Previsão de Preço Wormhole - Projeção W
Previsão de Preço Wormhole até $0.040741 até 2026
| Ano | Preço Mínimo | Preço Máximo |
|---|---|---|
| 2026 | $0.013648 | $0.040741 |
| 2027 | $0.013139 | $0.034516 |
| 2028 | $0.023712 | $0.058078 |
| 2029 | $0.052089 | $0.171349 |
| 2030 | $0.044299 | $0.128083 |
| 2031 | $0.052375 | $0.116925 |
| 2032 | $0.079947 | $0.21689 |
| 2033 | $0.185781 | $0.577717 |
| 2034 | $0.149359 | $0.334582 |
| 2035 | $0.176588 | $0.394221 |
Calculadora de lucro do investimento
Se você abrir um short de $10,000.00 em Wormhole hoje e fechar em Apr 06, 2026, nossa previsão mostra que pode lucrar cerca de $3,954.52, com um retorno de 39.55% nos próximos 90 dias.
Previsão de preço de longo prazo de Wormhole para os anos 2027, 2028, 2029, 2030, 2031, 2032 e 2037
[
'name' => 'Wormhole'
'name_with_ticker' => 'Wormhole <small>W</small>'
'name_lang' => 'Wormhole'
'name_lang_with_ticker' => 'Wormhole <small>W</small>'
'name_with_lang' => 'Wormhole'
'name_with_lang_with_ticker' => 'Wormhole <small>W</small>'
'image' => '/uploads/coins/wormhole.png?1758150530'
'price_for_sd' => 0.0395
'ticker' => 'W'
'marketcap' => '$204.61M'
'low24h' => '$0.03762'
'high24h' => '$0.04038'
'volume24h' => '$33.5M'
'current_supply' => '5.19B'
'max_supply' => '10B'
'algo' => null
'proof' => null
'ico_price_and_roi' => '—'
'price' => '$0.0395'
'change_24h_pct' => '4.7316%'
'ath_price' => '$1.66'
'ath_days' => 643
'ath_exchange' => null
'ath_pair' => null
'ath_date' => '3 de abr. de 2024'
'ath_pct' => '-97.62%'
'fdv' => '$394.58M'
'new_prediction' => true
'change_24h_pct_is_increased' => true
'change_30d_pct' => '-87.57%'
'change_30d_pct_is_increased' => false
'max_price' => '$1.94'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.039841'
'next_week_prediction_price_date' => '13 de janeiro de 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.034914'
'next_month_prediction_price_date' => '5 de fevereiro de 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.013648'
'current_year_max_price_prediction' => '$0.040741'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.044299'
'grand_prediction_max_price' => '$0.128083'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.040252467936454
107 => 0.040402756040083
108 => 0.040741362811459
109 => 0.037848005023429
110 => 0.039147037725733
111 => 0.039910097735433
112 => 0.036462564851249
113 => 0.039841951094976
114 => 0.03779763810148
115 => 0.037103767566936
116 => 0.038037972831207
117 => 0.037673912131176
118 => 0.037360914119651
119 => 0.037186255851232
120 => 0.03787223309284
121 => 0.037840231434599
122 => 0.036717839524883
123 => 0.035253725033206
124 => 0.035745129914533
125 => 0.035566597914201
126 => 0.034919574913914
127 => 0.035355590294253
128 => 0.033435599221575
129 => 0.030132354373486
130 => 0.03231457910126
131 => 0.032230565823044
201 => 0.032188202518469
202 => 0.03382808408913
203 => 0.033670447314616
204 => 0.033384335025289
205 => 0.034914320237348
206 => 0.034355855053742
207 => 0.036076913158672
208 => 0.037210513337639
209 => 0.036922995664129
210 => 0.037989152111612
211 => 0.0357564508905
212 => 0.036498064675728
213 => 0.036650910249031
214 => 0.034895440457325
215 => 0.033696238640453
216 => 0.033616265551169
217 => 0.031537014860903
218 => 0.032647733796518
219 => 0.033625120495187
220 => 0.033157028114796
221 => 0.033008844051027
222 => 0.033765884295623
223 => 0.03382471280624
224 => 0.03248341652982
225 => 0.032762314499017
226 => 0.033925365393496
227 => 0.032733008600557
228 => 0.030416454122254
301 => 0.029841916582763
302 => 0.029765262684167
303 => 0.028207071309922
304 => 0.02988030992841
305 => 0.029149896431433
306 => 0.031457263916687
307 => 0.03013930798377
308 => 0.030082493537667
309 => 0.029996610169515
310 => 0.028655410485627
311 => 0.028949047978712
312 => 0.029925143727979
313 => 0.030273425687824
314 => 0.030237097026022
315 => 0.029920360326301
316 => 0.030065360765479
317 => 0.029598263829384
318 => 0.029433322179468
319 => 0.028912720961555
320 => 0.02814758099098
321 => 0.028253978396764
322 => 0.026738035905292
323 => 0.02591206997878
324 => 0.025683453496377
325 => 0.025377737981568
326 => 0.025717984877253
327 => 0.026733741430681
328 => 0.025508523522472
329 => 0.023407973357892
330 => 0.023534220001946
331 => 0.023817858728172
401 => 0.023289299838308
402 => 0.022789063207637
403 => 0.023223978372525
404 => 0.022333947576729
405 => 0.023925414697672
406 => 0.023882369972085
407 => 0.024475570499106
408 => 0.024846510962353
409 => 0.023991613287971
410 => 0.023776608834753
411 => 0.023899085142713
412 => 0.021874824591473
413 => 0.024310145225771
414 => 0.024331205979745
415 => 0.024150871017862
416 => 0.025447604073537
417 => 0.028184115282192
418 => 0.027154529689588
419 => 0.026755843028742
420 => 0.025997939395036
421 => 0.027007800987084
422 => 0.02693025937311
423 => 0.026579586787934
424 => 0.026367498914254
425 => 0.026758277324478
426 => 0.026319077144674
427 => 0.026240184723968
428 => 0.025762182490286
429 => 0.025591557440578
430 => 0.025465233446553
501 => 0.02532616314147
502 => 0.025632917580321
503 => 0.024937771664978
504 => 0.024099493837068
505 => 0.024029800105969
506 => 0.024222230625069
507 => 0.024137094445135
508 => 0.024029392506694
509 => 0.023823760175333
510 => 0.023762753455258
511 => 0.023960995699249
512 => 0.023737191764024
513 => 0.02406742666168
514 => 0.023977621042248
515 => 0.023475974152365
516 => 0.022850736394103
517 => 0.022845170466574
518 => 0.022710464017152
519 => 0.022538895100563
520 => 0.022491168552933
521 => 0.023187351030415
522 => 0.024628427923815
523 => 0.024345510047593
524 => 0.024549947207753
525 => 0.025555575696848
526 => 0.025875234753228
527 => 0.025648348326549
528 => 0.025337772191966
529 => 0.025351435965687
530 => 0.026412768635347
531 => 0.026478962652096
601 => 0.026646213577423
602 => 0.026861178281574
603 => 0.0256849577452
604 => 0.0252960360842
605 => 0.025111743424666
606 => 0.024544193363536
607 => 0.0251562474464
608 => 0.024799629743084
609 => 0.024847749655057
610 => 0.024816411499258
611 => 0.024833524251401
612 => 0.023924969850177
613 => 0.02425599932177
614 => 0.023705598621025
615 => 0.022968673868106
616 => 0.022966203437936
617 => 0.023146564727212
618 => 0.023039278774812
619 => 0.022750575035479
620 => 0.022791584039008
621 => 0.022432302016393
622 => 0.022835207381565
623 => 0.022846761265773
624 => 0.022691620753779
625 => 0.023312352059052
626 => 0.023566666181292
627 => 0.023464549372865
628 => 0.02355950139379
629 => 0.024357266562647
630 => 0.024487337094106
701 => 0.024545105832203
702 => 0.024467703376044
703 => 0.023574083076598
704 => 0.023613718936846
705 => 0.023322897293157
706 => 0.02307718365027
707 => 0.023087010907387
708 => 0.023213339660369
709 => 0.023765024733723
710 => 0.024926013446986
711 => 0.024970072119982
712 => 0.025023472516936
713 => 0.024806266265635
714 => 0.024740754781859
715 => 0.024827181338908
716 => 0.025263187657723
717 => 0.026384714284276
718 => 0.025988291870207
719 => 0.025665994276887
720 => 0.025948736157036
721 => 0.025905210260791
722 => 0.025537807893571
723 => 0.025527496132795
724 => 0.024822333524457
725 => 0.02456165096393
726 => 0.024343805104603
727 => 0.024105923113227
728 => 0.023964898694863
729 => 0.024181576295922
730 => 0.024231133026938
731 => 0.023757363665346
801 => 0.023692790651999
802 => 0.024079680939697
803 => 0.023909424948805
804 => 0.024084537457583
805 => 0.024125165061707
806 => 0.02411862308171
807 => 0.023940856273442
808 => 0.02405415953595
809 => 0.023786163542792
810 => 0.02349475815193
811 => 0.023308859667757
812 => 0.023146638584461
813 => 0.023236648269818
814 => 0.022915780176638
815 => 0.022813128015831
816 => 0.024015774940016
817 => 0.024904183153545
818 => 0.024891265346272
819 => 0.024812631516688
820 => 0.024695797596216
821 => 0.025254640528727
822 => 0.025059950825457
823 => 0.025201603851455
824 => 0.02523766049173
825 => 0.025346793082278
826 => 0.025385798603136
827 => 0.025267896828028
828 => 0.024872204070276
829 => 0.023886175339298
830 => 0.023427176303293
831 => 0.023275698976179
901 => 0.023281204889323
902 => 0.023129327225326
903 => 0.023174062004053
904 => 0.023113770294899
905 => 0.022999592383894
906 => 0.023229598105559
907 => 0.023256104122329
908 => 0.023202418038529
909 => 0.023215063054728
910 => 0.022770565210488
911 => 0.022804359416187
912 => 0.022616188984494
913 => 0.02258090929698
914 => 0.022105230831536
915 => 0.021262497479305
916 => 0.021729453562547
917 => 0.021165436277952
918 => 0.02095183438602
919 => 0.021962992520518
920 => 0.021861500288976
921 => 0.021687789706187
922 => 0.021430835549785
923 => 0.021335528753686
924 => 0.020756474831055
925 => 0.020722261236174
926 => 0.021009255996001
927 => 0.020876817789227
928 => 0.020690824388646
929 => 0.02001717514559
930 => 0.019259770358795
1001 => 0.019282631648432
1002 => 0.019523548019094
1003 => 0.020224044858794
1004 => 0.019950348624805
1005 => 0.019751778866743
1006 => 0.019714592720043
1007 => 0.020180055200464
1008 => 0.020838782127664
1009 => 0.021147842063722
1010 => 0.020841573053378
1011 => 0.02048974770499
1012 => 0.020511161683745
1013 => 0.020653619290768
1014 => 0.020668589571024
1015 => 0.020439587437454
1016 => 0.020504050196666
1017 => 0.020406125370824
1018 => 0.019805160895388
1019 => 0.019794291353706
1020 => 0.019646804979573
1021 => 0.019642339150779
1022 => 0.019391428036178
1023 => 0.019356323836779
1024 => 0.018858124589522
1025 => 0.019186040842753
1026 => 0.018966091836462
1027 => 0.018634576803256
1028 => 0.018577423486575
1029 => 0.018575705388861
1030 => 0.018916097202559
1031 => 0.019182063166224
1101 => 0.018969917943594
1102 => 0.018921616588664
1103 => 0.019437348692671
1104 => 0.019371717081434
1105 => 0.019314880529381
1106 => 0.020779800356313
1107 => 0.019620202004176
1108 => 0.019114550935085
1109 => 0.01848871171655
1110 => 0.01869248812186
1111 => 0.018735426804557
1112 => 0.01723039629998
1113 => 0.016619805611712
1114 => 0.016410273897124
1115 => 0.016289685433034
1116 => 0.016344639110374
1117 => 0.015795035875789
1118 => 0.016164378339029
1119 => 0.015688468394683
1120 => 0.015608680543769
1121 => 0.016459666478188
1122 => 0.016578076199575
1123 => 0.016072903541122
1124 => 0.016397306167873
1125 => 0.016279673265879
1126 => 0.015696626504735
1127 => 0.01567435840706
1128 => 0.015381806037403
1129 => 0.014924018228189
1130 => 0.014714796915292
1201 => 0.014605832638993
1202 => 0.014650793423065
1203 => 0.014628059874815
1204 => 0.014479708094921
1205 => 0.014636563225185
1206 => 0.014235863184375
1207 => 0.014076301199465
1208 => 0.014004230752692
1209 => 0.01364858640304
1210 => 0.014214574719096
1211 => 0.014326081547492
1212 => 0.014437808078786
1213 => 0.01541031125476
1214 => 0.015361727744354
1215 => 0.015800899017297
1216 => 0.015783833629214
1217 => 0.015658574868068
1218 => 0.015130128758858
1219 => 0.015340757959343
1220 => 0.014692474019296
1221 => 0.015178212426202
1222 => 0.014956541702211
1223 => 0.01510326533144
1224 => 0.01483944301655
1225 => 0.014985453178567
1226 => 0.014352523953135
1227 => 0.013761503547982
1228 => 0.013999347411977
1229 => 0.014257910892885
1230 => 0.014818542400242
1231 => 0.014484634899569
]
'min_raw' => 0.01364858640304
'max_raw' => 0.040741362811459
'avg_raw' => 0.027194974607249
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.013648'
'max' => '$0.040741'
'avg' => '$0.027194'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.02585530359696
'max_diff' => 0.0012374728114594
'year' => 2026
]
1 => [
'items' => [
101 => 0.014604720663251
102 => 0.01420245345703
103 => 0.013372461308648
104 => 0.013377158974071
105 => 0.013249482764405
106 => 0.013139151878221
107 => 0.01452298819273
108 => 0.014350886271806
109 => 0.014076664384956
110 => 0.014443721277649
111 => 0.014540776946054
112 => 0.014543539984489
113 => 0.014811335218288
114 => 0.014954257582572
115 => 0.014979448268738
116 => 0.01540082985522
117 => 0.015542071404851
118 => 0.01612382535853
119 => 0.014942131618505
120 => 0.014917795413565
121 => 0.014448886520869
122 => 0.014151497087966
123 => 0.014469249029768
124 => 0.014750733872739
125 => 0.014457633039576
126 => 0.014495905820691
127 => 0.014102441899388
128 => 0.014243086737056
129 => 0.014364229018161
130 => 0.014297341370949
131 => 0.014197207325673
201 => 0.014727655325627
202 => 0.014697725370627
203 => 0.01519169074313
204 => 0.015576772074799
205 => 0.016266906662671
206 => 0.015546715242697
207 => 0.015520468604851
208 => 0.015777033699884
209 => 0.015542032126072
210 => 0.015690545008743
211 => 0.016242978941273
212 => 0.016254650999753
213 => 0.016059128981609
214 => 0.016047231449036
215 => 0.016084783591397
216 => 0.016304727662126
217 => 0.016227872445614
218 => 0.016316811247897
219 => 0.016428030582031
220 => 0.01688808090403
221 => 0.016998997479171
222 => 0.016729527705229
223 => 0.016753857808691
224 => 0.016653068716126
225 => 0.016555707715592
226 => 0.016774561026361
227 => 0.017174519753362
228 => 0.017172031630879
301 => 0.017264814281457
302 => 0.017322617104114
303 => 0.017074485075018
304 => 0.016912960248144
305 => 0.01697489914486
306 => 0.017073940789561
307 => 0.016942781274333
308 => 0.016133203987349
309 => 0.016378778020222
310 => 0.016337902493196
311 => 0.016279690772075
312 => 0.016526617361098
313 => 0.016502800689205
314 => 0.015789398900235
315 => 0.015835068568138
316 => 0.015792176224003
317 => 0.015930770162853
318 => 0.015534547598547
319 => 0.015656422990728
320 => 0.015732862094193
321 => 0.015777885313367
322 => 0.015940540053732
323 => 0.015921454397304
324 => 0.015939353662531
325 => 0.016180527703234
326 => 0.017400303240173
327 => 0.017466692931366
328 => 0.017139765811045
329 => 0.017270366747261
330 => 0.017019641509011
331 => 0.017187955041161
401 => 0.017303110885158
402 => 0.016782743769332
403 => 0.016751931005887
404 => 0.016500170935391
405 => 0.016635452536856
406 => 0.016420209781834
407 => 0.016473022825045
408 => 0.01632535295207
409 => 0.016591129322646
410 => 0.016888308602423
411 => 0.016963387824461
412 => 0.016765886714918
413 => 0.016622882895652
414 => 0.016371815297408
415 => 0.016789346308695
416 => 0.016911445100422
417 => 0.016788704975721
418 => 0.016760263406903
419 => 0.016706366685386
420 => 0.016771697851159
421 => 0.01691078012418
422 => 0.01684519149267
423 => 0.016888513939305
424 => 0.016723413446643
425 => 0.017074567217044
426 => 0.017632283914199
427 => 0.017634077064576
428 => 0.017568488079518
429 => 0.017541650479967
430 => 0.017608948758909
501 => 0.017645455314514
502 => 0.017863085608218
503 => 0.018096611584135
504 => 0.019186375418375
505 => 0.01888037409448
506 => 0.019847277398558
507 => 0.020611972375404
508 => 0.020841270962901
509 => 0.020630327051736
510 => 0.019908699326606
511 => 0.019873292827704
512 => 0.020951709312415
513 => 0.02064700726088
514 => 0.020610763921404
515 => 0.020225196023466
516 => 0.02045311440466
517 => 0.020403265311332
518 => 0.020324576078812
519 => 0.0207594284732
520 => 0.021573433335952
521 => 0.021446563044403
522 => 0.021351860257105
523 => 0.020936900210732
524 => 0.02118679884333
525 => 0.021097814726755
526 => 0.021480146962278
527 => 0.02125366181565
528 => 0.020644698843157
529 => 0.020741678203695
530 => 0.020727019968445
531 => 0.021028685411194
601 => 0.020938132933077
602 => 0.020709338143777
603 => 0.021570651155825
604 => 0.021514722279697
605 => 0.021594016638925
606 => 0.021628924468117
607 => 0.022153190520513
608 => 0.022367965547537
609 => 0.022416723238837
610 => 0.022620742903213
611 => 0.02241164704373
612 => 0.023248179564485
613 => 0.023804424877761
614 => 0.024450532433254
615 => 0.025394669229167
616 => 0.025749673398184
617 => 0.02568554507257
618 => 0.026401378815947
619 => 0.027687716140706
620 => 0.025945550623695
621 => 0.027780055143416
622 => 0.027199272192846
623 => 0.025822246264883
624 => 0.025733582029191
625 => 0.026666119975207
626 => 0.028734399386021
627 => 0.028216318851843
628 => 0.028735246780177
629 => 0.028129889787295
630 => 0.028099828710249
701 => 0.028705845942215
702 => 0.030121838236982
703 => 0.029449153375416
704 => 0.028484694677265
705 => 0.02919683597134
706 => 0.028579913276847
707 => 0.027189813780364
708 => 0.028215922685422
709 => 0.027529792882509
710 => 0.027730042035665
711 => 0.029172184827284
712 => 0.02899866239116
713 => 0.029223216491249
714 => 0.028826884382195
715 => 0.028456647696502
716 => 0.027765573428518
717 => 0.027560980407317
718 => 0.027617522557891
719 => 0.027560952387835
720 => 0.027174302686199
721 => 0.027090805719943
722 => 0.026951640451432
723 => 0.026994773587294
724 => 0.026733102168257
725 => 0.027226930200053
726 => 0.027318589034353
727 => 0.027677955894054
728 => 0.027715266553582
729 => 0.028716098142582
730 => 0.028164856921652
