Previsão de Preço Wrapped Ever - Projeção WEVER
Previsão de Preço Wrapped Ever até $0.0105022 até 2026
| Ano | Preço Mínimo | Preço Máximo |
|---|---|---|
| 2026 | $0.003518 | $0.0105022 |
| 2027 | $0.003386 | $0.008897 |
| 2028 | $0.006112 | $0.014971 |
| 2029 | $0.013427 | $0.04417 |
| 2030 | $0.011419 | $0.033017 |
| 2031 | $0.0135013 | $0.03014 |
| 2032 | $0.0206087 | $0.0559096 |
| 2033 | $0.04789 | $0.148923 |
| 2034 | $0.0385015 | $0.086248 |
| 2035 | $0.04552 | $0.101621 |
Calculadora de lucro do investimento
Se você abrir um short de $10,000.00 em Wrapped Ever hoje e fechar em Apr 06, 2026, nossa previsão mostra que pode lucrar cerca de $3,954.78, com um retorno de 39.55% nos próximos 90 dias.
Previsão de preço de longo prazo de Wrapped Ever para os anos 2027, 2028, 2029, 2030, 2031, 2032 e 2037
[
'name' => 'Wrapped Ever'
'name_with_ticker' => 'Wrapped Ever <small>WEVER</small>'
'name_lang' => 'Wrapped Ever'
'name_lang_with_ticker' => 'Wrapped Ever <small>WEVER</small>'
'name_with_lang' => 'Wrapped Ever'
'name_with_lang_with_ticker' => 'Wrapped Ever <small>WEVER</small>'
'image' => '/uploads/coins/wrapped-ever.png?1717156773'
'price_for_sd' => 0.01018
'ticker' => 'WEVER'
'marketcap' => '$162.72K'
'low24h' => '$0.01001'
'high24h' => '$0.01038'
'volume24h' => '$964.87'
'current_supply' => '15.98M'
'max_supply' => '15.98M'
'algo' => null
'proof' => null
'ico_price_and_roi' => '—'
'price' => '$0.01018'
'change_24h_pct' => '1.5714%'
'ath_price' => '$0.2379'
'ath_days' => 1315
'ath_exchange' => null
'ath_pair' => null
'ath_date' => '1 de jun. de 2022'
'ath_pct' => '-95.72%'
'fdv' => '$162.72K'
'new_prediction' => true
'change_24h_pct_is_increased' => true
'change_30d_pct' => null
'change_30d_pct_is_increased' => false
'max_price' => '$0.5021043'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.01027'
'next_week_prediction_price_date' => '13 de janeiro de 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.009000157'
'next_month_prediction_price_date' => '5 de fevereiro de 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.003518'
'current_year_max_price_prediction' => '$0.0105022'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.011419'
'grand_prediction_max_price' => '$0.033017'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.010376217231111
107 => 0.010414958259685
108 => 0.010502243775228
109 => 0.0097563986016272
110 => 0.01009126118771
111 => 0.010287961584653
112 => 0.0093992620352445
113 => 0.010270394851948
114 => 0.0097434150965105
115 => 0.0095645502525448
116 => 0.0098053682012933
117 => 0.0097115212124629
118 => 0.0096308370823466
119 => 0.0095858139514124
120 => 0.0097626440748662
121 => 0.0097543947382493
122 => 0.0094650663350309
123 => 0.009087649227567
124 => 0.0092143227971261
125 => 0.0091683011017343
126 => 0.0090015125407172
127 => 0.009113907892715
128 => 0.0086189756445025
129 => 0.0077674704357925
130 => 0.0083300008589763
131 => 0.0083083440495991
201 => 0.0082974237042529
202 => 0.0087201497700766
203 => 0.0086795144127973
204 => 0.0086057608414329
205 => 0.0090001579985409
206 => 0.0088561977308061
207 => 0.0092998493546597
208 => 0.0095920670077177
209 => 0.0095179511586514
210 => 0.0097927832737629
211 => 0.0092172411003241
212 => 0.0094084131235964
213 => 0.0094478134126398
214 => 0.0089952911988428
215 => 0.0086861628597941
216 => 0.0086655475239007
217 => 0.0081295615844994
218 => 0.0084158809470002
219 => 0.0086678301373007
220 => 0.0085471660271937
221 => 0.0085089673746716
222 => 0.0087041160061301
223 => 0.0087192807261295
224 => 0.0083735235030599
225 => 0.0084454173784433
226 => 0.0087452267901544
227 => 0.0084378629504999
228 => 0.0078407052176492
301 => 0.0076926018435507
302 => 0.0076728421233592
303 => 0.0072711740265772
304 => 0.0077024988191918
305 => 0.0075142139884297
306 => 0.0081090035128084
307 => 0.0077692629264035
308 => 0.0077546173887545
309 => 0.0077324785105647
310 => 0.0073867461869644
311 => 0.0074624395933974
312 => 0.0077140560048123
313 => 0.0078038355750669
314 => 0.007794470830347
315 => 0.0077128229471276
316 => 0.0077502009299606
317 => 0.0076297934239028
318 => 0.0075872750274483
319 => 0.0074530752726314
320 => 0.0072558387066791
321 => 0.007283265660897
322 => 0.0068924884139907
323 => 0.0066795722297579
324 => 0.0066206398361524
325 => 0.006541832976469
326 => 0.0066295412806507
327 => 0.0068913813911487
328 => 0.0065755466654099
329 => 0.0060340701813606
330 => 0.006066613840683
331 => 0.0061397297808812
401 => 0.0060034787100322
402 => 0.0058745285061591
403 => 0.005986640246366
404 => 0.005757209521916
405 => 0.0061674553878128
406 => 0.006156359386841
407 => 0.0063092736762132
408 => 0.0064048941194747
409 => 0.006184519955243
410 => 0.0061290964488939
411 => 0.0061606681969683
412 => 0.0056388575282363
413 => 0.0062666306120822
414 => 0.0062720596197801
415 => 0.0062255731598242
416 => 0.0065598429466526
417 => 0.0072652564582218
418 => 0.0069998515199767
419 => 0.0068970787059815
420 => 0.0067017075114501
421 => 0.0069620280281695
422 => 0.0069420394741181
423 => 0.0068516436522638
424 => 0.0067969719771541
425 => 0.0068977062148687
426 => 0.0067844898903248
427 => 0.0067641531274602
428 => 0.0066409344711169
429 => 0.0065969510168939
430 => 0.006564387418419
501 => 0.0065285380961313
502 => 0.0066076127680035
503 => 0.0064284191584015
504 => 0.0062123292317877
505 => 0.0061943636925151
506 => 0.006243968125993
507 => 0.0062220218567948
508 => 0.0061942586222216
509 => 0.0061412510465542
510 => 0.0061255248311814
511 => 0.0061766274018681
512 => 0.0061189355790278
513 => 0.0062040630062648
514 => 0.0061809130563717
515 => 0.0060515993181195
516 => 0.0058904265221793
517 => 0.005888991746224
518 => 0.0058542673317151
519 => 0.0058100405689873
520 => 0.0057977376953677
521 => 0.0059771985083108
522 => 0.006348677020293
523 => 0.0062757468996635
524 => 0.0063284463859978
525 => 0.0065876757001634
526 => 0.0066700769038392
527 => 0.0066115904812496
528 => 0.0065315306587235
529 => 0.0065350528846042
530 => 0.0068086415339323
531 => 0.0068257049224002
601 => 0.0068688186002009
602 => 0.0069242318600987
603 => 0.0066210275990239
604 => 0.0065207719911742
605 => 0.0064732653222057
606 => 0.0063269631691773
607 => 0.0064847374982198
608 => 0.0063928091532571
609 => 0.006405213427712
610 => 0.0063971351277005
611 => 0.0064015464257591
612 => 0.0061673407157324
613 => 0.0062526729669764
614 => 0.006110791548821
615 => 0.0059208282568475
616 => 0.0059201914332831
617 => 0.0059666846798728
618 => 0.0059390286775203
619 => 0.0058646070862906
620 => 0.0058751783220648
621 => 0.005782563173106
622 => 0.0058864234779998
623 => 0.0058894018199141
624 => 0.005849409945221
625 => 0.00600942107487
626 => 0.0060749777652438
627 => 0.0060486542566118
628 => 0.0060731308377051
629 => 0.0062787774754354
630 => 0.0063123068503773
701 => 0.0063271983839004
702 => 0.0063072457017297
703 => 0.006076889680732
704 => 0.0060871069498126
705 => 0.0060121394085631
706 => 0.0059487997360922
707 => 0.0059513329908182
708 => 0.0059838978160493
709 => 0.0061261103177354
710 => 0.006425388143649
711 => 0.0064367455183732
712 => 0.0064505109878569
713 => 0.006394519905496
714 => 0.0063776324592935
715 => 0.0063999113598543
716 => 0.006512304375987
717 => 0.0068014097278863
718 => 0.0066992205878278
719 => 0.0066161392262916
720 => 0.0066890239789331
721 => 0.0066778039425535
722 => 0.0065830955440643
723 => 0.0065804373947548
724 => 0.0063986616979474
725 => 0.00633146336167
726 => 0.0062753074021683
727 => 0.006213986560381
728 => 0.0061776335098762
729 => 0.0062334883176175
730 => 0.0062462629730026
731 => 0.0061241354597013
801 => 0.006107489930915
802 => 0.0062072218945823
803 => 0.0061633335757547
804 => 0.0062084738000468
805 => 0.0062189467192883
806 => 0.0062172603380786
807 => 0.0061714358926813
808 => 0.0062006430276729
809 => 0.0061315594463517
810 => 0.0060564414276832
811 => 0.0060085208117907
812 => 0.0059667037186771
813 => 0.0059899062723602
814 => 0.0059071934050988
815 => 0.0058807318941808
816 => 0.0061907483075191
817 => 0.0064197607652902
818 => 0.0064164308334553
819 => 0.0063961607297994
820 => 0.0063660434674071
821 => 0.0065101011106541
822 => 0.0064599143082704
823 => 0.0064964294002522
824 => 0.0065057240236952
825 => 0.0065338560494955
826 => 0.0065439108306898
827 => 0.0065135182984261
828 => 0.0064115172480138
829 => 0.0061573403283551
830 => 0.0060390202861165
831 => 0.0059999727014015
901 => 0.006001392006944
902 => 0.0059622412240238
903 => 0.0059737728842088
904 => 0.0059582309832154
905 => 0.0059287983827234
906 => 0.0059880888922187
907 => 0.0059949215711088
908 => 0.0059810824577237
909 => 0.0059843420699091
910 => 0.0058697601218436
911 => 0.0058784715384961
912 => 0.0058299652635817
913 => 0.0058208709217871
914 => 0.0056982512827278
915 => 0.0054810128181334
916 => 0.0056013840153667
917 => 0.0054559925358605
918 => 0.0054009305795311
919 => 0.0056615853169034
920 => 0.0056354228107083
921 => 0.0055906439726703
922 => 0.0055244067384845
923 => 0.0054998387040106
924 => 0.0053505711038417
925 => 0.0053417515777121
926 => 0.00541573263092
927 => 0.0053815929203972
928 => 0.0053336478371036
929 => 0.0051599956055297
930 => 0.0049647530029625
1001 => 0.0049706461498828
1002 => 0.0050327491891416
1003 => 0.0052133221515226
1004 => 0.0051427691711764
1005 => 0.0050915821744331
1006 => 0.0050819963886185
1007 => 0.0052019825672896
1008 => 0.0053717881479908
1009 => 0.0054514571272701
1010 => 0.0053725075883872
1011 => 0.0052818146090636
1012 => 0.0052873346704842
1013 => 0.0053240571660846
1014 => 0.005327916181144
1015 => 0.0052688843749933
1016 => 0.0052855014826439
1017 => 0.0052602585766224
1018 => 0.0051053429089631
1019 => 0.0051025409757781
1020 => 0.0050645221725819
1021 => 0.0050633709783307
1022 => 0.0049986915098591
1023 => 0.0049896424051119
1024 => 0.0048612173946984
1025 => 0.0049457471254593
1026 => 0.0048890490200749
1027 => 0.0048035916015297
1028 => 0.0047888587103616
1029 => 0.0047884158218626
1030 => 0.0048761614827794
1031 => 0.0049447217663235
1101 => 0.0048900353078926
1102 => 0.0048775842613604
1103 => 0.0050105288637307
1104 => 0.0049936104512621
1105 => 0.0049789592151764
1106 => 0.0053565839206829
1107 => 0.0050576644998513
1108 => 0.0049273185706446
1109 => 0.0047659907312308
1110 => 0.0048185198892295
1111 => 0.0048295885546337
1112 => 0.0044416241823722
1113 => 0.0042842270848635
1114 => 0.0042302143323831
1115 => 0.0041991292297023
1116 => 0.0042132951013361
1117 => 0.0040716192527402
1118 => 0.0041668277660989
1119 => 0.0040441484567762
1120 => 0.0040235808713352
1121 => 0.0042429466734544
1122 => 0.0042734701433029
1123 => 0.0041432475380306
1124 => 0.0042268715317402
1125 => 0.0041965483091606
1126 => 0.0040462514414236
1127 => 0.0040405112065849
1128 => 0.0039650975215448
1129 => 0.003847089707424
1130 => 0.0037931569697984
1201 => 0.0037650683317775
1202 => 0.0037766582512616
1203 => 0.003770798033313
1204 => 0.0037325561471947
1205 => 0.003772990013461
1206 => 0.0036696981935776
1207 => 0.0036285665586213
1208 => 0.0036099883533583
1209 => 0.0035183109179565
1210 => 0.0036642104868213
1211 => 0.003692954539882
1212 => 0.0037217552276067
1213 => 0.0039724455511858
1214 => 0.0039599217710633
1215 => 0.0040731306440425
1216 => 0.0040687315554163
1217 => 0.0040364425509805
1218 => 0.0039002205525492
1219 => 0.0039545162132003
1220 => 0.0037874026091353
1221 => 0.0039126154839213
1222 => 0.0038554735568836
1223 => 0.0038932957409103
1224 => 0.0038252880437416
1225 => 0.0038629263113237
1226 => 0.0036997708211968
1227 => 0.0035474185201759
1228 => 0.0036087295335476
1229 => 0.0036753816168475
1230 => 0.0038199003160767
1231 => 0.0037338261710692
]
'min_raw' => 0.0035183109179565
'max_raw' => 0.010502243775228
'avg_raw' => 0.0070102773465923
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.003518'
'max' => '$0.0105022'
'avg' => '$0.00701'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.0066649390820435
'max_diff' => 0.00031899377522805
'year' => 2026
]
1 => [
'items' => [
101 => 0.0037647816884377
102 => 0.0036610858871443
103 => 0.0034471318298348
104 => 0.0034483427865639
105 => 0.0034154306160893
106 => 0.0033869896955437
107 => 0.0037437128220441
108 => 0.0036993486623056
109 => 0.0036286601800001
110 => 0.0037232795226147
111 => 0.0037482983786129
112 => 0.0037490106302708
113 => 0.0038180424601636
114 => 0.0038548847601521
115 => 0.0038613783752087
116 => 0.0039700014510765
117 => 0.0040064104733344
118 => 0.0041563740832169
119 => 0.0038517589484009
120 => 0.0038454856001569
121 => 0.0037246110108053
122 => 0.0036479504352869
123 => 0.003729860025997
124 => 0.0038024207415921
125 => 0.0037268656745011
126 => 0.0037367315712086
127 => 0.0036353050667147
128 => 0.0036715602695107
129 => 0.0037027881342618
130 => 0.0036855459428353
131 => 0.0036597335477383
201 => 0.0037964715903848
202 => 0.003788756294138
203 => 0.0039160899030444
204 => 0.0040153555569007
205 => 0.0041932573544693
206 => 0.004007607554476
207 => 0.0040008417378731
208 => 0.0040669786804374
209 => 0.0040064003481131
210 => 0.0040446837630491
211 => 0.0041870893044638
212 => 0.0041900981091542
213 => 0.0041396967539645
214 => 0.0041366298269207
215 => 0.0041463099585153
216 => 0.0042030067916183
217 => 0.0041831951760144
218 => 0.00420612167916
219 => 0.0042347916224066
220 => 0.0043533826634786
221 => 0.004381974561993
222 => 0.0043125110718027
223 => 0.0043187828472172
224 => 0.0042928015950706
225 => 0.0042677040310411
226 => 0.0043241196897745
227 => 0.0044272204149623
228 => 0.0044265790307018
301 => 0.0044504963949536
302 => 0.0044653967147404
303 => 0.0044014336345149
304 => 0.0043597960212758
305 => 0.0043757625316618
306 => 0.0044012933294745
307 => 0.0043674832380267
308 => 0.0041587916912529
309 => 0.0042220953752765
310 => 0.0042115585468629
311 => 0.00419655282188
312 => 0.0042602051656786
313 => 0.0042540657418383
314 => 0.0040701661621379
315 => 0.0040819388165696
316 => 0.0040708820962461
317 => 0.0041066086216034
318 => 0.0040044709984993
319 => 0.0040358878434587
320 => 0.0040555921941026
321 => 0.0040671982080079
322 => 0.0041091270885518
323 => 0.0041042072183613
324 => 0.0041088212625129
325 => 0.0041709907235454
326 => 0.0044854225234652
327 => 0.0045025363525802
328 => 0.0044182615989291
329 => 0.0044519277007667
330 => 0.0043872961472057
331 => 0.004430683742105
401 => 0.0044603684326096
402 => 0.0043262290242567
403 => 0.0043182861590516
404 => 0.0042533878480783
405 => 0.0042882605243672
406 => 0.0042327755889575
407 => 0.0042463896513264
408 => 0.0042083235460903
409 => 0.0042768349566293
410 => 0.0043534413592086
411 => 0.0043727951617787
412 => 0.0043218836395527
413 => 0.0042850203422284
414 => 0.0042203005356518
415 => 0.0043279310163636
416 => 0.0043594054489032
417 => 0.0043277656945685
418 => 0.0043204340721469
419 => 0.0043065406609059
420 => 0.0043233816250201
421 => 0.0043592340323841
422 => 0.0043423266991612
423 => 0.0043534942906238
424 => 0.0043109349479388
425 => 0.004401454808956
426 => 0.0045452221330422
427 => 0.0045456843684974
428 => 0.0045287769441377
429 => 0.0045218587903653
430 => 0.0045392068337866
501 => 0.0045486174356887
502 => 0.0046047178270262
503 => 0.0046649157820696
504 => 0.0049458333718315
505 => 0.0048669528367363
506 => 0.0051161996342353
507 => 0.0053133214904109
508 => 0.0053724297159839
509 => 0.0053180529297137
510 => 0.0051320328812595
511 => 0.0051229058502268
512 => 0.0054008983382561
513 => 0.0053223527275252
514 => 0.0053130099770589
515 => 0.0052136188969227
516 => 0.0052723713351079
517 => 0.0052595213150305
518 => 0.0052392369296939
519 => 0.005351332489021
520 => 0.0055611653692417
521 => 0.0055284609470591
522 => 0.0055040486130142
523 => 0.005397080871553
524 => 0.0054614993440226
525 => 0.0054385611598308
526 => 0.0055371181560504
527 => 0.0054787351747947
528 => 0.0053217576672722
529 => 0.0053467568527498
530 => 0.0053429782761562
531 => 0.0054207411146988
601 => 0.0053973986407606
602 => 0.0053384202834865
603 => 0.0055604481832689
604 => 0.0055460309264411
605 => 0.0055664713003792
606 => 0.0055754697851263
607 => 0.0057106142551534
608 => 0.0057659786203828
609 => 0.0057785473005795
610 => 0.0058311391655137
611 => 0.0057772387670698
612 => 0.0059928787911783
613 => 0.0061362668242662
614 => 0.0063028194033785
615 => 0.0065461974865744
616 => 0.0066377098972293
617 => 0.0066211789993403
618 => 0.0068057054843838
619 => 0.0071372954762137
620 => 0.0066882028172098
621 => 0.0071610984776231
622 => 0.0070113851713792
623 => 0.0066564176155023
624 => 0.0066335618896964
625 => 0.0068739500397943
626 => 0.0074071078202094
627 => 0.0072735578432409
628 => 0.0074073262601288
629 => 0.0072512782963013
630 => 0.0072435291996217
701 => 0.0073997473588313
702 => 0.0077647596028328
703 => 0.007591355967987
704 => 0.00734273933712
705 => 0.007526313988449
706 => 0.0073672846364358
707 => 0.0070089469968372
708 => 0.0072734557200904
709 => 0.0070965862696257
710 => 0.0071482061781685
711 => 0.0075199594557001
712 => 0.0074752291178103
713 => 0.0075331143169574
714 => 0.0074309484555822
715 => 0.0073355094309801
716 => 0.0071573654041653
717 => 0.0071046257402198
718 => 0.00711920108596
719 => 0.0071046185174023
720 => 0.0070049485716275
721 => 0.0069834248563271
722 => 0.0069475510545175
