Previsão de Preço Wormhole - Projeção W
Previsão de Preço Wormhole até $0.042363 até 2026
| Ano | Preço Mínimo | Preço Máximo |
|---|---|---|
| 2026 | $0.014192 | $0.042363 |
| 2027 | $0.013662 | $0.035891 |
| 2028 | $0.024656 | $0.060391 |
| 2029 | $0.054163 | $0.178173 |
| 2030 | $0.046063 | $0.133184 |
| 2031 | $0.054461 | $0.121582 |
| 2032 | $0.083131 | $0.225528 |
| 2033 | $0.19318 | $0.600725 |
| 2034 | $0.1553076 | $0.3479082 |
| 2035 | $0.183621 | $0.409922 |
Calculadora de lucro do investimento
Se você abrir um short de $10,000.00 em Wormhole hoje e fechar em Apr 06, 2026, nossa previsão mostra que pode lucrar cerca de $3,954.56, com um retorno de 39.55% nos próximos 90 dias.
Previsão de preço de longo prazo de Wormhole para os anos 2027, 2028, 2029, 2030, 2031, 2032 e 2037
[
'name' => 'Wormhole'
'name_with_ticker' => 'Wormhole <small>W</small>'
'name_lang' => 'Wormhole'
'name_lang_with_ticker' => 'Wormhole <small>W</small>'
'name_with_lang' => 'Wormhole'
'name_with_lang_with_ticker' => 'Wormhole <small>W</small>'
'image' => '/uploads/coins/wormhole.png?1758150530'
'price_for_sd' => 0.04107
'ticker' => 'W'
'marketcap' => '$211.96M'
'low24h' => '$0.03821'
'high24h' => '$0.04097'
'volume24h' => '$35.54M'
'current_supply' => '5.19B'
'max_supply' => '10B'
'algo' => null
'proof' => null
'ico_price_and_roi' => '—'
'price' => '$0.04107'
'change_24h_pct' => '7.3685%'
'ath_price' => '$1.66'
'ath_days' => 643
'ath_exchange' => null
'ath_pair' => null
'ath_date' => '3 de abr. de 2024'
'ath_pct' => '-97.54%'
'fdv' => '$408.75M'
'new_prediction' => true
'change_24h_pct_is_increased' => true
'change_30d_pct' => '-87.07%'
'change_30d_pct_is_increased' => false
'max_price' => '$2.02'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.041428'
'next_week_prediction_price_date' => '13 de janeiro de 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.036304'
'next_month_prediction_price_date' => '5 de fevereiro de 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.014192'
'current_year_max_price_prediction' => '$0.042363'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.046063'
'grand_prediction_max_price' => '$0.133184'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.041855601522888
107 => 0.042011875145391
108 => 0.042363967596419
109 => 0.039355376152284
110 => 0.040706145383097
111 => 0.041499595756238
112 => 0.037914758104413
113 => 0.041428735041993
114 => 0.039303003268753
115 => 0.038581497977496
116 => 0.03955290980108
117 => 0.0391743496687
118 => 0.038848885896677
119 => 0.038667271519711
120 => 0.03938056915214
121 => 0.039347292965012
122 => 0.038180199593253
123 => 0.036657773866605
124 => 0.037168749912389
125 => 0.03698310752453
126 => 0.036310315562583
127 => 0.036763696111724
128 => 0.034767237623953
129 => 0.031332434562624
130 => 0.033601570675801
131 => 0.033514211403789
201 => 0.033470160897413
202 => 0.035175353972149
203 => 0.035011439003511
204 => 0.034713931730372
205 => 0.036304851608204
206 => 0.035724144451903
207 => 0.037513747075808
208 => 0.038692495108152
209 => 0.038393526478645
210 => 0.039502144700449
211 => 0.037180521768458
212 => 0.03795167177912
213 => 0.03811060472755
214 => 0.036285219903864
215 => 0.035038257519551
216 => 0.034955099344929
217 => 0.032793038412532
218 => 0.033947993911072
219 => 0.034964306954482
220 => 0.034477571875767
221 => 0.034323486090643
222 => 0.035110676949713
223 => 0.035171848421297
224 => 0.033777132386529
225 => 0.03406713801507
226 => 0.03527650969551
227 => 0.034036664951651
228 => 0.031627849141823
301 => 0.031030429516502
302 => 0.030950722725856
303 => 0.029330473320036
304 => 0.031070351952539
305 => 0.030310848303603
306 => 0.032710111230341
307 => 0.031339665114093
308 => 0.031280587921098
309 => 0.031191284079145
310 => 0.029796668483896
311 => 0.030102000666811
312 => 0.031116971346224
313 => 0.031479124319102
314 => 0.031441348796999
315 => 0.03111199743618
316 => 0.031262772802611
317 => 0.030777072813716
318 => 0.030605562038666
319 => 0.030064226854854
320 => 0.02926861368231
321 => 0.029379248573732
322 => 0.027802930695413
323 => 0.026944069053783
324 => 0.026706347470994
325 => 0.02638845623542
326 => 0.026742254131928
327 => 0.027798465184917
328 => 0.026524450567338
329 => 0.024340241867232
330 => 0.024471516531819
331 => 0.024766451727348
401 => 0.024216841941671
402 => 0.023696682404781
403 => 0.02414891892023
404 => 0.02322344090008
405 => 0.024878291324559
406 => 0.024833532258242
407 => 0.025450358161224
408 => 0.0258360720569
409 => 0.024947126403723
410 => 0.024723558975913
411 => 0.024850913143367
412 => 0.022746032440276
413 => 0.025278344501503
414 => 0.025300244041365
415 => 0.02511272688547
416 => 0.02646110488171
417 => 0.029306603023419
418 => 0.02823601216261
419 => 0.027821447022525
420 => 0.027033358388178
421 => 0.028083439701373
422 => 0.02800280984034
423 => 0.027638171030782
424 => 0.027417636341018
425 => 0.02782397826887
426 => 0.027367286079371
427 => 0.027285251613074
428 => 0.026788212001699
429 => 0.0266107914743
430 => 0.026479436379128
501 => 0.026334827326029
502 => 0.026653798862835
503 => 0.025930967396232
504 => 0.025059303507552
505 => 0.024986834086742
506 => 0.025186928529175
507 => 0.025098401633678
508 => 0.024986410254026
509 => 0.024772588211232
510 => 0.02470915177872
511 => 0.024915289409402
512 => 0.024682572042933
513 => 0.025025959193928
514 => 0.024932576889335
515 => 0.02441095092689
516 => 0.023760811847016
517 => 0.023755024245493
518 => 0.023614952847176
519 => 0.023436550861543
520 => 0.023386923510425
521 => 0.024110832822289
522 => 0.025609303433064
523 => 0.025315117796806
524 => 0.025527697068359
525 => 0.026573376686962
526 => 0.026905766793033
527 => 0.026669844168835
528 => 0.026346898729759
529 => 0.026361106690103
530 => 0.027464709017657
531 => 0.027533539341121
601 => 0.027707451363009
602 => 0.027930977458666
603 => 0.02670791162948
604 => 0.026303500399537
605 => 0.026111867922909
606 => 0.025521714065997
607 => 0.026158144404709
608 => 0.025787323701006
609 => 0.025837360082974
610 => 0.025804773823576
611 => 0.025822568124681
612 => 0.02487782876014
613 => 0.025222042130539
614 => 0.024649720640969
615 => 0.023883446412536
616 => 0.023880877592632
617 => 0.024068422124461
618 => 0.023956863298311
619 => 0.02365666136558
620 => 0.023699303633212
621 => 0.02332571249846
622 => 0.023744664361056
623 => 0.023756678401394
624 => 0.023595359113832
625 => 0.024240812262378
626 => 0.024505254943977
627 => 0.02439907113311
628 => 0.024497804804742
629 => 0.025327342538161
630 => 0.025462593383978
701 => 0.02552266287552
702 => 0.025442177714536
703 => 0.024512967231705
704 => 0.024554181667927
705 => 0.02425177748114
706 => 0.023996277809874
707 => 0.024006496456806
708 => 0.024137856500469
709 => 0.02471151351531
710 => 0.025918740884117
711 => 0.025964554280291
712 => 0.026020081452926
713 => 0.0257942245361
714 => 0.025726103928826
715 => 0.025815972593241
716 => 0.026269343719965
717 => 0.02743553734696
718 => 0.027023326631726
719 => 0.0266881929038
720 => 0.026982195534596
721 => 0.026936936134053
722 => 0.026554901246026
723 => 0.026544178799126
724 => 0.025810931705059
725 => 0.025539866949611
726 => 0.025313344951113
727 => 0.02506598884226
728 => 0.024919347849481
729 => 0.02514465506153
730 => 0.025196185486682
731 => 0.02470354732984
801 => 0.024636402569423
802 => 0.025038701522633
803 => 0.024861664752542
804 => 0.025043751460882
805 => 0.025085997139127
806 => 0.025079194611929
807 => 0.02489434789141
808 => 0.025012163678861
809 => 0.024733494218965
810 => 0.024430483036127
811 => 0.024237180779741
812 => 0.02406849892322
813 => 0.024162093421065
814 => 0.023828446125928
815 => 0.023721705641221
816 => 0.024972250341012
817 => 0.025896041156368
818 => 0.025882608872051
819 => 0.025800843295777
820 => 0.025679356234975
821 => 0.026260456184771
822 => 0.026058012581723
823 => 0.02620530721767
824 => 0.026242799884455
825 => 0.026356278894744
826 => 0.026396837887072
827 => 0.026274240442225
828 => 0.025862788443305
829 => 0.024837489181677
830 => 0.024360209607646
831 => 0.024202699398496
901 => 0.024208424595445
902 => 0.02405049810521
903 => 0.024097014534353
904 => 0.024034321589477
905 => 0.023915596318935
906 => 0.024154762470168
907 => 0.024182324141111
908 => 0.02412649990359
909 => 0.024139648532393
910 => 0.023677447688567
911 => 0.023712587814875
912 => 0.023516923126197
913 => 0.023480238355843
914 => 0.022985615061339
915 => 0.022109318198331
916 => 0.022594871724632
917 => 0.022008391344018
918 => 0.021786282337252
919 => 0.022837711830247
920 => 0.022732177471264
921 => 0.02255154852337
922 => 0.022284360663064
923 => 0.022185258086639
924 => 0.021583142204349
925 => 0.02154756598586
926 => 0.02184599087562
927 => 0.021708278057169
928 => 0.021514877104142
929 => 0.020814398457017
930 => 0.020026828537139
1001 => 0.020050600322532
1002 => 0.020301111660786
1003 => 0.021029507162816
1004 => 0.020744910438803
1005 => 0.02053843225016
1006 => 0.020499765092139
1007 => 0.020983765529953
1008 => 0.021668727550687
1009 => 0.021990096405653
1010 => 0.021671629630499
1011 => 0.02130579214667
1012 => 0.021328058979183
1013 => 0.021476190240175
1014 => 0.021491756741242
1015 => 0.02125363414797
1016 => 0.021320664263165
1017 => 0.021218839388822
1018 => 0.020593940322931
1019 => 0.020582637880406
1020 => 0.020429277571777
1021 => 0.020424633882581
1022 => 0.020163729740083
1023 => 0.020127227447002
1024 => 0.019609186436322
1025 => 0.019950162598324
1026 => 0.019721453690905
1027 => 0.019376735420447
1028 => 0.019317305860688
1029 => 0.019315519336359
1030 => 0.019669467922524
1031 => 0.019946026503016
1101 => 0.019725432180269
1102 => 0.01967520712902
1103 => 0.020211479276903
1104 => 0.020143233757856
1105 => 0.020084133578498
1106 => 0.021607396714459
1107 => 0.020401615080641
1108 => 0.019875825464686
1109 => 0.019225060970203
1110 => 0.019436953171046
1111 => 0.019481601971108
1112 => 0.017916630670992
1113 => 0.01728172200944
1114 => 0.017063845282823
1115 => 0.016938454146331
1116 => 0.016995596461793
1117 => 0.016424104199038
1118 => 0.016808156451219
1119 => 0.016313292458711
1120 => 0.016230326899941
1121 => 0.017115205020429
1122 => 0.017238330641512
1123 => 0.01671303848984
1124 => 0.017050361088288
1125 => 0.016928043224956
1126 => 0.016321775481517
1127 => 0.016298620513121
1128 => 0.015994416670805
1129 => 0.015518396563052
1130 => 0.015300842600483
1201 => 0.015187538607888
1202 => 0.015234290043484
1203 => 0.015210651087029
1204 => 0.015056390906155
1205 => 0.015219493100026
1206 => 0.014802834393166
1207 => 0.014636917538847
1208 => 0.014561976744993
1209 => 0.014192168160675
1210 => 0.014780698072949
1211 => 0.014896645879772
1212 => 0.015012822139592
1213 => 0.016024057164425
1214 => 0.015973538720304
1215 => 0.01643020085167
1216 => 0.016412455800993
1217 => 0.016282208363692
1218 => 0.01573271585038
1219 => 0.015951733772424
1220 => 0.015277630651315
1221 => 0.015782714544206
1222 => 0.015552215348298
1223 => 0.015704782534208
1224 => 0.015430452977513
1225 => 0.015582278280978
1226 => 0.01492414140615
1227 => 0.01430958245267
1228 => 0.014556898915645
1229 => 0.014825760194966
1230 => 0.015408719953114
1231 => 0.015061513930475
]
'min_raw' => 0.014192168160675
'max_raw' => 0.042363967596419
'avg_raw' => 0.028278067878547
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.014192'
'max' => '$0.042363'
'avg' => '$0.028278'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.026885041839325
'max_diff' => 0.0012867575964191
'year' => 2026
]
1 => [
'items' => [
101 => 0.015186382345529
102 => 0.014768094057817
103 => 0.013905045842124
104 => 0.013909930601298
105 => 0.013777169435841
106 => 0.013662444405439
107 => 0.015101394718857
108 => 0.014922438500945
109 => 0.014637295188914
110 => 0.015018970843212
111 => 0.015119891944216
112 => 0.015122765026083
113 => 0.015401225730985
114 => 0.015549840259108
115 => 0.015576034213822
116 => 0.016014198149527
117 => 0.016161064921254
118 => 0.016765988368631
119 => 0.015537231354709
120 => 0.015511925912613
121 => 0.015024341802387
122 => 0.014715108251282
123 => 0.015045515288193
124 => 0.015338210817837
125 => 0.015033436668379
126 => 0.015073233738165
127 => 0.014664099343481
128 => 0.014810345638018
129 => 0.014936312648377
130 => 0.014866761069255
131 => 0.014762638988976
201 => 0.015314213122262
202 => 0.015283091148025
203 => 0.015796729661575
204 => 0.01619714761353
205 => 0.016914768166703
206 => 0.016165893709061
207 => 0.016138601747318
208 => 0.016405385051123
209 => 0.01616102407812
210 => 0.016315451778004
211 => 0.016889887476809
212 => 0.016902024397941
213 => 0.016698715331443
214 => 0.01668634395627
215 => 0.016725391686448
216 => 0.016954095461737
217 => 0.016874179335294
218 => 0.016966660300042
219 => 0.017082309162579
220 => 0.017560681892134
221 => 0.017676015937706
222 => 0.017395814000812
223 => 0.017421113098425
224 => 0.017316309882312
225 => 0.017215071288726
226 => 0.017442640862397
227 => 0.017858528731171
228 => 0.017855941514323
301 => 0.017952419416174
302 => 0.018012524349761
303 => 0.017754509975306
304 => 0.017586552104987
305 => 0.017650957839904
306 => 0.017753944012611
307 => 0.017617560812108
308 => 0.016775740519761
309 => 0.01703109502077
310 => 0.016988591545605
311 => 0.016928061428371
312 => 0.017184822353734
313 => 0.01716005713611
314 => 0.016418242719862
315 => 0.016465731271979
316 => 0.016421130656003
317 => 0.016565244370649
318 => 0.016153241464588
319 => 0.01627997078361
320 => 0.016359454224488
321 => 0.016406270581785
322 => 0.01657540336662
323 => 0.016555557586443
324 => 0.016574169725059
325 => 0.016824948995569
326 => 0.018093304488755
327 => 0.01816233827978
328 => 0.017822390644848
329 => 0.017958193019833
330 => 0.017697482156577
331 => 0.017872499105691
401 => 0.017992241257327
402 => 0.017451149499177
403 => 0.017419109556915
404 => 0.017157322647187
405 => 0.017297992104106
406 => 0.017074176883655
407 => 0.01712909331003
408 => 0.016975542194358
409 => 0.017251903630845
410 => 0.017560918659063
411 => 0.017638988058564
412 => 0.017433621079466
413 => 0.017284921852256
414 => 0.017023854993846
415 => 0.017458014997636
416 => 0.017584976613531
417 => 0.017457348122317
418 => 0.017427773812165
419 => 0.017371730547867
420 => 0.01743966365562
421 => 0.017584285153305
422 => 0.017516084325736
423 => 0.017561132173889
424 => 0.01738945622987
425 => 0.0177545953888
426 => 0.018334524248705
427 => 0.018336388814817
428 => 0.018268187619621
429 => 0.018240281159962
430 => 0.018310259725028
501 => 0.018348220225905
502 => 0.018574518073454
503 => 0.018817344679978
504 => 0.019950510499078
505 => 0.019632322071511
506 => 0.020637734198552
507 => 0.021432884654616
508 => 0.021671315508675
509 => 0.02145197034198
510 => 0.020701602375509
511 => 0.020664785743254
512 => 0.021786152282346
513 => 0.021469314873211
514 => 0.021431628071563
515 => 0.021030704174882
516 => 0.021267699853211
517 => 0.021215865421843
518 => 0.021134042236103
519 => 0.021586213481093
520 => 0.022432637686109
521 => 0.022300714536041
522 => 0.022202240024255
523 => 0.021770753379105
524 => 0.022030604715516
525 => 0.021938076631745
526 => 0.0223356359994
527 => 0.022100130637019
528 => 0.021466914518219
529 => 0.021567756272245
530 => 0.02155251424399
531 => 0.02186619410543
601 => 0.021772035197038
602 => 0.02153412820593
603 => 0.022429744700194
604 => 0.022371588346738
605 => 0.022454040759546
606 => 0.02249033886159
607 => 0.023035484839116
608 => 0.023258813703383
609 => 0.023309513265494
610 => 0.023521658413673
611 => 0.023304234900947
612 => 0.024174083972187
613 => 0.024752482847462
614 => 0.025424322905227
615 => 0.026406061803205
616 => 0.026775204710438
617 => 0.026708522348316
618 => 0.027452865576332
619 => 0.028790433811257
620 => 0.026978883131134
621 => 0.028886450396092
622 => 0.028282536623929
623 => 0.026850667934077
624 => 0.026758472471073
625 => 0.027728150572179
626 => 0.029878803272372
627 => 0.029340089163475
628 => 0.029879684415665
629 => 0.029250217891696
630 => 0.02921895957322
701 => 0.029849112631592
702 => 0.031321499600332
703 => 0.030622023743084
704 => 0.029619153583202
705 => 0.030359657302871
706 => 0.029718164450509
707 => 0.028272701511595
708 => 0.029339677218948
709 => 0.02862622094916
710 => 0.028834445418106
711 => 0.03033402437859
712 => 0.030153591070671
713 => 0.030387088478793
714 => 0.029974971665149
715 => 0.029589989576348
716 => 0.028871391918458
717 => 0.028658650578392
718 => 0.028717444631155
719 => 0.02865862144298
720 => 0.028256572657643
721 => 0.028169750260729
722 => 0.028025042462096
723 => 0.028069893459802
724 => 0.027797800462612
725 => 0.028311296165591
726 => 0.028406605492973
727 => 0.028780284843614
728 => 0.028819081473431
729 => 0.029859773145972
730 => 0.029286577660849
