Previsão de Preço Zenko - Projeção ZNKO
Previsão de Preço Zenko até $0.00086 até 2026
| Ano | Preço Mínimo | Preço Máximo |
|---|---|---|
| 2026 | $0.000288 | $0.00086 |
| 2027 | $0.000277 | $0.000729 |
| 2028 | $0.00050091 | $0.001226 |
| 2029 | $0.00110035 | $0.003619 |
| 2030 | $0.000935 | $0.0027056 |
| 2031 | $0.0011064 | $0.002469 |
| 2032 | $0.001688 | $0.004581 |
| 2033 | $0.003924 | $0.0122039 |
| 2034 | $0.003155 | $0.007067 |
| 2035 | $0.00373 | $0.008327 |
Calculadora de lucro do investimento
Se você abrir um short de $10,000.00 em Zenko hoje e fechar em Apr 06, 2026, nossa previsão mostra que pode lucrar cerca de $3,960.47, com um retorno de 39.6% nos próximos 90 dias.
Previsão de preço de longo prazo de Zenko para os anos 2027, 2028, 2029, 2030, 2031, 2032 e 2037
[
'name' => 'Zenko'
'name_with_ticker' => 'Zenko <small>ZNKO</small>'
'name_lang' => 'Zenko'
'name_lang_with_ticker' => 'Zenko <small>ZNKO</small>'
'name_with_lang' => 'Zenko'
'name_with_lang_with_ticker' => 'Zenko <small>ZNKO</small>'
'image' => '/uploads/coins/zenko.PNG?ts=1630513751'
'price_for_sd' => 0.0008
'ticker' => 'ZNKO'
'marketcap' => '$0'
'low24h' => '$0'
'high24h' => '$0'
'volume24h' => '$0'
'current_supply' => '0'
'max_supply' => '0'
'algo' => null
'proof' => null
'ico_price_and_roi' => '—'
'price' => '$0.0008345'
'change_24h_pct' => '0%'
'ath_price' => '$0.03243'
'ath_days' => 1530
'ath_exchange' => null
'ath_pair' => null
'ath_date' => '29 de out. de 2021'
'ath_pct' => '2.57%'
'fdv' => '$0'
'new_prediction' => true
'change_24h_pct_is_increased' => false
'change_30d_pct' => null
'change_30d_pct_is_increased' => false
'max_price' => '$0.041146'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.000841'
'next_week_prediction_price_date' => '13 de janeiro de 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.000737'
'next_month_prediction_price_date' => '5 de fevereiro de 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.000288'
'current_year_max_price_prediction' => '$0.00086'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.000935'
'grand_prediction_max_price' => '$0.0027056'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.000850313336053
107 => 0.00085348809738608
108 => 0.00086064099677684
109 => 0.00079952025463952
110 => 0.00082696167344847
111 => 0.0008430809360855
112 => 0.00077025352106759
113 => 0.00084164137224859
114 => 0.00079845627850029
115 => 0.00078379860906377
116 => 0.00080353322995893
117 => 0.00079584262900354
118 => 0.00078923070190934
119 => 0.00078554113298344
120 => 0.00080003206053822
121 => 0.00079935604144738
122 => 0.00077564607139993
123 => 0.00074471738201504
124 => 0.00075509806537223
125 => 0.00075132666578914
126 => 0.00073765862717978
127 => 0.00074686923491721
128 => 0.00070631037982347
129 => 0.00063653097770053
130 => 0.00068262938814383
131 => 0.00068085464948719
201 => 0.00067995974577852
202 => 0.00071460142716018
203 => 0.0007112714288149
204 => 0.00070522744921078
205 => 0.00073754762475461
206 => 0.0007257503259134
207 => 0.0007621068211488
208 => 0.00078605356030152
209 => 0.00077997989265653
210 => 0.00080250191657429
211 => 0.00075533721535075
212 => 0.00077100343717783
213 => 0.00077423222378395
214 => 0.00073714879880533
215 => 0.00071181625772697
216 => 0.00071012686604916
217 => 0.00066620373085849
218 => 0.00068966711514219
219 => 0.00071031392233102
220 => 0.00070042570394453
221 => 0.00069729538940549
222 => 0.00071328748750307
223 => 0.00071453021048831
224 => 0.00068619599472698
225 => 0.00069208757541167
226 => 0.00071665644626066
227 => 0.00069146850290351
228 => 0.00064253244338775
301 => 0.00063039562403388
302 => 0.00062877634860612
303 => 0.00059586033193515
304 => 0.00063120666433757
305 => 0.0006157770430211
306 => 0.00066451903188458
307 => 0.00063667786925429
308 => 0.00063547769237872
309 => 0.00063366344900364
310 => 0.00060533127371141
311 => 0.00061153421949674
312 => 0.00063215375602248
313 => 0.00063951103895057
314 => 0.00063874361406472
315 => 0.00063205270904455
316 => 0.00063511577109981
317 => 0.00062524858097826
318 => 0.00062176427077854
319 => 0.00061076682935319
320 => 0.00059460362857867
321 => 0.00059685122078104
322 => 0.00056482769071517
323 => 0.0005473795719179
324 => 0.00054255016259732
325 => 0.00053609207461895
326 => 0.0005432796208188
327 => 0.00056473697207803
328 => 0.00053885485402838
329 => 0.00049448177805174
330 => 0.00049714867552598
331 => 0.00050314040234163
401 => 0.00049197485905991
402 => 0.00048140760939678
403 => 0.00049059497563081
404 => 0.00047179351837958
405 => 0.00050541246862542
406 => 0.00050450317023729
407 => 0.000517034235907
408 => 0.00052487016843362
409 => 0.00050681088087303
410 => 0.00050226901888905
411 => 0.00050485626989125
412 => 0.00046209477399781
413 => 0.00051353970940344
414 => 0.00051398460734113
415 => 0.00051017512109329
416 => 0.00053756796101261
417 => 0.00059537539728339
418 => 0.00057362591445958
419 => 0.00056520385732861
420 => 0.00054919352056614
421 => 0.0005705263437024
422 => 0.00056888831572942
423 => 0.00056148053203193
424 => 0.00055700028133799
425 => 0.00056525528061355
426 => 0.00055597739557372
427 => 0.00055431083248134
428 => 0.00054421327338001
429 => 0.00054060890419051
430 => 0.00053794037273667
501 => 0.00053500258181048
502 => 0.00054148261654177
503 => 0.0005267980053211
504 => 0.00050908980373916
505 => 0.00050761755838302
506 => 0.00051168255725246
507 => 0.00050988409785631
508 => 0.00050760894805135
509 => 0.0005032650674735
510 => 0.00050197633089837
511 => 0.00050616409956143
512 => 0.00050143635290292
513 => 0.00050841240063123
514 => 0.00050651530165146
515 => 0.00049591826096489
516 => 0.00048271042474246
517 => 0.0004825928472957
518 => 0.00047974724064677
519 => 0.00047612293273954
520 => 0.00047511473319268
521 => 0.00048982124127223
522 => 0.00052026327286815
523 => 0.00051428677364979
524 => 0.00051860540683133
525 => 0.00053984880777614
526 => 0.00054660144612514
527 => 0.00054180858337002
528 => 0.00053524781721992
529 => 0.00053553645763407
530 => 0.00055795658164795
531 => 0.00055935489728161
601 => 0.00056288798977415
602 => 0.00056742901207889
603 => 0.00054258193910446
604 => 0.00053436616273144
605 => 0.00053047307209198
606 => 0.00051848385973815
607 => 0.00053141319738437
608 => 0.00052387982602736
609 => 0.00052489633520003
610 => 0.0005242343322678
611 => 0.00052459583063324
612 => 0.00050540307144367
613 => 0.00051239590415062
614 => 0.0005007689634931
615 => 0.00048520179513802
616 => 0.00048514960853114
617 => 0.00048895965093205
618 => 0.00048669328862502
619 => 0.00048059456593028
620 => 0.00048146086070391
621 => 0.00047387120692873
622 => 0.00048238238208733
623 => 0.00048262645213643
624 => 0.00047934918609353
625 => 0.00049246182574119
626 => 0.00049783408490374
627 => 0.00049567691818845
628 => 0.00049768273233643
629 => 0.00051453512417459
630 => 0.00051728279936562
701 => 0.00051850313518423
702 => 0.0005168680468508
703 => 0.00049799076312286
704 => 0.0004988280509286
705 => 0.00049268458855925
706 => 0.00048749401023926
707 => 0.00048770160615106
708 => 0.00049037023813548
709 => 0.00050202431052466
710 => 0.00052654961882259
711 => 0.00052748033634473
712 => 0.0005286083931325
713 => 0.00052402001926069
714 => 0.00052263612179613
715 => 0.00052446183976613
716 => 0.00053367225608338
717 => 0.000557363947455
718 => 0.0005489897214094
719 => 0.00054218134528175
720 => 0.00054815412667073
721 => 0.0005472346637921
722 => 0.00053947347178176
723 => 0.00053925564097149
724 => 0.00052435943210047
725 => 0.00051885264285112
726 => 0.00051425075757833
727 => 0.0005092256189957
728 => 0.00050624654839974
729 => 0.0005108237547985
730 => 0.00051187061605781
731 => 0.00050186247427105
801 => 0.00050049840152687
802 => 0.00050867126615068
803 => 0.00050507469314485
804 => 0.00050877385767207
805 => 0.00050963209557323
806 => 0.00050949389950425
807 => 0.00050573866422238
808 => 0.00050813213920831
809 => 0.00050247085733734
810 => 0.0004963150635997
811 => 0.00049238805071459
812 => 0.00048896121112965
813 => 0.00049086262090046
814 => 0.00048408444225124
815 => 0.00048191596648358
816 => 0.00050732128373797
817 => 0.00052608846474698
818 => 0.00052581558250248
819 => 0.00052415448201877
820 => 0.00052168642364189
821 => 0.00053349170224053
822 => 0.00052937897923076
823 => 0.00053237132884987
824 => 0.00053313300741646
825 => 0.00053543837903459
826 => 0.00053626235123469
827 => 0.00053377173496051
828 => 0.00052541292254118
829 => 0.00050458355672426
830 => 0.00049488743070868
831 => 0.00049168754762179
901 => 0.00049180385729455
902 => 0.00048859551729044
903 => 0.00048954051720937
904 => 0.00048826688488383
905 => 0.00048585493338401
906 => 0.00049071368969205
907 => 0.0004912736160941
908 => 0.00049013952431399
909 => 0.00049040664398293
910 => 0.00048101684842054
911 => 0.00048173073418359
912 => 0.00047775572753874
913 => 0.00047701046171225
914 => 0.00046696199105751
915 => 0.00044915966874351
916 => 0.0004590238834187
917 => 0.00044710929920955
918 => 0.00044259706563413
919 => 0.00046395727758387
920 => 0.00046181330474417
921 => 0.0004581437552052
922 => 0.00045271572663593
923 => 0.00045070241803912
924 => 0.00043847019234095
925 => 0.00043774744719031
926 => 0.0004438100685442
927 => 0.00044101237739145
928 => 0.00043708335944448
929 => 0.00042285285471873
930 => 0.00040685305584879
1001 => 0.00040733598920553
1002 => 0.00041242522753921
1003 => 0.0004272228743717
1004 => 0.00042144117775236
1005 => 0.0004172464905177
1006 => 0.00041646095169049
1007 => 0.00042629361475002
1008 => 0.00044020889298587
1009 => 0.00044673763019732
1010 => 0.00044026784990147
1011 => 0.0004328357146553
1012 => 0.00043328807429053
1013 => 0.00043629742028307
1014 => 0.00043661365999702
1015 => 0.00043177610398762
1016 => 0.00043313784766812
1017 => 0.00043106923449698
1018 => 0.00041837415928409
1019 => 0.00041814454563001
1020 => 0.00041502896943703
1021 => 0.00041493463102811
1022 => 0.00040963425870694
1023 => 0.00040889269997946
1024 => 0.00039836848902617
1025 => 0.00040529555654587
1026 => 0.00040064924334103
1027 => 0.00039364615338684
1028 => 0.00039243881803911
1029 => 0.00039240252408066
1030 => 0.00039959313160135
1031 => 0.00040521153011042
1101 => 0.00040073006794848
1102 => 0.00039970972588371
1103 => 0.00041060430970302
1104 => 0.00040921787460567
1105 => 0.00040801723075292
1106 => 0.00043896293244396
1107 => 0.00041446699483229
1108 => 0.00040378536785436
1109 => 0.00039056482608323
1110 => 0.00039486950114767
1111 => 0.00039577655943258
1112 => 0.00036398353965478
1113 => 0.0003510851154905
1114 => 0.00034665886238418
1115 => 0.00034411149114346
1116 => 0.00034527236020573
1117 => 0.00033366226562362
1118 => 0.00034146444119604
1119 => 0.00033141108066479
1120 => 0.00032972560205526
1121 => 0.00034770225605752
1122 => 0.00035020360244384
1123 => 0.00033953208165237
1124 => 0.00034638492556278
1125 => 0.00034389998909921
1126 => 0.0003315834166762
1127 => 0.00033111301420422
1128 => 0.00032493299111081
1129 => 0.0003152624516579
1130 => 0.00031084275563271
1201 => 0.00030854093956923
1202 => 0.00030949071373852
1203 => 0.00030901047885495
1204 => 0.00030587662139631
1205 => 0.00030919010789612
1206 => 0.00030072551911625
1207 => 0.00029735485166028
1208 => 0.00029583239936931
1209 => 0.00028831958962362
1210 => 0.00030027581089067
1211 => 0.00030263133710078
1212 => 0.00030499150442519
1213 => 0.0003255351496295
1214 => 0.00032450884717083
1215 => 0.00033378612156762
1216 => 0.00033342562374438
1217 => 0.00033077959480453
1218 => 0.00031961643395795
1219 => 0.00032406587090719
1220 => 0.00031037119557346
1221 => 0.00032063217748089
1222 => 0.00031594949384719
1223 => 0.00031904895743398
1224 => 0.00031347584243757
1225 => 0.00031656023438486
1226 => 0.00030318991974946
1227 => 0.00029070490806833
1228 => 0.00029572924122903
1229 => 0.0003011912659769
1230 => 0.00031303432732831
1231 => 0.00030598069769054
]
'min_raw' => 0.00028831958962362
'max_raw' => 0.00086064099677684
'avg_raw' => 0.00057448029320023
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.000288'
'max' => '$0.00086'
'avg' => '$0.000574'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.00054618041037638
'max_diff' => 2.6140996776845E-5
'year' => 2026
]
1 => [
'items' => [
101 => 0.00030851744963555
102 => 0.00030001975526693
103 => 0.00028248658453806
104 => 0.00028258582038029
105 => 0.00027988872404454
106 => 0.00027755803902794
107 => 0.00030679089190541
108 => 0.00030315532454708
109 => 0.00029736252377287
110 => 0.0003051164178059
111 => 0.00030716667045908
112 => 0.0003072250382698
113 => 0.00031288207919933
114 => 0.00031590124295749
115 => 0.00031643338365568
116 => 0.00032533485978674
117 => 0.00032831851717257
118 => 0.00034060777968178
119 => 0.00031564508800634
120 => 0.00031513099779844
121 => 0.0003052255309962
122 => 0.00029894332735098
123 => 0.00030565567885445
124 => 0.00031160190595916
125 => 0.00030541029684739
126 => 0.00030621879028538
127 => 0.00029790706092588
128 => 0.00030087811306868
129 => 0.00030343718341801
130 => 0.00030202421518632
131 => 0.00029990893335503
201 => 0.00031111438314645
202 => 0.00031048212775471
203 => 0.00032091690021266
204 => 0.00032905155154137
205 => 0.00034363030096528
206 => 0.00032841661593403
207 => 0.00032786216878257
208 => 0.00033328197862421
209 => 0.00032831768742792
210 => 0.00033145494810247
211 => 0.00034312483976875
212 => 0.00034337140619048
213 => 0.00033924110094355
214 => 0.00033898977149391
215 => 0.00033978304179717
216 => 0.00034442925074072
217 => 0.00034280572257227
218 => 0.00034468451047151
219 => 0.00034703396350853
220 => 0.00035675229741712
221 => 0.00035909535482121
222 => 0.00035340294006524
223 => 0.00035391690138244
224 => 0.00035178778200343
225 => 0.00034973107936109
226 => 0.00035435424654377
227 => 0.00036280317543869
228 => 0.00036275061509053
301 => 0.00036471060237044
302 => 0.00036593165820842
303 => 0.00036068999268433
304 => 0.00035727786116953
305 => 0.00035858628951188
306 => 0.00036067849492514
307 => 0.00035790781549439
308 => 0.00034080589854423
309 => 0.00034599352767223
310 => 0.00034513005252322
311 => 0.00034390035890888
312 => 0.00034911656011183
313 => 0.0003486134447808
314 => 0.00033354318732272
315 => 0.00033450793630985
316 => 0.00033360185690398
317 => 0.00033652958483078
318 => 0.00032815958051189
319 => 0.00033073413746754
320 => 0.00033234887545515
321 => 0.00033329996853486
322 => 0.00033673596890938
323 => 0.0003363327939236
324 => 0.00033671090698618
325 => 0.00034180558847113
326 => 0.00036757273913846
327 => 0.00036897518829727
328 => 0.00036206901571761
329 => 0.00036482789544495
330 => 0.00035953144966913
331 => 0.00036308698920154
401 => 0.00036551959904871
402 => 0.00035452710291334
403 => 0.00035387619863291
404 => 0.00034855789254132
405 => 0.00035141564899069
406 => 0.00034686875299978
407 => 0.00034798440223228
408 => 0.00034486494971766
409 => 0.00035047934316717
410 => 0.00035675710743226
411 => 0.00035834311860205
412 => 0.00035417100603508
413 => 0.00035115012158099
414 => 0.00034584644362079
415 => 0.00035466657826877
416 => 0.00035724585442857
417 => 0.00035465303042913
418 => 0.00035405221645414
419 => 0.00035291367505717
420 => 0.00035429376339374
421 => 0.00035723180713668
422 => 0.00035584627996465
423 => 0.00035676144507162
424 => 0.00035327377939802
425 => 0.00036069172789372
426 => 0.00037247321533142
427 => 0.00037251109474
428 => 0.00037112556009947
429 => 0.00037055862917633
430 => 0.00037198027179878
501 => 0.00037275145460263
502 => 0.00037734878615898
503 => 0.00038228190608471
504 => 0.00040530262428924
505 => 0.0003988384987363
506 => 0.00041926384943602
507 => 0.00043541764993965
508 => 0.0004402614683906
509 => 0.00043580538333499
510 => 0.00042056135707275
511 => 0.00041981341241885
512 => 0.00044259442351653
513 => 0.00043615774444503
514 => 0.00043539212195081
515 => 0.00042724719215201
516 => 0.00043206185443229
517 => 0.00043100881716476
518 => 0.00042934654632161
519 => 0.00043853258656009
520 => 0.00045572803384305
521 => 0.00045304796212612
522 => 0.00045104741291438
523 => 0.00044228158861965
524 => 0.00044756057276281
525 => 0.00044568082762171
526 => 0.00045375740566362
527 => 0.0004489730197497
528 => 0.00043610898027041
529 => 0.00043815762095792
530 => 0.00043784797303929
531 => 0.00044422050526268
601 => 0.00044230762926519
602 => 0.00043747445330022
603 => 0.00045566926167362
604 => 0.00045448779202269
605 => 0.00045616284586614
606 => 0.00045690025637079
607 => 0.00046797511559919
608 => 0.0004725121310691
609 => 0.00047354211301241
610 => 0.00047785192680345
611 => 0.00047343488091914
612 => 0.00049110621375674
613 => 0.00050285661894289
614 => 0.00051650531923692
615 => 0.00053644973879129
616 => 0.00054394902503993
617 => 0.00054259434610262
618 => 0.00055771597738623
619 => 0.0005848892126679
620 => 0.00054808683386557
621 => 0.00058683982810758
622 => 0.00057457107755539
623 => 0.00054548209070156
624 => 0.0005436091028848
625 => 0.0005633085025123
626 => 0.00060699987488913
627 => 0.00059605568165218
628 => 0.00060701777566862
629 => 0.00059422991071254
630 => 0.00059359488543288
701 => 0.00060639669761075
702 => 0.00063630882955481
703 => 0.00062209869690769
704 => 0.00060172498729056
705 => 0.00061676861742182
706 => 0.00060373643277988
707 => 0.00057437127330279
708 => 0.00059604731283387
709 => 0.0005815531624975
710 => 0.00058578332611707
711 => 0.00061624787428196
712 => 0.00061258229924756
713 => 0.00061732589276518
714 => 0.00060895357436804
715 => 0.00060113250879168
716 => 0.00058653390909346
717 => 0.00058221198342508
718 => 0.00058340640819322
719 => 0.00058221139152748
720 => 0.00057404360916438
721 => 0.00057227977734073
722 => 0.0005693399803594
723 => 0.00057025114637057
724 => 0.00056472346797773
725 => 0.00057515533918165
726 => 0.00057709158640243
727 => 0.00058468303231878
