Previsão de Preço Biconomy - Projeção BICO
Previsão de Preço Biconomy até $0.051048 até 2026
| Ano | Preço Mínimo | Preço Máximo |
|---|---|---|
| 2026 | $0.0171015 | $0.051048 |
| 2027 | $0.016463 | $0.043249 |
| 2028 | $0.029711 | $0.072772 |
| 2029 | $0.065267 | $0.214699 |
| 2030 | $0.055507 | $0.160487 |
| 2031 | $0.065626 | $0.1465065 |
| 2032 | $0.100173 | $0.271762 |
| 2033 | $0.232782 | $0.723875 |
| 2034 | $0.187145 | $0.419229 |
| 2035 | $0.221264 | $0.493957 |
Calculadora de lucro do investimento
Se você abrir um short de $10,000.00 em Biconomy hoje e fechar em Apr 06, 2026, nossa previsão mostra que pode lucrar cerca de $3,954.51, com um retorno de 39.55% nos próximos 90 dias.
Previsão de preço de longo prazo de Biconomy para os anos 2027, 2028, 2029, 2030, 2031, 2032 e 2037
[
'name' => 'Biconomy'
'name_with_ticker' => 'Biconomy <small>BICO</small>'
'name_lang' => 'Biconomy'
'name_lang_with_ticker' => 'Biconomy <small>BICO</small>'
'name_with_lang' => 'Biconomy'
'name_with_lang_with_ticker' => 'Biconomy <small>BICO</small>'
'image' => '/uploads/coins/biconomy.jpg?1717107179'
'price_for_sd' => 0.04949
'ticker' => 'BICO'
'marketcap' => '$58.6M'
'low24h' => '$0.04795'
'high24h' => '$0.05115'
'volume24h' => '$22.85M'
'current_supply' => '1000M'
'max_supply' => '1B'
'algo' => null
'proof' => null
'ico_price_and_roi' => '—'
'price' => '$0.04949'
'change_24h_pct' => '2.2586%'
'ath_price' => '$21.45'
'ath_days' => 1496
'ath_exchange' => null
'ath_pair' => null
'ath_date' => '2 de dez. de 2021'
'ath_pct' => '-99.77%'
'fdv' => '$58.6M'
'new_prediction' => true
'change_24h_pct_is_increased' => true
'change_30d_pct' => '-75.89%'
'change_30d_pct_is_increased' => false
'max_price' => '$2.44'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.049921'
'next_week_prediction_price_date' => '13 de janeiro de 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.043747'
'next_month_prediction_price_date' => '5 de fevereiro de 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.0171015'
'current_year_max_price_prediction' => '$0.051048'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.055507'
'grand_prediction_max_price' => '$0.160487'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.050436052769505
107 => 0.050624362682259
108 => 0.051048634531037
109 => 0.047423278035914
110 => 0.049050956667349
111 => 0.050007065370455
112 => 0.045687331466292
113 => 0.049921678120173
114 => 0.047360168645024
115 => 0.046490753856577
116 => 0.047661306332532
117 => 0.047205140894253
118 => 0.046812956637353
119 => 0.046594111083423
120 => 0.047453635632602
121 => 0.047413537785029
122 => 0.046007188796046
123 => 0.044172663870036
124 => 0.044788390651433
125 => 0.044564691339282
126 => 0.043753976174262
127 => 0.044300300309363
128 => 0.041894565306694
129 => 0.037755623273827
130 => 0.040489935159962
131 => 0.040384667126705
201 => 0.040331586210811
202 => 0.042386346022412
203 => 0.042188828277901
204 => 0.041830331637514
205 => 0.043747392102324
206 => 0.043047639244567
207 => 0.045204112669667
208 => 0.046624505539395
209 => 0.046264247962736
210 => 0.047600134322069
211 => 0.044802575752883
212 => 0.045731812490998
213 => 0.045923326894857
214 => 0.043723735873766
215 => 0.042221144623646
216 => 0.042120938918058
217 => 0.039515652760179
218 => 0.040907375596583
219 => 0.042132034099214
220 => 0.041545517713793
221 => 0.041359844147847
222 => 0.042308410128581
223 => 0.042382121829202
224 => 0.040701487243422
225 => 0.041050944392581
226 => 0.042508238796993
227 => 0.041014224312622
228 => 0.03811159821537
301 => 0.037391706811306
302 => 0.037295660027773
303 => 0.035343257444645
304 => 0.037439813397221
305 => 0.036524610539715
306 => 0.039415725400762
307 => 0.037764336097492
308 => 0.037693148005218
309 => 0.037585536762723
310 => 0.035905023206689
311 => 0.036272948873253
312 => 0.037495989825571
313 => 0.0379323846159
314 => 0.037886865063992
315 => 0.037489996257677
316 => 0.03767168076491
317 => 0.037086411664031
318 => 0.036879740963188
319 => 0.036227431382072
320 => 0.035268716502952
321 => 0.035402031687034
322 => 0.033502566650104
323 => 0.032467637285744
324 => 0.032181182477839
325 => 0.031798123136939
326 => 0.032224450049676
327 => 0.033497185704309
328 => 0.03196199647889
329 => 0.029330022232912
330 => 0.029488208369761
331 => 0.029843605653376
401 => 0.029181325166549
402 => 0.028554532266755
403 => 0.02909947783981
404 => 0.027984275655086
405 => 0.029978372509458
406 => 0.029924437777939
407 => 0.030667713771127
408 => 0.031132499503226
409 => 0.030061318866906
410 => 0.029791919833651
411 => 0.029945381766496
412 => 0.027408997857248
413 => 0.030460437093619
414 => 0.030486826066849
415 => 0.030260867656844
416 => 0.031885664847596
417 => 0.035314493707033
418 => 0.034024430365791
419 => 0.033524878847692
420 => 0.032575231046614
421 => 0.033840580357043
422 => 0.033743421272526
423 => 0.033304031045853
424 => 0.03303828646578
425 => 0.033527929002738
426 => 0.032977614336817
427 => 0.032878762701182
428 => 0.032279829340873
429 => 0.032066037380974
430 => 0.031907754325169
501 => 0.031733500233298
502 => 0.03211786133855
503 => 0.031246848507135
504 => 0.03019649241889
505 => 0.030109166675162
506 => 0.030350280731351
507 => 0.030243605710318
508 => 0.030108655956202
509 => 0.029851000124217
510 => 0.029774559142813
511 => 0.030022955248485
512 => 0.029742530527574
513 => 0.030156312478803
514 => 0.030043786683668
515 => 0.029415226739225
516 => 0.028631808325752
517 => 0.028624834258597
518 => 0.028456048046478
519 => 0.028241073428167
520 => 0.028181272407306
521 => 0.029053584043624
522 => 0.030859243024712
523 => 0.030504748960967
524 => 0.030760907252036
525 => 0.032020952514914
526 => 0.0324214830131
527 => 0.032137195952573
528 => 0.03174804629006
529 => 0.031765166900243
530 => 0.033095009100662
531 => 0.033177949727485
601 => 0.033387513933805
602 => 0.033656863161764
603 => 0.032183067290793
604 => 0.031695751247256
605 => 0.031464833870564
606 => 0.030753697726622
607 => 0.031520597089658
608 => 0.031073757672722
609 => 0.031134051576275
610 => 0.031094785092488
611 => 0.031116227247824
612 => 0.029977815118748
613 => 0.030392592665403
614 => 0.02970294454666
615 => 0.028779583132299
616 => 0.028776487701065
617 => 0.029002479099105
618 => 0.028868050572507
619 => 0.028506306863904
620 => 0.028557690850329
621 => 0.028107513060476
622 => 0.028612350584749
623 => 0.02862682751855
624 => 0.028432437573019
625 => 0.029210209433316
626 => 0.029528863199081
627 => 0.029400911572696
628 => 0.029519885771881
629 => 0.03051947978976
630 => 0.030682457230019
701 => 0.030754841043297
702 => 0.030657856322523
703 => 0.029538156515547
704 => 0.029587819963317
705 => 0.029223422535792
706 => 0.028915545108788
707 => 0.028927858591264
708 => 0.029086147610008
709 => 0.029777405038391
710 => 0.031232115544573
711 => 0.031287320744903
712 => 0.031354231058152
713 => 0.031082073187738
714 => 0.030999987769821
715 => 0.031108279624098
716 => 0.031654592405175
717 => 0.033059857200578
718 => 0.032563142767403
719 => 0.03215930620141
720 => 0.032513579743342
721 => 0.03245904210845
722 => 0.03199868958522
723 => 0.031985769023145
724 => 0.031102205347463
725 => 0.030775571974335
726 => 0.030502612679665
727 => 0.030204548255668
728 => 0.030027845673912
729 => 0.030299341149376
730 => 0.030361435376854
731 => 0.029767805774825
801 => 0.029686896253605
802 => 0.030171667001007
803 => 0.029958337469151
804 => 0.030177752182983
805 => 0.030228658278697
806 => 0.03022046122482
807 => 0.029997720692821
808 => 0.030139688865699
809 => 0.029803891814093
810 => 0.029438762955559
811 => 0.029205833492145
812 => 0.029002571641707
813 => 0.029115353129978
814 => 0.028713307717378
815 => 0.028584685298312
816 => 0.030091593243113
817 => 0.031204762343928
818 => 0.031188576424338
819 => 0.03109004880152
820 => 0.03094365673961
821 => 0.031643882914026
822 => 0.031399938116324
823 => 0.031577428338922
824 => 0.031622607049815
825 => 0.031759349400729
826 => 0.031808223037779
827 => 0.031660492961691
828 => 0.031164692782632
829 => 0.029929205875683
830 => 0.029354083385365
831 => 0.029164283384137
901 => 0.0291711822537
902 => 0.02898088063324
903 => 0.029036932989186
904 => 0.028961387911323
905 => 0.028818323810168
906 => 0.029106519324876
907 => 0.029139731173219
908 => 0.029072462896406
909 => 0.029088307010743
910 => 0.028531354409391
911 => 0.028573698306034
912 => 0.028337922108722
913 => 0.02829371691405
914 => 0.027697695218626
915 => 0.026641756390457
916 => 0.027226849003725
917 => 0.026520139403369
918 => 0.026252497769316
919 => 0.027519471638108
920 => 0.027392302602066
921 => 0.027174644491414
922 => 0.026852682781834
923 => 0.026733264051909
924 => 0.026007713652258
925 => 0.025964844263986
926 => 0.026324446633562
927 => 0.026158502513164
928 => 0.025925454120174
929 => 0.025081376464499
930 => 0.024132353715013
1001 => 0.024160998746476
1002 => 0.024462865225892
1003 => 0.025340582727033
1004 => 0.02499764331467
1005 => 0.024748836836225
1006 => 0.024702242861907
1007 => 0.025285464001584
1008 => 0.026110844102834
1009 => 0.026498093979501
1010 => 0.026114341112677
1011 => 0.025673506481992
1012 => 0.025700338043331
1013 => 0.025878836400167
1014 => 0.025897594053639
1015 => 0.025610656027595
1016 => 0.025691427401178
1017 => 0.025568728298817
1018 => 0.024815724134114
1019 => 0.024802104676577
1020 => 0.024617305310726
1021 => 0.024611709659372
1022 => 0.024297319837698
1023 => 0.024253334528372
1024 => 0.02362909445534
1025 => 0.024039971161783
1026 => 0.023764376639097
1027 => 0.023348990687232
1028 => 0.023277377992563
1029 => 0.023275225228486
1030 => 0.023701733722451
1031 => 0.024034987161705
1101 => 0.023769170723811
1102 => 0.023708649473537
1103 => 0.024354858089955
1104 => 0.024272622153194
1105 => 0.024201406362323
1106 => 0.026036940367615
1107 => 0.024583971973922
1108 => 0.023950394821736
1109 => 0.023166222782867
1110 => 0.023421553152861
1111 => 0.023475355013402
1112 => 0.021589562617557
1113 => 0.020824496877423
1114 => 0.020561955146303
1115 => 0.020410858668248
1116 => 0.020479715230648
1117 => 0.019791066331266
1118 => 0.020253849780852
1119 => 0.01965753804403
1120 => 0.019557564440786
1121 => 0.020623843695072
1122 => 0.020772210224193
1123 => 0.020139232517096
1124 => 0.020545706674835
1125 => 0.020398313494825
1126 => 0.019667760097239
1127 => 0.019639858331039
1128 => 0.019273292316324
1129 => 0.018699687484462
1130 => 0.018437534684429
1201 => 0.018301003230056
1202 => 0.018357338769075
1203 => 0.018328853796651
1204 => 0.018142970083607
1205 => 0.018339508433495
1206 => 0.017837434164785
1207 => 0.017637504145497
1208 => 0.017547200394126
1209 => 0.017101580582328
1210 => 0.017810759870928
1211 => 0.017950477124787
1212 => 0.018090469664797
1213 => 0.019309009148621
1214 => 0.019248134359566
1215 => 0.019798412805399
1216 => 0.019777029996891
1217 => 0.019620081670219
1218 => 0.01895794249674
1219 => 0.019221859369793
1220 => 0.018409564256324
1221 => 0.019018190986034
1222 => 0.018740439163454
1223 => 0.018924282815427
1224 => 0.018593715352667
1225 => 0.018776665035354
1226 => 0.017983609268846
1227 => 0.017243064952676
1228 => 0.017541081603339
1229 => 0.017865059784947
1230 => 0.01856752703078
1231 => 0.018149143334391
]
'min_raw' => 0.017101580582328
'max_raw' => 0.051048634531037
'avg_raw' => 0.034075107556682
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.0171015'
'max' => '$0.051048'
'avg' => '$0.034075'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.032396509417672
'max_diff' => 0.0015505445310365
'year' => 2026
]
1 => [
'items' => [
101 => 0.018299609932452
102 => 0.017795572016753
103 => 0.016755597825353
104 => 0.016761483966336
105 => 0.016601506594058
106 => 0.016463262787332
107 => 0.018197199734828
108 => 0.01798155726592
109 => 0.017637959214304
110 => 0.018097878860436
111 => 0.01821948891478
112 => 0.018222950982064
113 => 0.018558496483637
114 => 0.018737577177977
115 => 0.018769140926535
116 => 0.019297129023201
117 => 0.019474103668873
118 => 0.020203037188003
119 => 0.01872238343223
120 => 0.018691890342501
121 => 0.018104350873035
122 => 0.017731724052868
123 => 0.018129864950208
124 => 0.018482563433599
125 => 0.018115310198057
126 => 0.01816326571748
127 => 0.017670258254457
128 => 0.017846485224331
129 => 0.017998275631122
130 => 0.017914465890319
131 => 0.017788998651901
201 => 0.018453646180081
202 => 0.018416144161766
203 => 0.019035079220188
204 => 0.019517583358699
205 => 0.020382317032842
206 => 0.019479922364288
207 => 0.019447035515872
208 => 0.019768509734355
209 => 0.019474054452845
210 => 0.019660140026508
211 => 0.020352335770053
212 => 0.020366960775366
213 => 0.020121973093113
214 => 0.020107065570383
215 => 0.020154118134632
216 => 0.020429706473094
217 => 0.020333407439661
218 => 0.020444847119143
219 => 0.02058420414476
220 => 0.021160643888867
221 => 0.021299621559643
222 => 0.020961977871317
223 => 0.020992463315937
224 => 0.020866175307976
225 => 0.02074418267467
226 => 0.021018404298748
227 => 0.021519549706591
228 => 0.021516432107018
301 => 0.021632688100763
302 => 0.021705114621749
303 => 0.021394206974222
304 => 0.021191817528073
305 => 0.021269426520102
306 => 0.021393524988459
307 => 0.021229183059371
308 => 0.020214788542449
309 => 0.02052249103911
310 => 0.020471274297782
311 => 0.020398335429963
312 => 0.020707732669749
313 => 0.020677890551192
314 => 0.019784003241446
315 => 0.019841227006806
316 => 0.019787483208149
317 => 0.019961140416556
318 => 0.019464676393696
319 => 0.019617385383392
320 => 0.019713163030171
321 => 0.019769576799923
322 => 0.019973382019549
323 => 0.019949467829337
324 => 0.019971895479908
325 => 0.020274084818031
326 => 0.021802454791398
327 => 0.02188564059689
328 => 0.021476003266868
329 => 0.021639645300473
330 => 0.021325488380531
331 => 0.021536384025557
401 => 0.021680673469715
402 => 0.021028657216829
403 => 0.020990049045883
404 => 0.020674595488581
405 => 0.020844102362072
406 => 0.020574404738371
407 => 0.020640579101605
408 => 0.020455549813026
409 => 0.020788565693505
410 => 0.021160929193316
411 => 0.021255002918448
412 => 0.02100753544891
413 => 0.020828352692063
414 => 0.02051376679751
415 => 0.021036930151156
416 => 0.021189919058876
417 => 0.021036126565553
418 => 0.021000489484417
419 => 0.020932957280061
420 => 0.021014816760817
421 => 0.021189085848429
422 => 0.021106903764956
423 => 0.021161186478952
424 => 0.020954316749291
425 => 0.02139430989759
426 => 0.022093124907207
427 => 0.02209537171173
428 => 0.022013189185265
429 => 0.021979561866083
430 => 0.022063886125489
501 => 0.022109628577054
502 => 0.022382317769548
503 => 0.02267492413751
504 => 0.02404039038263
505 => 0.023656972925002
506 => 0.024868495809623
507 => 0.025826653114801
508 => 0.026113962595482
509 => 0.025849651392211
510 => 0.02494545704363
511 => 0.024901092955201
512 => 0.026252341052989
513 => 0.02587055157428
514 => 0.025825138930632
515 => 0.025342025128086
516 => 0.025627605220199
517 => 0.025565144664847
518 => 0.025466547622548
519 => 0.026011414544618
520 => 0.027031356782129
521 => 0.026872389219455
522 => 0.026753727308212
523 => 0.026233785355109
524 => 0.026546906544116
525 => 0.026435410086152
526 => 0.026914469626967
527 => 0.026630685367457
528 => 0.025867659143479
529 => 0.025989173584615
530 => 0.02597080692129
531 => 0.026348791551033
601 => 0.02623532994734
602 => 0.025948651722175
603 => 0.027027870730443
604 => 0.026957792250977
605 => 0.027057147512688
606 => 0.027100886771557
607 => 0.027757788363918
608 => 0.028026899927801
609 => 0.028087992964264
610 => 0.028343628136118
611 => 0.02808163252831
612 => 0.029129801759245
613 => 0.029826773135447
614 => 0.030636341254725
615 => 0.031819337868385
616 => 0.032264155538452
617 => 0.032183803207763
618 => 0.033080737738887
619 => 0.034692509153583
620 => 0.032509588292982
621 => 0.03480820925974
622 => 0.03408049240052
623 => 0.032355088818375
624 => 0.032243993168857
625 => 0.033412456507033
626 => 0.036003995730678
627 => 0.03535484454815
628 => 0.036005057509461
629 => 0.035246549551996
630 => 0.035208883238701
701 => 0.035968218470988
702 => 0.037742446630436
703 => 0.03689957733783
704 => 0.035691117526851
705 => 0.036583425445561
706 => 0.035810425747175
707 => 0.034068641077719
708 => 0.035354348154474
709 => 0.034494632447077
710 => 0.034745543195496
711 => 0.036552537739385
712 => 0.03633511537515
713 => 0.036616480047239
714 => 0.036119878765597
715 => 0.035655974861709
716 => 0.034790063775146
717 => 0.034533710191316
718 => 0.034604557099251
719 => 0.034533675083107
720 => 0.034049205788308
721 => 0.033944584690223
722 => 0.03377021160986
723 => 0.033824257118818
724 => 0.03349638471309
725 => 0.034115147684594
726 => 0.034229995544626
