Previsão de Preço Biconomy - Projeção BICO
Previsão de Preço Biconomy até $0.051137 até 2026
| Ano | Preço Mínimo | Preço Máximo |
|---|---|---|
| 2026 | $0.017131 | $0.051137 |
| 2027 | $0.016491 | $0.043324 |
| 2028 | $0.029763 | $0.072898 |
| 2029 | $0.06538 | $0.215073 |
| 2030 | $0.0556035 | $0.160766 |
| 2031 | $0.06574 | $0.146761 |
| 2032 | $0.100348 | $0.272234 |
| 2033 | $0.233187 | $0.725134 |
| 2034 | $0.187471 | $0.419958 |
| 2035 | $0.221649 | $0.494815 |
Calculadora de lucro do investimento
Se você abrir um short de $10,000.00 em Biconomy hoje e fechar em Apr 06, 2026, nossa previsão mostra que pode lucrar cerca de $3,954.52, com um retorno de 39.55% nos próximos 90 dias.
Previsão de preço de longo prazo de Biconomy para os anos 2027, 2028, 2029, 2030, 2031, 2032 e 2037
[
'name' => 'Biconomy'
'name_with_ticker' => 'Biconomy <small>BICO</small>'
'name_lang' => 'Biconomy'
'name_lang_with_ticker' => 'Biconomy <small>BICO</small>'
'name_with_lang' => 'Biconomy'
'name_with_lang_with_ticker' => 'Biconomy <small>BICO</small>'
'image' => '/uploads/coins/biconomy.jpg?1717107179'
'price_for_sd' => 0.04958
'ticker' => 'BICO'
'marketcap' => '$58.6M'
'low24h' => '$0.04795'
'high24h' => '$0.05072'
'volume24h' => '$15.3M'
'current_supply' => '1000M'
'max_supply' => '1B'
'algo' => null
'proof' => null
'ico_price_and_roi' => '—'
'price' => '$0.04958'
'change_24h_pct' => '-2.2386%'
'ath_price' => '$21.45'
'ath_days' => 1496
'ath_exchange' => null
'ath_pair' => null
'ath_date' => '2 de dez. de 2021'
'ath_pct' => '-99.77%'
'fdv' => '$58.6M'
'new_prediction' => true
'change_24h_pct_is_increased' => false
'change_30d_pct' => '-75.85%'
'change_30d_pct_is_increased' => false
'max_price' => '$2.44'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.05000847'
'next_week_prediction_price_date' => '13 de janeiro de 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.043823'
'next_month_prediction_price_date' => '5 de fevereiro de 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.017131'
'current_year_max_price_prediction' => '$0.051137'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.0556035'
'grand_prediction_max_price' => '$0.160766'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.050523743561237
107 => 0.050712380879576
108 => 0.051137390389853
109 => 0.04750573065798
110 => 0.049136239257663
111 => 0.050094010301982
112 => 0.045766765879741
113 => 0.050008474592906
114 => 0.047442511541762
115 => 0.046571585142732
116 => 0.047744172803197
117 => 0.047287214251535
118 => 0.046894348122322
119 => 0.046675122071924
120 => 0.047536141035993
121 => 0.047495973472179
122 => 0.046087179330383
123 => 0.044249464802206
124 => 0.044866262118785
125 => 0.044642173871167
126 => 0.043830049153836
127 => 0.044377323157005
128 => 0.041967405416086
129 => 0.03782126719946
130 => 0.040560333105012
131 => 0.040454882047178
201 => 0.040401708841994
202 => 0.042460041167794
203 => 0.042262180008475
204 => 0.041903060066848
205 => 0.043823453634483
206 => 0.043122484149358
207 => 0.045282706933332
208 => 0.046705569373307
209 => 0.046344685433751
210 => 0.047682894435838
211 => 0.044880471883204
212 => 0.045811324241511
213 => 0.046003171622453
214 => 0.043799756275953
215 => 0.04229455254113
216 => 0.042194172612596
217 => 0.039584356766264
218 => 0.040978499325677
219 => 0.042205287084422
220 => 0.041617750950559
221 => 0.041431754562721
222 => 0.042381969770491
223 => 0.042455809630178
224 => 0.040772253004124
225 => 0.041122317737985
226 => 0.042582145871606
227 => 0.041085533814551
228 => 0.038177861057884
301 => 0.03745671801251
302 => 0.037360504236954
303 => 0.035404707103322
304 => 0.037504908239082
305 => 0.036588114161431
306 => 0.039484255667849
307 => 0.037829995171702
308 => 0.037758683308041
309 => 0.037650884966943
310 => 0.035967449581064
311 => 0.036336014942671
312 => 0.037561182338744
313 => 0.037998335868161
314 => 0.03795273717355
315 => 0.037555178350116
316 => 0.037737178743653
317 => 0.037150892062928
318 => 0.036943862033462
319 => 0.03629041831237
320 => 0.035330036560802
321 => 0.035463583533721
322 => 0.033560815986308
323 => 0.032524087238961
324 => 0.03223713438556
325 => 0.031853409037408
326 => 0.032280477184688
327 => 0.033555425684917
328 => 0.032017567298228
329 => 0.029381016962474
330 => 0.029539478130116
331 => 0.029895493326264
401 => 0.029232061363518
402 => 0.028604178688402
403 => 0.029150071732683
404 => 0.028032930598395
405 => 0.030030494495138
406 => 0.02997646598984
407 => 0.030721034282023
408 => 0.031186628115204
409 => 0.030113585067514
410 => 0.029843717642837
411 => 0.029997446392724
412 => 0.027456652592119
413 => 0.030513397222309
414 => 0.030539832076805
415 => 0.030313480803545
416 => 0.031941102952718
417 => 0.035375893355553
418 => 0.034083587041883
419 => 0.033583166977065
420 => 0.03263186806804
421 => 0.033899417381775
422 => 0.03380208937133
423 => 0.033361935197545
424 => 0.033095728579875
425 => 0.033586222435272
426 => 0.033034950963136
427 => 0.032935927458813
428 => 0.032335952761253
429 => 0.032121789091333
430 => 0.031963230836226
501 => 0.031788673776966
502 => 0.032173703152786
503 => 0.031301175932345
504 => 0.030248993639393
505 => 0.030161516066504
506 => 0.030403049336357
507 => 0.030296188844484
508 => 0.030161004459581
509 => 0.029902900653524
510 => 0.029826326767783
511 => 0.030075154748075
512 => 0.029794242465897
513 => 0.030208743840335
514 => 0.030096022401895
515 => 0.029466369609853
516 => 0.028681589103647
517 => 0.028674602911009
518 => 0.028505523238245
519 => 0.028290174853681
520 => 0.028230269859599
521 => 0.029104098143114
522 => 0.030912896538508
523 => 0.030557786132615
524 => 0.030814389794051
525 => 0.032076625838338
526 => 0.032477852720055
527 => 0.032193071382992
528 => 0.031803245124272
529 => 0.031820395501254
530 => 0.033152549835733
531 => 0.033235634667521
601 => 0.033445563233266
602 => 0.033715380766053
603 => 0.03223902247555
604 => 0.031750859158538
605 => 0.031519540296668
606 => 0.030807167733775
607 => 0.031575400468648
608 => 0.031127784153043
609 => 0.031188182886769
610 => 0.031148848132195
611 => 0.031170327567997
612 => 0.030029936135319
613 => 0.030445434836177
614 => 0.029754587658702
615 => 0.028829620839296
616 => 0.028826520026182
617 => 0.029052904344832
618 => 0.02891824209368
619 => 0.028555869438313
620 => 0.028607342763657
621 => 0.028156382270863
622 => 0.028662097532385
623 => 0.02867659963655
624 => 0.028481871714367
625 => 0.02926099585
626 => 0.029580203644074
627 => 0.029452029554217
628 => 0.029571210608244
629 => 0.030572542573207
630 => 0.030735803374673
701 => 0.030808313038281
702 => 0.030711159694736
703 => 0.029589513118392
704 => 0.029639262913662
705 => 0.029274231925476
706 => 0.028965819206477
707 => 0.028978154097825
708 => 0.029136718326238
709 => 0.029829177611386
710 => 0.031286417354274
711 => 0.031341718537289
712 => 0.031408745184351
713 => 0.031136114125854
714 => 0.031053885989883
715 => 0.031162366126111
716 => 0.031709628755515
717 => 0.033117336818695
718 => 0.032619758771506
719 => 0.032215220073879
720 => 0.032570109574548
721 => 0.032515477117636
722 => 0.032054324201136
723 => 0.032041381174687
724 => 0.031156281288417
725 => 0.030829080013213
726 => 0.030555646137061
727 => 0.030257063482475
728 => 0.030080053676256
729 => 0.030352021188127
730 => 0.030414223375917
731 => 0.029819561658031
801 => 0.029738511463234
802 => 0.030224125058724
803 => 0.030010424620849
804 => 0.03023022082072
805 => 0.030281215424467
806 => 0.030273004118758
807 => 0.030049876318277
808 => 0.030192091324537
809 => 0.029855710438398
810 => 0.029489946747498
811 => 0.029256612300587
812 => 0.029052997048334
813 => 0.029165974624472
814 => 0.02876323019443
815 => 0.028634384145616
816 => 0.030143912080355
817 => 0.031259016595906
818 => 0.03124280253462
819 => 0.03114410360646
820 => 0.03099745701956
821 => 0.031698900644278
822 => 0.031454531711234
823 => 0.031632330527731
824 => 0.031677587788722
825 => 0.031814567887128
826 => 0.031863526498471
827 => 0.031715539571051
828 => 0.03121887736755
829 => 0.02998124237765
830 => 0.02940511994892
831 => 0.029214989951361
901 => 0.029221900815664
902 => 0.029031268326731
903 => 0.029087418138271
904 => 0.029011741713736
905 => 0.02886842887376
906 => 0.029157125460448
907 => 0.029190395052669
908 => 0.029123009819669
909 => 0.029138881481421
910 => 0.028580960532788
911 => 0.028623378050772
912 => 0.02838719192048
913 => 0.028342909868316
914 => 0.027745851898016
915 => 0.026688077158692
916 => 0.027274187044956
917 => 0.026566248721871
918 => 0.026298141751902
919 => 0.027567318448544
920 => 0.027439928309683
921 => 0.027221891767115
922 => 0.026899370277861
923 => 0.026779743920209
924 => 0.026052932040219
925 => 0.026009988116958
926 => 0.026370215710253
927 => 0.026203983070622
928 => 0.025970529487356
929 => 0.025124984273579
930 => 0.024174311502894
1001 => 0.024203006338125
1002 => 0.024505397658584
1003 => 0.025384641205845
1004 => 0.025041105540862
1005 => 0.0247918664743
1006 => 0.024745191489232
1007 => 0.025329426648062
1008 => 0.026156241798856
1009 => 0.026544164968662
1010 => 0.026159744888786
1011 => 0.025718143799671
1012 => 0.025745022011783
1013 => 0.025923830715313
1014 => 0.025942620981835
1015 => 0.025655184070147
1016 => 0.025736095877116
1017 => 0.025613183443599
1018 => 0.024858870065987
1019 => 0.02484522692894
1020 => 0.024660106261127
1021 => 0.024654500880878
1022 => 0.024339564444414
1023 => 0.0242955026599
1024 => 0.023670177250027
1025 => 0.024081768328465
1026 => 0.02380569464255
1027 => 0.023389586478677
1028 => 0.023317849274385
1029 => 0.023315692767398
1030 => 0.023742942811613
1031 => 0.024076775662941
1101 => 0.023810497062514
1102 => 0.02374987058679
1103 => 0.024397202735723
1104 => 0.024314823819208
1105 => 0.024243484208793
1106 => 0.02608220957069
1107 => 0.024626714969219
1108 => 0.02399203624625
1109 => 0.023206500804356
1110 => 0.02346227510525
1111 => 0.023516170508555
1112 => 0.021627099374205
1113 => 0.020860703450268
1114 => 0.020597705250194
1115 => 0.020446346067802
1116 => 0.020515322347867
1117 => 0.019825476127048
1118 => 0.020289064196442
1119 => 0.019691715680461
1120 => 0.019591568257817
1121 => 0.020659701401671
1122 => 0.020808325888695
1123 => 0.020174247653042
1124 => 0.020581428528273
1125 => 0.020433779082677
1126 => 0.019701955506274
1127 => 0.019674005228585
1128 => 0.019306801882789
1129 => 0.018732199751196
1130 => 0.018469591158425
1201 => 0.018332822323237
1202 => 0.018389255810207
1203 => 0.018360721312302
1204 => 0.018174514411993
1205 => 0.018371394473862
1206 => 0.017868447272244
1207 => 0.017668169644039
1208 => 0.017577708885785
1209 => 0.017131314295789
1210 => 0.017841726601048
1211 => 0.017981686774722
1212 => 0.018121922713175
1213 => 0.019342580814262
1214 => 0.019281600185075
1215 => 0.019832835374149
1216 => 0.019811415388358
1217 => 0.019654194183016
1218 => 0.018990903779312
1219 => 0.019255279512214
1220 => 0.018441572099453
1221 => 0.019051257019819
1222 => 0.018773022283215
1223 => 0.018957185575495
1224 => 0.018626043370642
1225 => 0.018809311139334
1226 => 0.018014876524081
1227 => 0.017273044658354
1228 => 0.017571579456544
1229 => 0.017896120923773
1230 => 0.018599809516352
1231 => 0.018180698395917
]
'min_raw' => 0.017131314295789
'max_raw' => 0.051137390389853
'avg_raw' => 0.034134352342821
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.017131'
'max' => '$0.051137'
'avg' => '$0.034134'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.032452835704211
'max_diff' => 0.0015532403898533
'year' => 2026
]
1 => [
'items' => [
101 => 0.018331426603172
102 => 0.017826512340466
103 => 0.016784729994875
104 => 0.016790626369813
105 => 0.016630370852406
106 => 0.016491886687678
107 => 0.018228838349756
108 => 0.018012820953435
109 => 0.017668625504054
110 => 0.018129344790833
111 => 0.018251166282856
112 => 0.018254634369473
113 => 0.018590763268222
114 => 0.018770155321739
115 => 0.018801773948701
116 => 0.019330680033427
117 => 0.019507962376587
118 => 0.020238163258129
119 => 0.01875493515934
120 => 0.018724389052711
121 => 0.018135828056016
122 => 0.01776255336713
123 => 0.018161386493314
124 => 0.018514698196962
125 => 0.018146806435501
126 => 0.018194845332929
127 => 0.017700980701028
128 => 0.017877514068442
129 => 0.018029568386071
130 => 0.017945612929216
131 => 0.017819927546813
201 => 0.018485730666376
202 => 0.018448163445067
203 => 0.019068174616752
204 => 0.019551517662504
205 => 0.020417754808397
206 => 0.019513791188694
207 => 0.019480847161463
208 => 0.019802880312043
209 => 0.01950791307499
210 => 0.019694322186884
211 => 0.020387721418597
212 => 0.020402371851719
213 => 0.020156958220911
214 => 0.020142024779173
215 => 0.0201891591515
216 => 0.020465226642439
217 => 0.020368760178408
218 => 0.020480393612817
219 => 0.020619992931937
220 => 0.021197434904703
221 => 0.021336654209417
222 => 0.020998423475897
223 => 0.021028961924125
224 => 0.020902454345147
225 => 0.02078024960899
226 => 0.021054948009303
227 => 0.021556964735085
228 => 0.021553841715088
301 => 0.021670299837659
302 => 0.021742852283229
303 => 0.021431404075205
304 => 0.021228662744049
305 => 0.021306406671181
306 => 0.021430720903706
307 => 0.021266093241038
308 => 0.020249935044101
309 => 0.020558172528615
310 => 0.020506866739149
311 => 0.020433801055952
312 => 0.02074373623016
313 => 0.020713842226516
314 => 0.019818400756966
315 => 0.019875724014593
316 => 0.019821886774123
317 => 0.019995845912147
318 => 0.019498518710651
319 => 0.019651493208282
320 => 0.019747437379149
321 => 0.019803949232867
322 => 0.020008108799039
323 => 0.01998415303035
324 => 0.020006619674822
325 => 0.020309334415328
326 => 0.021840361693652
327 => 0.021923692130389
328 => 0.021513342583217
329 => 0.021677269133525
330 => 0.021362566003729
331 => 0.021573828323089
401 => 0.021718368636514
402 => 0.021065218753649
403 => 0.021026543456494
404 => 0.020710541434934
405 => 0.020880343022051
406 => 0.020610176487782
407 => 0.020676465905267
408 => 0.020491114914971
409 => 0.020824709794491
410 => 0.021197720705198
411 => 0.02129195799189
412 => 0.021044060262306
413 => 0.020864565968831
414 => 0.020549433118586
415 => 0.021073506071738
416 => 0.021226760974074
417 => 0.021072701088979
418 => 0.021037002047327
419 => 0.020969352427904
420 => 0.021051354233888
421 => 0.021225926314962
422 => 0.021143601345368
423 => 0.021197978438164
424 => 0.020990749033839
425 => 0.021431507177521
426 => 0.022131537183913
427 => 0.02213378789485
428 => 0.022051462481493
429 => 0.022017776696074
430 => 0.022102247566101
501 => 0.022148069547915
502 => 0.022421232852276
503 => 0.022714347961162
504 => 0.024082188278192
505 => 0.023698104190672
506 => 0.024911733493125
507 => 0.025871556701324
508 => 0.026159365713481
509 => 0.025894594964757
510 => 0.024988828536008
511 => 0.024944387313827
512 => 0.0262979847631
513 => 0.02591553148499
514 => 0.025870039884515
515 => 0.025386086114733
516 => 0.025672162731514
517 => 0.025609593578933
518 => 0.025510825110597
519 => 0.026056639367146
520 => 0.027078354930232
521 => 0.026919110978137
522 => 0.026800242755013
523 => 0.026279396803301
524 => 0.026593062401387
525 => 0.026481372089777
526 => 0.026961264548875
527 => 0.026676986887025
528 => 0.025912634025255
529 => 0.026034359737832
530 => 0.026015961141254
531 => 0.026394602955087
601 => 0.026280944081042
602 => 0.025993767421937
603 => 0.027074862817512
604 => 0.027004662495892
605 => 0.027104190501922
606 => 0.027148005808182
607 => 0.027806049524431
608 => 0.028075628979928
609 => 0.028136828235979
610 => 0.028392907868677
611 => 0.028130456741434
612 => 0.029180448374891
613 => 0.029878631542429
614 => 0.030689607219702
615 => 0.03187466065391
616 => 0.03232025170753
617 => 0.032239759672024
618 => 0.033138253661013
619 => 0.034752827386827
620 => 0.032566111184441
621 => 0.034868728655315
622 => 0.034139746549033
623 => 0.032411343088867
624 => 0.032300054282571
625 => 0.033470549172972
626 => 0.036066594183923
627 => 0.035416314352779
628 => 0.036067657808771
629 => 0.035307831069212
630 => 0.03527009926727
701 => 0.036030754719995
702 => 0.037808067646459
703 => 0.036963732896675
704 => 0.035753171993485
705 => 0.036647031325987
706 => 0.035872687649398
707 => 0.034127874620895
708 => 0.035415817096047
709 => 0.034554606641403
710 => 0.034805953636534
711 => 0.03661608991681
712 => 0.03639828953054
713 => 0.036680143398146
714 => 0.036182678699222
715 => 0.035717968227445
716 => 0.034850551622021
717 => 0.034593752328276
718 => 0.034664722414397
719 => 0.034593717159026
720 => 0.034108405540261
721 => 0.034003602542396
722 => 0.033828926287762
723 => 0.033883065763104
724 => 0.033554623301052
725 => 0.034174462086619
726 => 0.034289509627221
