Previsão de Preço Zenlink Network - Projeção ZLK
Previsão de Preço Zenlink Network até $0.00129 até 2026
| Ano | Preço Mínimo | Preço Máximo |
|---|---|---|
| 2026 | $0.000432 | $0.00129 |
| 2027 | $0.000416 | $0.001093 |
| 2028 | $0.000751 | $0.001839 |
| 2029 | $0.001649 | $0.005426 |
| 2030 | $0.001403 | $0.004056 |
| 2031 | $0.001658 | $0.0037032 |
| 2032 | $0.002532 | $0.006869 |
| 2033 | $0.005884 | $0.018297 |
| 2034 | $0.00473 | $0.010596 |
| 2035 | $0.005592 | $0.012485 |
Calculadora de lucro do investimento
Se você abrir um short de $10,000.00 em Zenlink Network hoje e fechar em Apr 06, 2026, nossa previsão mostra que pode lucrar cerca de $3,957.61, com um retorno de 39.58% nos próximos 90 dias.
Previsão de preço de longo prazo de Zenlink Network para os anos 2027, 2028, 2029, 2030, 2031, 2032 e 2037
[
'name' => 'Zenlink Network'
'name_with_ticker' => 'Zenlink Network <small>ZLK</small>'
'name_lang' => 'Zenlink Network'
'name_lang_with_ticker' => 'Zenlink Network <small>ZLK</small>'
'name_with_lang' => 'Zenlink Network'
'name_with_lang_with_ticker' => 'Zenlink Network <small>ZLK</small>'
'image' => '/uploads/coins/zenlink-network-token.PNG?1719972668'
'price_for_sd' => 0.001251
'ticker' => 'ZLK'
'marketcap' => '$68.13K'
'low24h' => '$0.001236'
'high24h' => '$0.001263'
'volume24h' => '$3.7'
'current_supply' => '54.45M'
'max_supply' => '71.41M'
'algo' => null
'proof' => null
'ico_price_and_roi' => '—'
'price' => '$0.001251'
'change_24h_pct' => '-1.0042%'
'ath_price' => '$4.4'
'ath_days' => 1501
'ath_exchange' => null
'ath_pair' => null
'ath_date' => '27 de nov. de 2021'
'ath_pct' => '-99.97%'
'fdv' => '$89.35K'
'new_prediction' => true
'change_24h_pct_is_increased' => false
'change_30d_pct' => null
'change_30d_pct_is_increased' => false
'max_price' => '$0.06169'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.001261'
'next_week_prediction_price_date' => '13 de janeiro de 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.001105'
'next_month_prediction_price_date' => '5 de fevereiro de 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.000432'
'current_year_max_price_prediction' => '$0.00129'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.001403'
'grand_prediction_max_price' => '$0.004056'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.0012748688238898
107 => 0.0012796287213009
108 => 0.0012903530132143
109 => 0.0011987151129955
110 => 0.0012398578398464
111 => 0.001264025337319
112 => 0.0011548357045164
113 => 0.00126186700935
114 => 0.0011971199010287
115 => 0.0011751437599955
116 => 0.0012047317387602
117 => 0.0011932012746604
118 => 0.0011832880587189
119 => 0.0011777563138928
120 => 0.0011994824599916
121 => 0.0011984689093077
122 => 0.0011629207174269
123 => 0.001116549550248
124 => 0.0011321132360349
125 => 0.0011264588030782
126 => 0.0011059664086067
127 => 0.0011197758082193
128 => 0.0010589662011024
129 => 0.00095434643266602
130 => 0.0010234614562852
131 => 0.0010208006030586
201 => 0.0010194588802016
202 => 0.0010713969102525
203 => 0.0010664042670774
204 => 0.0010573425708263
205 => 0.0011057999834487
206 => 0.0010881123759974
207 => 0.001142621414438
208 => 0.0011785245925786
209 => 0.001169418385256
210 => 0.0012031854978323
211 => 0.0011324717919212
212 => 0.0011559600484834
213 => 0.0011608009456076
214 => 0.0011052020264988
215 => 0.0010672211252459
216 => 0.0010646882321463
217 => 0.00099883458346425
218 => 0.0010340130710381
219 => 0.0010649686843184
220 => 0.0010501433478098
221 => 0.0010454500891655
222 => 0.0010694269297356
223 => 0.0010712901355956
224 => 0.0010288088445328
225 => 0.0010376420501523
226 => 0.0010744779859838
227 => 0.0010367138790806
228 => 0.00096334438809948
301 => 0.00094514773992359
302 => 0.00094271997162616
303 => 0.00089336921857877
304 => 0.00094636372696536
305 => 0.00092323020389009
306 => 0.00099630872610271
307 => 0.00095456666614283
308 => 0.00095276724936676
309 => 0.00095004716699268
310 => 0.00090756893519086
311 => 0.000916868968323
312 => 0.00094778369488926
313 => 0.00095881441760742
314 => 0.00095766382285587
315 => 0.00094763219586361
316 => 0.00095222462333042
317 => 0.00093743081435202
318 => 0.00093220681249524
319 => 0.00091571842566033
320 => 0.00089148505204612
321 => 0.0008948548512791
322 => 0.00084684219714222
323 => 0.00082068235494404
324 => 0.00081344165540476
325 => 0.00080375908937117
326 => 0.00081453532700258
327 => 0.00084670618332553
328 => 0.00080790130517214
329 => 0.00074137306342387
330 => 0.00074537152411155
331 => 0.00075435487812313
401 => 0.00073761445735338
402 => 0.00072177105401183
403 => 0.00073554560780137
404 => 0.00070735671474631
405 => 0.00075776137117481
406 => 0.00075639806647583
407 => 0.00077518580538933
408 => 0.00078693416409516
409 => 0.00075985800085453
410 => 0.00075304841902124
411 => 0.00075692746631172
412 => 0.00069281545528472
413 => 0.00076994648629983
414 => 0.00077061351865899
415 => 0.00076490198263282
416 => 0.00080597187549495
417 => 0.00089264215945487
418 => 0.00086003331232505
419 => 0.00084740618110876
420 => 0.00082340199543622
421 => 0.00085538614761737
422 => 0.00085293026376035
423 => 0.00084182382559265
424 => 0.00083510661713462
425 => 0.00084748327967939
426 => 0.00083357301167887
427 => 0.00083107434531737
428 => 0.00081593514574253
429 => 0.000810531140284
430 => 0.00080653022978216
501 => 0.00080212562044098
502 => 0.00081184109108736
503 => 0.00078982455642606
504 => 0.00076327477393204
505 => 0.00076106744679029
506 => 0.00076716207109885
507 => 0.00076446565353373
508 => 0.00076105453738038
509 => 0.00075454178768142
510 => 0.00075260959396862
511 => 0.00075888828616809
512 => 0.00075180000874538
513 => 0.00076225914820105
514 => 0.00075941484099969
515 => 0.00074352677218554
516 => 0.00072372435592663
517 => 0.00072354807288495
518 => 0.00071928167478444
519 => 0.0007138477753462
520 => 0.00071233618883325
521 => 0.00073438555330157
522 => 0.00078002707786904
523 => 0.00077106655448732
524 => 0.00077754145094198
525 => 0.00080939153305835
526 => 0.00081951571639776
527 => 0.00081232981086787
528 => 0.00080249330017121
529 => 0.00080292605672073
530 => 0.0008365403914855
531 => 0.0008386368763126
601 => 0.00084393401711903
602 => 0.00085074234002711
603 => 0.00081348929769914
604 => 0.00080117144177719
605 => 0.00079533455827274
606 => 0.00077735921623724
607 => 0.00079674408153317
608 => 0.00078544935066793
609 => 0.0007869733957446
610 => 0.00078598085938907
611 => 0.0007865228513542
612 => 0.00075774728204608
613 => 0.00076823158710257
614 => 0.00075079939648176
615 => 0.00072745965009572
616 => 0.00072738140708187
617 => 0.00073309377694445
618 => 0.00072969583582513
619 => 0.00072055206364209
620 => 0.00072185089332331
621 => 0.00071047177862307
622 => 0.00072323252387344
623 => 0.00072359845638708
624 => 0.00071868487438319
625 => 0.0007383445630849
626 => 0.00074639915358677
627 => 0.00074316492865269
628 => 0.00074617223174361
629 => 0.00077143890468817
630 => 0.00077555847484036
701 => 0.00077738811577844
702 => 0.00077493663930239
703 => 0.00074663406014235
704 => 0.00074788939987996
705 => 0.0007386785498164
706 => 0.00073089635212816
707 => 0.00073120759922344
708 => 0.00073520866045008
709 => 0.00075268152948596
710 => 0.00078945215229008
711 => 0.00079084757054652
712 => 0.00079253885818054
713 => 0.00078565954139989
714 => 0.00078358467363265
715 => 0.00078632195978645
716 => 0.00080013107240418
717 => 0.00083565185919448
718 => 0.0008230964407892
719 => 0.00081288869018899
720 => 0.00082184363945518
721 => 0.00082046509520686
722 => 0.00080882879443316
723 => 0.00080850220222635
724 => 0.00078616842069122
725 => 0.00077791213017328
726 => 0.00077101255584386
727 => 0.00076347840079408
728 => 0.0007590119011334
729 => 0.00076587447459999
730 => 0.00076744402634738
731 => 0.00075243888952543
801 => 0.00075039374482248
802 => 0.00076264726345966
803 => 0.00075725494676466
804 => 0.00076280107820849
805 => 0.00076408782827729
806 => 0.00076388063187985
807 => 0.00075825043394664
808 => 0.00076183895421435
809 => 0.00075335103399184
810 => 0.00074412169559425
811 => 0.00073823395270469
812 => 0.00073309611613778
813 => 0.00073594688647792
814 => 0.00072578441074544
815 => 0.00072253323022839
816 => 0.00076062324429191
817 => 0.00078876074721729
818 => 0.00078835161678108
819 => 0.00078586114047046
820 => 0.00078216079784755
821 => 0.0007998603692933
822 => 0.00079369419251571
823 => 0.00079818060132272
824 => 0.00079932258065809
825 => 0.00080277900816408
826 => 0.00080401438390749
827 => 0.00080028022038728
828 => 0.00078774791152382
829 => 0.00075651858937223
830 => 0.00074198125560872
831 => 0.00073718369332832
901 => 0.00073735807560534
902 => 0.00073254783392823
903 => 0.00073396466568205
904 => 0.00073205511766477
905 => 0.00072843889568932
906 => 0.00073572359496118
907 => 0.00073656308869059
908 => 0.00073486275283486
909 => 0.00073526324348194
910 => 0.00072118518881947
911 => 0.00072225551273953
912 => 0.00071629581314245
913 => 0.00071517844131325
914 => 0.00070011283970223
915 => 0.00067342194265444
916 => 0.00068821129056698
917 => 0.00067034783798564
918 => 0.00066358267781761
919 => 0.0006956078938548
920 => 0.00069239345040589
921 => 0.00068689172050633
922 => 0.00067875351532392
923 => 0.00067573497585839
924 => 0.00065739528561929
925 => 0.00065631167888152
926 => 0.00066540132457731
927 => 0.00066120676584432
928 => 0.00065531601677957
929 => 0.00063398032080274
930 => 0.00060999193451861
1001 => 0.0006107159931149
1002 => 0.00061834625247209
1003 => 0.00064053226063379
1004 => 0.00063186380342318
1005 => 0.00062557473825779
1006 => 0.00062439698540092
1007 => 0.00063913902819729
1008 => 0.00066000210730761
1009 => 0.00066979059724108
1010 => 0.00066009050099787
1011 => 0.00064894755272393
1012 => 0.00064962577235392
1013 => 0.00065413766370445
1014 => 0.00065461179969068
1015 => 0.00064735888587795
1016 => 0.00064940053863205
1017 => 0.00064629908140593
1018 => 0.00062726544413407
1019 => 0.00062692118599214
1020 => 0.00062225002444677
1021 => 0.00062210858353161
1022 => 0.00061416177246707
1023 => 0.00061304995866543
1024 => 0.00059727108295984
1025 => 0.0006076567867321
1026 => 0.00060069060191559
1027 => 0.00059019091824023
1028 => 0.00058838076881703
1029 => 0.00058832635353955
1030 => 0.00059910718098783
1031 => 0.00060753080648646
1101 => 0.00060081178168295
1102 => 0.00059928198997802
1103 => 0.00061561616312526
1104 => 0.00061353749070298
1105 => 0.00061173737379128
1106 => 0.00065813404740153
1107 => 0.00062140745986143
1108 => 0.00060539257141362
1109 => 0.00058557110581462
1110 => 0.00059202507496215
1111 => 0.00059338502109008
1112 => 0.0005457179694122
1113 => 0.00052637945248304
1114 => 0.00051974320222959
1115 => 0.00051592394638592
1116 => 0.00051766442923307
1117 => 0.00050025749581503
1118 => 0.00051195524295606
1119 => 0.00049688230998749
1120 => 0.00049435528372374
1121 => 0.00052130755504964
1122 => 0.00052505780615175
1123 => 0.00050905806983844
1124 => 0.00051933249067361
1125 => 0.00051560684285365
1126 => 0.00049714069216129
1127 => 0.00049643542103266
1128 => 0.00048716975573182
1129 => 0.00047267078372235
1130 => 0.00046604436445466
1201 => 0.00046259326776684
1202 => 0.00046401725752077
1203 => 0.00046329724472638
1204 => 0.00045859867420756
1205 => 0.00046356656128857
1206 => 0.00045087566266925
1207 => 0.00044582204458151
1208 => 0.00044353944253433
1209 => 0.00043227553954881
1210 => 0.00045020141827917
1211 => 0.00045373304221332
1212 => 0.00045727162453759
1213 => 0.00048807256777764
1214 => 0.00048653383969593
1215 => 0.00050044319216363
1216 => 0.00049990270030439
1217 => 0.00049593552766403
1218 => 0.00047919867886259
1219 => 0.0004858696884892
1220 => 0.00046533735776356
1221 => 0.00048072157600599
1222 => 0.00047370086126046
1223 => 0.00047834786528832
1224 => 0.00046999213304276
1225 => 0.00047461654026718
1226 => 0.00045457052126272
1227 => 0.00043585183077144
1228 => 0.00044338477825777
1229 => 0.00045157395367245
1230 => 0.00046933017253456
1231 => 0.00045875471506591
]
'min_raw' => 0.00043227553954881
'max_raw' => 0.0012903530132143
'avg_raw' => 0.00086131427638155
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.000432'
'max' => '$0.00129'
'avg' => '$0.000861'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.00081888446045119
'max_diff' => 3.919301321428E-5
'year' => 2026
]
1 => [
'items' => [
101 => 0.00046255804947396
102 => 0.00044981751587749
103 => 0.00042353015591448
104 => 0.00042367893951708
105 => 0.00041963520188803
106 => 0.00041614082218118
107 => 0.00045996943357265
108 => 0.00045451865291831
109 => 0.00044583354732615
110 => 0.00045745890629363
111 => 0.00046053283572389
112 => 0.00046062034617333
113 => 0.00046910190798206
114 => 0.00047362851903978
115 => 0.00047442635385816
116 => 0.00048777227462047
117 => 0.00049224565122304
118 => 0.00051067085635309
119 => 0.00047324446771721
120 => 0.00047247369587237
121 => 0.00045762249893494
122 => 0.00044820363504908
123 => 0.00045826741660339
124 => 0.00046718255321733
125 => 0.00045789951708038
126 => 0.00045911168562427
127 => 0.00044664996806234
128 => 0.00045110444571242
129 => 0.00045494124194761
130 => 0.000452822788583
131 => 0.00044965136136187
201 => 0.00046645161368186
202 => 0.00046550367760525
203 => 0.00048114845880176
204 => 0.00049334468451348
205 => 0.000515202501325
206 => 0.00049239273000842
207 => 0.00049156145128101
208 => 0.00049968733418271
209 => 0.00049224440719271
210 => 0.00049694808012928
211 => 0.00051444466689642
212 => 0.00051481434220405
213 => 0.00050862180450153
214 => 0.00050824498801955
215 => 0.00050943433262426
216 => 0.00051640036112254
217 => 0.00051396621672081
218 => 0.00051678307024749
219 => 0.0005203055887158
220 => 0.00053487621861762
221 => 0.00053838914815831
222 => 0.00052985455061957
223 => 0.00053062512921948
224 => 0.00052743295546005
225 => 0.00052434935560626
226 => 0.00053128083775398
227 => 0.00054394825761758
228 => 0.00054386945425605
301 => 0.00054680804944494
302 => 0.00054863876990299
303 => 0.00054077997752777
304 => 0.00053566419266731
305 => 0.00053762591010866
306 => 0.00054076273901803
307 => 0.00053660867877048
308 => 0.00051096789457472
309 => 0.00051874567056008
310 => 0.0005174510683223
311 => 0.00051560739730669
312 => 0.00052342801120373
313 => 0.00052267369391485
314 => 0.00050007896255326
315 => 0.0005015254039466
316 => 0.00050016692544515
317 => 0.00050455644740189
318 => 0.00049200735860186
319 => 0.00049586737379735
320 => 0.00049828833914256
321 => 0.00049971430632962
322 => 0.00050486587760415
323 => 0.00050426140017429
324 => 0.00050482830243838
325 => 0.00051246672267411
326 => 0.00055109923103712
327 => 0.00055320191322949
328 => 0.00054284753709436
329 => 0.00054698390612931
330 => 0.00053904298210668
331 => 0.00054437377760264
401 => 0.00054802097249344
402 => 0.00053154000009713
403 => 0.00053056410387244
404 => 0.00052259040483163
405 => 0.00052687501904276
406 => 0.00052005788975819
407 => 0.00052173057483156
408 => 0.00051705360154434
409 => 0.00052547122228525
410 => 0.00053488343023961
411 => 0.00053726132566823
412 => 0.00053100610654387
413 => 0.0005264769156588
414 => 0.00051852514847284
415 => 0.00053174911451977
416 => 0.00053561620518496
417 => 0.00053172880233878
418 => 0.00053082800615789
419 => 0.00052912099902281
420 => 0.00053119015579114
421 => 0.0005355951441787
422 => 0.00053351783300249
423 => 0.00053488993363189
424 => 0.00052966090093665
425 => 0.00054078257911505
426 => 0.00055844648063997
427 => 0.00055850327297172
428 => 0.00055642595059803
429 => 0.00055557595503925
430 => 0.00055770741385712
501 => 0.00055886364282879
502 => 0.00056575638980307
503 => 0.00057315258192564
504 => 0.00060766738335018
505 => 0.00059797576522338
506 => 0.00062859935034196
507 => 0.00065281863019591
508 => 0.00066008093324336
509 => 0.00065339995615747
510 => 0.00063054469444594
511 => 0.00062942330626959
512 => 0.00066357871650922
513 => 0.00065392824869963
514 => 0.00065278035626121
515 => 0.00064056872011134
516 => 0.00064778730951647
517 => 0.00064620849812325
518 => 0.00064371626710096
519 => 0.00065748883283466
520 => 0.00068326984640272
521 => 0.00067925163366532
522 => 0.00067625222425638
523 => 0.00066310968534135
524 => 0.00067102442926054
525 => 0.00066820614054785
526 => 0.00068031529738777
527 => 0.00067314210112647
528 => 0.00065385513691447
529 => 0.0006569266495359
530 => 0.00065646239658219
531 => 0.00066601668947208
601 => 0.00066314872789866
602 => 0.00065590238105585
603 => 0.0006831817297011
604 => 0.00068141036053579
605 => 0.00068392175702083
606 => 0.00068502735142107
607 => 0.00070163181022539
608 => 0.0007084341257141
609 => 0.00070997837042133
610 => 0.00071644004402565
611 => 0.00070981759809561
612 => 0.0007363121035397
613 => 0.00075392940366277
614 => 0.00077439280433369
615 => 0.00080429533275747
616 => 0.00081553896005866
617 => 0.00081350789942451
618 => 0.00083617965520258
619 => 0.00087692029637096
620 => 0.00082174274782415
621 => 0.00087984484042549
622 => 0.00086145038872882
623 => 0.00081783747465808
624 => 0.0008150293171544
625 => 0.00084456448891945
626 => 0.00091007065723941
627 => 0.00089366210504007
628 => 0.0009100974957526
629 => 0.00089092473946926
630 => 0.00088997265051911
701 => 0.00090916631777432
702 => 0.00095401336750844
703 => 0.00093270821524628
704 => 0.00090216205524081
705 => 0.00092471686443796
706 => 0.00090517780136234
707 => 0.00086115082361357
708 => 0.00089364955772945
709 => 0.00087191857973682
710 => 0.0008782608343974
711 => 0.00092393611789888
712 => 0.00091844034694617
713 => 0.00092555238345366
714 => 0.00091299982517234
715 => 0.00090127375638083
716 => 0.00087938617819217
717 => 0.00087290634533507
718 => 0.00087469713801681
719 => 0.00087290545790716
720 => 0.00086065955906783
721 => 0.00085801505837942