723 => 0.0069586698457496
724 => 0.0068912166030967
725 => 0.0070185148085339
726 => 0.007042142477211
727 => 0.0071347794953388
728 => 0.0071443973778724
729 => 0.007402390154753
730 => 0.0072602920686396
731 => 0.007355623732963
801 => 0.0073470963716095
802 => 0.0066641108387939
803 => 0.0067582202191835
804 => 0.0069046248819193
805 => 0.0068386697798037
806 => 0.0067454246965292
807 => 0.0066701242923
808 => 0.0065560364800311
809 => 0.0067166128849372
810 => 0.0069277537819918
811 => 0.0071497522594572
812 => 0.0074164688842155
813 => 0.0073569408384932
814 => 0.0071447661776816
815 => 0.0071542841779719
816 => 0.0072131207105716
817 => 0.0071369220549923
818 => 0.0071144495838875
819 => 0.0072100333381301
820 => 0.0072106915709136
821 => 0.0071230158087545
822 => 0.0070255802436097
823 => 0.0070251719850341
824 => 0.0070078342673325
825 => 0.0072543626377644
826 => 0.0073899283146724
827 => 0.0074054707010549
828 => 0.0073888821882336
829 => 0.007395266448444
830 => 0.0073163837680371
831 => 0.0074966861835151
901 => 0.0076621495100184
902 => 0.0076178018039071
903 => 0.0075513182880484
904 => 0.007498360965387
905 => 0.007605326741696
906 => 0.0076005637240567
907 => 0.0076607043322085
908 => 0.0076579760068337
909 => 0.007637752982315
910 => 0.007617802526135
911 => 0.0076969038297912
912 => 0.0076741239246663
913 => 0.0076513086360567
914 => 0.0076055490819044
915 => 0.0076117685652994
916 => 0.0075452965287571
917 => 0.0075145435230991
918 => 0.007052092104782
919 => 0.0069285099747716
920 => 0.0069673914286191
921 => 0.0069801922127822
922 => 0.0069264091114269
923 => 0.0070035202630253
924 => 0.0069915025717296
925 => 0.0070382563784468
926 => 0.0070090466298242
927 => 0.0070102454080964
928 => 0.0070961450506206
929 => 0.0071210820822885
930 => 0.0071083989067157
1001 => 0.0071172817681331
1002 => 0.0073219835602757
1003 => 0.0072928815114279
1004 => 0.0072774216280028
1005 => 0.0072817041213663
1006 => 0.0073340098181146
1007 => 0.007348652557419
1008 => 0.0072866102420593
1009 => 0.0073158697566453
1010 => 0.0074404530561671
1011 => 0.0074840501601957
1012 => 0.0076231911884577
1013 => 0.0075640816066175
1014 => 0.0076725798022881
1015 => 0.008006066266019
1016 => 0.0082724783287552
1017 => 0.0080274747859188
1018 => 0.0085167066117624
1019 => 0.0088976437643189
1020 => 0.0088830227619197
1021 => 0.0088165975581364
1022 => 0.0083829107376891
1023 => 0.0079838256596072
1024 => 0.0083176772734702
1025 => 0.0083185283298911
1026 => 0.0082898501801819
1027 => 0.0081117326553391
1028 => 0.0082836520764095
1029 => 0.0082972984157345
1030 => 0.008289660094567
1031 => 0.0081530978058887
1101 => 0.0079445924320066
1102 => 0.0079853338829718
1103 => 0.0080520692107559
1104 => 0.0079257253128128
1105 => 0.0078853507819732
1106 => 0.0079604147163727
1107 => 0.0082022863531998
1108 => 0.0081565619213247
1109 => 0.0081553678716215
1110 => 0.0083509963813602
1111 => 0.008210968587662
1112 => 0.0079858477631406
1113 => 0.0079290017859701
1114 => 0.0077272368630534
1115 => 0.007866596613974
1116 => 0.0078716119233123
1117 => 0.0077952860119552
1118 => 0.0079920411901912
1119 => 0.0079902280565857
1120 => 0.0081770178151772
1121 => 0.0085340896785746
1122 => 0.0084284859581287
1123 => 0.0083056803209023
1124 => 0.0083190326986998
1125 => 0.0084654753266616
1126 => 0.0083769327708358
1127 => 0.0084087732912514
1128 => 0.0084654271322205
1129 => 0.0084996078011128
1130 => 0.0083141146264568
1201 => 0.0082708672942803
1202 => 0.0081823984303981
1203 => 0.0081593185551608
1204 => 0.0082313745988294
1205 => 0.0082123903771003
1206 => 0.0078711904059826
1207 => 0.0078355331105821
1208 => 0.0078366266689251
1209 => 0.0077469647042285
1210 => 0.0076102086867291
1211 => 0.0079695953354402
1212 => 0.0079407315579358
1213 => 0.0079088681814498
1214 => 0.0079127712632594
1215 => 0.0080687688267213
1216 => 0.0079782823618476
1217 => 0.0082188554591542
1218 => 0.0081694008626372
1219 => 0.0081186779423289
1220 => 0.0081116664896843
1221 => 0.0080921424928418
1222 => 0.0080251874431096
1223 => 0.0079443351971832
1224 => 0.007890949541121
1225 => 0.0072789838376695
1226 => 0.0073925611125894
1227 => 0.0075232214144903
1228 => 0.0075683248271182
1229 => 0.007491172318757
1230 => 0.0080282338943897
1231 => 0.0081263602195119
]
'min_raw' => 0.0033869896955437
'max_raw' => 0.0088976437643189
'avg_raw' => 0.0061423167299313
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.003386'
'max' => '$0.008897'
'avg' => '$0.006142'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -0.00013132122241274
'max_diff' => -0.0016046000109092
'year' => 2027
]
2 => [
'items' => [
101 => 0.007829129180095
102 => 0.0077735293884834
103 => 0.0080318790074714
104 => 0.0078760626052652
105 => 0.0079462267216379
106 => 0.0077945702797599
107 => 0.0081027244612642
108 => 0.0081003768427006
109 => 0.0079804979061176
110 => 0.008081818762422
111 => 0.0080642117702553
112 => 0.0079288687461018
113 => 0.0081070150765369
114 => 0.0081071034348942
115 => 0.0079917225648258
116 => 0.0078569829687063
117 => 0.0078328947113273
118 => 0.0078147474451943
119 => 0.0079417636066168
120 => 0.008055645899779
121 => 0.0082675526135391
122 => 0.0083208309961577
123 => 0.008528780070461
124 => 0.00840495652157
125 => 0.00845984589701
126 => 0.0085194360786262
127 => 0.0085480058030495
128 => 0.0085014529702378
129 => 0.0088244834778845
130 => 0.0088517571501289
131 => 0.0088609017765161
201 => 0.0087519777068483
202 => 0.0088487277747092
203 => 0.0088034616219825
204 => 0.0089212315760779
205 => 0.0089396994086423
206 => 0.0089240578114725
207 => 0.0089299197930233
208 => 0.0086542702412334
209 => 0.0086399763578058
210 => 0.0084450782430237
211 => 0.0085245006654115
212 => 0.0083760242535732
213 => 0.0084231076532437
214 => 0.0084438615671913
215 => 0.0084330209003193
216 => 0.0085289910900089
217 => 0.0084473968233583
218 => 0.0082320561383279
219 => 0.0080166567838719
220 => 0.0080139526204372
221 => 0.0079572417725233
222 => 0.0079162502165915
223 => 0.0079241466445176
224 => 0.0079519746864762
225 => 0.0079146328002042
226 => 0.0079226015849221
227 => 0.0080549365069726
228 => 0.0080814753318203
229 => 0.0079912860355994
301 => 0.0076291629970193
302 => 0.0075402970950349
303 => 0.0076041721430938
304 => 0.0075736439842016
305 => 0.006112521793928
306 => 0.006455790779401
307 => 0.0062518320045462
308 => 0.0063458255916913
309 => 0.0061376364974333
310 => 0.0062369952453386
311 => 0.006218647312601
312 => 0.0067706136831738
313 => 0.0067619954875022
314 => 0.0067661205617054
315 => 0.0065692200221622
316 => 0.0068828879280868
317 => 0.0070374120176784
318 => 0.0070088137212204
319 => 0.0070160112963128
320 => 0.0068923331095191
321 => 0.0067673180369007
322 => 0.0066286570816852
323 => 0.0068862719974636
324 => 0.0068576296164623
325 => 0.0069233249332759
326 => 0.0070904066208526
327 => 0.0071150100340299
328 => 0.0071480772708434
329 => 0.0071362250203319
330 => 0.0074185937124326
331 => 0.0073843970006905
401 => 0.0074668012369233
402 => 0.007297289470968
403 => 0.0071054708175851
404 => 0.0071419292725689
405 => 0.0071384180301736
406 => 0.0070937158844647
407 => 0.0070533607860867
408 => 0.0069861809172658
409 => 0.007198747962965
410 => 0.0071901181291027
411 => 0.0073298251082502
412 => 0.0073051305426446
413 => 0.0071402141897458
414 => 0.0071461042095526
415 => 0.0071857174234005
416 => 0.007322819208824
417 => 0.007363520353339
418 => 0.0073446659615395
419 => 0.0073892929084224
420 => 0.0074245642276515
421 => 0.0073937224430708
422 => 0.0078303770731655
423 => 0.0076490476272956
424 => 0.0077374263375304
425 => 0.0077585041391638
426 => 0.0077045137934982
427 => 0.0077162223662238
428 => 0.0077339576635078
429 => 0.0078416429156895
430 => 0.0081242401763931
501 => 0.0082494005794541
502 => 0.0086259518273686
503 => 0.0082390077502968
504 => 0.0082160480900971
505 => 0.0082838763406048
506 => 0.0085049517851282
507 => 0.0086841126683539
508 => 0.0087435506693591
509 => 0.0087514063824064
510 => 0.0088629160236559
511 => 0.0089268312704884
512 => 0.0088493758202135
513 => 0.0087837404360292
514 => 0.0085486426368448
515 => 0.0085758558472504
516 => 0.008763327880903
517 => 0.009028143170485
518 => 0.0092553822382813
519 => 0.0091758110368201
520 => 0.009782883135455
521 => 0.0098430718543675
522 => 0.0098347557195481
523 => 0.0099718745785131
524 => 0.0096997215672376
525 => 0.0095833708822011
526 => 0.0087979315510831
527 => 0.0090186079654732
528 => 0.0093393740936608
529 => 0.0092969194937839
530 => 0.0090639705573909
531 => 0.009255205525624
601 => 0.0091919772646558
602 => 0.0091421065118872
603 => 0.0093705740982412
604 => 0.0091193646021138
605 => 0.0093368680867717
606 => 0.0090579176179125
607 => 0.0091761745113658
608 => 0.0091090461791994
609 => 0.00915248643705
610 => 0.0088985355772855
611 => 0.0090355612969058
612 => 0.0088928348568505
613 => 0.0088927671859344
614 => 0.0088896164918596
615 => 0.0090575335156387
616 => 0.0090630092837557
617 => 0.0089389183494744
618 => 0.0089210349071797
619 => 0.0089871593664346
620 => 0.0089097449426705
621 => 0.0089459666643091
622 => 0.0089108420617192
623 => 0.0089029347738389
624 => 0.0088399281586946
625 => 0.0088127831764874
626 => 0.0088234274234509
627 => 0.0087870931210792
628 => 0.0087652003896311
629 => 0.0088852614765425
630 => 0.0088211176810562
701 => 0.0088754305199327
702 => 0.0088135341852062
703 => 0.0085989745220948
704 => 0.0084755789909122
705 => 0.008070295676986
706 => 0.0081852335220631
707 => 0.008261437432261
708 => 0.0082362520403952
709 => 0.0082903600075758
710 => 0.008293681797314
711 => 0.0082760907456181
712 => 0.0082557225613076
713 => 0.0082458084556165
714 => 0.0083197000769636
715 => 0.0083625966502333
716 => 0.0082690855141261
717 => 0.0082471771632961
718 => 0.0083417220847917
719 => 0.0083993944322872
720 => 0.0088252146429012
721 => 0.0087936685063178
722 => 0.0088728431185256
723 => 0.0088639292722245
724 => 0.0089469168793231
725 => 0.0090825665437498
726 => 0.0088067528477276
727 => 0.008854624568437
728 => 0.0088428875280385
729 => 0.0089710294574918
730 => 0.0089714295026084
731 => 0.0088946020147371
801 => 0.0089362514422958
802 => 0.0089130038744248
803 => 0.0089550153716649
804 => 0.0087932471884309
805 => 0.0089902633738136
806 => 0.0091019588554831
807 => 0.0091035097473544
808 => 0.0091564525191955
809 => 0.0092102454416247
810 => 0.0093134962718514
811 => 0.0092073658320092
812 => 0.0090164475023232
813 => 0.0090302311890641
814 => 0.0089182958422234
815 => 0.0089201774956266
816 => 0.0089101330822927
817 => 0.0089402771228159
818 => 0.0087998621101793
819 => 0.0088328172329876
820 => 0.0087866798680711
821 => 0.0088545242748162
822 => 0.0087815349082407
823 => 0.0088428818680823
824 => 0.008869357182266
825 => 0.0089670516615766
826 => 0.0087671053542135
827 => 0.0083594012983251
828 => 0.0084451056338068
829 => 0.0083183421896992
830 => 0.0083300746290738
831 => 0.0083537760238144
901 => 0.0082769520488463
902 => 0.0082916076422685
903 => 0.0082910840413417
904 => 0.008286571931426
905 => 0.0082665870484541
906 => 0.0082376050142563
907 => 0.0083530605183008
908 => 0.0083726786582361
909 => 0.008416287353139
910 => 0.0085460372491095
911 => 0.0085330721747888
912 => 0.0085542187489217
913 => 0.0085080558963226
914 => 0.0083322159914076
915 => 0.0083417649442358
916 => 0.0082226893494567
917 => 0.008413242322462
918 => 0.008368116863278
919 => 0.0083390241861836
920 => 0.0083310859796966
921 => 0.0084611575005628
922 => 0.0085000769382273
923 => 0.0084758249564611
924 => 0.0084260834343153
925 => 0.0085216018615962
926 => 0.0085471585631376
927 => 0.0085528797661178
928 => 0.0087221201054176
929 => 0.008562338421059
930 => 0.0086007994605775
1001 => 0.0089008615117127
1002 => 0.0086287466370657
1003 => 0.0087728919550521
1004 => 0.0087658367918327
1005 => 0.0088395766589029
1006 => 0.0087597879704275
1007 => 0.008760777046847
1008 => 0.0088262530532341
1009 => 0.0087343038109234
1010 => 0.0087115358854422
1011 => 0.0086800821594568
1012 => 0.0087487602194343
1013 => 0.0087899296103493
1014 => 0.0091217246655385
1015 => 0.0093360794028835
1016 => 0.0093267736984149
1017 => 0.0094118104177086
1018 => 0.0093735005968197
1019 => 0.0092497880795494
1020 => 0.0094609502613956
1021 => 0.0093941297116585
1022 => 0.0093996383165919
1023 => 0.0093994332860411
1024 => 0.0094438631100625
1025 => 0.0094123805078098
1026 => 0.0093503250671469
1027 => 0.0093915203646651
1028 => 0.0095138556707056
1029 => 0.0098935882143612
1030 => 0.010106091576578
1031 => 0.0098807952451286
1101 => 0.010036201637724
1102 => 0.0099430131791264
1103 => 0.0099260780640827
1104 => 0.010023684763075
1105 => 0.010121462309673
1106 => 0.010115234302658
1107 => 0.010044252824761
1108 => 0.010004157188985
1109 => 0.010307774776104
1110 => 0.010531475042302
1111 => 0.010516220183853
1112 => 0.010583550167902
1113 => 0.010781233083507
1114 => 0.010799306731867
1115 => 0.010797029867592
1116 => 0.010752232444341
1117 => 0.010946876947125
1118 => 0.011109252815791
1119 => 0.010741863135181
1120 => 0.010881760316073
1121 => 0.010944564667781
1122 => 0.011036780089301
1123 => 0.011192362962502
1124 => 0.011361367229119
1125 => 0.011385266285456
1126 => 0.01136830876131
1127 => 0.011256845904398
1128 => 0.011441772389569
1129 => 0.011550097987523
1130 => 0.011614603402118
1201 => 0.011778178400851
1202 => 0.010944952526076
1203 => 0.010355153837897
1204 => 0.010263048255942
1205 => 0.010450348578722
1206 => 0.010499738180146
1207 => 0.010479829293741
1208 => 0.0098159572480453
1209 => 0.010259553107013
1210 => 0.010736824952663
1211 => 0.010755158908005
1212 => 0.010994091173221
1213 => 0.01107189731294
1214 => 0.011264269104007
1215 => 0.011252236196098
1216 => 0.011299075665919
1217 => 0.011288308082954
1218 => 0.011644636317246
1219 => 0.012037719274924
1220 => 0.012024108062027
1221 => 0.011967597736114
1222 => 0.012051525206537
1223 => 0.012457228944191
1224 => 0.012419878245298
1225 => 0.012456161267747
1226 => 0.012934508838902
1227 => 0.013556428725551
1228 => 0.013267484498467
1229 => 0.013894410329779
1230 => 0.014289026908679
1231 => 0.014971475477771
]
'min_raw' => 0.006112521793928
'max_raw' => 0.014971475477771
'avg_raw' => 0.01054199863585
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.006112'
'max' => '$0.014971'
'avg' => '$0.010541'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 0.0027255320983843
'max_diff' => 0.0060738317134523
'year' => 2028
]
3 => [
'items' => [
101 => 0.014886029555791
102 => 0.015151701775699
103 => 0.014733063522344
104 => 0.013771785471889
105 => 0.01361965954078
106 => 0.013924219507302
107 => 0.014672950466471
108 => 0.013900639304891
109 => 0.014056876847018
110 => 0.014011880424375
111 => 0.014009482756235
112 => 0.014100991997124
113 => 0.013968253070413
114 => 0.013427450803714
115 => 0.013675297295574
116 => 0.013579591862501
117 => 0.013685784175809
118 => 0.014258860293688
119 => 0.014005489681545
120 => 0.01373858432381
121 => 0.014073342873451
122 => 0.014499605542661
123 => 0.01447293079089
124 => 0.014421170623272
125 => 0.01471293997806
126 => 0.015194857471772
127 => 0.01532511783382
128 => 0.015421273370029
129 => 0.015434531593911
130 => 0.015571099539836
131 => 0.014836739275041
201 => 0.01600218787498
202 => 0.016203428653322
203 => 0.016165603727569
204 => 0.01638927438319
205 => 0.016323464802329
206 => 0.01622811704487
207 => 0.016582682610141
208 => 0.016176201801523
209 => 0.015599253468202
210 => 0.015282728201797
211 => 0.015699554205963
212 => 0.015954095301485
213 => 0.01612233077377
214 => 0.016173238726033
215 => 0.014893745571942
216 => 0.01420416972583
217 => 0.014646179937185
218 => 0.015185462900952
219 => 0.014833743530949
220 => 0.01484753026436
221 => 0.014346070872959
222 => 0.015229830930105
223 => 0.015101074523371
224 => 0.015769062989274
225 => 0.015609642180944
226 => 0.016154360843725
227 => 0.016010918164304
228 => 0.016606340706807
301 => 0.016843870879433
302 => 0.017242721007892
303 => 0.017536116785998
304 => 0.017708404398669
305 => 0.017698060896639
306 => 0.018380750251389
307 => 0.017978192190242
308 => 0.017472484389791
309 => 0.017463337731169
310 => 0.017725250966957
311 => 0.018274149256782
312 => 0.018416470597189
313 => 0.018496008810641
314 => 0.018374193267993
315 => 0.017937245344215
316 => 0.017748573446103
317 => 0.017909327369645
318 => 0.017712739134896
319 => 0.01805210558099
320 => 0.018518128196239
321 => 0.018421896369044
322 => 0.018743584939477
323 => 0.019076498767252
324 => 0.019552580493065
325 => 0.019677045885448
326 => 0.019882782446061
327 => 0.020094552947872
328 => 0.020162567925679
329 => 0.02029242962212
330 => 0.020291745186878
331 => 0.020683092149804
401 => 0.021114759968917
402 => 0.0212777045775
403 => 0.021652386720117
404 => 0.021010756681313
405 => 0.02149744043626
406 => 0.021936441365707
407 => 0.021413046359737
408 => 0.022134424440071
409 => 0.022162433916252
410 => 0.022585343752211
411 => 0.022156643613746
412 => 0.021902082839984
413 => 0.022636990255566
414 => 0.022992588804599
415 => 0.022885479627673
416 => 0.022070373502636
417 => 0.021595946776318
418 => 0.020354280523462
419 => 0.02182508783596
420 => 0.02254147517384
421 => 0.022068518232497
422 => 0.022307050203448
