Previsão de Preço Wormhole - Projeção W
Previsão de Preço Wormhole até $0.041471 até 2026
| Ano | Preço Mínimo | Preço Máximo |
|---|---|---|
| 2026 | $0.013893 | $0.041471 |
| 2027 | $0.013374 | $0.035134 |
| 2028 | $0.024137 | $0.059119 |
| 2029 | $0.053022 | $0.174418 |
| 2030 | $0.045093 | $0.130377 |
| 2031 | $0.053313 | $0.119019 |
| 2032 | $0.081379 | $0.220775 |
| 2033 | $0.1891087 | $0.588065 |
| 2034 | $0.152034 | $0.340575 |
| 2035 | $0.179751 | $0.401283 |
Calculadora de lucro do investimento
Se você abrir um short de $10,000.00 em Wormhole hoje e fechar em Apr 06, 2026, nossa previsão mostra que pode lucrar cerca de $3,954.46, com um retorno de 39.54% nos próximos 90 dias.
Previsão de preço de longo prazo de Wormhole para os anos 2027, 2028, 2029, 2030, 2031, 2032 e 2037
[
'name' => 'Wormhole'
'name_with_ticker' => 'Wormhole <small>W</small>'
'name_lang' => 'Wormhole'
'name_lang_with_ticker' => 'Wormhole <small>W</small>'
'name_with_lang' => 'Wormhole'
'name_with_lang_with_ticker' => 'Wormhole <small>W</small>'
'image' => '/uploads/coins/wormhole.png?1758150530'
'price_for_sd' => 0.04021
'ticker' => 'W'
'marketcap' => '$208.9M'
'low24h' => '$0.03804'
'high24h' => '$0.04038'
'volume24h' => '$33.77M'
'current_supply' => '5.19B'
'max_supply' => '10B'
'algo' => null
'proof' => null
'ico_price_and_roi' => '—'
'price' => '$0.04021'
'change_24h_pct' => '5.3985%'
'ath_price' => '$1.66'
'ath_days' => 643
'ath_exchange' => null
'ath_pair' => null
'ath_date' => '3 de abr. de 2024'
'ath_pct' => '-97.58%'
'fdv' => '$402.86M'
'new_prediction' => true
'change_24h_pct_is_increased' => true
'change_30d_pct' => '-87.35%'
'change_30d_pct_is_increased' => false
'max_price' => '$1.98'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.040555'
'next_week_prediction_price_date' => '13 de janeiro de 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.035539'
'next_month_prediction_price_date' => '5 de fevereiro de 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.013893'
'current_year_max_price_prediction' => '$0.041471'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.045093'
'grand_prediction_max_price' => '$0.130377'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.040973456205267
107 => 0.041126436217373
108 => 0.041471107996
109 => 0.038525925385056
110 => 0.039848225911352
111 => 0.040624953587746
112 => 0.037115669688201
113 => 0.04055558632826
114 => 0.03847465630824
115 => 0.037768357404925
116 => 0.038719295830433
117 => 0.038348714201195
118 => 0.038030109877659
119 => 0.037852323190808
120 => 0.038550587419258
121 => 0.038518012558395
122 => 0.037375516753405
123 => 0.035885177549882
124 => 0.036385384305301
125 => 0.036203654501594
126 => 0.035545042249348
127 => 0.035988867386215
128 => 0.034034486098215
129 => 0.030672074672109
130 => 0.032893386653642
131 => 0.032807868558675
201 => 0.032764746457256
202 => 0.034434001018824
203 => 0.034273540708985
204 => 0.033982303675394
205 => 0.035539693452835
206 => 0.034971225234221
207 => 0.036723110336034
208 => 0.037877015168913
209 => 0.037584347578384
210 => 0.038669600651012
211 => 0.03639690805867
212 => 0.037151805373245
213 => 0.037307388663537
214 => 0.035520475504729
215 => 0.03429979400012
216 => 0.034218388460551
217 => 0.032101894951833
218 => 0.033232508700451
219 => 0.03422740201126
220 => 0.033750925322222
221 => 0.033600087036809
222 => 0.034370687124152
223 => 0.034430569350682
224 => 0.033065248239765
225 => 0.033349141732821
226 => 0.034533024792232
227 => 0.033319310917255
228 => 0.030961263117212
301 => 0.030376434660239
302 => 0.030298407763552
303 => 0.028712306604914
304 => 0.0304155156942
305 => 0.029672019283561
306 => 0.032020715536316
307 => 0.030679152833053
308 => 0.030621320746263
309 => 0.030533899064957
310 => 0.029168676276703
311 => 0.029467573302896
312 => 0.030461152541264
313 => 0.030815672806986
314 => 0.030778693438772
315 => 0.030456283460951
316 => 0.030603881097791
317 => 0.030128417683104
318 => 0.029960521655462
319 => 0.029430595608785
320 => 0.028651750715976
321 => 0.028760053875255
322 => 0.027216958346749
323 => 0.026376198004541
324 => 0.026143486622861
325 => 0.0258322952376
326 => 0.026178636517875
327 => 0.027212586950997
328 => 0.025965423363831
329 => 0.023827248871988
330 => 0.02395575680222
331 => 0.024244475967104
401 => 0.023706449713411
402 => 0.023197253017412
403 => 0.02363995823215
404 => 0.0227339855129
405 => 0.02435395844189
406 => 0.024310142714082
407 => 0.024913968443556
408 => 0.025291553063947
409 => 0.024421342758418
410 => 0.024202487219876
411 => 0.024327157281059
412 => 0.022266638875698
413 => 0.02474558013
414 => 0.024767018116908
415 => 0.024583453057626
416 => 0.025903412746818
417 => 0.028688939396763
418 => 0.027640912223504
419 => 0.027235084425229
420 => 0.02646360548405
421 => 0.027491555367284
422 => 0.027412624854768
423 => 0.027055671143662
424 => 0.026839784425422
425 => 0.027237562323228
426 => 0.02679049534187
427 => 0.02671018982744
428 => 0.02622362578325
429 => 0.026049944556728
430 => 0.02592135789106
501 => 0.025779796606824
502 => 0.026092045524974
503 => 0.02538444839668
504 => 0.024531155626559
505 => 0.024460213565479
506 => 0.02465609083341
507 => 0.024569429723698
508 => 0.024459798665426
509 => 0.024250483118944
510 => 0.024188383667621
511 => 0.024390176758048
512 => 0.024162364124224
513 => 0.024498514075028
514 => 0.024407099888435
515 => 0.023896467673148
516 => 0.023260030872641
517 => 0.023254365250145
518 => 0.023117245985441
519 => 0.022942603985821
520 => 0.022894022576795
521 => 0.02360267483377
522 => 0.025069563797531
523 => 0.024781578394266
524 => 0.024989677362056
525 => 0.026013318320462
526 => 0.026338702999182
527 => 0.026107752661385
528 => 0.025791613594613
529 => 0.025805522109118
530 => 0.026885865002084
531 => 0.026953244663143
601 => 0.027123491329136
602 => 0.027342306406639
603 => 0.026145017815267
604 => 0.025749129924135
605 => 0.025561536278292
606 => 0.024983820456974
607 => 0.025606837440654
608 => 0.025243832124511
609 => 0.025292813943686
610 => 0.02526091446969
611 => 0.025278333739525
612 => 0.024353505626441
613 => 0.024690464383314
614 => 0.024130205095787
615 => 0.023380080801844
616 => 0.023377566122183
617 => 0.023561157980425
618 => 0.023451950359193
619 => 0.02315807545844
620 => 0.023199819001042
621 => 0.022834101643234
622 => 0.023244223709806
623 => 0.023255984543188
624 => 0.023098065208058
625 => 0.023729914837552
626 => 0.023988784146296
627 => 0.023884838256953
628 => 0.023981491025601
629 => 0.024793545487948
630 => 0.024925945797731
701 => 0.024984749269463
702 => 0.024905960407309
703 => 0.023996333890464
704 => 0.024036679694516
705 => 0.023740648954239
706 => 0.023490534173656
707 => 0.0235005374532
708 => 0.023629128963065
709 => 0.02419069562844
710 => 0.025372479569558
711 => 0.02541732740625
712 => 0.025471684292625
713 => 0.025250587518156
714 => 0.025183902615364
715 => 0.02527187721498
716 => 0.025715693128016
717 => 0.02685730815119
718 => 0.026453785156097
719 => 0.026125714679876
720 => 0.026413520934687
721 => 0.026369215417659
722 => 0.025995232266445
723 => 0.02598473580498
724 => 0.025266942568155
725 => 0.025001590751861
726 => 0.024779842912928
727 => 0.024537700061686
728 => 0.024394149662768
729 => 0.024614708317995
730 => 0.024665152692019
731 => 0.024182897337659
801 => 0.024117167714854
802 => 0.02451098784743
803 => 0.024337682290178
804 => 0.024515931353583
805 => 0.024557286665285
806 => 0.024550627507607
807 => 0.024369676601819
808 => 0.024485009313135
809 => 0.024212213068538
810 => 0.02391558812521
811 => 0.023726359891753
812 => 0.02356123316058
813 => 0.023652855068257
814 => 0.023326239696888
815 => 0.023221748866118
816 => 0.024445937185609
817 => 0.02535025825946
818 => 0.025337109072895
819 => 0.025257066781382
820 => 0.025138140172179
821 => 0.025706992905805
822 => 0.025508815987979
823 => 0.025653006253933
824 => 0.025689708728264
825 => 0.025800796063988
826 => 0.02584050023823
827 => 0.025720486647349
828 => 0.025317706377923
829 => 0.024314016241715
830 => 0.0238467957739
831 => 0.023692605237348
901 => 0.023698209770502
902 => 0.023543611726374
903 => 0.023589147778968
904 => 0.023527776145596
905 => 0.02341155311938
906 => 0.023645678623896
907 => 0.023672659407261
908 => 0.023618011716916
909 => 0.023630883226268
910 => 0.023178423690542
911 => 0.023212823206353
912 => 0.023021282331039
913 => 0.022985370725978
914 => 0.022501172072557
915 => 0.021643343972306
916 => 0.022118664011234
917 => 0.021544544244321
918 => 0.021327116389257
919 => 0.022356386038161
920 => 0.022253075912907
921 => 0.022076253886305
922 => 0.02181469725602
923 => 0.021717683357588
924 => 0.021128257621584
925 => 0.021093431204637
926 => 0.021385566515234
927 => 0.021250756121156
928 => 0.021061431271181
929 => 0.020375715856125
930 => 0.019604744697031
1001 => 0.019628015470172
1002 => 0.019873247051452
1003 => 0.020586290948007
1004 => 0.020307692361838
1005 => 0.020105565891022
1006 => 0.020067713678938
1007 => 0.020541513362148
1008 => 0.021212039177992
1009 => 0.021526634888617
1010 => 0.021214880093802
1011 => 0.020856752971588
1012 => 0.020878550510116
1013 => 0.021023559768472
1014 => 0.021038798191205
1015 => 0.020805694250707
1016 => 0.020871311644543
1017 => 0.020771632823126
1018 => 0.020159904080081
1019 => 0.020148839846932
1020 => 0.01999871174793
1021 => 0.019994165928757
1022 => 0.019738760581146
1023 => 0.019703027607481
1024 => 0.019195904787803
1025 => 0.019529694563425
1026 => 0.019305805906687
1027 => 0.018968352890989
1028 => 0.018910175863889
1029 => 0.018908426992203
1030 => 0.019254915786212
1031 => 0.019525645640131
1101 => 0.019309700545726
1102 => 0.01926053403365
1103 => 0.019785503752539
1104 => 0.019718696570605
1105 => 0.01966084198191
1106 => 0.021152000945575
1107 => 0.019971632269249
1108 => 0.019456924153283
1109 => 0.018819875119354
1110 => 0.019027301497081
1111 => 0.019071009282596
1112 => 0.017539021192717
1113 => 0.01691749381545
1114 => 0.016704209041337
1115 => 0.016581460638431
1116 => 0.016637398627012
1117 => 0.016077951089582
1118 => 0.016453909087143
1119 => 0.015969474808652
1120 => 0.015888257825377
1121 => 0.016754486325212
1122 => 0.01687501696053
1123 => 0.016360795824328
1124 => 0.01669100903861
1125 => 0.016571269136804
1126 => 0.015977779043946
1127 => 0.015955112087816
1128 => 0.015657319621405
1129 => 0.015191332075456
1130 => 0.014978363262842
1201 => 0.014867447256153
1202 => 0.014913213362223
1203 => 0.014890072618528
1204 => 0.014739063612917
1205 => 0.014898728277965
1206 => 0.014490851036762
1207 => 0.014328431032824
1208 => 0.014255069685161
1209 => 0.013893055157055
1210 => 0.014469181259863
1211 => 0.014582685359962
1212 => 0.014696413098201
1213 => 0.015686335414346
1214 => 0.015636881692923
1215 => 0.01608391924965
1216 => 0.016066548192245
1217 => 0.015939045839538
1218 => 0.015401134386587
1219 => 0.015615536304384
1220 => 0.014955640526862
1221 => 0.015450079311932
1222 => 0.015224438098684
1223 => 0.015373789790758
1224 => 0.015105241981909
1225 => 0.015253867427393
1226 => 0.01460960139282
1227 => 0.014007994834802
1228 => 0.014250098875739
1229 => 0.014513293656192
1230 => 0.015083967000998
1231 => 0.014744078664784
]
'min_raw' => 0.013893055157055
'max_raw' => 0.041471107996
'avg_raw' => 0.027682081576528
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.013893'
'max' => '$0.041471'
'avg' => '$0.027682'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.026318414842945
'max_diff' => 0.0012596379960002
'year' => 2026
]
1 => [
'items' => [
101 => 0.014866315363087
102 => 0.014456842885948
103 => 0.013611984205578
104 => 0.013616766013957
105 => 0.013486802912229
106 => 0.013374495817413
107 => 0.014783118928853
108 => 0.014607934377909
109 => 0.014328800723568
110 => 0.014702432212234
111 => 0.014801226308167
112 => 0.01480403883719
113 => 0.015076630726497
114 => 0.015222113066684
115 => 0.015247754959699
116 => 0.01567668418726
117 => 0.015820455606626
118 => 0.016412629735699
119 => 0.015209769906548
120 => 0.01518499779993
121 => 0.014707689973502
122 => 0.014404973804044
123 => 0.01472841720861
124 => 0.015014943910629
125 => 0.014716593156824
126 => 0.014755551466743
127 => 0.014355039955913
128 => 0.014498203975216
129 => 0.014621516114917
130 => 0.014553430399327
131 => 0.014451502787703
201 => 0.014991451988571
202 => 0.01496098593858
203 => 0.015463799047806
204 => 0.015855777822959
205 => 0.01655827386262
206 => 0.015825182623287
207 => 0.015798465864752
208 => 0.016059626464935
209 => 0.015820415624299
210 => 0.015971588618303
211 => 0.01653391755616
212 => 0.016545798680511
213 => 0.016346774539674
214 => 0.016334663902617
215 => 0.01637288866595
216 => 0.016596772298722
217 => 0.016518540478182
218 => 0.016609072321498
219 => 0.016722283777836
220 => 0.017190574361917
221 => 0.017303477636348
222 => 0.017029181213116
223 => 0.017053947108967
224 => 0.016951352717073
225 => 0.016852247820007
226 => 0.017075021155503
227 => 0.017482143804742
228 => 0.017479611115871
301 => 0.017574055657161
302 => 0.017632893823964
303 => 0.017380317339876
304 => 0.017215899336229
305 => 0.017278947661016
306 => 0.017379763305366
307 => 0.017246254506313
308 => 0.01642217635127
309 => 0.016672149021193
310 => 0.016630541345879
311 => 0.016571286956565
312 => 0.016822636409155
313 => 0.016798393141282
314 => 0.016072213146473
315 => 0.016118700833656
316 => 0.016075040216703
317 => 0.016216116602199
318 => 0.015812797036509
319 => 0.015936855418516
320 => 0.016014663672736
321 => 0.016060493332223
322 => 0.016226061487981
323 => 0.016206633975884
324 => 0.016224853846552
325 => 0.016470347713169
326 => 0.017711971447195
327 => 0.017779550287549
328 => 0.017446767361843
329 => 0.01757970757681
330 => 0.017324491434903
331 => 0.017495819740765
401 => 0.017613038216368
402 => 0.017083350464933
403 => 0.017051985793938
404 => 0.016795716284228
405 => 0.016933421002899
406 => 0.016714322894174
407 => 0.016768081906329
408 => 0.016617767021718
409 => 0.016888303886623
410 => 0.017190806138765
411 => 0.017267230153832
412 => 0.017066191472798
413 => 0.016920626218634
414 => 0.016665061584499
415 => 0.017090071266695
416 => 0.017214357049705
417 => 0.017089418446387
418 => 0.017060467442036
419 => 0.017005605341104
420 => 0.017072106696099
421 => 0.017213680162639
422 => 0.01714691673027
423 => 0.01719101515357
424 => 0.017022957438047
425 => 0.017380400953202
426 => 0.017948107278733
427 => 0.017949932547399
428 => 0.01788316875515
429 => 0.017855850449808
430 => 0.017924354152221
501 => 0.017961514600611
502 => 0.018183043012784
503 => 0.018420751825126
504 => 0.019530035131849
505 => 0.01921855281819
506 => 0.020202774959474
507 => 0.020981166887979
508 => 0.021214572592384
509 => 0.020999850326919
510 => 0.02026529705583
511 => 0.020229256367979
512 => 0.021326989075377
513 => 0.021016829306194
514 => 0.02097993678857
515 => 0.020587462731941
516 => 0.020819463508266
517 => 0.020768721535238
518 => 0.02068862284843
519 => 0.021131264168344
520 => 0.02195984920436
521 => 0.021830706456076
522 => 0.021734307385242
523 => 0.021311914718192
524 => 0.021566289448574
525 => 0.021475711479312
526 => 0.02186489191746
527 => 0.021634350047303
528 => 0.021014479540892
529 => 0.021113195962158
530 => 0.021098275173673
531 => 0.021405343943385
601 => 0.021313169520633
602 => 0.021080276638284
603 => 0.021957017190786
604 => 0.021900086535994
605 => 0.02198080118833
606 => 0.022016334274471
607 => 0.022549990798878
608 => 0.022768612801823
609 => 0.022818243824008
610 => 0.023025917817974
611 => 0.022813076705852
612 => 0.023664592907481
613 => 0.024230801494216
614 => 0.024888481904537
615 => 0.025849529751844
616 => 0.026210892632621
617 => 0.026145615662642
618 => 0.026874271172183
619 => 0.028183648925726
620 => 0.026410278343176
621 => 0.028277641872682
622 => 0.027686456138989
623 => 0.026284765399381
624 => 0.026194513040598
625 => 0.027143754283425
626 => 0.029249079998931
627 => 0.028721719785604
628 => 0.029249942571319
629 => 0.028633742633577
630 => 0.028603143112927
701 => 0.029220015115727
702 => 0.03066137017421
703 => 0.029976636414311
704 => 0.02899490266589
705 => 0.029719799588255
706 => 0.029091826788059
707 => 0.027676828310698
708 => 0.028721316523187
709 => 0.028022897000807
710 => 0.028226732947461
711 => 0.029694706901441
712 => 0.029518076391521
713 => 0.029746652626903
714 => 0.029343221554336
715 => 0.028966353317318
716 => 0.02826290076632
717 => 0.028054643145762
718 => 0.02811219805976
719 => 0.028054614624405
720 => 0.027661039387184
721 => 0.027576046852179
722 => 0.027434388903562
723 => 0.02747829462522
724 => 0.027211936238325
725 => 0.027714609546846
726 => 0.027807910142449
727 => 0.028173713856915
728 => 0.028211692812058
729 => 0.029230450949957
730 => 0.028669336087137