731 => 0.028534677124529
801 => 0.028501596924701
802 => 0.025852090592249
803 => 0.026217169188069
804 => 0.026785116915189
805 => 0.026529257233957
806 => 0.026167531506638
807 => 0.025875418587322
808 => 0.025432837644479
809 => 0.026055761822517
810 => 0.026874840876035
811 => 0.027736039750065
812 => 0.028770713769226
813 => 0.028539786573083
814 => 0.027716697238981
815 => 0.027753620425242
816 => 0.027981865033967
817 => 0.027686267527458
818 => 0.02759909005204
819 => 0.027969888187546
820 => 0.027972441670518
821 => 0.027632321015128
822 => 0.027254339148085
823 => 0.02725275539026
824 => 0.027185497167892
825 => 0.02814185487564
826 => 0.028667754916231
827 => 0.028728048508354
828 => 0.028663696677086
829 => 0.028688463142909
830 => 0.028382453496705
831 => 0.029081900803584
901 => 0.029723782820546
902 => 0.029551744728191
903 => 0.029293835171095
904 => 0.029088397786261
905 => 0.029503350209218
906 => 0.029484873031019
907 => 0.029718176541093
908 => 0.02970759254625
909 => 0.029629141350801
910 => 0.02955174752993
911 => 0.029858605281482
912 => 0.02977023517702
913 => 0.029681727809377
914 => 0.029504212733769
915 => 0.029528339980757
916 => 0.029270474955383
917 => 0.029151174795544
918 => 0.027357186632674
919 => 0.026877774375301
920 => 0.027028607230807
921 => 0.027078265323213
922 => 0.02686962449442
923 => 0.027168761847477
924 => 0.027122141607868
925 => 0.027303513688259
926 => 0.027190200286691
927 => 0.027194850708217
928 => 0.027528081261263
929 => 0.027624819508477
930 => 0.027575617655171
1001 => 0.027610076946686
1002 => 0.028404176775287
1003 => 0.028291281173543
1004 => 0.028231307635209
1005 => 0.028247920715194
1006 => 0.028450830247094
1007 => 0.028507633837576
1008 => 0.028266953033185
1009 => 0.028380459491895
1010 => 0.028863755586968
1011 => 0.029032881868053
1012 => 0.029572651772057
1013 => 0.029343347923191
1014 => 0.029764245061823
1015 => 0.031057939371568
1016 => 0.03209143190303
1017 => 0.031140989460213
1018 => 0.033038866879762
1019 => 0.034516636685227
1020 => 0.034459917418739
1021 => 0.034202234071725
1022 => 0.032519832436745
1023 => 0.030971661369042
1024 => 0.032266772205992
1025 => 0.032270073709857
1026 => 0.032158822540386
1027 => 0.031467851081524
1028 => 0.032134778231385
1029 => 0.032187716486618
1030 => 0.032158085141106
1031 => 0.031628318943664
1101 => 0.03081946387733
1102 => 0.030977512221166
1103 => 0.031236398632469
1104 => 0.03074627264651
1105 => 0.030589647696215
1106 => 0.030880843277929
1107 => 0.031819136115219
1108 => 0.03164175728949
1109 => 0.031637125211506
1110 => 0.032396027048305
1111 => 0.031852817114424
1112 => 0.030979505716923
1113 => 0.030758983071492
1114 => 0.029976276242065
1115 => 0.030516894637056
1116 => 0.030536350530647
1117 => 0.030240259360697
1118 => 0.031003531883513
1119 => 0.030996498192844
1120 => 0.031721111855135
1121 => 0.033106301024972
1122 => 0.032696632426432
1123 => 0.032220232418146
1124 => 0.032272030308186
1125 => 0.032840125313839
1126 => 0.032496642105074
1127 => 0.032620161061796
1128 => 0.032839938353105
1129 => 0.032972535449714
1130 => 0.032252951626538
1201 => 0.032085182215682
1202 => 0.031741984880133
1203 => 0.03165245110137
1204 => 0.031931978170128
1205 => 0.031858332663347
1206 => 0.030534715338128
1207 => 0.030396389963105
1208 => 0.030400632204874
1209 => 0.030052806472367
1210 => 0.029522288742552
1211 => 0.030916457660938
1212 => 0.03080448638541
1213 => 0.030680878763115
1214 => 0.030696019991551
1215 => 0.031301181466254
1216 => 0.030950157249539
1217 => 0.031883412661412
1218 => 0.031691563404957
1219 => 0.031494793938987
1220 => 0.031467594405045
1221 => 0.031391854948229
1222 => 0.031132116169394
1223 => 0.03081846598607
1224 => 0.030611366967127
1225 => 0.028237367916439
1226 => 0.028677968331329
1227 => 0.029184838946669
1228 => 0.029359808651928
1229 => 0.029060510863548
1230 => 0.031143934270321
1231 => 0.031524595803106
]
'min_raw' => 0.013139151878221
'max_raw' => 0.034516636685227
'avg_raw' => 0.023827894281724
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.013139'
'max' => '$0.034516'
'avg' => '$0.023827'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -0.00050943452481855
'max_diff' => -0.0062247261262322
'year' => 2027
]
2 => [
'items' => [
101 => 0.030371547190363
102 => 0.030155858873583
103 => 0.031158074760461
104 => 0.030553616064764
105 => 0.030825803778425
106 => 0.03023748282021
107 => 0.031432905586929
108 => 0.031423798468327
109 => 0.030958752012226
110 => 0.031351806092422
111 => 0.031283503273402
112 => 0.030758466969823
113 => 0.031449550174242
114 => 0.03144989294289
115 => 0.031002295839874
116 => 0.030479600415157
117 => 0.030386154818732
118 => 0.030315756114476
119 => 0.030808490012697
120 => 0.031250273685103
121 => 0.032072323571989
122 => 0.032279006444976
123 => 0.033085703457902
124 => 0.03260535466407
125 => 0.032818287062817
126 => 0.033049455302785
127 => 0.033160285857956
128 => 0.0329796934158
129 => 0.034232825926611
130 => 0.034338628705512
131 => 0.034374103462087
201 => 0.033951554230112
202 => 0.034326876846985
203 => 0.034151275823929
204 => 0.034608140902552
205 => 0.034679783180426
206 => 0.034619104719814
207 => 0.034641845109608
208 => 0.033572517579354
209 => 0.033517067305758
210 => 0.032760998890708
211 => 0.033069102358416
212 => 0.032493117693319
213 => 0.032675768363921
214 => 0.032756279039163
215 => 0.032714224831357
216 => 0.033086522066206
217 => 0.032769993361284
218 => 0.031934622066858
219 => 0.031099023176081
220 => 0.031088532912672
221 => 0.030868534474276
222 => 0.030709515898039
223 => 0.030740148517309
224 => 0.030848101863093
225 => 0.030703241453334
226 => 0.030734154766365
227 => 0.031247521737012
228 => 0.03135047382181
229 => 0.031000602411691
301 => 0.029595818213863
302 => 0.029251080648082
303 => 0.029498871173922
304 => 0.029380443262324
305 => 0.023712310762275
306 => 0.025043954416564
307 => 0.024252736975531
308 => 0.024617366374523
309 => 0.023809738251991
310 => 0.02419518072348
311 => 0.024124003573101
312 => 0.026265247162997
313 => 0.026231814589525
314 => 0.026247816993234
315 => 0.025483980570181
316 => 0.026700792732524
317 => 0.027300238158844
318 => 0.027189296764155
319 => 0.02721721832306
320 => 0.026737433432529
321 => 0.026252462359732
322 => 0.025714554803488
323 => 0.026713920555607
324 => 0.026602808143713
325 => 0.026857660039613
326 => 0.027505820166001
327 => 0.027601264206733
328 => 0.027729541965374
329 => 0.027683563520334
330 => 0.028778956617055
331 => 0.028646297285406
401 => 0.028965968105986
402 => 0.028308380974569
403 => 0.027564258716627
404 => 0.027705692030672
405 => 0.027692070865195
406 => 0.027518657795021
407 => 0.02736210822909
408 => 0.027101497309382
409 => 0.027926108822497
410 => 0.027892631100982
411 => 0.028434596498716
412 => 0.028338798850296
413 => 0.027699038708483
414 => 0.027721887867106
415 => 0.027875559439776
416 => 0.028407418507379
417 => 0.028565310490371
418 => 0.028492168632941
419 => 0.028665289984249
420 => 0.028802118041596
421 => 0.02868247348161
422 => 0.030376388142965
423 => 0.029672956676252
424 => 0.030015804278683
425 => 0.030097571411688
426 => 0.029888126619874
427 => 0.029933547695563
428 => 0.030002348248729
429 => 0.030420091735024
430 => 0.031516371518112
501 => 0.032001906371413
502 => 0.033462661933436
503 => 0.031961589460818
504 => 0.031872522032348
505 => 0.03213564821966
506 => 0.032993266371248
507 => 0.033688285331133
508 => 0.033918863216732
509 => 0.03394933789074
510 => 0.034381917332653
511 => 0.034629863801628
512 => 0.034329390810436
513 => 0.034074771411234
514 => 0.033162756327815
515 => 0.033268324557056
516 => 0.033995584969546
517 => 0.035022883137612
518 => 0.035904411837971
519 => 0.035595731211482
520 => 0.037950746497029
521 => 0.038184236643216
522 => 0.038151975854653
523 => 0.03868390115566
524 => 0.037628137757865
525 => 0.037176778450856
526 => 0.034129823015394
527 => 0.034985893209062
528 => 0.036230241510797
529 => 0.036065547346996
530 => 0.03516186834875
531 => 0.035903726316416
601 => 0.035658444872262
602 => 0.035464981220522
603 => 0.036351275713919
604 => 0.035376758511457
605 => 0.036220519956236
606 => 0.035138387175713
607 => 0.035597141238583
608 => 0.035336730245061
609 => 0.03550524807264
610 => 0.034520096295993
611 => 0.035051660281465
612 => 0.034497981486577
613 => 0.034497718970737
614 => 0.034485496480653
615 => 0.03513689712745
616 => 0.035158139279156
617 => 0.034676753216961
618 => 0.034607377964735
619 => 0.034863894633256
620 => 0.03456358079624
621 => 0.034704095750427
622 => 0.034567836851057
623 => 0.034537162102758
624 => 0.034292740489429
625 => 0.034187436937894
626 => 0.034228729173789
627 => 0.034087777485073
628 => 0.034002848994176
629 => 0.034468602066194
630 => 0.03421976898824
701 => 0.034430464828229
702 => 0.034190350326627
703 => 0.033358008851166
704 => 0.032879320466777
705 => 0.031307104577726
706 => 0.031752983053533
707 => 0.032048600944288
708 => 0.031950899233157
709 => 0.032160800314209
710 => 0.03217368653584
711 => 0.032105445554702
712 => 0.032026431240755
713 => 0.031987971442491
714 => 0.032274619269228
715 => 0.032441027980771
716 => 0.032078270154482
717 => 0.031993281071304
718 => 0.03236004926209
719 => 0.032583777646595
720 => 0.034235662335655
721 => 0.034113285382372
722 => 0.034420427519848
723 => 0.034385848028648
724 => 0.034707781920303
725 => 0.035234007773743
726 => 0.034164043478636
727 => 0.034349752283685
728 => 0.034304220773329
729 => 0.034801321864387
730 => 0.034802873759733
731 => 0.034504836823603
801 => 0.034666407481776
802 => 0.034576223172843
803 => 0.034739198408225
804 => 0.034111650963551
805 => 0.034875936011604
806 => 0.035309236384409
807 => 0.035315252760505
808 => 0.03552063369833
809 => 0.035729312626023
810 => 0.036129853655623
811 => 0.035718141754101
812 => 0.034977512122608
813 => 0.035030983189783
814 => 0.034596752307824
815 => 0.0346040518074
816 => 0.034565086506592
817 => 0.034682024307489
818 => 0.034137312234865
819 => 0.034265155069555
820 => 0.034086174352343
821 => 0.03434936321456
822 => 0.034066215505492
823 => 0.034304198816656
824 => 0.034406904524483
825 => 0.034785890797461
826 => 0.034010238924829
827 => 0.032428632249517
828 => 0.032761105147795
829 => 0.032269351616059
830 => 0.032314865277659
831 => 0.032406810117536
901 => 0.032108786809015
902 => 0.032165640264487
903 => 0.032163609058986
904 => 0.032146105227323
905 => 0.032068577854571
906 => 0.031956147825756
907 => 0.032404034456416
908 => 0.032480139122609
909 => 0.032649310368182
910 => 0.033152649245057
911 => 0.033102353821709
912 => 0.033184387743926
913 => 0.033005308152327
914 => 0.032323172266301
915 => 0.032360215526767
916 => 0.031898285475178
917 => 0.032637497778203
918 => 0.032462442547721
919 => 0.032349583301828
920 => 0.032318788610952
921 => 0.032823375167546
922 => 0.032974355373704
923 => 0.032880274641131
924 => 0.03268731231385
925 => 0.03305785702642
926 => 0.033156999159477
927 => 0.033179193426847
928 => 0.033835727612619
929 => 0.033215886394647
930 => 0.033365088336505
1001 => 0.034529119295307
1002 => 0.033473503840966
1003 => 0.034032686890164
1004 => 0.034005317789754
1005 => 0.034291376916001
1006 => 0.033981852591961
1007 => 0.033985689516919
1008 => 0.034239690641703
1009 => 0.033882991871289
1010 => 0.033794668239468
1011 => 0.033672649774693
1012 => 0.033939072628572
1013 => 0.034098781080203
1014 => 0.035385913907418
1015 => 0.036217460414187
1016 => 0.036181360787281
1017 => 0.036511243801538
1018 => 0.036362628482233
1019 => 0.035882710413456
1020 => 0.036701872037085
1021 => 0.036442655024191
1022 => 0.036464024559785
1023 => 0.036463229184603
1024 => 0.036635585837033
1025 => 0.036513455352531
1026 => 0.036272723631141
1027 => 0.036432532582279
1028 => 0.036907108034413
1029 => 0.038380204799589
1030 => 0.039204569265319
1031 => 0.03833057702365
1101 => 0.038933445168731
1102 => 0.038571939105566
1103 => 0.038506242700016
1104 => 0.038884888446732
1105 => 0.039264196962704
1106 => 0.039240036650033
1107 => 0.038964678145145
1108 => 0.038809135112697
1109 => 0.03998695906513
1110 => 0.040854759689574
1111 => 0.040795581504796
1112 => 0.041056774766629
1113 => 0.041823646261775
1114 => 0.041893759380544
1115 => 0.041884926739111
1116 => 0.041711144058693
1117 => 0.042466228636511
1118 => 0.043096133475776
1119 => 0.041670918389241
1120 => 0.042213621636758
1121 => 0.042457258609375
1122 => 0.04281498996901
1123 => 0.04341854273545
1124 => 0.044074161124269
1125 => 0.044166872752938
1126 => 0.044101089415738
1127 => 0.043668691464343
1128 => 0.044386076928543
1129 => 0.044806304508712
1130 => 0.045056540415966
1201 => 0.045691097041476
1202 => 0.042458763228374
1203 => 0.040170756698046
1204 => 0.039813451439121
1205 => 0.040540045733481
1206 => 0.040731642854423
1207 => 0.040654410295214
1208 => 0.038079050928877
1209 => 0.03979989270504
1210 => 0.041651373763705
1211 => 0.041722496691563
1212 => 0.042649386822174
1213 => 0.042951220243211
1214 => 0.043697488288619
1215 => 0.043650809019192
1216 => 0.043832513412531
1217 => 0.043790742719184
1218 => 0.045173047128026
1219 => 0.046697934165171
1220 => 0.046645132175918
1221 => 0.046425911622684
1222 => 0.046751491526896
1223 => 0.048325338366055
1224 => 0.048180443769487
1225 => 0.04832119652796
1226 => 0.05017685064945
1227 => 0.052589464971107
1228 => 0.05146856339618
1229 => 0.053900597283032
1230 => 0.055431433698229
1231 => 0.058078856986873
]
'min_raw' => 0.023712310762275
'max_raw' => 0.058078856986873
'avg_raw' => 0.040895583874574
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.023712'
'max' => '$0.058078'
'avg' => '$0.040895'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 0.010573158884054
'max_diff' => 0.023562220301645
'year' => 2028
]
3 => [
'items' => [
101 => 0.0577473865523
102 => 0.058778009010879
103 => 0.057153985294447
104 => 0.053424898572175
105 => 0.052834756324005
106 => 0.054016236049623
107 => 0.056920788667951
108 => 0.053924761351247
109 => 0.054530853775382
110 => 0.054356299116457
111 => 0.054346997840492
112 => 0.054701989713036
113 => 0.05418705548678
114 => 0.052089120814114
115 => 0.05305059191139
116 => 0.052679321747098
117 => 0.053091273674405
118 => 0.055314408324182
119 => 0.054331507502605
120 => 0.053296101331452
121 => 0.054594730445101
122 => 0.056248331564155
123 => 0.056144852177931
124 => 0.05594405891763
125 => 0.057075920012756
126 => 0.05894542293772
127 => 0.059450742066067
128 => 0.059823758315818
129 => 0.059875190954497
130 => 0.060404979098102
131 => 0.057556174726135
201 => 0.062077300426932
202 => 0.062857973941883
203 => 0.062711239676674
204 => 0.063578925432779
205 => 0.06332363027227
206 => 0.062953747639276
207 => 0.064329214124754
208 => 0.062752352793575
209 => 0.060514196655287
210 => 0.059286299932114
211 => 0.060903293388792
212 => 0.06189073486749
213 => 0.062543370871837
214 => 0.062740858132419
215 => 0.057777319300025
216 => 0.055102247159848
217 => 0.056816937731937
218 => 0.058908978571507
219 => 0.057544553333641
220 => 0.057598036219767
221 => 0.055652724395216
222 => 0.059081095503054
223 => 0.058581610669782
224 => 0.061172938868373
225 => 0.060554497597071
226 => 0.062667625148241
227 => 0.062111167845402
228 => 0.064420990998378
301 => 0.065342441990065
302 => 0.066889701617504
303 => 0.068027872097927
304 => 0.068696227573764
305 => 0.068656102017933
306 => 0.071304459386574
307 => 0.069742815572845
308 => 0.067781022891615
309 => 0.067745540251388
310 => 0.068761580479815
311 => 0.070890922061572
312 => 0.071443029353062
313 => 0.071751582009143
314 => 0.07127902287556
315 => 0.069583970439778
316 => 0.068852055392118
317 => 0.069475668218345
318 => 0.068713043319531
319 => 0.070029547849638
320 => 0.071837389759668
321 => 0.071464077554228
322 => 0.072712004286919
323 => 0.074003477169533
324 => 0.075850341395348
325 => 0.07633318009316
326 => 0.077131294099932
327 => 0.077952815579695
328 => 0.07821666613837
329 => 0.0787204387229
330 => 0.078717783592711
331 => 0.080235936184
401 => 0.081910505505464
402 => 0.082542616657948
403 => 0.083996121398272
404 => 0.081507045467348
405 => 0.083395038153397
406 => 0.085098054815736
407 => 0.08306764814376
408 => 0.085866090716998
409 => 0.08597474790071
410 => 0.087615342371005
411 => 0.085952285575491
412 => 0.08496476775898
413 => 0.087815694693437
414 => 0.089195168433664
415 => 0.088779659716578
416 => 0.085617617863358
417 => 0.083777173878428
418 => 0.078960376974736
419 => 0.084666080977301
420 => 0.087445162959282
421 => 0.085610420712401
422 => 0.086535757981145
423 => 0.091584098077793
424 => 0.093506179130782
425 => 0.093106399708121
426 => 0.093173955849621
427 => 0.094211075897575
428 => 0.098810237342645
429 => 0.096054313197031
430 => 0.098161113943845
501 => 0.09927855346332
