Previsão de Preço Weirdo [OLD] - Projeção WEIRDO
Previsão de Preço Weirdo [OLD] até $0.011714 até 2026
| Ano | Preço Mínimo | Preço Máximo |
|---|---|---|
| 2026 | $0.003924 | $0.011714 |
| 2027 | $0.003778 | $0.009924 |
| 2028 | $0.006818 | $0.016699 |
| 2029 | $0.014977 | $0.049269 |
| 2030 | $0.012737 | $0.036828 |
| 2031 | $0.01506 | $0.03362 |
| 2032 | $0.022988 | $0.062364 |
| 2033 | $0.053419 | $0.166115 |
| 2034 | $0.042946 | $0.0962053 |
| 2035 | $0.050776 | $0.113353 |
Calculadora de lucro do investimento
Se você abrir um short de $10,000.00 em Weirdo [OLD] hoje e fechar em Apr 06, 2026, nossa previsão mostra que pode lucrar cerca de $3,954.51, com um retorno de 39.55% nos próximos 90 dias.
Previsão de preço de longo prazo de Weirdo [OLD] para os anos 2027, 2028, 2029, 2030, 2031, 2032 e 2037
[
'name' => 'Weirdo [OLD]'
'name_with_ticker' => 'Weirdo [OLD] <small>WEIRDO</small>'
'name_lang' => 'Weirdo [OLD]'
'name_lang_with_ticker' => 'Weirdo [OLD] <small>WEIRDO</small>'
'name_with_lang' => 'Weirdo [OLD]'
'name_with_lang_with_ticker' => 'Weirdo [OLD] <small>WEIRDO</small>'
'image' => '/uploads/coins/weirdo.jpg?1717264445'
'price_for_sd' => 0.01135
'ticker' => 'WEIRDO'
'marketcap' => '$0'
'low24h' => '$0'
'high24h' => '$0'
'volume24h' => '$16.58'
'current_supply' => '0'
'max_supply' => '1M'
'algo' => null
'proof' => null
'ico_price_and_roi' => '—'
'price' => '$0.01135'
'change_24h_pct' => '0%'
'ath_price' => '$8.82'
'ath_days' => 637
'ath_exchange' => null
'ath_pair' => null
'ath_date' => '9 de abr. de 2024'
'ath_pct' => '-99.87%'
'fdv' => '$11.36K'
'new_prediction' => true
'change_24h_pct_is_increased' => false
'change_30d_pct' => null
'change_30d_pct_is_increased' => false
'max_price' => '$0.56007'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.011456'
'next_week_prediction_price_date' => '13 de janeiro de 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.0100392'
'next_month_prediction_price_date' => '5 de fevereiro de 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.003924'
'current_year_max_price_prediction' => '$0.011714'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.012737'
'grand_prediction_max_price' => '$0.036828'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.011574124801229
107 => 0.01161733838183
108 => 0.011714700785463
109 => 0.010882749706435
110 => 0.011256271316118
111 => 0.011475680267565
112 => 0.010484382642761
113 => 0.011456085500787
114 => 0.010868267289073
115 => 0.010668752959284
116 => 0.010937372720331
117 => 0.010832691338209
118 => 0.010742692432959
119 => 0.010692471497451
120 => 0.010889716203483
121 => 0.010880514502188
122 => 0.010557783879572
123 => 0.010136794938554
124 => 0.01027809264565
125 => 0.010226757863989
126 => 0.01004071399293
127 => 0.010166085099001
128 => 0.0096140141967276
129 => 0.0086642049035146
130 => 0.0092916780160566
131 => 0.0092675209837831
201 => 0.0092553399126767
202 => 0.0097268686146689
203 => 0.0096815420099904
204 => 0.0095992737786596
205 => 0.010039203072346
206 => 0.0098786229622663
207 => 0.010373493024099
208 => 0.010699446453011
209 => 0.01061677411995
210 => 0.010923334895311
211 => 0.010281347859441
212 => 0.010494590200708
213 => 0.010538539151702
214 => 0.01003377441315
215 => 0.0096889580030794
216 => 0.0096659626797226
217 => 0.0090680985432881
218 => 0.0093874727391807
219 => 0.009668508814964
220 => 0.0095339143439443
221 => 0.0094913057553149
222 => 0.0097089837939471
223 => 0.0097258992418351
224 => 0.0093402252373689
225 => 0.0094204190756047
226 => 0.0097548407121645
227 => 0.009411992508401
228 => 0.0087458944524245
301 => 0.0085806929250162
302 => 0.0085586519959917
303 => 0.008110612351362
304 => 0.0085917324810194
305 => 0.0083817106512061
306 => 0.0090451670951385
307 => 0.0086662043325526
308 => 0.0086498680052808
309 => 0.0086251732505913
310 => 0.0082395270201739
311 => 0.0083239590355388
312 => 0.0086046239139708
313 => 0.0087047683045115
314 => 0.0086943224241193
315 => 0.0086032485029503
316 => 0.0086449416776875
317 => 0.0085106334349938
318 => 0.0084632063991144
319 => 0.0083135136280448
320 => 0.0080935066082561
321 => 0.0081240999337392
322 => 0.0076882084595694
323 => 0.0074507116499302
324 => 0.0073849756631798
325 => 0.007297070754401
326 => 0.0073949047565323
327 => 0.00768697363379
328 => 0.0073346766019484
329 => 0.0067306880516194
330 => 0.0067669887926406
331 => 0.0068485457799285
401 => 0.006696564873671
402 => 0.0065527277006889
403 => 0.0066777824527181
404 => 0.0064218645417034
405 => 0.0068794722368123
406 => 0.0068670952310904
407 => 0.0070376630815569
408 => 0.0071443226588583
409 => 0.0068985068646268
410 => 0.0068366848571342
411 => 0.0068719014822556
412 => 0.0062898491150009
413 => 0.0069900969854387
414 => 0.0069961527581006
415 => 0.0069442995560026
416 => 0.0073171599292833
417 => 0.0081040116149722
418 => 0.0078079663597803
419 => 0.0076933286889548
420 => 0.0074754023929159
421 => 0.0077657762432047
422 => 0.0077434800620402
423 => 0.0076426482752389
424 => 0.0075816648959671
425 => 0.0076940286421278
426 => 0.0075677417843432
427 => 0.0075450571945543
428 => 0.0074076132615108
429 => 0.0073585520307148
430 => 0.0073222290486172
501 => 0.0072822410143504
502 => 0.0073704446535458
503 => 0.0071705636029739
504 => 0.0069295266505652
505 => 0.0069094870360284
506 => 0.0069648181736655
507 => 0.0069403382641798
508 => 0.0069093698356399
509 => 0.0068502426718075
510 => 0.0068327009053504
511 => 0.0068897031362808
512 => 0.0068253509409969
513 => 0.0069203061105837
514 => 0.0068944835585653
515 => 0.0067502408820957
516 => 0.0065704611017359
517 => 0.0065688606845898
518 => 0.0065301274258093
519 => 0.0064807947971677
520 => 0.0064670715884573
521 => 0.0066672506903083
522 => 0.0070816154402834
523 => 0.0070002657249552
524 => 0.007059049231334
525 => 0.0073482059025431
526 => 0.007440120113076
527 => 0.0073748815835471
528 => 0.0072855790605908
529 => 0.0072895079183829
530 => 0.0075946816730369
531 => 0.0076137149857809
601 => 0.0076618060267056
602 => 0.0077236166048204
603 => 0.0073854081922766
604 => 0.0072735783325666
605 => 0.0072205871409517
606 => 0.0070573947809496
607 => 0.0072333837501563
608 => 0.0071308425143986
609 => 0.0071446788304097
610 => 0.007135667911456
611 => 0.0071405884825204
612 => 0.0068793443261354
613 => 0.0069745279661335
614 => 0.0068162667034662
615 => 0.006604372638415
616 => 0.0066036622952093
617 => 0.0066555230674405
618 => 0.0066246742508052
619 => 0.0065416608784351
620 => 0.0065534525361682
621 => 0.006450145206661
622 => 0.00656599591641
623 => 0.0065693181002318
624 => 0.0065247092665477
625 => 0.0067031932692332
626 => 0.0067763183107626
627 => 0.0067469558208178
628 => 0.0067742581601936
629 => 0.007003646172899
630 => 0.0070410464278707
701 => 0.0070576571506069
702 => 0.0070354009826394
703 => 0.0067784509519724
704 => 0.0067898477784684
705 => 0.006706225427554
706 => 0.0066355733529377
707 => 0.006638399065401
708 => 0.0066747234158806
709 => 0.00683335398482
710 => 0.0071671826653703
711 => 0.0071798512197716
712 => 0.0071952058772737
713 => 0.0071327507685799
714 => 0.0071139137101829
715 => 0.0071387646524658
716 => 0.0072641331530023
717 => 0.0075866149735981
718 => 0.0074726283603629
719 => 0.0073799554694954
720 => 0.0074612545792182
721 => 0.0074487392185199
722 => 0.007343096979212
723 => 0.0073401319534071
724 => 0.0071373707203084
725 => 0.0070624145090817
726 => 0.0069997754886055
727 => 0.0069313753134785
728 => 0.0068908253968687
729 => 0.006953128498389
730 => 0.0069673779548553
731 => 0.0068311511345093
801 => 0.0068125839222715
802 => 0.0069238296844262
803 => 0.006874874572162
804 => 0.0069252261191541
805 => 0.0069369081099639
806 => 0.0069350270403844
807 => 0.0068839122807217
808 => 0.0069164913042666
809 => 0.0068394322013085
810 => 0.0067556420007446
811 => 0.0067021890730987
812 => 0.0066555443042258
813 => 0.0066814255330064
814 => 0.0065891636781292
815 => 0.0065596472538897
816 => 0.0069054542641409
817 => 0.0071609056206652
818 => 0.0071571912567715
819 => 0.0071345810218254
820 => 0.0071009867990142
821 => 0.0072616755263582
822 => 0.0072056947868241
823 => 0.0072464254521824
824 => 0.0072567931159768
825 => 0.0072881729117417
826 => 0.0072993884915431
827 => 0.0072654872196623
828 => 0.0071517104105387
829 => 0.0068681894197772
830 => 0.0067362096332274
831 => 0.0066926541053687
901 => 0.0066942372660827
902 => 0.0066505666260516
903 => 0.0066634295867216
904 => 0.0066460934132645
905 => 0.0066132628948076
906 => 0.0066793983410056
907 => 0.0066870198350857
908 => 0.0066715830316833
909 => 0.006675218957705
910 => 0.0065474088186784
911 => 0.0065571259459596
912 => 0.0065030197464653
913 => 0.0064928754863201
914 => 0.0063560997255642
915 => 0.0061137816394215
916 => 0.0062480493815303
917 => 0.0060858728299645
918 => 0.0060244541125107
919 => 0.0063152007683665
920 => 0.0062860178681755
921 => 0.0062360694285503
922 => 0.0061621852761777
923 => 0.0061347809253639
924 => 0.0059682807649823
925 => 0.0059584430472631
926 => 0.0060409650226308
927 => 0.0060028839704064
928 => 0.0059494037506611
929 => 0.0057557038159467
930 => 0.0055379209574832
1001 => 0.005544494453046
1002 => 0.0056137671283291
1003 => 0.0058151867744077
1004 => 0.0057364886340895
1005 => 0.0056793922303316
1006 => 0.0056686997902193
1007 => 0.005802538064364
1008 => 0.005991947262264
1009 => 0.0060808138201267
1010 => 0.0059927497602023
1011 => 0.0058915865098667
1012 => 0.0058977438481693
1013 => 0.00593870586136
1014 => 0.0059430103897747
1015 => 0.0058771635135564
1016 => 0.0058956990235116
1017 => 0.0058675418889671
1018 => 0.0056947416062419
1019 => 0.005691616197083
1020 => 0.0056492082209213
1021 => 0.0056479241242571
1022 => 0.0055757775776406
1023 => 0.0055656837770434
1024 => 0.0054224324297539
1025 => 0.0055167209003449
1026 => 0.0054534771446393
1027 => 0.0053581538870973
1028 => 0.0053417201215675
1029 => 0.0053412261027313
1030 => 0.0054391017743367
1031 => 0.0055155771661362
1101 => 0.0054545772968468
1102 => 0.0054406888090424
1103 => 0.0055889815235463
1104 => 0.0055701099239076
1105 => 0.0055537672403292
1106 => 0.0059749877460503
1107 => 0.0056415588475261
1108 => 0.0054961648163134
1109 => 0.00531621209311
1110 => 0.0053748056071854
1111 => 0.0053871521215189
1112 => 0.0049543982611311
1113 => 0.0047788300738679
1114 => 0.0047185816881467
1115 => 0.004683907890377
1116 => 0.0046997091754268
1117 => 0.0045416772147954
1118 => 0.0046478773059471
1119 => 0.0045110349861494
1120 => 0.0044880929259119
1121 => 0.0047327839452206
1122 => 0.0047668312710932
1123 => 0.0046215748012457
1124 => 0.0047148529697742
1125 => 0.0046810290092022
1126 => 0.0045133807549611
1127 => 0.0045069778247861
1128 => 0.004422857823929
1129 => 0.0042912263114295
1130 => 0.0042310671780722
1201 => 0.0041997357790942
1202 => 0.0042126637249493
1203 => 0.0042061269599233
1204 => 0.0041634701464902
1205 => 0.004208571998537
1206 => 0.0040933554039295
1207 => 0.0040474752275936
1208 => 0.0040267522163547
1209 => 0.0039244908570209
1210 => 0.0040872341555539
1211 => 0.004119296635551
1212 => 0.0041514222885383
1213 => 0.0044310541646777
1214 => 0.0044170845463772
1215 => 0.0045433630923332
1216 => 0.0045384561402487
1217 => 0.0045024394533652
1218 => 0.0043504909758613
1219 => 0.0044110549307732
1220 => 0.0042246484912828
1221 => 0.0043643168701548
1222 => 0.0043005780547286
1223 => 0.0043427667125437
1224 => 0.0042669077017942
1225 => 0.0043088912104847
1226 => 0.0041268998389979
1227 => 0.0039569588569912
1228 => 0.0040253480690372
1229 => 0.0040996949637863
1230 => 0.0042608979748388
1231 => 0.0041648867913519
]
'min_raw' => 0.0039244908570209
'max_raw' => 0.011714700785463
'avg_raw' => 0.0078195958212417
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.003924'
'max' => '$0.011714'
'avg' => '$0.007819'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.0074343891429791
'max_diff' => 0.00035582078546263
'year' => 2026
]
1 => [
'items' => [
101 => 0.0041994160435186
102 => 0.0040837488288872
103 => 0.0038450943263962
104 => 0.0038464450849625
105 => 0.0038097332891253
106 => 0.0037780089375119
107 => 0.0041759148307328
108 => 0.0041264289429495
109 => 0.0040475796573196
110 => 0.0041531225594813
111 => 0.0041810297780039
112 => 0.0041818242572823
113 => 0.0042588256342428
114 => 0.0042999212829299
115 => 0.0043071645691298
116 => 0.004428327899502
117 => 0.0044689402496598
118 => 0.0046362167722849
119 => 0.0042964346042581
120 => 0.0042894370141075
121 => 0.0041546077645561
122 => 0.0040690969229246
123 => 0.0041604627650404
124 => 0.0042414004284738
125 => 0.0041571227233719
126 => 0.0041681276124587
127 => 0.0040549916791009
128 => 0.0040954324517359
129 => 0.0041302654930895
130 => 0.0041110327350456
131 => 0.0040822403653778
201 => 0.0042347644630732
202 => 0.0042261584557345
203 => 0.0043681924020223
204 => 0.0044789180200985
205 => 0.004677358122263
206 => 0.0044702755307379
207 => 0.004462728618024
208 => 0.0045365009003655
209 => 0.0044689289555078
210 => 0.0045116320921536
211 => 0.0046704779867614
212 => 0.0046738341502084
213 => 0.0046176140882991
214 => 0.0046141930924227
215 => 0.0046249907702924
216 => 0.004688233106835
217 => 0.0046661342912063
218 => 0.0046917076001254
219 => 0.0047236874145211
220 => 0.004855969486022
221 => 0.004887862245622
222 => 0.0048103793742939
223 => 0.0048173752100359
224 => 0.0047883944892068
225 => 0.0047603994760133
226 => 0.004823328177329
227 => 0.0049383316158502
228 => 0.0049376161854279
301 => 0.0049642947478174
302 => 0.0049809152711689
303 => 0.0049095678179775
304 => 0.0048631232494684
305 => 0.0048809330523795
306 => 0.0049094113150813
307 => 0.0048716979356057
308 => 0.0046389134869456
309 => 0.0047095254183409
310 => 0.0046977721402097
311 => 0.0046810340429034
312 => 0.0047520348859473
313 => 0.004745186681428
314 => 0.0045400563686235
315 => 0.0045531881457055
316 => 0.0045408549554816
317 => 0.0045807060162284
318 => 0.0044667768674474
319 => 0.0045018207062879
320 => 0.0045237998734931
321 => 0.0045367457718289
322 => 0.0045835152337033
323 => 0.0045780273771634
324 => 0.0045831741008355
325 => 0.004652520866115
326 => 0.0050032530079629
327 => 0.0050223425845968
328 => 0.0049283385275667
329 => 0.0049658912942022
330 => 0.0048937981941494
331 => 0.0049421947751967
401 => 0.0049753064868093
402 => 0.0048256810290476
403 => 0.0048168211805002
404 => 0.0047444305265785
405 => 0.0047833291635798
406 => 0.0047214386351997
407 => 0.0047366244060254
408 => 0.0046941636669251
409 => 0.0047705845434568
410 => 0.004856034958023
411 => 0.0048776231072815
412 => 0.004820833980865
413 => 0.0047797149107535
414 => 0.0047075233691016
415 => 0.0048275795117622
416 => 0.0048626875865208
417 => 0.0048273951039914
418 => 0.0048192170646334
419 => 0.0048037196948274
420 => 0.0048225049048986
421 => 0.0048624963804058
422 => 0.0048436371390832
423 => 0.0048560940002338
424 => 0.004808621290987
425 => 0.0049095914369532
426 => 0.0050699563285366
427 => 0.0050704719278853
428 => 0.0050516125849044
429 => 0.0050438957480867
430 => 0.0050632465784658
501 => 0.0050737436101339
502 => 0.0051363206472444
503 => 0.0052034683012432
504 => 0.0055168171036388
505 => 0.0054288300138116
506 => 0.0057068517125007
507 => 0.0059267307795644
508 => 0.0059926628976305
509 => 0.0059320084513555
510 => 0.0057245128671378
511 => 0.0057143321438661
512 => 0.0060244181490634
513 => 0.0059368046497564
514 => 0.0059263833027977
515 => 0.0058155177783004
516 => 0.0058810530342406
517 => 0.0058667195124223
518 => 0.0058440933470122
519 => 0.0059691300501206
520 => 0.0062031875962362
521 => 0.0061667075326964
522 => 0.0061394768575253
523 => 0.006020159965656
524 => 0.0060920153849539
525 => 0.0060664290464418
526 => 0.0061763641941814
527 => 0.0061112410480222
528 => 0.0059361408913289
529 => 0.00596402616842
530 => 0.005959811364885
531 => 0.0060465517229696
601 => 0.0060205144205007
602 => 0.0059547271636942
603 => 0.0062023876129889
604 => 0.0061863059209715
605 => 0.0062091060834656
606 => 0.0062191434201139
607 => 0.006369889971333
608 => 0.0064316460100158
609 => 0.0064456657119885
610 => 0.0065043291723537
611 => 0.0064442061116534
612 => 0.0066847412214705
613 => 0.0068446830338861
614 => 0.0070304636795372
615 => 0.0073019391359636
616 => 0.0074040164188682
617 => 0.0073855770713698
618 => 0.0075914066641257
619 => 0.0079612778669732
620 => 0.0074603386164877
621 => 0.0079878288636244
622 => 0.0078208315415487
623 => 0.0074248838950607
624 => 0.007399389534543
625 => 0.0076675298777913
626 => 0.0082622393515646
627 => 0.0081132713735234
628 => 0.0082624830098104
629 => 0.008088419710239
630 => 0.0080797760002946
701 => 0.0082540291438668
702 => 0.0086611811118676
703 => 0.0084677584737337
704 => 0.0081904396927921
705 => 0.0083952075650813
706 => 0.0082178186837324
707 => 0.0078181118860319
708 => 0.0081131574605181
709 => 0.0079158688872734
710 => 0.0079734481813836
711 => 0.0083881194178836
712 => 0.0083382250776239
713 => 0.0084027929740114
714 => 0.0082888323269235
715 => 0.0081823751125988
716 => 0.0079836648164451
717 => 0.0079248364940533
718 => 0.0079410945259411
719 => 0.0079248284373801
720 => 0.007813651852924
721 => 0.007789643280096
722 => 0.0077496279402095
723 => 0.0077620303672687
