Previsão de Preço Wormhole - Projeção W
Previsão de Preço Wormhole até $0.041527 até 2026
| Ano | Preço Mínimo | Preço Máximo |
|---|---|---|
| 2026 | $0.013911 | $0.041527 |
| 2027 | $0.013392 | $0.035182 |
| 2028 | $0.024169 | $0.059199 |
| 2029 | $0.053093 | $0.174654 |
| 2030 | $0.045153 | $0.130553 |
| 2031 | $0.053386 | $0.11918 |
| 2032 | $0.081489 | $0.221073 |
| 2033 | $0.189364 | $0.588859 |
| 2034 | $0.152239 | $0.341036 |
| 2035 | $0.179994 | $0.401825 |
Calculadora de lucro do investimento
Se você abrir um short de $10,000.00 em Wormhole hoje e fechar em Apr 06, 2026, nossa previsão mostra que pode lucrar cerca de $3,954.43, com um retorno de 39.54% nos próximos 90 dias.
Previsão de preço de longo prazo de Wormhole para os anos 2027, 2028, 2029, 2030, 2031, 2032 e 2037
[
'name' => 'Wormhole'
'name_with_ticker' => 'Wormhole <small>W</small>'
'name_lang' => 'Wormhole'
'name_lang_with_ticker' => 'Wormhole <small>W</small>'
'name_with_lang' => 'Wormhole'
'name_with_lang_with_ticker' => 'Wormhole <small>W</small>'
'image' => '/uploads/coins/wormhole.png?1758150530'
'price_for_sd' => 0.04026
'ticker' => 'W'
'marketcap' => '$208.9M'
'low24h' => '$0.03804'
'high24h' => '$0.04047'
'volume24h' => '$34.41M'
'current_supply' => '5.19B'
'max_supply' => '10B'
'algo' => null
'proof' => null
'ico_price_and_roi' => '—'
'price' => '$0.04026'
'change_24h_pct' => '5.7456%'
'ath_price' => '$1.66'
'ath_days' => 643
'ath_exchange' => null
'ath_pair' => null
'ath_date' => '3 de abr. de 2024'
'ath_pct' => '-97.56%'
'fdv' => '$402.86M'
'new_prediction' => true
'change_24h_pct_is_increased' => true
'change_30d_pct' => '-87.33%'
'change_30d_pct_is_increased' => false
'max_price' => '$1.98'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.04061'
'next_week_prediction_price_date' => '13 de janeiro de 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.035587'
'next_month_prediction_price_date' => '5 de fevereiro de 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.013911'
'current_year_max_price_prediction' => '$0.041527'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.045153'
'grand_prediction_max_price' => '$0.130553'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.041028836109179
107 => 0.041182022889743
108 => 0.041527160528265
109 => 0.038577997195529
110 => 0.039902084949041
111 => 0.040679862453985
112 => 0.037165835390861
113 => 0.040610401437405
114 => 0.038526658823202
115 => 0.037819405283178
116 => 0.038771629001252
117 => 0.038400546492251
118 => 0.038081511541708
119 => 0.037903484557588
120 => 0.038602692563045
121 => 0.038570073673856
122 => 0.037426033666503
123 => 0.035933680113947
124 => 0.03643456295102
125 => 0.03625258752051
126 => 0.035593085085043
127 => 0.03603751009792
128 => 0.034080487259561
129 => 0.030713531183359
130 => 0.032937845499952
131 => 0.032852211818351
201 => 0.03280903143291
202 => 0.034480542166297
203 => 0.034319864977596
204 => 0.034028234306747
205 => 0.035587729059073
206 => 0.03501849249631
207 => 0.036772745453745
208 => 0.037928209909479
209 => 0.037635146748145
210 => 0.038721866653607
211 => 0.036446102279945
212 => 0.037202019917057
213 => 0.037357813494409
214 => 0.035568485135904
215 => 0.034346153752796
216 => 0.03426463818514
217 => 0.032145284014472
218 => 0.033277425905614
219 => 0.034273663918604
220 => 0.033796543221574
221 => 0.03364550106247
222 => 0.034417142696286
223 => 0.034477105859897
224 => 0.033109939374952
225 => 0.033394216579704
226 => 0.034579699780673
227 => 0.033364345444676
228 => 0.031003110496838
301 => 0.030417491583147
302 => 0.030339359224962
303 => 0.02875111428501
304 => 0.030456625439205
305 => 0.029712124115542
306 => 0.032063994876499
307 => 0.030720618911176
308 => 0.030662708658283
309 => 0.030575168817447
310 => 0.029208100788058
311 => 0.029507401804789
312 => 0.030502323969233
313 => 0.030857323406107
314 => 0.030820294056417
315 => 0.030497448307849
316 => 0.030645245438306
317 => 0.030169139385172
318 => 0.03000101642852
319 => 0.029470374131464
320 => 0.028690476548467
321 => 0.028798926090772
322 => 0.027253744907552
323 => 0.026411848189962
324 => 0.026178822274553
325 => 0.025867210281645
326 => 0.02621401967832
327 => 0.027249367603402
328 => 0.026000518344438
329 => 0.023859453886533
330 => 0.023988135508649
331 => 0.024277244907628
401 => 0.023738491455281
402 => 0.023228606526784
403 => 0.02367191010384
404 => 0.022764712867872
405 => 0.024386875359409
406 => 0.024343000410071
407 => 0.02494764227306
408 => 0.025325737238488
409 => 0.024454350752876
410 => 0.024235199408224
411 => 0.024360037974011
412 => 0.022296734562896
413 => 0.024779026365118
414 => 0.024800493327703
415 => 0.024616680161079
416 => 0.025938423913602
417 => 0.028727715493639
418 => 0.027678271802235
419 => 0.02727189548532
420 => 0.026499373809805
421 => 0.02752871307463
422 => 0.027449675879286
423 => 0.027092239707971
424 => 0.026876061196291
425 => 0.027274376732456
426 => 0.026826705493398
427 => 0.02674629143768
428 => 0.026259069751385
429 => 0.026085153776552
430 => 0.02595639331258
501 => 0.025814640693488
502 => 0.026127311648652
503 => 0.025418758128962
504 => 0.024564312044573
505 => 0.024493274097891
506 => 0.024689416114401
507 => 0.024602637873151
508 => 0.024492858637058
509 => 0.024283260178761
510 => 0.024221076793546
511 => 0.024423142628403
512 => 0.02419502208202
513 => 0.024531626374578
514 => 0.024440088632167
515 => 0.023928766244129
516 => 0.023291469232838
517 => 0.023285795952662
518 => 0.023148491356956
519 => 0.02297361331044
520 => 0.022924966238567
521 => 0.023634576313055
522 => 0.025103447930401
523 => 0.024815073284797
524 => 0.025023453520068
525 => 0.026048478036104
526 => 0.026374302506189
527 => 0.026143040014898
528 => 0.02582647365317
529 => 0.025840400966484
530 => 0.026922204055664
531 => 0.02698967478737
601 => 0.027160151559506
602 => 0.027379262388432
603 => 0.026180355536526
604 => 0.025783932561576
605 => 0.025596085363335
606 => 0.025017588698767
607 => 0.025641447754948
608 => 0.02527795179922
609 => 0.025326999822437
610 => 0.025295057232972
611 => 0.025312500046769
612 => 0.024386421931933
613 => 0.024723836123746
614 => 0.024162819587297
615 => 0.023411681422054
616 => 0.023409163343541
617 => 0.023593003345348
618 => 0.023483648118613
619 => 0.023189376015251
620 => 0.023231175978608
621 => 0.022864964315608
622 => 0.023275640704973
623 => 0.023287417434349
624 => 0.023129284654749
625 => 0.023761988294986
626 => 0.024021207492629
627 => 0.023917121109564
628 => 0.02401390451452
629 => 0.024827056553255
630 => 0.02495963581588
701 => 0.025018518766644
702 => 0.024939623413117
703 => 0.024028767441064
704 => 0.024069167776683
705 => 0.023772736919953
706 => 0.02352228408313
707 => 0.023532300883151
708 => 0.023661066197868
709 => 0.024223391879221
710 => 0.02540677312472
711 => 0.025451681577946
712 => 0.025506111933329
713 => 0.025284716323484
714 => 0.025217941289085
715 => 0.025306034795556
716 => 0.025750450572136
717 => 0.026893608607205
718 => 0.026489540208653
719 => 0.026161026310932
720 => 0.026449221565944
721 => 0.026404856165384
722 => 0.026030367536896
723 => 0.026019856888367
724 => 0.025301093479041
725 => 0.025035383012064
726 => 0.024813335457774
727 => 0.024570865325188
728 => 0.024427120902918
729 => 0.024647977666196
730 => 0.024698490221058
731 => 0.024215583048236
801 => 0.024149764584984
802 => 0.024544117006585
803 => 0.024370577208779
804 => 0.024549067194403
805 => 0.024590478402126
806 => 0.024583810243902
807 => 0.024402614764073
808 => 0.024518103359589
809 => 0.024244938402386
810 => 0.023947912539478
811 => 0.023758428544307
812 => 0.023593078627116
813 => 0.023684824371368
814 => 0.023357767545224
815 => 0.023253135484187
816 => 0.024478978422004
817 => 0.025384521780201
818 => 0.025371354821139
819 => 0.025291204344111
820 => 0.025172116993179
821 => 0.025741738590666
822 => 0.025543293816045
823 => 0.025687678970197
824 => 0.025724431051755
825 => 0.025835668533611
826 => 0.02587542637219
827 => 0.02575525057041
828 => 0.025351925901399
829 => 0.02434687917318
830 => 0.023879027208123
831 => 0.023724628266963
901 => 0.023730240375229
902 => 0.023575433375703
903 => 0.023621030975026
904 => 0.023559576391483
905 => 0.023443196277714
906 => 0.023677638227293
907 => 0.023704655478004
908 => 0.0236499339256
909 => 0.02366282283214
910 => 0.023209751750113
911 => 0.02324419776046
912 => 0.023052397997656
913 => 0.023016437854311
914 => 0.022531584755858
915 => 0.021672597211367
916 => 0.022148559694953
917 => 0.021573663945234
918 => 0.021355942213723
919 => 0.022386603028019
920 => 0.022283153268345
921 => 0.022106092248312
922 => 0.021844182096934
923 => 0.02174703707409
924 => 0.021156814667664
925 => 0.021121941179179
926 => 0.021414471341149
927 => 0.021279478736748
928 => 0.021089897994472
929 => 0.02040325576344
930 => 0.01963124255633
1001 => 0.019654544782351
1002 => 0.019900107819716
1003 => 0.020614115469543
1004 => 0.020335140328298
1005 => 0.020132740662454
1006 => 0.020094837289153
1007 => 0.020569277362102
1008 => 0.021240709463593
1009 => 0.021555730383166
1010 => 0.021243554219197
1011 => 0.020884943050787
1012 => 0.020906770050964
1013 => 0.021051975304473
1014 => 0.021067234323525
1015 => 0.020833815318714
1016 => 0.020899521401308
1017 => 0.020799707853557
1018 => 0.020187152295248
1019 => 0.020176073107633
1020 => 0.020025742094831
1021 => 0.020021190131509
1022 => 0.019765439576905
1023 => 0.019729658306396
1024 => 0.01922185005728
1025 => 0.019556090984633
1026 => 0.019331899719001
1027 => 0.01899399060032
1028 => 0.018935734940893
1029 => 0.018933983705425
1030 => 0.019280940815214
1031 => 0.019552036588797
1101 => 0.019335799622051
1102 => 0.0192865666563
1103 => 0.019812245926574
1104 => 0.019745348447759
1105 => 0.019687415662547
1106 => 0.021180590083236
1107 => 0.019998626015408
1108 => 0.019483222217684
1109 => 0.018845312145475
1110 => 0.019053018881608
1111 => 0.019096785742758
1112 => 0.017562727011027
1113 => 0.016940359574619
1114 => 0.016726786523866
1115 => 0.016603872213678
1116 => 0.016659885808291
1117 => 0.016099682119104
1118 => 0.016476148263152
1119 => 0.015991059221155
1120 => 0.015909732464648
1121 => 0.016777131762739
1122 => 0.016897825307795
1123 => 0.01638290914804
1124 => 0.016713568679957
1125 => 0.016593666937173
1126 => 0.01599937468049
1127 => 0.015976677087603
1128 => 0.015678482123582
1129 => 0.015211864746813
1130 => 0.014998608084614
1201 => 0.014887542163362
1202 => 0.014933370127102
1203 => 0.014910198106276
1204 => 0.014758984996228
1205 => 0.01491886546474
1206 => 0.014510436934861
1207 => 0.014347797403331
1208 => 0.014274336900147
1209 => 0.01391183307161
1210 => 0.014488737868997
1211 => 0.014602395381737
1212 => 0.014716276834888
1213 => 0.015707537134397
1214 => 0.015658016571106
1215 => 0.016105658345764
1216 => 0.016088263809561
1217 => 0.015960589124113
1218 => 0.015421950627673
1219 => 0.015636642332046
1220 => 0.014975854636484
1221 => 0.015470961707194
1222 => 0.015245015516288
1223 => 0.015394569072767
1224 => 0.015125658293516
1225 => 0.015274484621808
1226 => 0.014629347794423
1227 => 0.014026928102332
1228 => 0.014269359372157
1229 => 0.014532909887835
1230 => 0.015104354557247
1231 => 0.014764006826461
]
'min_raw' => 0.01391183307161
'max_raw' => 0.041527160528265
'avg_raw' => 0.027719496799937
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.013911'
'max' => '$0.041527'
'avg' => '$0.027719'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.02635398692839
'max_diff' => 0.0012613405282648
'year' => 2026
]
1 => [
'items' => [
101 => 0.014886408740424
102 => 0.014476382818481
103 => 0.013630382223396
104 => 0.013635170494889
105 => 0.01350503173446
106 => 0.01339257284488
107 => 0.014803099857523
108 => 0.014627678526368
109 => 0.01434816759375
110 => 0.014722304084383
111 => 0.01482123171085
112 => 0.0148240480413
113 => 0.015097008367005
114 => 0.015242687341765
115 => 0.015268363892475
116 => 0.01569787286267
117 => 0.015841838604119
118 => 0.016434813118354
119 => 0.015230327498559
120 => 0.015205521909853
121 => 0.014727568952064
122 => 0.014424443630097
123 => 0.014748324202194
124 => 0.015035238174965
125 => 0.014736484168968
126 => 0.01477549513511
127 => 0.014374442291157
128 => 0.01451779981158
129 => 0.014641278620511
130 => 0.014573100879968
131 => 0.014471035502535
201 => 0.015011714501122
202 => 0.014981207273083
203 => 0.015484699986724
204 => 0.015877208562116
205 => 0.016580654098519
206 => 0.015846572009837
207 => 0.015819819140813
208 => 0.016081332726814
209 => 0.015841798567752
210 => 0.015993175887841
211 => 0.016556264871968
212 => 0.016568162054898
213 => 0.016368868912157
214 => 0.016356741906309
215 => 0.016395018334401
216 => 0.016619204569276
217 => 0.016540867010263
218 => 0.016631521216817
219 => 0.016744885690259
220 => 0.017213809217956
221 => 0.01732686509295
222 => 0.017052197929464
223 => 0.017076997299009
224 => 0.016974264240083
225 => 0.016875025392402
226 => 0.017098099829319
227 => 0.017505772747325
228 => 0.01750323663526
301 => 0.017597808828208
302 => 0.017656726520937
303 => 0.01740380865336
304 => 0.017239168421615
305 => 0.017302301962796
306 => 0.017403253870014
307 => 0.017269564619881
308 => 0.016444372637172
309 => 0.016694683171258
310 => 0.016653019258827
311 => 0.016593684781019
312 => 0.016845373958636
313 => 0.016821097923455
314 => 0.016093936420567
315 => 0.016140486940712
316 => 0.016096767311877
317 => 0.016238034376837
318 => 0.015834169682645
319 => 0.015958395742508
320 => 0.016036309162708
321 => 0.016082200765764
322 => 0.016247992704171
323 => 0.016228538933762
324 => 0.016246783430488
325 => 0.016492609107696
326 => 0.017735911025831
327 => 0.017803581206044
328 => 0.01747034848947
329 => 0.017603468387017
330 => 0.017347907293848
331 => 0.017519467167803
401 => 0.017636844076414
402 => 0.017106440396681
403 => 0.017075033333058
404 => 0.01681841744835
405 => 0.016956308289326
406 => 0.016736914046631
407 => 0.016790745719704
408 => 0.016640227668832
409 => 0.016911130192556
410 => 0.017214041308075
411 => 0.017290568618177
412 => 0.017089258212376
413 => 0.016943496211573
414 => 0.016687586155153
415 => 0.017113170282308
416 => 0.01723762405053
417 => 0.017112516579645
418 => 0.017083526444989
419 => 0.0170285901922
420 => 0.017095181430719
421 => 0.01723694624858
422 => 0.017170092578462
423 => 0.017214250605385
424 => 0.017045965742313
425 => 0.017403892379698
426 => 0.0179723660196
427 => 0.017974193755307
428 => 0.017907339724823
429 => 0.017879984495939
430 => 0.017948580788257
501 => 0.017985791462873
502 => 0.018207619293824
503 => 0.018445649394444
504 => 0.019556432013371
505 => 0.019244528698845
506 => 0.020230081119111
507 => 0.021009525125576
508 => 0.021243246302159
509 => 0.021028233817133
510 => 0.020292687720607
511 => 0.020256598320004
512 => 0.021355814727766
513 => 0.021045235745272
514 => 0.021008293363558
515 => 0.020615288837266
516 => 0.020847603186862
517 => 0.02079679263076
518 => 0.020716585682214
519 => 0.021159825278086
520 => 0.021989530233287
521 => 0.021860212935095
522 => 0.021763683570852
523 => 0.021340719996013
524 => 0.021595438540401
525 => 0.021504738145556
526 => 0.0218944446017
527 => 0.021663591130135
528 => 0.021042882804017
529 => 0.021141732650833
530 => 0.021126791695345
531 => 0.021434275500558
601 => 0.02134197649445
602 => 0.021108768833056
603 => 0.021986694391951
604 => 0.021929686789435
605 => 0.02201051053605
606 => 0.022046091648868
607 => 0.022580469465783
608 => 0.022799386959191
609 => 0.022849085062885
610 => 0.023057039749935
611 => 0.022843910960828
612 => 0.023696578075507
613 => 0.024263551952262
614 => 0.024922121286323
615 => 0.025884468090134
616 => 0.026246319390573
617 => 0.026180954191954
618 => 0.026910594555492
619 => 0.028221742069775
620 => 0.026445974591733
621 => 0.028315862058012
622 => 0.027723877275077
623 => 0.02632029200409
624 => 0.026229917659821
625 => 0.027180441901294
626 => 0.029288613184312
627 => 0.028760540188597
628 => 0.029289476922556
629 => 0.028672444126264
630 => 0.028641803247167
701 => 0.029259509016883
702 => 0.030702812217213
703 => 0.030017152968148
704 => 0.029034092304067
705 => 0.029759969000306
706 => 0.029131147429307
707 => 0.02771423643377
708 => 0.028760136381129
709 => 0.028060772871846
710 => 0.028264884324064
711 => 0.029734842398107
712 => 0.029557973153611
713 => 0.029786858333639
714 => 0.029382881981858
715 => 0.02900550436807
716 => 0.028301101027506
717 => 0.02809256192503
718 => 0.028150194630503
719 => 0.028092533365123
720 => 0.027698426169878
721 => 0.027613318758588
722 => 0.027471469344464
723 => 0.027515434409288
724 => 0.027248716011225
725 => 0.027752068735203
726 => 0.027845495436303
727 => 0.028211793572681
728 => 0.028249823860347
729 => 0.029269958956233
730 => 0.028708085688093
