Previsão de Preço Biconomy - Projeção BICO
Previsão de Preço Biconomy até $0.05038 até 2026
| Ano | Preço Mínimo | Preço Máximo |
|---|---|---|
| 2026 | $0.016877 | $0.05038 |
| 2027 | $0.016247 | $0.042682 |
| 2028 | $0.029322 | $0.071819 |
| 2029 | $0.064412 | $0.211888 |
| 2030 | $0.05478 | $0.158385 |
| 2031 | $0.064767 | $0.144588 |
| 2032 | $0.098862 | $0.2682035 |
| 2033 | $0.229734 | $0.714396 |
| 2034 | $0.184695 | $0.41374 |
| 2035 | $0.218367 | $0.487489 |
Calculadora de lucro do investimento
Se você abrir um short de $10,000.00 em Biconomy hoje e fechar em Apr 06, 2026, nossa previsão mostra que pode lucrar cerca de $3,954.55, com um retorno de 39.55% nos próximos 90 dias.
Previsão de preço de longo prazo de Biconomy para os anos 2027, 2028, 2029, 2030, 2031, 2032 e 2037
[
'name' => 'Biconomy'
'name_with_ticker' => 'Biconomy <small>BICO</small>'
'name_lang' => 'Biconomy'
'name_lang_with_ticker' => 'Biconomy <small>BICO</small>'
'name_with_lang' => 'Biconomy'
'name_with_lang_with_ticker' => 'Biconomy <small>BICO</small>'
'image' => '/uploads/coins/biconomy.jpg?1717107179'
'price_for_sd' => 0.04884
'ticker' => 'BICO'
'marketcap' => '$58.6M'
'low24h' => '$0.04602'
'high24h' => '$0.05115'
'volume24h' => '$23.6M'
'current_supply' => '1000M'
'max_supply' => '1B'
'algo' => null
'proof' => null
'ico_price_and_roi' => '—'
'price' => '$0.04884'
'change_24h_pct' => '6.0842%'
'ath_price' => '$21.45'
'ath_days' => 1496
'ath_exchange' => null
'ath_pair' => null
'ath_date' => '2 de dez. de 2021'
'ath_pct' => '-99.77%'
'fdv' => '$58.6M'
'new_prediction' => true
'change_24h_pct_is_increased' => true
'change_30d_pct' => '-76.2%'
'change_30d_pct_is_increased' => false
'max_price' => '$2.40'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.049267'
'next_week_prediction_price_date' => '13 de janeiro de 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.043174'
'next_month_prediction_price_date' => '5 de fevereiro de 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.016877'
'current_year_max_price_prediction' => '$0.05038'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.05478'
'grand_prediction_max_price' => '$0.158385'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.049775620667932
107 => 0.049961464766955
108 => 0.050380181011491
109 => 0.046802296546345
110 => 0.048408661630027
111 => 0.049352250620636
112 => 0.045089081233003
113 => 0.049267981468977
114 => 0.046740013537882
115 => 0.045881983253264
116 => 0.047037207994608
117 => 0.046587015789413
118 => 0.04619996696756
119 => 0.045983987074623
120 => 0.046832256627164
121 => 0.046792683838637
122 => 0.045404750208655
123 => 0.043594247367755
124 => 0.044201911548891
125 => 0.043981141455002
126 => 0.043181042154841
127 => 0.043720212478792
128 => 0.041345979239969
129 => 0.037261234354478
130 => 0.039959741944953
131 => 0.039855852338131
201 => 0.039803466487353
202 => 0.041831320360323
203 => 0.041636389000985
204 => 0.041282586675015
205 => 0.043174544297669
206 => 0.042483954314979
207 => 0.044612189918166
208 => 0.046013983532074
209 => 0.045658443328314
210 => 0.04697683699765
211 => 0.044215910904315
212 => 0.045132979803392
213 => 0.04532198643249
214 => 0.043151197834287
215 => 0.04166828218213
216 => 0.041569388614607
217 => 0.038998217232131
218 => 0.04037171623088
219 => 0.041580338510527
220 => 0.041001502231454
221 => 0.040818259957741
222 => 0.041754404993739
223 => 0.041827151480576
224 => 0.040168523871364
225 => 0.040513405073224
226 => 0.041951617016712
227 => 0.04047716582232
228 => 0.037612548001851
301 => 0.036902083175935
302 => 0.036807294071693
303 => 0.034880457116132
304 => 0.036949559832822
305 => 0.036046341048482
306 => 0.038899598365991
307 => 0.037269833088556
308 => 0.037199577164816
309 => 0.03709337503178
310 => 0.035434866867497
311 => 0.035797974751783
312 => 0.03700500066204
313 => 0.03743568110494
314 => 0.037390757606285
315 => 0.036999085576589
316 => 0.037178391026099
317 => 0.036600785699069
318 => 0.03639682123628
319 => 0.035753053286871
320 => 0.034806892246675
321 => 0.034938461742457
322 => 0.033063869145326
323 => 0.032042491606249
324 => 0.031759787764972
325 => 0.03138174437341
326 => 0.031802488771985
327 => 0.033058558660028
328 => 0.031543471884955
329 => 0.028945961880073
330 => 0.029102076657308
331 => 0.029452820210862
401 => 0.028799211919215
402 => 0.028180626524357
403 => 0.028718436337767
404 => 0.027617837106329
405 => 0.029585822369806
406 => 0.029532593883644
407 => 0.030266137090476
408 => 0.030724836711531
409 => 0.029667682590767
410 => 0.029401811188243
411 => 0.029553263622302
412 => 0.027050092251775
413 => 0.03006157458595
414 => 0.030087618010231
415 => 0.02986461840012
416 => 0.031468139773982
417 => 0.03485207002369
418 => 0.033578899345471
419 => 0.033085889177077
420 => 0.032148676486572
421 => 0.033397456750487
422 => 0.033301569910225
423 => 0.032867933254557
424 => 0.03260566845218
425 => 0.033088899392037
426 => 0.032545790791052
427 => 0.032448233562688
428 => 0.031857142902118
429 => 0.031646150429206
430 => 0.031489940002114
501 => 0.031317967670805
502 => 0.031697295780837
503 => 0.030837688378736
504 => 0.029801086120156
505 => 0.029714903858546
506 => 0.029952860660071
507 => 0.029847582489197
508 => 0.029714399827168
509 => 0.029460117855214
510 => 0.02938467782601
511 => 0.029629821322624
512 => 0.029353068607701
513 => 0.02976143231407
514 => 0.029650379981732
515 => 0.029030050680694
516 => 0.028256890696277
517 => 0.028250007950658
518 => 0.028083431900252
519 => 0.027871272255183
520 => 0.02781225429548
521 => 0.028673143495355
522 => 0.03045515837485
523 => 0.030105306214003
524 => 0.030358110254507
525 => 0.031601655924429
526 => 0.031996941698174
527 => 0.031716377218826
528 => 0.031332323255032
529 => 0.031349219680332
530 => 0.032661648335659
531 => 0.032743502901034
601 => 0.032950322980453
602 => 0.033216145229854
603 => 0.031761647897347
604 => 0.031280712986772
605 => 0.031052819344888
606 => 0.030350995133825
607 => 0.031107852375596
608 => 0.030666864072674
609 => 0.030726368461044
610 => 0.030687616150056
611 => 0.030708777532275
612 => 0.029585272277818
613 => 0.029994618542844
614 => 0.029314000983224
615 => 0.028402730473798
616 => 0.028399675575518
617 => 0.028622707741704
618 => 0.028490039482007
619 => 0.028133032606375
620 => 0.028183743748034
621 => 0.027739460786334
622 => 0.028237687743587
623 => 0.028251975109979
624 => 0.028060130592831
625 => 0.02882771796255
626 => 0.029142199134215
627 => 0.02901592296332
628 => 0.029133339261439
629 => 0.030119844150774
630 => 0.030280687491962
701 => 0.030352123479403
702 => 0.030256408719687
703 => 0.029151370759863
704 => 0.029200383892365
705 => 0.028840758046787
706 => 0.028536912103711
707 => 0.028549064347972
708 => 0.028705280659921
709 => 0.029387486456166
710 => 0.030823148336137
711 => 0.030877630655027
712 => 0.030943664814882
713 => 0.030675070700639
714 => 0.030594060145684
715 => 0.030700933978269
716 => 0.03124009309687
717 => 0.032626956730185
718 => 0.032136746496664
719 => 0.031738197946234
720 => 0.032087832472879
721 => 0.032034008978028
722 => 0.031579684515435
723 => 0.031566933140945
724 => 0.030694939240913
725 => 0.030372582950412
726 => 0.030103197906118
727 => 0.029809036470225
728 => 0.029634647710647
729 => 0.029902588103633
730 => 0.029963869241686
731 => 0.029378012889626
801 => 0.029298162833653
802 => 0.029776585777334
803 => 0.029566049677225
804 => 0.029782591277231
805 => 0.029832830785892
806 => 0.029824741067883
807 => 0.029604917199453
808 => 0.029745026377948
809 => 0.02941362640225
810 => 0.029053278703345
811 => 0.028823399321899
812 => 0.028622799072512
813 => 0.028734103749827
814 => 0.02833732289863
815 => 0.028210384718712
816 => 0.02969756054083
817 => 0.030796153310464
818 => 0.030780179336503
819 => 0.030682941878188
820 => 0.03053846673903
821 => 0.03122952384056
822 => 0.03098877336451
823 => 0.031163939451212
824 => 0.031208526571975
825 => 0.031343478357744
826 => 0.031391712021658
827 => 0.031245916388876
828 => 0.030756608437821
829 => 0.029537299545796
830 => 0.028969707965097
831 => 0.028782393289481
901 => 0.028789201822178
902 => 0.028601392095754
903 => 0.028656710477228
904 => 0.028582154620206
905 => 0.028440963864006
906 => 0.028725385618496
907 => 0.028758162576129
908 => 0.028691775140044
909 => 0.028707411784503
910 => 0.028157752168164
911 => 0.028199541594996
912 => 0.02796685275605
913 => 0.027923226403854
914 => 0.027335009281534
915 => 0.026292897385908
916 => 0.026870328536334
917 => 0.026172872905726
918 => 0.025908735890238
919 => 0.027159119439826
920 => 0.027033615611689
921 => 0.02681880761312
922 => 0.026501061813327
923 => 0.026383206805351
924 => 0.025667157085253
925 => 0.025624849047813
926 => 0.025979742624063
927 => 0.025815971449766
928 => 0.025585974696059
929 => 0.024752949768531
930 => 0.023816353944913
1001 => 0.023844623885597
1002 => 0.024142537591105
1003 => 0.025008761869006
1004 => 0.024670313057798
1005 => 0.024424764562014
1006 => 0.024378780709914
1007 => 0.024954364892656
1008 => 0.025768937099851
1009 => 0.026151116154441
1010 => 0.025772388318293
1011 => 0.025337326172281
1012 => 0.025363806389225
1013 => 0.025539967409206
1014 => 0.025558479441624
1015 => 0.025275298709681
1016 => 0.025355012426982
1017 => 0.025233920001227
1018 => 0.024490776007883
1019 => 0.024477334889578
1020 => 0.024294955368796
1021 => 0.024289432989389
1022 => 0.023979159927835
1023 => 0.023935750581707
1024 => 0.023319684585763
1025 => 0.023725181089913
1026 => 0.023453195324451
1027 => 0.023043248620944
1028 => 0.022972573654741
1029 => 0.022970449079915
1030 => 0.023391372682011
1031 => 0.023720262352549
1101 => 0.023457926633289
1102 => 0.023398197875177
1103 => 0.024035944748632
1104 => 0.023954785645794
1105 => 0.023884502386155
1106 => 0.025696001093003
1107 => 0.024262058513526
1108 => 0.023636777702293
1109 => 0.022862873960786
1110 => 0.023114860921382
1111 => 0.023167958276439
1112 => 0.02130685928475
1113 => 0.020551811655607
1114 => 0.020292707762655
1115 => 0.020143589809069
1116 => 0.020211544733024
1117 => 0.019531913308541
1118 => 0.01998863686586
1119 => 0.019400133500072
1120 => 0.019301468995642
1121 => 0.020353785915248
1122 => 0.020500209667065
1123 => 0.01987552045152
1124 => 0.020276672055897
1125 => 0.020131208907726
1126 => 0.019410221701171
1127 => 0.019382685293104
1128 => 0.019020919256781
1129 => 0.018454825461643
1130 => 0.018196105406941
1201 => 0.018061361756142
1202 => 0.018116959612563
1203 => 0.018088847635034
1204 => 0.017905397965982
1205 => 0.018099362755325
1206 => 0.017603862870339
1207 => 0.017406550823623
1208 => 0.017317429549726
1209 => 0.016877644881891
1210 => 0.017577537861546
1211 => 0.017715425595558
1212 => 0.017853585011001
1213 => 0.019056168396995
1214 => 0.018996090729496
1215 => 0.019539163584675
1216 => 0.019518060772169
1217 => 0.019363167596675
1218 => 0.018709698767957
1219 => 0.018970159796122
1220 => 0.01816850123606
1221 => 0.018769158336742
1222 => 0.018495043520031
1223 => 0.018676479841477
1224 => 0.018350240976063
1225 => 0.018530795034256
1226 => 0.01774812389259
1227 => 0.017017276592982
1228 => 0.017311390881107
1229 => 0.017631126748347
1230 => 0.018324395575708
1231 => 0.017911490381475
]
'min_raw' => 0.016877644881891
'max_raw' => 0.050380181011491
'avg_raw' => 0.033628912946691
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.016877'
'max' => '$0.05038'
'avg' => '$0.033628'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.031972295118109
'max_diff' => 0.0015302410114908
'year' => 2026
]
1 => [
'items' => [
101 => 0.018059986702995
102 => 0.017562548883887
103 => 0.016536192576979
104 => 0.016542001642214
105 => 0.016384119084784
106 => 0.016247685503933
107 => 0.017958917510037
108 => 0.017746098759503
109 => 0.017406999933557
110 => 0.017860897187338
111 => 0.017980914825555
112 => 0.01798433155899
113 => 0.018315483278565
114 => 0.018492219010664
115 => 0.018523369449463
116 => 0.01904444383522
117 => 0.019219101096188
118 => 0.019938489635696
119 => 0.018477224218579
120 => 0.018447130418926
121 => 0.017867284452525
122 => 0.017499536973632
123 => 0.017892464437027
124 => 0.018240544529647
125 => 0.017878100271273
126 => 0.0179254278398
127 => 0.017438876035716
128 => 0.017612795411286
129 => 0.017762598206997
130 => 0.017679885908207
131 => 0.017556061593598
201 => 0.018212005931505
202 => 0.018174994981294
203 => 0.018785825428849
204 => 0.019262011443622
205 => 0.020115421910528
206 => 0.019224843599018
207 => 0.019192387385618
208 => 0.01950965207774
209 => 0.019219052524617
210 => 0.019402701411035
211 => 0.020085833235725
212 => 0.020100266734716
213 => 0.019858487030109
214 => 0.019843774713111
215 => 0.019890211150161
216 => 0.020162190812378
217 => 0.020067152761308
218 => 0.020177133200075
219 => 0.020314665422833
220 => 0.020883557008614
221 => 0.021020714843972
222 => 0.020687492412236
223 => 0.020717578666888
224 => 0.020592944330258
225 => 0.020472549122738
226 => 0.020743179966936
227 => 0.021237763153972
228 => 0.021234686377634
301 => 0.021349420063703
302 => 0.021420898199619
303 => 0.021114061715075
304 => 0.020914322446327
305 => 0.020990915191705
306 => 0.021113388659537
307 => 0.020951198696743
308 => 0.019950087112681
309 => 0.02025376041603
310 => 0.020203214329486
311 => 0.020131230555635
312 => 0.020436576410388
313 => 0.020407125057801
314 => 0.01952494270596
315 => 0.019581417157891
316 => 0.019528377104431
317 => 0.019699760368135
318 => 0.019209797265945
319 => 0.019360506616226
320 => 0.019455030107911
321 => 0.019510705170677
322 => 0.019711841674134
323 => 0.019688240626962
324 => 0.019710374599905
325 => 0.020008606936464
326 => 0.021516963753804
327 => 0.02159906028737
328 => 0.021194786930694
329 => 0.021356286162747
330 => 0.021046242953205
331 => 0.021254377036879
401 => 0.021396777090897
402 => 0.020753298628748
403 => 0.02071519601036
404 => 0.020403873142205
405 => 0.020571160417323
406 => 0.020304994334229
407 => 0.020370302180926
408 => 0.020187695748126
409 => 0.020516350970588
410 => 0.02088383857716
411 => 0.020976680459105
412 => 0.02073245343865
413 => 0.020555616980496
414 => 0.020245150413528
415 => 0.020761463233594
416 => 0.02091244883653
417 => 0.020760670170499
418 => 0.02072549973715
419 => 0.020658851829506
420 => 0.020739639405822
421 => 0.020911626536511
422 => 0.020830520581781
423 => 0.020884092493783
424 => 0.020679931608348
425 => 0.021114163290719
426 => 0.021803827705868
427 => 0.021806045089734
428 => 0.021724938697814
429 => 0.021691751709701
430 => 0.021774971789759
501 => 0.021820115269324
502 => 0.022089233748279
503 => 0.022378008598351
504 => 0.023725594821297
505 => 0.023347198002347
506 => 0.024542856667608
507 => 0.025488467434982
508 => 0.025772014757571
509 => 0.025511164562722
510 => 0.024618810136995
511 => 0.024575026971667
512 => 0.025908581226024
513 => 0.025531791068514
514 => 0.025486973078214
515 => 0.025010185382618
516 => 0.02529202596202
517 => 0.025230383292953
518 => 0.025133077324168
519 => 0.025670809516483
520 => 0.026677396176814
521 => 0.026520510206091
522 => 0.026403402106678
523 => 0.025890268504703
524 => 0.026199289545631
525 => 0.026089253071865
526 => 0.026562039594037
527 => 0.026281971331806
528 => 0.025528936512487
529 => 0.025648859789499
530 => 0.025630733627431
531 => 0.02600376875836
601 => 0.025891792871356
602 => 0.025608868538345
603 => 0.026673955773039
604 => 0.026604794932344
605 => 0.02670284919208
606 => 0.026746015709644
607 => 0.02739431554046
608 => 0.027659903237864
609 => 0.027720196294942
610 => 0.027972484066187
611 => 0.027713919145365
612 => 0.028748363182317
613 => 0.029436208105408
614 => 0.030235175379753
615 => 0.03140268130973
616 => 0.031841674339435
617 => 0.031762374177893
618 => 0.032647563849441
619 => 0.034238230012551
620 => 0.032083893288344
621 => 0.034352415090072
622 => 0.033634227278989
623 => 0.031931416898557
624 => 0.031821775984873
625 => 0.032974938944536
626 => 0.035532543401248
627 => 0.034891892492952
628 => 0.035533591276627
629 => 0.034785015559632
630 => 0.034747842465791
701 => 0.035497234624905
702 => 0.037248230251914
703 => 0.036416397864612
704 => 0.035223762163744
705 => 0.036104385805798
706 => 0.035341508109181
707 => 0.033622531142678
708 => 0.034891402599276
709 => 0.034042944391628
710 => 0.034290569603138
711 => 0.036073902556981
712 => 0.035859327217861
713 => 0.036137007575824
714 => 0.03564690901218
715 => 0.035189079672287
716 => 0.034334507210522
717 => 0.034081510434507
718 => 0.034151429641527
719 => 0.03408147578602
720 => 0.033603350347589
721 => 0.033500099204683
722 => 0.033328009442969
723 => 0.033381347256002
724 => 0.033057768157344
725 => 0.033668428771364
726 => 0.033781772762449
