Previsão de Preço Ankr Network - Projeção ANKR
Previsão de Preço Ankr Network até $0.007729 até 2026
| Ano | Preço Mínimo | Preço Máximo |
|---|---|---|
| 2026 | $0.002589 | $0.007729 |
| 2027 | $0.002492 | $0.006548 |
| 2028 | $0.004498 | $0.011018 |
| 2029 | $0.009882 | $0.0325091 |
| 2030 | $0.0084046 | $0.02430041 |
| 2031 | $0.009936 | $0.022183 |
| 2032 | $0.015167 | $0.041149 |
| 2033 | $0.035247 | $0.1096067 |
| 2034 | $0.028336 | $0.063478 |
| 2035 | $0.033503 | $0.074793 |
Calculadora de lucro do investimento
Se você abrir um short de $10,000.00 em Ankr Network hoje e fechar em Apr 06, 2026, nossa previsão mostra que pode lucrar cerca de $3,954.50, com um retorno de 39.54% nos próximos 90 dias.
Previsão de preço de longo prazo de Ankr para os anos 2027, 2028, 2029, 2030, 2031, 2032 e 2037
[
'name' => 'Ankr Network'
'name_with_ticker' => 'Ankr Network <small>ANKR</small>'
'name_lang' => 'Ankr'
'name_lang_with_ticker' => 'Ankr <small>ANKR</small>'
'name_with_lang' => 'Ankr/Ankr Network'
'name_with_lang_with_ticker' => 'Ankr/Ankr Network <small>ANKR</small>'
'image' => '/uploads/coins/ankr.png?1754652982'
'price_for_sd' => 0.007494
'ticker' => 'ANKR'
'marketcap' => '$74.78M'
'low24h' => '$0.007177'
'high24h' => '$0.007553'
'volume24h' => '$10.95M'
'current_supply' => '10B'
'max_supply' => '10B'
'algo' => null
'proof' => null
'ico_price_and_roi' => '0.0066 USD 1.14x'
'price' => '$0.007494'
'change_24h_pct' => '4.2668%'
'ath_price' => '$0.2135'
'ath_days' => 1726
'ath_exchange' => null
'ath_pair' => null
'ath_date' => '16 de abr. de 2021'
'ath_pct' => '-96.51%'
'fdv' => '$74.78M'
'new_prediction' => true
'change_24h_pct_is_increased' => true
'change_30d_pct' => '-71.1%'
'change_30d_pct_is_increased' => false
'max_price' => '$0.369546'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.007558'
'next_week_prediction_price_date' => '13 de janeiro de 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.006624'
'next_month_prediction_price_date' => '5 de fevereiro de 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.002589'
'current_year_max_price_prediction' => '$0.007729'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.0084046'
'grand_prediction_max_price' => '$0.02430041'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.0076368530862194
107 => 0.0076653663234657
108 => 0.0077296081029035
109 => 0.0071806691313121
110 => 0.0074271266135552
111 => 0.0075718972944298
112 => 0.0069178180914356
113 => 0.0075589682516116
114 => 0.0071711133250956
115 => 0.0070394695376506
116 => 0.0072167105546952
117 => 0.0071476395579804
118 => 0.00708825637099
119 => 0.0070551195323167
120 => 0.007185265773857
121 => 0.0071791942961307
122 => 0.0069662497846739
123 => 0.0066884723502071
124 => 0.0067817035749476
125 => 0.006747831796952
126 => 0.0066250761039495
127 => 0.0067077986194543
128 => 0.0063435305260783
129 => 0.0057168262044329
130 => 0.0061308462757844
131 => 0.0061149069534045
201 => 0.0061068696242699
202 => 0.0064179942652162
203 => 0.006388086809856
204 => 0.0063338044855224
205 => 0.0066240791664944
206 => 0.0065181250031942
207 => 0.0068446507685448
208 => 0.0070597217559672
209 => 0.0070051727967393
210 => 0.0072074480999383
211 => 0.006783851434065
212 => 0.0069245532547196
213 => 0.0069535517049523
214 => 0.0066204972219894
215 => 0.0063929800394246
216 => 0.0063778072372333
217 => 0.0059833237964652
218 => 0.0061940536663644
219 => 0.0063794872312813
220 => 0.0062906789439121
221 => 0.0062625648932031
222 => 0.0064061934810816
223 => 0.0064173546524554
224 => 0.0061628787623242
225 => 0.0062157923580859
226 => 0.0064364508485654
227 => 0.0062102323302772
228 => 0.0057707267018284
301 => 0.0056617232293324
302 => 0.0056471801567688
303 => 0.0053515540941852
304 => 0.0056690073625849
305 => 0.0055304305037098
306 => 0.0059681931404907
307 => 0.0057181454701296
308 => 0.0057073664148242
309 => 0.0056910722917866
310 => 0.005436614727562
311 => 0.0054923247625054
312 => 0.005677513403535
313 => 0.0057435907969537
314 => 0.005736698383464
315 => 0.0056766058781646
316 => 0.0057041159193673
317 => 0.0056154964915198
318 => 0.005584203127093
319 => 0.005485432661044
320 => 0.0053402673619895
321 => 0.0053604534871736
322 => 0.00507284304518
323 => 0.0049161376117405
324 => 0.0048727636131088
325 => 0.0048147620894144
326 => 0.0048793150395463
327 => 0.0050720282809342
328 => 0.0048395752254255
329 => 0.0044410507664416
330 => 0.0044650027654792
331 => 0.0045188157959043
401 => 0.004418535569716
402 => 0.0043236287515102
403 => 0.0044061425299066
404 => 0.00423728246298
405 => 0.0045392217282538
406 => 0.0045310551173032
407 => 0.0046435994035984
408 => 0.00471397565546
409 => 0.0045517811795011
410 => 0.0045109897074179
411 => 0.0045342263837855
412 => 0.0041501758837651
413 => 0.0046122142842758
414 => 0.00461621001155
415 => 0.0045819961687521
416 => 0.0048280173531889
417 => 0.0053471987882822
418 => 0.0051518618483752
419 => 0.005076221481153
420 => 0.0049324290877708
421 => 0.0051240239144051
422 => 0.0051093124210645
423 => 0.00504278146901
424 => 0.0050025433416183
425 => 0.0050766833251059
426 => 0.0049933565771933
427 => 0.0049783888036023
428 => 0.004887700380739
429 => 0.0048553287398372
430 => 0.0048313620656656
501 => 0.0048049771123195
502 => 0.0048631757446803
503 => 0.004731289987083
504 => 0.0045722486923408
505 => 0.0045590261295336
506 => 0.0045955347879838
507 => 0.0045793824243696
508 => 0.0045589487982309
509 => 0.0045199354411653
510 => 0.0045083610115124
511 => 0.0045459722927693
512 => 0.0045035113491041
513 => 0.0045661647844494
514 => 0.0045491265168082
515 => 0.0044539521387987
516 => 0.004335329625731
517 => 0.0043342736365455
518 => 0.004308716610685
519 => 0.0042761658957271
520 => 0.0042671110314853
521 => 0.0043991934496397
522 => 0.0046726001023252
523 => 0.0046189238343363
524 => 0.0046577104389235
525 => 0.0048485021449788
526 => 0.0049091490910271
527 => 0.0048661033252237
528 => 0.0048071796260448
529 => 0.0048097719697658
530 => 0.0050111320872768
531 => 0.0050236906708126
601 => 0.005055422159855
602 => 0.0050962060905922
603 => 0.0048730490049829
604 => 0.0047992612911018
605 => 0.0047642965786784
606 => 0.0046566187974611
607 => 0.0047727400529087
608 => 0.0047050811701673
609 => 0.0047142106650057
610 => 0.0047082650695155
611 => 0.0047115117666925
612 => 0.0045391373300757
613 => 0.0046019415150452
614 => 0.0044975173764613
615 => 0.0043577051770572
616 => 0.0043572364775404
617 => 0.0043914553152727
618 => 0.0043711006116063
619 => 0.0043163266274071
620 => 0.0043241070133367
621 => 0.0042559426456868
622 => 0.0043323834017251
623 => 0.0043345754490901
624 => 0.0043051415942592
625 => 0.0044229091257278
626 => 0.0044711585794596
627 => 0.0044517845856757
628 => 0.0044697992484086
629 => 0.0046211543256051
630 => 0.0046458318072731
701 => 0.0046567919145271
702 => 0.0046421068227427
703 => 0.0044725657413734
704 => 0.0044800856092764
705 => 0.0044249098081144
706 => 0.0043782920704152
707 => 0.0043801565354453
708 => 0.0044041241125044
709 => 0.0045087919272013
710 => 0.0047290591727263
711 => 0.0047374181536807
712 => 0.0047475494824461
713 => 0.0047063402767593
714 => 0.0046939111860051
715 => 0.0047103083649304
716 => 0.004793029161248
717 => 0.005005809507854
718 => 0.0049305987222419
719 => 0.0048694511828136
720 => 0.0049230940601505
721 => 0.0049148361596512
722 => 0.0048451311689804
723 => 0.0048431747820519
724 => 0.004709388618921
725 => 0.004659930920575
726 => 0.0046186003659925
727 => 0.0045734684793499
728 => 0.0045467127841137
729 => 0.0045878216922426
730 => 0.004597223785918
731 => 0.0045073384398333
801 => 0.0044950873992998
802 => 0.0045684897132224
803 => 0.0045361880915792
804 => 0.0045694111104809
805 => 0.0045771191358479
806 => 0.004575877966233
807 => 0.0045421513634198
808 => 0.0045636476943111
809 => 0.0045128024633884
810 => 0.0044575159114667
811 => 0.0044222465358145
812 => 0.0043914693277542
813 => 0.0044085463115679
814 => 0.0043476699824061
815 => 0.0043281944195088
816 => 0.0045563652210879
817 => 0.0047249174454638
818 => 0.0047224666293674
819 => 0.0047075479166791
820 => 0.0046853817357746
821 => 0.0047914075670502
822 => 0.0047544702874872
823 => 0.0047813452445823
824 => 0.0047881860491013
825 => 0.0048088911040621
826 => 0.004816291381551
827 => 0.0047939226031564
828 => 0.0047188502507481
829 => 0.0045317770862117
830 => 0.0044446940231256
831 => 0.0044159551618241
901 => 0.0044169997648496
902 => 0.0043881849500946
903 => 0.0043966722044293
904 => 0.0043852334293995
905 => 0.0043635711568298
906 => 0.0044072087272794
907 => 0.0044122375507616
908 => 0.0044020520203885
909 => 0.004404451081513
910 => 0.0043201192403209
911 => 0.0043265308070476
912 => 0.0042908303887708
913 => 0.0042841369907188
914 => 0.0041938894421061
915 => 0.0040340028281473
916 => 0.0041225955328496
917 => 0.0040155880035886
918 => 0.0039750626308288
919 => 0.0041669034424852
920 => 0.0041476479458307
921 => 0.0041146909057215
922 => 0.0040659405745509
923 => 0.004047858602507
924 => 0.003937998264425
925 => 0.003931507129569
926 => 0.0039859568796011
927 => 0.0039608301934628
928 => 0.0039255428099045
929 => 0.0037977354836808
930 => 0.0036540377334538
1001 => 0.0036583750652813
1002 => 0.0037040826460368
1003 => 0.0038369836015905
1004 => 0.0037850568990458
1005 => 0.0037473834805594
1006 => 0.0037403283817357
1007 => 0.0038286377143642
1008 => 0.0039536139214107
1009 => 0.004012249961572
1010 => 0.0039541434265752
1011 => 0.003887393767849
1012 => 0.0038914565102875
1013 => 0.0039184841155904
1014 => 0.0039213243347579
1015 => 0.0038778771689029
1016 => 0.0038901072915979
1017 => 0.0038715286168784
1018 => 0.0037575113244184
1019 => 0.0037554491131506
1020 => 0.0037274674308037
1021 => 0.0037266201565829
1022 => 0.0036790163345531
1023 => 0.0036723562307814
1024 => 0.0035778359527957
1025 => 0.0036400494859997
1026 => 0.0035983199142836
1027 => 0.0035354236066965
1028 => 0.0035245802595615
1029 => 0.0035242542954529
1030 => 0.0035888347399877
1031 => 0.0036392948259047
1101 => 0.0035990458180495
1102 => 0.0035898818991552
1103 => 0.0036877285781803
1104 => 0.0036752766963821
1105 => 0.0036644934470508
1106 => 0.0039424236728208
1107 => 0.0037224202119579
1108 => 0.0036264861456632
1109 => 0.0035077495212383
1110 => 0.0035464107648731
1111 => 0.0035545572569588
1112 => 0.0032690170791023
1113 => 0.0031531734645077
1114 => 0.0031134203014533
1115 => 0.0030905417940883
1116 => 0.0031009678171848
1117 => 0.0029966949769489
1118 => 0.003066768050101
1119 => 0.0029764765844205
1120 => 0.0029613389263653
1121 => 0.0031227912519683
1122 => 0.0031452563998852
1123 => 0.0030494130994975
1124 => 0.0031109600139673
1125 => 0.0030886422472144
1126 => 0.0029780243724474
1127 => 0.0029737995832813
1128 => 0.0029182954221295
1129 => 0.0028314421576503
1130 => 0.0027917478851991
1201 => 0.0027710747634651
1202 => 0.0027796048964037
1203 => 0.0027752918001635
1204 => 0.002747145929706
1205 => 0.0027769050885118
1206 => 0.0027008827350965
1207 => 0.0026706100214128
1208 => 0.0026569365389635
1209 => 0.0025894623246241
1210 => 0.0026968438055574
1211 => 0.0027179993100576
1212 => 0.0027391964974368
1213 => 0.0029237035416389
1214 => 0.002914486091122
1215 => 0.0029978073547138
1216 => 0.0029945696436286
1217 => 0.0029708050695372
1218 => 0.0028705462405285
1219 => 0.0029105076228296
1220 => 0.0027875126994845
1221 => 0.0028796688588965
1222 => 0.0028376126362741
1223 => 0.0028654496077231
1224 => 0.0028153962230993
1225 => 0.0028430978328037
1226 => 0.002723016064992
1227 => 0.0026108853998056
1228 => 0.0026560100527748
1229 => 0.0027050657111823
1230 => 0.0028114308777592
1231 => 0.0027480806620396
]
'min_raw' => 0.0025894623246241
'max_raw' => 0.0077296081029035
'avg_raw' => 0.0051595352137638
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.002589'
'max' => '$0.007729'
'avg' => '$0.005159'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.0049053676753759
'max_diff' => 0.00023477810290354
'year' => 2026
]
1 => [
'items' => [
101 => 0.0027708637951492
102 => 0.0026945441130823
103 => 0.002537074809339
104 => 0.0025379660684971
105 => 0.0025137428467714
106 => 0.0024928104465521
107 => 0.0027553571963804
108 => 0.0027227053577893
109 => 0.0026706789263615
110 => 0.0027403183722759
111 => 0.0027587321471023
112 => 0.0027592563613848
113 => 0.0028100635034697
114 => 0.0028371792843081
115 => 0.0028419585582074
116 => 0.0029219046940389
117 => 0.0029487015842546
118 => 0.0030590741826152
119 => 0.0028348786997514
120 => 0.0028302615413177
121 => 0.0027412983420926
122 => 0.0026848764746914
123 => 0.0027451615956245
124 => 0.0027985659830316
125 => 0.0027429577652734
126 => 0.0027502190245591
127 => 0.0026755695355771
128 => 0.0027022532153032
129 => 0.0027252367949632
130 => 0.0027125466131874
131 => 0.0026935487968571
201 => 0.0027941874322798
202 => 0.0027885090060633
203 => 0.0028822260170412
204 => 0.0029552851288661
205 => 0.0030862201181349
206 => 0.0029495826310376
207 => 0.0029446030179229
208 => 0.0029932795348737
209 => 0.0029486941321335
210 => 0.0029768705676295
211 => 0.0030816804587705
212 => 0.0030838949266131
213 => 0.0030467997370698
214 => 0.0030445424914148
215 => 0.0030516670283435
216 => 0.0030933956636658
217 => 0.0030788143962927
218 => 0.0030956882080494
219 => 0.003116789168032
220 => 0.0032040716851417
221 => 0.0032251152045233
222 => 0.0031739903622399
223 => 0.0031786063630775
224 => 0.0031594842686552
225 => 0.0031410125650424
226 => 0.0031825342571883
227 => 0.0032584159656958
228 => 0.0032579439095254
301 => 0.0032755469909695
302 => 0.0032865135648774
303 => 0.0032394370016421
304 => 0.0032087918900291
305 => 0.0032205431758206
306 => 0.003239333737711
307 => 0.0032144496498524
308 => 0.0030608535321585
309 => 0.0031074447825089
310 => 0.0030996897202548
311 => 0.0030886455685573
312 => 0.003135493431064
313 => 0.0031309748404391
314 => 0.0029956255082588
315 => 0.0030042901333651
316 => 0.0029961524328096
317 => 0.0030224470081213
318 => 0.0029472741387752
319 => 0.0029703968070891
320 => 0.002984899127894
321 => 0.0029934411062601
322 => 0.0030243005894081
323 => 0.0030206795852395
324 => 0.0030240755027049
325 => 0.0030698319696119
326 => 0.003301252477504
327 => 0.003313848185148
328 => 0.0032518223140453
329 => 0.0032766004261446
330 => 0.0032290318692914
331 => 0.0032609649601886
401 => 0.0032828127699679
402 => 0.0031840867186674
403 => 0.0031782408026362
404 => 0.0031304759134277
405 => 0.0031561420593468
406 => 0.0031153053757284
407 => 0.0031253252694818
408 => 0.0030973087730287
409 => 0.0031477328886155
410 => 0.0032041148849569
411 => 0.0032183592038253
412 => 0.0031808885334475
413 => 0.0031537572986565
414 => 0.0031061237879477
415 => 0.0031853393778384
416 => 0.0032085044303737
417 => 0.0031852177016791
418 => 0.0031798216578154
419 => 0.0031695961644443
420 => 0.0031819910445731
421 => 0.0032083782685227
422 => 0.0031959345410036
423 => 0.0032041538422602
424 => 0.0031728303415766
425 => 0.0032394525859433
426 => 0.0033452647435139
427 => 0.0033456049469026
428 => 0.0033331611523072
429 => 0.003328069419664
430 => 0.0033408375080715
501 => 0.0033477636722582
502 => 0.003389053328901
503 => 0.0034333587755313
504 => 0.0036401129629739
505 => 0.0035820572144803
506 => 0.003765501829441
507 => 0.003910582702573
508 => 0.0039540861128076
509 => 0.0039140650223854
510 => 0.0037771550339479
511 => 0.0037704375767516
512 => 0.0039750389013833
513 => 0.0039172296558405
514 => 0.0039103534300307
515 => 0.003837202004981
516 => 0.0038804435571656
517 => 0.0038709859953876
518 => 0.0038560567714411
519 => 0.0039385586407767
520 => 0.0040929947751802
521 => 0.0040689244553406
522 => 0.0040509570781702
523 => 0.0039722292616347
524 => 0.0040196409916835
525 => 0.004002758582725
526 => 0.0040752961254522
527 => 0.0040323264920439
528 => 0.0039167916939486
529 => 0.0039351909913529
530 => 0.0039324099745645
531 => 0.0039896431030052
601 => 0.0039724631384609
602 => 0.0039290553107587
603 => 0.0040924669292622
604 => 0.0040818558876998
605 => 0.0040968999186135
606 => 0.0041035227662738
607 => 0.0042029885388212
608 => 0.0042437364832842
609 => 0.0042529869800704
610 => 0.0042916943757511
611 => 0.0042520239048043
612 => 0.0044107340731581
613 => 0.0045162670741183
614 => 0.0046388490854121
615 => 0.0048179743508509
616 => 0.0048853271076573
617 => 0.0048731604349914
618 => 0.0050089711669187
619 => 0.0052530200332891
620 => 0.0049224896885089
621 => 0.0052705389441528
622 => 0.0051603505682378
623 => 0.0048990959111477
624 => 0.0048822741912212
625 => 0.0050591988782316
626 => 0.0054516008056505
627 => 0.0053533085734179
628 => 0.0054517615765302
629 => 0.0053369109187605
630 => 0.0053312076155649
701 => 0.0054461835364338
702 => 0.0057148310425551
703 => 0.0055872066824981
704 => 0.0054042258675793
705 => 0.0055393360538185
706 => 0.0054222911066407
707 => 0.005158556081831
708 => 0.0053532334112003
709 => 0.0052230582251422
710 => 0.0052610502649275
711 => 0.0055346591439241
712 => 0.0055017377997239
713 => 0.0055443410675533
714 => 0.005469147414956
715 => 0.0053989046864795
716 => 0.0052677914174846
717 => 0.0052289752423413
718 => 0.0052397026366912
719 => 0.0052289699263774
720 => 0.0051556132573679
721 => 0.0051397718916796
722 => 0.0051133689215064
723 => 0.0051215523059946
724 => 0.0050719069976076