731 => 0.029045780381443
801 => 0.029012107660529
802 => 0.026315144288006
803 => 0.02668676204523
804 => 0.027264882655395
805 => 0.02700444010414
806 => 0.026636235270836
807 => 0.026338890126049
808 => 0.025888381826595
809 => 0.026522463606831
810 => 0.027356213720762
811 => 0.028232838090845
812 => 0.029286044832795
813 => 0.02905098134867
814 => 0.028213149123399
815 => 0.028250733664988
816 => 0.028483066512118
817 => 0.02818217436542
818 => 0.028093435397246
819 => 0.028470875140571
820 => 0.028473474360646
821 => 0.028127261581839
822 => 0.027742509434464
823 => 0.027740897308918
824 => 0.027672434380558
825 => 0.028645922036441
826 => 0.029181241816473
827 => 0.029242615366543
828 => 0.029177110887555
829 => 0.029202320961738
830 => 0.028890830176703
831 => 0.029602805741569
901 => 0.030256184926975
902 => 0.030081065347876
903 => 0.029818536204091
904 => 0.02960941909595
905 => 0.030031804003035
906 => 0.030012995868018
907 => 0.030250478229786
908 => 0.030239704658092
909 => 0.030159848271993
910 => 0.030081068199799
911 => 0.030393422281151
912 => 0.030303469321975
913 => 0.030213376641007
914 => 0.030032681976827
915 => 0.03005724138271
916 => 0.029794757568283
917 => 0.029673320545287
918 => 0.027847199087588
919 => 0.027359199763851
920 => 0.027512734285241
921 => 0.027563281836204
922 => 0.027350903905126
923 => 0.027655399302878
924 => 0.027607944017679
925 => 0.027792564771976
926 => 0.027677221739992
927 => 0.027681955458258
928 => 0.028021154721595
929 => 0.028119625710798
930 => 0.028069542570931
1001 => 0.028104619085344
1002 => 0.028912942555129
1003 => 0.028798024806455
1004 => 0.028736977042868
1005 => 0.02875388769059
1006 => 0.02896043166777
1007 => 0.029018252704498
1008 => 0.028773260908871
1009 => 0.028888800455969
1010 => 0.029380753183362
1011 => 0.029552908795837
1012 => 0.030102346871474
1013 => 0.02986893581146
1014 => 0.030297371913909
1015 => 0.031614238428207
1016 => 0.032666242520059
1017 => 0.031698776081284
1018 => 0.033630647624058
1019 => 0.035134886730621
1020 => 0.03507715152827
1021 => 0.034814852646363
1022 => 0.033102316415807
1023 => 0.031526415043972
1024 => 0.032844723457818
1025 => 0.032848084097078
1026 => 0.032734840235178
1027 => 0.032031492334784
1028 => 0.03271036525284
1029 => 0.032764251719771
1030 => 0.032734089627857
1031 => 0.032194834441712
1101 => 0.031371491443484
1102 => 0.031532370694533
1103 => 0.031795894189599
1104 => 0.031296989236679
1105 => 0.031137558874504
1106 => 0.031433970250655
1107 => 0.032389069464376
1108 => 0.032208513490535
1109 => 0.032203798444374
1110 => 0.032976293468114
1111 => 0.032423353745976
1112 => 0.031534399897096
1113 => 0.031309927326392
1114 => 0.030513200923238
1115 => 0.031063502687739
1116 => 0.03108330706856
1117 => 0.030781912416091
1118 => 0.031558856412063
1119 => 0.031551696736361
1120 => 0.032289289427684
1121 => 0.033699289626329
1122 => 0.033282283185694
1123 => 0.032797350065407
1124 => 0.032850075741319
1125 => 0.033428346268018
1126 => 0.033078710706944
1127 => 0.033204442092452
1128 => 0.033428155958507
1129 => 0.033563128088402
1130 => 0.03283065532893
1201 => 0.032659880890475
1202 => 0.03231053632308
1203 => 0.032219398846271
1204 => 0.032503932707102
1205 => 0.032428968087502
1206 => 0.031081642587038
1207 => 0.030940839575792
1208 => 0.030945157803126
1209 => 0.030591101936528
1210 => 0.030051081756821
1211 => 0.031470222546161
1212 => 0.031356245679914
1213 => 0.031230424040687
1214 => 0.031245836473564
1215 => 0.031861837391073
1216 => 0.031504525750126
1217 => 0.032454497309809
1218 => 0.032259211715897
1219 => 0.032058917783381
1220 => 0.032031231060805
1221 => 0.031954134985062
1222 => 0.031689743855152
1223 => 0.031370475678342
1224 => 0.031159667173476
1225 => 0.028743145873757
1226 => 0.029191638170727
1227 => 0.029707587677032
1228 => 0.029885691379071
1229 => 0.029581032672333
1230 => 0.031701773637811
1231 => 0.032089253448172
]
'min_raw' => 0.013374495817413
'max_raw' => 0.035134886730621
'avg_raw' => 0.024254691274017
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.013374'
'max' => '$0.035134'
'avg' => '$0.024254'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -0.00051855933964239
'max_diff' => -0.0063362212653792
'year' => 2027
]
2 => [
'items' => [
101 => 0.030915551827905
102 => 0.030696000176674
103 => 0.031716167407514
104 => 0.031100881856946
105 => 0.031377944902692
106 => 0.030779086143172
107 => 0.031995920908589
108 => 0.031986650666433
109 => 0.031513274459226
110 => 0.031913368788017
111 => 0.031843842552551
112 => 0.031309401980489
113 => 0.032012863627988
114 => 0.032013212536189
115 => 0.031557598228838
116 => 0.03102554046465
117 => 0.030930421103056
118 => 0.030858761441584
119 => 0.031360321018787
120 => 0.031810017767372
121 => 0.032646791927209
122 => 0.032857176832256
123 => 0.033678323122769
124 => 0.033189370487656
125 => 0.033406116857805
126 => 0.033641425703248
127 => 0.033754241416949
128 => 0.033570414265498
129 => 0.034845992451963
130 => 0.034953690333606
131 => 0.034989800501738
201 => 0.034559682714222
202 => 0.034941727979858
203 => 0.034762981652076
204 => 0.035228029939804
205 => 0.035300955449355
206 => 0.035239190137166
207 => 0.035262337844948
208 => 0.034173856890212
209 => 0.034117413410514
210 => 0.033347802559792
211 => 0.033661424670137
212 => 0.033075123167145
213 => 0.033261045413319
214 => 0.0333429981679
215 => 0.033300190699685
216 => 0.033679156393702
217 => 0.033356958136211
218 => 0.032506623960395
219 => 0.031656058111601
220 => 0.031645379950225
221 => 0.031421440975972
222 => 0.031259574114056
223 => 0.031290755414197
224 => 0.031400642382933
225 => 0.03125318728367
226 => 0.031284654305261
227 => 0.03180721652734
228 => 0.031912012654234
229 => 0.031555874468556
301 => 0.030125928262564
302 => 0.029775015876865
303 => 0.03002724474081
304 => 0.029906695589463
305 => 0.024137037462586
306 => 0.025492533056947
307 => 0.024687143603059
308 => 0.025058304117598
309 => 0.024236210039766
310 => 0.02462855642335
311 => 0.024556104372497
312 => 0.0267357011762
313 => 0.026701669770047
314 => 0.02671795880327
315 => 0.025940440806675
316 => 0.027179048087165
317 => 0.027789230572412
318 => 0.027676302033874
319 => 0.027704723714074
320 => 0.027216345082703
321 => 0.026722687375965
322 => 0.026175145005816
323 => 0.02719241105127
324 => 0.027079308432326
325 => 0.027338725147146
326 => 0.027998494893302
327 => 0.028095648494645
328 => 0.028226223920085
329 => 0.028179421925056
330 => 0.029294435323661
331 => 0.029159399843995
401 => 0.029484796497632
402 => 0.028815430893197
403 => 0.028057980175013
404 => 0.02820194679361
405 => 0.028188081650533
406 => 0.028011562465488
407 => 0.027852208837935
408 => 0.027586929945666
409 => 0.028426311614694
410 => 0.028392234251822
411 => 0.028943907146112
412 => 0.028846393603382
413 => 0.028195174299417
414 => 0.028218432724258
415 => 0.028374856808931
416 => 0.028916242352005
417 => 0.029076962441527
418 => 0.029002510492472
419 => 0.029178732733483
420 => 0.029318011607618
421 => 0.029196224015699
422 => 0.030920479489974
423 => 0.030204448402383
424 => 0.030553436972363
425 => 0.030636668689943
426 => 0.030423472395536
427 => 0.030469707037806
428 => 0.030539739922659
429 => 0.030964965885642
430 => 0.032080881852633
501 => 0.032575113438117
502 => 0.034062033548001
503 => 0.032534074384978
504 => 0.032443411611568
505 => 0.032711250824043
506 => 0.033584230335024
507 => 0.034291698233877
508 => 0.034526406150729
509 => 0.034557426676547
510 => 0.034997754331648
511 => 0.035250141931928
512 => 0.034944286972552
513 => 0.03468510691883
514 => 0.03375675613701
515 => 0.033864215267821
516 => 0.034604502117015
517 => 0.035650200894181
518 => 0.036547519231403
519 => 0.036233309624409
520 => 0.038630507128359
521 => 0.038868179469201
522 => 0.038835340836564
523 => 0.039376793799391
524 => 0.038302119933158
525 => 0.037842676034518
526 => 0.034741144588263
527 => 0.035612548414837
528 => 0.036879185052514
529 => 0.036711540943874
530 => 0.035791675560298
531 => 0.036546821431023
601 => 0.036297146590567
602 => 0.03610021768488
603 => 0.037002387178377
604 => 0.036010414761197
605 => 0.036869289368834
606 => 0.03576777380062
607 => 0.036234744907427
608 => 0.035969669522352
609 => 0.036141205782913
610 => 0.035138408308737
611 => 0.03567949348427
612 => 0.035115897386512
613 => 0.035115630168579
614 => 0.035103188753484
615 => 0.035766257063128
616 => 0.035787879696901
617 => 0.035297871214233
618 => 0.03522725333651
619 => 0.035488364642781
620 => 0.035182671688297
621 => 0.035325703497691
622 => 0.035187003976094
623 => 0.035155779792324
624 => 0.034906980183684
625 => 0.034799790471395
626 => 0.034841822319522
627 => 0.03469834595296
628 => 0.03461189625234
629 => 0.035085991732123
630 => 0.034832701642232
701 => 0.035047171393156
702 => 0.034802756043738
703 => 0.033955505955955
704 => 0.033468243470964
705 => 0.031867866595267
706 => 0.032321731491953
707 => 0.032622644388014
708 => 0.032523192677661
709 => 0.032736853434202
710 => 0.032749970469372
711 => 0.032680507179407
712 => 0.032600077588427
713 => 0.032560928911572
714 => 0.032852711074934
715 => 0.033022100441701
716 => 0.032652845022828
717 => 0.032566333644619
718 => 0.03293967126025
719 => 0.033167406990115
720 => 0.034848879665783
721 => 0.034724310738884
722 => 0.035036954299983
723 => 0.03500175543291
724 => 0.035329455692966
725 => 0.035865107121695
726 => 0.034775977996594
727 => 0.03496501315346
728 => 0.034918666098455
729 => 0.035424671092142
730 => 0.0354262507845
731 => 0.035122875513961
801 => 0.035287340169821
802 => 0.035195540510772
803 => 0.035361434902143
804 => 0.034722647044919
805 => 0.035500621702129
806 => 0.035941683201187
807 => 0.03594780734053
808 => 0.036156866990603
809 => 0.036369283702996
810 => 0.036776999084837
811 => 0.036357912742284
812 => 0.035604017209265
813 => 0.035658446031681
814 => 0.035216437356511
815 => 0.035223867602196
816 => 0.035184204368411
817 => 0.03530323671871
818 => 0.03474876795204
819 => 0.034878900663321
820 => 0.034696714105472
821 => 0.034964617115463
822 => 0.034676397762666
823 => 0.034918643748502
824 => 0.035023189085407
825 => 0.035408963629287
826 => 0.034619418548872
827 => 0.033009482682401
828 => 0.033347910720119
829 => 0.032847349069386
830 => 0.032893677955934
831 => 0.032987269679948
901 => 0.032683908281111
902 => 0.032741780075993
903 => 0.032739712488242
904 => 0.032721895134007
905 => 0.032642979117797
906 => 0.032528535281233
907 => 0.032984444302147
908 => 0.033061912128771
909 => 0.033234113511121
910 => 0.033746468019684
911 => 0.033695271722128
912 => 0.033778775007557
913 => 0.033596487804316
914 => 0.03290213373648
915 => 0.032939840503002
916 => 0.032469636520266
917 => 0.03322208933812
918 => 0.03304389857896
919 => 0.032929017837331
920 => 0.032897671562614
921 => 0.033411296098903
922 => 0.033564980610239
923 => 0.033469214736159
924 => 0.033272796134483
925 => 0.033649977915648
926 => 0.033750895848266
927 => 0.033773487651669
928 => 0.03444178145046
929 => 0.033810837851203
930 => 0.033962712246584
1001 => 0.03514759292489
1002 => 0.034073069652024
1003 => 0.03464226859439
1004 => 0.034614409268129
1005 => 0.034905592186402
1006 => 0.034590523769838
1007 => 0.034594429420468
1008 => 0.034852980125454
1009 => 0.034489892290166
1010 => 0.034399986636033
1011 => 0.034275782618765
1012 => 0.034546977546557
1013 => 0.034709546640677
1014 => 0.036019734145441
1015 => 0.036866175025328
1016 => 0.036829428794403
1017 => 0.037165220558994
1018 => 0.037013943293546
1019 => 0.036525429098486
1020 => 0.037359263261493
1021 => 0.037095403243215
1022 => 0.037117155542532
1023 => 0.037116345920865
1024 => 0.037291789765977
1025 => 0.037167471722523
1026 => 0.036922428097889
1027 => 0.037085099491628
1028 => 0.037568175374945
1029 => 0.03906765773934
1030 => 0.039906787935955
1031 => 0.039017141047861
1101 => 0.039630807558422
1102 => 0.039262826323821
1103 => 0.039195953187
1104 => 0.039581381105231
1105 => 0.039967483664011
1106 => 0.039942890600184
1107 => 0.039662599969095
1108 => 0.039504270903705
1109 => 0.040703191630968
1110 => 0.041586535999734
1111 => 0.0415262978358
1112 => 0.041792169500904
1113 => 0.042572776932752
1114 => 0.042644145893429
1115 => 0.042635155044781
1116 => 0.042458259629161
1117 => 0.0432268690205
1118 => 0.04386805649715
1119 => 0.042417313451445
1120 => 0.042969737411628
1121 => 0.043217738325343
1122 => 0.043581877245232
1123 => 0.044196240639853
1124 => 0.044863602238254
1125 => 0.044957974485515
1126 => 0.044891012859955
1127 => 0.044450869946167
1128 => 0.045181104970417
1129 => 0.045608859521504
1130 => 0.045863577567688
1201 => 0.046509500151768
1202 => 0.043219269894557
1203 => 0.040890281383448
1204 => 0.040526576196437
1205 => 0.041266184996225
1206 => 0.041461213938459
1207 => 0.04138259801639
1208 => 0.038761109704766
1209 => 0.040512774603006
1210 => 0.042397418749344
1211 => 0.04246981560646
1212 => 0.043413307872167
1213 => 0.043720547628936
1214 => 0.044480182569189
1215 => 0.04443266719685
1216 => 0.04461762621637
1217 => 0.044575107340826
1218 => 0.045982171107636
1219 => 0.047534371393418
1220 => 0.047480623633216
1221 => 0.047257476477335
1222 => 0.047588888056063
1223 => 0.049190925094882
1224 => 0.049043435196468
1225 => 0.049186709069618
1226 => 0.051075601025237
1227 => 0.053531429259289
1228 => 0.052390450483448
1229 => 0.054866046119224
1230 => 0.056424302346258
1231 => 0.059119145364214
]
'min_raw' => 0.024137037462586
'max_raw' => 0.059119145364214
'avg_raw' => 0.0416280914134
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.024137'
'max' => '$0.059119'
'avg' => '$0.041628'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 0.010762541645174
'max_diff' => 0.023984258633593
'year' => 2028
]
3 => [
'items' => [
101 => 0.058781737745984
102 => 0.059830820357203
103 => 0.058177707690258
104 => 0.054381826857761
105 => 0.053781114185971
106 => 0.054983756167363
107 => 0.057940334126529
108 => 0.054890643005862
109 => 0.055507591547646
110 => 0.055329910326108
111 => 0.055320442448909
112 => 0.055681792812963
113 => 0.055157635263135
114 => 0.053022123110993
115 => 0.054000815745667
116 => 0.053622895518739
117 => 0.054042226186335
118 => 0.05630518085423
119 => 0.055304674653452
120 => 0.054250722645457
121 => 0.055572612354157
122 => 0.057255832203919
123 => 0.057150499330758
124 => 0.056946109531099
125 => 0.05809824413027
126 => 0.060001232944337
127 => 0.060515603173951
128 => 0.060895300761615
129 => 0.060947654643911
130 => 0.061486932169312
131 => 0.058587100999794
201 => 0.063189207538766
202 => 0.063983864207419
203 => 0.063834501688857
204 => 0.0647177291318
205 => 0.064457861212769
206 => 0.064081353370119
207 => 0.065481456735049
208 => 0.063876351209672
209 => 0.061598105993567
210 => 0.06034821560943
211 => 0.061994172093042
212 => 0.062999300281619
213 => 0.063663626076109
214 => 0.063864650660125
215 => 0.058812206638723
216 => 0.056089219532578
217 => 0.057834623048506
218 => 0.059964135799254
219 => 0.058575271448941
220 => 0.058629712302006
221 => 0.056649556725591
222 => 0.060139335629686
223 => 0.05963090419702
224 => 0.062268647369092
225 => 0.061639128791866
226 => 0.06379010595209
227 => 0.063223681578709
228 => 0.065574877484256
301 => 0.066512833187067
302 => 0.068087806793235
303 => 0.069246363789228
304 => 0.069926690616939
305 => 0.069885846346045
306 => 0.072581640174915
307 => 0.070992024737893
308 => 0.0689950931054
309 => 0.068958974912407
310 => 0.069993214101615
311 => 0.07216069571253
312 => 0.072722692158666
313 => 0.07303677150309
314 => 0.072555748053923
315 => 0.070830334425801
316 => 0.070085309569223
317 => 0.070720092332475
318 => 0.069943807560522
319 => 0.07128389286395
320 => 0.073124116212333
321 => 0.072744117367924
322 => 0.074014396532173
323 => 0.075329001829905
324 => 0.077208946448281
325 => 0.077700433585672
326 => 0.078512843134198
327 => 0.079349079422266
328 => 0.079617655980793
329 => 0.080130451965433
330 => 0.080127749277471
331 => 0.081673094492336
401 => 0.083377658119689
402 => 0.084021091428277
403 => 0.085500630842253
404 => 0.082966971445063
405 => 0.084888781202413
406 => 0.086622301709561
407 => 0.084555527096278
408 => 0.087404094403965
409 => 0.087514697817531
410 => 0.089184678047944
411 => 0.087491833154919
412 => 0.086486627261193
413 => 0.089388619011807
414 => 0.090792801408045
415 => 0.090369850242683
416 => 0.087151170990601
417 => 0.085277761610242
418 => 0.080374687908161
419 => 0.086182590505297
420 => 0.089011450441521
421 => 0.087143844926768
422 => 0.088085756516284
423 => 0.093224520732825
424 => 0.095181029436141
425 => 0.09477408930288
426 => 0.094842855486596
427 => 0.09589855206976
428 => 0.10058009210224
429 => 0.097774804797529
430 => 0.099919341829868
501 => 0.10105679653912
502 => 0.10211332786411