727 => 0.034226160632463
728 => 0.034272298455328
729 => 0.035509912347853
730 => 0.034828255413107
731 => 0.035285569736363
801 => 0.035244663238882
802 => 0.031968321962874
803 => 0.032419772883304
804 => 0.03312208884239
805 => 0.032805696454788
806 => 0.032358391643136
807 => 0.031997169024761
808 => 0.031449879821013
809 => 0.03222017886553
810 => 0.033233040196899
811 => 0.034297986290168
812 => 0.035577449243198
813 => 0.035291888006672
814 => 0.034274067620237
815 => 0.034319726299254
816 => 0.03460197028691
817 => 0.034236438678325
818 => 0.034128636270928
819 => 0.034587159891553
820 => 0.034590317491728
821 => 0.034169729200079
822 => 0.033702322280757
823 => 0.033700363828699
824 => 0.033617193282021
825 => 0.034799811415121
826 => 0.035450131812147
827 => 0.035524689997623
828 => 0.035445113452216
829 => 0.035475739306263
830 => 0.035097332196066
831 => 0.035962258636834
901 => 0.036756000671242
902 => 0.036543260850196
903 => 0.036224333615699
904 => 0.035970292711806
905 => 0.036483416886775
906 => 0.036460568274996
907 => 0.036749068027017
908 => 0.03673598001181
909 => 0.03663896839623
910 => 0.036543264314786
911 => 0.036922720179812
912 => 0.036813442984559
913 => 0.036703996051639
914 => 0.036484483472181
915 => 0.036514318877447
916 => 0.036195446710234
917 => 0.036047921855084
918 => 0.033829501995245
919 => 0.033236667719735
920 => 0.033423185451065
921 => 0.03348459193115
922 => 0.03322658969471
923 => 0.033596498626428
924 => 0.03353884871125
925 => 0.033763130807134
926 => 0.033623009090822
927 => 0.033628759734936
928 => 0.034040827825509
929 => 0.034160452945265
930 => 0.034099610643864
1001 => 0.034142222506213
1002 => 0.03512419488871
1003 => 0.034984589817628
1004 => 0.034910427406048
1005 => 0.034930970900891
1006 => 0.035181885898344
1007 => 0.03525212839818
1008 => 0.034954505990522
1009 => 0.035094866438508
1010 => 0.03569250341164
1011 => 0.035901642528913
1012 => 0.036569114198776
1013 => 0.036285560370055
1014 => 0.036806035694595
1015 => 0.038405799399116
1016 => 0.039683801341516
1017 => 0.038508497939621
1018 => 0.040855385754273
1019 => 0.042682774559041
1020 => 0.042612636333038
1021 => 0.042293988826663
1022 => 0.040213555256079
1023 => 0.038299109266911
1024 => 0.03990062462852
1025 => 0.039904707220532
1026 => 0.039767135630656
1027 => 0.038912690301167
1028 => 0.039737402785307
1029 => 0.039802865467383
1030 => 0.039766223773353
1031 => 0.039111122542586
1101 => 0.038110904046152
1102 => 0.03830634434617
1103 => 0.038626479544475
1104 => 0.038020396826886
1105 => 0.037826716674769
1106 => 0.038186804926711
1107 => 0.039347084301832
1108 => 0.039127740207006
1109 => 0.039122012246251
1110 => 0.040060459300288
1111 => 0.039388733739147
1112 => 0.03830880947424
1113 => 0.0380361143549
1114 => 0.037068230390686
1115 => 0.037736751292253
1116 => 0.037760810169355
1117 => 0.037394668103685
1118 => 0.038338519884945
1119 => 0.038329822124619
1120 => 0.039225868917127
1121 => 0.040938773844597
1122 => 0.040432183570612
1123 => 0.039843074198832
1124 => 0.039907126721776
1125 => 0.040609624803368
1126 => 0.040184878426766
1127 => 0.040337620185229
1128 => 0.040609393610423
1129 => 0.040773361265597
1130 => 0.039883534299515
1201 => 0.039676073068377
1202 => 0.039251680198467
1203 => 0.039140964020376
1204 => 0.03948662315767
1205 => 0.03939555418731
1206 => 0.037758788113895
1207 => 0.037587736952343
1208 => 0.037592982847263
1209 => 0.0371628665685
1210 => 0.036506836003652
1211 => 0.038230845158523
1212 => 0.038092383095895
1213 => 0.037939531694865
1214 => 0.037958255119333
1215 => 0.038706589061371
1216 => 0.038272517583219
1217 => 0.039426567750802
1218 => 0.03918932973027
1219 => 0.038946007449693
1220 => 0.03891237289874
1221 => 0.038818714579999
1222 => 0.038497525356311
1223 => 0.038109670068228
1224 => 0.037853574411586
1225 => 0.034917921462316
1226 => 0.035462761573793
1227 => 0.036089550458308
1228 => 0.036305915469544
1229 => 0.035935808145822
1230 => 0.038512139449282
1231 => 0.038982860004571
]
'min_raw' => 0.016247685503933
'max_raw' => 0.042682774559041
'avg_raw' => 0.029465230031487
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.016247'
'max' => '$0.042682'
'avg' => '$0.029465'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -0.00062995937795784
'max_diff' => -0.00769740645245
'year' => 2027
]
2 => [
'items' => [
101 => 0.03755701673826
102 => 0.03729029967993
103 => 0.038529625375223
104 => 0.037782160479557
105 => 0.038118743876307
106 => 0.037391234673808
107 => 0.038869477207109
108 => 0.038858215475738
109 => 0.038283145742663
110 => 0.038769190743151
111 => 0.038684728463336
112 => 0.038035476151027
113 => 0.038890059663459
114 => 0.038890483526219
115 => 0.038336991411228
116 => 0.037690633795922
117 => 0.037575080320591
118 => 0.037488026299354
119 => 0.038097333923592
120 => 0.038643637234228
121 => 0.039660172255245
122 => 0.039915753311806
123 => 0.040913303190554
124 => 0.040319310807582
125 => 0.040582619937464
126 => 0.040868479245303
127 => 0.041005530709608
128 => 0.040782212703109
129 => 0.042331818272717
130 => 0.04246265246148
131 => 0.042506520033261
201 => 0.041984001753946
202 => 0.042448120282904
203 => 0.042230974593195
204 => 0.042795927353007
205 => 0.042884519159425
206 => 0.042809485051134
207 => 0.042837605488818
208 => 0.041515290504312
209 => 0.041446721496598
210 => 0.040511778210985
211 => 0.040892774510624
212 => 0.040180520190076
213 => 0.040406383372155
214 => 0.040505941710711
215 => 0.040453938084535
216 => 0.040914315469764
217 => 0.040522900643433
218 => 0.039489892562193
219 => 0.038456603038591
220 => 0.038443630930322
221 => 0.038171584037833
222 => 0.037974943962437
223 => 0.038012823817139
224 => 0.038146317365859
225 => 0.037967185074707
226 => 0.038005412031262
227 => 0.038640234214953
228 => 0.038767543276548
229 => 0.038334897342388
301 => 0.036597761486226
302 => 0.036171463989849
303 => 0.036477878176398
304 => 0.036331431930829
305 => 0.02932230112018
306 => 0.030968992436235
307 => 0.029990584372589
308 => 0.030441479822707
309 => 0.029442778547264
310 => 0.029919411142324
311 => 0.029831394505852
312 => 0.03247922541293
313 => 0.032437883175288
314 => 0.032457671516665
315 => 0.031513122424513
316 => 0.033017814775613
317 => 0.033759080334752
318 => 0.0336218918079
319 => 0.033656419204498
320 => 0.033063124136206
321 => 0.032463415909805
322 => 0.031798247192291
323 => 0.033034048452093
324 => 0.032896648447834
325 => 0.033211794622643
326 => 0.034013300076523
327 => 0.03413132479923
328 => 0.034289951223437
329 => 0.034233094942156
330 => 0.035587642229809
331 => 0.035423597615684
401 => 0.03581889793687
402 => 0.035005735184683
403 => 0.034085564344466
404 => 0.03426045873854
405 => 0.034243615001979
406 => 0.034029174903213
407 => 0.033835587970313
408 => 0.033513320269813
409 => 0.034533022960839
410 => 0.034491624893779
411 => 0.03516181147949
412 => 0.03504334949062
413 => 0.034252231336384
414 => 0.034280486276031
415 => 0.034470514324019
416 => 0.03512820356781
417 => 0.035323450514265
418 => 0.035233004349422
419 => 0.035447083712848
420 => 0.035616283312982
421 => 0.035468332577582
422 => 0.037563002990353
423 => 0.036693149795059
424 => 0.037117110190045
425 => 0.03721822224613
426 => 0.036959225840627
427 => 0.037015392887014
428 => 0.037100470657688
429 => 0.037617046221281
430 => 0.038972689972493
501 => 0.039573095361726
502 => 0.041379444598713
503 => 0.039523240052197
504 => 0.039413100556144
505 => 0.039738478600247
506 => 0.040798996823844
507 => 0.041658447234658
508 => 0.041943576518808
509 => 0.04198126106068
510 => 0.042516182552783
511 => 0.042822789576361
512 => 0.04245122901381
513 => 0.04213637034106
514 => 0.041008585656967
515 => 0.041139129805007
516 => 0.042038449530596
517 => 0.043308791612658
518 => 0.044398877275635
519 => 0.044017167269781
520 => 0.046929345169174
521 => 0.047218075712719
522 => 0.047178182487377
523 => 0.047835953634438
524 => 0.046530411860287
525 => 0.045972267458156
526 => 0.042204446359906
527 => 0.043263050401089
528 => 0.044801793544584
529 => 0.044598135119552
530 => 0.043480658718024
531 => 0.044398029569578
601 => 0.044094718077215
602 => 0.043855483718783
603 => 0.044951462692621
604 => 0.043746388790551
605 => 0.044789772010577
606 => 0.043451622238477
607 => 0.044018910888935
608 => 0.04369689041427
609 => 0.043905277126723
610 => 0.042687052663763
611 => 0.043344377013249
612 => 0.042659705809742
613 => 0.042659381186445
614 => 0.042644267031679
615 => 0.043449779666309
616 => 0.043476047404405
617 => 0.042880772350352
618 => 0.042794983915119
619 => 0.043112188723715
620 => 0.04274082496892
621 => 0.042914583732453
622 => 0.042746087944857
623 => 0.042708155994004
624 => 0.042405907756025
625 => 0.042275690904615
626 => 0.042326752287328
627 => 0.042152453464182
628 => 0.042047432118573
629 => 0.042623375642689
630 => 0.042315672251249
701 => 0.042576215684863
702 => 0.042279293559057
703 => 0.041250032108203
704 => 0.040658092963574
705 => 0.038713913495498
706 => 0.039265280380897
707 => 0.039630837196347
708 => 0.039510020671022
709 => 0.03976958131721
710 => 0.039785516232821
711 => 0.039701130420838
712 => 0.039603422461053
713 => 0.039555863629819
714 => 0.039910328193619
715 => 0.040116106803633
716 => 0.039667525713297
717 => 0.039562429440148
718 => 0.040015969689318
719 => 0.04029262897931
720 => 0.042335325735187
721 => 0.042183996161688
722 => 0.042563803694242
723 => 0.042521043194698
724 => 0.042919141996899
725 => 0.04356986528939
726 => 0.042246762890661
727 => 0.042476407717642
728 => 0.042420104109339
729 => 0.043034812141184
730 => 0.043036731192562
731 => 0.042668183020527
801 => 0.042867978963598
802 => 0.042756458349291
803 => 0.042957991172259
804 => 0.042181975062973
805 => 0.043127078918321
806 => 0.043662891903156
807 => 0.043670331666971
808 => 0.043924302769308
809 => 0.044182352118296
810 => 0.044677655372319
811 => 0.044168538379368
812 => 0.04325268647059
813 => 0.04331880802022
814 => 0.042781844381201
815 => 0.042790870836983
816 => 0.042742686908601
817 => 0.042887290504793
818 => 0.042213707420571
819 => 0.042371796024099
820 => 0.042150471053395
821 => 0.042475926600379
822 => 0.042125790231553
823 => 0.042420076958035
824 => 0.042547081353425
825 => 0.043015730306623
826 => 0.042056570400119
827 => 0.040100778421339
828 => 0.040511909606965
829 => 0.039903814289767
830 => 0.039960095826556
831 => 0.040073793488009
901 => 0.039705262167679
902 => 0.039775566329842
903 => 0.039773054570446
904 => 0.03975140958494
905 => 0.039655540355168
906 => 0.039516511004848
907 => 0.040070361145544
908 => 0.040164471076927
909 => 0.040373665796636
910 => 0.040996087384358
911 => 0.040933892790033
912 => 0.041035334753806
913 => 0.040813887516461
914 => 0.039970368128771
915 => 0.040016175289816
916 => 0.039444959257565
917 => 0.040359058518423
918 => 0.040142587747931
919 => 0.040003027633969
920 => 0.039964947363859
921 => 0.040588911814307
922 => 0.040775611757326
923 => 0.040659272881804
924 => 0.040420658453961
925 => 0.040878868695442
926 => 0.041001466425724
927 => 0.041028911536304
928 => 0.041840772231109
929 => 0.041074285530497
930 => 0.041258786497557
1001 => 0.042698210374436
1002 => 0.041392851545024
1003 => 0.042084329229939
1004 => 0.042050484995539
1005 => 0.042404221580812
1006 => 0.042021468270749
1007 => 0.042026212956753
1008 => 0.042340307080284
1009 => 0.041899218530958
1010 => 0.041789998803103
1011 => 0.041639112531317
1012 => 0.041968567185697
1013 => 0.042166060351046
1014 => 0.043757710221008
1015 => 0.044785988625055
1016 => 0.044741348347644
1017 => 0.045149276920084
1018 => 0.044965501362002
1019 => 0.044372041607414
1020 => 0.045385005043789
1021 => 0.045064461028329
1022 => 0.045090886287503
1023 => 0.045089902738037
1024 => 0.045303036485873
1025 => 0.04515201169211
1026 => 0.044854326321226
1027 => 0.045051943762813
1028 => 0.045638796914799
1029 => 0.047460407105418
1030 => 0.048479804301214
1031 => 0.047399038114238
1101 => 0.048144536157978
1102 => 0.047697502979848
1103 => 0.047616263753296
1104 => 0.048084491616637
1105 => 0.04855353905087
1106 => 0.048523662757057
1107 => 0.048183158405657
1108 => 0.047990816137528
1109 => 0.049447296231182
1110 => 0.050520405953695
1111 => 0.050447227064839
1112 => 0.050770214881202
1113 => 0.051718517099681
1114 => 0.051805217970029
1115 => 0.051794295653162
1116 => 0.051579398499705
1117 => 0.052513125186402
1118 => 0.053292056415803
1119 => 0.051529656017656
1120 => 0.052200755017755
1121 => 0.052502032980359
1122 => 0.052944398414605
1123 => 0.053690743051233
1124 => 0.054501471284749
1125 => 0.054616117146151
1126 => 0.054534770421177
1127 => 0.054000073357628
1128 => 0.054887181864741
1129 => 0.055406829222953
1130 => 0.05571626733285
1201 => 0.056500950893957
1202 => 0.052503893570489
1203 => 0.049674577730299
1204 => 0.049232739206037
1205 => 0.050131235219565
1206 => 0.050368161452961
1207 => 0.050272656785359
1208 => 0.047088004577083
1209 => 0.049215972671239
1210 => 0.051505487415912
1211 => 0.051593437001597
1212 => 0.052739615954276
1213 => 0.053112858804731
1214 => 0.054035683094747
1215 => 0.053977960184149
1216 => 0.054202653213426
1217 => 0.054151000177136
1218 => 0.055860337850811
1219 => 0.057745991143975
1220 => 0.057680696966443
1221 => 0.057409611995513
1222 => 0.0578122194042
1223 => 0.059758415681632
1224 => 0.059579241115566
1225 => 0.059753293944446
1226 => 0.062047969038355
1227 => 0.065031373074162
1228 => 0.063645282370662
1229 => 0.066652700360402
1230 => 0.068545710568566
1231 => 0.071819475982677
]
'min_raw' => 0.02932230112018
'max_raw' => 0.071819475982677
'avg_raw' => 0.050570888551428
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.029322'
'max' => '$0.071819'
'avg' => '$0.05057'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 0.013074615616247
'max_diff' => 0.029136701423636
'year' => 2028
]
3 => [
'items' => [
101 => 0.071409584429195
102 => 0.072684037280908
103 => 0.070675793001515
104 => 0.066064458202897
105 => 0.065334696819535
106 => 0.066795697589527
107 => 0.070387425420182
108 => 0.066682581298265
109 => 0.06743206643893
110 => 0.067216214667998
111 => 0.067204712844436
112 => 0.0676436906685
113 => 0.067006930439151
114 => 0.064412654713807
115 => 0.065601595990569
116 => 0.065142488665962
117 => 0.065651902471332
118 => 0.068400998680682
119 => 0.06718555771626
120 => 0.065905189394648
121 => 0.067511055406426
122 => 0.06955587467485
123 => 0.069427913559926
124 => 0.069179615513375
125 => 0.070579258601316
126 => 0.072891058925647
127 => 0.073515929263747
128 => 0.073977195772421
129 => 0.074040796630806
130 => 0.074695924999881
131 => 0.071173134645758
201 => 0.076763893409424
202 => 0.077729263006315
203 => 0.07754781353257
204 => 0.078620781210552
205 => 0.078305086901127
206 => 0.07784769537769
207 => 0.079548577374061
208 => 0.077598653419321
209 => 0.074830981854167
210 => 0.073312582495186
211 => 0.075312133256874
212 => 0.076533189132331
213 => 0.077340229392269
214 => 0.0775844392873
215 => 0.07144659883285
216 => 0.06813864324814
217 => 0.070259004852151
218 => 0.072845992348586
219 => 0.071158763799595
220 => 0.071224899964369
221 => 0.06881935544937
222 => 0.07305882966104
223 => 0.07244117392799
224 => 0.075645572963667
225 => 0.074880817416894
226 => 0.077493880436434
227 => 0.076805773370111
228 => 0.07966206733087
301 => 0.080801520322889
302 => 0.082714839238185
303 => 0.084122284420887
304 => 0.084948763152305
305 => 0.084899144469314
306 => 0.088174064953263
307 => 0.086242958760885
308 => 0.083817034256475
309 => 0.083773156935884
310 => 0.085029577612334
311 => 0.087662690667995
312 => 0.088345418573091
313 => 0.088726970332586
314 => 0.088142610531007
315 => 0.086046533162808
316 => 0.085141457582574
317 => 0.085912608199498
318 => 0.084969557260728
319 => 0.086597527754404
320 => 0.088833078957956
321 => 0.08837144647475
322 => 0.089914614654297
323 => 0.091511631374102
324 => 0.093795437009931
325 => 0.094392508372215
326 => 0.09537944462948
327 => 0.096395326229876
328 => 0.096721600021147
329 => 0.097344557925494
330 => 0.097341274629838
331 => 0.099218600204492
401 => 0.10128934844927
402 => 0.10207100797374
403 => 0.1038683909493
404 => 0.10079043559146
405 => 0.10312510008739
406 => 0.10523102590316
407 => 0.10272025432847
408 => 0.10618076800943
409 => 0.10631513191397
410 => 0.10834386734833
411 => 0.10628735532692
412 => 0.10506620505323
413 => 0.10859162013748
414 => 0.11029745744721
415 => 0.10978364536696
416 => 0.10587351006617
417 => 0.10359764360752
418 => 0.097641262103384
419 => 0.10469685329157
420 => 0.10813342594492
421 => 0.10586461017321
422 => 0.10700886887933
423 => 0.11325157335276
424 => 0.11562839103106
425 => 0.11513402956918
426 => 0.11521756851836