724 => 0.0076867898213815
725 => 0.0078287842769607
726 => 0.007855139699167
727 => 0.0079584714225826
728 => 0.0079691996648975
729 => 0.0082569770437749
730 => 0.0080984740993916
731 => 0.0082048115589697
801 => 0.0081952997356981
802 => 0.0074334652811784
803 => 0.0075384393472889
804 => 0.0077017460514802
805 => 0.007628176602599
806 => 0.0075241666144808
807 => 0.0074401729724126
808 => 0.0073129140158884
809 => 0.0074920285534044
810 => 0.0077275451235304
811 => 0.0079751727537774
812 => 0.008272681126314
813 => 0.0082062807209431
814 => 0.0079696110416953
815 => 0.0079802278706191
816 => 0.0080458569294575
817 => 0.007960861335233
818 => 0.007935794475185
819 => 0.0080424131278147
820 => 0.0080431473518788
821 => 0.0079453496486628
822 => 0.007836665398329
823 => 0.0078362100073517
824 => 0.0078168706947701
825 => 0.0080918601309847
826 => 0.0082430765163348
827 => 0.0082604132312178
828 => 0.0082419096172915
829 => 0.0082490309239095
830 => 0.0081610414411
831 => 0.008362159306332
901 => 0.0085467249479644
902 => 0.0084972574133371
903 => 0.0084230985467064
904 => 0.0083640274374601
905 => 0.0084833421373055
906 => 0.0084780292415401
907 => 0.0085451129280962
908 => 0.0085420696245799
909 => 0.0085195119039362
910 => 0.0084972582189443
911 => 0.0085854915644945
912 => 0.0085600817779602
913 => 0.0085346325230091
914 => 0.0084835901461186
915 => 0.0084905276528621
916 => 0.0084163815908053
917 => 0.0083820782298049
918 => 0.0078662379856299
919 => 0.0077283886168202
920 => 0.0077717588344304
921 => 0.0077860374361749
922 => 0.0077260452142101
923 => 0.0078120586497702
924 => 0.0077986535469489
925 => 0.0078508049603037
926 => 0.0078182230213908
927 => 0.0078195601955288
928 => 0.0079153767306698
929 => 0.0079431926784539
930 => 0.0079290452629087
1001 => 0.0079389536278115
1002 => 0.0081672877149382
1003 => 0.0081348259094619
1004 => 0.0081175812222904
1005 => 0.0081223581184892
1006 => 0.0081807023732881
1007 => 0.0081970355791536
1008 => 0.0081278306381875
1009 => 0.0081604680884161
1010 => 0.0082994342091803
1011 => 0.0083480644866466
1012 => 0.0085032689884613
1013 => 0.0084373353575504
1014 => 0.0085583593906282
1015 => 0.0089303460081759
1016 => 0.0092275146577892
1017 => 0.008954226086591
1018 => 0.0094999384674064
1019 => 0.0099248538336628
1020 => 0.0099085448741723
1021 => 0.009834451051596
1022 => 0.0093506962040725
1023 => 0.008905537781003
1024 => 0.0092779317043257
1025 => 0.0092788810130198
1026 => 0.0092468920447465
1027 => 0.0090482113101494
1028 => 0.009239978385848
1029 => 0.0092552001599212
1030 => 0.0092466800142367
1031 => 0.0090943519608527
1101 => 0.0088617751782654
1102 => 0.0089072201248728
1103 => 0.0089816598744675
1104 => 0.0088407298987261
1105 => 0.0087956942322284
1106 => 0.0088794241046338
1107 => 0.0091492191993356
1108 => 0.0090982159994988
1109 => 0.009096884099831
1110 => 0.0093150974174556
1111 => 0.0091589037754177
1112 => 0.0089077933311844
1113 => 0.0088443846322756
1114 => 0.0086193264683672
1115 => 0.0087747749438084
1116 => 0.0087803692577
1117 => 0.0086952317163457
1118 => 0.0089147017734455
1119 => 0.0089126793182324
1120 => 0.0091210334736415
1121 => 0.0095193283645367
1122 => 0.0094015329663977
1123 => 0.009264549734465
1124 => 0.0092794436099091
1125 => 0.0094427926623141
1126 => 0.0093440280963339
1127 => 0.0093795445228714
1128 => 0.0094427389039488
1129 => 0.009480865643081
1130 => 0.0092739577588852
1201 => 0.009225717633531
1202 => 0.0091270352670395
1203 => 0.0091012908796155
1204 => 0.0091816656080477
1205 => 0.0091604897067869
1206 => 0.0087798990772796
1207 => 0.0087401252389098
1208 => 0.0087413450457487
1209 => 0.008641331838025
1210 => 0.0084887876903261
1211 => 0.0088896646025409
1212 => 0.0088574685762213
1213 => 0.0088219266549389
1214 => 0.0088262803374966
1215 => 0.0090002874181099
1216 => 0.008899354523786
1217 => 0.0091677011659222
1218 => 0.0091125371635375
1219 => 0.0090559584126444
1220 => 0.00904813750584
1221 => 0.0090263595138184
1222 => 0.0089516746759422
1223 => 0.0088614882463438
1224 => 0.0088019393537081
1225 => 0.0081193237850419
1226 => 0.0082460132639942
1227 => 0.0083917579614196
1228 => 0.0084420684469356
1229 => 0.0083560088800808
1230 => 0.0089550728321809
1231 => 0.0090645275889534
]
'min_raw' => 0.0037780089375119
'max_raw' => 0.0099248538336628
'avg_raw' => 0.0068514313855873
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.003778'
'max' => '$0.009924'
'avg' => '$0.006851'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -0.00014648191950896
'max_diff' => -0.0017898469517998
'year' => 2027
]
2 => [
'items' => [
101 => 0.0087329819911322
102 => 0.0086709633466974
103 => 0.008959138764185
104 => 0.008785333759428
105 => 0.0088635981424278
106 => 0.0086944333547108
107 => 0.0090381631432563
108 => 0.0090355444981725
109 => 0.0089018258469389
110 => 0.0090148439352957
111 => 0.0089952042612052
112 => 0.008844236233297
113 => 0.0090429490990178
114 => 0.00904304765812
115 => 0.0089143463636019
116 => 0.0087640514279408
117 => 0.0087371822432526
118 => 0.008716939921957
119 => 0.008858619772266
120 => 0.0089856494830316
121 => 0.0092220202814305
122 => 0.0092814495161796
123 => 0.0095134057758336
124 => 0.009375287116955
125 => 0.0094365133294998
126 => 0.0095029830441938
127 => 0.0095348510697609
128 => 0.0094829238322318
129 => 0.00984324738048
130 => 0.0098736697279804
131 => 0.009883870077945
201 => 0.0097623710048133
202 => 0.0098702906189664
203 => 0.0098197986054261
204 => 0.0099511647975725
205 => 0.0099717646938688
206 => 0.0099543173145684
207 => 0.0099608560468001
208 => 0.0096533834638
209 => 0.0096374393883243
210 => 0.0094200407878739
211 => 0.0095086323244868
212 => 0.0093430146930919
213 => 0.0093955337500578
214 => 0.0094186836499485
215 => 0.0094065914559909
216 => 0.0095136411570452
217 => 0.0094226270423399
218 => 0.0091824258295269
219 => 0.0089421591740541
220 => 0.0089391428219116
221 => 0.0088758848525844
222 => 0.0088301609270358
223 => 0.0088389689772398
224 => 0.008870009695011
225 => 0.00882835678409
226 => 0.0088372455444912
227 => 0.0089848581926517
228 => 0.0090144608565151
229 => 0.0089138594382
301 => 0.0085099302269494
302 => 0.0084108049853288
303 => 0.0084820542432667
304 => 0.0084480016870123
305 => 0.006818196700917
306 => 0.007201095207161
307 => 0.0069735899167555
308 => 0.0070784348215895
309 => 0.0068462108322947
310 => 0.0069570402918883
311 => 0.0069365741375452
312 => 0.0075522636047951
313 => 0.0075426504606171
314 => 0.0075472517640188
315 => 0.0073276195640231
316 => 0.0076774996222804
317 => 0.0078498631202579
318 => 0.0078179632240882
319 => 0.0078259917406979
320 => 0.0076880352255964
321 => 0.007548587484643
322 => 0.0073939184790723
323 => 0.0076812743737559
324 => 0.0076493253035958
325 => 0.0077226049756304
326 => 0.0079089758139563
327 => 0.0079364196278538
328 => 0.0079733043920396
329 => 0.0079600838297153
330 => 0.0082750512604793
331 => 0.0082369066263918
401 => 0.0083288242195825
402 => 0.0081397427565845
403 => 0.0079257791334251
404 => 0.0079664466231898
405 => 0.0079625300168982
406 => 0.0079126671235341
407 => 0.0078676531329256
408 => 0.0077927175211756
409 => 0.0080298248851363
410 => 0.0080201987591684
411 => 0.0081760345494415
412 => 0.0081484890598027
413 => 0.0079645335384695
414 => 0.0079711035459017
415 => 0.0080152900033208
416 => 0.0081682198369604
417 => 0.0082136198238417
418 => 0.0081925887410416
419 => 0.0082423677540688
420 => 0.0082817110563117
421 => 0.0082473086670904
422 => 0.0087343739502455
423 => 0.0085321104866064
424 => 0.008630692291444
425 => 0.0086542034710201
426 => 0.0085939800789229
427 => 0.0086070403762307
428 => 0.0086268231679342
429 => 0.0087469404052898
430 => 0.0090621627923136
501 => 0.0092017726417351
502 => 0.0096217957619483
503 => 0.0091901799872036
504 => 0.0091645696933339
505 => 0.0092402285407674
506 => 0.0094868265762951
507 => 0.0096866711223147
508 => 0.0097529710875379
509 => 0.0097617337224352
510 => 0.0098861168647322
511 => 0.0099574109622885
512 => 0.0098710134796559
513 => 0.0097978006593183
514 => 0.0095355614243786
515 => 0.0095659163298766
516 => 0.0097750315272464
517 => 0.010070419060355
518 => 0.010323892293597
519 => 0.010235134801749
520 => 0.01091229181152
521 => 0.0109794291631
522 => 0.010970152951922
523 => 0.0111231018302
524 => 0.010819529454316
525 => 0.010689746382188
526 => 0.0098136301020761
527 => 0.010059783040469
528 => 0.010417580792478
529 => 0.010370224918327
530 => 0.010110382626857
531 => 0.010323695179918
601 => 0.010253167378976
602 => 0.010197539176171
603 => 0.010452382757276
604 => 0.010172171771454
605 => 0.010414785473544
606 => 0.010103630891096
607 => 0.010235540238496
608 => 0.010160662113175
609 => 0.010209117436975
610 => 0.0099258486041408
611 => 0.010078693590376
612 => 0.0099194897502057
613 => 0.0099194142668565
614 => 0.0099158998332609
615 => 0.010103202445203
616 => 0.010109310376654
617 => 0.0099708934634304
618 => 0.0099509454237562
619 => 0.010024703781622
620 => 0.0099383520619057
621 => 0.0099787554880699
622 => 0.0099395758405246
623 => 0.0099307556766125
624 => 0.0098604751099338
625 => 0.0098301963094041
626 => 0.0098420694072804
627 => 0.0098015404032273
628 => 0.0097771202122872
629 => 0.0099110420426356
630 => 0.0098394930110717
701 => 0.0099000761273909
702 => 0.0098310340201463
703 => 0.0095917039962224
704 => 0.0094540627685947
705 => 0.0090019905393075
706 => 0.0091301976627395
707 => 0.0092151991182148
708 => 0.0091871061376873
709 => 0.0092474607304006
710 => 0.0092511660122136
711 => 0.0092315441188802
712 => 0.0092088244801204
713 => 0.0091977658164469
714 => 0.0092801880352756
715 => 0.00932803690751
716 => 0.0092237301514445
717 => 0.009199292537905
718 => 0.009304752427221
719 => 0.0093690828987817
720 => 0.0098440629566158
721 => 0.0098088748997661
722 => 0.0098971900171515
723 => 0.0098872470902399
724 => 0.0099798154029613
725 => 0.010131125471973
726 => 0.0098234697947115
727 => 0.0098768681823512
728 => 0.0098637761308508
729 => 0.010006711716212
730 => 0.010007157945507
731 => 0.0099214609219215
801 => 0.0099679186686829
802 => 0.0099419872289423
803 => 0.0099888488453978
804 => 0.0098084049418137
805 => 0.010028166138663
806 => 0.010152756576178
807 => 0.010154486514524
808 => 0.010213541393096
809 => 0.010273544569952
810 => 0.010388715442752
811 => 0.010270332516819
812 => 0.010057373157409
813 => 0.010072748135304
814 => 0.0099478901408013
815 => 0.0099499890262464
816 => 0.0099387850112482
817 => 0.0099724091036566
818 => 0.0098157835392506
819 => 0.009852543246158
820 => 0.0098010794412231
821 => 0.00987675631009
822 => 0.0097953405090238
823 => 0.0098637698174672
824 => 0.0098933016385238
825 => 0.010002274693997
826 => 0.0097792451001271
827 => 0.0093244726604492
828 => 0.0094200713408524
829 => 0.0092786733834218
830 => 0.009291760302722
831 => 0.0093181979624762
901 => 0.009232504857349
902 => 0.0092488524013072
903 => 0.0092482683520011
904 => 0.0092432353306102
905 => 0.0092209432443419
906 => 0.009188615308898
907 => 0.0093173998536928
908 => 0.009339282857385
909 => 0.0093879260638621
910 => 0.0095326552513358
911 => 0.0095181933925579
912 => 0.0095417812842414
913 => 0.0094902890491367
914 => 0.0092941488798252
915 => 0.0093048002346777
916 => 0.0091719776689914
917 => 0.0093845294922316
918 => 0.0093341944149414
919 => 0.0093017430631633
920 => 0.009292888411171
921 => 0.0094379763543067
922 => 0.0094813889408678
923 => 0.0094543371302332
924 => 0.0093988530773944
925 => 0.0095053988612327
926 => 0.0095339060181821
927 => 0.0095402877193195
928 => 0.0097290664201533
929 => 0.0095508383516264
930 => 0.0095937396191555
1001 => 0.0099284430617105
1002 => 0.009624913225231
1003 => 0.0097856997491373
1004 => 0.0097778300854847
1005 => 0.0098600830303959
1006 => 0.0097710829432185
1007 => 0.0097721862059647
1008 => 0.0098452212487487
1009 => 0.0097426567030979
1010 => 0.0097172602792263
1011 => 0.0096821753015404
1012 => 0.0097587820667594
1013 => 0.0098047043578823
1014 => 0.010174804298126
1015 => 0.010413905738131
1016 => 0.010403525714035
1017 => 0.01049837970368
1018 => 0.010455647112582
1019 => 0.010317652303639
1020 => 0.010553192615831
1021 => 0.010478657805628
1022 => 0.010484802364822
1023 => 0.010484573664022
1024 => 0.01053413279686
1025 => 0.010499015609216
1026 => 0.010429796027664
1027 => 0.010475747216241
1028 => 0.010612205818463
1029 => 0.011035777506822
1030 => 0.011272813835206
1031 => 0.011021507622221
1101 => 0.011194855282814
1102 => 0.011090908456545
1103 => 0.011072018226062
1104 => 0.011180893367206
1105 => 0.011289959079871
1106 => 0.011283012065478
1107 => 0.011203835958669
1108 => 0.011159111384953
1109 => 0.011497780840968
1110 => 0.011747306727077
1111 => 0.011730290734487
1112 => 0.011805393791882
1113 => 0.012025898691242
1114 => 0.012046058895782
1115 => 0.012043519173387
1116 => 0.011993550002934
1117 => 0.012210665712534
1118 => 0.012391787457269
1119 => 0.011981983583723
1120 => 0.012138031534042
1121 => 0.012208086486492
1122 => 0.012310947941056
1123 => 0.012484492456486
1124 => 0.012673007830653
1125 => 0.012699665971526
1126 => 0.012680750744867
1127 => 0.012556419788039
1128 => 0.012762695559908
1129 => 0.012883527069307
1130 => 0.012955479467974
1201 => 0.013137938779257
1202 => 0.012208519122029
1203 => 0.011550629693489
1204 => 0.011447890759184
1205 => 0.011656814422102
1206 => 0.011711905925878
1207 => 0.011689698609785
1208 => 0.010949184245273
1209 => 0.011443992104307
1210 => 0.011976363756002
1211 => 0.011996814319295
1212 => 0.0122633306995
1213 => 0.01235011935777
1214 => 0.012564699976935
1215 => 0.012551277900782
1216 => 0.012603524866825
1217 => 0.012591514194123
1218 => 0.012988979605846
1219 => 0.013427442979162
1220 => 0.013412260386772
1221 => 0.013349226089195
1222 => 0.013442842770042
1223 => 0.013895383959894
1224 => 0.013853721218957
1225 => 0.013894193022953
1226 => 0.014427764589893
1227 => 0.015121483526585
1228 => 0.014799181432249
1229 => 0.015498484237028
1230 => 0.015938658284188
1231 => 0.016699893783905
]
'min_raw' => 0.006818196700917
'max_raw' => 0.016699893783905
'avg_raw' => 0.011759045242411
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.006818'
'max' => '$0.016699'
'avg' => '$0.011759'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 0.0030401877634051
'max_diff' => 0.0067750399502417
'year' => 2028
]
3 => [
'items' => [
101 => 0.016604583350176
102 => 0.016900926744012
103 => 0.016433957781914
104 => 0.015361702654941
105 => 0.01519201417667
106 => 0.015531734807366
107 => 0.016366904828477
108 => 0.015505432331283
109 => 0.015679707095481
110 => 0.015629515951668
111 => 0.015626841478913
112 => 0.015728915226111
113 => 0.015580851931991
114 => 0.01497761543567
115 => 0.015254075167039
116 => 0.015147320788071
117 => 0.015265772730603
118 => 0.015905009011148
119 => 0.015622387414029
120 => 0.015324668519779
121 => 0.01569807408228
122 => 0.016173547679417
123 => 0.016143793396216
124 => 0.016086057650482
125 => 0.016411511026243
126 => 0.016949064654109
127 => 0.017094363239656
128 => 0.017201619685008
129 => 0.017216408536709
130 => 0.017368742900455
131 => 0.016549602633391
201 => 0.017849599274235
202 => 0.018074072782427
203 => 0.01803188106636
204 => 0.018281373923426
205 => 0.018207966795854
206 => 0.018101611385229
207 => 0.01849711063233
208 => 0.018043702660672
209 => 0.017400147127379
210 => 0.01704707983373
211 => 0.017512027327134
212 => 0.017795954536924
213 => 0.017983612361433
214 => 0.018040397505744
215 => 0.01661319016053
216 => 0.015844004558008
217 => 0.016337043710494
218 => 0.016938585504271
219 => 0.016546261038354
220 => 0.01656163941465
221 => 0.016002287827308
222 => 0.016988075708183
223 => 0.016844454705721
224 => 0.017589560720556
225 => 0.017411735190267
226 => 0.018019340220516
227 => 0.017859337452989
228 => 0.018523499995359
301 => 0.018788452414993
302 => 0.01923334876411
303 => 0.019560616329574
304 => 0.019752794103646
305 => 0.019741256470931
306 => 0.02050276055439
307 => 0.020053728201301
308 => 0.019489637737021
309 => 0.019479435120204
310 => 0.019771585564879
311 => 0.020383852749356
312 => 0.020542604722166
313 => 0.020631325417624
314 => 0.02049544658414
315 => 0.0200080541473
316 => 0.019797600564208
317 => 0.01997691311443
318 => 0.019757629274012
319 => 0.020136174702752
320 => 0.020655998429352
321 => 0.020548656885415
322 => 0.020907483573253
323 => 0.021278831445497
324 => 0.021809875581083
325 => 0.021948710182633
326 => 0.022178198499587
327 => 0.022414417360718
328 => 0.022490284492636
329 => 0.022635138387657
330 => 0.022634374936128
331 => 0.023070901898565
401 => 0.023552404656248
402 => 0.023734160800459
403 => 0.024152099031979
404 => 0.023436394456803
405 => 0.023979264598496
406 => 0.024468947055223
407 => 0.023885127443074
408 => 0.024689786765898
409 => 0.024721029864006
410 => 0.025192763551923
411 => 0.02471457108598
412 => 0.024430621926148
413 => 0.025250372511147
414 => 0.025647023997327
415 => 0.025527549341633
416 => 0.024618341312608
417 => 0.024089143241949
418 => 0.02270412981635
419 => 0.0243447380471
420 => 0.0251438304591
421 => 0.024616271856308
422 => 0.024882341729305
423 => 0.02633393268293
424 => 0.026886604534517
