Previsão de Preço Biconomy - Projeção BICO
Previsão de Preço Biconomy até $0.050653 até 2026
| Ano | Preço Mínimo | Preço Máximo |
|---|---|---|
| 2026 | $0.016969 | $0.050653 |
| 2027 | $0.016335 | $0.042913 |
| 2028 | $0.029481 | $0.0722084 |
| 2029 | $0.064761 | $0.213036 |
| 2030 | $0.055076 | $0.159243 |
| 2031 | $0.065117 | $0.145371 |
| 2032 | $0.099397 | $0.269656 |
| 2033 | $0.230978 | $0.718266 |
| 2034 | $0.185695 | $0.415981 |
| 2035 | $0.219549 | $0.490129 |
Calculadora de lucro do investimento
Se você abrir um short de $10,000.00 em Biconomy hoje e fechar em Apr 06, 2026, nossa previsão mostra que pode lucrar cerca de $3,954.54, com um retorno de 39.55% nos próximos 90 dias.
Previsão de preço de longo prazo de Biconomy para os anos 2027, 2028, 2029, 2030, 2031, 2032 e 2037
[
'name' => 'Biconomy'
'name_with_ticker' => 'Biconomy <small>BICO</small>'
'name_lang' => 'Biconomy'
'name_lang_with_ticker' => 'Biconomy <small>BICO</small>'
'name_with_lang' => 'Biconomy'
'name_with_lang_with_ticker' => 'Biconomy <small>BICO</small>'
'image' => '/uploads/coins/biconomy.jpg?1717107179'
'price_for_sd' => 0.04911
'ticker' => 'BICO'
'marketcap' => '$58.6M'
'low24h' => '$0.04622'
'high24h' => '$0.05115'
'volume24h' => '$23.77M'
'current_supply' => '1000M'
'max_supply' => '1B'
'algo' => null
'proof' => null
'ico_price_and_roi' => '—'
'price' => '$0.04911'
'change_24h_pct' => '6.2493%'
'ath_price' => '$21.45'
'ath_days' => 1496
'ath_exchange' => null
'ath_pair' => null
'ath_date' => '2 de dez. de 2021'
'ath_pct' => '-99.77%'
'fdv' => '$58.6M'
'new_prediction' => true
'change_24h_pct_is_increased' => true
'change_30d_pct' => '-76.07%'
'change_30d_pct_is_increased' => false
'max_price' => '$2.42'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.049534'
'next_week_prediction_price_date' => '13 de janeiro de 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.043408'
'next_month_prediction_price_date' => '5 de fevereiro de 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.016969'
'current_year_max_price_prediction' => '$0.050653'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.055076'
'grand_prediction_max_price' => '$0.159243'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.050045234698752
107 => 0.050232085438697
108 => 0.050653069696628
109 => 0.047055805305336
110 => 0.048670871406892
111 => 0.049619571430328
112 => 0.045333310210444
113 => 0.049534845827391
114 => 0.046993184935475
115 => 0.046130507054292
116 => 0.047291989172136
117 => 0.046839358461234
118 => 0.046450213155367
119 => 0.046233063388329
120 => 0.047085927667569
121 => 0.04704614052955
122 => 0.045650689034889
123 => 0.043830379445983
124 => 0.044441335093645
125 => 0.04421936917911
126 => 0.043414936070661
127 => 0.043957026858132
128 => 0.04156993337598
129 => 0.03746306311026
130 => 0.040176187404633
131 => 0.040071735070611
201 => 0.04001906546726
202 => 0.042057903389234
203 => 0.04186191616703
204 => 0.041506197439618
205 => 0.043408403017274
206 => 0.042714072393154
207 => 0.044853835771822
208 => 0.046263222324231
209 => 0.045905756305662
210 => 0.047231291170359
211 => 0.04445541027781
212 => 0.045377446561304
213 => 0.045567476961445
214 => 0.043384930095717
215 => 0.041893982100398
216 => 0.041794552867161
217 => 0.039209454508566
218 => 0.040590393185543
219 => 0.041805562074157
220 => 0.041223590477426
221 => 0.041039355655808
222 => 0.041980571403797
223 => 0.042053711928384
224 => 0.040386100216726
225 => 0.040732849497974
226 => 0.042178851643052
227 => 0.040696413953978
228 => 0.037816279678928
301 => 0.037101966557744
302 => 0.037006664019975
303 => 0.035069390182435
304 => 0.037149700376122
305 => 0.036241589227731
306 => 0.039110301464657
307 => 0.037471708420137
308 => 0.037401071949002
309 => 0.037294294562765
310 => 0.03562680294302
311 => 0.035991877633123
312 => 0.037205441505472
313 => 0.037638454766901
314 => 0.037593287936161
315 => 0.03719949438044
316 => 0.0373797710537
317 => 0.036799037076573
318 => 0.036593967822317
319 => 0.035946712847143
320 => 0.034995426842387
321 => 0.035127708995925
322 => 0.033242962502981
323 => 0.032216052582558
324 => 0.03193181745104
325 => 0.03155172635417
326 => 0.031974749751815
327 => 0.033237623252972
328 => 0.031714329877018
329 => 0.029102750230549
330 => 0.029259710617217
331 => 0.029612354004103
401 => 0.028955205385611
402 => 0.028333269368511
403 => 0.028873992276115
404 => 0.027767431552061
405 => 0.029746076580949
406 => 0.029692559778006
407 => 0.030430076286188
408 => 0.030891260494116
409 => 0.029828380205002
410 => 0.029561068686623
411 => 0.029713341476123
412 => 0.027196611457527
413 => 0.030224405750849
414 => 0.03025059024163
415 => 0.030026382734501
416 => 0.031638589723034
417 => 0.035040849328809
418 => 0.033760782409541
419 => 0.033265101808173
420 => 0.032322812622632
421 => 0.03357835701477
422 => 0.033481950794997
423 => 0.033045965308213
424 => 0.032782279925448
425 => 0.033268128328227
426 => 0.032722077931697
427 => 0.032623992276019
428 => 0.032029699920855
429 => 0.031817564588641
430 => 0.03166050803402
501 => 0.031487604199442
502 => 0.031868986973571
503 => 0.031004723432311
504 => 0.02996250632635
505 => 0.029875857250935
506 => 0.030115102966421
507 => 0.030009254547067
508 => 0.029875350489426
509 => 0.029619691176788
510 => 0.029543842520026
511 => 0.029790313857967
512 => 0.029512062087603
513 => 0.029922637731934
514 => 0.029810983874862
515 => 0.029187294505561
516 => 0.028409946632032
517 => 0.028403026605415
518 => 0.028235548281169
519 => 0.028022239454707
520 => 0.027962901819031
521 => 0.028828454101036
522 => 0.030620121420987
523 => 0.030268374255115
524 => 0.030522547630957
525 => 0.031772829075462
526 => 0.032170255949396
527 => 0.031888171767849
528 => 0.031502037541954
529 => 0.031519025488229
530 => 0.032838563028893
531 => 0.032920860966727
601 => 0.033128801305311
602 => 0.033396063404325
603 => 0.031933687658985
604 => 0.031450147722133
605 => 0.031221019674277
606 => 0.030515393970597
607 => 0.031276350796241
608 => 0.030832973841358
609 => 0.030892800540486
610 => 0.030853838324194
611 => 0.030875114328903
612 => 0.029745523509338
613 => 0.030157087034442
614 => 0.029472782849899
615 => 0.028556576363545
616 => 0.028553504918139
617 => 0.028777745157685
618 => 0.028644358288682
619 => 0.028285417653883
620 => 0.028336403476904
621 => 0.027889714017435
622 => 0.028390639664857
623 => 0.028405004420027
624 => 0.028212120760165
625 => 0.028983865834438
626 => 0.029300050421052
627 => 0.029173090264162
628 => 0.029291142557995
629 => 0.0302829909379
630 => 0.030444705501204
701 => 0.030516528427959
702 => 0.030420295220821
703 => 0.029309271725618
704 => 0.029358550342067
705 => 0.02899697655144
706 => 0.028691484800068
707 => 0.028703702868029
708 => 0.028860765339382
709 => 0.029546666363374
710 => 0.030990104632291
711 => 0.031044882059457
712 => 0.031111273899152
713 => 0.030841224921246
714 => 0.030759775565489
715 => 0.030867228289595
716 => 0.031409307811022
717 => 0.032803683513285
718 => 0.032310818012883
719 => 0.031910110689148
720 => 0.032261639041983
721 => 0.032207524007434
722 => 0.031750738656398
723 => 0.031737918212965
724 => 0.030861201081217
725 => 0.030537098719493
726 => 0.030266254527395
727 => 0.02997049974019
728 => 0.029795166388545
729 => 0.030064558104255
730 => 0.030126171176987
731 => 0.029537141482426
801 => 0.029456858911597
802 => 0.029937873275265
803 => 0.029726196787837
804 => 0.029943911304481
805 => 0.029994422939862
806 => 0.029986289403184
807 => 0.029765274839421
808 => 0.029906142931614
809 => 0.029572947898777
810 => 0.029210648344841
811 => 0.02897952380149
812 => 0.028777836983195
813 => 0.028889744552092
814 => 0.028490814502488
815 => 0.028363188750745
816 => 0.029858419991612
817 => 0.030962963385685
818 => 0.030946902887288
819 => 0.030849138733721
820 => 0.030703881032254
821 => 0.031398681305405
822 => 0.031156626783209
823 => 0.031332741672439
824 => 0.031377570303266
825 => 0.031513253067261
826 => 0.031561747993062
827 => 0.031415162645401
828 => 0.030923204314758
829 => 0.029697290928791
830 => 0.029126624938333
831 => 0.028938295656288
901 => 0.028945141068002
902 => 0.028756314053663
903 => 0.028811932072019
904 => 0.028736972376635
905 => 0.028595016848276
906 => 0.028880979198236
907 => 0.028913933695145
908 => 0.028847186665669
909 => 0.028862908007388
910 => 0.028310271111354
911 => 0.028352286894295
912 => 0.028118337675771
913 => 0.028074475017597
914 => 0.027483071765457
915 => 0.026435315179017
916 => 0.027015874036097
917 => 0.026314640575673
918 => 0.02604907283879
919 => 0.027306229200939
920 => 0.027180045570269
921 => 0.026964074045268
922 => 0.026644607147381
923 => 0.02652611376738
924 => 0.025806185500943
925 => 0.025763648298294
926 => 0.026120464186839
927 => 0.02595580593156
928 => 0.025724563380192
929 => 0.024887026299817
930 => 0.023945357322478
1001 => 0.023973780389784
1002 => 0.024273307771101
1003 => 0.025144224029052
1004 => 0.024803941980066
1005 => 0.024557063449241
1006 => 0.024510830521558
1007 => 0.025089532406692
1008 => 0.02590851681595
1009 => 0.02629276597703
1010 => 0.02591198672822
1011 => 0.025474568029798
1012 => 0.025501191679168
1013 => 0.02567830689082
1014 => 0.025696919195291
1015 => 0.025412204589987
1016 => 0.025492350083654
1017 => 0.025370601750116
1018 => 0.024623432451917
1019 => 0.024609918528612
1020 => 0.024426551133102
1021 => 0.024420998841241
1022 => 0.024109045158337
1023 => 0.024065400681665
1024 => 0.023445997710025
1025 => 0.023853690621683
1026 => 0.023580231621381
1027 => 0.023168064405469
1028 => 0.023097006622091
1029 => 0.023094870539317
1030 => 0.023518074111156
1031 => 0.023848745241545
1101 => 0.023584988557769
1102 => 0.023524936273582
1103 => 0.024166137559115
1104 => 0.024084538850851
1105 => 0.02401387489575
1106 => 0.0258351857448
1107 => 0.024393476089119
1108 => 0.023764808389332
1109 => 0.022986712730087
1110 => 0.023240064600236
1111 => 0.02329344956179
1112 => 0.021422269763591
1113 => 0.020663132352502
1114 => 0.020402625000506
1115 => 0.020252699336399
1116 => 0.020321022344181
1117 => 0.019637709636263
1118 => 0.020096907076933
1119 => 0.019505216030862
1120 => 0.019406017101459
1121 => 0.020464033988289
1122 => 0.020611250857246
1123 => 0.019983177957578
1124 => 0.020386502434931
1125 => 0.020240251372813
1126 => 0.01951535887559
1127 => 0.019487673314145
1128 => 0.019123947740242
1129 => 0.018554787648233
1130 => 0.01829466621358
1201 => 0.018159192711936
1202 => 0.01821509171904
1203 => 0.01818682747051
1204 => 0.018002384130178
1205 => 0.018197399546876
1206 => 0.017699215743147
1207 => 0.017500834938362
1208 => 0.01741123093124
1209 => 0.01696906413104
1210 => 0.017672748142627
1211 => 0.017811382757687
1212 => 0.017950290525765
1213 => 0.019159387810526
1214 => 0.019098984727053
1215 => 0.019644999184156
1216 => 0.019623782066409
1217 => 0.019468049898395
1218 => 0.018811041498245
1219 => 0.019072913336496
1220 => 0.018266912522277
1221 => 0.018870823135018
1222 => 0.018595223551273
1223 => 0.018777642638526
1224 => 0.01844963667158
1225 => 0.018631168716722
1226 => 0.017844258167923
1227 => 0.017109452169584
1228 => 0.01740515955364
1229 => 0.01772662729835
1230 => 0.018423651277339
1231 => 0.018008509545776
]
'min_raw' => 0.01696906413104
'max_raw' => 0.050653069696628
'avg_raw' => 0.033811066913834
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.016969'
'max' => '$0.050653'
'avg' => '$0.033811'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.03214547586896
'max_diff' => 0.0015385296966282
'year' => 2026
]
1 => [
'items' => [
101 => 0.018157810210693
102 => 0.017657677975851
103 => 0.016625762319662
104 => 0.01663160285021
105 => 0.01647286510801
106 => 0.016335692522659
107 => 0.018056193567554
108 => 0.017842222065525
109 => 0.017501286480939
110 => 0.017957642309149
111 => 0.018078310033468
112 => 0.018081745273941
113 => 0.018414690705954
114 => 0.018592383742703
115 => 0.018623702910596
116 => 0.01914759974163
117 => 0.019323203049027
118 => 0.020046488219882
119 => 0.018577307730007
120 => 0.018547050924639
121 => 0.017964064171521
122 => 0.017594324756037
123 => 0.017989380545625
124 => 0.018339346044706
125 => 0.017974938575102
126 => 0.018022522497571
127 => 0.017533335242812
128 => 0.017708196667988
129 => 0.017858810883728
130 => 0.017775650566491
131 => 0.017651155546582
201 => 0.018310652864735
202 => 0.018273441441454
203 => 0.018887580505897
204 => 0.019366345824135
205 => 0.020224378863956
206 => 0.019328976656629
207 => 0.019296344641292
208 => 0.019615327825546
209 => 0.019323154214363
210 => 0.01950779785114
211 => 0.020194629919491
212 => 0.0202091415988
213 => 0.019966052273141
214 => 0.019951260265582
215 => 0.019997948229681
216 => 0.020271401093679
217 => 0.02017584826064
218 => 0.020286424418135
219 => 0.020424701596283
220 => 0.020996674633415
221 => 0.021134575396262
222 => 0.020799548035892
223 => 0.020829797255391
224 => 0.020704487825906
225 => 0.020583440487146
226 => 0.020855537227134
227 => 0.021352799367538
228 => 0.02134970592557
301 => 0.021465061076749
302 => 0.02153692638028
303 => 0.021228427888909
304 => 0.02102760671483
305 => 0.021104614331555
306 => 0.021227751187706
307 => 0.021064682708702
308 => 0.020058148515622
309 => 0.020363466692149
310 => 0.020312646818279
311 => 0.02024027313798
312 => 0.020547272925434
313 => 0.020517662047003
314 => 0.019630701276799
315 => 0.019687481627571
316 => 0.019634154277992
317 => 0.01980646585423
318 => 0.019313848823768
319 => 0.019465374504512
320 => 0.019560409991009
321 => 0.019616386622653
322 => 0.019818612599687
323 => 0.019794883715365
324 => 0.01981713757892
325 => 0.020116985317183
326 => 0.021633512281996
327 => 0.021716053498662
328 => 0.021309590359764
329 => 0.021471964366623
330 => 0.021160241780746
331 => 0.021369503241005
401 => 0.02151267461745
402 => 0.020865710697569
403 => 0.020827401692995
404 => 0.02051439251712
405 => 0.020682585918489
406 => 0.020414978123377
407 => 0.020480639715774
408 => 0.020297044179157
409 => 0.020627479591561
410 => 0.020996957727102
411 => 0.021090302495273
412 => 0.020844752597664
413 => 0.020666958289268
414 => 0.020354810052811
415 => 0.020873919526716
416 => 0.02102572295646
417 => 0.020873122167924
418 => 0.020837761230827
419 => 0.020770752318925
420 => 0.020851977488259
421 => 0.02102489620238
422 => 0.020943350930108
423 => 0.020997213019087
424 => 0.020791946278245
425 => 0.021228530014746
426 => 0.021921930057907
427 => 0.021924159452428
428 => 0.021842613740597
429 => 0.021809246992242
430 => 0.021892917841189
501 => 0.021938305844385
502 => 0.02220888202727
503 => 0.022499221051736
504 => 0.023854106594079
505 => 0.023473660155451
506 => 0.02467579521112
507 => 0.025626527962453
508 => 0.025911611144073
509 => 0.025649348031183
510 => 0.02475216008916
511 => 0.024708139768463
512 => 0.026048917336824
513 => 0.025670086262259
514 => 0.02562502551137
515 => 0.025145655253251
516 => 0.025429022446961
517 => 0.02536704588495
518 => 0.02526921284982
519 => 0.025809857715889
520 => 0.026821896641469
521 => 0.026664160884076
522 => 0.026546418458334
523 => 0.026030505423036
524 => 0.026341200303633
525 => 0.026230567807621
526 => 0.026705915219607
527 => 0.026424329942981
528 => 0.025667216244278
529 => 0.025787789096276
530 => 0.025769564752256
531 => 0.026144620460808
601 => 0.026032038046555
602 => 0.02574758122899
603 => 0.026818437602444
604 => 0.026748902145968
605 => 0.026847487525233
606 => 0.026890887858039
607 => 0.027542699261955
608 => 0.0278097255385
609 => 0.027870345178229
610 => 0.028123999488394
611 => 0.027864034027919
612 => 0.028904081222054
613 => 0.029595651917717
614 => 0.030398946868633
615 => 0.031572776697249
616 => 0.032014147571341
617 => 0.031934417873494
618 => 0.032824402252816
619 => 0.034423684399216
620 => 0.032257678520508
621 => 0.034538487970261
622 => 0.03381641003168
623 => 0.032104376228934
624 => 0.03199414143559
625 => 0.033153550603931
626 => 0.035725008550314
627 => 0.03508088749998
628 => 0.035726062101603
629 => 0.034973431658343
630 => 0.034936057213168
701 => 0.035689508520876
702 => 0.03744998856983
703 => 0.03661365048918
704 => 0.035414554772057
705 => 0.036299948389585
706 => 0.035532938498771
707 => 0.033804650542218
708 => 0.035080394952752
709 => 0.034227340996537
710 => 0.034476307491803
711 => 0.036269300025567
712 => 0.036053562420235
713 => 0.0363327468583
714 => 0.035839993632645
715 => 0.035379684419832
716 => 0.034520483091105
717 => 0.034266115935782
718 => 0.034336413866342
719 => 0.034266081099619
720 => 0.033785365852664
721 => 0.033681555440854
722 => 0.033508533539797
723 => 0.033562160261789
724 => 0.033236828468461
725 => 0.03385079677945
726 => 0.033964754708239
727 => 0.034411549644269