727 => 0.034680279634737
728 => 0.034727029622732
729 => 0.035981064404299
730 => 0.035290363119811
731 => 0.035753745173725
801 => 0.035712295921302
802 => 0.032392483545881
803 => 0.032849924400262
804 => 0.03356155881683
805 => 0.033240968476763
806 => 0.032787728742496
807 => 0.032421713355898
808 => 0.031867162618208
809 => 0.032647682132304
810 => 0.033673982294343
811 => 0.034753058288495
812 => 0.036049497391608
813 => 0.035760147276008
814 => 0.034728822261246
815 => 0.034775086748025
816 => 0.035061075600887
817 => 0.034690694051604
818 => 0.034581461302013
819 => 0.035046068698477
820 => 0.035049268194272
821 => 0.034623099459716
822 => 0.034149490899312
823 => 0.034147506462151
824 => 0.034063232393343
825 => 0.035261541721621
826 => 0.035920490689436
827 => 0.035996038126647
828 => 0.035915405744982
829 => 0.0359464379485
830 => 0.035563010063078
831 => 0.036439412507145
901 => 0.03724368605704
902 => 0.03702812356487
903 => 0.036704964745093
904 => 0.036447553179703
905 => 0.036967485580721
906 => 0.036944333809353
907 => 0.037236661429214
908 => 0.037223399759811
909 => 0.03712510097625
910 => 0.037028127075429
911 => 0.037412617630751
912 => 0.037301890525548
913 => 0.037190991430566
914 => 0.036968566317779
915 => 0.036998797584697
916 => 0.036675694562846
917 => 0.03652621232075
918 => 0.034278358057672
919 => 0.033677657947821
920 => 0.033866650430758
921 => 0.033928871663329
922 => 0.033667446205703
923 => 0.034042263157248
924 => 0.033983848332379
925 => 0.034211106244415
926 => 0.034069125367367
927 => 0.034074952312086
928 => 0.034492487797969
929 => 0.034613700125844
930 => 0.034552050557584
1001 => 0.03459522780197
1002 => 0.035590229174875
1003 => 0.035448771798001
1004 => 0.035373625385886
1005 => 0.035394441455602
1006 => 0.035648685639449
1007 => 0.035719860129709
1008 => 0.035418288813137
1009 => 0.035560511589395
1010 => 0.036166078119946
1011 => 0.036377992133541
1012 => 0.03705431994044
1013 => 0.036767003867301
1014 => 0.037294384954296
1015 => 0.038915374618258
1016 => 0.040210333325783
1017 => 0.039019435781911
1018 => 0.041397462536284
1019 => 0.043249097472241
1020 => 0.043178028639339
1021 => 0.042855153259168
1022 => 0.040747116112842
1023 => 0.03880726890173
1024 => 0.040430033464089
1025 => 0.040434170224683
1026 => 0.040294773309617
1027 => 0.039428991042144
1028 => 0.040264645963401
1029 => 0.040330977216398
1030 => 0.040293849353624
1031 => 0.039630056119086
1101 => 0.038616566539443
1102 => 0.038814599977354
1103 => 0.039138982788425
1104 => 0.038524858453724
1105 => 0.038328608517682
1106 => 0.038693474486862
1107 => 0.039869148662407
1108 => 0.039646894269737
1109 => 0.039641090309344
1110 => 0.040591988851716
1111 => 0.039911350712127
1112 => 0.038817097813197
1113 => 0.038540784524794
1114 => 0.0375600584979
1115 => 0.038237449457902
1116 => 0.038261827552617
1117 => 0.037890827446591
1118 => 0.038847202427102
1119 => 0.03883838926329
1120 => 0.039746324969655
1121 => 0.041481957035147
1122 => 0.040968645228114
1123 => 0.040371719444701
1124 => 0.040436621828315
1125 => 0.041148440783824
1126 => 0.040718058794077
1127 => 0.04087282715832
1128 => 0.041148206523368
1129 => 0.041314349731587
1130 => 0.040412716377451
1201 => 0.040202502512493
1202 => 0.03977247871983
1203 => 0.039660293539098
1204 => 0.040010538945481
1205 => 0.039918261655252
1206 => 0.038259778668152
1207 => 0.038086457968288
1208 => 0.038091773466708
1209 => 0.03765595032595
1210 => 0.036991215426754
1211 => 0.038738099052581
1212 => 0.038597799849807
1213 => 0.03844292038824
1214 => 0.038461892238552
1215 => 0.039220155213144
1216 => 0.038780324394682
1217 => 0.039949686712416
1218 => 0.039709300974138
1219 => 0.039462750248733
1220 => 0.039428669428363
1221 => 0.039333768433801
1222 => 0.039008317612344
1223 => 0.038615316188873
1224 => 0.038355822607897
1225 => 0.035381218874673
1226 => 0.035933288025085
1227 => 0.036568393259948
1228 => 0.036787629041999
1229 => 0.036412611066147
1230 => 0.039023125607793
1231 => 0.039500091770095
]
'min_raw' => 0.016463262787332
'max_raw' => 0.043249097472241
'avg_raw' => 0.029856180129786
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.016463'
'max' => '$0.043249'
'avg' => '$0.029856'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -0.0006383177949963
'max_diff' => -0.0077995370587958
'year' => 2027
]
2 => [
'items' => [
101 => 0.038055330152748
102 => 0.03778507424337
103 => 0.039040843540219
104 => 0.038283461142666
105 => 0.038624510389909
106 => 0.037887348461334
107 => 0.039385204588796
108 => 0.0393737934347
109 => 0.038791093570502
110 => 0.039283587505566
111 => 0.039198004564668
112 => 0.038540137853115
113 => 0.039406060136968
114 => 0.039406489623617
115 => 0.038845653673315
116 => 0.038190720066137
117 => 0.038073633406015
118 => 0.037985424335993
119 => 0.038602816365998
120 => 0.039156368129565
121 => 0.040186390724444
122 => 0.04044536287753
123 => 0.041456148431776
124 => 0.040854274848478
125 => 0.041121077612386
126 => 0.041410729754164
127 => 0.041549599642537
128 => 0.041323318611602
129 => 0.042893484633279
130 => 0.043026054754152
131 => 0.043070504368954
201 => 0.042541053220884
202 => 0.043011329759954
203 => 0.042791302941245
204 => 0.043363751598316
205 => 0.043453518857136
206 => 0.043377489182478
207 => 0.043405982727307
208 => 0.042066123024073
209 => 0.041996644230137
210 => 0.041049295944834
211 => 0.04143534737354
212 => 0.0407136427315
213 => 0.040942502707873
214 => 0.0410433820048
215 => 0.040990688384935
216 => 0.041457174142092
217 => 0.041060565951764
218 => 0.040013851729066
219 => 0.038966852329777
220 => 0.038953708105186
221 => 0.038678051644428
222 => 0.038478802512299
223 => 0.038517184963889
224 => 0.038652449729597
225 => 0.038470940678218
226 => 0.038509674837072
227 => 0.039152919958404
228 => 0.039281918180072
229 => 0.038843531819983
301 => 0.037083347325376
302 => 0.03665139363531
303 => 0.036961873381715
304 => 0.03681348406039
305 => 0.029711354811363
306 => 0.03137989473105
307 => 0.030388504969033
308 => 0.03084538298302
309 => 0.029833430755136
310 => 0.030316387399243
311 => 0.030227202941829
312 => 0.032910165757
313 => 0.032868274982936
314 => 0.03288832587967
315 => 0.031931244336218
316 => 0.033455901222533
317 => 0.03420700202962
318 => 0.034067993260129
319 => 0.034102978772583
320 => 0.033501811756066
321 => 0.032894146490476
322 => 0.032220152191922
323 => 0.033472350290421
324 => 0.033333127237603
325 => 0.033652454829895
326 => 0.034464594805741
327 => 0.034584185502204
328 => 0.034744916611019
329 => 0.034687305950128
330 => 0.036059825620644
331 => 0.035893604432368
401 => 0.036294149671013
402 => 0.03547019772568
403 => 0.034537817889299
404 => 0.034715032814401
405 => 0.034697965592041
406 => 0.034480680262555
407 => 0.034284524782578
408 => 0.033957981174881
409 => 0.034991213468997
410 => 0.034949266124759
411 => 0.035628344869509
412 => 0.035508311105155
413 => 0.034706696249558
414 => 0.034735326080948
415 => 0.034927875456072
416 => 0.035594291041868
417 => 0.035792128560765
418 => 0.03570048233955
419 => 0.035917402147394
420 => 0.036088846718982
421 => 0.035938932945979
422 => 0.038061395831535
423 => 0.037180001263856
424 => 0.037609586843439
425 => 0.037712040472904
426 => 0.037449607655397
427 => 0.037506519936499
428 => 0.037592726534702
429 => 0.038116156118004
430 => 0.039489786800159
501 => 0.040098158478665
502 => 0.041928474689981
503 => 0.040047641679708
504 => 0.039936040832539
505 => 0.040265736052452
506 => 0.041340325427141
507 => 0.04221117918428
508 => 0.042500091616281
509 => 0.042538276163595
510 => 0.043080295092565
511 => 0.043390970234596
512 => 0.043014479738075
513 => 0.042695443462471
514 => 0.0415526951235
515 => 0.041684971355336
516 => 0.042596223420661
517 => 0.043883420635411
518 => 0.044987969755712
519 => 0.044601195151206
520 => 0.047552012363267
521 => 0.047844573836835
522 => 0.047804151300833
523 => 0.048470649876607
524 => 0.04714778593377
525 => 0.046582235968926
526 => 0.042764422726472
527 => 0.043837072521023
528 => 0.045396231991917
529 => 0.045189871389396
530 => 0.044057568105181
531 => 0.044987110802134
601 => 0.044679774917034
602 => 0.044437366353078
603 => 0.045547886977773
604 => 0.044326823933248
605 => 0.045384050953983
606 => 0.044028146364277
607 => 0.04460296190502
608 => 0.044276668803395
609 => 0.044487820429124
610 => 0.043253432339644
611 => 0.043919478189651
612 => 0.043225722642528
613 => 0.043225393712069
614 => 0.043210079019915
615 => 0.044026279344522
616 => 0.044052895607804
617 => 0.04344972233471
618 => 0.04336279564272
619 => 0.043684209183131
620 => 0.043307918105649
621 => 0.043483982332455
622 => 0.043313250911719
623 => 0.043274815672758
624 => 0.042968557149495
625 => 0.042836612556921
626 => 0.042888351431462
627 => 0.042711739979433
628 => 0.04260532519127
629 => 0.043188910440128
630 => 0.042877124383425
701 => 0.043141124755297
702 => 0.042840263012045
703 => 0.041797345130715
704 => 0.041197552028506
705 => 0.039227576829211
706 => 0.039786259351984
707 => 0.040156666442582
708 => 0.040034246901349
709 => 0.040297251445991
710 => 0.040313397788997
711 => 0.04022789233052
712 => 0.040128887963532
713 => 0.040080698112966
714 => 0.040439865777876
715 => 0.040648374696383
716 => 0.040193841749531
717 => 0.040087351039675
718 => 0.040546908944395
719 => 0.040827239000795
720 => 0.042897038633407
721 => 0.042743701191259
722 => 0.043128548080098
723 => 0.043085220226372
724 => 0.043488601076793
725 => 0.044147958285765
726 => 0.04280730072075
727 => 0.043039992517586
728 => 0.04298294186264
729 => 0.043605805953854
730 => 0.043607750467559
731 => 0.043234312330507
801 => 0.043436759202945
802 => 0.043323758912589
803 => 0.043527965710167
804 => 0.042741653276233
805 => 0.043699296943582
806 => 0.044242219193774
807 => 0.044249757669744
808 => 0.044507098507438
809 => 0.044768571702711
810 => 0.045270446731521
811 => 0.04475457468055
812 => 0.043826571079986
813 => 0.043893569942513
814 => 0.043349481771046
815 => 0.043358627991506
816 => 0.043309804749888
817 => 0.043456326973224
818 => 0.042773806664596
819 => 0.042933992816829
820 => 0.042709731265654
821 => 0.043039505016771
822 => 0.042684722974123
823 => 0.042982914351087
824 => 0.043111603864184
825 => 0.043586470937998
826 => 0.042614584721218
827 => 0.040632842934291
828 => 0.041049429084199
829 => 0.040433265446348
830 => 0.040490293736932
831 => 0.040605499959896
901 => 0.040232078898139
902 => 0.040303315868872
903 => 0.040300770782991
904 => 0.040278838607831
905 => 0.040181697367463
906 => 0.04004082335012
907 => 0.040602022076479
908 => 0.040697380675762
909 => 0.040909351029537
910 => 0.041540031021508
911 => 0.041477011217852
912 => 0.041579799132282
913 => 0.041355413692211
914 => 0.040500702333944
915 => 0.040547117272838
916 => 0.039968322241077
917 => 0.040894549939266
918 => 0.040675206994727
919 => 0.040533795171472
920 => 0.040495209645326
921 => 0.04112745297101
922 => 0.041316630083254
923 => 0.041198747602107
924 => 0.040956967194093
925 => 0.041421257053441
926 => 0.041545481432986
927 => 0.041573290690347
928 => 0.042395923302361
929 => 0.041619266715051
930 => 0.041806215674919
1001 => 0.043264738092877
1002 => 0.041942059522125
1003 => 0.042642711860304
1004 => 0.042608418574369
1005 => 0.042966848601799
1006 => 0.042579016850331
1007 => 0.042583824489703
1008 => 0.042902086071908
1009 => 0.04245514507848
1010 => 0.042344476203162
1011 => 0.042191587944535
1012 => 0.042525413863941
1013 => 0.042725527404977
1014 => 0.044338295578528
1015 => 0.045380217369806
1016 => 0.045334984796973
1017 => 0.045748325840835
1018 => 0.045562111914805
1019 => 0.044960778026903
1020 => 0.045987181648696
1021 => 0.045662384596209
1022 => 0.045689160470588
1023 => 0.045688163871206
1024 => 0.045904125516859
1025 => 0.04575109689832
1026 => 0.045449461783114
1027 => 0.045649701249309
1028 => 0.046244340876989
1029 => 0.04809012052708
1030 => 0.049123043272599
1031 => 0.048027937280824
1101 => 0.048783326729897
1102 => 0.048330362233234
1103 => 0.048248045109664
1104 => 0.048722485506524
1105 => 0.049197756348493
1106 => 0.049167483650512
1107 => 0.04882246142467
1108 => 0.048627567123907
1109 => 0.050103372063665
1110 => 0.051190720003598
1111 => 0.051116570163767
1112 => 0.051443843441959
1113 => 0.05240472790891
1114 => 0.052492579142371
1115 => 0.052481511906193
1116 => 0.052263763457729
1117 => 0.053209879002058
1118 => 0.053999145234457
1119 => 0.052213360983268
1120 => 0.052893364248488
1121 => 0.053198639622582
1122 => 0.053646874442875
1123 => 0.054403121717587
1124 => 0.055224606842607
1125 => 0.055340773846411
1126 => 0.055258347798109
1127 => 0.054716556275453
1128 => 0.055615435101605
1129 => 0.056141977236663
1130 => 0.056455521028388
1201 => 0.057250615915489
1202 => 0.053200524899365
1203 => 0.050333669175567
1204 => 0.049885968256398
1205 => 0.050796385680498
1206 => 0.05103645549479
1207 => 0.050939683653671
1208 => 0.047712776893418
1209 => 0.049868979260129
1210 => 0.052188871708065
1211 => 0.05227798822505
1212 => 0.05343937489115
1213 => 0.053817569996481
1214 => 0.054752638489122
1215 => 0.054694149700315
1216 => 0.054921823998084
1217 => 0.054869485619796
1218 => 0.056601503100512
1219 => 0.058512175588827
1220 => 0.058446015076123
1221 => 0.058171333299877
1222 => 0.058579282577805
1223 => 0.060551301345853
1224 => 0.060369749458648
1225 => 0.060546111652515
1226 => 0.062871232918151
1227 => 0.065894221308122
1228 => 0.064489739697908
1229 => 0.067537060663375
1230 => 0.069455187679593
1231 => 0.072772390016106
]
'min_raw' => 0.029711354811363
'max_raw' => 0.072772390016106
'avg_raw' => 0.051241872413734
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.029711'
'max' => '$0.072772'
'avg' => '$0.051241'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 0.013248092024031
'max_diff' => 0.029523292543865
'year' => 2028
]
3 => [
'items' => [
101 => 0.072357059946008
102 => 0.073648422472858
103 => 0.071613532438533
104 => 0.066941013600594
105 => 0.066201569608807
106 => 0.067681955206069
107 => 0.071321338743025
108 => 0.067567338067024
109 => 0.068326767514558
110 => 0.068108051782579
111 => 0.068096397350704
112 => 0.068541199613379
113 => 0.067895990732043
114 => 0.06526729367862
115 => 0.066472010047195
116 => 0.066006811202056
117 => 0.066522984003608
118 => 0.06930855572773
119 => 0.06807698806876
120 => 0.066779631584467
121 => 0.068406804522222
122 => 0.070478754829268
123 => 0.070349095902706
124 => 0.070097503391948
125 => 0.071515717202134
126 => 0.073858190918903
127 => 0.074491352151724
128 => 0.074958738829381
129 => 0.075023183555667
130 => 0.07568700428859
131 => 0.0721174729033
201 => 0.077782410883823
202 => 0.078760589182306
203 => 0.078576732203527
204 => 0.079663936214256
205 => 0.079344053214596
206 => 0.078880592936193
207 => 0.080604042548123
208 => 0.078628246643258
209 => 0.07582385310209
210 => 0.07428530734079
211 => 0.076311388510216
212 => 0.077548645579896
213 => 0.078366393798625
214 => 0.078613843915515
215 => 0.072394565463588
216 => 0.069042719314994
217 => 0.071191214267249
218 => 0.073812526390199
219 => 0.072102911382104
220 => 0.072169925053692
221 => 0.069732463331069
222 => 0.07402818766731
223 => 0.073402336764248
224 => 0.076649252356444
225 => 0.075874349892241
226 => 0.078522083513139
227 => 0.07782484651554
228 => 0.080719038310579
301 => 0.081873609774734
302 => 0.083812314957751
303 => 0.085238434382328
304 => 0.086075878985757
305 => 0.086025601952943
306 => 0.089343974684974
307 => 0.087387246220008
308 => 0.08492913410252
309 => 0.08488467460956
310 => 0.086157765706924
311 => 0.088825815391515
312 => 0.089517601856185
313 => 0.08990421611469
314 => 0.08931210291965
315 => 0.087188214410922
316 => 0.086271130121213
317 => 0.087052512506535
318 => 0.08609694899424
319 => 0.087746519700229
320 => 0.090011732608843
321 => 0.089543975100837
322 => 0.091107618319976
323 => 0.092725824551722
324 => 0.095039932141307
325 => 0.095644925556381
326 => 0.096644956665658
327 => 0.097674317170211
328 => 0.09800492002223
329 => 0.098636143446775
330 => 0.098632816587747
331 => 0.10053505086385
401 => 0.10263327417768
402 => 0.10342530490467
403 => 0.10524653588856
404 => 0.1021277416522
405 => 0.1044933829066
406 => 0.10662725053392
407 => 0.1040831655796
408 => 0.10758959399335
409 => 0.10772574066292
410 => 0.10978139373264
411 => 0.10769759553101
412 => 0.1064602428106
413 => 0.11003243375142
414 => 0.11176090442472
415 => 0.11124027499116
416 => 0.10727825929512
417 => 0.10497219622118
418 => 0.098936784350337
419 => 0.10608599042175
420 => 0.10956816015393
421 => 0.10726924131675
422 => 0.1084286822581
423 => 0.11475421608412
424 => 0.11716256981709
425 => 0.11666164907629
426 => 0.11674629643563