728 => 0.00058547120141747
729 => 0.00060661327023704
730 => 0.00059496857400926
731 => 0.00060278084159356
801 => 0.0006020820388489
802 => 0.00054611253725221
803 => 0.00055382464074914
804 => 0.00056582225359896
805 => 0.0005604173452725
806 => 0.00055277606945264
807 => 0.00054660532952882
808 => 0.00053725602755368
809 => 0.00055041499054625
810 => 0.00056771762758178
811 => 0.00058591002484639
812 => 0.00060776699814674
813 => 0.00060288877614932
814 => 0.00058550142393394
815 => 0.00058628140785285
816 => 0.00059110296152721
817 => 0.00058485861143457
818 => 0.00058301703068805
819 => 0.00059084995661204
820 => 0.00059090389766798
821 => 0.00058371901823147
822 => 0.00057573433955685
823 => 0.00057570088346166
824 => 0.00057428008701436
825 => 0.00059448266724419
826 => 0.00060559204365936
827 => 0.0006068657157617
828 => 0.00060550631537878
829 => 0.0006060294946335
830 => 0.00059956519327592
831 => 0.00061434066925032
901 => 0.00062790010714756
902 => 0.00062426588813596
903 => 0.0006188176772029
904 => 0.00061447791477333
905 => 0.00062324357802719
906 => 0.00062285325684093
907 => 0.00062778167728652
908 => 0.00062755809566717
909 => 0.00062590085323859
910 => 0.00062426594732131
911 => 0.00063074816448194
912 => 0.0006288813900409
913 => 0.00062701171598354
914 => 0.00062326179842872
915 => 0.00062377147450395
916 => 0.00061832420428132
917 => 0.00061580404782621
918 => 0.00057790694144213
919 => 0.00056777959629263
920 => 0.00057096586523778
921 => 0.00057201486770596
922 => 0.00056760743411836
923 => 0.00057392656170619
924 => 0.00057294173236524
925 => 0.00057677312722499
926 => 0.00057437943805645
927 => 0.00057447767589488
928 => 0.00058151700535123
929 => 0.00058356055263985
930 => 0.00058252118799541
1001 => 0.00058324912336504
1002 => 0.00060002408671594
1003 => 0.00059763922336057
1004 => 0.00059637231223512
1005 => 0.0005967232552751
1006 => 0.00060100961807052
1007 => 0.00060220956562651
1008 => 0.00059712530351298
1009 => 0.00059952307091749
1010 => 0.00060973246020391
1011 => 0.00061330516865277
1012 => 0.00062470753902418
1013 => 0.00061986360942943
1014 => 0.00062875485184096
1015 => 0.00065608349976607
1016 => 0.00067791551472725
1017 => 0.00065783789152277
1018 => 0.00069792960670864
1019 => 0.0007291467577958
1020 => 0.00072794859154219
1021 => 0.00072250515918443
1022 => 0.00068696526262259
1023 => 0.00065426091993638
1024 => 0.00068161949129314
1025 => 0.00068168923391787
1026 => 0.00067933910837521
1027 => 0.00066474268046847
1028 => 0.00067883118432364
1029 => 0.00067994947859774
1030 => 0.0006793235311827
1031 => 0.00066813248412973
1101 => 0.00065104582373108
1102 => 0.00065438451627329
1103 => 0.00065985336276491
1104 => 0.00064949969543537
1105 => 0.00064619107137276
1106 => 0.00065234243299664
1107 => 0.00067216340183588
1108 => 0.00066841636249188
1109 => 0.00066831851215163
1110 => 0.00068434993545726
1111 => 0.00067287489616811
1112 => 0.00065442662787822
1113 => 0.00064976819683226
1114 => 0.00063323390491426
1115 => 0.00064465419923515
1116 => 0.0006450651952966
1117 => 0.00063881041680963
1118 => 0.00065493416868039
1119 => 0.00065478558546837
1120 => 0.0006700926881659
1121 => 0.00069935411943835
1122 => 0.0006907000743435
1123 => 0.00068063636145562
1124 => 0.00068173056608303
1125 => 0.00069373129011849
1126 => 0.00068647537841676
1127 => 0.00068908465485472
1128 => 0.00069372734066609
1129 => 0.0006965283882875
1130 => 0.00068132753843598
1201 => 0.00067778349319489
1202 => 0.00067053362042248
1203 => 0.00066864226394144
1204 => 0.00067454713404101
1205 => 0.00067299140939192
1206 => 0.00064503065266909
1207 => 0.00064210859801937
1208 => 0.00064219821326374
1209 => 0.00063485056791091
1210 => 0.00062364364511088
1211 => 0.00065309476909875
1212 => 0.00065072943167431
1213 => 0.0006481182822203
1214 => 0.00064843813312941
1215 => 0.00066122186786133
1216 => 0.00065380665612274
1217 => 0.0006735212118591
1218 => 0.0006694684918735
1219 => 0.00066531183491257
1220 => 0.0006647372583057
1221 => 0.00066313730000506
1222 => 0.00065765044767387
1223 => 0.00065102474377525
1224 => 0.00064664988015275
1225 => 0.00059650033265757
1226 => 0.00060580779696618
1227 => 0.00061651518625116
1228 => 0.00062021133412517
1229 => 0.00061388881742104
1230 => 0.00065790009916954
1231 => 0.00066594138444826
]
'min_raw' => 0.00027755803902794
'max_raw' => 0.0007291467577958
'avg_raw' => 0.00050335239841187
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.000277'
'max' => '$0.000729'
'avg' => '$0.0005033'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -1.0761550595678E-5
'max_diff' => -0.00013149423898104
'year' => 2027
]
2 => [
'items' => [
101 => 0.00064158380681897
102 => 0.00063702749855787
103 => 0.0006581988099806
104 => 0.00064542992110513
105 => 0.0006511797509839
106 => 0.00063875176377479
107 => 0.00066400447430093
108 => 0.00066381209095659
109 => 0.00065398821620358
110 => 0.00066229128787383
111 => 0.00066084842484257
112 => 0.00064975729444156
113 => 0.00066435608291754
114 => 0.00066436332373449
115 => 0.00065490805787417
116 => 0.00064386637737318
117 => 0.00064189238569245
118 => 0.00064040524812949
119 => 0.00065081400630661
120 => 0.00066014646634086
121 => 0.00067751186075157
122 => 0.00068187793349801
123 => 0.00069891900609331
124 => 0.00068877187707757
125 => 0.00069326996794293
126 => 0.00069815328187107
127 => 0.00070049452214615
128 => 0.00069667959675579
129 => 0.00072315139688161
130 => 0.00072538642788722
131 => 0.00072613581445046
201 => 0.00071720967238994
202 => 0.00072513817572925
203 => 0.00072142869158122
204 => 0.00073107973881001
205 => 0.00073259314624624
206 => 0.00073131134398879
207 => 0.00073179172339656
208 => 0.00070920271193472
209 => 0.0007080313525239
210 => 0.00069205978384143
211 => 0.00069856831613541
212 => 0.00068640092697389
213 => 0.000690259331415
214 => 0.00069196007932842
215 => 0.00069107170513505
216 => 0.00069893629878599
217 => 0.00069224978755235
218 => 0.00067460298504256
219 => 0.00065695137467322
220 => 0.00065672977308373
221 => 0.00065208241565028
222 => 0.00064872322743187
223 => 0.00064937032625634
224 => 0.0006516507869162
225 => 0.00064859068291267
226 => 0.00064924371125304
227 => 0.00066008833280815
228 => 0.00066226314432073
229 => 0.00065487228504728
301 => 0.00062519691856849
302 => 0.00061791450919958
303 => 0.0006231489606375
304 => 0.00062064722999202
305 => 0.00050091075413379
306 => 0.00052904106306043
307 => 0.00051232698871125
308 => 0.00052002960314894
309 => 0.00050296886132699
310 => 0.00051111114155452
311 => 0.00050960755970496
312 => 0.00055484026402264
313 => 0.00055413401756027
314 => 0.00055447206036807
315 => 0.00053833639638567
316 => 0.00056404094724066
317 => 0.00057670393329758
318 => 0.00057436035159291
319 => 0.00057495018061749
320 => 0.00056481496377813
321 => 0.00055457019142157
322 => 0.00054320716221897
323 => 0.00056431826596454
324 => 0.00056197107160659
325 => 0.00056735469096985
326 => 0.00058104675080171
327 => 0.00058306295862303
328 => 0.00058577276238124
329 => 0.00058480149063089
330 => 0.0006079411242015
331 => 0.00060513876189588
401 => 0.00061189164875777
402 => 0.00059800044814012
403 => 0.00058228123607637
404 => 0.00058526894438993
405 => 0.0005849812040537
406 => 0.00058131793932053
407 => 0.00057801090771506
408 => 0.00057250563184232
409 => 0.00058992513933119
410 => 0.0005892179391389
411 => 0.00060066668822181
412 => 0.00059864301061419
413 => 0.00058512839627259
414 => 0.0005856110733677
415 => 0.00058885730879903
416 => 0.00060009256669174
417 => 0.00060342795618898
418 => 0.00060188287088157
419 => 0.00060553997319898
420 => 0.00060843039775859
421 => 0.00060590296602191
422 => 0.00064168606953149
423 => 0.00062682643016504
424 => 0.00063406891499954
425 => 0.00063579620495737
426 => 0.00063137178805139
427 => 0.0006323312856518
428 => 0.00063378466306899
429 => 0.00064260928614567
430 => 0.00066576765052415
501 => 0.00067602433246306
502 => 0.00070688206613204
503 => 0.00067517265780794
504 => 0.00067329115274456
505 => 0.00067884956239263
506 => 0.00069696631867916
507 => 0.000711648248029
508 => 0.00071651909101517
509 => 0.00071716285332464
510 => 0.00072630087857421
511 => 0.00073153862423318
512 => 0.00072519128195499
513 => 0.00071981257396866
514 => 0.00070054670959143
515 => 0.00070277678585231
516 => 0.00071813979982948
517 => 0.00073984096194926
518 => 0.00075846281666911
519 => 0.00075194209218338
520 => 0.00080169061709545
521 => 0.00080662298013598
522 => 0.00080594148704617
523 => 0.00081717814408653
524 => 0.00079487566816682
525 => 0.00078534092762102
526 => 0.00072097551168623
527 => 0.00073905956813271
528 => 0.00076534580621706
529 => 0.00076186672403827
530 => 0.00074277695530825
531 => 0.00075844833536771
601 => 0.00075326688703069
602 => 0.00074918006374879
603 => 0.00076790259347284
604 => 0.00074731640296212
605 => 0.0007651404432191
606 => 0.00074228092722343
607 => 0.00075197187830356
608 => 0.00074647082577192
609 => 0.00075003068094353
610 => 0.00072921984035006
611 => 0.0007404488647797
612 => 0.00072875267601618
613 => 0.00072874713049982
614 => 0.0007284889364846
615 => 0.00074224945069604
616 => 0.00074269818057046
617 => 0.00073252913977722
618 => 0.00073106362212864
619 => 0.00073648240898433
620 => 0.00073013842875884
621 => 0.00073310673717781
622 => 0.00073022833579699
623 => 0.00072958034701776
624 => 0.00072441706217864
625 => 0.00072219257710247
626 => 0.00072306485501876
627 => 0.00072008732080039
628 => 0.00071829324873171
629 => 0.000728132050394
630 => 0.00072287557556196
701 => 0.00072732642023753
702 => 0.00072225412098834
703 => 0.00070467132189508
704 => 0.00069455926820182
705 => 0.00066134699064099
706 => 0.00067076595135754
707 => 0.00067701073205723
708 => 0.00067494683207323
709 => 0.00067938088786212
710 => 0.00067965310287565
711 => 0.00067821154613884
712 => 0.00067654240811246
713 => 0.00067572996403034
714 => 0.0006817852565955
715 => 0.00068530055774135
716 => 0.00067763747934483
717 => 0.00067584212729439
718 => 0.00068358992264343
719 => 0.00068831607333058
720 => 0.00072321131460988
721 => 0.00072062616242577
722 => 0.0007271143870974
723 => 0.0007263839125693
724 => 0.00073318460568042
725 => 0.00074430086472975
726 => 0.00072169840192755
727 => 0.00072562140793565
728 => 0.0007246595774579
729 => 0.00073516059040846
730 => 0.00073519337342467
731 => 0.00072889749159631
801 => 0.00073231059127448
802 => 0.00073040549266761
803 => 0.00073384826333974
804 => 0.00072059163614226
805 => 0.00073673677710431
806 => 0.00074589003165989
807 => 0.00074601712460828
808 => 0.0007503556946229
809 => 0.00075476393303079
810 => 0.00076322516277809
811 => 0.00075452795392548
812 => 0.00073888252185586
813 => 0.00074001207151685
814 => 0.00073083916041887
815 => 0.00073099335871165
816 => 0.00073017023614006
817 => 0.00073264048893918
818 => 0.0007211337177173
819 => 0.00072383433392366
820 => 0.00072005345541996
821 => 0.00072561318904417
822 => 0.00071963183472141
823 => 0.00072465911363412
824 => 0.00072682872055591
825 => 0.00073483461680561
826 => 0.00071844935733594
827 => 0.00068503870409273
828 => 0.00069206202846947
829 => 0.00068167398004605
830 => 0.00068263543347773
831 => 0.00068457772242389
901 => 0.00067828212847197
902 => 0.00067948312940103
903 => 0.00067944022119653
904 => 0.00067907046147104
905 => 0.00067743273433678
906 => 0.00067505770597765
907 => 0.00068451908796524
908 => 0.00068612676113206
909 => 0.00068970041943333
910 => 0.00070033320250233
911 => 0.00069927073673545
912 => 0.00070100366248252
913 => 0.00069722069530663
914 => 0.00068281091447521
915 => 0.0006835934349019
916 => 0.000673835392642
917 => 0.00068945088435368
918 => 0.00068575292980193
919 => 0.0006833688344458
920 => 0.00068271831193939
921 => 0.00069337745162101
922 => 0.0006965668332753
923 => 0.00069457942465979
924 => 0.00069050319160741
925 => 0.0006983307640981
926 => 0.00070042509227784
927 => 0.00070089393512143
928 => 0.00071476289278678
929 => 0.00070166905579002
930 => 0.00070482087249669
1001 => 0.00072941044671635
1002 => 0.00070711109602841
1003 => 0.00071892355942267
1004 => 0.00071834540080862
1005 => 0.00072438825736916
1006 => 0.00071784971019289
1007 => 0.00071793076332152
1008 => 0.00072329641056871
1009 => 0.0007157613267096
1010 => 0.00071389553397997
1011 => 0.00071131795468703
1012 => 0.0007169460047743
1013 => 0.00072031976626681
1014 => 0.00074750980614164
1015 => 0.00076507581191724
1016 => 0.00076431322527948
1017 => 0.00077128183964627
1018 => 0.00076814241504884
1019 => 0.00075800438488537
1020 => 0.00077530876617334
1021 => 0.00076983293588776
1022 => 0.00077028435668337
1023 => 0.00077026755477881
1024 => 0.00077390850321333
1025 => 0.00077132855755945
1026 => 0.00076624321984966
1027 => 0.00076961910434419
1028 => 0.00077964427439215
1029 => 0.00081076270983079
1030 => 0.00082817699856669
1031 => 0.00080971434778286
1101 => 0.0008224496370688
1102 => 0.00081481300154479
1103 => 0.00081342519769985
1104 => 0.0008214239005019
1105 => 0.00082943660397436
1106 => 0.00082892622940303
1107 => 0.00082310941813891
1108 => 0.00081982364905192
1109 => 0.00084470459339196
1110 => 0.00086303644934587
1111 => 0.00086178633966813
1112 => 0.00086730391722821
1113 => 0.00088350369559684
1114 => 0.00088498480030864
1115 => 0.00088479821515775
1116 => 0.00088112714259227
1117 => 0.00089707792820324
1118 => 0.00091038435418728
1119 => 0.00088027739536085
1120 => 0.00089174173115292
1121 => 0.00089688844084782
1122 => 0.00090444533763988
1123 => 0.00091719508921104
1124 => 0.00093104470112191
1125 => 0.00093300318809937
1126 => 0.00093161354786663
1127 => 0.00092247935651386
1128 => 0.00093763376712697
1129 => 0.00094651086544947
1130 => 0.00095179697435173
1201 => 0.00096520166700322
1202 => 0.00089692022517474
1203 => 0.00084858722684069
1204 => 0.00084103933121387
1205 => 0.00085638827377734
1206 => 0.00086043566752581
1207 => 0.0008588041681808
1208 => 0.00080440098431187
1209 => 0.0008407529097098
1210 => 0.00087986452488127
1211 => 0.00088136696130707
1212 => 0.00090094705364722
1213 => 0.00090732313432828
1214 => 0.00092308767508346
1215 => 0.000922101598767
1216 => 0.00092594001357226
1217 => 0.00092505762848061
1218 => 0.00095425812061389
1219 => 0.00098647059975195
1220 => 0.00098535518402881
1221 => 0.00098072425903196
1222 => 0.00098760197234233
1223 => 0.0010208487029119
1224 => 0.001017787876729
1225 => 0.0010207612086451
1226 => 0.0010599609776902
1227 => 0.0011109262535509
1228 => 0.0010872477660836
1229 => 0.0011386232705865
1230 => 0.0011709614273727
1231 => 0.0012268869257064
]
'min_raw' => 0.00050091075413379
'max_raw' => 0.0012268869257064
'avg_raw' => 0.00086389883992011
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.00050091'
'max' => '$0.001226'
'avg' => '$0.000863'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 0.00022335271510585
'max_diff' => 0.00049774016791063
'year' => 2028
]
3 => [
'items' => [
101 => 0.0012198847778762
102 => 0.0012416561639772
103 => 0.0012073494718676
104 => 0.0011285743722575
105 => 0.0011161079112052
106 => 0.001141066081933
107 => 0.0012024233092843
108 => 0.0011391337244918
109 => 0.0011519371250668
110 => 0.0011482497448399
111 => 0.001148053260018
112 => 0.0011555522865097
113 => 0.0011446745574605
114 => 0.0011003567324478
115 => 0.0011206673304845
116 => 0.0011128244331875
117 => 0.0011215267124653
118 => 0.0011684893246344
119 => 0.0011477260343456
120 => 0.0011258535946991
121 => 0.0011532864878987
122 => 0.0011882179879067
123 => 0.0011860320374141
124 => 0.0011817903798021
125 => 0.0012057003816749
126 => 0.0012451926997956
127 => 0.0012558673146906
128 => 0.0012637470971732
129 => 0.0012648335860476
130 => 0.0012760250967023
131 => 0.0012158455232879
201 => 0.0013113520518176
202 => 0.00132784339098
203 => 0.0013247437027135
204 => 0.0013430731321309
205 => 0.0013376801490235
206 => 0.0013298665626341
207 => 0.0013589226070422
208 => 0.0013256121968302
209 => 0.0012783322631983
210 => 0.0012523935565168
211 => 0.0012865517378908
212 => 0.0013074109472996
213 => 0.001321197557824
214 => 0.0013253693778386
215 => 0.0012205170922628
216 => 0.0011640075257119
217 => 0.0012002295099875
218 => 0.0012444228307117
219 => 0.00121560002716
220 => 0.0012167298264904
221 => 0.0011756360831252
222 => 0.0012480587151619
223 => 0.0012375073468444
224 => 0.0012922478643409
225 => 0.0012791836005202
226 => 0.001323822367524
227 => 0.0013120674841639
228 => 0.0013608613477849
301 => 0.0013803265410244
302 => 0.001413011629989
303 => 0.0014370549144836
304 => 0.0014511735910136
305 => 0.0014503259586326
306 => 0.001506271188941
307 => 0.0014732822412056
308 => 0.0014318403479519
309 => 0.0014310907948504
310 => 0.0014525541386027
311 => 0.0014975354189266
312 => 0.0015091984104636
313 => 0.0015157164316383
314 => 0.0015057338553154
315 => 0.0014699267168878
316 => 0.001454465376061
317 => 0.0014676388864036
318 => 0.0014515288152673
319 => 0.0014793393177361
320 => 0.0015175290776286
321 => 0.0015096430432295
322 => 0.0015360048738854
323 => 0.0015632865952689
324 => 0.0016023006821459
325 => 0.0016125004091431
326 => 0.0016293601700084
327 => 0.0016467144020818
328 => 0.0016522881137141
329 => 0.0016629300586413
330 => 0.0016628739703385
331 => 0.0016949441876622
401 => 0.0017303186305022
402 => 0.0017436716637541
403 => 0.0017743762274262
404 => 0.0017217957381539
405 => 0.001761678643268
406 => 0.0017976540220148
407 => 0.0017547626923821
408 => 0.0018138783978827
409 => 0.0018161737267682
410 => 0.0018508304677996
411 => 0.0018156992213361
412 => 0.001794838399329
413 => 0.0018550628108187
414 => 0.0018842035064874
415 => 0.0018754260917972
416 => 0.0018086295326099
417 => 0.0017697510701237
418 => 0.001667998634702
419 => 0.0017885287898371
420 => 0.0018472355124906
421 => 0.0018084774963807
422 => 0.0018280247852874
423 => 0.0019346684553323
424 => 0.0019752714602192