728 => 0.034457937376712
729 => 0.035702254913826
730 => 0.035016905724291
731 => 0.035476697130833
801 => 0.035435569059708
802 => 0.03214148119278
803 => 0.032595377436859
804 => 0.033301497552159
805 => 0.03298339139734
806 => 0.032533663719802
807 => 0.032170484507317
808 => 0.031620230863422
809 => 0.032394702300519
810 => 0.033413049884446
811 => 0.03448376435197
812 => 0.035770157628709
813 => 0.03548304962461
814 => 0.034459716124458
815 => 0.034505622117729
816 => 0.034789394904789
817 => 0.03442188336207
818 => 0.034313497033445
819 => 0.034774504287622
820 => 0.034777678991216
821 => 0.034354812546064
822 => 0.03388487387602
823 => 0.033882904815833
824 => 0.033799283768568
825 => 0.034988307656886
826 => 0.035642150571587
827 => 0.035717112608037
828 => 0.035637105029267
829 => 0.035667896770949
830 => 0.03528743998533
831 => 0.036157051376299
901 => 0.036955092784306
902 => 0.036741200639292
903 => 0.036420545907356
904 => 0.036165128968545
905 => 0.036681032525775
906 => 0.036658060152479
907 => 0.036948122588803
908 => 0.036934963681209
909 => 0.036837426593674
910 => 0.036741204122648
911 => 0.037122715343769
912 => 0.037012846238969
913 => 0.036902806477102
914 => 0.036682104888435
915 => 0.0367121018998
916 => 0.036391502533425
917 => 0.036243178596911
918 => 0.034012742470626
919 => 0.033416697056079
920 => 0.033604225077119
921 => 0.033665964170808
922 => 0.033406564442544
923 => 0.033778477018552
924 => 0.033720514837534
925 => 0.033946011777132
926 => 0.03380513107921
927 => 0.033810912872194
928 => 0.034225212965851
929 => 0.034345486045599
930 => 0.034284314186516
1001 => 0.034327156859769
1002 => 0.035314448182113
1003 => 0.035174086927875
1004 => 0.035099522809065
1005 => 0.035120177579555
1006 => 0.035372451680179
1007 => 0.035443074654698
1008 => 0.035143840149072
1009 => 0.035284960871779
1010 => 0.035885834998183
1011 => 0.036096106935893
1012 => 0.036767194024811
1013 => 0.036482104301817
1014 => 0.037005398826767
1015 => 0.038613827792212
1016 => 0.039898752144628
1017 => 0.038717082608401
1018 => 0.041076682547484
1019 => 0.042913969564568
1020 => 0.042843451428691
1021 => 0.042523077940048
1022 => 0.0404313755179
1023 => 0.038506559763514
1024 => 0.040116749874052
1025 => 0.040120854579782
1026 => 0.03998253782128
1027 => 0.039123464313452
1028 => 0.039952643925358
1029 => 0.040018461191813
1030 => 0.039981621024822
1031 => 0.039322971380574
1101 => 0.03831733511261
1102 => 0.038513834032217
1103 => 0.038835703271003
1104 => 0.038226337653024
1105 => 0.038031608415315
1106 => 0.038393647116969
1107 => 0.039560211247459
1108 => 0.039339679056036
1109 => 0.039333920069277
1110 => 0.040277450304389
1111 => 0.039602086282618
1112 => 0.03851631251287
1113 => 0.038242140316412
1114 => 0.037269013723508
1115 => 0.037941155727385
1116 => 0.037965344921513
1117 => 0.037597219615114
1118 => 0.03854618385263
1119 => 0.038537438980119
1120 => 0.039438339288953
1121 => 0.04116052231674
1122 => 0.040651188051943
1123 => 0.040058887717396
1124 => 0.040123287186468
1125 => 0.040829590410756
1126 => 0.040402543358017
1127 => 0.04055611245566
1128 => 0.040829357965534
1129 => 0.040994213765946
1130 => 0.040099566973775
1201 => 0.039890982010617
1202 => 0.03946429037937
1203 => 0.039352974497355
1204 => 0.039700505927792
1205 => 0.039608943674339
1206 => 0.037963311913412
1207 => 0.037791334238186
1208 => 0.037796608547958
1209 => 0.03736416250651
1210 => 0.036704578494361
1211 => 0.038437925896574
1212 => 0.038298713841995
1213 => 0.038145034507897
1214 => 0.038163859349442
1215 => 0.038916246708149
1216 => 0.038479824043627
1217 => 0.039640125225527
1218 => 0.039401602184374
1219 => 0.039156961927246
1220 => 0.039123145191786
1221 => 0.039028979564518
1222 => 0.038706050591128
1223 => 0.038316094450736
1224 => 0.038058611629427
1225 => 0.035107057457548
1226 => 0.035654848743448
1227 => 0.036285032685129
1228 => 0.036502569656494
1229 => 0.036130457613874
1230 => 0.03872074384262
1231 => 0.039194014097231
]
'min_raw' => 0.016335692522659
'max_raw' => 0.042913969564568
'avg_raw' => 0.029624831043614
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.016335'
'max' => '$0.042913'
'avg' => '$0.029624'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -0.00063337160838039
'max_diff' => -0.0077391001320598
'year' => 2027
]
2 => [
'items' => [
101 => 0.037760447625359
102 => 0.037492285870606
103 => 0.038738324482618
104 => 0.037986810877549
105 => 0.038325217407896
106 => 0.037593767587762
107 => 0.039080017151866
108 => 0.039068694420337
109 => 0.038490509771431
110 => 0.038979187477448
111 => 0.03889426770026
112 => 0.038241498655652
113 => 0.039100711094903
114 => 0.039101137253553
115 => 0.0385446470998
116 => 0.037894788431576
117 => 0.037778609050674
118 => 0.037691083493668
119 => 0.038303691486286
120 => 0.038852953896893
121 => 0.039874995069331
122 => 0.040131960503182
123 => 0.041134913698658
124 => 0.040537703903657
125 => 0.040802439270619
126 => 0.041089846960561
127 => 0.041227640776187
128 => 0.041003113148048
129 => 0.042561112292627
130 => 0.04269265515629
131 => 0.042736760340635
201 => 0.042211411795066
202 => 0.042678044262889
203 => 0.042459722384438
204 => 0.043027735260604
205 => 0.043116806932339
206 => 0.043041366395196
207 => 0.043069639149705
208 => 0.04174016172969
209 => 0.04167122131191
210 => 0.040731213823692
211 => 0.041114273823326
212 => 0.040398161514555
213 => 0.04062524810444
214 => 0.040725345709501
215 => 0.040673060401106
216 => 0.041135931460966
217 => 0.040742396501775
218 => 0.039703793041333
219 => 0.038664906614072
220 => 0.038651864241236
221 => 0.038378343782807
222 => 0.038180638589133
223 => 0.038218723623403
224 => 0.03835294025168
225 => 0.038172837674705
226 => 0.038211271690935
227 => 0.038849532444864
228 => 0.038977531087197
229 => 0.038542541688252
301 => 0.036795996482815
302 => 0.036367389908524
303 => 0.036675463814486
304 => 0.036528224329937
305 => 0.029481127945278
306 => 0.031136738709795
307 => 0.030153031012748
308 => 0.030606368777762
309 => 0.02960225794895
310 => 0.030081472266417
311 => 0.029992978880086
312 => 0.032655151996346
313 => 0.032613585824835
314 => 0.032633481351504
315 => 0.031683816026051
316 => 0.033196658675721
317 => 0.033941939365011
318 => 0.033804007744426
319 => 0.033838722161707
320 => 0.033242213458454
321 => 0.032639256859655
322 => 0.031970485197232
323 => 0.033212980283338
324 => 0.033074836039862
325 => 0.033391689231667
326 => 0.03419753611039
327 => 0.034316200124397
328 => 0.034475685762593
329 => 0.034418521514261
330 => 0.03578040582653
331 => 0.035615472650313
401 => 0.036012914150484
402 => 0.035195346830672
403 => 0.034270191804101
404 => 0.034446033529056
405 => 0.034429098556913
406 => 0.034213496924477
407 => 0.034018861410914
408 => 0.033694848119047
409 => 0.034720074119457
410 => 0.034678451816123
411 => 0.035352268526468
412 => 0.035233164877808
413 => 0.034437761562452
414 => 0.034466169547467
415 => 0.034657226899104
416 => 0.035318478574576
417 => 0.035514783093304
418 => 0.035423847018847
419 => 0.035639085961989
420 => 0.035809202046651
421 => 0.03566044992307
422 => 0.037766466302513
423 => 0.036891901470818
424 => 0.037318158284603
425 => 0.03741981802304
426 => 0.037159418740709
427 => 0.037215890020847
428 => 0.037301428622754
429 => 0.037820802263359
430 => 0.039183788978279
501 => 0.039787446516153
502 => 0.041603580002786
503 => 0.039737321160952
504 => 0.039626585084624
505 => 0.039953725567543
506 => 0.04101998818145
507 => 0.041884093881067
508 => 0.042170767593083
509 => 0.042208656256593
510 => 0.042746475198044
511 => 0.043054742985555
512 => 0.04268116983251
513 => 0.042364605700044
514 => 0.041230712270937
515 => 0.041361963522845
516 => 0.04226615449289
517 => 0.043543377494662
518 => 0.044639367702586
519 => 0.044255590130886
520 => 0.047183542098213
521 => 0.047473836576163
522 => 0.047433727265654
523 => 0.048095061288033
524 => 0.046782447931943
525 => 0.046221280291528
526 => 0.042433050458639
527 => 0.043497388521793
528 => 0.045044466402972
529 => 0.044839704844154
530 => 0.043716175533332
531 => 0.044638515404854
601 => 0.044333560999094
602 => 0.044093030806702
603 => 0.045194946247124
604 => 0.043983344956188
605 => 0.045032379753268
606 => 0.043686981775137
607 => 0.044257343194506
608 => 0.043933578467595
609 => 0.044143093925019
610 => 0.042918270842021
611 => 0.043579155646707
612 => 0.042890775861358
613 => 0.04289044947971
614 => 0.042875253457795
615 => 0.043685129222515
616 => 0.043711539242127
617 => 0.043113039828345
618 => 0.043026786712501
619 => 0.043345709688864
620 => 0.042972334409603
621 => 0.043147034352773
622 => 0.042977625892912
623 => 0.042939488480309
624 => 0.042635603088143
625 => 0.042504680905695
626 => 0.042556018866882
627 => 0.042380775938818
628 => 0.042275185735846
629 => 0.042854248908757
630 => 0.042544878814813
701 => 0.042806833504869
702 => 0.042508303074232
703 => 0.041473466538129
704 => 0.040878321103019
705 => 0.038923610815718
706 => 0.039477964228386
707 => 0.039845501114505
708 => 0.039724030175835
709 => 0.039984996755111
710 => 0.040001017983595
711 => 0.039916175088433
712 => 0.039817937884884
713 => 0.039770121447054
714 => 0.040126505999365
715 => 0.040333399227334
716 => 0.039882388358036
717 => 0.039776722821672
718 => 0.040232719711525
719 => 0.040510877550914
720 => 0.042564638753576
721 => 0.042412489490122
722 => 0.042794354283608
723 => 0.042751362168054
724 => 0.04315161730746
725 => 0.043805865299945
726 => 0.042475596200607
727 => 0.042706484919007
728 => 0.042649876337255
729 => 0.043267913989263
730 => 0.043269843435351
731 => 0.042899298989702
801 => 0.043100177145086
802 => 0.042988052469554
803 => 0.043190676912798
804 => 0.042410457443948
805 => 0.04336068053752
806 => 0.043899395800552
807 => 0.043906875862502
808 => 0.044162222621671
809 => 0.044421669717673
810 => 0.04491965582537
811 => 0.044407781155412
812 => 0.043486968454153
813 => 0.043553448156977
814 => 0.043013576007141
815 => 0.043022651355515
816 => 0.042974206434644
817 => 0.043119593288943
818 => 0.042442361682654
819 => 0.042601306587019
820 => 0.042378782790128
821 => 0.042706001195731
822 => 0.042353968282442
823 => 0.042649849038883
824 => 0.04277754136476
825 => 0.043248728796266
826 => 0.042284373515698
827 => 0.040317987817508
828 => 0.04073134593139
829 => 0.04011995681238
830 => 0.040176543203067
831 => 0.040290856717912
901 => 0.039920329215245
902 => 0.03999101418609
903 => 0.039988488821529
904 => 0.039966726594054
905 => 0.039870338080159
906 => 0.039730555665126
907 => 0.040287405783861
908 => 0.040382025469971
909 => 0.040592353311294
910 => 0.041218146300334
911 => 0.041155614823514
912 => 0.041257606256614
913 => 0.041034959530815
914 => 0.04018687114611
915 => 0.040232926425676
916 => 0.039658616351505
917 => 0.040577666911473
918 => 0.040360023607998
919 => 0.040219707554394
920 => 0.040181421019149
921 => 0.040808765227967
922 => 0.040996476447661
923 => 0.040879507412379
924 => 0.040639600508484
925 => 0.041100292686072
926 => 0.041223554477751
927 => 0.041251148247189
928 => 0.042067406456911
929 => 0.041296768013615
930 => 0.041482268346403
1001 => 0.042929488989416
1002 => 0.041617059569001
1003 => 0.042312282703664
1004 => 0.042278255148988
1005 => 0.042633907779614
1006 => 0.042249081252555
1007 => 0.042253851638568
1008 => 0.042569647080567
1009 => 0.042126169336287
1010 => 0.042016358010162
1011 => 0.041864654449604
1012 => 0.042195893624119
1013 => 0.042394456528582
1014 => 0.043994727710169
1015 => 0.045028575874706
1016 => 0.044983693799302
1017 => 0.045393831952762
1018 => 0.045209060958194
1019 => 0.044612386676606
1020 => 0.045630836918599
1021 => 0.045308556648265
1022 => 0.04533512504218
1023 => 0.045334136165232
1024 => 0.045548424370774
1025 => 0.045396581537922
1026 => 0.045097283728023
1027 => 0.045295971581878
1028 => 0.045886003475619
1029 => 0.047717480578182
1030 => 0.04874239942862
1031 => 0.047655779176459
1101 => 0.048405315275975
1102 => 0.047955860703285
1103 => 0.047874181437312
1104 => 0.048344945498091
1105 => 0.048816533569039
1106 => 0.04878649544765
1107 => 0.048444146724458
1108 => 0.048250762617503
1109 => 0.04971513186379
1110 => 0.050794054179575
1111 => 0.050720478910826
1112 => 0.051045216219127
1113 => 0.051998655000047
1114 => 0.05208582549329
1115 => 0.052074844014732
1116 => 0.051858782851928
1117 => 0.052797567151414
1118 => 0.053580717530384
1119 => 0.051808770935346
1120 => 0.052483505002252
1121 => 0.05278641486346
1122 => 0.05323117640902
1123 => 0.053981563687069
1124 => 0.054796683301426
1125 => 0.054911950152228
1126 => 0.054830162805557
1127 => 0.054292569508298
1128 => 0.055184483116726
1129 => 0.055706945190596
1130 => 0.056018059399253
1201 => 0.056806993267941
1202 => 0.05278828553164
1203 => 0.049943644453153
1204 => 0.049499412671632
1205 => 0.050402775467907
1206 => 0.050640985033101
1207 => 0.050544963056061
1208 => 0.047343060898771
1209 => 0.049482555319423
1210 => 0.051784471422243
1211 => 0.051872897394601
1212 => 0.053025284726469
1213 => 0.053400549279678
1214 => 0.054328372128692
1215 => 0.054270336556867
1216 => 0.054496246655716
1217 => 0.054444313836209
1218 => 0.056162910287856
1219 => 0.058058777388066
1220 => 0.057993129538874
1221 => 0.057720576212337
1222 => 0.058125364379492
1223 => 0.060082102400375
1224 => 0.0599019573195
1225 => 0.060076952920848
1226 => 0.062384057324391
1227 => 0.065383621230771
1228 => 0.063990022644965
1229 => 0.067013730578973
1230 => 0.06891699444356
1231 => 0.072208492496208
]
'min_raw' => 0.029481127945278
'max_raw' => 0.072208492496208
'avg_raw' => 0.050844810220743
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.029481'
'max' => '$0.0722084'
'avg' => '$0.050844'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 0.013145435422618
'max_diff' => 0.02929452293164
'year' => 2028
]
3 => [
'items' => [
101 => 0.071796380729047
102 => 0.073077736766814
103 => 0.071058614655507
104 => 0.066422302156041
105 => 0.065688587955909
106 => 0.067157502365176
107 => 0.070768685105786
108 => 0.067043773369566
109 => 0.067797318162468
110 => 0.067580297211418
111 => 0.067568733087217
112 => 0.068010088673306
113 => 0.067369879376124
114 => 0.064761551527954
115 => 0.065956932809798
116 => 0.065495338689954
117 => 0.066007511780042
118 => 0.068771498710997
119 => 0.067549474203603
120 => 0.066262170654273
121 => 0.067876734980659
122 => 0.069932630192645
123 => 0.069803975965078
124 => 0.069554332990302
125 => 0.070961557368231
126 => 0.073285879762514
127 => 0.073914134765805
128 => 0.074377899765126
129 => 0.074441845123158
130 => 0.075100522052712
131 => 0.071558650194544
201 => 0.077179691795177
202 => 0.078150290401466
203 => 0.077967858090674
204 => 0.079046637592531
205 => 0.078729233297091
206 => 0.078269364272205
207 => 0.079979459245629
208 => 0.078018973356147
209 => 0.075236310454337
210 => 0.073709686551573
211 => 0.07572006805597
212 => 0.07694773788806
213 => 0.077759149552605
214 => 0.078004682232028
215 => 0.071833595624477
216 => 0.068507722207161
217 => 0.070639568936445
218 => 0.073240569078372
219 => 0.071544201507428
220 => 0.07161069590456
221 => 0.069192121545949
222 => 0.073454559242864
223 => 0.072833557923167
224 => 0.076055313868286
225 => 0.075286415955776
226 => 0.077913632861176
227 => 0.077221798602357
228 => 0.080093563930779
301 => 0.081239188870229
302 => 0.083162871445849
303 => 0.084577940179272
304 => 0.085408895605489
305 => 0.085359008158535
306 => 0.088651667537558
307 => 0.086710101338504
308 => 0.084271036600475
309 => 0.084226921614515
310 => 0.085490147804155
311 => 0.08813752334846
312 => 0.08882394930935
313 => 0.089207567777536
314 => 0.088620042739654
315 => 0.086512611783885
316 => 0.085602633782101
317 => 0.086377961404222
318 => 0.085429802347031
319 => 0.087066590886187
320 => 0.089314251149616
321 => 0.08885011819343
322 => 0.090401645079258
323 => 0.092007312180702
324 => 0.094303488250789
325 => 0.094903793702663
326 => 0.09589607578704
327 => 0.096917459999548
328 => 0.097245501081529
329 => 0.097871833292201
330 => 0.097868532212284
331 => 0.099756026486164
401 => 0.10183799112109
402 => 0.10262388457318
403 => 0.10443100323184
404 => 0.10133637585787
405 => 0.10368368626954
406 => 0.10580101901786
407 => 0.10327664762793
408 => 0.10675590548586
409 => 0.10689099718431
410 => 0.10893072144273
411 => 0.10686307014294
412 => 0.10563530540129
413 => 0.10917981620667
414 => 0.11089489333435
415 => 0.11037829814573
416 => 0.1064469832529
417 => 0.10415878936325
418 => 0.098170144594387
419 => 0.10526395301331
420 => 0.10871914016493
421 => 0.10643803515289
422 => 0.10758849183701
423 => 0.11386501046873
424 => 0.11625470238921
425 => 0.11575766317496
426 => 0.1158416546202
