Previsão de Preço Wrapped Ever - Projeção WEVER
Previsão de Preço Wrapped Ever até $0.0105066 até 2026
| Ano | Preço Mínimo | Preço Máximo |
|---|---|---|
| 2026 | $0.003519 | $0.0105066 |
| 2027 | $0.003388 | $0.0089013 |
| 2028 | $0.006115 | $0.014977 |
| 2029 | $0.013433 | $0.044188 |
| 2030 | $0.011424 | $0.03303 |
| 2031 | $0.0135069 | $0.030153 |
| 2032 | $0.020617 | $0.055933 |
| 2033 | $0.04791 | $0.148985 |
| 2034 | $0.038517 | $0.086284 |
| 2035 | $0.045539 | $0.101664 |
Calculadora de lucro do investimento
Se você abrir um short de $10,000.00 em Wrapped Ever hoje e fechar em Apr 06, 2026, nossa previsão mostra que pode lucrar cerca de $3,955.34, com um retorno de 39.55% nos próximos 90 dias.
Previsão de preço de longo prazo de Wrapped Ever para os anos 2027, 2028, 2029, 2030, 2031, 2032 e 2037
[
'name' => 'Wrapped Ever'
'name_with_ticker' => 'Wrapped Ever <small>WEVER</small>'
'name_lang' => 'Wrapped Ever'
'name_lang_with_ticker' => 'Wrapped Ever <small>WEVER</small>'
'name_with_lang' => 'Wrapped Ever'
'name_with_lang_with_ticker' => 'Wrapped Ever <small>WEVER</small>'
'image' => '/uploads/coins/wrapped-ever.png?1717156773'
'price_for_sd' => 0.01018
'ticker' => 'WEVER'
'marketcap' => '$162.78K'
'low24h' => '$0.01001'
'high24h' => '$0.01038'
'volume24h' => '$965.27'
'current_supply' => '15.98M'
'max_supply' => '15.98M'
'algo' => null
'proof' => null
'ico_price_and_roi' => '—'
'price' => '$0.01018'
'change_24h_pct' => '1.6146%'
'ath_price' => '$0.2379'
'ath_days' => 1315
'ath_exchange' => null
'ath_pair' => null
'ath_date' => '1 de jun. de 2022'
'ath_pct' => '-95.72%'
'fdv' => '$162.78K'
'new_prediction' => true
'change_24h_pct_is_increased' => true
'change_30d_pct' => null
'change_30d_pct_is_increased' => false
'max_price' => '$0.502313'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.010274'
'next_week_prediction_price_date' => '13 de janeiro de 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.00900391'
'next_month_prediction_price_date' => '5 de fevereiro de 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.003519'
'current_year_max_price_prediction' => '$0.0105066'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.011424'
'grand_prediction_max_price' => '$0.03303'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.010380547766375
107 => 0.010419304963596
108 => 0.010506626907926
109 => 0.0097604704543321
110 => 0.010095472795993
111 => 0.010292255286245
112 => 0.0094031848362805
113 => 0.010274681222028
114 => 0.0097474815305233
115 => 0.0095685420369529
116 => 0.0098094604915598
117 => 0.0097155743354986
118 => 0.0096348565316972
119 => 0.0095898146102682
120 => 0.0097667185341319
121 => 0.0097584657546378
122 => 0.0094690165996247
123 => 0.009091441976367
124 => 0.0092181684133968
125 => 0.0091721275107571
126 => 0.0090052693401966
127 => 0.0091177116006221
128 => 0.0086225727914339
129 => 0.0077707122053015
130 => 0.008333477401696
131 => 0.0083118115538056
201 => 0.0083008866508312
202 => 0.0087237891422341
203 => 0.0086831368257062
204 => 0.0086093524731395
205 => 0.0090039142326993
206 => 0.0088598938828554
207 => 0.0093037306656122
208 => 0.0095960702762992
209 => 0.0095219234948333
210 => 0.0097968703116843
211 => 0.0092210879345545
212 => 0.0094123397438576
213 => 0.0094517564766914
214 => 0.0089990454018325
215 => 0.0086897880474458
216 => 0.0086691641077002
217 => 0.0081329544734822
218 => 0.0084193933319485
219 => 0.0086714476737535
220 => 0.008550733204236
221 => 0.008512518609429
222 => 0.0087077486865638
223 => 0.0087229197355897
224 => 0.0083770182100432
225 => 0.008448942090481
226 => 0.008748876628257
227 => 0.0084413845096818
228 => 0.0078439775518426
301 => 0.0076958123665011
302 => 0.0076760443995504
303 => 0.0072742086657751
304 => 0.007705713472665
305 => 0.0075173500608477
306 => 0.0081123878218384
307 => 0.0077725054440121
308 => 0.0077578537940183
309 => 0.0077357056761229
310 => 0.0073898290604374
311 => 0.0074655540576669
312 => 0.0077172754817004
313 => 0.0078070925216404
314 => 0.0077977238685253
315 => 0.0077160419093965
316 => 0.0077534354920064
317 => 0.0076329777336322
318 => 0.0075904415920388
319 => 0.0074561858286826
320 => 0.0072588669456503
321 => 0.007286305346563
322 => 0.0068953650079817
323 => 0.0066823599627485
324 => 0.0066234029735893
325 => 0.0065445632237034
326 => 0.0066323081331234
327 => 0.0068942575231216
328 => 0.0065782909831206
329 => 0.0060365885127647
330 => 0.0060691457542492
331 => 0.0061422922095331
401 => 0.0060059842740238
402 => 0.0058769802525221
403 => 0.0059891387827907
404 => 0.0057596123049634
405 => 0.0061700293878028
406 => 0.0061589287558926
407 => 0.0063119068643529
408 => 0.006407567215
409 => 0.0061871010771648
410 => 0.0061316544397031
411 => 0.0061632393643104
412 => 0.0056412109168396
413 => 0.0062692460030528
414 => 0.0062746772765581
415 => 0.006228171415384
416 => 0.0065625807103846
417 => 0.0072682886277106
418 => 0.0070027729221774
419 => 0.0068999572157402
420 => 0.0067045044826453
421 => 0.0069649336446593
422 => 0.0069449367483444
423 => 0.0068545031996109
424 => 0.0067998087071669
425 => 0.0069005849865195
426 => 0.0067873214109135
427 => 0.0067669761604597
428 => 0.0066437060785607
429 => 0.0065997042677541
430 => 0.0065671270787955
501 => 0.0065312627947205
502 => 0.0066103704685671
503 => 0.0064311020721494
504 => 0.0062149219599673
505 => 0.0061969489227406
506 => 0.0062465740587291
507 => 0.0062246186302111
508 => 0.0061968438085957
509 => 0.0061438141101094
510 => 0.0061280813313687
511 => 0.0061792052298167
512 => 0.0061214893291774
513 => 0.0062066522845185
514 => 0.006183492672947
515 => 0.0060541249653443
516 => 0.0058928849036115
517 => 0.0058914495288496
518 => 0.005856710622036
519 => 0.0058124654011792
520 => 0.0058001573929304
521 => 0.0059796931042071
522 => 0.0063513266534982
523 => 0.0062783660953352
524 => 0.0063310875759067
525 => 0.0065904250799514
526 => 0.0066728606739363
527 => 0.0066143498419198
528 => 0.0065342566062648
529 => 0.0065377803021535
530 => 0.0068114831342582
531 => 0.0068285536441659
601 => 0.0068716853155473
602 => 0.0069271217022812
603 => 0.0066237908982944
604 => 0.0065234934485638
605 => 0.0064759669525909
606 => 0.0063296037400628
607 => 0.0064874439165408
608 => 0.0063954772050973
609 => 0.0064078866565012
610 => 0.0063998049849949
611 => 0.0064042181241176
612 => 0.0061699146678638
613 => 0.0062552825326956
614 => 0.0061133419000431
615 => 0.0059232993265052
616 => 0.0059226622371611
617 => 0.0059691748878014
618 => 0.0059415073431604
619 => 0.005867054691929
620 => 0.0058776303396298
621 => 0.0057849765375511
622 => 0.0058888801887534
623 => 0.0058918597736847
624 => 0.0058518512083017
625 => 0.0060119291189196
626 => 0.0060775131695109
627 => 0.0060511786747093
628 => 0.0060756654711532
629 => 0.0062813979359241
630 => 0.0063149413044185
701 => 0.0063298390529531
702 => 0.0063098780434901
703 => 0.0060794258829408
704 => 0.0060896474162194
705 => 0.0060146485871148
706 => 0.0059512824797033
707 => 0.0059538167916883
708 => 0.0059863952079152
709 => 0.0061286670622768
710 => 0.0064280697923968
711 => 0.0064394319071443
712 => 0.0064532031216745
713 => 0.0063971886713221
714 => 0.0063802941771097
715 => 0.0064025823758148
716 => 0.0065150222994002
717 => 0.0068042483100033
718 => 0.0067020165211004
719 => 0.0066189004853898
720 => 0.0066918156566303
721 => 0.0066805909375459
722 => 0.0065858430123148
723 => 0.0065831837536214
724 => 0.0064013321923589
725 => 0.0063341058107199
726 => 0.0062779264144149
727 => 0.00621657998025
728 => 0.0061802117577261
729 => 0.0062360898765844
730 => 0.0062488698634978
731 => 0.0061266913800316
801 => 0.0061100389042001
802 => 0.0062098124912044
803 => 0.0061659058554981
804 => 0.0062110649191542
805 => 0.0062215422092897
806 => 0.0062198551242654
807 => 0.006174011553943
808 => 0.0062032308785916
809 => 0.0061341184650978
810 => 0.0060589690957722
811 => 0.0060110284801137
812 => 0.0059691939345517
813 => 0.0059924061718675
814 => 0.0059096587842236
815 => 0.0058831862295404
816 => 0.0061933320288563
817 => 0.0064224400654402
818 => 0.0064191087438515
819 => 0.0063988301804268
820 => 0.0063687003485341
821 => 0.0065128181145301
822 => 0.0064626103665828
823 => 0.0064991406982122
824 => 0.0065084392007851
825 => 0.0065365829675433
826 => 0.0065466419451209
827 => 0.0065162367284723
828 => 0.0064141931077151
829 => 0.0061599101068045
830 => 0.0060415406834568
831 => 0.0060024768021534
901 => 0.0060038967000459
902 => 0.0059647295774672
903 => 0.0059762660504139
904 => 0.0059607176629766
905 => 0.0059312727787293
906 => 0.0059905880332388
907 => 0.0059974235637611
908 => 0.0059835786745941
909 => 0.0059868396471852
910 => 0.0058722098781118
911 => 0.0058809249304917
912 => 0.0058323984113852
913 => 0.0058233002740486
914 => 0.0057006294594348
915 => 0.0054833003299275
916 => 0.0056037217643236
917 => 0.0054582696053892
918 => 0.0054031846688408
919 => 0.0056639481909954
920 => 0.0056377747658253
921 => 0.0055929772392486
922 => 0.0055267123608191
923 => 0.0055021340728263
924 => 0.0053528041755223
925 => 0.0053439809685456
926 => 0.0054179928978958
927 => 0.0053838389390957
928 => 0.0053358738458246
929 => 0.0051621491401403
930 => 0.0049668250526778
1001 => 0.0049727206591148
1002 => 0.0050348496172028
1003 => 0.0052154979420751
1004 => 0.0051449155162998
1005 => 0.0050937071565597
1006 => 0.005084117370098
1007 => 0.0052041536252437
1008 => 0.0053740300746477
1009 => 0.0054537323039368
1010 => 0.005374749815304
1011 => 0.0052840189850819
1012 => 0.0052895413503113
1013 => 0.0053262791721196
1014 => 0.0053301397977468
1015 => 0.0052710833545522
1016 => 0.0052877073973864
1017 => 0.0052624539561869
1018 => 0.0051074736341602
1019 => 0.0051046705315827
1020 => 0.005066635861162
1021 => 0.0050654841864576
1022 => 0.0050007777238789
1023 => 0.0049917248424695
1024 => 0.0048632462336179
1025 => 0.0049478112430331
1026 => 0.0048910894745796
1027 => 0.0048055963902078
1028 => 0.0047908573502378
1029 => 0.0047904142768984
1030 => 0.0048781965586444
1031 => 0.0049467854559615
1101 => 0.0048920761740266
1102 => 0.0048796199310249
1103 => 0.005012620018094
1104 => 0.0049956945446918
1105 => 0.004981037193883
1106 => 0.0053588195018248
1107 => 0.0050597753263678
1108 => 0.0049293749970237
1109 => 0.0047679798271096
1110 => 0.0048205309082587
1111 => 0.0048316041931928
1112 => 0.0044434779032152
1113 => 0.0042860151157094
1114 => 0.0042319798208973
1115 => 0.0042008817447861
1116 => 0.004215053528575
1117 => 0.0040733185512769
1118 => 0.0041685668001014
1119 => 0.0040458362903206
1120 => 0.0040252601209562
1121 => 0.004244717475837
1122 => 0.0042752536847173
1123 => 0.0041449767307772
1124 => 0.0042286356251298
1125 => 0.0041982997470919
1126 => 0.0040479401526529
1127 => 0.0040421975221156
1128 => 0.0039667523630214
1129 => 0.0038486952981005
1130 => 0.0037947400515377
1201 => 0.0037666396906668
1202 => 0.0037782344472273
1203 => 0.0037723717835049
1204 => 0.003734113937058
1205 => 0.0037745646784802
1206 => 0.0036712297495468
1207 => 0.0036300809482194
1208 => 0.0036114949893047
1209 => 0.0035197792921397
1210 => 0.0036657397524849
1211 => 0.0036944958019343
1212 => 0.0037233085096844
1213 => 0.0039741034593775
1214 => 0.00396157445243
1215 => 0.0040748305733615
1216 => 0.0040704296487667
1217 => 0.0040381271684495
1218 => 0.0039018483174914
1219 => 0.0039561666385464
1220 => 0.0037889832892806
1221 => 0.0039142484219132
1222 => 0.0038570826465767
1223 => 0.0038949206157684
1224 => 0.0038268845354496
1225 => 0.0038645385114389
1226 => 0.0037013149280379
1227 => 0.0035488990424758
1228 => 0.0036102356441231
1229 => 0.0036769155448049
1230 => 0.0038214945592057
1231 => 0.0037353844909795
]
'min_raw' => 0.0035197792921397
'max_raw' => 0.010506626907926
'avg_raw' => 0.0070132031000328
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.003519'
'max' => '$0.0105066'
'avg' => '$0.007013'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.0066677207078603
'max_diff' => 0.00031912690792583
'year' => 2026
]
1 => [
'items' => [
101 => 0.0037663529276958
102 => 0.0036626138487499
103 => 0.0034485704972816
104 => 0.0034497819594058
105 => 0.0034168560529703
106 => 0.003388403262549
107 => 0.0037452752681682
108 => 0.0037008925929579
109 => 0.0036301746086712
110 => 0.0037248334408599
111 => 0.0037498627385283
112 => 0.0037505752874459
113 => 0.0038196359279127
114 => 0.0038564936041096
115 => 0.0038629899292896
116 => 0.003971658339218
117 => 0.004008082556855
118 => 0.0041581087543537
119 => 0.0038533664877946
120 => 0.003847090521356
121 => 0.0037261654847499
122 => 0.0036494729147851
123 => 0.0037314166906287
124 => 0.0038040076895853
125 => 0.0037284210894341
126 => 0.0037382911036936
127 => 0.0036368222686427
128 => 0.003673092602621
129 => 0.0037043335003847
130 => 0.0036870841128946
131 => 0.0036612609449423
201 => 0.0037980560554877
202 => 0.0037903375392464
203 => 0.0039177242910922
204 => 0.0040170313736701
205 => 0.004195007418914
206 => 0.0040092801376009
207 => 0.0040025114972708
208 => 0.0040686760422219
209 => 0.0040080724274079
210 => 0.0040463718200047
211 => 0.0041888367946604
212 => 0.0041918468550815
213 => 0.0041414244647841
214 => 0.0041383562577521
215 => 0.0041480404293693
216 => 0.0042047609250103
217 => 0.0041849410409886
218 => 0.0042078771125566
219 => 0.0042365590212621
220 => 0.0043551995565451
221 => 0.0043838033879462
222 => 0.0043143109070277
223 => 0.0043205852999804
224 => 0.0042945932045056
225 => 0.004269485165957
226 => 0.0043259243698797
227 => 0.0044290681243638
228 => 0.0044284264724204
301 => 0.0044523538186326
302 => 0.004467260357098
303 => 0.0044032705817515
304 => 0.0043616155909702
305 => 0.0043775887650117
306 => 0.0044031302181545
307 => 0.0043693060159965
308 => 0.0041605273713833
309 => 0.0042238574753275
310 => 0.0042133162493473
311 => 0.0041983042616947
312 => 0.0042619831709278
313 => 0.0042558411847865
314 => 0.0040718648542243
315 => 0.0040836424219972
316 => 0.0040725810871291
317 => 0.004108322523024
318 => 0.0040061422725762
319 => 0.0040375722294195
320 => 0.004057284803714
321 => 0.0040688956614126
322 => 0.0041108420410597
323 => 0.0041059201175514
324 => 0.0041105360873837
325 => 0.0041727314949666
326 => 0.0044872945236346
327 => 0.0045044154952408
328 => 0.0044201055693507
329 => 0.004453785721804
330 => 0.0043891271941333
331 => 0.0044325328969331
401 => 0.0044622299764035
402 => 0.004328034584697
403 => 0.004320088404521
404 => 0.0042551630081063
405 => 0.0042900502385771
406 => 0.0042345421464173
407 => 0.0042481618906427
408 => 0.0042100798984406
409 => 0.0042786199023554
410 => 0.0043552582767719
411 => 0.0043746201566907
412 => 0.0043236873864379
413 => 0.0042868087041417
414 => 0.0042220618866229
415 => 0.0043297372871337
416 => 0.0043612248555914
417 => 0.0043295718963412
418 => 0.0043222372140522
419 => 0.0043083380043678
420 => 0.0043251859970925
421 => 0.0043610533675313
422 => 0.0043441389779987
423 => 0.0043553112302782
424 => 0.0043127341253653
425 => 0.0044032917650297
426 => 0.0045471190906996
427 => 0.0045475815190698
428 => 0.0045306670383623
429 => 0.0045237459972844
430 => 0.0045411012809468
501 => 0.0045505158103826
502 => 0.004606639615332
503 => 0.0046668626941138
504 => 0.0049478975254004
505 => 0.0048689840693542
506 => 0.0051183348905086
507 => 0.0053155390158899
508 => 0.0053746719104005
509 => 0.0053202724298685
510 => 0.0051341747455705
511 => 0.005125043905353
512 => 0.0054031524141098
513 => 0.0053245740222094
514 => 0.0053152273725272
515 => 0.0052157948113225
516 => 0.0052745717699567
517 => 0.0052617163868975
518 => 0.0052414235358316
519 => 0.0053535658784672
520 => 0.0055634863328653
521 => 0.0055307682614258
522 => 0.0055063457388439
523 => 0.0053993333541793
524 => 0.0054637787118288
525 => 0.0054408309543393
526 => 0.0055394290835208
527 => 0.0054810217360097
528 => 0.0053239787136067
529 => 0.005348988332545
530 => 0.0053452081789548
531 => 0.0054230034719755
601 => 0.0053996512560085
602 => 0.0053406482839976
603 => 0.0055627688475734
604 => 0.0055483455736743
605 => 0.0055687944784438
606 => 0.0055777967187267
607 => 0.0057129975915719
608 => 0.0057683850632312
609 => 0.0057809589889921
610 => 0.0058335728032476
611 => 0.0057796499093633
612 => 0.0059953799312723
613 => 0.0061388278076461
614 => 0.0063054498978144
615 => 0.006548929555346
616 => 0.0066404801588906
617 => 0.006623942361798
618 => 0.0068085458593436
619 => 0.0071402742409277
620 => 0.0066909941521936
621 => 0.0071640871765679
622 => 0.0070143113871726
623 => 0.0066591956848678
624 => 0.0066363304201784
625 => 0.0068768188967574
626 => 0.0074101991916513
627 => 0.0072765934773296
628 => 0.007410417722737
629 => 0.007254304631976
630 => 0.0072465523011953
701 => 0.0074028356583697
702 => 0.0077680002409702
703 => 0.0075945242357664
704 => 0.0073458038442452
705 => 0.0075294551108265
706 => 0.0073703593875914
707 => 0.0070118721950536
708 => 0.0072764913115578
709 => 0.00709954804427
710 => 0.007151189496486
711 => 0.0075230979260005
712 => 0.0074783489198137
713 => 0.0075362582774658
714 => 0.0074340497769615
715 => 0.0073385709206893
716 => 0.0071603525451043
717 => 0.0071075908701534
718 => 0.0071221722989436
719 => 0.0071075836443214
720 => 0.007007872101093
721 => 0.0069863394028265
722 => 0.0069504506290131