502 => 0.10031649356459
503 => 0.09776764072021
504 => 0.094451620619757
505 => 0.093401297856889
506 => 0.085427991754766
507 => 0.085012946545838
508 => 0.084779969092909
509 => 0.083311079207508
510 => 0.082156934120385
511 => 0.081239115096445
512 => 0.078830483893665
513 => 0.079643326218493
514 => 0.075804470801663
515 => 0.078260434456668
516 => 0.072133528519002
517 => 0.077236197845883
518 => 0.074459046921167
519 => 0.076323829075879
520 => 0.076317323026614
521 => 0.072883667850068
522 => 0.070903207202792
523 => 0.072165233807918
524 => 0.07351822650841
525 => 0.07373774502205
526 => 0.075491935374961
527 => 0.075981492196263
528 => 0.074498112172496
529 => 0.072006562011793
530 => 0.072585292287915
531 => 0.070891479252218
601 => 0.067923137058735
602 => 0.070055052244377
603 => 0.070782981822449
604 => 0.071104476993359
605 => 0.068185453362472
606 => 0.067268232762562
607 => 0.066779912211395
608 => 0.071629752716575
609 => 0.071895437927344
610 => 0.070536154824944
611 => 0.076680243340307
612 => 0.075289646881954
613 => 0.076843283830338
614 => 0.072532778581321
615 => 0.072697445686699
616 => 0.070656783422903
617 => 0.071799417933527
618 => 0.070991840690247
619 => 0.071707104356803
620 => 0.072135830449393
621 => 0.074176157860592
622 => 0.077259495107496
623 => 0.073871400984282
624 => 0.072395159856396
625 => 0.073311011549441
626 => 0.075750045297545
627 => 0.079445306277763
628 => 0.077257637403416
629 => 0.078228487700825
630 => 0.078440575300685
701 => 0.076827469264646
702 => 0.079504783798223
703 => 0.080939578407231
704 => 0.082411380787163
705 => 0.083689305554692
706 => 0.08182351055099
707 => 0.083820178656159
708 => 0.08221121662276
709 => 0.080767811347364
710 => 0.080770000397355
711 => 0.079864531183312
712 => 0.078110070484642
713 => 0.077786521013551
714 => 0.079469666221961
715 => 0.080819389284662
716 => 0.080930558940843
717 => 0.081677834979629
718 => 0.082120065241827
719 => 0.086454522994259
720 => 0.088197877758802
721 => 0.090329618964868
722 => 0.091160052302982
723 => 0.093659358923877
724 => 0.091640965843745
725 => 0.091204273804571
726 => 0.085141773459246
727 => 0.086134507551165
728 => 0.087723970616921
729 => 0.085167983119765
730 => 0.086789168879487
731 => 0.087109225289865
801 => 0.085081131642672
802 => 0.086164424088392
803 => 0.083287520526386
804 => 0.077322203743478
805 => 0.079511424901078
806 => 0.081123428556946
807 => 0.078822900581405
808 => 0.082946507934835
809 => 0.080537581647495
810 => 0.079774067663263
811 => 0.076795327398383
812 => 0.078201178141179
813 => 0.080102611400654
814 => 0.078927746711641
815 => 0.081365767348164
816 => 0.084818654765834
817 => 0.087279387962667
818 => 0.087468292502474
819 => 0.085886205913231
820 => 0.088421509769235
821 => 0.088439976689972
822 => 0.085580143583379
823 => 0.083828511729208
824 => 0.083430537286475
825 => 0.084424755471907
826 => 0.085631919891822
827 => 0.087535281726342
828 => 0.088685443419804
829 => 0.091684455117727
830 => 0.092495901694781
831 => 0.093387435467734
901 => 0.094578799527231
902 => 0.096009337540133
903 => 0.092879401808478
904 => 0.093003759990027
905 => 0.09008920717362
906 => 0.086974589500135
907 => 0.089338196071736
908 => 0.092428297246698
909 => 0.091719424622903
910 => 0.091639661971773
911 => 0.09177380062666
912 => 0.091239333817934
913 => 0.088821960250332
914 => 0.087607970378242
915 => 0.089174327035086
916 => 0.090006775887684
917 => 0.091297831460895
918 => 0.09113868161062
919 => 0.094464302117965
920 => 0.095756537685575
921 => 0.095425928529503
922 => 0.095486768570774
923 => 0.097826299340717
924 => 0.10042833871809
925 => 0.10286549196434
926 => 0.1053446689246
927 => 0.10235592433509
928 => 0.10083842415267
929 => 0.1024040969872
930 => 0.10157332894276
1001 => 0.10634716854793
1002 => 0.10667769884454
1003 => 0.11145119324677
1004 => 0.11598180785162
1005 => 0.1131362099927
1006 => 0.11581948060512
1007 => 0.11872165654271
1008 => 0.1243204247874
1009 => 0.12243495660963
1010 => 0.12099071753451
1011 => 0.11962591858704
1012 => 0.122465848541
1013 => 0.12611937305779
1014 => 0.12690630724568
1015 => 0.12818144126206
1016 => 0.1268407937598
1017 => 0.12845545600879
1018 => 0.13415592326627
1019 => 0.13261560669389
1020 => 0.13042810954285
1021 => 0.13492808096394
1022 => 0.13655660312803
1023 => 0.14798642453933
1024 => 0.16241704621346
1025 => 0.1564426740838
1026 => 0.15273418851114
1027 => 0.15360577058717
1028 => 0.15887534511519
1029 => 0.16056776520565
1030 => 0.15596718398758
1031 => 0.15759218704955
1101 => 0.16654611368778
1102 => 0.17134960805283
1103 => 0.16482581750973
1104 => 0.1468269381386
1105 => 0.13023114935833
1106 => 0.13463309986096
1107 => 0.13413405528239
1108 => 0.14375393243007
1109 => 0.13257887065305
1110 => 0.13276703003333
1111 => 0.1425858360528
1112 => 0.13996634694376
1113 => 0.13572311006593
1114 => 0.13026212968338
1115 => 0.1201670023667
1116 => 0.11122546657886
1117 => 0.12876187737152
1118 => 0.12800567545025
1119 => 0.1269105830054
1120 => 0.12934759274003
1121 => 0.14118102025413
1122 => 0.14090822144886
1123 => 0.13917281463293
1124 => 0.14048910540764
1125 => 0.13549235792895
1126 => 0.13678013352803
1127 => 0.13022852050059
1128 => 0.13319012320852
1129 => 0.13571400598532
1130 => 0.13622071281949
1201 => 0.13736234918995
1202 => 0.12760719139982
1203 => 0.1319869708512
1204 => 0.13455968094905
1205 => 0.12293608313097
1206 => 0.13432991979291
1207 => 0.12743737580596
1208 => 0.12509794285425
1209 => 0.12824768112687
1210 => 0.12702022505881
1211 => 0.12596493041013
1212 => 0.1253760578639
1213 => 0.12768887802739
1214 => 0.12758098220234
1215 => 0.12379675951583
1216 => 0.11886039528593
1217 => 0.12051720115212
1218 => 0.1199152680483
1219 => 0.11773378482913
1220 => 0.11920384112556
1221 => 0.11273045717453
1222 => 0.10159333654401
1223 => 0.10895085957176
1224 => 0.10866760293864
1225 => 0.10852477209955
1226 => 0.11405374730791
1227 => 0.11352226391679
1228 => 0.1125576163576
1229 => 0.11771606832022
1230 => 0.11583316396289
1231 => 0.1216358315241
]
'min_raw' => 0.052089120814114
'max_raw' => 0.17134960805283
'avg_raw' => 0.11171936443347
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.052089'
'max' => '$0.171349'
'avg' => '$0.111719'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072435
'min_diff' => 0.028376810051839
'max_diff' => 0.11327075106596
'year' => 2029
]
4 => [
'items' => [
101 => 0.12545784367293
102 => 0.12448845776284
103 => 0.1280830786622
104 => 0.120555370613
105 => 0.12305577326772
106 => 0.12357110278945
107 => 0.11765241382372
108 => 0.11360922117254
109 => 0.11333958631848
110 => 0.1063292474476
111 => 0.11007411388694
112 => 0.11336944138047
113 => 0.11179123523881
114 => 0.11129162232193
115 => 0.11384403636145
116 => 0.11404238079227
117 => 0.10952010675001
118 => 0.11046043072519
119 => 0.11438173801754
120 => 0.11036162384246
121 => 0.10255119868219
122 => 0.10061410525487
123 => 0.10035566128395
124 => 0.095102110276231
125 => 0.10074355110025
126 => 0.098280910999353
127 => 0.10606036157114
128 => 0.10161678112657
129 => 0.10142522725487
130 => 0.10113566548296
131 => 0.096613717109162
201 => 0.097603736418213
202 => 0.1008947113857
203 => 0.10206896832958
204 => 0.10194648370993
205 => 0.10087858381297
206 => 0.10136746291727
207 => 0.099792612985559
208 => 0.099236500697006
209 => 0.097481257343596
210 => 0.094901534512436
211 => 0.095260260794469
212 => 0.090149154844744
213 => 0.08736435305641
214 => 0.086593556624496
215 => 0.085562815421942
216 => 0.086709981586023
217 => 0.090134675723765
218 => 0.086003768004255
219 => 0.078921616468642
220 => 0.079347265843331
221 => 0.080303573611825
222 => 0.078521500411846
223 => 0.076834917686133
224 => 0.078301264529359
225 => 0.075300463561365
226 => 0.080666206072311
227 => 0.080521077774709
228 => 0.082521094767499
301 => 0.08377174643757
302 => 0.080889399241342
303 => 0.080164496716186
304 => 0.080577434139497
305 => 0.073752498361633
306 => 0.081963351908824
307 => 0.082034359711263
308 => 0.081426347796692
309 => 0.085798373828908
310 => 0.095024712426001
311 => 0.091553392717165
312 => 0.09020919280471
313 => 0.087653867788528
314 => 0.091058686652404
315 => 0.090797249687106
316 => 0.089614932583008
317 => 0.088899863509394
318 => 0.090217400202741
319 => 0.088736606132556
320 => 0.088470614828051
321 => 0.086858996924144
322 => 0.086283722656391
323 => 0.085857812490876
324 => 0.085388927247712
325 => 0.086423171255209
326 => 0.084079438268091
327 => 0.081253126044604
328 => 0.081018148764343
329 => 0.081666941694557
330 => 0.08137989911989
331 => 0.081016774514929
401 => 0.080323470752955
402 => 0.080117782336869
403 => 0.080786169903317
404 => 0.080031599310213
405 => 0.081145009323925
406 => 0.080842223407981
407 => 0.079150885894871
408 => 0.077042853140188
409 => 0.077024087226923
410 => 0.076569915027793
411 => 0.075991458446953
412 => 0.075830545059458
413 => 0.078177772888196
414 => 0.083036464247068
415 => 0.082082586874691
416 => 0.082771861033518
417 => 0.086162407695241
418 => 0.087240160521707
419 => 0.086475197093456
420 => 0.085428067971977
421 => 0.085474136339051
422 => 0.089052493534688
423 => 0.089275671283677
424 => 0.089839569455504
425 => 0.090564337963904
426 => 0.086598628304424
427 => 0.08528735177072
428 => 0.084665996202199
429 => 0.082752461546021
430 => 0.084816044618646
501 => 0.083613683133665
502 => 0.083775922776506
503 => 0.083670263996269
504 => 0.083727960834894
505 => 0.080664706237925
506 => 0.081780795213138
507 => 0.079925080822829
508 => 0.07744048756792
509 => 0.077432158340119
510 => 0.078040259019337
511 => 0.077678536940356
512 => 0.076705152126544
513 => 0.076843416845099
514 => 0.075632072421581
515 => 0.076990495990213
516 => 0.077029450717488
517 => 0.076506383649733
518 => 0.07859922258354
519 => 0.079456660402314
520 => 0.079112366453135
521 => 0.079432503821022
522 => 0.082122224786011
523 => 0.082560766664058
524 => 0.082755537997836
525 => 0.08249457021283
526 => 0.079481666982672
527 => 0.079615302052783
528 => 0.078634776576569
529 => 0.077806335874396
530 => 0.077839469157884
531 => 0.078265395368554
601 => 0.080125440110789
602 => 0.084039794615196
603 => 0.084188341507283
604 => 0.08436838467391
605 => 0.083636058632791
606 => 0.083415182091374
607 => 0.083706575262576
608 => 0.085176601007449
609 => 0.08895790633136
610 => 0.087621340484999
611 => 0.086534691647021
612 => 0.087487975636351
613 => 0.08734122503828
614 => 0.086102502305983
615 => 0.086067735484582
616 => 0.08369023051769
617 => 0.082811321064599
618 => 0.082076838540364
619 => 0.081274802798051
620 => 0.080799329125526
621 => 0.081529872785444
622 => 0.081696956764005
623 => 0.080099610283878
624 => 0.079881897861035
625 => 0.081186325477825
626 => 0.080612295517639
627 => 0.081202699566949
628 => 0.081339678370781
629 => 0.081317621628474
630 => 0.080718268423119
701 => 0.081100278283242
702 => 0.080196711081429
703 => 0.079214217460863
704 => 0.078587447742457
705 => 0.078040508034209
706 => 0.078343981972668
707 => 0.077262152794215
708 => 0.076916053867109
709 => 0.080970861938126
710 => 0.08396619225672
711 => 0.083922638967606
712 => 0.083657519521126
713 => 0.083263605801171
714 => 0.085147783765298
715 => 0.084491373837923
716 => 0.084968966904973
717 => 0.085090534385055
718 => 0.085458482533481
719 => 0.085589992370331
720 => 0.085192478303915
721 => 0.08385837254477
722 => 0.080533907835948
723 => 0.078986360539771
724 => 0.078475644155594
725 => 0.07849420772617
726 => 0.077982141578246
727 => 0.078132968008005
728 => 0.077929690301161
729 => 0.077544731502558
730 => 0.078320211851639
731 => 0.078409578737772
801 => 0.078228572357996
802 => 0.07827120591296
803 => 0.076772550397254
804 => 0.076886489921204
805 => 0.076252060173113
806 => 0.076133112243511
807 => 0.074529329086455
808 => 0.071687994751645
809 => 0.073262369788127
810 => 0.071360746134687
811 => 0.070640572442829
812 => 0.074049762690097
813 => 0.07370757454549
814 => 0.073121897187533
815 => 0.072255558309258
816 => 0.071934224792102
817 => 0.069981904063698
818 => 0.069866550539837
819 => 0.070834173409929
820 => 0.070387648749252
821 => 0.069760559013548
822 => 0.067489303557895
823 => 0.064935660438904
824 => 0.065012738873038
825 => 0.06582500523697
826 => 0.068186779239145
827 => 0.06726399327739
828 => 0.066594501474388
829 => 0.066469125784535
830 => 0.068038465034826
831 => 0.070259408860725
901 => 0.07130142601302
902 => 0.070268818661628
903 => 0.069082614935876
904 => 0.069154813660324
905 => 0.069635119428476
906 => 0.069685592773551
907 => 0.0689134960918
908 => 0.06913083678513
909 => 0.068800676397911
910 => 0.066774482710978
911 => 0.066737835292311
912 => 0.06624057468475
913 => 0.066225517831177
914 => 0.065379553490245
915 => 0.065261197231073
916 => 0.063581483685787
917 => 0.064687076227936
918 => 0.063945502796876
919 => 0.062827776716782
920 => 0.062635080319277
921 => 0.06262928763288
922 => 0.063776942398159
923 => 0.064673665213806
924 => 0.063958402784204
925 => 0.063795551393764
926 => 0.065534378189689
927 => 0.06531309663015
928 => 0.065121468226701
929 => 0.070060547700641
930 => 0.06615088089584
1001 => 0.064446043012968
1002 => 0.062335982392979
1003 => 0.063023028770697
1004 => 0.063167799537293
1005 => 0.058093484113236
1006 => 0.056034834977661
1007 => 0.055328384172888
1008 => 0.054921811746993
1009 => 0.055107091906889
1010 => 0.053254066229412
1011 => 0.054499330130892
1012 => 0.052894766526559
1013 => 0.052625756216591
1014 => 0.055494914708427
1015 => 0.055894141351185
1016 => 0.054190916463183
1017 => 0.055284662568342
1018 => 0.054888055026403
1019 => 0.052922272164178
1020 => 0.052847193718161
1021 => 0.051860832978506
1022 => 0.050317369418019
1023 => 0.049611965154221
1024 => 0.049244584489034
1025 => 0.049396172911596
1026 => 0.049319525166466
1027 => 0.048819346782961
1028 => 0.049348194805921
1029 => 0.047997206642349
1030 => 0.047459232269964
1031 => 0.047216241726868
1101 => 0.04601716197172
1102 => 0.047925431095347
1103 => 0.048301384152443
1104 => 0.048678077953198
1105 => 0.051956940308997
1106 => 0.05179313761167
1107 => 0.053273834220356
1108 => 0.053216297072969
1109 => 0.052793978414477
1110 => 0.051012285462347
1111 => 0.051722436517443
1112 => 0.049536701951835
1113 => 0.051174402903892
1114 => 0.0504270245814
1115 => 0.050921713541262
1116 => 0.050032218187124
1117 => 0.050524501642467
1118 => 0.048390536569219
1119 => 0.046397870009518
1120 => 0.047199777202705
1121 => 0.04807154203091
1122 => 0.049961750300006
1123 => 0.048835957848812
1124 => 0.049240835385187
1125 => 0.047884563414012
1126 => 0.045086186937542
1127 => 0.045102025444496
1128 => 0.044671556189537
1129 => 0.044299567903712
1130 => 0.048965268654445
1201 => 0.048385015012278
1202 => 0.047460456775203
1203 => 0.048698014716011
1204 => 0.049025244678247
1205 => 0.04903456045524
1206 => 0.049937450782861
1207 => 0.050419323512564
1208 => 0.05050425566973
1209 => 0.051924973108477
1210 => 0.052401178854229
1211 => 0.054362602925821
1212 => 0.050378439978106
1213 => 0.050296388764049
1214 => 0.048715429694153
1215 => 0.047712760458051
1216 => 0.04878408331457
1217 => 0.049733129115292
1218 => 0.048744919192636
1219 => 0.048873958546285
1220 => 0.047547367464837
1221 => 0.048021561354543
1222 => 0.048430001013173
1223 => 0.048204484640651
1224 => 0.04786687571587
1225 => 0.049655318182408
1226 => 0.049554407249484
1227 => 0.051219845990439
1228 => 0.052518174585681
1229 => 0.054845011532351
1230 => 0.052416835877747
1231 => 0.05232834350577
]
'min_raw' => 0.044299567903712
'max_raw' => 0.1280830786622
'avg_raw' => 0.086191323282956
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.044299'
'max' => '$0.128083'
'avg' => '$0.086191'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -0.0077895529104023
'max_diff' => -0.043266529390633
'year' => 2030
]
5 => [
'items' => [
101 => 0.053193370636476
102 => 0.052401046423082
103 => 0.052901767975845
104 => 0.054764337549076
105 => 0.05480369070916
106 => 0.054144474574075
107 => 0.054104361212346
108 => 0.054230970882123
109 => 0.05497252767259
110 => 0.054713404944262
111 => 0.055013268325668
112 => 0.055388252075787
113 => 0.056939343856093
114 => 0.057313306833129
115 => 0.056404770676506
116 => 0.056486801319001
117 => 0.056146983856549
118 => 0.05581872444572
119 => 0.056556603662826
120 => 0.057905092435138
121 => 0.057896703556472
122 => 0.058209526740772
123 => 0.058404412993024
124 => 0.057567818532903
125 => 0.057023226301795
126 => 0.057232057616506
127 => 0.057565983436483
128 => 0.057123769973627
129 => 0.054394223627679
130 => 0.055222193624944
131 => 0.055084378931735
201 => 0.054888114049765
202 => 0.055720644284518
203 => 0.055640344712405
204 => 0.05323506077277
205 => 0.053389039246661
206 => 0.05324442471376
207 => 0.053711703854912
