Previsão de Preço Wormhole - Projeção W
Previsão de Preço Wormhole até $0.041699 até 2026
| Ano | Preço Mínimo | Preço Máximo |
|---|---|---|
| 2026 | $0.013969 | $0.041699 |
| 2027 | $0.013448 | $0.035328 |
| 2028 | $0.02427 | $0.059445 |
| 2029 | $0.053314 | $0.17538 |
| 2030 | $0.045341 | $0.131096 |
| 2031 | $0.0536079 | $0.119676 |
| 2032 | $0.081828 | $0.221992 |
| 2033 | $0.190151 | $0.5913081 |
| 2034 | $0.152872 | $0.342453 |
| 2035 | $0.180743 | $0.403496 |
Calculadora de lucro do investimento
Se você abrir um short de $10,000.00 em Wormhole hoje e fechar em Apr 06, 2026, nossa previsão mostra que pode lucrar cerca de $3,954.48, com um retorno de 39.54% nos próximos 90 dias.
Previsão de preço de longo prazo de Wormhole para os anos 2027, 2028, 2029, 2030, 2031, 2032 e 2037
[
'name' => 'Wormhole'
'name_with_ticker' => 'Wormhole <small>W</small>'
'name_lang' => 'Wormhole'
'name_lang_with_ticker' => 'Wormhole <small>W</small>'
'name_with_lang' => 'Wormhole'
'name_with_lang_with_ticker' => 'Wormhole <small>W</small>'
'image' => '/uploads/coins/wormhole.png?1758150530'
'price_for_sd' => 0.04043
'ticker' => 'W'
'marketcap' => '$209.97M'
'low24h' => '$0.03821'
'high24h' => '$0.04062'
'volume24h' => '$34.62M'
'current_supply' => '5.19B'
'max_supply' => '10B'
'algo' => null
'proof' => null
'ico_price_and_roi' => '—'
'price' => '$0.04043'
'change_24h_pct' => '5.4855%'
'ath_price' => '$1.66'
'ath_days' => 643
'ath_exchange' => null
'ath_pair' => null
'ath_date' => '3 de abr. de 2024'
'ath_pct' => '-97.55%'
'fdv' => '$404.92M'
'new_prediction' => true
'change_24h_pct_is_increased' => true
'change_30d_pct' => '-87.28%'
'change_30d_pct_is_increased' => false
'max_price' => '$1.99'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.040779'
'next_week_prediction_price_date' => '13 de janeiro de 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.035735'
'next_month_prediction_price_date' => '5 de fevereiro de 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.013969'
'current_year_max_price_prediction' => '$0.041699'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.045341'
'grand_prediction_max_price' => '$0.131096'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.041199418440621
107 => 0.041353242113689
108 => 0.041699814703544
109 => 0.038738389868782
110 => 0.040067982676725
111 => 0.040848993885393
112 => 0.037320356831199
113 => 0.040779244076265
114 => 0.038686838050984
115 => 0.03797664401912
116 => 0.038932826722076
117 => 0.038560201392816
118 => 0.038239840016011
119 => 0.038061072863247
120 => 0.038763187910264
121 => 0.038730433404112
122 => 0.037581636912534
123 => 0.036083078720206
124 => 0.036586044038047
125 => 0.036403312022751
126 => 0.035741067626416
127 => 0.036187340389852
128 => 0.034222180993157
129 => 0.030841226391241
130 => 0.033074788562707
131 => 0.032988798848754
201 => 0.032945438935655
202 => 0.034623899176388
203 => 0.034462553952908
204 => 0.034169710792394
205 => 0.035735689332123
206 => 0.035164086099738
207 => 0.036925632575289
208 => 0.038085901013769
209 => 0.037791619407018
210 => 0.038882857481473
211 => 0.036597631343123
212 => 0.037356691798924
213 => 0.037513133106852
214 => 0.035716365400023
215 => 0.034488952026859
216 => 0.034407097548406
217 => 0.032278931907321
218 => 0.033415780814836
219 => 0.034416160807445
220 => 0.033937056423608
221 => 0.033785386288522
222 => 0.034560236115439
223 => 0.03462044858313
224 => 0.033247597938735
225 => 0.033533057060231
226 => 0.034723469050497
227 => 0.033503061732359
228 => 0.031132009665619
301 => 0.030543955970708
302 => 0.030465498767827
303 => 0.028870650508101
304 => 0.03058325253049
305 => 0.029835655852836
306 => 0.03219730479996
307 => 0.03084834358714
308 => 0.03079019256539
309 => 0.030702288767115
310 => 0.029329536987617
311 => 0.0296300823844
312 => 0.030629141057664
313 => 0.030985616447486
314 => 0.030948433143811
315 => 0.030624245125131
316 => 0.030772656739971
317 => 0.030294571218535
318 => 0.030125749270427
319 => 0.02959290076406
320 => 0.028809760662859
321 => 0.028918661097209
322 => 0.027367055636974
323 => 0.026521658632304
324 => 0.026287663883565
325 => 0.025974756326237
326 => 0.02632300762478
327 => 0.027362660133655
328 => 0.026108618633369
329 => 0.023958652441911
330 => 0.024087869073382
331 => 0.024378180479535
401 => 0.023837187094772
402 => 0.023325182258227
403 => 0.023770328923337
404 => 0.022859359905513
405 => 0.024488266733133
406 => 0.024444209368404
407 => 0.025051365102818
408 => 0.025431032043637
409 => 0.024556022663681
410 => 0.024335960170899
411 => 0.02446131776807
412 => 0.022389435924328
413 => 0.024882048153915
414 => 0.024903604367985
415 => 0.024719026975965
416 => 0.026046266037452
417 => 0.028847154433434
418 => 0.027793347553391
419 => 0.027385281677957
420 => 0.026609548150462
421 => 0.027643167017349
422 => 0.027563801215339
423 => 0.027204878960059
424 => 0.02698780166016
425 => 0.027387773241177
426 => 0.026938240754983
427 => 0.026857492368136
428 => 0.026368244998954
429 => 0.026193605947493
430 => 0.026064310146372
501 => 0.025921968173681
502 => 0.026235939096028
503 => 0.025524439679676
504 => 0.024666441132703
505 => 0.024595107837195
506 => 0.02479206533778
507 => 0.024704926305532
508 => 0.024594690649033
509 => 0.024384220759882
510 => 0.024321778839748
511 => 0.024524684787669
512 => 0.024295615802618
513 => 0.024633619568094
514 => 0.024541701246486
515 => 0.024028252973988
516 => 0.023388306323558
517 => 0.023382609456036
518 => 0.023244733999924
519 => 0.023069128876851
520 => 0.023020279548913
521 => 0.023732839912817
522 => 0.025207818540959
523 => 0.024918244943008
524 => 0.025127491544224
525 => 0.026156777723234
526 => 0.026483956847826
527 => 0.026251732854852
528 => 0.025933850330319
529 => 0.025947835548117
530 => 0.027034136364033
531 => 0.027101887613438
601 => 0.027273073163303
602 => 0.02749309497191
603 => 0.026289203520259
604 => 0.025891132369009
605 => 0.025702504173399
606 => 0.025121602339221
607 => 0.025748055164623
608 => 0.025383047930646
609 => 0.025432299876932
610 => 0.025400224482301
611 => 0.025417739816698
612 => 0.024487811420477
613 => 0.024826628452463
614 => 0.024263279422143
615 => 0.023509018309441
616 => 0.023506489761713
617 => 0.023691094100486
618 => 0.023581284216215
619 => 0.023285788641113
620 => 0.023327762392857
621 => 0.022960028160727
622 => 0.023372411986681
623 => 0.023384237679229
624 => 0.023225447443538
625 => 0.023860781625421
626 => 0.024121078558121
627 => 0.024016559423373
628 => 0.024113745217001
629 => 0.024930278033349
630 => 0.025063408510238
701 => 0.025122536273967
702 => 0.025043312903498
703 => 0.024128669937953
704 => 0.024169238242837
705 => 0.023871574939091
706 => 0.023620080814411
707 => 0.023630139260486
708 => 0.023759439932519
709 => 0.024324103550671
710 => 0.025512404846334
711 => 0.025557500011868
712 => 0.025612156668013
713 => 0.025389840579235
714 => 0.025322787919582
715 => 0.025411247685425
716 => 0.025857511174162
717 => 0.02700542202655
718 => 0.026599673664928
719 => 0.02626979393108
720 => 0.026559187392602
721 => 0.026514637537542
722 => 0.026138591927442
723 => 0.026128037579626
724 => 0.02540628582479
725 => 0.02513947063452
726 => 0.024916499890759
727 => 0.024673021659371
728 => 0.02452867960234
729 => 0.024750454604232
730 => 0.024801177171129
731 => 0.02431626225353
801 => 0.024250170142083
802 => 0.02464616213141
803 => 0.024471900820977
804 => 0.02465113290023
805 => 0.024692716280041
806 => 0.024686020398145
807 => 0.024504071576269
808 => 0.024620040329541
809 => 0.024345739656103
810 => 0.024047478872368
811 => 0.023857207074649
812 => 0.023691169695247
813 => 0.023783296883488
814 => 0.023454880279169
815 => 0.023349813197727
816 => 0.024580752725312
817 => 0.025490060989169
818 => 0.025476839286887
819 => 0.02539635557459
820 => 0.025276773103643
821 => 0.025848762971579
822 => 0.025649493138889
823 => 0.025794478591723
824 => 0.025831383474489
825 => 0.025943083439584
826 => 0.025983006576169
827 => 0.025862331129008
828 => 0.025457329589071
829 => 0.024448104257939
830 => 0.023978307141945
831 => 0.023823266268577
901 => 0.02382890170986
902 => 0.023673451081574
903 => 0.023719238258413
904 => 0.023657528170032
905 => 0.023540664191912
906 => 0.023776080862154
907 => 0.023803210440341
908 => 0.023748261376487
909 => 0.02376120387021
910 => 0.023306249090549
911 => 0.023340838314337
912 => 0.0231482411209
913 => 0.023112131468925
914 => 0.022625262535274
915 => 0.021762703646531
916 => 0.022240645001512
917 => 0.021663359053419
918 => 0.021444732117567
919 => 0.022479678028427
920 => 0.022375798163908
921 => 0.022198000991343
922 => 0.021935001916941
923 => 0.021837453001955
924 => 0.021244776674734
925 => 0.021209758195517
926 => 0.021503504586895
927 => 0.02136795073447
928 => 0.021177581787407
929 => 0.020488084758537
930 => 0.019712861813466
1001 => 0.0197362609213
1002 => 0.019982844916591
1003 => 0.020699821139284
1004 => 0.020419686125263
1005 => 0.020216444958412
1006 => 0.020178383997268
1007 => 0.020654796612006
1008 => 0.021329020273389
1009 => 0.021645350930405
1010 => 0.021331876856407
1011 => 0.02097177471884
1012 => 0.020993692467401
1013 => 0.021139501429253
1014 => 0.021154823889516
1015 => 0.020920434417058
1016 => 0.020986413680611
1017 => 0.020886185146004
1018 => 0.020271082814129
1019 => 0.020259957563456
1020 => 0.020109001531348
1021 => 0.02010443064269
1022 => 0.019847616774329
1023 => 0.019811686738874
1024 => 0.019301767215755
1025 => 0.019637397790051
1026 => 0.019412274422209
1027 => 0.019072960405638
1028 => 0.019014462541286
1029 => 0.019012704024846
1030 => 0.019361103650638
1031 => 0.019633326537575
1101 => 0.019416190539577
1102 => 0.019366752881837
1103 => 0.019894617727038
1104 => 0.019827442113891
1105 => 0.019769268466143
1106 => 0.021268650939462
1107 => 0.020081772713556
1108 => 0.019564226062421
1109 => 0.018923663802197
1110 => 0.019132234104121
1111 => 0.019176182931272
1112 => 0.01763574616546
1113 => 0.017010791161419
1114 => 0.016796330154964
1115 => 0.016672904813716
1116 => 0.016729151291601
1117 => 0.016166618488054
1118 => 0.016544649835471
1119 => 0.016057543977313
1120 => 0.015975879095014
1121 => 0.016846884710237
1122 => 0.016968080053254
1123 => 0.0164510230675
1124 => 0.016783057356276
1125 => 0.016662657107544
1126 => 0.016065894009173
1127 => 0.016043102048307
1128 => 0.015743667302782
1129 => 0.015275109908026
1130 => 0.015060966605549
1201 => 0.014949438914342
1202 => 0.014995457413366
1203 => 0.01497218905207
1204 => 0.01482034725529
1205 => 0.014980892446122
1206 => 0.0145707658254
1207 => 0.014407450100414
1208 => 0.014333684176334
1209 => 0.013969673194437
1210 => 0.014548976543054
1211 => 0.014663106600603
1212 => 0.014777461529622
1213 => 0.015772843113306
1214 => 0.015723116662304
1215 => 0.016172619561596
1216 => 0.016155152705512
1217 => 0.01602694719717
1218 => 0.015486069246257
1219 => 0.015701653557269
1220 => 0.015038118557216
1221 => 0.01553528409525
1222 => 0.01530839850582
1223 => 0.015458573849237
1224 => 0.015188545041009
1225 => 0.015337990132699
1226 => 0.014690171071194
1227 => 0.014085246746621
1228 => 0.014328685953671
1229 => 0.014593332212385
1230 => 0.015167152731888
1231 => 0.014825389964389
]
'min_raw' => 0.013969673194437
'max_raw' => 0.041699814703544
'avg_raw' => 0.02783474394899
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.013969'
'max' => '$0.041699'
'avg' => '$0.027834'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.026463556805563
'max_diff' => 0.0012665847035439
'year' => 2026
]
1 => [
'items' => [
101 => 0.014948300779063
102 => 0.014536570124927
103 => 0.013687052180398
104 => 0.013691860359706
105 => 0.013561180531695
106 => 0.013448254080726
107 => 0.014864645529439
108 => 0.014688494862956
109 => 0.014407821829945
110 => 0.014783513838133
111 => 0.014882852768132
112 => 0.014885680807815
113 => 0.015159775998975
114 => 0.015306060651631
115 => 0.015331843955696
116 => 0.015763138661204
117 => 0.015907702957576
118 => 0.016503142834827
119 => 0.015293649420887
120 => 0.015268740699956
121 => 0.014788800595137
122 => 0.014484414993107
123 => 0.014809642137721
124 => 0.015097748989916
125 => 0.014797752878129
126 => 0.014836926037065
127 => 0.014434205767573
128 => 0.014578159314167
129 => 0.01470215150113
130 => 0.014633690303413
131 => 0.014531200576871
201 => 0.015074127513563
202 => 0.015043493448047
203 => 0.015549079493332
204 => 0.015943219970436
205 => 0.016649590166445
206 => 0.015912456042999
207 => 0.015885591945698
208 => 0.016148192805953
209 => 0.015907662754753
210 => 0.016059669444296
211 => 0.016625099538745
212 => 0.016637046185648
213 => 0.016436924457644
214 => 0.016424747032307
215 => 0.016463182599262
216 => 0.016688300915431
217 => 0.016609637658575
218 => 0.016700668770919
219 => 0.016814504570823
220 => 0.017285377704607
221 => 0.017398903623029
222 => 0.017123094497704
223 => 0.017147996973617
224 => 0.017044836789616
225 => 0.016945185344464
226 => 0.017169187240241
227 => 0.017578555107541
228 => 0.017576008451285
301 => 0.017670973839524
302 => 0.017730136489661
303 => 0.017476167085565
304 => 0.017310842342212
305 => 0.0173742383687
306 => 0.017475609995641
307 => 0.017341364916336
308 => 0.016512742098497
309 => 0.016764093328799
310 => 0.016722256193629
311 => 0.016662675025579
312 => 0.016915410631289
313 => 0.016891033665565
314 => 0.016160848901082
315 => 0.016207592960625
316 => 0.016163691562164
317 => 0.016305545961974
318 => 0.015900002151637
319 => 0.016024744696317
320 => 0.016102982050952
321 => 0.01614906445388
322 => 0.016315545692254
323 => 0.01629601104045
324 => 0.01631433139087
325 => 0.016561179117961
326 => 0.017809650213679
327 => 0.017877601740823
328 => 0.017542983569064
329 => 0.01767665692863
330 => 0.017420033309413
331 => 0.017592306464222
401 => 0.017710171381479
402 => 0.017177562484516
403 => 0.017146024842241
404 => 0.016888342046062
405 => 0.017026806184829
406 => 0.016806499784126
407 => 0.016860555268868
408 => 0.016709411421058
409 => 0.016981440254676
410 => 0.017285610759669
411 => 0.017362456241287
412 => 0.017160308863209
413 => 0.017013940839319
414 => 0.016756966805993
415 => 0.017184320350454
416 => 0.017309291550218
417 => 0.017183663929944
418 => 0.017154553265309
419 => 0.017099388608427
420 => 0.017166256708046
421 => 0.017308610930225
422 => 0.017241479307915
423 => 0.017285820927158
424 => 0.017116836399484
425 => 0.017476251160005
426 => 0.018047088297585
427 => 0.018048923632324
428 => 0.017981791648149
429 => 0.017954322686604
430 => 0.018023204176276
501 => 0.018060569558757
502 => 0.018283319665652
503 => 0.018522339405107
504 => 0.019637740236657
505 => 0.019324540146506
506 => 0.020314190119751
507 => 0.021096874758621
508 => 0.021331567659167
509 => 0.021115661233819
510 => 0.020377057015739
511 => 0.020340817569103
512 => 0.021444604101571
513 => 0.021132733849523
514 => 0.021095637875405
515 => 0.020700999385424
516 => 0.020934279609931
517 => 0.020883257802817
518 => 0.020802717384215
519 => 0.021247799802132
520 => 0.022080954355691
521 => 0.021951099405245
522 => 0.021854168708534
523 => 0.021429446611652
524 => 0.02168522417909
525 => 0.021594146686422
526 => 0.021985473394129
527 => 0.021753660121431
528 => 0.021130371125631
529 => 0.0212296319526
530 => 0.021214628878288
531 => 0.021523391084484
601 => 0.021430708334133
602 => 0.021196531083777
603 => 0.022078106724002
604 => 0.022020862105507
605 => 0.022102021886591
606 => 0.022137750932174
607 => 0.022674350489274
608 => 0.022894178158547
609 => 0.022944082888097
610 => 0.023152902171824
611 => 0.022938887274087
612 => 0.023795099455069
613 => 0.024364430594056
614 => 0.025025738009502
615 => 0.025992085886145
616 => 0.02635544162698
617 => 0.02628980466467
618 => 0.027022478595964
619 => 0.028339077364074
620 => 0.026555926918704
621 => 0.028433588667506
622 => 0.027839142636483
623 => 0.026429721790554
624 => 0.026338971704056
625 => 0.027293447864632
626 => 0.029410384123863
627 => 0.028880115601018
628 => 0.029411251453203
629 => 0.028791653268687
630 => 0.028760884996442
701 => 0.02938115895235
702 => 0.030830462859701
703 => 0.030141952899663
704 => 0.02915480504238
705 => 0.029883699658476
706 => 0.029252263686002
707 => 0.027829461712217
708 => 0.028879710114672
709 => 0.028177438917302
710 => 0.028382398987485
711 => 0.029858468589399
712 => 0.029680863989701
713 => 0.029910700787453
714 => 0.029505044855297
715 => 0.029126098248593
716 => 0.028418766266237
717 => 0.028209360137307
718 => 0.0282672324577
719 => 0.028209331458659
720 => 0.027813585715247
721 => 0.027728124459636
722 => 0.027585685289475
723 => 0.027629833144356
724 => 0.027362005832404
725 => 0.027867451306003
726 => 0.027961266439874
727 => 0.028329087504905
728 => 0.028367275908076
729 => 0.029391652338582
