473375359576
820 => 0.0063141828333955
821 => 0.0063629364007092
822 => 0.0063104856215331
823 => 0.0063545700682785
824 => 0.0063735954540712
825 => 0.0064437995372338
826 => 0.0063001164213687
827 => 0.0060071368216282
828 => 0.0060687246855279
829 => 0.0059776313971979
830 => 0.0059860624278494
831 => 0.0060030944515541
901 => 0.0059478880901958
902 => 0.0059584197241906
903 => 0.0059580434601143
904 => 0.0059548010195794
905 => 0.0059404397128192
906 => 0.0059196129767191
907 => 0.0060025802832108
908 => 0.0060166780453078
909 => 0.0060480156241062
910 => 0.0061412550021276
911 => 0.0061319381895274
912 => 0.0061471342974293
913 => 0.0061139612792019
914 => 0.0059876012290225
915 => 0.0059944631876838
916 => 0.0059088944532221
917 => 0.0060458274391813
918 => 0.0060133999006791
919 => 0.005992493655653
920 => 0.0059867891930027
921 => 0.0060802596934077
922 => 0.0061082275320995
923 => 0.0060907998518786
924 => 0.0060550551712989
925 => 0.006123695524978
926 => 0.0061420607879185
927 => 0.0061461720930061
928 => 0.0062677896392431
929 => 0.0061529691628383
930 => 0.0061806075927263
1001 => 0.0063962347329748
1002 => 0.0062006906712808
1003 => 0.0063042747219131
1004 => 0.00629920482166
1005 => 0.0063521949168703
1006 => 0.0062948580871878
1007 => 0.0062955688459093
1008 => 0.0063426204605961
1009 => 0.0062765449535719
1010 => 0.0062601837288108
1011 => 0.0062375808139846
1012 => 0.0062869334515965
1013 => 0.006316518125817
1014 => 0.0065549488724855
1015 => 0.0067089860085963
1016 => 0.0067022988502737
1017 => 0.0067634069595066
1018 => 0.0067358771966111
1019 => 0.0066469763302368
1020 => 0.006798719268832
1021 => 0.0067507014538662
1022 => 0.0067546599841904
1023 => 0.006754512647494
1024 => 0.006786440296656
1025 => 0.0067638166310986
1026 => 0.0067192230640135
1027 => 0.0067488263549393
1028 => 0.0068367375456185
1029 => 0.0071096165789317
1030 => 0.00726232330114
1031 => 0.0071004234425105
1101 => 0.0072120997970677
1102 => 0.0071451337786871
1103 => 0.0071329640610809
1104 => 0.0072031050645606
1105 => 0.0072733688405817
1106 => 0.0072688933418078
1107 => 0.0072178854485013
1108 => 0.0071890723838499
1109 => 0.0074072545624756
1110 => 0.0075680074750506
1111 => 0.0075570452041142
1112 => 0.007605429102906
1113 => 0.0077474857262166
1114 => 0.0077604736035405
1115 => 0.0077588374295206
1116 => 0.0077266456204284
1117 => 0.0078665188144612
1118 => 0.007983203493758
1119 => 0.0077191941467343
1120 => 0.0078197254499448
1121 => 0.0078648571908723
1122 => 0.007931123976538
1123 => 0.0080429271515589
1124 => 0.0081643750539591
1125 => 0.008181549118967
1126 => 0.0081693632979892
1127 => 0.0080892651416614
1128 => 0.0082221548856426
1129 => 0.0082999985810188
1130 => 0.008346352720194
1201 => 0.0084638991045491
1202 => 0.0078651359091396
1203 => 0.0074413015589671
1204 => 0.0073751137049454
1205 => 0.0075097093088072
1206 => 0.0075452010961658
1207 => 0.0075308944011845
1208 => 0.007053830306732
1209 => 0.0073726020612188
1210 => 0.0077155736659562
1211 => 0.00772874860209
1212 => 0.0079004473586196
1213 => 0.0079563595119154
1214 => 0.0080945995159922
1215 => 0.0080859525660985
1216 => 0.0081196118072123
1217 => 0.0081118741305771
1218 => 0.0083679346282621
1219 => 0.0086504073825606
1220 => 0.0086406262492876
1221 => 0.0086000174487913
1222 => 0.0086603284423578
1223 => 0.0089518705964138
1224 => 0.0089250300667362
1225 => 0.0089511033550471
1226 => 0.009294847985275
1227 => 0.0097417649016747
1228 => 0.0095341271242822
1229 => 0.0099846413550629
1230 => 0.010268216182606
1231 => 0.010758629524658
]
'min_raw' => 0.004392510112975
'max_raw' => 0.010758629524658
'avg_raw' => 0.0075755698188163
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.004392'
'max' => '$0.010758'
'avg' => '$0.007575'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 0.0019585905308809
'max_diff' => 0.0043647070923084
'year' => 2028
]
3 => [
'items' => [
101 => 0.010697227358896
102 => 0.010888141674137
103 => 0.010587304667164
104 => 0.0098965220899639
105 => 0.0097872031029124
106 => 0.010006062483387
107 => 0.010544106914298
108 => 0.0099891175495202
109 => 0.010101391175195
110 => 0.010069056363448
111 => 0.010067333378744
112 => 0.010133092697007
113 => 0.010037705376091
114 => 0.0096490802708265
115 => 0.009827184866387
116 => 0.0097584101287559
117 => 0.0098347208276539
118 => 0.01024653819668
119 => 0.010064463921334
120 => 0.0098726634627693
121 => 0.010113223801738
122 => 0.010419539778746
123 => 0.010400371075408
124 => 0.010363175779035
125 => 0.010572843717207
126 => 0.010919153724126
127 => 0.01101275992741
128 => 0.011081858112979
129 => 0.011091385585346
130 => 0.011189524472013
131 => 0.010661806944219
201 => 0.011499308213576
202 => 0.011643921547288
203 => 0.011616740234159
204 => 0.01177747186832
205 => 0.011730180544182
206 => 0.011661662835287
207 => 0.011916456664032
208 => 0.011624356100177
209 => 0.011209756124224
210 => 0.010982298377558
211 => 0.011281833086861
212 => 0.011464748481511
213 => 0.011585643921771
214 => 0.011622226808946
215 => 0.010702772153683
216 => 0.010207237089788
217 => 0.010524869384424
218 => 0.010912402705688
219 => 0.010659654177052
220 => 0.010669561440859
221 => 0.010309208460169
222 => 0.010944285948533
223 => 0.010851760500321
224 => 0.01133178268932
225 => 0.011217221541497
226 => 0.011608661002272
227 => 0.011505581873685
228 => 0.011933457573373
301 => 0.012104148774251
302 => 0.012390765866489
303 => 0.01260160256628
304 => 0.012725409909061
305 => 0.01271797698059
306 => 0.013208563353262
307 => 0.01291928170908
308 => 0.012555875785538
309 => 0.012549302918913
310 => 0.012737515996216
311 => 0.013131958972509
312 => 0.01323423229735
313 => 0.013291389133552
314 => 0.013203851449265
315 => 0.012889856957507
316 => 0.012754275727954
317 => 0.0128697948637
318 => 0.012728524887356
319 => 0.01297239649988
320 => 0.013307284312041
321 => 0.01323813130312
322 => 0.013469299443946
323 => 0.013708534150103
324 => 0.01405065052461
325 => 0.014140092413439
326 => 0.014287936454503
327 => 0.014440116536995
328 => 0.014488992678123
329 => 0.014582312396913
330 => 0.014581820555931
331 => 0.014863045809645
401 => 0.015173245973314
402 => 0.015290339353948
403 => 0.01555958912615
404 => 0.015098508326891
405 => 0.015448243409644
406 => 0.015763713208723
407 => 0.015387597108967
408 => 0.015905985528669
409 => 0.015926113376313
410 => 0.016230019978849
411 => 0.015921952415718
412 => 0.015739022880117
413 => 0.016267133595117
414 => 0.016522669734773
415 => 0.016445700169887
416 => 0.015859957980643
417 => 0.015519030902839
418 => 0.014626758980303
419 => 0.015683693615825
420 => 0.016198495645582
421 => 0.015858624767753
422 => 0.016030035869422
423 => 0.016965199259889
424 => 0.017321248931633
425 => 0.017247193088886
426 => 0.017259707307247
427 => 0.017451825247362
428 => 0.018303781995112
429 => 0.017793269763657
430 => 0.018183537236076
501 => 0.018390533696233
502 => 0.018582803544465
503 => 0.018110649564717
504 => 0.017496384174385
505 => 0.01730182054016
506 => 0.015824831307076
507 => 0.015747947603255
508 => 0.015704790450485
509 => 0.015432690706974
510 => 0.015218894842967
511 => 0.015048876434177
512 => 0.014602697357717
513 => 0.014753269698298
514 => 0.014042153375232
515 => 0.014497100398315
516 => 0.013362141576197
517 => 0.01430736900874
518 => 0.013792924691424
519 => 0.014138360214566
520 => 0.014137155022568
521 => 0.013501098704031
522 => 0.013134234693656
523 => 0.013368014719628
524 => 0.013618645464952
525 => 0.013659309460157
526 => 0.013984258763601
527 => 0.01407494512943
528 => 0.013800161207226
529 => 0.013338622077295
530 => 0.013445827090591
531 => 0.013132062187483
601 => 0.012582201263579
602 => 0.012977120978778
603 => 0.013111963932941
604 => 0.013171518263333
605 => 0.012630793196627
606 => 0.012460885640956
607 => 0.012370428283979
608 => 0.013268821261318
609 => 0.013318037256624
610 => 0.013066241266198
611 => 0.014204383019201
612 => 0.013946786487694
613 => 0.01423458492607
614 => 0.013436099359305
615 => 0.013466602583258
616 => 0.013088586719653
617 => 0.013300250344243
618 => 0.01315065331662
619 => 0.013283150015077
620 => 0.013362567989827
621 => 0.01374052182475
622 => 0.014311684634419
623 => 0.013684068125462
624 => 0.013410606624875
625 => 0.013580260601833
626 => 0.014032071499212
627 => 0.014716588136516
628 => 0.014311340510051
629 => 0.014491182525125
630 => 0.014530470004805
701 => 0.014231655408132
702 => 0.01472760585692
703 => 0.01499338973152
704 => 0.015266028990636
705 => 0.015502754020147
706 => 0.015157130875079
707 => 0.015526997183434
708 => 0.015228950229092
709 => 0.01496157129952
710 => 0.014961976802987
711 => 0.014794246094684
712 => 0.014469246711916
713 => 0.014409311839349
714 => 0.014721100615384
715 => 0.014971125687258
716 => 0.014991718949717
717 => 0.015130145676258
718 => 0.015212065187117
719 => 0.016014987757704
720 => 0.016337929857719
721 => 0.016732817344635
722 => 0.016886648275428
723 => 0.017349624225674
724 => 0.016975733544782
725 => 0.016894839944088
726 => 0.01577181172707
727 => 0.015955707534693
728 => 0.016250142466005
729 => 0.01577666685064
730 => 0.016076978149525
731 => 0.016136265961388
801 => 0.015760578330407
802 => 0.015961249326619
803 => 0.015428326655486
804 => 0.01432330089234
805 => 0.014728836066483
806 => 0.015027446456315
807 => 0.014601292611629
808 => 0.015365156883798
809 => 0.014918923145356
810 => 0.014777488473267
811 => 0.014225701392346
812 => 0.014486123654308
813 => 0.014838348492499
814 => 0.01462071449303
815 => 0.015072337719839
816 => 0.015711956652517
817 => 0.016167787193908
818 => 0.016202780202806
819 => 0.015909711702966
820 => 0.016379355844298
821 => 0.016382776689146
822 => 0.01585301617917
823 => 0.015528540816528
824 => 0.015454819331434
825 => 0.015638990055148
826 => 0.015862607313527
827 => 0.016215189404349
828 => 0.016428247377515
829 => 0.016983789574314
830 => 0.017134103364125
831 => 0.017299252646833
901 => 0.017519943018685
902 => 0.017784938393942
903 => 0.017205143599074
904 => 0.017228179927147
905 => 0.016688283041971
906 => 0.016111325791116
907 => 0.016549164425779
908 => 0.017121580197367
909 => 0.016990267386902
910 => 0.016975492013247
911 => 0.017000340093387
912 => 0.016901334522572
913 => 0.01645353599509
914 => 0.016228654377956
915 => 0.016518809037478
916 => 0.016673013325716
917 => 0.016912170728746
918 => 0.016882689530822
919 => 0.017498733317397
920 => 0.017738109304663
921 => 0.017676866683644
922 => 0.017688136799798
923 => 0.018121515590655
924 => 0.018603521937235
925 => 0.019054984487146
926 => 0.019514231583683
927 => 0.018960591284088
928 => 0.01867948688374
929 => 0.018969514870815
930 => 0.018815621938434
1001 => 0.019699936375506
1002 => 0.019761164388459
1003 => 0.020645414879532
1004 => 0.02148467389015
1005 => 0.020957550342468
1006 => 0.021454604105766
1007 => 0.021992208276161
1008 => 0.023029333943986
1009 => 0.022680066505584
1010 => 0.022412533121486
1011 => 0.022159715366225
1012 => 0.022685788981234
1013 => 0.023362574282712
1014 => 0.023508347354481
1015 => 0.023744555420347
1016 => 0.023496211521237
1017 => 0.023795314393531
1018 => 0.024851278965192
1019 => 0.024565948016672
1020 => 0.024160732200535
1021 => 0.024994314813946
1022 => 0.025295985121268
1023 => 0.027413265324027
1024 => 0.030086419040492
1025 => 0.028979715849002
1026 => 0.028292749464955
1027 => 0.028454202860267
1028 => 0.029430348105556
1029 => 0.029743854977041
1030 => 0.028891635228044
1031 => 0.029192653650706
1101 => 0.030851294755049
1102 => 0.031741102491952
1103 => 0.030532624068115
1104 => 0.027198480025701
1105 => 0.024124246949854
1106 => 0.024939671996088
1107 => 0.024847228101431
1108 => 0.026629231048356
1109 => 0.024559142967915
1110 => 0.024593997942153
1111 => 0.026412850822846
1112 => 0.02592761205731
1113 => 0.025141587401826
1114 => 0.024129985799706
1115 => 0.022259946676365
1116 => 0.020603600874922
1117 => 0.023852076425208
1118 => 0.02371199625251
1119 => 0.023509139403725
1120 => 0.023960575369292
1121 => 0.026152620275752
1122 => 0.026102086545701
1123 => 0.025780616737653
1124 => 0.026024448753753
1125 => 0.025098842470494
1126 => 0.025337392285353
1127 => 0.024123759975628
1128 => 0.024672372465386
1129 => 0.025139900945937
1130 => 0.025233764210285
1201 => 0.025445242937639
1202 => 0.02363818036679
1203 => 0.024449498408532
1204 => 0.024926071747834
1205 => 0.022772896062978
1206 => 0.024883510387532
1207 => 0.023606723427783
1208 => 0.023173362756948
1209 => 0.023756825809301
1210 => 0.023529449690362
1211 => 0.023333965055273
1212 => 0.023224881270041
1213 => 0.023653312141221
1214 => 0.023633325328995
1215 => 0.022932329268895
1216 => 0.022017908484748
1217 => 0.022324818114747
1218 => 0.022213314968875
1219 => 0.021809213184044
1220 => 0.022081528995585
1221 => 0.020882387977439
1222 => 0.018819328181646
1223 => 0.020182248675978
1224 => 0.020129777719518
1225 => 0.020103319483903
1226 => 0.021127516567037
1227 => 0.021029063649741
1228 => 0.020850370640794
1229 => 0.021805931346802
1230 => 0.021457138835004
1231 => 0.022532035170515
]
'min_raw' => 0.0096490802708265
'max_raw' => 0.031741102491952
'avg_raw' => 0.020695091381389
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.009649'
'max' => '$0.031741'
'avg' => '$0.020695'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072434
'min_diff' => 0.0052565701578515
'max_diff' => 0.020982472967294
'year' => 2029
]
4 => [
'items' => [
101 => 0.023240031417018
102 => 0.023060460667626
103 => 0.023726334559505
104 => 0.022331888692752
105 => 0.022795067674229
106 => 0.022890528220374
107 => 0.021794139876018
108 => 0.021045171764598
109 => 0.020995224130428
110 => 0.01969661663939
111 => 0.020390322279109
112 => 0.021000754534572
113 => 0.020708404855662