723 => 0.0069615740606952
724 => 0.0068940926662949
725 => 0.0070214439998958
726 => 0.0070450815296283
727 => 0.0071377572100031
728 => 0.0071473791065794
729 => 0.0074054795572677
730 => 0.0072633221662305
731 => 0.0073586936174169
801 => 0.0073501626971518
802 => 0.0066668921189417
803 => 0.0067610407760717
804 => 0.0069075065410898
805 => 0.0068415239124788
806 => 0.0067482399131801
807 => 0.0066729080821748
808 => 0.0065587726551265
809 => 0.0067194160769202
810 => 0.0069306450940556
811 => 0.0071527362230349
812 => 0.0074195641625164
813 => 0.0073600112726437
814 => 0.007147748060308
815 => 0.007157270032955
816 => 0.0072161311211006
817 => 0.0071399006638582
818 => 0.0071174188138221
819 => 0.007213042460138
820 => 0.0072137009676363
821 => 0.0071259886138204
822 => 0.0070285123837453
823 => 0.0070281039547821
824 => 0.0070107590011489
825 => 0.0072573902606953
826 => 0.0073930125162129
827 => 0.0074085613892418
828 => 0.0073919659531711
829 => 0.0073983528778655
830 => 0.0073194372756122
831 => 0.0074998149406682
901 => 0.0076653473236258
902 => 0.0076209811089096
903 => 0.007554469846021
904 => 0.0075014904215138
905 => 0.0076085008402061
906 => 0.0076037358347117
907 => 0.007663901542668
908 => 0.0076611720786211
909 => 0.0076409406139822
910 => 0.0076209818314389
911 => 0.0077001161481843
912 => 0.0076773267358199
913 => 0.0076545019252034
914 => 0.0076087232732085
915 => 0.0076149453523175
916 => 0.0075484455735362
917 => 0.0075176797330491
918 => 0.0070550353096965
919 => 0.006931401602434
920 => 0.0069702992835349
921 => 0.0069831054101312
922 => 0.0069292998622897
923 => 0.0070064431963833
924 => 0.0069944204894798
925 => 0.0070411938089929
926 => 0.0070119718696226
927 => 0.0070131711482074
928 => 0.0070991066411212
929 => 0.0071240540803098
930 => 0.0071113656113879
1001 => 0.0071202521800855
1002 => 0.0073250394049355
1003 => 0.0072959252102886
1004 => 0.0072804588746499
1005 => 0.0072847431553206
1006 => 0.0073370706819574
1007 => 0.0073517195324387
1008 => 0.0072896513235931
1009 => 0.0073189230496967
1010 => 0.0074435583443108
1011 => 0.0074871736436789
1012 => 0.0076263727427308
1013 => 0.0075672384913869
1014 => 0.0076757819689991
1015 => 0.0080094076139806
1016 => 0.0082759308643305
1017 => 0.0080308250687696
1018 => 0.008520261076506
1019 => 0.0089013572139542
1020 => 0.0088867301094501
1021 => 0.0088202771829735
1022 => 0.0083864093624538
1023 => 0.0079871577254067
1024 => 0.0083211486729165
1025 => 0.0083220000845276
1026 => 0.0082933099659346
1027 => 0.0081151181033823
1028 => 0.008287109275371
1029 => 0.0083007613100233
1030 => 0.0082931198009871
1031 => 0.0081565005177611
1101 => 0.0079479081237392
1102 => 0.0079886665782314
1103 => 0.0080554297581397
1104 => 0.007929033130315
1105 => 0.0078886417490833
1106 => 0.0079637370115677
1107 => 0.0082057095940121
1108 => 0.0081599660789527
1109 => 0.0081587715309104
1110 => 0.0083544816866037
1111 => 0.0082143954520224
1112 => 0.0079891806728692
1113 => 0.0079323109709151
1114 => 0.0077304618409994
1115 => 0.0078698797539941
1116 => 0.0078748971564818
1117 => 0.0077985393903512
1118 => 0.007995376684759
1119 => 0.0079935627944386
1120 => 0.0081804305101139
1121 => 0.0085376513981763
1122 => 0.008432003603804
1123 => 0.0083091467133962
1124 => 0.0083225046638356
1125 => 0.0084690084099246
1126 => 0.008380428900684
1127 => 0.0084122827098052
1128 => 0.0084689601953695
1129 => 0.0085031551296332
1130 => 0.0083175845390252
1201 => 0.0082743191574871
1202 => 0.0081858133709455
1203 => 0.0081627238632755
1204 => 0.0082348099796798
1205 => 0.0082158178348474
1206 => 0.0078744754632311
1207 => 0.0078388032861861
1208 => 0.007839897300928
1209 => 0.0077501979156289
1210 => 0.0076133848227287
1211 => 0.0079729214621852
1212 => 0.0079440456383248
1213 => 0.0079121689635941
1214 => 0.0079160736743629
1215 => 0.0080721363437236
1216 => 0.0079816121141407
1217 => 0.0082222856151163
1218 => 0.0081728103786234
1219 => 0.0081220662890016
1220 => 0.0081150519101131
1221 => 0.0080955197648909
1222 => 0.0080285367713332
1223 => 0.0079476507815583
1224 => 0.0078942428448845
1225 => 0.007282021736308
1226 => 0.0073956464129334
1227 => 0.0075263612461758
1228 => 0.0075714834828043
1229 => 0.0074942987746876
1230 => 0.008031584494056
1231 => 0.0081297517723986
]
'min_raw' => 0.003388403262549
'max_raw' => 0.0089013572139542
'avg_raw' => 0.0061448802382516
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.003388'
'max' => '$0.0089013'
'avg' => '$0.006144'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -0.00013137602959073
'max_diff' => -0.0016052696939717
'year' => 2027
]
2 => [
'items' => [
101 => 0.0078323966830057
102 => 0.0077767736867085
103 => 0.008035231128433
104 => 0.0078793496959359
105 => 0.0079495430954446
106 => 0.0077978233594436
107 => 0.0081061061497193
108 => 0.0081037575513723
109 => 0.0079838285830725
110 => 0.0080851917258414
111 => 0.0080675773853608
112 => 0.0079321778755223
113 => 0.0081103985556889
114 => 0.0081104869509228
115 => 0.0079950579264148
116 => 0.0078602620964521
117 => 0.0078361637857901
118 => 0.0078180089458589
119 => 0.0079450781177334
120 => 0.0080590079399012
121 => 0.0082710030933572
122 => 0.0083243037118166
123 => 0.008532339574087
124 => 0.0084084643471873
125 => 0.0084633766308192
126 => 0.0085229916825183
127 => 0.0085515733305739
128 => 0.0085050010688432
129 => 0.0088281663939261
130 => 0.0088554514488928
131 => 0.0088645998918084
201 => 0.0087556303624596
202 => 0.0088524208091572
203 => 0.0088071357645101
204 => 0.0089249548701342
205 => 0.0089434304102859
206 => 0.0089277822850638
207 => 0.0089336467131245
208 => 0.0086578821184362
209 => 0.0086435822694274
210 => 0.0084486028135226
211 => 0.0085280583830192
212 => 0.0083795200042498
213 => 0.0084266230542724
214 => 0.0084473856299081
215 => 0.0084365404386618
216 => 0.0085325506817043
217 => 0.0084509223615214
218 => 0.0082354918036202
219 => 0.0080200025518076
220 => 0.0080172972597848
221 => 0.0079605627434838
222 => 0.0079195540796431
223 => 0.0079274538031594
224 => 0.0079552934592077
225 => 0.0079179359882239
226 => 0.0079259080987301
227 => 0.0080582982510282
228 => 0.0080848481519082
229 => 0.007994621215002
301 => 0.0076323470436387
302 => 0.0075434440532902
303 => 0.0076073457597298
304 => 0.0075768048598487
305 => 0.0061150728672714
306 => 0.0064584851167503
307 => 0.006254441219288
308 => 0.006348474034847
309 => 0.0061401980524491
310 => 0.0062395982679289
311 => 0.0062212426776444
312 => 0.0067734394124993
313 => 0.0067648176200063
314 => 0.0067689444158176
315 => 0.0065719616994356
316 => 0.0068857605152957
317 => 0.0070403490958288
318 => 0.0070117388638139
319 => 0.0070189394428288
320 => 0.0068952096386935
321 => 0.0067701423907816
322 => 0.0066314235651357
323 => 0.0068891459970206
324 => 0.0068604916620637
325 => 0.0069262143969507
326 => 0.0070933658164079
327 => 0.0071179794978695
328 => 0.0071510605353612
329 => 0.007139203338289
330 => 0.0074216898775348
331 => 0.007387478893726
401 => 0.0074699175215336
402 => 0.0073003350094996
403 => 0.0071084363002134
404 => 0.0071449099712072
405 => 0.0071413972633878
406 => 0.0070966764611479
407 => 0.0070563045204879
408 => 0.0069890966140127
409 => 0.0072017523749988
410 => 0.0071931189394578
411 => 0.0073328842255958
412 => 0.0073081793536634
413 => 0.0071431941725908
414 => 0.0071490866506093
415 => 0.0071887163971122
416 => 0.0073258754022433
417 => 0.0073665935334634
418 => 0.0073477312727453
419 => 0.0073923768447748
420 => 0.0074276628845604
421 => 0.0073968082280985
422 => 0.0078336450968869
423 => 0.0076522399728057
424 => 0.0077406555680741
425 => 0.0077617421665707
426 => 0.0077077292879251
427 => 0.0077194427472471
428 => 0.0077371854463935
429 => 0.0078449156412331
430 => 0.0081276308444754
501 => 0.008252843483484
502 => 0.008629551885824
503 => 0.0082424463168584
504 => 0.0082194770743981
505 => 0.0082873336331634
506 => 0.0085085013439711
507 => 0.008687737000354
508 => 0.0087471998079293
509 => 0.0087550587995743
510 => 0.0088666149795983
511 => 0.0089305569015884
512 => 0.0088530691251246
513 => 0.0087874063478798
514 => 0.0085522104301531
515 => 0.0085794349980472
516 => 0.0087669852735325
517 => 0.0090319110843116
518 => 0.0092592449907928
519 => 0.0091796405801296
520 => 0.0097869660415337
521 => 0.0098471798803299
522 => 0.0098388602747548
523 => 0.0099760363605531
524 => 0.0097037697656675
525 => 0.009587370521437
526 => 0.0088016033856243
527 => 0.0090223718997627
528 => 0.0093432719003431
529 => 0.0093007995819531
530 => 0.00906775342385
531 => 0.0092590682043841
601 => 0.0091958135549732
602 => 0.009145921988545
603 => 0.0093744849263086
604 => 0.0091231705873895
605 => 0.009340764847567
606 => 0.009061697958165
607 => 0.0091800042063721
608 => 0.0091128478580604
609 => 0.0091563062457906
610 => 0.0089022493991207
611 => 0.0090393323067024
612 => 0.0088965462994785
613 => 0.0088964786003198
614 => 0.0088933265912964
615 => 0.0090613136955853
616 => 0.0090667917490252
617 => 0.0089426490251413
618 => 0.0089247581191558
619 => 0.0089909101755876
620 => 0.008913463442757
621 => 0.0089497002816045
622 => 0.0089145610196907
623 => 0.0089066504316878
624 => 0.008843617520605
625 => 0.0088164612093846
626 => 0.0088271098987461
627 => 0.0087907604321797
628 => 0.0087688585637559
629 => 0.0088889697584049
630 => 0.0088247991923757
701 => 0.0088791346988254
702 => 0.0088172125315384
703 => 0.0086025633215173
704 => 0.0084791162909599
705 => 0.0080736638312224
706 => 0.0081886496458417
707 => 0.0082648853598958
708 => 0.0082396894568557
709 => 0.0082938200061059
710 => 0.0082971431821998
711 => 0.0082795447888429
712 => 0.0082591681038294
713 => 0.0082492498604663
714 => 0.0083231723206311
715 => 0.0083660867968724
716 => 0.0082725366337034
717 => 0.0082506191393788
718 => 0.0083452035193887
719 => 0.0084028999365552
720 => 0.0088288978640961
721 => 0.0087973385616687
722 => 0.0088765462175611
723 => 0.0088676286510482
724 => 0.0089506508931926
725 => 0.0090863571712814
726 => 0.0088104283638549
727 => 0.0088583200639238
728 => 0.0088465781250478
729 => 0.0089747735347947
730 => 0.0089751737468709
731 => 0.008898314194892
801 => 0.0089399810049236
802 => 0.0089167237346331
803 => 0.0089587527654566
804 => 0.008796917067944
805 => 0.0089940154784304
806 => 0.0091057575764352
807 => 0.0091073091155744
808 => 0.0091602739831885
809 => 0.0092140893562028
810 => 0.0093173832783724
811 => 0.0092112085447763
812 => 0.009020210534939
813 => 0.0090339999743294
814 => 0.0089220179110452
815 => 0.0089239003497602
816 => 0.0089138517443701
817 => 0.0089440083655696
818 => 0.0088035347504433
819 => 0.0088365036271388
820 => 0.0087903470066997
821 => 0.0088582197284452
822 => 0.0087851998996098
823 => 0.0088465724627293
824 => 0.008873058826439
825 => 0.0089707940787383
826 => 0.0087707643233791
827 => 0.0083628901113777
828 => 0.0084486302157372
829 => 0.0083218138666497
830 => 0.0083335512025816
831 => 0.0083572624891473
901 => 0.0082804064515377
902 => 0.0082950681615015
903 => 0.0082945443420488
904 => 0.0082900303489949
905 => 0.0082700371252917
906 => 0.0082410429953832
907 => 0.008356546685016
908 => 0.0083761730126218
909 => 0.0084197999077017
910 => 0.008549603955054
911 => 0.0085366334697333
912 => 0.0085577888694316
913 => 0.0085116067506726
914 => 0.0083356934586173
915 => 0.0083452463967203
916 => 0.0082261211055007
917 => 0.008416753606175
918 => 0.0083716093137893
919 => 0.0083425044948072
920 => 0.0083345629752937
921 => 0.0084646887817724
922 => 0.008503624462543
923 => 0.0084793623591631
924 => 0.0084296000772924
925 => 0.0085251583693822
926 => 0.0085507257370647
927 => 0.0085564493278006
928 => 0.0087257602998986
929 => 0.0085659119303306
930 => 0.0086043890216418
1001 => 0.0089045763042814
1002 => 0.0086323478619406
1003 => 0.0087765533392672
1004 => 0.0087694952315612
1005 => 0.0088432658741142
1006 => 0.0087634438856681
1007 => 0.0087644333748807
1008 => 0.0088299367078116
1009 => 0.0087379490902985
1010 => 0.0087151716625775
1011 => 0.008683704809316
1012 => 0.0087524115322208
1013 => 0.0087935981052644
1014 => 0.0091255316357915
1015 => 0.00933997583452
1016 => 0.0093306662462968
1017 => 0.0094157384558374
1018 => 0.0093774126462673
1019 => 0.0092536484973274
1020 => 0.0094648988081377
1021 => 0.0093980503707089
1022 => 0.0094035612746697
1023 => 0.009403356158549
1024 => 0.0094478045254473
1025 => 0.0094163087838669
1026 => 0.0093542274442402
1027 => 0.0093954399346992
1028 => 0.0095178262976274
1029 => 0.0098977173234286
1030 => 0.010110309374354
1031 => 0.0098849190150245
1101 => 0.010040390266793
1102 => 0.0099471629158029
1103 => 0.0099302207328547
1104 => 0.0100278681682
1105 => 0.010125686522455
1106 => 0.010119455916169
1107 => 0.010048444814009
1108 => 0.010008332444238
1109 => 0.010312076746771
1110 => 0.010535870374729
1111 => 0.010520609149633
1112 => 0.010587967233987
1113 => 0.010785732652957
1114 => 0.010803813844391
1115 => 0.010801536029862
1116 => 0.010756719910316
1117 => 0.010951445648377
1118 => 0.011113889284941
1119 => 0.010746346273503
1120 => 0.010886301840767
1121 => 0.010949132403999
1122 => 0.011041386311811
1123 => 0.01119703411784
1124 => 0.011366108918729
1125 => 0.011390017949386
1126 => 0.011373053347982
1127 => 0.011261543971821
1128 => 0.011446547636436
1129 => 0.011554918444298
1130 => 0.011619450780357
1201 => 0.011783094047448
1202 => 0.010949520424167
1203 => 0.010359475582312
1204 => 0.010267331559906
1205 => 0.010454710052854
1206 => 0.010504120267129
1207 => 0.01048420307171
1208 => 0.0098200539576718
1209 => 0.010263834952269
1210 => 0.01074130598829
1211 => 0.010759647595346
1212 => 0.010998679579426
1213 => 0.011076518191695
1214 => 0.011268970269518
1215 => 0.011256932339651
1216 => 0.01130379135802
1217 => 0.011293019281182
1218 => 0.011649496229783
1219 => 0.01204274324143
1220 => 0.012029126347865
1221 => 0.011972592437254
1222 => 0.012056554934976
1223 => 0.012462427993906
1224 => 0.012425061706623
1225 => 0.012461359871866
1226 => 0.012939907082347
1227 => 0.01356208652852
1228 => 0.013273021709978
1229 => 0.013900209190054
1230 => 0.014294990462983
1231 => 0.014977723853366
]
'min_raw' => 0.0061150728672714
'max_raw' => 0.014977723853366
'avg_raw' => 0.010546398360319
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.006115'
'max' => '$0.014977'
'avg' => '$0.010546'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 0.0027266696047224
'max_diff' => 0.0060763666394123
'year' => 2028
]
3 => [
'items' => [
101 => 0.014892242270358
102 => 0.015158025369105
103 => 0.014739212396227
104 => 0.013777533154432
105 => 0.013625343733258
106 => 0.013930030808499
107 => 0.014679074252048
108 => 0.013906440764842
109 => 0.014062743513024
110 => 0.014017728311032
111 => 0.01401532964222
112 => 0.014106877074677
113 => 0.013974082749106
114 => 0.013433054777486
115 => 0.013681004708582
116 => 0.013585259332652
117 => 0.013691495965536
118 => 0.014264811257894
119 => 0.014011334901013
120 => 0.013744318149786
121 => 0.014079216411585
122 => 0.014505656982384
123 => 0.014478971097851
124 => 0.014427189328022
125 => 0.014719080453342
126 => 0.015201199076294
127 => 0.015331513802769
128 => 0.015427709469685
129 => 0.015440973226914
130 => 0.015577598169748
131 => 0.01484293141821
201 => 0.016008866420481
202 => 0.016210191187069
203 => 0.016172350475007
204 => 0.016396114480028
205 => 0.016330277433406
206 => 0.016234889882367
207 => 0.016589603426294
208 => 0.016182952972088
209 => 0.015605763848212
210 => 0.015289106479347
211 => 0.01570610644669
212 => 0.015960753775452
213 => 0.016129059461153
214 => 0.016179988659953
215 => 0.014899961506804
216 => 0.014210097864817
217 => 0.014652292550028
218 => 0.015191800584632
219 => 0.014839934423837
220 => 0.014853726911169
221 => 0.014352058234677
222 => 0.015236187130872
223 => 0.01510737698739
224 => 0.015775644239632
225 => 0.015616156896705
226 => 0.016161102898922
227 => 0.016017600353409
228 => 0.016613271396715
301 => 0.016850900703039
302 => 0.017249917292406
303 => 0.017543435519835
304 => 0.017715795037089
305 => 0.017705447218178
306 => 0.018388421494712
307 => 0.017985695425143
308 => 0.017479776566519
309 => 0.01747062609052
310 => 0.017732648636327
311 => 0.018281776009964
312 => 0.01842415674847
313 => 0.018503728157357
314 => 0.018381861774746
315 => 0.017944731489867
316 => 0.017755980849157
317 => 0.017916801863674
318 => 0.017720131582427
319 => 0.018059639663795
320 => 0.018525856774526
321 => 0.018429584784782
322 => 0.018751407612592
323 => 0.019084460382626
324 => 0.019560740802111
325 => 0.019685258140377
326 => 0.019891080565561
327 => 0.02010293945022
328 => 0.020170982814215
329 => 0.020300898708698
330 => 0.020300213987806
331 => 0.020691724280179
401 => 0.02112357225673
402 => 0.021286584870575
403 => 0.021661423387542
404 => 0.021019525563143
405 => 0.021506412436541
406 => 0.021945596583914
407 => 0.021421983137978
408 => 0.022143662286915
409 => 0.022171683452908
410 => 0.022594769791142
411 => 0.022165890733807
412 => 0.021911223718591
413 => 0.02264643784927
414 => 0.023002184808077
415 => 0.02289503092892
416 => 0.022079584617691
417 => 0.021604959888418
418 => 0.020362775423639
419 => 0.021834196580546
420 => 0.022550882904131
421 => 0.022077728573252
422 => 0.022316360096004