727 => 0.034740576605092
728 => 0.034787407875092
729 => 0.036043622987926
730 => 0.035351720813614
731 => 0.035815908528102
801 => 0.035774387209814
802 => 0.032448802832827
803 => 0.032907039018096
804 => 0.033619910719939
805 => 0.033298762984534
806 => 0.032844735223667
807 => 0.032478083463339
808 => 0.031922568554375
809 => 0.032704445121023
810 => 0.033732529662863
811 => 0.034813481795671
812 => 0.03611217495645
813 => 0.035822321761419
814 => 0.034789203630382
815 => 0.034835548555047
816 => 0.035122034643271
817 => 0.034751009129015
818 => 0.034641586461583
819 => 0.035107001649065
820 => 0.035110206707674
821 => 0.034683297013591
822 => 0.034208865012268
823 => 0.03420687712486
824 => 0.034122456532694
825 => 0.035322849305016
826 => 0.035982943956396
827 => 0.036058622744381
828 => 0.035977850170987
829 => 0.036008936328738
830 => 0.035624841795293
831 => 0.036502767999051
901 => 0.037308439901523
902 => 0.037092502620991
903 => 0.03676878194018
904 => 0.036510922825414
905 => 0.037031759208432
906 => 0.037008567184169
907 => 0.037301403060307
908 => 0.037288118333464
909 => 0.037189648642433
910 => 0.037092506137653
911 => 0.037477665188613
912 => 0.037366745567402
913 => 0.037255653657382
914 => 0.037032841824517
915 => 0.037063125653116
916 => 0.036739460867245
917 => 0.036589718727408
918 => 0.034337956225893
919 => 0.033736211707026
920 => 0.033925532782301
921 => 0.033987862196001
922 => 0.033725982210233
923 => 0.034101450838375
924 => 0.034042934450399
925 => 0.034270587485073
926 => 0.034128359752554
927 => 0.034134196828308
928 => 0.034552458263494
929 => 0.03467388133754
930 => 0.034612124582076
1001 => 0.034655376896706
1002 => 0.035652108231679
1003 => 0.03551040490952
1004 => 0.035435127843874
1005 => 0.035455980105511
1006 => 0.035710666331757
1007 => 0.035781964569754
1008 => 0.035479868925324
1009 => 0.035622338977631
1010 => 0.036228958378214
1011 => 0.036441240836734
1012 => 0.037118744542967
1013 => 0.036830928926891
1014 => 0.037359226946567
1015 => 0.038983034948982
1016 => 0.040280245140279
1017 => 0.039087277038884
1018 => 0.041469438356479
1019 => 0.043324292642973
1020 => 0.043253100246036
1021 => 0.042929663497633
1022 => 0.040817961206313
1023 => 0.038874741274133
1024 => 0.040500327260878
1025 => 0.040504471213863
1026 => 0.040364831935941
1027 => 0.039497544373578
1028 => 0.040334652208725
1029 => 0.04040109878875
1030 => 0.040363906373508
1031 => 0.039698959032908
1101 => 0.038683707346621
1102 => 0.038882085095952
1103 => 0.039207031896153
1104 => 0.038591839812369
1105 => 0.038395248665797
1106 => 0.03876074901027
1107 => 0.039938467275184
1108 => 0.039715826459259
1109 => 0.039710012407793
1110 => 0.040662564232718
1111 => 0.039980742699622
1112 => 0.038884587274665
1113 => 0.03860779357335
1114 => 0.037625362404259
1115 => 0.03830393111205
1116 => 0.03832835159181
1117 => 0.037956706445358
1118 => 0.038914744230046
1119 => 0.038905915743201
1120 => 0.039815430034657
1121 => 0.041554079761952
1122 => 0.041039875483834
1123 => 0.040441911853649
1124 => 0.040506927079983
1125 => 0.041219983641616
1126 => 0.040788853366955
1127 => 0.04094389081967
1128 => 0.041219748973863
1129 => 0.04138618104746
1130 => 0.040482980065836
1201 => 0.040272400711923
1202 => 0.039841629257126
1203 => 0.039729249025299
1204 => 0.04008010338689
1205 => 0.039987665658478
1206 => 0.038326299145047
1207 => 0.038152677100638
1208 => 0.038158001840865
1209 => 0.037721420954919
1210 => 0.037055530312432
1211 => 0.038805451162622
1212 => 0.038664908028225
1213 => 0.038509759285026
1214 => 0.038528764120801
1215 => 0.039288345451548
1216 => 0.038847749919938
1217 => 0.04001914535291
1218 => 0.039778341667261
1219 => 0.03953136227571
1220 => 0.039497222200622
1221 => 0.039402156206166
1222 => 0.03907613953868
1223 => 0.038682454822126
1224 => 0.03842251007187
1225 => 0.035442734535102
1226 => 0.03599576354217
1227 => 0.03663197300462
1228 => 0.036851589961609
1229 => 0.036475919959649
1230 => 0.039090973280093
1231 => 0.039568768721019
]
'min_raw' => 0.016491886687678
'max_raw' => 0.043324292642973
'avg_raw' => 0.029908089665325
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.016491'
'max' => '$0.043324'
'avg' => '$0.029908'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -0.00063942760811105
'max_diff' => -0.0078130977468804
'year' => 2027
]
2 => [
'items' => [
101 => 0.038121495164629
102 => 0.037850769374018
103 => 0.039108722017854
104 => 0.038350022795165
105 => 0.038691665008686
106 => 0.037953221411353
107 => 0.039453681790783
108 => 0.039442250796651
109 => 0.038858537819618
110 => 0.039351888030712
111 => 0.039266156290782
112 => 0.038607145777333
113 => 0.039474573599515
114 => 0.039475003832893
115 => 0.038913192783513
116 => 0.03825712047409
117 => 0.038139830240902
118 => 0.03805146780592
119 => 0.038669933266396
120 => 0.039224447464368
121 => 0.040256260911066
122 => 0.040515683326849
123 => 0.041528226286377
124 => 0.0409253062538
125 => 0.04119257289512
126 => 0.041482728641447
127 => 0.041621839976361
128 => 0.041395165521245
129 => 0.042968061516701
130 => 0.043100862131006
131 => 0.043145389028261
201 => 0.042615017348393
202 => 0.043086111535153
203 => 0.042865702166168
204 => 0.043439146112782
205 => 0.043529069445711
206 => 0.043452907581835
207 => 0.04348145066705
208 => 0.042139261412796
209 => 0.04206966181935
210 => 0.04112066642416
211 => 0.04150738906232
212 => 0.040784429626378
213 => 0.041013687510822
214 => 0.041114742201836
215 => 0.041061956966054
216 => 0.041529253780047
217 => 0.041131956025721
218 => 0.040083421930255
219 => 0.039034602162377
220 => 0.039021435084541
221 => 0.038745299352865
222 => 0.038545703795645
223 => 0.038584152980999
224 => 0.03871965292519
225 => 0.038537828292564
226 => 0.038576629796677
227 => 0.039220993298034
228 => 0.039350215802841
229 => 0.038911067241015
301 => 0.037147822396451
302 => 0.03671511768883
303 => 0.03702613725176
304 => 0.036877489932905
305 => 0.029763012545935
306 => 0.031434453477469
307 => 0.030441340032723
308 => 0.030899012399014
309 => 0.029885300737408
310 => 0.030369097075507
311 => 0.030279757557273
312 => 0.032967385113647
313 => 0.032925421506065
314 => 0.03294550726435
315 => 0.031986761688252
316 => 0.033514069423754
317 => 0.034266476134473
318 => 0.034127225676975
319 => 0.034162272017094
320 => 0.033560059779772
321 => 0.032951337995178
322 => 0.032276171854451
323 => 0.033530547090863
324 => 0.033391081977474
325 => 0.033710964769626
326 => 0.034524516775033
327 => 0.034644315398212
328 => 0.034805325962644
329 => 0.034747615136807
330 => 0.036122521142691
331 => 0.035956010953457
401 => 0.036357252601261
402 => 0.035531868089451
403 => 0.03459786716812
404 => 0.034775390208475
405 => 0.034758293312138
406 => 0.034540630198874
407 => 0.034344133672594
408 => 0.034017022318891
409 => 0.035052051045379
410 => 0.035010030769268
411 => 0.035690290196277
412 => 0.035570047734866
413 => 0.034767039149239
414 => 0.034795718757969
415 => 0.034988602909632
416 => 0.035656177160849
417 => 0.035854358650531
418 => 0.035762553088343
419 => 0.035979850044451
420 => 0.036151592698648
421 => 0.036001418277622
422 => 0.038127571389527
423 => 0.037244644382586
424 => 0.037674976862402
425 => 0.037777608623172
426 => 0.037514719526073
427 => 0.037571730757881
428 => 0.03765808723944
429 => 0.038182426885129
430 => 0.039558445834316
501 => 0.040167875260034
502 => 0.042001373756023
503 => 0.040117270629895
504 => 0.040005475747584
505 => 0.040335744193062
506 => 0.041412201905734
507 => 0.042284569775323
508 => 0.042573984525776
509 => 0.042612235462765
510 => 0.043155196774542
511 => 0.043466412072824
512 => 0.043089266989992
513 => 0.042769676021028
514 => 0.041624940839291
515 => 0.041757447053587
516 => 0.04267028347
517 => 0.04395971867398
518 => 0.045066188221862
519 => 0.044678741150551
520 => 0.047634688809651
521 => 0.047927758946087
522 => 0.047887266129323
523 => 0.048554923514809
524 => 0.047229759570682
525 => 0.046663226310725
526 => 0.04283877521603
527 => 0.043913289976306
528 => 0.045475160284407
529 => 0.045268440892417
530 => 0.044134168925761
531 => 0.045065327774863
601 => 0.04475745753932
602 => 0.044514627511
603 => 0.045627078945652
604 => 0.044403892896266
605 => 0.045462958067876
606 => 0.04410469603066
607 => 0.044680510976136
608 => 0.044353650564049
609 => 0.044565169309175
610 => 0.043328635047206
611 => 0.043995838919792
612 => 0.043300877172544
613 => 0.043300547670189
614 => 0.0432852063511
615 => 0.044102825764805
616 => 0.044129488304533
617 => 0.04352526632245
618 => 0.043438188495111
619 => 0.043760160862121
620 => 0.043383215545048
621 => 0.043559585886441
622 => 0.043388557623018
623 => 0.043350055558515
624 => 0.043043264557969
625 => 0.042911090559539
626 => 0.042962919390028
627 => 0.042786000871977
628 => 0.042679401065429
629 => 0.043264000966499
630 => 0.04295167282205
701 => 0.043216132198946
702 => 0.042914747361539
703 => 0.041870016207962
704 => 0.041269180273708
705 => 0.03929577997123
706 => 0.039855433849017
707 => 0.040226484948994
708 => 0.040103852562665
709 => 0.040367314380933
710 => 0.040383488796827
711 => 0.040297834674032
712 => 0.040198658172809
713 => 0.040150384536819
714 => 0.040510176669646
715 => 0.040719048112799
716 => 0.0402637248909
717 => 0.040157049030658
718 => 0.040617405947082
719 => 0.040898223400161
720 => 0.042971621696002
721 => 0.042818017653258
722 => 0.043203533657275
723 => 0.043160130471448
724 => 0.043564212661173
725 => 0.044224716263499
726 => 0.042881727760259
727 => 0.043114824127373
728 => 0.043057674281137
729 => 0.043681621316838
730 => 0.043683569211378
731 => 0.043309481795009
801 => 0.043512280652298
802 => 0.043399083893655
803 => 0.043603645735982
804 => 0.042815966177619
805 => 0.043775274854951
806 => 0.044319141058513
807 => 0.044326692641277
808 => 0.044584480905376
809 => 0.04484640871179
810 => 0.045349156327098
811 => 0.044832387353666
812 => 0.043902770276907
813 => 0.043969885627205
814 => 0.043424851475235
815 => 0.043434013597798
816 => 0.043385105469508
817 => 0.043531882444138
818 => 0.042848175469565
819 => 0.043008640129924
820 => 0.042783988665742
821 => 0.043114335778963
822 => 0.042758936893471
823 => 0.043057646721751
824 => 0.043186559981249
825 => 0.0436622526841
826 => 0.042688676694486
827 => 0.040703489346363
828 => 0.041120799795008
829 => 0.040503564862433
830 => 0.040560692305422
831 => 0.040676098832025
901 => 0.04030202852064
902 => 0.040373389347742
903 => 0.040370839836839
904 => 0.040348869529239
905 => 0.040251559393966
906 => 0.040110440445598
907 => 0.040672614901776
908 => 0.040768139296568
909 => 0.040980478193224
910 => 0.041612254718821
911 => 0.041549125345598
912 => 0.041652091972538
913 => 0.04142731640406
914 => 0.040571118999372
915 => 0.040617614637737
916 => 0.040037813282288
917 => 0.040965651368994
918 => 0.040745927063198
919 => 0.04060426937386
920 => 0.040565616760875
921 => 0.041198959338279
922 => 0.041388465363868
923 => 0.041270377925997
924 => 0.041028177145765
925 => 0.041493274244044
926 => 0.041617714606673
927 => 0.041645572214681
928 => 0.04246963509931
929 => 0.041691628175735
930 => 0.041878902174963
1001 => 0.043339960457221
1002 => 0.042014982207474
1003 => 0.042716852736906
1004 => 0.042682499826848
1005 => 0.043041553039701
1006 => 0.042653046983416
1007 => 0.042657862981604
1008 => 0.042976677910246
1009 => 0.042528959841544
1010 => 0.042418098551459
1011 => 0.042264944473212
1012 => 0.042599350800036
1013 => 0.04279981226907
1014 => 0.044415384486756
1015 => 0.045459117818426
1016 => 0.045413806601847
1017 => 0.045827866302333
1018 => 0.045641328614912
1019 => 0.045038949216074
1020 => 0.046067137397548
1021 => 0.045741775635709
1022 => 0.04576859806404
1023 => 0.045767599731918
1024 => 0.045983936859922
1025 => 0.045830642177725
1026 => 0.045528482623737
1027 => 0.04572907023687
1028 => 0.046324743736491
1029 => 0.048173732556808
1030 => 0.049208451196501
1031 => 0.048111441195468
1101 => 0.048868144004631
1102 => 0.048414391959913
1103 => 0.048331931715433
1104 => 0.048807196999487
1105 => 0.049283294172505
1106 => 0.049252968840808
1107 => 0.048907346741057
1108 => 0.048712113586744
1109 => 0.050190484439108
1110 => 0.05127972289974
1111 => 0.051205444139072
1112 => 0.051533286431913
1113 => 0.052495841543473
1114 => 0.052583845519741
1115 => 0.052572759041479
1116 => 0.052354632004035
1117 => 0.053302392514942
1118 => 0.0540930310074
1119 => 0.052304141897162
1120 => 0.052985327452063
1121 => 0.053291133594086
1122 => 0.053740147739169
1123 => 0.054497709865433
1124 => 0.055320623267986
1125 => 0.055436992245893
1126 => 0.055354422887299
1127 => 0.054811689377216
1128 => 0.055712131041688
1129 => 0.05623958865078
1130 => 0.056553677586342
1201 => 0.057350154867511
1202 => 0.05329302214871
1203 => 0.050421181957763
1204 => 0.049972702642071
1205 => 0.050884702966108
1206 => 0.05112519017849
1207 => 0.051028250084724
1208 => 0.047795732853526
1209 => 0.049955684107834
1210 => 0.052279610043609
1211 => 0.052368881503289
1212 => 0.053532287417737
1213 => 0.053911140073102
1214 => 0.054847834325332
1215 => 0.054789243844821
1216 => 0.055017313989178
1217 => 0.054964884612615
1218 => 0.056699913470626
1219 => 0.058613907955291
1220 => 0.058547632412417
1221 => 0.058272473059892
1222 => 0.058681131620034
1223 => 0.060656579044323
1224 => 0.060474711501394
1225 => 0.060651380327909
1226 => 0.062980544172483
1227 => 0.066008788490124
1228 => 0.064601864973821
1229 => 0.067654484172862
1230 => 0.069575946146267
1231 => 0.072898915946395
]
'min_raw' => 0.029763012545935
'max_raw' => 0.072898915946395
'avg_raw' => 0.051330964246165
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.029763'
'max' => '$0.072898'
'avg' => '$0.05133'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 0.013271125858257
'max_diff' => 0.029574623303422
'year' => 2028
]
3 => [
'items' => [
101 => 0.072482863761448
102 => 0.073776471519559
103 => 0.071738043517681
104 => 0.067057400791099
105 => 0.066316671162837
106 => 0.06779963063688
107 => 0.071445341798744
108 => 0.067684814218408
109 => 0.068445564050188
110 => 0.068226468047457
111 => 0.06821479335257
112 => 0.068660368972009
113 => 0.068014038296351
114 => 0.065380770851052
115 => 0.06658758180329
116 => 0.066121574138809
117 => 0.066638644385723
118 => 0.06942905925233
119 => 0.068195350324621
120 => 0.066895738187655
121 => 0.068525740214431
122 => 0.070601292923983
123 => 0.070471408565546
124 => 0.070219378622728
125 => 0.071640058214533
126 => 0.073986604680131
127 => 0.074620866760595
128 => 0.075089066061476
129 => 0.075153622834775
130 => 0.075818597721571
131 => 0.072242860160022
201 => 0.077917647501653
202 => 0.078897526512716
203 => 0.07871334987046
204 => 0.079802444151645
205 => 0.079482004986465
206 => 0.079017738911485
207 => 0.080744185004159
208 => 0.078764953875923
209 => 0.075955684467663
210 => 0.074414463709243
211 => 0.076444067530663
212 => 0.077683475760992
213 => 0.078502645760071
214 => 0.078750526106836
215 => 0.072520434488106
216 => 0.069162760642332
217 => 0.071314991081664
218 => 0.073940860756659
219 => 0.072228273321394
220 => 0.072295403506499
221 => 0.069853703883872
222 => 0.074156896993885
223 => 0.073529957953307
224 => 0.076782518804863
225 => 0.076006269054207
226 => 0.078658606164966
227 => 0.077960156914207
228 => 0.080859380704336
301 => 0.082015959567569
302 => 0.083958035486064
303 => 0.085386634437379
304 => 0.086225535066335
305 => 0.08617517061921
306 => 0.089499312849767
307 => 0.087539182313091
308 => 0.085076796391729
309 => 0.08503225959914
310 => 0.086307564160092
311 => 0.088980252657126
312 => 0.089673241898371
313 => 0.090060528344896
314 => 0.089467385670505
315 => 0.087339804456765
316 => 0.086421125675753
317 => 0.087203866613861
318 => 0.08624664170825
319 => 0.087899080445207
320 => 0.090168231772918
321 => 0.089699660996943
322 => 0.091266022848971
323 => 0.092887042579749
324 => 0.095205173599312
325 => 0.095811218887969
326 => 0.096812988704281
327 => 0.097844138909508
328 => 0.09817531656515
329 => 0.098807637468161
330 => 0.09880430482488
331 => 0.10070984642621
401 => 0.10281171782219
402 => 0.10360512561574
403 => 0.10542952308824
404 => 0.10230530635109
405 => 0.10467506063463
406 => 0.10681263831718
407 => 0.10426413008206
408 => 0.10777665495791
409 => 0.10791303833929
410 => 0.10997226547627
411 => 0.10788484427275
412 => 0.10664534022539
413 => 0.11022374196652
414 => 0.11195521785045
415 => 0.11143368322299
416 => 0.10746477895669
417 => 0.10515470643939
418 => 0.099108801081916
419 => 0.10627043714152
420 => 0.10975866115837
421 => 0.10745574529918
422 => 0.10861720210594
423 => 0.11495373383998
424 => 0.11736627486426
425 => 0.11686448319615
426 => 0.11694927772786