731 => 0.029085038786165
801 => 0.029051320553053
802 => 0.026350711952955
803 => 0.026722831990377
804 => 0.027301733990905
805 => 0.02704093942435
806 => 0.026672236923772
807 => 0.026374489885977
808 => 0.025923372677521
809 => 0.026558311485485
810 => 0.027393188499742
811 => 0.028270997719186
812 => 0.029325627980008
813 => 0.029090246783042
814 => 0.028251282140045
815 => 0.028288917481066
816 => 0.028521564350296
817 => 0.028220265516446
818 => 0.028131406608292
819 => 0.028509356500837
820 => 0.028511959234029
821 => 0.028165278512505
822 => 0.027780006332433
823 => 0.027778392027931
824 => 0.027709836564775
825 => 0.028684639990862
826 => 0.029220683311468
827 => 0.029282139814298
828 => 0.029216546799167
829 => 0.029241790947398
830 => 0.028929879150046
831 => 0.029642817024222
901 => 0.030297079319813
902 => 0.03012172304832
903 => 0.029858839068988
904 => 0.029649439317242
905 => 0.030072395121628
906 => 0.030053561565453
907 => 0.030291364909427
908 => 0.030280576776126
909 => 0.030200612455784
910 => 0.030121725904097
911 => 0.030434502164602
912 => 0.03034442762461
913 => 0.030254213173978
914 => 0.030073274282093
915 => 0.030097866882577
916 => 0.029835028293871
917 => 0.029713427136059
918 => 0.027884837484553
919 => 0.02739617857878
920 => 0.027549920618105
921 => 0.027600536489362
922 => 0.027387871507336
923 => 0.027692778462409
924 => 0.027645259036437
925 => 0.027830129324959
926 => 0.027714630394826
927 => 0.027719370511206
928 => 0.028059028237761
929 => 0.028157632320787
930 => 0.028107481488328
1001 => 0.028142605412312
1002 => 0.02895202141566
1003 => 0.028836948343651
1004 => 0.028775818067637
1005 => 0.028792751571865
1006 => 0.028999574714795
1007 => 0.029057473902691
1008 => 0.028812150975074
1009 => 0.028927846685933
1010 => 0.029420464338799
1011 => 0.029592852637558
1012 => 0.030143033336118
1013 => 0.029909306796688
1014 => 0.03033832197526
1015 => 0.03165696837214
1016 => 0.032710394357357
1017 => 0.031741620286681
1018 => 0.033676102955543
1019 => 0.03518237519831
1020 => 0.035124561960805
1021 => 0.034861908554574
1022 => 0.033147057652503
1023 => 0.031569026285432
1024 => 0.032889116530738
1025 => 0.032892481712253
1026 => 0.032779084789451
1027 => 0.032074786240936
1028 => 0.032754576726618
1029 => 0.032808536026735
1030 => 0.032778333167606
1031 => 0.032238349121774
1101 => 0.031413893289523
1102 => 0.031574989985677
1103 => 0.03183886966026
1104 => 0.031339290385207
1105 => 0.031179644536252
1106 => 0.031476456543325
1107 => 0.032432846673351
1108 => 0.03225204665926
1109 => 0.032247325240222
1110 => 0.03302086437164
1111 => 0.032467177293738
1112 => 0.031577021930918
1113 => 0.0313522459621
1114 => 0.030554442700029
1115 => 0.031105488254819
1116 => 0.031125319403329
1117 => 0.030823517384519
1118 => 0.031601511501419
1119 => 0.031594342148668
1120 => 0.032332931773522
1121 => 0.033744837734647
1122 => 0.03332726766627
1123 => 0.032841679108241
1124 => 0.032894476048409
1125 => 0.033473528168099
1126 => 0.03312342003806
1127 => 0.033249321362663
1128 => 0.033473337601366
1129 => 0.033608492160185
1130 => 0.032875029387305
1201 => 0.032704024129367
1202 => 0.032354207386315
1203 => 0.032262946727692
1204 => 0.032547865165742
1205 => 0.032472799223632
1206 => 0.031123652672086
1207 => 0.030982659350869
1208 => 0.030986983414739
1209 => 0.030632449004671
1210 => 0.030091698931311
1211 => 0.031512757837594
1212 => 0.031398626919712
1213 => 0.031272635219403
1214 => 0.031288068483792
1215 => 0.031904901990855
1216 => 0.03154710740592
1217 => 0.032498362951349
1218 => 0.032302813408568
1219 => 0.03210224875789
1220 => 0.032074524613818
1221 => 0.031997324334679
1222 => 0.031732575852553
1223 => 0.031412876151469
1224 => 0.031201782716899
1225 => 0.028781995236345
1226 => 0.02923109371748
1227 => 0.02974774058341
1228 => 0.029926085011197
1229 => 0.029621014526409
1230 => 0.031744621894719
1231 => 0.032132625424499
]
'min_raw' => 0.01339257284488
'max_raw' => 0.03518237519831
'avg_raw' => 0.024287474021595
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.013392'
'max' => '$0.035182'
'avg' => '$0.024287'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -0.00051926022673031
'max_diff' => -0.0063447853299551
'year' => 2027
]
2 => [
'items' => [
101 => 0.030957337423951
102 => 0.030737489025742
103 => 0.031759035119105
104 => 0.031142917945876
105 => 0.031420355471255
106 => 0.030820687291598
107 => 0.032039166736244
108 => 0.032029883964388
109 => 0.031555867939814
110 => 0.031956503037862
111 => 0.03188688283043
112 => 0.031351719906136
113 => 0.032056132355497
114 => 0.032056481735284
115 => 0.031600251617629
116 => 0.031067474721822
117 => 0.03097222679648
118 => 0.030900470279494
119 => 0.031402707766831
120 => 0.031853012327522
121 => 0.032690917475
122 => 0.032901586737211
123 => 0.033723842892669
124 => 0.033234229387019
125 => 0.033451268712517
126 => 0.033686895602432
127 => 0.03379986379835
128 => 0.03361578818531
129 => 0.034893090448871
130 => 0.035000933895446
131 => 0.035037092870241
201 => 0.034606393733628
202 => 0.034988955373328
203 => 0.034809967451222
204 => 0.035275644300265
205 => 0.035348668376255
206 => 0.035286819581798
207 => 0.035309998576124
208 => 0.034220046425734
209 => 0.034163526656781
210 => 0.033392875596642
211 => 0.033706921600014
212 => 0.033119827649327
213 => 0.033306001188828
214 => 0.033388064711113
215 => 0.033345199384135
216 => 0.033724677289854
217 => 0.033402043547779
218 => 0.032550560056544
219 => 0.031698844579203
220 => 0.031688151985177
221 => 0.03146391033402
222 => 0.03130182469214
223 => 0.031333048137063
224 => 0.03144308362951
225 => 0.031295429229285
226 => 0.031326938781841
227 => 0.031850207301322
228 => 0.031955145071123
229 => 0.031598525527505
301 => 0.03016664659992
302 => 0.029815259919495
303 => 0.030067829697084
304 => 0.029947117610973
305 => 0.024169661188754
306 => 0.025526988876932
307 => 0.02472051085511
308 => 0.025092173031835
309 => 0.024268967808026
310 => 0.02466184448871
311 => 0.024589294511347
312 => 0.026771837267691
313 => 0.02673775986454
314 => 0.026754070914092
315 => 0.025975502020748
316 => 0.027215783408295
317 => 0.027826790618876
318 => 0.027713709445628
319 => 0.027742169540697
320 => 0.027253130814616
321 => 0.026758805877946
322 => 0.026210523447118
323 => 0.027229164433841
324 => 0.027115908944899
325 => 0.027375676288493
326 => 0.028036337782345
327 => 0.028133622696923
328 => 0.028264374608683
329 => 0.028217509355872
330 => 0.029334029811498
331 => 0.029198811817283
401 => 0.02952464827847
402 => 0.028854377956536
403 => 0.028095903464624
404 => 0.028240064669137
405 => 0.028226180785871
406 => 0.028049423016718
407 => 0.027889854006101
408 => 0.027624216561712
409 => 0.028464732742702
410 => 0.028430609320716
411 => 0.028983027858521
412 => 0.028885382516056
413 => 0.028233283021211
414 => 0.028256572882242
415 => 0.028413208390397
416 => 0.028955325672555
417 => 0.029116262992059
418 => 0.029041710413422
419 => 0.02921817083719
420 => 0.029357637961265
421 => 0.0292356857607
422 => 0.03096227174627
423 => 0.030245272867907
424 => 0.030594733132375
425 => 0.030678077346311
426 => 0.030464592894854
427 => 0.03051089002807
428 => 0.030581017569678
429 => 0.031006818269946
430 => 0.032124242513874
501 => 0.032619142104946
502 => 0.034108071942601
503 => 0.032578047583243
504 => 0.032487262269628
505 => 0.032755463494764
506 => 0.033629622928697
507 => 0.034338047044279
508 => 0.034573072193386
509 => 0.034604134646682
510 => 0.035045057450582
511 => 0.035297786179054
512 => 0.034991517824768
513 => 0.034731987462143
514 => 0.033802381917317
515 => 0.033909986290362
516 => 0.034651273714524
517 => 0.035698385862763
518 => 0.036596917019403
519 => 0.03628228272532
520 => 0.038682720291976
521 => 0.038920713871802
522 => 0.038887830854324
523 => 0.039430015647361
524 => 0.038353889247196
525 => 0.037893824362158
526 => 0.034788100872338
527 => 0.035660682492162
528 => 0.036929031121499
529 => 0.036761160424343
530 => 0.035840051746663
531 => 0.036596218275873
601 => 0.036346205973802
602 => 0.036149010898139
603 => 0.037052399767897
604 => 0.036059086596429
605 => 0.036919122062769
606 => 0.03581611768126
607 => 0.036283719948272
608 => 0.03601828628614
609 => 0.036190054395866
610 => 0.035185901536206
611 => 0.035727718044846
612 => 0.03516336018812
613 => 0.035163092609014
614 => 0.035150634378047
615 => 0.03581459889374
616 => 0.035836250752759
617 => 0.035345579972468
618 => 0.03527486664731
619 => 0.035536330872773
620 => 0.035230224742344
621 => 0.035373449874163
622 => 0.035234562885682
623 => 0.035203296499167
624 => 0.03495416061188
625 => 0.034846826021503
626 => 0.034888914680062
627 => 0.034745244390211
628 => 0.034658677843794
629 => 0.035133414113117
630 => 0.034879781675224
701 => 0.035094541304408
702 => 0.034849795602127
703 => 0.034001400367393
704 => 0.033513479296281
705 => 0.031910939344148
706 => 0.032365417686628
707 => 0.032666737297885
708 => 0.032567151168162
709 => 0.032781100709522
710 => 0.032794235473736
711 => 0.032724678296882
712 => 0.032644139996912
713 => 0.032604938406533
714 => 0.032897114943952
715 => 0.033066733258134
716 => 0.03269697875201
717 => 0.032610350444641
718 => 0.032984192665038
719 => 0.033212236203518
720 => 0.034895981565063
721 => 0.034771244270254
722 => 0.035084310401767
723 => 0.03504906395975
724 => 0.035377207140921
725 => 0.035913582558481
726 => 0.034822981361656
727 => 0.035012272019273
728 => 0.034965862321385
729 => 0.03547255123365
730 => 0.035474133061127
731 => 0.035170347747236
801 => 0.03533503469425
802 => 0.035243110958377
803 => 0.035409229573338
804 => 0.034769578327633
805 => 0.035548604498816
806 => 0.03599026213854
807 => 0.035996394555296
808 => 0.036205736771313
809 => 0.03641844058707
810 => 0.036826707038817
811 => 0.036407054257318
812 => 0.035652139755775
813 => 0.035706642144427
814 => 0.035264036048385
815 => 0.035271476336823
816 => 0.035231759494036
817 => 0.035350952728984
818 => 0.034795734539887
819 => 0.034926043139113
820 => 0.03474361033711
821 => 0.03501187544599
822 => 0.034723266534646
823 => 0.034965839941224
824 => 0.035070526582067
825 => 0.03545682254052
826 => 0.034666210307495
827 => 0.033054098444615
828 => 0.033392983903159
829 => 0.032891745691094
830 => 0.032938137195969
831 => 0.03303185541897
901 => 0.032728083995529
902 => 0.032786034010184
903 => 0.032783963627873
904 => 0.032766122191624
905 => 0.032687099512178
906 => 0.032572500992821
907 => 0.033029026222376
908 => 0.033106598754855
909 => 0.033279032885353
910 => 0.033792079894527
911 => 0.033740814399829
912 => 0.033824430548666
913 => 0.033641896965239
914 => 0.032946604405385
915 => 0.032984362136539
916 => 0.032513522624029
917 => 0.033266992460426
918 => 0.033088560857852
919 => 0.032973524842905
920 => 0.032942136200426
921 => 0.033456454953901
922 => 0.0336103471859
923 => 0.033514451874242
924 => 0.033317767792318
925 => 0.03369545937404
926 => 0.033796513707781
927 => 0.033819136046365
928 => 0.034488333113999
929 => 0.033856536728593
930 => 0.034008616398076
1001 => 0.035195098566327
1002 => 0.034119122963071
1003 => 0.034689091237235
1004 => 0.034661194256187
1005 => 0.034952770738574
1006 => 0.034637276474151
1007 => 0.034641187403675
1008 => 0.034900087566933
1009 => 0.034536508980527
1010 => 0.034446481809516
1011 => 0.034322109917551
1012 => 0.034593671393602
1013 => 0.034756460216826
1014 => 0.036068418576794
1015 => 0.036916003509902
1016 => 0.03687920761261
1017 => 0.03721545323483
1018 => 0.037063971502363
1019 => 0.036574797029365
1020 => 0.0374097582063
1021 => 0.037145541553659
1022 => 0.037167323253479
1023 => 0.037166512537524
1024 => 0.03734219351331
1025 => 0.037217707441041
1026 => 0.036972332614364
1027 => 0.037135223875476
1028 => 0.037618952686285
1029 => 0.03912046175765
1030 => 0.039960726126335
1031 => 0.039069876787588
1101 => 0.039684372732508
1102 => 0.039315894132849
1103 => 0.039248930610002
1104 => 0.039634879474305
1105 => 0.040021503891004
1106 => 0.039996877587083
1107 => 0.039716208113944
1108 => 0.039557665050291
1109 => 0.040758206244091
1110 => 0.041642744544997
1111 => 0.041582424962895
1112 => 0.041848655981313
1113 => 0.042630318485605
1114 => 0.042701783908884
1115 => 0.042692780908165
1116 => 0.042515646399922
1117 => 0.0432852946471
1118 => 0.043927348755568
1119 => 0.042474644879172
1120 => 0.043027815498013
1121 => 0.043276151610855
1122 => 0.043640782702512
1123 => 0.044255976473404
1124 => 0.044924240080681
1125 => 0.045018739881888
1126 => 0.0449516877507
1127 => 0.044510949937811
1128 => 0.045242171950936
1129 => 0.045670504656959
1130 => 0.045925566981176
1201 => 0.046572362597066
1202 => 0.043277685250145
1203 => 0.040945548867905
1204 => 0.04058135209536
1205 => 0.04132196055366
1206 => 0.041517253097872
1207 => 0.041438530918176
1208 => 0.038813499391401
1209 => 0.040567531847635
1210 => 0.042454723287304
1211 => 0.04252721799633
1212 => 0.043471985490341
1213 => 0.043779640513719
1214 => 0.044540302179903
1215 => 0.044492722585577
1216 => 0.044677931596523
1217 => 0.044635355252279
1218 => 0.046044320812675
1219 => 0.047598619059202
1220 => 0.047544798653291
1221 => 0.04732134989073
1222 => 0.047653209406808
1223 => 0.049257411765947
1224 => 0.049109722519536
1225 => 0.049253190042284
1226 => 0.051144635032591
1227 => 0.053603782574903
1228 => 0.052461261647123
1229 => 0.054940203308866
1230 => 0.056500565681882
1231 => 0.059199051061532
]
'min_raw' => 0.024169661188754
'max_raw' => 0.059199051061532
'avg_raw' => 0.041684356125143
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.024169'
'max' => '$0.059199'
'avg' => '$0.041684'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 0.010777088343875
'max_diff' => 0.024016675863222
'year' => 2028
]
3 => [
'items' => [
101 => 0.058861187401679
102 => 0.059911687957577
103 => 0.058256340936269
104 => 0.054455329574516
105 => 0.053853804976832
106 => 0.055058072454425
107 => 0.058018646537385
108 => 0.054964833440764
109 => 0.055582615852916
110 => 0.055404694476656
111 => 0.055395213802632
112 => 0.05575705256943
113 => 0.055232186565948
114 => 0.053093788046174
115 => 0.054073803486125
116 => 0.053695372460553
117 => 0.054115269897327
118 => 0.05638128318472
119 => 0.055379424695354
120 => 0.054324048161181
121 => 0.055647724541835
122 => 0.057333219438961
123 => 0.057227744197424
124 => 0.057023078143612
125 => 0.058176769972983
126 => 0.060082330875114
127 => 0.060597396329796
128 => 0.060977607118393
129 => 0.061030031762427
130 => 0.061570038177707
131 => 0.058666287583605
201 => 0.06327461435005
202 => 0.064070345080157
203 => 0.063920780682556
204 => 0.064805201899603
205 => 0.064544982741947
206 => 0.064167966009639
207 => 0.065569961760445
208 => 0.063962686767369
209 => 0.061681362264992
210 => 0.060429782523506
211 => 0.062077963689153
212 => 0.063084450413417
213 => 0.063749674113578
214 => 0.063950970403307
215 => 0.058891697476307
216 => 0.056165029968795
217 => 0.057912792579804
218 => 0.060045183589367
219 => 0.05865444204388
220 => 0.058708956479441
221 => 0.056726124516025
222 => 0.060220620220662
223 => 0.059711501589831
224 => 0.062352809947195
225 => 0.061722440509886
226 => 0.063876324940317
227 => 0.063309134985256
228 => 0.065663508777548
301 => 0.066602732225419
302 => 0.068179834572851
303 => 0.069339957479584
304 => 0.070021203840032
305 => 0.069980304363842
306 => 0.072679741839528
307 => 0.071087977871278
308 => 0.069088347177193
309 => 0.069052180166691
310 => 0.070087817238144
311 => 0.072258228426753
312 => 0.07282098446976
313 => 0.07313548832521
314 => 0.072653814722631
315 => 0.070926069017847
316 => 0.070180037182391
317 => 0.070815677920822
318 => 0.070038343918952
319 => 0.07138024048758
320 => 0.073222951089947
321 => 0.072842438637425
322 => 0.074114434716589
323 => 0.075430816840634
324 => 0.077313302400438
325 => 0.077805453834009
326 => 0.078618961438859
327 => 0.079456327987578
328 => 0.079725267555365
329 => 0.080238756637317
330 => 0.08023605029639
331 => 0.081783484206655
401 => 0.083490351729716
402 => 0.084134654705598
403 => 0.085616193871565
404 => 0.083079109969171
405 => 0.085003517253056
406 => 0.086739380794158
407 => 0.084669812719202
408 => 0.087522230163012
409 => 0.087632983068639
410 => 0.089305220451689
411 => 0.087610087502049
412 => 0.086603522967608
413 => 0.089509437063056
414 => 0.090915517358407
415 => 0.090491994530387
416 => 0.087268964897248
417 => 0.085393023408517
418 => 0.080483322690421
419 => 0.086299075274293
420 => 0.089131758710069
421 => 0.087261628931475
422 => 0.088204813612845
423 => 0.09335052340574
424 => 0.095309676534838
425 => 0.0949021863795
426 => 0.094971045507893
427 => 0.09602816897521
428 => 0.10071603659782
429 => 0.097906957654431
430 => 0.10005439325247
501 => 0.10119338535052
502 => 0.1022513446879
