Previsão de Preço Wormhole - Projeção W
Previsão de Preço Wormhole até $0.040653 até 2026
| Ano | Preço Mínimo | Preço Máximo |
|---|---|---|
| 2026 | $0.013619 | $0.040653 |
| 2027 | $0.01311 | $0.034442 |
| 2028 | $0.023661 | $0.057954 |
| 2029 | $0.051977 | $0.170981 |
| 2030 | $0.0442043 | $0.1278077 |
| 2031 | $0.052263 | $0.116673 |
| 2032 | $0.079775 | $0.216424 |
| 2033 | $0.185381 | $0.576475 |
| 2034 | $0.149038 | $0.333863 |
| 2035 | $0.1762091 | $0.393374 |
Calculadora de lucro do investimento
Se você abrir um short de $10,000.00 em Wormhole hoje e fechar em Apr 06, 2026, nossa previsão mostra que pode lucrar cerca de $3,954.43, com um retorno de 39.54% nos próximos 90 dias.
Previsão de preço de longo prazo de Wormhole para os anos 2027, 2028, 2029, 2030, 2031, 2032 e 2037
[
'name' => 'Wormhole'
'name_with_ticker' => 'Wormhole <small>W</small>'
'name_lang' => 'Wormhole'
'name_lang_with_ticker' => 'Wormhole <small>W</small>'
'name_with_lang' => 'Wormhole'
'name_with_lang_with_ticker' => 'Wormhole <small>W</small>'
'image' => '/uploads/coins/wormhole.png?1758150530'
'price_for_sd' => 0.03941
'ticker' => 'W'
'marketcap' => '$204.37M'
'low24h' => '$0.03762'
'high24h' => '$0.04038'
'volume24h' => '$33.51M'
'current_supply' => '5.19B'
'max_supply' => '10B'
'algo' => null
'proof' => null
'ico_price_and_roi' => '—'
'price' => '$0.03941'
'change_24h_pct' => '4.7658%'
'ath_price' => '$1.66'
'ath_days' => 643
'ath_exchange' => null
'ath_pair' => null
'ath_date' => '3 de abr. de 2024'
'ath_pct' => '-97.62%'
'fdv' => '$394.13M'
'new_prediction' => true
'change_24h_pct_is_increased' => true
'change_30d_pct' => '-87.6%'
'change_30d_pct_is_increased' => false
'max_price' => '$1.94'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.039756'
'next_week_prediction_price_date' => '13 de janeiro de 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.034839'
'next_month_prediction_price_date' => '5 de fevereiro de 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.013619'
'current_year_max_price_prediction' => '$0.040653'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.0442043'
'grand_prediction_max_price' => '$0.1278077'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.040165938747122
107 => 0.040315903782168
108 => 0.040653782663531
109 => 0.037766644615971
110 => 0.039062884837406
111 => 0.039824304526215
112 => 0.036384182671489
113 => 0.039756304377982
114 => 0.037716385965865
115 => 0.037024007018246
116 => 0.037956204057225
117 => 0.037592925964544
118 => 0.037280600792862
119 => 0.037106317980635
120 => 0.037790820603229
121 => 0.037758887737727
122 => 0.036638908590931
123 => 0.035177941450125
124 => 0.035668289977191
125 => 0.035490141760266
126 => 0.034844509640552
127 => 0.03527958773532
128 => 0.033363723993948
129 => 0.03006758000485
130 => 0.032245113687669
131 => 0.032161281009582
201 => 0.032119008771781
202 => 0.033755365151809
203 => 0.033598067243034
204 => 0.033312569998342
205 => 0.034839266259764
206 => 0.034282001587383
207 => 0.035999359999593
208 => 0.037130523321652
209 => 0.036843623713878
210 => 0.037907488285661
211 => 0.03567958661689
212 => 0.036419606183355
213 => 0.036572123190381
214 => 0.034820427064881
215 => 0.033623803126246
216 => 0.03354400195205
217 => 0.031469220947393
218 => 0.032577552213034
219 => 0.033552837860933
220 => 0.033085751720813
221 => 0.032937886202652
222 => 0.033693299066817
223 => 0.033752001116036
224 => 0.032413588172873
225 => 0.032691886605783
226 => 0.033852437334279
227 => 0.032662643705091
228 => 0.030351069035265
301 => 0.029777766557127
302 => 0.029701277438483
303 => 0.028146435648582
304 => 0.029816077370069
305 => 0.029087234015024
306 => 0.031389641440728
307 => 0.030074518667224
308 => 0.030017826352961
309 => 0.029932127604998
310 => 0.028593811046725
311 => 0.028886817318533
312 => 0.029860814792136
313 => 0.030208348063584
314 => 0.030172097496116
315 => 0.029856041673153
316 => 0.030000730410438
317 => 0.029534637574745
318 => 0.029370050493578
319 => 0.028850568392173
320 => 0.028087073213701
321 => 0.028193241901056
322 => 0.026680558173122
323 => 0.025856367793942
324 => 0.025628242759639
325 => 0.025323184429769
326 => 0.025662699909728
327 => 0.02667627293018
328 => 0.025453688826003
329 => 0.023357654133695
330 => 0.023483629390172
331 => 0.023766658389086
401 => 0.023239235722033
402 => 0.022740074430897
403 => 0.023174054675304
404 => 0.022285937144637
405 => 0.023873983149636
406 => 0.023831030955648
407 => 0.024422956302206
408 => 0.024793099368939
409 => 0.02394003943536
410 => 0.023725497168984
411 => 0.023847710194314
412 => 0.021827801118486
413 => 0.024257886637247
414 => 0.024278902117725
415 => 0.024098954815006
416 => 0.025392900333274
417 => 0.028123528968546
418 => 0.027096156636675
419 => 0.026698327017281
420 => 0.025942052620001
421 => 0.026949743351246
422 => 0.02687236842551
423 => 0.026522449667766
424 => 0.026310817711269
425 => 0.026700756080104
426 => 0.026262500032113
427 => 0.026183777203423
428 => 0.025706802512844
429 => 0.025536544249273
430 => 0.025410491809102
501 => 0.02527172045813
502 => 0.025577815478708
503 => 0.024884163891926
504 => 0.024047688077771
505 => 0.023978144164618
506 => 0.024170161023197
507 => 0.02408520785725
508 => 0.023977737441543
509 => 0.023772547150133
510 => 0.023711671573868
511 => 0.023909487664097
512 => 0.023686164831623
513 => 0.024015689835962
514 => 0.023926077268232
515 => 0.023425508749463
516 => 0.022801615040875
517 => 0.022796061078207
518 => 0.022661644202083
519 => 0.022490444100625
520 => 0.022442820148928
521 => 0.02313750606959
522 => 0.02457548513516
523 => 0.024293175436666
524 => 0.02449717312609
525 => 0.02550063985412
526 => 0.025819611751664
527 => 0.025593213054051
528 => 0.025283304553095
529 => 0.025296938954325
530 => 0.026355990117775
531 => 0.026422041839781
601 => 0.026588933232196
602 => 0.026803435834952
603 => 0.025629743774836
604 => 0.025241658163841
605 => 0.025057761671182
606 => 0.024491431650692
607 => 0.025102170024324
608 => 0.024746318928433
609 => 0.024794335398873
610 => 0.024763064609508
611 => 0.024780140575023
612 => 0.023873539258413
613 => 0.024203857128623
614 => 0.023654639603194
615 => 0.022919298989205
616 => 0.022916833869623
617 => 0.023096807443141
618 => 0.022989752119246
619 => 0.022701668995289
620 => 0.022742589843333
621 => 0.022384080155527
622 => 0.02278611941046
623 => 0.022797648457726
624 => 0.022642841445351
625 => 0.023262238388301
626 => 0.023516005821208
627 => 0.023414108529375
628 => 0.023508856435575
629 => 0.02430490667919
630 => 0.024434697603007
701 => 0.024492342157859
702 => 0.024415106090797
703 => 0.023523406772699
704 => 0.023562957429255
705 => 0.02327276095372
706 => 0.023027575512044
707 => 0.023037381643883
708 => 0.023163438832781
709 => 0.023713937969853
710 => 0.024872430950125
711 => 0.024916394911879
712 => 0.024969680516044
713 => 0.024752941184705
714 => 0.024687570528458
715 => 0.024773811297646
716 => 0.025208880350369
717 => 0.026327996074068
718 => 0.025932425834087
719 => 0.025610821071565
720 => 0.025892955152318
721 => 0.025849522822026
722 => 0.02548291024561
723 => 0.025472620651631
724 => 0.024768973904356
725 => 0.02450885172315
726 => 0.024291474158727
727 => 0.024054103533161
728 => 0.02391338226959
729 => 0.024129594087105
730 => 0.024179044287914
731 => 0.023706293370181
801 => 0.023641859166969
802 => 0.024027917771427
803 => 0.023858027773321
804 => 0.024032763849442
805 => 0.024073304117961
806 => 0.024066776201008
807 => 0.023889391531243
808 => 0.024002451230064
809 => 0.023735031337633
810 => 0.023444252369784
811 => 0.023258753504466
812 => 0.023096881141622
813 => 0.023186697336605
814 => 0.02286651900128
815 => 0.022764087507894
816 => 0.023964149148027
817 => 0.02485064758443
818 => 0.024837757546073
819 => 0.024759292752622
820 => 0.024642709985556
821 => 0.025200351594809
822 => 0.025006080408541
823 => 0.025147428928452
824 => 0.025183408059148
825 => 0.025292306051544
826 => 0.025331227723727
827 => 0.025213579397551
828 => 0.024818737245372
829 => 0.023834828142609
830 => 0.02337681579926
831 => 0.023225664097156
901 => 0.02323115817445
902 => 0.023079606996053
903 => 0.023124245610138
904 => 0.023064083507764
905 => 0.022950151040642
906 => 0.023179662327813
907 => 0.023206111365614
908 => 0.023152540688733
909 => 0.023165158522425
910 => 0.022721616198183
911 => 0.022755337757772
912 => 0.022567571828853
913 => 0.022532367980733
914 => 0.022057712063075
915 => 0.021216790302469
916 => 0.021682742588095
917 => 0.021119937749865
918 => 0.020906795029742
919 => 0.021915779516309
920 => 0.021814505458731
921 => 0.021641168294932
922 => 0.021384766503044
923 => 0.021289664584316
924 => 0.020711855431734
925 => 0.020677715384507
926 => 0.020964093202686
927 => 0.020831939693256
928 => 0.020646346115568
929 => 0.0199741449905
930 => 0.019218368367779
1001 => 0.019241180513377
1002 => 0.01948157899534
1003 => 0.020180570003801
1004 => 0.019907462124128
1005 => 0.019709319223874
1006 => 0.01967221301481
1007 => 0.020136674908356
1008 => 0.020793985795498
1009 => 0.021102381357243
1010 => 0.020796770721666
1011 => 0.020445701678761
1012 => 0.020467069624705
1013 => 0.020609220996064
1014 => 0.020624159095282
1015 => 0.020395649238831
1016 => 0.020459973424918
1017 => 0.020362259104325
1018 => 0.019762586499215
1019 => 0.019751740323371
1020 => 0.01960457099505
1021 => 0.019600114766277
1022 => 0.019349743025693
1023 => 0.019314714288447
1024 => 0.01881758600104
1025 => 0.019144797345255
1026 => 0.018925321154922
1027 => 0.018594518766892
1028 => 0.018537488310508
1029 => 0.018535773906123
1030 => 0.01887543399257
1031 => 0.019140828219385
1101 => 0.018929139037219
1102 => 0.018880941513862
1103 => 0.019395564968309
1104 => 0.019330074442834
1105 => 0.019273360070141
1106 => 0.020735130815003
1107 => 0.019578025207051
1108 => 0.019073461116705
1109 => 0.018448967240779
1110 => 0.018652305595752
1111 => 0.018695151974807
1112 => 0.017193356776688
1113 => 0.016584078651847
1114 => 0.016374997359564
1115 => 0.016254668119879
1116 => 0.016309503665403
1117 => 0.015761081891851
1118 => 0.016129630393737
1119 => 0.015654743494779
1120 => 0.015575127160753
1121 => 0.016424283763288
1122 => 0.016542438943829
1123 => 0.016038352235701
1124 => 0.016362057506544
1125 => 0.016244677475497
1126 => 0.015662884067653
1127 => 0.015640663838856
1128 => 0.015348740357828
1129 => 0.014891936637543
1130 => 0.014683165079692
1201 => 0.014574435039726
1202 => 0.014619299173322
1203 => 0.014596614494511
1204 => 0.014448581620758
1205 => 0.014605099565553
1206 => 0.014205260894281
1207 => 0.014046041913662
1208 => 0.013974126393968
1209 => 0.01361924655936
1210 => 0.014184018192001
1211 => 0.014295285318437
1212 => 0.014406771675484
1213 => 0.015377184298611
1214 => 0.015328705226317
1215 => 0.015766932429587
1216 => 0.015749903726316
1217 => 0.015624914229133
1218 => 0.015097604100294
1219 => 0.01530778051925
1220 => 0.014660890170371
1221 => 0.015145584404019
1222 => 0.014924390197097
1223 => 0.015070798420158
1224 => 0.014807543233998
1225 => 0.014953239523559
1226 => 0.014321670881853
1227 => 0.013731920970639
1228 => 0.013969253550785
1229 => 0.014227261207676
1230 => 0.014786687546944
1231 => 0.014453497834443
]
'min_raw' => 0.01361924655936
'max_raw' => 0.040653782663531
'avg_raw' => 0.027136514611445
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.013619'
'max' => '$0.040653'
'avg' => '$0.027136'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.02579972344064
'max_diff' => 0.0012348126635309
'year' => 2026
]
1 => [
'items' => [
101 => 0.014573325454356
102 => 0.014171922986548
103 => 0.013343715040513
104 => 0.013348402607545
105 => 0.013221000858538
106 => 0.013110907146436
107 => 0.014491768680998
108 => 0.014320036720985
109 => 0.014046404318427
110 => 0.01441267216297
111 => 0.014509519194519
112 => 0.014512276293357
113 => 0.014779495857994
114 => 0.014922110987542
115 => 0.014947247522255
116 => 0.015367723280872
117 => 0.015508661208951
118 => 0.016089164588427
119 => 0.014910011090197
120 => 0.014885727199864
121 => 0.014417826302664
122 => 0.014121076156439
123 => 0.014438145039057
124 => 0.014719024784837
125 => 0.014426554019315
126 => 0.014464744526897
127 => 0.014072126419922
128 => 0.014212468918767
129 => 0.014333350784948
130 => 0.01426660692355
131 => 0.014166688132599
201 => 0.014695995848794
202 => 0.014666130233072
203 => 0.015159033747125
204 => 0.015543287284197
205 => 0.016231938316167
206 => 0.015513295064116
207 => 0.015487104847664
208 => 0.015743118414534
209 => 0.015508622014608
210 => 0.015656815644821
211 => 0.016208062031275
212 => 0.016219708998778
213 => 0.016024607286831
214 => 0.016012735329928
215 => 0.016050206747887
216 => 0.016269678013267
217 => 0.016192988009472
218 => 0.016281735623417
219 => 0.016392715873606
220 => 0.016851777243039
221 => 0.016962455385065
222 => 0.01669356487998
223 => 0.01671784268195
224 => 0.016617270251839
225 => 0.016520118544521
226 => 0.016738501394705
227 => 0.017137600345743
228 => 0.017135117571882
301 => 0.017227700771147
302 => 0.017285379337289
303 => 0.017037780708117
304 => 0.01687660310498
305 => 0.01693840885402
306 => 0.017037237592689
307 => 0.01690636002605
308 => 0.016098523056367
309 => 0.016343569188143
310 => 0.016302781529672
311 => 0.01624469494406
312 => 0.016491090724447
313 => 0.016467325250342
314 => 0.015755457033887
315 => 0.015801028527454
316 => 0.015758228387348
317 => 0.015896524396114
318 => 0.015501153576286
319 => 0.015622766977602
320 => 0.015699041762852
321 => 0.015743968197335
322 => 0.015906273285033
323 => 0.01588722865631
324 => 0.015905089444171
325 => 0.016145745042272
326 => 0.017362898474436
327 => 0.017429145450251
328 => 0.017102921112645
329 => 0.017233241301028
330 => 0.016983055037224
331 => 0.017151006752218
401 => 0.017265915050105
402 => 0.016746666547547
403 => 0.01671592002112
404 => 0.01646470114961
405 => 0.016599691941395
406 => 0.016384911885483
407 => 0.016437611398517
408 => 0.016290258965814
409 => 0.016555464007102
410 => 0.016852004451958
411 => 0.016926922279066
412 => 0.016729845730098
413 => 0.016587149320668
414 => 0.016336621432827
415 => 0.016753254893684
416 => 0.016875091214313
417 => 0.016752614939359
418 => 0.016724234510293
419 => 0.016670453648494
420 => 0.016735644374362
421 => 0.016874427667545
422 => 0.016808980029405
423 => 0.016852209347435
424 => 0.016687463764982
425 => 0.017037862673566
426 => 0.017594380468487
427 => 0.017596169764198
428 => 0.01753072177327
429 => 0.01750394186548
430 => 0.017571095475887
501 => 0.017607523554748
502 => 0.017824686016941
503 => 0.018057709991008
504 => 0.019145131201652
505 => 0.01883978767709
506 => 0.019804612466151
507 => 0.020567663607479
508 => 0.020796469280581
509 => 0.020585978827466
510 => 0.019865902357831
511 => 0.019830571970924
512 => 0.020906670225003
513 => 0.020602623179804
514 => 0.020566457751247
515 => 0.020181718693858
516 => 0.020409147127634
517 => 0.020359405192993
518 => 0.020280885115704
519 => 0.020714802724547
520 => 0.021527057752209
521 => 0.021400460188868
522 => 0.021305960980526
523 => 0.020891892957879
524 => 0.021141254392954
525 => 0.021052461562127
526 => 0.021433971912681
527 => 0.021207973632502
528 => 0.020600319724398
529 => 0.020697090612117
530 => 0.020682463887114
531 => 0.020983480851209
601 => 0.020893123030288
602 => 0.020664820072388
603 => 0.021524281552828
604 => 0.021468472904864
605 => 0.021547596808043
606 => 0.021582429597211
607 => 0.022105568654944
608 => 0.022319881988315
609 => 0.022368534867073
610 => 0.022572115958187
611 => 0.022363469584068
612 => 0.023198203842888
613 => 0.023753253416909
614 => 0.024397972059725
615 => 0.025340079280913
616 => 0.025694320311058
617 => 0.025630329839651
618 => 0.026344624782634
619 => 0.027628196917291
620 => 0.025889776466797
621 => 0.027720337422382
622 => 0.027140802958686
623 => 0.025766737170644
624 => 0.025678263533065
625 => 0.026608796837959
626 => 0.028672630147703
627 => 0.028155663311416
628 => 0.028673475720249
629 => 0.02806942004012
630 => 0.02803942358422
701 => 0.028644138084143
702 => 0.030057086474483
703 => 0.029385847657811
704 => 0.028423462219601
705 => 0.029134072650799
706 => 0.028518476131404
707 => 0.027131364878591
708 => 0.028155267996619
709 => 0.027470613140676
710 => 0.027670431825894
711 => 0.029109474498363
712 => 0.028936325076777
713 => 0.029160396461514
714 => 0.028764916332422
715 => 0.028395475530358
716 => 0.027705886838272
717 => 0.027501733622856
718 => 0.027558154226934
719 => 0.027501705663607
720 => 0.027115887128032
721 => 0.027032569652008
722 => 0.026893703541747
723 => 0.026936743955958
724 => 0.026675635041953
725 => 0.027168401510535
726 => 0.027259863309347
727 => 0.027618457651867
728 => 0.027655688106099
729 => 0.028654368245747