427 => 0.11825104107385
428 => 0.12402377664411
429 => 0.12056461967944
430 => 0.12320901556679
501 => 0.12461159361036
502 => 0.12591438626375
503 => 0.12271513925887
504 => 0.11855296591179
505 => 0.11723463089662
506 => 0.10722676570249
507 => 0.10670581285718
508 => 0.10641338623863
509 => 0.10456967777318
510 => 0.10312102795358
511 => 0.10196900783213
512 => 0.098945763011088
513 => 0.099966019389905
514 => 0.095147598145405
515 => 0.098230253303272
516 => 0.0905399366522
517 => 0.096944660878206
518 => 0.093458860669068
519 => 0.095799481759208
520 => 0.095791315552724
521 => 0.091481490031183
522 => 0.088995672614122
523 => 0.090579732221735
524 => 0.092277969863904
525 => 0.092553503207788
526 => 0.094755312639398
527 => 0.095369790324024
528 => 0.093507894252385
529 => 0.090380571932968
530 => 0.091106977581141
531 => 0.088980952026847
601 => 0.08525517401934
602 => 0.087931092830175
603 => 0.088844769164039
604 => 0.089248300684066
605 => 0.085584425922177
606 => 0.084433156925401
607 => 0.0838202309716
608 => 0.089907611710177
609 => 0.090241092168522
610 => 0.088534958994247
611 => 0.096246842724154
612 => 0.094501405923362
613 => 0.096451486472246
614 => 0.091041063882393
615 => 0.091247749311426
616 => 0.088686368551521
617 => 0.090120570625543
618 => 0.089106922826115
619 => 0.090004701271023
620 => 0.090542825969222
621 => 0.093103786431748
622 => 0.096973902932961
623 => 0.092721264339152
624 => 0.090868328804923
625 => 0.092017879589054
626 => 0.095079284813224
627 => 0.099717470438293
628 => 0.096971571196067
629 => 0.098190154651374
630 => 0.098456360925354
701 => 0.096431636482852
702 => 0.099792124916525
703 => 0.10159303796869
704 => 0.10344040211376
705 => 0.10504441663896
706 => 0.10270252424981
707 => 0.10520868480329
708 => 0.10318916179408
709 => 0.10137744088036
710 => 0.10138018851314
711 => 0.10024366951895
712 => 0.098041520757097
713 => 0.097635410738387
714 => 0.099748046341756
715 => 0.10144218002832
716 => 0.1015817169931
717 => 0.10251967644972
718 => 0.10307475119439
719 => 0.10851523827972
720 => 0.11070344719151
721 => 0.11337914762817
722 => 0.11442148374246
723 => 0.1175585417483
724 => 0.11502511262919
725 => 0.11447698930325
726 => 0.10686751270493
727 => 0.10811356407162
728 => 0.11010861253575
729 => 0.10690041031928
730 => 0.10893527619928
731 => 0.10933700182834
801 => 0.1067913968356
802 => 0.10815111445132
803 => 0.10454010759215
804 => 0.097052613014748
805 => 0.099800460638403
806 => 0.10182380140492
807 => 0.098936244654982
808 => 0.10411207836537
809 => 0.10108846316266
810 => 0.10013012230252
811 => 0.09639129293395
812 => 0.098155876475176
813 => 0.10054250098109
814 => 0.099067844511313
815 => 0.10212797810688
816 => 0.10646194338601
817 => 0.10955058513602
818 => 0.10978769269777
819 => 0.10780190297544
820 => 0.11098414367862
821 => 0.11100732282801
822 => 0.10741774231499
823 => 0.10521914423764
824 => 0.10471961812857
825 => 0.10596753228688
826 => 0.10748273045273
827 => 0.10987177565073
828 => 0.11131542562882
829 => 0.11507969911889
830 => 0.11609820359512
831 => 0.11721723122324
901 => 0.11871259722975
902 => 0.12050816752453
903 => 0.11657956194142
904 => 0.11673565276507
905 => 0.11307738964132
906 => 0.10916801084559
907 => 0.1121347420406
908 => 0.11601334843037
909 => 0.11512359183908
910 => 0.11502347604648
911 => 0.11519184303982
912 => 0.11452099562672
913 => 0.11148677764004
914 => 0.10996301236233
915 => 0.11192905832455
916 => 0.11297392425483
917 => 0.11459442019082
918 => 0.11439465986219
919 => 0.11856888336471
920 => 0.12019086039583
921 => 0.11977588926296
922 => 0.11985225393825
923 => 0.12278876587736
924 => 0.1260547710934
925 => 0.12911381596556
926 => 0.13222560779856
927 => 0.12847422128858
928 => 0.12656949857216
929 => 0.12853468622022
930 => 0.12749192999214
1001 => 0.13348391658026
1002 => 0.13389878873099
1003 => 0.13989034203028
1004 => 0.1455770395722
1005 => 0.14200532673389
1006 => 0.14537329106694
1007 => 0.14901601908729
1008 => 0.15604343244987
1009 => 0.15367684685674
1010 => 0.15186407938152
1011 => 0.15015102287667
1012 => 0.1537156215232
1013 => 0.15830142073611
1014 => 0.15928915796434
1015 => 0.16088966961872
1016 => 0.15920692731539
1017 => 0.16123360507177
1018 => 0.1683886681191
1019 => 0.16645530692422
1020 => 0.16370962322417
1021 => 0.16935785832048
1022 => 0.17140193264488
1023 => 0.18574831674354
1024 => 0.20386121928765
1025 => 0.19636235869866
1026 => 0.19170757394435
1027 => 0.19280155877458
1028 => 0.19941577762325
1029 => 0.20154005479263
1030 => 0.195765537164
1031 => 0.19780519441232
1101 => 0.20904390638522
1102 => 0.21507311477763
1103 => 0.20688463995002
1104 => 0.18429296266026
1105 => 0.16346240444816
1106 => 0.16898760649827
1107 => 0.16836122005277
1108 => 0.18043581400978
1109 => 0.16640919689913
1110 => 0.16664536915801
1111 => 0.17896965293083
1112 => 0.17568174531195
1113 => 0.17035575605277
1114 => 0.16350129006384
1115 => 0.15083017572196
1116 => 0.13960701638918
1117 => 0.16161821637998
1118 => 0.16066905341161
1119 => 0.15929452477534
1120 => 0.16235338951583
1121 => 0.17720636842179
1122 => 0.17686395918361
1123 => 0.17468572630901
1124 => 0.17633789674633
1125 => 0.17006612258698
1126 => 0.17168250159349
1127 => 0.16345910478131
1128 => 0.1671764235798
1129 => 0.17034432887184
1130 => 0.17098033276086
1201 => 0.17241328199797
1202 => 0.16016888765758
1203 => 0.16566626123988
1204 => 0.16889545318524
1205 => 0.1543058464971
1206 => 0.16860706357018
1207 => 0.15995573999343
1208 => 0.15701935083296
1209 => 0.16097281199768
1210 => 0.15943214433692
1211 => 0.15810756875324
1212 => 0.15736843281845
1213 => 0.16027141837023
1214 => 0.16013599062442
1215 => 0.15538614281649
1216 => 0.14919015997961
1217 => 0.15126973519587
1218 => 0.15051420602369
1219 => 0.14777607083847
1220 => 0.1496212433496
1221 => 0.14149603743101
1222 => 0.12751704295953
1223 => 0.13675199489557
1224 => 0.13639645929173
1225 => 0.13621718211802
1226 => 0.14315699326263
1227 => 0.14248989054976
1228 => 0.14127909259361
1229 => 0.14775383358449
1230 => 0.14539046602526
1231 => 0.15267380796337
]
'min_raw' => 0.065380770851052
'max_raw' => 0.21507311477763
'avg_raw' => 0.14022694281434
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.06538'
'max' => '$0.215073'
'avg' => '$0.140226'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072435
'min_diff' => 0.035617758305116
'max_diff' => 0.14217419883124
'year' => 2029
]
4 => [
'items' => [
101 => 0.15747108802082
102 => 0.1562543426225
103 => 0.16076620770381
104 => 0.15131764440871
105 => 0.15445607812478
106 => 0.15510290496398
107 => 0.14767393628571
108 => 0.14259903680378
109 => 0.14226059886643
110 => 0.13346142252899
111 => 0.13816187150398
112 => 0.14229807208417
113 => 0.14031715298839
114 => 0.13969005318094
115 => 0.14289377009585
116 => 0.14314272633812
117 => 0.13746649763121
118 => 0.13864676532216
119 => 0.14356867779661
120 => 0.13852274575613
121 => 0.1287193240498
122 => 0.12628793992372
123 => 0.125963548462
124 => 0.11936944187656
125 => 0.12645041663714
126 => 0.12335938139582
127 => 0.13312392468685
128 => 0.12754646992731
129 => 0.12730603700014
130 => 0.12694258736689
131 => 0.1212667674297
201 => 0.12250941127877
202 => 0.12664014869308
203 => 0.1281140423386
204 => 0.12796030315612
205 => 0.12661990582624
206 => 0.12723353285991
207 => 0.12525682638262
208 => 0.12455881018389
209 => 0.12235567905625
210 => 0.11911768492913
211 => 0.11956794787227
212 => 0.11315263423919
213 => 0.10965723088541
214 => 0.10868974930577
215 => 0.10739599250362
216 => 0.10883588257912
217 => 0.1131344604617
218 => 0.10794946354114
219 => 0.099060150006078
220 => 0.099594412896189
221 => 0.10079474298619
222 => 0.09855793580445
223 => 0.096440985527928
224 => 0.098281502039759
225 => 0.094514982709203
226 => 0.10124990885253
227 => 0.10106774797477
228 => 0.10357811195596
301 => 0.10514789407125
302 => 0.10153005451849
303 => 0.10062017765465
304 => 0.10113848486789
305 => 0.092572021176597
306 => 0.10287804911238
307 => 0.10296717606993
308 => 0.10220401694879
309 => 0.10769165866168
310 => 0.11927229431425
311 => 0.11491519335176
312 => 0.11322799216502
313 => 0.11002062147567
314 => 0.1142942524844
315 => 0.11396610430195
316 => 0.11248209377445
317 => 0.11158455957703
318 => 0.11323829385569
319 => 0.11137964359883
320 => 0.11104577894041
321 => 0.10902292235869
322 => 0.10830085459313
323 => 0.10776626436585
324 => 0.10717773305337
325 => 0.10847588647584
326 => 0.10553410003422
327 => 0.10198659397251
328 => 0.10169165722802
329 => 0.10250600351065
330 => 0.10214571590154
331 => 0.10168993230956
401 => 0.10081971730721
402 => 0.10056154310521
403 => 0.10140048401339
404 => 0.10045336864135
405 => 0.10185088896483
406 => 0.10147084076517
407 => 0.099347922415848
408 => 0.096701980147551
409 => 0.096678425711311
410 => 0.096108361789822
411 => 0.095382299676121
412 => 0.09518032580614
413 => 0.098126498872751
414 => 0.10422498894909
415 => 0.10302770942261
416 => 0.10389286658264
417 => 0.10814858353246
418 => 0.10950134797693
419 => 0.10854118781622
420 => 0.10722686136815
421 => 0.10728468506155
422 => 0.11177613640829
423 => 0.11205626271946
424 => 0.11276405153561
425 => 0.11367376018546
426 => 0.10869611513299
427 => 0.10705023842721
428 => 0.10627033073425
429 => 0.10386851690219
430 => 0.10645866720411
501 => 0.10494949754447
502 => 0.10515313609213
503 => 0.10502051622082
504 => 0.10509293563828
505 => 0.10124802630341
506 => 0.10264890918255
507 => 0.10031966969028
508 => 0.097201079479537
509 => 0.097190624871632
510 => 0.097953895407608
511 => 0.097499872226031
512 => 0.096278107518408
513 => 0.096451653428559
514 => 0.094931208642048
515 => 0.096636262954183
516 => 0.096685157810877
517 => 0.09602861902577
518 => 0.098655490445767
519 => 0.099731721809863
520 => 0.099299573917081
521 => 0.099701401161687
522 => 0.10307746179233
523 => 0.10362790698297
524 => 0.10387237837629
525 => 0.1035448190955
526 => 0.099763109352493
527 => 0.099930844260667
528 => 0.098700116798348
529 => 0.097660281783552
530 => 0.097701869730928
531 => 0.098236480097623
601 => 0.10057115492346
602 => 0.10548434045784
603 => 0.10567079225738
604 => 0.1058967772776
605 => 0.10497758262938
606 => 0.10470034472797
607 => 0.10506609308111
608 => 0.1069112272448
609 => 0.11165741326285
610 => 0.10997979413696
611 => 0.10861586367392
612 => 0.10981239840302
613 => 0.10962820126023
614 => 0.10807339200558
615 => 0.10802975368825
616 => 0.10504557762599
617 => 0.10394239568218
618 => 0.10302049427819
619 => 0.10201380201188
620 => 0.10141700109178
621 => 0.10233395854622
622 => 0.10254367756517
623 => 0.10053873406536
624 => 0.10026546767486
625 => 0.10190274781651
626 => 0.10118224187013
627 => 0.10192330010367
628 => 0.10209523197054
629 => 0.10206754698004
630 => 0.10131525602244
701 => 0.10179474384518
702 => 0.1006606122022
703 => 0.099427414381522
704 => 0.09864071100287
705 => 0.097954207963936
706 => 0.098335119749727
707 => 0.096977238785125
708 => 0.096542825335804
709 => 0.10163230415965
710 => 0.10539195688794
711 => 0.10533729004829
712 => 0.10500451972106
713 => 0.10451009051479
714 => 0.10687505666875
715 => 0.1060511497497
716 => 0.10665061087304
717 => 0.10680319888823
718 => 0.10726503685365
719 => 0.10743010422997
720 => 0.10693115597206
721 => 0.10525662467711
722 => 0.10108385189975
723 => 0.099141414907699
724 => 0.098500378346477
725 => 0.098523678807975
726 => 0.097880948062001
727 => 0.098070261071862
728 => 0.097815112722983
729 => 0.097331923477221
730 => 0.098305284175393
731 => 0.098417454928375
801 => 0.098190260910628
802 => 0.098243773326351
803 => 0.096362703895236
804 => 0.096505717518616
805 => 0.095709399490346
806 => 0.095560099459802
807 => 0.093547076827678
808 => 0.089980715442575
809 => 0.091956825844998
810 => 0.089569962362042
811 => 0.088666020994163
812 => 0.092945138837978
813 => 0.092515634090712
814 => 0.09178050866462
815 => 0.090693104945867
816 => 0.090289776328998
817 => 0.087839279331225
818 => 0.087694490895704
819 => 0.088909023376785
820 => 0.088348558426277
821 => 0.087561453371088
822 => 0.084710638648756
823 => 0.081505379028538
824 => 0.081602125668929
825 => 0.082621659118145
826 => 0.085586090124559
827 => 0.084427835645176
828 => 0.083587508730945
829 => 0.083430140760043
830 => 0.085399930388035
831 => 0.088187595395328
901 => 0.089495505446261
902 => 0.088199406307605
903 => 0.086710517404051
904 => 0.086801139172764
905 => 0.08740400520074
906 => 0.087467357896214
907 => 0.086498244280252
908 => 0.08677104408653
909 => 0.086356636235457
910 => 0.08381341601836
911 => 0.083767417229271
912 => 0.083143269973029
913 => 0.083124371042162
914 => 0.082062540858466
915 => 0.081913983475681
916 => 0.079805655197466
917 => 0.081193363254793
918 => 0.080262561547881
919 => 0.078859623821639
920 => 0.078617756828836
921 => 0.078610486014969
922 => 0.080050989368684
923 => 0.081176530134403
924 => 0.080278753242084
925 => 0.080074346846377
926 => 0.08225687238179
927 => 0.081979126113247
928 => 0.08173859963596
929 => 0.087937990569302
930 => 0.083030688901055
1001 => 0.080890825274712
1002 => 0.078242337688031
1003 => 0.079104698601088
1004 => 0.079286410716187
1005 => 0.07291727549599
1006 => 0.070333318130382
1007 => 0.069446601336884
1008 => 0.068936283285891
1009 => 0.069168841629899
1010 => 0.066842976932882
1011 => 0.068405996475529
1012 => 0.066391994248361
1013 => 0.066054340220846
1014 => 0.069655625690023
1015 => 0.070156723524655
1016 => 0.068018884483222
1017 => 0.069391723232524
1018 => 0.068893912818141
1019 => 0.066426518536009
1020 => 0.066332282223355
1021 => 0.065094230505684
1022 => 0.06315691930158
1023 => 0.062271516096305
1024 => 0.061810390419575
1025 => 0.062000659860954
1026 => 0.061904453809052
1027 => 0.061276644244108
1028 => 0.061940439118427
1029 => 0.060244717513522
1030 => 0.059569467507091
1031 => 0.059264472744868
1101 => 0.057759422218421
1102 => 0.060154626905005
1103 => 0.060626512402256
1104 => 0.061099327659709
1105 => 0.065214861671151
1106 => 0.065009261222317
1107 => 0.06686778914829
1108 => 0.066795570170701
1109 => 0.066265487900057
1110 => 0.064029157994512
1111 => 0.064920519236115
1112 => 0.062177047882754
1113 => 0.06423264315861
1114 => 0.063294555318421
1115 => 0.063915474716211
1116 => 0.062799005652939
1117 => 0.063416905730432
1118 => 0.060738413959452
1119 => 0.058237276031107
1120 => 0.05924380694624
1121 => 0.060338021161763
1122 => 0.062710556381613
1123 => 0.061297493977661
1124 => 0.061805684651927
1125 => 0.060103330963226
1126 => 0.056590889050145
1127 => 0.056610769089923
1128 => 0.056070456424302
1129 => 0.055603547394265
1130 => 0.061459801193055
1201 => 0.060731483459503
1202 => 0.059571004470956
1203 => 0.061124351712728
1204 => 0.061535081378388
1205 => 0.061546774274552
1206 => 0.062680056324453
1207 => 0.063284889157637
1208 => 0.063391493565981
1209 => 0.06517473735768
1210 => 0.065772457155103
1211 => 0.068234380408217
1212 => 0.063233573317473
1213 => 0.063130584986312
1214 => 0.061146210493937
1215 => 0.059887688819154
1216 => 0.061232382549722
1217 => 0.062423597626006
1218 => 0.061183224866857
1219 => 0.061345191363503
1220 => 0.059680092276523
1221 => 0.060275286849924
1222 => 0.060787948597905
1223 => 0.060504886913535
1224 => 0.060081129871692
1225 => 0.062325931574189
1226 => 0.062199271064685
1227 => 0.064289682017818
1228 => 0.065919306842506
1229 => 0.068839885858629
1230 => 0.065792109402077
1231 => 0.065681036314186
]
'min_raw' => 0.055603547394265
'max_raw' => 0.16076620770381
'avg_raw' => 0.10818487754904
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.0556035'
'max' => '$0.160766'
'avg' => '$0.108184'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -0.0097772234567868
'max_diff' => -0.054306907073824
'year' => 2030
]
5 => [
'items' => [
101 => 0.066766793565004
102 => 0.065772290931325
103 => 0.066400782266746
104 => 0.068738626188055
105 => 0.068788021146186
106 => 0.067960591955682
107 => 0.067910242814243
108 => 0.068069159641363
109 => 0.06899994046148
110 => 0.068674697042926
111 => 0.069051076961033
112 => 0.06952174581196
113 => 0.071468631738852
114 => 0.071938019344674
115 => 0.070797650812097
116 => 0.070900613322423
117 => 0.070474084187423
118 => 0.070062062387407
119 => 0.070988227222891
120 => 0.072680811663553
121 => 0.072670282183593
122 => 0.073062928874687
123 => 0.073307544510377
124 => 0.072257475132404
125 => 0.071573918579465
126 => 0.071836037657696
127 => 0.072255171771997
128 => 0.071700118113376
129 => 0.068274069806502
130 => 0.069313314005994
131 => 0.069140332954754
201 => 0.068893986902573
202 => 0.0699389549814
203 => 0.069838165260981
204 => 0.066819121828664
205 => 0.067012391193939
206 => 0.066830875178895