425 => 0.0019668263190391
426 => 0.0019682534088797
427 => 0.00199016205332
428 => 0.002087317048079
429 => 0.0020290995231842
430 => 0.0020736046395972
501 => 0.0020972099928676
502 => 0.0021191359605257
503 => 0.0020652927137306
504 => 0.0019952434407646
505 => 0.0019730558955479
506 => 0.0018046237755156
507 => 0.0017958561522043
508 => 0.0017909346195535
509 => 0.0017599050523547
510 => 0.0017355243122503
511 => 0.0017161358425204
512 => 0.001665254708062
513 => 0.0016824255973103
514 => 0.0016013316887017
515 => 0.0016532126976379
516 => 0.0015237848614176
517 => 0.0016315762093908
518 => 0.0015729102793602
519 => 0.0016123028735606
520 => 0.0016121654365104
521 => 0.0015396311811541
522 => 0.0014977949364159
523 => 0.0015244546198541
524 => 0.0015530359167481
525 => 0.0015576731360102
526 => 0.0015947295334815
527 => 0.0016050711774912
528 => 0.0015737355133367
529 => 0.0015211027571928
530 => 0.0015333281460197
531 => 0.0014975471893015
601 => 0.0014348424389475
602 => 0.0014798780853717
603 => 0.0014952552351385
604 => 0.0015020466604924
605 => 0.0014403837402085
606 => 0.0014210079118881
607 => 0.0014106923834693
608 => 0.0015131428485139
609 => 0.0015187553162579
610 => 0.0014900411377567
611 => 0.0016198319473724
612 => 0.0015904562898234
613 => 0.0016232760965165
614 => 0.0015322188201241
615 => 0.0015356973307072
616 => 0.0014925893568054
617 => 0.0015167269417146
618 => 0.0014996672746915
619 => 0.0015147768633862
620 => 0.0015238334885506
621 => 0.001566934388858
622 => 0.0016320683524383
623 => 0.0015604965516404
624 => 0.0015293116931057
625 => 0.0015486586039504
626 => 0.0016001819770357
627 => 0.001678242524693
628 => 0.001632029109365
629 => 0.0016525378383328
630 => 0.0016570180832425
701 => 0.0016229420216932
702 => 0.0016794989576879
703 => 0.0017098082791551
704 => 0.0017408993713502
705 => 0.0017678948955506
706 => 0.0017284809054197
707 => 0.0017706595246333
708 => 0.0017366710030757
709 => 0.0017061797855699
710 => 0.0017062260281606
711 => 0.0016870984420135
712 => 0.0016500363336227
713 => 0.0016432015122006
714 => 0.0016787571163809
715 => 0.0017072693438051
716 => 0.0017096177474202
717 => 0.0017254035815334
718 => 0.0017347454755546
719 => 0.0018263087366512
720 => 0.0018631362377153
721 => 0.0019081682089076
722 => 0.0019257106995498
723 => 0.0019785073070519
724 => 0.0019358697585632
725 => 0.0019266448567449
726 => 0.0017985775565834
727 => 0.0018195485698104
728 => 0.0018531251853886
729 => 0.0017991312226073
730 => 0.001833377964295
731 => 0.0018401389965493
801 => 0.001797296528413
802 => 0.0018201805417584
803 => 0.0017594073869502
804 => 0.0016333930411393
805 => 0.0016796392476779
806 => 0.0017136920219951
807 => 0.0016650945143676
808 => 0.0017522036658066
809 => 0.0017013162978338
810 => 0.0016851874452109
811 => 0.0016222630407778
812 => 0.0016519609374878
813 => 0.001692127768021
814 => 0.0016673093366467
815 => 0.0017188113082545
816 => 0.0017917518351253
817 => 0.0018437335982569
818 => 0.00184772411257
819 => 0.0018143033213841
820 => 0.0018678603525482
821 => 0.0018682504570507
822 => 0.0018078379071107
823 => 0.0017708355566509
824 => 0.0017624285447728
825 => 0.001783430908736
826 => 0.0018089316558376
827 => 0.001849139226558
828 => 0.0018734358194554
829 => 0.0019367884478147
830 => 0.0019539298525865
831 => 0.0019727630594816
901 => 0.0019979300318393
902 => 0.0020281494348339
903 => 0.0019620311014732
904 => 0.0019646581061176
905 => 0.0019030896295627
906 => 0.0018372948825511
907 => 0.0018872248941019
908 => 0.0019525017422935
909 => 0.0019375271611938
910 => 0.0019358422149172
911 => 0.0019386758271894
912 => 0.0019273854820643
913 => 0.0018763196695035
914 => 0.0018506747381243
915 => 0.0018837632423232
916 => 0.001901348309705
917 => 0.0019286212156351
918 => 0.001925259254318
919 => 0.0019955113310978
920 => 0.0020228091638219
921 => 0.002015825210071
922 => 0.0020171104256394
923 => 0.0020665318478719
924 => 0.0021214986336851
925 => 0.0021729822821055
926 => 0.0022253536605528
927 => 0.0021622179197449
928 => 0.0021301614842337
929 => 0.0021632355430268
930 => 0.0021456859818801
1001 => 0.0022465309657668
1002 => 0.0022535132536509
1003 => 0.0023543509452974
1004 => 0.002450057922199
1005 => 0.0023899460847757
1006 => 0.0024466288399692
1007 => 0.0025079358611239
1008 => 0.0026262070516368
1009 => 0.0025863774755027
1010 => 0.002555868644393
1011 => 0.0025270379464119
1012 => 0.0025870300521661
1013 => 0.0026642089378216
1014 => 0.0026808325305816
1015 => 0.002707769101554
1016 => 0.0026794485908237
1017 => 0.0027135575265965
1018 => 0.0028339770581
1019 => 0.0028014386377151
1020 => 0.0027552288499565
1021 => 0.0028502885048638
1022 => 0.0028846902244397
1023 => 0.0031261395087438
1024 => 0.0034309792039502
1025 => 0.0033047735684494
1026 => 0.0032264336578636
1027 => 0.0032448453950988
1028 => 0.0033561625323133
1029 => 0.0033919140637572
1030 => 0.0032947290770006
1031 => 0.003329056457297
1101 => 0.0035182036977233
1102 => 0.003619675123642
1103 => 0.0034818632978137
1104 => 0.0031016459360498
1105 => 0.0027510681641611
1106 => 0.0028440571759888
1107 => 0.0028335151078325
1108 => 0.0030367302210718
1109 => 0.0028006626071501
1110 => 0.0028046373803394
1111 => 0.0030120547669119
1112 => 0.0029567193642086
1113 => 0.0028670830986522
1114 => 0.0027517226080971
1115 => 0.0025384680717522
1116 => 0.0023495825818688
1117 => 0.0027200305252605
1118 => 0.0027040561363256
1119 => 0.002680922853876
1120 => 0.0027324034706849
1121 => 0.0029823787328811
1122 => 0.0029766159939965
1123 => 0.002939956389388
1124 => 0.0029677623763806
1125 => 0.0028622085746924
1126 => 0.0028894121928028
1127 => 0.0027510126308509
1128 => 0.0028135750129294
1129 => 0.002866890779484
1130 => 0.0028775947089732
1201 => 0.0029017112086687
1202 => 0.0026956383592387
1203 => 0.0027881590186518
1204 => 0.0028425062380435
1205 => 0.0025969635236629
1206 => 0.0028376526480602
1207 => 0.0026920510894009
1208 => 0.0026426317335299
1209 => 0.0027091683857051
1210 => 0.0026832389876434
1211 => 0.0026609464138153
1212 => 0.0026485067745842
1213 => 0.0026973639485593
1214 => 0.0026950847029965
1215 => 0.0026151448836042
1216 => 0.0025108666479709
1217 => 0.0025458658466659
1218 => 0.0025331503096608
1219 => 0.0024870675632173
1220 => 0.0025181217702682
1221 => 0.0023813747585908
1222 => 0.002146108632491
1223 => 0.0023015326417889
1224 => 0.0022955489864997
1225 => 0.0022925317561657
1226 => 0.0024093286035489
1227 => 0.0023981012816348
1228 => 0.0023777235824223
1229 => 0.0024866933107909
1230 => 0.0024469178940867
1231 => 0.0025694963561023
]
'min_raw' => 0.0011003567324478
'max_raw' => 0.003619675123642
'avg_raw' => 0.0023600159280449
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.00110035'
'max' => '$0.003619'
'avg' => '$0.00236'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072434
'min_diff' => 0.00059944597831403
'max_diff' => 0.0023927881979355
'year' => 2029
]
4 => [
'items' => [
101 => 0.0026502344590636
102 => 0.0026297566645486
103 => 0.0027056912406248
104 => 0.0025466721575153
105 => 0.0025994919181861
106 => 0.0026103779976553
107 => 0.0024853486412578
108 => 0.0023999382103506
109 => 0.0023942423083593
110 => 0.0022461523914486
111 => 0.0023252608297222
112 => 0.0023948729816734
113 => 0.00236153416301
114 => 0.00235098008899
115 => 0.0024048985642586
116 => 0.0024090884915675
117 => 0.0023135577048964
118 => 0.0023334215805119
119 => 0.0024162572439231
120 => 0.0023313343343284
121 => 0.0021663429930644
122 => 0.0021254228592472
123 => 0.0021199633590883
124 => 0.0020089847107592
125 => 0.0021281573382561
126 => 0.0020761352927259
127 => 0.0022404723112361
128 => 0.0021466038876202
129 => 0.0021425574074905
130 => 0.002136440559285
131 => 0.0020409166521979
201 => 0.002061830316989
202 => 0.0021313505239956
203 => 0.0021561561170567
204 => 0.0021535686904742
205 => 0.0021310098370547
206 => 0.0021413371646301
207 => 0.0021080692442301
208 => 0.002096321649125
209 => 0.0020592430075426
210 => 0.0020047476476526
211 => 0.0020123255616848
212 => 0.0019043559942562
213 => 0.0018455284435425
214 => 0.0018292457528396
215 => 0.0018074718583312
216 => 0.0018317051721624
217 => 0.0019040501300374
218 => 0.0018167867620012
219 => 0.0016671798383167
220 => 0.001676171469348
221 => 0.0016963729946359
222 => 0.0016587275859083
223 => 0.0016230993658872
224 => 0.0016540752125867
225 => 0.0015906847867883
226 => 0.0017040334247423
227 => 0.0017009676617415
228 => 0.001743217024538
301 => 0.0017696364181389
302 => 0.0017087482692692
303 => 0.0016934350644875
304 => 0.0017021581618775
305 => 0.0015579847929605
306 => 0.0017314349844512
307 => 0.0017329349889099
308 => 0.0017200910400555
309 => 0.0018124479123505
310 => 0.0020073497197238
311 => 0.0019340198198829
312 => 0.0019056242662566
313 => 0.0018516442980559
314 => 0.0019235694006699
315 => 0.0019180466749956
316 => 0.0018930708150645
317 => 0.0018779653370488
318 => 0.001905797643452
319 => 0.001874516606279
320 => 0.0018688976724573
321 => 0.0018348530469581
322 => 0.0018227006645867
323 => 0.0018137035244791
324 => 0.0018037985572615
325 => 0.0018256464467796
326 => 0.0017761362548023
327 => 0.0017164318168216
328 => 0.0017114680388145
329 => 0.001725173466312
330 => 0.0017191098348934
331 => 0.0017114390084801
401 => 0.0016967933118319
402 => 0.0016924482464921
403 => 0.0017065676009203
404 => 0.0016906276729804
405 => 0.0017141479049485
406 => 0.0017077517032869
407 => 0.0016720230407504
408 => 0.0016274918987848
409 => 0.0016270954782141
410 => 0.0016175013167233
411 => 0.001605281709573
412 => 0.0016018824944105
413 => 0.0016514665131763
414 => 0.0017541039480967
415 => 0.0017339537637162
416 => 0.0017485143370051
417 => 0.0018201379464574
418 => 0.0018429049381052
419 => 0.0018267454666993
420 => 0.0018046253855662
421 => 0.0018055985568747
422 => 0.0018811895703106
423 => 0.0018859040890968
424 => 0.001897816157108
425 => 0.0019131265308525
426 => 0.0018293528895519
427 => 0.0018016528259031
428 => 0.0017885269990053
429 => 0.0017481045324943
430 => 0.001791696697066
501 => 0.0017662974095727
502 => 0.0017697246412187
503 => 0.0017674926521132
504 => 0.0017687114690912
505 => 0.0017040017414879
506 => 0.0017275785651834
507 => 0.0016883775229895
508 => 0.0016358917280154
509 => 0.0016357157772267
510 => 0.0016485616011901
511 => 0.0016409204024395
512 => 0.001620358133075
513 => 0.0016232789063871
514 => 0.0015976898587914
515 => 0.0016263858800699
516 => 0.0016272087792808
517 => 0.0016161592480058
518 => 0.0016603694280731
519 => 0.0016784823749188
520 => 0.0016712093367297
521 => 0.001677972079171
522 => 0.0017347910948498
523 => 0.0017440550735929
524 => 0.0017481695210065
525 => 0.0017426567065321
526 => 0.0016790106264735
527 => 0.0016818336007681
528 => 0.001661120488467
529 => 0.0016436200912665
530 => 0.0016443200153771
531 => 0.0016533174944305
601 => 0.001692610013152
602 => 0.0017752988023808
603 => 0.0017784367814873
604 => 0.0017822401037057
605 => 0.0017667700808468
606 => 0.0017621041739244
607 => 0.0017682597095278
608 => 0.0017993132711922
609 => 0.0018791914627526
610 => 0.0018509571749701
611 => 0.0018280022595101
612 => 0.0018481399089693
613 => 0.0018450398756792
614 => 0.0018188724749472
615 => 0.0018181380431619
616 => 0.0017679144349332
617 => 0.0017493479105072
618 => 0.0017338323330167
619 => 0.0017168897274414
620 => 0.001706845582935
621 => 0.0017222779538788
622 => 0.0017258075197041
623 => 0.0016920643709239
624 => 0.0016874653044304
625 => 0.0017150206881207
626 => 0.0017028945911268
627 => 0.0017153665825978
628 => 0.0017182601916018
629 => 0.0017177942539067
630 => 0.0017051332159717
701 => 0.0017132029839939
702 => 0.0016941155769078
703 => 0.0016733608885376
704 => 0.0016601206904201
705 => 0.0016485668615052
706 => 0.0016549775972997
707 => 0.0016321244947465
708 => 0.0016248133272977
709 => 0.0017104691281635
710 => 0.0017737439892181
711 => 0.0017728239476788
712 => 0.0017672234314236
713 => 0.0017589022002916
714 => 0.0017987045213051
715 => 0.0017848381885365
716 => 0.0017949271041966
717 => 0.0017974951566625
718 => 0.001805267878029
719 => 0.0018080459578295
720 => 0.0017996486711718
721 => 0.0017714663515064
722 => 0.0017012386903948
723 => 0.0016685475245714
724 => 0.0016577588953352
725 => 0.0016581510415174
726 => 0.0016473338991944
727 => 0.0016505200323988
728 => 0.0016462258920911
729 => 0.0016380938292124
730 => 0.0016544754653325
731 => 0.0016563632962898
801 => 0.0016525396266734
802 => 0.0016534402392869
803 => 0.0016217818879738
804 => 0.0016241888036658
805 => 0.0016107867912366
806 => 0.0016082740754698
807 => 0.0015743949550955
808 => 0.0015143731824954
809 => 0.0015476310709703
810 => 0.0015074602184594
811 => 0.0014922469079258
812 => 0.0015642643538367
813 => 0.0015570357997203
814 => 0.0015446636572499
815 => 0.0015263626799557
816 => 0.0015195746694568
817 => 0.0014783328664887
818 => 0.0014758960807529
819 => 0.0014963366319263
820 => 0.0014869040208762
821 => 0.0014736570625527
822 => 0.0014256779223277
823 => 0.0013717334833675
824 => 0.001373361726897
825 => 0.0013905204492583
826 => 0.0014404117486928
827 => 0.0014209183548755
828 => 0.0014067756740001
829 => 0.0014041271749996
830 => 0.0014372786849994
831 => 0.0014841950171053
901 => 0.0015062071104356
902 => 0.0014843937944625
903 => 0.0014593358315849
904 => 0.0014608609936778
905 => 0.0014710072137975
906 => 0.0014720734380722
907 => 0.0014557632802392
908 => 0.0014603544941319
909 => 0.0014533800203994
910 => 0.0014105776879773
911 => 0.0014098035295115
912 => 0.0013992991468542
913 => 0.0013989810783221
914 => 0.0013811105029811
915 => 0.0013786102859574
916 => 0.0013431271739515
917 => 0.0013664822657265
918 => 0.0013508168963612
919 => 0.0013272054896405
920 => 0.0013231348742222
921 => 0.0013230125066073
922 => 0.0013472561418955
923 => 0.0013661989647329
924 => 0.0013510894021682
925 => 0.0013476492476588
926 => 0.0013843810976412
927 => 0.0013797066349127
928 => 0.0013756585803368
929 => 0.001479994174148
930 => 0.0013974044102386
1001 => 0.0013613905591151
1002 => 0.001316816579505
1003 => 0.0013313300920276
1004 => 0.0013343883023639
1005 => 0.0012271959164653
1006 => 0.0011837079788562
1007 => 0.0011687845574771
1008 => 0.0011601959174873
1009 => 0.00116410986858
1010 => 0.0011249656241055
1011 => 0.0011512712037784
1012 => 0.0011173755968441
1013 => 0.0011116928880357
1014 => 0.0011723024320942
1015 => 0.0011807358960741
1016 => 0.0011447561186639
1017 => 0.0011678609603581
1018 => 0.0011594828235785
1019 => 0.0011179566397387
1020 => 0.0011163706449619
1021 => 0.0010955342656271
1022 => 0.0010629293666861
1023 => 0.0010480280529638
1024 => 0.0010402673193981
1025 => 0.001043469549321
1026 => 0.0010418504038822
1027 => 0.0010312843846614
1028 => 0.0010424560357358
1029 => 0.0010139170836857
1030 => 0.0010025526430254
1031 => 0.00099741958883216
1101 => 0.00097208962624694
1102 => 0.0010124008610055
1103 => 0.0010203426820805
1104 => 0.0010283001509964
1105 => 0.0010975644851142
1106 => 0.0010941042347206
1107 => 0.0011253832130681
1108 => 0.0011241677694878
1109 => 0.0011152464981773
1110 => 0.001077609121996
1111 => 0.0010926107093202
1112 => 0.0010464381553008
1113 => 0.0010810337722006
1114 => 0.001065245777395
1115 => 0.0010756958352755
1116 => 0.0010569056889627
1117 => 0.0010673049317583
1118 => 0.0010222259824795
1119 => 0.00098013189392091
1120 => 0.00099707178395994
1121 => 0.0010154873817438
1122 => 0.0010554170899462
1123 => 0.0010316352851538
1124 => 0.0010401881214467
1125 => 0.0010115375515928
1126 => 0.00095242324235358
1127 => 0.00095275782292407
1128 => 0.00094366437432284
1129 => 0.00093580630706615
1130 => 0.0010343669115152
1201 => 0.0010221093423393
1202 => 0.0010025785100887
1203 => 0.0010287213051806
1204 => 0.0010356338751449
1205 => 0.0010358306662938
1206 => 0.0010549037747497
1207 => 0.0010650830961517
1208 => 0.0010668772456684
1209 => 0.0010968891939256
1210 => 0.0011069488031142
1211 => 0.0011483829096729
1212 => 0.0010642194518497
1213 => 0.0010624861608211
1214 => 0.0010290891879197
1215 => 0.0010079082997204
1216 => 0.0010305394614558
1217 => 0.0010505875812916
1218 => 0.001029712138887
1219 => 0.0010324380309604
1220 => 0.0010044144551184
1221 => 0.0010144315648501
1222 => 0.0010230596492014
1223 => 0.001018295728158
1224 => 0.0010111639077795
1225 => 0.0010489438640908
1226 => 0.0010468121708949
1227 => 0.0010819937347694
1228 => 0.0011094202796674
1229 => 0.0011585735512059
1230 => 0.0011072795499375
1231 => 0.0011054101926561
]
'min_raw' => 0.00093580630706615
'max_raw' => 0.0027056912406248
'avg_raw' => 0.0018207487738455
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.000935'
'max' => '$0.0027056'
'avg' => '$0.00182'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -0.00016455042538167
'max_diff' => -0.00091398388301717
'year' => 2030
]
5 => [
'items' => [
101 => 0.0011236834599362
102 => 0.0011069460055722
103 => 0.0011175234989729
104 => 0.0011568693534916
105 => 0.0011577006693972
106 => 0.0011437750568885
107 => 0.0011429276821018
108 => 0.0011456022483136
109 => 0.0011612672661547
110 => 0.0011557934275836
111 => 0.0011621278921587
112 => 0.0011700492371066
113 => 0.0012028152783918
114 => 0.0012107150600168
115 => 0.0011915226862353
116 => 0.0011932555426999
117 => 0.0011860770680632
118 => 0.0011791427515101
119 => 0.0011947300824458
120 => 0.0012232162361003
121 => 0.0012230390252169
122 => 0.0012296472591731
123 => 0.0012337641341822
124 => 0.0012160914929063
125 => 0.0012045872532768
126 => 0.0012089987107845
127 => 0.0012160527274085
128 => 0.001206711188265
129 => 0.0011490508812499
130 => 0.0011665413350436
131 => 0.0011636300682928
201 => 0.0011594840704176
202 => 0.0011770708569569
203 => 0.0011753745684919
204 => 0.0011245641433002
205 => 0.001127816861867
206 => 0.0011247619518896
207 => 0.0011346329910023
208 => 0.0011064129370661
209 => 0.0011150932355919