114 => 0.020615855681017
115 => 0.02108866934281
116 => 0.021125411013707
117 => 0.020287697023559
118 => 0.020461884289063
119 => 0.021188274142436
120 => 0.020443581128482
121 => 0.018996764247282
122 => 0.018637933656936
123 => 0.018590059041624
124 => 0.017616882021393
125 => 0.018661912432799
126 => 0.018205728653146
127 => 0.019646807747147
128 => 0.018823671097316
129 => 0.018788187321524
130 => 0.018734548390077
131 => 0.017896894727327
201 => 0.018080287643802
202 => 0.018689913629694
203 => 0.018907435049388
204 => 0.018884745783214
205 => 0.018686926129783
206 => 0.018777486954123
207 => 0.01848575898544
208 => 0.018382743767906
209 => 0.018057599404799
210 => 0.017579727014455
211 => 0.017646178101294
212 => 0.016699387853911
213 => 0.016183526277174
214 => 0.01604074259168
215 => 0.015849806280096
216 => 0.016062309356136
217 => 0.016696705716098
218 => 0.015931489111288
219 => 0.014619578916044
220 => 0.014698426954165
221 => 0.014875575085628
222 => 0.014545460714598
223 => 0.014233035166817
224 => 0.014504663832727
225 => 0.013948790188395
226 => 0.014942749759828
227 => 0.01491586593896
228 => 0.015286352601143
301 => 0.015518025514157
302 => 0.014984094454655
303 => 0.014849812237094
304 => 0.014926305491003
305 => 0.013662042394706
306 => 0.015183035333934
307 => 0.015196188944033
308 => 0.015083559748577
309 => 0.015893441533327
310 => 0.017602544707613
311 => 0.016959511344931
312 => 0.016710509391114
313 => 0.016237156494888
314 => 0.016867871124195
315 => 0.016819442081345
316 => 0.016600427583409
317 => 0.016467966931691
318 => 0.016712029743947
319 => 0.016437724848329
320 => 0.016388452151681
321 => 0.016089913219219
322 => 0.015983348402987
323 => 0.015904452055516
324 => 0.015817594929145
325 => 0.016009180106471
326 => 0.01557502288952
327 => 0.015051471846834
328 => 0.015007944242535
329 => 0.01512812778499
330 => 0.015074955514066
331 => 0.015007689674159
401 => 0.014879260867015
402 => 0.014841158783382
403 => 0.014964972070685
404 => 0.014825194088083
405 => 0.015031444115512
406 => 0.014975355520386
407 => 0.014662049187432
408 => 0.014271553495711
409 => 0.014268077264962
410 => 0.014183945608722
411 => 0.014076791295221
412 => 0.014046983416564
413 => 0.014481788024118
414 => 0.015381820549148
415 => 0.015205122628531
416 => 0.015332804984908
417 => 0.015960875806408
418 => 0.016160520633814
419 => 0.016018817464168
420 => 0.015824845425686
421 => 0.015833379210954
422 => 0.016496240385778
423 => 0.01653758222417
424 => 0.016642039712403
425 => 0.016776297104465
426 => 0.016041682078582
427 => 0.015798778909298
428 => 0.015683677911936
429 => 0.015329211389755
430 => 0.015711473144265
501 => 0.015488745589992
502 => 0.01551879914652
503 => 0.015499226728405
504 => 0.015509914592177
505 => 0.014942471927871
506 => 0.015149218210836
507 => 0.014805462416306
508 => 0.014345211995829
509 => 0.014343669075035
510 => 0.01445631471341
511 => 0.01438930867988
512 => 0.014208997166534
513 => 0.014234609565958
514 => 0.014010217996366
515 => 0.014261854765247
516 => 0.014269070807379
517 => 0.014172176944612
518 => 0.014559858106256
519 => 0.014718691394499
520 => 0.014654913778359
521 => 0.014714216586933
522 => 0.015212465224876
523 => 0.015293701492973
524 => 0.015329781277095
525 => 0.015281439146027
526 => 0.014723323657386
527 => 0.014748078452598
528 => 0.0145664441904
529 => 0.014412982378991
530 => 0.014419120046646
531 => 0.01449801936635
601 => 0.01484257732288
602 => 0.015567679229596
603 => 0.015595196316913
604 => 0.015628547829472
605 => 0.015492890466769
606 => 0.015451974908111
607 => 0.015505953091182
608 => 0.015778263243298
609 => 0.016478718886025
610 => 0.016231131080026
611 => 0.016029838339815
612 => 0.016206426341113
613 => 0.016179242002455
614 => 0.015949778826836
615 => 0.015943338559747
616 => 0.015502925361919
617 => 0.015340114630405
618 => 0.01520405779698
619 => 0.015055487286733
620 => 0.01496740970813
621 => 0.015102736899408
622 => 0.015133687829197
623 => 0.014837792560354
624 => 0.014797463128582
625 => 0.015039097592462
626 => 0.014932763273949
627 => 0.015042130757503
628 => 0.015067504951825
629 => 0.015063419122122
630 => 0.014952393881176
701 => 0.015023158058935
702 => 0.014855779682719
703 => 0.014673780838003
704 => 0.014557676914003
705 => 0.014456360841363
706 => 0.014512576886988
707 => 0.014312176948977
708 => 0.014248064975553
709 => 0.014999184747754
710 => 0.015554044999377
711 => 0.01554597711157
712 => 0.015496865919435
713 => 0.015423896649764
714 => 0.015772925086724
715 => 0.015651330558331
716 => 0.0157398007373
717 => 0.015762320110929
718 => 0.015830479472503
719 => 0.015854840585771
720 => 0.015781204381595
721 => 0.015534072286475
722 => 0.014918242602049
723 => 0.014631572221549
724 => 0.014536966221111
725 => 0.014540404969544
726 => 0.014445548936498
727 => 0.01447348828938
728 => 0.014435832769763
729 => 0.014364522325459
730 => 0.014508173668
731 => 0.014524728147023
801 => 0.014491198207168
802 => 0.014499095721806
803 => 0.014221482140633
804 => 0.014242588498264
805 => 0.014125065616905
806 => 0.01410303149341
807 => 0.013805943883222
808 => 0.013279610118238
809 => 0.013571250116494
810 => 0.01321899000939
811 => 0.013085583769218
812 => 0.013717108161265
813 => 0.013653720628063
814 => 0.013545228725121
815 => 0.013384746588975
816 => 0.013325222203608
817 => 0.012963570881253
818 => 0.012942202591793
819 => 0.01312144675256
820 => 0.013038731739781
821 => 0.012922568535214
822 => 0.01250183718355
823 => 0.012028795844915
824 => 0.012043073989497
825 => 0.01219353963807
826 => 0.012631038804352
827 => 0.012460100311273
828 => 0.012336082473251
829 => 0.012312857660152
830 => 0.012603564820525
831 => 0.013014976357487
901 => 0.013208001445815
902 => 0.013016719445541
903 => 0.01279698498298
904 => 0.012810359201565
905 => 0.012899331886053
906 => 0.012908681657186
907 => 0.012765657111127
908 => 0.012805917683072
909 => 0.012744758192784
910 => 0.012369422513781
911 => 0.01236263388155
912 => 0.012270520452817
913 => 0.012267731294803
914 => 0.012111023373757
915 => 0.012089098852332
916 => 0.011777945763603
917 => 0.011982747668863
918 => 0.011845377303397
919 => 0.011638327760247
920 => 0.011602632340967
921 => 0.01160155929356
922 => 0.011814152878944
923 => 0.011980263389039
924 => 0.011847766919718
925 => 0.011817600041989
926 => 0.01213970337314
927 => 0.012098712788214
928 => 0.012063215206029
929 => 0.012978138966753
930 => 0.012253905417749
1001 => 0.011938098252577
1002 => 0.011547226915523
1003 => 0.011674496593812
1004 => 0.011701314185009
1005 => 0.010761339079248
1006 => 0.010379991295907
1007 => 0.010249127107453
1008 => 0.010173812916849
1009 => 0.010208134539243
1010 => 0.0098648768066032
1011 => 0.010095551679896
1012 => 0.0097983194982838
1013 => 0.0097484875557593
1014 => 0.010279975516484
1015 => 0.010353928961311
1016 => 0.010038420590144
1017 => 0.010241028040599
1018 => 0.01016755976261
1019 => 0.0098034146909294
1020 => 0.0097895070276611
1021 => 0.0096067918310101
1022 => 0.009320877928885
1023 => 0.0091902076035196
1024 => 0.0091221533635376
1025 => 0.0091502338693049
1026 => 0.0091360355063113
1027 => 0.0090433815836352
1028 => 0.0091413463207023
1029 => 0.0088910868993202
1030 => 0.0087914315812486
1031 => 0.0087464195860615
1101 => 0.0085242999451901
1102 => 0.0088777910708692
1103 => 0.0089474332757918
1104 => 0.0090172126973718
1105 => 0.0096245949217905
1106 => 0.0095942518223028
1107 => 0.009868538663982
1108 => 0.0098578803816955
1109 => 0.0097796493312964
1110 => 0.0094496053980455
1111 => 0.0095811550273719
1112 => 0.0091762657156568
1113 => 0.0094796363177908
1114 => 0.0093411906440361
1115 => 0.0094328276962305
1116 => 0.009268056013805
1117 => 0.0093592474661153
1118 => 0.0089639480261345
1119 => 0.0085948229710936
1120 => 0.0087433696686742
1121 => 0.0089048569173196
1122 => 0.0092550024185688
1123 => 0.0090464586466624
1124 => 0.009121458872953
1125 => 0.0088702206697658
1126 => 0.0083518444939458
1127 => 0.0083547784468054
1128 => 0.0082750375655944
1129 => 0.0082061298018687
1130 => 0.0090704124075234
1201 => 0.0089629252032242
1202 => 0.0087916584107508
1203 => 0.0090209058183482
1204 => 0.0090815224715625
1205 => 0.0090832481424626
1206 => 0.0092505011333136
1207 => 0.0093397640845125
1208 => 0.0093554970665491
1209 => 0.0096186732613932
1210 => 0.009706886450527
1211 => 0.010070224092171
1212 => 0.0093321907467488
1213 => 0.0093169914356762
1214 => 0.0090241317995008
1215 => 0.0088383955883108
1216 => 0.0090368493167853
1217 => 0.0092126522285783
1218 => 0.009029594486019
1219 => 0.0090534979626373
1220 => 0.0088077578996185
1221 => 0.0088955984090031
1222 => 0.0089712584890795
1223 => 0.0089294834399553
1224 => 0.008866944169481
1225 => 0.0091982383946412
1226 => 0.0091795454761051
1227 => 0.0094880542749956
1228 => 0.0097285589454066
1229 => 0.010159586310135
1230 => 0.0097097867850762
1231 => 0.0096933943025919
]
'min_raw' => 0.0082061298018687
'max_raw' => 0.023726334559505
'avg_raw' => 0.015966232180687
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.0082061'
'max' => '$0.023726'
'avg' => '$0.015966'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -0.0014429504689577
'max_diff' => -0.0080147679324465
'year' => 2030
]
5 => [
'items' => [
101 => 0.0098536334483132
102 => 0.0097068619187487
103 => 0.0097996164590525
104 => 0.010144642119713
105 => 0.010151931968238
106 => 0.010029817612998
107 => 0.010022386943384
108 => 0.010045840341092
109 => 0.010183207624025
110 => 0.010135207274498
111 => 0.010190754494191
112 => 0.010260217142986
113 => 0.010547544109955
114 => 0.01061681766895
115 => 0.010448518834814
116 => 0.010463714335174
117 => 0.010400765951301
118 => 0.01033995860122
119 => 0.010476644644001
120 => 0.010726441073754
121 => 0.010724887103129
122 => 0.010782835019483
123 => 0.010818936091305
124 => 0.010663963863445
125 => 0.010563082641595
126 => 0.010601766921291
127 => 0.01066362392696
128 => 0.010581707528041
129 => 0.010076081566548
130 => 0.010229456183753
131 => 0.010203927147815
201 => 0.010167570696201
202 => 0.010321790059812
203 => 0.010306915225971
204 => 0.0098613562024184
205 => 0.0098898794454935
206 => 0.0098630907953017
207 => 0.0099496504045136
208 => 0.0097021874157869
209 => 0.0097783053644306
210 => 0.0098260458282584
211 => 0.0098541653282126
212 => 0.0099557522437686
213 => 0.0099438321917399
214 => 0.009955011276598
215 => 0.010105637854416
216 => 0.010867455396221
217 => 0.010908919444166
218 => 0.010704735307322
219 => 0.010786302842637
220 => 0.010629711011692
221 => 0.01073483215688
222 => 0.010806753374629
223 => 0.010481755221273
224 => 0.010462510939852
225 => 0.010305272798717
226 => 0.010389763669339
227 => 0.010255332619071
228 => 0.010288317296608
301 => 0.010196089262661
302 => 0.010362081361347
303 => 0.010547686320243
304 => 0.010594577462622
305 => 0.010471227054929
306 => 0.010381913230571
307 => 0.010225107576802
308 => 0.010485878873662
309 => 0.010562136347725
310 => 0.010485478325615
311 => 0.010467714986881
312 => 0.010434053492078
313 => 0.010474856432131
314 => 0.010561721033144
315 => 0.010520757291444
316 => 0.010547814564525
317 => 0.010444700140878
318 => 0.010664015165701
319 => 0.011012340206155
320 => 0.011013460128117
321 => 0.010972496165607
322 => 0.010955734594729
323 => 0.010997766106165
324 => 0.011020566476897
325 => 0.011156488677622
326 => 0.011302338614379
327 => 0.011982956629913
328 => 0.011791841814688
329 => 0.012395726608217
330 => 0.012873321075272
331 => 0.013016530773266
401 => 0.012884784589648
402 => 0.012434088012279
403 => 0.012411974688032
404 => 0.013085505653808
405 => 0.012895202306304
406 => 0.012872566328658
407 => 0.012631757770599
408 => 0.012774105453132
409 => 0.012742971926848
410 => 0.012693826132503
411 => 0.012965415594751
412 => 0.01347380682312
413 => 0.013394569282516
414 => 0.013335422134179
415 => 0.013076256547641
416 => 0.013232332117466
417 => 0.013176756596482
418 => 0.013415544303727
419 => 0.013274091755751
420 => 0.012893760571278
421 => 0.012954329565993
422 => 0.01294517468429
423 => 0.013133581501022
424 => 0.013077026451184
425 => 0.012934131403133
426 => 0.013472069197171
427 => 0.013437138508993
428 => 0.013486662238562
429 => 0.01350846411589
430 => 0.013835897371594
501 => 0.013970036299761
502 => 0.014000488184887
503 => 0.014127909791968
504 => 0.013997317819224
505 => 0.014519778820697
506 => 0.014867184900232
507 => 0.015270714938965
508 => 0.015860380784203
509 => 0.016082100596727
510 => 0.016042048897132
511 => 0.016489126811228
512 => 0.017292515884876
513 => 0.016204436798689
514 => 0.017350186718506
515 => 0.016987455522211
516 => 0.01612742638105
517 => 0.016072050643437
518 => 0.016654472362975
519 => 0.017946227680896
520 => 0.017622657624724
521 => 0.017946756925592
522 => 0.017568677875582
523 => 0.017549903064048
524 => 0.017928394470021
525 => 0.018812760270569
526 => 0.018392631228685
527 => 0.017790273227277
528 => 0.018235045001788
529 => 0.017849742529022
530 => 0.016981548218508
531 => 0.0176224101968
601 => 0.017193884042614
602 => 0.017318950756109
603 => 0.018219648993753
604 => 0.018111274598848
605 => 0.018251521101054
606 => 0.01800398969555
607 => 0.017772756330689
608 => 0.017341142083562
609 => 0.017213362383313
610 => 0.01724867609543
611 => 0.017213344883591
612 => 0.016971860679063
613 => 0.016919712188087
614 => 0.016832795751783
615 => 0.016859734789776
616 => 0.016696306461224
617 => 0.017004729483218
618 => 0.017061975513914
619 => 0.017286420068976
620 => 0.017309722647249
621 => 0.017934797538327
622 => 0.017590516792278
623 => 0.017821490040498
624 => 0.017800829619172
625 => 0.016146065820376
626 => 0.016374077671745
627 => 0.016728792558416
628 => 0.016568993982775
629 => 0.016343076183928