503 => 0.099653330926768
504 => 0.096273353195936
505 => 0.095202772366769
506 => 0.087075681381224
507 => 0.086652631001259
508 => 0.086415160003246
509 => 0.084917938951715
510 => 0.083741533328573
511 => 0.08280601189991
512 => 0.080350924300752
513 => 0.081179444295615
514 => 0.077266547079161
515 => 0.079769880053686
516 => 0.073524801616018
517 => 0.078725888512415
518 => 0.075895173379109
519 => 0.077795922459285
520 => 0.077789290924805
521 => 0.074289409235157
522 => 0.072270750517235
523 => 0.073557118419668
524 => 0.074936206923087
525 => 0.075159959392955
526 => 0.076947983635531
527 => 0.077446982768181
528 => 0.075934992100209
529 => 0.07339538624641
530 => 0.073985278764005
531 => 0.072258796364194
601 => 0.069233202366712
602 => 0.071406236797507
603 => 0.07214820629376
604 => 0.072475902292375
605 => 0.06950057808767
606 => 0.06856566662512
607 => 0.068067927607126
608 => 0.073011309254104
609 => 0.073282118859779
610 => 0.071896618628528
611 => 0.078159211052304
612 => 0.076741793509761
613 => 0.078325396180511
614 => 0.073931752200994
615 => 0.074099595317838
616 => 0.072019573846667
617 => 0.073184246883438
618 => 0.072361093520212
619 => 0.07309015281159
620 => 0.073527147944818
621 => 0.075606828104933
622 => 0.078749635119208
623 => 0.075296193240233
624 => 0.073791479159365
625 => 0.074724995312303
626 => 0.077211071844894
627 => 0.080977605051687
628 => 0.078747741584721
629 => 0.079737317125823
630 => 0.079953495358403
701 => 0.078309276591894
702 => 0.081038229742898
703 => 0.082500697906496
704 => 0.084000887627203
705 => 0.085303460327331
706 => 0.083401678862873
707 => 0.085436857639507
708 => 0.083796862802956
709 => 0.08232561789502
710 => 0.082327849166242
711 => 0.081404915744035
712 => 0.079616615941415
713 => 0.07928682602037
714 => 0.08100243483752
715 => 0.082378190640114
716 => 0.082491504477442
717 => 0.083253193578644
718 => 0.083703953342713
719 => 0.088122011808778
720 => 0.089898991471926
721 => 0.09207184856752
722 => 0.092918298861769
723 => 0.095465810778235
724 => 0.093408488006887
725 => 0.092963373284139
726 => 0.086783942659591
727 => 0.087795824078182
728 => 0.089415943861382
729 => 0.086810657838088
730 => 0.088463112165688
731 => 0.088789341653725
801 => 0.086722131215942
802 => 0.087826317629652
803 => 0.084893925883293
804 => 0.078813553245976
805 => 0.08104499893581
806 => 0.082688094060024
807 => 0.080343194725602
808 => 0.084546336022417
809 => 0.082090947647266
810 => 0.08131270741177
811 => 0.078276514790426
812 => 0.079709480833929
813 => 0.081647587925864
814 => 0.080450063072181
815 => 0.082935106952835
816 => 0.086454591824836
817 => 0.088962786333571
818 => 0.089155334363577
819 => 0.087542733330441
820 => 0.090126936777524
821 => 0.090145759878396
822 => 0.087230767833306
823 => 0.085445351436432
824 => 0.085039701074514
825 => 0.086053095211024
826 => 0.087283542775624
827 => 0.089223615639933
828 => 0.090395961039837
829 => 0.093452816078834
830 => 0.094279913405484
831 => 0.095188642607231
901 => 0.096402985062473
902 => 0.097861114531006
903 => 0.094670810265213
904 => 0.094797567001164
905 => 0.091826799841628
906 => 0.088652109080557
907 => 0.091061303637419
908 => 0.094211005038796
909 => 0.093488460057209
910 => 0.093407158986526
911 => 0.093543884836379
912 => 0.092999109516376
913 => 0.090535110934316
914 => 0.089297706271853
915 => 0.090894273982028
916 => 0.091742778664932
917 => 0.093058735430732
918 => 0.09289651598287
919 => 0.096286279288131
920 => 0.097603438807434
921 => 0.097266453037962
922 => 0.097328466529561
923 => 0.09971312092352
924 => 0.10236534705118
925 => 0.1048495068118
926 => 0.10737650081745
927 => 0.10433011091339
928 => 0.10278334199531
929 => 0.10437921269397
930 => 0.10353242123776
1001 => 0.10839833611982
1002 => 0.10873524150883
1003 => 0.11360080452987
1004 => 0.1182188032173
1005 => 0.11531832098177
1006 => 0.11805334508929
1007 => 0.12101149665136
1008 => 0.12671825095739
1009 => 0.12479641687315
1010 => 0.12332432208361
1011 => 0.1219331996206
1012 => 0.12482790463165
1013 => 0.12855189638432
1014 => 0.1293540085399
1015 => 0.13065373666236
1016 => 0.12928723146478
1017 => 0.13093303645965
1018 => 0.13674345129489
1019 => 0.13517342591646
1020 => 0.13294373748491
1021 => 0.13753050195916
1022 => 0.13919043419179
1023 => 0.15084070791368
1024 => 0.16554965973637
1025 => 0.15946005709759
1026 => 0.15568004422945
1027 => 0.15656843691657
1028 => 0.16193964819278
1029 => 0.16366471078097
1030 => 0.15897539600153
1031 => 0.16063174125747
1101 => 0.16975836646598
1102 => 0.17465450807315
1103 => 0.16800489013106
1104 => 0.14965885795652
1105 => 0.1327429784372
1106 => 0.1372298314177
1107 => 0.13672116153297
1108 => 0.14652658174984
1109 => 0.13513598133042
1110 => 0.13532776982866
1111 => 0.14533595575149
1112 => 0.14266594333102
1113 => 0.13834086515922
1114 => 0.13277455629427
1115 => 0.12248471953615
1116 => 0.11337072416617
1117 => 0.13124536791449
1118 => 0.13047458077314
1119 => 0.12935836676819
1120 => 0.13184238024922
1121 => 0.14390404461356
1122 => 0.14362598421017
1123 => 0.14185710579143
1124 => 0.14319878448186
1125 => 0.13810566239787
1126 => 0.13941827592715
1127 => 0.13274029887546
1128 => 0.13575902339978
1129 => 0.13833158548396
1130 => 0.13884806540979
1201 => 0.14001172105481
1202 => 0.13006841097448
1203 => 0.1345326652803
1204 => 0.13715499644091
1205 => 0.12530720885605
1206 => 0.1369208037739
1207 => 0.12989532006785
1208 => 0.12751076537879
1209 => 0.13072125412642
1210 => 0.12947012353916
1211 => 0.1283944749291
1212 => 0.12779424452269
1213 => 0.13015167313023
1214 => 0.13004169626796
1215 => 0.12618448550884
1216 => 0.1211529113136
1217 => 0.12284167276932
1218 => 0.12222812990023
1219 => 0.12000457139407
1220 => 0.12150298135374
1221 => 0.11490474221925
1222 => 0.10355281473497
1223 => 0.11105224575002
1224 => 0.11076352581375
1225 => 0.11061794012948
1226 => 0.11625355526825
1227 => 0.11571182090842
1228 => 0.11472856774065
1229 => 0.11998651317856
1230 => 0.11806729236438
1231 => 0.1239818786884
]
'min_raw' => 0.053093788046174
'max_raw' => 0.17465450807315
'avg_raw' => 0.11387414805966
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.053093'
'max' => '$0.174654'
'avg' => '$0.113874'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072435
'min_diff' => 0.02892412685742
'max_diff' => 0.11545545701162
'year' => 2029
]
4 => [
'items' => [
101 => 0.12787760777286
102 => 0.12688952486341
103 => 0.13055347689703
104 => 0.12288057842244
105 => 0.12542920751244
106 => 0.12595447643565
107 => 0.11992163094803
108 => 0.11580045534943
109 => 0.11552561992184
110 => 0.10838006936685
111 => 0.11219716479646
112 => 0.11555605081237
113 => 0.11394740507083
114 => 0.11343815588599
115 => 0.1160397995287
116 => 0.11624196952131
117 => 0.1116324722648
118 => 0.11259093270822
119 => 0.11658787208808
120 => 0.11249022009094
121 => 0.10452915160814
122 => 0.10255469655402
123 => 0.10229126785338
124 => 0.096936389150609
125 => 0.10268663908196
126 => 0.10017650088981
127 => 0.10810599736275
128 => 0.10357671150415
129 => 0.10338146304335
130 => 0.10308631635814
131 => 0.098477151051414
201 => 0.099486265325851
202 => 0.10284071486652
203 => 0.10403762025321
204 => 0.10391277321542
205 => 0.10282427623376
206 => 0.10332258457796
207 => 0.10171735977916
208 => 0.10115052149283
209 => 0.099361423940046
210 => 0.096731944788261
211 => 0.09709758999185
212 => 0.091887903751519
213 => 0.08904939018881
214 => 0.08826372704566
215 => 0.087213105455516
216 => 0.088382397549864
217 => 0.091873145364962
218 => 0.087662562896492
219 => 0.080443814592319
220 => 0.080877673665548
221 => 0.08185242618918
222 => 0.080035981310026
223 => 0.07831686867457
224 => 0.079811497635082
225 => 0.076752818815526
226 => 0.082222052911512
227 => 0.082074125456567
228 => 0.084112717712383
301 => 0.085387491286069
302 => 0.082449550911568
303 => 0.081710666852417
304 => 0.082131568792918
305 => 0.075174997287098
306 => 0.083544217406371
307 => 0.083616594769502
308 => 0.082996855844804
309 => 0.087453207187635
310 => 0.096857498491848
311 => 0.093319225816462
312 => 0.091949099691694
313 => 0.089344488926955
314 => 0.092814978124486
315 => 0.092548498702181
316 => 0.091343377695197
317 => 0.090614516749967
318 => 0.09195746538965
319 => 0.090448110551756
320 => 0.090176988948572
321 => 0.088534287016497
322 => 0.087947917164922
323 => 0.087513792270872
324 => 0.087035863418754
325 => 0.088090055374076
326 => 0.085701117712814
327 => 0.082820293083778
328 => 0.082580783686828
329 => 0.083242090189688
330 => 0.082949511290652
331 => 0.082579382931623
401 => 0.081872707095776
402 => 0.081663051471021
403 => 0.082344330541027
404 => 0.081575206192027
405 => 0.082710091065348
406 => 0.082401465175849
407 => 0.080677506045188
408 => 0.078528814676965
409 => 0.078509686816756
410 => 0.078046754786032
411 => 0.077457141242609
412 => 0.07729312424336
413 => 0.079685624152887
414 => 0.084638027364112
415 => 0.083665752112783
416 => 0.084368320624644
417 => 0.087824262345384
418 => 0.088922802294613
419 => 0.088143084658995
420 => 0.087075759068471
421 => 0.087122715977685
422 => 0.090770090621934
423 => 0.090997572904535
424 => 0.091572347244102
425 => 0.092311094701654
426 => 0.08826889654545
427 => 0.086932328808036
428 => 0.086298988864095
429 => 0.084348546970159
430 => 0.086451931334519
501 => 0.085226379341305
502 => 0.085391748176007
503 => 0.085284051505465
504 => 0.085342861169998
505 => 0.082220524149119
506 => 0.083358139654325
507 => 0.081466633232765
508 => 0.078934118465855
509 => 0.078925628588342
510 => 0.079545457989732
511 => 0.079176759207859
512 => 0.078184600265949
513 => 0.078325531760789
514 => 0.077090823570902
515 => 0.078475447690155
516 => 0.078515153755472
517 => 0.077981998048574
518 => 0.080115202545591
519 => 0.080989178168548
520 => 0.080638243660966
521 => 0.080964555667976
522 => 0.083706154539036
523 => 0.084153154779364
524 => 0.084351682758939
525 => 0.084085681566225
526 => 0.081014667062515
527 => 0.081150879614717
528 => 0.08015144228511
529 => 0.079307023059703
530 => 0.079340795400324
531 => 0.079774936648999
601 => 0.081670856944007
602 => 0.085660709434247
603 => 0.085812121419708
604 => 0.085995637163085
605 => 0.085249186407147
606 => 0.085024049716584
607 => 0.085321063124147
608 => 0.086819441943003
609 => 0.090673679070983
610 => 0.089311334254112
611 => 0.088203726711836
612 => 0.089175397135261
613 => 0.08902581608978
614 => 0.08776320153287
615 => 0.087727764147525
616 => 0.085304403130523
617 => 0.084408541739797
618 => 0.083659892907644
619 => 0.082842387926906
620 => 0.082357743571309
621 => 0.083102377568426
622 => 0.083272684173817
623 => 0.081644528925146
624 => 0.081422617380992
625 => 0.082752204103229
626 => 0.082167102558762
627 => 0.082768894007067
628 => 0.082908514785145
629 => 0.082886032624135
630 => 0.082275119413227
701 => 0.082664497276166
702 => 0.081743502551188
703 => 0.080742059116709
704 => 0.080103200597642
705 => 0.079545711807471
706 => 0.079855038989696
707 => 0.078752344065974
708 => 0.078399569767011
709 => 0.082532584817481
710 => 0.085585687472663
711 => 0.085541294150896
712 => 0.08527106122167
713 => 0.084869549903589
714 => 0.086790068889226
715 => 0.086120998476619
716 => 0.086607803104494
717 => 0.086731715313414
718 => 0.087106760249846
719 => 0.087240806578418
720 => 0.086835625472311
721 => 0.085475788191508
722 => 0.082087202977198
723 => 0.080509807412625
724 => 0.079989240602715
725 => 0.080008162217558
726 => 0.079486219610377
727 => 0.079639955100019
728 => 0.079432756680982
729 => 0.079040373002009
730 => 0.079830810403228
731 => 0.079921900950285
801 => 0.079737403415817
802 => 0.079780859264092
803 => 0.078253298478624
804 => 0.078369435607456
805 => 0.077722769316129
806 => 0.077601527182184
807 => 0.075966811109386
808 => 0.073070674630541
809 => 0.074675415374591
810 => 0.072737114216473
811 => 0.072003050197839
812 => 0.075477995091678
813 => 0.075129207004304
814 => 0.074532233413259
815 => 0.073649185051904
816 => 0.073321653824936
817 => 0.07133167777366
818 => 0.071214099372441
819 => 0.072200385237327
820 => 0.071745248246707
821 => 0.071106063538018
822 => 0.068791001316265
823 => 0.066188104888253
824 => 0.066266669970191
825 => 0.067094602895332
826 => 0.069501929537146
827 => 0.068561345371015
828 => 0.067878940766528
829 => 0.067751146897115
830 => 0.069350754727411
831 => 0.07161453493548
901 => 0.072676649959879
902 => 0.071624126227613
903 => 0.070415043635887
904 => 0.070488634890896
905 => 0.070978204541009
906 => 0.071029651389093
907 => 0.070242662917579
908 => 0.070464195562499
909 => 0.070127667217495
910 => 0.068062393385394
911 => 0.068025039130825
912 => 0.067518187625388
913 => 0.067502840363239
914 => 0.066640559512457
915 => 0.066519920460767
916 => 0.064807809494833
917 => 0.06593472611736
918 => 0.065178849612747
919 => 0.064039565427053
920 => 0.063843152404017
921 => 0.063837247991369
922 => 0.065007038110795
923 => 0.06592105643873
924 => 0.065191998408164
925 => 0.0650260060268
926 => 0.066798370388282
927 => 0.066572820867824
928 => 0.066377496437745
929 => 0.071411838247206
930 => 0.067426763870427
1001 => 0.065689043982059
1002 => 0.063538285636146
1003 => 0.06423858339864
1004 => 0.064386146426712
1005 => 0.059213960308122
1006 => 0.057115605043964
1007 => 0.056395528592156
1008 => 0.055981114413753
1009 => 0.056169968158737
1010 => 0.054281202308471
1011 => 0.055550484197153
1012 => 0.053914972624226
1013 => 0.05364077378661
1014 => 0.056565271080009
1015 => 0.05697219779372
1016 => 0.055236122010808
1017 => 0.056350963708577
1018 => 0.055946706611507
1019 => 0.053943008775941
1020 => 0.053866482256826
1021 => 0.052861097116324
1022 => 0.051287864052362
1023 => 0.050568854326653
1024 => 0.050194387818775
1025 => 0.050348899998132
1026 => 0.050270773912099
1027 => 0.049760948354208
1028 => 0.050299996516296
1029 => 0.048922951212239
1030 => 0.048374600676555
1031 => 0.048126923461222
1101 => 0.0469047164941
1102 => 0.048849791296696
1103 => 0.049232995536214
1104 => 0.049616954806462
1105 => 0.052959058113842
1106 => 0.052792096077291
1107 => 0.0543013515739
1108 => 0.054242704680645
1109 => 0.053812240564694
1110 => 0.051996183267406
1111 => 0.052720031337996
1112 => 0.050492139487686
1113 => 0.052161427543859
1114 => 0.051399634186158
1115 => 0.051903864443325
1116 => 0.050997212976329
1117 => 0.051498991332886
1118 => 0.049323867477344
1119 => 0.047292767425858
1120 => 0.048110141378083
1121 => 0.048998720342201
1122 => 0.050925385942118
1123 => 0.049777879805453
1124 => 0.050190566404209
1125 => 0.04880813538128
1126 => 0.045955785309078
1127 => 0.045971929300722
1128 => 0.045533157383938
1129 => 0.045153994386088
1130 => 0.049909684689066
1201 => 0.049318239423552
1202 => 0.048375848799399
1203 => 0.049637276098943
1204 => 0.049970817498485
1205 => 0.049980312953226
1206 => 0.050900617748822
1207 => 0.051391784583206
1208 => 0.051478354866605
1209 => 0.052926474346976
1210 => 0.053411864895639
1211 => 0.055411119870539
1212 => 0.0513501125089
1213 => 0.051266478734707
1214 => 0.049655026967912
1215 => 0.048633018781366
1216 => 0.049725004742811
1217 => 0.050692355233702
1218 => 0.049685085244143
1219 => 0.049816613440149
1220 => 0.048464435776147
1221 => 0.048947775665155
1222 => 0.049364093090484
1223 => 0.049134227078225
1224 => 0.048790106532232
1225 => 0.050613043524969
1226 => 0.050510186275691
1227 => 0.052207747112468
1228 => 0.053531117178475
1229 => 0.055902832917457
1230 => 0.053427823903492
1231 => 0.053337624737753
]
'min_raw' => 0.045153994386088
'max_raw' => 0.13055347689703
'avg_raw' => 0.087853735641561
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.045153'
'max' => '$0.130553'
'avg' => '$0.087853'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -0.007939793660086
'max_diff' => -0.044101031176118
'year' => 2030
]
5 => [
'items' => [
101 => 0.05421933605125
102 => 0.053411729910231
103 => 0.053922109113739
104 => 0.05582060293734
105 => 0.055860715120225
106 => 0.055188784375268
107 => 0.055147897328372
108 => 0.055276948978058
109 => 0.056032808521124
110 => 0.055768687971559
111 => 0.056074334958229
112 => 0.056456551195294
113 => 0.058037559608118
114 => 0.058418735383972
115 => 0.057492675865629
116 => 0.057576288671487
117 => 0.057229916990724
118 => 0.056895326287132
119 => 0.057647437325759
120 => 0.059021935031629
121 => 0.059013384352737
122 => 0.059332241104081
123 => 0.059530886218617
124 => 0.058678155969919
125 => 0.058123059933777
126 => 0.058335919075712
127 => 0.058676285479136
128 => 0.058225542838426
129 => 0.055443350455661
130 => 0.056287289897454
131 => 0.056146817107809
201 => 0.05594676677328
202 => 0.056795354407994
203 => 0.056713506060483
204 => 0.054261830284699
205 => 0.054418778613422
206 => 0.054271374832398
207 => 0.054747666604864
