Previsão de Preço Xauras - Projeção XRS
Previsão de Preço Xauras até $0.014952 até 2026
| Ano | Preço Mínimo | Preço Máximo |
|---|---|---|
| 2026 | $0.0050093 | $0.014952 |
| 2027 | $0.004822 | $0.012668 |
| 2028 | $0.0087029 | $0.021316 |
| 2029 | $0.019117 | $0.062888 |
| 2030 | $0.016258 | $0.0470092 |
| 2031 | $0.019223 | $0.042914 |
| 2032 | $0.029342 | $0.0796034 |
| 2033 | $0.068185 | $0.212034 |
| 2034 | $0.054817 | $0.122799 |
| 2035 | $0.064811 | $0.144687 |
Calculadora de lucro do investimento
Se você abrir um short de $10,000.00 em Xauras hoje e fechar em Apr 06, 2026, nossa previsão mostra que pode lucrar cerca de $3,954.66, com um retorno de 39.55% nos próximos 90 dias.
Previsão de preço de longo prazo de Xauras para os anos 2027, 2028, 2029, 2030, 2031, 2032 e 2037
[
'name' => 'Xauras'
'name_with_ticker' => 'Xauras <small>XRS</small>'
'name_lang' => 'Xauras'
'name_lang_with_ticker' => 'Xauras <small>XRS</small>'
'name_with_lang' => 'Xauras'
'name_with_lang_with_ticker' => 'Xauras <small>XRS</small>'
'image' => '/uploads/coins/vertek.png?1717618240'
'price_for_sd' => 0.01449
'ticker' => 'XRS'
'marketcap' => '$0'
'low24h' => '$0.01449'
'high24h' => '$0.01449'
'volume24h' => '$0.03'
'current_supply' => '0'
'max_supply' => '1.25M'
'algo' => null
'proof' => null
'ico_price_and_roi' => '—'
'price' => '$0.01449'
'change_24h_pct' => '0.0241%'
'ath_price' => '$0.01499'
'ath_days' => 3
'ath_exchange' => null
'ath_pair' => null
'ath_date' => '3 de jan. de 2026'
'ath_pct' => '-3.31%'
'fdv' => '$18.12K'
'new_prediction' => true
'change_24h_pct_is_increased' => true
'change_30d_pct' => null
'change_30d_pct_is_increased' => false
'max_price' => '$0.714889'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.014622'
'next_week_prediction_price_date' => '13 de janeiro de 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.012814'
'next_month_prediction_price_date' => '5 de fevereiro de 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.0050093'
'current_year_max_price_prediction' => '$0.014952'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.016258'
'grand_prediction_max_price' => '$0.0470092'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.014773514065147
107 => 0.014828673003881
108 => 0.014952948909333
109 => 0.013891024903966
110 => 0.014367797605925
111 => 0.014647856900765
112 => 0.013382538818034
113 => 0.014622845630577
114 => 0.0138725391696
115 => 0.01361787388752
116 => 0.013960747140242
117 => 0.013827129100201
118 => 0.013712252155688
119 => 0.013648148846814
120 => 0.013899917122073
121 => 0.013888171831104
122 => 0.013476230066664
123 => 0.012938868827847
124 => 0.013119224897875
125 => 0.013053699846787
126 => 0.012816228608742
127 => 0.012976255550798
128 => 0.012271577885768
129 => 0.011059216589041
130 => 0.01186013959729
131 => 0.011829304932709
201 => 0.011813756696586
202 => 0.012415628201399
203 => 0.012357772143749
204 => 0.012252762832587
205 => 0.012814300030393
206 => 0.012609331399453
207 => 0.013240996423328
208 => 0.013657051861585
209 => 0.01355152674446
210 => 0.013942828895111
211 => 0.013123379937461
212 => 0.013395568010606
213 => 0.013451665595245
214 => 0.012807370748538
215 => 0.012367238110299
216 => 0.012337886281207
217 => 0.011574756940514
218 => 0.011982414474548
219 => 0.012341136234482
220 => 0.012169336349407
221 => 0.012114949638167
222 => 0.012392799550851
223 => 0.01241439086869
224 => 0.011922106533814
225 => 0.012024468035652
226 => 0.012451332514501
227 => 0.012013712146006
228 => 0.011163487254903
301 => 0.010952619726631
302 => 0.0109244861113
303 => 0.010352596650511
304 => 0.010966710903173
305 => 0.010698633574647
306 => 0.0115454866434
307 => 0.011061768712292
308 => 0.011040916599077
309 => 0.011009395571612
310 => 0.010517146688255
311 => 0.010624917909662
312 => 0.010983165863638
313 => 0.011110992769569
314 => 0.011097659376025
315 => 0.010981410253222
316 => 0.01103462850635
317 => 0.010863193970557
318 => 0.010802656867868
319 => 0.010611585119738
320 => 0.010330762434904
321 => 0.010369812551616
322 => 0.009813429331708
323 => 0.0095102822240097
324 => 0.0094263751000134
325 => 0.0093141709870856
326 => 0.0094390488531324
327 => 0.0098118531679519
328 => 0.0093621720694321
329 => 0.0085912253674815
330 => 0.008637560577898
331 => 0.0087416620386564
401 => 0.0085476696552332
402 => 0.0083640721448697
403 => 0.0085236952843939
404 => 0.0081970350035666
405 => 0.0087811373729564
406 => 0.0087653390407924
407 => 0.0089830562834527
408 => 0.0091191993432958
409 => 0.0088054336671965
410 => 0.0087265224481702
411 => 0.0087714738648425
412 => 0.0080285270777666
413 => 0.0089223416806559
414 => 0.0089300714264581
415 => 0.0088638846500345
416 => 0.0093398133326432
417 => 0.010344171298826
418 => 0.0099662914317426
419 => 0.0098199649257284
420 => 0.0095417981308313
421 => 0.0099124388691217
422 => 0.0098839794433172
423 => 0.0097552751269126
424 => 0.0096774343547692
425 => 0.0098208583641718
426 => 0.009659662532801
427 => 0.0096307073321215
428 => 0.0094552703195733
429 => 0.0093926472879691
430 => 0.009346283688464
501 => 0.0092952419210021
502 => 0.0094078273412071
503 => 0.0091526939671772
504 => 0.0088450281291303
505 => 0.0088194490436872
506 => 0.0088900751475318
507 => 0.0088588283540756
508 => 0.0088192994460616
509 => 0.0087438279956054
510 => 0.0087214372284475
511 => 0.0087941963592549
512 => 0.0087120555426942
513 => 0.0088332587919714
514 => 0.0088002982146497
515 => 0.0086161831090832
516 => 0.0083867075194047
517 => 0.0083846647053152
518 => 0.0083352245659344
519 => 0.0082722551150581
520 => 0.0082547384543703
521 => 0.0085102522688083
522 => 0.0090391582178101
523 => 0.0089353213243743
524 => 0.0090103541215145
525 => 0.0093794412207555
526 => 0.0094967629107679
527 => 0.0094134907541136
528 => 0.0092995026900823
529 => 0.0093045175864004
530 => 0.009694049307729
531 => 0.0097183439233789
601 => 0.0097797285793862
602 => 0.0098586252096573
603 => 0.0094269271914074
604 => 0.0092841846485628
605 => 0.0092165453127083
606 => 0.0090082423379936
607 => 0.009232879237676
608 => 0.0091019929361422
609 => 0.0091196539699318
610 => 0.0091081521985074
611 => 0.0091144329434515
612 => 0.0087809741044401
613 => 0.0089024689792953
614 => 0.0087004601855301
615 => 0.0084299930872298
616 => 0.0084290863866783
617 => 0.0084952828258168
618 => 0.0084559065935503
619 => 0.0083499461649766
620 => 0.0083649973437364
621 => 0.0082331331802062
622 => 0.0083810080406667
623 => 0.008385248562543
624 => 0.0083283086864676
625 => 0.0085561303118054
626 => 0.0086494690175911
627 => 0.0086119899713879
628 => 0.008646839387798
629 => 0.008939636216092
630 => 0.0089873748747252
701 => 0.0090085772334513
702 => 0.0089801688815326
703 => 0.0086521911763245
704 => 0.0086667383822193
705 => 0.0085600006375855
706 => 0.0084698184911164
707 => 0.0084734253040321
708 => 0.0085197906501757
709 => 0.0087222708360762
710 => 0.009148378450445
711 => 0.0091645489229297
712 => 0.0091841480073071
713 => 0.0091044286814336
714 => 0.009080384569939
715 => 0.0091121049593122
716 => 0.0092721285755951
717 => 0.0096837527626627
718 => 0.0095382572834979
719 => 0.0094199671941649
720 => 0.0095237394932891
721 => 0.0095077645612331
722 => 0.009372920058077
723 => 0.009369135421987
724 => 0.0091103257080351
725 => 0.0090146496495991
726 => 0.0089346955739412
727 => 0.0088473878105767
728 => 0.0087956288418715
729 => 0.0088751541418332
730 => 0.0088933425188502
731 => 0.0087194590606195
801 => 0.008695759387784
802 => 0.0088377563733104
803 => 0.0087752687941615
804 => 0.0088395388189336
805 => 0.0088544500159787
806 => 0.0088520489698205
807 => 0.0087868047605362
808 => 0.0088283894739237
809 => 0.0087300292297626
810 => 0.0086230772374684
811 => 0.0085548485297293
812 => 0.0084953099330022
813 => 0.0085283454068699
814 => 0.0084105799745705
815 => 0.008372904442628
816 => 0.0088143015087137
817 => 0.0091403662672493
818 => 0.0091356251565243
819 => 0.009106764864301
820 => 0.0090638843241537
821 => 0.0092689915969969
822 => 0.0091975363243877
823 => 0.0092495260054987
824 => 0.0092627595613415
825 => 0.0093028135491856
826 => 0.0093171294070833
827 => 0.0092738569415139
828 => 0.0091286292617764
829 => 0.008766735691704
830 => 0.0085982732579223
831 => 0.0085426778488105
901 => 0.008544698636341
902 => 0.0084889562950571
903 => 0.0085053749127617
904 => 0.0084832465698587
905 => 0.0084413408418215
906 => 0.0085257578462509
907 => 0.0085354861196126
908 => 0.0085157821820707
909 => 0.0085204231726547
910 => 0.0083572829854696
911 => 0.0083696861795794
912 => 0.0083006236186542
913 => 0.0082876752210423
914 => 0.0081130910809884
915 => 0.0078037899705073
916 => 0.0079751728102991
917 => 0.0077681664399046
918 => 0.0076897699907779
919 => 0.0080608865877946
920 => 0.0080236367746263
921 => 0.0079598812865866
922 => 0.0078655736319679
923 => 0.0078305940055039
924 => 0.0076180688683129
925 => 0.0076055117494302
926 => 0.0077108449460834
927 => 0.007662237300122
928 => 0.007593973756037
929 => 0.0073467301191256
930 => 0.0070687464116822
1001 => 0.0070771369924667
1002 => 0.0071655584377336
1003 => 0.0074226557151039
1004 => 0.0073222033610073
1005 => 0.0072493240255522
1006 => 0.0072356759167663
1007 => 0.0074065105724736
1008 => 0.0076482774012663
1009 => 0.0077617089881079
1010 => 0.0076493017305164
1011 => 0.0075201743254318
1012 => 0.0075280337122605
1013 => 0.0075803186917646
1014 => 0.0075858131038407
1015 => 0.0075017644376423
1016 => 0.0075254236448593
1017 => 0.0074894831456535
1018 => 0.0072689163683684
1019 => 0.0072649270147921
1020 => 0.0072107963705266
1021 => 0.0072091573161311
1022 => 0.0071170675867135
1023 => 0.0071041835969817
1024 => 0.0069213338497759
1025 => 0.0070416861071068
1026 => 0.0069609601316664
1027 => 0.0068392870453451
1028 => 0.0068183105594019
1029 => 0.0068176799809046
1030 => 0.0069426110349523
1031 => 0.0070402262150018
1101 => 0.0069623643945709
1102 => 0.0069446367673468
1103 => 0.0071339214468458
1104 => 0.0071098332460114
1105 => 0.007088973019441
1106 => 0.0076266298334697
1107 => 0.0072010325112816
1108 => 0.0070154477865618
1109 => 0.0067857514481375
1110 => 0.0068605417341579
1111 => 0.0068763011463203
1112 => 0.0063239228582871
1113 => 0.0060998230556264
1114 => 0.0060229204483761
1115 => 0.0059786619106603
1116 => 0.0059988310820611
1117 => 0.0057971149753813
1118 => 0.0059326715351466
1119 => 0.0057580024373999
1120 => 0.0057287185947403
1121 => 0.0060410485788604
1122 => 0.0060845074715455
1123 => 0.0058990983337315
1124 => 0.0060181610152209
1125 => 0.0059749872318178
1126 => 0.0057609966377501
1127 => 0.005752823771065
1128 => 0.0056454508130949
1129 => 0.0054774329253733
1130 => 0.0054006442421628
1201 => 0.0053606520292368
1202 => 0.0053771535957227
1203 => 0.0053688098987512
1204 => 0.0053143616321176
1205 => 0.0053719308096598
1206 => 0.0052248653502661
1207 => 0.0051663026993487
1208 => 0.0051398513085725
1209 => 0.0050093222485886
1210 => 0.0052170520295593
1211 => 0.0052579774133214
1212 => 0.005298983432732
1213 => 0.0056559128357024
1214 => 0.005638081651402
1215 => 0.0057992668733385
1216 => 0.0057930035120147
1217 => 0.0057470308756909
1218 => 0.0055530798851726
1219 => 0.0056303852931492
1220 => 0.0053924512633249
1221 => 0.0055707276164106
1222 => 0.0054893697338608
1223 => 0.0055432204344819
1224 => 0.0054463920192433
1225 => 0.0054999808621836
1226 => 0.005267682340043
1227 => 0.0050507652485966
1228 => 0.0051380590183993
1229 => 0.0052329573294283
1230 => 0.0054387210473791
1231 => 0.0053161698744814
]
'min_raw' => 0.0050093222485886
'max_raw' => 0.014952948909333
'avg_raw' => 0.0099811355789607
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.0050093'
'max' => '$0.014952'
'avg' => '$0.009981'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.0094894477514114
'max_diff' => 0.00045417890933279
'year' => 2026
]
1 => [
'items' => [
101 => 0.0053602439104283