630 => 0.016160635448412
701 => 0.015884219078584
702 => 0.016273269811011
703 => 0.016784830153221
704 => 0.01732269666173
705 => 0.017968908029294
706 => 0.017824681174784
707 => 0.017310616189709
708 => 0.017333676769415
709 => 0.017476228199152
710 => 0.017291611145479
711 => 0.017237163972198
712 => 0.017468747993636
713 => 0.017470342785516
714 => 0.017257918553549
715 => 0.017021847892942
716 => 0.017020858748254
717 => 0.016978852254371
718 => 0.017576150737525
719 => 0.017904604509572
720 => 0.017942261205208
721 => 0.017902069913923
722 => 0.017917537946803
723 => 0.017726417933834
724 => 0.018163261608602
725 => 0.018564152563931
726 => 0.018456705224117
727 => 0.018295626387196
728 => 0.018167319334981
729 => 0.018426480160272
730 => 0.018414940136678
731 => 0.018560651131166
801 => 0.018554040838788
802 => 0.01850504371181
803 => 0.018456706973958
804 => 0.018648356675802
805 => 0.018593164639471
806 => 0.018537886874664
807 => 0.018427018854739
808 => 0.01844208765997
809 => 0.018281036635581
810 => 0.018206527062505
811 => 0.017086081856911
812 => 0.016786662286373
813 => 0.016880865778512
814 => 0.016911880014116
815 => 0.016781572233302
816 => 0.016968400117668
817 => 0.016939283189789
818 => 0.017052560123332
819 => 0.016981789613167
820 => 0.01698469405959
821 => 0.017192815040121
822 => 0.01725323344618
823 => 0.017222504157222
824 => 0.01724402589787
825 => 0.017739985327332
826 => 0.017669475756352
827 => 0.017632018952077
828 => 0.017642394742846
829 => 0.017769123010564
830 => 0.017804600006418
831 => 0.01765428148206
901 => 0.017725172567128
902 => 0.018027017809931
903 => 0.01813264656195
904 => 0.01846976283372
905 => 0.018326549849708
906 => 0.018589423479974
907 => 0.019397407399188
908 => 0.020042880862091
909 => 0.019449276790287
910 => 0.020634606604357
911 => 0.021557555890074
912 => 0.021522131559236
913 => 0.021361194003069
914 => 0.020310440779157
915 => 0.019343521996665
916 => 0.02015239061576
917 => 0.020154452588215
918 => 0.020084970056485
919 => 0.019653420019361
920 => 0.020069953050632
921 => 0.020103015930028
922 => 0.020084509509695
923 => 0.019753641108056
924 => 0.019248466213454
925 => 0.019347176178641
926 => 0.019508865115247
927 => 0.019202754226407
928 => 0.019104933249509
929 => 0.019286801056764
930 => 0.0198728170254
1001 => 0.019762034101088
1002 => 0.019759141111226
1003 => 0.0202331174407
1004 => 0.01989385267929
1005 => 0.019348421227415
1006 => 0.01921069259246
1007 => 0.018721848723494
1008 => 0.019059494924991
1009 => 0.019071646210683
1010 => 0.018886720836783
1011 => 0.019363426902325
1012 => 0.019359033972009
1013 => 0.019811595432907
1014 => 0.020676722971821
1015 => 0.020420862188224
1016 => 0.020123323934474
1017 => 0.020155674592497
1018 => 0.020510481462787
1019 => 0.020295957129557
1020 => 0.020373101575503
1021 => 0.020510364695429
1022 => 0.020593178943732
1023 => 0.020143758896605
1024 => 0.020038977585374
1025 => 0.019824631795839
1026 => 0.019768712980302
1027 => 0.019943293153408
1028 => 0.019897297445803
1029 => 0.019070624942172
1030 => 0.018984233065981
1031 => 0.018986882581484
1101 => 0.01876964610109
1102 => 0.01843830832576
1103 => 0.019309044216177
1104 => 0.019239111938236
1105 => 0.019161912115717
1106 => 0.019171368653479
1107 => 0.019549325591532
1108 => 0.019330091480178
1109 => 0.019912961296975
1110 => 0.019793140785312
1111 => 0.019670247329649
1112 => 0.019653259710651
1113 => 0.019605956214997
1114 => 0.019443734927547
1115 => 0.019247842974962
1116 => 0.019118498139995
1117 => 0.017635803934157
1118 => 0.017910983354325
1119 => 0.018227552193835
1120 => 0.018336830488664
1121 => 0.018149902403532
1122 => 0.019451115987688
1123 => 0.019688860248319
1124 => 0.018968717375192
1125 => 0.01883400804687
1126 => 0.019459947508826
1127 => 0.019082429495279
1128 => 0.019252425833664
1129 => 0.018884986733102
1130 => 0.019631594617898
1201 => 0.019625906716726
1202 => 0.019335459386637
1203 => 0.01958094348113
1204 => 0.019538284578645
1205 => 0.019210370258315
1206 => 0.019641990086742
1207 => 0.019642204164792
1208 => 0.019362654924451
1209 => 0.01903620261293
1210 => 0.018977840650089
1211 => 0.018933872750915
1212 => 0.019241612425748
1213 => 0.019517530855926
1214 => 0.020030946648507
1215 => 0.020160031577221
1216 => 0.020663858647659
1217 => 0.020363854158108
1218 => 0.020496842262617
1219 => 0.020641219662378
1220 => 0.020710439497127
1221 => 0.020597649490945
1222 => 0.021380300314832
1223 => 0.02144638002417
1224 => 0.021468535979123
1225 => 0.021204630524844
1226 => 0.021439040336085
1227 => 0.021329367748242
1228 => 0.021614705353886
1229 => 0.021659449933824
1230 => 0.021621552866451
1231 => 0.021635755502369
]
'min_raw' => 0.0097021874157869
'max_raw' => 0.021659449933824
'avg_raw' => 0.015680818674806
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.0097021'
'max' => '$0.021659'
'avg' => '$0.01568'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 0.0014960576139181
'max_diff' => -0.0020668846256809
'year' => 2031
]
6 => [
'items' => [
101 => 0.020967901093248
102 => 0.020933269318922
103 => 0.020461062618634
104 => 0.020653490339377
105 => 0.020293755938749
106 => 0.020407831422863
107 => 0.02045811480931
108 => 0.020431849621787
109 => 0.020664369913992
110 => 0.02046668016486
111 => 0.019944944413698
112 => 0.01942306651598
113 => 0.019416514764086
114 => 0.019279113525527
115 => 0.019179797596341
116 => 0.019198929367724
117 => 0.019266352225474
118 => 0.01917587885728
119 => 0.019195185937501
120 => 0.019515812111562
121 => 0.019580111404169
122 => 0.019361597284536
123 => 0.018484231562772
124 => 0.018268923813946
125 => 0.018423682754064
126 => 0.01834971794844
127 => 0.014809654521158
128 => 0.015641339912895
129 => 0.015147180694492
130 => 0.015374911997505
131 => 0.014870503397424
201 => 0.015111233619702
202 => 0.015066779537708
203 => 0.016404105036261
204 => 0.016383224538032
205 => 0.016393218927563
206 => 0.015916160675016
207 => 0.016676127424866
208 => 0.017050514373363
209 => 0.016981225313182
210 => 0.016998663876855
211 => 0.016699011576223
212 => 0.01639612021684
213 => 0.01606016708464
214 => 0.016684326479207
215 => 0.016614930609287
216 => 0.016774099767037
217 => 0.017178911750248
218 => 0.017238521852507
219 => 0.01731863843445
220 => 0.01728992234291
221 => 0.017974056145387
222 => 0.017891203027846
223 => 0.018090855202649
224 => 0.017680155531433
225 => 0.017215409869481
226 => 0.017303742826138
227 => 0.017295235652083
228 => 0.017186929562285
229 => 0.017089155667108
301 => 0.016926389679263
302 => 0.017441405349639
303 => 0.017420496653951
304 => 0.017758984133443
305 => 0.017699153183551
306 => 0.017299587457054
307 => 0.017313858025144
308 => 0.01740983445375
309 => 0.017742009968997
310 => 0.017840622278156
311 => 0.017794941127533
312 => 0.017903065022702
313 => 0.017988521740878
314 => 0.017913797070791
315 => 0.01897174081885
316 => 0.018532408815075
317 => 0.018746536176863
318 => 0.018797604290937
319 => 0.018666794390582
320 => 0.018695162374018
321 => 0.01873813213911
322 => 0.018999036138408
323 => 0.019683723725748
324 => 0.019986967197355
325 => 0.020899290143453
326 => 0.019961787048391
327 => 0.019906159494503
328 => 0.020070496406609
329 => 0.02060612655516
330 => 0.021040204481379
331 => 0.021184213172062
401 => 0.021203246297861
402 => 0.021473416175099
403 => 0.021628272510362
404 => 0.021440610445829
405 => 0.021281586495174
406 => 0.020711982442709
407 => 0.020777915662762
408 => 0.0212321301661
409 => 0.021873734905167
410 => 0.022424298518881
411 => 0.022231510330437
412 => 0.023702348121012
413 => 0.023848175680113
414 => 0.023828027026615
415 => 0.0241602439083
416 => 0.023500861052947
417 => 0.023218962107343
418 => 0.021315969278304
419 => 0.021850632641195
420 => 0.022627797238836
421 => 0.022524936590121
422 => 0.021960538885645
423 => 0.022423870372611
424 => 0.022270678493305
425 => 0.022149849702159
426 => 0.022703389818212
427 => 0.022094749722437
428 => 0.022621725588295
429 => 0.021945873589465
430 => 0.022232390970643
501 => 0.0220697498478
502 => 0.022174998586826
503 => 0.021559716609067
504 => 0.02189170782914
505 => 0.021545904682826
506 => 0.021545740727109
507 => 0.021538107103488
508 => 0.021944942971601
509 => 0.021958209874654
510 => 0.021657557553424
511 => 0.021614228856863
512 => 0.021774437757539
513 => 0.021586875093625
514 => 0.021674634483565
515 => 0.021589533236144
516 => 0.021570375152843
517 => 0.021417720285623
518 => 0.021351952371491
519 => 0.021377741665252
520 => 0.021289709510353
521 => 0.021236666952763
522 => 0.021527555603722
523 => 0.021372145531929
524 => 0.021503736781326
525 => 0.021353771944499
526 => 0.020833928483489
527 => 0.020534961011817
528 => 0.019553024903483
529 => 0.019831500765719
530 => 0.020016130550485
531 => 0.019955110407721
601 => 0.020086205286038
602 => 0.020094253446859
603 => 0.020051633165564
604 => 0.02000228433982
605 => 0.019978264060609
606 => 0.0201572915424
607 => 0.020261223021368
608 => 0.020034660619414
609 => 0.019981580218581
610 => 0.02021064731581
611 => 0.020350378112791
612 => 0.02138207180975
613 => 0.021305640608353
614 => 0.021497467924995
615 => 0.021475871112971
616 => 0.0216769367013
617 => 0.022005593961559
618 => 0.021337341857436
619 => 0.021453327316293
620 => 0.021424890360276
621 => 0.021735357589492
622 => 0.021736326834293
623 => 0.02155018622139
624 => 0.021651096067431
625 => 0.021594770959688
626 => 0.021696558042175
627 => 0.02130461982306
628 => 0.021781958266825
629 => 0.02205257840543
630 => 0.022056335966317
701 => 0.022184607764242
702 => 0.022314939339935
703 => 0.022565099449989
704 => 0.02230796251024
705 => 0.021845398187408
706 => 0.021878793837442
707 => 0.021607592544211
708 => 0.021612151486947
709 => 0.021587815493333
710 => 0.021660849642097
711 => 0.021320646711647
712 => 0.021400491659436
713 => 0.021288708264961
714 => 0.021453084321024
715 => 0.021276242857035
716 => 0.021424876647115
717 => 0.021489022063625
718 => 0.021725720031501
719 => 0.021241282374727
720 => 0.020253481199019
721 => 0.020461128982084
722 => 0.020154001600549
723 => 0.020182427409027
724 => 0.020239852066085
725 => 0.02005371996438
726 => 0.020089228103689
727 => 0.020087959503086
728 => 0.020077027388442
729 => 0.020028607240026
730 => 0.019958388445188
731 => 0.020238118511618
801 => 0.020285650100802
802 => 0.020391306935641
803 => 0.020705670008405
804 => 0.020674257724244
805 => 0.020725492462994
806 => 0.020613647315974
807 => 0.020187615584617
808 => 0.020210751157331
809 => 0.019922250194875
810 => 0.020383929317392
811 => 0.020274597607313
812 => 0.020204110742581
813 => 0.020184877748482
814 => 0.0205000200665
815 => 0.020594315587301
816 => 0.020535556946675
817 => 0.020415041260486
818 => 0.020646467005232
819 => 0.020708386771458
820 => 0.020722248323602
821 => 0.021132290371806
822 => 0.020745165119098
823 => 0.020838350015119
824 => 0.021565351973073
825 => 0.020906061516621
826 => 0.021255302375335
827 => 0.021238208852663
828 => 0.021416868658315
829 => 0.021223553533911
830 => 0.021225949906564
831 => 0.021384587710519
901 => 0.021161809525342
902 => 0.021106646513756
903 => 0.021030439208335
904 => 0.021196835071734
905 => 0.021296581866405
906 => 0.0221004677755
907 => 0.022619814734428
908 => 0.022597268513261
909 => 0.022803298769971
910 => 0.022710480252302
911 => 0.022410744774461
912 => 0.022922356686288
913 => 0.022760461270635
914 => 0.022773807731998
915 => 0.02277331097604
916 => 0.022880957274306
917 => 0.022804680006346
918 => 0.022654329681495
919 => 0.022754139243687
920 => 0.023050537960825
921 => 0.023970568673446
922 => 0.024485430049015
923 => 0.023939573372158
924 => 0.024316097998542
925 => 0.024090317392154
926 => 0.024049286339582
927 => 0.024285771629902
928 => 0.024522670856417
929 => 0.024507581399832
930 => 0.024335604726292
1001 => 0.024238459467155
1002 => 0.024974075915385
1003 => 0.025516065583542
1004 => 0.025479105521718
1005 => 0.025642235214551
1006 => 0.026121189038119
1007 => 0.026164978573301
1008 => 0.026159462098359
1009 => 0.026050925166445
1010 => 0.026522517405761
1011 => 0.026915927948674
1012 => 0.02602580200264
1013 => 0.026364750310285
1014 => 0.02651691512582
1015 => 0.026740338220291
1016 => 0.027117290430722
1017 => 0.027526760512887
1018 => 0.027584664072116
1019 => 0.027543578725902
1020 => 0.027273522199568
1021 => 0.027721569249466
1022 => 0.0279840247033
1023 => 0.028140310919872
1024 => 0.028536626761552
1025 => 0.026517854843918
1026 => 0.025088867741142
1027 => 0.024865710770219
1028 => 0.025319509245804
1029 => 0.025439172284841
1030 => 0.02539093626385
1031 => 0.023782481361852
1101 => 0.024857242588038
1102 => 0.026013595298922
1103 => 0.026058015515942
1104 => 0.026636909861206
1105 => 0.026825421589705
1106 => 0.027291507415059
1107 => 0.027262353619781
1108 => 0.02737583810121
1109 => 0.027349749984207
1110 => 0.028213075829725
1111 => 0.02916545244246
1112 => 0.029132474668733
1113 => 0.028995559262644
1114 => 0.029198901988232
1115 => 0.030181856715456
1116 => 0.030091361995701
1117 => 0.030179269907621
1118 => 0.031338228927918
1119 => 0.032845040514302
1120 => 0.032144975251017
1121 => 0.033663915433993
1122 => 0.034620007763617
1123 => 0.03627347058591
1124 => 0.036066448897083
1125 => 0.036710129840131
1126 => 0.035695836867352
1127 => 0.033366815179421
1128 => 0.032998238582169
1129 => 0.033736138263713
1130 => 0.035550192627592
1201 => 0.033679007236123
1202 => 0.03405754560378
1203 => 0.03394852652843
1204 => 0.033942717365205
1205 => 0.034164429497899
1206 => 0.0338428244857
1207 => 0.032532547810363
1208 => 0.033133039889161
1209 => 0.032901161059539
1210 => 0.033158447908716
1211 => 0.034546918920559
1212 => 0.033933042789209
1213 => 0.033286374152078