427 => 0.11804580039523
428 => 0.12380851660198
429 => 0.12035536347218
430 => 0.12299516965273
501 => 0.12439531333236
502 => 0.12569584481286
503 => 0.12250215053395
504 => 0.11834720120177
505 => 0.11703115433536
506 => 0.10704065914513
507 => 0.10652061048396
508 => 0.10622869141135
509 => 0.10438818295136
510 => 0.1029420474595
511 => 0.10179202682481
512 => 0.098774029254136
513 => 0.09979251483999
514 => 0.094982456617388
515 => 0.098059761410212
516 => 0.090382792344023
517 => 0.096776400304713
518 => 0.093296650173391
519 => 0.095633208798994
520 => 0.095625056766066
521 => 0.091322711529745
522 => 0.08884120858509
523 => 0.090422518842964
524 => 0.092117808963969
525 => 0.092392864082461
526 => 0.094590851975945
527 => 0.095204263151424
528 => 0.093345598652292
529 => 0.09022370422382
530 => 0.090948849096723
531 => 0.088826513547385
601 => 0.085107202131628
602 => 0.087778476523372
603 => 0.088690567048357
604 => 0.089093398184842
605 => 0.085435882573247
606 => 0.084286611759557
607 => 0.083674749621664
608 => 0.089751564887477
609 => 0.090084466545373
610 => 0.088381294596026
611 => 0.096079793308467
612 => 0.094337385949363
613 => 0.09628408186965
614 => 0.090883049800116
615 => 0.091089376498627
616 => 0.088532441361531
617 => 0.089964154183837
618 => 0.088952265707289
619 => 0.089848485936256
620 => 0.090385676646245
621 => 0.092942192215445
622 => 0.096805591605925
623 => 0.092560334041687
624 => 0.090710614527741
625 => 0.091858170110976
626 => 0.094914261852237
627 => 0.099544397278706
628 => 0.096803263916077
629 => 0.098019732354949
630 => 0.098285476591928
701 => 0.096264266332598
702 => 0.099618922183992
703 => 0.10141670950793
704 => 0.10326086730262
705 => 0.10486209784362
706 => 0.10252427012552
707 => 0.10502608089833
708 => 0.1030100630445
709 => 0.10120148661752
710 => 0.10120422948141
711 => 0.10006968306968
712 => 0.097871356434902
713 => 0.097465951275067
714 => 0.099574920113553
715 => 0.10126611340193
716 => 0.10140540818143
717 => 0.10234173968252
718 => 0.10289585101988
719 => 0.10832689540389
720 => 0.1105113063831
721 => 0.11318236277968
722 => 0.11422288977865
723 => 0.11735450299594
724 => 0.11482547098578
725 => 0.11427829900203
726 => 0.10668202967974
727 => 0.10792591835572
728 => 0.10991750414336
729 => 0.10671487019584
730 => 0.10874620429082
731 => 0.10914723267071
801 => 0.1066060459198
802 => 0.10796340356166
803 => 0.10435866409338
804 => 0.096884165075718
805 => 0.099627243438097
806 => 0.101647072423
807 => 0.098764527418425
808 => 0.10393137776923
809 => 0.10091301045973
810 => 0.099956332929802
811 => 0.096223992805382
812 => 0.097985513673162
813 => 0.10036799586938
814 => 0.098895898865403
815 => 0.10195072118514
816 => 0.10627716428124
817 => 0.10936044527567
818 => 0.10959714130517
819 => 0.10761479818954
820 => 0.11079151568348
821 => 0.11081465460232
822 => 0.10723130429188
823 => 0.10503652217891
824 => 0.10453786306499
825 => 0.10578361129946
826 => 0.10729617963391
827 => 0.10968107832079
828 => 0.11112222264904
829 => 0.11487996273325
830 => 0.11589669945718
831 => 0.11701378486147
901 => 0.11850655545798
902 => 0.12029900929761
903 => 0.11637722234094
904 => 0.11653304224786
905 => 0.11288112853464
906 => 0.10897853499467
907 => 0.11194011702636
908 => 0.11581199157004
909 => 0.11492377927168
910 => 0.11482383724358
911 => 0.11499191201323
912 => 0.11432222894657
913 => 0.11129327725567
914 => 0.10977215667874
915 => 0.11173479030222
916 => 0.11277784272633
917 => 0.1143955260724
918 => 0.11419611245484
919 => 0.1183630910278
920 => 0.11998225289836
921 => 0.11956800200403
922 => 0.11964423413809
923 => 0.12257564936349
924 => 0.12583598598565
925 => 0.12888972147162
926 => 0.13199611236893
927 => 0.12825123689772
928 => 0.12634982008524
929 => 0.12831159688429
930 => 0.12727065050071
1001 => 0.13325223718552
1002 => 0.13366638926951
1003 => 0.13964754341752
1004 => 0.14532437092656
1005 => 0.14175885727906
1006 => 0.14512097605439
1007 => 0.14875738162748
1008 => 0.15577259796352
1009 => 0.15341011989983
1010 => 0.15160049872779
1011 => 0.14989041546425
1012 => 0.15344882726761
1013 => 0.15802666720563
1014 => 0.15901269008227
1015 => 0.16061042383216
1016 => 0.15893060215574
1017 => 0.1609537623387
1018 => 0.16809640680619
1019 => 0.16616640122121
1020 => 0.16342548302666
1021 => 0.16906391484687
1022 => 0.17110444140376
1023 => 0.18542592541205
1024 => 0.20350739056352
1025 => 0.19602154526151
1026 => 0.19137483951583
1027 => 0.1924669255874
1028 => 0.1990696645645
1029 => 0.20119025476348
1030 => 0.19542575959137
1031 => 0.19746187673861
1101 => 0.20868108240652
1102 => 0.21469982629214
1103 => 0.20652556367032
1104 => 0.18397309729266
1105 => 0.16317869333227
1106 => 0.16869430564678
1107 => 0.16806900637969
1108 => 0.18012264324546
1109 => 0.16612037122631
1110 => 0.16635613357628
1111 => 0.1786590268874
1112 => 0.17537682587698
1113 => 0.17006008059265
1114 => 0.16321751145671
1115 => 0.15056838954789
1116 => 0.13936470952639
1117 => 0.16133770610197
1118 => 0.16039019053433
1119 => 0.15901804757845
1120 => 0.16207160324539
1121 => 0.17689880279716
1122 => 0.17655698785653
1123 => 0.17438253559976
1124 => 0.17603183847178
1125 => 0.16977094982492
1126 => 0.171384523387
1127 => 0.16317539939244
1128 => 0.16688626628128
1129 => 0.17004867324514
1130 => 0.17068357326337
1201 => 0.17211403542324
1202 => 0.15989089288562
1203 => 0.1653787250324
1204 => 0.1686023122783
1205 => 0.15403802782622
1206 => 0.16831442320243
1207 => 0.15967811516808
1208 => 0.15674682250823
1209 => 0.16069342190628
1210 => 0.15915542828266
1211 => 0.1578331516791
1212 => 0.15709529861471
1213 => 0.15999324564236
1214 => 0.15985805294972
1215 => 0.15511644914521
1216 => 0.14893122027473
1217 => 0.15100718610688
1218 => 0.15025296825778
1219 => 0.14751958547659
1220 => 0.14936155544121
1221 => 0.14125045191666
1222 => 0.12729571988115
1223 => 0.13651464330881
1224 => 0.1361597247851
1225 => 0.13598075877118
1226 => 0.14290852493474
1227 => 0.14224258006887
1228 => 0.14103388361637
1229 => 0.14749738681837
1230 => 0.14513812120325
1231 => 0.15240882191614
]
'min_raw' => 0.06526729367862
'max_raw' => 0.21469982629214
'avg_raw' => 0.13998355998538
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.065267'
'max' => '$0.214699'
'avg' => '$0.139983'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072435
'min_diff' => 0.035555938867257
'max_diff' => 0.14192743627604
'year' => 2029
]
4 => [
'items' => [
101 => 0.15719777564509
102 => 0.15598314207301
103 => 0.16048717620211
104 => 0.15105501216679
105 => 0.15418799870659
106 => 0.15483370289031
107 => 0.14741762819216
108 => 0.14235153688481
109 => 0.14201368635228
110 => 0.13322978217572
111 => 0.13792207288564
112 => 0.14205109453018
113 => 0.14007361358747
114 => 0.13944760219657
115 => 0.14264575862738
116 => 0.14289428277241
117 => 0.13722790592829
118 => 0.138406125105
119 => 0.14331949493452
120 => 0.1382823207917
121 => 0.12849591424994
122 => 0.12606875011992
123 => 0.12574492168347
124 => 0.11916226006205
125 => 0.12623094483303
126 => 0.12314527450152
127 => 0.13289287010674
128 => 0.12732509577444
129 => 0.12708508015115
130 => 0.1267222613339
131 => 0.12105629255002
201 => 0.12229677962259
202 => 0.12642034758332
203 => 0.12789168308703
204 => 0.1277382107397
205 => 0.12640013985071
206 => 0.12701270185166
207 => 0.12503942621586
208 => 0.12434262151868
209 => 0.12214331422314
210 => 0.11891094007286
211 => 0.11936042152376
212 => 0.11295624253533
213 => 0.10946690592693
214 => 0.10850110354245
215 => 0.10720959223025
216 => 0.10864698318174
217 => 0.1129381003009
218 => 0.10776210264391
219 => 0.098888217715023
220 => 0.099421553319613
221 => 0.10061980007437
222 => 0.09838687517408
223 => 0.096273599151142
224 => 0.098110921197584
225 => 0.094350939170856
226 => 0.10107417593877
227 => 0.10089233122585
228 => 0.10339833813076
301 => 0.10496539567683
302 => 0.10135383537403
303 => 0.10044553772458
304 => 0.10096294534553
305 => 0.092411349910831
306 => 0.10269949034094
307 => 0.10278846260661
308 => 0.10202662805136
309 => 0.1075047452197
310 => 0.11906528111248
311 => 0.11471574248813
312 => 0.11303146966729
313 => 0.10982966580366
314 => 0.11409587934764
315 => 0.11376830071076
316 => 0.11228686588429
317 => 0.11139088947888
318 => 0.11304175347798
319 => 0.11118632916009
320 => 0.11085304396894
321 => 0.10883369832847
322 => 0.10811288380919
323 => 0.10757922143557
324 => 0.1069917115988
325 => 0.10828761190039
326 => 0.1053509313271
327 => 0.10180958244206
328 => 0.1015151576002
329 => 0.10232809047468
330 => 0.10196842819346
331 => 0.10151343567557
401 => 0.10064473104907
402 => 0.10038700494333
403 => 0.10122448975606
404 => 0.10027901823088
405 => 0.10167411296879
406 => 0.10129472439419
407 => 0.099175490656846
408 => 0.096534140779295
409 => 0.096510627224966
410 => 0.09594155272653
411 => 0.095216750791848
412 => 0.095015127474841
413 => 0.09795618705954
414 => 0.10404409238136
415 => 0.10284889089546
416 => 0.1037125464582
417 => 0.10796087703555
418 => 0.10931129357433
419 => 0.10835279990147
420 => 0.10704075464475
421 => 0.1070984779773
422 => 0.11158213380263
423 => 0.11186177391669
424 => 0.11256833426961
425 => 0.11347646399703
426 => 0.10850745832091
427 => 0.10686443825681
428 => 0.10608588419915
429 => 0.10368823903991
430 => 0.10627389378559
501 => 0.10476734349406
502 => 0.10497062859948
503 => 0.10483823890789
504 => 0.10491053263165
505 => 0.10107229665707
506 => 0.10247074811446
507 => 0.10014555133243
508 => 0.097032373856873
509 => 0.097021937394354
510 => 0.097783883171061
511 => 0.097330648008135
512 => 0.096111003838441
513 => 0.096284248536188
514 => 0.094766442687288
515 => 0.096468537647006
516 => 0.096517347640063
517 => 0.095861948366832
518 => 0.09848426049612
519 => 0.099558623915093
520 => 0.099127226073439
521 => 0.099528355892504
522 => 0.10289855691321
523 => 0.10344804673177
524 => 0.10369209381191
525 => 0.10336510305456
526 => 0.099589956980397
527 => 0.099757400761947
528 => 0.098528809393629
529 => 0.09749077915317
530 => 0.097532294919036
531 => 0.098065977397118
601 => 0.10039660007897
602 => 0.1053012581152
603 => 0.10548738630242
604 => 0.10571297909507
605 => 0.10479537983351
606 => 0.10451862311598
607 => 0.10488373666337
608 => 0.10672566834711
609 => 0.11146361671727
610 => 0.10978890932633
611 => 0.10842734614911
612 => 0.10962180413032
613 => 0.10943792668659
614 => 0.10788581601373
615 => 0.10784225343661
616 => 0.1048632568156
617 => 0.10376198959329
618 => 0.1028416882739
619 => 0.1018367432582
620 => 0.10124097816683
621 => 0.10215634411757
622 => 0.10236569914079
623 => 0.10036423549165
624 => 0.10009144339194
625 => 0.10172588181242
626 => 0.10100662640157
627 => 0.1017463984283
628 => 0.10191803188415
629 => 0.1018903949447
630 => 0.10113940968982
701 => 0.10161806529658
702 => 0.10048590209249
703 => 0.09925484465346
704 => 0.098469506704946
705 => 0.097784195184905
706 => 0.098164445846763
707 => 0.096808921668267
708 => 0.096375262202254
709 => 0.1014559075471
710 => 0.10520903488949
711 => 0.10515446293153
712 => 0.10482227017221
713 => 0.10432869911472
714 => 0.10668956054999
715 => 0.10586708363286
716 => 0.10646550431032
717 => 0.10661782748837
718 => 0.10707886387152
719 => 0.10724364475109
720 => 0.10674556248537
721 => 0.10507393756601
722 => 0.10090840720029
723 => 0.098969341570413
724 => 0.098329417614862
725 => 0.098352677635257
726 => 0.09771106243544
727 => 0.097900046866963
728 => 0.097645341362559
729 => 0.097162990757099
730 => 0.098134662056104
731 => 0.09824663812157
801 => 0.098019838429775
802 => 0.098073257967461
803 => 0.096195453386813
804 => 0.096338218790703
805 => 0.095543282880096
806 => 0.095394241979952
807 => 0.093384713220925
808 => 0.089824541738458
809 => 0.091797222333952
810 => 0.089414501575462
811 => 0.088512129120111
812 => 0.092783819976035
813 => 0.092355060692361
814 => 0.091621211175893
815 => 0.090535694793396
816 => 0.090133066207903
817 => 0.08768682237917
818 => 0.087542285243565
819 => 0.088754709739225
820 => 0.088195217551457
821 => 0.087409478623571
822 => 0.084563611875844
823 => 0.081363915417299
824 => 0.081460494140808
825 => 0.082478258051802
826 => 0.08543754388718
827 => 0.084281299715133
828 => 0.08344243130194
829 => 0.083285336464441
830 => 0.085251707256062
831 => 0.088034533893624
901 => 0.089340173889731
902 => 0.088046324306465
903 => 0.086560019571018
904 => 0.086650484053392
905 => 0.087252303725821
906 => 0.087315546464122
907 => 0.086348114875941
908 => 0.086620441201251
909 => 0.086206752611064
910 => 0.083667946496697
911 => 0.083622027544729
912 => 0.082998963580485
913 => 0.082980097451269
914 => 0.081920110217499
915 => 0.081771810676149
916 => 0.079667141686873
917 => 0.081052441189139
918 => 0.080123255014507
919 => 0.078722752276476
920 => 0.078481305076558
921 => 0.078474046882173
922 => 0.079912050047448
923 => 0.081035637284906
924 => 0.080139418605834
925 => 0.079935366985078
926 => 0.082114104452176
927 => 0.081836840249855
928 => 0.081596731238807
929 => 0.08778536229054
930 => 0.08288657790819
1001 => 0.080750428304649
1002 => 0.078106537526459
1003 => 0.078967401695492
1004 => 0.079148798424633
1005 => 0.072790717700219
1006 => 0.070211245142173
1007 => 0.069326067365624
1008 => 0.068816635040644
1009 => 0.069048789748186
1010 => 0.06672696190399
1011 => 0.068287268614778
1012 => 0.066276761960926
1013 => 0.065939693977653
1014 => 0.069534728928722
1015 => 0.070034957040273
1016 => 0.067900828507701
1017 => 0.069271284509638
1018 => 0.068774338112572
1019 => 0.066311226327002
1020 => 0.066217153574217
1021 => 0.064981250662784
1022 => 0.063047301924351
1023 => 0.062163435456115
1024 => 0.061703110125378
1025 => 0.061893049328402
1026 => 0.061797010255117
1027 => 0.061170290338603
1028 => 0.06183293310712
1029 => 0.060140154656455
1030 => 0.059466076637758
1031 => 0.059161611235204
1101 => 0.057659172927547
1102 => 0.060050220412377
1103 => 0.060521286888511
1104 => 0.060993281511123
1105 => 0.065101672456544
1106 => 0.064896428855103
1107 => 0.066751731054442
1108 => 0.066679637422657
1109 => 0.066150475181503
1110 => 0.063918026729037
1111 => 0.064807840892622
1112 => 0.062069131204929
1113 => 0.064121158717106
1114 => 0.063184699055266
1115 => 0.063804540763444
1116 => 0.062690009483266
1117 => 0.063306837111585
1118 => 0.060632994225417
1119 => 0.058136197360297
1120 => 0.059140981304865
1121 => 0.060233296363593
1122 => 0.062601713727616
1123 => 0.061191103884623
1124 => 0.061698412525227
1125 => 0.059999013501644
1126 => 0.056492667906662
1127 => 0.056512513441941
1128 => 0.055973138562044
1129 => 0.055507039915791
1130 => 0.061353129393888
1201 => 0.060626075754288
1202 => 0.059467610934014
1203 => 0.061018262131513
1204 => 0.061428278920275
1205 => 0.061439951521836
1206 => 0.062571266607431
1207 => 0.063175049671412
1208 => 0.063281469053384
1209 => 0.065061617784248
1210 => 0.065658300158104
1211 => 0.068115950410366
1212 => 0.063123822896831
1213 => 0.06302101331585
1214 => 0.06104008297385
1215 => 0.059783745633685
1216 => 0.061126105466375
1217 => 0.062315253027749
1218 => 0.061077033103318
1219 => 0.0612387184852
1220 => 0.059576509402937
1221 => 0.060170670935639
1222 => 0.060682442889804
1223 => 0.060399872497279
1224 => 0.059976850943108
1225 => 0.062217756488576
1226 => 0.062091315815521
1227 => 0.064178098577657
1228 => 0.065804894968008
1229 => 0.068720404924157
1230 => 0.065677918295944
1231 => 0.065567037990423
]
'min_raw' => 0.055507039915791
'max_raw' => 0.16048717620211
'avg_raw' => 0.10799710805895
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.055507'
'max' => '$0.160487'
'avg' => '$0.107997'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -0.0097602537628282
'max_diff' => -0.054212650090034
'year' => 2030
]
5 => [
'items' => [
101 => 0.066650910762653
102 => 0.06565813422283
103 => 0.066285534726517
104 => 0.068619321003439
105 => 0.068668630229939
106 => 0.067842637154728
107 => 0.067792375401035
108 => 0.067951016406504
109 => 0.068880181730593
110 => 0.06855550281599
111 => 0.068931229475833
112 => 0.069401081417298
113 => 0.071344588260292
114 => 0.071813161180426
115 => 0.070674771911704
116 => 0.070777555716666
117 => 0.070351766880679
118 => 0.069940460200235
119 => 0.070865017551357
120 => 0.072554664282752
121 => 0.072544153078129
122 => 0.072936118277773
123 => 0.073180309349937
124 => 0.072132062509421
125 => 0.07144969236135
126 => 0.071711356496461
127 => 0.072129763146807
128 => 0.071575672858898
129 => 0.068155570922331
130 => 0.069193011372928
131 => 0.069020330553703
201 => 0.06877441206842
202 => 0.069817566463785
203 => 0.06971695167756
204 => 0.066703148203532
205 => 0.066896082123678
206 => 0.066714881154234
207 => 0.06730037855674