425 => 0.026771652652855
426 => 0.026791077628587
427 => 0.027089289327999
428 => 0.028411724231376
429 => 0.027619290583472
430 => 0.028225076415372
501 => 0.028546383036289
502 => 0.028844830532409
503 => 0.028111937807238
504 => 0.027158455140123
505 => 0.026856447154968
506 => 0.024563816550304
507 => 0.024444475170941
508 => 0.024377485238291
509 => 0.023955123188845
510 => 0.023623262312683
511 => 0.023359354222754
512 => 0.022666780585154
513 => 0.022900503857132
514 => 0.02179668603015
515 => 0.022502869558951
516 => 0.020741149654475
517 => 0.022208362340713
518 => 0.021409825181568
519 => 0.021946021407346
520 => 0.021944150669227
521 => 0.020956843416402
522 => 0.02038738519755
523 => 0.020750266138248
524 => 0.021139303312202
525 => 0.021202423284797
526 => 0.021706820135737
527 => 0.02184758645486
528 => 0.021421057936166
529 => 0.020704641925251
530 => 0.020871049024877
531 => 0.020384012962988
601 => 0.019530500998097
602 => 0.020143508192171
603 => 0.020352815800251
604 => 0.020445257963971
605 => 0.019605926973013
606 => 0.019342190952891
607 => 0.019201780108738
608 => 0.020596294834186
609 => 0.020672689498785
610 => 0.020281843593579
611 => 0.022048504146638
612 => 0.021648654453384
613 => 0.022095384526303
614 => 0.020855949324783
615 => 0.020903297418602
616 => 0.020316528931372
617 => 0.020645080076336
618 => 0.020412870716773
619 => 0.020618536390629
620 => 0.020741811547547
621 => 0.021328483751841
622 => 0.022215061194901
623 => 0.021240854488313
624 => 0.020816378675356
625 => 0.021079721082372
626 => 0.021781036615113
627 => 0.022843565546896
628 => 0.022214527033893
629 => 0.022493683644197
630 => 0.022554666944735
701 => 0.022090837233518
702 => 0.022860667609948
703 => 0.023273225962768
704 => 0.023696425465839
705 => 0.024063877736574
706 => 0.023527390277956
707 => 0.024101508761134
708 => 0.023638870609247
709 => 0.023223836360352
710 => 0.023224465795989
711 => 0.022964108748974
712 => 0.022459634163283
713 => 0.022366601309653
714 => 0.022850569962991
715 => 0.023238666990966
716 => 0.02327063252105
717 => 0.023485502976882
718 => 0.023612661099302
719 => 0.024858983562101
720 => 0.025360264766758
721 => 0.025973221935046
722 => 0.026212003296468
723 => 0.02693064958649
724 => 0.026350284341699
725 => 0.02622471867032
726 => 0.024481517838136
727 => 0.02476696687675
728 => 0.025223998329307
729 => 0.024489054118454
730 => 0.024955207059402
731 => 0.025047235524414
801 => 0.024464080995399
802 => 0.024775569025966
803 => 0.023948349166544
804 => 0.022233092327305
805 => 0.022862577181143
806 => 0.023326089915877
807 => 0.022664600092703
808 => 0.023850294997552
809 => 0.02315763651185
810 => 0.022938097025353
811 => 0.022081595217052
812 => 0.022485831100792
813 => 0.023032565921651
814 => 0.022694747367105
815 => 0.023395771591499
816 => 0.024388608849573
817 => 0.025096163804157
818 => 0.025150481087825
819 => 0.024695570654527
820 => 0.025424567527086
821 => 0.025429877473438
822 => 0.024607566023153
823 => 0.024103904838502
824 => 0.023989471957638
825 => 0.024275347729926
826 => 0.024622453693062
827 => 0.025169743053044
828 => 0.025500458551103
829 => 0.026362789172095
830 => 0.026596111113179
831 => 0.026852461187638
901 => 0.02719502394255
902 => 0.02760635836111
903 => 0.026706382070583
904 => 0.026742139806371
905 => 0.025904094345653
906 => 0.025008522582999
907 => 0.025688149916257
908 => 0.026576672247457
909 => 0.026372844242949
910 => 0.026349909428614
911 => 0.026388479424739
912 => 0.026234799765741
913 => 0.025539712363727
914 => 0.025190643821912
915 => 0.025641031297735
916 => 0.025880392196695
917 => 0.026251620076517
918 => 0.026205858404659
919 => 0.027162101556118
920 => 0.027533668729483
921 => 0.02743860594628
922 => 0.027456099786203
923 => 0.028128804405219
924 => 0.028876990293821
925 => 0.029577765110321
926 => 0.030290623352642
927 => 0.029431244918193
928 => 0.028994905548272
929 => 0.029445096399013
930 => 0.029206218796715
1001 => 0.030578880355218
1002 => 0.030673920463307
1003 => 0.032046482762756
1004 => 0.033349207826612
1005 => 0.032530989554748
1006 => 0.033302532531755
1007 => 0.03413701916621
1008 => 0.035746879274652
1009 => 0.03520473502569
1010 => 0.034789461027469
1011 => 0.03439702910574
1012 => 0.035213617638045
1013 => 0.036264145739537
1014 => 0.036490419430765
1015 => 0.036857069253757
1016 => 0.036471581796688
1017 => 0.036935858978677
1018 => 0.03857496144483
1019 => 0.038132061489718
1020 => 0.037503072353738
1021 => 0.038796986329692
1022 => 0.039265248767626
1023 => 0.042551759787993
1024 => 0.046701115710205
1025 => 0.044983255112269
1026 => 0.043916923604116
1027 => 0.044167536802253
1028 => 0.045682741120483
1029 => 0.046169376657317
1030 => 0.044846533514873
1031 => 0.045313784076287
1101 => 0.047888380608742
1102 => 0.049269569045458
1103 => 0.047393729630042
1104 => 0.042218363079781
1105 => 0.037446438763962
1106 => 0.03871216797507
1107 => 0.038568673562681
1108 => 0.041334756349345
1109 => 0.038121498472266
1110 => 0.038175601494056
1111 => 0.040998883943416
1112 => 0.040245680589242
1113 => 0.039025587618476
1114 => 0.037455346792885
1115 => 0.034552611397082
1116 => 0.031981577708254
1117 => 0.037023966845742
1118 => 0.036806529857143
1119 => 0.036491648875297
1120 => 0.037192382426715
1121 => 0.040594945645714
1122 => 0.040516505550493
1123 => 0.04001750968519
1124 => 0.040395993651075
1125 => 0.038959237549313
1126 => 0.039329522311066
1127 => 0.03744568286677
1128 => 0.038297256971676
1129 => 0.039022969846933
1130 => 0.039168667451003
1201 => 0.039496931592478
1202 => 0.036691950444565
1203 => 0.037951304630058
1204 => 0.038691057228506
1205 => 0.03534882807629
1206 => 0.038624992104252
1207 => 0.0366431219633
1208 => 0.03597044547077
1209 => 0.036876115749573
1210 => 0.03652317516113
1211 => 0.036219737568554
1212 => 0.036050414178177
1213 => 0.036715438475748
1214 => 0.036684414297391
1215 => 0.03559630547091
1216 => 0.034176911863756
1217 => 0.034653306948324
1218 => 0.034480228147872
1219 => 0.033852968247427
1220 => 0.034275665684678
1221 => 0.032414320093304
1222 => 0.029211971747669
1223 => 0.031327541155378
1224 => 0.031246094034478
1225 => 0.031205024702787
1226 => 0.032794816642636
1227 => 0.03264199483036
1228 => 0.032364621744644
1229 => 0.03384787407319
1230 => 0.033306467020711
1231 => 0.034974955984905
]
'min_raw' => 0.01497761543567
'max_raw' => 0.049269569045458
'avg_raw' => 0.032123592240564
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.014977'
'max' => '$0.049269'
'avg' => '$0.032123'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072435
'min_diff' => 0.0081594187347534
'max_diff' => 0.032569675261553
'year' => 2029
]
4 => [
'items' => [
101 => 0.036073930727823
102 => 0.03579519518491
103 => 0.036828786242431
104 => 0.034664282128889
105 => 0.035383243570576
106 => 0.03553142052727
107 => 0.033829570969695
108 => 0.032666998368828
109 => 0.032589468030648
110 => 0.030573727353118
111 => 0.031650519752565
112 => 0.03259805250338
113 => 0.032144257847251
114 => 0.032000600015851
115 => 0.032734516720894
116 => 0.032791548334448
117 => 0.031491221501491
118 => 0.031761600626058
119 => 0.032889126522292
120 => 0.031733189866406
121 => 0.0294873937652
122 => 0.028930405281541
123 => 0.028856092750486
124 => 0.027345495807488
125 => 0.028967625915363
126 => 0.028259522652892
127 => 0.030496412374659
128 => 0.029218712962266
129 => 0.029163633894303
130 => 0.029080373804735
131 => 0.027780140613922
201 => 0.02806480904858
202 => 0.02901109028161
203 => 0.029348734086176
204 => 0.029313515071125
205 => 0.029006452987326
206 => 0.029147024436877
207 => 0.028694194819533
208 => 0.028534291256816
209 => 0.028029591627939
210 => 0.027287822600322
211 => 0.027390970133146
212 => 0.025921331595012
213 => 0.025120594519815
214 => 0.024898961050946
215 => 0.024602583513674
216 => 0.024932437682412
217 => 0.025917168293683
218 => 0.024729374254236
219 => 0.022692984687668
220 => 0.022815375170458
221 => 0.023090350247226
222 => 0.022577936010811
223 => 0.022092978939711
224 => 0.022514609767222
225 => 0.021651764662617
226 => 0.023194620955826
227 => 0.0231528910169
228 => 0.023727972433415
301 => 0.02408758264502
302 => 0.023258797532458
303 => 0.023050360317922
304 => 0.023169095628265
305 => 0.021206665434467
306 => 0.023567600019393
307 => 0.023588017479724
308 => 0.023413190788575
309 => 0.024670315569371
310 => 0.027323240963902
311 => 0.026325103716802
312 => 0.025938594805868
313 => 0.025203841083644
314 => 0.026182856793148
315 => 0.026107683661682
316 => 0.025767722252631
317 => 0.025562112531692
318 => 0.025940954746859
319 => 0.025515169788772
320 => 0.025438687110511
321 => 0.024975285294226
322 => 0.024809871929251
323 => 0.02468740645912
324 => 0.024552584009714
325 => 0.024849968737443
326 => 0.02417605582019
327 => 0.023363382906482
328 => 0.02329581794695
329 => 0.02348237074059
330 => 0.023399835016626
331 => 0.023295422797657
401 => 0.023096071436669
402 => 0.023036928146332
403 => 0.023229115147683
404 => 0.023012147228356
405 => 0.023332295212176
406 => 0.023245232675173
407 => 0.022758908420754
408 => 0.022152768339448
409 => 0.022147372421302
410 => 0.022016780535054
411 => 0.021850452133295
412 => 0.021804183377003
413 => 0.022479101194953
414 => 0.023876160879517
415 => 0.023601884634632
416 => 0.023800077330521
417 => 0.024774989235777
418 => 0.025084884413834
419 => 0.024864928156719
420 => 0.024563838465668
421 => 0.024577084884018
422 => 0.025605999504385
423 => 0.025670171647165
424 => 0.025832313949252
425 => 0.026040712628843
426 => 0.024900419352994
427 => 0.024523377173271
428 => 0.024344713671014
429 => 0.02379449923554
430 => 0.024387858332378
501 => 0.024042133396821
502 => 0.024088783502273
503 => 0.024058402559898
504 => 0.024074992608785
505 => 0.023194189696049
506 => 0.023515107983812
507 => 0.02298151908728
508 => 0.022267103452989
509 => 0.022264708481276
510 => 0.022439560695657
511 => 0.022335551756576
512 => 0.022055666375822
513 => 0.022095422773136
514 => 0.021747114899015
515 => 0.022137713655372
516 => 0.022148914630075
517 => 0.021998512832819
518 => 0.022600284109229
519 => 0.022846830292172
520 => 0.0227478326073
521 => 0.022839884350694
522 => 0.02361328205089
523 => 0.023739379621729
524 => 0.023795383833158
525 => 0.02372034560898
526 => 0.022854020640907
527 => 0.02289244583714
528 => 0.022610507242706
529 => 0.022372298840366
530 => 0.022381825927222
531 => 0.022504296010949
601 => 0.023039130049361
602 => 0.02416465675301
603 => 0.024207369668664
604 => 0.024259138968461
605 => 0.024048567209023
606 => 0.023985056751476
607 => 0.02406884343842
608 => 0.024491532090928
609 => 0.025578802064029
610 => 0.025194488239215
611 => 0.024882035117441
612 => 0.025156140741994
613 => 0.025113944329605
614 => 0.024757764144073
615 => 0.02474776735256
616 => 0.02406414369883
617 => 0.023811423599404
618 => 0.023600231768552
619 => 0.023369615802563
620 => 0.023232898927608
621 => 0.023442958184248
622 => 0.023491001221589
623 => 0.02303170298574
624 => 0.022969102333359
625 => 0.023344175187395
626 => 0.023179119608459
627 => 0.023348883364576
628 => 0.023388270012201
629 => 0.023381927854782
630 => 0.023209590873861
701 => 0.023319433326337
702 => 0.023059623180619
703 => 0.022777118669373
704 => 0.022596898391851
705 => 0.022439632296962
706 => 0.022526892666765
707 => 0.02221582538153
708 => 0.022116308696435
709 => 0.023282221174972
710 => 0.024143493258538
711 => 0.024130970021341
712 => 0.024054738035624
713 => 0.023941472767943
714 => 0.024483246031112
715 => 0.024294503059322
716 => 0.024431829341302
717 => 0.024466784643632
718 => 0.024572583815921
719 => 0.024610397926268
720 => 0.02449609742121
721 => 0.024112490965607
722 => 0.023156580150451
723 => 0.022711601085564
724 => 0.022564750582439
725 => 0.022570088319318
726 => 0.022422849707467
727 => 0.022466218077429
728 => 0.022407767958245
729 => 0.022297077573114
730 => 0.022520057847401
731 => 0.022545754246807
801 => 0.022493707986373
802 => 0.022505966764807
803 => 0.02207504595766
804 => 0.022107807930717
805 => 0.021925385101548
806 => 0.021891183020218
807 => 0.021430033993451
808 => 0.020613041647913
809 => 0.021065734714707
810 => 0.020518945148297
811 => 0.020311867654284
812 => 0.021292140303785
813 => 0.021193748118306
814 => 0.021025343466821
815 => 0.02077623788867
816 => 0.020683842206591
817 => 0.020122475291194
818 => 0.020089306739057
819 => 0.020367535340509
820 => 0.0202391424142
821 => 0.020058830119459
822 => 0.019405757265872
823 => 0.018671487153449
824 => 0.018693650152686
825 => 0.018927207813866
826 => 0.019606308213291
827 => 0.01934097193868
828 => 0.019148467427066
829 => 0.019112417118705
830 => 0.019563662204274
831 => 0.020202268539122
901 => 0.020501888343421
902 => 0.020204974216949
903 => 0.01986389525545
904 => 0.019884655151429
905 => 0.020022761438778
906 => 0.020037274456861
907 => 0.019815267116409
908 => 0.01987776088233
909 => 0.019782827137345
910 => 0.019200218919607
911 => 0.019189681384419
912 => 0.019046699931959
913 => 0.019042370510403
914 => 0.018799123391374
915 => 0.018765091437934
916 => 0.018282109519058
917 => 0.018600009680666
918 => 0.018386778942767
919 => 0.018065389924707
920 => 0.018009982336854
921 => 0.018008316717857
922 => 0.018338311378135
923 => 0.018596153500929
924 => 0.018390488182745
925 => 0.018343662176449
926 => 0.018843641416865
927 => 0.018780014501111
928 => 0.018724914002416
929 => 0.020145088346132
930 => 0.019020909535495
1001 => 0.018530703408174
1002 => 0.017923980237996
1003 => 0.01812153236157
1004 => 0.018163159496651
1005 => 0.016704099642444
1006 => 0.016112159241307
1007 => 0.01590902760244
1008 => 0.015792122472412
1009 => 0.015845397608168
1010 => 0.01531258181946
1011 => 0.015670642841431
1012 => 0.015209269406208
1013 => 0.015131918648354
1014 => 0.015956911503734
1015 => 0.016071704440022
1016 => 0.015581962110448
1017 => 0.015896455968116
1018 => 0.015782416123534
1019 => 0.015217178329533
1020 => 0.01519559040341
1021 => 0.014911973947449
1022 => 0.014468169112838
1023 => 0.014265338394547
1024 => 0.014159702395405
1025 => 0.014203289867455
1026 => 0.014181250707788
1027 => 0.014037430283095
1028 => 0.014189494326181
1029 => 0.013801033533296
1030 => 0.013646345315528
1031 => 0.013576476236302
1101 => 0.013231694923648
1102 => 0.013780395317026
1103 => 0.013888496206867
1104 => 0.013996810088855
1105 => 0.014939608482533
1106 => 0.014892508939106
1107 => 0.015318265873283
1108 => 0.015301721741737
1109 => 0.015180288967305
1110 => 0.014667984066697
1111 => 0.014872179669122
1112 => 0.014243697343898
1113 => 0.0147145990346
1114 => 0.014499699168289
1115 => 0.014641941173631
1116 => 0.014386177222581
1117 => 0.014527727553327
1118 => 0.013914130938127
1119 => 0.013341163052391
1120 => 0.013571742055587
1121 => 0.013822407801967
1122 => 0.014365915008566
1123 => 0.014042206600153
1124 => 0.014158624384588
1125 => 0.013768644294832
1126 => 0.012964003977358
1127 => 0.012968558154171
1128 => 0.01284478177137
1129 => 0.012737820904982
1130 => 0.014079388404879
1201 => 0.013912543279223
1202 => 0.01364669740764
1203 => 0.014002542671049
1204 => 0.014096633806717
1205 => 0.014099312449073
1206 => 0.01435892796756
1207 => 0.014497484816315
1208 => 0.014521906061448
1209 => 0.014930416689152
1210 => 0.015067344063173
1211 => 0.015631328538077
1212 => 0.014485729235741
1213 => 0.014462136371992
1214 => 0.014007550143652
1215 => 0.013719244370915
1216 => 0.014027290686568
1217 => 0.014300177669721
1218 => 0.014016029502888
1219 => 0.014053133254781
1220 => 0.013671687556567
1221 => 0.01380803644499
1222 => 0.013925478475879
1223 => 0.013860633889346
1224 => 0.013763558404792
1225 => 0.014277804049064
1226 => 0.01424878829447
1227 => 0.014727665660872
1228 => 0.015100984812832
1229 => 0.015770039471925
1230 => 0.015071846056554
1231 => 0.01504640111343
]
'min_raw' => 0.012737820904982
'max_raw' => 0.036828786242431
'avg_raw' => 0.024783303573706
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.012737'
'max' => '$0.036828'
'avg' => '$0.024783'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -0.0022397945306883
'max_diff' => -0.012440782803027
'year' => 2030
]
5 => [
'items' => [
101 => 0.015295129513961
102 => 0.01506730598415
103 => 0.01521128259079
104 => 0.015746842614726
105 => 0.015758158154107
106 => 0.015568608290221
107 => 0.015557074163777
108 => 0.015593479288585
109 => 0.015806705241677
110 => 0.015732197541895
111 => 0.015818419738387
112 => 0.015926241915381
113 => 0.016372240155086
114 => 0.016479768820759
115 => 0.016218529910395
116 => 0.016242116859033
117 => 0.016144406335388
118 => 0.016050019193857
119 => 0.016262187703884
120 => 0.016649929826142
121 => 0.016647517702523
122 => 0.016737466338257
123 => 0.016793503593145
124 => 0.01655295067339
125 => 0.016396359568005
126 => 0.016456406561961
127 => 0.016552423012949
128 => 0.016425269720983
129 => 0.015640420699834
130 => 0.015878493756501
131 => 0.015838866758694
201 => 0.015782433095009
202 => 0.016021817394452
203 => 0.015998728194789
204 => 0.015307117023427
205 => 0.015351391726691
206 => 0.015309809514775
207 => 0.015444170148395
208 => 0.015060050069001
209 => 0.015178202818334
210 => 0.015252307115103