427 => 0.11650005619528
428 => 0.1221873128336
429 => 0.11877937682634
430 => 0.12138461621096
501 => 0.12276642578667
502 => 0.12404992752968
503 => 0.12089805290375
504 => 0.11679751032564
505 => 0.11549869636208
506 => 0.10563902115819
507 => 0.10512578224543
508 => 0.10483768569097
509 => 0.10302127766714
510 => 0.10159407851644
511 => 0.1004591167633
512 => 0.097480638194783
513 => 0.098485787277501
514 => 0.093738714096079
515 => 0.096775723291609
516 => 0.08919927987197
517 => 0.095509167087077
518 => 0.092074982351262
519 => 0.09438094503926
520 => 0.094372899752676
521 => 0.090126891337936
522 => 0.087677882296248
523 => 0.089238486174469
524 => 0.090911577412812
525 => 0.091183030837279
526 => 0.09335223729994
527 => 0.093957616196731
528 => 0.092123289877014
529 => 0.089042274922352
530 => 0.089757924425851
531 => 0.087663379681902
601 => 0.08399277058363
602 => 0.086629066120695
603 => 0.087529213326782
604 => 0.087926769613244
605 => 0.084317147137398
606 => 0.08318292538677
607 => 0.082579075243778
608 => 0.088576317988419
609 => 0.08890486048398
610 => 0.08722399062546
611 => 0.09482168177259
612 => 0.093102090270215
613 => 0.095023295288515
614 => 0.089692986734492
615 => 0.089896611699468
616 => 0.087373158208009
617 => 0.088786123546003
618 => 0.087787485187108
619 => 0.088671969909889
620 => 0.089202126405856
621 => 0.091725165823427
622 => 0.095537976144412
623 => 0.091348307870392
624 => 0.089522809406247
625 => 0.09065533838641
626 => 0.093671412303507
627 => 0.098240918677891
628 => 0.095535678934369
629 => 0.096736218394595
630 => 0.096998482858371
701 => 0.095003739224916
702 => 0.098314467720929
703 => 0.10008871401825
704 => 0.10190872359077
705 => 0.10348898690707
706 => 0.10118177174464
707 => 0.10365082269474
708 => 0.10166120347512
709 => 0.099876309352067
710 => 0.09987901629968
711 => 0.098759326143145
712 => 0.096589785374821
713 => 0.096189688770414
714 => 0.098271041833167
715 => 0.099940089884626
716 => 0.10007756067634
717 => 0.10100163143642
718 => 0.10154848699354
719 => 0.10690841486745
720 => 0.10906422219799
721 => 0.11170030259442
722 => 0.11272720447018
723 => 0.11581781095153
724 => 0.11332189521105
725 => 0.11278188814056
726 => 0.10528508774649
727 => 0.10651268839104
728 => 0.10847819546881
729 => 0.10531749823426
730 => 0.10732223313736
731 => 0.10771801027333
801 => 0.10521009895169
802 => 0.10654968274903
803 => 0.10299214534221
804 => 0.095615520738253
805 => 0.098322680012834
806 => 0.10031606045888
807 => 0.097471260780334
808 => 0.10257045409518
809 => 0.099591610629364
810 => 0.098647460260403
811 => 0.094963993057174
812 => 0.096702447787443
813 => 0.099053732702406
814 => 0.09760091199117
815 => 0.10061573310911
816 => 0.10488552383554
817 => 0.10792843097763
818 => 0.10816202760407
819 => 0.10620564217066
820 => 0.10934076231319
821 => 0.10936359824074
822 => 0.10582716991262
823 => 0.10366112725256
824 => 0.1031689978028
825 => 0.10439843365596
826 => 0.10589119574807
827 => 0.10824486551109
828 => 0.1096671388547
829 => 0.11337567341934
830 => 0.11437909654052
831 => 0.11548155433181
901 => 0.11695477792636
902 => 0.1187237605784
903 => 0.11485332724398
904 => 0.11500710677574
905 => 0.11140301284453
906 => 0.10755152159968
907 => 0.11047432335936
908 => 0.11429549785612
909 => 0.11341891620454
910 => 0.1133202828618
911 => 0.11348615678568
912 => 0.11282524284687
913 => 0.10983595359624
914 => 0.10833475124852
915 => 0.11027168527465
916 => 0.11130107950652
917 => 0.11289758018754
918 => 0.11270077778056
919 => 0.11681319208322
920 => 0.11841115192828
921 => 0.11800232541936
922 => 0.11807755933596
923 => 0.12097058930693
924 => 0.12418823363164
925 => 0.12720198214729
926 => 0.13026769658093
927 => 0.12657185817431
928 => 0.12469533935905
929 => 0.12663142778038
930 => 0.12560411201161
1001 => 0.13150737314062
1002 => 0.13191610213307
1003 => 0.13781893638912
1004 => 0.14342142899454
1005 => 0.13990260376816
1006 => 0.14322069746527
1007 => 0.14680948632684
1008 => 0.15373284230082
1009 => 0.15140129957539
1010 => 0.14961537438763
1011 => 0.14792768371473
1012 => 0.15143950009169
1013 => 0.155957395758
1014 => 0.15693050721266
1015 => 0.15850731952639
1016 => 0.15684949418193
1017 => 0.15884616220585
1018 => 0.16589527771068
1019 => 0.16399054447701
1020 => 0.16128551708406
1021 => 0.16685011677087
1022 => 0.16886392376569
1023 => 0.18299787589427
1024 => 0.20084257430104
1025 => 0.19345475198603
1026 => 0.18886889227156
1027 => 0.18994667808251
1028 => 0.1964629578595
1029 => 0.19855578010749
1030 => 0.19286676779837
1031 => 0.19487622312231
1101 => 0.20594851952254
1102 => 0.21188845129946
1103 => 0.20382122610713
1104 => 0.18156407175228
1105 => 0.16104195896367
1106 => 0.16648534739799
1107 => 0.16586823607755
1108 => 0.17776403726249
1109 => 0.16394511721933
1110 => 0.16417779239226
1111 => 0.17631958614783
1112 => 0.17308036373688
1113 => 0.16783323827942
1114 => 0.16108026878632
1115 => 0.14859678010427
1116 => 0.13753980605073
1117 => 0.15922507843876
1118 => 0.15828997006128
1119 => 0.15693579455539
1120 => 0.15994936560665
1121 => 0.17458241121452
1122 => 0.17424507215071
1123 => 0.17209909313867
1124 => 0.17372679930551
1125 => 0.16754789351852
1126 => 0.1691403382309
1127 => 0.16103870815615
1128 => 0.1647009833039
1129 => 0.16782198030479
1130 => 0.16844856665987
1201 => 0.16986029771215
1202 => 0.157797210438
1203 => 0.16321318247046
1204 => 0.16639455863158
1205 => 0.15202098539619
1206 => 0.16611043930328
1207 => 0.1575872189265
1208 => 0.15469430991615
1209 => 0.15858923078681
1210 => 0.15707137633558
1211 => 0.15576641420982
1212 => 0.15503822292155
1213 => 0.15789822294223
1214 => 0.15776480052282
1215 => 0.15308528538691
1216 => 0.14698104865354
1217 => 0.149029830866
1218 => 0.14828548908078
1219 => 0.14558789842913
1220 => 0.14740574882
1221 => 0.13940085569164
1222 => 0.12562885312243
1223 => 0.1347270598675
1224 => 0.13437678880476
1225 => 0.1342001662514
1226 => 0.14103721716435
1227 => 0.14037999247667
1228 => 0.13918712323297
1229 => 0.14556599045001
1230 => 0.14323761810792
1231 => 0.15041311303273
]
'min_raw' => 0.064412654713807
'max_raw' => 0.21188845129946
'avg_raw' => 0.13815055300664
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.064412'
'max' => '$0.211888'
'avg' => '$0.13815'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072434
'min_diff' => 0.035090353593627
'max_diff' => 0.14006897531679
'year' => 2029
]
4 => [
'items' => [
101 => 0.15513935807213
102 => 0.15394062945212
103 => 0.1583856857556
104 => 0.14907703067022
105 => 0.15216899249116
106 => 0.15280624153718
107 => 0.14548727621872
108 => 0.14048752256361
109 => 0.14015409599618
110 => 0.13148521216671
111 => 0.13611605993563
112 => 0.14019101433477
113 => 0.13823942740682
114 => 0.13762161328743
115 => 0.14077789163585
116 => 0.14102316149522
117 => 0.13543098270908
118 => 0.13659377375999
119 => 0.14144280574021
120 => 0.13647159059542
121 => 0.12681333161248
122 => 0.12441794984884
123 => 0.12409836176592
124 => 0.11760189644279
125 => 0.12457802071225
126 => 0.12153275552012
127 => 0.13115271177417
128 => 0.12565784435472
129 => 0.12542097160272
130 => 0.12506290369639
131 => 0.11947112762717
201 => 0.12069537121042
202 => 0.12476494333871
203 => 0.1262170125211
204 => 0.12606554980892
205 => 0.12474500021513
206 => 0.12534954105686
207 => 0.12340210436967
208 => 0.12271442394303
209 => 0.12054391535515
210 => 0.11735386734928
211 => 0.1177974630902
212 => 0.11147714326909
213 => 0.10803349758579
214 => 0.10708034184718
215 => 0.10580574215838
216 => 0.10722431127361
217 => 0.11145923859714
218 => 0.10635101775501
219 => 0.097593331421188
220 => 0.098119683292222
221 => 0.099302239671162
222 => 0.097098553682401
223 => 0.095012949835384
224 => 0.096826213169976
225 => 0.093115466019799
226 => 0.099750665735957
227 => 0.099571202178567
228 => 0.10204439431475
301 => 0.10359093211252
302 => 0.10002666318622
303 => 0.099130259190066
304 => 0.099640891645567
305 => 0.091201274603991
306 => 0.10135469754864
307 => 0.1014425047719
308 => 0.10069064601708
309 => 0.10609703028334
310 => 0.1175061873787
311 => 0.11321360354714
312 => 0.11155138534353
313 => 0.10839150732339
314 => 0.11260185717024
315 => 0.11227856799369
316 => 0.11081653173356
317 => 0.1099322876416
318 => 0.11156153449344
319 => 0.10973040592658
320 => 0.10940148491993
321 => 0.10740858148918
322 => 0.10669720563573
323 => 0.10617053127453
324 => 0.1055907145528
325 => 0.10686964575961
326 => 0.10397141938756
327 => 0.10047644249949
328 => 0.10018587298743
329 => 0.10098816095738
330 => 0.10063320825399
331 => 0.10018417361044
401 => 0.099326844188601
402 => 0.099072492863085
403 => 0.09989901127729
404 => 0.09896592017667
405 => 0.10034274692374
406 => 0.099968326231834
407 => 0.097876842683374
408 => 0.095270079815607
409 => 0.095246874158214
410 => 0.094685251374302
411 => 0.093969940318438
412 => 0.093770957146797
413 => 0.09667350518954
414 => 0.10268169277206
415 => 0.10150214178587
416 => 0.10235448825864
417 => 0.10654718930637
418 => 0.10787992289052
419 => 0.10693398016002
420 => 0.10563911540729
421 => 0.10569608288486
422 => 0.11012102772714
423 => 0.1103970061092
424 => 0.11109431444668
425 => 0.11199055271965
426 => 0.10708661341335
427 => 0.10546510778454
428 => 0.1046967484599
429 => 0.1023304991325
430 => 0.10488229616522
501 => 0.1033954733131
502 => 0.10359609651295
503 => 0.10346544039085
504 => 0.10353678746845
505 => 0.09974881106241
506 => 0.10112895057459
507 => 0.09883420095313
508 => 0.095761788807726
509 => 0.095751489004888
510 => 0.096503457524792
511 => 0.096056157224622
512 => 0.094852483618006
513 => 0.095023459772647
514 => 0.093525528748431
515 => 0.095205335719903
516 => 0.095253506573207
517 => 0.094606689389486
518 => 0.097194663797731
519 => 0.098254959024375
520 => 0.097829210097883
521 => 0.098225087344733
522 => 0.1015511574547
523 => 0.10209345200924
524 => 0.1023343034284
525 => 0.10201159443342
526 => 0.09828588180059
527 => 0.09845113299881
528 => 0.097238629352167
529 => 0.096214191541241
530 => 0.096255163681209
531 => 0.096781857883619
601 => 0.099081962355748
602 => 0.10392239661878
603 => 0.10410608756075
604 => 0.10432872634106
605 => 0.10342314253225
606 => 0.10315000979024
607 => 0.10351034237849
608 => 0.10532815498975
609 => 0.11000406255719
610 => 0.10835128452949
611 => 0.10700755026595
612 => 0.10818636748323
613 => 0.10800489781251
614 => 0.10647311116695
615 => 0.10643011901759
616 => 0.10349013070296
617 => 0.10240328396334
618 => 0.10149503347864
619 => 0.10050324765983
620 => 0.099915283781476
621 => 0.10081866352343
622 => 0.10102527715889
623 => 0.099050021564732
624 => 0.098780801526069
625 => 0.10039383788311
626 => 0.099684000722433
627 => 0.1004140858453
628 => 0.10058347185636
629 => 0.10055619680729
630 => 0.099815045287267
701 => 0.10028743316468
702 => 0.099170095009002
703 => 0.097955157583471
704 => 0.097180103199259
705 => 0.096503765452988
706 => 0.096879036943599
707 => 0.095541262601436
708 => 0.0951132816653
709 => 0.10012739878087
710 => 0.10383138100499
711 => 0.10377752363651
712 => 0.1034496807569
713 => 0.1029625727383
714 => 0.10529252000418
715 => 0.10448081296551
716 => 0.10507139765653
717 => 0.10522172624716
718 => 0.10567672561491
719 => 0.10583934878036
720 => 0.10534778862531
721 => 0.10369805270594
722 => 0.09958706764705
723 => 0.097673393004744
724 => 0.097041848498011
725 => 0.097064803941357
726 => 0.096431590336264
727 => 0.096618100121607
728 => 0.096366729844334
729 => 0.095890695352181
730 => 0.096849643155139
731 => 0.096960152956213
801 => 0.09673632308043
802 => 0.096789043118936
803 => 0.094935827346441
804 => 0.095076723316651
805 => 0.094292196650329
806 => 0.094145107358004
807 => 0.092161892262093
808 => 0.088648339248063
809 => 0.090595188686679
810 => 0.088243668333288
811 => 0.087353111944111
812 => 0.091568867380541
813 => 0.091145722461578
814 => 0.090421482296987
815 => 0.089350180148682
816 => 0.088952823760919
817 => 0.086538612136612
818 => 0.08639596763453
819 => 0.087592516104733
820 => 0.087040350156453
821 => 0.086264900043471
822 => 0.083456298340365
823 => 0.080298500130008
824 => 0.080393814208767
825 => 0.081398251066557
826 => 0.084318786697347
827 => 0.083177682900618
828 => 0.082349799003434
829 => 0.08219476123559
830 => 0.084135383493711
831 => 0.086881770561884
901 => 0.088170313927324
902 => 0.086893406585817
903 => 0.085426564185467
904 => 0.085515844085683
905 => 0.086109783263721
906 => 0.086172197873485
907 => 0.085217434264692
908 => 0.085486194628008
909 => 0.085077923060169
910 => 0.082572361201955
911 => 0.082527043533162
912 => 0.081912138245513
913 => 0.081893519157782
914 => 0.080847411868179
915 => 0.080701054226966
916 => 0.078623944709285
917 => 0.079991104483889
918 => 0.079074085486195
919 => 0.077691921553755
920 => 0.077453635970833
921 => 0.077446472818473
922 => 0.078865646130888
923 => 0.079974520617451
924 => 0.079090037424269
925 => 0.078888657746168
926 => 0.081038865856087
927 => 0.080765232274518
928 => 0.080528267357626
929 => 0.086635861722566
930 => 0.081801224201185
1001 => 0.0796930462904
1002 => 0.077083775793677
1003 => 0.077933367424494
1004 => 0.078112388864205
1005 => 0.071837563675945
1006 => 0.069291867878547
1007 => 0.068418281013403
1008 => 0.067915519421807
1009 => 0.06814463419238
1010 => 0.065853209394386
1011 => 0.067393084755306
1012 => 0.06540890456956
1013 => 0.065076250304339
1014 => 0.068624210269211
1015 => 0.069117888171441
1016 => 0.067011704866824
1017 => 0.068364215508492
1018 => 0.067873776348519
1019 => 0.065442917643903
1020 => 0.065350076721572
1021 => 0.064130357272411
1022 => 0.062221732518698
1023 => 0.061349439791012
1024 => 0.060895142164841
1025 => 0.061082594219483
1026 => 0.060987812724529
1027 => 0.060369299357275
1028 => 0.061023265186734
1029 => 0.059352652729804
1030 => 0.058687401388415
1031 => 0.058386922791223
1101 => 0.056904158078832
1102 => 0.059263896124707
1103 => 0.05972879424694
1104 => 0.060194608362089
1105 => 0.064249202209658
1106 => 0.064046646159196
1107 => 0.065877654206569
1108 => 0.065806504600855
1109 => 0.065284271445381
1110 => 0.063081055665619
1111 => 0.063959218206887
1112 => 0.061256370401624
1113 => 0.063281527753113
1114 => 0.062357330510486
1115 => 0.062969055735722
1116 => 0.061869118623708
1117 => 0.062477869236787
1118 => 0.059839038838305
1119 => 0.057374936141549
1120 => 0.058366562998366
1121 => 0.059444574798012
1122 => 0.061781979051943
1123 => 0.060389840361468
1124 => 0.060890506077155
1125 => 0.059213359740033
1126 => 0.055752927793382
1127 => 0.055772513462399
1128 => 0.055240201397014
1129 => 0.054780206053688
1130 => 0.06054974423667
1201 => 0.059832210960714
1202 => 0.058688915593913
1203 => 0.060219261875128
1204 => 0.060623909721743
1205 => 0.060635429477068
1206 => 0.061751930619888
1207 => 0.062347807479955
1208 => 0.06245283335922
1209 => 0.064209672031051
1210 => 0.064798541180586
1211 => 0.067224009867641
1212 => 0.062297251491538
1213 => 0.062195788144926
1214 => 0.060240796985654
1215 => 0.059000910685256
1216 => 0.060325693061411
1217 => 0.061499269395856
1218 => 0.060277263273696
1219 => 0.060436831475293
1220 => 0.058796388097862
1221 => 0.059382769415258
1222 => 0.059887839999894
1223 => 0.059608969709735
1224 => 0.059191487387892
1225 => 0.06140304951972
1226 => 0.06127826451706
1227 => 0.063337722017811
1228 => 0.064943216412866
1229 => 0.067820549385255
1230 => 0.064817902429806
1231 => 0.064708474040309
]
'min_raw' => 0.054780206053688
'max_raw' => 0.1583856857556
'avg_raw' => 0.10658294590464
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.05478'
'max' => '$0.158385'
'avg' => '$0.106582'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -0.0096324486601187
'max_diff' => -0.053502765543865
'year' => 2030
]
5 => [
'items' => [
101 => 0.06577815410051
102 => 0.064798377418142
103 => 0.065417562460657
104 => 0.067720789102342
105 => 0.067769452651904
106 => 0.066954275497302
107 => 0.066904671893361
108 => 0.067061235582963
109 => 0.067978234003141
110 => 0.067657806578616
111 => 0.068028613306507
112 => 0.068492312797728
113 => 0.070410370497931
114 => 0.070872807715896
115 => 0.069749325022449
116 => 0.069850762930565
117 => 0.069430549562926
118 => 0.069024628715045
119 => 0.069937079501102
120 => 0.071604601246888
121 => 0.071594227680652
122 => 0.071981060313683
123 => 0.072222053839367
124 => 0.071187533209089
125 => 0.070514098319155
126 => 0.070772336107731
127 => 0.071185263955351
128 => 0.07063842917205
129 => 0.067263111571005
130 => 0.068286967315039
131 => 0.068116547655243
201 => 0.067873849335956
202 => 0.068903344203825
203 => 0.068804046912349
204 => 0.065829707521112
205 => 0.066020115078718
206 => 0.065841286835339
207 => 0.066419117474513