730 => 0.028104312006967
731 => 0.028473337221511
801 => 0.028440328132922
802 => 0.025796517342802
803 => 0.026160811143141
804 => 0.026727537974775
805 => 0.026472228305304
806 => 0.026111280165934
807 => 0.025819795190577
808 => 0.025378165647043
809 => 0.025999750748823
810 => 0.026817069059457
811 => 0.027676416647237
812 => 0.02870886646727
813 => 0.028478435686479
814 => 0.027657115716009
815 => 0.027693959529909
816 => 0.027921713489937
817 => 0.027626751418072
818 => 0.027539761344735
819 => 0.027909762389684
820 => 0.027912310383531
821 => 0.027572920872493
822 => 0.0271957515386
823 => 0.027194171185319
824 => 0.027127057545376
825 => 0.028081359407572
826 => 0.028606128940979
827 => 0.028666292922276
828 => 0.028602079425676
829 => 0.028626792651975
830 => 0.028321440822993
831 => 0.029019384554773
901 => 0.029659886742536
902 => 0.029488218473882
903 => 0.029230863335088
904 => 0.029025867571135
905 => 0.029439927986754
906 => 0.029421490528238
907 => 0.029654292514688
908 => 0.029643731271853
909 => 0.029565448719936
910 => 0.029488221269599
911 => 0.029794419380789
912 => 0.029706239242158
913 => 0.029617922135415
914 => 0.029440788657169
915 => 0.029464864038738
916 => 0.029207553335937
917 => 0.029088509631084
918 => 0.027298377935889
919 => 0.026819996252692
920 => 0.026970504868583
921 => 0.027020056212888
922 => 0.026811863891298
923 => 0.027110358200239
924 => 0.027063838178374
925 => 0.027244820370147
926 => 0.027131750554061
927 => 0.027136390978753
928 => 0.027468905198837
929 => 0.027565435491544
930 => 0.027516339405579
1001 => 0.027550724621274
1002 => 0.028343117403874
1003 => 0.028230464489483
1004 => 0.028170619873969
1005 => 0.028187197241452
1006 => 0.028389670586499
1007 => 0.028446352068477
1008 => 0.028206188646398
1009 => 0.028319451104619
1010 => 0.028801708276578
1011 => 0.028970470993371
1012 => 0.029509080574677
1013 => 0.029280269651516
1014 => 0.029700262003682
1015 => 0.030991175308297
1016 => 0.032022446180429
1017 => 0.031074046867345
1018 => 0.032967844492462
1019 => 0.03444243759275
1020 => 0.034385840253498
1021 => 0.03412871083851
1022 => 0.032449925797917
1023 => 0.03090508277429
1024 => 0.032197409561054
1025 => 0.032200703967803
1026 => 0.032089691950712
1027 => 0.031400205846742
1028 => 0.032065699328841
1029 => 0.032118523784733
1030 => 0.03208895613659
1031 => 0.031560328757262
1101 => 0.030753212455699
1102 => 0.030910921049061
1103 => 0.031169250942156
1104 => 0.030680178561265
1105 => 0.03052389030163
1106 => 0.03081445991135
1107 => 0.031750735736449
1108 => 0.031573738215191
1109 => 0.031569116094607
1110 => 0.032326386549181
1111 => 0.031784344332899
1112 => 0.030912910259476
1113 => 0.030692861663133
1114 => 0.029911837388613
1115 => 0.030451293636937
1116 => 0.030470707706939
1117 => 0.030175253032841
1118 => 0.030936884777935
1119 => 0.030929866207322
1120 => 0.031652922195363
1121 => 0.033035133677072
1122 => 0.032626345727435
1123 => 0.032150969818009
1124 => 0.032202656360108
1125 => 0.032769530153675
1126 => 0.032426785317614
1127 => 0.032550038750364
1128 => 0.032769343594843
1129 => 0.03290165565255
1130 => 0.03218361869117
1201 => 0.032016209927795
1202 => 0.031673750350419
1203 => 0.031584409038993
1204 => 0.031863335219112
1205 => 0.031789848025258
1206 => 0.03046907602953
1207 => 0.030331048007271
1208 => 0.030335281129655
1209 => 0.029988203104809
1210 => 0.029458825808648
1211 => 0.030849997735483
1212 => 0.030738267160319
1213 => 0.030614925252599
1214 => 0.030630033932515
1215 => 0.031233894514763
1216 => 0.030883624881369
1217 => 0.031814874109811
1218 => 0.031623437264358
1219 => 0.031427090786176
1220 => 0.031399949722031
1221 => 0.031324373079425
1222 => 0.0310651926511
1223 => 0.030752216709568
1224 => 0.030545562883457
1225 => 0.028176667127644
1226 => 0.02861632040069
1227 => 0.029122101415673
1228 => 0.029296694995255
1229 => 0.028998040595872
1230 => 0.031076985347107
1231 => 0.031456828586368
]
'min_raw' => 0.013110907146436
'max_raw' => 0.03444243759275
'avg_raw' => 0.023776672369593
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.01311'
'max' => '$0.034442'
'avg' => '$0.023776'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -0.00050833941292331
'max_diff' => -0.0062113450707808
'year' => 2027
]
2 => [
'items' => [
101 => 0.030306258638086
102 => 0.030091033978224
103 => 0.031091095439977
104 => 0.030487936125998
105 => 0.030759538728151
106 => 0.030172482460977
107 => 0.031365335473139
108 => 0.031356247931761
109 => 0.030892201168223
110 => 0.031284410315111
111 => 0.031216254324046
112 => 0.030692346670908
113 => 0.03138194428022
114 => 0.031382286312031
115 => 0.030935651391372
116 => 0.030414079584999
117 => 0.030320834864996
118 => 0.030250587494139
119 => 0.030742262181162
120 => 0.03118309616812
121 => 0.032003378925836
122 => 0.032209617500563
123 => 0.033014580387803
124 => 0.032535264181383
125 => 0.032747738847505
126 => 0.032978410153957
127 => 0.033089002460927
128 => 0.03290879823143
129 => 0.034159236931257
130 => 0.034264812269974
131 => 0.034300210767823
201 => 0.033878569873755
202 => 0.034253085673967
203 => 0.034077862133708
204 => 0.034533745106962
205 => 0.034605233378174
206 => 0.034544685355726
207 => 0.034567376861375
208 => 0.033500348023575
209 => 0.03344501694931
210 => 0.032690573825586
211 => 0.032998014975066
212 => 0.032423268482152
213 => 0.0326055265156
214 => 0.032685864120125
215 => 0.03264390031464
216 => 0.033015397236376
217 => 0.032699548961093
218 => 0.031865973432358
219 => 0.031032170796528
220 => 0.031021703083636
221 => 0.030802177567461
222 => 0.03064350082737
223 => 0.030674067596871
224 => 0.03078178887948
225 => 0.030637239870598
226 => 0.030668086730464
227 => 0.031180350135787
228 => 0.031283080908429
229 => 0.030933961603487
301 => 0.02953219721647
302 => 0.029188200719836
303 => 0.029435458579869
304 => 0.029317285248219
305 => 0.023661337315611
306 => 0.024990118386515
307 => 0.024200601795325
308 => 0.024564447364458
309 => 0.023758555369183
310 => 0.024143169269746
311 => 0.024072145126163
312 => 0.026208785766687
313 => 0.026175425061939
314 => 0.026191393065893
315 => 0.025429198632756
316 => 0.026643395060577
317 => 0.027241551882012
318 => 0.027130848973793
319 => 0.027158710510791
320 => 0.026679956995472
321 => 0.026196028446424
322 => 0.02565927720946
323 => 0.026656494663281
324 => 0.026545621105486
325 => 0.026799925156021
326 => 0.0274466919574
327 => 0.027541930825731
328 => 0.027669932830585
329 => 0.027624053223648
330 => 0.028717091595764
331 => 0.028584717436802
401 => 0.028903701073257
402 => 0.028247527531722
403 => 0.02750500488491
404 => 0.027646134165175
405 => 0.027632542280595
406 => 0.02745950198986
407 => 0.027303288952538
408 => 0.027043238258147
409 => 0.027866077135461
410 => 0.027832671379722
411 => 0.028373471735189
412 => 0.028277880019305
413 => 0.027639495145377
414 => 0.027662295186039
415 => 0.027815636416812
416 => 0.028346352167339
417 => 0.028503904735979
418 => 0.028430920108801
419 => 0.028603669307767
420 => 0.028740203231077
421 => 0.028620815866421
422 => 0.030311089184278
423 => 0.029609169857259
424 => 0.029951280453325
425 => 0.030032871814654
426 => 0.029823877258291
427 => 0.029869200694032
428 => 0.029937853349283
429 => 0.030354698828397
430 => 0.031448621980805
501 => 0.03193311309842
502 => 0.033390728530134
503 => 0.031892882855544
504 => 0.031804006891915
505 => 0.032066567446936
506 => 0.032922342009615
507 => 0.03361586691385
508 => 0.033845949134996
509 => 0.033876358298764
510 => 0.034308007841211
511 => 0.034555421309154
512 => 0.034255594233248
513 => 0.03400152217962
514 => 0.033091467620112
515 => 0.033196808913371
516 => 0.033922505961994
517 => 0.034947595786517
518 => 0.035827229498377
519 => 0.035519212430813
520 => 0.037869165230158
521 => 0.038102153451517
522 => 0.038069962012736
523 => 0.038600743854287
524 => 0.037547249990651
525 => 0.037096860953464
526 => 0.034056455441455
527 => 0.0349106853738
528 => 0.036152358747629
529 => 0.035988018620566
530 => 0.035086282226468
531 => 0.035826545450461
601 => 0.035581791278437
602 => 0.035388743508103
603 => 0.036273132768158
604 => 0.035300710448019
605 => 0.036142658091121
606 => 0.035062851530009
607 => 0.035520619426833
608 => 0.035260768228854
609 => 0.035428923800111
610 => 0.034445889766523
611 => 0.034976311069245
612 => 0.034423822496467
613 => 0.034423560544947
614 => 0.034411364329081
615 => 0.035061364684846
616 => 0.035082561173111
617 => 0.034602209928105
618 => 0.034532983809203
619 => 0.034788949053662
620 => 0.034489280789805
621 => 0.034629493684374
622 => 0.034493527695544
623 => 0.034462918887577
624 => 0.034219022698032
625 => 0.034113945513511
626 => 0.034155148985067
627 => 0.0340145002948
628 => 0.033929754371429
629 => 0.034394506231899
630 => 0.034146208060886
701 => 0.034356450976094
702 => 0.034116852639444
703 => 0.033286300416588
704 => 0.032808641050293
705 => 0.03123980489355
706 => 0.031684724881467
707 => 0.031979707293759
708 => 0.031882215608256
709 => 0.03209166547299
710 => 0.032104523993604
711 => 0.03203642970749
712 => 0.031957585247589
713 => 0.031919208124881
714 => 0.032205239755758
715 => 0.032371290744865
716 => 0.032009312725188
717 => 0.031924506339789
718 => 0.032290486103036
719 => 0.032513733547197
720 => 0.034162067242981
721 => 0.034039953358749
722 => 0.034346435244531
723 => 0.03431193008754
724 => 0.034633171930232
725 => 0.035158266576101
726 => 0.034090602342277
727 => 0.034275911936217
728 => 0.034230478303206
729 => 0.034726510795079
730 => 0.034728059354375
731 => 0.034430663096836
801 => 0.034591886432751
802 => 0.034501895989574
803 => 0.034664520883333
804 => 0.034038322453376
805 => 0.03480096454712
806 => 0.035233333470701
807 => 0.035239336913625
808 => 0.035444276351911
809 => 0.035652506690501
810 => 0.036052186692384
811 => 0.035641359832175
812 => 0.034902322303847
813 => 0.034955678426316
814 => 0.034522380993861
815 => 0.034529664801982
816 => 0.034490783263389
817 => 0.034607469687572
818 => 0.034063928561638
819 => 0.03419149657748
820 => 0.034012900608263
821 => 0.034275523703459
822 => 0.033992984666181
823 => 0.034230456393733
824 => 0.034332941319031
825 => 0.034711112899726
826 => 0.033937128416231
827 => 0.03235892166024
828 => 0.032690679854257
829 => 0.032199983426262
830 => 0.032245399248886
831 => 0.032337146438461
901 => 0.032039763779237
902 => 0.032096495019012
903 => 0.032094468179916
904 => 0.03207700197557
905 => 0.031999641260443
906 => 0.031887452918157
907 => 0.032334376744073
908 => 0.032410317810979
909 => 0.032579125395602
910 => 0.033081382264162
911 => 0.033031194958961
912 => 0.033113052535996
913 => 0.032934357904938
914 => 0.032253688380312
915 => 0.0322906520103
916 => 0.031829714952059
917 => 0.032567338198695
918 => 0.03239265927774
919 => 0.032280042641047
920 => 0.03224931414834
921 => 0.03275281601453
922 => 0.032903471664319
923 => 0.032809593173495
924 => 0.032617045649942
925 => 0.032986793816729
926 => 0.033085722827738
927 => 0.033107869384942
928 => 0.033762992244309
929 => 0.033144483475273
930 => 0.033293364683428
1001 => 0.034454893369441
1002 => 0.03340154713123
1003 => 0.033959528126034
1004 => 0.033932217859932
1005 => 0.034217662055826
1006 => 0.033908803104376
1007 => 0.033912631781244
1008 => 0.034166086889534
1009 => 0.03381015490081
1010 => 0.033722021134919
1011 => 0.033600264968567
1012 => 0.033866115103437
1013 => 0.034025480235924
1014 => 0.035309846162976
1015 => 0.036139605126053
1016 => 0.036103583101132
1017 => 0.036432756978503
1018 => 0.036284461131861
1019 => 0.035805574724583
1020 => 0.03662297542783
1021 => 0.036364315643824
1022 => 0.036385639242146
1023 => 0.036384845576752
1024 => 0.036556831720684
1025 => 0.036434963775409
1026 => 0.036194749545785
1027 => 0.036354214961738
1028 => 0.036827770237191
1029 => 0.038297700342647
1030 => 0.039120292703643
1031 => 0.038248179249637
1101 => 0.038849751432146
1102 => 0.038489022484726
1103 => 0.038423467304223
1104 => 0.038801299090674
1105 => 0.03917979222165
1106 => 0.039155683845478
1107 => 0.038880917268226
1108 => 0.038725708600681
1109 => 0.039901000630054
1110 => 0.040766935776718
1111 => 0.040707884805019
1112 => 0.040968516589696
1113 => 0.041733739570547
1114 => 0.041803701969829
1115 => 0.041794888315587
1116 => 0.041621479209144
1117 => 0.042374940610552
1118 => 0.043003491367499
1119 => 0.041581340011273
1120 => 0.042122876630396
1121 => 0.04236598986594
1122 => 0.042722952224166
1123 => 0.04332520755633
1124 => 0.043979416587398
1125 => 0.044071928917428
1126 => 0.044006286992149
1127 => 0.043574818550077
1128 => 0.044290661878208
1129 => 0.044709986111236
1130 => 0.04495968409594
1201 => 0.045592876639365
1202 => 0.042367491250517
1203 => 0.040084403160235
1204 => 0.039727865986746
1205 => 0.040452898349168
1206 => 0.040644083601114
1207 => 0.040567017065781
1208 => 0.037997193850881
1209 => 0.039714336399357
1210 => 0.041561837400071
1211 => 0.041632807437693
1212 => 0.042557705068075
1213 => 0.042858889649362
1214 => 0.043603553470922
1215 => 0.043556974546134
1216 => 0.043738288336494
1217 => 0.043696607436008
1218 => 0.045075940357981
1219 => 0.04659754940384
1220 => 0.046544860921002
1221 => 0.046326111617799
1222 => 0.046650991635354
1223 => 0.048221455236215
1224 => 0.048076872114014
1225 => 0.048217322301671
1226 => 0.050068987394536
1227 => 0.052476415411548
1228 => 0.051357923395825
1229 => 0.053784729232537
1230 => 0.055312274867297
1231 => 0.057954007091449
]
'min_raw' => 0.023661337315611
'max_raw' => 0.057954007091449
'avg_raw' => 0.04080767220353
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.023661'
'max' => '$0.057954'
'avg' => '$0.0408076'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 0.010550430169174
'max_diff' => 0.023511569498699
'year' => 2028
]
3 => [
'items' => [
101 => 0.05762324920618
102 => 0.058651656175115
103 => 0.057031123560294
104 => 0.053310053112987
105 => 0.052721179471015
106 => 0.053900119414898
107 => 0.056798428227658
108 => 0.053808841356179
109 => 0.054413630886633
110 => 0.054239451461176
111 => 0.054230170179808
112 => 0.054584398939914
113 => 0.054070571648051
114 => 0.051977146825235
115 => 0.052936551084902
116 => 0.052566079025868
117 => 0.052977145395887
118 => 0.055195501058217
119 => 0.054214713140907
120 => 0.053181532742762
121 => 0.054477370243121
122 => 0.056127416679154
123 => 0.056024159738606
124 => 0.055823798115889
125 => 0.05695322609255
126 => 0.058818710218647
127 => 0.059322943081809
128 => 0.059695157472808
129 => 0.059746479548713
130 => 0.060275128827028
131 => 0.057432448420757
201 => 0.061943855230719
202 => 0.062722850561701
203 => 0.062576431725525
204 => 0.063442252250777
205 => 0.063187505888501
206 => 0.062818418378043
207 => 0.064190928075875
208 => 0.062617456463132
209 => 0.060384111603411
210 => 0.059158854442816
211 => 0.060772371910564
212 => 0.061757690724118
213 => 0.06240892378183
214 => 0.062605986511609
215 => 0.057653117608623
216 => 0.054983795968616
217 => 0.056694800536026
218 => 0.058782344195492
219 => 0.057420852010326
220 => 0.057474219926339
221 => 0.055533089864144
222 => 0.058954091133861
223 => 0.058455680024013
224 => 0.06104143774358
225 => 0.060424325911803
226 => 0.062532910953573
227 => 0.061977649845695
228 => 0.064282507660266
301 => 0.065201977844033
302 => 0.066745911386684
303 => 0.067881635185599
304 => 0.068548553923256
305 => 0.068508514623796
306 => 0.071151178919989
307 => 0.069592892112182
308 => 0.067635316621575
309 => 0.067599910257022
310 => 0.068613766342666
311 => 0.070738530560344
312 => 0.071289451007926
313 => 0.071597340380174
314 => 0.071125797088869
315 => 0.069434388442417
316 => 0.068704046764515
317 => 0.069326319034123
318 => 0.068565333520858
319 => 0.069879008011576
320 => 0.071682963673063
321 => 0.07131045396258
322 => 0.072555698074948
323 => 0.073844394727748
324 => 0.07568728882024
325 => 0.076169089578188
326 => 0.076965487909834
327 => 0.077785243396322
328 => 0.078048526765552
329 => 0.078551216409443
330 => 0.078548566986886
331 => 0.080063456063669
401 => 0.08173442562757
402 => 0.082365177954909
403 => 0.083815558151737
404 => 0.081331832892052
405 => 0.083215767032503
406 => 0.084915122785119
407 => 0.082889080800636
408 => 0.085681507669008
409 => 0.085789931276531
410 => 0.0874269990237
411 => 0.085767517237713
412 => 0.084782122250446
413 => 0.087626920656415
414 => 0.089003428994754
415 => 0.08858881348085
416 => 0.085433568947948
417 => 0.083597081294995
418 => 0.078790638875205
419 => 0.084484077544307
420 => 0.087257185440144
421 => 0.085426387268432
422 => 0.086349735375074
423 => 0.091387223248282
424 => 0.093305172477215
425 => 0.092906252445074
426 => 0.092973663363723
427 => 0.094008553954414
428 => 0.098597828758196
429 => 0.095847828917212
430 => 0.097950100755116
501 => 0.099065138157635