423 => 0.023618256307607
424 => 0.024113934093449
425 => 0.024010836579043
426 => 0.024028258361848
427 => 0.0242957170979
428 => 0.02548177642577
429 => 0.02477106218387
430 => 0.025314376591848
501 => 0.025602548594773
502 => 0.025870218811091
503 => 0.025212905357856
504 => 0.024357750213049
505 => 0.024086886681718
506 => 0.022030682699898
507 => 0.021923648353003
508 => 0.021863566730618
509 => 0.021484760600196
510 => 0.021187122745416
511 => 0.02095043007271
512 => 0.020329277817114
513 => 0.020538898469262
514 => 0.019548911418393
515 => 0.020182270050552
516 => 0.018602226813292
517 => 0.019918133772521
518 => 0.01920194544156
519 => 0.019682846643977
520 => 0.019681168824985
521 => 0.018795677241471
522 => 0.018284944175838
523 => 0.018610403163288
524 => 0.0189593210328
525 => 0.019015931783228
526 => 0.019468312908739
527 => 0.01959456275697
528 => 0.01921201982279
529 => 0.018569483929181
530 => 0.018718730362583
531 => 0.018281919701629
601 => 0.017516425819985
602 => 0.018066216890022
603 => 0.01825393973394
604 => 0.018336848836149
605 => 0.017584073521119
606 => 0.017347535173589
607 => 0.017221604142113
608 => 0.018472310088958
609 => 0.018540826584036
610 => 0.018190286507965
611 => 0.01977476089138
612 => 0.019416145539336
613 => 0.019816806750464
614 => 0.018705187813079
615 => 0.01874765315348
616 => 0.018221394934039
617 => 0.018516064372339
618 => 0.018307801510988
619 => 0.018492257993705
620 => 0.018602820448903
621 => 0.019128992314549
622 => 0.019924141810025
623 => 0.019050399784107
624 => 0.018669697871198
625 => 0.018905883196818
626 => 0.019534875843081
627 => 0.020487831899712
628 => 0.019923662734159
629 => 0.020174031429618
630 => 0.020228725851447
701 => 0.019812728395446
702 => 0.020503170319287
703 => 0.020873183755414
704 => 0.021252740977388
705 => 0.021582299878276
706 => 0.021101137476289
707 => 0.021616050218336
708 => 0.021201121442581
709 => 0.020828887436181
710 => 0.020829451961517
711 => 0.020595944131831
712 => 0.020143493287934
713 => 0.020060054410478
714 => 0.020494113988173
715 => 0.020842188663888
716 => 0.020870857761346
717 => 0.021063569786544
718 => 0.021177614777965
719 => 0.022295410730538
720 => 0.022744997509557
721 => 0.023294743712698
722 => 0.023508900840819
723 => 0.024153437016886
724 => 0.023632921708043
725 => 0.02352030494678
726 => 0.021956871009819
727 => 0.022212883229411
728 => 0.022622783494483
729 => 0.021963630114214
730 => 0.022381711217801
731 => 0.022464249283818
801 => 0.021941232334581
802 => 0.022220598285396
803 => 0.021478685146262
804 => 0.019940313489043
805 => 0.020504882966709
806 => 0.020920596134302
807 => 0.020327322187083
808 => 0.021390742774601
809 => 0.020769514420829
810 => 0.020572614856904
811 => 0.019804439458267
812 => 0.020166988676641
813 => 0.020657341685696
814 => 0.020354360535756
815 => 0.020983091914731
816 => 0.021873543223894
817 => 0.022508131854095
818 => 0.022556847689404
819 => 0.02214884971432
820 => 0.0228026690732
821 => 0.022807431433438
822 => 0.022069920525692
823 => 0.021618199201175
824 => 0.021515567165815
825 => 0.02177196211234
826 => 0.02208327291054
827 => 0.022574123272091
828 => 0.022870733865431
829 => 0.023644136982759
830 => 0.023853397691103
831 => 0.02408331176569
901 => 0.024390547872214
902 => 0.024759463591816
903 => 0.02395229699971
904 => 0.023984367233161
905 => 0.023232744878574
906 => 0.022429528599149
907 => 0.02303906963291
908 => 0.023835963450707
909 => 0.023653155128415
910 => 0.023632585457722
911 => 0.023667177938276
912 => 0.02352934643323
913 => 0.022905939644178
914 => 0.02259286865745
915 => 0.022996810103257
916 => 0.023211487004338
917 => 0.023544432156121
918 => 0.023503389638544
919 => 0.02436102059384
920 => 0.024694270049653
921 => 0.024609010578308
922 => 0.024624700372919
923 => 0.025228032594602
924 => 0.025899062109847
925 => 0.026527569801018
926 => 0.027166914819511
927 => 0.026396159445657
928 => 0.026004817400397
929 => 0.026408582498005
930 => 0.026194339053809
1001 => 0.027425445432893
1002 => 0.027510684567488
1003 => 0.028741701923568
1004 => 0.029910083981309
1005 => 0.029176244144581
1006 => 0.029868222057743
1007 => 0.030616652588615
1008 => 0.032060496511145
1009 => 0.031574260673078
1010 => 0.031201811641407
1011 => 0.030849849106137
1012 => 0.031582227269554
1013 => 0.032524420076762
1014 => 0.032727359383224
1015 => 0.033056198588474
1016 => 0.032710464372699
1017 => 0.033126863154226
1018 => 0.034596933827914
1019 => 0.03419970775521
1020 => 0.033635582874694
1021 => 0.034796062484482
1022 => 0.035216035544014
1023 => 0.038163626417409
1024 => 0.041885081653976
1025 => 0.040344374749645
1026 => 0.039388008255825
1027 => 0.039612777067189
1028 => 0.040971726540374
1029 => 0.04140817798026
1030 => 0.040221752512815
1031 => 0.040640818045192
1101 => 0.042949910330205
1102 => 0.044188664256564
1103 => 0.04250627003772
1104 => 0.037864611112651
1105 => 0.033584789601428
1106 => 0.034719990989079
1107 => 0.034591294381119
1108 => 0.037072125976236
1109 => 0.034190234044748
1110 => 0.03423875771385
1111 => 0.036770890279108
1112 => 0.036095360722439
1113 => 0.035001089355925
1114 => 0.033592778993396
1115 => 0.030989387035321
1116 => 0.028683490177099
1117 => 0.033205884932405
1118 => 0.033010871047115
1119 => 0.032728462041776
1120 => 0.033356932723311
1121 => 0.036408607958329
1122 => 0.036338256966853
1123 => 0.035890719852475
1124 => 0.03623017280932
1125 => 0.034941581611359
1126 => 0.035273680903749
1127 => 0.033584111655834
1128 => 0.034347867518536
1129 => 0.034998741541034
1130 => 0.035129414137405
1201 => 0.035423826169338
1202 => 0.032908107591066
1203 => 0.034037591375093
1204 => 0.03470105727989
1205 => 0.03170349418492
1206 => 0.034641805095403
1207 => 0.032864314527587
1208 => 0.032261007531858
1209 => 0.033073280921955
1210 => 0.032756737191872
1211 => 0.032484591480819
1212 => 0.032332729497994
1213 => 0.032929173428338
1214 => 0.032901348606083
1215 => 0.031925450571262
1216 => 0.03065243136753
1217 => 0.031079698397733
1218 => 0.030924468280011
1219 => 0.0303618943083
1220 => 0.030741001239793
1221 => 0.029071606175127
1222 => 0.026199498733975
1223 => 0.02809690088463
1224 => 0.028023852965806
1225 => 0.027987018892676
1226 => 0.02941286416855
1227 => 0.029275802045122
1228 => 0.029027032948984
1229 => 0.030357325468763
1230 => 0.029871750804084
1231 => 0.031368177504844
]
'min_raw' => 0.013433054777486
'max_raw' => 0.044188664256564
'avg_raw' => 0.028810859517025
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.013433'
'max' => '$0.044188'
'avg' => '$0.02881'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072435
'min_diff' => 0.0073179819102147
'max_diff' => 0.029210940403198
'year' => 2029
]
4 => [
'items' => [
101 => 0.032353820912775
102 => 0.032103829862299
103 => 0.033030832251486
104 => 0.031089541767151
105 => 0.031734360594992
106 => 0.031867256861729
107 => 0.030340909865565
108 => 0.029298227103591
109 => 0.029228692050821
110 => 0.027420823832094
111 => 0.028386572441935
112 => 0.029236391253203
113 => 0.02882939399121
114 => 0.02870055081676
115 => 0.029358782652349
116 => 0.029409932903348
117 => 0.028243701759895
118 => 0.028486198144356
119 => 0.029497448379229
120 => 0.028460717233038
121 => 0.026446517965062
122 => 0.02594696869812
123 => 0.02588031961739
124 => 0.024525502385692
125 => 0.025980350968825
126 => 0.025345270574769
127 => 0.027351481930159
128 => 0.026205544763488
129 => 0.026156145702588
130 => 0.026081471776771
131 => 0.024915324618654
201 => 0.025170636733763
202 => 0.026019333089521
203 => 0.026322157510504
204 => 0.026290570442428
205 => 0.026015174014373
206 => 0.026141249088879
207 => 0.025735117346428
208 => 0.025591703775267
209 => 0.025139051095674
210 => 0.024473776705166
211 => 0.024566287189531
212 => 0.023248204543422
213 => 0.02253004316188
214 => 0.022331265556685
215 => 0.022065451835529
216 => 0.022361289923792
217 => 0.023244470580894
218 => 0.022179167331201
219 => 0.020352779631937
220 => 0.020462548644676
221 => 0.020709167025588
222 => 0.020249595304303
223 => 0.019814649239036
224 => 0.020192799554496
225 => 0.019418935009474
226 => 0.020802684858673
227 => 0.020765258303166
228 => 0.02128103467643
301 => 0.021603560227429
302 => 0.020860243251264
303 => 0.020673301041901
304 => 0.020779791820404
305 => 0.019019736462894
306 => 0.021137200604071
307 => 0.021155512521893
308 => 0.020998714764009
309 => 0.022126199049815
310 => 0.024505542564033
311 => 0.023610337825113
312 => 0.023263687492497
313 => 0.022604704956794
314 => 0.023482760059107
315 => 0.023415339127043
316 => 0.023110436103619
317 => 0.022926029803697
318 => 0.023265804065509
319 => 0.022883928012543
320 => 0.022815332580178
321 => 0.022399718892613
322 => 0.022251363715371
323 => 0.02214152744833
324 => 0.022020608510607
325 => 0.022287325556102
326 => 0.02168290964146
327 => 0.020954043300024
328 => 0.020893445950177
329 => 0.021060760560879
330 => 0.020986736300751
331 => 0.020893091550499
401 => 0.020714298219637
402 => 0.020661254057685
403 => 0.020833621850659
404 => 0.020639028662058
405 => 0.020926161511879
406 => 0.020848077264513
407 => 0.020411905006165
408 => 0.019868272880612
409 => 0.019863433414387
410 => 0.019746308764672
411 => 0.019597132913451
412 => 0.019555635604322
413 => 0.020160952789675
414 => 0.021413941247735
415 => 0.021167949631945
416 => 0.021345703784589
417 => 0.022220078285841
418 => 0.022498015646431
419 => 0.022300742291192
420 => 0.022030702355249
421 => 0.022042582741955
422 => 0.022965390949717
423 => 0.023022945365696
424 => 0.023168366807116
425 => 0.023355274455434
426 => 0.022332573471912
427 => 0.021994413617601
428 => 0.021834174718234
429 => 0.021340700928443
430 => 0.021872870103488
501 => 0.021562797914945
502 => 0.021604637246754
503 => 0.021577389327026
504 => 0.021592268533693
505 => 0.020802298072389
506 => 0.021090121788863
507 => 0.020611559035897
508 => 0.019970817230865
509 => 0.019968669239661
510 => 0.020125489888705
511 => 0.020032206830261
512 => 0.019781184518516
513 => 0.019816841053108
514 => 0.019504452290518
515 => 0.019854770704867
516 => 0.019864816583491
517 => 0.019729924911994
518 => 0.020269638763925
519 => 0.020490759969425
520 => 0.020401971381586
521 => 0.02048453032541
522 => 0.021178171694167
523 => 0.021291265502969
524 => 0.021341494302281
525 => 0.021274194365244
526 => 0.020497208816296
527 => 0.020531671429389
528 => 0.020278807640812
529 => 0.020065164385594
530 => 0.020073708995391
531 => 0.020183549400252
601 => 0.020663228890336
602 => 0.021672686098567
603 => 0.021710994261716
604 => 0.02175742487298
605 => 0.021568568242813
606 => 0.02151160727604
607 => 0.021586753494086
608 => 0.021965852546759
609 => 0.022940998234623
610 => 0.022596316620741
611 => 0.022316085103366
612 => 0.022561923693979
613 => 0.0225240787699
614 => 0.022204629524895
615 => 0.022195663648547
616 => 0.02158253841328
617 => 0.021355879973988
618 => 0.021166467217025
619 => 0.020959633431167
620 => 0.020837015429779
621 => 0.021025412408796
622 => 0.021068501026945
623 => 0.020656567739709
624 => 0.020600422754804
625 => 0.020936816369359
626 => 0.020788782081611
627 => 0.020941039017633
628 => 0.020976363932826
629 => 0.020970675807878
630 => 0.02081611100984
701 => 0.020914626002921
702 => 0.020681608675552
703 => 0.02042823733011
704 => 0.02026660219731
705 => 0.020125554106153
706 => 0.02020381578489
707 => 0.01992482719021
708 => 0.019835573123841
709 => 0.020881251339923
710 => 0.021653705081078
711 => 0.021642473297756
712 => 0.021574102705366
713 => 0.021472517873542
714 => 0.021958420983578
715 => 0.021789142055981
716 => 0.021912306619536
717 => 0.021943657170161
718 => 0.022038545844722
719 => 0.02207246038992
720 => 0.021969947079165
721 => 0.021625899887324
722 => 0.020768566996281
723 => 0.020369476221175
724 => 0.020237769618008
725 => 0.020242556902886
726 => 0.020110502214551
727 => 0.020149398238542
728 => 0.020096975764743
729 => 0.019997700281727
730 => 0.020197685803565
731 => 0.020220732271962
801 => 0.020174053261516
802 => 0.020185047858281
803 => 0.019798565588655
804 => 0.01982794899622
805 => 0.019664338449039
806 => 0.019633663443797
807 => 0.019220070227723
808 => 0.018487329894154
809 => 0.018893339167777
810 => 0.018402937058784
811 => 0.018217214349304
812 => 0.019096396770175
813 => 0.019008151239844
814 => 0.018857113251328
815 => 0.018633696587236
816 => 0.018550829173267
817 => 0.018047352998627
818 => 0.018017604940288
819 => 0.01826714132744
820 => 0.018151988870792
821 => 0.017990271210013
822 => 0.017404546235727
823 => 0.016745997437754
824 => 0.016765874886475
825 => 0.016975347006374
826 => 0.017584415446144
827 => 0.017346441869735
828 => 0.017173789309618
829 => 0.017141456675025
830 => 0.017546167289912
831 => 0.018118917599473
901 => 0.018387639230153
902 => 0.018121344255346
903 => 0.017815438926628
904 => 0.017834057966558
905 => 0.017957922097738
906 => 0.01797093846658
907 => 0.01777182554516
908 => 0.017827874666229
909 => 0.017742730926087
910 => 0.017220203949993
911 => 0.017210753093946
912 => 0.017082516547127
913 => 0.017078633595454
914 => 0.016860471239209
915 => 0.016829948817485
916 => 0.016396774217652
917 => 0.016681891051036
918 => 0.016490649648507
919 => 0.016202403745611
920 => 0.016152710043305
921 => 0.016151216190607
922 => 0.016447180282277
923 => 0.016678432538306
924 => 0.016493976374582
925 => 0.016451979281635
926 => 0.016900398360958
927 => 0.016843332945683
928 => 0.016793914664088
929 => 0.018067634091232
930 => 0.017059385775081
1001 => 0.016619731960437
1002 => 0.016075576876821
1003 => 0.016252756515915
1004 => 0.016290090869182
1005 => 0.01498149598441
1006 => 0.014450599202634
1007 => 0.014268415433551
1008 => 0.014163566098744
1009 => 0.01421134725723
1010 => 0.01373347788565
1011 => 0.014054614006582
1012 => 0.013640819524085
1013 => 0.013571445532491
1014 => 0.014311361326495
1015 => 0.014414316286705
1016 => 0.013975078440849
1017 => 0.014257140244036
1018 => 0.014154860713248
1019 => 0.013647912842826
1020 => 0.013628551163032
1021 => 0.013374182541733
1022 => 0.012976144904871
1023 => 0.012794231024049
1024 => 0.012699488695469
1025 => 0.012738581226732
1026 => 0.012718814846674
1027 => 0.012589825846301
1028 => 0.012726208345186
1029 => 0.012377807417673
1030 => 0.01223907136108
1031 => 0.012176407502969
1101 => 0.011867181626592
1102 => 0.012359297509279
1103 => 0.012456250537681
1104 => 0.0125533945935
1105 => 0.013398967276334
1106 => 0.013356724854663
1107 => 0.013738575773674
1108 => 0.01372373774914
1109 => 0.013614827681463
1110 => 0.013155354020773
1111 => 0.013338492032593
1112 => 0.012774821698175
1113 => 0.013197161838578
1114 => 0.013004423435844
1115 => 0.013131996790737
1116 => 0.012902608395814
1117 => 0.013029561404779
1118 => 0.012479241697436
1119 => 0.011965360897926
1120 => 0.012172161532764
1121 => 0.012396977473355
1122 => 0.012884435714592
1123 => 0.012594109607554
1124 => 0.012698521854091
1125 => 0.012348758306593
1126 => 0.011627096203088
1127 => 0.011631180732222
1128 => 0.011520168739861
1129 => 0.011424238170445
1130 => 0.012627457053398
1201 => 0.012477817765227
1202 => 0.012239387143833
1203 => 0.012558536005425
1204 => 0.012642924030004
1205 => 0.012645326438428
1206 => 0.012878169209422
1207 => 0.013002437438041
1208 => 0.013024340251944
1209 => 0.013390723383004
1210 => 0.013513530175825
1211 => 0.014019353975186
1212 => 0.012991894147056
1213 => 0.012970734288035
1214 => 0.012563027084401
1215 => 0.01230445273026
1216 => 0.012580731891649
1217 => 0.012825477512772
1218 => 0.012570632013075
1219 => 0.012603909455253
1220 => 0.012261800193551
1221 => 0.012384088156873
1222 => 0.012489419024853
1223 => 0.012431261510617
1224 => 0.012344196896949
1225 => 0.012805411162883
1226 => 0.012779387646485
1227 => 0.013208880974193
1228 => 0.013543701736503
1229 => 0.014143760398934
1230 => 0.013517567902922
1231 => 0.013494746959477
]
'min_raw' => 0.011424238170445
'max_raw' => 0.033030832251486
'avg_raw' => 0.022227535210966
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.011424'
'max' => '$0.03303'
'avg' => '$0.022227'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -0.0020088166070411
'max_diff' => -0.011157832005078
'year' => 2030
]
5 => [
'items' => [
101 => 0.013717825342241
102 => 0.013513496023687
103 => 0.013642625099805
104 => 0.014122955708443
105 => 0.014133104337309
106 => 0.013963101728042
107 => 0.013952757053819
108 => 0.013985407914553
109 => 0.014176645025705
110 => 0.014109820902946
111 => 0.014187151469583
112 => 0.01428385452729
113 => 0.014683859375215
114 => 0.014780299189839
115 => 0.014546000438613
116 => 0.014567154992516
117 => 0.014479520827913
118 => 0.014394867322959
119 => 0.014585156039444
120 => 0.014932912408954
121 => 0.014930749034628
122 => 0.015011421752937
123 => 0.015061680188114
124 => 0.01484593419291
125 => 0.014705491483232
126 => 0.014759346154724
127 => 0.014845460947243
128 => 0.014731420288137
129 => 0.014027508511364
130 => 0.014241030378378
131 => 0.014205489899021
201 => 0.014154875934547
202 => 0.014369573822946
203 => 0.014348865687851
204 => 0.013728576644543
205 => 0.013768285536573
206 => 0.013730991473787
207 => 0.013851496220294
208 => 0.013506988371912
209 => 0.013612956665779
210 => 0.013679418986301