722 => 0.00085360744137384
723 => 0.00085497354618694
724 => 0.00084668593672261
725 => 0.00086232636808929
726 => 0.00086522936997396
727 => 0.0008766111716189
728 => 0.00087779286802335
729 => 0.0009094910235947
730 => 0.00089203221217187
731 => 0.00090374509019556
801 => 0.00090269738013924
802 => 0.00081878269875191
803 => 0.00083034540146158
804 => 0.00084833333830183
805 => 0.00084022979713737
806 => 0.00082877328586743
807 => 0.00081952153875767
808 => 0.00080550419584668
809 => 0.00082523333681467
810 => 0.00085117505922734
811 => 0.0008784507929141
812 => 0.00091122079976187
813 => 0.00090390691571838
814 => 0.00087783818043042
815 => 0.00087900760485222
816 => 0.0008862365264762
817 => 0.00087687441615635
818 => 0.00087411334705292
819 => 0.00088585719798049
820 => 0.00088593807142752
821 => 0.00087516583205571
822 => 0.00086319445929293
823 => 0.00086314429880394
824 => 0.00086101410865055
825 => 0.0008913036955653
826 => 0.00090795990574576
827 => 0.00090986951340013
828 => 0.00090783137393567
829 => 0.00090861577292468
830 => 0.00089892389121521
831 => 0.00092107665876481
901 => 0.00094140622894996
902 => 0.00093595746986242
903 => 0.00092778900540345
904 => 0.00092128243001533
905 => 0.00093442472748292
906 => 0.00093383952166458
907 => 0.00094122866788952
908 => 0.00094089345353498
909 => 0.00093840876157938
910 => 0.00093595755859859
911 => 0.00094567630134599
912 => 0.00094287745951297
913 => 0.00094007427030553
914 => 0.0009344520452032
915 => 0.00093521619896988
916 => 0.00092704914491147
917 => 0.00092327069200508
918 => 0.00086645182606919
919 => 0.00085126796848111
920 => 0.00085604511917424
921 => 0.00085761788122108
922 => 0.00085100984694011
923 => 0.0008604840706343
924 => 0.00085900752290724
925 => 0.00086475190636168
926 => 0.00086116306497148
927 => 0.00086131035227398
928 => 0.00087186436958088
929 => 0.00087492824570507
930 => 0.00087336993357979
1001 => 0.00087446132197652
1002 => 0.00089961190693291
1003 => 0.00089603629802255
1004 => 0.00089413682705344
1005 => 0.0008946629934931
1006 => 0.00090108950718408
1007 => 0.00090288858014292
1008 => 0.00089526578159772
1009 => 0.00089886073745851
1010 => 0.00091416760324592
1011 => 0.00091952413997795
1012 => 0.00093661963394307
1013 => 0.00092935716425851
1014 => 0.00094268774167685
1015 => 0.00098366139193208
1016 => 0.0010163939789169
1017 => 0.00098629173919429
1018 => 0.0010464009667221
1019 => 0.001093204622509
1020 => 0.0010914082202444
1021 => 0.0010832469202699
1022 => 0.001029962202496
1023 => 0.00098092881077005
1024 => 0.0010219473250166
1025 => 0.0010220518896449
1026 => 0.0010185283628936
1027 => 0.00099664404085671
1028 => 0.0010177668359238
1029 => 0.0010194434866894
1030 => 0.0010185050081181
1031 => 0.0010017263497229
1101 => 0.00097610843956785
1102 => 0.00098111411789154
1103 => 0.0009893135210988
1104 => 0.00097379034025275
1105 => 0.00096882974338974
1106 => 0.00097805243675024
1107 => 0.0010077698763822
1108 => 0.0010021519665612
1109 => 0.001002005260232
1110 => 0.0010260410608109
1111 => 0.0010088366148469
1112 => 0.0009811772555256
1113 => 0.00097419290251485
1114 => 0.00094940315455065
1115 => 0.00096652552176758
1116 => 0.00096714172528136
1117 => 0.000957763979743
1118 => 0.00098193820789233
1119 => 0.00098171543812415
1120 => 0.0010046652698929
1121 => 0.0010485367286716
1122 => 0.0010355617795274
1123 => 0.0010204733253431
1124 => 0.0010221138586704
1125 => 0.0010401064600895
1126 => 0.0010292277225403
1127 => 0.0010331397924123
1128 => 0.0010401005387032
1129 => 0.0010443001297661
1130 => 0.0010215096021445
1201 => 0.0010161960399589
1202 => 0.0010053263565342
1203 => 0.0010024906590209
1204 => 0.001011343789367
1205 => 0.0010090113023065
1206 => 0.00096708993576208
1207 => 0.00096270891970991
1208 => 0.00096284327921758
1209 => 0.00095182700604842
1210 => 0.00093502454525696
1211 => 0.00097918040899412
1212 => 0.00097563407517511
1213 => 0.00097171919710336
1214 => 0.00097219874732916
1215 => 0.00099136531119639
1216 => 0.00098024773621872
1217 => 0.0010098056314316
1218 => 0.0010037294167675
1219 => 0.00099749737012488
1220 => 0.00099663591144609
1221 => 0.00099423710518194
1222 => 0.00098601070594564
1223 => 0.00097607683453786
1224 => 0.00096951763217724
1225 => 0.00089432876717537
1226 => 0.00090828338316621
1227 => 0.0009243368968604
1228 => 0.00092987850545722
1229 => 0.00092039920048473
1230 => 0.000986385006683
1231 => 0.00099844124933047
]
'min_raw' => 0.00041614082218118
'max_raw' => 0.001093204622509
'avg_raw' => 0.00075467272234511
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.000416'
'max' => '$0.001093'
'avg' => '$0.000754'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -1.6134717367631E-5
'max_diff' => -0.00019714839070524
'year' => 2027
]
2 => [
'items' => [
101 => 0.00096192210394203
102 => 0.00095509086290673
103 => 0.000986832861708
104 => 0.00096768855612929
105 => 0.00097630923575916
106 => 0.00095767604165903
107 => 0.00099553725352469
108 => 0.00099524881452516
109 => 0.00098051994797516
110 => 0.00099296868512429
111 => 0.00099080541069625
112 => 0.00097417655663691
113 => 0.00099606441785873
114 => 0.00099607527396482
115 => 0.00098189906014362
116 => 0.00096534434597271
117 => 0.00096238475408384
118 => 0.00096015509916081
119 => 0.00097576087732843
120 => 0.00098975296923551
121 => 0.0010157887833408
122 => 0.0010223348056026
123 => 0.0010478843662836
124 => 0.0010326708468836
125 => 0.0010394148029856
126 => 0.0010467363213251
127 => 0.001050246526457
128 => 0.0010445268355626
129 => 0.001084215819919
130 => 0.0010875667862377
131 => 0.0010886903362586
201 => 0.0010753074340412
202 => 0.0010871945835176
203 => 0.0010816329799386
204 => 0.0010961027273931
205 => 0.001098371768553
206 => 0.001096449971414
207 => 0.0010971702008926
208 => 0.001063302654361
209 => 0.0010615464434078
210 => 0.0010376003824458
211 => 0.0010473585792882
212 => 0.001029116098014
213 => 0.0010349009767444
214 => 0.0010374508961684
215 => 0.001036118962968
216 => 0.0010479102930966
217 => 0.0010378852536777
218 => 0.0010114275263821
219 => 0.0009849625906964
220 => 0.00098463034498674
221 => 0.00097766259456562
222 => 0.00097262618721829
223 => 0.00097359637794953
224 => 0.00097701545663041
225 => 0.00097242746414981
226 => 0.00097340654496267
227 => 0.00098966581003744
228 => 0.00099292648969242
229 => 0.00098184542619504
301 => 0.00093735335726322
302 => 0.00092643489194744
303 => 0.00093428286829384
304 => 0.00093053204107467
305 => 0.00075101198219537
306 => 0.00079318755717039
307 => 0.00076812826266743
308 => 0.00077967673849709
309 => 0.00075409768788242
310 => 0.00076630535154865
311 => 0.000764051041822
312 => 0.00083186811831584
313 => 0.00083080924794573
314 => 0.00083131607315772
315 => 0.00080712398526291
316 => 0.00084566263816612
317 => 0.00086464816439138
318 => 0.0008611344487705
319 => 0.00086201877529224
320 => 0.00084682311573475
321 => 0.00083146320035831
322 => 0.0008144266903318
323 => 0.00084607842018477
324 => 0.00084255928813817
325 => 0.00085063091090933
326 => 0.00087115932023136
327 => 0.00087418220648387
328 => 0.00087824499626233
329 => 0.00087678877533582
330 => 0.00091148186573512
331 => 0.00090728030357538
401 => 0.00091740485950841
402 => 0.00089657787980226
403 => 0.00087301017534969
404 => 0.00087748962547982
405 => 0.00087705821841082
406 => 0.00087156591127655
407 => 0.00086660770197336
408 => 0.00085835368045037
409 => 0.00088447062591445
410 => 0.00088341032562375
411 => 0.00090057535486591
412 => 0.00089754126921516
413 => 0.00087727890267275
414 => 0.0008780025770578
415 => 0.00088286963508328
416 => 0.00089971457848057
417 => 0.00090471530457209
418 => 0.00090239876900201
419 => 0.00090788183686954
420 => 0.00091221543014936
421 => 0.00090842606946431
422 => 0.00096207542571003
423 => 0.00093979647257674
424 => 0.00095065507931795
425 => 0.0009532447930431
426 => 0.00094661129579194
427 => 0.00094804986381799
428 => 0.00095022890239113
429 => 0.00096345959790775
430 => 0.00099818077127596
501 => 0.0010135585426057
502 => 0.0010598233263772
503 => 0.0010122816327657
504 => 0.0010094607054139
505 => 0.0010177943900337
506 => 0.0010449567157323
507 => 0.0010669692294835
508 => 0.0010742720502271
509 => 0.0010752372385448
510 => 0.0010889378157423
511 => 0.0010967907310912
512 => 0.0010872742053095
513 => 0.0010792099461314
514 => 0.0010503247707279
515 => 0.0010536683084326
516 => 0.001076701967591
517 => 0.001109238367828
518 => 0.0011371579840668
519 => 0.0011273815075568
520 => 0.0012019691222111
521 => 0.001209364179541
522 => 0.0012083424217288
523 => 0.0012251894628584
524 => 0.0011917515170564
525 => 0.0011774561473964
526 => 0.0010809535304989
527 => 0.0011080668295565
528 => 0.001147477602045
529 => 0.0011422614385233
530 => 0.0011136402820892
531 => 0.0011371362723531
601 => 0.0011293677631843
602 => 0.0011232404176872
603 => 0.001151310975254
604 => 0.0011204462441343
605 => 0.0011471697027418
606 => 0.0011128965906589
607 => 0.001127426165678
608 => 0.0011191784761807
609 => 0.0011245157420843
610 => 0.0010933141946703
611 => 0.0011101497922801
612 => 0.0010926137784594
613 => 0.0010926054641056
614 => 0.0010922183556286
615 => 0.0011128493981221
616 => 0.0011135221756771
617 => 0.0010982758041027
618 => 0.0010960785637657
619 => 0.0011042029129117
620 => 0.0010946914278321
621 => 0.0010991417918363
622 => 0.0010948262248242
623 => 0.00109385469979
624 => 0.0010861134230263
625 => 0.0010827782681456
626 => 0.0010840860683107
627 => 0.0010796218721302
628 => 0.0010769320324544
629 => 0.0010916832788148
630 => 0.001083802282948
701 => 0.0010904754031688
702 => 0.0010828705404623
703 => 0.0010565087730404
704 => 0.0010413478418255
705 => 0.00099155290690279
706 => 0.0010056746886765
707 => 0.0010150374446024
708 => 0.0010119430538247
709 => 0.0010185910025855
710 => 0.001018999132647
711 => 0.0010168378167371
712 => 0.0010143352897951
713 => 0.0010131171980781
714 => 0.0010221958557724
715 => 0.0010274663221374
716 => 0.0010159771224171
717 => 0.0010132853636736
718 => 0.001024901578927
719 => 0.001031987463521
720 => 0.001084305654149
721 => 0.0010804297536017
722 => 0.0010901575033682
723 => 0.001089062308029
724 => 0.0010992585395364
725 => 0.001115925068802
726 => 0.0010820373547701
727 => 0.0010879190901771
728 => 0.0010864770244844
729 => 0.0011022211195871
730 => 0.0011022702709335
731 => 0.0010928308994435
801 => 0.0010979481358646
802 => 0.0010950918348784
803 => 0.0011002535568126
804 => 0.0010803779885869
805 => 0.0011045842852508
806 => 0.00111830769564
807 => 0.0011184982452066
808 => 0.0011250030328153
809 => 0.0011316122737577
810 => 0.001144298136203
811 => 0.0011312584719394
812 => 0.0011078013853148
813 => 0.0011094949112031
814 => 0.0010957420298978
815 => 0.0010959732183172
816 => 0.0010947391164158
817 => 0.0010984427491206
818 => 0.0010811907276922
819 => 0.0010852397426386
820 => 0.0010795710980027
821 => 0.0010879067676507
822 => 0.001078938965045
823 => 0.0010864763290767
824 => 0.0010897292055251
825 => 0.0011017323896495
826 => 0.0010771660849903
827 => 0.0010270737267977
828 => 0.0010376037478009
829 => 0.0010220290196218
830 => 0.001023470520012
831 => 0.0010263825802132
901 => 0.0010169436403343
902 => 0.001018744292608
903 => 0.0010186799606378
904 => 0.0010181255824735
905 => 0.0010156701496618
906 => 0.0010121092862924
907 => 0.0010262946699803
908 => 0.0010287050430893
909 => 0.0010340630039283
910 => 0.0010500046610459
911 => 0.0010484117135697
912 => 0.0010510098769942
913 => 0.0010453381008267
914 => 0.0010237336174413
915 => 0.0010249068448315
916 => 0.0010102766804769
917 => 0.0010336888777327
918 => 0.0010281445603966
919 => 0.0010245701029421
920 => 0.0010235947791086
921 => 0.0010395759525107
922 => 0.0010443577700668
923 => 0.0010413780622616
924 => 0.0010352665946214
925 => 0.0010470024191839
926 => 0.0010501424307422
927 => 0.0010508453635309
928 => 0.0010716389945346
929 => 0.0010520074965156
930 => 0.0010567329932091
1001 => 0.0010935999694591
1002 => 0.0010601667092953
1003 => 0.0010778770528547
1004 => 0.0010770102236977
1005 => 0.0010860702361773
1006 => 0.0010762670382324
1007 => 0.0010763885606199
1008 => 0.0010844332379235
1009 => 0.0010731359395159
1010 => 0.0010703385695559
1011 => 0.0010664740229913
1012 => 0.0010749121190335
1013 => 0.0010799703759885
1014 => 0.0011207362121656
1015 => 0.001147072801484
1016 => 0.0011459294606838
1017 => 0.0011563774553527
1018 => 0.0011516705380617
1019 => 0.0011364706605071
1020 => 0.0011624149980652
1021 => 0.0011542051241046
1022 => 0.001154881936139
1023 => 0.0011548567451612
1024 => 0.0011603155936254
1025 => 0.0011564474991924
1026 => 0.0011488230880133
1027 => 0.0011538845279704
1028 => 0.001168915195145
1029 => 0.0012155708472521
1030 => 0.0012416799682764
1031 => 0.0012139990453829
1101 => 0.0012330929753325
1102 => 0.0012216434212256
1103 => 0.0012195626966497
1104 => 0.0012315550956884
1105 => 0.0012435684858341
1106 => 0.0012428032848171
1107 => 0.0012340821804658
1108 => 0.0012291558499075
1109 => 0.0012664596753365
1110 => 0.0012939444984584
1111 => 0.0012920702177821
1112 => 0.0013003426831387
1113 => 0.0013246308972833
1114 => 0.0013268515071949
1115 => 0.0013265717613862
1116 => 0.0013210677480237
1117 => 0.0013449826490722
1118 => 0.0013649328802696
1119 => 0.0013197937279565
1120 => 0.0013369821262424
1121 => 0.0013446985520086
1122 => 0.0013560285543937
1123 => 0.0013751441675462
1124 => 0.0013959087935958
1125 => 0.0013988451393917
1126 => 0.0013967616615324
1127 => 0.0013830668324696
1128 => 0.0014057877340666
1129 => 0.0014190971053514
1130 => 0.001427022531372
1201 => 0.001447120093095
1202 => 0.0013447462060271
1203 => 0.0012722808804482
1204 => 0.001260964373447
1205 => 0.0012839769354335
1206 => 0.0012900451645076
1207 => 0.0012875990689767
1208 => 0.0012060327567785
1209 => 0.0012605349436938
1210 => 0.0013191747141407
1211 => 0.0013214273065416
1212 => 0.0013507836017271
1213 => 0.0013603432147947
1214 => 0.0013839788802366
1215 => 0.0013825004629279
1216 => 0.0013882553713374
1217 => 0.0013869324175552
1218 => 0.0014307125107097
1219 => 0.001479008454866
1220 => 0.0014773361198915
1221 => 0.0014703930065074
1222 => 0.0014807047138596
1223 => 0.0015305513039367
1224 => 0.0015259622286978
1225 => 0.0015304201243959
1226 => 0.0015891920633276
1227 => 0.0016656039441495
1228 => 0.0016301029538803
1229 => 0.0017071298876298
1230 => 0.0017556142594027
1231 => 0.0018394629670064
]
'min_raw' => 0.00075101198219537
'max_raw' => 0.0018394629670064
'avg_raw' => 0.0012952374746009
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.000751'
'max' => '$0.001839'
'avg' => '$0.001295'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 0.00033487116001418
'max_diff' => 0.00074625834449738
'year' => 2028
]
3 => [
'items' => [
101 => 0.0018289646958508
102 => 0.0018616063824107
103 => 0.0018101705994271
104 => 0.0016920636448097
105 => 0.0016733727671463
106 => 0.0017107923775569
107 => 0.0018027848383993
108 => 0.0017078952075916
109 => 0.0017270912563195
110 => 0.0017215627929945
111 => 0.0017212682046783
112 => 0.0017325114425279
113 => 0.0017162025396193
114 => 0.0016497571352539
115 => 0.0016802086725093
116 => 0.0016684498715721
117 => 0.0016814971378886
118 => 0.0017519078530971
119 => 0.0017207775975216
120 => 0.0016879844020895
121 => 0.001729114346554
122 => 0.0017814868996397
123 => 0.0017782095193901
124 => 0.0017718500318673
125 => 0.0018076981300616
126 => 0.0018669086857714
127 => 0.0018829130610525
128 => 0.0018947271636899
129 => 0.0018963561288427
130 => 0.0019131354823128
131 => 0.0018229086697627
201 => 0.0019661009384686
202 => 0.0019908262876675
203 => 0.0019861789467789
204 => 0.0020136601318117
205 => 0.0020055744700447
206 => 0.0019938596147457
207 => 0.0020374231384385
208 => 0.0019874810739198
209 => 0.0019165946008666
210 => 0.0018777048797742
211 => 0.001928918001653
212 => 0.0019601920680928
213 => 0.0019808622366052
214 => 0.0019871170171079
215 => 0.0018299127203781
216 => 0.0017451883233908
217 => 0.0017994956904925
218 => 0.0018657544264508
219 => 0.0018225405991389
220 => 0.001824234499355
221 => 0.0017626229380023
222 => 0.0018712056825189
223 => 0.0018553860899674
224 => 0.0019374581641087
225 => 0.0019178710049454
226 => 0.001984797595388
227 => 0.0019671735811702
228 => 0.0020403298788431
301 => 0.0020695139066125
302 => 0.0021185184313686
303 => 0.0021545663592634
304 => 0.0021757343920103
305 => 0.0021744635427234
306 => 0.0022583418343385
307 => 0.0022088817362574
308 => 0.0021467481962175
309 => 0.0021456243965069
310 => 0.0021778042373327
311 => 0.0022452443555953
312 => 0.002262730597047
313 => 0.0022725030205015
314 => 0.0022575362138004
315 => 0.0022038508221705
316 => 0.0021806697422558
317 => 0.0022004206939637
318 => 0.0021762669772436
319 => 0.0022179630686384
320 => 0.0022752207079279
321 => 0.0022633972318359
322 => 0.002302921339737
323 => 0.0023438246333572
324 => 0.002402318180316
325 => 0.0024176105595008
326 => 0.0024428882807762
327 => 0.0024689073592674
328 => 0.002477263986045
329 => 0.0024932193794724
330 => 0.0024931352866732
331 => 0.0025412179386884
401 => 0.002594254592857
402 => 0.0026142747020042
403 => 0.0026603098390731
404 => 0.0025814762801063
405 => 0.0026412724401573
406 => 0.0026952100733182
407 => 0.0026309034034761
408 => 0.0027195351663211
409 => 0.0027229765368285
410 => 0.0027749371457066
411 => 0.0027222651141604
412 => 0.0026909886299634
413 => 0.0027812826679256
414 => 0.00282497310866
415 => 0.0028118131923462
416 => 0.002711665579413
417 => 0.0026533753731527
418 => 0.0025008186600284
419 => 0.0026815286766837
420 => 0.0027695472544131
421 => 0.0027114376325604
422 => 0.0027407447457881
423 => 0.0029006348526946
424 => 0.0029615106532868
425 => 0.0029488489123176
426 => 0.0029509885381114
427 => 0.002983836015137
428 => 0.0031294998177046