102 => 0.0052126032679107
103 => 0.0049079784509321
104 => 0.0049097025943141
105 => 0.0048628427028343
106 => 0.0048223489149396
107 => 0.0053302463509064
108 => 0.0052670812760737
109 => 0.0051664359961683
110 => 0.0053011537028061
111 => 0.0053367752026986
112 => 0.0053377892967226
113 => 0.0054360758579183
114 => 0.0054885314132473
115 => 0.0054977769322294
116 => 0.0056524329598924
117 => 0.0057042716204028
118 => 0.005917787726563
119 => 0.0054840809258642
120 => 0.0054751490197125
121 => 0.00530304945721
122 => 0.0051939011938845
123 => 0.0053105229321803
124 => 0.0054138338718556
125 => 0.0053062596160839
126 => 0.0053203065428712
127 => 0.0051758968936372
128 => 0.0052275165481328
129 => 0.0052719783485028
130 => 0.0052474291556823
131 => 0.0052106778258357
201 => 0.0054053635529446
202 => 0.0053943786212416
203 => 0.005575674446131
204 => 0.005717007506221
205 => 0.0059703016162089
206 => 0.005705976007916
207 => 0.0056963429321507
208 => 0.0057905077929507
209 => 0.0057042572042532
210 => 0.0057587645990409
211 => 0.0059615196322276
212 => 0.0059658035265816
213 => 0.0058940427766654
214 => 0.0058896761285113
215 => 0.0059034585655093
216 => 0.0059841827294932
217 => 0.0059559752261942
218 => 0.0059886176631384
219 => 0.0060294375303758
220 => 0.0061982858085349
221 => 0.0062389945567659
222 => 0.0061400934036306
223 => 0.0061490230704095
224 => 0.0061120313242395
225 => 0.0060762977609445
226 => 0.0061566215927638
227 => 0.0063034149741824
228 => 0.0063025017801751
301 => 0.0063365549914087
302 => 0.0063577698598951
303 => 0.0062667001141184
304 => 0.0062074170583451
305 => 0.0062301499542074
306 => 0.0062665003497494
307 => 0.0062183620108516
308 => 0.0059212298833268
309 => 0.006011360789944
310 => 0.0059963585999067
311 => 0.005974993656965
312 => 0.0060656209805303
313 => 0.0060568797540856
314 => 0.0057950460851516
315 => 0.0058118078271195
316 => 0.0057960654221973
317 => 0.005846932353094
318 => 0.0057015102230537
319 => 0.0057462410908211
320 => 0.005774295871759
321 => 0.0057908203532584
322 => 0.0058505181113772
323 => 0.0058435132684909
324 => 0.0058500826805081
325 => 0.0059385986961745
326 => 0.0063862823283865
327 => 0.0064106487607295
328 => 0.0062906595362684
329 => 0.0063385928647578
330 => 0.0062465713559248
331 => 0.0063083460112949
401 => 0.0063506106615931
402 => 0.0061596248339207
403 => 0.0061483158926937
404 => 0.0060559145783598
405 => 0.0061055658108049
406 => 0.0060265671299349
407 => 0.0060459506429638
408 => 0.0059917526507106
409 => 0.0060892982460538
410 => 0.0061983693787006
411 => 0.0062259250541568
412 => 0.0061534379354959
413 => 0.0061009524844515
414 => 0.0060088053221999
415 => 0.0061620481066577
416 => 0.0062068609668224
417 => 0.0061618127237807
418 => 0.0061513740615444
419 => 0.0061315928154688
420 => 0.0061555707464113
421 => 0.0062066169063619
422 => 0.0061825444800038
423 => 0.0061984447417149
424 => 0.0061378493403507
425 => 0.0062667302619936
426 => 0.0064714241824455
427 => 0.0064720823068705
428 => 0.006448009750753
429 => 0.0064381597794402
430 => 0.0064628596828616
501 => 0.0064762583672247
502 => 0.0065561333257019
503 => 0.0066418423385066
504 => 0.0070418089034945
505 => 0.0069294998925379
506 => 0.0072843740231126
507 => 0.0075650333857585
508 => 0.0076491908568695
509 => 0.0075717699433624
510 => 0.0073069171804501
511 => 0.0072939222403548
512 => 0.007689724086098
513 => 0.0075778919358025
514 => 0.0075645898573719
515 => 0.0074230782170855
516 => 0.0075067291230523
517 => 0.0074884334428326
518 => 0.0074595528165505
519 => 0.0076191529179627
520 => 0.0079179100602068
521 => 0.0078713459578613
522 => 0.007836588015507
523 => 0.0076842888299951
524 => 0.0077760069569278
525 => 0.0077433478886721
526 => 0.0078836719718556
527 => 0.0078005470935367
528 => 0.0075770446972741
529 => 0.0076126381905525
530 => 0.0076072583056476
531 => 0.0077179759557667
601 => 0.007684741265382
602 => 0.0076007686989523
603 => 0.0079168889407737
604 => 0.007896361850623
605 => 0.0079254645713106
606 => 0.0079382764889888
607 => 0.008130693309522
608 => 0.008209520324243
609 => 0.0082274154366458
610 => 0.0083022950039306
611 => 0.008225552364798
612 => 0.0085325776379027
613 => 0.0087367315290959
614 => 0.00897386677938
615 => 0.0093203851159916
616 => 0.0094506792160313
617 => 0.0094271427530764
618 => 0.0096898690011362
619 => 0.010161982228823
620 => 0.0095225703346257
621 => 0.010195872611829
622 => 0.009982712884515
623 => 0.0094773150056334
624 => 0.009444773340483
625 => 0.0097870346518517
626 => 0.010546137299037
627 => 0.010355990695588
628 => 0.010546448310762
629 => 0.01032426938591
630 => 0.01031323632962
701 => 0.010535657576295
702 => 0.011055356942701
703 => 0.010808467254361
704 => 0.01045449034629
705 => 0.010715861386719
706 => 0.010489437602751
707 => 0.0099792414454456
708 => 0.010355845294064
709 => 0.010104021025553
710 => 0.010177516734819
711 => 0.010706813891196
712 => 0.010643127456994
713 => 0.010725543600056
714 => 0.010580081264757
715 => 0.010444196506284
716 => 0.010190557513657
717 => 0.010115467512192
718 => 0.010136219687142
719 => 0.010115457228444
720 => 0.0099735485431327
721 => 0.0099429033760509
722 => 0.0098918267549856
723 => 0.009907657535606
724 => 0.0098116185450107
725 => 0.009992863962932
726 => 0.010026504709627
727 => 0.010158400010177
728 => 0.010172093817826
729 => 0.010539420352444
730 => 0.010337103069848
731 => 0.010472834970247
801 => 0.010460693831517
802 => 0.0094882685101692
803 => 0.0096222601396697
804 => 0.0098307090662829
805 => 0.0097368031073895
806 => 0.0096040420521245
807 => 0.0094968303818006
808 => 0.0093343937383037
809 => 0.0095630201947061
810 => 0.0098636396731622
811 => 0.010179718023897
812 => 0.010559465452031
813 => 0.010474710246819
814 => 0.010172618909875
815 => 0.010186170506572
816 => 0.010269941144999
817 => 0.010161450556871
818 => 0.010129454564445
819 => 0.010265545386972
820 => 0.010266482569672
821 => 0.010141651036506
822 => 0.01000292363132
823 => 0.010002342358427
824 => 0.0099776571566221
825 => 0.010328660828472
826 => 0.010521677357516
827 => 0.010543806391509
828 => 0.010520187897213
829 => 0.010529277718283
830 => 0.010416965652862
831 => 0.010673677729307
901 => 0.010909262116846
902 => 0.010846120468459
903 => 0.010751462161413
904 => 0.010676062260489
905 => 0.010828358648045
906 => 0.010821577129644
907 => 0.01090720449274
908 => 0.010903319940942
909 => 0.010874526679341
910 => 0.010846121496757
911 => 0.010958744834926
912 => 0.010926311122209
913 => 0.010893827030977
914 => 0.010828675212947
915 => 0.010837530427074
916 => 0.01074288846412
917 => 0.010699102761535
918 => 0.010040670851256
919 => 0.0098647163299457
920 => 0.0099200752042344
921 => 0.0099383007830428
922 => 0.0098617251498768
923 => 0.0099715149371706
924 => 0.0099544043151171
925 => 0.010020971736148
926 => 0.0099793833015095
927 => 0.0099810901053737
928 => 0.010103392824058
929 => 0.010138897823605
930 => 0.010120839694275
1001 => 0.010133486989061
1002 => 0.010424938559322
1003 => 0.010383503466128
1004 => 0.0103614918987
1005 => 0.010367589253307
1006 => 0.010442061378301
1007 => 0.010462909507272
1008 => 0.01037457451985
1009 => 0.010416233810577
1010 => 0.01059361378314
1011 => 0.010655686734701
1012 => 0.010853793799374
1013 => 0.010769634397228
1014 => 0.0109241126222
1015 => 0.011398926020256
1016 => 0.01177823981721
1017 => 0.011429407173725
1018 => 0.012125968656512
1019 => 0.012668341686671
1020 => 0.012647524506404
1021 => 0.012552949223282
1022 => 0.011935471948178
1023 => 0.01136726015356
1024 => 0.011842593447305
1025 => 0.011843805169624
1026 => 0.011802973618139
1027 => 0.011549372358653
1028 => 0.011794148844022
1029 => 0.011813578312533
1030 => 0.011802702976879
1031 => 0.011608267485831
1101 => 0.011311400428685
1102 => 0.011369407541052
1103 => 0.011464424374422
1104 => 0.011284537686264
1105 => 0.011227052989679
1106 => 0.011333927977542
1107 => 0.011678301456724
1108 => 0.011613199645304
1109 => 0.011611499573911
1110 => 0.011890032730629
1111 => 0.011690663101636
1112 => 0.011370139196503
1113 => 0.011289202683266
1114 => 0.011001932586643
1115 => 0.011200351065602
1116 => 0.011207491793422
1117 => 0.011098820020284
1118 => 0.011378957311969
1119 => 0.011376375797509
1120 => 0.011642324463031
1121 => 0.012150718425751
1122 => 0.012000361314427
1123 => 0.011825512352764
1124 => 0.011844523282933
1125 => 0.012053026263908
1126 => 0.01192696060195
1127 => 0.011972294692951
1128 => 0.012052957645332
1129 => 0.012101623607251
1130 => 0.011837520999939
1201 => 0.011775946048687
1202 => 0.011649985308296
1203 => 0.011617124502296
1204 => 0.011719716897088
1205 => 0.011692687425703
1206 => 0.011206891642899
1207 => 0.011156123280653
1208 => 0.011157680273843
1209 => 0.011030020813073
1210 => 0.010835309493618
1211 => 0.011346999215537
1212 => 0.011305903369774
1213 => 0.011260536736617
1214 => 0.011266093890321
1215 => 0.011488201055832
1216 => 0.011359367683155
1217 => 0.011701892319792
1218 => 0.011631479551732
1219 => 0.011559260961864
1220 => 0.011549278152912
1221 => 0.011521480157213
1222 => 0.011426150486783
1223 => 0.011311034181314
1224 => 0.011235024425239
1225 => 0.010363716151139
1226 => 0.010525425898645
1227 => 0.010711458222843
1228 => 0.010775675835679
1229 => 0.0106658271652
1230 => 0.011430487981829
1231 => 0.011570198881482
]
'min_raw' => 0.0048223489149396
'max_raw' => 0.012668341686671
'avg_raw' => 0.0087453453008054
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.004822'
'max' => '$0.012668'
'avg' => '$0.008745'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -0.000186973333649
'max_diff' => -0.0022846072226617
'year' => 2027
]
2 => [
'items' => [
101 => 0.011147005453317
102 => 0.011067843241781
103 => 0.011435677843238
104 => 0.011213828612608
105 => 0.011313727307577
106 => 0.011097800970719
107 => 0.011536546616968
108 => 0.011533204110244
109 => 0.011362522144333
110 => 0.011506781373141
111 => 0.011481712782091
112 => 0.011289013262948
113 => 0.011542655535437
114 => 0.01154278133884
115 => 0.011378503657597
116 => 0.011186663290913
117 => 0.011152366764417
118 => 0.011126528938793
119 => 0.011307372786361
120 => 0.011469516814606
121 => 0.011771226652258
122 => 0.011847083673892
123 => 0.012143158679419
124 => 0.011966860429258
125 => 0.01204501116011
126 => 0.012129854833546
127 => 0.012170532010613
128 => 0.012104250733439
129 => 0.012564177086357
130 => 0.012603008962323
131 => 0.01261602895444
201 => 0.012460944375982
202 => 0.01259869577965
203 => 0.012534246459721
204 => 0.01270192568564
205 => 0.0127282199293
206 => 0.012705949640365
207 => 0.012714295848329
208 => 0.012321829842682
209 => 0.012301478409866
210 => 0.012023985179349
211 => 0.012137065721911
212 => 0.011925667067683
213 => 0.011992703758586
214 => 0.012022252893187
215 => 0.01200681810217
216 => 0.012143459126123
217 => 0.012027286341846
218 => 0.011720687263566
219 => 0.011414004652571
220 => 0.011410154502209
221 => 0.011329410384132
222 => 0.011271047175785
223 => 0.011282290000258
224 => 0.011321911180128
225 => 0.011268744320783
226 => 0.011280090165853
227 => 0.011468506790975
228 => 0.011506292401418
229 => 0.011377882133343
301 => 0.010862296377511
302 => 0.010735770339781
303 => 0.010826714746581
304 => 0.010783249177701
305 => 0.0087029236844965
306 => 0.0091916653012207
307 => 0.0089012716286603
308 => 0.0090350983933466
309 => 0.0087386816507393
310 => 0.0088801472568441
311 => 0.0088540237248933
312 => 0.0096399057816699
313 => 0.0096276353142988
314 => 0.0096335085376906
315 => 0.009353164282594
316 => 0.009799760293139
317 => 0.010019769547007
318 => 0.0099790516894724
319 => 0.0099892994969819
320 => 0.0098132082113571
321 => 0.009635213486252
322 => 0.0094377899429186
323 => 0.0098045784841446
324 => 0.0097637978596494
325 => 0.0098573339398357
326 => 0.010095222527407
327 => 0.010130252525578
328 => 0.010177333198359