731 => 0.029671126679587
801 => 0.029636728995835
802 => 0.026881700870391
803 => 0.027261319438259
804 => 0.027851886798991
805 => 0.027585837003476
806 => 0.027209704838683
807 => 0.026905957948681
808 => 0.026445750350615
809 => 0.027093483707389
810 => 0.027945184192784
811 => 0.02884068200326
812 => 0.029916563947206
813 => 0.029676439621964
814 => 0.028820569138686
815 => 0.028858962863352
816 => 0.029096297761864
817 => 0.028788927504142
818 => 0.028698278014559
819 => 0.029083843914013
820 => 0.029086499094459
821 => 0.028732832466013
822 => 0.028339796728805
823 => 0.028338149894716
824 => 0.028268212981554
825 => 0.029262659513181
826 => 0.029809504555692
827 => 0.02987219945853
828 => 0.029805284689204
829 => 0.029831037528165
830 => 0.029512840446837
831 => 0.03024014461634
901 => 0.030907590845204
902 => 0.03072870099796
903 => 0.03046051968625
904 => 0.030246900354111
905 => 0.030678379072228
906 => 0.030659166004121
907 => 0.030901761284662
908 => 0.030890755761439
909 => 0.030809180093063
910 => 0.030728703911284
911 => 0.031047782875422
912 => 0.030955893258001
913 => 0.030863860910624
914 => 0.030679275948513
915 => 0.030704364110495
916 => 0.03043622910407
917 => 0.030312177581075
918 => 0.028446740316448
919 => 0.027948234524419
920 => 0.028105074594613
921 => 0.028156710418071
922 => 0.027939760058527
923 => 0.028250811144138
924 => 0.02820233416193
925 => 0.028390929741615
926 => 0.028273103411296
927 => 0.028277939044992
928 => 0.028624441159237
929 => 0.028725032197128
930 => 0.028673870783388
1001 => 0.028709702483861
1002 => 0.02953542889765
1003 => 0.029418037006853
1004 => 0.029355674904575
1005 => 0.029372949633096
1006 => 0.029583940435593
1007 => 0.029643006340622
1008 => 0.029392739950529
1009 => 0.029510767026869
1010 => 0.030013311338062
1011 => 0.030189173405435
1012 => 0.030750440705907
1013 => 0.030512004380936
1014 => 0.030949664574703
1015 => 0.03229488280099
1016 => 0.033369536202168
1017 => 0.032381240522514
1018 => 0.034354704637493
1019 => 0.035891329527618
1020 => 0.035832351304953
1021 => 0.035564405212585
1022 => 0.033814998628464
1023 => 0.032205168607573
1024 => 0.033551859777042
1025 => 0.033555292769782
1026 => 0.033439610804004
1027 => 0.03272112004981
1028 => 0.033414608883177
1029 => 0.033469655508388
1030 => 0.033438844036349
1031 => 0.032887978859699
1101 => 0.032046909551857
1102 => 0.032211252481374
1103 => 0.032480449552427
1104 => 0.031970803336531
1105 => 0.031807940489999
1106 => 0.032110733507626
1107 => 0.033086395699853
1108 => 0.032901952414038
1109 => 0.032897135854452
1110 => 0.033686262447291
1111 => 0.033121418110996
1112 => 0.032213325372014
1113 => 0.031984019979149
1114 => 0.031170140313101
1115 => 0.03173228989738
1116 => 0.031752520660143
1117 => 0.031444637077863
1118 => 0.032238308427873
1119 => 0.032230994606659
1120 => 0.032984467431102
1121 => 0.034424824479969
1122 => 0.033998840024953
1123 => 0.033503466450747
1124 => 0.033557327293483
1125 => 0.034148047798404
1126 => 0.033790884696291
1127 => 0.03391932303804
1128 => 0.034147853391591
1129 => 0.034285731427977
1130 => 0.033537488765869
1201 => 0.033363037608748
1202 => 0.033006171765314
1203 => 0.032913072127978
1204 => 0.033203731911205
1205 => 0.033127153327487
1206 => 0.03175082034287
1207 => 0.031606985888133
1208 => 0.031611397085512
1209 => 0.03124971851012
1210 => 0.030698071869844
1211 => 0.03214776630338
1212 => 0.032031335551907
1213 => 0.031902805013304
1214 => 0.031918549270898
1215 => 0.032547812489793
1216 => 0.03218280804428
1217 => 0.033153232185729
1218 => 0.032953742155867
1219 => 0.032749135959484
1220 => 0.032720853150686
1221 => 0.032642097221259
1222 => 0.032372013835463
1223 => 0.032045871917618
1224 => 0.031830524773528
1225 => 0.029361976548406
1226 => 0.029820124740104
1227 => 0.030347182473131
1228 => 0.030529120690521
1229 => 0.030217902779935
1230 => 0.032384302615468
1231 => 0.032780124741368
]
'min_raw' => 0.013662444405439
'max_raw' => 0.035891329527618
'avg_raw' => 0.024776886966529
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.013662'
'max' => '$0.035891'
'avg' => '$0.024776'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -0.00052972375523581
'max_diff' => -0.0064726380688009
'year' => 2027
]
2 => [
'items' => [
101 => 0.031581153703178
102 => 0.031356875175598
103 => 0.032399006278398
104 => 0.031770473828063
105 => 0.032053501951963
106 => 0.031441749956198
107 => 0.032684782782264
108 => 0.032675312954779
109 => 0.032191745110269
110 => 0.032600453341119
111 => 0.032529430228193
112 => 0.031983483322717
113 => 0.032702090272955
114 => 0.032702446693037
115 => 0.032237023156369
116 => 0.031693510359853
117 => 0.031596343109035
118 => 0.031523140638127
119 => 0.032035498631513
120 => 0.032494877206281
121 => 0.033349666844317
122 => 0.033564581268621
123 => 0.034403406574339
124 => 0.033903926946447
125 => 0.034125339796147
126 => 0.034365714765257
127 => 0.034480959364945
128 => 0.03429317447412
129 => 0.035596215448171
130 => 0.035706232030525
131 => 0.035743119638949
201 => 0.035303741553976
202 => 0.035694012131153
203 => 0.035511417452495
204 => 0.035986478080101
205 => 0.036060973652388
206 => 0.035997878552917
207 => 0.036021524623394
208 => 0.034909609024221
209 => 0.034851950334581
210 => 0.034065770010077
211 => 0.034386144303464
212 => 0.033787219917916
213 => 0.033977145010178
214 => 0.034060862181175
215 => 0.034017133081954
216 => 0.034404257785326
217 => 0.034075122703108
218 => 0.033206481106315
219 => 0.032337602848701
220 => 0.032326694789949
221 => 0.032097934481694
222 => 0.031932582678366
223 => 0.031964435301858
224 => 0.032076688101644
225 => 0.031926058341578
226 => 0.031958202838011
227 => 0.032492015656453
228 => 0.032599068010213
229 => 0.032235262284083
301 => 0.030774529796754
302 => 0.030416062380393
303 => 0.030673721650555
304 => 0.0305505771148
305 => 0.024656700106425
306 => 0.02604137908443
307 => 0.025218649854955
308 => 0.025597801335848
309 => 0.024758007837256
310 => 0.025158801312133
311 => 0.025084789391957
312 => 0.027311312212958
313 => 0.02727654812159
314 => 0.027293187852453
315 => 0.026498930143772
316 => 0.027764204240148
317 => 0.028387523757808
318 => 0.028272163904201
319 => 0.028301197494023
320 => 0.027802304227989
321 => 0.027298018229795
322 => 0.026738687448739
323 => 0.027777854904567
324 => 0.027662317222659
325 => 0.02792731909581
326 => 0.028601293472138
327 => 0.028700538759232
328 => 0.028833925431533
329 => 0.028786115804623
330 => 0.029925135082638
331 => 0.029787192332579
401 => 0.030119594671383
402 => 0.029435817841037
403 => 0.028662059452809
404 => 0.028809125626343
405 => 0.028794961971201
406 => 0.028614642384945
407 => 0.028451857925107
408 => 0.028180867663714
409 => 0.029038320949774
410 => 0.029003509912254
411 => 0.029567060146305
412 => 0.029467447168402
413 => 0.028802207322531
414 => 0.028825966493769
415 => 0.028985758338613
416 => 0.029538799738089
417 => 0.029702980079384
418 => 0.029626925203841
419 => 0.029806941452952
420 => 0.029949218956397
421 => 0.029824809316842
422 => 0.031586187456225
423 => 0.030854740449898
424 => 0.031211242631406
425 => 0.031296266301063
426 => 0.031078479959092
427 => 0.031125710018321
428 => 0.031197250688633
429 => 0.031631631629665
430 => 0.032771572908073
501 => 0.033276445140437
502 => 0.034795378161461
503 => 0.0332345225297
504 => 0.033141907815974
505 => 0.033415513520443
506 => 0.034307287999174
507 => 0.035029987454067
508 => 0.035269748556787
509 => 0.035301436944536
510 => 0.035751244712256
511 => 0.036009066136294
512 => 0.035696626218136
513 => 0.035431866101319
514 => 0.034483528226119
515 => 0.034593300917412
516 => 0.035349525904079
517 => 0.036417738239175
518 => 0.037334375551239
519 => 0.03701340111259
520 => 0.039462209506842
521 => 0.039704998856647
522 => 0.039671453218823
523 => 0.040224563489578
524 => 0.039126752241077
525 => 0.038657416663252
526 => 0.03548911024373
527 => 0.036379275114076
528 => 0.037673182030674
529 => 0.037501928598361
530 => 0.036562258809296
531 => 0.037333662727441
601 => 0.037078612468072
602 => 0.036877443746462
603 => 0.037799036658632
604 => 0.036785707394751
605 => 0.037663073296111
606 => 0.036537842452429
607 => 0.037014867296788
608 => 0.036744084924034
609 => 0.036919314305046
610 => 0.035894926924177
611 => 0.036447661489296
612 => 0.035871931349046
613 => 0.035871658377997
614 => 0.035858949103241
615 => 0.036536293060067
616 => 0.036558381222182
617 => 0.036057823014677
618 => 0.035985684756787
619 => 0.036252417705399
620 => 0.035940143280044
621 => 0.036086254518236
622 => 0.035944568840603
623 => 0.035912672410211
624 => 0.035658516226118
625 => 0.03554901875384
626 => 0.035591955534122
627 => 0.035445390167591
628 => 0.035357079232756
629 => 0.035841381835548
630 => 0.035582638491587
701 => 0.035801725707184
702 => 0.035552048174001
703 => 0.034686557064664
704 => 0.034188803975282
705 => 0.032553971500812
706 => 0.033017607962568
707 => 0.033324999416379
708 => 0.033223406542729
709 => 0.033441667346554
710 => 0.033455066787268
711 => 0.033384107975039
712 => 0.033301946760864
713 => 0.033261955225604
714 => 0.033560019364982
715 => 0.033733055630268
716 => 0.033355850261136
717 => 0.033267476320813
718 => 0.033648851775084
719 => 0.033881490581876
720 => 0.035599164822776
721 => 0.035471913966995
722 => 0.035791288643285
723 => 0.035755331955939
724 => 0.036090087497066
725 => 0.036637271328563
726 => 0.035524693604125
727 => 0.035717798627044
728 => 0.035670453734871
729 => 0.036187352853124
730 => 0.03618896655575
731 => 0.035879059713331
801 => 0.036047065240271
802 => 0.035953289164124
803 => 0.036122755208318
804 => 0.035470214454235
805 => 0.036264938655287
806 => 0.036715496066387
807 => 0.036721752056477
808 => 0.036935312693494
809 => 0.037152302669301
810 => 0.037568796032019
811 => 0.037140686895467
812 => 0.036370560234395
813 => 0.036426160891831
814 => 0.035974635912222
815 => 0.035982226128704
816 => 0.035941708958268
817 => 0.036063304036737
818 => 0.035496897736074
819 => 0.035629832162723
820 => 0.035443723186952
821 => 0.035717394062477
822 => 0.035422969439828
823 => 0.03567043090373
824 => 0.035777227068072
825 => 0.036171307213653
826 => 0.035364763481909
827 => 0.033720166214674
828 => 0.034065880499061
829 => 0.033554541917181
830 => 0.033601868249737
831 => 0.033697474973431
901 => 0.033387582301366
902 => 0.033446700057356
903 => 0.033444587955107
904 => 0.033426386998973
905 => 0.033345771946346
906 => 0.033228864170835
907 => 0.033694588766155
908 => 0.03377372445014
909 => 0.033949633272799
910 => 0.034473018608941
911 => 0.034420720071584
912 => 0.034506021155858
913 => 0.034319809367833
914 => 0.033610506080515
915 => 0.033649024661578
916 => 0.033168697338511
917 => 0.033937350223225
918 => 0.033755323074403
919 => 0.0336379689874
920 => 0.033605947837484
921 => 0.034130630544639
922 => 0.034287623834014
923 => 0.034189796151503
924 => 0.033989148720585
925 => 0.034374451104036
926 => 0.034477541767245
927 => 0.034500619964901
928 => 0.035183301913973
929 => 0.034538774302203
930 => 0.03469391850441
1001 => 0.035904309282159
1002 => 0.03480665186925
1003 => 0.035388105481549
1004 => 0.035359646352966
1005 => 0.0356570983457
1006 => 0.035335246607588
1007 => 0.035339236345618
1008 => 0.035603353564023
1009 => 0.035232448564564
1010 => 0.03514060727065
1011 => 0.035013729180887
1012 => 0.035290762848143
1013 => 0.035456832002508
1014 => 0.036795227422336
1015 => 0.037659891901792
1016 => 0.037622354536348
1017 => 0.037965375789498
1018 => 0.037810841573239
1019 => 0.037311809824874
1020 => 0.038163596168895
1021 => 0.037894055329393
1022 => 0.037916275948709
1023 => 0.037915448896148
1024 => 0.038094669990748
1025 => 0.037967675419852
1026 => 0.03771735608489
1027 => 0.037883529741352
1028 => 0.038377006092875
1029 => 0.039908771829705
1030 => 0.040765968229231
1031 => 0.039857167530125
1101 => 0.040484046083042
1102 => 0.040108142330959
1103 => 0.040039829437038
1104 => 0.040433555494231
1105 => 0.040827970716766
1106 => 0.040802848172195
1107 => 0.04051652297408
1108 => 0.040354785134898
1109 => 0.041579518239336
1110 => 0.042481880727903
1111 => 0.042420345655697
1112 => 0.042691941452134
1113 => 0.043489355110614
1114 => 0.043562260622032
1115 => 0.043553076203308
1116 => 0.043372372286355
1117 => 0.044157529590377
1118 => 0.044812521626921
1119 => 0.043330544550618
1120 => 0.04389486202077
1121 => 0.044148202314294
1122 => 0.044520181027866
1123 => 0.045147771468533
1124 => 0.04582950114724
1125 => 0.045925905198595
1126 => 0.0458575019108
1127 => 0.045407882861815
1128 => 0.046153839610983
1129 => 0.046590803579808
1130 => 0.0468510056235
1201 => 0.047510834712812
1202 => 0.0441497668577
1203 => 0.04177063597394
1204 => 0.041399100331374
1205 => 0.042154632670449
1206 => 0.042353860523005
1207 => 0.04227355202545
1208 => 0.039595623914662
1209 => 0.041385001594081
1210 => 0.043310221521987
1211 => 0.043384177060123
1212 => 0.044347982410483
1213 => 0.044661836940277
1214 => 0.045437826576172
1215 => 0.045389288213167
1216 => 0.045578229340816
1217 => 0.045534795047573
1218 => 0.046972152444173
1219 => 0.048557771102261
1220 => 0.04850286617009
1221 => 0.048274914727801
1222 => 0.048613461491097
1223 => 0.050249989871466
1224 => 0.050099324563034
1225 => 0.050245683076535
1226 => 0.052175242267688
1227 => 0.054683943692781
1228 => 0.05351840001132
1229 => 0.05604729442393
1230 => 0.057639099405735
1231 => 0.060391961526061
]
'min_raw' => 0.024656700106425
'max_raw' => 0.060391961526061
'avg_raw' => 0.042524330816243
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.024656'
'max' => '$0.060391'
'avg' => '$0.042524'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 0.010994255700986
'max_diff' => 0.024500631998442
'year' => 2028
]
3 => [
'items' => [
101 => 0.060047289630464
102 => 0.061118958652471
103 => 0.059430255002151
104 => 0.055552650077699
105 => 0.054939004255529
106 => 0.056167538731501
107 => 0.059187770862035
108 => 0.056072420873617
109 => 0.056702652118833
110 => 0.056521145477813
111 => 0.056511473760266
112 => 0.056880603881295
113 => 0.056345161388211
114 => 0.054163672347122
115 => 0.055163435919057
116 => 0.054777379191343
117 => 0.055205737913177
118 => 0.057517413266344
119 => 0.056495366489251
120 => 0.055418723233923
121 => 0.05676907280237
122 => 0.058488531833458
123 => 0.058380931177457
124 => 0.058172140931231
125 => 0.059349080617306
126 => 0.061293040167729
127 => 0.061818484622747
128 => 0.062206356977201
129 => 0.062259838021724
130 => 0.062810726018586
131 => 0.059848462417806
201 => 0.064549650828569
202 => 0.065361416199399
203 => 0.06520883795391
204 => 0.066111080999279
205 => 0.065845618207634
206 => 0.065461004272378
207 => 0.066891251411886
208 => 0.065251588481432
209 => 0.062924293379476
210 => 0.061647493257865
211 => 0.06332888665453
212 => 0.064355654929331
213 => 0.065034283444246
214 => 0.065239636022821
215 => 0.060078414508651
216 => 0.057296802366982
217 => 0.059079783858544
218 => 0.061255144333059
219 => 0.059836378180533
220 => 0.059891991127633
221 => 0.057869203439317
222 => 0.061434116159422
223 => 0.060914738361738
224 => 0.063609271294885
225 => 0.062966199385412
226 => 0.065163486391228
227 => 0.06458486708349
228 => 0.06698668347974
301 => 0.067944833066787
302 => 0.069553715347515
303 => 0.070737215702547
304 => 0.071432189747777
305 => 0.071390466112883
306 => 0.074144299514776
307 => 0.072520460169291
308 => 0.070480535241812
309 => 0.070443639435755
310 => 0.071500145461656
311 => 0.07371429225367
312 => 0.074288388302314
313 => 0.074609229673883
314 => 0.074117849944757
315 => 0.072355288716847
316 => 0.071594223715024
317 => 0.072242673146753
318 => 0.071449675213643
319 => 0.072818612122113
320 => 0.074698454886588
321 => 0.074310274789428
322 => 0.075607902655022
323 => 0.076950810981479
324 => 0.078871230202099
325 => 0.079373298899287
326 => 0.080203199363776
327 => 0.081057439549837
328 => 0.081331798475181
329 => 0.081855634792237
330 => 0.081852873916274
331 => 0.083431489915975
401 => 0.085172752249313
402 => 0.085830038469832
403 => 0.087341431890943
404 => 0.084753223622833
405 => 0.086716409325388
406 => 0.088487251970818
407 => 0.086375980365664
408 => 0.089285876410176
409 => 0.089398861079618
410 => 0.091104795446617
411 => 0.089375504148184
412 => 0.088348656495268
413 => 0.091313127193758
414 => 0.092747541184805
415 => 0.092315484017053
416 => 0.089027507637169
417 => 0.087113764356136
418 => 0.082105129056162
419 => 0.088038073925924
420 => 0.090927838305611
421 => 0.089020023845542
422 => 0.089982214488261
423 => 0.095231614643574
424 => 0.097230246349227
425 => 0.096814544925941
426 => 0.096884791623448
427 => 0.097963217014087
428 => 0.10274554909589
429 => 0.099879864858884
430 => 0.10207057308294
501 => 0.10323251682579