427 => 0.11713108900451
428 => 0.12284915116903
429 => 0.11942275577641
430 => 0.12204210666948
501 => 0.1234314009384
502 => 0.12472185488158
503 => 0.12155290784929
504 => 0.11743015432136
505 => 0.11612430521764
506 => 0.10621122421511
507 => 0.1056952052986
508 => 0.10540554824379
509 => 0.10357930148601
510 => 0.10214437178549
511 => 0.10100326241211
512 => 0.098008650652246
513 => 0.099019244213449
514 => 0.094246458092281
515 => 0.09729991751545
516 => 0.089682435623116
517 => 0.096026500897748
518 => 0.092573714598019
519 => 0.094892167735897
520 => 0.094884078871311
521 => 0.090615071578239
522 => 0.088152797263505
523 => 0.089721854290004
524 => 0.091404007974312
525 => 0.091676931750147
526 => 0.093857887910556
527 => 0.09446654589543
528 => 0.092622283785737
529 => 0.089524580242368
530 => 0.090244106124397
531 => 0.088138216094471
601 => 0.084447724818915
602 => 0.087098300082815
603 => 0.088003323015478
604 => 0.088403032700562
605 => 0.084773858386839
606 => 0.08363349302426
607 => 0.083026372073815
608 => 0.089056099411686
609 => 0.089386421486595
610 => 0.087696447048528
611 => 0.095335291758539
612 => 0.093606385937425
613 => 0.09553799733182
614 => 0.090178816692317
615 => 0.090383544609839
616 => 0.087846422610419
617 => 0.089267041399541
618 => 0.08826299382807
619 => 0.089152269440208
620 => 0.089685297575503
621 => 0.092222003258169
622 => 0.096055466001878
623 => 0.091843104020858
624 => 0.090007717583594
625 => 0.091146381006668
626 => 0.094178791753625
627 => 0.098773049261515
628 => 0.096053156348795
629 => 0.097260198636683
630 => 0.097523883679013
701 => 0.095518335341082
702 => 0.098846996689419
703 => 0.10063085334799
704 => 0.10246072116256
705 => 0.10404954411422
706 => 0.10172983171776
707 => 0.10421225649968
708 => 0.10221186033242
709 => 0.10041729817323
710 => 0.10042001978326
711 => 0.099294264726437
712 => 0.097112972449568
713 => 0.096710708686685
714 => 0.098803335581512
715 => 0.10048142417866
716 => 0.10061963959302
717 => 0.10154871566371
718 => 0.10209853331209
719 => 0.10748749370714
720 => 0.10965497815784
721 => 0.11230533711578
722 => 0.11333780129595
723 => 0.11644514831935
724 => 0.11393571323156
725 => 0.11339278116524
726 => 0.10585537369193
727 => 0.10708962374343
728 => 0.1090657771633
729 => 0.10588795973397
730 => 0.10790355346014
731 => 0.10830147435779
801 => 0.10577997871372
802 => 0.10712681848462
803 => 0.10355001136329
804 => 0.096133430622837
805 => 0.098855253463925
806 => 0.10085943123063
807 => 0.097999222444206
808 => 0.1031260359885
809 => 0.10013105735484
810 => 0.099181792912293
811 => 0.095478373884723
812 => 0.097226245108065
813 => 0.099590265964741
814 => 0.098129575922238
815 => 0.10116072708414
816 => 0.10545364550789
817 => 0.10851303482437
818 => 0.1087478967475
819 => 0.10678091438017
820 => 0.10993301617693
821 => 0.10995597579729
822 => 0.10640039209383
823 => 0.10422261687304
824 => 0.1037278217608
825 => 0.10496391696147
826 => 0.10646476473086
827 => 0.10883118335333
828 => 0.1102611605657
829 => 0.11398978273425
830 => 0.11499864098509
831 => 0.11610707033605
901 => 0.11758827377588
902 => 0.11936683827816
903 => 0.1154754404009
904 => 0.11563005289303
905 => 0.11200643706979
906 => 0.10813408388359
907 => 0.11107271725628
908 => 0.11491458948106
909 => 0.1140332597478
910 => 0.11393409214888
911 => 0.11410086454347
912 => 0.11343637070613
913 => 0.11043088970715
914 => 0.10892155596477
915 => 0.11086898156454
916 => 0.11190395160089
917 => 0.11350909986838
918 => 0.11331123146384
919 => 0.11744592102056
920 => 0.11905253635578
921 => 0.11864149540208
922 => 0.11871713682982
923 => 0.12162583715228
924 => 0.12486091013071
925 => 0.12789098288048
926 => 0.1309733030262
927 => 0.12725744578553
928 => 0.12537076264093
929 => 0.12731733805561
930 => 0.12628445774055
1001 => 0.13221969440311
1002 => 0.13263063731212
1003 => 0.13856544478951
1004 => 0.14419828378929
1005 => 0.14066039853632
1006 => 0.14399646498001
1007 => 0.14760469283236
1008 => 0.1545655497734
1009 => 0.15222137804155
1010 => 0.15042577923282
1011 => 0.14872894703483
1012 => 0.15225978547431
1013 => 0.15680215272019
1014 => 0.1577805351187
1015 => 0.15936588837512
1016 => 0.15769908327376
1017 => 0.15970656642579
1018 => 0.16679386408524
1019 => 0.16487881369635
1020 => 0.16215913428441
1021 => 0.16775387511525
1022 => 0.16977859007292
1023 => 0.18398909999734
1024 => 0.2019304557838
1025 => 0.19450261667891
1026 => 0.18989191725164
1027 => 0.1909755409843
1028 => 0.19752711676429
1029 => 0.19963127496821
1030 => 0.19391144762314
1031 => 0.19593178733873
1101 => 0.20706405780704
1102 => 0.2130361637473
1103 => 0.2049252417196
1104 => 0.18254752952901
1105 => 0.16191425691003
1106 => 0.16738712993696
1107 => 0.16676667597872
1108 => 0.1787269118179
1109 => 0.16483314037793
1110 => 0.16506707585641
1111 => 0.17727463670664
1112 => 0.17401786876237
1113 => 0.16874232178799
1114 => 0.16195277424121
1115 => 0.14940166764385
1116 => 0.13828480251708
1117 => 0.16008753509183
1118 => 0.15914736161751
1119 => 0.15778585110079
1120 => 0.16081574542492
1121 => 0.17552805221239
1122 => 0.17518888592184
1123 => 0.17303128302559
1124 => 0.17466780580616
1125 => 0.16845543143208
1126 => 0.17005650176142
1127 => 0.16191098849423
1128 => 0.16559310067768
1129 => 0.16873100283355
1130 => 0.16936098314878
1201 => 0.17078036096657
1202 => 0.15865193291835
1203 => 0.16409724104006
1204 => 0.1672958494052
1205 => 0.15284442044516
1206 => 0.16701019111954
1207 => 0.15844080396935
1208 => 0.1555322252627
1209 => 0.1594482433151
1210 => 0.15792216727163
1211 => 0.15661013670364
1212 => 0.15587800110316
1213 => 0.1587534925657
1214 => 0.15861934745202
1215 => 0.15391448531045
1216 => 0.1477771844415
1217 => 0.14983706406316
1218 => 0.14908869048514
1219 => 0.14637648809627
1220 => 0.1482041850338
1221 => 0.14015593269718
1222 => 0.12630933286378
1223 => 0.13545682084655
1224 => 0.13510465250976
1225 => 0.13492707326479
1226 => 0.14180115766585
1227 => 0.1411403730628
1228 => 0.13994104253784
1229 => 0.14635446145066
1230 => 0.14401347727482
1231 => 0.15122783889951
]
'min_raw' => 0.064761551527954
'max_raw' => 0.2130361637473
'avg_raw' => 0.13889885763763
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.064761'
'max' => '$0.213036'
'avg' => '$0.138898'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072435
'min_diff' => 0.035280423582676
'max_diff' => 0.14082767125109
'year' => 2029
]
4 => [
'items' => [
101 => 0.15597968406118
102 => 0.15477446242209
103 => 0.15924359576431
104 => 0.14988451952927
105 => 0.15299322923358
106 => 0.15363392999516
107 => 0.1462753208568
108 => 0.14124848559592
109 => 0.14091325299413
110 => 0.13219741339233
111 => 0.13685334455581
112 => 0.14095037130416
113 => 0.13898821343382
114 => 0.13836705286987
115 => 0.1415404274778
116 => 0.14178702586295
117 => 0.13616455654817
118 => 0.13733364595916
119 => 0.14220894314793
120 => 0.13721080097872
121 => 0.12750022718584
122 => 0.12509187062602
123 => 0.12477055146612
124 => 0.11823889746671
125 => 0.12525280852735
126 => 0.12219104838825
127 => 0.13186311198214
128 => 0.12633848112963
129 => 0.12610032533552
130 => 0.12574031792286
131 => 0.12011825350634
201 => 0.12134912831273
202 => 0.12544074363667
203 => 0.1269006780796
204 => 0.12674839495631
205 => 0.12542069248941
206 => 0.12602850787982
207 => 0.12407052273039
208 => 0.12337911742219
209 => 0.12119685208349
210 => 0.11798952490179
211 => 0.11843552341808
212 => 0.11208096902833
213 => 0.10861867053506
214 => 0.10766035194448
215 => 0.10637884827427
216 => 0.10780510119398
217 => 0.11206296737415
218 => 0.10692707740417
219 => 0.098121954291432
220 => 0.098651157193707
221 => 0.099840118993368
222 => 0.09762449654547
223 => 0.095527595841632
224 => 0.097350680876688
225 => 0.093619834137935
226 => 0.10029097399742
227 => 0.10011053835987
228 => 0.10259712675896
301 => 0.10415204151485
302 => 0.10056846641216
303 => 0.099667206964858
304 => 0.100180605306
305 => 0.091695274335828
306 => 0.10190369418961
307 => 0.10199197702842
308 => 0.10123604576447
309 => 0.106671714187
310 => 0.11814266998605
311 => 0.11382683499632
312 => 0.1121556132415
313 => 0.10897861946392
314 => 0.11321177504132
315 => 0.11288673474049
316 => 0.11141677923226
317 => 0.11052774555434
318 => 0.11216581736516
319 => 0.11032477032924
320 => 0.109994067693
321 => 0.1079903695254
322 => 0.10727514044202
323 => 0.10674561330278
324 => 0.10616265595274
325 => 0.10744851460301
326 => 0.1045345897327
327 => 0.10102068199468
328 => 0.10072853858727
329 => 0.10153517222063
330 => 0.10117829688468
331 => 0.10072683000546
401 => 0.099864856783341
402 => 0.099609127741482
403 => 0.10044012306543
404 => 0.099501977794729
405 => 0.10088626224507
406 => 0.10050981347053
407 => 0.098407001217326
408 => 0.095786118589027
409 => 0.095762787236148
410 => 0.09519812237299
411 => 0.094478936771827
412 => 0.094278875790322
413 => 0.097197145740033
414 => 0.10323787719947
415 => 0.10205193707153
416 => 0.102908900354
417 => 0.10712431153601
418 => 0.10846426398893
419 => 0.10751319747636
420 => 0.10621131897472
421 => 0.10626859502165
422 => 0.11071750796717
423 => 0.11099498121043
424 => 0.1116960665799
425 => 0.11259715940637
426 => 0.10766665748114
427 => 0.10603636882436
428 => 0.10526384761381
429 => 0.10288478128864
430 => 0.10545040035461
501 => 0.10395552399563
502 => 0.1041572338887
503 => 0.10402587005622
504 => 0.10409760359154
505 => 0.10028910927787
506 => 0.1016767244372
507 => 0.09936954510242
508 => 0.096280490966184
509 => 0.096270135373557
510 => 0.097026176997141
511 => 0.096576453855522
512 => 0.095366260444863
513 => 0.095538162706895
514 => 0.094032118007432
515 => 0.09572102380123
516 => 0.0957694555762
517 => 0.095119134850268
518 => 0.0977211272497
519 => 0.098787165658771
520 => 0.098359110625743
521 => 0.098757132176547
522 => 0.10210121823804
523 => 0.10264645017877
524 => 0.10288860619084
525 => 0.10256414921419
526 => 0.098818255930925
527 => 0.098984402226806
528 => 0.097765330947432
529 => 0.096735344178927
530 => 0.096776538248098
531 => 0.097306085336017
601 => 0.099618648526485
602 => 0.10448530142778
603 => 0.10466998734791
604 => 0.10489383207077
605 => 0.10398334308754
606 => 0.103708730898
607 => 0.10407101525943
608 => 0.1058986742127
609 => 0.11059990924509
610 => 0.10893817879971
611 => 0.10758716608125
612 => 0.10877236846575
613 => 0.10858991584858
614 => 0.10704983214583
615 => 0.1070066071257
616 => 0.10405069410558
617 => 0.10295796036492
618 => 0.10204479026152
619 => 0.10104763234752
620 => 0.10045648371107
621 => 0.10136475668891
622 => 0.10157248946532
623 => 0.099586534725363
624 => 0.099315856432663
625 => 0.10093762994312
626 => 0.10022394788698
627 => 0.10095798758018
628 => 0.10112829108548
629 => 0.10110086829871
630 => 0.10035570226623
701 => 0.10083064887416
702 => 0.099707258558013
703 => 0.098485740316973
704 => 0.097706487782465
705 => 0.097026486593257
706 => 0.09740379077493
707 => 0.096058770260286
708 => 0.095628471127736
709 => 0.10066974765003
710 => 0.10439379281991
711 => 0.10433964372825
712 => 0.10401002505883
713 => 0.10352027857676
714 => 0.1058628462071
715 => 0.10504674248581
716 => 0.10564052613079
717 => 0.10579166898946
718 => 0.10624913290134
719 => 0.10641263692949
720 => 0.10591841419558
721 => 0.10425974233639
722 => 0.10012648976506
723 => 0.098202449535603
724 => 0.097567484212458
725 => 0.097590563995983
726 => 0.09695392053366
727 => 0.097141440565673
728 => 0.096888708719166
729 => 0.096410095744284
730 => 0.097374237772427
731 => 0.097485346159566
801 => 0.097260303889559
802 => 0.097313309490794
803 => 0.095450055611939
804 => 0.095591714757574
805 => 0.094802938633506
806 => 0.094655052619082
807 => 0.092661095264033
808 => 0.089128510780823
809 => 0.091085905500794
810 => 0.088721647930417
811 => 0.087826267764167
812 => 0.092064858211009
813 => 0.091639421290345
814 => 0.090911258215152
815 => 0.08983415326446
816 => 0.089434644560845
817 => 0.087007356146765
818 => 0.086863938998181
819 => 0.088066968678499
820 => 0.087511811874756
821 => 0.086732161467978
822 => 0.083908346726522
823 => 0.080733444024195
824 => 0.080829274380051
825 => 0.081839151858497
826 => 0.08477550682761
827 => 0.083628222141721
828 => 0.082795853938533
829 => 0.082639976394973
830 => 0.084591110204377
831 => 0.087352373319854
901 => 0.088647896193856
902 => 0.087364072371335
903 => 0.085889284690006
904 => 0.08597904818266
905 => 0.086576204484537
906 => 0.086638957168529
907 => 0.085679021998607
908 => 0.085949238126087
909 => 0.085538755119364
910 => 0.083019621664793
911 => 0.082974058528859
912 => 0.082355822552593
913 => 0.082337102612934
914 => 0.081285328991114
915 => 0.081138178590853
916 => 0.079049818226634
917 => 0.080424383342501
918 => 0.079502397230685
919 => 0.078112746685641
920 => 0.077873170407885
921 => 0.077865968455679
922 => 0.079292828845262
923 => 0.08040770964809
924 => 0.079518435573837
925 => 0.079315965104983
926 => 0.0814778200064
927 => 0.08120270426445
928 => 0.080964455806227
929 => 0.087105132493662
930 => 0.08224430773258
1001 => 0.08012471069057
1002 => 0.077501306850522
1003 => 0.078355500369192
1004 => 0.07853549149429
1005 => 0.072226678163059
1006 => 0.069667193380291
1007 => 0.068788874654995
1008 => 0.068283389810982
1009 => 0.068513745601878
1010 => 0.066209909099765
1011 => 0.067758125331124
1012 => 0.065763197658745
1013 => 0.065428741542415
1014 => 0.068995919344743
1015 => 0.069492271296787
1016 => 0.067374679664905
1017 => 0.068734516299518
1018 => 0.068241420632664
1019 => 0.065797394967899
1020 => 0.065704051164541
1021 => 0.064477724997618
1022 => 0.062558762009921
1023 => 0.061681744431892
1024 => 0.061224986062639
1025 => 0.061413453467836
1026 => 0.061318158580571
1027 => 0.060696294981219
1028 => 0.061353803074158
1029 => 0.0596741415978
1030 => 0.059005286863962
1031 => 0.058703180698
1101 => 0.057212384460025
1102 => 0.059584904234739
1103 => 0.060052320518574
1104 => 0.060520657756881
1105 => 0.064597213668928
1106 => 0.06439356045579
1107 => 0.066234486319424
1108 => 0.066162951325609
1109 => 0.065637889448278
1110 => 0.063422739756309
1111 => 0.064305658942281
1112 => 0.061588170923964
1113 => 0.063624297718511
1114 => 0.062695094480167
1115 => 0.063310133168932
1116 => 0.06220423815073
1117 => 0.062816286115089
1118 => 0.060163162259473
1119 => 0.057685712533558
1120 => 0.058682710624532
1121 => 0.059766561569983
1122 => 0.062116626579804
1123 => 0.06071694724757
1124 => 0.061220324863176
1125 => 0.059534094115289
1126 => 0.056054918434397
1127 => 0.056074610190914
1128 => 0.055539414810371
1129 => 0.055076927861777
1130 => 0.060877717256187
1201 => 0.060156297398082
1202 => 0.059006809271288
1203 => 0.060545444807844
1204 => 0.060952284465138
1205 => 0.060963866618232
1206 => 0.062086415387772
1207 => 0.062685519867303
1208 => 0.062791114628488
1209 => 0.064557469371629
1210 => 0.065149528182748
1211 => 0.067588134634447
1212 => 0.062634690037925
1213 => 0.062532677106164
1214 => 0.060567096565191
1215 => 0.059320494311506
1216 => 0.060652452488015
1217 => 0.061832385601979
1218 => 0.060603760376092
1219 => 0.060764192892899
1220 => 0.059114863909515
1221 => 0.059704421412933
1222 => 0.060212227756849
1223 => 0.059931846941216
1224 => 0.059512103289628
1225 => 0.061735644542414
1226 => 0.061610183630803
1227 => 0.06368079636439
1228 => 0.065294987061158
1229 => 0.068187905360868
1230 => 0.065168994303879
1231 => 0.065058973185878
]
'min_raw' => 0.055076927861777
'max_raw' => 0.15924359576431
'avg_raw' => 0.10716026181304
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.055076'
'max' => '$0.159243'
'avg' => '$0.10716'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -0.0096846236661773
'max_diff' => -0.053792567982986
'year' => 2030
]
5 => [
'items' => [
101 => 0.066134447262283
102 => 0.06514936353327
103 => 0.065771902446072
104 => 0.068087604717602
105 => 0.068136531857563
106 => 0.067316939224148
107 => 0.06726706693792
108 => 0.067424478668528
109 => 0.068346444091367
110 => 0.068024281043492
111 => 0.068397096278664
112 => 0.068863307438997
113 => 0.070791754467569
114 => 0.071256696517431
115 => 0.07012712838108
116 => 0.070229115736555
117 => 0.069806626246221
118 => 0.069398506692336
119 => 0.070315899848395
120 => 0.071992453872499
121 => 0.071982024116928
122 => 0.072370952062967
123 => 0.072613250951296
124 => 0.071573126748961
125 => 0.070896044139667
126 => 0.071155680695956
127 => 0.071570845203611
128 => 0.071021048441571
129 => 0.067627448135629
130 => 0.068656849684425
131 => 0.068485506931541
201 => 0.068241494015444
202 => 0.069276565232885
203 => 0.06917673008889
204 => 0.066186279926525
205 => 0.066377718843428
206 => 0.066197921961127
207 => 0.066778882470821