423 => 0.023608403292706
424 => 0.024103874292722
425 => 0.024000819788323
426 => 0.024018234303145
427 => 0.024285581461319
428 => 0.025471145991432
429 => 0.024760728243818
430 => 0.025303815993024
501 => 0.025591867776954
502 => 0.025859426327169
503 => 0.02520238709059
504 => 0.024347588697623
505 => 0.024076838164575
506 => 0.022021491985643
507 => 0.021914502291114
508 => 0.021854445733455
509 => 0.021475797632584
510 => 0.021178283945743
511 => 0.020941690015993
512 => 0.020320796891399
513 => 0.02053033009444
514 => 0.019540756044304
515 => 0.02017385045323
516 => 0.018594466375112
517 => 0.01990982436702
518 => 0.019193934814014
519 => 0.01967463539507
520 => 0.019672958276027
521 => 0.018787836100045
522 => 0.018277316100967
523 => 0.018602639314115
524 => 0.018951411622799
525 => 0.019007998756472
526 => 0.019460191158569
527 => 0.019586388338151
528 => 0.019204004992434
529 => 0.01856173715061
530 => 0.018710921321696
531 => 0.018274292888501
601 => 0.017509118353999
602 => 0.018058680063344
603 => 0.018246324593438
604 => 0.0183291991078
605 => 0.017576737834006
606 => 0.01734029816505
607 => 0.01721441966922
608 => 0.018464603849167
609 => 0.018533091760675
610 => 0.018182697922182
611 => 0.019766511297879
612 => 0.019408045552239
613 => 0.019808539616359
614 => 0.018697384421844
615 => 0.018739832046643
616 => 0.018213793370508
617 => 0.018508339879227
618 => 0.018300163900541
619 => 0.018484543432088
620 => 0.018595059763071
621 => 0.019121012121436
622 => 0.019915829898104
623 => 0.019042452378062
624 => 0.018661909285583
625 => 0.018897996079901
626 => 0.019526726324325
627 => 0.020479284828735
628 => 0.019915351022098
629 => 0.020165615269267
630 => 0.020220286873792
701 => 0.019804462962741
702 => 0.020494616849461
703 => 0.020864475924154
704 => 0.021243874803238
705 => 0.021573296219431
706 => 0.021092334547772
707 => 0.021607032479595
708 => 0.021192276802961
709 => 0.020820198084367
710 => 0.020820762374196
711 => 0.020587351958819
712 => 0.020135089867421
713 => 0.020051685798822
714 => 0.020485564296447
715 => 0.020833493763096
716 => 0.020862150900439
717 => 0.021054782530437
718 => 0.021168779944806
719 => 0.022286109577596
720 => 0.022735508798939
721 => 0.023285025660106
722 => 0.023499093446603
723 => 0.024143360736413
724 => 0.023623062575061
725 => 0.023510492795023
726 => 0.021947711088171
727 => 0.022203616505119
728 => 0.022613345768854
729 => 0.021954467372817
730 => 0.022372374062201
731 => 0.022454877695159
801 => 0.021932078937042
802 => 0.022211328342553
803 => 0.021469724713195
804 => 0.019931994830655
805 => 0.020496328782404
806 => 0.020911868523645
807 => 0.020318842077213
808 => 0.021381819029149
809 => 0.020760849838126
810 => 0.02056403241635
811 => 0.019796177483523
812 => 0.020158575454371
813 => 0.020648723898981
814 => 0.020345869146084
815 => 0.020974338232214
816 => 0.021864418064757
817 => 0.022498741958598
818 => 0.022547437470736
819 => 0.022139609703396
820 => 0.02279315630328
821 => 0.022797916676767
822 => 0.022060713442282
823 => 0.021609180565925
824 => 0.021506591346384
825 => 0.0217628793306
826 => 0.02207406025681
827 => 0.022564705846431
828 => 0.022861192700383
829 => 0.023634273171012
830 => 0.02384344658041
831 => 0.024073264739923
901 => 0.024380372674328
902 => 0.02474913449044
903 => 0.023942304630409
904 => 0.023974361484867
905 => 0.023223052690526
906 => 0.022420171495193
907 => 0.023029458241897
908 => 0.023826019613194
909 => 0.023643287554496
910 => 0.023622726465015
911 => 0.023657304514351
912 => 0.023519530509564
913 => 0.022896383792057
914 => 0.022583443411629
915 => 0.022987216341986
916 => 0.023201803684606
917 => 0.023534609939025
918 => 0.02349358454348
919 => 0.024350857714083
920 => 0.024683968145584
921 => 0.024598744242607
922 => 0.024614427491782
923 => 0.025217508016587
924 => 0.025888257593139
925 => 0.026516503084782
926 => 0.027155581382653
927 => 0.026385147550919
928 => 0.025993968764917
929 => 0.026397565420644
930 => 0.026183411354081
1001 => 0.027414004142774
1002 => 0.027499207717484
1003 => 0.028729711520312
1004 => 0.029897606154863
1005 => 0.029164072459907
1006 => 0.029855761695167
1007 => 0.030603879997351
1008 => 0.032047121580085
1009 => 0.031561088588871
1010 => 0.03118879493471
1011 => 0.030836979230437
1012 => 0.031569051861858
1013 => 0.032510851607037
1014 => 0.032713706251702
1015 => 0.033042408272499
1016 => 0.032696818289402
1017 => 0.033113043358554
1018 => 0.034582500751225
1019 => 0.034185440392466
1020 => 0.033621550852391
1021 => 0.034781546335716
1022 => 0.035201344191763
1023 => 0.038147705395345
1024 => 0.041867608122979
1025 => 0.04032754396754
1026 => 0.0393715764487
1027 => 0.03959625149148
1028 => 0.040954634040958
1029 => 0.041390903402943
1030 => 0.040204972886
1031 => 0.040623863593492
1101 => 0.042931992576202
1102 => 0.044170229721782
1103 => 0.042488537360649
1104 => 0.037848814833168
1105 => 0.033570778768956
1106 => 0.03470550657566
1107 => 0.034576863657083
1108 => 0.03705666030405
1109 => 0.034175970634226
1110 => 0.034224474060325
1111 => 0.036755550275801
1112 => 0.036080302535144
1113 => 0.034986487674476
1114 => 0.033578764827927
1115 => 0.030976458947478
1116 => 0.028671524058497
1117 => 0.033192032170592
1118 => 0.032997099640788
1119 => 0.032714808450249
1120 => 0.033343016947696
1121 => 0.036393419091206
1122 => 0.036323097448609
1123 => 0.035875747036831
1124 => 0.036215058381399
1125 => 0.034927004755226
1126 => 0.035258965503127
1127 => 0.033570101106186
1128 => 0.034333538346811
1129 => 0.034984140839042
1130 => 0.035114758921692
1201 => 0.035409048131426
1202 => 0.032894379055384
1203 => 0.034023391643722
1204 => 0.034686580765197
1205 => 0.031690268187346
1206 => 0.034627353299412
1207 => 0.032850604261404
1208 => 0.032247548952029
1209 => 0.033059483479607
1210 => 0.032743071804577
1211 => 0.032471039626704
1212 => 0.032319240997345
1213 => 0.032915436104454
1214 => 0.0328876228901
1215 => 0.031912131978385
1216 => 0.03063964385015
1217 => 0.031066732633985
1218 => 0.030911567274839
1219 => 0.030349227996564
1220 => 0.030728176773018
1221 => 0.029059478143103
1222 => 0.026188568881742
1223 => 0.028085179478126
1224 => 0.028012162033281
1225 => 0.027975343326512
1226 => 0.029400593771228
1227 => 0.029263588827091
1228 => 0.029014923511926
1229 => 0.030344661063046
1230 => 0.029859288969393
1231 => 0.031355091393983
]
'min_raw' => 0.013427450803714
'max_raw' => 0.044170229721782
'avg_raw' => 0.028798840262748
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.013427'
'max' => '$0.04417'
'avg' => '$0.028798'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072435
'min_diff' => 0.0073149290097859
'max_diff' => 0.029198754244011
'year' => 2029
]
4 => [
'items' => [
101 => 0.032340323613253
102 => 0.032090436853522
103 => 0.033017052517786
104 => 0.031076571896966
105 => 0.031721121720633
106 => 0.031853962545983
107 => 0.030328252308075
108 => 0.029286004530321
109 => 0.029216498486039
110 => 0.027409384470004
111 => 0.028374730190855
112 => 0.029224194476484
113 => 0.028817367004759
114 => 0.028688577580836
115 => 0.029346534816641
116 => 0.029397663728886
117 => 0.028231919111308
118 => 0.028474314331633
119 => 0.029485142695242
120 => 0.028448844050389
121 => 0.026435485061861
122 => 0.025936144195841
123 => 0.025869522919635
124 => 0.024515270887764
125 => 0.025969512540199
126 => 0.025334697087658
127 => 0.027340071495979
128 => 0.026194612388985
129 => 0.026145233936283
130 => 0.026070591162779
131 => 0.0249049304955
201 => 0.025160136100034
202 => 0.026008478398416
203 => 0.026311176487739
204 => 0.02627960259709
205 => 0.026004321058343
206 => 0.026130343537112
207 => 0.025724381223854
208 => 0.025581027481668
209 => 0.025128563638775
210 => 0.02446356678605
211 => 0.024556038677084
212 => 0.023238505905943
213 => 0.022520644125469
214 => 0.0223219494459
215 => 0.022056246616358
216 => 0.022351961287505
217 => 0.023234773501142
218 => 0.022169914672437
219 => 0.020344288901784
220 => 0.020454012121315
221 => 0.020700527618486
222 => 0.020241147620372
223 => 0.019806383004998
224 => 0.020184375564497
225 => 0.019410833858672
226 => 0.020794006437995
227 => 0.020756595496021
228 => 0.021272156698774
301 => 0.021594547699236
302 => 0.020851540818496
303 => 0.020664676597295
304 => 0.020771122950196
305 => 0.019011801848909
306 => 0.021128382630813
307 => 0.021146686909307
308 => 0.020989954563985
309 => 0.022116968488248
310 => 0.024495319392902
311 => 0.023600488113628
312 => 0.023253982395874
313 => 0.022595274773131
314 => 0.023472963570248
315 => 0.023405570764708
316 => 0.023100794940091
317 => 0.022916465570404
318 => 0.023256098085899
319 => 0.022874381343188
320 => 0.022805814527322
321 => 0.022390374224609
322 => 0.02224208093787
323 => 0.022132290492094
324 => 0.022011421999081
325 => 0.022278027776115
326 => 0.021673864010444
327 => 0.020945301735948
328 => 0.020884729665977
329 => 0.021051974476719
330 => 0.020977981097877
331 => 0.020884375414147
401 => 0.020705656671913
402 => 0.020652634638815
403 => 0.020824930523752
404 => 0.020630418515132
405 => 0.020917431579469
406 => 0.020839379907126
407 => 0.020403389610212
408 => 0.019859984275974
409 => 0.019855146828668
410 => 0.01973807104077
411 => 0.019588957422419
412 => 0.019547477425052
413 => 0.020152542085443
414 => 0.021405007824393
415 => 0.021159118830872
416 => 0.021336798828408
417 => 0.022210808559931
418 => 0.022488629971192
419 => 0.022291438914039
420 => 0.022021511632794
421 => 0.022033387063265
422 => 0.022955810295824
423 => 0.023013340701372
424 => 0.023158701476178
425 => 0.023345531150753
426 => 0.022323256815494
427 => 0.021985238034006
428 => 0.021825065982769
429 => 0.021331798059343
430 => 0.021863745225162
501 => 0.021553802391888
502 => 0.021595624269252
503 => 0.021568387716754
504 => 0.021583260716145
505 => 0.02079361981307
506 => 0.021081323455847
507 => 0.020602960348692
508 => 0.019962485846989
509 => 0.01996033875188
510 => 0.020117093978812
511 => 0.020023849836001
512 => 0.01977293224522
513 => 0.019808573904693
514 => 0.019496315463795
515 => 0.019846487733039
516 => 0.019856529420745
517 => 0.019721694023073
518 => 0.020261182718305
519 => 0.020482211676923
520 => 0.020393460129721
521 => 0.020475984631777
522 => 0.021169336628675
523 => 0.021282383257238
524 => 0.021332591102204
525 => 0.021265319241214
526 => 0.020488657833477
527 => 0.020523106069529
528 => 0.02027034777014
529 => 0.020056793642169
530 => 0.020065334687344
531 => 0.020175129269214
601 => 0.020654608647609
602 => 0.021663644732587
603 => 0.021701936914416
604 => 0.021748348155855
605 => 0.021559570312503
606 => 0.021502633108587
607 => 0.021577747977291
608 => 0.021956688878212
609 => 0.022931427756832
610 => 0.022586889936507
611 => 0.022306775325532
612 => 0.022552511357714
613 => 0.022514682221702
614 => 0.022195366243866
615 => 0.022186404107883
616 => 0.021573534654923
617 => 0.021346970772526
618 => 0.021157637034382
619 => 0.020950889535012
620 => 0.020828322687146
621 => 0.021016641071104
622 => 0.021059711713633
623 => 0.020647950275867
624 => 0.02059182871341
625 => 0.020928081991978
626 => 0.020780109460866
627 => 0.020932302878656
628 => 0.020967613057075
629 => 0.020961927305087
630 => 0.020807426988069
701 => 0.020905900882871
702 => 0.020672980765185
703 => 0.020419715120671
704 => 0.020258147418479
705 => 0.02011715816947
706 => 0.020195387199164
707 => 0.019916514992364
708 => 0.01982729816082
709 => 0.020872540143045
710 => 0.021644671633559
711 => 0.021633444535889
712 => 0.0215651024662
713 => 0.021463560013325
714 => 0.021949260415315
715 => 0.021780052107148
716 => 0.021903165289167
717 => 0.021934502761035
718 => 0.022029351850136
719 => 0.022063252246935
720 => 0.021960781702469
721 => 0.021616878039518
722 => 0.020759902808823
723 => 0.020360978525574
724 => 0.020229326867492
725 => 0.020234112155221
726 => 0.020102112557186
727 => 0.020140992354614
728 => 0.020088591750314
729 => 0.019989357682836
730 => 0.020189259775131
731 => 0.020212296629051
801 => 0.020165637092058
802 => 0.020176627102119
803 => 0.019790306064361
804 => 0.019819677213816
805 => 0.019656134921342
806 => 0.019625472713035
807 => 0.019212052038917
808 => 0.018479617388432
809 => 0.018885457283952
810 => 0.018395259759888
811 => 0.018209614529821
812 => 0.019088430175204
813 => 0.019000221458959
814 => 0.018849246480155
815 => 0.018625923020562
816 => 0.018543090177048
817 => 0.018039824041548
818 => 0.018010088393442
819 => 0.018259520679524
820 => 0.018144416261938
821 => 0.017982766066195
822 => 0.017397285443432
823 => 0.016739011377474
824 => 0.016758880533762
825 => 0.016968265266519
826 => 0.017577079616388
827 => 0.017339205317299
828 => 0.017166624784016
829 => 0.017134305637885
830 => 0.017538847416442
831 => 0.018111358787223
901 => 0.018379968313173
902 => 0.018113784430749
903 => 0.017808006718978
904 => 0.017826617991456
905 => 0.017950430449255
906 => 0.017963441387956
907 => 0.01776441153205
908 => 0.017820437270663
909 => 0.017735329050608
910 => 0.017213020061228
911 => 0.01720357314787
912 => 0.017075390098506
913 => 0.017071508766715
914 => 0.016853437422986
915 => 0.016822927734543
916 => 0.016389933845586
917 => 0.016674931734523
918 => 0.016483770113685
919 => 0.016195644460613
920 => 0.016145971489422
921 => 0.016144478259926
922 => 0.016440318881914
923 => 0.016671474664609
924 => 0.016487095451923
925 => 0.016445115879235
926 => 0.016893347888022
927 => 0.016836306279178
928 => 0.016786908613799
929 => 0.018060096673329
930 => 0.017052268976108
1001 => 0.016612798575325
1002 => 0.016068870501191
1003 => 0.016245976224853
1004 => 0.016283295003053
1005 => 0.014975246035165
1006 => 0.014444570731801
1007 => 0.014262462965763
1008 => 0.014157657371782
1009 => 0.014205418597025
1010 => 0.013727748581992
1011 => 0.014048750732027
1012 => 0.01363512887545
1013 => 0.013565783825152
1014 => 0.014305390942628
1015 => 0.014408302952303
1016 => 0.013969248346776
1017 => 0.014251192480008
1018 => 0.014148955617981
1019 => 0.013642219235014
1020 => 0.013622865632485
1021 => 0.013368603128157
1022 => 0.012970731543806
1023 => 0.012788893553438
1024 => 0.012694190749264
1025 => 0.012733266971987
1026 => 0.012713508838026
1027 => 0.012584573649015
1028 => 0.012720899252134
1029 => 0.012372643669793
1030 => 0.012233965490819
1031 => 0.012171327774686
1101 => 0.011862230900514
1102 => 0.012354141483325
1103 => 0.012451054065065
1104 => 0.012548157594528
1105 => 0.013393377523115
1106 => 0.013351152724049
1107 => 0.01373284434329
1108 => 0.013718012508852
1109 => 0.01360914787605
1110 => 0.013149865897623
1111 => 0.01333292750831
1112 => 0.012769492324706
1113 => 0.01319165627413
1114 => 0.012998998277601
1115 => 0.013126518411707
1116 => 0.012897225712557
1117 => 0.01302412575953
1118 => 0.012474035633415
1119 => 0.011960369213625
1120 => 0.012167083575806
1121 => 0.012391805728151
1122 => 0.012879060612576
1123 => 0.012588855623178
1124 => 0.012693224311231
1125 => 0.012343606677361
1126 => 0.011622245635347
1127 => 0.011626328460505
1128 => 0.011515362779896
1129 => 0.011419472230595
1130 => 0.012622189157204
1201 => 0.012472612295239
1202 => 0.012234281141834
1203 => 0.01255329686157
1204 => 0.012637649681329
1205 => 0.012640051087521
1206 => 0.012872796721654
1207 => 0.012997013108312
1208 => 0.013018906784845
1209 => 0.013385137068954
1210 => 0.013507892629494
1211 => 0.014013505410337
1212 => 0.012986474215756
1213 => 0.01296532318416
1214 => 0.012557786066967
1215 => 0.012299319584336
1216 => 0.01257548348816
1217 => 0.012820127006816
1218 => 0.012565387823032
1219 => 0.012598651382597
1220 => 0.012256684841323
1221 => 0.012378921788807
1222 => 0.012484208715076
1223 => 0.01242607546287
1224 => 0.012339047170636
1225 => 0.012800069028164
1226 => 0.012774056368203
1227 => 0.01320337052078
1228 => 0.013538051603263
1229 => 0.014137859934473
1230 => 0.01351192867214
1231 => 0.013489117249089
]
'min_raw' => 0.011419472230595
'max_raw' => 0.033017052517786
'avg_raw' => 0.022218262374191
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.011419'
'max' => '$0.033017'
'avg' => '$0.022218'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -0.0020079785731191
'max_diff' => -0.011153177203996
'year' => 2030
]
5 => [
'items' => [
101 => 0.013712102568479
102 => 0.013507858491603
103 => 0.013636933697922
104 => 0.01411706392324
105 => 0.014127208318321
106 => 0.013957276630389
107 => 0.013946936271735
108 => 0.013979573511251
109 => 0.014170730842504
110 => 0.014103934597293
111 => 0.014181232903326
112 => 0.014277895618653
113 => 0.014677733593389
114 => 0.014774133175453
115 => 0.014539932168491
116 => 0.014561077897182
117 => 0.014473480291617
118 => 0.014388862102236
119 => 0.014579071434471
120 => 0.014926682727704
121 => 0.01492452025589
122 => 0.015005159319322
123 => 0.01505539678779
124 => 0.01483974079705
125 => 0.014699356676969
126 => 0.014753188881482
127 => 0.014839267748811
128 => 0.014725274664949
129 => 0.014021656544623
130 => 0.01423508933503
131 => 0.014199563682376
201 => 0.01414897083293
202 => 0.014363579154112
203 => 0.014342879657993
204 => 0.013722849385575
205 => 0.013762541711932
206 => 0.013725263207406
207 => 0.013845717681994
208 => 0.013501353554677
209 => 0.013607277640912
210 => 0.013673712234822