725 => 0.0051655979517781
726 => 0.005182987818474
727 => 0.0052511682817421
728 => 0.0052582470036186
729 => 0.0054481286233322
730 => 0.0053435450180249
731 => 0.0054137087297791
801 => 0.0054074326269933
802 => 0.0049047580917603
803 => 0.0049740222075804
804 => 0.0050817754355196
805 => 0.0050332327523891
806 => 0.0049646047556809
807 => 0.0049091839687387
808 => 0.0048252158094549
809 => 0.0049433993811812
810 => 0.0050987982105797
811 => 0.0052621881743793
812 => 0.00545849051015
813 => 0.005414678114017
814 => 0.0052585184387571
815 => 0.0052655236477145
816 => 0.0053088270930414
817 => 0.0052527451968103
818 => 0.005236205550763
819 => 0.005306554799658
820 => 0.0053070392562719
821 => 0.0052425102569344
822 => 0.0051707980828531
823 => 0.0051704976062252
824 => 0.0051577371175049
825 => 0.0053391809813563
826 => 0.0054389567604307
827 => 0.0054503958927049
828 => 0.0054381868156865
829 => 0.0054428856048699
830 => 0.0053848282774358
831 => 0.0055175301115846
901 => 0.0056393104374509
902 => 0.0056066707086615
903 => 0.0055577391151955
904 => 0.0055187627441349
905 => 0.0055974891143265
906 => 0.0055939835529887
907 => 0.0056382467925432
908 => 0.0056362387563202
909 => 0.0056213546936826
910 => 0.0056066712402183
911 => 0.0056648894734622
912 => 0.0056481235572442
913 => 0.0056313315989274
914 => 0.0055976527558029
915 => 0.0056022302699298
916 => 0.0055533071251933
917 => 0.0055306730398673
918 => 0.0051903107033298
919 => 0.0050993547653468
920 => 0.0051279713550151
921 => 0.0051373926793633
922 => 0.0050978085385899
923 => 0.0051545620281275
924 => 0.0051457170568999
925 => 0.0051801276658115
926 => 0.0051586294112985
927 => 0.0051595117071626
928 => 0.0052227334897742
929 => 0.005241087042231
930 => 0.0052317522773201
1001 => 0.0052382900266867
1002 => 0.0053889497014275
1003 => 0.0053675307135045
1004 => 0.0053561523030667
1005 => 0.0053593042005194
1006 => 0.0053978009775956
1007 => 0.0054085779733308
1008 => 0.0053629150851146
1009 => 0.0053844499671714
1010 => 0.0054761427617856
1011 => 0.0055082300505378
1012 => 0.0056106372734627
1013 => 0.005567132865021
1014 => 0.0056469870895424
1015 => 0.0058924317514101
1016 => 0.0060885099307888
1017 => 0.0059081883337587
1018 => 0.006268260939782
1019 => 0.0065486291129188
1020 => 0.0065378681154562
1021 => 0.0064889794394371
1022 => 0.0061697877282944
1023 => 0.0058760627568206
1024 => 0.0061217761676795
1025 => 0.0061224025416952
1026 => 0.00610129554179
1027 => 0.0059702017781372
1028 => 0.0060967337629771
1029 => 0.006106777412437
1030 => 0.0061011556395614
1031 => 0.0060006463583344
1101 => 0.0058471872631209
1102 => 0.0058771728029964
1103 => 0.005926289729001
1104 => 0.0058333011412102
1105 => 0.0058035856530338
1106 => 0.0058588323991566
1107 => 0.0060368489262812
1108 => 0.0060031959330078
1109 => 0.006002317117351
1110 => 0.0061462988936646
1111 => 0.0060432390150362
1112 => 0.0058775510166813
1113 => 0.0058357126119404
1114 => 0.005687214460837
1115 => 0.0057897826627364
1116 => 0.0057934739097241
1117 => 0.0057372983537655
1118 => 0.0058821093534462
1119 => 0.0058807748945906
1120 => 0.0060182513865146
1121 => 0.0062810548052608
1122 => 0.0062033309025667
1123 => 0.00611294646007
1124 => 0.0061227737550582
1125 => 0.0062305549252472
1126 => 0.0061653879693461
1127 => 0.0061888224610483
1128 => 0.0062305194543373
1129 => 0.0062556762856666
1130 => 0.0061191540741715
1201 => 0.0060873242160598
1202 => 0.0060222114971252
1203 => 0.0060052248041417
1204 => 0.0060582577550924
1205 => 0.0060442854461987
1206 => 0.005793163674708
1207 => 0.0057669200523589
1208 => 0.0057677249067891
1209 => 0.005701734070576
1210 => 0.0056010822057357
1211 => 0.0058655892969256
1212 => 0.0058443456757287
1213 => 0.0058208943620529
1214 => 0.0058237670141669
1215 => 0.0059385805774753
1216 => 0.0058719829125325
1217 => 0.0060490437199256
1218 => 0.0060126453408607
1219 => 0.0059753134807163
1220 => 0.0059701530804881
1221 => 0.0059557834993372
1222 => 0.005906504858885
1223 => 0.0058469979393518
1224 => 0.0058077063166749
1225 => 0.0053573020829382
1226 => 0.0054408944888389
1227 => 0.00553705993214
1228 => 0.0055702558578087
1229 => 0.0055134719298642
1230 => 0.0059087470344624
1231 => 0.0059809676050381
]
'min_raw' => 0.0024928104465521
'max_raw' => 0.0065486291129188
'avg_raw' => 0.0045207197797355
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.002492'
'max' => '$0.006548'
'avg' => '$0.00452'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -9.6651878071903E-5
'max_diff' => -0.0011809789899848
'year' => 2027
]
2 => [
'items' => [
101 => 0.0057622067859329
102 => 0.0057212855686237
103 => 0.0059114298226565
104 => 0.005796749593285
105 => 0.0058483900935491
106 => 0.0057367715778217
107 => 0.0059635717844516
108 => 0.0059618439468714
109 => 0.0058736135439773
110 => 0.0059481852763276
111 => 0.0059352266027116
112 => 0.0058356146951461
113 => 0.005966729659596
114 => 0.0059667946909825
115 => 0.0058818748464914
116 => 0.0057827070594701
117 => 0.0057649782013893
118 => 0.0057516218883624
119 => 0.0058451052593013
120 => 0.0059289221573703
121 => 0.0060848846247054
122 => 0.0061240972945703
123 => 0.0062771469555881
124 => 0.0061860133343048
125 => 0.0062264116882417
126 => 0.0062702698161363
127 => 0.0062912970154783
128 => 0.0062570343225323
129 => 0.0064947834438468
130 => 0.0065148567541306
131 => 0.0065215871614353
201 => 0.0064414194954084
202 => 0.0065126271463162
203 => 0.0064793114446059
204 => 0.0065659896450874
205 => 0.0065795818936857
206 => 0.0065680697426812
207 => 0.0065723841369254
208 => 0.0063695072037025
209 => 0.0063589869644538
210 => 0.0062155427558158
211 => 0.0062739973311218
212 => 0.0061647193043879
213 => 0.0061993724923536
214 => 0.0062146472874212
215 => 0.0062066686013149
216 => 0.0062773022651051
217 => 0.0062172492213793
218 => 0.0060587593653523
219 => 0.0059002263288701
220 => 0.0058982360757353
221 => 0.00585649712557
222 => 0.0058263275094706
223 => 0.005832139247856
224 => 0.005852620571963
225 => 0.0058251370976805
226 => 0.0058310020903662
227 => 0.0059284000471906
228 => 0.0059479325128212
229 => 0.0058815535627812
301 => 0.0056150324999337
302 => 0.0055496275625935
303 => 0.0055966393345174
304 => 0.0055741707354836
305 => 0.0044987908297239
306 => 0.0047514353872465
307 => 0.0046013225701651
308 => 0.0046705014626348
309 => 0.0045172751479202
310 => 0.0045904027765812
311 => 0.0045768987737609
312 => 0.0049831437459614
313 => 0.0049768007894922
314 => 0.0049798368270922
315 => 0.0048349188420889
316 => 0.0050657771271513
317 => 0.0051795062197684
318 => 0.0051584579915267
319 => 0.0051637553771089
320 => 0.0050727287417295
321 => 0.0049807181638971
322 => 0.0048786642727545
323 => 0.0050682677882552
324 => 0.0050471871139715
325 => 0.0050955385961912
326 => 0.0052185100291326
327 => 0.0052366180397563
328 => 0.0052609553896679
329 => 0.0052522321821751
330 => 0.0054600543749541
331 => 0.0054348857361535
401 => 0.0054955349141512
402 => 0.0053707749535458
403 => 0.0052295972157966
404 => 0.0052564304882948
405 => 0.0052538462283737
406 => 0.0052209456335023
407 => 0.0051912444475375
408 => 0.0051418003411633
409 => 0.0052982488100822
410 => 0.0052918972879525
411 => 0.0053947210483948
412 => 0.0053765459499599
413 => 0.0052551681944107
414 => 0.0052595032246956
415 => 0.0052886583867061
416 => 0.0053895647353124
417 => 0.0054195206098069
418 => 0.0054056438552059
419 => 0.0054384891040514
420 => 0.0054644486495303
421 => 0.0054417492232834
422 => 0.005763125230086
423 => 0.0056296675058045
424 => 0.0056947138720264
425 => 0.0057102270470949
426 => 0.0056704903753639
427 => 0.0056791078365988
428 => 0.0056921609422521
429 => 0.0057714168437186
430 => 0.0059794072620466
501 => 0.0060715248024854
502 => 0.006348664967895
503 => 0.0060638757230901
504 => 0.0060469775078784
505 => 0.0060968988204999
506 => 0.0062596094358611
507 => 0.0063914711069805
508 => 0.006435217230573
509 => 0.0064409990029756
510 => 0.0065230696390226
511 => 0.006570110997078
512 => 0.0065131041051345
513 => 0.0064647967330827
514 => 0.0062917657225251
515 => 0.0063117945331449
516 => 0.0064497731766998
517 => 0.0066446761376227
518 => 0.0068119231542914
519 => 0.006753359078201
520 => 0.007200161638976
521 => 0.0072444602878521
522 => 0.0072383396469242
523 => 0.0073392585615867
524 => 0.0071389550677612
525 => 0.0070533214434534
526 => 0.0064752413352323
527 => 0.0066376582660612
528 => 0.006873740813433
529 => 0.0068424944030242
530 => 0.0066710449466183
531 => 0.0068117930945045
601 => 0.0067652573552118
602 => 0.006728552686862
603 => 0.0068967038881223
604 => 0.006711814735066
605 => 0.0068718964026984
606 => 0.006666590008127
607 => 0.0067536265939675
608 => 0.0067042204183585
609 => 0.0067361922689707
610 => 0.006549285483584
611 => 0.0066501358480729
612 => 0.006545089776856
613 => 0.0065450399713409
614 => 0.0065427210734966
615 => 0.0066663073104376
616 => 0.0066703374531874
617 => 0.0065790070373595
618 => 0.0065658448975895
619 => 0.006614512226876
620 => 0.0065575355302752
621 => 0.0065841945680077
622 => 0.0065583430053701
623 => 0.0065525232741032
624 => 0.0065061506652227
625 => 0.0064861720702755
626 => 0.0064940061921393
627 => 0.0064672642954517
628 => 0.0064511513354007
629 => 0.0065395158001851
630 => 0.0064923062312631
701 => 0.0065322802566673
702 => 0.0064867248095951
703 => 0.0063288097824792
704 => 0.0062379911804638
705 => 0.0059397043329728
706 => 0.0060242981128976
707 => 0.0060803838765063
708 => 0.0060618475319682
709 => 0.0061016707726491
710 => 0.006104115596196
711 => 0.0060911686547007
712 => 0.0060761777550551
713 => 0.0060688810141564
714 => 0.0061232649427078
715 => 0.0061548366437108
716 => 0.0060860128332151
717 => 0.0060698883773635
718 => 0.0061394730496413
719 => 0.006181919659533
720 => 0.0064953215782835
721 => 0.0064721037518676
722 => 0.0065303759399032
723 => 0.00652381538579
724 => 0.0065848939223389
725 => 0.0066847315158807
726 => 0.0064817337731799
727 => 0.006516967162179
728 => 0.0065083287488542
729 => 0.0066026406804207
730 => 0.0066029351119765
731 => 0.006546390397772
801 => 0.0065770442046755
802 => 0.0065599340906052
803 => 0.0065908543793009
804 => 0.0064717936636406
805 => 0.0066167967635047
806 => 0.0066990041773344
807 => 0.0067001456273551
808 => 0.006739111289072
809 => 0.0067787026581153
810 => 0.0068546948433123
811 => 0.006776583277315
812 => 0.0066360681740934
813 => 0.006646212910685
814 => 0.0065638289570787
815 => 0.0065652138462227
816 => 0.0065578211994363
817 => 0.0065800070889347
818 => 0.0064766622187647
819 => 0.0065009170532308
820 => 0.0064669601429421
821 => 0.0065168933464877
822 => 0.0064631734737269
823 => 0.0065083245831497
824 => 0.0065278103051936
825 => 0.0065997130390332
826 => 0.0064525533814765
827 => 0.0061524848778854
828 => 0.0062155629153192
829 => 0.0061222655432817
830 => 0.0061309005702719
831 => 0.0061483446990465
901 => 0.0060918025703243
902 => 0.0061025890266372
903 => 0.0061022036585146
904 => 0.0060988827642265
905 => 0.0060841739727853
906 => 0.0060628433151497
907 => 0.0061478180899395
908 => 0.0061622569600185
909 => 0.0061943527796064
910 => 0.0062898481678977
911 => 0.006280305926671
912 => 0.0062958697180154
913 => 0.0062618940488975
914 => 0.0061324766041177
915 => 0.0061395045940154
916 => 0.0060518654473757
917 => 0.0061921116495871
918 => 0.0061588994977441
919 => 0.006137487407393
920 => 0.0061316449201591
921 => 0.006227377023047
922 => 0.006256021568648
923 => 0.0062381722100934
924 => 0.006201562654949
925 => 0.0062718638234696
926 => 0.0062906734503975
927 => 0.0062948842321943
928 => 0.0064194444239008
929 => 0.0063018457632196
930 => 0.0063301529296757
1001 => 0.0065509973617293
1002 => 0.0063507219363051
1003 => 0.0064568122958273
1004 => 0.0064516197247962
1005 => 0.0065058919628257
1006 => 0.0064471678171899
1007 => 0.0064478957733553
1008 => 0.0064960858440057
1009 => 0.0064284115809023
1010 => 0.0064116544816526
1011 => 0.0063885046690558
1012 => 0.006439051437942
1013 => 0.0064693519398556
1014 => 0.0067135517320127
1015 => 0.0068713159346096
1016 => 0.0068644669745014
1017 => 0.0069270536491744
1018 => 0.006898857779006
1019 => 0.0068078058765374
1020 => 0.0069632203714547
1021 => 0.0069140407224442
1022 => 0.0069180950329553
1023 => 0.0069179441313156
1024 => 0.0069506442985481
1025 => 0.0069274732331376
1026 => 0.0068818006847524
1027 => 0.0069121202538191
1028 => 0.0070021585345027
1029 => 0.0072816401204567
1030 => 0.0074380417185951
1031 => 0.0072722245478651
1101 => 0.0073866030118542
1102 => 0.0073180166906746
1103 => 0.0073055525158499
1104 => 0.0073773906437372
1105 => 0.0074493545147575
1106 => 0.0074447707272819
1107 => 0.0073925286523068
1108 => 0.007363018429747
1109 => 0.00758647972162
1110 => 0.0077511221949082
1111 => 0.0077398946820071
1112 => 0.0077894492725698
1113 => 0.0079349430831277
1114 => 0.0079482452137774
1115 => 0.0079465694510615
1116 => 0.0079135987323126
1117 => 0.0080568562835656
1118 => 0.0081763642531977
1119 => 0.0079059669635379
1120 => 0.0080089307116799
1121 => 0.0080551544555056
1122 => 0.0081230246254086
1123 => 0.0082375329783962
1124 => 0.0083619194215812
1125 => 0.0083795090284755
1126 => 0.0083670283606438
1127 => 0.0082849921576762
1128 => 0.0084210972880482
1129 => 0.0085008244813621
1130 => 0.0085483002004561
1201 => 0.0086686907248721
1202 => 0.0080554399176111
1203 => 0.007621350515689
1204 => 0.0075535611872519
1205 => 0.0076914134523124
1206 => 0.0077277639952576
1207 => 0.0077131111369761
1208 => 0.007224504049431
1209 => 0.0075509887720555
1210 => 0.0079022588819843
1211 => 0.0079157525974993
1212 => 0.0080916057592412
1213 => 0.0081488707571691
1214 => 0.0082904556019722
1215 => 0.0082815994313804
1216 => 0.008316073087983
1217 => 0.0083081481913306
1218 => 0.0085704043021218
1219 => 0.0088597117377339
1220 => 0.00884969394118
1221 => 0.0088081025743805
1222 => 0.0088698728464596
1223 => 0.0091684691240802
1224 => 0.0091409791637447
1225 => 0.0091676833186214
1226 => 0.0095197451580848
1227 => 0.0099774756296001
1228 => 0.0097648138701933
1229 => 0.010226228696333
1230 => 0.010516664870839
1231 => 0.011018944202987
]
'min_raw' => 0.0044987908297239
'max_raw' => 0.011018944202987
'avg_raw' => 0.0077588675163553
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.004498'
'max' => '$0.011018'
'avg' => '$0.007758'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 0.0020059803831717
'max_diff' => 0.0044703150900679
'year' => 2028
]
3 => [
'items' => [
101 => 0.010956056356824
102 => 0.011151590014933
103 => 0.010843473987103
104 => 0.010135977306683
105 => 0.010024013248818
106 => 0.010248168128045
107 => 0.010799231025912
108 => 0.010230813196325
109 => 0.010345803382941
110 => 0.01031268620146
111 => 0.010310921527598
112 => 0.01037827195147
113 => 0.010280576648882
114 => 0.0098825484110868
115 => 0.010064962406873
116 => 0.0099945236028604
117 => 0.010072680707473
118 => 0.010494462366626
119 => 0.010307982641096
120 => 0.010111541398632
121 => 0.010357922310483
122 => 0.010671649876936
123 => 0.01065201736965
124 => 0.010613922099763
125 => 0.010828663141509
126 => 0.01118335242925
127 => 0.011279223518469
128 => 0.011349993596533
129 => 0.011359751594628
130 => 0.011460265039565
131 => 0.010919778913486
201 => 0.011777544276242
202 => 0.0119256566591
203 => 0.011897817669752
204 => 0.012062438349777
205 => 0.01201400276969
206 => 0.011943827213454
207 => 0.012204786007116
208 => 0.011905617808471
209 => 0.011480986214723
210 => 0.011248024924133
211 => 0.011554807144034
212 => 0.011742148340503
213 => 0.011865968954231
214 => 0.011903436997131
215 => 0.010961735312887
216 => 0.010454210334249
217 => 0.01077952802677
218 => 0.011176438063874
219 => 0.01091757405819
220 => 0.010927721037118
221 => 0.010558648993276
222 => 0.011209092750338
223 => 0.011114328566027
224 => 0.011605965321867
225 => 0.011488632264454
226 => 0.011889542953613
227 => 0.011783969733177
228 => 0.012222198268686
301 => 0.012397019496065
302 => 0.012690571545585
303 => 0.012906509628184
304 => 0.013033312600523
305 => 0.01302569982569
306 => 0.013528156375088
307 => 0.013231875302403
308 => 0.012859676447022
309 => 0.012852944544001
310 => 0.013045711605301
311 => 0.013449698482725
312 => 0.013554446402271
313 => 0.013612986199323
314 => 0.013523330462353
315 => 0.013201738592609
316 => 0.013062876853761
317 => 0.013181191078471
318 => 0.013036502948508
319 => 0.013286275253143
320 => 0.013629265975894
321 => 0.013558439747978
322 => 0.013795201209039
323 => 0.014040224413204
324 => 0.014390618599842
325 => 0.014482224615288
326 => 0.014633645875356
327 => 0.014789508091258
328 => 0.014839566834401
329 => 0.014935144507378
330 => 0.014934640765863
331 => 0.015222670516497
401 => 0.015540376250985
402 => 0.015660302810849
403 => 0.015936067322469
404 => 0.015463830260262
405 => 0.015822027496614
406 => 0.016145130370063
407 => 0.01575991380437
408 => 0.016290845096229
409 => 0.016311459955176
410 => 0.016622719850184
411 => 0.016307198316413
412 => 0.01611984263684
413 => 0.016660731463641
414 => 0.016922450529092
415 => 0.016843618616638
416 => 0.01624370387045
417 => 0.015894527756615
418 => 0.014980666515666
419 => 0.016063174631438
420 => 0.016590432757435
421 => 0.01624233839928
422 => 0.016417896946094
423 => 0.017375687452461
424 => 0.017740352064942