1214 => 0.034097440130298
1215 => 0.03513020583308
1216 => 0.035065577211459
1217 => 0.034940170672844
1218 => 0.03564708076494
1219 => 0.036814689131859
1220 => 0.037130288981607
1221 => 0.037363258338536
1222 => 0.037395380876807
1223 => 0.037726262985044
1224 => 0.035947026496025
1225 => 0.038770720498132
1226 => 0.039258294449323
1227 => 0.039166650754369
1228 => 0.03970856868087
1229 => 0.039549122679762
1230 => 0.039318110440469
1231 => 0.040177165623221
]
'min_raw' => 0.014809654521158
'max_raw' => 0.040177165623221
'avg_raw' => 0.02749341007219
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.0148096'
'max' => '$0.040177'
'avg' => '$0.027493'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.0051074671053711
'max_diff' => 0.018517715689397
'year' => 2032
]
7 => [
'items' => [
101 => 0.039192328178374
102 => 0.037794475413001
103 => 0.037027585739524
104 => 0.038037487924783
105 => 0.038654199948592
106 => 0.039061807366078
107 => 0.039185149124326
108 => 0.036085143559831
109 => 0.034414412494758
110 => 0.035485331952499
111 => 0.036791927601856
112 => 0.035939768291221
113 => 0.035973171322847
114 => 0.034758216089409
115 => 0.036899424181123
116 => 0.036587468172555
117 => 0.038205896496846
118 => 0.037819645588555
119 => 0.039139411059989
120 => 0.038791872581203
121 => 0.040234485376029
122 => 0.040809982677067
123 => 0.041776332214513
124 => 0.042487182868009
125 => 0.042904607968148
126 => 0.042879547330858
127 => 0.044533593537967
128 => 0.043558260277607
129 => 0.042333011834196
130 => 0.042310850955464
131 => 0.042945424486212
201 => 0.044275316519912
202 => 0.044620138175108
203 => 0.044812846438927
204 => 0.044517707024665
205 => 0.04345905267331
206 => 0.043001931091894
207 => 0.043391411923347
208 => 0.042915110334949
209 => 0.043737340503147
210 => 0.044866438142969
211 => 0.044633283945282
212 => 0.04541268347172
213 => 0.046219279986362
214 => 0.047372749228816
215 => 0.047674308801636
216 => 0.048172775308223
217 => 0.04868586108122
218 => 0.048850650403457
219 => 0.049165284350731
220 => 0.049163626074521
221 => 0.05011179665194
222 => 0.051157658161231
223 => 0.051552446669239
224 => 0.052460241074637
225 => 0.050905674968302
226 => 0.052084831217526
227 => 0.053148459670521
228 => 0.051880357980606
301 => 0.053628140730354
302 => 0.053696003173966
303 => 0.0547206455025
304 => 0.053681974204812
305 => 0.053065214503801
306 => 0.054845776650935
307 => 0.055707334586751
308 => 0.055447826324892
309 => 0.053472955638644
310 => 0.052323496193059
311 => 0.049315139109794
312 => 0.052878668026276
313 => 0.05461435901193
314 => 0.053468460618303
315 => 0.05404638511512
316 => 0.057199353777103
317 => 0.058399800103984
318 => 0.058150115659746
319 => 0.058192308220666
320 => 0.058840047269009
321 => 0.06171247892577
322 => 0.059991251294594
323 => 0.061307065325459
324 => 0.06200496834291
325 => 0.062653219560075
326 => 0.061061319452618
327 => 0.058990280802472
328 => 0.058334295925683
329 => 0.053354523606246
330 => 0.053095304830964
331 => 0.052949797477266
401 => 0.052032394194621
402 => 0.05131156651237
403 => 0.050738337576828
404 => 0.049234013669315
405 => 0.049741678828209
406 => 0.047344100496435
407 => 0.048877986148145
408 => 0.04505139323908
409 => 0.048238293521572
410 => 0.046503808588387
411 => 0.047668468572198
412 => 0.047664405183232
413 => 0.045519896897252
414 => 0.044282989272644
415 => 0.045071194952209
416 => 0.045916214008547
417 => 0.046053315507453
418 => 0.047148904771249
419 => 0.047454660185162
420 => 0.04652820700665
421 => 0.044972095606455
422 => 0.045333544793598
423 => 0.044275664516404
424 => 0.042421770021397
425 => 0.043753269413603
426 => 0.044207901847998
427 => 0.044408693430865
428 => 0.042585601116248
429 => 0.042012745929735
430 => 0.041707762635157
501 => 0.044736757282051
502 => 0.044902692446377
503 => 0.044053744684819
504 => 0.047891069067591
505 => 0.047022564376799
506 => 0.047992896905229
507 => 0.045300747068396
508 => 0.045403590817624
509 => 0.044129083941252
510 => 0.04484272262944
511 => 0.044338345806277
512 => 0.044785067675749
513 => 0.045052830922407
514 => 0.046327128664742
515 => 0.048252843954857
516 => 0.046136791076122
517 => 0.045214796534422
518 => 0.045786796762598
519 => 0.047310108747541
520 => 0.049618004381636
521 => 0.048251683715524
522 => 0.048858033625515
523 => 0.048990494106218
524 => 0.047983019830967
525 => 0.049655151395211
526 => 0.050551260284861
527 => 0.051470482582036
528 => 0.052268617546649
529 => 0.051103324982413
530 => 0.052350355064273
531 => 0.051345468948736
601 => 0.050443982219883
602 => 0.050445349403133
603 => 0.049879833609504
604 => 0.048784075499771
605 => 0.048582000892391
606 => 0.049633218519192
607 => 0.050476195505208
608 => 0.050545627127363
609 => 0.051012342500543
610 => 0.051288539850839
611 => 0.053995649355839
612 => 0.055084471193135
613 => 0.056415861925437
614 => 0.056934513648738
615 => 0.058495469388943
616 => 0.057234870854101
617 => 0.056962132431551
618 => 0.053175764390546
619 => 0.053795781945144
620 => 0.054788489872852
621 => 0.053192133778637
622 => 0.054204654289894
623 => 0.054404547286933
624 => 0.053137890209409
625 => 0.053814466483536
626 => 0.052017680490339
627 => 0.048292008979459
628 => 0.049659299132642
629 => 0.050666084910274
630 => 0.049229277469802
701 => 0.051804699194721
702 => 0.050300190990519
703 => 0.049823334118917
704 => 0.047962945451047
705 => 0.048840977289355
706 => 0.050028527922871
707 => 0.049294759698937
708 => 0.050817438939453
709 => 0.052973958827742
710 => 0.054510823323117
711 => 0.05462880469575
712 => 0.053640703787148
713 => 0.055224141799158
714 => 0.055235675416397
715 => 0.053449550870316
716 => 0.052355559531024
717 => 0.052107002396959
718 => 0.052727946850349
719 => 0.053481888049434
720 => 0.054670643185135
721 => 0.055388983016896
722 => 0.057262032320122
723 => 0.057768825757043
724 => 0.058325638094049
725 => 0.059069711090856
726 => 0.059963161499922
727 => 0.058008342869045
728 => 0.058086011457487
729 => 0.056265711414721
730 => 0.054320459761593
731 => 0.055796663287275
801 => 0.05772660302598
802 => 0.057283872717527
803 => 0.057234056513667
804 => 0.057317833550697
805 => 0.056984029356344
806 => 0.055474245356645
807 => 0.054716041283744
808 => 0.055694317976275
809 => 0.056214228500269
810 => 0.05702056438202
811 => 0.056921166464909
812 => 0.05899820110215
813 => 0.059805273955914
814 => 0.059598790183327
815 => 0.059636788166792
816 => 0.061097955017709
817 => 0.062723073067811
818 => 0.064245210574945
819 => 0.065793594224529
820 => 0.063926957300513
821 => 0.062979194188658
822 => 0.063957043796188
823 => 0.063438183030203
824 => 0.066419710895654
825 => 0.066626145416128
826 => 0.069607457683179
827 => 0.07243707803267
828 => 0.070659844189069
829 => 0.072335695655215
830 => 0.074148265650026
831 => 0.077645007248901
901 => 0.076467427695253
902 => 0.075565420212182
903 => 0.074713027499149
904 => 0.076486721421438
905 => 0.078768550317011
906 => 0.079260034406032
907 => 0.080056426391618
908 => 0.079219117596953
909 => 0.080227563813589
910 => 0.083787822092034
911 => 0.082825808877929
912 => 0.081459595462559
913 => 0.084270077442552
914 => 0.085287179945639
915 => 0.092425737973022
916 => 0.10143846236172
917 => 0.097707135284059
918 => 0.095390980157784
919 => 0.095935331552392
920 => 0.09922647339917
921 => 0.10028348370473
922 => 0.097410165320908
923 => 0.098425069949347
924 => 0.10401729423526
925 => 0.10701734314462
926 => 0.10294287376539
927 => 0.091701574343885
928 => 0.081336582892569
929 => 0.084085845367106
930 => 0.083774164322041
1001 => 0.089782311673072
1002 => 0.082802865180932
1003 => 0.082920381160071
1004 => 0.089052770635582
1005 => 0.087416754259287
1006 => 0.084766617254835
1007 => 0.081355931825519
1008 => 0.07505096435921
1009 => 0.069466478847276
1010 => 0.080418940966384
1011 => 0.079946650884048
1012 => 0.079262704855357
1013 => 0.08078475273152
1014 => 0.088175385177337
1015 => 0.088005007178318
1016 => 0.08692114927618
1017 => 0.087743245942267
1018 => 0.084622499734491
1019 => 0.085426787090305
1020 => 0.081334941024967
1021 => 0.083184626337087
1022 => 0.084760931251061
1023 => 0.085077397800134
1024 => 0.085790413094379
1025 => 0.079697775471685
1026 => 0.082433190893832
1027 => 0.084039991180579
1028 => 0.076780409029159
1029 => 0.083896492582782
1030 => 0.079591716205569
1031 => 0.078130610447571
1101 => 0.080097796864669
1102 => 0.079331182404774
1103 => 0.078672092309269
1104 => 0.078304308711371
1105 => 0.079748793305645
1106 => 0.07968140637279
1107 => 0.077317949214179
1108 => 0.074234915697609
1109 => 0.075269682942895
1110 => 0.074893742301688
1111 => 0.073531284920645
1112 => 0.074449416691736
1113 => 0.070406429027706
1114 => 0.063450678887955
1115 => 0.068045860490664
1116 => 0.067868950997555
1117 => 0.067779745208923
1118 => 0.071232897181867
1119 => 0.07090095629744
1120 => 0.070298480341828
1121 => 0.073520219977253
1122 => 0.07234424167181
1123 => 0.07596832971385
1124 => 0.078355388489656
1125 => 0.07774995317085
1126 => 0.079994993487152
1127 => 0.07529352189029
1128 => 0.076855162164467
1129 => 0.077177014060635
1130 => 0.07348046421025
1201 => 0.070955265931314
1202 => 0.070786863995477
1203 => 0.066408518173561
1204 => 0.068747395170856
1205 => 0.070805510139169
1206 => 0.069819832785521
1207 => 0.069507796781629
1208 => 0.07110192105316
1209 => 0.071225798161809
1210 => 0.068401386956703
1211 => 0.068988671483715
1212 => 0.071437745589284
1213 => 0.068926961099932
1214 => 0.064048916971438
1215 => 0.062839094583335
1216 => 0.062677681975311
1217 => 0.059396547706552
1218 => 0.062919940700299
1219 => 0.061381885237467
1220 => 0.066240584015819
1221 => 0.063465321331349
1222 => 0.063345685303868
1223 => 0.063164837901542
1224 => 0.060340630094472
1225 => 0.060958952116451
1226 => 0.063014348690612
1227 => 0.063747737343972
1228 => 0.063671238898951
1229 => 0.063004276126081
1230 => 0.063309608268099
1231 => 0.062326027053889
]
'min_raw' => 0.034414412494758
'max_raw' => 0.10701734314462
'avg_raw' => 0.07071587781969
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.034414'
'max' => '$0.107017'
'avg' => '$0.070715'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.0196047579736
'max_diff' => 0.066840177521401
'year' => 2033
]
8 => [
'items' => [
101 => 0.061978704055679
102 => 0.060882457134611
103 => 0.059271277006582
104 => 0.059495321485326
105 => 0.056303152063488
106 => 0.054563888741216
107 => 0.054082483576733
108 => 0.05343872847148
109 => 0.054155197428839
110 => 0.056294109048591
111 => 0.053714127839756
112 => 0.049290931021848
113 => 0.049556772687365
114 => 0.050154039980683
115 => 0.049041036330904
116 => 0.047987671783704
117 => 0.048903486795328
118 => 0.047029319993607
119 => 0.050380524084733
120 => 0.050289883405709
121 => 0.05153900505381
122 => 0.052320106454924
123 => 0.050519920609938
124 => 0.050067178738144
125 => 0.050325081084288
126 => 0.046062529787092
127 => 0.051190663674034
128 => 0.051235011988839
129 => 0.050855274792838
130 => 0.053585847774264
131 => 0.059348208452143
201 => 0.057180176574704
202 => 0.056340649102649
203 => 0.054744706764581
204 => 0.056871205172377
205 => 0.056707923273201
206 => 0.055969500602306
207 => 0.05552290026693
208 => 0.056345775078374
209 => 0.05542093697144
210 => 0.055254810634583
211 => 0.054248265780466
212 => 0.05388897506242
213 => 0.053622970518553
214 => 0.053330125652823
215 => 0.05397606845423
216 => 0.05251227708539
217 => 0.050747088191807
218 => 0.050600331834914
219 => 0.051005539039246
220 => 0.050826265015458
221 => 0.05059947353986
222 => 0.05016646684996
223 => 0.050038003014791
224 => 0.050455448157298
225 => 0.049984176929971
226 => 0.050679563297364
227 => 0.050490456682916
228 => 0.049434122507013
301 => 0.048117539018835
302 => 0.048105818664163
303 => 0.047822162911265
304 => 0.047460884662021
305 => 0.047360385318008
306 => 0.048826359409464
307 => 0.051860881905868
308 => 0.051265132529855
309 => 0.051695622508876
310 => 0.053813207134068
311 => 0.054486323608425
312 => 0.054008561478564
313 => 0.053354571208125
314 => 0.053383343460968
315 => 0.055618226191376
316 => 0.055757613085908
317 => 0.056109798800476
318 => 0.056562456971366
319 => 0.054085651122416
320 => 0.053266686128217
321 => 0.052878615079518
322 => 0.051683506451921
323 => 0.052972328645914
324 => 0.052221387146343
325 => 0.05232271481045
326 => 0.052256725036272
327 => 0.052292759915182
328 => 0.050379587354892
329 => 0.051076646882472
330 => 0.049917650220951
331 => 0.048365883794655
401 => 0.048360681729475
402 => 0.048740474363925
403 => 0.048514558843667
404 => 0.047906625987471
405 => 0.047992979980332
406 => 0.047236428136933
407 => 0.048084839071933
408 => 0.048109168461789
409 => 0.047782484038558
410 => 0.049089578142074
411 => 0.049625095662771
412 => 0.049410064977142
413 => 0.04961000853664
414 => 0.051289888606075
415 => 0.051563782355699
416 => 0.051685427866876
417 => 0.051522438996841
418 => 0.04964071366051
419 => 0.04972417618089
420 => 0.049111783584592
421 => 0.048594376373062
422 => 0.04861506994808
423 => 0.048881084513036
424 => 0.050042785719745
425 => 0.052487517423238
426 => 0.05258029320431
427 => 0.05269274015743
428 => 0.052235361887781
429 => 0.052097412225135
430 => 0.052279403437995
501 => 0.05319751612794
502 => 0.055559151231645
503 => 0.05472439165769
504 => 0.054045719130259
505 => 0.054641097905616
506 => 0.054549444009883
507 => 0.053775792892675
508 => 0.05375407908254
509 => 0.052269195237393
510 => 0.051720267489011
511 => 0.051261542375934
512 => 0.050760626527776
513 => 0.050463666822136
514 => 0.050919931895771
515 => 0.051024285116481
516 => 0.05002665355883
517 => 0.049890680063897
518 => 0.050705367529248
519 => 0.050346853950357