429 => 0.0030422146907456
430 => 0.0031089408997945
501 => 0.0031443322404747
502 => 0.0031772056900794
503 => 0.0030964788876108
504 => 0.0029914545037113
505 => 0.0029581888727066
506 => 0.0027056597758827
507 => 0.0026925145397147
508 => 0.0026851357203122
509 => 0.0026386133077342
510 => 0.0026020594350091
511 => 0.0025729904382598
512 => 0.0024967047100526
513 => 0.0025224489039315
514 => 0.0024008653752379
515 => 0.0024786502082404
516 => 0.0022845999607085
517 => 0.0024462107730873
518 => 0.0023582533554515
519 => 0.0024173143957868
520 => 0.0024171083373809
521 => 0.0023083582368038
522 => 0.0022456334483476
523 => 0.0022856041248372
524 => 0.0023284558629103
525 => 0.0023354084132421
526 => 0.0023909668101986
527 => 0.0024064719645654
528 => 0.0023594906229675
529 => 0.0022805787006463
530 => 0.0022989081404122
531 => 0.0022452620028358
601 => 0.002151249210202
602 => 0.0022187708391775
603 => 0.0022418256920262
604 => 0.0022520080284501
605 => 0.002159557244337
606 => 0.0021305072007644
607 => 0.0021150412013199
608 => 0.0022686444653645
609 => 0.0022770591989087
610 => 0.0022340082323735
611 => 0.0024286026833727
612 => 0.0023845599659382
613 => 0.0024337664720403
614 => 0.0022972449358736
615 => 0.0023024602424057
616 => 0.0022378287593298
617 => 0.0022740180711751
618 => 0.0022484406319988
619 => 0.0022710943324077
620 => 0.0022846728670281
621 => 0.0023492937447137
622 => 0.0024469486397085
623 => 0.0023396415405038
624 => 0.0022928863007144
625 => 0.0023218929885183
626 => 0.0023991416205968
627 => 0.0025161772524804
628 => 0.0024468898028437
629 => 0.0024776383964152
630 => 0.0024843555962009
701 => 0.0024332655959996
702 => 0.0025180610136618
703 => 0.0025635035668637
704 => 0.0026101182234374
705 => 0.0026505924236274
706 => 0.0025914993045236
707 => 0.0026547374126305
708 => 0.0026037786605251
709 => 0.0025580633918677
710 => 0.0025581327230598
711 => 0.0025294548672375
712 => 0.0024738879079393
713 => 0.0024636405080946
714 => 0.0025169487761906
715 => 0.0025596969588918
716 => 0.0025632179039691
717 => 0.0025868854943934
718 => 0.002600891730611
719 => 0.0027381718860977
720 => 0.0027933871002755
721 => 0.0028609032190016
722 => 0.0028872045522453
723 => 0.0029663621357592
724 => 0.0029024359582072
725 => 0.0028886051275793
726 => 0.0026965947222228
727 => 0.0027280364153433
728 => 0.0027783775997014
729 => 0.0026974248298111
730 => 0.0027487707295474
731 => 0.0027589074978102
801 => 0.0026946740856671
802 => 0.0027289839264546
803 => 0.0026378671614819
804 => 0.0024489347361915
805 => 0.0025182713494603
806 => 0.0025693264352779
807 => 0.0024964645327696
808 => 0.0026270666728706
809 => 0.002550771598799
810 => 0.0025265897231277
811 => 0.0024322476046729
812 => 0.0024767734530224
813 => 0.0025369953004639
814 => 0.0024997852002863
815 => 0.0025770017452795
816 => 0.0026863609658902
817 => 0.0027642968589516
818 => 0.002770279809087
819 => 0.0027201722511479
820 => 0.0028004699325275
821 => 0.0028010548134734
822 => 0.0027104787008515
823 => 0.0026550013362005
824 => 0.0026423967622264
825 => 0.0026738854592859
826 => 0.0027121185506504
827 => 0.002772401479569
828 => 0.0028088291909764
829 => 0.0029038133425618
830 => 0.0029295133305718
831 => 0.0029577498256453
901 => 0.002995482490876
902 => 0.0030407902299422
903 => 0.0029416594762363
904 => 0.0029455981258839
905 => 0.0028532889405916
906 => 0.0027546433376305
907 => 0.00282950305393
908 => 0.0029273721748207
909 => 0.0029049208903526
910 => 0.0029023946622118
911 => 0.0029066430772274
912 => 0.0028897155419288
913 => 0.0028131529271372
914 => 0.0027747036612962
915 => 0.002824313023685
916 => 0.0028506781919359
917 => 0.0028915682686088
918 => 0.0028865277035741
919 => 0.0029918561498099
920 => 0.0030327835990502
921 => 0.0030223126061503
922 => 0.0030242395208424
923 => 0.0030983367127422
924 => 0.0031807480293847
925 => 0.0032579371025514
926 => 0.0033364571431243
927 => 0.0032417981695243
928 => 0.003193736180484
929 => 0.0032433238849771
930 => 0.0032170119509756
1001 => 0.0033682081283749
1002 => 0.0033786766236523
1003 => 0.003529861867847
1004 => 0.0036733546673918
1005 => 0.0035832294109383
1006 => 0.0036682134684433
1007 => 0.0037601306554868
1008 => 0.0039374538223199
1009 => 0.0038777376180347
1010 => 0.0038319959414245
1011 => 0.00378877027805
1012 => 0.0038787160216515
1013 => 0.0039944297838764
1014 => 0.0040193534199671
1015 => 0.0040597392319956
1016 => 0.0040172784887897
1017 => 0.0040684177770838
1018 => 0.0042489619365038
1019 => 0.0042001773109211
1020 => 0.0041308953000738
1021 => 0.0042734175742905
1022 => 0.0043249958312882
1023 => 0.004686999050641
1024 => 0.005144043068681
1025 => 0.0049548238440996
1026 => 0.0048373693653358
1027 => 0.0048649739539028
1028 => 0.0050318709573746
1029 => 0.0050854729778436
1030 => 0.0049397642084843
1031 => 0.0049912310091212
1101 => 0.0052748181407351
1102 => 0.0054269535382815
1103 => 0.0052203332339037
1104 => 0.0046502760088053
1105 => 0.0041246572130279
1106 => 0.004264074986591
1107 => 0.0042482693377061
1108 => 0.0045529483324101
1109 => 0.0041990138137351
1110 => 0.0042049731633139
1111 => 0.0045159525969677
1112 => 0.0044329886156061
1113 => 0.0042985975910242
1114 => 0.0041256384162334
1115 => 0.0038059073848454
1116 => 0.0035227126939856
1117 => 0.0040781226986039
1118 => 0.0040541724092572
1119 => 0.0040194888410492
1120 => 0.0040966733689421
1121 => 0.0044714595271797
1122 => 0.0044628194931679
1123 => 0.004407856004969
1124 => 0.0044495453263419
1125 => 0.0042912892514226
1126 => 0.0043320754453531
1127 => 0.0041245739523252
1128 => 0.0042183732932017
1129 => 0.0042983092482435
1130 => 0.0043143575746902
1201 => 0.0043505152736224
1202 => 0.0040415516950811
1203 => 0.004180267271152
1204 => 0.004261749676202
1205 => 0.0038936092058311
1206 => 0.0042544727227646
1207 => 0.0040361733265606
1208 => 0.003962079232742
1209 => 0.0040618371689141
1210 => 0.0040229614041701
1211 => 0.0039895383045047
1212 => 0.0039708876406096
1213 => 0.0040441388590527
1214 => 0.0040407216021582
1215 => 0.0039208683913364
1216 => 0.0037645247636612
1217 => 0.0038169988169137
1218 => 0.0037979345014202
1219 => 0.0037288429627262
1220 => 0.0037754023176617
1221 => 0.0035703784816758
1222 => 0.0032176456280736
1223 => 0.0034506717556627
1224 => 0.0034417005032342
1225 => 0.0034371767909458
1226 => 0.0036122894854599
1227 => 0.0035954564404196
1228 => 0.0035649042988418
1229 => 0.0037282818486868
1230 => 0.0036686468452553
1231 => 0.0038524278740574
]
'min_raw' => 0.0016497571352539
'max_raw' => 0.0054269535382815
'avg_raw' => 0.0035383553367677
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.001649'
'max' => '$0.005426'
'avg' => '$0.003538'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072434
'min_diff' => 0.00089874515305857
'max_diff' => 0.0035874905712751
'year' => 2029
]
4 => [
'items' => [
101 => 0.0039734779458382
102 => 0.003942775732075
103 => 0.0040566239096706
104 => 0.0038182077131179
105 => 0.0038974000100152
106 => 0.0039137214326499
107 => 0.0037262657950822
108 => 0.003598210534766
109 => 0.0035896707088397
110 => 0.0033676405345534
111 => 0.0034862472614922
112 => 0.0035906162729185
113 => 0.0035406316158078
114 => 0.0035248079666157
115 => 0.0036056475586074
116 => 0.0036119294872494
117 => 0.003468700848482
118 => 0.0034984826179428
119 => 0.0036226775474018
120 => 0.0034953532243718
121 => 0.0032479828630347
122 => 0.0031866315932603
123 => 0.0031784462029442
124 => 0.0030120566934853
125 => 0.0031907313784691
126 => 0.0031127350902899
127 => 0.0033591244301092
128 => 0.0032183881606169
129 => 0.0032123213013251
130 => 0.0032031503536908
131 => 0.0030599320294356
201 => 0.0030912877404481
202 => 0.0031955188994636
203 => 0.0032327097512483
204 => 0.0032288304407115
205 => 0.0031950081099213
206 => 0.0032104917997587
207 => 0.0031606134399172
208 => 0.0031430003529289
209 => 0.0030874086055326
210 => 0.0030057040944722
211 => 0.003017065607858
212 => 0.0028551875922991
213 => 0.0027669878579061
214 => 0.0027425753338799
215 => 0.0027099298864825
216 => 0.0027462627240297
217 => 0.0028547290122199
218 => 0.0027238956562557
219 => 0.0024995910443479
220 => 0.0025130721337201
221 => 0.0025433601389678
222 => 0.0024869186415638
223 => 0.0024335015010467
224 => 0.0024799433708567
225 => 0.0023849025498359
226 => 0.0025548453681253
227 => 0.0025502488911498
228 => 0.0026135930646147
301 => 0.0026532034762356
302 => 0.0025619143014725
303 => 0.0025389553208918
304 => 0.002552033799658
305 => 0.0023358756783228
306 => 0.0025959283345069
307 => 0.0025981772806765
308 => 0.0025789204381976
309 => 0.0027173904493906
310 => 0.0030096053628874
311 => 0.0028996623581123
312 => 0.0028570891036184
313 => 0.0027761573157047
314 => 0.0028839941178456
315 => 0.0028757139339574
316 => 0.0028382678022482
317 => 0.0028156202649515
318 => 0.0028573490468321
319 => 0.0028104496070845
320 => 0.0028020251789954
321 => 0.0027509823106436
322 => 0.0027327623289446
323 => 0.002719272979853
324 => 0.0027044225319392
325 => 0.002737178919536
326 => 0.00266294863578
327 => 0.0025734341904548
328 => 0.0025659920328858
329 => 0.0025865404842551
330 => 0.0025774493241765
331 => 0.0025659485079089
401 => 0.0025439903175932
402 => 0.0025374757915891
403 => 0.0025586448407039
404 => 0.0025347462184855
405 => 0.0025700099373941
406 => 0.0025604201570815
407 => 0.002506852423805
408 => 0.0024400871948276
409 => 0.0024394928442449
410 => 0.0024251083851786
411 => 0.0024067876138398
412 => 0.0024016911943758
413 => 0.0024760321661182
414 => 0.0026299157527869
415 => 0.0025997047226017
416 => 0.0026215352880614
417 => 0.0027289200636185
418 => 0.0027630544545952
419 => 0.0027388266723973
420 => 0.0027056621898202
421 => 0.002707121258741
422 => 0.0028204543352784
423 => 0.0028275227802448
424 => 0.0028453824603083
425 => 0.0028683371963348
426 => 0.0027427359632017
427 => 0.0027012054519556
428 => 0.0026815259917022
429 => 0.0026209208710312
430 => 0.0026862782977845
501 => 0.0026481973240994
502 => 0.0026533357484808
503 => 0.0026499893428615
504 => 0.0026518167066126
505 => 0.0025547978656442
506 => 0.0025901464321329
507 => 0.0025313725843782
508 => 0.0024526809999086
509 => 0.0024524171981246
510 => 0.0024716768519413
511 => 0.0024602204562208
512 => 0.0024293915899079
513 => 0.0024337706848595
514 => 0.0023954052051832
515 => 0.0024384289487216
516 => 0.00243966271574
517 => 0.0024230962309585
518 => 0.0024893802440119
519 => 0.0025165368582426
520 => 0.0025056324430709
521 => 0.0025157717754052
522 => 0.0026009601273005
523 => 0.0026148495456878
524 => 0.002621018307852
525 => 0.0026127529837564
526 => 0.0025173288620954
527 => 0.0025215613276657
528 => 0.0024905063035954
529 => 0.0024642680807538
530 => 0.0024653174720661
531 => 0.0024788073293369
601 => 0.0025377183272081
602 => 0.0026616930492351
603 => 0.0026663977993117
604 => 0.0026721000936518
605 => 0.0026489059968272
606 => 0.0026419104352873
607 => 0.0026511393866661
608 => 0.0026976977739782
609 => 0.0028174585866239
610 => 0.0027751271168792
611 => 0.0027407109730481
612 => 0.0027709032097137
613 => 0.0027662553515336
614 => 0.0027270227510545
615 => 0.0027259216226273
616 => 0.0026506217188868
617 => 0.0026227850589697
618 => 0.0025995226624052
619 => 0.0025741207326369
620 => 0.0025590616171899
621 => 0.0025821992627621
622 => 0.002587491116061
623 => 0.0025369002496406
624 => 0.0025300049014872
625 => 0.0025713184950858
626 => 0.0025531379228691
627 => 0.0025718370922505
628 => 0.0025761754599455
629 => 0.0025754768828255
630 => 0.0025564942774058
701 => 0.0025685932240309
702 => 0.002539975608393
703 => 0.0025088582496137
704 => 0.0024890073133925
705 => 0.0024716847386949
706 => 0.0024812963099311
707 => 0.0024470328134776
708 => 0.0024360712313742
709 => 0.0025644943731492
710 => 0.0026593619287599
711 => 0.0026579825169296
712 => 0.0026495857021689
713 => 0.0026371097386661
714 => 0.00269678507954
715 => 0.0026759953840256
716 => 0.0026911216245495
717 => 0.0026949718876092
718 => 0.0027066254742657
719 => 0.0027107906298358
720 => 0.0026982006368164
721 => 0.0026559470825054
722 => 0.0025506552425097
723 => 0.0025016416067618
724 => 0.0024854662905783
725 => 0.0024860542326003
726 => 0.0024698361669455
727 => 0.0024746131141236
728 => 0.0024681749396629
729 => 0.0024559825947961
730 => 0.0024805434669927
731 => 0.002483373878713
801 => 0.0024776410776617
802 => 0.0024789913598397
803 => 0.0024315262156468
804 => 0.0024351348874709
805 => 0.0024150413441864
806 => 0.0024112740470518
807 => 0.0023604793193736
808 => 0.002270489096478
809 => 0.0023203524155245
810 => 0.0022601245379601
811 => 0.0022373153281251
812 => 0.0023452905799237
813 => 0.0023344528594104
814 => 0.0023159033929356
815 => 0.0022884648659717
816 => 0.002278287649416
817 => 0.0022164541033386
818 => 0.0022128006475672
819 => 0.0022434470226493
820 => 0.0022293047750263
821 => 0.0022094437032756
822 => 0.0021375089146789
823 => 0.0020566303955063
824 => 0.0020590716096159
825 => 0.0020847975617664
826 => 0.0021595992372612
827 => 0.0021303729285632
828 => 0.0021091689062696
829 => 0.0021051980302846
830 => 0.0021549018568291
831 => 0.0022252431846632
901 => 0.0022582457618845
902 => 0.0022255412101614
903 => 0.00218797198208
904 => 0.0021902586469143
905 => 0.0022054708036128
906 => 0.0022070693861935
907 => 0.0021826156808916
908 => 0.0021894992556957
909 => 0.002179042476121
910 => 0.0021148692391728
911 => 0.002113708548812
912 => 0.0020979594015316
913 => 0.0020974825236111
914 => 0.0020706892952784
915 => 0.0020669407374218
916 => 0.0020137411563345
917 => 0.0020487572817093
918 => 0.002025270303237
919 => 0.001989869886661
920 => 0.0019837668415001
921 => 0.0019835833765929
922 => 0.0020199316890281
923 => 0.0020483325305155
924 => 0.0020256788692831
925 => 0.0020205210697433
926 => 0.0020755928749248
927 => 0.0020685844857248
928 => 0.0020625152658768
929 => 0.0022189448902661
930 => 0.0020951186362062
1001 => 0.0020411233216806
1002 => 0.001974293866523
1003 => 0.0019960538741057
1004 => 0.0020006390274244
1005 => 0.0018399262346851
1006 => 0.0017747250746863
1007 => 0.0017523504936286
1008 => 0.0017394736058998
1009 => 0.0017453417653356
1010 => 0.0016866530740034
1011 => 0.0017260928452
1012 => 0.0016752733993379
1013 => 0.0016667533538583
1014 => 0.0017576248183811
1015 => 0.001770269051806
1016 => 0.0017163248237598
1017 => 0.0017509657509427
1018 => 0.0017384044692013
1019 => 0.0016761445528765
1020 => 0.0016737666820259
1021 => 0.001642526844556
1022 => 0.0015936425481402
1023 => 0.0015713011129374
1024 => 0.0015596654995065
1025 => 0.0015644665803817
1026 => 0.0015620390069757
1027 => 0.0015461974484277
1028 => 0.0015629470265682
1029 => 0.0015201587758229
1030 => 0.0015031201496077
1031 => 0.0014954241974395
1101 => 0.0014574471621032
1102 => 0.0015178855137875
1103 => 0.0015297926304516
1104 => 0.0015417232078138
1105 => 0.0016455707384008
1106 => 0.0016403828092428
1107 => 0.0016872791622076
1108 => 0.0016854568561682
1109 => 0.0016720812566321
1110 => 0.0016156518023686
1111 => 0.0016381435770797
1112 => 0.0015689173905167
1113 => 0.0016207863564128
1114 => 0.0015971155264776
1115 => 0.001612783225001
1116 => 0.0015846112903565
1117 => 0.0016002028021795
1118 => 0.0015326162495376
1119 => 0.001469504877649
1120 => 0.0014949027360327
1121 => 0.0015225131126933
1122 => 0.0015823794442865
1123 => 0.0015467235510761
1124 => 0.0015595467585732
1125 => 0.001516591160037
1126 => 0.0014279614905969
1127 => 0.0014284631249008
1128 => 0.0014148293811597
1129 => 0.0014030478360082
1130 => 0.0015508190593305
1201 => 0.001532441371793
1202 => 0.0015031589319144
1203 => 0.0015423546413299
1204 => 0.0015527186090189
1205 => 0.001553013656609
1206 => 0.0015816098344108
1207 => 0.0015968716196298
1208 => 0.0015995615754231
1209 => 0.0016445582790556
1210 => 0.0016596405805924
1211 => 0.0017217624460951
1212 => 0.0015955767637822
1213 => 0.0015929780526937
1214 => 0.0015429062053417
1215 => 0.0015111498481465
1216 => 0.0015450805902876
1217 => 0.0015751385958165
1218 => 0.0015438401913599
1219 => 0.0015479271022365
1220 => 0.0015059115514271
1221 => 0.0015209301338261
1222 => 0.0015338661602096
1223 => 0.0015267236467851
1224 => 0.0015160309584871
1225 => 0.0015726741821401
1226 => 0.001569478149475
1227 => 0.0016222256215628
1228 => 0.0016633460480631
1229 => 0.0017370412035072
1230 => 0.001660136466986
1231 => 0.0016573337527185
]
'min_raw' => 0.0014030478360082
'max_raw' => 0.0040566239096706
'avg_raw' => 0.0027298358728394
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.001403'
'max' => '$0.004056'
'avg' => '$0.002729'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -0.00024670929924569
'max_diff' => -0.0013703296286109
'year' => 2030
]
5 => [
'items' => [
101 => 0.0016847307342526
102 => 0.0016596363862572
103 => 0.0016754951479628
104 => 0.0017344861118209
105 => 0.0017357324979305
106 => 0.0017148539247173
107 => 0.0017135834616398
108 => 0.001717593420012
109 => 0.0017410798714465
110 => 0.0017328729836495
111 => 0.0017423702019812
112 => 0.0017542466189315
113 => 0.0018033725149343
114 => 0.0018152166021457
115 => 0.0017864416106773
116 => 0.0017890396702269
117 => 0.0017782770335266
118 => 0.0017678804613294
119 => 0.0017912504373311
120 => 0.0018339595278122
121 => 0.001833693836777
122 => 0.0018436015156225
123 => 0.0018497739174636
124 => 0.0018232774502872
125 => 0.0018060292244575
126 => 0.0018126432917737
127 => 0.0018232193294481
128 => 0.0018092136252962
129 => 0.0017227639311978
130 => 0.0017489872459594
131 => 0.0017446224041285
201 => 0.0017384063385784
202 => 0.0017647740843501
203 => 0.0017622308509459
204 => 0.0016860511366465
205 => 0.0016909279147915
206 => 0.0016863477096779
207 => 0.0017011472894217
208 => 0.001658837160383
209 => 0.0016718514711122
210 => 0.0016800139248