207 => 0.067417390558184
208 => 0.065740617176064
209 => 0.066256381375163
210 => 0.066579863845849
211 => 0.066770397506193
212 => 0.067458735737507
213 => 0.067377967190832
214 => 0.067453715051242
215 => 0.068474338933725
216 => 0.073636304295505
217 => 0.073917258680912
218 => 0.072533736532929
219 => 0.073086426342281
220 => 0.0720253827683
221 => 0.072737668427887
222 => 0.073224996186083
223 => 0.071022855754536
224 => 0.070892459289953
225 => 0.069827036411709
226 => 0.070399534317841
227 => 0.069488648985128
228 => 0.06971214838436
301 => 0.069087224579781
302 => 0.070211963006934
303 => 0.071469595335172
304 => 0.071787322926691
305 => 0.070951518423734
306 => 0.070346340881392
307 => 0.069283848474916
308 => 0.071050797026074
309 => 0.071567506629214
310 => 0.071048082970499
311 => 0.070927721159143
312 => 0.070699635744114
313 => 0.070976110558171
314 => 0.071564692517746
315 => 0.071287128135013
316 => 0.071470464299863
317 => 0.070771775894885
318 => 0.072257822749062
319 => 0.074618022790146
320 => 0.074625611219209
321 => 0.0743480453403
322 => 0.074234471362891
323 => 0.074519270798758
324 => 0.074673762809631
325 => 0.075594751961938
326 => 0.076583010016191
327 => 0.081194779144618
328 => 0.079899812827648
329 => 0.083991648753762
330 => 0.087227759712921
331 => 0.088198127891591
401 => 0.087305434826566
402 => 0.084251580073445
403 => 0.084101743390074
404 => 0.088665491695456
405 => 0.087376023766271
406 => 0.087222645659147
407 => 0.085590961735754
408 => 0.086555489022465
409 => 0.086344532756099
410 => 0.086011527969308
411 => 0.087851778842799
412 => 0.091296564197647
413 => 0.090759662095101
414 => 0.090358889581723
415 => 0.088602821091224
416 => 0.089660366554601
417 => 0.089283794871042
418 => 0.09090178580191
419 => 0.089943323817351
420 => 0.08736625477848
421 => 0.087776661517051
422 => 0.08771462936414
423 => 0.088991246675407
424 => 0.088608037846154
425 => 0.087639801689947
426 => 0.0912847902958
427 => 0.091048105010228
428 => 0.09138367063138
429 => 0.091531396995523
430 => 0.093750037328002
501 => 0.094658943283647
502 => 0.094865280848217
503 => 0.09572867120877
504 => 0.094843798909515
505 => 0.098383919009789
506 => 0.10073789230474
507 => 0.10347215342118
508 => 0.1074676438124
509 => 0.10896998515985
510 => 0.10869860064237
511 => 0.11172793585709
512 => 0.11717158389961
513 => 0.10979891755162
514 => 0.11756235311829
515 => 0.11510453905105
516 => 0.10927710611183
517 => 0.10890188813146
518 => 0.11284829337579
519 => 0.12160104038029
520 => 0.1194085765285
521 => 0.12160462646572
522 => 0.11904281756389
523 => 0.11891560215929
524 => 0.12148020512543
525 => 0.12747253974502
526 => 0.12462580618656
527 => 0.12054431558279
528 => 0.12355802472958
529 => 0.12094727096102
530 => 0.11506451201646
531 => 0.11940689999271
601 => 0.11650326881708
602 => 0.11735070275966
603 => 0.12345370360828
604 => 0.12271937439964
605 => 0.12366966439268
606 => 0.12199242742838
607 => 0.12042562362774
608 => 0.11750106798146
609 => 0.11663525123344
610 => 0.11687453183377
611 => 0.11663513265786
612 => 0.11499887065182
613 => 0.1146455200274
614 => 0.1140565868394
615 => 0.11423912186041
616 => 0.11313175516848
617 => 0.11522158490979
618 => 0.11560947572529
619 => 0.11713027953367
620 => 0.11728817443013
621 => 0.12152359138919
622 => 0.11919079490143
623 => 0.12075583618938
624 => 0.12061584416584
625 => 0.10940340425394
626 => 0.11094837954561
627 => 0.11335187625948
628 => 0.11226910424775
629 => 0.11073831795278
630 => 0.10950212594402
701 => 0.10762916864364
702 => 0.11026532007697
703 => 0.11373157888835
704 => 0.11737608447378
705 => 0.12175471913721
706 => 0.12077745885326
707 => 0.11729422894447
708 => 0.11745048409367
709 => 0.11841639194194
710 => 0.11716545351645
711 => 0.11679652735356
712 => 0.11836570715241
713 => 0.11837651323127
714 => 0.11693715739179
715 => 0.11533757677555
716 => 0.11533087447436
717 => 0.11504624455381
718 => 0.11909345259445
719 => 0.12131900779791
720 => 0.12157416411532
721 => 0.12130183374477
722 => 0.12140664289599
723 => 0.12011164135986
724 => 0.12307163085068
725 => 0.12578800992008
726 => 0.1250599623025
727 => 0.12396851542569
728 => 0.12309912541711
729 => 0.12485516164609
730 => 0.12477696811707
731 => 0.12576428471862
801 => 0.12571949433456
802 => 0.12538749689631
803 => 0.12505997415918
804 => 0.12635856479043
805 => 0.12598459154336
806 => 0.12561003741254
807 => 0.12485881176181
808 => 0.12496091580428
809 => 0.12386965738116
810 => 0.12336479130204
811 => 0.11577281681514
812 => 0.11374399315732
813 => 0.11438230238059
814 => 0.11459245035058
815 => 0.11370950369469
816 => 0.11497542238885
817 => 0.1147781303013
818 => 0.11554567840193
819 => 0.11506614767172
820 => 0.11508582778016
821 => 0.11649602541097
822 => 0.1169054117826
823 => 0.11669719456984
824 => 0.11684302276839
825 => 0.12020357205381
826 => 0.11972580940974
827 => 0.11947200752724
828 => 0.11954231238321
829 => 0.12040100477662
830 => 0.12064139176391
831 => 0.11962285520707
901 => 0.12010320293537
902 => 0.12214846259725
903 => 0.12286418772723
904 => 0.1251484387746
905 => 0.12417804833035
906 => 0.12595924198828
907 => 0.13143402403908
908 => 0.13580765876736
909 => 0.13178548352313
910 => 0.1398171067226
911 => 0.1460708774513
912 => 0.14583084731453
913 => 0.14474035773566
914 => 0.13762060602613
915 => 0.1310689043535
916 => 0.1365496810026
917 => 0.13656365262941
918 => 0.13609284905459
919 => 0.133168728486
920 => 0.13599109599721
921 => 0.13621512528091
922 => 0.13608972845623
923 => 0.13384781207226
924 => 0.13042482012933
925 => 0.13109366456149
926 => 0.13218924538543
927 => 0.13011508232361
928 => 0.12945226154739
929 => 0.1306845714772
930 => 0.13465533083302
1001 => 0.13390468177785
1002 => 0.13388507929741
1003 => 0.13709667428018
1004 => 0.13479786537809
1005 => 0.13110210083172
1006 => 0.13016887154262
1007 => 0.12685653626487
1008 => 0.12914437803934
1009 => 0.12922671339184
1010 => 0.12797368583314
1011 => 0.13120377711228
1012 => 0.1311740112525
1013 => 0.1342405021864
1014 => 0.14010248113062
1015 => 0.13836880550635
1016 => 0.13635272937869
1017 => 0.1365719327535
1018 => 0.13897605273506
1019 => 0.13752246691349
1020 => 0.13804518650969
1021 => 0.13897526153635
1022 => 0.1395363988924
1023 => 0.13649119372338
1024 => 0.13578121072948
1025 => 0.13432883469412
1026 => 0.13394993689638
1027 => 0.13513286687236
1028 => 0.13482120661722
1029 => 0.12921979342428
1030 => 0.12863441457965
1031 => 0.12865236731309
1101 => 0.12718040437502
1102 => 0.12493530758287
1103 => 0.13083528790486
1104 => 0.13036143691483
1105 => 0.129838342095
1106 => 0.12990241822569
1107 => 0.13246339971458
1108 => 0.13097790111836
1109 => 0.13492734260484
1110 => 0.1341154561663
1111 => 0.13328274790413
1112 => 0.13316764225739
1113 => 0.13284712061979
1114 => 0.1317479326636
1115 => 0.13042059715555
1116 => 0.1295441752813
1117 => 0.1194976540178
1118 => 0.12136222992638
1119 => 0.12350725454776
1120 => 0.12424770845141
1121 => 0.12298111081136
1122 => 0.13179794565843
1123 => 0.13340886634613
1124 => 0.12852928250534
1125 => 0.12761651160083
1126 => 0.13185778676697
1127 => 0.12929977936699
1128 => 0.13045164994257
1129 => 0.12796193579768
1130 => 0.13302084272572
1201 => 0.13298230233092
1202 => 0.13101427327531
1203 => 0.13267763795663
1204 => 0.13238858740986
1205 => 0.13016668745312
1206 => 0.13309128091748
1207 => 0.13309273147935
1208 => 0.13119854630198
1209 => 0.12898655270525
1210 => 0.12859110049511
1211 => 0.1282931803763
1212 => 0.13037837985618
1213 => 0.13224796318959
1214 => 0.13572679426404
1215 => 0.13660145505115
1216 => 0.14001531433269
1217 => 0.13798252734832
1218 => 0.13888363548949
1219 => 0.13986191584626
1220 => 0.14033093942437
1221 => 0.13956669067304
1222 => 0.14486981933781
1223 => 0.14531756588078
1224 => 0.14546769142365
1225 => 0.1436795062756
1226 => 0.14526783321701
1227 => 0.14452470764099
1228 => 0.14645811394358
1229 => 0.14676129673879
1230 => 0.14650451169728
1231 => 0.1466007467019
]
'min_raw' => 0.065740617176064
'max_raw' => 0.14676129673879
'avg_raw' => 0.10625095695743
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.06574'
'max' => '$0.146761'
'avg' => '$0.10625'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 0.0101370697818
'max_diff' => -0.014004910965015
'year' => 2031
]
6 => [
'items' => [
101 => 0.14207546192252
102 => 0.14184080203393
103 => 0.1386411978023
104 => 0.13994506017697
105 => 0.13750755196328
106 => 0.13828051092696
107 => 0.13862122387312
108 => 0.13844325476534
109 => 0.14001877859934
110 => 0.13867926148218
111 => 0.13514405557301
112 => 0.13160788649935
113 => 0.13156349277713
114 => 0.1306324818786
115 => 0.12995953152212
116 => 0.13008916563497
117 => 0.13054601315712
118 => 0.12993297871363
119 => 0.13006380069378
120 => 0.13223631722663
121 => 0.13267199992361
122 => 0.13119137988704
123 => 0.12524647678777
124 => 0.12378758265555
125 => 0.12483620682666
126 => 0.12433503201291
127 => 0.1003480747858
128 => 0.10598345458274
129 => 0.10263510326681
130 => 0.10417817760343
131 => 0.10076037796124
201 => 0.10239153109272
202 => 0.10209031666951
203 => 0.11115184061999
204 => 0.11101035738722
205 => 0.11107807792362
206 => 0.10784560027633
207 => 0.11299502493979
208 => 0.11553181669634
209 => 0.11506232405673
210 => 0.1151804852393
211 => 0.11315008463605
212 => 0.11109773663969
213 => 0.10882136685764
214 => 0.11305058054489
215 => 0.11258036417795
216 => 0.11365887134519
217 => 0.11640181873181
218 => 0.11680572815393
219 => 0.11734858651331
220 => 0.11715401043476
221 => 0.12178960202647
222 => 0.1212282012981
223 => 0.12258101552747
224 => 0.11979817401939
225 => 0.11664912470327
226 => 0.11724765602808
227 => 0.11719001264842
228 => 0.11645614626529
229 => 0.11579364450799
301 => 0.1146907657408
302 => 0.11818043735555
303 => 0.11803876306088
304 => 0.12033230521324
305 => 0.11992689935953
306 => 0.11721949984882
307 => 0.117316195152
308 => 0.11796651753607
309 => 0.12021729073259
310 => 0.12088547346165
311 => 0.12057594459907
312 => 0.12130857645778
313 => 0.12188761880709
314 => 0.12138129526176
315 => 0.12854976892182
316 => 0.12557291887392
317 => 0.12702381487448
318 => 0.12736984502143
319 => 0.12648349607623
320 => 0.12667571342467
321 => 0.12696687033146
322 => 0.12873471805513
323 => 0.13337406201289
324 => 0.1354287958707
325 => 0.1416105640607
326 => 0.13525817882708
327 => 0.1348812545761
328 => 0.13599477769864
329 => 0.13962413003279
330 => 0.14256537921189
331 => 0.14354116124933
401 => 0.14367012695398
402 => 0.14550075892499
403 => 0.14655004303151
404 => 0.14527847205331
405 => 0.14420094878832
406 => 0.14034139420023
407 => 0.14078814815302
408 => 0.14386583986316
409 => 0.14821326067887
410 => 0.15194380001079
411 => 0.15063749515917
412 => 0.16060367906951
413 => 0.161591785496
414 => 0.16145526113717
415 => 0.16370631462668
416 => 0.15923843186907
417 => 0.15732832542903
418 => 0.14443392154862
419 => 0.14805672308312
420 => 0.15332267787318
421 => 0.1526257090104
422 => 0.14880143188248
423 => 0.15194089895366
424 => 0.15090289295971
425 => 0.15008417456538
426 => 0.15383488224619
427 => 0.14971082508056
428 => 0.15328153724821
429 => 0.14870206195891
430 => 0.1506434622497
501 => 0.14954142954968
502 => 0.15025457976664
503 => 0.14608551817035
504 => 0.14833504260946
505 => 0.14599193055793
506 => 0.14599081961774
507 => 0.14593909528933
508 => 0.14869575622701
509 => 0.14878565084122
510 => 0.14674847424319
511 => 0.14645488526874
512 => 0.14754043758351
513 => 0.14626954012951
514 => 0.1468641850493
515 => 0.14628755131836
516 => 0.14615773891976
517 => 0.14512337164196
518 => 0.14467773777816
519 => 0.14485248229872
520 => 0.14425598916306
521 => 0.14389658047272
522 => 0.14586759985464
523 => 0.14481456370958
524 => 0.14570620696274
525 => 0.14469006694141
526 => 0.14116768291632
527 => 0.13914192261496
528 => 0.13248846571675
529 => 0.13437537783949
530 => 0.13562640252903
531 => 0.1352129388766
601 => 0.13610121879121
602 => 0.13615575196365
603 => 0.13586696310847
604 => 0.13553258261032
605 => 0.13536982467621
606 => 0.13658288897193
607 => 0.13728711362546
608 => 0.13575195959317
609 => 0.13539229448249
610 => 0.13694441996731
611 => 0.13789121561642
612 => 0.14488182273089
613 => 0.14436393597649
614 => 0.1456637300999
615 => 0.14551739322857
616 => 0.14687978454334
617 => 0.14910671855347
618 => 0.14457873905034
619 => 0.14536463972633
620 => 0.14517195502967
621 => 0.14727563602313
622 => 0.14728220348557
623 => 0.14602094164333
624 => 0.14670469214964
625 => 0.14632304137473
626 => 0.14701273590819
627 => 0.14435701928314
628 => 0.14759139546556
629 => 0.14942507834239
630 => 0.14945053903092
701 => 0.15031969016153
702 => 0.15120279804807
703 => 0.1528978467338
704 => 0.15115552406021
705 => 0.14802125518213
706 => 0.1482475392715
707 => 0.14640991857507
708 => 0.14644080931097
709 => 0.14627591214178
710 => 0.14677078095939
711 => 0.14446561515972
712 => 0.1450066329654
713 => 0.14424920486925
714 => 0.14536299322557
715 => 0.14416474106998
716 => 0.14517186211128
717 => 0.14560650216611
718 => 0.14721033332558
719 => 0.14392785390369
720 => 0.13723465615814
721 => 0.13864164747143
722 => 0.13656059680229
723 => 0.13675320596484
724 => 0.1371423071267
725 => 0.13588110295511
726 => 0.13612170096594
727 => 0.13611310511193
728 => 0.13603903068594
729 => 0.13571094277089
730 => 0.13523515038386
731 => 0.13713056081263
801 => 0.13745262797897
802 => 0.13816854339407
803 => 0.14029862205935
804 => 0.14008577696998
805 => 0.14043293614161
806 => 0.13967508961916
807 => 0.13678836029146
808 => 0.13694512358242
809 => 0.13499028283209
810 => 0.13811855372101
811 => 0.13737773788335
812 => 0.13690012909353
813 => 0.13676980911021
814 => 0.13890516782849
815 => 0.13954410062465
816 => 0.13914596058327
817 => 0.1383293637428
818 => 0.13989747108169
819 => 0.14031703045244
820 => 0.1404109543228
821 => 0.14318933987256
822 => 0.14056623521102
823 => 0.14119764257447
824 => 0.14612370258093
825 => 0.14165644590488
826 => 0.1440228513979
827 => 0.14390702816319
828 => 0.14511760113862
829 => 0.14380772584523
830 => 0.14382396331936
831 => 0.14489887011023
901 => 0.14338935738292
902 => 0.14301558080331
903 => 0.14249921113562
904 => 0.14362668541402
905 => 0.14430255525264
906 => 0.14974956978022
907 => 0.15326858957908
908 => 0.15311581964885
909 => 0.15451185083776
910 => 0.15388292600098
911 => 0.15185196180101
912 => 0.15531857004066
913 => 0.15422159014458
914 => 0.15431202383439
915 => 0.15430865788793
916 => 0.15503805361918
917 => 0.15452120989545
918 => 0.15350245786308
919 => 0.15417875300534
920 => 0.1561871077979
921 => 0.16242110269788
922 => 0.16590972883335
923 => 0.16221108302408
924 => 0.16476235937648
925 => 0.16323250267775
926 => 0.1629544822063
927 => 0.16455687229345
928 => 0.16616206715232
929 => 0.16605982317926
930 => 0.16489453413938
1001 => 0.16423629192887
1002 => 0.16922072247417
1003 => 0.1728931659924
1004 => 0.17264272996483
1005 => 0.17374807314436
1006 => 0.17699339490643
1007 => 0.17729010645666
1008 => 0.17725272762117
1009 => 0.17651729708528
1010 => 0.17971273781833
1011 => 0.18237843069627
1012 => 0.17634706616485
1013 => 0.17864373082206
1014 => 0.17967477758059
1015 => 0.18118866011991
1016 => 0.1837428337199
1017 => 0.18651734371059
1018 => 0.18690968984423
1019 => 0.18663130148692
1020 => 0.18480143756523
1021 => 0.18783733950383
1022 => 0.1896156996588
1023 => 0.19067467243403
1024 => 0.19336005119576
1025 => 0.17968114497436
1026 => 0.1699985352651
1027 => 0.16848645594042
1028 => 0.17156132870674
1029 => 0.17237214813357
1030 => 0.1720453078393
1031 => 0.16114665030717
1101 => 0.16842907676405
1102 => 0.17626435530784
1103 => 0.17656534026688
1104 => 0.18048784453386
1105 => 0.18176517271206
1106 => 0.18492330278136
1107 => 0.18472576088566
1108 => 0.18549471530071
1109 => 0.18531794599713
1110 => 0.19116771692776
1111 => 0.19762088296364
1112 => 0.19739743034362
1113 => 0.19646971137557
1114 => 0.19784753224272
1115 => 0.20450789115505
1116 => 0.20389471203647
1117 => 0.20449036331969
1118 => 0.2123433018387
1119 => 0.22255323898089
1120 => 0.21780969811742
1121 => 0.22810181687405
1122 => 0.23458016006958
1123 => 0.24578378475305
1124 => 0.24438103576366
1125 => 0.24874252463695
1126 => 0.24186982231012
1127 => 0.22608870856541
1128 => 0.22359128690763
1129 => 0.22859118831129
1130 => 0.24088295802894
1201 => 0.22820407674018
1202 => 0.23076899791189
1203 => 0.23003030044189
1204 => 0.22999093839297
1205 => 0.23149322770301
1206 => 0.22931407870466
1207 => 0.22043583366397
1208 => 0.22450468104629
1209 => 0.22293350366988
1210 => 0.22467684210804
1211 => 0.23408492065135
1212 => 0.22992538486677
1213 => 0.22554365181097
1214 => 0.23103931744735