208 => 0.052375811815981
209 => 0.052786723209786
210 => 0.053044442983925
211 => 0.05319624191079
212 => 0.053744643724124
213 => 0.05368029510096
214 => 0.053740643723359
215 => 0.054553778839823
216 => 0.05866633722462
217 => 0.058890174703656
218 => 0.057787917092172
219 => 0.05822824726689
220 => 0.057382909621055
221 => 0.057950390445974
222 => 0.058338646413933
223 => 0.056584192352053
224 => 0.056480304968821
225 => 0.055631478313818
226 => 0.056087589678218
227 => 0.055361883701891
228 => 0.055539946564364
301 => 0.055042067277647
302 => 0.05593815086696
303 => 0.056940111557124
304 => 0.057193246396086
305 => 0.056527357616177
306 => 0.056045210255314
307 => 0.055198718318853
308 => 0.056606453274491
309 => 0.057018117875465
310 => 0.056604290975593
311 => 0.056508398240596
312 => 0.056326681681052
313 => 0.056546950267733
314 => 0.057015875861638
315 => 0.056794739211249
316 => 0.056940803864757
317 => 0.056384156026799
318 => 0.05756809548048
319 => 0.059448476263471
320 => 0.059454521995162
321 => 0.059233384152763
322 => 0.059142899312135
323 => 0.059369800158202
324 => 0.059492884559234
325 => 0.060226640288917
326 => 0.061013989420984
327 => 0.064688204273004
328 => 0.063656499445165
329 => 0.066916481441897
330 => 0.069494703945629
331 => 0.070267800142492
401 => 0.069556588018365
402 => 0.06712356976065
403 => 0.0670041942776
404 => 0.070640150748439
405 => 0.06961282650807
406 => 0.069490629558597
407 => 0.068190660471207
408 => 0.068959103206158
409 => 0.06879103350765
410 => 0.068525727266303
411 => 0.069991862474405
412 => 0.072736336701179
413 => 0.07230858465542
414 => 0.071989287596107
415 => 0.070590220828175
416 => 0.071432771515346
417 => 0.07113275535364
418 => 0.07242181517929
419 => 0.071658204694746
420 => 0.069605043516548
421 => 0.069932016201484
422 => 0.069882594937934
423 => 0.070899681039771
424 => 0.070594377037628
425 => 0.069822979431561
426 => 0.072726956386634
427 => 0.072538388275941
428 => 0.072805734744233
429 => 0.072923428927539
430 => 0.074691028526279
501 => 0.075415157525004
502 => 0.075579547485377
503 => 0.076267414028019
504 => 0.075562432739164
505 => 0.078382860537725
506 => 0.080258280447243
507 => 0.082436677180375
508 => 0.085619900305323
509 => 0.086816821646763
510 => 0.08660060851966
511 => 0.089014091963372
512 => 0.093351068063
513 => 0.087477235388287
514 => 0.09366239545754
515 => 0.091704245190721
516 => 0.087061506133713
517 => 0.08676256847274
518 => 0.089906685265454
519 => 0.096880033701668
520 => 0.09513328900946
521 => 0.09688289075023
522 => 0.094841887384053
523 => 0.094740534363996
524 => 0.09678376377234
525 => 0.10155788065557
526 => 0.099289876679445
527 => 0.096038136842273
528 => 0.098439170935365
529 => 0.096359172998714
530 => 0.091672355492673
531 => 0.095131953306713
601 => 0.092818618772138
602 => 0.093493772772955
603 => 0.09835605788209
604 => 0.097771014873748
605 => 0.098528114700067
606 => 0.097191853323367
607 => 0.095943574488452
608 => 0.093613569344679
609 => 0.092923769689473
610 => 0.09311440549778
611 => 0.092923675219834
612 => 0.091620058755745
613 => 0.091338542904444
614 => 0.090869337485449
615 => 0.091014763864467
616 => 0.09013252040587
617 => 0.091797496093043
618 => 0.092106530252298
619 => 0.093318160709972
620 => 0.093443956203518
621 => 0.096818329781662
622 => 0.094959781518865
623 => 0.096206656152886
624 => 0.09609512394958
625 => 0.087162128367095
626 => 0.088393016341874
627 => 0.090307891756705
628 => 0.089445242977876
629 => 0.088225659433338
630 => 0.087240780331191
701 => 0.08574858778238
702 => 0.087848820139812
703 => 0.090610402355024
704 => 0.0935139944858
705 => 0.097002470180035
706 => 0.096223883015415
707 => 0.09344877985923
708 => 0.093573268959602
709 => 0.094342811593449
710 => 0.093346183962296
711 => 0.093052259017387
712 => 0.094302430819542
713 => 0.094311040065662
714 => 0.093164299529548
715 => 0.091889907274961
716 => 0.091884567524882
717 => 0.091657801732347
718 => 0.094882228514782
719 => 0.096655337218803
720 => 0.096858621274212
721 => 0.096641654582192
722 => 0.09672515645085
723 => 0.095693423563765
724 => 0.098051658992759
725 => 0.10021580902772
726 => 0.099635770588025
727 => 0.098766210509606
728 => 0.098073564023458
729 => 0.09947260508851
730 => 0.099410307992179
731 => 0.10019690706512
801 => 0.10016122238756
802 => 0.099896718704814
803 => 0.099635780034285
804 => 0.10067037236777
805 => 0.10037242639077
806 => 0.10007401762137
807 => 0.099475513150253
808 => 0.099556859847985
809 => 0.098687449911374
810 => 0.098285221093206
811 => 0.092236664749836
812 => 0.090620292852608
813 => 0.09112883635576
814 => 0.091296262081324
815 => 0.090592814960213
816 => 0.091601377431147
817 => 0.091444194038384
818 => 0.092055702670416
819 => 0.091673658625741
820 => 0.091689337846596
821 => 0.092812847921608
822 => 0.093139007676137
823 => 0.092973120192551
824 => 0.093089302099764
825 => 0.095766665114174
826 => 0.095386029710774
827 => 0.095183824739063
828 => 0.095239836898121
829 => 0.095923960551613
830 => 0.096115477822824
831 => 0.095304005687023
901 => 0.095686700637331
902 => 0.097316167164524
903 => 0.097886388229223
904 => 0.099706260146104
905 => 0.098933146210169
906 => 0.10035223029917
907 => 0.10471401098732
908 => 0.10819850321329
909 => 0.10499402015956
910 => 0.11139284638514
911 => 0.11637525045886
912 => 0.11618401749188
913 => 0.11531522009655
914 => 0.10964288552268
915 => 0.10442311867807
916 => 0.1087896752866
917 => 0.10880080653738
918 => 0.1084257154522
919 => 0.10609605693656
920 => 0.10834464838569
921 => 0.10852313340923
922 => 0.10842322925904
923 => 0.10663708553728
924 => 0.10390997420867
925 => 0.1044428452345
926 => 0.10531569884508
927 => 0.10366320486391
928 => 0.10313513290879
929 => 0.10411691914316
930 => 0.1072804389536
1001 => 0.10668239385846
1002 => 0.10666677648414
1003 => 0.10922546701174
1004 => 0.10739399679395
1005 => 0.10444956644462
1006 => 0.10370605894915
1007 => 0.1010671082269
1008 => 0.10288984089038
1009 => 0.10295543779399
1010 => 0.10195714574208
1011 => 0.10453057234274
1012 => 0.10450685776357
1013 => 0.10694994331689
1014 => 0.11162020531382
1015 => 0.11023897903169
1016 => 0.10863276314257
1017 => 0.10880740334525
1018 => 0.11072277531994
1019 => 0.10956469770036
1020 => 0.10998115048676
1021 => 0.11072214496877
1022 => 0.11116920533762
1023 => 0.10874307823804
1024 => 0.10817743195606
1025 => 0.10702031817798
1026 => 0.10671844879184
1027 => 0.10766089382011
1028 => 0.10741259285223
1029 => 0.10294992462824
1030 => 0.10248355096879
1031 => 0.10249785398309
1101 => 0.10132513524153
1102 => 0.099536457675891
1103 => 0.104236995522
1104 => 0.10385947654897
1105 => 0.10344272482039
1106 => 0.10349377452919
1107 => 0.10553411869218
1108 => 0.1043506160378
1109 => 0.10749715181674
1110 => 0.10685031865411
1111 => 0.10618689666159
1112 => 0.10609519153389
1113 => 0.10583983066727
1114 => 0.10496410324005
1115 => 0.10390660974862
1116 => 0.10320836094706
1117 => 0.095204257400344
1118 => 0.096689772460886
1119 => 0.098398722129081
1120 => 0.098988644706356
1121 => 0.097979541316528
1122 => 0.10500394879244
1123 => 0.10628737572716
1124 => 0.10239979182602
1125 => 0.10167258360712
1126 => 0.1050516244422
1127 => 0.10301364974771
1128 => 0.10393134962785
1129 => 0.10194778444197
1130 => 0.10597823576172
1201 => 0.10594753047551
1202 => 0.10437959388026
1203 => 0.1057048031538
1204 => 0.10547451543072
1205 => 0.10370431887634
1206 => 0.10603435414993
1207 => 0.10603550981836
1208 => 0.10452640493531
1209 => 0.10276410081745
1210 => 0.10244904246494
1211 => 0.10221168831846
1212 => 0.10387297505789
1213 => 0.10536247955376
1214 => 0.10813407814109
1215 => 0.1088309238775
1216 => 0.11155075917837
1217 => 0.10993122968308
1218 => 0.11064914613192
1219 => 0.11142854599262
1220 => 0.11180221894732
1221 => 0.11119333892003
1222 => 0.11541836267115
1223 => 0.11577508412713
1224 => 0.11589468974569
1225 => 0.11447003550864
1226 => 0.11573546191562
1227 => 0.11514341080631
1228 => 0.11668376331619
1229 => 0.11692531025795
1230 => 0.11672072859156
1231 => 0.11679739940343
]
'min_raw' => 0.052375811815981
'max_raw' => 0.11692531025795
'avg_raw' => 0.084650561036964
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.052375'
'max' => '$0.116925'
'avg' => '$0.08465'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 0.0080762439122689
'max_diff' => -0.011157768404253
'year' => 2031
]
6 => [
'items' => [
101 => 0.11319208697712
102 => 0.11300513250827
103 => 0.11045599505992
104 => 0.1114947874124
105 => 0.10955281490006
106 => 0.11016863438825
107 => 0.11044008175091
108 => 0.11029829305316
109 => 0.11155351917342
110 => 0.11048632054544
111 => 0.10766980790252
112 => 0.10485252790262
113 => 0.10481715924713
114 => 0.10407541915227
115 => 0.10353927692017
116 => 0.10364255693474
117 => 0.10400652917711
118 => 0.10351812219178
119 => 0.10362234858496
120 => 0.10535320116864
121 => 0.10570031131042
122 => 0.10452069542396
123 => 0.099784367422081
124 => 0.098622060650241
125 => 0.099457503708295
126 => 0.099058215735969
127 => 0.079947711275679
128 => 0.084437440828504
129 => 0.081769795985025
130 => 0.082999169461338
131 => 0.080276194859428
201 => 0.081575741062786
202 => 0.081335762330855
203 => 0.088555114591043
204 => 0.088442394335394
205 => 0.08849634755675
206 => 0.08592101972707
207 => 0.090023586887521
208 => 0.092044658994302
209 => 0.091670612336429
210 => 0.091764751821697
211 => 0.090147123565761
212 => 0.088512009734228
213 => 0.086698416852842
214 => 0.090067848259601
215 => 0.089693225005282
216 => 0.090552475965498
217 => 0.092737793084712
218 => 0.093059589331729
219 => 0.093492086751055
220 => 0.093337067213489
221 => 0.097030261516988
222 => 0.096582991318354
223 => 0.097660783808644
224 => 0.095443682883804
225 => 0.092934822738195
226 => 0.093411675031058
227 => 0.093365750320651
228 => 0.092781076047246
229 => 0.092253258255769
301 => 0.0913745903447
302 => 0.094154825633705
303 => 0.094041953158277
304 => 0.095869227335553
305 => 0.095546238875525
306 => 0.093389242890775
307 => 0.09346628042435
308 => 0.093984394860615
309 => 0.095777594840253
310 => 0.096309938684575
311 => 0.096063335805651
312 => 0.09664702652853
313 => 0.097108351876905
314 => 0.096704961889596
315 => 0.1024161134357
316 => 0.10004444513366
317 => 0.10120037976211
318 => 0.10147606335984
319 => 0.10076990562127
320 => 0.10092304594915
321 => 0.10115501181765
322 => 0.10256346314761
323 => 0.10625964697611
324 => 0.10789666163297
325 => 0.11282170099703
326 => 0.10776073035406
327 => 0.10746043330049
328 => 0.10834758161189
329 => 0.11123910108696
330 => 0.11358240603489
331 => 0.11435981547462
401 => 0.11446256296571
402 => 0.11592103475585
403 => 0.11675700358707
404 => 0.11574393791891
405 => 0.11488547083754
406 => 0.11181054830894
407 => 0.11216647896436
408 => 0.11461848822077
409 => 0.11808209571808
410 => 0.1210542312777
411 => 0.1200134929941
412 => 0.12795359145124
413 => 0.12874081978087
414 => 0.12863205027986
415 => 0.13042547357004
416 => 0.12686589356333
417 => 0.12534410414684
418 => 0.11507108116455
419 => 0.11795738159141
420 => 0.12215278876834
421 => 0.1215975108965
422 => 0.11855069406106
423 => 0.12105191999392
424 => 0.12022493647995
425 => 0.11957266027091
426 => 0.1225608640345
427 => 0.11927521124778
428 => 0.1221200118684
429 => 0.11847152564677
430 => 0.12001824699892
501 => 0.11914025315294
502 => 0.11970842277417
503 => 0.1163869147781
504 => 0.11817911986773
505 => 0.11631235315415
506 => 0.11631146806367
507 => 0.116270259085
508 => 0.11846650184501
509 => 0.11853812124257
510 => 0.11691509452458
511 => 0.11668119101807
512 => 0.11754605487541
513 => 0.11653352580667
514 => 0.11700728178515
515 => 0.11654787539264
516 => 0.1164444533371
517 => 0.11562036880279
518 => 0.11526533052673
519 => 0.11540455018299
520 => 0.11492932172355
521 => 0.11464297938697
522 => 0.11621329838712
523 => 0.11537434029183
524 => 0.11608471602666
525 => 0.11527515322025
526 => 0.11246885582351
527 => 0.11085492451459
528 => 0.10555408887604
529 => 0.10705739928747
530 => 0.10805409564553
531 => 0.10772468750514
601 => 0.10843238365473
602 => 0.10847583045065
603 => 0.1082457512183
604 => 0.10797934894223
605 => 0.1078496790472
606 => 0.10881613220816
607 => 0.10937719079741
608 => 0.10815412745914
609 => 0.10786758083146
610 => 0.10910416539363
611 => 0.1098584812622
612 => 0.11542792582228
613 => 0.1150153233802
614 => 0.11605087454067
615 => 0.11593428737183
616 => 0.11701970996425
617 => 0.11879391716904
618 => 0.11518645784557
619 => 0.11581258804756
620 => 0.11565907538149
621 => 0.11733508641648
622 => 0.11734031873999
623 => 0.11633546640155
624 => 0.11688021315609
625 => 0.11657615046205
626 => 0.11712563284671
627 => 0.11500981282303
628 => 0.11758665322322
629 => 0.11904755568219
630 => 0.11906784031425
701 => 0.11976029648537
702 => 0.12046387205958
703 => 0.12181432410576
704 => 0.12042620868497
705 => 0.11792912417329
706 => 0.1181094056095
707 => 0.11664536587394
708 => 0.1166699766464
709 => 0.11653860241425
710 => 0.11693286637431
711 => 0.11509633159088
712 => 0.11552736263374
713 => 0.11492391664962
714 => 0.11581127627384
715 => 0.11485662400398
716 => 0.11565900135304
717 => 0.11600528081766
718 => 0.11728305949698
719 => 0.11466789505411
720 => 0.10933539772405
721 => 0.11045635331311
722 => 0.10879837194773
723 => 0.10895182443547
724 => 0.1092618228825
725 => 0.1082570164905
726 => 0.10844870188501
727 => 0.10844185353384
728 => 0.10838283814332
729 => 0.10812144919329
730 => 0.10774238350153
731 => 0.10925246454725
801 => 0.10950905674277
802 => 0.11007942940838
803 => 0.11177647157376
804 => 0.11160689704243
805 => 0.11188348013861
806 => 0.1112797007926
807 => 0.10897983202765
808 => 0.10910472596659
809 => 0.10754729654674
810 => 0.11003960243654
811 => 0.109449391505
812 => 0.10906887867789
813 => 0.10896505222759
814 => 0.11066630103225
815 => 0.11117534133842
816 => 0.11085814158004
817 => 0.11020755562141
818 => 0.11145687299045
819 => 0.11179113761393
820 => 0.11186596713593
821 => 0.11407951798101
822 => 0.11198968003868
823 => 0.1124927248026
824 => 0.11641733645025
825 => 0.11285825524522
826 => 0.11474357993651
827 => 0.11465130310363
828 => 0.11561577141978
829 => 0.11457218855098
830 => 0.11458512501136
831 => 0.11544150753736
901 => 0.114238872729
902 => 0.11394108343775
903 => 0.11352968966471
904 => 0.11442795291761
905 => 0.11496642111278
906 => 0.11930607930448
907 => 0.12210969640877
908 => 0.12198798399626
909 => 0.12310020761052
910 => 0.1225991406855
911 => 0.12098106340981
912 => 0.12374292401591
913 => 0.12286895575898
914 => 0.12294100464021
915 => 0.12293832297725
916 => 0.12351943546448
917 => 0.1231076640091
918 => 0.12229602020308
919 => 0.12283482723935
920 => 0.12443489151002
921 => 0.12940154010214
922 => 0.13218094245364
923 => 0.12923421659066
924 => 0.13126682863271
925 => 0.13004798570121
926 => 0.12982648568312
927 => 0.13110311625437
928 => 0.13238198139845
929 => 0.13230052321746
930 => 0.13137213279331
1001 => 0.13084770859974
1002 => 0.13481882428841
1003 => 0.13774467468163
1004 => 0.13754515129997
1005 => 0.13842578261817
1006 => 0.14101134340531
1007 => 0.14124773468038
1008 => 0.14121795481311
1009 => 0.14063203437297
1010 => 0.1431778547454
1011 => 0.14530162288953
1012 => 0.14049641071994
1013 => 0.14232617260928
1014 => 0.14314761167264
1015 => 0.14435372792766
1016 => 0.14638864821842
1017 => 0.14859911139014
1018 => 0.14891169511911
1019 => 0.1486899020049
1020 => 0.14723204212271
1021 => 0.14965075730151
1022 => 0.15106758392741
1023 => 0.15191127175962
1024 => 0.15405072372586
1025 => 0.14315268460065
1026 => 0.13543851084013
1027 => 0.13423383121341
1028 => 0.13668359460604
1029 => 0.13732957767618
1030 => 0.1370691827106
1031 => 0.12838617880114
1101 => 0.13418811699481
1102 => 0.14043051465038
1103 => 0.1406703105673
1104 => 0.14379538535606
1105 => 0.14481303780842
1106 => 0.14732913262629
1107 => 0.14717175021037
1108 => 0.14778437925871
1109 => 0.14764354644975
1110 => 0.15230408227358
1111 => 0.15744534538352
1112 => 0.15726731979024
1113 => 0.15652820238952
1114 => 0.15762591776783
1115 => 0.16293225226853
1116 => 0.16244373001999
1117 => 0.16291828777222
1118 => 0.16917475520046
1119 => 0.17730905282928
1120 => 0.17352985491056
1121 => 0.18172962695927
1122 => 0.18689094881269
1123 => 0.19581692126755
1124 => 0.19469934555486
1125 => 0.19817416112972
1126 => 0.19269865178405
1127 => 0.18012577554339
1128 => 0.17813606975127
1129 => 0.18211951113447
1130 => 0.19191241307655
1201 => 0.18181109780234
1202 => 0.18385458072633
1203 => 0.18326605750675
1204 => 0.18323469760544
1205 => 0.18443157748846
1206 => 0.18269544079308
1207 => 0.17562210757106
1208 => 0.1788637745033
1209 => 0.17761201122313
1210 => 0.17900093590761
1211 => 0.18649638959364