520 => 0.050715594056955
521 => 0.05080114492468
522 => 0.050787369264573
523 => 0.050413039913188
524 => 0.050651626279099
525 => 0.050087298397702
526 => 0.04947367658599
527 => 0.049082224100107
528 => 0.048740629887537
529 => 0.048930166210243
530 => 0.048254503827761
531 => 0.048038345833208
601 => 0.050570798586692
602 => 0.052441548664145
603 => 0.05241434721712
604 => 0.052248765404003
605 => 0.052002744416754
606 => 0.053179518160353
607 => 0.052769553718417
608 => 0.053067837103601
609 => 0.053143762744044
610 => 0.053373566790327
611 => 0.053455701984548
612 => 0.053207432381052
613 => 0.052374209268142
614 => 0.050297896491247
615 => 0.049331367288703
616 => 0.049012396553046
617 => 0.049023990533476
618 => 0.048704176795424
619 => 0.048798376274326
620 => 0.048671418060916
621 => 0.048430989919208
622 => 0.048915320450001
623 => 0.048971135031824
624 => 0.048858086498618
625 => 0.048884713520605
626 => 0.047948719949318
627 => 0.048019881507672
628 => 0.047623644907985
629 => 0.047549355322247
630 => 0.046547703702505
701 => 0.044773132666409
702 => 0.045756417282185
703 => 0.044568747737068
704 => 0.044118959284201
705 => 0.046248187863614
706 => 0.046034472369849
707 => 0.045668684344415
708 => 0.045127607617894
709 => 0.044926916996771
710 => 0.043707584313759
711 => 0.04363553963396
712 => 0.044239873836413
713 => 0.043960994395851
714 => 0.043569342041399
715 => 0.042150816914737
716 => 0.04055592501484
717 => 0.040604064776165
718 => 0.041111370215503
719 => 0.04258642919984
720 => 0.04201009813588
721 => 0.04159196333634
722 => 0.041513659257472
723 => 0.042493798745197
724 => 0.043880901465898
725 => 0.044531699027777
726 => 0.043886778408971
727 => 0.043145928327078
728 => 0.043191020438794
729 => 0.043490998056419
730 => 0.043522521462577
731 => 0.043040304219884
801 => 0.043176045549098
802 => 0.042969842057574
803 => 0.041704371610713
804 => 0.041681483263179
805 => 0.041370916407052
806 => 0.041361512566076
807 => 0.04083316086927
808 => 0.040759240814565
809 => 0.039710166451902
810 => 0.040400670374296
811 => 0.039937516596237
812 => 0.039239434605771
813 => 0.039119085007491
814 => 0.03911546715324
815 => 0.039832241269173
816 => 0.040392294451425
817 => 0.0399455733545
818 => 0.039843863620054
819 => 0.040929857489566
820 => 0.040791654870617
821 => 0.040671972293918
822 => 0.043756701631135
823 => 0.041314897656296
824 => 0.040250131749968
825 => 0.038932281747325
826 => 0.039361380353362
827 => 0.039451797734424
828 => 0.036282606038386
829 => 0.034996865362001
830 => 0.034555647613981
831 => 0.034301720562093
901 => 0.034417438308253
902 => 0.033260120897167
903 => 0.03403785733768
904 => 0.033035718285285
905 => 0.032867706411909
906 => 0.034659655178797
907 => 0.034908994381297
908 => 0.033845235879815
909 => 0.034528341044625
910 => 0.034280637615993
911 => 0.033052897083025
912 => 0.033006006425314
913 => 0.032389969383037
914 => 0.031425990700151
915 => 0.030985426575071
916 => 0.030755976953577
917 => 0.030850652339289
918 => 0.030802781567158
919 => 0.030490392397966
920 => 0.030820687348667
921 => 0.029976920236922
922 => 0.029640925374332
923 => 0.029489164289921
924 => 0.028740272412825
925 => 0.029932092423015
926 => 0.030166895979175
927 => 0.030402162170875
928 => 0.032449993746576
929 => 0.032347689868166
930 => 0.033272467104983
1001 => 0.033236531962116
1002 => 0.032972770513778
1003 => 0.031860004349891
1004 => 0.032303533109667
1005 => 0.03093842052675
1006 => 0.031961255692504
1007 => 0.031494476437472
1008 => 0.03180343715684
1009 => 0.031247897925551
1010 => 0.031555356273799
1011 => 0.030222576612978
1012 => 0.028978045718419
1013 => 0.029478881280511
1014 => 0.030023346813999
1015 => 0.031203886817839
1016 => 0.030500766930796
1017 => 0.030753635430083
1018 => 0.029906568287146
1019 => 0.0281588268185
1020 => 0.028168718845408
1021 => 0.027899866897075
1022 => 0.027667539560687
1023 => 0.030581528707937
1024 => 0.030219128094125
1025 => 0.029641690145835
1026 => 0.030414613786093
1027 => 0.030618987064524
1028 => 0.030624805284446
1029 => 0.031188710420332
1030 => 0.031489666692439
1031 => 0.031542711539817
1101 => 0.032430028455109
1102 => 0.032727445381122
1103 => 0.03395246360735
1104 => 0.031464132655415
1105 => 0.031412887116952
1106 => 0.03042549040678
1107 => 0.029799267803064
1108 => 0.030468368404213
1109 => 0.03106110019549
1110 => 0.030443908235768
1111 => 0.030524500476074
1112 => 0.029695970696583
1113 => 0.029992131106802
1114 => 0.030247224349198
1115 => 0.030106376854434
1116 => 0.029895521337678
1117 => 0.03101250294803
1118 => 0.030949478468087
1119 => 0.031989637422943
1120 => 0.032800515710734
1121 => 0.034253754564287
1122 => 0.032737224061549
1123 => 0.032681955662367
1124 => 0.033222213129706
1125 => 0.032727362670519
1126 => 0.033040091079068
1127 => 0.034203369182907
1128 => 0.034227947416171
1129 => 0.033816230341726
1130 => 0.033791177320329
1201 => 0.033870252088168
1202 => 0.034333395473253
1203 => 0.034171558943546
1204 => 0.034358840272923
1205 => 0.034593038443062
1206 => 0.035561781372726
1207 => 0.035795342013405
1208 => 0.035227910743865
1209 => 0.035279143434246
1210 => 0.035066908563101
1211 => 0.03486189233687
1212 => 0.035322738873221
1213 => 0.036164944976364
1214 => 0.036159705655907
1215 => 0.036355081101689
1216 => 0.036476798385833
1217 => 0.035954298699787
1218 => 0.035614170617017
1219 => 0.035744597366864
1220 => 0.035953152580193
1221 => 0.035676965722018
1222 => 0.033972212491165
1223 => 0.034489325721348
1224 => 0.0344032527943
1225 => 0.034280674479359
1226 => 0.034800635831026
1227 => 0.034750484290204
1228 => 0.033248250934357
1229 => 0.033344419039814
1230 => 0.033254099235369
1231 => 0.033545941001226
]
'min_raw' => 0.027667539560687
'max_raw' => 0.061978704055679
'avg_raw' => 0.044823121808183
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.027667'
'max' => '$0.061978'
'avg' => '$0.044823'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.0067468729340706
'max_diff' => -0.045038639088944
'year' => 2034
]
9 => [
'items' => [
101 => 0.032711602257419
102 => 0.032968239235657
103 => 0.033129199542585
104 => 0.033224006399922
105 => 0.033566513778291
106 => 0.033526324490644
107 => 0.033564015555742
108 => 0.034071863579268
109 => 0.036640384609865
110 => 0.036780183542438
111 => 0.03609176246939
112 => 0.036366773109567
113 => 0.035838812818643
114 => 0.036193236098967
115 => 0.03643572350599
116 => 0.035339969541301
117 => 0.035275086102897
118 => 0.034744946732045
119 => 0.035029813601312
120 => 0.034576569929656
121 => 0.03468778007289
122 => 0.034376826817282
123 => 0.034936480767201
124 => 0.035562260844641
125 => 0.035720357605006
126 => 0.035304473093419
127 => 0.035003345298906
128 => 0.034474664089401
129 => 0.035353872723236
130 => 0.035610980121167
131 => 0.035352522247529
201 => 0.035292631910791
202 => 0.035179139830891
203 => 0.035316709792053
204 => 0.035609579859061
205 => 0.035471467743921
206 => 0.035562693229193
207 => 0.035215035750647
208 => 0.035954471668925
209 => 0.037128873862094
210 => 0.037132649757179
211 => 0.036994536897563
212 => 0.036938024091091
213 => 0.037079736266446
214 => 0.037156609308239
215 => 0.037614880497768
216 => 0.038106623742463
217 => 0.040401374901068
218 => 0.039757017958327
219 => 0.041793057701598
220 => 0.043403300791854
221 => 0.043886142287225
222 => 0.043441950830931
223 => 0.041922395853702
224 => 0.041847839237099
225 => 0.044118695912643
226 => 0.043477074889977
227 => 0.043400756110952
228 => 0.042588853244739
301 => 0.043068788394797
302 => 0.042963819537256
303 => 0.042798121060374
304 => 0.043713803894113
305 => 0.045427880415302
306 => 0.045160725514967
307 => 0.044961306774826
308 => 0.04408751190545
309 => 0.044613731585964
310 => 0.044426354836807
311 => 0.045231444263408
312 => 0.044754527122004
313 => 0.043472213979679
314 => 0.043676426574154
315 => 0.043645560251317
316 => 0.044280786988074
317 => 0.044090107688996
318 => 0.043608327057879
319 => 0.045422021888096
320 => 0.045304250634123
321 => 0.045471223346
322 => 0.045544729897571
323 => 0.046648693979837
324 => 0.04710095274143
325 => 0.047203623398216
326 => 0.047633234242782
327 => 0.047192934289037
328 => 0.048954448032565
329 => 0.050125751884835
330 => 0.051486281583991
331 => 0.053474381150367
401 => 0.054221924978273
402 => 0.054086887876767
403 => 0.055594242278126
404 => 0.058302924630763
405 => 0.054634390024427
406 => 0.058497365872797
407 => 0.057274392319404
408 => 0.054374744024664
409 => 0.05418804085909
410 => 0.056151716349897
411 => 0.060506959591745
412 => 0.059416020556422
413 => 0.060508743977188
414 => 0.059234024063442
415 => 0.059170723475542
416 => 0.060446833676206
417 => 0.063428534717203
418 => 0.062012040320017
419 => 0.059981148262976
420 => 0.061480727353715
421 => 0.060181653165824
422 => 0.057254475432534
423 => 0.059415186335902
424 => 0.057970380488323
425 => 0.05839205164475
426 => 0.061428818637709
427 => 0.061063426798828
428 => 0.061536277672714
429 => 0.060701708256967
430 => 0.059922088823141
501 => 0.058466871254607
502 => 0.058036053073923
503 => 0.05815511571985
504 => 0.058035994072389
505 => 0.057221813216934
506 => 0.057045990938718
507 => 0.056752946105406
508 => 0.056843772952823
509 => 0.056292762932907
510 => 0.057332632684968
511 => 0.057525641674252
512 => 0.058282372161861
513 => 0.058360938431441
514 => 0.060468422068049
515 => 0.059307655495829
516 => 0.060086397928238
517 => 0.060016739875275
518 => 0.054437588195714
519 => 0.055206346071885
520 => 0.056402292077697
521 => 0.055863520023145
522 => 0.055101822391254
523 => 0.054486710713859
524 => 0.053554753624206
525 => 0.054866465331241
526 => 0.056591226741004
527 => 0.058404681227083
528 => 0.060583427969862
529 => 0.060097157060281
530 => 0.058363951072231
531 => 0.058441701426747
601 => 0.058922323524729
602 => 0.05829987423872
603 => 0.058116301792623
604 => 0.058897103489582
605 => 0.058902480441748
606 => 0.058186277312685
607 => 0.057390348598521
608 => 0.057387013628147
609 => 0.057245385801221
610 => 0.059259219339224
611 => 0.06036662416359
612 => 0.060493586342032
613 => 0.0603580785974
614 => 0.060410230150199
615 => 0.0597658556829
616 => 0.061238704631832
617 => 0.062590336477036
618 => 0.062228070269118
619 => 0.061684981724275
620 => 0.061252385539618
621 => 0.062126164356118
622 => 0.062087256360875
623 => 0.062578531152006
624 => 0.062556244089739
625 => 0.062391046855261
626 => 0.062228076168832
627 => 0.062874236519154
628 => 0.062688152715279
629 => 0.062501779871859
630 => 0.062127980602125
701 => 0.06217878613103
702 => 0.061635791358081
703 => 0.061384577130364
704 => 0.057606917892717
705 => 0.056597403905841
706 => 0.056915017556664
707 => 0.05701958421735
708 => 0.056580242436534
709 => 0.057210145692581
710 => 0.057111975937358
711 => 0.057493897027542
712 => 0.057255289311482
713 => 0.057265081855378
714 => 0.057966776271784
715 => 0.058170481146087
716 => 0.058066875202917
717 => 0.058139437254109
718 => 0.059811599097324
719 => 0.059573871155945
720 => 0.059447582925181
721 => 0.059482565628171
722 => 0.059909838830667
723 => 0.060029451999114
724 => 0.059522642599337
725 => 0.059761656842102
726 => 0.060779349152372
727 => 0.061135483864571
728 => 0.062272094911549
729 => 0.061789242337142
730 => 0.062675539134835
731 => 0.0653997133301
801 => 0.067575972175794
802 => 0.065574594603594
803 => 0.069571016828817
804 => 0.072682804783873
805 => 0.072563369179204
806 => 0.072020756972288
807 => 0.06847806911662
808 => 0.065218034933333
809 => 0.067945191956015
810 => 0.067952144040111
811 => 0.067717878833267
812 => 0.066262877753245
813 => 0.06766724794958
814 => 0.067778721755841
815 => 0.067716326067613
816 => 0.06660078015099
817 => 0.064897547723655
818 => 0.065230355262994
819 => 0.065775500801521
820 => 0.064743426567817
821 => 0.064413616314565
822 => 0.065026796324328
823 => 0.067002590076912
824 => 0.06662907771298
825 => 0.066619323795676
826 => 0.06821736808247
827 => 0.067073513252667
828 => 0.065234553031863
829 => 0.064770191323204
830 => 0.063122020088995
831 => 0.064260417831048
901 => 0.064301386739134
902 => 0.063677897929955
903 => 0.065285145712485
904 => 0.065270334641218
905 => 0.066796177203468
906 => 0.069713015102194
907 => 0.068850362606665
908 => 0.067847191610689
909 => 0.067956264112866
910 => 0.069152520247875
911 => 0.068429236480777
912 => 0.068689334366339
913 => 0.069152126558574
914 => 0.069431340578632
915 => 0.06791608951224
916 => 0.067562812005827
917 => 0.066840130211262
918 => 0.066651596020554
919 => 0.067240205262977
920 => 0.06708512752347
921 => 0.064297943461049
922 => 0.06400666721878
923 => 0.064015600245284
924 => 0.063283172284669
925 => 0.062166043841878
926 => 0.065101790689258
927 => 0.064866009131662
928 => 0.06460572454012
929 => 0.064637607917421
930 => 0.065911916122176
1001 => 0.065172753009311
1002 => 0.067137939291313
1003 => 0.066733956070641
1004 => 0.066319612204726
1005 => 0.066262337261234
1006 => 0.066102850223014
1007 => 0.065555909826445
1008 => 0.064895446431566
1009 => 0.064459351289908
1010 => 0.059460344256523
1011 => 0.060388130884033
1012 => 0.061455464828571
1013 => 0.061823904229153
1014 => 0.061193663139227
1015 => 0.06558079558604
1016 => 0.066382366959533
1017 => 0.063954354984016
1018 => 0.063500173078473
1019 => 0.065610571676155
1020 => 0.064337743336016
1021 => 0.064910897859644
1022 => 0.063672051278323
1023 => 0.066189291888408
1024 => 0.066170114732491
1025 => 0.06519085128071
1026 => 0.066018518044449
1027 => 0.06587469057637
1028 => 0.064769104551129
1029 => 0.066224340937407
1030 => 0.066225062716499
1031 => 0.065282542935183
1101 => 0.064181886174717
1102 => 0.063985114742298
1103 => 0.063836873900493
1104 => 0.064874439699889