425 => 0.017664504374744
426 => 0.017677321385829
427 => 0.017874087791593
428 => 0.01874665839599
429 => 0.018223793863807
430 => 0.018623504207301
501 => 0.018835509132227
502 => 0.019032431121662
503 => 0.018548852953445
504 => 0.017919724861769
505 => 0.017720453586134
506 => 0.016207727275551
507 => 0.016128983301648
508 => 0.01608478192291
509 => 0.015806098482373
510 => 0.015587129635929
511 => 0.015412997479445
512 => 0.014956022700568
513 => 0.015110238273804
514 => 0.014381915854323
515 => 0.014847870728145
516 => 0.013685450560693
517 => 0.014653548617649
518 => 0.014126656859266
519 => 0.014480450504312
520 => 0.014479216151613
521 => 0.013827769880706
522 => 0.013452029266984
523 => 0.013691465810091
524 => 0.013948160790799
525 => 0.013989808687793
526 => 0.014322620430705
527 => 0.014415501034387
528 => 0.014134068469049
529 => 0.013661361986449
530 => 0.01377116092107
531 => 0.013449804195078
601 => 0.012886638893585
602 => 0.01329111404504
603 => 0.013429219645264
604 => 0.013490214946025
605 => 0.012936406551979
606 => 0.012762387930805
607 => 0.012669741877049
608 => 0.013589872277205
609 => 0.013640279097603
610 => 0.013382390677643
611 => 0.014548070789845
612 => 0.014284241479517
613 => 0.014579003458903
614 => 0.013761197818611
615 => 0.013792439095391
616 => 0.01340527679936
617 => 0.013622061814944
618 => 0.013468845153237
619 => 0.013604547727996
620 => 0.013685887291784
621 => 0.014072986058292
622 => 0.014657968663757
623 => 0.014015166411182
624 => 0.013735088264637
625 => 0.013908847171534
626 => 0.014371590038282
627 => 0.015072669168777
628 => 0.014657616212992
629 => 0.014841809666713
630 => 0.014882047742155
701 => 0.014576003058654
702 => 0.015083953472796
703 => 0.015356168226316
704 => 0.015635404236521
705 => 0.015877857040167
706 => 0.015523871233513
707 => 0.015902686788505
708 => 0.015597428321129
709 => 0.015323579918853
710 => 0.015323995233839
711 => 0.015152206130805
712 => 0.014819343096855
713 => 0.014757958046359
714 => 0.015077290831114
715 => 0.01533336548356
716 => 0.015354457018451
717 => 0.015496233103636
718 => 0.015580134730438
719 => 0.016402484731834
720 => 0.016733240705232
721 => 0.017137682848612
722 => 0.017295235856569
723 => 0.01776941392464
724 => 0.017386476623813
725 => 0.017303625729991
726 => 0.016153424839315
727 => 0.016341770170728
728 => 0.016643329218941
729 => 0.016158397436949
730 => 0.016465975036713
731 => 0.01652669737029
801 => 0.016141919640558
802 => 0.016347446051272
803 => 0.015801628838749
804 => 0.014669865987444
805 => 0.015085213448381
806 => 0.015391048984074
807 => 0.01495458396539
808 => 0.015736930617852
809 => 0.015279899854397
810 => 0.015135043043727
811 => 0.014569904980123
812 => 0.014836628391985
813 => 0.01519737562564
814 => 0.014974475776609
815 => 0.01543702643193
816 => 0.016092121517618
817 => 0.016558981287267
818 => 0.016594820983359
819 => 0.016294661428651
820 => 0.016775669030664
821 => 0.016779172645917
822 => 0.016236594105872
823 => 0.015904267771185
824 => 0.015828762528723
825 => 0.016017389428067
826 => 0.016246417306317
827 => 0.016607530436649
828 => 0.016825743538321
829 => 0.017394727576196
830 => 0.017548678342794
831 => 0.017717823560329
901 => 0.017943853733409
902 => 0.018215260909139
903 => 0.017621437459861
904 => 0.017645031172526
905 => 0.017092070998604
906 => 0.016501153750258
907 => 0.016949586282878
908 => 0.017535852166799
909 => 0.017401362125261
910 => 0.017386229248206
911 => 0.017411678549903
912 => 0.017310277450617
913 => 0.016851644036651
914 => 0.016621321207353
915 => 0.016918496418767
916 => 0.017076431817887
917 => 0.017321375848507
918 => 0.017291181326591
919 => 0.0179221308444
920 => 0.018167298748098
921 => 0.018104574307006
922 => 0.018116117113715
923 => 0.018559981892613
924 => 0.019053650814503
925 => 0.019516036905204
926 => 0.01998639589661
927 => 0.019419359774046
928 => 0.019131453800934
929 => 0.019428499274947
930 => 0.019270882765218
1001 => 0.020176593982215
1002 => 0.020239303461786
1003 => 0.021144949185553
1004 => 0.022004514819694
1005 => 0.021464637045608
1006 => 0.021973717469942
1007 => 0.022524329454796
1008 => 0.023586549307153
1009 => 0.023228831030224
1010 => 0.022954824436257
1011 => 0.022695889528947
1012 => 0.023234691966299
1013 => 0.023927852694372
1014 => 0.024077152876188
1015 => 0.02431907620779
1016 => 0.024064723405588
1017 => 0.024371063339798
1018 => 0.025452577920143
1019 => 0.025160343133741
1020 => 0.024745322757963
1021 => 0.025599074649381
1022 => 0.025908044140009
1023 => 0.028076553833815
1024 => 0.030814386898912
1025 => 0.029680906032381
1026 => 0.028977317881326
1027 => 0.029142677786158
1028 => 0.030142441740033
1029 => 0.030463534191096
1030 => 0.029590694221902
1031 => 0.029898996054935
1101 => 0.031597769466516
1102 => 0.032509106898653
1103 => 0.031271388256864
1104 => 0.027856571612803
1105 => 0.02470795471396
1106 => 0.0255431096996
1107 => 0.025448429042105
1108 => 0.02727354914655
1109 => 0.025153373430734
1110 => 0.025189071752294
1111 => 0.027051933407663
1112 => 0.026554953855545
1113 => 0.025749910629444
1114 => 0.024713832420425
1115 => 0.022798546025417
1116 => 0.021102123453647
1117 => 0.024429198779675
1118 => 0.024285729241722
1119 => 0.024077964089773
1120 => 0.024540322952898
1121 => 0.026785406349382
1122 => 0.026733649910467
1123 => 0.026404401852459
1124 => 0.026654133602599
1125 => 0.02570613144621
1126 => 0.025950453187519
1127 => 0.024707455956957
1128 => 0.025269342617321
1129 => 0.025748183368245
1130 => 0.025844317738351
1201 => 0.026060913382943
1202 => 0.024210127314528
1203 => 0.025041075923022
1204 => 0.025529180381157
1205 => 0.023323906681911
1206 => 0.025485589210619
1207 => 0.024177909246704
1208 => 0.023734063026257
1209 => 0.024331643489796
1210 => 0.024098765801989
1211 => 0.023898551241049
1212 => 0.023786828075922
1213 => 0.024225625215795
1214 => 0.024205154804744
1215 => 0.023487197517056
1216 => 0.02255065150295
1217 => 0.022864987086359
1218 => 0.022750786021995
1219 => 0.022336906632508
1220 => 0.022615811369034
1221 => 0.021387656059831
1222 => 0.019274678684305
1223 => 0.020670576260825
1224 => 0.020616835722573
1225 => 0.020589737306247
1226 => 0.021638715755227
1227 => 0.021537880681408
1228 => 0.021354864035047
1229 => 0.022333545388275
1230 => 0.021976313529225
1231 => 0.023077217944405
]
'min_raw' => 0.0098825484110868
'max_raw' => 0.032509106898653
'avg_raw' => 0.02119582765487
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.009882'
'max' => '$0.0325091'
'avg' => '$0.021195'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072435
'min_diff' => 0.0053837575813629
'max_diff' => 0.021490162695666
'year' => 2029
]
4 => [
'items' => [
101 => 0.023802344794276
102 => 0.023618429169753
103 => 0.024300414476899
104 => 0.022872228743332
105 => 0.023346614755157
106 => 0.023444385054723
107 => 0.022321468612292
108 => 0.021554378546533
109 => 0.021503222384614
110 => 0.02017319392211
111 => 0.020883684391165
112 => 0.02150888660184
113 => 0.021209463260578
114 => 0.021114674775752
115 => 0.021598928587613
116 => 0.021636559256148
117 => 0.020778576025631
118 => 0.020956977908051
119 => 0.021700943414586
120 => 0.020938231886105
121 => 0.019456407974487
122 => 0.019088895156587
123 => 0.019039862172074
124 => 0.018043138262121
125 => 0.01911345412041
126 => 0.018646232565585
127 => 0.020122179859103
128 => 0.01927912668071
129 => 0.019242784343178
130 => 0.019187847569737
131 => 0.018329926126294
201 => 0.018517756398656
202 => 0.019142132831346
203 => 0.019364917376633
204 => 0.01934167912334
205 => 0.019139073046198
206 => 0.019231825070803
207 => 0.018933038482604
208 => 0.018827530719606
209 => 0.018494519197388
210 => 0.018005084256509
211 => 0.018073143186917
212 => 0.017103444501416
213 => 0.01657510119175
214 => 0.016428862727088
215 => 0.016233306540415
216 => 0.016450951318728
217 => 0.017100697466876
218 => 0.016316965760874
219 => 0.014973312723321
220 => 0.015054068560351
221 => 0.015235502949535
222 => 0.0148974011656
223 => 0.014577416201836
224 => 0.014855617166628
225 => 0.014286293661552
226 => 0.015304302975148
227 => 0.015276768676154
228 => 0.015656219594989
301 => 0.015893498041654
302 => 0.015346648041901
303 => 0.015209116745803
304 => 0.01528746082251
305 => 0.013992607748141
306 => 0.015550402473954
307 => 0.015563874347432
308 => 0.015448519987705
309 => 0.016277997587684
310 => 0.018028454044191
311 => 0.017369861913305
312 => 0.017114835134173
313 => 0.016630029040621
314 => 0.017276004375342
315 => 0.017226403548421
316 => 0.017002089798526
317 => 0.016866424142689
318 => 0.017116392273306
319 => 0.01683545032503
320 => 0.016784985431352
321 => 0.016479223082005
322 => 0.016370079834589
323 => 0.016289274519319
324 => 0.016200315806974
325 => 0.016396536559278
326 => 0.015951874519568
327 => 0.015415655690437
328 => 0.015371074896762
329 => 0.01549416638768
330 => 0.015439707566033
331 => 0.015370814168876
401 => 0.015239277911704
402 => 0.015200253914028
403 => 0.015327062974722
404 => 0.015183902938626
405 => 0.015395143370216
406 => 0.01533769766129
407 => 0.015016810600968
408 => 0.014616866516201
409 => 0.014613306174935
410 => 0.014527138877912
411 => 0.014417391869813
412 => 0.014386862762831
413 => 0.014832187857339
414 => 0.015753997475511
415 => 0.015573024190429
416 => 0.015703795935789
417 => 0.016347063493406
418 => 0.016551538906242
419 => 0.016406407101477
420 => 0.016207741735774
421 => 0.016216482003621
422 => 0.016895381698324
423 => 0.016937723839527
424 => 0.017044708770255
425 => 0.017182214640179
426 => 0.016429824945717
427 => 0.016181044516673
428 => 0.016063158547579
429 => 0.015700115390382
430 => 0.016091626310451
501 => 0.015863509663496
502 => 0.015894290392745
503 => 0.015874244402441
504 => 0.015885190868651
505 => 0.015304018420798
506 => 0.015515767115271
507 => 0.015163693841375
508 => 0.014692307249708
509 => 0.014690726996564
510 => 0.014806098197061
511 => 0.01473747089253
512 => 0.014552796580605
513 => 0.014579028694976
514 => 0.01434920777036
515 => 0.014606933116266
516 => 0.014614323757001
517 => 0.014515085460433
518 => 0.014912146915045
519 => 0.015074823316972
520 => 0.01500950254428
521 => 0.015070240237428
522 => 0.015580544447469
523 => 0.01566374629984
524 => 0.015700699066657
525 => 0.015651187254426
526 => 0.015079567661609
527 => 0.015104921421264
528 => 0.014918892355395
529 => 0.014761717397996
530 => 0.014768003572018
531 => 0.014848811931435
601 => 0.015201706776359
602 => 0.015944353173214
603 => 0.015972536061108
604 => 0.016006694543387
605 => 0.015867754829279
606 => 0.01582584928203
607 => 0.015881133515591
608 => 0.016160032455757
609 => 0.016877436250189
610 => 0.016623857835448
611 => 0.016417694637081
612 => 0.016598555343248
613 => 0.016570713255167
614 => 0.016335698012473
615 => 0.016329101917353
616 => 0.015878032527706
617 => 0.015711282444706
618 => 0.015571933594324
619 => 0.015419768287501
620 => 0.015329559592989
621 => 0.015468161146878
622 => 0.015499860962137
623 => 0.015196806242219
624 => 0.015155501003719
625 => 0.015402982029896
626 => 0.015294074857298
627 => 0.015406088585083
628 => 0.015432076730764
629 => 0.015427892040752
630 => 0.015314180444651
701 => 0.015386656825077
702 => 0.01521522857912
703 => 0.015028826109333
704 => 0.014909912946892
705 => 0.014806145441121
706 => 0.014863721684326
707 => 0.014658472890307
708 => 0.014592809670258
709 => 0.015362103458159
710 => 0.015930389050583
711 => 0.015922125953003
712 => 0.015871826471583
713 => 0.015797091645071
714 => 0.016154565137703
715 => 0.016030028520778
716 => 0.016120639314974
717 => 0.01614370356502
718 => 0.016213512103401
719 => 0.016238462655625
720 => 0.01616304475753
721 => 0.015909933080001
722 => 0.015279202844735
723 => 0.014985596217595
724 => 0.014888701140234
725 => 0.014892223092266
726 => 0.014795071932533
727 => 0.014823687303084
728 => 0.014785120674441
729 => 0.014712084810061
730 => 0.01485921192551
731 => 0.014876166954981
801 => 0.014841825728197
802 => 0.014849914330276
803 => 0.014565583639835
804 => 0.014587200684696
805 => 0.014466834231952
806 => 0.014444266973102
807 => 0.014139991062071
808 => 0.013600922180182
809 => 0.013899618669431
810 => 0.0135388353135
811 => 0.01340220118985
812 => 0.014049005880247
813 => 0.0139840846289
814 => 0.013872967667185
815 => 0.013708602522004
816 => 0.013647637890815
817 => 0.013277236090768
818 => 0.013255350776404
819 => 0.013438931910198
820 => 0.013354215533593
821 => 0.01323524165624
822 => 0.012804330332654
823 => 0.012319843335107
824 => 0.012334466952187
825 => 0.012488573251905
826 => 0.012936658102403
827 => 0.012761583599367
828 => 0.012634565038666
829 => 0.01261077828041
830 => 0.012908519360928
831 => 0.013329885368546
901 => 0.013527580871787
902 => 0.013331670632176
903 => 0.013106619497469
904 => 0.013120317317252
905 => 0.013211442775537
906 => 0.013221018772759
907 => 0.013074533619694
908 => 0.01311576833224
909 => 0.013053129033302
910 => 0.01266871177134
911 => 0.012661758882071
912 => 0.01256741668642
913 => 0.01256456004223
914 => 0.012404060432664
915 => 0.012381605427804
916 => 0.01206292371138
917 => 0.012272680982187
918 => 0.012131986817681
919 => 0.011919927525371
920 => 0.011883368423447
921 => 0.011882269412697
922 => 0.012100006890309
923 => 0.012270136592988
924 => 0.012134434252909
925 => 0.012103537460552
926 => 0.012433434370322
927 => 0.012391451981477
928 => 0.012355095503494
929 => 0.013292156664146
930 => 0.012550399635696
1001 => 0.012226951233281
1002 => 0.011826622414106
1003 => 0.011956971496262
1004 => 0.011984437963099
1005 => 0.011021719317677
1006 => 0.010631144483129
1007 => 0.010497113918414
1008 => 0.010419977433506
1009 => 0.010455129498298
1010 => 0.010103566337345
1011 => 0.010339822595823
1012 => 0.010035398615333
1013 => 0.009984360944322
1014 => 0.010528708732334
1015 => 0.010604451547002
1016 => 0.01028130916818
1017 => 0.010488818887383
1018 => 0.010413572978599
1019 => 0.010040617090728
1020 => 0.010026372919089
1021 => 0.0098392367645894
1022 => 0.0095464049194967
1023 => 0.0094125729085619
1024 => 0.0093428720352843
1025 => 0.0093716319740416
1026 => 0.0093570900689372
1027 => 0.0092621943016078
1028 => 0.0093625293832396
1029 => 0.0091062147109887
1030 => 0.0090041481432308
1031 => 0.0089580470425009
1101 => 0.0087305530179562
1102 => 0.0090925971780587
1103 => 0.0091639244385111
1104 => 0.0092353922357006
1105 => 0.0098574706170982
1106 => 0.0098263933391389
1107 => 0.010107316796643
1108 => 0.01009640062767
1109 => 0.010016276706931
1110 => 0.0096782470650805
1111 => 0.0098129796555232
1112 => 0.0093982936842339
1113 => 0.0097090046098289
1114 => 0.0095672091189858
1115 => 0.0096610634117414
1116 => 0.0094923049308664
1117 => 0.0095857028420496
1118 => 0.0091808387780312
1119 => 0.008802782411642
1120 => 0.0089549233296304
1121 => 0.0091203179069081
1122 => 0.0094789354922008
1123 => 0.0092653458169313
1124 => 0.009342160740878
1125 => 0.0090848436043195
1126 => 0.008553924852593
1127 => 0.0085569297950702
1128 => 0.0084752595118108
1129 => 0.0084046844630181
1130 => 0.0092898791604927
1201 => 0.0091797912070044
1202 => 0.0090043804610759
1203 => 0.0092391747150472
1204 => 0.009301258042483
1205 => 0.0093030254675363
1206 => 0.0094743252943168
1207 => 0.0095657480425768
1208 => 0.0095818616982065
1209 => 0.0098514056768234
1210 => 0.0099417532630848
1211 => 0.010313882184426
1212 => 0.0095579914611221
1213 => 0.0095424243891034
1214 => 0.0092424787517034
1215 => 0.0090522484865115
1216 => 0.0092555039807102
1217 => 0.0094355606014285
1218 => 0.0092480736128151
1219 => 0.0092725554554616
1220 => 0.0090208694914978
1221 => 0.0091108353806896
1222 => 0.0091883261241756
1223 => 0.009145540290318
1224 => 0.0090814878261754
1225 => 0.0094207980118682
1226 => 0.0094016528014241
1227 => 0.0097176262470487
1228 => 0.009963950143391
1229 => 0.0104054066013
1230 => 0.0099447237738263
1231 => 0.0099279346605448
]
'min_raw' => 0.0084046844630181
'max_raw' => 0.024300414476899
'avg_raw' => 0.016352549469958
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.0084046'
'max' => '$0.02430041'
'avg' => '$0.016352'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -0.0014778639480687
'max_diff' => -0.0082086924217539
'year' => 2030
]
5 => [
'items' => [
101 => 0.01009205093593
102 => 0.0099417281377381
103 => 0.010036726957229
104 => 0.010390100822804
105 => 0.010397567055744
106 => 0.010272498034295
107 => 0.010264887572974
108 => 0.010288908446648
109 => 0.010429599454038
110 => 0.010380437693058
111 => 0.010437328927487
112 => 0.01050847228729
113 => 0.010802751387597
114 => 0.010873701082403
115 => 0.010701330107222
116 => 0.010716893276325
117 => 0.010652421799918
118 => 0.010590143161535
119 => 0.010730136445557
120 => 0.010985976923681
121 => 0.010984385353345
122 => 0.011043735371442
123 => 0.011080709941034
124 => 0.010921988021305
125 => 0.010818665887929
126 => 0.010858286168423
127 => 0.010921639859752
128 => 0.010837741420185
129 => 0.010319881385642
130 => 0.010476967039095
131 => 0.010450820305264
201 => 0.010413584176738
202 => 0.010571535015993
203 => 0.010556300272223
204 => 0.010099960548989
205 => 0.010129173937479
206 => 0.0101017371119
207 => 0.010190391108392
208 => 0.0099369405309899
209 => 0.010014900221583
210 => 0.010063795808697
211 => 0.01009259568514