329 => 0.010160458128597
330 => 0.010562490752953
331 => 0.010513801949447
401 => 0.010631127957172
402 => 0.010389779457736
403 => 0.010116670721614
404 => 0.010168579763754
405 => 0.010163580505569
406 => 0.010099934211003
407 => 0.010042477182087
408 => 0.0099468274173594
409 => 0.01024947742646
410 => 0.010237190388794
411 => 0.010436103246483
412 => 0.01040094346675
413 => 0.010166137852636
414 => 0.01017452398108
415 => 0.0102309247251
416 => 0.010426128344126
417 => 0.010484078068729
418 => 0.010457233447395
419 => 0.010520772674917
420 => 0.010570991489647
421 => 0.010527079384865
422 => 0.011148782186149
423 => 0.010890607838087
424 => 0.011016440218967
425 => 0.011046450500359
426 => 0.010969579795621
427 => 0.010986250298945
428 => 0.011011501569041
429 => 0.011164822336357
430 => 0.011567180393517
501 => 0.011745382038089
502 => 0.012281510478098
503 => 0.011730584872194
504 => 0.011697895226697
505 => 0.01179446814827
506 => 0.012109232297514
507 => 0.012364319076184
508 => 0.012448946076978
509 => 0.012460130932172
510 => 0.012618896811558
511 => 0.012709898452814
512 => 0.012599618457844
513 => 0.012506167708903
514 => 0.012171438725732
515 => 0.01221018451697
516 => 0.012477104596254
517 => 0.012854144929756
518 => 0.013177684760261
519 => 0.013064392388119
520 => 0.013928733215608
521 => 0.014014429078138
522 => 0.014002588680815
523 => 0.014197816608913
524 => 0.013810328929116
525 => 0.013644670438782
526 => 0.012526372821535
527 => 0.012840568837214
528 => 0.01329727119809
529 => 0.013236824928082
530 => 0.012905155465925
531 => 0.013177433159232
601 => 0.013087409638914
602 => 0.01301640435336
603 => 0.013341693331535
604 => 0.012984024737897
605 => 0.013293703180266
606 => 0.012896537374715
607 => 0.013064909898132
608 => 0.012969333510578
609 => 0.013031183146727
610 => 0.012669611437594
611 => 0.012864706755185
612 => 0.012661494830968
613 => 0.012661398482057
614 => 0.012656912567567
615 => 0.012895990495229
616 => 0.012903786817866
617 => 0.012727107868098
618 => 0.012701645671192
619 => 0.01279579275843
620 => 0.012685571176436
621 => 0.012737143160925
622 => 0.012687133239309
623 => 0.012675874952583
624 => 0.012586167008513
625 => 0.012547518359636
626 => 0.012562673490713
627 => 0.01251094121534
628 => 0.012479770648189
629 => 0.012650711957209
630 => 0.012559384911552
701 => 0.012636714777648
702 => 0.012548587635425
703 => 0.012243100565312
704 => 0.012067411720823
705 => 0.011490374964045
706 => 0.011654021872456
707 => 0.011762519942036
708 => 0.011726661330687
709 => 0.011803699503306
710 => 0.011808429021427
711 => 0.011783383126197
712 => 0.011754383188099
713 => 0.01174026762203
714 => 0.011845473486841
715 => 0.011906549032431
716 => 0.011773409174836
717 => 0.011742216369026
718 => 0.011876828115908
719 => 0.011958941203743
720 => 0.012565218108959
721 => 0.012520303157572
722 => 0.012633030871439
723 => 0.012620339460806
724 => 0.012738496063872
725 => 0.012931632173179
726 => 0.012538932461252
727 => 0.012607091552708
728 => 0.012590380517507
729 => 0.012772827217971
730 => 0.012773396796655
731 => 0.012664010885838
801 => 0.012723310762675
802 => 0.012690211198232
803 => 0.012750026584856
804 => 0.012519703291013
805 => 0.012800212201051
806 => 0.012959242677447
807 => 0.012961450815766
808 => 0.013036829999434
809 => 0.013113419615709
810 => 0.013260426714598
811 => 0.013109319667509
812 => 0.01283749279977
813 => 0.012857117821625
814 => 0.012697745828528
815 => 0.012700424900524
816 => 0.012686123804243
817 => 0.012729042470721
818 => 0.012529121524779
819 => 0.012576042571195
820 => 0.012510352831443
821 => 0.012606948756043
822 => 0.012503027509052
823 => 0.012590372458939
824 => 0.01262806764378
825 => 0.012767163687361
826 => 0.012482482910319
827 => 0.011901999534738
828 => 0.012024024177966
829 => 0.011843540145803
830 => 0.011860244630131
831 => 0.011893990346972
901 => 0.011784609437778
902 => 0.011805475868263
903 => 0.011804730372532
904 => 0.011798306093065
905 => 0.011769851894092
906 => 0.011728587676091
907 => 0.011892971620153
908 => 0.011920903655481
909 => 0.011982993109967
910 => 0.012167729210839
911 => 0.012149269717984
912 => 0.012179377916707
913 => 0.012113651887946
914 => 0.011863293472098
915 => 0.011876889138589
916 => 0.011707350959588
917 => 0.011978657637556
918 => 0.01191440863514
919 => 0.011872986885318
920 => 0.011861684577109
921 => 0.012046878603043
922 => 0.012102291558163
923 => 0.012067761923157
924 => 0.01199694063437
925 => 0.012132938445276
926 => 0.012169325722187
927 => 0.012177471491576
928 => 0.012418433537508
929 => 0.01219093859319
930 => 0.012245698887392
1001 => 0.012672923070746
1002 => 0.012285489689352
1003 => 0.012490721792272
1004 => 0.01248067674881
1005 => 0.012585666547988
1006 => 0.012472064520855
1007 => 0.012473472754132
1008 => 0.012566696583177
1009 => 0.012435780528289
1010 => 0.012403363872022
1011 => 0.012358580493562
1012 => 0.012456363362063
1013 => 0.01251497976939
1014 => 0.012987384963442
1015 => 0.013292580263093
1016 => 0.01327933093024
1017 => 0.013400405030807
1018 => 0.01334586003959
1019 => 0.013169719874709
1020 => 0.013470369658156
1021 => 0.013375231486952
1022 => 0.013383074562193
1023 => 0.013382782642541
1024 => 0.013446041209268
1025 => 0.013401216717179
1026 => 0.013312863042133
1027 => 0.013371516334922
1028 => 0.013545695645571
1029 => 0.014086353570298
1030 => 0.01438891290774
1031 => 0.014068139118279
1101 => 0.014289404582917
1102 => 0.01415672414908
1103 => 0.014132612167351
1104 => 0.014271583230533
1105 => 0.014410797544165
1106 => 0.014401930194226
1107 => 0.014300867751264
1108 => 0.014243780141599
1109 => 0.014676066647733
1110 => 0.014994567981645
1111 => 0.014972848325932
1112 => 0.015068711822637
1113 => 0.015350170013911
1114 => 0.015375903023572
1115 => 0.015372661255821
1116 => 0.015308879306414
1117 => 0.015586011447688
1118 => 0.015817199955614
1119 => 0.015294115627964
1120 => 0.015493299292257
1121 => 0.015582719256454
1122 => 0.015714014293604
1123 => 0.01593553102888
1124 => 0.016176156957801
1125 => 0.01621018410248
1126 => 0.016186040214982
1127 => 0.016027340946486
1128 => 0.016290636709176
1129 => 0.016444869191915
1130 => 0.016536711105838
1201 => 0.01676960691851
1202 => 0.015583271483711
1203 => 0.014743524298264
1204 => 0.01461238564916
1205 => 0.014879061248885
1206 => 0.014949381477835
1207 => 0.014921035481719
1208 => 0.013975823678024
1209 => 0.014607409304629
1210 => 0.015286942333628
1211 => 0.015313045964758
1212 => 0.01565323440744
1213 => 0.015764013709173
1214 => 0.016037909995051
1215 => 0.016020777707795
1216 => 0.016087467094765
1217 => 0.0160721363596
1218 => 0.016579471553521
1219 => 0.017139137612421
1220 => 0.017119758156431
1221 => 0.017039299538795
1222 => 0.017158794306217
1223 => 0.017736429656462
1224 => 0.017683250249829
1225 => 0.017734909513562
1226 => 0.018415974145602
1227 => 0.01930145504757
1228 => 0.018890060267777
1229 => 0.019782668564268
1230 => 0.020344518171777
1231 => 0.021316178971629
]
'min_raw' => 0.0087029236844965
'max_raw' => 0.021316178971629
'avg_raw' => 0.015009551328063
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.0087029'
'max' => '$0.021316'
'avg' => '$0.0150095'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 0.0038805747695569
'max_diff' => 0.0086478372849582
'year' => 2028
]
3 => [
'items' => [
101 => 0.021194522253957
102 => 0.021572782672964
103 => 0.020976731338802
104 => 0.019608076993716
105 => 0.019391482204608
106 => 0.019825110457456
107 => 0.020891143204257
108 => 0.019791537292571
109 => 0.020013986136375
110 => 0.019949920854395
111 => 0.019946507087778
112 => 0.02007679667475
113 => 0.019887804833399
114 => 0.019117818072753
115 => 0.019470698467597
116 => 0.019334434400439
117 => 0.01948562954211
118 => 0.020301567364085
119 => 0.019940821803461
120 => 0.019560805659934
121 => 0.020037430236251
122 => 0.020644337107875
123 => 0.020606357966565
124 => 0.020532662558375
125 => 0.020948079715779
126 => 0.021634227154003
127 => 0.021819690049391
128 => 0.021956594967145
129 => 0.021975471842275
130 => 0.022169915388034
131 => 0.021124343436407
201 => 0.022783692975831
202 => 0.023070216802683
203 => 0.023016362198431
204 => 0.023334821373212
205 => 0.023241122605462
206 => 0.023105367791878
207 => 0.023610193322115
208 => 0.023031451589018
209 => 0.022210000560446
210 => 0.021759336279712
211 => 0.022352807358633
212 => 0.022715219437243
213 => 0.022954750767468
214 => 0.023027232803265
215 => 0.02120550821065
216 => 0.020223699692709
217 => 0.020853027696252
218 => 0.021620851294473
219 => 0.02112007813755
220 => 0.021139707497213
221 => 0.020425736576312
222 => 0.021684021878524
223 => 0.021500700293837
224 => 0.022451772999484
225 => 0.022224791865446
226 => 0.023000354736472
227 => 0.022796123040588
228 => 0.023643877391759
301 => 0.023982069554474
302 => 0.02454994683108
303 => 0.024967679667427
304 => 0.025212980378886
305 => 0.02519825344427
306 => 0.026170257071399
307 => 0.025597100491701
308 => 0.024877080744966
309 => 0.024864057859381
310 => 0.025236966288974
311 => 0.026018480054968
312 => 0.026221115203928
313 => 0.026334360608201
314 => 0.026160921329456
315 => 0.025538800940696
316 => 0.025270172511051
317 => 0.025499051716023
318 => 0.025219152116157
319 => 0.025702337351483
320 => 0.026365853882384
321 => 0.026228840342582
322 => 0.026686856063923
323 => 0.027160854150852
324 => 0.027838692703747
325 => 0.028015904801763
326 => 0.02830882966101
327 => 0.028610345561979
328 => 0.028707184343289
329 => 0.028892079624119
330 => 0.028891105134722
331 => 0.02944829950839
401 => 0.030062902157419
402 => 0.030294900429344
403 => 0.030828367663175
404 => 0.029914823720161
405 => 0.030607757294974
406 => 0.031232800724707
407 => 0.030487598180263
408 => 0.031514686277855
409 => 0.031554565781253
410 => 0.032156698935433
411 => 0.031546321628917
412 => 0.031183881532701
413 => 0.032230232510023
414 => 0.032736528788202
415 => 0.032584028228839
416 => 0.031423491442203
417 => 0.030748009254616
418 => 0.028980142078919
419 => 0.031074257114711
420 => 0.032094239462472
421 => 0.031420849934332
422 => 0.031760468443596
423 => 0.033613316908471
424 => 0.034318761640841
425 => 0.034172034067939
426 => 0.034196828612418
427 => 0.034577473785277
428 => 0.036265464106862
429 => 0.035253981178859
430 => 0.036027221977775
501 => 0.036437346109393
502 => 0.036818292259306
503 => 0.035882808914387
504 => 0.034665758827627
505 => 0.034280267976863
506 => 0.031353894616815
507 => 0.031201564174829
508 => 0.031116056481658
509 => 0.030576942571515
510 => 0.030153346713871
511 => 0.029816487560766
512 => 0.028932468548362
513 => 0.029230799014398
514 => 0.027821857217733
515 => 0.028723248249408
516 => 0.026474543121841
517 => 0.028347331572712
518 => 0.027328057964145
519 => 0.028012472779022
520 => 0.028010084920209
521 => 0.026749860252105
522 => 0.026022988963761
523 => 0.026486179638948
524 => 0.026982756810869
525 => 0.027063324786328
526 => 0.027707150051714
527 => 0.027886827844306
528 => 0.027342395744399
529 => 0.026427943706296
530 => 0.026640350058317
531 => 0.026018684555817
601 => 0.024929239674702
602 => 0.025711698008201
603 => 0.025978863685522
604 => 0.02609685926872
605 => 0.025025515351734
606 => 0.024688875833009
607 => 0.024509651777919
608 => 0.026289646659974
609 => 0.026387158797725
610 => 0.025888272914167
611 => 0.028143284414146
612 => 0.027632905861237
613 => 0.028203123750618
614 => 0.026621076408209
615 => 0.026681512747199
616 => 0.025932546181869
617 => 0.02635191741249
618 => 0.026055519343653
619 => 0.026318036361363
620 => 0.02647538797938
621 => 0.027224231646666
622 => 0.028355882164509
623 => 0.027112379374509
624 => 0.026570567401618
625 => 0.026906704502334
626 => 0.027801881897167
627 => 0.029158121473628
628 => 0.028355200347498
629 => 0.02871152310879
630 => 0.028789363780436
701 => 0.028197319467783
702 => 0.029179950991919