730 => 0.028827443014606
731 => 0.029205963340618
801 => 0.029172104919888
802 => 0.026460268214023
803 => 0.026833935385353
804 => 0.027415244240725
805 => 0.027153365389326
806 => 0.02678312996366
807 => 0.026484145006668
808 => 0.026031152224043
809 => 0.026668730866632
810 => 0.027507078982706
811 => 0.028388537799784
812 => 0.029447552813034
813 => 0.02921119299037
814 => 0.028368740250747
815 => 0.028406532065234
816 => 0.028640146191865
817 => 0.028337594671797
818 => 0.028248366322022
819 => 0.0286278875868
820 => 0.028630501141169
821 => 0.028282379052759
822 => 0.02789550505716
823 => 0.027893884040993
824 => 0.027825043550236
825 => 0.028803899839063
826 => 0.029342171824384
827 => 0.029403883840033
828 => 0.029338018114036
829 => 0.029363367217855
830 => 0.02905015860961
831 => 0.02976606060893
901 => 0.030423043078876
902 => 0.030246957742547
903 => 0.029982980791385
904 => 0.029772710434931
905 => 0.030197424729055
906 => 0.0301785128701
907 => 0.03041730491014
908 => 0.030406471923874
909 => 0.030326175142231
910 => 0.030246960610198
911 => 0.030561037275705
912 => 0.030470588239956
913 => 0.030379998711872
914 => 0.030198307544736
915 => 0.03022300239192
916 => 0.0299590710201
917 => 0.029836964290819
918 => 0.028000772057431
919 => 0.027510081493358
920 => 0.027664462733743
921 => 0.027715289046585
922 => 0.027501739884263
923 => 0.027807914526753
924 => 0.02776019753304
925 => 0.02794583644207
926 => 0.027829857311213
927 => 0.027834617135198
928 => 0.028175687029691
929 => 0.028274701071078
930 => 0.028224341730487
1001 => 0.02825961168642
1002 => 0.029072392934363
1003 => 0.028956841432186
1004 => 0.028895456999682
1005 => 0.028912460906994
1006 => 0.02912014394207
1007 => 0.029178283852818
1008 => 0.02893194096556
1009 => 0.029048117695282
1010 => 0.029542783465417
1011 => 0.029715888489306
1012 => 0.030268356630436
1013 => 0.030033658344746
1014 => 0.030464457205634
1015 => 0.031788586033848
1016 => 0.032846391764572
1017 => 0.031873589898928
1018 => 0.033816115412654
1019 => 0.035328650163825
1020 => 0.035270596560817
1021 => 0.035006851141391
1022 => 0.03328487054
1023 => 0.031700278317315
1024 => 0.033025856996931
1025 => 0.033029236169593
1026 => 0.032915367785416
1027 => 0.032208141030795
1028 => 0.032890757827358
1029 => 0.032944941469769
1030 => 0.032914613038612
1031 => 0.032372383944025
1101 => 0.031544500337278
1102 => 0.031706266812363
1103 => 0.031971243598499
1104 => 0.031469587262395
1105 => 0.03130927766658
1106 => 0.031607323705348
1107 => 0.032567690142616
1108 => 0.032386138430674
1109 => 0.032381397381767
1110 => 0.033158152595361
1111 => 0.032602163496694
1112 => 0.031708307205661
1113 => 0.03148259670366
1114 => 0.030681476478366
1115 => 0.031234813071469
1116 => 0.031254726670368
1117 => 0.030951669873289
1118 => 0.031732898594503
1119 => 0.031725699434305
1120 => 0.032467359834548
1121 => 0.033885135964887
1122 => 0.033465829798619
1123 => 0.032978222347631
1124 => 0.033031238797442
1125 => 0.033612698396115
1126 => 0.033261134649325
1127 => 0.03338755942386
1128 => 0.033612507037077
1129 => 0.033748223517265
1130 => 0.033011711284501
1201 => 0.032839995051591
1202 => 0.032488723903265
1203 => 0.032397083817454
1204 => 0.032683186838252
1205 => 0.03260780880044
1206 => 0.03125305300949
1207 => 0.031111473491546
1208 => 0.031115815533232
1209 => 0.030759807103622
1210 => 0.030216808796653
1211 => 0.031643775926623
1212 => 0.031529170495694
1213 => 0.031402654969704
1214 => 0.031418152399751
1215 => 0.032037550466467
1216 => 0.031678268307419
1217 => 0.032633478812436
1218 => 0.032437116248861
1219 => 0.032235717726473
1220 => 0.03220787831593
1221 => 0.032130357067326
1222 => 0.031864507861475
1223 => 0.031543478970349
1224 => 0.031331507889381
1225 => 0.028901659850713
1226 => 0.029352625512914
1227 => 0.029871420400463
1228 => 0.030050506316705
1229 => 0.029744167464605
1230 => 0.031876603986513
1231 => 0.032266220687735
]
'min_raw' => 0.013448254080726
'max_raw' => 0.035328650163825
'avg_raw' => 0.024388452122275
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.013448'
'max' => '$0.035328'
'avg' => '$0.024388'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -0.00052141911371081
'max_diff' => -0.0063711645397188
'year' => 2027
]
2 => [
'items' => [
101 => 0.031086046285664
102 => 0.03086528384124
103 => 0.031891077135616
104 => 0.031272398380977
105 => 0.031550989386309
106 => 0.030948828013915
107 => 0.032172373433719
108 => 0.03216305206762
109 => 0.031687065264289
110 => 0.032089366051047
111 => 0.032019456389212
112 => 0.031482068460555
113 => 0.032189409589579
114 => 0.032189760421954
115 => 0.031731633472594
116 => 0.031196641492626
117 => 0.031100997562554
118 => 0.031028942709199
119 => 0.031533268309427
120 => 0.031985445065605
121 => 0.032826833904729
122 => 0.03303837904979
123 => 0.033864053834322
124 => 0.033372404701509
125 => 0.033590346394163
126 => 0.033826952931274
127 => 0.033940390806082
128 => 0.033755549876494
129 => 0.035038162678173
130 => 0.035146454496875
131 => 0.035182763806966
201 => 0.034750273986779
202 => 0.035134426172608
203 => 0.034954694086642
204 => 0.035422307043313
205 => 0.035495634725702
206 => 0.035433528787427
207 => 0.035456804151216
208 => 0.034362320393386
209 => 0.03430556563668
210 => 0.03353171050187
211 => 0.033847062189354
212 => 0.033257527324803
213 => 0.033444474903234
214 => 0.033526879614505
215 => 0.033483836069763
216 => 0.033864891700614
217 => 0.033540916569869
218 => 0.032685892933388
219 => 0.031830636346289
220 => 0.031819899296515
221 => 0.031594725333665
222 => 0.031431965801193
223 => 0.031463319061351
224 => 0.031573812039621
225 => 0.03142554374843
226 => 0.031457184305749
227 => 0.03198262837717
228 => 0.032088002438398
229 => 0.031729900206042
301 => 0.030292068069228
302 => 0.029939220456326
303 => 0.030192840323208
304 => 0.030071626362049
305 => 0.024270149468382
306 => 0.025633120410026
307 => 0.024823289358621
308 => 0.025196496765644
309 => 0.024369868966893
310 => 0.024764379079732
311 => 0.024691527467093
312 => 0.026883144408015
313 => 0.026848925323953
314 => 0.026865304188659
315 => 0.026083498301298
316 => 0.027328936308208
317 => 0.027942483854914
318 => 0.027828932533058
319 => 0.027857510954402
320 => 0.027366438990872
321 => 0.026870058838697
322 => 0.026319496857576
323 => 0.027342372966981
324 => 0.027228646604692
325 => 0.027489493962328
326 => 0.028152902235972
327 => 0.028250591624309
328 => 0.028381887152901
329 => 0.028334827052153
330 => 0.029455989576151
331 => 0.029320209396826
401 => 0.029647400562375
402 => 0.028974343510788
403 => 0.028212715569755
404 => 0.028357476141852
405 => 0.028343534534668
406 => 0.028166041873784
407 => 0.028005809435772
408 => 0.027739067571691
409 => 0.028583078300012
410 => 0.028548813005787
411 => 0.029103528290247
412 => 0.029005476975502
413 => 0.028350666298407
414 => 0.028374052989842
415 => 0.028531339729002
416 => 0.029075710929104
417 => 0.029237317364912
418 => 0.029162454824943
419 => 0.029339648904192
420 => 0.029479695879646
421 => 0.029357236648108
422 => 0.031091001123023
423 => 0.030371021235401
424 => 0.03072193442304
425 => 0.030805625150592
426 => 0.030591253111795
427 => 0.030637742730923
428 => 0.030708161836238
429 => 0.031135732854241
430 => 0.032257802924149
501 => 0.032754760119922
502 => 0.034249880362842
503 => 0.032713494742792
504 => 0.032622331978294
505 => 0.032891648282349
506 => 0.033769442139494
507 => 0.034480811613725
508 => 0.034716813908217
509 => 0.034748005507407
510 => 0.03519076150101
511 => 0.035444540979633
512 => 0.035136999277748
513 => 0.034876389886359
514 => 0.033942919394432
515 => 0.034050971145629
516 => 0.034795340561605
517 => 0.035846806204812
518 => 0.036749073113038
519 => 0.036433130688954
520 => 0.038843548364125
521 => 0.039082531430945
522 => 0.039049511698358
523 => 0.039593950690023
524 => 0.038513350164641
525 => 0.038051372504391
526 => 0.03493273659482
527 => 0.035808946077904
528 => 0.037082568019545
529 => 0.036913999379731
530 => 0.0359890610817
531 => 0.036748371464398
601 => 0.036497319706047
602 => 0.036299304768088
603 => 0.03720644958596
604 => 0.036209006595255
605 => 0.037072617762708
606 => 0.035965027507535
607 => 0.036434573887334
608 => 0.036168036652757
609 => 0.036340518909103
610 => 0.035332191162897
611 => 0.035876260338977
612 => 0.035309556096438
613 => 0.03530928740484
614 => 0.035296777377277
615 => 0.035963502405472
616 => 0.035985244284706
617 => 0.035492533481503
618 => 0.035421526157173
619 => 0.035684077451669
620 => 0.035376698648107
621 => 0.035520519255674
622 => 0.035381054827798
623 => 0.035349658447512
624 => 0.035099486747745
625 => 0.034991705900871
626 => 0.035033969548101
627 => 0.034889701931703
628 => 0.034802775474436
629 => 0.035279485517019
630 => 0.035024798571695
701 => 0.035240451089923
702 => 0.034994687827884
703 => 0.034142765287703
704 => 0.033652815625927
705 => 0.032043612920785
706 => 0.032499980811753
707 => 0.032802553195612
708 => 0.032702553024552
709 => 0.032917392086919
710 => 0.032930581460497
711 => 0.032860735091297
712 => 0.032779861943637
713 => 0.032740497367922
714 => 0.033033888664512
715 => 0.033204212187279
716 => 0.032832920382229
717 => 0.03274593190723
718 => 0.033121328421718
719 => 0.033350320078697
720 => 0.035041065814528
721 => 0.034915809909381
722 => 0.03523017765107
723 => 0.035194784667722
724 => 0.035524292143722
725 => 0.036062897606731
726 => 0.034967762103977
727 => 0.035157839760319
728 => 0.035111237108518
729 => 0.035620032641008
730 => 0.035621621045123
731 => 0.035316572707174
801 => 0.03548194436002
802 => 0.035389638440135
803 => 0.035556447713261
804 => 0.034914137040403
805 => 0.035696402106791
806 => 0.036139895991386
807 => 0.036146053904404
808 => 0.036356266485917
809 => 0.036569854643426
810 => 0.036979818512156
811 => 0.036558420973635
812 => 0.03580036782406
813 => 0.035855096812963
814 => 0.035410650528728
815 => 0.035418121751061
816 => 0.035378239780713
817 => 0.035497928575902
818 => 0.034940402000262
819 => 0.035071252373196
820 => 0.034888061084829
821 => 0.035157441538234
822 => 0.034867632700555
823 => 0.035111214635308
824 => 0.035216336523479
825 => 0.03560423855394
826 => 0.034810339255262
827 => 0.033191524843
828 => 0.033531819258685
829 => 0.033028497088337
830 => 0.033075081471486
831 => 0.033169189339295
901 => 0.032864154949547
902 => 0.032922345898372
903 => 0.032920266908197
904 => 0.032902351294026
905 => 0.032823000068266
906 => 0.032707925091751
907 => 0.033166348379975
908 => 0.033244243429608
909 => 0.033417394475787
910 => 0.033932574539741
911 => 0.033881095902569
912 => 0.033965059695624
913 => 0.033781767206822
914 => 0.033083583884346
915 => 0.033121498597817
916 => 0.032648701513282
917 => 0.033405303991343
918 => 0.033226130537873
919 => 0.033110616246829
920 => 0.033079097102286
921 => 0.033595554197971
922 => 0.033750086255473
923 => 0.033653792247498
924 => 0.033456290427797
925 => 0.033835552307794
926 => 0.033937026787107
927 => 0.033959743180791
928 => 0.034631722515894
929 => 0.033997299360864
930 => 0.034150011319904
1001 => 0.035341426430779
1002 => 0.034260977329262
1003 => 0.034833315315226
1004 => 0.034805302349116
1005 => 0.035098091095873
1006 => 0.034781285126018
1007 => 0.034785212315703
1008 => 0.035045188887596
1009 => 0.034680098679394
1010 => 0.034589697209568
1011 => 0.034464808226472
1012 => 0.034737498752092
1013 => 0.034900964389469
1014 => 0.036218377374452
1015 => 0.037069486244082
1016 => 0.037032537363412
1017 => 0.037370180967335
1018 => 0.037218069431306
1019 => 0.036726861156476
1020 => 0.037565293785144
1021 => 0.037299978619922
1022 => 0.037321850879785
1023 => 0.037321036793181
1024 => 0.037497448183799
1025 => 0.037372444545679
1026 => 0.037126049543586
1027 => 0.037289618044749
1028 => 0.037775358016394
1029 => 0.039283109792704
1030 => 0.040126867661781
1031 => 0.039232314509532
1101 => 0.03984936529541
1102 => 0.039479354701559
1103 => 0.039412112769795
1104 => 0.039799666263021
1105 => 0.040187898117333
1106 => 0.040163169426586
1107 => 0.039881333036281
1108 => 0.039722130810732
1109 => 0.040927663399249
1110 => 0.041815879274757
1111 => 0.041755308906722
1112 => 0.042022646812689
1113 => 0.042807559173058
1114 => 0.042879321722449
1115 => 0.042870281290669
1116 => 0.042692410324357
1117 => 0.043465258476891
1118 => 0.044109982002703
1119 => 0.042651238334843
1120 => 0.043206708827207
1121 => 0.043456077427371
1122 => 0.043822224516742
1123 => 0.044439976029887
1124 => 0.045111018023659
1125 => 0.045205910719179
1126 => 0.045138579810674
1127 => 0.044696009577204
1128 => 0.045430271733986
1129 => 0.045860385284862
1130 => 0.046116508061435
1201 => 0.046765992808059
1202 => 0.043457617442951
1203 => 0.041115784922603
1204 => 0.040750073958079
1205 => 0.041493761585311
1206 => 0.041689866081815
1207 => 0.041610816605169
1208 => 0.038974871193419
1209 => 0.040736196251007
1210 => 0.042631233916555
1211 => 0.042704030031073
1212 => 0.043652725509815
1213 => 0.043961659646035
1214 => 0.044725483854781
1215 => 0.044677706442557
1216 => 0.044863685482289
1217 => 0.044820932121763
1218 => 0.046235755626302
1219 => 0.047796516055133
1220 => 0.047742471884397
1221 => 0.047518094106673
1222 => 0.047851333368689
1223 => 0.049462205392495
1224 => 0.049313902110241
1225 => 0.049457966116507
1226 => 0.051357275017343
1227 => 0.05382664676197
1228 => 0.052679375665721
1229 => 0.055168623826216
1230 => 0.056735473593873
1231 => 0.059445178251745
]
'min_raw' => 0.024270149468382
'max_raw' => 0.059445178251745
'avg_raw' => 0.041857663860064
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.02427'
'max' => '$0.059445'
'avg' => '$0.041857'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 0.010821895387657
'max_diff' => 0.02411652808792
'year' => 2028
]
3 => [
'items' => [
101 => 0.059105909883003
102 => 0.060160778021581
103 => 0.058498548695509
104 => 0.054681734170873
105 => 0.054077708662171
106 => 0.055286983026955
107 => 0.058259866053511
108 => 0.055193356360857
109 => 0.05581370727785
110 => 0.055635046172023
111 => 0.055625526080954
112 => 0.055988869236038
113 => 0.055461821038884
114 => 0.053314531869516
115 => 0.054298621841783
116 => 0.053918617443609
117 => 0.054340260654587
118 => 0.056615695165352
119 => 0.055609671328559
120 => 0.054549906939238
121 => 0.055879086663991
122 => 0.057571589209309
123 => 0.057465675441743
124 => 0.057260158464143
125 => 0.058418646906352
126 => 0.060332130407616
127 => 0.060849337309009
128 => 0.061231128869787
129 => 0.061283771475597
130 => 0.061826023032637
131 => 0.058910199745443
201 => 0.063537686185873
202 => 0.064336725262403
203 => 0.064186539032792
204 => 0.06507463733765
205 => 0.064813336287481
206 => 0.064434752062665
207 => 0.065842576779792
208 => 0.064228619347203
209 => 0.061937809963233
210 => 0.060681026628116
211 => 0.062336060305618
212 => 0.063346731619754
213 => 0.064014721067629
214 => 0.064216854270945
215 => 0.059136546806943
216 => 0.056398542850615
217 => 0.058153571995343
218 => 0.060294828677551
219 => 0.058898304956459
220 => 0.058953046042356
221 => 0.056961970216056
222 => 0.060470994707786
223 => 0.059959759354882
224 => 0.062612049270106
225 => 0.061979058995882
226 => 0.064141898460445
227 => 0.063572350344782
228 => 0.065936512729894
301 => 0.066879641112457
302 => 0.068463300452991
303 => 0.069628246710541
304 => 0.070312325434846
305 => 0.070271255914153
306 => 0.072981916626515
307 => 0.071383534707707
308 => 0.069375590307991
309 => 0.069339272928783
310 => 0.070379215786189
311 => 0.07255865072092
312 => 0.073123746490007
313 => 0.073439557933144
314 => 0.072955881714504
315 => 0.071220952698703
316 => 0.07047181914597
317 => 0.071110102637387
318 => 0.070329536775709
319 => 0.071677012441064
320 => 0.073527384334867
321 => 0.07314528985596
322 => 0.07442257441214
323 => 0.075744429553532
324 => 0.077634741773953
325 => 0.078128939386429
326 => 0.078945829247201
327 => 0.079786677248276
328 => 0.080056734964732
329 => 0.080572358939435
330 => 0.080569641346569
331 => 0.082123508899833
401 => 0.083837472930355
402 => 0.084484454673518
403 => 0.085972153517141
404 => 0.083424521382622
405 => 0.085356929621743
406 => 0.087100010224746
407 => 0.085021837671068
408 => 0.08788611438421
409 => 0.087997327758391
410 => 0.08967651766992
411 => 0.087974337000723
412 => 0.086963587552907
413 => 0.089881583336465
414 => 0.091293509580122
415 => 0.090868225904896
416 => 0.087631796137577
417 => 0.085748055195994
418 => 0.080817941805383
419 => 0.086657874081611
420 => 0.089502334740202
421 => 0.087624429671642
422 => 0.08857153575701
423 => 0.093738639458595
424 => 0.095705938002969
425 => 0.095296753658194
426 => 0.095365899076714
427 => 0.096427417662264
428 => 0.10113477565956
429 => 0.098314017631874
430 => 0.10047038145225
501 => 0.10161410904723