211 => 0.013718565803676
212 => 0.013859990951259
213 => 0.013843396342513
214 => 0.013858959407079
215 => 0.01406865556609
216 => 0.015129226779333
217 => 0.015186951330451
218 => 0.014902694528982
219 => 0.015016249514451
220 => 0.014798248774095
221 => 0.014944594131574
222 => 0.015044719908392
223 => 0.014592270776031
224 => 0.014565479674783
225 => 0.014346579167824
226 => 0.014464203901106
227 => 0.014277054492938
228 => 0.014322974411494
301 => 0.014194578315984
302 => 0.014425665724493
303 => 0.014684057354559
304 => 0.014749337284509
305 => 0.014577613893589
306 => 0.01445327484144
307 => 0.014234976425697
308 => 0.014598011556175
309 => 0.014704174091622
310 => 0.014597453929571
311 => 0.014572724536142
312 => 0.01452586238028
313 => 0.01458266656404
314 => 0.014703595907655
315 => 0.014646567862421
316 => 0.014684235891003
317 => 0.01454068420915
318 => 0.014846005613811
319 => 0.015330929484011
320 => 0.015332488593546
321 => 0.01527546024091
322 => 0.015252125467704
323 => 0.015310640018279
324 => 0.015342381761573
325 => 0.015531607088399
326 => 0.015734653403153
327 => 0.016682181958061
328 => 0.01641611973144
329 => 0.01725682343408
330 => 0.017921710911156
331 => 0.018121081593525
401 => 0.017937669946861
402 => 0.017310228611325
403 => 0.017279443346036
404 => 0.018217105600226
405 => 0.017952173065766
406 => 0.0179206601838
407 => 0.017585416361539
408 => 0.01778358698125
409 => 0.017740244159732
410 => 0.017671825395561
411 => 0.018049921133286
412 => 0.018757682601467
413 => 0.018647371339306
414 => 0.018565029099295
415 => 0.018204229373032
416 => 0.018421511395779
417 => 0.018344141429242
418 => 0.018676571905679
419 => 0.018479647455674
420 => 0.017950165941249
421 => 0.018034487617615
422 => 0.018021742565864
423 => 0.018284034827777
424 => 0.018205301201245
425 => 0.018006368561654
426 => 0.018755263549712
427 => 0.01870663447476
428 => 0.018775579384888
429 => 0.018805931066518
430 => 0.019261770248739
501 => 0.019448512976468
502 => 0.019490906845054
503 => 0.019668297993196
504 => 0.019486493191689
505 => 0.020213842022344
506 => 0.020697486552749
507 => 0.021259264562935
508 => 0.022080173227509
509 => 0.022388842479219
510 => 0.022333084141689
511 => 0.022955487722269
512 => 0.024073933121316
513 => 0.022559153934414
514 => 0.024154220096393
515 => 0.023649240565435
516 => 0.022451943181727
517 => 0.022374851345425
518 => 0.023185675034581
519 => 0.024984003938239
520 => 0.02453354294435
521 => 0.024984740731051
522 => 0.024458394546083
523 => 0.024432257021605
524 => 0.024959177271674
525 => 0.026190355156889
526 => 0.025605468693636
527 => 0.024766890528519
528 => 0.02538608359592
529 => 0.024849681257324
530 => 0.023641016658906
531 => 0.024533198485317
601 => 0.023936621905872
602 => 0.024110734667509
603 => 0.025364649903435
604 => 0.0252137755048
605 => 0.025409020947226
606 => 0.025064417851807
607 => 0.024742504221764
608 => 0.02414162852567
609 => 0.02396373885487
610 => 0.024012901160079
611 => 0.023963714492473
612 => 0.023627530062841
613 => 0.02355493106727
614 => 0.023433929560684
615 => 0.023471432987214
616 => 0.023243914754592
617 => 0.023673288667214
618 => 0.023752984249027
619 => 0.02406544677582
620 => 0.024097887671906
621 => 0.0249680913614
622 => 0.024488797792406
623 => 0.024810349298703
624 => 0.024781586705419
625 => 0.022477892246555
626 => 0.022795321017319
627 => 0.02328914056999
628 => 0.023066675530868
629 => 0.022752162014352
630 => 0.022498175486617
701 => 0.022113359925643
702 => 0.022654980437986
703 => 0.023367153816797
704 => 0.024115949564058
705 => 0.025015578591352
706 => 0.024814791865296
707 => 0.024099131625162
708 => 0.024131235620744
709 => 0.024329689888977
710 => 0.024072673580143
711 => 0.023996874453114
712 => 0.024319276252898
713 => 0.024321496456904
714 => 0.024025768132133
715 => 0.023697120216861
716 => 0.023695743170096
717 => 0.023637263447936
718 => 0.024468797958741
719 => 0.024926057862063
720 => 0.024978481973067
721 => 0.024922529301699
722 => 0.024944063264226
723 => 0.024677993801518
724 => 0.025286149692821
725 => 0.025844253679064
726 => 0.025694669888598
727 => 0.025470422522101
728 => 0.02529179869347
729 => 0.02565259179132
730 => 0.025636526242614
731 => 0.025839379127624
801 => 0.025830176549025
802 => 0.025761964753479
803 => 0.025694672324656
804 => 0.025961479198545
805 => 0.025884643103652
806 => 0.025807687661082
807 => 0.025653341739717
808 => 0.025674319913845
809 => 0.025450111266818
810 => 0.025346382087613
811 => 0.023786544113477
812 => 0.023369704437612
813 => 0.023500850685193
814 => 0.023544027435108
815 => 0.023362618273977
816 => 0.023622712410849
817 => 0.023582177015125
818 => 0.023739876527473
819 => 0.023641352718675
820 => 0.023645396170154
821 => 0.023935133684338
822 => 0.024019245717337
823 => 0.023976465658486
824 => 0.024006427345291
825 => 0.02469688177166
826 => 0.02459872123172
827 => 0.024546575401289
828 => 0.024561020152689
829 => 0.024737446062136
830 => 0.024786835684284
831 => 0.024577568384697
901 => 0.024676260052942
902 => 0.025096476650492
903 => 0.025243528677434
904 => 0.025712848158458
905 => 0.025513472901431
906 => 0.025879434814464
907 => 0.027004276969518
908 => 0.027902878716132
909 => 0.027076487413658
910 => 0.028726655085072
911 => 0.030011547319761
912 => 0.029962231015694
913 => 0.029738180334483
914 => 0.028275364685917
915 => 0.026929259916753
916 => 0.028055333714786
917 => 0.028058204308476
918 => 0.02796147357056
919 => 0.027360687265006
920 => 0.027940567509406
921 => 0.027986596297391
922 => 0.027960832416162
923 => 0.027500210964312
924 => 0.026796927144412
925 => 0.026934347119397
926 => 0.027159443841714
927 => 0.026733288786272
928 => 0.026597106424413
929 => 0.026850295344863
930 => 0.02766612280056
1001 => 0.027511895345828
1002 => 0.027507867843702
1003 => 0.028167718297669
1004 => 0.027695407777269
1005 => 0.026936080425361
1006 => 0.026744340254707
1007 => 0.02606379182054
1008 => 0.026533849048049
1009 => 0.02655076557084
1010 => 0.026293320031202
1011 => 0.026956970712039
1012 => 0.026950855054182
1013 => 0.027580892604269
1014 => 0.028785287768737
1015 => 0.028429088853917
1016 => 0.028014868270313
1017 => 0.028059905532842
1018 => 0.028553853141346
1019 => 0.028255201141517
1020 => 0.028362598482931
1021 => 0.028553690582607
1022 => 0.028668981190891
1023 => 0.028043316988532
1024 => 0.027897444733983
1025 => 0.027599041295382
1026 => 0.027521193408214
1027 => 0.027764236782563
1028 => 0.027700203440272
1029 => 0.026549343802604
1030 => 0.026429072567145
1031 => 0.026432761114229
1101 => 0.026130333374082
1102 => 0.025669058479384
1103 => 0.026881261361358
1104 => 0.026783904505167
1105 => 0.026676430070754
1106 => 0.026689595075729
1107 => 0.027215771261426
1108 => 0.026910562501188
1109 => 0.027722010013014
1110 => 0.027555200798928
1111 => 0.027384113557929
1112 => 0.027360464089778
1113 => 0.02729461009847
1114 => 0.027068772259087
1115 => 0.026796059497282
1116 => 0.026615990909963
1117 => 0.024551844698484
1118 => 0.024934938228749
1119 => 0.025375652415244
1120 => 0.02552778518637
1121 => 0.025267551554091
1122 => 0.027079047869032
1123 => 0.027410025701785
1124 => 0.026407472257227
1125 => 0.026219935441738
1126 => 0.027091342751434
1127 => 0.026565777618476
1128 => 0.026802439565666
1129 => 0.026290905883005
1130 => 0.027330302834037
1201 => 0.027322384370736
1202 => 0.02691803548094
1203 => 0.027259788393734
1204 => 0.02720040041501
1205 => 0.026743891514297
1206 => 0.02734477498045
1207 => 0.027345073011152
1208 => 0.026955895996026
1209 => 0.026501422444163
1210 => 0.026420173307276
1211 => 0.026358962996917
1212 => 0.026787385581578
1213 => 0.027171507931343
1214 => 0.027886264392249
1215 => 0.028065971148715
1216 => 0.02876737858296
1217 => 0.028349724606775
1218 => 0.028534865204894
1219 => 0.028735861513887
1220 => 0.028832226535814
1221 => 0.028675204903817
1222 => 0.029764779360017
1223 => 0.029856772827819
1224 => 0.029887617441832
1225 => 0.029520219065623
1226 => 0.029846554814357
1227 => 0.029693873124629
1228 => 0.030091108465108
1229 => 0.03015340003865
1230 => 0.030100641291947
1231 => 0.030120413620595
]
'min_raw' => 0.013506988371912
'max_raw' => 0.03015340003865
'avg_raw' => 0.021830194205281
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.0135069'
'max' => '$0.030153'
'avg' => '$0.02183'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 0.0020827502014672
'max_diff' => -0.002877432212836
'year' => 2031
]
6 => [
'items' => [
101 => 0.029190654036334
102 => 0.029142441097017
103 => 0.028485054248403
104 => 0.028752944248372
105 => 0.028252136733732
106 => 0.028410947955514
107 => 0.028480950428866
108 => 0.028444385109392
109 => 0.028768090347031
110 => 0.028492874766427
111 => 0.027766535599582
112 => 0.027039998542116
113 => 0.027030877461184
114 => 0.026839593078398
115 => 0.026701329505126
116 => 0.026727963974502
117 => 0.026821827318571
118 => 0.026695873996934
119 => 0.026722752524101
120 => 0.027169115165759
121 => 0.027258630010231
122 => 0.026954423593008
123 => 0.025732990931082
124 => 0.025433248292113
125 => 0.025648697356849
126 => 0.025545726580602
127 => 0.020617395112759
128 => 0.021775233488155
129 => 0.021087285241971
130 => 0.021404323444789
131 => 0.02070210642877
201 => 0.021037241195162
202 => 0.020975354040971
203 => 0.022837123885679
204 => 0.022808054910335
205 => 0.022821968690536
206 => 0.02215782770936
207 => 0.023215822325766
208 => 0.023737028518064
209 => 0.023640567123323
210 => 0.0236648443782
211 => 0.023247680705019
212 => 0.022826007746767
213 => 0.022358307541063
214 => 0.023227236713769
215 => 0.02313062662288
216 => 0.023352215412166
217 => 0.023915778093006
218 => 0.023998764838526
219 => 0.024110299866073
220 => 0.024070322498301
221 => 0.025022745587949
222 => 0.024907400867503
223 => 0.025185348456837
224 => 0.024613589177642
225 => 0.023966589281343
226 => 0.024089562809609
227 => 0.024077719469947
228 => 0.023926940162888
229 => 0.023790823346274
301 => 0.023564227197287
302 => 0.024281210942603
303 => 0.024252102711909
304 => 0.024723331132224
305 => 0.024640036931664
306 => 0.024083777874781
307 => 0.02410364477582
308 => 0.024237259233015
309 => 0.024699700394951
310 => 0.024836984417208
311 => 0.024773388988276
312 => 0.024923914651428
313 => 0.025042883998158
314 => 0.024938855369693
315 => 0.026411681371789
316 => 0.025800061330648
317 => 0.026098160683075
318 => 0.026169255622126
319 => 0.025987147430714
320 => 0.026026640176625
321 => 0.026086460925553
322 => 0.026449680798937
323 => 0.027402874845213
324 => 0.027825037999698
325 => 0.029095136679128
326 => 0.027789983226513
327 => 0.027712540821897
328 => 0.027941323947368
329 => 0.028687006325792
330 => 0.029291311855121
331 => 0.029491794862422
401 => 0.02951829200145
402 => 0.029894411451005
403 => 0.030109996105277
404 => 0.029848740656905
405 => 0.029627354018996
406 => 0.028834374561526
407 => 0.028926164092939
408 => 0.02955850294108
409 => 0.030451718808651
410 => 0.031218190946299
411 => 0.030949799117946
412 => 0.032997439313179
413 => 0.033200454474677
414 => 0.033172404343624
415 => 0.033634903094221
416 => 0.032716937260518
417 => 0.032324489081859
418 => 0.029675220322957
419 => 0.03041955678194
420 => 0.03150149353842
421 => 0.031358295151645
422 => 0.030572563758837
423 => 0.031217594898579
424 => 0.031004327431792
425 => 0.030836114532261
426 => 0.031606730434686
427 => 0.030759406594814
428 => 0.031493040834948
429 => 0.030552147333501
430 => 0.03095102510921
501 => 0.030724602792171
502 => 0.030871125780571
503 => 0.03001455538434
504 => 0.030476739978075
505 => 0.029995326985719
506 => 0.029995098733279
507 => 0.02998447151479
508 => 0.030550851765385
509 => 0.030569321405023
510 => 0.030150765544081
511 => 0.030090445105447
512 => 0.030313481382296
513 => 0.0300523643154
514 => 0.030174539347549
515 => 0.030056064872662
516 => 0.030029393772911
517 => 0.029816873912378
518 => 0.029725314513105
519 => 0.029761217312755
520 => 0.029638662548388
521 => 0.029564818869857
522 => 0.029969782148512
523 => 0.029753426604899
524 => 0.029936622558478
525 => 0.029727847648202
526 => 0.029004142850287
527 => 0.028587932567966
528 => 0.027220921292174
529 => 0.027608603994217
530 => 0.027865638026757
531 => 0.027780688280536
601 => 0.027963193206607
602 => 0.027974397526825
603 => 0.027915063314941
604 => 0.027846361898764
605 => 0.027812921848795
606 => 0.028062156584342
607 => 0.028206845737183
608 => 0.027891434830595
609 => 0.027817538468249
610 => 0.028136436309123
611 => 0.028330963807835
612 => 0.029767245562764
613 => 0.02966084117123
614 => 0.029927895313174
615 => 0.029897829115071
616 => 0.030177744400888
617 => 0.030635287592174
618 => 0.029704974353202
619 => 0.029866444563676
620 => 0.029826855796959
621 => 0.030259075571239
622 => 0.030260424914196
623 => 0.030001287568536
624 => 0.030141770127642
625 => 0.030063356617086
626 => 0.030205060428881
627 => 0.02965942007571
628 => 0.030323951127636
629 => 0.030700697412643
630 => 0.030705928535176
701 => 0.030884503284226
702 => 0.031065945571613
703 => 0.031414208241959
704 => 0.031056232714757
705 => 0.030412269589535
706 => 0.030458761647188
707 => 0.030081206302487
708 => 0.030087553076043
709 => 0.030053673501399
710 => 0.030155348655241
711 => 0.029681732054288
712 => 0.02979288892388
713 => 0.029637268655517
714 => 0.029866106275605
715 => 0.029619914824604
716 => 0.029826836706057
717 => 0.029916137330523
718 => 0.030245658557308
719 => 0.029571244271483
720 => 0.028196067888852
721 => 0.028485146636883
722 => 0.0280575764619
723 => 0.028097149709469
724 => 0.028177093967594
725 => 0.027917968470876
726 => 0.027967401449667
727 => 0.02796563535581
728 => 0.027950416113072
729 => 0.027883007563475
730 => 0.027785251830183
731 => 0.02817468058399
801 => 0.028240852117779
802 => 0.028387943240473
803 => 0.028825586648751
804 => 0.028781855751922
805 => 0.028853182659028
806 => 0.028697476421299
807 => 0.028104372475261
808 => 0.02813658087304
809 => 0.027734941636631
810 => 0.02837767242219
811 => 0.028225465288538
812 => 0.028127336359306
813 => 0.028100560971807
814 => 0.028539289213444
815 => 0.028670563579564
816 => 0.028588762204093
817 => 0.028420985196474
818 => 0.028743166649922
819 => 0.02882936881512
820 => 0.028848666300895
821 => 0.029419510064238
822 => 0.028880570125982
823 => 0.029010298325723
824 => 0.030022400707549
825 => 0.029104563507814
826 => 0.029590762342726
827 => 0.029566965439813
828 => 0.029815688311683
829 => 0.029546562904644
830 => 0.029549899036608
831 => 0.029770748096881
901 => 0.029460605422065
902 => 0.029383809734235
903 => 0.029277717041518
904 => 0.029509366554741
905 => 0.029648229961313
906 => 0.030767367034344
907 => 0.031490380622373
908 => 0.031458992695704
909 => 0.031745819589722
910 => 0.031616601446934
911 => 0.031199321977846
912 => 0.031911567149768
913 => 0.031686182975768
914 => 0.031704763373231
915 => 0.03170407180991
916 => 0.031853932582193
917 => 0.031747742490492
918 => 0.03153843091956
919 => 0.031677381708507
920 => 0.032090015875862
921 => 0.033370844992496
922 => 0.034087613934892
923 => 0.033327694602162
924 => 0.033851876782154
925 => 0.033537554259367
926 => 0.033480432506691
927 => 0.033809657652485
928 => 0.034139459063315
929 => 0.034118452139215
930 => 0.033879033250443
1001 => 0.033743791595205
1002 => 0.034767886717946
1003 => 0.035522422559377
1004 => 0.035470968273464
1005 => 0.035698070757654
1006 => 0.036364850675252
1007 => 0.036425812674559
1008 => 0.036418132863842
1009 => 0.036267032187832
1010 => 0.036923563609021
1011 => 0.037471253671148
1012 => 0.036232056747054
1013 => 0.03670392671347
1014 => 0.036915764344095
1015 => 0.037226804835246
1016 => 0.037751582280255
1017 => 0.038321629775879
1018 => 0.038402240742012
1019 => 0.038345043403951
1020 => 0.037969081756888
1021 => 0.03859283452868
1022 => 0.038958214273593
1023 => 0.039175789550122
1024 => 0.039727524250326
1025 => 0.036917072581184
1026 => 0.034927695201254
1027 => 0.03461702519642
1028 => 0.035248784867744
1029 => 0.035415374854883
1030 => 0.035348222639953
1031 => 0.033108997532564
1101 => 0.034605236139648
1102 => 0.036215063073555
1103 => 0.036276903082313
1104 => 0.037082816105321
1105 => 0.037345254421103
1106 => 0.037994120038059
1107 => 0.037953533317052
1108 => 0.038111521769074
1109 => 0.038075202959932
1110 => 0.039277089880568
1111 => 0.040602949635963
1112 => 0.04055703932861
1113 => 0.040366431301911
1114 => 0.040649516725057
1115 => 0.042017946080391
1116 => 0.041891963033985
1117 => 0.042014344832358
1118 => 0.043627800163596
1119 => 0.045725521605551
1120 => 0.044750919387973
1121 => 0.046865525765882
1122 => 0.048196558390308
1123 => 0.050498441682911
1124 => 0.050210234557663
1125 => 0.051106340831473
1126 => 0.049694283652826
1127 => 0.046451914946814
1128 => 0.045938797687799
1129 => 0.046966071434546
1130 => 0.049491523701017
1201 => 0.046886535955353
1202 => 0.047413521583558
1203 => 0.047261749687183
1204 => 0.047253662407814
1205 => 0.047562320967979
1206 => 0.047114595627912
1207 => 0.045290482048229
1208 => 0.046126462552229
1209 => 0.045803650332554
1210 => 0.046161834557529
1211 => 0.048094807093308
1212 => 0.04724019385893
1213 => 0.046339928239654
1214 => 0.04746906111116
1215 => 0.048906835268737