703 => 0.029706551208588
704 => 0.030246734066329
705 => 0.030715759706125
706 => 0.030030973154071
707 => 0.030763792925065
708 => 0.030173269549748
709 => 0.029643509034903
710 => 0.029644312462929
711 => 0.0293119859534
712 => 0.028668061465355
713 => 0.028549311910185
714 => 0.029167062092593
715 => 0.029662439237725
716 => 0.029703240872095
717 => 0.029977507113036
718 => 0.030139815049258
719 => 0.031730653471176
720 => 0.032370501844577
721 => 0.033152896323862
722 => 0.033457683066881
723 => 0.03437498189127
724 => 0.033634188591208
725 => 0.033473913300931
726 => 0.03124884639912
727 => 0.031613200979641
728 => 0.032196567818042
729 => 0.031258465903417
730 => 0.031853475646951
731 => 0.031970943174354
801 => 0.031226589559328
802 => 0.031624180986734
803 => 0.030568296033184
804 => 0.028378897571095
805 => 0.02918238841828
806 => 0.029774028133903
807 => 0.028929685311058
808 => 0.030443137140427
809 => 0.029559009825697
810 => 0.029278783912523
811 => 0.028185522717481
812 => 0.028701499918058
813 => 0.029399366469921
814 => 0.028968166076565
815 => 0.029862971637845
816 => 0.031130254948544
817 => 0.032033396503774
818 => 0.032102728498031
819 => 0.031522068983803
820 => 0.032452579561073
821 => 0.032459357314767
822 => 0.031409737582359
823 => 0.030766851340566
824 => 0.030620786233787
825 => 0.030985685508273
826 => 0.031428740591622
827 => 0.032127314971651
828 => 0.03254944883888
829 => 0.033650150082112
830 => 0.033947968278953
831 => 0.034275180184445
901 => 0.034712436198598
902 => 0.035237474153729
903 => 0.03408872099833
904 => 0.034134363102738
905 => 0.03306466007
906 => 0.031921528968587
907 => 0.032789022981256
908 => 0.033923156004928
909 => 0.033662984636192
910 => 0.03363371004239
911 => 0.033682941789069
912 => 0.033486781073445
913 => 0.032599553426731
914 => 0.03215399325689
915 => 0.032728879550507
916 => 0.033034406030319
917 => 0.033508250955799
918 => 0.033449839567081
919 => 0.034670413207886
920 => 0.035144691216472
921 => 0.035023350606376
922 => 0.035045680198858
923 => 0.035904337878933
924 => 0.036859341815597
925 => 0.037753829026151
926 => 0.038663739835846
927 => 0.037566806840335
928 => 0.037009851914636
929 => 0.037584487230881
930 => 0.037279577643504
1001 => 0.039031678574633
1002 => 0.039152990241625
1003 => 0.040904964475914
1004 => 0.042567796645465
1005 => 0.041523401552503
1006 => 0.042508219084578
1007 => 0.04357337953887
1008 => 0.045628246871253
1009 => 0.044936239844811
1010 => 0.044406173307689
1011 => 0.043905262991371
1012 => 0.044947577842354
1013 => 0.046288499246758
1014 => 0.046577320874082
1015 => 0.047045322248698
1016 => 0.046553276027774
1017 => 0.047145891503764
1018 => 0.049238084542443
1019 => 0.048672755515093
1020 => 0.04786989741508
1021 => 0.049521482882762
1022 => 0.05011918524314
1023 => 0.054314173427429
1024 => 0.059610519296413
1025 => 0.057417797328972
1026 => 0.056056704045085
1027 => 0.056376593252363
1028 => 0.058310639471094
1029 => 0.058931793732992
1030 => 0.05724328232444
1031 => 0.057839693099297
1101 => 0.061125975106578
1102 => 0.062888959966934
1103 => 0.060494589726114
1104 => 0.053888617193794
1105 => 0.047797608827435
1106 => 0.049413218527875
1107 => 0.049230058526051
1108 => 0.052760758570844
1109 => 0.048659272604758
1110 => 0.048728331109579
1111 => 0.052332042292223
1112 => 0.051370633931944
1113 => 0.049813275516172
1114 => 0.047808979267346
1115 => 0.044103852276427
1116 => 0.040822117975461
1117 => 0.047258354677929
1118 => 0.046980812447781
1119 => 0.046578890169074
1120 => 0.047473324707805
1121 => 0.051816444938207
1122 => 0.051716321959588
1123 => 0.051079390652806
1124 => 0.051562497435345
1125 => 0.049728584561406
1126 => 0.05020122566644
1127 => 0.04779664398059
1128 => 0.048883615326796
1129 => 0.049809934124457
1130 => 0.049995906337471
1201 => 0.05041491122937
1202 => 0.04683456030411
1203 => 0.048442032755971
1204 => 0.04938627222164
1205 => 0.045120163964024
1206 => 0.04930194497797
1207 => 0.046772234360063
1208 => 0.045913612581367
1209 => 0.047069633691564
1210 => 0.046619131140653
1211 => 0.046231815501777
1212 => 0.046015686720357
1213 => 0.046864541038291
1214 => 0.046824940969759
1215 => 0.045436050550095
1216 => 0.043624299616059
1217 => 0.044232382698219
1218 => 0.044011460413661
1219 => 0.043210809554881
1220 => 0.043750351562746
1221 => 0.041374481616074
1222 => 0.037286920859798
1223 => 0.039987288700766
1224 => 0.039883327476324
1225 => 0.039830905512694
1226 => 0.041860157312495
1227 => 0.041665091574749
1228 => 0.04131104535065
1229 => 0.043204307218329
1230 => 0.042513241168661
1231 => 0.044642943898101
]
'min_raw' => 0.019117818072753
'max_raw' => 0.062888959966934
'avg_raw' => 0.041003389019844
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.019117'
'max' => '$0.062888'
'avg' => '$0.0410033'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072435
'min_diff' => 0.010414894388257
'max_diff' => 0.041572780995305
'year' => 2029
]
4 => [
'items' => [
101 => 0.046045703856246
102 => 0.04568991855633
103 => 0.047009221077093
104 => 0.044246391704277
105 => 0.045164092796451
106 => 0.04535322971967
107 => 0.043180944660766
108 => 0.041697006741863
109 => 0.041598045000803
110 => 0.039025101148667
111 => 0.040399546986401
112 => 0.041609002445173
113 => 0.041029767137956
114 => 0.040846398543854
115 => 0.041783188923327
116 => 0.041855985558879
117 => 0.04019621455365
118 => 0.040541333503749
119 => 0.041980536896914
120 => 0.040505069270857
121 => 0.037638476689698
122 => 0.036927522095827
123 => 0.036832667647512
124 => 0.034904502402414
125 => 0.036975031481351
126 => 0.036071190051666
127 => 0.038926414298359
128 => 0.037295525521522
129 => 0.037225221165969
130 => 0.037118945821144
131 => 0.035459294343185
201 => 0.035822652540504
202 => 0.037030510529409
203 => 0.037461487867344
204 => 0.037416533400104
205 => 0.037024591366319
206 => 0.037204020422318
207 => 0.036626016915717
208 => 0.036421911847434
209 => 0.03577770010841
210 => 0.03483088682008
211 => 0.034962547014965
212 => 0.03308666214361
213 => 0.03206458050495
214 => 0.031781681778188
215 => 0.031403377777611
216 => 0.031824412221682
217 => 0.033081347997462
218 => 0.031565216778071
219 => 0.028965916146664
220 => 0.029122138543605
221 => 0.029473123886684
222 => 0.028819065021856
223 => 0.028200053197297
224 => 0.028738233756735
225 => 0.027636875813233
226 => 0.029606217732356
227 => 0.029552952552461
228 => 0.030287001436622
301 => 0.030746017268088
302 => 0.0296881343847
303 => 0.029422079700347
304 => 0.029573636540065
305 => 0.02706873957655
306 => 0.030082297914335
307 => 0.03010835929198
308 => 0.029885205954255
309 => 0.03148983273595
310 => 0.03487609574097
311 => 0.033602047386367
312 => 0.03310869735515
313 => 0.032170838585169
314 => 0.033420479711625
315 => 0.033324526770552
316 => 0.032890591181945
317 => 0.032628145583995
318 => 0.03311170964524
319 => 0.03256822664544
320 => 0.032470602164761
321 => 0.031879104028334
322 => 0.03166796610508
323 => 0.031511647992346
324 => 0.031339557109725
325 => 0.031719146714409
326 => 0.030858946731024
327 => 0.029821629877506
328 => 0.02973538820506
329 => 0.029973509045129
330 => 0.02986815829941
331 => 0.029734883826221
401 => 0.02948042656176
402 => 0.029404934527013
403 => 0.029650247016411
404 => 0.029373303518487
405 => 0.029781948735566
406 => 0.029670819847892
407 => 0.029050062914968
408 => 0.028276369942893
409 => 0.028269482452566
410 => 0.028102791570843
411 => 0.027890485670827
412 => 0.027831427026344
413 => 0.028692909691126
414 => 0.03047615302522
415 => 0.030126059689341
416 => 0.030379038003522
417 => 0.031623440927451
418 => 0.032018999196467
419 => 0.031738241306431
420 => 0.031353922590156
421 => 0.031370830663222
422 => 0.032684164057918
423 => 0.032766075050777
424 => 0.032973037704246
425 => 0.033239043201592
426 => 0.031783543192869
427 => 0.031302276743702
428 => 0.031074226000441
429 => 0.030371917977941
430 => 0.031129296968868
501 => 0.030688004665057
502 => 0.030747550073533
503 => 0.030708771048147
504 => 0.030729947018234
505 => 0.029605667261154
506 => 0.03001529571423
507 => 0.029334208962247
508 => 0.028422310256917
509 => 0.028419253252704
510 => 0.028642439168948
511 => 0.0285096794527
512 => 0.028152426469843
513 => 0.028203172569871
514 => 0.027758583336068
515 => 0.028257153752403
516 => 0.028271450967973
517 => 0.02807947420037
518 => 0.028847590716194
519 => 0.029162288679451
520 => 0.029035925458473
521 => 0.029153422699008
522 => 0.030140607648023
523 => 0.030301561868612
524 => 0.030373047101358
525 => 0.030277266359457
526 => 0.029171466627675
527 => 0.029220513548003
528 => 0.028860639789779
529 => 0.028556584386642
530 => 0.028568745008207
531 => 0.028725069009855
601 => 0.029407745093334
602 => 0.030844396665062
603 => 0.03089891654203
604 => 0.030964996223373
605 => 0.030696216950365
606 => 0.030615150549755
607 => 0.030722098057173
608 => 0.031261628851963
609 => 0.032649448537345
610 => 0.032158900371171
611 => 0.031760077076234
612 => 0.032109952627882
613 => 0.032056092029121
614 => 0.031601454372188
615 => 0.031588694207375
616 => 0.030716099187269
617 => 0.030393520676363
618 => 0.030123949928067
619 => 0.02982958570825
620 => 0.029655076731565
621 => 0.029923201832665
622 => 0.02998452521565
623 => 0.02939826499607
624 => 0.029318359894447
625 => 0.029797112645062
626 => 0.029586431409218
627 => 0.029803122284927
628 => 0.029853396426831
629 => 0.029845301132073
630 => 0.029625325725266
701 => 0.029765531489803
702 => 0.029433903059321
703 => 0.029073306950152
704 => 0.028843269098433
705 => 0.028642530562716
706 => 0.028753911969324
707 => 0.028356857592206
708 => 0.028229831905841
709 => 0.029718032931508
710 => 0.030817383030025
711 => 0.030801398044202
712 => 0.03070409355401
713 => 0.030559518819079
714 => 0.031251052309603
715 => 0.031010135869153
716 => 0.031185422708822
717 => 0.031230040566284
718 => 0.03136508538278
719 => 0.031413352297184
720 => 0.031267456158329
721 => 0.030777810896621
722 => 0.02955766145852
723 => 0.028989678601353
724 => 0.028802234797986
725 => 0.028809048024232
726 => 0.028621108828787
727 => 0.028676465344689
728 => 0.02860185809164
729 => 0.028460570003798
730 => 0.028745187828039
731 => 0.028777987380884
801 => 0.028711554179777
802 => 0.028727201603555
803 => 0.028177163072376
804 => 0.02821898130728
805 => 0.027986132061327
806 => 0.02794247563475
807 => 0.027353853017483
808 => 0.026311022728782
809 => 0.026888851938708
810 => 0.0261909155082
811 => 0.025926596406504
812 => 0.027177841923879
813 => 0.027052251578083
814 => 0.026837295498891
815 => 0.026519330656994
816 => 0.026401394404171
817 => 0.025684851066101
818 => 0.025642513863077
819 => 0.025997652089723
820 => 0.025833768017686
821 => 0.025603612712795
822 => 0.024770013528949
823 => 0.023832772051101
824 => 0.023861061480027
825 => 0.024159180556133
826 => 0.025026001976746
827 => 0.024687319851549
828 => 0.02444160208379
829 => 0.024395586532138
830 => 0.02497156750115
831 => 0.025786701244045
901 => 0.026169143758622
902 => 0.025790154841628
903 => 0.025354792779998
904 => 0.025381291251416
905 => 0.025557573710235
906 => 0.025576098504157
907 => 0.025292722557979
908 => 0.025372491226944
909 => 0.025251315324586
910 => 0.024507659035488
911 => 0.024494208651378
912 => 0.024311703404956
913 => 0.024306177218627
914 => 0.023995690266396
915 => 0.023952250995483
916 => 0.023335760306617
917 => 0.023741536344935
918 => 0.02346936308263
919 => 0.023059133777154
920 => 0.022988410090265
921 => 0.022986284050836
922 => 0.023407497821965
923 => 0.023736614216776
924 => 0.023474097653055
925 => 0.023414327720165
926 => 0.024052514232531
927 => 0.023971299181633
928 => 0.023900967471336
929 => 0.025713714957834
930 => 0.024278783871821
1001 => 0.023653072015316
1002 => 0.022878634773433
1003 => 0.023130795444441
1004 => 0.023183929402834
1005 => 0.021321547438909