502 => 0.10431179492997
503 => 0.10166142901544
504 => 0.09821334190223
505 => 0.097121187972627
506 => 0.088830329296401
507 => 0.088398754096929
508 => 0.088156497859399
509 => 0.086629106549595
510 => 0.085428995367779
511 => 0.084474622398727
512 => 0.081970062728043
513 => 0.082815278094779
514 => 0.078823532721936
515 => 0.081377309952711
516 => 0.075006387953592
517 => 0.080312281107428
518 => 0.077424524693154
519 => 0.079363575459379
520 => 0.079356810293925
521 => 0.075786403056699
522 => 0.073727066674765
523 => 0.075039355967905
524 => 0.076446234259804
525 => 0.076674495529357
526 => 0.078498549958085
527 => 0.079007604341224
528 => 0.077465145794836
529 => 0.074874364755887
530 => 0.075476144101811
531 => 0.073714871635527
601 => 0.070628309384732
602 => 0.07284513227946
603 => 0.073602053082542
604 => 0.07393635243001
605 => 0.070901072950423
606 => 0.069947322238813
607 => 0.069439553362696
608 => 0.07448254829048
609 => 0.074758814936542
610 => 0.073345395715124
611 => 0.079734184621841
612 => 0.078288204928575
613 => 0.079903718519579
614 => 0.075421538933721
615 => 0.075592764229956
616 => 0.073470828583897
617 => 0.074658970757899
618 => 0.073819230164924
619 => 0.074562980611689
620 => 0.075008781562882
621 => 0.077130369020182
622 => 0.080336506228237
623 => 0.076813474602768
624 => 0.07527843927281
625 => 0.07623076655815
626 => 0.078766939615233
627 => 0.082609371621023
628 => 0.080334574537444
629 => 0.081344090854577
630 => 0.081564625259616
701 => 0.07988727410775
702 => 0.082671217950541
703 => 0.084163156072612
704 => 0.085693575872763
705 => 0.087022396503845
706 => 0.08508229254993
707 => 0.087158481883596
708 => 0.085485439777415
709 => 0.083984548052257
710 => 0.083986824285462
711 => 0.083045292981741
712 => 0.081220957440202
713 => 0.080884521976014
714 => 0.082634701747838
715 => 0.0840381801822
716 => 0.084153777388262
717 => 0.084930815162851
718 => 0.085390658113726
719 => 0.089897744158487
720 => 0.091710531450261
721 => 0.093927173436334
722 => 0.094790680413007
723 => 0.097389526828408
724 => 0.095290747279986
725 => 0.094836663122742
726 => 0.088532711795165
727 => 0.089564983471902
728 => 0.091217750025759
729 => 0.088559965306886
730 => 0.090245717973297
731 => 0.09057852125877
801 => 0.088469654799153
802 => 0.089596091493975
803 => 0.086604609597731
804 => 0.080401712358799
805 => 0.08267812354836
806 => 0.084354328415599
807 => 0.08196217739548
808 => 0.086250015510014
809 => 0.083745149002448
810 => 0.082951226574347
811 => 0.079853852128541
812 => 0.081315693638085
813 => 0.083292855211299
814 => 0.082071199228757
815 => 0.0846063188251
816 => 0.088196724265223
817 => 0.090755460994194
818 => 0.090951889028285
819 => 0.089306792733602
820 => 0.091943070044695
821 => 0.091962272446817
822 => 0.088988540870395
823 => 0.087167146837644
824 => 0.086753322281157
825 => 0.087787137158345
826 => 0.089042379272005
827 => 0.091021546229552
828 => 0.092217515371231
829 => 0.095335968599712
830 => 0.096179732630278
831 => 0.0971067734866
901 => 0.098345585959458
902 => 0.099833097958124
903 => 0.096578506389149
904 => 0.096707817379502
905 => 0.093677186773361
906 => 0.090438523334306
907 => 0.092896265179451
908 => 0.096109435702283
909 => 0.095372330834107
910 => 0.095289391478752
911 => 0.095428872469001
912 => 0.094873119469991
913 => 0.092359469252637
914 => 0.091097129849765
915 => 0.092725869736598
916 => 0.093591472499578
917 => 0.094933946896465
918 => 0.094768458590852
919 => 0.098226528466009
920 => 0.099570229852891
921 => 0.099226453537902
922 => 0.099289716653299
923 => 0.1017224238307
924 => 0.10442809453637
925 => 0.10696231219692
926 => 0.10954022724841
927 => 0.1064324500361
928 => 0.10485451242874
929 => 0.10648254125869
930 => 0.10561868624535
1001 => 0.11058265338803
1002 => 0.11092634770282
1003 => 0.11588995589417
1004 => 0.12060101112323
1005 => 0.11764208174117
1006 => 0.12043221887534
1007 => 0.12344997966916
1008 => 0.12927172985448
1009 => 0.12731116920371
1010 => 0.12580941047112
1011 => 0.12439025572526
1012 => 0.12734329146691
1013 => 0.13114232477265
1014 => 0.13196060016002
1015 => 0.13328651889281
1016 => 0.13189247747091
1017 => 0.13357144681496
1018 => 0.13949894637598
1019 => 0.13789728367111
1020 => 0.13562266515006
1021 => 0.14030185677038
1022 => 0.14199523802787
1023 => 0.15388027452363
1024 => 0.16888562404589
1025 => 0.16267331081324
1026 => 0.15881712751963
1027 => 0.15972342206352
1028 => 0.16520286774591
1029 => 0.16696269179019
1030 => 0.16217888339013
1031 => 0.16386860539035
1101 => 0.17317913974135
1102 => 0.17817394270296
1103 => 0.17139032938956
1104 => 0.1526746092999
1105 => 0.13541786063938
1106 => 0.13999512746567
1107 => 0.13947620745669
1108 => 0.14947921510403
1109 => 0.1378590845453
1110 => 0.13805473774242
1111 => 0.14826459699454
1112 => 0.14554078158738
1113 => 0.14112854946769
1114 => 0.13545007481672
1115 => 0.12495288922907
1116 => 0.11565523921842
1117 => 0.13389007201023
1118 => 0.13310375286236
1119 => 0.13196504621026
1120 => 0.13449911464356
1121 => 0.1468038316478
1122 => 0.14652016809437
1123 => 0.14471564529387
1124 => 0.14608435993371
1125 => 0.14088860717369
1126 => 0.14222767096504
1127 => 0.13541512708222
1128 => 0.13849468143422
1129 => 0.14111908279919
1130 => 0.14164597022814
1201 => 0.14283307450909
1202 => 0.13268939840204
1203 => 0.13724361117142
1204 => 0.13991878450141
1205 => 0.12783225407291
1206 => 0.13967987265599
1207 => 0.13251281956866
1208 => 0.1300802141053
1209 => 0.13335539689032
1210 => 0.13207905497378
1211 => 0.13098173114325
1212 => 0.13036940559139
1213 => 0.13277433835998
1214 => 0.13266214537181
1215 => 0.12872720858506
1216 => 0.1235942439553
1217 => 0.12531703536887
1218 => 0.12469112909706
1219 => 0.12242276402453
1220 => 0.12395136819997
1221 => 0.11722016902017
1222 => 0.10563949068861
1223 => 0.11329004152021
1224 => 0.11299550363539
1225 => 0.11284698427764
1226 => 0.11859616178189
1227 => 0.11804351102095
1228 => 0.11704044447827
1229 => 0.12240434192086
1230 => 0.12044644719971
1231 => 0.12648021739227
]
'min_raw' => 0.054163672347122
'max_raw' => 0.17817394270296
'avg_raw' => 0.11616880752504
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.054163'
'max' => '$0.178173'
'avg' => '$0.116168'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072435
'min_diff' => 0.029506972240696
'max_diff' => 0.1177819811769
'year' => 2029
]
4 => [
'items' => [
101 => 0.13045444868088
102 => 0.12944645507317
103 => 0.13318423880923
104 => 0.12535672500349
105 => 0.12795671110441
106 => 0.12849256463639
107 => 0.12233815225903
108 => 0.11813393152019
109 => 0.11785355792853
110 => 0.11056401854468
111 => 0.11445803164443
112 => 0.11788460202699
113 => 0.11624354072635
114 => 0.11572402974387
115 => 0.11837809868514
116 => 0.11858434257244
117 => 0.11388196008526
118 => 0.11485973430943
119 => 0.11893721536567
120 => 0.11475699224855
121 => 0.10663550156757
122 => 0.10462125959029
123 => 0.10435252258068
124 => 0.098889738586754
125 => 0.10475586087069
126 => 0.10219514129145
127 => 0.11028442376013
128 => 0.10566386899771
129 => 0.10546468611689
130 => 0.10516359197875
131 => 0.10046154813042
201 => 0.10149099690273
202 => 0.10491304141136
203 => 0.10613406544413
204 => 0.10600670263395
205 => 0.10489627152638
206 => 0.1054046212011
207 => 0.10376704977805
208 => 0.10318878922547
209 => 0.10136363985843
210 => 0.098681174499261
211 => 0.099054187759969
212 => 0.093739521978217
213 => 0.090843809989656
214 => 0.090042315076093
215 => 0.088970522580899
216 => 0.090163376890357
217 => 0.09372446619781
218 => 0.08942903696578
219 => 0.082064824836791
220 => 0.08250742653375
221 => 0.083501821137194
222 => 0.081648773372255
223 => 0.079895019177251
224 => 0.081419766163232
225 => 0.078299452403486
226 => 0.083878896147584
227 => 0.083727987830517
228 => 0.08580765942783
301 => 0.087108120756787
302 => 0.084110978422896
303 => 0.083357205231056
304 => 0.083786588698209
305 => 0.076689836449663
306 => 0.08522770336447
307 => 0.085301539192092
308 => 0.084669312008963
309 => 0.08921546256403
310 => 0.09880925821514
311 => 0.095199686381656
312 => 0.093801951067846
313 => 0.091144855214553
314 => 0.094685277676325
315 => 0.094413428470455
316 => 0.093184023265761
317 => 0.092440475161984
318 => 0.093810485341622
319 => 0.092270715739495
320 => 0.091994130808914
321 => 0.090318327056966
322 => 0.089720141361733
323 => 0.089277268487441
324 => 0.088789708968636
325 => 0.089865143774858
326 => 0.087428067018727
327 => 0.084489191360412
328 => 0.084244855648499
329 => 0.084919488031308
330 => 0.084621013422389
331 => 0.084243426666903
401 => 0.083522510721046
402 => 0.083308630359842
403 => 0.084003637773754
404 => 0.083219014924897
405 => 0.084376768679004
406 => 0.084061923719324
407 => 0.082303225368177
408 => 0.080111236069123
409 => 0.080091722766508
410 => 0.07961946226761
411 => 0.079017967517421
412 => 0.078850645438255
413 => 0.081291356224938
414 => 0.086343554509045
415 => 0.085351687097016
416 => 0.086068412952868
417 => 0.089593994794007
418 => 0.09071467124336
419 => 0.089919241644286
420 => 0.088830408549112
421 => 0.088878311679378
422 => 0.092599183977781
423 => 0.092831250218918
424 => 0.093417606742863
425 => 0.094171240580466
426 => 0.090047588745635
427 => 0.088684088048791
428 => 0.088037985774488
429 => 0.086048240842683
430 => 0.088194010163797
501 => 0.086943762271387
502 => 0.087112463426623
503 => 0.087002596577962
504 => 0.087062591306495
505 => 0.083877336579348
506 => 0.085037875989861
507 => 0.083108254129563
508 => 0.080524707068844
509 => 0.080516046113189
510 => 0.081148365596191
511 => 0.080772237225037
512 => 0.079760085449407
513 => 0.079903856831914
514 => 0.078644268237799
515 => 0.080056793692827
516 => 0.080097299868618
517 => 0.079553400627651
518 => 0.081729590982073
519 => 0.082621177945882
520 => 0.082263171814026
521 => 0.0825960592813
522 => 0.085392903665998
523 => 0.08584891133558
524 => 0.086051439820232
525 => 0.085780078480681
526 => 0.082647180462413
527 => 0.082786137811634
528 => 0.081766560982698
529 => 0.080905126002607
530 => 0.080939578884179
531 => 0.081382468442655
601 => 0.083316593119647
602 => 0.087386844479501
603 => 0.087541307543292
604 => 0.087728521282613
605 => 0.086967028918709
606 => 0.086737355535255
607 => 0.087040354011761
608 => 0.088568926418872
609 => 0.092500829653323
610 => 0.091111032447281
611 => 0.089981105685286
612 => 0.090972356081623
613 => 0.090819760852784
614 => 0.089531703554976
615 => 0.089495552076634
616 => 0.087023358305311
617 => 0.086109444557181
618 => 0.085345709823985
619 => 0.084511731433136
620 => 0.084017321087831
621 => 0.084776960083702
622 => 0.084950698509842
623 => 0.083289734569153
624 => 0.08306335132151
625 => 0.084419730329873
626 => 0.083822838499199
627 => 0.084436756549253
628 => 0.084579190802957
629 => 0.084556255607571
630 => 0.083933031983757
701 => 0.08433025613678
702 => 0.083390702596661
703 => 0.08236907923816
704 => 0.08171734718482
705 => 0.081148624528569
706 => 0.081464184912612
707 => 0.080339269762549
708 => 0.079979386765976
709 => 0.084195685531562
710 => 0.087310310762552
711 => 0.087265022878166
712 => 0.086989344529067
713 => 0.086579742421618
714 => 0.088538961473458
715 => 0.087856408731618
716 => 0.088353022880497
717 => 0.088479432024217
718 => 0.088862034430258
719 => 0.08899878190463
720 => 0.088585436059851
721 => 0.087198196918829
722 => 0.083741328874141
723 => 0.082132147467703
724 => 0.081601090800542
725 => 0.081620393701773
726 => 0.081087933513873
727 => 0.081244766902401
728 => 0.08103339326167
729 => 0.080633102722902
730 => 0.081439468099832
731 => 0.08153239419771
801 => 0.081344178883386
802 => 0.081388510403403
803 => 0.07983016798861
804 => 0.079948645377865
805 => 0.079288948219115
806 => 0.079165262954617
807 => 0.0774976059837
808 => 0.074543109928977
809 => 0.076180187543165
810 => 0.074202827993173
811 => 0.073453971969705
812 => 0.076998939913798
813 => 0.076643123454317
814 => 0.076034120345381
815 => 0.075133277819896
816 => 0.074799146564361
817 => 0.072769070828831
818 => 0.072649123124344
819 => 0.073655283475528
820 => 0.07319097509332
821 => 0.072538910277365
822 => 0.070177197612727
823 => 0.067521850641482
824 => 0.067601998875628
825 => 0.068446615342694
826 => 0.070902451632738
827 => 0.069942913907819
828 => 0.069246758278963
829 => 0.06911638925604
830 => 0.070748230523962
831 => 0.073057627799386
901 => 0.074141145331163
902 => 0.073067412364089
903 => 0.071833965745402
904 => 0.07190903992584
905 => 0.07240847481447
906 => 0.072460958359636
907 => 0.071658111411232
908 => 0.071884108124504
909 => 0.07154079845147
910 => 0.069433907621761
911 => 0.069395800647674
912 => 0.068878735659859
913 => 0.068863079137523
914 => 0.067983422605344
915 => 0.067860352575714
916 => 0.066113741139737
917 => 0.067263366076124
918 => 0.066492258026814
919 => 0.065330016310504
920 => 0.065129645400537
921 => 0.065123622009028
922 => 0.066316984379186
923 => 0.067249420942019
924 => 0.066505671781472
925 => 0.066336334514587
926 => 0.0681444135025
927 => 0.067914318970282
928 => 0.067715058589332
929 => 0.072850846603063
930 => 0.068785469639659
1001 => 0.06701273324001
1002 => 0.064818635311933
1003 => 0.065533044660917
1004 => 0.065683581207605
1005 => 0.060407171206457
1006 => 0.058266532326127
1007 => 0.057531945730671
1008 => 0.057109180759457
1009 => 0.057301840065588
1010 => 0.055375014001393
1011 => 0.056669872983293
1012 => 0.055001404482253
1013 => 0.054721680308388
1014 => 0.057705108671833
1015 => 0.058120235299671
1016 => 0.056349176135581
1017 => 0.057486482827361
1018 => 0.057074079611176
1019 => 0.055030005585909
1020 => 0.054951936993334
1021 => 0.053926292500131
1022 => 0.052321357472177
1023 => 0.051587859098246
1024 => 0.051205846776578
1025 => 0.05136347250577
1026 => 0.051283772113664
1027 => 0.050763673143747
1028 => 0.051313583577813
1029 => 0.049908789657453
1030 => 0.049349389399172
1031 => 0.049096721280494
1101 => 0.047849885819254
1102 => 0.049834155508334
1103 => 0.050225081634253
1104 => 0.050616778005404
1105 => 0.054026227493802
1106 => 0.053855901032366
1107 => 0.055395569291397
1108 => 0.05533574061412
1109 => 0.054896602285672
1110 => 0.053043949912699
1111 => 0.053782384128213
1112 => 0.051509598391017
1113 => 0.053212523999732
1114 => 0.052435379867788
1115 => 0.052949770786985
1116 => 0.05202484953351
1117 => 0.052536739144246
1118 => 0.050317784721112
1119 => 0.048245756302321
1120 => 0.049079601024323
1121 => 0.049986085598849
1122 => 0.051951575124397
1123 => 0.050780945777917
1124 => 0.051201948357308
1125 => 0.04979166019133
1126 => 0.04688183287602
1127 => 0.046898302182618
1128 => 0.046450688644192
1129 => 0.046063885194345
1130 => 0.050915406640335
1201 => 0.050312043257322
1202 => 0.049350662672737
1203 => 0.050637508788949
1204 => 0.05097777132707
1205 => 0.050987458123178
1206 => 0.05192630783126
1207 => 0.052427372088762
1208 => 0.052515686835883
1209 => 0.053992987136742
1210 => 0.054488158711527
1211 => 0.056527700348765
1212 => 0.052384860287254
1213 => 0.052299541222459
1214 => 0.050655617352796
1215 => 0.049613014845249
1216 => 0.050727005238474
1217 => 0.051713848652018
1218 => 0.050686281328471
1219 => 0.050820459927796
1220 => 0.049441034751268
1221 => 0.04993411434389
1222 => 0.050358820914049
1223 => 0.050124322909106
1224 => 0.049773268045873
1225 => 0.051632938745921
1226 => 0.051528008836916
1227 => 0.053259776946446
1228 => 0.05460981402775
1229 => 0.057029321825441
1230 => 0.054504439306756
1231 => 0.054412422552276
]
'min_raw' => 0.046063885194345
'max_raw' => 0.13318423880923
'avg_raw' => 0.08962406200179
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.046063'
'max' => '$0.133184'
'avg' => '$0.089624'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -0.0080997871527767
'max_diff' => -0.044989703893723
'year' => 2030
]
5 => [
'items' => [
101 => 0.055311901087269
102 => 0.05448802100605
103 => 0.055008684778007
104 => 0.056945434842348
105 => 0.056986355319317
106 => 0.056300884607034
107 => 0.056259173651896
108 => 0.056390825800418
109 => 0.057161916546391
110 => 0.056892473746522
111 => 0.057204279775987
112 => 0.057594197990376
113 => 0.059207065046985
114 => 0.059595921833998
115 => 0.058651201440685
116 => 0.058736499114616
117 => 0.058383147754362
118 => 0.058041814767837
119 => 0.058809081473866
120 => 0.060211276459801
121 => 0.060202553477567
122 => 0.060527835459528
123 => 0.060730483439509
124 => 0.059860569962045
125 => 0.059294288275822
126 => 0.05951143670776
127 => 0.059858661779306
128 => 0.05939883629684
129 => 0.056560580407173
130 => 0.05742152593561
131 => 0.057278222501593
201 => 0.057074140985259
202 => 0.057939828371597
203 => 0.057856330711326
204 => 0.055355251615115
205 => 0.055515362584124
206 => 0.055364988493445