208 => 0.053386008591461
209 => 0.053804845425477
210 => 0.05406753596142
211 => 0.054222262705175
212 => 0.054781241800737
213 => 0.054715652055585
214 => 0.054777164650086
215 => 0.055605983083795
216 => 0.059797862305354
217 => 0.060026017042524
218 => 0.058902499673027
219 => 0.059351322701741
220 => 0.058489680633417
221 => 0.059068106726383
222 => 0.05946385116876
223 => 0.057675558130937
224 => 0.057569667023163
225 => 0.056704468651521
226 => 0.057169377249101
227 => 0.05642967424224
228 => 0.056611171486411
301 => 0.056103689369063
302 => 0.057017056141607
303 => 0.058038342116158
304 => 0.058296359285135
305 => 0.057617627196932
306 => 0.057126180434449
307 => 0.056263361812156
308 => 0.057698248410196
309 => 0.05811785297884
310 => 0.057696044406028
311 => 0.057598302143008
312 => 0.057413080731202
313 => 0.057637597741121
314 => 0.058115567722244
315 => 0.057890165905866
316 => 0.058039047776653
317 => 0.057471663611533
318 => 0.058678438259114
319 => 0.060595086825606
320 => 0.060601249164151
321 => 0.060375846132774
322 => 0.06028361606871
323 => 0.060514893257503
324 => 0.060640351644936
325 => 0.061388259664511
326 => 0.062190794767484
327 => 0.065935875919562
328 => 0.064884272118243
329 => 0.068207130912241
330 => 0.070835080799081
331 => 0.071623088063823
401 => 0.070898158458867
402 => 0.068418213440241
403 => 0.068296535506425
404 => 0.072002620370032
405 => 0.070955481646623
406 => 0.070830927827441
407 => 0.069505885628346
408 => 0.07028914967768
409 => 0.0701178383403
410 => 0.069847415013409
411 => 0.071341828256892
412 => 0.074139236441502
413 => 0.073703234142002
414 => 0.073377778650991
415 => 0.071951727428047
416 => 0.072810528784331
417 => 0.072504726070615
418 => 0.073818648595937
419 => 0.073040309998884
420 => 0.070947548540903
421 => 0.071280827700919
422 => 0.071230453226347
423 => 0.072267156343459
424 => 0.071955963800255
425 => 0.071169687887825
426 => 0.074129675204444
427 => 0.073937470092417
428 => 0.074209972997065
429 => 0.074329937203124
430 => 0.076131629321923
501 => 0.076869724935277
502 => 0.077037285561691
503 => 0.077738419308015
504 => 0.077019840715364
505 => 0.079894667423819
506 => 0.081806259434152
507 => 0.08402667192378
508 => 0.087271291361739
509 => 0.088491298284819
510 => 0.088270914954023
511 => 0.090730948381554
512 => 0.095151573767356
513 => 0.089164449735011
514 => 0.095468905878943
515 => 0.09347298785222
516 => 0.088740702115893
517 => 0.088435998704457
518 => 0.091640757548065
519 => 0.09874860421658
520 => 0.096968169242647
521 => 0.098751516370374
522 => 0.09667114721782
523 => 0.096567839354668
524 => 0.098650477484105
525 => 0.10351667499223
526 => 0.10120492696281
527 => 0.097890469298754
528 => 0.10033781325922
529 => 0.098217697429673
530 => 0.093440483082653
531 => 0.096966807777576
601 => 0.094608854878026
602 => 0.095297030889786
603 => 0.10025309716562
604 => 0.099656770159184
605 => 0.1004284725239
606 => 0.099066438049142
607 => 0.097794083076593
608 => 0.09541913803401
609 => 0.094716033890277
610 => 0.094910346580568
611 => 0.094715937598558
612 => 0.093387177674104
613 => 0.093100232094931
614 => 0.092621976891601
615 => 0.092770208177198
616 => 0.091870948476443
617 => 0.093568037328303
618 => 0.093883031973904
619 => 0.095118031714822
620 => 0.095246253484878
621 => 0.098685710184214
622 => 0.096791315231941
623 => 0.098062238920117
624 => 0.097948555543049
625 => 0.088843265097345
626 => 0.090097893784105
627 => 0.092049702296533
628 => 0.091170415207298
629 => 0.089927308984611
630 => 0.088923434058653
701 => 0.087402460894345
702 => 0.089543201415406
703 => 0.092358047558228
704 => 0.095317642628263
705 => 0.098873402184561
706 => 0.098079798045199
707 => 0.095251170176693
708 => 0.095378060356561
709 => 0.096162445519054
710 => 0.095146595464718
711 => 0.094847001451945
712 => 0.096121285902278
713 => 0.096130061198953
714 => 0.094961202941859
715 => 0.093662230887902
716 => 0.093656788147566
717 => 0.093425648617146
718 => 0.096712266426802
719 => 0.098519573907573
720 => 0.098726778797622
721 => 0.098505627367551
722 => 0.098590739775799
723 => 0.097539107374041
724 => 0.099942827192558
725 => 0.10214871820128
726 => 0.10155749228895
727 => 0.10067116059866
728 => 0.099965154715828
729 => 0.10139117974015
730 => 0.10132768109059
731 => 0.1021294516677
801 => 0.10209307872307
802 => 0.1018234734341
803 => 0.10155750191741
804 => 0.10261204891704
805 => 0.10230835631665
806 => 0.10200419199778
807 => 0.10139414389104
808 => 0.10147705956057
809 => 0.10059088090794
810 => 0.10018089411446
811 => 0.094015676436352
812 => 0.092368128818463
813 => 0.092886480837975
814 => 0.093057135781803
815 => 0.092340120947108
816 => 0.093368136034062
817 => 0.093207920971698
818 => 0.093831224056681
819 => 0.093441811349858
820 => 0.093457792983178
821 => 0.094602972722403
822 => 0.094935423272643
823 => 0.094766336239586
824 => 0.094884759001575
825 => 0.097613761568484
826 => 0.097225784672059
827 => 0.097019679678499
828 => 0.097076772170262
829 => 0.097774090836582
830 => 0.097969301990964
831 => 0.097142178612603
901 => 0.097532254779381
902 => 0.099193149589487
903 => 0.099774368774518
904 => 0.1016293414121
905 => 0.10084131606615
906 => 0.10228777069359
907 => 0.10673367908562
908 => 0.11028537834263
909 => 0.1070190889257
910 => 0.11354133230504
911 => 0.1186198343361
912 => 0.11842491296946
913 => 0.11753935867247
914 => 0.11175761912908
915 => 0.10643717620036
916 => 0.11088795262817
917 => 0.1108992985726
918 => 0.11051697293025
919 => 0.10814238120138
920 => 0.11043434228531
921 => 0.11061626983297
922 => 0.11051443878472
923 => 0.10869384487372
924 => 0.10591413447362
925 => 0.10645728323211
926 => 0.10734697197846
927 => 0.10566260557311
928 => 0.10512434844724
929 => 0.10612507085184
930 => 0.10934960694825
1001 => 0.10874002707769
1002 => 0.10872410848376
1003 => 0.11133214967211
1004 => 0.10946535503177
1005 => 0.10646413407736
1006 => 0.10570628620513
1007 => 0.10301643680622
1008 => 0.10487432536696
1009 => 0.10494118746873
1010 => 0.10392364089117
1011 => 0.10654670237411
1012 => 0.10652253040076
1013 => 0.10901273688764
1014 => 0.1137730764117
1015 => 0.11236520977235
1016 => 0.11072801404625
1017 => 0.11090602261619
1018 => 0.11285833726585
1019 => 0.11167792326166
1020 => 0.1121024083677
1021 => 0.1128576947568
1022 => 0.11331337778805
1023 => 0.11084045684055
1024 => 0.11026390067421
1025 => 0.10908446910159
1026 => 0.10877677741942
1027 => 0.10973739982568
1028 => 0.10948430976092
1029 => 0.10493556796798
1030 => 0.10446019914165
1031 => 0.10447477802489
1101 => 0.10327944050854
1102 => 0.10145626388224
1103 => 0.10624746319994
1104 => 0.10586266284194
1105 => 0.10543787302788
1106 => 0.10548990735629
1107 => 0.10756960459129
1108 => 0.10636327516776
1109 => 0.10957049965372
1110 => 0.1089111907174
1111 => 0.10823497299466
1112 => 0.10814149910728
1113 => 0.10788121297622
1114 => 0.10698859498458
1115 => 0.10591070512165
1116 => 0.10519898886893
1117 => 0.097040506434074
1118 => 0.098554673318273
1119 => 0.10029658429789
1120 => 0.10089788498778
1121 => 0.09986931854898
1122 => 0.10702920905677
1123 => 0.10833739004696
1124 => 0.10437482449713
1125 => 0.10363359027324
1126 => 0.10707780424909
1127 => 0.10500052218362
1128 => 0.1059359221705
1129 => 0.10391409903529
1130 => 0.10802228755444
1201 => 0.10799099004102
1202 => 0.10639281191943
1203 => 0.10774358112394
1204 => 0.10750885173386
1205 => 0.10570451257072
1206 => 0.10807948832425
1207 => 0.10808066628259
1208 => 0.10654245458795
1209 => 0.10474616008644
1210 => 0.10442502505615
1211 => 0.10418309294925
1212 => 0.10587642170291
1213 => 0.10739465496854
1214 => 0.11021971067393
1215 => 0.11092999679994
1216 => 0.11370229083615
1217 => 0.11205152471813
1218 => 0.11278328795725
1219 => 0.11357772046755
1220 => 0.11395860062727
1221 => 0.11333797684616
1222 => 0.11764449060615
1223 => 0.11800809231566
1224 => 0.11813000482372
1225 => 0.11667787261418
1226 => 0.11796770589203
1227 => 0.11736423561611
1228 => 0.11893429762518
1229 => 0.11918050339576
1230 => 0.1189719758671
1231 => 0.11905012546478
]
'min_raw' => 0.053386008591461
'max_raw' => 0.11918050339576
'avg_raw' => 0.08628325599361
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.053386'
'max' => '$0.11918'
'avg' => '$0.086283'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 0.0082320142053736
'max_diff' => -0.011372973501276
'year' => 2031
]
6 => [
'items' => [
101 => 0.11537527569171
102 => 0.1151847153446
103 => 0.1125864114902
104 => 0.11364523951656
105 => 0.11166581127223
106 => 0.11229350835888
107 => 0.11257019125376
108 => 0.11242566781109
109 => 0.11370510406452
110 => 0.11261732187754
111 => 0.10974648583817
112 => 0.10687486764144
113 => 0.10683881681414
114 => 0.10608277043122
115 => 0.10553628737316
116 => 0.10564155939767
117 => 0.10601255174289
118 => 0.10551472462363
119 => 0.10562096128
120 => 0.10738519762687
121 => 0.10773900264428
122 => 0.10653663495458
123 => 0.10170895517964
124 => 0.10052423045355
125 => 0.10137578709255
126 => 0.10096879786638
127 => 0.081489700169742
128 => 0.086066025236026
129 => 0.083346928278955
130 => 0.084600013256409
131 => 0.081824519369983
201 => 0.083149130528684
202 => 0.082904523214726
203 => 0.090263118498009
204 => 0.090148224154077
205 => 0.090203217996444
206 => 0.087578218614588
207 => 0.091759913906384
208 => 0.093819967376022
209 => 0.093438706305339
210 => 0.093534661502883
211 => 0.091885833294308
212 => 0.090219182257663
213 => 0.088370609762267
214 => 0.091805028968246
215 => 0.091423180180032
216 => 0.092299003915338
217 => 0.09452647026777
218 => 0.094854473149488
219 => 0.095295312348793
220 => 0.095137302876913
221 => 0.098901729546026
222 => 0.09844583263791
223 => 0.099544413015979
224 => 0.097284549828797
225 => 0.094727300124319
226 => 0.095213349690349
227 => 0.095166539208576
228 => 0.094570588049043
229 => 0.094032589988993
301 => 0.093136974799024
302 => 0.095970833786195
303 => 0.09585578428655
304 => 0.097718301955388
305 => 0.09738908386589
306 => 0.095190484890886
307 => 0.095269008283397
308 => 0.095797115835084
309 => 0.097624902101301
310 => 0.098167513510293
311 => 0.097916154286322
312 => 0.09851110292513
313 => 0.098981326071233
314 => 0.098570155712598
315 => 0.10439146090933
316 => 0.10197404913167
317 => 0.10315227881186
318 => 0.10343327964805
319 => 0.10271350191495
320 => 0.10286959593195
321 => 0.10310603583464
322 => 0.10454165262404
323 => 0.10830912647852
324 => 0.1099777150026
325 => 0.11499774590402
326 => 0.10983916195355
327 => 0.10953307293027
328 => 0.11043733208603
329 => 0.1133846216494
330 => 0.11577312301567
331 => 0.11656552671482
401 => 0.11667025594482
402 => 0.11815685796241
403 => 0.11900895051541
404 => 0.11797634537596
405 => 0.11710132063854
406 => 0.11396709064118
407 => 0.1143298862976
408 => 0.11682918860319
409 => 0.12035960031801
410 => 0.12338906084607
411 => 0.1223282493565
412 => 0.13042149220568
413 => 0.13122390417625
414 => 0.131113036787
415 => 0.13294105067086
416 => 0.12931281537996
417 => 0.12776167449935
418 => 0.11729051091873
419 => 0.12023248077167
420 => 0.12450880672875
421 => 0.12394281895293
422 => 0.12083723673638
423 => 0.12338670498347
424 => 0.12254377105174
425 => 0.12187891408642
426 => 0.12492475273341
427 => 0.12157572802489
428 => 0.12447539764541
429 => 0.12075654136385
430 => 0.12233309505403
501 => 0.12143816693016
502 => 0.12201729510457
503 => 0.11863172363052
504 => 0.12045849581781
505 => 0.11855572390165
506 => 0.11855482174002
507 => 0.11851281794451
508 => 0.12075142066569
509 => 0.12082442142006
510 => 0.11917009062676
511 => 0.11893167571395
512 => 0.11981322060495
513 => 0.11878116241456
514 => 0.11926405594614
515 => 0.1187957887677
516 => 0.11869037196261
517 => 0.11785039292452
518 => 0.1174885068592
519 => 0.11763041171006
520 => 0.11714601729709
521 => 0.11685415214197
522 => 0.11845475861901
523 => 0.11759961914661
524 => 0.11832369623044
525 => 0.1174985190076
526 => 0.11463809524063
527 => 0.11299303528381
528 => 0.10758995994943
529 => 0.10912226541177
530 => 0.11013818551858
531 => 0.10980242392934
601 => 0.11052376974552
602 => 0.1105680545201
603 => 0.11033353764202
604 => 0.11006199714066
605 => 0.10992982624173
606 => 0.11091491983676
607 => 0.11148679982539
608 => 0.11024014669256
609 => 0.10994807330607
610 => 0.11120850845297
611 => 0.11197737316445
612 => 0.11765423820624
613 => 0.11723367770791
614 => 0.11828920202789
615 => 0.1181703661878
616 => 0.11927672383334
617 => 0.12108515100218
618 => 0.11740811292374
619 => 0.11804631959175
620 => 0.1178898460551
621 => 0.11959818309869
622 => 0.11960351634047
623 => 0.11857928294507
624 => 0.11913453648501
625 => 0.1188246091916
626 => 0.11938468969997
627 => 0.11722806086605
628 => 0.11985460199207
629 => 0.12134368155995
630 => 0.12136435743119
701 => 0.1220701693283
702 => 0.12278731509363
703 => 0.12416381393995
704 => 0.1227489252879
705 => 0.1202036783395
706 => 0.12038743694808
707 => 0.1188951595935
708 => 0.11892024504544
709 => 0.11878633693704
710 => 0.11918820525047
711 => 0.11731624836183
712 => 0.11775559290198
713 => 0.11714050797298
714 => 0.11804498251724
715 => 0.11707191742261
716 => 0.11788977059882
717 => 0.11824272891741
718 => 0.11954515271166
719 => 0.11687954836923
720 => 0.11144420066948
721 => 0.11258677665319
722 => 0.11089681702587
723 => 0.11105322922351
724 => 0.11136920675556
725 => 0.11034502019278
726 => 0.11054040271313
727 => 0.11053342227462
728 => 0.11047326862666
729 => 0.11020683814572
730 => 0.10982046123669
731 => 0.11135966792171
801 => 0.11162120913091
802 => 0.11220258284085
803 => 0.11393235665207
804 => 0.11375951145746
805 => 0.11404142914116
806 => 0.11342600442054
807 => 0.11108177701122
808 => 0.11120907983796
809 => 0.10962161154857
810 => 0.11216198770757
811 => 0.11156039310179
812 => 0.11117254114584
813 => 0.11106671214624
814 => 0.11280077373217
815 => 0.11331963213676
816 => 0.11299631439831
817 => 0.11233318028406
818 => 0.11360659382142
819 => 0.11394730556302
820 => 0.114023578357
821 => 0.11627982299237
822 => 0.11414967736836
823 => 0.11466242459189
824 => 0.11866273205968
825 => 0.11503500519109
826 => 0.11695669302135
827 => 0.11686263640204
828 => 0.11784570686963
829 => 0.11678199593002
830 => 0.11679518190196
831 => 0.11766808187822
901 => 0.1164422512899
902 => 0.11613871839734
903 => 0.11571938988021
904 => 0.11663497835654
905 => 0.11718383223959
906 => 0.12160719144823
907 => 0.12446488322669
908 => 0.12434082328997
909 => 0.1254744988812
910 => 0.12496376764407
911 => 0.12331448175529
912 => 0.12612961165845
913 => 0.12523878676705
914 => 0.12531222528875
915 => 0.1253094919033
916 => 0.12590181257882
917 => 0.12548209909482
918 => 0.12465480073516
919 => 0.1252039999947
920 => 0.12683492545321
921 => 0.13189736811934
922 => 0.13473037810374
923 => 0.13172681736104
924 => 0.13379863334208
925 => 0.13255628201697
926 => 0.13233050982445
927 => 0.13363176336654
928 => 0.13493529458069
929 => 0.13485226527767
930 => 0.13390596855326
1001 => 0.13337142954503
1002 => 0.13741913799904
1003 => 0.14040142063704
1004 => 0.1401980489546
1005 => 0.14109566542085
1006 => 0.14373109512801
1007 => 0.14397204579215
1008 => 0.14394169154665
1009 => 0.14334447018498
1010 => 0.14593939298546
1011 => 0.14810412323895
1012 => 0.14320623069513
1013 => 0.1450712840577
1014 => 0.14590856660042
1015 => 0.14713794578367
1016 => 0.14921211453369
1017 => 0.1514652119423
1018 => 0.15178382461983
1019 => 0.1515577536781
1020 => 0.15007177537061
1021 => 0.15253714144016
1022 => 0.15398129506375
1023 => 0.15484125549773
1024 => 0.15702197207453
1025 => 0.14591373737236
1026 => 0.13805077673507
1027 => 0.13682286188903
1028 => 0.13931987501382
1029 => 0.13997831746152
1030 => 0.13971290013647
1031 => 0.1308624230701
1101 => 0.13677626595893
1102 => 0.14313906365727
1103 => 0.14338348463017
1104 => 0.14656883419779
1105 => 0.14760611458889
1106 => 0.15017073850414
1107 => 0.15001032057997
1108 => 0.15063476569125
1109 => 0.15049121657405
1110 => 0.15524164233175
1111 => 0.16048206738756
1112 => 0.16030060813141
1113 => 0.15954723502774
1114 => 0.16066612255589
1115 => 0.16607480281156
1116 => 0.16557685820595
1117 => 0.16606056897548
1118 => 0.17243770781677
1119 => 0.18072889544787
1120 => 0.1768768063716
1121 => 0.18523473125834
1122 => 0.19049560193999
1123 => 0.19959373379971
1124 => 0.19845460288163
1125 => 0.20199643884945
1126 => 0.19641532079447
1127 => 0.18359994561018
1128 => 0.18157186343198
1129 => 0.18563213531196
1130 => 0.19561391753334
1201 => 0.18531777346766
1202 => 0.18740067000242
1203 => 0.18680079566028
1204 => 0.18676883090589
1205 => 0.18798879557093
1206 => 0.18621917319522
1207 => 0.17900941328758
1208 => 0.18231360376587
1209 => 0.18103769714194
1210 => 0.18245341066633
1211 => 0.19009343267277