502 => 0.10267646697808
503 => 0.10006765166159
504 => 0.096673621265941
505 => 0.095598589367936
506 => 0.087437709022038
507 => 0.087012899759127
508 => 0.086774441446817
509 => 0.0852709955183
510 => 0.084089698846984
511 => 0.083150287875221
512 => 0.08068499295345
513 => 0.081516957620056
514 => 0.077587792061792
515 => 0.080101532944892
516 => 0.073830489840883
517 => 0.079053200882954
518 => 0.076210716710287
519 => 0.078119368383866
520 => 0.078112709277983
521 => 0.074598276408359
522 => 0.072571224873503
523 => 0.07386294100554
524 => 0.075247763235637
525 => 0.075472445983369
526 => 0.077267904152248
527 => 0.077768977933938
528 => 0.076250700982519
529 => 0.073700536411278
530 => 0.074292881478116
531 => 0.07255922101963
601 => 0.06952104775042
602 => 0.071703116833783
603 => 0.072448171157648
604 => 0.072777229591875
605 => 0.069789535118165
606 => 0.068850736648523
607 => 0.068350928220567
608 => 0.073314862572582
609 => 0.073586798101834
610 => 0.072195537486373
611 => 0.078484167392999
612 => 0.077060856766178
613 => 0.078651043455907
614 => 0.074239132371967
615 => 0.0744076733168
616 => 0.072319003905652
617 => 0.073488519210954
618 => 0.072661943488404
619 => 0.073394033931661
620 => 0.073832845924828
621 => 0.075921172605878
622 => 0.079077046219126
623 => 0.075609246239287
624 => 0.074098276128261
625 => 0.075035673487123
626 => 0.077532086182553
627 => 0.081314279205143
628 => 0.079075144812041
629 => 0.080068834632732
630 => 0.08028591165237
701 => 0.078634856848157
702 => 0.081375155950815
703 => 0.082843704502079
704 => 0.084350131442371
705 => 0.085658119745502
706 => 0.08374843139538
707 => 0.085792071673083
708 => 0.084145258360326
709 => 0.082667896574352
710 => 0.082670137122353
711 => 0.0817433664932
712 => 0.079947631618601
713 => 0.079616470556209
714 => 0.081339212223803
715 => 0.082720687896971
716 => 0.082834472850235
717 => 0.083599328765684
718 => 0.084051962617804
719 => 0.088488389694462
720 => 0.090272757364744
721 => 0.092454648375613
722 => 0.093304617888986
723 => 0.095862721393303
724 => 0.093796845054558
725 => 0.093349879713699
726 => 0.087144757361506
727 => 0.08816084579906
728 => 0.089787701425536
729 => 0.087171583611578
730 => 0.08883090821722
731 => 0.089158494043674
801 => 0.087082688929329
802 => 0.088191466131145
803 => 0.085246882612652
804 => 0.079141230093211
805 => 0.081381953287462
806 => 0.083031879777702
807 => 0.08067723124166
808 => 0.084897847605033
809 => 0.082432250656757
810 => 0.081650774793679
811 => 0.078601958835551
812 => 0.080040882608099
813 => 0.081987047613875
814 => 0.080784543906272
815 => 0.083279919656388
816 => 0.086814037210958
817 => 0.089332659840683
818 => 0.089526008412332
819 => 0.087906702796029
820 => 0.090501650380424
821 => 0.090520551740608
822 => 0.087593440264738
823 => 0.085800600783993
824 => 0.085393263881801
825 => 0.08641087132658
826 => 0.087646434625239
827 => 0.089594573576324
828 => 0.090771793143535
829 => 0.093841357425807
830 => 0.094671893509285
831 => 0.09558440086222
901 => 0.096803792092588
902 => 0.098267983910138
903 => 0.095064415569824
904 => 0.095191699312183
905 => 0.092208580830106
906 => 0.089020690909542
907 => 0.091439901983162
908 => 0.094602698647757
909 => 0.093877149598319
910 => 0.093795510508635
911 => 0.093932804812688
912 => 0.093385764523629
913 => 0.090911521570472
914 => 0.089668972248977
915 => 0.091272177881845
916 => 0.092124210325241
917 => 0.093445638339911
918 => 0.093282744445141
919 => 0.096686601099922
920 => 0.098009236868687
921 => 0.097670850040261
922 => 0.097733121360425
923 => 0.10012769024246
924 => 0.10279094331993
925 => 0.10528543127417
926 => 0.10782293156198
927 => 0.1047638759247
928 => 0.10321067612842
929 => 0.10481318185186
930 => 0.1039628697581
1001 => 0.10884901526779
1002 => 0.10918732138156
1003 => 0.11407311356732
1004 => 0.11871031214092
1005 => 0.11579777080088
1006 => 0.11854416610079
1007 => 0.12151461653453
1008 => 0.12724509735944
1009 => 0.12531527301836
1010 => 0.12383705781729
1011 => 0.12244015159497
1012 => 0.12534689169101
1013 => 0.12908636638825
1014 => 0.1298918134218
1015 => 0.13119694532059
1016 => 0.12982475871295
1017 => 0.13147740634045
1018 => 0.13731197867571
1019 => 0.13573542572753
1020 => 0.13349646709758
1021 => 0.13810230159798
1022 => 0.13976913519895
1023 => 0.15146784633808
1024 => 0.16623795240088
1025 => 0.16012303150514
1026 => 0.15632730277788
1027 => 0.15721938906468
1028 => 0.16261293179917
1029 => 0.164345166543
1030 => 0.15963635537215
1031 => 0.16129958708313
1101 => 0.17046415733601
1102 => 0.17538065524206
1103 => 0.16870339071188
1104 => 0.15028108269726
1105 => 0.13329487336993
1106 => 0.13780038098251
1107 => 0.13728959624142
1108 => 0.14713578367471
1109 => 0.13569782546112
1110 => 0.13589041134315
1111 => 0.14594020750527
1112 => 0.14325909418634
1113 => 0.13891603398073
1114 => 0.13332658251575
1115 => 0.12299396452105
1116 => 0.11384207661677
1117 => 0.13179103635096
1118 => 0.13101704456916
1119 => 0.12989618976995
1120 => 0.13239053083643
1121 => 0.14450234302419
1122 => 0.14422312655115
1123 => 0.14244689380718
1124 => 0.14379415068849
1125 => 0.13867985333554
1126 => 0.13999792421378
1127 => 0.13329218266758
1128 => 0.13632345790297
1129 => 0.13890671572409
1130 => 0.13942534297747
1201 => 0.14059383666109
1202 => 0.13060918607061
1203 => 0.13509200105179
1204 => 0.13772523487028
1205 => 0.12582818868049
1206 => 0.13749006851903
1207 => 0.13043537551767
1208 => 0.12804090675508
1209 => 0.13126474349664
1210 => 0.13000841118317
1211 => 0.12892829043436
1212 => 0.12832556449769
1213 => 0.13069279439881
1214 => 0.13058236029447
1215 => 0.12670911271671
1216 => 0.12165661914528
1217 => 0.1233524018303
1218 => 0.12273630808279
1219 => 0.12050350486412
1220 => 0.12200814464381
1221 => 0.11538247253481
1222 => 0.10398334804373
1223 => 0.11151395884716
1224 => 0.11122403852296
1225 => 0.11107784754865
1226 => 0.11673689343664
1227 => 0.11619290675091
1228 => 0.11520556558958
1229 => 0.12048537156941
1230 => 0.11855817136336
1231 => 0.12449734829292
]
'min_raw' => 0.053314531869516
'max_raw' => 0.17538065524206
'avg_raw' => 0.11434759355579
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.053314'
'max' => '$0.17538'
'avg' => '$0.114347'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072435
'min_diff' => 0.029044382401134
'max_diff' => 0.11593547699031
'year' => 2029
]
4 => [
'items' => [
101 => 0.12840927434062
102 => 0.12741708335737
103 => 0.1310962687132
104 => 0.12339146923836
105 => 0.125950694561
106 => 0.12647814735307
107 => 0.12042021958318
108 => 0.11628190970029
109 => 0.11600593161129
110 => 0.10883067256859
111 => 0.11266363803253
112 => 0.11603648902191
113 => 0.11442115514181
114 => 0.1139097886921
115 => 0.11652224898183
116 => 0.11672525952056
117 => 0.11209659772361
118 => 0.11305904308185
119 => 0.11707260021894
120 => 0.11295791173972
121 => 0.10496374415514
122 => 0.10298108006615
123 => 0.10271655612893
124 => 0.097339413872513
125 => 0.10311357116105
126 => 0.10059299676681
127 => 0.1085554610771
128 => 0.10400734416661
129 => 0.10381128393681
130 => 0.10351491014368
131 => 0.098886581676632
201 => 0.099899891465296
202 => 0.10326828753425
203 => 0.10447016919936
204 => 0.10434480309496
205 => 0.10325178055589
206 => 0.1037521606771
207 => 0.10214026196271
208 => 0.10157106697789
209 => 0.099774531036382
210 => 0.097134119508086
211 => 0.097501284925681
212 => 0.092269938786868
213 => 0.089419623761888
214 => 0.088630694129522
215 => 0.087575704453484
216 => 0.088749858020651
217 => 0.09225511904054
218 => 0.088027030567944
219 => 0.080778269447601
220 => 0.081213932342222
221 => 0.08219273751696
222 => 0.08036874054928
223 => 0.078642480495832
224 => 0.0801433235564
225 => 0.077071927910981
226 => 0.082563901006943
227 => 0.082415358525773
228 => 0.08446242647461
301 => 0.085742500073081
302 => 0.082792344857355
303 => 0.082050388798668
304 => 0.082473040689719
305 => 0.075487546399368
306 => 0.083891562560053
307 => 0.083964240840795
308 => 0.083341925276818
309 => 0.087816804437493
310 => 0.097260195216329
311 => 0.093707211745817
312 => 0.092331389156541
313 => 0.089715949408607
314 => 0.093200867583283
315 => 0.09293328024066
316 => 0.091723148797834
317 => 0.090991257525372
318 => 0.092339789635894
319 => 0.090824159473334
320 => 0.090551910649407
321 => 0.088902378986049
322 => 0.088313571231139
323 => 0.087877641410516
324 => 0.087397725511589
325 => 0.088456300397031
326 => 0.086057430439497
327 => 0.083164628434832
328 => 0.082924123248696
329 => 0.08358817921305
330 => 0.083294383881976
331 => 0.082922716669682
401 => 0.08221310274387
402 => 0.082002575450584
403 => 0.08268668702044
404 => 0.081914364944255
405 => 0.083053968238227
406 => 0.082744059199393
407 => 0.081012932500853
408 => 0.078855307689279
409 => 0.078836100302685
410 => 0.078371243576245
411 => 0.077779178643448
412 => 0.077614479723754
413 => 0.08001692674003
414 => 0.084989920164533
415 => 0.084013602561656
416 => 0.084719092086787
417 => 0.088189402301785
418 => 0.089292509563264
419 => 0.088509550157593
420 => 0.087437787032279
421 => 0.087484939170503
422 => 0.091147478214464
423 => 0.091375906282073
424 => 0.091953070315236
425 => 0.092694889204387
426 => 0.088635885122131
427 => 0.087293760443249
428 => 0.086657787312152
429 => 0.08469923622095
430 => 0.086811365659331
501 => 0.085580718285987
502 => 0.085746774661552
503 => 0.085638630229121
504 => 0.085697684401923
505 => 0.082562365888535
506 => 0.083704711167324
507 => 0.081805340579827
508 => 0.079262296577524
509 => 0.079253771402322
510 => 0.079876177819158
511 => 0.079505946127658
512 => 0.07850966216536
513 => 0.078651179599877
514 => 0.077411337961868
515 => 0.078801718822789
516 => 0.078841589970858
517 => 0.078306217604846
518 => 0.08044829115668
519 => 0.081325900438632
520 => 0.080973506878536
521 => 0.081301175567046
522 => 0.084054172965865
523 => 0.08450303166357
524 => 0.08470238504715
525 => 0.084435277922415
526 => 0.081351495305748
527 => 0.081488274178054
528 => 0.080484681567284
529 => 0.079636751567168
530 => 0.079670664320366
531 => 0.08010661056361
601 => 0.082010413375765
602 => 0.086016854158641
603 => 0.086168895657681
604 => 0.086353174389881
605 => 0.085603620174954
606 => 0.085377547451464
607 => 0.085675795728068
608 => 0.087180404237467
609 => 0.091050665820868
610 => 0.089682656891215
611 => 0.088570444337079
612 => 0.089546154597407
613 => 0.0893959516507
614 => 0.088128087621583
615 => 0.088092502901038
616 => 0.085659066468512
617 => 0.084759480426075
618 => 0.084007718996165
619 => 0.083186815139933
620 => 0.082700155817012
621 => 0.083447885719725
622 => 0.083618900395356
623 => 0.081983975894992
624 => 0.081761141726846
625 => 0.08309625636614
626 => 0.082508722191477
627 => 0.083113015660264
628 => 0.083253216928556
629 => 0.083230641295252
630 => 0.082617188139034
701 => 0.083008184887371
702 => 0.082083361015814
703 => 0.081077753959549
704 => 0.080436239309186
705 => 0.079876432692174
706 => 0.080187045939444
707 => 0.079079766428665
708 => 0.078725525428033
709 => 0.08287572398674
710 => 0.08594152028421
711 => 0.085896942391856
712 => 0.085625585936655
713 => 0.085222405286874
714 => 0.087150909061679
715 => 0.086479056908187
716 => 0.086967885484978
717 => 0.087092312873842
718 => 0.087468917104802
719 => 0.087603520747143
720 => 0.087196655051749
721 => 0.085831164083546
722 => 0.082428490417772
723 => 0.080844536641012
724 => 0.080321805511844
725 => 0.080340805795582
726 => 0.0798166931491
727 => 0.07997106781257
728 => 0.079763007941132
729 => 0.079368992879719
730 => 0.080162716619707
731 => 0.080254185886692
801 => 0.080068921281487
802 => 0.080112557802689
803 => 0.078578645999135
804 => 0.078695265982078
805 => 0.0780459110977
806 => 0.07792416488497
807 => 0.076282652283062
808 => 0.073374474767727
809 => 0.074985887414845
810 => 0.073039527536033
811 => 0.072302411557762
812 => 0.075791803953842
813 => 0.075441565737955
814 => 0.07484211015725
815 => 0.073955390415897
816 => 0.073626497438374
817 => 0.071628247821808
818 => 0.071510180574214
819 => 0.072500567041462
820 => 0.072043537763945
821 => 0.071401695567787
822 => 0.069077008195806
823 => 0.066463289912161
824 => 0.066542181637897
825 => 0.067373556793967
826 => 0.069790892186455
827 => 0.068846397428283
828 => 0.0681611556444
829 => 0.068032830456572
830 => 0.069639088849227
831 => 0.071912280996372
901 => 0.072978811892004
902 => 0.071921912165457
903 => 0.070707802667123
904 => 0.070781699886645
905 => 0.071273304981586
906 => 0.071324965726143
907 => 0.0705347052552
908 => 0.070757158948793
909 => 0.070419231446633
910 => 0.068345370989641
911 => 0.068307861430257
912 => 0.067798902628594
913 => 0.067783491558353
914 => 0.066917625671001
915 => 0.066796485047912
916 => 0.065077255774272
917 => 0.066208857688487
918 => 0.065449838536198
919 => 0.064305817639181
920 => 0.064108588005328
921 => 0.064102659044373
922 => 0.065277312707217
923 => 0.06619513117652
924 => 0.065463041999317
925 => 0.06529635948462
926 => 0.067076092664563
927 => 0.066849605394787
928 => 0.066653468879847
929 => 0.071708741572185
930 => 0.067707098768352
1001 => 0.065962154100095
1002 => 0.063802453717122
1003 => 0.064505663051973
1004 => 0.06465383959112
1005 => 0.059460149485324
1006 => 0.057353070056236
1007 => 0.056629999799786
1008 => 0.056213862644486
1009 => 0.056403501571678
1010 => 0.054506882949731
1011 => 0.055781442030856
1012 => 0.054139130621432
1013 => 0.053863791769098
1014 => 0.056800448012492
1015 => 0.057209066573064
1016 => 0.05546577284583
1017 => 0.056585249632332
1018 => 0.056179311787655
1019 => 0.054167283336827
1020 => 0.054090438649484
1021 => 0.053080873499078
1022 => 0.051501099529027
1023 => 0.050779100433719
1024 => 0.050403077036199
1025 => 0.050558231618566
1026 => 0.050479780713913
1027 => 0.049967835494814
1028 => 0.05050912481461
1029 => 0.049126354278721
1030 => 0.048575723909591
1031 => 0.048327016946383
1101 => 0.047099728506479
1102 => 0.049052890192012
1103 => 0.049437687649345
1104 => 0.049823243276538
1105 => 0.053179241781251
1106 => 0.053011585579909
1107 => 0.05452711598816
1108 => 0.054468225263377
1109 => 0.054035971440979
1110 => 0.052212363666584
1111 => 0.052939221222775
1112 => 0.050702066643563
1113 => 0.052378294966033
1114 => 0.051613334360626
1115 => 0.052119661015864
1116 => 0.051209240036112
1117 => 0.051713104596668
1118 => 0.049528937401523
1119 => 0.047489392806758
1120 => 0.04831016508971
1121 => 0.049202438427974
1122 => 0.051137114372349
1123 => 0.049984837340609
1124 => 0.050399239733642
1125 => 0.049011061087107
1126 => 0.046146852025678
1127 => 0.046163063137913
1128 => 0.045722466973999
1129 => 0.045341727560283
1130 => 0.050117190218912
1201 => 0.049523285948419
1202 => 0.048576977221657
1203 => 0.049843649057242
1204 => 0.050178577195355
1205 => 0.050188112128594
1206 => 0.051112243202305
1207 => 0.051605452122004
1208 => 0.05169238233179
1209 => 0.053146522543447
1210 => 0.053633931161822
1211 => 0.055641498280256
1212 => 0.051563606791026
1213 => 0.051479625299336
1214 => 0.049861473727588
1215 => 0.048835216418821
1216 => 0.049931742443521
1217 => 0.050903114810676
1218 => 0.049891656974725
1219 => 0.05002373201506
1220 => 0.048665932509438
1221 => 0.049151281942293
1222 => 0.049569330257497
1223 => 0.049338508549586
1224 => 0.048992957280946
1225 => 0.050823473353953
1226 => 0.050720188463264
1227 => 0.052424807113831
1228 => 0.053753679250398
1229 => 0.056135255683433
1230 => 0.053649956521173
1231 => 0.053559382341531
]
'min_raw' => 0.045341727560283
'max_raw' => 0.1310962687132
'avg_raw' => 0.088218998136744
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.045341'
'max' => '$0.131096'
'avg' => '$0.088218'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -0.007972804309233
'max_diff' => -0.044284386528851
'year' => 2030
]
5 => [
'items' => [
101 => 0.054444759476089
102 => 0.053633795615195
103 => 0.054146296781759
104 => 0.056052683822263
105 => 0.056092962776383
106 => 0.055418238398364
107 => 0.055377181358642
108 => 0.055506769556117
109 => 0.056265771676339
110 => 0.056000553013754
111 => 0.056307470764612
112 => 0.056691276111752
113 => 0.058278857757616
114 => 0.058661618317702
115 => 0.057731708595291
116 => 0.057815669031467
117 => 0.057467857268693
118 => 0.057131875463921
119 => 0.057887113494845
120 => 0.059267325840599
121 => 0.059258739611229
122 => 0.05957892204795
123 => 0.059778393053492
124 => 0.058922117476004
125 => 0.058364713561184
126 => 0.058578457690659
127 => 0.05892023920843
128 => 0.058467622550862
129 => 0.05567386286792
130 => 0.056521311089665
131 => 0.056380254267465
201 => 0.056179372199558
202 => 0.057031487939646
203 => 0.056949299297764
204 => 0.054487430384435
205 => 0.054645031244753
206 => 0.054497014614742