211 => 0.015295955115196
212 => 0.015453641621245
213 => 0.015435138929771
214 => 0.015452491467964
215 => 0.015686298928741
216 => 0.016868816832317
217 => 0.01693317867273
218 => 0.016616237431299
219 => 0.016742849205861
220 => 0.016499782285654
221 => 0.016662954737596
222 => 0.016774593185084
223 => 0.016270120507724
224 => 0.016240248909772
225 => 0.015996178765921
226 => 0.016127328236387
227 => 0.015918659998895
228 => 0.01596985988547
301 => 0.015826700539079
302 => 0.016084358859841
303 => 0.016372460898509
304 => 0.01644524685097
305 => 0.016253778346366
306 => 0.016115142530644
307 => 0.015871743707712
308 => 0.016276521374744
309 => 0.01639489069996
310 => 0.01627589963107
311 => 0.016248326800402
312 => 0.016196076336109
313 => 0.016259411983406
314 => 0.016394246035194
315 => 0.016330660786365
316 => 0.016372659963445
317 => 0.01621260240978
318 => 0.016553030306416
319 => 0.017093711734708
320 => 0.01709545011391
321 => 0.017031864522333
322 => 0.01700584666823
323 => 0.017071089343885
324 => 0.017106480819033
325 => 0.017317463668641
326 => 0.017543856672197
327 => 0.018600334036788
328 => 0.018303679420374
329 => 0.019241048988359
330 => 0.01998238661443
331 => 0.020204681353724
401 => 0.02000018065335
402 => 0.01930059480428
403 => 0.019266269784974
404 => 0.020311746401011
405 => 0.020016351371118
406 => 0.019981215072251
407 => 0.019607424216025
408 => 0.019828380906953
409 => 0.019780054437408
410 => 0.019703768741019
411 => 0.020125338715333
412 => 0.020914480073438
413 => 0.020791484992257
414 => 0.020699674869732
415 => 0.020297389638356
416 => 0.020539655201304
417 => 0.020453389074629
418 => 0.02082404310066
419 => 0.020604475866631
420 => 0.020014113463237
421 => 0.020108130621838
422 => 0.020093920117452
423 => 0.020386371290752
424 => 0.020298584707612
425 => 0.020076778378169
426 => 0.020911782874067
427 => 0.020857562326642
428 => 0.020934434666347
429 => 0.020968276247642
430 => 0.021476528769865
501 => 0.021684743565953
502 => 0.021732011969978
503 => 0.021929799922352
504 => 0.021727090825542
505 => 0.022538071741916
506 => 0.023077326729256
507 => 0.023703699146859
508 => 0.024618997602011
509 => 0.024963158288133
510 => 0.024900988740648
511 => 0.025594957583188
512 => 0.026842004167171
513 => 0.025153052509697
514 => 0.026931522706112
515 => 0.026368479575353
516 => 0.025033514441036
517 => 0.024947558424592
518 => 0.025851612312814
519 => 0.027856716824931
520 => 0.027354460886353
521 => 0.027857538335718
522 => 0.027270671768501
523 => 0.027241528896939
524 => 0.027829035536459
525 => 0.029201776823016
526 => 0.028549638894211
527 => 0.027614639262487
528 => 0.028305028440346
529 => 0.027706949441982
530 => 0.026359310066898
531 => 0.027354076820702
601 => 0.026688904621759
602 => 0.02688303723191
603 => 0.02828113025719
604 => 0.028112908005493
605 => 0.02833060317615
606 => 0.027946376898015
607 => 0.027587448967314
608 => 0.026917483330322
609 => 0.026719139534116
610 => 0.026773954623725
611 => 0.02671911237048
612 => 0.026344272753885
613 => 0.02626332617437
614 => 0.026128411662161
615 => 0.026170227310901
616 => 0.025916548557315
617 => 0.026395292778036
618 => 0.026484151924082
619 => 0.026832542043968
620 => 0.026868713061955
621 => 0.027838974586815
622 => 0.027304570843504
623 => 0.027663095012716
624 => 0.027631025236462
625 => 0.025062447183465
626 => 0.025416374576412
627 => 0.025966974531303
628 => 0.025718929997946
629 => 0.025368253061259
630 => 0.025085062632778
701 => 0.02465600017592
702 => 0.025259897344533
703 => 0.026053957903954
704 => 0.026888851748141
705 => 0.02789192199752
706 => 0.027668048394883
707 => 0.02687010004755
708 => 0.02690589542751
709 => 0.027127168381458
710 => 0.026840599801327
711 => 0.026756085132563
712 => 0.027115557363781
713 => 0.027118032851475
714 => 0.026788301067065
715 => 0.026421864528972
716 => 0.026420329146498
717 => 0.026355125303901
718 => 0.027282271387248
719 => 0.027792107988047
720 => 0.027850559932686
721 => 0.027788173706452
722 => 0.027812183688908
723 => 0.027515521004387
724 => 0.028193603928617
725 => 0.028815879875342
726 => 0.028649096628633
727 => 0.028399064832181
728 => 0.028199902463144
729 => 0.028602180303959
730 => 0.028584267504952
731 => 0.028810444837809
801 => 0.028800184127527
802 => 0.028724129197447
803 => 0.028649099344795
804 => 0.028946584229572
805 => 0.028860913360217
806 => 0.028775109420339
807 => 0.028603016482988
808 => 0.028626406771335
809 => 0.028376418146398
810 => 0.028260761969801
811 => 0.026521570571749
812 => 0.026056801800472
813 => 0.026203027517156
814 => 0.026251168819838
815 => 0.026048900854961
816 => 0.026338901158218
817 => 0.026293704918141
818 => 0.026469537049362
819 => 0.026359684767519
820 => 0.026364193143484
821 => 0.026687245281409
822 => 0.02678102869141
823 => 0.026733329692159
824 => 0.026766736436209
825 => 0.027536580752733
826 => 0.027427133509159
827 => 0.027368991842374
828 => 0.027385097481421
829 => 0.027581809209941
830 => 0.027636877753865
831 => 0.027403548463663
901 => 0.027513587905783
902 => 0.027982121884244
903 => 0.028146082259979
904 => 0.02866936507388
905 => 0.028447065233924
906 => 0.028855106211074
907 => 0.030109285063413
908 => 0.031111209913236
909 => 0.030189798415043
910 => 0.032029705807384
911 => 0.033462337631361
912 => 0.033407350835783
913 => 0.033157538339902
914 => 0.031526525096792
915 => 0.030025642393444
916 => 0.03128119450564
917 => 0.031284395166181
918 => 0.031176542126249
919 => 0.030506676158109
920 => 0.031153232242576
921 => 0.031204553516615
922 => 0.031175827250582
923 => 0.030662242583392
924 => 0.029878093722907
925 => 0.030031314533259
926 => 0.030282293346235
927 => 0.029807138093606
928 => 0.029655297199719
929 => 0.029937598310367
930 => 0.030847231308646
1001 => 0.030675270459466
1002 => 0.030670779866746
1003 => 0.031406501302285
1004 => 0.030879883533062
1005 => 0.030033247138358
1006 => 0.029819460282933
1007 => 0.029060660970257
1008 => 0.029584766358273
1009 => 0.029603627978141
1010 => 0.029316580813352
1011 => 0.030056539433773
1012 => 0.030049720584819
1013 => 0.030752201166604
1014 => 0.032095080199318
1015 => 0.03169792479028
1016 => 0.031236076259955
1017 => 0.031286292000872
1018 => 0.031837034735722
1019 => 0.031504043105998
1020 => 0.031623789217747
1021 => 0.031836853485641
1022 => 0.031965400448549
1023 => 0.031267796071135
1024 => 0.031105151120486
1025 => 0.030772436632077
1026 => 0.030685637632461
1027 => 0.030956626640955
1028 => 0.030885230611399
1029 => 0.029602042732027
1030 => 0.029467942459042
1031 => 0.029472055122964
1101 => 0.029134853610424
1102 => 0.028620540366165
1103 => 0.029972124864029
1104 => 0.029863573713438
1105 => 0.029743741644377
1106 => 0.029758420389084
1107 => 0.030345097410159
1108 => 0.030004795110036
1109 => 0.030909544549362
1110 => 0.030723555263894
1111 => 0.030532796055056
1112 => 0.030506427321727
1113 => 0.030433001301135
1114 => 0.030181196155907
1115 => 0.0298771263119
1116 => 0.029676353062808
1117 => 0.027374867014353
1118 => 0.027802009437818
1119 => 0.028293397860757
1120 => 0.02846302317524
1121 => 0.028172867337102
1122 => 0.030192653276917
1123 => 0.030561687631263
1124 => 0.029443858500434
1125 => 0.029234758310719
1126 => 0.030206361850543
1127 => 0.029620366142327
1128 => 0.029884239973856
1129 => 0.02931388908136
1130 => 0.030472798061888
1201 => 0.03046396911716
1202 => 0.030013127348588
1203 => 0.030394175724154
1204 => 0.030327959191759
1205 => 0.029818959945416
1206 => 0.030488934245883
1207 => 0.030489266544777
1208 => 0.030055341144672
1209 => 0.029548611275833
1210 => 0.02945801994371
1211 => 0.029389771544189
1212 => 0.029867455051277
1213 => 0.030295744590054
1214 => 0.031092685239738
1215 => 0.031293055053911
1216 => 0.032075111778004
1217 => 0.031609435076457
1218 => 0.03181586352673
1219 => 0.032039970810588
1220 => 0.032147416083742
1221 => 0.031972339776969
1222 => 0.033187195776874
1223 => 0.033289766845492
1224 => 0.033324158037564
1225 => 0.032914515429706
1226 => 0.03327837394353
1227 => 0.033108136594639
1228 => 0.033551046883155
1229 => 0.033620500871757
1230 => 0.033561675814309
1231 => 0.033583721606547
]
'min_raw' => 0.015060050069001
'max_raw' => 0.033620500871757
'avg_raw' => 0.024340275470379
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.01506'
'max' => '$0.03362'
'avg' => '$0.02434'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 0.0023222291640189
'max_diff' => -0.0032082853706737
'year' => 2031
]
6 => [
'items' => [
101 => 0.032547056325912
102 => 0.032493299762266
103 => 0.031760325202562
104 => 0.032059017753516
105 => 0.031500626346214
106 => 0.031677698013539
107 => 0.031755749517294
108 => 0.031714979841116
109 => 0.032075905382192
110 => 0.031769044940061
111 => 0.030959189780749
112 => 0.03014911397694
113 => 0.030138944135097
114 => 0.029925665474979
115 => 0.02977150406765
116 => 0.029801201023871
117 => 0.02990585697103
118 => 0.029765421273747
119 => 0.029795390350033
120 => 0.030293076699292
121 => 0.030392884147299
122 => 0.030053699441683
123 => 0.028691823904515
124 => 0.028357616231688
125 => 0.02859783807929
126 => 0.028483027508404
127 => 0.022988026208434
128 => 0.024278995255355
129 => 0.023511945284841
130 => 0.023865437201526
131 => 0.023082477808258
201 => 0.023456147069143
202 => 0.023387144000874
203 => 0.025462984025773
204 => 0.025430572639009
205 => 0.025446086254681
206 => 0.024705580958164
207 => 0.025885226002425
208 => 0.026466361569891
209 => 0.026358808842775
210 => 0.026385877547058
211 => 0.025920747524577
212 => 0.025450589730022
213 => 0.024929112379095
214 => 0.025897952840569
215 => 0.025790234319911
216 => 0.026037301850399
217 => 0.026665664143812
218 => 0.026758192878433
219 => 0.026882552436097
220 => 0.026837978387191
221 => 0.027899913070335
222 => 0.027771305773336
223 => 0.02808121235626
224 => 0.027443711002516
225 => 0.026722317708571
226 => 0.026859430989626
227 => 0.026846225878065
228 => 0.026678109651772
229 => 0.026526341839659
301 => 0.026273691192807
302 => 0.027073115224708
303 => 0.027040660068932
304 => 0.027566071315945
305 => 0.027473199774463
306 => 0.026852980890924
307 => 0.026875132129685
308 => 0.027024109855873
309 => 0.027539723467209
310 => 0.027692792692706
311 => 0.027621884928702
312 => 0.027789718346583
313 => 0.027922367036956
314 => 0.027806376979799
315 => 0.029448551587768
316 => 0.028766606198525
317 => 0.029098981636297
318 => 0.029178251219735
319 => 0.028975203848617
320 => 0.029019237552831
321 => 0.02908593661625
322 => 0.029490920268312
323 => 0.030553714554287
324 => 0.03102441890886
325 => 0.032440556183737
326 => 0.030985333464734
327 => 0.030898986570898
328 => 0.031154075657352
329 => 0.031985498151059
330 => 0.032659287990665
331 => 0.03288282295233
401 => 0.032912366787675
402 => 0.033331733236082
403 => 0.033572106263589
404 => 0.033280811118813
405 => 0.033033968983489
406 => 0.032149811093931
407 => 0.032252154777129
408 => 0.032957201265019
409 => 0.033953120956193
410 => 0.034807723659004
411 => 0.03450847157839
412 => 0.036791553714423
413 => 0.037017911982657
414 => 0.036986636589026
415 => 0.037502314410689
416 => 0.03647879895065
417 => 0.036041226261806
418 => 0.033087339054923
419 => 0.033917260872564
420 => 0.035123600974104
421 => 0.034963937338122
422 => 0.03408786091082
423 => 0.034807059076474
424 => 0.034569269671503
425 => 0.034381715301911
426 => 0.035240938228216
427 => 0.034296187325811
428 => 0.035114176361156
429 => 0.034065096962313
430 => 0.034509838536688
501 => 0.034257381709343
502 => 0.03442075221658
503 => 0.03346569156948
504 => 0.033981019111868
505 => 0.033444252249477
506 => 0.033443997752095
507 => 0.033432148593857
508 => 0.034063652427072
509 => 0.034084245744402
510 => 0.033617563457507
511 => 0.033550307249017
512 => 0.033798988702207
513 => 0.033507847850298
514 => 0.033644070822488
515 => 0.033511973905353
516 => 0.033482236106919
517 => 0.033245280269529
518 => 0.033143193179545
519 => 0.033183224157988
520 => 0.033046577791179
521 => 0.032964243412461
522 => 0.033415770213604
523 => 0.033174537658292
524 => 0.033378797864741
525 => 0.0331460175798
526 => 0.032339099694652
527 => 0.031875032685901
528 => 0.030350839602184
529 => 0.030783098869971
530 => 0.031069687211718
531 => 0.03097496976648
601 => 0.031178459489636
602 => 0.031190952105963
603 => 0.031124795522633
604 => 0.031048194674319
605 => 0.031010909617653
606 => 0.03128880188297
607 => 0.03145012769641
608 => 0.03109845018587
609 => 0.031016057065641
610 => 0.031371622445445
611 => 0.031588517121722
612 => 0.033189945548758
613 => 0.033071306558338
614 => 0.033369067142567
615 => 0.033335543870291
616 => 0.033647644399545
617 => 0.034157796861349
618 => 0.033120514265629
619 => 0.033300550657713
620 => 0.033256409892021
621 => 0.03373832719751
622 => 0.033739831690735
623 => 0.033450898192539
624 => 0.033607533729322
625 => 0.033520104069761
626 => 0.033678101281414
627 => 0.03306972206229
628 => 0.033810662280705
629 => 0.034230727639414
630 => 0.034236560247327
701 => 0.03443566789351
702 => 0.034637972793569
703 => 0.035026279432189
704 => 0.034627143132172
705 => 0.033909135783576
706 => 0.033960973594995
707 => 0.033540006149222
708 => 0.033547082688039
709 => 0.033509307569234
710 => 0.033622673544348
711 => 0.033094599518705
712 => 0.033218537437024
713 => 0.033045023625598
714 => 0.033300173472573
715 => 0.033025674415009
716 => 0.033256388606007
717 => 0.033355957202546
718 => 0.033723367467331
719 => 0.032971407620168
720 => 0.031438110588596
721 => 0.031760428214062
722 => 0.031283695128495
723 => 0.031327818590615
724 => 0.031416955006295
725 => 0.031128034719457
726 => 0.031183151605261
727 => 0.031181182442248
728 => 0.031164213259235
729 => 0.031089053933998
730 => 0.030980058042584
731 => 0.031414264126809
801 => 0.03148804420158
802 => 0.031652048168378
803 => 0.032140012728615
804 => 0.03209125356205
805 => 0.032170781785715
806 => 0.031997172119987
807 => 0.031335871845084
808 => 0.031371783631623
809 => 0.030923963078036
810 => 0.031640596389985
811 => 0.031470888162618
812 => 0.031361476164417
813 => 0.031331622087013
814 => 0.031820796217012
815 => 0.031967164783572
816 => 0.031875957715321
817 => 0.031688889357402
818 => 0.032048115906402
819 => 0.032144229776363
820 => 0.032165746127304
821 => 0.032802226697273
822 => 0.032201318320748
823 => 0.032345962939493
824 => 0.033474438964316
825 => 0.032451066928848
826 => 0.032993169919955
827 => 0.032966636799508
828 => 0.033243958345993
829 => 0.032943888338287
830 => 0.032947608065663
831 => 0.033193850811553
901 => 0.032848047285064
902 => 0.032762421468859
903 => 0.032644130017036
904 => 0.032902415074486
905 => 0.033057245285198
906 => 0.034305063073283
907 => 0.03511121027179
908 => 0.035076213295841
909 => 0.035396020144422
910 => 0.035251944230041
911 => 0.034786685097199
912 => 0.035580825704654
913 => 0.035329526388201
914 => 0.035350243198521
915 => 0.035349472117806
916 => 0.03551656419428
917 => 0.035398164144334
918 => 0.035164785492375
919 => 0.035319713132871
920 => 0.035779792837498
921 => 0.03720789435763
922 => 0.038007078888125
923 => 0.037159782445409
924 => 0.037744236185843
925 => 0.037393772203743
926 => 0.037330082472796
927 => 0.03769716261258
928 => 0.038064885277556
929 => 0.038041462933506
930 => 0.037774515161501
1001 => 0.037623723138645
1002 => 0.038765570854748
1003 => 0.039606864801105
1004 => 0.039549494194069
1005 => 0.039802709395602
1006 => 0.040546157058955
1007 => 0.040614128596103
1008 => 0.04060556574473
1009 => 0.040437091197813
1010 => 0.041169111971263
1011 => 0.041779776579154
1012 => 0.0403980942079
1013 => 0.040924220767323
1014 => 0.041160415930587
1015 => 0.041507220506206
1016 => 0.042092337956471
1017 => 0.042727930702197
1018 => 0.042817810485363
1019 => 0.042754036478063
1020 => 0.042334845976606
1021 => 0.043030319143179
1022 => 0.043437711013304
1023 => 0.043680303548966
1024 => 0.044295477855857
1025 => 0.041161874591505
1026 => 0.038943754450809
1027 => 0.038597362960796
1028 => 0.03930176367691
1029 => 0.039487508528259
1030 => 0.039412635011584
1031 => 0.03691593913057
1101 => 0.038584218373686
1102 => 0.040379146566375
1103 => 0.040448097068332
1104 => 0.04134667565177
1105 => 0.041639289672519
1106 => 0.042362763211574
1107 => 0.042317509744726
1108 => 0.042493664038507
1109 => 0.042453169216934
1110 => 0.043793251602707
1111 => 0.045271561478375
1112 => 0.045220372308118
1113 => 0.045007847772923
1114 => 0.045323482948507
1115 => 0.04684925716551
1116 => 0.046708788325642
1117 => 0.046845241838466
1118 => 0.04864421562918
1119 => 0.050983137458145
1120 => 0.049896473444679
1121 => 0.052254221674755
1122 => 0.053738299206724
1123 => 0.056304857841785
1124 => 0.055983512060107
1125 => 0.056982654502459
1126 => 0.055408236044017
1127 => 0.051793053020964
1128 => 0.051220936469201
1129 => 0.052366328294129
1130 => 0.055182162330013
1201 => 0.052277647659636
1202 => 0.052865227194606
1203 => 0.052696004249006
1204 => 0.052686987077386
1205 => 0.053031135842626
1206 => 0.052531930109053
1207 => 0.050498076145079
1208 => 0.051430179431192
1209 => 0.051070249589147
1210 => 0.051469618583443
1211 => 0.053624848333353
1212 => 0.052671969886657
1213 => 0.051668189848623