212 => 0.010196640587114
213 => 0.010184432118749
214 => 0.010195881691579
215 => 0.01035015281437
216 => 0.011130403213992
217 => 0.011172870521718
218 => 0.010963745966788
219 => 0.011047287101683
220 => 0.010886906391122
221 => 0.010994571036579
222 => 0.011068232452615
223 => 0.010735370677823
224 => 0.010715660763775
225 => 0.01055461810497
226 => 0.010641153307889
227 => 0.010503469577944
228 => 0.0105372523493
301 => 0.010442792775459
302 => 0.010612801201659
303 => 0.01080289703879
304 => 0.010850922754361
305 => 0.010724587773064
306 => 0.010633112920723
307 => 0.010472513213703
308 => 0.010739594105676
309 => 0.010817696697631
310 => 0.010739183866009
311 => 0.010720990727383
312 => 0.010686514762561
313 => 0.010728304966299
314 => 0.010817271334142
315 => 0.010775316438018
316 => 0.010803028386058
317 => 0.010697419016566
318 => 0.010922040564865
319 => 0.011278793641683
320 => 0.01127994066116
321 => 0.011237985538884
322 => 0.011220818406784
323 => 0.011263866908289
324 => 0.011287218954414
325 => 0.011426429914537
326 => 0.011575808821159
327 => 0.012272894999238
328 => 0.012077155989869
329 => 0.012695652316903
330 => 0.01318480260989
331 => 0.013331477394807
401 => 0.013196543494266
402 => 0.012734941909498
403 => 0.012712293533563
404 => 0.013402121184367
405 => 0.013207213276907
406 => 0.013184029601507
407 => 0.012937394464682
408 => 0.013083186376901
409 => 0.013051299547061
410 => 0.0130009646262
411 => 0.013279125438762
412 => 0.01379981764829
413 => 0.013718662884414
414 => 0.013658084617842
415 => 0.013392648287792
416 => 0.013552500245833
417 => 0.013495580025337
418 => 0.013740145415052
419 => 0.013595270295972
420 => 0.013205736657811
421 => 0.013267771173608
422 => 0.013258394781341
423 => 0.013451360269769
424 => 0.013393436819841
425 => 0.013247084298105
426 => 0.013798037978924
427 => 0.013762262111457
428 => 0.013812984112023
429 => 0.013835313505303
430 => 0.014170669301925
501 => 0.014308053841612
502 => 0.014339242537376
503 => 0.014469747224378
504 => 0.014335995461877
505 => 0.014871097875271
506 => 0.015226909756088
507 => 0.015640203565568
508 => 0.016244136904121
509 => 0.016471221426113
510 => 0.01643020063977
511 => 0.016888096004465
512 => 0.017710923796381
513 => 0.016596517662063
514 => 0.017769990027489
515 => 0.017398482224985
516 => 0.016517643908388
517 => 0.016460928305201
518 => 0.017057442239944
519 => 0.018380452734864
520 => 0.018049053611347
521 => 0.01838099478511
522 => 0.017993767773822
523 => 0.017974538688907
524 => 0.018362188033479
525 => 0.019267951856737
526 => 0.018837657416356
527 => 0.018220724823545
528 => 0.018676258249542
529 => 0.018281633038315
530 => 0.017392431988778
531 => 0.018048800196683
601 => 0.017609905468347
602 => 0.017737998283003
603 => 0.018660489721302
604 => 0.018549493110836
605 => 0.018693133002788
606 => 0.018439612353203
607 => 0.018202784089954
608 => 0.017760726549501
609 => 0.017629855104947
610 => 0.01766602326396
611 => 0.017629837181803
612 => 0.017382510050639
613 => 0.017329099780212
614 => 0.017240080322876
615 => 0.017267671175024
616 => 0.017100288551672
617 => 0.017416174144952
618 => 0.017474805294639
619 => 0.017704680486755
620 => 0.017728546891782
621 => 0.018368746029758
622 => 0.018016135102671
623 => 0.018252696955524
624 => 0.018231536636798
625 => 0.016536734345644
626 => 0.016770263147998
627 => 0.017133560679085
628 => 0.016969895633769
629 => 0.016738511551414
630 => 0.016551656498882
701 => 0.016268551987387
702 => 0.016667016150776
703 => 0.017190954153692
704 => 0.017741834824166
705 => 0.018403681854608
706 => 0.018255965302162
707 => 0.017729462054303
708 => 0.017753080605391
709 => 0.01789908119466
710 => 0.017709997166004
711 => 0.017654232594595
712 => 0.017891419998872
713 => 0.017893053378169
714 => 0.017675489351632
715 => 0.017433706749933
716 => 0.017432693672003
717 => 0.017389670793374
718 => 0.018001421448355
719 => 0.018337822453627
720 => 0.018376390286744
721 => 0.018335226531166
722 => 0.018351068826957
723 => 0.018155324494079
724 => 0.018602737992858
725 => 0.019013328863947
726 => 0.018903281739501
727 => 0.018738305455835
728 => 0.018606893899561
729 => 0.018872325353162
730 => 0.018860506108361
731 => 0.01900974271088
801 => 0.019002972476557
802 => 0.018952789820203
803 => 0.018903283531682
804 => 0.019099570369731
805 => 0.019043042912643
806 => 0.018986427652801
807 => 0.018872877081825
808 => 0.018888310490295
809 => 0.018723362692111
810 => 0.018647050293174
811 => 0.017499494912198
812 => 0.017192830616947
813 => 0.01728931344696
814 => 0.017321078099776
815 => 0.017187617405482
816 => 0.01737896575786
817 => 0.01734914431983
818 => 0.017465162090248
819 => 0.017392679224197
820 => 0.017395653946303
821 => 0.017608810600382
822 => 0.017670690883894
823 => 0.017639218072264
824 => 0.017661260550705
825 => 0.018169220162816
826 => 0.018097004549608
827 => 0.018058641444401
828 => 0.018069268286722
829 => 0.018199062858393
830 => 0.01823539825194
831 => 0.018081442636238
901 => 0.01815404899461
902 => 0.018463197653438
903 => 0.01857138218773
904 => 0.018916655289665
905 => 0.018769977139223
906 => 0.019039211232441
907 => 0.019866745046327
908 => 0.020527836317843
909 => 0.019919869463804
910 => 0.021133879394479
911 => 0.02207916026489
912 => 0.022042878810636
913 => 0.021878047226139
914 => 0.020801870086768
915 => 0.019811555838221
916 => 0.020639995758095
917 => 0.020642107621821
918 => 0.020570943897997
919 => 0.020128952121167
920 => 0.020555563542236
921 => 0.020589426407615
922 => 0.020570472207865
923 => 0.020231598148874
924 => 0.01971420009519
925 => 0.019815298436404
926 => 0.019980899581663
927 => 0.01966738206567
928 => 0.019567194222614
929 => 0.019753462484372
930 => 0.02035365763429
1001 => 0.020240194217892
1002 => 0.020237231229548
1003 => 0.020722675840875
1004 => 0.020375202264669
1005 => 0.019816573610249
1006 => 0.019675512507601
1007 => 0.019174840623346
1008 => 0.019520656477133
1009 => 0.019533101774067
1010 => 0.0193437019651
1011 => 0.019831942360904
1012 => 0.019827443139704
1013 => 0.020290954730528
1014 => 0.021177014805179
1015 => 0.020914963240737
1016 => 0.020610225782419
1017 => 0.020643359193591
1018 => 0.021006750933924
1019 => 0.020787035992292
1020 => 0.02086604701721
1021 => 0.021006631341275
1022 => 0.021091449354496
1023 => 0.020631155186764
1024 => 0.02052383859785
1025 => 0.020304306519938
1026 => 0.020247034698571
1027 => 0.020425838995343
1028 => 0.020378730380393
1029 => 0.01953205579505
1030 => 0.019443573590029
1031 => 0.019446287212933
1101 => 0.019223794501308
1102 => 0.01888443971171
1103 => 0.019776243836952
1104 => 0.019704619484904
1105 => 0.019625551743528
1106 => 0.019635237090692
1107 => 0.020022339035414
1108 => 0.019797800358358
1109 => 0.020394773232475
1110 => 0.020272053556204
1111 => 0.0201461865833
1112 => 0.020128787933643
1113 => 0.020080339887541
1114 => 0.019914193510731
1115 => 0.019713561776885
1116 => 0.019581087327776
1117 => 0.018062518007513
1118 => 0.018344355640243
1119 => 0.018668584146389
1120 => 0.018780506527447
1121 => 0.018589055549855
1122 => 0.019921753162234
1123 => 0.020165249858209
1124 => 0.019427682483203
1125 => 0.019289713742017
1126 => 0.019930798369937
1127 => 0.019544145969893
1128 => 0.019718255521958
1129 => 0.019341925903227
1130 => 0.020106598634565
1201 => 0.020100773109529
1202 => 0.019803298146122
1203 => 0.020054721948173
1204 => 0.020011030875331
1205 => 0.019675182374292
1206 => 0.02011724563109
1207 => 0.02011746488895
1208 => 0.019831151704334
1209 => 0.019496800586718
1210 => 0.019437026503909
1211 => 0.01939199476203
1212 => 0.019707180473952
1213 => 0.0199897749977
1214 => 0.020515613345272
1215 => 0.020647821599463
1216 => 0.021163839217171
1217 => 0.020856575850268
1218 => 0.020992781721089
1219 => 0.021140652461362
1220 => 0.021211547132016
1221 => 0.021096028070604
1222 => 0.021897615832229
1223 => 0.021965294399325
1224 => 0.021987986437455
1225 => 0.021717695554317
1226 => 0.021957777120912
1227 => 0.021845450906568
1228 => 0.02213769251117
1229 => 0.0221835197263
1230 => 0.022144705705435
1231 => 0.022159251986851
]
'min_raw' => 0.0099369405309899
'max_raw' => 0.0221835197263
'avg_raw' => 0.016060230128645
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.009936'
'max' => '$0.022183'
'avg' => '$0.01606'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 0.0015322560679718
'max_diff' => -0.0021168947505991
'year' => 2031
]
6 => [
'items' => [
101 => 0.021475238242075
102 => 0.021439768520948
103 => 0.02095613635657
104 => 0.021153220038383
105 => 0.020784781541701
106 => 0.020901617184336
107 => 0.020953117222358
108 => 0.020926216525097
109 => 0.02116436285405
110 => 0.020961889824359
111 => 0.020427530209356
112 => 0.019893025008433
113 => 0.019886314731034
114 => 0.019745588946431
115 => 0.019643869979377
116 => 0.019663464661106
117 => 0.019732518875293
118 => 0.019639856422915
119 => 0.019659630655235
120 => 0.019988014666777
121 => 0.020053869738364
122 => 0.019830068473873
123 => 0.018931474102577
124 => 0.018710956789907
125 => 0.018869460261206
126 => 0.018793705810856
127 => 0.015167987377959
128 => 0.016019796142727
129 => 0.015513680299394
130 => 0.015746921765272
131 => 0.015230308547292
201 => 0.015476863452931
202 => 0.015431333764603
203 => 0.016801017051495
204 => 0.016779631330908
205 => 0.016789867543646
206 => 0.016301266439357
207 => 0.017079621265455
208 => 0.017463066841525
209 => 0.017392101270468
210 => 0.01740996177581
211 => 0.017103059119352
212 => 0.016792839032216
213 => 0.016448757213054
214 => 0.01708801870326
215 => 0.017016943738106
216 => 0.017179964136203
217 => 0.017594570907956
218 => 0.017655623330035
219 => 0.017737678404441
220 => 0.017708267501344
221 => 0.018408954533981
222 => 0.018324096711046
223 => 0.018528579649056
224 => 0.018107942731413
225 => 0.017631952131876
226 => 0.017722422383543
227 => 0.017713709370792
228 => 0.017602782718137
229 => 0.017502643095986
301 => 0.017335938839268
302 => 0.017863415775111
303 => 0.017842001174802
304 => 0.018188678662059
305 => 0.018127400048741
306 => 0.017718166471582
307 => 0.01773278232885
308 => 0.017831080993117
309 => 0.018171293792499
310 => 0.01827229211481
311 => 0.018225505667828
312 => 0.018336245717493
313 => 0.018423770137513
314 => 0.018347237437098
315 => 0.019430779081789
316 => 0.018980817046654
317 => 0.019200125411763
318 => 0.019252429164602
319 => 0.019118454201535
320 => 0.01914750857374
321 => 0.019191518030789
322 => 0.019458734836054
323 => 0.020159989052874
324 => 0.020470569771905
325 => 0.021404967188891
326 => 0.020444780366681
327 => 0.0203878068543
328 => 0.020556120045198
329 => 0.02110471024498
330 => 0.021549291075447
331 => 0.021696784185396
401 => 0.021716277834722
402 => 0.021992984714143
403 => 0.02215158793715
404 => 0.021959385220868
405 => 0.021796513543283
406 => 0.021213127410548
407 => 0.02128065594392
408 => 0.021745860574027
409 => 0.022402989514468
410 => 0.022966874507981
411 => 0.022769421636629
412 => 0.02427584766504
413 => 0.024425203652559
414 => 0.024404567484341
415 => 0.024744822651059
416 => 0.024069485436883
417 => 0.023780765693781
418 => 0.021831728248649
419 => 0.022379328270527
420 => 0.023175297061748
421 => 0.0230699476075
422 => 0.022491893795008
423 => 0.022966436002328
424 => 0.022809537508282
425 => 0.022685785156302
426 => 0.023252718671293
427 => 0.022629351983215
428 => 0.023169078502183
429 => 0.022476873658851
430 => 0.022770323584713
501 => 0.022603747214218
502 => 0.02271154254076
503 => 0.022081373264414
504 => 0.022421397309436
505 => 0.022067227146246
506 => 0.022067059223474
507 => 0.022059240897492
508 => 0.022475920523854
509 => 0.02248950843151
510 => 0.022181581558061
511 => 0.022137204484875
512 => 0.022301289783409
513 => 0.022109188872833
514 => 0.022199071679823
515 => 0.022111911331492
516 => 0.022092289701205
517 => 0.021935941212732
518 => 0.021868581985007
519 => 0.021894995273831
520 => 0.021804833102089
521 => 0.021750507132307
522 => 0.022048434094737
523 => 0.02188926373705
524 => 0.022024038954597
525 => 0.021870445584214
526 => 0.021338024045017
527 => 0.02103182278757
528 => 0.020026127855531
529 => 0.020311341690697
530 => 0.020500438758487
531 => 0.02043794217871
601 => 0.020572209015036
602 => 0.020580451908316
603 => 0.020536800391138
604 => 0.020486257526352
605 => 0.02046165605497
606 => 0.020645015267046
607 => 0.020751461461243
608 => 0.020519417179032
609 => 0.020465052450354
610 => 0.020699662031186
611 => 0.020842773739963
612 => 0.021899430190054
613 => 0.021821149667276
614 => 0.022017618417672
615 => 0.021995499051436
616 => 0.022201429601778
617 => 0.022538039018842
618 => 0.021853617956477
619 => 0.021972409787404
620 => 0.021943284773764
621 => 0.02226126403569
622 => 0.022262256732237
623 => 0.02207161228047
624 => 0.022174963730626
625 => 0.022117275786448
626 => 0.022221525698571
627 => 0.021820104183169
628 => 0.022308992258154
629 => 0.022586160293419
630 => 0.022590008771857
701 => 0.022721384220831
702 => 0.022854869285742
703 => 0.023111082243739
704 => 0.022847723645403
705 => 0.02237396716444
706 => 0.022408170852142
707 => 0.022130407600694
708 => 0.022135076851133
709 => 0.022110152026355
710 => 0.022184953301768
711 => 0.021836518856681
712 => 0.021918295724502
713 => 0.021803807630668
714 => 0.021972160912647
715 => 0.021791040611032
716 => 0.021943270728801
717 => 0.022008968201122
718 => 0.02225139328835
719 => 0.021755234228539
720 => 0.020743532318568
721 => 0.020956204325743
722 => 0.020641645722105
723 => 0.02067075931848
724 => 0.020729573416554
725 => 0.020538937681922
726 => 0.020575304972467
727 => 0.020574005676936
728 => 0.020562809049987
729 => 0.020513217332707
730 => 0.02044129953123
731 => 0.020727797917183
801 => 0.020776479575744
802 => 0.020884692872343
803 => 0.021206662241242
804 => 0.021174489908729
805 => 0.021226964317876
806 => 0.021112412977339
807 => 0.020676073026627
808 => 0.020699768385245
809 => 0.02040428688358
810 => 0.020877136746013
811 => 0.020765159657275
812 => 0.020692967299712
813 => 0.020673268946094
814 => 0.020996036414783
815 => 0.021092613500174
816 => 0.021032433141605
817 => 0.020909001470439
818 => 0.021146026768377
819 => 0.02120944473881
820 => 0.021223641683626
821 => 0.021643605066479
822 => 0.021247112971516
823 => 0.021342552559566
824 => 0.0220871449811
825 => 0.021411902401499
826 => 0.02176959345562
827 => 0.021752086339856
828 => 0.021935068979539
829 => 0.021737076422538
830 => 0.021739530777574
831 => 0.021902006965295
901 => 0.021673838462376
902 => 0.021617340732313
903 => 0.021539289522874
904 => 0.021709711483237
905 => 0.021811871740952
906 => 0.022635208389694
907 => 0.023167121413495
908 => 0.023144029666311
909 => 0.023355045009633
910 => 0.023259980664787
911 => 0.022952992818574
912 => 0.023476983638881
913 => 0.023311171018629
914 => 0.02332484040958
915 => 0.023324331634166
916 => 0.023434582531043
917 => 0.023356459666259
918 => 0.023202471480623
919 => 0.023304696024576
920 => 0.023608266374173
921 => 0.024550558053998
922 => 0.025077876961733
923 => 0.024518812793631
924 => 0.02490444777062
925 => 0.024673204200219
926 => 0.024631180364577
927 => 0.024873387628326
928 => 0.025116018843829
929 => 0.025100564284325
930 => 0.024924426481121
1001 => 0.024824930705422
1002 => 0.025578346052541
1003 => 0.026133449646203
1004 => 0.026095595302577
1005 => 0.02626267206445
1006 => 0.0267532146048
1007 => 0.02679806366701
1008 => 0.026792413716016
1009 => 0.026681250635812
1010 => 0.027164253471784
1011 => 0.027567182935179
1012 => 0.026655519594555
1013 => 0.027002669060115
1014 => 0.027158515639662
1015 => 0.027387344656034
1016 => 0.027773417562849
1017 => 0.028192795140432
1018 => 0.028252099728143
1019 => 0.028210020285176
1020 => 0.027933429499286
1021 => 0.028392317448892
1022 => 0.028661123247525
1023 => 0.028821190949099
1024 => 0.029227096007566
1025 => 0.027159478095081
1026 => 0.025695915369346
1027 => 0.025467358915621
1028 => 0.02593213745181
1029 => 0.026054695845264
1030 => 0.026005292710538
1031 => 0.024357919801422
1101 => 0.025458685838186
1102 => 0.026643017538707
1103 => 0.026688512542667
1104 => 0.027281413755155
1105 => 0.027474486693784
1106 => 0.027951849883175
1107 => 0.027921990685707
1108 => 0.028038221025817
1109 => 0.028011501683454
1110 => 0.028895716471124
1111 => 0.02987113668909
1112 => 0.029837360988588
1113 => 0.029697132791608
1114 => 0.029905395576585
1115 => 0.030912133773909
1116 => 0.03081944945335
1117 => 0.030909484375941
1118 => 0.032096485447865
1119 => 0.0336397556903
1120 => 0.03292275172089
1121 => 0.034478444022175
1122 => 0.035457669862129
1123 => 0.037151139698487
1124 => 0.03693910893446
1125 => 0.037598364314498
1126 => 0.036559529614696
1127 => 0.034174155160818
1128 => 0.033796660522645
1129 => 0.034552414347954
1130 => 0.036410361382095
1201 => 0.034493900983977
1202 => 0.034881598426513
1203 => 0.034769941536981
1204 => 0.034763991815849
1205 => 0.03499106847219
1206 => 0.034661681938645
1207 => 0.033319701945475
1208 => 0.033934723468007
1209 => 0.033697234122398
1210 => 0.033960746257355
1211 => 0.035382812569044
1212 => 0.03475408315482
1213 => 0.034091767790764
1214 => 0.034922458236835
1215 => 0.03598021263089
1216 => 0.035914020261877
1217 => 0.035785579399729
1218 => 0.036509593814713