503 => 0.099518820850086
504 => 0.09614340534572
505 => 0.095074269565184
506 => 0.086958148364808
507 => 0.0865356690098
508 => 0.0862985185454
509 => 0.084803318412955
510 => 0.083628500678638
511 => 0.082694241998124
512 => 0.080242468227195
513 => 0.08106986990231
514 => 0.077162254236404
515 => 0.079662208262054
516 => 0.07342555930659
517 => 0.078619625879725
518 => 0.075792731589195
519 => 0.077690915076208
520 => 0.077684292492841
521 => 0.074189134873629
522 => 0.072173200900945
523 => 0.073457832489663
524 => 0.074835059526951
525 => 0.075058509980203
526 => 0.07684412078335
527 => 0.077342446376933
528 => 0.07583249656378
529 => 0.073296318619264
530 => 0.073885414911715
531 => 0.072161262883381
601 => 0.069139752772277
602 => 0.071309854084578
603 => 0.072050822085216
604 => 0.072378075766314
605 => 0.069406767594823
606 => 0.068473118057102
607 => 0.067976050877298
608 => 0.072912760046415
609 => 0.07318320411869
610 => 0.071799574007992
611 => 0.078053713309537
612 => 0.076638208968896
613 => 0.078219674124375
614 => 0.073831960597791
615 => 0.073999577163346
616 => 0.071922363263632
617 => 0.073085464247989
618 => 0.07226342196074
619 => 0.072991497182441
620 => 0.073427902468362
621 => 0.075504775517714
622 => 0.078643340433821
623 => 0.075194559941753
624 => 0.073691876893913
625 => 0.074624133005383
626 => 0.077106853881501
627 => 0.080868303096964
628 => 0.07864144945519
629 => 0.079629689286982
630 => 0.079845575726498
701 => 0.078203576293657
702 => 0.080928845958176
703 => 0.082389340111443
704 => 0.083887504906013
705 => 0.085188319419514
706 => 0.083289104941712
707 => 0.085321536674661
708 => 0.083683755470401
709 => 0.082214496419471
710 => 0.082216724678968
711 => 0.08129503701387
712 => 0.079509151022623
713 => 0.07917980624543
714 => 0.080893099368047
715 => 0.082266998202924
716 => 0.082380159091496
717 => 0.083140820079955
718 => 0.083590971417493
719 => 0.08800306647644
720 => 0.089777647607912
721 => 0.091947571824376
722 => 0.092792879596916
723 => 0.095336952932653
724 => 0.093282407094511
725 => 0.09283789317873
726 => 0.086666803426277
727 => 0.087677319027531
728 => 0.08929525200539
729 => 0.08669348254516
730 => 0.088343706422897
731 => 0.088669495572884
801 => 0.086605075414481
802 => 0.087707771419413
803 => 0.084779337756894
804 => 0.078707172285179
805 => 0.080935606014167
806 => 0.082576483321384
807 => 0.080234749085272
808 => 0.084432217065873
809 => 0.081980142924933
810 => 0.081202953142571
811 => 0.078170858713414
812 => 0.079601890567959
813 => 0.081537381641632
814 => 0.08034147318309
815 => 0.082823162801124
816 => 0.086337897142704
817 => 0.088842706140564
818 => 0.089034994273082
819 => 0.087424569896628
820 => 0.090005285237487
821 => 0.090024082931314
822 => 0.087113025484294
823 => 0.085330019006829
824 => 0.084924916183672
825 => 0.085936942461006
826 => 0.087165729192047
827 => 0.089103183384734
828 => 0.090273946376222
829 => 0.093326675333311
830 => 0.094152656260501
831 => 0.095060158877713
901 => 0.096272862237751
902 => 0.097729023552236
903 => 0.094543025495453
904 => 0.094669611137692
905 => 0.091702853860362
906 => 0.088532448233503
907 => 0.090938390907648
908 => 0.094083840904951
909 => 0.093362271200157
910 => 0.093281079868036
911 => 0.093417621168066
912 => 0.092873581174914
913 => 0.090412908448951
914 => 0.089177174010599
915 => 0.090771586705551
916 => 0.091618946093773
917 => 0.092933126607401
918 => 0.092771126120111
919 => 0.096156313990534
920 => 0.097471695634212
921 => 0.097135164721405
922 => 0.09719709450843
923 => 0.099578530143494
924 => 0.10222717634928
925 => 0.10470798304064
926 => 0.10723156616023
927 => 0.10418928821244
928 => 0.10264460709218
929 => 0.10423832371642
930 => 0.10339267524241
1001 => 0.10825202220971
1002 => 0.10858847285055
1003 => 0.11344746843176
1004 => 0.11805923383675
1005 => 0.11516266661423
1006 => 0.11789399904081
1007 => 0.12084815774896
1008 => 0.12654720919195
1009 => 0.124627969161
1010 => 0.12315786137561
1011 => 0.12176861662194
1012 => 0.12465941441795
1013 => 0.12837837960089
1014 => 0.12917940908149
1015 => 0.13047738285688
1016 => 0.12911272214074
1017 => 0.13075630566088
1018 => 0.13655887771417
1019 => 0.13499097152465
1020 => 0.13276429268204
1021 => 0.13734486603317
1022 => 0.13900255772241
1023 => 0.15063710613741
1024 => 0.16532620411057
1025 => 0.15924482109586
1026 => 0.15546991041363
1027 => 0.15635710396603
1028 => 0.16172106528848
1029 => 0.16344379942163
1030 => 0.15876081418567
1031 => 0.16041492373985
1101 => 0.16952923001185
1102 => 0.17441876290482
1103 => 0.16777812048429
1104 => 0.14945685141772
1105 => 0.13256380461488
1106 => 0.13704460133081
1107 => 0.13653661803853
1108 => 0.14632880309493
1109 => 0.13495357748057
1110 => 0.13514510710653
1111 => 0.14513978417979
1112 => 0.14247337568879
1113 => 0.13815413542116
1114 => 0.13259533984879
1115 => 0.12231939210692
1116 => 0.11321769862593
1117 => 0.13106821553697
1118 => 0.1302984687887
1119 => 0.12918376142714
1120 => 0.13166442203636
1121 => 0.14370980580693
1122 => 0.14343212072392
1123 => 0.14166562990196
1124 => 0.14300549762128
1125 => 0.1379192501318
1126 => 0.13923009192154
1127 => 0.13256112866996
1128 => 0.13557577858018
1129 => 0.13814486827142
1130 => 0.13866065106296
1201 => 0.13982273602881
1202 => 0.12989284722993
1203 => 0.13435107577441
1204 => 0.13696986736477
1205 => 0.12513807168708
1206 => 0.13673599080635
1207 => 0.12971998995795
1208 => 0.12733865389321
1209 => 0.13054480918721
1210 => 0.12929536735105
1211 => 0.12822117063001
1212 => 0.12762175040262
1213 => 0.12997599700009
1214 => 0.12986616858239
1215 => 0.12601416420935
1216 => 0.12098938153252
1217 => 0.12267586353173
1218 => 0.12206314881056
1219 => 0.11984259161928
1220 => 0.12133897905511
1221 => 0.11474964609207
1222 => 0.10341304121289
1223 => 0.11090234964567
1224 => 0.11061401941781
1225 => 0.11046863024219
1226 => 0.11609663854014
1227 => 0.11555563540254
1228 => 0.11457370941027
1229 => 0.11982455777839
1230 => 0.11790792749015
1231 => 0.12381453042363
]
'min_raw' => 0.053022123110993
'max_raw' => 0.17441876290482
'avg_raw' => 0.11372044300791
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.053022'
'max' => '$0.174418'
'avg' => '$0.11372'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072435
'min_diff' => 0.028885085648407
'max_diff' => 0.11529961754061
'year' => 2029
]
4 => [
'items' => [
101 => 0.12770500113074
102 => 0.12671825191587
103 => 0.13037725842019
104 => 0.12271471667078
105 => 0.12525990567212
106 => 0.12578446559781
107 => 0.1197597631246
108 => 0.11564415020655
109 => 0.11536968574634
110 => 0.10823378011284
111 => 0.11204572330324
112 => 0.11540007556186
113 => 0.11379360113823
114 => 0.11328503932777
115 => 0.11588317132382
116 => 0.11608506843141
117 => 0.11148179298228
118 => 0.11243895971493
119 => 0.11643050410581
120 => 0.11233838303753
121 => 0.10438806024604
122 => 0.10241627027194
123 => 0.10215319714209
124 => 0.096805546347698
125 => 0.10254803470649
126 => 0.10004128464876
127 => 0.10796007804566
128 => 0.10343690572669
129 => 0.10324192080837
130 => 0.10294717250626
131 => 0.098344228558847
201 => 0.099351980750982
202 => 0.10270190252263
203 => 0.10389719235032
204 => 0.10377251382857
205 => 0.1026854860784
206 => 0.10318312181595
207 => 0.10158006371753
208 => 0.10101399053821
209 => 0.099227307873587
210 => 0.096601377940269
211 => 0.096966529603261
212 => 0.091763875293415
213 => 0.088929193099647
214 => 0.088144590428923
215 => 0.087095386946829
216 => 0.08826310075405
217 => 0.091749136827434
218 => 0.087544237719123
219 => 0.080335233137301
220 => 0.080768506596215
221 => 0.081741943418349
222 => 0.079927950340231
223 => 0.078211158128691
224 => 0.07970376966887
225 => 0.076649219392924
226 => 0.082111071225911
227 => 0.081963343440491
228 => 0.083999184045177
301 => 0.085272236954942
302 => 0.082338262153708
303 => 0.081600375425509
304 => 0.082020709240973
305 => 0.075073527576496
306 => 0.083431451089529
307 => 0.08350373075914
308 => 0.08288482834567
309 => 0.087335164594422
310 => 0.096726762173973
311 => 0.093193265388409
312 => 0.091824988632532
313 => 0.089223893519407
314 => 0.092689698319901
315 => 0.0924235785862
316 => 0.091220084227494
317 => 0.090492207084217
318 => 0.091833343038636
319 => 0.09032602549777
320 => 0.090055269849114
321 => 0.088414785203313
322 => 0.087829206822058
323 => 0.087395667901123
324 => 0.086918384147829
325 => 0.087971153175895
326 => 0.085585440054997
327 => 0.082708503905535
328 => 0.082469317793588
329 => 0.083129731678132
330 => 0.082837547696252
331 => 0.082467918929094
401 => 0.081762196950183
402 => 0.081552824314404
403 => 0.082233183807522
404 => 0.081465097607215
405 => 0.082598450635589
406 => 0.082290241323154
407 => 0.080568609158112
408 => 0.078422818050604
409 => 0.078403716008798
410 => 0.077941408834488
411 => 0.077352591139655
412 => 0.077188795527277
413 => 0.079578066088188
414 => 0.084523784644425
415 => 0.083552821750821
416 => 0.08425444194973
417 => 0.087705718909326
418 => 0.088802776071263
419 => 0.088024110882943
420 => 0.086958225947194
421 => 0.08700511947491
422 => 0.090647570965677
423 => 0.090874746197234
424 => 0.091448744717872
425 => 0.092186495028854
426 => 0.088149752951026
427 => 0.086814989286062
428 => 0.086182504211733
429 => 0.084234694985329
430 => 0.086335240243464
501 => 0.085111342475865
502 => 0.085276488099015
503 => 0.085168936795289
504 => 0.085227667079711
505 => 0.082109544527011
506 => 0.083245624501518
507 => 0.081356671197565
508 => 0.078827574768531
509 => 0.078819096350485
510 => 0.079438089118523
511 => 0.079069887998904
512 => 0.078079068253328
513 => 0.07821980952165
514 => 0.076986767916229
515 => 0.078369523097487
516 => 0.078409175568349
517 => 0.077876739504381
518 => 0.080007064644554
519 => 0.080879860592662
520 => 0.080529399769473
521 => 0.08085527132705
522 => 0.083593169642685
523 => 0.084039566531012
524 => 0.084237826541483
525 => 0.083972184391869
526 => 0.080905315082229
527 => 0.081041343777447
528 => 0.080043255468396
529 => 0.079199976023202
530 => 0.079233702778592
531 => 0.079667258032076
601 => 0.081560619251719
602 => 0.085545086318718
603 => 0.085696293931303
604 => 0.085879561968794
605 => 0.085134118757184
606 => 0.084909285951632
607 => 0.085205898456427
608 => 0.086702254793466
609 => 0.090551289549113
610 => 0.089190783598079
611 => 0.088084671082353
612 => 0.089055029964438
613 => 0.088905650820465
614 => 0.087644740515478
615 => 0.087609350962809
616 => 0.085189260950129
617 => 0.084294608775225
618 => 0.08354697045432
619 => 0.082730568925484
620 => 0.082246578733164
621 => 0.082990207638177
622 => 0.083160284367112
623 => 0.081534326769892
624 => 0.08131271475751
625 => 0.082640506830133
626 => 0.08205619504405
627 => 0.082657174206271
628 => 0.082796606527011
629 => 0.082774154711973
630 => 0.082164066099521
701 => 0.082552918387993
702 => 0.081633166803309
703 => 0.080633075097186
704 => 0.079995078896595
705 => 0.079438342593663
706 => 0.079747252252233
707 => 0.078646045724105
708 => 0.078293747592848
709 => 0.082421183982112
710 => 0.08547016562028
711 => 0.085425832219732
712 => 0.08515596404552
713 => 0.0847549946794
714 => 0.08667292138685
715 => 0.08600475407213
716 => 0.086490901620836
717 => 0.08661464657553
718 => 0.086989185283794
719 => 0.087123050679308
720 => 0.086718416478568
721 => 0.085360414678981
722 => 0.081976403309345
723 => 0.080401136881816
724 => 0.079881272722594
725 => 0.079900168797419
726 => 0.079378930697949
727 => 0.079532458678496
728 => 0.07932553993175
729 => 0.078933685884433
730 => 0.079723056369027
731 => 0.079814023963882
801 => 0.079629775460503
802 => 0.079673172652942
803 => 0.078147673738527
804 => 0.078263654107781
805 => 0.077617860673705
806 => 0.077496782189971
807 => 0.075864272624294
808 => 0.072972045292652
809 => 0.074574619989682
810 => 0.072638935111772
811 => 0.071905861918096
812 => 0.075376116400688
813 => 0.075027799100512
814 => 0.074431631292502
815 => 0.073549774852197
816 => 0.07322268572034
817 => 0.071235395699013
818 => 0.071117976002773
819 => 0.072102930598687
820 => 0.071648407942891
821 => 0.071010085992962
822 => 0.068698148595979
823 => 0.066098765505604
824 => 0.066177224541963
825 => 0.06700403993977
826 => 0.06940811722014
827 => 0.06846880263574
828 => 0.067787319127365
829 => 0.067659697751565
830 => 0.069257146463145
831 => 0.071517871065883
901 => 0.072578552468625
902 => 0.07152744941188
903 => 0.0703199988157
904 => 0.070393490738702
905 => 0.070882399577474
906 => 0.07093377698363
907 => 0.070147850773444
908 => 0.070369084398022
909 => 0.070033010292261
910 => 0.067970524125548
911 => 0.067933220291007
912 => 0.067427052923613
913 => 0.067411726376892
914 => 0.066550609415589
915 => 0.066430133200082
916 => 0.064720333207351
917 => 0.065845728740318
918 => 0.065090872502721
919 => 0.063953126100077
920 => 0.063756978191419
921 => 0.063751081748429
922 => 0.064919292908504
923 => 0.065832077512747
924 => 0.065104003550156
925 => 0.064938235221995
926 => 0.066708207281444
927 => 0.066482962203225
928 => 0.066287901418163
929 => 0.071315447973552
930 => 0.067335752570612
1001 => 0.065600378221858
1002 => 0.063452522926624
1003 => 0.064151875441178
1004 => 0.064299239291621
1005 => 0.0591340344866
1006 => 0.057038511540489
1007 => 0.056319407033499
1008 => 0.055905552223082
1009 => 0.056094151057051
1010 => 0.054207934625224
1011 => 0.055475503262552
1012 => 0.053842199270496
1013 => 0.053568370540996
1014 => 0.056488920406331
1015 => 0.056895297858488
1016 => 0.05516156539601
1017 => 0.056274902302711
1018 => 0.0558711908638
1019 => 0.053870197579573
1020 => 0.053793774354425
1021 => 0.052789746262715
1022 => 0.051218636717336
1023 => 0.050500597496601
1024 => 0.05012663643614
1025 => 0.050280940058042
1026 => 0.050202919425039
1027 => 0.049693782019509
1028 => 0.05023210258515
1029 => 0.048856915989353
1030 => 0.048309305606275
1031 => 0.048061962700703
1101 => 0.046841405444147
1102 => 0.048783854823604
1103 => 0.04916654182169
1104 => 0.04954998283138
1105 => 0.052887575034434
1106 => 0.052720838359907
1107 => 0.054228056693577
1108 => 0.054169488960727
1109 => 0.053739605876646
1110 => 0.051925999857244
1111 => 0.052648870892159
1112 => 0.050423986205793
1113 => 0.052091021090271
1114 => 0.051330255986036
1115 => 0.051833805643269
1116 => 0.050928377956323
1117 => 0.051429479022472
1118 => 0.049257291105688
1119 => 0.047228932592503
1120 => 0.048045203269685
1121 => 0.048932582847656
1122 => 0.050856647872809
1123 => 0.04971069061702
1124 => 0.050122820179643
1125 => 0.048742255134511
1126 => 0.045893755107494
1127 => 0.045909877308301
1128 => 0.045471697637091
1129 => 0.045093046425885
1130 => 0.049842317593031
1201 => 0.04925167064853
1202 => 0.048310552044428
1203 => 0.049570276694585
1204 => 0.049903367886605
1205 => 0.049912850524571
1206 => 0.050831913111126
1207 => 0.051322416978322
1208 => 0.05140887041088
1209 => 0.052855035248487
1210 => 0.053339770626677
1211 => 0.055336327047123
1212 => 0.05128080115215
1213 => 0.051197280265156
1214 => 0.049588003603786
1215 => 0.048567374903487
1216 => 0.049657886924081
1217 => 0.050623931704592
1218 => 0.049618021307956
1219 => 0.049749371969829
1220 => 0.048399019448244
1221 => 0.048881706934719
1222 => 0.049297462423097
1223 => 0.049067906679393
1224 => 0.048724250620443
1225 => 0.050544727049219
1226 => 0.050442008634603
1227 => 0.052137278137651
1228 => 0.053458861945162
1229 => 0.055827376389586
1230 => 0.05335570809338
1231 => 0.053265630676674
]
'min_raw' => 0.045093046425885
'max_raw' => 0.13037725842019
'avg_raw' => 0.087735152423037
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.045093'
'max' => '$0.130377'
'avg' => '$0.087735'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -0.0079290766851075
'max_diff' => -0.044041504484636
'year' => 2030
]
5 => [
'items' => [
101 => 0.054146151873842
102 => 0.053339635823469
103 => 0.053849326127317
104 => 0.055745257401855
105 => 0.055785315442117
106 => 0.055114291655865
107 => 0.055073459797489
108 => 0.055202337255834
109 => 0.055957176554778
110 => 0.055693412509858
111 => 0.055998646940328
112 => 0.056380347269546
113 => 0.057959221668777
114 => 0.058339882941178
115 => 0.057415073399486
116 => 0.057498573346447
117 => 0.057152669191265
118 => 0.056818530111525
119 => 0.057569625965686
120 => 0.058942268401992
121 => 0.058933729264636
122 => 0.059252155629503
123 => 0.059450532616828
124 => 0.058598953366397
125 => 0.058044606587803
126 => 0.058257178416718
127 => 0.058597085400365
128 => 0.058146951163073
129 => 0.055368514128044
130 => 0.056211314437227
131 => 0.05607103125495
201 => 0.055871250944368
202 => 0.056718693172434
203 => 0.056636955302188
204 => 0.054188588749423
205 => 0.054345325232425
206 => 0.054198120414081
207 => 0.054673769297421