208 => 0.065117989759197
209 => 0.06562886917101
210 => 0.065949287948901
211 => 0.066138017070653
212 => 0.066819836071188
213 => 0.066739832481001
214 => 0.066814862935692
215 => 0.067825820519944
216 => 0.072938897062343
217 => 0.073217190537178
218 => 0.071846771686033
219 => 0.072394226986749
220 => 0.071343232524687
221 => 0.07204877214812
222 => 0.072531484439709
223 => 0.070350200414253
224 => 0.070221038930682
225 => 0.069165706640616
226 => 0.069732782436221
227 => 0.068830524071221
228 => 0.069051906714334
301 => 0.068432901544398
302 => 0.069546987607584
303 => 0.070792708937697
304 => 0.07110742734071
305 => 0.070279538717175
306 => 0.069680092793217
307 => 0.068627663220509
308 => 0.070377877054845
309 => 0.070889692916805
310 => 0.070375188704009
311 => 0.070255966835765
312 => 0.070030041610871
313 => 0.070303897940243
314 => 0.070886905457702
315 => 0.070611969878927
316 => 0.07079356967245
317 => 0.070101498524435
318 => 0.071573471073351
319 => 0.073911317730515
320 => 0.073918834289794
321 => 0.073643897229013
322 => 0.073531398907343
323 => 0.073813501016281
324 => 0.073966529837944
325 => 0.074878796329567
326 => 0.075857694621378
327 => 0.080425785822476
328 => 0.07914308409272
329 => 0.083196166363295
330 => 0.086401628212456
331 => 0.087362806063161
401 => 0.086478567667425
402 => 0.083453635881232
403 => 0.083305218296603
404 => 0.087825743478433
405 => 0.086548488061396
406 => 0.086396562593732
407 => 0.084780332299921
408 => 0.08573572457758
409 => 0.085526766271697
410 => 0.08519691536327
411 => 0.087019737275839
412 => 0.090431897171735
413 => 0.089900080052927
414 => 0.089503103244023
415 => 0.087763666425617
416 => 0.088811195907576
417 => 0.088438190723156
418 => 0.090040857710363
419 => 0.089091473290562
420 => 0.086538811595396
421 => 0.086945331384034
422 => 0.086883886735786
423 => 0.088148413242723
424 => 0.087768833772818
425 => 0.086809767752254
426 => 0.09042023478016
427 => 0.090185791133841
428 => 0.090518178623042
429 => 0.090664505875214
430 => 0.092862133531535
501 => 0.093762431266088
502 => 0.093966814613762
503 => 0.094822027830062
504 => 0.093945536129859
505 => 0.097452127858662
506 => 0.099783806743015
507 => 0.10249217175429
508 => 0.10644982097565
509 => 0.10793793369318
510 => 0.10766911945034
511 => 0.11066976392195
512 => 0.11606185533685
513 => 0.10875901529109
514 => 0.11644892359196
515 => 0.11401438740816
516 => 0.10824214591182
517 => 0.10787048160971
518 => 0.11177951056814
519 => 0.12044936056783
520 => 0.11827766147553
521 => 0.12045291268956
522 => 0.11791536660313
523 => 0.11778935605182
524 => 0.12032966974005
525 => 0.12626525113789
526 => 0.12344547890771
527 => 0.11940264397925
528 => 0.12238781037695
529 => 0.11980178297915
530 => 0.11397473946842
531 => 0.11827600081817
601 => 0.11539986984646
602 => 0.11623927776754
603 => 0.12228447727786
604 => 0.12155710287917
605 => 0.12249839270414
606 => 0.12083704080091
607 => 0.11928507615215
608 => 0.11638821888482
609 => 0.11553060226131
610 => 0.11576761664223
611 => 0.11553048480875
612 => 0.11390971979118
613 => 0.11355971573994
614 => 0.11297636032053
615 => 0.11315716655782
616 => 0.11206028770268
617 => 0.11413032472907
618 => 0.11451454184228
619 => 0.11602094216333
620 => 0.11617734164195
621 => 0.1203726450938
622 => 0.11806194245173
623 => 0.1196121612805
624 => 0.11947349511723
625 => 0.10836724788801
626 => 0.10989759076495
627 => 0.11227832403341
628 => 0.11120580692298
629 => 0.10968951865918
630 => 0.10846503458792
701 => 0.10660981601005
702 => 0.10922100053209
703 => 0.11265443051006
704 => 0.11626441909221
705 => 0.12060158383785
706 => 0.11963357915679
707 => 0.11618333881416
708 => 0.11633811407553
709 => 0.11729487383949
710 => 0.11605578301437
711 => 0.11569035094012
712 => 0.11724466908407
713 => 0.11725537281889
714 => 0.11582964907547
715 => 0.11424521803935
716 => 0.11423857921545
717 => 0.11395664501636
718 => 0.11796552207082
719 => 0.12016999910759
720 => 0.12042273884716
721 => 0.12015298770939
722 => 0.12025680421628
723 => 0.11897406760092
724 => 0.12190602311991
725 => 0.12459667544447
726 => 0.12387552314408
727 => 0.12279441332797
728 => 0.12193325728612
729 => 0.12367266214856
730 => 0.12359520918811
731 => 0.12457317494369
801 => 0.12452880876801
802 => 0.12419995566756
803 => 0.12387553488846
804 => 0.12516182660673
805 => 0.12479139524909
806 => 0.12442038850922
807 => 0.12367627769414
808 => 0.12377741471228
809 => 0.12269649156501
810 => 0.12219640705741
811 => 0.11467633593356
812 => 0.11266672720386
813 => 0.11329899101958
814 => 0.11350714868444
815 => 0.11263256438989
816 => 0.113886493606
817 => 0.11369107006591
818 => 0.11445134874146
819 => 0.11397635963244
820 => 0.11399585335116
821 => 0.11539269504243
822 => 0.115798204128
823 => 0.11559195893422
824 => 0.11573640599827
825 => 0.11906512762203
826 => 0.11859188985366
827 => 0.11834049172119
828 => 0.11841013072197
829 => 0.11926069046544
830 => 0.11949880075477
831 => 0.11848991072716
901 => 0.1189657090965
902 => 0.12099159816536
903 => 0.12170054468407
904 => 0.12396316165816
905 => 0.12300196175276
906 => 0.12476628577888
907 => 0.13018921633281
908 => 0.13452142849753
909 => 0.13053734715461
910 => 0.13849290309124
911 => 0.14468744454462
912 => 0.14444968772609
913 => 0.14336952614137
914 => 0.1363172053871
915 => 0.12982755468484
916 => 0.1352564230624
917 => 0.13527026236435
918 => 0.13480391775609
919 => 0.13190749144585
920 => 0.13470312839887
921 => 0.13492503590793
922 => 0.13480082671282
923 => 0.13258014345179
924 => 0.12918957056307
925 => 0.12985208038964
926 => 0.1309372850004
927 => 0.12888276627484
928 => 0.12822622305434
929 => 0.1294468618137
930 => 0.13338001422656
1001 => 0.13263647454611
1002 => 0.13261705772017
1003 => 0.13579823578303
1004 => 0.13352119883122
1005 => 0.12986043676021
1006 => 0.12893604605776
1007 => 0.12565508180825
1008 => 0.12792125550178
1009 => 0.12800281105862
1010 => 0.12676165088641
1011 => 0.12996115006776
1012 => 0.12993166611954
1013 => 0.13296911440962
1014 => 0.13877557472679
1015 => 0.13705831869244
1016 => 0.13506133676143
1017 => 0.13527846406763
1018 => 0.13765981470084
1019 => 0.13621999574705
1020 => 0.13673776468161
1021 => 0.13765903099554
1022 => 0.13821485383649
1023 => 0.13519848971445
1024 => 0.13449523094822
1025 => 0.13305661032281
1026 => 0.13268130105477
1027 => 0.13385302753636
1028 => 0.13354431900617
1029 => 0.12799595662986
1030 => 0.12741612189074
1031 => 0.12743390459438
1101 => 0.12597588257322
1102 => 0.12375204902557
1103 => 0.12959615081059
1104 => 0.1291267876491
1105 => 0.12860864704464
1106 => 0.12867211631222
1107 => 0.1312088428221
1108 => 0.12973741333861
1109 => 0.13364944978303
1110 => 0.13284525269663
1111 => 0.13202043098949
1112 => 0.13190641550488
1113 => 0.13158892951811
1114 => 0.13050015193814
1115 => 0.12918538758494
1116 => 0.12831726627602
1117 => 0.1183658953146
1118 => 0.12021281188058
1119 => 0.122337521038
1120 => 0.1230709621249
1121 => 0.12181636039317
1122 => 0.1305496912614
1123 => 0.13214535496749
1124 => 0.12731198551916
1125 => 0.12640785944055
1126 => 0.13060896561659
1127 => 0.1280751850281
1128 => 0.12921614627195
1129 => 0.12675001213517
1130 => 0.13176100630718
1201 => 0.1317228309273
1202 => 0.12977344101596
1203 => 0.13142105202018
1204 => 0.13113473906248
1205 => 0.12893388265371
1206 => 0.13183077738094
1207 => 0.13183221420458
1208 => 0.1299559687983
1209 => 0.1277649249267
1210 => 0.1273732180326
1211 => 0.12707811950632
1212 => 0.12914357012435
1213 => 0.13099544668999
1214 => 0.1344413298595
1215 => 0.13530770676048
1216 => 0.13868923348299
1217 => 0.13667569896328
1218 => 0.13756827273623
1219 => 0.13853728782903
1220 => 0.13900186929887
1221 => 0.13824485872459
1222 => 0.14349776161656
1223 => 0.14394126756543
1224 => 0.14408997127377
1225 => 0.14231872197372
1226 => 0.14389200591823
1227 => 0.14315591846228
1228 => 0.14507101353167
1229 => 0.14537132489171
1230 => 0.14511697185364
1231 => 0.14521229541941
]
'min_raw' => 0.065117989759197
'max_raw' => 0.14537132489171
'avg_raw' => 0.10524465732545
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.065117'
'max' => '$0.145371'
'avg' => '$0.105244'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 0.01004106189742
'max_diff' => -0.013872270872601
'year' => 2031
]
6 => [
'items' => [
101 => 0.14072986947668
102 => 0.14049743204487
103 => 0.13732813116912
104 => 0.13861964470227
105 => 0.13620522205589
106 => 0.13697086034837
107 => 0.13730834641242
108 => 0.13713206284472
109 => 0.13869266493967
110 => 0.13736583434902
111 => 0.13386411026916
112 => 0.13036143214692
113 => 0.13031745887631
114 => 0.12939526555413
115 => 0.12872868869032
116 => 0.12885709504238
117 => 0.12930961577532
118 => 0.12870238736269
119 => 0.12883197033178
120 => 0.1309839110256
121 => 0.1314154673848
122 => 0.12994887025627
123 => 0.12406027115625
124 => 0.12261519416667
125 => 0.12365388684965
126 => 0.12315745864756
127 => 0.099397681174127
128 => 0.10497968845775
129 => 0.10166304927688
130 => 0.10319150920265
131 => 0.099806079438536
201 => 0.10142178396755
202 => 0.10112342233712
203 => 0.11009912486559
204 => 0.10995898161628
205 => 0.11002606077351
206 => 0.10682419782523
207 => 0.11192485244189
208 => 0.11443761831966
209 => 0.11397257223079
210 => 0.11408961431233
211 => 0.11207844357241
212 => 0.11004553330247
213 => 0.10779072295046
214 => 0.11197988188151
215 => 0.1115141189197
216 => 0.11258241157786
217 => 0.11529938059191
218 => 0.11569946459999
219 => 0.1162371815641
220 => 0.11604444830976
221 => 0.12063613635231
222 => 0.12008005263342
223 => 0.12142005439973
224 => 0.11866356910026
225 => 0.11554434433591
226 => 0.11613720698847
227 => 0.11608010954753
228 => 0.11535319359095
229 => 0.11469696636795
301 => 0.11360453293254
302 => 0.11706115397192
303 => 0.11692082147025
304 => 0.11919264155356
305 => 0.11879107528655
306 => 0.11610931747554
307 => 0.1162050969804
308 => 0.11684926018064
309 => 0.11907871637161
310 => 0.11974057076205
311 => 0.11943397343806
312 => 0.12015966656237
313 => 0.12073322481893
314 => 0.12023169664874
315 => 0.1273322779094
316 => 0.12438362151917
317 => 0.12582077612715
318 => 0.12616352903295
319 => 0.12528557467207
320 => 0.12547597153575
321 => 0.1257643709042
322 => 0.127515475395
323 => 0.13211088026505
324 => 0.13414615380002
325 => 0.14026937464859
326 => 0.13397715266532
327 => 0.13360379825263
328 => 0.13470677523101
329 => 0.13830175407788
330 => 0.14121514677407
331 => 0.14218168720905
401 => 0.14230943148338
402 => 0.1441227255938
403 => 0.14516207196196
404 => 0.14390254399442
405 => 0.14283522592001
406 => 0.13901222505787
407 => 0.13945474781735
408 => 0.14250329080145
409 => 0.14680953732479
410 => 0.15050474483039
411 => 0.14921081195291
412 => 0.15908260643384
413 => 0.16006135453396
414 => 0.15992612319323
415 => 0.16215585702255
416 => 0.15773028944875
417 => 0.15583827356962
418 => 0.14306599220228
419 => 0.14665448229191
420 => 0.15187056338184
421 => 0.15118019549028
422 => 0.14739213797654
423 => 0.15050187124909
424 => 0.14947369617883
425 => 0.1486627318419
426 => 0.15237791668256
427 => 0.14829291833887
428 => 0.1518298123985
429 => 0.14729370918254
430 => 0.14921672252931
501 => 0.14812512714799
502 => 0.1488315231406
503 => 0.14470194660186
504 => 0.14693016586236
505 => 0.14460924535491
506 => 0.1446081449364
507 => 0.14455691048756
508 => 0.14728746317203
509 => 0.14737650639704
510 => 0.14535862383758
511 => 0.14506781543551
512 => 0.14614308651681
513 => 0.14488422569455
514 => 0.14547323875011
515 => 0.14490206629997
516 => 0.14477348335071
517 => 0.14374891253442
518 => 0.1433074992556
519 => 0.14348058877605
520 => 0.14288974500901
521 => 0.14253374026762
522 => 0.14448609218399
523 => 0.14344302931272
524 => 0.14432622783934
525 => 0.14331971164972
526 => 0.13983068801827
527 => 0.13782411363207
528 => 0.13123367142492
529 => 0.13310271265945
530 => 0.1343418889316
531 => 0.13393234118105
601 => 0.13481220822318
602 => 0.13486622491358
603 => 0.134580171169
604 => 0.13424895757853
605 => 0.13408774111995
606 => 0.13528931652004
607 => 0.13598687148296
608 => 0.13446625684855
609 => 0.13410999811537
610 => 0.13564742346619
611 => 0.13658525204206
612 => 0.14350965132586
613 => 0.1429966694614
614 => 0.14428415327359
615 => 0.14413920235438
616 => 0.14548869050181
617 => 0.14769453328661
618 => 0.14320943814177
619 => 0.14398789557599
620 => 0.14379703579033
621 => 0.14588079288409
622 => 0.14588729814628
623 => 0.14463798167719
624 => 0.14531525640293
625 => 0.14493722023108
626 => 0.14562038268826
627 => 0.14298981827585
628 => 0.14619356177829
629 => 0.1480098778995
630 => 0.14803509745061
701 => 0.14889601687688
702 => 0.14977076087507
703 => 0.15144975580545
704 => 0.14972393461774
705 => 0.14661935030636
706 => 0.14684349126589
707 => 0.14502327462005
708 => 0.14505387279072
709 => 0.14489053735768
710 => 0.14538071928754
711 => 0.14309738564413
712 => 0.14363327948638
713 => 0.14288302496905
714 => 0.1439862646692
715 => 0.14279936112389
716 => 0.14379694375196
717 => 0.14422746734385
718 => 0.14581610866643
719 => 0.14256471750886
720 => 0.13593491083875
721 => 0.13732857657944
722 => 0.13526723547887
723 => 0.13545802044581
724 => 0.13584343644222
725 => 0.13459417709758
726 => 0.13483249641185
727 => 0.13482398196892
728 => 0.1347506090996
729 => 0.13442562849537
730 => 0.13395434232379
731 => 0.13583180137714
801 => 0.13615081825499
802 => 0.13685995325663
803 => 0.13896985801065
804 => 0.13875902877075
805 => 0.13910290000826
806 => 0.13835223102753
807 => 0.13549284182686
808 => 0.13564812041739
809 => 0.13371179390527
810 => 0.13681043703426
811 => 0.13607663744123
812 => 0.13560355206995
813 => 0.13547446634329
814 => 0.13758960114309
815 => 0.13822248262587
816 => 0.1378281133569
817 => 0.13701925048065
818 => 0.13857250632189
819 => 0.1389880920584
820 => 0.1390811263786
821 => 0.141833197922
822 => 0.13923493660617
823 => 0.13986036392939
824 => 0.14473976936902
825 => 0.1403148219472
826 => 0.14265881528464
827 => 0.14254408900833
828 => 0.14374319668335
829 => 0.14244572717964
830 => 0.14246181086915
831 => 0.14352653724998
901 => 0.14203132107251
902 => 0.1416610845197
903 => 0.14114960537367
904 => 0.14226640137693
905 => 0.14293587007255
906 => 0.14833129608863
907 => 0.15181698735634
908 => 0.15166566430556
909 => 0.15304847372488
910 => 0.15242550541639
911 => 0.15041377641755
912 => 0.15384755251435
913 => 0.15276096208203
914 => 0.15285053927706
915 => 0.15284720520939
916 => 0.1535696928555
917 => 0.15305774414321
918 => 0.15204864068083
919 => 0.15271853065205
920 => 0.15470786437651
921 => 0.16088281729744
922 => 0.16433840275925
923 => 0.16067478671368
924 => 0.16320190000414
925 => 0.1616865325324
926 => 0.16141114518451
927 => 0.16299835908312
928 => 0.16458835118955
929 => 0.16448707556609
930 => 0.16333282294382
1001 => 0.16268081492558
1002 => 0.16761803807843
1003 => 0.17125569999405
1004 => 0.1710076358386
1005 => 0.17210251034597
1006 => 0.17531709576282
1007 => 0.17561099716683
1008 => 0.17557397234517
1009 => 0.17484550704987
1010 => 0.17801068385942
1011 => 0.18065113003993
1012 => 0.1746768883814
1013 => 0.1769518013964
1014 => 0.17797308314195
1015 => 0.17947262774507
1016 => 0.18200261084338
1017 => 0.18475084353301
1018 => 0.18513947376817
1019 => 0.18486372201866
1020 => 0.18305118868338
1021 => 0.18605833768562
1022 => 0.18781985504481
1023 => 0.18886879832059
1024 => 0.19152874394048
1025 => 0.17797939023033
1026 => 0.16838848422771
1027 => 0.16689072576104
1028 => 0.16993647649946
1029 => 0.17073961667977
1030 => 0.17041587188014
1031 => 0.15962043520716
1101 => 0.16683389002112
1102 => 0.17459496087643
1103 => 0.17489309521594
1104 => 0.17877844956245
1105 => 0.18004368020373
1106 => 0.1831718997177
1107 => 0.18297622873538
1108 => 0.18373790040619
1109 => 0.18356280527938
1110 => 0.18935717320468
1111 => 0.19574922149826
1112 => 0.19552788519132
1113 => 0.19460895262184
1114 => 0.19597372418881
1115 => 0.2025710030413
1116 => 0.2019636313238
1117 => 0.20255364121155
1118 => 0.21033220478498
1119 => 0.2204454439182
1120 => 0.21574682898821
1121 => 0.22594147139626
1122 => 0.23235845839736
1123 => 0.24345597388692
1124 => 0.24206651029121
1125 => 0.24638669163396
1126 => 0.23957908046509
1127 => 0.22394742917614
1128 => 0.2214736605241
1129 => 0.22642620801127
1130 => 0.23860156274597
1201 => 0.22604276276227
1202 => 0.22858339164236
1203 => 0.22785169035397
1204 => 0.22781270110185
1205 => 0.22930076227481
1206 => 0.22714225193138
1207 => 0.21834809248363
1208 => 0.22237840393423
1209 => 0.2208221071317
1210 => 0.22254893446372
1211 => 0.23186790937684
1212 => 0.22774776843113
1213 => 0.2234075346379
1214 => 0.22885115098959
1215 => 0.23578274523482