208 => 0.065626515441656
209 => 0.066141384462215
210 => 0.066464305485313
211 => 0.066654508448714
212 => 0.06734165197591
213 => 0.067261023613975
214 => 0.067336640003725
215 => 0.068355492455392
216 => 0.073508498527983
217 => 0.073788965279047
218 => 0.072407844420913
219 => 0.072959574962333
220 => 0.071900372973012
221 => 0.07261142236448
222 => 0.073097904299426
223 => 0.070899585980501
224 => 0.070769415836622
225 => 0.069705842143911
226 => 0.070277346402481
227 => 0.069368042034486
228 => 0.069591153520276
301 => 0.068967314355499
302 => 0.070090100646958
303 => 0.07134555018416
304 => 0.071662726316462
305 => 0.070828372465287
306 => 0.070224245290437
307 => 0.069163596983265
308 => 0.070927478756182
309 => 0.071443291539906
310 => 0.070924769411217
311 => 0.070804616504068
312 => 0.070576926962131
313 => 0.070852921916747
314 => 0.071440482312709
315 => 0.07116339968051
316 => 0.071346417640645
317 => 0.070648941903912
318 => 0.072132409522743
319 => 0.074488513117371
320 => 0.074496088375689
321 => 0.074219004249912
322 => 0.074105627395504
323 => 0.074389932523423
324 => 0.074544156392511
325 => 0.075463547043555
326 => 0.076450089842264
327 => 0.081053854621496
328 => 0.07976113589375
329 => 0.083845869885076
330 => 0.087076364135889
331 => 0.088045048109315
401 => 0.087153904433866
402 => 0.084105350058791
403 => 0.083955773437253
404 => 0.088511600740074
405 => 0.087224370856917
406 => 0.087071258958247
407 => 0.085442407043035
408 => 0.08640526026216
409 => 0.086194670138932
410 => 0.085862243326997
411 => 0.087699300196151
412 => 0.091138106660009
413 => 0.090602136423694
414 => 0.090202059505229
415 => 0.088449038909153
416 => 0.089504748859316
417 => 0.089128830766855
418 => 0.090744013455583
419 => 0.089787215011458
420 => 0.087214618824527
421 => 0.087624313246683
422 => 0.087562388758965
423 => 0.088836790328189
424 => 0.0884542466097
425 => 0.087487690958323
426 => 0.091126353193362
427 => 0.090890078707121
428 => 0.091225061908743
429 => 0.091372531873797
430 => 0.093587321455844
501 => 0.094494649882248
502 => 0.094700629320061
503 => 0.095562521149845
504 => 0.09467918466617
505 => 0.098213160409108
506 => 0.10056304806496
507 => 0.10329256350134
508 => 0.10728111917849
509 => 0.1087808530093
510 => 0.10850993951636
511 => 0.11153401691001
512 => 0.11696821676494
513 => 0.10960834667676
514 => 0.11735830775078
515 => 0.11490475955235
516 => 0.10908744091132
517 => 0.10871287417251
518 => 0.11265242989668
519 => 0.12138998532469
520 => 0.11920132679051
521 => 0.12139356518599
522 => 0.11883620265006
523 => 0.11870920804501
524 => 0.12126935979576
525 => 0.12725129390799
526 => 0.12440950124071
527 => 0.12033509461603
528 => 0.12334357306291
529 => 0.12073735061068
530 => 0.11486480199009
531 => 0.11919965316457
601 => 0.11630106163365
602 => 0.11714702473998
603 => 0.12323943300503
604 => 0.12250637832406
605 => 0.12345501896027
606 => 0.12178069306762
607 => 0.12021660866692
608 => 0.11729712898259
609 => 0.11643281497667
610 => 0.11667168027315
611 => 0.11643269660689
612 => 0.11479927455492
613 => 0.11444653721831
614 => 0.11385862620352
615 => 0.11404084441031
616 => 0.11293539970308
617 => 0.11502160226216
618 => 0.11540881984068
619 => 0.11692698408832
620 => 0.11708460493683
621 => 0.12131267075679
622 => 0.11898392315291
623 => 0.12054624809999
624 => 0.12040649905155
625 => 0.10921351984592
626 => 0.11075581362396
627 => 0.11315513874415
628 => 0.11207424602971
629 => 0.11054611662144
630 => 0.10931207019115
701 => 0.10744236366153
702 => 0.11007393969744
703 => 0.11353418234774
704 => 0.11717236240071
705 => 0.12154339735134
706 => 0.12056783323482
707 => 0.11709064894273
708 => 0.11724663288999
709 => 0.11821086427452
710 => 0.1169620970219
711 => 0.11659381118026
712 => 0.11816026745529
713 => 0.11817105477875
714 => 0.11673419713604
715 => 0.11513739280835
716 => 0.11513070213991
717 => 0.11484656623309
718 => 0.11888674979667
719 => 0.12110844224801
720 => 0.12136315570712
721 => 0.12109129800276
722 => 0.12119592524352
723 => 0.11990317135774
724 => 0.12285802338638
725 => 0.12556968781243
726 => 0.12484290381999
727 => 0.12375335129688
728 => 0.12288547023227
729 => 0.12463845862282
730 => 0.12456040080925
731 => 0.12554600378928
801 => 0.12550129114498
802 => 0.1251698699332
803 => 0.12484291565608
804 => 0.12613925240763
805 => 0.12576592824171
806 => 0.12539202420026
807 => 0.12464210240327
808 => 0.12474402923036
809 => 0.12365466483386
810 => 0.12315067501812
811 => 0.11557187742998
812 => 0.11354657507007
813 => 0.11418377642133
814 => 0.11439355965109
815 => 0.11351214546856
816 => 0.11477586698958
817 => 0.11457891732914
818 => 0.11534513324621
819 => 0.11486643480645
820 => 0.11488608075739
821 => 0.11629383079945
822 => 0.11670250662565
823 => 0.11649465080203
824 => 0.11664022589602
825 => 0.11999494249354
826 => 0.11951800907117
827 => 0.11926464769617
828 => 0.11933483052855
829 => 0.12019203254515
830 => 0.12043200230831
831 => 0.11941523355945
901 => 0.11989474757928
902 => 0.12193645741634
903 => 0.12265094030854
904 => 0.1249312267292
905 => 0.12396252052884
906 => 0.12574062268422
907 => 0.13120590251015
908 => 0.1355719462037
909 => 0.13155675198872
910 => 0.13957443521962
911 => 0.14581735168322
912 => 0.14557773815122
913 => 0.14448914126454
914 => 0.13738174684725
915 => 0.13084141653918
916 => 0.13631268055897
917 => 0.13632662793613
918 => 0.13585664150461
919 => 0.13293759614284
920 => 0.13575506505342
921 => 0.13597870550399
922 => 0.13585352632247
923 => 0.13361550108766
924 => 0.13019845021031
925 => 0.13086613377248
926 => 0.13195981306769
927 => 0.12988924999645
928 => 0.12922757963535
929 => 0.13045775072458
930 => 0.13442161829037
1001 => 0.13367227208818
1002 => 0.1336527036305
1003 => 0.13685872445572
1004 => 0.13456390544746
1005 => 0.13087455540042
1006 => 0.12994294585699
1007 => 0.12663635958521
1008 => 0.12892023050079
1009 => 0.12900242294914
1010 => 0.12775157018927
1011 => 0.13097605520804
1012 => 0.13094634101093
1013 => 0.13400750963499
1014 => 0.13985931432175
1015 => 0.13812864772605
1016 => 0.13611607077125
1017 => 0.13633489368894
1018 => 0.13873484099506
1019 => 0.13728377806831
1020 => 0.13780559041394
1021 => 0.13873405116957
1022 => 0.13929421459583
1023 => 0.13625429479233
1024 => 0.13554554406996
1025 => 0.13409568882969
1026 => 0.13371744866034
1027 => 0.13489832550131
1028 => 0.13458720617471
1029 => 0.12899551499212
1030 => 0.12841115215166
1031 => 0.1284290737257
1101 => 0.12695966557844
1102 => 0.12471846545549
1103 => 0.13060820556349
1104 => 0.13013517700595
1105 => 0.12961299008794
1106 => 0.12967695500584
1107 => 0.13223349156491
1108 => 0.13075057125246
1109 => 0.13469315794897
1110 => 0.13388268064917
1111 => 0.13305141766484
1112 => 0.13293651179952
1113 => 0.13261654647058
1114 => 0.13151926630378
1115 => 0.13019423456607
1116 => 0.12931933384054
1117 => 0.11929024967378
1118 => 0.12115158935863
1119 => 0.1232928909996
1120 => 0.12403205974534
1121 => 0.12276766045684
1122 => 0.1315691924943
1123 => 0.13317731721122
1124 => 0.12830620254829
1125 => 0.12739501588116
1126 => 0.1316289297405
1127 => 0.1290753621084
1128 => 0.13022523345678
1129 => 0.12773984054759
1130 => 0.1327899670583
1201 => 0.13275149355556
1202 => 0.13078688028062
1203 => 0.13244735796751
1204 => 0.13215880910706
1205 => 0.12994076555828
1206 => 0.13286028299505
1207 => 0.13286173103927
1208 => 0.13097083347651
1209 => 0.12876267909391
1210 => 0.12836791324458
1211 => 0.12807051020644
1212 => 0.13015209054053
1213 => 0.13201842895915
1214 => 0.13549122205167
1215 => 0.13636436474665
1216 => 0.13977229881359
1217 => 0.13774304000603
1218 => 0.13864258415212
1219 => 0.13961916657099
1220 => 0.14008737609522
1221 => 0.13932445380099
1222 => 0.14461837816856
1223 => 0.14506534758684
1224 => 0.14521521256652
1225 => 0.1434301310557
1226 => 0.14501570124083
1227 => 0.14427386545977
1228 => 0.14620391607418
1229 => 0.14650657265464
1230 => 0.14625023329831
1231 => 0.14634630127405
]
'min_raw' => 0.065626515441656
'max_raw' => 0.14650657265464
'avg_raw' => 0.10606654404815
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.065626'
'max' => '$0.1465065'
'avg' => '$0.106066'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 0.010119475525864
'max_diff' => -0.01398060354747
'year' => 2031
]
6 => [
'items' => [
101 => 0.14182887073858
102 => 0.14159461813397
103 => 0.13840056724833
104 => 0.13970216659346
105 => 0.13726888900502
106 => 0.13804050639385
107 => 0.1383806279866
108 => 0.13820296776828
109 => 0.13977575706753
110 => 0.13843856486354
111 => 0.13490949478246
112 => 0.13137946320859
113 => 0.13133514653769
114 => 0.13040575153452
115 => 0.12973396917442
116 => 0.12986337828973
117 => 0.1303194328912
118 => 0.12970746245192
119 => 0.12983805737283
120 => 0.13200680320934
121 => 0.13244172972006
122 => 0.13096367949986
123 => 0.12502909458413
124 => 0.12357273256004
125 => 0.12461953670204
126 => 0.12411923174499
127 => 0.10017390712706
128 => 0.10579950596002
129 => 0.10245696616076
130 => 0.10399736228312
131 => 0.10058549469456
201 => 0.10221381673912
202 => 0.10191312511429
203 => 0.11095892156412
204 => 0.11081768389465
205 => 0.11088528689289
206 => 0.10765841964784
207 => 0.1127989067882
208 => 0.11533129559948
209 => 0.11486261782786
210 => 0.11498057392571
211 => 0.11295369735738
212 => 0.11090491148861
213 => 0.10863249265426
214 => 0.11285436596902
215 => 0.1123849657262
216 => 0.11346160099836
217 => 0.11619978762872
218 => 0.1166029960114
219 => 0.11714491216666
220 => 0.11695067380122
221 => 0.12157821969663
222 => 0.12101779335516
223 => 0.12236825959243
224 => 0.11959024808225
225 => 0.11644666436721
226 => 0.11704415685995
227 => 0.11698661352816
228 => 0.11625402086942
229 => 0.11559266897354
301 => 0.11449170440164
302 => 0.11797531921923
303 => 0.11783389081947
304 => 0.12012345221915
305 => 0.11971875000214
306 => 0.11701604954954
307 => 0.11711257702494
308 => 0.11776177068654
309 => 0.1200086373617
310 => 0.12067566036923
311 => 0.12036666873587
312 => 0.12109802901288
313 => 0.12167606635586
314 => 0.12117062160354
315 => 0.12832665340782
316 => 0.12535497008588
317 => 0.12680334786015
318 => 0.12714877742498
319 => 0.12626396685828
320 => 0.12645585058751
321 => 0.1267465021521
322 => 0.12851128153689
323 => 0.13314257328561
324 => 0.13519374087484
325 => 0.14136477976989
326 => 0.13502341996019
327 => 0.13464714991224
328 => 0.13575874036476
329 => 0.13938179346696
330 => 0.14231793771022
331 => 0.14329202614593
401 => 0.14342076801316
402 => 0.14524822267474
403 => 0.14629568560674
404 => 0.14502632161199
405 => 0.14395066853439
406 => 0.14009781272541
407 => 0.14054379127628
408 => 0.14361614123611
409 => 0.14795601651488
410 => 0.15168008099113
411 => 0.15037604340829
412 => 0.16032492965824
413 => 0.16131132109236
414 => 0.16117503369002
415 => 0.16342218017169
416 => 0.158962052029
417 => 0.15705526083709
418 => 0.14418323693895
419 => 0.1477997506113
420 => 0.15305656562445
421 => 0.15236080644542
422 => 0.14854316686779
423 => 0.15167718496917
424 => 0.15064098057505
425 => 0.14982368317724
426 => 0.15356788099748
427 => 0.14945098169096
428 => 0.15301549640461
429 => 0.14844396941417
430 => 0.15038200014213
501 => 0.14928188016894
502 => 0.14999379261723
503 => 0.14583196699132
504 => 0.14807758707645
505 => 0.14573854181286
506 => 0.14573743280086
507 => 0.14568579824702
508 => 0.14843767462672
509 => 0.14852741321667
510 => 0.14649377241421
511 => 0.14620069300314
512 => 0.14728436119502
513 => 0.14601566955548
514 => 0.14660928238857
515 => 0.14603364948347
516 => 0.14590406239185
517 => 0.14487149039838
518 => 0.14442662999244
519 => 0.14460107122025
520 => 0.14400561337911
521 => 0.14364682849118
522 => 0.14561442690233
523 => 0.14456321844394
524 => 0.14545331412963
525 => 0.14443893775676
526 => 0.14092266730565
527 => 0.13890042298534
528 => 0.13225851406164
529 => 0.13414215119314
530 => 0.13539100456008
531 => 0.13497825852976
601 => 0.13586499671441
602 => 0.13591943523716
603 => 0.1356311476141
604 => 0.13529734747854
605 => 0.13513487203285
606 => 0.13634583089137
607 => 0.13704883326775
608 => 0.13551634370296
609 => 0.13515730283974
610 => 0.13670673440081
611 => 0.13765188675798
612 => 0.14463036072813
613 => 0.14411337283625
614 => 0.14541091099112
615 => 0.14526482810723
616 => 0.14662485480757
617 => 0.14884792367247
618 => 0.1443278030903
619 => 0.14511233972936
620 => 0.14491998946306
621 => 0.14702001923357
622 => 0.14702657529729
623 => 0.1457675025456
624 => 0.14645006631041
625 => 0.14606907794205
626 => 0.14675757541734
627 => 0.14410646814776
628 => 0.14733523063277
629 => 0.14916573090491
630 => 0.14919114740297
701 => 0.15005879000421
702 => 0.15094036513755
703 => 0.15263247183698
704 => 0.1508931732001
705 => 0.14776434426965
706 => 0.14799023561237
707 => 0.14615580435525
708 => 0.1461866414761
709 => 0.14602203050825
710 => 0.14651604041409
711 => 0.1442148755415
712 => 0.14475495433759
713 => 0.14399884086037
714 => 0.14511069608633
715 => 0.14391452365945
716 => 0.14491989670594
717 => 0.14535378238416
718 => 0.14695482987768
719 => 0.14367804764288
720 => 0.13699646684746
721 => 0.138401016137
722 => 0.13632357741281
723 => 0.1365158522761
724 => 0.13690427810026
725 => 0.13564526291913
726 => 0.13588544333956
727 => 0.13587686240482
728 => 0.13580291654501
729 => 0.13547539807092
730 => 0.13500043148594
731 => 0.1368925521735
801 => 0.13721406034871
802 => 0.13792873319576
803 => 0.14005511482137
804 => 0.13984263915344
805 => 0.14018919578336
806 => 0.13943266460607
807 => 0.13655094558763
808 => 0.1367074367947
809 => 0.13475598893494
810 => 0.13787883028654
811 => 0.13713930023499
812 => 0.13666252039982
813 => 0.13653242660447
814 => 0.13866407911883
815 => 0.13930190296069
816 => 0.13890445394521
817 => 0.13808927441902
818 => 0.13965466009549
819 => 0.1400734912642
820 => 0.14016725211697
821 => 0.14294081540275
822 => 0.1403222634942
823 => 0.14095257496476
824 => 0.14587008512769
825 => 0.14141058197993
826 => 0.14377288025608
827 => 0.14365725804827
828 => 0.14486572991054
829 => 0.14355812808292
830 => 0.14357433737472
831 => 0.14464737851943
901 => 0.14314048575567
902 => 0.14276735791588
903 => 0.1422518844776
904 => 0.14337740187186
905 => 0.14405209864695
906 => 0.14948965914395
907 => 0.1530025712079
908 => 0.15285006643056
909 => 0.15424367461849
910 => 0.15361584136584
911 => 0.15158840217898
912 => 0.15504899365107
913 => 0.15395391771201
914 => 0.1540441944419
915 => 0.15404083433751
916 => 0.15476896410379
917 => 0.15425301743227
918 => 0.15323603358186
919 => 0.15391115492241
920 => 0.15591602394354
921 => 0.16213919890205
922 => 0.16562177005493
923 => 0.1619295437458
924 => 0.16447639201295
925 => 0.16294919058749
926 => 0.16267165265817
927 => 0.16427126158055
928 => 0.1658736704066
929 => 0.16577160389179
930 => 0.16460833736868
1001 => 0.16395123762657
1002 => 0.16892701701838
1003 => 0.17259308651407
1004 => 0.1723430851521
1005 => 0.17344650985902
1006 => 0.17668619892615
1007 => 0.17698239549335
1008 => 0.17694508153388
1009 => 0.17621092743717
1010 => 0.17940082205056
1011 => 0.1820618882579
1012 => 0.17604099197554
1013 => 0.17833367046054
1014 => 0.17936292769795
1015 => 0.18087418268932
1016 => 0.18342392317551
1017 => 0.18619361762877
1018 => 0.18658528279262
1019 => 0.18630737761597
1020 => 0.18448068967065
1021 => 0.18751132239074
1022 => 0.18928659596109
1023 => 0.19034373074582
1024 => 0.19302444866943
1025 => 0.17936928404024
1026 => 0.16970347980999
1027 => 0.16819402490353
1028 => 0.17126356081219
1029 => 0.17207297295222
1030 => 0.17174669993349
1031 => 0.16086695849586
1101 => 0.16813674531647
1102 => 0.17595842467441
1103 => 0.17625888723334
1104 => 0.18017458346352
1105 => 0.18144969466588
1106 => 0.18460234337322
1107 => 0.1844051443382
1108 => 0.18517276412884
1109 => 0.18499630163229
1110 => 0.19083591949413
1111 => 0.19727788518737
1112 => 0.19705482039961
1113 => 0.19612871161333
1114 => 0.19750414108597
1115 => 0.2041529400444
1116 => 0.20354082518114
1117 => 0.20413544263098
1118 => 0.21197475131285
1119 => 0.22216696772795
1120 => 0.21743165992134
1121 => 0.22770591531357
1122 => 0.2341730144681
1123 => 0.24535719374532
1124 => 0.24395687941657
1125 => 0.24831079833589
1126 => 0.24145002451368
1127 => 0.22569630102672
1128 => 0.22320321398208
1129 => 0.22819443738047
1130 => 0.24046487306897
1201 => 0.22780799769387
1202 => 0.2303684670979
1203 => 0.22963105173729
1204 => 0.22959175800654
1205 => 0.23109143989025
1206 => 0.22891607309978
1207 => 0.22005323745439
1208 => 0.22411502280166
1209 => 0.22254657241612
1210 => 0.22428688505459
1211 => 0.23367863460488
1212 => 0.22952631825735
1213 => 0.22515219029202
1214 => 0.23063831745725