211 => 0.001684821672729
212 => 0.0017021905549523
213 => 0.0017001525170943
214 => 0.0017020638676575
215 => 0.0017278173347798
216 => 0.0018580695339612
217 => 0.0018651588737774
218 => 0.0018302483717184
219 => 0.0018441944287118
220 => 0.0018174210489519
221 => 0.0018353941981507
222 => 0.0018476909703641
223 => 0.0017921242212652
224 => 0.0017888339190087
225 => 0.0017619500359868
226 => 0.0017763959119418
227 => 0.0017534114846021
228 => 0.0017590510591101
301 => 0.0017432823171364
302 => 0.0017716629131639
303 => 0.0018033968294214
304 => 0.0018114140698783
305 => 0.0017903241618751
306 => 0.0017750536785881
307 => 0.001748243740346
308 => 0.001792829265141
309 => 0.0018058674313104
310 => 0.0017927607812047
311 => 0.0017897236839892
312 => 0.0017839683902538
313 => 0.0017909446967622
314 => 0.0018057964226573
315 => 0.0017987926229935
316 => 0.0018034187560625
317 => 0.0017857887072511
318 => 0.0018232862217204
319 => 0.0018828412989659
320 => 0.0018830327782774
321 => 0.0018760289408605
322 => 0.0018731631214893
323 => 0.0018803494837075
324 => 0.0018842477904108
325 => 0.0019074871680708
326 => 0.0019324239461977
327 => 0.002048793008947
328 => 0.0020161170417853
329 => 0.0021193665970831
330 => 0.0022010235900468
331 => 0.0022255089518091
401 => 0.0022029835711131
402 => 0.0021259254605492
403 => 0.0021221446220198
404 => 0.0022373019722973
405 => 0.0022047647463031
406 => 0.0022008945468037
407 => 0.0021597221629352
408 => 0.0021840601411005
409 => 0.0021787370682591
410 => 0.0021703343373654
411 => 0.0022167695043064
412 => 0.0023036919915241
413 => 0.0022901443067373
414 => 0.0022800315885029
415 => 0.0022357206009682
416 => 0.0022624057126815
417 => 0.00225290365552
418 => 0.0022937305232401
419 => 0.0022695455912286
420 => 0.002204518244815
421 => 0.0022148740640643
422 => 0.0022133088028178
423 => 0.0022455217683555
424 => 0.002235852235676
425 => 0.0022114206713717
426 => 0.0023033948999124
427 => 0.0022974226050985
428 => 0.002305889953688
429 => 0.0023096175423985
430 => 0.0023656006345436
501 => 0.0023885351161363
502 => 0.0023937416449824
503 => 0.002415527628679
504 => 0.0023931995898615
505 => 0.0024825276647535
506 => 0.0025419256221191
507 => 0.0026109194061901
508 => 0.0027117378684987
509 => 0.0027496465429497
510 => 0.0027427986802175
511 => 0.0028192380877147
512 => 0.0029565980038346
513 => 0.0027705630465356
514 => 0.0029664583082996
515 => 0.0029044401301447
516 => 0.0027573961453988
517 => 0.0027479282463158
518 => 0.0028475081400016
519 => 0.0030683667599869
520 => 0.0030130441806383
521 => 0.0030684572479079
522 => 0.0030038149614995
523 => 0.0030006049271314
524 => 0.0030653177163414
525 => 0.003216522675641
526 => 0.0031446908673109
527 => 0.0030417023561877
528 => 0.0031177474701223
529 => 0.0030518701547891
530 => 0.0029034301254437
531 => 0.0030130018765045
601 => 0.0029397343669939
602 => 0.0029611177213841
603 => 0.0031151151286558
604 => 0.0030965857531863
605 => 0.0031205644808179
606 => 0.0030782426541807
607 => 0.0030387073945622
608 => 0.0029649118965572
609 => 0.002943064687672
610 => 0.0029491024702277
611 => 0.0029430616956469
612 => 0.0029017737927287
613 => 0.0028928576740246
614 => 0.0028779970855603
615 => 0.002882603003316
616 => 0.0028546607493846
617 => 0.0029073935557175
618 => 0.0029171812292527
619 => 0.0029555557681507
620 => 0.0029595399400817
621 => 0.003066412484685
622 => 0.0030075488830377
623 => 0.0030470396690616
624 => 0.0030435072414579
625 => 0.0027605830344246
626 => 0.0027995674938924
627 => 0.0028602150788269
628 => 0.0028328934240198
629 => 0.002794266996405
630 => 0.0027630740850882
701 => 0.0027158136348041
702 => 0.0027823318110223
703 => 0.0028697961393299
704 => 0.0029617581797857
705 => 0.0030722445458018
706 => 0.00304758527511
707 => 0.0029596927140257
708 => 0.0029636355101104
709 => 0.0029880083240729
710 => 0.0029564433154878
711 => 0.0029471341782339
712 => 0.0029867293915657
713 => 0.0029870020620388
714 => 0.002950682704903
715 => 0.0029103203858187
716 => 0.002910151266228
717 => 0.0029029691814007
718 => 0.0030050926384352
719 => 0.0030612502139581
720 => 0.0030676885894894
721 => 0.0030608168599866
722 => 0.003063461515943
723 => 0.003030784660094
724 => 0.0031054742625443
725 => 0.0031740168277888
726 => 0.0031556459561049
727 => 0.0031281054078775
728 => 0.0031061680346819
729 => 0.0031504782081598
730 => 0.0031485051458855
731 => 0.0031734181682766
801 => 0.0031722879696763
802 => 0.0031639106572724
803 => 0.0031556462552851
804 => 0.0031884136749989
805 => 0.00317897718435
806 => 0.0031695260362247
807 => 0.003150570311761
808 => 0.0031531467095368
809 => 0.0031256109165734
810 => 0.0031128715987964
811 => 0.002921302825327
812 => 0.0028701093893657
813 => 0.0028862158864576
814 => 0.0028915185635052
815 => 0.0028692391145687
816 => 0.0029011821212228
817 => 0.0028962038374718
818 => 0.0029155714273485
819 => 0.0029034713980365
820 => 0.0029039679874602
821 => 0.0029395515936683
822 => 0.002949881665934
823 => 0.0029446277078058
824 => 0.0029483073999837
825 => 0.0030331043531219
826 => 0.0030210489380396
827 => 0.0030146447390504
828 => 0.0030164187459375
829 => 0.0030380861855315
830 => 0.0030441518856195
831 => 0.0030184510881175
901 => 0.003030571732794
902 => 0.0030821798994875
903 => 0.003100239837061
904 => 0.0031578784885337
905 => 0.0031333925649427
906 => 0.0031783375374198
907 => 0.0033164830599442
908 => 0.0034268432622798
909 => 0.0033253514593838
910 => 0.003528013916686
911 => 0.0036858157098986
912 => 0.0036797590142425
913 => 0.0036522426215746
914 => 0.0034725894753798
915 => 0.0033072699717738
916 => 0.0034455667563771
917 => 0.003445919303322
918 => 0.0034340394868753
919 => 0.0033602549672133
920 => 0.0034314719455282
921 => 0.0034371248906448
922 => 0.003433960744619
923 => 0.0033773903263911
924 => 0.003291017753718
925 => 0.0033078947476716
926 => 0.0033355396080489
927 => 0.0032832021200326
928 => 0.0032664771213711
929 => 0.003297572075944
930 => 0.0033977664984686
1001 => 0.0033788253232771
1002 => 0.0033783306926456
1003 => 0.0034593690724232
1004 => 0.0034013630816794
1005 => 0.0033081076206129
1006 => 0.0032845593868053
1007 => 0.003200979020779
1008 => 0.0032587082772964
1009 => 0.0032607858504651
1010 => 0.0032291681266492
1011 => 0.0033106732246454
1012 => 0.0033099221408187
1013 => 0.0033872991009332
1014 => 0.0035352147872131
1015 => 0.0034914688402912
1016 => 0.0034405970635666
1017 => 0.003446128236218
1018 => 0.0035067915481057
1019 => 0.0034701131249296
1020 => 0.0034833029416348
1021 => 0.0035067715837384
1022 => 0.003520930798213
1023 => 0.003444090943153
1024 => 0.0034261758972634
1025 => 0.0033895280006998
1026 => 0.0033799672485518
1027 => 0.0034098161956193
1028 => 0.0034019520526459
1029 => 0.003260611238485
1030 => 0.0032458403369923
1031 => 0.0032462933394531
1101 => 0.0032091512053317
1102 => 0.0031525005356629
1103 => 0.0033013751131167
1104 => 0.0032894184010488
1105 => 0.0032762191163018
1106 => 0.0032778359533692
1107 => 0.0033424573616143
1108 => 0.0033049736813728
1109 => 0.0034046301887493
1110 => 0.0033841438067815
1111 => 0.0033631320264184
1112 => 0.0033602275583378
1113 => 0.0033521398155389
1114 => 0.0033244039361649
1115 => 0.0032909111951528
1116 => 0.0032687963864451
1117 => 0.0030152918785723
1118 => 0.0030623408406656
1119 => 0.0031164663829061
1120 => 0.0031351503031931
1121 => 0.0031031901646543
1122 => 0.0033256659172337
1123 => 0.0033663143810596
1124 => 0.0032431875326972
1125 => 0.0032201555266046
1126 => 0.0033271758917187
1127 => 0.0032626295288474
1128 => 0.0032916947520961
1129 => 0.0032288716372595
1130 => 0.0033565233564499
1201 => 0.0033555508642248
1202 => 0.0033058914623149
1203 => 0.0033478632487563
1204 => 0.0033405696179871
1205 => 0.0032845042755365
1206 => 0.0033583007278076
1207 => 0.0033583373299272
1208 => 0.0033105412352774
1209 => 0.0032547258606369
1210 => 0.0032447473899515
1211 => 0.003237229952709
1212 => 0.0032898459233617
1213 => 0.0033370212381231
1214 => 0.0034248028031417
1215 => 0.0034468731742259
1216 => 0.0035330153018754
1217 => 0.0034817218590442
1218 => 0.00350445957789
1219 => 0.0035291445881438
1220 => 0.0035409794898207
1221 => 0.0035216951526341
1222 => 0.0036555093343881
1223 => 0.0036668073512887
1224 => 0.003670595478628
1225 => 0.0036254740894376
1226 => 0.0036655524438313
1227 => 0.0036468011090661
1228 => 0.0036955868728544
1229 => 0.0037032371035443
1230 => 0.0036967576303148
1231 => 0.0036991859342865
]
'min_raw' => 0.001658837160383
'max_raw' => 0.0037032371035443
'avg_raw' => 0.0026810371319637
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.001658'
'max' => '$0.0037032'
'avg' => '$0.002681'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 0.00025578932437475
'max_diff' => -0.00035338680612631
'year' => 2031
]
6 => [
'items' => [
101 => 0.0035849991365987
102 => 0.0035790779487553
103 => 0.0034983421323614
104 => 0.0035312425743109
105 => 0.0034697367750456
106 => 0.0034892408975725
107 => 0.0034978381289403
108 => 0.0034933474231624
109 => 0.0035331027159353
110 => 0.0034993025956086
111 => 0.003410098520812
112 => 0.003320870142425
113 => 0.0033197499528182
114 => 0.0032962576958006
115 => 0.0032792770967983
116 => 0.0032825481625853
117 => 0.0032940758250703
118 => 0.0032786070880985
119 => 0.0032819081274163
120 => 0.0033367273748016
121 => 0.0033477209839117
122 => 0.0033103604046751
123 => 0.0031603522879345
124 => 0.0031235399198194
125 => 0.0031499999199995
126 => 0.0031373537441557
127 => 0.0025320893319538
128 => 0.0026742872275867
129 => 0.0025897980665859
130 => 0.0026287345591345
131 => 0.0025424930041148
201 => 0.0025836519944774
202 => 0.0025760514318431
203 => 0.0028047014400792
204 => 0.0028011313846984
205 => 0.002802840181286
206 => 0.002721274867911
207 => 0.002851210626857
208 => 0.0029152216540526
209 => 0.002903374916517
210 => 0.0029063564851268
211 => 0.0028551232580016
212 => 0.0028033362309149
213 => 0.0027458964479094
214 => 0.0028526124649619
215 => 0.0028407474655688
216 => 0.0028679615052845
217 => 0.0029371744705615
218 => 0.002947366342613
219 => 0.002961064322006
220 => 0.0029561545714822
221 => 0.0030731247479576
222 => 0.0030589588877924
223 => 0.0030930945349945
224 => 0.0030228749188219
225 => 0.0029434147578155
226 => 0.0029585175366744
227 => 0.0029570630176214
228 => 0.0029385453206576
229 => 0.0029218283718208
301 => 0.0028939993619786
302 => 0.0029820544670377
303 => 0.0029784795905798
304 => 0.0030363526850938
305 => 0.0030261230534892
306 => 0.0029578070700182
307 => 0.0029602469887327
308 => 0.0029766566146728
309 => 0.0030334505174131
310 => 0.0030503108145702
311 => 0.0030425004531604
312 => 0.0030609869992913
313 => 0.003075598011596
314 => 0.0030628219174817
315 => 0.0032437044677426
316 => 0.0031685894217869
317 => 0.0032051999725386
318 => 0.003213931373171
319 => 0.0031915660740527
320 => 0.0031964163065901
321 => 0.0032037630872751
322 => 0.003248371300947
323 => 0.0033654361611129
324 => 0.0034172833907929
325 => 0.0035732683393824
326 => 0.0034129782001162
327 => 0.0034034672465987
328 => 0.0034315648461338
329 => 0.0035231445236396
330 => 0.0035973612506163
331 => 0.0036219832206201
401 => 0.0036252374204206
402 => 0.0036714298729854
403 => 0.0036979065253574
404 => 0.003665820894262
405 => 0.0036386316814142
406 => 0.0035412432958428
407 => 0.0035525162666525
408 => 0.0036301758566637
409 => 0.0037398746016817
410 => 0.0038340075371162
411 => 0.0038010454639911
412 => 0.0040525228143389
413 => 0.004077455766433
414 => 0.0040740108386325
415 => 0.0041308118140237
416 => 0.0040180734451896
417 => 0.0039698756083101
418 => 0.0036445102978425
419 => 0.0037359246786054
420 => 0.0038688008496225
421 => 0.0038512141901283
422 => 0.0037547159629454
423 => 0.0038339343345577
424 => 0.0038077422635152
425 => 0.0037870834903739
426 => 0.0038817253350343
427 => 0.0037776627391575
428 => 0.0038677627456249
429 => 0.0037522085553652
430 => 0.0038011960319646
501 => 0.0037733883709892
502 => 0.003791383335619
503 => 0.0036861851400904
504 => 0.0037429475328558
505 => 0.003683823637934
506 => 0.0036837956055096
507 => 0.0036824904422523
508 => 0.0037520494424323
509 => 0.003754317758931
510 => 0.0037029135527001
511 => 0.0036955054034976
512 => 0.0037228972138674
513 => 0.0036908285778509
514 => 0.0037058332908054
515 => 0.0036912830553207
516 => 0.0036880074908383
517 => 0.0036619072357507
518 => 0.0036506625282176
519 => 0.0036550718677817
520 => 0.0036400205186789
521 => 0.0036309515364133
522 => 0.0036806863934167
523 => 0.0036541150656182
524 => 0.0036766139563451
525 => 0.0036509736307754
526 => 0.0035620930913928
527 => 0.0035109769532993
528 => 0.003343089853636
529 => 0.0033907024268372
530 => 0.0034222696121284
531 => 0.003411836657578
601 => 0.0034342506809697
602 => 0.0034356267199668
603 => 0.0034283396924782
604 => 0.0034199022481725
605 => 0.0034157953669044
606 => 0.0034464046951721
607 => 0.0034641744404941
608 => 0.0034254378014868
609 => 0.0034163623489506
610 => 0.0034555272296954
611 => 0.003479417784325
612 => 0.0036558122167664
613 => 0.0036427443474647
614 => 0.0036755421349723
615 => 0.003671849607422
616 => 0.0037062269138273
617 => 0.0037624192808662
618 => 0.0036481644870431
619 => 0.0036679951686173
620 => 0.0036631331434526
621 => 0.0037162154593091
622 => 0.003716381176505
623 => 0.0036845556764908
624 => 0.0037018087963583
625 => 0.0036921785781628
626 => 0.0037095816840441
627 => 0.003642569818103
628 => 0.0037241830373353
629 => 0.0037704524736003
630 => 0.0037710949247677
701 => 0.0037930262703404
702 => 0.0038153097876201
703 => 0.0038580810585531
704 => 0.0038141169200879
705 => 0.0037350297148116
706 => 0.0037407395555824
707 => 0.0036943707560658
708 => 0.0036951502239629
709 => 0.0036909893632402
710 => 0.0037034764194838
711 => 0.0036453100247404
712 => 0.0036589615613254
713 => 0.0036398493301631
714 => 0.0036679536223593
715 => 0.0036377180497622
716 => 0.0036631307988369
717 => 0.0036740980988915
718 => 0.0037145676722023
719 => 0.0036317406608794
720 => 0.0034628507778961
721 => 0.0034983534788911
722 => 0.0034458421954425
723 => 0.0034507023146502
724 => 0.003460520528932
725 => 0.0034286964841248
726 => 0.0034347675089831
727 => 0.003434550609254
728 => 0.0034326814845675
729 => 0.0034244028214102
730 => 0.0034123971219486
731 => 0.0034602241334444
801 => 0.003468350874668
802 => 0.0034864156137179
803 => 0.0035401640237007
804 => 0.0035347932900686
805 => 0.0035435531794522
806 => 0.0035244303901126
807 => 0.0034515893660022
808 => 0.0034555449840601
809 => 0.0034062183634932
810 => 0.0034851542211286
811 => 0.0034664611681381
812 => 0.0034544096352697
813 => 0.0034511212628698
814 => 0.0035050029047649
815 => 0.0035211251365112
816 => 0.0035110788436096
817 => 0.0034904736037714
818 => 0.0035300417556531
819 => 0.0035406285238504
820 => 0.0035429985108248
821 => 0.0036131056895187
822 => 0.0035469167233202
823 => 0.0035628490653459
824 => 0.003687148649743
825 => 0.003574426078865
826 => 0.0036341377386724
827 => 0.0036312151636493
828 => 0.0036617616282743
829 => 0.0036287094619655
830 => 0.0036291191831796
831 => 0.0036562423743699
901 => 0.0036181527440364
902 => 0.0036087212159102
903 => 0.0035956916273536
904 => 0.0036241412572889
905 => 0.0036411955237689
906 => 0.0037786403866198
907 => 0.0038674360362688
908 => 0.0038635811829356
909 => 0.0038988073264173
910 => 0.0038829376261443
911 => 0.0038316901777474
912 => 0.0039191633232004
913 => 0.0038914831599472
914 => 0.0038937650789744
915 => 0.0038936801458343
916 => 0.0039120850345558
917 => 0.0038990434841133
918 => 0.0038733372495035
919 => 0.0038904022476972
920 => 0.003941079191484
921 => 0.0040983819799569
922 => 0.004186410704371
923 => 0.004093082540215
924 => 0.0041574590581359
925 => 0.0041188560870821
926 => 0.0041118407789027
927 => 0.0041522739895444
928 => 0.0041927779731687
929 => 0.0041901980445154
930 => 0.0041607942323067
1001 => 0.0041441847648841
1002 => 0.0042699572167878
1003 => 0.0043626242168726
1004 => 0.0043563049487143
1005 => 0.0043841961432291
1006 => 0.0044660855529667
1007 => 0.0044735724943216
1008 => 0.0044726293117962
1009 => 0.0044540721464666
1010 => 0.0045347029050368
1011 => 0.0046019665023994
1012 => 0.0044497766988608
1013 => 0.0045077285837375
1014 => 0.0045337450519517
1015 => 0.0045719449460285
1016 => 0.0046363945703818
1017 => 0.0047064039568479
1018 => 0.0047163040517081
1019 => 0.0047092794606416
1020 => 0.0046631063883139
1021 => 0.0047397114943709
1022 => 0.0047845849688882
1023 => 0.0048113060960521
1024 => 0.0048790664285682
1025 => 0.0045339057208023
1026 => 0.0042895838162455
1027 => 0.0042514294227978
1028 => 0.004329017882221
1029 => 0.0043494773402145
1030 => 0.0043412301583513
1031 => 0.0040662236419968
1101 => 0.0042499815704031
1102 => 0.0044476896505629
1103 => 0.0044552844231133
1104 => 0.0045542612219223
1105 => 0.0045864921248106
1106 => 0.0046661814210374
1107 => 0.0046611968338613
1108 => 0.0046805999093589
1109 => 0.0046761394783164
1110 => 0.0048237471190155
1111 => 0.0049865802666534
1112 => 0.0049809418725284
1113 => 0.0049575326810011
1114 => 0.0049922993222794
1115 => 0.0051603605809023
1116 => 0.0051448881933351
1117 => 0.0051599182999218
1118 => 0.0053580719953556
1119 => 0.005615699986454
1120 => 0.0054960059191614
1121 => 0.0057557076041464
1122 => 0.0059191760486496
1123 => 0.0062018778204653
1124 => 0.0061664821662984
1125 => 0.0062765358915048
1126 => 0.0061031165580437
1127 => 0.0057049107145871
1128 => 0.0056418931155893
1129 => 0.0057680559446426
1130 => 0.0060782149490812
1201 => 0.0057582879338306
1202 => 0.005823008752342
1203 => 0.0058043691522567
1204 => 0.0058033759271814
1205 => 0.0058412832885689
1206 => 0.0057862966837613
1207 => 0.0055622713638736
1208 => 0.0056649408477886
1209 => 0.0056252952294555
1210 => 0.0056692849987728