1216 => 0.23534897852423
1217 => 0.23450728980526
1218 => 0.23925184504472
1219 => 0.24708846027605
1220 => 0.249206665883
1221 => 0.25077028195725
1222 => 0.25098587819638
1223 => 0.25320665345173
1224 => 0.24126498519632
1225 => 0.26021671940144
1226 => 0.26348916036758
1227 => 0.26287407709473
1228 => 0.26651125750322
1229 => 0.26544110676068
1230 => 0.26389062623625
1231 => 0.26965633083416
]
'min_raw' => 0.099397681174127
'max_raw' => 0.26965633083416
'avg_raw' => 0.18452700600414
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.099397'
'max' => '$0.269656'
'avg' => '$0.184527'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.03427969141493
'max_diff' => 0.12428500594245
'year' => 2032
]
7 => [
'items' => [
101 => 0.26304641578102
102 => 0.25366447352825
103 => 0.2485173544546
104 => 0.25529549605703
105 => 0.25943467060909
106 => 0.26217040168706
107 => 0.26299823225828
108 => 0.24219198290941
109 => 0.23097856847787
110 => 0.23816623856643
111 => 0.24693569214097
112 => 0.24121627043893
113 => 0.24144046094135
114 => 0.23328606863183
115 => 0.24765717492087
116 => 0.24556342561459
117 => 0.25642580071937
118 => 0.25383340772461
119 => 0.26269125294759
120 => 0.26035868544166
121 => 0.27004104274668
122 => 0.27390359721501
123 => 0.28038942732595
124 => 0.28516043035763
125 => 0.28796205459257
126 => 0.28779385558214
127 => 0.29889528656465
128 => 0.29234916056872
129 => 0.28412568351439
130 => 0.28397694675921
131 => 0.28823600205322
201 => 0.2971618135347
202 => 0.29947614658658
203 => 0.30076954303545
204 => 0.29878866135055
205 => 0.29168331074704
206 => 0.28861525638139
207 => 0.29122932759101
208 => 0.28803254313134
209 => 0.29355108996804
210 => 0.30112923347281
211 => 0.2995643768063
212 => 0.30479545802602
213 => 0.31020907676264
214 => 0.31795079469683
215 => 0.31997476643981
216 => 0.32332031476621
217 => 0.32676398294945
218 => 0.32786999636045
219 => 0.32998171913784
220 => 0.32997058931643
221 => 0.33633440804146
222 => 0.34335389716623
223 => 0.34600359180928
224 => 0.35209641853596
225 => 0.34166266628463
226 => 0.34957678722157
227 => 0.35671552240999
228 => 0.34820442802285
301 => 0.35993498880486
302 => 0.36039045989801
303 => 0.36726753264428
304 => 0.36029630192821
305 => 0.35615680738196
306 => 0.36810737303214
307 => 0.37388987531097
308 => 0.37214813856502
309 => 0.35889343592821
310 => 0.35117863047264
311 => 0.3309874965206
312 => 0.35490476687887
313 => 0.36655417159405
314 => 0.35886326678429
315 => 0.36274211181711
316 => 0.3839038325965
317 => 0.39196084574933
318 => 0.39028504333632
319 => 0.39056822635806
320 => 0.3949156444102
321 => 0.41419449022023
322 => 0.40264215893071
323 => 0.41147348334395
324 => 0.41615758596902
325 => 0.42050844153507
326 => 0.40982411536689
327 => 0.39592396400601
328 => 0.39152120258136
329 => 0.35809855787212
330 => 0.35635876406782
331 => 0.35538216508431
401 => 0.34922484663599
402 => 0.34438688096707
403 => 0.340539551045
404 => 0.33044300841952
405 => 0.3338502951685
406 => 0.3177585135357
407 => 0.32805346516664
408 => 0.30237059313104
409 => 0.32376005213295
410 => 0.31211874205757
411 => 0.31993556868116
412 => 0.31990829650946
413 => 0.3055150403683
414 => 0.29721331060567
415 => 0.30250349591857
416 => 0.30817499450944
417 => 0.3090951760746
418 => 0.31644842203891
419 => 0.31850055493006
420 => 0.31228249646496
421 => 0.30183837269374
422 => 0.30426430444069
423 => 0.29716414917625
424 => 0.28472140017884
425 => 0.29365799973833
426 => 0.29670934774249
427 => 0.29805699685259
428 => 0.28582098227301
429 => 0.28197616083531
430 => 0.27992921016305
501 => 0.30025885686481
502 => 0.30137256080271
503 => 0.29567469399452
504 => 0.32142959226143
505 => 0.3156004655772
506 => 0.3221130282542
507 => 0.30404417656207
508 => 0.30473443102964
509 => 0.2961803470724
510 => 0.30097006250436
511 => 0.29758484601678
512 => 0.30058310083035
513 => 0.30238024240333
514 => 0.31093292271957
515 => 0.32385771000381
516 => 0.30965543748708
517 => 0.30346730397125
518 => 0.30730638720109
519 => 0.31753037175061
520 => 0.33302023169928
521 => 0.32384992284718
522 => 0.3279195501938
523 => 0.32880858272392
524 => 0.32204673647967
525 => 0.3332695506153
526 => 0.33928394788456
527 => 0.34545347497867
528 => 0.35081030248827
529 => 0.34298923018648
530 => 0.35135889865607
531 => 0.34461442331495
601 => 0.33856393170292
602 => 0.33857310780116
603 => 0.33477754602936
604 => 0.32742316682494
605 => 0.32606690646322
606 => 0.33312234414167
607 => 0.33878013700736
608 => 0.33924613992677
609 => 0.34237858476511
610 => 0.34423233335369
611 => 0.36240158957077
612 => 0.36970941472526
613 => 0.37864528499411
614 => 0.38212631006188
615 => 0.39260294749931
616 => 0.38414221189769
617 => 0.38231167852976
618 => 0.35689878298854
619 => 0.36106014320976
620 => 0.36772288243546
621 => 0.35700864910433
622 => 0.36380436407637
623 => 0.36514598216478
624 => 0.35664458355559
625 => 0.36118554787651
626 => 0.34912609294224
627 => 0.32412057316669
628 => 0.33329738890702
629 => 0.34005461417468
630 => 0.33041122055786
701 => 0.34769663036514
702 => 0.33759885079901
703 => 0.33439833945545
704 => 0.32191200363953
705 => 0.3278050735015
706 => 0.33577553487045
707 => 0.33085071641003
708 => 0.34107045418062
709 => 0.35554432836827
710 => 0.36585927304851
711 => 0.36665112641988
712 => 0.36001930803811
713 => 0.37064683931859
714 => 0.37072424928163
715 => 0.3587363505825
716 => 0.35139382937819
717 => 0.34972559311177
718 => 0.35389317438227
719 => 0.35895338742259
720 => 0.36693193302632
721 => 0.37175320103565
722 => 0.38432451100102
723 => 0.38772594702994
724 => 0.39146309397476
725 => 0.39645707478648
726 => 0.40245362918134
727 => 0.38933350954941
728 => 0.38985479636135
729 => 0.37763752262052
730 => 0.36458161349416
731 => 0.37448942107902
801 => 0.38744256151581
802 => 0.38447109678766
803 => 0.38413674630423
804 => 0.38469903107628
805 => 0.38245864371022
806 => 0.37232545468616
807 => 0.3672366305954
808 => 0.37380251196997
809 => 0.37729198570679
810 => 0.38270385515851
811 => 0.38203672801788
812 => 0.39597712253317
813 => 0.40139393830616
814 => 0.40000808503282
815 => 0.40026311538753
816 => 0.41007000160369
817 => 0.42097727601604
818 => 0.43119337784483
819 => 0.44158563541685
820 => 0.42905736329706
821 => 0.42269627935103
822 => 0.42925929426719
823 => 0.42577686617155
824 => 0.44578793096435
825 => 0.44717345367321
826 => 0.46718307143826
827 => 0.48617458139825
828 => 0.47424635426062
829 => 0.48549413519226
830 => 0.49765952731485
831 => 0.52112854248308
901 => 0.51322500382433
902 => 0.50717101707597
903 => 0.50145002885142
904 => 0.5133544971654
905 => 0.52866940547282
906 => 0.53196809003787
907 => 0.53731321922774
908 => 0.53169346945589
909 => 0.53846183906095
910 => 0.56235715793911
911 => 0.55590043184842
912 => 0.54673084282912
913 => 0.56559390215261
914 => 0.57242036999349
915 => 0.62033209634977
916 => 0.68082263000928
917 => 0.65577915187199
918 => 0.64023385684418
919 => 0.64388736991504
920 => 0.66597646507371
921 => 0.67307078136583
922 => 0.65378598412636
923 => 0.66059770053308
924 => 0.6981309276473
925 => 0.71826629978399
926 => 0.6909197598811
927 => 0.61547174086855
928 => 0.54590522166458
929 => 0.56435739517866
930 => 0.56226549133977
1001 => 0.60259026150856
1002 => 0.55574644106653
1003 => 0.5565351708651
1004 => 0.59769381457631
1005 => 0.58671339407195
1006 => 0.56892651912089
1007 => 0.54603508553585
1008 => 0.50371815335259
1009 => 0.46623686642292
1010 => 0.53974630151687
1011 => 0.53657644100738
1012 => 0.53198601324264
1013 => 0.54220151349691
1014 => 0.59180508301131
1015 => 0.59066156018292
1016 => 0.58338705137916
1017 => 0.58890470219223
1018 => 0.56795924825591
1019 => 0.57335736865442
1020 => 0.54589420197251
1021 => 0.55830870027588
1022 => 0.56888835647574
1023 => 0.57101237909234
1024 => 0.57579791050284
1025 => 0.53490606855846
1026 => 0.55326530507008
1027 => 0.56404963649284
1028 => 0.5153256347875
1029 => 0.56308651963873
1030 => 0.53419423256635
1031 => 0.52438775638639
1101 => 0.53759088465771
1102 => 0.53244561272991
1103 => 0.5280220100669
1104 => 0.52555356377379
1105 => 0.53524848400016
1106 => 0.53479620438366
1107 => 0.5189334331904
1108 => 0.49824109481807
1109 => 0.50518612277868
1110 => 0.5026629290106
1111 => 0.49351854929663
1112 => 0.49968075712723
1113 => 0.47254551246328
1114 => 0.42586073438624
1115 => 0.45670212877736
1116 => 0.45551476864228
1117 => 0.45491604781968
1118 => 0.47809250331108
1119 => 0.47586462188738
1120 => 0.4718209952879
1121 => 0.49344428492308
1122 => 0.48555149333195
1123 => 0.50987521724023
1124 => 0.52589639496605
1125 => 0.52183290606398
1126 => 0.53690090115219
1127 => 0.5053461221959
1128 => 0.51582735400719
1129 => 0.51798752135713
1130 => 0.49317745688548
1201 => 0.47622913084097
1202 => 0.47509887071887
1203 => 0.44571280898089
1204 => 0.46141060596531
1205 => 0.47522401769263
1206 => 0.4686084654393
1207 => 0.4665141792299
1208 => 0.47721343327848
1209 => 0.47804485695096
1210 => 0.45908830910789
1211 => 0.46302997568026
1212 => 0.4794673805346
1213 => 0.46261579525197
1214 => 0.42987591773865
1215 => 0.42175597545112
1216 => 0.42067262546974
1217 => 0.39865069798523
1218 => 0.42229858882179
1219 => 0.41197565074756
1220 => 0.44458568843627
1221 => 0.42595900979962
1222 => 0.42515605091226
1223 => 0.42394226078557
1224 => 0.40498707808528
1225 => 0.40913705843194
1226 => 0.42293222516408
1227 => 0.42785449606779
1228 => 0.42734106288556
1229 => 0.42286462132117
1230 => 0.42491391334626
1231 => 0.41831242971278
]
'min_raw' => 0.23097856847787
'max_raw' => 0.71826629978399
'avg_raw' => 0.47462243413093
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.230978'
'max' => '$0.718266'
'avg' => '$0.474622'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.13158088730374
'max_diff' => 0.44860996894982
'year' => 2033
]
8 => [
'items' => [
101 => 0.4159813084438
102 => 0.40862364849347
103 => 0.39780992097194
104 => 0.39931363610825
105 => 0.37788881232236
106 => 0.36621543122235
107 => 0.36298439318656
108 => 0.35866371409072
109 => 0.36347242538732
110 => 0.37782811848847
111 => 0.3605121068783
112 => 0.33082501954964
113 => 0.33260926408243
114 => 0.33661793180065
115 => 0.32914780602774
116 => 0.32207795890382
117 => 0.32822461738324
118 => 0.31564580712414
119 => 0.33813802092448
120 => 0.33752966957489
121 => 0.34591337597049
122 => 0.35115587963063
123 => 0.33907360597471
124 => 0.33603494682419
125 => 0.33776590517569
126 => 0.30915701938286
127 => 0.343575419649
128 => 0.34387307140376
129 => 0.34132439636991
130 => 0.35965113196274
131 => 0.39832626031579
201 => 0.38377512132594
202 => 0.37814048049856
203 => 0.36742902416683
204 => 0.38170140374552
205 => 0.38060550767768
206 => 0.37564945005268
207 => 0.37265201093723
208 => 0.37817488441394
209 => 0.37196766579453
210 => 0.37085267876752
211 => 0.36409707050171
212 => 0.36168562571141
213 => 0.35990028799105
214 => 0.3579348065846
215 => 0.36227016879978
216 => 0.35244566765578
217 => 0.34059828238384
218 => 0.33961330048897
219 => 0.34233292210121
220 => 0.34112969198981
221 => 0.33960753988611
222 => 0.33670133698668
223 => 0.33583912866762
224 => 0.33864088742056
225 => 0.33547786514117
226 => 0.34014507681314
227 => 0.33887585348697
228 => 0.33178607516163
301 => 0.32294958639614
302 => 0.32287092311097
303 => 0.32096711610119
304 => 0.31854233163494
305 => 0.31786781206798
306 => 0.32770696295053
307 => 0.34807371081641
308 => 0.34407523087537
309 => 0.34696454241348
310 => 0.36117709552424
311 => 0.36569483877177
312 => 0.36248825162329
313 => 0.35809887736076
314 => 0.35829198755186
315 => 0.37329180816087
316 => 0.37422732857309
317 => 0.37659108684447
318 => 0.3796291842212
319 => 0.36300565274365
320 => 0.3575090207142
321 => 0.35490441151711
322 => 0.34688322330069
323 => 0.3555333871074
324 => 0.35049330709418
325 => 0.35117338608161
326 => 0.35073048374887
327 => 0.35097233837147
328 => 0.33813173389233
329 => 0.34281017528223
330 => 0.3350313590729
331 => 0.3246163973817
401 => 0.32458148277816
402 => 0.32713052989721
403 => 0.32561425692658
404 => 0.32153400534954
405 => 0.32211358582781
406 => 0.31703585097489
407 => 0.32273011477431
408 => 0.32289340588502
409 => 0.3207008041536
410 => 0.32947360319359
411 => 0.3330678261182
412 => 0.3316246086885
413 => 0.33296656613601
414 => 0.34424138576897
415 => 0.34607967332401
416 => 0.3468961192255
417 => 0.34580218987586
418 => 0.33317264914142
419 => 0.33373282297795
420 => 0.3296226390467
421 => 0.32614996674531
422 => 0.32628885542559
423 => 0.32807426040431
424 => 0.33587122865898
425 => 0.35227948869455
426 => 0.35290217016862
427 => 0.35365687828009
428 => 0.35058710110483
429 => 0.34966122693496
430 => 0.35088269395342
501 => 0.35704477371745
502 => 0.37289531585888
503 => 0.36729267564398
504 => 0.36273764193898
505 => 0.36673363452654
506 => 0.36611848278931
507 => 0.36092598306027
508 => 0.36078024688703
509 => 0.35081417976443
510 => 0.34712995166557
511 => 0.34405113490646
512 => 0.34068914738007
513 => 0.33869604847959
514 => 0.34175835423798
515 => 0.34245873979707
516 => 0.33576295473638
517 => 0.33485034397439
518 => 0.3403182665935
519 => 0.33791203771353
520 => 0.34038690378819
521 => 0.34096109394651
522 => 0.3408686361063
523 => 0.33835625680199
524 => 0.33995757245033
525 => 0.33616998356683
526 => 0.33205154953348
527 => 0.32942424520771
528 => 0.32713157372213
529 => 0.32840368111318
530 => 0.32386885054172
531 => 0.32241806697381
601 => 0.33941508273941
602 => 0.35197096103418
603 => 0.3517883935911
604 => 0.35067706123388
605 => 0.3490258467766
606 => 0.35692397709512
607 => 0.35417242642025
608 => 0.35617440943597
609 => 0.35668399813644
610 => 0.35822636965444
611 => 0.35877763490082
612 => 0.35711132844794
613 => 0.35151900046989
614 => 0.33758345085117
615 => 0.33109641488536
616 => 0.32895558496652
617 => 0.32903340006805
618 => 0.3268869121858
619 => 0.32751914906596
620 => 0.32666704600029
621 => 0.32505336893979
622 => 0.32830404110192
623 => 0.3286786507865
624 => 0.32791990506122
625 => 0.32809861714652
626 => 0.32181652660572
627 => 0.32229414030556
628 => 0.31963472653267
629 => 0.31913611850997
630 => 0.31241335207376
701 => 0.30050299685145
702 => 0.30710248981077
703 => 0.29913123034505
704 => 0.29611239360109
705 => 0.31040309722155
706 => 0.30896870694048
707 => 0.30651365429374
708 => 0.30288211975142
709 => 0.30153514826437
710 => 0.29335137590844
711 => 0.29286783497892
712 => 0.29692393353896
713 => 0.29505218361533
714 => 0.29242353783543
715 => 0.28290284928216
716 => 0.27219844315664
717 => 0.27252154189207
718 => 0.27592641431804
719 => 0.28582654010616
720 => 0.28195838968683
721 => 0.27915200217569
722 => 0.27862645015455
723 => 0.28520483401677
724 => 0.29451462539584
725 => 0.29888257121605
726 => 0.29455406956471
727 => 0.28958171993072
728 => 0.28988436381329
729 => 0.29189771797719
730 => 0.29210929303252
731 => 0.28887280458659
801 => 0.28978385712628
802 => 0.2883998850101
803 => 0.27990645068774
804 => 0.27975283139382
805 => 0.27766840563598
806 => 0.27760529005244
807 => 0.27405916185398
808 => 0.27356303400579
809 => 0.26652198123316
810 => 0.27115642349038
811 => 0.26804788294337
812 => 0.26336257910846
813 => 0.26255483096132
814 => 0.26253054907663
815 => 0.26734130850032
816 => 0.27110020696555
817 => 0.26810195733707
818 => 0.26741931401529
819 => 0.27470815875131
820 => 0.27378058681936
821 => 0.27297731550848
822 => 0.29368103568853
823 => 0.27729242563459
824 => 0.27014605622192
825 => 0.26130106701499
826 => 0.26418104010107
827 => 0.26478789274591
828 => 0.24351728813239
829 => 0.23488780648977
830 => 0.23192649358517
831 => 0.23022221614176
901 => 0.23099887677369
902 => 0.22323133115809
903 => 0.22845125027512
904 => 0.2217252123463
905 => 0.22059757019911
906 => 0.23262455921206
907 => 0.23429804447256
908 => 0.22715843644015
909 => 0.2317432205945
910 => 0.23008071412687
911 => 0.22184051096169
912 => 0.22152579581161
913 => 0.21739115152047
914 => 0.21092123382973
915 => 0.207964307834
916 => 0.20642431510221
917 => 0.20705974611721
918 => 0.20673845275151
919 => 0.20464179620917
920 => 0.20685863065026
921 => 0.2011955347125
922 => 0.19894044427942
923 => 0.1979218722485
924 => 0.1928955486481
925 => 0.20089466471259
926 => 0.2024705913475
927 => 0.20404962304471
928 => 0.21779401591823
929 => 0.21710738489152
930 => 0.2233141949701
1001 => 0.22307300974404
1002 => 0.22130272696597
1003 => 0.21383419512268
1004 => 0.21681101880164
1005 => 0.20764881821892
1006 => 0.21451376186457
1007 => 0.2113808882716
1008 => 0.2134545341514
1009 => 0.20972593188641
1010 => 0.21178949433007
1011 => 0.20284430201566
1012 => 0.19449140729473
1013 => 0.19785285596663
1014 => 0.20150713510127