1212 => 0.18318247084975
1213 => 0.17969152665396
1214 => 0.18406994537801
1215 => 0.18964517700165
1216 => 0.1892962890263
1217 => 0.18861930053025
1218 => 0.19243544923649
1219 => 0.19873860887253
1220 => 0.20044232759401
1221 => 0.2016999779232
1222 => 0.20187338665542
1223 => 0.20365960437022
1224 => 0.19405466153296
1225 => 0.20929795248811
1226 => 0.21193004774865
1227 => 0.21143532292884
1228 => 0.21436078603543
1229 => 0.21350004057764
1230 => 0.21225295545612
1231 => 0.21689043674391
]
'min_raw' => 0.079947711275679
'max_raw' => 0.21689043674391
'avg_raw' => 0.1484190740098
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.079947'
'max' => '$0.21689'
'avg' => '$0.148419'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.027571899459698
'max_diff' => 0.099965126485966
'year' => 2032
]
7 => [
'items' => [
101 => 0.2115739386729
102 => 0.20402783898959
103 => 0.1998878994584
104 => 0.20533970579247
105 => 0.20866893367886
106 => 0.21086934153311
107 => 0.21153518362028
108 => 0.19480026590365
109 => 0.18578107341547
110 => 0.19156227239514
111 => 0.19861573414738
112 => 0.19401547919679
113 => 0.19419580048142
114 => 0.18763704584761
115 => 0.19919603839891
116 => 0.19751199041062
117 => 0.20624883435292
118 => 0.20416371642854
119 => 0.21128827350116
120 => 0.20941213885403
121 => 0.21719986888099
122 => 0.22030660523312
123 => 0.22552329909325
124 => 0.22936072033252
125 => 0.23161412748239
126 => 0.23147884136943
127 => 0.24040796314021
128 => 0.23514277199174
129 => 0.22852845099898
130 => 0.22840881880013
131 => 0.23183446936794
201 => 0.23901369317671
202 => 0.24087516145687
203 => 0.24191546827931
204 => 0.24032220216741
205 => 0.23460721453539
206 => 0.23213951185153
207 => 0.2342420660344
208 => 0.23167082294328
209 => 0.23610950988195
210 => 0.24220477510111
211 => 0.24094612693664
212 => 0.24515359904337
213 => 0.24950789003486
214 => 0.25573472171614
215 => 0.25736264609653
216 => 0.26005354319291
217 => 0.26282336021872
218 => 0.26371295079875
219 => 0.26541145523978
220 => 0.26540250328297
221 => 0.27052106073853
222 => 0.27616698812054
223 => 0.27829819500373
224 => 0.2831987877162
225 => 0.27480669443335
226 => 0.28117219358981
227 => 0.28691403316771
228 => 0.28006837531468
301 => 0.28950351983137
302 => 0.28986986511246
303 => 0.2954012439117
304 => 0.28979413181471
305 => 0.28646464655005
306 => 0.29607674575494
307 => 0.30072773778189
308 => 0.29932682113235
309 => 0.2886657762575
310 => 0.28246059086662
311 => 0.2662204238078
312 => 0.28545760321198
313 => 0.29482747214353
314 => 0.28864151056056
315 => 0.29176134976712
316 => 0.30878218086682
317 => 0.31526261133238
318 => 0.31391472709717
319 => 0.31414249734486
320 => 0.31763921999594
321 => 0.3331456139112
322 => 0.32385382324178
323 => 0.33095704905179
324 => 0.33472457440884
325 => 0.33822406192693
326 => 0.32963042660688
327 => 0.31845023332108
328 => 0.31490899679487
329 => 0.28802643859311
330 => 0.28662708469368
331 => 0.28584158494516
401 => 0.28088912014192
402 => 0.27699783940085
403 => 0.27390334848155
404 => 0.26578248021612
405 => 0.26852303486512
406 => 0.25558006580695
407 => 0.2638605187397
408 => 0.24320322760395
409 => 0.26040723349653
410 => 0.25104387525936
411 => 0.2573311184889
412 => 0.25730918288957
413 => 0.2457323747317
414 => 0.23905511338806
415 => 0.24331012419912
416 => 0.24787183355177
417 => 0.2486119555468
418 => 0.2545263307953
419 => 0.25617690579808
420 => 0.25117558648166
421 => 0.24277515116038
422 => 0.24472638069198
423 => 0.23901557178388
424 => 0.22900759883552
425 => 0.23619549972947
426 => 0.23864976512436
427 => 0.23973370853916
428 => 0.22989201656791
429 => 0.22679954327701
430 => 0.2251531364453
501 => 0.24150471231356
502 => 0.24240048855122
503 => 0.23781757066936
504 => 0.25853279406547
505 => 0.25384430101779
506 => 0.25908249646074
507 => 0.24454932706381
508 => 0.24510451370628
509 => 0.2382242784094
510 => 0.24207675043817
511 => 0.23935394737921
512 => 0.24176550876911
513 => 0.24321098872298
514 => 0.25009009504095
515 => 0.26048578184062
516 => 0.24906258595502
517 => 0.24408533592449
518 => 0.24717319385032
519 => 0.25539656641995
520 => 0.26785539680964
521 => 0.26047951846161
522 => 0.26375280802193
523 => 0.26446787617234
524 => 0.25902917654837
525 => 0.26805592942245
526 => 0.27289343962088
527 => 0.27785572410279
528 => 0.28216433667837
529 => 0.27587367855774
530 => 0.28260558447723
531 => 0.27718085664749
601 => 0.27231431498615
602 => 0.27232169552103
603 => 0.26926884284804
604 => 0.26335355610994
605 => 0.26226268647865
606 => 0.26793752806225
607 => 0.27248821360281
608 => 0.27286302986024
609 => 0.27538252319815
610 => 0.27687353340268
611 => 0.29148746033718
612 => 0.29736530264298
613 => 0.30455261695265
614 => 0.30735248093111
615 => 0.31577906769947
616 => 0.3089739145101
617 => 0.30750157681116
618 => 0.28706143362664
619 => 0.29040850592803
620 => 0.29576749162699
621 => 0.28714980132698
622 => 0.29261574230346
623 => 0.29369483483668
624 => 0.28685697550819
625 => 0.29050937162199
626 => 0.2808096904037
627 => 0.26069720838501
628 => 0.2680783203644
629 => 0.27351330323666
630 => 0.26575691254939
701 => 0.27965994264254
702 => 0.27153807947892
703 => 0.26896383877423
704 => 0.25892080800219
705 => 0.26366073193489
706 => 0.27007154692304
707 => 0.2661104085976
708 => 0.2743303653908
709 => 0.28597201639238
710 => 0.2942685501684
711 => 0.29490545501326
712 => 0.28957133961987
713 => 0.29811929357965
714 => 0.29818155609223
715 => 0.28853942910618
716 => 0.28263368001481
717 => 0.28129188139545
718 => 0.28464395742173
719 => 0.288713996545
720 => 0.29513131385857
721 => 0.2990091643098
722 => 0.30912054163366
723 => 0.31185639042159
724 => 0.314862258782
725 => 0.31887902588697
726 => 0.32370218467445
727 => 0.31314938783004
728 => 0.31356867012154
729 => 0.30374205181344
730 => 0.29324090087163
731 => 0.30120996544952
801 => 0.31162845730488
802 => 0.30923844376185
803 => 0.30896951841472
804 => 0.30942177625493
805 => 0.30761978409403
806 => 0.29946944033523
807 => 0.29537638872341
808 => 0.30065746955149
809 => 0.30346412897774
810 => 0.30781701298145
811 => 0.30728042814976
812 => 0.31849298987768
813 => 0.32284985231488
814 => 0.32173518046279
815 => 0.32194030690965
816 => 0.32982819824134
817 => 0.33860115567075
818 => 0.34681818799709
819 => 0.35517690620919
820 => 0.34510014515818
821 => 0.33998378734469
822 => 0.34526256261809
823 => 0.34246157015388
824 => 0.35855690368154
825 => 0.35967130965345
826 => 0.3757654793053
827 => 0.39104076276297
828 => 0.38144663090834
829 => 0.39049346511807
830 => 0.40027835391511
831 => 0.4191549919456
901 => 0.41279800434507
902 => 0.40792865146975
903 => 0.40332713653112
904 => 0.41290215864848
905 => 0.42522027163776
906 => 0.42787347519423
907 => 0.43217267855748
908 => 0.4276525919026
909 => 0.43309653840719
910 => 0.4523160617597
911 => 0.44712277689443
912 => 0.43974747752353
913 => 0.4549194453477
914 => 0.46041012152373
915 => 0.49894656241657
916 => 0.54760041090474
917 => 0.52745739815224
918 => 0.51495398012581
919 => 0.51789257994706
920 => 0.53565931837824
921 => 0.54136543087424
922 => 0.52585425009517
923 => 0.5313330613727
924 => 0.56152185017669
925 => 0.57771716679773
926 => 0.55572175150515
927 => 0.49503727306374
928 => 0.43908341251008
929 => 0.45392489596409
930 => 0.45224233232526
1001 => 0.48467641976705
1002 => 0.44699891876792
1003 => 0.44763331125541
1004 => 0.4807381012772
1005 => 0.47190631085917
1006 => 0.45759994147221
1007 => 0.43918786483899
1008 => 0.40515143827151
1009 => 0.37500442608473
1010 => 0.43412965942528
1011 => 0.43158007185137
1012 => 0.42788789121665
1013 => 0.43610443968355
1014 => 0.47600166673087
1015 => 0.4750819065127
1016 => 0.46923086127055
1017 => 0.47366882751798
1018 => 0.45682194453178
1019 => 0.46116376987372
1020 => 0.4390745491327
1021 => 0.44905979943498
1022 => 0.45756924642882
1023 => 0.45927764389735
1024 => 0.46312675062688
1025 => 0.43023655505408
1026 => 0.44500328726086
1027 => 0.45367735897665
1028 => 0.41448758739929
1029 => 0.45290270319729
1030 => 0.42966400992324
1031 => 0.42177644839257
1101 => 0.4323960108864
1102 => 0.42825755705469
1103 => 0.42469955746835
1104 => 0.42271413256498
1105 => 0.43051196722211
1106 => 0.43014818891493
1107 => 0.41738941792137
1108 => 0.40074612127432
1109 => 0.40633215792666
1110 => 0.40430269844149
1111 => 0.39694767546176
1112 => 0.40190407290124
1113 => 0.38007860695312
1114 => 0.34252902717837
1115 => 0.3673354297523
1116 => 0.36638041023738
1117 => 0.36589884609127
1118 => 0.38454017202697
1119 => 0.38274823866681
1120 => 0.37949586207147
1121 => 0.39688794301504
1122 => 0.39053959951414
1123 => 0.41010369832608
1124 => 0.4229898791302
1125 => 0.419721526854
1126 => 0.43184104218459
1127 => 0.40646084892892
1128 => 0.41489113105184
1129 => 0.41662860051351
1130 => 0.3966733274359
1201 => 0.38304142112575
1202 => 0.38213232838997
1203 => 0.35849648144057
1204 => 0.37112256009905
1205 => 0.38223298681587
1206 => 0.37691195462246
1207 => 0.37522747479134
1208 => 0.38383311692943
1209 => 0.3845018490259
1210 => 0.36925468635732
1211 => 0.37242505429097
1212 => 0.38564601560408
1213 => 0.37209191998737
1214 => 0.34575852625305
1215 => 0.33922748051929
1216 => 0.33835611862735
1217 => 0.32064340461362
1218 => 0.33966391622463
1219 => 0.3313609531884
1220 => 0.35758991393507
1221 => 0.34260807222531
1222 => 0.34196223497303
1223 => 0.34098595724248
1224 => 0.32573989258786
1225 => 0.32907781180927
1226 => 0.34017356368068
1227 => 0.34413265295099
1228 => 0.34371968750423
1229 => 0.34011918844324
1230 => 0.34176747847583
1231 => 0.33645776197856
]
'min_raw' => 0.18578107341547
'max_raw' => 0.57771716679773
'avg_raw' => 0.3817491201066
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.185781'
'max' => '$0.577717'
'avg' => '$0.381749'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.10583336213979
'max_diff' => 0.36082673005381
'year' => 2033
]
8 => [
'items' => [
101 => 0.33458279057118
102 => 0.32866486505798
103 => 0.31996714942223
104 => 0.32117662012757
105 => 0.30394416957205
106 => 0.29455501591403
107 => 0.29195622192855
108 => 0.28848100600008
109 => 0.29234875681486
110 => 0.30389535220477
111 => 0.28996770841768
112 => 0.26608974005533
113 => 0.26752484663998
114 => 0.27074910504874
115 => 0.26474072083463
116 => 0.25905428942144
117 => 0.26399818018045
118 => 0.25388077020762
119 => 0.27197174570745
120 => 0.27148243551956
121 => 0.27822563244747
122 => 0.28244229187083
123 => 0.27272425705969
124 => 0.27028019758505
125 => 0.27167244493812
126 => 0.24866169746125
127 => 0.27634516345909
128 => 0.27658457122262
129 => 0.2745346166026
130 => 0.28927520761533
131 => 0.32038245235782
201 => 0.30867865559968
202 => 0.30414659174579
203 => 0.29553113504664
204 => 0.30701071956306
205 => 0.30612926658162
206 => 0.3021430019184
207 => 0.29973209661219
208 => 0.30417426356128
209 => 0.29918166296791
210 => 0.29828485471385
211 => 0.29285117243126
212 => 0.29091159507316
213 => 0.28947560921403
214 => 0.28789472988018
215 => 0.29138175576007
216 => 0.28347969635979
217 => 0.27395058737148
218 => 0.27315834506549
219 => 0.27534579572699
220 => 0.27437801164583
221 => 0.27315371168765
222 => 0.27081618964923
223 => 0.27012269679369
224 => 0.2723762121393
225 => 0.26983212470221
226 => 0.27358606429925
227 => 0.2725652004438
228 => 0.26686273793294
301 => 0.25975535832238
302 => 0.25969208773561
303 => 0.25816081445695
304 => 0.2562105077081
305 => 0.25566797698755
306 => 0.26358181949035
307 => 0.27996323662979
308 => 0.27674717247123
309 => 0.2790711084213
310 => 0.29050257321171
311 => 0.29413629211244
312 => 0.29155716450605
313 => 0.28802669556476
314 => 0.28818201828074
315 => 0.30024669939875
316 => 0.30099915876124
317 => 0.30290038081767
318 => 0.30534398844546
319 => 0.29197332145152
320 => 0.28755226106773
321 => 0.2854573173868
322 => 0.27900570169477
323 => 0.2859632160989
324 => 0.28190937040609
325 => 0.28245637268914
326 => 0.28210013673471
327 => 0.28229466565439
328 => 0.27196668891111
329 => 0.27572966081388
330 => 0.26947299018511
331 => 0.26109601055743
401 => 0.26106792798437
402 => 0.26311818188058
403 => 0.26189861063667
404 => 0.25861677577735
405 => 0.25908294492929
406 => 0.25499881263203
407 => 0.25957883253578
408 => 0.25971017111852
409 => 0.25794661398021
410 => 0.26500276656288
411 => 0.26789367803328
412 => 0.26673286694579
413 => 0.26781223243289
414 => 0.27688081445668
415 => 0.27835938901653
416 => 0.27901607416686
417 => 0.27813620305952
418 => 0.26797798946486
419 => 0.26842854943384
420 => 0.26512263933268
421 => 0.26232949366542
422 => 0.262441204844
423 => 0.26387724480049
424 => 0.27014851551311
425 => 0.28334603501622
426 => 0.28384687123411
427 => 0.2844538993406
428 => 0.2819848109636
429 => 0.2812401102831
430 => 0.28222256270423
501 => 0.28717885713699
502 => 0.29992779203886
503 => 0.29542146697181
504 => 0.29175775454717
505 => 0.29497181807336
506 => 0.29447703818616
507 => 0.29030059800936
508 => 0.29018337924367
509 => 0.2821674552557
510 => 0.2792041506711
511 => 0.27672779156071
512 => 0.27402367205915
513 => 0.27242057937573
514 => 0.27488365833007
515 => 0.27544699362922
516 => 0.2700614284483
517 => 0.26932739581449
518 => 0.27372536459672
519 => 0.27178998250846
520 => 0.2737805709814
521 => 0.27424240458208
522 => 0.27416803873544
523 => 0.27214727755808
524 => 0.27343525047256
525 => 0.2703888105666
526 => 0.26707626472935
527 => 0.26496306686408
528 => 0.26311902145161
529 => 0.264142205023
530 => 0.26049474241694
531 => 0.25932784572035
601 => 0.27299891422944
602 => 0.28309787952587
603 => 0.28295103657083
604 => 0.28205716784697
605 => 0.28072906023796
606 => 0.28708169779312
607 => 0.2848685658939
608 => 0.28647880426394
609 => 0.28688867751061
610 => 0.28812924038235
611 => 0.28857263497901
612 => 0.28723238855054
613 => 0.2827343578393
614 => 0.27152569296679
615 => 0.26630802921143
616 => 0.26458611326509
617 => 0.26464870163936
618 => 0.26292223487032
619 => 0.26343075670861
620 => 0.26274539172759
621 => 0.26144747626114
622 => 0.26406206240037
623 => 0.26436336909637
624 => 0.26375309344949
625 => 0.26389683545663
626 => 0.25884401375264
627 => 0.25922816881264
628 => 0.25708914462248
629 => 0.25668810337315
630 => 0.25128083648657
701 => 0.24170107940113
702 => 0.24700919475599
703 => 0.24059773784129
704 => 0.23816962195827
705 => 0.249663944899
706 => 0.24851023367864
707 => 0.2465355815756
708 => 0.24361465956165
709 => 0.24253126117377
710 => 0.23594887553127
711 => 0.23555995307185
712 => 0.23882236113563
713 => 0.2373168720668
714 => 0.23520259524087
715 => 0.22754489889815
716 => 0.2189351128328
717 => 0.21919498815493
718 => 0.22193360091155
719 => 0.22989648685368
720 => 0.22678524955676
721 => 0.22452801120052
722 => 0.22410529830873
723 => 0.22939643515885
724 => 0.23688450232922
725 => 0.24039773590949
726 => 0.23691622812993
727 => 0.23291685945046
728 => 0.23316028249069
729 => 0.23477966692189
730 => 0.23494984132875
731 => 0.23234666346015
801 => 0.23307944278196
802 => 0.23196628398539
803 => 0.22513483050557
804 => 0.22501127117489
805 => 0.22333472231887
806 => 0.22328395708581
807 => 0.22043172924702
808 => 0.22003268285585
809 => 0.21436941136406
810 => 0.21809699380992
811 => 0.2155967272121
812 => 0.21182823569592
813 => 0.2111785463381
814 => 0.21115901589148
815 => 0.21502841405932
816 => 0.21805177763946
817 => 0.21564022042003
818 => 0.21509115558724
819 => 0.22095373153071
820 => 0.22020766530334
821 => 0.21956157676204
822 => 0.23621402804395
823 => 0.22303231344734
824 => 0.21728433349726
825 => 0.21017011679724
826 => 0.21248654162776
827 => 0.21297464637491
828 => 0.19586623764531
829 => 0.18892535835443
830 => 0.18654351014332
831 => 0.18517272282343
901 => 0.18579740781837
902 => 0.17954980237263
903 => 0.18374829655802
904 => 0.17833839833896
905 => 0.1774314112972
906 => 0.18710497947068
907 => 0.18845099996985
908 => 0.18270845834459
909 => 0.18639609970105
910 => 0.18505890968314
911 => 0.17843113551658
912 => 0.17817800329402
913 => 0.17485241919476
914 => 0.1696485240394
915 => 0.16727020431425
916 => 0.16603155475187
917 => 0.16654264570211
918 => 0.16628422247803
919 => 0.1645978361367
920 => 0.1663808841691
921 => 0.16182593325264
922 => 0.16001211509597
923 => 0.15919285551486
924 => 0.15515007440331
925 => 0.16158393698471
926 => 0.16285148896491
927 => 0.16412153841408
928 => 0.17517645176951
929 => 0.17462417953914
930 => 0.17961645153426
1001 => 0.17942246102473
1002 => 0.17799858418227
1003 => 0.17199148200034
1004 => 0.17438580586376
1005 => 0.1670164491727
1006 => 0.17253807227318
1007 => 0.17001823407861
1008 => 0.17168611244487
1009 => 0.16868711675581
1010 => 0.17034688479564
1011 => 0.1631520725625
1012 => 0.15643365813293
1013 => 0.15913734422213
1014 => 0.1620765602051