1216 => 0.048816861945884
1217 => 0.048642276093619
1218 => 0.049626407401821
1219 => 0.051251903999553
1220 => 0.051691269198146
1221 => 0.052015599605321
1222 => 0.052060319288864
1223 => 0.052520959822478
1224 => 0.050043979576872
1225 => 0.053975010840012
1226 => 0.05465379134661
1227 => 0.054526208743939
1228 => 0.055280644709571
1229 => 0.055058670510289
1230 => 0.054737064722214
1231 => 0.055933006200873
]
'min_raw' => 0.020617395112759
'max_raw' => 0.055933006200873
'avg_raw' => 0.038275200656816
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.020617'
'max' => '$0.055933'
'avg' => '$0.038275'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.0071104067408469
'max_diff' => 0.025779606162223
'year' => 2032
]
7 => [
'items' => [
101 => 0.054561955803091
102 => 0.052615922373885
103 => 0.051548289946445
104 => 0.052954234450349
105 => 0.053812795698181
106 => 0.054380250068248
107 => 0.054551961417764
108 => 0.05023626050228
109 => 0.04791033706858
110 => 0.049401227322816
111 => 0.051220216328732
112 => 0.050033875001102
113 => 0.050080377335103
114 => 0.04838896636692
115 => 0.051369868668349
116 => 0.050935576276365
117 => 0.053188685974227
118 => 0.052650963262497
119 => 0.054488286755888
120 => 0.054004457904663
121 => 0.056012804415593
122 => 0.056813988212614
123 => 0.058159300502114
124 => 0.059148917698676
125 => 0.059730039844858
126 => 0.059695151450935
127 => 0.061997846908011
128 => 0.060640027847025
129 => 0.058934287093045
130 => 0.058903435624349
131 => 0.059786862931368
201 => 0.061638284210436
202 => 0.062118330811014
203 => 0.062386611371575
204 => 0.061975730354162
205 => 0.06050191507923
206 => 0.059865529115928
207 => 0.060407748394538
208 => 0.059744660810232
209 => 0.06088933601026
210 => 0.062461219549329
211 => 0.062136631814413
212 => 0.063221679947326
213 => 0.064344590614498
214 => 0.065950403301628
215 => 0.066370222201116
216 => 0.067064166877686
217 => 0.067778463898828
218 => 0.068007876851174
219 => 0.068445897359861
220 => 0.068443588775568
221 => 0.069763593060678
222 => 0.071219598664284
223 => 0.071769207073038
224 => 0.073033001303384
225 => 0.070868797972549
226 => 0.072510371059563
227 => 0.07399111107529
228 => 0.072225711784795
301 => 0.074658903421463
302 => 0.074753378738984
303 => 0.076179843867287
304 => 0.0747338481821
305 => 0.073875220560017
306 => 0.076354046332612
307 => 0.077553472041691
308 => 0.077192195256866
309 => 0.074442861085915
310 => 0.072842630673932
311 => 0.068654519024378
312 => 0.073615518186234
313 => 0.076031876163645
314 => 0.074436603302503
315 => 0.075241166142182
316 => 0.079630600115095
317 => 0.081301812377177
318 => 0.080954211909319
319 => 0.081012950666396
320 => 0.081914706468368
321 => 0.085913588300299
322 => 0.083517365613251
323 => 0.085349188072748
324 => 0.086320780100138
325 => 0.08722324892259
326 => 0.085007070722849
327 => 0.082123855447108
328 => 0.081210620140138
329 => 0.074277984855854
330 => 0.073917111082398
331 => 0.073714541697763
401 => 0.072437370381646
402 => 0.071433863573843
403 => 0.07063583770246
404 => 0.068541579505252
405 => 0.069248330169215
406 => 0.065910519708522
407 => 0.068045932556534
408 => 0.062718706467015
409 => 0.067155378653744
410 => 0.064740699693238
411 => 0.066362091672636
412 => 0.066356434788764
413 => 0.063370938091898
414 => 0.061648965902873
415 => 0.06274627360188
416 => 0.063922674559609
417 => 0.064113541657113
418 => 0.065638776206016
419 => 0.066064436383808
420 => 0.064774666172925
421 => 0.062608311547201
422 => 0.063111506317468
423 => 0.061638768676914
424 => 0.059057852609877
425 => 0.060911511587694
426 => 0.061544432262353
427 => 0.061823966088978
428 => 0.059285931557261
429 => 0.058488426003985
430 => 0.05806384073914
501 => 0.062280683160429
502 => 0.062511691307251
503 => 0.06132982096685
504 => 0.066671986975004
505 => 0.065462890277862
506 => 0.066813747524453
507 => 0.063065846666304
508 => 0.063209021526304
509 => 0.06143470519728
510 => 0.062428203781673
511 => 0.061726031004179
512 => 0.062347938913999
513 => 0.062720707950923
514 => 0.064494733132095
515 => 0.067175635171658
516 => 0.064229752928555
517 => 0.062946189849424
518 => 0.063742505164684
519 => 0.065863197786426
520 => 0.069076155664624
521 => 0.067174019933927
522 => 0.068018155470851
523 => 0.068202561532693
524 => 0.06679999706577
525 => 0.069127870217116
526 => 0.070375396350531
527 => 0.071655100024254
528 => 0.072766230867666
529 => 0.071143958235682
530 => 0.072880022495552
531 => 0.071481061158693
601 => 0.070226048217565
602 => 0.07022795155415
603 => 0.069440663603368
604 => 0.06791519399406
605 => 0.067633873993201
606 => 0.069097336164469
607 => 0.070270894235443
608 => 0.070367554099133
609 => 0.071017296146814
610 => 0.071401806797757
611 => 0.075170533893879
612 => 0.076686347108485
613 => 0.078539854814429
614 => 0.079261900523865
615 => 0.081434999241552
616 => 0.079680045536571
617 => 0.079300350263322
618 => 0.074029123589384
619 => 0.074892286661942
620 => 0.076274294023955
621 => 0.074051912381759
622 => 0.075461502011992
623 => 0.07573978486419
624 => 0.073976396703962
625 => 0.074918298511844
626 => 0.072416886564531
627 => 0.067230159116539
628 => 0.069133644527471
629 => 0.070535250496178
630 => 0.068534985962063
701 => 0.072120382718536
702 => 0.070025867951016
703 => 0.069362007324152
704 => 0.066772050335354
705 => 0.06799441033748
706 => 0.069647669742865
707 => 0.068626147642372
708 => 0.07074595938321
709 => 0.073748178141377
710 => 0.075887738013665
711 => 0.076051986853638
712 => 0.074676393195136
713 => 0.076880790811807
714 => 0.076896847441849
715 => 0.074410277925015
716 => 0.072887267941231
717 => 0.072541236868475
718 => 0.073405690331608
719 => 0.074455296422763
720 => 0.07611023268681
721 => 0.077110276010947
722 => 0.0797178586183
723 => 0.080423395706598
724 => 0.081198567061157
725 => 0.082234435044841
726 => 0.083478260150353
727 => 0.080756841630496
728 => 0.080864968661648
729 => 0.078330821416561
730 => 0.075622721651709
731 => 0.07767783180383
801 => 0.080364614947882
802 => 0.079748263926005
803 => 0.079678911845135
804 => 0.079795542808495
805 => 0.079330834266143
806 => 0.077228974751983
807 => 0.076173434062309
808 => 0.077535350849138
809 => 0.078259149009396
810 => 0.079381696834122
811 => 0.079243319120614
812 => 0.082134881764273
813 => 0.083258455571284
814 => 0.082970997311017
815 => 0.083023896548975
816 => 0.085058073257687
817 => 0.087320496118123
818 => 0.089439553679912
819 => 0.091595150047403
820 => 0.088996494492034
821 => 0.08767705746381
822 => 0.089038379680375
823 => 0.088316042950268
824 => 0.092466804060454
825 => 0.092754193753945
826 => 0.096904654716857
827 => 0.10084393639836
828 => 0.09836974415377
829 => 0.10070279600035
830 => 0.10322618178894
831 => 0.10809420237971
901 => 0.10645482430377
902 => 0.10519908638992
903 => 0.10401242012903
904 => 0.10648168423999
905 => 0.1096583530713
906 => 0.1103425771118
907 => 0.11145128145113
908 => 0.11028561440425
909 => 0.1116895319682
910 => 0.11664597788159
911 => 0.11530670244404
912 => 0.11340471602344
913 => 0.11731735404993
914 => 0.11873332254173
915 => 0.1286713309656
916 => 0.14121847711939
917 => 0.13602387622272
918 => 0.13279941981743
919 => 0.1335572435578
920 => 0.13813903658547
921 => 0.13961056308711
922 => 0.13561044679004
923 => 0.13702335549067
924 => 0.14480862134527
925 => 0.14898516669502
926 => 0.14331285712518
927 => 0.12766317998903
928 => 0.11323346295634
929 => 0.11706087369204
930 => 0.11662696409299
1001 => 0.12499126102206
1002 => 0.11527476116778
1003 => 0.11543836210597
1004 => 0.12397562383759
1005 => 0.12169802877331
1006 => 0.11800861646152
1007 => 0.11326039974917
1008 => 0.1044828819995
1009 => 0.09670838974942
1010 => 0.11195595941045
1011 => 0.11129845648076
1012 => 0.1103462948021
1013 => 0.11246522758331
1014 => 0.12275416369934
1015 => 0.12251697041983
1016 => 0.12100806779266
1017 => 0.12215255713651
1018 => 0.11780798194602
1019 => 0.11892767789675
1020 => 0.11323117721544
1021 => 0.11580623343028
1022 => 0.1180007006397
1023 => 0.11844127242163
1024 => 0.11943390314249
1025 => 0.11095198231398
1026 => 0.11476011574987
1027 => 0.1169970373696
1028 => 0.10689054411174
1029 => 0.11679726449275
1030 => 0.11080433094293
1031 => 0.10877023928528
1101 => 0.1115088757311
1102 => 0.11044162644475
1103 => 0.10952406817933
1104 => 0.10901205490157
1105 => 0.11102300725511
1106 => 0.11092919392421
1107 => 0.10763888556479
1108 => 0.10334681244004
1109 => 0.10478737306321
1110 => 0.10426400388348
1111 => 0.1023672464602
1112 => 0.10364543194813
1113 => 0.098016949934168
1114 => 0.088333439172185
1115 => 0.094730662995507
1116 => 0.09448437683715
1117 => 0.094360188187918
1118 => 0.099167525084865
1119 => 0.098705410566356
1120 => 0.097866668190224
1121 => 0.10235184229871
1122 => 0.10071469341501
1123 => 0.1057600005138
1124 => 0.10908316607906
1125 => 0.10824030379857
1126 => 0.11136575707495
1127 => 0.10482056067044
1128 => 0.10699461236832
1129 => 0.10744268141014
1130 => 0.10229649594643
1201 => 0.098781018216651
1202 => 0.098546575931454
1203 => 0.092451222010688
1204 => 0.095707310875184
1205 => 0.098572534329827
1206 => 0.097200314645375
1207 => 0.096765910887175
1208 => 0.098985185477141
1209 => 0.099157642119583
1210 => 0.095225612395772
1211 => 0.09604320588654
1212 => 0.099452706656649
1213 => 0.095957295215011
1214 => 0.089166281756125
1215 => 0.087482016525215
1216 => 0.087257304496244
1217 => 0.082689443609255
1218 => 0.087594567181572
1219 => 0.085453349293117
1220 => 0.092217430947017
1221 => 0.088353823782807
1222 => 0.088187271400051
1223 => 0.087935503045594
1224 => 0.084003756484206
1225 => 0.084864559105621
1226 => 0.087725998123145
1227 => 0.088746991801015
1228 => 0.088640493795659
1229 => 0.087711975510906
1230 => 0.088137046426883
1231 => 0.086767744901997
]
'min_raw' => 0.04791033706858
'max_raw' => 0.14898516669502
'avg_raw' => 0.098447751881802
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.04791'
'max' => '$0.148985'
'avg' => '$0.098447'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.027292941955821
'max_diff' => 0.09305216049415
'year' => 2033
]
8 => [
'items' => [
101 => 0.086284216034014
102 => 0.084758065921564
103 => 0.082515046865992
104 => 0.082826952422904
105 => 0.078382944755954
106 => 0.075961613517661
107 => 0.075291420943534
108 => 0.074395211424137
109 => 0.075392650193473
110 => 0.078370355440594
111 => 0.074778611157157
112 => 0.068620817514773
113 => 0.06899091140505
114 => 0.06982240249464
115 => 0.068272924350052
116 => 0.066806473324043
117 => 0.068081433514226
118 => 0.065472295171188
119 => 0.070137704398091
120 => 0.070011518153161
121 => 0.071750494205979
122 => 0.072837911619187
123 => 0.070331766537311
124 => 0.069701477826556
125 => 0.070060518921227
126 => 0.06412636940024
127 => 0.071265547588844
128 => 0.07132728749828
129 => 0.070798632910304
130 => 0.074600024898338
131 => 0.082622147676984
201 => 0.079603902398516
202 => 0.078435146599747
203 => 0.076213340971931
204 => 0.079173765053231
205 => 0.078946450673597
206 => 0.077918448842474
207 => 0.07729671012745
208 => 0.078442282773432
209 => 0.077154760999121
210 => 0.076923486709723
211 => 0.075522216144877
212 => 0.075022026306976
213 => 0.074651705664124
214 => 0.0742440190233
215 => 0.075143274163777
216 => 0.07310544370859
217 => 0.070648019950617
218 => 0.070443711754836
219 => 0.07100782464635
220 => 0.07075824668512
221 => 0.070442516871577
222 => 0.069839702673624
223 => 0.069660860578179
224 => 0.070242010626526
225 => 0.069585926105095
226 => 0.070554014555239
227 => 0.070290748063577
228 => 0.068820162841984
301 => 0.066987269175497
302 => 0.066970952577241
303 => 0.066576058643344
304 => 0.066073101845826
305 => 0.06593319077085
306 => 0.067974059923162
307 => 0.072198597990374
308 => 0.071369220083152
309 => 0.071968530619187
310 => 0.074916545297039
311 => 0.075853630513234
312 => 0.075188509622859
313 => 0.074278051125243
314 => 0.074318106678483
315 => 0.077429418979366
316 => 0.077623467711159
317 => 0.078113766253905
318 => 0.078743938439687
319 => 0.075295830671039
320 => 0.074155701112663
321 => 0.073615444475925
322 => 0.071951663140402
323 => 0.073745908668932
324 => 0.072700478636712
325 => 0.072841542865034
326 => 0.072749674601281
327 => 0.072799840885395
328 => 0.07013640032113
329 => 0.071106818076433
330 => 0.069493310342623
331 => 0.067333004611794
401 => 0.067325762509483
402 => 0.067854494276601
403 => 0.067539983932243
404 => 0.066693644682377
405 => 0.066813863178212
406 => 0.065760622654853
407 => 0.066941745647283
408 => 0.066975616028445
409 => 0.066520819340155
410 => 0.068340502273558
411 => 0.069086027856093
412 => 0.068786670933171
413 => 0.069065024176356
414 => 0.071403684479614
415 => 0.071784988151948
416 => 0.071954338055692
417 => 0.071727431619238
418 => 0.069107770593561
419 => 0.069223963699708
420 => 0.068371415782134
421 => 0.06765110263107
422 => 0.067679911379568
423 => 0.06805024597337
424 => 0.06966751886434
425 => 0.073070974319941
426 => 0.073200132966588
427 => 0.073356677014147
428 => 0.072719933699989
429 => 0.072527885823627
430 => 0.072781246544312
501 => 0.074059405468249
502 => 0.077347177237379
503 => 0.076185059111275
504 => 0.075240238985307
505 => 0.076069100957458
506 => 0.07594150415368
507 => 0.074864458720911
508 => 0.074834229642824
509 => 0.072767035105085
510 => 0.072002840352225
511 => 0.071364222017749
512 => 0.070666867468055
513 => 0.070253452315461
514 => 0.070888645883672
515 => 0.071033922168112
516 => 0.069645060329933
517 => 0.06945576359341
518 => 0.070589938151132
519 => 0.070090830214568
520 => 0.070604175104605
521 => 0.070723275522485
522 => 0.070704097612091
523 => 0.070182971604137
524 => 0.070515121781405
525 => 0.069729487593431
526 => 0.068875228412449
527 => 0.06833026427721
528 => 0.067854710790211
529 => 0.068118575504129
530 => 0.067177945978804
531 => 0.066877019662521
601 => 0.070402596774962
602 => 0.073006978494264
603 => 0.072969109752617
604 => 0.07273859352689
605 => 0.07239609317397
606 => 0.07403434943413
607 => 0.073463613711058
608 => 0.073878871636158
609 => 0.073984572206417
610 => 0.074304495997613
611 => 0.074418841254587
612 => 0.074073210470125
613 => 0.072913231342225
614 => 0.070022673643005
615 => 0.068677111231107
616 => 0.068233053223066
617 => 0.068249193888272
618 => 0.067803962286786
619 => 0.067935102947304
620 => 0.067758356916872
621 => 0.06742364269469
622 => 0.068097907844109
623 => 0.068175610621365
624 => 0.068018229078622
625 => 0.068055298129233
626 => 0.066752246173858
627 => 0.066851314383946
628 => 0.066299690001201
629 => 0.066196267079368
630 => 0.064801808675221
701 => 0.062331323482296
702 => 0.063700212094976
703 => 0.062046787145725
704 => 0.061420610063967
705 => 0.064384834978493
706 => 0.064087309011875
707 => 0.063578073888455
708 => 0.062824809007018
709 => 0.062545415735204
710 => 0.060847910660819
711 => 0.060747613005187
712 => 0.061588942356544
713 => 0.061200697809268
714 => 0.060655455425184
715 => 0.058680642780366
716 => 0.056460299529594
717 => 0.056527317735755
718 => 0.057233567612871
719 => 0.059287084381357
720 => 0.058484739853709
721 => 0.057902629693057
722 => 0.057793617958134
723 => 0.059158128052219
724 => 0.061089195709052
725 => 0.061995209448435
726 => 0.061097377348753
727 => 0.060065996175352
728 => 0.060128771568417
729 => 0.060546388134605
730 => 0.060590273730931
731 => 0.059918950614745
801 => 0.060107924139654
802 => 0.059820856075216
803 => 0.058059119893647
804 => 0.058027255672649
805 => 0.057594897201858
806 => 0.057581805559193
807 => 0.056846255943503
808 => 0.056743347467654
809 => 0.055282869061032
810 => 0.056244160371006
811 => 0.055599376630334
812 => 0.054627535444033
813 => 0.054459989657206
814 => 0.054454953028537
815 => 0.055452816627155
816 => 0.056232499753872
817 => 0.055610592919559
818 => 0.055468996788544
819 => 0.056980873022102
820 => 0.056788472990324
821 => 0.056621855803652
822 => 0.060916289780519
823 => 0.057516910188966
824 => 0.056034586657246
825 => 0.054199929801138
826 => 0.054797303324629
827 => 0.054923178703272
828 => 0.050511159686087
829 => 0.048721204120297
830 => 0.04810695882317
831 => 0.04775345197052
901 => 0.047914549482333
902 => 0.046303379532274
903 => 0.047386112385005
904 => 0.04599097539706
905 => 0.045757076140862
906 => 0.048251753899617
907 => 0.048598873736051
908 => 0.047117952672141
909 => 0.048068943734514
910 => 0.047724101155533
911 => 0.046014891016432
912 => 0.045949611761217
913 => 0.045091990195058
914 => 0.043749978512278
915 => 0.043136643162266
916 => 0.042817212786759
917 => 0.042949015985267
918 => 0.042882372254857
919 => 0.042447476834374
920 => 0.042907299951289
921 => 0.041732641899601
922 => 0.041264883598556
923 => 0.041053608025884
924 => 0.040011031394216
925 => 0.041670234451132
926 => 0.041997118355434
927 => 0.042324646322006
928 => 0.045175553658182
929 => 0.045033130384247
930 => 0.046320567417671
1001 => 0.046270539981997
1002 => 0.045903342084967
1003 => 0.044354194558522
1004 => 0.044971657151663
1005 => 0.043071203264966
1006 => 0.044495152535182
1007 => 0.043845321553799
1008 => 0.044275444026705
1009 => 0.043502045037839
1010 => 0.043930075971139
1011 => 0.042074634655737
1012 => 0.040342049662178