502 => 0.1001008470388
503 => 0.097557473365806
504 => 0.094248581586815
505 => 0.093200516662581
506 => 0.085244350471343
507 => 0.084830197469211
508 => 0.084597720838994
509 => 0.083131988569946
510 => 0.081980324504332
511 => 0.081064478480811
512 => 0.078661025020317
513 => 0.079472120009118
514 => 0.075641516832814
515 => 0.078092200996772
516 => 0.071978465834243
517 => 0.077070166148218
518 => 0.074298985158527
519 => 0.076159758662431
520 => 0.076153266598971
521 => 0.072726992619507
522 => 0.070750789292665
523 => 0.072010102967513
524 => 0.073360187191393
525 => 0.073579233814489
526 => 0.075329653251554
527 => 0.075818157691299
528 => 0.07433796643278
529 => 0.071851772262074
530 => 0.072429258463877
531 => 0.070739086553218
601 => 0.067777125291311
602 => 0.069904457580495
603 => 0.07063082235622
604 => 0.070951626421269
605 => 0.068038877703733
606 => 0.067123628817831
607 => 0.06663635799066
608 => 0.071475772979372
609 => 0.071740887056815
610 => 0.070384525953262
611 => 0.076515406756759
612 => 0.075127799610376
613 => 0.076678096764891
614 => 0.072376857643988
615 => 0.072541170770793
616 => 0.070504895240542
617 => 0.071645073473503
618 => 0.070839232248106
619 => 0.07155295833974
620 => 0.071980762816263
621 => 0.074016704213735
622 => 0.0770934133286
623 => 0.073712602461615
624 => 0.072239534752767
625 => 0.073153417674489
626 => 0.075587208325119
627 => 0.079274525744274
628 => 0.077091559617955
629 => 0.078060322915647
630 => 0.078271954598913
701 => 0.076662316195164
702 => 0.079333875408185
703 => 0.08076558569415
704 => 0.082234224196852
705 => 0.083509401858431
706 => 0.08164761768282
707 => 0.083639993627002
708 => 0.08203449031769
709 => 0.080594187875356
710 => 0.08059637221963
711 => 0.079692849458093
712 => 0.07794216025642
713 => 0.07761930630724
714 => 0.079298833322832
715 => 0.080645654937537
716 => 0.080756585616564
717 => 0.081502255264658
718 => 0.081943534881391
719 => 0.086268675015929
720 => 0.088008282157475
721 => 0.090135440841081
722 => 0.09096408902844
723 => 0.093458022985573
724 => 0.091443968767775
725 => 0.091008215468759
726 => 0.084958747448335
727 => 0.085949347497782
728 => 0.087535393755635
729 => 0.08498490076695
730 => 0.086602601525709
731 => 0.086921969923075
801 => 0.084898235991153
802 => 0.085979199724574
803 => 0.083108480532019
804 => 0.077155987162227
805 => 0.079340502234916
806 => 0.080949040628237
807 => 0.078653458009614
808 => 0.08276820100218
809 => 0.080364453091459
810 => 0.079602580404009
811 => 0.076630243423041
812 => 0.078033072062316
813 => 0.079930417883506
814 => 0.078758078756137
815 => 0.081190858473033
816 => 0.084636323350809
817 => 0.087091766803693
818 => 0.087280265262643
819 => 0.085701579624373
820 => 0.088231433434737
821 => 0.088249860657841
822 => 0.085396175224994
823 => 0.083648308786762
824 => 0.083251189854454
825 => 0.084243270807114
826 => 0.08544784023189
827 => 0.087347110482341
828 => 0.088494799717242
829 => 0.091487364554529
830 => 0.092297066795942
831 => 0.093186684072873
901 => 0.094375487102661
902 => 0.095802949942762
903 => 0.092679742514126
904 => 0.092803833367652
905 => 0.089895545853856
906 => 0.086787623554747
907 => 0.089146149171787
908 => 0.092229607674553
909 => 0.091522258887099
910 => 0.091442667698686
911 => 0.091576518000842
912 => 0.091043200114954
913 => 0.088631023082766
914 => 0.087419642878228
915 => 0.088982632398132
916 => 0.0898132917673
917 => 0.091101572007771
918 => 0.090942764275836
919 => 0.094261235824092
920 => 0.095550693522374
921 => 0.095220795064148
922 => 0.095281504319911
923 => 0.097616005890122
924 => 0.10021245176306
925 => 0.10264436595428
926 => 0.10511821352273
927 => 0.10213589372305
928 => 0.10062165565268
929 => 0.10218396282026
930 => 0.10135498064608
1001 => 0.106118558111
1002 => 0.10644837787929
1003 => 0.11121161088335
1004 => 0.11573248619943
1005 => 0.11289300541329
1006 => 0.1155705079016
1007 => 0.11846644514268
1008 => 0.12405317792961
1009 => 0.1221717628706
1010 => 0.12073062842093
1011 => 0.11936876332951
1012 => 0.12220258839477
1013 => 0.12584825906977
1014 => 0.12663350161536
1015 => 0.12790589452497
1016 => 0.12656812896132
1017 => 0.12817932023269
1018 => 0.13386753341394
1019 => 0.13233052800112
1020 => 0.13014773322896
1021 => 0.13463803123376
1022 => 0.1362630526261
1023 => 0.14766830378788
1024 => 0.16206790450705
1025 => 0.15610637525644
1026 => 0.15240586167324
1027 => 0.15327557014265
1028 => 0.15853381686804
1029 => 0.16022259882783
1030 => 0.15563190730308
1031 => 0.15725341715817
1101 => 0.1661880958831
1102 => 0.1709812643602
1103 => 0.16447149775988
1104 => 0.14651130989068
1105 => 0.12995119644221
1106 => 0.13434368424037
1107 => 0.13384571243882
1108 => 0.14344491010488
1109 => 0.13229387093035
1110 => 0.13248162583161
1111 => 0.14227932473968
1112 => 0.13966546664609
1113 => 0.13543135129212
1114 => 0.12998211017004
1115 => 0.11990868396208
1116 => 0.11098636945142
1117 => 0.12848508289314
1118 => 0.12773050655019
1119 => 0.12663776818365
1120 => 0.12906953917175
1121 => 0.14087752881974
1122 => 0.14060531643963
1123 => 0.13887364016129
1124 => 0.14018710135611
1125 => 0.13520109519418
1126 => 0.13648610251136
1127 => 0.12994857323563
1128 => 0.1329038094996
1129 => 0.13542226678221
1130 => 0.13592788436809
1201 => 0.13706706660656
1202 => 0.12733287910567
1203 => 0.13170324351284
1204 => 0.13427042315428
1205 => 0.12267181213944
1206 => 0.1340411559069
1207 => 0.12716342855789
1208 => 0.12482902459564
1209 => 0.12797199199648
1210 => 0.12674717454373
1211 => 0.12569414842156
1212 => 0.1251065417521
1213 => 0.12741439013462
1214 => 0.1273067262491
1215 => 0.12353063836123
1216 => 0.11860488564454
1217 => 0.12025812993858
1218 => 0.11965749078731
1219 => 0.1174806970191
1220 => 0.11894759319179
1221 => 0.11248812482642
1222 => 0.10137494523775
1223 => 0.10871665207992
1224 => 0.10843400435274
1225 => 0.10829148055164
1226 => 0.11380857033366
1227 => 0.11327822945203
1228 => 0.11231565555878
1229 => 0.11746301859469
1230 => 0.11558416184478
1231 => 0.12137435563368
]
'min_raw' => 0.051977146825235
'max_raw' => 0.1709812643602
'avg_raw' => 0.11147920559272
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.051977'
'max' => '$0.170981'
'avg' => '$0.111479'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072435
'min_diff' => 0.028315809509624
'max_diff' => 0.11302725726875
'year' => 2029
]
4 => [
'items' => [
101 => 0.1251881517493
102 => 0.124220849691
103 => 0.12780774337142
104 => 0.12029621734803
105 => 0.12279124498289
106 => 0.12330546672047
107 => 0.11739950093383
108 => 0.1133649997791
109 => 0.11309594454877
110 => 0.10610067553498
111 => 0.1098374917783
112 => 0.11312573543247
113 => 0.11155092190014
114 => 0.11105238298202
115 => 0.11359931019479
116 => 0.11379722825218
117 => 0.1092846755693
118 => 0.11022297816603
119 => 0.11413585597422
120 => 0.11012438368467
121 => 0.10233074829637
122 => 0.10039781896463
123 => 0.10013993056082
124 => 0.094897672910578
125 => 0.10052698654523
126 => 0.09806964028748
127 => 0.10583236767219
128 => 0.10139833942239
129 => 0.10120719732672
130 => 0.10091825801466
131 => 0.096406030300169
201 => 0.097393921402613
202 => 0.1006778218872
203 => 0.10184955457589
204 => 0.10172733325673
205 => 0.1006617289833
206 => 0.1011495571629
207 => 0.099578092625799
208 => 0.099023175790543
209 => 0.097271705616574
210 => 0.094697528316824
211 => 0.095055483458701
212 => 0.089955364657767
213 => 0.087176549251226
214 => 0.086407409770894
215 => 0.085378884313242
216 => 0.086523584458138
217 => 0.089940916662
218 => 0.085818888996671
219 => 0.078751961691087
220 => 0.07917669606361
221 => 0.080130948093904
222 => 0.07835270574846
223 => 0.076669748605065
224 => 0.078132943298618
225 => 0.075138593037586
226 => 0.080492801017273
227 => 0.080347984696417
228 => 0.082343702329244
301 => 0.083591665521299
302 => 0.080715514396493
303 => 0.079992170166544
304 => 0.080404219914085
305 => 0.073593955439382
306 => 0.08178715842904
307 => 0.081858013588725
308 => 0.081251308694089
309 => 0.085613936349319
310 => 0.094820441439544
311 => 0.091356583893792
312 => 0.090015273556429
313 => 0.087465441624608
314 => 0.09086294127972
315 => 0.090602066315458
316 => 0.089422290793175
317 => 0.088708758876174
318 => 0.090023463311331
319 => 0.088545852447469
320 => 0.088280432934288
321 => 0.086672279463691
322 => 0.086098241841009
323 => 0.085673247238271
324 => 0.085205369939764
325 => 0.086237390672512
326 => 0.083898695918471
327 => 0.081078459310171
328 => 0.080843987151574
329 => 0.081491385396463
330 => 0.081204959866231
331 => 0.080842615856331
401 => 0.080150802462912
402 => 0.07994555620734
403 => 0.080612506966624
404 => 0.079859558445037
405 => 0.080970575003867
406 => 0.080668439975215
407 => 0.078980738265608
408 => 0.076877237068235
409 => 0.076858511495335
410 => 0.076405315612794
411 => 0.075828102517922
412 => 0.075667535039775
413 => 0.078009717122709
414 => 0.082857963938773
415 => 0.081906137080066
416 => 0.082593929532621
417 => 0.085977187665986
418 => 0.087052623688461
419 => 0.086289304672806
420 => 0.085244426524712
421 => 0.085290395860382
422 => 0.088861060798545
423 => 0.089083758790872
424 => 0.089646444772386
425 => 0.090369655273671
426 => 0.086412470548426
427 => 0.085104012815686
428 => 0.084483992951443
429 => 0.08257457174746
430 => 0.084633718814554
501 => 0.083433942000027
502 => 0.083595832882519
503 => 0.083490401232916
504 => 0.083547974042856
505 => 0.080491304407023
506 => 0.081604994168494
507 => 0.079753268936367
508 => 0.07727401671646
509 => 0.077265705393681
510 => 0.077872498862149
511 => 0.077511554363274
512 => 0.076540261997531
513 => 0.076678229493715
514 => 0.075469489050929
515 => 0.076824992468421
516 => 0.07686386345621
517 => 0.076341920805706
518 => 0.078430260843777
519 => 0.079285855461298
520 => 0.078942301627641
521 => 0.079261750808484
522 => 0.081945689783285
523 => 0.082383288944645
524 => 0.082577641585944
525 => 0.082317234793395
526 => 0.079310808285967
527 => 0.079444156085884
528 => 0.078465738407748
529 => 0.077639078572838
530 => 0.077672140630975
531 => 0.078097151244375
601 => 0.079953197519636
602 => 0.083859137486019
603 => 0.084007365052539
604 => 0.084187021187263
605 => 0.0834562693994
606 => 0.083235867667827
607 => 0.083526634442285
608 => 0.084993500129092
609 => 0.088766676925707
610 => 0.087432984243778
611 => 0.086348671333207
612 => 0.08729990608444
613 => 0.087153470950512
614 => 0.08591741105305
615 => 0.085882718968554
616 => 0.083510324833071
617 => 0.082633304737984
618 => 0.081900401102713
619 => 0.081100089465931
620 => 0.080625637900957
621 => 0.081354611139136
622 => 0.081521335943666
623 => 0.079927423218115
624 => 0.079710178803333
625 => 0.081011802342013
626 => 0.080439006352056
627 => 0.081028141232384
628 => 0.081164825578125
629 => 0.081142816250353
630 => 0.080544751451638
701 => 0.08092594011979
702 => 0.080024315281799
703 => 0.079043933690156
704 => 0.078418511314619
705 => 0.077872747341724
706 => 0.078175568913875
707 => 0.077096065302191
708 => 0.076750710370699
709 => 0.080796801976037
710 => 0.083785693347715
711 => 0.08374223368344
712 => 0.083477684154083
713 => 0.083084617215372
714 => 0.084964744834262
715 => 0.084309745966179
716 => 0.084786312369696
717 => 0.08490761852082
718 => 0.085274775705198
719 => 0.085406002840386
720 => 0.085009343294741
721 => 0.083678105411672
722 => 0.080360787177364
723 => 0.078816566584365
724 => 0.078306948067647
725 => 0.078325471732826
726 => 0.077814506353897
727 => 0.077965008557853
728 => 0.077762167829314
729 => 0.077378036561903
730 => 0.078151849890566
731 => 0.078241024668124
801 => 0.078060407390833
802 => 0.078102949298076
803 => 0.076607515384759
804 => 0.076721209977277
805 => 0.076088144038527
806 => 0.075969451806736
807 => 0.074369116240935
808 => 0.071533889813769
809 => 0.073104880476507
810 => 0.071207344670635
811 => 0.070488719108591
812 => 0.0738905807501
813 => 0.073549128194247
814 => 0.072964709844484
815 => 0.07210023330173
816 => 0.071779590542935
817 => 0.069831466643659
818 => 0.069716361090853
819 => 0.070681903899104
820 => 0.070236339115396
821 => 0.06961059741049
822 => 0.067344224385739
823 => 0.064796070735599
824 => 0.064872983477174
825 => 0.0656835037432
826 => 0.068040200730219
827 => 0.067119398446119
828 => 0.066451345824015
829 => 0.066326239649483
830 => 0.067892205351267
831 => 0.070108374899248
901 => 0.071148152067162
902 => 0.070117764472262
903 => 0.068934110683248
904 => 0.069006154204862
905 => 0.069485427478091
906 => 0.069535792322549
907 => 0.068765355387476
908 => 0.068982228871839
909 => 0.068652778217765
910 => 0.066630940161831
911 => 0.066594371522716
912 => 0.066098179857247
913 => 0.066083155370816
914 => 0.065239009567041
915 => 0.065120907733789
916 => 0.063444805004407
917 => 0.064548020896593
918 => 0.063808041597548
919 => 0.062692718250418
920 => 0.062500436084982
921 => 0.062494655850901
922 => 0.063639843546667
923 => 0.064534638711607
924 => 0.063820913854268
925 => 0.063658412539227
926 => 0.065393501445757
927 => 0.065172695566714
928 => 0.064981479099509
929 => 0.069909941223387
930 => 0.066008678879642
1001 => 0.064307505821499
1002 => 0.062201981118046
1003 => 0.062887550578468
1004 => 0.063032010136889
1005 => 0.057968602774438
1006 => 0.055914379038099
1007 => 0.055209446863576
1008 => 0.05480374843086
1009 => 0.054988630301089
1010 => 0.053139588001972
1011 => 0.054382175007315
1012 => 0.052781060671935
1013 => 0.052512628643131
1014 => 0.055375619414798
1015 => 0.055773987855326
1016 => 0.05407442432466
1017 => 0.05516581924569
1018 => 0.0547700642758
1019 => 0.052808507181738
1020 => 0.052733590128982
1021 => 0.051749349731247
1022 => 0.050209204095288
1023 => 0.049505316212031
1024 => 0.049138725290995
1025 => 0.049289987849729
1026 => 0.049213504871322
1027 => 0.04871440170214
1028 => 0.049242112880751
1029 => 0.047894028884714
1030 => 0.047357210975241
1031 => 0.047114742779613
1101 => 0.045918240640311
1102 => 0.047822407630857
1103 => 0.048197552516059
1104 => 0.048573436552572
1105 => 0.051845250463489
1106 => 0.05168179988655
1107 => 0.053159313498422
1108 => 0.053101900036438
1109 => 0.052680489220198
1110 => 0.050902626305199
1111 => 0.051611250775758
1112 => 0.049430214800069
1113 => 0.051064395249086
1114 => 0.050318623537162
1115 => 0.050812249083105
1116 => 0.049924665843078
1117 => 0.050415891055523
1118 => 0.048286513285298
1119 => 0.046298130284615
1120 => 0.047098313648608
1121 => 0.047968204477336
1122 => 0.049854349438079
1123 => 0.048730977059818
1124 => 0.049134984246453
1125 => 0.047781627801212
1126 => 0.044989266887523
1127 => 0.045005071347045
1128 => 0.044575527455364
1129 => 0.044204338818516
1130 => 0.048860009890963
1201 => 0.048281003597836
1202 => 0.047358432848208
1203 => 0.048593330458089
1204 => 0.048919856986602
1205 => 0.048929152737827
1206 => 0.049830102156675
1207 => 0.050310939023019
1208 => 0.050395688604778
1209 => 0.051813351981637
1210 => 0.052288534046128
1211 => 0.054245741719483
1212 => 0.05027014337433
1213 => 0.050188268542626
1214 => 0.048610707999919
1215 => 0.047610194163489
1216 => 0.048679214038276
1217 => 0.049626219711573
1218 => 0.048640134105957
1219 => 0.048768896068647
1220 => 0.047445156709261
1221 => 0.047918331242515
1222 => 0.048325892894047
1223 => 0.048100861305438
1224 => 0.047763978125638
1225 => 0.049548576045873
1226 => 0.049447882037318
1227 => 0.05110974064837
1228 => 0.052405278276335
1229 => 0.0547271133107
1230 => 0.052304157412342
1231 => 0.052215855269029
]
'min_raw' => 0.044204338818516
'max_raw' => 0.12780774337142
'avg_raw' => 0.086006041094969
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.0442043'
'max' => '$0.1278077'
'avg' => '$0.086006'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -0.0077728080067194
'max_diff' => -0.043173520988781
'year' => 2030
]
5 => [
'items' => [
101 => 0.053079022884028
102 => 0.052288401899663
103 => 0.052788047070473
104 => 0.054646612749198
105 => 0.0546858813133
106 => 0.054028082269904
107 => 0.053988055138333
108 => 0.05411439264015
109 => 0.054854355334373
110 => 0.054595789632255
111 => 0.054895008408829
112 => 0.055269186070736
113 => 0.056816943528423
114 => 0.057190102611563
115 => 0.056283519500334
116 => 0.056365373804698
117 => 0.056026286834835
118 => 0.055698733070695
119 => 0.056435026097096
120 => 0.057780616074718
121 => 0.057772245229304
122 => 0.058084395949581
123 => 0.058278863262317
124 => 0.057444067197279
125 => 0.056900645655242
126 => 0.05710902805327
127 => 0.057442236045696
128 => 0.057000973192192
129 => 0.054277294447528
130 => 0.055103484589387
131 => 0.054965966151148
201 => 0.054770123172282
202 => 0.055600863748661
203 => 0.055520736793464
204 => 0.053120623400632
205 => 0.053274270872892
206 => 0.053129967212317
207 => 0.053596241861388