1006 => 0.02056597930809
1007 => 0.020306696798577
1008 => 0.020157476048636
1009 => 0.020225477818181
1010 => 0.019545377881141
1011 => 0.020002416286646
1012 => 0.019413507228586
1013 => 0.019314774708527
1014 => 0.020367817056171
1015 => 0.020514341747061
1016 => 0.019889221894069
1017 => 0.020290650037402
1018 => 0.020145086612361
1019 => 0.019423602384115
1020 => 0.019396046993475
1021 => 0.019034031569138
1022 => 0.018467547530051
1023 => 0.018208649123392
1024 => 0.018073812585345
1025 => 0.018129448768855
1026 => 0.018101317411977
1027 => 0.017917741279565
1028 => 0.018111839781
1029 => 0.017615998316872
1030 => 0.01741855025059
1031 => 0.017329367539811
1101 => 0.016889279700827
1102 => 0.0175896551606
1103 => 0.017727637949273
1104 => 0.017865892606665
1105 => 0.019069305008795
1106 => 0.019009185925992
1107 => 0.019552633155344
1108 => 0.019531515795347
1109 => 0.019376515842274
1110 => 0.018722596536516
1111 => 0.0189832371168
1112 => 0.018181025923224
1113 => 0.01878209709451
1114 => 0.018507793313268
1115 => 0.018689354710147
1116 => 0.018362890947826
1117 => 0.018543569473253
1118 => 0.017760358787291
1119 => 0.017029007668812
1120 => 0.017323324708358
1121 => 0.017643280989581
1122 => 0.018337027730616
1123 => 0.017923837894942
1124 => 0.018072436584288
1125 => 0.017574655850099
1126 => 0.016547592011431
1127 => 0.016553405081219
1128 => 0.016395413685441
1129 => 0.016258886052368
1130 => 0.017971297717997
1201 => 0.017758332258154
1202 => 0.017418999670124
1203 => 0.017873209823743
1204 => 0.017993310197644
1205 => 0.017996729286448
1206 => 0.018328109289668
1207 => 0.018504966856789
1208 => 0.018536138769539
1209 => 0.019057572364544
1210 => 0.019232350027714
1211 => 0.019952234486852
1212 => 0.018489961727854
1213 => 0.018459847182658
1214 => 0.017879601492073
1215 => 0.017511600501783
1216 => 0.017904798834717
1217 => 0.018253118880772
1218 => 0.017890424766842
1219 => 0.017937784961231
1220 => 0.017450897746479
1221 => 0.01762493701558
1222 => 0.017774843079751
1223 => 0.017692073762187
1224 => 0.017568164087713
1225 => 0.018224560609185
1226 => 0.018187524145004
1227 => 0.018798775676289
1228 => 0.019275289955942
1229 => 0.020129288732196
1230 => 0.019238096489212
1231 => 0.019205617901709
]
'min_raw' => 0.016258886052368
'max_raw' => 0.047009221077093
'avg_raw' => 0.031634053564731
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.016258'
'max' => '$0.0470092'
'avg' => '$0.031634'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -0.0028589320203847
'max_diff' => -0.015879738889842
'year' => 2030
]
5 => [
'items' => [
101 => 0.019523101304277
102 => 0.01923230142266
103 => 0.019416076909771
104 => 0.020099679660064
105 => 0.020114123108971
106 => 0.019872176730453
107 => 0.019857454271332
108 => 0.01990392271993
109 => 0.020176089874782
110 => 0.020080986308025
111 => 0.020191042563204
112 => 0.020328669595548
113 => 0.020897953353971
114 => 0.021035205740826
115 => 0.020701753597972
116 => 0.020731860592967
117 => 0.020607140338073
118 => 0.020486662134587
119 => 0.020757479541596
120 => 0.021252403675835
121 => 0.021249324778483
122 => 0.021364137557676
123 => 0.021435664967953
124 => 0.02112861696178
125 => 0.02092874000023
126 => 0.02100538554579
127 => 0.021127943442263
128 => 0.020965641671758
129 => 0.019963839958705
130 => 0.020267722603104
131 => 0.020217141671974
201 => 0.020145108275193
202 => 0.020450664623991
203 => 0.02042119296874
204 => 0.019538402473286
205 => 0.019594915856598
206 => 0.019541839239303
207 => 0.019713340648237
208 => 0.019223039783758
209 => 0.019373853027445
210 => 0.019468441680099
211 => 0.019524155123177
212 => 0.019725430282639
213 => 0.019701812965785
214 => 0.019723962197063
215 => 0.020022400123873
216 => 0.021531796746149
217 => 0.021613949874003
218 => 0.021209397826352
219 => 0.021371008389953
220 => 0.021060751448185
221 => 0.021269029011735
222 => 0.021411527231038
223 => 0.020767605178836
224 => 0.020729476293924
225 => 0.020417938811394
226 => 0.020585341408121
227 => 0.020318991840056
228 => 0.020384344707547
301 => 0.020201612392682
302 => 0.020530494177798
303 => 0.02089823511662
304 => 0.020991141000296
305 => 0.020746745618842
306 => 0.020569787256228
307 => 0.020259106665187
308 => 0.020775775412057
309 => 0.020926865098836
310 => 0.020774981802253
311 => 0.020739787123719
312 => 0.020673093271493
313 => 0.020753936539751
314 => 0.020926042231954
315 => 0.020844880365804
316 => 0.020898489208284
317 => 0.020694187581949
318 => 0.021128718607446
319 => 0.021818858451523
320 => 0.021821077363971
321 => 0.021739915060328
322 => 0.021706705194344
323 => 0.021789982643222
324 => 0.021835157243018
325 => 0.022104461242215
326 => 0.022393435162899
327 => 0.023741950361529
328 => 0.023363292689924
329 => 0.024559775597677
330 => 0.025506038233849
331 => 0.025789781023387
401 => 0.025528751008142
402 => 0.024635781426554
403 => 0.024591968078745
404 => 0.02592644163567
405 => 0.025549391733078
406 => 0.025504542846927
407 => 0.025027426471675
408 => 0.025309461341462
409 => 0.025247776178237
410 => 0.025150403130346
411 => 0.025688506015181
412 => 0.026695786578814
413 => 0.026538792456755
414 => 0.026421603627385
415 => 0.025908116290242
416 => 0.026217350358751
417 => 0.026107238029943
418 => 0.026580350473511
419 => 0.026300089142665
420 => 0.025546535209227
421 => 0.025666541156873
422 => 0.025648402499305
423 => 0.026021694786741
424 => 0.025909641707737
425 => 0.025626522337242
426 => 0.026692343803353
427 => 0.026623135285754
428 => 0.02672125714044
429 => 0.026764453415391
430 => 0.027413200159932
501 => 0.027678970943591
502 => 0.027739305564453
503 => 0.027991767253479
504 => 0.027733024087643
505 => 0.028768181231736
506 => 0.029456500329463
507 => 0.030256018382051
508 => 0.031424329147074
509 => 0.031863624802202
510 => 0.031784269974086
511 => 0.03267006986238
512 => 0.03426183257142
513 => 0.03210601072782
514 => 0.034376096363875
515 => 0.033657413460899
516 => 0.031953429226496
517 => 0.031843712730455
518 => 0.032997670637657
519 => 0.035557038211496
520 => 0.034915945662356
521 => 0.035558086809241
522 => 0.034808995052064
523 => 0.034771796332479
524 => 0.035521705094599
525 => 0.037273907792691
526 => 0.036441501971164
527 => 0.035248044111723
528 => 0.036129274822873
529 => 0.035365871226823
530 => 0.033645709261708
531 => 0.034915455430966
601 => 0.034066412327872
602 => 0.034314208242969
603 => 0.036098770560041
604 => 0.035884047300685
605 => 0.036161919081131
606 => 0.035671482661815
607 => 0.035213337711449
608 => 0.0343581761393
609 => 0.034105004956743
610 => 0.034174972363457
611 => 0.034104970284371
612 => 0.033626515244095
613 => 0.033523192923701
614 => 0.033350984529724
615 => 0.033404359111855
616 => 0.033080556949835
617 => 0.033691638530507
618 => 0.033805060656713
619 => 0.034249754871151
620 => 0.034295924499711
621 => 0.035534391557097
622 => 0.034852264713482
623 => 0.035309894292177
624 => 0.035268959595282
625 => 0.031990359731788
626 => 0.032442121865646
627 => 0.033144921975162
628 => 0.032828311478448
629 => 0.032380698311541
630 => 0.032019226679764
701 => 0.03147156019525
702 => 0.0322423902552
703 => 0.033255949815397
704 => 0.034321630042785
705 => 0.035601975009858
706 => 0.035316216918066
707 => 0.034297694884215
708 => 0.034343385038623
709 => 0.034625823594759
710 => 0.034260040002314
711 => 0.034152163279959
712 => 0.034611002989667
713 => 0.034614162766574
714 => 0.034193284537043
715 => 0.033725555404822
716 => 0.03372359560268
717 => 0.033640367721328
718 => 0.034823801107265
719 => 0.035474569810919
720 => 0.035549179394027
721 => 0.035469547991518
722 => 0.035500194957886
723 => 0.03512152698794
724 => 0.035987049676739
725 => 0.036781338887304
726 => 0.036568452411358
727 => 0.036249305320321
728 => 0.035995089290103
729 => 0.036508567193741
730 => 0.036485702830981
731 => 0.036774401463972
801 => 0.036761304426376
802 => 0.036664225934605
803 => 0.036568455878337
804 => 0.036948173326085
805 => 0.036838820799209
806 => 0.036729298417655
807 => 0.036509634514411
808 => 0.036539490487093
809 => 0.0362203985013
810 => 0.036072771948017
811 => 0.033852822792261
812 => 0.033259579838912
813 => 0.03344622614861
814 => 0.033507674960031
815 => 0.033249494866472
816 => 0.033619658799612
817 => 0.033561969142733
818 => 0.033786405850329
819 => 0.033646187539332
820 => 0.033651942147725
821 => 0.034064294302672
822 => 0.034184001887524
823 => 0.034123117643709
824 => 0.034165758881087
825 => 0.035148408198722
826 => 0.035008706889111
827 => 0.03493449335273
828 => 0.034955051009492
829 => 0.035206138978387
830 => 0.035276429900783
831 => 0.034978602323337
901 => 0.035119059530581
902 => 0.035717108492353
903 => 0.035926391782334
904 => 0.036594323582273
905 => 0.036310574282118
906 => 0.036831408402935
907 => 0.038432274924892
908 => 0.039711157874168
909 => 0.038535044261941
910 => 0.040883549933525
911 => 0.042712198471984
912 => 0.042642011895304
913 => 0.042323144725221
914 => 0.040241276981323
915 => 0.038325511244488
916 => 0.03992813063106
917 => 0.039932216037458
918 => 0.039794549610859
919 => 0.038939515258626
920 => 0.039764796268796
921 => 0.039830304078403
922 => 0.039793637124955
923 => 0.039138084291832
924 => 0.038137176282069
925 => 0.038332751311342
926 => 0.038653107198913
927 => 0.038046606670502
928 => 0.037852793002512
929 => 0.038213129485864
930 => 0.039374208714315
1001 => 0.03915471341185
1002 => 0.039148981502453
1003 => 0.04008807548689
1004 => 0.039415886863199
1005 => 0.038335218138779
1006 => 0.038062335033593
1007 => 0.037093783846271
1008 => 0.037762765601215
1009 => 0.037786841063611
1010 => 0.037420446593255
1011 => 0.038364949030733
1012 => 0.038356245274495
1013 => 0.039252909768244
1014 => 0.040966995508489
1015 => 0.040460056010062
1016 => 0.039870540528252
1017 => 0.039934637206616
1018 => 0.040637619564187
1019 => 0.040212580383273
1020 => 0.040365427436208
1021 => 0.040637388211866
1022 => 0.040801468900226
1023 => 0.039911028520619
1024 => 0.039703424273446
1025 => 0.039278738842919
1026 => 0.039167946341224
1027 => 0.039513843763036
1028 => 0.039422712013125
1029 => 0.037784817614221
1030 => 0.037613648536377
1031 => 0.037618898047622
1101 => 0.037188485262737
1102 => 0.036532002454884
1103 => 0.038257200077371
1104 => 0.03811864256416
1105 => 0.037965685793075
1106 => 0.037984422124773
1107 => 0.038733271940322
1108 => 0.038298901229482
1109 => 0.03945374695621
1110 => 0.039216345392635
1111 => 0.038972855374752
1112 => 0.038939197637393
1113 => 0.038845474754101
1114 => 0.038524064114541
1115 => 0.038135941453487
1116 => 0.037879669254051
1117 => 0.034941992575121
1118 => 0.035487208279051
1119 => 0.036114429248448
1120 => 0.036330943413653
1121 => 0.035960580951745
1122 => 0.038538688281923
1123 => 0.039009733334407
1124 => 0.037582907144925
1125 => 0.037316006221802
1126 => 0.038556186262009
1127 => 0.03780820609192
1128 => 0.038145021516711
1129 => 0.0374170107965
1130 => 0.038896272375072
1201 => 0.038885002880285
1202 => 0.038309536715582
1203 => 0.038795916777366
1204 => 0.038711396272406
1205 => 0.038061696389767
1206 => 0.038916869020201
1207 => 0.038917293175156
1208 => 0.038363419503343
1209 => 0.037716616313203
1210 => 0.037600983179615
1211 => 0.037513869146583
1212 => 0.038123596804773
1213 => 0.038670276716537
1214 => 0.039687512498887
1215 => 0.039943269743496
1216 => 0.040941507295928
1217 => 0.040347105436759
1218 => 0.040610596082135
1219 => 0.04089665245072
1220 => 0.041033798393193
1221 => 0.040810326439589
1222 => 0.042361000249485
1223 => 0.042491924630458
1224 => 0.042535822442907
1225 => 0.042012943958978
1226 => 0.04247738243394
1227 => 0.042260087052091
1228 => 0.042825429269266
1229 => 0.042914082147571
1230 => 0.042838996313565
1231 => 0.042867136136429
]
'min_raw' => 0.019223039783758
'max_raw' => 0.042914082147571
'avg_raw' => 0.031068560965664