1013 => 0.041039292440895
1014 => 0.041797275080744
1015 => 0.043440774574322
1016 => 0.042461919834523
1017 => 0.04281395301355
1018 => 0.041634700793452
1019 => 0.039201566626645
1020 => 0.039215337901792
1021 => 0.038841053218938
1022 => 0.038517616606494
1023 => 0.042574353076429
1024 => 0.04206983376888
1025 => 0.041265948282154
1026 => 0.042341980951276
1027 => 0.042626501067926
1028 => 0.042634600955659
1029 => 0.043419646614628
1030 => 0.043838625623547
1031 => 0.043912472489827
1101 => 0.045147758796248
1102 => 0.04556181047234
1103 => 0.047267230727377
1104 => 0.043803078181883
1105 => 0.043731736239858
1106 => 0.042357122937598
1107 => 0.041485321449528
1108 => 0.042416815931345
1109 => 0.043241992880557
1110 => 0.042382763485582
1111 => 0.042494960705243
1112 => 0.041341515444109
1113 => 0.041753817850321
1114 => 0.042108948225682
1115 => 0.041912866106006
1116 => 0.041619321682369
1117 => 0.043174337780916
1118 => 0.043086597678478
1119 => 0.04453466441911
1120 => 0.045663535995679
1121 => 0.047686675670821
1122 => 0.045575423951154
1123 => 0.045498481547023
1124 => 0.046250605889346
1125 => 0.045561695326022
1126 => 0.045997063021659
1127 => 0.047616531204296
1128 => 0.047650748015071
1129 => 0.047077572348726
1130 => 0.047042694557338
1201 => 0.047152779213915
1202 => 0.047797548485914
1203 => 0.047572246290519
1204 => 0.047832971694983
1205 => 0.048159012805636
1206 => 0.049507657077859
1207 => 0.049832810646079
1208 => 0.049042856048102
1209 => 0.049114180103553
1210 => 0.048818715399171
1211 => 0.048533300196899
1212 => 0.049174871890062
1213 => 0.05034735676944
1214 => 0.050340062801857
1215 => 0.050612056504024
1216 => 0.050781506327156
1217 => 0.050054103641421
1218 => 0.049580591240345
1219 => 0.049762166025295
1220 => 0.050052508060613
1221 => 0.049668012016373
1222 => 0.047294724315432
1223 => 0.048014628197692
1224 => 0.047894800990183
1225 => 0.047724152475203
1226 => 0.048448021395668
1227 => 0.048378202472399
1228 => 0.046286854655689
1229 => 0.046420735957554
1230 => 0.046294996421084
1231 => 0.046701286587305
]
'min_raw' => 0.038517616606494
'max_raw' => 0.086284216034014
'avg_raw' => 0.062400916320254
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.038517'
'max' => '$0.086284'
'avg' => '$0.06240091'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.0093927204620868
'max_diff' => -0.062700950661009
'year' => 2034
]
9 => [
'items' => [
101 => 0.045539754323716
102 => 0.045897033824957
103 => 0.046121116178848
104 => 0.046253102406771
105 => 0.046729927165835
106 => 0.04667397728385
107 => 0.046726449242614
108 => 0.047433454483236
109 => 0.051009244375403
110 => 0.051203866729698
111 => 0.050245475077368
112 => 0.050628333639034
113 => 0.049893328922598
114 => 0.050386742512845
115 => 0.050724323559946
116 => 0.0491988597212
117 => 0.049108531652847
118 => 0.048370493310491
119 => 0.048767073311045
120 => 0.048136086015052
121 => 0.04829090822649
122 => 0.047858011826152
123 => 0.048637139157947
124 => 0.049508324579042
125 => 0.049728420420565
126 => 0.049149443018735
127 => 0.04873022522334
128 => 0.047994216873552
129 => 0.049218215162265
130 => 0.049576149562556
131 => 0.049216335085237
201 => 0.049132958208741
202 => 0.048974959178439
203 => 0.049166478449929
204 => 0.049574200174942
205 => 0.049381926138864
206 => 0.049508926527126
207 => 0.049024932009303
208 => 0.050054344441977
209 => 0.051689299126657
210 => 0.051694555773311
211 => 0.051502280700804
212 => 0.051423605883758
213 => 0.051620891776377
214 => 0.051727911280032
215 => 0.052365897680716
216 => 0.053050482507149
217 => 0.056245141184353
218 => 0.055348093811428
219 => 0.058182585040938
220 => 0.06042429959086
221 => 0.061096491766085
222 => 0.060478106593964
223 => 0.058362644324649
224 => 0.058258849653371
225 => 0.061420243408859
226 => 0.060527004871927
227 => 0.06042075699022
228 => 0.05929045903749
301 => 0.059958605117678
302 => 0.05981247176883
303 => 0.059581793128584
304 => 0.060856569306123
305 => 0.063242836510423
306 => 0.062870914388361
307 => 0.062593291777212
308 => 0.061376830309886
309 => 0.062109411819722
310 => 0.061848553575744
311 => 0.062969366136605
312 => 0.062305421604589
313 => 0.060520237711485
314 => 0.060804534130505
315 => 0.060761563298695
316 => 0.061645899972396
317 => 0.061380444053536
318 => 0.060709728770123
319 => 0.06323468050854
320 => 0.063070724187166
321 => 0.06330317676524
322 => 0.063405509578943
323 => 0.064942403207478
324 => 0.065572019351977
325 => 0.065714953239761
326 => 0.066313039880775
327 => 0.065700072299288
328 => 0.068152379663716
329 => 0.069783020964959
330 => 0.071677094748387
331 => 0.074444845625014
401 => 0.075485545557752
402 => 0.075297552429847
403 => 0.077396029556601
404 => 0.081166946306852
405 => 0.076059762519709
406 => 0.081437639448782
407 => 0.079735065703612
408 => 0.075698293981809
409 => 0.075438373473337
410 => 0.078172122151225
411 => 0.084235313605223
412 => 0.082716552914145
413 => 0.084237797753632
414 => 0.082463184842693
415 => 0.082375060354053
416 => 0.084151608765558
417 => 0.088302610963654
418 => 0.086330625417329
419 => 0.08350330058598
420 => 0.085590953243402
421 => 0.08378243530841
422 => 0.079707338228577
423 => 0.082715391546467
424 => 0.08070399195722
425 => 0.081291025289246
426 => 0.085518688052734
427 => 0.085010004484023
428 => 0.085668288124766
429 => 0.084506434729138
430 => 0.083421080450157
501 => 0.081395186088973
502 => 0.080795418644012
503 => 0.080961172788427
504 => 0.08079533650449
505 => 0.079661867228338
506 => 0.079417094646071
507 => 0.079009129618561
508 => 0.079135575039511
509 => 0.078368481433413
510 => 0.079816145557746
511 => 0.080084844775995
512 => 0.081138334000515
513 => 0.081247710746621
514 => 0.08418166324143
515 => 0.082565691510358
516 => 0.083649824863848
517 => 0.083552849772453
518 => 0.075785783065583
519 => 0.07685601632838
520 => 0.078520963427593
521 => 0.07777090701618
522 => 0.076710502736612
523 => 0.07585416942558
524 => 0.074556736894791
525 => 0.076382848266892
526 => 0.078783990535911
527 => 0.081308607677052
528 => 0.084341769752665
529 => 0.083664803287287
530 => 0.081251904821872
531 => 0.081360145684407
601 => 0.082029248105389
602 => 0.081162699675852
603 => 0.080907137626946
604 => 0.081994137804292
605 => 0.082001623377109
606 => 0.081004554683049
607 => 0.079896495291248
608 => 0.079891852481937
609 => 0.07969468401575
610 => 0.082498260674816
611 => 0.08403994436373
612 => 0.084216695914117
613 => 0.084028047576106
614 => 0.084100650834222
615 => 0.083203579064324
616 => 0.08525401911194
617 => 0.087135705667136
618 => 0.086631373473974
619 => 0.085875307821378
620 => 0.085273065112029
621 => 0.0864895042312
622 => 0.086435338112076
623 => 0.087119270776624
624 => 0.087088243640373
625 => 0.086858262809294
626 => 0.086631381687313
627 => 0.087530939690489
628 => 0.087271881432034
629 => 0.08701242078455
630 => 0.086492032734582
701 => 0.086562762113303
702 => 0.085806827006102
703 => 0.085457096836273
704 => 0.080197994202065
705 => 0.078792590132069
706 => 0.079234758862128
707 => 0.079380332288969
708 => 0.078768698636632
709 => 0.079645624178289
710 => 0.079508956261516
711 => 0.080040651177624
712 => 0.079708471277549
713 => 0.079722104056518
714 => 0.080698974314414
715 => 0.080982563906185
716 => 0.080838327950962
717 => 0.080939345869881
718 => 0.083267261174372
719 => 0.082936306060615
720 => 0.082760492752611
721 => 0.082809194240457
722 => 0.083404026511822
723 => 0.083570547071166
724 => 0.082864987760033
725 => 0.083197733609953
726 => 0.084614523207178
727 => 0.08511031938286
728 => 0.086692662779972
729 => 0.086020455180968
730 => 0.087254321321404
731 => 0.09104680518114
801 => 0.094076503708219
802 => 0.09129026773513
803 => 0.09685392325033
804 => 0.1011860271279
805 => 0.10101975376558
806 => 0.10026435125116
807 => 0.095332366161489
808 => 0.090793879950221
809 => 0.09459051638025
810 => 0.094600194787295
811 => 0.094274060350886
812 => 0.092248467376151
813 => 0.094203574106092
814 => 0.09435876337841
815 => 0.094271898654071
816 => 0.092718881269595
817 => 0.090347710769091
818 => 0.09081103180911
819 => 0.091569961124153
820 => 0.090133149601535
821 => 0.089674001260579
822 => 0.090527645382963
823 => 0.0932782646091
824 => 0.092758275977651
825 => 0.092744696973045
826 => 0.094969428847881
827 => 0.093377000952686
828 => 0.090816875771184
829 => 0.090170410398952
830 => 0.087875893838784
831 => 0.089460724599679
901 => 0.089517759837344
902 => 0.088649764226179
903 => 0.090887308831233
904 => 0.090866689463785
905 => 0.09299090505172
906 => 0.09705160743691
907 => 0.095850657926581
908 => 0.094454084309003
909 => 0.09460593058402
910 => 0.096271309432412
911 => 0.095264383363773
912 => 0.095626480998593
913 => 0.096270761354274
914 => 0.096659471689437
915 => 0.094550001148702
916 => 0.094058182658017
917 => 0.093052094630908
918 => 0.092789625044158
919 => 0.093609062749523
920 => 0.093393169865321
921 => 0.08951296624647
922 => 0.089107463379051
923 => 0.08911989957307
924 => 0.088100243332334
925 => 0.086545022819675
926 => 0.090632049469553
927 => 0.090303804031666
928 => 0.089941446472418
929 => 0.089985833205843
930 => 0.091759872952369
1001 => 0.090730840308229
1002 => 0.093466692247809
1003 => 0.092904283336269
1004 => 0.09232745075831
1005 => 0.092247714925286
1006 => 0.092025683595815
1007 => 0.09126425555284
1008 => 0.090344785436216
1009 => 0.089737671622083
1010 => 0.082778258555997
1011 => 0.084069885140019
1012 => 0.085555783789469
1013 => 0.086068710048894
1014 => 0.085191314188731
1015 => 0.09129890048919
1016 => 0.09241481536045
1017 => 0.089034636426078
1018 => 0.088402342959253
1019 => 0.09134035354361
1020 => 0.089568374004056
1021 => 0.090366296282217
1022 => 0.088641624756984
1023 => 0.092146024145765
1024 => 0.092119326493897
1025 => 0.090756035981212
1026 => 0.091908279787123
1027 => 0.091708049070519
1028 => 0.090168897439333
1029 => 0.092194817997809
1030 => 0.09219582282913
1031 => 0.090883685351162
1101 => 0.089351396040723
1102 => 0.089077458903075
1103 => 0.088871084068134
1104 => 0.090315540723829
1105 => 0.091610636044627
1106 => 0.094020487355274
1107 => 0.094626381231425
1108 => 0.096991225366684
1109 => 0.095583075826308
1110 => 0.096207290278967
1111 => 0.096884963367854
1112 => 0.097209864767269
1113 => 0.096680455372093
1114 => 0.10035403172283
1115 => 0.1006641941223
1116 => 0.10076818889195
1117 => 0.099529479615627
1118 => 0.10062974337652
1119 => 0.1001149663997
1120 => 0.10145427308421
1121 => 0.10166429347347
1122 => 0.10148641367546
1123 => 0.10155307746196
1124 => 0.098418328109882
1125 => 0.098255774818856
1126 => 0.09603934916147
1127 => 0.096942558999846
1128 => 0.095254051498976
1129 => 0.095789494621056
1130 => 0.09602551284738
1201 => 0.095902230319865
1202 => 0.096993625128943
1203 => 0.096065716583998
1204 => 0.093616813371598
1205 => 0.091167242957157
1206 => 0.09113649059598
1207 => 0.090491561944367
1208 => 0.090025396653825
1209 => 0.090115196626885
1210 => 0.090431663444745
1211 => 0.090007003027065
1212 => 0.090097625858007
1213 => 0.091602568668402
1214 => 0.091904374216266
1215 => 0.090878721041586
1216 => 0.086760575544196
1217 => 0.085749972309551
1218 => 0.08647637387348
1219 => 0.086129200712174
1220 => 0.069512987083227
1221 => 0.073416720003567
1222 => 0.071097254460545
1223 => 0.072166170896248
1224 => 0.069798597199513
1225 => 0.070928527462764
1226 => 0.070719870601588
1227 => 0.076996957617641
1228 => 0.076898949537736
1229 => 0.076945860819114
1230 => 0.074706663132237
1231 => 0.078273765848275
]
'min_raw' => 0.045539754323716
'max_raw' => 0.10166429347347
'avg_raw' => 0.073602023898594
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.045539'
'max' => '$0.101664'
'avg' => '$0.073602'
'bar_min_pct' => 61.631153054957
'bar_max_pct' => 60.119598047091
'min_diff' => 0.0070221377172223
'max_diff' => 0.015380077439458
'year' => 2035
]
10 => [
'items' => [
101 => 0.08003104891506
102 => 0.079705822587972
103 => 0.079787675047774
104 => 0.078381178598206
105 => 0.076959478779195
106 => 0.075382594881878
107 => 0.078312250254353
108 => 0.077986522587818
109 => 0.078733624661733
110 => 0.080633715586873
111 => 0.080913511193344
112 => 0.081289559325847
113 => 0.081154772839273
114 => 0.084365933782077
115 => 0.083977041003981
116 => 0.084914160707103
117 => 0.082986434378338
118 => 0.080805029055877
119 => 0.081219642892164
120 => 0.081179712245616
121 => 0.080671349284793
122 => 0.080212421934206
123 => 0.079448437197458
124 => 0.081865797952996
125 => 0.08176765752094
126 => 0.08335643704015
127 => 0.083075604827549
128 => 0.081200138580498
129 => 0.081267121224415
130 => 0.081717611695512
131 => 0.083276764359588
201 => 0.083739627025494
202 => 0.083525210596758
203 => 0.084032718379441
204 => 0.084433831838114
205 => 0.084083092054199
206 => 0.089048827749694
207 => 0.08698670807904
208 => 0.08799177085838
209 => 0.088231472409079
210 => 0.087617481927344
211 => 0.087750634477482
212 => 0.087952324309042
213 => 0.089176945471358
214 => 0.092390705748263
215 => 0.093814058298098
216 => 0.098096284671254
217 => 0.093695868682858
218 => 0.093434766208838
219 => 0.094206124489491
220 => 0.096720244690231
221 => 0.098757702973628
222 => 0.099433645430019
223 => 0.099522982384225
224 => 0.10079109536822
225 => 0.10151795408174
226 => 0.10063711309728
227 => 0.099890692590847
228 => 0.097217106985928
229 => 0.097526581799629
301 => 0.099658556374625
302 => 0.10267009603448
303 => 0.10525431035994
304 => 0.10434940857212
305 => 0.11125317045203
306 => 0.11193765024308
307 => 0.11184307726784
308 => 0.11340242409611
309 => 0.11030743819745
310 => 0.10898427176325
311 => 0.10005207717657
312 => 0.10256165951594
313 => 0.10620948482883
314 => 0.10572668147002
315 => 0.10307753322116
316 => 0.10525230074343
317 => 0.1045332545893
318 => 0.10396611305428
319 => 0.10656429837199
320 => 0.1037074868876
321 => 0.10618098594892
322 => 0.10300869781771
323 => 0.10435354208727
324 => 0.10359014343707
325 => 0.10408415592237
326 => 0.10119616902764
327 => 0.10275445665412
328 => 0.10113133913921
329 => 0.10113056957017
330 => 0.10109473916106
331 => 0.10300432971935
401 => 0.1030666013989
402 => 0.1016554110911
403 => 0.1014520365208
404 => 0.1022040189001
405 => 0.10132364447844
406 => 0.10173556612932
407 => 0.10133612116562
408 => 0.10124619769069
409 => 0.10052967214324
410 => 0.10022097323612
411 => 0.10034202203179
412 => 0.099928820087228
413 => 0.099679850969461
414 => 0.10104521293708
415 => 0.10031575511633
416 => 0.10093341306415
417 => 0.10022951387796
418 => 0.097789492624329
419 => 0.096386210598611
420 => 0.091777236640599
421 => 0.093084335937677
422 => 0.093950944123932
423 => 0.093664530123544
424 => 0.094279858223881
425 => 0.094317634371754
426 => 0.094117584933807
427 => 0.093885953312585
428 => 0.093773207849406
429 => 0.094613520161317
430 => 0.095101349741993
501 => 0.094037919849144
502 => 0.093788773104215
503 => 0.094863959439459
504 => 0.095519822482842
505 => 0.10036234669758
506 => 0.1000035968626
507 => 0.10090398854729
508 => 0.10080261826123
509 => 0.10174637219043
510 => 0.10328901100449
511 => 0.1001523949669
512 => 0.100696803055
513 => 0.10056332676402
514 => 0.10202058590962
515 => 0.10202513531361
516 => 0.10115143566033
517 => 0.10162508241653
518 => 0.10136070579104
519 => 0.10183847008595
520 => 0.099998805539837
521 => 0.10223931837748
522 => 0.10350954478097
523 => 0.10352718187582
524 => 0.10412925910993
525 => 0.10474100444975
526 => 0.10591519635775
527 => 0.10470825687473
528 => 0.10253709023797
529 => 0.10269384145632
530 => 0.10142088725159
531 => 0.10144228584175
601 => 0.10132805849044
602 => 0.10167086337035
603 => 0.10007403193339
604 => 0.10044880507994
605 => 0.099924120480096
606 => 0.10069566249315
607 => 0.099865610827568
608 => 0.10056326239771
609 => 0.10086434568787
610 => 0.10197534951041
611 => 0.099701514659649
612 => 0.09506501147386
613 => 0.09603966065568
614 => 0.094598077958727
615 => 0.094731501925823
616 => 0.095001039573622
617 => 0.094127379869873
618 => 0.094294046609167
619 => 0.094288092100424
620 => 0.094236779360959
621 => 0.094009506729675
622 => 0.093679916449794
623 => 0.094992902682303
624 => 0.095216004628422
625 => 0.095711932618161
626 => 0.097187477924455
627 => 0.097040036152602
628 => 0.097280519799795
629 => 0.09675554534823
630 => 0.094755853984968
701 => 0.094864446846798
702 => 0.093510292119689
703 => 0.095677303837233
704 => 0.095164126859362
705 => 0.094833278323314
706 => 0.094743003234963
707 => 0.096222206132669
708 => 0.096664806823327
709 => 0.096389007774737
710 => 0.095823335879734
711 => 0.096909593144023
712 => 0.097200229762432
713 => 0.097265292583028
714 => 0.099189932186177
715 => 0.097372858556765
716 => 0.097810246239523
717 => 0.10122262008258
718 => 0.09812806788233
719 => 0.099767321199552
720 => 0.099687088279937
721 => 0.10052567480772
722 => 0.099618299708152
723 => 0.09962954770999
724 => 0.10037415573589
725 => 0.099328488054279
726 => 0.099069566031054
727 => 0.098711867110404
728 => 0.099492889617491
729 => 0.099961077287879
730 => 0.10373432606526
731 => 0.1061720168565
801 => 0.1060661902703
802 => 0.10703324716909
803 => 0.10659757917896
804 => 0.10519069231541
805 => 0.10759207663991