207 => 0.055850877944072
208 => 0.054461781381163
209 => 0.054889058128206
210 => 0.05515704209848
211 => 0.055314886715722
212 => 0.055885129708265
213 => 0.05581821827481
214 => 0.055880970399614
215 => 0.056726490218987
216 => 0.061002839318015
217 => 0.061235591564243
218 => 0.060089434378684
219 => 0.060547301567364
220 => 0.059668296689645
221 => 0.060258378552878
222 => 0.060662097577249
223 => 0.058837768936823
224 => 0.058729744034532
225 => 0.057847111191004
226 => 0.058321388086236
227 => 0.057566779444205
228 => 0.05775193400987
301 => 0.057234225702787
302 => 0.058165997580841
303 => 0.059207863323217
304 => 0.059471079754266
305 => 0.058778670645974
306 => 0.058277320819587
307 => 0.057397115679351
308 => 0.058860916444215
309 => 0.059288976396381
310 => 0.058858668027517
311 => 0.058758956176027
312 => 0.05857000239763
313 => 0.058799043613356
314 => 0.059286645089951
315 => 0.059056701238174
316 => 0.059208583203362
317 => 0.058629765772069
318 => 0.059860857939604
319 => 0.061816128580113
320 => 0.061822415094941
321 => 0.061592470003681
322 => 0.061498381426574
323 => 0.061734319044441
324 => 0.061862305523466
325 => 0.062625284516089
326 => 0.063443991373598
327 => 0.067264539047803
328 => 0.066191744549054
329 => 0.069581561731007
330 => 0.07226246700926
331 => 0.073066353280429
401 => 0.072326815736725
402 => 0.069796897748751
403 => 0.06967276790265
404 => 0.073453533480507
405 => 0.072385294034729
406 => 0.072258230351763
407 => 0.070906487442489
408 => 0.071705534918486
409 => 0.071530771514167
410 => 0.07125489893073
411 => 0.072779425852802
412 => 0.075633204155465
413 => 0.075188416044432
414 => 0.074856402352672
415 => 0.073401615003113
416 => 0.074277721926066
417 => 0.073965757031525
418 => 0.075306156196286
419 => 0.074512133424559
420 => 0.072377201070285
421 => 0.072717196084532
422 => 0.072665806522103
423 => 0.073723400075377
424 => 0.07340593674177
425 => 0.072603816711112
426 => 0.075623450251472
427 => 0.075427372045446
428 => 0.075705366111873
429 => 0.075827747697167
430 => 0.077665745421272
501 => 0.078418714279471
502 => 0.078589651392858
503 => 0.079304913571445
504 => 0.078571855018266
505 => 0.081504611892875
506 => 0.083454724083383
507 => 0.085719879744513
508 => 0.089029880981868
509 => 0.090274472066337
510 => 0.090049647826831
511 => 0.092559252988472
512 => 0.097068957678551
513 => 0.090961188082088
514 => 0.097392684297987
515 => 0.095356546851228
516 => 0.09052890159351
517 => 0.090218058153112
518 => 0.093487395571752
519 => 0.10073847130423
520 => 0.098922159074266
521 => 0.10074144214036
522 => 0.09861915180685
523 => 0.098513762203724
524 => 0.10063836723591
525 => 0.10560262269979
526 => 0.10324429101123
527 => 0.09986304424903
528 => 0.10235970424021
529 => 0.10019686630088
530 => 0.095323387083328
531 => 0.098920770174534
601 => 0.096515302549016
602 => 0.097217345883834
603 => 0.10227328104637
604 => 0.10166493755127
605 => 0.10245219036502
606 => 0.10106270975474
607 => 0.099764715763759
608 => 0.097341913589293
609 => 0.096624641308137
610 => 0.096822869561896
611 => 0.096624543076059
612 => 0.095269007526147
613 => 0.094976279753205
614 => 0.094488387306938
615 => 0.0946396055771
616 => 0.093722225040147
617 => 0.095453511653868
618 => 0.09577485370542
619 => 0.097034739725564
620 => 0.097165545271686
621 => 0.10067430990443
622 => 0.09874174130711
623 => 0.10003827517214
624 => 0.099922300979801
625 => 0.090633531304946
626 => 0.091913441810632
627 => 0.093904580899437
628 => 0.093007575438856
629 => 0.091739419584545
630 => 0.090715315737975
701 => 0.089163693690425
702 => 0.091347571926089
703 => 0.094219139576428
704 => 0.097238372966107
705 => 0.1008657840558
706 => 0.1000561881283
707 => 0.09717056103896
708 => 0.097300008162236
709 => 0.098100199342762
710 => 0.097063879058946
711 => 0.096758247975873
712 => 0.098058210325232
713 => 0.098067162451485
714 => 0.096874750721465
715 => 0.09554960329259
716 => 0.095544050876478
717 => 0.095308253690915
718 => 0.098661099602336
719 => 0.10050482584266
720 => 0.1007162060848
721 => 0.10049059826817
722 => 0.10057742576274
723 => 0.09950460208723
724 => 0.10195675887347
725 => 0.10420710043369
726 => 0.10360396082401
727 => 0.10269976880776
728 => 0.10197953631503
729 => 0.10343429693804
730 => 0.10336951873751
731 => 0.10418744566331
801 => 0.10415033977339
802 => 0.10387530171202
803 => 0.10360397064649
804 => 0.10467976765146
805 => 0.1043699553908
806 => 0.10405966190613
807 => 0.10343732081906
808 => 0.10352190730878
809 => 0.10261787141403
810 => 0.10219962304325
811 => 0.095910171064891
812 => 0.094229423982501
813 => 0.094758221229383
814 => 0.09493231501327
815 => 0.094200851729078
816 => 0.095249582181109
817 => 0.09508613865104
818 => 0.09572200181527
819 => 0.095324742116229
820 => 0.095341045792847
821 => 0.09650930186303
822 => 0.096848451570321
823 => 0.096675957291919
824 => 0.096796766371754
825 => 0.099580760626222
826 => 0.099184965670361
827 => 0.098974707488546
828 => 0.099032950441839
829 => 0.099744320663365
830 => 0.099943465486019
831 => 0.099099674878778
901 => 0.099497611407048
902 => 0.10119197463876
903 => 0.1017849058772
904 => 0.10367725776718
905 => 0.10287335305044
906 => 0.10434895495019
907 => 0.10888445212025
908 => 0.11250772109223
909 => 0.10917561320767
910 => 0.11582928525419
911 => 0.12101012335497
912 => 0.12081127415953
913 => 0.11990787520171
914 => 0.11400962876368
915 => 0.1085819744535
916 => 0.11312243775434
917 => 0.11313401232905
918 => 0.11274398250477
919 => 0.11032154076358
920 => 0.11265968678312
921 => 0.11284528032326
922 => 0.11274139729409
923 => 0.11088411689083
924 => 0.10804839299786
925 => 0.10860248665878
926 => 0.10951010337858
927 => 0.10779179557932
928 => 0.10724269212152
929 => 0.10826357992078
930 => 0.11155309312043
1001 => 0.11093122970489
1002 => 0.11091499033796
1003 => 0.11357558574078
1004 => 0.11167117362479
1005 => 0.1086094755543
1006 => 0.10783635641267
1007 => 0.10509230429532
1008 => 0.10698763086675
1009 => 0.10705584029587
1010 => 0.10601778930247
1011 => 0.10869370767139
1012 => 0.10866904861253
1013 => 0.11120943484594
1014 => 0.11606569919871
1015 => 0.11462946286734
1016 => 0.11295927627602
1017 => 0.11314087186775
1018 => 0.11513252729288
1019 => 0.11392832695778
1020 => 0.11436136579426
1021 => 0.11513187183674
1022 => 0.11559673726275
1023 => 0.11307398488682
1024 => 0.1124858106308
1025 => 0.11128261252408
1026 => 0.11096872059679
1027 => 0.11194870034916
1028 => 0.11169051030761
1029 => 0.10705010755747
1030 => 0.10656515965113
1031 => 0.10658003231107
1101 => 0.10536060774254
1102 => 0.10350069258012
1103 => 0.10838843857722
1104 => 0.10799588416969
1105 => 0.10756253448507
1106 => 0.10761561734878
1107 => 0.10973722222504
1108 => 0.10850658425319
1109 => 0.11177843699894
1110 => 0.11110584243531
1111 => 0.11041599835906
1112 => 0.11032064089455
1113 => 0.11005510977993
1114 => 0.10914450478809
1115 => 0.10804489454158
1116 => 0.10731883661022
1117 => 0.09899595392069
1118 => 0.10054063253589
1119 => 0.10231764448078
1120 => 0.10293106188323
1121 => 0.10188176896915
1122 => 0.10918593726786
1123 => 0.11052047920075
1124 => 0.106478064636
1125 => 0.10572189392164
1126 => 0.109235511694
1127 => 0.10711637065496
1128 => 0.10807061973509
1129 => 0.1060080551702
1130 => 0.11019902712906
1201 => 0.11016709894454
1202 => 0.10853671619514
1203 => 0.10991470453055
1204 => 0.10967524514665
1205 => 0.10783454703804
1206 => 0.1102573805423
1207 => 0.11025858223749
1208 => 0.10868937428878
1209 => 0.10685688294848
1210 => 0.10652927677834
1211 => 0.10628246953684
1212 => 0.10800992028324
1213 => 0.10955874722085
1214 => 0.112440730165
1215 => 0.11316532915138
1216 => 0.11599348723453
1217 => 0.11430945679653
1218 => 0.11505596567785
1219 => 0.11586640666865
1220 => 0.11625496188262
1221 => 0.11562183201248
1222 => 0.12001512563191
1223 => 0.12038605422043
1224 => 0.12051042336764
1225 => 0.11902902947775
1226 => 0.12034485397653
1227 => 0.11972922326908
1228 => 0.12133092334272
1229 => 0.12158209036581
1230 => 0.12136936083278
1231 => 0.12144908521031
]
'min_raw' => 0.054461781381163
'max_raw' => 0.12158209036581
'avg_raw' => 0.088021935873485
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.054461'
'max' => '$0.121582'
'avg' => '$0.088021'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 0.0083978961868184
'max_diff' => -0.011602148443429
'year' => 2031
]
6 => [
'items' => [
101 => 0.11770018413623
102 => 0.11750578383851
103 => 0.11485512198508
104 => 0.11593528628306
105 => 0.11391597090162
106 => 0.11455631661033
107 => 0.11483857489729
108 => 0.1146911391862
109 => 0.1159963571518
110 => 0.11488665524262
111 => 0.11195796945242
112 => 0.10902848574373
113 => 0.10899170846207
114 => 0.10822042711125
115 => 0.10766293196184
116 => 0.10777032530582
117 => 0.10814879345754
118 => 0.10764093470484
119 => 0.10774931211882
120 => 0.10954909930582
121 => 0.10991003379068
122 => 0.10868343738493
123 => 0.10375847581881
124 => 0.10254987789716
125 => 0.1034185941157
126 => 0.10300340371573
127 => 0.083131785884642
128 => 0.087800327734182
129 => 0.085026438695886
130 => 0.086304774385231
131 => 0.083473351972215
201 => 0.08482465515527
202 => 0.08457511879905
203 => 0.092081995940915
204 => 0.091964786379716
205 => 0.09202088839407
206 => 0.089342993075948
207 => 0.093608953030497
208 => 0.095710518303067
209 => 0.095321574502463
210 => 0.09541946327761
211 => 0.093737409799559
212 => 0.092037174348524
213 => 0.090151351568966
214 => 0.093654977198645
215 => 0.093265433837509
216 => 0.094158906154678
217 => 0.096431257819857
218 => 0.096765870234379
219 => 0.097215592712801
220 => 0.097054399217713
221 => 0.10089468223733
222 => 0.10042959862465
223 => 0.10155031631751
224 => 0.09924491499423
225 => 0.096636134566232
226 => 0.097131978438137
227 => 0.097084224685948
228 => 0.096476264611376
229 => 0.095927425439784
301 => 0.095013762853562
302 => 0.09790472647299
303 => 0.09778735862956
304 => 0.099687407589487
305 => 0.099351555479729
306 => 0.097108652893814
307 => 0.097188758598455
308 => 0.097727507959656
309 => 0.099592125650107
310 => 0.10014567113349
311 => 0.099889246810612
312 => 0.10049618416283
313 => 0.10097588269919
314 => 0.10055642691342
315 => 0.10649503628585
316 => 0.10402891163602
317 => 0.10523088363116
318 => 0.10551754686957
319 => 0.10478326501226
320 => 0.10494250445445
321 => 0.10518370881921
322 => 0.10664825448941
323 => 0.11049164609772
324 => 0.11219385807819
325 => 0.11731504680709
326 => 0.11205251306915
327 => 0.11174025609567
328 => 0.11266273683083
329 => 0.11566941674757
330 => 0.11810604841701
331 => 0.11891441971442
401 => 0.11902125932612
402 => 0.12053781761957
403 => 0.12140708055123
404 => 0.1203536675533
405 => 0.11946101033449
406 => 0.11626362297742
407 => 0.1166337292702
408 => 0.11918339461069
409 => 0.12278494707867
410 => 0.12587545377386
411 => 0.12479326604424
412 => 0.1330495945158
413 => 0.13386817575968
414 => 0.13375507429968
415 => 0.13561992419445
416 => 0.1319185769234
417 => 0.1303361792548
418 => 0.11965401295729
419 => 0.12265526596699
420 => 0.12701776347399
421 => 0.12644037057041
422 => 0.12327220827093
423 => 0.12587305043866
424 => 0.12501313068216
425 => 0.1243348762921
426 => 0.12744209113904
427 => 0.12402558077748
428 => 0.12698368116964
429 => 0.12318988681906
430 => 0.12479820938663
501 => 0.12388524771147
502 => 0.12447604580367
503 => 0.12102225222863
504 => 0.12288583540562
505 => 0.12094472104158
506 => 0.12094380070063
507 => 0.12090095049345
508 => 0.12318466293454
509 => 0.12325913471525
510 => 0.12157146777079
511 => 0.12132824859779
512 => 0.12222755735673
513 => 0.12117470232934
514 => 0.12166732657007
515 => 0.12118962341575
516 => 0.12108208237375
517 => 0.12022517705446
518 => 0.1198559986818
519 => 0.12000076303427
520 => 0.11950660766815
521 => 0.11920886118568
522 => 0.12084172122392
523 => 0.11996934997487
524 => 0.12070801781844
525 => 0.11986621258338
526 => 0.11694814888159
527 => 0.11526993958873
528 => 0.1097579877607
529 => 0.11132117046157
530 => 0.11235756220948
531 => 0.11201503474298
601 => 0.11275091628156
602 => 0.11279609343145
603 => 0.11255685084183
604 => 0.11227983857193
605 => 0.11214500431868
606 => 0.11314994837476
607 => 0.11373335222418
608 => 0.11246157798652
609 => 0.11216361907665
610 => 0.11344945304751
611 => 0.11423381102693
612 => 0.12002506965431
613 => 0.11959603450967
614 => 0.12067282852881
615 => 0.12055159804701
616 => 0.1216802497258
617 => 0.12352511821685
618 => 0.11977398474121
619 => 0.12042505180814
620 => 0.12026542519867
621 => 0.1220081866646
622 => 0.12201362737567
623 => 0.12096875481945
624 => 0.1215351971833
625 => 0.12121902459533
626 => 0.12179039119508
627 => 0.11959030448374
628 => 0.12226977261346
629 => 0.1237888583819
630 => 0.12380995088927
701 => 0.1245299854873
702 => 0.12526158234049
703 => 0.12666581879153
704 => 0.12522241894802
705 => 0.12262588314169
706 => 0.12281334464015
707 => 0.12129099664693
708 => 0.12131658759173
709 => 0.12117998112279
710 => 0.12158994741934
711 => 0.11968026903143
712 => 0.12012846673206
713 => 0.11950098732654
714 => 0.12042368779046
715 => 0.11943101461913
716 => 0.12026534822188
717 => 0.12062541894623
718 => 0.12195408767086
719 => 0.1192347691682
720 => 0.1136898946596
721 => 0.11485549450641
722 => 0.11313148077708
723 => 0.11329104481151
724 => 0.11361338955549
725 => 0.11256856477561
726 => 0.1127678844174
727 => 0.11276076331721
728 => 0.11269939752285
729 => 0.11242759824456
730 => 0.11203343551718
731 => 0.11360365850616
801 => 0.11387046998979
802 => 0.11446355886695
803 => 0.11622818906934
804 => 0.11605186089928
805 => 0.11633945946044
806 => 0.11571163341622
807 => 0.11332016786106
808 => 0.11345003594639
809 => 0.11183057884129
810 => 0.11442214570773
811 => 0.11380842846675
812 => 0.11341276096902
813 => 0.11330479942643
814 => 0.11507380380578
815 => 0.11560311764183
816 => 0.11527328478013
817 => 0.11459678795803
818 => 0.11589586184479
819 => 0.11624343921336
820 => 0.11632124896803
821 => 0.11862295882266
822 => 0.11644988898009
823 => 0.11697296848966
824 => 0.12105388550362
825 => 0.11735305690001
826 => 0.11931346834967
827 => 0.1192175164107
828 => 0.12022039657164
829 => 0.11913525096562
830 => 0.11914870264594
831 => 0.12003919228787
901 => 0.11878866018644
902 => 0.11847901085185
903 => 0.11805123251387
904 => 0.11898527086489
905 => 0.11954518461341
906 => 0.12405767821515
907 => 0.12697295487658
908 => 0.12684639502821
909 => 0.12800291513218
910 => 0.12748189223283
911 => 0.12579937185194
912 => 0.12867122898063
913 => 0.1277624532215
914 => 0.12783737159092
915 => 0.12783458312547
916 => 0.12843883955873
917 => 0.12801066849648
918 => 0.12716669938192
919 => 0.12772696546655
920 => 0.12939075543913
921 => 0.13455521056532
922 => 0.13744530807387
923 => 0.13438122306639
924 => 0.13649478787481
925 => 0.1352274021299
926 => 0.13499708043859
927 => 0.1363245553295
928 => 0.13765435378947
929 => 0.13756965137644
930 => 0.13660428598041
1001 => 0.13605897556343
1002 => 0.14018824873318
1003 => 0.14323062686432
1004 => 0.14302315707214
1005 => 0.14393886126204
1006 => 0.14662739708525
1007 => 0.14687320310709
1008 => 0.14684223719813
1009 => 0.14623298132578
1010 => 0.14888019399422
1011 => 0.15108854537551
1012 => 0.14609195619442
1013 => 0.14799459194443
1014 => 0.1488487464317
1015 => 0.15010289863523
1016 => 0.1522188636229
1017 => 0.15451736283151
1018 => 0.15484239582137
1019 => 0.1546117693608
1020 => 0.15309584734575
1021 => 0.15561089260661
1022 => 0.15708414713535
1023 => 0.15796143649239
1024 => 0.1601860963348
1025 => 0.14885402139902
1026 => 0.14083261551881
1027 => 0.13957995716011
1028 => 0.14212728719089
1029 => 0.14279899780542
1030 => 0.14252823209896
1031 => 0.13349941050646
1101 => 0.13953242228299
1102 => 0.14602343568448
1103 => 0.14627278194472
1104 => 0.1495223189742
1105 => 0.15058050143402
1106 => 0.15319680466931
1107 => 0.1530331541896
1108 => 0.15367018239291
1109 => 0.15352374064076
1110 => 0.15836989145649
1111 => 0.16371591546659
1112 => 0.16353079965443
1113 => 0.1627622454517
1114 => 0.16390367950073
1115 => 0.1694213491939
1116 => 0.16891337058741
1117 => 0.1694068285341
1118 => 0.1759124720646
1119 => 0.18437073407124
1120 => 0.18044102217353
1121 => 0.18896736624742
1122 => 0.19433424787985
1123 => 0.20361571471722
1124 => 0.20245362935699
1125 => 0.20606683628623
1126 => 0.20037325402765
1127 => 0.18729963829913
1128 => 0.18523068856631
1129 => 0.18937277832558
1130 => 0.19955570181955
1201 => 0.18905208182681
1202 => 0.1911769504714
1203 => 0.19056498815881
1204 => 0.19053237928784
1205 => 0.19177692726273
1206 => 0.1899716455139
1207 => 0.18261660290516
1208 => 0.18598737558921
1209 => 0.1846857583781
1210 => 0.18612999971581
1211 => 0.19392397456503
1212 => 0.19047807249904