208 => 0.05226322153843
209 => 0.052673249611743
210 => 0.052930415375551
211 => 0.053081887986074
212 => 0.053629110921024
213 => 0.053564900625631
214 => 0.053625119518907
215 => 0.054436506669941
216 => 0.05854022444542
217 => 0.058763580749597
218 => 0.057663692619102
219 => 0.0581030762329
220 => 0.05725955577704
221 => 0.057825816710155
222 => 0.058213238059124
223 => 0.056462555479975
224 => 0.056358891419473
225 => 0.055511889454635
226 => 0.055967020333896
227 => 0.055242874379923
228 => 0.055420554467478
301 => 0.054923745452804
302 => 0.055817902765529
303 => 0.056817709579156
304 => 0.057070300263845
305 => 0.056405842919554
306 => 0.055924732012415
307 => 0.055080059747263
308 => 0.056484768548959
309 => 0.056895548210301
310 => 0.056482610898273
311 => 0.056386924300217
312 => 0.056205598369804
313 => 0.056425393453537
314 => 0.056893311016045
315 => 0.056672649734647
316 => 0.056818400398562
317 => 0.05626294916515
318 => 0.057444343549513
319 => 0.059320682149922
320 => 0.059326714885335
321 => 0.05910605241449
322 => 0.059015762085659
323 => 0.059242175171665
324 => 0.059364994982871
325 => 0.060097173385952
326 => 0.060882829983733
327 => 0.064549146516746
328 => 0.063519659505279
329 => 0.066772633643514
330 => 0.069345313841033
331 => 0.070116748142598
401 => 0.069407064883947
402 => 0.066979276792437
403 => 0.066860157926293
404 => 0.070488298320702
405 => 0.069463182479924
406 => 0.069341248212555
407 => 0.068044073618945
408 => 0.068810864461967
409 => 0.068643156056455
410 => 0.068378420133779
411 => 0.069841403647152
412 => 0.072579978182748
413 => 0.072153145659186
414 => 0.071834534980538
415 => 0.070438475732876
416 => 0.07127921522109
417 => 0.070979843992641
418 => 0.072266132775733
419 => 0.071504163795415
420 => 0.0694554162192
421 => 0.069781686023473
422 => 0.069732370998921
423 => 0.070747270709702
424 => 0.070442623007885
425 => 0.06967288364572
426 => 0.072570618032706
427 => 0.072382455279661
428 => 0.072649227043485
429 => 0.072766668224112
430 => 0.074530468081663
501 => 0.075253040448001
502 => 0.07541707702557
503 => 0.076103464887839
504 => 0.075399999070272
505 => 0.078214363903169
506 => 0.080085752294305
507 => 0.082259466211375
508 => 0.085435846483435
509 => 0.08663019484889
510 => 0.086414446506868
511 => 0.088822741777617
512 => 0.093150394845757
513 => 0.087289188924276
514 => 0.093461052991715
515 => 0.091507112085561
516 => 0.086874353346966
517 => 0.086576058300838
518 => 0.089713416306049
519 => 0.096671774402092
520 => 0.094928784620077
521 => 0.096674625308966
522 => 0.094638009409589
523 => 0.094536874264239
524 => 0.096575711420545
525 => 0.10133956556748
526 => 0.099076437032675
527 => 0.095831687336145
528 => 0.098227560018166
529 => 0.09615203337345
530 => 0.091475290939576
531 => 0.09492745178864
601 => 0.092619090140751
602 => 0.09329279278886
603 => 0.09814462562984
604 => 0.097560840266056
605 => 0.098316312583862
606 => 0.096982923717087
607 => 0.095737328259395
608 => 0.09341233183848
609 => 0.092724015019185
610 => 0.092914241024993
611 => 0.092723920752624
612 => 0.091423106622942
613 => 0.091142195935488
614 => 0.09067399914942
615 => 0.090819112910919
616 => 0.089938765977309
617 => 0.091600162529988
618 => 0.091908532370341
619 => 0.093117558232406
620 => 0.093243083308195
621 => 0.09661020312464
622 => 0.094755650111892
623 => 0.095999844387247
624 => 0.095888551940449
625 => 0.086974759276584
626 => 0.088203001258606
627 => 0.090113760339066
628 => 0.089252965963291
629 => 0.08803600411081
630 => 0.087053242165564
701 => 0.085564257325949
702 => 0.087659974894286
703 => 0.090415620641933
704 => 0.093312971031864
705 => 0.096793947683448
706 => 0.096017034217849
707 => 0.093247896594679
708 => 0.093372118085598
709 => 0.094140006463105
710 => 0.093145521244218
711 => 0.09285222813851
712 => 0.094099712494203
713 => 0.094108303233355
714 => 0.092964027801472
715 => 0.091692375059126
716 => 0.091687046787704
717 => 0.091460768464912
718 => 0.094678263820534
719 => 0.096447560940654
720 => 0.096650408004111
721 => 0.096433907717082
722 => 0.096517230084971
723 => 0.095487715074574
724 => 0.097840881095147
725 => 0.10000037893962
726 => 0.099421587386362
727 => 0.098553896567955
728 => 0.097862739037441
729 => 0.099258772637475
730 => 0.099196609458827
731 => 0.099981517609858
801 => 0.099945909642278
802 => 0.099681974552975
803 => 0.099421596812315
804 => 0.10045396512226
805 => 0.10015665962833
806 => 0.099858892336839
807 => 0.099261674447869
808 => 0.099342846277719
809 => 0.098475305278365
810 => 0.098073941116089
811 => 0.092038387122733
812 => 0.090425489878292
813 => 0.090932940184944
814 => 0.091100006001835
815 => 0.09039807105407
816 => 0.091404465456872
817 => 0.09124761995523
818 => 0.091857814050567
819 => 0.091476591271349
820 => 0.091492236787183
821 => 0.092613331695598
822 => 0.092938790316989
823 => 0.092773259435376
824 => 0.092889191590791
825 => 0.095560799180426
826 => 0.095180982014382
827 => 0.094979211714957
828 => 0.095035103466821
829 => 0.095717756485885
830 => 0.09590886205975
831 => 0.095099134314534
901 => 0.095481006600158
902 => 0.097106970325538
903 => 0.097675965607845
904 => 0.099491925415737
905 => 0.098720473413233
906 => 0.10013650695149
907 => 0.10448891128669
908 => 0.10796591303311
909 => 0.10476831853392
910 => 0.11115338944773
911 => 0.11612508303816
912 => 0.11593426115737
913 => 0.11506733138253
914 => 0.10940719040915
915 => 0.10419864429749
916 => 0.10855581428644
917 => 0.1085669216088
918 => 0.10819263684257
919 => 0.10586798630465
920 => 0.10811174404282
921 => 0.10828984538395
922 => 0.10819015599389
923 => 0.1064078518769
924 => 0.10368660291512
925 => 0.1042183284485
926 => 0.10508930571909
927 => 0.10344036404097
928 => 0.10291342726191
929 => 0.10389310298801
930 => 0.10704982230102
1001 => 0.10645306280052
1002 => 0.10643747899827
1003 => 0.1089906692068
1004 => 0.10716313603042
1005 => 0.1042250352103
1006 => 0.10348312600442
1007 => 0.10084984813351
1008 => 0.10266866253836
1009 => 0.10273411843082
1010 => 0.10173797236911
1011 => 0.10430586697313
1012 => 0.10428220337228
1013 => 0.10672003711812
1014 => 0.11138025963163
1015 => 0.11000200251876
1016 => 0.10839923945045
1017 => 0.10857350423577
1018 => 0.11048475880865
1019 => 0.10932917066419
1020 => 0.10974472821798
1021 => 0.11048412981252
1022 => 0.11093022915281
1023 => 0.10850931740578
1024 => 0.10794488707195
1025 => 0.10679026069707
1026 => 0.10648904022798
1027 => 0.10742945931826
1028 => 0.10718169211347
1029 => 0.10272861711652
1030 => 0.10226324600266
1031 => 0.10227751827033
1101 => 0.10110732047734
1102 => 0.099322487963394
1103 => 0.10401292124324
1104 => 0.1036362138083
1105 => 0.10322035795496
1106 => 0.10327129792415
1107 => 0.1053072560374
1108 => 0.10412629751337
1109 => 0.10726606930481
1110 => 0.10662062661467
1111 => 0.105958630755
1112 => 0.10586712276231
1113 => 0.10561231083517
1114 => 0.10473846592567
1115 => 0.10368324568751
1116 => 0.10298649788467
1117 => 0.094999600452929
1118 => 0.096481922158615
1119 => 0.098187198163133
1120 => 0.098775852606427
1121 => 0.097768918447524
1122 => 0.1047782258236
1123 => 0.10605889382458
1124 => 0.10217966691371
1125 => 0.10145402194648
1126 => 0.10482579898685
1127 => 0.10279220524853
1128 => 0.10370793238437
1129 => 0.10172863119264
1130 => 0.10575041840548
1201 => 0.10571977912525
1202 => 0.10415521306327
1203 => 0.10547757358517
1204 => 0.1052477809028
1205 => 0.10348138967218
1206 => 0.10580641615814
1207 => 0.10580756934227
1208 => 0.10430170852422
1209 => 0.10254319276405
1210 => 0.10222881168042
1211 => 0.10199196776506
1212 => 0.10364968329999
1213 => 0.10513598586507
1214 => 0.10790162645302
1215 => 0.10859697420683
1216 => 0.11131096278187
1217 => 0.10969491472714
1218 => 0.11041128789848
1219 => 0.11118901231314
1220 => 0.11156188199739
1221 => 0.11095431085619
1222 => 0.1151702522355
1223 => 0.11552620686102
1224 => 0.11564555536796
1225 => 0.11422396365558
1226 => 0.11548666982385
1227 => 0.11489589142415
1228 => 0.11643293269721
1229 => 0.11667396039475
1230 => 0.11646981850974
1231 => 0.11654632450531
]
'min_raw' => 0.05226322153843
'max_raw' => 0.11667396039475
'avg_raw' => 0.084468590966592
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.052263'
'max' => '$0.116673'
'avg' => '$0.084468'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 0.0080588827199147
'max_diff' => -0.011133782976669
'year' => 2031
]
6 => [
'items' => [
101 => 0.11294876228109
102 => 0.11276220970111
103 => 0.11021855203594
104 => 0.11125511133627
105 => 0.10931731340789
106 => 0.10993180909251
107 => 0.11020267293516
108 => 0.11006118903515
109 => 0.11131371684387
110 => 0.11024881233193
111 => 0.10743835423841
112 => 0.10462713043747
113 => 0.10459183781262
114 => 0.10385169220806
115 => 0.10331670250038
116 => 0.10341976049786
117 => 0.10378295032304
118 => 0.1032955932475
119 => 0.1033995955892
120 => 0.10512672742533
121 => 0.10547309139773
122 => 0.10429601128639
123 => 0.099569864787493
124 => 0.098410056582023
125 => 0.099243703720118
126 => 0.098845274081861
127 => 0.079775850741399
128 => 0.084255928894486
129 => 0.081594018585
130 => 0.082820749324216
131 => 0.080103628196564
201 => 0.081400380815199
202 => 0.081160917956361
203 => 0.088364751051374
204 => 0.088252273106144
205 => 0.088306110346325
206 => 0.085736318600289
207 => 0.089830066629174
208 => 0.09184679411462
209 => 0.091473551530528
210 => 0.091567488647749
211 => 0.089953337745347
212 => 0.08832173885542
213 => 0.086512044585221
214 => 0.089874232854277
215 => 0.089500414913226
216 => 0.090357818774548
217 => 0.092538438201212
218 => 0.092859542695155
219 => 0.093291110391337
220 => 0.093136424093336
221 => 0.096821679278428
222 => 0.096375370559417
223 => 0.097450846160452
224 => 0.095238511252592
225 => 0.092735044307591
226 => 0.093210871529335
227 => 0.093165045541521
228 => 0.092581628120018
229 => 0.09205494495824
301 => 0.091178165885942
302 => 0.093952424609582
303 => 0.093839794771794
304 => 0.095663140927724
305 => 0.095340846783624
306 => 0.093188487610566
307 => 0.093265359539504
308 => 0.093782360205
309 => 0.095571705411292
310 => 0.096102904896432
311 => 0.095856832130276
312 => 0.096439268115553
313 => 0.096899601770488
314 => 0.096497078935191
315 => 0.10219595343746
316 => 0.099829383419973
317 => 0.10098283318001
318 => 0.10125792415126
319 => 0.10055328441294
320 => 0.10070609554093
321 => 0.10093756276128
322 => 0.10234298639734
323 => 0.10603122468095
324 => 0.10766472031008
325 => 0.11257917250557
326 => 0.10752908123744
327 => 0.10722942972094
328 => 0.10811467096359
329 => 0.11099997464994
330 => 0.11333824228492
331 => 0.11411398055735
401 => 0.11421650717609
402 => 0.11567184374526
403 => 0.11650601552628
404 => 0.11549512760661
405 => 0.11463850593906
406 => 0.1115701934537
407 => 0.11192535897862
408 => 0.1143720972446
409 => 0.11782825915746
410 => 0.12079400563106
411 => 0.11975550458271
412 => 0.12767853451416
413 => 0.12846407056919
414 => 0.12835553488581
415 => 0.1301451029226
416 => 0.12659317480876
417 => 0.12507465672472
418 => 0.11482371726665
419 => 0.11770381312398
420 => 0.12189020159471
421 => 0.12133611738246
422 => 0.11829585017253
423 => 0.12079169931575
424 => 0.11996649353659
425 => 0.11931561950074
426 => 0.1222973996371
427 => 0.11901880989239
428 => 0.12185749515402
429 => 0.11821685194354
430 => 0.11976024836802
501 => 0.1188841419118
502 => 0.11945109016054
503 => 0.11613672228306
504 => 0.11792507473802
505 => 0.11606232094137
506 => 0.11606143775354
507 => 0.11602031736023
508 => 0.11821183894127
509 => 0.11828330438135
510 => 0.11666376662176
511 => 0.11643036592867
512 => 0.11729337062128
513 => 0.11628301814752
514 => 0.11675575571091
515 => 0.11629733688672
516 => 0.11619413715362
517 => 0.11537182412229
518 => 0.11501754905842
519 => 0.11515646943951
520 => 0.11468226256049
521 => 0.11439653576308
522 => 0.11596347910859
523 => 0.11512632448939
524 => 0.11583517315671
525 => 0.11502735063647
526 => 0.11222708582981
527 => 0.11061662392723
528 => 0.10532718329213
529 => 0.10682726209471
530 => 0.10782181589277
531 => 0.10749311586845
601 => 0.10819929071072
602 => 0.10824264411072
603 => 0.1080130594709
604 => 0.1077472298696
605 => 0.10761783872098
606 => 0.10858221433458
607 => 0.10914206683766
608 => 0.10792163267182
609 => 0.10763570202245
610 => 0.10886962834613
611 => 0.10962232269076
612 => 0.11517979482908
613 => 0.11476807934267
614 => 0.11580140441847
615 => 0.1156850678726
616 => 0.11676815717362
617 => 0.11853855043311
618 => 0.11493884592683
619 => 0.11556363016071
620 => 0.11541044749494
621 => 0.11708285567317
622 => 0.11708807674895
623 => 0.11608538450312
624 => 0.11662896023641
625 => 0.1163255511743
626 => 0.11687385235772
627 => 0.11476258063134
628 => 0.11733388169637
629 => 0.11879164370926
630 => 0.11881188473622
701 => 0.11950285236082
702 => 0.12020491548555
703 => 0.12155246451667
704 => 0.12016733307446
705 => 0.11767561644975
706 => 0.11785551034186
707 => 0.11639461779647
708 => 0.11641917566409
709 => 0.1162880838421
710 => 0.11668150026802
711 => 0.11484891341311
712 => 0.11527901788503
713 => 0.11467686910565
714 => 0.11556232120686
715 => 0.11460972111643
716 => 0.11541037362562
717 => 0.11575590870653
718 => 0.11703094059394
719 => 0.11442139786996
720 => 0.10910036360526
721 => 0.11021890951901
722 => 0.10856449225269
723 => 0.1087176148695
724 => 0.10902694692474
725 => 0.10802430052657
726 => 0.10821557386232
727 => 0.1082087402328
728 => 0.10814985170539
729 => 0.10788902465319
730 => 0.10751077382443
731 => 0.10901760870674
801 => 0.10927364931584
802 => 0.10984279587317
803 => 0.11153618997198
804 => 0.11136697996852
805 => 0.11164296850461
806 => 0.11104048707994
807 => 0.10874556225483
808 => 0.10887018771405
809 => 0.1073161062406
810 => 0.10980305451584
811 => 0.10921411233815
812 => 0.1088344174849
813 => 0.10873081422634
814 => 0.11042840592158
815 => 0.11093635196328
816 => 0.11061983407708
817 => 0.10997064665819
818 => 0.1112172784175
819 => 0.11155082448512
820 => 0.11162549314895
821 => 0.11383428560853
822 => 0.11174894011082
823 => 0.11225090349867
824 => 0.11616707855891
825 => 0.11261564817449
826 => 0.11449692005546
827 => 0.11440484158656
828 => 0.11536723662209
829 => 0.11432589710344
830 => 0.1143388057548
831 => 0.11519334734807
901 => 0.11399329779771
902 => 0.11369614865271
903 => 0.11328563923711
904 => 0.11418197152789
905 => 0.11471928219859
906 => 0.11904961159321
907 => 0.12184720186914
908 => 0.12172575109714
909 => 0.12283558380689
910 => 0.12233559400625
911 => 0.12072099504933
912 => 0.12347691858942
913 => 0.1226048290686
914 => 0.1226767230691
915 => 0.12267404717081
916 => 0.12325391046277
917 => 0.12284302417673
918 => 0.12203312513033
919 => 0.12257077391374
920 => 0.1241673985875
921 => 0.12912337056528
922 => 0.13189679814195
923 => 0.12895640674275
924 => 0.13098464935651
925 => 0.12976842652499
926 => 0.12954740265701
927 => 0.1308212889044
928 => 0.13209740492103
929 => 0.13201612184757
930 => 0.13108972714878
1001 => 0.13056643028983
1002 => 0.13452900942313
1003 => 0.13744857022777
1004 => 0.13724947575388
1005 => 0.13812821401265
1006 => 0.14070821671875
1007 => 0.14094409983255
1008 => 0.14091438398192
1009 => 0.14032972307251
1010 => 0.14287007079235
1011 => 0.14498927355341
1012 => 0.14019439096446
1013 => 0.14202021948471
1014 => 0.14283989273197
1015 => 0.14404341624504
1016 => 0.14607396214556
1017 => 0.14827967356922
1018 => 0.14859158534892
1019 => 0.14837026901487
1020 => 0.14691554303826
1021 => 0.14932905879764
1022 => 0.15074283972558
1023 => 0.15158471391436
1024 => 0.15371956678261
1025 => 0.1428449547549
1026 => 0.13514736385839
1027 => 0.13394527388534
1028 => 0.13638977111539
1029 => 0.13703436554046
1030 => 0.13677453033596
1031 => 0.1281101919476
1101 => 0.13389965793685
1102 => 0.14012863654916
1103 => 0.14036791698597
1104 => 0.1434862739211
1105 => 0.14450173876494
1106 => 0.1470124248301
1107 => 0.14685538073314
1108 => 0.14746669283627
1109 => 0.14732616277021
1110 => 0.15197668001859
1111 => 0.15710689115205
1112 => 0.15692924825357
1113 => 0.15619171970523
1114 => 0.15728707536682
1115 => 0.16258200304339
1116 => 0.16209453095242
1117 => 0.16256806856602
1118 => 0.16881108670575
1119 => 0.17692789834636
1120 => 0.17315682442473
1121 => 0.18133896973738
1122 => 0.1864891964948
1123 => 0.19539598112838
1124 => 0.19428080782542
1125 => 0.19774815372227
1126 => 0.19228441486942
1127 => 0.17973856605949
1128 => 0.17775313746173
1129 => 0.18172801579349
1130 => 0.19149986630917
1201 => 0.18142026544569
1202 => 0.18345935557267
1203 => 0.18287209747893
1204 => 0.1828408049908
1205 => 0.18403511198696
1206 => 0.18230270739816
1207 => 0.17524457944978
1208 => 0.17847927789472
1209 => 0.17723020548215
1210 => 0.17861614444841
1211 => 0.1860954854446