1214 => 0.05292715277294
1215 => 0.054530245202194
1216 => 0.054429926559005
1217 => 0.054235266461279
1218 => 0.055332555240088
1219 => 0.057144954827234
1220 => 0.057634839152828
1221 => 0.057996461746738
1222 => 0.058046323392774
1223 => 0.058559929335789
1224 => 0.055798140734836
1225 => 0.060181170172309
1226 => 0.060937998277416
1227 => 0.060795745960967
1228 => 0.061636928547598
1229 => 0.061389431291869
1230 => 0.061030846599447
1231 => 0.062364299923924
]
'min_raw' => 0.022988026208434
'max_raw' => 0.062364299923924
'avg_raw' => 0.042676163066179
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.022988'
'max' => '$0.062364'
'avg' => '$0.042676'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.0079279761394328
'max_diff' => 0.028743799052167
'year' => 2032
]
7 => [
'items' => [
101 => 0.060835603291545
102 => 0.058665810879438
103 => 0.057475419848528
104 => 0.059043022784135
105 => 0.060000303195108
106 => 0.060633004652291
107 => 0.060824459730946
108 => 0.056012530522124
109 => 0.053419167560398
110 => 0.055081483485898
111 => 0.057109623641924
112 => 0.055786874313866
113 => 0.055838723583231
114 => 0.053952830653828
115 => 0.057276483319709
116 => 0.056792255082609
117 => 0.059304432033269
118 => 0.058704880842514
119 => 0.060753463623629
120 => 0.060214003121877
121 => 0.062453273503823
122 => 0.063346579085006
123 => 0.064846578187725
124 => 0.06594998363378
125 => 0.066597924416487
126 => 0.066559024482258
127 => 0.069126488666156
128 => 0.067612544737278
129 => 0.065710674353418
130 => 0.065676275518499
131 => 0.066661281140011
201 => 0.068725582699606
202 => 0.069260826059643
203 => 0.069559954078661
204 => 0.069101829104813
205 => 0.067458551475354
206 => 0.06674899252656
207 => 0.067353557308834
208 => 0.066614226530957
209 => 0.067890518873151
210 => 0.069643140860317
211 => 0.069281231350586
212 => 0.070491040581112
213 => 0.071743065859064
214 => 0.073533518238508
215 => 0.074001608790755
216 => 0.074775344673729
217 => 0.075571773056306
218 => 0.075827564388443
219 => 0.076315949408882
220 => 0.07631337537875
221 => 0.077785156509946
222 => 0.079408576674922
223 => 0.080021380204937
224 => 0.081430488132023
225 => 0.079017440187919
226 => 0.080847764772619
227 => 0.082498763364014
228 => 0.08053037478067
301 => 0.083243339867091
302 => 0.083348678153685
303 => 0.08493916121789
304 => 0.083326901932632
305 => 0.08236954751556
306 => 0.085133393846045
307 => 0.086470732025023
308 => 0.086067914881896
309 => 0.083002456533162
310 => 0.081218228290505
311 => 0.076548558827547
312 => 0.082079984021129
313 => 0.084774179879038
314 => 0.08299547921676
315 => 0.083892552369974
316 => 0.088786692616967
317 => 0.090650064350907
318 => 0.090262496056199
319 => 0.090327988718088
320 => 0.091333430283133
321 => 0.095792111889326
322 => 0.093120366519464
323 => 0.095162815746334
324 => 0.096246123451667
325 => 0.097252360021775
326 => 0.094781361029924
327 => 0.091566627647711
328 => 0.090548386640237
329 => 0.082818622490255
330 => 0.082416254697584
331 => 0.082190393462566
401 => 0.080766370324483
402 => 0.079647478210715
403 => 0.078757693660046
404 => 0.076422633286932
405 => 0.077210647616442
406 => 0.073489048746673
407 => 0.075869995818185
408 => 0.069930234160888
409 => 0.074877044170056
410 => 0.072184720385917
411 => 0.07399254339715
412 => 0.073986236072971
413 => 0.070657460738484
414 => 0.06873749259532
415 => 0.069960971022422
416 => 0.071272637016114
417 => 0.071485450410616
418 => 0.073186059609422
419 => 0.073660663082337
420 => 0.072222592402289
421 => 0.069807145802922
422 => 0.070368198957484
423 => 0.06872612287105
424 => 0.06584844769112
425 => 0.067915244244734
426 => 0.068620939458768
427 => 0.068932614667855
428 => 0.066102751631621
429 => 0.065213547226321
430 => 0.064740142262086
501 => 0.069441846020842
502 => 0.069699415966243
503 => 0.068381651708853
504 => 0.074338071107793
505 => 0.072989949950371
506 => 0.074496131580914
507 => 0.070317289264388
508 => 0.070476926668437
509 => 0.068498595746875
510 => 0.06960632887083
511 => 0.068823418802723
512 => 0.069516834981246
513 => 0.06993246577959
514 => 0.071910472076515
515 => 0.074899629824652
516 => 0.071615023896452
517 => 0.070183874057111
518 => 0.071071751368346
519 => 0.073436285651267
520 => 0.077018676128175
521 => 0.074897828863518
522 => 0.075839024865251
523 => 0.076044634320734
524 => 0.074480800065809
525 => 0.077076336927784
526 => 0.07846730621822
527 => 0.079894152889669
528 => 0.081133043875152
529 => 0.079324238952062
530 => 0.081259919501769
531 => 0.079700102672319
601 => 0.078300785725403
602 => 0.078302907911598
603 => 0.077425095950039
604 => 0.075724224663092
605 => 0.075410557901732
606 => 0.077042292006073
607 => 0.07835078823196
608 => 0.078458562248398
609 => 0.079183012992013
610 => 0.079611735479648
611 => 0.08381379867843
612 => 0.08550390325827
613 => 0.087570531146456
614 => 0.08837559917767
615 => 0.090798565318762
616 => 0.088841823376142
617 => 0.088418469948372
618 => 0.082541146636268
619 => 0.083503557999371
620 => 0.085044471450584
621 => 0.082566555731525
622 => 0.084138222917691
623 => 0.084448503312703
624 => 0.082482357103577
625 => 0.083532560746034
626 => 0.080743531235349
627 => 0.074960423046446
628 => 0.077082775180387
629 => 0.078645540726972
630 => 0.076415281604394
701 => 0.080412934758667
702 => 0.078077588314252
703 => 0.077337395607771
704 => 0.074449639962036
705 => 0.075812549466915
706 => 0.077655904087248
707 => 0.076516925244858
708 => 0.07888047736135
709 => 0.082227897494628
710 => 0.084613468423917
711 => 0.084796602938116
712 => 0.083262840651422
713 => 0.085720704504189
714 => 0.085738607359045
715 => 0.082966126892456
716 => 0.081267998043906
717 => 0.080882179596622
718 => 0.0818460297221
719 => 0.083016321710979
720 => 0.084861545998681
721 => 0.085976576390207
722 => 0.088883984284883
723 => 0.089670645499265
724 => 0.090534947673094
725 => 0.091689921918248
726 => 0.093076764628873
727 => 0.090042431731024
728 => 0.09016299143376
729 => 0.087337462652481
730 => 0.084317979927869
731 => 0.086609390932014
801 => 0.089605106006302
802 => 0.088917885658289
803 => 0.0888405593305
804 => 0.088970600765307
805 => 0.088452459065424
806 => 0.086108923360079
807 => 0.084932014400165
808 => 0.086450527219952
809 => 0.087257549202439
810 => 0.088509169917563
811 => 0.088354881245916
812 => 0.091578921793823
813 => 0.092831686460814
814 => 0.092511175650175
815 => 0.092570157352856
816 => 0.094838227942604
817 => 0.097360788902697
818 => 0.09972350012306
819 => 0.10212695145722
820 => 0.099229497065588
821 => 0.097758348415659
822 => 0.099276198300252
823 => 0.098470805786203
824 => 0.10309883006687
825 => 0.10341926442678
826 => 0.10804695404861
827 => 0.11243918255476
828 => 0.10968050252499
829 => 0.11228181353938
830 => 0.11509534348945
831 => 0.1205230992419
901 => 0.11869522205522
902 => 0.11729509677672
903 => 0.11597198515388
904 => 0.11872517040294
905 => 0.12226709924265
906 => 0.12302999679055
907 => 0.12426618226744
908 => 0.12296648439206
909 => 0.12453182732593
910 => 0.13005817572905
911 => 0.1285649076081
912 => 0.12644422682152
913 => 0.13080674812964
914 => 0.13238552763218
915 => 0.14346622899422
916 => 0.15745607218473
917 => 0.15166418524159
918 => 0.14806897411297
919 => 0.14891393400774
920 => 0.15402255115484
921 => 0.15566327684309
922 => 0.15120321883038
923 => 0.15277858672058
924 => 0.16145901868234
925 => 0.16611579192822
926 => 0.15979126837222
927 => 0.14234215871546
928 => 0.12625328271956
929 => 0.13052077712521
930 => 0.13003697569537
1001 => 0.13936301693235
1002 => 0.12852929365727
1003 => 0.12871170577259
1004 => 0.1382305996659
1005 => 0.13569112197032
1006 => 0.13157749333521
1007 => 0.12628331676101
1008 => 0.11649654171155
1009 => 0.10782812212583
1010 => 0.12482888915124
1011 => 0.12409578516321
1012 => 0.12303414194863
1013 => 0.12539671404089
1014 => 0.13686869349312
1015 => 0.13660422723557
1016 => 0.13492182783692
1017 => 0.13619791295281
1018 => 0.13135378944461
1019 => 0.13260223037132
1020 => 0.12625073415941
1021 => 0.1291218757091
1022 => 0.13156866733568
1023 => 0.13205989698009
1024 => 0.13316666245174
1025 => 0.12370947267403
1026 => 0.12795547323572
1027 => 0.13044960076926
1028 => 0.11918104183558
1029 => 0.13022685759032
1030 => 0.12354484404034
1031 => 0.12127686828101
1101 => 0.12433039885787
1102 => 0.12314043502241
1103 => 0.1221173739937
1104 => 0.12154648836127
1105 => 0.12378866421104
1106 => 0.12368406402767
1107 => 0.12001542914986
1108 => 0.11522984450444
1109 => 0.1168360437929
1110 => 0.11625249653321
1111 => 0.11413764598497
1112 => 0.11556279990645
1113 => 0.10928714329013
1114 => 0.098490202262003
1115 => 0.10562299222443
1116 => 0.10534838756986
1117 => 0.1052099194507
1118 => 0.11057001397163
1119 => 0.11005476456186
1120 => 0.1091195818378
1121 => 0.11412047062086
1122 => 0.1122950789436
1123 => 0.11792050597655
1124 => 0.12162577605027
1125 => 0.12068599970665
1126 => 0.1241708241201
1127 => 0.11687304738044
1128 => 0.11929707607737
1129 => 0.11979666503225
1130 => 0.11405876042955
1201 => 0.1101390657375
1202 => 0.10987766678933
1203 => 0.10308145636052
1204 => 0.10671193711449
1205 => 0.10990660993849
1206 => 0.10837660957242
1207 => 0.10789225716399
1208 => 0.11036670857547
1209 => 0.11055899464238
1210 => 0.10617485193915
1211 => 0.1070864540349
1212 => 0.11088798631539
1213 => 0.10699066517515
1214 => 0.099418806823462
1215 => 0.09754088126311
1216 => 0.097290331376324
1217 => 0.092197248316496
1218 => 0.097666373228703
1219 => 0.095278953641089
1220 => 0.10282078351268
1221 => 0.098512930737674
1222 => 0.098327227814539
1223 => 0.098046510609525
1224 => 0.09366268362732
1225 => 0.094622463129684
1226 => 0.097812916374089
1227 => 0.098951306034721
1228 => 0.098832562666565
1229 => 0.097797281412645
1230 => 0.098271227869192
1231 => 0.096744481198763
]
'min_raw' => 0.053419167560398
'max_raw' => 0.16611579192822
'avg_raw' => 0.10976747974431
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.053419'
'max' => '$0.166115'
'avg' => '$0.109767'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.030431141351964
'max_diff' => 0.1037514920043
'year' => 2033
]
8 => [
'items' => [
101 => 0.096205355172951
102 => 0.094503725137191
103 => 0.092002799071919
104 => 0.092350568180366
105 => 0.087395579242161
106 => 0.084695838287459
107 => 0.083948585573212
108 => 0.08294932801388
109 => 0.084061454373461
110 => 0.08738154238106
111 => 0.083376811847932
112 => 0.076510982248069
113 => 0.076923630305825
114 => 0.077850727975295
115 => 0.076123087601602
116 => 0.074488020977768
117 => 0.075909578750044
118 => 0.073000436237949
119 => 0.078202283949289
120 => 0.078061588546707
121 => 0.08000051569339
122 => 0.081212966629002
123 => 0.078418659758069
124 => 0.077715899136639
125 => 0.078116223525295
126 => 0.071499753114405
127 => 0.079459808902672
128 => 0.079528647795678
129 => 0.078939207400461
130 => 0.083177691368563
131 => 0.09212221455756
201 => 0.088756925141247
202 => 0.08745378336284
203 => 0.084976509889497
204 => 0.088277329706783
205 => 0.088023878245626
206 => 0.086877674619662
207 => 0.086184447090305
208 => 0.08746174006866
209 => 0.086026176355112
210 => 0.085768309665506
211 => 0.084205918088218
212 => 0.083648215379414
213 => 0.0832353144966
214 => 0.082780751195424
215 => 0.0837834045677
216 => 0.081511260116087
217 => 0.078771276648508
218 => 0.07854347667021
219 => 0.079172452438668
220 => 0.078894177482864
221 => 0.078542144396782
222 => 0.077870017364945
223 => 0.077670611632321
224 => 0.078318583525441
225 => 0.077587061037216
226 => 0.078666462316684
227 => 0.078372924894666
228 => 0.076733248716816
301 => 0.074689605113342
302 => 0.074671412398583
303 => 0.074231112736462
304 => 0.073670324917254
305 => 0.073514326575037
306 => 0.07578985911951
307 => 0.08050014338561
308 => 0.079575401876625
309 => 0.080243622388189
310 => 0.083530605942933
311 => 0.084575439171943
312 => 0.083833841294223
313 => 0.082818696379436
314 => 0.082863357603739
315 => 0.086332415082831
316 => 0.08654877594257
317 => 0.08709545003447
318 => 0.087798080732642
319 => 0.083953502340383
320 => 0.082682278307201
321 => 0.082079901835455
322 => 0.08022481545151
323 => 0.082225367073508
324 => 0.081059731315531
325 => 0.08121701540307
326 => 0.081114583934724
327 => 0.081170518442827
328 => 0.07820082992684
329 => 0.079282828339832
330 => 0.077483796121189
331 => 0.07507509393127
401 => 0.075067019116929
402 => 0.075656545565506
403 => 0.075305872165721
404 => 0.074362219063535
405 => 0.074496260532783
406 => 0.073321916217105
407 => 0.074638847194897
408 => 0.074676612063134
409 => 0.074169521902969
410 => 0.076198435775712
411 => 0.077029683444812
412 => 0.076695905838467
413 => 0.077006264718167
414 => 0.079613829061281
415 => 0.080038975825217
416 => 0.080227797934139
417 => 0.07997480132232
418 => 0.077053926207586
419 => 0.077183479439445
420 => 0.076232903783987
421 => 0.07542976752432
422 => 0.075461888762812
423 => 0.075874805200687
424 => 0.077678035502113
425 => 0.081472827365231
426 => 0.08161683694248
427 => 0.081791380751161
428 => 0.081081423362565
429 => 0.080867293420788
430 => 0.08114978608562
501 => 0.08257491038873
502 => 0.086240717013803
503 => 0.08494497612151
504 => 0.083891518606667
505 => 0.084815684857291
506 => 0.084673416706862
507 => 0.083472530343635
508 => 0.083438825463095
509 => 0.081133940585467
510 => 0.080281877125897
511 => 0.079569829123236
512 => 0.078792291292814
513 => 0.078331340803636
514 => 0.079039570253264
515 => 0.079201550707919
516 => 0.077652994638574
517 => 0.077441932168433
518 => 0.078706516482565
519 => 0.078150020074371
520 => 0.078722390430645
521 => 0.078855185263003
522 => 0.078833802236469
523 => 0.078252756073109
524 => 0.078623097570589
525 => 0.077747129524935
526 => 0.076794645841433
527 => 0.076187020593189
528 => 0.075656786974303
529 => 0.07595099140342
530 => 0.074902206333224
531 => 0.074566678881396
601 => 0.07849763420419
602 => 0.08140147316603
603 => 0.081359250197478
604 => 0.081102228735286
605 => 0.080720346977369
606 => 0.082546973359544
607 => 0.081910613252541
608 => 0.082373618400052
609 => 0.082491472642358
610 => 0.082848181938392
611 => 0.082975674851524
612 => 0.082590302718517
613 => 0.081296946770903
614 => 0.078074026718043
615 => 0.07657374873333
616 => 0.076078632009268
617 => 0.076096628561827
618 => 0.075600203302099
619 => 0.075746422789308
620 => 0.075549354131624
621 => 0.075176153769999
622 => 0.07592794733274
623 => 0.076014584537405
624 => 0.075839106936597
625 => 0.075880438263969
626 => 0.074427558676743
627 => 0.074538017956271
628 => 0.073922966651372
629 => 0.073807651946257
630 => 0.072252855806114
701 => 0.069498309072548
702 => 0.071024595353265
703 => 0.069181056154487
704 => 0.068482879925732
705 => 0.071787937603976
706 => 0.07145620148111
707 => 0.070888413440991
708 => 0.070048536592259
709 => 0.069737018099268
710 => 0.067844330350622
711 => 0.067732500261336
712 => 0.068670567416432
713 => 0.068237681701275
714 => 0.067629746210554
715 => 0.065427865488594
716 => 0.062952222539457
717 => 0.063026946638754
718 => 0.0638144025999
719 => 0.066104037009836
720 => 0.065209437234797
721 => 0.064560394833656
722 => 0.064438848702065
723 => 0.065960253012986
724 => 0.068113358856996
725 => 0.069123547945977
726 => 0.068122481238695
727 => 0.066972509706629
728 => 0.067042503145331
729 => 0.067508138135402
730 => 0.067557069789134
731 => 0.066808556540742
801 => 0.067019258635723
802 => 0.066699182886444
803 => 0.064734878603932
804 => 0.064699350568337
805 => 0.064217278618723
806 => 0.064202681671676
807 => 0.0633825570269
808 => 0.063267815919841
809 => 0.061639408659629
810 => 0.062711231249572
811 => 0.06199230892945
812 => 0.060908723416395
813 => 0.060721912865516
814 => 0.060716297114776
815 => 0.061828897151397
816 => 0.062698229870357
817 => 0.062004814891006
818 => 0.061846937741492
819 => 0.063532652657993
820 => 0.063318130069235
821 => 0.063132354890894
822 => 0.067920571844136
823 => 0.064130324496417
824 => 0.062477560313056
825 => 0.060431950784741
826 => 0.061098011562019
827 => 0.06123836035426
828 => 0.056319038187495
829 => 0.0543232697971
830 => 0.053638397294462
831 => 0.053244243486518
901 => 0.05342386432627
902 => 0.051627438694632
903 => 0.05283466642923
904 => 0.05127911368031
905 => 0.051018320199747
906 => 0.053799841210825
907 => 0.054186873610106
908 => 0.05253567315323
909 => 0.053596011151616
910 => 0.053211517853601
911 => 0.051305779167483
912 => 0.051232993967338
913 => 0.050276761284598
914 => 0.048780442299243
915 => 0.048096584371338
916 => 0.047740425224958
917 => 0.047887383430158
918 => 0.047813076864613
919 => 0.047328176261539
920 => 0.047840870799577
921 => 0.0465311481149
922 => 0.046009605988708
923 => 0.045774037509993
924 => 0.044611583242517
925 => 0.046461564927831
926 => 0.046826034625293
927 => 0.047191222440649
928 => 0.050369933049016
929 => 0.050211133649965
930 => 0.051646602878943
1001 => 0.051590823184364
1002 => 0.051181404107199
1003 => 0.049454132366813
1004 => 0.050142592096872
1005 => 0.048023620058145
1006 => 0.049611297985652
1007 => 0.048886748082553
1008 => 0.049366326934583
1009 => 0.048504000916752