1219 => 0.037705453511948
1220 => 0.038028689582758
1221 => 0.038267295841958
1222 => 0.038300195613816
1223 => 0.038639083711048
1224 => 0.036816797001436
1225 => 0.039708812809232
1226 => 0.040208184048914
1227 => 0.040114322952671
1228 => 0.040669353068823
1229 => 0.040506049128896
1230 => 0.040269447341545
1231 => 0.041149288133938
]
'min_raw' => 0.015167987377959
'max_raw' => 0.041149288133938
'avg_raw' => 0.028158637755949
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.015167'
'max' => '$0.041149'
'avg' => '$0.028158'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.0052310468469696
'max_diff' => 0.018965768407638
'year' => 2032
]
7 => [
'items' => [
101 => 0.040140621664951
102 => 0.0387089465998
103 => 0.037923501343736
104 => 0.038957839016982
105 => 0.039589472940624
106 => 0.040006942784688
107 => 0.040133268907259
108 => 0.036958255931319
109 => 0.035247100031579
110 => 0.03634393134487
111 => 0.037682141246338
112 => 0.036809363177866
113 => 0.036843574425762
114 => 0.035599222262163
115 => 0.03779223880163
116 => 0.037472734738002
117 => 0.039130322385297
118 => 0.038734725790298
119 => 0.040086424169486
120 => 0.0397304766859
121 => 0.041207994789509
122 => 0.041797416763244
123 => 0.042787147993351
124 => 0.043515198315148
125 => 0.043942723389491
126 => 0.043917056387633
127 => 0.045611123724326
128 => 0.044612191402083
129 => 0.043357296975074
130 => 0.043334599894031
131 => 0.04398452749977
201 => 0.045346597462469
202 => 0.045699762386485
203 => 0.045897133399364
204 => 0.045594852822605
205 => 0.044510583380935
206 => 0.044042401333392
207 => 0.044441306002438
208 => 0.043953479870464
209 => 0.044795604634089
210 => 0.04595202180269
211 => 0.045713226230343
212 => 0.046511484026465
213 => 0.047337596866283
214 => 0.048518975330272
215 => 0.048827831407077
216 => 0.04933835875729
217 => 0.049863859100157
218 => 0.050032635647655
219 => 0.050354882445115
220 => 0.050353184045427
221 => 0.051324296459285
222 => 0.052395463524617
223 => 0.052799804294206
224 => 0.053729563598395
225 => 0.052137383372623
226 => 0.053345070363519
227 => 0.054434434259673
228 => 0.053135649713476
301 => 0.054925721632421
302 => 0.054995226068643
303 => 0.056044660536134
304 => 0.054980857656015
305 => 0.054349174901579
306 => 0.056172819344791
307 => 0.057055223446599
308 => 0.056789436149892
309 => 0.05476678169841
310 => 0.053589510051918
311 => 0.050508363074305
312 => 0.054158114764931
313 => 0.055935802348719
314 => 0.054762177917026
315 => 0.055354085814716
316 => 0.058583343377729
317 => 0.059812835578782
318 => 0.059557109795762
319 => 0.059600323243488
320 => 0.060263734918314
321 => 0.063205667631974
322 => 0.061442793356482
323 => 0.062790444686457
324 => 0.063505234092557
325 => 0.064169170328589
326 => 0.062538752772096
327 => 0.06041760348669
328 => 0.059745746468212
329 => 0.054645484096904
330 => 0.05437999329116
331 => 0.054230965256702
401 => 0.053291364579875
402 => 0.052553095826174
403 => 0.05196599710307
404 => 0.050425274731126
405 => 0.050945223303278
406 => 0.048489633416149
407 => 0.050060632805172
408 => 0.046141452053024
409 => 0.049405462242498
410 => 0.0476290098927
411 => 0.048821849868056
412 => 0.048817688161755
413 => 0.046621291576864
414 => 0.045354455864327
415 => 0.046161732886339
416 => 0.047027197935666
417 => 0.047167616728146
418 => 0.048289714755547
419 => 0.048602868195579
420 => 0.047653998652547
421 => 0.046060235743147
422 => 0.046430430517139
423 => 0.045346953879047
424 => 0.043448202746119
425 => 0.044811918958803
426 => 0.045277551632182
427 => 0.045483201547254
428 => 0.043615997881061
429 => 0.043029281950179
430 => 0.042716919311601
501 => 0.045819203197181
502 => 0.045989153311443
503 => 0.045119664498354
504 => 0.049049836381828
505 => 0.048160317442084
506 => 0.04915412803521
507 => 0.046396839221597
508 => 0.046502171367459
509 => 0.045196826655581
510 => 0.045927732471068
511 => 0.045411151798876
512 => 0.045868682504128
513 => 0.046142924522387
514 => 0.047448055040042
515 => 0.049420364736549
516 => 0.047253112062971
517 => 0.046308809037463
518 => 0.046894649323527
519 => 0.048454819206443
520 => 0.050818556442689
521 => 0.049419176424186
522 => 0.050040197513384
523 => 0.050175862994069
524 => 0.049144011976289
525 => 0.050856602261531
526 => 0.051774393308452
527 => 0.052715857012494
528 => 0.053533303567501
529 => 0.052339815705869
530 => 0.053617018797579
531 => 0.052587818562357
601 => 0.051664519554597
602 => 0.051665919818071
603 => 0.051086720863257
604 => 0.04996444990454
605 => 0.049757485921028
606 => 0.050834138699932
607 => 0.051697512269215
608 => 0.051768623851662
609 => 0.052246631821353
610 => 0.052529512013942
611 => 0.055302122458293
612 => 0.056417289315248
613 => 0.057780894238903
614 => 0.05831209520523
615 => 0.059910819667786
616 => 0.058619719822219
617 => 0.058340382249232
618 => 0.054462399641858
619 => 0.055097419076567
620 => 0.056114146461797
621 => 0.054479165101956
622 => 0.055516184453942
623 => 0.055720914041098
624 => 0.054423609060982
625 => 0.055116555704101
626 => 0.053276294864338
627 => 0.049460477394004
628 => 0.050860850357185
629 => 0.051891996218529
630 => 0.050420423935023
701 => 0.053058160295496
702 => 0.051517249167639
703 => 0.051028854316886
704 => 0.049123451878765
705 => 0.050022728483893
706 => 0.051239012968728
707 => 0.050487490565348
708 => 0.052047012394019
709 => 0.054255711212696
710 => 0.055829761521174
711 => 0.055950597558798
712 => 0.054938588663627
713 => 0.056560339376693
714 => 0.056572152060132
715 => 0.054742810630748
716 => 0.053622349191065
717 => 0.053367777994498
718 => 0.054003746755145
719 => 0.054775930236881
720 => 0.055993448367911
721 => 0.05672916907535
722 => 0.05864753848424
723 => 0.059166594242325
724 => 0.059736879152587
725 => 0.06049895566205
726 => 0.061414023904066
727 => 0.059411906685398
728 => 0.059491454534909
729 => 0.057627110702085
730 => 0.055634791942761
731 => 0.057146713535048
801 => 0.059123349894463
802 => 0.058669907329624
803 => 0.058618885778089
804 => 0.058704689875573
805 => 0.058362808989734
806 => 0.056816494413783
807 => 0.056039944914181
808 => 0.057041891887573
809 => 0.057574382112402
810 => 0.058400228013083
811 => 0.058298425074332
812 => 0.060425715425112
813 => 0.061252316129505
814 => 0.061040836297083
815 => 0.061079753675795
816 => 0.062576274767501
817 => 0.064240714004515
818 => 0.06579968099208
819 => 0.067385529171021
820 => 0.0654737272946
821 => 0.0645030322053
822 => 0.065504541759987
823 => 0.064973126693002
824 => 0.068026795295844
825 => 0.068238224684454
826 => 0.071291672472299
827 => 0.074189758020763
828 => 0.072369522412369
829 => 0.074085922605872
830 => 0.075942349355307
831 => 0.079523697749352
901 => 0.078317625603594
902 => 0.077393793241502
903 => 0.076520776123252
904 => 0.078337386158767
905 => 0.080674425948403
906 => 0.081177801935202
907 => 0.081993463338243
908 => 0.081135895107276
909 => 0.082168741583433
910 => 0.085815143500006
911 => 0.084829853514468
912 => 0.083430583341735
913 => 0.086309067450707
914 => 0.08735077965992
915 => 0.094662061493098
916 => 0.10389285682147
917 => 0.10007124694286
918 => 0.097699050368618
919 => 0.098256572832819
920 => 0.1016273468046
921 => 0.10270993242132
922 => 0.099767091525438
923 => 0.10080655268046
924 => 0.10653408584217
925 => 0.10960672362217
926 => 0.10543366880662
927 => 0.093920376076288
928 => 0.083304594372427
929 => 0.086120377715171
930 => 0.085801155268034
1001 => 0.091954675125986
1002 => 0.08480635467417
1003 => 0.084926714057689
1004 => 0.091207482189613
1005 => 0.089531880931641
1006 => 0.086817621488521
1007 => 0.083324411470141
1008 => 0.076866889668347
1009 => 0.071147282527181
1010 => 0.082364749277865
1011 => 0.081881031713936
1012 => 0.08118053699844
1013 => 0.082739412186332
1014 => 0.090308867604292
1015 => 0.090134367156972
1016 => 0.089024284342032
1017 => 0.089866272373343
1018 => 0.08667001691568
1019 => 0.087493764724504
1020 => 0.083302912778368
1021 => 0.085197352883459
1022 => 0.086811797906792
1023 => 0.087135921647494
1024 => 0.087866188985462
1025 => 0.081626134538042
1026 => 0.08442773578656
1027 => 0.086073414045528
1028 => 0.078638179801225
1029 => 0.085926443370619
1030 => 0.08151750907298
1031 => 0.080021050552391
1101 => 0.082035834806946
1102 => 0.081250671423504
1103 => 0.080575634052761
1104 => 0.080198951601273
1105 => 0.081678386794194
1106 => 0.081609369374137
1107 => 0.07918872625252
1108 => 0.076031095978407
1109 => 0.07709090034408
1110 => 0.076705863482312
1111 => 0.075310440224522
1112 => 0.076250787016226
1113 => 0.072109975644182
1114 => 0.064985924899227
1115 => 0.06969229103692
1116 => 0.06951110106016
1117 => 0.069419736857566
1118 => 0.072956440935637
1119 => 0.072616468444176
1120 => 0.071999415043155
1121 => 0.075299107554913
1122 => 0.074094675400994
1123 => 0.077806451499467
1124 => 0.080251267300548
1125 => 0.079631182931888
1126 => 0.081930544009624
1127 => 0.077115316096161
1128 => 0.078714741655601
1129 => 0.079044381046694
1130 => 0.075258389861516
1201 => 0.07267209214829
1202 => 0.07249961557677
1203 => 0.068015331755815
1204 => 0.070410799977095
1205 => 0.072518712880611
1206 => 0.071509186180476
1207 => 0.071189600185966
1208 => 0.072822295722174
1209 => 0.072949170148429
1210 => 0.070056419784266
1211 => 0.070657914186466
1212 => 0.073166245833763
1213 => 0.07059471066467
1214 => 0.065598637889007
1215 => 0.064359542764533
1216 => 0.064194224633874
1217 => 0.060833700382425
1218 => 0.064442345025714
1219 => 0.062867074933255
1220 => 0.067843334280701
1221 => 0.065000921629654
1222 => 0.064878390901325
1223 => 0.064693167734107
1224 => 0.061800625689377
1225 => 0.062433908566536
1226 => 0.064539037301918
1227 => 0.065290170950675
1228 => 0.065211821557253
1229 => 0.064528721022666
1230 => 0.064841440949359
1231 => 0.063834061106635
]
'min_raw' => 0.035247100031579
'max_raw' => 0.10960672362217
'avg_raw' => 0.072426911826875
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.035247'
'max' => '$0.1096067'
'avg' => '$0.072426'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.020079112653619
'max_diff' => 0.068457435488233
'year' => 2033
]
8 => [
'items' => [
101 => 0.06347833431737
102 => 0.06235556272009
103 => 0.060705398645658
104 => 0.060934864081252
105 => 0.057665457260885
106 => 0.055884110904596
107 => 0.055391057710943
108 => 0.054731726374279
109 => 0.055465530939833
110 => 0.057656195442143
111 => 0.055013789276957
112 => 0.050483569249987
113 => 0.050755843192728
114 => 0.051367561903206
115 => 0.050227628133154
116 => 0.04914877648719
117 => 0.050086750463355
118 => 0.048167236517092
119 => 0.051599525993025
120 => 0.051506692181581
121 => 0.052786037446852
122 => 0.053586038296033
123 => 0.051742295342021
124 => 0.051278598975098
125 => 0.051542741499522
126 => 0.047177053955534
127 => 0.052429267635367
128 => 0.052474688997373
129 => 0.052085763719768
130 => 0.054882405360374
131 => 0.060784191516456
201 => 0.05856370216574
202 => 0.057703861574497
203 => 0.056069303982004
204 => 0.058247254923574
205 => 0.058080022272589
206 => 0.057323732803734
207 => 0.056866326573204
208 => 0.057709111577796
209 => 0.056761896184446
210 => 0.056591750272062
211 => 0.055560851163594
212 => 0.055192867084791
213 => 0.054920426322714
214 => 0.054620495813144
215 => 0.05528206777923
216 => 0.053782858667039
217 => 0.051974959447017
218 => 0.051824652188613
219 => 0.052239663744216
220 => 0.052056052024839
221 => 0.051823773126341
222 => 0.051380289451716
223 => 0.051248717318984
224 => 0.051676262920639
225 => 0.051193588863828
226 => 0.051905800727268
227 => 0.051712118508893
228 => 0.050630225381398
301 => 0.049281785976402
302 => 0.04926978203725
303 => 0.048979262979327
304 => 0.04860924327923
305 => 0.048506312263567
306 => 0.050007756911304
307 => 0.053115702397664
308 => 0.052505538331859
309 => 0.052946444401532
310 => 0.055115265883545
311 => 0.055804669013939
312 => 0.055315347001393
313 => 0.054645532850553
314 => 0.054675001273826
315 => 0.056963958993779
316 => 0.05710671847908
317 => 0.057467425642479
318 => 0.05793103628328
319 => 0.055394301898231
320 => 0.054555521312414
321 => 0.05415806053708
322 => 0.052934035185726
323 => 0.054254041587158
324 => 0.053484930385353
325 => 0.053588709763057
326 => 0.053521123307183
327 => 0.053558030082266
328 => 0.051598566598166
329 => 0.052312492105404
330 => 0.051125452481492
331 => 0.049536139676526
401 => 0.049530811742719
402 => 0.049919793800157
403 => 0.049688412051523
404 => 0.04906576971532
405 => 0.049154213120389
406 => 0.048379355827462
407 => 0.049248294824994
408 => 0.04927321288623
409 => 0.048938624040753
410 => 0.050277344456926
411 => 0.050825819303723
412 => 0.050605585758043
413 => 0.050810367131061
414 => 0.052530893403519
415 => 0.052811414257754
416 => 0.052936003091037
417 => 0.052769070559295
418 => 0.050841815192907
419 => 0.050927297163729
420 => 0.050300087180016
421 => 0.049770160837539
422 => 0.04979135511214
423 => 0.050063806137776
424 => 0.051253615745769
425 => 0.053757499922682
426 => 0.053852520496881
427 => 0.053967688204755
428 => 0.053499243258178
429 => 0.053357955779877
430 => 0.053544350433149
501 => 0.054484677682022
502 => 0.056903454662481
503 => 0.056048497332904
504 => 0.055353403715754
505 => 0.055963188213888
506 => 0.05586931667005
507 => 0.055076946371067
508 => 0.055054707175846
509 => 0.05353389523599
510 => 0.052971685689037
511 => 0.052501861310948
512 => 0.051988825355152
513 => 0.051684680443434
514 => 0.052151985259222
515 => 0.052258863399581
516 => 0.05123709325277
517 => 0.05109782975733
518 => 0.051932229315656
519 => 0.051565041179588
520 => 0.051942703283362
521 => 0.052030324130963
522 => 0.05201621515642
523 => 0.051632828571076
524 => 0.051877187747822
525 => 0.051299205447841
526 => 0.050670736506746
527 => 0.050269812477326
528 => 0.049919953086802
529 => 0.050114075410612
530 => 0.049422064771566
531 => 0.049200676640712
601 => 0.051794404356996
602 => 0.053710418908286
603 => 0.053682559297885
604 => 0.053512971084481
605 => 0.053260997399074
606 => 0.054466244237487
607 => 0.054046360338655
608 => 0.054351860957529
609 => 0.054429623686853
610 => 0.054664988047882
611 => 0.054749110576699
612 => 0.05449483386776
613 => 0.053641450175279
614 => 0.051514899150901
615 => 0.050524983908539
616 => 0.050198295390217
617 => 0.050210169897388
618 => 0.049882617979472
619 => 0.049979096699146
620 => 0.04984906661804
621 => 0.049602821102081
622 => 0.050098870443903
623 => 0.050156035509529
624 => 0.050040251665799
625 => 0.050067522952434
626 => 0.049108882178279
627 => 0.04918176555428
628 => 0.048775941655137
629 => 0.048699854566328
630 => 0.047673967088423
701 => 0.045856458716546
702 => 0.046863534784372
703 => 0.045647128510763
704 => 0.045186457023384
705 => 0.04736720419552
706 => 0.047148317663949
707 => 0.046773679069587
708 => 0.046219510507001
709 => 0.046013963996533
710 => 0.044765128467046
711 => 0.044691340601685
712 => 0.045310297211495
713 => 0.045024670033064
714 => 0.044623541299076
715 => 0.043170693686339
716 => 0.041537211948308
717 => 0.041586516494279
718 => 0.042106096643138
719 => 0.043616846000876
720 => 0.043026570090579
721 => 0.042598318145022
722 => 0.042518119428826
723 => 0.04352197426941
724 => 0.044942639182928
725 => 0.045609183374765
726 => 0.044948658323903
727 => 0.044189882710667
728 => 0.044236065866417
729 => 0.044543301711203
730 => 0.044575587854409
731 => 0.044081702933586
801 => 0.04422072864585
802 => 0.044009535876143
803 => 0.042713446238283
804 => 0.042690004086679
805 => 0.042371922787279
806 => 0.042362291411947
807 => 0.041821155772569
808 => 0.041745447155926
809 => 0.040670989499357
810 => 0.041378200782668
811 => 0.040903840584082
812 => 0.040188867874553
813 => 0.040065606309941
814 => 0.040061900918466
815 => 0.040796018026179
816 => 0.041369622196841
817 => 0.040912092282827
818 => 0.040807921590251
819 => 0.041920192054208
820 => 0.041778645499099
821 => 0.041656067095252
822 => 0.044815434221912
823 => 0.04231454861267
824 => 0.04122401974148
825 => 0.039874283177567
826 => 0.04031376420874
827 => 0.040406369319327
828 => 0.037160496191419
829 => 0.035843645867674
830 => 0.035391752461022
831 => 0.035131681416659
901 => 0.035250199057342
902 => 0.034064879314834
903 => 0.034861433785179
904 => 0.033835047080751
905 => 0.033662970009602
906 => 0.035498276582033
907 => 0.035753648769882
908 => 0.034664151678601
909 => 0.03536378518476
910 => 0.035110088349794
911 => 0.03385264153489
912 => 0.033804616315713
913 => 0.033173673705387
914 => 0.03218637069479
915 => 0.031735146726071
916 => 0.031500145365456
917 => 0.031597111506931
918 => 0.031548082458588
919 => 0.031228134753626
920 => 0.031566421486519
921 => 0.030702238673707
922 => 0.030358114114451
923 => 0.030202681034664
924 => 0.029435669047786
925 => 0.030656326210687
926 => 0.030896811049213
927 => 0.03113776971716
928 => 0.033235150412167
929 => 0.033130371199781
930 => 0.034077524250207
1001 => 0.03404071962437
1002 => 0.033770576231527
1003 => 0.032630885693551
1004 => 0.033085146028957
1005 => 0.031687003324306
1006 => 0.032734586903093
1007 => 0.032256513505871
1008 => 0.032572949806594
1009 => 0.032003968805983
1010 => 0.032318866384371
1011 => 0.030953838925827
1012 => 0.029679195491493
1013 => 0.03019214921863
1014 => 0.030749788583403