1215 => 0.2376240425764
1216 => 0.237186888453
1217 => 0.23633862673735
1218 => 0.24112023361492
1219 => 0.2490180472973
1220 => 0.25115279459966
1221 => 0.25272862141528
1222 => 0.25294590130934
1223 => 0.25518401925687
1224 => 0.24314909497465
1225 => 0.26224882888932
1226 => 0.26554682531688
1227 => 0.26492693867644
1228 => 0.26859252290477
1229 => 0.2675140150379
1230 => 0.26595142635151
1231 => 0.27176215704554
]
'min_raw' => 0.10017390712706
'max_raw' => 0.27176215704554
'avg_raw' => 0.1859680320863
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.100173'
'max' => '$0.271762'
'avg' => '$0.185968'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.034547391685403
'max_diff' => 0.1252555843909
'year' => 2032
]
7 => [
'items' => [
101 => 0.26510062320662
102 => 0.25564541458607
103 => 0.25045810013401
104 => 0.2572891742532
105 => 0.26146067284615
106 => 0.26421776805896
107 => 0.26505206340447
108 => 0.24408333188764
109 => 0.23278234857923
110 => 0.24002614931388
111 => 0.24886408615058
112 => 0.24309999978928
113 => 0.24332594106178
114 => 0.23510786868582
115 => 0.24959120320335
116 => 0.24748110318816
117 => 0.25842830579966
118 => 0.25581566803963
119 => 0.26474268680135
120 => 0.26239190358441
121 => 0.2721498732874
122 => 0.27604259158841
123 => 0.28257907146902
124 => 0.28738733267746
125 => 0.29021083562644
126 => 0.29004132310008
127 => 0.3012294484475
128 => 0.29463220181345
129 => 0.28634450518944
130 => 0.28619460690486
131 => 0.290486922424
201 => 0.29948243821288
202 => 0.3018148445775
203 => 0.3031183415426
204 => 0.3011219905655
205 => 0.29396115217316
206 => 0.29086913846163
207 => 0.29350362372812
208 => 0.2902818746311
209 => 0.29584351743569
210 => 0.3034808409092
211 => 0.30190376381317
212 => 0.30717569609658
213 => 0.31263159138646
214 => 0.32043376669058
215 => 0.32247354422879
216 => 0.32584521893367
217 => 0.32931577974242
218 => 0.33043043033996
219 => 0.33255864418642
220 => 0.33254742744894
221 => 0.33896094312057
222 => 0.34603524951643
223 => 0.3487056364103
224 => 0.35484604382675
225 => 0.34433081131161
226 => 0.35230673596463
227 => 0.359501219652
228 => 0.35092365960617
301 => 0.36274582781417
302 => 0.36320485581608
303 => 0.37013563366174
304 => 0.36310996253879
305 => 0.35893814145272
306 => 0.3709820326121
307 => 0.37680969216512
308 => 0.37505435368068
309 => 0.36169614114239
310 => 0.35392108848442
311 => 0.33357227598286
312 => 0.35767632339424
313 => 0.36941670176363
314 => 0.36166573639869
315 => 0.36557487248203
316 => 0.38690185141114
317 => 0.39502178416772
318 => 0.39333289491696
319 => 0.39361828939886
320 => 0.3979996577271
321 => 0.41742905775815
322 => 0.40578651088958
323 => 0.41468680173269
324 => 0.41940748390349
325 => 0.42379231659021
326 => 0.41302455335224
327 => 0.39901585158949
328 => 0.39457870769594
329 => 0.36089505564797
330 => 0.35914167527819
331 => 0.35815744974377
401 => 0.3519520469707
402 => 0.34707630019395
403 => 0.3431989253322
404 => 0.33302353581282
405 => 0.33645743107392
406 => 0.32023998394888
407 => 0.33061533190844
408 => 0.30473189471292
409 => 0.32628839033984
410 => 0.31455616982369
411 => 0.32243404036323
412 => 0.32240655521506
413 => 0.30790089787065
414 => 0.29953433743974
415 => 0.30486583537772
416 => 0.31058162438206
417 => 0.31150899191779
418 => 0.31891966155929
419 => 0.32098782016442
420 => 0.31472120303778
421 => 0.30419551800848
422 => 0.30664039457547
423 => 0.29948479209414
424 => 0.28694487398188
425 => 0.29595126209607
426 => 0.29902643898119
427 => 0.30038461228262
428 => 0.28805304303854
429 => 0.28417819625066
430 => 0.2821152603339
501 => 0.30260366727228
502 => 0.30372606845433
503 => 0.29798370531544
504 => 0.32393973121645
505 => 0.31806508315423
506 => 0.32462850436345
507 => 0.306418547653
508 => 0.3071141925223
509 => 0.29849330718807
510 => 0.30332042692747
511 => 0.29990877428099
512 => 0.30293044335505
513 => 0.30474161933924
514 => 0.31336109007101
515 => 0.32638681084995
516 => 0.3120736285777
517 => 0.30583717009314
518 => 0.30970623386179
519 => 0.32001006053696
520 => 0.33562088539304
521 => 0.32637896288111
522 => 0.33048037115388
523 => 0.33137634640253
524 => 0.3245616948968
525 => 0.33587215131437
526 => 0.34193351679453
527 => 0.34815122355431
528 => 0.35354988411764
529 => 0.34566773474415
530 => 0.35410276443552
531 => 0.34730561948746
601 => 0.34120787779312
602 => 0.34121712555023
603 => 0.33739192311158
604 => 0.32998011138017
605 => 0.3286132595793
606 => 0.33572379526176
607 => 0.34142577150885
608 => 0.34189541358319
609 => 0.3450523206117
610 => 0.34692054567244
611 => 0.36523169099654
612 => 0.37259658512363
613 => 0.38160223825193
614 => 0.3851104476762
615 => 0.39566890028057
616 => 0.38714209228695
617 => 0.38529726374139
618 => 0.35968591136672
619 => 0.3638797688833
620 => 0.3705945394144
621 => 0.35979663545957
622 => 0.36664542018402
623 => 0.36799751536573
624 => 0.35942972681506
625 => 0.36400615287226
626 => 0.35185252208009
627 => 0.32665172678918
628 => 0.33590020700356
629 => 0.34271020144612
630 => 0.33299149971032
701 => 0.35041189640604
702 => 0.34023526028638
703 => 0.33700975520113
704 => 0.32442590988799
705 => 0.33036500047917
706 => 0.33839770554332
707 => 0.33343442771587
708 => 0.34373397444775
709 => 0.35832087940887
710 => 0.36871637654938
711 => 0.36951441373843
712 => 0.3628308055213
713 => 0.37354133034346
714 => 0.37361934482385
715 => 0.36153782907067
716 => 0.354137967942
717 => 0.35245670392413
718 => 0.356656831072
719 => 0.36175656081577
720 => 0.36979741324689
721 => 0.37465633196709
722 => 0.387325815018
723 => 0.39075381386904
724 => 0.39452014530201
725 => 0.39955312559006
726 => 0.40559650885552
727 => 0.39237393032069
728 => 0.39289928801585
729 => 0.38058660596328
730 => 0.36742873937288
731 => 0.37741391996377
801 => 0.39046821531344
802 => 0.38747354553651
803 => 0.38713658401105
804 => 0.38770325983154
805 => 0.3854453766165
806 => 0.37523305451597
807 => 0.37010449028959
808 => 0.37672164657789
809 => 0.38023837064937
810 => 0.38569250299368
811 => 0.38502016605947
812 => 0.39906942524735
813 => 0.40452854254021
814 => 0.4031318667279
815 => 0.40338888869024
816 => 0.41327235978754
817 => 0.4242648123386
818 => 0.43456069473454
819 => 0.44503410852612
820 => 0.43240799941607
821 => 0.42599723988013
822 => 0.43261150732499
823 => 0.4291018839162
824 => 0.44926922104508
825 => 0.45066556371143
826 => 0.47083144251229
827 => 0.48997126280248
828 => 0.47794988460371
829 => 0.48928550279039
830 => 0.50154589806579
831 => 0.52519818972948
901 => 0.5172329299948
902 => 0.51113166586957
903 => 0.50536600075232
904 => 0.51736343458776
905 => 0.53279794155336
906 => 0.53612238652388
907 => 0.54150925741185
908 => 0.53584562134838
909 => 0.54266684715777
910 => 0.56674877166343
911 => 0.56024162308497
912 => 0.55100042602723
913 => 0.57001079257183
914 => 0.57689057032339
915 => 0.62517645355143
916 => 0.68613937571718
917 => 0.66090032563643
918 => 0.64523363279225
919 => 0.64891567722956
920 => 0.67117727267934
921 => 0.67832699059009
922 => 0.65889159265311
923 => 0.66575650377219
924 => 0.70358283898149
925 => 0.72387545420714
926 => 0.69631535706887
927 => 0.62027814211369
928 => 0.55016835734231
929 => 0.56876462934843
930 => 0.56665638921245
1001 => 0.60729606746341
1002 => 0.56008642974343
1003 => 0.56088131896677
1004 => 0.6023613827258
1005 => 0.59129521286322
1006 => 0.57336943493378
1007 => 0.55029923535905
1008 => 0.50765183770998
1009 => 0.46987784830154
1010 => 0.54396134036172
1011 => 0.54076672547199
1012 => 0.53614044969627
1013 => 0.54643572581982
1014 => 0.59642666431064
1015 => 0.59527421137355
1016 => 0.58794289377444
1017 => 0.5935036335581
1018 => 0.57239461036392
1019 => 0.57783488628459
1020 => 0.5501572515942
1021 => 0.56266869839438
1022 => 0.57333097426522
1023 => 0.57547158400398
1024 => 0.58029448704766
1025 => 0.53908330858953
1026 => 0.5575859178206
1027 => 0.56845446728382
1028 => 0.51934996540778
1029 => 0.56748382916474
1030 => 0.53836591365917
1031 => 0.52848285580017
1101 => 0.54178909121345
1102 => 0.53660363833216
1103 => 0.53214549044483
1104 => 0.529657767323
1105 => 0.5394283980549
1106 => 0.53897258645283
1107 => 0.52298593817773
1108 => 0.50213200720201
1109 => 0.50913127094441
1110 => 0.50658837280835
1111 => 0.49737258192287
1112 => 0.50358291226085
1113 => 0.47623576042866
1114 => 0.42918640708263
1115 => 0.46026865106368
1116 => 0.45907201848139
1117 => 0.45846862207043
1118 => 0.48182606937206
1119 => 0.47958078976201
1120 => 0.47550558528391
1121 => 0.49729773759682
1122 => 0.48934330885679
1123 => 0.51385698393442
1124 => 0.53000327578565
1125 => 0.52590805389435
1126 => 0.54109371942223
1127 => 0.50929251984451
1128 => 0.51985560270155
1129 => 0.52203263943859
1130 => 0.49702882581998
1201 => 0.47994814527405
1202 => 0.47880905861565
1203 => 0.44919351241178
1204 => 0.46501389814555
1205 => 0.47893518289923
1206 => 0.47226796783756
1207 => 0.47015732672641
1208 => 0.48094013442103
1209 => 0.4817780509274
1210 => 0.46267346578366
1211 => 0.46664591399857
1212 => 0.48321168341933
1213 => 0.46622849911256
1214 => 0.43323294619191
1215 => 0.42504959286838
1216 => 0.42395778268589
1217 => 0.40176387944254
1218 => 0.42559644366768
1219 => 0.41519289071039
1220 => 0.44805758984876
1221 => 0.42928544995784
1222 => 0.42847622052654
1223 => 0.42725295155299
1224 => 0.40814974221284
1225 => 0.41233213098605
1226 => 0.42623502826398
1227 => 0.43119573864009
1228 => 0.43067829590596
1229 => 0.42616689648261
1230 => 0.42823219203652
1231 => 0.42157915546072
]
'min_raw' => 0.23278234857923
'max_raw' => 0.72387545420714
'avg_raw' => 0.47832890139319
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.232782'
'max' => '$0.723875'
'avg' => '$0.478328'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.13260844145217
'max_diff' => 0.45211329716161
'year' => 2033
]
8 => [
'items' => [
101 => 0.41922982977483
102 => 0.4118147116772
103 => 0.40091653655235
104 => 0.40243199464585
105 => 0.38083985806088
106 => 0.36907531606797
107 => 0.3658190458985
108 => 0.36146462533899
109 => 0.36631088928737
110 => 0.38077869025085
111 => 0.36332745277369
112 => 0.33340853018108
113 => 0.33520670840826
114 => 0.33924668100083
115 => 0.33171821880168
116 => 0.32459316114612
117 => 0.33078782070343
118 => 0.31811077878675
119 => 0.34077864095117
120 => 0.34016553880558
121 => 0.34861471604928
122 => 0.35389815997434
123 => 0.34172153226236
124 => 0.3386591433219
125 => 0.3404036192402
126 => 0.31157131817878
127 => 0.34625850193393
128 => 0.34655847813946
129 => 0.34398989974687
130 => 0.36245975424983
131 => 0.40143690814318
201 => 0.38677213499612
202 => 0.38109349158846
203 => 0.37029838631945
204 => 0.38468222314048
205 => 0.38357776889544
206 => 0.3785830079475
207 => 0.37556216094159
208 => 0.38112816417421
209 => 0.37487247154483
210 => 0.37374877725366
211 => 0.3669404124406
212 => 0.3645101359632
213 => 0.36271085601142
214 => 0.36073002557811
215 => 0.3650992439218
216 => 0.35519802033647
217 => 0.34325811532147
218 => 0.34226544141103
219 => 0.34500630135453
220 => 0.34379367486256
221 => 0.34225963582192
222 => 0.33933073752268
223 => 0.3384617959633
224 => 0.34128543448076
225 => 0.3380977112229
226 => 0.34280137053414
227 => 0.34152223546682
228 => 0.3343770909612
301 => 0.32547159543588
302 => 0.32539231784579
303 => 0.3234736434428
304 => 0.32102992311596
305 => 0.32035013602579
306 => 0.33026612375382
307 => 0.35079192159032
308 => 0.3467622163343
309 => 0.34967409136258
310 => 0.36399763451307
311 => 0.36855065815664
312 => 0.36531902981871
313 => 0.3608953776316
314 => 0.36108999587741
315 => 0.37620695453137
316 => 0.37714978069978
317 => 0.3795319982601
318 => 0.38259382103971
319 => 0.36584047147778
320 => 0.36030091461965
321 => 0.35767596525736
322 => 0.34959213720474
323 => 0.35830985270445
324 => 0.35323041321257
325 => 0.35391580313838
326 => 0.35346944205006
327 => 0.35371318538709
328 => 0.34077230482173
329 => 0.34548728154709
330 => 0.3376477182564
331 => 0.32715142304245
401 => 0.32711623578042
402 => 0.32968518916394
403 => 0.32815707516827
404 => 0.32404495969731
405 => 0.32462906629132
406 => 0.31951167790193
407 => 0.3252504098951
408 => 0.32541497619449
409 => 0.32320525178628
410 => 0.33204656021416
411 => 0.33566885149089
412 => 0.33421436354852
413 => 0.33556680073948
414 => 0.34692966878072
415 => 0.34878231206813
416 => 0.34960513383765
417 => 0.34850266166949
418 => 0.33577449310816
419 => 0.33633904150821
420 => 0.33219675993242
421 => 0.32869696850375
422 => 0.32883694180691
423 => 0.33063628954228
424 => 0.33849414663301
425 => 0.35503054363447
426 => 0.35565808781272
427 => 0.35641868966353
428 => 0.35332493968845
429 => 0.35239183509277
430 => 0.35362284090921
501 => 0.3598330421805
502 => 0.37580736590348
503 => 0.37016097301057
504 => 0.3655703676973
505 => 0.36959756617535
506 => 0.36897761053588
507 => 0.36374456103744
508 => 0.36359768676723
509 => 0.3535537916726
510 => 0.34984079234454
511 => 0.34673793219284
512 => 0.34334968990939
513 => 0.34134102630885
514 => 0.34442724652055
515 => 0.34513310159806
516 => 0.33838502716726
517 => 0.33746528955733
518 => 0.34297591280483
519 => 0.34055089297035
520 => 0.34304508600771
521 => 0.34362376018717
522 => 0.34353058031628
523 => 0.34099858109733
524 => 0.34261240189418
525 => 0.33879523460648
526 => 0.3346446385011
527 => 0.33199681677714
528 => 0.3296862411404
529 => 0.33096828279511
530 => 0.32639803838763
531 => 0.32493592522083
601 => 0.34206567572032
602 => 0.35471960659015
603 => 0.3545356134238
604 => 0.35341560234282
605 => 0.35175149306243
606 => 0.35971130222155
607 => 0.35693826387192
608 => 0.35895588096638
609 => 0.35946944919605
610 => 0.36102386555038
611 => 0.36157943579046
612 => 0.35990011665661
613 => 0.35426411653186
614 => 0.34021974007579
615 => 0.33368204492342
616 => 0.33152449662921
617 => 0.33160291941194
618 => 0.32943966896961
619 => 0.33007684317496
620 => 0.3292180857839
621 => 0.32759180704094
622 => 0.33086786466546
623 => 0.3312453997881
624 => 0.33048072879257
625 => 0.33066083649351
626 => 0.32432968724572
627 => 0.3248110307725
628 => 0.32213084884923
629 => 0.3216283470487
630 => 0.31485308053682
701 => 0.30284971382045
702 => 0.30950074417632
703 => 0.30146723478282
704 => 0.29842482304797
705 => 0.31282712700865
706 => 0.31138153514872
707 => 0.30890731026821
708 => 0.30524741599629
709 => 0.30388992560967
710 => 0.29564224374981
711 => 0.29515492670586
712 => 0.29924270054175
713 => 0.29735633356819
714 => 0.29470715991428
715 => 0.28511212148225
716 => 0.27432412147659
717 => 0.27464974338581
718 => 0.27808120546974
719 => 0.28805864427445
720 => 0.28416028632201
721 => 0.281331982899
722 => 0.28080232668636
723 => 0.28743208309794
724 => 0.29681457739723
725 => 0.30121663380098
726 => 0.29685432959731
727 => 0.29184314941126
728 => 0.29214815672961
729 => 0.29417723377292
730 => 0.29439046108057
731 => 0.2911286979371
801 => 0.2920468651561
802 => 0.29065208519147
803 => 0.2820923231231
804 => 0.28193750417058
805 => 0.27983680051419
806 => 0.27977319204235
807 => 0.27619937107775
808 => 0.27569936882014
809 => 0.2686033303795
810 => 0.27327396436992
811 => 0.27014114830844
812 => 0.26541925554719
813 => 0.26460519945536
814 => 0.26458072794624
815 => 0.26942905601614
816 => 0.27321730883358
817 => 0.2701956449851
818 => 0.26950767069929
819 => 0.27685343618421
820 => 0.27591862056811
821 => 0.27510907627349
822 => 0.29597447794083
823 => 0.27945788437353
824 => 0.27225570684399
825 => 0.26334164449476
826 => 0.26624410814428
827 => 0.26685569988129
828 => 0.24541898681191
829 => 0.23672211498943
830 => 0.23373767631466
831 => 0.23202008966356
901 => 0.23280281546856
902 => 0.22497461078701
903 => 0.23023529379957
904 => 0.22345673024701
905 => 0.22232028200808
906 => 0.23444119334293
907 => 0.23612774734584
908 => 0.22893238399817
909 => 0.23355297209089
910 => 0.23187748261749
911 => 0.22357292926347
912 => 0.2232557564095
913 => 0.21908882345562
914 => 0.21256838026
915 => 0.20958836275276
916 => 0.20803634376129
917 => 0.20867673704542
918 => 0.2083529346046
919 => 0.20623990464989
920 => 0.20847405100818
921 => 0.20276673027575
922 => 0.20049402917309
923 => 0.19946750281128
924 => 0.19440192716012
925 => 0.20246351069283
926 => 0.20405174420593
927 => 0.20564310702968
928 => 0.21949483394086
929 => 0.21880284080895
930 => 0.22505812170709
1001 => 0.22481505299411
1002 => 0.22303094555313
1003 => 0.21550408973107
1004 => 0.21850416030844
1005 => 0.20927040938577
1006 => 0.21618896341106
1007 => 0.21303162427964
1008 => 0.21512146387473
1009 => 0.21136374384952
1010 => 0.21344342126393
1011 => 0.20442837329146
1012 => 0.19601024833992
1013 => 0.19939794756081
1014 => 0.20308076404431
1015 => 0.21106604854473