210 => 0.0011205374374545
211 => 0.001123744114176
212 => 0.0011353288293325
213 => 0.0011339694967192
214 => 0.0011352443313087
215 => 0.0011524214056345
216 => 0.0012392971531144
217 => 0.0012440256083692
218 => 0.0012207409653433
219 => 0.0012300427209629
220 => 0.0012121853842437
221 => 0.0012241731340171
222 => 0.0012323748479562
223 => 0.0011953128797642
224 => 0.0011931183105381
225 => 0.001175187270238
226 => 0.0011848223956292
227 => 0.0011694922183417
228 => 0.0011732537076212
301 => 0.001162736255675
302 => 0.0011816655751744
303 => 0.0012028314956937
304 => 0.0012081788430844
305 => 0.0011941122742773
306 => 0.0011839271514289
307 => 0.0011660454308951
308 => 0.0011957831306629
309 => 0.001204479340315
310 => 0.0011957374531757
311 => 0.0011937117669115
312 => 0.0011898730951012
313 => 0.0011945261592826
314 => 0.0012044319788896
315 => 0.0011997605772947
316 => 0.0012028461203476
317 => 0.0011910872120281
318 => 0.0012160973432859
319 => 0.0012558194507393
320 => 0.00125594716381
321 => 0.0012512757370345
322 => 0.0012493642898453
323 => 0.0012541574572028
324 => 0.0012567575538683
325 => 0.0012722577781859
326 => 0.001288890136435
327 => 0.0013665060951168
328 => 0.0013447118445042
329 => 0.0014135773404407
330 => 0.0014680410066611
331 => 0.001484372278753
401 => 0.0014693482768741
402 => 0.001417951978027
403 => 0.0014154302304066
404 => 0.0014922379998418
405 => 0.0014705362869577
406 => 0.0014679549372644
407 => 0.0014404937377869
408 => 0.0014567267078138
409 => 0.0014531763191456
410 => 0.0014475718569419
411 => 0.0014785432329548
412 => 0.0015365188840171
413 => 0.0015274828351068
414 => 0.0015207378437656
415 => 0.0014911832551456
416 => 0.0015089817187511
417 => 0.0015026440267683
418 => 0.0015298747735253
419 => 0.0015137438823813
420 => 0.0014703718751384
421 => 0.0014772790102478
422 => 0.0014762350106712
423 => 0.0014977204479784
424 => 0.0014912710530001
425 => 0.0014749756627926
426 => 0.0015363207295445
427 => 0.0015323373221288
428 => 0.0015379848831106
429 => 0.0015404711141113
430 => 0.0015778107752219
501 => 0.001593107639643
502 => 0.0015965802956759
503 => 0.001611111133774
504 => 0.0015962187551867
505 => 0.0016557988876217
506 => 0.0016954161990939
507 => 0.0017414337450571
508 => 0.0018086777480595
509 => 0.0018339621152303
510 => 0.0018293947206125
511 => 0.0018803783562437
512 => 0.0019719948161706
513 => 0.0018479130265785
514 => 0.0019785714523131
515 => 0.0019372065032496
516 => 0.0018391309531437
517 => 0.0018328160439517
518 => 0.0018992339451639
519 => 0.0020465424575666
520 => 0.0020096433459691
521 => 0.0020466028112945
522 => 0.0020034876317748
523 => 0.0020013465997084
524 => 0.0020445088032601
525 => 0.0021453596445078
526 => 0.0020974491901683
527 => 0.0020287578057472
528 => 0.0020794784550474
529 => 0.002035539534649
530 => 0.0019365328492621
531 => 0.0020096151299138
601 => 0.0019607470901055
602 => 0.0019750093820895
603 => 0.0020777227331942
604 => 0.0020653639910435
605 => 0.0020813573477753
606 => 0.0020531294917627
607 => 0.0020267602231227
608 => 0.0019775400249984
609 => 0.0019629683508603
610 => 0.0019669954373581
611 => 0.0019629663552362
612 => 0.0019354281067426
613 => 0.0019294812246024
614 => 0.0019195694938298
615 => 0.001922641553652
616 => 0.0019040046000204
617 => 0.0019391763821144
618 => 0.0019457045748037
619 => 0.0019712996647285
620 => 0.001973957031873
621 => 0.0020452389929902
622 => 0.0020059780866515
623 => 0.0020323176922471
624 => 0.0020299616300047
625 => 0.0018412565477056
626 => 0.0018672584430873
627 => 0.0019077092324571
628 => 0.0018894862066758
629 => 0.0018637231117523
630 => 0.0018429180312718
701 => 0.0018113962069152
702 => 0.0018557625693741
703 => 0.001914099618171
704 => 0.0019754365557012
705 => 0.0020491288671885
706 => 0.0020326816011376
707 => 0.0019740589291973
708 => 0.0019766886994366
709 => 0.0019929449042799
710 => 0.0019718916419759
711 => 0.001965682623914
712 => 0.0019920918805441
713 => 0.0019922737465803
714 => 0.0019680494239278
715 => 0.0019411285223039
716 => 0.0019410157227431
717 => 0.0019362254083242
718 => 0.0020043398180682
719 => 0.0020417958562838
720 => 0.0020460901307018
721 => 0.0020415068174005
722 => 0.002043270752785
723 => 0.0020214759094348
724 => 0.0020712924582733
725 => 0.0021170090498335
726 => 0.0021047560267029
727 => 0.0020863870031601
728 => 0.0020717551911363
729 => 0.0021013092367957
730 => 0.0020999932416649
731 => 0.0021166097552885
801 => 0.0021158559342489
802 => 0.002110268425696
803 => 0.0021047562262504
804 => 0.0021266114739814
805 => 0.0021203175136194
806 => 0.0021140137769985
807 => 0.0021013706681516
808 => 0.0021030890766237
809 => 0.0020847232247518
810 => 0.0020762263413117
811 => 0.0019484536012463
812 => 0.0019143085500061
813 => 0.0019250512782129
814 => 0.0019285880632734
815 => 0.0019137280932156
816 => 0.0019350334730654
817 => 0.0019317130521838
818 => 0.0019446308674529
819 => 0.0019365603772991
820 => 0.0019368915930301
821 => 0.0019606251837624
822 => 0.001967515146122
823 => 0.0019640108556571
824 => 0.0019664651405786
825 => 0.0020230231007067
826 => 0.0020149823673983
827 => 0.0020107108880859
828 => 0.0020118941170472
829 => 0.0020263458884763
830 => 0.002030391595439
831 => 0.0020132496507514
901 => 0.0020213338909624
902 => 0.0020557555597384
903 => 0.0020678011957123
904 => 0.0021062450835076
905 => 0.0020899134366865
906 => 0.0021198908812437
907 => 0.0022120313257485
908 => 0.0022856394884527
909 => 0.0022179463800439
910 => 0.0023531183969072
911 => 0.0024583692013095
912 => 0.0024543295001322
913 => 0.0024359765878897
914 => 0.0023161513453151
915 => 0.0022058863706042
916 => 0.002298127704048
917 => 0.0022983628461765
918 => 0.0022904392338289
919 => 0.0022412263580513
920 => 0.002288726732427
921 => 0.0022924971396489
922 => 0.0022903867142368
923 => 0.0022526553177638
924 => 0.0021950464492772
925 => 0.0022063030842833
926 => 0.0022247416820525
927 => 0.002189833569781
928 => 0.0021786783127531
929 => 0.0021994180579424
930 => 0.0022662458382398
1001 => 0.0022536124334815
1002 => 0.0022532825242277
1003 => 0.0023073335871808
1004 => 0.0022686446910558
1005 => 0.0022064450664995
1006 => 0.0021907388409868
1007 => 0.0021349923213978
1008 => 0.0021734966410402
1009 => 0.0021748823429562
1010 => 0.0021537939205927
1011 => 0.0022081562757494
1012 => 0.0022076553170763
1013 => 0.0022592642825288
1014 => 0.0023579212410318
1015 => 0.0023287435237883
1016 => 0.0022948130131609
1017 => 0.0022985022004571
1018 => 0.0023389634794064
1019 => 0.0023144996665125
1020 => 0.0023232970241969
1021 => 0.0023389501635519
1022 => 0.0023483940911704
1023 => 0.0022971433646066
1024 => 0.0022851943686389
1025 => 0.0022607509164168
1026 => 0.0022543740759907
1027 => 0.0022742827577962
1028 => 0.0022690375235246
1029 => 0.0021747658800759
1030 => 0.002164913968813
1031 => 0.0021652161128661
1101 => 0.0021404430135628
1102 => 0.0021026580909002
1103 => 0.0022019546116371
1104 => 0.002193979711368
1105 => 0.0021851760386792
1106 => 0.0021862544383505
1107 => 0.0022293556925311
1108 => 0.0022043547884408
1109 => 0.0022708237895323
1110 => 0.002257159761149
1111 => 0.0022431453019967
1112 => 0.002241208076851
1113 => 0.0022358137057348
1114 => 0.0022173144000204
1115 => 0.0021949753767344
1116 => 0.0021802252185879
1117 => 0.0020111425178783
1118 => 0.0020425232836212
1119 => 0.0020786239941615
1120 => 0.0020910858147756
1121 => 0.0020697690082836
1122 => 0.0022181561174682
1123 => 0.00224526787221
1124 => 0.0021631445986411
1125 => 0.0021477826872275
1126 => 0.002219163241823
1127 => 0.002176112041484
1128 => 0.0021954979943606
1129 => 0.0021535961677907
1130 => 0.0022387374444176
1201 => 0.0022380888105403
1202 => 0.0022049669309295
1203 => 0.0022329613167677
1204 => 0.0022280966033203
1205 => 0.0021907020828153
1206 => 0.002239922917417
1207 => 0.0022399473303368
1208 => 0.0022080682413432
1209 => 0.0021708404446286
1210 => 0.0021641849938573
1211 => 0.0021591710057352
1212 => 0.0021942648606456
1213 => 0.0022257299012227
1214 => 0.0022842785408915
1215 => 0.0022989990599856
1216 => 0.0023564542260103
1217 => 0.0023222424720838
1218 => 0.0023374080994831
1219 => 0.0023538725333339
1220 => 0.0023617661883815
1221 => 0.0023489039010783
1222 => 0.0024381554234046
1223 => 0.0024456909864849
1224 => 0.0024482175956033
1225 => 0.002418122484443
1226 => 0.0024448539870018
1227 => 0.0024323472022089
1228 => 0.0024648863817553
1229 => 0.0024699889405893
1230 => 0.0024656672547857
1231 => 0.002467286887498
]
'min_raw' => 0.0011064129370661
'max_raw' => 0.0024699889405893
'avg_raw' => 0.0017882009388277
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.0011064'
'max' => '$0.002469'
'avg' => '$0.001788'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 0.00017060662999994
'max_diff' => -0.00023570230003549
'year' => 2031
]
6 => [
'items' => [
101 => 0.00239112645824
102 => 0.0023871771382047
103 => 0.0023333278792925
104 => 0.0023552718503329
105 => 0.0023142486482748
106 => 0.0023272575282332
107 => 0.0023329917185657
108 => 0.0023299965029485
109 => 0.002356512529531
110 => 0.0023339684900695
111 => 0.0022744710633473
112 => 0.002214957426591
113 => 0.0022142102813603
114 => 0.0021985413913053
115 => 0.0021872156536959
116 => 0.0021893973925616
117 => 0.002197086124893
118 => 0.0021867687705955
119 => 0.002188970501238
120 => 0.0022255338999584
121 => 0.0022328664288135
122 => 0.0022079476307598
123 => 0.0021078950608086
124 => 0.0020833419091797
125 => 0.0021009902276604
126 => 0.0020925554681239
127 => 0.0016888555800341
128 => 0.0017836988805757
129 => 0.0017273462119681
130 => 0.0017533161143241
131 => 0.0016957946321285
201 => 0.0017232468983914
202 => 0.0017181774672089
203 => 0.0018706826878625
204 => 0.0018683015286061
205 => 0.001869441263534
206 => 0.0018150387458612
207 => 0.0019017034337033
208 => 0.0019443975752956
209 => 0.0019364960259547
210 => 0.0019384846756916
211 => 0.0019043130844995
212 => 0.0018697721192321
213 => 0.0018314608729342
214 => 0.0019026384331426
215 => 0.0018947247034889
216 => 0.0019128759520444
217 => 0.0019590396877166
218 => 0.0019658374731533
219 => 0.0019749737657166
220 => 0.0019716990551983
221 => 0.0020497159453392
222 => 0.0020402675851711
223 => 0.0020630354146975
224 => 0.0020162002619624
225 => 0.0019632018410092
226 => 0.0019732751081835
227 => 0.0019723049715505
228 => 0.0019599540187416
229 => 0.0019488041307942
301 => 0.0019302427088232
302 => 0.0019889737945131
303 => 0.0019865894196896
304 => 0.0020251896765488
305 => 0.002018366706206
306 => 0.0019728012403931
307 => 0.0019744286199187
308 => 0.0019853735293204
309 => 0.0020232539857263
310 => 0.0020344994842857
311 => 0.0020292901212973
312 => 0.0020416202970912
313 => 0.0020513655652969
314 => 0.0020428441527371
315 => 0.0021634893845161
316 => 0.0021133890729252
317 => 0.0021378076161989
318 => 0.0021436312948873
319 => 0.0021287140643858
320 => 0.0021319490775356
321 => 0.0021368492409692
322 => 0.0021666020737878
323 => 0.0022446821161552
324 => 0.0022792632354109
325 => 0.002383302238894
326 => 0.0022763917548491
327 => 0.0022700481291654
328 => 0.0022887886953697
329 => 0.0023498706040612
330 => 0.0023993717539238
331 => 0.002415794141123
401 => 0.0024179646306955
402 => 0.002448774120821
403 => 0.0024664335459979
404 => 0.0024450330383497
405 => 0.0024268983488444
406 => 0.0023619421419969
407 => 0.0023694609998094
408 => 0.0024212584740448
409 => 0.0024944254572584
410 => 0.0025572103405827
411 => 0.0025352252627166
412 => 0.0027029558877888
413 => 0.0027195856941465
414 => 0.0027172879926139
415 => 0.0027551731663438
416 => 0.0026799788116714
417 => 0.0026478317682269
418 => 0.0024308192745529
419 => 0.0024917909334507
420 => 0.0025804168203986
421 => 0.0025686868519311
422 => 0.0025043243638527
423 => 0.002557161515864
424 => 0.0025396919010386
425 => 0.0025259128910108
426 => 0.0025890372071407
427 => 0.0025196294285518
428 => 0.002579724424713
429 => 0.0025026519705332
430 => 0.0025353256887004
501 => 0.0025167785060188
502 => 0.002528780806271
503 => 0.0024586156042436
504 => 0.0024964750440936
505 => 0.0024570405270756
506 => 0.00245702182998
507 => 0.0024561513108312
508 => 0.0025025458452235
509 => 0.0025040587693244
510 => 0.0024697731383102
511 => 0.0024648320432389
512 => 0.0024831018614504
513 => 0.0024617126891977
514 => 0.0024717205482729
515 => 0.0024620158170539
516 => 0.0024598310776436
517 => 0.0024424227023194
518 => 0.0024349226955766
519 => 0.0024378636414718
520 => 0.0024278246769698
521 => 0.0024217758377321
522 => 0.0024549480444597
523 => 0.0024372254725682
524 => 0.0024522318061399
525 => 0.0024351301950846
526 => 0.0023758485603499
527 => 0.002341755065322
528 => 0.0022297775527185
529 => 0.0022615342363852
530 => 0.0022825889505108
531 => 0.0022756303676179
601 => 0.002290580096286
602 => 0.0022914978882096
603 => 0.0022866375790251
604 => 0.0022810099636337
605 => 0.0022782707516878
606 => 0.0022986865933383
607 => 0.002310538676582
608 => 0.0022847020727491
609 => 0.0022786489179635
610 => 0.0023047711509166
611 => 0.0023207056979277
612 => 0.0024383574402088
613 => 0.0024296414191305
614 => 0.0024515169216043
615 => 0.0024490540757327
616 => 0.002471983087366
617 => 0.0025094623308633
618 => 0.0024332565494721
619 => 0.0024464832381239
620 => 0.0024432403595153
621 => 0.0024786452578355
622 => 0.0024787557880634
623 => 0.0024575287829147
624 => 0.0024690362867747
625 => 0.0024626131138119
626 => 0.0024742206554995
627 => 0.0024295250113551
628 => 0.0024839594813264
629 => 0.0025148203181203
630 => 0.0025152488208692
701 => 0.0025298766125828
702 => 0.0025447392961483
703 => 0.0025732669229855
704 => 0.0025439436761192
705 => 0.0024911940095673
706 => 0.002495002365112
707 => 0.002464075254913
708 => 0.0024645951452228
709 => 0.0024618199300041
710 => 0.0024701485597839
711 => 0.0024313526772322
712 => 0.002440457993323
713 => 0.0024277104974753
714 => 0.0024464555275575
715 => 0.0024262889738535
716 => 0.0024432387957011
717 => 0.002450553776915
718 => 0.0024775462150747
719 => 0.0024223021687904
720 => 0.0023096558187236
721 => 0.0023333354472127
722 => 0.0022983114166827
723 => 0.0023015530240542
724 => 0.0023081015868424
725 => 0.0022868755522892
726 => 0.0022909248107727
727 => 0.0022907801427655
728 => 0.0022895334720352
729 => 0.0022840117606596
730 => 0.0022760041867276
731 => 0.0023079038966714
801 => 0.0023133242789974
802 => 0.002325373117465
803 => 0.0023612222879394
804 => 0.0023576401104273
805 => 0.0023634827905726
806 => 0.0023507282526208
807 => 0.0023021446704888
808 => 0.0023047829927413
809 => 0.0022718830719773
810 => 0.002324531792522
811 => 0.0023120638805678
812 => 0.0023040257366224
813 => 0.0023018324545741
814 => 0.002337770488208
815 => 0.0023485237111309
816 => 0.0023418230242273
817 => 0.0023280797198977
818 => 0.0023544709270537
819 => 0.002361532100733
820 => 0.0023631128371138
821 => 0.0024098729961822
822 => 0.0023657262105651
823 => 0.0023763527806445
824 => 0.0024592582469153
825 => 0.00238407442918
826 => 0.0024239009742336
827 => 0.0024219516721005
828 => 0.0024423255848932
829 => 0.0024202804165816
830 => 0.0024205536928637
831 => 0.0024386443471752
901 => 0.0024132392858614
902 => 0.002406948635408
903 => 0.002398258146861
904 => 0.0024172335106681
905 => 0.0024286083830886
906 => 0.0025202815008746
907 => 0.0025795065157664
908 => 0.0025769354016751
909 => 0.0026004305715458
910 => 0.002589845782328
911 => 0.0025556647058172
912 => 0.0026140076354829
913 => 0.0025955454913648
914 => 0.0025970674880944
915 => 0.0025970108393001
916 => 0.00260928655115
917 => 0.0026005880842519
918 => 0.0025834425131164
919 => 0.0025948245433864
920 => 0.0026286251041381
921 => 0.0027335430818393
922 => 0.0027922565721392
923 => 0.0027300084560004
924 => 0.0027729463729774
925 => 0.0027471989231354
926 => 0.0027425198455788
927 => 0.0027694880305275
928 => 0.002796503419714
929 => 0.0027947826562135
930 => 0.0027751708709197
1001 => 0.0027640926710379
1002 => 0.0028479805120124
1003 => 0.0029097876442503
1004 => 0.0029055728121919
1005 => 0.0029241757101607
1006 => 0.002978794393963
1007 => 0.0029837880419062
1008 => 0.002983158957043
1009 => 0.0029707816795824
1010 => 0.0030245608669181
1011 => 0.0030694244111483
1012 => 0.0029679166974642
1013 => 0.0030065695060016
1014 => 0.0030239219970697
1015 => 0.0030494006022098
1016 => 0.0030923872797912
1017 => 0.0031390822132977
1018 => 0.0031456853888794
1019 => 0.0031410001198132
1020 => 0.0031102035559384
1021 => 0.0031612977093677
1022 => 0.0031912274661412
1023 => 0.0032090499513695
1024 => 0.0032542448085298
1025 => 0.003024029160147
1026 => 0.0028610710817616
1027 => 0.0028356228246785
1028 => 0.0028873728561602
1029 => 0.0029010189267632
1030 => 0.0028955182128138
1031 => 0.0027120940800907
1101 => 0.0028346571345802
1102 => 0.0029665246758166
1103 => 0.002971590245123
1104 => 0.0030376058934862
1105 => 0.0030591032946661
1106 => 0.0031122545444673
1107 => 0.0031089299193207
1108 => 0.0031218714028262
1109 => 0.0031188963798835
1110 => 0.0032173478778242
1111 => 0.0033259545002416
1112 => 0.0033221937982552
1113 => 0.0033065803113074
1114 => 0.00332976900192
1115 => 0.0034418626752477
1116 => 0.0034315428860722
1117 => 0.0034415676822187
1118 => 0.0035737324403947
1119 => 0.0037455654262412
1120 => 0.0036657317525658
1121 => 0.0038389478529206
1122 => 0.003947978206303
1123 => 0.004136534928529
1124 => 0.0041129266982449
1125 => 0.0041863304465143
1126 => 0.0040706630388499
1127 => 0.0038050672906127
1128 => 0.0037630357467944
1129 => 0.0038471839619267
1130 => 0.0040540541377668
1201 => 0.0038406688839011
1202 => 0.0038838364428446
1203 => 0.0038714041829648
1204 => 0.0038707417206695
1205 => 0.0038960252120518
1206 => 0.0038593501891035
1207 => 0.0037099295479016
1208 => 0.0037784081472231
1209 => 0.0037519652714126
1210 => 0.0037813056135713
1211 => 0.0039396433393242