1015 => 0.20943054335818
1016 => 0.20471142676707
1017 => 0.20640859954279
1018 => 0.20072335484741
1019 => 0.188993071131
1020 => 0.18905946326293
1021 => 0.18725501467128
1022 => 0.18569570763429
1023 => 0.20525347407572
1024 => 0.2028211566562
1025 => 0.19894557718201
1026 => 0.20413319431761
1027 => 0.20550488262682
1028 => 0.20554393266462
1029 => 0.20932868421497
1030 => 0.21134860679585
1031 => 0.21170462690557
1101 => 0.21766001524503
1102 => 0.21965618286294
1103 => 0.2278781147729
1104 => 0.21117723047727
1105 => 0.21083328675553
1106 => 0.20420619472918
1107 => 0.2000031881959
1108 => 0.20449397818235
1109 => 0.20847220505638
1110 => 0.20432980932742
1111 => 0.20487071875888
1112 => 0.19930989093893
1113 => 0.20129762522329
1114 => 0.20300972976571
1115 => 0.20206440627024
1116 => 0.20064921124335
1117 => 0.20814603581981
1118 => 0.20772303559691
1119 => 0.21470425099376
1120 => 0.22014660762711
1121 => 0.22990028365169
1122 => 0.21972181424941
1123 => 0.21935087036864
1124 => 0.22297690630444
1125 => 0.21965562773573
1126 => 0.22175456114452
1127 => 0.22956211303015
1128 => 0.22972707429851
1129 => 0.22696376051282
1130 => 0.22679561261783
1201 => 0.22732633725772
1202 => 0.23043480805039
1203 => 0.22934861284177
1204 => 0.23060558543628
1205 => 0.23217744891317
1206 => 0.23867934270987
1207 => 0.2402469272922
1208 => 0.23643850945656
1209 => 0.23678236694607
1210 => 0.23535791413214
1211 => 0.23398191056222
1212 => 0.23707496563822
1213 => 0.24272758458375
1214 => 0.24269241993466
1215 => 0.24400371765881
1216 => 0.24482064527758
1217 => 0.24131379391025
1218 => 0.23903096262062
1219 => 0.2399063453974
1220 => 0.24130610152081
1221 => 0.23945242335201
1222 => 0.22801066298692
1223 => 0.23148136217921
1224 => 0.23090366812509
1225 => 0.23008096154203
1226 => 0.233570776418
1227 => 0.23323417525975
1228 => 0.22315166375078
1229 => 0.22379711342495
1230 => 0.22319091568326
1231 => 0.22514966460306
]
'min_raw' => 0.18569570763429
'max_raw' => 0.4159813084438
'avg_raw' => 0.30083850803904
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.185695'
'max' => '$0.415981'
'avg' => '$0.300838'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.04528286084358
'max_diff' => -0.30228499134019
'year' => 2034
]
9 => [
'items' => [
101 => 0.21954984886599
102 => 0.22127231447138
103 => 0.22235262875197
104 => 0.2229889421626
105 => 0.22528774252599
106 => 0.225018004836
107 => 0.22527097525245
108 => 0.22867948933056
109 => 0.24591858387686
110 => 0.2468568697571
111 => 0.24223640692087
112 => 0.24408219068934
113 => 0.24053868948241
114 => 0.24291746558202
115 => 0.24454496377501
116 => 0.2371906123908
117 => 0.23675513543117
118 => 0.23319700893427
119 => 0.23510894457112
120 => 0.23206691749985
121 => 0.23281332453755
122 => 0.23072630538955
123 => 0.23448252433458
124 => 0.23868256077255
125 => 0.23974365584124
126 => 0.23695237154566
127 => 0.23493129776105
128 => 0.23138295797838
129 => 0.23728392611687
130 => 0.23900954902931
131 => 0.23727486215433
201 => 0.23687289730174
202 => 0.23611117463242
203 => 0.23703450036694
204 => 0.23900015091634
205 => 0.23807318641711
206 => 0.23868546279986
207 => 0.23635209660546
208 => 0.24131495482398
209 => 0.24919716805185
210 => 0.24922251065624
211 => 0.24829554116033
212 => 0.24791624521444
213 => 0.24886737217046
214 => 0.24938331952683
215 => 0.25245908969575
216 => 0.25575951363109
217 => 0.27116115204953
218 => 0.26683643361228
219 => 0.28050168346469
220 => 0.29130912188734
221 => 0.29454980011829
222 => 0.29156852863151
223 => 0.28136975992037
224 => 0.2808693596716
225 => 0.29611062593513
226 => 0.29180427012147
227 => 0.29129204280014
228 => 0.28584280952296
301 => 0.28906398129045
302 => 0.28835946377316
303 => 0.28724734840594
304 => 0.29339311974953
305 => 0.30489745506794
306 => 0.30310439652159
307 => 0.30176596149434
308 => 0.29590132881748
309 => 0.29943314760208
310 => 0.29817553458042
311 => 0.30357903822242
312 => 0.30037812236716
313 => 0.29177164524076
314 => 0.29314225509046
315 => 0.29293509016896
316 => 0.29719852957352
317 => 0.29591875088934
318 => 0.29268519284116
319 => 0.3048581345005
320 => 0.30406769137861
321 => 0.305188359005
322 => 0.30568171155194
323 => 0.31309116662869
324 => 0.31612658329752
325 => 0.31681567602379
326 => 0.31969908709163
327 => 0.3167439341297
328 => 0.32856665296577
329 => 0.33642807111699
330 => 0.34555951284451
331 => 0.35890300350857
401 => 0.36392027943245
402 => 0.36301395344469
403 => 0.37313083577903
404 => 0.39131064844817
405 => 0.36668861336586
406 => 0.3926156760945
407 => 0.38440746737695
408 => 0.364945952167
409 => 0.36369286002367
410 => 0.37687242407669
411 => 0.40610342866025
412 => 0.39878139354738
413 => 0.40611540488664
414 => 0.39755989109044
415 => 0.39713503771892
416 => 0.40569988267783
417 => 0.4257121097697
418 => 0.41620505082547
419 => 0.40257435060242
420 => 0.41263904752993
421 => 0.40392007560759
422 => 0.38427379157997
423 => 0.39877579452512
424 => 0.38907871814896
425 => 0.39190884056046
426 => 0.41229065277188
427 => 0.40983825920302
428 => 0.41301188356666
429 => 0.40741051963304
430 => 0.40217796246503
501 => 0.39241100593613
502 => 0.38951949161306
503 => 0.39031860214617
504 => 0.38951909561357
505 => 0.38405457319861
506 => 0.38287451010339
507 => 0.38090768657826
508 => 0.38151728743078
509 => 0.37781908378902
510 => 0.38479835814888
511 => 0.38609377297123
512 => 0.39117270682716
513 => 0.3917000185888
514 => 0.40584477708346
515 => 0.39805408179761
516 => 0.40328075281163
517 => 0.4028132301608
518 => 0.36536774221407
519 => 0.3705274000688
520 => 0.37855420850091
521 => 0.37493814218232
522 => 0.36982587043705
523 => 0.36569743690007
524 => 0.35944243793754
525 => 0.36824622886068
526 => 0.37982227774583
527 => 0.39199360629191
528 => 0.406616660043
529 => 0.40335296467687
530 => 0.39172023847362
531 => 0.39224207407339
601 => 0.3954678564164
602 => 0.39129017518897
603 => 0.39005809543697
604 => 0.39529858757835
605 => 0.3953346759676
606 => 0.3905277488258
607 => 0.38518572896607
608 => 0.3851633457078
609 => 0.38421278487155
610 => 0.39772899375152
611 => 0.40516154199266
612 => 0.40601367167035
613 => 0.40510418687593
614 => 0.40545421147715
615 => 0.40112937542066
616 => 0.4110146681555
617 => 0.42008639032312
618 => 0.41765497499312
619 => 0.4140099377674
620 => 0.41110649004833
621 => 0.4169710149834
622 => 0.41670987691966
623 => 0.42000715674398
624 => 0.41985757308514
625 => 0.41874882189719
626 => 0.41765501459012
627 => 0.42199183692428
628 => 0.42074290173928
629 => 0.41949202661297
630 => 0.41698320504775
701 => 0.41732419556558
702 => 0.41367978770692
703 => 0.41199371787475
704 => 0.3866392730461
705 => 0.3798637369075
706 => 0.38199545850546
707 => 0.38269727660563
708 => 0.37974855459503
709 => 0.3839762644937
710 => 0.38331738038424
711 => 0.38588071301982
712 => 0.38427925407608
713 => 0.38434497850974
714 => 0.38905452779625
715 => 0.39042172998997
716 => 0.38972635991957
717 => 0.39021337328099
718 => 0.40143639063943
719 => 0.39984083646295
720 => 0.39899323010727
721 => 0.39922802286044
722 => 0.40209574441972
723 => 0.40289854988453
724 => 0.399497006718
725 => 0.40110119413942
726 => 0.40793162057815
727 => 0.41032188326304
728 => 0.41795045436206
729 => 0.41470970177216
730 => 0.42065824340741
731 => 0.43894203238688
801 => 0.45354838816564
802 => 0.44011577975831
803 => 0.46693849203782
804 => 0.48782382103697
805 => 0.48702220732365
806 => 0.48338036712628
807 => 0.45960297532595
808 => 0.43772266489034
809 => 0.45602647365678
810 => 0.45607313382954
811 => 0.45450082042366
812 => 0.44473531689665
813 => 0.45416100206887
814 => 0.45490917872878
815 => 0.45449039875546
816 => 0.44700321009775
817 => 0.43557165688117
818 => 0.43780535501642
819 => 0.44146419812816
820 => 0.434537244803
821 => 0.43232366349671
822 => 0.43643913229618
823 => 0.44970003026005
824 => 0.44719313431513
825 => 0.44712766913085
826 => 0.45785323307253
827 => 0.45017604401185
828 => 0.4378335291032
829 => 0.43471688131099
830 => 0.42365488127418
831 => 0.4312954441011
901 => 0.43157041435501
902 => 0.42738575617936
903 => 0.43817309105118
904 => 0.43807368386127
905 => 0.44831465283916
906 => 0.46789153919258
907 => 0.4621016905778
908 => 0.45536872657255
909 => 0.45610078644477
910 => 0.46412967636521
911 => 0.45927522623758
912 => 0.4610209203499
913 => 0.46412703404809
914 => 0.46600102956267
915 => 0.45583114732937
916 => 0.45346006129909
917 => 0.44860965141924
918 => 0.44734427001878
919 => 0.45129482765879
920 => 0.45025399529591
921 => 0.4315473041699
922 => 0.42959235086419
923 => 0.42965230649104
924 => 0.42473648345086
925 => 0.41723867338187
926 => 0.4369424705722
927 => 0.43535997990335
928 => 0.43361303267999
929 => 0.43382702374691
930 => 0.44237977428359
1001 => 0.43741874704806
1002 => 0.45060845105008
1003 => 0.44789704442606
1004 => 0.44511610045321
1005 => 0.44473168928653
1006 => 0.44366126311598
1007 => 0.4399903734891
1008 => 0.43555755367837
1009 => 0.43263062207506
1010 => 0.39907888009608
1011 => 0.40530588824588
1012 => 0.41246949351256
1013 => 0.41494234134427
1014 => 0.41071236401227
1015 => 0.44015739877618
1016 => 0.44553729036696
1017 => 0.42924124781684
1018 => 0.42619292361874
1019 => 0.44035724640312
1020 => 0.4318144282461
1021 => 0.43566125873912
1022 => 0.42734651531699
1023 => 0.44424143202436
1024 => 0.44411272106577
1025 => 0.43754021687761
1026 => 0.44309525241088
1027 => 0.44212992828426
1028 => 0.43470958724319
1029 => 0.44447667007078
1030 => 0.44448151442201
1031 => 0.43815562203946
1101 => 0.43076836465256
1102 => 0.42944769751101
1103 => 0.42845275222652
1104 => 0.43541656319039
1105 => 0.44166029432533
1106 => 0.45327833001522
1107 => 0.45619938022538
1108 => 0.46760043366096
1109 => 0.46081166144729
1110 => 0.46382103624029
1111 => 0.46708813828015
1112 => 0.46865450714175
1113 => 0.46610219313775
1114 => 0.48381272198401
1115 => 0.48530803325522
1116 => 0.48580939819006
1117 => 0.47983750751027
1118 => 0.48514194417234
1119 => 0.48266017392264
1120 => 0.48911705065674
1121 => 0.49012957137419
1122 => 0.48927200234798
1123 => 0.48959339240525
1124 => 0.47448058038635
1125 => 0.47369690135673
1126 => 0.46301138218061
1127 => 0.46736581022825
1128 => 0.45922541570636
1129 => 0.4618068186646
1130 => 0.46294467649209
1201 => 0.46235032413587
1202 => 0.46761200305673
1203 => 0.46313850108402
1204 => 0.4513321938662
1205 => 0.43952267002788
1206 => 0.43937441107592
1207 => 0.43626517190469
1208 => 0.43401776146946
1209 => 0.43445069245046
1210 => 0.43597639769556
1211 => 0.43392908470704
1212 => 0.43436598273454
1213 => 0.44162140102744
1214 => 0.4430764234228
1215 => 0.4381316888094
1216 => 0.41827786581482
1217 => 0.4134056878524
1218 => 0.4169077127523
1219 => 0.41523397040943
1220 => 0.33512622180306
1221 => 0.35394634908309
1222 => 0.34276406852443
1223 => 0.34791737787785
1224 => 0.33650316506497
1225 => 0.34195062568943
1226 => 0.3409446786215
1227 => 0.37120688635975
1228 => 0.37073438361022
1229 => 0.37096054567213
1230 => 0.36016524119507
1231 => 0.37736245435148
]
'min_raw' => 0.21954984886599
'max_raw' => 0.49012957137419
'avg_raw' => 0.35483971012009
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.219549'
'max' => '$0.490129'
'avg' => '$0.354839'
'bar_min_pct' => 61.631153054958
'bar_max_pct' => 60.119598047091
'min_diff' => 0.033854141231708
'max_diff' => 0.07414826293039
'year' => 2035
]
10 => [
'items' => [
101 => 0.38583441994411
102 => 0.38426648458698
103 => 0.38466110013653
104 => 0.37788029757141
105 => 0.37102619866306
106 => 0.36342394813544
107 => 0.37754798994919
108 => 0.37597763760494
109 => 0.37957946088772
110 => 0.3887399116113
111 => 0.39008882277751
112 => 0.39190177306422
113 => 0.39125195944102
114 => 0.40673315625788
115 => 0.40485828117513
116 => 0.40937619068618
117 => 0.40008250804734
118 => 0.38956582397704
119 => 0.3915647018025
120 => 0.39137219379394
121 => 0.38892134589467
122 => 0.38670882999602
123 => 0.38302561439725
124 => 0.39467985356509
125 => 0.39420671273801
126 => 0.4018663127623
127 => 0.40051240405662
128 => 0.39147067036245
129 => 0.39179359765019
130 => 0.39396543885386
131 => 0.40148220605738
201 => 0.40371369434392
202 => 0.40267998006016
203 => 0.40512670509505
204 => 0.4070604968016
205 => 0.40536955956021
206 => 0.42930966502728
207 => 0.41936806413902
208 => 0.42421353123875
209 => 0.42536914659088
210 => 0.42240906216636
211 => 0.42305099848537
212 => 0.42402335709148
213 => 0.42992732814045
214 => 0.44542105650074
215 => 0.45228312332214
216 => 0.47292798992272
217 => 0.4517133241972
218 => 0.45045453372806
219 => 0.45417329761807
220 => 0.46629401979368
221 => 0.47611672667547
222 => 0.47937548523372
223 => 0.47980618397343
224 => 0.48591983166687
225 => 0.48942406051197
226 => 0.48517747403199
227 => 0.48157893662634
228 => 0.46868942230622
229 => 0.47018141868576
301 => 0.48045979419914
302 => 0.49497860500509
303 => 0.5074372551014
304 => 0.50307467006547
305 => 0.53635811438458
306 => 0.53965803193814
307 => 0.53920209003135
308 => 0.54671979331194
309 => 0.53179868325362
310 => 0.52541961962079
311 => 0.48235698125858
312 => 0.49445582613617
313 => 0.51204220770599
314 => 0.50971458415968
315 => 0.49694288377834
316 => 0.50742756662139
317 => 0.50396100258714
318 => 0.50122677970544
319 => 0.51375278478167
320 => 0.49997992766043
321 => 0.51190481292052
322 => 0.49661102422731
323 => 0.50309459798643
324 => 0.49941420794558
325 => 0.50179587135365
326 => 0.48787271573545
327 => 0.49538531254153
328 => 0.48756016700919
329 => 0.48755645687134
330 => 0.48738371635
331 => 0.4965899653668
401 => 0.49689018081672
402 => 0.49008674888344
403 => 0.48910626805227
404 => 0.49273161957591
405 => 0.4884872824228
406 => 0.4904731810632
407 => 0.48854743326955
408 => 0.48811390687875
409 => 0.48465949483838
410 => 0.48317123915036
411 => 0.48375482255326
412 => 0.4817627515413
413 => 0.48056245670023
414 => 0.48714494749513
415 => 0.48362818820034
416 => 0.48660595369578
417 => 0.48321241408976
418 => 0.47144892732047
419 => 0.46468362168284
420 => 0.44246348565145
421 => 0.44876508866596
422 => 0.45294305798406
423 => 0.45156223914935
424 => 0.45452877231226
425 => 0.45471089335528
426 => 0.45374644318379
427 => 0.45262973343893
428 => 0.45208618089305
429 => 0.45613737624577
430 => 0.45848923150499
501 => 0.45336237309915
502 => 0.45216122190703
503 => 0.45734475881695
504 => 0.46050671333757
505 => 0.48385280896903
506 => 0.48212325479776
507 => 0.48646409635979
508 => 0.48597538421555
509 => 0.49052527772285
510 => 0.49796243067883
511 => 0.48284061925866
512 => 0.4854652428483
513 => 0.48482174575553
514 => 0.49184727828041
515 => 0.49186921122609
516 => 0.48765705352605
517 => 0.48994053254969
518 => 0.48866595720266
519 => 0.49096928712394
520 => 0.48210015554734
521 => 0.49290180044404
522 => 0.49902563705785
523 => 0.49911066653517
524 => 0.50201331648834
525 => 0.50496257695091
526 => 0.51062342558237
527 => 0.50480469895501
528 => 0.49433737619402
529 => 0.49509308308812
530 => 0.4889560955832
531 => 0.48905925945189
601 => 0.4885085626357
602 => 0.49016124523562
603 => 0.48246282643962
604 => 0.48426962994366
605 => 0.48174009445737
606 => 0.48545974413217
607 => 0.48145801596221
608 => 0.48482143544175
609 => 0.48627297579
610 => 0.49162919092447
611 => 0.48066689863184
612 => 0.45831404256524
613 => 0.46301288391262
614 => 0.45606292847382
615 => 0.45670617331003
616 => 0.45800563025082
617 => 0.45379366514985
618 => 0.45459717535684
619 => 0.45456846831803
620 => 0.45432108656638
621 => 0.45322539176981
622 => 0.45163641753817
623 => 0.45796640181655
624 => 0.45904198949328
625 => 0.46143288766154
626 => 0.46854657884856
627 => 0.46783575334659
628 => 0.46899513923218
629 => 0.46646420635362
630 => 0.45682357602737
701 => 0.45734710863656
702 => 0.45081864861096
703 => 0.46126594026071
704 => 0.45879188370053
705 => 0.4571968433415
706 => 0.45676162180159
707 => 0.46389294645313
708 => 0.46602675055868
709 => 0.46469710703437
710 => 0.4619699693741
711 => 0.46720687988769
712 => 0.46860805621361
713 => 0.46892172791959
714 => 0.47820052927169
715 => 0.46944030984055
716 => 0.47154898172671
717 => 0.48800023783566
718 => 0.47308121866301
719 => 0.48098415585259
720 => 0.48059734820206
721 => 0.48464022344744
722 => 0.48026571442925
723 => 0.48031994171134
724 => 0.48390974104114
725 => 0.47886851530615
726 => 0.47762023691925
727 => 0.47589574926809
728 => 0.47966110496528
729 => 0.48191826541336
730 => 0.50010932092321
731 => 0.51186157239549
801 => 0.51135137616472
802 => 0.51601361466663
803 => 0.51391323352031
804 => 0.50713054874628
805 => 0.51870776459525
806 => 0.51504424908935
807 => 0.51534626485649
808 => 0.51533502381455
809 => 0.51777094135589
810 => 0.51604487052929