806 => 0.10683217816145
807 => 0.10689482326874
808 => 0.10689249161472
809 => 0.10739775767142
810 => 0.10703973036329
811 => 0.10633402178823
812 => 0.1068025040744
813 => 0.10819372897883
814 => 0.11251213377019
815 => 0.11492877030269
816 => 0.11236664921652
817 => 0.11413396603359
818 => 0.11307420570272
819 => 0.11288161572546
820 => 0.11399162129027
821 => 0.11510356977288
822 => 0.11503274346162
823 => 0.11422552596244
824 => 0.11376954927953
825 => 0.11722235748589
826 => 0.11976632775528
827 => 0.1195928460379
828 => 0.12035853791914
829 => 0.12260663296441
830 => 0.1228121706013
831 => 0.12278627758328
901 => 0.1222768311046
902 => 0.1244903726287
903 => 0.12633694791166
904 => 0.12215890896411
905 => 0.12374985150079
906 => 0.12446407686248
907 => 0.12551277159454
908 => 0.12728209538919
909 => 0.12920405032013
910 => 0.12947583582052
911 => 0.12928299100186
912 => 0.12801541005998
913 => 0.13011843607911
914 => 0.13135033939908
915 => 0.13208390963452
916 => 0.13394412169714
917 => 0.12446848767516
918 => 0.11776116294483
919 => 0.11671371733325
920 => 0.11884373917317
921 => 0.11940540894575
922 => 0.1191790005647
923 => 0.11162929677743
924 => 0.11667396970526
925 => 0.12210161360745
926 => 0.12231011151451
927 => 0.12502730353863
928 => 0.12591213264315
929 => 0.12809982837307
930 => 0.12796298740952
1001 => 0.12849565650591
1002 => 0.12837320510519
1003 => 0.13242545077118
1004 => 0.13689567950507
1005 => 0.13674088969847
1006 => 0.13609824142863
1007 => 0.13705268369716
1008 => 0.14166643880935
1009 => 0.14124167817254
1010 => 0.14165429695018
1011 => 0.1470941742473
1012 => 0.15416678854708
1013 => 0.15088084912597
1014 => 0.15801039216619
1015 => 0.16249806158917
1016 => 0.17025902182254
1017 => 0.16928731137779
1018 => 0.17230859624408
1019 => 0.16754774687959
1020 => 0.15661587441232
1021 => 0.15488586374885
1022 => 0.15834938890797
1023 => 0.16686412754582
1024 => 0.15808122948688
1025 => 0.15985799832533
1026 => 0.15934628878033
1027 => 0.1593190219533
1028 => 0.16035968583875
1029 => 0.15885014859553
1030 => 0.15270002230608
1031 => 0.15551858894161
1101 => 0.15443020500495
1102 => 0.15563784812708
1103 => 0.16215499998729
1104 => 0.15927361180039
1105 => 0.15623830341047
1106 => 0.16004525372029
1107 => 0.16489280967474
1108 => 0.16458945833501
1109 => 0.1640008299449
1110 => 0.16731889736036
1111 => 0.17279937262816
1112 => 0.17428072307072
1113 => 0.17537422568253
1114 => 0.17552500121782
1115 => 0.1770780829378
1116 => 0.1687267711025
1117 => 0.18198051746202
1118 => 0.18426907333095
1119 => 0.18383891967852
1120 => 0.18638255320968
1121 => 0.18563415169906
1122 => 0.18454983533076
1123 => 0.18858203552403
1124 => 0.18395944338423
1125 => 0.17739825580994
1126 => 0.17379865854111
1127 => 0.17853889859594
1128 => 0.18143359778583
1129 => 0.18334680981291
1130 => 0.18392574661631
1201 => 0.16937505966714
1202 => 0.16153304641963
1203 => 0.16655968700242
1204 => 0.17269253543362
1205 => 0.16869270281981
1206 => 0.16884948868559
1207 => 0.16314677851581
1208 => 0.17319709874504
1209 => 0.17173285162414
1210 => 0.17932936827757
1211 => 0.17751639861238
1212 => 0.18371106304817
1213 => 0.18207980029642
1214 => 0.18885108077629
1215 => 0.19155232788482
1216 => 0.19608814219557
1217 => 0.19942470566664
1218 => 0.20138399955515
1219 => 0.20126637089921
1220 => 0.2090300694018
1221 => 0.20445208763779
1222 => 0.19870106359473
1223 => 0.19859704571404
1224 => 0.20157558255858
1225 => 0.20781777866306
1226 => 0.20943628929269
1227 => 0.21034081593338
1228 => 0.20895550189637
1229 => 0.20398643079844
1230 => 0.20184081109212
1231 => 0.20366894124649
]
'min_raw' => 0.075382594881878
'max_raw' => 0.21034081593338
'avg_raw' => 0.14286170540763
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$0.075382'
'max' => '$0.21034'
'avg' => '$0.142861'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.029842840558162
'max_diff' => 0.10867652245991
'year' => 2036
]
11 => [
'items' => [
101 => 0.20143329516071
102 => 0.20529264751628
103 => 0.21059236261365
104 => 0.20949799240339
105 => 0.21315630793915
106 => 0.21694227965264
107 => 0.22235638924156
108 => 0.223771837972
109 => 0.22611152089873
110 => 0.22851982317613
111 => 0.22929330496207
112 => 0.23077012168872
113 => 0.2307623381356
114 => 0.2352128247426
115 => 0.24012184929022
116 => 0.24197489241277
117 => 0.24623586289568
118 => 0.23893910026592
119 => 0.24447377853976
120 => 0.24946619688475
121 => 0.2435140299206
122 => 0.25171770540364
123 => 0.25203623553272
124 => 0.25684566230541
125 => 0.25197038689661
126 => 0.24907546392129
127 => 0.25743299807968
128 => 0.26147694559907
129 => 0.26025887569549
130 => 0.25098930358575
131 => 0.24559401502723
201 => 0.23147350419614
202 => 0.24819985923624
203 => 0.2563467788618
204 => 0.25096820503207
205 => 0.25368084481883
206 => 0.268480127919
207 => 0.27411473674093
208 => 0.27294277749485
209 => 0.27314081931535
210 => 0.27618115196027
211 => 0.28966366124964
212 => 0.28158462916134
213 => 0.28776074647729
214 => 0.29103653683203
215 => 0.29407927347528
216 => 0.28660727394623
217 => 0.27688631234441
218 => 0.27380727574691
219 => 0.25043341186481
220 => 0.2492167007422
221 => 0.24853372391896
222 => 0.24422765165742
223 => 0.2408442583923
224 => 0.23815365845055
225 => 0.23109272072222
226 => 0.23347557992953
227 => 0.22222191892282
228 => 0.22942161242965
301 => 0.21146049773379
302 => 0.22641904776991
303 => 0.21827778906706
304 => 0.22374442532757
305 => 0.22372535274865
306 => 0.21365954219444
307 => 0.20785379273488
308 => 0.21155344225366
309 => 0.21551976021634
310 => 0.21616328196149
311 => 0.22130571673159
312 => 0.22274085973966
313 => 0.21839230942479
314 => 0.21108829355411
315 => 0.212784849854
316 => 0.20781941207562
317 => 0.1991176733618
318 => 0.20536741402384
319 => 0.20750135026757
320 => 0.20844381808046
321 => 0.19988665745686
322 => 0.19719781180393
323 => 0.19576629293991
324 => 0.20998367157383
325 => 0.21076253166931
326 => 0.2067777733011
327 => 0.22478925897571
328 => 0.22071270504486
329 => 0.22526721456558
330 => 0.21263090515225
331 => 0.21311362918889
401 => 0.20713139780678
402 => 0.21048104764791
403 => 0.20811362310445
404 => 0.21021042904263
405 => 0.21146724587653
406 => 0.21744849563333
407 => 0.22648734403432
408 => 0.21655509637677
409 => 0.21222747383997
410 => 0.21491230652232
411 => 0.22206236975856
412 => 0.23289508156646
413 => 0.22648189814754
414 => 0.22932796004594
415 => 0.22994969795826
416 => 0.2252208539341
417 => 0.23306944079078
418 => 0.23727556224908
419 => 0.2415901725311
420 => 0.24533642774634
421 => 0.23986682230415
422 => 0.24572008416443
423 => 0.24100338834485
424 => 0.23677202459164
425 => 0.23677844182382
426 => 0.23412404553106
427 => 0.2289808182384
428 => 0.22803232821437
429 => 0.23296649310046
430 => 0.23692322607196
501 => 0.23724912155096
502 => 0.23943977222826
503 => 0.24073617673359
504 => 0.25344270326229
505 => 0.25855337334603
506 => 0.2648026039844
507 => 0.26723703150539
508 => 0.27456378555298
509 => 0.26864683660968
510 => 0.26736666748644
511 => 0.24959435872996
512 => 0.25250457329321
513 => 0.25716410760291
514 => 0.24967119273452
515 => 0.25442372258725
516 => 0.25536197265253
517 => 0.24941658635449
518 => 0.25259227406125
519 => 0.24415858903788
520 => 0.22667117532123
521 => 0.23308890928129
522 => 0.23781452166179
523 => 0.23107049013101
524 => 0.24315890561987
525 => 0.23609710284683
526 => 0.23385885039408
527 => 0.22512662958133
528 => 0.22924790167095
529 => 0.23482198118309
530 => 0.23137784810088
531 => 0.23852494138564
601 => 0.24864713153702
602 => 0.25586080702574
603 => 0.2564145834572
604 => 0.25177667339668
605 => 0.25920895386741
606 => 0.25926308991664
607 => 0.25087944718389
608 => 0.2457445126904
609 => 0.24457784476949
610 => 0.24749240997465
611 => 0.25103123019214
612 => 0.25661096335034
613 => 0.25998267923846
614 => 0.26877432605475
615 => 0.27115309360697
616 => 0.27376663794961
617 => 0.27725913917859
618 => 0.28145278236292
619 => 0.27227732981985
620 => 0.27264188765457
621 => 0.26409783328924
622 => 0.25496728585856
623 => 0.26189623321964
624 => 0.27095491017502
625 => 0.26887683967251
626 => 0.26864301428985
627 => 0.26903624372573
628 => 0.26746944643028
629 => 0.26038288033114
630 => 0.25682405120041
701 => 0.2614158487332
702 => 0.26385618476448
703 => 0.26764093312933
704 => 0.26717438300701
705 => 0.27692348834257
706 => 0.28071169587832
707 => 0.27974251028414
708 => 0.27992086375822
709 => 0.28677923255333
710 => 0.2944071491846
711 => 0.30155169970205
712 => 0.30881944335398
713 => 0.30005789471672
714 => 0.29560932065591
715 => 0.30019911355354
716 => 0.29776370483604
717 => 0.31175828571592
718 => 0.31272724013243
719 => 0.32672080904482
720 => 0.34000237226587
721 => 0.33166046037065
722 => 0.33952650755988
723 => 0.34803427892327
724 => 0.3644471502194
725 => 0.35891987257864
726 => 0.3546860645293
727 => 0.35068513638028
728 => 0.35901043272893
729 => 0.3697207934816
730 => 0.37202770260517
731 => 0.37576577669246
801 => 0.37183564885962
802 => 0.37656905494489
803 => 0.3932800583899
804 => 0.38876459774695
805 => 0.38235191773744
806 => 0.39554365001545
807 => 0.4003176866453
808 => 0.43382437589598
809 => 0.47612795516726
810 => 0.45861399556867
811 => 0.44774251567388
812 => 0.45029757132411
813 => 0.46574540640745
814 => 0.47070676074644
815 => 0.45722008937166
816 => 0.46198380970198
817 => 0.48823237708065
818 => 0.50231389132444
819 => 0.48318930358169
820 => 0.43042532449161
821 => 0.38177452606524
822 => 0.39467890858192
823 => 0.39321595207414
824 => 0.42141676314705
825 => 0.38865690550398
826 => 0.38920849748935
827 => 0.41799247147008
828 => 0.41031340069426
829 => 0.39787428949852
830 => 0.38186534534291
831 => 0.35227133142317
901 => 0.32605908800433
902 => 0.37746733366782
903 => 0.37525051663498
904 => 0.37204023705755
905 => 0.37918436686859
906 => 0.41387423333435
907 => 0.41307451963217
908 => 0.40798714907644
909 => 0.41184587480494
910 => 0.39719783622165
911 => 0.4009729692942
912 => 0.3817668195302
913 => 0.39044880134319
914 => 0.39784760075258
915 => 0.39933301927511
916 => 0.40267974305372
917 => 0.37408235479162
918 => 0.3869217425461
919 => 0.39446367996391
920 => 0.36038893233219
921 => 0.3937901317619
922 => 0.37358453788542
923 => 0.36672645584591
924 => 0.37595995982851
925 => 0.37236165434661
926 => 0.36926804259287
927 => 0.36754175407928
928 => 0.37432182033945
929 => 0.37400552214448
930 => 0.36291201778869
1001 => 0.34844099358564
1002 => 0.35329794430336
1003 => 0.35153336857345
1004 => 0.34513831849348
1005 => 0.34944781010609
1006 => 0.33047099002796
1007 => 0.2978223574128
1008 => 0.31939104417304
1009 => 0.31856067319498
1010 => 0.31814196249352
1011 => 0.33435023447912
1012 => 0.33279218311617
1013 => 0.32996430463591
1014 => 0.34508638228754
1015 => 0.33956662052405
1016 => 0.3565772256597
1017 => 0.367781510379
1018 => 0.36493974135355
1019 => 0.37547742528706
1020 => 0.35340983863823
1021 => 0.36073980572507
1022 => 0.36225050178277
1023 => 0.34489977819666
1024 => 0.33304709958789
1025 => 0.33225666105512
1026 => 0.31170574974723
1027 => 0.32268388068674
1028 => 0.33234418160759
1029 => 0.32771764713614
1030 => 0.32625302453626
1031 => 0.33373546376114
1101 => 0.33431691337167
1102 => 0.32105980063229
1103 => 0.32381637416897
1104 => 0.33531174405914
1105 => 0.32352672034182
1106 => 0.30063034433177
1107 => 0.29495172651411
1108 => 0.29419409421954
1109 => 0.2787932323212
1110 => 0.29533119891005
1111 => 0.28811193330407
1112 => 0.31091750685329
1113 => 0.29789108555072
1114 => 0.29732954256394
1115 => 0.29648068797899
1116 => 0.28322452994149
1117 => 0.28612678607891
1118 => 0.29577432750578
1119 => 0.29921667897422
1120 => 0.29885761351371
1121 => 0.29572704928959
1122 => 0.29716020556031
1123 => 0.29254350986758
1124 => 0.29091325853027
1125 => 0.28576773687374
1126 => 0.27820524152529
1127 => 0.27925685288697
1128 => 0.26427357076714
1129 => 0.25610988344529
1130 => 0.25385028239027
1201 => 0.25082864942427
1202 => 0.25419158387404
1203 => 0.26423112501145
1204 => 0.25212130839226
1205 => 0.23135987720354
1206 => 0.23260767459374
1207 => 0.23541110485515
1208 => 0.23018693110956
1209 => 0.22524268909103
1210 => 0.22954130638711
1211 => 0.22074441429934
1212 => 0.23647416723631
1213 => 0.23604872150149
1214 => 0.24191180067499
1215 => 0.24557810440468
1216 => 0.23712846128767
1217 => 0.23500339889401
1218 => 0.23621393101214
1219 => 0.21620653159305
1220 => 0.24027676929743
1221 => 0.24048492971264
1222 => 0.23870253385979
1223 => 0.25151919235216
1224 => 0.27856633938709
1225 => 0.26839011470358
1226 => 0.26444957292811
1227 => 0.25695860013241
1228 => 0.26693987661272
1229 => 0.2661734703112
1230 => 0.26270749036478
1231 => 0.26061125487866
]
'min_raw' => 0.19576629293991
'max_raw' => 0.50231389132444
'avg_raw' => 0.34904009213218
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$0.195766'
'max' => '$0.502313'
'avg' => '$0.34904'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 0.12038369805804
'max_diff' => 0.29197307539106
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.0061448802382516
]
1 => [
'year' => 2028
'avg' => 0.010546398360319
]
2 => [
'year' => 2029
'avg' => 0.028810859517025
]
3 => [
'year' => 2030
'avg' => 0.022227535210966
]
4 => [
'year' => 2031
'avg' => 0.021830194205281
]
5 => [
'year' => 2032
'avg' => 0.038275200656816
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.0061448802382516
'min' => '$0.006144'
'max_raw' => 0.038275200656816
'max' => '$0.038275'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.038275200656816
]
1 => [
'year' => 2033
'avg' => 0.098447751881802
]
2 => [
'year' => 2034
'avg' => 0.062400916320254
]
3 => [
'year' => 2035
'avg' => 0.073602023898594
]
4 => [
'year' => 2036
'avg' => 0.14286170540763
]
5 => [
'year' => 2037
'avg' => 0.34904009213218
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.038275200656816
'min' => '$0.038275'
'max_raw' => 0.34904009213218
'max' => '$0.34904'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 0.34904009213218
]
]
]
]
'prediction_2025_max_price' => '$0.0105066'
'last_price' => 0.0101875
'sma_50day_nextmonth' => '$0.00927'
'sma_200day_nextmonth' => '$0.011451'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'increase'
'sma_200day_direction_label' => 'aumentar'
'sma_200day_date_nextmonth' => '4 de fev. de 2026'
'sma_50day_date_nextmonth' => '4 de fev. de 2026'
'daily_sma3' => '$0.010088'
'daily_sma3_action' => 'BUY'
'daily_sma5' => '$0.009978'
'daily_sma5_action' => 'BUY'
'daily_sma10' => '$0.009713'
'daily_sma10_action' => 'BUY'
'daily_sma21' => '$0.009126'
'daily_sma21_action' => 'BUY'
'daily_sma50' => '$0.009312'
'daily_sma50_action' => 'BUY'
'daily_sma100' => '$0.011979'
'daily_sma100_action' => 'SELL'
'daily_sma200' => '$0.01168'
'daily_sma200_action' => 'SELL'
'daily_ema3' => '$0.010074'
'daily_ema3_action' => 'BUY'
'daily_ema5' => '$0.009972'
'daily_ema5_action' => 'BUY'
'daily_ema10' => '$0.009711'
'daily_ema10_action' => 'BUY'
'daily_ema21' => '$0.009435'
'daily_ema21_action' => 'BUY'
'daily_ema50' => '$0.009787'
'daily_ema50_action' => 'BUY'
'daily_ema100' => '$0.010772'
'daily_ema100_action' => 'SELL'
'daily_ema200' => '$0.012146'
'daily_ema200_action' => 'SELL'
'weekly_sma21' => '$0.012133'
'weekly_sma21_action' => 'SELL'
'weekly_sma50' => '$0.0120014'
'weekly_sma50_action' => 'SELL'
'weekly_sma100' => '$0.025896'
'weekly_sma100_action' => 'SELL'
'weekly_sma200' => '—'
'weekly_sma200_action' => '—'
'weekly_ema3' => '$0.009845'
'weekly_ema3_action' => 'BUY'
'weekly_ema5' => '$0.009722'
'weekly_ema5_action' => 'BUY'
'weekly_ema10' => '$0.01016'
'weekly_ema10_action' => 'BUY'
'weekly_ema21' => '$0.01122'
'weekly_ema21_action' => 'SELL'
'weekly_ema50' => '$0.015052'
'weekly_ema50_action' => 'SELL'
'weekly_ema100' => '$0.024962'
'weekly_ema100_action' => 'SELL'
'weekly_ema200' => '$0.041054'
'weekly_ema200_action' => 'SELL'
'rsi_14' => '62.78'
'rsi_14_action' => 'NEUTRAL'
'stoch_rsi_14' => 100.52
'stoch_rsi_14_action' => 'SELL'
'momentum_10' => 0
'momentum_10_action' => 'BUY'
'vwma_10' => '0.0095030'
'vwma_10_action' => 'BUY'
'hma_9' => '0.010145'
'hma_9_action' => 'BUY'
'stochastic_fast_14' => 100
'stochastic_fast_14_action' => 'SELL'
'cci_20' => 117.11
'cci_20_action' => 'SELL'
'adx_14' => 18.49
'adx_14_action' => 'NEUTRAL'
'ao_5_34' => '0.000846'
'ao_5_34_action' => 'BUY'
'macd_12_26' => 0
'macd_12_26_action' => 'NEUTRAL'
'williams_percent_r_14' => -0
'williams_percent_r_14_action' => 'SELL'
'ultimate_oscillator' => 76.25
'ultimate_oscillator_action' => 'SELL'
'ichimoku_cloud' => '-0.002985'
'ichimoku_cloud_action' => 'NEUTRAL'
'sell_signals' => 12
'buy_signals' => 21
'sell_pct' => 36.36
'buy_pct' => 63.64
'overall_action' => 'bullish'
'overall_action_label' => 'Altista'
'overall_action_dir' => 1
'last_updated' => 1767707793
'last_updated_date' => '6 de janeiro de 2026'
]
Previsão de preço de Wrapped Ever para 2026
A previsão de preço para Wrapped Ever em 2026 sugere que o preço médio poderia variar entre $0.003519 na extremidade inferior e $0.0105066 na extremidade superior. No mercado de criptomoedas, comparado ao preço médio de hoje, Wrapped Ever poderia potencialmente ganhar 3.13% até 2026 se WEVER atingir a meta de preço prevista.