211 => 0.013712842721009
212 => 0.013854208869144
213 => 0.013837621183302
214 => 0.013853177755302
215 => 0.014062786433706
216 => 0.015122915200063
217 => 0.015180615669774
218 => 0.014896477453964
219 => 0.015009985066801
220 => 0.014792075271539
221 => 0.014938359576967
222 => 0.015038443583523
223 => 0.014586183202947
224 => 0.014559403278354
225 => 0.014340594091853
226 => 0.014458169754693
227 => 0.014271098421125
228 => 0.014316999182905
301 => 0.014188656651411
302 => 0.014419647655357
303 => 0.014677931490141
304 => 0.014743184186746
305 => 0.014571532435032
306 => 0.01444724525439
307 => 0.014229037907924
308 => 0.014591921588164
309 => 0.014698039834946
310 => 0.01459136419419
311 => 0.014566645117318
312 => 0.014519802511311
313 => 0.014576582997621
314 => 0.014697461892184
315 => 0.014640457637791
316 => 0.014678109952103
317 => 0.014534618156842
318 => 0.014839812188157
319 => 0.015324533758827
320 => 0.015326092217937
321 => 0.015269087656269
322 => 0.015245762617816
323 => 0.015304252757412
324 => 0.015335981258752
325 => 0.015525127644951
326 => 0.015728089253267
327 => 0.016675222520189
328 => 0.016409271288852
329 => 0.017249624268476
330 => 0.017914234369181
331 => 0.018113521878504
401 => 0.017930186747128
402 => 0.01730300716626
403 => 0.017272234743904
404 => 0.018209505826111
405 => 0.017944683815652
406 => 0.017913184080165
407 => 0.017578080114222
408 => 0.017776168061528
409 => 0.017732843321677
410 => 0.017664453100304
411 => 0.018042391104838
412 => 0.018749857310566
413 => 0.018639592067827
414 => 0.01855728417918
415 => 0.018196634970594
416 => 0.01841382634808
417 => 0.018336488658584
418 => 0.018668780452368
419 => 0.018471938154895
420 => 0.017942677528463
421 => 0.018026964027689
422 => 0.018014224292892
423 => 0.018276407132266
424 => 0.018197706351664
425 => 0.017998856702377
426 => 0.018747439267986
427 => 0.01869883048001
428 => 0.018767746627844
429 => 0.018798085647423
430 => 0.019253734663605
501 => 0.019440399486392
502 => 0.019482775669193
503 => 0.019660092813665
504 => 0.019478363857106
505 => 0.020205409253893
506 => 0.020688852018482
507 => 0.021250395667289
508 => 0.022070961866899
509 => 0.022379502348614
510 => 0.022323767272231
511 => 0.022945911199783
512 => 0.024063890008112
513 => 0.022549742753632
514 => 0.024144143489236
515 => 0.023639374624585
516 => 0.022442576726903
517 => 0.022365517051613
518 => 0.023176002483032
519 => 0.02497358116359
520 => 0.024523308092079
521 => 0.024974317649029
522 => 0.024448191044063
523 => 0.024422064423584
524 => 0.024948764854162
525 => 0.026179429119154
526 => 0.025594786657617
527 => 0.024756558328789
528 => 0.025375493082518
529 => 0.024839314519131
530 => 0.023631154148889
531 => 0.024522963776747
601 => 0.023926636075874
602 => 0.024100676201513
603 => 0.025354068331696
604 => 0.025203256874528
605 => 0.025398420864868
606 => 0.025053961530249
607 => 0.024732182195463
608 => 0.024131557171438
609 => 0.02395374171228
610 => 0.024002883508061
611 => 0.023953717360047
612 => 0.023617673179134
613 => 0.02354510447026
614 => 0.023424153442831
615 => 0.023461641223759
616 => 0.023234217906719
617 => 0.023663412694028
618 => 0.023743075028604
619 => 0.024055407202932
620 => 0.024087834565393
621 => 0.024957675225126
622 => 0.024478581606824
623 => 0.024799998968934
624 => 0.024771248374769
625 => 0.022468514966354
626 => 0.022785811312845
627 => 0.023279424854906
628 => 0.023057052623285
629 => 0.022742670314861
630 => 0.022488789744696
701 => 0.022104134720275
702 => 0.022645529280502
703 => 0.023357405556309
704 => 0.024105888922522
705 => 0.025005142644455
706 => 0.024804439682186
707 => 0.024089077999698
708 => 0.024121168602203
709 => 0.024319540079698
710 => 0.024062630992392
711 => 0.023986863487085
712 => 0.024309130787958
713 => 0.024311350065744
714 => 0.024015745112298
715 => 0.023687234301679
716 => 0.023685857829387
717 => 0.023627402503676
718 => 0.024458590116648
719 => 0.024915659261237
720 => 0.02496806150206
721 => 0.02491213217291
722 => 0.024933657151944
723 => 0.02466769868754
724 => 0.025275600869636
725 => 0.025833472027223
726 => 0.025683950639811
727 => 0.025459796824362
728 => 0.025281247513647
729 => 0.025641890096585
730 => 0.025625831250071
731 => 0.025828599509337
801 => 0.025819400769851
802 => 0.025751217430759
803 => 0.025683953074852
804 => 0.025950648642806
805 => 0.025873844602235
806 => 0.025796921263775
807 => 0.025642639732121
808 => 0.025663609154617
809 => 0.025439494042485
810 => 0.025335808136803
811 => 0.02377662089262
812 => 0.023359955113062
813 => 0.023491046649325
814 => 0.023534205386853
815 => 0.023352871905617
816 => 0.02361285753696
817 => 0.023572339051708
818 => 0.023729972775302
819 => 0.023631490068461
820 => 0.023635531833102
821 => 0.023925148475193
822 => 0.02400922541851
823 => 0.023966463206555
824 => 0.023996412394005
825 => 0.024686578778037
826 => 0.024588459188506
827 => 0.024536335112164
828 => 0.024550773837533
829 => 0.024727126145987
830 => 0.024776495163876
831 => 0.024567315165984
901 => 0.024665965662245
902 => 0.025086006954711
903 => 0.025232997634796
904 => 0.025702121326098
905 => 0.025502829244024
906 => 0.02586863848583
907 => 0.02699301138158
908 => 0.027891238251391
909 => 0.027065191701117
910 => 0.028714670959024
911 => 0.029999027165051
912 => 0.029949731434657
913 => 0.029725774222441
914 => 0.028263568828256
915 => 0.026918025624273
916 => 0.028043629649187
917 => 0.028046499045329
918 => 0.02794980866134
919 => 0.027349272990564
920 => 0.027928911321734
921 => 0.027974920907525
922 => 0.027949167774418
923 => 0.027488738483665
924 => 0.026785748058241
925 => 0.026923110704647
926 => 0.027148113521583
927 => 0.026722136248619
928 => 0.026586010699033
929 => 0.026839093994658
930 => 0.027654581105159
1001 => 0.027500417990714
1002 => 0.027496392168774
1003 => 0.028155967347704
1004 => 0.027683853864822
1005 => 0.026924843287515
1006 => 0.026733183106625
1007 => 0.026052918582234
1008 => 0.02652277971225
1009 => 0.026539689177842
1010 => 0.026282351038796
1011 => 0.026945724859227
1012 => 0.026939611752687
1013 => 0.027569386465023
1014 => 0.028773279182429
1015 => 0.028417228865929
1016 => 0.028003181086004
1017 => 0.028048199559982
1018 => 0.028541941104453
1019 => 0.028243413695642
1020 => 0.028350766233258
1021 => 0.02854177861353
1022 => 0.028657021125118
1023 => 0.028031617936046
1024 => 0.02788580653618
1025 => 0.027587527584903
1026 => 0.027509712174155
1027 => 0.027752654156176
1028 => 0.02768864752718
1029 => 0.026538268002735
1030 => 0.02641804694178
1031 => 0.026421733950083
1101 => 0.02611943237611
1102 => 0.02565834991511
1103 => 0.026870047092814
1104 => 0.026772730851754
1105 => 0.026665301253301
1106 => 0.026678460766127
1107 => 0.027204417442741
1108 => 0.026899336008856
1109 => 0.027710445002702
1110 => 0.027543705377736
1111 => 0.027372689510555
1112 => 0.02734904990844
1113 => 0.027283223389963
1114 => 0.027057479765139
1115 => 0.026784880773074
1116 => 0.026604887306393
1117 => 0.024541602211126
1118 => 0.02492453592323
1119 => 0.0253650662535
1120 => 0.025517135558195
1121 => 0.025257010489639
1122 => 0.027067751088326
1123 => 0.027398590844437
1124 => 0.026396455643034
1125 => 0.026208997063762
1126 => 0.027080040841575
1127 => 0.026554694962783
1128 => 0.026791258179835
1129 => 0.026279937897729
1130 => 0.027318901235309
1201 => 0.027310986075416
1202 => 0.026906805871046
1203 => 0.027248416212073
1204 => 0.027189053008702
1205 => 0.02673273455342
1206 => 0.027333367344262
1207 => 0.027333665250632
1208 => 0.026944650591562
1209 => 0.026490366636027
1210 => 0.026409151394485
1211 => 0.026347966619716
1212 => 0.026776210475937
1213 => 0.027160172578341
1214 => 0.027874630858638
1215 => 0.028054262645414
1216 => 0.028755377467968
1217 => 0.028337897727798
1218 => 0.028522961089348
1219 => 0.028723873547121
1220 => 0.028820198367688
1221 => 0.028663242241649
1222 => 0.029752362151449
1223 => 0.029844317241608
1224 => 0.02987514898793
1225 => 0.029507903882209
1226 => 0.029834103490877
1227 => 0.029681485496577
1228 => 0.030078555119245
1229 => 0.030140820706119
1230 => 0.030088083969199
1231 => 0.030107848049268
]
'min_raw' => 0.013501353554677
'max_raw' => 0.030140820706119
'avg_raw' => 0.021821087130398
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.0135013'
'max' => '$0.03014'
'avg' => '$0.021821'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 0.0020818813240826
'max_diff' => -0.0028762318116674
'year' => 2031
]
6 => [
'items' => [
101 => 0.029178476340171
102 => 0.029130283514228
103 => 0.028473170912889
104 => 0.028740949155066
105 => 0.028240350566261
106 => 0.028399095535508
107 => 0.028469068805374
108 => 0.028432518740144
109 => 0.028756088935107
110 => 0.028480988168365
111 => 0.027754952014178
112 => 0.027028718051927
113 => 0.027019600776108
114 => 0.026828396192942
115 => 0.026690190300179
116 => 0.026716813658242
117 => 0.026810637844598
118 => 0.026684737067905
119 => 0.026711604381944
120 => 0.027157780810966
121 => 0.027247258311822
122 => 0.026943178802798
123 => 0.025722255695601
124 => 0.025422638102642
125 => 0.025637997286786
126 => 0.025535069467673
127 => 0.020608793990872
128 => 0.021766149341669
129 => 0.021078488092299
130 => 0.021395394033782
131 => 0.020693469967193
201 => 0.021028464922761
202 => 0.020966603586525
203 => 0.022827596741972
204 => 0.022798539893563
205 => 0.022812447869242
206 => 0.022148583953015
207 => 0.023206137197434
208 => 0.023727125954019
209 => 0.023630704800842
210 => 0.023654971927785
211 => 0.023237982286075
212 => 0.022816485240468
213 => 0.02234898014896
214 => 0.023217546823606
215 => 0.023120977036313
216 => 0.023342473383651
217 => 0.023905800958586
218 => 0.023988753083869
219 => 0.024100241581467
220 => 0.02406028089137
221 => 0.025012306651139
222 => 0.024897010049963
223 => 0.025174841685702
224 => 0.02460332093185
225 => 0.023956590949619
226 => 0.024079513176045
227 => 0.024067674777162
228 => 0.0239169583719
229 => 0.023780898340216
301 => 0.023554396722137
302 => 0.024271081357669
303 => 0.024241985270287
304 => 0.024713017104512
305 => 0.024629757652454
306 => 0.024073730654563
307 => 0.02409358926757
308 => 0.024227147983765
309 => 0.024689396225461
310 => 0.024826622975856
311 => 0.024763054077533
312 => 0.024913516944702
313 => 0.025032436660048
314 => 0.02492845143003
315 => 0.026400663001646
316 => 0.025789298114878
317 => 0.02608727310684
318 => 0.026158338386652
319 => 0.025976306166755
320 => 0.026015782437165
321 => 0.026075578230197
322 => 0.026438646576272
323 => 0.027391442971045
324 => 0.027813430008385
325 => 0.029082998830698
326 => 0.027778389859277
327 => 0.027700979761922
328 => 0.027929667444126
329 => 0.028675038740331
330 => 0.02927909216674
331 => 0.029479491536958
401 => 0.029505977621965
402 => 0.029881940162792
403 => 0.030097434879908
404 => 0.029836288421539
405 => 0.029614994141246
406 => 0.028822345497291
407 => 0.02891409673614
408 => 0.029546171786479
409 => 0.030439015024118
410 => 0.031205167406518
411 => 0.030936887545308
412 => 0.032983673510276
413 => 0.033186603978331
414 => 0.033158565549174
415 => 0.033620871355507
416 => 0.032703288476875
417 => 0.032311004018929
418 => 0.029662840476442
419 => 0.030406866414694
420 => 0.031488351811054
421 => 0.031345213163484
422 => 0.030559809560459
423 => 0.031204571607456
424 => 0.030991393111146
425 => 0.030823250386322
426 => 0.031593544804812
427 => 0.030746574449731
428 => 0.031479902633863
429 => 0.030539401652405
430 => 0.030938113025115
501 => 0.030711785166466
502 => 0.030858247028711
503 => 0.030002033974732
504 => 0.030464025755262
505 => 0.029982813597774
506 => 0.029982585440556
507 => 0.029971962655508
508 => 0.030538106624772
509 => 0.030556568559284
510 => 0.030138187310602
511 => 0.030077892036324
512 => 0.030300835267364
513 => 0.030039827132741
514 => 0.030161951196165
515 => 0.030043526146212
516 => 0.030016866173054
517 => 0.029804434971114
518 => 0.0297129137684
519 => 0.029748801590195
520 => 0.029626297952969
521 => 0.02955248508039
522 => 0.029957279417309
523 => 0.02974101413245
524 => 0.029924133660724
525 => 0.029715445846729
526 => 0.028992042962472
527 => 0.028576006313889
528 => 0.027209565325009
529 => 0.027597086294391
530 => 0.02785401309801
531 => 0.027769098790947
601 => 0.027951527579994
602 => 0.027962727226016
603 => 0.027903417767055
604 => 0.027834745011591
605 => 0.027801318912073
606 => 0.028050449672393
607 => 0.028195078464115
608 => 0.02787979913999
609 => 0.027805933605575
610 => 0.028124698409313
611 => 0.028319144755449
612 => 0.029754827325352
613 => 0.02964846732338
614 => 0.029915410056233
615 => 0.029885356401084
616 => 0.030165154912427
617 => 0.030622507226798
618 => 0.029692582093962
619 => 0.029853984942631
620 => 0.029814412691473
621 => 0.030246452153209
622 => 0.03024780093325
623 => 0.029988771693968
624 => 0.030129195646852
625 => 0.030050814848682
626 => 0.030192459544776
627 => 0.029647046820709
628 => 0.030311300644957
629 => 0.030687889759735
630 => 0.030693118699959
701 => 0.030871618951568
702 => 0.03105298554524
703 => 0.031401102928092
704 => 0.031043276740373
705 => 0.030399582262345
706 => 0.030446054924538
707 => 0.030068657087588
708 => 0.03007500121341
709 => 0.030041135772576
710 => 0.03014276850979
711 => 0.029669349491222
712 => 0.029780459988624
713 => 0.0296249046416
714 => 0.029853646795686
715 => 0.029607558050322
716 => 0.029814393608536
717 => 0.029903656978754
718 => 0.03023304073656
719 => 0.02955890780148
720 => 0.028184305112064
721 => 0.028473263262826
722 => 0.028045871460676
723 => 0.028085428199161
724 => 0.028165339106307
725 => 0.027906321711023
726 => 0.027955734067467
727 => 0.027953968710386
728 => 0.02793875581678
729 => 0.02787137538854
730 => 0.027773660436781
731 => 0.028162926729513
801 => 0.028229070658
802 => 0.028376100417526
803 => 0.02881356125064
804 => 0.028769848597375
805 => 0.02884114574847
806 => 0.028685504467945
807 => 0.028092647951774
808 => 0.028124842912921
809 => 0.027723371231531
810 => 0.028365833884002
811 => 0.028213690247804
812 => 0.028115602255794
813 => 0.028088838038396
814 => 0.0285273832523
815 => 0.028658602853654
816 => 0.02857683560391
817 => 0.028409128589153
818 => 0.028731175635614
819 => 0.028817341839173
820 => 0.028836631274462
821 => 0.029407236894395
822 => 0.028868521789979
823 => 0.028998195869979
824 => 0.030009876025045
825 => 0.029092421726719
826 => 0.029578417730215
827 => 0.029554630754845
828 => 0.029803249865025
829 => 0.029534236731162
830 => 0.029537571471365
831 => 0.029758328398288
901 => 0.029448315108147
902 => 0.029371551457781
903 => 0.029265503024592
904 => 0.029497055898755
905 => 0.02963586137458
906 => 0.030754531568342
907 => 0.03147724353107
908 => 0.031445868698751
909 => 0.031732575934924
910 => 0.031603411699091
911 => 0.031186306309782
912 => 0.031898254348749
913 => 0.031672964200048
914 => 0.03169153684618
915 => 0.031690845571363
916 => 0.031840643825042
917 => 0.031734498033502
918 => 0.031525273782735
919 => 0.031664166604481
920 => 0.032076628629975
921 => 0.033356923412989
922 => 0.034073393335214
923 => 0.033313791024045
924 => 0.033837754526809
925 => 0.033523563132436
926 => 0.033466465209694
927 => 0.033795553010029
928 => 0.034125216834994
929 => 0.034104218674519
930 => 0.03386489966602
1001 => 0.033729714430613
1002 => 0.034753382323487
1003 => 0.035507603389229
1004 => 0.035456170568908
1005 => 0.035683178310957
1006 => 0.0363496800627
1007 => 0.036410616630008
1008 => 0.036402940023138
1009 => 0.036251902382993
1010 => 0.036908159913773
1011 => 0.037455621491702
1012 => 0.036216941533197
1013 => 0.036688614645884
1014 => 0.036900363902528
1015 => 0.037211274634455
1016 => 0.037735833153905
1017 => 0.038305642838303
1018 => 0.038386220175323
1019 => 0.038329046698727
1020 => 0.03795324189456
1021 => 0.038576734450472
1022 => 0.038941961767025
1023 => 0.039159446275954
1024 => 0.039710950804627
1025 => 0.036901671593849
1026 => 0.034913124138225
1027 => 0.034602583738056
1028 => 0.035234079853198
1029 => 0.035400600342674
1030 => 0.035333476142165
1031 => 0.033095185190035
1101 => 0.034590799599418
1102 => 0.036199954949083
1103 => 0.036261769159555
1104 => 0.037067345973449
1105 => 0.037329674805762
1106 => 0.037978269730313
1107 => 0.037937699941189
1108 => 0.038095622483918
1109 => 0.038059318826182
1110 => 0.039260704346139
1111 => 0.040586010982127
1112 => 0.04054011982754
1113 => 0.0403495913183
1114 => 0.04063255864446
1115 => 0.04200041712129
1116 => 0.041874486632229
1117 => 0.041996817375618
1118 => 0.043609599608927
1119 => 0.045706445927825
1120 => 0.044732250292769
1121 => 0.046845974503599
1122 => 0.048176451850612
1123 => 0.050477374848344
1124 => 0.050189287956743
1125 => 0.051085020394807
1126 => 0.049673552295229
1127 => 0.04643253623383
1128 => 0.045919633036003
1129 => 0.046946478226831
1130 => 0.049470876930394
1201 => 0.046866975928084
1202 => 0.047393741709523
1203 => 0.047242033129031
1204 => 0.047233949223496
1205 => 0.047542479018127
1206 => 0.047094940459184
1207 => 0.045271587859399
1208 => 0.046107219610796
1209 => 0.045784542061249
1210 => 0.046142576859676
1211 => 0.048074743002005
1212 => 0.047220486293394
1213 => 0.046320596245051
1214 => 0.047449258067261
1215 => 0.048886432417214