1015 => 0.16844952935448
1016 => 0.16465384150496
1017 => 0.1660189143865
1018 => 0.1614461487438
1019 => 0.15201122707697
1020 => 0.15206462770898
1021 => 0.15061327056148
1022 => 0.14935908608443
1023 => 0.16508982191435
1024 => 0.16313345624776
1025 => 0.16001624360087
1026 => 0.16418875660184
1027 => 0.16529203526599
1028 => 0.16532344405853
1029 => 0.16836760183589
1030 => 0.16999226938736
1031 => 0.17027862408502
1101 => 0.17506867212108
1102 => 0.17667423304051
1103 => 0.18328731124014
1104 => 0.16985442769654
1105 => 0.16957778629972
1106 => 0.16424747241652
1107 => 0.16086690308288
1108 => 0.164478942891
1109 => 0.1676787170684
1110 => 0.16434689831955
1111 => 0.16478196350962
1112 => 0.16030926905889
1113 => 0.16190804686519
1114 => 0.1632851296906
1115 => 0.1625247854956
1116 => 0.16138651343459
1117 => 0.1674163720756
1118 => 0.16707614381986
1119 => 0.17269128681222
1120 => 0.17706869231748
1121 => 0.18491378553775
1122 => 0.17672702178844
1123 => 0.17642866357798
1124 => 0.17934516294342
1125 => 0.17667378653965
1126 => 0.17836200421405
1127 => 0.18464178757066
1128 => 0.18477446949743
1129 => 0.18255187627299
1130 => 0.18241663127329
1201 => 0.18284350461455
1202 => 0.18534371510745
1203 => 0.18447006473753
1204 => 0.18548107506373
1205 => 0.18674535895778
1206 => 0.19197497318886
1207 => 0.19323581547519
1208 => 0.19017262239117
1209 => 0.19044919442954
1210 => 0.18930347612958
1211 => 0.18819672660764
1212 => 0.19068453790519
1213 => 0.19523106194952
1214 => 0.1952027782594
1215 => 0.19625748346589
1216 => 0.19691455607188
1217 => 0.19409391944042
1218 => 0.19225778871103
1219 => 0.19296187806871
1220 => 0.19408773228472
1221 => 0.19259677872034
1222 => 0.18339392264414
1223 => 0.18618548129694
1224 => 0.18572082943687
1225 => 0.18505910868453
1226 => 0.1878660424964
1227 => 0.18759530688269
1228 => 0.17948572414865
1229 => 0.1800048733238
1230 => 0.17951729532946
1231 => 0.18109275957825
]
'min_raw' => 0.14935908608443
'max_raw' => 0.33458279057118
'avg_raw' => 0.2419709383278
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.149359'
'max' => '$0.334582'
'avg' => '$0.24197'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.036421987331045
'max_diff' => -0.24313437622655
'year' => 2034
]
9 => [
'items' => [
101 => 0.17658870629998
102 => 0.17797412275312
103 => 0.17884304296505
104 => 0.17935484364523
105 => 0.18120381864708
106 => 0.18098686277141
107 => 0.18119033236523
108 => 0.18393187418167
109 => 0.19779765190567
110 => 0.19855233559408
111 => 0.19483599709979
112 => 0.19632060102672
113 => 0.1934704861342
114 => 0.19538378735566
115 => 0.1966928194588
116 => 0.1907775550971
117 => 0.19042729153135
118 => 0.18756541320082
119 => 0.18910322451057
120 => 0.18665645614421
121 => 0.18725680751699
122 => 0.18557817274101
123 => 0.18859938112493
124 => 0.19197756154648
125 => 0.19283102332935
126 => 0.19058593281702
127 => 0.18896033932741
128 => 0.18610633266346
129 => 0.19085260935131
130 => 0.19224056529499
131 => 0.1908453190096
201 => 0.19052200995855
202 => 0.189909339891
203 => 0.19065199080965
204 => 0.19223300618885
205 => 0.19148742853279
206 => 0.19197989571
207 => 0.19010311866041
208 => 0.19409485318851
209 => 0.20043468828236
210 => 0.20045507188886
211 => 0.19970949021386
212 => 0.19940441425623
213 => 0.20016942630046
214 => 0.20058441395201
215 => 0.20305832262383
216 => 0.20571292519356
217 => 0.21810079709263
218 => 0.21462233223424
219 => 0.2256135891409
220 => 0.23430624631798
221 => 0.23691279412155
222 => 0.23451489278981
223 => 0.22631180186602
224 => 0.22590931909038
225 => 0.23816820018619
226 => 0.2347045047843
227 => 0.23429250923763
228 => 0.22990957269855
301 => 0.2325004310304
302 => 0.23193377230763
303 => 0.23103927379184
304 => 0.23598245100824
305 => 0.24523563747688
306 => 0.24379344158991
307 => 0.24271690926183
308 => 0.23799985797403
309 => 0.24084057644083
310 => 0.23982905100518
311 => 0.24417520620664
312 => 0.24160064014442
313 => 0.23467826388499
314 => 0.23578067512076
315 => 0.23561404788021
316 => 0.23904322468324
317 => 0.23801387092437
318 => 0.23541305003826
319 => 0.24520401109148
320 => 0.24456824054087
321 => 0.24546961782426
322 => 0.24586643198042
323 => 0.25182601743743
324 => 0.25426746891371
325 => 0.25482172114244
326 => 0.25714091121627
327 => 0.25476401758067
328 => 0.2642732868195
329 => 0.27059639598208
330 => 0.27794101265864
331 => 0.28867347166994
401 => 0.29270897553899
402 => 0.29197999788544
403 => 0.30011722581995
404 => 0.31473964353784
405 => 0.29493560657715
406 => 0.31578930558472
407 => 0.30918726524646
408 => 0.29353394637006
409 => 0.29252605717493
410 => 0.30312666645679
411 => 0.32663779757313
412 => 0.32074852588953
413 => 0.32664743031183
414 => 0.31976604496446
415 => 0.31942432618109
416 => 0.32631321678505
417 => 0.34240948517506
418 => 0.33476275142256
419 => 0.32379928353232
420 => 0.33189453761202
421 => 0.32488167934778
422 => 0.30907974690302
423 => 0.32074402247446
424 => 0.31294445357928
425 => 0.31522078243078
426 => 0.33161431615014
427 => 0.32964180280111
428 => 0.33219441772457
429 => 0.32768911919824
430 => 0.32348045995427
501 => 0.31562468493628
502 => 0.31329897723848
503 => 0.31394171917595
504 => 0.31329865872749
505 => 0.30890342480322
506 => 0.30795427445575
507 => 0.30637231562673
508 => 0.30686263081694
509 => 0.30388808540001
510 => 0.3095016671742
511 => 0.31054359741821
512 => 0.31462869409959
513 => 0.31505282238884
514 => 0.3264297584988
515 => 0.32016353327108
516 => 0.32436745815369
517 => 0.32399141954331
518 => 0.29387320125513
519 => 0.29802322599995
520 => 0.30447936215339
521 => 0.30157088156735
522 => 0.29745897049834
523 => 0.29413838184339
524 => 0.28910735048351
525 => 0.29618843051013
526 => 0.30549929775624
527 => 0.31528896134748
528 => 0.32705060070818
529 => 0.32442553972345
530 => 0.31506908568085
531 => 0.31548880937431
601 => 0.31808337609207
602 => 0.31472317645133
603 => 0.31373218797838
604 => 0.31794722949355
605 => 0.31797625616792
606 => 0.31410994038755
607 => 0.30981323792598
608 => 0.30979523458578
609 => 0.30903067788397
610 => 0.31990205790324
611 => 0.32588021769334
612 => 0.32656560407899
613 => 0.32583408572871
614 => 0.32611561810881
615 => 0.32263705864671
616 => 0.3305880140423
617 => 0.33788459698129
618 => 0.33592895688488
619 => 0.33299717436975
620 => 0.33066186838267
621 => 0.33537883301142
622 => 0.33516879400169
623 => 0.33782086769472
624 => 0.33770055431288
625 => 0.33680876167946
626 => 0.33592898873361
627 => 0.33941718901887
628 => 0.3384126433555
629 => 0.33740653735525
630 => 0.33538863774462
701 => 0.33566290381547
702 => 0.33273162751392
703 => 0.33137548497075
704 => 0.31098235496236
705 => 0.30553264425937
706 => 0.30724723418562
707 => 0.30781172170865
708 => 0.30544000062672
709 => 0.30884043941305
710 => 0.30831048463016
711 => 0.31037222867722
712 => 0.30908414050714
713 => 0.30913700409494
714 => 0.31292499675381
715 => 0.31402466713795
716 => 0.31346536590515
717 => 0.31385708131688
718 => 0.32288399764748
719 => 0.3216006588098
720 => 0.32091891063018
721 => 0.32110775953508
722 => 0.32341433019682
723 => 0.32406004404802
724 => 0.32132410908699
725 => 0.32261439183086
726 => 0.32810825199301
727 => 0.33003079212421
728 => 0.33616661735137
729 => 0.33356000973928
730 => 0.33834455082262
731 => 0.35305059894255
801 => 0.36479880776187
802 => 0.35399466941636
803 => 0.37556875878768
804 => 0.39236728198257
805 => 0.39172252668294
806 => 0.38879331560707
807 => 0.36966864356154
808 => 0.35206983521244
809 => 0.36679198568133
810 => 0.36682951547052
811 => 0.36556486968881
812 => 0.35771026335176
813 => 0.36529154641413
814 => 0.36589332113244
815 => 0.365556487315
816 => 0.35953437905248
817 => 0.35033973280726
818 => 0.35213634467471
819 => 0.35507923156347
820 => 0.34950773273252
821 => 0.34772730126702
822 => 0.35103746210234
823 => 0.36170349001313
824 => 0.35968713922069
825 => 0.35963448415278
826 => 0.36826128790866
827 => 0.36208635820023
828 => 0.3521590057039
829 => 0.34965221827289
830 => 0.34075481166714
831 => 0.3469002821012
901 => 0.34712144664156
902 => 0.34375563529
903 => 0.35243212274503
904 => 0.35235216738567
905 => 0.36058920089949
906 => 0.37633531528941
907 => 0.37167841444508
908 => 0.3662629454325
909 => 0.36685175706883
910 => 0.37330956740848
911 => 0.36940502785966
912 => 0.37080912750483
913 => 0.37330744213551
914 => 0.37481473738185
915 => 0.36663488047884
916 => 0.36472776454696
917 => 0.36082647465708
918 => 0.35980870094583
919 => 0.36298622015806
920 => 0.36214905610905
921 => 0.34710285861833
922 => 0.3455304472643
923 => 0.34557867087564
924 => 0.34162476776184
925 => 0.33559411646782
926 => 0.35144230799703
927 => 0.35016947642194
928 => 0.34876436887237
929 => 0.34893648652976
930 => 0.35581564932754
1001 => 0.35182538749878
1002 => 0.3624341525616
1003 => 0.36025330939335
1004 => 0.35801653582691
1005 => 0.35770734558624
1006 => 0.35684637859572
1007 => 0.3538938024335
1008 => 0.3503283892953
1009 => 0.34797419471066
1010 => 0.32098780077425
1011 => 0.32599631851622
1012 => 0.33175816163759
1013 => 0.33374712679395
1014 => 0.3303448642618
1015 => 0.3540281444953
1016 => 0.35835530801173
1017 => 0.34524804746658
1018 => 0.3427962141845
1019 => 0.35418888627709
1020 => 0.34731771230774
1021 => 0.35041180152541
1022 => 0.34372407301312
1023 => 0.35731302103476
1024 => 0.35720949601855
1025 => 0.35192308831782
1026 => 0.35639112390672
1027 => 0.35561469277019
1028 => 0.34964635149592
1029 => 0.35750222809869
1030 => 0.35750612451548
1031 => 0.35241807203994
1101 => 0.34647634066642
1102 => 0.34541409943427
1103 => 0.34461384335787
1104 => 0.3502149875872
1105 => 0.3552369559889
1106 => 0.36458159413292
1107 => 0.36693105818545
1108 => 0.37610117279516
1109 => 0.37064081602985
1110 => 0.37306132146045
1111 => 0.37568912250677
1112 => 0.37694898696256
1113 => 0.37489610543991
1114 => 0.38914106799854
1115 => 0.39034377929286
1116 => 0.39074703798644
1117 => 0.38594371676004
1118 => 0.39021019024041
1119 => 0.3882140485897
1120 => 0.39340745462073
1121 => 0.39422184699914
1122 => 0.39353208562748
1123 => 0.39379058662269
1124 => 0.38163502406249
1125 => 0.38100469401805
1126 => 0.37241009913583
1127 => 0.37591246007837
1128 => 0.36936496416882
1129 => 0.37144124256842
1130 => 0.37235644630346
1201 => 0.37187839580963
1202 => 0.37611047831116
1203 => 0.37251234362752
1204 => 0.36301627460929
1205 => 0.3535176183934
1206 => 0.35339837050205
1207 => 0.35089754198561
1208 => 0.34908990101782
1209 => 0.34943811679773
1210 => 0.35066527462461
1211 => 0.34901857637407
1212 => 0.34936998293554
1213 => 0.35520567326567
1214 => 0.35637597934314
1215 => 0.3523988220238
1216 => 0.3364299614856
1217 => 0.33251116305468
1218 => 0.33532791765368
1219 => 0.33398169037758
1220 => 0.2695492903369
1221 => 0.28468672698716
1222 => 0.27569257614836
1223 => 0.27983749465586
1224 => 0.27065679567351
1225 => 0.27503830642955
1226 => 0.27422920138006
1227 => 0.29856975156436
1228 => 0.29818970735257
1229 => 0.29837161440526
1230 => 0.28968871682385
1231 => 0.3035208084374
]
'min_raw' => 0.17658870629998
'max_raw' => 0.39422184699914
'avg_raw' => 0.28540527664956
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.176588'
'max' => '$0.394221'
'avg' => '$0.2854052'
'bar_min_pct' => 61.631153054958
'bar_max_pct' => 60.119598047091
'min_diff' => 0.027229620215558
'max_diff' => 0.059639056427957
'year' => 2035
]
10 => [
'items' => [
101 => 0.31033499415216
102 => 0.30907386973004
103 => 0.30939126757723
104 => 0.30393732097314
105 => 0.29842442053012
106 => 0.29230976550952
107 => 0.3036700387436
108 => 0.3024069702863
109 => 0.30530399488966
110 => 0.31267194413105
111 => 0.31375690264497
112 => 0.31521509789023
113 => 0.31469243869621
114 => 0.32714430114105
115 => 0.32563629843895
116 => 0.32927015106903
117 => 0.32179504050789
118 => 0.31333624336394
119 => 0.31494398416209
120 => 0.3147891457946
121 => 0.31281787566116
122 => 0.31103830112613
123 => 0.30807581091733
124 => 0.31744956830404
125 => 0.31706901087263
126 => 0.32322979333752
127 => 0.3221408151942
128 => 0.31486835263497
129 => 0.31512809005801
130 => 0.31687494905347
131 => 0.32292084798204
201 => 0.32471568242023
202 => 0.32388424359668
203 => 0.32585219762085
204 => 0.32740758824161
205 => 0.3260475307356
206 => 0.34530307691316
207 => 0.33730683164824
208 => 0.34120414595285
209 => 0.34213363245019
210 => 0.33975277233225
211 => 0.34026909563962
212 => 0.34105118476061
213 => 0.3457998767545
214 => 0.35826181859158
215 => 0.36378112779991
216 => 0.38038624187111
217 => 0.36332282600266
218 => 0.36231035352046
219 => 0.36530143599108
220 => 0.37505039578071
221 => 0.38295101201697
222 => 0.38557210222002
223 => 0.38591852255984
224 => 0.39083586202755
225 => 0.39365438930748
226 => 0.3902387676773
227 => 0.38734438597621
228 => 0.37697706998678
229 => 0.37817711504182
301 => 0.38644423544363
302 => 0.39812202994214
303 => 0.4081427924893
304 => 0.40463387070412
305 => 0.43140446701233
306 => 0.43405866228821
307 => 0.43369193832149
308 => 0.43973859015716
309 => 0.42773721764259
310 => 0.42260639837697
311 => 0.38797018415261
312 => 0.39770154755684
313 => 0.41184665576781
314 => 0.40997449765466
315 => 0.39970194197202
316 => 0.40813499983466
317 => 0.40534676717917
318 => 0.4031475723999
319 => 0.41322251001859
320 => 0.40214470225122
321 => 0.41173614616125
322 => 0.39943502013585
323 => 0.40464989916327
324 => 0.40168968161199
325 => 0.40360530515828
326 => 0.39240660904926
327 => 0.39844915363671
328 => 0.39215521932838
329 => 0.39215223518402
330 => 0.39201329623533
331 => 0.3994180820375
401 => 0.39965955183666
402 => 0.39418740394085
403 => 0.39339878193805
404 => 0.39631473081593
405 => 0.39290091836815
406 => 0.39449821972619
407 => 0.39294929899909
408 => 0.39260060431816
409 => 0.38982214577498
410 => 0.38862510943927
411 => 0.38909449823033
412 => 0.38749223229994
413 => 0.38652680912039
414 => 0.39182124926556
415 => 0.3889926434731
416 => 0.39138772485995
417 => 0.38865822733627
418 => 0.37919659973372
419 => 0.3737551176446
420 => 0.35588298019673
421 => 0.36095149620663
422 => 0.36431192756495
423 => 0.36320130502107
424 => 0.36558735199919
425 => 0.36573383590498
426 => 0.36495810770952
427 => 0.36405991383612
428 => 0.36362272273178
429 => 0.36688118703955
430 => 0.36877283524507
501 => 0.36464919180853
502 => 0.36368307984725
503 => 0.36785231103419
504 => 0.37039553964974
505 => 0.38917331083023
506 => 0.38778219288977
507 => 0.3912736259272
508 => 0.39088054414759
509 => 0.39454012219972
510 => 0.40052198566186
511 => 0.388359184688
512 => 0.39047022637904
513 => 0.38995264770747
514 => 0.39560343592729
515 => 0.39562107707131
516 => 0.39223314725572
517 => 0.39406979897164
518 => 0.39304463036972
519 => 0.39489724859323
520 => 0.38776361366156
521 => 0.39645161098003
522 => 0.40137714561743
523 => 0.40144553667065
524 => 0.40378020099731
525 => 0.40615235516785
526 => 0.4107054985271
527 => 0.40602537047078
528 => 0.39760627569875
529 => 0.39821410714778
530 => 0.39327799496337
531 => 0.39336097190097
601 => 0.39291803450503
602 => 0.39424732297301
603 => 0.3880553177279
604 => 0.38950856898252
605 => 0.38747400871582
606 => 0.39046580364237
607 => 0.38724712686282
608 => 0.38995239811536
609 => 0.3911199035068
610 => 0.39542802353578
611 => 0.38661081403172
612 => 0.36863192698033
613 => 0.37241130701147
614 => 0.36682130708152
615 => 0.36733868285767
616 => 0.36838386426523
617 => 0.36499608936124
618 => 0.36564237005187
619 => 0.36561928035779
620 => 0.3654203058483
621 => 0.3645390147537
622 => 0.3632609683084
623 => 0.36835231198453
624 => 0.36921743048644
625 => 0.3711404817507
626 => 0.37686217789498
627 => 0.37629044552328
628 => 0.37722296474247
629 => 0.37518728052285
630 => 0.36743311241013
701 => 0.36785420104508
702 => 0.36260321901978
703 => 0.37100620233449
704 => 0.36901626497161
705 => 0.36773333940845
706 => 0.36738328128232
707 => 0.37311916040464
708 => 0.37483542533693
709 => 0.37376596420538
710 => 0.37157246822341
711 => 0.37578462895767
712 => 0.37691162547336
713 => 0.37716391843119
714 => 0.38462705965057
715 => 0.37758102512019
716 => 0.37927707566322
717 => 0.39250917784089
718 => 0.38050948707103
719 => 0.38686599089686
720 => 0.38655487311224
721 => 0.38980664537717
722 => 0.38628813287439
723 => 0.38633174905376
724 => 0.38921910253089
725 => 0.38516433530921
726 => 0.3841603179228
727 => 0.38277327509438
728 => 0.38580183236628
729 => 0.38761731548092
730 => 0.4022487760595
731 => 0.41170136686892
801 => 0.41129100497245
802 => 0.41504094454092
803 => 0.41335156241981
804 => 0.40789610191428
805 => 0.4172079077747
806 => 0.41426126277795
807 => 0.41450418061131
808 => 0.41449513919742
809 => 0.41645440052008
810 => 0.41506608430931
811 => 0.41232957055016
812 => 0.41414619609123