1010 => 0.048981247739588
1011 => 0.046912463911495
1012 => 0.044980662681396
1013 => 0.045758075889181
1014 => 0.046603212954028
1015 => 0.048435685447536
1016 => 0.047344279947973
1017 => 0.047736790636227
1018 => 0.046421945536071
1019 => 0.043709044527516
1020 => 0.043724399252604
1021 => 0.043307078536199
1022 => 0.042946452507403
1023 => 0.047469640998556
1024 => 0.046907111008653
1025 => 0.046010793091847
1026 => 0.04721055024175
1027 => 0.047527785074891
1028 => 0.047536816304611
1029 => 0.048412128150966
1030 => 0.048879282240274
1031 => 0.048961620173276
1101 => 0.05033894227588
1102 => 0.050800602477355
1103 => 0.052702115510634
1104 => 0.04883964747962
1105 => 0.048760102492289
1106 => 0.047227433285244
1107 => 0.046255390243594
1108 => 0.047293989903925
1109 => 0.048214047419986
1110 => 0.047256022036918
1111 => 0.047381119926927
1112 => 0.046095049123709
1113 => 0.046554758920604
1114 => 0.046950722927287
1115 => 0.046732094876485
1116 => 0.046404798102717
1117 => 0.048138613195866
1118 => 0.048040784553435
1119 => 0.049655353028412
1120 => 0.050914024613556
1121 => 0.053169789108592
1122 => 0.050815781262359
1123 => 0.050729991860108
1124 => 0.05156859702816
1125 => 0.050800474091274
1126 => 0.051285901272683
1127 => 0.053091579284992
1128 => 0.053129730416042
1129 => 0.052490649816
1130 => 0.052451761703407
1201 => 0.052574504123421
1202 => 0.053293410311232
1203 => 0.053042202399455
1204 => 0.05333290655477
1205 => 0.05369643655241
1206 => 0.055200150756177
1207 => 0.055562691159905
1208 => 0.054681905934495
1209 => 0.054761430978615
1210 => 0.054431993126217
1211 => 0.054113760288644
1212 => 0.054829101233334
1213 => 0.056136400869817
1214 => 0.056128268226627
1215 => 0.056431536332017
1216 => 0.056620469849267
1217 => 0.055809428885444
1218 => 0.055281471040799
1219 => 0.055483923673266
1220 => 0.055807649841427
1221 => 0.055378943640004
1222 => 0.052732770368793
1223 => 0.053535450301075
1224 => 0.0534018451113
1225 => 0.053211575074114
1226 => 0.054018675952964
1227 => 0.053940829104264
1228 => 0.051609013753268
1229 => 0.051758289006482
1230 => 0.051618091675831
1231 => 0.052071097932841
]
'min_raw' => 0.042946452507403
'max_raw' => 0.096205355172951
'avg_raw' => 0.069575903840177
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.042946'
'max' => '$0.0962053'
'avg' => '$0.069575'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.010472715052995
'max_diff' => -0.069910436755271
'year' => 2034
]
9 => [
'items' => [
101 => 0.050776010266755
102 => 0.051174370510295
103 => 0.051424218320647
104 => 0.051571380600366
105 => 0.052103031664831
106 => 0.052040648548709
107 => 0.052099153842743
108 => 0.052887452020667
109 => 0.056874393693338
110 => 0.05709139413189
111 => 0.056022804608276
112 => 0.056449685045964
113 => 0.055630167954093
114 => 0.056180315268153
115 => 0.056556712088206
116 => 0.054855847235332
117 => 0.054755133057266
118 => 0.053932233526839
119 => 0.054374413123079
120 => 0.053670873591623
121 => 0.053843497583874
122 => 0.053360825852451
123 => 0.05422953887003
124 => 0.055200895008038
125 => 0.055446297928515
126 => 0.05480074849734
127 => 0.054333328165388
128 => 0.05351269204031
129 => 0.054877428205384
130 => 0.055276518649632
131 => 0.054875331953178
201 => 0.054782368229507
202 => 0.054606202141132
203 => 0.054819742697946
204 => 0.055274345117364
205 => 0.055059963011555
206 => 0.055201566169368
207 => 0.054661920952327
208 => 0.055809697373751
209 => 0.05763264255841
210 => 0.057638503625261
211 => 0.057424120363853
212 => 0.057336399352236
213 => 0.057556369588305
214 => 0.057675694417721
215 => 0.058387037825525
216 => 0.05915033764327
217 => 0.062712324838884
218 => 0.061712133087877
219 => 0.064872540031393
220 => 0.067372011596234
221 => 0.068121493829884
222 => 0.06743200544079
223 => 0.065073302907128
224 => 0.064957573708042
225 => 0.068482471111856
226 => 0.067486526144749
227 => 0.067368061659983
228 => 0.066107799690971
301 => 0.066852770601138
302 => 0.066689834535021
303 => 0.066432631983549
304 => 0.067853984585025
305 => 0.070514629769965
306 => 0.07009994326652
307 => 0.069790399028451
308 => 0.068434066284207
309 => 0.069250881544128
310 => 0.068960029275136
311 => 0.070209715202136
312 => 0.069469428942914
313 => 0.067478980882085
314 => 0.067795966296374
315 => 0.06774805458869
316 => 0.068734074137762
317 => 0.06843809554364
318 => 0.067690260017902
319 => 0.070505535973972
320 => 0.070322727612773
321 => 0.070581908073144
322 => 0.070696007327222
323 => 0.072409616190955
324 => 0.073111626913059
325 => 0.073270995637404
326 => 0.073937851527945
327 => 0.073254403655356
328 => 0.075988682435788
329 => 0.077806818275186
330 => 0.079918676613061
331 => 0.083004669258705
401 => 0.084165031040495
402 => 0.08395542207061
403 => 0.08629518647459
404 => 0.090499691098501
405 => 0.08480527266649
406 => 0.090801509102526
407 => 0.088903169876756
408 => 0.084402241722119
409 => 0.084112435011418
410 => 0.087160515814588
411 => 0.093920865669114
412 => 0.092227474705809
413 => 0.093923635450089
414 => 0.091944973845003
415 => 0.091846716618841
416 => 0.093827536272386
417 => 0.09845582936175
418 => 0.096257100803965
419 => 0.09310468426602
420 => 0.095432379580605
421 => 0.093415914481079
422 => 0.088872254238805
423 => 0.092226179801653
424 => 0.089983505292077
425 => 0.090638036941106
426 => 0.095351805187578
427 => 0.094784632121078
428 => 0.09551860658794
429 => 0.094223160865385
430 => 0.093013010287478
501 => 0.090754174366854
502 => 0.090085444410022
503 => 0.090270257311707
504 => 0.090085352825926
505 => 0.08882155488811
506 => 0.088548637843766
507 => 0.088093764146423
508 => 0.088234748525625
509 => 0.087379452896625
510 => 0.088993572461642
511 => 0.089293167276482
512 => 0.0904677888895
513 => 0.090589742002021
514 => 0.093861046474584
515 => 0.092059266943134
516 => 0.093268056210991
517 => 0.093159930721308
518 => 0.084499790483238
519 => 0.08569308139898
520 => 0.087549467588556
521 => 0.086713168126424
522 => 0.085530836350905
523 => 0.084576040049555
524 => 0.083129426020074
525 => 0.085165507486806
526 => 0.087842738102434
527 => 0.090657640988536
528 => 0.094039562366445
529 => 0.0932847568848
530 => 0.090594418320792
531 => 0.09071510494348
601 => 0.0914611421565
602 => 0.09049495618101
603 => 0.090210009074647
604 => 0.091421994799747
605 => 0.09143034107934
606 => 0.090318627347063
607 => 0.089083160975102
608 => 0.089077984325892
609 => 0.088858145018191
610 => 0.091984082769468
611 => 0.093703032464715
612 => 0.09390010727705
613 => 0.093689767759635
614 => 0.093770719091811
615 => 0.092770500138618
616 => 0.095056704059901
617 => 0.097154750860203
618 => 0.09659242949949
619 => 0.095749429841089
620 => 0.095077940008808
621 => 0.096434247835258
622 => 0.096373853582773
623 => 0.097136426251698
624 => 0.097101831550603
625 => 0.096845407043852
626 => 0.096592438657216
627 => 0.097595429715976
628 => 0.097306584398597
629 => 0.097017290424659
630 => 0.096437067071234
701 => 0.096515929061454
702 => 0.095673074958829
703 => 0.095283132084575
704 => 0.089419326859579
705 => 0.087852326498097
706 => 0.088345336711053
707 => 0.088507648474162
708 => 0.08782568790868
709 => 0.088803444178286
710 => 0.088651061899368
711 => 0.089243892205987
712 => 0.088873517568111
713 => 0.088888717872442
714 => 0.089977910710235
715 => 0.090294108024804
716 => 0.090133287518589
717 => 0.090245920688537
718 => 0.092841504550514
719 => 0.09247249552744
720 => 0.092276466838555
721 => 0.09233076812506
722 => 0.092993995451741
723 => 0.093179662892342
724 => 0.092392976899896
725 => 0.092763982561711
726 => 0.094343677582091
727 => 0.094896481436229
728 => 0.096660765977735
729 => 0.095911266546846
730 => 0.097287005189818
731 => 0.10151555675445
801 => 0.10489361633779
802 => 0.10178701314073
803 => 0.10799038937224
804 => 0.11282060758994
805 => 0.1126352157696
806 => 0.11179295549838
807 => 0.10629388047553
808 => 0.1012335496529
809 => 0.10546673125902
810 => 0.1054775225095
811 => 0.10511388845531
812 => 0.10285538857518
813 => 0.10503529755506
814 => 0.10520833081362
815 => 0.10511147820209
816 => 0.10337989163932
817 => 0.10073607900867
818 => 0.10125267366831
819 => 0.10209886625904
820 => 0.10049684715052
821 => 0.099984904975585
822 => 0.10093670287977
823 => 0.10400359404201
824 => 0.10342381603308
825 => 0.1034086756862
826 => 0.10588921187255
827 => 0.10411368329634
828 => 0.10125918958133
829 => 0.10053839227214
830 => 0.097980047411778
831 => 0.099747105319343
901 => 0.099810698587604
902 => 0.098842899030524
903 => 0.10133772118154
904 => 0.10131473095621
905 => 0.10368319328333
906 => 0.10821080369894
907 => 0.10687176650887
908 => 0.10531461194364
909 => 0.10548391782009
910 => 0.10734078540227
911 => 0.10621808087392
912 => 0.10662181325009
913 => 0.10734017430497
914 => 0.10777357936527
915 => 0.10542155750164
916 => 0.10487318869502
917 => 0.10375141856796
918 => 0.10345876968065
919 => 0.10437242804263
920 => 0.10413171134427
921 => 0.099805353819652
922 => 0.099353225386703
923 => 0.099367091520251
924 => 0.098230193078065
925 => 0.096496150066842
926 => 0.10105311156601
927 => 0.10068712378299
928 => 0.10028310159574
929 => 0.10033259200836
930 => 0.10231061454539
1001 => 0.10116326158138
1002 => 0.10421368748366
1003 => 0.10358661162235
1004 => 0.10294345363137
1005 => 0.10285454960594
1006 => 0.10260698865108
1007 => 0.10175801002346
1008 => 0.10073281731492
1009 => 0.10005589628806
1010 => 0.092296275391072
1011 => 0.093736415893915
1012 => 0.095393166269499
1013 => 0.095965069860141
1014 => 0.094986789193825
1015 => 0.10179663850686
1016 => 0.10304086359769
1017 => 0.099272024638768
1018 => 0.098567028750233
1019 => 0.10184285791995
1020 => 0.09986713247678
1021 => 0.10075680152286
1022 => 0.098833823668183
1023 => 0.10274116620848
1024 => 0.10271139880491
1025 => 0.1011913543054
1026 => 0.10247608550757
1027 => 0.10225283184551
1028 => 0.10053670534927
1029 => 0.10279557047941
1030 => 0.10279669084833
1031 => 0.10133368106617
1101 => 0.099625205934631
1102 => 0.099319770933493
1103 => 0.099089666689555
1104 => 0.1007002099845
1105 => 0.10214421806671
1106 => 0.10483115910774
1107 => 0.1055067199256
1108 => 0.10814347877233
1109 => 0.10657341726056
1110 => 0.10726940519303
1111 => 0.10802499854722
1112 => 0.10838725778725
1113 => 0.10779697579553
1114 => 0.11189294761775
1115 => 0.11223877313688
1116 => 0.11235472544206
1117 => 0.11097358678934
1118 => 0.11220036117248
1119 => 0.11162639406511
1120 => 0.11311969702585
1121 => 0.11335386599754
1122 => 0.11315553320932
1123 => 0.11322986213704
1124 => 0.10973467276572
1125 => 0.10955342875822
1126 => 0.10708215385553
1127 => 0.10808921664512
1128 => 0.10620656102976
1129 => 0.10680357051889
1130 => 0.10706672661319
1201 => 0.10692926880351
1202 => 0.10814615446426
1203 => 0.1071115530593
1204 => 0.1043810698474
1205 => 0.10164984271717
1206 => 0.10161555438536
1207 => 0.10089647049214
1208 => 0.10037670454412
1209 => 0.10047682990539
1210 => 0.10082968473809
1211 => 0.10035619597979
1212 => 0.10045723881286
1213 => 0.10213522308674
1214 => 0.10247173086603
1215 => 0.10132814594992
1216 => 0.096736487493247
1217 => 0.095609682990676
1218 => 0.09641960772162
1219 => 0.096032515866062
1220 => 0.077505735334471
1221 => 0.081858327608748
1222 => 0.07927216507944
1223 => 0.080463987756562
1224 => 0.077824185497679
1225 => 0.079084037499509
1226 => 0.078851388837199
1227 => 0.085850228411668
1228 => 0.085740951158302
1229 => 0.085793256396665
1230 => 0.083296591089032
1231 => 0.087273846715942
]
'min_raw' => 0.050776010266755
'max_raw' => 0.11335386599754
'avg_raw' => 0.082064938132148
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.050776'
'max' => '$0.113353'
'avg' => '$0.082064'
'bar_min_pct' => 61.631153054957
'bar_max_pct' => 60.119598047091
'min_diff' => 0.0078295577593523
'max_diff' => 0.01714851082459
'year' => 2035
]
10 => [
'items' => [
101 => 0.089233185855244
102 => 0.088870564326682
103 => 0.088961828353047
104 => 0.087393610007911
105 => 0.085808440178201
106 => 0.084050242881165
107 => 0.087316756139304
108 => 0.08695357562624
109 => 0.087786581054985
110 => 0.089905148398079
111 => 0.090217115487004
112 => 0.090636402418177
113 => 0.090486117900228
114 => 0.094066504826362
115 => 0.093632896345453
116 => 0.094677768026769
117 => 0.092528387703698
118 => 0.09009615984709
119 => 0.090558446847112
120 => 0.090513924891532
121 => 0.089947109297085
122 => 0.089435413522456
123 => 0.088583584227088
124 => 0.091278898164646
125 => 0.091169473341002
126 => 0.092940934043349
127 => 0.092627811157158
128 => 0.090536699889007
129 => 0.090611384337039
130 => 0.091113673142176
131 => 0.092852100431788
201 => 0.0933681840125
202 => 0.093129113535539
203 => 0.09369497562168
204 => 0.09414220994251
205 => 0.093751141366636
206 => 0.099287847710375
207 => 0.096988621218635
208 => 0.098109248212794
209 => 0.098376511147784
210 => 0.097691922759742
211 => 0.097840385467836
212 => 0.098065266016932
213 => 0.099430696674915
214 => 0.10301398181201
215 => 0.10460099440698
216 => 0.10937560010077
217 => 0.10446921510325
218 => 0.10417809052214
219 => 0.10503814118687
220 => 0.10784134017246
221 => 0.1101130696592
222 => 0.11086673338917
223 => 0.11096634249271
224 => 0.11238026575275
225 => 0.1131907001973
226 => 0.11220857827911
227 => 0.1113763327859
228 => 0.10839533273132
229 => 0.10874039160463
301 => 0.11111750506332
302 => 0.11447531783501
303 => 0.11735667051399
304 => 0.11634772123109
305 => 0.12404529205243
306 => 0.12480847475761
307 => 0.1247030275844
308 => 0.12644167136362
309 => 0.12299081753053
310 => 0.12151551065974
311 => 0.11155627370792
312 => 0.11435441305938
313 => 0.1184216729357
314 => 0.11788335583963
315 => 0.11492960299928
316 => 0.11735442982759
317 => 0.11655270624681
318 => 0.1159203535951
319 => 0.11881728368016
320 => 0.1156319900523
321 => 0.11838989719514
322 => 0.11485285275756
323 => 0.11635233002643
324 => 0.11550115420706
325 => 0.11605196927838
326 => 0.11283191562647
327 => 0.11456937841466
328 => 0.11275963146224
329 => 0.11275877340655
330 => 0.11271882314227
331 => 0.11484798240614
401 => 0.1149174142133
402 => 0.11334396230031
403 => 0.11311720329771
404 => 0.11395565017953
405 => 0.11297404847051
406 => 0.11343333373203
407 => 0.1129879597532
408 => 0.11288769668955
409 => 0.11208878354006
410 => 0.11174458978869
411 => 0.11187955702738
412 => 0.11141884426134
413 => 0.11114124815509
414 => 0.11266360228974
415 => 0.11185026988719
416 => 0.11253894743422
417 => 0.11175411245134
418 => 0.10903353246436
419 => 0.10746889814423
420 => 0.10232997474672
421 => 0.10378736704744
422 => 0.1047536196506
423 => 0.10443427317102
424 => 0.10512035297984
425 => 0.10516247270799
426 => 0.10493942116839
427 => 0.1046811560602
428 => 0.10455544688849
429 => 0.10549238006282
430 => 0.10603630130624
501 => 0.10485059602612
502 => 0.10457280186876
503 => 0.10577161537155
504 => 0.10650289091572
505 => 0.11190221866564
506 => 0.11150221902632
507 => 0.11250613962503
508 => 0.11239311357204
509 => 0.11344538229658
510 => 0.11516539693926
511 => 0.11166812624703
512 => 0.11227513151268
513 => 0.11212630783934
514 => 0.11375112568119
515 => 0.11375619818514
516 => 0.11278203872328
517 => 0.11331014637148
518 => 0.11301537117013
519 => 0.11354806980023
520 => 0.11149687678727
521 => 0.11399500846446
522 => 0.11541128814937
523 => 0.11543095319417
524 => 0.11610225852453
525 => 0.11678434361955
526 => 0.11809354656236
527 => 0.11674783066005
528 => 0.11432701875458
529 => 0.11450179355498
530 => 0.11308247242055
531 => 0.11310633146524
601 => 0.11297897001481
602 => 0.11336119131487
603 => 0.11158075286847
604 => 0.11199861821315
605 => 0.11141360428358
606 => 0.11227385980665
607 => 0.11134836706916
608 => 0.11212623607206
609 => 0.11246193854695
610 => 0.11370068790643
611 => 0.11116540278156
612 => 0.10599578478824
613 => 0.107082501166
614 => 0.10547516228357
615 => 0.10562392761671
616 => 0.10592445726548
617 => 0.10495034234663
618 => 0.10513617277526
619 => 0.10512953360468
620 => 0.1050723208194
621 => 0.1048189159069
622 => 0.10445142864915
623 => 0.10591538477742
624 => 0.10616413945067
625 => 0.10671709027512
626 => 0.10836229685856
627 => 0.10819790192423
628 => 0.1084660368828
629 => 0.10788069977375
630 => 0.10565107972641
701 => 0.105772158822
702 => 0.10426230055975
703 => 0.10667847980473
704 => 0.10610629666751
705 => 0.10573740647668
706 => 0.10563675137036
707 => 0.1072860361027
708 => 0.10777952794399
709 => 0.1074720169455
710 => 0.10684130291608
711 => 0.10805246030643
712 => 0.10837651492946
713 => 0.10844905880888
714 => 0.11059499748819
715 => 0.10856899294265
716 => 0.10905667237352
717 => 0.11286140807889
718 => 0.10941103781175
719 => 0.11123877589469
720 => 0.11114931762662
721 => 0.11208432658257
722 => 0.11107261960137
723 => 0.11108516092192
724 => 0.11191538553181
725 => 0.11074948479902
726 => 0.11046079138148
727 => 0.11006196349281
728 => 0.11093278959689
729 => 0.11145481046221
730 => 0.11566191525459
731 => 0.11837989681776
801 => 0.11826190206993
802 => 0.11934015318813
803 => 0.11885439118373
804 => 0.117285737534
805 => 0.11996323803716
806 => 0.11911596484658
807 => 0.11918581301898
808 => 0.11918321326651