1212 => 0.18671559682835
1213 => 0.18315732115935
1214 => 0.18762018849285
1215 => 0.19330295221601
1216 => 0.19294733507512
1217 => 0.19225728918537
1218 => 0.19614704173628
1219 => 0.20257177335983
1220 => 0.20430835250102
1221 => 0.20559025972024
1222 => 0.20576701306777
1223 => 0.20758768239893
1224 => 0.19779748453752
1225 => 0.21333477997369
1226 => 0.21601764168639
1227 => 0.21551337487763
1228 => 0.21849526275922
1229 => 0.21761791570126
1230 => 0.21634677746582
1231 => 0.22107370402388
]
'min_raw' => 0.081489700169742
'max_raw' => 0.22107370402388
'avg_raw' => 0.15128170209681
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.081489'
'max' => '$0.221073'
'avg' => '$0.151281'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.02810369157828
'max_diff' => 0.10189320062812
'year' => 2032
]
7 => [
'items' => [
101 => 0.21565466416837
102 => 0.20796301933161
103 => 0.20374323085069
104 => 0.209300188723
105 => 0.21269362898451
106 => 0.21493647713404
107 => 0.21561516162892
108 => 0.19855746972839
109 => 0.18936431985696
110 => 0.19525702352487
111 => 0.20244652869239
112 => 0.19775754647331
113 => 0.19794134569888
114 => 0.19125608929732
115 => 0.2030380255434
116 => 0.20132149653403
117 => 0.21022685207114
118 => 0.20810151750226
119 => 0.21536348923887
120 => 0.21345116870545
121 => 0.22138910432329
122 => 0.22455576175227
123 => 0.22987307242641
124 => 0.23378450780365
125 => 0.23608137747101
126 => 0.23594348203152
127 => 0.2450448239495
128 => 0.23967808059713
129 => 0.23293618610227
130 => 0.23281424650126
131 => 0.23630596919354
201 => 0.2436236620492
202 => 0.24552103333857
203 => 0.24658140504518
204 => 0.24495740886471
205 => 0.23913219359368
206 => 0.23661689517416
207 => 0.2387600023028
208 => 0.23613916644376
209 => 0.24066346441312
210 => 0.24687629186295
211 => 0.24559336756274
212 => 0.24988199115157
213 => 0.25432026538965
214 => 0.26066719688547
215 => 0.26232651980468
216 => 0.26506931749172
217 => 0.26789255727379
218 => 0.26879930580334
219 => 0.27053057009381
220 => 0.27052144547642
221 => 0.27573872694326
222 => 0.28149354996695
223 => 0.28366586243393
224 => 0.28866097516975
225 => 0.28010701965929
226 => 0.28659529317473
227 => 0.29244787829768
228 => 0.28547018504034
301 => 0.29508730960157
302 => 0.29546072075541
303 => 0.30109878584425
304 => 0.29538352675413
305 => 0.29198982415018
306 => 0.30178731640742
307 => 0.30652801429259
308 => 0.3051000775085
309 => 0.29423340807563
310 => 0.28790854037232
311 => 0.2713551416169
312 => 0.29096335749631
313 => 0.30051394747167
314 => 0.29420867435485
315 => 0.29738868735914
316 => 0.31473780718787
317 => 0.32134322874632
318 => 0.31996934723755
319 => 0.32020151059652
320 => 0.32376567617258
321 => 0.33957114915867
322 => 0.33010014337741
323 => 0.33734037242537
324 => 0.34118056380582
325 => 0.34474754757617
326 => 0.33598816279298
327 => 0.32459233189097
328 => 0.32098279387987
329 => 0.29358173920673
330 => 0.29215539531424
331 => 0.29135474526475
401 => 0.28630675995688
402 => 0.28234042626444
403 => 0.27918625045168
404 => 0.27090875120237
405 => 0.27370216421047
406 => 0.26050955805544
407 => 0.26894971995618
408 => 0.24789400198613
409 => 0.26542982958562
410 => 0.25588587587946
411 => 0.26229438410933
412 => 0.26227202542784
413 => 0.25047192995725
414 => 0.24366588115153
415 => 0.24800296034592
416 => 0.25265265352008
417 => 0.25340705059414
418 => 0.25943549916385
419 => 0.26111790957859
420 => 0.2560201274777
421 => 0.247457669032
422 => 0.24944653284005
423 => 0.24362557688994
424 => 0.2334245754872
425 => 0.24075111278704
426 => 0.24325271474632
427 => 0.24435756468465
428 => 0.23432605139798
429 => 0.23117393212857
430 => 0.22949577027837
501 => 0.24616272663704
502 => 0.2470757801299
503 => 0.2424044693677
504 => 0.2635192369647
505 => 0.25874031475908
506 => 0.26407954172712
507 => 0.24926606429576
508 => 0.24983195908263
509 => 0.24281902147011
510 => 0.24674579792846
511 => 0.24397047889361
512 => 0.24642855319579
513 => 0.24790191279749
514 => 0.25491369965595
515 => 0.26550989292836
516 => 0.25386637252178
517 => 0.24879312394235
518 => 0.251940538828
519 => 0.26032251942995
520 => 0.2730216491076
521 => 0.26550350874463
522 => 0.26883993177142
523 => 0.26956879177564
524 => 0.26402519340867
525 => 0.2732260494867
526 => 0.27815686300654
527 => 0.2832148573898
528 => 0.28760657219101
529 => 0.28119458320545
530 => 0.28805633054251
531 => 0.2825269734503
601 => 0.27756656852415
602 => 0.27757409141086
603 => 0.27446235694074
604 => 0.2684329793011
605 => 0.2673210695571
606 => 0.2731053644641
607 => 0.27774382120475
608 => 0.27812586671862
609 => 0.28069395470276
610 => 0.28221372271836
611 => 0.29710951529569
612 => 0.30310072629475
613 => 0.31042666569658
614 => 0.31328053196092
615 => 0.32186964624888
616 => 0.31493323888759
617 => 0.31343250352293
618 => 0.2925981217382
619 => 0.29600975058828
620 => 0.30147209755049
621 => 0.2926881938277
622 => 0.29825955896388
623 => 0.29935946445941
624 => 0.2923897201404
625 => 0.29611256172606
626 => 0.28622579822015
627 => 0.26572539735538
628 => 0.27324887229321
629 => 0.27878868222174
630 => 0.27088269040009
701 => 0.28505387473626
702 => 0.27677536139969
703 => 0.27415147011072
704 => 0.26391473470766
705 => 0.26874607976983
706 => 0.2752805431446
707 => 0.2712430044919
708 => 0.27962150343574
709 => 0.29148769240428
710 => 0.29994424530703
711 => 0.30059343443347
712 => 0.29515643746204
713 => 0.3038692598072
714 => 0.30393272320598
715 => 0.29410462400772
716 => 0.28808496797186
717 => 0.28671728945505
718 => 0.29013401853921
719 => 0.29428255841037
720 => 0.30082364952395
721 => 0.30477629389027
722 => 0.31508269407705
723 => 0.31787131045994
724 => 0.32093515440908
725 => 0.32502939477961
726 => 0.32994558008612
727 => 0.31918924651407
728 => 0.3196166156992
729 => 0.30960046680848
730 => 0.2988967752577
731 => 0.30701954291075
801 => 0.31763898109062
802 => 0.31520287023873
803 => 0.31492875800266
804 => 0.31538973875133
805 => 0.31355299072494
806 => 0.30524544747464
807 => 0.30107345126231
808 => 0.30645639076596
809 => 0.30931718354508
810 => 0.31375402365814
811 => 0.31320708946387
812 => 0.32463591311328
813 => 0.32907680839375
814 => 0.32794063734438
815 => 0.32814972016095
816 => 0.33618974894143
817 => 0.34513191450337
818 => 0.35350743257479
819 => 0.36202736929391
820 => 0.35175625304022
821 => 0.34654121364098
822 => 0.35192180312163
823 => 0.34906678660592
824 => 0.36547255835813
825 => 0.36660845839916
826 => 0.38301304382735
827 => 0.3985829488204
828 => 0.38880377045809
829 => 0.39802509518988
830 => 0.40799870971295
831 => 0.42723943028859
901 => 0.42075983249542
902 => 0.4157965621341
903 => 0.411106295625
904 => 0.4208659956716
905 => 0.43342169386653
906 => 0.43612607100074
907 => 0.44050819510973
908 => 0.43590092742977
909 => 0.44144987387639
910 => 0.46104009316361
911 => 0.45574664298455
912 => 0.44822909276572
913 => 0.46369368942831
914 => 0.46929026684341
915 => 0.5085699780929
916 => 0.55816223610932
917 => 0.5376307156502
918 => 0.5248861383532
919 => 0.52788141632341
920 => 0.54599083014713
921 => 0.55180699910324
922 => 0.53599664692685
923 => 0.54158113059959
924 => 0.57235218469071
925 => 0.58885986795698
926 => 0.56644021680374
927 => 0.50458528844818
928 => 0.44755221961981
929 => 0.46267995770566
930 => 0.46096494167509
1001 => 0.49402460052882
1002 => 0.45562039594844
1003 => 0.4562670242605
1004 => 0.49001032184855
1005 => 0.48100818855863
1006 => 0.46642588553508
1007 => 0.44765868656962
1008 => 0.41296578352618
1009 => 0.38223731181742
1010 => 0.44250292118269
1011 => 0.43990415852096
1012 => 0.43614076507172
1013 => 0.44451578995129
1014 => 0.48518253347417
1015 => 0.48424503341057
1016 => 0.47828113632264
1017 => 0.48280469970046
1018 => 0.46563288300385
1019 => 0.47005845116156
1020 => 0.44754318529032
1021 => 0.45772102578468
1022 => 0.46639459846204
1023 => 0.46813594659146
1024 => 0.47205929284248
1025 => 0.43853472868691
1026 => 0.45358627376327
1027 => 0.46242764635658
1028 => 0.42248200332813
1029 => 0.46163804942894
1030 => 0.43795114061039
1031 => 0.42991144799194
1101 => 0.44073583495372
1102 => 0.43651756082765
1103 => 0.43289093643943
1104 => 0.43086721771748
1105 => 0.43881545285822
1106 => 0.43844465818871
1107 => 0.4254398028125
1108 => 0.40847549911996
1109 => 0.41416927627346
1110 => 0.41210067365415
1111 => 0.40460379090671
1112 => 0.40965578470141
1113 => 0.3874093607851
1114 => 0.34913554470558
1115 => 0.3744203999664
1116 => 0.37344696054349
1117 => 0.3729561082445
1118 => 0.39195697815093
1119 => 0.39013048293408
1120 => 0.38681537623041
1121 => 0.40454290637236
1122 => 0.39807211940162
1123 => 0.41801356013629
1124 => 0.43114828273566
1125 => 0.4278168922207
1126 => 0.44017016231103
1127 => 0.41430044939927
1128 => 0.42289333031582
1129 => 0.4246643111635
1130 => 0.40432415140218
1201 => 0.39042932014021
1202 => 0.38950269330771
1203 => 0.36541097072514
1204 => 0.37828057446716
1205 => 0.38960529317974
1206 => 0.38418163175009
1207 => 0.38246466256874
1208 => 0.39123628575109
1209 => 0.39191791599623
1210 => 0.37637667417109
1211 => 0.37960819047365
1212 => 0.39308415065025
1213 => 0.37926863085296
1214 => 0.35242733263916
1215 => 0.34577031957215
1216 => 0.34488215131592
1217 => 0.32682780390384
1218 => 0.34621517301704
1219 => 0.33775206684994
1220 => 0.36448691782822
1221 => 0.34921611433131
1222 => 0.34855782051393
1223 => 0.34756271285824
1224 => 0.33202259022497
1225 => 0.33542488945534
1226 => 0.3467346502819
1227 => 0.35077010035839
1228 => 0.35034916985395
1229 => 0.34667922628383
1230 => 0.34835930765708
1231 => 0.3429471801747
]
'min_raw' => 0.18936431985696
'max_raw' => 0.58885986795698
'avg_raw' => 0.38911209390697
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.189364'
'max' => '$0.588859'
'avg' => '$0.389112'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.10787461968722
'max_diff' => 0.36778616393311
'year' => 2033
]
8 => [
'items' => [
101 => 0.34103604531698
102 => 0.33500397800695
103 => 0.32613850546234
104 => 0.32737130379477
105 => 0.30980648290682
106 => 0.30023623625146
107 => 0.29758731811108
108 => 0.29404507406785
109 => 0.29798742400131
110 => 0.30975672397614
111 => 0.29556045121022
112 => 0.27122193730578
113 => 0.27268472346225
114 => 0.27597116965072
115 => 0.26984689892052
116 => 0.26405079064547
117 => 0.2690900365375
118 => 0.25877748734723
119 => 0.27721739195158
120 => 0.27671864420927
121 => 0.28359190032972
122 => 0.28788988843525
123 => 0.27798441734217
124 => 0.2754932181495
125 => 0.27691231842834
126 => 0.25345775190415
127 => 0.28167516185657
128 => 0.28191918718959
129 => 0.27982969413618
130 => 0.29485459382105
131 => 0.32656181853986
201 => 0.31463228518049
202 => 0.31001280929168
203 => 0.30123118225025
204 => 0.31293217888154
205 => 0.31203372490424
206 => 0.30797057529033
207 => 0.30551316972604
208 => 0.31004101482641
209 => 0.30495211961066
210 => 0.30403801419643
211 => 0.29849952994265
212 => 0.29652254304903
213 => 0.2950588606591
214 => 0.29344749016626
215 => 0.29700177194496
216 => 0.28894730182972
217 => 0.27923440046017
218 => 0.27842687780634
219 => 0.28065651885168
220 => 0.27967006866637
221 => 0.27842215506237
222 => 0.27603954814328
223 => 0.27533267956673
224 => 0.27762965951664
225 => 0.27503650307544
226 => 0.27886284666097
227 => 0.27782229292695
228 => 0.27200984435495
301 => 0.26476538139015
302 => 0.26470089047398
303 => 0.26314008281152
304 => 0.26115215958436
305 => 0.26059916482009
306 => 0.26866564530407
307 => 0.28536301849647
308 => 0.28208492460452
309 => 0.28445368339403
310 => 0.29610563219165
311 => 0.29980943632809
312 => 0.29718056388145
313 => 0.29358200113471
314 => 0.29374031963255
315 => 0.3060376978972
316 => 0.3068046702953
317 => 0.30874256211061
318 => 0.31123330074145
319 => 0.29760474744054
320 => 0.29309841599767
321 => 0.29096306615829
322 => 0.28438701513738
323 => 0.29147872237543
324 => 0.287346688265
325 => 0.28790424083688
326 => 0.28754113399301
327 => 0.28773941488294
328 => 0.27721223762244
329 => 0.28104778772402
330 => 0.27467044176296
331 => 0.26613189141179
401 => 0.26610326719702
402 => 0.26819306529891
403 => 0.26694997161409
404 => 0.26360483847112
405 => 0.2640799988455
406 => 0.25991709397872
407 => 0.26458545086815
408 => 0.26471932263955
409 => 0.26292175095001
410 => 0.27011399884728
411 => 0.27306066867911
412 => 0.27187746848533
413 => 0.27297765219934
414 => 0.28222114420544
415 => 0.28372823672427
416 => 0.28439758766819
417 => 0.28350074607534
418 => 0.2731466062647
419 => 0.2736058563945
420 => 0.27023618365925
421 => 0.26738916528532
422 => 0.26750303108963
423 => 0.26896676862031
424 => 0.27535899626386
425 => 0.28881106249731
426 => 0.28932155857754
427 => 0.289940294719
428 => 0.28742358387982
429 => 0.28666451980905
430 => 0.28766592124946
501 => 0.2927178100507
502 => 0.30571263962193
503 => 0.30111939895597
504 => 0.2973850227965
505 => 0.30066107746894
506 => 0.30015675453068
507 => 0.29589976139913
508 => 0.29578028178028
509 => 0.28760975091779
510 => 0.28458929169192
511 => 0.28206516988532
512 => 0.27930889476639
513 => 0.2776748824847
514 => 0.28018546799467
515 => 0.28075966860517
516 => 0.27527022951011
517 => 0.27452203924562
518 => 0.27900483370843
519 => 0.27703212300077
520 => 0.27906110488447
521 => 0.27953184608577
522 => 0.27945604591027
523 => 0.27739630936709
524 => 0.27870912401749
525 => 0.27560392600043
526 => 0.27222748954253
527 => 0.27007353344182
528 => 0.26819392106313
529 => 0.26923683925454
530 => 0.26551902633151
531 => 0.26432962315264
601 => 0.2782643719532
602 => 0.28855812071597
603 => 0.28840844553218
604 => 0.28749733634424
605 => 0.2861436129027
606 => 0.29261877674913
607 => 0.29036295914002
608 => 0.29200425493052
609 => 0.29242203359417
610 => 0.29368652378215
611 => 0.29413847033775
612 => 0.29277237394966
613 => 0.28818758761663
614 => 0.27676273598312
615 => 0.27144443670692
616 => 0.26968930936249
617 => 0.269753104908
618 => 0.26799333896702
619 => 0.26851166890382
620 => 0.2678130849679
621 => 0.26649013599889
622 => 0.26915515088368
623 => 0.26946226902282
624 => 0.26884022270415
625 => 0.2689867371306
626 => 0.26383645929151
627 => 0.2642280237298
628 => 0.2620477431798
629 => 0.26163896686034
630 => 0.25612740748867
701 => 0.24636288114846
702 => 0.25177337660644
703 => 0.24523825892398
704 => 0.24276331083444
705 => 0.25447933015693
706 => 0.25330336676874
707 => 0.25129062862716
708 => 0.24831336942439
709 => 0.24720907502517
710 => 0.2404997318326
711 => 0.24010330804383
712 => 0.24342863969757
713 => 0.24189411355704
714 => 0.23973905768525
715 => 0.23193366377212
716 => 0.22315781673666
717 => 0.22342270439565
718 => 0.2262141380572
719 => 0.23433060790425
720 => 0.23115936271865
721 => 0.22885858795065
722 => 0.22842772199764
723 => 0.23382091147854
724 => 0.24145340450213
725 => 0.2450343994614
726 => 0.2414857422132
727 => 0.23740923583975
728 => 0.23765735389399
729 => 0.23930797215
730 => 0.23948142879022
731 => 0.23682804221273
801 => 0.23757495499199
802 => 0.23644032618116
803 => 0.22947711126341
804 => 0.22935116878614
805 => 0.22764228354832
806 => 0.22759053918247
807 => 0.22468329909154
808 => 0.22427655610601
809 => 0.2185040544486
810 => 0.22230353252025
811 => 0.21975504211134
812 => 0.21591386593699
813 => 0.2152516457167
814 => 0.21523173857723
815 => 0.21917576763701
816 => 0.22225744424436
817 => 0.2197993741931
818 => 0.21923971929012
819 => 0.22521536947738
820 => 0.22445491352179
821 => 0.22379636356867
822 => 0.24076999846579
823 => 0.22733404197547
824 => 0.2214751980481
825 => 0.21422376612371
826 => 0.21658486892318
827 => 0.21708238797485
828 => 0.19964400136552
829 => 0.19256925008993
830 => 0.19014146205852
831 => 0.18874423572256
901 => 0.18938096930912
902 => 0.18301286337553
903 => 0.18729233588166
904 => 0.18177809442576
905 => 0.18085361390079
906 => 0.19071376070736
907 => 0.19208574253336
908 => 0.18623244182233
909 => 0.18999120844212
910 => 0.18862822741502
911 => 0.18187262026869
912 => 0.18161460576658
913 => 0.17822487957163
914 => 0.17292061445686
915 => 0.17049642296697
916 => 0.16923388299125
917 => 0.16975483159165
918 => 0.16949142403799
919 => 0.16777251157468
920 => 0.1695899500883
921 => 0.16494714570344
922 => 0.16309834358777
923 => 0.162263282564
924 => 0.15814252644259
925 => 0.16470048194033
926 => 0.16599248178833
927 => 0.16728702727515
928 => 0.17855516191418
929 => 0.17799223775103
930 => 0.1830807980307
1001 => 0.1828830659355
1002 => 0.18143172611452
1003 => 0.17530876214365
1004 => 0.1777492664511
1005 => 0.17023777353134
1006 => 0.17586589475869
1007 => 0.17329745526649
1008 => 0.17499750278276
1009 => 0.1719406640614
1010 => 0.17363244482358
1011 => 0.16629886288232
1012 => 0.15945086725186
1013 => 0.16220670059901
1014 => 0.16520260661514