208 => 0.053313949222822
209 => 0.053732220719241
210 => 0.053994556680743
211 => 0.054149074577427
212 => 0.054707299174166
213 => 0.054641797960743
214 => 0.054703227526771
215 => 0.055530927237904
216 => 0.059717148344574
217 => 0.059944995123033
218 => 0.058822994254853
219 => 0.059271211471203
220 => 0.058410732430142
221 => 0.058988377775115
222 => 0.059383588049544
223 => 0.057597708813963
224 => 0.057491960635892
225 => 0.05662793009174
226 => 0.057092211164976
227 => 0.056353506594466
228 => 0.056534758857281
301 => 0.056027961729164
302 => 0.056940095657472
303 => 0.057960003120603
304 => 0.058217672023156
305 => 0.057539856073976
306 => 0.057049072656522
307 => 0.056187418649581
308 => 0.057620368466336
309 => 0.058039406661109
310 => 0.057618167437089
311 => 0.057520557104624
312 => 0.057335585700982
313 => 0.057559799662323
314 => 0.058037124489108
315 => 0.057812026915602
316 => 0.057960707828611
317 => 0.05739408950731
318 => 0.058599235274563
319 => 0.060513296787083
320 => 0.060519450807827
321 => 0.060294352020961
322 => 0.060202246447196
323 => 0.060433211462657
324 => 0.060558500508864
325 => 0.061305399017124
326 => 0.062106850874236
327 => 0.065846876990539
328 => 0.064796692623038
329 => 0.068115066288571
330 => 0.070739469021116
331 => 0.071526412649383
401 => 0.070802461539936
402 => 0.068325863901588
403 => 0.068204350206218
404 => 0.071905432670462
405 => 0.070859707353997
406 => 0.070735321655074
407 => 0.069412067971487
408 => 0.070194274786644
409 => 0.070023194681888
410 => 0.069753136367004
411 => 0.071245532481325
412 => 0.074039164780212
413 => 0.073603750987913
414 => 0.073278734790226
415 => 0.071854608422754
416 => 0.072712250586112
417 => 0.072406860638794
418 => 0.073719009657722
419 => 0.072941721646569
420 => 0.070851784956226
421 => 0.071184614262684
422 => 0.071134307782573
423 => 0.072169611578513
424 => 0.071858839076792
425 => 0.071073624463891
426 => 0.074029616448721
427 => 0.073837670771318
428 => 0.074109805856985
429 => 0.074229608137753
430 => 0.076028868368498
501 => 0.076765967715128
502 => 0.076933302171554
503 => 0.077633489541543
504 => 0.076915880871932
505 => 0.079786827196687
506 => 0.081695838978286
507 => 0.083913254399461
508 => 0.087153494314876
509 => 0.088371854496967
510 => 0.088151768635191
511 => 0.090608481558712
512 => 0.095023140072618
513 => 0.089044097340769
514 => 0.095340043855656
515 => 0.093346819879241
516 => 0.088620921687729
517 => 0.088316629558875
518 => 0.091517062682973
519 => 0.09861531532195
520 => 0.096837283543602
521 => 0.098618223544977
522 => 0.096540662433175
523 => 0.096437494012914
524 => 0.09851732103898
525 => 0.10337695025085
526 => 0.10106832257277
527 => 0.097758338697505
528 => 0.10020237928195
529 => 0.098085125142425
530 => 0.093314358983963
531 => 0.09683592391621
601 => 0.094481153734411
602 => 0.095168400859928
603 => 0.10011777753644
604 => 0.099522255440295
605 => 0.10029291617657
606 => 0.09893272014875
607 => 0.097662082575543
608 => 0.095290343186367
609 => 0.09458818807857
610 => 0.094782238489471
611 => 0.094588091916824
612 => 0.09326112552599
613 => 0.092974567260231
614 => 0.092496957596227
615 => 0.092644988802195
616 => 0.091746942904231
617 => 0.093441741059438
618 => 0.093756310531555
619 => 0.094989643294477
620 => 0.095117691993348
621 => 0.098552506182693
622 => 0.096660668246909
623 => 0.097929876467662
624 => 0.097816346538147
625 => 0.088723346231715
626 => 0.089976281445721
627 => 0.091925455445983
628 => 0.091047355200908
629 => 0.089805926898184
630 => 0.088803406982561
701 => 0.087284486797466
702 => 0.089422337789708
703 => 0.092233384509399
704 => 0.095188984777093
705 => 0.098739944840126
706 => 0.097947411891788
707 => 0.095122602048711
708 => 0.095249320954746
709 => 0.096032647369807
710 => 0.095018168489594
711 => 0.094718978862839
712 => 0.09599154330946
713 => 0.096000306761415
714 => 0.094833026205861
715 => 0.093535807478451
716 => 0.093530372084618
717 => 0.093299544541721
718 => 0.09658172614027
719 => 0.098386594153482
720 => 0.098593519362507
721 => 0.098372666438221
722 => 0.09845766396344
723 => 0.097407451034104
724 => 0.099807926359596
725 => 0.10201083990067
726 => 0.10142041201328
727 => 0.10053527667581
728 => 0.099830223745621
729 => 0.10125432394983
730 => 0.10119091100948
731 => 0.10199159937267
801 => 0.10195527552352
802 => 0.10168603414239
803 => 0.10142042162874
804 => 0.10247354522188
805 => 0.1021702625397
806 => 0.10186650877575
807 => 0.10125728409977
808 => 0.10134008785139
809 => 0.10045510534501
810 => 0.10004567194352
811 => 0.093888775953156
812 => 0.092243452162151
813 => 0.092761104520455
814 => 0.092931529117647
815 => 0.092215482095261
816 => 0.093242109587974
817 => 0.093082110780702
818 => 0.093704572543625
819 => 0.093315685458299
820 => 0.09333164551993
821 => 0.094475279518404
822 => 0.094807281333529
823 => 0.094638422530773
824 => 0.094756685448082
825 => 0.097482004461805
826 => 0.09709455124885
827 => 0.096888724451696
828 => 0.096945739881153
829 => 0.097642117320658
830 => 0.097837064982921
831 => 0.097011058039184
901 => 0.09740060768894
902 => 0.099059260656387
903 => 0.099639695323366
904 => 0.10149216415592
905 => 0.10070520247084
906 => 0.1021497047027
907 => 0.10658961209634
908 => 0.1101365173406
909 => 0.10687463669592
910 => 0.11338807648135
911 => 0.11845972365175
912 => 0.11826506538608
913 => 0.1173807063926
914 => 0.11160677092582
915 => 0.10629350942476
916 => 0.1107382782834
917 => 0.11074960891329
918 => 0.11036779932647
919 => 0.1079964127741
920 => 0.11028528021472
921 => 0.11046696220021
922 => 0.11036526860148
923 => 0.10854713209179
924 => 0.1057711736893
925 => 0.10631358931644
926 => 0.10720207717868
927 => 0.10551998429747
928 => 0.10498245370033
929 => 0.1059818253498
930 => 0.10920200903176
1001 => 0.10859325195994
1002 => 0.10857735485261
1003 => 0.11118187575904
1004 => 0.10931760088083
1005 => 0.10632043091455
1006 => 0.10556360597025
1007 => 0.10287738727636
1008 => 0.10473276809621
1009 => 0.10479953994885
1010 => 0.10378336683535
1011 => 0.10640288776226
1012 => 0.10637874841576
1013 => 0.10886559367163
1014 => 0.11361950778444
1015 => 0.11221354145537
1016 => 0.11057855558338
1017 => 0.1107563238809
1018 => 0.11270600333523
1019 => 0.11152718263029
1020 => 0.11195109477482
1021 => 0.11270536169343
1022 => 0.11316042965282
1023 => 0.11069084660465
1024 => 0.1101150686623
1025 => 0.10893722906287
1026 => 0.1086299526968
1027 => 0.10958927847411
1028 => 0.10933653002526
1029 => 0.10479392803319
1030 => 0.10431920085022
1031 => 0.10433376005516
1101 => 0.10314003598154
1102 => 0.10131932024265
1103 => 0.10610405249516
1104 => 0.10571977153299
1105 => 0.10529555509175
1106 => 0.10534751918526
1107 => 0.10742440928645
1108 => 0.1062197081423
1109 => 0.10942260358067
1110 => 0.10876418456639
1111 => 0.10808887958883
1112 => 0.10799553187064
1113 => 0.1077355970686
1114 => 0.10684418391491
1115 => 0.1057677489662
1116 => 0.10505699337386
1117 => 0.096909523095732
1118 => 0.098421646187699
1119 => 0.10016120597065
1120 => 0.10076169503688
1121 => 0.099734516936518
1122 => 0.10688474316703
1123 => 0.10819115840064
1124 => 0.10423394144268
1125 => 0.10349370772195
1126 => 0.10693327276653
1127 => 0.10485879457492
1128 => 0.10579293197758
1129 => 0.10377383785888
1130 => 0.10787648122717
1201 => 0.10784522595851
1202 => 0.10624920502584
1203 => 0.10759815098905
1204 => 0.10736373843202
1205 => 0.10556183472986
1206 => 0.10793360478853
1207 => 0.10793478115688
1208 => 0.10639864570968
1209 => 0.10460477581063
1210 => 0.10428407424199
1211 => 0.10404246869022
1212 => 0.10573351182254
1213 => 0.10724969580721
1214 => 0.11007093830881
1215 => 0.11078026570478
1216 => 0.11354881775385
1217 => 0.11190027980698
1218 => 0.11263105532669
1219 => 0.11342441552784
1220 => 0.11380478158312
1221 => 0.1131849955076
1222 => 0.11748569642129
1223 => 0.11784880734848
1224 => 0.11797055530147
1225 => 0.11652038315099
1226 => 0.11780847543763
1227 => 0.11720581971385
1228 => 0.11877376248456
1229 => 0.1190196359315
1230 => 0.11881138986914
1231 => 0.11888943398205
]
'min_raw' => 0.053313949222822
'max_raw' => 0.1190196359315
'avg_raw' => 0.086166792577163
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.053313'
'max' => '$0.119019'
'avg' => '$0.086166'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 0.0082209027969369
'max_diff' => -0.011357622488686
'year' => 2031
]
6 => [
'items' => [
101 => 0.11521954444784
102 => 0.11502924131529
103 => 0.11243444459956
104 => 0.11349184344099
105 => 0.11151508698939
106 => 0.11214193682304
107 => 0.11241824625687
108 => 0.11227391788906
109 => 0.11355162718497
110 => 0.11246531326468
111 => 0.10959835222248
112 => 0.10673061007866
113 => 0.10669460791206
114 => 0.10593958202544
115 => 0.10539383659931
116 => 0.10549896652974
117 => 0.1058694581169
118 => 0.10537230295475
119 => 0.105478396215
120 => 0.10724025123087
121 => 0.10759357868933
122 => 0.10639283393154
123 => 0.10157167046238
124 => 0.10038854485407
125 => 0.10123895207892
126 => 0.10083251219868
127 => 0.081379706999251
128 => 0.08594985503332
129 => 0.083234428259039
130 => 0.084485821847406
131 => 0.08171407426722
201 => 0.083036897492222
202 => 0.082792620344334
203 => 0.090141283142604
204 => 0.090026543880765
205 => 0.090081463493541
206 => 0.087460007283447
207 => 0.091636058206418
208 => 0.093693331057008
209 => 0.093312584604908
210 => 0.093408410284041
211 => 0.091761807630867
212 => 0.090097406206518
213 => 0.088251328877374
214 => 0.091681112372871
215 => 0.091299778996528
216 => 0.09217442056244
217 => 0.094398880325257
218 => 0.094726440475233
219 => 0.095166684638588
220 => 0.095008888444738
221 => 0.098768233965884
222 => 0.098312952418313
223 => 0.099410049954519
224 => 0.097153237085553
225 => 0.094599439105675
226 => 0.095084832611703
227 => 0.095038085313785
228 => 0.09444293855723
229 => 0.093905666676221
301 => 0.093011260369756
302 => 0.095841294270639
303 => 0.095726400062512
304 => 0.097586403742183
305 => 0.097257630024689
306 => 0.095061998674691
307 => 0.095140416077894
308 => 0.095667810800551
309 => 0.097493129957354
310 => 0.098035008960299
311 => 0.09778398901599
312 => 0.098378134605002
313 => 0.09884772305329
314 => 0.098437107684196
315 => 0.10425055539939
316 => 0.10183640659588
317 => 0.10301304592517
318 => 0.10329366747204
319 => 0.10257486128056
320 => 0.10273074460497
321 => 0.1029668653658
322 => 0.10440054438832
323 => 0.1081629329818
324 => 0.1098292692784
325 => 0.11484252424232
326 => 0.10969090324549
327 => 0.10938522737507
328 => 0.11028826597986
329 => 0.11323157735062
330 => 0.11561685476543
331 => 0.11640818889388
401 => 0.11651277676246
402 => 0.11799737219433
403 => 0.11884831460981
404 => 0.11781710326017
405 => 0.11694325961367
406 => 0.11381326013738
407 => 0.11417556609947
408 => 0.1166714948967
409 => 0.12019714133227
410 => 0.12322251275498
411 => 0.12216313312759
412 => 0.13024545187914
413 => 0.13104678077004
414 => 0.13093606302739
415 => 0.1327616094946
416 => 0.12913827152326
417 => 0.12758922434165
418 => 0.11713219452859
419 => 0.12007019336935
420 => 0.12434074722703
421 => 0.12377552341021
422 => 0.12067413304653
423 => 0.12322016007228
424 => 0.12237836391594
425 => 0.12171440436129
426 => 0.12475613179607
427 => 0.12141162753425
428 => 0.12430738323861
429 => 0.12059354659501
430 => 0.12216797228449
501 => 0.12127425211674
502 => 0.1218525985955
503 => 0.11847159689823
504 => 0.1202959033449
505 => 0.11839569975229
506 => 0.11839479880837
507 => 0.11835285170875
508 => 0.12058843280866
509 => 0.12066133502807
510 => 0.11900923721746
511 => 0.11877114411233
512 => 0.11965149911163
513 => 0.11862083397279
514 => 0.11910307570432
515 => 0.11863544058357
516 => 0.11853016606798
517 => 0.11769132081682
518 => 0.11732992321809
519 => 0.11747163652862
520 => 0.11698789594156
521 => 0.11669642474019
522 => 0.11829487075057
523 => 0.11744088552835
524 => 0.11816398526739
525 => 0.11733992185229
526 => 0.11448335902822
527 => 0.1128405195405
528 => 0.10744473716934
529 => 0.10897497435635
530 => 0.10998952319449
531 => 0.10965421480953
601 => 0.11037458696753
602 => 0.11041881196741
603 => 0.11018461163552
604 => 0.10991343765411
605 => 0.10978144515683
606 => 0.11076520909218
607 => 0.11133631716862
608 => 0.1100913467433
609 => 0.10979966759164
610 => 0.11105840142834
611 => 0.11182622834158
612 => 0.11749543086427
613 => 0.1170754380301
614 => 0.11812953762442
615 => 0.11801086218658
616 => 0.11911572649266
617 => 0.12092171268261
618 => 0.11724963779677
619 => 0.11788698302615
620 => 0.11773072069436
621 => 0.11943675185871
622 => 0.11944207790179
623 => 0.11841922699618
624 => 0.11897373106597
625 => 0.11866422210624
626 => 0.11922354662912
627 => 0.11706982876975
628 => 0.11969282464299
629 => 0.12117989428099
630 => 0.12120054224436
701 => 0.12190540145066
702 => 0.12262157922695
703 => 0.12399622010261
704 => 0.12258324123902
705 => 0.12004142981414
706 => 0.12022494038901
707 => 0.11873467728062
708 => 0.11875972887271
709 => 0.1186260015108
710 => 0.11902732739041
711 => 0.11715789723181
712 => 0.11759664875347
713 => 0.11698239405382
714 => 0.1178856477564
715 => 0.11691389608561
716 => 0.11773064533993
717 => 0.11808312724243
718 => 0.11938379305104
719 => 0.11672178668814
720 => 0.1112937755122
721 => 0.11243480926966
722 => 0.11074713071611
723 => 0.11090333179169
724 => 0.11121888282357
725 => 0.11019607868737
726 => 0.11039119748429
727 => 0.11038422646784
728 => 0.11032415401407
729 => 0.11005808315567
730 => 0.10967222777049
731 => 0.11120935686505
801 => 0.11147054505114
802 => 0.11205113403445
803 => 0.11377857303152
804 => 0.1136059611399
805 => 0.11388749829674
806 => 0.11327290426413
807 => 0.11093184104616
808 => 0.11105897204209
809 => 0.10947364648571
810 => 0.11201059369568
811 => 0.11140981111029
812 => 0.11102248266917
813 => 0.11091679651544
814 => 0.11264851749965
815 => 0.11316667555953
816 => 0.11284379422891
817 => 0.11218155519985
818 => 0.11345324990904
819 => 0.11379350176473
820 => 0.11386967160721
821 => 0.11612287080862
822 => 0.11399560041265
823 => 0.11450765554021
824 => 0.11850256347284
825 => 0.11487973323755
826 => 0.11679882721194
827 => 0.11670489754838
828 => 0.11768664108708
829 => 0.11662436592326
830 => 0.11663753409704
831 => 0.11750925585033
901 => 0.11628507986368
902 => 0.11598195667376
903 => 0.11556319415789
904 => 0.11647754679117
905 => 0.1170256598422
906 => 0.12144304848888
907 => 0.12429688301204
908 => 0.12417299052893
909 => 0.12530513590749
910 => 0.12479509404519
911 => 0.12314803432957
912 => 0.12595936442659
913 => 0.12506974195285
914 => 0.12514308134869
915 => 0.12514035165271
916 => 0.12573187282561
917 => 0.12531272586249
918 => 0.12448654417364
919 => 0.12503500213499
920 => 0.12666372620287
921 => 0.13171933568495
922 => 0.13454852172903
923 => 0.13154901513266
924 => 0.13361803461784
925 => 0.13237736019376
926 => 0.13215189274403
927 => 0.13345138988007
928 => 0.13475316161381
929 => 0.13467024438209
930 => 0.13372522495011
1001 => 0.13319140745196
1002 => 0.1372336523899
1003 => 0.14021190960233
1004 => 0.14000881242693
1005 => 0.1409052173084
1006 => 0.14353708976514
1007 => 0.14377771519889
1008 => 0.14374740192495
1009 => 0.14315098668074
1010 => 0.14574240690623
1011 => 0.14790421525004
1012 => 0.1430129337838
1013 => 0.14487546973457
1014 => 0.14571162213003
1015 => 0.1469393419218
1016 => 0.14901071100025
1017 => 0.15126076722296
1018 => 0.15157894984346
1019 => 0.15135318404777
1020 => 0.14986921148414
1021 => 0.15233124985178
1022 => 0.15377345418564
1023 => 0.15463225386219
1024 => 0.15681002695129
1025 => 0.14571678592256
1026 => 0.13786443855258
1027 => 0.13663818112148
1028 => 0.1391318238278
1029 => 0.13978937752303
1030 => 0.13952431845299
1031 => 0.13068578758388
1101 => 0.13659164808563
1102 => 0.14294585740666
1103 => 0.14318994846502
1104 => 0.14637099851138
1105 => 0.14740687880212
1106 => 0.1499680410392
1107 => 0.14980783964394
1108 => 0.15043144189168
1109 => 0.15028808653421
1110 => 0.15503210026206
1111 => 0.16026545189674
1112 => 0.16008423757067
1113 => 0.15933188135498
1114 => 0.16044925863108
1115 => 0.16585063835811
1116 => 0.16535336586819
1117 => 0.16583642373458
1118 => 0.17220495484117
1119 => 0.18048495119273
1120 => 0.17663806158939
1121 => 0.18498470511598
1122 => 0.1902384747794
1123 => 0.19932432616237
1124 => 0.19818673282046
1125 => 0.20172378808879
1126 => 0.19615020331555
1127 => 0.18335212606885
1128 => 0.18132678135549
1129 => 0.18538157276153
1130 => 0.19534988177254
1201 => 0.18506763523658
1202 => 0.18714772031917
1203 => 0.18654865567545
1204 => 0.18651673406645
1205 => 0.18773505204753
1206 => 0.18596781827278
1207 => 0.17876778995513
1208 => 0.18206752050308
1209 => 0.18079333607244
1210 => 0.18220713869497
1211 => 0.18983684835223