1212 => 0.18278869050497
1213 => 0.17930525065827
1214 => 0.18367425726321
1215 => 0.18923750402486
1216 => 0.18888936604063
1217 => 0.18821383284084
1218 => 0.1920217781183
1219 => 0.19831138809338
1220 => 0.20001144439594
1221 => 0.20126639120237
1222 => 0.20143942716448
1223 => 0.20322180511543
1224 => 0.19363750965608
1225 => 0.20884803269223
1226 => 0.21147446983836
1227 => 0.21098080850955
1228 => 0.2138999828601
1229 => 0.21304108771386
1230 => 0.21179668340349
1231 => 0.21642419567529
]
'min_raw' => 0.079775850741399
'max_raw' => 0.21642419567529
'avg_raw' => 0.14810002320835
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.079775'
'max' => '$0.216424'
'avg' => '$0.148100023'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.027512629202969
'max_diff' => 0.099750235280538
'year' => 2032
]
7 => [
'items' => [
101 => 0.21111912627665
102 => 0.20358924815494
103 => 0.19945820809327
104 => 0.20489829488798
105 => 0.20822036606064
106 => 0.21041604378235
107 => 0.21108045453428
108 => 0.1943815112296
109 => 0.18538170695423
110 => 0.19115047831178
111 => 0.19818877750732
112 => 0.19359841154868
113 => 0.19377834520355
114 => 0.18723368967348
115 => 0.19876783430101
116 => 0.19708740644621
117 => 0.20580546912957
118 => 0.20372483350336
119 => 0.21083407518839
120 => 0.20896197359609
121 => 0.21673296263795
122 => 0.21983302055788
123 => 0.22503850029093
124 => 0.22886767237267
125 => 0.23111623545946
126 => 0.23098124016588
127 => 0.23989116734542
128 => 0.23463729457679
129 => 0.22803719213665
130 => 0.22791781710656
131 => 0.23133610368449
201 => 0.23849989459069
202 => 0.24035736134375
203 => 0.24139543185843
204 => 0.2398055907297
205 => 0.2341028883878
206 => 0.23164049042993
207 => 0.23373852483257
208 => 0.23117280904429
209 => 0.23560195430757
210 => 0.24168411676843
211 => 0.24042817427174
212 => 0.24462660173676
213 => 0.2489715324756
214 => 0.25518497857519
215 => 0.25680940346887
216 => 0.25949451604677
217 => 0.26225837890297
218 => 0.26314605716418
219 => 0.26484091039523
220 => 0.2648319776821
221 => 0.26993953197066
222 => 0.27557332251872
223 => 0.27769994802806
224 => 0.28259000612398
225 => 0.27421595300279
226 => 0.2805677684894
227 => 0.28629726505458
228 => 0.27946632305016
301 => 0.28888118519789
302 => 0.28924674296055
303 => 0.29476623116655
304 => 0.28917117246378
305 => 0.28584884446613
306 => 0.29544028090933
307 => 0.30008127487679
308 => 0.29868336972413
309 => 0.28804524248931
310 => 0.28185339614791
311 => 0.26564813995449
312 => 0.28484396593056
313 => 0.29419369281359
314 => 0.28802102895541
315 => 0.29113416156306
316 => 0.30811840363376
317 => 0.31458490336604
318 => 0.31323991662597
319 => 0.31346719724468
320 => 0.31695640312495
321 => 0.33242946353883
322 => 0.3231576470761
323 => 0.33024560335352
324 => 0.33400502980554
325 => 0.33749699460929
326 => 0.32892183269809
327 => 0.31776567304578
328 => 0.31423204898017
329 => 0.28740727918463
330 => 0.2860109334227
331 => 0.28522712223292
401 => 0.28028530355367
402 => 0.27640238774983
403 => 0.2733145489392
404 => 0.26521113779339
405 => 0.26794580117697
406 => 0.25503065512389
407 => 0.26329330788398
408 => 0.24268042293615
409 => 0.25984744603589
410 => 0.25050421585146
411 => 0.25677794363493
412 => 0.25675605518972
413 => 0.24520413325314
414 => 0.23854122576259
415 => 0.24278708973981
416 => 0.24733899296049
417 => 0.24807752394361
418 => 0.25397918528605
419 => 0.25562621211094
420 => 0.25063564393919
421 => 0.24225326671212
422 => 0.2442003017603
423 => 0.23850176915948
424 => 0.22851530996743
425 => 0.23568775930601
426 => 0.23813674886054
427 => 0.23921836216367
428 => 0.22939782650088
429 => 0.22631200098143
430 => 0.22466913336745
501 => 0.24098555887906
502 => 0.24187940950084
503 => 0.2373063433421
504 => 0.25797703601552
505 => 0.25329862164185
506 => 0.25852555673659
507 => 0.24402362873754
508 => 0.24457762191654
509 => 0.23771217679808
510 => 0.24155636731521
511 => 0.23883941736174
512 => 0.24124579471045
513 => 0.2426881673714
514 => 0.24955248593787
515 => 0.25992582552761
516 => 0.24852718564889
517 => 0.24356063502221
518 => 0.24664185509806
519 => 0.2548475501985
520 => 0.26727959831746
521 => 0.25991957561275
522 => 0.26318582870781
523 => 0.26389935970359
524 => 0.25847235144399
525 => 0.267479699853
526 => 0.27230681104095
527 => 0.27725842828987
528 => 0.28155777880595
529 => 0.27528064347226
530 => 0.28199807807131
531 => 0.2765850115713
601 => 0.27172893132827
602 => 0.2717362959975
603 => 0.26869000592503
604 => 0.26278743505237
605 => 0.26169891042177
606 => 0.26736155301567
607 => 0.27190245612173
608 => 0.272276466651
609 => 0.27479054393054
610 => 0.27627834896752
611 => 0.29086086090275
612 => 0.29672606783597
613 => 0.30389793185122
614 => 0.30669177706927
615 => 0.31510024952665
616 => 0.30830972511457
617 => 0.30684055244362
618 => 0.28644434865239
619 => 0.28978422588059
620 => 0.29513169157315
621 => 0.28653252639206
622 => 0.29198671744448
623 => 0.29306349029379
624 => 0.28624033004972
625 => 0.28988487474743
626 => 0.28020604456252
627 => 0.26013679757645
628 => 0.26750204266199
629 => 0.27292534215964
630 => 0.26518562508849
701 => 0.27905876837011
702 => 0.27095436446479
703 => 0.2683856575068
704 => 0.25836421585353
705 => 0.26309395055321
706 => 0.26949098445781
707 => 0.26553836123978
708 => 0.27374064790655
709 => 0.28535727329665
710 => 0.29363597233163
711 => 0.29427150804652
712 => 0.28894885919679
713 => 0.29747843794718
714 => 0.29754056661642
715 => 0.28791916694163
716 => 0.28202611321299
717 => 0.28068719900675
718 => 0.28403206920353
719 => 0.28809335911951
720 => 0.29449688137172
721 => 0.29836639575629
722 => 0.30845603703941
723 => 0.31118600467794
724 => 0.31418541143821
725 => 0.31819354385272
726 => 0.32300633448039
727 => 0.31247622257936
728 => 0.31289460355577
729 => 0.30308910915286
730 => 0.29261053213321
731 => 0.30056246591806
801 => 0.31095856154033
802 => 0.30857368571792
803 => 0.3083053384693
804 => 0.30875662410815
805 => 0.30695850562081
806 => 0.29882568234397
807 => 0.2947414294085
808 => 0.3000111576993
809 => 0.30281178375724
810 => 0.30715531053284
811 => 0.30661987917702
812 => 0.31780833769025
813 => 0.32215583434707
814 => 0.32104355866238
815 => 0.32124824415678
816 => 0.32911917919044
817 => 0.33787327772912
818 => 0.34607264621564
819 => 0.3544133960112
820 => 0.34435829658765
821 => 0.33925293721268
822 => 0.34452036490496
823 => 0.34172539362703
824 => 0.35778612763238
825 => 0.35889813800843
826 => 0.37495771063992
827 => 0.39020015740553
828 => 0.38062664968885
829 => 0.38965403626542
830 => 0.39941789086161
831 => 0.41825395050598
901 => 0.41191062827833
902 => 0.40705174286448
903 => 0.40246011962635
904 => 0.41201455868523
905 => 0.42430619189859
906 => 0.42695369196495
907 => 0.43124365349531
908 => 0.42673328349767
909 => 0.43216552735887
910 => 0.45134373523781
911 => 0.4461616141782
912 => 0.43880216920602
913 => 0.45394152243178
914 => 0.45942039551143
915 => 0.49787399609258
916 => 0.54642325526528
917 => 0.52632354317616
918 => 0.51384700326879
919 => 0.5167792860945
920 => 0.53450783204824
921 => 0.54020167833266
922 => 0.52472384134509
923 => 0.53019087503176
924 => 0.56031476815218
925 => 0.57647527032109
926 => 0.55452713773071
927 => 0.49397311038941
928 => 0.4381395317077
929 => 0.45294911099291
930 => 0.45127016429672
1001 => 0.48363452942241
1002 => 0.44603802230477
1003 => 0.44667105106301
1004 => 0.47970467698505
1005 => 0.47089187192877
1006 => 0.45661625639639
1007 => 0.43824375949943
1008 => 0.40428049973513
1009 => 0.37419829342633
1010 => 0.43319642751626
1011 => 0.43065232069315
1012 => 0.42696807699779
1013 => 0.43516696266501
1014 => 0.47497842417073
1015 => 0.4740606411259
1016 => 0.4682221736517
1017 => 0.47265059977299
1018 => 0.4558399318862
1019 => 0.46017242377242
1020 => 0.43813068738358
1021 => 0.44809447277556
1022 => 0.45658562733696
1023 => 0.45829035232886
1024 => 0.46213118478101
1025 => 0.42931169200249
1026 => 0.44404668073036
1027 => 0.45270210612625
1028 => 0.41359657930054
1029 => 0.45192911559476
1030 => 0.42874037764999
1031 => 0.42086977170838
1101 => 0.43146650573528
1102 => 0.42733694817934
1103 => 0.42378659708849
1104 => 0.42180544017703
1105 => 0.42958651212752
1106 => 0.42922351582064
1107 => 0.41649217186864
1108 => 0.39988465267924
1109 => 0.40545868124244
1110 => 0.40343358440863
1111 => 0.39609437224022
1112 => 0.40104011510187
1113 => 0.37926156652235
1114 => 0.34179270564173
1115 => 0.36654578284172
1116 => 0.36559281629568
1117 => 0.36511228734958
1118 => 0.38371354074057
1119 => 0.38192545943095
1120 => 0.37868007434507
1121 => 0.39603476819806
1122 => 0.38970007148814
1123 => 0.40922211410585
1124 => 0.42208059398042
1125 => 0.41881926755598
1126 => 0.43091273002844
1127 => 0.40558709560258
1128 => 0.41399925547075
1129 => 0.41573298996084
1130 => 0.39582061396981
1201 => 0.38221801164678
1202 => 0.38131087315286
1203 => 0.35772583527879
1204 => 0.37032477213934
1205 => 0.38141131519719
1206 => 0.37610172142298
1207 => 0.37442086265366
1208 => 0.38300800557231
1209 => 0.38367530012099
1210 => 0.36846091369429
1211 => 0.37162446640936
1212 => 0.38481700712807
1213 => 0.37129204823182
1214 => 0.34501526238589
1215 => 0.33849825619111
1216 => 0.33762876743247
1217 => 0.31995412976195
1218 => 0.33893375370732
1219 => 0.33064863923287
1220 => 0.35682121658675
1221 => 0.34187158076856
1222 => 0.3412271318479
1223 => 0.34025295278421
1224 => 0.32503966201111
1225 => 0.32837040583535
1226 => 0.33944230559375
1227 => 0.34339288416142
1228 => 0.34298080645067
1229 => 0.33938804724468
1230 => 0.34103279401128
1231 => 0.33573449160829
]
'min_raw' => 0.18538170695423
'max_raw' => 0.57647527032109
'avg_raw' => 0.38092848863766
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.185381'
'max' => '$0.576475'
'avg' => '$0.380928'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.10560585621283
'max_diff' => 0.3600510746458
'year' => 2033
]
8 => [
'items' => [
101 => 0.33386355075517
102 => 0.32795834677989
103 => 0.31927932829046
104 => 0.32048619904293
105 => 0.30329079242666
106 => 0.29392182227281
107 => 0.29132861481527
108 => 0.28786086942544
109 => 0.29172030588437
110 => 0.3032420800002
111 => 0.28934437593577
112 => 0.26551773712788
113 => 0.26694975871885
114 => 0.27016708606274
115 => 0.26417161784216
116 => 0.25849741033288
117 => 0.26343067339919
118 => 0.25333501243526
119 => 0.27138709845764
120 => 0.27089884012112
121 => 0.27762754145675
122 => 0.28183513648877
123 => 0.27213799216503
124 => 0.26969918659148
125 => 0.27108844108371
126 => 0.24812715892976
127 => 0.27575111484056
128 => 0.27599000795839
129 => 0.27394446004734
130 => 0.28865336377588
131 => 0.31969373846523
201 => 0.30801510091092
202 => 0.3034927794612
203 => 0.29489584307949
204 => 0.30635075037255
205 => 0.30547119221683
206 => 0.30149349667416
207 => 0.29908777399878
208 => 0.30352039179165
209 => 0.29853852360064
210 => 0.29764364318095
211 => 0.29222164147714
212 => 0.29028623355425
213 => 0.28885333457894
214 => 0.28727585360087
215 => 0.29075538355472
216 => 0.28287031090902
217 => 0.2733616862815
218 => 0.27257114702847
219 => 0.27475389541101
220 => 0.27378819173824
221 => 0.27256652361081
222 => 0.27023402645404
223 => 0.26954202437354
224 => 0.27179069542348
225 => 0.26925207691376
226 => 0.27299794681056
227 => 0.27197927746706
228 => 0.26628907332155
301 => 0.25919697217284
302 => 0.25913383759643
303 => 0.25760585603732
304 => 0.25565974178823
305 => 0.25511837732519
306 => 0.26301520774374
307 => 0.27936141037788
308 => 0.27615225966932
309 => 0.27847119994324
310 => 0.28987809095142
311 => 0.29350399858574
312 => 0.29093041523123
313 => 0.28740753560387
314 => 0.28756252442856
315 => 0.29960127056344
316 => 0.30035211239285
317 => 0.302249247465
318 => 0.30468760216303
319 => 0.29134567758005
320 => 0.28693412098052
321 => 0.28484368071982
322 => 0.27840593381905
323 => 0.28534849192082
324 => 0.2813033606249
325 => 0.28184918703808
326 => 0.28149371687044
327 => 0.28168782761876
328 => 0.27138205253169
329 => 0.27513693531783
330 => 0.26889371441438
331 => 0.26053474245911
401 => 0.26050672025408
402 => 0.26255256679799
403 => 0.26133561721969
404 => 0.25806083719512
405 => 0.25852600424108
406 => 0.25445065144667
407 => 0.25902082585697
408 => 0.25915188210619
409 => 0.25739211601914
410 => 0.26443310026074
411 => 0.26731779724942
412 => 0.26615948151308
413 => 0.26723652672953
414 => 0.2762856143697
415 => 0.27776101049443
416 => 0.27841628399383
417 => 0.27753830431173
418 => 0.26740192743994
419 => 0.26785151885741
420 => 0.26455271534463
421 => 0.26176557399569
422 => 0.26187704503302
423 => 0.26330999798939
424 => 0.26956778759144
425 => 0.28273693689212
426 => 0.28323669648156
427 => 0.28384241968298
428 => 0.28137863901073
429 => 0.28063553918478
430 => 0.28161587966555
501 => 0.28656151974191
502 => 0.29928304874649
503 => 0.29478641075392
504 => 0.29113057407162
505 => 0.29433772844849
506 => 0.29384401217068
507 => 0.28967654992744
508 => 0.28955958314244
509 => 0.28156089067939
510 => 0.27860395619721
511 => 0.2761329204212
512 => 0.27343461386181
513 => 0.27183496728536
514 => 0.27429275145316
515 => 0.27485487577199
516 => 0.26948088773436
517 => 0.2687484330224
518 => 0.27313694765952
519 => 0.27120572598804
520 => 0.27319203536915
521 => 0.27365287618381
522 => 0.27357867019858
523 => 0.27156225297416
524 => 0.27284745718258
525 => 0.26980756609186
526 => 0.26650214110758
527 => 0.26439348590286
528 => 0.26255340456422
529 => 0.26357438863705
530 => 0.25993476684173
531 => 0.25877037857829
601 => 0.27241205891478
602 => 0.28248931485213
603 => 0.28234278755976
604 => 0.28145084035128
605 => 0.28012558772436
606 => 0.28646456925776
607 => 0.28425619484346
608 => 0.28586297174572
609 => 0.28627196390356
610 => 0.28750985998479
611 => 0.28795230143306
612 => 0.28661493608103
613 => 0.28212657461421
614 => 0.27094200457948
615 => 0.26573555703614
616 => 0.26401734262659
617 => 0.26407979645703
618 => 0.2623570410075
619 => 0.26286446969587
620 => 0.26218057801771
621 => 0.26088545263045
622 => 0.26349441829396
623 => 0.26379507728248
624 => 0.2631861135218
625 => 0.26332954653225
626 => 0.25828758668564
627 => 0.25867091594221
628 => 0.25653648993047
629 => 0.25613631078416
630 => 0.2507406676922
701 => 0.24118150384382
702 => 0.24647820854631
703 => 0.24008053409509
704 => 0.23765763783982
705 => 0.24912725187457
706 => 0.24797602074305
707 => 0.24600561347404
708 => 0.24309097045432
709 => 0.24200990100648
710 => 0.2354416652664
711 => 0.2350535788587
712 => 0.23830897384877
713 => 0.23680672107216
714 => 0.23469698922618
715 => 0.22705575434012
716 => 0.21846447640226
717 => 0.21872379308036
718 => 0.22145651874598
719 => 0.22940228717705
720 => 0.22629773798784
721 => 0.22404535193047
722 => 0.22362354772841
723 => 0.2289033104242
724 => 0.23637528078324
725 => 0.23988096209979
726 => 0.23640693838421
727 => 0.23241616699448
728 => 0.23265906675752
729 => 0.23427497006001
730 => 0.23444477864946
731 => 0.23184719673267
801 => 0.23257840082682
802 => 0.2314676349451
803 => 0.2246508667793
804 => 0.22452757305938
805 => 0.22285462821626
806 => 0.22280397211128
807 => 0.21995787559747
808 => 0.21955968702106
809 => 0.21390858964719
810 => 0.21762815905177
811 => 0.21513326718133
812 => 0.2113728766471
813 => 0.21072458390162
814 => 0.21070509543885
815 => 0.21456617570958
816 => 0.21758304008077
817 => 0.21517666689358
818 => 0.21462878236444
819 => 0.22047875575284
820 => 0.21973429331547
821 => 0.21908959364598
822 => 0.23570624779088
823 => 0.2225528694215
824 => 0.21681724568386
825 => 0.20971832214313
826 => 0.21202976744387
827 => 0.21251682293094
828 => 0.19544519149262
829 => 0.18851923274423
830 => 0.18614250470103
831 => 0.18477466411017
901 => 0.18539800624369
902 => 0.1791638310362
903 => 0.18335329987937
904 => 0.1779550311114
905 => 0.17704999378497
906 => 0.18670276705927
907 => 0.18804589406971
908 => 0.18231569696634
909 => 0.18599541114135
910 => 0.18466109562963
911 => 0.17804756893546
912 => 0.17779498086155
913 => 0.17447654564312
914 => 0.16928383710195
915 => 0.16691062995966
916 => 0.16567464307483
917 => 0.16618463535242
918 => 0.16592676765085
919 => 0.16424400646968
920 => 0.16602322155198
921 => 0.16147806223913
922 => 0.15966814317791
923 => 0.15885064472776
924 => 0.15481655422799
925 => 0.16123658618131
926 => 0.16250141335355
927 => 0.16376873262604
928 => 0.17479988165745
929 => 0.17424879662554
930 => 0.17923033692468
1001 => 0.17903676342912
1002 => 0.1776159474402
1003 => 0.17162175849586
1004 => 0.17401093537293
1005 => 0.16665742030582
1006 => 0.17216717378452
1007 => 0.16965275238965
1008 => 0.17131704538163
1009 => 0.1683244965188
1010 => 0.1699806966188
1011 => 0.16280135079808
1012 => 0.15609737868681
1013 => 0.15879525276553
1014 => 0.16172815042843