1212 => 0.0038696384564689
1213 => 0.0037958939991157
1214 => 0.0038883859138417
1215 => 0.0040061599049581
1216 => 0.0039987898202543
1217 => 0.0039844887754724
1218 => 0.0040651030161295
1219 => 0.0041982541239389
1220 => 0.0042342443333353
1221 => 0.0042608115701242
1222 => 0.0042644747432203
1223 => 0.004302207702759
1224 => 0.004099308069389
1225 => 0.0044213149983794
1226 => 0.0044769166997542
1227 => 0.0044664658843501
1228 => 0.0045282648353509
1229 => 0.0045100820162784
1230 => 0.0044837379642393
1231 => 0.0045817024465893
]
'min_raw' => 0.0016888555800341
'max_raw' => 0.0045817024465893
'avg_raw' => 0.0031352790133117
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.001688'
'max' => '$0.004581'
'avg' => '$0.003135'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.00058244264296803
'max_diff' => 0.002111713506
'year' => 2032
]
7 => [
'items' => [
101 => 0.0044693940729011
102 => 0.0043099864756816
103 => 0.0042225323151223
104 => 0.0043376990084727
105 => 0.0044080272893381
106 => 0.0044545098092714
107 => 0.0044685753917177
108 => 0.0041150585903463
109 => 0.0039245326413478
110 => 0.0040466575902714
111 => 0.0041956584565719
112 => 0.0040984803620534
113 => 0.0041022895593761
114 => 0.0039637391345467
115 => 0.0042079170948454
116 => 0.0041723424198898
117 => 0.00435690389649
118 => 0.004312856818901
119 => 0.0044633595384333
120 => 0.004423727128485
121 => 0.0045882390463619
122 => 0.0046538673043854
123 => 0.0047640673638296
124 => 0.0048451309761517
125 => 0.004892733079807
126 => 0.0048898752280545
127 => 0.0050784984780108
128 => 0.004967273937506
129 => 0.0048275497010205
130 => 0.0048250225304068
131 => 0.0048973876923904
201 => 0.0050490452194953
202 => 0.0050883678097463
203 => 0.0051103437732102
204 => 0.0050766868201765
205 => 0.0049559605529931
206 => 0.0049038315629195
207 => 0.0049482469727845
208 => 0.0048939307431792
209 => 0.0049876957939202
210 => 0.0051164552357217
211 => 0.0050898669201597
212 => 0.0051787476727404
213 => 0.0052707299011336
214 => 0.0054022686189162
215 => 0.0054366577106092
216 => 0.0054935015714777
217 => 0.0055520125765469
218 => 0.0055708047344593
219 => 0.0056066847947783
220 => 0.0056064956891496
221 => 0.0057146226659274
222 => 0.0058338900697271
223 => 0.0058789107536148
224 => 0.0059824333337594
225 => 0.0058051545431256
226 => 0.0059396225422533
227 => 0.0060609160434189
228 => 0.0059163049309852
301 => 0.0061156176594072
302 => 0.0061233565209994
303 => 0.0062402041430431
304 => 0.0061217566928061
305 => 0.006051422974953
306 => 0.0062544737830248
307 => 0.0063527236730102
308 => 0.0063231300065625
309 => 0.0060979207436757
310 => 0.005966839292996
311 => 0.0056237738528435
312 => 0.0060301496860282
313 => 0.0062280835002269
314 => 0.0060974081429143
315 => 0.0061633131922112
316 => 0.0065228697713911
317 => 0.0066597656371783
318 => 0.0066312922540689
319 => 0.0066361037871026
320 => 0.0067099703114457
321 => 0.0070375351594208
322 => 0.0068412507096204
323 => 0.0069913028168548
324 => 0.0070708899134788
325 => 0.0071448148442603
326 => 0.0069632785784753
327 => 0.0067271025639864
328 => 0.0066522957062032
329 => 0.0060844150539593
330 => 0.0060548543998293
331 => 0.0060382611088867
401 => 0.0059336427566609
402 => 0.0058514413891899
403 => 0.0057860718098359
404 => 0.005614522512602
405 => 0.005672415364536
406 => 0.0053990015898661
407 => 0.0055739220337107
408 => 0.0051375470475312
409 => 0.0055009731029742
410 => 0.0053031768239517
411 => 0.0054359917056014
412 => 0.0054355283269913
413 => 0.0051909740208775
414 => 0.0050499202008292
415 => 0.0051398051848607
416 => 0.0052361690228215
417 => 0.0052518037313238
418 => 0.0053767419625934
419 => 0.0054116095374025
420 => 0.0053059591579196
421 => 0.0051285041458787
422 => 0.0051697228978579
423 => 0.0050490849041359
424 => 0.0048376714604116
425 => 0.004989512286619
426 => 0.0050413574206561
427 => 0.005064255185399
428 => 0.0048563543444941
429 => 0.004791027386535
430 => 0.0047562478622638
501 => 0.0051016667580248
502 => 0.0051205895848737
503 => 0.0050237777272968
504 => 0.0054613765036212
505 => 0.0053623344232516
506 => 0.0054729886929233
507 => 0.0051659827281503
508 => 0.005177710769443
509 => 0.0050323692257306
510 => 0.0051137507784841
511 => 0.0050562329200478
512 => 0.0051071759532498
513 => 0.005137710997305
514 => 0.0052830286919002
515 => 0.0055026323976195
516 => 0.0052613230742458
517 => 0.0051561811464387
518 => 0.0052214106071096
519 => 0.0053951252567139
520 => 0.0056583118431537
521 => 0.0055025000868577
522 => 0.0055716466984466
523 => 0.0055867521569602
524 => 0.0054718623363322
525 => 0.0056625479947174
526 => 0.0057647379881735
527 => 0.0058695637762199
528 => 0.0059605810708287
529 => 0.0058276940513057
530 => 0.0059699022108013
531 => 0.0058553075373673
601 => 0.0057525042687174
602 => 0.0057526601788406
603 => 0.0056881701867004
604 => 0.0055632127006668
605 => 0.0055401686230505
606 => 0.005660046824957
607 => 0.0057561777903781
608 => 0.0057640955971265
609 => 0.005817318638971
610 => 0.0058488154868936
611 => 0.0061575274144237
612 => 0.0062816939054754
613 => 0.0064335223403819
614 => 0.0064926680723598
615 => 0.0066706755206945
616 => 0.0065269200491061
617 => 0.0064958176485636
618 => 0.006064029804696
619 => 0.0061347350399401
620 => 0.0062479409436064
621 => 0.0060658965283512
622 => 0.0061813618089823
623 => 0.0062041571012679
624 => 0.0060597107287809
625 => 0.0061368657774856
626 => 0.0059319648430038
627 => 0.0055070986780615
628 => 0.0056630209922134
629 => 0.0057778322983127
630 => 0.0056139824083771
701 => 0.0059076769942202
702 => 0.0057361066802575
703 => 0.0056817271275588
704 => 0.0054695731047708
705 => 0.0055697016369695
706 => 0.0057051269104708
707 => 0.0056214498363249
708 => 0.0057950923293535
709 => 0.0060410164082433
710 => 0.0062162765518923
711 => 0.0062297308495078
712 => 0.0061170503186592
713 => 0.0062976215884617
714 => 0.006298936853028
715 => 0.0060952517230356
716 => 0.0059704957150387
717 => 0.005942150887533
718 => 0.0060129618239732
719 => 0.0060989393732315
720 => 0.0062345020051184
721 => 0.0063164196644059
722 => 0.0065300174740586
723 => 0.0065878109170214
724 => 0.0066513083889606
725 => 0.0067361605933664
726 => 0.0068380474204142
727 => 0.0066151248432539
728 => 0.0066239819728241
729 => 0.0064163995555455
730 => 0.0061945679723535
731 => 0.006362910492299
801 => 0.0065829959434609
802 => 0.0065325080977915
803 => 0.0065268271837807
804 => 0.0065363809053928
805 => 0.006498314718537
806 => 0.006326142766187
807 => 0.0062396790895703
808 => 0.0063512392916423
809 => 0.0064105285740702
810 => 0.0065024810805472
811 => 0.006491145993242
812 => 0.0067280057749483
813 => 0.0068200423238514
814 => 0.006796495436176
815 => 0.0068008286301958
816 => 0.0069674564057463
817 => 0.0071527807617741
818 => 0.0073263614768968
819 => 0.0075029352357848
820 => 0.0072900686776542
821 => 0.0071819881672196
822 => 0.0072934996655973
823 => 0.0072343300949201
824 => 0.0075743359988661
825 => 0.007597877269955
826 => 0.0079378585876042
827 => 0.0082605413422755
828 => 0.0080578700855285
829 => 0.008248979952127
830 => 0.0084556808542693
831 => 0.0088544404305147
901 => 0.0087201522337663
902 => 0.0086172895796213
903 => 0.0085200848684831
904 => 0.0087223524415484
905 => 0.0089825664429936
906 => 0.0090386140466062
907 => 0.009129432576291
908 => 0.0090339479970889
909 => 0.0091489486554565
910 => 0.0095549515133439
911 => 0.0094452459572563
912 => 0.0092894464315638
913 => 0.009609946694937
914 => 0.0097259344943385
915 => 0.01053999761382
916 => 0.011567785929437
917 => 0.01114227481795
918 => 0.010878146339892
919 => 0.010940222797447
920 => 0.01131553629748
921 => 0.011436075081835
922 => 0.011108409113746
923 => 0.011224146273076
924 => 0.011861869400012
925 => 0.012203987397006
926 => 0.011739345204511
927 => 0.010457415823396
928 => 0.0092754183889148
929 => 0.0095889373345773
930 => 0.0095533940157648
1001 => 0.010238547958077
1002 => 0.0094426295160257
1003 => 0.0094560307413432
1004 => 0.010155352941592
1005 => 0.0099687857679833
1006 => 0.0096665708404555
1007 => 0.0092776248923368
1008 => 0.0085586223340937
1009 => 0.0079217817173881
1010 => 0.0091707728223827
1011 => 0.0091169140547924
1012 => 0.0090389185778994
1013 => 0.0092124890717326
1014 => 0.010055298120942
1015 => 0.010035868644451
1016 => 0.0099122682280219
1017 => 0.010006018054519
1018 => 0.0096501360425967
1019 => 0.009741854940352
1020 => 0.0092752311544821
1021 => 0.009486164593626
1022 => 0.0096659224229526
1023 => 0.0097020114685501
1024 => 0.0097833219310335
1025 => 0.0090885329316336
1026 => 0.0094004727944309
1027 => 0.0095837082390118
1028 => 0.0087558438342326
1029 => 0.0095673440215163
1030 => 0.0090764382009201
1031 => 0.0089098173922517
1101 => 0.0091341503605013
1102 => 0.0090467275846035
1103 => 0.0089715666155242
1104 => 0.0089296255033485
1105 => 0.0090943508765048
1106 => 0.0090866662409577
1107 => 0.0088171435586568
1108 => 0.0084655622067452
1109 => 0.0085835644487112
1110 => 0.0085406931279281
1111 => 0.0083853219308995
1112 => 0.0084900233581069
1113 => 0.0080289712608651
1114 => 0.0072357550909633
1115 => 0.0077597779896688
1116 => 0.0077396036780959
1117 => 0.0077294308753686
1118 => 0.0081232196008167
1119 => 0.0080853659011165
1120 => 0.0080166610654961
1121 => 0.0083840601127143
1122 => 0.0082499545182651
1123 => 0.0086632363611056
1124 => 0.008935450512194
1125 => 0.0088664081982727
1126 => 0.0091224269230965
1127 => 0.0085862829820351
1128 => 0.0087643684928943
1129 => 0.0088010716698665
1130 => 0.0083795264655015
1201 => 0.008091559234532
1202 => 0.0080723551032931
1203 => 0.0075730596091209
1204 => 0.0078397792319353
1205 => 0.008074481462404
1206 => 0.0079620773076383
1207 => 0.0079264935102181
1208 => 0.0081082834140539
1209 => 0.0081224100465072
1210 => 0.0078003213294991
1211 => 0.0078672937729882
1212 => 0.0081465799955802
1213 => 0.0078602564767535
1214 => 0.0073039766503545
1215 => 0.0071660115622372
1216 => 0.0071476044762813
1217 => 0.0067734322151581
1218 => 0.007175231049131
1219 => 0.0069998350905625
1220 => 0.007553908822114
1221 => 0.0072374248782088
1222 => 0.0072237818879355
1223 => 0.0072031585071459
1224 => 0.0068810929851357
1225 => 0.0069516048661242
1226 => 0.0071859970977928
1227 => 0.0072696308866697
1228 => 0.0072609071972984
1229 => 0.0071848484479854
1230 => 0.0072196677539371
1231 => 0.0071075026376164
]
'min_raw' => 0.0039245326413478
'max_raw' => 0.012203987397006
'avg_raw' => 0.0080642600191768
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.003924'
'max' => '$0.0122039'
'avg' => '$0.008064'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.0022356770613136
'max_diff' => 0.0076222849504165
'year' => 2033
]
8 => [
'items' => [
101 => 0.0070678948005285
102 => 0.0069428815716854
103 => 0.0067591466610719
104 => 0.0067846961273044
105 => 0.0064206691925245
106 => 0.0062223279980847
107 => 0.0061674297695587
108 => 0.0060940175640189
109 => 0.0061757218735169
110 => 0.0064196379499559
111 => 0.0061254234120881
112 => 0.0056210132236641
113 => 0.0056513291354615
114 => 0.0057194399883953
115 => 0.0055925158645515
116 => 0.0054723928332677
117 => 0.0055768300630794
118 => 0.0053631048167221
119 => 0.0057452676633332
120 => 0.0057349312293313
121 => 0.005877377905756
122 => 0.0059664527358245
123 => 0.0057611640908354
124 => 0.0057095345517802
125 => 0.0057389450836578
126 => 0.0052528545044908
127 => 0.0058376539350077
128 => 0.0058427113047671
129 => 0.0057994070344686
130 => 0.006110794677562
131 => 0.0067679197287306
201 => 0.006520682851687
202 => 0.0064249452601216
203 => 0.006242948028572
204 => 0.0064854485336855
205 => 0.00646682827849
206 => 0.0063826204229737
207 => 0.0063316912492129
208 => 0.0064255298134409
209 => 0.0063200636126397
210 => 0.0063011189849584
211 => 0.0061863351531681
212 => 0.0061453625475506
213 => 0.0061150280615177
214 => 0.0060816327730006
215 => 0.0061552944578819
216 => 0.0059883673889393
217 => 0.0057870697078567
218 => 0.0057703339837458
219 => 0.005816542789436
220 => 0.0057960988327591
221 => 0.0057702361059466
222 => 0.005720857117167
223 => 0.0057062074260113
224 => 0.0057538118152477
225 => 0.0057000692353081
226 => 0.0057793693395188
227 => 0.0057578040990484
228 => 0.0056373424188109
301 => 0.0054872025646088
302 => 0.0054858660049774
303 => 0.0054535186196683
304 => 0.0054123193610152
305 => 0.0054008586697692
306 => 0.0055680346508838
307 => 0.0059140839286349
308 => 0.0058461461751549
309 => 0.0058952381645852
310 => 0.0061367221644544
311 => 0.0062134826663356
312 => 0.0061589998802725
313 => 0.0060844204823573
314 => 0.0060877015973688
315 => 0.0063425619767638
316 => 0.0063584573060085
317 => 0.0063986196749825
318 => 0.0064502396689981
319 => 0.0061677909884645
320 => 0.0060743982899158
321 => 0.0060301436481138
322 => 0.0058938564800654
323 => 0.0060408305064269
324 => 0.0059551950353213
325 => 0.0059667501860977
326 => 0.0059592248789958
327 => 0.0059633342055325
328 => 0.005745160841029
329 => 0.0058246517481996
330 => 0.0056924826975135
331 => 0.005515523175317
401 => 0.0055149299449486
402 => 0.0055582405373078
403 => 0.0055324777022289
404 => 0.0054631505754546
405 => 0.0054729981665981
406 => 0.0053867229060589
407 => 0.0054834735452916
408 => 0.0054862480074343
409 => 0.0054489937412868
410 => 0.0055980514500401
411 => 0.0056591205149359
412 => 0.0056345989588939
413 => 0.0056574000171945
414 => 0.0058489692955326
415 => 0.0058802034466553
416 => 0.0058940755933718
417 => 0.0058754887544789
418 => 0.0056609015519339
419 => 0.005670419406862
420 => 0.0056005837025955
421 => 0.0055415798915954
422 => 0.0055439397346012
423 => 0.0055742753634137
424 => 0.0057067528335992
425 => 0.005985543859631
426 => 0.0059961237752753
427 => 0.0060089469416742
428 => 0.0059567886795231
429 => 0.0059410572485709
430 => 0.0059618110666236
501 => 0.0060665103178654
502 => 0.0063358252176288
503 => 0.006240631345115
504 => 0.0061632372449805
505 => 0.0062311327360981
506 => 0.0062206807574229
507 => 0.0061324555389055
508 => 0.006129979350865
509 => 0.0059606469492214
510 => 0.005898048615846
511 => 0.0058457367630735
512 => 0.0057886135854814
513 => 0.0057547490510186
514 => 0.0058067803671092
515 => 0.0058186805447155
516 => 0.0057049131627317
517 => 0.0056894070889522
518 => 0.0057823119889197
519 => 0.0057414280062878
520 => 0.0057834781962987
521 => 0.0057932342010811
522 => 0.0057916632596113
523 => 0.0057489756862481
524 => 0.005776183472548
525 => 0.0057118289469172
526 => 0.0056418530660308
527 => 0.0055972128136767
528 => 0.0055582582728276
529 => 0.0055798725161419
530 => 0.0055028216853313
531 => 0.0054781715738281
601 => 0.0057669660867442
602 => 0.0059803016984995
603 => 0.0059771997142144
604 => 0.0059583171826444
605 => 0.0059302615709132
606 => 0.0060644578751197
607 => 0.0060177065660739
608 => 0.0060517220496073
609 => 0.0060603804177919
610 => 0.006086586690553
611 => 0.0060959531805598
612 => 0.0060676411423136
613 => 0.0059726224839349
614 => 0.0057358450213583
615 => 0.0056256244733604
616 => 0.0055892498566526
617 => 0.0055905720048847
618 => 0.0055541012543139
619 => 0.0055648435248614
620 => 0.0055503655310066
621 => 0.0055229477132485
622 => 0.0055781795431567
623 => 0.0055845444970335
624 => 0.0055716527279617
625 => 0.005574689206267
626 => 0.0054679508644991
627 => 0.0054760659488003
628 => 0.0054308801281966
629 => 0.0054224083315566
630 => 0.00530818251185
701 => 0.0051058149149424
702 => 0.0052179462079272
703 => 0.0050825073740474
704 => 0.0050312146354239
705 => 0.00527402648241
706 => 0.0052496549075249
707 => 0.0052079413653905
708 => 0.0051462383427099
709 => 0.0051233520913892
710 => 0.0049843024732715
711 => 0.0049760866800322
712 => 0.0050450034254269
713 => 0.0050132007187077
714 => 0.004968537673847
715 => 0.0048067726527819
716 => 0.0046248952105469
717 => 0.0046303849472871
718 => 0.004688236777712
719 => 0.0048564487770545
720 => 0.0047907254388142
721 => 0.0047430424028325
722 => 0.0047341128035399
723 => 0.0048458854340689
724 => 0.0050040671233575
725 => 0.0050782824328559
726 => 0.0050047373150954
727 => 0.0049202526437626
728 => 0.0049253948342424
729 => 0.0049596035237623
730 => 0.004963198373346
731 => 0.0049082075374729
801 => 0.0049236871356605
802 => 0.0049001722105293
803 => 0.0047558611584048
804 => 0.0047532510290872
805 => 0.0047178347695657
806 => 0.0047167623793027
807 => 0.0046565104868568
808 => 0.0046480808306019
809 => 0.0045284470411221
810 => 0.0046071903636422
811 => 0.0045543734771057
812 => 0.0044747659708511
813 => 0.004461041606767
814 => 0.00446062903581
815 => 0.0045423681448207
816 => 0.0046062351945626
817 => 0.0045552922494599
818 => 0.0045436935283475
819 => 0.0046675375250989
820 => 0.0046517772476492
821 => 0.0046381289490206
822 => 0.0049899036880337
823 => 0.0047114465327796
824 => 0.0045900233193101
825 => 0.0044397390349987
826 => 0.0044886723557697
827 => 0.0044989833254362
828 => 0.0041375767124456
829 => 0.0039909540945657
830 => 0.0039406387374661
831 => 0.0039116815381006
901 => 0.0039248776974731
902 => 0.0037929001442634
903 => 0.0038815912427275
904 => 0.0037673098374328
905 => 0.0037481501879313
906 => 0.0039524994973477
907 => 0.0039809335099617
908 => 0.0038596251783953
909 => 0.0039375247652959
910 => 0.0039092772922005
911 => 0.0037692688641191
912 => 0.0037639215719986
913 => 0.0036936702643216
914 => 0.0035837405711407
915 => 0.0035334997515496
916 => 0.0035073338964957
917 => 0.0035181304382533
918 => 0.003512671376361
919 => 0.0034770473048623
920 => 0.0035147133064393
921 => 0.0034184922370765
922 => 0.0033801762319504
923 => 0.0033628697813595
924 => 0.003277468044022
925 => 0.003413380186451
926 => 0.0034401565906856
927 => 0.0034669857527082
928 => 0.0037005152910678
929 => 0.003688848815279
930 => 0.0037943080746058
1001 => 0.0037902101217155
1002 => 0.0037601314326287
1003 => 0.003633234391076