1213 => 0.18684809459487
1214 => 0.19140089244328
1215 => 0.19719816861539
1216 => 0.19683538549125
1217 => 0.19613143459883
1218 => 0.20009956892173
1219 => 0.20665376426891
1220 => 0.20842533693436
1221 => 0.20973307565779
1222 => 0.20991339073332
1223 => 0.21177074807651
1224 => 0.20178326952784
1225 => 0.21763365448122
1226 => 0.22037057810463
1227 => 0.21985614989729
1228 => 0.22289812531735
1229 => 0.2220030989813
1230 => 0.22070634624569
1231 => 0.22552852433321
]
'min_raw' => 0.083131785884642
'max_raw' => 0.22552852433321
'avg_raw' => 0.15433015510893
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.083131'
'max' => '$0.225528'
'avg' => '$0.15433'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.028670004503478
'max_diff' => 0.1039464339674
'year' => 2032
]
7 => [
'items' => [
101 => 0.22000028628557
102 => 0.21215364836277
103 => 0.20784882760942
104 => 0.21351776283742
105 => 0.21697958376258
106 => 0.21926762718095
107 => 0.21995998773687
108 => 0.20255856905687
109 => 0.19318016951527
110 => 0.19919161609787
111 => 0.20652599581651
112 => 0.20174252667818
113 => 0.2019300296121
114 => 0.19511005969442
115 => 0.20712941182451
116 => 0.20537829331782
117 => 0.21446309922821
118 => 0.21229493738757
119 => 0.21970324393736
120 => 0.21775238854341
121 => 0.22585028021283
122 => 0.22908074844143
123 => 0.23450520737948
124 => 0.23849546145583
125 => 0.24083861497086
126 => 0.24069794082276
127 => 0.24998268240375
128 => 0.2445077946776
129 => 0.2376300453616
130 => 0.2375056485755
131 => 0.24106773240472
201 => 0.24853288290079
202 => 0.25046848781089
203 => 0.25155022689557
204 => 0.24989350583178
205 => 0.24395090759379
206 => 0.24138492380428
207 => 0.24357121633665
208 => 0.24089756843982
209 => 0.24551303480285
210 => 0.25185105592971
211 => 0.25054227963026
212 => 0.2549173225766
213 => 0.25944503175811
214 => 0.26591985923982
215 => 0.26761261890571
216 => 0.27041068626353
217 => 0.27329081669198
218 => 0.27421583696391
219 => 0.27598198767995
220 => 0.27597267919388
221 => 0.28129509325232
222 => 0.28716588078022
223 => 0.28938196716296
224 => 0.29447773560436
225 => 0.28575141072549
226 => 0.29237042838691
227 => 0.29834094800226
228 => 0.2912226483812
301 => 0.30103356605773
302 => 0.30141450175909
303 => 0.30716617858197
304 => 0.30133575223403
305 => 0.29787366368001
306 => 0.30786858361271
307 => 0.31270481053111
308 => 0.31124809962477
309 => 0.30016245770081
310 => 0.29371013861552
311 => 0.2768231750099
312 => 0.29682651286329
313 => 0.30656955522631
314 => 0.30013722557483
315 => 0.30338131850477
316 => 0.32108003762982
317 => 0.32781856396544
318 => 0.32641699759348
319 => 0.3266538392386
320 => 0.33028982573639
321 => 0.34641379224196
322 => 0.33675193776121
323 => 0.34413806348896
324 => 0.3480556379423
325 => 0.35169449942336
326 => 0.34275860569986
327 => 0.33113313925993
328 => 0.32745086603452
329 => 0.29949765715836
330 => 0.29804257124172
331 => 0.29722578742309
401 => 0.29207608098303
402 => 0.28802982234445
403 => 0.2848120872471
404 => 0.27636778945462
405 => 0.27921749207462
406 => 0.26575904385532
407 => 0.27436928208791
408 => 0.25288927376431
409 => 0.2707784629781
410 => 0.26104219061066
411 => 0.26757983564919
412 => 0.26755702642153
413 => 0.25551914914335
414 => 0.24857595275339
415 => 0.25300042772632
416 => 0.25774381611256
417 => 0.25851341491956
418 => 0.26466334177743
419 => 0.26637965417122
420 => 0.26117914749106
421 => 0.25244414833569
422 => 0.25447308941536
423 => 0.24853483632717
424 => 0.23812827620172
425 => 0.24560244936492
426 => 0.24815446069904
427 => 0.24928157428906
428 => 0.23904791760719
429 => 0.23583228049425
430 => 0.23412030227713
501 => 0.25112311176681
502 => 0.25205456405233
503 => 0.24728912246554
504 => 0.26882937031554
505 => 0.26395414882461
506 => 0.26940096568824
507 => 0.25428898427873
508 => 0.25486628231956
509 => 0.24771202814005
510 => 0.25171793243314
511 => 0.24888668839511
512 => 0.25139429495337
513 => 0.25289734398515
514 => 0.26005042422194
515 => 0.27086013966425
516 => 0.25898199256877
517 => 0.25380651378107
518 => 0.25701735171296
519 => 0.26556823624487
520 => 0.27852326402242
521 => 0.27085362683388
522 => 0.27425728157927
523 => 0.27500082872308
524 => 0.26934552220564
525 => 0.27873178324037
526 => 0.28376195678272
527 => 0.28892187398943
528 => 0.29340208552241
529 => 0.28686088958806
530 => 0.29386090688142
531 => 0.28822012861236
601 => 0.28315976737208
602 => 0.28316744185125
603 => 0.27999300332514
604 => 0.2738421286758
605 => 0.27270781301912
606 => 0.27860866631347
607 => 0.28334059184266
608 => 0.28373033589364
609 => 0.28635017300171
610 => 0.28790056561579
611 => 0.3030965208904
612 => 0.30920845980939
613 => 0.31668202302643
614 => 0.31959339708642
615 => 0.3283555892216
616 => 0.32127940744199
617 => 0.3197484310027
618 => 0.29849421897395
619 => 0.30197459500297
620 => 0.30754701283178
621 => 0.29858610609149
622 => 0.30426973890179
623 => 0.30539180841435
624 => 0.29828161790939
625 => 0.30207947787129
626 => 0.2919934877995
627 => 0.27107998668599
628 => 0.27875506594555
629 => 0.28440650768433
630 => 0.27634120350535
701 => 0.29079794907579
702 => 0.28235261676134
703 => 0.2796758518651
704 => 0.26923283766929
705 => 0.27416153838124
706 => 0.28082767666634
707 => 0.2767087782279
708 => 0.28525611094337
709 => 0.29736141355885
710 => 0.30598837308587
711 => 0.30665064391697
712 => 0.30110408690249
713 => 0.30999247991585
714 => 0.31005722215527
715 => 0.30003107852606
716 => 0.29389012137897
717 => 0.29249488299446
718 => 0.29598046203155
719 => 0.30021259845596
720 => 0.30688549803435
721 => 0.31091779149542
722 => 0.3214318742787
723 => 0.32427668361747
724 => 0.32740226658849
725 => 0.33157900933186
726 => 0.33659425989013
727 => 0.32562117718701
728 => 0.32605715821919
729 => 0.31583917553871
730 => 0.30491979563767
731 => 0.31320624386264
801 => 0.32403967261677
802 => 0.32155447209069
803 => 0.32127483626347
804 => 0.32174510616035
805 => 0.31987134612275
806 => 0.31139639891749
807 => 0.30714033348698
808 => 0.31263174373043
809 => 0.31555018388027
810 => 0.32007643003794
811 => 0.31951847466155
812 => 0.33117759868037
813 => 0.33570798172047
814 => 0.33454891587279
815 => 0.33476221188324
816 => 0.34296425397805
817 => 0.35208661166609
818 => 0.36063090344206
819 => 0.36932252402245
820 => 0.35884443617307
821 => 0.35352430936177
822 => 0.35901332222729
823 => 0.35610077473739
824 => 0.37283713653204
825 => 0.37399592591033
826 => 0.39073107747552
827 => 0.40661472909566
828 => 0.39663849209823
829 => 0.40604563424723
830 => 0.41622022545692
831 => 0.43584866266835
901 => 0.42923849555229
902 => 0.42417521113591
903 => 0.41939043182804
904 => 0.42934679800539
905 => 0.44215550403571
906 => 0.44491437663438
907 => 0.44938480421468
908 => 0.44468469623188
909 => 0.45034545859725
910 => 0.47033043721204
911 => 0.46493031957803
912 => 0.45726128442552
913 => 0.47303750566415
914 => 0.4787468588019
915 => 0.51881808913409
916 => 0.56940967268845
917 => 0.5484644248947
918 => 0.53546303369019
919 => 0.53851866902038
920 => 0.55699300270125
921 => 0.5629263723335
922 => 0.54679742831787
923 => 0.55249444401423
924 => 0.58388556061938
925 => 0.60072588753045
926 => 0.57785446162757
927 => 0.51475310465543
928 => 0.45657077171877
929 => 0.47200334639817
930 => 0.47025377135807
1001 => 0.50397961002877
1002 => 0.4648015285584
1003 => 0.46546118697257
1004 => 0.49988444027069
1005 => 0.49070090645472
1006 => 0.47582475781098
1007 => 0.4566793840668
1008 => 0.42128738996795
1009 => 0.38993971381583
1010 => 0.4514197256888
1011 => 0.44876859578269
1012 => 0.44492936680321
1013 => 0.45347315544909
1014 => 0.49495936791678
1015 => 0.49400297644163
1016 => 0.48791890183197
1017 => 0.49253361880083
1018 => 0.47501577561451
1019 => 0.4795305226775
1020 => 0.45656155533997
1021 => 0.46694448784534
1022 => 0.47579284027721
1023 => 0.47756927803001
1024 => 0.48157168299421
1025 => 0.44737157079045
1026 => 0.4627264171074
1027 => 0.47174595076407
1028 => 0.43099536956978
1029 => 0.47094044279697
1030 => 0.44677622292536
1031 => 0.43857452376654
1101 => 0.4496170311922
1102 => 0.44531375530923
1103 => 0.44161405140189
1104 => 0.43954955305261
1105 => 0.44765795178894
1106 => 0.44727968529626
1107 => 0.43401277119124
1108 => 0.41670662256985
1109 => 0.42251513410215
1110 => 0.42040484740738
1111 => 0.41275689619312
1112 => 0.41791069189438
1113 => 0.39521598390236
1114 => 0.35617091837036
1115 => 0.3819652846435
1116 => 0.38097222960086
1117 => 0.3804714862169
1118 => 0.39985523956724
1119 => 0.39799193894188
1120 => 0.39461003006136
1121 => 0.41269478478441
1122 => 0.40609360603622
1123 => 0.42643688350482
1124 => 0.43983628176633
1125 => 0.43643776094208
1126 => 0.44903995977195
1127 => 0.42264895047631
1128 => 0.43141498514081
1129 => 0.43322165273596
1130 => 0.41247162171835
1201 => 0.39829679796802
1202 => 0.39735149882869
1203 => 0.37277430785665
1204 => 0.38590324489376
1205 => 0.39745616617409
1206 => 0.39192321342372
1207 => 0.39017164587522
1208 => 0.39912002461188
1209 => 0.3998153902774
1210 => 0.383960979412
1211 => 0.38725761347481
1212 => 0.40100512553655
1213 => 0.38691121144334
1214 => 0.35952903858803
1215 => 0.35273788113175
1216 => 0.35183181554122
1217 => 0.33341365790631
1218 => 0.35319169874616
1219 => 0.34455805390103
1220 => 0.37183163451987
1221 => 0.35625311154153
1222 => 0.35558155255233
1223 => 0.35456639264388
1224 => 0.338713123523
1225 => 0.34218398193266
1226 => 0.35372164391303
1227 => 0.35783841168869
1228 => 0.35740899908201
1229 => 0.35366510307498
1230 => 0.35537903949515
1231 => 0.34985785311075
]
'min_raw' => 0.19318016951527
'max_raw' => 0.60072588753045
'avg_raw' => 0.39695302852286
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.19318'
'max' => '$0.600725'
'avg' => '$0.396953'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.11004838363063
'max_diff' => 0.37519736319724
'year' => 2033
]
8 => [
'items' => [
101 => 0.34790820728486
102 => 0.34175458876603
103 => 0.33271046952385
104 => 0.33396810977528
105 => 0.31604934303399
106 => 0.3062862478924
107 => 0.30358395183273
108 => 0.29997032860502
109 => 0.30399212019179
110 => 0.31599858141918
111 => 0.3015162418661
112 => 0.27668728652034
113 => 0.2781795490431
114 => 0.28153221987503
115 => 0.27528453995987
116 => 0.26937163524821
117 => 0.27451242616588
118 => 0.26399207047155
119 => 0.2828035545991
120 => 0.28229475667202
121 => 0.2893065146604
122 => 0.29369111082629
123 => 0.28358603619378
124 => 0.28104463725073
125 => 0.28249233358883
126 => 0.25856513790343
127 => 0.28735115230154
128 => 0.28760009494942
129 => 0.28546849686081
130 => 0.30079616085931
131 => 0.33314231271445
201 => 0.32097238926561
202 => 0.31625982706833
203 => 0.30730124288644
204 => 0.31923802440071
205 => 0.31832146582321
206 => 0.31417644034126
207 => 0.3116695159965
208 => 0.31628860096821
209 => 0.31109716025136
210 => 0.31016463484736
211 => 0.30451454549679
212 => 0.30249772066132
213 => 0.30100454384524
214 => 0.29936070288727
215 => 0.30298660642091
216 => 0.29476983198635
217 => 0.2848612075186
218 => 0.28403741260691
219 => 0.28631198278687
220 => 0.28530565480407
221 => 0.28403259469569
222 => 0.28160197625149
223 => 0.28088086368104
224 => 0.28322412970091
225 => 0.28057871898537
226 => 0.28448216659913
227 => 0.28342064483579
228 => 0.27749107055651
301 => 0.27010062559494
302 => 0.2700348351328
303 => 0.26844257588859
304 => 0.2664145943433
305 => 0.26585045627134
306 => 0.27407948309363
307 => 0.29111332234171
308 => 0.28776917211209
309 => 0.29018566337529
310 => 0.30207240870096
311 => 0.30585084759308
312 => 0.30316900116468
313 => 0.2994979243644
314 => 0.29965943311258
315 => 0.31220461384966
316 => 0.312987041384
317 => 0.31496398334259
318 => 0.3175049124431
319 => 0.30360173237779
320 => 0.2990045945818
321 => 0.29682621565457
322 => 0.29011765169743
323 => 0.2973522627764
324 => 0.29313696471762
325 => 0.29370575244083
326 => 0.29333532868991
327 => 0.29353760510586
328 => 0.2827982964059
329 => 0.28671113605472
330 => 0.28020528123083
331 => 0.27149467193812
401 => 0.27146547092144
402 => 0.27359738020552
403 => 0.27232923714173
404 => 0.26891669676401
405 => 0.26940143201793
406 => 0.2651546411312
407 => 0.26991706932221
408 => 0.27005363872194
409 => 0.26821984445719
410 => 0.27555702217388
411 => 0.27856306987098
412 => 0.27735602720224
413 => 0.27847838053961
414 => 0.28790813665206
415 => 0.28944559834749
416 => 0.29012843727359
417 => 0.28921352357144
418 => 0.2786507391709
419 => 0.27911924357549
420 => 0.27568166911215
421 => 0.2727772809333
422 => 0.27289344122895
423 => 0.27438667429691
424 => 0.28090771068166
425 => 0.29463084731728
426 => 0.29515163032112
427 => 0.29578283451409
428 => 0.29321540984349
429 => 0.29244104999589
430 => 0.29346263051411
501 => 0.2986163191062
502 => 0.31187300537787
503 => 0.30718720706516
504 => 0.30337758009812
505 => 0.30671965001627
506 => 0.30620516454838
507 => 0.30186238943953
508 => 0.30174050220628
509 => 0.29340532830321
510 => 0.29032400429397
511 => 0.28774901931874
512 => 0.28493720294748
513 => 0.28327026394966
514 => 0.28583143986054
515 => 0.2864172110943
516 => 0.28081715520347
517 => 0.28005388827847
518 => 0.28462701480452
519 => 0.28261455232375
520 => 0.28468441989189
521 => 0.2851646469227
522 => 0.28508731931017
523 => 0.2829860773504
524 => 0.28432534631562
525 => 0.28115757595757
526 => 0.27771310147692
527 => 0.27551574135661
528 => 0.27359825321411
529 => 0.27466218708063
530 => 0.27086945711313
531 => 0.26965608646395
601 => 0.28387163212471
602 => 0.29437280854718
603 => 0.29422011728307
604 => 0.29329064848184
605 => 0.29190964637907
606 => 0.29851529020065
607 => 0.29621401597723
608 => 0.29788838525266
609 => 0.29831458250632
610 => 0.29960455323074
611 => 0.30006560688798
612 => 0.29867198251343
613 => 0.29399480889553
614 => 0.28233973693204
615 => 0.27691426947078
616 => 0.27512377484025
617 => 0.27518885591944
618 => 0.27339362922075
619 => 0.27392240393993
620 => 0.27320974295257
621 => 0.27186013545372
622 => 0.27457885262067
623 => 0.27489215944756
624 => 0.27425757837454
625 => 0.27440704518941
626 => 0.26915298493794
627 => 0.26955243972764
628 => 0.26732822469833
629 => 0.26691121119365
630 => 0.26128858928411
701 => 0.25132729955928
702 => 0.25684682103263
703 => 0.25018001525499
704 => 0.24765519488841
705 => 0.25960730181368
706 => 0.25840764177823
707 => 0.25635434527721
708 => 0.25331709180772
709 => 0.25219054495139
710 => 0.24534600287369
711 => 0.24494159081353
712 => 0.24833393068542
713 => 0.24676848255783
714 => 0.24457000050512
715 => 0.23660732136678
716 => 0.22765463366283
717 => 0.22792485903002
718 => 0.23077254241797
719 => 0.23905256593087
720 => 0.23581741749852
721 => 0.2334702801918
722 => 0.23303073192894
723 => 0.23853259869525
724 => 0.24631889284632
725 => 0.24997204785348
726 => 0.24635188218935
727 => 0.24219323079795
728 => 0.24244634863881
729 => 0.24413022823526
730 => 0.24430718017207
731 => 0.24160032563254
801 => 0.24236228932993
802 => 0.24120479679818
803 => 0.23410126726739
804 => 0.23397278694371
805 => 0.23222946623697
806 => 0.23217667917881
807 => 0.22921085576491
808 => 0.22879591656754
809 => 0.22290709416663
810 => 0.2267831349039
811 => 0.22418329027861
812 => 0.22026471118695
813 => 0.21958914667454
814 => 0.21956883838953
815 => 0.22359234293842
816 => 0.22673611791065
817 => 0.22422851568896
818 => 0.2236575832709
819 => 0.2297536478147
820 => 0.22897786803464
821 => 0.22830604774835
822 => 0.24562171560591
823 => 0.23191501333824
824 => 0.22593810879832
825 => 0.21854055444678
826 => 0.22094923544535
827 => 0.22145677992263
828 => 0.20366699521658
829 => 0.19644968177691
830 => 0.19397297178314
831 => 0.19254759016618
901 => 0.19319715446785
902 => 0.18670072586571
903 => 0.19106643332736
904 => 0.18544107528735
905 => 0.18449796570544
906 => 0.19455680272912
907 => 0.19595643113809
908 => 0.18998518151496
909 => 0.19381969043051
910 => 0.19242924419407
911 => 0.18553750590519
912 => 0.18527429219475
913 => 0.1818162601777
914 => 0.17640510967797
915 => 0.17393206869904
916 => 0.17264408748529
917 => 0.17317553363634
918 => 0.17290681819985
919 => 0.17115326821062
920 => 0.1730073296326
921 => 0.16827096885052
922 => 0.16638491182365
923 => 0.1655330236208
924 => 0.16132923081196
925 => 0.16801933460598
926 => 0.1693373693331
927 => 0.17065800099581
928 => 0.1821531979861
929 => 0.18157893042956
930 => 0.18677002946109
1001 => 0.18656831289854
1002 => 0.18508772736452
1003 => 0.17884138054098
1004 => 0.18133106305442
1005 => 0.17366820726063
1006 => 0.17940973984488
1007 => 0.17678954414556
1008 => 0.17852384904326
1009 => 0.17540541246123
1010 => 0.17713128402282
1011 => 0.16964992426277
1012 => 0.16266393578441
1013 => 0.16547530148182
1014 => 0.16853157751357