1216 => 0.048796496629244
1217 => 0.04862198361034
1218 => 0.049605704360696
1219 => 0.051230522837149
1220 => 0.051669704742284
1221 => 0.051993899845977
1222 => 0.052038600873455
1223 => 0.052499049238012
1224 => 0.050023102333859
1225 => 0.053952493657576
1226 => 0.054630990991937
1227 => 0.054503461613911
1228 => 0.055257582845521
1229 => 0.055035701248972
1230 => 0.054714229627729
1231 => 0.055909672186017
]
'min_raw' => 0.020608793990872
'max_raw' => 0.055909672186017
'avg_raw' => 0.038259233088444
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.0206087'
'max' => '$0.0559096'
'avg' => '$0.038259'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.0071074404361943
'max_diff' => 0.025768851479898
'year' => 2032
]
7 => [
'items' => [
101 => 0.054539193760179
102 => 0.05259397217314
103 => 0.051526785138369
104 => 0.052932143113277
105 => 0.053790346188319
106 => 0.054357563828955
107 => 0.054529203544289
108 => 0.050215303043911
109 => 0.047890349934098
110 => 0.049380618221847
111 => 0.051198848385723
112 => 0.050013001973494
113 => 0.050059484907749
114 => 0.048368779558865
115 => 0.05134843829369
116 => 0.0509143270789
117 => 0.053166496829158
118 => 0.052628998443467
119 => 0.054465555446076
120 => 0.053981928437561
121 => 0.055989437110683
122 => 0.056790286671519
123 => 0.058135037726444
124 => 0.059124242076568
125 => 0.059705121791425
126 => 0.05967024795217
127 => 0.061971982775558
128 => 0.060614730166696
129 => 0.058909701010086
130 => 0.058878862411941
131 => 0.059761921172599
201 => 0.061612570079599
202 => 0.062092416415338
203 => 0.062360585055175
204 => 0.061949875448247
205 => 0.060476675016498
206 => 0.059840554539364
207 => 0.060382547616067
208 => 0.059719736657256
209 => 0.060863934324072
210 => 0.062435162108045
211 => 0.062110709783962
212 => 0.063195305258759
213 => 0.064317747472401
214 => 0.065922890249944
215 => 0.066342534010259
216 => 0.067036189188436
217 => 0.067750188220637
218 => 0.067979505466966
219 => 0.068417343243171
220 => 0.068415035621968
221 => 0.069734489230444
222 => 0.07118988742067
223 => 0.071739266544934
224 => 0.073002533548239
225 => 0.070839233075235
226 => 0.072480121334213
227 => 0.073960243617909
228 => 0.072195580813008
301 => 0.074627757375863
302 => 0.074722193280369
303 => 0.076148063318925
304 => 0.074702670871201
305 => 0.073844401449599
306 => 0.076322193110829
307 => 0.077521118445993
308 => 0.077159992377864
309 => 0.074411805168407
310 => 0.072812242337209
311 => 0.068625877875337
312 => 0.073584807417911
313 => 0.076000157344141
314 => 0.074405549995604
315 => 0.075209777189436
316 => 0.079597379987439
317 => 0.081267895056676
318 => 0.080920439600056
319 => 0.080979153852621
320 => 0.081880533461988
321 => 0.085877747048738
322 => 0.083482524012872
323 => 0.085313582276497
324 => 0.086284768977152
325 => 0.087186861309543
326 => 0.0849716076504
327 => 0.082089595188394
328 => 0.081176740863024
329 => 0.074246997721068
330 => 0.07388627449618
331 => 0.073683789619018
401 => 0.072407151110566
402 => 0.071404062943641
403 => 0.070606369991026
404 => 0.068512985472084
405 => 0.06921944129528
406 => 0.065883023295392
407 => 0.068017545296326
408 => 0.062692541607875
409 => 0.067127362912956
410 => 0.064713691303182
411 => 0.066334406873656
412 => 0.066328752349711
413 => 0.06334450113613
414 => 0.06162324731587
415 => 0.06272009724234
416 => 0.063896007431572
417 => 0.064086794903538
418 => 0.065611393158273
419 => 0.06603687576004
420 => 0.064747643612804
421 => 0.062582192742383
422 => 0.063085177590906
423 => 0.061613054343969
424 => 0.059033214978114
425 => 0.060886100650345
426 => 0.061518757284477
427 => 0.061798174495763
428 => 0.059261198775997
429 => 0.058464025924424
430 => 0.058039617787175
501 => 0.062254701034939
502 => 0.062485612810263
503 => 0.061304235520066
504 => 0.066644172894548
505 => 0.065435580605844
506 => 0.066785874304627
507 => 0.063039536987941
508 => 0.06318265211855
509 => 0.061409075995112
510 => 0.062402160113838
511 => 0.061700280267318
512 => 0.062321928730893
513 => 0.062694542256808
514 => 0.064467827353856
515 => 0.067147610980297
516 => 0.064202957694204
517 => 0.062919930089241
518 => 0.063715913199339
519 => 0.065835721114957
520 => 0.069047338618089
521 => 0.067145996416409
522 => 0.06798977979863
523 => 0.068174108930335
524 => 0.066772129582331
525 => 0.069099031596412
526 => 0.070346037289476
527 => 0.071625207099091
528 => 0.072735874403255
529 => 0.071114278547584
530 => 0.072849618559787
531 => 0.0714512408387
601 => 0.070196751461254
602 => 0.070198654003809
603 => 0.069411694492171
604 => 0.067886861275093
605 => 0.067605658634726
606 => 0.069068510281898
607 => 0.070241578770363
608 => 0.070338198309692
609 => 0.070987669299342
610 => 0.071372019540934
611 => 0.075139174407346
612 => 0.076654355258157
613 => 0.078507089721623
614 => 0.079228834209535
615 => 0.081401026358433
616 => 0.079646804781378
617 => 0.079267267908611
618 => 0.073998240274021
619 => 0.074861043254009
620 => 0.076242474073074
621 => 0.074021019559415
622 => 0.075430021139987
623 => 0.075708187898726
624 => 0.073945535385091
625 => 0.074887044252342
626 => 0.072386675838847
627 => 0.067202112178993
628 => 0.069104803497852
629 => 0.070505824747504
630 => 0.068506394679576
701 => 0.072090295687708
702 => 0.069996654705491
703 => 0.069333071026618
704 => 0.066744194510674
705 => 0.067966044571204
706 => 0.069618614273279
707 => 0.068597518329245
708 => 0.070716445731442
709 => 0.07371741203025
710 => 0.075856079325413
711 => 0.076020259644399
712 => 0.074645239853189
713 => 0.076848717843861
714 => 0.076864767775432
715 => 0.074379235600482
716 => 0.072856860982826
717 => 0.072510974266591
718 => 0.073375067098831
719 => 0.074424235317507
720 => 0.076078481178696
721 => 0.077078107306844
722 => 0.079684602088325
723 => 0.080389844842131
724 => 0.081164692812322
725 => 0.082200128654761
726 => 0.08344343486391
727 => 0.080723151659754
728 => 0.080831233582697
729 => 0.078298143527872
730 => 0.075591173522431
731 => 0.077645426327986
801 => 0.08033108860545
802 => 0.079714994711607
803 => 0.079645671562893
804 => 0.079762253870391
805 => 0.079297739194179
806 => 0.077196756529387
807 => 0.076141656187976
808 => 0.077503004813201
809 => 0.078226501020852
810 => 0.079348580543418
811 => 0.079210260558036
812 => 0.082100616905623
813 => 0.083223721982457
814 => 0.082936383643427
815 => 0.082989260812992
816 => 0.085022588908107
817 => 0.087284067935693
818 => 0.089402241473468
819 => 0.091556938573763
820 => 0.088959367120099
821 => 0.087640480531862
822 => 0.089001234834864
823 => 0.088279199447688
824 => 0.092428228952011
825 => 0.092715498752869
826 => 0.096864228235135
827 => 0.10080186653532
828 => 0.098328706469092
829 => 0.10066078501797
830 => 0.10318311810574
831 => 0.10804910786583
901 => 0.10641041370222
902 => 0.1051551996545
903 => 0.10396902844455
904 => 0.10643726243307
905 => 0.1096126060283
906 => 0.11029654462565
907 => 0.11140478643801
908 => 0.11023960568167
909 => 0.11164293756223
910 => 0.11659731575585
911 => 0.11525859903443
912 => 0.11335740608055
913 => 0.11726841184088
914 => 0.1186837896219
915 => 0.12861765212814
916 => 0.14115956388968
917 => 0.13596713006577
918 => 0.13274401883248
919 => 0.13350152642552
920 => 0.13808140803033
921 => 0.13955232064361
922 => 0.13555387310672
923 => 0.13696619237304
924 => 0.14474821038667
925 => 0.14892301337395
926 => 0.14325307016638
927 => 0.12760992172989
928 => 0.11318622445646
929 => 0.11701203848093
930 => 0.11657830989938
1001 => 0.12493911742851
1002 => 0.11522667108337
1003 => 0.11539020377086
1004 => 0.12392390394544
1005 => 0.12164725904352
1006 => 0.11795938587306
1007 => 0.11321315001185
1008 => 0.10443929404872
1009 => 0.096668045145108
1010 => 0.11190925385683
1011 => 0.11125202522285
1012 => 0.110300260765
1013 => 0.11241830957426
1014 => 0.12270295337338
1015 => 0.12246585904567
1016 => 0.12095758589935
1017 => 0.12210159778752
1018 => 0.11775883505785
1019 => 0.11887806389615
1020 => 0.11318393966912
1021 => 0.11575792162737
1022 => 0.11795147335354
1023 => 0.11839186133866
1024 => 0.1193840779559
1025 => 0.11090569559743
1026 => 0.11471224036416
1027 => 0.11694822878959
1028 => 0.10684595173751
1029 => 0.11674853925357
1030 => 0.11075810582327
1031 => 0.10872486274374
1101 => 0.11146235669092
1102 => 0.1103955526374
1103 => 0.10947837715702
1104 => 0.1089665774799
1105 => 0.11097669090853
1106 => 0.11088291671448
1107 => 0.10759398099903
1108 => 0.1033036984324
1109 => 0.10474365808549
1110 => 0.10422050724383
1111 => 0.10232454110585
1112 => 0.10360219336302
1113 => 0.097976059427447
1114 => 0.088296588412285
1115 => 0.094691143455116
1116 => 0.094444960041905
1117 => 0.094320823201435
1118 => 0.099126154583602
1119 => 0.098664232849064
1120 => 0.097825840377727
1121 => 0.10230914337064
1122 => 0.10067267746929
1123 => 0.10571587977739
1124 => 0.10903765899137
1125 => 0.1081951483344
1126 => 0.11131929774071
1127 => 0.10477683184758
1128 => 0.10694997657911
1129 => 0.10739785869643
1130 => 0.10225382010763
1201 => 0.098739808957517
1202 => 0.098505464476465
1203 => 0.092412653402732
1204 => 0.095667383898868
1205 => 0.098531412045567
1206 => 0.09715976482086
1207 => 0.096725542286314
1208 => 0.098943891043936
1209 => 0.099116275741276
1210 => 0.095185886373423
1211 => 0.096003138782243
1212 => 0.099411217183933
1213 => 0.095917263950749
1214 => 0.089129083552693
1215 => 0.087445520960039
1216 => 0.087220902675964
1217 => 0.082654947399651
1218 => 0.087558024662748
1219 => 0.085417700043105
1220 => 0.09217895987153
1221 => 0.088316964518897
1222 => 0.088150481618118
1223 => 0.087898818295857
1224 => 0.083968711972298
1225 => 0.084829155485871
1226 => 0.087689400774234
1227 => 0.088709968516092
1228 => 0.088603514939351
1229 => 0.08767538401192
1230 => 0.088100277597699
1231 => 0.086731547315167
]
'min_raw' => 0.047890349934098
'max_raw' => 0.14892301337395
'avg_raw' => 0.098406681654023
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.04789'
'max' => '$0.148923'
'avg' => '$0.0984066'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.027281555943226
'max_diff' => 0.093013341187931
'year' => 2033
]
8 => [
'items' => [
101 => 0.086248220164748
102 => 0.084722706728419
103 => 0.082480623410857
104 => 0.08279239884766
105 => 0.078350245122559
106 => 0.075929924010181
107 => 0.075260011025595
108 => 0.074364175385015
109 => 0.075361198044926
110 => 0.078337661059183
111 => 0.074747415172135
112 => 0.068592190425257
113 => 0.068962129920537
114 => 0.069793274130409
115 => 0.068244442393882
116 => 0.066778603138853
117 => 0.068053031443803
118 => 0.065444981575657
119 => 0.070108444496869
120 => 0.069982310894054
121 => 0.07172056148447
122 => 0.07280752525115
123 => 0.070302425677651
124 => 0.069672399909426
125 => 0.070031291220081
126 => 0.064099617295214
127 => 0.071235817176353
128 => 0.071297531329262
129 => 0.070769097284305
130 => 0.074568903415558
131 => 0.082587679541756
201 => 0.079570693408558
202 => 0.078402425188895
203 => 0.076181546449317
204 => 0.079140735507074
205 => 0.078913515957979
206 => 0.077885942986515
207 => 0.077264463647151
208 => 0.078409558385526
209 => 0.077122573736864
210 => 0.076891395929991
211 => 0.075490709944277
212 => 0.074990728774529
213 => 0.074620562621271
214 => 0.074213046058309
215 => 0.075111926049402
216 => 0.073074945732074
217 => 0.070618547157018
218 => 0.070414324194103
219 => 0.070978201750178
220 => 0.070728727907362
221 => 0.070413129809324
222 => 0.06981056709214
223 => 0.069631799605668
224 => 0.07021270721105
225 => 0.069556896393591
226 => 0.070524580978615
227 => 0.070261424315919
228 => 0.068791452590001
301 => 0.06695932356627
302 => 0.066943013774939
303 => 0.06654828458207
304 => 0.066045537607019
305 => 0.065905684899853
306 => 0.067945702646629
307 => 0.072168478329863
308 => 0.071339446420786
309 => 0.071938506937702
310 => 0.07488529176894
311 => 0.075821986053879
312 => 0.075157142637249
313 => 0.07424706396281
314 => 0.074287102805758
315 => 0.077397117135865
316 => 0.077591084914813
317 => 0.078081178915836
318 => 0.078711088207699
319 => 0.075264418913458
320 => 0.074124764991953
321 => 0.073584733738352
322 => 0.071921646495657
323 => 0.073715143504579
324 => 0.072670149602679
325 => 0.07281115498212
326 => 0.072719325043779
327 => 0.072769470399627
328 => 0.070107140963941
329 => 0.071077153882389
330 => 0.06946431926837
331 => 0.067304914769379
401 => 0.067297675688314
402 => 0.067826186880215
403 => 0.067511807742627
404 => 0.066665821566804
405 => 0.066785989910138
406 => 0.065733188775463
407 => 0.066913819029467
408 => 0.066947675280654
409 => 0.066493068323498
410 => 0.06831199212537
411 => 0.069057206691098
412 => 0.068757974653273
413 => 0.069036211773632
414 => 0.071373896439463
415 => 0.071755041040326
416 => 0.071924320295031
417 => 0.07169750851893
418 => 0.069078940357976
419 => 0.069195084990926
420 => 0.068342892737513
421 => 0.067622880085188
422 => 0.067651676815312
423 => 0.0680218569137
424 => 0.069638455114139
425 => 0.073040490723292
426 => 0.073169595487804
427 => 0.073326074228644
428 => 0.072689596549734
429 => 0.072497628791504
430 => 0.072750883815692
501 => 0.074028509519956
502 => 0.077314909703317
503 => 0.076153276387229
504 => 0.07520885041935
505 => 0.076037366608592
506 => 0.075909823035383
507 => 0.07483322692218
508 => 0.074803010454998
509 => 0.072736678305164
510 => 0.071972802357476
511 => 0.071334450440465
512 => 0.070637386811688
513 => 0.070224144126765
514 => 0.070859072706249
515 => 0.071004288384631
516 => 0.069616005948937
517 => 0.069426788182831
518 => 0.070560489587977
519 => 0.070061589868221
520 => 0.070574720602108
521 => 0.070693771333923
522 => 0.07067460142413
523 => 0.070153692818437
524 => 0.070485704429988
525 => 0.069700397991245
526 => 0.068846495188326
527 => 0.068301758400088
528 => 0.067826403303501
529 => 0.068090157938888
530 => 0.067149920823427
531 => 0.066849120046956
601 => 0.070373226366492
602 => 0.07297652159526
603 => 0.072938668651616
604 => 0.072708248592168
605 => 0.07236589112283
606 => 0.074003463938661
607 => 0.073432966313927
608 => 0.073848051002592
609 => 0.073953707476907
610 => 0.074273497802964
611 => 0.074387795357622
612 => 0.07404230876269
613 => 0.072882813552463
614 => 0.069993461730075
615 => 0.068648460657096
616 => 0.068204587900249
617 => 0.068220721831926
618 => 0.067775675971231
619 => 0.067906761922762
620 => 0.06773008962687
621 => 0.067395515040069
622 => 0.068069498900959
623 => 0.068147169262333
624 => 0.067989853375694
625 => 0.068026906961915
626 => 0.066724398611038
627 => 0.066823425492055
628 => 0.066272031234821
629 => 0.066168651458746
630 => 0.064774774791847
701 => 0.062305320230782
702 => 0.063673637773366
703 => 0.062020902596486
704 => 0.061394986741977
705 => 0.064357975047336
706 => 0.064060573201981
707 => 0.063551550520207
708 => 0.062798599884243
709 => 0.06251932316913
710 => 0.060822526256371
711 => 0.060722270442706
712 => 0.06156324881004
713 => 0.061175166229814
714 => 0.060630151308811
715 => 0.058656162512212
716 => 0.056436745539606
717 => 0.056503735787252
718 => 0.057209691032517
719 => 0.059262351119161
720 => 0.058460341311929
721 => 0.05787847399478
722 => 0.057769507737145
723 => 0.059133448587756
724 => 0.061063710645812
725 => 0.061969346416273
726 => 0.061071888872313
727 => 0.060040937968359
728 => 0.060103687172916
729 => 0.060521129518696
730 => 0.060564996806921
731 => 0.059893953751912
801 => 0.06008284844124
802 => 0.059795900135258
803 => 0.058034898911115
804 => 0.058003047983166
805 => 0.05757086988278
806 => 0.057557783701659
807 => 0.056822540941024
808 => 0.056719675396318
809 => 0.055259806269031
810 => 0.056220696549502
811 => 0.055576181798366
812 => 0.054604746042744
813 => 0.054437270152318
814 => 0.054432235624819
815 => 0.055429682936783
816 => 0.056209040796919
817 => 0.055587393408403
818 => 0.055445856348166
819 => 0.056957101860351
820 => 0.056764782093617
821 => 0.056598234415954
822 => 0.060890876849813
823 => 0.057492915404348
824 => 0.056011210265266
825 => 0.054177318787478
826 => 0.05477444309993
827 => 0.054900265966144
828 => 0.05049008754585
829 => 0.048700878709989
830 => 0.048086889662434
831 => 0.047733530285036
901 => 0.047894560590524
902 => 0.046284062784985
903 => 0.047366343945482
904 => 0.045971788977876
905 => 0.045737987299282
906 => 0.048231624333573
907 => 0.048578599359278
908 => 0.047098296102928
909 => 0.048048890432833
910 => 0.04770419171456
911 => 0.04599569462018
912 => 0.045930442598029
913 => 0.045073178812646
914 => 0.0437317269875
915 => 0.04311864750745
916 => 0.04279935039124
917 => 0.042931098604365
918 => 0.042864482676247
919 => 0.042429768684529
920 => 0.042889399973395
921 => 0.041715231963103
922 => 0.04124766880049
923 => 0.041036481367321
924 => 0.039994339675598
925 => 0.041652850549643
926 => 0.0419795980852
927 => 0.042306989414338
928 => 0.045156707414938
929 => 0.045014343556848
930 => 0.046301243499975
1001 => 0.046251236934642
1002 => 0.045884192224466
1003 => 0.044335690968154
1004 => 0.044952895969539
1005 => 0.043053234910229
1006 => 0.04447659014026
1007 => 0.043827030254009
1008 => 0.04425697328932
1009 => 0.043483896945431
1010 => 0.043911749313679
1011 => 0.042057082047414
1012 => 0.040325219850049