207 => 0.05497528662766
208 => 0.053607967356943
209 => 0.05402854555558
210 => 0.054292328259089
211 => 0.05444769829793
212 => 0.055009001416458
213 => 0.054943138974035
214 => 0.055004907314561
215 => 0.055837171660808
216 => 0.06004647912549
217 => 0.060275582443479
218 => 0.059147393915098
219 => 0.059598082979652
220 => 0.058732858530573
221 => 0.05931368949974
222 => 0.059711079297336
223 => 0.05791535121566
224 => 0.057809019852842
225 => 0.056940224314685
226 => 0.057407065825796
227 => 0.056664287414526
228 => 0.056846539255366
301 => 0.056336947219947
302 => 0.057254111424938
303 => 0.058279643519027
304 => 0.058538733425483
305 => 0.057857179426814
306 => 0.057363689415181
307 => 0.056497283520468
308 => 0.05793813583249
309 => 0.058359484957704
310 => 0.057935922664909
311 => 0.05783777402665
312 => 0.057651782534499
313 => 0.057877233000948
314 => 0.058357190199879
315 => 0.058130851248281
316 => 0.05828035211339
317 => 0.057710608980215
318 => 0.058922400938849
319 => 0.060847018202776
320 => 0.060853206161987
321 => 0.060626865990337
322 => 0.060534252468666
323 => 0.060766491220248
324 => 0.060892471216049
325 => 0.061643488753362
326 => 0.062449360492757
327 => 0.06621001227113
328 => 0.065154036300254
329 => 0.068490710280202
330 => 0.07112958618545
331 => 0.071920869685376
401 => 0.07119292609821
402 => 0.068702670409254
403 => 0.068580486584762
404 => 0.072301979942894
405 => 0.071250487614028
406 => 0.07112541594733
407 => 0.069794864725581
408 => 0.070581385289609
409 => 0.070409361704696
410 => 0.070137814060228
411 => 0.071638440506897
412 => 0.074447479253213
413 => 0.074009664221601
414 => 0.073682855610158
415 => 0.072250875407369
416 => 0.073113247333805
417 => 0.072806173208448
418 => 0.07412555852504
419 => 0.073343983891454
420 => 0.071242521525465
421 => 0.07157718633376
422 => 0.071526602421238
423 => 0.072567615756516
424 => 0.072255129392805
425 => 0.071465584443496
426 => 0.07443787826416
427 => 0.074244874036213
428 => 0.074518509904533
429 => 0.074638972876237
430 => 0.076448155747183
501 => 0.077189320082015
502 => 0.07735757736193
503 => 0.078061626156313
504 => 0.077340059986552
505 => 0.080226839133558
506 => 0.082146378818083
507 => 0.084376022940269
508 => 0.087634132274624
509 => 0.088859211523538
510 => 0.088637911922481
511 => 0.091108173235501
512 => 0.095547177904174
513 => 0.08953516168202
514 => 0.095865829362264
515 => 0.093861613065772
516 => 0.089109652281101
517 => 0.088803682028505
518 => 0.092021765043284
519 => 0.099159163441051
520 => 0.097371326094113
521 => 0.099162087702475
522 => 0.097073069164417
523 => 0.096969331786372
524 => 0.099060628734859
525 => 0.10394705804566
526 => 0.10162569864516
527 => 0.098297460723871
528 => 0.10075497981183
529 => 0.098626049345186
530 => 0.093828973153708
531 => 0.097369958968588
601 => 0.095002202595647
602 => 0.095693239782123
603 => 0.10066991150086
604 => 0.10007110519303
605 => 0.10084601600334
606 => 0.099478318706081
607 => 0.098200673764374
608 => 0.095815854601518
609 => 0.09510982721756
610 => 0.095304947786282
611 => 0.095109730525496
612 => 0.093775446121498
613 => 0.093487307531492
614 => 0.093007063924509
615 => 0.093155911499543
616 => 0.092252913018192
617 => 0.093957057721508
618 => 0.094273361995315
619 => 0.095513496396514
620 => 0.095642251264034
621 => 0.099096007919165
622 => 0.097193736791542
623 => 0.098469944498139
624 => 0.098355788468728
625 => 0.08921264168051
626 => 0.090472486637259
627 => 0.092432410028835
628 => 0.091549467197543
629 => 0.090301192610901
630 => 0.089293143953938
701 => 0.087765847160372
702 => 0.089915488068179
703 => 0.09274203727312
704 => 0.095713937216388
705 => 0.099284480271626
706 => 0.0984875766274
707 => 0.095647188397588
708 => 0.095774606138673
709 => 0.096562252477024
710 => 0.095542178903643
711 => 0.095241339292652
712 => 0.09652092173418
713 => 0.096529733515209
714 => 0.095356015589025
715 => 0.094051642902185
716 => 0.094046177533
717 => 0.093814077012122
718 => 0.097114359331467
719 => 0.098929180910929
720 => 0.099137247280283
721 => 0.098915176386485
722 => 0.09900064265983
723 => 0.097944637969606
724 => 0.10035835154299
725 => 0.10257341380947
726 => 0.10197972980415
727 => 0.10108971308302
728 => 0.10038077189563
729 => 0.10181272579088
730 => 0.10174896313803
731 => 0.10255406717295
801 => 0.10251754300342
802 => 0.10224681679797
803 => 0.10197973947264
804 => 0.10303867087853
805 => 0.10273371563955
806 => 0.10242828672085
807 => 0.10181570226558
808 => 0.101898962667
809 => 0.10100909961981
810 => 0.10059740825682
811 => 0.094406557943105
812 => 0.092752160447411
813 => 0.093272667577922
814 => 0.093444032040249
815 => 0.092724036129954
816 => 0.093756325313542
817 => 0.093595444137745
818 => 0.094221338680432
819 => 0.093830306943343
820 => 0.093846355022231
821 => 0.094996295984253
822 => 0.095330128737727
823 => 0.09516033870495
824 => 0.095279253823845
825 => 0.09801960254786
826 => 0.097630012590724
827 => 0.097423050690812
828 => 0.09748038055149
829 => 0.098180598404215
830 => 0.098376621172501
831 => 0.097546058928999
901 => 0.097937756884458
902 => 0.099605557064928
903 => 0.10018919273878
904 => 0.10205187764869
905 => 0.10126057599237
906 => 0.10271304442927
907 => 0.10717743722132
908 => 0.11074390309609
909 => 0.10746403368722
910 => 0.11401339407955
911 => 0.11911301059492
912 => 0.11891727881921
913 => 0.1180280427235
914 => 0.11222226490106
915 => 0.10687970158958
916 => 0.11134898265685
917 => 0.11136037577341
918 => 0.11097646056612
919 => 0.10859199618592
920 => 0.11089348637432
921 => 0.11107617030769
922 => 0.11097391588458
923 => 0.10914575263495
924 => 0.10635448525381
925 => 0.10689989221874
926 => 0.10779327995329
927 => 0.10610191059158
928 => 0.10556141559684
929 => 0.10656629862545
930 => 0.10980424111934
1001 => 0.109192126847
1002 => 0.1091761420696
1003 => 0.11179502650354
1004 => 0.10992047043947
1005 => 0.1069067715472
1006 => 0.1061457728311
1007 => 0.10344474005909
1008 => 0.10531035301547
1009 => 0.10537749310448
1010 => 0.10435571595438
1011 => 0.1069896831316
1012 => 0.10696541066036
1013 => 0.10946597048085
1014 => 0.11424610169026
1015 => 0.11283238167567
1016 => 0.111188379111
1017 => 0.11136712777302
1018 => 0.11332755940616
1019 => 0.11214223768846
1020 => 0.1125684876425
1021 => 0.1133269142258
1022 => 0.11378449181418
1023 => 0.11130128939977
1024 => 0.11072233613167
1025 => 0.10953800093013
1026 => 0.10922902998271
1027 => 0.1101936462924
1028 => 0.10993950397519
1029 => 0.10537185023998
1030 => 0.10489450501046
1031 => 0.10490914450716
1101 => 0.10370883723101
1102 => 0.10187808052814
1103 => 0.10668919983449
1104 => 0.10630279962262
1105 => 0.10587624369371
1106 => 0.10592849436111
1107 => 0.10801683818804
1108 => 0.10680549330453
1109 => 0.11002605221286
1110 => 0.10936400212017
1111 => 0.10868497294075
1112 => 0.10859111042441
1113 => 0.10832974212238
1114 => 0.10743341296386
1115 => 0.1063510416439
1116 => 0.10563636634507
1117 => 0.097443964036133
1118 => 0.09896442625166
1119 => 0.10071357943613
1120 => 0.10131738010612
1121 => 0.10028453727837
1122 => 0.10747419589395
1123 => 0.10878781580429
1124 => 0.10480877541056
1125 => 0.10406445941604
1126 => 0.10752299312663
1127 => 0.1054370745106
1128 => 0.10637636353568
1129 => 0.10434613442708
1130 => 0.10847140323517
1201 => 0.10843997559857
1202 => 0.1068351528588
1203 => 0.1081915380491
1204 => 0.10795583274328
1205 => 0.10614399182259
1206 => 0.10852884182408
1207 => 0.10853002467992
1208 => 0.10698541768475
1209 => 0.10518165487234
1210 => 0.10485918468446
1211 => 0.10461624671567
1212 => 0.10631661568772
1213 => 0.10784116119115
1214 => 0.11067796240615
1215 => 0.11139120163233
1216 => 0.11417502181516
1217 => 0.11251739243803
1218 => 0.11325219807101
1219 => 0.11404993353022
1220 => 0.11443239724512
1221 => 0.11380919314583
1222 => 0.11813361175586
1223 => 0.11849872518331
1224 => 0.11862114455731
1225 => 0.11716297493308
1226 => 0.11845817084825
1227 => 0.11785219157192
1228 => 0.11942878130303
1229 => 0.11967601070378
1230 => 0.11946661619679
1231 => 0.11954509071084
]
'min_raw' => 0.053607967356943
'max_raw' => 0.11967601070378
'avg_raw' => 0.086641989030361
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.0536079'
'max' => '$0.119676'
'avg' => '$0.086641'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 0.0082662397966598
'max_diff' => -0.011420258009424
'year' => 2031
]
6 => [
'items' => [
101 => 0.1158549623069
102 => 0.11566360968217
103 => 0.11305450306632
104 => 0.11411773329782
105 => 0.11213007534198
106 => 0.11276038215493
107 => 0.11303821539229
108 => 0.11289309107599
109 => 0.11417784673986
110 => 0.11308554196733
111 => 0.11020277008109
112 => 0.10731921278558
113 => 0.10728301207263
114 => 0.10652382233573
115 => 0.10597506720849
116 => 0.10608077691413
117 => 0.10645331170474
118 => 0.10595341480923
119 => 0.10606009315731
120 => 0.10783166452944
121 => 0.10818694053385
122 => 0.10697957385556
123 => 0.10213182242006
124 => 0.10094217205812
125 => 0.10179726914649
126 => 0.10138858781356
127 => 0.081828503420375
128 => 0.08642385510972
129 => 0.083693453179309
130 => 0.084951748008595
131 => 0.082164714671798
201 => 0.08349483306105
202 => 0.083249208762702
203 => 0.090638398292826
204 => 0.090523026261811
205 => 0.090578248747706
206 => 0.087942335614522
207 => 0.092141416808525
208 => 0.094210035198766
209 => 0.093827188989228
210 => 0.093923543132071
211 => 0.092267859721482
212 => 0.090594279382265
213 => 0.088738021223906
214 => 0.092186719441695
215 => 0.091803283071118
216 => 0.092682748149169
217 => 0.094919475461444
218 => 0.095248842054677
219 => 0.095691514096089
220 => 0.095532847680785
221 => 0.099312925407512
222 => 0.098855133053049
223 => 0.099958280911455
224 => 0.097689022070685
225 => 0.095121140292328
226 => 0.095609210668013
227 => 0.095562205566021
228 => 0.09496377666771
229 => 0.094423541815879
301 => 0.093524202997807
302 => 0.09636984409529
303 => 0.096254316263483
304 => 0.098124577574024
305 => 0.097793990720637
306 => 0.095586250805391
307 => 0.095665100668371
308 => 0.096195403890859
309 => 0.098030789398786
310 => 0.098575656780113
311 => 0.098323252499871
312 => 0.098920674709355
313 => 0.099392852864866
314 => 0.098979973015905
315 => 0.10482548099065
316 => 0.10239801853214
317 => 0.10358114684425
318 => 0.10386331597528
319 => 0.1031405456795
320 => 0.1032972886762
321 => 0.10353471160627
322 => 0.10497629714552
323 => 0.10875943472665
324 => 0.11043496060864
325 => 0.11547586289361
326 => 0.11029583150859
327 => 0.1099884698833
328 => 0.11089648860549
329 => 0.11385603188046
330 => 0.11625446372906
331 => 0.1170501619421
401 => 0.1171553265965
402 => 0.11864810934116
403 => 0.11950374457166
404 => 0.11846684625188
405 => 0.11758818349364
406 => 0.11444092255728
407 => 0.11480522658037
408 => 0.11731492003655
409 => 0.12086000986361
410 => 0.12390206573896
411 => 0.12283684379776
412 => 0.13096373527959
413 => 0.13176948337464
414 => 0.13165815504086
415 => 0.13349376911277
416 => 0.12985044899633
417 => 0.12829285906054
418 => 0.11777816035522
419 => 0.12073236180243
420 => 0.12502646710012
421 => 0.1244581261619
422 => 0.12133963211296
423 => 0.12389970008158
424 => 0.12305326155043
425 => 0.12238564036214
426 => 0.12544414245042
427 => 0.12208119376801
428 => 0.12499291911449
429 => 0.12125860123969
430 => 0.12284170964186
501 => 0.12194306074645
502 => 0.12252459671605
503 => 0.11912494932052
504 => 0.12095931653337
505 => 0.11904863361362
506 => 0.11904772770114
507 => 0.11900554926979
508 => 0.12125345925161
509 => 0.12132676351541
510 => 0.11966555464244
511 => 0.11942614849089
512 => 0.12031135851103
513 => 0.11927500941432
514 => 0.11975991063397
515 => 0.11928969657828
516 => 0.11918384149013
517 => 0.11834037013793
518 => 0.11797697948768
519 => 0.11811947432507
520 => 0.11763306598394
521 => 0.11733998736425
522 => 0.11894724855565
523 => 0.11808855373782
524 => 0.1188156412594
525 => 0.11798703326279
526 => 0.11511471693924
527 => 0.11346281744737
528 => 0.10803727817604
529 => 0.10957595438303
530 => 0.11059609830014
531 => 0.11025894074162
601 => 0.11098328563997
602 => 0.11102775453384
603 => 0.11079226262357
604 => 0.11051959315985
605 => 0.11038687274448
606 => 0.11137606198486
607 => 0.11195031963348
608 => 0.11069848338998
609 => 0.11040519567318
610 => 0.11167087123113
611 => 0.11244293259032
612 => 0.11814339988277
613 => 0.11772109085348
614 => 0.11878100364304
615 => 0.11866167372862
616 => 0.11977263118943
617 => 0.1215885771122
618 => 0.11789625130475
619 => 0.1185371113939
620 => 0.11837998729966
621 => 0.12009542696042
622 => 0.12010078237579
623 => 0.1190722906066
624 => 0.11962985268006
625 => 0.11931863682657
626 => 0.11988104593716
627 => 0.11771545065892
628 => 0.12035291194626
629 => 0.12184818254192
630 => 0.12186894437559
701 => 0.12257769077074
702 => 0.12329781815603
703 => 0.12468003996221
704 => 0.12325926874005
705 => 0.12070343962068
706 => 0.12088796222782
707 => 0.11938948055027
708 => 0.119414670298
709 => 0.1192802054505
710 => 0.11968374457988
711 => 0.11780400480485
712 => 0.11824517597288
713 => 0.11762753375414
714 => 0.11853576876034
715 => 0.1175586580303
716 => 0.11837991152966
717 => 0.11873433731501
718 => 0.12004217609316
719 => 0.11736548917939
720 => 0.11190754336644
721 => 0.11305486974752
722 => 0.11135788390936
723 => 0.11151494640956
724 => 0.11183223765628
725 => 0.11080379291442
726 => 0.11099998776115
727 => 0.11099297830062
728 => 0.11093257455662
729 => 0.11066503635884
730 => 0.11027705304125
731 => 0.11182265916358
801 => 0.11208528776188
802 => 0.11266907860309
803 => 0.11440604415744
804 => 0.11423248033809
805 => 0.11451557012854
806 => 0.11389758670547
807 => 0.11154361288814
808 => 0.11167144499173
809 => 0.11007737661158
810 => 0.11262831469066
811 => 0.11202421888279
812 => 0.11163475438559
813 => 0.11152848538916
814 => 0.11326975654515
815 => 0.1137907721661
816 => 0.11346611019518
817 => 0.11280021902092
818 => 0.11407892692855
819 => 0.11442105522028
820 => 0.11449764512759
821 => 0.11676327037199
822 => 0.1146242684108
823 => 0.11513914744271
824 => 0.11915608667097
825 => 0.11551327709066
826 => 0.1174429545697
827 => 0.11734850689865
828 => 0.1183356646002
829 => 0.11726753115415
830 => 0.11728077194836
831 => 0.11815730111148
901 => 0.11692637398475
902 => 0.1166215791176
903 => 0.11620050719162
904 => 0.11711990233739
905 => 0.11767103814662
906 => 0.12211278800432
907 => 0.1249823609808
908 => 0.12485778524994
909 => 0.12599617423408
910 => 0.12548331957028
911 => 0.12382717657662
912 => 0.12665401072167
913 => 0.12575948211841
914 => 0.12583322596961
915 => 0.12583048121979
916 => 0.12642526453991
917 => 0.12600380604651
918 => 0.1251730680942
919 => 0.12572455071586
920 => 0.12736225694355
921 => 0.13244574732524
922 => 0.13529053589013
923 => 0.13227448748162
924 => 0.13435491728731
925 => 0.13310740073683
926 => 0.1328806898692
927 => 0.13418735352974
928 => 0.13549630433203
929 => 0.13541292982468
930 => 0.13446269875758
1001 => 0.13392593733899
1002 => 0.13799047462878
1003 => 0.1409851564663
1004 => 0.14078093924159
1005 => 0.14168228765649
1006 => 0.14432867448031
1007 => 0.14457062692588
1008 => 0.14454014647895
1009 => 0.14394044209748
1010 => 0.14654615360228
1011 => 0.14871988398271
1012 => 0.14380162786029
1013 => 0.14567443540701
1014 => 0.14651519905282
1015 => 0.14774968952821
1016 => 0.14983248188481
1017 => 0.15209494681747
1018 => 0.15241488416561
1019 => 0.15218787330669
1020 => 0.15069571686528
1021 => 0.15317133299142
1022 => 0.15462149085777
1023 => 0.1554850266809
1024 => 0.15767480984972
1025 => 0.14652039132287
1026 => 0.13862473947899
1027 => 0.13739171942897
1028 => 0.1398991141868
1029 => 0.14056029418834
1030 => 0.14029377335877
1031 => 0.13140649936722
1101 => 0.13734492977067
1102 => 0.14373418156737
1103 => 0.14397961874993
1104 => 0.14717821179231
1105 => 0.14821980480167
1106 => 0.15079509144996
1107 => 0.15063400656893
1108 => 0.15126104788603
1109 => 0.15111690194607
1110 => 0.15588707817145
1111 => 0.16114929092607
1112 => 0.16096707723119
1113 => 0.16021057188804
1114 => 0.16133411132594
1115 => 0.1667652788217
1116 => 0.16626526395137
1117 => 0.16675098580673
1118 => 0.17315463837141
1119 => 0.18148029761445
1120 => 0.17761219301354
1121 => 0.1860048669804
1122 => 0.19128761036601
1123 => 0.20042356880557
1124 => 0.19927970181339
1125 => 0.20283626339115
1126 => 0.19723194116515
1127 => 0.18436328451386
1128 => 0.18232677033956
1129 => 0.18640392328927
1130 => 0.19642720597337
1201 => 0.18608825444771
1202 => 0.18817981087587
1203 => 0.18757744248386
1204 => 0.18754534483215
1205 => 0.18877038164732
1206 => 0.18699340185329
1207 => 0.17975366649982
1208 => 0.18307159454829
1209 => 0.18179038318878
1210 => 0.18321198271279
1211 => 0.19088376903159