809 => 0.11974657586834
810 => 0.11934738183352
811 => 0.11856052941447
812 => 0.1190828787711
813 => 0.12063406961699
814 => 0.12544901359898
815 => 0.12814352004082
816 => 0.12528680092786
817 => 0.12725732751899
818 => 0.12607571373472
819 => 0.12586097936016
820 => 0.12709861568016
821 => 0.1283384183187
822 => 0.12825944825044
823 => 0.12735941519943
824 => 0.12685100936641
825 => 0.13070082866251
826 => 0.13353730993992
827 => 0.13334388093281
828 => 0.1341976136637
829 => 0.13670419936655
830 => 0.13693337014967
831 => 0.13690449989842
901 => 0.13633647620098
902 => 0.13880453534672
903 => 0.14086343370747
904 => 0.1362049951268
905 => 0.13797886755488
906 => 0.13877521603845
907 => 0.13994449187827
908 => 0.14191725621343
909 => 0.14406020153131
910 => 0.14436323749546
911 => 0.14414821897729
912 => 0.14273488893469
913 => 0.14507972527217
914 => 0.14645327540549
915 => 0.14727119307675
916 => 0.14934529620253
917 => 0.13878013401557
918 => 0.13130158709701
919 => 0.13013370400415
920 => 0.13250864019822
921 => 0.13313489193283
922 => 0.13288245064386
923 => 0.12446466616728
924 => 0.13008938611098
925 => 0.13614111183052
926 => 0.13637358326184
927 => 0.13940320369265
928 => 0.14038977229326
929 => 0.1428290138415
930 => 0.14267643861852
1001 => 0.14327035511871
1002 => 0.14313382400052
1003 => 0.14765200532572
1004 => 0.15263623028383
1005 => 0.15246364242239
1006 => 0.15174710111399
1007 => 0.15281128714542
1008 => 0.1579555414442
1009 => 0.15748194094336
1010 => 0.15794200348873
1011 => 0.16400736922446
1012 => 0.17189320746912
1013 => 0.16822944387926
1014 => 0.17617875664969
1015 => 0.18118242766371
1016 => 0.18983575929322
1017 => 0.18875231955465
1018 => 0.19212099805693
1019 => 0.18681273630191
1020 => 0.17462389433567
1021 => 0.1726949634375
1022 => 0.17655673194394
1023 => 0.18605051299118
1024 => 0.17625773899327
1025 => 0.17823880441891
1026 => 0.17766825744305
1027 => 0.17763785541938
1028 => 0.17879817700908
1029 => 0.17711507002491
1030 => 0.17025778938622
1031 => 0.17340044069272
1101 => 0.17218691210077
1102 => 0.17353341254809
1103 => 0.18079992012325
1104 => 0.17758722391237
1105 => 0.17420290943245
1106 => 0.17844759082977
1107 => 0.18385252887934
1108 => 0.1835142975698
1109 => 0.18285798745959
1110 => 0.1865575731876
1111 => 0.19266820493336
1112 => 0.19431988413973
1113 => 0.19553911996278
1114 => 0.19570723198362
1115 => 0.19743889027932
1116 => 0.18812732718928
1117 => 0.20290501695107
1118 => 0.20545671574748
1119 => 0.20497710213084
1120 => 0.20781320795116
1121 => 0.20697875367376
1122 => 0.20576976034767
1123 => 0.21026559132989
1124 => 0.20511148390363
1125 => 0.19779587729614
1126 => 0.19378239082498
1127 => 0.19906767356892
1128 => 0.2022952113097
1129 => 0.2044284084464
1130 => 0.20507391261105
1201 => 0.18885015732534
1202 => 0.18010645303706
1203 => 0.18571106723907
1204 => 0.19254908337534
1205 => 0.18808934166439
1206 => 0.18826415509605
1207 => 0.18190573541573
1208 => 0.19311166242876
1209 => 0.19147905311965
1210 => 0.19994903310339
1211 => 0.19792760440443
1212 => 0.20483454427844
1213 => 0.20301571553285
1214 => 0.21056557196645
1215 => 0.21357741410202
1216 => 0.21863476580343
1217 => 0.22235497430211
1218 => 0.22453955188878
1219 => 0.22440839804462
1220 => 0.23306478279526
1221 => 0.22796041513886
1222 => 0.22154812635533
1223 => 0.22143214828175
1224 => 0.22475316350557
1225 => 0.23171310033868
1226 => 0.23351771069654
1227 => 0.23452624169711
1228 => 0.23298164136252
1229 => 0.22744121610482
1230 => 0.22504888856914
1231 => 0.22708722094194
]
'min_raw' => 0.084050242881165
'max_raw' => 0.23452624169711
'avg_raw' => 0.15928824228914
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$0.08405'
'max' => '$0.234526'
'avg' => '$0.159288'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.03327423261441
'max_diff' => 0.12117237569957
'year' => 2036
]
11 => [
'items' => [
101 => 0.2245945156059
102 => 0.22889762434549
103 => 0.23480671173938
104 => 0.23358650855961
105 => 0.23766546484651
106 => 0.24188675548474
107 => 0.24792339068743
108 => 0.24950159066536
109 => 0.25211029521533
110 => 0.25479550911204
111 => 0.25565792744712
112 => 0.25730455164148
113 => 0.25729587311918
114 => 0.26225808595948
115 => 0.26773156038928
116 => 0.2697976702753
117 => 0.27454857603224
118 => 0.26641281641507
119 => 0.27258388354157
120 => 0.2781503405615
121 => 0.27151378102425
122 => 0.28066073222629
123 => 0.28101588761403
124 => 0.28637831230898
125 => 0.28094246756438
126 => 0.27771468030687
127 => 0.28703318117569
128 => 0.29154211021609
129 => 0.29018398409424
130 => 0.27984857724801
131 => 0.27383292715706
201 => 0.25808881053678
202 => 0.27673839676872
203 => 0.28582206620641
204 => 0.27982505273862
205 => 0.28284959750633
206 => 0.29935053304703
207 => 0.30563302094447
208 => 0.30432630737971
209 => 0.30454712046181
210 => 0.30793703689605
211 => 0.32296979322654
212 => 0.31396181717675
213 => 0.32084807734439
214 => 0.32450052490705
215 => 0.32789312175636
216 => 0.3195619761357
217 => 0.30872327809205
218 => 0.30529020744403
219 => 0.27922876793747
220 => 0.27787215683206
221 => 0.27711064990906
222 => 0.2723094564769
223 => 0.26853703359678
224 => 0.26553706286142
225 => 0.25766424378476
226 => 0.2603210891141
227 => 0.24777345869094
228 => 0.25580098797496
301 => 0.23577466684647
302 => 0.25245318216763
303 => 0.24337582455736
304 => 0.2494710260579
305 => 0.24944976047407
306 => 0.23822656202617
307 => 0.2317532553836
308 => 0.23587829832111
309 => 0.24030067179644
310 => 0.24101818701416
311 => 0.24675190966068
312 => 0.24835206840537
313 => 0.24350351270469
314 => 0.23535966585383
315 => 0.23725129573592
316 => 0.23171492156442
317 => 0.22201263878242
318 => 0.22898098766205
319 => 0.23136028834623
320 => 0.23241112307414
321 => 0.22287004227275
322 => 0.21987202753801
323 => 0.21827590964902
324 => 0.23412803213414
325 => 0.23499644718801
326 => 0.23055351299086
327 => 0.25063599685831
328 => 0.24609071225325
329 => 0.25116890877886
330 => 0.23707965015124
331 => 0.23761787880452
401 => 0.23094779797982
402 => 0.23468259754669
403 => 0.23204296159104
404 => 0.2343808626497
405 => 0.23578219090473
406 => 0.2424511772348
407 => 0.25252933127897
408 => 0.24145505306819
409 => 0.23662983146516
410 => 0.2396233718096
411 => 0.24759556423098
412 => 0.25967384383839
413 => 0.25252325921277
414 => 0.25569656724482
415 => 0.25638979387918
416 => 0.25111721750528
417 => 0.25986825125002
418 => 0.2645580013271
419 => 0.26936871449915
420 => 0.27354572195331
421 => 0.26744720986838
422 => 0.27397349198662
423 => 0.2687144606432
424 => 0.26399656585948
425 => 0.2640037209584
426 => 0.26104411664313
427 => 0.25530951034815
428 => 0.25425196096271
429 => 0.25975346641953
430 => 0.2641651528014
501 => 0.26452852042236
502 => 0.266971056684
503 => 0.2684165244835
504 => 0.28258407393688
505 => 0.28828237952715
506 => 0.29525015973952
507 => 0.29796450281481
508 => 0.3061337023256
509 => 0.29953641025069
510 => 0.29810904461137
511 => 0.27829323872301
512 => 0.28153807582712
513 => 0.28673337311103
514 => 0.27837890726167
515 => 0.28367789291013
516 => 0.284724024925
517 => 0.27809502570899
518 => 0.2816358606124
519 => 0.27223245289331
520 => 0.2527342998707
521 => 0.25988995826818
522 => 0.26515893141729
523 => 0.2576394570738
524 => 0.27111782379067
525 => 0.26324404020464
526 => 0.26074842881613
527 => 0.25101215903988
528 => 0.25560730359088
529 => 0.26182230239224
530 => 0.25798215570416
531 => 0.26595103668285
601 => 0.27723709737161
602 => 0.28528021631495
603 => 0.28589766711562
604 => 0.28072648048217
605 => 0.28901334006434
606 => 0.28907370078943
607 => 0.27972608932792
608 => 0.27400072935546
609 => 0.27269991552346
610 => 0.27594960351537
611 => 0.27989532466306
612 => 0.28611662717849
613 => 0.28987602999246
614 => 0.29967855869809
615 => 0.30233084190532
616 => 0.30524489702803
617 => 0.30913897333329
618 => 0.31381481035843
619 => 0.30358434514298
620 => 0.30399082059796
621 => 0.29446435303976
622 => 0.28428395622018
623 => 0.29200960840186
624 => 0.30210987092897
625 => 0.29979285954545
626 => 0.29953214843256
627 => 0.29997059220921
628 => 0.29822364129256
629 => 0.29032224704155
630 => 0.28635421631404
701 => 0.29147398830513
702 => 0.29419491926356
703 => 0.29841484588997
704 => 0.29789465086142
705 => 0.30876472866401
706 => 0.31298851220401
707 => 0.31190788762859
708 => 0.31210674855715
709 => 0.31975370690212
710 => 0.32825869729865
711 => 0.33622474313734
712 => 0.34432814711408
713 => 0.33455917733888
714 => 0.32959909695332
715 => 0.33471663381212
716 => 0.3320011967203
717 => 0.34760490370089
718 => 0.34868527051735
719 => 0.36428784917233
720 => 0.37909655423641
721 => 0.36979547191117
722 => 0.37856597361392
723 => 0.38805198627494
724 => 0.40635204374814
725 => 0.40018922819495
726 => 0.39546860806484
727 => 0.39100764485175
728 => 0.40029020114022
729 => 0.41223206151286
730 => 0.41480422385941
731 => 0.41897210950247
801 => 0.41459008737361
802 => 0.41986775036392
803 => 0.43850021984235
804 => 0.43346556211592
805 => 0.42631553878277
806 => 0.4410240839546
807 => 0.44634704927426
808 => 0.48370640754624
809 => 0.53087414060273
810 => 0.51134638939731
811 => 0.49922488406751
812 => 0.50207372534596
813 => 0.51929778472966
814 => 0.52482960593939
815 => 0.50979220895823
816 => 0.51510367178872
817 => 0.5443703541962
818 => 0.56007099032023
819 => 0.53874741758705
820 => 0.47991652612135
821 => 0.42567175741172
822 => 0.44005991274729
823 => 0.43842874244868
824 => 0.46987214160253
825 => 0.43334548719421
826 => 0.43396050237662
827 => 0.46605411772584
828 => 0.45749209137453
829 => 0.44362270522689
830 => 0.42577301927938
831 => 0.3927762239093
901 => 0.36355004206632
902 => 0.42086931504812
903 => 0.41839760376881
904 => 0.41481819954928
905 => 0.42278377630785
906 => 0.46146235597908
907 => 0.46057068952731
908 => 0.45489836249339
909 => 0.45920077255502
910 => 0.44286847194124
911 => 0.44707767768898
912 => 0.42566316476321
913 => 0.43534341895472
914 => 0.44359294775327
915 => 0.44524916279594
916 => 0.44898069985552
917 => 0.41709512424004
918 => 0.43141081158007
919 => 0.43981993669384
920 => 0.40182720350327
921 => 0.43906894251461
922 => 0.41654006730758
923 => 0.40889342868996
924 => 0.41918862022055
925 => 0.41517657406868
926 => 0.41172725238256
927 => 0.40980247161483
928 => 0.41736212403607
929 => 0.41700945721488
930 => 0.40464039858843
1001 => 0.38850546583755
1002 => 0.39392087887986
1003 => 0.39195340855182
1004 => 0.38482304227428
1005 => 0.38962804822163
1006 => 0.36846923378736
1007 => 0.33206659329267
1008 => 0.3561152926465
1009 => 0.35518944388133
1010 => 0.35472258895003
1011 => 0.3727945218572
1012 => 0.37105732249861
1013 => 0.36790428865205
1014 => 0.38476513433505
1015 => 0.37861069885038
1016 => 0.39757721884677
1017 => 0.410069795594
1018 => 0.40690127403838
1019 => 0.41865060285101
1020 => 0.39404563905875
1021 => 0.40221842105073
1022 => 0.4039028200923
1023 => 0.38455707411657
1024 => 0.37134154979798
1025 => 0.37046022499394
1026 => 0.34754632703694
1027 => 0.35978674637105
1028 => 0.37055780884209
1029 => 0.36539930578667
1030 => 0.36376627782522
1031 => 0.37210906351972
1101 => 0.37275736941931
1102 => 0.35797592620428
1103 => 0.36104945631612
1104 => 0.37386658781433
1105 => 0.36072649748773
1106 => 0.33519744840473
1107 => 0.32886589126543
1108 => 0.3280211448293
1109 => 0.31084945970538
1110 => 0.329288996189
1111 => 0.32123964436505
1112 => 0.34666745033087
1113 => 0.33214322393525
1114 => 0.33151711356454
1115 => 0.33057065590879
1116 => 0.31579027716925
1117 => 0.31902624077114
1118 => 0.32978307663498
1119 => 0.33362123685563
1120 => 0.3332208852995
1121 => 0.32973036227088
1122 => 0.33132830583901
1123 => 0.32618077284561
1124 => 0.32436307180901
1125 => 0.31862590733943
1126 => 0.31019386050128
1127 => 0.31136638833087
1128 => 0.29466029717943
1129 => 0.28555793206076
1130 => 0.28303851736316
1201 => 0.27966945073594
1202 => 0.28341906240345
1203 => 0.29461297092221
1204 => 0.28111074232841
1205 => 0.25796211847556
1206 => 0.25935339021245
1207 => 0.26247916473296
1208 => 0.25665430459306
1209 => 0.25114156331409
1210 => 0.25593444459332
1211 => 0.24612606750395
1212 => 0.26366446024414
1213 => 0.26319009587129
1214 => 0.26972732411791
1215 => 0.27381518709794
1216 => 0.26439398639032
1217 => 0.26202457988998
1218 => 0.26337430151609
1219 => 0.24106640957857
1220 => 0.26790429342206
1221 => 0.268136388556
1222 => 0.26614904911012
1223 => 0.28043939373007
1224 => 0.31059647814844
1225 => 0.29925016992434
1226 => 0.29485653643599
1227 => 0.2865042359629
1228 => 0.29763318043276
1229 => 0.29677865113605
1230 => 0.29291414558573
1231 => 0.29057688057091
]
'min_raw' => 0.21827590964902
'max_raw' => 0.56007099032023
'avg_raw' => 0.38917344998462
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$0.218275'
'max' => '$0.56007'
'avg' => '$0.389173'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 0.13422566676785
'max_diff' => 0.32554474862312
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.0068514313855873
]
1 => [
'year' => 2028
'avg' => 0.011759045242411
]
2 => [
'year' => 2029
'avg' => 0.032123592240564
]
3 => [
'year' => 2030
'avg' => 0.024783303573706
]
4 => [
'year' => 2031
'avg' => 0.024340275470379
]
5 => [
'year' => 2032
'avg' => 0.042676163066179
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.0068514313855873
'min' => '$0.006851'
'max_raw' => 0.042676163066179
'max' => '$0.042676'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.042676163066179
]
1 => [
'year' => 2033
'avg' => 0.10976747974431
]
2 => [
'year' => 2034
'avg' => 0.069575903840177
]
3 => [
'year' => 2035
'avg' => 0.082064938132148
]
4 => [
'year' => 2036
'avg' => 0.15928824228914
]
5 => [
'year' => 2037
'avg' => 0.38917344998462
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.042676163066179
'min' => '$0.042676'
'max_raw' => 0.38917344998462
'max' => '$0.389173'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 0.38917344998462
]
]
]
]
'prediction_2025_max_price' => '$0.011714'
'last_price' => 0.011358880381565
'sma_50day_nextmonth' => '$0.011186'
'sma_200day_nextmonth' => '$0.016587'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'increase'
'sma_200day_direction_label' => 'aumentar'
'sma_200day_date_nextmonth' => '4 de fev. de 2026'
'sma_50day_date_nextmonth' => '4 de fev. de 2026'
'daily_sma3' => '$0.01102'
'daily_sma3_action' => 'BUY'
'daily_sma5' => '$0.011065'
'daily_sma5_action' => 'BUY'
'daily_sma10' => '$0.011254'
'daily_sma10_action' => 'BUY'
'daily_sma21' => '$0.01244'
'daily_sma21_action' => 'SELL'
'daily_sma50' => '$0.015403'
'daily_sma50_action' => 'SELL'
'daily_sma100' => '$0.014959'
'daily_sma100_action' => 'SELL'
'daily_sma200' => '$0.0192065'
'daily_sma200_action' => 'SELL'
'daily_ema3' => '$0.011147'
'daily_ema3_action' => 'BUY'
'daily_ema5' => '$0.011159'
'daily_ema5_action' => 'BUY'
'daily_ema10' => '$0.011439'
'daily_ema10_action' => 'SELL'
'daily_ema21' => '$0.012479'
'daily_ema21_action' => 'SELL'
'daily_ema50' => '$0.014231'
'daily_ema50_action' => 'SELL'
'daily_ema100' => '$0.018813'
'daily_ema100_action' => 'SELL'
'daily_ema200' => '$0.117818'
'daily_ema200_action' => 'SELL'
'weekly_sma21' => '$0.015188'
'weekly_sma21_action' => 'SELL'
'weekly_sma50' => '$0.016314'
'weekly_sma50_action' => 'SELL'
'weekly_sma100' => '—'
'weekly_sma100_action' => '—'
'weekly_sma200' => '—'
'weekly_sma200_action' => '—'
'weekly_ema3' => '$0.011229'
'weekly_ema3_action' => 'BUY'
'weekly_ema5' => '$0.011523'
'weekly_ema5_action' => 'SELL'
'weekly_ema10' => '$0.012538'
'weekly_ema10_action' => 'SELL'
'weekly_ema21' => '$0.015959'
'weekly_ema21_action' => 'SELL'
'weekly_ema50' => '$0.1260026'
'weekly_ema50_action' => 'SELL'
'weekly_ema100' => '$0.258327'
'weekly_ema100_action' => 'SELL'
'weekly_ema200' => '$0.129163'
'weekly_ema200_action' => 'SELL'
'rsi_14' => '34.42'
'rsi_14_action' => 'NEUTRAL'
'stoch_rsi_14' => 79.58
'stoch_rsi_14_action' => 'NEUTRAL'
'momentum_10' => 0
'momentum_10_action' => 'BUY'
'vwma_10' => '0.011367'
'vwma_10_action' => 'SELL'
'hma_9' => '0.0108053'
'hma_9_action' => 'BUY'
'stochastic_fast_14' => 32.58
'stochastic_fast_14_action' => 'NEUTRAL'
'cci_20' => -48.09
'cci_20_action' => 'NEUTRAL'
'adx_14' => 36.53
'adx_14_action' => 'SELL'
'ao_5_34' => '-0.003283'
'ao_5_34_action' => 'SELL'
'macd_12_26' => 0
'macd_12_26_action' => 'BUY'
'williams_percent_r_14' => -67.42
'williams_percent_r_14_action' => 'NEUTRAL'
'ultimate_oscillator' => 33.82
'ultimate_oscillator_action' => 'NEUTRAL'
'ichimoku_cloud' => '0.000991'
'ichimoku_cloud_action' => 'NEUTRAL'
'sell_signals' => 19
'buy_signals' => 13
'sell_pct' => 59.38
'buy_pct' => 40.63
'overall_action' => 'bearish'
'overall_action_label' => 'Baixista'
'overall_action_dir' => -1
'last_updated' => 1767707377
'last_updated_date' => '6 de janeiro de 2026'
]
Previsão de preço de Weirdo [OLD] para 2026
A previsão de preço para Weirdo [OLD] em 2026 sugere que o preço médio poderia variar entre $0.003924 na extremidade inferior e $0.011714 na extremidade superior. No mercado de criptomoedas, comparado ao preço médio de hoje, Weirdo [OLD] poderia potencialmente ganhar 3.13% até 2026 se WEIRDO atingir a meta de preço prevista.