1016 => 0.20631007897345
1017 => 0.2080205054744
1018 => 0.20229086301815
1019 => 0.19046897403943
1020 => 0.1905358846472
1021 => 0.18871734458167
1022 => 0.18714586045386
1023 => 0.2068563592902
1024 => 0.20440504718302
1025 => 0.20049920216004
1026 => 0.20572733093541
1027 => 0.20710973116519
1028 => 0.2071490861563
1029 => 0.21096339395328
1030 => 0.21299909070828
1031 => 0.21335789108456
1101 => 0.21935978681669
1102 => 0.22137154309918
1103 => 0.22965768251234
1104 => 0.21282637606124
1105 => 0.21247974638103
1106 => 0.20580090142884
1107 => 0.2015650723718
1108 => 0.20609093226828
1109 => 0.21010022629509
1110 => 0.20592548137011
1111 => 0.20647061492364
1112 => 0.20086636095106
1113 => 0.2028696180416
1114 => 0.20459509291584
1115 => 0.20364238710901
1116 => 0.2022161404047
1117 => 0.20977150990627
1118 => 0.20934520634926
1119 => 0.21638094012632
1120 => 0.22186579773569
1121 => 0.23169564310725
1122 => 0.2214376870206
1123 => 0.22106384632912
1124 => 0.22471819905427
1125 => 0.22137098363681
1126 => 0.2234863082387
1127 => 0.2313548316111
1128 => 0.2315210811109
1129 => 0.22873618778883
1130 => 0.22856672677709
1201 => 0.22910159600299
1202 => 0.23223434176541
1203 => 0.23113966413647
1204 => 0.23240645280253
1205 => 0.23399059142719
1206 => 0.24054326043966
1207 => 0.24212308675461
1208 => 0.23828492785531
1209 => 0.23863147062988
1210 => 0.23719589384172
1211 => 0.23580914465209
1212 => 0.23892635431193
1213 => 0.24462311623419
1214 => 0.24458767697394
1215 => 0.24590921501068
1216 => 0.24673252225935
1217 => 0.2431982848503
1218 => 0.24089762625451
1219 => 0.24177984515485
1220 => 0.24319053238871
1221 => 0.24132237829767
1222 => 0.22979126583465
1223 => 0.23328906874561
1224 => 0.2327068633074
1225 => 0.23187773196479
1226 => 0.23539479983948
1227 => 0.23505557006302
1228 => 0.2248943212333
1229 => 0.22554481141529
1230 => 0.22493387969576
1231 => 0.22690792506643
]
'min_raw' => 0.18714586045386
'max_raw' => 0.41922982977483
'avg_raw' => 0.30318784511434
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.187145'
'max' => '$0.419229'
'avg' => '$0.303187'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.04563648812537
'max_diff' => -0.30464562443231
'year' => 2034
]
9 => [
'items' => [
101 => 0.22126437870853
102 => 0.22300029555836
103 => 0.22408904633336
104 => 0.22473032890401
105 => 0.22704708128078
106 => 0.22677523712922
107 => 0.22703018306663
108 => 0.23046531524144
109 => 0.24783903498657
110 => 0.24878464821935
111 => 0.24412810281937
112 => 0.24598830086036
113 => 0.24241712740224
114 => 0.24481448006946
115 => 0.24645468787822
116 => 0.23904290418428
117 => 0.238604026456
118 => 0.23501811349468
119 => 0.2369449800036
120 => 0.23387919684131
121 => 0.23463143279279
122 => 0.23252811549369
123 => 0.23631366786578
124 => 0.24054650363314
125 => 0.24161588510773
126 => 0.23880280284576
127 => 0.23676594589695
128 => 0.23318989607721
129 => 0.2391369466249
130 => 0.24087604543812
131 => 0.23912781187919
201 => 0.23872270796393
202 => 0.23795503677651
203 => 0.23888557303535
204 => 0.24086657393249
205 => 0.23993237049274
206 => 0.24054942832325
207 => 0.23819784018065
208 => 0.24319945482994
209 => 0.25114322259712
210 => 0.25116876310943
211 => 0.25023455463398
212 => 0.24985229665362
213 => 0.25081085124195
214 => 0.25133082778415
215 => 0.25443061755395
216 => 0.25775681547802
217 => 0.27327872985579
218 => 0.26892023841045
219 => 0.28269220424923
220 => 0.29358404116175
221 => 0.29685002680951
222 => 0.29384547369007
223 => 0.28356705977124
224 => 0.28306275174862
225 => 0.29842304157778
226 => 0.2940830561552
227 => 0.2935668286989
228 => 0.28807504074395
301 => 0.2913213675965
302 => 0.2906113482931
303 => 0.28949054808736
304 => 0.29568431358093
305 => 0.30727848966363
306 => 0.30547142859165
307 => 0.30412254132856
308 => 0.2982121099969
309 => 0.30177150980119
310 => 0.3005040757067
311 => 0.3059497769102
312 => 0.3027238641543
313 => 0.29405017649713
314 => 0.29543148984538
315 => 0.29522270711161
316 => 0.29951944097812
317 => 0.29822966812289
318 => 0.29497085826151
319 => 0.30723886203023
320 => 0.30644224610371
321 => 0.30757166535576
322 => 0.30806887063896
323 => 0.31553618834651
324 => 0.31859530948377
325 => 0.31928978353938
326 => 0.32219571201887
327 => 0.31921748139157
328 => 0.3311325273432
329 => 0.33905533763882
330 => 0.34825808950127
331 => 0.36170578343883
401 => 0.36676224075747
402 => 0.36584883700145
403 => 0.3760447250685
404 => 0.39436650928312
405 => 0.36955219343108
406 => 0.39568172827714
407 => 0.38740941922487
408 => 0.36779592327441
409 => 0.36653304536313
410 => 0.37981553253815
411 => 0.40927481070033
412 => 0.40189559564507
413 => 0.40928688045262
414 => 0.4006645541134
415 => 0.40023638293599
416 => 0.40886811330772
417 => 0.42903662181241
418 => 0.41945531942707
419 => 0.40571817302595
420 => 0.41586146815487
421 => 0.40707440719655
422 => 0.38727469951397
423 => 0.40188995289838
424 => 0.39211714917868
425 => 0.39496937285491
426 => 0.41551035267889
427 => 0.41303880764178
428 => 0.41623721577871
429 => 0.41059210913394
430 => 0.40531868937611
501 => 0.39547545978884
502 => 0.3925613647734
503 => 0.39336671579751
504 => 0.39256096568143
505 => 0.38705376919129
506 => 0.3858644906336
507 => 0.38388230760061
508 => 0.38449666900687
509 => 0.38076958499675
510 => 0.38780336257869
511 => 0.38910889367934
512 => 0.3942274904351
513 => 0.39475892013058
514 => 0.40901413923671
515 => 0.40116260410228
516 => 0.40643009173939
517 => 0.40595891806561
518 => 0.36822100720498
519 => 0.37342095835716
520 => 0.38151045051541
521 => 0.37786614526317
522 => 0.3727139502726
523 => 0.36855327657449
524 => 0.36224943047114
525 => 0.37112197280697
526 => 0.3827884224889
527 => 0.39505480054708
528 => 0.40979205005906
529 => 0.40650286752849
530 => 0.39477929791847
531 => 0.39530520868711
601 => 0.39855618212053
602 => 0.39434587614216
603 => 0.39310417471421
604 => 0.39838559141195
605 => 0.39842196162613
606 => 0.39357749576555
607 => 0.3881937584894
608 => 0.38817120043364
609 => 0.38721321638608
610 => 0.40083497734729
611 => 0.40832556856058
612 => 0.40918435277149
613 => 0.40826776554075
614 => 0.40862052358782
615 => 0.40426191360472
616 => 0.41422440352045
617 => 0.42336696945525
618 => 0.42091656648229
619 => 0.41724306408052
620 => 0.41431694247765
621 => 0.42022726522614
622 => 0.41996408785786
623 => 0.42328711711761
624 => 0.42313636531564
625 => 0.42201895556104
626 => 0.42091660638851
627 => 0.42528729625369
628 => 0.42402860776365
629 => 0.42276796418273
630 => 0.42023955048631
701 => 0.42058320390016
702 => 0.41691033578036
703 => 0.41521109892914
704 => 0.38965865372597
705 => 0.38283020541745
706 => 0.38497857426119
707 => 0.38568587306693
708 => 0.38271412361216
709 => 0.38697484895049
710 => 0.38631081941974
711 => 0.38889416987962
712 => 0.38728020466833
713 => 0.38734644236357
714 => 0.39209276991633
715 => 0.39347064899721
716 => 0.39276984857583
717 => 0.39326066516893
718 => 0.40457132639633
719 => 0.40296331206438
720 => 0.40210908649944
721 => 0.40234571281881
722 => 0.40523582926572
723 => 0.40604490407635
724 => 0.40261679725104
725 => 0.40423351224751
726 => 0.41111727951077
727 => 0.41352620846543
728 => 0.4212143533372
729 => 0.41794829274979
730 => 0.42394328830977
731 => 0.44236986081654
801 => 0.45709028195679
802 => 0.44355277432909
803 => 0.47058495311882
804 => 0.49163338184236
805 => 0.49082550808996
806 => 0.48715522768308
807 => 0.46319215118276
808 => 0.44114097091781
809 => 0.45958771955201
810 => 0.45963474410789
811 => 0.4580501520406
812 => 0.44820838680214
813 => 0.45770767994356
814 => 0.45846169933676
815 => 0.45803964898651
816 => 0.45049399065342
817 => 0.43897316504957
818 => 0.4412243067956
819 => 0.44491172289765
820 => 0.43793067494089
821 => 0.43569980712209
822 => 0.4398474148372
823 => 0.45321187108369
824 => 0.45068539804531
825 => 0.450619421624
826 => 0.46142874467347
827 => 0.45369160216797
828 => 0.44125270090217
829 => 0.43811171428361
830 => 0.42696332780982
831 => 0.43466355805646
901 => 0.43494067563458
902 => 0.43072333822294
903 => 0.44159491459005
904 => 0.44149473109993
905 => 0.4518156748399
906 => 0.47154544290129
907 => 0.46571037964261
908 => 0.45892483592585
909 => 0.45966261267058
910 => 0.46775420257211
911 => 0.46286184260462
912 => 0.46462116935967
913 => 0.46775153962036
914 => 0.46964016972135
915 => 0.45939086786342
916 => 0.45700126531955
917 => 0.45211297715134
918 => 0.45083771401247
919 => 0.454819122728
920 => 0.4537701621967
921 => 0.43491738497519
922 => 0.43294716485968
923 => 0.43300758869779
924 => 0.42805337653848
925 => 0.42049701384837
926 => 0.44035468383101
927 => 0.43875983502349
928 => 0.43699924537148
929 => 0.43721490755807
930 => 0.44583444905864
1001 => 0.44083467969103
1002 => 0.45412738600092
1003 => 0.45139480519893
1004 => 0.44859214401035
1005 => 0.44820473086294
1006 => 0.44712594541715
1007 => 0.44342638872515
1008 => 0.43895895171068
1009 => 0.43600916283095
1010 => 0.40219540535441
1011 => 0.40847104205647
1012 => 0.41569059003992
1013 => 0.41818274907328
1014 => 0.41391973859456
1015 => 0.44359471836221
1016 => 0.44901662312098
1017 => 0.43259331994457
1018 => 0.42952119047931
1019 => 0.4437961266585
1020 => 0.43518659510247
1021 => 0.43906346663498
1022 => 0.43068379091705
1023 => 0.44771064503649
1024 => 0.44758092893588
1025 => 0.44095709811448
1026 => 0.4465555145667
1027 => 0.44558265193786
1028 => 0.43810436325427
1029 => 0.44794772012654
1030 => 0.44795260230875
1031 => 0.44157730915764
1101 => 0.43413236248828
1102 => 0.43280138186559
1103 => 0.43179866675848
1104 => 0.43881686018618
1105 => 0.44510935046814
1106 => 0.45681811484223
1107 => 0.45976197639925
1108 => 0.47125206404028
1109 => 0.46441027629226
1110 => 0.46744315218498
1111 => 0.47073576799301
1112 => 0.47231436909331
1113 => 0.46974212331277
1114 => 0.48759095892804
1115 => 0.48909794752816
1116 => 0.48960322777039
1117 => 0.48358470082626
1118 => 0.48893056140641
1119 => 0.48642941027725
1120 => 0.49293671067553
1121 => 0.49395713846737
1122 => 0.49309287243046
1123 => 0.49341677231794
1124 => 0.47818593987067
1125 => 0.47739614085924
1126 => 0.46662717529677
1127 => 0.47101560836365
1128 => 0.46281164308819
1129 => 0.46541320498725
1130 => 0.46655994868376
1201 => 0.46596095485383
1202 => 0.4712637237849
1203 => 0.46675528690937
1204 => 0.4548567807392
1205 => 0.44295503282898
1206 => 0.44280561607892
1207 => 0.43967209593746
1208 => 0.43740713480802
1209 => 0.43784344667536
1210 => 0.43938106660493
1211 => 0.43731776554248
1212 => 0.43775807543617
1213 => 0.44507015344096
1214 => 0.44653653853747
1215 => 0.44155318902589
1216 => 0.42154432164303
1217 => 0.41663409539884
1218 => 0.42016346864915
1219 => 0.41847665555625
1220 => 0.33774332179773
1221 => 0.35671042102983
1222 => 0.34544081472795
1223 => 0.35063436780151
1224 => 0.33913101801769
1225 => 0.34462101947675
1226 => 0.34360721667001
1227 => 0.37410575095796
1228 => 0.37362955829441
1229 => 0.3738574865229
1230 => 0.36297787831354
1231 => 0.3803093896046
]
'min_raw' => 0.22126437870853
'max_raw' => 0.49395713846737
'avg_raw' => 0.35761075858795
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.221264'
'max' => '$0.493957'
'avg' => '$0.35761'
'bar_min_pct' => 61.631153054958
'bar_max_pct' => 60.119598047091
'min_diff' => 0.034118518254671
'max_diff' => 0.07472730869254
'year' => 2035
]
10 => [
'items' => [
101 => 0.38884751528756
102 => 0.3872673354585
103 => 0.38766503267784
104 => 0.38083127681571
105 => 0.37392365221749
106 => 0.36626203346226
107 => 0.38049637410478
108 => 0.37891375841363
109 => 0.38254370940198
110 => 0.39177569680034
111 => 0.39313514201366
112 => 0.39496225016649
113 => 0.39430736195611
114 => 0.40990945602741
115 => 0.40801993948945
116 => 0.41257313069494
117 => 0.4032068709338
118 => 0.39260805896053
119 => 0.39462254661538
120 => 0.39442853525473
121 => 0.39195854795781
122 => 0.38972875386673
123 => 0.38601677494568
124 => 0.3977620255214
125 => 0.39728518979737
126 => 0.40500460590848
127 => 0.40364012412844
128 => 0.39452778085595
129 => 0.3948532299786
130 => 0.39704203173394
131 => 0.40461749960046
201 => 0.40686641424043
202 => 0.40582462737544
203 => 0.40829045961131
204 => 0.41023935287046
205 => 0.40853521059897
206 => 0.43266227144529
207 => 0.42264303364908
208 => 0.42752634043755
209 => 0.42869098033248
210 => 0.42570777973134
211 => 0.42635472912133
212 => 0.42733468116399
213 => 0.43328475807277
214 => 0.44889948155004
215 => 0.4558151362851
216 => 0.47662122476794
217 => 0.45524088742992
218 => 0.45397226669291
219 => 0.45772007151235
220 => 0.46993544799991
221 => 0.47983486331111
222 => 0.4831190704808
223 => 0.48355313267463
224 => 0.48971452365494
225 => 0.49324611806171
226 => 0.48896636872926
227 => 0.48533972927844
228 => 0.47234955692065
229 => 0.47385320474213
301 => 0.48421184713632
302 => 0.49884403963911
303 => 0.51139998302666
304 => 0.50700332927114
305 => 0.54054669387188
306 => 0.54387238145969
307 => 0.54341287896741
308 => 0.5509892902211
309 => 0.53595165679184
310 => 0.52952277716041
311 => 0.48612384989181
312 => 0.49831717823505
313 => 0.51604089707101
314 => 0.51369509642253
315 => 0.5008236580475
316 => 0.51139021888644
317 => 0.50789658342618
318 => 0.5051410081876
319 => 0.51776483255007
320 => 0.50388441910541
321 => 0.51590242932893
322 => 0.50048920690687
323 => 0.50702341281515
324 => 0.50331428151763
325 => 0.50571454404116
326 => 0.49168265837403
327 => 0.49925392327524
328 => 0.49136766886213
329 => 0.49136392975072
330 => 0.49118984024745
331 => 0.50046798359148
401 => 0.50077054351283
402 => 0.4939139815631
403 => 0.49292584386651
404 => 0.49657950683472
405 => 0.4923020243948
406 => 0.49430343150628
407 => 0.49236264497734
408 => 0.49192573305046
409 => 0.48844434448261
410 => 0.48694446656481
411 => 0.48753260734347
412 => 0.48552497965854
413 => 0.48431531135931
414 => 0.49094920677582
415 => 0.48740498406536
416 => 0.49040600381414
417 => 0.48698596305152
418 => 0.47513061172745
419 => 0.46831247381291
420 => 0.44591881415339
421 => 0.45226962825358
422 => 0.4564802245724
423 => 0.45508862251415
424 => 0.45807832221378
425 => 0.45826186549401
426 => 0.45728988364527
427 => 0.45616445318303
428 => 0.45561665587422
429 => 0.45969948821219
430 => 0.4620697098062
501 => 0.45690281424351
502 => 0.45569228290572
503 => 0.46091629959172
504 => 0.46410294675237
505 => 0.48763135896421
506 => 0.48588829819179
507 => 0.49026303867217
508 => 0.48977051002994
509 => 0.49435593500419
510 => 0.50185116689191
511 => 0.48661126476438
512 => 0.48925638481756
513 => 0.48860786246526
514 => 0.49568825945593
515 => 0.49571036368248
516 => 0.49146531199452
517 => 0.49376662338266
518 => 0.49248209449898
519 => 0.49480341180629
520 => 0.48586501855248
521 => 0.49675101669569
522 => 0.50292267616467
523 => 0.50300836966238
524 => 0.50593368726936
525 => 0.50890597938102
526 => 0.51461103525727
527 => 0.50874686846906
528 => 0.4981978032822
529 => 0.49895941171542
530 => 0.49277449865612
531 => 0.49287846816204
601 => 0.49232347079119
602 => 0.49398905967937
603 => 0.48623052164924
604 => 0.48805143501737
605 => 0.48550214563874
606 => 0.48925084316031
607 => 0.485217864309
608 => 0.48860754972815
609 => 0.4900704255852
610 => 0.49546846899119
611 => 0.48442056890892
612 => 0.46189315276409
613 => 0.46662868875625
614 => 0.45962445905552
615 => 0.46027272718131
616 => 0.4615823319665
617 => 0.45733747438166
618 => 0.45814725943801
619 => 0.45811832821743
620 => 0.45786901458836
621 => 0.45676476318636
622 => 0.45516338018399
623 => 0.46154279718575
624 => 0.46262678444545
625 => 0.46503635384615
626 => 0.47220559795609
627 => 0.47148922140709
628 => 0.47265766128069
629 => 0.47010696359713
630 => 0.46039104673127
701 => 0.46091866776177
702 => 0.45433922505685
703 => 0.46486810270358
704 => 0.46237472550244
705 => 0.46076722900049
706 => 0.46032860868658
707 => 0.46751562396598
708 => 0.46966609158024
709 => 0.46832606447555
710 => 0.46557762978899
711 => 0.47085543688896
712 => 0.4722675554161
713 => 0.4725836766774
714 => 0.48193493893942
715 => 0.47310630835828
716 => 0.4752314474882
717 => 0.49181117633212
718 => 0.47677565011688
719 => 0.48474030368534
720 => 0.48435047533922
721 => 0.48842492259566
722 => 0.48401625173998
723 => 0.48407090249898
724 => 0.48768873563574
725 => 0.48260814147481
726 => 0.48135011491201
727 => 0.47961216022565
728 => 0.48340692070151
729 => 0.48568170798453
730 => 0.50401482283853
731 => 0.51585885112582
801 => 0.51534467062147
802 => 0.52004331792569
803 => 0.51792653428046
804 => 0.51109088151071
805 => 0.52275850726963
806 => 0.51906638228531
807 => 0.51937075658309
808 => 0.51935942775652
809 => 0.52181436809993
810 => 0.52007481787465