1212 => 0.18646357184319
1213 => 0.18291009906366
1214 => 0.18736694250793
1215 => 0.19304203575006
1216 => 0.19268689861409
1217 => 0.19199778413451
1218 => 0.19588228637508
1219 => 0.20229834602414
1220 => 0.20403258116547
1221 => 0.20531275809192
1222 => 0.20548927286131
1223 => 0.20730748468935
1224 => 0.19753050144157
1225 => 0.21304682494654
1226 => 0.21572606538606
1227 => 0.21522247922657
1228 => 0.21820034221542
1229 => 0.21732417938301
1230 => 0.21605475690458
1231 => 0.22077530315153
]
'min_raw' => 0.081379706999251
'max_raw' => 0.22077530315153
'avg_raw' => 0.15107750507539
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.081379'
'max' => '$0.220775'
'avg' => '$0.151077'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.028065757776429
'max_diff' => 0.10175566722003
'year' => 2032
]
7 => [
'items' => [
101 => 0.21536357780784
102 => 0.20768231499973
103 => 0.20346822230506
104 => 0.20901767950657
105 => 0.21240653937016
106 => 0.21464636016803
107 => 0.21532412858813
108 => 0.1982894608196
109 => 0.18910871967834
110 => 0.19499346949248
111 => 0.20217327040945
112 => 0.19749061728496
113 => 0.19767416842201
114 => 0.19099793564608
115 => 0.20276396886982
116 => 0.20104975679703
117 => 0.20994309206302
118 => 0.20782062622832
119 => 0.21507279590045
120 => 0.2131630565791
121 => 0.22109027772991
122 => 0.22425266086792
123 => 0.22956279434226
124 => 0.23346895014211
125 => 0.23576271954064
126 => 0.23562501022967
127 => 0.24471406733802
128 => 0.23935456790869
129 => 0.23262177348843
130 => 0.23249999847906
131 => 0.23598700811375
201 => 0.24329482369368
202 => 0.24518963394917
203 => 0.24624857438722
204 => 0.24462677024437
205 => 0.23880941773262
206 => 0.23629751441269
207 => 0.23843772881811
208 => 0.235820430511
209 => 0.24033862167328
210 => 0.24654306317264
211 => 0.24526187053804
212 => 0.24954470542837
213 => 0.25397698897248
214 => 0.26031535350688
215 => 0.26197243670513
216 => 0.26471153221861
217 => 0.26753096124798
218 => 0.26843648586647
219 => 0.27016541333096
220 => 0.2701563010298
221 => 0.27536654031427
222 => 0.28111359559273
223 => 0.28328297591571
224 => 0.28827134634807
225 => 0.279728936796
226 => 0.28620845256938
227 => 0.29205313798976
228 => 0.28508486308348
301 => 0.29468900664197
302 => 0.29506191377289
303 => 0.30069236871402
304 => 0.29498482396653
305 => 0.2915957021146
306 => 0.30137996991239
307 => 0.30611426889819
308 => 0.30468825951466
309 => 0.29383625769526
310 => 0.28751992717211
311 => 0.27098887186387
312 => 0.29057062096493
313 => 0.3001083197446
314 => 0.29381155735956
315 => 0.29698727804578
316 => 0.31431298037891
317 => 0.32090948607121
318 => 0.31953745900027
319 => 0.31976930898977
320 => 0.32332866372629
321 => 0.33911280280048
322 => 0.32965458079374
323 => 0.33688503712507
324 => 0.34072004509186
325 => 0.34428221421873
326 => 0.33553465267825
327 => 0.3241542036413
328 => 0.32054953771255
329 => 0.29318546843599
330 => 0.29176104979402
331 => 0.29096148044597
401 => 0.2859203088079
402 => 0.28195932879349
403 => 0.27880941042428
404 => 0.27054308397821
405 => 0.2733327264932
406 => 0.26015792745459
407 => 0.26858669699329
408 => 0.24755939961101
409 => 0.26507155770049
410 => 0.25554048623251
411 => 0.26194034438591
412 => 0.26191801588372
413 => 0.25013384794643
414 => 0.24333698580951
415 => 0.24766821090099
416 => 0.25231162801212
417 => 0.25306500681607
418 => 0.25908531830625
419 => 0.260765457837
420 => 0.25567455662062
421 => 0.2471236556104
422 => 0.24910983488979
423 => 0.24329673594981
424 => 0.23310950365512
425 => 0.24042615174118
426 => 0.24292437708806
427 => 0.24402773572201
428 => 0.23400976277171
429 => 0.23086189816996
430 => 0.22918600146913
501 => 0.24583046110283
502 => 0.24674228217431
503 => 0.24207727665412
504 => 0.26316354395934
505 => 0.25839107224752
506 => 0.26372309243358
507 => 0.24892960993833
508 => 0.24949474089171
509 => 0.24249126920238
510 => 0.24641274537626
511 => 0.24364117241164
512 => 0.24609592885419
513 => 0.24756729974452
514 => 0.25456962223306
515 => 0.26515151297532
516 => 0.25352370876015
517 => 0.24845730795037
518 => 0.25160047451824
519 => 0.25997114129011
520 => 0.27265312993603
521 => 0.26514513740884
522 => 0.26847705699843
523 => 0.26920493320197
524 => 0.2636688174734
525 => 0.27285725441958
526 => 0.27778141242576
527 => 0.28283257962918
528 => 0.28721836658142
529 => 0.28081503237059
530 => 0.28766751785808
531 => 0.28214562418169
601 => 0.27719191471109
602 => 0.27719942744355
603 => 0.27409189313049
604 => 0.26807065382443
605 => 0.266960244914
606 => 0.27273673229521
607 => 0.27736892813955
608 => 0.27775045797602
609 => 0.28031507960626
610 => 0.28183279626933
611 => 0.29670848280321
612 => 0.30269160698527
613 => 0.31000765798035
614 => 0.31285767215297
615 => 0.32143519302594
616 => 0.31450814828883
617 => 0.3130094385868
618 => 0.29220317863468
619 => 0.29561020253625
620 => 0.30106517653158
621 => 0.29229312914667
622 => 0.29785697416541
623 => 0.29895539503046
624 => 0.2919950583332
625 => 0.2957128749016
626 => 0.28583945635171
627 => 0.26536672651877
628 => 0.27288004642032
629 => 0.278412378824
630 => 0.27051705835229
701 => 0.28466911470674
702 => 0.27640177554221
703 => 0.27378142592932
704 => 0.26355850786735
705 => 0.2683833316764
706 => 0.27490897496296
707 => 0.27087688609932
708 => 0.27924407591256
709 => 0.29109424813611
710 => 0.29953938655257
711 => 0.30018769941649
712 => 0.29475804119503
713 => 0.30345910314653
714 => 0.30352248088368
715 => 0.29370764745751
716 => 0.28769611663321
717 => 0.28633028418155
718 => 0.289742401433
719 => 0.29388534168786
720 => 0.30041760376724
721 => 0.3043649129331
722 => 0.31465740174665
723 => 0.31744225411082
724 => 0.32050196254456
725 => 0.32459067659118
726 => 0.3295002261289
727 => 0.31875841124117
728 => 0.31918520357191
729 => 0.30918257427901
730 => 0.2984933303574
731 => 0.30660513406084
801 => 0.31721023833505
802 => 0.31477741569695
803 => 0.3145036734521
804 => 0.31496403197816
805 => 0.31312976315759
806 => 0.30483343326333
807 => 0.3006670683282
808 => 0.30604274204757
809 => 0.3088996733857
810 => 0.31333052474055
811 => 0.31278432878714
812 => 0.32419772603854
813 => 0.32863262708722
814 => 0.32749798961885
815 => 0.32770679021961
816 => 0.33573596672975
817 => 0.34466606233512
818 => 0.35303027529945
819 => 0.36153871197808
820 => 0.35128145947206
821 => 0.34607345922889
822 => 0.35144678609728
823 => 0.34859562322586
824 => 0.36497925079488
825 => 0.36611361762071
826 => 0.38249606046697
827 => 0.39804494951309
828 => 0.3882789708905
829 => 0.39748784886226
830 => 0.40744800119955
831 => 0.42666275103467
901 => 0.42019189927325
902 => 0.41523532823518
903 => 0.41055139255418
904 => 0.42029791915249
905 => 0.43283666991665
906 => 0.43553739673659
907 => 0.43991360594194
908 => 0.43531255705992
909 => 0.44085401364941
910 => 0.46041779044971
911 => 0.45513148526403
912 => 0.44762408208441
913 => 0.46306780494315
914 => 0.46865682820978
915 => 0.50788352048917
916 => 0.55740883986574
917 => 0.53690503244306
918 => 0.52417765752207
919 => 0.52716889252587
920 => 0.54525386262434
921 => 0.55106218103171
922 => 0.53527316935306
923 => 0.54085011520122
924 => 0.57157963513782
925 => 0.58806503666277
926 => 0.56567564710708
927 => 0.50390420929899
928 => 0.44694812256836
929 => 0.46205544153533
930 => 0.46034274039917
1001 => 0.49335777598536
1002 => 0.45500540863365
1003 => 0.45565116413973
1004 => 0.48934891569831
1005 => 0.48035893330819
1006 => 0.46579631318616
1007 => 0.44705444581121
1008 => 0.41240837055571
1009 => 0.38172137552463
1010 => 0.44190563957347
1011 => 0.4393103846697
1012 => 0.43555207097381
1013 => 0.44391579141199
1014 => 0.4845276437763
1015 => 0.48359140913157
1016 => 0.47763556199288
1017 => 0.48215301955515
1018 => 0.46500438103391
1019 => 0.46942397564807
1020 => 0.44693910043322
1021 => 0.45710320308167
1022 => 0.46576506834378
1023 => 0.46750406603626
1024 => 0.47142211663283
1025 => 0.43794280326471
1026 => 0.452974032066
1027 => 0.46180347075108
1028 => 0.42191174555414
1029 => 0.46101493960561
1030 => 0.43736000290372
1031 => 0.42933116210187
1101 => 0.44014093852222
1102 => 0.43592835813835
1103 => 0.43230662889533
1104 => 0.43028564174851
1105 => 0.43822314852013
1106 => 0.43785285434186
1107 => 0.42486555265982
1108 => 0.40792414704574
1109 => 0.41361023885251
1110 => 0.41154442839172
1111 => 0.40405766478695
1112 => 0.40910283950128
1113 => 0.38688644336386
1114 => 0.34866428851722
1115 => 0.37391501478517
1116 => 0.37294288929136
1117 => 0.372452699535
1118 => 0.39142792244656
1119 => 0.38960389259649
1120 => 0.38629326055766
1121 => 0.40399686243332
1122 => 0.39753480960166
1123 => 0.41744933377772
1124 => 0.43056632739074
1125 => 0.42723943352019
1126 => 0.43957602941317
1127 => 0.41374123492345
1128 => 0.42232251734088
1129 => 0.42409110775397
1130 => 0.40377840273424
1201 => 0.38990232643812
1202 => 0.38897695034802
1203 => 0.36491774629164
1204 => 0.37776997889945
1205 => 0.38907941173279
1206 => 0.38366307105306
1207 => 0.38194841940243
1208 => 0.39070820282292
1209 => 0.39138891301717
1210 => 0.37586864844999
1211 => 0.37909580291636
1212 => 0.39255357351094
1213 => 0.37875670162646
1214 => 0.35195163326115
1215 => 0.34530360569749
1216 => 0.34441663627304
1217 => 0.32638665825868
1218 => 0.34574785868808
1219 => 0.33729617585273
1220 => 0.36399494066288
1221 => 0.34874474939167
1222 => 0.34808734412614
1223 => 0.3470935796469
1224 => 0.33157443276093
1225 => 0.33497213963572
1226 => 0.3462666347729
1227 => 0.35029663787944
1228 => 0.34987627553858
1229 => 0.34621128558504
1230 => 0.34788909921798
1231 => 0.34248427691723
]
'min_raw' => 0.18910871967834
'max_raw' => 0.58806503666277
'avg_raw' => 0.38858687817055
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.1891087'
'max' => '$0.588065'
'avg' => '$0.388586'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.10772901267909
'max_diff' => 0.36728973351123
'year' => 2033
]
8 => [
'items' => [
101 => 0.34057572167119
102 => 0.3345517963252
103 => 0.32569829021845
104 => 0.3269294245443
105 => 0.30938831230093
106 => 0.29983098337345
107 => 0.2971856406899
108 => 0.29364817789697
109 => 0.29758520652519
110 => 0.30933862053387
111 => 0.29516150961352
112 => 0.27085584734928
113 => 0.27231665906619
114 => 0.27559866927521
115 => 0.26948266496338
116 => 0.26369438015957
117 => 0.26872682417809
118 => 0.25842819466085
119 => 0.27684320945008
120 => 0.27634513490751
121 => 0.28320911364406
122 => 0.28750130041105
123 => 0.27760919952511
124 => 0.27512136290338
125 => 0.27653854770899
126 => 0.25311563969047
127 => 0.28129496234625
128 => 0.28153865829875
129 => 0.27945198560135
130 => 0.29445660497657
131 => 0.32612103191643
201 => 0.31420760080303
202 => 0.30959436019056
203 => 0.300824586414
204 => 0.31250978927363
205 => 0.31161254801157
206 => 0.3075548827559
207 => 0.30510079414858
208 => 0.30962252765402
209 => 0.30454050132744
210 => 0.30362762975445
211 => 0.29809662123615
212 => 0.29612230283997
213 => 0.29466059609932
214 => 0.2930514006022
215 => 0.29660088488231
216 => 0.28855728653003
217 => 0.27885749544085
218 => 0.27805106276498
219 => 0.28027769428535
220 => 0.2792925755908
221 => 0.27804634639567
222 => 0.27566695547184
223 => 0.27496104101238
224 => 0.27725492054461
225 => 0.27466526429421
226 => 0.27848644315755
227 => 0.27744729394219
228 => 0.27164269089723
301 => 0.26440800636392
302 => 0.26434360249631
303 => 0.26278490158087
304 => 0.2607996616128
305 => 0.26024741326982
306 => 0.26830300577948
307 => 0.28497784119087
308 => 0.28170417200462
309 => 0.2840697334908
310 => 0.29570595472054
311 => 0.2994047595361
312 => 0.29677943548901
313 => 0.29318573001042
314 => 0.29334383481312
315 => 0.30562461432208
316 => 0.30639055147615
317 => 0.30832582756377
318 => 0.31081320424533
319 => 0.2972030464936
320 => 0.29270279760695
321 => 0.29057033002015
322 => 0.28400315522163
323 => 0.29108529021482
324 => 0.28695883344155
325 => 0.2875156334401
326 => 0.2871530167106
327 => 0.28735102996494
328 => 0.27683806207815
329 => 0.28066843503077
330 => 0.27429969708398
331 => 0.26577267189762
401 => 0.26574408631924
402 => 0.26783106365337
403 => 0.2665896478716
404 => 0.26324902992256
405 => 0.26372354893495
406 => 0.25956626307406
407 => 0.26422831870855
408 => 0.26436200978251
409 => 0.26256686441934
410 => 0.26974940436399
411 => 0.2726920968397
412 => 0.27151049370592
413 => 0.27260919241392
414 => 0.28184020773904
415 => 0.28334526601447
416 => 0.28401371348185
417 => 0.28311808242788
418 => 0.27277791842845
419 => 0.2732365486716
420 => 0.26987142425333
421 => 0.26702824872797
422 => 0.26714196083849
423 => 0.26860372264548
424 => 0.27498732218776
425 => 0.28842123109076
426 => 0.28893103811357
427 => 0.28954893909733
428 => 0.28703562526421
429 => 0.28627758576296
430 => 0.2872776355317
501 => 0.29232270539429
502 => 0.30529999480398
503 => 0.30071295400258
504 => 0.2969836184295
505 => 0.30025525114874
506 => 0.29975160893552
507 => 0.29550036180831
508 => 0.29538104346067
509 => 0.28722154101763
510 => 0.28420515874732
511 => 0.28168444394994
512 => 0.27893188919614
513 => 0.27730008247162
514 => 0.27980727924338
515 => 0.28038070480936
516 => 0.2748986752496
517 => 0.2741514948774
518 => 0.27862823855373
519 => 0.2766581905716
520 => 0.27868443377606
521 => 0.27915453958028
522 => 0.27907884171835
523 => 0.27702188536644
524 => 0.27833292800582
525 => 0.27523192132306
526 => 0.27186004231169
527 => 0.26970899357792
528 => 0.2678319182625
529 => 0.26887342874376
530 => 0.26516063405039
531 => 0.26397283630418
601 => 0.27788877625899
602 => 0.28816863072518
603 => 0.28801915756997
604 => 0.28710927817902
605 => 0.28575738196636
606 => 0.29222380576589
607 => 0.28997103301436
608 => 0.29161011341656
609 => 0.29202732817091
610 => 0.29329011157528
611 => 0.29374144810244
612 => 0.29237719564399
613 => 0.28779859776402
614 => 0.27638916716717
615 => 0.27107804642516
616 => 0.26932528811659
617 => 0.26938899755214
618 => 0.2676316069081
619 => 0.26814923721349
620 => 0.26745159621223
621 => 0.26613043293333
622 => 0.26879185063422
623 => 0.26909855423143
624 => 0.26847734753847
625 => 0.26862366420267
626 => 0.26348033810579
627 => 0.26387137401822
628 => 0.26169403636737
629 => 0.26128581180604
630 => 0.25578169182718
701 => 0.24603034544968
702 => 0.25143353792891
703 => 0.24490724121784
704 => 0.24243563376382
705 => 0.25413583903731
706 => 0.25296146294103
707 => 0.25095144155322
708 => 0.24797820099548
709 => 0.24687539715079
710 => 0.24017511009573
711 => 0.23977922139187
712 => 0.24310006457933
713 => 0.24156760971155
714 => 0.23941546269115
715 => 0.23162060434291
716 => 0.22285660277058
717 => 0.2231211328895
718 => 0.22590879872961
719 => 0.2340143131277
720 => 0.23084734842554
721 => 0.2285496791974
722 => 0.22811939481865
723 => 0.23350530468005
724 => 0.24112749551693
725 => 0.24470365692068
726 => 0.2411597895792
727 => 0.23708878559267
728 => 0.23733656874211
729 => 0.23898495902656
730 => 0.23915818153847
731 => 0.23650837644921
801 => 0.23725428106051
802 => 0.23612118374899
803 => 0.22916736763974
804 => 0.22904159515711
805 => 0.22733501653846
806 => 0.22728334201613
807 => 0.22438002605983
808 => 0.22397383208787
809 => 0.21820912203795
810 => 0.22200347164996
811 => 0.21945842114252
812 => 0.21562242971109
813 => 0.21496110334244
814 => 0.21494122307322
815 => 0.21887992856131
816 => 0.2219574455831
817 => 0.21950269338573
818 => 0.21894379389375
819 => 0.22491137826769
820 => 0.22415194876037
821 => 0.22349428770482
822 => 0.24044501192841
823 => 0.22702719102393
824 => 0.22117625524714
825 => 0.21393461116079
826 => 0.21629252699085
827 => 0.21678937450123
828 => 0.19937452587802
829 => 0.19230932396046
830 => 0.18988481290887
831 => 0.18848947252113
901 => 0.18912534665741
902 => 0.18276583626608
903 => 0.18703953242564
904 => 0.18153273398278
905 => 0.18060950130317
906 => 0.19045633908042
907 => 0.19182646903274
908 => 0.18598106899016
909 => 0.1897347621018
910 => 0.18837362079928
911 => 0.18162713223662
912 => 0.18136946599733
913 => 0.17798431518713
914 => 0.17268720966352
915 => 0.17026629029891
916 => 0.16900545447444
917 => 0.16952569990882
918 => 0.16926264789742
919 => 0.16754605558784
920 => 0.16936104095924
921 => 0.16472450333905
922 => 0.16287819669957
923 => 0.1620442628245
924 => 0.15792906881743
925 => 0.16447817251776
926 => 0.16576842845016
927 => 0.16706122658532
928 => 0.17831415172117
929 => 0.17775198738182
930 => 0.18283367922441
1001 => 0.18263621402404
1002 => 0.18118683319258
1003 => 0.17507213387624
1004 => 0.1775093440397
1005 => 0.17000798998312
1006 => 0.1756285144848
1007 => 0.17306354182095
1008 => 0.17476129464702
1009 => 0.17170858198554
1010 => 0.17339807921582
1011 => 0.16607439599707
1012 => 0.1592356436544
1013 => 0.16198775723271