1015 => 0.16808741985001
1016 => 0.16429989144535
1017 => 0.16566202988197
1018 => 0.16109909413851
1019 => 0.15168445436159
1020 => 0.1517377402003
1021 => 0.1502895029797
1022 => 0.14903801457501
1023 => 0.16473493464434
1024 => 0.16278277450213
1025 => 0.15967226280793
1026 => 0.16383580631744
1027 => 0.16493671330567
1028 => 0.16496805457994
1029 => 0.16800566844786
1030 => 0.1696268435137
1031 => 0.16991258264563
1101 => 0.1746923336988
1102 => 0.17629444320539
1103 => 0.18289330552398
1104 => 0.16948929813588
1105 => 0.16921325142448
1106 => 0.16389439591298
1107 => 0.16052109365981
1108 => 0.16412536880424
1109 => 0.16731826454958
1110 => 0.16399360808395
1111 => 0.16442773803103
1112 => 0.15996465836033
1113 => 0.16155999933519
1114 => 0.16293412189838
1115 => 0.16217541218618
1116 => 0.16103958702505
1117 => 0.16705648350977
1118 => 0.16671698662969
1119 => 0.17232005896412
1120 => 0.17668805452835
1121 => 0.18451628345206
1122 => 0.17634711847537
1123 => 0.17604940163413
1124 => 0.17895963151254
1125 => 0.17629399766435
1126 => 0.17797858624185
1127 => 0.18424487018858
1128 => 0.1843772668941
1129 => 0.18215945149323
1130 => 0.18202449722453
1201 => 0.18245045293251
1202 => 0.18494528881863
1203 => 0.18407351650145
1204 => 0.18508235349746
1205 => 0.18634391960883
1206 => 0.1915622919384
1207 => 0.19282042384034
1208 => 0.18976381558522
1209 => 0.19003979308727
1210 => 0.18889653769408
1211 => 0.18779216730921
1212 => 0.19027463065406
1213 => 0.1948113812097
1214 => 0.19478315831995
1215 => 0.19583559626703
1216 => 0.1964912563892
1217 => 0.19367668317232
1218 => 0.19184449950286
1219 => 0.19254707530661
1220 => 0.19367050931691
1221 => 0.19218276079834
1222 => 0.18299968774952
1223 => 0.18578524549556
1224 => 0.1853215924798
1225 => 0.18466129420323
1226 => 0.18746219405695
1227 => 0.18719204043322
1228 => 0.17909989055872
1229 => 0.17961792373877
1230 => 0.17913139387218
1231 => 0.18070347140578
]
'min_raw' => 0.14903801457501
'max_raw' => 0.33386355075517
'avg_raw' => 0.24145078266509
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.149038'
'max' => '$0.333863'
'avg' => '$0.24145'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.036343692379228
'max_diff' => -0.24261171956592
'year' => 2034
]
9 => [
'items' => [
101 => 0.17620910031842
102 => 0.17759153859484
103 => 0.17845859092226
104 => 0.17896929140412
105 => 0.18081429173519
106 => 0.18059780224125
107 => 0.18080083444428
108 => 0.18353648287323
109 => 0.19737245386569
110 => 0.19812551523946
111 => 0.19441716561575
112 => 0.19589857814646
113 => 0.19305459003681
114 => 0.19496377830788
115 => 0.19626999643483
116 => 0.19036744789047
117 => 0.1900179372729
118 => 0.18716221101266
119 => 0.18869671654831
120 => 0.18625520790623
121 => 0.18685426872665
122 => 0.18517924244758
123 => 0.1881939562555
124 => 0.19156487473193
125 => 0.19241650186068
126 => 0.19017623753347
127 => 0.18855413851996
128 => 0.18570626700486
129 => 0.19044234080342
130 => 0.19182731311135
131 => 0.19043506613349
201 => 0.19011245208752
202 => 0.18950109905336
203 => 0.19024215352377
204 => 0.19181977025473
205 => 0.19107579533841
206 => 0.19156720387779
207 => 0.18969446126397
208 => 0.19367761491317
209 => 0.20000382150623
210 => 0.20002416129487
211 => 0.19928018236825
212 => 0.19897576222073
213 => 0.19973912974785
214 => 0.20015322531634
215 => 0.20262181592139
216 => 0.2052707119936
217 => 0.2176319541587
218 => 0.21416096682305
219 => 0.22512859624552
220 => 0.23380256715024
221 => 0.23640351175779
222 => 0.23401076510275
223 => 0.22582530804947
224 => 0.22542369047565
225 => 0.23765621912408
226 => 0.23419996949559
227 => 0.23378885959998
228 => 0.22941534489178
301 => 0.23200063375466
302 => 0.23143519315645
303 => 0.23054261750987
304 => 0.23547516856746
305 => 0.24470846381539
306 => 0.24326936816171
307 => 0.24219515001396
308 => 0.23748823879072
309 => 0.24032285067379
310 => 0.23931349967564
311 => 0.24365031211365
312 => 0.24108128049753
313 => 0.23417378500534
314 => 0.23527382642987
315 => 0.23510755738153
316 => 0.23852936261446
317 => 0.23750222161797
318 => 0.23490699161694
319 => 0.24467690541602
320 => 0.24404250155702
321 => 0.24494194118417
322 => 0.24533790232413
323 => 0.25128467668844
324 => 0.25372087986994
325 => 0.25427394064388
326 => 0.25658814524359
327 => 0.25421636112525
328 => 0.26370518865204
329 => 0.27001470526892
330 => 0.27734353350418
331 => 0.28805292135922
401 => 0.29207975026009
402 => 0.29135233966189
403 => 0.29947207530903
404 => 0.31406305977535
405 => 0.29430159479475
406 => 0.31511046540391
407 => 0.30852261721901
408 => 0.29290294768295
409 => 0.29189722510864
410 => 0.30247504666655
411 => 0.3259356368044
412 => 0.32005902506268
413 => 0.32594524883597
414 => 0.31907865613925
415 => 0.31873767193567
416 => 0.32561175375522
417 => 0.34167342061329
418 => 0.3340431247516
419 => 0.32310322460856
420 => 0.33118107663048
421 => 0.32418329363918
422 => 0.30841533000364
423 => 0.32005453132844
424 => 0.31227172886792
425 => 0.31454316438243
426 => 0.33090145754995
427 => 0.32893318443736
428 => 0.33148031210223
429 => 0.32698469844366
430 => 0.32278508639336
501 => 0.31494619863417
502 => 0.31262549042118
503 => 0.31326685068091
504 => 0.31262517259488
505 => 0.30823938693672
506 => 0.30729227694141
507 => 0.30571371878873
508 => 0.30620297996714
509 => 0.30323482881661
510 => 0.30883634328897
511 => 0.30987603373542
512 => 0.31395234884086
513 => 0.31437556539777
514 => 0.32572804494371
515 => 0.31947528998047
516 => 0.3236701778467
517 => 0.32329494759213
518 => 0.29324147328478
519 => 0.29738257688028
520 => 0.30382483452499
521 => 0.30092260618832
522 => 0.29681953433712
523 => 0.29350608382448
524 => 0.28848586748011
525 => 0.29555172558009
526 => 0.30484257761132
527 => 0.31461119673752
528 => 0.32634755255236
529 => 0.32372813456073
530 => 0.3143917937292
531 => 0.3148106151587
601 => 0.31739960443572
602 => 0.3140466280875
603 => 0.31305776990453
604 => 0.31726375050633
605 => 0.31729271478317
606 => 0.31343471027381
607 => 0.30914724426904
608 => 0.30912927962993
609 => 0.30836636646639
610 => 0.31921437669622
611 => 0.32517968546508
612 => 0.32586359850186
613 => 0.32513365266857
614 => 0.32541457984929
615 => 0.3219434981133
616 => 0.32987736164446
617 => 0.33715825939844
618 => 0.33520682326668
619 => 0.33228134309218
620 => 0.32995105722298
621 => 0.33465788197345
622 => 0.33444829447654
623 => 0.33709466710828
624 => 0.33697461235951
625 => 0.33608473677857
626 => 0.33520685504694
627 => 0.33868755688159
628 => 0.33768517065157
629 => 0.33668122743887
630 => 0.33466766562979
701 => 0.33494134212137
702 => 0.33201636707227
703 => 0.3306631397768
704 => 0.31031384809928
705 => 0.30487585243076
706 => 0.30658675656868
707 => 0.30715003063449
708 => 0.30478340795057
709 => 0.30817653694383
710 => 0.30764772138444
711 => 0.30970503337926
712 => 0.308419714163
713 => 0.30847246411197
714 => 0.31225231386804
715 => 0.31334962033286
716 => 0.3127915214085
717 => 0.31318239476461
718 => 0.32218990627875
719 => 0.32090932618544
720 => 0.32022904353378
721 => 0.32041748647742
722 => 0.32271909879251
723 => 0.32336342457736
724 => 0.32063337095098
725 => 0.32192088002343
726 => 0.32740293024471
727 => 0.32932133756499
728 => 0.33544397284357
729 => 0.33284296855606
730 => 0.3376172244946
731 => 0.35229165958588
801 => 0.36401461373047
802 => 0.35323370062754
803 => 0.37476141300486
804 => 0.39152382505754
805 => 0.3908804557637
806 => 0.38795754150074
807 => 0.36887398103055
808 => 0.35131300416602
809 => 0.36600350699166
810 => 0.36604095610449
811 => 0.36477902888341
812 => 0.3569413072929
813 => 0.36450629316131
814 => 0.36510677426755
815 => 0.36477066452887
816 => 0.35876150176194
817 => 0.34958662089575
818 => 0.35137937065544
819 => 0.35431593133292
820 => 0.34875640933972
821 => 0.34697980519958
822 => 0.35028285030887
823 => 0.3609259498678
824 => 0.35891393354746
825 => 0.35886139167014
826 => 0.36746965071624
827 => 0.36130799501781
828 => 0.35140198297109
829 => 0.34890058428505
830 => 0.34002230409366
831 => 0.3461545638452
901 => 0.34637525295661
902 => 0.34301667696087
903 => 0.35167451290298
904 => 0.35159472942059
905 => 0.35981405609881
906 => 0.37552632166943
907 => 0.37087943158657
908 => 0.3654756040004
909 => 0.3660631498909
910 => 0.37250707812289
911 => 0.36861093201325
912 => 0.37001201331917
913 => 0.37250495741853
914 => 0.37400901248999
915 => 0.36584673951221
916 => 0.36394372323444
917 => 0.36005081979808
918 => 0.35903523395602
919 => 0.36220592257684
920 => 0.36137055814733
921 => 0.34635670489135
922 => 0.3447876736898
923 => 0.3448357936367
924 => 0.34089039007705
925 => 0.33487270264325
926 => 0.35068682592184
927 => 0.34941673050406
928 => 0.3480146434604
929 => 0.34818639112305
930 => 0.35505076604793
1001 => 0.35106908193226
1002 => 0.36165504173896
1003 => 0.35947888664578
1004 => 0.35724692138584
1005 => 0.3569383957996
1006 => 0.35607927959685
1007 => 0.35313305047457
1008 => 0.3495753017685
1009 => 0.34722616790584
1010 => 0.32029778558735
1011 => 0.32529553671046
1012 => 0.33104499381826
1013 => 0.33302968337237
1014 => 0.32963473455373
1015 => 0.35326710374639
1016 => 0.35758496532506
1017 => 0.34450588095612
1018 => 0.34205931828618
1019 => 0.35342749998772
1020 => 0.346571096718
1021 => 0.34965853469053
1022 => 0.3429851825322
1023 => 0.35654491891251
1024 => 0.35644161644006
1025 => 0.35116657272759
1026 => 0.35562500355143
1027 => 0.35485024147919
1028 => 0.34889473011967
1029 => 0.35673371924526
1030 => 0.35673760728606
1031 => 0.35166049240215
1101 => 0.34573153374109
1102 => 0.34467157596825
1103 => 0.3438730401717
1104 => 0.34946214383572
1105 => 0.3544733167042
1106 => 0.36379786703734
1107 => 0.36614228053694
1108 => 0.37529268250233
1109 => 0.36984406365693
1110 => 0.37225936581967
1111 => 0.37488151798268
1112 => 0.37613867415607
1113 => 0.37409020563424
1114 => 0.38830454634221
1115 => 0.3895046722141
1116 => 0.3899070640379
1117 => 0.38511406832726
1118 => 0.38937137033293
1119 => 0.3873795197115
1120 => 0.39256176167641
1121 => 0.39337440338669
1122 => 0.39268612476865
1123 => 0.39294407007417
1124 => 0.38081463786146
1125 => 0.38018566281337
1126 => 0.37160954340275
1127 => 0.37510437545405
1128 => 0.3685709544458
1129 => 0.37064276954921
1130 => 0.37155600590581
1201 => 0.37107898305883
1202 => 0.37530196801463
1203 => 0.37171156810337
1204 => 0.36223591242117
1205 => 0.35275767510291
1206 => 0.35263868355418
1207 => 0.35014323097307
1208 => 0.34833947582186
1209 => 0.34868694305563
1210 => 0.34991146290832
1211 => 0.34826830450197
1212 => 0.34861895565821
1213 => 0.35444210122824
1214 => 0.35560989154353
1215 => 0.35164128376703
1216 => 0.33570675087699
1217 => 0.33179637653703
1218 => 0.3346070760665
1219 => 0.33326374272365
1220 => 0.26896985054666
1221 => 0.28407474682886
1222 => 0.27509993037179
1223 => 0.27923593870666
1224 => 0.27007497512144
1225 => 0.27444706711154
1226 => 0.27363970136421
1227 => 0.29792792759961
1228 => 0.29754870035431
1229 => 0.29773021636838
1230 => 0.28906598407949
1231 => 0.30286834137523
]
'min_raw' => 0.17620910031842
'max_raw' => 0.39337440338669
'avg_raw' => 0.28479175185256
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.1762091'
'max' => '$0.393374'
'avg' => '$0.284791'
'bar_min_pct' => 61.631153054958
'bar_max_pct' => 60.119598047091
'min_diff' => 0.027171085743416
'max_diff' => 0.059510852631524
'year' => 2035
]
10 => [
'items' => [
101 => 0.30966787889583
102 => 0.3084094654646
103 => 0.30872618101379
104 => 0.30328395854992
105 => 0.29778290897794
106 => 0.29168139839714
107 => 0.30301725088675
108 => 0.30175689759936
109 => 0.30464769457984
110 => 0.31199980522282
111 => 0.31308243144295
112 => 0.31453749206172
113 => 0.31401595640816
114 => 0.326441051561
115 => 0.32493629055457
116 => 0.32856233163077
117 => 0.32110329002863
118 => 0.31266267643708
119 => 0.31426696113639
120 => 0.314112455619
121 => 0.3121454230495
122 => 0.31036967399772
123 => 0.30741355214071
124 => 0.31676715912002
125 => 0.31638741975835
126 => 0.32253495862504
127 => 0.32144832141634
128 => 0.31419149219146
129 => 0.3144506712669
130 => 0.31619377510645
131 => 0.32222667739756
201 => 0.32401765354887
202 => 0.32318800203752
203 => 0.32515172562627
204 => 0.32670377268335
205 => 0.3253466388409
206 => 0.34456079210801
207 => 0.33658173606541
208 => 0.34047067246266
209 => 0.34139816087846
210 => 0.33902241880437
211 => 0.33953763219129
212 => 0.34031804008524
213 => 0.34505652399775
214 => 0.35749167687554
215 => 0.36299912143617
216 => 0.37956854012934
217 => 0.36254180483274
218 => 0.36153150882387
219 => 0.36451616147902
220 => 0.374244164303
221 => 0.382127796887
222 => 0.38474325263279
223 => 0.38508892828606
224 => 0.38999569713737
225 => 0.39280816553712
226 => 0.38939988633799
227 => 0.38651172657843
228 => 0.37616669681129
229 => 0.37736416217542
301 => 0.38561351106499
302 => 0.39726620225574
303 => 0.40726542355328
304 => 0.40376404476292
305 => 0.43047709334511
306 => 0.43312558299902
307 => 0.43275964736477
308 => 0.43879330094447
309 => 0.42681772732095
310 => 0.42169793758108
311 => 0.38713617950046
312 => 0.39684662376532
313 => 0.41096132477869
314 => 0.40909319117216
315 => 0.39884271800921
316 => 0.4072576476502
317 => 0.40447540875171
318 => 0.40228094149727
319 => 0.41233422140826
320 => 0.40128022718015
321 => 0.4108510527304
322 => 0.39857636996469
323 => 0.4037800387663
324 => 0.40082618468137
325 => 0.40273769028506
326 => 0.39156306758434
327 => 0.39759262274502
328 => 0.39131221826632
329 => 0.39130924053687
330 => 0.39117060025991
331 => 0.39855946827752
401 => 0.3988004189983
402 => 0.39334003436933
403 => 0.39255310763706
404 => 0.39546278821127
405 => 0.39205631430541
406 => 0.39365018200587
407 => 0.39210459093436
408 => 0.39175664582904
409 => 0.38898416003182
410 => 0.3877896969193
411 => 0.38825807668324
412 => 0.38665925508258
413 => 0.38569590723628
414 => 0.39097896612617
415 => 0.38815644087929
416 => 0.39054637365137
417 => 0.38782274362402
418 => 0.37838145532011
419 => 0.37295167057672
420 => 0.35511795217852
421 => 0.36017557259359
422 => 0.36352878016127
423 => 0.36242054508015
424 => 0.36480146286443
425 => 0.36494763187937
426 => 0.36417357123712
427 => 0.3632773081767
428 => 0.36284105688535
429 => 0.36609251659714
430 => 0.36798009839893
501 => 0.36386531940082
502 => 0.36290128425343
503 => 0.3670615530037
504 => 0.36959931453806
505 => 0.38833671986271
506 => 0.38694859235524
507 => 0.39043251999273
508 => 0.39004028320598
509 => 0.39369199440326
510 => 0.39966099888253
511 => 0.38752434381628
512 => 0.38963084748182
513 => 0.38911438142931
514 => 0.39475302236602
515 => 0.39477062558755
516 => 0.39138997867498
517 => 0.39322268221102
518 => 0.39219971737479
519 => 0.39404835309584
520 => 0.38693005306608
521 => 0.39559937412932
522 => 0.40051432053347
523 => 0.40058256456906
524 => 0.4029122101572
525 => 0.40527926499873
526 => 0.40982262064001
527 => 0.4051525532758
528 => 0.3967515567095
529 => 0.39735808152653
530 => 0.39243258031351
531 => 0.39251537887877
601 => 0.39207339364839
602 => 0.39339982459584
603 => 0.38722113006736
604 => 0.38867125732339
605 => 0.38664107067301
606 => 0.38962643425253
607 => 0.38641467653924
608 => 0.38911413237374
609 => 0.39027912802353
610 => 0.39457798705181
611 => 0.38577973156547
612 => 0.36783949303929
613 => 0.37161074868186
614 => 0.36603276536076
615 => 0.36654902895401
616 => 0.36759196357511
617 => 0.36421147124114
618 => 0.36485636264691
619 => 0.36483332258786
620 => 0.36463477580626
621 => 0.36375537918939
622 => 0.3624800801116
623 => 0.36756047912114
624 => 0.36842373791093
625 => 0.3703426552655
626 => 0.37605205169862
627 => 0.37548154835812
628 => 0.37641206297644
629 => 0.37438075478925
630 => 0.36664325551488
701 => 0.36706343895171
702 => 0.36182374476145
703 => 0.37020866450462
704 => 0.3682230048339
705 => 0.36694283712671
706 => 0.36659353150713
707 => 0.37231708042969
708 => 0.37402965597296
709 => 0.37296249382106
710 => 0.37077371311344
711 => 0.37497681912701
712 => 0.37610139298144
713 => 0.37635314359476
714 => 0.38380024158517
715 => 0.37676935364548
716 => 0.37846175825358
717 => 0.39166541588777
718 => 0.37969152039377
719 => 0.38603435988668
720 => 0.38572391090004
721 => 0.38896869295463
722 => 0.38545774406347
723 => 0.38550126648281
724 => 0.38838241312671
725 => 0.38433636228289
726 => 0.38333450319422
727 => 0.38195044203868
728 => 0.38497248893695
729 => 0.38678406937704
730 => 0.40138407726495
731 => 0.41081634820178
801 => 0.41040686844457
802 => 0.41414874691151
803 => 0.41246299639048
804 => 0.40701926327953
805 => 0.41631105190738
806 => 0.41337074120058
807 => 0.41361313684277
808 => 0.41360411486486
809 => 0.41555916443846
810 => 0.41417383263791
811 => 0.41144320145762
812 => 0.41325592186831