1215 => 0.23803718831807
1216 => 0.23759927413536
1217 => 0.23674953758698
1218 => 0.24153945801944
1219 => 0.24945100325884
1220 => 0.25158946214589
1221 => 0.25316802877744
1222 => 0.25338568644583
1223 => 0.25562769570373
1224 => 0.24357184686494
1225 => 0.26270478858825
1226 => 0.26600851908702
1227 => 0.26538755467885
1228 => 0.269059512086
1229 => 0.26797912906825
1230 => 0.26641382358243
1231 => 0.27223465712049
]
'min_raw' => 0.1003480747858
'max_raw' => 0.27223465712049
'avg_raw' => 0.18629136595315
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.100348'
'max' => '$0.272234'
'avg' => '$0.186291'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.034607457609734
'max_diff' => 0.1254733603817
'year' => 2032
]
7 => [
'items' => [
101 => 0.26556154118614
102 => 0.25608989323927
103 => 0.25089355984766
104 => 0.25773651083399
105 => 0.26191526221526
106 => 0.26467715105978
107 => 0.26551289695535
108 => 0.2445077080917
109 => 0.23318707629537
110 => 0.24044347148551
111 => 0.24929677442712
112 => 0.24352266632009
113 => 0.24374900042605
114 => 0.23551663967434
115 => 0.2500251556841
116 => 0.2479113869373
117 => 0.25887762293487
118 => 0.25626044270451
119 => 0.26520298245369
120 => 0.26284811204059
121 => 0.27262304746635
122 => 0.2765225338535
123 => 0.28307037840411
124 => 0.28788699951007
125 => 0.29071541155076
126 => 0.29054560430095
127 => 0.30175318191547
128 => 0.29514446495912
129 => 0.28684235890696
130 => 0.28669220000128
131 => 0.29099197836745
201 => 0.30000313423636
202 => 0.30233959584618
203 => 0.30364535914011
204 => 0.3016455372015
205 => 0.2944722485964
206 => 0.29137485894612
207 => 0.29401392466817
208 => 0.2907865740676
209 => 0.29635788663884
210 => 0.3040084887673
211 => 0.30242866968153
212 => 0.30770976802554
213 => 0.31317514922384
214 => 0.32099088980304
215 => 0.32303421380648
216 => 0.32641175068351
217 => 0.32988834559304
218 => 0.33100493418112
219 => 0.33313684825286
220 => 0.33312561201336
221 => 0.33955027856291
222 => 0.34663688472242
223 => 0.34931191449233
224 => 0.35546299794623
225 => 0.3449294830911
226 => 0.35291927510901
227 => 0.36012626750664
228 => 0.35153379406077
301 => 0.36337651691635
302 => 0.36383634300865
303 => 0.37077917107162
304 => 0.36374128474488
305 => 0.35956221030979
306 => 0.37162704161602
307 => 0.37746483344648
308 => 0.37570644303762
309 => 0.36232500520375
310 => 0.35453643442757
311 => 0.3341522424032
312 => 0.35829819838763
313 => 0.37005898920045
314 => 0.36229454759674
315 => 0.36621048031106
316 => 0.38757453945491
317 => 0.3957085899565
318 => 0.39401676431347
319 => 0.39430265499732
320 => 0.39869164100452
321 => 0.41815482201917
322 => 0.40649203280219
323 => 0.41540779816219
324 => 0.42013668796096
325 => 0.42452914434994
326 => 0.4137426597087
327 => 0.39970960167536
328 => 0.3952647431285
329 => 0.36152252689967
330 => 0.35976609800994
331 => 0.3587801612489
401 => 0.35256396943402
402 => 0.34767974542577
403 => 0.34379562915479
404 => 0.33360254816445
405 => 0.33704241377766
406 => 0.3207967701404
407 => 0.33119015722926
408 => 0.30526171771941
409 => 0.32685569261095
410 => 0.31510307383504
411 => 0.3229946412574
412 => 0.32296710832209
413 => 0.30843623067381
414 => 0.30005512369796
415 => 0.30539589126053
416 => 0.31112161803827
417 => 0.3120505979443
418 => 0.3194741521684
419 => 0.32154590658358
420 => 0.31526839398461
421 => 0.30472440844203
422 => 0.30717353580086
423 => 0.3000054922102
424 => 0.28744377153237
425 => 0.29646581862979
426 => 0.29954634218026
427 => 0.3009068768737
428 => 0.28855386731042
429 => 0.28467228350876
430 => 0.28260576086239
501 => 0.30312979002986
502 => 0.30425414267803
503 => 0.29850179556255
504 => 0.32450294998446
505 => 0.31861808794808
506 => 0.32519292066892
507 => 0.30695130316359
508 => 0.30764815751789
509 => 0.29901228345597
510 => 0.30384779588133
511 => 0.30043021155493
512 => 0.30345713426283
513 => 0.30527145925347
514 => 0.31390591625343
515 => 0.32695428424017
516 => 0.3126162163114
517 => 0.30636891478992
518 => 0.31024470551769
519 => 0.32056644697147
520 => 0.33620441363416
521 => 0.32694642262644
522 => 0.33105496182479
523 => 0.33195249486344
524 => 0.3251259950438
525 => 0.33645611641973
526 => 0.34252802051084
527 => 0.3487565377048
528 => 0.35416458466523
529 => 0.3462687309695
530 => 0.35471842625009
531 => 0.34790946342594
601 => 0.34180111987504
602 => 0.34181038371079
603 => 0.33797853057265
604 => 0.33055383227294
605 => 0.32918460399117
606 => 0.33630750242743
607 => 0.34201939243233
608 => 0.34248985105124
609 => 0.34565224684546
610 => 0.3475237201012
611 => 0.36586670215207
612 => 0.37324440127403
613 => 0.38226571210767
614 => 0.38578002109059
615 => 0.39635683117968
616 => 0.38781519802622
617 => 0.38596716196408
618 => 0.36031128033615
619 => 0.36451242951546
620 => 0.37123887470212
621 => 0.36042219693978
622 => 0.36728288932397
623 => 0.36863733532994
624 => 0.36005465036847
625 => 0.36463903324231
626 => 0.35246427150417
627 => 0.32721966077628
628 => 0.33648422088803
629 => 0.34330605554749
630 => 0.33357045636229
701 => 0.35102114108204
702 => 0.34082681132401
703 => 0.33759569820485
704 => 0.32498997395197
705 => 0.33093939056051
706 => 0.33898606171099
707 => 0.33401415446592
708 => 0.34433160853507
709 => 0.35894387506147
710 => 0.36935744636371
711 => 0.37015687106246
712 => 0.36346164237022
713 => 0.37419078907792
714 => 0.37426893919841
715 => 0.36216641788227
716 => 0.35475369096326
717 => 0.35306950381075
718 => 0.35727693352206
719 => 0.36238552992597
720 => 0.37044036260886
721 => 0.3753077293024
722 => 0.38799924018735
723 => 0.39143319913868
724 => 0.39520607891489
725 => 0.40024780980895
726 => 0.40630170042053
727 => 0.39305613241058
728 => 0.39358240352044
729 => 0.38124831398694
730 => 0.36806757043304
731 => 0.37807011178757
801 => 0.39114710402631
802 => 0.38814722755795
803 => 0.38780968017335
804 => 0.38837734124642
805 => 0.38611553235608
806 => 0.37588545457164
807 => 0.37074797355197
808 => 0.37737663477853
809 => 0.38089947321268
810 => 0.38636308840026
811 => 0.38568958250546
812 => 0.39976326847922
813 => 0.40523187728244
814 => 0.40383277313561
815 => 0.40409024196995
816 => 0.41399089699339
817 => 0.42500246160446
818 => 0.43531624496665
819 => 0.44580786838998
820 => 0.43315980685813
821 => 0.42673790123624
822 => 0.43336366859668
823 => 0.4298479431708
824 => 0.45005034429979
825 => 0.45144911472144
826 => 0.47165005498688
827 => 0.49082315278201
828 => 0.47878087357862
829 => 0.49013620047125
830 => 0.50241791231902
831 => 0.52611132710929
901 => 0.51813221855231
902 => 0.51202034644623
903 => 0.50624465683834
904 => 0.51826295004746
905 => 0.53372429226407
906 => 0.53705451729063
907 => 0.54245075407753
908 => 0.53677727091654
909 => 0.54361035647028
910 => 0.56773415108492
911 => 0.56121568883342
912 => 0.55195842454119
913 => 0.57100184351559
914 => 0.57789358281301
915 => 0.62626341843417
916 => 0.68733233396414
917 => 0.66204940193461
918 => 0.64635547014877
919 => 0.65004391638348
920 => 0.67234421702177
921 => 0.67950636581063
922 => 0.66003717646178
923 => 0.6669140232788
924 => 0.70480612535724
925 => 0.72513402239814
926 => 0.69752600781579
927 => 0.62135659053282
928 => 0.5511249091776
929 => 0.56975351364683
930 => 0.56764160801292
1001 => 0.6083519445602
1002 => 0.56106022566452
1003 => 0.56185649692435
1004 => 0.60340868011844
1005 => 0.59232327002702
1006 => 0.57436632539098
1007 => 0.55125601474579
1008 => 0.50853446807316
1009 => 0.47069480280675
1010 => 0.54490710034865
1011 => 0.54170693113233
1012 => 0.53707261186861
1013 => 0.54738578790431
1014 => 0.59746364328762
1015 => 0.59630918663483
1016 => 0.58896512241878
1017 => 0.59453553039905
1018 => 0.57338980593951
1019 => 0.57883954061193
1020 => 0.55111378412045
1021 => 0.56364698398447
1022 => 0.57432779785266
1023 => 0.57647212936885
1024 => 0.58130341776711
1025 => 0.54002058737215
1026 => 0.55855536621927
1027 => 0.56944281231803
1028 => 0.52025293475514
1029 => 0.56847048659613
1030 => 0.53930194514098
1031 => 0.52940170407432
1101 => 0.542731074413
1102 => 0.53753660582878
1103 => 0.53307070676949
1104 => 0.53057865836053
1105 => 0.54036627682834
1106 => 0.53990967272808
1107 => 0.52389522921986
1108 => 0.50300504049561
1109 => 0.51001647352854
1110 => 0.50746915417514
1111 => 0.49823734022769
1112 => 0.50445846817481
1113 => 0.47706376913652
1114 => 0.42993261329369
1115 => 0.46106889850981
1116 => 0.45987018539875
1117 => 0.45926573989084
1118 => 0.48266379768704
1119 => 0.48041461431497
1120 => 0.4763323244706
1121 => 0.49816236577333
1122 => 0.49019410704234
1123 => 0.51475040289336
1124 => 0.53092476754248
1125 => 0.52682242548158
1126 => 0.54203449361157
1127 => 0.51017800278451
1128 => 0.52075945117669
1129 => 0.52294027302506
1130 => 0.49789298645224
1201 => 0.48078260853076
1202 => 0.47964154139599
1203 => 0.44997450403546
1204 => 0.4658223959295
1205 => 0.47976788496592
1206 => 0.47308907793114
1207 => 0.47097476714761
1208 => 0.48177632240259
1209 => 0.48261569575497
1210 => 0.46347789436798
1211 => 0.46745724929169
1212 => 0.48405182083625
1213 => 0.46703910866605
1214 => 0.43398618793011
1215 => 0.42578860659521
1216 => 0.42469489813374
1217 => 0.40246240739513
1218 => 0.42633640817827
1219 => 0.41591476705299
1220 => 0.44883660649733
1221 => 0.43003182837009
1222 => 0.42922119196966
1223 => 0.4279957961559
1224 => 0.40885937296455
1225 => 0.41304903346032
1226 => 0.42697610305156
1227 => 0.43194543838138
1228 => 0.43142709599391
1229 => 0.42690785281267
1230 => 0.42897673919878
1231 => 0.42231213530134
]
'min_raw' => 0.23318707629537
'max_raw' => 0.72513402239814
'avg_raw' => 0.47916054934675
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.233187'
'max' => '$0.725134'
'avg' => '$0.47916'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.13283900150957
'max_diff' => 0.45289936527764
'year' => 2033
]
8 => [
'items' => [
101 => 0.41995872495342
102 => 0.41253071453887
103 => 0.40161359126973
104 => 0.40313168421891
105 => 0.38150200640206
106 => 0.36971700995355
107 => 0.36645507826035
108 => 0.36209308687471
109 => 0.36694777679418
110 => 0.38144073224243
111 => 0.36395915311982
112 => 0.33398821190431
113 => 0.33578951653936
114 => 0.33983651324217
115 => 0.33229496166004
116 => 0.325157516002
117 => 0.3313629459224
118 => 0.31866386302945
119 => 0.3413711367392
120 => 0.34075696862175
121 => 0.34922083605236
122 => 0.35451346605276
123 => 0.34231566741114
124 => 0.33924795403913
125 => 0.34099546299563
126 => 0.31211303256902
127 => 0.34686052529839
128 => 0.34716102305844
129 => 0.34458797879946
130 => 0.36308994596937
131 => 0.40213486760616
201 => 0.38744459750806
202 => 0.38175608091032
203 => 0.37094220669972
204 => 0.38535105202102
205 => 0.38424467751335
206 => 0.37924123240958
207 => 0.37621513319911
208 => 0.38179081377966
209 => 0.37552424467186
210 => 0.3743985966663
211 => 0.36757839446969
212 => 0.36514389258494
213 => 0.36334148430977
214 => 0.3613572098998
215 => 0.36573402479783
216 => 0.35581558642094
217 => 0.34385492205491
218 => 0.34286052222906
219 => 0.34560614757677
220 => 0.34439141274817
221 => 0.34285470654604
222 => 0.33992071590914
223 => 0.33905026356196
224 => 0.34187881140685
225 => 0.33868554580456
226 => 0.34339738314691
227 => 0.34211602410764
228 => 0.33495845667547
301 => 0.32603747758412
302 => 0.32595806215782
303 => 0.32403605184593
304 => 0.32158808273754
305 => 0.32090711373354
306 => 0.33084034192285
307 => 0.35140182699823
308 => 0.34736511548329
309 => 0.35028205325167
310 => 0.36463050007266
311 => 0.3691914398442
312 => 0.36595419282614
313 => 0.36152284944311
314 => 0.36171780606252
315 => 0.37686104786118
316 => 0.37780551327708
317 => 0.38019187268698
318 => 0.38325901891378
319 => 0.36647654109128
320 => 0.3609273528663
321 => 0.35829783962807
322 => 0.35019995660399
323 => 0.35893282918544
324 => 0.35384455831112
325 => 0.35453113989215
326 => 0.3540840027368
327 => 0.3543281698589
328 => 0.34136478959342
329 => 0.34608796402695
330 => 0.33823477045646
331 => 0.32772022582791
401 => 0.32768497738744
402 => 0.33025839728934
403 => 0.32872762643376
404 => 0.32460836142112
405 => 0.32519348357379
406 => 0.320067197822
407 => 0.32581590747845
408 => 0.32598075990153
409 => 0.32376719354946
410 => 0.33262387394429
411 => 0.33625246312841
412 => 0.3347954463363
413 => 0.33615023494617
414 => 0.3475328590714
415 => 0.34938872346252
416 => 0.35021297583353
417 => 0.34910858684889
418 => 0.3363582884198
419 => 0.33692381837358
420 => 0.33277433480773
421 => 0.32926845845638
422 => 0.32940867512454
423 => 0.33121115130115
424 => 0.33908267047826
425 => 0.35564781853508
426 => 0.35627645379487
427 => 0.35703837806832
428 => 0.35393924913574
429 => 0.353004522195
430 => 0.35423766830333
501 => 0.36045866695936
502 => 0.37646076448734
503 => 0.37080455447679
504 => 0.36620596769407
505 => 0.37024016807261
506 => 0.36961913454544
507 => 0.36437698659008
508 => 0.36422985695649
509 => 0.35416849901406
510 => 0.35044904406879
511 => 0.34734078912013
512 => 0.34394665585926
513 => 0.34193449988983
514 => 0.3450260859674
515 => 0.34573316828191
516 => 0.33897336129163
517 => 0.3380520245772
518 => 0.34357222888603
519 => 0.34114299278367
520 => 0.34364152235711
521 => 0.34422120265013
522 => 0.34412786077179
523 => 0.34159145928493
524 => 0.34320808595607
525 => 0.33938428193922
526 => 0.33522646938769
527 => 0.33257404402069
528 => 0.33025945109481
529 => 0.33154372177502
530 => 0.32696553129864
531 => 0.32550087602448
601 => 0.34266040921514
602 => 0.35533634087915
603 => 0.35515202781254
604 => 0.35403006942099
605 => 0.35236306683211
606 => 0.36033671533687
607 => 0.35755885563594
608 => 0.35957998066631
609 => 0.36009444181289
610 => 0.3616515607578
611 => 0.36220809694171
612 => 0.3605258580547
613 => 0.35488005888173
614 => 0.34081126412916
615 => 0.33426220219385
616 => 0.33210090267195
617 => 0.33217946180468
618 => 0.3300124502206
619 => 0.33065073225076
620 => 0.32979048177862
621 => 0.32816137550134
622 => 0.3314431290531
623 => 0.33182132057829
624 => 0.33105532008528
625 => 0.331235740931
626 => 0.32489358401193
627 => 0.32537576442805
628 => 0.32269092259858
629 => 0.32218754712181
630 => 0.31540050077285
701 => 0.30337626436758
702 => 0.31003885855697
703 => 0.30199138167869
704 => 0.29894368024572
705 => 0.31337102481461
706 => 0.31192291957214
707 => 0.30944439287325
708 => 0.30577813531537
709 => 0.30441828472409
710 => 0.29615626300787
711 => 0.2956680986887
712 => 0.29976297974461
713 => 0.29787333303356
714 => 0.29521955338608
715 => 0.28560783251221
716 => 0.27480107591856
717 => 0.27512726397127
718 => 0.27856469217686
719 => 0.28855947828494
720 => 0.28465434244096
721 => 0.28182112157988
722 => 0.2812905444789
723 => 0.287931827736
724 => 0.29733063493664
725 => 0.30174034498872
726 => 0.29737045625199
727 => 0.29235056336276
728 => 0.29265610098298
729 => 0.29468870588707
730 => 0.294902303923
731 => 0.29163486970543
801 => 0.29255463329857
802 => 0.29115742829565
803 => 0.28258278377174
804 => 0.28242769564279
805 => 0.28032333959181
806 => 0.28025962052691
807 => 0.27667958592796
808 => 0.27617871433995
809 => 0.26907033835117
810 => 0.27374909295313
811 => 0.27061083001178
812 => 0.26588072751777
813 => 0.26506525606492
814 => 0.26504074200834
815 => 0.26989749963812
816 => 0.27369233891249
817 => 0.27066542143925
818 => 0.26997625100493
819 => 0.27733478822664
820 => 0.27639834729062
821 => 0.27558739547942
822 => 0.29648907483884
823 => 0.27994376464748
824 => 0.27272906503076
825 => 0.26379950422077
826 => 0.26670701424726
827 => 0.26731966933005
828 => 0.24584568525633
829 => 0.23713369259204
830 => 0.23414406501418
831 => 0.23242349207598
901 => 0.23320757876951
902 => 0.22536576355683
903 => 0.23063559307141
904 => 0.22384524394936
905 => 0.22270681982134
906 => 0.2348488052144
907 => 0.23653829154939
908 => 0.22933041796205
909 => 0.23395903965386
910 => 0.23228063708575
911 => 0.22396164499558
912 => 0.22364392068809
913 => 0.21946974288396
914 => 0.21293796290057
915 => 0.20995276417711
916 => 0.20839804676325
917 => 0.20903955346904
918 => 0.20871518804816
919 => 0.20659848426769
920 => 0.20883651503113
921 => 0.2031192712487
922 => 0.20084261870757
923 => 0.19981430757268
924 => 0.19473992464349
925 => 0.20281552447216
926 => 0.20440651937213
927 => 0.20600064902354
928 => 0.21987645928053
929 => 0.21918326301272
930 => 0.22544941967341
1001 => 0.2252059283483
1002 => 0.22341871896366
1003 => 0.21587877655155
1004 => 0.21888406321047
1005 => 0.20963425799956
1006 => 0.21656484098919
1007 => 0.21340201234079
1008 => 0.21549548544165
1009 => 0.21173123204545
1010 => 0.21381452529712
1011 => 0.20478380328493
1012 => 0.19635104213564
1013 => 0.19974463138976
1014 => 0.20343385101299