1013 => 0.041022171754478
1014 => 0.04177983818071
1015 => 0.043422652042597
1016 => 0.042444205659378
1017 => 0.042796091977937
1018 => 0.04161733171582
1019 => 0.03918521259885
1020 => 0.039198978128925
1021 => 0.038824849589374
1022 => 0.038501547907541
1023 => 0.042556591996618
1024 => 0.042052283163381
1025 => 0.041248733039925
1026 => 0.042324316811983
1027 => 0.042608718233125
1028 => 0.042616814741764
1029 => 0.043401532897022
1030 => 0.043820337117151
1031 => 0.043894153176151
1101 => 0.045128924148407
1102 => 0.045542803091284
1103 => 0.047247511882656
1104 => 0.043784804505096
1105 => 0.043713492325353
1106 => 0.042339452481403
1107 => 0.04146801468966
1108 => 0.042399120572551
1109 => 0.043223953276165
1110 => 0.042365082332717
1111 => 0.042477232746176
1112 => 0.04132426867693
1113 => 0.041736399079684
1114 => 0.042091381302496
1115 => 0.04189538098395
1116 => 0.041601959020563
1117 => 0.043156326400737
1118 => 0.043068622901533
1119 => 0.044516085540702
1120 => 0.045644486176981
1121 => 0.047666781842934
1122 => 0.045556410890855
1123 => 0.045479500585396
1124 => 0.046231311158055
1125 => 0.045542687993003
1126 => 0.045977874062852
1127 => 0.047596666639131
1128 => 0.047630869175408
1129 => 0.047057932625292
1130 => 0.047023069384149
1201 => 0.047133108115838
1202 => 0.047777608404337
1203 => 0.047552400200042
1204 => 0.047813016835626
1205 => 0.048138921929128
1206 => 0.049487003576747
1207 => 0.049812021498079
1208 => 0.049022396451714
1209 => 0.049093690752344
1210 => 0.048798349309311
1211 => 0.048513053175958
1212 => 0.04915435721958
1213 => 0.050326352964162
1214 => 0.050319062039462
1215 => 0.050590942271863
1216 => 0.050760321404271
1217 => 0.050033222174871
1218 => 0.049559907312711
1219 => 0.049741406348671
1220 => 0.050031627259704
1221 => 0.049647291618722
1222 => 0.047274994000994
1223 => 0.047994597555254
1224 => 0.047874820337009
1225 => 0.047704243012821
1226 => 0.048427809951159
1227 => 0.048358020154803
1228 => 0.046267544802213
1229 => 0.046401370251755
1230 => 0.046275683171044
1231 => 0.046681803841981
]
'min_raw' => 0.038501547907541
'max_raw' => 0.086248220164748
'avg_raw' => 0.062374884036145
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.0385015'
'max' => '$0.086248'
'avg' => '$0.062374'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.0093888020265566
'max_diff' => -0.0626747932092
'year' => 2034
]
9 => [
'items' => [
101 => 0.045520756143998
102 => 0.045877886596122
103 => 0.046101875467804
104 => 0.046233806633988
105 => 0.046710432472294
106 => 0.046654505931363
107 => 0.046706955999985
108 => 0.047413666293636
109 => 0.050987964445234
110 => 0.051182505607381
111 => 0.050224513774882
112 => 0.050607212616412
113 => 0.04987251452771
114 => 0.050365722276705
115 => 0.050703162492449
116 => 0.049178335043525
117 => 0.049088044658048
118 => 0.048350314208987
119 => 0.048746728765124
120 => 0.048116004703095
121 => 0.048270762326126
122 => 0.047838046520605
123 => 0.048616848817685
124 => 0.049487670799463
125 => 0.049707674821862
126 => 0.049128938956617
127 => 0.048709896049627
128 => 0.047974194746268
129 => 0.049197682409927
130 => 0.049555467487892
131 => 0.049195803117226
201 => 0.049112461023721
202 => 0.048954527907125
203 => 0.049145967281005
204 => 0.049553518913519
205 => 0.049361325089922
206 => 0.049488272496427
207 => 0.049004479890428
208 => 0.050033462874971
209 => 0.051667735492666
210 => 0.051672989946362
211 => 0.051480795086769
212 => 0.05140215309112
213 => 0.051599356680422
214 => 0.051706331537903
215 => 0.052344051784751
216 => 0.053028351017515
217 => 0.056221676953675
218 => 0.055325003809102
219 => 0.058158312551474
220 => 0.060399091907595
221 => 0.06107100365909
222 => 0.060452876463606
223 => 0.058338296718428
224 => 0.058234545347994
225 => 0.06139462023983
226 => 0.060501754342287
227 => 0.06039555078485
228 => 0.059265724367463
301 => 0.059933591711863
302 => 0.059787519326619
303 => 0.059556936920408
304 => 0.060831181289481
305 => 0.063216452995806
306 => 0.062844686031439
307 => 0.062567179238312
308 => 0.061351225251842
309 => 0.062083501144852
310 => 0.061822751725172
311 => 0.062943096707788
312 => 0.062279429158766
313 => 0.060494990004955
314 => 0.060779167821788
315 => 0.06073621491646
316 => 0.061620182664432
317 => 0.061354837487919
318 => 0.060684402012108
319 => 0.063208300396426
320 => 0.063044412474009
321 => 0.063276768078001
322 => 0.063379058200714
323 => 0.06491531067117
324 => 0.06554466415372
325 => 0.065687538412642
326 => 0.06628537554512
327 => 0.065672663680169
328 => 0.068123947996127
329 => 0.069753909029833
330 => 0.071647192647511
331 => 0.0744137888796
401 => 0.075454054655311
402 => 0.075266139953987
403 => 0.07736374164243
404 => 0.081133085249497
405 => 0.076028032066633
406 => 0.081403665464227
407 => 0.079701801995221
408 => 0.075666714325424
409 => 0.075406902250047
410 => 0.078139510468365
411 => 0.084200172492799
412 => 0.082682045395138
413 => 0.084202655604877
414 => 0.08242878302325
415 => 0.0823406952982
416 => 0.084116502572945
417 => 0.088265773064602
418 => 0.086294610187094
419 => 0.08346846485322
420 => 0.085555246588061
421 => 0.083747483126809
422 => 0.079674086087476
423 => 0.082680884511957
424 => 0.080670324034195
425 => 0.08125711246888
426 => 0.085483011544835
427 => 0.084974540187674
428 => 0.085632549207021
429 => 0.084471180510969
430 => 0.083386279017823
501 => 0.081361229815022
502 => 0.080761712579792
503 => 0.08092739757524
504 => 0.080761630474537
505 => 0.079628634056733
506 => 0.079383963588182
507 => 0.078976168754671
508 => 0.079102561425384
509 => 0.078335787833797
510 => 0.07978284802463
511 => 0.0800514351475
512 => 0.081104484879583
513 => 0.081213815996126
514 => 0.084146544510753
515 => 0.082531246927397
516 => 0.083614928004396
517 => 0.083517993368867
518 => 0.075754166910684
519 => 0.076823953695801
520 => 0.078488206215856
521 => 0.077738462711412
522 => 0.07667850080909
523 => 0.075822524741403
524 => 0.074525633470811
525 => 0.076350983029579
526 => 0.078751123595074
527 => 0.081274687521702
528 => 0.084306584229088
529 => 0.083629900179167
530 => 0.081218008321701
531 => 0.081326204028539
601 => 0.081995027314769
602 => 0.081128840390098
603 => 0.080873384956034
604 => 0.081959931660914
605 => 0.081967414110915
606 => 0.080970761371894
607 => 0.079863164237997
608 => 0.079858523365565
609 => 0.079661437153707
610 => 0.08246384422251
611 => 0.084004884755039
612 => 0.084181562568582
613 => 0.083992992930492
614 => 0.084065565900132
615 => 0.083168868368764
616 => 0.085218453018078
617 => 0.087099354575201
618 => 0.086595232778291
619 => 0.085839482539587
620 => 0.085237491072596
621 => 0.086453422720232
622 => 0.086399279198017
623 => 0.087082926540962
624 => 0.087051912348548
625 => 0.086822027460393
626 => 0.086595240988205
627 => 0.087494423715649
628 => 0.087235473530578
629 => 0.086976121124345
630 => 0.086455950168779
701 => 0.086526650040765
702 => 0.085771030292995
703 => 0.085421446022869
704 => 0.080164537370129
705 => 0.078759719603671
706 => 0.079201703870701
707 => 0.079347216567524
708 => 0.078735838075238
709 => 0.079612397782927
710 => 0.07947578688099
711 => 0.080007259985722
712 => 0.079675218663765
713 => 0.079688845755439
714 => 0.080665308484639
715 => 0.080948779769095
716 => 0.080804603985927
717 => 0.080905579762401
718 => 0.083232523912042
719 => 0.082901706865448
720 => 0.082725966902874
721 => 0.082774648073535
722 => 0.083369232194014
723 => 0.083535683284658
724 => 0.082830418317287
725 => 0.083163025352987
726 => 0.084579223896883
727 => 0.085074813237351
728 => 0.086656496515745
729 => 0.085984569346905
730 => 0.087217920745638
731 => 0.091008822464868
801 => 0.094037257068635
802 => 0.091252183451658
803 => 0.096813517932655
804 => 0.10114381455216
805 => 0.10097761055542
806 => 0.10022252317824
807 => 0.095292595603826
808 => 0.090756002748769
809 => 0.094551055305932
810 => 0.09456072967536
811 => 0.094234731295034
812 => 0.092209983352951
813 => 0.094164274455545
814 => 0.094319398986326
815 => 0.094232570500031
816 => 0.092680201000109
817 => 0.090310019699568
818 => 0.090773147452282
819 => 0.091531760158776
820 => 0.090095548042193
821 => 0.089636591247783
822 => 0.090489879248693
823 => 0.093239350977239
824 => 0.092719579273563
825 => 0.092706005933817
826 => 0.09492980969965
827 => 0.093338046130203
828 => 0.090778988976384
829 => 0.090132793295227
830 => 0.087839233956692
831 => 0.089423403561196
901 => 0.08948041500502
902 => 0.088612781502453
903 => 0.090849392653316
904 => 0.090828781887813
905 => 0.092952111299919
906 => 0.097011119649759
907 => 0.095810671149041
908 => 0.094414680151132
909 => 0.094566463079236
910 => 0.096231147168354
911 => 0.095224641167032
912 => 0.095586587742717
913 => 0.096230599318862
914 => 0.096619147492659
915 => 0.094510556976444
916 => 0.094018943661571
917 => 0.093013275352167
918 => 0.092750915261932
919 => 0.093570011115983
920 => 0.093354208297524
921 => 0.089475623413925
922 => 0.089070289713347
923 => 0.08908272071926
924 => 0.088063489856588
925 => 0.086508918147578
926 => 0.090594239780203
927 => 0.090266131279064
928 => 0.089903924887387
929 => 0.089948293103646
930 => 0.091721592759972
1001 => 0.090692989405524
1002 => 0.093427700008099
1003 => 0.092865525721135
1004 => 0.092288933784988
1005 => 0.092209231215993
1006 => 0.091987292513088
1007 => 0.091226182121076
1008 => 0.090307095587077
1009 => 0.089700235047419
1010 => 0.082743725294759
1011 => 0.084034813040697
1012 => 0.085520091806048
1013 => 0.086032804083966
1014 => 0.085155774253977
1015 => 0.091260812604324
1016 => 0.092376261940545
1017 => 0.08899749314217
1018 => 0.088365463454215
1019 => 0.091302248365444
1020 => 0.089531008056619
1021 => 0.090328597459228
1022 => 0.088604645428864
1023 => 0.092107582859619
1024 => 0.092080896345422
1025 => 0.090718174567428
1026 => 0.091869937682672
1027 => 0.0916697904979
1028 => 0.090131280966781
1029 => 0.092156356355945
1030 => 0.092157360768073
1031 => 0.09084577068488
1101 => 0.0893141206117
1102 => 0.089040297754576
1103 => 0.088834009014657
1104 => 0.090277863074938
1105 => 0.091572418110572
1106 => 0.093981264084475
1107 => 0.094586905195083
1108 => 0.096950762769598
1109 => 0.095543200678111
1110 => 0.096167154722287
1111 => 0.096844545100928
1112 => 0.097169310958654
1113 => 0.096640122421385
1114 => 0.1003121662372
1115 => 0.10062219924377
1116 => 0.1007261506291
1117 => 0.099487958114928
1118 => 0.10058776287008
1119 => 0.10007320064685
1120 => 0.10141194860219
1121 => 0.10162188137558
1122 => 0.10144407578509
1123 => 0.10151071176093
1124 => 0.098377270157051
1125 => 0.098214784679668
1126 => 0.095999283666114
1127 => 0.096902116705294
1128 => 0.095214313612461
1129 => 0.095749533359497
1130 => 0.095985453124229
1201 => 0.095862222027462
1202 => 0.09695316153073
1203 => 0.096025640088736
1204 => 0.09357775850467
1205 => 0.091129209996905
1206 => 0.091098470464934
1207 => 0.09045381086331
1208 => 0.089987840046632
1209 => 0.090077602557127
1210 => 0.09039393735202
1211 => 0.089969454093287
1212 => 0.090060039118386
1213 => 0.091564354099878
1214 => 0.091866033741133
1215 => 0.090840808446305
1216 => 0.086724380948263
1217 => 0.085714199314968
1218 => 0.086440297840208
1219 => 0.086093269511877
1220 => 0.069483987800272
1221 => 0.073386092169456
1222 => 0.07106759425623
1223 => 0.072136064763604
1224 => 0.069769478766325
1225 => 0.070898937647626
1226 => 0.070690367833484
1227 => 0.076964836187469
1228 => 0.076866868994371
1229 => 0.076913760705398
1230 => 0.074675497162342
1231 => 0.078241111761909
]
'min_raw' => 0.045520756143998
'max_raw' => 0.10162188137558
'avg_raw' => 0.073571318759789
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.04552'
'max' => '$0.101621'
'avg' => '$0.073571'
'bar_min_pct' => 61.631153054957
'bar_max_pct' => 60.119598047091
'min_diff' => 0.0070192082364568
'max_diff' => 0.015373661210833
'year' => 2035
]
10 => [
'items' => [
101 => 0.07999766172901
102 => 0.079672571079163
103 => 0.079754389391926
104 => 0.078348479701613
105 => 0.076927372984367
106 => 0.075351146928185
107 => 0.078279580113142
108 => 0.077953988332997
109 => 0.078700778732426
110 => 0.080600076981598
111 => 0.080879755863521
112 => 0.081255647117049
113 => 0.08112091686042
114 => 0.0843307381778
115 => 0.083942007637182
116 => 0.084878736394661
117 => 0.082951814270745
118 => 0.080771318982406
119 => 0.081185759850958
120 => 0.081145845862593
121 => 0.08063769497957
122 => 0.080178959083338
123 => 0.079415293064148
124 => 0.081831645350169
125 => 0.081733545860134
126 => 0.083321662575618
127 => 0.083040947520014
128 => 0.08116626367606
129 => 0.081233218376297
130 => 0.081683520912718
131 => 0.083242023132739
201 => 0.083704692702563
202 => 0.083490365723626
203 => 0.08399766178527
204 => 0.084398607908268
205 => 0.084048014445244
206 => 0.08901167854548
207 => 0.086950419145608
208 => 0.087955062634955
209 => 0.088194664187461
210 => 0.087580929848994
211 => 0.087714026850829
212 => 0.087915632541846
213 => 0.089139742819259
214 => 0.092352162386355
215 => 0.093774921144943
216 => 0.098055361067833
217 => 0.0936567808358
218 => 0.093395787287966
219 => 0.09416682377498
220 => 0.096679895140299
221 => 0.098716503441099
222 => 0.099392163909226
223 => 0.099481463594028
224 => 0.10074904754929
225 => 0.10147560303341
226 => 0.10059512951636
227 => 0.099849020400073
228 => 0.09717655015602
229 => 0.097485895863664
301 => 0.099616981025953
302 => 0.10262726433798
303 => 0.10521040058629
304 => 0.10430587630352
305 => 0.11120675808644
306 => 0.11189095232764
307 => 0.11179641880616
308 => 0.11335511510937
309 => 0.11026142037047
310 => 0.10893880593208
311 => 0.10001033765971
312 => 0.10251887305676
313 => 0.10616517657749
314 => 0.10568257463358
315 => 0.10303453155086
316 => 0.10520839180816
317 => 0.1044896456242
318 => 0.1039227406881
319 => 0.10651984210028
320 => 0.10366422241455
321 => 0.10613668958669
322 => 0.10296572486402
323 => 0.10431000809425
324 => 0.10354692791711
325 => 0.10404073431131
326 => 0.10115395222093
327 => 0.10271158976422
328 => 0.10108914937809
329 => 0.1010883801301
330 => 0.10105256466865
331 => 0.10296135858794
401 => 0.10302360428912
402 => 0.10161300269874
403 => 0.10140971297183
404 => 0.10216138164068
405 => 0.10128137449179
406 => 0.10169312429806
407 => 0.10129384597397
408 => 0.10120396001312
409 => 0.10048773338431
410 => 0.10017916325955
411 => 0.10030016155634
412 => 0.099887131990504
413 => 0.099638266737154
414 => 0.10100305910592
415 => 0.10027390559885
416 => 0.10089130587342
417 => 0.10018770033842
418 => 0.097748697007774
419 => 0.096346000400325
420 => 0.091738949204455
421 => 0.093045503208574
422 => 0.093911749865034
423 => 0.093625455350241
424 => 0.094240526749285
425 => 0.094278287137783
426 => 0.094078321156043
427 => 0.093846786166417
428 => 0.093734087738156
429 => 0.094574049490329
430 => 0.095061675559278
501 => 0.093998689305894
502 => 0.093749646499485
503 => 0.094824384290736
504 => 0.095479973722543
505 => 0.10032047774313
506 => 0.09996187757066
507 => 0.10086189363182
508 => 0.10076056563521
509 => 0.10170392585111
510 => 0.10324592111033
511 => 0.10011061359967
512 => 0.10065479457275
513 => 0.10052137396512
514 => 0.1019780251744
515 => 0.10198257268047
516 => 0.10110923751539
517 => 0.10158268667663
518 => 0.10131842034322
519 => 0.10179598532542
520 => 0.099957088246728
521 => 0.1021966663919
522 => 0.10346636288499
523 => 0.10348399262203
524 => 0.10408581868282
525 => 0.10469730881599
526 => 0.10587101087706
527 => 0.10466457490254
528 => 0.10249431402855
529 => 0.10265099985375
530 => 0.1013785766974
531 => 0.10139996636054
601 => 0.10128578666236
602 => 0.10162844853165
603 => 0.10003228325749
604 => 0.10040690005696
605 => 0.099882434343945
606 => 0.10065365448671
607 => 0.099823949100351
608 => 0.10052130962567
609 => 0.10082226731053
610 => 0.10193280764681
611 => 0.099659921389729
612 => 0.095025352450669
613 => 0.095999595030376
614 => 0.094558613729886
615 => 0.094691982035449
616 => 0.094961407238095
617 => 0.094088112005879
618 => 0.09425470921549
619 => 0.094248757190836
620 => 0.094197465857913
621 => 0.093970288039752
622 => 0.093640835257656
623 => 0.094953273741307
624 => 0.095176282614221
625 => 0.095672003713756
626 => 0.097146933455137
627 => 0.096999553192734
628 => 0.097239936515461
629 => 0.096715181071643
630 => 0.094716323935453
701 => 0.09482487149474
702 => 0.093471281691074
703 => 0.095637389379191
704 => 0.095124426487421
705 => 0.094793715974075
706 => 0.094703478546497
707 => 0.096182064353424
708 => 0.096624480400849
709 => 0.09634879640953
710 => 0.095783360500348
711 => 0.096869164602098
712 => 0.097159679973329
713 => 0.097224715651153
714 => 0.099148552337167
715 => 0.097332236750741
716 => 0.097769441965018
717 => 0.10118039224108
718 => 0.098087131019655
719 => 0.099725700476598
720 => 0.099645501028385
721 => 0.10048373771639
722 => 0.099576741153673
723 => 0.099587984463093
724 => 0.10033228185497
725 => 0.099287050402821
726 => 0.099028236396146
727 => 0.098670686699585
728 => 0.099451383381331
729 => 0.099919375734164
730 => 0.10369105039549
731 => 0.10612772423597
801 => 0.10602194179828
802 => 0.1069885952623
803 => 0.10655310902323
804 => 0.1051468090818
805 => 0.10754719160181