1004 => 0.0036838132901166
1005 => 0.0035281393005756
1006 => 0.0036447808383421
1007 => 0.0035915505115725
1008 => 0.0036267836113164
1009 => 0.0035634313211364
1010 => 0.003598493094274
1011 => 0.0034465062694687
1012 => 0.0033045831109779
1013 => 0.0033616971329499
1014 => 0.0034237866066141
1015 => 0.0035584124056217
1016 => 0.0034782303903715
1017 => 0.0035070668750732
1018 => 0.0034104694784919
1019 => 0.0032111614576624
1020 => 0.0032122895194155
1021 => 0.0031816303225722
1022 => 0.0031551363001835
1023 => 0.003487440259365
1024 => 0.0034461130090925
1025 => 0.0033802634445602
1026 => 0.0034684057034444
1027 => 0.0034917119156991
1028 => 0.0034923754107973
1029 => 0.0035566817275982
1030 => 0.0035910020204024
1031 => 0.0035970511207618
1101 => 0.003698238499678
1102 => 0.0037321551743969
1103 => 0.0038718531574965
1104 => 0.0035880901833405
1105 => 0.0035822462716232
1106 => 0.0034696460457841
1107 => 0.0033982332024178
1108 => 0.0034745357442658
1109 => 0.0035421293800074
1110 => 0.0034717463684631
1111 => 0.0034809369039043
1112 => 0.0033864534614095
1113 => 0.0034202268462422
1114 => 0.0034493170350264
1115 => 0.0034332551426221
1116 => 0.0034092097122883
1117 => 0.0035365874727042
1118 => 0.0035294003202641
1119 => 0.0036480174191654
1120 => 0.0037404879301491
1121 => 0.003906211616913
1122 => 0.0037332703104037
1123 => 0.0037269676418151
1124 => 0.0037885772382488
1125 => 0.0037321457422887
1126 => 0.0037678084997864
1127 => 0.003900465795336
1128 => 0.0039032686349523
1129 => 0.0038563174601239
1130 => 0.0038534604768686
1201 => 0.003862477963584
1202 => 0.003915293664932
1203 => 0.0038968382360185
1204 => 0.0039181953255915
1205 => 0.003944902693134
1206 => 0.004055375688979
1207 => 0.0040820103542727
1208 => 0.0040173019260997
1209 => 0.0040231443726542
1210 => 0.0039989416442315
1211 => 0.0039755621118344
1212 => 0.0040281158863565
1213 => 0.0041241589422427
1214 => 0.0041235614633767
1215 => 0.0041458415855321
1216 => 0.0041597219170564
1217 => 0.0041001373731304
1218 => 0.004061350026019
1219 => 0.0040762235630045
1220 => 0.0041000066725479
1221 => 0.0040685110211204
1222 => 0.0038741052703046
1223 => 0.0039330755564147
1224 => 0.0039232600173063
1225 => 0.0039092814960056
1226 => 0.003968576574693
1227 => 0.0039628574197023
1228 => 0.003791546523698
1229 => 0.0038025132914433
1230 => 0.0037922134491676
1231 => 0.0038254943467098
]
'min_raw' => 0.0031551363001835
'max_raw' => 0.0070678948005285
'avg_raw' => 0.005111515550356
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.003155'
'max' => '$0.007067'
'avg' => '$0.005111'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.00076939634116429
'max_diff' => -0.0051360925964773
'year' => 2034
]
9 => [
'items' => [
101 => 0.0037303484646028
102 => 0.0037596146971216
103 => 0.0037779702038036
104 => 0.0037887817382529
105 => 0.0038278404142223
106 => 0.0038232573294108
107 => 0.0038275555232355
108 => 0.00388546922859
109 => 0.0041783768766895
110 => 0.0041943191937112
111 => 0.0041158133940676
112 => 0.0041471749125668
113 => 0.0040869676550585
114 => 0.0041273851903774
115 => 0.0041550378415485
116 => 0.0040300808282053
117 => 0.0040226816848394
118 => 0.0039622259305624
119 => 0.0039947114285219
120 => 0.0039430246654784
121 => 0.0039557067892031
122 => 0.0039202464656612
123 => 0.0039840679879565
124 => 0.0040554303667446
125 => 0.0040734593218122
126 => 0.0040260329029825
127 => 0.0039916930501965
128 => 0.0039314035809551
129 => 0.0040316663119421
130 => 0.0040609861899341
131 => 0.0040315123071048
201 => 0.0040246825644363
202 => 0.0040117402144204
203 => 0.0040274283451746
204 => 0.0040608265075817
205 => 0.0040450765509577
206 => 0.0040554796747864
207 => 0.0040158336944062
208 => 0.0041001570980938
209 => 0.0042340829566818
210 => 0.0042345135502162
211 => 0.0042187635086941
212 => 0.0042123189310426
213 => 0.0042284794294368
214 => 0.0042372458368772
215 => 0.0042895059253554
216 => 0.0043455830824261
217 => 0.004607270706095
218 => 0.0045337898685288
219 => 0.0047659746961142
220 => 0.0049496027493078
221 => 0.0050046647733789
222 => 0.0049540103021019
223 => 0.0047807240921639
224 => 0.0047722218439988
225 => 0.0050311846011969
226 => 0.0049580157610428
227 => 0.0049493125603278
228 => 0.0048567252090097
301 => 0.0049114558008052
302 => 0.0048994854175302
303 => 0.0048805895819194
304 => 0.0049850117384992
305 => 0.0051804806937864
306 => 0.0051500150240086
307 => 0.0051272738147813
308 => 0.0050276284558135
309 => 0.0050876372185088
310 => 0.0050662692475051
311 => 0.0051580796113862
312 => 0.0051036931856716
313 => 0.0049574614351151
314 => 0.0049807493233774
315 => 0.0049772294059152
316 => 0.0050496690578615
317 => 0.00502792447241
318 => 0.0049729834266177
319 => 0.0051798126021474
320 => 0.0051663822659328
321 => 0.0051854234120828
322 => 0.005193805913485
323 => 0.0053196991878911
324 => 0.0053712736342798
325 => 0.0053829819365478
326 => 0.0054319736717062
327 => 0.0053817629775466
328 => 0.0055826415538033
329 => 0.0057162140854242
330 => 0.0058713654544814
331 => 0.0060980833054306
401 => 0.0061833313146449
402 => 0.0061679320248056
403 => 0.0063398269119003
404 => 0.0066487182030006
405 => 0.006230367786277
406 => 0.0066708917909211
407 => 0.006531426977145
408 => 0.0062007584125467
409 => 0.0061794672553129
410 => 0.0064033998463998
411 => 0.0069000607807175
412 => 0.0067756528497526
413 => 0.0069002642675246
414 => 0.0067548984295684
415 => 0.0067476797904744
416 => 0.0068932041732377
417 => 0.0072332298256854
418 => 0.0070716963838785
419 => 0.0068400985854234
420 => 0.0070111067957418
421 => 0.0068629636579012
422 => 0.0065291557056931
423 => 0.0067755577173524
424 => 0.0066107957092811
425 => 0.0066588820224664
426 => 0.0070051872569332
427 => 0.0069635188949122
428 => 0.0070174416137539
429 => 0.0069222694264016
430 => 0.0068333635961381
501 => 0.0066674142617177
502 => 0.0066182848449991
503 => 0.0066318624482889
504 => 0.0066182781166132
505 => 0.0065254309891581
506 => 0.0065053806608242
507 => 0.0064719625685094
508 => 0.0064823202326844
509 => 0.0064194844423248
510 => 0.0065380685612701
511 => 0.0065600788187061
512 => 0.0066463744513797
513 => 0.0066553339502386
514 => 0.0068956660588931
515 => 0.0067632951720633
516 => 0.0068521009913013
517 => 0.0068441573629558
518 => 0.0062079250030163
519 => 0.0062955922086904
520 => 0.0064319748692345
521 => 0.0063705346655217
522 => 0.0062836725922653
523 => 0.0062135268108611
524 => 0.0061072487792592
525 => 0.00625683306785
526 => 0.0064535205008312
527 => 0.0066603222681227
528 => 0.0069087810413349
529 => 0.0068533279355329
530 => 0.0066556775041818
531 => 0.0066645439581485
601 => 0.0067193528877495
602 => 0.0066483703439999
603 => 0.0066274362061042
604 => 0.0067164768586682
605 => 0.0067170900327065
606 => 0.0066354160375956
607 => 0.0065446503382131
608 => 0.0065442700266186
609 => 0.0065281191471061
610 => 0.0067577716351543
611 => 0.0068840572830953
612 => 0.0068985357291122
613 => 0.0068830827683201
614 => 0.0068890299996229
615 => 0.0068155471636004
616 => 0.0069835071360898
617 => 0.0071376438163657
618 => 0.0070963318934018
619 => 0.0070343994480432
620 => 0.0069850672722443
621 => 0.0070847108005827
622 => 0.0070802738311193
623 => 0.0071362975669294
624 => 0.0071337560066642
625 => 0.0071149173314706
626 => 0.0070963325661903
627 => 0.0071700190598001
628 => 0.0071487985330094
629 => 0.0071275450448792
630 => 0.007084917920688
701 => 0.0070907116548272
702 => 0.0070287899029784
703 => 0.0070001420672266
704 => 0.0065693473532882
705 => 0.0064542249291006
706 => 0.006490444787283
707 => 0.0065023693050449
708 => 0.006452267878505
709 => 0.0065241004541627
710 => 0.006512905423336
711 => 0.0065564587394088
712 => 0.0065292485183917
713 => 0.0065303652353535
714 => 0.0066103846935341
715 => 0.0066336146826711
716 => 0.006621799722707
717 => 0.0066300745156727
718 => 0.0068207636269953
719 => 0.0067936537332597
720 => 0.0067792521425329
721 => 0.0067832414815865
722 => 0.00683196663795
723 => 0.0068456070214369
724 => 0.0067878117581102
725 => 0.0068150683384055
726 => 0.0069311233979279
727 => 0.0069717361006132
728 => 0.0071013523523816
729 => 0.0070462890648852
730 => 0.0071473601121681
731 => 0.0074580180538564
801 => 0.0077061931135715
802 => 0.0074779610723894
803 => 0.0079337029646529
804 => 0.0082885634000716
805 => 0.0082749432655093
806 => 0.0082130651405242
807 => 0.0078090659692528
808 => 0.0074372999085605
809 => 0.0077482980043503
810 => 0.0077490908024538
811 => 0.0077223757902149
812 => 0.0075564511435974
813 => 0.0077166019721752
814 => 0.0077293141633653
815 => 0.0077221987167433
816 => 0.0075949846792125
817 => 0.0074007523569872
818 => 0.0074387048878235
819 => 0.0075008719075441
820 => 0.0073831767698142
821 => 0.0073455660419096
822 => 0.007415491540818
823 => 0.0076408060678571
824 => 0.0075982116616786
825 => 0.0075970993495957
826 => 0.0077793362820669
827 => 0.007648893967609
828 => 0.0074391835907782
829 => 0.0073862289548884
830 => 0.0071982756719966
831 => 0.0073280956739566
901 => 0.007332767664713
902 => 0.0072616665763678
903 => 0.007444953052237
904 => 0.0074432640350949
905 => 0.0076172672653409
906 => 0.0079498960889425
907 => 0.0078515213781332
908 => 0.0077371222926001
909 => 0.0077495606451401
910 => 0.0078859786720342
911 => 0.0078034972188534
912 => 0.0078331581244983
913 => 0.007885933776701
914 => 0.0079177746380207
915 => 0.0077449792351992
916 => 0.007704692361042
917 => 0.0076222795552877
918 => 0.0076007795925743
919 => 0.0076679031032616
920 => 0.0076502184297041
921 => 0.0073323750019808
922 => 0.0072991585953196
923 => 0.0073001772950898
924 => 0.0072166530611861
925 => 0.00708925855637
926 => 0.0074240437086961
927 => 0.0073971557756491
928 => 0.007367473578526
929 => 0.0073711094783093
930 => 0.0075164283660125
1001 => 0.0074321360723649
1002 => 0.0076562409502623
1003 => 0.0076101717245759
1004 => 0.0075629209970857
1005 => 0.0075563895072542
1006 => 0.0075382020084131
1007 => 0.0074758303076167
1008 => 0.007400512730947
1009 => 0.0073507815429329
1010 => 0.0067807074125134
1011 => 0.0068865098551506
1012 => 0.0070082259212086
1013 => 0.0070502418194653
1014 => 0.0069783707180855
1015 => 0.0074786682167587
1016 => 0.007570077390753
1017 => 0.0072931930402515
1018 => 0.0072413992833862
1019 => 0.0074820638068361
1020 => 0.0073369136791544
1021 => 0.0074022747727618
1022 => 0.0072609998389893
1023 => 0.0075480595975108
1024 => 0.0075458726831075
1025 => 0.0074341999535039
1026 => 0.007528584979863
1027 => 0.0075121832588317
1028 => 0.0073861050221471
1029 => 0.0075520565024954
1030 => 0.0075521388123592
1031 => 0.0074446562380903
1101 => 0.0073191401223052
1102 => 0.0072967008053611
1103 => 0.0072797957943419
1104 => 0.0073981171763471
1105 => 0.0075042037574716
1106 => 0.0077016045838504
1107 => 0.00775123584173
1108 => 0.007944949945374
1109 => 0.0078296026284225
1110 => 0.0078807346000293
1111 => 0.0079362455882674
1112 => 0.0079628595973778
1113 => 0.0079194934977189
1114 => 0.0082204112365841
1115 => 0.0082458179136257
1116 => 0.0082543365526708
1117 => 0.00815286878422
1118 => 0.0082429959114312
1119 => 0.0082008284133058
1120 => 0.0083105365289597
1121 => 0.0083277401623178
1122 => 0.0083131692969005
1123 => 0.0083186300016692
1124 => 0.0080618497970745
1125 => 0.0080485343888428
1126 => 0.007866977852785
1127 => 0.0079409634832267
1128 => 0.0078026508933394
1129 => 0.0078465112403702
1130 => 0.0078658444634247
1201 => 0.0078557458848518
1202 => 0.0079451465197647
1203 => 0.0078691377167457
1204 => 0.0076685379885742
1205 => 0.0074678836071409
1206 => 0.0074653645548315
1207 => 0.0074125357980441
1208 => 0.0073743502829563
1209 => 0.0073817061678661
1210 => 0.0074076292657316
1211 => 0.0073728435853827
1212 => 0.0073802668739639
1213 => 0.0075035429255246
1214 => 0.0075282650585006
1215 => 0.0074442495910875
1216 => 0.0071069153660498
1217 => 0.0070241327010867
1218 => 0.0070836352390105
1219 => 0.0070551968583372
1220 => 0.0056940945002163
1221 => 0.0060138653097401
1222 => 0.0058238683531117
1223 => 0.0059114276920657
1224 => 0.0057174899988215
1225 => 0.005810047231183
1226 => 0.0057929552900148
1227 => 0.006307137289023
1228 => 0.0062991090443427
1229 => 0.0063029517402259
1230 => 0.0061195298536297
1231 => 0.0064117258994244
]
'min_raw' => 0.0037303484646028
'max_raw' => 0.0083277401623178
'avg_raw' => 0.0060290443134603
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.00373'
'max' => '$0.008327'
'avg' => '$0.006029'
'bar_min_pct' => 61.631153054958
'bar_max_pct' => 60.119598047091
'min_diff' => 0.00057521216441934
'max_diff' => 0.0012598453617892
'year' => 2035
]
10 => [
'items' => [
101 => 0.0065556721786128
102 => 0.0065290315533412
103 => 0.0065357364247723
104 => 0.0064205245192838
105 => 0.0063040672433118
106 => 0.0061748982016125
107 => 0.0064148783153136
108 => 0.0063881966232672
109 => 0.0064493948250519
110 => 0.0066050390829199
111 => 0.006627958291126
112 => 0.0066587619393786
113 => 0.006647721024233
114 => 0.0069107604163086
115 => 0.0068789046103384
116 => 0.0069556679371856
117 => 0.0067977599498134
118 => 0.0066190720733379
119 => 0.0066530347969091
120 => 0.0066497639135182
121 => 0.0066081218138071
122 => 0.0065705291881321
123 => 0.0065079480580396
124 => 0.0067059640139166
125 => 0.0066979249277276
126 => 0.0068280683887122
127 => 0.006805064267837
128 => 0.0066514371185695
129 => 0.0066569239422601
130 => 0.0066938254684569
131 => 0.0068215420719584
201 => 0.0068594570554871
202 => 0.0068418933244658
203 => 0.0068834653730202
204 => 0.0069163222251687
205 => 0.0068875916877771
206 => 0.0072943555099014
207 => 0.0071254388114806
208 => 0.0072077676349761
209 => 0.0072274025742701
210 => 0.0071771080901467
211 => 0.0071880151628426
212 => 0.0072045364059775
213 => 0.0073048501591017
214 => 0.0075681024733178
215 => 0.0076846951312651
216 => 0.0080354698952797
217 => 0.0076750137340707
218 => 0.0076536257571804
219 => 0.0077168108845625
220 => 0.0079227528043188
221 => 0.0080896493871404
222 => 0.0081450186121572
223 => 0.0081523365692894
224 => 0.0082562129162973
225 => 0.0083157529012231
226 => 0.0082435995955514
227 => 0.0081824572237607
228 => 0.0079634528372768
229 => 0.0079888031913414
301 => 0.0081634419921104
302 => 0.0084101295843706
303 => 0.0086218132019993
304 => 0.0085476889770246
305 => 0.0091132044900336
306 => 0.0091692730432247
307 => 0.0091615261820871
308 => 0.0092892586903759
309 => 0.0090357356736955
310 => 0.0089273496722876
311 => 0.0081956768985372
312 => 0.0084012471034165
313 => 0.0087000554689233
314 => 0.0086605070612746
315 => 0.008443504439073
316 => 0.0086216485860512
317 => 0.0085627485599777
318 => 0.0085162916656492
319 => 0.0087291197046802
320 => 0.0084951065332716
321 => 0.0086977210085277
322 => 0.0084378658482334
323 => 0.0085480275702405
324 => 0.0084854944489063
325 => 0.0085259610421807
326 => 0.0082893941647673
327 => 0.0084170399094832
328 => 0.0082840836821269
329 => 0.0082840206435637
330 => 0.0082810856274757
331 => 0.0084375080393423
401 => 0.0084426089685775
402 => 0.008327012569867
403 => 0.0083103533228576
404 => 0.0083719512905159
405 => 0.0082998362029214
406 => 0.0083335783985199
407 => 0.0083008582196523
408 => 0.0082934922181968
409 => 0.0082347986653776
410 => 0.0082095118690102
411 => 0.0082194274734263
412 => 0.0081855804037096
413 => 0.0081651863199033
414 => 0.008277028730895
415 => 0.0082172758424121
416 => 0.0082678707437579
417 => 0.0082102114680888
418 => 0.008010339297669
419 => 0.0078953906988507
420 => 0.0075178506970877
421 => 0.0076249205732507
422 => 0.0076959080119187
423 => 0.0076724466638624
424 => 0.0077228507178237
425 => 0.0077259451173722
426 => 0.0077095582456208
427 => 0.0076905843474211
428 => 0.0076813489030998
429 => 0.0077501823386129
430 => 0.0077901424647552
501 => 0.0077030325510784
502 => 0.0076826239171011
503 => 0.0077706968492985
504 => 0.0078244212870608
505 => 0.0082210923503439
506 => 0.0081917056767452
507 => 0.0082654604606344
508 => 0.0082571568038279
509 => 0.0083344635674023
510 => 0.0084608274535705
511 => 0.0082038943410923
512 => 0.00824848904534
513 => 0.0082375554537006
514 => 0.0083569255402779
515 => 0.0083572982006585
516 => 0.0082857298707773
517 => 0.0083245282234695
518 => 0.0083028720473739
519 => 0.0083420076845864
520 => 0.0081913131998031
521 => 0.0083748428158047
522 => 0.0084788922816904
523 => 0.0084803370086252
524 => 0.0085296556296674
525 => 0.0085797662049882
526 => 0.0086759490906051
527 => 0.0085770837165117
528 => 0.0083992345328678
529 => 0.0084120746694775
530 => 0.0083078017581796
531 => 0.0083095546046569
601 => 0.0083001977727877
602 => 0.0083282783295766
603 => 0.0081974753029116
604 => 0.0082281745118245
605 => 0.0081851954395721
606 => 0.0082483956172306
607 => 0.0081804026734337
608 => 0.0082375501811916
609 => 0.0082622131510701
610 => 0.0083532200408773
611 => 0.0081669608818137
612 => 0.0077871658478465
613 => 0.0078670033685561
614 => 0.0077489174043247
615 => 0.0077598467098993
616 => 0.0077819256465461
617 => 0.0077103605890954
618 => 0.0077240129467829
619 => 0.0077235251884961
620 => 0.0077193219510892
621 => 0.0077007051156726
622 => 0.0076737070210899
623 => 0.007781259120332
624 => 0.0077995343177834
625 => 0.0078401578178999
626 => 0.0079610257990634
627 => 0.0079489482374819
628 => 0.0079686472415145
629 => 0.0079256444263164
630 => 0.0077618414871613
701 => 0.0077707367748372
702 => 0.0076598123949821
703 => 0.007837321232115
704 => 0.0077952847964798
705 => 0.0077681836329625
706 => 0.0077607888294064
707 => 0.0078819564189166
708 => 0.0079182116607673
709 => 0.0078956198270447
710 => 0.0078492833169706
711 => 0.0079382631144724
712 => 0.0079620703545276
713 => 0.0079673999175987
714 => 0.008125055058588
715 => 0.0079762110886499
716 => 0.0080120393115958
717 => 0.0082915608794027
718 => 0.0080380733887415
719 => 0.0081723513659904