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.019223'
'max' => '$0.042914'
'avg' => '$0.031068'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 0.0029641537313892
'max_diff' => -0.0040951389295214
'year' => 2031
]
6 => [
'items' => [
101 => 0.041543909597288
102 => 0.041475293320658
103 => 0.040539705520012
104 => 0.040920964464291
105 => 0.040208219142178
106 => 0.04043423802591
107 => 0.040533864996273
108 => 0.040481825520736
109 => 0.040942520272964
110 => 0.04055083561985
111 => 0.039517115421364
112 => 0.038483113586501
113 => 0.038470132535744
114 => 0.038197898104273
115 => 0.038001122472543
116 => 0.038039028440205
117 => 0.038172614014398
118 => 0.037993358236125
119 => 0.038031611544919
120 => 0.038666871351348
121 => 0.038794268175061
122 => 0.03836132399093
123 => 0.036622990618095
124 => 0.036196399248122
125 => 0.036503024665184
126 => 0.036356477465034
127 => 0.029342514821008
128 => 0.030990341304644
129 => 0.030011258762967
130 => 0.030462465043594
131 => 0.029463075300737
201 => 0.029940036468532
202 => 0.029851959156674
203 => 0.032501615379629
204 => 0.032460244642191
205 => 0.032480046624912
206 => 0.031534846395842
207 => 0.033040576025733
208 => 0.033782352585703
209 => 0.033645069486196
210 => 0.033679620684694
211 => 0.033085916620909
212 => 0.032485794978022
213 => 0.031820167718002
214 => 0.033056820893103
215 => 0.032919326170406
216 => 0.033234689595234
217 => 0.034036747577082
218 => 0.034154853661632
219 => 0.034313589436979
220 => 0.034256693961099
221 => 0.035612175023135
222 => 0.03544801732277
223 => 0.035843590149255
224 => 0.035029866832993
225 => 0.034109061661316
226 => 0.034284076621063
227 => 0.034267221273058
228 => 0.034052633347286
229 => 0.033858912962774
301 => 0.033536423102941
302 => 0.034556828738972
303 => 0.034515402133629
304 => 0.035186050720977
305 => 0.03506750706883
306 => 0.034275843547243
307 => 0.034304117964792
308 => 0.034494277011029
309 => 0.035152419641256
310 => 0.035347801183675
311 => 0.035257292668618
312 => 0.035471519610374
313 => 0.035640835850402
314 => 0.035492783123283
315 => 0.037588897523716
316 => 0.03671844468407
317 => 0.037142697341541
318 => 0.037243879100507
319 => 0.036984704152541
320 => 0.037040909918395
321 => 0.037126046338511
322 => 0.037642978010032
323 => 0.038999556291488
324 => 0.039600375577804
325 => 0.041407970044588
326 => 0.039550485899884
327 => 0.039440270477771
328 => 0.039765872825362
329 => 0.040827122130671
330 => 0.041687165014545
331 => 0.04197249085619
401 => 0.04201020137638
402 => 0.04254549162341
403 => 0.042852310010435
404 => 0.042480493307889
405 => 0.042165417583313
406 => 0.041036855446519
407 => 0.041167489586826
408 => 0.042067429269894
409 => 0.043338647078411
410 => 0.044429484205789
411 => 0.044047511063293
412 => 0.046961696509521
413 => 0.047250626093135
414 => 0.047210705366891
415 => 0.047868929956849
416 => 0.046562488190889
417 => 0.046003959024823
418 => 0.042233540531228
419 => 0.043292874334556
420 => 0.044832678230187
421 => 0.044628879410632
422 => 0.043510632662549
423 => 0.044428635915355
424 => 0.044125115331361
425 => 0.043885716053685
426 => 0.044982450554554
427 => 0.043776545919478
428 => 0.044820648408983
429 => 0.043481576166336
430 => 0.044049255884433
501 => 0.043727013420863
502 => 0.043935543787344
503 => 0.042716479525871
504 => 0.04337425701025
505 => 0.042689113819949
506 => 0.042688788972869
507 => 0.042673664398969
508 => 0.043479732323967
509 => 0.043506018170063
510 => 0.042910332755588
511 => 0.042824485181007
512 => 0.043141908658768
513 => 0.042770288899651
514 => 0.042944167445995
515 => 0.042775555503686
516 => 0.042737597403962
517 => 0.042435140807319
518 => 0.042304834189268
519 => 0.042355930771794
520 => 0.04218151179354
521 => 0.042076418050132
522 => 0.042652758608234
523 => 0.042344843097552
524 => 0.042605566140092
525 => 0.042308439327246
526 => 0.041278468341934
527 => 0.040686121136535
528 => 0.03874060142364
529 => 0.039292348400808
530 => 0.039658157217493
531 => 0.039537257405761
601 => 0.039796996983378
602 => 0.039812942883926
603 => 0.039728498899511
604 => 0.039630723583503
605 => 0.039583131966985
606 => 0.039937840885435
607 => 0.040143761351548
608 => 0.039694871026138
609 => 0.039589702303538
610 => 0.040043555206441
611 => 0.04032040521503
612 => 0.042364510129869
613 => 0.042213076235406
614 => 0.042593145593107
615 => 0.04255035561607
616 => 0.042948728852738
617 => 0.043599900729599
618 => 0.04227588623342
619 => 0.04250568936898
620 => 0.04244934694707
621 => 0.043064478735707
622 => 0.043066399110007
623 => 0.042697596874608
624 => 0.042897530549551
625 => 0.042785933057091
626 => 0.042987604809271
627 => 0.04221105374342
628 => 0.043156809118119
629 => 0.043692991472443
630 => 0.043700436364953
701 => 0.043954582545496
702 => 0.044212809784082
703 => 0.044708454481696
704 => 0.044198986522477
705 => 0.04328250325955
706 => 0.043348670390911
707 => 0.042811336589184
708 => 0.042820369267469
709 => 0.042772152122883
710 => 0.042916855403401
711 => 0.042242807976123
712 => 0.042401005560038
713 => 0.042179528016153
714 => 0.042505207920054
715 => 0.042154830180273
716 => 0.042449319777049
717 => 0.042576411724532
718 => 0.043045383746841
719 => 0.042085562631268
720 => 0.04012842240244
721 => 0.040539837006571
722 => 0.039931322491141
723 => 0.039987642826322
724 => 0.040101418866703
725 => 0.039732633494625
726 => 0.039802986121854
727 => 0.039800472630946
728 => 0.039778812724194
729 => 0.03968287740575
730 => 0.039543752213781
731 => 0.040097984158109
801 => 0.040192158965368
802 => 0.040401497896116
803 => 0.041024348558067
804 => 0.040962111089108
805 => 0.041063622983188
806 => 0.040842023088377
807 => 0.039997922209878
808 => 0.040043760948673
809 => 0.039472151141392
810 => 0.04038688054819
811 => 0.040170260550822
812 => 0.040030604229322
813 => 0.039992497708094
814 => 0.040616892296364
815 => 0.04080372094336
816 => 0.040687301868156
817 => 0.040448522948426
818 => 0.040907049062959
819 => 0.041029731307544
820 => 0.041057195337759
821 => 0.04186961569905
822 => 0.041102600611091
823 => 0.041287228766237
824 => 0.042727644928254
825 => 0.041421386233148
826 => 0.042113340596991
827 => 0.042079473031637
828 => 0.04243345346972
829 => 0.0420504363038
830 => 0.042055184260613
831 => 0.042369494908919
901 => 0.041928102289598
902 => 0.041818807269735
903 => 0.041667816982581
904 => 0.041997498750713
905 => 0.042195128060484
906 => 0.043787875154506
907 => 0.044816862415337
908 => 0.044772191364583
909 => 0.045180401147767
910 => 0.044996498901669
911 => 0.04440263003806
912 => 0.045416291773649
913 => 0.0450955267871
914 => 0.045121970262862
915 => 0.045120986035373
916 => 0.045334266709666
917 => 0.045183137805043
918 => 0.044885247220966
919 => 0.045083000892648
920 => 0.04567025859931
921 => 0.047493124540058
922 => 0.048513224470263
923 => 0.047431713243385
924 => 0.048177725205673
925 => 0.047730383859541
926 => 0.047649088629697
927 => 0.048117639271865
928 => 0.048587010049906
929 => 0.04855711316049
930 => 0.048216374078089
1001 => 0.048023899216374
1002 => 0.049481383353085
1003 => 0.05055523283742
1004 => 0.050482003501767
1005 => 0.050805213973885
1006 => 0.051754169916547
1007 => 0.051840930555241
1008 => 0.051830000708936
1009 => 0.051614955413397
1010 => 0.052549325776448
1011 => 0.053328793971988
1012 => 0.051565178640735
1013 => 0.052236740271456
1014 => 0.052538225923852
1015 => 0.05298089630833
1016 => 0.053727755447116
1017 => 0.054539042566441
1018 => 0.054653767460424
1019 => 0.054572364658051
1020 => 0.054037298994288
1021 => 0.054925019040922
1022 => 0.055445024624643
1023 => 0.055754676049632
1024 => 0.056539900542322
1025 => 0.052540087796603
1026 => 0.049708821531591
1027 => 0.049266678420329
1028 => 0.050165793823499
1029 => 0.050402883385005
1030 => 0.050307312880047
1031 => 0.047120465291309
1101 => 0.049249900327307
1102 => 0.051540993378059
1103 => 0.051629003592908
1104 => 0.052775972678611
1105 => 0.053149472828767
1106 => 0.054072933279432
1107 => 0.054015170576812
1108 => 0.054240018501084
1109 => 0.054188329857117
1110 => 0.055898845884435
1111 => 0.057785799076654
1112 => 0.057720459887751
1113 => 0.057449188040953
1114 => 0.057852072992172
1115 => 0.059799610904735
1116 => 0.059620312822406
1117 => 0.059794485636815
1118 => 0.062090742594154
1119 => 0.065076203277439
1120 => 0.063689157054701
1121 => 0.066698648246243
1122 => 0.068592963425045
1123 => 0.071868985650939
1124 => 0.071458811533507
1125 => 0.072734142945486
1126 => 0.070724514257383
1127 => 0.066110000576532
1128 => 0.065379736122889
1129 => 0.066841744052324
1130 => 0.070435947886194
1201 => 0.06672854978291
1202 => 0.067478551590679
1203 => 0.067262551019586
1204 => 0.067251041267096
1205 => 0.067690321706101
1206 => 0.067053122517998
1207 => 0.064457058395721
1208 => 0.065646819284258
1209 => 0.065187395468183
1210 => 0.065697160444433
1211 => 0.068448151778183
1212 => 0.06723187293409
1213 => 0.065950621974307
1214 => 0.067557595010223
1215 => 0.06960382390079
1216 => 0.069475774574246
1217 => 0.069227305360282
1218 => 0.070627913309968
1219 => 0.072941307303225
1220 => 0.073566608403632
1221 => 0.074028192892235
1222 => 0.074091837594679
1223 => 0.074747417584819
1224 => 0.071222198750407
1225 => 0.07681681157466
1226 => 0.077782846661348
1227 => 0.077601272103103
1228 => 0.078674979444986
1229 => 0.078359067507678
1230 => 0.077901360675582
1231 => 0.079603415196568
]
'min_raw' => 0.029342514821008
'max_raw' => 0.079603415196568
'avg_raw' => 0.054472965008788
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.029342'
'max' => '$0.0796034'
'avg' => '$0.054472'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.01011947503725
'max_diff' => 0.036689333048997
'year' => 2032
]
7 => [
'items' => [
101 => 0.077652147036975
102 => 0.074882567542263
103 => 0.073363121455393
104 => 0.075364050632803
105 => 0.076585948258643
106 => 0.077393544862037
107 => 0.077637923106262
108 => 0.071495851453511
109 => 0.06818561548759
110 => 0.070307438789813
111 => 0.072896209658947
112 => 0.071207817997519
113 => 0.071273999754099
114 => 0.068866796946425
115 => 0.073109193693507
116 => 0.07249111217163
117 => 0.075697720200495
118 => 0.074932437459769
119 => 0.077547301827502
120 => 0.07685872040583
121 => 0.079716983389121
122 => 0.080857221877537
123 => 0.082771859763537
124 => 0.084180275186457
125 => 0.08500732366149
126 => 0.08495767077323
127 => 0.088234848865223
128 => 0.086302411440256
129 => 0.083874814593966
130 => 0.083830907025987
131 => 0.085088193831994
201 => 0.087723122057594
202 => 0.088406320609846
203 => 0.088788135396894
204 => 0.088203372759461
205 => 0.086105850433698
206 => 0.085200150928112
207 => 0.085971833147512
208 => 0.085028132104595
209 => 0.086657224860416
210 => 0.088894317169593
211 => 0.08843236645417
212 => 0.089976598436308
213 => 0.091574716079879
214 => 0.09386009608614
215 => 0.094457579047153
216 => 0.095445195661466
217 => 0.096461777572752
218 => 0.096788276285006
219 => 0.097411663633299
220 => 0.097408378074261
221 => 0.099286997807152
222 => 0.10135917354854
223 => 0.10214137191994
224 => 0.10393999394429
225 => 0.10085991675882
226 => 0.10319619068538
227 => 0.10530356824786
228 => 0.10279106584089
301 => 0.10625396507092
302 => 0.10638842160092
303 => 0.10841855556984
304 => 0.10636062586574
305 => 0.10513863377658
306 => 0.10866647915052
307 => 0.11037349240087
308 => 0.10985932611773
309 => 0.1059464953155
310 => 0.10366905995939
311 => 0.097708572347984
312 => 0.1047690273976
313 => 0.10820796909597
314 => 0.10593758928729
315 => 0.10708263680268
316 => 0.11332964476375
317 => 0.11570810093152
318 => 0.11521339867529
319 => 0.1152969952131
320 => 0.11658036698919
321 => 0.12227154421013
322 => 0.11886125889889
323 => 0.12146829423838
324 => 0.12285105638208
325 => 0.12413544292333
326 => 0.12098139551257
327 => 0.11687802617334
328 => 0.11557831685588
329 => 0.10571184475961