208 => 0.064767172667348
209 => 0.065275299764014
210 => 0.065593992315647
211 => 0.065781704676871
212 => 0.066459850441181
213 => 0.066380277862868
214 => 0.066454904097988
215 => 0.067460415242615
216 => 0.072545945562386
217 => 0.072822739757101
218 => 0.071459703909604
219 => 0.072004209845985
220 => 0.070958877518491
221 => 0.071660616113056
222 => 0.07214072783723
223 => 0.069971195275864
224 => 0.06984272963773
225 => 0.068793082851874
226 => 0.06935710357956
227 => 0.068459706047286
228 => 0.068679896012073
301 => 0.068064225674713
302 => 0.06917230970322
303 => 0.070411319825941
304 => 0.070724342712933
305 => 0.069900914262084
306 => 0.069304697797089
307 => 0.068257938090473
308 => 0.069998722811138
309 => 0.070507781312913
310 => 0.069996048943541
311 => 0.069877469371984
312 => 0.069652761298153
313 => 0.069925142252111
314 => 0.070505008870987
315 => 0.07023155448198
316 => 0.070412175923565
317 => 0.069723833244264
318 => 0.071187875678464
319 => 0.073513127404972
320 => 0.073520603469489
321 => 0.073247147606462
322 => 0.073135255358999
323 => 0.073415837669155
324 => 0.073568042062326
325 => 0.074475393803374
326 => 0.075449018372006
327 => 0.079992499408134
328 => 0.078716708114223
329 => 0.082747954782372
330 => 0.085936147505011
331 => 0.08689214709976
401 => 0.086012672455848
402 => 0.083004037207313
403 => 0.082856419208567
404 => 0.087352590482917
405 => 0.086082216160222
406 => 0.085931109176836
407 => 0.084323586172877
408 => 0.085273831363814
409 => 0.0850659988013
410 => 0.084737924933855
411 => 0.086550926563509
412 => 0.089944703766449
413 => 0.08941575176273
414 => 0.089020913629331
415 => 0.087290847864428
416 => 0.088332733879078
417 => 0.087961738225273
418 => 0.089555770993677
419 => 0.088611501293824
420 => 0.08607259182528
421 => 0.086476921526501
422 => 0.08641580790556
423 => 0.087673521893969
424 => 0.087295987373029
425 => 0.086342088231134
426 => 0.08993310420492
427 => 0.089699923601863
428 => 0.090030520384491
429 => 0.090176059312249
430 => 0.092361847454694
501 => 0.093257294919234
502 => 0.093460577170699
503 => 0.09431118300562
504 => 0.093439413322642
505 => 0.096927113615804
506 => 0.099246230797802
507 => 0.10194000474537
508 => 0.10587633250095
509 => 0.10735642815012
510 => 0.10708906211892
511 => 0.11007354089851
512 => 0.1154365829242
513 => 0.10817308624755
514 => 0.11582156588521
515 => 0.11340014553787
516 => 0.10765900145382
517 => 0.10728933945845
518 => 0.11117730888822
519 => 0.11980045088027
520 => 0.11764045161413
521 => 0.11980398386527
522 => 0.11728010857153
523 => 0.1171547768903
524 => 0.11968140487565
525 => 0.12558500888272
526 => 0.12278042791225
527 => 0.1187593733796
528 => 0.12172845747197
529 => 0.1191563620554
530 => 0.1133607111977
531 => 0.1176387999034
601 => 0.11477816381885
602 => 0.1156130495081
603 => 0.12162568107031
604 => 0.1209022253333
605 => 0.12183844404719
606 => 0.12018604252228
607 => 0.1186424389382
608 => 0.11576118821902
609 => 0.11490819192501
610 => 0.11514392941308
611 => 0.11490807510522
612 => 0.1132960418079
613 => 0.11294792337082
614 => 0.11236771072428
615 => 0.11254754288485
616 => 0.11145657336216
617 => 0.11351545825728
618 => 0.11389760543665
619 => 0.11539589016658
620 => 0.11555144705761
621 => 0.1197241487037
622 => 0.11742589475643
623 => 0.11896776192596
624 => 0.1188298428137
625 => 0.10778342945479
626 => 0.10930552775232
627 => 0.11167343504251
628 => 0.1106066960179
629 => 0.10909857661559
630 => 0.10788068933798
701 => 0.10603546557704
702 => 0.10863258258619
703 => 0.11204751528062
704 => 0.11563805538623
705 => 0.11995185406163
706 => 0.11898906441543
707 => 0.11555741192061
708 => 0.11571135334471
709 => 0.11666295865474
710 => 0.11543054331579
711 => 0.11506707997273
712 => 0.11661302437276
713 => 0.11662367044221
714 => 0.11520562765238
715 => 0.11362973259057
716 => 0.11362312953272
717 => 0.11334271422782
718 => 0.11732999383133
719 => 0.11952259445382
720 => 0.11977397258164
721 => 0.11950567470294
722 => 0.11960893190809
723 => 0.11833310591652
724 => 0.1212492657988
725 => 0.12392542248511
726 => 0.12320815532543
727 => 0.12213286988754
728 => 0.12127635324349
729 => 0.12300638722459
730 => 0.12292935153473
731 => 0.12390204859108
801 => 0.12385792143404
802 => 0.12353083999897
803 => 0.12320816700654
804 => 0.12448752894824
805 => 0.12411909325495
806 => 0.12375008527927
807 => 0.12300998329175
808 => 0.12311057544365
809 => 0.12203547566894
810 => 0.12153808531995
811 => 0.11405852787737
812 => 0.11205974572713
813 => 0.11268860328056
814 => 0.11289563951542
815 => 0.11202576696213
816 => 0.11327294075163
817 => 0.11307857003762
818 => 0.11383475278277
819 => 0.11336232263324
820 => 0.11338171133136
821 => 0.11477102766841
822 => 0.11517435211162
823 => 0.11496921804458
824 => 0.11511288691355
825 => 0.11842367536026
826 => 0.11795298711619
827 => 0.1177029433677
828 => 0.11777220719486
829 => 0.1186181846271
830 => 0.11885501211947
831 => 0.11785155739272
901 => 0.11832479244276
902 => 0.12033976722335
903 => 0.12104489435887
904 => 0.12329532169519
905 => 0.12233930016457
906 => 0.12409411905968
907 => 0.12948783408141
908 => 0.13379670685745
909 => 0.1298340893809
910 => 0.13774678550247
911 => 0.14390795444196
912 => 0.1436714785161
913 => 0.1425971362011
914 => 0.13558280916664
915 => 0.12912812085181
916 => 0.13452774170771
917 => 0.13454150645171
918 => 0.1340776742315
919 => 0.13119685214766
920 => 0.13397742786753
921 => 0.1341981398706
922 => 0.13407459984094
923 => 0.13186588030371
924 => 0.12849357380995
925 => 0.12915251442667
926 => 0.13023187259888
927 => 0.12818842240118
928 => 0.12753541624601
929 => 0.12874947892798
930 => 0.13266144184933
1001 => 0.1319219079195
1002 => 0.13190259569991
1003 => 0.13506663546287
1004 => 0.13280186583511
1005 => 0.12916082577807
1006 => 0.12824141514425
1007 => 0.1249781267834
1008 => 0.12723209167767
1009 => 0.12731320786156
1010 => 0.12607873432393
1011 => 0.12926099650207
1012 => 0.12923167139587
1013 => 0.13225275571681
1014 => 0.13802793427097
1015 => 0.13631992979323
1016 => 0.13433370641597
1017 => 0.13454966396908
1018 => 0.13691818529802
1019 => 0.13548612323446
1020 => 0.13600110273721
1021 => 0.13691740581486
1022 => 0.13747023421214
1023 => 0.13447012047026
1024 => 0.133770650445
1025 => 0.13233978025393
1026 => 0.13196649292954
1027 => 0.13313190684407
1028 => 0.13282486145228
1029 => 0.1273063903604
1030 => 0.12672967942681
1031 => 0.12674736632779
1101 => 0.12529719926419
1102 => 0.12308534641221
1103 => 0.12889796364433
1104 => 0.12843112913307
1105 => 0.12791577996275
1106 => 0.12797890729557
1107 => 0.13050196742816
1108 => 0.12903846513367
1109 => 0.13292942584689
1110 => 0.13212956129723
1111 => 0.13130918324005
1112 => 0.13119578200322
1113 => 0.13088000644257
1114 => 0.12979709455019
1115 => 0.12848941336723
1116 => 0.12762596898083
1117 => 0.11772821010162
1118 => 0.11956517657699
1119 => 0.12167843906214
1120 => 0.12240792880364
1121 => 0.12116008612164
1122 => 0.12984636698497
1123 => 0.13143343420178
1124 => 0.12662610408022
1125 => 0.12572684889647
1126 => 0.1299053220051
1127 => 0.12738519192303
1128 => 0.12852000634468
1129 => 0.12606715827538
1130 => 0.131051156184
1201 => 0.13101318647042
1202 => 0.12907429871527
1203 => 0.13071303336899
1204 => 0.13042826289563
1205 => 0.12823926339533
1206 => 0.13112055137261
1207 => 0.1311219804555
1208 => 0.12925584314622
1209 => 0.12707660331897
1210 => 0.1266870067092
1211 => 0.12639349799869
1212 => 0.1284478211943
1213 => 0.13028972094779
1214 => 0.13371703974336
1215 => 0.13457874911965
1216 => 0.13794205818256
1217 => 0.13593937139215
1218 => 0.1368271365072
1219 => 0.13779093112164
1220 => 0.13825300970217
1221 => 0.1375000774517
1222 => 0.14272468081964
1223 => 0.1431657974216
1224 => 0.1433137000026
1225 => 0.14155199314283
1226 => 0.14311680116693
1227 => 0.14238467931345
1228 => 0.1442894569869
1229 => 0.14458815044752
1230 => 0.1443351677127
1231 => 0.14442997773166
]
'min_raw' => 0.064767172667348
'max_raw' => 0.14458815044752
'avg_raw' => 0.10467766155743
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.064767'
'max' => '$0.144588'
'avg' => '$0.104677'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 0.0099869666136601
'max_diff' => -0.013797535308084
'year' => 2031
]
6 => [
'items' => [
101 => 0.13997170044031
102 => 0.13974051524347
103 => 0.13658828868037
104 => 0.13787284430491
105 => 0.13547142913518
106 => 0.13623294262282
107 => 0.1365686105122
108 => 0.13639327665577
109 => 0.13794547115259
110 => 0.13662578873791
111 => 0.13314292986969
112 => 0.12965912209889
113 => 0.12961538573018
114 => 0.12869816063844
115 => 0.12803517489527
116 => 0.12816288947009
117 => 0.12861297228982
118 => 0.12800901526359
119 => 0.12813790011653
120 => 0.13027824743072
121 => 0.13070747882032
122 => 0.12924878284692
123 => 0.12339190802492
124 => 0.12195461625274
125 => 0.12298771307585
126 => 0.12249395933436
127 => 0.098862185444376
128 => 0.10441412018477
129 => 0.10111534908792
130 => 0.10263557457851
131 => 0.099268383501255
201 => 0.10087538357293
202 => 0.10057862933793
203 => 0.1095059761068
204 => 0.10936658786617
205 => 0.10943330564069
206 => 0.10624869243019
207 => 0.11132186774619
208 => 0.11382109633234
209 => 0.11335855563586
210 => 0.11347496716411
211 => 0.11147463141883
212 => 0.10945267326323
213 => 0.10721001049153
214 => 0.11137660071984
215 => 0.11091334701252
216 => 0.11197588434369
217 => 0.11467821594077
218 => 0.1150761445336
219 => 0.11561096459776
220 => 0.11541926967584
221 => 0.11998622042764
222 => 0.11943313255788
223 => 0.12076591518975
224 => 0.11802428019754
225 => 0.11492185996547
226 => 0.11551152862583
227 => 0.11545473879202
228 => 0.11473173902731
229 => 0.11407904716722
301 => 0.11299249911498
302 => 0.11643049793114
303 => 0.11629092145773
304 => 0.11855050232238
305 => 0.11815109945616
306 => 0.11548378936504
307 => 0.11557905286676
308 => 0.11621974569789
309 => 0.11843719090172
310 => 0.1190954796134
311 => 0.11879053405388
312 => 0.11951231757422
313 => 0.12008278583921
314 => 0.11958395960522
315 => 0.12664628714709
316 => 0.12371351636795
317 => 0.12514292843962
318 => 0.12548383479612
319 => 0.12461061033242
320 => 0.12479998145077
321 => 0.12508682709454
322 => 0.12682849767335
323 => 0.13139914522858
324 => 0.13342345391735
325 => 0.13951368648513
326 => 0.13325536326048
327 => 0.13288402025985
328 => 0.13398105505271
329 => 0.13755666628658
330 => 0.14045436335155
331 => 0.14141569664016
401 => 0.14154275270413
402 => 0.14334627786178
403 => 0.14438002484839
404 => 0.14312728247022
405 => 0.14206571447232
406 => 0.13826330967048
407 => 0.1387034483799
408 => 0.14173556762322
409 => 0.14601861464535
410 => 0.14969391456542
411 => 0.14840695263055
412 => 0.15822556374012
413 => 0.1591990389262
414 => 0.15906453613171
415 => 0.16128225747814
416 => 0.15688053223657
417 => 0.15499870941639
418 => 0.14229523752277
419 => 0.14586439495699
420 => 0.1510523748969
421 => 0.15036572629793
422 => 0.14659807659047
423 => 0.14969105646527
424 => 0.14866842059223
425 => 0.14786182524997
426 => 0.15155699487908
427 => 0.14749400408267
428 => 0.15101184345568
429 => 0.14650017807241
430 => 0.14841283136426
501 => 0.14732711685118
502 => 0.14802970720131
503 => 0.14392237837072
504 => 0.14613859330793
505 => 0.14383017654309
506 => 0.14382908205298
507 => 0.14377812362495
508 => 0.1464939657117
509 => 0.14658252922465
510 => 0.14457551781913
511 => 0.14428627612019
512 => 0.1453557542789
513 => 0.14410367545182
514 => 0.14468951525452
515 => 0.14412141994264
516 => 0.14399352972202
517 => 0.14297447868537
518 => 0.14253544347939
519 => 0.1427076004962
520 => 0.14211993984481
521 => 0.14176585304573
522 => 0.14370768684838
523 => 0.14267024338098
524 => 0.14354868375797
525 => 0.14254759008037
526 => 0.13907736323808
527 => 0.13708159908409
528 => 0.1305266622692
529 => 0.13238563421853
530 => 0.13361813454418
531 => 0.1332107931939
601 => 0.13408592003447
602 => 0.134139645715
603 => 0.13385513305827
604 => 0.1335257038501
605 => 0.13336535593014
606 => 0.13456045795492
607 => 0.13525425490558
608 => 0.13374183244058
609 => 0.13338749301807
610 => 0.13491663563332
611 => 0.13584941174527
612 => 0.14273650647424
613 => 0.14222628825169
614 => 0.14350683586501
615 => 0.14336266585536
616 => 0.14470488376135
617 => 0.14689884277403
618 => 0.14243791066066
619 => 0.14321217422811
620 => 0.14302234268173
621 => 0.14509487372864
622 => 0.14510134394434
623 => 0.14385875805112
624 => 0.14453238402249
625 => 0.14415638448523
626 => 0.14483586646844
627 => 0.14221947397627
628 => 0.14540595760962
629 => 0.14721248849726
630 => 0.14723757218038
701 => 0.14809385348361
702 => 0.14896388488015
703 => 0.15063383438206
704 => 0.14891731089491
705 => 0.14582945224173
706 => 0.14605238566277
707 => 0.14424197526421
708 => 0.14427240859009
709 => 0.14410995311145
710 => 0.14459749423191
711 => 0.14232646183539
712 => 0.14285946859958
713 => 0.14211325600843
714 => 0.14321055210767
715 => 0.14203004289443
716 => 0.14302225113921
717 => 0.14345045532543
718 => 0.14503053799116
719 => 0.14179666339998
720 => 0.13520257419449
721 => 0.13658873169109
722 => 0.1345384958733
723 => 0.13472825300403
724 => 0.13511159260774
725 => 0.13386906353121
726 => 0.13410609892242
727 => 0.13409763035025
728 => 0.13402465277042
729 => 0.13370142296886
730 => 0.13323267580754
731 => 0.13510002022548
801 => 0.13541731842968
802 => 0.13612263303269
803 => 0.13822117087178
804 => 0.13801147745473
805 => 0.13835349611804
806 => 0.13760687129638
807 => 0.13476288678814
808 => 0.13491732882976
809 => 0.13299143409599
810 => 0.13607338357435
811 => 0.13534353725813
812 => 0.13487300059013
813 => 0.13474461030077
814 => 0.13684835000926
815 => 0.13747782190213
816 => 0.13708557726078
817 => 0.13628107205778
818 => 0.13782595987815
819 => 0.1382393066853
820 => 0.13833183979178
821 => 0.14106908480662
822 => 0.13848482138111
823 => 0.139106879273
824 => 0.14395999737126
825 => 0.13955888894065
826 => 0.14189025423278
827 => 0.14177614603357
828 => 0.14296879362792
829 => 0.14167831412006
830 => 0.14169431116018
831 => 0.14275330142702
901 => 0.14126614058715
902 => 0.1408978986492
903 => 0.14038917504934
904 => 0.14149995441837
905 => 0.14216581641387
906 => 0.14753217507589
907 => 0.15099908750725
908 => 0.15084857969527
909 => 0.15222393935791
910 => 0.15160432723304
911 => 0.14960343623641
912 => 0.153018713185
913 => 0.15193797665721
914 => 0.15202707126346
915 => 0.15202375515777
916 => 0.15274235046912
917 => 0.15223315983274
918 => 0.15122949282107
919 => 0.15189577382259
920 => 0.15387439019729
921 => 0.16001607613573
922 => 0.16345304495339
923 => 0.15980916629732
924 => 0.1623226650008
925 => 0.16081546142987
926 => 0.16054155770561
927 => 0.16212022063749
928 => 0.16370164680985
929 => 0.16360091679937
930 => 0.16245288260536
1001 => 0.16180438721946
1002 => 0.16671501154341
1003 => 0.17033307589499
1004 => 0.17008634816202
1005 => 0.17117532413518
1006 => 0.17437259127313
1007 => 0.17466490931077
1008 => 0.17462808395688
1009 => 0.17390354320036
1010 => 0.17705166791527
1011 => 0.17967788893844
1012 => 0.17373583294922
1013 => 0.17599849008269
1014 => 0.17701426976817
1015 => 0.17850573571469
1016 => 0.18102208876521
1017 => 0.18375551560774
1018 => 0.18414205213378
1019 => 0.18386778597108
1020 => 0.18206501748997
1021 => 0.18505596575764
1022 => 0.18680799310647
1023 => 0.18785128529827
1024 => 0.1904969007094
1025 => 0.17702054287769
1026 => 0.16748130698597
1027 => 0.16599161755324
1028 => 0.16902095959384
1029 => 0.16981977293139
1030 => 0.16949777227665
1031 => 0.15876049501113
1101 => 0.16593508801057
1102 => 0.17365434682104
1103 => 0.17395087498963
1104 => 0.17781529735224
1105 => 0.17907371168153
1106 => 0.18218507820486
1107 => 0.18199046138169
1108 => 0.18274802961747
1109 => 0.18257387779931
1110 => 0.18833702910825
1111 => 0.19469464083826
1112 => 0.19447449696002
1113 => 0.19356051505398
1114 => 0.19491793404152
1115 => 0.20147967066997
1116 => 0.20087557111091
1117 => 0.20146240237546
1118 => 0.20919905966367
1119 => 0.21925781466502
1120 => 0.2145845130844
1121 => 0.22472423280803
1122 => 0.23110664889061
1123 => 0.24214437755128
1124 => 0.24076239956101
1125 => 0.24505930633001
1126 => 0.2382883705309
1127 => 0.22274093330424
1128 => 0.22028049184993
1129 => 0.22520635794977
1130 => 0.23731611909725
1201 => 0.22482497847625
1202 => 0.22735191995539
1203 => 0.2266241606394
1204 => 0.22658538143823
1205 => 0.22806542582051
1206 => 0.22591854425009
1207 => 0.21717176251554
1208 => 0.22118036103937
1209 => 0.21963244864061
1210 => 0.22134997285155
1211 => 0.23061874265714
1212 => 0.22652079858622
1213 => 0.22220394739744
1214 => 0.22761823677413