1015 => 0.031958892810097
1016 => 0.031238760307571
1017 => 0.031497747186704
1018 => 0.030630184495488
1019 => 0.028840154856479
1020 => 0.028850286229839
1021 => 0.028574929167793
1022 => 0.028336980463396
1023 => 0.031321476188252
1024 => 0.030950306966971
1025 => 0.030358897390286
1026 => 0.031150522610361
1027 => 0.03135984088333
1028 => 0.031365799880295
1029 => 0.031943349206058
1030 => 0.032251587384749
1031 => 0.032305915699724
1101 => 0.03321470204259
1102 => 0.033519315237537
1103 => 0.034773973877052
1104 => 0.032225435528827
1105 => 0.032172950058658
1106 => 0.031161662400628
1107 => 0.03052028778008
1108 => 0.031205577869617
1109 => 0.03181265133752
1110 => 0.031180525865487
1111 => 0.031263068107237
1112 => 0.03041449130758
1113 => 0.030717817584208
1114 => 0.030979083036102
1115 => 0.03083482761004
1116 => 0.030618870255183
1117 => 0.031762878236127
1118 => 0.031698328822438
1119 => 0.032763655354923
1120 => 0.033594153569227
1121 => 0.035082554838571
1122 => 0.033529330521897
1123 => 0.03347272485429
1124 => 0.034026054334984
1125 => 0.033519230525677
1126 => 0.033839525678196
1127 => 0.035030950337757
1128 => 0.035056123263391
1129 => 0.034634444325536
1130 => 0.034608785123846
1201 => 0.034689773176523
1202 => 0.035164122730668
1203 => 0.03499837042116
1204 => 0.035190183190058
1205 => 0.035430047994706
1206 => 0.036422230527299
1207 => 0.036661442376889
1208 => 0.036080281599509
1209 => 0.036132753910725
1210 => 0.035915383826765
1211 => 0.035705407049299
1212 => 0.036177404180397
1213 => 0.037039988214606
1214 => 0.037034622124098
1215 => 0.037234724853797
1216 => 0.037359387196659
1217 => 0.036824245162683
1218 => 0.036475887376283
1219 => 0.03660946991817
1220 => 0.036823071311698
1221 => 0.036540201865097
1222 => 0.034794200602801
1223 => 0.035323825850789
1224 => 0.035235670312172
1225 => 0.035110126105102
1226 => 0.035642668387425
1227 => 0.03559130338515
1228 => 0.034052722147642
1229 => 0.034151217126553
1230 => 0.034058711953535
1231 => 0.034357615092332
]
'min_raw' => 0.028336980463396
'max_raw' => 0.06347833431737
'avg_raw' => 0.045907657390383
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.028336'
'max' => '$0.063478'
'avg' => '$0.0459076'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.0069101195681828
'max_diff' => -0.0461283893048
'year' => 2034
]
9 => [
'items' => [
101 => 0.033503088775265
102 => 0.033765935315073
103 => 0.033930790200806
104 => 0.034027890994979
105 => 0.034378685646166
106 => 0.034337523942706
107 => 0.034376126976885
108 => 0.034896262838242
109 => 0.037526931535912
110 => 0.037670113028883
111 => 0.036965034991324
112 => 0.037246699760279
113 => 0.036705964997198
114 => 0.037068963866263
115 => 0.037317318473305
116 => 0.036195051759925
117 => 0.03612859840861
118 => 0.035585631840812
119 => 0.035877391319148
120 => 0.035413181010866
121 => 0.035527081983131
122 => 0.035208604934969
123 => 0.035781800213513
124 => 0.036422721600466
125 => 0.036584643653562
126 => 0.036158696443691
127 => 0.035850282592456
128 => 0.035308809467525
129 => 0.036209291341801
130 => 0.036472619683527
131 => 0.036207908190124
201 => 0.036146568753042
202 => 0.03603033063061
203 => 0.036171229220209
204 => 0.036471185540825
205 => 0.036329731679346
206 => 0.03642316444695
207 => 0.036067095084298
208 => 0.036824422316963
209 => 0.03802724022316
210 => 0.038031107479409
211 => 0.037889652855441
212 => 0.037831772670996
213 => 0.037976913699372
214 => 0.038055646753269
215 => 0.038525006224723
216 => 0.039028647637699
217 => 0.041378922356096
218 => 0.040718974619947
219 => 0.042804278168577
220 => 0.044453482532767
221 => 0.044948006810622
222 => 0.044493067744161
223 => 0.042936745773125
224 => 0.0428603851924
225 => 0.045186187279315
226 => 0.044529041661278
227 => 0.044450876281032
228 => 0.043619328697713
301 => 0.044110876308627
302 => 0.044003367635551
303 => 0.043833659935598
304 => 0.044771498535717
305 => 0.04652704867371
306 => 0.046253429721259
307 => 0.046049185866072
308 => 0.045154248747136
309 => 0.045693200784177
310 => 0.045501290286733
311 => 0.046325859573165
312 => 0.045837402994329
313 => 0.0445240631369
314 => 0.044733216838021
315 => 0.044701603676855
316 => 0.045352200293508
317 => 0.04515690733799
318 => 0.04466346959295
319 => 0.046521048394191
320 => 0.046400427559235
321 => 0.046571440325441
322 => 0.04664672543387
323 => 0.047777400915976
324 => 0.048240602483414
325 => 0.048345757348708
326 => 0.048785763012479
327 => 0.048334809606957
328 => 0.050138944753376
329 => 0.05133858935154
330 => 0.052732038285453
331 => 0.054768241701666
401 => 0.055533873022097
402 => 0.055395568576961
403 => 0.056939394768265
404 => 0.05971361611671
405 => 0.055956318029506
406 => 0.059912762038765
407 => 0.058660197544776
408 => 0.055690389662202
409 => 0.055499169046299
410 => 0.057510357424557
411 => 0.061970979677825
412 => 0.06085364439534
413 => 0.061972807238072
414 => 0.06066724433419
415 => 0.060602412131865
416 => 0.061909398961902
417 => 0.064963244930427
418 => 0.063512477182485
419 => 0.061432445872964
420 => 0.062968308623043
421 => 0.061637802171537
422 => 0.058639798750988
423 => 0.060852789990107
424 => 0.05937302577087
425 => 0.059804899638636
426 => 0.062915143929156
427 => 0.062540911107435
428 => 0.063025203031768
429 => 0.062170440461447
430 => 0.06137195743708
501 => 0.059881529575973
502 => 0.059440287363505
503 => 0.059562230836799
504 => 0.059440226934375
505 => 0.058606346243825
506 => 0.058426269788095
507 => 0.058126134472548
508 => 0.058219158956896
509 => 0.057654816755984
510 => 0.058719847088154
511 => 0.05891752610282
512 => 0.059692566362413
513 => 0.059773033613262
514 => 0.061931509704223
515 => 0.060742657345039
516 => 0.061540242148154
517 => 0.061468898656204
518 => 0.055754754404262
519 => 0.056542113065858
520 => 0.057766996056542
521 => 0.057215187929529
522 => 0.056435060341148
523 => 0.055805065485735
524 => 0.054850558859503
525 => 0.056194008606248
526 => 0.057960502163265
527 => 0.059817834805026
528 => 0.062049298276846
529 => 0.061551261607034
530 => 0.059776119147594
531 => 0.059855750741582
601 => 0.060348001921739
602 => 0.0597104919177
603 => 0.059522477771835
604 => 0.060322171665251
605 => 0.060327678717591
606 => 0.059594146412286
607 => 0.058778959489934
608 => 0.058775543826964
609 => 0.058630489187904
610 => 0.060693049232239
611 => 0.061827248708282
612 => 0.061957282850356
613 => 0.061818496374462
614 => 0.061871909780796
615 => 0.061211944096066
616 => 0.062720429944613
617 => 0.064104765733028
618 => 0.063733734169712
619 => 0.063177505111058
620 => 0.062734441874218
621 => 0.063629362551865
622 => 0.063589513142825
623 => 0.064092674767584
624 => 0.064069848449883
625 => 0.063900654120342
626 => 0.063733740212175
627 => 0.064395534990967
628 => 0.064204948722774
629 => 0.064014066421465
630 => 0.063631222743571
701 => 0.063683257557757
702 => 0.063127124539892
703 => 0.062869831958911
704 => 0.059000768872193
705 => 0.057966828790139
706 => 0.058292127387744
707 => 0.05839922413245
708 => 0.05794925208371
709 => 0.058594396413268
710 => 0.058493851352884
711 => 0.058885013365948
712 => 0.058640632322466
713 => 0.058650661805734
714 => 0.059369334347083
715 => 0.059577968043288
716 => 0.059471855261517
717 => 0.059546173016536
718 => 0.061258794313377
719 => 0.061015314331512
720 => 0.060885970443882
721 => 0.060921799584708
722 => 0.061359411045065
723 => 0.061481918361266
724 => 0.060962846254089
725 => 0.061207643660553
726 => 0.062249959947863
727 => 0.062614711658429
728 => 0.063778824027801
729 => 0.063284288402844
730 => 0.064192029945453
731 => 0.066982117975535
801 => 0.069211033353372
802 => 0.06716123065809
803 => 0.071254349898825
804 => 0.074441430350819
805 => 0.074319104894711
806 => 0.073763363699407
807 => 0.070134957337729
808 => 0.066796043707221
809 => 0.069589186736902
810 => 0.0695963070329
811 => 0.069356373569534
812 => 0.067866167435073
813 => 0.069304517626264
814 => 0.06941868864112
815 => 0.069354783233324
816 => 0.068212245684005
817 => 0.066467802022431
818 => 0.066808662138294
819 => 0.067366997961437
820 => 0.066309951767173
821 => 0.065972161459419
822 => 0.06660017790877
823 => 0.068623777761004
824 => 0.068241227930855
825 => 0.068231238008784
826 => 0.069867948408537
827 => 0.068696416986525
828 => 0.066812961475941
829 => 0.066337364119792
830 => 0.064649313906232
831 => 0.065815256201366
901 => 0.065857216388881
902 => 0.065218641709477
903 => 0.066864778291788
904 => 0.066849608853386
905 => 0.068412370543194
906 => 0.07139978394762
907 => 0.070516258802246
908 => 0.069488815185438
909 => 0.069600526794506
910 => 0.07082572741824
911 => 0.070084943152521
912 => 0.070351334339405
913 => 0.070825324203274
914 => 0.071111294056652
915 => 0.069559380133431
916 => 0.069197554761304
917 => 0.068457387033382
918 => 0.068264291089052
919 => 0.068867142259338
920 => 0.068708312275014
921 => 0.065853689797598
922 => 0.065555365865739
923 => 0.06556451503482
924 => 0.06481436532363
925 => 0.063670206957505
926 => 0.066676986829535
927 => 0.066435500325954
928 => 0.066168917915571
929 => 0.066201572739745
930 => 0.067506713972968
1001 => 0.066749666146486
1002 => 0.068762401870886
1003 => 0.068348643914323
1004 => 0.067924274627427
1005 => 0.067865613865373
1006 => 0.067702267895404
1007 => 0.067142093786021
1008 => 0.066465649887697
1009 => 0.066019003033457
1010 => 0.060899040547067
1011 => 0.061849275803089
1012 => 0.062942434848474
1013 => 0.063319788970381
1014 => 0.062674298632749
1015 => 0.067167581678861
1016 => 0.067988547789739
1017 => 0.065501787889596
1018 => 0.065036616646017
1019 => 0.067198078228148
1020 => 0.065894452666191
1021 => 0.066481475176918
1022 => 0.065212653592872
1023 => 0.067790801094322
1024 => 0.06777115992994
1025 => 0.066768202321773
1026 => 0.067615895224238
1027 => 0.067468587721737
1028 => 0.066336251052293
1029 => 0.067826698186456
1030 => 0.06782743742964
1031 => 0.066862112537958
1101 => 0.065734824401266
1102 => 0.065533291907783
1103 => 0.065381464246024
1104 => 0.06644413487933
1105 => 0.067396922046268
1106 => 0.069169822747968
1107 => 0.069615572107458
1108 => 0.071355361532759
1109 => 0.070319401638802
1110 => 0.070778629241866
1111 => 0.071277185766704
1112 => 0.07151621209852
1113 => 0.071126731517686
1114 => 0.073829340621076
1115 => 0.074057523635205
1116 => 0.074134031426068
1117 => 0.073222726842463
1118 => 0.074032178606198
1119 => 0.073653462932171
1120 => 0.074638775905744
1121 => 0.074793285561107
1122 => 0.074662421379855
1123 => 0.074711465183236
1124 => 0.072405265086409
1125 => 0.072285676445214
1126 => 0.070655076836894
1127 => 0.071319558230068
1128 => 0.070077342114952
1129 => 0.070471261641299
1130 => 0.07064489761511
1201 => 0.070554200036146
1202 => 0.071357127011058
1203 => 0.070674475055239
1204 => 0.068872844305459
1205 => 0.067070722702585
1206 => 0.067048098533838
1207 => 0.06657363172589
1208 => 0.066230679126674
1209 => 0.06629674396418
1210 => 0.066529565068523
1211 => 0.066217147140844
1212 => 0.066283817345705
1213 => 0.067390986967657
1214 => 0.067613021939367
1215 => 0.066858460350833
1216 => 0.063828786690151
1217 => 0.063085297174458
1218 => 0.0636197026943
1219 => 0.063364291275939
1220 => 0.051139928439851
1221 => 0.054011861161653
1222 => 0.052305456259978
1223 => 0.053091846146585
1224 => 0.051350048613382
1225 => 0.052181325691656
1226 => 0.052027819168677
1227 => 0.056645801998668
1228 => 0.056573698548605
1229 => 0.05660821065452
1230 => 0.054960857918369
1231 => 0.057585135557559
]
'min_raw' => 0.033503088775265
'max_raw' => 0.074793285561107
'avg_raw' => 0.054148187168186
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.033503'
'max' => '$0.074793'
'avg' => '$0.054148'
'bar_min_pct' => 61.631153054958
'bar_max_pct' => 60.119598047091
'min_diff' => 0.0051661083118694
'max_diff' => 0.011314951243737
'year' => 2035
]
10 => [
'items' => [
101 => 0.058877949088595
102 => 0.058638683711118
103 => 0.058698901651859
104 => 0.057664157918351
105 => 0.056618229235698
106 => 0.055458133359367
107 => 0.057613448105407
108 => 0.057373813898097
109 => 0.057923448552
110 => 0.059321324229886
111 => 0.059527166733469
112 => 0.059803821145732
113 => 0.059704660232537
114 => 0.062067075483477
115 => 0.061780971408871
116 => 0.062470399910913
117 => 0.061052193175146
118 => 0.059447357636208
119 => 0.059752384406133
120 => 0.059723007875319
121 => 0.059349010921242
122 => 0.059011383193634
123 => 0.05844932815319
124 => 0.06022775346965
125 => 0.060155552649587
126 => 0.061324400002123
127 => 0.061117794878985
128 => 0.059738035301819
129 => 0.059787313685044
130 => 0.060118734494613
131 => 0.061265785700631
201 => 0.061606308595778
202 => 0.061448564823254
203 => 0.061821932632323
204 => 0.062117027325179
205 => 0.061858991982388
206 => 0.065512228287926
207 => 0.06399514987112
208 => 0.064734563335707
209 => 0.064910909090134
210 => 0.064459203148321
211 => 0.064557161992723
212 => 0.064705542949805
213 => 0.065606483065237
214 => 0.067970810617252
215 => 0.069017955195518
216 => 0.072168341324433
217 => 0.068931004415249
218 => 0.06873891424049
219 => 0.069306393914854
220 => 0.071156004074767
221 => 0.072654939384328
222 => 0.073152222702162
223 => 0.073217946901866
224 => 0.074150883464893
225 => 0.074685625304582
226 => 0.074037600427474
227 => 0.073488467195157
228 => 0.071521540117923
229 => 0.071749217282878
301 => 0.073317687172832
302 => 0.075533243274809
303 => 0.077434420899629
304 => 0.076768694758146
305 => 0.081847715288243
306 => 0.082351279427863
307 => 0.082281703145946
308 => 0.083428897196393
309 => 0.081151950628261
310 => 0.080178511856622
311 => 0.073607196032911
312 => 0.075453467738884
313 => 0.078137132091252
314 => 0.077781939050992
315 => 0.075832990263748
316 => 0.077432942447207
317 => 0.076903948220225
318 => 0.076486708525413
319 => 0.078398164453239
320 => 0.076296440142313
321 => 0.078116165783516
322 => 0.075782348826022
323 => 0.076771735739084
324 => 0.07621011187597
325 => 0.076573551345437
326 => 0.074448891633221
327 => 0.075595306440734
328 => 0.074401197008167
329 => 0.074400630844818
330 => 0.07437427081291
331 => 0.075779135264834
401 => 0.075824947844175
402 => 0.074786750891571
403 => 0.074637130491016
404 => 0.075190355531093
405 => 0.074542673899031
406 => 0.074845720058213
407 => 0.074551852858474
408 => 0.074485697162023
409 => 0.073958557317234
410 => 0.073731450978087
411 => 0.073820505225476
412 => 0.073516517168526
413 => 0.073333353368486
414 => 0.074337834922916
415 => 0.073801180949054
416 => 0.074255585004721
417 => 0.073737734232925
418 => 0.071942637841041
419 => 0.070910258923268
420 => 0.067519488244522
421 => 0.068481106602776
422 => 0.069118660569165
423 => 0.068907948987077
424 => 0.06936063899996
425 => 0.069388430490155
426 => 0.069241256352338
427 => 0.069070847554921
428 => 0.068987901976536
429 => 0.069606110361781
430 => 0.069965001137353
501 => 0.069182647639064
502 => 0.068999353160704
503 => 0.069790355742394
504 => 0.070272866860278
505 => 0.073835457855156
506 => 0.073571529607238
507 => 0.07423393771621
508 => 0.07415936072862
509 => 0.074853669956709
510 => 0.075988572107661
511 => 0.073680998711143
512 => 0.074081513662894
513 => 0.073983316645966
514 => 0.07505540592815
515 => 0.075058752873866
516 => 0.074415981794366
517 => 0.074764438424333
518 => 0.074569939492893
519 => 0.074921425350112
520 => 0.073568004684578
521 => 0.075216324962466
522 => 0.076150816344616
523 => 0.076163791758364
524 => 0.07660673325692
525 => 0.077056787472896
526 => 0.077920627348999
527 => 0.077032695447601
528 => 0.075435392395414
529 => 0.075550712516525
530 => 0.074614214321458
531 => 0.07462995702531
601 => 0.074545921238373
602 => 0.074798118960887
603 => 0.073623347902362
604 => 0.073899064321699
605 => 0.073513059720034
606 => 0.074080674564276
607 => 0.073470014821966
608 => 0.073983269292391
609 => 0.074204772907171
610 => 0.075022126014342
611 => 0.073349291103468
612 => 0.069938267479228
613 => 0.070655305999707
614 => 0.069594749705758
615 => 0.069692908228586
616 => 0.06989120406651
617 => 0.069248462377436
618 => 0.069371077236593
619 => 0.069366696570996
620 => 0.069328946361512
621 => 0.069161744424322
622 => 0.068919268535501
623 => 0.06988521784642
624 => 0.070049351457103
625 => 0.070414200141798
626 => 0.071499742348225
627 => 0.071391271082955
628 => 0.07156819221704
629 => 0.071181974374702
630 => 0.069710823766592
701 => 0.069790714322532
702 => 0.068794477809807
703 => 0.070388724134323
704 => 0.070011185561654
705 => 0.069767783987821
706 => 0.069701369613301
707 => 0.07078960266889
708 => 0.071115219055085
709 => 0.070912316774511
710 => 0.070496158277449
711 => 0.071295305618024
712 => 0.071509123733043
713 => 0.071556989723687
714 => 0.072972925589883
715 => 0.071636124809522
716 => 0.071957906044012
717 => 0.074468351378998
718 => 0.072191723877941
719 => 0.073397704240103
720 => 0.073338677776994
721 => 0.073955616522125
722 => 0.0732880707928
723 => 0.073296345822162
724 => 0.073844145632788
725 => 0.07307485959498
726 => 0.072884373553524
727 => 0.072621218451541
728 => 0.073195807989385
729 => 0.073540248430873
730 => 0.076316185425638
731 => 0.078109567322363
801 => 0.078031711884518
802 => 0.078743164847149
803 => 0.078422648771321
804 => 0.077387617814605
805 => 0.079154289449141