813 => 0.41954092449272
814 => 0.4362863269814
815 => 0.44565727606114
816 => 0.43572218408029
817 => 0.4425752774925
818 => 0.43846586345203
819 => 0.4377190606764
820 => 0.44202330977889
821 => 0.44633509289965
822 => 0.44606045095521
823 => 0.44293031782205
824 => 0.44116218503932
825 => 0.45455107883811
826 => 0.4644157877152
827 => 0.46374308070363
828 => 0.46671219067666
829 => 0.4754295893886
830 => 0.47622659907682
831 => 0.47612619417516
901 => 0.47415072250354
902 => 0.48273413363271
903 => 0.48989456620741
904 => 0.47369345788843
905 => 0.47986262784822
906 => 0.48263216700141
907 => 0.48669867216353
908 => 0.49355954799744
909 => 0.5010122789105
910 => 0.50206617677664
911 => 0.50131838580695
912 => 0.49640310942963
913 => 0.50455797652427
914 => 0.50933490641315
915 => 0.51217945884387
916 => 0.51939277051981
917 => 0.48264927073236
918 => 0.45664039531237
919 => 0.45257873384282
920 => 0.46083828215809
921 => 0.46301625918016
922 => 0.46213831937352
923 => 0.43286296546482
924 => 0.45242460516317
925 => 0.4734712846892
926 => 0.4742797733651
927 => 0.48481618120115
928 => 0.48824726749452
929 => 0.49673045684108
930 => 0.49619983103773
1001 => 0.4982653526466
1002 => 0.49779052499857
1003 => 0.51350384691681
1004 => 0.53083797444352
1005 => 0.53023774872642
1006 => 0.52774576280637
1007 => 0.53144678684439
1008 => 0.54933746408995
1009 => 0.54769037722144
1010 => 0.54929038181567
1011 => 0.57038449856257
1012 => 0.59780985093666
1013 => 0.58506802129854
1014 => 0.61271412525056
1015 => 0.63011588223135
1016 => 0.66021042155439
1017 => 0.65644243701241
1018 => 0.66815802032694
1019 => 0.64969695828017
1020 => 0.60730662822459
1021 => 0.60059819622963
1022 => 0.6140286469681
1023 => 0.6470460995844
1024 => 0.61298880988607
1025 => 0.61987855523573
1026 => 0.61789430811153
1027 => 0.61778857601479
1028 => 0.62182394010389
1029 => 0.61597043402221
1030 => 0.59212219721983
1031 => 0.60305170360782
1101 => 0.59883129631342
1102 => 0.60351415285877
1103 => 0.62878559827708
1104 => 0.61761248986163
1105 => 0.60584252777557
1106 => 0.62060467219517
1107 => 0.63940195486449
1108 => 0.63822565469701
1109 => 0.63594314071677
1110 => 0.64880955251484
1111 => 0.67006109530031
1112 => 0.67580530191961
1113 => 0.68004555781084
1114 => 0.68063021745853
1115 => 0.68665257519369
1116 => 0.65426883982218
1117 => 0.70566265953007
1118 => 0.71453695246801
1119 => 0.71286895319743
1120 => 0.72273235631062
1121 => 0.71983029290433
1122 => 0.71562565834843
1123 => 0.73126125028883
1124 => 0.71333630585636
1125 => 0.68789410392223
1126 => 0.67393600875148
1127 => 0.69231715443975
1128 => 0.703541878698
1129 => 0.71096070740615
1130 => 0.71320564049066
1201 => 0.6567826970144
1202 => 0.6263738598406
1203 => 0.64586557583098
1204 => 0.66964681458562
1205 => 0.65413673384015
1206 => 0.65474469964091
1207 => 0.6326314004754
1208 => 0.67160335088521
1209 => 0.66592546551619
1210 => 0.69538234485464
1211 => 0.6883522241943
1212 => 0.71237316578533
1213 => 0.706047646835
1214 => 0.73230452234285
1215 => 0.74277910085945
1216 => 0.7603675484268
1217 => 0.77330568205521
1218 => 0.78090320158887
1219 => 0.78044707501364
1220 => 0.8105522324752
1221 => 0.79280027291421
1222 => 0.77049962788998
1223 => 0.77009627957912
1224 => 0.78164609963976
1225 => 0.80585135394845
1226 => 0.81212742421857
1227 => 0.81563489130231
1228 => 0.81026308336775
1229 => 0.7909946035587
1230 => 0.78267457167057
1231 => 0.78976347989379
]
'min_raw' => 0.29230976550952
'max_raw' => 0.81563489130231
'avg_raw' => 0.55397232840592
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$0.2923097'
'max' => '$0.815634'
'avg' => '$0.553972'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.11572105920954
'max_diff' => 0.42141304430318
'year' => 2036
]
11 => [
'items' => [
101 => 0.78109435429361
102 => 0.79605969720655
103 => 0.81661030945077
104 => 0.81236668928827
105 => 0.82655247525243
106 => 0.84123327133713
107 => 0.86222746909405
108 => 0.86771612980061
109 => 0.87678867723347
110 => 0.88612730871846
111 => 0.88912662546826
112 => 0.89485325177697
113 => 0.89482306962958
114 => 0.91208064345727
115 => 0.93111628181179
116 => 0.93830179461457
117 => 0.9548244850931
118 => 0.92652995667276
119 => 0.9479916815037
120 => 0.96735069452303
121 => 0.94427008112296
122 => 0.97608132960175
123 => 0.97731648829434
124 => 0.99596591810454
125 => 0.97706114819346
126 => 0.96583555616643
127 => 0.99824341973103
128 => 1.0139245640718
129 => 1.009201275779
130 => 0.97325681865306
131 => 0.95233560287548
201 => 0.89758074578442
202 => 0.96244023924258
203 => 0.99403140652869
204 => 0.97317500516165
205 => 0.98369376086677
206 => 1.0410806812759
207 => 1.0629299050397
208 => 1.0583854192345
209 => 1.059153362527
210 => 1.0709428070785
211 => 1.1232236967856
212 => 1.0918957758115
213 => 1.1158447975614
214 => 1.1285472723429
215 => 1.1403460388366
216 => 1.1113719973666
217 => 1.0736771951273
218 => 1.061737668938
219 => 0.97110124708045
220 => 0.96638322770873
221 => 0.96373486046477
222 => 0.94703727961058
223 => 0.93391755491151
224 => 0.92348426272666
225 => 0.89610418838884
226 => 0.90534415972734
227 => 0.86170603589848
228 => 0.88962416108403
301 => 0.81997666177383
302 => 0.87798116878599
303 => 0.84641195276058
304 => 0.8676098322703
305 => 0.86753587486565
306 => 0.82850385789444
307 => 0.80599100508286
308 => 0.82033707110774
309 => 0.83571719267855
310 => 0.83821256565847
311 => 0.85815329473727
312 => 0.86371832359862
313 => 0.84685602634236
314 => 0.81853337215698
315 => 0.82511207875328
316 => 0.80585768780366
317 => 0.7721151082739
318 => 0.79634961798109
319 => 0.8046243451113
320 => 0.80827893601281
321 => 0.77509698440673
322 => 0.76467049479689
323 => 0.75911951921532
324 => 0.81424999888574
325 => 0.81727017101211
326 => 0.80181854340431
327 => 0.87166136537501
328 => 0.85585378372461
329 => 0.87351472537963
330 => 0.82451513008441
331 => 0.82638698061139
401 => 0.80318978694528
402 => 0.81617866536126
403 => 0.80699854474794
404 => 0.81512929234385
405 => 0.82000282892851
406 => 0.8431962161634
407 => 0.87824600001216
408 => 0.83973189754181
409 => 0.82295075156337
410 => 0.83336168014765
411 => 0.8610873549037
412 => 0.90309317141029
413 => 0.87822488259255
414 => 0.88926100687893
415 => 0.89167190907251
416 => 0.8733349535724
417 => 0.90376928111514
418 => 0.92007928449333
419 => 0.9368099730797
420 => 0.951336761196
421 => 0.93012736814258
422 => 0.95282445895681
423 => 0.93453461033642
424 => 0.91812672535413
425 => 0.91815160934277
426 => 0.90785870341243
427 => 0.88791490118279
428 => 0.88423695805882
429 => 0.90337008266272
430 => 0.9187130366814
501 => 0.91997675586217
502 => 0.92847140355636
503 => 0.93349844855995
504 => 0.9827703235314
505 => 1.0025878792433
506 => 1.0268204112406
507 => 1.0362603481242
508 => 1.0646711737392
509 => 1.0417271246406
510 => 1.0367630352933
511 => 0.9678476654615
512 => 0.97913255341075
513 => 0.99720074784723
514 => 0.96814560333283
515 => 0.98657440495483
516 => 0.99021264077041
517 => 0.96715832064031
518 => 0.97947262914017
519 => 0.94676947670258
520 => 0.87895883936789
521 => 0.90384477373919
522 => 0.9221691979514
523 => 0.89601798521537
524 => 0.94289302185301
525 => 0.91550959314647
526 => 0.90683036088288
527 => 0.87296958145291
528 => 0.88895056592293
529 => 0.91056507624429
530 => 0.89720982182222
531 => 0.92492398004956
601 => 0.96417461919549
602 => 0.99214696206686
603 => 0.99429433121856
604 => 0.97630998875369
605 => 1.0051300123282
606 => 1.0053399347364
607 => 0.97283083041111
608 => 0.95291918502333
609 => 0.94839521729676
610 => 0.95969697565384
611 => 0.97341939671901
612 => 0.99505583008448
613 => 1.0081302736237
614 => 1.0422214882249
615 => 1.0514455934243
616 => 1.0615800884644
617 => 1.0751228992006
618 => 1.0913845157947
619 => 1.055805024461
620 => 1.0572186639802
621 => 1.0240875342819
622 => 0.9886821707146
623 => 1.0155504283213
624 => 1.0506771010075
625 => 1.0426190034818
626 => 1.0417123028981
627 => 1.043237121782
628 => 1.0371615794005
629 => 1.0096821263789
630 => 0.99588211710186
701 => 1.013687649827
702 => 1.0231504980374
703 => 1.0378265503645
704 => 1.0360174171413
705 => 1.073821351843
706 => 1.0885108177365
707 => 1.0847526237633
708 => 1.0854442219003
709 => 1.1120387982401
710 => 1.1416174367217
711 => 1.1693217349048
712 => 1.197503736944
713 => 1.1635292335235
714 => 1.1462790759426
715 => 1.1640768353292
716 => 1.1546330936771
717 => 1.2088996344059
718 => 1.2126569319455
719 => 1.2669195485858
720 => 1.3184212332496
721 => 1.2860739478608
722 => 1.3165759810287
723 => 1.349566416767
724 => 1.4132103198116
725 => 1.3917772922857
726 => 1.3753599290992
727 => 1.3598456002161
728 => 1.3921284557915
729 => 1.433659833758
730 => 1.4426052947894
731 => 1.4571003590894
801 => 1.4418605713501
802 => 1.4602152170745
803 => 1.5250151819218
804 => 1.5075056594149
805 => 1.482639322659
806 => 1.5337926714512
807 => 1.5523048695254
808 => 1.682233170524
809 => 1.8462730176051
810 => 1.7783594437698
811 => 1.7362032969329
812 => 1.7461109913968
813 => 1.8060127904515
814 => 1.8252513471199
815 => 1.7729543181672
816 => 1.7914265129077
817 => 1.8932101220743
818 => 1.9478137627831
819 => 1.8736546844533
820 => 1.6690527285331
821 => 1.4804003811026
822 => 1.5304394787671
823 => 1.5247665979859
824 => 1.6341203882716
825 => 1.5070880630939
826 => 1.5092269616574
827 => 1.6208420725185
828 => 1.5910650745082
829 => 1.5428301512812
830 => 1.4807525494222
831 => 1.3659963609025
901 => 1.2643536045176
902 => 1.4636984567172
903 => 1.4551023442053
904 => 1.4426538994155
905 => 1.4703565662328
906 => 1.6048728527582
907 => 1.6017718169671
908 => 1.5820446094262
909 => 1.5970075224783
910 => 1.5402070802786
911 => 1.5548458475555
912 => 1.480370497607
913 => 1.514036466149
914 => 1.5427266607994
915 => 1.548486642141
916 => 1.5614641742157
917 => 1.4505725835219
918 => 1.5003596521373
919 => 1.5296048905315
920 => 1.3974738395159
921 => 1.5269930844866
922 => 1.4486422076394
923 => 1.4220487432468
924 => 1.4578533396289
925 => 1.4439002535977
926 => 1.4319042095807
927 => 1.4252102109011
928 => 1.451501154875
929 => 1.4502746509142
930 => 1.4072575637205
1001 => 1.3511435270771
1002 => 1.3699772396551
1003 => 1.3631347753085
1004 => 1.338336801821
1005 => 1.3550476418328
1006 => 1.2814615595834
1007 => 1.1548605297449
1008 => 1.2384970479506
1009 => 1.2352771329787
1010 => 1.2336535058383
1011 => 1.2965040377264
1012 => 1.2904624092938
1013 => 1.2794967945289
1014 => 1.3381354097065
1015 => 1.316731526366
1016 => 1.3826932514322
1017 => 1.4261399096978
1018 => 1.4151204318095
1019 => 1.4559822239041
1020 => 1.3704111303541
1021 => 1.398834415115
1022 => 1.4046924147113
1023 => 1.3374118182975
1024 => 1.2914508944235
1025 => 1.288385824794
1026 => 1.2086959166019
1027 => 1.2512656223236
1028 => 1.2887252017046
1029 => 1.2707849701619
1030 => 1.2651056288047
1031 => 1.2941201521
1101 => 1.2963748290527
1102 => 1.2449679555926
1103 => 1.2556570724289
1104 => 1.3002324665541
1105 => 1.2545338868657
1106 => 1.1657490113516
1107 => 1.1437291346771
1108 => 1.1407912772219
1109 => 1.0810716252624
1110 => 1.1452006081287
1111 => 1.1172065885577
1112 => 1.2056393609626
1113 => 1.1551270356394
1114 => 1.1529495502524
1115 => 1.1496579617223
1116 => 1.098254790293
1117 => 1.1095088179941
1118 => 1.1469189201092
1119 => 1.1602672659988
1120 => 1.1588749241628
1121 => 1.1467355901998
1122 => 1.1522929151246
1123 => 1.1343908352415
1124 => 1.1280692382352
1125 => 1.1081165391911
1126 => 1.07879158367
1127 => 1.0828693985956
1128 => 1.0247689884164
1129 => 0.99311280132864
1130 => 0.98435078596458
1201 => 0.97263385282993
1202 => 0.9856742447397
1203 => 1.0246043972543
1204 => 0.9776463738291
1205 => 0.89714013638892
1206 => 0.90197869843503
1207 => 0.91284951077067
1208 => 0.89259182390082
1209 => 0.8734196233773
1210 => 0.89008829624271
1211 => 0.85597674214433
1212 => 0.91697172911358
1213 => 0.91532198565254
1214 => 0.93805714488999
1215 => 0.9522739065336
1216 => 0.91950887367632
1217 => 0.91126855651878
1218 => 0.91596261567325
1219 => 0.8383802739959
1220 => 0.9317170124055
1221 => 0.93252419239516
1222 => 0.92561262727052
1223 => 0.97531155902513
1224 => 1.0801918065129
1225 => 1.0407316386098
1226 => 1.0254514689079
1227 => 0.9964038551347
1228 => 1.0351080758108
1229 => 1.0321361955428
1230 => 1.0186962259186
1231 => 1.0105676903547
]
'min_raw' => 0.75911951921532
'max_raw' => 1.9478137627831
'avg_raw' => 1.3534666409992
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$0.759119'
'max' => '$1.94'
'avg' => '$1.35'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 0.4668097537058
'max_diff' => 1.1321788714807
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.023827894281724
]
1 => [
'year' => 2028
'avg' => 0.040895583874574
]
2 => [
'year' => 2029
'avg' => 0.11171936443347
]
3 => [
'year' => 2030
'avg' => 0.086191323282956
]
4 => [
'year' => 2031
'avg' => 0.084650561036964
]
5 => [
'year' => 2032
'avg' => 0.1484190740098
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.023827894281724
'min' => '$0.023827'
'max_raw' => 0.1484190740098
'max' => '$0.148419'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.1484190740098
]
1 => [
'year' => 2033
'avg' => 0.3817491201066
]
2 => [
'year' => 2034
'avg' => 0.2419709383278
]
3 => [
'year' => 2035
'avg' => 0.28540527664956
]
4 => [
'year' => 2036
'avg' => 0.55397232840592
]
5 => [
'year' => 2037
'avg' => 1.3534666409992
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.1484190740098
'min' => '$0.148419'
'max_raw' => 1.3534666409992
'max' => '$1.35'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 1.3534666409992
]
]
]
]
'prediction_2025_max_price' => '$0.040741'
'last_price' => 0.03950389
'sma_50day_nextmonth' => '$0.035816'
'sma_200day_nextmonth' => '$0.065848'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'increase'
'sma_200day_direction_label' => 'aumentar'
'sma_200day_date_nextmonth' => '4 de fev. de 2026'
'sma_50day_date_nextmonth' => '4 de fev. de 2026'
'daily_sma3' => '$0.038589'
'daily_sma3_action' => 'BUY'
'daily_sma5' => '$0.0373032'
'daily_sma5_action' => 'BUY'
'daily_sma10' => '$0.035713'
'daily_sma10_action' => 'BUY'
'daily_sma21' => '$0.035095'
'daily_sma21_action' => 'BUY'
'daily_sma50' => '$0.039994'
'daily_sma50_action' => 'SELL'
'daily_sma100' => '$0.059786'
'daily_sma100_action' => 'SELL'
'daily_sma200' => '$0.0712071'
'daily_sma200_action' => 'SELL'
'daily_ema3' => '$0.038466'
'daily_ema3_action' => 'BUY'
'daily_ema5' => '$0.0376031'
'daily_ema5_action' => 'BUY'
'daily_ema10' => '$0.036485'
'daily_ema10_action' => 'BUY'
'daily_ema21' => '$0.036551'
'daily_ema21_action' => 'BUY'
'daily_ema50' => '$0.042453'
'daily_ema50_action' => 'SELL'
'daily_ema100' => '$0.053856'
'daily_ema100_action' => 'SELL'
'daily_ema200' => '$0.074142'
'daily_ema200_action' => 'SELL'
'weekly_sma21' => '$0.067174'
'weekly_sma21_action' => 'SELL'
'weekly_sma50' => '$0.085635'
'weekly_sma50_action' => 'SELL'
'weekly_sma100' => '—'
'weekly_sma100_action' => '—'
'weekly_sma200' => '—'
'weekly_sma200_action' => '—'
'weekly_ema3' => '$0.038483'
'weekly_ema3_action' => 'BUY'
'weekly_ema5' => '$0.03948'
'weekly_ema5_action' => 'BUY'
'weekly_ema10' => '$0.046077'
'weekly_ema10_action' => 'SELL'
'weekly_ema21' => '$0.060439'
'weekly_ema21_action' => 'SELL'
'weekly_ema50' => '$0.114135'
'weekly_ema50_action' => 'SELL'
'weekly_ema100' => '$0.201486'
'weekly_ema100_action' => 'SELL'
'weekly_ema200' => '$0.100743'
'weekly_ema200_action' => 'SELL'
'rsi_14' => '57.30'
'rsi_14_action' => 'NEUTRAL'
'stoch_rsi_14' => 120.76
'stoch_rsi_14_action' => 'SELL'
'momentum_10' => 0.01
'momentum_10_action' => 'BUY'
'vwma_10' => '0.0366095'
'vwma_10_action' => 'BUY'
'hma_9' => '0.039328'
'hma_9_action' => 'BUY'
'stochastic_fast_14' => 100
'stochastic_fast_14_action' => 'SELL'
'cci_20' => 229.2
'cci_20_action' => 'SELL'
'adx_14' => 24.14
'adx_14_action' => 'NEUTRAL'
'ao_5_34' => '0.000390'
'ao_5_34_action' => 'BUY'
'macd_12_26' => 0
'macd_12_26_action' => 'BUY'
'williams_percent_r_14' => -0
'williams_percent_r_14_action' => 'SELL'
'ultimate_oscillator' => 75.05
'ultimate_oscillator_action' => 'SELL'
'ichimoku_cloud' => '-0.013498'
'ichimoku_cloud_action' => 'SELL'
'sell_signals' => 14
'buy_signals' => 19
'sell_pct' => 42.42
'buy_pct' => 57.58
'overall_action' => 'bullish'
'overall_action_label' => 'Altista'
'overall_action_dir' => 1
'last_updated' => 1767695136
'last_updated_date' => '6 de janeiro de 2026'
]
Previsão de preço de Wormhole para 2026
A previsão de preço para Wormhole em 2026 sugere que o preço médio poderia variar entre $0.013648 na extremidade inferior e $0.040741 na extremidade superior. No mercado de criptomoedas, comparado ao preço médio de hoje, Wormhole poderia potencialmente ganhar 3.13% até 2026 se W atingir a meta de preço prevista.