1215 => 0.23451248770235
1216 => 0.23408105786942
1217 => 0.23324390366986
1218 => 0.23796289806081
1219 => 0.24575729425904
1220 => 0.247864088231
1221 => 0.24941928046959
1222 => 0.24963371520411
1223 => 0.25184252624004
1224 => 0.23996519260775
1225 => 0.25881482611376
1226 => 0.26206963710963
1227 => 0.2614578675405
1228 => 0.26507545297903
1229 => 0.26401106757373
1230 => 0.26246894011841
1231 => 0.26820358252096
]
'min_raw' => 0.098862185444376
'max_raw' => 0.26820358252096
'avg_raw' => 0.18353288398267
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.098862'
'max' => '$0.2682035'
'avg' => '$0.183532'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.034095012777028
'max_diff' => 0.12361543207345
'year' => 2032
]
7 => [
'items' => [
101 => 0.26162927776821
102 => 0.25229787985364
103 => 0.24717849040358
104 => 0.25392011540078
105 => 0.25803699053629
106 => 0.26075798311842
107 => 0.2615813538297
108 => 0.24088719620719
109 => 0.22973419299926
110 => 0.2368831401861
111 => 0.24560534914803
112 => 0.23991674029657
113 => 0.24013972299359
114 => 0.23202926171151
115 => 0.2463229450068
116 => 0.24424047557947
117 => 0.25504433065225
118 => 0.25246590393278
119 => 0.26127602834139
120 => 0.25895602732518
121 => 0.26858622183396
122 => 0.27242796715062
123 => 0.2788788554572
124 => 0.28362415515536
125 => 0.28641068590124
126 => 0.28624339304727
127 => 0.29728501610655
128 => 0.29077415675342
129 => 0.28259498291416
130 => 0.28244704746437
131 => 0.28668315749552
201 => 0.29556088200076
202 => 0.29786274679933
203 => 0.29914917519556
204 => 0.29717896532584
205 => 0.29011189413551
206 => 0.28706036862639
207 => 0.28966035677136
208 => 0.28648079468959
209 => 0.29196961087029
210 => 0.29950692783426
211 => 0.29795050168698
212 => 0.30315340094489
213 => 0.30853785431586
214 => 0.31623786446727
215 => 0.3182509322514
216 => 0.32157845674846
217 => 0.32500357249079
218 => 0.32610362735776
219 => 0.3282039734258
220 => 0.32819290356527
221 => 0.3345224378109
222 => 0.34150411009319
223 => 0.34413952975367
224 => 0.35019953194505
225 => 0.33982199056011
226 => 0.34769347490919
227 => 0.3547937508281
228 => 0.34632850916756
301 => 0.35799587264827
302 => 0.35844888993341
303 => 0.36528891309216
304 => 0.35835523923089
305 => 0.35423804582514
306 => 0.36612422891831
307 => 0.37187557850584
308 => 0.37014322520405
309 => 0.35695993104052
310 => 0.34928668837926
311 => 0.32920433227678
312 => 0.35299275057339
313 => 0.364579395208
314 => 0.35692992443005
315 => 0.3607878725473
316 => 0.38183558653118
317 => 0.38984919327768
318 => 0.38818241909375
319 => 0.38846407649339
320 => 0.39278807323655
321 => 0.41196305606423
322 => 0.40047296188126
323 => 0.40925670835852
324 => 0.41391557581791
325 => 0.41824299155569
326 => 0.40761622619749
327 => 0.39379096060465
328 => 0.38941191864624
329 => 0.35616933531577
330 => 0.3544389144882
331 => 0.35346757684056
401 => 0.34734343037067
402 => 0.34253152879023
403 => 0.33870492599901
404 => 0.32866277755453
405 => 0.33205170786418
406 => 0.31604661920295
407 => 0.32628610774289
408 => 0.30074159978319
409 => 0.32201582507118
410 => 0.31043723146726
411 => 0.31821194566702
412 => 0.3181848204216
413 => 0.30386910660446
414 => 0.29561210163606
415 => 0.30087378656937
416 => 0.30651473049094
417 => 0.3074299546638
418 => 0.31474358570182
419 => 0.31678466291856
420 => 0.31060010366306
421 => 0.30021224663382
422 => 0.30262510889992
423 => 0.29556320505925
424 => 0.28318749021069
425 => 0.29207594467418
426 => 0.29511085382577
427 => 0.29645124260207
428 => 0.28428114840896
429 => 0.28045704058789
430 => 0.27842111767132
501 => 0.29864124029899
502 => 0.29974894426088
503 => 0.29408177417829
504 => 0.3196979203347
505 => 0.3139001975264
506 => 0.32037767437984
507 => 0.3024061669397
508 => 0.30309270272576
509 => 0.29458470309741
510 => 0.29934861438454
511 => 0.29598163543482
512 => 0.29896373743043
513 => 0.30075119707093
514 => 0.30925780062026
515 => 0.32211295681937
516 => 0.30798719772022
517 => 0.30183240219612
518 => 0.30565080272339
519 => 0.31581970651043
520 => 0.33122611628442
521 => 0.32210521161533
522 => 0.32615291422447
523 => 0.32703715717481
524 => 0.32031173974606
525 => 0.33147409201805
526 => 0.3374560872834
527 => 0.34359237662614
528 => 0.34892034472752
529 => 0.34114140772276
530 => 0.34946598538467
531 => 0.34275784527494
601 => 0.33673995012174
602 => 0.3367490767846
603 => 0.33297396324758
604 => 0.32565920507467
605 => 0.32431025143906
606 => 0.33132767860556
607 => 0.33695499064027
608 => 0.33741848301245
609 => 0.3405340520966
610 => 0.34237781378768
611 => 0.36044918483278
612 => 0.36771763976134
613 => 0.37660536886317
614 => 0.3800676402333
615 => 0.39048783576441
616 => 0.38207268158614
617 => 0.38025201004586
618 => 0.35497602410739
619 => 0.35911496538882
620 => 0.36574180972884
621 => 0.35508529832973
622 => 0.36184440202166
623 => 0.36317879226784
624 => 0.35472319415016
625 => 0.35923969444964
626 => 0.34724520870323
627 => 0.3223744038315
628 => 0.33150178033357
629 => 0.33822260168081
630 => 0.32863116094701
701 => 0.34582344722233
702 => 0.33578006850111
703 => 0.33259679961368
704 => 0.32017773276653
705 => 0.32603905426467
706 => 0.33396657551693
707 => 0.3290682890563
708 => 0.33923296894353
709 => 0.35362886648496
710 => 0.36388824036351
711 => 0.36467582769875
712 => 0.35807973761951
713 => 0.36865001406718
714 => 0.36872700699126
715 => 0.35680369197745
716 => 0.34950072792079
717 => 0.34784147912155
718 => 0.35198660793694
719 => 0.35701955955182
720 => 0.36495512148581
721 => 0.36975041536375
722 => 0.38225399857006
723 => 0.38563710967986
724 => 0.38935412309433
725 => 0.39432119930055
726 => 0.40028544781832
727 => 0.3872360116063
728 => 0.3877544900342
729 => 0.37560303571531
730 => 0.36261746408075
731 => 0.37247189427703
801 => 0.38535525087874
802 => 0.38239979463946
803 => 0.38206724543805
804 => 0.38262650095337
805 => 0.38039818346513
806 => 0.37031958605113
807 => 0.36525817752518
808 => 0.37178868582669
809 => 0.37525936034945
810 => 0.38064207385964
811 => 0.37997854080421
812 => 0.39384383274521
813 => 0.39923146592882
814 => 0.39785307881063
815 => 0.39810673521312
816 => 0.40786078774514
817 => 0.41870930023465
818 => 0.42887036376839
819 => 0.43920663402274
820 => 0.42674585679963
821 => 0.42041904259963
822 => 0.4269466998855
823 => 0.42348303304619
824 => 0.44338629009521
825 => 0.4447643484298
826 => 0.46466616624679
827 => 0.4835553612195
828 => 0.47169139629222
829 => 0.48287858085393
830 => 0.49497843306196
831 => 0.51832101110152
901 => 0.51046005201959
902 => 0.50443868055977
903 => 0.49874851362529
904 => 0.51058884772738
905 => 0.52582124839575
906 => 0.5291021616056
907 => 0.53441849441086
908 => 0.52882902051637
909 => 0.53556092616193
910 => 0.55932751123997
911 => 0.55290557015844
912 => 0.54378538144411
913 => 0.56254681779613
914 => 0.56933650867869
915 => 0.61699011508121
916 => 0.67715476163669
917 => 0.65224620290035
918 => 0.63678465669854
919 => 0.64041848680875
920 => 0.662388579029
921 => 0.66944467535427
922 => 0.65026377315992
923 => 0.65703879208029
924 => 0.69436981243671
925 => 0.7143967071354
926 => 0.68719749416377
927 => 0.61215594431149
928 => 0.54296420823653
929 => 0.56131697238809
930 => 0.55923633848588
1001 => 0.59934386271922
1002 => 0.55275240898752
1003 => 0.55353688957792
1004 => 0.59447379493779
1005 => 0.58355253042401
1006 => 0.56586148060156
1007 => 0.54309337247832
1008 => 0.50100441881742
1009 => 0.46372505882266
1010 => 0.53683846869625
1011 => 0.5336856855144
1012 => 0.52911998825078
1013 => 0.53928045345092
1014 => 0.58861678836446
1015 => 0.58747942615857
1016 => 0.580244108092
1017 => 0.58573203307633
1018 => 0.56489942081808
1019 => 0.57026845934679
1020 => 0.54295324791202
1021 => 0.55530086426453
1022 => 0.56582352355409
1023 => 0.5679361031971
1024 => 0.5726958530038
1025 => 0.53202431204113
1026 => 0.55028463987966
1027 => 0.56101087172346
1028 => 0.51254936602952
1029 => 0.56005294357151
1030 => 0.53131631099898
1031 => 0.52156266629413
1101 => 0.53469466394424
1102 => 0.52957711168871
1103 => 0.52517734077215
1104 => 0.52272219300305
1105 => 0.5323648827516
1106 => 0.53191503974932
1107 => 0.51613772775527
1108 => 0.49555686742453
1109 => 0.50246447969524
1110 => 0.49995487939808
1111 => 0.4908597641763
1112 => 0.49698877368738
1113 => 0.46999971762131
1114 => 0.4235664494287
1115 => 0.45424168868621
1116 => 0.45306072534303
1117 => 0.45246523007298
1118 => 0.47551682457366
1119 => 0.47330094565319
1120 => 0.46927910371458
1121 => 0.49078589989513
1122 => 0.482935629982
1123 => 0.50712831209805
1124 => 0.52306317722426
1125 => 0.51902157998937
1126 => 0.53400839766045
1127 => 0.50262361713054
1128 => 0.51304838228374
1129 => 0.51519691193371
1130 => 0.49052050936868
1201 => 0.47366349084881
1202 => 0.47253931989762
1203 => 0.44331157282442
1204 => 0.45892479939279
1205 => 0.47266379265374
1206 => 0.46608388107069
1207 => 0.46400087763277
1208 => 0.47464249044881
1209 => 0.47546943490386
1210 => 0.45661501369293
1211 => 0.46053544490455
1212 => 0.47688429477447
1213 => 0.46012349583466
1214 => 0.42756000135556
1215 => 0.41948380449921
1216 => 0.41840629096474
1217 => 0.39650300455907
1218 => 0.42002349459099
1219 => 0.40975617038211
1220 => 0.44219052453653
1221 => 0.42366419539246
1222 => 0.42286556237116
1223 => 0.42165831142548
1224 => 0.40280524800275
1225 => 0.40693287071765
1226 => 0.42065371727664
1227 => 0.42554946990528
1228 => 0.4250388027964
1229 => 0.42058647764312
1230 => 0.42262472929869
1231 => 0.41605881054212
]
'min_raw' => 0.22973419299926
'max_raw' => 0.7143967071354
'avg_raw' => 0.47206545006733
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.229734'
'max' => '$0.714396'
'avg' => '$0.472065'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.13087200755488
'max_diff' => 0.44619312461444
'year' => 2033
]
8 => [
'items' => [
101 => 0.4137402479714
102 => 0.40642222672731
103 => 0.39566675715346
104 => 0.39716237116483
105 => 0.37585297161734
106 => 0.36424247976844
107 => 0.36102884864848
108 => 0.35673144680799
109 => 0.36151425162131
110 => 0.37579260476581
111 => 0.35856988155195
112 => 0.32904273063535
113 => 0.33081736271725
114 => 0.3348044341123
115 => 0.32737455294475
116 => 0.32034279396232
117 => 0.3264563378929
118 => 0.31394529479998
119 => 0.33631633389786
120 => 0.33571125998438
121 => 0.34404979994429
122 => 0.34926406010528
123 => 0.33724687857096
124 => 0.33422458991299
125 => 0.33594622288793
126 => 0.30749146479701
127 => 0.34172443914426
128 => 0.34202048732797
129 => 0.33948554304298
130 => 0.35771354505839
131 => 0.39618031476729
201 => 0.38170756868058
202 => 0.37610328395473
203 => 0.3654495345942
204 => 0.37964502306007
205 => 0.37855503103001
206 => 0.37362567370286
207 => 0.37064438301088
208 => 0.37613750252222
209 => 0.36996372471376
210 => 0.36885474457529
211 => 0.36213553151846
212 => 0.35973707816188
213 => 0.35796135878185
214 => 0.35600646622303
215 => 0.36031847207893
216 => 0.35054689951784
217 => 0.33876334092824
218 => 0.33778366553139
219 => 0.34048863543604
220 => 0.33929188761456
221 => 0.33777793596324
222 => 0.33488738996067
223 => 0.33402982670846
224 => 0.33681649124762
225 => 0.33367050945554
226 => 0.33831257696025
227 => 0.33705019145628
228 => 0.32999860864993
301 => 0.32120972564288
302 => 0.32113148614882
303 => 0.3192379357216
304 => 0.31682621455534
305 => 0.31615532889959
306 => 0.32594147227513
307 => 0.34619849618787
308 => 0.3422215576843
309 => 0.34509530332618
310 => 0.35923128763363
311 => 0.3637246919611
312 => 0.36053538000158
313 => 0.3561696530832
314 => 0.35636172291117
315 => 0.37128073338669
316 => 0.37221121377002
317 => 0.37456223751434
318 => 0.37758396742502
319 => 0.3610499936717
320 => 0.35558297423426
321 => 0.35299239712611
322 => 0.34501442231253
323 => 0.35361798416911
324 => 0.34860505711653
325 => 0.3492814722419
326 => 0.34884095600413
327 => 0.34908150765753
328 => 0.33631008073651
329 => 0.34096331746009
330 => 0.33322640889703
331 => 0.32286755683984
401 => 0.32283283033546
402 => 0.32536814470108
403 => 0.32386004050955
404 => 0.31980177090704
405 => 0.32037822894958
406 => 0.31532784991923
407 => 0.32099143640393
408 => 0.32115384779902
409 => 0.31897305850478
410 => 0.32769859490878
411 => 0.33127345429286
412 => 0.32983801206235
413 => 0.33117273983937
414 => 0.34238681743392
415 => 0.34421520138634
416 => 0.34502724876174
417 => 0.34393921285437
418 => 0.33137771259182
419 => 0.33193486854409
420 => 0.32784682784513
421 => 0.32439286424163
422 => 0.32453100467212
423 => 0.32630679094816
424 => 0.33406175376411
425 => 0.35038161583025
426 => 0.351000942666
427 => 0.35175158485796
428 => 0.34869834582071
429 => 0.34777745971151
430 => 0.34899234619041
501 => 0.35512122832487
502 => 0.37088637714997
503 => 0.36531392063629
504 => 0.36078342675022
505 => 0.36475789130069
506 => 0.36414605363603
507 => 0.35898152801462
508 => 0.35883657698142
509 => 0.34892420111522
510 => 0.34525982145136
511 => 0.34219759153018
512 => 0.33885371639779
513 => 0.33687135513159
514 => 0.33991716300355
515 => 0.3406137753008
516 => 0.33395406315716
517 => 0.33304636900047
518 => 0.33848483369684
519 => 0.33609156815036
520 => 0.33855310111504
521 => 0.33912419787748
522 => 0.33903223814526
523 => 0.33653339404994
524 => 0.33812608275969
525 => 0.33435889915778
526 => 0.33026265280338
527 => 0.32764950283444
528 => 0.32536918290249
529 => 0.32663443693371
530 => 0.32212403733868
531 => 0.32068106973183
601 => 0.33758651566146
602 => 0.35007475033385
603 => 0.34989316645583
604 => 0.34878782129796
605 => 0.34714550260445
606 => 0.35500108248307
607 => 0.35226435553064
608 => 0.35425555304972
609 => 0.35476239638863
610 => 0.35629645852404
611 => 0.35684475388035
612 => 0.35518742449796
613 => 0.34962522466492
614 => 0.33576475151906
615 => 0.32931266385403
616 => 0.32718336745655
617 => 0.32726076333649
618 => 0.32512583945735
619 => 0.32575467022033
620 => 0.3249071577804
621 => 0.32330217425444
622 => 0.32653533372371
623 => 0.32690792523357
624 => 0.32615326718007
625 => 0.32633101647069
626 => 0.32008277010633
627 => 0.32055781070693
628 => 0.31791272427753
629 => 0.317416802459
630 => 0.31073025429949
701 => 0.29888406500424
702 => 0.30544800381123
703 => 0.29751968876186
704 => 0.29451711571909
705 => 0.30873082950766
706 => 0.30730416687034
707 => 0.30486234059059
708 => 0.30125037060165
709 => 0.29991065579777
710 => 0.29177097275154
711 => 0.29129003685365
712 => 0.29532428356129
713 => 0.29346261751567
714 => 0.29084813331955
715 => 0.28137873658722
716 => 0.27073199945057
717 => 0.27105335752172
718 => 0.27443988651531
719 => 0.2842866762998
720 => 0.28043936517981
721 => 0.27764809681944
722 => 0.27712537616076
723 => 0.28366831959394
724 => 0.29292795534091
725 => 0.29727236926071
726 => 0.292967187008
727 => 0.28802162544355
728 => 0.28832263886045
729 => 0.29032514626672
730 => 0.29053558148118
731 => 0.28731652931467
801 => 0.28822267364384
802 => 0.28684615754826
803 => 0.27839848081055
804 => 0.27824568912624
805 => 0.27617249301761
806 => 0.27610971746339
807 => 0.27258269369961
808 => 0.27208923869389
809 => 0.26508611893588
810 => 0.269695593568
811 => 0.26660379999305
812 => 0.26194373779523
813 => 0.26114034131584
814 => 0.26111619024754
815 => 0.26590103215387
816 => 0.26963967990446
817 => 0.266657583066
818 => 0.2659786174214
819 => 0.27322819418673
820 => 0.27230561946198
821 => 0.27150667570032
822 => 0.29209885652034
823 => 0.27579853857339
824 => 0.2686906695589
825 => 0.25989333190575
826 => 0.26275778940564
827 => 0.2633613726885
828 => 0.24220536147198
829 => 0.23362237035625
830 => 0.23067701124853
831 => 0.22898191544077
901 => 0.22975439188604
902 => 0.22202869319743
903 => 0.22722049048744
904 => 0.22053068846016
905 => 0.21940912137979
906 => 0.231371316112
907 => 0.23303578562686
908 => 0.22593464156633
909 => 0.23049472562399
910 => 0.22884117575477
911 => 0.22064536591502
912 => 0.22033234626344
913 => 0.2162199769825
914 => 0.20978491536943
915 => 0.2068439195365
916 => 0.20531222337182
917 => 0.20594423106153
918 => 0.20562466863386
919 => 0.20353930763294
920 => 0.20574419908539
921 => 0.20011161254842
922 => 0.19786867120456
923 => 0.19685558663538
924 => 0.19185634188423
925 => 0.19981236345754
926 => 0.20137979993481
927 => 0.20295032474613
928 => 0.21662067098591
929 => 0.21593773911977
930 => 0.22211111058839
1001 => 0.22187122472522
1002 => 0.22011047918038
1003 => 0.2126821833553
1004 => 0.21564296967454
1005 => 0.20653012959228
1006 => 0.2133580889948
1007 => 0.21024209346589
1008 => 0.21230456777207
1009 => 0.20859605300375
1010 => 0.21064849819736
1011 => 0.20175149727162
1012 => 0.19344360299135
1013 => 0.19678694217229
1014 => 0.20042153421918