1015 => 0.17515836267505
1016 => 0.17121150410266
1017 => 0.17263094369254
1018 => 0.16787605867777
1019 => 0.15806537272655
1020 => 0.15812090014359
1021 => 0.15661173984741
1022 => 0.1553076050105
1023 => 0.17166484828806
1024 => 0.16963056651675
1025 => 0.16638920475437
1026 => 0.17072789627991
1027 => 0.17187511518355
1028 => 0.17190777489294
1029 => 0.17507317223213
1030 => 0.17676254535949
1031 => 0.17706030469535
1101 => 0.18204112580151
1102 => 0.18371063133767
1103 => 0.19058708836387
1104 => 0.17661921385263
1105 => 0.17633155466888
1106 => 0.17078895056722
1107 => 0.16727374342084
1108 => 0.17102963980792
1109 => 0.17435685127589
1110 => 0.17089233630209
1111 => 0.17134472881777
1112 => 0.16669390052672
1113 => 0.16835635279896
1114 => 0.16978828065232
1115 => 0.16899765425652
1116 => 0.16781404827526
1117 => 0.17408405787854
1118 => 0.17373027936436
1119 => 0.17956905645382
1120 => 0.18412080073002
1121 => 0.19227834019457
1122 => 0.18376552250116
1123 => 0.18345528158903
1124 => 0.18648793626934
1125 => 0.18371016705404
1126 => 0.18546562131278
1127 => 0.19199550937428
1128 => 0.19213347561935
1129 => 0.18982236325485
1130 => 0.18968173185744
1201 => 0.19012560626784
1202 => 0.19272539255372
1203 => 0.19181694734207
1204 => 0.19286822314001
1205 => 0.19418285962305
1206 => 0.19962075351119
1207 => 0.20093181131772
1208 => 0.19774662055339
1209 => 0.19803420761634
1210 => 0.19684285883504
1211 => 0.19569203083986
1212 => 0.19827892410809
1213 => 0.2030065224013
1214 => 0.20297711225768
1215 => 0.20407382317032
1216 => 0.20475706498326
1217 => 0.20182409095857
1218 => 0.19991483271694
1219 => 0.20064696381604
1220 => 0.20181765738724
1221 => 0.20026732366911
1222 => 0.1906979457764
1223 => 0.19360068373483
1224 => 0.19311752620191
1225 => 0.19242945112107
1226 => 0.19534817658448
1227 => 0.19506665839325
1228 => 0.18663409560061
1229 => 0.18717392091121
1230 => 0.18666692416571
1231 => 0.18830513437221
]
'min_raw' => 0.1553076050105
'max_raw' => 0.34790820728486
'avg_raw' => 0.25160790614768
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.1553076'
'max' => '$0.3479082'
'avg' => '$0.2516079'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.037872564504779
'max_diff' => -0.25281768024559
'year' => 2034
]
9 => [
'items' => [
101 => 0.18362169832674
102 => 0.18506229171091
103 => 0.18596581837673
104 => 0.18649800252412
105 => 0.18842061658657
106 => 0.18819502001707
107 => 0.18840659318706
108 => 0.19125732229039
109 => 0.20567533184292
110 => 0.20646007229132
111 => 0.20259572331807
112 => 0.20413945451197
113 => 0.20117582819658
114 => 0.20316533039667
115 => 0.2045264972741
116 => 0.19837564589235
117 => 0.19801143239221
118 => 0.1950355741368
119 => 0.19663463180203
120 => 0.19409041608033
121 => 0.19471467762555
122 => 0.19296918792298
123 => 0.19611072186407
124 => 0.19962344495524
125 => 0.2005108975297
126 => 0.19817639187864
127 => 0.19648605593585
128 => 0.19351838285158
129 => 0.19845368932962
130 => 0.19989692334454
131 => 0.19844610863575
201 => 0.19810992316679
202 => 0.19747285231059
203 => 0.19824508076056
204 => 0.19988906318215
205 => 0.19911379143172
206 => 0.19962587208141
207 => 0.19767434870006
208 => 0.20182506189501
209 => 0.20841739337212
210 => 0.20843858879578
211 => 0.20766331286634
212 => 0.20734608665957
213 => 0.20814156681085
214 => 0.20857308216061
215 => 0.21114551910373
216 => 0.21390584643411
217 => 0.22678708965981
218 => 0.22317008810716
219 => 0.23459909340559
220 => 0.24363795272605
221 => 0.24634831141485
222 => 0.24385490895339
223 => 0.2353251138237
224 => 0.2349066013811
225 => 0.24765371649147
226 => 0.24405207261793
227 => 0.24362366853951
228 => 0.23906617294522
301 => 0.24176021729825
302 => 0.241170990279
303 => 0.24024086660313
304 => 0.24538091555997
305 => 0.25500262835184
306 => 0.25350299418137
307 => 0.25238358683915
308 => 0.2474786697201
309 => 0.25043252537867
310 => 0.24938071395603
311 => 0.2538999633237
312 => 0.25122286011193
313 => 0.24402478662327
314 => 0.2451711035515
315 => 0.24499784005387
316 => 0.24856359055756
317 => 0.24749324076372
318 => 0.24478883707812
319 => 0.25496974238353
320 => 0.25430865102217
321 => 0.25524592742605
322 => 0.25565854548528
323 => 0.26185548313701
324 => 0.26439417021303
325 => 0.26497049662526
326 => 0.26738205299838
327 => 0.26491049490582
328 => 0.27479848946711
329 => 0.28137342886989
330 => 0.28901055932951
331 => 0.30017045959816
401 => 0.30436668533402
402 => 0.3036086747138
403 => 0.31206998373131
404 => 0.32727476795144
405 => 0.30668199632611
406 => 0.32836623485074
407 => 0.32150125529041
408 => 0.30522451224859
409 => 0.30417648188689
410 => 0.31519928125169
411 => 0.33964678933768
412 => 0.33352296584348
413 => 0.33965680571912
414 => 0.3325013556861
415 => 0.33214602728109
416 => 0.33930928148228
417 => 0.35604661537201
418 => 0.34809533543058
419 => 0.3366952259007
420 => 0.34511288937221
421 => 0.33782073025521
422 => 0.3213894548178
423 => 0.33351828307107
424 => 0.32540808102725
425 => 0.32777506914569
426 => 0.34482150754029
427 => 0.34277043497337
428 => 0.34542471279917
429 => 0.34073998191117
430 => 0.33636370454754
501 => 0.32819505786168
502 => 0.32577672428741
503 => 0.32644506468481
504 => 0.3257763930911
505 => 0.3212061103441
506 => 0.32021915822003
507 => 0.31857419477387
508 => 0.31908403772945
509 => 0.31599102519965
510 => 0.32182817889238
511 => 0.32291160605457
512 => 0.32715939973392
513 => 0.32760041976523
514 => 0.33943046469865
515 => 0.33291467474515
516 => 0.3372860291922
517 => 0.33689501410567
518 => 0.30557727862571
519 => 0.30989258625613
520 => 0.31660585071092
521 => 0.31358153417365
522 => 0.30930585817103
523 => 0.30585302055167
524 => 0.30062161848757
525 => 0.30798471643262
526 => 0.31766640725218
527 => 0.32784596342163
528 => 0.34007603316828
529 => 0.33734642397454
530 => 0.32761733077478
531 => 0.32805377078861
601 => 0.33075167122132
602 => 0.32725764503086
603 => 0.3262271884958
604 => 0.33061010231714
605 => 0.33064028503582
606 => 0.32661998563653
607 => 0.32215215856124
608 => 0.32213343820266
609 => 0.3213384315287
610 => 0.33264278560728
611 => 0.33885903735139
612 => 0.33957172059586
613 => 0.33881106809067
614 => 0.3391038130507
615 => 0.33548671312656
616 => 0.34375433093548
617 => 0.3513415146196
618 => 0.34930798731572
619 => 0.34625944080426
620 => 0.34383112666999
621 => 0.34873595367861
622 => 0.34851754945283
623 => 0.35127524718903
624 => 0.35115014209048
625 => 0.35022283206406
626 => 0.34930802043288
627 => 0.35293514514489
628 => 0.35189059147767
629 => 0.35084441533009
630 => 0.34874614890457
701 => 0.34903133816031
702 => 0.34598331802339
703 => 0.34457316444014
704 => 0.32336783797959
705 => 0.31770108184529
706 => 0.3194839586826
707 => 0.32007092802982
708 => 0.31760474849803
709 => 0.32114061643707
710 => 0.32058955516418
711 => 0.32273341221693
712 => 0.32139402340583
713 => 0.32144899238983
714 => 0.32538784929549
715 => 0.3265313162123
716 => 0.3259497397095
717 => 0.32635705595678
718 => 0.33574348695799
719 => 0.33440903663079
720 => 0.33370013649104
721 => 0.33389650667446
722 => 0.33629494104262
723 => 0.33696637171604
724 => 0.33412147277215
725 => 0.33546314356026
726 => 0.34117580749263
727 => 0.34317491656018
728 => 0.34955511307702
729 => 0.34684469219771
730 => 0.35181978702594
731 => 0.36711153239311
801 => 0.37932763670069
802 => 0.36809320232758
803 => 0.39052652217695
804 => 0.4079940795483
805 => 0.40732364560265
806 => 0.40427777294307
807 => 0.38439142327483
808 => 0.36609170782135
809 => 0.38140019684515
810 => 0.38143922133189
811 => 0.38012420854832
812 => 0.37195677708842
813 => 0.37983999963745
814 => 0.38046574121573
815 => 0.38011549233001
816 => 0.37385354177926
817 => 0.36429270069018
818 => 0.36616086615357
819 => 0.36922095929214
820 => 0.36342756457852
821 => 0.36157622393336
822 => 0.36501821842469
823 => 0.37610904184379
824 => 0.37401238592117
825 => 0.37395763376178
826 => 0.38292801691921
827 => 0.37650715850834
828 => 0.36618442970276
829 => 0.36357780453928
830 => 0.35432604124205
831 => 0.3607162671051
901 => 0.36094623995761
902 => 0.35744637855895
903 => 0.36646842416642
904 => 0.36638528442785
905 => 0.37495037397787
906 => 0.39132360829679
907 => 0.38648123723076
908 => 0.38085008652944
909 => 0.38146234874554
910 => 0.38817735406431
911 => 0.38411730855992
912 => 0.38557732923094
913 => 0.38817514414816
914 => 0.38974247038784
915 => 0.38123683461943
916 => 0.37925376405023
917 => 0.37519709762883
918 => 0.37413878908075
919 => 0.37744285923586
920 => 0.37657235348451
921 => 0.36092691162986
922 => 0.35929187590563
923 => 0.359342020117
924 => 0.35523064504671
925 => 0.34895981122146
926 => 0.3654391881022
927 => 0.36411566350995
928 => 0.36265459479277
929 => 0.36283356737388
930 => 0.36998670633991
1001 => 0.36583752449743
1002 => 0.37686880446318
1003 => 0.37460110493285
1004 => 0.37227524746638
1005 => 0.37195374311717
1006 => 0.37105848642541
1007 => 0.36798831811904
1008 => 0.36428090540058
1009 => 0.36183295039326
1010 => 0.33377177032039
1011 => 0.33897976211754
1012 => 0.34497108195677
1013 => 0.34703926155657
1014 => 0.34350149723745
1015 => 0.36812801061728
1016 => 0.37262751191877
1017 => 0.35899822898136
1018 => 0.35644874662373
1019 => 0.36829515425621
1020 => 0.36115032228939
1021 => 0.36436763968656
1022 => 0.3574135592524
1023 => 0.37154371381602
1024 => 0.37143606571273
1025 => 0.36593911644346
1026 => 0.37058510032436
1027 => 0.36977774629301
1028 => 0.3635717041064
1029 => 0.37174045642285
1030 => 0.37174450802208
1031 => 0.3664538138644
1101 => 0.36027544137011
1102 => 0.35917089429477
1103 => 0.35833876644853
1104 => 0.36416298724675
1105 => 0.36938496540257
1106 => 0.37910177211239
1107 => 0.38154480818486
1108 => 0.39108014061787
1109 => 0.38540231442093
1110 => 0.38791922123388
1111 => 0.39065167961754
1112 => 0.39196172064949
1113 => 0.3898270790886
1114 => 0.40463937525647
1115 => 0.40588998689007
1116 => 0.40630930615306
1117 => 0.4013146832257
1118 => 0.40575107739125
1119 => 0.40367543547912
1120 => 0.40907567910455
1121 => 0.40992250625879
1122 => 0.4092052737859
1123 => 0.40947407009091
1124 => 0.39683438837973
1125 => 0.39617895420338
1126 => 0.38724206270125
1127 => 0.39088391204654
1128 => 0.38407564925391
1129 => 0.38623461951833
1130 => 0.38718627303946
1201 => 0.38668918324589
1202 => 0.39108981674433
1203 => 0.38734837928062
1204 => 0.37747411066463
1205 => 0.36759715181076
1206 => 0.36747315463795
1207 => 0.36487272571453
1208 => 0.36299309189521
1209 => 0.3633551760524
1210 => 0.36463120784973
1211 => 0.36291892660745
1212 => 0.36328432862536
1213 => 0.36935243678345
1214 => 0.37056935259879
1215 => 0.36643379717857
1216 => 0.34982894540857
1217 => 0.3457540731341
1218 => 0.34868301051676
1219 => 0.34728316709557
1220 => 0.28028462018601
1221 => 0.29602493497892
1222 => 0.28667257441956
1223 => 0.29098257244673
1224 => 0.28143623409765
1225 => 0.28599224712429
1226 => 0.28515091787723
1227 => 0.31046087827445
1228 => 0.31006569805556
1229 => 0.31025484991387
1230 => 0.30122613888414
1231 => 0.31560912071072
]
'min_raw' => 0.18362169832674
'max_raw' => 0.40992250625879
'avg_raw' => 0.29677210229277
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.183621'
'max' => '$0.409922'
'avg' => '$0.296772'
'bar_min_pct' => 61.631153054957
'bar_max_pct' => 60.119598047091
'min_diff' => 0.028314093316246
'max_diff' => 0.062014298973926
'year' => 2035
]
10 => [
'items' => [
101 => 0.32269469475379
102 => 0.32138334357486
103 => 0.32171338241464
104 => 0.31604222167617
105 => 0.31030975914636
106 => 0.30395157598114
107 => 0.31576429440693
108 => 0.31445092176781
109 => 0.31746332606539
110 => 0.32512471835507
111 => 0.32625288747252
112 => 0.32776915820715
113 => 0.32722568308428
114 => 0.34017346540491
115 => 0.33860540353366
116 => 0.34238398148117
117 => 0.33461115996174
118 => 0.32581547460951
119 => 0.32748724684235
120 => 0.32732624173279
121 => 0.32527646189495
122 => 0.3234260123092
123 => 0.32034553510987
124 => 0.3300926207934
125 => 0.32969690691492
126 => 0.33610305464049
127 => 0.334970705804
128 => 0.32740860314113
129 => 0.32767868511713
130 => 0.3294951162027
131 => 0.3357818049295
201 => 0.33764812217403
202 => 0.33678356966648
203 => 0.33882990132448
204 => 0.3404472384313
205 => 0.33903301396414
206 => 0.35905545008373
207 => 0.3507407386475
208 => 0.35479327114813
209 => 0.35575977627062
210 => 0.35328409372277
211 => 0.35382098061986
212 => 0.35463421797601
213 => 0.35957203595441
214 => 0.37253029909886
215 => 0.37826942563565
216 => 0.39553587098512
217 => 0.37779287106927
218 => 0.3767400748821
219 => 0.37985028308623
220 => 0.38998751434523
221 => 0.39820278813893
222 => 0.40092826840682
223 => 0.40128848561699
224 => 0.40640166778605
225 => 0.40933244845015
226 => 0.40578079298068
227 => 0.40277113684414
228 => 0.39199092213531
229 => 0.3932387613414
301 => 0.40183513604881
302 => 0.41397802164698
303 => 0.42439788074212
304 => 0.42074920925575
305 => 0.44858599713607
306 => 0.45134590095132
307 => 0.45096457148243
308 => 0.45725204310233
309 => 0.44477269235816
310 => 0.43943752813899
311 => 0.40342185866191
312 => 0.4135407927249
313 => 0.42824925764962
314 => 0.42630253716292
315 => 0.4156208567762
316 => 0.42438977772969
317 => 0.42149049823296
318 => 0.41920371620266
319 => 0.42967990799795
320 => 0.41816090478079
321 => 0.42813434678095
322 => 0.4153433042537
323 => 0.42076587607976
324 => 0.417687762051
325 => 0.41967967906707
326 => 0.40803497289266
327 => 0.41431817368511
328 => 0.40777357108244
329 => 0.40777046808868
330 => 0.40762599562349
331 => 0.41532569156231
401 => 0.41557677837045
402 => 0.40988669143806
403 => 0.40906666101524
404 => 0.41209874328375
405 => 0.40854896905093
406 => 0.41020988607246
407 => 0.40859927653551
408 => 0.40823669440412
409 => 0.40534757829291
410 => 0.4041028676343
411 => 0.40459095075578
412 => 0.40292487143806
413 => 0.40192099838442
414 => 0.407426300006
415 => 0.40448503943282
416 => 0.40697550963954
417 => 0.40413730451659
418 => 0.3942988490133
419 => 0.38864064921358
420 => 0.37005671879319
421 => 0.37532709840712
422 => 0.37882136554376
423 => 0.37766651027594
424 => 0.38014758626087
425 => 0.38029990417588
426 => 0.3794932810816
427 => 0.37855931487325
428 => 0.3781047117746
429 => 0.38149295082264
430 => 0.38345993763291
501 => 0.37917206199818
502 => 0.37816747273072
503 => 0.38250275173753
504 => 0.38514726942728
505 => 0.40467290222225
506 => 0.40322638027784
507 => 0.40685686649272
508 => 0.40644812945928
509 => 0.41025345739429
510 => 0.41647356031645
511 => 0.40382635190756
512 => 0.40602146997978
513 => 0.40548327772115
514 => 0.41135911967928
515 => 0.4113774634165
516 => 0.40785460264253
517 => 0.40976440261999
518 => 0.4086984046652
519 => 0.41062480704778
520 => 0.40320706109537
521 => 0.41224107496921
522 => 0.41736277869668
523 => 0.4174338935579
524 => 0.41986154047637
525 => 0.42232817034536
526 => 0.4270626515807
527 => 0.42219612823335
528 => 0.41344172647796
529 => 0.41407376600816
530 => 0.40894106346209
531 => 0.40902734511918
601 => 0.40856676687158
602 => 0.40994899686335
603 => 0.40351038284903
604 => 0.40502151268887
605 => 0.40290592206392
606 => 0.40601687109893
607 => 0.40267000419556
608 => 0.40548301818855
609 => 0.40669702177503
610 => 0.41117672114479
611 => 0.40200834895632
612 => 0.3833134174198
613 => 0.38724331868291
614 => 0.38143068602768
615 => 0.38196866731018
616 => 0.3830554751199
617 => 0.3795327754272
618 => 0.38020479551554
619 => 0.38018078622905
620 => 0.37997388716896
621 => 0.37905749692577
622 => 0.37772854977086
623 => 0.38302266620766
624 => 0.3839222397529
625 => 0.38592188031038
626 => 0.39187145424031
627 => 0.3912769515041
628 => 0.39224661013255
629 => 0.39012985079105
630 => 0.38206685770502
701 => 0.38250471702182
702 => 0.37704460432509
703 => 0.38578225295272
704 => 0.38371306242637
705 => 0.38237904183315
706 => 0.38201504195468
707 => 0.3879793637276
708 => 0.38976398228135
709 => 0.38865192775995
710 => 0.38637107149275
711 => 0.3907509898004
712 => 0.39192287116561
713 => 0.39218521218596
714 => 0.39994558766109
715 => 0.392618930968
716 => 0.39438253005473
717 => 0.40814162668785
718 => 0.39566402466716
719 => 0.40227368874125
720 => 0.40195018007985
721 => 0.40533146056132
722 => 0.40167281638819
723 => 0.40171816966756
724 => 0.40472051766733
725 => 0.40050426137798
726 => 0.39946025702739
727 => 0.39801797249435
728 => 0.40116714800731
729 => 0.40305493630238
730 => 0.41826912353287
731 => 0.428098182335
801 => 0.4276714769701
802 => 0.4315707652463
803 => 0.42981410016449
804 => 0.42414136523047
805 => 0.43382403204651
806 => 0.43076003112593
807 => 0.43101262363906
808 => 0.43100322213311
809 => 0.43304051488568
810 => 0.43159690625534
811 => 0.42875140546156
812 => 0.43064038168243