813 => 0.41863905342868
814 => 0.4353484589667
815 => 0.44469926367595
816 => 0.43478552878198
817 => 0.44162389036164
818 => 0.43752331017122
819 => 0.43677811276892
820 => 0.4410731091919
821 => 0.44537562343755
822 => 0.44510157188039
823 => 0.44197816747459
824 => 0.44021383557922
825 => 0.45357394778557
826 => 0.46341745087565
827 => 0.46274618995658
828 => 0.46570891734757
829 => 0.47440757660123
830 => 0.47520287298823
831 => 0.47510268392315
901 => 0.47313145884736
902 => 0.48169641854622
903 => 0.48884145861314
904 => 0.47267517719648
905 => 0.47883108552778
906 => 0.48159467110868
907 => 0.48565243466034
908 => 0.49249856193212
909 => 0.49993527199485
910 => 0.50098690433709
911 => 0.50024072086503
912 => 0.49533601066916
913 => 0.5034733475582
914 => 0.50824000866377
915 => 0.51107844626904
916 => 0.51827625176501
917 => 0.48161173807239
918 => 0.45565877293619
919 => 0.45160584266481
920 => 0.45984763574527
921 => 0.46202093085352
922 => 0.46114487832046
923 => 0.43193245651931
924 => 0.45145204530968
925 => 0.47245348159448
926 => 0.47326023229322
927 => 0.48377399041671
928 => 0.48719770103522
929 => 0.49566265439442
930 => 0.49513316925704
1001 => 0.49719425069318
1002 => 0.49672044376396
1003 => 0.51239998735564
1004 => 0.529696852372
1005 => 0.52909791693715
1006 => 0.52661128794383
1007 => 0.53030435603216
1008 => 0.54815657437376
1009 => 0.54651302818483
1010 => 0.54810959331044
1011 => 0.56915836484212
1012 => 0.59652476198614
1013 => 0.58381032297139
1014 => 0.61139699715213
1015 => 0.62876134624214
1016 => 0.6587911924861
1017 => 0.65503130783624
1018 => 0.66672170660983
1019 => 0.6483003296014
1020 => 0.6060011244155
1021 => 0.59930711327998
1022 => 0.61270869309265
1023 => 0.64565516935508
1024 => 0.6116710913086
1025 => 0.61854602603644
1026 => 0.61656604437232
1027 => 0.61646053956382
1028 => 0.62048722898522
1029 => 0.61464630596148
1030 => 0.59084933480077
1031 => 0.60175534644729
1101 => 0.59754401160087
1102 => 0.60221680158878
1103 => 0.62743392194836
1104 => 0.61628483193632
1105 => 0.60454017128717
1106 => 0.61927058209005
1107 => 0.63802745696043
1108 => 0.63685368544039
1109 => 0.63457607809307
1110 => 0.64741483145826
1111 => 0.66862069061579
1112 => 0.67435254913402
1113 => 0.67858368990949
1114 => 0.67916709273672
1115 => 0.68517650444001
1116 => 0.65286238314468
1117 => 0.70414572352587
1118 => 0.71300093973601
1119 => 0.71133652609961
1120 => 0.72117872623272
1121 => 0.71828290128104
1122 => 0.71408730526707
1123 => 0.72968928597406
1124 => 0.71180287410842
1125 => 0.68641536430178
1126 => 0.67248727431385
1127 => 0.69082890675693
1128 => 0.70202950165515
1129 => 0.70943238239125
1130 => 0.71167248962905
1201 => 0.65537083639433
1202 => 0.62502736793366
1203 => 0.64447718332838
1204 => 0.66820730046448
1205 => 0.65273056114582
1206 => 0.65333722002577
1207 => 0.63127145697291
1208 => 0.6701596308729
1209 => 0.66449395103669
1210 => 0.69388750804933
1211 => 0.68687249977023
1212 => 0.71084180446273
1213 => 0.70452988323832
1214 => 0.73073031534608
1215 => 0.74118237706225
1216 => 0.75873301541721
1217 => 0.77164333643506
1218 => 0.77922452387184
1219 => 0.77876937781445
1220 => 0.80880981937153
1221 => 0.79109602051841
1222 => 0.76884331433705
1223 => 0.76844083308862
1224 => 0.77996582494323
1225 => 0.80411904614339
1226 => 0.81038162498552
1227 => 0.81388155220155
1228 => 0.80852129183685
1229 => 0.78929423274119
1230 => 0.78099208610709
1231 => 0.78806575557569
]
'min_raw' => 0.29168139839714
'max_raw' => 0.81388155220155
'avg_raw' => 0.55278147529935
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$0.291681'
'max' => '$0.813881'
'avg' => '$0.552781'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.11547229807872
'max_diff' => 0.42050714881485
'year' => 2036
]
11 => [
'items' => [
101 => 0.77941526566293
102 => 0.79434843815113
103 => 0.81485487353095
104 => 0.81062037571625
105 => 0.8247756670394
106 => 0.83942490437878
107 => 0.86037397171252
108 => 0.86585083365527
109 => 0.87490387818024
110 => 0.88422243476664
111 => 0.88721530400005
112 => 0.89292961999941
113 => 0.89289950273343
114 => 0.91011997861534
115 => 0.92911469678683
116 => 0.93628476316783
117 => 0.95277193545117
118 => 0.92453823069537
119 => 0.94595382007807
120 => 0.96527121776824
121 => 0.9422402198792
122 => 0.97398308493496
123 => 0.9752155884542
124 => 0.9938249282991
125 => 0.97496079724816
126 => 0.96375933644655
127 => 0.99609753406753
128 => 1.0117449692526
129 => 1.0070318344318
130 => 0.97116464572933
131 => 0.95028840348838
201 => 0.89565125081742
202 => 0.96037131830552
203 => 0.99189457526872
204 => 0.97108300810925
205 => 0.98157915204792
206 => 1.0388427099912
207 => 1.0606449653152
208 => 1.0561102486171
209 => 1.0568765410912
210 => 1.0686406423251
211 => 1.1208091458051
212 => 1.0895485692635
213 => 1.1134461087181
214 => 1.1261212774759
215 => 1.1378946806129
216 => 1.1089829235306
217 => 1.0713691523647
218 => 1.0594552921177
219 => 0.9690137079064
220 => 0.96430583068031
221 => 0.96166315653003
222 => 0.94500146982617
223 => 0.93190994809702
224 => 0.92149908396096
225 => 0.89417786752074
226 => 0.90339797604659
227 => 0.85985365942192
228 => 0.88771177008256
301 => 0.8182139893353
302 => 0.87609380627932
303 => 0.84459245338904
304 => 0.86574476462869
305 => 0.86567096620745
306 => 0.82672285486885
307 => 0.8042583970751
308 => 0.81857362391106
309 => 0.83392068342332
310 => 0.83641069219548
311 => 0.85630855545238
312 => 0.86186162138423
313 => 0.84503557236284
314 => 0.81677380230288
315 => 0.82333836690547
316 => 0.80412536638295
317 => 0.77045532198464
318 => 0.79463773569408
319 => 0.80289467496016
320 => 0.80654140972752
321 => 0.7734307880925
322 => 0.76302671190821
323 => 0.75748766904635
324 => 0.81249963683518
325 => 0.81551331661315
326 => 0.80009490477769
327 => 0.86978758830779
328 => 0.85401398761051
329 => 0.87163696421537
330 => 0.82274270147429
331 => 0.82461052815586
401 => 0.80146320060891
402 => 0.81442415733022
403 => 0.80526377087073
404 => 0.81337704010981
405 => 0.81824010023944
406 => 0.84138362953771
407 => 0.87635806820795
408 => 0.83792675802924
409 => 0.82118168583787
410 => 0.83157023444753
411 => 0.85923630838199
412 => 0.90115182659295
413 => 0.87633699618364
414 => 0.88734939653615
415 => 0.88975511610558
416 => 0.87145757885671
417 => 0.90182648289065
418 => 0.91810142527898
419 => 0.9347961485446
420 => 0.94929170898062
421 => 0.92812790894748
422 => 0.9507762086945
423 => 0.9325256770615
424 => 0.91615306348141
425 => 0.91617789397789
426 => 0.90590711431338
427 => 0.88600618451188
428 => 0.88233614772145
429 => 0.90142814257986
430 => 0.91673811443767
501 => 0.91799911704969
502 => 0.92647550412493
503 => 0.93149174268233
504 => 0.98065769979044
505 => 1.0004326544615
506 => 1.0246130947124
507 => 1.0340327389251
508 => 1.062382490876
509 => 1.0394877637214
510 => 1.0345343454869
511 => 0.9657671203873
512 => 0.97702774964495
513 => 0.99505710357556
514 => 0.966064417793
515 => 0.98445360372567
516 => 0.988084018565
517 => 0.96507925742429
518 => 0.97736709432659
519 => 0.94473424260382
520 => 0.87706937520021
521 => 0.9019018132311
522 => 0.9201868461301
523 => 0.89409184965493
524 => 0.94086612082084
525 => 0.91354155722266
526 => 0.9048809823724
527 => 0.87109299216367
528 => 0.88703962292319
529 => 0.90860766935918
530 => 0.89528112421626
531 => 0.92293570637864
601 => 0.96210196992824
602 => 0.990014181725
603 => 0.99215693475945
604 => 0.97421125254708
605 => 1.0029693228202
606 => 1.0031787939663
607 => 0.97073957321799
608 => 0.95087073113202
609 => 0.94635648840569
610 => 0.95763395180549
611 => 0.97132687430744
612 => 0.99291679666041
613 => 1.0059631345689
614 => 1.0399810645912
615 => 1.0491853410847
616 => 1.0592980503888
617 => 1.0728117486632
618 => 1.0890384082827
619 => 1.0535354008195
620 => 1.0549460014919
621 => 1.0218860925147
622 => 0.98655683850207
623 => 1.013367338444
624 => 1.0484185006667
625 => 1.0403777253247
626 => 1.0394729738406
627 => 1.0409945148797
628 => 1.0349320328591
629 => 1.0075116513656
630 => 0.99374130744023
701 => 1.0115085642933
702 => 1.0209510705811
703 => 1.0355955743604
704 => 1.0337903301617
705 => 1.0715129991922
706 => 1.0861708877032
707 => 1.0824207725757
708 => 1.0831108840107
709 => 1.1096482910079
710 => 1.1391633454227
711 => 1.1668080887366
712 => 1.1949295090049
713 => 1.1610280392737
714 => 1.1438149636962
715 => 1.1615744639208
716 => 1.1521510231186
717 => 1.2063009091423
718 => 1.2100501297632
719 => 1.2641961001338
720 => 1.3155870735978
721 => 1.28330932393
722 => 1.3137457880449
723 => 1.3466653055065
724 => 1.4101723956892
725 => 1.3887854419221
726 => 1.3724033705127
727 => 1.3569223921885
728 => 1.3891358505451
729 => 1.4305779500984
730 => 1.4395041814147
731 => 1.4539680862298
801 => 1.4387610588788
802 => 1.457076248324
803 => 1.5217369151676
804 => 1.504265032211
805 => 1.4794521496672
806 => 1.5304955360637
807 => 1.5489679391745
808 => 1.6786169382785
809 => 1.8423041551803
810 => 1.7745365725547
811 => 1.7324710471728
812 => 1.7423574434452
813 => 1.8021304738957
814 => 1.8213276741753
815 => 1.7691430661437
816 => 1.7875755519144
817 => 1.8891403607529
818 => 1.9436266221056
819 => 1.8696269607075
820 => 1.6654648297791
821 => 1.4772180210778
822 => 1.5271495516096
823 => 1.5214888656031
824 => 1.6306075822322
825 => 1.5038483335808
826 => 1.5059826342358
827 => 1.6173578103661
828 => 1.5876448228285
829 => 1.5395135883694
830 => 1.4775694323545
831 => 1.3630599308201
901 => 1.2616356719774
902 => 1.4605520001798
903 => 1.4519743664018
904 => 1.4395526815572
905 => 1.4671957970122
906 => 1.6014229190262
907 => 1.598328549413
908 => 1.5786437486949
909 => 1.5935744965457
910 => 1.536896156082
911 => 1.5515034549614
912 => 1.4771882018215
913 => 1.5107817999198
914 => 1.5394103203571
915 => 1.5451579196873
916 => 1.5581075544581
917 => 1.4474543431715
918 => 1.4971343864316
919 => 1.5263167574564
920 => 1.3944697435028
921 => 1.523710565911
922 => 1.4455281169442
923 => 1.4189918195039
924 => 1.4547194481159
925 => 1.4407963564996
926 => 1.4288260999192
927 => 1.4221464910722
928 => 1.4483809184104
929 => 1.4471570510182
930 => 1.40423243601
1001 => 1.3482390255629
1002 => 1.36703225203
1003 => 1.3602044966671
1004 => 1.3354598304339
1005 => 1.3521347477927
1006 => 1.2787068507271
1007 => 1.1523779702758
1008 => 1.2358346982602
1009 => 1.2326217050162
1010 => 1.231001568125
1011 => 1.2937169926307
1012 => 1.2876883516555
1013 => 1.2767463092529
1014 => 1.3352588712443
1015 => 1.3139009990124
1016 => 1.3797209286835
1017 => 1.423074191331
1018 => 1.4120784015925
1019 => 1.4528523546569
1020 => 1.3674652100108
1021 => 1.3958273943246
1022 => 1.4016728012034
1023 => 1.334536835312
1024 => 1.2886747118765
1025 => 1.2856162311099
1026 => 1.2060976292627
1027 => 1.2485758245177
1028 => 1.285954878475
1029 => 1.2680532123612
1030 => 1.2623860796667
1031 => 1.291338231552
1101 => 1.2935880617119
1102 => 1.2422916956398
1103 => 1.2529578344908
1104 => 1.2974374065978
1105 => 1.2518370633966
1106 => 1.1632430453304
1107 => 1.1412705039419
1108 => 1.1383389618864
1109 => 1.0787476869764
1110 => 1.1427388142232
1111 => 1.1148049723244
1112 => 1.203047644184
1113 => 1.1526439032728
1114 => 1.1504710987428
1115 => 1.1471865860145
1116 => 1.095893914015
1117 => 1.1071237493635
1118 => 1.1444534324143
1119 => 1.1577730838758
1120 => 1.1563837351037
1121 => 1.1442704966022
1122 => 1.1498158751583
1123 => 1.131952278691
1124 => 1.1256442709798
1125 => 1.105734463489
1126 => 1.0764725467021
1127 => 1.0805415957051
1128 => 1.0225660817534
1129 => 0.9909779447591
1130 => 0.98223476476403
1201 => 0.97054301907198
1202 => 0.98355537855049
1203 => 1.0224018444066
1204 => 0.97554476484666
1205 => 0.89521158858307
1206 => 0.90003974935758
1207 => 0.91088719312412
1208 => 0.8906730534282
1209 => 0.87154206665017
1210 => 0.88817490750765
1211 => 0.85413668171122
1212 => 0.91500055009207
1213 => 0.91335435302139
1214 => 0.93604063935739
1215 => 0.95022683977276
1216 => 0.91753224065226
1217 => 0.90930963738906
1218 => 0.91399360590426
1219 => 0.83657804001672
1220 => 0.92971413601299
1221 => 0.93051958083872
1222 => 0.92362287324103
1223 => 0.97321496910468
1224 => 1.0778697595396
1225 => 1.0384944176488
1226 => 1.0232470951427
1227 => 0.99426192391278
1228 => 1.0328829436074
1229 => 1.0299174518766
1230 => 1.0165063736407
1231 => 1.0083953116784
]
'min_raw' => 0.75748766904635
'max_raw' => 1.9436266221056
'avg_raw' => 1.350557145576
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$0.757487'
'max' => '$1.94'
'avg' => '$1.35'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 0.4658062706492
'max_diff' => 1.1297450699041
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.023776672369593
]
1 => [
'year' => 2028
'avg' => 0.04080767220353
]
2 => [
'year' => 2029
'avg' => 0.11147920559272
]
3 => [
'year' => 2030
'avg' => 0.086006041094969
]
4 => [
'year' => 2031
'avg' => 0.084468590966592
]
5 => [
'year' => 2032
'avg' => 0.14810002320835
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.023776672369593
'min' => '$0.023776'
'max_raw' => 0.14810002320835
'max' => '$0.148100023'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.14810002320835
]
1 => [
'year' => 2033
'avg' => 0.38092848863766
]
2 => [
'year' => 2034
'avg' => 0.24145078266509
]
3 => [
'year' => 2035
'avg' => 0.28479175185256
]
4 => [
'year' => 2036
'avg' => 0.55278147529935
]
5 => [
'year' => 2037
'avg' => 1.350557145576
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.14810002320835
'min' => '$0.148100023'
'max_raw' => 1.350557145576
'max' => '$1.35'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 1.350557145576
]
]
]
]
'prediction_2025_max_price' => '$0.040653'
'last_price' => 0.03941897
'sma_50day_nextmonth' => '$0.035768'
'sma_200day_nextmonth' => '$0.065836'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'increase'
'sma_200day_direction_label' => 'aumentar'
'sma_200day_date_nextmonth' => '4 de fev. de 2026'
'sma_50day_date_nextmonth' => '4 de fev. de 2026'
'daily_sma3' => '$0.03856'
'daily_sma3_action' => 'BUY'
'daily_sma5' => '$0.037286'
'daily_sma5_action' => 'BUY'
'daily_sma10' => '$0.0357054'
'daily_sma10_action' => 'BUY'
'daily_sma21' => '$0.035091'
'daily_sma21_action' => 'BUY'
'daily_sma50' => '$0.039993'
'daily_sma50_action' => 'SELL'
'daily_sma100' => '$0.059785'
'daily_sma100_action' => 'SELL'
'daily_sma200' => '$0.0712067'
'daily_sma200_action' => 'SELL'
'daily_ema3' => '$0.038423'
'daily_ema3_action' => 'BUY'
'daily_ema5' => '$0.037574'
'daily_ema5_action' => 'BUY'
'daily_ema10' => '$0.036469'
'daily_ema10_action' => 'BUY'
'daily_ema21' => '$0.036543'
'daily_ema21_action' => 'BUY'
'daily_ema50' => '$0.04245'
'daily_ema50_action' => 'SELL'
'daily_ema100' => '$0.053854'
'daily_ema100_action' => 'SELL'
'daily_ema200' => '$0.074141'
'daily_ema200_action' => 'SELL'
'weekly_sma21' => '$0.06717'
'weekly_sma21_action' => 'SELL'
'weekly_sma50' => '$0.085633'
'weekly_sma50_action' => 'SELL'
'weekly_sma100' => '—'
'weekly_sma100_action' => '—'
'weekly_sma200' => '—'
'weekly_sma200_action' => '—'
'weekly_ema3' => '$0.03844'
'weekly_ema3_action' => 'BUY'
'weekly_ema5' => '$0.039452'
'weekly_ema5_action' => 'SELL'
'weekly_ema10' => '$0.046062'
'weekly_ema10_action' => 'SELL'
'weekly_ema21' => '$0.060431'
'weekly_ema21_action' => 'SELL'
'weekly_ema50' => '$0.114132'
'weekly_ema50_action' => 'SELL'
'weekly_ema100' => '$0.201485'
'weekly_ema100_action' => 'SELL'
'weekly_ema200' => '$0.100742'
'weekly_ema200_action' => 'SELL'
'rsi_14' => '57.08'
'rsi_14_action' => 'NEUTRAL'
'stoch_rsi_14' => 120.39
'stoch_rsi_14_action' => 'SELL'
'momentum_10' => 0
'momentum_10_action' => 'BUY'
'vwma_10' => '0.036597'
'vwma_10_action' => 'BUY'
'hma_9' => '0.0393029'
'hma_9_action' => 'BUY'
'stochastic_fast_14' => 100
'stochastic_fast_14_action' => 'SELL'
'cci_20' => 226.02
'cci_20_action' => 'SELL'
'adx_14' => 24.1
'adx_14_action' => 'NEUTRAL'
'ao_5_34' => '0.000375'
'ao_5_34_action' => 'BUY'
'macd_12_26' => 0
'macd_12_26_action' => 'BUY'
'williams_percent_r_14' => -0
'williams_percent_r_14_action' => 'SELL'
'ultimate_oscillator' => 74.88
'ultimate_oscillator_action' => 'SELL'
'ichimoku_cloud' => '-0.013498'
'ichimoku_cloud_action' => 'SELL'
'sell_signals' => 15
'buy_signals' => 18
'sell_pct' => 45.45
'buy_pct' => 54.55
'overall_action' => 'bullish'
'overall_action_label' => 'Altista'
'overall_action_dir' => 1
'last_updated' => 1767693984
'last_updated_date' => '6 de janeiro de 2026'
]
Previsão de preço de Wormhole para 2026
A previsão de preço para Wormhole em 2026 sugere que o preço médio poderia variar entre $0.013619 na extremidade inferior e $0.040653 na extremidade superior. No mercado de criptomoedas, comparado ao preço médio de hoje, Wormhole poderia potencialmente ganhar 3.13% até 2026 se W atingir a meta de preço prevista.