1211 => 0.0059066796410172
1212 => 0.0058017218108995
1213 => 0.0056911572629522
1214 => 0.0058298297423154
1215 => 0.0060064074615787
1216 => 0.0059953575452478
1217 => 0.0059739160890593
1218 => 0.0060947804549558
1219 => 0.0062944129774804
1220 => 0.0063483728461303
1221 => 0.0063882049180067
1222 => 0.0063936970877501
1223 => 0.0064502698494715
1224 => 0.0061460638515239
1225 => 0.0066288465828309
1226 => 0.0067122098239238
1227 => 0.0066965409896507
1228 => 0.006789195723664
1229 => 0.0067619343504936
1230 => 0.006722436897948
1231 => 0.0068693143595862
]
'min_raw' => 0.0025320893319538
'max_raw' => 0.0068693143595862
'avg_raw' => 0.00470070184577
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.002532'
'max' => '$0.006869'
'avg' => '$0.0047007'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.00087325217157085
'max_diff' => 0.0031660772560419
'year' => 2032
]
7 => [
'items' => [
101 => 0.006700931202218
102 => 0.0064619325091837
103 => 0.006330813099327
104 => 0.0065034817153274
105 => 0.0066089244138146
106 => 0.0066786153300995
107 => 0.0066997037592589
108 => 0.0061696784971811
109 => 0.0058840242774699
110 => 0.0060671253572725
111 => 0.0062905213115932
112 => 0.0061448228757181
113 => 0.0061505339785608
114 => 0.0059428062978783
115 => 0.0063089006020213
116 => 0.0062555637412454
117 => 0.0065322754693019
118 => 0.0064662359946509
119 => 0.0066918836669936
120 => 0.0066324630725887
121 => 0.0068791146378025
122 => 0.0069775106249909
123 => 0.0071427328015926
124 => 0.0072642709072761
125 => 0.0073356404075869
126 => 0.0073313556504885
127 => 0.007614157166864
128 => 0.0074473989929898
129 => 0.0072379114247199
130 => 0.0072341224555347
131 => 0.0073426190356035
201 => 0.0075699981028445
202 => 0.0076289541867492
203 => 0.0076619025947151
204 => 0.007611440960973
205 => 0.0074304369148986
206 => 0.007352280285515
207 => 0.0074188719981654
208 => 0.0073374360558851
209 => 0.0074780173391506
210 => 0.007671065467616
211 => 0.007631201792483
212 => 0.0077644600817566
213 => 0.007902368391974
214 => 0.0080995834694346
215 => 0.008151142793536
216 => 0.0082363683956501
217 => 0.0083240935353774
218 => 0.008352268485999
219 => 0.0084060632089093
220 => 0.0084057796841658
221 => 0.0085678937024586
222 => 0.0087467104848889
223 => 0.0088142096806383
224 => 0.0089694203593366
225 => 0.0087036275112966
226 => 0.0089052344397431
227 => 0.0090870889357507
228 => 0.0088702745086296
301 => 0.0091691026851335
302 => 0.0091807055060679
303 => 0.0093558943266743
304 => 0.0091783068948727
305 => 0.009072856044748
306 => 0.0093772886978661
307 => 0.0095245940691713
308 => 0.0094802244925233
309 => 0.009142569823436
310 => 0.0089460403233371
311 => 0.008431684713869
312 => 0.0090409611517928
313 => 0.009337721931868
314 => 0.0091418012847077
315 => 0.0092406122631119
316 => 0.009779692921718
317 => 0.0099849399336273
318 => 0.0099422499899351
319 => 0.0099494638876828
320 => 0.010060211449812
321 => 0.010551327130091
322 => 0.010257039230496
323 => 0.010482011302979
324 => 0.010601335679027
325 => 0.01071217080952
326 => 0.010439994758832
327 => 0.010085897715946
328 => 0.0099737403184819
329 => 0.0091223208375215
330 => 0.0090780007560102
331 => 0.0090531225512219
401 => 0.0088962689891239
402 => 0.0087730250551215
403 => 0.0086750169030488
404 => 0.0084178142442985
405 => 0.0085046125913635
406 => 0.0080946852356823
407 => 0.0083569422309137
408 => 0.0077026882732044
409 => 0.008247570410446
410 => 0.0079510158358962
411 => 0.0081501442568967
412 => 0.0081494495165948
413 => 0.0077827909598095
414 => 0.0075713099562246
415 => 0.0077060738826727
416 => 0.0078505515093989
417 => 0.0078739925182541
418 => 0.0080613115325564
419 => 0.0081135882430395
420 => 0.0079551873697096
421 => 0.0076891303141493
422 => 0.0077509293000406
423 => 0.007570057601748
424 => 0.0072530869076196
425 => 0.00748074079392
426 => 0.0075584718399377
427 => 0.0075928022980992
428 => 0.0072810980247541
429 => 0.00718315377464
430 => 0.0071310090777112
501 => 0.007648893206675
502 => 0.007677264068317
503 => 0.0075321147289211
504 => 0.0081882035066156
505 => 0.0080397104098209
506 => 0.0082056135806326
507 => 0.0077453216898173
508 => 0.0077629054599116
509 => 0.0075449959022949
510 => 0.0076670106938384
511 => 0.0075807745718957
512 => 0.0076571531044553
513 => 0.007702934081951
514 => 0.0079208078827536
515 => 0.0082500581792757
516 => 0.0078882648023647
517 => 0.007730626247068
518 => 0.0078284243201812
519 => 0.008088873476561
520 => 0.0084834672806234
521 => 0.008249859806678
522 => 0.0083535308367028
523 => 0.0083761783447601
524 => 0.0082039248420916
525 => 0.0084898185129666
526 => 0.0086430312537845
527 => 0.0088001958229542
528 => 0.008936657414713
529 => 0.0087374208379049
530 => 0.008950632534531
531 => 0.0087788215439813
601 => 0.0086246893239646
602 => 0.0086249230789193
603 => 0.0085282336857904
604 => 0.0083408858029554
605 => 0.0083063359789285
606 => 0.0084860685266785
607 => 0.0086301970092385
608 => 0.008642068121391
609 => 0.008721865054925
610 => 0.0087690880582166
611 => 0.0092319376870346
612 => 0.0094180996366382
613 => 0.009645734944748
614 => 0.0097344117260798
615 => 0.010001297045503
616 => 0.0097857654747029
617 => 0.0097391338636032
618 => 0.0090917573762055
619 => 0.0091977652397502
620 => 0.0093674940575226
621 => 0.0090945561418955
622 => 0.0092676724277127
623 => 0.0093018492496373
624 => 0.0090852818159635
625 => 0.0092009598396151
626 => 0.0088937533049402
627 => 0.008256754442233
628 => 0.0084905276747966
629 => 0.0086626634611826
630 => 0.0084170044698203
701 => 0.0088573387035213
702 => 0.0086001045345368
703 => 0.0085185736523864
704 => 0.0082004926132595
705 => 0.0083506146196654
706 => 0.0085536567828695
707 => 0.0084282003321944
708 => 0.0086885413047261
709 => 0.0090572535522321
710 => 0.0093200198569989
711 => 0.0093401917910967
712 => 0.0091712506611068
713 => 0.0094419799000835
714 => 0.0094439518670276
715 => 0.0091385681795005
716 => 0.0089515223712737
717 => 0.0089090251700968
718 => 0.0090151915107037
719 => 0.0091440970475882
720 => 0.0093473451512569
721 => 0.0094701637235687
722 => 0.0097904094222206
723 => 0.0098770587261121
724 => 0.0099722600406614
725 => 0.010099478355897
726 => 0.010252236561445
727 => 0.0099180103042366
728 => 0.0099312897365112
729 => 0.0096200628734767
730 => 0.0092874723358775
731 => 0.0095398670959195
801 => 0.0098698396700066
802 => 0.0097941435969237
803 => 0.0097856262423715
804 => 0.0097999500702113
805 => 0.0097428777031094
806 => 0.0094847415019083
807 => 0.0093551071176833
808 => 0.0095223685465922
809 => 0.0096112605521075
810 => 0.0097491243004643
811 => 0.0097321296835286
812 => 0.01008725189381
813 => 0.010225241646387
814 => 0.010189937962763
815 => 0.010196434690181
816 => 0.010446258545972
817 => 0.010724114053806
818 => 0.010984362403157
819 => 0.011249098202043
820 => 0.010929948863671
821 => 0.010767904512041
822 => 0.010935092919843
823 => 0.010846380397316
824 => 0.011356148865598
825 => 0.011391444128313
826 => 0.011901175734532
827 => 0.012384971726544
828 => 0.012081108132067
829 => 0.012367637815342
830 => 0.012677543028913
831 => 0.013275400466199
901 => 0.013074063114199
902 => 0.012919841857926
903 => 0.012774103515939
904 => 0.013077361870303
905 => 0.013467498898521
906 => 0.013551530677713
907 => 0.013687694262615
908 => 0.013544534902382
909 => 0.013716954583296
910 => 0.014325671821972
911 => 0.014161191050786
912 => 0.013927601914099
913 => 0.014408125712208
914 => 0.014582025406754
915 => 0.01580254453506
916 => 0.017343500351676
917 => 0.016705534525136
918 => 0.016309528549573
919 => 0.016402599347218
920 => 0.0169653042468
921 => 0.017146027201185
922 => 0.016654759912228
923 => 0.016828283823873
924 => 0.017784417637531
925 => 0.018297352752112
926 => 0.017600717970134
927 => 0.01567873023559
928 => 0.013906569768094
929 => 0.0143766265255
930 => 0.01432333667677
1001 => 0.015350583179422
1002 => 0.014157268238791
1003 => 0.014177360601964
1004 => 0.015225849474418
1005 => 0.014946130618897
1006 => 0.014493021896638
1007 => 0.013909877963207
1008 => 0.012831882467974
1009 => 0.011877071795719
1010 => 0.013749675403777
1011 => 0.013668925331089
1012 => 0.013551987259346
1013 => 0.013812220283989
1014 => 0.015075837983221
1015 => 0.015046707505323
1016 => 0.014861394267432
1017 => 0.015001952725096
1018 => 0.014468381319419
1019 => 0.014605894819857
1020 => 0.013906289048822
1021 => 0.014222540075448
1022 => 0.014492049728821
1023 => 0.014546157781895
1024 => 0.014668065988295
1025 => 0.013626373712094
1026 => 0.01409406296163
1027 => 0.014368786579175
1028 => 0.013127575280573
1029 => 0.014344251822601
1030 => 0.013608240167122
1031 => 0.013358426756728
1101 => 0.013694767603409
1102 => 0.013563695248355
1103 => 0.013451006934307
1104 => 0.013388124918837
1105 => 0.013635096516055
1106 => 0.01362357499585
1107 => 0.01321948152768
1108 => 0.01269235807141
1109 => 0.012869278005572
1110 => 0.012805001334857
1111 => 0.012572054388333
1112 => 0.012729032504169
1113 => 0.012037780326835
1114 => 0.010848516883894
1115 => 0.011634180742425
1116 => 0.01160393353851
1117 => 0.011588681526694
1118 => 0.012179086202226
1119 => 0.012122332415627
1120 => 0.012019323737215
1121 => 0.012570162553174
1122 => 0.012369098975521
1123 => 0.01298872954531
1124 => 0.013396858313765
1125 => 0.013293343656502
1126 => 0.013677190735891
1127 => 0.012873353883527
1128 => 0.013140356241545
1129 => 0.013195385057484
1130 => 0.012563365287689
1201 => 0.012131618037001
1202 => 0.012102825417659
1203 => 0.0113542351834
1204 => 0.011754126044132
1205 => 0.012106013452968
1206 => 0.011937486691701
1207 => 0.011884136153678
1208 => 0.012156692482118
1209 => 0.012177872443125
1210 => 0.011694967087617
1211 => 0.011795378402651
1212 => 0.012214110278335
1213 => 0.011784827433739
1214 => 0.010950800989644
1215 => 0.01074395090019
1216 => 0.010716353285254
1217 => 0.010155359437169
1218 => 0.01075777361226
1219 => 0.010494803681136
1220 => 0.011325522542692
1221 => 0.010851020384206
1222 => 0.010830565544529
1223 => 0.010799645054285
1224 => 0.010316774474874
1225 => 0.010422492443739
1226 => 0.010773915073546
1227 => 0.010899306626921
1228 => 0.010886227260601
1229 => 0.010772192910942
1230 => 0.010824397252266
1231 => 0.010656228879665
]
'min_raw' => 0.0058840242774699
'max_raw' => 0.018297352752112
'avg_raw' => 0.012090688514791
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.005884'
'max' => '$0.018297'
'avg' => '$0.01209'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.0033519349455161
'max_diff' => 0.011428038392526
'year' => 2033
]
8 => [
'items' => [
101 => 0.010596845127177
102 => 0.010409413669539
103 => 0.010133941206072
104 => 0.010172247341687
105 => 0.0096264643102684
106 => 0.0093290927478534
107 => 0.0092467842186712
108 => 0.0091367178135384
109 => 0.0092592165120064
110 => 0.0096249181755144
111 => 0.0091838043813879
112 => 0.0084275457218928
113 => 0.0084729981559305
114 => 0.0085751162802645
115 => 0.0083848198311471
116 => 0.008204720212428
117 => 0.0083613022189604
118 => 0.0080408654553506
119 => 0.008613839532242
120 => 0.0085983421892033
121 => 0.0088119114925892
122 => 0.0089454607608797
123 => 0.0086376729345592
124 => 0.0085602651285864
125 => 0.0086043601328571
126 => 0.0078755679350974
127 => 0.0087523536217186
128 => 0.0087599361007458
129 => 0.0086950103118583
130 => 0.009161871622263
131 => 0.010147094604911
201 => 0.0097764140883364
202 => 0.0096328753884407
203 => 0.0093600082150127
204 => 0.0097235875223559
205 => 0.0096956703042727
206 => 0.0095694180568098
207 => 0.0094930603036132
208 => 0.0096337518051344
209 => 0.0094756270696108
210 => 0.0094472235221337
211 => 0.0092751289277864
212 => 0.0092136989874096
213 => 0.009168218705151
214 => 0.0091181493831845
215 => 0.0092285898309449
216 => 0.0089783172466689
217 => 0.008676513044556
218 => 0.0086514212907171
219 => 0.008720701829156
220 => 0.0086900503482263
221 => 0.0086512745432188
222 => 0.0085772409714975
223 => 0.0085552767922448
224 => 0.0086266497193113
225 => 0.0085460738459534
226 => 0.0086649679362879
227 => 0.008632635322427
228 => 0.0084520279697057
301 => 0.0082269243388088
302 => 0.008224920444323
303 => 0.0081764222362902
304 => 0.008114652476606
305 => 0.0080974695425626
306 => 0.0083481153191129
307 => 0.0088669445753754
308 => 0.0087650859778392
309 => 0.0088386892534481
310 => 0.0092007445216043
311 => 0.0093158310039694
312 => 0.0092341453447593
313 => 0.0091223289762806
314 => 0.009127248329016
315 => 0.0095093587092244
316 => 0.0095331904649318
317 => 0.0095934056231888
318 => 0.0096707991183507
319 => 0.0092473257916444
320 => 0.0091073027734105
321 => 0.00904095209919
322 => 0.0088366177035333
323 => 0.0090569748309419
324 => 0.0089285821694339
325 => 0.0089459067259892
326 => 0.0089346240858051
327 => 0.0089407851702744
328 => 0.0086136793743102
329 => 0.0087328595341851
330 => 0.008534699403021
331 => 0.0082693852319108
401 => 0.0082684958057781
402 => 0.008333431073287
403 => 0.0082948050352555
404 => 0.0081908633600788
405 => 0.0082056277844468
406 => 0.0080762758911259
407 => 0.0082213334462876
408 => 0.0082254931779287
409 => 0.0081696381178531
410 => 0.0083931192956647
411 => 0.0084846797165575
412 => 0.0084479147194843
413 => 0.0084821001863548
414 => 0.0087693186624308
415 => 0.0088161478062519
416 => 0.0088369462185776
417 => 0.0088090791013228
418 => 0.0084873500128431
419 => 0.0085016200660149
420 => 0.0083969158841693
421 => 0.0083084518839647
422 => 0.0083119899800403
423 => 0.0083574719756605
424 => 0.0085560945180179
425 => 0.0089740839489705
426 => 0.0089899463423289
427 => 0.0090091720258179
428 => 0.0089309715090138
429 => 0.0089073854848676
430 => 0.0089385015387859
501 => 0.0090954763922115
502 => 0.0094992583334792
503 => 0.0093565348277461
504 => 0.0092404983959613
505 => 0.0093422936298339
506 => 0.0093266230514767
507 => 0.0091943475998287
508 => 0.009190635068458
509 => 0.0089367561857254
510 => 0.0088429029433216
511 => 0.0087644721491756
512 => 0.0086788277694559
513 => 0.0086280549103324
514 => 0.0087060650977978
515 => 0.0087239069506606
516 => 0.0085533363123827
517 => 0.0085300881646656
518 => 0.0086693798299063
519 => 0.0086080827613506
520 => 0.0086711283164543
521 => 0.0086857554260331
522 => 0.0086834001245
523 => 0.0086193989450043
524 => 0.0086601913882722
525 => 0.008563705099131
526 => 0.008458790751462
527 => 0.008391861934044
528 => 0.0083334576640275
529 => 0.0083658637475088
530 => 0.008250341977015
531 => 0.0082133842376402
601 => 0.0086463718263521
602 => 0.0089662244135346
603 => 0.0089615736302414
604 => 0.0089332631830286
605 => 0.008891199601035
606 => 0.0090923991791908
607 => 0.0090223052692739
608 => 0.0090733044452806
609 => 0.009086285876003
610 => 0.0091255767570428
611 => 0.0091396198698492
612 => 0.0090971718293793
613 => 0.0089547110209707
614 => 0.0085997122311836
615 => 0.0084344593362367
616 => 0.0083799231283996
617 => 0.0083819054159755
618 => 0.0083272250753114
619 => 0.008343330886238
620 => 0.0083216241315449
621 => 0.0082805167895842
622 => 0.0083633254849801
623 => 0.0083728684157082
624 => 0.0083535398767125
625 => 0.0083580924473493
626 => 0.0081980603997924
627 => 0.0082102272887968
628 => 0.0081424805047267
629 => 0.0081297787994132
630 => 0.0079585208286713
701 => 0.0076551125092622
702 => 0.0078232301707731
703 => 0.0076201676765885
704 => 0.0075432648331419
705 => 0.0079073109331721
706 => 0.0078707708017961
707 => 0.0078082299804937
708 => 0.0077157190711383
709 => 0.0076814058749701
710 => 0.0074729297572898
711 => 0.0074606118760804
712 => 0.0075639382693314
713 => 0.0075162566940902
714 => 0.0074492937040268
715 => 0.0072067605419468
716 => 0.0069340729677985
717 => 0.006942303691609
718 => 0.0070290405354129
719 => 0.0072812396068298
720 => 0.007182701066539
721 => 0.0071112102249585
722 => 0.0070978221393373
723 => 0.0072654020607425
724 => 0.0075025627586099
725 => 0.0076138332518777
726 => 0.0075035675723844
727 => 0.0073769002969083
728 => 0.0073846099470469
729 => 0.0074358987954349
730 => 0.0074412885282152
731 => 0.0073588411534865
801 => 0.0073820496065344
802 => 0.0073467938441293
803 => 0.0071304292953262
804 => 0.0071265159467378
805 => 0.0070734165971118
806 => 0.0070718087699082
807 => 0.006981473529941
808 => 0.0069688350054115
809 => 0.0067894689034994
810 => 0.0069075282149485
811 => 0.0068283402272205
812 => 0.0067089852511565
813 => 0.0066884084082955
814 => 0.0066877898435518
815 => 0.0068103407166852
816 => 0.0069060961366434
817 => 0.0068297177361704
818 => 0.0068123278549158
819 => 0.0069980062910757
820 => 0.0069743770175778
821 => 0.0069539142191211
822 => 0.0074813276193172
823 => 0.0070638387584812
824 => 0.0068817897857256
825 => 0.0066564696117783
826 => 0.0067298349965785
827 => 0.0067452941611176
828 => 0.0062034397597884
829 => 0.0059836094966529
830 => 0.0059081720344734
831 => 0.00586475670846
901 => 0.0058845416176997
902 => 0.0056866685973595
903 => 0.0058196425395458
904 => 0.0056483012297213
905 => 0.0056195753015363
906 => 0.0059259547886178
907 => 0.0059685857044022
908 => 0.0057867089732786
909 => 0.0059035032778281
910 => 0.0058611520394362
911 => 0.0056512383846988
912 => 0.0056432212271082
913 => 0.0055378939339827
914 => 0.0053730771156242
915 => 0.0052977514070087
916 => 0.005258521123954
917 => 0.0052747083033253
918 => 0.0052665235700993
919 => 0.0052131126494326
920 => 0.0052695850215513
921 => 0.0051253214467833
922 => 0.0050678745289
923 => 0.0050419270888506
924 => 0.0049138848627424
925 => 0.0051176569851169
926 => 0.0051578026602782
927 => 0.0051980274348213
928 => 0.0055481566345984
929 => 0.0055306651692324
930 => 0.0056887794974521
1001 => 0.005682635465411
1002 => 0.0056375386977205
1003 => 0.0054472828528923
1004 => 0.0055231154416565
1005 => 0.0052897145204412