1015 => 0.21143301915184
1016 => 0.20666878060005
1017 => 0.20838218093908
1018 => 0.20264257662308
1019 => 0.19080013348227
1020 => 0.19086716042436
1021 => 0.18904545854879
1022 => 0.18747124215547
1023 => 0.20721601070868
1024 => 0.20476043662049
1025 => 0.20084780068854
1026 => 0.20608501936542
1027 => 0.20746982310942
1028 => 0.20750924652521
1029 => 0.21133018607968
1030 => 0.21336942220484
1031 => 0.21372884641045
1101 => 0.21974117735627
1102 => 0.22175643138475
1103 => 0.23005697751861
1104 => 0.21319640726697
1105 => 0.21284917491804
1106 => 0.2061587177724
1107 => 0.20191552407869
1108 => 0.20644925287482
1109 => 0.21046551767249
1110 => 0.20628351431496
1111 => 0.20682959566654
1112 => 0.20121559784128
1113 => 0.20322233790066
1114 => 0.20495081277688
1115 => 0.20399645054529
1116 => 0.20256772409294
1117 => 0.21013622975996
1118 => 0.20970918500901
1119 => 0.21675715148533
1120 => 0.22225154535854
1121 => 0.23209848141972
1122 => 0.22182269030749
1123 => 0.22144819963679
1124 => 0.22510890601308
1125 => 0.22175587094967
1126 => 0.22387487336691
1127 => 0.23175707737065
1128 => 0.23192361592064
1129 => 0.22913388063559
1130 => 0.22896412498996
1201 => 0.22949992416782
1202 => 0.23263811668788
1203 => 0.23154153579446
1204 => 0.23281052696636
1205 => 0.23439741985831
1206 => 0.24096148168806
1207 => 0.24254405477269
1208 => 0.23869922264712
1209 => 0.2390463679393
1210 => 0.23760829518133
1211 => 0.23621913491613
1212 => 0.23934176432173
1213 => 0.24504843093589
1214 => 0.24501293005906
1215 => 0.2463367657918
1216 => 0.24716150448605
1217 => 0.24362112226471
1218 => 0.24131646362208
1219 => 0.24220021639491
1220 => 0.24361335632428
1221 => 0.24174195416163
1222 => 0.23019079309595
1223 => 0.23369467747226
1224 => 0.23311145978085
1225 => 0.23228088686659
1226 => 0.23580406970169
1227 => 0.23546425012239
1228 => 0.22528533440745
1229 => 0.22593695556611
1230 => 0.22532496164834
1231 => 0.22730243919882
]
'min_raw' => 0.18747124215547
'max_raw' => 0.41995872495342
'avg_raw' => 0.30371498355444
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.187471'
'max' => '$0.419958'
'avg' => '$0.303714'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.045715834139895
'max_diff' => -0.30517529744472
'year' => 2034
]
9 => [
'items' => [
101 => 0.22164908067242
102 => 0.22338801567919
103 => 0.22447865941393
104 => 0.22512105695241
105 => 0.22744183735753
106 => 0.22716952056334
107 => 0.22742490976325
108 => 0.23086601444073
109 => 0.24826994105489
110 => 0.24921719838089
111 => 0.24455255686454
112 => 0.24641598914434
113 => 0.24283860665496
114 => 0.24524012748646
115 => 0.24688318704735
116 => 0.23945851683386
117 => 0.23901887604953
118 => 0.23542672843007
119 => 0.23735694509113
120 => 0.2342858315959
121 => 0.23503937542464
122 => 0.23293240118672
123 => 0.23672453532059
124 => 0.24096473052033
125 => 0.24203597127817
126 => 0.23921799804245
127 => 0.23717759970629
128 => 0.23359533237701
129 => 0.23955272278164
130 => 0.24129484528414
131 => 0.23954357215378
201 => 0.2391377639034
202 => 0.23836875800222
203 => 0.23930091214067
204 => 0.24128535731085
205 => 0.24034952961554
206 => 0.24096766029546
207 => 0.23861198355721
208 => 0.24362229427854
209 => 0.25157987350096
210 => 0.25160545841936
211 => 0.25066962567958
212 => 0.25028670308527
213 => 0.25124692426735
214 => 0.2517678048683
215 => 0.25487298409671
216 => 0.2582049651246
217 => 0.27375386672453
218 => 0.26938779737521
219 => 0.28318370788296
220 => 0.29409448191982
221 => 0.29736614598315
222 => 0.29435636898857
223 => 0.2840600844751
224 => 0.28355489963585
225 => 0.29894189567817
226 => 0.29459436452715
227 => 0.29407723953047
228 => 0.28857590326221
301 => 0.2918278743505
302 => 0.29111662056996
303 => 0.28999387168164
304 => 0.29619840598383
305 => 0.30781274031493
306 => 0.30600253739089
307 => 0.30465130488099
308 => 0.29873059736048
309 => 0.30229618572573
310 => 0.30102654800321
311 => 0.30648171739115
312 => 0.30325019589253
313 => 0.29456142770277
314 => 0.29594514267554
315 => 0.29573599694105
316 => 0.30004020133657
317 => 0.29874818601395
318 => 0.29548371021321
319 => 0.30777304378282
320 => 0.30697504281768
321 => 0.30810642573784
322 => 0.30860449548847
323 => 0.31608479626994
324 => 0.31914923615719
325 => 0.31984491766216
326 => 0.32275589854276
327 => 0.31977248980601
328 => 0.33170825188738
329 => 0.33964483720046
330 => 0.34886358945455
331 => 0.36233466426479
401 => 0.36739991300785
402 => 0.36648492115969
403 => 0.37669853633756
404 => 0.39505217577629
405 => 0.37019471644089
406 => 0.39636968147969
407 => 0.38808298975291
408 => 0.36843539273994
409 => 0.36717031912225
410 => 0.38047589993273
411 => 0.40998639755567
412 => 0.40259435260642
413 => 0.40999848829308
414 => 0.40136117072077
415 => 0.40093225510227
416 => 0.40957899305745
417 => 0.42978256759887
418 => 0.42018460665391
419 => 0.40642357612273
420 => 0.4165845069216
421 => 0.40778216831387
422 => 0.38794803581119
423 => 0.40258870004896
424 => 0.39279890481527
425 => 0.3956560875186
426 => 0.41623278097767
427 => 0.4137569387815
428 => 0.41696090784016
429 => 0.41130598631409
430 => 0.40602339790947
501 => 0.39616305436207
502 => 0.39324389274675
503 => 0.39405064399679
504 => 0.39324349296089
505 => 0.38772672136736
506 => 0.38653537506699
507 => 0.38454974570564
508 => 0.38516517527317
509 => 0.38143161115745
510 => 0.38847761803751
511 => 0.38978541900365
512 => 0.39491291522274
513 => 0.39544526889002
514 => 0.40972527287485
515 => 0.40186008664573
516 => 0.40713673261573
517 => 0.40666473973446
518 => 0.36886121574393
519 => 0.37407020780651
520 => 0.38217376478412
521 => 0.37852312334982
522 => 0.37336197048025
523 => 0.36919406281457
524 => 0.36287925651061
525 => 0.37176722511831
526 => 0.38345395870736
527 => 0.39574166373989
528 => 0.41050453621415
529 => 0.40720963493667
530 => 0.39546568210782
531 => 0.39599250725276
601 => 0.39924913300072
602 => 0.39503150676146
603 => 0.39378764644566
604 => 0.3990782456941
605 => 0.39911467914347
606 => 0.39426179043804
607 => 0.38886869271122
608 => 0.38884609543482
609 => 0.38788644578548
610 => 0.40153189026151
611 => 0.40903550501329
612 => 0.4098957823519
613 => 0.40897760149407
614 => 0.40933097286495
615 => 0.40496478477176
616 => 0.41494459599993
617 => 0.42410305768394
618 => 0.42164839431063
619 => 0.41796850496308
620 => 0.41503729585027
621 => 0.42095789459882
622 => 0.42069425965643
623 => 0.4240230665108
624 => 0.42387205260376
625 => 0.4227527000614
626 => 0.42164843428623
627 => 0.42602672326421
628 => 0.42476584635173
629 => 0.42350301094913
630 => 0.42097020121879
701 => 0.42131445212666
702 => 0.41763519816389
703 => 0.4159330069295
704 => 0.39033613489221
705 => 0.38349581428192
706 => 0.38564791839348
707 => 0.38635644694637
708 => 0.38337953065066
709 => 0.38764766391165
710 => 0.386982479864
711 => 0.38957032187376
712 => 0.3879535505371
713 => 0.38801990339671
714 => 0.39277448316585
715 => 0.39415475790026
716 => 0.39345273903015
717 => 0.39394440898297
718 => 0.40527473552484
719 => 0.40366392541403
720 => 0.4028082146473
721 => 0.40304525237772
722 => 0.4059403937341
723 => 0.40675087524503
724 => 0.4033168081317
725 => 0.40493633403445
726 => 0.41183206977994
727 => 0.41424518702603
728 => 0.42194669891353
729 => 0.41867495978026
730 => 0.42468037855693
731 => 0.44313898847828
801 => 0.4578850033221
802 => 0.44432395866688
803 => 0.4714031370339
804 => 0.49248816167005
805 => 0.49167888330557
806 => 0.48800222155485
807 => 0.46399748158097
808 => 0.4419079619665
809 => 0.46038678309455
810 => 0.46043388940981
811 => 0.45884654228686
812 => 0.44898766563428
813 => 0.4585034747497
814 => 0.45925880512094
815 => 0.45883602097161
816 => 0.45127724335743
817 => 0.4397363870362
818 => 0.44199144273646
819 => 0.44568526997538
820 => 0.43869208439902
821 => 0.43645733787531
822 => 0.4406121568408
823 => 0.45399984923851
824 => 0.45146898354034
825 => 0.45140289240893
826 => 0.46223100911977
827 => 0.45448041440865
828 => 0.44201988621053
829 => 0.43887343850633
830 => 0.42770566885755
831 => 0.43541928713219
901 => 0.43569688652161
902 => 0.43147221662385
903 => 0.44236269488924
904 => 0.4422623372148
905 => 0.45260122549401
906 => 0.47236529677476
907 => 0.46652008836616
908 => 0.45972274694383
909 => 0.46046180642627
910 => 0.46856746479442
911 => 0.46366659871085
912 => 0.46542898432455
913 => 0.46856479721271
914 => 0.47045671098599
915 => 0.46018958914919
916 => 0.45779583191583
917 => 0.45289904471099
918 => 0.4516215643321
919 => 0.45560989533563
920 => 0.45455911102602
921 => 0.43567355536784
922 => 0.43369990972332
923 => 0.43376043861752
924 => 0.42879761280265
925 => 0.42122811222029
926 => 0.44112030779933
927 => 0.43952268610324
928 => 0.43775903539685
929 => 0.43797507254513
930 => 0.44660960043693
1001 => 0.44160113820557
1002 => 0.45491695591845
1003 => 0.4521796241068
1004 => 0.44937209006308
1005 => 0.44898400333866
1006 => 0.44790334225938
1007 => 0.44419735332224
1008 => 0.43972214898524
1009 => 0.43676723144639
1010 => 0.4028946835808
1011 => 0.4091812314371
1012 => 0.41641333170892
1013 => 0.41890982374193
1014 => 0.41463940136748
1015 => 0.44436597562612
1016 => 0.44979730719557
1017 => 0.43334544959471
1018 => 0.43026797876251
1019 => 0.44456773410153
1020 => 0.43594323355811
1021 => 0.43982684562473
1022 => 0.43143260055892
1023 => 0.44848905846844
1024 => 0.44835911683655
1025 => 0.44172376947218
1026 => 0.44733191962765
1027 => 0.44635736552834
1028 => 0.4388660746961
1029 => 0.4487265457498
1030 => 0.44873143642042
1031 => 0.4423450588471
1101 => 0.43488716799928
1102 => 0.43355387326321
1103 => 0.43254941478252
1104 => 0.4395798104129
1105 => 0.44588324115163
1106 => 0.45761236300339
1107 => 0.46056134291398
1108 => 0.47207140782974
1109 => 0.46521772458729
1110 => 0.46825587359861
1111 => 0.47155421412282
1112 => 0.47313555986257
1113 => 0.47055884183933
1114 => 0.48843871038523
1115 => 0.48994831911552
1116 => 0.49045447786472
1117 => 0.48442548679099
1118 => 0.48978064196739
1119 => 0.48727514220445
1120 => 0.49379375653974
1121 => 0.49481595850136
1122 => 0.49395018980576
1123 => 0.49427465284274
1124 => 0.47901733926376
1125 => 0.47822616706595
1126 => 0.46743847800979
1127 => 0.47183454103875
1128 => 0.46361631191489
1129 => 0.46622239702721
1130 => 0.46737113451302
1201 => 0.46677109924071
1202 => 0.4720830878466
1203 => 0.46756681236402
1204 => 0.45564761882104
1205 => 0.44372517790175
1206 => 0.44357550136782
1207 => 0.44043653312233
1208 => 0.43816763401156
1209 => 0.43860470447381
1210 => 0.4401449977908
1211 => 0.43807810936387
1212 => 0.43851918480366
1213 => 0.44584397597442
1214 => 0.44731291060569
1215 => 0.44232089677881
1216 => 0.42227724091973
1217 => 0.41735847749621
1218 => 0.42089398710172
1219 => 0.41920424122626
1220 => 0.33833054021917
1221 => 0.35733061665422
1222 => 0.34604141641814
1223 => 0.35124399927806
1224 => 0.33972064916125
1225 => 0.34522019582752
1226 => 0.34420463036954
1227 => 0.37475619102398
1228 => 0.37427917042665
1229 => 0.37450749494322
1230 => 0.363608970871
1231 => 0.38097061564523
]
'min_raw' => 0.22164908067242
'max_raw' => 0.49481595850136
'avg_raw' => 0.35823251958689
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.221649'
'max' => '$0.494815'
'avg' => '$0.358232'
'bar_min_pct' => 61.631153054957
'bar_max_pct' => 60.119598047091
'min_diff' => 0.034177838516948
'max_diff' => 0.074857233547945
'year' => 2035
]
10 => [
'items' => [
101 => 0.38952358616556
102 => 0.38794065895219
103 => 0.38833904762897
104 => 0.38149341023708
105 => 0.374573775677
106 => 0.36689883602575
107 => 0.38115792524656
108 => 0.37957255793598
109 => 0.38320882014931
110 => 0.39245685876975
111 => 0.3938186675865
112 => 0.3956489524463
113 => 0.39499292561261
114 => 0.41062214631073
115 => 0.40872934455927
116 => 0.41329045218406
117 => 0.4039079077478
118 => 0.39329066811887
119 => 0.39530865826862
120 => 0.39511430958954
121 => 0.39264002784192
122 => 0.39040635691278
123 => 0.38668792414865
124 => 0.39845359563888
125 => 0.39797593086301
126 => 0.40570876835969
127 => 0.40434191421938
128 => 0.39521372774442
129 => 0.39553974271014
130 => 0.3977323500321
131 => 0.40532098900814
201 => 0.40757381373018
202 => 0.40653021555939
203 => 0.40900033502174
204 => 0.4109526167299
205 => 0.40924551154643
206 => 0.43341452097816
207 => 0.42337786320464
208 => 0.42826966036884
209 => 0.42943632516836
210 => 0.42644793781671
211 => 0.42709601202715
212 => 0.42807766786633
213 => 0.43403808989385
214 => 0.4496799619561
215 => 0.45660764061464
216 => 0.47744990366451
217 => 0.45603239333999
218 => 0.4547615669118
219 => 0.45851588786313
220 => 0.47075250265101
221 => 0.4806691296098
222 => 0.48395904687596
223 => 0.4843938637533
224 => 0.49056596725419
225 => 0.49410370187799
226 => 0.48981651154675
227 => 0.48618356662856
228 => 0.47317080886933
229 => 0.47467707101252
301 => 0.48505372349083
302 => 0.49971135629822
303 => 0.51228913011373
304 => 0.50788483210321
305 => 0.54148651697364
306 => 0.54481798677796
307 => 0.54435768537032
308 => 0.55194726937376
309 => 0.53688349071884
310 => 0.53044343349689
311 => 0.48696905055555
312 => 0.49918357886503
313 => 0.51693811309696
314 => 0.51458823391527
315 => 0.50169441657599
316 => 0.51227934899707
317 => 0.50877963931722
318 => 0.50601927308963
319 => 0.51866504590152
320 => 0.50476049923513
321 => 0.51679940460754
322 => 0.5013593839409
323 => 0.50790495056554
324 => 0.50418937037596
325 => 0.506593806123
326 => 0.49253752387651
327 => 0.50012195257975
328 => 0.49222198670717
329 => 0.49221824109474
330 => 0.49204384891024
331 => 0.50133812372553
401 => 0.50164120969358
402 => 0.49477272656221
403 => 0.49378287083711
404 => 0.4974428862572
405 => 0.49315796675984
406 => 0.49516285362369
407 => 0.49321869274053
408 => 0.49278102117544
409 => 0.4892935796811
410 => 0.48779109399614
411 => 0.4883802573475
412 => 0.48636913909479
413 => 0.4851573676022
414 => 0.49180279706052
415 => 0.4882524121768
416 => 0.4912586496574
417 => 0.48783266263084
418 => 0.47595669896526
419 => 0.46912670667515
420 => 0.4466941122133
421 => 0.45305596817513
422 => 0.45727388525965
423 => 0.45587986368838
424 => 0.4588747614382
425 => 0.45905862383649
426 => 0.45808495204865
427 => 0.45695756485342
428 => 0.4564088151152
429 => 0.46049874608164
430 => 0.46287308866841
501 => 0.45769720966753
502 => 0.45648457363587
503 => 0.46171767307387
504 => 0.46490986070799
505 => 0.48847918066304
506 => 0.48673308931287
507 => 0.49111543594867
508 => 0.49062205097007
509 => 0.49521544840696
510 => 0.50272371190168
511 => 0.48745731287342
512 => 0.49010703187237
513 => 0.48945738196478
514 => 0.49655008930853
515 => 0.49657223196667
516 => 0.49231979960707
517 => 0.49462511217704
518 => 0.49333834994343
519 => 0.49566370321592
520 => 0.48670976919834
521 => 0.4976146943143
522 => 0.5037970841572
523 => 0.50388292664616
524 => 0.50681333036521
525 => 0.50979079026131
526 => 0.51550576524976
527 => 0.50963140271069
528 => 0.49906399636057
529 => 0.49982692896653
530 => 0.49363126248992
531 => 0.49373541276273
601 => 0.49317945044406
602 => 0.49484793521327
603 => 0.48707590777815
604 => 0.48889998708266
605 => 0.48634626537454
606 => 0.49010148058011
607 => 0.48606148977823
608 => 0.48945706868392
609 => 0.49092248797439
610 => 0.49632991670445
611 => 0.48526280815816
612 => 0.46269622465488
613 => 0.46743999410065
614 => 0.46042358647531
615 => 0.46107298171438
616 => 0.4623848634478
617 => 0.45813262552881
618 => 0.45894381852034
619 => 0.4589148369984
620 => 0.45866508989946
621 => 0.45755891858751
622 => 0.45595475133586
623 => 0.46234525992979
624 => 0.46343113186713
625 => 0.46584489067276
626 => 0.4730265996101
627 => 0.4723089775309
628 => 0.47347944891593
629 => 0.47092431645433
630 => 0.46119150698098
701 => 0.46172004536134
702 => 0.45512916328898
703 => 0.46567634699985
704 => 0.46317863468109
705 => 0.46156834330061
706 => 0.4611289603782
707 => 0.46832847138289
708 => 0.470482677914
709 => 0.46914032096724
710 => 0.46638710770661
711 => 0.47167409108144
712 => 0.47308866479263
713 => 0.47340533567909
714 => 0.48277285654079
715 => 0.47392887603508
716 => 0.47605771004441
717 => 0.49266626528273
718 => 0.47760459750553
719 => 0.48558309884239
720 => 0.48519259272006
721 => 0.48927412402623
722 => 0.48485778802199
723 => 0.48491253379969
724 => 0.48853665709269
725 => 0.48344722954175
726 => 0.48218701570736
727 => 0.48044603932097
728 => 0.48424739756831
729 => 0.48652613991694
730 => 0.50489112969509
731 => 0.51675575063706
801 => 0.51624067615125
802 => 0.52094749277245
803 => 0.5188270287751
804 => 0.51197949117752
805 => 0.52366740288834
806 => 0.51996885858004
807 => 0.52027376207909
808 => 0.52026241355562
809 => 0.52272162218829
810 => 0.52097904748889