1014 => 0.16497961943471
1015 => 0.17146673900094
1016 => 0.16760306410487
1017 => 0.16899258769922
1018 => 0.16433791626158
1019 => 0.15473399954457
1020 => 0.15478835667021
1021 => 0.153311003316
1022 => 0.15203435432084
1023 => 0.16804685364439
1024 => 0.16605544623335
1025 => 0.16288239915282
1026 => 0.16712964876199
1027 => 0.16825268897157
1028 => 0.16828466034753
1029 => 0.171383344025
1030 => 0.17303711205914
1031 => 0.173328595843
1101 => 0.17820444156099
1102 => 0.1798387607317
1103 => 0.18657029009836
1104 => 0.17289680139568
1105 => 0.17261520489393
1106 => 0.16718941627402
1107 => 0.16374829535294
1108 => 0.16742503276749
1109 => 0.17068212019207
1110 => 0.16729062305939
1111 => 0.16773348098651
1112 => 0.16318067318138
1113 => 0.1648080877422
1114 => 0.16620983639839
1115 => 0.16543587318142
1116 => 0.16427721278537
1117 => 0.17041507616659
1118 => 0.17006875386014
1119 => 0.17578447334961
1120 => 0.18024028542667
1121 => 0.18822589724044
1122 => 0.17989249501341
1123 => 0.17958879271398
1124 => 0.18255753140626
1125 => 0.17983830623328
1126 => 0.18155676267814
1127 => 0.18794902733994
1128 => 0.18808408581944
1129 => 0.18582168227471
1130 => 0.18568401481341
1201 => 0.18611853416216
1202 => 0.18866352755974
1203 => 0.18777422866688
1204 => 0.18880334785999
1205 => 0.19009027716942
1206 => 0.19541356243992
1207 => 0.19669698849674
1208 => 0.19357892855878
1209 => 0.19386045445974
1210 => 0.19269421445029
1211 => 0.1915676412141
1212 => 0.19410001332624
1213 => 0.19872797313508
1214 => 0.1986991828373
1215 => 0.19977277955827
1216 => 0.20044162142128
1217 => 0.19757046252308
1218 => 0.1957014436558
1219 => 0.19641814441827
1220 => 0.19756416454519
1221 => 0.19604650553679
1222 => 0.18667881108891
1223 => 0.18952037117376
1224 => 0.18904739663045
1225 => 0.18837382336511
1226 => 0.19123103400356
1227 => 0.19095544906727
1228 => 0.18270061029513
1229 => 0.18322905829056
1230 => 0.182732746968
1231 => 0.18433643038693
]
'min_raw' => 0.15203435432084
'max_raw' => 0.34057572167119
'avg_raw' => 0.24630503799601
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.152034'
'max' => '$0.340575'
'avg' => '$0.246305'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.037074365357506
'max_diff' => -0.24748931499157
'year' => 2034
]
9 => [
'items' => [
101 => 0.17975170206581
102 => 0.18116193361877
103 => 0.18204641762869
104 => 0.18256738550546
105 => 0.18444947870735
106 => 0.18422863679315
107 => 0.18443575086389
108 => 0.18722639822812
109 => 0.20134053496188
110 => 0.20210873628322
111 => 0.19832583202055
112 => 0.199837027659
113 => 0.19693586249533
114 => 0.19888343410582
115 => 0.20021591313876
116 => 0.19419469660989
117 => 0.19383815924442
118 => 0.19092501994012
119 => 0.19249037599361
120 => 0.18999978195943
121 => 0.19061088661814
122 => 0.18890218471725
123 => 0.19197750793969
124 => 0.1954161971593
125 => 0.19628494585413
126 => 0.19399964205787
127 => 0.19234493150052
128 => 0.18943980485736
129 => 0.19427109520991
130 => 0.1956839117399
131 => 0.19426367428613
201 => 0.19393457423529
202 => 0.19331093023362
203 => 0.1940668832584
204 => 0.19567621723766
205 => 0.19491728505277
206 => 0.19541857313156
207 => 0.19350817990126
208 => 0.19757141299615
209 => 0.20402480502112
210 => 0.20404555373171
211 => 0.2032866174559
212 => 0.20297607708335
213 => 0.20375479175843
214 => 0.20417721252512
215 => 0.20669543299251
216 => 0.20939758388435
217 => 0.22200734305575
218 => 0.21846657313918
219 => 0.22965470163398
220 => 0.2385030586767
221 => 0.24115629406205
222 => 0.2387154423519
223 => 0.23036542050369
224 => 0.22995572859593
225 => 0.24243418652545
226 => 0.23890845061078
227 => 0.23848907554253
228 => 0.2340276333617
301 => 0.23666489825093
302 => 0.23608808973332
303 => 0.23517756926982
304 => 0.24020928696502
305 => 0.2496282133059
306 => 0.24816018530554
307 => 0.24706437050313
308 => 0.24226282902587
309 => 0.2451544294583
310 => 0.24412478592927
311 => 0.2485487879579
312 => 0.24592810715978
313 => 0.23888173969357
314 => 0.2400038969377
315 => 0.23983428512771
316 => 0.24332488415833
317 => 0.24227709297133
318 => 0.23962968708201
319 => 0.24959602043963
320 => 0.24894886218705
321 => 0.24986638462824
322 => 0.25027030638218
323 => 0.25633663787047
324 => 0.25882181978027
325 => 0.25938599958302
326 => 0.26174673018646
327 => 0.25932726245503
328 => 0.26900685843201
329 => 0.27544322493662
330 => 0.28291939584412
331 => 0.29384409094526
401 => 0.29795187736238
402 => 0.29720984251349
403 => 0.30549282165736
404 => 0.32037715105861
405 => 0.30021839104475
406 => 0.32144561428864
407 => 0.3147253204897
408 => 0.29879162478534
409 => 0.29776568262792
410 => 0.30855616635292
411 => 0.3324884207094
412 => 0.32649366243048
413 => 0.33249822598638
414 => 0.32549358364726
415 => 0.32514574411536
416 => 0.33215802614263
417 => 0.34854260531894
418 => 0.34075890591904
419 => 0.32959906418789
420 => 0.3378393176558
421 => 0.33070084750244
422 => 0.31461587631492
423 => 0.32648907835181
424 => 0.31854980627907
425 => 0.32086690794481
426 => 0.33755407696411
427 => 0.33554623263894
428 => 0.33814456911709
429 => 0.33355857324345
430 => 0.3292745299523
501 => 0.32127804501214
502 => 0.3189106800433
503 => 0.31956493455182
504 => 0.31891035582726
505 => 0.31443639599473
506 => 0.31347024479486
507 => 0.31185995046703
508 => 0.31235904801316
509 => 0.30933122356861
510 => 0.31504535387592
511 => 0.3161059468137
512 => 0.32026421433244
513 => 0.32069593946076
514 => 0.3322766553112
515 => 0.3258981916268
516 => 0.33017741575636
517 => 0.32979464167259
518 => 0.29913695628645
519 => 0.30336131483761
520 => 0.30993309106648
521 => 0.30697251478321
522 => 0.30278695258682
523 => 0.29940688669759
524 => 0.29428574124592
525 => 0.30149365512625
526 => 0.31097129540271
527 => 0.32093630805866
528 => 0.33290861783129
529 => 0.33023653766308
530 => 0.32071249405522
531 => 0.32113973569415
601 => 0.32378077539263
602 => 0.32036038901934
603 => 0.31935165030398
604 => 0.32364219018338
605 => 0.32367173677349
606 => 0.31973616888352
607 => 0.31536250537513
608 => 0.31534417956534
609 => 0.3145659283886
610 => 0.3256320328027
611 => 0.33171727132111
612 => 0.33241493411039
613 => 0.33167031305671
614 => 0.33195688814732
615 => 0.32841602193254
616 => 0.33650939208827
617 => 0.34393666889452
618 => 0.34194600004982
619 => 0.33896170446136
620 => 0.336584569282
621 => 0.341386022548
622 => 0.34117222139226
623 => 0.34387179811103
624 => 0.34374932971755
625 => 0.34284156360325
626 => 0.341946032469
627 => 0.34549671219003
628 => 0.34447417345255
629 => 0.34345004642997
630 => 0.34139600290019
701 => 0.34167518152994
702 => 0.33869140122219
703 => 0.33731096792333
704 => 0.31655256323107
705 => 0.31100523919686
706 => 0.31275054026422
707 => 0.31332513869231
708 => 0.31091093616353
709 => 0.31437228243206
710 => 0.31383283528258
711 => 0.31593150857517
712 => 0.31462034861576
713 => 0.31467415907784
714 => 0.31853000094968
715 => 0.319649368249
716 => 0.31908004900616
717 => 0.31947878068872
718 => 0.32866738401919
719 => 0.32736105846059
720 => 0.32666709904362
721 => 0.32685933054472
722 => 0.32920721570153
723 => 0.32986449535566
724 => 0.32707955527489
725 => 0.32839294911653
726 => 0.33398521339973
727 => 0.3359421894041
728 => 0.34218791740829
729 => 0.33953462114315
730 => 0.34440486126979
731 => 0.35937431903188
801 => 0.37133295769992
802 => 0.36033529936915
803 => 0.38229581635956
804 => 0.39939522888565
805 => 0.39873892495234
806 => 0.39575724686188
807 => 0.37629002031232
808 => 0.35837598820142
809 => 0.37336183673217
810 => 0.37340003874194
811 => 0.37211274106286
812 => 0.36411744573665
813 => 0.37183452211631
814 => 0.37244707561502
815 => 0.37210420854687
816 => 0.36597423436622
817 => 0.35661489680098
818 => 0.35844368895814
819 => 0.36143928781792
820 => 0.35576799422897
821 => 0.35395567229151
822 => 0.35732512358161
823 => 0.36818219769138
824 => 0.36612973072167
825 => 0.36607613251443
826 => 0.37485745659227
827 => 0.36857192368088
828 => 0.35846675588385
829 => 0.35591506774431
830 => 0.34685829387204
831 => 0.35311383984474
901 => 0.35333896580776
902 => 0.34991286720865
903 => 0.35874476490286
904 => 0.35866337741078
905 => 0.36704794981694
906 => 0.38307610315594
907 => 0.37833578951607
908 => 0.37282332049757
909 => 0.37342267872406
910 => 0.37999615912659
911 => 0.37602168281726
912 => 0.37745093220913
913 => 0.37999399578646
914 => 0.38152828918338
915 => 0.37320191751568
916 => 0.37126064198355
917 => 0.36728947353992
918 => 0.36625346981835
919 => 0.36948790365453
920 => 0.36863574461293
921 => 0.3533200448423
922 => 0.35171946900052
923 => 0.35176855637649
924 => 0.3477438323191
925 => 0.34160516208713
926 => 0.3577372209358
927 => 0.35644159084223
928 => 0.35501131549274
929 => 0.35518651606201
930 => 0.36218889604201
1001 => 0.35812716202495
1002 => 0.36892594761443
1003 => 0.36670604193844
1004 => 0.36442920405833
1005 => 0.36411447570913
1006 => 0.36323808737596
1007 => 0.36023262569182
1008 => 0.35660335010796
1009 => 0.35420698800503
1010 => 0.3267372231241
1011 => 0.33183545170173
1012 => 0.33770049896213
1013 => 0.33972508977372
1014 => 0.33626188709308
1015 => 0.36036937404212
1016 => 0.36477404421323
1017 => 0.3514320109554
1018 => 0.34893626128449
1019 => 0.36053299497504
1020 => 0.3535387469166
1021 => 0.35668825638906
1022 => 0.34988073959919
1023 => 0.36371308815281
1024 => 0.36360770883235
1025 => 0.35822661282723
1026 => 0.3627746783226
1027 => 0.36198434002039
1028 => 0.35590909588366
1029 => 0.36390568422816
1030 => 0.36390965043621
1031 => 0.3587304625264
1101 => 0.35268230491776
1102 => 0.35160103718844
1103 => 0.35078644720228
1104 => 0.35648791718773
1105 => 0.36159983734866
1106 => 0.37111185341565
1107 => 0.37350340025482
1108 => 0.38283776678239
1109 => 0.37727960599728
1110 => 0.37974346668309
1111 => 0.38241833599191
1112 => 0.38370076670362
1113 => 0.38161111467791
1114 => 0.39611122807378
1115 => 0.39733548191638
1116 => 0.39774596364005
1117 => 0.39285660698694
1118 => 0.39719950006308
1119 => 0.39516760421425
1120 => 0.40045403273597
1121 => 0.40128301222868
1122 => 0.40058089609016
1123 => 0.40084402726569
1124 => 0.38847073847761
1125 => 0.38782911817965
1126 => 0.37908057988967
1127 => 0.38264567390877
1128 => 0.37598090151946
1129 => 0.37809436949887
1130 => 0.37902596604634
1201 => 0.37853935287758
1202 => 0.38284723897558
1203 => 0.37918465574929
1204 => 0.36951849643069
1205 => 0.35984970357344
1206 => 0.35972831975515
1207 => 0.3571826972642
1208 => 0.35534267845727
1209 => 0.35569713135766
1210 => 0.35694626961065
1211 => 0.35527007627119
1212 => 0.35562777710532
1213 => 0.36156799430011
1214 => 0.36275926249484
1215 => 0.35871086771064
1216 => 0.34245597847148
1217 => 0.33846698787989
1218 => 0.341334195212
1219 => 0.33996385477905
1220 => 0.27437736389768
1221 => 0.28978593707208
1222 => 0.28063068611755
1223 => 0.28484984697024
1224 => 0.27550470648641
1225 => 0.27996469734607
1226 => 0.27914109988708
1227 => 0.3039176295787
1228 => 0.30353077814657
1229 => 0.30371594345541
1230 => 0.29487752081885
1231 => 0.30895736806822
]
'min_raw' => 0.17975170206581
'max_raw' => 0.40128301222868
'avg_raw' => 0.29051735714725
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.179751'
'max' => '$0.401283'
'avg' => '$0.290517'
'bar_min_pct' => 61.631153054958
'bar_max_pct' => 60.119598047091
'min_diff' => 0.027717347744977
'max_diff' => 0.06070729055749
'year' => 2035
]
10 => [
'items' => [
101 => 0.31589360711818
102 => 0.31460989387206
103 => 0.31493297683959
104 => 0.30938134103229
105 => 0.3037696954253
106 => 0.29754551682109
107 => 0.30910927133599
108 => 0.30782357923381
109 => 0.3107724943388
110 => 0.31827241573596
111 => 0.31937680765112
112 => 0.32086112158474
113 => 0.3203291007002
114 => 0.33300399659386
115 => 0.33146898306948
116 => 0.33516792400971
117 => 0.32755892185635
118 => 0.31894861366671
119 => 0.32058515176137
120 => 0.32042753998265
121 => 0.3184209611411
122 => 0.31660951148316
123 => 0.31359395817546
124 => 0.32313561505894
125 => 0.32274824121458
126 => 0.3290193734819
127 => 0.32791088993913
128 => 0.32050816554852
129 => 0.32077255529835
130 => 0.32255070342731
131 => 0.32870489440419
201 => 0.3305318772954
202 => 0.32968554602751
203 => 0.33168874936278
204 => 0.3332719996018
205 => 0.33188758121666
206 => 0.35148802607038
207 => 0.34334855482887
208 => 0.3473156764779
209 => 0.34826181161556
210 => 0.34583830635553
211 => 0.34636387786721
212 => 0.34715997549775
213 => 0.35199372441847
214 => 0.36467888024295
215 => 0.37029704940684
216 => 0.38719958853199
217 => 0.36983053866647
218 => 0.36879993112773
219 => 0.37184458883195
220 => 0.38176816861388
221 => 0.38981029795268
222 => 0.39247833621594
223 => 0.39283096151694
224 => 0.39783637866663
225 => 0.40070539043133
226 => 0.39722858936912
227 => 0.39428236450514
228 => 0.38372935274125
229 => 0.38495089258781
301 => 0.39336609078788
302 => 0.40525305389818
303 => 0.41545330487453
304 => 0.41188153249725
305 => 0.43913163445758
306 => 0.44183337076026
307 => 0.44146007816083
308 => 0.4476150355306
309 => 0.43539869858686
310 => 0.43017597786303
311 => 0.3949193717618
312 => 0.40482503997797
313 => 0.41922351046967
314 => 0.4173178189086
315 => 0.40686126476531
316 => 0.41544537264055
317 => 0.41260719812713
318 => 0.41036861213242
319 => 0.42062400854542
320 => 0.40934777892086
321 => 0.4191110214533
322 => 0.40658956191763
323 => 0.41189784805261
324 => 0.40888460810948
325 => 0.41083454364148
326 => 0.39943526036515
327 => 0.4055860369191
328 => 0.39917936783863
329 => 0.39917633024331
330 => 0.39903490266827
331 => 0.40657232042992
401 => 0.40681811535253
402 => 0.40124795223826
403 => 0.40044520471119
404 => 0.40341338305577
405 => 0.39993842358141
406 => 0.40156433524833
407 => 0.39998767078946
408 => 0.39963273041013
409 => 0.39680450507953
410 => 0.39558602784344
411 => 0.396063824164
412 => 0.39443285900103
413 => 0.39345014349575
414 => 0.39883941581968
415 => 0.39596014501963
416 => 0.39839812627501
417 => 0.39561973893674
418 => 0.38598863793653
419 => 0.38044968990427
420 => 0.36225743291842
421 => 0.36741673443218
422 => 0.37083735667349
423 => 0.36970684104314
424 => 0.3721356260686
425 => 0.37228473374339
426 => 0.37149511097308
427 => 0.370580828962
428 => 0.37013580704198
429 => 0.37345263583423
430 => 0.37537816658745
501 => 0.37118066187743
502 => 0.3701972452532
503 => 0.37444115426562
504 => 0.37702993631157
505 => 0.3961440484279
506 => 0.39472801326455
507 => 0.39828198364169
508 => 0.39788186111734
509 => 0.40160698826446
510 => 0.4076959967938
511 => 0.39531533994009
512 => 0.39746419387899
513 => 0.39693734451746
514 => 0.40268934769936
515 => 0.40270730482545
516 => 0.39925869158402
517 => 0.40112824076956
518 => 0.40008470970259
519 => 0.40197051138228
520 => 0.39470910125163
521 => 0.40355271496998
522 => 0.4085664740784
523 => 0.40863609012849
524 => 0.41101257215423
525 => 0.41342721552893
526 => 0.41806191321557
527 => 0.41329795632594
528 => 0.40472806164335
529 => 0.40534678035884
530 => 0.40032225424204
531 => 0.40040671743382
601 => 0.39995584629661
602 => 0.40130894451938
603 => 0.39500603022021
604 => 0.39648531160814
605 => 0.39441430900238
606 => 0.39745969192378
607 => 0.39418336332019
608 => 0.39693709045474
609 => 0.39812550779851
610 => 0.40251079338183
611 => 0.39353565307397
612 => 0.37523473442265
613 => 0.37908180940035
614 => 0.37339168332712
615 => 0.37391832615904
616 => 0.37498222849409
617 => 0.371533772939
618 => 0.37219162958558
619 => 0.3721681263169
620 => 0.37196558784489
621 => 0.37106851136934
622 => 0.36976757299862
623 => 0.37495011105986
624 => 0.37583072526485
625 => 0.37778822155752
626 => 0.38361240274208
627 => 0.38303042969809
628 => 0.38397965187866
629 => 0.38190750518812
630 => 0.37401444710095
701 => 0.37444307812973
702 => 0.36909804233248
703 => 0.3776515369749
704 => 0.37562595654296
705 => 0.37432005166131
706 => 0.37396372341523
707 => 0.37980234161842
708 => 0.38154934769394
709 => 0.38046073074489
710 => 0.37822794562237
711 => 0.38251555312129
712 => 0.38366273600836
713 => 0.3839195479503
714 => 0.39151636637119
715 => 0.3843441257099
716 => 0.38607055532301
717 => 0.39953966633346
718 => 0.38732504125725
719 => 0.39379540057877
720 => 0.3934787101601
721 => 0.39678872704397
722 => 0.39320719216347
723 => 0.39325158958075
724 => 0.39619066033365
725 => 0.3920632655254
726 => 0.39104126452719
727 => 0.38962937746788
728 => 0.39271218120904
729 => 0.39456018262864
730 => 0.40945371686315
731 => 0.41907561920633
801 => 0.41865790704965
802 => 0.42247501423731
803 => 0.42075537248857
804 => 0.41520219566334
805 => 0.42468079136624
806 => 0.42168136708456
807 => 0.42192863597804
808 => 0.42191943261747
809 => 0.42391378755057
810 => 0.42250060430053
811 => 0.4197150750544
812 => 0.42156423936318