330 => 0.10519825203908
331 => 0.1049099568816
401 => 0.10309229669382
402 => 0.10166411368526
403 => 0.10052836953181
404 => 0.09754783771125
405 => 0.09855367970626
406 => 0.093803334069627
407 => 0.096842436866032
408 => 0.08926077052886
409 => 0.095575007544889
410 => 0.092138455410193
411 => 0.094446007742868
412 => 0.094437956910163
413 => 0.090189021455575
414 => 0.087738324158389
415 => 0.089300003858722
416 => 0.090974248463767
417 => 0.091245889018101
418 => 0.093416590850798
419 => 0.094022387073223
420 => 0.092186796237352
421 => 0.089103657345886
422 => 0.089819800191462
423 => 0.087723811546481
424 => 0.084050672067192
425 => 0.08668878496808
426 => 0.08758955270208
427 => 0.08798738304902
428 => 0.084375272234058
429 => 0.083240268593256
430 => 0.082636002178496
501 => 0.088637379198619
502 => 0.088966148179124
503 => 0.087284119591611
504 => 0.094887048303665
505 => 0.093166271379039
506 => 0.095088800804428
507 => 0.08975481773448
508 => 0.089958583070913
509 => 0.087433390004729
510 => 0.08884732938833
511 => 0.087848002605394
512 => 0.088733097058957
513 => 0.089263619025041
514 => 0.09178839773189
515 => 0.095603836462113
516 => 0.091411279987037
517 => 0.089584523092332
518 => 0.090717832795736
519 => 0.093735985881708
520 => 0.09830864230337
521 => 0.095601537668459
522 => 0.096802904735815
523 => 0.097065349994931
524 => 0.095069231259609
525 => 0.098382242048375
526 => 0.10015771144493
527 => 0.10197897566416
528 => 0.10356032835506
529 => 0.10125152268454
530 => 0.10372227570629
531 => 0.10173128491738
601 => 0.099945160354885
602 => 0.099947869168566
603 => 0.098827407139396
604 => 0.096656370770578
605 => 0.096255998354494
606 => 0.098338786224425
607 => 0.10000898485536
608 => 0.10014655041432
609 => 0.10107125819431
610 => 0.10161849073326
611 => 0.10698211354155
612 => 0.10913940700526
613 => 0.11177730461721
614 => 0.11280491440082
615 => 0.11589765143101
616 => 0.11340001509931
617 => 0.11285963576808
618 => 0.10535766735942
619 => 0.10658611426607
620 => 0.10855297629111
621 => 0.10539010018977
622 => 0.10739621708235
623 => 0.10779226705231
624 => 0.10528262687013
625 => 0.10662313412658
626 => 0.10306314428616
627 => 0.095681434512305
628 => 0.098390460001527
629 => 0.10038521460971
630 => 0.097538453832361
701 => 0.10264116234091
702 => 0.0996602653715
703 => 0.098715464140486
704 => 0.095029457692341
705 => 0.096769110848466
706 => 0.099122016651559
707 => 0.097668194419907
708 => 0.10068509384309
709 => 0.10495782800401
710 => 0.1080028328128
711 => 0.10823659047204
712 => 0.10627885637947
713 => 0.10941613775691
714 => 0.1094389894267
715 => 0.10590012321677
716 => 0.10373258736768
717 => 0.10324011866224
718 => 0.10447040204262
719 => 0.10596419318925
720 => 0.10831948548442
721 => 0.10974273929023
722 => 0.1134538303803
723 => 0.11445794522395
724 => 0.11556116300852
725 => 0.11703540218848
726 => 0.11880560431118
727 => 0.11493250284437
728 => 0.11508638838601
729 => 0.11147980992685
730 => 0.10762566360757
731 => 0.11055048023778
801 => 0.11437428890973
802 => 0.11349710297546
803 => 0.11339840163857
804 => 0.11356438990975
805 => 0.11290302036151
806 => 0.10991167040636
807 => 0.10840943318573
808 => 0.11034770246193
809 => 0.1113778063198
810 => 0.11297540756885
811 => 0.11277846949363
812 => 0.11689371874134
813 => 0.11849278016032
814 => 0.11808367182165
815 => 0.11815895760171
816 => 0.12105398191964
817 => 0.12427384436835
818 => 0.12728967044984
819 => 0.13035749827267
820 => 0.12665911209289
821 => 0.12478129967554
822 => 0.12671872276402
823 => 0.12569069880207
824 => 0.13159802941915
825 => 0.13200704017412
826 => 0.13791394362396
827 => 0.14352029837884
828 => 0.13999904740558
829 => 0.14331942847274
830 => 0.14691069131151
831 => 0.1538388199889
901 => 0.15150566998486
902 => 0.14971851364689
903 => 0.14802965954298
904 => 0.15154389683517
905 => 0.15606490697026
906 => 0.15703868925166
907 => 0.158616588561
908 => 0.15695762037358
909 => 0.15895566482597
910 => 0.16600963972813
911 => 0.16410359344241
912 => 0.16139670130445
913 => 0.16696513701876
914 => 0.16898033225702
915 => 0.18312402780507
916 => 0.20098102768141
917 => 0.19358811247722
918 => 0.1889990914421
919 => 0.19007762023839
920 => 0.19659839209564
921 => 0.19869265705723
922 => 0.19299972295519
923 => 0.1950105635227
924 => 0.20609049275113
925 => 0.21203451929549
926 => 0.20396173285897
927 => 0.18168923525198
928 => 0.16115297528418
929 => 0.16660011618748
930 => 0.16598257945351
1001 => 0.17788658116013
1002 => 0.16405813486887
1003 => 0.16429097043938
1004 => 0.17644113429475
1005 => 0.17319967888468
1006 => 0.16794893625461
1007 => 0.1611913115162
1008 => 0.14869921718261
1009 => 0.13763462086353
1010 => 0.1593348422696
1011 => 0.15839908926327
1012 => 0.15704398023929
1013 => 0.16005962873405
1014 => 0.17470276181782
1015 => 0.17436519020505
1016 => 0.17221773183511
1017 => 0.17384656008188
1018 => 0.16766339478768
1019 => 0.16925693727205
1020 => 0.16114972223568
1021 => 0.16481452201933
1022 => 0.16793767051915
1023 => 0.1685646888195
1024 => 0.16997739306652
1025 => 0.15790598994989
1026 => 0.16332569555148
1027 => 0.16650926483468
1028 => 0.15212578299396
1029 => 0.1662249496451
1030 => 0.15769585367808
1031 => 0.15480095040414
1101 => 0.15869855628799
1102 => 0.15717965548451
1103 => 0.15587379376652
1104 => 0.15514510049034
1105 => 0.15800707208837
1106 => 0.15787355769252
1107 => 0.15319081667339
1108 => 0.14708237190688
1109 => 0.14913256647339
1110 => 0.1483877115667
1111 => 0.14568826129667
1112 => 0.1475073648458
1113 => 0.13949695344265
1114 => 0.12571545696849
1115 => 0.13481993567798
1116 => 0.13446942315143
1117 => 0.13429267884106
1118 => 0.14113444296193
1119 => 0.14047676520807
1120 => 0.1392830736448
1121 => 0.145666338215
1122 => 0.14333636077985
1123 => 0.15051680222326
1124 => 0.15524630535972
1125 => 0.15404675038091
1126 => 0.15849487094042
1127 => 0.14917979881539
1128 => 0.1522738921195
1129 => 0.15291158046125
1130 => 0.14558756972105
1201 => 0.14058436942224
1202 => 0.14025071300296
1203 => 0.13157585316829
1204 => 0.13620989327095
1205 => 0.14028765679168
1206 => 0.13833472451248
1207 => 0.13771648449508
1208 => 0.14087493866409
1209 => 0.14112037760335
1210 => 0.13552434377771
1211 => 0.13668793641341
1212 => 0.14154031113543
1213 => 0.13656566902032
1214 => 0.12690075199384
1215 => 0.12450371894334
1216 => 0.12418391054832
1217 => 0.11768296680428
1218 => 0.12466390015364
1219 => 0.12161653566926
1220 => 0.13124312356237
1221 => 0.12574446818625
1222 => 0.12550743214301
1223 => 0.12514911739802
1224 => 0.11955348656692
1225 => 0.12077857409804
1226 => 0.12485095163759
1227 => 0.12630402182231
1228 => 0.12615245469739
1229 => 0.12483099476596
1230 => 0.1254359523556
1231 => 0.12348717317818
]
'min_raw' => 0.06818561548759
'max_raw' => 0.21203451929549
'avg_raw' => 0.14011006739154
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.068185'
'max' => '$0.212034'
'avg' => '$0.14011'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.038843100666582
'max_diff' => 0.13243110409892
'year' => 2033
]
8 => [
'items' => [
101 => 0.1227990186903
102 => 0.12062701383476
103 => 0.11743476672876
104 => 0.11787866826804
105 => 0.11155399145416
106 => 0.10810797184996
107 => 0.10715415904132
108 => 0.10587868069104
109 => 0.10729822771491
110 => 0.1115360744394
111 => 0.10642433218032
112 => 0.097660608624163
113 => 0.098187323342547
114 => 0.099370694931751
115 => 0.097165489804055
116 => 0.095078448219528
117 => 0.096892961550239
118 => 0.093179656349367
119 => 0.099819430124752
120 => 0.099639842851878
121 => 0.10211473991449
122 => 0.10366234383773
123 => 0.10009561783737
124 => 0.099198595893726
125 => 0.099709580360198
126 => 0.091264145361386
127 => 0.10142456769715
128 => 0.10151243545143
129 => 0.10076005839322
130 => 0.10617016961917
131 => 0.11758719176193
201 => 0.11329164878317
202 => 0.11162828470832
203 => 0.10846622838612
204 => 0.11267948069113
205 => 0.11235596865108
206 => 0.11089292451767
207 => 0.11000807086082
208 => 0.11163844085467
209 => 0.10980604997607
210 => 0.10947690222354
211 => 0.1074826249595
212 => 0.10677075871007
213 => 0.1062437212792
214 => 0.10566350485344
215 => 0.10694331770774
216 => 0.10404309340651
217 => 0.10054570721172
218 => 0.10025493739187
219 => 0.10105777842923
220 => 0.10070258103468
221 => 0.1002532368434
222 => 0.099395316410627
223 => 0.099140789744794
224 => 0.099967877929968
225 => 0.099034143591143
226 => 0.10041191947122
227 => 0.10003724066766
228 => 0.09794431532844
301 => 0.09533575545557
302 => 0.095312533801062
303 => 0.094750523855348
304 => 0.09403471969072
305 => 0.093835599347502
306 => 0.096740148298615
307 => 0.10275247770159
308 => 0.10157211357693
309 => 0.10242504762558
310 => 0.10662063896504
311 => 0.10795429128602
312 => 0.10700769645788
313 => 0.10571193907368
314 => 0.10576894582251
315 => 0.11019694105673
316 => 0.110473109688
317 => 0.11117089872384
318 => 0.11206775483005
319 => 0.10716043493088
320 => 0.10553781149656
321 => 0.10476892249366
322 => 0.10240104196223
323 => 0.10495459810865
324 => 0.1034667502963
325 => 0.10366751179831
326 => 0.10353676560676
327 => 0.10360816186836
328 => 0.099817574172662
329 => 0.10119866510155
330 => 0.098902333565282
331 => 0.09582780341353
401 => 0.095817496510392
402 => 0.09656998340935
403 => 0.096122374757035
404 => 0.094917871382725
405 => 0.09508896540195
406 => 0.093590001759951
407 => 0.095270966727702
408 => 0.095319170788195
409 => 0.09467190771283
410 => 0.097261666174115
411 => 0.098322692328745
412 => 0.097896649906821
413 => 0.09829280005668
414 => 0.10162116303534
415 => 0.10216383142752
416 => 0.10240484888066
417 => 0.10208191742214
418 => 0.098353636421968
419 => 0.098519001538201
420 => 0.097305662036764
421 => 0.096280518016617
422 => 0.096321518401251
423 => 0.096848575687001
424 => 0.099150265765372
425 => 0.10399403684326
426 => 0.10417785441492
427 => 0.1044006466741
428 => 0.10349443858958
429 => 0.10322111756005
430 => 0.10358169854815
501 => 0.10540076429162
502 => 0.11007989525536
503 => 0.10842597786413
504 => 0.10708131728029
505 => 0.10826094713021
506 => 0.10807935236106
507 => 0.10654650975892
508 => 0.10650348797237
509 => 0.10356147293944
510 => 0.10247387696821
511 => 0.1015650003695
512 => 0.10057253085053
513 => 0.099984161651812
514 => 0.10088816415007
515 => 0.10109492021726
516 => 0.099118302955566
517 => 0.098848897326648
518 => 0.1004630456508
519 => 0.099752719154854
520 => 0.10048330757118
521 => 0.10065281035064
522 => 0.10062551649917
523 => 0.099883854056924
524 => 0.10035656758092
525 => 0.099238459173989
526 => 0.098022684215908
527 => 0.097247095538109
528 => 0.096570291549819
529 => 0.096945821738601
530 => 0.095607125184698
531 => 0.095178849214466
601 => 0.10019642287538
602 => 0.1039029584867
603 => 0.10384906399096
604 => 0.1035209951087
605 => 0.103033551296
606 => 0.10536510474062
607 => 0.1045528381414
608 => 0.10514382995948
609 => 0.10529426218103
610 => 0.10574957520837
611 => 0.10591231048017
612 => 0.10542041146188
613 => 0.1037695382761
614 => 0.099655719257423
615 => 0.097740725399189
616 => 0.097108745529226
617 => 0.097131716797199
618 => 0.096498066678261
619 => 0.096684705036495
620 => 0.096433161473928
621 => 0.095956798821349
622 => 0.096916407687159
623 => 0.097026993669569
624 => 0.096803009493817
625 => 0.096855765875552
626 => 0.095001272565218
627 => 0.095142265663855
628 => 0.094357198174108
629 => 0.09421000748391
630 => 0.092225425233475
701 => 0.088709450107034
702 => 0.090657641631046
703 => 0.088304500227222
704 => 0.087413329921683
705 => 0.091631991542687
706 => 0.091208554923397
707 => 0.090483815494648
708 => 0.089411774830595
709 => 0.089014144520157
710 => 0.086598268628394
711 => 0.086455525792512
712 => 0.087652899118606
713 => 0.087100352527714
714 => 0.086324367848344
715 => 0.08351382999997
716 => 0.080353854921295