811 => 0.51754425388474
812 => 0.51982443017428
813 => 0.52659573857627
814 => 0.54761408762517
815 => 0.55937623420902
816 => 0.54690599163183
817 => 0.55550779797837
818 => 0.55034977930743
819 => 0.54941241387716
820 => 0.55481498393129
821 => 0.56022701046911
822 => 0.55988228777548
823 => 0.55595343441966
824 => 0.55373412484992
825 => 0.57053948043524
826 => 0.58292138015874
827 => 0.5820770176069
828 => 0.58580375930928
829 => 0.59674558821126
830 => 0.59774597191859
831 => 0.59761994656502
901 => 0.59514039116715
902 => 0.60591404269718
903 => 0.61490161234789
904 => 0.59456644573379
905 => 0.60230981097356
906 => 0.60578605710534
907 => 0.61089021778254
908 => 0.61950179240164
909 => 0.62885624654534
910 => 0.63017906892763
911 => 0.62924046314452
912 => 0.62307094917552
913 => 0.63330670452141
914 => 0.63930256994502
915 => 0.64287297059185
916 => 0.65192691257418
917 => 0.60580752521799
918 => 0.57316193056501
919 => 0.56806384955184
920 => 0.57843099776425
921 => 0.5811647320714
922 => 0.5800627672
923 => 0.54331718241045
924 => 0.5678703916526
925 => 0.59428758030468
926 => 0.5953023721082
927 => 0.60852736910479
928 => 0.61283397023783
929 => 0.62348182626007
930 => 0.62281579996678
1001 => 0.6254083834638
1002 => 0.62481239341513
1003 => 0.64453530452572
1004 => 0.66629260436134
1005 => 0.66553921825201
1006 => 0.66241134897995
1007 => 0.66705676822992
1008 => 0.68951263331423
1009 => 0.68744525710517
1010 => 0.68945353699359
1011 => 0.71593026748509
1012 => 0.75035378339504
1013 => 0.73436060419037
1014 => 0.76906120115114
1015 => 0.79090338753834
1016 => 0.82867719037077
1017 => 0.82394772421625
1018 => 0.83865278846195
1019 => 0.81548099273028
1020 => 0.76227386593782
1021 => 0.75385363445422
1022 => 0.77071115111862
1023 => 0.81215371090563
1024 => 0.76940597742938
1025 => 0.77805378823686
1026 => 0.77556321814253
1027 => 0.77543050624645
1028 => 0.78049557954172
1029 => 0.77314842655047
1030 => 0.74321480353651
1031 => 0.75693320656386
1101 => 0.75163587234318
1102 => 0.75751365960345
1103 => 0.78923365326328
1104 => 0.77520948795607
1105 => 0.76043616903559
1106 => 0.77896518942378
1107 => 0.80255899964014
1108 => 0.80108254139896
1109 => 0.79821759529939
1110 => 0.81436714645896
1111 => 0.84104147360007
1112 => 0.84825143704018
1113 => 0.85357368465046
1114 => 0.85430753267581
1115 => 0.86186662342089
1116 => 0.82121948734844
1117 => 0.88572753618791
1118 => 0.8968662942236
1119 => 0.89477266936711
1120 => 0.90715293013319
1121 => 0.90351034335891
1122 => 0.89823280662733
1123 => 0.91785815329855
1124 => 0.89535927702381
1125 => 0.86342495468157
1126 => 0.84590515385535
1127 => 0.86897664086534
1128 => 0.88306559289841
1129 => 0.89237749396662
1130 => 0.89519526960346
1201 => 0.82437480881419
1202 => 0.78620650833159
1203 => 0.81067195134048
1204 => 0.840521480326
1205 => 0.82105367170778
1206 => 0.82181677294818
1207 => 0.79406079390871
1208 => 0.84297726858785
1209 => 0.83585054967941
1210 => 0.87282397998335
1211 => 0.863999974111
1212 => 0.89415037122357
1213 => 0.88621076121399
1214 => 0.91916763846614
1215 => 0.93231502907386
1216 => 0.95439154413216
1217 => 0.97063111847664
1218 => 0.98016730714527
1219 => 0.97959479014695
1220 => 1.0173819205624
1221 => 0.99510016993818
1222 => 0.96710903974877
1223 => 0.96660276851453
1224 => 0.98109977147701
1225 => 1.0114815126278
1226 => 1.0193590560719
1227 => 1.0237615281829
1228 => 1.0170189888937
1229 => 0.99283374553862
1230 => 0.98239068007984
1231 => 0.99128847441545
]
'min_raw' => 0.36689883602575
'max_raw' => 1.0237615281829
'avg_raw' => 0.69533018210431
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$0.366898'
'max' => '$1.02'
'avg' => '$0.69533'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.14524975535333
'max_diff' => 0.52894556968151
'year' => 2036
]
11 => [
'items' => [
101 => 0.98040723653918
102 => 0.99919130584974
103 => 1.0249858450738
104 => 1.0196593747267
105 => 1.0374649665081
106 => 1.0558918807989
107 => 1.0822431958392
108 => 1.0891324053771
109 => 1.1005200067701
110 => 1.1122415892357
111 => 1.1160062456181
112 => 1.1231941427565
113 => 1.1231562589905
114 => 1.1448174708182
115 => 1.1687104582561
116 => 1.1777295078899
117 => 1.1984683152097
118 => 1.1629538344491
119 => 1.189891976067
120 => 1.2141908541117
121 => 1.1852207299816
122 => 1.2251492969217
123 => 1.2266996326959
124 => 1.250107862243
125 => 1.2263791371229
126 => 1.2122890958913
127 => 1.2529665169799
128 => 1.2726490397179
129 => 1.2667205036875
130 => 1.2216040517685
131 => 1.1953443416159
201 => 1.1266176150269
202 => 1.2080273914453
203 => 1.2476797187829
204 => 1.22150136182
205 => 1.234704202368
206 => 1.3067346193624
207 => 1.3341591385298
208 => 1.3284550302549
209 => 1.3294189306557
210 => 1.3442167034082
211 => 1.409838177075
212 => 1.37051626896
213 => 1.4005763943501
214 => 1.4165201764672
215 => 1.4313296498542
216 => 1.3949622637979
217 => 1.3476488288817
218 => 1.3326626779608
219 => 1.218898440139
220 => 1.2129765175074
221 => 1.2096523628816
222 => 1.1886940381771
223 => 1.1722265359276
224 => 1.1591309667397
225 => 1.1247642825226
226 => 1.1363620296013
227 => 1.0815887078436
228 => 1.1166307380568
301 => 1.0292111939835
302 => 1.1020167879735
303 => 1.0623920132289
304 => 1.088998983765
305 => 1.0889061545514
306 => 1.0399142860467
307 => 1.0116567987274
308 => 1.0296635694451
309 => 1.0489682570337
310 => 1.0521003776462
311 => 1.0771294090088
312 => 1.0841144736648
313 => 1.0629494016555
314 => 1.0273996182411
315 => 1.035657022124
316 => 1.0114894627013
317 => 0.96913674440465
318 => 0.9995552060928
319 => 1.0099414063185
320 => 1.0145285440269
321 => 0.97287950982476
322 => 0.95979247903392
323 => 0.9528250536517
324 => 1.0220232509318
325 => 1.0258140843849
326 => 1.006419644469
327 => 1.0940843519451
328 => 1.0742431287215
329 => 1.0964106362799
330 => 1.0349077492717
331 => 1.03725724238
401 => 1.0081407900428
402 => 1.0244440577896
403 => 1.012921433625
404 => 1.0231269148677
405 => 1.0292440382457
406 => 1.0583557128596
407 => 1.1023491965349
408 => 1.0540073994611
409 => 1.0329441862088
410 => 1.0460116852465
411 => 1.0808121571989
412 => 1.1335366536102
413 => 1.1023226905553
414 => 1.1161749173116
415 => 1.1192010126152
416 => 1.0961849918622
417 => 1.134385287125
418 => 1.154857135695
419 => 1.1758570162756
420 => 1.1940906241805
421 => 1.1674692021744
422 => 1.1959579397518
423 => 1.1730010462036
424 => 1.1524063394508
425 => 1.1524375731198
426 => 1.1395182127332
427 => 1.1144853240398
428 => 1.1098688752913
429 => 1.1338842246741
430 => 1.153142260617
501 => 1.1547284446971
502 => 1.1653906829087
503 => 1.1717004856525
504 => 1.2335451303031
505 => 1.2584195579873
506 => 1.2888355373107
507 => 1.3006842754079
508 => 1.3363447290726
509 => 1.3075460165379
510 => 1.3013152339286
511 => 1.2148146377836
512 => 1.2289791055565
513 => 1.2516577851287
514 => 1.2151886008567
515 => 1.2383199042282
516 => 1.2428865135017
517 => 1.2139493919302
518 => 1.2294059588608
519 => 1.1883578996459
520 => 1.1032439320544
521 => 1.1344800433021
522 => 1.1574803351417
523 => 1.124656082771
524 => 1.1834922846715
525 => 1.149121390147
526 => 1.1382274666766
527 => 1.0957263872545
528 => 1.1157852607252
529 => 1.1429151743096
530 => 1.1261520419054
531 => 1.1609380586412
601 => 1.2102043354308
602 => 1.2453144181286
603 => 1.2480097343145
604 => 1.2254363033327
605 => 1.2616103705428
606 => 1.2618738591303
607 => 1.2210693635419
608 => 1.1960768371944
609 => 1.1903984826235
610 => 1.2045841256486
611 => 1.2218081150951
612 => 1.248965545856
613 => 1.2653762124919
614 => 1.3081665275335
615 => 1.3197443598893
616 => 1.3324648874689
617 => 1.3494634351806
618 => 1.3698745500467
619 => 1.3252161927251
620 => 1.3269905525151
621 => 1.2854053085142
622 => 1.2409655113721
623 => 1.2746897779041
624 => 1.3187797702434
625 => 1.3086654772857
626 => 1.3075274127117
627 => 1.3094413216523
628 => 1.3018154750641
629 => 1.2673240535727
630 => 1.2500026776274
701 => 1.2723516717511
702 => 1.2842291674885
703 => 1.3026501275509
704 => 1.3003793554039
705 => 1.3478297702578
706 => 1.3662675666439
707 => 1.3615503893306
708 => 1.3624184634814
709 => 1.3957992131346
710 => 1.4329254720237
711 => 1.4676991127147
712 => 1.5030723535882
713 => 1.4604285310741
714 => 1.4387766279068
715 => 1.4611158651588
716 => 1.4492623514254
717 => 1.5173761573184
718 => 1.522092209454
719 => 1.5902010899435
720 => 1.6548445277828
721 => 1.6142431426834
722 => 1.6525284201055
723 => 1.693937069082
724 => 1.7738210712688
725 => 1.7469189496854
726 => 1.7263123461625
727 => 1.7068392054037
728 => 1.7473597200487
729 => 1.7994887148084
730 => 1.8107168009944
731 => 1.8289105900746
801 => 1.8097820454874
802 => 1.8328202705026
803 => 1.9141553283155
804 => 1.89217787773
805 => 1.8609663648472
806 => 1.9251725814884
807 => 1.9484085616956
808 => 2.1114908395664
809 => 2.3173889519712
810 => 2.2321457814357
811 => 2.1792325947044
812 => 2.1916684487038
813 => 2.2668554692631
814 => 2.29100315395
815 => 2.225361422765
816 => 2.2485471919346
817 => 2.3763030596342
818 => 2.444839983756
819 => 2.3517576350616
820 => 2.0949471267132
821 => 1.8581561096047
822 => 1.9209637501803
823 => 1.913843312887
824 => 2.0511010548611
825 => 1.891653722802
826 => 1.8943384069484
827 => 2.034434493668
828 => 1.9970592595862
829 => 1.9365161670319
830 => 1.8585981411813
831 => 1.7145594638514
901 => 1.5869803905246
902 => 1.8371923330243
903 => 1.8264027390828
904 => 1.8107778081273
905 => 1.8455494011747
906 => 2.0143903869237
907 => 2.0104980557173
908 => 1.9857370304666
909 => 2.0045180498856
910 => 1.9332237635229
911 => 1.9515979244593
912 => 1.8581186006978
913 => 1.9003751590794
914 => 1.9363862687466
915 => 1.9436160321659
916 => 1.9599050583104
917 => 1.8207171133586
918 => 1.8832084142986
919 => 1.9199161989578
920 => 1.7540690924269
921 => 1.9166379349008
922 => 1.8182941609022
923 => 1.7849148069332
924 => 1.829855709657
925 => 1.8123421961591
926 => 1.7972851056816
927 => 1.7888829904815
928 => 1.8218826294954
929 => 1.8203431568923
930 => 1.7663493425116
1001 => 1.6959166127214
1002 => 1.7195561487145
1003 => 1.7109676836664
1004 => 1.6798419783979
1005 => 1.7008169456169
1006 => 1.6084538051725
1007 => 1.4495478226562
1008 => 1.5545259821283
1009 => 1.5504844371829
1010 => 1.548446506952
1011 => 1.6273346924121
1012 => 1.6197514136402
1013 => 1.6059876884135
1014 => 1.6795891967905
1015 => 1.6527236561529
1016 => 1.7355169220804
1017 => 1.790049921753
1018 => 1.7762185890783
1019 => 1.8275071388513
1020 => 1.7201007558787
1021 => 1.755776847906
1022 => 1.7631296410279
1023 => 1.678680965602
1024 => 1.6209921318313
1025 => 1.6171449443196
1026 => 1.5171204565722
1027 => 1.5705527305574
1028 => 1.6175709204867
1029 => 1.5950528562695
1030 => 1.5879243098464
1031 => 1.624342507529
1101 => 1.6271725133897
1102 => 1.5626480798549
1103 => 1.5760647528099
1104 => 1.6320145093683
1105 => 1.5746549624969
1106 => 1.4632147325544
1107 => 1.435576014747
1108 => 1.4318885003088
1109 => 1.3569301055606
1110 => 1.4374229660305
1111 => 1.4022856753609
1112 => 1.5132839555769
1113 => 1.4498823332132
1114 => 1.4471492159923
1115 => 1.4430177084519
1116 => 1.3784979215998
1117 => 1.3926236544741
1118 => 1.4395797419579
1119 => 1.4563342029703
1120 => 1.4545865754214
1121 => 1.4393496315124
1122 => 1.4463250264082
1123 => 1.4238548490602
1124 => 1.4159201617623
1125 => 1.3908761060425
1126 => 1.3540682627314
1127 => 1.3591866190994
1128 => 1.286260650204
1129 => 1.2465267118757
1130 => 1.2355288814313
1201 => 1.2208221229301
1202 => 1.2371900489372
1203 => 1.2860540600968
1204 => 1.2271136955601
1205 => 1.1260645747477
1206 => 1.1321377990878
1207 => 1.1457825310237
1208 => 1.1203556633302
1209 => 1.0962912669736
1210 => 1.1172133071995
1211 => 1.0743974626042
1212 => 1.1509566212879
1213 => 1.1488859106
1214 => 1.1774224305707
1215 => 1.1952669021367
1216 => 1.1541411723933
1217 => 1.1437981625787
1218 => 1.1496900110327
1219 => 1.0523108803425
1220 => 1.1694644780721
1221 => 1.1704776272501
1222 => 1.1618024288868
1223 => 1.2241831029662
1224 => 1.355825782294
1225 => 1.3062965110164
1226 => 1.2871172801476
1227 => 1.2506575482459
1228 => 1.2992379762402
1229 => 1.2955077573429
1230 => 1.2786382928462
1231 => 1.2684355880826
]
'min_raw' => 0.9528250536517
'max_raw' => 2.444839983756
'avg_raw' => 1.6988325187039
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$0.952825'
'max' => '$2.44'
'avg' => '$1.69'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 0.58592621762595
'max_diff' => 1.4210784555732
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.029908089665325
]
1 => [
'year' => 2028
'avg' => 0.051330964246165
]
2 => [
'year' => 2029
'avg' => 0.14022694281434
]
3 => [
'year' => 2030
'avg' => 0.10818487754904
]
4 => [
'year' => 2031
'avg' => 0.10625095695743
]
5 => [
'year' => 2032
'avg' => 0.18629136595315
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.029908089665325
'min' => '$0.029908'
'max_raw' => 0.18629136595315
'max' => '$0.186291'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.18629136595315
]
1 => [
'year' => 2033
'avg' => 0.47916054934675
]
2 => [
'year' => 2034
'avg' => 0.30371498355444
]
3 => [
'year' => 2035
'avg' => 0.35823251958689
]
4 => [
'year' => 2036
'avg' => 0.69533018210431
]
5 => [
'year' => 2037
'avg' => 1.6988325187039
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.18629136595315
'min' => '$0.186291'
'max_raw' => 1.6988325187039
'max' => '$1.69'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 1.6988325187039
]
]
]
]
'prediction_2025_max_price' => '$0.051137'
'last_price' => 0.04958415
'sma_50day_nextmonth' => '$0.044617'
'sma_200day_nextmonth' => '$0.073985'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'increase'
'sma_200day_direction_label' => 'aumentar'
'sma_200day_date_nextmonth' => '4 de fev. de 2026'
'sma_50day_date_nextmonth' => '4 de fev. de 2026'
'daily_sma3' => '$0.047007'
'daily_sma3_action' => 'BUY'
'daily_sma5' => '$0.045976'
'daily_sma5_action' => 'BUY'
'daily_sma10' => '$0.0443072'
'daily_sma10_action' => 'BUY'
'daily_sma21' => '$0.043155'
'daily_sma21_action' => 'BUY'
'daily_sma50' => '$0.050476'
'daily_sma50_action' => 'SELL'
'daily_sma100' => '$0.060445'
'daily_sma100_action' => 'SELL'
'daily_sma200' => '$0.081676'
'daily_sma200_action' => 'SELL'
'daily_ema3' => '$0.047528'
'daily_ema3_action' => 'BUY'
'daily_ema5' => '$0.046422'
'daily_ema5_action' => 'BUY'
'daily_ema10' => '$0.04508'
'daily_ema10_action' => 'BUY'
'daily_ema21' => '$0.045181'
'daily_ema21_action' => 'BUY'
'daily_ema50' => '$0.050174'
'daily_ema50_action' => 'SELL'
'daily_ema100' => '$0.060696'
'daily_ema100_action' => 'SELL'
'daily_ema200' => '$0.08236'
'daily_ema200_action' => 'SELL'
'weekly_sma21' => '$0.070913'
'weekly_sma21_action' => 'SELL'
'weekly_sma50' => '$0.101289'
'weekly_sma50_action' => 'SELL'
'weekly_sma100' => '$0.233504'
'weekly_sma100_action' => 'SELL'
'weekly_sma200' => '$0.347589'
'weekly_sma200_action' => 'SELL'
'weekly_ema3' => '$0.047536'
'weekly_ema3_action' => 'BUY'
'weekly_ema5' => '$0.048273'
'weekly_ema5_action' => 'BUY'
'weekly_ema10' => '$0.053592'
'weekly_ema10_action' => 'SELL'
'weekly_ema21' => '$0.068264'
'weekly_ema21_action' => 'SELL'
'weekly_ema50' => '$0.115686'
'weekly_ema50_action' => 'SELL'
'weekly_ema100' => '$0.235598'
'weekly_ema100_action' => 'SELL'
'weekly_ema200' => '$0.502535'
'weekly_ema200_action' => 'SELL'
'rsi_14' => '60.85'
'rsi_14_action' => 'NEUTRAL'
'stoch_rsi_14' => 114.7
'stoch_rsi_14_action' => 'SELL'
'momentum_10' => 0.01
'momentum_10_action' => 'BUY'
'vwma_10' => '0.045054'
'vwma_10_action' => 'BUY'
'hma_9' => '0.047764'
'hma_9_action' => 'BUY'
'stochastic_fast_14' => 100
'stochastic_fast_14_action' => 'SELL'
'cci_20' => 283.57
'cci_20_action' => 'SELL'
'adx_14' => 23.33
'adx_14_action' => 'NEUTRAL'
'ao_5_34' => '-0.0000013'
'ao_5_34_action' => 'NEUTRAL'
'macd_12_26' => 0
'macd_12_26_action' => 'BUY'
'williams_percent_r_14' => -0
'williams_percent_r_14_action' => 'SELL'
'ultimate_oscillator' => 81.57
'ultimate_oscillator_action' => 'SELL'
'ichimoku_cloud' => '-0.002953'
'ichimoku_cloud_action' => 'SELL'
'sell_signals' => 16
'buy_signals' => 18
'sell_pct' => 47.06
'buy_pct' => 52.94
'overall_action' => 'bullish'
'overall_action_label' => 'Altista'
'overall_action_dir' => 1
'last_updated' => 1767711701
'last_updated_date' => '6 de janeiro de 2026'
]
Previsão de preço de Biconomy para 2026
A previsão de preço para Biconomy em 2026 sugere que o preço médio poderia variar entre $0.017131 na extremidade inferior e $0.051137 na extremidade superior. No mercado de criptomoedas, comparado ao preço médio de hoje, Biconomy poderia potencialmente ganhar 3.13% até 2026 se BICO atingir a meta de preço prevista.