806 => 0.078595240623293
807 => 0.078641327929252
808 => 0.078639612557422
809 => 0.079011331153715
810 => 0.078747934460733
811 => 0.078228752541749
812 => 0.078573409728776
813 => 0.079596918357047
814 => 0.082773920544281
815 => 0.084551813057938
816 => 0.082666889182572
817 => 0.083967084431663
818 => 0.083187430589145
819 => 0.083045744293267
820 => 0.08386236299337
821 => 0.084680411076406
822 => 0.084628304950036
823 => 0.084034444048986
824 => 0.083698987094645
825 => 0.086239179539237
826 => 0.088110750061362
827 => 0.087983121498921
828 => 0.088546432466504
829 => 0.090200330889879
830 => 0.090351542634382
831 => 0.090332493430137
901 => 0.089957699344071
902 => 0.091586177127733
903 => 0.092944681945205
904 => 0.089870945341989
905 => 0.091041384002327
906 => 0.091566831626131
907 => 0.09233834463116
908 => 0.093640016391238
909 => 0.095053977174065
910 => 0.095253926732048
911 => 0.095112052952192
912 => 0.094179507806611
913 => 0.095726680567241
914 => 0.096632978084752
915 => 0.09717265751618
916 => 0.098541194760187
917 => 0.091570076611772
918 => 0.086635572699271
919 => 0.085864978658234
920 => 0.087432011942797
921 => 0.08784522612308
922 => 0.087678660005135
923 => 0.082124427226147
924 => 0.085835736772127
925 => 0.089828793787832
926 => 0.089982183370042
927 => 0.091981191202989
928 => 0.092632150095496
929 => 0.094241613416965
930 => 0.094140941047997
1001 => 0.09453281975462
1002 => 0.09444273362636
1003 => 0.097423925516894
1004 => 0.10071262288343
1005 => 0.10059874575105
1006 => 0.1001259565945
1007 => 0.1008281291145
1008 => 0.10422241723499
1009 => 0.10390992557722
1010 => 0.10421348460477
1011 => 0.10821554159253
1012 => 0.11341878496259
1013 => 0.1110013560201
1014 => 0.11624648122885
1015 => 0.11954800951562
1016 => 0.12525766130319
1017 => 0.12454278477876
1018 => 0.1267655103203
1019 => 0.12326300660079
1020 => 0.11522055008802
1021 => 0.11394780055958
1022 => 0.11649587734666
1023 => 0.12276007548999
1024 => 0.11629859545474
1025 => 0.11760574445042
1026 => 0.11722928545173
1027 => 0.11720922555153
1028 => 0.11797483035237
1029 => 0.11686428065749
1030 => 0.11233970141647
1031 => 0.11441328941912
1101 => 0.11361257750942
1102 => 0.11450102707026
1103 => 0.11929562292562
1104 => 0.11717581780907
1105 => 0.11494277531778
1106 => 0.11774350615366
1107 => 0.12130979894327
1108 => 0.12108662674974
1109 => 0.12065357941555
1110 => 0.12309464456475
1111 => 0.12712656902623
1112 => 0.12821638200659
1113 => 0.12902085966844
1114 => 0.12913178354625
1115 => 0.13027436842648
1116 => 0.12413040155702
1117 => 0.1338810347671
1118 => 0.13556469976668
1119 => 0.13524824052752
1120 => 0.13711956331509
1121 => 0.13656897268011
1122 => 0.13577125323505
1123 => 0.13873769789512
1124 => 0.13533690847209
1125 => 0.13050991603357
1126 => 0.12786173251472
1127 => 0.13134907419522
1128 => 0.13347867206805
1129 => 0.13488620079412
1130 => 0.13531211813618
1201 => 0.12460734021547
1202 => 0.11883805863041
1203 => 0.12253610198148
1204 => 0.12704797009512
1205 => 0.12410533790184
1206 => 0.12422068351268
1207 => 0.12002526331521
1208 => 0.12741917168955
1209 => 0.12634194143196
1210 => 0.13193061391389
1211 => 0.13059683237418
1212 => 0.13515417783218
1213 => 0.13395407603981
1214 => 0.13893563148315
1215 => 0.14092290881973
1216 => 0.14425985676286
1217 => 0.14671452925365
1218 => 0.14815595989064
1219 => 0.14806942180187
1220 => 0.15378108810353
1221 => 0.15041311803586
1222 => 0.14618215386127
1223 => 0.14610562906787
1224 => 0.14829690536712
1225 => 0.15288921934305
1226 => 0.15407993954155
1227 => 0.15474538969148
1228 => 0.15372622962238
1229 => 0.15007053949851
1230 => 0.1484920310378
1231 => 0.14983696598012
]
'min_raw' => 0.055458133359367
'max_raw' => 0.15474538969148
'avg_raw' => 0.10510176152542
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$0.055458'
'max' => '$0.154745'
'avg' => '$0.1051017'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.021955044584101
'max_diff' => 0.079952104130373
'year' => 2036
]
11 => [
'items' => [
101 => 0.14819222611724
102 => 0.15103150855307
103 => 0.15493044977548
104 => 0.15412533383114
105 => 0.15681671572334
106 => 0.15960201284015
107 => 0.16358511281269
108 => 0.16462644263928
109 => 0.16634772124441
110 => 0.16811948233965
111 => 0.16868852425314
112 => 0.16977500182933
113 => 0.1697692755562
114 => 0.17304344886043
115 => 0.17665496340769
116 => 0.17801822654253
117 => 0.18115297495032
118 => 0.17578482815666
119 => 0.17985662916448
120 => 0.18352949559732
121 => 0.17915055282158
122 => 0.18518590527513
123 => 0.1854202443345
124 => 0.18895848591082
125 => 0.18537180022815
126 => 0.18324203771889
127 => 0.18939058228197
128 => 0.1923656693187
129 => 0.19146954889118
130 => 0.18465002819078
131 => 0.18068077464015
201 => 0.17029247248632
202 => 0.18259786512879
203 => 0.18859146293171
204 => 0.18463450622042
205 => 0.18663016502317
206 => 0.19751783235643
207 => 0.20166315115269
208 => 0.20080095382103
209 => 0.20094665097711
210 => 0.2031833897567
211 => 0.21310232129999
212 => 0.20715866760022
213 => 0.21170236814924
214 => 0.21411233053691
215 => 0.21635083791124
216 => 0.21085377128741
217 => 0.20370216837775
218 => 0.20143695553239
219 => 0.18424106485857
220 => 0.18334594407103
221 => 0.18284348564805
222 => 0.17967555636531
223 => 0.17718643171793
224 => 0.17520698738306
225 => 0.17001233433625
226 => 0.17176537724891
227 => 0.16348618450064
228 => 0.16878291862441
301 => 0.15556912709008
302 => 0.1665739653298
303 => 0.16058453220452
304 => 0.16460627546286
305 => 0.1645922439795
306 => 0.15718693954603
307 => 0.15291571449357
308 => 0.15563750533556
309 => 0.15855548117421
310 => 0.15902891293678
311 => 0.16281214477855
312 => 0.16386796346529
313 => 0.160668783553
314 => 0.15529530063099
315 => 0.15654343815767
316 => 0.15289042102642
317 => 0.14648864901519
318 => 0.15108651343787
319 => 0.15265642650561
320 => 0.15334978955229
321 => 0.14705438202772
322 => 0.14507622830356
323 => 0.14402307585913
324 => 0.15448264257391
325 => 0.15505564124968
326 => 0.15212409901058
327 => 0.16537494791155
328 => 0.16237587270197
329 => 0.16572657450234
330 => 0.15643018275948
331 => 0.15678531744331
401 => 0.15238425661096
402 => 0.15484855659809
403 => 0.15310686879528
404 => 0.15464946551181
405 => 0.15557409162334
406 => 0.15997443028492
407 => 0.16662421012896
408 => 0.15931716642724
409 => 0.15613338284761
410 => 0.15810858427413
411 => 0.16336880596197
412 => 0.17133831108483
413 => 0.16662020365086
414 => 0.1687140196114
415 => 0.16917142525139
416 => 0.1656924675034
417 => 0.17146658521934
418 => 0.17456098181215
419 => 0.17773519242123
420 => 0.18049127055373
421 => 0.17646734290158
422 => 0.18077352229675
423 => 0.17730350184723
424 => 0.17419053477989
425 => 0.17419525586595
426 => 0.17224244615142
427 => 0.16845863125965
428 => 0.16776083773947
429 => 0.17139084775305
430 => 0.1743017720207
501 => 0.17454152968577
502 => 0.17615316692904
503 => 0.17710691724842
504 => 0.18645496693903
505 => 0.19021482985571
506 => 0.19481231905967
507 => 0.19660330020491
508 => 0.20199351134979
509 => 0.19764047807875
510 => 0.1966986719487
511 => 0.18362378283584
512 => 0.1857647951956
513 => 0.18919276256055
514 => 0.18368030875509
515 => 0.18717669190269
516 => 0.18786695199955
517 => 0.18349299768414
518 => 0.18582931567141
519 => 0.17962474776724
520 => 0.16675945275414
521 => 0.17148090797042
522 => 0.17495748823425
523 => 0.16999597953852
524 => 0.17888929183872
525 => 0.17369400238817
526 => 0.17204734505022
527 => 0.16562314769914
528 => 0.16865512155882
529 => 0.17275590961771
530 => 0.1702220993651
531 => 0.1754801360928
601 => 0.18292691836639
602 => 0.18823393887811
603 => 0.18864134601546
604 => 0.18522928736919
605 => 0.19069713312531
606 => 0.19073696041226
607 => 0.18456920806255
608 => 0.18079149409054
609 => 0.17993318952772
610 => 0.18207740260617
611 => 0.18468087312697
612 => 0.18878582051014
613 => 0.19126635424165
614 => 0.19773427064
615 => 0.19948430336769
616 => 0.20140705875866
617 => 0.2039764529168
618 => 0.20706166938278
619 => 0.20031139139668
620 => 0.20057959252516
621 => 0.19429382712846
622 => 0.18757658533215
623 => 0.19267413453954
624 => 0.19933850202965
625 => 0.19780968876395
626 => 0.19763766604074
627 => 0.19792696054606
628 => 0.19677428527009
629 => 0.19156077771703
630 => 0.18894258686217
701 => 0.19232072103667
702 => 0.19411604900696
703 => 0.19690044611982
704 => 0.19655721040417
705 => 0.20372951834449
706 => 0.20651646033077
707 => 0.20580344131071
708 => 0.20593465397016
709 => 0.21098027931462
710 => 0.21659205240964
711 => 0.22184821845182
712 => 0.22719501630751
713 => 0.2207492428034
714 => 0.21747647653806
715 => 0.22085313592486
716 => 0.2190614329243
717 => 0.22935708981912
718 => 0.23006993876434
719 => 0.24036485116598
720 => 0.2501359489305
721 => 0.243998897492
722 => 0.24978586057963
723 => 0.25604493297693
724 => 0.26811969912922
725 => 0.26405334268452
726 => 0.26093857737582
727 => 0.25799513920952
728 => 0.26411996677593
729 => 0.27199945959359
730 => 0.27369662687767
731 => 0.27644668624569
801 => 0.27355533508148
802 => 0.27703764908688
803 => 0.28933174773226
804 => 0.28600977375527
805 => 0.28129203667398
806 => 0.29099704681672
807 => 0.2945092522601
808 => 0.31915974941806
809 => 0.35028202034122
810 => 0.33739719581918
811 => 0.32939916944767
812 => 0.33127889536069
813 => 0.34264369514648
814 => 0.34629370813696
815 => 0.33637171459391
816 => 0.33987633045091
817 => 0.35918710838924
818 => 0.36954672118922
819 => 0.35547697552522
820 => 0.31665910525246
821 => 0.28086725606768
822 => 0.29036086619946
823 => 0.28928458543154
824 => 0.31003160725766
825 => 0.28593054577457
826 => 0.28633634583932
827 => 0.30751239410533
828 => 0.30186298747734
829 => 0.29271167226132
830 => 0.28093407079621
831 => 0.25916208519169
901 => 0.23987803038503
902 => 0.27769850271348
903 => 0.27606761517461
904 => 0.27370584833434
905 => 0.2789617048675
906 => 0.30448265229166
907 => 0.30389431185029
908 => 0.30015159013621
909 => 0.3029904115695
910 => 0.29221401313856
911 => 0.29499133638825
912 => 0.28086158645591
913 => 0.28724882353581
914 => 0.29269203764893
915 => 0.2937848434703
916 => 0.2962469907859
917 => 0.27520821154973
918 => 0.28465400576066
919 => 0.29020252490836
920 => 0.26513411354221
921 => 0.28970700301674
922 => 0.27484197321029
923 => 0.26979655882872
924 => 0.2765895446107
925 => 0.27394231144507
926 => 0.27166637582001
927 => 0.27039636463568
928 => 0.27538438367948
929 => 0.27515168662912
930 => 0.26699031934068
1001 => 0.25634414841281
1002 => 0.25991735282485
1003 => 0.25861917416298
1004 => 0.253914407224
1005 => 0.25708485208515
1006 => 0.24312381744209
1007 => 0.21910458297013
1008 => 0.23497242499135
1009 => 0.23436153033443
1010 => 0.23405348954654
1011 => 0.24597773427054
1012 => 0.24483149327946
1013 => 0.24275105465663
1014 => 0.25387619833719
1015 => 0.24981537123949
1016 => 0.26232988350342
1017 => 0.27057275066835
1018 => 0.26848209292651
1019 => 0.27623454933636
1020 => 0.25999967223764
1021 => 0.26539224717962
1022 => 0.26650364940138
1023 => 0.25373891579109
1024 => 0.24501903248141
1025 => 0.2444375156786
1026 => 0.22931843969355
1027 => 0.23739492804785
1028 => 0.24450190357183
1029 => 0.24109821381942
1030 => 0.24002070732615
1031 => 0.24552545431764
1101 => 0.24595322030384
1102 => 0.23620011048569
1103 => 0.2382280908577
1104 => 0.24668510613269
1105 => 0.23801499577124
1106 => 0.22117038759343
1107 => 0.21699269187041
1108 => 0.21643531025074
1109 => 0.20510506811267
1110 => 0.21727186547505
1111 => 0.21196073237647
1112 => 0.22873853819772
1113 => 0.2191551454938
1114 => 0.21874202458842
1115 => 0.21811753174828
1116 => 0.20836512429363
1117 => 0.21050028172837
1118 => 0.21759787023511
1119 => 0.22013036977437
1120 => 0.21986620932427
1121 => 0.21756308817935
1122 => 0.2186174452456
1123 => 0.21522099377284
1124 => 0.21402163606679
1125 => 0.21023613323715
1126 => 0.20467248984942
1127 => 0.20544614858629
1128 => 0.19442311522873
1129 => 0.18841718161887
1130 => 0.1867548183526
1201 => 0.18453183671799
1202 => 0.18700591004335
1203 => 0.1943918883602
1204 => 0.18548283148737
1205 => 0.17020887837658
1206 => 0.17112686898409
1207 => 0.1731893213253
1208 => 0.16934595503194
1209 => 0.16570853138455
1210 => 0.16887097613245
1211 => 0.16239920084644
1212 => 0.17397140444934
1213 => 0.17365840877261
1214 => 0.17797181065551
1215 => 0.1806690693728
1216 => 0.17445276127732
1217 => 0.17288937660199
1218 => 0.17377995156493
1219 => 0.15906073120781
1220 => 0.17676893632721
1221 => 0.17692207762043
1222 => 0.17561078889309
1223 => 0.18503986143968
1224 => 0.20493814551446
1225 => 0.19745161063891
1226 => 0.19455259805338
1227 => 0.18904157300912
1228 => 0.1963846866683
1229 => 0.1958208501097
1230 => 0.19327096736301
1231 => 0.19172879032169
]
'min_raw' => 0.14402307585913
'max_raw' => 0.36954672118922
'avg_raw' => 0.25678489852417
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$0.144023'
'max' => '$0.369546'
'avg' => '$0.256784'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 0.088564942499761
'max_diff' => 0.21480133149774
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.0045207197797355
]
1 => [
'year' => 2028
'avg' => 0.0077588675163553
]
2 => [
'year' => 2029
'avg' => 0.02119582765487
]
3 => [
'year' => 2030
'avg' => 0.016352549469958
]
4 => [
'year' => 2031
'avg' => 0.016060230128645
]
5 => [
'year' => 2032
'avg' => 0.028158637755949
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.0045207197797355
'min' => '$0.00452'
'max_raw' => 0.028158637755949
'max' => '$0.028158'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.028158637755949
]
1 => [
'year' => 2033
'avg' => 0.072426911826875
]
2 => [
'year' => 2034
'avg' => 0.045907657390383
]
3 => [
'year' => 2035
'avg' => 0.054148187168186
]
4 => [
'year' => 2036
'avg' => 0.10510176152542
]
5 => [
'year' => 2037
'avg' => 0.25678489852417
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.028158637755949
'min' => '$0.028158'
'max_raw' => 0.25678489852417
'max' => '$0.256784'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 0.25678489852417
]
]
]
]
'prediction_2025_max_price' => '$0.007729'
'last_price' => 0.00749483
'sma_50day_nextmonth' => '$0.006744'
'sma_200day_nextmonth' => '$0.011074'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'increase'
'sma_200day_direction_label' => 'aumentar'
'sma_200day_date_nextmonth' => '4 de fev. de 2026'
'sma_50day_date_nextmonth' => '4 de fev. de 2026'
'daily_sma3' => '$0.007065'
'daily_sma3_action' => 'BUY'
'daily_sma5' => '$0.006898'
'daily_sma5_action' => 'BUY'
'daily_sma10' => '$0.006666'
'daily_sma10_action' => 'BUY'
'daily_sma21' => '$0.006537'
'daily_sma21_action' => 'BUY'
'daily_sma50' => '$0.007299'
'daily_sma50_action' => 'BUY'
'daily_sma100' => '$0.0091057'
'daily_sma100_action' => 'SELL'
'daily_sma200' => '$0.012298'
'daily_sma200_action' => 'SELL'
'daily_ema3' => '$0.00715'
'daily_ema3_action' => 'BUY'
'daily_ema5' => '$0.006976'
'daily_ema5_action' => 'BUY'
'daily_ema10' => '$0.006778'
'daily_ema10_action' => 'BUY'
'daily_ema21' => '$0.006784'
'daily_ema21_action' => 'BUY'
'daily_ema50' => '$0.007492'
'daily_ema50_action' => 'BUY'
'daily_ema100' => '$0.00908'
'daily_ema100_action' => 'SELL'
'daily_ema200' => '$0.01198'
'daily_ema200_action' => 'SELL'
'weekly_sma21' => '$0.0106053'
'weekly_sma21_action' => 'SELL'
'weekly_sma50' => '$0.015027'
'weekly_sma50_action' => 'SELL'
'weekly_sma100' => '$0.02515'
'weekly_sma100_action' => 'SELL'
'weekly_sma200' => '$0.028578'
'weekly_sma200_action' => 'SELL'
'weekly_ema3' => '$0.007172'
'weekly_ema3_action' => 'BUY'
'weekly_ema5' => '$0.007256'
'weekly_ema5_action' => 'BUY'
'weekly_ema10' => '$0.008037'
'weekly_ema10_action' => 'SELL'
'weekly_ema21' => '$0.010185'
'weekly_ema21_action' => 'SELL'
'weekly_ema50' => '$0.0152038'
'weekly_ema50_action' => 'SELL'
'weekly_ema100' => '$0.0211008'
'weekly_ema100_action' => 'SELL'
'weekly_ema200' => '$0.026053'
'weekly_ema200_action' => 'SELL'
'rsi_14' => '61.61'
'rsi_14_action' => 'NEUTRAL'
'stoch_rsi_14' => 120.19
'stoch_rsi_14_action' => 'SELL'
'momentum_10' => 0
'momentum_10_action' => 'BUY'
'vwma_10' => '0.006752'
'vwma_10_action' => 'BUY'
'hma_9' => '0.007157'
'hma_9_action' => 'BUY'
'stochastic_fast_14' => 100
'stochastic_fast_14_action' => 'SELL'
'cci_20' => 302.34
'cci_20_action' => 'SELL'
'adx_14' => 23.85
'adx_14_action' => 'NEUTRAL'
'ao_5_34' => '-0.000029'
'ao_5_34_action' => 'NEUTRAL'
'macd_12_26' => 0
'macd_12_26_action' => 'BUY'
'williams_percent_r_14' => -0
'williams_percent_r_14_action' => 'SELL'
'ultimate_oscillator' => 76.39
'ultimate_oscillator_action' => 'SELL'
'ichimoku_cloud' => '-0.001022'
'ichimoku_cloud_action' => 'SELL'
'sell_signals' => 14
'buy_signals' => 20
'sell_pct' => 41.18
'buy_pct' => 58.82
'overall_action' => 'bullish'
'overall_action_label' => 'Altista'
'overall_action_dir' => 1
'last_updated' => 1767712589
'last_updated_date' => '6 de janeiro de 2026'
]
Previsão de preço de Ankr para 2026
A previsão de preço para Ankr em 2026 sugere que o preço médio poderia variar entre $0.002589 na extremidade inferior e $0.007729 na extremidade superior. No mercado de criptomoedas, comparado ao preço médio de hoje, Ankr poderia potencialmente ganhar 3.13% até 2026 se ANKR atingir a meta de preço prevista.