1006 => 0.0054645943603356
1007 => 0.0053847865045645
1008 => 0.0054376112440199
1009 => 0.0053426275994643
1010 => 0.00539519547014
1011 => 0.0051673226891653
1012 => 0.0049545382925478
1013 => 0.0050401689453105
1014 => 0.0051332592579164
1015 => 0.0053351027746168
1016 => 0.0052148864412429
1017 => 0.005258120780607
1018 => 0.0051132929810783
1019 => 0.004814471862635
1020 => 0.0048161631577135
1021 => 0.0047701960388129
1022 => 0.0047304737367735
1023 => 0.0052286947332619
1024 => 0.0051667330766401
1025 => 0.0050680052861545
1026 => 0.005200156357006
1027 => 0.0052350991976586
1028 => 0.0052360939712081
1029 => 0.0053325079811885
1030 => 0.0053839641555982
1031 => 0.0053930335293617
1101 => 0.0055447430572284
1102 => 0.0055955940898722
1103 => 0.0058050422966247
1104 => 0.0053795984587038
1105 => 0.0053708367228329
1106 => 0.0052020159935809
1107 => 0.0050949472181391
1108 => 0.0052093470842367
1109 => 0.0053106897484602
1110 => 0.0052051649926499
1111 => 0.0052189442980095
1112 => 0.0050772859350235
1113 => 0.0051279221341455
1114 => 0.005171536850262
1115 => 0.005147455367577
1116 => 0.0051114042224406
1117 => 0.0053023808056903
1118 => 0.0052916051584201
1119 => 0.005469446943275
1120 => 0.0056080873321574
1121 => 0.0058565556939686
1122 => 0.00559726600547
1123 => 0.0055878164586379
1124 => 0.0056801872946763
1125 => 0.0055955799483785
1126 => 0.0056490488706924
1127 => 0.0058479410239575
1128 => 0.0058521433017459
1129 => 0.005781749734462
1130 => 0.0057774662794954
1201 => 0.0057909861341135
1202 => 0.0058701723448968
1203 => 0.0058425022497026
1204 => 0.0058745227843824
1205 => 0.0059145649533152
1206 => 0.0060801963415494
1207 => 0.0061201295085102
1208 => 0.0060231126157687
1209 => 0.0060318721549311
1210 => 0.0059955851738725
1211 => 0.0059605324048444
1212 => 0.0060393259105737
1213 => 0.0061833225909843
1214 => 0.0061824267951089
1215 => 0.0062158312260686
1216 => 0.0062366419098193
1217 => 0.0061473072208098
1218 => 0.0060891536231922
1219 => 0.0061114534129284
1220 => 0.0061471112623427
1221 => 0.0060998900529478
1222 => 0.0058084188735702
1223 => 0.0058968326101423
1224 => 0.0058821162411659
1225 => 0.0058611583421718
1226 => 0.0059500590379783
1227 => 0.0059414843489931
1228 => 0.0056846391235349
1229 => 0.0057010815215365
1230 => 0.0056856390402163
1231 => 0.0057355368565961
]
'min_raw' => 0.0047304737367735
'max_raw' => 0.010596845127177
'avg_raw' => 0.0076636594319753
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.00473'
'max' => '$0.010596'
'avg' => '$0.007663'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.0011535505406964
'max_diff' => -0.0077005076249353
'year' => 2034
]
9 => [
'items' => [
101 => 0.0055928853025433
102 => 0.0056367639597971
103 => 0.0056642842422898
104 => 0.0056804939000988
105 => 0.0057390542991712
106 => 0.0057321829122416
107 => 0.0057386271641118
108 => 0.005825456776564
109 => 0.0062646111600225
110 => 0.0062885133641746
111 => 0.0061708101691092
112 => 0.0062178302739449
113 => 0.0061275619548268
114 => 0.006188159682196
115 => 0.0062296191082466
116 => 0.006042271934113
117 => 0.0060311784503339
118 => 0.0059405375617525
119 => 0.0059892428411138
120 => 0.0059117492396165
121 => 0.0059307634588128
122 => 0.00587759804431
123 => 0.0059732852052866
124 => 0.00608027831954
125 => 0.0061073090054866
126 => 0.0060362029082032
127 => 0.0059847174076499
128 => 0.0058943258290566
129 => 0.006044649038765
130 => 0.0060886081263006
131 => 0.0060444181403922
201 => 0.0060341783550869
202 => 0.0060147739804364
203 => 0.0060382950848994
204 => 0.0060883687156692
205 => 0.006064754916113
206 => 0.0060803522467415
207 => 0.0060209113062831
208 => 0.0061473367943091
209 => 0.006348130895245
210 => 0.0063487764811127
211 => 0.0063251625542692
212 => 0.006315500244174
213 => 0.0063397295661283
214 => 0.0063528729793497
215 => 0.006431226163652
216 => 0.0065153022521369
217 => 0.0069076486718249
218 => 0.006797479367176
219 => 0.0071455924515161
220 => 0.0074209047044025
221 => 0.0075034588110974
222 => 0.007427512917409
223 => 0.0071677061176175
224 => 0.0071549587565459
225 => 0.0075432198030359
226 => 0.00743351827392
227 => 0.007420469626099
228 => 0.0072816540593223
301 => 0.0073637112519298
302 => 0.0073457641402001
303 => 0.0073174337463322
304 => 0.0074739931536736
305 => 0.007767058388062
306 => 0.0077213814229342
307 => 0.0076872856873597
308 => 0.0075378880991918
309 => 0.0076278588164283
310 => 0.0075958219672959
311 => 0.0077334726022552
312 => 0.0076519314154402
313 => 0.0074326871769425
314 => 0.0074676025445617
315 => 0.0074623251569861
316 => 0.0075709334193338
317 => 0.0075383319147998
318 => 0.0074559591899904
319 => 0.0077660567229511
320 => 0.0077459207140138
321 => 0.0077744689709544
322 => 0.0077870367965439
323 => 0.0079757877003257
324 => 0.0080531129062498
325 => 0.0080706670817629
326 => 0.0081441200468447
327 => 0.0080688395050775
328 => 0.0083700153462631
329 => 0.008570279706554
330 => 0.0088028970665416
331 => 0.0091428135511354
401 => 0.009270625293746
402 => 0.0092475372464419
403 => 0.0095052580456478
404 => 0.0099683765930092
405 => 0.0093411467459297
406 => 0.010001621297937
407 => 0.0097925226803172
408 => 0.009296753619463
409 => 0.0092648319366773
410 => 0.0096005725006849
411 => 0.010345212757822
412 => 0.010158688819049
413 => 0.010345517844165
414 => 0.010127571862359
415 => 0.01011674900737
416 => 0.010334932694294
417 => 0.010844730771365
418 => 0.010602544814444
419 => 0.010255311858764
420 => 0.010511703269695
421 => 0.010289593301641
422 => 0.0097891173789513
423 => 0.010158546187708
424 => 0.0099115196640192
425 => 0.009983615136284
426 => 0.010502828146656
427 => 0.010440355063581
428 => 0.010521201017932
429 => 0.010378510024609
430 => 0.010245214136542
501 => 0.0099964074627809
502 => 0.0099227480727011
503 => 0.0099431048781319
504 => 0.0099227379848793
505 => 0.0097835329375614
506 => 0.009753471620847
507 => 0.0097033681093064
508 => 0.0097188972825948
509 => 0.0096246880225992
510 => 0.0098024803608373
511 => 0.009835480185515
512 => 0.0099648626226341
513 => 0.0099782955364656
514 => 0.010338623782199
515 => 0.010140161039519
516 => 0.010273306981757
517 => 0.010261397155465
518 => 0.009307498438315
519 => 0.0094389372652187
520 => 0.0096434148321047
521 => 0.0095512979653854
522 => 0.0094210662678713
523 => 0.0093158971895469
524 => 0.009156555281795
525 => 0.0093808259570655
526 => 0.0096757180465188
527 => 0.0099857744865001
528 => 0.010358286983435
529 => 0.010275146530643
530 => 0.0099788106244842
531 => 0.009992104036761
601 => 0.010074278680691
602 => 0.009967855050448
603 => 0.0099364686442533
604 => 0.010069966670451
605 => 0.010070885997988
606 => 0.0099484327496681
607 => 0.0098123483728684
608 => 0.0098117781743608
609 => 0.0097875632739284
610 => 0.010131879639352
611 => 0.010321218826024
612 => 0.010342926258641
613 => 0.010319757742854
614 => 0.010328674385055
615 => 0.010218502084134
616 => 0.010470323293457
617 => 0.010701419337668
618 => 0.010639480661173
619 => 0.010546625780004
620 => 0.010472662394657
621 => 0.010622057238175
622 => 0.010615404920962
623 => 0.010699400915326
624 => 0.010695590371837
625 => 0.010667345678182
626 => 0.01063948166988
627 => 0.010749959313193
628 => 0.010718143526135
629 => 0.010686278320373
630 => 0.010622367771897
701 => 0.010631054276877
702 => 0.010538215428413
703 => 0.010495263929097
704 => 0.0098493764344399
705 => 0.0096767741908849
706 => 0.0097310783703499
707 => 0.0097489567162372
708 => 0.0096738399986463
709 => 0.0097815380757702
710 => 0.0097647534445309
711 => 0.009830052626002
712 => 0.0097892565323798
713 => 0.0097909308182923
714 => 0.0099109034309912
715 => 0.0099457319908576
716 => 0.0099280179042086
717 => 0.0099404242432942
718 => 0.010226323091134
719 => 0.010185677417502
720 => 0.010164085213483
721 => 0.01017006640156
722 => 0.010243119686923
723 => 0.010263570618264
724 => 0.010176918585113
725 => 0.010217784184876
726 => 0.010391784722051
727 => 0.010452675062484
728 => 0.010647007800127
729 => 0.010564451799187
730 => 0.010715986911852
731 => 0.011181754186055
801 => 0.011553841313333
802 => 0.011211654613937
803 => 0.011894945238173
804 => 0.012426985001358
805 => 0.012406564429089
806 => 0.012313790990076
807 => 0.011708077864698
808 => 0.011150691616051
809 => 0.011616968880914
810 => 0.011618157517553
811 => 0.011578103886981
812 => 0.011329334227469
813 => 0.011569447242069
814 => 0.011588506541206
815 => 0.011577838401966
816 => 0.01138710728729
817 => 0.011095896128182
818 => 0.011152798091611
819 => 0.011246004668476
820 => 0.011069545173542
821 => 0.011013155672853
822 => 0.011117994483175
823 => 0.011455806974068
824 => 0.01139194547948
825 => 0.011390277797771
826 => 0.011663504353111
827 => 0.011467933105469
828 => 0.011153515807595
829 => 0.011074121293227
830 => 0.010792324253775
831 => 0.010986962472651
901 => 0.010993967155641
902 => 0.010887365792317
903 => 0.011162165920715
904 => 0.011159633589154
905 => 0.011420515412467
906 => 0.011919223475903
907 => 0.011771730961612
908 => 0.011600213214631
909 => 0.011618861949399
910 => 0.011823392540806
911 => 0.011699728676262
912 => 0.011744199064167
913 => 0.011823325229547
914 => 0.011871064009713
915 => 0.011611993073591
916 => 0.011551591245586
917 => 0.011428030303647
918 => 0.01139579556027
919 => 0.011496433369295
920 => 0.011469918862203
921 => 0.010993378439159
922 => 0.010943577313505
923 => 0.010945104642929
924 => 0.010819877344558
925 => 0.010628875656546
926 => 0.011130816688523
927 => 0.011090503798995
928 => 0.011046001488926
929 => 0.011051452767983
930 => 0.011269328357604
1001 => 0.011142949512642
1002 => 0.011478948385057
1003 => 0.011409877117939
1004 => 0.01133903443345
1005 => 0.011329241816532
1006 => 0.011301973427017
1007 => 0.011208459973251
1008 => 0.01109553685854
1009 => 0.011020975236975
1010 => 0.010166267089563
1011 => 0.010324895950114
1012 => 0.010507383994703
1013 => 0.01057037813642
1014 => 0.010462622297951
1015 => 0.011212714830533
1016 => 0.011349763964307
1017 => 0.010934633198611
1018 => 0.010856979182027
1019 => 0.011217805814932
1020 => 0.011000183246028
1021 => 0.011098178675481
1022 => 0.010886366157639
1023 => 0.011316752841248
1024 => 0.011313474015814
1025 => 0.011146043875166
1026 => 0.01128755468353
1027 => 0.011262963698166
1028 => 0.011073935481737
1029 => 0.011322745372872
1030 => 0.011322868779474
1031 => 0.011161720909346
1101 => 0.01097353547684
1102 => 0.01093989236625
1103 => 0.010914546801736
1104 => 0.011091945220322
1105 => 0.011251000087715
1106 => 0.011546961762888
1107 => 0.011621373559903
1108 => 0.011911807757524
1109 => 0.011738868333825
1110 => 0.011815530140411
1111 => 0.011898757375934
1112 => 0.011938659573224
1113 => 0.01187364108401
1114 => 0.012324804940401
1115 => 0.012362896993184
1116 => 0.012375668928987
1117 => 0.012223539015056
1118 => 0.012358665985076
1119 => 0.012295444550739
1120 => 0.012459929159465
1121 => 0.012485722446358
1122 => 0.012463876449982
1123 => 0.012472063646361
1124 => 0.012087074885689
1125 => 0.012067111187471
1126 => 0.011794904745705
1127 => 0.011905830882773
1128 => 0.011698459786352
1129 => 0.011764219297186
1130 => 0.011793205462982
1201 => 0.01177806473492
1202 => 0.01191210248013
1203 => 0.0117981430146
1204 => 0.011497385248394
1205 => 0.011196545540935
1206 => 0.011192768743467
1207 => 0.011113562958755
1208 => 0.011056311683671
1209 => 0.01106734031035
1210 => 0.011106206629254
1211 => 0.011054052702561
1212 => 0.011065182387092
1213 => 0.011250009307009
1214 => 0.011287075027673
1215 => 0.011161111226345
1216 => 0.010655348387522
1217 => 0.010531232918264
1218 => 0.01062044465625
1219 => 0.010577807191464
1220 => 0.0085371159675141
1221 => 0.0090165461005805
1222 => 0.0087316849954214
1223 => 0.008862962098508
1224 => 0.0085721926745661
1225 => 0.0087109630842024
1226 => 0.0086853372566265
1227 => 0.0094562467232282
1228 => 0.0094442100322586
1229 => 0.0094499713592582
1230 => 0.009174968210506
1231 => 0.0096130556936174
]
'min_raw' => 0.0055928853025433
'max_raw' => 0.012485722446358
'avg_raw' => 0.0090393038744505
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.005592'
'max' => '$0.012485'
'avg' => '$0.009039'
'bar_min_pct' => 61.631153054957
'bar_max_pct' => 60.119598047091
'min_diff' => 0.0008624115657698
'max_diff' => 0.0018888773191806
'year' => 2035
]
10 => [
'items' => [
101 => 0.0098288733409145
102 => 0.0097889312382005
103 => 0.0097989838049348
104 => 0.0096262474026927
105 => 0.009451643825215
106 => 0.0092579815864943
107 => 0.0096177820886612
108 => 0.0095777784148196
109 => 0.0096695324497446
110 => 0.0099028887944709
111 => 0.0099372514026664
112 => 0.0099834350965523
113 => 0.0099668815298734
114 => 0.010361254646457
115 => 0.010313493459881
116 => 0.010428584177698
117 => 0.010191833839195
118 => 0.0099239283586309
119 => 0.0099748484319961
120 => 0.0099699444194577
121 => 0.0099075107112797
122 => 0.0098511483511363
123 => 0.0097573209014941
124 => 0.010054204836012
125 => 0.010042151890444
126 => 0.010237275069169
127 => 0.010202785152004
128 => 0.0099724530440615
129 => 0.0099806794003572
130 => 0.010036005599898
131 => 0.01022749020821
201 => 0.010284335877224
202 => 0.010258002698428
203 => 0.010320331379398
204 => 0.010369593427492
205 => 0.010326517934187
206 => 0.010936376081208
207 => 0.010683120459403
208 => 0.01080655548733
209 => 0.010835994014169
210 => 0.010760587846696
211 => 0.010776940744328
212 => 0.010801710928344
213 => 0.010952110635185
214 => 0.011346802984441
215 => 0.011521609539165
216 => 0.012047523683856
217 => 0.01150709428822
218 => 0.011475027444402
219 => 0.011569760462947
220 => 0.011878527739546
221 => 0.012128754616195
222 => 0.012211769307114
223 => 0.012222741068942
224 => 0.012378482147819
225 => 0.012467750029831
226 => 0.012359571084446
227 => 0.012267900755039
228 => 0.011939549013646
229 => 0.011977556621784
301 => 0.012239391351526
302 => 0.012609248329276
303 => 0.012926624093246
304 => 0.012815490162366
305 => 0.013663363606651
306 => 0.0137474267954
307 => 0.013735811980803
308 => 0.013927320435052
309 => 0.013547215153386
310 => 0.013384712781281
311 => 0.01228772092076
312 => 0.01259593088785
313 => 0.013043932175552
314 => 0.012984637525206
315 => 0.012659287014968
316 => 0.012926377285709
317 => 0.012838068889517
318 => 0.012768416393521
319 => 0.013087507980476
320 => 0.012736653673059
321 => 0.013040432135446
322 => 0.012650833115249
323 => 0.012815997812801
324 => 0.012722242342353
325 => 0.012782913621971
326 => 0.012428230561043
327 => 0.012619608931275
328 => 0.012420268591647
329 => 0.012420174078372
330 => 0.012415773629326
331 => 0.012650296654887
401 => 0.012657944442331
402 => 0.012484631572097
403 => 0.01245965447984
404 => 0.012552007880937
405 => 0.012443886235647
406 => 0.012494475672968
407 => 0.012445418538167
408 => 0.012434374743822
409 => 0.012346375911532
410 => 0.012308463595004
411 => 0.012323329991195
412 => 0.012272583316843
413 => 0.012242006609958
414 => 0.012409691152722
415 => 0.012320104065899
416 => 0.012395960646807
417 => 0.012309512498998
418 => 0.012009845555029
419 => 0.011837503926632
420 => 0.011271460848614
421 => 0.011431989963365
422 => 0.011538420932525
423 => 0.011503245497853
424 => 0.011578815942615
425 => 0.011583455354166
426 => 0.011558886632224
427 => 0.011530439199664
428 => 0.011516592562735
429 => 0.011619794050065
430 => 0.011679705987062
501 => 0.011549102704143
502 => 0.011518504182289
503 => 0.011650551312125
504 => 0.011731099985044
505 => 0.012325826129486
506 => 0.012281766895766
507 => 0.012392346926216
508 => 0.012379897311776
509 => 0.012495802800469
510 => 0.012685259289166
511 => 0.012300041274777
512 => 0.012366901802238
513 => 0.012350509144939
514 => 0.012529479878938
515 => 0.012530038606035
516 => 0.012422736710751
517 => 0.012480906808959
518 => 0.012448437855952
519 => 0.012507113642477
520 => 0.012281178457838
521 => 0.012556343124532
522 => 0.012712343759329
523 => 0.012714509828294
524 => 0.01278845289109
525 => 0.012863583325384
526 => 0.01300778965153
527 => 0.012859561489216
528 => 0.012592913454934
529 => 0.012612164581742
530 => 0.012455828936805
531 => 0.012458456967241
601 => 0.012444428334813
602 => 0.012486529316756
603 => 0.012290417255831
604 => 0.012336444364547
605 => 0.01227200614281
606 => 0.012366761726128
607 => 0.012264820382137
608 => 0.012350501239904
609 => 0.01238747825775
610 => 0.012523924249663
611 => 0.012244667198191
612 => 0.011675243166197
613 => 0.011794943001321
614 => 0.011617897542954
615 => 0.011634283774185
616 => 0.011667386569122
617 => 0.011560089580171
618 => 0.011580558464346
619 => 0.011579827171766
620 => 0.011573525287387
621 => 0.011545613196555
622 => 0.011505135142609
623 => 0.011666387251042
624 => 0.011693787126468
625 => 0.011754693655415
626 => 0.011935910172266
627 => 0.011917802368853
628 => 0.011947336947505
629 => 0.011882863128137
630 => 0.01163727452975
701 => 0.011650611172205
702 => 0.011484303027089
703 => 0.011750440782232
704 => 0.011687415848968
705 => 0.011646783264491
706 => 0.011635696287358
707 => 0.011817362004903
708 => 0.011871719234854
709 => 0.011837847456927
710 => 0.0117683754522
711 => 0.01190178223883
712 => 0.011937476266951
713 => 0.011945466843502
714 => 0.012181838091196
715 => 0.011958677370491
716 => 0.012012394373992
717 => 0.012431479101107
718 => 0.012051427083353
719 => 0.012252749113328
720 => 0.01224289544759
721 => 0.01234588498576
722 => 0.012234447299421
723 => 0.0122358287031
724 => 0.012327276435879
725 => 0.012198854587877
726 => 0.012167055532311
727 => 0.012123125364795
728 => 0.012219045278412
729 => 0.01227654492854
730 => 0.012739949879736
731 => 0.013039330612042
801 => 0.013026333704892
802 => 0.013145101107051
803 => 0.013091595304593
804 => 0.012918810954341
805 => 0.013213732771415