813 => 0.43624996573708
814 => 0.45366228676578
815 => 0.463406452296
816 => 0.45307567576572
817 => 0.4602017070817
818 => 0.45592862755669
819 => 0.45515208189389
820 => 0.45962775616991
821 => 0.46411126452126
822 => 0.46382568442201
823 => 0.46057088758964
824 => 0.45873233544644
825 => 0.47265446823489
826 => 0.48291205851608
827 => 0.48221255962666
828 => 0.48529992023533
829 => 0.49436450647086
830 => 0.49519325863515
831 => 0.4950888549111
901 => 0.49303470620058
902 => 0.50195996853472
903 => 0.50940557939892
904 => 0.49255923012415
905 => 0.49897409939308
906 => 0.50185394088208
907 => 0.5060824025984
908 => 0.5132165262863
909 => 0.52096607684421
910 => 0.52206194826259
911 => 0.52128437504897
912 => 0.51617333813693
913 => 0.52465298882876
914 => 0.52962016933176
915 => 0.53257801164939
916 => 0.54007860762887
917 => 0.5018717258027
918 => 0.4748269958409
919 => 0.47060357072672
920 => 0.47919207177438
921 => 0.48145679100863
922 => 0.48054388552502
923 => 0.45010258315374
924 => 0.47044330356971
925 => 0.49232820844095
926 => 0.49316889676613
927 => 0.50412493773646
928 => 0.50769267377969
929 => 0.51651372280191
930 => 0.51596196378386
1001 => 0.51810974884723
1002 => 0.51761601025561
1003 => 0.53395514607827
1004 => 0.55197963927581
1005 => 0.55135550839076
1006 => 0.54876427423749
1007 => 0.55261269882617
1008 => 0.57121590742812
1009 => 0.56950322209039
1010 => 0.5711669500098
1011 => 0.59310118138238
1012 => 0.62161880227477
1013 => 0.60836950424793
1014 => 0.63711666858336
1015 => 0.65521148471082
1016 => 0.68650459816434
1017 => 0.68258654623812
1018 => 0.69476872566611
1019 => 0.67557241556809
1020 => 0.63149380736868
1021 => 0.62451819889499
1022 => 0.63848354370986
1023 => 0.67281598121879
1024 => 0.63740229307393
1025 => 0.64456643606275
1026 => 0.64250316240001
1027 => 0.64239321931487
1028 => 0.64658929970378
1029 => 0.64050266624684
1030 => 0.61570462657882
1031 => 0.62706942202291
1101 => 0.62268092871964
1102 => 0.62755028922346
1103 => 0.65382821958556
1104 => 0.64221012018486
1105 => 0.62997139624397
1106 => 0.6453214720561
1107 => 0.66486739342326
1108 => 0.6636442447915
1109 => 0.66127082520943
1110 => 0.6746496671254
1111 => 0.6967475943377
1112 => 0.70272057526652
1113 => 0.70712970767596
1114 => 0.70773765254232
1115 => 0.71399986250144
1116 => 0.68032638127112
1117 => 0.73376706077998
1118 => 0.74299478986218
1119 => 0.74126035924491
1120 => 0.75151659175758
1121 => 0.74849894797684
1122 => 0.74412685559237
1123 => 0.76038516568816
1124 => 0.7417463251413
1125 => 0.71529083754981
1126 => 0.70077683382691
1127 => 0.71989004474051
1128 => 0.73156181568631
1129 => 0.73927611381743
1130 => 0.7416104557708
1201 => 0.68294035776292
1202 => 0.65132042892948
1203 => 0.67158844078849
1204 => 0.69631681407995
1205 => 0.68018901390892
1206 => 0.68082119314166
1207 => 0.65782718840909
1208 => 0.69835127328006
1209 => 0.69244725497556
1210 => 0.72307731238333
1211 => 0.7157672033614
1212 => 0.74074482612546
1213 => 0.73416738096039
1214 => 0.76146998810059
1215 => 0.77236173727739
1216 => 0.79065067931065
1217 => 0.8041040995197
1218 => 0.81200420518937
1219 => 0.81152991247752
1220 => 0.84283406695778
1221 => 0.82437510074462
1222 => 0.8011862887366
1223 => 0.80076687628714
1224 => 0.8127766906141
1225 => 0.83794596671176
1226 => 0.84447199380582
1227 => 0.8481191526544
1228 => 0.84253340191928
1229 => 0.82249751706092
1230 => 0.81384612356333
1231 => 0.82121736147828
]
'min_raw' => 0.30395157598114
'max_raw' => 0.8481191526544
'avg_raw' => 0.57603536431777
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$0.303951'
'max' => '$0.848119'
'avg' => '$0.576035'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.1203298776544
'max_diff' => 0.43819664639561
'year' => 2036
]
11 => [
'items' => [
101 => 0.81220297092599
102 => 0.82776433801051
103 => 0.84913341874622
104 => 0.8447207880768
105 => 0.85947155082611
106 => 0.87473703844615
107 => 0.89656737135875
108 => 0.90227462875699
109 => 0.91170850820873
110 => 0.92141906903252
111 => 0.92453783946217
112 => 0.93049253991001
113 => 0.93046115569933
114 => 0.94840604629644
115 => 0.96819981633207
116 => 0.97567150629368
117 => 0.99285224536904
118 => 0.9634308317874
119 => 0.98574731195791
120 => 1.0058773356894
121 => 0.98187749153325
122 => 1.0149556854561
123 => 1.0162400367693
124 => 1.0356322167468
125 => 1.0159745272474
126 => 1.0043018539722
127 => 1.0380004243483
128 => 1.0543061010583
129 => 1.0493946985333
130 => 1.0120186828118
131 => 0.99026423852925
201 => 0.93332866172277
202 => 1.0007713118839
203 => 1.0336206594483
204 => 1.0119336109375
205 => 1.0228712967461
206 => 1.0825437639613
207 => 1.1052631759707
208 => 1.1005376970934
209 => 1.1013362252357
210 => 1.1135952075695
211 => 1.1679582863824
212 => 1.1353826694314
213 => 1.1602855080053
214 => 1.1734938837911
215 => 1.1857625593317
216 => 1.1556345697587
217 => 1.1164384979924
218 => 1.1040234567248
219 => 1.0097772613681
220 => 1.0048713376093
221 => 1.0021174939388
222 => 0.98475489913507
223 => 0.97111265563434
224 => 0.96026383709854
225 => 0.93179329752913
226 => 0.94140126887235
227 => 0.89602517106213
228 => 0.92505519041094
301 => 0.85263384266164
302 => 0.91294849307923
303 => 0.88012197102758
304 => 0.90216409771878
305 => 0.90208719481525
306 => 0.86150065111411
307 => 0.83809117972685
308 => 0.85300860600507
309 => 0.86900127112209
310 => 0.87159602723155
311 => 0.89233093500703
312 => 0.89811760207182
313 => 0.88058373071186
314 => 0.85113307120136
315 => 0.85797378770763
316 => 0.83795255282519
317 => 0.80286610879941
318 => 0.82806580544927
319 => 0.83667008983798
320 => 0.8404702319993
321 => 0.80596674400527
322 => 0.79512499897038
323 => 0.78935294488485
324 => 0.84667910417758
325 => 0.84981956059012
326 => 0.83375254156776
327 => 0.9063769910861
328 => 0.88993984145234
329 => 0.90830416479268
330 => 0.85735306438568
331 => 0.85929946503598
401 => 0.8351783975757
402 => 0.84868458358315
403 => 0.83913884663778
404 => 0.84759341722448
405 => 0.85266105197465
406 => 0.8767781614051
407 => 0.91322387172908
408 => 0.87317586949092
409 => 0.8557263814178
410 => 0.86655194567872
411 => 0.89538184988172
412 => 0.93906063052491
413 => 0.91320191326676
414 => 0.92467757287643
415 => 0.92718449398459
416 => 0.90811723322017
417 => 0.93976366762655
418 => 0.95672324892011
419 => 0.97412027003644
420 => 0.98922561601828
421 => 0.96717151723388
422 => 0.99077256426406
423 => 0.97175428650337
424 => 0.95469292527861
425 => 0.95471880032096
426 => 0.94401595919795
427 => 0.92327785587735
428 => 0.91945343144545
429 => 0.93934857031179
430 => 0.95530258760593
501 => 0.95661663688486
502 => 0.9654496006059
503 => 0.97067685754925
504 => 1.0219110817053
505 => 1.0425179104926
506 => 1.0677155506664
507 => 1.0775314515753
508 => 1.1070737941158
509 => 1.0832159532026
510 => 1.0780541592482
511 => 1.0063940994715
512 => 1.0181284302455
513 => 1.0369162260091
514 => 1.0067039033037
515 => 1.0258666681422
516 => 1.0296498038442
517 => 1.005677300139
518 => 1.0184820501587
519 => 0.98447643045032
520 => 0.91396510131209
521 => 0.93984216689262
522 => 0.95889639728598
523 => 0.93170366114499
524 => 0.9804455881735
525 => 0.95197156064105
526 => 0.94294666090762
527 => 0.90773730943847
528 => 0.92435476799969
529 => 0.94683011864282
530 => 0.93294296498533
531 => 0.96176089399124
601 => 1.0025747669246
602 => 1.031661163285
603 => 1.0338940556303
604 => 1.0151934514078
605 => 1.0451612890201
606 => 1.0453795720005
607 => 1.0115757287516
608 => 0.99087106298221
609 => 0.98616691935643
610 => 0.99791879243533
611 => 1.0121877358686
612 => 1.0346858826841
613 => 1.0482810416138
614 => 1.0837300057874
615 => 1.0933214790914
616 => 1.1038596002994
617 => 1.1179417800695
618 => 1.1348510474803
619 => 1.0978545330306
620 => 1.0993244735198
621 => 1.0648738315158
622 => 1.0280583798127
623 => 1.0559967185445
624 => 1.0925223799549
625 => 1.0841433528701
626 => 1.0832005411551
627 => 1.0847860889456
628 => 1.0784685761571
629 => 1.0498946999526
630 => 1.0355450782047
701 => 1.0540597512385
702 => 1.0638994759626
703 => 1.0791600308956
704 => 1.0772788453889
705 => 1.1165883960324
706 => 1.1318628987534
707 => 1.1279550273245
708 => 1.1286741697156
709 => 1.1563279272866
710 => 1.1870845931345
711 => 1.2158922694005
712 => 1.2451966750169
713 => 1.209869070276
714 => 1.1919318912923
715 => 1.210438481399
716 => 1.2006186241893
717 => 1.2570464364754
718 => 1.2609533757684
719 => 1.3173771076814
720 => 1.3709299480798
721 => 1.3372943685244
722 => 1.3690112050654
723 => 1.4033155496962
724 => 1.4694941961682
725 => 1.4472075562293
726 => 1.4301363393122
727 => 1.4140041218131
728 => 1.4475727055114
729 => 1.4907581521679
730 => 1.5000598837526
731 => 1.5151322424549
801 => 1.4992855002398
802 => 1.5183711557765
803 => 1.5857519064829
804 => 1.5675450328557
805 => 1.541688345404
806 => 1.5948789767707
807 => 1.6141284594889
808 => 1.7492314102378
809 => 1.9198044663829
810 => 1.8491861010958
811 => 1.8053510029217
812 => 1.815653290775
813 => 1.8779407966169
814 => 1.8979455665866
815 => 1.843565705751
816 => 1.8627735919242
817 => 1.9686109332163
818 => 2.025389271151
819 => 1.9482766618875
820 => 1.7355260312599
821 => 1.5393602336032
822 => 1.5913922366027
823 => 1.5854934222036
824 => 1.6992024419447
825 => 1.5671108049411
826 => 1.5693348893403
827 => 1.6853952911897
828 => 1.6544323657553
829 => 1.6042763919834
830 => 1.5397264277176
831 => 1.4203998486232
901 => 1.3147089698515
902 => 1.5219931222786
903 => 1.5130546527042
904 => 1.5001104241534
905 => 1.5289164040813
906 => 1.6687900658909
907 => 1.6655655252594
908 => 1.6450526429364
909 => 1.6606114833861
910 => 1.6015488520267
911 => 1.6167706369592
912 => 1.5393291599386
913 => 1.5743359417936
914 => 1.6041687797899
915 => 1.6101581637004
916 => 1.6236525514762
917 => 1.5083444854056
918 => 1.5601144218044
919 => 1.5905244092516
920 => 1.4531309796403
921 => 1.5878085829017
922 => 1.5063372285126
923 => 1.4786846271743
924 => 1.5159152119232
925 => 1.5014064168386
926 => 1.4889326068099
927 => 1.4819720064867
928 => 1.5093100389365
929 => 1.5080346870467
930 => 1.4633043598753
1001 => 1.4049554715216
1002 => 1.42453927369
1003 => 1.4174242947631
1004 => 1.3916386932814
1005 => 1.4090150753147
1006 => 1.3324982828257
1007 => 1.2008551183451
1008 => 1.2878226251401
1009 => 1.284474470731
1010 => 1.2827861794512
1011 => 1.3481398572023
1012 => 1.3418576090524
1013 => 1.3304552671444
1014 => 1.3914292803304
1015 => 1.3691729453013
1016 => 1.4377617256089
1017 => 1.4829387323637
1018 => 1.4714803821276
1019 => 1.5139695753399
1020 => 1.4249904449383
1021 => 1.4545457428346
1022 => 1.4606370487692
1023 => 1.3906768704724
1024 => 1.3428854625436
1025 => 1.3396983204967
1026 => 1.2568346052098
1027 => 1.3010997330635
1028 => 1.3400512137593
1029 => 1.321396477263
1030 => 1.3154909449827
1031 => 1.3456610286492
1101 => 1.3480055025394
1102 => 1.2945512493871
1103 => 1.3056660812935
1104 => 1.3520167780303
1105 => 1.3044981626594
1106 => 1.2121772551154
1107 => 1.1892803936081
1108 => 1.1862255302102
1109 => 1.1241274258294
1110 => 1.1908104713796
1111 => 1.1617015350024
1112 => 1.2536563162394
1113 => 1.2011322383602
1114 => 1.1988680303414
1115 => 1.1954453478338
1116 => 1.1419949441529
1117 => 1.1536971856087
1118 => 1.1925972185093
1119 => 1.2064771884885
1120 => 1.2050293939044
1121 => 1.1924065871263
1122 => 1.1981852434301
1123 => 1.1795701780582
1124 => 1.1729968110363
1125 => 1.1522494565681
1126 => 1.1217565771028
1127 => 1.1259967990162
1128 => 1.0655824258996
1129 => 1.0326654689922
1130 => 1.0235544891587
1201 => 1.0113709061514
1202 => 1.0249306572787
1203 => 1.0654112795712
1204 => 1.0165830606433
1205 => 0.93287050419279
1206 => 0.93790177147473
1207 => 0.94920553526056
1208 => 0.92814104622754
1209 => 0.90820527516633
1210 => 0.92553781066382
1211 => 0.8900676969326
1212 => 0.95349192904451
1213 => 0.95177648131024
1214 => 0.97541711291336
1215 => 0.99020008500938
1216 => 0.95613012037209
1217 => 0.94756161640079
1218 => 0.95244262567964
1219 => 0.87177041488287
1220 => 0.96882447220144
1221 => 0.96966379971938
1222 => 0.9624769679402
1223 => 1.0141552572545
1224 => 1.1232125665703
1225 => 1.0821808199856
1226 => 1.0662920875169
1227 => 1.0360875954793
1228 => 1.0763332877541
1229 => 1.073243046518
1230 => 1.0592678037091
1231 => 1.0508155332529
]
'min_raw' => 0.78935294488485
'max_raw' => 2.025389271151
'avg_raw' => 1.4073711080179
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$0.789352'
'max' => '$2.02'
'avg' => '$1.40'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 0.48540136890371
'max_diff' => 1.1772701184966
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.024776886966529
]
1 => [
'year' => 2028
'avg' => 0.042524330816243
]
2 => [
'year' => 2029
'avg' => 0.11616880752504
]
3 => [
'year' => 2030
'avg' => 0.08962406200179
]
4 => [
'year' => 2031
'avg' => 0.088021935873485
]
5 => [
'year' => 2032
'avg' => 0.15433015510893
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.024776886966529
'min' => '$0.024776'
'max_raw' => 0.15433015510893
'max' => '$0.15433'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.15433015510893
]
1 => [
'year' => 2033
'avg' => 0.39695302852286
]
2 => [
'year' => 2034
'avg' => 0.25160790614768
]
3 => [
'year' => 2035
'avg' => 0.29677210229277
]
4 => [
'year' => 2036
'avg' => 0.57603536431777
]
5 => [
'year' => 2037
'avg' => 1.4073711080179
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.15433015510893
'min' => '$0.15433'
'max_raw' => 1.4073711080179
'max' => '$1.40'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 1.4073711080179
]
]
]
]
'prediction_2025_max_price' => '$0.042363'
'last_price' => 0.04107721
'sma_50day_nextmonth' => '$0.036716'
'sma_200day_nextmonth' => '$0.066073'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'increase'
'sma_200day_direction_label' => 'aumentar'
'sma_200day_date_nextmonth' => '4 de fev. de 2026'
'sma_50day_date_nextmonth' => '4 de fev. de 2026'
'daily_sma3' => '$0.039113'
'daily_sma3_action' => 'BUY'
'daily_sma5' => '$0.037617'
'daily_sma5_action' => 'BUY'
'daily_sma10' => '$0.035871'
'daily_sma10_action' => 'BUY'
'daily_sma21' => '$0.03517'
'daily_sma21_action' => 'BUY'
'daily_sma50' => '$0.040026'
'daily_sma50_action' => 'BUY'
'daily_sma100' => '$0.0598019'
'daily_sma100_action' => 'SELL'
'daily_sma200' => '$0.071215'
'daily_sma200_action' => 'SELL'
'daily_ema3' => '$0.039252'
'daily_ema3_action' => 'BUY'
'daily_ema5' => '$0.038127'
'daily_ema5_action' => 'BUY'
'daily_ema10' => '$0.036771'
'daily_ema10_action' => 'BUY'
'daily_ema21' => '$0.036694'
'daily_ema21_action' => 'BUY'
'daily_ema50' => '$0.042515'
'daily_ema50_action' => 'SELL'
'daily_ema100' => '$0.053887'
'daily_ema100_action' => 'SELL'
'daily_ema200' => '$0.074157'
'daily_ema200_action' => 'SELL'
'weekly_sma21' => '$0.067249'
'weekly_sma21_action' => 'SELL'
'weekly_sma50' => '$0.085666'
'weekly_sma50_action' => 'SELL'
'weekly_sma100' => '—'
'weekly_sma100_action' => '—'
'weekly_sma200' => '—'
'weekly_sma200_action' => '—'
'weekly_ema3' => '$0.03927'
'weekly_ema3_action' => 'BUY'
'weekly_ema5' => '$0.0400054'
'weekly_ema5_action' => 'BUY'
'weekly_ema10' => '$0.046363'
'weekly_ema10_action' => 'SELL'
'weekly_ema21' => '$0.060582'
'weekly_ema21_action' => 'SELL'
'weekly_ema50' => '$0.114197'
'weekly_ema50_action' => 'SELL'
'weekly_ema100' => '$0.201502'
'weekly_ema100_action' => 'SELL'
'weekly_ema200' => '$0.100751'
'weekly_ema200_action' => 'SELL'
'rsi_14' => '61.13'
'rsi_14_action' => 'NEUTRAL'
'stoch_rsi_14' => 127.04
'stoch_rsi_14_action' => 'SELL'
'momentum_10' => 0.01
'momentum_10_action' => 'BUY'
'vwma_10' => '0.036875'
'vwma_10_action' => 'BUY'
'hma_9' => '0.03980039'
'hma_9_action' => 'BUY'
'stochastic_fast_14' => 100
'stochastic_fast_14_action' => 'SELL'
'cci_20' => 283.51
'cci_20_action' => 'SELL'
'adx_14' => 24.68
'adx_14_action' => 'NEUTRAL'
'ao_5_34' => '0.000658'
'ao_5_34_action' => 'BUY'
'macd_12_26' => 0
'macd_12_26_action' => 'BUY'
'williams_percent_r_14' => -0
'williams_percent_r_14_action' => 'SELL'
'ultimate_oscillator' => 77.81
'ultimate_oscillator_action' => 'SELL'
'ichimoku_cloud' => '-0.013498'
'ichimoku_cloud_action' => 'SELL'
'sell_signals' => 13
'buy_signals' => 20
'sell_pct' => 39.39
'buy_pct' => 60.61
'overall_action' => 'bullish'
'overall_action_label' => 'Altista'
'overall_action_dir' => 1
'last_updated' => 1767712502
'last_updated_date' => '6 de janeiro de 2026'
]
Previsão de preço de Wormhole para 2026
A previsão de preço para Wormhole em 2026 sugere que o preço médio poderia variar entre $0.014192 na extremidade inferior e $0.042363 na extremidade superior. No mercado de criptomoedas, comparado ao preço médio de hoje, Wormhole poderia potencialmente ganhar 3.13% até 2026 se W atingir a meta de preço prevista.