811 => 0.51264260775252
812 => 0.51490118856069
813 => 0.52160836610356
814 => 0.54242765099794
815 => 0.55407839864368
816 => 0.54172626136056
817 => 0.55024660025675
818 => 0.5451374330262
819 => 0.54420894535585
820 => 0.54956034783076
821 => 0.55492111722728
822 => 0.55457965939197
823 => 0.55068801608864
824 => 0.54848972553339
825 => 0.56513591809914
826 => 0.5774005492211
827 => 0.57656418360171
828 => 0.58025562944501
829 => 0.59109382861308
830 => 0.59208473771627
831 => 0.59195990594506
901 => 0.58950383434212
902 => 0.60017544894109
903 => 0.60907789758874
904 => 0.58893532472877
905 => 0.59660535278821
906 => 0.60004867549696
907 => 0.60510449482121
908 => 0.61363450947494
909 => 0.62290036786354
910 => 0.62421066183465
911 => 0.62328094555881
912 => 0.61716986287189
913 => 0.62730867568537
914 => 0.63324775444709
915 => 0.63678433993629
916 => 0.6457525323052
917 => 0.60006994028576
918 => 0.56773353108226
919 => 0.56268373384172
920 => 0.57295269510382
921 => 0.5756605382952
922 => 0.5745690101001
923 => 0.53817144164386
924 => 0.56249210817645
925 => 0.58865910042579
926 => 0.58966428116652
927 => 0.60276402461254
928 => 0.6070298380552
929 => 0.61757684855187
930 => 0.61691713017366
1001 => 0.61948515939001
1002 => 0.61889481394524
1003 => 0.63843092995525
1004 => 0.65998216705558
1005 => 0.65923591624354
1006 => 0.6561376709277
1007 => 0.66073909355105
1008 => 0.68298227980952
1009 => 0.68093448365863
1010 => 0.68292374318836
1011 => 0.70914971335814
1012 => 0.74324720517961
1013 => 0.72740549689633
1014 => 0.76177744554229
1015 => 0.78341276523621
1016 => 0.82082881351304
1017 => 0.81614413999086
1018 => 0.83070993301339
1019 => 0.80775759666529
1020 => 0.75505439297755
1021 => 0.7467139092542
1022 => 0.76341176888303
1023 => 0.80446182742717
1024 => 0.76211895645472
1025 => 0.77068486410497
1026 => 0.76821788212544
1027 => 0.76808642713975
1028 => 0.7731035292775
1029 => 0.76582596095224
1030 => 0.73617583838557
1031 => 0.74976431482861
1101 => 0.74451715150172
1102 => 0.75033927041484
1103 => 0.78175884496448
1104 => 0.76786750210698
1105 => 0.75323410084765
1106 => 0.77158763343854
1107 => 0.79495798738479
1108 => 0.7934955126354
1109 => 0.79065770035456
1110 => 0.80665429959865
1111 => 0.83307599498609
1112 => 0.84021767307834
1113 => 0.84548951384086
1114 => 0.84621641161353
1115 => 0.8537039104365
1116 => 0.81344174217274
1117 => 0.87733883721315
1118 => 0.888372100405
1119 => 0.88629830420684
1120 => 0.8985613118939
1121 => 0.89495322394989
1122 => 0.88972567061067
1123 => 0.90916514621119
1124 => 0.88687935611998
1125 => 0.85524748278848
1126 => 0.8378936114713
1127 => 0.86074658911863
1128 => 0.87470210510884
1129 => 0.88392581344085
1130 => 0.886716902009
1201 => 0.81656717968336
1202 => 0.7787603700318
1203 => 0.8029941015625
1204 => 0.83256092655275
1205 => 0.81327749696705
1206 => 0.81403337089845
1207 => 0.78654026790539
1208 => 0.8349934561175
1209 => 0.82793423415045
1210 => 0.86455749020305
1211 => 0.8558170562261
1212 => 0.88568189983038
1213 => 0.87781748562948
1214 => 0.91046222928397
1215 => 0.9234851013489
1216 => 0.9453525303941
1217 => 0.9614383002162
1218 => 0.97088417192749
1219 => 0.97031707722052
1220 => 1.0077463268552
1221 => 0.98567560602401
1222 => 0.95794957899051
1223 => 0.95744810263597
1224 => 0.97180780491746
1225 => 1.0019018015075
1226 => 1.0097047369735
1227 => 1.0140655134029
1228 => 1.0073868325015
1229 => 0.98343064686207
1230 => 0.97308648736357
1231 => 0.98190001095545
]
'min_raw' => 0.36342394813544
'max_raw' => 1.0140655134029
'avg_raw' => 0.68874473076919
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$0.363423'
'max' => '$1.01'
'avg' => '$0.688744'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.14387409926945
'max_diff' => 0.52393594202875
'year' => 2036
]
11 => [
'items' => [
101 => 0.9711218289573
102 => 0.98972799490985
103 => 1.0152782348253
104 => 1.0100022113194
105 => 1.0276391668741
106 => 1.0458915604113
107 => 1.071993302936
108 => 1.0788172649766
109 => 1.0900970147378
110 => 1.1017075824468
111 => 1.1054365838814
112 => 1.1125564046612
113 => 1.1125188796912
114 => 1.1339749388303
115 => 1.1576416364995
116 => 1.1665752669843
117 => 1.1871176576809
118 => 1.1519395335042
119 => 1.1786225447894
120 => 1.2026912888877
121 => 1.1739955399359
122 => 1.213545944614
123 => 1.2150815972045
124 => 1.2382681281105
125 => 1.2147641370355
126 => 1.2008075421625
127 => 1.2410997086139
128 => 1.2605958187684
129 => 1.2547234317253
130 => 1.2100342763715
131 => 1.1840232711475
201 => 1.1159474533282
202 => 1.1965862001917
203 => 1.2358629815243
204 => 1.2099325589964
205 => 1.2230103558369
206 => 1.2943585749087
207 => 1.3215233572762
208 => 1.31587327244
209 => 1.316828043769
210 => 1.3314856672588
211 => 1.3964856419133
212 => 1.3575361504127
213 => 1.3873115772553
214 => 1.4031043562894
215 => 1.4177735695973
216 => 1.3817506179655
217 => 1.3348852871747
218 => 1.3200410696405
219 => 1.2073542895088
220 => 1.201488453229
221 => 1.1981957815722
222 => 1.1774359525334
223 => 1.1611244135047
224 => 1.1481528720604
225 => 1.1141116736805
226 => 1.1255995788439
227 => 1.0713450135766
228 => 1.1060551617709
301 => 1.019463565582
302 => 1.0915796199713
303 => 1.0523301302818
304 => 1.0786851069966
305 => 1.0785931569657
306 => 1.0300652889807
307 => 1.0020754274777
308 => 1.0199116566091
309 => 1.0390335100796
310 => 1.0421359664715
311 => 1.0669279486275
312 => 1.0738468579453
313 => 1.0528822396993
314 => 1.0176691472192
315 => 1.0258483454772
316 => 1.0019096762861
317 => 0.95995807931631
318 => 0.99008844866461
319 => 1.0003762814989
320 => 1.0049199745635
321 => 0.96366539711719
322 => 0.95070231320312
323 => 0.94380087609807
324 => 1.0123436993236
325 => 1.0160986299066
326 => 0.99688787415044
327 => 1.0837223118069
328 => 1.0640690042144
329 => 1.0860265639725
330 => 1.0251061689655
331 => 1.027433410095
401 => 0.99859271880606
402 => 1.0147415787922
403 => 1.003328085056
404 => 1.0134369104914
405 => 1.0194960987772
406 => 1.0483320575925
407 => 1.0919088803011
408 => 1.0440249269399
409 => 1.0231612027496
410 => 1.0361049398953
411 => 1.0705758176198
412 => 1.1228009619042
413 => 1.0918826253588
414 => 1.1056036580903
415 => 1.1086010933358
416 => 1.0858030566263
417 => 1.1236415580365
418 => 1.1439195183416
419 => 1.164720509682
420 => 1.1827814276324
421 => 1.156412136317
422 => 1.1846310579139
423 => 1.1618915884171
424 => 1.1414919335153
425 => 1.1415228713711
426 => 1.1287258698599
427 => 1.1039300669058
428 => 1.0993573404052
429 => 1.123145241133
430 => 1.1422208847941
501 => 1.1437920461722
502 => 1.154353302645
503 => 1.160603345436
504 => 1.2218622613089
505 => 1.2465011040332
506 => 1.2766290145272
507 => 1.2883655335806
508 => 1.3236882481564
509 => 1.2951622873658
510 => 1.2889905163121
511 => 1.2033091647232
512 => 1.2173394812459
513 => 1.239803371723
514 => 1.2036795860032
515 => 1.2265918134931
516 => 1.2311151725469
517 => 1.2024521135873
518 => 1.2177622918353
519 => 1.1771029975602
520 => 1.0927951418073
521 => 1.1237354167806
522 => 1.1465178735449
523 => 1.1140044986856
524 => 1.1722834646796
525 => 1.1382380958679
526 => 1.1274473484205
527 => 1.0853487954491
528 => 1.1052176919297
529 => 1.1320906589149
530 => 1.1154862896358
531 => 1.1499428490486
601 => 1.1987425264059
602 => 1.2335200825618
603 => 1.2361898714888
604 => 1.2138302327959
605 => 1.2496616964986
606 => 1.2499226895935
607 => 1.2095046521611
608 => 1.1847488292823
609 => 1.1791242542375
610 => 1.1931755454622
611 => 1.2102364070205
612 => 1.2371366305677
613 => 1.2533918722714
614 => 1.2957769215204
615 => 1.3072451005726
616 => 1.3198451524163
617 => 1.3366827073917
618 => 1.3569005092
619 => 1.3126651098434
620 => 1.314422664725
621 => 1.2732312733249
622 => 1.2292123641709
623 => 1.2626172291843
624 => 1.3062896465264
625 => 1.2962711457344
626 => 1.2951438597359
627 => 1.2970396421023
628 => 1.2894860196788
629 => 1.2553212654075
630 => 1.2381639396952
701 => 1.2603012671647
702 => 1.2720662714957
703 => 1.2903127671968
704 => 1.2880635014649
705 => 1.3350645148604
706 => 1.3533276874291
707 => 1.3486551863608
708 => 1.3495150390074
709 => 1.3825796405801
710 => 1.4193542777829
711 => 1.4537985783641
712 => 1.4888368003324
713 => 1.4465968561845
714 => 1.4251500175438
715 => 1.4472776805487
716 => 1.4355364310889
717 => 1.5030051331657
718 => 1.5076765197128
719 => 1.5751403430345
720 => 1.6391715448095
721 => 1.5989546942128
722 => 1.6368773729188
723 => 1.6778938418207
724 => 1.7570212650147
725 => 1.7303739326192
726 => 1.7099624936213
727 => 1.6906737823956
728 => 1.7308105284596
729 => 1.7824458110708
730 => 1.7935675563887
731 => 1.8115890326373
801 => 1.7926416539231
802 => 1.8154616845991
803 => 1.8960264205147
804 => 1.8742571177057
805 => 1.8433412081269
806 => 1.9069393296127
807 => 1.929955242547
808 => 2.0914929730472
809 => 2.2954410305944
810 => 2.2110051955747
811 => 2.1585931480506
812 => 2.1709112224492
813 => 2.245386148988
814 => 2.2693051316762
815 => 2.2042850913618
816 => 2.2272512688059
817 => 2.3537971645077
818 => 2.4216849774733
819 => 2.3294842089163
820 => 2.075105945203
821 => 1.8405575687276
822 => 1.9027703600199
823 => 1.895717360175
824 => 2.0316751381847
825 => 1.8737379270333
826 => 1.8763971846165
827 => 2.0151664254936
828 => 1.9781451711347
829 => 1.9181754803972
830 => 1.8409954138364
831 => 1.6983209225067
901 => 1.5719501467634
902 => 1.8197923394475
903 => 1.8091049334272
904 => 1.7936279857249
905 => 1.8280702580556
906 => 1.9953121558841
907 => 1.9914566888299
908 => 1.9669301745081
909 => 1.9855333194544
910 => 1.9149142591432
911 => 1.9331143989515
912 => 1.8405204150664
913 => 1.8823767628488
914 => 1.9180468123746
915 => 1.925208102921
916 => 1.9413428561867
917 => 1.803473156094
918 => 1.8653726037939
919 => 1.9017327301236
920 => 1.7374563565729
921 => 1.8984855144074
922 => 1.8010731513477
923 => 1.7680099322407
924 => 1.8125252010204
925 => 1.7951775574845
926 => 1.78026307226
927 => 1.7719405332414
928 => 1.8046276336623
929 => 1.8031027413581
930 => 1.7496203007768
1001 => 1.6798546372615
1002 => 1.7032702839171
1003 => 1.6947631599642
1004 => 1.6639322453184
1005 => 1.6847085592509
1006 => 1.5932201873441
1007 => 1.4358191986302
1008 => 1.5398031130973
1009 => 1.535799845503
1010 => 1.5337812164483
1011 => 1.6119222542659
1012 => 1.6044107965002
1013 => 1.5907774271031
1014 => 1.663681857798
1015 => 1.6370707598914
1016 => 1.7190798932763
1017 => 1.7730964125418
1018 => 1.7593960760047
1019 => 1.8101988734585
1020 => 1.703809733123
1021 => 1.739147937951
1022 => 1.7464310929894
1023 => 1.6627822284399
1024 => 1.6056397638865
1025 => 1.6018290129726
1026 => 1.5027518541536
1027 => 1.5556780726718
1028 => 1.6022509547321
1029 => 1.5799461584269
1030 => 1.5728851262535
1031 => 1.6089584082763
1101 => 1.6117616112363
1102 => 1.5478482866794
1103 => 1.5611378907266
1104 => 1.6165577488159
1105 => 1.5597414524954
1106 => 1.449356669634
1107 => 1.4219797172953
1108 => 1.418327127196
1109 => 1.3440786611601
1110 => 1.4238091761586
1111 => 1.3890046697168
1112 => 1.4989516885444
1113 => 1.4361505410478
1114 => 1.4334433090983
1115 => 1.429350930942
1116 => 1.3654422090594
1117 => 1.3794341575405
1118 => 1.4259455253257
1119 => 1.4425413053395
1120 => 1.4408102295189
1121 => 1.4257175942494
1122 => 1.432626925389
1123 => 1.4103695624178
1124 => 1.4025100243058
1125 => 1.3777031600878
1126 => 1.3412439227586
1127 => 1.3463138033268
1128 => 1.2740785140992
1129 => 1.2347208947111
1130 => 1.2238272243895
1201 => 1.2092597531577
1202 => 1.2254726590277
1203 => 1.2738738806007
1204 => 1.2154917384917
1205 => 1.1153996508769
1206 => 1.1214153558912
1207 => 1.1349308589794
1208 => 1.1097448083885
1209 => 1.0859083252092
1210 => 1.1066322134186
1211 => 1.0642218764055
1212 => 1.1400559455896
1213 => 1.1380048465407
1214 => 1.1662710979852
1215 => 1.1839465650953
1216 => 1.1432103359069
1217 => 1.1329652844286
1218 => 1.1388013313623
1219 => 1.0423444755031
1220 => 1.1583885150164
1221 => 1.1593920686889
1222 => 1.1507990328695
1223 => 1.2125889014525
1224 => 1.3429847969061
1225 => 1.2939246158737
1226 => 1.2749270309262
1227 => 1.2388126080537
1228 => 1.286932932269
1229 => 1.2832380421633
1230 => 1.2665283478597
1231 => 1.2564222726074
]
'min_raw' => 0.94380087609807
'max_raw' => 2.4216849774733
'avg_raw' => 1.6827429267857
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$0.94380087'
'max' => '$2.42'
'avg' => '$1.68'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 0.58037692796263
'max_diff' => 1.4076194640704
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.029624831043614
]
1 => [
'year' => 2028
'avg' => 0.050844810220743
]
2 => [
'year' => 2029
'avg' => 0.13889885763763
]
3 => [
'year' => 2030
'avg' => 0.10716026181304
]
4 => [
'year' => 2031
'avg' => 0.10524465732545
]
5 => [
'year' => 2032
'avg' => 0.18452700600414
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.029624831043614
'min' => '$0.029624'
'max_raw' => 0.18452700600414
'max' => '$0.184527'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.18452700600414
]
1 => [
'year' => 2033
'avg' => 0.47462243413093
]
2 => [
'year' => 2034
'avg' => 0.30083850803904
]
3 => [
'year' => 2035
'avg' => 0.35483971012009
]
4 => [
'year' => 2036
'avg' => 0.68874473076919
]
5 => [
'year' => 2037
'avg' => 1.6827429267857
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.18452700600414
'min' => '$0.184527'
'max_raw' => 1.6827429267857
'max' => '$1.68'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 1.6827429267857
]
]
]
]
'prediction_2025_max_price' => '$0.050653'
'last_price' => 0.04911454
'sma_50day_nextmonth' => '$0.044348'
'sma_200day_nextmonth' => '$0.073918'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'increase'
'sma_200day_direction_label' => 'aumentar'
'sma_200day_date_nextmonth' => '4 de fev. de 2026'
'sma_50day_date_nextmonth' => '4 de fev. de 2026'
'daily_sma3' => '$0.04685'
'daily_sma3_action' => 'BUY'
'daily_sma5' => '$0.045882'
'daily_sma5_action' => 'BUY'
'daily_sma10' => '$0.04426'
'daily_sma10_action' => 'BUY'
'daily_sma21' => '$0.043133'
'daily_sma21_action' => 'BUY'
'daily_sma50' => '$0.050466'
'daily_sma50_action' => 'SELL'
'daily_sma100' => '$0.06044'
'daily_sma100_action' => 'SELL'
'daily_sma200' => '$0.081674'
'daily_sma200_action' => 'SELL'
'daily_ema3' => '$0.047293'
'daily_ema3_action' => 'BUY'
'daily_ema5' => '$0.046266'
'daily_ema5_action' => 'BUY'
'daily_ema10' => '$0.044994'
'daily_ema10_action' => 'BUY'
'daily_ema21' => '$0.045138'
'daily_ema21_action' => 'BUY'
'daily_ema50' => '$0.050156'
'daily_ema50_action' => 'SELL'
'daily_ema100' => '$0.060687'
'daily_ema100_action' => 'SELL'
'daily_ema200' => '$0.082355'
'daily_ema200_action' => 'SELL'
'weekly_sma21' => '$0.070891'
'weekly_sma21_action' => 'SELL'
'weekly_sma50' => '$0.10128'
'weekly_sma50_action' => 'SELL'
'weekly_sma100' => '$0.233499'
'weekly_sma100_action' => 'SELL'
'weekly_sma200' => '$0.347587'
'weekly_sma200_action' => 'SELL'
'weekly_ema3' => '$0.0473018'
'weekly_ema3_action' => 'BUY'
'weekly_ema5' => '$0.048116'
'weekly_ema5_action' => 'BUY'
'weekly_ema10' => '$0.0535069'
'weekly_ema10_action' => 'SELL'
'weekly_ema21' => '$0.068221'
'weekly_ema21_action' => 'SELL'
'weekly_ema50' => '$0.115667'
'weekly_ema50_action' => 'SELL'
'weekly_ema100' => '$0.235589'
'weekly_ema100_action' => 'SELL'
'weekly_ema200' => '$0.50253'
'weekly_ema200_action' => 'SELL'
'rsi_14' => '59.80'
'rsi_14_action' => 'NEUTRAL'
'stoch_rsi_14' => 113.18
'stoch_rsi_14_action' => 'SELL'
'momentum_10' => 0.01
'momentum_10_action' => 'BUY'
'vwma_10' => '0.045423'
'vwma_10_action' => 'BUY'
'hma_9' => '0.047623'
'hma_9_action' => 'BUY'
'stochastic_fast_14' => 100
'stochastic_fast_14_action' => 'SELL'
'cci_20' => 269.41
'cci_20_action' => 'SELL'
'adx_14' => 23.18
'adx_14_action' => 'NEUTRAL'
'ao_5_34' => '-0.000081'
'ao_5_34_action' => 'NEUTRAL'
'macd_12_26' => 0
'macd_12_26_action' => 'BUY'
'williams_percent_r_14' => -0
'williams_percent_r_14_action' => 'SELL'
'ultimate_oscillator' => 81
'ultimate_oscillator_action' => 'SELL'
'ichimoku_cloud' => '-0.002953'
'ichimoku_cloud_action' => 'SELL'
'sell_signals' => 16
'buy_signals' => 18
'sell_pct' => 47.06
'buy_pct' => 52.94
'overall_action' => 'bullish'
'overall_action_label' => 'Altista'
'overall_action_dir' => 1
'last_updated' => 1767699076
'last_updated_date' => '6 de janeiro de 2026'
]
Previsão de preço de Biconomy para 2026
A previsão de preço para Biconomy em 2026 sugere que o preço médio poderia variar entre $0.016969 na extremidade inferior e $0.050653 na extremidade superior. No mercado de criptomoedas, comparado ao preço médio de hoje, Biconomy poderia potencialmente ganhar 3.13% até 2026 se BICO atingir a meta de preço prevista.