1212 => 0.1874918894275
1213 => 0.18391881979852
1214 => 0.18840024204089
1215 => 0.19410663253918
1216 => 0.19374953687717
1217 => 0.19305662203846
1218 => 0.19696254670445
1219 => 0.20341398992411
1220 => 0.20515778910239
1221 => 0.20644502600539
1222 => 0.20662251422626
1223 => 0.20845075320962
1224 => 0.19861985142056
1225 => 0.21422174503526
1226 => 0.21691576106891
1227 => 0.21640939771011
1228 => 0.21940368314998
1229 => 0.21852268841588
1230 => 0.21724626527
1231 => 0.22199284459498
]
'min_raw' => 0.081828503420375
'max_raw' => 0.22199284459498
'avg_raw' => 0.15191067400768
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.081828'
'max' => '$0.221992'
'avg' => '$0.15191'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.028220536063432
'max_diff' => 0.1023168338912
'year' => 2032
]
7 => [
'items' => [
101 => 0.2165512744281
102 => 0.20882765065084
103 => 0.20459031789068
104 => 0.21017037948514
105 => 0.21357792838357
106 => 0.21583010144461
107 => 0.21651160765208
108 => 0.19938299634146
109 => 0.19015162484137
110 => 0.19606882813504
111 => 0.20328822453687
112 => 0.19857974730903
113 => 0.19876431070204
114 => 0.1920512595412
115 => 0.20388218060733
116 => 0.2021585149217
117 => 0.21110089554785
118 => 0.20896672464433
119 => 0.21625888890373
120 => 0.2143386176672
121 => 0.22230955620915
122 => 0.22548937939808
123 => 0.23082879743225
124 => 0.23475649507354
125 => 0.23706291425338
126 => 0.23692444549698
127 => 0.246063627341
128 => 0.24067457110627
129 => 0.23390464637243
130 => 0.23378219979283
131 => 0.23728843974307
201 => 0.2446365567888
202 => 0.24654181662801
203 => 0.24760659695779
204 => 0.24597584881745
205 => 0.2401264145118
206 => 0.23760065843593
207 => 0.23975267579077
208 => 0.23712094349076
209 => 0.24166405177425
210 => 0.24790270980305
211 => 0.24661445159043
212 => 0.25092090564875
213 => 0.25537763254693
214 => 0.26175095217546
215 => 0.2634171739297
216 => 0.26617137512872
217 => 0.26900635287048
218 => 0.26991687131634
219 => 0.27165533354676
220 => 0.27164617099268
221 => 0.27688514393608
222 => 0.28266389333013
223 => 0.28484523744803
224 => 0.28986111796712
225 => 0.28127159835559
226 => 0.28778684765023
227 => 0.29366376560125
228 => 0.28665706174315
301 => 0.29631417065892
302 => 0.29668913431464
303 => 0.30235064033866
304 => 0.29661161937
305 => 0.29320380703842
306 => 0.30304203355064
307 => 0.30780244145868
308 => 0.30636856785529
309 => 0.29545671893447
310 => 0.28910555483133
311 => 0.27248333332536
312 => 0.29217307272571
313 => 0.30176337043005
314 => 0.29543188238026
315 => 0.29862511667191
316 => 0.31604636755746
317 => 0.32267925195222
318 => 0.32129965836547
319 => 0.32153278697159
320 => 0.32511177099563
321 => 0.34098295714074
322 => 0.33147257451138
323 => 0.33874290568429
324 => 0.34259906312327
325 => 0.34618087705859
326 => 0.33738507407737
327 => 0.32594186363482
328 => 0.32231731853436
329 => 0.2948023406737
330 => 0.29337006658456
331 => 0.29256608773598
401 => 0.28749711482074
402 => 0.2835142906179
403 => 0.28034700093902
404 => 0.27203508698887
405 => 0.27484011394825
406 => 0.26159265794299
407 => 0.27006791083414
408 => 0.24892465117873
409 => 0.26653338609511
410 => 0.25694975225106
411 => 0.26338490462633
412 => 0.26336245298592
413 => 0.25151329719612
414 => 0.24467895142214
415 => 0.24903406254604
416 => 0.25370308738001
417 => 0.25446062095084
418 => 0.2605141335221
419 => 0.26220353876092
420 => 0.2570845620165
421 => 0.24848650411776
422 => 0.25048363686681
423 => 0.24463847959072
424 => 0.2343950662951
425 => 0.24175206455685
426 => 0.24426406722779
427 => 0.24537351071292
428 => 0.23530029020064
429 => 0.23213506561542
430 => 0.23044992660506
501 => 0.24718617784371
502 => 0.24810302746651
503 => 0.24341229516677
504 => 0.26461484995508
505 => 0.25981605880438
506 => 0.26517748425209
507 => 0.25030241800279
508 => 0.25087066556545
509 => 0.24382857081952
510 => 0.2477716733243
511 => 0.24498481556605
512 => 0.24745310960841
513 => 0.24893259488024
514 => 0.25597353408772
515 => 0.26661378231084
516 => 0.25492185256475
517 => 0.24982751134286
518 => 0.25298801198526
519 => 0.26140484168187
520 => 0.27415676952182
521 => 0.26660737158411
522 => 0.26995766619177
523 => 0.27068955651932
524 => 0.26512290997395
525 => 0.27436201972013
526 => 0.2793133336915
527 => 0.28439235729607
528 => 0.2888023311809
529 => 0.28236368357828
530 => 0.28925395945696
531 => 0.28370161339617
601 => 0.27872058498865
602 => 0.27872813915267
603 => 0.27560346727142
604 => 0.26954902176751
605 => 0.26843248912472
606 => 0.274240832935
607 => 0.27889857461864
608 => 0.27928220853278
609 => 0.28186097365225
610 => 0.28338706028656
611 => 0.29834478391696
612 => 0.30436090409788
613 => 0.3117173019758
614 => 0.31458303353311
615 => 0.323207858099
616 => 0.31624261178804
617 => 0.31473563693521
618 => 0.29381463369698
619 => 0.29724044680522
620 => 0.30272550413332
621 => 0.29390508027205
622 => 0.29949960903031
623 => 0.30060408751552
624 => 0.29360536564442
625 => 0.29734368539269
626 => 0.28741581647584
627 => 0.2668301827235
628 => 0.27438493741521
629 => 0.27994777977125
630 => 0.27200891783567
701 => 0.28623902057881
702 => 0.27792608832521
703 => 0.27529128789194
704 => 0.26501199202758
705 => 0.26986342398917
706 => 0.27642505518305
707 => 0.27237072997674
708 => 0.28078406353983
709 => 0.29269958761927
710 => 0.30119129966
711 => 0.30184318786848
712 => 0.29638358592681
713 => 0.30513263288105
714 => 0.30519636013656
715 => 0.29532739943127
716 => 0.28928271594988
717 => 0.28790935114479
718 => 0.29134028569194
719 => 0.29550607361765
720 => 0.30207436010595
721 => 0.30604343806764
722 => 0.31639268835546
723 => 0.31919289874708
724 => 0.32226948099673
725 => 0.32638074366509
726 => 0.33131736860457
727 => 0.32051631427921
728 => 0.32094546030324
729 => 0.31088766806623
730 => 0.30013947462768
731 => 0.30829601366632
801 => 0.31895960344041
802 => 0.31651336416401
803 => 0.31623811227328
804 => 0.31670100960498
805 => 0.31485662507728
806 => 0.30651454221459
807 => 0.30232520042515
808 => 0.3077305201486
809 => 0.31060320701852
810 => 0.31505849382914
811 => 0.31450928569003
812 => 0.32598562605131
813 => 0.33044498488918
814 => 0.32930409007173
815 => 0.32951404217531
816 => 0.33758749834453
817 => 0.34656684203761
818 => 0.35497718233494
819 => 0.36353254171791
820 => 0.35321872206038
821 => 0.34798200050625
822 => 0.35338496043621
823 => 0.35051807384521
824 => 0.36699205457092
825 => 0.36813267725328
826 => 0.38460546672268
827 => 0.40024010547242
828 => 0.39042026899735
829 => 0.39967993249819
830 => 0.40969501352579
831 => 0.42901572971636
901 => 0.42250919221436
902 => 0.41752528645828
903 => 0.41281551960084
904 => 0.42261579677674
905 => 0.43522369680029
906 => 0.4379393177084
907 => 0.44233966102656
908 => 0.4377132380759
909 => 0.4432852549362
910 => 0.46295692292137
911 => 0.45764146458516
912 => 0.45009265924518
913 => 0.46562155183239
914 => 0.47124139769266
915 => 0.51068441907616
916 => 0.56048286288277
917 => 0.53986598015262
918 => 0.52706841573937
919 => 0.53007614693877
920 => 0.54826085283324
921 => 0.55410120321283
922 => 0.5382251175916
923 => 0.54383281942833
924 => 0.57473180788575
925 => 0.59130812383492
926 => 0.5687952602797
927 => 0.50668316260396
928 => 0.44941297191758
929 => 0.46460360539791
930 => 0.46288145898148
1001 => 0.49607856735166
1002 => 0.45751469266178
1003 => 0.45816400940899
1004 => 0.49204759882392
1005 => 0.4830080380798
1006 => 0.46836510737379
1007 => 0.44951988151657
1008 => 0.41468273854709
1009 => 0.38382650951342
1010 => 0.4443426804136
1011 => 0.44173311308287
1012 => 0.43795407287176
1013 => 0.44636391792672
1014 => 0.48719973833748
1015 => 0.48625834050436
1016 => 0.48026964779545
1017 => 0.48481201843324
1018 => 0.46756880783895
1019 => 0.4720127758297
1020 => 0.44940390002677
1021 => 0.45962405611976
1022 => 0.46833369022097
1023 => 0.47008227821513
1024 => 0.47402193625108
1025 => 0.44035798967923
1026 => 0.45547211336844
1027 => 0.46435024503398
1028 => 0.42423852317988
1029 => 0.46355736526195
1030 => 0.43977197526493
1031 => 0.43169885665538
1101 => 0.44256824731065
1102 => 0.43833243520146
1103 => 0.43469073268521
1104 => 0.43265860010876
1105 => 0.44063988099511
1106 => 0.44026754470207
1107 => 0.42720862007213
1108 => 0.41017378524223
1109 => 0.41589123496053
1110 => 0.4138140318765
1111 => 0.40628597993541
1112 => 0.41135897800325
1113 => 0.38902006189808
1114 => 0.35058711781497
1115 => 0.37597709790919
1116 => 0.37499961129454
1117 => 0.37450671821795
1118 => 0.39358658653125
1119 => 0.39175249744038
1120 => 0.38842360778101
1121 => 0.40622484226627
1122 => 0.39972715221876
1123 => 0.41975150189688
1124 => 0.43294083368863
1125 => 0.42959559251605
1126 => 0.44200022281576
1127 => 0.41602295345442
1128 => 0.42465156030911
1129 => 0.42642990422313
1130 => 0.40600517779594
1201 => 0.39205257709821
1202 => 0.39112209770297
1203 => 0.36693021087992
1204 => 0.37985332155071
1205 => 0.39122512414634
1206 => 0.38577891319056
1207 => 0.38405480550289
1208 => 0.39286289776588
1209 => 0.39354736197093
1210 => 0.37794150555967
1211 => 0.38118645728077
1212 => 0.39471844538609
1213 => 0.38084548590002
1214 => 0.35389259175364
1215 => 0.34720790135242
1216 => 0.34631604042961
1217 => 0.32818662989203
1218 => 0.34765460432912
1219 => 0.33915631177805
1220 => 0.36600231612171
1221 => 0.35066802241862
1222 => 0.35000699166535
1223 => 0.34900774672964
1224 => 0.33340301416343
1225 => 0.33681945886294
1226 => 0.34817624138333
1227 => 0.35222846932992
1228 => 0.35180578875617
1229 => 0.34812058695331
1230 => 0.34980765346737
1231 => 0.34437302441264
]
'min_raw' => 0.19015162484137
'max_raw' => 0.59130812383492
'avg_raw' => 0.39072987433814
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.190151'
'max' => '$0.5913081'
'avg' => '$0.390729'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.10832312142099
'max_diff' => 0.36931527923994
'year' => 2033
]
8 => [
'items' => [
101 => 0.3424539437814
102 => 0.33639679742447
103 => 0.32749446560917
104 => 0.32873238944926
105 => 0.31109454070133
106 => 0.30148450459197
107 => 0.29882457325514
108 => 0.29526760190535
109 => 0.29922634263384
110 => 0.31104457489191
111 => 0.29678927941084
112 => 0.27234957520126
113 => 0.27381844306749
114 => 0.27711855305211
115 => 0.27096881992817
116 => 0.26514861363435
117 => 0.27020881079857
118 => 0.25985338594204
119 => 0.27836995667239
120 => 0.27786913532623
121 => 0.28477096783745
122 => 0.28908682534658
123 => 0.2791401710635
124 => 0.27663861440992
125 => 0.27806361476921
126 => 0.25451153305766
127 => 0.28284626029307
128 => 0.28309130019083
129 => 0.2809931198182
130 => 0.2960804873345
131 => 0.32791953866184
201 => 0.31594040682962
202 => 0.31130172491301
203 => 0.30248358719868
204 => 0.31423323213382
205 => 0.31333104272581
206 => 0.30925100007764
207 => 0.30678337755352
208 => 0.31133004771565
209 => 0.30621999480466
210 => 0.30530208888699
211 => 0.29974057771735
212 => 0.29775537126243
213 => 0.29628560343655
214 => 0.29466753347666
215 => 0.29823659261027
216 => 0.29014863506469
217 => 0.28039535113697
218 => 0.27958447111038
219 => 0.28182338215711
220 => 0.28083283068625
221 => 0.27957972873103
222 => 0.27718721583649
223 => 0.27647740836863
224 => 0.27878393828955
225 => 0.27618000048788
226 => 0.28002225255807
227 => 0.27897737259648
228 => 0.27314075806895
301 => 0.26586617537618
302 => 0.26580141633126
303 => 0.26423411942281
304 => 0.26223793116523
305 => 0.26168263725857
306 => 0.26978265510744
307 => 0.28654944964146
308 => 0.28325772667904
309 => 0.28563633386873
310 => 0.29733672704791
311 => 0.30105593019648
312 => 0.29841612789578
313 => 0.29480260369067
314 => 0.29496158041675
315 => 0.30731008651377
316 => 0.30808024769206
317 => 0.31002619652617
318 => 0.31252729070309
319 => 0.29884207504915
320 => 0.29431700799014
321 => 0.29217278017642
322 => 0.28556938843077
323 => 0.29269058029643
324 => 0.28854136675615
325 => 0.28910123742005
326 => 0.28873662091571
327 => 0.28893572618234
328 => 0.27836478091351
329 => 0.28221627777694
330 => 0.27581241723138
331 => 0.26723836682795
401 => 0.26720962360455
402 => 0.26930811029394
403 => 0.2680598482973
404 => 0.26470080736008
405 => 0.26517794327099
406 => 0.26099773062546
407 => 0.26568549677135
408 => 0.26581992513078
409 => 0.26401487982026
410 => 0.27123703035507
411 => 0.2741959513219
412 => 0.2730078318307
413 => 0.27411258969111
414 => 0.28339451262937
415 => 0.28490787106699
416 => 0.28558000491814
417 => 0.28467943459827
418 => 0.27428224620336
419 => 0.27474340572093
420 => 0.27135972316512
421 => 0.26850086796915
422 => 0.26861520718427
423 => 0.27008503038016
424 => 0.27650383448061
425 => 0.29001182930084
426 => 0.29052444783005
427 => 0.29114575644159
428 => 0.28861858207376
429 => 0.28785636210262
430 => 0.28886192699022
501 => 0.29393481962807
502 => 0.30698367676954
503 => 0.30237133915188
504 => 0.29862143687341
505 => 0.30191111213803
506 => 0.30140469241636
507 => 0.29713000032276
508 => 0.29701002395299
509 => 0.28880552312363
510 => 0.28577250597446
511 => 0.28323788982721
512 => 0.28047015516225
513 => 0.27882934927755
514 => 0.28135037284938
515 => 0.28192696076814
516 => 0.27641469866837
517 => 0.27566339771269
518 => 0.28016482993379
519 => 0.27818391744359
520 => 0.28022133506403
521 => 0.28069403342861
522 => 0.28061791810475
523 => 0.27854961795863
524 => 0.27986789079417
525 => 0.27674978254207
526 => 0.27335930814263
527 => 0.27119639670981
528 => 0.26930896961611
529 => 0.2703562238656
530 => 0.26662295368722
531 => 0.26542860542128
601 => 0.27942128961957
602 => 0.28975783588355
603 => 0.28960753840715
604 => 0.28869264117294
605 => 0.28733328946302
606 => 0.29383537458361
607 => 0.2915701781409
608 => 0.29321829781647
609 => 0.29363781344527
610 => 0.29490756090362
611 => 0.29536138648149
612 => 0.29398961038302
613 => 0.28938576224819
614 => 0.27791341041694
615 => 0.27257299967047
616 => 0.27081057517256
617 => 0.27087463595574
618 => 0.26910755357575
619 => 0.26962803853173
620 => 0.26892655014891
621 => 0.2675981008601
622 => 0.27027419586549
623 => 0.27058259088531
624 => 0.2699579583341
625 => 0.27010508191194
626 => 0.26493339117195
627 => 0.26532658358659
628 => 0.2631372382574
629 => 0.26272676240113
630 => 0.25719228805705
701 => 0.24738716452163
702 => 0.25282015476662
703 => 0.2462578665447
704 => 0.24377262856017
705 => 0.25553735864515
706 => 0.25435650604743
707 => 0.25233539970443
708 => 0.24934576218767
709 => 0.24823687655137
710 => 0.24149963845579
711 => 0.24110156648733
712 => 0.24444072360824
713 => 0.24289981749032
714 => 0.24073580171399
715 => 0.23289795593486
716 => 0.22408562225757
717 => 0.22435161121893
718 => 0.22715465060238
719 => 0.23530486565112
720 => 0.23212043563143
721 => 0.22981009511501
722 => 0.22937743778487
723 => 0.23479305010109
724 => 0.24245727613439
725 => 0.24605315951183
726 => 0.24248974829339
727 => 0.23839629335334
728 => 0.2386454429883
729 => 0.24030292388866
730 => 0.24047710169577
731 => 0.23781268334377
801 => 0.23856270150294
802 => 0.23742335533606
803 => 0.230431190013
804 => 0.2303047239147
805 => 0.22858873378052
806 => 0.22853677428124
807 => 0.22561744698921
808 => 0.22520901292069
809 => 0.21941251139186
810 => 0.22322778625156
811 => 0.2206687001866
812 => 0.21681155385931
813 => 0.21614658037864
814 => 0.21612659047284
815 => 0.22008701730882
816 => 0.22318150635811
817 => 0.22071321658434
818 => 0.22015123484863
819 => 0.22615172952181
820 => 0.22538811187893
821 => 0.22472682392499
822 => 0.24177102875508
823 => 0.22827921065618
824 => 0.222396007879
825 => 0.21511442725235
826 => 0.2174853466213
827 => 0.21798493416839
828 => 0.20047404536484
829 => 0.19336987995808
830 => 0.1909319981053
831 => 0.18952896263244
901 => 0.19016834351564
902 => 0.18377376141406
903 => 0.18807102634295
904 => 0.18253385876355
905 => 0.18160553459936
906 => 0.19150667615476
907 => 0.19288436216056
908 => 0.18700672564631
909 => 0.19078111979138
910 => 0.18941247200637
911 => 0.18262877760906
912 => 0.18236969038057
913 => 0.17896587099038
914 => 0.17363955275406
915 => 0.17120528239586
916 => 0.16993749325801
917 => 0.170460607765
918 => 0.1701961050627
919 => 0.16847004601363
920 => 0.17029504074694
921 => 0.16563293334324
922 => 0.16377644460993
923 => 0.1629379117193
924 => 0.15880002305763
925 => 0.1653852440458
926 => 0.16668261553889
927 => 0.16798254325461
928 => 0.17929752652158
929 => 0.17873226193338
930 => 0.18384197851575
1001 => 0.18364342432552
1002 => 0.18218605038431
1003 => 0.17603762945271
1004 => 0.17848828045098
1005 => 0.17094555759402
1006 => 0.17659707841375
1007 => 0.17401796032478
1008 => 0.17572507599351
1009 => 0.17265552809672
1010 => 0.17435434264133
1011 => 0.16699027044922
1012 => 0.16011380345151
1013 => 0.16288109450797
1014 => 0.16588945636447