Previsão de preço de Wrapped Ever 2027-2032
A previsão de preço de WEVER para 2027-2032 está atualmente dentro de uma faixa de preço entre $0.006144 na extremidade inferior e $0.038275 na extremidade superior. Considerando a volatilidade de preços no mercado, se Wrapped Ever atingir a meta de preço superior, poderia ganhar 275.71% até 2032 em comparação com o preço de hoje.
| Previsão de Preço de Wrapped Ever | Potencial Mínimo ($) | Preço Médio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2027 | $0.003388 | $0.006144 | $0.0089013 |
| 2028 | $0.006115 | $0.010546 | $0.014977 |
| 2029 | $0.013433 | $0.02881 | $0.044188 |
| 2030 | $0.011424 | $0.022227 | $0.03303 |
| 2031 | $0.0135069 | $0.02183 | $0.030153 |
| 2032 | $0.020617 | $0.038275 | $0.055933 |
Previsão de preço de Wrapped Ever 2032-2037
A previsão de preço de Wrapped Ever para 2032-2037 é atualmente estimada entre $0.038275 na extremidade inferior e $0.34904 na extremidade superior. Comparado ao preço atual, Wrapped Ever poderia potencialmente ganhar 3326.16% até 2037 se atingir a meta de preço superior. Por favor, note que esta informação é apenas para fins gerais e não deve ser considerada como aconselhamento de investimento a longo prazo.
| Previsão de Preço de Wrapped Ever | Potencial Mínimo ($) | Preço Médio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2032 | $0.020617 | $0.038275 | $0.055933 |
| 2033 | $0.04791 | $0.098447 | $0.148985 |
| 2034 | $0.038517 | $0.06240091 | $0.086284 |
| 2035 | $0.045539 | $0.073602 | $0.101664 |
| 2036 | $0.075382 | $0.142861 | $0.21034 |
| 2037 | $0.195766 | $0.34904 | $0.502313 |
Wrapped Ever Histograma de preços potenciais
Previsão de preço de Wrapped Ever baseada na análise técnica
Em 6 de janeiro de 2026, o sentimento geral de previsão de preço para Wrapped Ever é Altista, com 21 indicadores técnicos mostrando sinais de alta e 12 indicando sinais de baixa. A previsão de preço de WEVER foi atualizada pela última vez em 6 de janeiro de 2026.
Médias Móveis Simples de 50 e 200 dias e Índice de Força Relativa de 14 dias - RSI (14) de Wrapped Ever
De acordo com nossos indicadores técnicos, o SMA de 200 dias de Wrapped Ever está projetado para aumentar no próximo mês, alcançando $0.011451 até 4 de fev. de 2026. O SMA de 50 dias de curto prazo para Wrapped Ever é esperado para alcançar $0.00927 até 4 de fev. de 2026.
O oscilador de momentum Índice de Força Relativa (RSI) é uma ferramenta comumente usada para identificar se uma criptomoeda está sobrevendida (abaixo de 30) ou sobrecomprada (acima de 70). No momento, o RSI está em 62.78, sugerindo que o mercado de WEVER está em um estado NEUTRAL.
Médias Móveis e Osciladores Populares de WEVER para Sábado, 19 de Outubro de 2024
Médias móveis (MA) são indicadores amplamente utilizados nos mercados financeiros, projetados para suavizar movimentos de preços ao longo de um período definido. Como indicadores atrasados, eles se baseiam em dados históricos de preços. A tabela abaixo destaca dois tipos: a média móvel simples (SMA) e a média móvel exponencial (EMA).
Média Móvel Simples Diária (SMA)
| Período | Valor | Ação |
|---|---|---|
| SMA 3 | $0.010088 | BUY |
| SMA 5 | $0.009978 | BUY |
| SMA 10 | $0.009713 | BUY |
| SMA 21 | $0.009126 | BUY |
| SMA 50 | $0.009312 | BUY |
| SMA 100 | $0.011979 | SELL |
| SMA 200 | $0.01168 | SELL |
Média Móvel Exponencial Diária (EMA)
| Período | Valor | Ação |
|---|---|---|
| EMA 3 | $0.010074 | BUY |
| EMA 5 | $0.009972 | BUY |
| EMA 10 | $0.009711 | BUY |
| EMA 21 | $0.009435 | BUY |
| EMA 50 | $0.009787 | BUY |
| EMA 100 | $0.010772 | SELL |
| EMA 200 | $0.012146 | SELL |
Média Móvel Simples Semanal (SMA)
| Período | Valor | Ação |
|---|---|---|
| SMA 21 | $0.012133 | SELL |
| SMA 50 | $0.0120014 | SELL |
| SMA 100 | $0.025896 | SELL |
| SMA 200 | — | — |
Média Móvel Exponencial Semanal (EMA)
| Período | Valor | Ação |
|---|---|---|
| EMA 21 | $0.01122 | SELL |
| EMA 50 | $0.015052 | SELL |
| EMA 100 | $0.024962 | SELL |
| EMA 200 | $0.041054 | SELL |
Osciladores de Wrapped Ever
Um oscilador é uma ferramenta de análise técnica que define limites altos e baixos entre dois extremos, criando um indicador de tendência que flutua dentro desses limites. Os traders usam esse indicador para identificar condições de sobrecompra ou sobrevenda de curto prazo.
| Período | Valor | Ação |
|---|---|---|
| RSI (14) | 62.78 | NEUTRAL |
| Stoch RSI (14) | 100.52 | SELL |
| Estocástico Rápido (14) | 100 | SELL |
| Índice de Canal de Commodities (20) | 117.11 | SELL |
| Índice Direcional Médio (14) | 18.49 | NEUTRAL |
| Oscilador Impressionante (5, 34) | 0.000846 | BUY |
| Momentum (10) | 0 | BUY |
| MACD (12, 26) | 0 | NEUTRAL |
| Williams Percent Range (14) | -0 | SELL |
| Oscilador Ultimate (7, 14, 28) | 76.25 | SELL |
| VWMA (10) | 0.0095030 | BUY |
| Média Móvel de Hull (9) | 0.010145 | BUY |
| Nuvem Ichimoku B/L (9, 26, 52, 26) | -0.002985 | NEUTRAL |
Previsão do preço de Wrapped Ever com base nos fluxos financeiros mundiais
Definições dos fluxos financeiros mundiais, usadas na previsão do preço do Wrapped Ever
M0: o total de todas as moedas físicas, mais as contas no Banco Central que podem ser trocadas por moedas físicas.
M1: o valor de M0, mais o valor em contas de demanda, incluindo contas 'correntes'.
M2: o valor de M1, mais a maioria das contas de poupança, do mercado de moedas e de certificados de depósito (CD) de menos de US$ 100.000.
Previsões de preço de Wrapped Ever por empresas de Internet ou nichos tecnológicos
| Comparação | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Facebook stock | $0.014315 | $0.020115 | $0.028265 | $0.039717 | $0.0558093 | $0.078421 |
| Amazon.com stock | $0.021256 | $0.044353 | $0.092546 | $0.1931037 | $0.402922 | $0.840721 |
| Apple stock | $0.01445 | $0.020496 | $0.029072 | $0.041237 | $0.058492 | $0.082966 |
| Netflix stock | $0.016074 | $0.025362 | $0.040018 | $0.063142 | $0.099629 | $0.157199 |
| Google stock | $0.013192 | $0.017084 | $0.022124 | $0.028651 | $0.0371029 | $0.048048 |
| Tesla stock | $0.023094 | $0.052353 | $0.11868 | $0.269039 | $0.609891 | $1.38 |
| Kodak stock | $0.007639 | $0.005728 | $0.004296 | $0.003221 | $0.002415 | $0.001811 |
| Nokia stock | $0.006748 | $0.00447 | $0.002961 | $0.001962 | $0.001299 | $0.000861 |
Este cálculo mostra quanto a criptomoeda pode custar, se assumirmos que sua capitalização se comportará da mesma forma que a de algumas empresas de Internet ou nichos tecnológicos. Se você extrapolar os dados, poderá obter uma imagem em potencial do preço futuro para 2024, 2025, 2026, 2027, 2028, 2029 e 2030.
Visão geral da previsão para Wrapped Ever
Você pode fazer perguntas como: 'Devo investir em Wrapped Ever agora?', 'Devo comprar WEVER hoje?', 'Wrapped Ever será um bom ou mau investimento no curto ou no longo prazo?'.
Atualizamos a previsão para Wrapped Ever regularmente com novos valores. Veja nossas previsões semelhantes. Fazemos previsões de preços futuros para uma enorme quantidade de moedas digitais, como Wrapped Ever, com métodos de análise técnica.
Se você estiver tentando encontrar criptomoedas com bom retorno, você deve explorar o máximo de fontes de informações disponíveis sobre Wrapped Ever para poder tomar sozinho uma decisão de tão grande responsabilidade sobre o seu investimento.
O preço de Wrapped Ever é de $0.01018 USD hoje, mas o preço pode tanto subir quanto descer e seu investimento pode ser perdido, porque criptomoedas são ativos de alto risco
Previsão do preço de Wrapped Ever com base no padrão de crescimento do Bitcoin
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| Se Wrapped Ever tiver 1% da média anterior do crescimento anual do Bitcoin | $0.010452 | $0.010723 | $0.0110027 | $0.011288 |
| Se Wrapped Ever tiver 2% da média anterior do crescimento anual do Bitcoin | $0.010717 | $0.011274 | $0.01186 | $0.012476 |
| Se Wrapped Ever tiver 5% da média anterior do crescimento anual do Bitcoin | $0.011511 | $0.0130076 | $0.014698 | $0.0166084 |
| Se Wrapped Ever tiver 10% da média anterior do crescimento anual do Bitcoin | $0.012835 | $0.016171 | $0.020375 | $0.025671 |
| Se Wrapped Ever tiver 20% da média anterior do crescimento anual do Bitcoin | $0.015483 | $0.023532 | $0.035766 | $0.05436 |
| Se Wrapped Ever tiver 50% da média anterior do crescimento anual do Bitcoin | $0.023427 | $0.053875 | $0.123896 | $0.284919 |
| Se Wrapped Ever tiver 100% da média anterior do crescimento anual do Bitcoin | $0.036668 | $0.13198 | $0.475039 | $1.70 |
Perguntas Frequentes sobre Wrapped Ever
WEVER é um bom investimento?
A decisão de adquirir Wrapped Ever depende inteiramente da sua tolerância individual ao risco. Como você pode perceber, o valor de Wrapped Ever experimentou uma escalada de 1.6146% nas últimas 24 horas, e Wrapped Ever registrou um declínio de durante os últimos 30 dias. Consequentemente, a decisão de investir ou não em Wrapped Ever dependerá de quão alinhado esse investimento está com suas aspirações de negociação.
Wrapped Ever pode subir?
Parece que o valor médio de Wrapped Ever pode potencialmente subir para $0.0105066 até o final deste ano. Observando as perspectivas de Wrapped Ever em um horizonte de cinco anos mais longo, a moeda digital poderia potencialmente crescer até $0.03303. No entanto, dada a imprevisibilidade do mercado, é vital conduzir uma pesquisa aprofundada antes de investir quaisquer fundos em um projeto, rede ou ativo específico.
Qual será o preço de Wrapped Ever na próxima semana?
Com base na nossa nova previsão experimental de Wrapped Ever, o preço de Wrapped Ever aumentará 0.86% na próxima semana e atingirá $0.010274 até 13 de janeiro de 2026.
Qual será o preço de Wrapped Ever no próximo mês?
Com base na nossa nova previsão experimental de Wrapped Ever, o preço de Wrapped Ever diminuirá -11.62% no próximo mês e atingirá $0.00900391 até 5 de fevereiro de 2026.
Até onde o preço de Wrapped Ever pode subir este ano em 2026?
De acordo com nossa previsão mais recente sobre o valor de Wrapped Ever em 2026, espera-se que WEVER fluctue dentro do intervalo de $0.003519 e $0.0105066. No entanto, é crucial lembrar que o mercado de criptomoedas é excepcionalmente instável, e essa previsão de preço de Wrapped Ever não considera flutuações repentinas e extremas de preço.
Onde estará Wrapped Ever em 5 anos?
O futuro de Wrapped Ever parece seguir uma tendência de alta, com um preço máximo de $0.03303 projetada após um período de cinco anos. Com base na previsão de Wrapped Ever para 2030, o valor de Wrapped Ever pode potencialmente atingir seu pico mais alto de aproximadamente $0.03303, enquanto seu pico mais baixo está previsto para cerca de $0.011424.
Quanto será Wrapped Ever em 2026?
Com base na nossa nova simulação experimental de previsão de preços de Wrapped Ever, espera-se que o valor de WEVER em 2026 aumente 3.13% para $0.0105066 se o melhor cenário ocorrer. O preço ficará entre $0.0105066 e $0.003519 durante 2026.
Quanto será Wrapped Ever em 2027?
De acordo com nossa última simulação experimental para previsão de preços de Wrapped Ever, o valor de WEVER pode diminuir -12.62% para $0.0089013 em 2027, assumindo as condições mais favoráveis. O preço está projetado para flutuar entre $0.0089013 e $0.003388 ao longo do ano.
Quanto será Wrapped Ever em 2028?
Nosso novo modelo experimental de previsão de preços de Wrapped Ever sugere que o valor de WEVER em 2028 pode aumentar 47.02%, alcançando $0.014977 no melhor cenário. O preço é esperado para variar entre $0.014977 e $0.006115 durante o ano.
Quanto será Wrapped Ever em 2029?
Com base no nosso modelo de previsão experimental, o valor de Wrapped Ever pode experimentar um 333.75% crescimento em 2029, potencialmente alcançando $0.044188 sob condições ótimas. A faixa de preço prevista para 2029 está entre $0.044188 e $0.013433.
Quanto será Wrapped Ever em 2030?
Usando nossa nova simulação experimental para previsões de preços de Wrapped Ever, espera-se que o valor de WEVER em 2030 aumente 224.23%, alcançando $0.03303 no melhor cenário. O preço está previsto para variar entre $0.03303 e $0.011424 ao longo de 2030.
Quanto será Wrapped Ever em 2031?
Nossa simulação experimental indica que o preço de Wrapped Ever poderia aumentar 195.98% em 2031, potencialmente atingindo $0.030153 sob condições ideais. O preço provavelmente oscilará entre $0.030153 e $0.0135069 durante o ano.
Quanto será Wrapped Ever em 2032?
Com base nos achados da nossa mais recente previsão experimental de preços de Wrapped Ever, WEVER poderia ver um 449.04% aumento em valor, atingindo $0.055933 se o cenário mais positivo se desenrolar em 2032. O preço é esperado para permanecer dentro de uma faixa de $0.055933 e $0.020617 ao longo do ano.
Quanto será Wrapped Ever em 2033?
De acordo com nossa previsão experimental de preços de Wrapped Ever, espera-se que o valor de WEVER seja aumentar 1362.43% em 2033, com o preço potencial mais alto sendo $0.148985. Ao longo do ano, o preço de WEVER poderia variar entre $0.148985 e $0.04791.
Quanto será Wrapped Ever em 2034?
Os resultados da nossa nova simulação de previsão de preços de Wrapped Ever sugerem que WEVER pode aumentar 746.96% em 2034, atingindo potencialmente $0.086284 nas melhores circunstâncias. A faixa de preço prevista para o ano é entre $0.086284 e $0.038517.
Quanto será Wrapped Ever em 2035?
Com base em nossa previsão experimental para o preço de Wrapped Ever, WEVER poderia aumentar 897.93%, com o valor potencialmente atingindo $0.101664 em 2035. A faixa de preço esperada para o ano está entre $0.101664 e $0.045539.
Quanto será Wrapped Ever em 2036?
Nossa recente simulação de previsão de preços de Wrapped Ever sugere que o valor de WEVER pode aumentar 1964.7% em 2036, possivelmente atingindo $0.21034 se as condições forem ideais. A faixa de preço esperada para 2036 está entre $0.21034 e $0.075382.
Quanto será Wrapped Ever em 2037?
De acordo com a simulação experimental, o valor de Wrapped Ever poderia aumentar 4830.69% em 2037, com um pico de $0.502313 sob condições favoráveis. O preço é esperado para cair entre $0.502313 e $0.195766 ao longo do ano.
Previsões relacionadas
Previsão de Preço do SolPod
Previsão de Preço do zuzalu
Previsão de Preço do SOFT COQ INU
Previsão de Preço do All Street Bets
Previsão de Preço do MagicRing
Previsão de Preço do AI INU
Previsão de Preço do Wall Street Baby On Solana
Previsão de Preço do Meta Masters Guild Games
Previsão de Preço do Morfey
Previsão de Preço do PANTIESPrevisão de Preço do Celer Bridged BUSD (zkSync)
Previsão de Preço do Bridged BUSD
Previsão de Preço do Multichain Bridged BUSD (Moonriver)
Previsão de Preço do tooker kurlson
Previsão de Preço do dogwifsaudihatPrevisão de Preço do Harmony Horizen Bridged BUSD (Harmony)
Previsão de Preço do IoTeX Bridged BUSD (IoTeX)
Previsão de Preço do MIMANY
Previsão de Preço do The Open League MEME
Previsão de Preço do Sandwich Cat
Previsão de Preço do Hege
Previsão de Preço do DexNet
Previsão de Preço do SolDocs
Previsão de Preço do Secret Society
Previsão de Preço do duk
Como ler e prever os movimentos de preço de Wrapped Ever?
Traders de Wrapped Ever utilizam indicadores e padrões de gráfico para prever a direção do mercado. Eles também identificam níveis-chave de suporte e resistência para avaliar quando uma tendência de baixa pode desacelerar ou uma tendência de alta pode estagnar.
Indicadores de Previsão de Preço de Wrapped Ever
Médias móveis são ferramentas populares para a previsão de preço de Wrapped Ever. Uma média móvel simples (SMA) calcula o preço médio de fechamento de WEVER em um período específico, como uma SMA de 12 dias. Uma média móvel exponencial (EMA) dá mais peso aos preços recentes, reagindo mais rapidamente às mudanças de preço.
Médias móveis comumente usadas no mercado de criptomoedas incluem as de 50 dias, 100 dias e 200 dias, que ajudam a identificar níveis-chave de resistência e suporte. Um movimento de preço de WEVER acima dessas médias é visto como altista, enquanto uma queda abaixo indica fraqueza.
Traders também usam RSI e níveis de retração de Fibonacci para avaliar a direção futura de WEVER.
Como ler gráficos de Wrapped Ever e prever movimentos de preço?
A maioria dos traders prefere gráficos de velas em vez de gráficos de linha simples porque eles fornecem informações mais detalhadas. Velas podem representar a ação de preço de Wrapped Ever em diferentes períodos de tempo, como 5 minutos para tendências de curto prazo e semanal para tendências de longo prazo. Opções populares incluem gráficos de 1 hora, 4 horas e 1 dia.
Por exemplo, um gráfico de velas de 1 hora mostra os preços de abertura, fechamento, máximo e mínimo de WEVER dentro de cada hora. A cor da vela é crucial: verde indica que o preço fechou mais alto do que abriu, enquanto vermelho significa o oposto. Alguns gráficos usam velas vazias e preenchidas para transmitir a mesma informação.
O que afeta o preço de Wrapped Ever?
A ação de preço de Wrapped Ever é impulsionada pela oferta e demanda, influenciada por fatores como reduções pela metade das recompensas de bloco, hard forks e atualizações de protocolo. Eventos do mundo real, como regulamentações, adoção por empresas e governos e hacks de exchanges de criptomoedas, também impactam o preço de WEVER. A capitalização de mercado de Wrapped Ever pode mudar rapidamente.
Traders frequentemente monitoram a atividade de "baleias" de WEVER, grandes detentores de Wrapped Ever, pois suas ações podem influenciar significativamente os movimentos de preço no relativamente pequeno mercado de Wrapped Ever.
Padrões de previsão de preço altistas e baixistas
Traders frequentemente identificam padrões de velas para ganhar vantagem em previsões de preço de criptomoedas. Certas formações indicam tendências altistas, enquanto outras sugerem movimentos baixistas.
Padrões de velas altistas comumente seguidos:
- Martelo
- Engolfo de Alta
- Linha de Perfuração
- Estrela da Manhã
- Três Soldados Brancos
Padrões de velas baixistas comuns:
- Harami de Baixa
- Nuvem Negra
- Estrela da Noite
- Estrela Cadente
- Homem Enforcado