1015 => 0.17169849420076
1016 => 0.16782959714467
1017 => 0.16922099882523
1018 => 0.16456003611318
1019 => 0.15494313870003
1020 => 0.15499756929499
1021 => 0.15351821914348
1022 => 0.15223984462391
1023 => 0.16827398651209
1024 => 0.16627988750603
1025 => 0.16310255172108
1026 => 0.16735554193153
1027 => 0.16848010004721
1028 => 0.16851211463582
1029 => 0.1716149865078
1030 => 0.1732709897821
1031 => 0.17356286753672
1101 => 0.17844530346927
1102 => 0.18008183159297
1103 => 0.18682245932437
1104 => 0.17313048947412
1105 => 0.17284851236531
1106 => 0.16741539022559
1107 => 0.16396961827032
1108 => 0.16765132517935
1109 => 0.17091281489765
1110 => 0.1675167338025
1111 => 0.16796019029834
1112 => 0.16340122889813
1113 => 0.16503084307964
1114 => 0.16643448634548
1115 => 0.16565947703642
1116 => 0.16449925058988
1117 => 0.17064540993429
1118 => 0.17029861953708
1119 => 0.17602206441819
1120 => 0.18048389899048
1121 => 0.18848030419236
1122 => 0.18013563850217
1123 => 0.17983152571738
1124 => 0.18280427696995
1125 => 0.18008137648024
1126 => 0.18180215559841
1127 => 0.18820306007328
1128 => 0.18833830109842
1129 => 0.18607283967909
1130 => 0.18593498614584
1201 => 0.18637009279286
1202 => 0.18891852601473
1203 => 0.18802802514157
1204 => 0.18905853529672
1205 => 0.19034720402546
1206 => 0.19567768427179
1207 => 0.19696284501292
1208 => 0.19384057069141
1209 => 0.19412247710402
1210 => 0.19295466079943
1211 => 0.1918265648819
1212 => 0.19436235975934
1213 => 0.19899657473905
1214 => 0.19896774552818
1215 => 0.2000427933272
1216 => 0.20071253919982
1217 => 0.19783749963061
1218 => 0.19596595458919
1219 => 0.19668362404757
1220 => 0.19783119314034
1221 => 0.19631148285734
1222 => 0.18693112699237
1223 => 0.18977652774235
1224 => 0.18930291392457
1225 => 0.18862843025463
1226 => 0.19148950271157
1227 => 0.19121354529347
1228 => 0.18294754924487
1229 => 0.18347671149295
1230 => 0.18297972935382
1231 => 0.18458558031832
]
'min_raw' => 0.15223984462391
'max_raw' => 0.34103604531698
'avg_raw' => 0.24663794497044
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.152239'
'max' => '$0.341036'
'avg' => '$0.246637'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.03712447523305
'max_diff' => -0.24782382264001
'year' => 2034
]
9 => [
'items' => [
101 => 0.1799946552582
102 => 0.18140679288634
103 => 0.18229247236874
104 => 0.18281414438799
105 => 0.18469878143535
106 => 0.18447764103024
107 => 0.18468503503727
108 => 0.18747945425278
109 => 0.20161266771593
110 => 0.20238190734155
111 => 0.19859389008881
112 => 0.20010712826594
113 => 0.19720204187466
114 => 0.19915224583152
115 => 0.20048652584899
116 => 0.19445717101733
117 => 0.19410015175439
118 => 0.19118307503818
119 => 0.1927505468338
120 => 0.19025658650175
121 => 0.19086851713221
122 => 0.1891575057423
123 => 0.19223698558516
124 => 0.19568032255227
125 => 0.19655024545166
126 => 0.19426185282873
127 => 0.1926049057573
128 => 0.18969585253216
129 => 0.19453367287804
130 => 0.19594839897708
131 => 0.19452624192411
201 => 0.19419669706019
202 => 0.19357221013854
203 => 0.19432918491276
204 => 0.19594069407491
205 => 0.19518073611394
206 => 0.1956827017359
207 => 0.1937697264097
208 => 0.19783845138833
209 => 0.20430056584639
210 => 0.20432134260104
211 => 0.20356138054361
212 => 0.20325042044332
213 => 0.2040301876326
214 => 0.20445317934505
215 => 0.20697480345032
216 => 0.2096806065812
217 => 0.22230740915865
218 => 0.21876185352187
219 => 0.22996510394043
220 => 0.23882542046151
221 => 0.2414822419715
222 => 0.23903809119542
223 => 0.23067678342089
224 => 0.23026653777175
225 => 0.24276186163998
226 => 0.23923136032512
227 => 0.23881141842768
228 => 0.23434394614193
301 => 0.23698477557001
302 => 0.23640718743546
303 => 0.23549543630849
304 => 0.2405339548955
305 => 0.24996561189871
306 => 0.24849559970524
307 => 0.24739830379472
308 => 0.24259027253285
309 => 0.24548578126516
310 => 0.2444547460654
311 => 0.24888472759466
312 => 0.24626050467283
313 => 0.23920461330531
314 => 0.24032828726211
315 => 0.24015844620406
316 => 0.2436537631437
317 => 0.24260455575752
318 => 0.23995357162273
319 => 0.24993337552043
320 => 0.2492853425659
321 => 0.25020410513446
322 => 0.25060857283082
323 => 0.25668310359948
324 => 0.2591716444921
325 => 0.25973658684276
326 => 0.26210050822009
327 => 0.25967777032541
328 => 0.26937044928696
329 => 0.27581551521289
330 => 0.28330179094591
331 => 0.29424125191309
401 => 0.29835459043242
402 => 0.29761155264597
403 => 0.30590572710093
404 => 0.32081017422737
405 => 0.30062416754467
406 => 0.32188008159701
407 => 0.31515070461937
408 => 0.2991954728617
409 => 0.29816814403633
410 => 0.30897321222668
411 => 0.33293781352358
412 => 0.32693495270296
413 => 0.33294763205342
414 => 0.32593352220884
415 => 0.3255852125355
416 => 0.33260697239405
417 => 0.34901369703976
418 => 0.34121947715746
419 => 0.33004455173506
420 => 0.33829594276586
421 => 0.33114782422479
422 => 0.31504111251936
423 => 0.32693036242842
424 => 0.31898035960058
425 => 0.32130059307114
426 => 0.3380103165416
427 => 0.33599975840519
428 => 0.33860160680638
429 => 0.33400941248051
430 => 0.32971957885758
501 => 0.32171228583314
502 => 0.31934172112338
503 => 0.31999685992517
504 => 0.31934139646913
505 => 0.31486138961278
506 => 0.31389393255869
507 => 0.31228146174995
508 => 0.31278123387852
509 => 0.30974931701312
510 => 0.31547117056412
511 => 0.31653319700399
512 => 0.32069708485542
513 => 0.32112939350533
514 => 0.33272576190234
515 => 0.32633867705832
516 => 0.33062368500606
517 => 0.33024039356315
518 => 0.29954127111439
519 => 0.30377133932717
520 => 0.31035199799774
521 => 0.30738742018653
522 => 0.30319620076583
523 => 0.29981156636466
524 => 0.29468349915024
525 => 0.30190115527872
526 => 0.31139160557553
527 => 0.32137008698648
528 => 0.33335857858574
529 => 0.33068288682221
530 => 0.32114597047506
531 => 0.32157378957567
601 => 0.32421839891504
602 => 0.32079338953246
603 => 0.31978328740141
604 => 0.32407962639341
605 => 0.32410921291882
606 => 0.32016832569795
607 => 0.3157887507267
608 => 0.31577040014766
609 => 0.3149910970832
610 => 0.32607215849278
611 => 0.33216562184638
612 => 0.33286422759976
613 => 0.33211860011298
614 => 0.33240556253974
615 => 0.32885991047459
616 => 0.33696421966507
617 => 0.34440153521137
618 => 0.34240817576989
619 => 0.33941984659437
620 => 0.33703949846864
621 => 0.34184744140002
622 => 0.34163335126969
623 => 0.34433657674825
624 => 0.34421394282595
625 => 0.34330494977097
626 => 0.3424082082329
627 => 0.34596368706828
628 => 0.34493976626293
629 => 0.34391425502576
630 => 0.3418574352417
701 => 0.34213699121051
702 => 0.33914917801216
703 => 0.33776687891357
704 => 0.31698041707008
705 => 0.31142559524826
706 => 0.31317325527223
707 => 0.31374863033009
708 => 0.31133116475454
709 => 0.31479718939393
710 => 0.31425701312531
711 => 0.31635852299396
712 => 0.31504559086498
713 => 0.31509947405752
714 => 0.31896052750222
715 => 0.32008140774331
716 => 0.31951131900607
717 => 0.31991058961613
718 => 0.32911161230334
719 => 0.32780352110936
720 => 0.32710862373378
721 => 0.32730111505583
722 => 0.32965217362456
723 => 0.33031034166077
724 => 0.32752163744272
725 => 0.32883680647326
726 => 0.3344366292855
727 => 0.33639625034726
728 => 0.34265042010494
729 => 0.33999353763288
730 => 0.34487036039753
731 => 0.35986005094467
801 => 0.37183485296142
802 => 0.3608223301472
803 => 0.38281252906912
804 => 0.39993505323651
805 => 0.39927786223991
806 => 0.39629215410021
807 => 0.37679861556148
808 => 0.35886037076586
809 => 0.3738664742355
810 => 0.37390472787928
811 => 0.37261569028298
812 => 0.36460958848039
813 => 0.37233709529449
814 => 0.37295047672321
815 => 0.37260714623441
816 => 0.36646888675366
817 => 0.35709689906653
818 => 0.35892816302723
819 => 0.36192781075162
820 => 0.35624885181728
821 => 0.3544340803375
822 => 0.35780808579281
823 => 0.36867983437177
824 => 0.36662459327867
825 => 0.36657092262785
826 => 0.375364115582
827 => 0.36907008711663
828 => 0.35895126113029
829 => 0.35639612411782
830 => 0.34732710907009
831 => 0.35359111006628
901 => 0.35381654031055
902 => 0.35038581098148
903 => 0.35922964590752
904 => 0.35914814841175
905 => 0.36754405344291
906 => 0.38359387050457
907 => 0.3788471498359
908 => 0.37332723013999
909 => 0.37392739846171
910 => 0.3805097636093
911 => 0.37652991538029
912 => 0.37796109655193
913 => 0.38050759734519
914 => 0.38204396449983
915 => 0.3737063388715
916 => 0.3717624395028
917 => 0.36778590361042
918 => 0.36674849962165
919 => 0.36998730513286
920 => 0.36913399430934
921 => 0.35379759377143
922 => 0.35219485458429
923 => 0.35224400830697
924 => 0.34821384441482
925 => 0.34206687712912
926 => 0.35822074013959
927 => 0.35692335886668
928 => 0.35549115035073
929 => 0.35566658772186
930 => 0.36267843214949
1001 => 0.35861120827484
1002 => 0.3694245895505
1003 => 0.36720168344022
1004 => 0.364921768176
1005 => 0.36460661443857
1006 => 0.36372904157507
1007 => 0.36071951769567
1008 => 0.35708533676695
1009 => 0.35468573573044
1010 => 0.32717884259428
1011 => 0.33228396196012
1012 => 0.33815693644424
1013 => 0.34018426370169
1014 => 0.33671638014104
1015 => 0.36085645087565
1016 => 0.36526707441837
1017 => 0.35190700800961
1018 => 0.34940788507245
1019 => 0.36102029295935
1020 => 0.35401659144442
1021 => 0.35717035780775
1022 => 0.3503536399482
1023 => 0.36420468436506
1024 => 0.36409916261345
1025 => 0.35871079349526
1026 => 0.36326500617599
1027 => 0.36247359964905
1028 => 0.35639014418558
1029 => 0.36439754075411
1030 => 0.36440151232291
1031 => 0.3592153241999
1101 => 0.3531589918748
1102 => 0.35207626269925
1103 => 0.35126057170968
1104 => 0.35696974782708
1105 => 0.36208857728181
1106 => 0.37161344983163
1107 => 0.37400822909604
1108 => 0.38335521199453
1109 => 0.37778953877482
1110 => 0.38025672962558
1111 => 0.38293521429954
1112 => 0.38421937835025
1113 => 0.38212690194167
1114 => 0.39664661375467
1115 => 0.39787252230416
1116 => 0.39828355883674
1117 => 0.39338759370763
1118 => 0.39773635665719
1119 => 0.39570171448898
1120 => 0.40099528817078
1121 => 0.40182538811583
1122 => 0.40112232299403
1123 => 0.40138580981883
1124 => 0.38899579723911
1125 => 0.38835330972433
1126 => 0.37959294687145
1127 => 0.38316285948733
1128 => 0.37648907896231
1129 => 0.37860540351435
1130 => 0.37953825921181
1201 => 0.37905098833455
1202 => 0.38336469699038
1203 => 0.37969716340047
1204 => 0.37001793925834
1205 => 0.36033607801808
1206 => 0.36021453013688
1207 => 0.35766546697136
1208 => 0.3558229611869
1209 => 0.35617789316739
1210 => 0.35742871976115
1211 => 0.35575026087139
1212 => 0.35610844517555
1213 => 0.36205669119406
1214 => 0.36324956951213
1215 => 0.3591957028997
1216 => 0.34291884348064
1217 => 0.33892446135179
1218 => 0.34179554401397
1219 => 0.34042335142285
1220 => 0.27474821355146
1221 => 0.29017761302126
1222 => 0.2810099877892
1223 => 0.28523485127829
1224 => 0.27587707986141
1225 => 0.28034309886436
1226 => 0.27951838822742
1227 => 0.30432840598572
1228 => 0.30394103168349
1229 => 0.30412644726258
1230 => 0.29527607857505
1231 => 0.30937495620798
]
'min_raw' => 0.1799946552582
'max_raw' => 0.40182538811583
'avg_raw' => 0.29091002168702
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.179994'
'max' => '$0.401825'
'avg' => '$0.29091'
'bar_min_pct' => 61.631153054958
'bar_max_pct' => 60.119598047091
'min_diff' => 0.027754810634295
'max_diff' => 0.060789342798848
'year' => 2035
]
10 => [
'items' => [
101 => 0.3163205703092
102 => 0.3150351219906
103 => 0.3153586416385
104 => 0.30979950221578
105 => 0.30418027188387
106 => 0.29794768065243
107 => 0.30952706478888
108 => 0.30823963493959
109 => 0.31119253581123
110 => 0.31870259413519
111 => 0.31980847875133
112 => 0.3212947988902
113 => 0.32076205892388
114 => 0.33345408626268
115 => 0.33191699800726
116 => 0.33562093845235
117 => 0.32800165193816
118 => 0.31937970601804
119 => 0.3210184560648
120 => 0.3208606312573
121 => 0.31885134031496
122 => 0.31703744229367
123 => 0.31401781315084
124 => 0.3235723665798
125 => 0.32318446915925
126 => 0.32946407751657
127 => 0.32835409574255
128 => 0.32094136579705
129 => 0.32120611289722
130 => 0.32298666437903
131 => 0.32914917338754
201 => 0.33097862563688
202 => 0.33013115046392
203 => 0.33213706133765
204 => 0.33372245150467
205 => 0.33233616193353
206 => 0.35196309883487
207 => 0.34381262624816
208 => 0.3477851098763
209 => 0.34873252381438
210 => 0.34630574293396
211 => 0.34683202481041
212 => 0.34762919845001
213 => 0.35246948068707
214 => 0.36517178182405
215 => 0.37079754453013
216 => 0.38772292920162
217 => 0.37033040325179
218 => 0.36929840273935
219 => 0.37234717561634
220 => 0.38228416815242
221 => 0.39033716726867
222 => 0.39300881166419
223 => 0.3933619135751
224 => 0.39837409606867
225 => 0.40124698560231
226 => 0.39776548528046
227 => 0.39481527828597
228 => 0.38424800302489
229 => 0.3854711939101
301 => 0.39389776612913
302 => 0.40580079571113
303 => 0.41601483339164
304 => 0.41243823339108
305 => 0.43972516670927
306 => 0.44243055469064
307 => 0.44205675754728
308 => 0.44822003398455
309 => 0.43598718538598
310 => 0.43075740560981
311 => 0.39545314652445
312 => 0.40537220328543
313 => 0.41979013481328
314 => 0.4178818675111
315 => 0.40741118024316
316 => 0.41600689043642
317 => 0.41316487983382
318 => 0.41092326815642
319 => 0.42119252580839
320 => 0.40990105518219
321 => 0.41967749375625
322 => 0.40713911016071
323 => 0.41245457099861
324 => 0.40943725834711
325 => 0.41138982942056
326 => 0.39997513882273
327 => 0.40613422879337
328 => 0.39971890043075
329 => 0.3997158587298
330 => 0.39957424000063
331 => 0.40712184536933
401 => 0.40736797250944
402 => 0.40179028073817
403 => 0.400986448214
404 => 0.40395863836151
405 => 0.40047898211661
406 => 0.40210709137291
407 => 0.40052829588741
408 => 0.4001728757691
409 => 0.39734082779668
410 => 0.39612070366139
411 => 0.39659914577356
412 => 0.39496597619089
413 => 0.39398193244301
414 => 0.39937848893115
415 => 0.396495326496
416 => 0.39893660293759
417 => 0.39615446031875
418 => 0.38651034188001
419 => 0.38096390738118
420 => 0.36274706166064
421 => 0.36791333650906
422 => 0.37133858207846
423 => 0.37020653843821
424 => 0.3726386062202
425 => 0.37278791542958
426 => 0.37199722540166
427 => 0.37108170764299
428 => 0.37063608422937
429 => 0.37395739606203
430 => 0.3758855293711
501 => 0.37168235129522
502 => 0.37069760548075
503 => 0.37494725057929
504 => 0.37753953163446
505 => 0.39667947846893
506 => 0.39526152938622
507 => 0.39882030332537
508 => 0.39841963999366
509 => 0.40214980203904
510 => 0.40824704049913
511 => 0.39584964989508
512 => 0.39800140823443
513 => 0.39747384678098
514 => 0.40323362439572
515 => 0.40325160579274
516 => 0.39979833139046
517 => 0.40167040746692
518 => 0.40062546595876
519 => 0.40251381649631
520 => 0.39524259181174
521 => 0.40409815859735
522 => 0.40911869432467
523 => 0.40918840446811
524 => 0.41156809855743
525 => 0.41398600557476
526 => 0.41862696753921
527 => 0.41385657166446
528 => 0.40527509387446
529 => 0.40589464885289
530 => 0.40086333156446
531 => 0.40094790891706
601 => 0.40049642838043
602 => 0.40185135545672
603 => 0.39553992211082
604 => 0.39702120290199
605 => 0.39494740111999
606 => 0.39799690019436
607 => 0.39471614329059
608 => 0.39747359237487
609 => 0.39866361598876
610 => 0.40305482874339
611 => 0.39406755759635
612 => 0.37574190334276
613 => 0.37959417804395
614 => 0.37389636117125
615 => 0.37442371581593
616 => 0.37548905612607
617 => 0.37203593962326
618 => 0.37269468543179
619 => 0.37267115039598
620 => 0.37246833817208
621 => 0.37157004920402
622 => 0.37026735247926
623 => 0.37545689528178
624 => 0.3763386997288
625 => 0.37829884178208
626 => 0.38413089495559
627 => 0.38354813531427
628 => 0.38449864046773
629 => 0.38242369305459
630 => 0.37451996667534
701 => 0.37494917704371
702 => 0.36959691687252
703 => 0.37816197245599
704 => 0.37613365424061
705 => 0.37482598429217
706 => 0.37446917443126
707 => 0.38031568413654
708 => 0.38206505147317
709 => 0.38097496314465
710 => 0.37873916017992
711 => 0.38303256282802
712 => 0.38418129625254
713 => 0.38443845530263
714 => 0.39204554161677
715 => 0.3848636069234
716 => 0.38659236998639
717 => 0.40007968590661
718 => 0.38784855148934
719 => 0.39432765617702
720 => 0.39401053771819
721 => 0.39732502843546
722 => 0.39373865273664
723 => 0.39378311016166
724 => 0.39672615337554
725 => 0.39259317996228
726 => 0.39156979762302
727 => 0.39015600225094
728 => 0.39324297272322
729 => 0.39509347190968
730 => 0.41000713631068
731 => 0.41964204365945
801 => 0.41922376692118
802 => 0.42304603332772
803 => 0.42132406730363
804 => 0.41576338478013
805 => 0.42525479179475
806 => 0.42225131347798
807 => 0.42249891658119
808 => 0.42248970078132
809 => 0.42448675129334
810 => 0.42307165797859
811 => 0.42028236379886
812 => 0.42213402744627