Previsão de preço de Wormhole 2027-2032
A previsão de preço de W para 2027-2032 está atualmente dentro de uma faixa de preço entre $0.023827 na extremidade inferior e $0.148419 na extremidade superior. Considerando a volatilidade de preços no mercado, se Wormhole atingir a meta de preço superior, poderia ganhar 275.71% até 2032 em comparação com o preço de hoje.
| Previsão de Preço de Wormhole | Potencial Mínimo ($) | Preço Médio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2027 | $0.013139 | $0.023827 | $0.034516 |
| 2028 | $0.023712 | $0.040895 | $0.058078 |
| 2029 | $0.052089 | $0.111719 | $0.171349 |
| 2030 | $0.044299 | $0.086191 | $0.128083 |
| 2031 | $0.052375 | $0.08465 | $0.116925 |
| 2032 | $0.079947 | $0.148419 | $0.21689 |
Previsão de preço de Wormhole 2032-2037
A previsão de preço de Wormhole para 2032-2037 é atualmente estimada entre $0.148419 na extremidade inferior e $1.35 na extremidade superior. Comparado ao preço atual, Wormhole poderia potencialmente ganhar 3326.16% até 2037 se atingir a meta de preço superior. Por favor, note que esta informação é apenas para fins gerais e não deve ser considerada como aconselhamento de investimento a longo prazo.
| Previsão de Preço de Wormhole | Potencial Mínimo ($) | Preço Médio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2032 | $0.079947 | $0.148419 | $0.21689 |
| 2033 | $0.185781 | $0.381749 | $0.577717 |
| 2034 | $0.149359 | $0.24197 | $0.334582 |
| 2035 | $0.176588 | $0.2854052 | $0.394221 |
| 2036 | $0.2923097 | $0.553972 | $0.815634 |
| 2037 | $0.759119 | $1.35 | $1.94 |
Wormhole Histograma de preços potenciais
Previsão de preço de Wormhole baseada na análise técnica
Em 6 de janeiro de 2026, o sentimento geral de previsão de preço para Wormhole é Altista, com 19 indicadores técnicos mostrando sinais de alta e 14 indicando sinais de baixa. A previsão de preço de W foi atualizada pela última vez em 6 de janeiro de 2026.
Médias Móveis Simples de 50 e 200 dias e Índice de Força Relativa de 14 dias - RSI (14) de Wormhole
De acordo com nossos indicadores técnicos, o SMA de 200 dias de Wormhole está projetado para aumentar no próximo mês, alcançando $0.065848 até 4 de fev. de 2026. O SMA de 50 dias de curto prazo para Wormhole é esperado para alcançar $0.035816 até 4 de fev. de 2026.
O oscilador de momentum Índice de Força Relativa (RSI) é uma ferramenta comumente usada para identificar se uma criptomoeda está sobrevendida (abaixo de 30) ou sobrecomprada (acima de 70). No momento, o RSI está em 57.30, sugerindo que o mercado de W está em um estado NEUTRAL.
Médias Móveis e Osciladores Populares de W para Sábado, 19 de Outubro de 2024
Médias móveis (MA) são indicadores amplamente utilizados nos mercados financeiros, projetados para suavizar movimentos de preços ao longo de um período definido. Como indicadores atrasados, eles se baseiam em dados históricos de preços. A tabela abaixo destaca dois tipos: a média móvel simples (SMA) e a média móvel exponencial (EMA).
Média Móvel Simples Diária (SMA)
| Período | Valor | Ação |
|---|---|---|
| SMA 3 | $0.038589 | BUY |
| SMA 5 | $0.0373032 | BUY |
| SMA 10 | $0.035713 | BUY |
| SMA 21 | $0.035095 | BUY |
| SMA 50 | $0.039994 | SELL |
| SMA 100 | $0.059786 | SELL |
| SMA 200 | $0.0712071 | SELL |
Média Móvel Exponencial Diária (EMA)
| Período | Valor | Ação |
|---|---|---|
| EMA 3 | $0.038466 | BUY |
| EMA 5 | $0.0376031 | BUY |
| EMA 10 | $0.036485 | BUY |
| EMA 21 | $0.036551 | BUY |
| EMA 50 | $0.042453 | SELL |
| EMA 100 | $0.053856 | SELL |
| EMA 200 | $0.074142 | SELL |
Média Móvel Simples Semanal (SMA)
| Período | Valor | Ação |
|---|---|---|
| SMA 21 | $0.067174 | SELL |
| SMA 50 | $0.085635 | SELL |
| SMA 100 | — | — |
| SMA 200 | — | — |
Média Móvel Exponencial Semanal (EMA)
| Período | Valor | Ação |
|---|---|---|
| EMA 21 | $0.060439 | SELL |
| EMA 50 | $0.114135 | SELL |
| EMA 100 | $0.201486 | SELL |
| EMA 200 | $0.100743 | SELL |
Osciladores de Wormhole
Um oscilador é uma ferramenta de análise técnica que define limites altos e baixos entre dois extremos, criando um indicador de tendência que flutua dentro desses limites. Os traders usam esse indicador para identificar condições de sobrecompra ou sobrevenda de curto prazo.
| Período | Valor | Ação |
|---|---|---|
| RSI (14) | 57.30 | NEUTRAL |
| Stoch RSI (14) | 120.76 | SELL |
| Estocástico Rápido (14) | 100 | SELL |
| Índice de Canal de Commodities (20) | 229.2 | SELL |
| Índice Direcional Médio (14) | 24.14 | NEUTRAL |
| Oscilador Impressionante (5, 34) | 0.000390 | BUY |
| Momentum (10) | 0.01 | BUY |
| MACD (12, 26) | 0 | BUY |
| Williams Percent Range (14) | -0 | SELL |
| Oscilador Ultimate (7, 14, 28) | 75.05 | SELL |
| VWMA (10) | 0.0366095 | BUY |
| Média Móvel de Hull (9) | 0.039328 | BUY |
| Nuvem Ichimoku B/L (9, 26, 52, 26) | -0.013498 | SELL |
Previsão do preço de Wormhole com base nos fluxos financeiros mundiais
Definições dos fluxos financeiros mundiais, usadas na previsão do preço do Wormhole
M0: o total de todas as moedas físicas, mais as contas no Banco Central que podem ser trocadas por moedas físicas.
M1: o valor de M0, mais o valor em contas de demanda, incluindo contas 'correntes'.
M2: o valor de M1, mais a maioria das contas de poupança, do mercado de moedas e de certificados de depósito (CD) de menos de US$ 100.000.
Previsões de preço de Wormhole por empresas de Internet ou nichos tecnológicos
| Comparação | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Facebook stock | $0.0555095 | $0.0780002 | $0.1096033 | $0.15401 | $0.216411 | $0.304093 |
| Amazon.com stock | $0.082427 | $0.171989 | $0.358865 | $0.748794 | $1.56 | $3.26 |
| Apple stock | $0.056033 | $0.079478 | $0.112734 | $0.1599056 | $0.226813 | $0.321718 |
| Netflix stock | $0.06233 | $0.098348 | $0.155178 | $0.244847 | $0.38633 | $0.609569 |
| Google stock | $0.051157 | $0.066248 | $0.085791 | $0.111099 | $0.143873 | $0.186315 |
| Tesla stock | $0.089552 | $0.2030083 | $0.4602046 | $1.04 | $2.36 | $5.36 |
| Kodak stock | $0.029623 | $0.022214 | $0.016658 | $0.012492 | $0.009367 | $0.007024 |
| Nokia stock | $0.026169 | $0.017336 | $0.011484 | $0.007608 | $0.00504 | $0.003338 |
Este cálculo mostra quanto a criptomoeda pode custar, se assumirmos que sua capitalização se comportará da mesma forma que a de algumas empresas de Internet ou nichos tecnológicos. Se você extrapolar os dados, poderá obter uma imagem em potencial do preço futuro para 2024, 2025, 2026, 2027, 2028, 2029 e 2030.
Visão geral da previsão para Wormhole
Você pode fazer perguntas como: 'Devo investir em Wormhole agora?', 'Devo comprar W hoje?', 'Wormhole será um bom ou mau investimento no curto ou no longo prazo?'.
Atualizamos a previsão para Wormhole regularmente com novos valores. Veja nossas previsões semelhantes. Fazemos previsões de preços futuros para uma enorme quantidade de moedas digitais, como Wormhole, com métodos de análise técnica.
Se você estiver tentando encontrar criptomoedas com bom retorno, você deve explorar o máximo de fontes de informações disponíveis sobre Wormhole para poder tomar sozinho uma decisão de tão grande responsabilidade sobre o seu investimento.
O preço de Wormhole é de $0.0395 USD hoje, mas o preço pode tanto subir quanto descer e seu investimento pode ser perdido, porque criptomoedas são ativos de alto risco
Previsão de curto prazo para Wormhole
com base no histórico de preços de 4 horas
Previsão de longo prazo para Wormhole
com base no histórico de preços de 1 mês
Previsão do preço de Wormhole com base no padrão de crescimento do Bitcoin
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| Se Wormhole tiver 1% da média anterior do crescimento anual do Bitcoin | $0.04053 | $0.041584 | $0.042665 | $0.043774 |
| Se Wormhole tiver 2% da média anterior do crescimento anual do Bitcoin | $0.041557 | $0.043717 | $0.04599 | $0.048381 |
| Se Wormhole tiver 5% da média anterior do crescimento anual do Bitcoin | $0.044638 | $0.050439 | $0.056994 | $0.0644023 |
| Se Wormhole tiver 10% da média anterior do crescimento anual do Bitcoin | $0.049772 | $0.0627096 | $0.0790098 | $0.099547 |
| Se Wormhole tiver 20% da média anterior do crescimento anual do Bitcoin | $0.06004 | $0.091253 | $0.138692 | $0.210794 |
| Se Wormhole tiver 50% da média anterior do crescimento anual do Bitcoin | $0.090845 | $0.208913 | $0.480431 | $1.10 |
| Se Wormhole tiver 100% da média anterior do crescimento anual do Bitcoin | $0.142187 | $0.511777 | $1.84 | $6.63 |
Perguntas Frequentes sobre Wormhole
W é um bom investimento?
A decisão de adquirir Wormhole depende inteiramente da sua tolerância individual ao risco. Como você pode perceber, o valor de Wormhole experimentou uma escalada de 4.7316% nas últimas 24 horas, e Wormhole registrou um declínio de -87.57% durante os últimos 30 dias. Consequentemente, a decisão de investir ou não em Wormhole dependerá de quão alinhado esse investimento está com suas aspirações de negociação.
Wormhole pode subir?
Parece que o valor médio de Wormhole pode potencialmente subir para $0.040741 até o final deste ano. Observando as perspectivas de Wormhole em um horizonte de cinco anos mais longo, a moeda digital poderia potencialmente crescer até $0.128083. No entanto, dada a imprevisibilidade do mercado, é vital conduzir uma pesquisa aprofundada antes de investir quaisquer fundos em um projeto, rede ou ativo específico.
Qual será o preço de Wormhole na próxima semana?
Com base na nossa nova previsão experimental de Wormhole, o preço de Wormhole aumentará 0.86% na próxima semana e atingirá $0.039841 até 13 de janeiro de 2026.
Qual será o preço de Wormhole no próximo mês?
Com base na nossa nova previsão experimental de Wormhole, o preço de Wormhole diminuirá -11.62% no próximo mês e atingirá $0.034914 até 5 de fevereiro de 2026.
Até onde o preço de Wormhole pode subir este ano em 2026?
De acordo com nossa previsão mais recente sobre o valor de Wormhole em 2026, espera-se que W fluctue dentro do intervalo de $0.013648 e $0.040741. No entanto, é crucial lembrar que o mercado de criptomoedas é excepcionalmente instável, e essa previsão de preço de Wormhole não considera flutuações repentinas e extremas de preço.
Onde estará Wormhole em 5 anos?
O futuro de Wormhole parece seguir uma tendência de alta, com um preço máximo de $0.128083 projetada após um período de cinco anos. Com base na previsão de Wormhole para 2030, o valor de Wormhole pode potencialmente atingir seu pico mais alto de aproximadamente $0.128083, enquanto seu pico mais baixo está previsto para cerca de $0.044299.
Quanto será Wormhole em 2026?
Com base na nossa nova simulação experimental de previsão de preços de Wormhole, espera-se que o valor de W em 2026 aumente 3.13% para $0.040741 se o melhor cenário ocorrer. O preço ficará entre $0.040741 e $0.013648 durante 2026.
Quanto será Wormhole em 2027?
De acordo com nossa última simulação experimental para previsão de preços de Wormhole, o valor de W pode diminuir -12.62% para $0.034516 em 2027, assumindo as condições mais favoráveis. O preço está projetado para flutuar entre $0.034516 e $0.013139 ao longo do ano.
Quanto será Wormhole em 2028?
Nosso novo modelo experimental de previsão de preços de Wormhole sugere que o valor de W em 2028 pode aumentar 47.02%, alcançando $0.058078 no melhor cenário. O preço é esperado para variar entre $0.058078 e $0.023712 durante o ano.
Quanto será Wormhole em 2029?
Com base no nosso modelo de previsão experimental, o valor de Wormhole pode experimentar um 333.75% crescimento em 2029, potencialmente alcançando $0.171349 sob condições ótimas. A faixa de preço prevista para 2029 está entre $0.171349 e $0.052089.
Quanto será Wormhole em 2030?
Usando nossa nova simulação experimental para previsões de preços de Wormhole, espera-se que o valor de W em 2030 aumente 224.23%, alcançando $0.128083 no melhor cenário. O preço está previsto para variar entre $0.128083 e $0.044299 ao longo de 2030.
Quanto será Wormhole em 2031?
Nossa simulação experimental indica que o preço de Wormhole poderia aumentar 195.98% em 2031, potencialmente atingindo $0.116925 sob condições ideais. O preço provavelmente oscilará entre $0.116925 e $0.052375 durante o ano.
Quanto será Wormhole em 2032?
Com base nos achados da nossa mais recente previsão experimental de preços de Wormhole, W poderia ver um 449.04% aumento em valor, atingindo $0.21689 se o cenário mais positivo se desenrolar em 2032. O preço é esperado para permanecer dentro de uma faixa de $0.21689 e $0.079947 ao longo do ano.
Quanto será Wormhole em 2033?
De acordo com nossa previsão experimental de preços de Wormhole, espera-se que o valor de W seja aumentar 1362.43% em 2033, com o preço potencial mais alto sendo $0.577717. Ao longo do ano, o preço de W poderia variar entre $0.577717 e $0.185781.
Quanto será Wormhole em 2034?
Os resultados da nossa nova simulação de previsão de preços de Wormhole sugerem que W pode aumentar 746.96% em 2034, atingindo potencialmente $0.334582 nas melhores circunstâncias. A faixa de preço prevista para o ano é entre $0.334582 e $0.149359.
Quanto será Wormhole em 2035?
Com base em nossa previsão experimental para o preço de Wormhole, W poderia aumentar 897.93%, com o valor potencialmente atingindo $0.394221 em 2035. A faixa de preço esperada para o ano está entre $0.394221 e $0.176588.
Quanto será Wormhole em 2036?
Nossa recente simulação de previsão de preços de Wormhole sugere que o valor de W pode aumentar 1964.7% em 2036, possivelmente atingindo $0.815634 se as condições forem ideais. A faixa de preço esperada para 2036 está entre $0.815634 e $0.2923097.
Quanto será Wormhole em 2037?
De acordo com a simulação experimental, o valor de Wormhole poderia aumentar 4830.69% em 2037, com um pico de $1.94 sob condições favoráveis. O preço é esperado para cair entre $1.94 e $0.759119 ao longo do ano.
Previsões relacionadas
Previsão de Preço do ORDI
Previsão de Preço do ether.fi Staked ETH
Previsão de Preço do Bonk
Previsão de Preço do BitTorrent
Previsão de Preço do Flare
Previsão de Preço do Elrond
Previsão de Preço do dYdX
Previsão de Preço do NEO
Previsão de Preço do eCash
Previsão de Preço do Axie Infinity
Previsão de Preço do The Sandbox
Previsão de Preço do Starknet
Previsão de Preço do Conflux Token
Previsão de Preço do SingularityNET
Previsão de Preço do Chiliz
Previsão de Preço do Synthetix Network Token
Previsão de Preço do WhiteBIT Coin
Previsão de Preço do Tokenize Xchange
Previsão de Preço do Tezos
Previsão de Preço do EOS
Previsão de Preço do Worldcoin
Previsão de Preço do Ronin
Previsão de Preço do Pyth Network
Previsão de Preço do Decentraland
Previsão de Preço do Mina Protocol
Como ler e prever os movimentos de preço de Wormhole?
Traders de Wormhole utilizam indicadores e padrões de gráfico para prever a direção do mercado. Eles também identificam níveis-chave de suporte e resistência para avaliar quando uma tendência de baixa pode desacelerar ou uma tendência de alta pode estagnar.
Indicadores de Previsão de Preço de Wormhole
Médias móveis são ferramentas populares para a previsão de preço de Wormhole. Uma média móvel simples (SMA) calcula o preço médio de fechamento de W em um período específico, como uma SMA de 12 dias. Uma média móvel exponencial (EMA) dá mais peso aos preços recentes, reagindo mais rapidamente às mudanças de preço.
Médias móveis comumente usadas no mercado de criptomoedas incluem as de 50 dias, 100 dias e 200 dias, que ajudam a identificar níveis-chave de resistência e suporte. Um movimento de preço de W acima dessas médias é visto como altista, enquanto uma queda abaixo indica fraqueza.
Traders também usam RSI e níveis de retração de Fibonacci para avaliar a direção futura de W.
Como ler gráficos de Wormhole e prever movimentos de preço?
A maioria dos traders prefere gráficos de velas em vez de gráficos de linha simples porque eles fornecem informações mais detalhadas. Velas podem representar a ação de preço de Wormhole em diferentes períodos de tempo, como 5 minutos para tendências de curto prazo e semanal para tendências de longo prazo. Opções populares incluem gráficos de 1 hora, 4 horas e 1 dia.
Por exemplo, um gráfico de velas de 1 hora mostra os preços de abertura, fechamento, máximo e mínimo de W dentro de cada hora. A cor da vela é crucial: verde indica que o preço fechou mais alto do que abriu, enquanto vermelho significa o oposto. Alguns gráficos usam velas vazias e preenchidas para transmitir a mesma informação.
O que afeta o preço de Wormhole?
A ação de preço de Wormhole é impulsionada pela oferta e demanda, influenciada por fatores como reduções pela metade das recompensas de bloco, hard forks e atualizações de protocolo. Eventos do mundo real, como regulamentações, adoção por empresas e governos e hacks de exchanges de criptomoedas, também impactam o preço de W. A capitalização de mercado de Wormhole pode mudar rapidamente.
Traders frequentemente monitoram a atividade de "baleias" de W, grandes detentores de Wormhole, pois suas ações podem influenciar significativamente os movimentos de preço no relativamente pequeno mercado de Wormhole.
Padrões de previsão de preço altistas e baixistas
Traders frequentemente identificam padrões de velas para ganhar vantagem em previsões de preço de criptomoedas. Certas formações indicam tendências altistas, enquanto outras sugerem movimentos baixistas.
Padrões de velas altistas comumente seguidos:
- Martelo
- Engolfo de Alta
- Linha de Perfuração
- Estrela da Manhã
- Três Soldados Brancos
Padrões de velas baixistas comuns:
- Harami de Baixa
- Nuvem Negra
- Estrela da Noite
- Estrela Cadente
- Homem Enforcado