1015 => 0.17241235138569
1016 => 0.16852736892376
1017 => 0.16992455552452
1018 => 0.16524421429819
1019 => 0.15558733347489
1020 => 0.15564199037162
1021 => 0.15415648964354
1022 => 0.15287280012782
1023 => 0.16897360589354
1024 => 0.1669712161805
1025 => 0.16378067023906
1026 => 0.16805134276894
1027 => 0.16918057637053
1028 => 0.16921272406365
1029 => 0.17232849649943
1030 => 0.17399138480695
1031 => 0.17428447607852
1101 => 0.17918721132694
1102 => 0.18083054351358
1103 => 0.18759919621724
1104 => 0.17385030035201
1105 => 0.17356715088938
1106 => 0.16811143988949
1107 => 0.16465134172198
1108 => 0.16834835577126
1109 => 0.17162340552618
1110 => 0.16821320481454
1111 => 0.16865850503421
1112 => 0.16408058920248
1113 => 0.16571697870136
1114 => 0.16712645778327
1115 => 0.16634822627959
1116 => 0.16518317605175
1117 => 0.17135488879445
1118 => 0.17100665657437
1119 => 0.17675389736743
1120 => 0.18123428255476
1121 => 0.18926393377509
1122 => 0.18088457413149
1123 => 0.18057919696113
1124 => 0.18356430778535
1125 => 0.18083008650866
1126 => 0.18255801997342
1127 => 0.18898553698017
1128 => 0.18912134028617
1129 => 0.18684645993793
1130 => 0.186708033262
1201 => 0.18714494891734
1202 => 0.18970397755751
1203 => 0.18880977431963
1204 => 0.18984456894496
1205 => 0.19113859546927
1206 => 0.19649123782972
1207 => 0.19778174178153
1208 => 0.1946464862282
1209 => 0.1949295647007
1210 => 0.19375689305906
1211 => 0.19262410694678
1212 => 0.19517044469707
1213 => 0.19982392698413
1214 => 0.19979497791234
1215 => 0.20087449535217
1216 => 0.20154702577397
1217 => 0.19866003288122
1218 => 0.19678070666571
1219 => 0.19750135992137
1220 => 0.19865370017096
1221 => 0.19712767150928
1222 => 0.18770831568417
1223 => 0.19056554653073
1224 => 0.19008996360641
1225 => 0.18941267568932
1226 => 0.19228564339985
1227 => 0.19200853865552
1228 => 0.18370817573203
1229 => 0.18423953803593
1230 => 0.18374048963366
1231 => 0.1853530171171
]
'min_raw' => 0.15287280012782
'max_raw' => 0.3424539437814
'avg_raw' => 0.24766337195461
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.152872'
'max' => '$0.342453'
'avg' => '$0.247663'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.037278824713547
'max_diff' => -0.24885418005352
'year' => 2034
]
9 => [
'items' => [
101 => 0.18074300473269
102 => 0.18216101349323
103 => 0.18305037529483
104 => 0.18357421622837
105 => 0.18546668888142
106 => 0.18524462905842
107 => 0.18545288533104
108 => 0.18825892268125
109 => 0.20245089668288
110 => 0.20322333451497
111 => 0.19941956812393
112 => 0.20093909777117
113 => 0.19802193313306
114 => 0.19998024529793
115 => 0.2013200727454
116 => 0.1952656501443
117 => 0.19490714653074
118 => 0.19197794171647
119 => 0.19355193046502
120 => 0.19104760119228
121 => 0.19166207599809
122 => 0.1899439508721
123 => 0.19303623402359
124 => 0.19649388707917
125 => 0.19736742678787
126 => 0.19506951989678
127 => 0.19340568386818
128 => 0.19048453590363
129 => 0.19534247007071
130 => 0.19676307806402
131 => 0.19533500822169
201 => 0.19500409323528
202 => 0.19437700993398
203 => 0.19513713192206
204 => 0.1967553411278
205 => 0.19599222355001
206 => 0.19649627615454
207 => 0.19457534740285
208 => 0.19866098859599
209 => 0.20514997007381
210 => 0.20517083321032
211 => 0.20440771151904
212 => 0.20409545856465
213 => 0.20487846773
214 => 0.20530321808149
215 => 0.20783532614291
216 => 0.21055237897645
217 => 0.22323167900755
218 => 0.21967138229586
219 => 0.23092121157839
220 => 0.23981836593337
221 => 0.24248623349902
222 => 0.24003192087149
223 => 0.23163584995207
224 => 0.23122389865719
225 => 0.24377117334051
226 => 0.24022599354088
227 => 0.23980430568439
228 => 0.23531825934414
301 => 0.23797006833887
302 => 0.23739007881204
303 => 0.23647453696986
304 => 0.2415340038052
305 => 0.25100487405923
306 => 0.24952875011288
307 => 0.24842689206235
308 => 0.24359887083098
309 => 0.24650641798984
310 => 0.24547109613697
311 => 0.2499194958484
312 => 0.24728436240347
313 => 0.24019913531712
314 => 0.24132748108384
315 => 0.24115693389111
316 => 0.24466678303223
317 => 0.24361321343988
318 => 0.24095120751902
319 => 0.25097250365431
320 => 0.25032177642466
321 => 0.25124435885935
322 => 0.25165050817891
323 => 0.25775029454142
324 => 0.26024918184274
325 => 0.26081647300933
326 => 0.26319022267471
327 => 0.26075741195521
328 => 0.27049038939783
329 => 0.27696225146219
330 => 0.28447965228892
331 => 0.29546459538363
401 => 0.29959503560364
402 => 0.29884890854803
403 => 0.30717756703302
404 => 0.32214398119486
405 => 0.3018740487563
406 => 0.32321833683334
407 => 0.31646098165981
408 => 0.30043941410298
409 => 0.29940781403419
410 => 0.3102578055979
411 => 0.33432204261322
412 => 0.3282942241752
413 => 0.33433190196477
414 => 0.32728863011309
415 => 0.3269388723003
416 => 0.33398982597181
417 => 0.35046476355278
418 => 0.34263813826186
419 => 0.33141675174008
420 => 0.33970244892365
421 => 0.33252461121817
422 => 0.31635093391743
423 => 0.32828961481604
424 => 0.3203065588932
425 => 0.32263643901408
426 => 0.33941563517394
427 => 0.33739671789974
428 => 0.34000938379926
429 => 0.33539809687197
430 => 0.33109042774869
501 => 0.32304984343836
502 => 0.32066942282009
503 => 0.32132728544042
504 => 0.32066909681604
505 => 0.3161704637912
506 => 0.3151989844178
507 => 0.31357980956732
508 => 0.31408165955876
509 => 0.31103713713354
510 => 0.31678277998035
511 => 0.31784922192315
512 => 0.32203042164021
513 => 0.32246452766544
514 => 0.3341091093618
515 => 0.32769546944269
516 => 0.33199829282746
517 => 0.33161340780418
518 => 0.30078665005358
519 => 0.30503430528482
520 => 0.311642323837
521 => 0.3086654204362
522 => 0.30445677551559
523 => 0.30105806908893
524 => 0.29590868131697
525 => 0.30315634572077
526 => 0.3126862537086
527 => 0.32270622185875
528 => 0.33474455705684
529 => 0.3320577407823
530 => 0.32248117355591
531 => 0.322910771366
601 => 0.32556637598746
602 => 0.32212712671555
603 => 0.32111282496314
604 => 0.32542702650235
605 => 0.3254567360373
606 => 0.32149946410281
607 => 0.31710168052073
608 => 0.31708325364695
609 => 0.31630071053606
610 => 0.32742784279409
611 => 0.33354664045604
612 => 0.33424815074705
613 => 0.33349942322411
614 => 0.33378757873176
615 => 0.33022718519078
616 => 0.33836518902356
617 => 0.34583342610568
618 => 0.34383177903206
619 => 0.3408310255178
620 => 0.33844078080782
621 => 0.34326871334146
622 => 0.3430537331056
623 => 0.34576819756992
624 => 0.34564505378231
625 => 0.34473228147913
626 => 0.34383181163003
627 => 0.34740207279722
628 => 0.34637389491771
629 => 0.34534411999396
630 => 0.34327874873373
701 => 0.34355946699018
702 => 0.34055923159833
703 => 0.33917118542462
704 => 0.31829830136057
705 => 0.31272038469749
706 => 0.31447531082866
707 => 0.31505307807768
708 => 0.31262556159761
709 => 0.31610599665221
710 => 0.31556357453564
711 => 0.31767382168487
712 => 0.31635543088231
713 => 0.31640953810072
714 => 0.3202866443405
715 => 0.32141218477629
716 => 0.32083972582642
717 => 0.32124065645217
718 => 0.33047993350022
719 => 0.32916640375943
720 => 0.32846861726426
721 => 0.32866190889218
722 => 0.33102274227029
723 => 0.33168364671944
724 => 0.32888334812747
725 => 0.33020398513178
726 => 0.33582708988232
727 => 0.33779485830485
728 => 0.34407503052712
729 => 0.34140710174594
730 => 0.34630420048906
731 => 0.3613562124814
801 => 0.37338080118089
802 => 0.36232249247569
803 => 0.38440411830017
804 => 0.40159783142562
805 => 0.40093790807823
806 => 0.39793978649706
807 => 0.37836520122225
808 => 0.36035237601175
809 => 0.37542086916529
810 => 0.37545928185321
811 => 0.37416488492773
812 => 0.36612549679189
813 => 0.37388513164699
814 => 0.37450106328293
815 => 0.37415630535624
816 => 0.36799252532184
817 => 0.35858157246627
818 => 0.36042045012761
819 => 0.36343256924898
820 => 0.35772999935836
821 => 0.35590768274742
822 => 0.35929571603708
823 => 0.37021266522117
824 => 0.3681488792155
825 => 0.36809498542247
826 => 0.3769247371362
827 => 0.37060454048885
828 => 0.36044364426382
829 => 0.35787788396125
830 => 0.34877116339034
831 => 0.35506120772569
901 => 0.35528757522337
902 => 0.3518425822236
903 => 0.36072318645932
904 => 0.36064135012788
905 => 0.3690721621462
906 => 0.38518870825682
907 => 0.38042225252484
908 => 0.37487938309745
909 => 0.37548204669131
910 => 0.3820917788154
911 => 0.37809538388767
912 => 0.37953251536753
913 => 0.38208960354478
914 => 0.38363235833104
915 => 0.37526006801921
916 => 0.37330808665459
917 => 0.36931501783492
918 => 0.36827330071403
919 => 0.37152557194954
920 => 0.37066871338342
921 => 0.35526854991173
922 => 0.35365914714324
923 => 0.35370850522845
924 => 0.34966158544415
925 => 0.34348906140105
926 => 0.35971008604405
927 => 0.35840731075213
928 => 0.35696914765664
929 => 0.35714531442979
930 => 0.36418631144579
1001 => 0.36010217759764
1002 => 0.37096051680931
1003 => 0.36872836869895
1004 => 0.36643897441222
1005 => 0.36612251038513
1006 => 0.36524128890668
1007 => 0.36221925256901
1008 => 0.35856996209504
1009 => 0.35616038442799
1010 => 0.32853912806813
1011 => 0.33366547258307
1012 => 0.33956286466649
1013 => 0.34159862078137
1014 => 0.33811631907683
1015 => 0.36235675506518
1016 => 0.36678571630691
1017 => 0.35337010381173
1018 => 0.35086059046973
1019 => 0.3625212783421
1020 => 0.35548845809394
1021 => 0.35865533662106
1022 => 0.35181027743537
1023 => 0.3657189092389
1024 => 0.36561294876789
1025 => 0.36020217685562
1026 => 0.3647753242245
1027 => 0.36398062732953
1028 => 0.35787187916672
1029 => 0.36591256745164
1030 => 0.36591655553271
1031 => 0.36070880520748
1101 => 0.35462729295074
1102 => 0.35354006219814
1103 => 0.35272097987496
1104 => 0.35845389258022
1105 => 0.36359400418539
1106 => 0.3731584775409
1107 => 0.37556321338875
1108 => 0.38494905749526
1109 => 0.37936024431829
1110 => 0.38183769281239
1111 => 0.38452731360923
1112 => 0.38581681672676
1113 => 0.38371564059529
1114 => 0.39829571986026
1115 => 0.39952672527231
1116 => 0.39993947073882
1117 => 0.39502315004456
1118 => 0.39938999350025
1119 => 0.39734689206199
1120 => 0.40266247441441
1121 => 0.40349602560004
1122 => 0.40279003740026
1123 => 0.40305461970329
1124 => 0.39061309415287
1125 => 0.3899679354188
1126 => 0.38117115030145
1127 => 0.38475590525932
1128 => 0.37805437768736
1129 => 0.38017950111381
1130 => 0.38111623527127
1201 => 0.38062693850661
1202 => 0.38495858192612
1203 => 0.38127580012325
1204 => 0.37155633344009
1205 => 0.36183421869473
1206 => 0.36171216546357
1207 => 0.3591525042607
1208 => 0.35730233803635
1209 => 0.35765874568933
1210 => 0.35891477274542
1211 => 0.35722933546052
1212 => 0.35758900895909
1213 => 0.36356198552739
1214 => 0.36475982338085
1215 => 0.36068910232935
1216 => 0.34434456990536
1217 => 0.34033358065136
1218 => 0.34321660018576
1219 => 0.34183870253855
1220 => 0.27589051236546
1221 => 0.2913840614233
1222 => 0.28217832068434
1223 => 0.28642074955262
1224 => 0.27702407207316
1225 => 0.28150865908842
1226 => 0.2806805196176
1227 => 0.30559368801515
1228 => 0.30520470315756
1229 => 0.30539088962427
1230 => 0.29650372446216
1231 => 0.31066121987823
]
'min_raw' => 0.18074300473269
'max_raw' => 0.40349602560004
'avg_raw' => 0.29211951516636
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.180743'
'max' => '$0.403496'
'avg' => '$0.292119'
'bar_min_pct' => 61.631153054958
'bar_max_pct' => 60.119598047091
'min_diff' => 0.027870204604871
'max_diff' => 0.061042081818641
'year' => 2035
]
10 => [
'items' => [
101 => 0.31763571120725
102 => 0.31634491848233
103 => 0.31666978320215
104 => 0.31108753098723
105 => 0.30544493802791
106 => 0.2991864340472
107 => 0.31081396086889
108 => 0.30952117837482
109 => 0.31248635628776
110 => 0.32002763858441
111 => 0.32113812104913
112 => 0.32263062074313
113 => 0.32209566584619
114 => 0.33484046181845
115 => 0.33329698293334
116 => 0.33701632295728
117 => 0.32936535834103
118 => 0.32070756564152
119 => 0.32235312898913
120 => 0.32219464800597
121 => 0.32017700319435
122 => 0.3183555636734
123 => 0.31532338005844
124 => 0.32491765769492
125 => 0.32452814754409
126 => 0.33083386413005
127 => 0.32971926747302
128 => 0.32227571820929
129 => 0.32254156602745
130 => 0.32432952036666
131 => 0.33051765074916
201 => 0.33235470916673
202 => 0.33150371051359
203 => 0.33351796120355
204 => 0.33510994282128
205 => 0.33371788958416
206 => 0.35342642784135
207 => 0.34524206868247
208 => 0.34923106839011
209 => 0.35018242131583
210 => 0.34774555080139
211 => 0.34827402075818
212 => 0.34907450874327
213 => 0.35393491503714
214 => 0.36669002752214
215 => 0.37233918001476
216 => 0.38933493401309
217 => 0.37187009654025
218 => 0.3708338053613
219 => 0.37389525387899
220 => 0.38387356065928
221 => 0.39196004109
222 => 0.39464279316912
223 => 0.39499736314379
224 => 0.4000303843902
225 => 0.40291521830835
226 => 0.39941924322928
227 => 0.39645677039362
228 => 0.38584556041194
229 => 0.38707383686069
301 => 0.39553544356939
302 => 0.40748796143159
303 => 0.41774446520488
304 => 0.41415299505872
305 => 0.44155337709115
306 => 0.44427001304914
307 => 0.4438946617991
308 => 0.45008356280104
309 => 0.43779985465996
310 => 0.43254833144401
311 => 0.39709729064619
312 => 0.40705758708121
313 => 0.42153546289722
314 => 0.41961926174373
315 => 0.40910504133141
316 => 0.41773648922586
317 => 0.41488266262163
318 => 0.41263173117349
319 => 0.42294368450194
320 => 0.41160526822561
321 => 0.42142235352143
322 => 0.4088318400848
323 => 0.41416940059182
324 => 0.41113954309928
325 => 0.41310023222232
326 => 0.40163808367249
327 => 0.40782278080205
328 => 0.40138077993851
329 => 0.40137772559132
330 => 0.40123551806521
331 => 0.40881450351297
401 => 0.40906165395633
402 => 0.40346077225922
403 => 0.40265359770445
404 => 0.40563814509074
405 => 0.4021440217556
406 => 0.40377890007236
407 => 0.40219354055434
408 => 0.40183664273405
409 => 0.39899282018083
410 => 0.39776762323238
411 => 0.3982480545253
412 => 0.39660809484324
413 => 0.39561995981487
414 => 0.40103895313707
415 => 0.39814380360658
416 => 0.40059522994923
417 => 0.39780152023711
418 => 0.38811730521353
419 => 0.38254781074475
420 => 0.3642552262924
421 => 0.3694429805512
422 => 0.37288246699191
423 => 0.37174571674377
424 => 0.37418789614072
425 => 0.37433782612113
426 => 0.37354384870411
427 => 0.37262452457001
428 => 0.37217704842335
429 => 0.37551216901027
430 => 0.37744831876598
501 => 0.37322766547063
502 => 0.37223882545674
503 => 0.376506138967
504 => 0.37910919774311
505 => 0.39832872121354
506 => 0.3969048768366
507 => 0.40047844680736
508 => 0.40007611766955
509 => 0.40382178831324
510 => 0.40994437677715
511 => 0.39749544252736
512 => 0.39965614706137
513 => 0.39912639220758
514 => 0.40491011679201
515 => 0.40492817294885
516 => 0.40146054114201
517 => 0.4033404006004
518 => 0.40229111462197
519 => 0.40418731620449
520 => 0.39688586052687
521 => 0.40577824539878
522 => 0.41081965460852
523 => 0.41088965458029
524 => 0.41327924253461
525 => 0.41570720229181
526 => 0.42036745961501
527 => 0.41557723024442
528 => 0.40696007392617
529 => 0.4075822047791
530 => 0.4025299691826
531 => 0.40261489817574
601 => 0.40216154055436
602 => 0.40352210090328
603 => 0.39718442701251
604 => 0.39867186640711
605 => 0.39658944254424
606 => 0.39965162027858
607 => 0.39635722323254
608 => 0.39912613674375
609 => 0.40032110802425
610 => 0.4047305777752
611 => 0.3957059409651
612 => 0.37730409559512
613 => 0.3811723865927
614 => 0.37545088035957
615 => 0.37598042754476
616 => 0.37705019713564
617 => 0.37358272388476
618 => 0.37424420850839
619 => 0.37422057562283
620 => 0.37401692018267
621 => 0.37311489646994
622 => 0.37180678362654
623 => 0.37701790257877
624 => 0.37790337323407
625 => 0.37987166481419
626 => 0.38572796545172
627 => 0.38514278291695
628 => 0.38609723991015
629 => 0.38401366565305
630 => 0.37607707857871
701 => 0.37650807344092
702 => 0.37113356060295
703 => 0.37973422643738
704 => 0.37769747524454
705 => 0.37638436850067
706 => 0.37602607515976
707 => 0.38189689243383
708 => 0.38365353297602
709 => 0.38255891247389
710 => 0.38031381388884
711 => 0.38462506687595
712 => 0.38577857629814
713 => 0.38603680451798
714 => 0.39367551821037
715 => 0.38646372375786
716 => 0.38819967436165
717 => 0.40174306542348
718 => 0.38946107859061
719 => 0.39596712093697
720 => 0.39564868401993
721 => 0.39897695513186
722 => 0.39537566864379
723 => 0.39542031090592
724 => 0.3983755901767
725 => 0.39422543342831
726 => 0.39319779625363
727 => 0.39177812285688
728 => 0.39487792778097
729 => 0.39673612064085
730 => 0.41171179039918
731 => 0.42138675603657
801 => 0.42096674026235
802 => 0.42480489820219
803 => 0.42307577289679
804 => 0.41749197116546
805 => 0.42702283984876
806 => 0.42400687420888
807 => 0.42425550675184
808 => 0.42424625263617
809 => 0.4262516061264
810 => 0.42483062939062
811 => 0.42202973838414
812 => 0.42388910054635