Previsão de preço de Weirdo [OLD] 2027-2032
A previsão de preço de WEIRDO para 2027-2032 está atualmente dentro de uma faixa de preço entre $0.006851 na extremidade inferior e $0.042676 na extremidade superior. Considerando a volatilidade de preços no mercado, se Weirdo [OLD] atingir a meta de preço superior, poderia ganhar 275.71% até 2032 em comparação com o preço de hoje.
| Previsão de Preço de Weirdo [OLD] | Potencial Mínimo ($) | Preço Médio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2027 | $0.003778 | $0.006851 | $0.009924 |
| 2028 | $0.006818 | $0.011759 | $0.016699 |
| 2029 | $0.014977 | $0.032123 | $0.049269 |
| 2030 | $0.012737 | $0.024783 | $0.036828 |
| 2031 | $0.01506 | $0.02434 | $0.03362 |
| 2032 | $0.022988 | $0.042676 | $0.062364 |
Previsão de preço de Weirdo [OLD] 2032-2037
A previsão de preço de Weirdo [OLD] para 2032-2037 é atualmente estimada entre $0.042676 na extremidade inferior e $0.389173 na extremidade superior. Comparado ao preço atual, Weirdo [OLD] poderia potencialmente ganhar 3326.16% até 2037 se atingir a meta de preço superior. Por favor, note que esta informação é apenas para fins gerais e não deve ser considerada como aconselhamento de investimento a longo prazo.
| Previsão de Preço de Weirdo [OLD] | Potencial Mínimo ($) | Preço Médio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2032 | $0.022988 | $0.042676 | $0.062364 |
| 2033 | $0.053419 | $0.109767 | $0.166115 |
| 2034 | $0.042946 | $0.069575 | $0.0962053 |
| 2035 | $0.050776 | $0.082064 | $0.113353 |
| 2036 | $0.08405 | $0.159288 | $0.234526 |
| 2037 | $0.218275 | $0.389173 | $0.56007 |
Weirdo [OLD] Histograma de preços potenciais
Previsão de preço de Weirdo [OLD] baseada na análise técnica
Em 6 de janeiro de 2026, o sentimento geral de previsão de preço para Weirdo [OLD] é Baixista, com 13 indicadores técnicos mostrando sinais de alta e 19 indicando sinais de baixa. A previsão de preço de WEIRDO foi atualizada pela última vez em 6 de janeiro de 2026.
Médias Móveis Simples de 50 e 200 dias e Índice de Força Relativa de 14 dias - RSI (14) de Weirdo [OLD]
De acordo com nossos indicadores técnicos, o SMA de 200 dias de Weirdo [OLD] está projetado para aumentar no próximo mês, alcançando $0.016587 até 4 de fev. de 2026. O SMA de 50 dias de curto prazo para Weirdo [OLD] é esperado para alcançar $0.011186 até 4 de fev. de 2026.
O oscilador de momentum Índice de Força Relativa (RSI) é uma ferramenta comumente usada para identificar se uma criptomoeda está sobrevendida (abaixo de 30) ou sobrecomprada (acima de 70). No momento, o RSI está em 34.42, sugerindo que o mercado de WEIRDO está em um estado NEUTRAL.
Médias Móveis e Osciladores Populares de WEIRDO para Sábado, 19 de Outubro de 2024
Médias móveis (MA) são indicadores amplamente utilizados nos mercados financeiros, projetados para suavizar movimentos de preços ao longo de um período definido. Como indicadores atrasados, eles se baseiam em dados históricos de preços. A tabela abaixo destaca dois tipos: a média móvel simples (SMA) e a média móvel exponencial (EMA).
Média Móvel Simples Diária (SMA)
| Período | Valor | Ação |
|---|---|---|
| SMA 3 | $0.01102 | BUY |
| SMA 5 | $0.011065 | BUY |
| SMA 10 | $0.011254 | BUY |
| SMA 21 | $0.01244 | SELL |
| SMA 50 | $0.015403 | SELL |
| SMA 100 | $0.014959 | SELL |
| SMA 200 | $0.0192065 | SELL |
Média Móvel Exponencial Diária (EMA)
| Período | Valor | Ação |
|---|---|---|
| EMA 3 | $0.011147 | BUY |
| EMA 5 | $0.011159 | BUY |
| EMA 10 | $0.011439 | SELL |
| EMA 21 | $0.012479 | SELL |
| EMA 50 | $0.014231 | SELL |
| EMA 100 | $0.018813 | SELL |
| EMA 200 | $0.117818 | SELL |
Média Móvel Simples Semanal (SMA)
| Período | Valor | Ação |
|---|---|---|
| SMA 21 | $0.015188 | SELL |
| SMA 50 | $0.016314 | SELL |
| SMA 100 | — | — |
| SMA 200 | — | — |
Média Móvel Exponencial Semanal (EMA)
| Período | Valor | Ação |
|---|---|---|
| EMA 21 | $0.015959 | SELL |
| EMA 50 | $0.1260026 | SELL |
| EMA 100 | $0.258327 | SELL |
| EMA 200 | $0.129163 | SELL |
Osciladores de Weirdo [OLD]
Um oscilador é uma ferramenta de análise técnica que define limites altos e baixos entre dois extremos, criando um indicador de tendência que flutua dentro desses limites. Os traders usam esse indicador para identificar condições de sobrecompra ou sobrevenda de curto prazo.
| Período | Valor | Ação |
|---|---|---|
| RSI (14) | 34.42 | NEUTRAL |
| Stoch RSI (14) | 79.58 | NEUTRAL |
| Estocástico Rápido (14) | 32.58 | NEUTRAL |
| Índice de Canal de Commodities (20) | -48.09 | NEUTRAL |
| Índice Direcional Médio (14) | 36.53 | SELL |
| Oscilador Impressionante (5, 34) | -0.003283 | SELL |
| Momentum (10) | 0 | BUY |
| MACD (12, 26) | 0 | BUY |
| Williams Percent Range (14) | -67.42 | NEUTRAL |
| Oscilador Ultimate (7, 14, 28) | 33.82 | NEUTRAL |
| VWMA (10) | 0.011367 | SELL |
| Média Móvel de Hull (9) | 0.0108053 | BUY |
| Nuvem Ichimoku B/L (9, 26, 52, 26) | 0.000991 | NEUTRAL |
Previsão do preço de Weirdo [OLD] com base nos fluxos financeiros mundiais
Definições dos fluxos financeiros mundiais, usadas na previsão do preço do Weirdo [OLD]
M0: o total de todas as moedas físicas, mais as contas no Banco Central que podem ser trocadas por moedas físicas.
M1: o valor de M0, mais o valor em contas de demanda, incluindo contas 'correntes'.
M2: o valor de M1, mais a maioria das contas de poupança, do mercado de moedas e de certificados de depósito (CD) de menos de US$ 100.000.
Previsões de preço de Weirdo [OLD] por empresas de Internet ou nichos tecnológicos
| Comparação | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Facebook stock | $0.015961 | $0.022428 | $0.031515 | $0.044284 | $0.062226 | $0.087438 |
| Amazon.com stock | $0.02370097 | $0.049453 | $0.103187 | $0.2153072 | $0.449251 | $0.937389 |
| Apple stock | $0.016111 | $0.022853 | $0.032415 | $0.045978 | $0.065217 | $0.0925063 |
| Netflix stock | $0.017922 | $0.028278 | $0.044619 | $0.0704029 | $0.111084 | $0.175274 |
| Google stock | $0.0147096 | $0.019048 | $0.024668 | $0.031945 | $0.041369 | $0.053572 |
| Tesla stock | $0.025749 | $0.058372 | $0.132326 | $0.299974 | $0.680018 | $1.54 |
| Kodak stock | $0.008517 | $0.006387 | $0.004789 | $0.003591 | $0.002693 | $0.002019 |
| Nokia stock | $0.007524 | $0.004984 | $0.0033022 | $0.002187 | $0.001449 | $0.00096 |
Este cálculo mostra quanto a criptomoeda pode custar, se assumirmos que sua capitalização se comportará da mesma forma que a de algumas empresas de Internet ou nichos tecnológicos. Se você extrapolar os dados, poderá obter uma imagem em potencial do preço futuro para 2024, 2025, 2026, 2027, 2028, 2029 e 2030.
Visão geral da previsão para Weirdo [OLD]
Você pode fazer perguntas como: 'Devo investir em Weirdo [OLD] agora?', 'Devo comprar WEIRDO hoje?', 'Weirdo [OLD] será um bom ou mau investimento no curto ou no longo prazo?'.
Atualizamos a previsão para Weirdo [OLD] regularmente com novos valores. Veja nossas previsões semelhantes. Fazemos previsões de preços futuros para uma enorme quantidade de moedas digitais, como Weirdo [OLD], com métodos de análise técnica.
Se você estiver tentando encontrar criptomoedas com bom retorno, você deve explorar o máximo de fontes de informações disponíveis sobre Weirdo [OLD] para poder tomar sozinho uma decisão de tão grande responsabilidade sobre o seu investimento.
O preço de Weirdo [OLD] é de $0.01135 USD hoje, mas o preço pode tanto subir quanto descer e seu investimento pode ser perdido, porque criptomoedas são ativos de alto risco
Previsão do preço de Weirdo [OLD] com base no padrão de crescimento do Bitcoin
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| Se Weirdo [OLD] tiver 1% da média anterior do crescimento anual do Bitcoin | $0.011654 | $0.011957 | $0.012267 | $0.012586 |
| Se Weirdo [OLD] tiver 2% da média anterior do crescimento anual do Bitcoin | $0.011949 | $0.01257 | $0.013224 | $0.013911 |
| Se Weirdo [OLD] tiver 5% da média anterior do crescimento anual do Bitcoin | $0.012835 | $0.0145032 | $0.016388 | $0.018518 |
| Se Weirdo [OLD] tiver 10% da média anterior do crescimento anual do Bitcoin | $0.014311 | $0.018031 | $0.022718 | $0.028623 |
| Se Weirdo [OLD] tiver 20% da média anterior do crescimento anual do Bitcoin | $0.017263 | $0.026238 | $0.039879 | $0.060611 |
| Se Weirdo [OLD] tiver 50% da média anterior do crescimento anual do Bitcoin | $0.026121 | $0.06007 | $0.138142 | $0.31768 |
| Se Weirdo [OLD] tiver 100% da média anterior do crescimento anual do Bitcoin | $0.040884 | $0.147155 | $0.52966 | $1.90 |
Perguntas Frequentes sobre Weirdo [OLD]
WEIRDO é um bom investimento?
A decisão de adquirir Weirdo [OLD] depende inteiramente da sua tolerância individual ao risco. Como você pode perceber, o valor de Weirdo [OLD] experimentou uma queda de 0% nas últimas 24 horas, e Weirdo [OLD] registrou um declínio de durante os últimos 30 dias. Consequentemente, a decisão de investir ou não em Weirdo [OLD] dependerá de quão alinhado esse investimento está com suas aspirações de negociação.
Weirdo [OLD] pode subir?
Parece que o valor médio de Weirdo [OLD] pode potencialmente subir para $0.011714 até o final deste ano. Observando as perspectivas de Weirdo [OLD] em um horizonte de cinco anos mais longo, a moeda digital poderia potencialmente crescer até $0.036828. No entanto, dada a imprevisibilidade do mercado, é vital conduzir uma pesquisa aprofundada antes de investir quaisquer fundos em um projeto, rede ou ativo específico.
Qual será o preço de Weirdo [OLD] na próxima semana?
Com base na nossa nova previsão experimental de Weirdo [OLD], o preço de Weirdo [OLD] aumentará 0.86% na próxima semana e atingirá $0.011456 até 13 de janeiro de 2026.
Qual será o preço de Weirdo [OLD] no próximo mês?
Com base na nossa nova previsão experimental de Weirdo [OLD], o preço de Weirdo [OLD] diminuirá -11.62% no próximo mês e atingirá $0.0100392 até 5 de fevereiro de 2026.
Até onde o preço de Weirdo [OLD] pode subir este ano em 2026?
De acordo com nossa previsão mais recente sobre o valor de Weirdo [OLD] em 2026, espera-se que WEIRDO fluctue dentro do intervalo de $0.003924 e $0.011714. No entanto, é crucial lembrar que o mercado de criptomoedas é excepcionalmente instável, e essa previsão de preço de Weirdo [OLD] não considera flutuações repentinas e extremas de preço.
Onde estará Weirdo [OLD] em 5 anos?
O futuro de Weirdo [OLD] parece seguir uma tendência de alta, com um preço máximo de $0.036828 projetada após um período de cinco anos. Com base na previsão de Weirdo [OLD] para 2030, o valor de Weirdo [OLD] pode potencialmente atingir seu pico mais alto de aproximadamente $0.036828, enquanto seu pico mais baixo está previsto para cerca de $0.012737.
Quanto será Weirdo [OLD] em 2026?
Com base na nossa nova simulação experimental de previsão de preços de Weirdo [OLD], espera-se que o valor de WEIRDO em 2026 aumente 3.13% para $0.011714 se o melhor cenário ocorrer. O preço ficará entre $0.011714 e $0.003924 durante 2026.
Quanto será Weirdo [OLD] em 2027?
De acordo com nossa última simulação experimental para previsão de preços de Weirdo [OLD], o valor de WEIRDO pode diminuir -12.62% para $0.009924 em 2027, assumindo as condições mais favoráveis. O preço está projetado para flutuar entre $0.009924 e $0.003778 ao longo do ano.
Quanto será Weirdo [OLD] em 2028?
Nosso novo modelo experimental de previsão de preços de Weirdo [OLD] sugere que o valor de WEIRDO em 2028 pode aumentar 47.02%, alcançando $0.016699 no melhor cenário. O preço é esperado para variar entre $0.016699 e $0.006818 durante o ano.
Quanto será Weirdo [OLD] em 2029?
Com base no nosso modelo de previsão experimental, o valor de Weirdo [OLD] pode experimentar um 333.75% crescimento em 2029, potencialmente alcançando $0.049269 sob condições ótimas. A faixa de preço prevista para 2029 está entre $0.049269 e $0.014977.
Quanto será Weirdo [OLD] em 2030?
Usando nossa nova simulação experimental para previsões de preços de Weirdo [OLD], espera-se que o valor de WEIRDO em 2030 aumente 224.23%, alcançando $0.036828 no melhor cenário. O preço está previsto para variar entre $0.036828 e $0.012737 ao longo de 2030.
Quanto será Weirdo [OLD] em 2031?
Nossa simulação experimental indica que o preço de Weirdo [OLD] poderia aumentar 195.98% em 2031, potencialmente atingindo $0.03362 sob condições ideais. O preço provavelmente oscilará entre $0.03362 e $0.01506 durante o ano.
Quanto será Weirdo [OLD] em 2032?
Com base nos achados da nossa mais recente previsão experimental de preços de Weirdo [OLD], WEIRDO poderia ver um 449.04% aumento em valor, atingindo $0.062364 se o cenário mais positivo se desenrolar em 2032. O preço é esperado para permanecer dentro de uma faixa de $0.062364 e $0.022988 ao longo do ano.
Quanto será Weirdo [OLD] em 2033?
De acordo com nossa previsão experimental de preços de Weirdo [OLD], espera-se que o valor de WEIRDO seja aumentar 1362.43% em 2033, com o preço potencial mais alto sendo $0.166115. Ao longo do ano, o preço de WEIRDO poderia variar entre $0.166115 e $0.053419.
Quanto será Weirdo [OLD] em 2034?
Os resultados da nossa nova simulação de previsão de preços de Weirdo [OLD] sugerem que WEIRDO pode aumentar 746.96% em 2034, atingindo potencialmente $0.0962053 nas melhores circunstâncias. A faixa de preço prevista para o ano é entre $0.0962053 e $0.042946.
Quanto será Weirdo [OLD] em 2035?
Com base em nossa previsão experimental para o preço de Weirdo [OLD], WEIRDO poderia aumentar 897.93%, com o valor potencialmente atingindo $0.113353 em 2035. A faixa de preço esperada para o ano está entre $0.113353 e $0.050776.
Quanto será Weirdo [OLD] em 2036?
Nossa recente simulação de previsão de preços de Weirdo [OLD] sugere que o valor de WEIRDO pode aumentar 1964.7% em 2036, possivelmente atingindo $0.234526 se as condições forem ideais. A faixa de preço esperada para 2036 está entre $0.234526 e $0.08405.
Quanto será Weirdo [OLD] em 2037?
De acordo com a simulação experimental, o valor de Weirdo [OLD] poderia aumentar 4830.69% em 2037, com um pico de $0.56007 sob condições favoráveis. O preço é esperado para cair entre $0.56007 e $0.218275 ao longo do ano.
Previsões relacionadas
Previsão de Preço do SolPod
Previsão de Preço do zuzalu
Previsão de Preço do SOFT COQ INU
Previsão de Preço do All Street Bets
Previsão de Preço do MagicRing
Previsão de Preço do AI INU
Previsão de Preço do Wall Street Baby On Solana
Previsão de Preço do Meta Masters Guild Games
Previsão de Preço do Morfey
Previsão de Preço do PANTIESPrevisão de Preço do Celer Bridged BUSD (zkSync)
Previsão de Preço do Bridged BUSD
Previsão de Preço do Multichain Bridged BUSD (Moonriver)
Previsão de Preço do tooker kurlson
Previsão de Preço do dogwifsaudihatPrevisão de Preço do Harmony Horizen Bridged BUSD (Harmony)
Previsão de Preço do IoTeX Bridged BUSD (IoTeX)
Previsão de Preço do MIMANY
Previsão de Preço do The Open League MEME
Previsão de Preço do Sandwich Cat
Previsão de Preço do Hege
Previsão de Preço do DexNet
Previsão de Preço do SolDocs
Previsão de Preço do Secret Society
Previsão de Preço do duk
Como ler e prever os movimentos de preço de Weirdo [OLD]?
Traders de Weirdo [OLD] utilizam indicadores e padrões de gráfico para prever a direção do mercado. Eles também identificam níveis-chave de suporte e resistência para avaliar quando uma tendência de baixa pode desacelerar ou uma tendência de alta pode estagnar.
Indicadores de Previsão de Preço de Weirdo [OLD]
Médias móveis são ferramentas populares para a previsão de preço de Weirdo [OLD]. Uma média móvel simples (SMA) calcula o preço médio de fechamento de WEIRDO em um período específico, como uma SMA de 12 dias. Uma média móvel exponencial (EMA) dá mais peso aos preços recentes, reagindo mais rapidamente às mudanças de preço.
Médias móveis comumente usadas no mercado de criptomoedas incluem as de 50 dias, 100 dias e 200 dias, que ajudam a identificar níveis-chave de resistência e suporte. Um movimento de preço de WEIRDO acima dessas médias é visto como altista, enquanto uma queda abaixo indica fraqueza.
Traders também usam RSI e níveis de retração de Fibonacci para avaliar a direção futura de WEIRDO.
Como ler gráficos de Weirdo [OLD] e prever movimentos de preço?
A maioria dos traders prefere gráficos de velas em vez de gráficos de linha simples porque eles fornecem informações mais detalhadas. Velas podem representar a ação de preço de Weirdo [OLD] em diferentes períodos de tempo, como 5 minutos para tendências de curto prazo e semanal para tendências de longo prazo. Opções populares incluem gráficos de 1 hora, 4 horas e 1 dia.
Por exemplo, um gráfico de velas de 1 hora mostra os preços de abertura, fechamento, máximo e mínimo de WEIRDO dentro de cada hora. A cor da vela é crucial: verde indica que o preço fechou mais alto do que abriu, enquanto vermelho significa o oposto. Alguns gráficos usam velas vazias e preenchidas para transmitir a mesma informação.
O que afeta o preço de Weirdo [OLD]?
A ação de preço de Weirdo [OLD] é impulsionada pela oferta e demanda, influenciada por fatores como reduções pela metade das recompensas de bloco, hard forks e atualizações de protocolo. Eventos do mundo real, como regulamentações, adoção por empresas e governos e hacks de exchanges de criptomoedas, também impactam o preço de WEIRDO. A capitalização de mercado de Weirdo [OLD] pode mudar rapidamente.
Traders frequentemente monitoram a atividade de "baleias" de WEIRDO, grandes detentores de Weirdo [OLD], pois suas ações podem influenciar significativamente os movimentos de preço no relativamente pequeno mercado de Weirdo [OLD].
Padrões de previsão de preço altistas e baixistas
Traders frequentemente identificam padrões de velas para ganhar vantagem em previsões de preço de criptomoedas. Certas formações indicam tendências altistas, enquanto outras sugerem movimentos baixistas.
Padrões de velas altistas comumente seguidos:
- Martelo
- Engolfo de Alta
- Linha de Perfuração
- Estrela da Manhã
- Três Soldados Brancos
Padrões de velas baixistas comuns:
- Harami de Baixa
- Nuvem Negra
- Estrela da Noite
- Estrela Cadente
- Homem Enforcado