Previsão de preço de Wormhole 2027-2032
A previsão de preço de W para 2027-2032 está atualmente dentro de uma faixa de preço entre $0.023776 na extremidade inferior e $0.148100023 na extremidade superior. Considerando a volatilidade de preços no mercado, se Wormhole atingir a meta de preço superior, poderia ganhar 275.71% até 2032 em comparação com o preço de hoje.
| Previsão de Preço de Wormhole | Potencial Mínimo ($) | Preço Médio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2027 | $0.01311 | $0.023776 | $0.034442 |
| 2028 | $0.023661 | $0.0408076 | $0.057954 |
| 2029 | $0.051977 | $0.111479 | $0.170981 |
| 2030 | $0.0442043 | $0.086006 | $0.1278077 |
| 2031 | $0.052263 | $0.084468 | $0.116673 |
| 2032 | $0.079775 | $0.148100023 | $0.216424 |
Previsão de preço de Wormhole 2032-2037
A previsão de preço de Wormhole para 2032-2037 é atualmente estimada entre $0.148100023 na extremidade inferior e $1.35 na extremidade superior. Comparado ao preço atual, Wormhole poderia potencialmente ganhar 3326.16% até 2037 se atingir a meta de preço superior. Por favor, note que esta informação é apenas para fins gerais e não deve ser considerada como aconselhamento de investimento a longo prazo.
| Previsão de Preço de Wormhole | Potencial Mínimo ($) | Preço Médio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2032 | $0.079775 | $0.148100023 | $0.216424 |
| 2033 | $0.185381 | $0.380928 | $0.576475 |
| 2034 | $0.149038 | $0.24145 | $0.333863 |
| 2035 | $0.1762091 | $0.284791 | $0.393374 |
| 2036 | $0.291681 | $0.552781 | $0.813881 |
| 2037 | $0.757487 | $1.35 | $1.94 |
Wormhole Histograma de preços potenciais
Previsão de preço de Wormhole baseada na análise técnica
Em 6 de janeiro de 2026, o sentimento geral de previsão de preço para Wormhole é Altista, com 18 indicadores técnicos mostrando sinais de alta e 15 indicando sinais de baixa. A previsão de preço de W foi atualizada pela última vez em 6 de janeiro de 2026.
Médias Móveis Simples de 50 e 200 dias e Índice de Força Relativa de 14 dias - RSI (14) de Wormhole
De acordo com nossos indicadores técnicos, o SMA de 200 dias de Wormhole está projetado para aumentar no próximo mês, alcançando $0.065836 até 4 de fev. de 2026. O SMA de 50 dias de curto prazo para Wormhole é esperado para alcançar $0.035768 até 4 de fev. de 2026.
O oscilador de momentum Índice de Força Relativa (RSI) é uma ferramenta comumente usada para identificar se uma criptomoeda está sobrevendida (abaixo de 30) ou sobrecomprada (acima de 70). No momento, o RSI está em 57.08, sugerindo que o mercado de W está em um estado NEUTRAL.
Médias Móveis e Osciladores Populares de W para Sábado, 19 de Outubro de 2024
Médias móveis (MA) são indicadores amplamente utilizados nos mercados financeiros, projetados para suavizar movimentos de preços ao longo de um período definido. Como indicadores atrasados, eles se baseiam em dados históricos de preços. A tabela abaixo destaca dois tipos: a média móvel simples (SMA) e a média móvel exponencial (EMA).
Média Móvel Simples Diária (SMA)
| Período | Valor | Ação |
|---|---|---|
| SMA 3 | $0.03856 | BUY |
| SMA 5 | $0.037286 | BUY |
| SMA 10 | $0.0357054 | BUY |
| SMA 21 | $0.035091 | BUY |
| SMA 50 | $0.039993 | SELL |
| SMA 100 | $0.059785 | SELL |
| SMA 200 | $0.0712067 | SELL |
Média Móvel Exponencial Diária (EMA)
| Período | Valor | Ação |
|---|---|---|
| EMA 3 | $0.038423 | BUY |
| EMA 5 | $0.037574 | BUY |
| EMA 10 | $0.036469 | BUY |
| EMA 21 | $0.036543 | BUY |
| EMA 50 | $0.04245 | SELL |
| EMA 100 | $0.053854 | SELL |
| EMA 200 | $0.074141 | SELL |
Média Móvel Simples Semanal (SMA)
| Período | Valor | Ação |
|---|---|---|
| SMA 21 | $0.06717 | SELL |
| SMA 50 | $0.085633 | SELL |
| SMA 100 | — | — |
| SMA 200 | — | — |
Média Móvel Exponencial Semanal (EMA)
| Período | Valor | Ação |
|---|---|---|
| EMA 21 | $0.060431 | SELL |
| EMA 50 | $0.114132 | SELL |
| EMA 100 | $0.201485 | SELL |
| EMA 200 | $0.100742 | SELL |
Osciladores de Wormhole
Um oscilador é uma ferramenta de análise técnica que define limites altos e baixos entre dois extremos, criando um indicador de tendência que flutua dentro desses limites. Os traders usam esse indicador para identificar condições de sobrecompra ou sobrevenda de curto prazo.
| Período | Valor | Ação |
|---|---|---|
| RSI (14) | 57.08 | NEUTRAL |
| Stoch RSI (14) | 120.39 | SELL |
| Estocástico Rápido (14) | 100 | SELL |
| Índice de Canal de Commodities (20) | 226.02 | SELL |
| Índice Direcional Médio (14) | 24.1 | NEUTRAL |
| Oscilador Impressionante (5, 34) | 0.000375 | BUY |
| Momentum (10) | 0 | BUY |
| MACD (12, 26) | 0 | BUY |
| Williams Percent Range (14) | -0 | SELL |
| Oscilador Ultimate (7, 14, 28) | 74.88 | SELL |
| VWMA (10) | 0.036597 | BUY |
| Média Móvel de Hull (9) | 0.0393029 | BUY |
| Nuvem Ichimoku B/L (9, 26, 52, 26) | -0.013498 | SELL |
Previsão do preço de Wormhole com base nos fluxos financeiros mundiais
Definições dos fluxos financeiros mundiais, usadas na previsão do preço do Wormhole
M0: o total de todas as moedas físicas, mais as contas no Banco Central que podem ser trocadas por moedas físicas.
M1: o valor de M0, mais o valor em contas de demanda, incluindo contas 'correntes'.
M2: o valor de M1, mais a maioria das contas de poupança, do mercado de moedas e de certificados de depósito (CD) de menos de US$ 100.000.
Previsões de preço de Wormhole por empresas de Internet ou nichos tecnológicos
| Comparação | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Facebook stock | $0.05539 | $0.077832 | $0.109367 | $0.153679 | $0.215945 | $0.30344 |
| Amazon.com stock | $0.08225 | $0.171619 | $0.358094 | $0.747185 | $1.55 | $3.25 |
| Apple stock | $0.055912 | $0.079308 | $0.112492 | $0.159561 | $0.226326 | $0.321026 |
| Netflix stock | $0.062196 | $0.098137 | $0.154844 | $0.24432 | $0.38550017 | $0.608258 |
| Google stock | $0.051047 | $0.0661061 | $0.0856071 | $0.11086 | $0.143564 | $0.185915 |
| Tesla stock | $0.089359 | $0.202571 | $0.459215 | $1.04 | $2.35 | $5.34 |
| Kodak stock | $0.02956 | $0.022166 | $0.016622 | $0.012465 | $0.009347 | $0.0070097 |
| Nokia stock | $0.026113 | $0.017299 | $0.011459 | $0.007591 | $0.005029 | $0.003331 |
Este cálculo mostra quanto a criptomoeda pode custar, se assumirmos que sua capitalização se comportará da mesma forma que a de algumas empresas de Internet ou nichos tecnológicos. Se você extrapolar os dados, poderá obter uma imagem em potencial do preço futuro para 2024, 2025, 2026, 2027, 2028, 2029 e 2030.
Visão geral da previsão para Wormhole
Você pode fazer perguntas como: 'Devo investir em Wormhole agora?', 'Devo comprar W hoje?', 'Wormhole será um bom ou mau investimento no curto ou no longo prazo?'.
Atualizamos a previsão para Wormhole regularmente com novos valores. Veja nossas previsões semelhantes. Fazemos previsões de preços futuros para uma enorme quantidade de moedas digitais, como Wormhole, com métodos de análise técnica.
Se você estiver tentando encontrar criptomoedas com bom retorno, você deve explorar o máximo de fontes de informações disponíveis sobre Wormhole para poder tomar sozinho uma decisão de tão grande responsabilidade sobre o seu investimento.
O preço de Wormhole é de $0.03941 USD hoje, mas o preço pode tanto subir quanto descer e seu investimento pode ser perdido, porque criptomoedas são ativos de alto risco
Previsão de curto prazo para Wormhole
com base no histórico de preços de 4 horas
Previsão de longo prazo para Wormhole
com base no histórico de preços de 1 mês
Previsão do preço de Wormhole com base no padrão de crescimento do Bitcoin
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| Se Wormhole tiver 1% da média anterior do crescimento anual do Bitcoin | $0.040443 | $0.041494 | $0.042573 | $0.04368 |
| Se Wormhole tiver 2% da média anterior do crescimento anual do Bitcoin | $0.041468 | $0.043624 | $0.045891 | $0.048277 |
| Se Wormhole tiver 5% da média anterior do crescimento anual do Bitcoin | $0.044542 | $0.050331 | $0.056872 | $0.064263 |
| Se Wormhole tiver 10% da média anterior do crescimento anual do Bitcoin | $0.049665 | $0.062574 | $0.07884 | $0.099333 |
| Se Wormhole tiver 20% da média anterior do crescimento anual do Bitcoin | $0.059911 | $0.091057 | $0.138394 | $0.210341 |
| Se Wormhole tiver 50% da média anterior do crescimento anual do Bitcoin | $0.09065 | $0.208464 | $0.479398 | $1.10 |
| Se Wormhole tiver 100% da média anterior do crescimento anual do Bitcoin | $0.141881 | $0.510677 | $1.83 | $6.61 |
Perguntas Frequentes sobre Wormhole
W é um bom investimento?
A decisão de adquirir Wormhole depende inteiramente da sua tolerância individual ao risco. Como você pode perceber, o valor de Wormhole experimentou uma escalada de 4.7658% nas últimas 24 horas, e Wormhole registrou um declínio de -87.6% durante os últimos 30 dias. Consequentemente, a decisão de investir ou não em Wormhole dependerá de quão alinhado esse investimento está com suas aspirações de negociação.
Wormhole pode subir?
Parece que o valor médio de Wormhole pode potencialmente subir para $0.040653 até o final deste ano. Observando as perspectivas de Wormhole em um horizonte de cinco anos mais longo, a moeda digital poderia potencialmente crescer até $0.1278077. No entanto, dada a imprevisibilidade do mercado, é vital conduzir uma pesquisa aprofundada antes de investir quaisquer fundos em um projeto, rede ou ativo específico.
Qual será o preço de Wormhole na próxima semana?
Com base na nossa nova previsão experimental de Wormhole, o preço de Wormhole aumentará 0.86% na próxima semana e atingirá $0.039756 até 13 de janeiro de 2026.
Qual será o preço de Wormhole no próximo mês?
Com base na nossa nova previsão experimental de Wormhole, o preço de Wormhole diminuirá -11.62% no próximo mês e atingirá $0.034839 até 5 de fevereiro de 2026.
Até onde o preço de Wormhole pode subir este ano em 2026?
De acordo com nossa previsão mais recente sobre o valor de Wormhole em 2026, espera-se que W fluctue dentro do intervalo de $0.013619 e $0.040653. No entanto, é crucial lembrar que o mercado de criptomoedas é excepcionalmente instável, e essa previsão de preço de Wormhole não considera flutuações repentinas e extremas de preço.
Onde estará Wormhole em 5 anos?
O futuro de Wormhole parece seguir uma tendência de alta, com um preço máximo de $0.1278077 projetada após um período de cinco anos. Com base na previsão de Wormhole para 2030, o valor de Wormhole pode potencialmente atingir seu pico mais alto de aproximadamente $0.1278077, enquanto seu pico mais baixo está previsto para cerca de $0.0442043.
Quanto será Wormhole em 2026?
Com base na nossa nova simulação experimental de previsão de preços de Wormhole, espera-se que o valor de W em 2026 aumente 3.13% para $0.040653 se o melhor cenário ocorrer. O preço ficará entre $0.040653 e $0.013619 durante 2026.
Quanto será Wormhole em 2027?
De acordo com nossa última simulação experimental para previsão de preços de Wormhole, o valor de W pode diminuir -12.62% para $0.034442 em 2027, assumindo as condições mais favoráveis. O preço está projetado para flutuar entre $0.034442 e $0.01311 ao longo do ano.
Quanto será Wormhole em 2028?
Nosso novo modelo experimental de previsão de preços de Wormhole sugere que o valor de W em 2028 pode aumentar 47.02%, alcançando $0.057954 no melhor cenário. O preço é esperado para variar entre $0.057954 e $0.023661 durante o ano.
Quanto será Wormhole em 2029?
Com base no nosso modelo de previsão experimental, o valor de Wormhole pode experimentar um 333.75% crescimento em 2029, potencialmente alcançando $0.170981 sob condições ótimas. A faixa de preço prevista para 2029 está entre $0.170981 e $0.051977.
Quanto será Wormhole em 2030?
Usando nossa nova simulação experimental para previsões de preços de Wormhole, espera-se que o valor de W em 2030 aumente 224.23%, alcançando $0.1278077 no melhor cenário. O preço está previsto para variar entre $0.1278077 e $0.0442043 ao longo de 2030.
Quanto será Wormhole em 2031?
Nossa simulação experimental indica que o preço de Wormhole poderia aumentar 195.98% em 2031, potencialmente atingindo $0.116673 sob condições ideais. O preço provavelmente oscilará entre $0.116673 e $0.052263 durante o ano.
Quanto será Wormhole em 2032?
Com base nos achados da nossa mais recente previsão experimental de preços de Wormhole, W poderia ver um 449.04% aumento em valor, atingindo $0.216424 se o cenário mais positivo se desenrolar em 2032. O preço é esperado para permanecer dentro de uma faixa de $0.216424 e $0.079775 ao longo do ano.
Quanto será Wormhole em 2033?
De acordo com nossa previsão experimental de preços de Wormhole, espera-se que o valor de W seja aumentar 1362.43% em 2033, com o preço potencial mais alto sendo $0.576475. Ao longo do ano, o preço de W poderia variar entre $0.576475 e $0.185381.
Quanto será Wormhole em 2034?
Os resultados da nossa nova simulação de previsão de preços de Wormhole sugerem que W pode aumentar 746.96% em 2034, atingindo potencialmente $0.333863 nas melhores circunstâncias. A faixa de preço prevista para o ano é entre $0.333863 e $0.149038.
Quanto será Wormhole em 2035?
Com base em nossa previsão experimental para o preço de Wormhole, W poderia aumentar 897.93%, com o valor potencialmente atingindo $0.393374 em 2035. A faixa de preço esperada para o ano está entre $0.393374 e $0.1762091.
Quanto será Wormhole em 2036?
Nossa recente simulação de previsão de preços de Wormhole sugere que o valor de W pode aumentar 1964.7% em 2036, possivelmente atingindo $0.813881 se as condições forem ideais. A faixa de preço esperada para 2036 está entre $0.813881 e $0.291681.
Quanto será Wormhole em 2037?
De acordo com a simulação experimental, o valor de Wormhole poderia aumentar 4830.69% em 2037, com um pico de $1.94 sob condições favoráveis. O preço é esperado para cair entre $1.94 e $0.757487 ao longo do ano.
Previsões relacionadas
Previsão de Preço do ORDI
Previsão de Preço do ether.fi Staked ETH
Previsão de Preço do Bonk
Previsão de Preço do BitTorrent
Previsão de Preço do Flare
Previsão de Preço do Elrond
Previsão de Preço do dYdX
Previsão de Preço do NEO
Previsão de Preço do eCash
Previsão de Preço do Axie Infinity
Previsão de Preço do The Sandbox
Previsão de Preço do Starknet
Previsão de Preço do Conflux Token
Previsão de Preço do SingularityNET
Previsão de Preço do Chiliz
Previsão de Preço do Synthetix Network Token
Previsão de Preço do WhiteBIT Coin
Previsão de Preço do Tokenize Xchange
Previsão de Preço do Tezos
Previsão de Preço do EOS
Previsão de Preço do Worldcoin
Previsão de Preço do Ronin
Previsão de Preço do Pyth Network
Previsão de Preço do Decentraland
Previsão de Preço do Mina Protocol
Como ler e prever os movimentos de preço de Wormhole?
Traders de Wormhole utilizam indicadores e padrões de gráfico para prever a direção do mercado. Eles também identificam níveis-chave de suporte e resistência para avaliar quando uma tendência de baixa pode desacelerar ou uma tendência de alta pode estagnar.
Indicadores de Previsão de Preço de Wormhole
Médias móveis são ferramentas populares para a previsão de preço de Wormhole. Uma média móvel simples (SMA) calcula o preço médio de fechamento de W em um período específico, como uma SMA de 12 dias. Uma média móvel exponencial (EMA) dá mais peso aos preços recentes, reagindo mais rapidamente às mudanças de preço.
Médias móveis comumente usadas no mercado de criptomoedas incluem as de 50 dias, 100 dias e 200 dias, que ajudam a identificar níveis-chave de resistência e suporte. Um movimento de preço de W acima dessas médias é visto como altista, enquanto uma queda abaixo indica fraqueza.
Traders também usam RSI e níveis de retração de Fibonacci para avaliar a direção futura de W.
Como ler gráficos de Wormhole e prever movimentos de preço?
A maioria dos traders prefere gráficos de velas em vez de gráficos de linha simples porque eles fornecem informações mais detalhadas. Velas podem representar a ação de preço de Wormhole em diferentes períodos de tempo, como 5 minutos para tendências de curto prazo e semanal para tendências de longo prazo. Opções populares incluem gráficos de 1 hora, 4 horas e 1 dia.
Por exemplo, um gráfico de velas de 1 hora mostra os preços de abertura, fechamento, máximo e mínimo de W dentro de cada hora. A cor da vela é crucial: verde indica que o preço fechou mais alto do que abriu, enquanto vermelho significa o oposto. Alguns gráficos usam velas vazias e preenchidas para transmitir a mesma informação.
O que afeta o preço de Wormhole?
A ação de preço de Wormhole é impulsionada pela oferta e demanda, influenciada por fatores como reduções pela metade das recompensas de bloco, hard forks e atualizações de protocolo. Eventos do mundo real, como regulamentações, adoção por empresas e governos e hacks de exchanges de criptomoedas, também impactam o preço de W. A capitalização de mercado de Wormhole pode mudar rapidamente.
Traders frequentemente monitoram a atividade de "baleias" de W, grandes detentores de Wormhole, pois suas ações podem influenciar significativamente os movimentos de preço no relativamente pequeno mercado de Wormhole.
Padrões de previsão de preço altistas e baixistas
Traders frequentemente identificam padrões de velas para ganhar vantagem em previsões de preço de criptomoedas. Certas formações indicam tendências altistas, enquanto outras sugerem movimentos baixistas.
Padrões de velas altistas comumente seguidos:
- Martelo
- Engolfo de Alta
- Linha de Perfuração
- Estrela da Manhã
- Três Soldados Brancos
Padrões de velas baixistas comuns:
- Harami de Baixa
- Nuvem Negra
- Estrela da Noite
- Estrela Cadente
- Homem Enforcado