813 => 0.42705559627194
814 => 0.44410093661214
815 => 0.45363973488723
816 => 0.44352668897871
817 => 0.45050253262733
818 => 0.4463195121854
819 => 0.44555933293702
820 => 0.44994067825915
821 => 0.45432969254627
822 => 0.45405013131041
823 => 0.45086393231634
824 => 0.44906412935139
825 => 0.46269284038019
826 => 0.47273424250716
827 => 0.47204948620052
828 => 0.47507177784337
829 => 0.48394531958276
830 => 0.48475660503256
831 => 0.48465440171307
901 => 0.48264354607685
902 => 0.49138070029427
903 => 0.49866938805805
904 => 0.48217809109627
905 => 0.48845776109239
906 => 0.49127690727197
907 => 0.49541625026659
908 => 0.50240001573295
909 => 0.50998623738172
910 => 0.51105901230154
911 => 0.51029782715892
912 => 0.50529451005297
913 => 0.5135954443035
914 => 0.5184579369066
915 => 0.52135343997558
916 => 0.52869595399274
917 => 0.49129431735903
918 => 0.46481957996773
919 => 0.46068516742424
920 => 0.46909265790918
921 => 0.47130964610157
922 => 0.47041598094108
923 => 0.44061625702936
924 => 0.46052827804504
925 => 0.48195193840762
926 => 0.48277490845275
927 => 0.49350004077788
928 => 0.49699258350097
929 => 0.50562772079792
930 => 0.5050875906089
1001 => 0.50719010912566
1002 => 0.5067067765292
1003 => 0.52270155002913
1004 => 0.54034616044639
1005 => 0.53973518369407
1006 => 0.53719856218503
1007 => 0.54096587768419
1008 => 0.55917700654617
1009 => 0.55750041762795
1010 => 0.5591290809505
1011 => 0.58060102821302
1012 => 0.60851761400318
1013 => 0.59554755712427
1014 => 0.62368884851819
1015 => 0.64140229974491
1016 => 0.67203588203647
1017 => 0.66820040665999
1018 => 0.68012583544649
1019 => 0.66133410524823
1020 => 0.61818449427777
1021 => 0.61135590317161
1022 => 0.6250269154936
1023 => 0.65863576528932
1024 => 0.62396845320979
1025 => 0.63098160529267
1026 => 0.628961817021
1027 => 0.62885419108755
1028 => 0.63296183522103
1029 => 0.62700348316511
1030 => 0.60272808500225
1031 => 0.61385335692447
1101 => 0.60955735515586
1102 => 0.61432408940628
1103 => 0.64004818820504
1104 => 0.62867495094019
1105 => 0.61669416936843
1106 => 0.63172072820768
1107 => 0.65085470129587
1108 => 0.64965733164707
1109 => 0.6473339340667
1110 => 0.66043080457808
1111 => 0.68206299763987
1112 => 0.68791009249928
1113 => 0.69222629838591
1114 => 0.69282143025478
1115 => 0.69895165837653
1116 => 0.66598787674947
1117 => 0.71830224476157
1118 => 0.727335490962
1119 => 0.72563761506602
1120 => 0.73567768804069
1121 => 0.73272364387948
1122 => 0.7284436973652
1123 => 0.74435934861483
1124 => 0.72611333878396
1125 => 0.7002154249378
1126 => 0.68600731719914
1127 => 0.70471769960476
1128 => 0.71614347723752
1129 => 0.72369518943682
1130 => 0.72598033298547
1201 => 0.66854676128132
1202 => 0.63759325154471
1203 => 0.65743409640317
1204 => 0.68164129647246
1205 => 0.66585340453083
1206 => 0.66647226000451
1207 => 0.64396287508077
1208 => 0.68363287757282
1209 => 0.67785329188697
1210 => 0.70783779264909
1211 => 0.70068175090156
1212 => 0.72513294728145
1213 => 0.7186941278258
1214 => 0.74542130739666
1215 => 0.75608350293698
1216 => 0.7739869886874
1217 => 0.7871568656857
1218 => 0.79489046935871
1219 => 0.7944261728022
1220 => 0.82507056342071
1221 => 0.80700063690644
1222 => 0.78430055044982
1223 => 0.78388997750368
1224 => 0.79564667394227
1225 => 0.82028548438541
1226 => 0.8266739694532
1227 => 0.83024426107294
1228 => 0.82477623517457
1229 => 0.80516262502662
1230 => 0.796693567608
1231 => 0.80390944990088
]
'min_raw' => 0.29754551682109
'max_raw' => 0.83024426107294
'avg_raw' => 0.56389488894701
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$0.297545'
'max' => '$0.830244'
'avg' => '$0.563894'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.11779381475527
'max_diff' => 0.42896124884425
'year' => 2036
]
11 => [
'items' => [
101 => 0.79508504592452
102 => 0.81031844287817
103 => 0.83123715057354
104 => 0.82691752015598
105 => 0.8413573970067
106 => 0.85630115042784
107 => 0.87767138898604
108 => 0.8832583606828
109 => 0.89249341244403
110 => 0.9019993142628
111 => 0.90505235373576
112 => 0.91088155339214
113 => 0.91085083063258
114 => 0.92841751614747
115 => 0.94779411426537
116 => 0.95510833148559
117 => 0.97192697067521
118 => 0.9431256404584
119 => 0.96497178027369
120 => 0.98467754523143
121 => 0.96118351987548
122 => 0.99356456042281
123 => 0.99482184285025
124 => 1.0138053147901
125 => 0.99456192918589
126 => 0.98313526824117
127 => 1.0161236102372
128 => 1.032085629806
129 => 1.0272777396086
130 => 0.99068945781196
131 => 0.96939350846106
201 => 0.9136579013279
202 => 0.97967913557617
203 => 1.0118361529127
204 => 0.99060617890562
205 => 1.001313342921
206 => 1.059728157979
207 => 1.0819687374739
208 => 1.0773428524124
209 => 1.0781245508392
210 => 1.0901251638396
211 => 1.1433424907416
212 => 1.111453434894
213 => 1.1358314232294
214 => 1.1487614203411
215 => 1.160771522255
216 => 1.1312785077861
217 => 1.0929085293004
218 => 1.0807551464519
219 => 0.98849527638767
220 => 0.98369274948652
221 => 0.98099694560545
222 => 0.96400028346431
223 => 0.95064556279895
224 => 0.94002539309687
225 => 0.91215489634748
226 => 0.92156037085339
227 => 0.87714061605961
228 => 0.90555880103722
301 => 0.83466379983386
302 => 0.89370726349235
303 => 0.86157259059991
304 => 0.88315015918793
305 => 0.88307487708385
306 => 0.84334373213896
307 => 0.82042763690258
308 => 0.83503066469497
309 => 0.8506862696782
310 => 0.85322633891495
311 => 0.8735242394288
312 => 0.87918894716031
313 => 0.86202461827393
314 => 0.83319465851311
315 => 0.83989120062418
316 => 0.82029193169044
317 => 0.78594496675905
318 => 0.81061355661325
319 => 0.8190364977908
320 => 0.82275654845918
321 => 0.78898025322473
322 => 0.77836700794302
323 => 0.7727166052088
324 => 0.8288345629429
325 => 0.8319088313467
326 => 0.81618043953511
327 => 0.88727426195082
328 => 0.87118354037106
329 => 0.88916081869815
330 => 0.83928355961743
331 => 0.84118893808295
401 => 0.81757624431561
402 => 0.83079777502455
403 => 0.8214532232693
404 => 0.82972960600098
405 => 0.83469043568555
406 => 0.8582992548422
407 => 0.89397683828375
408 => 0.85477288454493
409 => 0.83769116048997
410 => 0.84828856602241
411 => 0.87651085346505
412 => 0.91926906361298
413 => 0.89395534261623
414 => 0.90518914213973
415 => 0.90764322757866
416 => 0.88897782688055
417 => 0.91995728356077
418 => 0.93655942607235
419 => 0.95358978895991
420 => 0.96837677587525
421 => 0.94678748751692
422 => 0.96989112076325
423 => 0.95127367070698
424 => 0.9345718933699
425 => 0.93459722307192
426 => 0.92411995417434
427 => 0.90381892546443
428 => 0.90007510429666
429 => 0.91955093480388
430 => 0.93516870650266
501 => 0.93645506098385
502 => 0.94510186186638
503 => 0.95021894955953
504 => 1.0003733652958
505 => 1.020545886204
506 => 1.0452124629242
507 => 1.0548214846889
508 => 1.0837411951755
509 => 1.0603861802135
510 => 1.0553331758165
511 => 0.98518341774128
512 => 0.99667043669624
513 => 1.0150622623756
514 => 0.9854866921726
515 => 1.0042455841085
516 => 1.0079489867444
517 => 0.98448172561433
518 => 0.99701660374437
519 => 0.96372768376334
520 => 0.89470244577122
521 => 0.92003412838256
522 => 0.93868677333668
523 => 0.91206714913262
524 => 0.95978179519668
525 => 0.93190788399628
526 => 0.92307319232945
527 => 0.88860591034216
528 => 0.90487314067281
529 => 0.92687480261932
530 => 0.91328033350411
531 => 0.94149089813797
601 => 0.98144458114229
602 => 1.0099179549341
603 => 1.0121037870186
604 => 0.99379731523831
605 => 1.0231335530965
606 => 1.0233472355622
607 => 0.99025583941611
608 => 0.96998754353028
609 => 0.96538254406016
610 => 0.97688673559985
611 => 0.99085494791994
612 => 1.0128789255885
613 => 1.0261875540336
614 => 1.0608893986671
615 => 1.0702787228451
616 => 1.0805947434514
617 => 1.0943801283245
618 => 1.1109330173647
619 => 1.0747162385012
620 => 1.076155198642
621 => 1.0424306356197
622 => 1.0063911034388
623 => 1.033740615973
624 => 1.0694964654582
625 => 1.0612940340796
626 => 1.060371092989
627 => 1.0619232239009
628 => 1.0557388585077
629 => 1.027767203038
630 => 1.0137200127729
701 => 1.0318444720353
702 => 1.0414768155064
703 => 1.0564157402014
704 => 1.0545742024103
705 => 1.0930552681014
706 => 1.1080078466219
707 => 1.1041823371794
708 => 1.1048863229829
709 => 1.131957252166
710 => 1.1620656929789
711 => 1.1902662209588
712 => 1.2189530092609
713 => 1.1843699662983
714 => 1.1668108298675
715 => 1.184927376558
716 => 1.1753144818752
717 => 1.2305530260925
718 => 1.2343776230447
719 => 1.2896121728865
720 => 1.3420363378943
721 => 1.3091096591294
722 => 1.3401580341545
723 => 1.3737393831553
724 => 1.4385232537554
725 => 1.4167063252613
726 => 1.3999948999497
727 => 1.3842026837793
728 => 1.4170637786863
729 => 1.4593390523152
730 => 1.4684447413474
731 => 1.4831994362204
801 => 1.4676866786797
802 => 1.4863700864633
803 => 1.5523307258448
804 => 1.5345075788332
805 => 1.509195844863
806 => 1.5612654347275
807 => 1.5801092168841
808 => 1.7123647486243
809 => 1.8793428206498
810 => 1.8102128023941
811 => 1.767301569251
812 => 1.7773867269077
813 => 1.838361466247
814 => 1.8579446172812
815 => 1.8047108620531
816 => 1.8235139243501
817 => 1.9271206462829
818 => 1.9827023284983
819 => 1.907214938434
820 => 1.69894822312
821 => 1.5069168001606
822 => 1.5578521808171
823 => 1.5520776893596
824 => 1.6633901868746
825 => 1.5340825026715
826 => 1.5362597124455
827 => 1.6498740345271
828 => 1.6195636812383
829 => 1.5704647907672
830 => 1.5072752763972
831 => 1.3904636147615
901 => 1.2870002685166
902 => 1.4899157166884
903 => 1.4811656335855
904 => 1.4684942165627
905 => 1.4966930839563
906 => 1.6336187796316
907 => 1.6304621991611
908 => 1.610381644709
909 => 1.625612568279
910 => 1.5677947362249
911 => 1.5826957080328
912 => 1.5068863814021
913 => 1.5411553631164
914 => 1.5703594465997
915 => 1.5762225987328
916 => 1.5894325798687
917 => 1.4765547373971
918 => 1.5272335747475
919 => 1.557002643726
920 => 1.4225049070732
921 => 1.5543440559155
922 => 1.4745897852902
923 => 1.447519987971
924 => 1.4839659038867
925 => 1.4697628950095
926 => 1.4575519820056
927 => 1.4507380827393
928 => 1.4774999409988
929 => 1.4762514683237
930 => 1.4324638739582
1001 => 1.3753447421192
1002 => 1.3945157976359
1003 => 1.3875507734371
1004 => 1.3623086272345
1005 => 1.3793187860267
1006 => 1.3044146553501
1007 => 1.1755459916991
1008 => 1.2606805782609
1009 => 1.2574029892869
1010 => 1.2557502802993
1011 => 1.3197265691534
1012 => 1.3135767251642
1013 => 1.3024146981043
1014 => 1.3621036278541
1015 => 1.3403163655661
1016 => 1.4074595742133
1017 => 1.4516844339789
1018 => 1.440467579018
1019 => 1.4820612733848
1020 => 1.394957460035
1021 => 1.4238898528313
1022 => 1.4298527788881
1023 => 1.3613670757263
1024 => 1.3145829156972
1025 => 1.3114629456018
1026 => 1.2303456593657
1027 => 1.2736778589172
1028 => 1.3118084013142
1029 => 1.2935468305556
1030 => 1.2877657628024
1031 => 1.3172999841931
1101 => 1.3195950461387
1102 => 1.2672673905601
1103 => 1.2781479671563
1104 => 1.3235217803074
1105 => 1.2770046634821
1106 => 1.1866295040183
1107 => 1.164215214937
1108 => 1.1612247355962
1109 => 1.1004354059079
1110 => 1.1657130449115
1111 => 1.1372176061545
1112 => 1.2272343557601
1113 => 1.1758172711549
1114 => 1.1736007834036
1115 => 1.1702502370794
1116 => 1.1179263498411
1117 => 1.1293819557898
1118 => 1.1674621347012
1119 => 1.1810495715408
1120 => 1.1796322905598
1121 => 1.16727552105
1122 => 1.1729323868547
1123 => 1.1547096511151
1124 => 1.148274823852
1125 => 1.1279647389709
1126 => 1.098114525
1127 => 1.1022653803346
1128 => 1.0431242957247
1129 => 1.0109010939744
1130 => 1.0019821364248
1201 => 0.99005533364069
1202 => 1.0033293005353
1203 => 1.0429567564627
1204 => 0.99515763718049
1205 => 0.91320939988946
1206 => 0.91813462858365
1207 => 0.92920015514598
1208 => 0.90857961960287
1209 => 0.88906401326168
1210 => 0.90603124962415
1211 => 0.87130870117942
1212 => 0.93339620923659
1213 => 0.93171691614187
1214 => 0.95485929967985
1215 => 0.96933070703566
1216 => 0.93597879825428
1217 => 0.92759088338891
1218 => 0.9323690209057
1219 => 0.85339705118605
1220 => 0.94840560493748
1221 => 0.94922724285564
1222 => 0.94219188016952
1223 => 0.99278100198215
1224 => 1.0995398281496
1225 => 1.0593728633816
1226 => 1.0438190005704
1227 => 1.0142510959967
1228 => 1.0536485732728
1229 => 1.0506234617143
1230 => 1.0369427600077
1231 => 1.0286686289291
]
'min_raw' => 0.7727166052088
'max_raw' => 1.9827023284983
'avg_raw' => 1.3777094668535
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$0.772716'
'max' => '$1.98'
'avg' => '$1.37'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 0.47517108838771
'max_diff' => 1.1524580674253
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.024254691274017
]
1 => [
'year' => 2028
'avg' => 0.0416280914134
]
2 => [
'year' => 2029
'avg' => 0.11372044300791
]
3 => [
'year' => 2030
'avg' => 0.087735152423037
]
4 => [
'year' => 2031
'avg' => 0.086166792577163
]
5 => [
'year' => 2032
'avg' => 0.15107750507539
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.024254691274017
'min' => '$0.024254'
'max_raw' => 0.15107750507539
'max' => '$0.151077'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.15107750507539
]
1 => [
'year' => 2033
'avg' => 0.38858687817055
]
2 => [
'year' => 2034
'avg' => 0.24630503799601
]
3 => [
'year' => 2035
'avg' => 0.29051735714725
]
4 => [
'year' => 2036
'avg' => 0.56389488894701
]
5 => [
'year' => 2037
'avg' => 1.3777094668535
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.15107750507539
'min' => '$0.151077'
'max_raw' => 1.3777094668535
'max' => '$1.37'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 1.3777094668535
]
]
]
]
'prediction_2025_max_price' => '$0.041471'
'last_price' => 0.04021147
'sma_50day_nextmonth' => '$0.036221'
'sma_200day_nextmonth' => '$0.065949'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'increase'
'sma_200day_direction_label' => 'aumentar'
'sma_200day_date_nextmonth' => '4 de fev. de 2026'
'sma_50day_date_nextmonth' => '4 de fev. de 2026'
'daily_sma3' => '$0.038824'
'daily_sma3_action' => 'BUY'
'daily_sma5' => '$0.037444'
'daily_sma5_action' => 'BUY'
'daily_sma10' => '$0.035784'
'daily_sma10_action' => 'BUY'
'daily_sma21' => '$0.035129'
'daily_sma21_action' => 'BUY'
'daily_sma50' => '$0.0400089'
'daily_sma50_action' => 'BUY'
'daily_sma100' => '$0.059793'
'daily_sma100_action' => 'SELL'
'daily_sma200' => '$0.07121'
'daily_sma200_action' => 'SELL'
'daily_ema3' => '$0.038819'
'daily_ema3_action' => 'BUY'
'daily_ema5' => '$0.037838'
'daily_ema5_action' => 'BUY'
'daily_ema10' => '$0.036613'
'daily_ema10_action' => 'BUY'
'daily_ema21' => '$0.036615'
'daily_ema21_action' => 'BUY'
'daily_ema50' => '$0.042481'
'daily_ema50_action' => 'SELL'
'daily_ema100' => '$0.05387'
'daily_ema100_action' => 'SELL'
'daily_ema200' => '$0.074149'
'daily_ema200_action' => 'SELL'
'weekly_sma21' => '$0.067208'
'weekly_sma21_action' => 'SELL'
'weekly_sma50' => '$0.085649'
'weekly_sma50_action' => 'SELL'
'weekly_sma100' => '—'
'weekly_sma100_action' => '—'
'weekly_sma200' => '—'
'weekly_sma200_action' => '—'
'weekly_ema3' => '$0.038837'
'weekly_ema3_action' => 'BUY'
'weekly_ema5' => '$0.039716'
'weekly_ema5_action' => 'BUY'
'weekly_ema10' => '$0.0462063'
'weekly_ema10_action' => 'SELL'
'weekly_ema21' => '$0.0605036'
'weekly_ema21_action' => 'SELL'
'weekly_ema50' => '$0.114163'
'weekly_ema50_action' => 'SELL'
'weekly_ema100' => '$0.201493'
'weekly_ema100_action' => 'SELL'
'weekly_ema200' => '$0.100746'
'weekly_ema200_action' => 'SELL'
'rsi_14' => '59.11'
'rsi_14_action' => 'NEUTRAL'
'stoch_rsi_14' => 123.73
'stoch_rsi_14_action' => 'SELL'
'momentum_10' => 0.01
'momentum_10_action' => 'BUY'
'vwma_10' => '0.036716'
'vwma_10_action' => 'BUY'
'hma_9' => '0.039540'
'hma_9_action' => 'BUY'
'stochastic_fast_14' => 100
'stochastic_fast_14_action' => 'SELL'
'cci_20' => 254.64
'cci_20_action' => 'SELL'
'adx_14' => 24.39
'adx_14_action' => 'NEUTRAL'
'ao_5_34' => '0.000510'
'ao_5_34_action' => 'BUY'
'macd_12_26' => 0
'macd_12_26_action' => 'BUY'
'williams_percent_r_14' => -0
'williams_percent_r_14_action' => 'SELL'
'ultimate_oscillator' => 76.39
'ultimate_oscillator_action' => 'SELL'
'ichimoku_cloud' => '-0.013498'
'ichimoku_cloud_action' => 'SELL'
'sell_signals' => 13
'buy_signals' => 20
'sell_pct' => 39.39
'buy_pct' => 60.61
'overall_action' => 'bullish'
'overall_action_label' => 'Altista'
'overall_action_dir' => 1
'last_updated' => 1767703347
'last_updated_date' => '6 de janeiro de 2026'
]
Previsão de preço de Wormhole para 2026
A previsão de preço para Wormhole em 2026 sugere que o preço médio poderia variar entre $0.013893 na extremidade inferior e $0.041471 na extremidade superior. No mercado de criptomoedas, comparado ao preço médio de hoje, Wormhole poderia potencialmente ganhar 3.13% até 2026 se W atingir a meta de preço prevista.