813 => 0.42763280649722
814 => 0.44470118539451
815 => 0.45425287635137
816 => 0.44412616160545
817 => 0.45111143383507
818 => 0.44692275960429
819 => 0.44616155289429
820 => 0.45054882006206
821 => 0.45494376656022
822 => 0.45466382746817
823 => 0.4514733219935
824 => 0.44967108640693
825 => 0.46331821806159
826 => 0.47337319219192
827 => 0.47268751036564
828 => 0.47571388695119
829 => 0.48459942220868
830 => 0.48541180419547
831 => 0.48530946273752
901 => 0.48329588921997
902 => 0.49204485261352
903 => 0.49934339179979
904 => 0.48282980512838
905 => 0.48911796275413
906 => 0.49194091930412
907 => 0.49608585705296
908 => 0.50307906180749
909 => 0.51067553702686
910 => 0.51174976191399
911 => 0.51098754795017
912 => 0.50597746833879
913 => 0.51428962216862
914 => 0.51915868693814
915 => 0.52205810358182
916 => 0.52941054177328
917 => 0.49195835292272
918 => 0.46544783215974
919 => 0.46130783152603
920 => 0.46972668561215
921 => 0.47194667029555
922 => 0.4710517972533
923 => 0.44121179590346
924 => 0.46115073009446
925 => 0.48260334677077
926 => 0.48342742914584
927 => 0.49416705760706
928 => 0.49766432086628
929 => 0.50631112945285
930 => 0.50577026922148
1001 => 0.50787562951154
1002 => 0.50739164364061
1003 => 0.52340803574686
1004 => 0.54107649469729
1005 => 0.5404646921461
1006 => 0.53792464212826
1007 => 0.54169704954764
1008 => 0.55993279265162
1009 => 0.55825393764844
1010 => 0.5598848022795
1011 => 0.58138577112054
1012 => 0.60934008909104
1013 => 0.5963525018261
1014 => 0.62453182911345
1015 => 0.64226922191888
1016 => 0.67294420869522
1017 => 0.66910354927333
1018 => 0.68104509652191
1019 => 0.66222796733833
1020 => 0.61902003516359
1021 => 0.61218221450361
1022 => 0.62587170462608
1023 => 0.65952598029124
1024 => 0.62481181171998
1025 => 0.63183444281012
1026 => 0.62981192458372
1027 => 0.62970415318258
1028 => 0.63381734922597
1029 => 0.62785094383516
1030 => 0.6035427349372
1031 => 0.61468304382596
1101 => 0.61038123556244
1102 => 0.61515441255187
1103 => 0.64091328015589
1104 => 0.62952467077345
1105 => 0.61752769592454
1106 => 0.63257456472691
1107 => 0.65173439937742
1108 => 0.65053541135853
1109 => 0.64820887346376
1110 => 0.66132344576302
1111 => 0.68298487699225
1112 => 0.68883987481083
1113 => 0.69316191450034
1114 => 0.69375785075207
1115 => 0.69989636451716
1116 => 0.66688802889763
1117 => 0.71927310524
1118 => 0.7283185608158
1119 => 0.72661839006327
1120 => 0.73667203324481
1121 => 0.73371399638449
1122 => 0.72942826507565
1123 => 0.74536542798962
1124 => 0.72709475677148
1125 => 0.70116183919088
1126 => 0.68693452771121
1127 => 0.70567019915212
1128 => 0.71711141991625
1129 => 0.72467333904304
1130 => 0.72696157120177
1201 => 0.66945037202909
1202 => 0.63845502539236
1203 => 0.65832268722413
1204 => 0.68256260585167
1205 => 0.66675337492575
1206 => 0.66737306684721
1207 => 0.64483325813965
1208 => 0.68455687878183
1209 => 0.6787694813825
1210 => 0.70879450932795
1211 => 0.70162879544286
1212 => 0.7261130401675
1213 => 0.71966551797511
1214 => 0.74642882211962
1215 => 0.7571054287304
1216 => 0.77503311291103
1217 => 0.78822079037311
1218 => 0.79596484681891
1219 => 0.79549992271713
1220 => 0.826185732429
1221 => 0.80809138252245
1222 => 0.78536061452897
1223 => 0.78494948665063
1224 => 0.79672207349192
1225 => 0.82139418585979
1226 => 0.82779130563215
1227 => 0.83136642287377
1228 => 0.8258910063675
1229 => 0.80625088637768
1230 => 0.79777038214374
1231 => 0.80499601745491
]
'min_raw' => 0.29794768065243
'max_raw' => 0.83136642287377
'avg_raw' => 0.5646570517631
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$0.297947'
'max' => '$0.831366'
'avg' => '$0.564657'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.11795302539423
'max_diff' => 0.42954103475794
'year' => 2036
]
11 => [
'items' => [
101 => 0.79615968637527
102 => 0.81141367285535
103 => 0.8323606543682
104 => 0.82803518551913
105 => 0.84249457937101
106 => 0.85745853083512
107 => 0.87885765350189
108 => 0.88445217657421
109 => 0.89369971047208
110 => 0.90321846050964
111 => 0.90627562648419
112 => 0.91211270491251
113 => 0.91208194062793
114 => 0.92967236935235
115 => 0.94907515696563
116 => 0.95639926011407
117 => 0.97324063145051
118 => 0.94440037322889
119 => 0.966276040383
120 => 0.98600843973947
121 => 0.96248265975535
122 => 0.99490746665974
123 => 0.99616644843564
124 => 1.0151755785198
125 => 0.99590618347083
126 => 0.98446407820084
127 => 1.0174970073852
128 => 1.03348060129
129 => 1.0286662127271
130 => 0.99202847804753
131 => 0.97070374499767
201 => 0.91489280537237
202 => 0.9810032742117
203 => 1.0132037551145
204 => 0.99194508658105
205 => 1.0026667224464
206 => 1.0611604912259
207 => 1.083431131186
208 => 1.0787989937578
209 => 1.0795817487317
210 => 1.0915985818135
211 => 1.144887837489
212 => 1.112955680253
213 => 1.1373666179848
214 => 1.1503140913376
215 => 1.1623404261582
216 => 1.132807548801
217 => 1.0943857092833
218 => 1.082215899869
219 => 0.98983133095796
220 => 0.9850223129403
221 => 0.98232286539882
222 => 0.96530323049425
223 => 0.95193045952961
224 => 0.94129593555938
225 => 0.9133877689238
226 => 0.92280595591048
227 => 0.87832616318043
228 => 0.90678275830205
301 => 0.83579193510275
302 => 0.89491520216683
303 => 0.86273709590894
304 => 0.88434382883372
305 => 0.88426844497802
306 => 0.84448359924259
307 => 0.82153653051093
308 => 0.83615929582002
309 => 0.85183606098791
310 => 0.85437956339343
311 => 0.87470489863904
312 => 0.88037726281448
313 => 0.86318973454556
314 => 0.83432080808412
315 => 0.841026401271
316 => 0.82140064187903
317 => 0.78700725343852
318 => 0.81170918546745
319 => 0.8201435111294
320 => 0.82386858983466
321 => 0.79004664241077
322 => 0.77941905221998
323 => 0.77376101237653
324 => 0.82995481938952
325 => 0.83303324298804
326 => 0.81728359261279
327 => 0.88847350575208
328 => 0.87236103588215
329 => 0.89036261237782
330 => 0.840417938974
331 => 0.84232589275745
401 => 0.81868128396918
402 => 0.83192068495728
403 => 0.8225635030647
404 => 0.83085107219175
405 => 0.83581860695557
406 => 0.8594593358962
407 => 0.89518514131671
408 => 0.85592819934131
409 => 0.83882338755286
410 => 0.8494351165853
411 => 0.87769554939598
412 => 0.92051155172911
413 => 0.89516361659555
414 => 0.90641259977197
415 => 0.90887000216359
416 => 0.89017937322767
417 => 0.92120070187801
418 => 0.93782528391856
419 => 0.95487866511962
420 => 0.96968563819161
421 => 0.94806716965603
422 => 0.97120202987484
423 => 0.95255941639106
424 => 0.93583506485814
425 => 0.93586042879591
426 => 0.92536899877552
427 => 0.90504053110577
428 => 0.90129164977282
429 => 0.92079380389835
430 => 0.93643268464617
501 => 0.93772077776974
502 => 0.94637926570643
503 => 0.95150326967785
504 => 1.0017254743433
505 => 1.0219252605197
506 => 1.0466251766937
507 => 1.0562471860545
508 => 1.0852059845492
509 => 1.0618194028461
510 => 1.0567595687861
511 => 0.98651499598883
512 => 0.99801754084921
513 => 1.0164342250012
514 => 0.98681868032721
515 => 1.0056029268641
516 => 1.0093113350353
517 => 0.98581235545171
518 => 0.99836417577826
519 => 0.96503026234632
520 => 0.89591172953845
521 => 0.92127765056361
522 => 0.93995550651482
523 => 0.91329990310941
524 => 0.96107904049929
525 => 0.93316745479772
526 => 0.92432082212271
527 => 0.88980695400524
528 => 0.90609617119608
529 => 0.9281275706858
530 => 0.91451472722625
531 => 0.94276342138355
601 => 0.98277110596183
602 => 1.0112829644911
603 => 1.0134717509558
604 => 0.99514053606767
605 => 1.0245164249142
606 => 1.0247303961941
607 => 0.99159427357114
608 => 0.9712985829673
609 => 0.96668735935961
610 => 0.97820710001526
611 => 0.99219419183267
612 => 1.0142479372065
613 => 1.0275745536524
614 => 1.062323301452
615 => 1.0717253162819
616 => 1.0820552800671
617 => 1.0958592973271
618 => 1.1124345593251
619 => 1.0761688297037
620 => 1.0776097347493
621 => 1.0438395894591
622 => 1.0077513460878
623 => 1.0351378243436
624 => 1.0709420015925
625 => 1.0627284837715
626 => 1.0618042952297
627 => 1.0633585240085
628 => 1.0571657997999
629 => 1.0291563377173
630 => 1.015090161208
701 => 1.0332391175694
702 => 1.0428844801583
703 => 1.0578435963698
704 => 1.0559995695481
705 => 1.0945326464171
706 => 1.1095054349086
707 => 1.1056747548907
708 => 1.1063796922045
709 => 1.1334872105748
710 => 1.1636363460889
711 => 1.1918749900267
712 => 1.2206005515182
713 => 1.1859707659624
714 => 1.1683878965255
715 => 1.1865289296202
716 => 1.1769030421066
717 => 1.2322162469836
718 => 1.236046013278
719 => 1.2913552183807
720 => 1.3438502401208
721 => 1.3108790575118
722 => 1.3419693976574
723 => 1.3755961353575
724 => 1.4404675681224
725 => 1.4186211517717
726 => 1.4018871392241
727 => 1.3860735782247
728 => 1.4189790883323
729 => 1.4613115014073
730 => 1.4704294977289
731 => 1.4852041351125
801 => 1.4696704104603
802 => 1.4883790708202
803 => 1.5544288628925
804 => 1.5365816260369
805 => 1.5112356806155
806 => 1.5633756479671
807 => 1.5822448994627
808 => 1.7146791883622
809 => 1.8818829486854
810 => 1.8126594939925
811 => 1.7696902618377
812 => 1.7797890506379
813 => 1.8408462037035
814 => 1.860455823411
815 => 1.8071501172047
816 => 1.8259785938036
817 => 1.9297253510382
818 => 1.9853821577001
819 => 1.9097927385468
820 => 1.7012445290229
821 => 1.5089535555463
822 => 1.5599577806877
823 => 1.554175484402
824 => 1.6656384323791
825 => 1.5361559753404
826 => 1.5383361278407
827 => 1.6521040115405
828 => 1.6217526906447
829 => 1.5725874378969
830 => 1.5093125163009
831 => 1.3923429715088
901 => 1.2887397837493
902 => 1.4919294933348
903 => 1.483167583581
904 => 1.4704790398151
905 => 1.4987160209222
906 => 1.6358267859709
907 => 1.6326659390523
908 => 1.6125582436344
909 => 1.6278097533878
910 => 1.5699137744972
911 => 1.5848348865242
912 => 1.5089230956737
913 => 1.5432383954946
914 => 1.5724819513458
915 => 1.5783530281412
916 => 1.5915808639458
917 => 1.478550455285
918 => 1.5292977903752
919 => 1.5591070953585
920 => 1.4244275709723
921 => 1.556444914189
922 => 1.4765828473401
923 => 1.4494764623636
924 => 1.4859716387398
925 => 1.4717494330133
926 => 1.4595220156856
927 => 1.452698906723
928 => 1.479496936428
929 => 1.4782467763117
930 => 1.4343999984408
1001 => 1.3772036641316
1002 => 1.3964006313314
1003 => 1.3894261931752
1004 => 1.3641499295766
1005 => 1.3811830793743
1006 => 1.3061777079448
1007 => 1.1771348648402
1008 => 1.2623845196843
1009 => 1.2591025007066
1010 => 1.2574475579103
1011 => 1.3215103173982
1012 => 1.3153521612528
1013 => 1.304175047548
1014 => 1.3639446531182
1015 => 1.3421279430704
1016 => 1.4093619027743
1017 => 1.4536465370551
1018 => 1.4424145213437
1019 => 1.484064433931
1020 => 1.3968428906833
1021 => 1.4258143886293
1022 => 1.4317853742031
1023 => 1.3632071054632
1024 => 1.3163597117574
1025 => 1.3132355246966
1026 => 1.2320085999791
1027 => 1.2753993675223
1028 => 1.3135814473284
1029 => 1.2952951941504
1030 => 1.2895063126805
1031 => 1.319080452655
1101 => 1.3213786166164
1102 => 1.2689802347481
1103 => 1.2798755175794
1104 => 1.3253106581763
1105 => 1.2787306686109
1106 => 1.1882333576835
1107 => 1.1657887733503
1108 => 1.1627942520645
1109 => 1.1019227592504
1110 => 1.1672886277984
1111 => 1.1387546744808
1112 => 1.2288930911218
1113 => 1.1774065109585
1114 => 1.1751870273926
1115 => 1.1718319524553
1116 => 1.1194373440205
1117 => 1.1309084334166
1118 => 1.1690400816657
1119 => 1.1826458833447
1120 => 1.1812266867605
1121 => 1.1688532157866
1122 => 1.174517727436
1123 => 1.1562703617665
1124 => 1.1498268371625
1125 => 1.1294893010813
1126 => 1.0995987414296
1127 => 1.1037552070786
1128 => 1.0445341871182
1129 => 1.0122674323464
1130 => 1.0033364198946
1201 => 0.99139349679124
1202 => 1.004685404838
1203 => 1.0443664214094
1204 => 0.99650269662698
1205 => 0.91444369773741
1206 => 0.91937558339241
1207 => 0.93045606616918
1208 => 0.90980765981939
1209 => 0.89026567609869
1210 => 0.90725584545258
1211 => 0.8724863658584
1212 => 0.93465779166499
1213 => 0.93297622883032
1214 => 0.95614989171584
1215 => 0.97064085868958
1216 => 0.93724387132137
1217 => 0.92884461931332
1218 => 0.93362921498182
1219 => 0.8545505064
1220 => 0.94968747413122
1221 => 0.95051022257881
1222 => 0.94346535086549
1223 => 0.99412284915803
1224 => 1.1010259710252
1225 => 1.0608047164107
1226 => 1.0452298309301
1227 => 1.0156219622462
1228 => 1.0550726893261
1229 => 1.0520434890136
1230 => 1.0383442964103
1231 => 1.0300589819797
]
'min_raw' => 0.77376101237653
'max_raw' => 1.9853821577001
'avg_raw' => 1.3795715850383
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$0.773761'
'max' => '$1.98'
'avg' => '$1.37'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 0.4758133317241
'max_diff' => 1.1540157348263
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.024287474021595
]
1 => [
'year' => 2028
'avg' => 0.041684356125143
]
2 => [
'year' => 2029
'avg' => 0.11387414805966
]
3 => [
'year' => 2030
'avg' => 0.087853735641561
]
4 => [
'year' => 2031
'avg' => 0.08628325599361
]
5 => [
'year' => 2032
'avg' => 0.15128170209681
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.024287474021595
'min' => '$0.024287'
'max_raw' => 0.15128170209681
'max' => '$0.151281'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.15128170209681
]
1 => [
'year' => 2033
'avg' => 0.38911209390697
]
2 => [
'year' => 2034
'avg' => 0.24663794497044
]
3 => [
'year' => 2035
'avg' => 0.29091002168702
]
4 => [
'year' => 2036
'avg' => 0.5646570517631
]
5 => [
'year' => 2037
'avg' => 1.3795715850383
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.15128170209681
'min' => '$0.151281'
'max_raw' => 1.3795715850383
'max' => '$1.37'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 1.3795715850383
]
]
]
]
'prediction_2025_max_price' => '$0.041527'
'last_price' => 0.04026582
'sma_50day_nextmonth' => '$0.036252'
'sma_200day_nextmonth' => '$0.065957'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'increase'
'sma_200day_direction_label' => 'aumentar'
'sma_200day_date_nextmonth' => '4 de fev. de 2026'
'sma_50day_date_nextmonth' => '4 de fev. de 2026'
'daily_sma3' => '$0.038843'
'daily_sma3_action' => 'BUY'
'daily_sma5' => '$0.037455'
'daily_sma5_action' => 'BUY'
'daily_sma10' => '$0.03579'
'daily_sma10_action' => 'BUY'
'daily_sma21' => '$0.035132'
'daily_sma21_action' => 'BUY'
'daily_sma50' => '$0.04001'
'daily_sma50_action' => 'BUY'
'daily_sma100' => '$0.059793'
'daily_sma100_action' => 'SELL'
'daily_sma200' => '$0.07121'
'daily_sma200_action' => 'SELL'
'daily_ema3' => '$0.038847'
'daily_ema3_action' => 'BUY'
'daily_ema5' => '$0.037857'
'daily_ema5_action' => 'BUY'
'daily_ema10' => '$0.036623'
'daily_ema10_action' => 'BUY'
'daily_ema21' => '$0.03662'
'daily_ema21_action' => 'BUY'
'daily_ema50' => '$0.042483'
'daily_ema50_action' => 'SELL'
'daily_ema100' => '$0.053871'
'daily_ema100_action' => 'SELL'
'daily_ema200' => '$0.074149'
'daily_ema200_action' => 'SELL'
'weekly_sma21' => '$0.06721'
'weekly_sma21_action' => 'SELL'
'weekly_sma50' => '$0.08565'
'weekly_sma50_action' => 'SELL'
'weekly_sma100' => '—'
'weekly_sma100_action' => '—'
'weekly_sma200' => '—'
'weekly_sma200_action' => '—'
'weekly_ema3' => '$0.038864'
'weekly_ema3_action' => 'BUY'
'weekly_ema5' => '$0.039734'
'weekly_ema5_action' => 'BUY'
'weekly_ema10' => '$0.046216'
'weekly_ema10_action' => 'SELL'
'weekly_ema21' => '$0.0605085'
'weekly_ema21_action' => 'SELL'
'weekly_ema50' => '$0.114165'
'weekly_ema50_action' => 'SELL'
'weekly_ema100' => '$0.201493'
'weekly_ema100_action' => 'SELL'
'weekly_ema200' => '$0.100746'
'weekly_ema200_action' => 'SELL'
'rsi_14' => '59.25'
'rsi_14_action' => 'NEUTRAL'
'stoch_rsi_14' => 123.95
'stoch_rsi_14_action' => 'SELL'
'momentum_10' => 0.01
'momentum_10_action' => 'BUY'
'vwma_10' => '0.036734'
'vwma_10_action' => 'BUY'
'hma_9' => '0.039556'
'hma_9_action' => 'BUY'
'stochastic_fast_14' => 100
'stochastic_fast_14_action' => 'SELL'
'cci_20' => 256.53
'cci_20_action' => 'SELL'
'adx_14' => 24.41
'adx_14_action' => 'NEUTRAL'
'ao_5_34' => '0.000520'
'ao_5_34_action' => 'BUY'
'macd_12_26' => 0
'macd_12_26_action' => 'BUY'
'williams_percent_r_14' => -0
'williams_percent_r_14_action' => 'SELL'
'ultimate_oscillator' => 76.48
'ultimate_oscillator_action' => 'SELL'
'ichimoku_cloud' => '-0.013498'
'ichimoku_cloud_action' => 'SELL'
'sell_signals' => 13
'buy_signals' => 20
'sell_pct' => 39.39
'buy_pct' => 60.61
'overall_action' => 'bullish'
'overall_action_label' => 'Altista'
'overall_action_dir' => 1
'last_updated' => 1767708098
'last_updated_date' => '6 de janeiro de 2026'
]
Previsão de preço de Wormhole para 2026
A previsão de preço para Wormhole em 2026 sugere que o preço médio poderia variar entre $0.013911 na extremidade inferior e $0.041527 na extremidade superior. No mercado de criptomoedas, comparado ao preço médio de hoje, Wormhole poderia potencialmente ganhar 3.13% até 2026 se W atingir a meta de preço prevista.