811 => 0.51664598581945
812 => 0.51892220455458
813 => 0.52568176043483
814 => 0.54666362929562
815 => 0.5584053610829
816 => 0.54595676229867
817 => 0.55454363904666
818 => 0.54939457281489
819 => 0.54845883430913
820 => 0.55385202747207
821 => 0.5592546607057
822 => 0.55891053632495
823 => 0.55498850202562
824 => 0.55277304436786
825 => 0.56954923198515
826 => 0.58190964124667
827 => 0.58106674420027
828 => 0.58478701763828
829 => 0.595709855516
830 => 0.59670850292208
831 => 0.59658269630256
901 => 0.59410744450852
902 => 0.60486239690887
903 => 0.61383436741662
904 => 0.5935344952351
905 => 0.60126442081698
906 => 0.60473463345334
907 => 0.6098299351692
908 => 0.61842656323559
909 => 0.62776478145866
910 => 0.62908530790375
911 => 0.62814833119795
912 => 0.62198952525505
913 => 0.63220751506286
914 => 0.63819297385092
915 => 0.64175717758442
916 => 0.65079540522563
917 => 0.60475606430518
918 => 0.57216713049796
919 => 0.56707789789406
920 => 0.57742705251829
921 => 0.58015604205973
922 => 0.57905598979744
923 => 0.54237418194118
924 => 0.56688477576717
925 => 0.59325611381466
926 => 0.59426914430972
927 => 0.60747118753497
928 => 0.61177031397915
929 => 0.62239968920684
930 => 0.62173481889228
1001 => 0.62432290260992
1002 => 0.6237279469826
1003 => 0.64341662631287
1004 => 0.66513616341133
1005 => 0.66438408490551
1006 => 0.66126164447371
1007 => 0.66589900097014
1008 => 0.6883158908628
1009 => 0.68625210286483
1010 => 0.68825689711182
1011 => 0.71468767365581
1012 => 0.74905144289713
1013 => 0.73308602201852
1014 => 0.76772639139901
1015 => 0.78953066771695
1016 => 0.82723890900458
1017 => 0.82251765147837
1018 => 0.83719719309579
1019 => 0.81406561515026
1020 => 0.76095083652414
1021 => 0.75254521949135
1022 => 0.76937347765512
1023 => 0.81074410827332
1024 => 0.76807056927137
1025 => 0.77670337063333
1026 => 0.77421712326033
1027 => 0.77408464170369
1028 => 0.77914092387907
1029 => 0.77180652286574
1030 => 0.74192485370391
1031 => 0.75561944658699
1101 => 0.75033130660647
1102 => 0.75619889217181
1103 => 0.78786383149161
1104 => 0.77386400702046
1105 => 0.75911632919348
1106 => 0.77761318996021
1107 => 0.8011660499272
1108 => 0.79969215427902
1109 => 0.79683218068097
1110 => 0.81295370210983
1111 => 0.83958173234771
1112 => 0.84677918192092
1113 => 0.85209219205049
1114 => 0.85282476638331
1115 => 0.86037073730382
1116 => 0.81979414983471
1117 => 0.88419023622887
1118 => 0.89530966144315
1119 => 0.89321967035582
1120 => 0.90557844350455
1121 => 0.90194217893238
1122 => 0.89667380207974
1123 => 0.91626508630692
1124 => 0.89380525987557
1125 => 0.86192636386979
1126 => 0.84443697102795
1127 => 0.86746841435116
1128 => 0.88153291310204
1129 => 0.89082865210625
1130 => 0.89364153711228
1201 => 0.82294399481321
1202 => 0.78484194057946
1203 => 0.80926492050235
1204 => 0.83906264159232
1205 => 0.81962862198953
1206 => 0.8203903987645
1207 => 0.79268259398144
1208 => 0.84151416750142
1209 => 0.83439981797774
1210 => 0.87130907589167
1211 => 0.86250038527521
1212 => 0.89259845229489
1213 => 0.88467262255254
1214 => 0.91757229868586
1215 => 0.93069687021861
1216 => 0.95273506849856
1217 => 0.96894645686489
1218 => 0.97846609418804
1219 => 0.97789457087042
1220 => 1.0156161166092
1221 => 0.99337303897749
1222 => 0.96543049118112
1223 => 0.96492509864909
1224 => 0.97939694010179
1225 => 1.0097259496308
1226 => 1.0175898205326
1227 => 1.0219846515577
1228 => 1.0152538148576
1229 => 0.99111054826406
1230 => 0.98068560815811
1231 => 0.98956795916797
]
'min_raw' => 0.36626203346226
'max_raw' => 1.0219846515577
'avg_raw' => 0.69412334250996
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$0.366262'
'max' => '$1.02'
'avg' => '$0.694123'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.14499765475372
'max_diff' => 0.5280275130903
'year' => 2036
]
11 => [
'items' => [
101 => 0.97870560715204
102 => 0.99745707416922
103 => 1.023206843481
104 => 1.0178896179438
105 => 1.0356643057119
106 => 1.0540592376001
107 => 1.0803648163685
108 => 1.0872420687513
109 => 1.0986099054215
110 => 1.1103111434951
111 => 1.1140692658071
112 => 1.1212446873776
113 => 1.121206869364
114 => 1.1428304852283
115 => 1.1666820031543
116 => 1.1756853990074
117 => 1.1963882113215
118 => 1.1609353707466
119 => 1.1878267575756
120 => 1.2120834616303
121 => 1.1831636190697
122 => 1.2230228845804
123 => 1.2245705295372
124 => 1.2479381309352
125 => 1.2242505902275
126 => 1.2101850041686
127 => 1.2507918240901
128 => 1.2704401851473
129 => 1.2645219388932
130 => 1.2194837926797
131 => 1.1932696598065
201 => 1.1246622177488
202 => 1.2059306964871
203 => 1.2455142018465
204 => 1.2193812809635
205 => 1.2325612061957
206 => 1.3044666046573
207 => 1.3318435248617
208 => 1.3261493168383
209 => 1.3271115442596
210 => 1.3418836334757
211 => 1.4073912121977
212 => 1.3681375525737
213 => 1.3981455045497
214 => 1.4140616140761
215 => 1.4288453836186
216 => 1.3925411180805
217 => 1.3453098020311
218 => 1.3303496616025
219 => 1.2167828770053
220 => 1.2108712326715
221 => 1.2075528475657
222 => 1.1866308988689
223 => 1.1701919781973
224 => 1.1571191381413
225 => 1.1228121019537
226 => 1.1343897195734
227 => 1.0797114643253
228 => 1.1146926743547
301 => 1.0274248587261
302 => 1.1001040887587
303 => 1.060548088171
304 => 1.0871088787104
305 => 1.0870162106144
306 => 1.0381093741251
307 => 1.0099009314977
308 => 1.0278764490289
309 => 1.0471476307207
310 => 1.0502743151141
311 => 1.0752599052069
312 => 1.0822328463383
313 => 1.0611045091746
314 => 1.0256164272184
315 => 1.0338594992599
316 => 1.0097338859059
317 => 0.96745467648126
318 => 0.99782034281419
319 => 1.0081885163843
320 => 1.0127676924947
321 => 0.97119094582567
322 => 0.95812662934716
323 => 0.95117129687423
324 => 1.0202493913219
325 => 1.0240336452707
326 => 1.0046728670289
327 => 1.0921854205461
328 => 1.0723786344495
329 => 1.0945076672998
330 => 1.0331115268719
331 => 1.0354569421171
401 => 1.0063910253218
402 => 1.0226659965419
403 => 1.0111633714503
404 => 1.0213511396997
405 => 1.0274576459827
406 => 1.0565187933471
407 => 1.10043592038
408 => 1.0521780270347
409 => 1.0311513718384
410 => 1.0441961904638
411 => 1.0789362614893
412 => 1.1315692474046
413 => 1.1004094604052
414 => 1.114237644748
415 => 1.1172584878538
416 => 1.0942824145185
417 => 1.1324164080012
418 => 1.1528527249085
419 => 1.1738161573556
420 => 1.1920181183673
421 => 1.1654429014405
422 => 1.1938821929599
423 => 1.170965144206
424 => 1.1504061823528
425 => 1.1504373618115
426 => 1.1375404247225
427 => 1.1125509839939
428 => 1.1079425477167
429 => 1.1319162152119
430 => 1.1511408262282
501 => 1.1527242572712
502 => 1.1633679897261
503 => 1.1696668409537
504 => 1.2314041458572
505 => 1.2562354006072
506 => 1.2865985888838
507 => 1.2984267618931
508 => 1.3340253220164
509 => 1.3052765935432
510 => 1.2990566253
511 => 1.2127061626413
512 => 1.2268460460642
513 => 1.2494853637201
514 => 1.2130794766509
515 => 1.2361706325162
516 => 1.2407293158216
517 => 1.2118424185391
518 => 1.2272721585068
519 => 1.1862953437516
520 => 1.101329102965
521 => 1.132510999716
522 => 1.1554713714378
523 => 1.1227040899974
524 => 1.1814381737103
525 => 1.1471269345228
526 => 1.1362519189303
527 => 1.0938246058811
528 => 1.1138486644633
529 => 1.1409314904126
530 => 1.1241974526924
531 => 1.1589230935903
601 => 1.2081038620919
602 => 1.2431530064916
603 => 1.2458436445916
604 => 1.2233093928529
605 => 1.2594206750758
606 => 1.2596837063432
607 => 1.2189500324769
608 => 1.1940008840398
609 => 1.1883323850215
610 => 1.202493406944
611 => 1.2196875018269
612 => 1.2467977971928
613 => 1.2631799808968
614 => 1.305896027558
615 => 1.3174537650195
616 => 1.3301522144027
617 => 1.3471212588353
618 => 1.3674969474503
619 => 1.3229161007492
620 => 1.3246873808977
621 => 1.2831743137135
622 => 1.2388116478511
623 => 1.2724773813563
624 => 1.3164908495495
625 => 1.3063941113154
626 => 1.3052580220064
627 => 1.3071686090992
628 => 1.2995559981994
629 => 1.2651244412358
630 => 1.2478331288817
701 => 1.2701433333028
702 => 1.2820002140396
703 => 1.3003892020338
704 => 1.2981223711191
705 => 1.345490429359
706 => 1.3638962244552
707 => 1.3591872344412
708 => 1.360053801932
709 => 1.3933766147785
710 => 1.4304384360229
711 => 1.4651517223563
712 => 1.500463568185
713 => 1.4578937597937
714 => 1.4362794364334
715 => 1.4585799009171
716 => 1.4467469605603
717 => 1.5147425457288
718 => 1.519450412518
719 => 1.5874410808317
720 => 1.6519723212397
721 => 1.6114414053367
722 => 1.6496602334807
723 => 1.6909970121452
724 => 1.7707423648396
725 => 1.7438869355275
726 => 1.7233160975526
727 => 1.7038767550639
728 => 1.7443269408741
729 => 1.7963654587115
730 => 1.807574057035
731 => 1.8257362683331
801 => 1.8066409239227
802 => 1.8296391629818
803 => 1.9108330527989
804 => 1.888893747052
805 => 1.8577364059721
806 => 1.9218311840386
807 => 1.9450268350587
808 => 2.1078260615748
809 => 2.3133668099519
810 => 2.2282715904704
811 => 2.1754502417327
812 => 2.1878645116252
813 => 2.2629210349391
814 => 2.2870268080526
815 => 2.2214990069719
816 => 2.2446445341027
817 => 2.3721786642112
818 => 2.4405966332297
819 => 2.3476758415435
820 => 2.0913110625732
821 => 1.8549310283077
822 => 1.9176296577266
823 => 1.9105215789155
824 => 2.0475410915103
825 => 1.8883705018658
826 => 1.8910505263796
827 => 2.0309034573888
828 => 1.9935930930818
829 => 1.9331550812548
830 => 1.8553722926787
831 => 1.7115836139587
901 => 1.5842259713724
902 => 1.8340036371975
903 => 1.8232327700559
904 => 1.8076349582818
905 => 1.8423462005256
906 => 2.0108941399033
907 => 2.0070085643642
908 => 1.9822905152225
909 => 2.0010389376416
910 => 1.9298683921575
911 => 1.9482106622519
912 => 1.8548935845025
913 => 1.8970768009107
914 => 1.9330254084255
915 => 1.9402426236124
916 => 1.9565033779485
917 => 1.8175570125043
918 => 1.8799398513378
919 => 1.9165839246709
920 => 1.751024668229
921 => 1.9133113504846
922 => 1.8151382654097
923 => 1.781816845825
924 => 1.8266797475326
925 => 1.8091966311065
926 => 1.7941656742464
927 => 1.7857781420539
928 => 1.8187205057302
929 => 1.81718370509
930 => 1.7632836042784
1001 => 1.6929731200188
1002 => 1.7165716263993
1003 => 1.7079980677941
1004 => 1.6769263853977
1005 => 1.6978649477236
1006 => 1.6056621160042
1007 => 1.4470319363171
1008 => 1.5518278919922
1009 => 1.5477933616948
1010 => 1.5457589685675
1011 => 1.6245102329098
1012 => 1.6169401159441
1013 => 1.6032002795245
1014 => 1.6766740425269
1015 => 1.6498551306695
1016 => 1.7325046976839
1017 => 1.7869430479584
1018 => 1.7731357214326
1019 => 1.8243352529891
1020 => 1.717115288324
1021 => 1.7527294596674
1022 => 1.7600694910222
1023 => 1.6757673876965
1024 => 1.6181786807009
1025 => 1.6143381705036
1026 => 1.5144872887859
1027 => 1.5678268238313
1028 => 1.6147634073314
1029 => 1.5922844262609
1030 => 1.5851682523944
1031 => 1.6215232413684
1101 => 1.6243483353711
1102 => 1.5599358927194
1103 => 1.5733292792235
1104 => 1.6291819274107
1105 => 1.5719219357923
1106 => 1.4606751254444
1107 => 1.4330843783706
1108 => 1.4294032641126
1109 => 1.3545749697988
1110 => 1.4349281240204
1111 => 1.399851818872
1112 => 1.5106574465571
1113 => 1.4473658662859
1114 => 1.4446374927597
1115 => 1.4405131560094
1116 => 1.3761053519756
1117 => 1.3902065677295
1118 => 1.4370811565714
1119 => 1.4538065379502
1120 => 1.4520619436453
1121 => 1.4368514455137
1122 => 1.443814733668
1123 => 1.4213835563525
1124 => 1.4134626407778
1125 => 1.3884620524047
1126 => 1.351718094085
1127 => 1.3568275668531
1128 => 1.2840281708421
1129 => 1.2443631961388
1130 => 1.233384453917
1201 => 1.2187032209846
1202 => 1.2350427382419
1203 => 1.2838219392999
1204 => 1.2249838737392
1205 => 1.1241101373457
1206 => 1.1301728207835
1207 => 1.1437938704412
1208 => 1.1184111345163
1209 => 1.094388505175
1210 => 1.1152742323697
1211 => 1.0725327004649
1212 => 1.1489589803718
1213 => 1.1468918636825
1214 => 1.1753788546624
1215 => 1.193192354734
1216 => 1.152138004258
1217 => 1.1418129461361
1218 => 1.1476945684901
1219 => 1.0504844524545
1220 => 1.1674347142668
1221 => 1.1684461049875
1222 => 1.1597859636044
1223 => 1.2220583675852
1224 => 1.3534725632346
1225 => 1.3040292567076
1226 => 1.2848833139884
1227 => 1.2484868628837
1228 => 1.2969829729733
1229 => 1.2932592283756
1230 => 1.2764190431165
1231 => 1.2662340465273
]
'min_raw' => 0.95117129687423
'max_raw' => 2.4405966332297
'avg_raw' => 1.6958839650519
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$0.951171'
'max' => '$2.44'
'avg' => '$1.69'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 0.58490926341198
'max_diff' => 1.418611981672
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.029856180129786
]
1 => [
'year' => 2028
'avg' => 0.051241872413734
]
2 => [
'year' => 2029
'avg' => 0.13998355998538
]
3 => [
'year' => 2030
'avg' => 0.10799710805895
]
4 => [
'year' => 2031
'avg' => 0.10606654404815
]
5 => [
'year' => 2032
'avg' => 0.1859680320863
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.029856180129786
'min' => '$0.029856'
'max_raw' => 0.1859680320863
'max' => '$0.185968'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.1859680320863
]
1 => [
'year' => 2033
'avg' => 0.47832890139319
]
2 => [
'year' => 2034
'avg' => 0.30318784511434
]
3 => [
'year' => 2035
'avg' => 0.35761075858795
]
4 => [
'year' => 2036
'avg' => 0.69412334250996
]
5 => [
'year' => 2037
'avg' => 1.6958839650519
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.1859680320863
'min' => '$0.185968'
'max_raw' => 1.6958839650519
'max' => '$1.69'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 1.6958839650519
]
]
]
]
'prediction_2025_max_price' => '$0.051048'
'last_price' => 0.04949809
'sma_50day_nextmonth' => '$0.044567'
'sma_200day_nextmonth' => '$0.073973'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'increase'
'sma_200day_direction_label' => 'aumentar'
'sma_200day_date_nextmonth' => '4 de fev. de 2026'
'sma_50day_date_nextmonth' => '4 de fev. de 2026'
'daily_sma3' => '$0.046978'
'daily_sma3_action' => 'BUY'
'daily_sma5' => '$0.045959'
'daily_sma5_action' => 'BUY'
'daily_sma10' => '$0.044298'
'daily_sma10_action' => 'BUY'
'daily_sma21' => '$0.043151'
'daily_sma21_action' => 'BUY'
'daily_sma50' => '$0.050474'
'daily_sma50_action' => 'SELL'
'daily_sma100' => '$0.060444'
'daily_sma100_action' => 'SELL'
'daily_sma200' => '$0.081676'
'daily_sma200_action' => 'SELL'
'daily_ema3' => '$0.047485'
'daily_ema3_action' => 'BUY'
'daily_ema5' => '$0.046394'
'daily_ema5_action' => 'BUY'
'daily_ema10' => '$0.045064'
'daily_ema10_action' => 'BUY'
'daily_ema21' => '$0.045173'
'daily_ema21_action' => 'BUY'
'daily_ema50' => '$0.050171'
'daily_ema50_action' => 'SELL'
'daily_ema100' => '$0.060695'
'daily_ema100_action' => 'SELL'
'daily_ema200' => '$0.082359'
'daily_ema200_action' => 'SELL'
'weekly_sma21' => '$0.0709098'
'weekly_sma21_action' => 'SELL'
'weekly_sma50' => '$0.101288'
'weekly_sma50_action' => 'SELL'
'weekly_sma100' => '$0.2335032'
'weekly_sma100_action' => 'SELL'
'weekly_sma200' => '$0.347589'
'weekly_sma200_action' => 'SELL'
'weekly_ema3' => '$0.047493'
'weekly_ema3_action' => 'BUY'
'weekly_ema5' => '$0.048244'
'weekly_ema5_action' => 'BUY'
'weekly_ema10' => '$0.053576'
'weekly_ema10_action' => 'SELL'
'weekly_ema21' => '$0.068256'
'weekly_ema21_action' => 'SELL'
'weekly_ema50' => '$0.115682'
'weekly_ema50_action' => 'SELL'
'weekly_ema100' => '$0.235596'
'weekly_ema100_action' => 'SELL'
'weekly_ema200' => '$0.502534'
'weekly_ema200_action' => 'SELL'
'rsi_14' => '60.66'
'rsi_14_action' => 'NEUTRAL'
'stoch_rsi_14' => 114.43
'stoch_rsi_14_action' => 'SELL'
'momentum_10' => 0.01
'momentum_10_action' => 'BUY'
'vwma_10' => '0.045497'
'vwma_10_action' => 'BUY'
'hma_9' => '0.047739'
'hma_9_action' => 'BUY'
'stochastic_fast_14' => 100
'stochastic_fast_14_action' => 'SELL'
'cci_20' => 281.02
'cci_20_action' => 'SELL'
'adx_14' => 23.3
'adx_14_action' => 'NEUTRAL'
'ao_5_34' => '-0.000016'
'ao_5_34_action' => 'NEUTRAL'
'macd_12_26' => 0
'macd_12_26_action' => 'BUY'
'williams_percent_r_14' => -0
'williams_percent_r_14_action' => 'SELL'
'ultimate_oscillator' => 81.47
'ultimate_oscillator_action' => 'SELL'
'ichimoku_cloud' => '-0.002953'
'ichimoku_cloud_action' => 'SELL'
'sell_signals' => 16
'buy_signals' => 18
'sell_pct' => 47.06
'buy_pct' => 52.94
'overall_action' => 'bullish'
'overall_action_label' => 'Altista'
'overall_action_dir' => 1
'last_updated' => 1767705543
'last_updated_date' => '6 de janeiro de 2026'
]
Previsão de preço de Biconomy para 2026
A previsão de preço para Biconomy em 2026 sugere que o preço médio poderia variar entre $0.0171015 na extremidade inferior e $0.051048 na extremidade superior. No mercado de criptomoedas, comparado ao preço médio de hoje, Biconomy poderia potencialmente ganhar 3.13% até 2026 se BICO atingir a meta de preço prevista.