1015 => 0.20830225585366
1016 => 0.2036085630627
1017 => 0.2052965924785
1018 => 0.19964197650828
1019 => 0.1879748886005
1020 => 0.18804092305102
1021 => 0.18624619575773
1022 => 0.18469528934186
1023 => 0.20414769014208
1024 => 0.20172847660562
1025 => 0.19787377645412
1026 => 0.2030334457866
1027 => 0.20439774425307
1028 => 0.20443658391243
1029 => 0.20820094546707
1030 => 0.21020998590358
1031 => 0.21056408798819
1101 => 0.21648739222883
1102 => 0.21847280568002
1103 => 0.22665044269924
1104 => 0.21003953285893
1105 => 0.20969744210188
1106 => 0.20310605291527
1107 => 0.19892568968738
1108 => 0.20339228596194
1109 => 0.20734908051
1110 => 0.2032290015514
1111 => 0.20376699688378
1112 => 0.19823612750467
1113 => 0.20021315305611
1114 => 0.20191603379511
1115 => 0.20097580314174
1116 => 0.19956823234596
1117 => 0.20702466847975
1118 => 0.20660394713107
1119 => 0.21354755188159
1120 => 0.21896058832655
1121 => 0.22866171733194
1122 => 0.21853808348353
1123 => 0.21816913802829
1124 => 0.22177563903393
1125 => 0.21847225354351
1126 => 0.22055987914447
1127 => 0.22832536857305
1128 => 0.22848944112798
1129 => 0.22574101443739
1130 => 0.22557377242349
1201 => 0.22610163783391
1202 => 0.22919336203033
1203 => 0.22811301859701
1204 => 0.229363219369
1205 => 0.23092661457811
1206 => 0.23739348002886
1207 => 0.23895261939557
1208 => 0.23516471905555
1209 => 0.23550672404493
1210 => 0.23408994533758
1211 => 0.23272135485846
1212 => 0.23579774638893
1213 => 0.2414199123775
1214 => 0.24138493717467
1215 => 0.24268917040473
1216 => 0.2435016969022
1217 => 0.2400137383693
1218 => 0.23774320562016
1219 => 0.23861387235393
1220 => 0.24000608742189
1221 => 0.2381623957712
1222 => 0.22678227682213
1223 => 0.23023427794646
1224 => 0.22965969616514
1225 => 0.22884142183701
1226 => 0.23231243566106
1227 => 0.23197764791014
1228 => 0.22194945499084
1229 => 0.22259142736514
1230 => 0.2219884954572
1231 => 0.22393669180002
]
'min_raw' => 0.18469528934186
'max_raw' => 0.4137402479714
'avg_raw' => 0.29921776865663
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.184695'
'max' => '$0.41374'
'avg' => '$0.299217'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.045038903657395
'max_diff' => -0.300656459164
'year' => 2034
]
9 => [
'items' => [
101 => 0.21836704454756
102 => 0.22008023053027
103 => 0.2211547247185
104 => 0.22178761005003
105 => 0.22407402584102
106 => 0.22380574133766
107 => 0.22405734889961
108 => 0.22744749992626
109 => 0.24459372045976
110 => 0.24552695141239
111 => 0.24093138088843
112 => 0.24276722066913
113 => 0.23924280974421
114 => 0.24160877040961
115 => 0.243227500608
116 => 0.23591277010543
117 => 0.23547963923727
118 => 0.23194068181476
119 => 0.23384231707682
120 => 0.23081667864247
121 => 0.23155906448192
122 => 0.22948328895478
123 => 0.23321927162085
124 => 0.23739668075453
125 => 0.23845205927258
126 => 0.2356758127606
127 => 0.23366562732237
128 => 0.23013640388908
129 => 0.23600558111251
130 => 0.23772190739258
131 => 0.23599656598123
201 => 0.23559676667676
202 => 0.23483914771722
203 => 0.23575749912052
204 => 0.23771255991106
205 => 0.23679058934655
206 => 0.23739956714744
207 => 0.23507877174562
208 => 0.2400148930287
209 => 0.24785464156852
210 => 0.247879847642
211 => 0.24695787210772
212 => 0.24658061958334
213 => 0.24752662243166
214 => 0.24803979016981
215 => 0.25109898991402
216 => 0.25438163312346
217 => 0.26970029665249
218 => 0.26539887723216
219 => 0.27899050682648
220 => 0.28973972118337
221 => 0.29296294056282
222 => 0.28999773039791
223 => 0.27985390660127
224 => 0.27935620221214
225 => 0.29451535757626
226 => 0.2902322018526
227 => 0.28972273410816
228 => 0.28430285806664
301 => 0.28750667607188
302 => 0.28680595407696
303 => 0.28569983012748
304 => 0.29181249170159
305 => 0.30325484848726
306 => 0.30147144987648
307 => 0.300140225543
308 => 0.2943071880273
309 => 0.29781997946785
310 => 0.29656914171896
311 => 0.30194353448944
312 => 0.29875986326958
313 => 0.29019975273539
314 => 0.29156297855245
315 => 0.29135692971263
316 => 0.29559740023534
317 => 0.29432451623937
318 => 0.29110837868336
319 => 0.30321573975571
320 => 0.30242955507236
321 => 0.30354418520652
322 => 0.30403487986266
323 => 0.31140441719176
324 => 0.31442348083661
325 => 0.31510886114014
326 => 0.31797673809997
327 => 0.3150375057488
328 => 0.32679653079065
329 => 0.33461559628535
330 => 0.34369784322287
331 => 0.35696944707644
401 => 0.36195969289457
402 => 0.36105824965349
403 => 0.37112062822853
404 => 0.38920249885379
405 => 0.36471311268732
406 => 0.39050049578549
407 => 0.38233650802626
408 => 0.362979839913
409 => 0.36173349868664
410 => 0.37484205906847
411 => 0.4039155843432
412 => 0.39663299601107
413 => 0.40392749604879
414 => 0.39541807428461
415 => 0.39499550977098
416 => 0.40351421242709
417 => 0.42341862551341
418 => 0.41396278496187
419 => 0.40040551886401
420 => 0.41041599317624
421 => 0.40174399390132
422 => 0.38220355239516
423 => 0.39662742715303
424 => 0.38698259287074
425 => 0.3897974682619
426 => 0.41006947536243
427 => 0.40763029383502
428 => 0.41078682059362
429 => 0.40521563348538
430 => 0.40001126623071
501 => 0.39029692826849
502 => 0.38742099170894
503 => 0.38821579710864
504 => 0.38742059784286
505 => 0.38198551503237
506 => 0.38081180941692
507 => 0.37885558196996
508 => 0.37946189865479
509 => 0.37578361873996
510 => 0.38272529291064
511 => 0.38401372880655
512 => 0.38906530038038
513 => 0.38958977129912
514 => 0.40365832622764
515 => 0.39590960258547
516 => 0.40110811539725
517 => 0.40064311148107
518 => 0.36339935760557
519 => 0.36853121828519
520 => 0.37651478303608
521 => 0.37291819793727
522 => 0.36783346807885
523 => 0.36372727609222
524 => 0.35750597535277
525 => 0.36626233667404
526 => 0.3777760206763
527 => 0.38988177732589
528 => 0.40442605073978
529 => 0.40117993822781
530 => 0.38960988225121
531 => 0.39012890651039
601 => 0.39333731025211
602 => 0.38918213589236
603 => 0.38795669385503
604 => 0.39316895333413
605 => 0.39320484730055
606 => 0.38842381703006
607 => 0.3831105768037
608 => 0.38308831413315
609 => 0.38214287435469
610 => 0.39558626592089
611 => 0.40297877200212
612 => 0.40382631091071
613 => 0.40292172588073
614 => 0.40326986475707
615 => 0.39896832835117
616 => 0.40880036499408
617 => 0.41782321410525
618 => 0.4154048977984
619 => 0.41177949787051
620 => 0.40889169220503
621 => 0.4147246225594
622 => 0.4144648913526
623 => 0.41774440738963
624 => 0.41759562959879
625 => 0.41649285170437
626 => 0.41540493718207
627 => 0.4197183952907
628 => 0.41847618862744
629 => 0.41723205247411
630 => 0.41473674695091
701 => 0.41507590041415
702 => 0.41145112646267
703 => 0.40977414017435
704 => 0.38455629005068
705 => 0.37781725648061
706 => 0.37993749362743
707 => 0.3806355307481
708 => 0.37770269470209
709 => 0.38190762820829
710 => 0.38125229377548
711 => 0.38380181669574
712 => 0.38220898546258
713 => 0.38227435581199
714 => 0.38695853284129
715 => 0.38831836936081
716 => 0.38762674553176
717 => 0.38811113515415
718 => 0.3992736895541
719 => 0.39768673127683
720 => 0.39684369132127
721 => 0.3970772191504
722 => 0.39992949112745
723 => 0.40072797155275
724 => 0.39734475388254
725 => 0.39894029889396
726 => 0.40573392704778
727 => 0.40811131241556
728 => 0.41569878529982
729 => 0.41247549196201
730 => 0.41839198638442
731 => 0.43657727315734
801 => 0.45110493855767
802 => 0.43774469707436
803 => 0.46442290449504
804 => 0.4851957157336
805 => 0.48439842063934
806 => 0.48077620051612
807 => 0.45712690719477
808 => 0.43536447488937
809 => 0.45356967359453
810 => 0.45361608238996
811 => 0.45205223967579
812 => 0.44233934688755
813 => 0.45171425206068
814 => 0.45245839798867
815 => 0.45204187415337
816 => 0.44459502202571
817 => 0.43322505523509
818 => 0.43544671953012
819 => 0.43908585096611
820 => 0.43219621595544
821 => 0.42999456011183
822 => 0.43408785720727
823 => 0.4472773133211
824 => 0.44478392304409
825 => 0.44471881054738
826 => 0.45538659151443
827 => 0.44775076259324
828 => 0.43547474183164
829 => 0.43237488468851
830 => 0.42137248014439
831 => 0.42897188015223
901 => 0.42924536902956
902 => 0.42508325530925
903 => 0.43581247442132
904 => 0.43571360277836
905 => 0.44589939949175
906 => 0.46537081719722
907 => 0.45961216085144
908 => 0.45291547006132
909 => 0.4536435860293
910 => 0.4616292210547
911 => 0.45680092382403
912 => 0.45853721317226
913 => 0.46162659297282
914 => 0.46349049251148
915 => 0.45337539956948
916 => 0.45101708754387
917 => 0.44619280879452
918 => 0.44493424451825
919 => 0.44886351889771
920 => 0.44782829392203
921 => 0.42922238334843
922 => 0.42727796217117
923 => 0.42733759479269
924 => 0.4224482552903
925 => 0.41499083897323
926 => 0.43458848379531
927 => 0.43301451864723
928 => 0.43127698293898
929 => 0.431489821149
930 => 0.43999649454045
1001 => 0.43506219437611
1002 => 0.44818084007892
1003 => 0.445484040905
1004 => 0.44271807900824
1005 => 0.44233573882084
1006 => 0.44127107947137
1007 => 0.43761996641972
1008 => 0.43321102801198
1009 => 0.43029986497948
1010 => 0.39692887987877
1011 => 0.40312234060337
1012 => 0.41024735261532
1013 => 0.41270687821015
1014 => 0.4084996894862
1015 => 0.43778609187366
1016 => 0.44313699980064
1017 => 0.42692875065872
1018 => 0.42389684902272
1019 => 0.43798486284016
1020 => 0.4294880683186
1021 => 0.43331417437139
1022 => 0.42504422585337
1023 => 0.44184812277391
1024 => 0.4417201052336
1025 => 0.43518300979829
1026 => 0.44070811809612
1027 => 0.43974799456313
1028 => 0.43236762991681
1029 => 0.44208209349731
1030 => 0.44208691175005
1031 => 0.43579509952227
1101 => 0.42844764029503
1102 => 0.42713408812444
1103 => 0.4261445030148
1104 => 0.43307079709709
1105 => 0.43928089071331
1106 => 0.45083633532033
1107 => 0.45374164864513
1108 => 0.46508127996947
1109 => 0.45832908163245
1110 => 0.46132224369965
1111 => 0.46457174453221
1112 => 0.46612967472777
1113 => 0.46359111107724
1114 => 0.48120622610241
1115 => 0.48269348152371
1116 => 0.48319214540176
1117 => 0.47725242772561
1118 => 0.48252828723027
1119 => 0.48005988728614
1120 => 0.48648197819951
1121 => 0.4874890440561
1122 => 0.48663609510297
1123 => 0.48695575370131
1124 => 0.47192436054656
1125 => 0.47114490351457
1126 => 0.46051695157564
1127 => 0.46484792054861
1128 => 0.45675138164239
1129 => 0.45931887753315
1130 => 0.46045060525779
1201 => 0.45985945491942
1202 => 0.46509278703621
1203 => 0.46064338563782
1204 => 0.44890068379816
1205 => 0.43715478266724
1206 => 0.43700732244655
1207 => 0.43391483401115
1208 => 0.43167953128987
1209 => 0.43211012989561
1210 => 0.43362761554611
1211 => 0.43159133226522
1212 => 0.43202587654539
1213 => 0.43924220694943
1214 => 0.44068939054745
1215 => 0.43577129523025
1216 => 0.41602443285393
1217 => 0.41117850329553
1218 => 0.41466166136315
1219 => 0.41299693615094
1220 => 0.33332076056308
1221 => 0.35203949616403
1222 => 0.34091745909815
1223 => 0.34604300547843
1224 => 0.33469028567169
1225 => 0.34010839861049
1226 => 0.3391078709885
1227 => 0.36920704390717
1228 => 0.3687370867221
1229 => 0.36896203035701
1230 => 0.35822488457522
1231 => 0.3753294493509
]
'min_raw' => 0.21836704454756
'max_raw' => 0.4874890440561
'avg_raw' => 0.35292804430183
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.218367'
'max' => '$0.487489'
'avg' => '$0.352928'
'bar_min_pct' => 61.631153054958
'bar_max_pct' => 60.119598047091
'min_diff' => 0.033671755205698
'max_diff' => 0.073748796084699
'year' => 2035
]
10 => [
'items' => [
101 => 0.38375577301966
102 => 0.38219628476791
103 => 0.38258877436302
104 => 0.37584450273881
105 => 0.36902732964858
106 => 0.3614660355361
107 => 0.37551398539289
108 => 0.37395209317532
109 => 0.37753451197135
110 => 0.38664561162168
111 => 0.38798725565489
112 => 0.38979043884114
113 => 0.38914412602819
114 => 0.40454191934218
115 => 0.40267714497394
116 => 0.40717071466919
117 => 0.39792710087811
118 => 0.38746707446163
119 => 0.38945518351938
120 => 0.38926371262975
121 => 0.38682606844478
122 => 0.38462547226902
123 => 0.38096209965051
124 => 0.39255355269261
125 => 0.39208296086758
126 => 0.39970129551167
127 => 0.39835468086277
128 => 0.38936165866494
129 => 0.38968284621206
130 => 0.39184298682396
131 => 0.39931925814577
201 => 0.40153872449745
202 => 0.40051057925291
203 => 0.40294412278504
204 => 0.40486749636927
205 => 0.40318566889444
206 => 0.42699679927783
207 => 0.41710875783643
208 => 0.42192812043442
209 => 0.42307751001671
210 => 0.42013337277074
211 => 0.42077185071774
212 => 0.42173897083261
213 => 0.42761113478862
214 => 0.44302139213353
215 => 0.44984649021041
216 => 0.47038013451914
217 => 0.44927976082508
218 => 0.4480277519721
219 => 0.45172648136875
220 => 0.46378190428497
221 => 0.47355169225026
222 => 0.47679289455094
223 => 0.47722127294139
224 => 0.48330198392852
225 => 0.48678733406779
226 => 0.48256362567611
227 => 0.47898447505485
228 => 0.46616440179005
229 => 0.46764836017835
301 => 0.47787136190302
302 => 0.49231195397091
303 => 0.50470348425269
304 => 0.50036440223644
305 => 0.5334685351059
306 => 0.53675067466165
307 => 0.53629718909932
308 => 0.54377439145517
309 => 0.52893366748458
310 => 0.52258897046167
311 => 0.47975832804425
312 => 0.49179199152435
313 => 0.50928362810494
314 => 0.50696854441323
315 => 0.49426565037561
316 => 0.50469384796847
317 => 0.50124595972438
318 => 0.49852646721326
319 => 0.51098498960628
320 => 0.49728633246726
321 => 0.50914697352105
322 => 0.49393557868694
323 => 0.5003842227976
324 => 0.49672366051457
325 => 0.49909249293333
326 => 0.48524434701646
327 => 0.49271647040846
328 => 0.48493348211729
329 => 0.48492979196746
330 => 0.48475798206956
331 => 0.49391463327907
401 => 0.49421323134628
402 => 0.48744645226752
403 => 0.48647125368531
404 => 0.490077073966
405 => 0.48585560278315
406 => 0.48783080257998
407 => 0.48591542957282
408 => 0.48548423876499
409 => 0.48204843704706
410 => 0.48056819919764
411 => 0.48114863859943
412 => 0.47916729968411
413 => 0.47797347131947
414 => 0.48452049955961
415 => 0.48102268647727
416 => 0.48398440953904
417 => 0.4806091523109
418 => 0.4689090402286
419 => 0.46218018204363
420 => 0.44007975492114
421 => 0.44634740863758
422 => 0.45050286953594
423 => 0.44912948973382
424 => 0.45208004097621
425 => 0.4522611808591
426 => 0.4513019265729
427 => 0.45019123299755
428 => 0.44965060879028
429 => 0.45367997870617
430 => 0.4560191635647
501 => 0.45091992562999
502 => 0.44972524552781
503 => 0.45488085661644
504 => 0.45802577640221
505 => 0.48124609712254
506 => 0.47952586076293
507 => 0.48384331644621
508 => 0.48335723719303
509 => 0.48788261857374
510 => 0.49527970456234
511 => 0.48023936048975
512 => 0.48284984416479
513 => 0.48220981385254
514 => 0.48919749697668
515 => 0.48921931176067
516 => 0.48502984666708
517 => 0.48730102366062
518 => 0.48603331496931
519 => 0.48832423591562
520 => 0.47950288595757
521 => 0.49024633800059
522 => 0.49633718301622
523 => 0.49642175440518
524 => 0.49930876660265
525 => 0.50224213819976
526 => 0.50787248953758
527 => 0.50208511075683
528 => 0.49167417972021
529 => 0.49242581531395
530 => 0.4863218902564
531 => 0.48642449833938
601 => 0.48587676835088
602 => 0.48752054727755
603 => 0.47986360299426
604 => 0.48166067251307
605 => 0.47914476466311
606 => 0.48284437507247
607 => 0.47886420583951
608 => 0.48220950521054
609 => 0.48365322552065
610 => 0.48898058454602
611 => 0.47807735057992
612 => 0.45584491843901
613 => 0.46051844521721
614 => 0.45360593201464
615 => 0.45424571142933
616 => 0.45553816766715
617 => 0.45134889413502
618 => 0.45214807550577
619 => 0.45211952312345
620 => 0.4518734741179
621 => 0.45078368227477
622 => 0.44920326849349
623 => 0.4554991505724
624 => 0.45656894362092
625 => 0.45894696104846
626 => 0.46602232788819
627 => 0.46531533189226
628 => 0.4664684716946
629 => 0.4639511739807
630 => 0.4543624816505
701 => 0.45488319377662
702 => 0.44838990522005
703 => 0.45878091306117
704 => 0.45632018524979
705 => 0.45473373802181
706 => 0.45430086119733
707 => 0.46139376650292
708 => 0.46351607493803
709 => 0.46219359474409
710 => 0.45948114928342
711 => 0.46468984643042
712 => 0.46608347404967
713 => 0.46639545587861
714 => 0.47562426855449
715 => 0.46691124398787
716 => 0.46900855560107
717 => 0.48537118210326
718 => 0.47053253775389
719 => 0.47839289860701
720 => 0.47800817484659
721 => 0.48202926947894
722 => 0.47767832771978
723 => 0.47773226285744
724 => 0.48130272247842
725 => 0.47628865587654
726 => 0.47504710247294
727 => 0.47333190533804
728 => 0.47707697553286
729 => 0.47932197573971
730 => 0.49741502863591
731 => 0.50910396595031
801 => 0.50859651835411
802 => 0.51323363948126
803 => 0.51114457394232
804 => 0.50439843024943
805 => 0.51591327492861
806 => 0.51226949627055
807 => 0.51256988495593
808 => 0.51255870447406
809 => 0.51498149873701
810 => 0.51326472695588