806 => 0.01312040716844
807 => 0.013128100817759
808 => 0.013127814459747
809 => 0.01318986782706
810 => 0.013145897329211
811 => 0.013059226964472
812 => 0.013116762797322
813 => 0.013287623651451
814 => 0.013817980985317
815 => 0.014114775975648
816 => 0.013800113554232
817 => 0.014017163479027
818 => 0.013887010866946
819 => 0.013863358265626
820 => 0.013999681658261
821 => 0.014136243666948
822 => 0.014127545257369
823 => 0.014028408251599
824 => 0.013972408272547
825 => 0.014396458875293
826 => 0.014708892135882
827 => 0.014687586282089
828 => 0.014781623391697
829 => 0.015057719253963
830 => 0.015082961999463
831 => 0.015079781993728
901 => 0.015017215215199
902 => 0.015289067447178
903 => 0.01551585136188
904 => 0.015002732813697
905 => 0.01519812163963
906 => 0.015285837978627
907 => 0.015414631588538
908 => 0.015631927996774
909 => 0.015867969531144
910 => 0.015901348392167
911 => 0.015877664492946
912 => 0.015721988755892
913 => 0.01598026821936
914 => 0.016131562271662
915 => 0.016221654417504
916 => 0.016450113109457
917 => 0.015286379684874
918 => 0.01446263132565
919 => 0.014333991124286
920 => 0.014595586032285
921 => 0.014664566523344
922 => 0.014636760573892
923 => 0.013709556903661
924 => 0.014329109588852
925 => 0.014995696184648
926 => 0.015021302490552
927 => 0.015355009678076
928 => 0.015463678417453
929 => 0.015732356443411
930 => 0.015715550559734
1001 => 0.015780969383454
1002 => 0.015765930728777
1003 => 0.01626360019503
1004 => 0.016812603520938
1005 => 0.016793593281486
1006 => 0.016714667557874
1007 => 0.016831885716273
1008 => 0.017398515983382
1009 => 0.017346349748452
1010 => 0.017397024802178
1011 => 0.018065113820982
1012 => 0.018933724579982
1013 => 0.018530167675332
1014 => 0.019405770038052
1015 => 0.019956915311697
1016 => 0.020910064072981
1017 => 0.020790725153711
1018 => 0.021161778971951
1019 => 0.020577083581435
1020 => 0.019234504778377
1021 => 0.019022036543608
1022 => 0.019447403330168
1023 => 0.020493126068243
1024 => 0.019414469799735
1025 => 0.019632680558009
1026 => 0.019569835844947
1027 => 0.01956648711726
1028 => 0.019694294432786
1029 => 0.019508903255635
1030 => 0.018753586248685
1031 => 0.019099743581859
1101 => 0.01896607561168
1102 => 0.019114390190201
1103 => 0.019914782800893
1104 => 0.019560910148729
1105 => 0.019188134055955
1106 => 0.019655678001931
1107 => 0.02025102211069
1108 => 0.0202137665463
1109 => 0.020141475179766
1110 => 0.020548977827866
1111 => 0.021222052815455
1112 => 0.021403982279966
1113 => 0.021538278891284
1114 => 0.021556796125025
1115 => 0.021747535140953
1116 => 0.020721883379888
1117 => 0.022349619065303
1118 => 0.022630684052884
1119 => 0.022577855484169
1120 => 0.022890247388842
1121 => 0.022798333765869
1122 => 0.022665165346988
1123 => 0.023160372963558
1124 => 0.022592657392354
1125 => 0.021786856612434
1126 => 0.021344778367637
1127 => 0.02192694266182
1128 => 0.022282450081544
1129 => 0.022517417871462
1130 => 0.02258851898272
1201 => 0.020801501806443
1202 => 0.019838398660946
1203 => 0.02045573673521
1204 => 0.021208931792209
1205 => 0.020717699343317
1206 => 0.020736954725287
1207 => 0.020036586346783
1208 => 0.021270898853089
1209 => 0.021091069903122
1210 => 0.022024022813661
1211 => 0.021801366114146
1212 => 0.022562152995667
1213 => 0.022361812313017
1214 => 0.023193415285798
1215 => 0.023525164226392
1216 => 0.024082222330249
1217 => 0.02449199653908
1218 => 0.024732623792237
1219 => 0.024718177434528
1220 => 0.025671662491559
1221 => 0.025109425665658
1222 => 0.024403123703282
1223 => 0.024390348929136
1224 => 0.024756152723828
1225 => 0.02552277712413
1226 => 0.025721551677197
1227 => 0.025832639535038
1228 => 0.025662504613758
1229 => 0.02505223683512
1230 => 0.024788726302431
1231 => 0.025013244910917
]
'min_raw' => 0.0092579815864943
'max_raw' => 0.025832639535038
'avg_raw' => 0.017545310560766
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$0.009257'
'max' => '$0.025832'
'avg' => '$0.017545'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.003665096283951
'max_diff' => 0.013346917088681
'year' => 2036
]
11 => [
'items' => [
101 => 0.024738677945843
102 => 0.025212657557444
103 => 0.025863532800755
104 => 0.025729129636851
105 => 0.026178419262934
106 => 0.026643386759283
107 => 0.027308311162058
108 => 0.027482147023023
109 => 0.027769491090812
110 => 0.028065262524177
111 => 0.028160256337309
112 => 0.028341629001429
113 => 0.028340673077961
114 => 0.028887251809075
115 => 0.029490145075628
116 => 0.02971772332674
117 => 0.030241026966435
118 => 0.029344887822204
119 => 0.030024619657208
120 => 0.030637754787173
121 => 0.029906749808634
122 => 0.030914269869234
123 => 0.030953389590098
124 => 0.031544050930065
125 => 0.030945302504987
126 => 0.030589767601449
127 => 0.031616183546245
128 => 0.032112833890133
129 => 0.03196323876468
130 => 0.030824812473556
131 => 0.030162199542721
201 => 0.028428013694237
202 => 0.03048223174302
203 => 0.031482781432219
204 => 0.030822221291576
205 => 0.031155369404028
206 => 0.032972917481928
207 => 0.033664922112469
208 => 0.033520989986794
209 => 0.033545312146708
210 => 0.033918705284576
211 => 0.035574536089237
212 => 0.034582323889227
213 => 0.035340832938653
214 => 0.035743143403461
215 => 0.03611683178418
216 => 0.035199171226559
217 => 0.034005308324205
218 => 0.033627161828074
219 => 0.030756541603806
220 => 0.030607113354661
221 => 0.030523234750277
222 => 0.029994392014497
223 => 0.029578866486391
224 => 0.029248425158968
225 => 0.028381248437675
226 => 0.028673895124872
227 => 0.027291796424979
228 => 0.0281760141946
301 => 0.025970151297631
302 => 0.027807259465796
303 => 0.026807405012922
304 => 0.027478780387028
305 => 0.027476438021595
306 => 0.02624022309811
307 => 0.025527200129392
308 => 0.025981566116328
309 => 0.026468682521941
310 => 0.026547715519896
311 => 0.027179274654812
312 => 0.027355529234049
313 => 0.026821469630422
314 => 0.025924439692089
315 => 0.026132799287689
316 => 0.025522977728837
317 => 0.024454288903396
318 => 0.025221839875345
319 => 0.025483915524002
320 => 0.025599663060569
321 => 0.024548730340489
322 => 0.02421850446298
323 => 0.024042694976658
324 => 0.025788777474975
325 => 0.025884431815791
326 => 0.025395050684015
327 => 0.027607099804667
328 => 0.027106444961367
329 => 0.027665799084748
330 => 0.026113892838311
331 => 0.026173177746844
401 => 0.025438480459379
402 => 0.025849861847869
403 => 0.025559110741925
404 => 0.025816626297029
405 => 0.025970980058981
406 => 0.02670555678985
407 => 0.027815647152096
408 => 0.026595835522234
409 => 0.026064346127078
410 => 0.026394079158623
411 => 0.027272201673337
412 => 0.028602602233393
413 => 0.027814978325033
414 => 0.028164512440842
415 => 0.028240870095456
416 => 0.027660105384853
417 => 0.028624015856667
418 => 0.029140583309307
419 => 0.029670474627142
420 => 0.030130564411201
421 => 0.029458824382239
422 => 0.030177682503379
423 => 0.02959840975328
424 => 0.029078742212326
425 => 0.029079530333476
426 => 0.028753535293904
427 => 0.028121878826715
428 => 0.028005391682816
429 => 0.028611372516081
430 => 0.029097311757761
501 => 0.029137336041198
502 => 0.029406376973852
503 => 0.029565592626454
504 => 0.031126122465144
505 => 0.031753780475644
506 => 0.032521268809926
507 => 0.032820248769402
508 => 0.033720071257174
509 => 0.032993391518288
510 => 0.032836169785751
511 => 0.030653494760106
512 => 0.03101090767328
513 => 0.031583160232487
514 => 0.030662930994034
515 => 0.03124660463826
516 => 0.031361834179528
517 => 0.030631661956641
518 => 0.031021678489764
519 => 0.029985910209633
520 => 0.027838224070175
521 => 0.028626406845289
522 => 0.029206774667226
523 => 0.028378518226485
524 => 0.029863135838562
525 => 0.028995852878315
526 => 0.028720965816841
527 => 0.027648533385715
528 => 0.028154680211497
529 => 0.02883925104069
530 => 0.02841626585815
531 => 0.029294023623466
601 => 0.0305371627086
602 => 0.031423097650879
603 => 0.031491108735049
604 => 0.030921511920195
605 => 0.031834294451117
606 => 0.031840943075347
607 => 0.030811320651641
608 => 0.030180682650083
609 => 0.030037400369255
610 => 0.030395347598909
611 => 0.030829961616412
612 => 0.031515226788261
613 => 0.031929318179729
614 => 0.033009048911574
615 => 0.033301193089306
616 => 0.033622170968052
617 => 0.034051096399969
618 => 0.034566131355209
619 => 0.033439264194101
620 => 0.033484036727155
621 => 0.032434713629268
622 => 0.031313361411023
623 => 0.032164327966144
624 => 0.033276853537628
625 => 0.033021638942298
626 => 0.032992922086762
627 => 0.033041215872382
628 => 0.032848792402032
629 => 0.031978468177189
630 => 0.03154139679999
701 => 0.032105330385377
702 => 0.032405035988213
703 => 0.032869853241138
704 => 0.032812554703613
705 => 0.034009874029417
706 => 0.034475116114368
707 => 0.034356087280206
708 => 0.034377991450281
709 => 0.035220290022225
710 => 0.036157099266141
711 => 0.037034544745935
712 => 0.037927119975143
713 => 0.036851085698529
714 => 0.036304741853433
715 => 0.036868429243057
716 => 0.036569328779648
717 => 0.038288048761358
718 => 0.038407049203837
719 => 0.04012564490253
720 => 0.041756796867158
721 => 0.040732299543298
722 => 0.041698354375325
723 => 0.042743221439768
724 => 0.044758939530651
725 => 0.044080116591459
726 => 0.04356014885855
727 => 0.043068781863416
728 => 0.044091238577975
729 => 0.045406612807111
730 => 0.045689931817569
731 => 0.046149016850703
801 => 0.045666345072609
802 => 0.04624767006477
803 => 0.048300002734244
804 => 0.047745444330511
805 => 0.046957882247497
806 => 0.048578001781922
807 => 0.049164316743375
808 => 0.053279382198382
809 => 0.058474822320203
810 => 0.05632387599467
811 => 0.054988714199807
812 => 0.055302508892061
813 => 0.057199707747803
814 => 0.057809027806186
815 => 0.056152685842282
816 => 0.056737733825445
817 => 0.059961405733323
818 => 0.061690802284121
819 => 0.059342049479192
820 => 0.052861933643281
821 => 0.046886970898825
822 => 0.048471800074734
823 => 0.048292129629161
824 => 0.051755562932914
825 => 0.047732218295986
826 => 0.04779996110123
827 => 0.051335014537865
828 => 0.050391922887129
829 => 0.04886423519499
830 => 0.046898124709618
831 => 0.0432635876342
901 => 0.040044376789938
902 => 0.046357990595517
903 => 0.046085736087659
904 => 0.045691471214422
905 => 0.046568865025895
906 => 0.050829240321826
907 => 0.050731024881766
908 => 0.05010622836206
909 => 0.050580131015553
910 => 0.048781157768547
911 => 0.04924479413616
912 => 0.0468860244342
913 => 0.04795228685041
914 => 0.048860957463322
915 => 0.049043386541963
916 => 0.0494544085712
917 => 0.045942270333358
918 => 0.047519117291188
919 => 0.048445367148333
920 => 0.044260536596491
921 => 0.048362646503579
922 => 0.045881131820439
923 => 0.045038868465882
924 => 0.046172865113034
925 => 0.045730945516791
926 => 0.045351008998331
927 => 0.045138997892892
928 => 0.045971679875918
929 => 0.045932834266139
930 => 0.0445704049253
1001 => 0.0427931713899
1002 => 0.043389669300082
1003 => 0.043172956017115
1004 => 0.042387559123073
1005 => 0.042916821800475
1006 => 0.040586216822908
1007 => 0.03657653209331
1008 => 0.039225452645648
1009 => 0.039123472085854
1010 => 0.039072048863156
1011 => 0.04106263944745
1012 => 0.040871290093509
1013 => 0.040523989142407
1014 => 0.042381180668749
1015 => 0.041703280778883
1016 => 0.043792408506149
1017 => 0.045168443143636
1018 => 0.044819436249512
1019 => 0.046113603477021
1020 => 0.043403411407177
1021 => 0.044303628498746
1022 => 0.044489161993671
1023 => 0.042358263213599
1024 => 0.040902597214271
1025 => 0.040805520887923
1026 => 0.03828159664822
1027 => 0.039629856604665
1028 => 0.040816269571548
1029 => 0.040248069829777
1030 => 0.040068194766016
1031 => 0.040987137456627
1101 => 0.041058547173899
1102 => 0.039430398052427
1103 => 0.039768941811558
1104 => 0.041180725565353
1105 => 0.039733368483227
1106 => 0.036921390097093
1107 => 0.036223980578689
1108 => 0.036130933293126
1109 => 0.034239503366968
1110 => 0.036270584817502
1111 => 0.035383963334745
1112 => 0.038184789975418
1113 => 0.0365849728194
1114 => 0.036516007899318
1115 => 0.03641175730766
1116 => 0.03478372543623
1117 => 0.03514016094925
1118 => 0.036325006881191
1119 => 0.036747773257952
1120 => 0.036703675261233
1121 => 0.036319200489734
1122 => 0.036495211071297
1123 => 0.035928219661931
1124 => 0.035728003194378
1125 => 0.035096064948903
1126 => 0.034167290305451
1127 => 0.034296442116129
1128 => 0.032456296520345
1129 => 0.031453687535844
1130 => 0.031176178583108
1201 => 0.030805082013612
1202 => 0.031218094928083
1203 => 0.032451083619075
1204 => 0.030963837664595
1205 => 0.028414058793814
1206 => 0.02856730484856
1207 => 0.028911603234412
1208 => 0.028270005470139
1209 => 0.027662787031473
1210 => 0.028190714198704
1211 => 0.027110339278013
1212 => 0.029042161382025
1213 => 0.02898991100798
1214 => 0.029709974825278
1215 => 0.030160245507432
1216 => 0.029122517361932
1217 => 0.028861531539655
1218 => 0.029010200925168
1219 => 0.026553027147775
1220 => 0.02950917130544
1221 => 0.029534736162872
1222 => 0.029315834332664
1223 => 0.03088988983591
1224 => 0.034211637907981
1225 => 0.032961862666261
1226 => 0.03247791191801
1227 => 0.03155792119182
1228 => 0.032783754210824
1229 => 0.032689629360939
1230 => 0.032263961093967
1231 => 0.032006515597937
]
'min_raw' => 0.024042694976658
'max_raw' => 0.061690802284121
'avg_raw' => 0.04286674863039
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$0.024042'
'max' => '$0.06169'
'avg' => '$0.042866'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 0.014784713390164
'max_diff' => 0.035858162749083
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.00075467272234511
]
1 => [
'year' => 2028
'avg' => 0.0012952374746009
]
2 => [
'year' => 2029
'avg' => 0.0035383553367677
]
3 => [
'year' => 2030
'avg' => 0.0027298358728394
]
4 => [
'year' => 2031
'avg' => 0.0026810371319637
]
5 => [
'year' => 2032
'avg' => 0.00470070184577
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.00075467272234511
'min' => '$0.000754'
'max_raw' => 0.00470070184577
'max' => '$0.0047007'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.00470070184577
]
1 => [
'year' => 2033
'avg' => 0.012090688514791
]
2 => [
'year' => 2034
'avg' => 0.0076636594319753
]
3 => [
'year' => 2035
'avg' => 0.0090393038744505
]
4 => [
'year' => 2036
'avg' => 0.017545310560766
]
5 => [
'year' => 2037
'avg' => 0.04286674863039
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.00470070184577
'min' => '$0.0047007'
'max_raw' => 0.04286674863039
'max' => '$0.042866'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 0.04286674863039
]
]
]
]
'prediction_2025_max_price' => '$0.00129'
'last_price' => 0.00125116
'sma_50day_nextmonth' => '$0.00118'
'sma_200day_nextmonth' => '$0.003039'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'increase'
'sma_200day_direction_label' => 'aumentar'
'sma_200day_date_nextmonth' => '4 de fev. de 2026'
'sma_50day_date_nextmonth' => '4 de fev. de 2026'
'daily_sma3' => '$0.00128'
'daily_sma3_action' => 'SELL'
'daily_sma5' => '$0.001254'
'daily_sma5_action' => 'SELL'
'daily_sma10' => '$0.001231'
'daily_sma10_action' => 'BUY'
'daily_sma21' => '$0.001223'
'daily_sma21_action' => 'BUY'
'daily_sma50' => '$0.002024'
'daily_sma50_action' => 'SELL'
'daily_sma100' => '$0.002188'
'daily_sma100_action' => 'SELL'
'daily_sma200' => '$0.003144'
'daily_sma200_action' => 'SELL'
'daily_ema3' => '$0.00127'
'daily_ema3_action' => 'SELL'
'daily_ema5' => '$0.00126'
'daily_ema5_action' => 'SELL'
'daily_ema10' => '$0.00125'
'daily_ema10_action' => 'BUY'
'daily_ema21' => '$0.001368'
'daily_ema21_action' => 'SELL'
'daily_ema50' => '$0.001836'
'daily_ema50_action' => 'SELL'
'daily_ema100' => '$0.002341'
'daily_ema100_action' => 'SELL'
'daily_ema200' => '$0.003125'
'daily_ema200_action' => 'SELL'
'weekly_sma21' => '$0.00161'
'weekly_sma21_action' => 'SELL'
'weekly_sma50' => '$0.002331'
'weekly_sma50_action' => 'SELL'
'weekly_sma100' => '$0.010359'
'weekly_sma100_action' => 'SELL'
'weekly_sma200' => '$0.038088'
'weekly_sma200_action' => 'SELL'
'weekly_ema3' => '$0.001239'
'weekly_ema3_action' => 'BUY'
'weekly_ema5' => '$0.001245'
'weekly_ema5_action' => 'BUY'
'weekly_ema10' => '$0.001317'
'weekly_ema10_action' => 'SELL'
'weekly_ema21' => '$0.001634'
'weekly_ema21_action' => 'SELL'
'weekly_ema50' => '$0.004429'
'weekly_ema50_action' => 'SELL'
'weekly_ema100' => '$0.032961'
'weekly_ema100_action' => 'SELL'
'weekly_ema200' => '$0.12254'
'weekly_ema200_action' => 'SELL'
'rsi_14' => '48.31'
'rsi_14_action' => 'NEUTRAL'
'stoch_rsi_14' => 144.74
'stoch_rsi_14_action' => 'SELL'
'momentum_10' => -0
'momentum_10_action' => 'SELL'
'vwma_10' => '0.001225'
'vwma_10_action' => 'BUY'
'hma_9' => '0.001297'
'hma_9_action' => 'BUY'
'stochastic_fast_14' => 39.8
'stochastic_fast_14_action' => 'NEUTRAL'
'cci_20' => 45.71
'cci_20_action' => 'NEUTRAL'
'adx_14' => 4.16
'adx_14_action' => 'NEUTRAL'
'ao_5_34' => '-0.0000088'
'ao_5_34_action' => 'SELL'
'macd_12_26' => 0
'macd_12_26_action' => 'NEUTRAL'
'williams_percent_r_14' => -60.2
'williams_percent_r_14_action' => 'NEUTRAL'
'ultimate_oscillator' => 54.64
'ultimate_oscillator_action' => 'NEUTRAL'
'ichimoku_cloud' => '-0.013288'
'ichimoku_cloud_action' => 'SELL'
'sell_signals' => 27
'buy_signals' => 7
'sell_pct' => 79.41
'buy_pct' => 20.59
'overall_action' => 'bearish'
'overall_action_label' => 'Baixista'
'overall_action_dir' => -1
'last_updated' => 1767713676
'last_updated_date' => '6 de janeiro de 2026'
]
Previsão de preço de Zenlink Network para 2026
A previsão de preço para Zenlink Network em 2026 sugere que o preço médio poderia variar entre $0.000432 na extremidade inferior e $0.00129 na extremidade superior. No mercado de criptomoedas, comparado ao preço médio de hoje, Zenlink Network poderia potencialmente ganhar 3.13% até 2026 se ZLK atingir a meta de preço prevista.