806 => 0.10678761013621
807 => 0.10685022910934
808 => 0.10684789842803
809 => 0.10735295369889
810 => 0.10699507575185
811 => 0.10628966158282
812 => 0.10675794842852
813 => 0.10814859294466
814 => 0.11246519619292
815 => 0.11488082455803
816 => 0.11231977233218
817 => 0.11408635186372
818 => 0.11302703364144
819 => 0.11283452400847
820 => 0.11394406650347
821 => 0.11505555110574
822 => 0.11498475434165
823 => 0.11417787359578
824 => 0.11372208713627
825 => 0.11717345490731
826 => 0.11971636388849
827 => 0.11954295454385
828 => 0.12030832699535
829 => 0.12255548418501
830 => 0.12276093607614
831 => 0.12273505386012
901 => 0.12222581991126
902 => 0.12443843799472
903 => 0.12628424292726
904 => 0.12210794696528
905 => 0.12369822579587
906 => 0.12441215319851
907 => 0.1254604104383
908 => 0.12722899611013
909 => 0.12915014924392
910 => 0.12942182136141
911 => 0.12922905699334
912 => 0.12796200485824
913 => 0.13006415354136
914 => 0.13129554293847
915 => 0.13202880714461
916 => 0.13388824316785
917 => 0.1244165621711
918 => 0.11771203558851
919 => 0.1166650269481
920 => 0.11879416018996
921 => 0.11935559564631
922 => 0.11912928171784
923 => 0.11158272750024
924 => 0.11662529590194
925 => 0.12205067551098
926 => 0.12225908643731
927 => 0.12497514490894
928 => 0.12585960488229
929 => 0.12804638795387
930 => 0.12790960407735
1001 => 0.12844205095596
1002 => 0.12831965063926
1003 => 0.13237020579785
1004 => 0.13683856965104
1005 => 0.13668384441933
1006 => 0.13604146424815
1007 => 0.13699550834445
1008 => 0.14160733869991
1009 => 0.14118275526385
1010 => 0.14159520190605
1011 => 0.14703280980651
1012 => 0.15410247356781
1013 => 0.15081790496805
1014 => 0.15794447372038
1015 => 0.16243027098679
1016 => 0.17018799351896
1017 => 0.16921668845034
1018 => 0.17223671290332
1019 => 0.16747784966004
1020 => 0.15655053772851
1021 => 0.15482124878728
1022 => 0.1582833290402
1023 => 0.16679451551715
1024 => 0.1580152814893
1025 => 0.15979130909904
1026 => 0.15927981302795
1027 => 0.15925255757604
1028 => 0.1602927873195
1029 => 0.15878387982188
1030 => 0.15263631922929
1031 => 0.15545371002107
1101 => 0.15436578013415
1102 => 0.15557291945424
1103 => 0.16208735250263
1104 => 0.15920716636725
1105 => 0.15617312424095
1106 => 0.15997848637518
1107 => 0.16482402003635
1108 => 0.1645207952481
1109 => 0.16393241242075
1110 => 0.16724909561177
1111 => 0.17272728454633
1112 => 0.1742080170022
1113 => 0.17530106342887
1114 => 0.17545177606394
1115 => 0.17700420987253
1116 => 0.16865638202008
1117 => 0.18190459920934
1118 => 0.18419220034331
1119 => 0.18376222614147
1120 => 0.18630479852491
1121 => 0.18555670923087
1122 => 0.18447284521541
1123 => 0.18850336326381
1124 => 0.18388269956736
1125 => 0.17732424917562
1126 => 0.17372615357927
1127 => 0.17846441611063
1128 => 0.18135790769596
1129 => 0.18327032157324
1130 => 0.18384901685699
1201 => 0.16930440013305
1202 => 0.16146565840027
1203 => 0.16649020197962
1204 => 0.17262049192191
1205 => 0.16862232794993
1206 => 0.1687790484081
1207 => 0.16307871728306
1208 => 0.17312484474065
1209 => 0.17166120847131
1210 => 0.17925455602578
1211 => 0.17744234269148
1212 => 0.18363442285009
1213 => 0.18200384062513
1214 => 0.18877229627634
1215 => 0.19147241648423
1216 => 0.19600633855343
1217 => 0.19934151008391
1218 => 0.20129998659828
1219 => 0.20118240701442
1220 => 0.20894286667346
1221 => 0.20436679474233
1222 => 0.19861816989949
1223 => 0.19851419541276
1224 => 0.20149148967751
1225 => 0.20773108167564
1226 => 0.20934891709839
1227 => 0.21025306639053
1228 => 0.20886833027595
1229 => 0.20390133216474
1230 => 0.20175660756357
1231 => 0.20358397506242
]
'min_raw' => 0.075351146928185
'max_raw' => 0.21025306639053
'avg_raw' => 0.14280210665936
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$0.075351'
'max' => '$0.210253'
'avg' => '$0.1428021'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.029830390784187
'max_diff' => 0.10863118501495
'year' => 2036
]
11 => [
'items' => [
101 => 0.2013492616388
102 => 0.2052070039578
103 => 0.21050450813109
104 => 0.20941059446791
105 => 0.21306738383522
106 => 0.21685177612493
107 => 0.22226362706691
108 => 0.2236784853034
109 => 0.22601719216608
110 => 0.22842448975297
111 => 0.22919764885938
112 => 0.23067384949072
113 => 0.23066606918472
114 => 0.235114699147
115 => 0.24002167575801
116 => 0.24187394583189
117 => 0.24613313873202
118 => 0.23883942015047
119 => 0.24437178947877
120 => 0.24936212509709
121 => 0.24341244124554
122 => 0.25161269433636
123 => 0.2519310915817
124 => 0.25673851196776
125 => 0.25186527041618
126 => 0.24897155513879
127 => 0.25732560271852
128 => 0.26136786319232
129 => 0.2601503014406
130 => 0.25088459639162
131 => 0.24549155862832
201 => 0.23137693856249
202 => 0.24809631573668
203 => 0.25623983664731
204 => 0.25086350663979
205 => 0.25357501477314
206 => 0.26836812393926
207 => 0.27400038212682
208 => 0.27282891179627
209 => 0.27302687099809
210 => 0.27606593528338
211 => 0.28954281996765
212 => 0.2814671582731
213 => 0.28764069904931
214 => 0.29091512281666
215 => 0.29395659009739
216 => 0.28648770772152
217 => 0.27677080149018
218 => 0.27369304939875
219 => 0.25032893657642
220 => 0.24911273303882
221 => 0.24843004113843
222 => 0.24412576527513
223 => 0.24074378348696
224 => 0.23805430600408
225 => 0.23099631394302
226 => 0.2333781790741
227 => 0.22212921284621
228 => 0.22932590279993
301 => 0.21137228108443
302 => 0.22632459074385
303 => 0.21818672839432
304 => 0.22365108409492
305 => 0.22363201947266
306 => 0.2135704081523
307 => 0.20776708072319
308 => 0.2114651868299
309 => 0.21542985013233
310 => 0.21607310341441
311 => 0.22121339287431
312 => 0.22264793717241
313 => 0.21830120097669
314 => 0.21100023218011
315 => 0.21269608071419
316 => 0.20773271440678
317 => 0.19903460586616
318 => 0.20528173927444
319 => 0.20741478528709
320 => 0.20835685992322
321 => 0.19980326915805
322 => 0.19711554523214
323 => 0.19568462356617
324 => 0.20989607102372
325 => 0.21067460619597
326 => 0.20669151018095
327 => 0.22469548186154
328 => 0.22062062857895
329 => 0.22517323805889
330 => 0.21254220023476
331 => 0.21302472288959
401 => 0.20704498716229
402 => 0.2103932396035
403 => 0.20802680269727
404 => 0.21012273389432
405 => 0.21137902641199
406 => 0.2173577809235
407 => 0.22639285851656
408 => 0.21646475437337
409 => 0.21213893722511
410 => 0.21482264985457
411 => 0.22196973024234
412 => 0.23279792288212
413 => 0.22638741490169
414 => 0.22923228948592
415 => 0.22985376802291
416 => 0.22512689676804
417 => 0.23297220936763
418 => 0.23717657612495
419 => 0.24148938644685
420 => 0.24523407880716
421 => 0.23976675516355
422 => 0.24561757517227
423 => 0.24090284705401
424 => 0.2366732485323
425 => 0.23667966308735
426 => 0.23402637415011
427 => 0.22888529249827
428 => 0.22793719816333
429 => 0.23286930462481
430 => 0.2368243869347
501 => 0.23715014645731
502 => 0.23933988324353
503 => 0.24063574691753
504 => 0.253336972564
505 => 0.25844551058906
506 => 0.26469213418642
507 => 0.26712554611801
508 => 0.27444924360563
509 => 0.26853476308275
510 => 0.2672551280178
511 => 0.24949023347602
512 => 0.25239923396202
513 => 0.25705682441692
514 => 0.24956703542712
515 => 0.25431758262937
516 => 0.25525544127744
517 => 0.24931253526325
518 => 0.25248689814324
519 => 0.24405673146699
520 => 0.22657661311312
521 => 0.23299166973631
522 => 0.2377153106957
523 => 0.23097409262593
524 => 0.24305746509482
525 => 0.23599860834993
526 => 0.23376128964668
527 => 0.22503271172359
528 => 0.22915226450951
529 => 0.23472401863879
530 => 0.23128132237284
531 => 0.23842543404813
601 => 0.24854340144534
602 => 0.25575406754796
603 => 0.25630761295613
604 => 0.25167163772925
605 => 0.25910081761672
606 => 0.25915493108158
607 => 0.25077478581942
608 => 0.24564199350719
609 => 0.24447581229437
610 => 0.2473891616073
611 => 0.25092650550715
612 => 0.25650391092391
613 => 0.25987422020663
614 => 0.26866219934204
615 => 0.27103997452498
616 => 0.27365242855463
617 => 0.27714347278924
618 => 0.28133536647825
619 => 0.27216374173133
620 => 0.27252814748058
621 => 0.26398765750603
622 => 0.25486091913808
623 => 0.26178697589536
624 => 0.27084187377078
625 => 0.26876467019338
626 => 0.26853094235751
627 => 0.26892400774676
628 => 0.26735786408453
629 => 0.26027425434426
630 => 0.25671690987843
701 => 0.26130679181471
702 => 0.26374610979169
703 => 0.26752927924311
704 => 0.26706292375521
705 => 0.27680796197933
706 => 0.28059458915857
707 => 0.27962580788721
708 => 0.27980408695616
709 => 0.28665959459128
710 => 0.29428432902421
711 => 0.30142589899297
712 => 0.30869061070276
713 => 0.29993271719008
714 => 0.29548599897612
715 => 0.30007387711353
716 => 0.29763948439476
717 => 0.31162822704458
718 => 0.31259677723471
719 => 0.32658450833921
720 => 0.33986053078542
721 => 0.3315220989516
722 => 0.33938486459967
723 => 0.34788908670875
724 => 0.36429511091747
725 => 0.35877013913486
726 => 0.35453809733673
727 => 0.35053883828658
728 => 0.35886066150546
729 => 0.36956655413217
730 => 0.3718725008642
731 => 0.37560901550954
801 => 0.37168052723924
802 => 0.37641195865203
803 => 0.39311599063548
804 => 0.38860241374298
805 => 0.38219240896194
806 => 0.3953786379406
807 => 0.4001506829478
808 => 0.43364339394775
809 => 0.47592932510007
810 => 0.45842267193862
811 => 0.44755572738513
812 => 0.45010971712257
813 => 0.4655511077103
814 => 0.47051039228183
815 => 0.45702934724849
816 => 0.46179108025989
817 => 0.48802869731597
818 => 0.50210433706303
819 => 0.4829877276759
820 => 0.43024576055256
821 => 0.38161525816479
822 => 0.39451425725809
823 => 0.39305191106345
824 => 0.42124095738083
825 => 0.38849476642684
826 => 0.38904612830021
827 => 0.41781809424271
828 => 0.41014222700563
829 => 0.39770830513234
830 => 0.38170603955467
831 => 0.35212437160393
901 => 0.32592306335412
902 => 0.37730986263291
903 => 0.37509397040718
904 => 0.37188503008749
905 => 0.37902617952535
906 => 0.41370157414498
907 => 0.4129021940657
908 => 0.40781694584861
909 => 0.41167406180195
910 => 0.39703213405684
911 => 0.40080569222725
912 => 0.38160755484475
913 => 0.39028591472668
914 => 0.39768162752036
915 => 0.39916642635909
916 => 0.40251175395846
917 => 0.37392629589514
918 => 0.38676032734062
919 => 0.39429911842871
920 => 0.36023858602914
921 => 0.39362585121613
922 => 0.37342868666716
923 => 0.36657346566801
924 => 0.37580311763668
925 => 0.37220631328836
926 => 0.36911399212111
927 => 0.36738842377696
928 => 0.37416566154324
929 => 0.37384949530089
930 => 0.3627606189101
1001 => 0.34829563169874
1002 => 0.35315055620389
1003 => 0.35138671661601
1004 => 0.34499433440969
1005 => 0.34930202819758
1006 => 0.33033312482966
1007 => 0.29769811250296
1008 => 0.31925780128344
1009 => 0.31842777671782
1010 => 0.31800924069322
1011 => 0.33421075094572
1012 => 0.33265334956738
1013 => 0.32982665081557
1014 => 0.34494241987039
1015 => 0.3394249608296
1016 => 0.35642846951648
1017 => 0.36762808005565
1018 => 0.36478749655347
1019 => 0.37532078439798
1020 => 0.35326240385892
1021 => 0.36058931304538
1022 => 0.36209937887405
1023 => 0.34475589362662
1024 => 0.33290815969358
1025 => 0.33211805091431
1026 => 0.31157571299273
1027 => 0.32254926409848
1028 => 0.33220553495514
1029 => 0.32758093057169
1030 => 0.32611691898001
1031 => 0.3335962366965
1101 => 0.3341774437391
1102 => 0.32092586157436
1103 => 0.32368128512944
1104 => 0.33517185940517
1105 => 0.32339175213947
1106 => 0.3005049279918
1107 => 0.29482867916808
1108 => 0.29407136294097
1109 => 0.27867692594207
1110 => 0.29520799325652
1111 => 0.2879917393687
1112 => 0.31078779893632
1113 => 0.29776681196902
1114 => 0.29720550324557
1115 => 0.296357002784
1116 => 0.28310637492286
1117 => 0.28600742030312
1118 => 0.29565093698879
1119 => 0.29909185238422
1120 => 0.29873293671789
1121 => 0.29560367849602
1122 => 0.2970362368856
1123 => 0.29242146717635
1124 => 0.29079189594388
1125 => 0.28564852088535
1126 => 0.27808918044294
1127 => 0.27914035309558
1128 => 0.26416332167014
1129 => 0.25600304005833
1130 => 0.25374438165897
1201 => 0.2507240092515
1202 => 0.25408554075929
1203 => 0.26412089362187
1204 => 0.25201612895073
1205 => 0.23126335897256
1206 => 0.23251063580925
1207 => 0.23531289654147
1208 => 0.23009090220579
1209 => 0.22514872281583
1210 => 0.22944554682371
1211 => 0.22065232460503
1212 => 0.23637551543648
1213 => 0.23595024718822
1214 => 0.24181088041459
1215 => 0.24547565464334
1216 => 0.23702953653082
1217 => 0.23490536066625
1218 => 0.23611538777712
1219 => 0.21611633500318
1220 => 0.24017653113601
1221 => 0.24038460471128
1222 => 0.23860295243462
1223 => 0.25141426410014
1224 => 0.27845012766268
1225 => 0.26827814827536
1226 => 0.26433925040689
1227 => 0.2568514026796
1228 => 0.2668285151918
1229 => 0.26606242861807
1230 => 0.26259789460192
1231 => 0.26050253361896
]
'min_raw' => 0.19568462356617
'max_raw' => 0.50210433706303
'avg_raw' => 0.3488944803146
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$0.195684'
'max' => '$0.5021043'
'avg' => '$0.348894'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 0.12033347663799
'max_diff' => 0.29185127067249
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.0061423167299313
]
1 => [
'year' => 2028
'avg' => 0.01054199863585
]
2 => [
'year' => 2029
'avg' => 0.028798840262748
]
3 => [
'year' => 2030
'avg' => 0.022218262374191
]
4 => [
'year' => 2031
'avg' => 0.021821087130398
]
5 => [
'year' => 2032
'avg' => 0.038259233088444
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.0061423167299313
'min' => '$0.006142'
'max_raw' => 0.038259233088444
'max' => '$0.038259'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.038259233088444
]
1 => [
'year' => 2033
'avg' => 0.098406681654023
]
2 => [
'year' => 2034
'avg' => 0.062374884036145
]
3 => [
'year' => 2035
'avg' => 0.073571318759789
]
4 => [
'year' => 2036
'avg' => 0.14280210665936
]
5 => [
'year' => 2037
'avg' => 0.3488944803146
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.038259233088444
'min' => '$0.038259'
'max_raw' => 0.3488944803146
'max' => '$0.348894'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 0.3488944803146
]
]
]
]
'prediction_2025_max_price' => '$0.0105022'
'last_price' => 0.01018325
'sma_50day_nextmonth' => '$0.009267'
'sma_200day_nextmonth' => '$0.01145'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'increase'
'sma_200day_direction_label' => 'aumentar'
'sma_200day_date_nextmonth' => '4 de fev. de 2026'
'sma_50day_date_nextmonth' => '4 de fev. de 2026'
'daily_sma3' => '$0.010087'
'daily_sma3_action' => 'BUY'
'daily_sma5' => '$0.009977'
'daily_sma5_action' => 'BUY'
'daily_sma10' => '$0.009712'
'daily_sma10_action' => 'BUY'
'daily_sma21' => '$0.009126'
'daily_sma21_action' => 'BUY'
'daily_sma50' => '$0.009312'
'daily_sma50_action' => 'BUY'
'daily_sma100' => '$0.011979'
'daily_sma100_action' => 'SELL'
'daily_sma200' => '$0.01168'
'daily_sma200_action' => 'SELL'
'daily_ema3' => '$0.010072'
'daily_ema3_action' => 'BUY'
'daily_ema5' => '$0.00997'
'daily_ema5_action' => 'BUY'
'daily_ema10' => '$0.009711'
'daily_ema10_action' => 'BUY'
'daily_ema21' => '$0.009435'
'daily_ema21_action' => 'BUY'
'daily_ema50' => '$0.009787'
'daily_ema50_action' => 'BUY'
'daily_ema100' => '$0.010772'
'daily_ema100_action' => 'SELL'
'daily_ema200' => '$0.012146'
'daily_ema200_action' => 'SELL'
'weekly_sma21' => '$0.012133'
'weekly_sma21_action' => 'SELL'
'weekly_sma50' => '$0.0120013'
'weekly_sma50_action' => 'SELL'
'weekly_sma100' => '$0.025896'
'weekly_sma100_action' => 'SELL'
'weekly_sma200' => '—'
'weekly_sma200_action' => '—'
'weekly_ema3' => '$0.009843'
'weekly_ema3_action' => 'BUY'
'weekly_ema5' => '$0.009721'
'weekly_ema5_action' => 'BUY'
'weekly_ema10' => '$0.010159'
'weekly_ema10_action' => 'BUY'
'weekly_ema21' => '$0.01122'
'weekly_ema21_action' => 'SELL'
'weekly_ema50' => '$0.015052'
'weekly_ema50_action' => 'SELL'
'weekly_ema100' => '$0.024961'
'weekly_ema100_action' => 'SELL'
'weekly_ema200' => '$0.041054'
'weekly_ema200_action' => 'SELL'
'rsi_14' => '62.73'
'rsi_14_action' => 'NEUTRAL'
'stoch_rsi_14' => 100.45
'stoch_rsi_14_action' => 'SELL'
'momentum_10' => 0
'momentum_10_action' => 'BUY'
'vwma_10' => '0.0095026'
'vwma_10_action' => 'BUY'
'hma_9' => '0.010143'
'hma_9_action' => 'BUY'
'stochastic_fast_14' => 100
'stochastic_fast_14_action' => 'SELL'
'cci_20' => 116.72
'cci_20_action' => 'SELL'
'adx_14' => 18.48
'adx_14_action' => 'NEUTRAL'
'ao_5_34' => '0.000845'
'ao_5_34_action' => 'BUY'
'macd_12_26' => 0
'macd_12_26_action' => 'NEUTRAL'
'williams_percent_r_14' => -0
'williams_percent_r_14_action' => 'SELL'
'ultimate_oscillator' => 76.2
'ultimate_oscillator_action' => 'SELL'
'ichimoku_cloud' => '-0.002985'
'ichimoku_cloud_action' => 'NEUTRAL'
'sell_signals' => 12
'buy_signals' => 21
'sell_pct' => 36.36
'buy_pct' => 63.64
'overall_action' => 'bullish'
'overall_action_label' => 'Altista'
'overall_action_dir' => 1
'last_updated' => 1767707183
'last_updated_date' => '6 de janeiro de 2026'
]
Previsão de preço de Wrapped Ever para 2026
A previsão de preço para Wrapped Ever em 2026 sugere que o preço médio poderia variar entre $0.003518 na extremidade inferior e $0.0105022 na extremidade superior. No mercado de criptomoedas, comparado ao preço médio de hoje, Wrapped Ever poderia potencialmente ganhar 3.13% até 2026 se WEVER atingir a meta de preço prevista.