Previsão de preço de Ankr 2027-2032
A previsão de preço de ANKR para 2027-2032 está atualmente dentro de uma faixa de preço entre $0.00452 na extremidade inferior e $0.028158 na extremidade superior. Considerando a volatilidade de preços no mercado, se Ankr atingir a meta de preço superior, poderia ganhar 275.71% até 2032 em comparação com o preço de hoje.
| Previsão de Preço de Ankr | Potencial Mínimo ($) | Preço Médio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2027 | $0.002492 | $0.00452 | $0.006548 |
| 2028 | $0.004498 | $0.007758 | $0.011018 |
| 2029 | $0.009882 | $0.021195 | $0.0325091 |
| 2030 | $0.0084046 | $0.016352 | $0.02430041 |
| 2031 | $0.009936 | $0.01606 | $0.022183 |
| 2032 | $0.015167 | $0.028158 | $0.041149 |
Previsão de preço de Ankr 2032-2037
A previsão de preço de Ankr para 2032-2037 é atualmente estimada entre $0.028158 na extremidade inferior e $0.256784 na extremidade superior. Comparado ao preço atual, Ankr poderia potencialmente ganhar 3326.16% até 2037 se atingir a meta de preço superior. Por favor, note que esta informação é apenas para fins gerais e não deve ser considerada como aconselhamento de investimento a longo prazo.
| Previsão de Preço de Ankr | Potencial Mínimo ($) | Preço Médio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2032 | $0.015167 | $0.028158 | $0.041149 |
| 2033 | $0.035247 | $0.072426 | $0.1096067 |
| 2034 | $0.028336 | $0.0459076 | $0.063478 |
| 2035 | $0.033503 | $0.054148 | $0.074793 |
| 2036 | $0.055458 | $0.1051017 | $0.154745 |
| 2037 | $0.144023 | $0.256784 | $0.369546 |
Ankr Histograma de preços potenciais
Previsão de preço de Ankr baseada na análise técnica
Em 6 de janeiro de 2026, o sentimento geral de previsão de preço para Ankr é Altista, com 20 indicadores técnicos mostrando sinais de alta e 14 indicando sinais de baixa. A previsão de preço de ANKR foi atualizada pela última vez em 6 de janeiro de 2026.
Médias Móveis Simples de 50 e 200 dias e Índice de Força Relativa de 14 dias - RSI (14) de Ankr
De acordo com nossos indicadores técnicos, o SMA de 200 dias de Ankr está projetado para aumentar no próximo mês, alcançando $0.011074 até 4 de fev. de 2026. O SMA de 50 dias de curto prazo para Ankr é esperado para alcançar $0.006744 até 4 de fev. de 2026.
O oscilador de momentum Índice de Força Relativa (RSI) é uma ferramenta comumente usada para identificar se uma criptomoeda está sobrevendida (abaixo de 30) ou sobrecomprada (acima de 70). No momento, o RSI está em 61.61, sugerindo que o mercado de ANKR está em um estado NEUTRAL.
Médias Móveis e Osciladores Populares de ANKR para Sábado, 19 de Outubro de 2024
Médias móveis (MA) são indicadores amplamente utilizados nos mercados financeiros, projetados para suavizar movimentos de preços ao longo de um período definido. Como indicadores atrasados, eles se baseiam em dados históricos de preços. A tabela abaixo destaca dois tipos: a média móvel simples (SMA) e a média móvel exponencial (EMA).
Média Móvel Simples Diária (SMA)
| Período | Valor | Ação |
|---|---|---|
| SMA 3 | $0.007065 | BUY |
| SMA 5 | $0.006898 | BUY |
| SMA 10 | $0.006666 | BUY |
| SMA 21 | $0.006537 | BUY |
| SMA 50 | $0.007299 | BUY |
| SMA 100 | $0.0091057 | SELL |
| SMA 200 | $0.012298 | SELL |
Média Móvel Exponencial Diária (EMA)
| Período | Valor | Ação |
|---|---|---|
| EMA 3 | $0.00715 | BUY |
| EMA 5 | $0.006976 | BUY |
| EMA 10 | $0.006778 | BUY |
| EMA 21 | $0.006784 | BUY |
| EMA 50 | $0.007492 | BUY |
| EMA 100 | $0.00908 | SELL |
| EMA 200 | $0.01198 | SELL |
Média Móvel Simples Semanal (SMA)
| Período | Valor | Ação |
|---|---|---|
| SMA 21 | $0.0106053 | SELL |
| SMA 50 | $0.015027 | SELL |
| SMA 100 | $0.02515 | SELL |
| SMA 200 | $0.028578 | SELL |
Média Móvel Exponencial Semanal (EMA)
| Período | Valor | Ação |
|---|---|---|
| EMA 21 | $0.010185 | SELL |
| EMA 50 | $0.0152038 | SELL |
| EMA 100 | $0.0211008 | SELL |
| EMA 200 | $0.026053 | SELL |
Osciladores de Ankr
Um oscilador é uma ferramenta de análise técnica que define limites altos e baixos entre dois extremos, criando um indicador de tendência que flutua dentro desses limites. Os traders usam esse indicador para identificar condições de sobrecompra ou sobrevenda de curto prazo.
| Período | Valor | Ação |
|---|---|---|
| RSI (14) | 61.61 | NEUTRAL |
| Stoch RSI (14) | 120.19 | SELL |
| Estocástico Rápido (14) | 100 | SELL |
| Índice de Canal de Commodities (20) | 302.34 | SELL |
| Índice Direcional Médio (14) | 23.85 | NEUTRAL |
| Oscilador Impressionante (5, 34) | -0.000029 | NEUTRAL |
| Momentum (10) | 0 | BUY |
| MACD (12, 26) | 0 | BUY |
| Williams Percent Range (14) | -0 | SELL |
| Oscilador Ultimate (7, 14, 28) | 76.39 | SELL |
| VWMA (10) | 0.006752 | BUY |
| Média Móvel de Hull (9) | 0.007157 | BUY |
| Nuvem Ichimoku B/L (9, 26, 52, 26) | -0.001022 | SELL |
Previsão do preço de Ankr com base nos fluxos financeiros mundiais
Definições dos fluxos financeiros mundiais, usadas na previsão do preço do Ankr
M0: o total de todas as moedas físicas, mais as contas no Banco Central que podem ser trocadas por moedas físicas.
M1: o valor de M0, mais o valor em contas de demanda, incluindo contas 'correntes'.
M2: o valor de M1, mais a maioria das contas de poupança, do mercado de moedas e de certificados de depósito (CD) de menos de US$ 100.000.
Previsões de preço de Ankr por empresas de Internet ou nichos tecnológicos
| Comparação | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Facebook stock | $0.010531 | $0.014798 | $0.020794 | $0.029219 | $0.041058 | $0.057693 |
| Amazon.com stock | $0.015638 | $0.03263 | $0.068085 | $0.142064 | $0.296425 | $0.6185094 |
| Apple stock | $0.01063 | $0.015079 | $0.021388 | $0.030337 | $0.043032 | $0.061037 |
| Netflix stock | $0.011825 | $0.018659 | $0.029441 | $0.046453 | $0.073296 | $0.115649 |
| Google stock | $0.0097057 | $0.012568 | $0.016276 | $0.021078 | $0.027296 | $0.035348 |
| Tesla stock | $0.01699 | $0.038515 | $0.087311 | $0.197929 | $0.44869 | $1.01 |
| Kodak stock | $0.00562 | $0.004214 | $0.00316 | $0.00237 | $0.001777 | $0.001332 |
| Nokia stock | $0.004965 | $0.003289 | $0.002178 | $0.001443 | $0.000956 | $0.000633 |
Este cálculo mostra quanto a criptomoeda pode custar, se assumirmos que sua capitalização se comportará da mesma forma que a de algumas empresas de Internet ou nichos tecnológicos. Se você extrapolar os dados, poderá obter uma imagem em potencial do preço futuro para 2024, 2025, 2026, 2027, 2028, 2029 e 2030.
Visão geral da previsão para Ankr
Você pode fazer perguntas como: 'Devo investir em Ankr agora?', 'Devo comprar ANKR hoje?', 'Ankr será um bom ou mau investimento no curto ou no longo prazo?'.
Atualizamos a previsão para Ankr/Ankr Network regularmente com novos valores. Veja nossas previsões semelhantes. Fazemos previsões de preços futuros para uma enorme quantidade de moedas digitais, como Ankr, com métodos de análise técnica.
Se você estiver tentando encontrar criptomoedas com bom retorno, você deve explorar o máximo de fontes de informações disponíveis sobre Ankr para poder tomar sozinho uma decisão de tão grande responsabilidade sobre o seu investimento.
O preço de Ankr é de $0.007494 USD hoje, mas o preço pode tanto subir quanto descer e seu investimento pode ser perdido, porque criptomoedas são ativos de alto risco
Previsão de curto prazo para Ankr
com base no histórico de preços de 4 horas
Previsão de longo prazo para Ankr
com base no histórico de preços de 1 mês
Previsão do preço de Ankr com base no padrão de crescimento do Bitcoin
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| Se Ankr tiver 1% da média anterior do crescimento anual do Bitcoin | $0.007689 | $0.007889 | $0.008094 | $0.008305 |
| Se Ankr tiver 2% da média anterior do crescimento anual do Bitcoin | $0.007884 | $0.008294 | $0.008725 | $0.009179 |
| Se Ankr tiver 5% da média anterior do crescimento anual do Bitcoin | $0.008468 | $0.009569 | $0.010813 | $0.012218 |
| Se Ankr tiver 10% da média anterior do crescimento anual do Bitcoin | $0.009442 | $0.011897 | $0.01499 | $0.018886 |
| Se Ankr tiver 20% da média anterior do crescimento anual do Bitcoin | $0.011391 | $0.017312 | $0.026313 | $0.039992 |
| Se Ankr tiver 50% da média anterior do crescimento anual do Bitcoin | $0.017235 | $0.039635 | $0.091149 | $0.209612 |
| Se Ankr tiver 100% da média anterior do crescimento anual do Bitcoin | $0.026976 | $0.097096 | $0.349481 | $1.25 |
Perguntas Frequentes sobre Ankr
ANKR é um bom investimento?
A decisão de adquirir Ankr depende inteiramente da sua tolerância individual ao risco. Como você pode perceber, o valor de Ankr experimentou uma escalada de 4.2668% nas últimas 24 horas, e Ankr registrou um declínio de -71.1% durante os últimos 30 dias. Consequentemente, a decisão de investir ou não em Ankr dependerá de quão alinhado esse investimento está com suas aspirações de negociação.
Ankr pode subir?
Parece que o valor médio de Ankr pode potencialmente subir para $0.007729 até o final deste ano. Observando as perspectivas de Ankr em um horizonte de cinco anos mais longo, a moeda digital poderia potencialmente crescer até $0.02430041. No entanto, dada a imprevisibilidade do mercado, é vital conduzir uma pesquisa aprofundada antes de investir quaisquer fundos em um projeto, rede ou ativo específico.
Qual será o preço de Ankr na próxima semana?
Com base na nossa nova previsão experimental de Ankr, o preço de Ankr aumentará 0.86% na próxima semana e atingirá $0.007558 até 13 de janeiro de 2026.
Qual será o preço de Ankr no próximo mês?
Com base na nossa nova previsão experimental de Ankr, o preço de Ankr diminuirá -11.62% no próximo mês e atingirá $0.006624 até 5 de fevereiro de 2026.
Até onde o preço de Ankr pode subir este ano em 2026?
De acordo com nossa previsão mais recente sobre o valor de Ankr em 2026, espera-se que ANKR fluctue dentro do intervalo de $0.002589 e $0.007729. No entanto, é crucial lembrar que o mercado de criptomoedas é excepcionalmente instável, e essa previsão de preço de Ankr não considera flutuações repentinas e extremas de preço.
Onde estará Ankr em 5 anos?
O futuro de Ankr parece seguir uma tendência de alta, com um preço máximo de $0.02430041 projetada após um período de cinco anos. Com base na previsão de Ankr para 2030, o valor de Ankr pode potencialmente atingir seu pico mais alto de aproximadamente $0.02430041, enquanto seu pico mais baixo está previsto para cerca de $0.0084046.
Quanto será Ankr em 2026?
Com base na nossa nova simulação experimental de previsão de preços de Ankr, espera-se que o valor de ANKR em 2026 aumente 3.13% para $0.007729 se o melhor cenário ocorrer. O preço ficará entre $0.007729 e $0.002589 durante 2026.
Quanto será Ankr em 2027?
De acordo com nossa última simulação experimental para previsão de preços de Ankr, o valor de ANKR pode diminuir -12.62% para $0.006548 em 2027, assumindo as condições mais favoráveis. O preço está projetado para flutuar entre $0.006548 e $0.002492 ao longo do ano.
Quanto será Ankr em 2028?
Nosso novo modelo experimental de previsão de preços de Ankr sugere que o valor de ANKR em 2028 pode aumentar 47.02%, alcançando $0.011018 no melhor cenário. O preço é esperado para variar entre $0.011018 e $0.004498 durante o ano.
Quanto será Ankr em 2029?
Com base no nosso modelo de previsão experimental, o valor de Ankr pode experimentar um 333.75% crescimento em 2029, potencialmente alcançando $0.0325091 sob condições ótimas. A faixa de preço prevista para 2029 está entre $0.0325091 e $0.009882.
Quanto será Ankr em 2030?
Usando nossa nova simulação experimental para previsões de preços de Ankr, espera-se que o valor de ANKR em 2030 aumente 224.23%, alcançando $0.02430041 no melhor cenário. O preço está previsto para variar entre $0.02430041 e $0.0084046 ao longo de 2030.
Quanto será Ankr em 2031?
Nossa simulação experimental indica que o preço de Ankr poderia aumentar 195.98% em 2031, potencialmente atingindo $0.022183 sob condições ideais. O preço provavelmente oscilará entre $0.022183 e $0.009936 durante o ano.
Quanto será Ankr em 2032?
Com base nos achados da nossa mais recente previsão experimental de preços de Ankr, ANKR poderia ver um 449.04% aumento em valor, atingindo $0.041149 se o cenário mais positivo se desenrolar em 2032. O preço é esperado para permanecer dentro de uma faixa de $0.041149 e $0.015167 ao longo do ano.
Quanto será Ankr em 2033?
De acordo com nossa previsão experimental de preços de Ankr, espera-se que o valor de ANKR seja aumentar 1362.43% em 2033, com o preço potencial mais alto sendo $0.1096067. Ao longo do ano, o preço de ANKR poderia variar entre $0.1096067 e $0.035247.
Quanto será Ankr em 2034?
Os resultados da nossa nova simulação de previsão de preços de Ankr sugerem que ANKR pode aumentar 746.96% em 2034, atingindo potencialmente $0.063478 nas melhores circunstâncias. A faixa de preço prevista para o ano é entre $0.063478 e $0.028336.
Quanto será Ankr em 2035?
Com base em nossa previsão experimental para o preço de Ankr, ANKR poderia aumentar 897.93%, com o valor potencialmente atingindo $0.074793 em 2035. A faixa de preço esperada para o ano está entre $0.074793 e $0.033503.
Quanto será Ankr em 2036?
Nossa recente simulação de previsão de preços de Ankr sugere que o valor de ANKR pode aumentar 1964.7% em 2036, possivelmente atingindo $0.154745 se as condições forem ideais. A faixa de preço esperada para 2036 está entre $0.154745 e $0.055458.
Quanto será Ankr em 2037?
De acordo com a simulação experimental, o valor de Ankr poderia aumentar 4830.69% em 2037, com um pico de $0.369546 sob condições favoráveis. O preço é esperado para cair entre $0.369546 e $0.144023 ao longo do ano.
Previsões relacionadas
Previsão de Preço do Terra
Previsão de Preço do cUSDT
Previsão de Preço do GMT
Previsão de Preço do Biconomy
Previsão de Preço do Celo
Previsão de Preço do Fasttoken
Previsão de Preço do Rocket Pool
Previsão de Preço do BitClout
Previsão de Preço do EthereumPoW
Previsão de Preço do 0x
Previsão de Preço do Wootrade Network
Previsão de Preço do MX Token
Previsão de Preço do Ravencoin
Previsão de Preço do Holo
Previsão de Preço do Siacoin
Previsão de Preço do Frax Share
Previsão de Preço do Saga
Previsão de Preço do Golem
Previsão de Preço do APENFT
Previsão de Preço do Qtum
Previsão de Preço do Jeo Boden
Previsão de Preço do Polymesh
Previsão de Preço do Trust Wallet Token
Previsão de Preço do AMP Token
Previsão de Preço do Raydium
Como ler e prever os movimentos de preço de Ankr?
Traders de Ankr utilizam indicadores e padrões de gráfico para prever a direção do mercado. Eles também identificam níveis-chave de suporte e resistência para avaliar quando uma tendência de baixa pode desacelerar ou uma tendência de alta pode estagnar.
Indicadores de Previsão de Preço de Ankr
Médias móveis são ferramentas populares para a previsão de preço de Ankr. Uma média móvel simples (SMA) calcula o preço médio de fechamento de ANKR em um período específico, como uma SMA de 12 dias. Uma média móvel exponencial (EMA) dá mais peso aos preços recentes, reagindo mais rapidamente às mudanças de preço.
Médias móveis comumente usadas no mercado de criptomoedas incluem as de 50 dias, 100 dias e 200 dias, que ajudam a identificar níveis-chave de resistência e suporte. Um movimento de preço de ANKR acima dessas médias é visto como altista, enquanto uma queda abaixo indica fraqueza.
Traders também usam RSI e níveis de retração de Fibonacci para avaliar a direção futura de ANKR.
Como ler gráficos de Ankr e prever movimentos de preço?
A maioria dos traders prefere gráficos de velas em vez de gráficos de linha simples porque eles fornecem informações mais detalhadas. Velas podem representar a ação de preço de Ankr em diferentes períodos de tempo, como 5 minutos para tendências de curto prazo e semanal para tendências de longo prazo. Opções populares incluem gráficos de 1 hora, 4 horas e 1 dia.
Por exemplo, um gráfico de velas de 1 hora mostra os preços de abertura, fechamento, máximo e mínimo de ANKR dentro de cada hora. A cor da vela é crucial: verde indica que o preço fechou mais alto do que abriu, enquanto vermelho significa o oposto. Alguns gráficos usam velas vazias e preenchidas para transmitir a mesma informação.
O que afeta o preço de Ankr?
A ação de preço de Ankr é impulsionada pela oferta e demanda, influenciada por fatores como reduções pela metade das recompensas de bloco, hard forks e atualizações de protocolo. Eventos do mundo real, como regulamentações, adoção por empresas e governos e hacks de exchanges de criptomoedas, também impactam o preço de ANKR. A capitalização de mercado de Ankr pode mudar rapidamente.
Traders frequentemente monitoram a atividade de "baleias" de ANKR, grandes detentores de Ankr, pois suas ações podem influenciar significativamente os movimentos de preço no relativamente pequeno mercado de Ankr.
Padrões de previsão de preço altistas e baixistas
Traders frequentemente identificam padrões de velas para ganhar vantagem em previsões de preço de criptomoedas. Certas formações indicam tendências altistas, enquanto outras sugerem movimentos baixistas.
Padrões de velas altistas comumente seguidos:
- Martelo
- Engolfo de Alta
- Linha de Perfuração
- Estrela da Manhã
- Três Soldados Brancos
Padrões de velas baixistas comuns:
- Harami de Baixa
- Nuvem Negra
- Estrela da Noite
- Estrela Cadente
- Homem Enforcado