Previsão de preço de Zenlink Network 2027-2032
A previsão de preço de ZLK para 2027-2032 está atualmente dentro de uma faixa de preço entre $0.000754 na extremidade inferior e $0.0047007 na extremidade superior. Considerando a volatilidade de preços no mercado, se Zenlink Network atingir a meta de preço superior, poderia ganhar 275.71% até 2032 em comparação com o preço de hoje.
| Previsão de Preço de Zenlink Network | Potencial Mínimo ($) | Preço Médio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2027 | $0.000416 | $0.000754 | $0.001093 |
| 2028 | $0.000751 | $0.001295 | $0.001839 |
| 2029 | $0.001649 | $0.003538 | $0.005426 |
| 2030 | $0.001403 | $0.002729 | $0.004056 |
| 2031 | $0.001658 | $0.002681 | $0.0037032 |
| 2032 | $0.002532 | $0.0047007 | $0.006869 |
Previsão de preço de Zenlink Network 2032-2037
A previsão de preço de Zenlink Network para 2032-2037 é atualmente estimada entre $0.0047007 na extremidade inferior e $0.042866 na extremidade superior. Comparado ao preço atual, Zenlink Network poderia potencialmente ganhar 3326.16% até 2037 se atingir a meta de preço superior. Por favor, note que esta informação é apenas para fins gerais e não deve ser considerada como aconselhamento de investimento a longo prazo.
| Previsão de Preço de Zenlink Network | Potencial Mínimo ($) | Preço Médio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2032 | $0.002532 | $0.0047007 | $0.006869 |
| 2033 | $0.005884 | $0.01209 | $0.018297 |
| 2034 | $0.00473 | $0.007663 | $0.010596 |
| 2035 | $0.005592 | $0.009039 | $0.012485 |
| 2036 | $0.009257 | $0.017545 | $0.025832 |
| 2037 | $0.024042 | $0.042866 | $0.06169 |
Zenlink Network Histograma de preços potenciais
Previsão de preço de Zenlink Network baseada na análise técnica
Em 6 de janeiro de 2026, o sentimento geral de previsão de preço para Zenlink Network é Baixista, com 7 indicadores técnicos mostrando sinais de alta e 27 indicando sinais de baixa. A previsão de preço de ZLK foi atualizada pela última vez em 6 de janeiro de 2026.
Médias Móveis Simples de 50 e 200 dias e Índice de Força Relativa de 14 dias - RSI (14) de Zenlink Network
De acordo com nossos indicadores técnicos, o SMA de 200 dias de Zenlink Network está projetado para aumentar no próximo mês, alcançando $0.003039 até 4 de fev. de 2026. O SMA de 50 dias de curto prazo para Zenlink Network é esperado para alcançar $0.00118 até 4 de fev. de 2026.
O oscilador de momentum Índice de Força Relativa (RSI) é uma ferramenta comumente usada para identificar se uma criptomoeda está sobrevendida (abaixo de 30) ou sobrecomprada (acima de 70). No momento, o RSI está em 48.31, sugerindo que o mercado de ZLK está em um estado NEUTRAL.
Médias Móveis e Osciladores Populares de ZLK para Sábado, 19 de Outubro de 2024
Médias móveis (MA) são indicadores amplamente utilizados nos mercados financeiros, projetados para suavizar movimentos de preços ao longo de um período definido. Como indicadores atrasados, eles se baseiam em dados históricos de preços. A tabela abaixo destaca dois tipos: a média móvel simples (SMA) e a média móvel exponencial (EMA).
Média Móvel Simples Diária (SMA)
| Período | Valor | Ação |
|---|---|---|
| SMA 3 | $0.00128 | SELL |
| SMA 5 | $0.001254 | SELL |
| SMA 10 | $0.001231 | BUY |
| SMA 21 | $0.001223 | BUY |
| SMA 50 | $0.002024 | SELL |
| SMA 100 | $0.002188 | SELL |
| SMA 200 | $0.003144 | SELL |
Média Móvel Exponencial Diária (EMA)
| Período | Valor | Ação |
|---|---|---|
| EMA 3 | $0.00127 | SELL |
| EMA 5 | $0.00126 | SELL |
| EMA 10 | $0.00125 | BUY |
| EMA 21 | $0.001368 | SELL |
| EMA 50 | $0.001836 | SELL |
| EMA 100 | $0.002341 | SELL |
| EMA 200 | $0.003125 | SELL |
Média Móvel Simples Semanal (SMA)
| Período | Valor | Ação |
|---|---|---|
| SMA 21 | $0.00161 | SELL |
| SMA 50 | $0.002331 | SELL |
| SMA 100 | $0.010359 | SELL |
| SMA 200 | $0.038088 | SELL |
Média Móvel Exponencial Semanal (EMA)
| Período | Valor | Ação |
|---|---|---|
| EMA 21 | $0.001634 | SELL |
| EMA 50 | $0.004429 | SELL |
| EMA 100 | $0.032961 | SELL |
| EMA 200 | $0.12254 | SELL |
Osciladores de Zenlink Network
Um oscilador é uma ferramenta de análise técnica que define limites altos e baixos entre dois extremos, criando um indicador de tendência que flutua dentro desses limites. Os traders usam esse indicador para identificar condições de sobrecompra ou sobrevenda de curto prazo.
| Período | Valor | Ação |
|---|---|---|
| RSI (14) | 48.31 | NEUTRAL |
| Stoch RSI (14) | 144.74 | SELL |
| Estocástico Rápido (14) | 39.8 | NEUTRAL |
| Índice de Canal de Commodities (20) | 45.71 | NEUTRAL |
| Índice Direcional Médio (14) | 4.16 | NEUTRAL |
| Oscilador Impressionante (5, 34) | -0.0000088 | SELL |
| Momentum (10) | -0 | SELL |
| MACD (12, 26) | 0 | NEUTRAL |
| Williams Percent Range (14) | -60.2 | NEUTRAL |
| Oscilador Ultimate (7, 14, 28) | 54.64 | NEUTRAL |
| VWMA (10) | 0.001225 | BUY |
| Média Móvel de Hull (9) | 0.001297 | BUY |
| Nuvem Ichimoku B/L (9, 26, 52, 26) | -0.013288 | SELL |
Previsão do preço de Zenlink Network com base nos fluxos financeiros mundiais
Definições dos fluxos financeiros mundiais, usadas na previsão do preço do Zenlink Network
M0: o total de todas as moedas físicas, mais as contas no Banco Central que podem ser trocadas por moedas físicas.
M1: o valor de M0, mais o valor em contas de demanda, incluindo contas 'correntes'.
M2: o valor de M1, mais a maioria das contas de poupança, do mercado de moedas e de certificados de depósito (CD) de menos de US$ 100.000.
Previsões de preço de Zenlink Network por empresas de Internet ou nichos tecnológicos
| Comparação | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Facebook stock | $0.001758 | $0.00247 | $0.003471 | $0.004877 | $0.006854 | $0.009631 |
| Amazon.com stock | $0.00261 | $0.005447 | $0.011365 | $0.023715 | $0.049484 | $0.103251 |
| Apple stock | $0.001774 | $0.002517 | $0.00357 | $0.005064 | $0.007183 | $0.010189 |
| Netflix stock | $0.001974 | $0.003114 | $0.004914 | $0.007754 | $0.012235 | $0.0193061 |
| Google stock | $0.00162 | $0.002098 | $0.002717 | $0.003518 | $0.004556 | $0.00590095 |
| Tesla stock | $0.002836 | $0.006429 | $0.014575 | $0.033041 | $0.0749027 | $0.169798 |
| Kodak stock | $0.000938 | $0.0007035 | $0.000527 | $0.000395 | $0.000296 | $0.000222 |
| Nokia stock | $0.000828 | $0.000549 | $0.000363 | $0.00024 | $0.000159 | $0.0001057 |
Este cálculo mostra quanto a criptomoeda pode custar, se assumirmos que sua capitalização se comportará da mesma forma que a de algumas empresas de Internet ou nichos tecnológicos. Se você extrapolar os dados, poderá obter uma imagem em potencial do preço futuro para 2024, 2025, 2026, 2027, 2028, 2029 e 2030.
Visão geral da previsão para Zenlink Network
Você pode fazer perguntas como: 'Devo investir em Zenlink Network agora?', 'Devo comprar ZLK hoje?', 'Zenlink Network será um bom ou mau investimento no curto ou no longo prazo?'.
Atualizamos a previsão para Zenlink Network regularmente com novos valores. Veja nossas previsões semelhantes. Fazemos previsões de preços futuros para uma enorme quantidade de moedas digitais, como Zenlink Network, com métodos de análise técnica.
Se você estiver tentando encontrar criptomoedas com bom retorno, você deve explorar o máximo de fontes de informações disponíveis sobre Zenlink Network para poder tomar sozinho uma decisão de tão grande responsabilidade sobre o seu investimento.
O preço de Zenlink Network é de $0.001251 USD hoje, mas o preço pode tanto subir quanto descer e seu investimento pode ser perdido, porque criptomoedas são ativos de alto risco
Previsão do preço de Zenlink Network com base no padrão de crescimento do Bitcoin
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| Se Zenlink Network tiver 1% da média anterior do crescimento anual do Bitcoin | $0.001283 | $0.001317 | $0.001351 | $0.001386 |
| Se Zenlink Network tiver 2% da média anterior do crescimento anual do Bitcoin | $0.001316 | $0.001384 | $0.001456 | $0.001532 |
| Se Zenlink Network tiver 5% da média anterior do crescimento anual do Bitcoin | $0.001413 | $0.001597 | $0.0018051 | $0.002039 |
| Se Zenlink Network tiver 10% da média anterior do crescimento anual do Bitcoin | $0.001576 | $0.001986 | $0.0025023 | $0.003152 |
| Se Zenlink Network tiver 20% da média anterior do crescimento anual do Bitcoin | $0.0019015 | $0.00289 | $0.004392 | $0.006676 |
| Se Zenlink Network tiver 50% da média anterior do crescimento anual do Bitcoin | $0.002877 | $0.006616 | $0.015216 | $0.034991 |
| Se Zenlink Network tiver 100% da média anterior do crescimento anual do Bitcoin | $0.0045033 | $0.0162089 | $0.058341 | $0.209988 |
Perguntas Frequentes sobre Zenlink Network
ZLK é um bom investimento?
A decisão de adquirir Zenlink Network depende inteiramente da sua tolerância individual ao risco. Como você pode perceber, o valor de Zenlink Network experimentou uma queda de -1.0042% nas últimas 24 horas, e Zenlink Network registrou um declínio de durante os últimos 30 dias. Consequentemente, a decisão de investir ou não em Zenlink Network dependerá de quão alinhado esse investimento está com suas aspirações de negociação.
Zenlink Network pode subir?
Parece que o valor médio de Zenlink Network pode potencialmente subir para $0.00129 até o final deste ano. Observando as perspectivas de Zenlink Network em um horizonte de cinco anos mais longo, a moeda digital poderia potencialmente crescer até $0.004056. No entanto, dada a imprevisibilidade do mercado, é vital conduzir uma pesquisa aprofundada antes de investir quaisquer fundos em um projeto, rede ou ativo específico.
Qual será o preço de Zenlink Network na próxima semana?
Com base na nossa nova previsão experimental de Zenlink Network, o preço de Zenlink Network aumentará 0.86% na próxima semana e atingirá $0.001261 até 13 de janeiro de 2026.
Qual será o preço de Zenlink Network no próximo mês?
Com base na nossa nova previsão experimental de Zenlink Network, o preço de Zenlink Network diminuirá -11.62% no próximo mês e atingirá $0.001105 até 5 de fevereiro de 2026.
Até onde o preço de Zenlink Network pode subir este ano em 2026?
De acordo com nossa previsão mais recente sobre o valor de Zenlink Network em 2026, espera-se que ZLK fluctue dentro do intervalo de $0.000432 e $0.00129. No entanto, é crucial lembrar que o mercado de criptomoedas é excepcionalmente instável, e essa previsão de preço de Zenlink Network não considera flutuações repentinas e extremas de preço.
Onde estará Zenlink Network em 5 anos?
O futuro de Zenlink Network parece seguir uma tendência de alta, com um preço máximo de $0.004056 projetada após um período de cinco anos. Com base na previsão de Zenlink Network para 2030, o valor de Zenlink Network pode potencialmente atingir seu pico mais alto de aproximadamente $0.004056, enquanto seu pico mais baixo está previsto para cerca de $0.001403.
Quanto será Zenlink Network em 2026?
Com base na nossa nova simulação experimental de previsão de preços de Zenlink Network, espera-se que o valor de ZLK em 2026 aumente 3.13% para $0.00129 se o melhor cenário ocorrer. O preço ficará entre $0.00129 e $0.000432 durante 2026.
Quanto será Zenlink Network em 2027?
De acordo com nossa última simulação experimental para previsão de preços de Zenlink Network, o valor de ZLK pode diminuir -12.62% para $0.001093 em 2027, assumindo as condições mais favoráveis. O preço está projetado para flutuar entre $0.001093 e $0.000416 ao longo do ano.
Quanto será Zenlink Network em 2028?
Nosso novo modelo experimental de previsão de preços de Zenlink Network sugere que o valor de ZLK em 2028 pode aumentar 47.02%, alcançando $0.001839 no melhor cenário. O preço é esperado para variar entre $0.001839 e $0.000751 durante o ano.
Quanto será Zenlink Network em 2029?
Com base no nosso modelo de previsão experimental, o valor de Zenlink Network pode experimentar um 333.75% crescimento em 2029, potencialmente alcançando $0.005426 sob condições ótimas. A faixa de preço prevista para 2029 está entre $0.005426 e $0.001649.
Quanto será Zenlink Network em 2030?
Usando nossa nova simulação experimental para previsões de preços de Zenlink Network, espera-se que o valor de ZLK em 2030 aumente 224.23%, alcançando $0.004056 no melhor cenário. O preço está previsto para variar entre $0.004056 e $0.001403 ao longo de 2030.
Quanto será Zenlink Network em 2031?
Nossa simulação experimental indica que o preço de Zenlink Network poderia aumentar 195.98% em 2031, potencialmente atingindo $0.0037032 sob condições ideais. O preço provavelmente oscilará entre $0.0037032 e $0.001658 durante o ano.
Quanto será Zenlink Network em 2032?
Com base nos achados da nossa mais recente previsão experimental de preços de Zenlink Network, ZLK poderia ver um 449.04% aumento em valor, atingindo $0.006869 se o cenário mais positivo se desenrolar em 2032. O preço é esperado para permanecer dentro de uma faixa de $0.006869 e $0.002532 ao longo do ano.
Quanto será Zenlink Network em 2033?
De acordo com nossa previsão experimental de preços de Zenlink Network, espera-se que o valor de ZLK seja aumentar 1362.43% em 2033, com o preço potencial mais alto sendo $0.018297. Ao longo do ano, o preço de ZLK poderia variar entre $0.018297 e $0.005884.
Quanto será Zenlink Network em 2034?
Os resultados da nossa nova simulação de previsão de preços de Zenlink Network sugerem que ZLK pode aumentar 746.96% em 2034, atingindo potencialmente $0.010596 nas melhores circunstâncias. A faixa de preço prevista para o ano é entre $0.010596 e $0.00473.
Quanto será Zenlink Network em 2035?
Com base em nossa previsão experimental para o preço de Zenlink Network, ZLK poderia aumentar 897.93%, com o valor potencialmente atingindo $0.012485 em 2035. A faixa de preço esperada para o ano está entre $0.012485 e $0.005592.
Quanto será Zenlink Network em 2036?
Nossa recente simulação de previsão de preços de Zenlink Network sugere que o valor de ZLK pode aumentar 1964.7% em 2036, possivelmente atingindo $0.025832 se as condições forem ideais. A faixa de preço esperada para 2036 está entre $0.025832 e $0.009257.
Quanto será Zenlink Network em 2037?
De acordo com a simulação experimental, o valor de Zenlink Network poderia aumentar 4830.69% em 2037, com um pico de $0.06169 sob condições favoráveis. O preço é esperado para cair entre $0.06169 e $0.024042 ao longo do ano.
Previsões relacionadas
Previsão de Preço do McPepe's
Previsão de Preço do Spore
Previsão de Preço do Dastra Network
Previsão de Preço do Ulord
Previsão de Preço do Raiden Network Token
Previsão de Preço do BitcoinZ
Previsão de Preço do BISO
Previsão de Preço do DaTa eXchange DTX
Previsão de Preço do PRIMAL
Previsão de Preço do FourCoin
Previsão de Preço do Corite
Previsão de Preço do Nord Finance
Previsão de Preço do Futureswap
Previsão de Preço do CorgiCoin
Previsão de Preço do Meowcoin
Previsão de Preço do Hot CrossPrevisão de Preço do OSHI
Previsão de Preço do ROM Token
Previsão de Preço do Clube Atlético Mineiro Fan Token
Previsão de Preço do Stride Staked Juno
Previsão de Preço do FaraLand
Previsão de Preço do Blank
Previsão de Preço do Digix Gold
Previsão de Preço do Ureeqa
Previsão de Preço do Piccolo Inu
Como ler e prever os movimentos de preço de Zenlink Network?
Traders de Zenlink Network utilizam indicadores e padrões de gráfico para prever a direção do mercado. Eles também identificam níveis-chave de suporte e resistência para avaliar quando uma tendência de baixa pode desacelerar ou uma tendência de alta pode estagnar.
Indicadores de Previsão de Preço de Zenlink Network
Médias móveis são ferramentas populares para a previsão de preço de Zenlink Network. Uma média móvel simples (SMA) calcula o preço médio de fechamento de ZLK em um período específico, como uma SMA de 12 dias. Uma média móvel exponencial (EMA) dá mais peso aos preços recentes, reagindo mais rapidamente às mudanças de preço.
Médias móveis comumente usadas no mercado de criptomoedas incluem as de 50 dias, 100 dias e 200 dias, que ajudam a identificar níveis-chave de resistência e suporte. Um movimento de preço de ZLK acima dessas médias é visto como altista, enquanto uma queda abaixo indica fraqueza.
Traders também usam RSI e níveis de retração de Fibonacci para avaliar a direção futura de ZLK.
Como ler gráficos de Zenlink Network e prever movimentos de preço?
A maioria dos traders prefere gráficos de velas em vez de gráficos de linha simples porque eles fornecem informações mais detalhadas. Velas podem representar a ação de preço de Zenlink Network em diferentes períodos de tempo, como 5 minutos para tendências de curto prazo e semanal para tendências de longo prazo. Opções populares incluem gráficos de 1 hora, 4 horas e 1 dia.
Por exemplo, um gráfico de velas de 1 hora mostra os preços de abertura, fechamento, máximo e mínimo de ZLK dentro de cada hora. A cor da vela é crucial: verde indica que o preço fechou mais alto do que abriu, enquanto vermelho significa o oposto. Alguns gráficos usam velas vazias e preenchidas para transmitir a mesma informação.
O que afeta o preço de Zenlink Network?
A ação de preço de Zenlink Network é impulsionada pela oferta e demanda, influenciada por fatores como reduções pela metade das recompensas de bloco, hard forks e atualizações de protocolo. Eventos do mundo real, como regulamentações, adoção por empresas e governos e hacks de exchanges de criptomoedas, também impactam o preço de ZLK. A capitalização de mercado de Zenlink Network pode mudar rapidamente.
Traders frequentemente monitoram a atividade de "baleias" de ZLK, grandes detentores de Zenlink Network, pois suas ações podem influenciar significativamente os movimentos de preço no relativamente pequeno mercado de Zenlink Network.
Padrões de previsão de preço altistas e baixistas
Traders frequentemente identificam padrões de velas para ganhar vantagem em previsões de preço de criptomoedas. Certas formações indicam tendências altistas, enquanto outras sugerem movimentos baixistas.
Padrões de velas altistas comumente seguidos:
- Martelo
- Engolfo de Alta
- Linha de Perfuração
- Estrela da Manhã
- Três Soldados Brancos
Padrões de velas baixistas comuns:
- Harami de Baixa
- Nuvem Negra
- Estrela da Noite
- Estrela Cadente
- Homem Enforcado