Previsão de preço de Biconomy 2027-2032
A previsão de preço de BICO para 2027-2032 está atualmente dentro de uma faixa de preço entre $0.029856 na extremidade inferior e $0.185968 na extremidade superior. Considerando a volatilidade de preços no mercado, se Biconomy atingir a meta de preço superior, poderia ganhar 275.71% até 2032 em comparação com o preço de hoje.
| Previsão de Preço de Biconomy | Potencial Mínimo ($) | Preço Médio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2027 | $0.016463 | $0.029856 | $0.043249 |
| 2028 | $0.029711 | $0.051241 | $0.072772 |
| 2029 | $0.065267 | $0.139983 | $0.214699 |
| 2030 | $0.055507 | $0.107997 | $0.160487 |
| 2031 | $0.065626 | $0.106066 | $0.1465065 |
| 2032 | $0.100173 | $0.185968 | $0.271762 |
Previsão de preço de Biconomy 2032-2037
A previsão de preço de Biconomy para 2032-2037 é atualmente estimada entre $0.185968 na extremidade inferior e $1.69 na extremidade superior. Comparado ao preço atual, Biconomy poderia potencialmente ganhar 3326.16% até 2037 se atingir a meta de preço superior. Por favor, note que esta informação é apenas para fins gerais e não deve ser considerada como aconselhamento de investimento a longo prazo.
| Previsão de Preço de Biconomy | Potencial Mínimo ($) | Preço Médio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2032 | $0.100173 | $0.185968 | $0.271762 |
| 2033 | $0.232782 | $0.478328 | $0.723875 |
| 2034 | $0.187145 | $0.303187 | $0.419229 |
| 2035 | $0.221264 | $0.35761 | $0.493957 |
| 2036 | $0.366262 | $0.694123 | $1.02 |
| 2037 | $0.951171 | $1.69 | $2.44 |
Biconomy Histograma de preços potenciais
Previsão de preço de Biconomy baseada na análise técnica
Em 6 de janeiro de 2026, o sentimento geral de previsão de preço para Biconomy é Altista, com 18 indicadores técnicos mostrando sinais de alta e 16 indicando sinais de baixa. A previsão de preço de BICO foi atualizada pela última vez em 6 de janeiro de 2026.
Médias Móveis Simples de 50 e 200 dias e Índice de Força Relativa de 14 dias - RSI (14) de Biconomy
De acordo com nossos indicadores técnicos, o SMA de 200 dias de Biconomy está projetado para aumentar no próximo mês, alcançando $0.073973 até 4 de fev. de 2026. O SMA de 50 dias de curto prazo para Biconomy é esperado para alcançar $0.044567 até 4 de fev. de 2026.
O oscilador de momentum Índice de Força Relativa (RSI) é uma ferramenta comumente usada para identificar se uma criptomoeda está sobrevendida (abaixo de 30) ou sobrecomprada (acima de 70). No momento, o RSI está em 60.66, sugerindo que o mercado de BICO está em um estado NEUTRAL.
Médias Móveis e Osciladores Populares de BICO para Sábado, 19 de Outubro de 2024
Médias móveis (MA) são indicadores amplamente utilizados nos mercados financeiros, projetados para suavizar movimentos de preços ao longo de um período definido. Como indicadores atrasados, eles se baseiam em dados históricos de preços. A tabela abaixo destaca dois tipos: a média móvel simples (SMA) e a média móvel exponencial (EMA).
Média Móvel Simples Diária (SMA)
| Período | Valor | Ação |
|---|---|---|
| SMA 3 | $0.046978 | BUY |
| SMA 5 | $0.045959 | BUY |
| SMA 10 | $0.044298 | BUY |
| SMA 21 | $0.043151 | BUY |
| SMA 50 | $0.050474 | SELL |
| SMA 100 | $0.060444 | SELL |
| SMA 200 | $0.081676 | SELL |
Média Móvel Exponencial Diária (EMA)
| Período | Valor | Ação |
|---|---|---|
| EMA 3 | $0.047485 | BUY |
| EMA 5 | $0.046394 | BUY |
| EMA 10 | $0.045064 | BUY |
| EMA 21 | $0.045173 | BUY |
| EMA 50 | $0.050171 | SELL |
| EMA 100 | $0.060695 | SELL |
| EMA 200 | $0.082359 | SELL |
Média Móvel Simples Semanal (SMA)
| Período | Valor | Ação |
|---|---|---|
| SMA 21 | $0.0709098 | SELL |
| SMA 50 | $0.101288 | SELL |
| SMA 100 | $0.2335032 | SELL |
| SMA 200 | $0.347589 | SELL |
Média Móvel Exponencial Semanal (EMA)
| Período | Valor | Ação |
|---|---|---|
| EMA 21 | $0.068256 | SELL |
| EMA 50 | $0.115682 | SELL |
| EMA 100 | $0.235596 | SELL |
| EMA 200 | $0.502534 | SELL |
Osciladores de Biconomy
Um oscilador é uma ferramenta de análise técnica que define limites altos e baixos entre dois extremos, criando um indicador de tendência que flutua dentro desses limites. Os traders usam esse indicador para identificar condições de sobrecompra ou sobrevenda de curto prazo.
| Período | Valor | Ação |
|---|---|---|
| RSI (14) | 60.66 | NEUTRAL |
| Stoch RSI (14) | 114.43 | SELL |
| Estocástico Rápido (14) | 100 | SELL |
| Índice de Canal de Commodities (20) | 281.02 | SELL |
| Índice Direcional Médio (14) | 23.3 | NEUTRAL |
| Oscilador Impressionante (5, 34) | -0.000016 | NEUTRAL |
| Momentum (10) | 0.01 | BUY |
| MACD (12, 26) | 0 | BUY |
| Williams Percent Range (14) | -0 | SELL |
| Oscilador Ultimate (7, 14, 28) | 81.47 | SELL |
| VWMA (10) | 0.045497 | BUY |
| Média Móvel de Hull (9) | 0.047739 | BUY |
| Nuvem Ichimoku B/L (9, 26, 52, 26) | -0.002953 | SELL |
Previsão do preço de Biconomy com base nos fluxos financeiros mundiais
Definições dos fluxos financeiros mundiais, usadas na previsão do preço do Biconomy
M0: o total de todas as moedas físicas, mais as contas no Banco Central que podem ser trocadas por moedas físicas.
M1: o valor de M0, mais o valor em contas de demanda, incluindo contas 'correntes'.
M2: o valor de M1, mais a maioria das contas de poupança, do mercado de moedas e de certificados de depósito (CD) de menos de US$ 100.000.
Previsões de preço de Biconomy por empresas de Internet ou nichos tecnológicos
| Comparação | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Facebook stock | $0.069553 | $0.097733 | $0.137332 | $0.192974 | $0.271161 | $0.381027 |
| Amazon.com stock | $0.10328 | $0.2155013 | $0.449656 | $0.938234 | $1.95 | $4.08 |
| Apple stock | $0.0702092 | $0.099586 | $0.141255 | $0.20036 | $0.284196 | $0.40311 |
| Netflix stock | $0.07810022 | $0.123229 | $0.194437 | $0.306791 | $0.484069 | $0.763785 |
| Google stock | $0.064099 | $0.0830089 | $0.107496 | $0.1392071 | $0.180272 | $0.233452 |
| Tesla stock | $0.1122084 | $0.254368 | $0.576633 | $1.30 | $2.96 | $6.71 |
| Kodak stock | $0.037118 | $0.027834 | $0.020873 | $0.015652 | $0.011737 | $0.0088021 |
| Nokia stock | $0.03279 | $0.021722 | $0.01439 | $0.009532 | $0.006315 | $0.004183 |
Este cálculo mostra quanto a criptomoeda pode custar, se assumirmos que sua capitalização se comportará da mesma forma que a de algumas empresas de Internet ou nichos tecnológicos. Se você extrapolar os dados, poderá obter uma imagem em potencial do preço futuro para 2024, 2025, 2026, 2027, 2028, 2029 e 2030.
Visão geral da previsão para Biconomy
Você pode fazer perguntas como: 'Devo investir em Biconomy agora?', 'Devo comprar BICO hoje?', 'Biconomy será um bom ou mau investimento no curto ou no longo prazo?'.
Atualizamos a previsão para Biconomy regularmente com novos valores. Veja nossas previsões semelhantes. Fazemos previsões de preços futuros para uma enorme quantidade de moedas digitais, como Biconomy, com métodos de análise técnica.
Se você estiver tentando encontrar criptomoedas com bom retorno, você deve explorar o máximo de fontes de informações disponíveis sobre Biconomy para poder tomar sozinho uma decisão de tão grande responsabilidade sobre o seu investimento.
O preço de Biconomy é de $0.04949 USD hoje, mas o preço pode tanto subir quanto descer e seu investimento pode ser perdido, porque criptomoedas são ativos de alto risco
Previsão de curto prazo para Biconomy
com base no histórico de preços de 4 horas
Previsão de longo prazo para Biconomy
com base no histórico de preços de 1 mês
Previsão do preço de Biconomy com base no padrão de crescimento do Bitcoin
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| Se Biconomy tiver 1% da média anterior do crescimento anual do Bitcoin | $0.050784 | $0.0521047 | $0.053459 | $0.054848 |
| Se Biconomy tiver 2% da média anterior do crescimento anual do Bitcoin | $0.052071 | $0.054778 | $0.057626 | $0.060621 |
| Se Biconomy tiver 5% da média anterior do crescimento anual do Bitcoin | $0.055931 | $0.06320031 | $0.071414 | $0.080695 |
| Se Biconomy tiver 10% da média anterior do crescimento anual do Bitcoin | $0.062364 | $0.078574 | $0.098998 | $0.124731 |
| Se Biconomy tiver 20% da média anterior do crescimento anual do Bitcoin | $0.07523 | $0.114339 | $0.173781 | $0.264123 |
| Se Biconomy tiver 50% da média anterior do crescimento anual do Bitcoin | $0.113828 | $0.261767 | $0.601976 | $1.38 |
| Se Biconomy tiver 100% da média anterior do crescimento anual do Bitcoin | $0.178159 | $0.641253 | $2.30 | $8.30 |
Perguntas Frequentes sobre Biconomy
BICO é um bom investimento?
A decisão de adquirir Biconomy depende inteiramente da sua tolerância individual ao risco. Como você pode perceber, o valor de Biconomy experimentou uma escalada de 2.2586% nas últimas 24 horas, e Biconomy registrou um declínio de -75.89% durante os últimos 30 dias. Consequentemente, a decisão de investir ou não em Biconomy dependerá de quão alinhado esse investimento está com suas aspirações de negociação.
Biconomy pode subir?
Parece que o valor médio de Biconomy pode potencialmente subir para $0.051048 até o final deste ano. Observando as perspectivas de Biconomy em um horizonte de cinco anos mais longo, a moeda digital poderia potencialmente crescer até $0.160487. No entanto, dada a imprevisibilidade do mercado, é vital conduzir uma pesquisa aprofundada antes de investir quaisquer fundos em um projeto, rede ou ativo específico.
Qual será o preço de Biconomy na próxima semana?
Com base na nossa nova previsão experimental de Biconomy, o preço de Biconomy aumentará 0.86% na próxima semana e atingirá $0.049921 até 13 de janeiro de 2026.
Qual será o preço de Biconomy no próximo mês?
Com base na nossa nova previsão experimental de Biconomy, o preço de Biconomy diminuirá -11.62% no próximo mês e atingirá $0.043747 até 5 de fevereiro de 2026.
Até onde o preço de Biconomy pode subir este ano em 2026?
De acordo com nossa previsão mais recente sobre o valor de Biconomy em 2026, espera-se que BICO fluctue dentro do intervalo de $0.0171015 e $0.051048. No entanto, é crucial lembrar que o mercado de criptomoedas é excepcionalmente instável, e essa previsão de preço de Biconomy não considera flutuações repentinas e extremas de preço.
Onde estará Biconomy em 5 anos?
O futuro de Biconomy parece seguir uma tendência de alta, com um preço máximo de $0.160487 projetada após um período de cinco anos. Com base na previsão de Biconomy para 2030, o valor de Biconomy pode potencialmente atingir seu pico mais alto de aproximadamente $0.160487, enquanto seu pico mais baixo está previsto para cerca de $0.055507.
Quanto será Biconomy em 2026?
Com base na nossa nova simulação experimental de previsão de preços de Biconomy, espera-se que o valor de BICO em 2026 aumente 3.13% para $0.051048 se o melhor cenário ocorrer. O preço ficará entre $0.051048 e $0.0171015 durante 2026.
Quanto será Biconomy em 2027?
De acordo com nossa última simulação experimental para previsão de preços de Biconomy, o valor de BICO pode diminuir -12.62% para $0.043249 em 2027, assumindo as condições mais favoráveis. O preço está projetado para flutuar entre $0.043249 e $0.016463 ao longo do ano.
Quanto será Biconomy em 2028?
Nosso novo modelo experimental de previsão de preços de Biconomy sugere que o valor de BICO em 2028 pode aumentar 47.02%, alcançando $0.072772 no melhor cenário. O preço é esperado para variar entre $0.072772 e $0.029711 durante o ano.
Quanto será Biconomy em 2029?
Com base no nosso modelo de previsão experimental, o valor de Biconomy pode experimentar um 333.75% crescimento em 2029, potencialmente alcançando $0.214699 sob condições ótimas. A faixa de preço prevista para 2029 está entre $0.214699 e $0.065267.
Quanto será Biconomy em 2030?
Usando nossa nova simulação experimental para previsões de preços de Biconomy, espera-se que o valor de BICO em 2030 aumente 224.23%, alcançando $0.160487 no melhor cenário. O preço está previsto para variar entre $0.160487 e $0.055507 ao longo de 2030.
Quanto será Biconomy em 2031?
Nossa simulação experimental indica que o preço de Biconomy poderia aumentar 195.98% em 2031, potencialmente atingindo $0.1465065 sob condições ideais. O preço provavelmente oscilará entre $0.1465065 e $0.065626 durante o ano.
Quanto será Biconomy em 2032?
Com base nos achados da nossa mais recente previsão experimental de preços de Biconomy, BICO poderia ver um 449.04% aumento em valor, atingindo $0.271762 se o cenário mais positivo se desenrolar em 2032. O preço é esperado para permanecer dentro de uma faixa de $0.271762 e $0.100173 ao longo do ano.
Quanto será Biconomy em 2033?
De acordo com nossa previsão experimental de preços de Biconomy, espera-se que o valor de BICO seja aumentar 1362.43% em 2033, com o preço potencial mais alto sendo $0.723875. Ao longo do ano, o preço de BICO poderia variar entre $0.723875 e $0.232782.
Quanto será Biconomy em 2034?
Os resultados da nossa nova simulação de previsão de preços de Biconomy sugerem que BICO pode aumentar 746.96% em 2034, atingindo potencialmente $0.419229 nas melhores circunstâncias. A faixa de preço prevista para o ano é entre $0.419229 e $0.187145.
Quanto será Biconomy em 2035?
Com base em nossa previsão experimental para o preço de Biconomy, BICO poderia aumentar 897.93%, com o valor potencialmente atingindo $0.493957 em 2035. A faixa de preço esperada para o ano está entre $0.493957 e $0.221264.
Quanto será Biconomy em 2036?
Nossa recente simulação de previsão de preços de Biconomy sugere que o valor de BICO pode aumentar 1964.7% em 2036, possivelmente atingindo $1.02 se as condições forem ideais. A faixa de preço esperada para 2036 está entre $1.02 e $0.366262.
Quanto será Biconomy em 2037?
De acordo com a simulação experimental, o valor de Biconomy poderia aumentar 4830.69% em 2037, com um pico de $2.44 sob condições favoráveis. O preço é esperado para cair entre $2.44 e $0.951171 ao longo do ano.
Previsões relacionadas
Previsão de Preço do Celo
Previsão de Preço do Fasttoken
Previsão de Preço do Rocket Pool
Previsão de Preço do BitClout
Previsão de Preço do EthereumPoW
Previsão de Preço do 0x
Previsão de Preço do Wootrade Network
Previsão de Preço do MX Token
Previsão de Preço do Ravencoin
Previsão de Preço do Holo
Previsão de Preço do Siacoin
Previsão de Preço do Frax Share
Previsão de Preço do Saga
Previsão de Preço do Golem
Previsão de Preço do APENFT
Previsão de Preço do Qtum
Previsão de Preço do Jeo Boden
Previsão de Preço do Polymesh
Previsão de Preço do Trust Wallet Token
Previsão de Preço do AMP Token
Previsão de Preço do Raydium
Previsão de Preço do TON Crystal
Previsão de Preço do SuperFarm
Previsão de Preço do Livepeer
Previsão de Preço do Pixels
Como ler e prever os movimentos de preço de Biconomy?
Traders de Biconomy utilizam indicadores e padrões de gráfico para prever a direção do mercado. Eles também identificam níveis-chave de suporte e resistência para avaliar quando uma tendência de baixa pode desacelerar ou uma tendência de alta pode estagnar.
Indicadores de Previsão de Preço de Biconomy
Médias móveis são ferramentas populares para a previsão de preço de Biconomy. Uma média móvel simples (SMA) calcula o preço médio de fechamento de BICO em um período específico, como uma SMA de 12 dias. Uma média móvel exponencial (EMA) dá mais peso aos preços recentes, reagindo mais rapidamente às mudanças de preço.
Médias móveis comumente usadas no mercado de criptomoedas incluem as de 50 dias, 100 dias e 200 dias, que ajudam a identificar níveis-chave de resistência e suporte. Um movimento de preço de BICO acima dessas médias é visto como altista, enquanto uma queda abaixo indica fraqueza.
Traders também usam RSI e níveis de retração de Fibonacci para avaliar a direção futura de BICO.
Como ler gráficos de Biconomy e prever movimentos de preço?
A maioria dos traders prefere gráficos de velas em vez de gráficos de linha simples porque eles fornecem informações mais detalhadas. Velas podem representar a ação de preço de Biconomy em diferentes períodos de tempo, como 5 minutos para tendências de curto prazo e semanal para tendências de longo prazo. Opções populares incluem gráficos de 1 hora, 4 horas e 1 dia.
Por exemplo, um gráfico de velas de 1 hora mostra os preços de abertura, fechamento, máximo e mínimo de BICO dentro de cada hora. A cor da vela é crucial: verde indica que o preço fechou mais alto do que abriu, enquanto vermelho significa o oposto. Alguns gráficos usam velas vazias e preenchidas para transmitir a mesma informação.
O que afeta o preço de Biconomy?
A ação de preço de Biconomy é impulsionada pela oferta e demanda, influenciada por fatores como reduções pela metade das recompensas de bloco, hard forks e atualizações de protocolo. Eventos do mundo real, como regulamentações, adoção por empresas e governos e hacks de exchanges de criptomoedas, também impactam o preço de BICO. A capitalização de mercado de Biconomy pode mudar rapidamente.
Traders frequentemente monitoram a atividade de "baleias" de BICO, grandes detentores de Biconomy, pois suas ações podem influenciar significativamente os movimentos de preço no relativamente pequeno mercado de Biconomy.
Padrões de previsão de preço altistas e baixistas
Traders frequentemente identificam padrões de velas para ganhar vantagem em previsões de preço de criptomoedas. Certas formações indicam tendências altistas, enquanto outras sugerem movimentos baixistas.
Padrões de velas altistas comumente seguidos:
- Martelo
- Engolfo de Alta
- Linha de Perfuração
- Estrela da Manhã
- Três Soldados Brancos
Padrões de velas baixistas comuns:
- Harami de Baixa
- Nuvem Negra
- Estrela da Noite
- Estrela Cadente
- Homem Enforcado