813 => 0.42941074143399
814 => 0.44655008417384
815 => 0.45614148743716
816 => 0.44597266965407
817 => 0.45298698399495
818 => 0.44878089484617
819 => 0.44801652332753
820 => 0.45242203108735
821 => 0.45683525010532
822 => 0.45655414713275
823 => 0.45335037674701
824 => 0.45154064814877
825 => 0.4652445193982
826 => 0.47534129829544
827 => 0.47465276566431
828 => 0.47769172477529
829 => 0.48661420271662
830 => 0.48742996227944
831 => 0.48732719532454
901 => 0.48530525013238
902 => 0.49409058839578
903 => 0.50141947213843
904 => 0.48483722824001
905 => 0.49115152963902
906 => 0.49398622297112
907 => 0.49814839379825
908 => 0.50517067364446
909 => 0.51279873212517
910 => 0.51387742323175
911 => 0.51311204027151
912 => 0.50808113065026
913 => 0.51642784326153
914 => 0.52131715175471
915 => 0.52422862307256
916 => 0.53161162991201
917 => 0.49400372907209
918 => 0.46738298762365
919 => 0.46322577443831
920 => 0.47167963092503
921 => 0.47390884546234
922 => 0.47301025187755
923 => 0.4430461871254
924 => 0.46306801983859
925 => 0.48460982835448
926 => 0.48543733695135
927 => 0.49622161671238
928 => 0.49973342026513
929 => 0.50841617900062
930 => 0.50787307007765
1001 => 0.50998718365688
1002 => 0.50950118555636
1003 => 0.52558416774329
1004 => 0.54332608544144
1005 => 0.54271173924739
1006 => 0.54016112866544
1007 => 0.54394922032337
1008 => 0.56226078072731
1009 => 0.56057494568209
1010 => 0.56221259082943
1011 => 0.58380295254
1012 => 0.61187349395687
1013 => 0.59883190923245
1014 => 0.62712839546953
1015 => 0.64493953362348
1016 => 0.67574205535469
1017 => 0.67188542792833
1018 => 0.68387662359894
1019 => 0.6649812599327
1020 => 0.62159368557197
1021 => 0.61472743584842
1022 => 0.6284738416761
1023 => 0.66226803904879
1024 => 0.62740954213749
1025 => 0.63446137066285
1026 => 0.63243044357314
1027 => 0.63232222409942
1028 => 0.63645252125112
1029 => 0.63046130981076
1030 => 0.60605203660437
1031 => 0.61723866267011
1101 => 0.61291896912022
1102 => 0.61771199116831
1103 => 0.64357795436918
1104 => 0.63214199547053
1105 => 0.62009514175266
1106 => 0.63520456972572
1107 => 0.65444406369817
1108 => 0.65324009074207
1109 => 0.65090387998558
1110 => 0.66407297769991
1111 => 0.68582446894039
1112 => 0.69170380961812
1113 => 0.69604381870859
1114 => 0.69664223263711
1115 => 0.70280626801307
1116 => 0.66966069625962
1117 => 0.722263569871
1118 => 0.73134663301863
1119 => 0.72963939360127
1120 => 0.73973483601613
1121 => 0.73676450076103
1122 => 0.7324609510077
1123 => 0.74846437459744
1124 => 0.73011774086149
1125 => 0.70407700405028
1126 => 0.68979054080828
1127 => 0.70860410806146
1128 => 0.72009289707997
1129 => 0.72768625579698
1130 => 0.72998400155672
1201 => 0.6722336926415
1202 => 0.64110947911517
1203 => 0.66105974314571
1204 => 0.68540044215665
1205 => 0.66952548244762
1206 => 0.67014775081294
1207 => 0.64751423013389
1208 => 0.68740300651689
1209 => 0.6815915473153
1210 => 0.71174140793343
1211 => 0.70454590172917
1212 => 0.7291319426524
1213 => 0.72265761410936
1214 => 0.74953218991671
1215 => 0.76025318580635
1216 => 0.77825540649484
1217 => 0.79149791331551
1218 => 0.7992741666094
1219 => 0.79880730952962
1220 => 0.82962069919402
1221 => 0.81145111984676
1222 => 0.78862584594555
1223 => 0.7882130087535
1224 => 0.80003454154357
1225 => 0.82480923119241
1226 => 0.83123294776128
1227 => 0.83482292898375
1228 => 0.82932474777339
1229 => 0.80960297161743
1230 => 0.80108720866496
1231 => 0.80834288542587
]
'min_raw' => 0.2991864340472
'max_raw' => 0.83482292898375
'avg_raw' => 0.56700468151547
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$0.299186'
'max' => '$0.834822'
'avg' => '$0.5670046'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.1184434293145
'max_diff' => 0.43132690338371
'year' => 2036
]
11 => [
'items' => [
101 => 0.79946981623469
102 => 0.81478722300217
103 => 0.83582129411545
104 => 0.83147784160829
105 => 0.84599735213294
106 => 0.8610235180289
107 => 0.88251161012746
108 => 0.88812939310377
109 => 0.89741537473846
110 => 0.90697370012661
111 => 0.91004357663719
112 => 0.91590492342264
113 => 0.91587403123184
114 => 0.93353759428391
115 => 0.95302105132535
116 => 0.96037560531543
117 => 0.97728699668314
118 => 0.94832683161177
119 => 0.9702934494888
120 => 0.990107888674
121 => 0.96648429742397
122 => 0.99904391437131
123 => 1.0003081305157
124 => 1.0193962933494
125 => 1.0000467834679
126 => 0.98855710626612
127 => 1.0217273738351
128 => 1.0377774214581
129 => 1.0329430164945
130 => 0.99615295601693
131 => 0.97473956281909
201 => 0.91869658248525
202 => 0.98508191356726
203 => 1.0174162718507
204 => 0.99606921784039
205 => 1.0068354301992
206 => 1.0655723938727
207 => 1.0879356267029
208 => 1.083284230605
209 => 1.084070239977
210 => 1.0961370344908
211 => 1.1496478466698
212 => 1.1175829276412
213 => 1.142095356789
214 => 1.1550966608229
215 => 1.16717299658
216 => 1.1375173327255
217 => 1.098935749779
218 => 1.0867153429152
219 => 0.99394667402352
220 => 0.9891176619338
221 => 0.9864069911138
222 => 0.96931659502569
223 => 0.95588822515391
224 => 0.94520948686845
225 => 0.91718528866624
226 => 0.92664263290052
227 => 0.88197791007093
228 => 0.91055281691672
301 => 0.83926684081324
302 => 0.89863591998643
303 => 0.86632402937326
304 => 0.88802059489449
305 => 0.88794489762133
306 => 0.84799464159437
307 => 0.82495216765859
308 => 0.83963572887697
309 => 0.85537767208562
310 => 0.85793174940896
311 => 0.87834158968573
312 => 0.88403753739892
313 => 0.86677854990957
314 => 0.83778959740671
315 => 0.84452306990552
316 => 0.82481571405332
317 => 0.79027933095485
318 => 0.81508396424357
319 => 0.82355335663108
320 => 0.82729392280004
321 => 0.79333135655309
322 => 0.78265958087511
323 => 0.77697801704903
324 => 0.83340545658788
325 => 0.83649667910356
326 => 0.82068154765852
327 => 0.8921674414424
328 => 0.8759879820369
329 => 0.89406440225664
330 => 0.84391207785317
331 => 0.84582796418444
401 => 0.82208505008519
402 => 0.83537949547868
403 => 0.82598340997454
404 => 0.83430543566915
405 => 0.83929362355751
406 => 0.86303264167819
407 => 0.89890698144086
408 => 0.85948682399745
409 => 0.8423108968923
410 => 0.85296674546726
411 => 0.88134467443366
412 => 0.92433868945722
413 => 0.89888536722808
414 => 0.91018111940793
415 => 0.91264873874619
416 => 0.89388040126763
417 => 0.92503070483093
418 => 0.94172440557511
419 => 0.95884868826401
420 => 0.97371722311127
421 => 0.95200887318702
422 => 0.9752399193757
423 => 0.95651979697931
424 => 0.93972591193907
425 => 0.93975138133046
426 => 0.92921633192521
427 => 0.90880334620087
428 => 0.90503887844192
429 => 0.92462211512388
430 => 0.94032601640339
501 => 0.94161946492939
502 => 0.95031395157331
503 => 0.95545925920885
504 => 1.0058902687437
505 => 1.0261740379658
506 => 1.0509766470184
507 => 1.0606386610429
508 => 1.0897178592328
509 => 1.0662340449974
510 => 1.0611531740675
511 => 0.99061655099202
512 => 1.0021669190691
513 => 1.0206601728052
514 => 0.99092149793464
515 => 1.0097838422407
516 => 1.0135076685657
517 => 0.98991098914218
518 => 1.0025149951746
519 => 0.96904249197978
520 => 0.89963659054071
521 => 0.92510797343996
522 => 0.94386348482858
523 => 0.91709705753914
524 => 0.96507484245167
525 => 0.93704721096828
526 => 0.92816379735162
527 => 0.8935064336674
528 => 0.90986337524209
529 => 0.9319863729307
530 => 0.91831693243367
531 => 0.94668307394182
601 => 0.98685709529097
602 => 1.0154874953087
603 => 1.017685381917
604 => 0.9992779527934
605 => 1.0287759754386
606 => 1.0289908363298
607 => 0.99571694628311
608 => 0.97533687389928
609 => 0.97070647857364
610 => 0.98227411393957
611 => 0.99631935877711
612 => 1.0184647952555
613 => 1.0318468187156
614 => 1.0667400386225
615 => 1.0761811434623
616 => 1.0865540553171
617 => 1.1004154644427
618 => 1.1170596400903
619 => 1.0806431313268
620 => 1.0820900271088
621 => 1.0481794783691
622 => 1.0119411937762
623 => 1.0394415346163
624 => 1.0753945720477
625 => 1.0671469055364
626 => 1.0662188745693
627 => 1.0677795652416
628 => 1.0615610940356
629 => 1.0334351792384
630 => 1.0193105209048
701 => 1.0375349337398
702 => 1.0472203980863
703 => 1.0622417086265
704 => 1.0603900150411
705 => 1.0990832978216
706 => 1.114118337486
707 => 1.1102717309542
708 => 1.1109795991298
709 => 1.1381998202751
710 => 1.168474304454
711 => 1.1968303539577
712 => 1.2256753454335
713 => 1.1909015823702
714 => 1.1732456100343
715 => 1.1914620666607
716 => 1.1817961583595
717 => 1.2373393345529
718 => 1.2411850235622
719 => 1.2967241833517
720 => 1.3494374594721
721 => 1.3163291951973
722 => 1.3475487971794
723 => 1.3813153420946
724 => 1.4464564856604
725 => 1.4245192402005
726 => 1.4077156539787
727 => 1.3918363461934
728 => 1.4248786649255
729 => 1.4673870801103
730 => 1.4765429856006
731 => 1.49137905032
801 => 1.4757807423353
802 => 1.4945671862056
803 => 1.5608915882496
804 => 1.5429701493556
805 => 1.5175188251111
806 => 1.5698755706615
807 => 1.5888232733445
808 => 1.7218081737628
809 => 1.8897071038731
810 => 1.8201958443236
811 => 1.7770479624069
812 => 1.7871887381388
813 => 1.8484997436776
814 => 1.8681908927427
815 => 1.8146635616378
816 => 1.8335703198975
817 => 1.9377484167802
818 => 1.9936366233243
819 => 1.9177329320499
820 => 1.708317658208
821 => 1.5152272118318
822 => 1.5664434931869
823 => 1.5606371563075
824 => 1.6725635249257
825 => 1.542542728965
826 => 1.544731945712
827 => 1.6589728331012
828 => 1.6284953229304
829 => 1.5791256597183
830 => 1.515587665009
831 => 1.3981318052358
901 => 1.2940978747356
902 => 1.4981323700297
903 => 1.48933403158
904 => 1.4765927336641
905 => 1.5049471134235
906 => 1.6426279330043
907 => 1.6394539444836
908 => 1.6192626488984
909 => 1.6345775686419
910 => 1.5764408802407
911 => 1.5914240285895
912 => 1.5151966253186
913 => 1.5496545951346
914 => 1.5790197345941
915 => 1.5849152210989
916 => 1.5981980532252
917 => 1.4846977070166
918 => 1.5356560302692
919 => 1.5655892710309
920 => 1.4303498002888
921 => 1.5629160215224
922 => 1.4827219185045
923 => 1.4555028354653
924 => 1.4921497449361
925 => 1.4778684086751
926 => 1.465590154386
927 => 1.4587386775255
928 => 1.4856481232691
929 => 1.4843927654614
930 => 1.4403636893265
1001 => 1.3829295543633
1002 => 1.4022063352682
1003 => 1.3952029000447
1004 => 1.3698215473335
1005 => 1.3869255145046
1006 => 1.3116082992028
1007 => 1.1820289449241
1008 => 1.2676330354835
1009 => 1.2643373711163
1010 => 1.2626755476959
1011 => 1.3270046558281
1012 => 1.3208208964062
1013 => 1.3095973125039
1014 => 1.3696154174135
1015 => 1.3477080017641
1016 => 1.4152214947593
1017 => 1.4596902477449
1018 => 1.4484115335743
1019 => 1.4902346106934
1020 => 1.4026504333666
1021 => 1.4317423838073
1022 => 1.4377381944734
1023 => 1.3688748033153
1024 => 1.3218326359235
1025 => 1.3186954596784
1026 => 1.2371308242309
1027 => 1.2807019941202
1028 => 1.3190428205253
1029 => 1.3006805400456
1030 => 1.2948675906032
1031 => 1.3245646886293
1101 => 1.3268724074844
1102 => 1.2742561730277
1103 => 1.2851967543107
1104 => 1.330820796981
1105 => 1.2840471454946
1106 => 1.1931735810891
1107 => 1.1706356806912
1108 => 1.1676287093223
1109 => 1.1065041359398
1110 => 1.172141770965
1111 => 1.1434891842972
1112 => 1.23400236227
1113 => 1.1823017204439
1114 => 1.1800730091075
1115 => 1.1767039850417
1116 => 1.1240915397071
1117 => 1.13561032154
1118 => 1.1739005067128
1119 => 1.1875628761522
1120 => 1.1861377790872
1121 => 1.1737128639163
1122 => 1.1794009264557
1123 => 1.161077695164
1124 => 1.1546073808298
1125 => 1.134185288991
1126 => 1.1041704557347
1127 => 1.1083442023907
1128 => 1.0488769639018
1129 => 1.0164760562078
1130 => 1.0075079119952
1201 => 0.99551533474954
1202 => 1.0088625055061
1203 => 1.0487085006868
1204 => 1.0006457766994
1205 => 0.91824560763117
1206 => 0.92319799819523
1207 => 0.93432454941471
1208 => 0.91359029482671
1209 => 0.89396706295324
1210 => 0.91102787098409
1211 => 0.87611383308764
1212 => 0.93854374409071
1213 => 0.93685518995588
1214 => 0.96012520013803
1215 => 0.9746764150536
1216 => 0.94114057568497
1217 => 0.93270640277431
1218 => 0.93751089097601
1219 => 0.85810340313168
1220 => 0.95363591427337
1221 => 0.9544620833968
1222 => 0.94738792178019
1223 => 0.99825603472777
1224 => 1.1056036192095
1225 => 1.0652151398809
1226 => 1.0495754999366
1227 => 1.01984453297
1228 => 1.0594592812028
1229 => 1.0564174866249
1230 => 1.0426613379771
1231 => 1.0343415763531
]
'min_raw' => 0.77697801704903
'max_raw' => 1.9936366233243
'avg_raw' => 1.3853073201867
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$0.776978'
'max' => '$1.99'
'avg' => '$1.38'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 0.47779158300183
'max_diff' => 1.1588136943405
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.024388452122275
]
1 => [
'year' => 2028
'avg' => 0.041857663860064
]
2 => [
'year' => 2029
'avg' => 0.11434759355579
]
3 => [
'year' => 2030
'avg' => 0.088218998136744
]
4 => [
'year' => 2031
'avg' => 0.086641989030361
]
5 => [
'year' => 2032
'avg' => 0.15191067400768
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.024388452122275
'min' => '$0.024388'
'max_raw' => 0.15191067400768
'max' => '$0.15191'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.15191067400768
]
1 => [
'year' => 2033
'avg' => 0.39072987433814
]
2 => [
'year' => 2034
'avg' => 0.24766337195461
]
3 => [
'year' => 2035
'avg' => 0.29211951516636
]
4 => [
'year' => 2036
'avg' => 0.56700468151547
]
5 => [
'year' => 2037
'avg' => 1.3853073201867
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.15191067400768
'min' => '$0.15191'
'max_raw' => 1.3853073201867
'max' => '$1.38'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 1.3853073201867
]
]
]
]
'prediction_2025_max_price' => '$0.041699'
'last_price' => 0.04043323
'sma_50day_nextmonth' => '$0.036348'
'sma_200day_nextmonth' => '$0.065981'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'increase'
'sma_200day_direction_label' => 'aumentar'
'sma_200day_date_nextmonth' => '4 de fev. de 2026'
'sma_50day_date_nextmonth' => '4 de fev. de 2026'
'daily_sma3' => '$0.038898'
'daily_sma3_action' => 'BUY'
'daily_sma5' => '$0.037489'
'daily_sma5_action' => 'BUY'
'daily_sma10' => '$0.0358068'
'daily_sma10_action' => 'BUY'
'daily_sma21' => '$0.03514'
'daily_sma21_action' => 'BUY'
'daily_sma50' => '$0.040013'
'daily_sma50_action' => 'BUY'
'daily_sma100' => '$0.059795'
'daily_sma100_action' => 'SELL'
'daily_sma200' => '$0.071211'
'daily_sma200_action' => 'SELL'
'daily_ema3' => '$0.03893'
'daily_ema3_action' => 'BUY'
'daily_ema5' => '$0.037912'
'daily_ema5_action' => 'BUY'
'daily_ema10' => '$0.036654'
'daily_ema10_action' => 'BUY'
'daily_ema21' => '$0.036636'
'daily_ema21_action' => 'BUY'
'daily_ema50' => '$0.04249'
'daily_ema50_action' => 'SELL'
'daily_ema100' => '$0.053875'
'daily_ema100_action' => 'SELL'
'daily_ema200' => '$0.074151'
'daily_ema200_action' => 'SELL'
'weekly_sma21' => '$0.067218'
'weekly_sma21_action' => 'SELL'
'weekly_sma50' => '$0.085653'
'weekly_sma50_action' => 'SELL'
'weekly_sma100' => '—'
'weekly_sma100_action' => '—'
'weekly_sma200' => '—'
'weekly_sma200_action' => '—'
'weekly_ema3' => '$0.038948'
'weekly_ema3_action' => 'BUY'
'weekly_ema5' => '$0.03979'
'weekly_ema5_action' => 'BUY'
'weekly_ema10' => '$0.046246'
'weekly_ema10_action' => 'SELL'
'weekly_ema21' => '$0.060523'
'weekly_ema21_action' => 'SELL'
'weekly_ema50' => '$0.114172'
'weekly_ema50_action' => 'SELL'
'weekly_ema100' => '$0.201495'
'weekly_ema100_action' => 'SELL'
'weekly_ema200' => '$0.100747'
'weekly_ema200_action' => 'SELL'
'rsi_14' => '59.65'
'rsi_14_action' => 'NEUTRAL'
'stoch_rsi_14' => 124.61
'stoch_rsi_14_action' => 'SELL'
'momentum_10' => 0.01
'momentum_10_action' => 'BUY'
'vwma_10' => '0.036762'
'vwma_10_action' => 'BUY'
'hma_9' => '0.0396071'
'hma_9_action' => 'BUY'
'stochastic_fast_14' => 100
'stochastic_fast_14_action' => 'SELL'
'cci_20' => 262.27
'cci_20_action' => 'SELL'
'adx_14' => 24.47
'adx_14_action' => 'NEUTRAL'
'ao_5_34' => '0.000548'
'ao_5_34_action' => 'BUY'
'macd_12_26' => 0
'macd_12_26_action' => 'BUY'
'williams_percent_r_14' => -0
'williams_percent_r_14_action' => 'SELL'
'ultimate_oscillator' => 76.77
'ultimate_oscillator_action' => 'SELL'
'ichimoku_cloud' => '-0.013498'
'ichimoku_cloud_action' => 'SELL'
'sell_signals' => 13
'buy_signals' => 20
'sell_pct' => 39.39
'buy_pct' => 60.61
'overall_action' => 'bullish'
'overall_action_label' => 'Altista'
'overall_action_dir' => 1
'last_updated' => 1767711259
'last_updated_date' => '6 de janeiro de 2026'
]
Previsão de preço de Wormhole para 2026
A previsão de preço para Wormhole em 2026 sugere que o preço médio poderia variar entre $0.013969 na extremidade inferior e $0.041699 na extremidade superior. No mercado de criptomoedas, comparado ao preço médio de hoje, Wormhole poderia potencialmente ganhar 3.13% até 2026 se W atingir a meta de preço prevista.