1105 => 0.065804717951244
1106 => 0.067535735141478
1107 => 0.067970953991057
1108 => 0.069669642135123
1109 => 0.068658156052956
1110 => 0.069106534732243
1111 => 0.069593313215645
1112 => 0.069826692721274
1113 => 0.069446413340686
1114 => 0.072085175236355
1115 => 0.072307967589925
1116 => 0.072382667938931
1117 => 0.071492892274538
1118 => 0.072283221319106
1119 => 0.071913452532099
1120 => 0.072875488191163
1121 => 0.073026347666392
1122 => 0.072898575057855
1123 => 0.072946460236447
1124 => 0.070694742467991
1125 => 0.070577979022939
1126 => 0.068985901164499
1127 => 0.069634684659859
1128 => 0.068421815012286
1129 => 0.068806428471473
1130 => 0.068975962419551
1201 => 0.068887407506042
1202 => 0.069671365905259
1203 => 0.069004841113805
1204 => 0.067245772602335
1205 => 0.065486224833826
1206 => 0.065464135144888
1207 => 0.065000877276038
1208 => 0.064666026686769
1209 => 0.064730530789725
1210 => 0.064957851661944
1211 => 0.064652814384429
1212 => 0.06471790955337
1213 => 0.065798923084621
1214 => 0.066015712638878
1215 => 0.065278977028367
1216 => 0.062320877241723
1217 => 0.061594952134249
1218 => 0.062116732705781
1219 => 0.061867355199561
1220 => 0.049931784195144
1221 => 0.052735869559805
1222 => 0.051069777253865
1223 => 0.051837589241663
1224 => 0.050136940429809
1225 => 0.050948579181467
1226 => 0.050798699140337
1227 => 0.055307585427794
1228 => 0.055237185370185
1229 => 0.055270882152274
1230 => 0.05366244694667
1231 => 0.056224727902973
]
'min_raw' => 0.032711602257419
'max_raw' => 0.073026347666392
'avg_raw' => 0.052868974961906
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.032711'
'max' => '$0.073026'
'avg' => '$0.052868'
'bar_min_pct' => 61.631153054957
'bar_max_pct' => 60.119598047091
'min_diff' => 0.0050440626967321
'max_diff' => 0.011047643610713
'year' => 2035
]
10 => [
'items' => [
101 => 0.057486999638691
102 => 0.057253386734684
103 => 0.05731218206963
104 => 0.056301883416991
105 => 0.055280664051635
106 => 0.054147974610922
107 => 0.056252371587121
108 => 0.056018398566622
109 => 0.056555048494811
110 => 0.057919900359279
111 => 0.05812087998089
112 => 0.05839099863047
113 => 0.05829418032295
114 => 0.060600785202697
115 => 0.06032144013229
116 => 0.060994581378908
117 => 0.059609878763266
118 => 0.058042956316489
119 => 0.058340777047067
120 => 0.05831209451579
121 => 0.057946932972347
122 => 0.057617281458403
123 => 0.057068504566424
124 => 0.058804915856344
125 => 0.058734420729032
126 => 0.059875654898582
127 => 0.059673930673757
128 => 0.058326766930083
129 => 0.058374881146738
130 => 0.058698472376645
131 => 0.059818425318053
201 => 0.060150903603274
202 => 0.059996886414591
203 => 0.060361433676125
204 => 0.060649556967853
205 => 0.060397617525542
206 => 0.0639645487354
207 => 0.06248331021149
208 => 0.063205255561652
209 => 0.063377435273717
210 => 0.062936400561813
211 => 0.063032045198556
212 => 0.063176920761618
213 => 0.064056576810988
214 => 0.066365048815064
215 => 0.067387455351369
216 => 0.070463415860493
217 => 0.067302558721115
218 => 0.067115006539392
219 => 0.067669079912193
220 => 0.069474994354536
221 => 0.070938518389137
222 => 0.071424053744141
223 => 0.07148822525662
224 => 0.072399121860387
225 => 0.072921230806451
226 => 0.072288515053731
227 => 0.071752354701401
228 => 0.069831894870029
229 => 0.070054193324749
301 => 0.071585609234998
302 => 0.073748824408172
303 => 0.075605088070934
304 => 0.074955089233555
305 => 0.079914121535091
306 => 0.080405789331958
307 => 0.080337856739954
308 => 0.081457949151195
309 => 0.079234793817734
310 => 0.078284351841074
311 => 0.071868278655253
312 => 0.073670933512245
313 => 0.076291198213089
314 => 0.075944396354444
315 => 0.074041490088814
316 => 0.075603644545894
317 => 0.075087147429297
318 => 0.074679764723952
319 => 0.07654606387216
320 => 0.074493991295362
321 => 0.076270727219382
322 => 0.073992045018846
323 => 0.074958058373492
324 => 0.074409702472587
325 => 0.074764555944444
326 => 0.072690089798813
327 => 0.073809421376177
328 => 0.072643521925174
329 => 0.07264296913703
330 => 0.072617231842029
331 => 0.073988907375744
401 => 0.074033637665653
402 => 0.073019967373751
403 => 0.072873881648182
404 => 0.073414037142239
405 => 0.072781656525647
406 => 0.073077543435994
407 => 0.072790618638736
408 => 0.072726025823313
409 => 0.072211339280456
410 => 0.071989598166192
411 => 0.072076548570659
412 => 0.071779742014205
413 => 0.07160090532798
414 => 0.072581656723885
415 => 0.072057680816451
416 => 0.072501349901198
417 => 0.071995732983627
418 => 0.070243044460519
419 => 0.069235054756535
420 => 0.065924388610698
421 => 0.066863289422789
422 => 0.067485781632568
423 => 0.06728004796095
424 => 0.067722043495948
425 => 0.067749178432058
426 => 0.067605481178019
427 => 0.0674390981666
428 => 0.067358112118199
429 => 0.067961715772357
430 => 0.06831212800996
501 => 0.067548257053691
502 => 0.067369292776328
503 => 0.068141608487587
504 => 0.068612720625303
505 => 0.072091147955154
506 => 0.071833454823387
507 => 0.0724802140144
508 => 0.072407398854821
509 => 0.073085305523822
510 => 0.074193396422905
511 => 0.071940337797981
512 => 0.072331390870363
513 => 0.072235513687749
514 => 0.073282275627178
515 => 0.073285543503695
516 => 0.07265795743137
517 => 0.072998182022599
518 => 0.072808277989348
519 => 0.073151460244501
520 => 0.071830013174504
521 => 0.073439393064364
522 => 0.074351807755765
523 => 0.07436447663464
524 => 0.074796953956994
525 => 0.075236375963902
526 => 0.076079808240572
527 => 0.07521285309548
528 => 0.073653285185841
529 => 0.073765880951543
530 => 0.072851506856745
531 => 0.072866877650474
601 => 0.072784827148919
602 => 0.073031066880558
603 => 0.071884048948337
604 => 0.072153251764403
605 => 0.071776366245462
606 => 0.072330571594849
607 => 0.071734338252334
608 => 0.072235467452869
609 => 0.072451738203123
610 => 0.073249781927538
611 => 0.071616466545369
612 => 0.068286025915394
613 => 0.068986124913504
614 => 0.06795062350371
615 => 0.068046463101618
616 => 0.068240074342152
617 => 0.067612516965926
618 => 0.067732235136704
619 => 0.0677279579612
620 => 0.067691099573423
621 => 0.067527847662451
622 => 0.067291100093135
623 => 0.068234229542231
624 => 0.068394485613716
625 => 0.0687507150091
626 => 0.069810612057055
627 => 0.06970470334787
628 => 0.06987744484666
629 => 0.069500351124704
630 => 0.068063955397848
701 => 0.068141958596525
702 => 0.067169257459112
703 => 0.068725840854086
704 => 0.068357221360259
705 => 0.068119569974577
706 => 0.068054724592169
707 => 0.069117248919899
708 => 0.069435172851784
709 => 0.069237063992514
710 => 0.068830736942394
711 => 0.069611004998434
712 => 0.069819771813363
713 => 0.069866507004202
714 => 0.071248992397943
715 => 0.069943772580215
716 => 0.070257951963112
717 => 0.07270908982201
718 => 0.070486246017893
719 => 0.071663735956266
720 => 0.071606103951144
721 => 0.072208467959529
722 => 0.071556692520769
723 => 0.071564772058478
724 => 0.072099630490251
725 => 0.071348518285052
726 => 0.07116253234013
727 => 0.070905594089277
728 => 0.071466609360117
729 => 0.071802912642447
730 => 0.074513270110486
731 => 0.076264284642156
801 => 0.076188268483364
802 => 0.076882913878437
803 => 0.076569969765734
804 => 0.07555939067533
805 => 0.077284325955658
806 => 0.076738484258605
807 => 0.076783482784912
808 => 0.076781807937516
809 => 0.077144744947747
810 => 0.07688757081331
811 => 0.07638065419595
812 => 0.076717169103361
813 => 0.077716498072091
814 => 0.080818445854186
815 => 0.082554336928388
816 => 0.08071394303187
817 => 0.081983422097832
818 => 0.081222187019896
819 => 0.081083847961453
820 => 0.081881174628644
821 => 0.082679896910616
822 => 0.082629021754226
823 => 0.082049190392357
824 => 0.081721658368713
825 => 0.084201840583021
826 => 0.086029196589721
827 => 0.085904583160814
828 => 0.086454586309551
829 => 0.088069412565199
830 => 0.088217052040354
831 => 0.088198452859939
901 => 0.087832513016181
902 => 0.089422519176554
903 => 0.090748930289034
904 => 0.08774780851537
905 => 0.088890596399213
906 => 0.089403630698596
907 => 0.090156917260507
908 => 0.091427837955939
909 => 0.092808394926244
910 => 0.093003620818882
911 => 0.092865098705636
912 => 0.091954584272357
913 => 0.093465206182734
914 => 0.094350093069391
915 => 0.094877022960118
916 => 0.096213229490229
917 => 0.089406799023771
918 => 0.084588869238068
919 => 0.083836479930281
920 => 0.085366493173914
921 => 0.085769945464633
922 => 0.08560731435213
923 => 0.080184296351309
924 => 0.083807928862826
925 => 0.087706652761542
926 => 0.087856418624545
927 => 0.089808201326715
928 => 0.090443781780817
929 => 0.092015222682071
930 => 0.09191692862584
1001 => 0.092299549478209
1002 => 0.092211591570319
1003 => 0.095122354933969
1004 => 0.098333359176618
1005 => 0.098222172310063
1006 => 0.097760552459305
1007 => 0.098446136655562
1008 => 0.1017602371461
1009 => 0.10145512788031
1010 => 0.10175151554288
1011 => 0.10565902679575
1012 => 0.11073934726147
1013 => 0.10837902834931
1014 => 0.11350024122523
1015 => 0.11672377326679
1016 => 0.12229853861324
1017 => 0.12160055053556
1018 => 0.12377076577542
1019 => 0.12035100620202
1020 => 0.11249854697406
1021 => 0.11125586524323
1022 => 0.11374374553807
1023 => 0.11985995647912
1024 => 0.11355112428979
1025 => 0.11482739282505
1026 => 0.11445982740103
1027 => 0.11444024140164
1028 => 0.11518775933646
1029 => 0.11410344558409
1030 => 0.10968575629259
1031 => 0.11171035726128
1101 => 0.11092856159795
1102 => 0.11179602217314
1103 => 0.11647734912952
1104 => 0.11440762289321
1105 => 0.11222733443416
1106 => 0.11496190000655
1107 => 0.11844394167888
1108 => 0.11822604176885
1109 => 0.11780322486831
1110 => 0.1201866215987
1111 => 0.12412329472758
1112 => 0.12518736165548
1113 => 0.12597283410777
1114 => 0.12608113748827
1115 => 0.12719672961764
1116 => 0.12119790957259
1117 => 0.13071819104472
1118 => 0.13236208066248
1119 => 0.13205309754659
1120 => 0.13388021167129
1121 => 0.13334262834639
1122 => 0.13256375445285
1123 => 0.13546011897882
1124 => 0.13213967077436
1125 => 0.12742671258094
1126 => 0.12484109050429
1127 => 0.12824604623101
1128 => 0.13032533387674
1129 => 0.13169961074303
1130 => 0.13211546609241
1201 => 0.12166358089624
1202 => 0.11603059446363
1203 => 0.11964127418461
1204 => 0.12404655264001
1205 => 0.12117343802834
1206 => 0.1212860586816
1207 => 0.11718975228659
1208 => 0.12440898486218
1209 => 0.12335720339922
1210 => 0.12881384748963
1211 => 0.12751157558515
1212 => 0.13196125701517
1213 => 0.13078950676958
1214 => 0.13565337652735
1215 => 0.13759370585774
1216 => 0.1408518207916
1217 => 0.14324850339987
1218 => 0.14465588126868
1219 => 0.14457138758038
1220 => 0.15014811984947
1221 => 0.14685971566657
1222 => 0.1427287049955
1223 => 0.14265398804563
1224 => 0.14479349700905
1225 => 0.14927732085077
1226 => 0.15043991113594
1227 => 0.15108964050187
1228 => 0.15009455736071
1229 => 0.14652523030223
1230 => 0.14498401297527
1231 => 0.1462971747912
]
'min_raw' => 0.054147974610922
'max_raw' => 0.15108964050187
'avg_raw' => 0.1026188075564
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$0.054147'
'max' => '$0.151089'
'avg' => '$0.102618'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.021436372353502
'max_diff' => 0.078063292835478
'year' => 2036
]
11 => [
'items' => [
101 => 0.1446912907316
102 => 0.14746349714996
103 => 0.1512703286737
104 => 0.15048423301789
105 => 0.15311203293721
106 => 0.1558315294011
107 => 0.15972053148468
108 => 0.16073726063866
109 => 0.16241787526744
110 => 0.16414777977361
111 => 0.16470337847875
112 => 0.16576418879903
113 => 0.16575859780501
114 => 0.16895542110593
115 => 0.17248161620422
116 => 0.17381267322223
117 => 0.17687336544021
118 => 0.17163203727636
119 => 0.17560764489668
120 => 0.17919374248612
121 => 0.17491824910254
122 => 0.18081102066961
123 => 0.18103982363625
124 => 0.18449447678515
125 => 0.18099252398728
126 => 0.17891307559453
127 => 0.18491636518847
128 => 0.18782116792113
129 => 0.18694621769799
130 => 0.18028780329823
131 => 0.17641232052474
201 => 0.16626943458173
202 => 0.17828412112129
203 => 0.1841361244615
204 => 0.18027264802332
205 => 0.18222116081374
206 => 0.19285161479086
207 => 0.19689900339442
208 => 0.19605717485826
209 => 0.19619943002319
210 => 0.19838332744838
211 => 0.20806793132592
212 => 0.20226469219514
213 => 0.2067010510674
214 => 0.20905407981677
215 => 0.21123970405489
216 => 0.20587250169969
217 => 0.19888985029542
218 => 0.19667815148392
219 => 0.17988850143234
220 => 0.1790145272334
221 => 0.17852393903141
222 => 0.17543084981292
223 => 0.17300052895563
224 => 0.17106784757788
225 => 0.16599591449516
226 => 0.16770754302242
227 => 0.15962394028327
228 => 0.16479554285049
301 => 0.15189391769339
302 => 0.16263877449808
303 => 0.15679083744798
304 => 0.16071756989736
305 => 0.16070386989777
306 => 0.1534735104868
307 => 0.1493031900723
308 => 0.15196068055172
309 => 0.15480972129751
310 => 0.15527196857319
311 => 0.15896582426768
312 => 0.15999669999285
313 => 0.1568730984186
314 => 0.15162656018861
315 => 0.15284521135864
316 => 0.14927849414524
317 => 0.14302795942054
318 => 0.14751720258368
319 => 0.14905002757767
320 => 0.14972701041813
321 => 0.14358032739515
322 => 0.14164890613835
323 => 0.14062063366743
324 => 0.15083310059709
325 => 0.15139256258883
326 => 0.1485302759391
327 => 0.16146808300905
328 => 0.15853985880698
329 => 0.16181140267304
330 => 0.15273463153826
331 => 0.1530813764191
401 => 0.14878428750218
402 => 0.15119037016407
403 => 0.14948982849031
404 => 0.15099598246236
405 => 0.1518987649431
406 => 0.15619514875001
407 => 0.16268783229978
408 => 0.15555341228103
409 => 0.15244484331209
410 => 0.15437338201717
411 => 0.15950933472865
412 => 0.16729056599113
413 => 0.16268392047187
414 => 0.1647282715274