Previsão de preço de Wormhole 2027-2032
A previsão de preço de W para 2027-2032 está atualmente dentro de uma faixa de preço entre $0.024254 na extremidade inferior e $0.151077 na extremidade superior. Considerando a volatilidade de preços no mercado, se Wormhole atingir a meta de preço superior, poderia ganhar 275.71% até 2032 em comparação com o preço de hoje.
| Previsão de Preço de Wormhole | Potencial Mínimo ($) | Preço Médio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2027 | $0.013374 | $0.024254 | $0.035134 |
| 2028 | $0.024137 | $0.041628 | $0.059119 |
| 2029 | $0.053022 | $0.11372 | $0.174418 |
| 2030 | $0.045093 | $0.087735 | $0.130377 |
| 2031 | $0.053313 | $0.086166 | $0.119019 |
| 2032 | $0.081379 | $0.151077 | $0.220775 |
Previsão de preço de Wormhole 2032-2037
A previsão de preço de Wormhole para 2032-2037 é atualmente estimada entre $0.151077 na extremidade inferior e $1.37 na extremidade superior. Comparado ao preço atual, Wormhole poderia potencialmente ganhar 3326.16% até 2037 se atingir a meta de preço superior. Por favor, note que esta informação é apenas para fins gerais e não deve ser considerada como aconselhamento de investimento a longo prazo.
| Previsão de Preço de Wormhole | Potencial Mínimo ($) | Preço Médio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2032 | $0.081379 | $0.151077 | $0.220775 |
| 2033 | $0.1891087 | $0.388586 | $0.588065 |
| 2034 | $0.152034 | $0.246305 | $0.340575 |
| 2035 | $0.179751 | $0.290517 | $0.401283 |
| 2036 | $0.297545 | $0.563894 | $0.830244 |
| 2037 | $0.772716 | $1.37 | $1.98 |
Wormhole Histograma de preços potenciais
Previsão de preço de Wormhole baseada na análise técnica
Em 6 de janeiro de 2026, o sentimento geral de previsão de preço para Wormhole é Altista, com 20 indicadores técnicos mostrando sinais de alta e 13 indicando sinais de baixa. A previsão de preço de W foi atualizada pela última vez em 6 de janeiro de 2026.
Médias Móveis Simples de 50 e 200 dias e Índice de Força Relativa de 14 dias - RSI (14) de Wormhole
De acordo com nossos indicadores técnicos, o SMA de 200 dias de Wormhole está projetado para aumentar no próximo mês, alcançando $0.065949 até 4 de fev. de 2026. O SMA de 50 dias de curto prazo para Wormhole é esperado para alcançar $0.036221 até 4 de fev. de 2026.
O oscilador de momentum Índice de Força Relativa (RSI) é uma ferramenta comumente usada para identificar se uma criptomoeda está sobrevendida (abaixo de 30) ou sobrecomprada (acima de 70). No momento, o RSI está em 59.11, sugerindo que o mercado de W está em um estado NEUTRAL.
Médias Móveis e Osciladores Populares de W para Sábado, 19 de Outubro de 2024
Médias móveis (MA) são indicadores amplamente utilizados nos mercados financeiros, projetados para suavizar movimentos de preços ao longo de um período definido. Como indicadores atrasados, eles se baseiam em dados históricos de preços. A tabela abaixo destaca dois tipos: a média móvel simples (SMA) e a média móvel exponencial (EMA).
Média Móvel Simples Diária (SMA)
| Período | Valor | Ação |
|---|---|---|
| SMA 3 | $0.038824 | BUY |
| SMA 5 | $0.037444 | BUY |
| SMA 10 | $0.035784 | BUY |
| SMA 21 | $0.035129 | BUY |
| SMA 50 | $0.0400089 | BUY |
| SMA 100 | $0.059793 | SELL |
| SMA 200 | $0.07121 | SELL |
Média Móvel Exponencial Diária (EMA)
| Período | Valor | Ação |
|---|---|---|
| EMA 3 | $0.038819 | BUY |
| EMA 5 | $0.037838 | BUY |
| EMA 10 | $0.036613 | BUY |
| EMA 21 | $0.036615 | BUY |
| EMA 50 | $0.042481 | SELL |
| EMA 100 | $0.05387 | SELL |
| EMA 200 | $0.074149 | SELL |
Média Móvel Simples Semanal (SMA)
| Período | Valor | Ação |
|---|---|---|
| SMA 21 | $0.067208 | SELL |
| SMA 50 | $0.085649 | SELL |
| SMA 100 | — | — |
| SMA 200 | — | — |
Média Móvel Exponencial Semanal (EMA)
| Período | Valor | Ação |
|---|---|---|
| EMA 21 | $0.0605036 | SELL |
| EMA 50 | $0.114163 | SELL |
| EMA 100 | $0.201493 | SELL |
| EMA 200 | $0.100746 | SELL |
Osciladores de Wormhole
Um oscilador é uma ferramenta de análise técnica que define limites altos e baixos entre dois extremos, criando um indicador de tendência que flutua dentro desses limites. Os traders usam esse indicador para identificar condições de sobrecompra ou sobrevenda de curto prazo.
| Período | Valor | Ação |
|---|---|---|
| RSI (14) | 59.11 | NEUTRAL |
| Stoch RSI (14) | 123.73 | SELL |
| Estocástico Rápido (14) | 100 | SELL |
| Índice de Canal de Commodities (20) | 254.64 | SELL |
| Índice Direcional Médio (14) | 24.39 | NEUTRAL |
| Oscilador Impressionante (5, 34) | 0.000510 | BUY |
| Momentum (10) | 0.01 | BUY |
| MACD (12, 26) | 0 | BUY |
| Williams Percent Range (14) | -0 | SELL |
| Oscilador Ultimate (7, 14, 28) | 76.39 | SELL |
| VWMA (10) | 0.036716 | BUY |
| Média Móvel de Hull (9) | 0.039540 | BUY |
| Nuvem Ichimoku B/L (9, 26, 52, 26) | -0.013498 | SELL |
Previsão do preço de Wormhole com base nos fluxos financeiros mundiais
Definições dos fluxos financeiros mundiais, usadas na previsão do preço do Wormhole
M0: o total de todas as moedas físicas, mais as contas no Banco Central que podem ser trocadas por moedas físicas.
M1: o valor de M0, mais o valor em contas de demanda, incluindo contas 'correntes'.
M2: o valor de M1, mais a maioria das contas de poupança, do mercado de moedas e de certificados de depósito (CD) de menos de US$ 100.000.
Previsões de preço de Wormhole por empresas de Internet ou nichos tecnológicos
| Comparação | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Facebook stock | $0.0565038 | $0.079397 | $0.111566 | $0.156769 | $0.220287 | $0.30954 |
| Amazon.com stock | $0.0839036 | $0.175069 | $0.365293 | $0.7622071 | $1.59 | $3.31 |
| Apple stock | $0.057036 | $0.0809024 | $0.114754 | $0.162769 | $0.230876 | $0.32748 |
| Netflix stock | $0.063447 | $0.10011 | $0.157957 | $0.249232 | $0.39325 | $0.620487 |
| Google stock | $0.052073 | $0.067435 | $0.087328 | $0.113089 | $0.14645 | $0.189652 |
| Tesla stock | $0.091156 | $0.206644 | $0.468447 | $1.06 | $2.40 | $5.45 |
| Kodak stock | $0.030154 | $0.022612 | $0.016956 | $0.012715 | $0.009535 | $0.00715 |
| Nokia stock | $0.026638 | $0.017646 | $0.01169 | $0.007744 | $0.00513 | $0.003398 |
Este cálculo mostra quanto a criptomoeda pode custar, se assumirmos que sua capitalização se comportará da mesma forma que a de algumas empresas de Internet ou nichos tecnológicos. Se você extrapolar os dados, poderá obter uma imagem em potencial do preço futuro para 2024, 2025, 2026, 2027, 2028, 2029 e 2030.
Visão geral da previsão para Wormhole
Você pode fazer perguntas como: 'Devo investir em Wormhole agora?', 'Devo comprar W hoje?', 'Wormhole será um bom ou mau investimento no curto ou no longo prazo?'.
Atualizamos a previsão para Wormhole regularmente com novos valores. Veja nossas previsões semelhantes. Fazemos previsões de preços futuros para uma enorme quantidade de moedas digitais, como Wormhole, com métodos de análise técnica.
Se você estiver tentando encontrar criptomoedas com bom retorno, você deve explorar o máximo de fontes de informações disponíveis sobre Wormhole para poder tomar sozinho uma decisão de tão grande responsabilidade sobre o seu investimento.
O preço de Wormhole é de $0.04021 USD hoje, mas o preço pode tanto subir quanto descer e seu investimento pode ser perdido, porque criptomoedas são ativos de alto risco
Previsão de curto prazo para Wormhole
com base no histórico de preços de 4 horas
Previsão de longo prazo para Wormhole
com base no histórico de preços de 1 mês
Previsão do preço de Wormhole com base no padrão de crescimento do Bitcoin
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| Se Wormhole tiver 1% da média anterior do crescimento anual do Bitcoin | $0.041256 | $0.042329 | $0.043429 | $0.044558 |
| Se Wormhole tiver 2% da média anterior do crescimento anual do Bitcoin | $0.0423019 | $0.044501 | $0.046814 | $0.049248 |
| Se Wormhole tiver 5% da média anterior do crescimento anual do Bitcoin | $0.045437 | $0.051342 | $0.058015 | $0.065555 |
| Se Wormhole tiver 10% da média anterior do crescimento anual do Bitcoin | $0.050663 | $0.063832 | $0.080425 | $0.10133 |
| Se Wormhole tiver 20% da média anterior do crescimento anual do Bitcoin | $0.061115 | $0.092887 | $0.141177 | $0.21457 |
| Se Wormhole tiver 50% da média anterior do crescimento anual do Bitcoin | $0.092472 | $0.212655 | $0.489036 | $1.12 |
| Se Wormhole tiver 100% da média anterior do crescimento anual do Bitcoin | $0.144733 | $0.520944 | $1.87 | $6.74 |
Perguntas Frequentes sobre Wormhole
W é um bom investimento?
A decisão de adquirir Wormhole depende inteiramente da sua tolerância individual ao risco. Como você pode perceber, o valor de Wormhole experimentou uma escalada de 5.3985% nas últimas 24 horas, e Wormhole registrou um declínio de -87.35% durante os últimos 30 dias. Consequentemente, a decisão de investir ou não em Wormhole dependerá de quão alinhado esse investimento está com suas aspirações de negociação.
Wormhole pode subir?
Parece que o valor médio de Wormhole pode potencialmente subir para $0.041471 até o final deste ano. Observando as perspectivas de Wormhole em um horizonte de cinco anos mais longo, a moeda digital poderia potencialmente crescer até $0.130377. No entanto, dada a imprevisibilidade do mercado, é vital conduzir uma pesquisa aprofundada antes de investir quaisquer fundos em um projeto, rede ou ativo específico.
Qual será o preço de Wormhole na próxima semana?
Com base na nossa nova previsão experimental de Wormhole, o preço de Wormhole aumentará 0.86% na próxima semana e atingirá $0.040555 até 13 de janeiro de 2026.
Qual será o preço de Wormhole no próximo mês?
Com base na nossa nova previsão experimental de Wormhole, o preço de Wormhole diminuirá -11.62% no próximo mês e atingirá $0.035539 até 5 de fevereiro de 2026.
Até onde o preço de Wormhole pode subir este ano em 2026?
De acordo com nossa previsão mais recente sobre o valor de Wormhole em 2026, espera-se que W fluctue dentro do intervalo de $0.013893 e $0.041471. No entanto, é crucial lembrar que o mercado de criptomoedas é excepcionalmente instável, e essa previsão de preço de Wormhole não considera flutuações repentinas e extremas de preço.
Onde estará Wormhole em 5 anos?
O futuro de Wormhole parece seguir uma tendência de alta, com um preço máximo de $0.130377 projetada após um período de cinco anos. Com base na previsão de Wormhole para 2030, o valor de Wormhole pode potencialmente atingir seu pico mais alto de aproximadamente $0.130377, enquanto seu pico mais baixo está previsto para cerca de $0.045093.
Quanto será Wormhole em 2026?
Com base na nossa nova simulação experimental de previsão de preços de Wormhole, espera-se que o valor de W em 2026 aumente 3.13% para $0.041471 se o melhor cenário ocorrer. O preço ficará entre $0.041471 e $0.013893 durante 2026.
Quanto será Wormhole em 2027?
De acordo com nossa última simulação experimental para previsão de preços de Wormhole, o valor de W pode diminuir -12.62% para $0.035134 em 2027, assumindo as condições mais favoráveis. O preço está projetado para flutuar entre $0.035134 e $0.013374 ao longo do ano.
Quanto será Wormhole em 2028?
Nosso novo modelo experimental de previsão de preços de Wormhole sugere que o valor de W em 2028 pode aumentar 47.02%, alcançando $0.059119 no melhor cenário. O preço é esperado para variar entre $0.059119 e $0.024137 durante o ano.
Quanto será Wormhole em 2029?
Com base no nosso modelo de previsão experimental, o valor de Wormhole pode experimentar um 333.75% crescimento em 2029, potencialmente alcançando $0.174418 sob condições ótimas. A faixa de preço prevista para 2029 está entre $0.174418 e $0.053022.
Quanto será Wormhole em 2030?
Usando nossa nova simulação experimental para previsões de preços de Wormhole, espera-se que o valor de W em 2030 aumente 224.23%, alcançando $0.130377 no melhor cenário. O preço está previsto para variar entre $0.130377 e $0.045093 ao longo de 2030.
Quanto será Wormhole em 2031?
Nossa simulação experimental indica que o preço de Wormhole poderia aumentar 195.98% em 2031, potencialmente atingindo $0.119019 sob condições ideais. O preço provavelmente oscilará entre $0.119019 e $0.053313 durante o ano.
Quanto será Wormhole em 2032?
Com base nos achados da nossa mais recente previsão experimental de preços de Wormhole, W poderia ver um 449.04% aumento em valor, atingindo $0.220775 se o cenário mais positivo se desenrolar em 2032. O preço é esperado para permanecer dentro de uma faixa de $0.220775 e $0.081379 ao longo do ano.
Quanto será Wormhole em 2033?
De acordo com nossa previsão experimental de preços de Wormhole, espera-se que o valor de W seja aumentar 1362.43% em 2033, com o preço potencial mais alto sendo $0.588065. Ao longo do ano, o preço de W poderia variar entre $0.588065 e $0.1891087.
Quanto será Wormhole em 2034?
Os resultados da nossa nova simulação de previsão de preços de Wormhole sugerem que W pode aumentar 746.96% em 2034, atingindo potencialmente $0.340575 nas melhores circunstâncias. A faixa de preço prevista para o ano é entre $0.340575 e $0.152034.
Quanto será Wormhole em 2035?
Com base em nossa previsão experimental para o preço de Wormhole, W poderia aumentar 897.93%, com o valor potencialmente atingindo $0.401283 em 2035. A faixa de preço esperada para o ano está entre $0.401283 e $0.179751.
Quanto será Wormhole em 2036?
Nossa recente simulação de previsão de preços de Wormhole sugere que o valor de W pode aumentar 1964.7% em 2036, possivelmente atingindo $0.830244 se as condições forem ideais. A faixa de preço esperada para 2036 está entre $0.830244 e $0.297545.
Quanto será Wormhole em 2037?
De acordo com a simulação experimental, o valor de Wormhole poderia aumentar 4830.69% em 2037, com um pico de $1.98 sob condições favoráveis. O preço é esperado para cair entre $1.98 e $0.772716 ao longo do ano.
Previsões relacionadas
Previsão de Preço do ORDI
Previsão de Preço do ether.fi Staked ETH
Previsão de Preço do Bonk
Previsão de Preço do BitTorrent
Previsão de Preço do Flare
Previsão de Preço do Elrond
Previsão de Preço do dYdX
Previsão de Preço do NEO
Previsão de Preço do eCash
Previsão de Preço do Axie Infinity
Previsão de Preço do The Sandbox
Previsão de Preço do Starknet
Previsão de Preço do Conflux Token
Previsão de Preço do SingularityNET
Previsão de Preço do Chiliz
Previsão de Preço do Synthetix Network Token
Previsão de Preço do WhiteBIT Coin
Previsão de Preço do Tokenize Xchange
Previsão de Preço do Tezos
Previsão de Preço do EOS
Previsão de Preço do Worldcoin
Previsão de Preço do Ronin
Previsão de Preço do Pyth Network
Previsão de Preço do Decentraland
Previsão de Preço do Mina Protocol
Como ler e prever os movimentos de preço de Wormhole?
Traders de Wormhole utilizam indicadores e padrões de gráfico para prever a direção do mercado. Eles também identificam níveis-chave de suporte e resistência para avaliar quando uma tendência de baixa pode desacelerar ou uma tendência de alta pode estagnar.
Indicadores de Previsão de Preço de Wormhole
Médias móveis são ferramentas populares para a previsão de preço de Wormhole. Uma média móvel simples (SMA) calcula o preço médio de fechamento de W em um período específico, como uma SMA de 12 dias. Uma média móvel exponencial (EMA) dá mais peso aos preços recentes, reagindo mais rapidamente às mudanças de preço.
Médias móveis comumente usadas no mercado de criptomoedas incluem as de 50 dias, 100 dias e 200 dias, que ajudam a identificar níveis-chave de resistência e suporte. Um movimento de preço de W acima dessas médias é visto como altista, enquanto uma queda abaixo indica fraqueza.
Traders também usam RSI e níveis de retração de Fibonacci para avaliar a direção futura de W.
Como ler gráficos de Wormhole e prever movimentos de preço?
A maioria dos traders prefere gráficos de velas em vez de gráficos de linha simples porque eles fornecem informações mais detalhadas. Velas podem representar a ação de preço de Wormhole em diferentes períodos de tempo, como 5 minutos para tendências de curto prazo e semanal para tendências de longo prazo. Opções populares incluem gráficos de 1 hora, 4 horas e 1 dia.
Por exemplo, um gráfico de velas de 1 hora mostra os preços de abertura, fechamento, máximo e mínimo de W dentro de cada hora. A cor da vela é crucial: verde indica que o preço fechou mais alto do que abriu, enquanto vermelho significa o oposto. Alguns gráficos usam velas vazias e preenchidas para transmitir a mesma informação.
O que afeta o preço de Wormhole?
A ação de preço de Wormhole é impulsionada pela oferta e demanda, influenciada por fatores como reduções pela metade das recompensas de bloco, hard forks e atualizações de protocolo. Eventos do mundo real, como regulamentações, adoção por empresas e governos e hacks de exchanges de criptomoedas, também impactam o preço de W. A capitalização de mercado de Wormhole pode mudar rapidamente.
Traders frequentemente monitoram a atividade de "baleias" de W, grandes detentores de Wormhole, pois suas ações podem influenciar significativamente os movimentos de preço no relativamente pequeno mercado de Wormhole.
Padrões de previsão de preço altistas e baixistas
Traders frequentemente identificam padrões de velas para ganhar vantagem em previsões de preço de criptomoedas. Certas formações indicam tendências altistas, enquanto outras sugerem movimentos baixistas.
Padrões de velas altistas comumente seguidos:
- Martelo
- Engolfo de Alta
- Linha de Perfuração
- Estrela da Manhã
- Três Soldados Brancos
Padrões de velas baixistas comuns:
- Harami de Baixa
- Nuvem Negra
- Estrela da Noite
- Estrela Cadente
- Homem Enforcado