Previsão de preço de Wormhole 2027-2032
A previsão de preço de W para 2027-2032 está atualmente dentro de uma faixa de preço entre $0.024388 na extremidade inferior e $0.15191 na extremidade superior. Considerando a volatilidade de preços no mercado, se Wormhole atingir a meta de preço superior, poderia ganhar 275.71% até 2032 em comparação com o preço de hoje.
| Previsão de Preço de Wormhole | Potencial Mínimo ($) | Preço Médio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2027 | $0.013448 | $0.024388 | $0.035328 |
| 2028 | $0.02427 | $0.041857 | $0.059445 |
| 2029 | $0.053314 | $0.114347 | $0.17538 |
| 2030 | $0.045341 | $0.088218 | $0.131096 |
| 2031 | $0.0536079 | $0.086641 | $0.119676 |
| 2032 | $0.081828 | $0.15191 | $0.221992 |
Previsão de preço de Wormhole 2032-2037
A previsão de preço de Wormhole para 2032-2037 é atualmente estimada entre $0.15191 na extremidade inferior e $1.38 na extremidade superior. Comparado ao preço atual, Wormhole poderia potencialmente ganhar 3326.16% até 2037 se atingir a meta de preço superior. Por favor, note que esta informação é apenas para fins gerais e não deve ser considerada como aconselhamento de investimento a longo prazo.
| Previsão de Preço de Wormhole | Potencial Mínimo ($) | Preço Médio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2032 | $0.081828 | $0.15191 | $0.221992 |
| 2033 | $0.190151 | $0.390729 | $0.5913081 |
| 2034 | $0.152872 | $0.247663 | $0.342453 |
| 2035 | $0.180743 | $0.292119 | $0.403496 |
| 2036 | $0.299186 | $0.5670046 | $0.834822 |
| 2037 | $0.776978 | $1.38 | $1.99 |
Wormhole Histograma de preços potenciais
Previsão de preço de Wormhole baseada na análise técnica
Em 6 de janeiro de 2026, o sentimento geral de previsão de preço para Wormhole é Altista, com 20 indicadores técnicos mostrando sinais de alta e 13 indicando sinais de baixa. A previsão de preço de W foi atualizada pela última vez em 6 de janeiro de 2026.
Médias Móveis Simples de 50 e 200 dias e Índice de Força Relativa de 14 dias - RSI (14) de Wormhole
De acordo com nossos indicadores técnicos, o SMA de 200 dias de Wormhole está projetado para aumentar no próximo mês, alcançando $0.065981 até 4 de fev. de 2026. O SMA de 50 dias de curto prazo para Wormhole é esperado para alcançar $0.036348 até 4 de fev. de 2026.
O oscilador de momentum Índice de Força Relativa (RSI) é uma ferramenta comumente usada para identificar se uma criptomoeda está sobrevendida (abaixo de 30) ou sobrecomprada (acima de 70). No momento, o RSI está em 59.65, sugerindo que o mercado de W está em um estado NEUTRAL.
Médias Móveis e Osciladores Populares de W para Sábado, 19 de Outubro de 2024
Médias móveis (MA) são indicadores amplamente utilizados nos mercados financeiros, projetados para suavizar movimentos de preços ao longo de um período definido. Como indicadores atrasados, eles se baseiam em dados históricos de preços. A tabela abaixo destaca dois tipos: a média móvel simples (SMA) e a média móvel exponencial (EMA).
Média Móvel Simples Diária (SMA)
| Período | Valor | Ação |
|---|---|---|
| SMA 3 | $0.038898 | BUY |
| SMA 5 | $0.037489 | BUY |
| SMA 10 | $0.0358068 | BUY |
| SMA 21 | $0.03514 | BUY |
| SMA 50 | $0.040013 | BUY |
| SMA 100 | $0.059795 | SELL |
| SMA 200 | $0.071211 | SELL |
Média Móvel Exponencial Diária (EMA)
| Período | Valor | Ação |
|---|---|---|
| EMA 3 | $0.03893 | BUY |
| EMA 5 | $0.037912 | BUY |
| EMA 10 | $0.036654 | BUY |
| EMA 21 | $0.036636 | BUY |
| EMA 50 | $0.04249 | SELL |
| EMA 100 | $0.053875 | SELL |
| EMA 200 | $0.074151 | SELL |
Média Móvel Simples Semanal (SMA)
| Período | Valor | Ação |
|---|---|---|
| SMA 21 | $0.067218 | SELL |
| SMA 50 | $0.085653 | SELL |
| SMA 100 | — | — |
| SMA 200 | — | — |
Média Móvel Exponencial Semanal (EMA)
| Período | Valor | Ação |
|---|---|---|
| EMA 21 | $0.060523 | SELL |
| EMA 50 | $0.114172 | SELL |
| EMA 100 | $0.201495 | SELL |
| EMA 200 | $0.100747 | SELL |
Osciladores de Wormhole
Um oscilador é uma ferramenta de análise técnica que define limites altos e baixos entre dois extremos, criando um indicador de tendência que flutua dentro desses limites. Os traders usam esse indicador para identificar condições de sobrecompra ou sobrevenda de curto prazo.
| Período | Valor | Ação |
|---|---|---|
| RSI (14) | 59.65 | NEUTRAL |
| Stoch RSI (14) | 124.61 | SELL |
| Estocástico Rápido (14) | 100 | SELL |
| Índice de Canal de Commodities (20) | 262.27 | SELL |
| Índice Direcional Médio (14) | 24.47 | NEUTRAL |
| Oscilador Impressionante (5, 34) | 0.000548 | BUY |
| Momentum (10) | 0.01 | BUY |
| MACD (12, 26) | 0 | BUY |
| Williams Percent Range (14) | -0 | SELL |
| Oscilador Ultimate (7, 14, 28) | 76.77 | SELL |
| VWMA (10) | 0.036762 | BUY |
| Média Móvel de Hull (9) | 0.0396071 | BUY |
| Nuvem Ichimoku B/L (9, 26, 52, 26) | -0.013498 | SELL |
Previsão do preço de Wormhole com base nos fluxos financeiros mundiais
Definições dos fluxos financeiros mundiais, usadas na previsão do preço do Wormhole
M0: o total de todas as moedas físicas, mais as contas no Banco Central que podem ser trocadas por moedas físicas.
M1: o valor de M0, mais o valor em contas de demanda, incluindo contas 'correntes'.
M2: o valor de M1, mais a maioria das contas de poupança, do mercado de moedas e de certificados de depósito (CD) de menos de US$ 100.000.
Previsões de preço de Wormhole por empresas de Internet ou nichos tecnológicos
| Comparação | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Facebook stock | $0.056815 | $0.079835 | $0.112181 | $0.157634 | $0.2215022 | $0.311247 |
| Amazon.com stock | $0.084366 | $0.176035 | $0.3673082 | $0.76641 | $1.59 | $3.33 |
| Apple stock | $0.057351 | $0.081348 | $0.115386 | $0.163667 | $0.232149 | $0.329286 |
| Netflix stock | $0.063797 | $0.100662 | $0.158829 | $0.2506073 | $0.395419 | $0.6239095 |
| Google stock | $0.05236 | $0.067807 | $0.0878098 | $0.113713 | $0.147258 | $0.190698 |
| Tesla stock | $0.091659 | $0.207784 | $0.471031 | $1.06 | $2.42 | $5.48 |
| Kodak stock | $0.03032 | $0.022737 | $0.01705 | $0.012786 | $0.009588 | $0.00719 |
| Nokia stock | $0.026785 | $0.017744 | $0.011754 | $0.007787 | $0.005158 | $0.003417 |
Este cálculo mostra quanto a criptomoeda pode custar, se assumirmos que sua capitalização se comportará da mesma forma que a de algumas empresas de Internet ou nichos tecnológicos. Se você extrapolar os dados, poderá obter uma imagem em potencial do preço futuro para 2024, 2025, 2026, 2027, 2028, 2029 e 2030.
Visão geral da previsão para Wormhole
Você pode fazer perguntas como: 'Devo investir em Wormhole agora?', 'Devo comprar W hoje?', 'Wormhole será um bom ou mau investimento no curto ou no longo prazo?'.
Atualizamos a previsão para Wormhole regularmente com novos valores. Veja nossas previsões semelhantes. Fazemos previsões de preços futuros para uma enorme quantidade de moedas digitais, como Wormhole, com métodos de análise técnica.
Se você estiver tentando encontrar criptomoedas com bom retorno, você deve explorar o máximo de fontes de informações disponíveis sobre Wormhole para poder tomar sozinho uma decisão de tão grande responsabilidade sobre o seu investimento.
O preço de Wormhole é de $0.04043 USD hoje, mas o preço pode tanto subir quanto descer e seu investimento pode ser perdido, porque criptomoedas são ativos de alto risco
Previsão de curto prazo para Wormhole
com base no histórico de preços de 4 horas
Previsão de longo prazo para Wormhole
com base no histórico de preços de 1 mês
Previsão do preço de Wormhole com base no padrão de crescimento do Bitcoin
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| Se Wormhole tiver 1% da média anterior do crescimento anual do Bitcoin | $0.041484 | $0.042562 | $0.043668 | $0.0448039 |
| Se Wormhole tiver 2% da média anterior do crescimento anual do Bitcoin | $0.042535 | $0.044746 | $0.047072 | $0.049519 |
| Se Wormhole tiver 5% da média anterior do crescimento anual do Bitcoin | $0.045688 | $0.051626 | $0.058335 | $0.065917 |
| Se Wormhole tiver 10% da média anterior do crescimento anual do Bitcoin | $0.050943 | $0.064184 | $0.080868 | $0.101888 |
| Se Wormhole tiver 20% da média anterior do crescimento anual do Bitcoin | $0.061453 | $0.09340024 | $0.141955 | $0.215753 |
| Se Wormhole tiver 50% da média anterior do crescimento anual do Bitcoin | $0.092982 | $0.213828 | $0.491733 | $1.13 |
| Se Wormhole tiver 100% da média anterior do crescimento anual do Bitcoin | $0.145532 | $0.523817 | $1.88 | $6.78 |
Perguntas Frequentes sobre Wormhole
W é um bom investimento?
A decisão de adquirir Wormhole depende inteiramente da sua tolerância individual ao risco. Como você pode perceber, o valor de Wormhole experimentou uma escalada de 5.4855% nas últimas 24 horas, e Wormhole registrou um declínio de -87.28% durante os últimos 30 dias. Consequentemente, a decisão de investir ou não em Wormhole dependerá de quão alinhado esse investimento está com suas aspirações de negociação.
Wormhole pode subir?
Parece que o valor médio de Wormhole pode potencialmente subir para $0.041699 até o final deste ano. Observando as perspectivas de Wormhole em um horizonte de cinco anos mais longo, a moeda digital poderia potencialmente crescer até $0.131096. No entanto, dada a imprevisibilidade do mercado, é vital conduzir uma pesquisa aprofundada antes de investir quaisquer fundos em um projeto, rede ou ativo específico.
Qual será o preço de Wormhole na próxima semana?
Com base na nossa nova previsão experimental de Wormhole, o preço de Wormhole aumentará 0.86% na próxima semana e atingirá $0.040779 até 13 de janeiro de 2026.
Qual será o preço de Wormhole no próximo mês?
Com base na nossa nova previsão experimental de Wormhole, o preço de Wormhole diminuirá -11.62% no próximo mês e atingirá $0.035735 até 5 de fevereiro de 2026.
Até onde o preço de Wormhole pode subir este ano em 2026?
De acordo com nossa previsão mais recente sobre o valor de Wormhole em 2026, espera-se que W fluctue dentro do intervalo de $0.013969 e $0.041699. No entanto, é crucial lembrar que o mercado de criptomoedas é excepcionalmente instável, e essa previsão de preço de Wormhole não considera flutuações repentinas e extremas de preço.
Onde estará Wormhole em 5 anos?
O futuro de Wormhole parece seguir uma tendência de alta, com um preço máximo de $0.131096 projetada após um período de cinco anos. Com base na previsão de Wormhole para 2030, o valor de Wormhole pode potencialmente atingir seu pico mais alto de aproximadamente $0.131096, enquanto seu pico mais baixo está previsto para cerca de $0.045341.
Quanto será Wormhole em 2026?
Com base na nossa nova simulação experimental de previsão de preços de Wormhole, espera-se que o valor de W em 2026 aumente 3.13% para $0.041699 se o melhor cenário ocorrer. O preço ficará entre $0.041699 e $0.013969 durante 2026.
Quanto será Wormhole em 2027?
De acordo com nossa última simulação experimental para previsão de preços de Wormhole, o valor de W pode diminuir -12.62% para $0.035328 em 2027, assumindo as condições mais favoráveis. O preço está projetado para flutuar entre $0.035328 e $0.013448 ao longo do ano.
Quanto será Wormhole em 2028?
Nosso novo modelo experimental de previsão de preços de Wormhole sugere que o valor de W em 2028 pode aumentar 47.02%, alcançando $0.059445 no melhor cenário. O preço é esperado para variar entre $0.059445 e $0.02427 durante o ano.
Quanto será Wormhole em 2029?
Com base no nosso modelo de previsão experimental, o valor de Wormhole pode experimentar um 333.75% crescimento em 2029, potencialmente alcançando $0.17538 sob condições ótimas. A faixa de preço prevista para 2029 está entre $0.17538 e $0.053314.
Quanto será Wormhole em 2030?
Usando nossa nova simulação experimental para previsões de preços de Wormhole, espera-se que o valor de W em 2030 aumente 224.23%, alcançando $0.131096 no melhor cenário. O preço está previsto para variar entre $0.131096 e $0.045341 ao longo de 2030.
Quanto será Wormhole em 2031?
Nossa simulação experimental indica que o preço de Wormhole poderia aumentar 195.98% em 2031, potencialmente atingindo $0.119676 sob condições ideais. O preço provavelmente oscilará entre $0.119676 e $0.0536079 durante o ano.
Quanto será Wormhole em 2032?
Com base nos achados da nossa mais recente previsão experimental de preços de Wormhole, W poderia ver um 449.04% aumento em valor, atingindo $0.221992 se o cenário mais positivo se desenrolar em 2032. O preço é esperado para permanecer dentro de uma faixa de $0.221992 e $0.081828 ao longo do ano.
Quanto será Wormhole em 2033?
De acordo com nossa previsão experimental de preços de Wormhole, espera-se que o valor de W seja aumentar 1362.43% em 2033, com o preço potencial mais alto sendo $0.5913081. Ao longo do ano, o preço de W poderia variar entre $0.5913081 e $0.190151.
Quanto será Wormhole em 2034?
Os resultados da nossa nova simulação de previsão de preços de Wormhole sugerem que W pode aumentar 746.96% em 2034, atingindo potencialmente $0.342453 nas melhores circunstâncias. A faixa de preço prevista para o ano é entre $0.342453 e $0.152872.
Quanto será Wormhole em 2035?
Com base em nossa previsão experimental para o preço de Wormhole, W poderia aumentar 897.93%, com o valor potencialmente atingindo $0.403496 em 2035. A faixa de preço esperada para o ano está entre $0.403496 e $0.180743.
Quanto será Wormhole em 2036?
Nossa recente simulação de previsão de preços de Wormhole sugere que o valor de W pode aumentar 1964.7% em 2036, possivelmente atingindo $0.834822 se as condições forem ideais. A faixa de preço esperada para 2036 está entre $0.834822 e $0.299186.
Quanto será Wormhole em 2037?
De acordo com a simulação experimental, o valor de Wormhole poderia aumentar 4830.69% em 2037, com um pico de $1.99 sob condições favoráveis. O preço é esperado para cair entre $1.99 e $0.776978 ao longo do ano.
Previsões relacionadas
Previsão de Preço do ORDI
Previsão de Preço do ether.fi Staked ETH
Previsão de Preço do Bonk
Previsão de Preço do BitTorrent
Previsão de Preço do Flare
Previsão de Preço do Elrond
Previsão de Preço do dYdX
Previsão de Preço do NEO
Previsão de Preço do eCash
Previsão de Preço do Axie Infinity
Previsão de Preço do The Sandbox
Previsão de Preço do Starknet
Previsão de Preço do Conflux Token
Previsão de Preço do SingularityNET
Previsão de Preço do Chiliz
Previsão de Preço do Synthetix Network Token
Previsão de Preço do WhiteBIT Coin
Previsão de Preço do Tokenize Xchange
Previsão de Preço do Tezos
Previsão de Preço do EOS
Previsão de Preço do Worldcoin
Previsão de Preço do Ronin
Previsão de Preço do Pyth Network
Previsão de Preço do Decentraland
Previsão de Preço do Mina Protocol
Como ler e prever os movimentos de preço de Wormhole?
Traders de Wormhole utilizam indicadores e padrões de gráfico para prever a direção do mercado. Eles também identificam níveis-chave de suporte e resistência para avaliar quando uma tendência de baixa pode desacelerar ou uma tendência de alta pode estagnar.
Indicadores de Previsão de Preço de Wormhole
Médias móveis são ferramentas populares para a previsão de preço de Wormhole. Uma média móvel simples (SMA) calcula o preço médio de fechamento de W em um período específico, como uma SMA de 12 dias. Uma média móvel exponencial (EMA) dá mais peso aos preços recentes, reagindo mais rapidamente às mudanças de preço.
Médias móveis comumente usadas no mercado de criptomoedas incluem as de 50 dias, 100 dias e 200 dias, que ajudam a identificar níveis-chave de resistência e suporte. Um movimento de preço de W acima dessas médias é visto como altista, enquanto uma queda abaixo indica fraqueza.
Traders também usam RSI e níveis de retração de Fibonacci para avaliar a direção futura de W.
Como ler gráficos de Wormhole e prever movimentos de preço?
A maioria dos traders prefere gráficos de velas em vez de gráficos de linha simples porque eles fornecem informações mais detalhadas. Velas podem representar a ação de preço de Wormhole em diferentes períodos de tempo, como 5 minutos para tendências de curto prazo e semanal para tendências de longo prazo. Opções populares incluem gráficos de 1 hora, 4 horas e 1 dia.
Por exemplo, um gráfico de velas de 1 hora mostra os preços de abertura, fechamento, máximo e mínimo de W dentro de cada hora. A cor da vela é crucial: verde indica que o preço fechou mais alto do que abriu, enquanto vermelho significa o oposto. Alguns gráficos usam velas vazias e preenchidas para transmitir a mesma informação.
O que afeta o preço de Wormhole?
A ação de preço de Wormhole é impulsionada pela oferta e demanda, influenciada por fatores como reduções pela metade das recompensas de bloco, hard forks e atualizações de protocolo. Eventos do mundo real, como regulamentações, adoção por empresas e governos e hacks de exchanges de criptomoedas, também impactam o preço de W. A capitalização de mercado de Wormhole pode mudar rapidamente.
Traders frequentemente monitoram a atividade de "baleias" de W, grandes detentores de Wormhole, pois suas ações podem influenciar significativamente os movimentos de preço no relativamente pequeno mercado de Wormhole.
Padrões de previsão de preço altistas e baixistas
Traders frequentemente identificam padrões de velas para ganhar vantagem em previsões de preço de criptomoedas. Certas formações indicam tendências altistas, enquanto outras sugerem movimentos baixistas.
Padrões de velas altistas comumente seguidos:
- Martelo
- Engolfo de Alta
- Linha de Perfuração
- Estrela da Manhã
- Três Soldados Brancos
Padrões de velas baixistas comuns:
- Harami de Baixa
- Nuvem Negra
- Estrela da Noite
- Estrela Cadente
- Homem Enforcado