811 => 0.50988079355226
812 => 0.51212720646714
813 => 0.51879824971702
814 => 0.53950537265727
815 => 0.55109335298752
816 => 0.53880776169109
817 => 0.54728219805675
818 => 0.54220055598778
819 => 0.54127707045809
820 => 0.54659964275165
821 => 0.55193153150342
822 => 0.55159191324032
823 => 0.54772123580205
824 => 0.54553478833198
825 => 0.56209130108901
826 => 0.57428985765555
827 => 0.57345799787787
828 => 0.57712955640125
829 => 0.58790936578291
830 => 0.5888949364558
831 => 0.5887707772041
901 => 0.58632793745767
902 => 0.59694205972906
903 => 0.60579654726556
904 => 0.5857624906368
905 => 0.59339119713597
906 => 0.59681596926502
907 => 0.60184455083457
908 => 0.61032861083053
909 => 0.61954455027191
910 => 0.62084778515656
911 => 0.61992307764037
912 => 0.61384491784103
913 => 0.62392910874681
914 => 0.62983619127605
915 => 0.63335372374102
916 => 0.64227360081062
917 => 0.59683711949176
918 => 0.56467491967463
919 => 0.55965232774539
920 => 0.56986596593717
921 => 0.57255922087611
922 => 0.57147357318728
923 => 0.53527209323382
924 => 0.5594617344455
925 => 0.58548775446648
926 => 0.58648751988978
927 => 0.5995166896907
928 => 0.60375952146159
929 => 0.61424971092365
930 => 0.61359354671663
1001 => 0.61614774091527
1002 => 0.61556057590148
1003 => 0.63499144290994
1004 => 0.65642657473195
1005 => 0.6556843442765
1006 => 0.65260279046812
1007 => 0.65717942335657
1008 => 0.67930277652521
1009 => 0.67726601268495
1010 => 0.67924455526463
1011 => 0.705329235468
1012 => 0.73924303023487
1013 => 0.72348666767633
1014 => 0.75767344065717
1015 => 0.77919220208564
1016 => 0.81640667489472
1017 => 0.81174723961388
1018 => 0.82623456078603
1019 => 0.80340587800769
1020 => 0.75098660791061
1021 => 0.74269105776484
1022 => 0.75929895923345
1023 => 0.80012786441872
1024 => 0.75801311171143
1025 => 0.76653287133375
1026 => 0.76407917998936
1027 => 0.76394843320514
1028 => 0.76893850617341
1029 => 0.76170014506823
1030 => 0.73220975976941
1031 => 0.74572502956393
1101 => 0.7405061348397
1102 => 0.7462968876306
1103 => 0.777547192155
1104 => 0.76373068761055
1105 => 0.74917612243466
1106 => 0.7674307770818
1107 => 0.7906752254275
1108 => 0.78922062962432
1109 => 0.78639810579226
1110 => 0.80230852485102
1111 => 0.8285878758207
1112 => 0.83569107878882
1113 => 0.8409345180013
1114 => 0.84165749968007
1115 => 0.84910466030199
1116 => 0.80905940071176
1117 => 0.87261225611667
1118 => 0.8835860786329
1119 => 0.88152345481819
1120 => 0.89372039669593
1121 => 0.89013174698895
1122 => 0.88493235660542
1123 => 0.90426710384558
1124 => 0.88210137636838
1125 => 0.85063991680199
1126 => 0.83337953784676
1127 => 0.85610939721007
1128 => 0.86998972916046
1129 => 0.87916374562476
1130 => 0.88193979746376
1201 => 0.81216800021951
1202 => 0.77456487122614
1203 => 0.79866804579014
1204 => 0.82807558227047
1205 => 0.80889604036179
1206 => 0.80964784209293
1207 => 0.7823028556261
1208 => 0.83049500680924
1209 => 0.82347381574165
1210 => 0.8598997674206
1211 => 0.85120642171589
1212 => 0.88091037126278
1213 => 0.87308832585933
1214 => 0.90555719900437
1215 => 0.91850991156158
1216 => 0.94025953187386
1217 => 0.95625864111246
1218 => 0.96565362407156
1219 => 0.96508958453439
1220 => 1.0023171875803
1221 => 0.98036537069749
1222 => 0.95278871504675
1223 => 0.95228994034926
1224 => 0.96657228107501
1225 => 0.99650414906737
1226 => 1.0042650469468
1227 => 1.0086023301003
1228 => 1.0019596299688
1229 => 0.9781325060435
1230 => 0.96784407473879
1231 => 0.97661011629495
]
'min_raw' => 0.3614660355361
'max_raw' => 1.0086023301003
'avg_raw' => 0.68503418281819
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$0.361466'
'max' => '$1.00'
'avg' => '$0.685034'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.14309899098854
'max_diff' => 0.52111328604418
'year' => 2036
]
11 => [
'items' => [
101 => 0.96589000074631
102 => 0.98439592771644
103 => 1.0098085180992
104 => 1.0045609186774
105 => 1.0221028567803
106 => 1.040256917251
107 => 1.066218039074
108 => 1.0730052376561
109 => 1.0842242188183
110 => 1.0957722356775
111 => 1.0994811474649
112 => 1.1065626108748
113 => 1.1065252880671
114 => 1.1278657546902
115 => 1.1514049502348
116 => 1.1602904516192
117 => 1.1807221721033
118 => 1.1457335667871
119 => 1.1722728258396
120 => 1.1962119018256
121 => 1.1676707485428
122 => 1.2070080791073
123 => 1.2085354585128
124 => 1.2315970741477
125 => 1.2082197086308
126 => 1.19433830361
127 => 1.2344133997755
128 => 1.2538044764562
129 => 1.2479637263502
130 => 1.2035153296496
131 => 1.1776444562885
201 => 1.1099353905837
202 => 1.190139703725
203 => 1.2292048850643
204 => 1.2034141602674
205 => 1.2164215016981
206 => 1.2873853388992
207 => 1.3144037735372
208 => 1.3087841280056
209 => 1.3097337555932
210 => 1.3243124125046
211 => 1.3889622058626
212 => 1.350222551112
213 => 1.3798375656217
214 => 1.3955452625327
215 => 1.4101354468232
216 => 1.3743065654809
217 => 1.3276937172855
218 => 1.3129294715877
219 => 1.200849780966
220 => 1.1950155463317
221 => 1.1917406136361
222 => 1.1710926262386
223 => 1.1548689641039
224 => 1.1419673056284
225 => 1.1081095010275
226 => 1.119535516174
227 => 1.0655732423131
228 => 1.1000963928237
301 => 1.013971300777
302 => 1.0856988366545
303 => 1.0466607999272
304 => 1.0728737916649
305 => 1.0727823370062
306 => 1.0245159083805
307 => 0.99667683964383
308 => 1.0144169777556
309 => 1.0334358140253
310 => 1.036521556223
311 => 1.0611799738891
312 => 1.0680616082288
313 => 1.0472099349067
314 => 1.0121865496757
315 => 1.0203216832665
316 => 0.99651198142127
317 => 0.95478639476451
318 => 0.98475443956024
319 => 0.99498684765542
320 => 0.99950606199769
321 => 0.95847373973677
322 => 0.94558049322734
323 => 0.93871623697053
324 => 1.0068897921336
325 => 1.0106244933785
326 => 0.99151723377592
327 => 1.0778838590045
328 => 1.0583364317722
329 => 1.0801756972266
330 => 1.0195835051615
331 => 1.0218982084966
401 => 0.99321289374009
402 => 1.0092747532503
403 => 0.99792274864639
404 => 1.0079771137283
405 => 1.0140036587027
406 => 1.0426842664813
407 => 1.086026323125
408 => 1.0384003400932
409 => 1.0176490172696
410 => 1.0305230212395
411 => 1.0648081903277
412 => 1.1167519765219
413 => 1.0860002096288
414 => 1.0996473215771
415 => 1.10262860842
416 => 1.0799533940054
417 => 1.1175880440209
418 => 1.1377567587076
419 => 1.1584456866487
420 => 1.1764093030894
421 => 1.1501820738698
422 => 1.1782489686604
423 => 1.155632005933
424 => 1.135342252268
425 => 1.135373023449
426 => 1.1226449645889
427 => 1.0979827467089
428 => 1.0934346553455
429 => 1.1170944009785
430 => 1.1360672763899
501 => 1.1376299732827
502 => 1.148134331972
503 => 1.1543507032408
504 => 1.2152795924222
505 => 1.2397856956811
506 => 1.2697512948694
507 => 1.2814245845218
508 => 1.3165570012698
509 => 1.2881847214304
510 => 1.2820462002172
511 => 1.1968264489126
512 => 1.2107811784146
513 => 1.2331240467785
514 => 1.1971948745825
515 => 1.2199836645854
516 => 1.2244826544646
517 => 1.1959740150598
518 => 1.2112017111515
519 => 1.1707614650292
520 => 1.08690780998
521 => 1.1176813971098
522 => 1.1403411155148
523 => 1.1080029034278
524 => 1.1659678969321
525 => 1.1321059443672
526 => 1.1213733310645
527 => 1.0795015801178
528 => 1.0992634347732
529 => 1.1259916261571
530 => 1.1094767113676
531 => 1.1437476392827
601 => 1.1922844129331
602 => 1.2268746082512
603 => 1.2295300139396
604 => 1.2072908357131
605 => 1.2429292607495
606 => 1.2431888477686
607 => 1.2029885587402
608 => 1.1783661055465
609 => 1.1727718323748
610 => 1.1867474235796
611 => 1.2037163713386
612 => 1.2304716724423
613 => 1.2466393405485
614 => 1.2887960443009
615 => 1.3002024396088
616 => 1.3127346098493
617 => 1.3294814540688
618 => 1.349590334357
619 => 1.3055932490856
620 => 1.3073413353043
621 => 1.2663718586807
622 => 1.2225900972911
623 => 1.2558149967122
624 => 1.2992521329821
625 => 1.289287605928
626 => 1.2881663930776
627 => 1.2900519620935
628 => 1.2825390341057
629 => 1.2485583392592
630 => 1.2314934470377
701 => 1.2535115117218
702 => 1.2652131331901
703 => 1.2833613275987
704 => 1.2811241795759
705 => 1.3278719793988
706 => 1.3460367608299
707 => 1.341389432425
708 => 1.3422446526957
709 => 1.3751311218136
710 => 1.4117076390909
711 => 1.4459663742177
712 => 1.4808158310356
713 => 1.4388034506442
714 => 1.4174721548448
715 => 1.4394806071307
716 => 1.4278026125564
717 => 1.4949078332982
718 => 1.4995540531862
719 => 1.5666544214568
720 => 1.6303406611088
721 => 1.5903404750409
722 => 1.6280588488549
723 => 1.668854345359
724 => 1.7475554769461
725 => 1.7210517045668
726 => 1.7007502302913
727 => 1.6815654351969
728 => 1.7214859482878
729 => 1.7728430506335
730 => 1.7839048785865
731 => 1.801829265814
801 => 1.7829839643341
802 => 1.8056810542247
803 => 1.8858117551454
804 => 1.8641597324233
805 => 1.8334103794217
806 => 1.8966658719642
807 => 1.9195577888159
808 => 2.0802252498705
809 => 2.2830745562938
810 => 2.1990936114542
811 => 2.1469639289441
812 => 2.1592156408666
813 => 2.23328934069
814 => 2.2570794620916
815 => 2.1924097111755
816 => 2.2152521604823
817 => 2.3411163019825
818 => 2.4086383756923
819 => 2.3169343301701
820 => 2.0639265056094
821 => 1.8306417366199
822 => 1.892519362306
823 => 1.8855043598395
824 => 2.0207296780101
825 => 1.8636433388422
826 => 1.8662882699234
827 => 2.0043099044677
828 => 1.9674880986612
829 => 1.9078414890351
830 => 1.8310772228791
831 => 1.6891713770544
901 => 1.5634814120703
902 => 1.8099883780744
903 => 1.7993585494565
904 => 1.7839649823654
905 => 1.8182217001687
906 => 1.9845625978826
907 => 1.9807279017973
908 => 1.9563335217821
909 => 1.9748364440215
910 => 1.9045978373062
911 => 1.9226999255601
912 => 1.8306047831206
913 => 1.8722356337361
914 => 1.9077135141995
915 => 1.9148362239615
916 => 1.9308840527499
917 => 1.793757112798
918 => 1.855323083001
919 => 1.8914873225439
920 => 1.7280959726225
921 => 1.8882576008992
922 => 1.7913700378533
923 => 1.7584849437532
924 => 1.8027603906773
925 => 1.7855062059517
926 => 1.7706720711243
927 => 1.7623943690079
928 => 1.7949053707262
929 => 1.793388693637
930 => 1.7401943847123
1001 => 1.6708045771974
1002 => 1.6940940742422
1003 => 1.6856327816256
1004 => 1.6549679656547
1005 => 1.6756323491351
1006 => 1.5846368622926
1007 => 1.428083856714
1008 => 1.5315075675475
1009 => 1.5275258671838
1010 => 1.5255181133046
1011 => 1.6032381735746
1012 => 1.5957671830865
1013 => 1.5822072621945
1014 => 1.6547189270737
1015 => 1.6282511939733
1016 => 1.7098185108067
1017 => 1.7635440211164
1018 => 1.7499174938637
1019 => 1.8004465959879
1020 => 1.6946306172159
1021 => 1.7297784407638
1022 => 1.7370223584842
1023 => 1.6538241443848
1024 => 1.5969895295256
1025 => 1.5931993086766
1026 => 1.4946559188032
1027 => 1.5472970022591
1028 => 1.5936189772643
1029 => 1.5714343459673
1030 => 1.5644113544456
1031 => 1.6002902950286
1101 => 1.6030783959942
1102 => 1.5395093985079
1103 => 1.5527274060537
1104 => 1.6078486948303
1105 => 1.5513384910032
1106 => 1.4415483958563
1107 => 1.4143189342931
1108 => 1.410686022182
1109 => 1.3368375628267
1110 => 1.4161385371175
1111 => 1.3815215367055
1112 => 1.4908762262315
1113 => 1.4284134140552
1114 => 1.4257207670651
1115 => 1.4216504362142
1116 => 1.3580860166056
1117 => 1.3720025847703
1118 => 1.4182633769029
1119 => 1.4347697487009
1120 => 1.4330479988896
1121 => 1.4180366737839
1122 => 1.4249087815469
1123 => 1.4027713280413
1124 => 1.3949541324572
1125 => 1.3702809129048
1126 => 1.3340180963137
1127 => 1.3390606633735
1128 => 1.2672145350244
1129 => 1.2280689511371
1130 => 1.2172339694476
1201 => 1.2027449791074
1202 => 1.2188705394603
1203 => 1.2670110039697
1204 => 1.2089433902021
1205 => 1.1093905393669
1206 => 1.1153738353319
1207 => 1.1288165249087
1208 => 1.1037661618146
1209 => 1.0800580954636
1210 => 1.1006703356596
1211 => 1.0584884803787
1212 => 1.1339140005932
1213 => 1.131873951649
1214 => 1.1599879213021
1215 => 1.1775681634829
1216 => 1.1370513969271
1217 => 1.1268615397073
1218 => 1.1326661454829
1219 => 1.0367289419316
1220 => 1.1521478050133
1221 => 1.1531459521341
1222 => 1.1445992104931
1223 => 1.2060561919265
1224 => 1.3357495916642
1225 => 1.286953717778
1226 => 1.2680584805461
1227 => 1.2321386207561
1228 => 1.2799997012161
1229 => 1.2763247169859
1230 => 1.2597050446007
1231 => 1.2496534148856
]
'min_raw' => 0.93871623697053
'max_raw' => 2.4086383756923
'avg_raw' => 1.6736773063314
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$0.938716'
'max' => '$2.40'
'avg' => '$1.67'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 0.57725020143442
'max_diff' => 1.400036045592
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.029465230031487
]
1 => [
'year' => 2028
'avg' => 0.050570888551428
]
2 => [
'year' => 2029
'avg' => 0.13815055300664
]
3 => [
'year' => 2030
'avg' => 0.10658294590464
]
4 => [
'year' => 2031
'avg' => 0.10467766155743
]
5 => [
'year' => 2032
'avg' => 0.18353288398267
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.029465230031487
'min' => '$0.029465'
'max_raw' => 0.18353288398267
'max' => '$0.183532'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.18353288398267
]
1 => [
'year' => 2033
'avg' => 0.47206545006733
]
2 => [
'year' => 2034
'avg' => 0.29921776865663
]
3 => [
'year' => 2035
'avg' => 0.35292804430183
]
4 => [
'year' => 2036
'avg' => 0.68503418281819
]
5 => [
'year' => 2037
'avg' => 1.6736773063314
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.18353288398267
'min' => '$0.183532'
'max_raw' => 1.6736773063314
'max' => '$1.67'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 1.6736773063314
]
]
]
]
'prediction_2025_max_price' => '$0.05038'
'last_price' => 0.04884994
'sma_50day_nextmonth' => '$0.044197'
'sma_200day_nextmonth' => '$0.07388'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'increase'
'sma_200day_direction_label' => 'aumentar'
'sma_200day_date_nextmonth' => '4 de fev. de 2026'
'sma_50day_date_nextmonth' => '4 de fev. de 2026'
'daily_sma3' => '$0.046762'
'daily_sma3_action' => 'BUY'
'daily_sma5' => '$0.04583'
'daily_sma5_action' => 'BUY'
'daily_sma10' => '$0.044233'
'daily_sma10_action' => 'BUY'
'daily_sma21' => '$0.04312'
'daily_sma21_action' => 'BUY'
'daily_sma50' => '$0.050461'
'daily_sma50_action' => 'SELL'
'daily_sma100' => '$0.060438'
'daily_sma100_action' => 'SELL'
'daily_sma200' => '$0.081673'
'daily_sma200_action' => 'SELL'
'daily_ema3' => '$0.047161'
'daily_ema3_action' => 'BUY'
'daily_ema5' => '$0.046178'
'daily_ema5_action' => 'BUY'
'daily_ema10' => '$0.044946'
'daily_ema10_action' => 'BUY'
'daily_ema21' => '$0.045114'
'daily_ema21_action' => 'BUY'
'daily_ema50' => '$0.050146'
'daily_ema50_action' => 'SELL'
'daily_ema100' => '$0.060682'
'daily_ema100_action' => 'SELL'
'daily_ema200' => '$0.082352'
'daily_ema200_action' => 'SELL'
'weekly_sma21' => '$0.070878'
'weekly_sma21_action' => 'SELL'
'weekly_sma50' => '$0.101275'
'weekly_sma50_action' => 'SELL'
'weekly_sma100' => '$0.233496'
'weekly_sma100_action' => 'SELL'
'weekly_sma200' => '$0.347585'
'weekly_sma200_action' => 'SELL'
'weekly_ema3' => '$0.047169'
'weekly_ema3_action' => 'BUY'
'weekly_ema5' => '$0.048028'
'weekly_ema5_action' => 'BUY'
'weekly_ema10' => '$0.053458'
'weekly_ema10_action' => 'SELL'
'weekly_ema21' => '$0.068197'
'weekly_ema21_action' => 'SELL'
'weekly_ema50' => '$0.115657'
'weekly_ema50_action' => 'SELL'
'weekly_ema100' => '$0.235583'
'weekly_ema100_action' => 'SELL'
'weekly_ema200' => '$0.502528'
'weekly_ema200_action' => 'SELL'
'rsi_14' => '59.18'
'rsi_14_action' => 'NEUTRAL'
'stoch_rsi_14' => 112.29
'stoch_rsi_14_action' => 'SELL'
'momentum_10' => 0.01
'momentum_10_action' => 'BUY'
'vwma_10' => '0.045330'
'vwma_10_action' => 'BUY'
'hma_9' => '0.047544'
'hma_9_action' => 'BUY'
'stochastic_fast_14' => 100
'stochastic_fast_14_action' => 'SELL'
'cci_20' => 261.17
'cci_20_action' => 'SELL'
'adx_14' => 23.09
'adx_14_action' => 'NEUTRAL'
'ao_5_34' => '-0.000126'
'ao_5_34_action' => 'NEUTRAL'
'macd_12_26' => 0
'macd_12_26_action' => 'BUY'
'williams_percent_r_14' => -0
'williams_percent_r_14_action' => 'SELL'
'ultimate_oscillator' => 80.65
'ultimate_oscillator_action' => 'SELL'
'ichimoku_cloud' => '-0.002953'
'ichimoku_cloud_action' => 'SELL'
'sell_signals' => 16
'buy_signals' => 18
'sell_pct' => 47.06
'buy_pct' => 52.94
'overall_action' => 'bullish'
'overall_action_label' => 'Altista'
'overall_action_dir' => 1
'last_updated' => 1767697876
'last_updated_date' => '6 de janeiro de 2026'
]
Previsão de preço de Biconomy para 2026
A previsão de preço para Biconomy em 2026 sugere que o preço médio poderia variar entre $0.016877 na extremidade inferior e $0.05038 na extremidade superior. No mercado de criptomoedas, comparado ao preço médio de hoje, Biconomy poderia potencialmente ganhar 3.13% até 2026 se BICO atingir a meta de preço prevista.