720 => 0.0081657791577529
721 => 0.0082344712271944
722 => 0.0081601444030874
723 => 0.0081610657731521
724 => 0.0082220596772123
725 => 0.0081364047392683
726 => 0.0081151953720653
727 => 0.0080858947831787
728 => 0.008149871547072
729 => 0.008188222723606
730 => 0.008497305040634
731 => 0.0086969863133002
801 => 0.0086883176226319
802 => 0.0087675332282315
803 => 0.008731845872377
804 => 0.0086166019864744
805 => 0.0088133092472155
806 => 0.0087510628393357
807 => 0.0087561943575719
808 => 0.0087560033622069
809 => 0.0087973917817716
810 => 0.008768064293317
811 => 0.0087102568031682
812 => 0.0087486321128916
813 => 0.0088625930633458
814 => 0.0092163313503045
815 => 0.0094142879820956
816 => 0.009204414112509
817 => 0.0093491822974267
818 => 0.0092623729726547
819 => 0.0092465971359899
820 => 0.009337522254403
821 => 0.0094286065251995
822 => 0.0094228048509179
823 => 0.0093566823475487
824 => 0.0093193314231919
825 => 0.0096021651358994
826 => 0.0098105521974757
827 => 0.0097963415969208
828 => 0.0098590625662353
829 => 0.010043213272029
830 => 0.010060049704715
831 => 0.010057928701178
901 => 0.010016197846066
902 => 0.010197518130911
903 => 0.010348778702555
904 => 0.010006538358827
905 => 0.010136859001464
906 => 0.010195364136612
907 => 0.010281267032702
908 => 0.010426199617401
909 => 0.010583634845855
910 => 0.010605897913347
911 => 0.010590101201575
912 => 0.010486268436324
913 => 0.010658535941891
914 => 0.010759446206482
915 => 0.010819535959755
916 => 0.010971913576075
917 => 0.010195725444409
918 => 0.0096463009057633
919 => 0.0095605003302671
920 => 0.0097349791744795
921 => 0.0097809878542556
922 => 0.0097624418131278
923 => 0.0091440145433878
924 => 0.0095572444386784
925 => 0.010001845060655
926 => 0.010018923981238
927 => 0.01024150034876
928 => 0.010313980337738
929 => 0.010493183487345
930 => 0.010481974281545
1001 => 0.010525607396729
1002 => 0.010515576899169
1003 => 0.01084751299814
1004 => 0.011213687808292
1005 => 0.011201008338981
1006 => 0.011148366377638
1007 => 0.011226548667021
1008 => 0.011604480312776
1009 => 0.011569686423066
1010 => 0.011603485723183
1011 => 0.012049088432822
1012 => 0.012628435341599
1013 => 0.012359270536994
1014 => 0.012943280712902
1015 => 0.013310884161587
1016 => 0.013946616315182
1017 => 0.013867019518505
1018 => 0.014114505380681
1019 => 0.0137245246401
1020 => 0.012829050031615
1021 => 0.012687337747083
1022 => 0.012971049329443
1023 => 0.013668526570502
1024 => 0.012949083289011
1025 => 0.013094625727852
1026 => 0.013052709495674
1027 => 0.013050475957794
1028 => 0.013135721014227
1029 => 0.013012068613788
1030 => 0.01250828648976
1031 => 0.012739166868395
1101 => 0.012650012866418
1102 => 0.012748935878483
1103 => 0.013282782575646
1104 => 0.013046756225514
1105 => 0.012798121638875
1106 => 0.013109964586953
1107 => 0.013507047820719
1108 => 0.013482199065577
1109 => 0.013433982094628
1110 => 0.01370577863531
1111 => 0.014154706891603
1112 => 0.014276050395339
1113 => 0.014365623689038
1114 => 0.014377974332886
1115 => 0.014505193640402
1116 => 0.013821103360495
1117 => 0.014906772203392
1118 => 0.015094237221564
1119 => 0.015059001567776
1120 => 0.01526736104574
1121 => 0.015206056401754
1122 => 0.015117235591021
1123 => 0.015447529682926
1124 => 0.015068874159915
1125 => 0.014531420316407
1126 => 0.014236562508227
1127 => 0.01462485505554
1128 => 0.014861971764641
1129 => 0.015018690825902
1130 => 0.015066113919147
1201 => 0.013874207341569
1202 => 0.013231835802423
1203 => 0.013643588594211
1204 => 0.014145955417851
1205 => 0.013818312687424
1206 => 0.013831155662147
1207 => 0.013364023231553
1208 => 0.014187286272661
1209 => 0.014067343772304
1210 => 0.014689605676332
1211 => 0.014541097878972
1212 => 0.015048528305639
1213 => 0.014914904868452
1214 => 0.01546956828543
1215 => 0.015690838539375
1216 => 0.016062385733713
1217 => 0.016335697362338
1218 => 0.016496191178284
1219 => 0.016486555731572
1220 => 0.017122512188054
1221 => 0.016747510884293
1222 => 0.016276420865747
1223 => 0.016267900333582
1224 => 0.016511884529584
1225 => 0.017023208470609
1226 => 0.017155787329056
1227 => 0.017229880824187
1228 => 0.01711640405718
1229 => 0.016709367018533
1230 => 0.016533610488969
1231 => 0.016683360144314
]
'min_raw' => 0.0061748982016125
'max_raw' => 0.017229880824187
'avg_raw' => 0.0117023895129
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$0.006174'
'max' => '$0.017229'
'avg' => '$0.0117023'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.0024445497370097
'max_diff' => 0.0089021406618691
'year' => 2036
]
11 => [
'items' => [
101 => 0.016500229183962
102 => 0.016816364599002
103 => 0.017250486046733
104 => 0.017160841684479
105 => 0.017460509347261
106 => 0.017770633852282
107 => 0.018214125823026
108 => 0.018330071046639
109 => 0.018521724092269
110 => 0.018718998030968
111 => 0.018782357103396
112 => 0.018903329231827
113 => 0.018902691648997
114 => 0.019267249300388
115 => 0.019669367679283
116 => 0.019821158058254
117 => 0.020170191664927
118 => 0.019572483845095
119 => 0.02002585209241
120 => 0.020434801600032
121 => 0.019947235138036
122 => 0.020619231917481
123 => 0.02064532402965
124 => 0.02103928394541
125 => 0.020639930097199
126 => 0.020402795056914
127 => 0.021087395032883
128 => 0.021418651396557
129 => 0.021318874283965
130 => 0.020559565530533
131 => 0.020117615267752
201 => 0.018960946184214
202 => 0.020331070678051
203 => 0.020998418351919
204 => 0.020557837261278
205 => 0.020780040736326
206 => 0.021992310846469
207 => 0.022453864815735
208 => 0.022357864816634
209 => 0.022374087236187
210 => 0.022623133380206
211 => 0.023727541135002
212 => 0.023065754408357
213 => 0.023571665564201
214 => 0.023839999017063
215 => 0.024089242082466
216 => 0.023477179887915
217 => 0.022680895965783
218 => 0.022428679421919
219 => 0.020514030154717
220 => 0.020414364345459
221 => 0.02035841890654
222 => 0.02000569082779
223 => 0.019728543178246
224 => 0.019508145077495
225 => 0.018929754644682
226 => 0.019124944436927
227 => 0.018203110806487
228 => 0.018792867295465
301 => 0.017321598562832
302 => 0.018546914882355
303 => 0.017880030917935
304 => 0.018327825564256
305 => 0.01832626325092
306 => 0.017501731333621
307 => 0.017026158531265
308 => 0.017329212030497
309 => 0.01765410943809
310 => 0.017706822949385
311 => 0.01812806091902
312 => 0.018245619381865
313 => 0.017889411751164
314 => 0.017291109788555
315 => 0.017430081688654
316 => 0.017023342270145
317 => 0.016310547084213
318 => 0.016822489030959
319 => 0.016997288520077
320 => 0.017074489932579
321 => 0.016373537732295
322 => 0.016153283332553
323 => 0.016036021738244
324 => 0.017200625661679
325 => 0.01726442529355
326 => 0.016938017356541
327 => 0.01841341218309
328 => 0.018079484894227
329 => 0.018452563490059
330 => 0.017417471445355
331 => 0.017457013355399
401 => 0.01696698419335
402 => 0.017241367780337
403 => 0.017047442304851
404 => 0.01721920029802
405 => 0.017322151330941
406 => 0.017812100084026
407 => 0.0185525093101
408 => 0.017738918078666
409 => 0.01738442472829
410 => 0.017604350409117
411 => 0.018190041478628
412 => 0.01907739342991
413 => 0.018552063215129
414 => 0.018785195843763
415 => 0.018836124951771
416 => 0.018448765900173
417 => 0.019091675910666
418 => 0.019436216608281
419 => 0.019789644071382
420 => 0.02009651523478
421 => 0.019648477370583
422 => 0.020127942108979
423 => 0.019741578166751
424 => 0.019394969769003
425 => 0.019395495430869
426 => 0.019178062919821
427 => 0.018756760031406
428 => 0.018679065314836
429 => 0.019083243042193
430 => 0.01940735530376
501 => 0.019434050742015
502 => 0.019613495943508
503 => 0.019719689765319
504 => 0.020760533582565
505 => 0.021179169576173
506 => 0.021691069744784
507 => 0.02189048370957
508 => 0.022490648249714
509 => 0.022005966640567
510 => 0.021901102725638
511 => 0.020445299863574
512 => 0.020683687500681
513 => 0.021065369108676
514 => 0.020451593652707
515 => 0.020840892907884
516 => 0.020917748827341
517 => 0.020430737797578
518 => 0.020690871431079
519 => 0.020000033624747
520 => 0.018567567686436
521 => 0.019093270654747
522 => 0.01948036498913
523 => 0.018927933645578
524 => 0.01991814544685
525 => 0.019339684154668
526 => 0.019156339696085
527 => 0.018441047596134
528 => 0.018778637933193
529 => 0.019235233697893
530 => 0.018953110600264
531 => 0.019538558388841
601 => 0.020367708590689
602 => 0.020958610401274
603 => 0.021003972505034
604 => 0.020624062228175
605 => 0.021232870871397
606 => 0.021237305377711
607 => 0.0205505667411
608 => 0.020129943149952
609 => 0.020034376585044
610 => 0.020273120601114
611 => 0.020562999911199
612 => 0.021020058789286
613 => 0.021296249896883
614 => 0.02201640982505
615 => 0.022211264453008
616 => 0.022425350612903
617 => 0.022711435744249
618 => 0.023054954295152
619 => 0.022303355262298
620 => 0.022333217693029
621 => 0.021633339080233
622 => 0.020885418409715
623 => 0.02145299696901
624 => 0.022195030433478
625 => 0.022024807136855
626 => 0.022005653538639
627 => 0.022037864578074
628 => 0.021909521771393
629 => 0.021329032013383
630 => 0.021037513690969
701 => 0.021413646701139
702 => 0.02161354465629
703 => 0.021923568951796
704 => 0.021885351913556
705 => 0.022683941204601
706 => 0.022994248855015
707 => 0.022914858879226
708 => 0.022929468545397
709 => 0.023491265724246
710 => 0.024116099729527
711 => 0.024701339229582
712 => 0.025296669985659
713 => 0.024578975523053
714 => 0.024214574536182
715 => 0.024590543338447
716 => 0.024391048999821
717 => 0.025537402643429
718 => 0.025616773682505
719 => 0.026763044431696
720 => 0.027850991868061
721 => 0.027167671575883
722 => 0.027812011833985
723 => 0.028508918356954
724 => 0.02985336410877
725 => 0.02940060207773
726 => 0.029053793457639
727 => 0.02872606098742
728 => 0.029408020231881
729 => 0.030285349905315
730 => 0.030474318314014
731 => 0.030780519327593
801 => 0.030458586402293
802 => 0.030846319151069
803 => 0.03221518613265
804 => 0.031845306190904
805 => 0.031320017212456
806 => 0.032400606227033
807 => 0.032791667190724
808 => 0.03553633783413
809 => 0.039001597898118
810 => 0.037566957477503
811 => 0.036676429872869
812 => 0.036885724983555
813 => 0.038151120652468
814 => 0.038557525579672
815 => 0.037452776891353
816 => 0.037842992804545
817 => 0.039993120851416
818 => 0.041146595564196
819 => 0.039580021971919
820 => 0.035257907562037
821 => 0.031272720687258
822 => 0.032329771701753
823 => 0.032209934920821
824 => 0.034519979273248
825 => 0.031836484676621
826 => 0.031881667843422
827 => 0.034239481466678
828 => 0.033610457215152
829 => 0.03259151848702
830 => 0.031280160067599
831 => 0.028855992743326
901 => 0.026708840141312
902 => 0.030919900853575
903 => 0.030738312258345
904 => 0.03047534506253
905 => 0.031060550100794
906 => 0.033902139653253
907 => 0.033836631816741
908 => 0.033419904383244
909 => 0.033735988468684
910 => 0.032536107418598
911 => 0.032845344085989
912 => 0.031272089413296
913 => 0.031983266230272
914 => 0.032589332302138
915 => 0.032711009039026
916 => 0.032985152940204
917 => 0.030642623320109
918 => 0.031694350346475
919 => 0.03231214144097
920 => 0.02952093880061
921 => 0.032256968339171
922 => 0.030601845091081
923 => 0.030040071401562
924 => 0.030796425666443
925 => 0.030501673673841
926 => 0.030248263219018
927 => 0.030106855831083
928 => 0.030662238927438
929 => 0.030636329642167
930 => 0.029727615101316
1001 => 0.028542234026721
1002 => 0.028940086824162
1003 => 0.028795543172962
1004 => 0.028271698334509
1005 => 0.028624706506359
1006 => 0.027070237170879
1007 => 0.024395853473471
1008 => 0.026162633262567
1009 => 0.026094614162573
1010 => 0.026060315847936
1011 => 0.027388002029235
1012 => 0.027260375637835
1013 => 0.027028732487722
1014 => 0.028267444026401
1015 => 0.027815297651762
1016 => 0.029208706239315
1017 => 0.030126495255095
1018 => 0.029893714273329
1019 => 0.030756899278729
1020 => 0.028949252549066
1021 => 0.029549680282461
1022 => 0.029673427606157
1023 => 0.028252158518294
1024 => 0.02728125689385
1025 => 0.027216508824588
1026 => 0.025533099206289
1027 => 0.026432363036377
1028 => 0.027223677992789
1029 => 0.026844699537189
1030 => 0.026724726279805
1031 => 0.027337643632753
1101 => 0.027385272560359
1102 => 0.02629932796345
1103 => 0.026525130232541
1104 => 0.027466763231151
1105 => 0.026501403496957
1106 => 0.024625867224035
1107 => 0.024160708297033
1108 => 0.024098647521591
1109 => 0.022837099619341
1110 => 0.024191792440779
1111 => 0.023600432720711
1112 => 0.025468530990829
1113 => 0.02440148327775
1114 => 0.02435548498352
1115 => 0.02428595181531
1116 => 0.023200085421956
1117 => 0.023437821151691
1118 => 0.024228090925504
1119 => 0.024510068083827
1120 => 0.024480655556043
1121 => 0.024224218172483
1122 => 0.024341613893505
1123 => 0.023963441372711
1124 => 0.023829900784639
1125 => 0.023408409955449
1126 => 0.022788934876354
1127 => 0.022875076685564
1128 => 0.021647734459404
1129 => 0.020979013274611
1130 => 0.020793920064263
1201 => 0.020546405687809
1202 => 0.020821877471694
1203 => 0.021644257553085
1204 => 0.020652292697261
1205 => 0.018951638530194
1206 => 0.019053850743409
1207 => 0.019283491239423
1208 => 0.018855557694324
1209 => 0.018450554507629
1210 => 0.018802671919513
1211 => 0.0180820823296
1212 => 0.019370571048707
1213 => 0.019335721039803
1214 => 0.019815989954678
1215 => 0.02011631196326
1216 => 0.019424166963884
1217 => 0.0192500943683
1218 => 0.019349254029903
1219 => 0.017710365704481
1220 => 0.019682057813861
1221 => 0.019699109089099
1222 => 0.01955310571838
1223 => 0.02060297089746
1224 => 0.022818513886481
1225 => 0.021984937494001
1226 => 0.021662151519853
1227 => 0.021048535147043
1228 => 0.021866142530878
1229 => 0.021803363040461
1230 => 0.021519450376383
1231 => 0.021347739111288
]
'min_raw' => 0.016036021738244
'max_raw' => 0.041146595564196
'avg_raw' => 0.02859130865122
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$0.016036'
'max' => '$0.041146'
'avg' => '$0.028591'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 0.0098611235366313
'max_diff' => 0.023916714740009
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.00050335239841187
]
1 => [
'year' => 2028
'avg' => 0.00086389883992011
]
2 => [
'year' => 2029
'avg' => 0.0023600159280449
]
3 => [
'year' => 2030
'avg' => 0.0018207487738455
]
4 => [
'year' => 2031
'avg' => 0.0017882009388277
]
5 => [
'year' => 2032
'avg' => 0.0031352790133117
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.00050335239841187
'min' => '$0.0005033'
'max_raw' => 0.0031352790133117
'max' => '$0.003135'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.0031352790133117
]
1 => [
'year' => 2033
'avg' => 0.0080642600191768
]
2 => [
'year' => 2034
'avg' => 0.005111515550356
]
3 => [
'year' => 2035
'avg' => 0.0060290443134603
]
4 => [
'year' => 2036
'avg' => 0.0117023895129
]
5 => [
'year' => 2037
'avg' => 0.02859130865122
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.0031352790133117
'min' => '$0.003135'
'max_raw' => 0.02859130865122
'max' => '$0.028591'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 0.02859130865122
]
]
]
]
'prediction_2025_max_price' => '$0.00086'
'last_price' => false
'sma_50day_nextmonth' => '—'
'sma_200day_nextmonth' => '—'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'decrease'
'sma_200day_direction_label' => 'diminuir'
'sma_200day_date_nextmonth' => '4 de fev. de 2026'
'sma_50day_date_nextmonth' => '4 de fev. de 2026'
'daily_sma3' => '—'
'daily_sma3_action' => '—'
'daily_sma5' => '—'
'daily_sma5_action' => '—'
'daily_sma10' => '—'
'daily_sma10_action' => '—'
'daily_sma21' => '—'
'daily_sma21_action' => '—'
'daily_sma50' => '—'
'daily_sma50_action' => '—'
'daily_sma100' => '—'
'daily_sma100_action' => '—'
'daily_sma200' => '—'
'daily_sma200_action' => '—'
'daily_ema3' => '—'
'daily_ema3_action' => '—'
'daily_ema5' => '—'
'daily_ema5_action' => '—'
'daily_ema10' => '—'
'daily_ema10_action' => '—'
'daily_ema21' => '—'
'daily_ema21_action' => '—'
'daily_ema50' => '—'
'daily_ema50_action' => '—'
'daily_ema100' => '—'
'daily_ema100_action' => '—'
'daily_ema200' => '—'
'daily_ema200_action' => '—'
'weekly_sma21' => '—'
'weekly_sma21_action' => '—'
'weekly_sma50' => '—'
'weekly_sma50_action' => '—'
'weekly_sma100' => '—'
'weekly_sma100_action' => '—'
'weekly_sma200' => '—'
'weekly_sma200_action' => '—'
'weekly_ema3' => '—'
'weekly_ema3_action' => '—'
'weekly_ema5' => '—'
'weekly_ema5_action' => '—'
'weekly_ema10' => '—'
'weekly_ema10_action' => '—'
'weekly_ema21' => '—'
'weekly_ema21_action' => '—'
'weekly_ema50' => '—'
'weekly_ema50_action' => '—'
'weekly_ema100' => '—'
'weekly_ema100_action' => '—'
'weekly_ema200' => '—'
'weekly_ema200_action' => '—'
'rsi_14' => '—'
'rsi_14_action' => '—'
'stoch_rsi_14' => '—'
'stoch_rsi_14_action' => '—'
'momentum_10' => '—'
'momentum_10_action' => '—'
'vwma_10' => '—'
'vwma_10_action' => '—'
'hma_9' => '—'
'hma_9_action' => '—'
'stochastic_fast_14' => '—'
'stochastic_fast_14_action' => '—'
'cci_20' => '—'
'cci_20_action' => '—'
'adx_14' => '—'
'adx_14_action' => '—'
'ao_5_34' => '—'
'ao_5_34_action' => '—'
'macd_12_26' => '—'
'macd_12_26_action' => '—'
'williams_percent_r_14' => '—'
'williams_percent_r_14_action' => '—'
'ultimate_oscillator' => '—'
'ultimate_oscillator_action' => '—'
'ichimoku_cloud' => '—'
'ichimoku_cloud_action' => '—'
'sell_signals' => 0
'buy_signals' => 0
'sell_pct' => 0
'buy_pct' => 0
'overall_action' => 'neutral'
'overall_action_label' => 'Neutro'
'overall_action_dir' => 0
'last_updated' => 1767713661
'last_updated_date' => '6 de janeiro de 2026'
]
Previsão de preço de Zenko para 2026
A previsão de preço para Zenko em 2026 sugere que o preço médio poderia variar entre $0.000288 na extremidade inferior e $0.00086 na extremidade superior. No mercado de criptomoedas, comparado ao preço médio de hoje, Zenko poderia potencialmente ganhar 3.13% até 2026 se ZNKO atingir a meta de preço prevista.