Previsão de preço de Wormhole 2027-2032
A previsão de preço de W para 2027-2032 está atualmente dentro de uma faixa de preço entre $0.024776 na extremidade inferior e $0.15433 na extremidade superior. Considerando a volatilidade de preços no mercado, se Wormhole atingir a meta de preço superior, poderia ganhar 275.71% até 2032 em comparação com o preço de hoje.
| Previsão de Preço de Wormhole | Potencial Mínimo ($) | Preço Médio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2027 | $0.013662 | $0.024776 | $0.035891 |
| 2028 | $0.024656 | $0.042524 | $0.060391 |
| 2029 | $0.054163 | $0.116168 | $0.178173 |
| 2030 | $0.046063 | $0.089624 | $0.133184 |
| 2031 | $0.054461 | $0.088021 | $0.121582 |
| 2032 | $0.083131 | $0.15433 | $0.225528 |
Previsão de preço de Wormhole 2032-2037
A previsão de preço de Wormhole para 2032-2037 é atualmente estimada entre $0.15433 na extremidade inferior e $1.40 na extremidade superior. Comparado ao preço atual, Wormhole poderia potencialmente ganhar 3326.16% até 2037 se atingir a meta de preço superior. Por favor, note que esta informação é apenas para fins gerais e não deve ser considerada como aconselhamento de investimento a longo prazo.
| Previsão de Preço de Wormhole | Potencial Mínimo ($) | Preço Médio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2032 | $0.083131 | $0.15433 | $0.225528 |
| 2033 | $0.19318 | $0.396953 | $0.600725 |
| 2034 | $0.1553076 | $0.2516079 | $0.3479082 |
| 2035 | $0.183621 | $0.296772 | $0.409922 |
| 2036 | $0.303951 | $0.576035 | $0.848119 |
| 2037 | $0.789352 | $1.40 | $2.02 |
Wormhole Histograma de preços potenciais
Previsão de preço de Wormhole baseada na análise técnica
Em 6 de janeiro de 2026, o sentimento geral de previsão de preço para Wormhole é Altista, com 20 indicadores técnicos mostrando sinais de alta e 13 indicando sinais de baixa. A previsão de preço de W foi atualizada pela última vez em 6 de janeiro de 2026.
Médias Móveis Simples de 50 e 200 dias e Índice de Força Relativa de 14 dias - RSI (14) de Wormhole
De acordo com nossos indicadores técnicos, o SMA de 200 dias de Wormhole está projetado para aumentar no próximo mês, alcançando $0.066073 até 4 de fev. de 2026. O SMA de 50 dias de curto prazo para Wormhole é esperado para alcançar $0.036716 até 4 de fev. de 2026.
O oscilador de momentum Índice de Força Relativa (RSI) é uma ferramenta comumente usada para identificar se uma criptomoeda está sobrevendida (abaixo de 30) ou sobrecomprada (acima de 70). No momento, o RSI está em 61.13, sugerindo que o mercado de W está em um estado NEUTRAL.
Médias Móveis e Osciladores Populares de W para Sábado, 19 de Outubro de 2024
Médias móveis (MA) são indicadores amplamente utilizados nos mercados financeiros, projetados para suavizar movimentos de preços ao longo de um período definido. Como indicadores atrasados, eles se baseiam em dados históricos de preços. A tabela abaixo destaca dois tipos: a média móvel simples (SMA) e a média móvel exponencial (EMA).
Média Móvel Simples Diária (SMA)
| Período | Valor | Ação |
|---|---|---|
| SMA 3 | $0.039113 | BUY |
| SMA 5 | $0.037617 | BUY |
| SMA 10 | $0.035871 | BUY |
| SMA 21 | $0.03517 | BUY |
| SMA 50 | $0.040026 | BUY |
| SMA 100 | $0.0598019 | SELL |
| SMA 200 | $0.071215 | SELL |
Média Móvel Exponencial Diária (EMA)
| Período | Valor | Ação |
|---|---|---|
| EMA 3 | $0.039252 | BUY |
| EMA 5 | $0.038127 | BUY |
| EMA 10 | $0.036771 | BUY |
| EMA 21 | $0.036694 | BUY |
| EMA 50 | $0.042515 | SELL |
| EMA 100 | $0.053887 | SELL |
| EMA 200 | $0.074157 | SELL |
Média Móvel Simples Semanal (SMA)
| Período | Valor | Ação |
|---|---|---|
| SMA 21 | $0.067249 | SELL |
| SMA 50 | $0.085666 | SELL |
| SMA 100 | — | — |
| SMA 200 | — | — |
Média Móvel Exponencial Semanal (EMA)
| Período | Valor | Ação |
|---|---|---|
| EMA 21 | $0.060582 | SELL |
| EMA 50 | $0.114197 | SELL |
| EMA 100 | $0.201502 | SELL |
| EMA 200 | $0.100751 | SELL |
Osciladores de Wormhole
Um oscilador é uma ferramenta de análise técnica que define limites altos e baixos entre dois extremos, criando um indicador de tendência que flutua dentro desses limites. Os traders usam esse indicador para identificar condições de sobrecompra ou sobrevenda de curto prazo.
| Período | Valor | Ação |
|---|---|---|
| RSI (14) | 61.13 | NEUTRAL |
| Stoch RSI (14) | 127.04 | SELL |
| Estocástico Rápido (14) | 100 | SELL |
| Índice de Canal de Commodities (20) | 283.51 | SELL |
| Índice Direcional Médio (14) | 24.68 | NEUTRAL |
| Oscilador Impressionante (5, 34) | 0.000658 | BUY |
| Momentum (10) | 0.01 | BUY |
| MACD (12, 26) | 0 | BUY |
| Williams Percent Range (14) | -0 | SELL |
| Oscilador Ultimate (7, 14, 28) | 77.81 | SELL |
| VWMA (10) | 0.036875 | BUY |
| Média Móvel de Hull (9) | 0.03980039 | BUY |
| Nuvem Ichimoku B/L (9, 26, 52, 26) | -0.013498 | SELL |
Previsão do preço de Wormhole com base nos fluxos financeiros mundiais
Definições dos fluxos financeiros mundiais, usadas na previsão do preço do Wormhole
M0: o total de todas as moedas físicas, mais as contas no Banco Central que podem ser trocadas por moedas físicas.
M1: o valor de M0, mais o valor em contas de demanda, incluindo contas 'correntes'.
M2: o valor de M1, mais a maioria das contas de poupança, do mercado de moedas e de certificados de depósito (CD) de menos de US$ 100.000.
Previsões de preço de Wormhole por empresas de Internet ou nichos tecnológicos
| Comparação | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Facebook stock | $0.05772 | $0.0811067 | $0.113968 | $0.160144 | $0.22503 | $0.3162049 |
| Amazon.com stock | $0.08571 | $0.178839 | $0.373158 | $0.778617 | $1.62 | $3.38 |
| Apple stock | $0.058264 | $0.082644 | $0.117224 | $0.166274 | $0.235847 | $0.334531 |
| Netflix stock | $0.064813 | $0.102265 | $0.161358 | $0.254598 | $0.401717 | $0.633846 |
| Google stock | $0.053194 | $0.068887 | $0.0892084 | $0.115524 | $0.1496036 | $0.193736 |
| Tesla stock | $0.093118 | $0.211093 | $0.478533 | $1.08 | $2.45 | $5.57 |
| Kodak stock | $0.0308035 | $0.023099 | $0.017322 | $0.012989 | $0.00974 | $0.0073046 |
| Nokia stock | $0.027211 | $0.018026 | $0.011941 | $0.007911 | $0.00524 | $0.003471 |
Este cálculo mostra quanto a criptomoeda pode custar, se assumirmos que sua capitalização se comportará da mesma forma que a de algumas empresas de Internet ou nichos tecnológicos. Se você extrapolar os dados, poderá obter uma imagem em potencial do preço futuro para 2024, 2025, 2026, 2027, 2028, 2029 e 2030.
Visão geral da previsão para Wormhole
Você pode fazer perguntas como: 'Devo investir em Wormhole agora?', 'Devo comprar W hoje?', 'Wormhole será um bom ou mau investimento no curto ou no longo prazo?'.
Atualizamos a previsão para Wormhole regularmente com novos valores. Veja nossas previsões semelhantes. Fazemos previsões de preços futuros para uma enorme quantidade de moedas digitais, como Wormhole, com métodos de análise técnica.
Se você estiver tentando encontrar criptomoedas com bom retorno, você deve explorar o máximo de fontes de informações disponíveis sobre Wormhole para poder tomar sozinho uma decisão de tão grande responsabilidade sobre o seu investimento.
O preço de Wormhole é de $0.04107 USD hoje, mas o preço pode tanto subir quanto descer e seu investimento pode ser perdido, porque criptomoedas são ativos de alto risco
Previsão de curto prazo para Wormhole
com base no histórico de preços de 4 horas
Previsão de longo prazo para Wormhole
com base no histórico de preços de 1 mês
Previsão do preço de Wormhole com base no padrão de crescimento do Bitcoin
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| Se Wormhole tiver 1% da média anterior do crescimento anual do Bitcoin | $0.042144 | $0.04324 | $0.044364 | $0.045517 |
| Se Wormhole tiver 2% da média anterior do crescimento anual do Bitcoin | $0.043212 | $0.045459 | $0.047822 | $0.0503085 |
| Se Wormhole tiver 5% da média anterior do crescimento anual do Bitcoin | $0.046415 | $0.052448 | $0.059264 | $0.066967 |
| Se Wormhole tiver 10% da média anterior do crescimento anual do Bitcoin | $0.051754 | $0.0652071 | $0.082156 | $0.103511 |
| Se Wormhole tiver 20% da média anterior do crescimento anual do Bitcoin | $0.062431 | $0.094887 | $0.144216 | $0.219189 |
| Se Wormhole tiver 50% da média anterior do crescimento anual do Bitcoin | $0.094463 | $0.217234 | $0.499565 | $1.14 |
| Se Wormhole tiver 100% da média anterior do crescimento anual do Bitcoin | $0.14785 | $0.532159 | $1.91 | $6.89 |
Perguntas Frequentes sobre Wormhole
W é um bom investimento?
A decisão de adquirir Wormhole depende inteiramente da sua tolerância individual ao risco. Como você pode perceber, o valor de Wormhole experimentou uma escalada de 7.3685% nas últimas 24 horas, e Wormhole registrou um declínio de -87.07% durante os últimos 30 dias. Consequentemente, a decisão de investir ou não em Wormhole dependerá de quão alinhado esse investimento está com suas aspirações de negociação.
Wormhole pode subir?
Parece que o valor médio de Wormhole pode potencialmente subir para $0.042363 até o final deste ano. Observando as perspectivas de Wormhole em um horizonte de cinco anos mais longo, a moeda digital poderia potencialmente crescer até $0.133184. No entanto, dada a imprevisibilidade do mercado, é vital conduzir uma pesquisa aprofundada antes de investir quaisquer fundos em um projeto, rede ou ativo específico.
Qual será o preço de Wormhole na próxima semana?
Com base na nossa nova previsão experimental de Wormhole, o preço de Wormhole aumentará 0.86% na próxima semana e atingirá $0.041428 até 13 de janeiro de 2026.
Qual será o preço de Wormhole no próximo mês?
Com base na nossa nova previsão experimental de Wormhole, o preço de Wormhole diminuirá -11.62% no próximo mês e atingirá $0.036304 até 5 de fevereiro de 2026.
Até onde o preço de Wormhole pode subir este ano em 2026?
De acordo com nossa previsão mais recente sobre o valor de Wormhole em 2026, espera-se que W fluctue dentro do intervalo de $0.014192 e $0.042363. No entanto, é crucial lembrar que o mercado de criptomoedas é excepcionalmente instável, e essa previsão de preço de Wormhole não considera flutuações repentinas e extremas de preço.
Onde estará Wormhole em 5 anos?
O futuro de Wormhole parece seguir uma tendência de alta, com um preço máximo de $0.133184 projetada após um período de cinco anos. Com base na previsão de Wormhole para 2030, o valor de Wormhole pode potencialmente atingir seu pico mais alto de aproximadamente $0.133184, enquanto seu pico mais baixo está previsto para cerca de $0.046063.
Quanto será Wormhole em 2026?
Com base na nossa nova simulação experimental de previsão de preços de Wormhole, espera-se que o valor de W em 2026 aumente 3.13% para $0.042363 se o melhor cenário ocorrer. O preço ficará entre $0.042363 e $0.014192 durante 2026.
Quanto será Wormhole em 2027?
De acordo com nossa última simulação experimental para previsão de preços de Wormhole, o valor de W pode diminuir -12.62% para $0.035891 em 2027, assumindo as condições mais favoráveis. O preço está projetado para flutuar entre $0.035891 e $0.013662 ao longo do ano.
Quanto será Wormhole em 2028?
Nosso novo modelo experimental de previsão de preços de Wormhole sugere que o valor de W em 2028 pode aumentar 47.02%, alcançando $0.060391 no melhor cenário. O preço é esperado para variar entre $0.060391 e $0.024656 durante o ano.
Quanto será Wormhole em 2029?
Com base no nosso modelo de previsão experimental, o valor de Wormhole pode experimentar um 333.75% crescimento em 2029, potencialmente alcançando $0.178173 sob condições ótimas. A faixa de preço prevista para 2029 está entre $0.178173 e $0.054163.
Quanto será Wormhole em 2030?
Usando nossa nova simulação experimental para previsões de preços de Wormhole, espera-se que o valor de W em 2030 aumente 224.23%, alcançando $0.133184 no melhor cenário. O preço está previsto para variar entre $0.133184 e $0.046063 ao longo de 2030.
Quanto será Wormhole em 2031?
Nossa simulação experimental indica que o preço de Wormhole poderia aumentar 195.98% em 2031, potencialmente atingindo $0.121582 sob condições ideais. O preço provavelmente oscilará entre $0.121582 e $0.054461 durante o ano.
Quanto será Wormhole em 2032?
Com base nos achados da nossa mais recente previsão experimental de preços de Wormhole, W poderia ver um 449.04% aumento em valor, atingindo $0.225528 se o cenário mais positivo se desenrolar em 2032. O preço é esperado para permanecer dentro de uma faixa de $0.225528 e $0.083131 ao longo do ano.
Quanto será Wormhole em 2033?
De acordo com nossa previsão experimental de preços de Wormhole, espera-se que o valor de W seja aumentar 1362.43% em 2033, com o preço potencial mais alto sendo $0.600725. Ao longo do ano, o preço de W poderia variar entre $0.600725 e $0.19318.
Quanto será Wormhole em 2034?
Os resultados da nossa nova simulação de previsão de preços de Wormhole sugerem que W pode aumentar 746.96% em 2034, atingindo potencialmente $0.3479082 nas melhores circunstâncias. A faixa de preço prevista para o ano é entre $0.3479082 e $0.1553076.
Quanto será Wormhole em 2035?
Com base em nossa previsão experimental para o preço de Wormhole, W poderia aumentar 897.93%, com o valor potencialmente atingindo $0.409922 em 2035. A faixa de preço esperada para o ano está entre $0.409922 e $0.183621.
Quanto será Wormhole em 2036?
Nossa recente simulação de previsão de preços de Wormhole sugere que o valor de W pode aumentar 1964.7% em 2036, possivelmente atingindo $0.848119 se as condições forem ideais. A faixa de preço esperada para 2036 está entre $0.848119 e $0.303951.
Quanto será Wormhole em 2037?
De acordo com a simulação experimental, o valor de Wormhole poderia aumentar 4830.69% em 2037, com um pico de $2.02 sob condições favoráveis. O preço é esperado para cair entre $2.02 e $0.789352 ao longo do ano.
Previsões relacionadas
Previsão de Preço do ORDI
Previsão de Preço do ether.fi Staked ETH
Previsão de Preço do Bonk
Previsão de Preço do BitTorrent
Previsão de Preço do Flare
Previsão de Preço do Elrond
Previsão de Preço do dYdX
Previsão de Preço do NEO
Previsão de Preço do eCash
Previsão de Preço do Axie Infinity
Previsão de Preço do The Sandbox
Previsão de Preço do Starknet
Previsão de Preço do Conflux Token
Previsão de Preço do SingularityNET
Previsão de Preço do Chiliz
Previsão de Preço do Synthetix Network Token
Previsão de Preço do WhiteBIT Coin
Previsão de Preço do Tokenize Xchange
Previsão de Preço do Tezos
Previsão de Preço do EOS
Previsão de Preço do Worldcoin
Previsão de Preço do Ronin
Previsão de Preço do Pyth Network
Previsão de Preço do Decentraland
Previsão de Preço do Mina Protocol
Como ler e prever os movimentos de preço de Wormhole?
Traders de Wormhole utilizam indicadores e padrões de gráfico para prever a direção do mercado. Eles também identificam níveis-chave de suporte e resistência para avaliar quando uma tendência de baixa pode desacelerar ou uma tendência de alta pode estagnar.
Indicadores de Previsão de Preço de Wormhole
Médias móveis são ferramentas populares para a previsão de preço de Wormhole. Uma média móvel simples (SMA) calcula o preço médio de fechamento de W em um período específico, como uma SMA de 12 dias. Uma média móvel exponencial (EMA) dá mais peso aos preços recentes, reagindo mais rapidamente às mudanças de preço.
Médias móveis comumente usadas no mercado de criptomoedas incluem as de 50 dias, 100 dias e 200 dias, que ajudam a identificar níveis-chave de resistência e suporte. Um movimento de preço de W acima dessas médias é visto como altista, enquanto uma queda abaixo indica fraqueza.
Traders também usam RSI e níveis de retração de Fibonacci para avaliar a direção futura de W.
Como ler gráficos de Wormhole e prever movimentos de preço?
A maioria dos traders prefere gráficos de velas em vez de gráficos de linha simples porque eles fornecem informações mais detalhadas. Velas podem representar a ação de preço de Wormhole em diferentes períodos de tempo, como 5 minutos para tendências de curto prazo e semanal para tendências de longo prazo. Opções populares incluem gráficos de 1 hora, 4 horas e 1 dia.
Por exemplo, um gráfico de velas de 1 hora mostra os preços de abertura, fechamento, máximo e mínimo de W dentro de cada hora. A cor da vela é crucial: verde indica que o preço fechou mais alto do que abriu, enquanto vermelho significa o oposto. Alguns gráficos usam velas vazias e preenchidas para transmitir a mesma informação.
O que afeta o preço de Wormhole?
A ação de preço de Wormhole é impulsionada pela oferta e demanda, influenciada por fatores como reduções pela metade das recompensas de bloco, hard forks e atualizações de protocolo. Eventos do mundo real, como regulamentações, adoção por empresas e governos e hacks de exchanges de criptomoedas, também impactam o preço de W. A capitalização de mercado de Wormhole pode mudar rapidamente.
Traders frequentemente monitoram a atividade de "baleias" de W, grandes detentores de Wormhole, pois suas ações podem influenciar significativamente os movimentos de preço no relativamente pequeno mercado de Wormhole.
Padrões de previsão de preço altistas e baixistas
Traders frequentemente identificam padrões de velas para ganhar vantagem em previsões de preço de criptomoedas. Certas formações indicam tendências altistas, enquanto outras sugerem movimentos baixistas.
Padrões de velas altistas comumente seguidos:
- Martelo
- Engolfo de Alta
- Linha de Perfuração
- Estrela da Manhã
- Três Soldados Brancos
Padrões de velas baixistas comuns:
- Harami de Baixa
- Nuvem Negra
- Estrela da Noite
- Estrela Cadente
- Homem Enforcado