Previsão de preço de Biconomy 2027-2032
A previsão de preço de BICO para 2027-2032 está atualmente dentro de uma faixa de preço entre $0.029465 na extremidade inferior e $0.183532 na extremidade superior. Considerando a volatilidade de preços no mercado, se Biconomy atingir a meta de preço superior, poderia ganhar 275.71% até 2032 em comparação com o preço de hoje.
| Previsão de Preço de Biconomy | Potencial Mínimo ($) | Preço Médio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2027 | $0.016247 | $0.029465 | $0.042682 |
| 2028 | $0.029322 | $0.05057 | $0.071819 |
| 2029 | $0.064412 | $0.13815 | $0.211888 |
| 2030 | $0.05478 | $0.106582 | $0.158385 |
| 2031 | $0.064767 | $0.104677 | $0.144588 |
| 2032 | $0.098862 | $0.183532 | $0.2682035 |
Previsão de preço de Biconomy 2032-2037
A previsão de preço de Biconomy para 2032-2037 é atualmente estimada entre $0.183532 na extremidade inferior e $1.67 na extremidade superior. Comparado ao preço atual, Biconomy poderia potencialmente ganhar 3326.16% até 2037 se atingir a meta de preço superior. Por favor, note que esta informação é apenas para fins gerais e não deve ser considerada como aconselhamento de investimento a longo prazo.
| Previsão de Preço de Biconomy | Potencial Mínimo ($) | Preço Médio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2032 | $0.098862 | $0.183532 | $0.2682035 |
| 2033 | $0.229734 | $0.472065 | $0.714396 |
| 2034 | $0.184695 | $0.299217 | $0.41374 |
| 2035 | $0.218367 | $0.352928 | $0.487489 |
| 2036 | $0.361466 | $0.685034 | $1.00 |
| 2037 | $0.938716 | $1.67 | $2.40 |
Biconomy Histograma de preços potenciais
Previsão de preço de Biconomy baseada na análise técnica
Em 6 de janeiro de 2026, o sentimento geral de previsão de preço para Biconomy é Altista, com 18 indicadores técnicos mostrando sinais de alta e 16 indicando sinais de baixa. A previsão de preço de BICO foi atualizada pela última vez em 6 de janeiro de 2026.
Médias Móveis Simples de 50 e 200 dias e Índice de Força Relativa de 14 dias - RSI (14) de Biconomy
De acordo com nossos indicadores técnicos, o SMA de 200 dias de Biconomy está projetado para aumentar no próximo mês, alcançando $0.07388 até 4 de fev. de 2026. O SMA de 50 dias de curto prazo para Biconomy é esperado para alcançar $0.044197 até 4 de fev. de 2026.
O oscilador de momentum Índice de Força Relativa (RSI) é uma ferramenta comumente usada para identificar se uma criptomoeda está sobrevendida (abaixo de 30) ou sobrecomprada (acima de 70). No momento, o RSI está em 59.18, sugerindo que o mercado de BICO está em um estado NEUTRAL.
Médias Móveis e Osciladores Populares de BICO para Sábado, 19 de Outubro de 2024
Médias móveis (MA) são indicadores amplamente utilizados nos mercados financeiros, projetados para suavizar movimentos de preços ao longo de um período definido. Como indicadores atrasados, eles se baseiam em dados históricos de preços. A tabela abaixo destaca dois tipos: a média móvel simples (SMA) e a média móvel exponencial (EMA).
Média Móvel Simples Diária (SMA)
| Período | Valor | Ação |
|---|---|---|
| SMA 3 | $0.046762 | BUY |
| SMA 5 | $0.04583 | BUY |
| SMA 10 | $0.044233 | BUY |
| SMA 21 | $0.04312 | BUY |
| SMA 50 | $0.050461 | SELL |
| SMA 100 | $0.060438 | SELL |
| SMA 200 | $0.081673 | SELL |
Média Móvel Exponencial Diária (EMA)
| Período | Valor | Ação |
|---|---|---|
| EMA 3 | $0.047161 | BUY |
| EMA 5 | $0.046178 | BUY |
| EMA 10 | $0.044946 | BUY |
| EMA 21 | $0.045114 | BUY |
| EMA 50 | $0.050146 | SELL |
| EMA 100 | $0.060682 | SELL |
| EMA 200 | $0.082352 | SELL |
Média Móvel Simples Semanal (SMA)
| Período | Valor | Ação |
|---|---|---|
| SMA 21 | $0.070878 | SELL |
| SMA 50 | $0.101275 | SELL |
| SMA 100 | $0.233496 | SELL |
| SMA 200 | $0.347585 | SELL |
Média Móvel Exponencial Semanal (EMA)
| Período | Valor | Ação |
|---|---|---|
| EMA 21 | $0.068197 | SELL |
| EMA 50 | $0.115657 | SELL |
| EMA 100 | $0.235583 | SELL |
| EMA 200 | $0.502528 | SELL |
Osciladores de Biconomy
Um oscilador é uma ferramenta de análise técnica que define limites altos e baixos entre dois extremos, criando um indicador de tendência que flutua dentro desses limites. Os traders usam esse indicador para identificar condições de sobrecompra ou sobrevenda de curto prazo.
| Período | Valor | Ação |
|---|---|---|
| RSI (14) | 59.18 | NEUTRAL |
| Stoch RSI (14) | 112.29 | SELL |
| Estocástico Rápido (14) | 100 | SELL |
| Índice de Canal de Commodities (20) | 261.17 | SELL |
| Índice Direcional Médio (14) | 23.09 | NEUTRAL |
| Oscilador Impressionante (5, 34) | -0.000126 | NEUTRAL |
| Momentum (10) | 0.01 | BUY |
| MACD (12, 26) | 0 | BUY |
| Williams Percent Range (14) | -0 | SELL |
| Oscilador Ultimate (7, 14, 28) | 80.65 | SELL |
| VWMA (10) | 0.045330 | BUY |
| Média Móvel de Hull (9) | 0.047544 | BUY |
| Nuvem Ichimoku B/L (9, 26, 52, 26) | -0.002953 | SELL |
Previsão do preço de Biconomy com base nos fluxos financeiros mundiais
Definições dos fluxos financeiros mundiais, usadas na previsão do preço do Biconomy
M0: o total de todas as moedas físicas, mais as contas no Banco Central que podem ser trocadas por moedas físicas.
M1: o valor de M0, mais o valor em contas de demanda, incluindo contas 'correntes'.
M2: o valor de M1, mais a maioria das contas de poupança, do mercado de moedas e de certificados de depósito (CD) de menos de US$ 100.000.
Previsões de preço de Biconomy por empresas de Internet ou nichos tecnológicos
| Comparação | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Facebook stock | $0.068642 | $0.096453 | $0.135533 | $0.190447 | $0.26761 | $0.376037 |
| Amazon.com stock | $0.101928 | $0.212679 | $0.443768 | $0.925949 | $1.93 | $4.03 |
| Apple stock | $0.069289 | $0.098282 | $0.1394061 | $0.197736 | $0.280474 | $0.397832 |
| Netflix stock | $0.077077 | $0.121616 | $0.191891 | $0.302774 | $0.47773 | $0.753784 |
| Google stock | $0.06326 | $0.081922 | $0.106088 | $0.137384 | $0.177912 | $0.230395 |
| Tesla stock | $0.110739 | $0.251037 | $0.569082 | $1.29 | $2.92 | $6.62 |
| Kodak stock | $0.036632 | $0.02747 | $0.020599 | $0.015447 | $0.011584 | $0.008686 |
| Nokia stock | $0.032361 | $0.021437 | $0.0142016 | $0.009408 | $0.006232 | $0.004128 |
Este cálculo mostra quanto a criptomoeda pode custar, se assumirmos que sua capitalização se comportará da mesma forma que a de algumas empresas de Internet ou nichos tecnológicos. Se você extrapolar os dados, poderá obter uma imagem em potencial do preço futuro para 2024, 2025, 2026, 2027, 2028, 2029 e 2030.
Visão geral da previsão para Biconomy
Você pode fazer perguntas como: 'Devo investir em Biconomy agora?', 'Devo comprar BICO hoje?', 'Biconomy será um bom ou mau investimento no curto ou no longo prazo?'.
Atualizamos a previsão para Biconomy regularmente com novos valores. Veja nossas previsões semelhantes. Fazemos previsões de preços futuros para uma enorme quantidade de moedas digitais, como Biconomy, com métodos de análise técnica.
Se você estiver tentando encontrar criptomoedas com bom retorno, você deve explorar o máximo de fontes de informações disponíveis sobre Biconomy para poder tomar sozinho uma decisão de tão grande responsabilidade sobre o seu investimento.
O preço de Biconomy é de $0.04884 USD hoje, mas o preço pode tanto subir quanto descer e seu investimento pode ser perdido, porque criptomoedas são ativos de alto risco
Previsão de curto prazo para Biconomy
com base no histórico de preços de 4 horas
Previsão de longo prazo para Biconomy
com base no histórico de preços de 1 mês
Previsão do preço de Biconomy com base no padrão de crescimento do Bitcoin
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| Se Biconomy tiver 1% da média anterior do crescimento anual do Bitcoin | $0.050119 | $0.051422 | $0.052759 | $0.05413 |
| Se Biconomy tiver 2% da média anterior do crescimento anual do Bitcoin | $0.051389 | $0.054061 | $0.056871 | $0.059828 |
| Se Biconomy tiver 5% da média anterior do crescimento anual do Bitcoin | $0.055198 | $0.062372 | $0.070479 | $0.079638 |
| Se Biconomy tiver 10% da média anterior do crescimento anual do Bitcoin | $0.061547 | $0.077545 | $0.0977024 | $0.123098 |
| Se Biconomy tiver 20% da média anterior do crescimento anual do Bitcoin | $0.074245 | $0.112842 | $0.1715056 | $0.260665 |
| Se Biconomy tiver 50% da média anterior do crescimento anual do Bitcoin | $0.112338 | $0.258339 | $0.594094 | $1.36 |
| Se Biconomy tiver 100% da média anterior do crescimento anual do Bitcoin | $0.175826 | $0.632856 | $2.27 | $8.19 |
Perguntas Frequentes sobre Biconomy
BICO é um bom investimento?
A decisão de adquirir Biconomy depende inteiramente da sua tolerância individual ao risco. Como você pode perceber, o valor de Biconomy experimentou uma escalada de 6.0842% nas últimas 24 horas, e Biconomy registrou um declínio de -76.2% durante os últimos 30 dias. Consequentemente, a decisão de investir ou não em Biconomy dependerá de quão alinhado esse investimento está com suas aspirações de negociação.
Biconomy pode subir?
Parece que o valor médio de Biconomy pode potencialmente subir para $0.05038 até o final deste ano. Observando as perspectivas de Biconomy em um horizonte de cinco anos mais longo, a moeda digital poderia potencialmente crescer até $0.158385. No entanto, dada a imprevisibilidade do mercado, é vital conduzir uma pesquisa aprofundada antes de investir quaisquer fundos em um projeto, rede ou ativo específico.
Qual será o preço de Biconomy na próxima semana?
Com base na nossa nova previsão experimental de Biconomy, o preço de Biconomy aumentará 0.86% na próxima semana e atingirá $0.049267 até 13 de janeiro de 2026.
Qual será o preço de Biconomy no próximo mês?
Com base na nossa nova previsão experimental de Biconomy, o preço de Biconomy diminuirá -11.62% no próximo mês e atingirá $0.043174 até 5 de fevereiro de 2026.
Até onde o preço de Biconomy pode subir este ano em 2026?
De acordo com nossa previsão mais recente sobre o valor de Biconomy em 2026, espera-se que BICO fluctue dentro do intervalo de $0.016877 e $0.05038. No entanto, é crucial lembrar que o mercado de criptomoedas é excepcionalmente instável, e essa previsão de preço de Biconomy não considera flutuações repentinas e extremas de preço.
Onde estará Biconomy em 5 anos?
O futuro de Biconomy parece seguir uma tendência de alta, com um preço máximo de $0.158385 projetada após um período de cinco anos. Com base na previsão de Biconomy para 2030, o valor de Biconomy pode potencialmente atingir seu pico mais alto de aproximadamente $0.158385, enquanto seu pico mais baixo está previsto para cerca de $0.05478.
Quanto será Biconomy em 2026?
Com base na nossa nova simulação experimental de previsão de preços de Biconomy, espera-se que o valor de BICO em 2026 aumente 3.13% para $0.05038 se o melhor cenário ocorrer. O preço ficará entre $0.05038 e $0.016877 durante 2026.
Quanto será Biconomy em 2027?
De acordo com nossa última simulação experimental para previsão de preços de Biconomy, o valor de BICO pode diminuir -12.62% para $0.042682 em 2027, assumindo as condições mais favoráveis. O preço está projetado para flutuar entre $0.042682 e $0.016247 ao longo do ano.
Quanto será Biconomy em 2028?
Nosso novo modelo experimental de previsão de preços de Biconomy sugere que o valor de BICO em 2028 pode aumentar 47.02%, alcançando $0.071819 no melhor cenário. O preço é esperado para variar entre $0.071819 e $0.029322 durante o ano.
Quanto será Biconomy em 2029?
Com base no nosso modelo de previsão experimental, o valor de Biconomy pode experimentar um 333.75% crescimento em 2029, potencialmente alcançando $0.211888 sob condições ótimas. A faixa de preço prevista para 2029 está entre $0.211888 e $0.064412.
Quanto será Biconomy em 2030?
Usando nossa nova simulação experimental para previsões de preços de Biconomy, espera-se que o valor de BICO em 2030 aumente 224.23%, alcançando $0.158385 no melhor cenário. O preço está previsto para variar entre $0.158385 e $0.05478 ao longo de 2030.
Quanto será Biconomy em 2031?
Nossa simulação experimental indica que o preço de Biconomy poderia aumentar 195.98% em 2031, potencialmente atingindo $0.144588 sob condições ideais. O preço provavelmente oscilará entre $0.144588 e $0.064767 durante o ano.
Quanto será Biconomy em 2032?
Com base nos achados da nossa mais recente previsão experimental de preços de Biconomy, BICO poderia ver um 449.04% aumento em valor, atingindo $0.2682035 se o cenário mais positivo se desenrolar em 2032. O preço é esperado para permanecer dentro de uma faixa de $0.2682035 e $0.098862 ao longo do ano.
Quanto será Biconomy em 2033?
De acordo com nossa previsão experimental de preços de Biconomy, espera-se que o valor de BICO seja aumentar 1362.43% em 2033, com o preço potencial mais alto sendo $0.714396. Ao longo do ano, o preço de BICO poderia variar entre $0.714396 e $0.229734.
Quanto será Biconomy em 2034?
Os resultados da nossa nova simulação de previsão de preços de Biconomy sugerem que BICO pode aumentar 746.96% em 2034, atingindo potencialmente $0.41374 nas melhores circunstâncias. A faixa de preço prevista para o ano é entre $0.41374 e $0.184695.
Quanto será Biconomy em 2035?
Com base em nossa previsão experimental para o preço de Biconomy, BICO poderia aumentar 897.93%, com o valor potencialmente atingindo $0.487489 em 2035. A faixa de preço esperada para o ano está entre $0.487489 e $0.218367.
Quanto será Biconomy em 2036?
Nossa recente simulação de previsão de preços de Biconomy sugere que o valor de BICO pode aumentar 1964.7% em 2036, possivelmente atingindo $1.00 se as condições forem ideais. A faixa de preço esperada para 2036 está entre $1.00 e $0.361466.
Quanto será Biconomy em 2037?
De acordo com a simulação experimental, o valor de Biconomy poderia aumentar 4830.69% em 2037, com um pico de $2.40 sob condições favoráveis. O preço é esperado para cair entre $2.40 e $0.938716 ao longo do ano.
Previsões relacionadas
Previsão de Preço do Celo
Previsão de Preço do Fasttoken
Previsão de Preço do Rocket Pool
Previsão de Preço do BitClout
Previsão de Preço do EthereumPoW
Previsão de Preço do 0x
Previsão de Preço do Wootrade Network
Previsão de Preço do MX Token
Previsão de Preço do Ravencoin
Previsão de Preço do Holo
Previsão de Preço do Siacoin
Previsão de Preço do Frax Share
Previsão de Preço do Saga
Previsão de Preço do Golem
Previsão de Preço do APENFT
Previsão de Preço do Qtum
Previsão de Preço do Jeo Boden
Previsão de Preço do Polymesh
Previsão de Preço do Trust Wallet Token
Previsão de Preço do AMP Token
Previsão de Preço do Raydium
Previsão de Preço do TON Crystal
Previsão de Preço do SuperFarm
Previsão de Preço do Livepeer
Previsão de Preço do Pixels
Como ler e prever os movimentos de preço de Biconomy?
Traders de Biconomy utilizam indicadores e padrões de gráfico para prever a direção do mercado. Eles também identificam níveis-chave de suporte e resistência para avaliar quando uma tendência de baixa pode desacelerar ou uma tendência de alta pode estagnar.
Indicadores de Previsão de Preço de Biconomy
Médias móveis são ferramentas populares para a previsão de preço de Biconomy. Uma média móvel simples (SMA) calcula o preço médio de fechamento de BICO em um período específico, como uma SMA de 12 dias. Uma média móvel exponencial (EMA) dá mais peso aos preços recentes, reagindo mais rapidamente às mudanças de preço.
Médias móveis comumente usadas no mercado de criptomoedas incluem as de 50 dias, 100 dias e 200 dias, que ajudam a identificar níveis-chave de resistência e suporte. Um movimento de preço de BICO acima dessas médias é visto como altista, enquanto uma queda abaixo indica fraqueza.
Traders também usam RSI e níveis de retração de Fibonacci para avaliar a direção futura de BICO.
Como ler gráficos de Biconomy e prever movimentos de preço?
A maioria dos traders prefere gráficos de velas em vez de gráficos de linha simples porque eles fornecem informações mais detalhadas. Velas podem representar a ação de preço de Biconomy em diferentes períodos de tempo, como 5 minutos para tendências de curto prazo e semanal para tendências de longo prazo. Opções populares incluem gráficos de 1 hora, 4 horas e 1 dia.
Por exemplo, um gráfico de velas de 1 hora mostra os preços de abertura, fechamento, máximo e mínimo de BICO dentro de cada hora. A cor da vela é crucial: verde indica que o preço fechou mais alto do que abriu, enquanto vermelho significa o oposto. Alguns gráficos usam velas vazias e preenchidas para transmitir a mesma informação.
O que afeta o preço de Biconomy?
A ação de preço de Biconomy é impulsionada pela oferta e demanda, influenciada por fatores como reduções pela metade das recompensas de bloco, hard forks e atualizações de protocolo. Eventos do mundo real, como regulamentações, adoção por empresas e governos e hacks de exchanges de criptomoedas, também impactam o preço de BICO. A capitalização de mercado de Biconomy pode mudar rapidamente.
Traders frequentemente monitoram a atividade de "baleias" de BICO, grandes detentores de Biconomy, pois suas ações podem influenciar significativamente os movimentos de preço no relativamente pequeno mercado de Biconomy.
Padrões de previsão de preço altistas e baixistas
Traders frequentemente identificam padrões de velas para ganhar vantagem em previsões de preço de criptomoedas. Certas formações indicam tendências altistas, enquanto outras sugerem movimentos baixistas.
Padrões de velas altistas comumente seguidos:
- Martelo
- Engolfo de Alta
- Linha de Perfuração
- Estrela da Manhã
- Três Soldados Brancos
Padrões de velas baixistas comuns:
- Harami de Baixa
- Nuvem Negra
- Estrela da Noite
- Estrela Cadente
- Homem Enforcado