Previsão de preço de Zenko 2027-2032
A previsão de preço de ZNKO para 2027-2032 está atualmente dentro de uma faixa de preço entre $0.0005033 na extremidade inferior e $0.003135 na extremidade superior. Considerando a volatilidade de preços no mercado, se Zenko atingir a meta de preço superior, poderia ganhar 275.71% até 2032 em comparação com o preço de hoje.
| Previsão de Preço de Zenko | Potencial Mínimo ($) | Preço Médio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2027 | $0.000277 | $0.0005033 | $0.000729 |
| 2028 | $0.00050091 | $0.000863 | $0.001226 |
| 2029 | $0.00110035 | $0.00236 | $0.003619 |
| 2030 | $0.000935 | $0.00182 | $0.0027056 |
| 2031 | $0.0011064 | $0.001788 | $0.002469 |
| 2032 | $0.001688 | $0.003135 | $0.004581 |
Previsão de preço de Zenko 2032-2037
A previsão de preço de Zenko para 2032-2037 é atualmente estimada entre $0.003135 na extremidade inferior e $0.028591 na extremidade superior. Comparado ao preço atual, Zenko poderia potencialmente ganhar 3326.16% até 2037 se atingir a meta de preço superior. Por favor, note que esta informação é apenas para fins gerais e não deve ser considerada como aconselhamento de investimento a longo prazo.
| Previsão de Preço de Zenko | Potencial Mínimo ($) | Preço Médio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2032 | $0.001688 | $0.003135 | $0.004581 |
| 2033 | $0.003924 | $0.008064 | $0.0122039 |
| 2034 | $0.003155 | $0.005111 | $0.007067 |
| 2035 | $0.00373 | $0.006029 | $0.008327 |
| 2036 | $0.006174 | $0.0117023 | $0.017229 |
| 2037 | $0.016036 | $0.028591 | $0.041146 |
Zenko Histograma de preços potenciais
Previsão de preço de Zenko baseada na análise técnica
Em 6 de janeiro de 2026, o sentimento geral de previsão de preço para Zenko é Neutro, com 0 indicadores técnicos mostrando sinais de alta e 0 indicando sinais de baixa. A previsão de preço de ZNKO foi atualizada pela última vez em 6 de janeiro de 2026.
Médias Móveis Simples de 50 e 200 dias e Índice de Força Relativa de 14 dias - RSI (14) de Zenko
De acordo com nossos indicadores técnicos, o SMA de 200 dias de Zenko está projetado para diminuir no próximo mês, alcançando — até 4 de fev. de 2026. O SMA de 50 dias de curto prazo para Zenko é esperado para alcançar — até 4 de fev. de 2026.
O oscilador de momentum Índice de Força Relativa (RSI) é uma ferramenta comumente usada para identificar se uma criptomoeda está sobrevendida (abaixo de 30) ou sobrecomprada (acima de 70). No momento, o RSI está em —, sugerindo que o mercado de ZNKO está em um estado —.
Médias Móveis e Osciladores Populares de ZNKO para Sábado, 19 de Outubro de 2024
Médias móveis (MA) são indicadores amplamente utilizados nos mercados financeiros, projetados para suavizar movimentos de preços ao longo de um período definido. Como indicadores atrasados, eles se baseiam em dados históricos de preços. A tabela abaixo destaca dois tipos: a média móvel simples (SMA) e a média móvel exponencial (EMA).
Média Móvel Simples Diária (SMA)
| Período | Valor | Ação |
|---|---|---|
| SMA 3 | — | — |
| SMA 5 | — | — |
| SMA 10 | — | — |
| SMA 21 | — | — |
| SMA 50 | — | — |
| SMA 100 | — | — |
| SMA 200 | — | — |
Média Móvel Exponencial Diária (EMA)
| Período | Valor | Ação |
|---|---|---|
| EMA 3 | — | — |
| EMA 5 | — | — |
| EMA 10 | — | — |
| EMA 21 | — | — |
| EMA 50 | — | — |
| EMA 100 | — | — |
| EMA 200 | — | — |
Média Móvel Simples Semanal (SMA)
| Período | Valor | Ação |
|---|---|---|
| SMA 21 | — | — |
| SMA 50 | — | — |
| SMA 100 | — | — |
| SMA 200 | — | — |
Média Móvel Exponencial Semanal (EMA)
| Período | Valor | Ação |
|---|---|---|
| EMA 21 | — | — |
| EMA 50 | — | — |
| EMA 100 | — | — |
| EMA 200 | — | — |
Osciladores de Zenko
Um oscilador é uma ferramenta de análise técnica que define limites altos e baixos entre dois extremos, criando um indicador de tendência que flutua dentro desses limites. Os traders usam esse indicador para identificar condições de sobrecompra ou sobrevenda de curto prazo.
| Período | Valor | Ação |
|---|---|---|
| RSI (14) | — | — |
| Stoch RSI (14) | — | — |
| Estocástico Rápido (14) | — | — |
| Índice de Canal de Commodities (20) | — | — |
| Índice Direcional Médio (14) | — | — |
| Oscilador Impressionante (5, 34) | — | — |
| Momentum (10) | — | — |
| MACD (12, 26) | — | — |
| Williams Percent Range (14) | — | — |
| Oscilador Ultimate (7, 14, 28) | — | — |
| VWMA (10) | — | — |
| Média Móvel de Hull (9) | — | — |
| Nuvem Ichimoku B/L (9, 26, 52, 26) | — | — |
Previsão do preço de Zenko com base nos fluxos financeiros mundiais
Definições dos fluxos financeiros mundiais, usadas na previsão do preço do Zenko
M0: o total de todas as moedas físicas, mais as contas no Banco Central que podem ser trocadas por moedas físicas.
M1: o valor de M0, mais o valor em contas de demanda, incluindo contas 'correntes'.
M2: o valor de M1, mais a maioria das contas de poupança, do mercado de moedas e de certificados de depósito (CD) de menos de US$ 100.000.
Previsões de preço de Zenko por empresas de Internet ou nichos tecnológicos
| Comparação | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Facebook stock | $0.001172 | $0.001647 | $0.002315 | $0.003253 | $0.004571 | $0.006423 |
| Amazon.com stock | $0.001741 | $0.003633 | $0.00758 | $0.015817 | $0.0330051 | $0.068867 |
| Apple stock | $0.001183 | $0.001678 | $0.002381 | $0.003377 | $0.004791 | $0.006796 |
| Netflix stock | $0.001316 | $0.002077 | $0.003278 | $0.005172 | $0.008161 | $0.012876 |
| Google stock | $0.00108 | $0.001399 | $0.001812 | $0.002346 | $0.003039 | $0.003935 |
| Tesla stock | $0.001891 | $0.004288 | $0.009721 | $0.022038 | $0.049958 | $0.113252 |
| Kodak stock | $0.000625 | $0.000469 | $0.000351 | $0.000263 | $0.000197 | $0.000148 |
| Nokia stock | $0.000552 | $0.000366 | $0.000242 | $0.00016 | $0.0001064 | $0.00007 |
Este cálculo mostra quanto a criptomoeda pode custar, se assumirmos que sua capitalização se comportará da mesma forma que a de algumas empresas de Internet ou nichos tecnológicos. Se você extrapolar os dados, poderá obter uma imagem em potencial do preço futuro para 2024, 2025, 2026, 2027, 2028, 2029 e 2030.
Visão geral da previsão para Zenko
Você pode fazer perguntas como: 'Devo investir em Zenko agora?', 'Devo comprar ZNKO hoje?', 'Zenko será um bom ou mau investimento no curto ou no longo prazo?'.
Atualizamos a previsão para Zenko regularmente com novos valores. Veja nossas previsões semelhantes. Fazemos previsões de preços futuros para uma enorme quantidade de moedas digitais, como Zenko, com métodos de análise técnica.
Se você estiver tentando encontrar criptomoedas com bom retorno, você deve explorar o máximo de fontes de informações disponíveis sobre Zenko para poder tomar sozinho uma decisão de tão grande responsabilidade sobre o seu investimento.
O preço de Zenko é de $0.0008345 USD hoje, mas o preço pode tanto subir quanto descer e seu investimento pode ser perdido, porque criptomoedas são ativos de alto risco
Previsão do preço de Zenko com base no padrão de crescimento do Bitcoin
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| Se Zenko tiver 1% da média anterior do crescimento anual do Bitcoin | $0.000856 | $0.000878 | $0.0009012 | $0.000924 |
| Se Zenko tiver 2% da média anterior do crescimento anual do Bitcoin | $0.000877 | $0.000923 | $0.000971 | $0.001022 |
| Se Zenko tiver 5% da média anterior do crescimento anual do Bitcoin | $0.000942 | $0.001065 | $0.0012039 | $0.00136 |
| Se Zenko tiver 10% da média anterior do crescimento anual do Bitcoin | $0.001051 | $0.001324 | $0.001669 | $0.0021028 |
| Se Zenko tiver 20% da média anterior do crescimento anual do Bitcoin | $0.001268 | $0.001927 | $0.002929 | $0.004452 |
| Se Zenko tiver 50% da média anterior do crescimento anual do Bitcoin | $0.001919 | $0.004413 | $0.010148 | $0.023339 |
| Se Zenko tiver 100% da média anterior do crescimento anual do Bitcoin | $0.0030036 | $0.010811 | $0.038912 | $0.140058 |
Perguntas Frequentes sobre Zenko
ZNKO é um bom investimento?
A decisão de adquirir Zenko depende inteiramente da sua tolerância individual ao risco. Como você pode perceber, o valor de Zenko experimentou uma queda de 0% nas últimas 24 horas, e Zenko registrou um declínio de durante os últimos 30 dias. Consequentemente, a decisão de investir ou não em Zenko dependerá de quão alinhado esse investimento está com suas aspirações de negociação.
Zenko pode subir?
Parece que o valor médio de Zenko pode potencialmente subir para $0.00086 até o final deste ano. Observando as perspectivas de Zenko em um horizonte de cinco anos mais longo, a moeda digital poderia potencialmente crescer até $0.0027056. No entanto, dada a imprevisibilidade do mercado, é vital conduzir uma pesquisa aprofundada antes de investir quaisquer fundos em um projeto, rede ou ativo específico.
Qual será o preço de Zenko na próxima semana?
Com base na nossa nova previsão experimental de Zenko, o preço de Zenko aumentará 0.86% na próxima semana e atingirá $0.000841 até 13 de janeiro de 2026.
Qual será o preço de Zenko no próximo mês?
Com base na nossa nova previsão experimental de Zenko, o preço de Zenko diminuirá -11.62% no próximo mês e atingirá $0.000737 até 5 de fevereiro de 2026.
Até onde o preço de Zenko pode subir este ano em 2026?
De acordo com nossa previsão mais recente sobre o valor de Zenko em 2026, espera-se que ZNKO fluctue dentro do intervalo de $0.000288 e $0.00086. No entanto, é crucial lembrar que o mercado de criptomoedas é excepcionalmente instável, e essa previsão de preço de Zenko não considera flutuações repentinas e extremas de preço.
Onde estará Zenko em 5 anos?
O futuro de Zenko parece seguir uma tendência de alta, com um preço máximo de $0.0027056 projetada após um período de cinco anos. Com base na previsão de Zenko para 2030, o valor de Zenko pode potencialmente atingir seu pico mais alto de aproximadamente $0.0027056, enquanto seu pico mais baixo está previsto para cerca de $0.000935.
Quanto será Zenko em 2026?
Com base na nossa nova simulação experimental de previsão de preços de Zenko, espera-se que o valor de ZNKO em 2026 aumente 3.13% para $0.00086 se o melhor cenário ocorrer. O preço ficará entre $0.00086 e $0.000288 durante 2026.
Quanto será Zenko em 2027?
De acordo com nossa última simulação experimental para previsão de preços de Zenko, o valor de ZNKO pode diminuir -12.62% para $0.000729 em 2027, assumindo as condições mais favoráveis. O preço está projetado para flutuar entre $0.000729 e $0.000277 ao longo do ano.
Quanto será Zenko em 2028?
Nosso novo modelo experimental de previsão de preços de Zenko sugere que o valor de ZNKO em 2028 pode aumentar 47.02%, alcançando $0.001226 no melhor cenário. O preço é esperado para variar entre $0.001226 e $0.00050091 durante o ano.
Quanto será Zenko em 2029?
Com base no nosso modelo de previsão experimental, o valor de Zenko pode experimentar um 333.75% crescimento em 2029, potencialmente alcançando $0.003619 sob condições ótimas. A faixa de preço prevista para 2029 está entre $0.003619 e $0.00110035.
Quanto será Zenko em 2030?
Usando nossa nova simulação experimental para previsões de preços de Zenko, espera-se que o valor de ZNKO em 2030 aumente 224.23%, alcançando $0.0027056 no melhor cenário. O preço está previsto para variar entre $0.0027056 e $0.000935 ao longo de 2030.
Quanto será Zenko em 2031?
Nossa simulação experimental indica que o preço de Zenko poderia aumentar 195.98% em 2031, potencialmente atingindo $0.002469 sob condições ideais. O preço provavelmente oscilará entre $0.002469 e $0.0011064 durante o ano.
Quanto será Zenko em 2032?
Com base nos achados da nossa mais recente previsão experimental de preços de Zenko, ZNKO poderia ver um 449.04% aumento em valor, atingindo $0.004581 se o cenário mais positivo se desenrolar em 2032. O preço é esperado para permanecer dentro de uma faixa de $0.004581 e $0.001688 ao longo do ano.
Quanto será Zenko em 2033?
De acordo com nossa previsão experimental de preços de Zenko, espera-se que o valor de ZNKO seja aumentar 1362.43% em 2033, com o preço potencial mais alto sendo $0.0122039. Ao longo do ano, o preço de ZNKO poderia variar entre $0.0122039 e $0.003924.
Quanto será Zenko em 2034?
Os resultados da nossa nova simulação de previsão de preços de Zenko sugerem que ZNKO pode aumentar 746.96% em 2034, atingindo potencialmente $0.007067 nas melhores circunstâncias. A faixa de preço prevista para o ano é entre $0.007067 e $0.003155.
Quanto será Zenko em 2035?
Com base em nossa previsão experimental para o preço de Zenko, ZNKO poderia aumentar 897.93%, com o valor potencialmente atingindo $0.008327 em 2035. A faixa de preço esperada para o ano está entre $0.008327 e $0.00373.
Quanto será Zenko em 2036?
Nossa recente simulação de previsão de preços de Zenko sugere que o valor de ZNKO pode aumentar 1964.7% em 2036, possivelmente atingindo $0.017229 se as condições forem ideais. A faixa de preço esperada para 2036 está entre $0.017229 e $0.006174.
Quanto será Zenko em 2037?
De acordo com a simulação experimental, o valor de Zenko poderia aumentar 4830.69% em 2037, com um pico de $0.041146 sob condições favoráveis. O preço é esperado para cair entre $0.041146 e $0.016036 ao longo do ano.
Previsões relacionadas
Previsão de Preço do SolPod
Previsão de Preço do zuzalu
Previsão de Preço do SOFT COQ INU
Previsão de Preço do All Street Bets
Previsão de Preço do MagicRing
Previsão de Preço do AI INU
Previsão de Preço do Wall Street Baby On Solana
Previsão de Preço do Meta Masters Guild Games
Previsão de Preço do Morfey
Previsão de Preço do PANTIESPrevisão de Preço do Celer Bridged BUSD (zkSync)
Previsão de Preço do Bridged BUSD
Previsão de Preço do Multichain Bridged BUSD (Moonriver)
Previsão de Preço do tooker kurlson
Previsão de Preço do dogwifsaudihatPrevisão de Preço do Harmony Horizen Bridged BUSD (Harmony)
Previsão de Preço do IoTeX Bridged BUSD (IoTeX)
Previsão de Preço do MIMANY
Previsão de Preço do The Open League MEME
Previsão de Preço do Sandwich Cat
Previsão de Preço do Hege
Previsão de Preço do DexNet
Previsão de Preço do SolDocs
Previsão de Preço do Secret Society
Previsão de Preço do duk
Como ler e prever os movimentos de preço de Zenko?
Traders de Zenko utilizam indicadores e padrões de gráfico para prever a direção do mercado. Eles também identificam níveis-chave de suporte e resistência para avaliar quando uma tendência de baixa pode desacelerar ou uma tendência de alta pode estagnar.
Indicadores de Previsão de Preço de Zenko
Médias móveis são ferramentas populares para a previsão de preço de Zenko. Uma média móvel simples (SMA) calcula o preço médio de fechamento de ZNKO em um período específico, como uma SMA de 12 dias. Uma média móvel exponencial (EMA) dá mais peso aos preços recentes, reagindo mais rapidamente às mudanças de preço.
Médias móveis comumente usadas no mercado de criptomoedas incluem as de 50 dias, 100 dias e 200 dias, que ajudam a identificar níveis-chave de resistência e suporte. Um movimento de preço de ZNKO acima dessas médias é visto como altista, enquanto uma queda abaixo indica fraqueza.
Traders também usam RSI e níveis de retração de Fibonacci para avaliar a direção futura de ZNKO.
Como ler gráficos de Zenko e prever movimentos de preço?
A maioria dos traders prefere gráficos de velas em vez de gráficos de linha simples porque eles fornecem informações mais detalhadas. Velas podem representar a ação de preço de Zenko em diferentes períodos de tempo, como 5 minutos para tendências de curto prazo e semanal para tendências de longo prazo. Opções populares incluem gráficos de 1 hora, 4 horas e 1 dia.
Por exemplo, um gráfico de velas de 1 hora mostra os preços de abertura, fechamento, máximo e mínimo de ZNKO dentro de cada hora. A cor da vela é crucial: verde indica que o preço fechou mais alto do que abriu, enquanto vermelho significa o oposto. Alguns gráficos usam velas vazias e preenchidas para transmitir a mesma informação.
O que afeta o preço de Zenko?
A ação de preço de Zenko é impulsionada pela oferta e demanda, influenciada por fatores como reduções pela metade das recompensas de bloco, hard forks e atualizações de protocolo. Eventos do mundo real, como regulamentações, adoção por empresas e governos e hacks de exchanges de criptomoedas, também impactam o preço de ZNKO. A capitalização de mercado de Zenko pode mudar rapidamente.
Traders frequentemente monitoram a atividade de "baleias" de ZNKO, grandes detentores de Zenko, pois suas ações podem influenciar significativamente os movimentos de preço no relativamente pequeno mercado de Zenko.
Padrões de previsão de preço altistas e baixistas
Traders frequentemente identificam padrões de velas para ganhar vantagem em previsões de preço de criptomoedas. Certas formações indicam tendências altistas, enquanto outras sugerem movimentos baixistas.
Padrões de velas altistas comumente seguidos:
- Martelo
- Engolfo de Alta
- Linha de Perfuração
- Estrela da Manhã
- Três Soldados Brancos
Padrões de velas baixistas comuns:
- Harami de Baixa
- Nuvem Negra
- Estrela da Noite
- Estrela Cadente
- Homem Enforcado