Previsão de preço de Wormhole 2027-2032
A previsão de preço de W para 2027-2032 está atualmente dentro de uma faixa de preço entre $0.024287 na extremidade inferior e $0.151281 na extremidade superior. Considerando a volatilidade de preços no mercado, se Wormhole atingir a meta de preço superior, poderia ganhar 275.71% até 2032 em comparação com o preço de hoje.
| Previsão de Preço de Wormhole | Potencial Mínimo ($) | Preço Médio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2027 | $0.013392 | $0.024287 | $0.035182 |
| 2028 | $0.024169 | $0.041684 | $0.059199 |
| 2029 | $0.053093 | $0.113874 | $0.174654 |
| 2030 | $0.045153 | $0.087853 | $0.130553 |
| 2031 | $0.053386 | $0.086283 | $0.11918 |
| 2032 | $0.081489 | $0.151281 | $0.221073 |
Previsão de preço de Wormhole 2032-2037
A previsão de preço de Wormhole para 2032-2037 é atualmente estimada entre $0.151281 na extremidade inferior e $1.37 na extremidade superior. Comparado ao preço atual, Wormhole poderia potencialmente ganhar 3326.16% até 2037 se atingir a meta de preço superior. Por favor, note que esta informação é apenas para fins gerais e não deve ser considerada como aconselhamento de investimento a longo prazo.
| Previsão de Preço de Wormhole | Potencial Mínimo ($) | Preço Médio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2032 | $0.081489 | $0.151281 | $0.221073 |
| 2033 | $0.189364 | $0.389112 | $0.588859 |
| 2034 | $0.152239 | $0.246637 | $0.341036 |
| 2035 | $0.179994 | $0.29091 | $0.401825 |
| 2036 | $0.297947 | $0.564657 | $0.831366 |
| 2037 | $0.773761 | $1.37 | $1.98 |
Wormhole Histograma de preços potenciais
Previsão de preço de Wormhole baseada na análise técnica
Em 6 de janeiro de 2026, o sentimento geral de previsão de preço para Wormhole é Altista, com 20 indicadores técnicos mostrando sinais de alta e 13 indicando sinais de baixa. A previsão de preço de W foi atualizada pela última vez em 6 de janeiro de 2026.
Médias Móveis Simples de 50 e 200 dias e Índice de Força Relativa de 14 dias - RSI (14) de Wormhole
De acordo com nossos indicadores técnicos, o SMA de 200 dias de Wormhole está projetado para aumentar no próximo mês, alcançando $0.065957 até 4 de fev. de 2026. O SMA de 50 dias de curto prazo para Wormhole é esperado para alcançar $0.036252 até 4 de fev. de 2026.
O oscilador de momentum Índice de Força Relativa (RSI) é uma ferramenta comumente usada para identificar se uma criptomoeda está sobrevendida (abaixo de 30) ou sobrecomprada (acima de 70). No momento, o RSI está em 59.25, sugerindo que o mercado de W está em um estado NEUTRAL.
Médias Móveis e Osciladores Populares de W para Sábado, 19 de Outubro de 2024
Médias móveis (MA) são indicadores amplamente utilizados nos mercados financeiros, projetados para suavizar movimentos de preços ao longo de um período definido. Como indicadores atrasados, eles se baseiam em dados históricos de preços. A tabela abaixo destaca dois tipos: a média móvel simples (SMA) e a média móvel exponencial (EMA).
Média Móvel Simples Diária (SMA)
| Período | Valor | Ação |
|---|---|---|
| SMA 3 | $0.038843 | BUY |
| SMA 5 | $0.037455 | BUY |
| SMA 10 | $0.03579 | BUY |
| SMA 21 | $0.035132 | BUY |
| SMA 50 | $0.04001 | BUY |
| SMA 100 | $0.059793 | SELL |
| SMA 200 | $0.07121 | SELL |
Média Móvel Exponencial Diária (EMA)
| Período | Valor | Ação |
|---|---|---|
| EMA 3 | $0.038847 | BUY |
| EMA 5 | $0.037857 | BUY |
| EMA 10 | $0.036623 | BUY |
| EMA 21 | $0.03662 | BUY |
| EMA 50 | $0.042483 | SELL |
| EMA 100 | $0.053871 | SELL |
| EMA 200 | $0.074149 | SELL |
Média Móvel Simples Semanal (SMA)
| Período | Valor | Ação |
|---|---|---|
| SMA 21 | $0.06721 | SELL |
| SMA 50 | $0.08565 | SELL |
| SMA 100 | — | — |
| SMA 200 | — | — |
Média Móvel Exponencial Semanal (EMA)
| Período | Valor | Ação |
|---|---|---|
| EMA 21 | $0.0605085 | SELL |
| EMA 50 | $0.114165 | SELL |
| EMA 100 | $0.201493 | SELL |
| EMA 200 | $0.100746 | SELL |
Osciladores de Wormhole
Um oscilador é uma ferramenta de análise técnica que define limites altos e baixos entre dois extremos, criando um indicador de tendência que flutua dentro desses limites. Os traders usam esse indicador para identificar condições de sobrecompra ou sobrevenda de curto prazo.
| Período | Valor | Ação |
|---|---|---|
| RSI (14) | 59.25 | NEUTRAL |
| Stoch RSI (14) | 123.95 | SELL |
| Estocástico Rápido (14) | 100 | SELL |
| Índice de Canal de Commodities (20) | 256.53 | SELL |
| Índice Direcional Médio (14) | 24.41 | NEUTRAL |
| Oscilador Impressionante (5, 34) | 0.000520 | BUY |
| Momentum (10) | 0.01 | BUY |
| MACD (12, 26) | 0 | BUY |
| Williams Percent Range (14) | -0 | SELL |
| Oscilador Ultimate (7, 14, 28) | 76.48 | SELL |
| VWMA (10) | 0.036734 | BUY |
| Média Móvel de Hull (9) | 0.039556 | BUY |
| Nuvem Ichimoku B/L (9, 26, 52, 26) | -0.013498 | SELL |
Previsão do preço de Wormhole com base nos fluxos financeiros mundiais
Definições dos fluxos financeiros mundiais, usadas na previsão do preço do Wormhole
M0: o total de todas as moedas físicas, mais as contas no Banco Central que podem ser trocadas por moedas físicas.
M1: o valor de M0, mais o valor em contas de demanda, incluindo contas 'correntes'.
M2: o valor de M1, mais a maioria das contas de poupança, do mercado de moedas e de certificados de depósito (CD) de menos de US$ 100.000.
Previsões de preço de Wormhole por empresas de Internet ou nichos tecnológicos
| Comparação | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Facebook stock | $0.05658 | $0.0795046 | $0.111717 | $0.156981 | $0.220585 | $0.309958 |
| Amazon.com stock | $0.084017 | $0.1753065 | $0.365787 | $0.763237 | $1.59 | $3.32 |
| Apple stock | $0.057113 | $0.081011 | $0.1149091 | $0.162989 | $0.231188 | $0.327923 |
| Netflix stock | $0.063533 | $0.100245 | $0.158171 | $0.249569 | $0.393781 | $0.621326 |
| Google stock | $0.052144 | $0.067526 | $0.087446 | $0.113242 | $0.146648 | $0.1899092 |
| Tesla stock | $0.091279 | $0.206923 | $0.46908 | $1.06 | $2.41 | $5.46 |
| Kodak stock | $0.030195 | $0.022643 | $0.016979 | $0.012733 | $0.009548 | $0.00716 |
| Nokia stock | $0.026674 | $0.01767 | $0.011706 | $0.007754 | $0.005137 | $0.0034032 |
Este cálculo mostra quanto a criptomoeda pode custar, se assumirmos que sua capitalização se comportará da mesma forma que a de algumas empresas de Internet ou nichos tecnológicos. Se você extrapolar os dados, poderá obter uma imagem em potencial do preço futuro para 2024, 2025, 2026, 2027, 2028, 2029 e 2030.
Visão geral da previsão para Wormhole
Você pode fazer perguntas como: 'Devo investir em Wormhole agora?', 'Devo comprar W hoje?', 'Wormhole será um bom ou mau investimento no curto ou no longo prazo?'.
Atualizamos a previsão para Wormhole regularmente com novos valores. Veja nossas previsões semelhantes. Fazemos previsões de preços futuros para uma enorme quantidade de moedas digitais, como Wormhole, com métodos de análise técnica.
Se você estiver tentando encontrar criptomoedas com bom retorno, você deve explorar o máximo de fontes de informações disponíveis sobre Wormhole para poder tomar sozinho uma decisão de tão grande responsabilidade sobre o seu investimento.
O preço de Wormhole é de $0.04026 USD hoje, mas o preço pode tanto subir quanto descer e seu investimento pode ser perdido, porque criptomoedas são ativos de alto risco
Previsão de curto prazo para Wormhole
com base no histórico de preços de 4 horas
Previsão de longo prazo para Wormhole
com base no histórico de preços de 1 mês
Previsão do preço de Wormhole com base no padrão de crescimento do Bitcoin
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| Se Wormhole tiver 1% da média anterior do crescimento anual do Bitcoin | $0.041312 | $0.042386 | $0.043488 | $0.044618 |
| Se Wormhole tiver 2% da média anterior do crescimento anual do Bitcoin | $0.042359 | $0.044561 | $0.046877 | $0.049314 |
| Se Wormhole tiver 5% da média anterior do crescimento anual do Bitcoin | $0.045499 | $0.051412 | $0.058094 | $0.065644 |
| Se Wormhole tiver 10% da média anterior do crescimento anual do Bitcoin | $0.050732 | $0.063919 | $0.080533 | $0.101467 |
| Se Wormhole tiver 20% da média anterior do crescimento anual do Bitcoin | $0.061198 | $0.093013 | $0.141367 | $0.21486 |
| Se Wormhole tiver 50% da média anterior do crescimento anual do Bitcoin | $0.092597 | $0.212943 | $0.489697 | $1.12 |
| Se Wormhole tiver 100% da média anterior do crescimento anual do Bitcoin | $0.144929 | $0.521648 | $1.87 | $6.75 |
Perguntas Frequentes sobre Wormhole
W é um bom investimento?
A decisão de adquirir Wormhole depende inteiramente da sua tolerância individual ao risco. Como você pode perceber, o valor de Wormhole experimentou uma escalada de 5.7456% nas últimas 24 horas, e Wormhole registrou um declínio de -87.33% durante os últimos 30 dias. Consequentemente, a decisão de investir ou não em Wormhole dependerá de quão alinhado esse investimento está com suas aspirações de negociação.
Wormhole pode subir?
Parece que o valor médio de Wormhole pode potencialmente subir para $0.041527 até o final deste ano. Observando as perspectivas de Wormhole em um horizonte de cinco anos mais longo, a moeda digital poderia potencialmente crescer até $0.130553. No entanto, dada a imprevisibilidade do mercado, é vital conduzir uma pesquisa aprofundada antes de investir quaisquer fundos em um projeto, rede ou ativo específico.
Qual será o preço de Wormhole na próxima semana?
Com base na nossa nova previsão experimental de Wormhole, o preço de Wormhole aumentará 0.86% na próxima semana e atingirá $0.04061 até 13 de janeiro de 2026.
Qual será o preço de Wormhole no próximo mês?
Com base na nossa nova previsão experimental de Wormhole, o preço de Wormhole diminuirá -11.62% no próximo mês e atingirá $0.035587 até 5 de fevereiro de 2026.
Até onde o preço de Wormhole pode subir este ano em 2026?
De acordo com nossa previsão mais recente sobre o valor de Wormhole em 2026, espera-se que W fluctue dentro do intervalo de $0.013911 e $0.041527. No entanto, é crucial lembrar que o mercado de criptomoedas é excepcionalmente instável, e essa previsão de preço de Wormhole não considera flutuações repentinas e extremas de preço.
Onde estará Wormhole em 5 anos?
O futuro de Wormhole parece seguir uma tendência de alta, com um preço máximo de $0.130553 projetada após um período de cinco anos. Com base na previsão de Wormhole para 2030, o valor de Wormhole pode potencialmente atingir seu pico mais alto de aproximadamente $0.130553, enquanto seu pico mais baixo está previsto para cerca de $0.045153.
Quanto será Wormhole em 2026?
Com base na nossa nova simulação experimental de previsão de preços de Wormhole, espera-se que o valor de W em 2026 aumente 3.13% para $0.041527 se o melhor cenário ocorrer. O preço ficará entre $0.041527 e $0.013911 durante 2026.
Quanto será Wormhole em 2027?
De acordo com nossa última simulação experimental para previsão de preços de Wormhole, o valor de W pode diminuir -12.62% para $0.035182 em 2027, assumindo as condições mais favoráveis. O preço está projetado para flutuar entre $0.035182 e $0.013392 ao longo do ano.
Quanto será Wormhole em 2028?
Nosso novo modelo experimental de previsão de preços de Wormhole sugere que o valor de W em 2028 pode aumentar 47.02%, alcançando $0.059199 no melhor cenário. O preço é esperado para variar entre $0.059199 e $0.024169 durante o ano.
Quanto será Wormhole em 2029?
Com base no nosso modelo de previsão experimental, o valor de Wormhole pode experimentar um 333.75% crescimento em 2029, potencialmente alcançando $0.174654 sob condições ótimas. A faixa de preço prevista para 2029 está entre $0.174654 e $0.053093.
Quanto será Wormhole em 2030?
Usando nossa nova simulação experimental para previsões de preços de Wormhole, espera-se que o valor de W em 2030 aumente 224.23%, alcançando $0.130553 no melhor cenário. O preço está previsto para variar entre $0.130553 e $0.045153 ao longo de 2030.
Quanto será Wormhole em 2031?
Nossa simulação experimental indica que o preço de Wormhole poderia aumentar 195.98% em 2031, potencialmente atingindo $0.11918 sob condições ideais. O preço provavelmente oscilará entre $0.11918 e $0.053386 durante o ano.
Quanto será Wormhole em 2032?
Com base nos achados da nossa mais recente previsão experimental de preços de Wormhole, W poderia ver um 449.04% aumento em valor, atingindo $0.221073 se o cenário mais positivo se desenrolar em 2032. O preço é esperado para permanecer dentro de uma faixa de $0.221073 e $0.081489 ao longo do ano.
Quanto será Wormhole em 2033?
De acordo com nossa previsão experimental de preços de Wormhole, espera-se que o valor de W seja aumentar 1362.43% em 2033, com o preço potencial mais alto sendo $0.588859. Ao longo do ano, o preço de W poderia variar entre $0.588859 e $0.189364.
Quanto será Wormhole em 2034?
Os resultados da nossa nova simulação de previsão de preços de Wormhole sugerem que W pode aumentar 746.96% em 2034, atingindo potencialmente $0.341036 nas melhores circunstâncias. A faixa de preço prevista para o ano é entre $0.341036 e $0.152239.
Quanto será Wormhole em 2035?
Com base em nossa previsão experimental para o preço de Wormhole, W poderia aumentar 897.93%, com o valor potencialmente atingindo $0.401825 em 2035. A faixa de preço esperada para o ano está entre $0.401825 e $0.179994.
Quanto será Wormhole em 2036?
Nossa recente simulação de previsão de preços de Wormhole sugere que o valor de W pode aumentar 1964.7% em 2036, possivelmente atingindo $0.831366 se as condições forem ideais. A faixa de preço esperada para 2036 está entre $0.831366 e $0.297947.
Quanto será Wormhole em 2037?
De acordo com a simulação experimental, o valor de Wormhole poderia aumentar 4830.69% em 2037, com um pico de $1.98 sob condições favoráveis. O preço é esperado para cair entre $1.98 e $0.773761 ao longo do ano.
Previsões relacionadas
Previsão de Preço do ORDI
Previsão de Preço do ether.fi Staked ETH
Previsão de Preço do Bonk
Previsão de Preço do BitTorrent
Previsão de Preço do Flare
Previsão de Preço do Elrond
Previsão de Preço do dYdX
Previsão de Preço do NEO
Previsão de Preço do eCash
Previsão de Preço do Axie Infinity
Previsão de Preço do The Sandbox
Previsão de Preço do Starknet
Previsão de Preço do Conflux Token
Previsão de Preço do SingularityNET
Previsão de Preço do Chiliz
Previsão de Preço do Synthetix Network Token
Previsão de Preço do WhiteBIT Coin
Previsão de Preço do Tokenize Xchange
Previsão de Preço do Tezos
Previsão de Preço do EOS
Previsão de Preço do Worldcoin
Previsão de Preço do Ronin
Previsão de Preço do Pyth Network
Previsão de Preço do Decentraland
Previsão de Preço do Mina Protocol
Como ler e prever os movimentos de preço de Wormhole?
Traders de Wormhole utilizam indicadores e padrões de gráfico para prever a direção do mercado. Eles também identificam níveis-chave de suporte e resistência para avaliar quando uma tendência de baixa pode desacelerar ou uma tendência de alta pode estagnar.
Indicadores de Previsão de Preço de Wormhole
Médias móveis são ferramentas populares para a previsão de preço de Wormhole. Uma média móvel simples (SMA) calcula o preço médio de fechamento de W em um período específico, como uma SMA de 12 dias. Uma média móvel exponencial (EMA) dá mais peso aos preços recentes, reagindo mais rapidamente às mudanças de preço.
Médias móveis comumente usadas no mercado de criptomoedas incluem as de 50 dias, 100 dias e 200 dias, que ajudam a identificar níveis-chave de resistência e suporte. Um movimento de preço de W acima dessas médias é visto como altista, enquanto uma queda abaixo indica fraqueza.
Traders também usam RSI e níveis de retração de Fibonacci para avaliar a direção futura de W.
Como ler gráficos de Wormhole e prever movimentos de preço?
A maioria dos traders prefere gráficos de velas em vez de gráficos de linha simples porque eles fornecem informações mais detalhadas. Velas podem representar a ação de preço de Wormhole em diferentes períodos de tempo, como 5 minutos para tendências de curto prazo e semanal para tendências de longo prazo. Opções populares incluem gráficos de 1 hora, 4 horas e 1 dia.
Por exemplo, um gráfico de velas de 1 hora mostra os preços de abertura, fechamento, máximo e mínimo de W dentro de cada hora. A cor da vela é crucial: verde indica que o preço fechou mais alto do que abriu, enquanto vermelho significa o oposto. Alguns gráficos usam velas vazias e preenchidas para transmitir a mesma informação.
O que afeta o preço de Wormhole?
A ação de preço de Wormhole é impulsionada pela oferta e demanda, influenciada por fatores como reduções pela metade das recompensas de bloco, hard forks e atualizações de protocolo. Eventos do mundo real, como regulamentações, adoção por empresas e governos e hacks de exchanges de criptomoedas, também impactam o preço de W. A capitalização de mercado de Wormhole pode mudar rapidamente.
Traders frequentemente monitoram a atividade de "baleias" de W, grandes detentores de Wormhole, pois suas ações podem influenciar significativamente os movimentos de preço no relativamente pequeno mercado de Wormhole.
Padrões de previsão de preço altistas e baixistas
Traders frequentemente identificam padrões de velas para ganhar vantagem em previsões de preço de criptomoedas. Certas formações indicam tendências altistas, enquanto outras sugerem movimentos baixistas.
Padrões de velas altistas comumente seguidos:
- Martelo
- Engolfo de Alta
- Linha de Perfuração
- Estrela da Manhã
- Três Soldados Brancos
Padrões de velas baixistas comuns:
- Harami de Baixa
- Nuvem Negra
- Estrela da Noite
- Estrela Cadente
- Homem Enforcado