415 => 0.16517487128619
416 => 0.16177810142757
417 => 0.16741580974091
418 => 0.1704371034267
419 => 0.17353632557967
420 => 0.17622729333687
421 => 0.17229842809842
422 => 0.17650287708427
423 => 0.17311483338683
424 => 0.17007540794071
425 => 0.17008001749449
426 => 0.16817334151321
427 => 0.16447891654286
428 => 0.16379760789568
429 => 0.16734186151811
430 => 0.17018401728124
501 => 0.1704181108429
502 => 0.1719916743086
503 => 0.17292289295861
504 => 0.18205010165906
505 => 0.18572114050262
506 => 0.19021001731131
507 => 0.19195868780753
508 => 0.19722155906808
509 => 0.19297136309568
510 => 0.19205180646206
511 => 0.17928580225604
512 => 0.18137623472961
513 => 0.18472321881653
514 => 0.17934099279086
515 => 0.18275477638649
516 => 0.18342872958209
517 => 0.17915810681004
518 => 0.18143923095531
519 => 0.17538124153165
520 => 0.16281987991464
521 => 0.16742979412725
522 => 0.17082424266807
523 => 0.16597994606783
524 => 0.1746631602236
525 => 0.16959060577172
526 => 0.16798284953603
527 => 0.16171041925412
528 => 0.1646707648992
529 => 0.16867467477224
530 => 0.16620072397518
531 => 0.17133454334465
601 => 0.17860540071143
602 => 0.18378704665804
603 => 0.18418482909307
604 => 0.18085337789271
605 => 0.18619204970232
606 => 0.18623093609809
607 => 0.18020889248774
608 => 0.17652042430728
609 => 0.17568239657608
610 => 0.17777595415364
611 => 0.18031791954485
612 => 0.1843258904811
613 => 0.18674782337677
614 => 0.19306293987472
615 => 0.19477162933049
616 => 0.1966489610001
617 => 0.19915765505835
618 => 0.20216998549123
619 => 0.19557917799615
620 => 0.19584104306473
621 => 0.18970377438126
622 => 0.1831452226196
623 => 0.18812234587168
624 => 0.19462927244481
625 => 0.19313657629942
626 => 0.19296861749005
627 => 0.19325107761952
628 => 0.19212563347279
629 => 0.18703529130806
630 => 0.18447895334015
701 => 0.18777728151012
702 => 0.18953019614076
703 => 0.19224881386266
704 => 0.19191368684537
705 => 0.19891655413876
706 => 0.20163765661325
707 => 0.20094148215774
708 => 0.20106959501193
709 => 0.2059960210652
710 => 0.21147522003324
711 => 0.21660721291079
712 => 0.22182769649006
713 => 0.21553419977631
714 => 0.21233875027398
715 => 0.21563563849705
716 => 0.21388626319883
717 => 0.22393869256082
718 => 0.2246347009594
719 => 0.23468640341634
720 => 0.24422666598243
721 => 0.23823459799623
722 => 0.24388484821855
723 => 0.24999605450565
724 => 0.26178556294096
725 => 0.25781527125986
726 => 0.25477409005453
727 => 0.25190018851038
728 => 0.25788032140474
729 => 0.26557366683837
730 => 0.26723073975883
731 => 0.26991583094054
801 => 0.2670927858803
802 => 0.27049283270715
803 => 0.28249649206222
804 => 0.27925299734525
805 => 0.27464671342935
806 => 0.28412244964649
807 => 0.28755168174747
808 => 0.311619828535
809 => 0.34200685805981
810 => 0.32942642830455
811 => 0.32161734958752
812 => 0.32345266831985
813 => 0.33454898283644
814 => 0.33811276687976
815 => 0.32842517334
816 => 0.33184699515316
817 => 0.35070156976976
818 => 0.36081644412439
819 => 0.34707908614194
820 => 0.30917826029988
821 => 0.27423196796117
822 => 0.28350129834145
823 => 0.28245044393714
824 => 0.30270733220659
825 => 0.27917564106895
826 => 0.27957185439732
827 => 0.30024763366376
828 => 0.29473169022807
829 => 0.2857965682909
830 => 0.27429720423951
831 => 0.25303956622808
901 => 0.23421108342826
902 => 0.27113807413932
903 => 0.26954571515249
904 => 0.26723974336517
905 => 0.27237143404564
906 => 0.29728946733419
907 => 0.29671502601509
908 => 0.29306072342549
909 => 0.29583247973216
910 => 0.2853106660091
911 => 0.28802237698278
912 => 0.27422643228992
913 => 0.28046277546063
914 => 0.28577739753219
915 => 0.28684438659738
916 => 0.28924836744307
917 => 0.26870661432378
918 => 0.27792925840015
919 => 0.28334669775014
920 => 0.25887050967878
921 => 0.28286288220891
922 => 0.26834902810325
923 => 0.26342280802901
924 => 0.27005531437883
925 => 0.26747062020398
926 => 0.26524845193078
927 => 0.26400844385264
928 => 0.26887862451293
929 => 0.268651424764
930 => 0.26068286394243
1001 => 0.25028820119079
1002 => 0.25377699120342
1003 => 0.25250948108425
1004 => 0.24791586090033
1005 => 0.25101140626847
1006 => 0.23738019108681
1007 => 0.21392839385567
1008 => 0.22942136945454
1009 => 0.2288249067471
1010 => 0.22852414320258
1011 => 0.24016668617073
1012 => 0.23904752430351
1013 => 0.23701623455564
1014 => 0.24787855467115
1015 => 0.24391366171017
1016 => 0.25613252756965
1017 => 0.2641806628914
1018 => 0.2621393954439
1019 => 0.26970870561402
1020 => 0.25385736587894
1021 => 0.25912254509357
1022 => 0.26020769123248
1023 => 0.24774451532704
1024 => 0.23923063302589
1025 => 0.23866285414177
1026 => 0.22390095551684
1027 => 0.2317866426084
1028 => 0.23872572091706
1029 => 0.23540244090144
1030 => 0.23435038972866
1031 => 0.23972509100833
1101 => 0.24014275132896
1102 => 0.23062005175686
1103 => 0.23260012254257
1104 => 0.24085734687839
1105 => 0.23239206167517
1106 => 0.21594539532179
1107 => 0.21186639467319
1108 => 0.21132218079577
1109 => 0.20025960752717
1110 => 0.21213897300103
1111 => 0.20695331162449
1112 => 0.22333475377922
1113 => 0.21397776187588
1114 => 0.21357440065651
1115 => 0.2129646610132
1116 => 0.20344264721177
1117 => 0.20552736307874
1118 => 0.21245727613173
1119 => 0.2149299471801
1120 => 0.21467202733175
1121 => 0.21242331577717
1122 => 0.21345276441159
1123 => 0.21013655167644
1124 => 0.20896552793865
1125 => 0.20526945490676
1126 => 0.1998372486161
1127 => 0.20059263021848
1128 => 0.1898300081426
1129 => 0.18396596042007
1130 => 0.18234286929738
1201 => 0.18017240401447
1202 => 0.18258802912647
1203 => 0.18979951898651
1204 => 0.18110093221238
1205 => 0.16618781532307
1206 => 0.16708411905883
1207 => 0.16909784743812
1208 => 0.16534527792546
1209 => 0.16179378581101
1210 => 0.16488152006286
1211 => 0.15856263584071
1212 => 0.16986145440754
1213 => 0.16955585302988
1214 => 0.17376735387734
1215 => 0.17640089178596
1216 => 0.17033143952462
1217 => 0.16880498869444
1218 => 0.16967452446064
1219 => 0.15530303516031
1220 => 0.17259289659501
1221 => 0.17274242003468
1222 => 0.17146210956596
1223 => 0.18066842701535
1224 => 0.20009662835599
1225 => 0.19278695751406
1226 => 0.18995643202809
1227 => 0.18457560101016
1228 => 0.19174523885942
1229 => 0.19119472253637
1230 => 0.18870507894642
1231 => 0.18719933473506
]
'min_raw' => 0.14062063366743
'max_raw' => 0.36081644412439
'avg_raw' => 0.25071853889591
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$0.14062'
'max' => '$0.360816'
'avg' => '$0.250718'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 0.086472659056507
'max_diff' => 0.20972680362252
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.0044139210072216
]
1 => [
'year' => 2028
'avg' => 0.0075755698188163
]
2 => [
'year' => 2029
'avg' => 0.020695091381389
]
3 => [
'year' => 2030
'avg' => 0.015966232180687
]
4 => [
'year' => 2031
'avg' => 0.015680818674806
]
5 => [
'year' => 2032
'avg' => 0.02749341007219
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.0044139210072216
'min' => '$0.004413'
'max_raw' => 0.02749341007219
'max' => '$0.027493'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.02749341007219
]
1 => [
'year' => 2033
'avg' => 0.07071587781969
]
2 => [
'year' => 2034
'avg' => 0.044823121808183
]
3 => [
'year' => 2035
'avg' => 0.052868974961906
]
4 => [
'year' => 2036
'avg' => 0.1026188075564
]
5 => [
'year' => 2037
'avg' => 0.25071853889591
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.02749341007219
'min' => '$0.027493'
'max_raw' => 0.25071853889591
'max' => '$0.250718'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 0.25071853889591
]
]
]
]
'prediction_2025_max_price' => '$0.007547'
'last_price' => 0.00731777
'sma_50day_nextmonth' => '$0.006642'
'sma_200day_nextmonth' => '$0.011049'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'increase'
'sma_200day_direction_label' => 'aumentar'
'sma_200day_date_nextmonth' => '4 de fev. de 2026'
'sma_50day_date_nextmonth' => '4 de fev. de 2026'
'daily_sma3' => '$0.007006'
'daily_sma3_action' => 'BUY'
'daily_sma5' => '$0.006862'
'daily_sma5_action' => 'BUY'
'daily_sma10' => '$0.006648'
'daily_sma10_action' => 'BUY'
'daily_sma21' => '$0.006529'
'daily_sma21_action' => 'BUY'
'daily_sma50' => '$0.007295'
'daily_sma50_action' => 'BUY'
'daily_sma100' => '$0.0091039'
'daily_sma100_action' => 'SELL'
'daily_sma200' => '$0.012297'
'daily_sma200_action' => 'SELL'
'daily_ema3' => '$0.007062'
'daily_ema3_action' => 'BUY'
'daily_ema5' => '$0.006917'
'daily_ema5_action' => 'BUY'
'daily_ema10' => '$0.006746'
'daily_ema10_action' => 'BUY'
'daily_ema21' => '$0.006768'
'daily_ema21_action' => 'BUY'
'daily_ema50' => '$0.007485'
'daily_ema50_action' => 'SELL'
'daily_ema100' => '$0.009076'
'daily_ema100_action' => 'SELL'
'daily_ema200' => '$0.011978'
'daily_ema200_action' => 'SELL'
'weekly_sma21' => '$0.010596'
'weekly_sma21_action' => 'SELL'
'weekly_sma50' => '$0.015023'
'weekly_sma50_action' => 'SELL'
'weekly_sma100' => '$0.025148'
'weekly_sma100_action' => 'SELL'
'weekly_sma200' => '$0.028577'
'weekly_sma200_action' => 'SELL'
'weekly_ema3' => '$0.007084'
'weekly_ema3_action' => 'BUY'
'weekly_ema5' => '$0.007197'
'weekly_ema5_action' => 'BUY'
'weekly_ema10' => '$0.008005'
'weekly_ema10_action' => 'SELL'
'weekly_ema21' => '$0.010169'
'weekly_ema21_action' => 'SELL'
'weekly_ema50' => '$0.015196'
'weekly_ema50_action' => 'SELL'
'weekly_ema100' => '$0.021097'
'weekly_ema100_action' => 'SELL'
'weekly_ema200' => '$0.026051'
'weekly_ema200_action' => 'SELL'
'rsi_14' => '59.05'
'rsi_14_action' => 'NEUTRAL'
'stoch_rsi_14' => 116.32
'stoch_rsi_14_action' => 'SELL'
'momentum_10' => 0
'momentum_10_action' => 'BUY'
'vwma_10' => '0.006734'
'vwma_10_action' => 'BUY'
'hma_9' => '0.0071048'
'hma_9_action' => 'BUY'
'stochastic_fast_14' => 100
'stochastic_fast_14_action' => 'SELL'
'cci_20' => 262.1
'cci_20_action' => 'SELL'
'adx_14' => 23.49
'adx_14_action' => 'NEUTRAL'
'ao_5_34' => '-0.000059'
'ao_5_34_action' => 'NEUTRAL'
'macd_12_26' => 0
'macd_12_26_action' => 'BUY'
'williams_percent_r_14' => -0
'williams_percent_r_14_action' => 'SELL'
'ultimate_oscillator' => 74.57
'ultimate_oscillator_action' => 'SELL'
'ichimoku_cloud' => '-0.001022'
'ichimoku_cloud_action' => 'SELL'
'sell_signals' => 15
'buy_signals' => 19
'sell_pct' => 44.12
'buy_pct' => 55.88
'overall_action' => 'bullish'
'overall_action_label' => 'Altista'
'overall_action_dir' => 1
'last_updated' => 1767698036
'last_updated_date' => '6 de janeiro de 2026'
]
Previsão de preço de Ankr para 2026
A previsão de preço para Ankr em 2026 sugere que o preço médio poderia variar entre $0.002528 na extremidade inferior e $0.007547 na extremidade superior. No mercado de criptomoedas, comparado ao preço médio de hoje, Ankr poderia potencialmente ganhar 3.13% até 2026 se ANKR atingir a meta de preço prevista.
Previsão de preço de Ankr 2027-2032
A previsão de preço de ANKR para 2027-2032 está atualmente dentro de uma faixa de preço entre $0.004413 na extremidade inferior e $0.027493 na extremidade superior. Considerando a volatilidade de preços no mercado, se Ankr atingir a meta de preço superior, poderia ganhar 275.71% até 2032 em comparação com o preço de hoje.
| Previsão de Preço de Ankr | Potencial Mínimo ($) | Preço Médio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2027 | $0.002433 | $0.004413 | $0.006393 |
| 2028 | $0.004392 | $0.007575 | $0.010758 |
| 2029 | $0.009649 | $0.020695 | $0.031741 |
| 2030 | $0.0082061 | $0.015966 | $0.023726 |
| 2031 | $0.0097021 | $0.01568 | $0.021659 |
| 2032 | $0.0148096 | $0.027493 | $0.040177 |
Previsão de preço de Ankr 2032-2037
A previsão de preço de Ankr para 2032-2037 é atualmente estimada entre $0.027493 na extremidade inferior e $0.250718 na extremidade superior. Comparado ao preço atual, Ankr poderia potencialmente ganhar 3326.16% até 2037 se atingir a meta de preço superior. Por favor, note que esta informação é apenas para fins gerais e não deve ser considerada como aconselhamento de investimento a longo prazo.
| Previsão de Preço de Ankr | Potencial Mínimo ($) | Preço Médio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2032 | $0.0148096 | $0.027493 | $0.040177 |
| 2033 | $0.034414 | $0.070715 | $0.107017 |
| 2034 | $0.027667 | $0.044823 | $0.061978 |
| 2035 | $0.032711 | $0.052868 | $0.073026 |
| 2036 | $0.054147 | $0.102618 | $0.151089 |
| 2037 | $0.14062 | $0.250718 | $0.360816 |
Ankr Histograma de preços potenciais
Previsão de preço de Ankr baseada na análise técnica
Em 6 de janeiro de 2026, o sentimento geral de previsão de preço para Ankr é Altista, com 19 indicadores técnicos mostrando sinais de alta e 15 indicando sinais de baixa. A previsão de preço de ANKR foi atualizada pela última vez em 6 de janeiro de 2026.
Médias Móveis Simples de 50 e 200 dias e Índice de Força Relativa de 14 dias - RSI (14) de Ankr
De acordo com nossos indicadores técnicos, o SMA de 200 dias de Ankr está projetado para aumentar no próximo mês, alcançando $0.011049 até 4 de fev. de 2026. O SMA de 50 dias de curto prazo para Ankr é esperado para alcançar $0.006642 até 4 de fev. de 2026.
O oscilador de momentum Índice de Força Relativa (RSI) é uma ferramenta comumente usada para identificar se uma criptomoeda está sobrevendida (abaixo de 30) ou sobrecomprada (acima de 70). No momento, o RSI está em 59.05, sugerindo que o mercado de ANKR está em um estado NEUTRAL.
Médias Móveis e Osciladores Populares de ANKR para Sábado, 19 de Outubro de 2024
Médias móveis (MA) são indicadores amplamente utilizados nos mercados financeiros, projetados para suavizar movimentos de preços ao longo de um período definido. Como indicadores atrasados, eles se baseiam em dados históricos de preços. A tabela abaixo destaca dois tipos: a média móvel simples (SMA) e a média móvel exponencial (EMA).