Previsão de preço de Biconomy 2027-2032
A previsão de preço de BICO para 2027-2032 está atualmente dentro de uma faixa de preço entre $0.029908 na extremidade inferior e $0.186291 na extremidade superior. Considerando a volatilidade de preços no mercado, se Biconomy atingir a meta de preço superior, poderia ganhar 275.71% até 2032 em comparação com o preço de hoje.
| Previsão de Preço de Biconomy | Potencial Mínimo ($) | Preço Médio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2027 | $0.016491 | $0.029908 | $0.043324 |
| 2028 | $0.029763 | $0.05133 | $0.072898 |
| 2029 | $0.06538 | $0.140226 | $0.215073 |
| 2030 | $0.0556035 | $0.108184 | $0.160766 |
| 2031 | $0.06574 | $0.10625 | $0.146761 |
| 2032 | $0.100348 | $0.186291 | $0.272234 |
Previsão de preço de Biconomy 2032-2037
A previsão de preço de Biconomy para 2032-2037 é atualmente estimada entre $0.186291 na extremidade inferior e $1.69 na extremidade superior. Comparado ao preço atual, Biconomy poderia potencialmente ganhar 3326.16% até 2037 se atingir a meta de preço superior. Por favor, note que esta informação é apenas para fins gerais e não deve ser considerada como aconselhamento de investimento a longo prazo.
| Previsão de Preço de Biconomy | Potencial Mínimo ($) | Preço Médio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2032 | $0.100348 | $0.186291 | $0.272234 |
| 2033 | $0.233187 | $0.47916 | $0.725134 |
| 2034 | $0.187471 | $0.303714 | $0.419958 |
| 2035 | $0.221649 | $0.358232 | $0.494815 |
| 2036 | $0.366898 | $0.69533 | $1.02 |
| 2037 | $0.952825 | $1.69 | $2.44 |
Biconomy Histograma de preços potenciais
Previsão de preço de Biconomy baseada na análise técnica
Em 6 de janeiro de 2026, o sentimento geral de previsão de preço para Biconomy é Altista, com 18 indicadores técnicos mostrando sinais de alta e 16 indicando sinais de baixa. A previsão de preço de BICO foi atualizada pela última vez em 6 de janeiro de 2026.
Médias Móveis Simples de 50 e 200 dias e Índice de Força Relativa de 14 dias - RSI (14) de Biconomy
De acordo com nossos indicadores técnicos, o SMA de 200 dias de Biconomy está projetado para aumentar no próximo mês, alcançando $0.073985 até 4 de fev. de 2026. O SMA de 50 dias de curto prazo para Biconomy é esperado para alcançar $0.044617 até 4 de fev. de 2026.
O oscilador de momentum Índice de Força Relativa (RSI) é uma ferramenta comumente usada para identificar se uma criptomoeda está sobrevendida (abaixo de 30) ou sobrecomprada (acima de 70). No momento, o RSI está em 60.85, sugerindo que o mercado de BICO está em um estado NEUTRAL.
Médias Móveis e Osciladores Populares de BICO para Sábado, 19 de Outubro de 2024
Médias móveis (MA) são indicadores amplamente utilizados nos mercados financeiros, projetados para suavizar movimentos de preços ao longo de um período definido. Como indicadores atrasados, eles se baseiam em dados históricos de preços. A tabela abaixo destaca dois tipos: a média móvel simples (SMA) e a média móvel exponencial (EMA).
Média Móvel Simples Diária (SMA)
| Período | Valor | Ação |
|---|---|---|
| SMA 3 | $0.047007 | BUY |
| SMA 5 | $0.045976 | BUY |
| SMA 10 | $0.0443072 | BUY |
| SMA 21 | $0.043155 | BUY |
| SMA 50 | $0.050476 | SELL |
| SMA 100 | $0.060445 | SELL |
| SMA 200 | $0.081676 | SELL |
Média Móvel Exponencial Diária (EMA)
| Período | Valor | Ação |
|---|---|---|
| EMA 3 | $0.047528 | BUY |
| EMA 5 | $0.046422 | BUY |
| EMA 10 | $0.04508 | BUY |
| EMA 21 | $0.045181 | BUY |
| EMA 50 | $0.050174 | SELL |
| EMA 100 | $0.060696 | SELL |
| EMA 200 | $0.08236 | SELL |
Média Móvel Simples Semanal (SMA)
| Período | Valor | Ação |
|---|---|---|
| SMA 21 | $0.070913 | SELL |
| SMA 50 | $0.101289 | SELL |
| SMA 100 | $0.233504 | SELL |
| SMA 200 | $0.347589 | SELL |
Média Móvel Exponencial Semanal (EMA)
| Período | Valor | Ação |
|---|---|---|
| EMA 21 | $0.068264 | SELL |
| EMA 50 | $0.115686 | SELL |
| EMA 100 | $0.235598 | SELL |
| EMA 200 | $0.502535 | SELL |
Osciladores de Biconomy
Um oscilador é uma ferramenta de análise técnica que define limites altos e baixos entre dois extremos, criando um indicador de tendência que flutua dentro desses limites. Os traders usam esse indicador para identificar condições de sobrecompra ou sobrevenda de curto prazo.
| Período | Valor | Ação |
|---|---|---|
| RSI (14) | 60.85 | NEUTRAL |
| Stoch RSI (14) | 114.7 | SELL |
| Estocástico Rápido (14) | 100 | SELL |
| Índice de Canal de Commodities (20) | 283.57 | SELL |
| Índice Direcional Médio (14) | 23.33 | NEUTRAL |
| Oscilador Impressionante (5, 34) | -0.0000013 | NEUTRAL |
| Momentum (10) | 0.01 | BUY |
| MACD (12, 26) | 0 | BUY |
| Williams Percent Range (14) | -0 | SELL |
| Oscilador Ultimate (7, 14, 28) | 81.57 | SELL |
| VWMA (10) | 0.045054 | BUY |
| Média Móvel de Hull (9) | 0.047764 | BUY |
| Nuvem Ichimoku B/L (9, 26, 52, 26) | -0.002953 | SELL |
Previsão do preço de Biconomy com base nos fluxos financeiros mundiais
Definições dos fluxos financeiros mundiais, usadas na previsão do preço do Biconomy
M0: o total de todas as moedas físicas, mais as contas no Banco Central que podem ser trocadas por moedas físicas.
M1: o valor de M0, mais o valor em contas de demanda, incluindo contas 'correntes'.
M2: o valor de M1, mais a maioria das contas de poupança, do mercado de moedas e de certificados de depósito (CD) de menos de US$ 100.000.
Previsões de preço de Biconomy por empresas de Internet ou nichos tecnológicos
| Comparação | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Facebook stock | $0.069674 | $0.0979036 | $0.13757 | $0.19331 | $0.271633 | $0.381689 |
| Amazon.com stock | $0.10346 | $0.215876 | $0.450438 | $0.939865 | $1.96 | $4.09 |
| Apple stock | $0.070331 | $0.099759 | $0.1415014 | $0.2007089 | $0.28469 | $0.403811 |
| Netflix stock | $0.078236 | $0.123444 | $0.194775 | $0.307325 | $0.484911 | $0.765113 |
| Google stock | $0.064211 | $0.083153 | $0.107683 | $0.139449 | $0.180586 | $0.233858 |
| Tesla stock | $0.1124035 | $0.25481 | $0.577635 | $1.30 | $2.96 | $6.72 |
| Kodak stock | $0.037182 | $0.027883 | $0.0209094 | $0.015679 | $0.011758 | $0.008817 |
| Nokia stock | $0.032847 | $0.02176 | $0.014415 | $0.009549 | $0.006326 | $0.00419 |
Este cálculo mostra quanto a criptomoeda pode custar, se assumirmos que sua capitalização se comportará da mesma forma que a de algumas empresas de Internet ou nichos tecnológicos. Se você extrapolar os dados, poderá obter uma imagem em potencial do preço futuro para 2024, 2025, 2026, 2027, 2028, 2029 e 2030.
Visão geral da previsão para Biconomy
Você pode fazer perguntas como: 'Devo investir em Biconomy agora?', 'Devo comprar BICO hoje?', 'Biconomy será um bom ou mau investimento no curto ou no longo prazo?'.
Atualizamos a previsão para Biconomy regularmente com novos valores. Veja nossas previsões semelhantes. Fazemos previsões de preços futuros para uma enorme quantidade de moedas digitais, como Biconomy, com métodos de análise técnica.
Se você estiver tentando encontrar criptomoedas com bom retorno, você deve explorar o máximo de fontes de informações disponíveis sobre Biconomy para poder tomar sozinho uma decisão de tão grande responsabilidade sobre o seu investimento.
O preço de Biconomy é de $0.04958 USD hoje, mas o preço pode tanto subir quanto descer e seu investimento pode ser perdido, porque criptomoedas são ativos de alto risco
Previsão de curto prazo para Biconomy
com base no histórico de preços de 4 horas
Previsão de longo prazo para Biconomy
com base no histórico de preços de 1 mês
Previsão do preço de Biconomy com base no padrão de crescimento do Bitcoin
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| Se Biconomy tiver 1% da média anterior do crescimento anual do Bitcoin | $0.050873 | $0.052195 | $0.053552 | $0.054944 |
| Se Biconomy tiver 2% da média anterior do crescimento anual do Bitcoin | $0.052161 | $0.054873 | $0.057726 | $0.060727 |
| Se Biconomy tiver 5% da média anterior do crescimento anual do Bitcoin | $0.056028 | $0.06331 | $0.071538 | $0.080835 |
| Se Biconomy tiver 10% da média anterior do crescimento anual do Bitcoin | $0.062472 | $0.078711 | $0.09917 | $0.124948 |
| Se Biconomy tiver 20% da média anterior do crescimento anual do Bitcoin | $0.075361 | $0.114538 | $0.174083 | $0.264583 |
| Se Biconomy tiver 50% da média anterior do crescimento anual do Bitcoin | $0.114026 | $0.262222 | $0.603023 | $1.38 |
| Se Biconomy tiver 100% da média anterior do crescimento anual do Bitcoin | $0.178469 | $0.642368 | $2.31 | $8.32 |
Perguntas Frequentes sobre Biconomy
BICO é um bom investimento?
A decisão de adquirir Biconomy depende inteiramente da sua tolerância individual ao risco. Como você pode perceber, o valor de Biconomy experimentou uma queda de -2.2386% nas últimas 24 horas, e Biconomy registrou um declínio de -75.85% durante os últimos 30 dias. Consequentemente, a decisão de investir ou não em Biconomy dependerá de quão alinhado esse investimento está com suas aspirações de negociação.
Biconomy pode subir?
Parece que o valor médio de Biconomy pode potencialmente subir para $0.051137 até o final deste ano. Observando as perspectivas de Biconomy em um horizonte de cinco anos mais longo, a moeda digital poderia potencialmente crescer até $0.160766. No entanto, dada a imprevisibilidade do mercado, é vital conduzir uma pesquisa aprofundada antes de investir quaisquer fundos em um projeto, rede ou ativo específico.
Qual será o preço de Biconomy na próxima semana?
Com base na nossa nova previsão experimental de Biconomy, o preço de Biconomy aumentará 0.86% na próxima semana e atingirá $0.05000847 até 13 de janeiro de 2026.
Qual será o preço de Biconomy no próximo mês?
Com base na nossa nova previsão experimental de Biconomy, o preço de Biconomy diminuirá -11.62% no próximo mês e atingirá $0.043823 até 5 de fevereiro de 2026.
Até onde o preço de Biconomy pode subir este ano em 2026?
De acordo com nossa previsão mais recente sobre o valor de Biconomy em 2026, espera-se que BICO fluctue dentro do intervalo de $0.017131 e $0.051137. No entanto, é crucial lembrar que o mercado de criptomoedas é excepcionalmente instável, e essa previsão de preço de Biconomy não considera flutuações repentinas e extremas de preço.
Onde estará Biconomy em 5 anos?
O futuro de Biconomy parece seguir uma tendência de alta, com um preço máximo de $0.160766 projetada após um período de cinco anos. Com base na previsão de Biconomy para 2030, o valor de Biconomy pode potencialmente atingir seu pico mais alto de aproximadamente $0.160766, enquanto seu pico mais baixo está previsto para cerca de $0.0556035.
Quanto será Biconomy em 2026?
Com base na nossa nova simulação experimental de previsão de preços de Biconomy, espera-se que o valor de BICO em 2026 aumente 3.13% para $0.051137 se o melhor cenário ocorrer. O preço ficará entre $0.051137 e $0.017131 durante 2026.
Quanto será Biconomy em 2027?
De acordo com nossa última simulação experimental para previsão de preços de Biconomy, o valor de BICO pode diminuir -12.62% para $0.043324 em 2027, assumindo as condições mais favoráveis. O preço está projetado para flutuar entre $0.043324 e $0.016491 ao longo do ano.
Quanto será Biconomy em 2028?
Nosso novo modelo experimental de previsão de preços de Biconomy sugere que o valor de BICO em 2028 pode aumentar 47.02%, alcançando $0.072898 no melhor cenário. O preço é esperado para variar entre $0.072898 e $0.029763 durante o ano.
Quanto será Biconomy em 2029?
Com base no nosso modelo de previsão experimental, o valor de Biconomy pode experimentar um 333.75% crescimento em 2029, potencialmente alcançando $0.215073 sob condições ótimas. A faixa de preço prevista para 2029 está entre $0.215073 e $0.06538.
Quanto será Biconomy em 2030?
Usando nossa nova simulação experimental para previsões de preços de Biconomy, espera-se que o valor de BICO em 2030 aumente 224.23%, alcançando $0.160766 no melhor cenário. O preço está previsto para variar entre $0.160766 e $0.0556035 ao longo de 2030.
Quanto será Biconomy em 2031?
Nossa simulação experimental indica que o preço de Biconomy poderia aumentar 195.98% em 2031, potencialmente atingindo $0.146761 sob condições ideais. O preço provavelmente oscilará entre $0.146761 e $0.06574 durante o ano.
Quanto será Biconomy em 2032?
Com base nos achados da nossa mais recente previsão experimental de preços de Biconomy, BICO poderia ver um 449.04% aumento em valor, atingindo $0.272234 se o cenário mais positivo se desenrolar em 2032. O preço é esperado para permanecer dentro de uma faixa de $0.272234 e $0.100348 ao longo do ano.
Quanto será Biconomy em 2033?
De acordo com nossa previsão experimental de preços de Biconomy, espera-se que o valor de BICO seja aumentar 1362.43% em 2033, com o preço potencial mais alto sendo $0.725134. Ao longo do ano, o preço de BICO poderia variar entre $0.725134 e $0.233187.
Quanto será Biconomy em 2034?
Os resultados da nossa nova simulação de previsão de preços de Biconomy sugerem que BICO pode aumentar 746.96% em 2034, atingindo potencialmente $0.419958 nas melhores circunstâncias. A faixa de preço prevista para o ano é entre $0.419958 e $0.187471.
Quanto será Biconomy em 2035?
Com base em nossa previsão experimental para o preço de Biconomy, BICO poderia aumentar 897.93%, com o valor potencialmente atingindo $0.494815 em 2035. A faixa de preço esperada para o ano está entre $0.494815 e $0.221649.
Quanto será Biconomy em 2036?
Nossa recente simulação de previsão de preços de Biconomy sugere que o valor de BICO pode aumentar 1964.7% em 2036, possivelmente atingindo $1.02 se as condições forem ideais. A faixa de preço esperada para 2036 está entre $1.02 e $0.366898.
Quanto será Biconomy em 2037?
De acordo com a simulação experimental, o valor de Biconomy poderia aumentar 4830.69% em 2037, com um pico de $2.44 sob condições favoráveis. O preço é esperado para cair entre $2.44 e $0.952825 ao longo do ano.
Previsões relacionadas
Previsão de Preço do Celo
Previsão de Preço do Fasttoken
Previsão de Preço do Rocket Pool
Previsão de Preço do BitClout
Previsão de Preço do EthereumPoW
Previsão de Preço do 0x
Previsão de Preço do Wootrade Network
Previsão de Preço do MX Token
Previsão de Preço do Ravencoin
Previsão de Preço do Holo
Previsão de Preço do Siacoin
Previsão de Preço do Frax Share
Previsão de Preço do Saga
Previsão de Preço do Golem
Previsão de Preço do APENFT
Previsão de Preço do Qtum
Previsão de Preço do Jeo Boden
Previsão de Preço do Polymesh
Previsão de Preço do Trust Wallet Token
Previsão de Preço do AMP Token
Previsão de Preço do Raydium
Previsão de Preço do TON Crystal
Previsão de Preço do SuperFarm
Previsão de Preço do Livepeer
Previsão de Preço do Pixels
Como ler e prever os movimentos de preço de Biconomy?
Traders de Biconomy utilizam indicadores e padrões de gráfico para prever a direção do mercado. Eles também identificam níveis-chave de suporte e resistência para avaliar quando uma tendência de baixa pode desacelerar ou uma tendência de alta pode estagnar.
Indicadores de Previsão de Preço de Biconomy
Médias móveis são ferramentas populares para a previsão de preço de Biconomy. Uma média móvel simples (SMA) calcula o preço médio de fechamento de BICO em um período específico, como uma SMA de 12 dias. Uma média móvel exponencial (EMA) dá mais peso aos preços recentes, reagindo mais rapidamente às mudanças de preço.
Médias móveis comumente usadas no mercado de criptomoedas incluem as de 50 dias, 100 dias e 200 dias, que ajudam a identificar níveis-chave de resistência e suporte. Um movimento de preço de BICO acima dessas médias é visto como altista, enquanto uma queda abaixo indica fraqueza.
Traders também usam RSI e níveis de retração de Fibonacci para avaliar a direção futura de BICO.
Como ler gráficos de Biconomy e prever movimentos de preço?
A maioria dos traders prefere gráficos de velas em vez de gráficos de linha simples porque eles fornecem informações mais detalhadas. Velas podem representar a ação de preço de Biconomy em diferentes períodos de tempo, como 5 minutos para tendências de curto prazo e semanal para tendências de longo prazo. Opções populares incluem gráficos de 1 hora, 4 horas e 1 dia.
Por exemplo, um gráfico de velas de 1 hora mostra os preços de abertura, fechamento, máximo e mínimo de BICO dentro de cada hora. A cor da vela é crucial: verde indica que o preço fechou mais alto do que abriu, enquanto vermelho significa o oposto. Alguns gráficos usam velas vazias e preenchidas para transmitir a mesma informação.
O que afeta o preço de Biconomy?
A ação de preço de Biconomy é impulsionada pela oferta e demanda, influenciada por fatores como reduções pela metade das recompensas de bloco, hard forks e atualizações de protocolo. Eventos do mundo real, como regulamentações, adoção por empresas e governos e hacks de exchanges de criptomoedas, também impactam o preço de BICO. A capitalização de mercado de Biconomy pode mudar rapidamente.
Traders frequentemente monitoram a atividade de "baleias" de BICO, grandes detentores de Biconomy, pois suas ações podem influenciar significativamente os movimentos de preço no relativamente pequeno mercado de Biconomy.
Padrões de previsão de preço altistas e baixistas
Traders frequentemente identificam padrões de velas para ganhar vantagem em previsões de preço de criptomoedas. Certas formações indicam tendências altistas, enquanto outras sugerem movimentos baixistas.
Padrões de velas altistas comumente seguidos:
- Martelo
- Engolfo de Alta
- Linha de Perfuração
- Estrela da Manhã
- Três Soldados Brancos
Padrões de velas baixistas comuns:
- Harami de Baixa
- Nuvem Negra
- Estrela da Noite
- Estrela Cadente
- Homem Enforcado