Previsão de preço de Biconomy 2027-2032
A previsão de preço de BICO para 2027-2032 está atualmente dentro de uma faixa de preço entre $0.029624 na extremidade inferior e $0.184527 na extremidade superior. Considerando a volatilidade de preços no mercado, se Biconomy atingir a meta de preço superior, poderia ganhar 275.71% até 2032 em comparação com o preço de hoje.
| Previsão de Preço de Biconomy | Potencial Mínimo ($) | Preço Médio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2027 | $0.016335 | $0.029624 | $0.042913 |
| 2028 | $0.029481 | $0.050844 | $0.0722084 |
| 2029 | $0.064761 | $0.138898 | $0.213036 |
| 2030 | $0.055076 | $0.10716 | $0.159243 |
| 2031 | $0.065117 | $0.105244 | $0.145371 |
| 2032 | $0.099397 | $0.184527 | $0.269656 |
Previsão de preço de Biconomy 2032-2037
A previsão de preço de Biconomy para 2032-2037 é atualmente estimada entre $0.184527 na extremidade inferior e $1.68 na extremidade superior. Comparado ao preço atual, Biconomy poderia potencialmente ganhar 3326.16% até 2037 se atingir a meta de preço superior. Por favor, note que esta informação é apenas para fins gerais e não deve ser considerada como aconselhamento de investimento a longo prazo.
| Previsão de Preço de Biconomy | Potencial Mínimo ($) | Preço Médio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2032 | $0.099397 | $0.184527 | $0.269656 |
| 2033 | $0.230978 | $0.474622 | $0.718266 |
| 2034 | $0.185695 | $0.300838 | $0.415981 |
| 2035 | $0.219549 | $0.354839 | $0.490129 |
| 2036 | $0.363423 | $0.688744 | $1.01 |
| 2037 | $0.94380087 | $1.68 | $2.42 |
Biconomy Histograma de preços potenciais
Previsão de preço de Biconomy baseada na análise técnica
Em 6 de janeiro de 2026, o sentimento geral de previsão de preço para Biconomy é Altista, com 18 indicadores técnicos mostrando sinais de alta e 16 indicando sinais de baixa. A previsão de preço de BICO foi atualizada pela última vez em 6 de janeiro de 2026.
Médias Móveis Simples de 50 e 200 dias e Índice de Força Relativa de 14 dias - RSI (14) de Biconomy
De acordo com nossos indicadores técnicos, o SMA de 200 dias de Biconomy está projetado para aumentar no próximo mês, alcançando $0.073918 até 4 de fev. de 2026. O SMA de 50 dias de curto prazo para Biconomy é esperado para alcançar $0.044348 até 4 de fev. de 2026.
O oscilador de momentum Índice de Força Relativa (RSI) é uma ferramenta comumente usada para identificar se uma criptomoeda está sobrevendida (abaixo de 30) ou sobrecomprada (acima de 70). No momento, o RSI está em 59.80, sugerindo que o mercado de BICO está em um estado NEUTRAL.
Médias Móveis e Osciladores Populares de BICO para Sábado, 19 de Outubro de 2024
Médias móveis (MA) são indicadores amplamente utilizados nos mercados financeiros, projetados para suavizar movimentos de preços ao longo de um período definido. Como indicadores atrasados, eles se baseiam em dados históricos de preços. A tabela abaixo destaca dois tipos: a média móvel simples (SMA) e a média móvel exponencial (EMA).
Média Móvel Simples Diária (SMA)
| Período | Valor | Ação |
|---|---|---|
| SMA 3 | $0.04685 | BUY |
| SMA 5 | $0.045882 | BUY |
| SMA 10 | $0.04426 | BUY |
| SMA 21 | $0.043133 | BUY |
| SMA 50 | $0.050466 | SELL |
| SMA 100 | $0.06044 | SELL |
| SMA 200 | $0.081674 | SELL |
Média Móvel Exponencial Diária (EMA)
| Período | Valor | Ação |
|---|---|---|
| EMA 3 | $0.047293 | BUY |
| EMA 5 | $0.046266 | BUY |
| EMA 10 | $0.044994 | BUY |
| EMA 21 | $0.045138 | BUY |
| EMA 50 | $0.050156 | SELL |
| EMA 100 | $0.060687 | SELL |
| EMA 200 | $0.082355 | SELL |
Média Móvel Simples Semanal (SMA)
| Período | Valor | Ação |
|---|---|---|
| SMA 21 | $0.070891 | SELL |
| SMA 50 | $0.10128 | SELL |
| SMA 100 | $0.233499 | SELL |
| SMA 200 | $0.347587 | SELL |
Média Móvel Exponencial Semanal (EMA)
| Período | Valor | Ação |
|---|---|---|
| EMA 21 | $0.068221 | SELL |
| EMA 50 | $0.115667 | SELL |
| EMA 100 | $0.235589 | SELL |
| EMA 200 | $0.50253 | SELL |
Osciladores de Biconomy
Um oscilador é uma ferramenta de análise técnica que define limites altos e baixos entre dois extremos, criando um indicador de tendência que flutua dentro desses limites. Os traders usam esse indicador para identificar condições de sobrecompra ou sobrevenda de curto prazo.
| Período | Valor | Ação |
|---|---|---|
| RSI (14) | 59.80 | NEUTRAL |
| Stoch RSI (14) | 113.18 | SELL |
| Estocástico Rápido (14) | 100 | SELL |
| Índice de Canal de Commodities (20) | 269.41 | SELL |
| Índice Direcional Médio (14) | 23.18 | NEUTRAL |
| Oscilador Impressionante (5, 34) | -0.000081 | NEUTRAL |
| Momentum (10) | 0.01 | BUY |
| MACD (12, 26) | 0 | BUY |
| Williams Percent Range (14) | -0 | SELL |
| Oscilador Ultimate (7, 14, 28) | 81 | SELL |
| VWMA (10) | 0.045423 | BUY |
| Média Móvel de Hull (9) | 0.047623 | BUY |
| Nuvem Ichimoku B/L (9, 26, 52, 26) | -0.002953 | SELL |
Previsão do preço de Biconomy com base nos fluxos financeiros mundiais
Definições dos fluxos financeiros mundiais, usadas na previsão do preço do Biconomy
M0: o total de todas as moedas físicas, mais as contas no Banco Central que podem ser trocadas por moedas físicas.
M1: o valor de M0, mais o valor em contas de demanda, incluindo contas 'correntes'.
M2: o valor de M1, mais a maioria das contas de poupança, do mercado de moedas e de certificados de depósito (CD) de menos de US$ 100.000.
Previsões de preço de Biconomy por empresas de Internet ou nichos tecnológicos
| Comparação | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Facebook stock | $0.069014 | $0.096976 | $0.136268 | $0.191479 | $0.26906 | $0.378074 |
| Amazon.com stock | $0.10248 | $0.213831 | $0.446172 | $0.930964 | $1.94 | $4.05 |
| Apple stock | $0.069665 | $0.098814 | $0.140161 | $0.198808 | $0.281994 | $0.399987 |
| Netflix stock | $0.077495 | $0.122275 | $0.19293 | $0.304414 | $0.480318 | $0.757867 |
| Google stock | $0.0636031 | $0.082365 | $0.106663 | $0.138128 | $0.178875 | $0.231643 |
| Tesla stock | $0.111338 | $0.252396 | $0.572164 | $1.29 | $2.94 | $6.66 |
| Kodak stock | $0.03683 | $0.027619 | $0.020711 | $0.015531 | $0.011646 | $0.008733 |
| Nokia stock | $0.032536 | $0.021553 | $0.014278 | $0.009458 | $0.006266 | $0.004151 |
Este cálculo mostra quanto a criptomoeda pode custar, se assumirmos que sua capitalização se comportará da mesma forma que a de algumas empresas de Internet ou nichos tecnológicos. Se você extrapolar os dados, poderá obter uma imagem em potencial do preço futuro para 2024, 2025, 2026, 2027, 2028, 2029 e 2030.
Visão geral da previsão para Biconomy
Você pode fazer perguntas como: 'Devo investir em Biconomy agora?', 'Devo comprar BICO hoje?', 'Biconomy será um bom ou mau investimento no curto ou no longo prazo?'.
Atualizamos a previsão para Biconomy regularmente com novos valores. Veja nossas previsões semelhantes. Fazemos previsões de preços futuros para uma enorme quantidade de moedas digitais, como Biconomy, com métodos de análise técnica.
Se você estiver tentando encontrar criptomoedas com bom retorno, você deve explorar o máximo de fontes de informações disponíveis sobre Biconomy para poder tomar sozinho uma decisão de tão grande responsabilidade sobre o seu investimento.
O preço de Biconomy é de $0.04911 USD hoje, mas o preço pode tanto subir quanto descer e seu investimento pode ser perdido, porque criptomoedas são ativos de alto risco
Previsão de curto prazo para Biconomy
com base no histórico de preços de 4 horas
Previsão de longo prazo para Biconomy
com base no histórico de preços de 1 mês
Previsão do preço de Biconomy com base no padrão de crescimento do Bitcoin
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| Se Biconomy tiver 1% da média anterior do crescimento anual do Bitcoin | $0.050391 | $0.051701 | $0.053044 | $0.054423 |
| Se Biconomy tiver 2% da média anterior do crescimento anual do Bitcoin | $0.051667 | $0.054353 | $0.057179 | $0.060152 |
| Se Biconomy tiver 5% da média anterior do crescimento anual do Bitcoin | $0.055497 | $0.06271 | $0.07086 | $0.08007 |
| Se Biconomy tiver 10% da média anterior do crescimento anual do Bitcoin | $0.06188 | $0.077965 | $0.098231 | $0.123765 |
| Se Biconomy tiver 20% da média anterior do crescimento anual do Bitcoin | $0.074647 | $0.113453 | $0.172434 | $0.262077 |
| Se Biconomy tiver 50% da média anterior do crescimento anual do Bitcoin | $0.112946 | $0.259739 | $0.597312 | $1.37 |
| Se Biconomy tiver 100% da média anterior do crescimento anual do Bitcoin | $0.176779 | $0.636284 | $2.29 | $8.24 |
Perguntas Frequentes sobre Biconomy
BICO é um bom investimento?
A decisão de adquirir Biconomy depende inteiramente da sua tolerância individual ao risco. Como você pode perceber, o valor de Biconomy experimentou uma escalada de 6.2493% nas últimas 24 horas, e Biconomy registrou um declínio de -76.07% durante os últimos 30 dias. Consequentemente, a decisão de investir ou não em Biconomy dependerá de quão alinhado esse investimento está com suas aspirações de negociação.
Biconomy pode subir?
Parece que o valor médio de Biconomy pode potencialmente subir para $0.050653 até o final deste ano. Observando as perspectivas de Biconomy em um horizonte de cinco anos mais longo, a moeda digital poderia potencialmente crescer até $0.159243. No entanto, dada a imprevisibilidade do mercado, é vital conduzir uma pesquisa aprofundada antes de investir quaisquer fundos em um projeto, rede ou ativo específico.
Qual será o preço de Biconomy na próxima semana?
Com base na nossa nova previsão experimental de Biconomy, o preço de Biconomy aumentará 0.86% na próxima semana e atingirá $0.049534 até 13 de janeiro de 2026.
Qual será o preço de Biconomy no próximo mês?
Com base na nossa nova previsão experimental de Biconomy, o preço de Biconomy diminuirá -11.62% no próximo mês e atingirá $0.043408 até 5 de fevereiro de 2026.
Até onde o preço de Biconomy pode subir este ano em 2026?
De acordo com nossa previsão mais recente sobre o valor de Biconomy em 2026, espera-se que BICO fluctue dentro do intervalo de $0.016969 e $0.050653. No entanto, é crucial lembrar que o mercado de criptomoedas é excepcionalmente instável, e essa previsão de preço de Biconomy não considera flutuações repentinas e extremas de preço.
Onde estará Biconomy em 5 anos?
O futuro de Biconomy parece seguir uma tendência de alta, com um preço máximo de $0.159243 projetada após um período de cinco anos. Com base na previsão de Biconomy para 2030, o valor de Biconomy pode potencialmente atingir seu pico mais alto de aproximadamente $0.159243, enquanto seu pico mais baixo está previsto para cerca de $0.055076.
Quanto será Biconomy em 2026?
Com base na nossa nova simulação experimental de previsão de preços de Biconomy, espera-se que o valor de BICO em 2026 aumente 3.13% para $0.050653 se o melhor cenário ocorrer. O preço ficará entre $0.050653 e $0.016969 durante 2026.
Quanto será Biconomy em 2027?
De acordo com nossa última simulação experimental para previsão de preços de Biconomy, o valor de BICO pode diminuir -12.62% para $0.042913 em 2027, assumindo as condições mais favoráveis. O preço está projetado para flutuar entre $0.042913 e $0.016335 ao longo do ano.
Quanto será Biconomy em 2028?
Nosso novo modelo experimental de previsão de preços de Biconomy sugere que o valor de BICO em 2028 pode aumentar 47.02%, alcançando $0.0722084 no melhor cenário. O preço é esperado para variar entre $0.0722084 e $0.029481 durante o ano.
Quanto será Biconomy em 2029?
Com base no nosso modelo de previsão experimental, o valor de Biconomy pode experimentar um 333.75% crescimento em 2029, potencialmente alcançando $0.213036 sob condições ótimas. A faixa de preço prevista para 2029 está entre $0.213036 e $0.064761.
Quanto será Biconomy em 2030?
Usando nossa nova simulação experimental para previsões de preços de Biconomy, espera-se que o valor de BICO em 2030 aumente 224.23%, alcançando $0.159243 no melhor cenário. O preço está previsto para variar entre $0.159243 e $0.055076 ao longo de 2030.
Quanto será Biconomy em 2031?
Nossa simulação experimental indica que o preço de Biconomy poderia aumentar 195.98% em 2031, potencialmente atingindo $0.145371 sob condições ideais. O preço provavelmente oscilará entre $0.145371 e $0.065117 durante o ano.
Quanto será Biconomy em 2032?
Com base nos achados da nossa mais recente previsão experimental de preços de Biconomy, BICO poderia ver um 449.04% aumento em valor, atingindo $0.269656 se o cenário mais positivo se desenrolar em 2032. O preço é esperado para permanecer dentro de uma faixa de $0.269656 e $0.099397 ao longo do ano.
Quanto será Biconomy em 2033?
De acordo com nossa previsão experimental de preços de Biconomy, espera-se que o valor de BICO seja aumentar 1362.43% em 2033, com o preço potencial mais alto sendo $0.718266. Ao longo do ano, o preço de BICO poderia variar entre $0.718266 e $0.230978.
Quanto será Biconomy em 2034?
Os resultados da nossa nova simulação de previsão de preços de Biconomy sugerem que BICO pode aumentar 746.96% em 2034, atingindo potencialmente $0.415981 nas melhores circunstâncias. A faixa de preço prevista para o ano é entre $0.415981 e $0.185695.
Quanto será Biconomy em 2035?
Com base em nossa previsão experimental para o preço de Biconomy, BICO poderia aumentar 897.93%, com o valor potencialmente atingindo $0.490129 em 2035. A faixa de preço esperada para o ano está entre $0.490129 e $0.219549.
Quanto será Biconomy em 2036?
Nossa recente simulação de previsão de preços de Biconomy sugere que o valor de BICO pode aumentar 1964.7% em 2036, possivelmente atingindo $1.01 se as condições forem ideais. A faixa de preço esperada para 2036 está entre $1.01 e $0.363423.
Quanto será Biconomy em 2037?
De acordo com a simulação experimental, o valor de Biconomy poderia aumentar 4830.69% em 2037, com um pico de $2.42 sob condições favoráveis. O preço é esperado para cair entre $2.42 e $0.94380087 ao longo do ano.
Previsões relacionadas
Previsão de Preço do Celo
Previsão de Preço do Fasttoken
Previsão de Preço do Rocket Pool
Previsão de Preço do BitClout
Previsão de Preço do EthereumPoW
Previsão de Preço do 0x
Previsão de Preço do Wootrade Network
Previsão de Preço do MX Token
Previsão de Preço do Ravencoin
Previsão de Preço do Holo
Previsão de Preço do Siacoin
Previsão de Preço do Frax Share
Previsão de Preço do Saga
Previsão de Preço do Golem
Previsão de Preço do APENFT
Previsão de Preço do Qtum
Previsão de Preço do Jeo Boden
Previsão de Preço do Polymesh
Previsão de Preço do Trust Wallet Token
Previsão de Preço do AMP Token
Previsão de Preço do Raydium
Previsão de Preço do TON Crystal
Previsão de Preço do SuperFarm
Previsão de Preço do Livepeer
Previsão de Preço do Pixels
Como ler e prever os movimentos de preço de Biconomy?
Traders de Biconomy utilizam indicadores e padrões de gráfico para prever a direção do mercado. Eles também identificam níveis-chave de suporte e resistência para avaliar quando uma tendência de baixa pode desacelerar ou uma tendência de alta pode estagnar.
Indicadores de Previsão de Preço de Biconomy
Médias móveis são ferramentas populares para a previsão de preço de Biconomy. Uma média móvel simples (SMA) calcula o preço médio de fechamento de BICO em um período específico, como uma SMA de 12 dias. Uma média móvel exponencial (EMA) dá mais peso aos preços recentes, reagindo mais rapidamente às mudanças de preço.
Médias móveis comumente usadas no mercado de criptomoedas incluem as de 50 dias, 100 dias e 200 dias, que ajudam a identificar níveis-chave de resistência e suporte. Um movimento de preço de BICO acima dessas médias é visto como altista, enquanto uma queda abaixo indica fraqueza.
Traders também usam RSI e níveis de retração de Fibonacci para avaliar a direção futura de BICO.
Como ler gráficos de Biconomy e prever movimentos de preço?
A maioria dos traders prefere gráficos de velas em vez de gráficos de linha simples porque eles fornecem informações mais detalhadas. Velas podem representar a ação de preço de Biconomy em diferentes períodos de tempo, como 5 minutos para tendências de curto prazo e semanal para tendências de longo prazo. Opções populares incluem gráficos de 1 hora, 4 horas e 1 dia.
Por exemplo, um gráfico de velas de 1 hora mostra os preços de abertura, fechamento, máximo e mínimo de BICO dentro de cada hora. A cor da vela é crucial: verde indica que o preço fechou mais alto do que abriu, enquanto vermelho significa o oposto. Alguns gráficos usam velas vazias e preenchidas para transmitir a mesma informação.
O que afeta o preço de Biconomy?
A ação de preço de Biconomy é impulsionada pela oferta e demanda, influenciada por fatores como reduções pela metade das recompensas de bloco, hard forks e atualizações de protocolo. Eventos do mundo real, como regulamentações, adoção por empresas e governos e hacks de exchanges de criptomoedas, também impactam o preço de BICO. A capitalização de mercado de Biconomy pode mudar rapidamente.
Traders frequentemente monitoram a atividade de "baleias" de BICO, grandes detentores de Biconomy, pois suas ações podem influenciar significativamente os movimentos de preço no relativamente pequeno mercado de Biconomy.
Padrões de previsão de preço altistas e baixistas
Traders frequentemente identificam padrões de velas para ganhar vantagem em previsões de preço de criptomoedas. Certas formações indicam tendências altistas, enquanto outras sugerem movimentos baixistas.
Padrões de velas altistas comumente seguidos:
- Martelo
- Engolfo de Alta
- Linha de Perfuração
- Estrela da Manhã
- Três Soldados Brancos
Padrões de velas baixistas comuns:
- Harami de Baixa
- Nuvem Negra
- Estrela da Noite
- Estrela Cadente
- Homem Enforcado