Previsão de preço de Wrapped Ever 2027-2032
A previsão de preço de WEVER para 2027-2032 está atualmente dentro de uma faixa de preço entre $0.006142 na extremidade inferior e $0.038259 na extremidade superior. Considerando a volatilidade de preços no mercado, se Wrapped Ever atingir a meta de preço superior, poderia ganhar 275.71% até 2032 em comparação com o preço de hoje.
| Previsão de Preço de Wrapped Ever | Potencial Mínimo ($) | Preço Médio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2027 | $0.003386 | $0.006142 | $0.008897 |
| 2028 | $0.006112 | $0.010541 | $0.014971 |
| 2029 | $0.013427 | $0.028798 | $0.04417 |
| 2030 | $0.011419 | $0.022218 | $0.033017 |
| 2031 | $0.0135013 | $0.021821 | $0.03014 |
| 2032 | $0.0206087 | $0.038259 | $0.0559096 |
Previsão de preço de Wrapped Ever 2032-2037
A previsão de preço de Wrapped Ever para 2032-2037 é atualmente estimada entre $0.038259 na extremidade inferior e $0.348894 na extremidade superior. Comparado ao preço atual, Wrapped Ever poderia potencialmente ganhar 3326.16% até 2037 se atingir a meta de preço superior. Por favor, note que esta informação é apenas para fins gerais e não deve ser considerada como aconselhamento de investimento a longo prazo.
| Previsão de Preço de Wrapped Ever | Potencial Mínimo ($) | Preço Médio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2032 | $0.0206087 | $0.038259 | $0.0559096 |
| 2033 | $0.04789 | $0.0984066 | $0.148923 |
| 2034 | $0.0385015 | $0.062374 | $0.086248 |
| 2035 | $0.04552 | $0.073571 | $0.101621 |
| 2036 | $0.075351 | $0.1428021 | $0.210253 |
| 2037 | $0.195684 | $0.348894 | $0.5021043 |
Wrapped Ever Histograma de preços potenciais
Previsão de preço de Wrapped Ever baseada na análise técnica
Em 6 de janeiro de 2026, o sentimento geral de previsão de preço para Wrapped Ever é Altista, com 21 indicadores técnicos mostrando sinais de alta e 12 indicando sinais de baixa. A previsão de preço de WEVER foi atualizada pela última vez em 6 de janeiro de 2026.
Médias Móveis Simples de 50 e 200 dias e Índice de Força Relativa de 14 dias - RSI (14) de Wrapped Ever
De acordo com nossos indicadores técnicos, o SMA de 200 dias de Wrapped Ever está projetado para aumentar no próximo mês, alcançando $0.01145 até 4 de fev. de 2026. O SMA de 50 dias de curto prazo para Wrapped Ever é esperado para alcançar $0.009267 até 4 de fev. de 2026.
O oscilador de momentum Índice de Força Relativa (RSI) é uma ferramenta comumente usada para identificar se uma criptomoeda está sobrevendida (abaixo de 30) ou sobrecomprada (acima de 70). No momento, o RSI está em 62.73, sugerindo que o mercado de WEVER está em um estado NEUTRAL.
Médias Móveis e Osciladores Populares de WEVER para Sábado, 19 de Outubro de 2024
Médias móveis (MA) são indicadores amplamente utilizados nos mercados financeiros, projetados para suavizar movimentos de preços ao longo de um período definido. Como indicadores atrasados, eles se baseiam em dados históricos de preços. A tabela abaixo destaca dois tipos: a média móvel simples (SMA) e a média móvel exponencial (EMA).
Média Móvel Simples Diária (SMA)
| Período | Valor | Ação |
|---|---|---|
| SMA 3 | $0.010087 | BUY |
| SMA 5 | $0.009977 | BUY |
| SMA 10 | $0.009712 | BUY |
| SMA 21 | $0.009126 | BUY |
| SMA 50 | $0.009312 | BUY |
| SMA 100 | $0.011979 | SELL |
| SMA 200 | $0.01168 | SELL |
Média Móvel Exponencial Diária (EMA)
| Período | Valor | Ação |
|---|---|---|
| EMA 3 | $0.010072 | BUY |
| EMA 5 | $0.00997 | BUY |
| EMA 10 | $0.009711 | BUY |
| EMA 21 | $0.009435 | BUY |
| EMA 50 | $0.009787 | BUY |
| EMA 100 | $0.010772 | SELL |
| EMA 200 | $0.012146 | SELL |
Média Móvel Simples Semanal (SMA)
| Período | Valor | Ação |
|---|---|---|
| SMA 21 | $0.012133 | SELL |
| SMA 50 | $0.0120013 | SELL |
| SMA 100 | $0.025896 | SELL |
| SMA 200 | — | — |
Média Móvel Exponencial Semanal (EMA)
| Período | Valor | Ação |
|---|---|---|
| EMA 21 | $0.01122 | SELL |
| EMA 50 | $0.015052 | SELL |
| EMA 100 | $0.024961 | SELL |
| EMA 200 | $0.041054 | SELL |
Osciladores de Wrapped Ever
Um oscilador é uma ferramenta de análise técnica que define limites altos e baixos entre dois extremos, criando um indicador de tendência que flutua dentro desses limites. Os traders usam esse indicador para identificar condições de sobrecompra ou sobrevenda de curto prazo.
| Período | Valor | Ação |
|---|---|---|
| RSI (14) | 62.73 | NEUTRAL |
| Stoch RSI (14) | 100.45 | SELL |
| Estocástico Rápido (14) | 100 | SELL |
| Índice de Canal de Commodities (20) | 116.72 | SELL |
| Índice Direcional Médio (14) | 18.48 | NEUTRAL |
| Oscilador Impressionante (5, 34) | 0.000845 | BUY |
| Momentum (10) | 0 | BUY |
| MACD (12, 26) | 0 | NEUTRAL |
| Williams Percent Range (14) | -0 | SELL |
| Oscilador Ultimate (7, 14, 28) | 76.2 | SELL |
| VWMA (10) | 0.0095026 | BUY |
| Média Móvel de Hull (9) | 0.010143 | BUY |
| Nuvem Ichimoku B/L (9, 26, 52, 26) | -0.002985 | NEUTRAL |
Previsão do preço de Wrapped Ever com base nos fluxos financeiros mundiais
Definições dos fluxos financeiros mundiais, usadas na previsão do preço do Wrapped Ever
M0: o total de todas as moedas físicas, mais as contas no Banco Central que podem ser trocadas por moedas físicas.
M1: o valor de M0, mais o valor em contas de demanda, incluindo contas 'correntes'.
M2: o valor de M1, mais a maioria das contas de poupança, do mercado de moedas e de certificados de depósito (CD) de menos de US$ 100.000.
Previsões de preço de Wrapped Ever por empresas de Internet ou nichos tecnológicos
| Comparação | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Facebook stock | $0.0143091 | $0.0201067 | $0.028253 | $0.0397007 | $0.055786 | $0.078388 |
| Amazon.com stock | $0.021247 | $0.044335 | $0.0925078 | $0.193023 | $0.402754 | $0.84037 |
| Apple stock | $0.014444 | $0.020487 | $0.02906 | $0.04122 | $0.058467 | $0.082932 |
| Netflix stock | $0.016067 | $0.025352 | $0.0400016 | $0.063116 | $0.099587 | $0.157133 |
| Google stock | $0.013187 | $0.017077 | $0.022115 | $0.028639 | $0.037087 | $0.048028 |
| Tesla stock | $0.023084 | $0.052331 | $0.11863 | $0.268927 | $0.609637 | $1.38 |
| Kodak stock | $0.007636 | $0.005726 | $0.004294 | $0.00322 | $0.002414 | $0.00181 |
| Nokia stock | $0.006745 | $0.004468 | $0.00296 | $0.001961 | $0.001299 | $0.00086 |
Este cálculo mostra quanto a criptomoeda pode custar, se assumirmos que sua capitalização se comportará da mesma forma que a de algumas empresas de Internet ou nichos tecnológicos. Se você extrapolar os dados, poderá obter uma imagem em potencial do preço futuro para 2024, 2025, 2026, 2027, 2028, 2029 e 2030.
Visão geral da previsão para Wrapped Ever
Você pode fazer perguntas como: 'Devo investir em Wrapped Ever agora?', 'Devo comprar WEVER hoje?', 'Wrapped Ever será um bom ou mau investimento no curto ou no longo prazo?'.
Atualizamos a previsão para Wrapped Ever regularmente com novos valores. Veja nossas previsões semelhantes. Fazemos previsões de preços futuros para uma enorme quantidade de moedas digitais, como Wrapped Ever, com métodos de análise técnica.
Se você estiver tentando encontrar criptomoedas com bom retorno, você deve explorar o máximo de fontes de informações disponíveis sobre Wrapped Ever para poder tomar sozinho uma decisão de tão grande responsabilidade sobre o seu investimento.
O preço de Wrapped Ever é de $0.01018 USD hoje, mas o preço pode tanto subir quanto descer e seu investimento pode ser perdido, porque criptomoedas são ativos de alto risco
Previsão do preço de Wrapped Ever com base no padrão de crescimento do Bitcoin
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| Se Wrapped Ever tiver 1% da média anterior do crescimento anual do Bitcoin | $0.010447 | $0.010719 | $0.010998 | $0.011284 |
| Se Wrapped Ever tiver 2% da média anterior do crescimento anual do Bitcoin | $0.010712 | $0.011269 | $0.011855 | $0.012471 |
| Se Wrapped Ever tiver 5% da média anterior do crescimento anual do Bitcoin | $0.0115067 | $0.0130022 | $0.014692 | $0.0166015 |
| Se Wrapped Ever tiver 10% da média anterior do crescimento anual do Bitcoin | $0.01283 | $0.016165 | $0.020367 | $0.025661 |
| Se Wrapped Ever tiver 20% da média anterior do crescimento anual do Bitcoin | $0.015477 | $0.023523 | $0.035752 | $0.054338 |
| Se Wrapped Ever tiver 50% da média anterior do crescimento anual do Bitcoin | $0.023418 | $0.053853 | $0.123844 | $0.28480093 |
| Se Wrapped Ever tiver 100% da média anterior do crescimento anual do Bitcoin | $0.036652 | $0.131925 | $0.474841 | $1.70 |
Perguntas Frequentes sobre Wrapped Ever
WEVER é um bom investimento?
A decisão de adquirir Wrapped Ever depende inteiramente da sua tolerância individual ao risco. Como você pode perceber, o valor de Wrapped Ever experimentou uma escalada de 1.5714% nas últimas 24 horas, e Wrapped Ever registrou um declínio de durante os últimos 30 dias. Consequentemente, a decisão de investir ou não em Wrapped Ever dependerá de quão alinhado esse investimento está com suas aspirações de negociação.
Wrapped Ever pode subir?
Parece que o valor médio de Wrapped Ever pode potencialmente subir para $0.0105022 até o final deste ano. Observando as perspectivas de Wrapped Ever em um horizonte de cinco anos mais longo, a moeda digital poderia potencialmente crescer até $0.033017. No entanto, dada a imprevisibilidade do mercado, é vital conduzir uma pesquisa aprofundada antes de investir quaisquer fundos em um projeto, rede ou ativo específico.
Qual será o preço de Wrapped Ever na próxima semana?
Com base na nossa nova previsão experimental de Wrapped Ever, o preço de Wrapped Ever aumentará 0.86% na próxima semana e atingirá $0.01027 até 13 de janeiro de 2026.
Qual será o preço de Wrapped Ever no próximo mês?
Com base na nossa nova previsão experimental de Wrapped Ever, o preço de Wrapped Ever diminuirá -11.62% no próximo mês e atingirá $0.009000157 até 5 de fevereiro de 2026.
Até onde o preço de Wrapped Ever pode subir este ano em 2026?
De acordo com nossa previsão mais recente sobre o valor de Wrapped Ever em 2026, espera-se que WEVER fluctue dentro do intervalo de $0.003518 e $0.0105022. No entanto, é crucial lembrar que o mercado de criptomoedas é excepcionalmente instável, e essa previsão de preço de Wrapped Ever não considera flutuações repentinas e extremas de preço.
Onde estará Wrapped Ever em 5 anos?
O futuro de Wrapped Ever parece seguir uma tendência de alta, com um preço máximo de $0.033017 projetada após um período de cinco anos. Com base na previsão de Wrapped Ever para 2030, o valor de Wrapped Ever pode potencialmente atingir seu pico mais alto de aproximadamente $0.033017, enquanto seu pico mais baixo está previsto para cerca de $0.011419.
Quanto será Wrapped Ever em 2026?
Com base na nossa nova simulação experimental de previsão de preços de Wrapped Ever, espera-se que o valor de WEVER em 2026 aumente 3.13% para $0.0105022 se o melhor cenário ocorrer. O preço ficará entre $0.0105022 e $0.003518 durante 2026.
Quanto será Wrapped Ever em 2027?
De acordo com nossa última simulação experimental para previsão de preços de Wrapped Ever, o valor de WEVER pode diminuir -12.62% para $0.008897 em 2027, assumindo as condições mais favoráveis. O preço está projetado para flutuar entre $0.008897 e $0.003386 ao longo do ano.
Quanto será Wrapped Ever em 2028?
Nosso novo modelo experimental de previsão de preços de Wrapped Ever sugere que o valor de WEVER em 2028 pode aumentar 47.02%, alcançando $0.014971 no melhor cenário. O preço é esperado para variar entre $0.014971 e $0.006112 durante o ano.
Quanto será Wrapped Ever em 2029?
Com base no nosso modelo de previsão experimental, o valor de Wrapped Ever pode experimentar um 333.75% crescimento em 2029, potencialmente alcançando $0.04417 sob condições ótimas. A faixa de preço prevista para 2029 está entre $0.04417 e $0.013427.
Quanto será Wrapped Ever em 2030?
Usando nossa nova simulação experimental para previsões de preços de Wrapped Ever, espera-se que o valor de WEVER em 2030 aumente 224.23%, alcançando $0.033017 no melhor cenário. O preço está previsto para variar entre $0.033017 e $0.011419 ao longo de 2030.
Quanto será Wrapped Ever em 2031?
Nossa simulação experimental indica que o preço de Wrapped Ever poderia aumentar 195.98% em 2031, potencialmente atingindo $0.03014 sob condições ideais. O preço provavelmente oscilará entre $0.03014 e $0.0135013 durante o ano.
Quanto será Wrapped Ever em 2032?
Com base nos achados da nossa mais recente previsão experimental de preços de Wrapped Ever, WEVER poderia ver um 449.04% aumento em valor, atingindo $0.0559096 se o cenário mais positivo se desenrolar em 2032. O preço é esperado para permanecer dentro de uma faixa de $0.0559096 e $0.0206087 ao longo do ano.
Quanto será Wrapped Ever em 2033?
De acordo com nossa previsão experimental de preços de Wrapped Ever, espera-se que o valor de WEVER seja aumentar 1362.43% em 2033, com o preço potencial mais alto sendo $0.148923. Ao longo do ano, o preço de WEVER poderia variar entre $0.148923 e $0.04789.
Quanto será Wrapped Ever em 2034?
Os resultados da nossa nova simulação de previsão de preços de Wrapped Ever sugerem que WEVER pode aumentar 746.96% em 2034, atingindo potencialmente $0.086248 nas melhores circunstâncias. A faixa de preço prevista para o ano é entre $0.086248 e $0.0385015.
Quanto será Wrapped Ever em 2035?
Com base em nossa previsão experimental para o preço de Wrapped Ever, WEVER poderia aumentar 897.93%, com o valor potencialmente atingindo $0.101621 em 2035. A faixa de preço esperada para o ano está entre $0.101621 e $0.04552.
Quanto será Wrapped Ever em 2036?
Nossa recente simulação de previsão de preços de Wrapped Ever sugere que o valor de WEVER pode aumentar 1964.7% em 2036, possivelmente atingindo $0.210253 se as condições forem ideais. A faixa de preço esperada para 2036 está entre $0.210253 e $0.075351.
Quanto será Wrapped Ever em 2037?
De acordo com a simulação experimental, o valor de Wrapped Ever poderia aumentar 4830.69% em 2037, com um pico de $0.5021043 sob condições favoráveis. O preço é esperado para cair entre $0.5021043 e $0.195684 ao longo do ano.
Previsões relacionadas
Previsão de Preço do SolPod
Previsão de Preço do zuzalu
Previsão de Preço do SOFT COQ INU
Previsão de Preço do All Street Bets
Previsão de Preço do MagicRing
Previsão de Preço do AI INU
Previsão de Preço do Wall Street Baby On Solana
Previsão de Preço do Meta Masters Guild Games
Previsão de Preço do Morfey
Previsão de Preço do PANTIESPrevisão de Preço do Celer Bridged BUSD (zkSync)
Previsão de Preço do Bridged BUSD
Previsão de Preço do Multichain Bridged BUSD (Moonriver)
Previsão de Preço do tooker kurlson
Previsão de Preço do dogwifsaudihatPrevisão de Preço do Harmony Horizen Bridged BUSD (Harmony)
Previsão de Preço do IoTeX Bridged BUSD (IoTeX)
Previsão de Preço do MIMANY
Previsão de Preço do The Open League MEME
Previsão de Preço do Sandwich Cat
Previsão de Preço do Hege
Previsão de Preço do DexNet
Previsão de Preço do SolDocs
Previsão de Preço do Secret Society
Previsão de Preço do duk
Como ler e prever os movimentos de preço de Wrapped Ever?
Traders de Wrapped Ever utilizam indicadores e padrões de gráfico para prever a direção do mercado. Eles também identificam níveis-chave de suporte e resistência para avaliar quando uma tendência de baixa pode desacelerar ou uma tendência de alta pode estagnar.
Indicadores de Previsão de Preço de Wrapped Ever
Médias móveis são ferramentas populares para a previsão de preço de Wrapped Ever. Uma média móvel simples (SMA) calcula o preço médio de fechamento de WEVER em um período específico, como uma SMA de 12 dias. Uma média móvel exponencial (EMA) dá mais peso aos preços recentes, reagindo mais rapidamente às mudanças de preço.
Médias móveis comumente usadas no mercado de criptomoedas incluem as de 50 dias, 100 dias e 200 dias, que ajudam a identificar níveis-chave de resistência e suporte. Um movimento de preço de WEVER acima dessas médias é visto como altista, enquanto uma queda abaixo indica fraqueza.
Traders também usam RSI e níveis de retração de Fibonacci para avaliar a direção futura de WEVER.
Como ler gráficos de Wrapped Ever e prever movimentos de preço?
A maioria dos traders prefere gráficos de velas em vez de gráficos de linha simples porque eles fornecem informações mais detalhadas. Velas podem representar a ação de preço de Wrapped Ever em diferentes períodos de tempo, como 5 minutos para tendências de curto prazo e semanal para tendências de longo prazo. Opções populares incluem gráficos de 1 hora, 4 horas e 1 dia.
Por exemplo, um gráfico de velas de 1 hora mostra os preços de abertura, fechamento, máximo e mínimo de WEVER dentro de cada hora. A cor da vela é crucial: verde indica que o preço fechou mais alto do que abriu, enquanto vermelho significa o oposto. Alguns gráficos usam velas vazias e preenchidas para transmitir a mesma informação.
O que afeta o preço de Wrapped Ever?
A ação de preço de Wrapped Ever é impulsionada pela oferta e demanda, influenciada por fatores como reduções pela metade das recompensas de bloco, hard forks e atualizações de protocolo. Eventos do mundo real, como regulamentações, adoção por empresas e governos e hacks de exchanges de criptomoedas, também impactam o preço de WEVER. A capitalização de mercado de Wrapped Ever pode mudar rapidamente.
Traders frequentemente monitoram a atividade de "baleias" de WEVER, grandes detentores de Wrapped Ever, pois suas ações podem influenciar significativamente os movimentos de preço no relativamente pequeno mercado de Wrapped Ever.
Padrões de previsão de preço altistas e baixistas
Traders frequentemente identificam padrões de velas para ganhar vantagem em previsões de preço de criptomoedas. Certas formações indicam tendências altistas, enquanto outras sugerem movimentos baixistas.
Padrões de velas altistas comumente seguidos:
- Martelo
- Engolfo de Alta
- Linha de Perfuração
- Estrela da Manhã
- Três Soldados Brancos
Padrões de velas baixistas comuns:
- Harami de Baixa
- Nuvem Negra
- Estrela da Noite
- Estrela Cadente
- Homem Enforcado