Média Móvel Simples Diária (SMA)
| Período | Valor | Ação |
|---|---|---|
| SMA 3 | $0.007006 | BUY |
| SMA 5 | $0.006862 | BUY |
| SMA 10 | $0.006648 | BUY |
| SMA 21 | $0.006529 | BUY |
| SMA 50 | $0.007295 | BUY |
| SMA 100 | $0.0091039 | SELL |
| SMA 200 | $0.012297 | SELL |
Média Móvel Exponencial Diária (EMA)
| Período | Valor | Ação |
|---|---|---|
| EMA 3 | $0.007062 | BUY |
| EMA 5 | $0.006917 | BUY |
| EMA 10 | $0.006746 | BUY |
| EMA 21 | $0.006768 | BUY |
| EMA 50 | $0.007485 | SELL |
| EMA 100 | $0.009076 | SELL |
| EMA 200 | $0.011978 | SELL |
Média Móvel Simples Semanal (SMA)
| Período | Valor | Ação |
|---|---|---|
| SMA 21 | $0.010596 | SELL |
| SMA 50 | $0.015023 | SELL |
| SMA 100 | $0.025148 | SELL |
| SMA 200 | $0.028577 | SELL |
Média Móvel Exponencial Semanal (EMA)
| Período | Valor | Ação |
|---|---|---|
| EMA 21 | $0.010169 | SELL |
| EMA 50 | $0.015196 | SELL |
| EMA 100 | $0.021097 | SELL |
| EMA 200 | $0.026051 | SELL |
Osciladores de Ankr
Um oscilador é uma ferramenta de análise técnica que define limites altos e baixos entre dois extremos, criando um indicador de tendência que flutua dentro desses limites. Os traders usam esse indicador para identificar condições de sobrecompra ou sobrevenda de curto prazo.
| Período | Valor | Ação |
|---|---|---|
| RSI (14) | 59.05 | NEUTRAL |
| Stoch RSI (14) | 116.32 | SELL |
| Estocástico Rápido (14) | 100 | SELL |
| Índice de Canal de Commodities (20) | 262.1 | SELL |
| Índice Direcional Médio (14) | 23.49 | NEUTRAL |
| Oscilador Impressionante (5, 34) | -0.000059 | NEUTRAL |
| Momentum (10) | 0 | BUY |
| MACD (12, 26) | 0 | BUY |
| Williams Percent Range (14) | -0 | SELL |
| Oscilador Ultimate (7, 14, 28) | 74.57 | SELL |
| VWMA (10) | 0.006734 | BUY |
| Média Móvel de Hull (9) | 0.0071048 | BUY |
| Nuvem Ichimoku B/L (9, 26, 52, 26) | -0.001022 | SELL |
Previsão do preço de Ankr com base nos fluxos financeiros mundiais
Definições dos fluxos financeiros mundiais, usadas na previsão do preço do Ankr
M0: o total de todas as moedas físicas, mais as contas no Banco Central que podem ser trocadas por moedas físicas.
M1: o valor de M0, mais o valor em contas de demanda, incluindo contas 'correntes'.
M2: o valor de M1, mais a maioria das contas de poupança, do mercado de moedas e de certificados de depósito (CD) de menos de US$ 100.000.
Previsões de preço de Ankr por empresas de Internet ou nichos tecnológicos
| Comparação | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Facebook stock | $0.010282 | $0.014448 | $0.0203031 | $0.028529 | $0.040088 | $0.05633 |
| Amazon.com stock | $0.015268 | $0.031859 | $0.066476 | $0.138708 | $0.289422 | $0.603897 |
| Apple stock | $0.010379 | $0.014722 | $0.020883 | $0.029621 | $0.042015 | $0.059595 |
| Netflix stock | $0.011546 | $0.018218 | $0.028745 | $0.045355 | $0.071564 | $0.112917 |
| Google stock | $0.009476 | $0.012271 | $0.015892 | $0.02058 | $0.026651 | $0.034513 |
| Tesla stock | $0.016588 | $0.0376056 | $0.085249 | $0.193253 | $0.43809 | $0.993118 |
| Kodak stock | $0.005487 | $0.004115 | $0.003085 | $0.002314 | $0.001735 | $0.0013012 |
| Nokia stock | $0.004847 | $0.003211 | $0.002127 | $0.0014093 | $0.000933 | $0.000618 |
Este cálculo mostra quanto a criptomoeda pode custar, se assumirmos que sua capitalização se comportará da mesma forma que a de algumas empresas de Internet ou nichos tecnológicos. Se você extrapolar os dados, poderá obter uma imagem em potencial do preço futuro para 2024, 2025, 2026, 2027, 2028, 2029 e 2030.
Visão geral da previsão para Ankr
Você pode fazer perguntas como: 'Devo investir em Ankr agora?', 'Devo comprar ANKR hoje?', 'Ankr será um bom ou mau investimento no curto ou no longo prazo?'.
Atualizamos a previsão para Ankr/Ankr Network regularmente com novos valores. Veja nossas previsões semelhantes. Fazemos previsões de preços futuros para uma enorme quantidade de moedas digitais, como Ankr, com métodos de análise técnica.
Se você estiver tentando encontrar criptomoedas com bom retorno, você deve explorar o máximo de fontes de informações disponíveis sobre Ankr para poder tomar sozinho uma decisão de tão grande responsabilidade sobre o seu investimento.
O preço de Ankr é de $0.007317 USD hoje, mas o preço pode tanto subir quanto descer e seu investimento pode ser perdido, porque criptomoedas são ativos de alto risco
Previsão de curto prazo para Ankr
com base no histórico de preços de 4 horas
Previsão de longo prazo para Ankr
com base no histórico de preços de 1 mês
Previsão do preço de Ankr com base no padrão de crescimento do Bitcoin
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| Se Ankr tiver 1% da média anterior do crescimento anual do Bitcoin | $0.0075079 | $0.0077031 | $0.0079033 | $0.0081088 |
| Se Ankr tiver 2% da média anterior do crescimento anual do Bitcoin | $0.007698 | $0.008098 | $0.008519 | $0.008962 |
| Se Ankr tiver 5% da média anterior do crescimento anual do Bitcoin | $0.008268 | $0.009343 | $0.010557 | $0.011929 |
| Se Ankr tiver 10% da média anterior do crescimento anual do Bitcoin | $0.009219 | $0.011616 | $0.014635 | $0.01844 |
| Se Ankr tiver 20% da média anterior do crescimento anual do Bitcoin | $0.011122 | $0.0169039 | $0.025691 | $0.039047 |
| Se Ankr tiver 50% da média anterior do crescimento anual do Bitcoin | $0.016828 | $0.038699 | $0.088995 | $0.20466 |
| Se Ankr tiver 100% da média anterior do crescimento anual do Bitcoin | $0.026339 | $0.0948025 | $0.341224 | $1.22 |
Perguntas Frequentes sobre Ankr
ANKR é um bom investimento?
A decisão de adquirir Ankr depende inteiramente da sua tolerância individual ao risco. Como você pode perceber, o valor de Ankr experimentou uma escalada de 5.7606% nas últimas 24 horas, e Ankr registrou um declínio de -71.78% durante os últimos 30 dias. Consequentemente, a decisão de investir ou não em Ankr dependerá de quão alinhado esse investimento está com suas aspirações de negociação.
Ankr pode subir?
Parece que o valor médio de Ankr pode potencialmente subir para $0.007547 até o final deste ano. Observando as perspectivas de Ankr em um horizonte de cinco anos mais longo, a moeda digital poderia potencialmente crescer até $0.023726. No entanto, dada a imprevisibilidade do mercado, é vital conduzir uma pesquisa aprofundada antes de investir quaisquer fundos em um projeto, rede ou ativo específico.
Qual será o preço de Ankr na próxima semana?
Com base na nossa nova previsão experimental de Ankr, o preço de Ankr aumentará 0.86% na próxima semana e atingirá $0.00738 até 13 de janeiro de 2026.
Qual será o preço de Ankr no próximo mês?
Com base na nossa nova previsão experimental de Ankr, o preço de Ankr diminuirá -11.62% no próximo mês e atingirá $0.006467 até 5 de fevereiro de 2026.
Até onde o preço de Ankr pode subir este ano em 2026?
De acordo com nossa previsão mais recente sobre o valor de Ankr em 2026, espera-se que ANKR fluctue dentro do intervalo de $0.002528 e $0.007547. No entanto, é crucial lembrar que o mercado de criptomoedas é excepcionalmente instável, e essa previsão de preço de Ankr não considera flutuações repentinas e extremas de preço.
Onde estará Ankr em 5 anos?
O futuro de Ankr parece seguir uma tendência de alta, com um preço máximo de $0.023726 projetada após um período de cinco anos. Com base na previsão de Ankr para 2030, o valor de Ankr pode potencialmente atingir seu pico mais alto de aproximadamente $0.023726, enquanto seu pico mais baixo está previsto para cerca de $0.0082061.
Quanto será Ankr em 2026?
Com base na nossa nova simulação experimental de previsão de preços de Ankr, espera-se que o valor de ANKR em 2026 aumente 3.13% para $0.007547 se o melhor cenário ocorrer. O preço ficará entre $0.007547 e $0.002528 durante 2026.
Quanto será Ankr em 2027?
De acordo com nossa última simulação experimental para previsão de preços de Ankr, o valor de ANKR pode diminuir -12.62% para $0.006393 em 2027, assumindo as condições mais favoráveis. O preço está projetado para flutuar entre $0.006393 e $0.002433 ao longo do ano.
Quanto será Ankr em 2028?
Nosso novo modelo experimental de previsão de preços de Ankr sugere que o valor de ANKR em 2028 pode aumentar 47.02%, alcançando $0.010758 no melhor cenário. O preço é esperado para variar entre $0.010758 e $0.004392 durante o ano.
Quanto será Ankr em 2029?
Com base no nosso modelo de previsão experimental, o valor de Ankr pode experimentar um 333.75% crescimento em 2029, potencialmente alcançando $0.031741 sob condições ótimas. A faixa de preço prevista para 2029 está entre $0.031741 e $0.009649.
Quanto será Ankr em 2030?
Usando nossa nova simulação experimental para previsões de preços de Ankr, espera-se que o valor de ANKR em 2030 aumente 224.23%, alcançando $0.023726 no melhor cenário. O preço está previsto para variar entre $0.023726 e $0.0082061 ao longo de 2030.
Quanto será Ankr em 2031?
Nossa simulação experimental indica que o preço de Ankr poderia aumentar 195.98% em 2031, potencialmente atingindo $0.021659 sob condições ideais. O preço provavelmente oscilará entre $0.021659 e $0.0097021 durante o ano.
Quanto será Ankr em 2032?
Com base nos achados da nossa mais recente previsão experimental de preços de Ankr, ANKR poderia ver um 449.04% aumento em valor, atingindo $0.040177 se o cenário mais positivo se desenrolar em 2032. O preço é esperado para permanecer dentro de uma faixa de $0.040177 e $0.0148096 ao longo do ano.
Quanto será Ankr em 2033?
De acordo com nossa previsão experimental de preços de Ankr, espera-se que o valor de ANKR seja aumentar 1362.43% em 2033, com o preço potencial mais alto sendo $0.107017. Ao longo do ano, o preço de ANKR poderia variar entre $0.107017 e $0.034414.
Quanto será Ankr em 2034?
Os resultados da nossa nova simulação de previsão de preços de Ankr sugerem que ANKR pode aumentar 746.96% em 2034, atingindo potencialmente $0.061978 nas melhores circunstâncias. A faixa de preço prevista para o ano é entre $0.061978 e $0.027667.
Quanto será Ankr em 2035?
Com base em nossa previsão experimental para o preço de Ankr, ANKR poderia aumentar 897.93%, com o valor potencialmente atingindo $0.073026 em 2035. A faixa de preço esperada para o ano está entre $0.073026 e $0.032711.
Quanto será Ankr em 2036?
Nossa recente simulação de previsão de preços de Ankr sugere que o valor de ANKR pode aumentar 1964.7% em 2036, possivelmente atingindo $0.151089 se as condições forem ideais. A faixa de preço esperada para 2036 está entre $0.151089 e $0.054147.
Quanto será Ankr em 2037?
De acordo com a simulação experimental, o valor de Ankr poderia aumentar 4830.69% em 2037, com um pico de $0.360816 sob condições favoráveis. O preço é esperado para cair entre $0.360816 e $0.14062 ao longo do ano.
Previsões relacionadas
Previsão de Preço do Terra
Previsão de Preço do cUSDT
Previsão de Preço do GMT
Previsão de Preço do Biconomy
Previsão de Preço do Celo
Previsão de Preço do Fasttoken
Previsão de Preço do Rocket Pool
Previsão de Preço do BitClout
Previsão de Preço do EthereumPoW
Previsão de Preço do 0x
Previsão de Preço do Wootrade Network
Previsão de Preço do MX Token
Previsão de Preço do Ravencoin
Previsão de Preço do Holo
Previsão de Preço do Siacoin
Previsão de Preço do Frax Share
Previsão de Preço do Saga
Previsão de Preço do Golem
Previsão de Preço do APENFT
Previsão de Preço do Qtum
Previsão de Preço do Jeo Boden
Previsão de Preço do Polymesh
Previsão de Preço do Trust Wallet Token
Previsão de Preço do AMP Token
Previsão de Preço do Raydium
Como ler e prever os movimentos de preço de Ankr?
Traders de Ankr utilizam indicadores e padrões de gráfico para prever a direção do mercado. Eles também identificam níveis-chave de suporte e resistência para avaliar quando uma tendência de baixa pode desacelerar ou uma tendência de alta pode estagnar.
Indicadores de Previsão de Preço de Ankr
Médias móveis são ferramentas populares para a previsão de preço de Ankr. Uma média móvel simples (SMA) calcula o preço médio de fechamento de ANKR em um período específico, como uma SMA de 12 dias. Uma média móvel exponencial (EMA) dá mais peso aos preços recentes, reagindo mais rapidamente às mudanças de preço.
Médias móveis comumente usadas no mercado de criptomoedas incluem as de 50 dias, 100 dias e 200 dias, que ajudam a identificar níveis-chave de resistência e suporte. Um movimento de preço de ANKR acima dessas médias é visto como altista, enquanto uma queda abaixo indica fraqueza.
Traders também usam RSI e níveis de retração de Fibonacci para avaliar a direção futura de ANKR.
Como ler gráficos de Ankr e prever movimentos de preço?
A maioria dos traders prefere gráficos de velas em vez de gráficos de linha simples porque eles fornecem informações mais detalhadas. Velas podem representar a ação de preço de Ankr em diferentes períodos de tempo, como 5 minutos para tendências de curto prazo e semanal para tendências de longo prazo. Opções populares incluem gráficos de 1 hora, 4 horas e 1 dia.
Por exemplo, um gráfico de velas de 1 hora mostra os preços de abertura, fechamento, máximo e mínimo de ANKR dentro de cada hora. A cor da vela é crucial: verde indica que o preço fechou mais alto do que abriu, enquanto vermelho significa o oposto. Alguns gráficos usam velas vazias e preenchidas para transmitir a mesma informação.
O que afeta o preço de Ankr?
A ação de preço de Ankr é impulsionada pela oferta e demanda, influenciada por fatores como reduções pela metade das recompensas de bloco, hard forks e atualizações de protocolo. Eventos do mundo real, como regulamentações, adoção por empresas e governos e hacks de exchanges de criptomoedas, também impactam o preço de ANKR. A capitalização de mercado de Ankr pode mudar rapidamente.
Traders frequentemente monitoram a atividade de "baleias" de ANKR, grandes detentores de Ankr, pois suas ações podem influenciar significativamente os movimentos de preço no relativamente pequeno mercado de Ankr.
Padrões de previsão de preço altistas e baixistas
Traders frequentemente identificam padrões de velas para ganhar vantagem em previsões de preço de criptomoedas. Certas formações indicam tendências altistas, enquanto outras sugerem movimentos baixistas.
Padrões de velas altistas comumente seguidos:
- Martelo
- Engolfo de Alta
- Linha de Perfuração
- Estrela da Manhã
- Três Soldados Brancos
Padrões de velas baixistas comuns:
- Harami de Baixa
- Nuvem Negra
- Estrela da Noite
- Estrela Cadente
- Homem Enforcado