717 => 0.080449234706025
718 => 0.081454363985125
719 => 0.084376912924259
720 => 0.083235022493129
721 => 0.082406567883662
722 => 0.082251423238563
723 => 0.084193383289293
724 => 0.086941663614286
725 => 0.088231095253466
726 => 0.08695330765966
727 => 0.085485454072865
728 => 0.085574795519315
729 => 0.086169144136871
730 => 0.086231601772939
731 => 0.085276179985722
801 => 0.085545125622409
802 => 0.085136572607377
803 => 0.082629283508262
804 => 0.082583934599159
805 => 0.081968605418737
806 => 0.081949973495701
807 => 0.080903145058747
808 => 0.080756686524034
809 => 0.078678145124517
810 => 0.080046247368082
811 => 0.07912859621169
812 => 0.077745479466983
813 => 0.077507029618867
814 => 0.077499861528496
815 => 0.078920013166066
816 => 0.080029652069345
817 => 0.079144559146436
818 => 0.078943040644696
819 => 0.081094731027894
820 => 0.080820908813539
821 => 0.080583780541871
822 => 0.086695585254586
823 => 0.081857614914403
824 => 0.07974798370439
825 => 0.077136914473899
826 => 0.077987091781501
827 => 0.078166236631916
828 => 0.071887085813188
829 => 0.069339635108048
830 => 0.068465446024699
831 => 0.067962337848012
901 => 0.068191610561763
902 => 0.065898606140972
903 => 0.067439543034536
904 => 0.06545399502897
905 => 0.065121111444305
906 => 0.068671517240456
907 => 0.069165535465821
908 => 0.067057900236983
909 => 0.068411343249046
910 => 0.067920565998607
911 => 0.065488031550657
912 => 0.065395126627258
913 => 0.064174566348997
914 => 0.06226462586056
915 => 0.0613917318068
916 => 0.060937121004788
917 => 0.061124702281886
918 => 0.061029855448103
919 => 0.060410915700801
920 => 0.061065332349914
921 => 0.05939356823506
922 => 0.058727858294207
923 => 0.058427172558277
924 => 0.056943385683193
925 => 0.05930475044447
926 => 0.059769969050131
927 => 0.060236104280159
928 => 0.064293493213511
929 => 0.064090797528463
930 => 0.065923067804496
1001 => 0.065851869150898
1002 => 0.065329275987363
1003 => 0.063124541392811
1004 => 0.064003309306584
1005 => 0.061298598258845
1006 => 0.063325151678285
1007 => 0.062400317328547
1008 => 0.063012464254339
1009 => 0.061911768886702
1010 => 0.06252093914975
1011 => 0.059880289640006
1012 => 0.057414488282748
1013 => 0.058406798730138
1014 => 0.059485553670915
1015 => 0.061824569244166
1016 => 0.060431470865197
1017 => 0.060932481721156
1018 => 0.059254179221897
1019 => 0.055791361782519
1020 => 0.055810960953165
1021 => 0.055278281931695
1022 => 0.054817969484734
1023 => 0.060591484972166
1024 => 0.059873457055531
1025 => 0.058729373543543
1026 => 0.06026077478841
1027 => 0.060665701584159
1028 => 0.060677229280774
1029 => 0.061794500097842
1030 => 0.062390787733194
1031 => 0.062495886013383
1101 => 0.064253935784273
1102 => 0.064843210878239
1103 => 0.067270351592949
1104 => 0.062340196893364
1105 => 0.062238663601704
1106 => 0.060282324744438
1107 => 0.059041583712665
1108 => 0.060367279344383
1109 => 0.061541664698585
1110 => 0.060318816170979
1111 => 0.060478494372943
1112 => 0.058836920135027
1113 => 0.059423705681835
1114 => 0.059929124443295
1115 => 0.059650061910359
1116 => 0.059232291791773
1117 => 0.061445378492055
1118 => 0.061320507467268
1119 => 0.063381384681214
1120 => 0.064987985844228
1121 => 0.067867302342659
1122 => 0.064862585474382
1123 => 0.064753081649034
1124 => 0.065823499106776
1125 => 0.064843047002903
1126 => 0.065462658888494
1127 => 0.067767473288728
1128 => 0.067816170385126
1129 => 0.067000431277795
1130 => 0.066950793478979
1201 => 0.06710746509775
1202 => 0.06802509566244
1203 => 0.067704447347199
1204 => 0.068075509695419
1205 => 0.068539528843776
1206 => 0.070458908781424
1207 => 0.070921664786361
1208 => 0.069797407605844
1209 => 0.069898915441471
1210 => 0.069478412394408
1211 => 0.069072211719833
1212 => 0.069985291515433
1213 => 0.071653962788521
1214 => 0.071643582071135
1215 => 0.072030681372157
1216 => 0.07227184102979
1217 => 0.071236607239571
1218 => 0.07056270810874
1219 => 0.070821123916816
1220 => 0.071234336421494
1221 => 0.070687124670688
1222 => 0.067309480251569
1223 => 0.068334041803569
1224 => 0.068163504662816
1225 => 0.067920639036359
1226 => 0.068950843599594
1227 => 0.06885147785627
1228 => 0.065875088066382
1229 => 0.066065626883858
1230 => 0.065886675362957
1231 => 0.066464904337024
]
'min_raw' => 0.054817969484734
'max_raw' => 0.1227990186903
'avg_raw' => 0.08880849408752
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.054817'
'max' => '$0.122799'
'avg' => '$0.0888084'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.013367646002855
'max_diff' => -0.089235500605185
'year' => 2034
]
9 => [
'items' => [
101 => 0.064811820740718
102 => 0.065320298121254
103 => 0.065639210367646
104 => 0.065827052130771
105 => 0.06650566538348
106 => 0.066426037950799
107 => 0.066500715630462
108 => 0.067506919936973
109 => 0.072595956031682
110 => 0.072872941037992
111 => 0.071508965564416
112 => 0.072053846862883
113 => 0.071007793922267
114 => 0.071710016269248
115 => 0.072190458964539
116 => 0.070019430808338
117 => 0.069890876610784
118 => 0.06884050623758
119 => 0.069404915780121
120 => 0.068506899615456
121 => 0.068727241370993
122 => 0.068111146613463
123 => 0.069219994513774
124 => 0.070459858763865
125 => 0.070773097437161
126 => 0.069949101345447
127 => 0.069352473871058
128 => 0.068304992567338
129 => 0.070046977320068
130 => 0.070556386747789
131 => 0.070044301609206
201 => 0.069925640293315
202 => 0.069700777314118
203 => 0.069973346037348
204 => 0.070553612394644
205 => 0.07027996949638
206 => 0.070460715451651
207 => 0.069771898254578
208 => 0.071236949945031
209 => 0.07356380461336
210 => 0.073571285831598
211 => 0.073297641458297
212 => 0.073185672076492
213 => 0.073466447809628
214 => 0.073618757126831
215 => 0.07452673436233
216 => 0.075501030111429
217 => 0.080047643253936
218 => 0.078770972477086
219 => 0.082804998136345
220 => 0.085995388680145
221 => 0.08695204730536
222 => 0.086071966384429
223 => 0.083061257094959
224 => 0.08291353733387
225 => 0.087412808101013
226 => 0.086141558029639
227 => 0.085990346878734
228 => 0.084381715708368
301 => 0.0853326159629
302 => 0.085124640128369
303 => 0.084796340099035
304 => 0.086610591544397
305 => 0.090006708290772
306 => 0.089477391647268
307 => 0.089082281327185
308 => 0.087351022919467
309 => 0.088393627171478
310 => 0.088022375767106
311 => 0.089617507402251
312 => 0.088672586758083
313 => 0.08613192706004
314 => 0.086536535491077
315 => 0.086475379740685
316 => 0.087733960750211
317 => 0.087356165971052
318 => 0.086401609246665
319 => 0.089995100732938
320 => 0.089761759383869
321 => 0.09009258406759
322 => 0.090238223324457
323 => 0.092425518267729
324 => 0.093321583020356
325 => 0.093525005407023
326 => 0.094376197617884
327 => 0.093503826969399
328 => 0.09699393155307
329 => 0.099314647447963
330 => 0.10201027838283
331 => 0.10594931969596
401 => 0.10743043566787
402 => 0.1071628853245
403 => 0.11014942149245
404 => 0.1155161605993
405 => 0.10824765673893
406 => 0.11590140895321
407 => 0.11347831936899
408 => 0.10773321755432
409 => 0.10736330072776
410 => 0.11125395037865
411 => 0.11988303684319
412 => 0.11772154855411
413 => 0.1198865722637
414 => 0.11736095710446
415 => 0.11723553902425
416 => 0.11976390877269
417 => 0.1256715825042
418 => 0.1228650681602
419 => 0.11884124166253
420 => 0.12181237253073
421 => 0.11923850400751
422 => 0.11343885784426
423 => 0.11771989570475
424 => 0.11485728760438
425 => 0.11569274883268
426 => 0.12170952527886
427 => 0.12098557081844
428 => 0.1219224349266
429 => 0.1202688942977
430 => 0.11872422661088
501 => 0.11584098966491
502 => 0.11498740534707
503 => 0.11522330534377
504 => 0.11498728844674
505 => 0.11337414387379
506 => 0.11302578545685
507 => 0.11244517283335
508 => 0.1126251289635
509 => 0.1115334073671
510 => 0.11359371158069
511 => 0.11397612219807
512 => 0.11547543978961
513 => 0.11563110391576
514 => 0.11980668206674
515 => 0.11750684378892
516 => 0.11904977386417
517 => 0.11891175967562
518 => 0.10785773133132
519 => 0.10938087890664
520 => 0.11175041854381
521 => 0.1106829441491
522 => 0.10917378510552
523 => 0.10795505826184
524 => 0.10610856247245
525 => 0.10870746983721
526 => 0.11212475665888
527 => 0.11571777194894
528 => 0.12003454439626
529 => 0.11907109103879
530 => 0.11563707289072
531 => 0.11579112043629
601 => 0.11674338174753
602 => 0.11551011682741
603 => 0.11514640292628
604 => 0.11669341304272
605 => 0.11670406645117
606 => 0.11528504611553
607 => 0.11370806469044
608 => 0.11370145708069
609 => 0.11342084846793
610 => 0.1174108767533
611 => 0.11960498887289
612 => 0.11985654029141
613 => 0.11958805745816
614 => 0.11969138584498
615 => 0.11841468034655
616 => 0.1213328505207
617 => 0.12401085204962
618 => 0.12329309043271
619 => 0.12221706373314
620 => 0.12135995663846
621 => 0.12309118324046
622 => 0.12301409444508
623 => 0.1239874620425
624 => 0.12394330446584
625 => 0.12361599755303
626 => 0.12329310212187
627 => 0.12457334600798
628 => 0.12420465632887
629 => 0.12383539397285
630 => 0.12309478178662
701 => 0.12319544328299
702 => 0.1221196023746
703 => 0.12162186914325
704 => 0.11413715557272
705 => 0.1121369955366
706 => 0.11276628660098
707 => 0.1129734655589
708 => 0.11210299334791
709 => 0.11335102689251
710 => 0.11315652218658
711 => 0.11391322621591
712 => 0.11344047039066
713 => 0.11345987245463
714 => 0.11485014653454
715 => 0.11525374901458
716 => 0.11504847353576
717 => 0.1151922414447
718 => 0.11850531222549
719 => 0.1180342995065
720 => 0.11778408338717
721 => 0.11785339496223
722 => 0.11869995557976
723 => 0.11893694633217
724 => 0.11793279986116
725 => 0.11840636114179
726 => 0.12042272497085
727 => 0.12112833819471
728 => 0.12338031689172
729 => 0.1224236363155
730 => 0.12417966491731
731 => 0.12957709816502
801 => 0.13388894131726
802 => 0.12992359216001
803 => 0.13784174299918
804 => 0.14400715921876
805 => 0.14377052027522
806 => 0.14269543734869
807 => 0.13567627489877
808 => 0.12921713696254
809 => 0.13462048011568
810 => 0.13463425434858
811 => 0.13417010237974
812 => 0.1312872943646
813 => 0.13406978690966
814 => 0.13429065106336
815 => 0.13416702586981
816 => 0.1319567837237
817 => 0.12858215248762
818 => 0.12924154735342
819 => 0.1303216495949
820 => 0.12827679071885
821 => 0.12762333440558
822 => 0.12883823401709
823 => 0.13275289369978
824 => 0.13201284996285
825 => 0.13199352443012
826 => 0.1351597453641
827 => 0.13289341448862
828 => 0.12924986443435
829 => 0.12832981999313
830 => 0.12506428204299
831 => 0.1273198007366
901 => 0.12740097283896
902 => 0.12616564830131
903 => 0.12935010421232
904 => 0.12932075889049
905 => 0.13234392583428
906 => 0.13812308558116
907 => 0.13641390366883
908 => 0.13442631106325
909 => 0.13464241748944
910 => 0.13701257158865
911 => 0.13557952231491
912 => 0.13609485682532
913 => 0.13701179156815
914 => 0.1375650010647
915 => 0.1345628191563
916 => 0.13386286694249
917 => 0.13243101036287
918 => 0.13205746570812
919 => 0.13322368301555
920 => 0.13291642595811
921 => 0.12739415063807
922 => 0.12681704214148
923 => 0.12683474123515
924 => 0.12538357448045
925 => 0.1231701968596
926 => 0.12898682109327
927 => 0.1285196647637
928 => 0.12800396033089
929 => 0.12806713118134
930 => 0.13059193061748
1001 => 0.12912741943909
1002 => 0.13302106243551
1003 => 0.13222064648907
1004 => 0.13139970289385
1005 => 0.13128622348243
1006 => 0.13097023023789
1007 => 0.12988657182644
1008 => 0.12857798917684
1009 => 0.12771394956408
1010 => 0.11780936753904
1011 => 0.11964760035058
1012 => 0.12176231964007
1013 => 0.1224923122646
1014 => 0.12124360936639
1015 => 0.12993587822779
1016 => 0.13152403950956
1017 => 0.1267133953939
1018 => 0.12581352029716
1019 => 0.12999487388932
1020 => 0.12747300652356
1021 => 0.12860860324395
1022 => 0.12615406427267
1023 => 0.13114149796357
1024 => 0.13110350207508
1025 => 0.12916327772302
1026 => 0.1308031420593
1027 => 0.1305181752758
1028 => 0.12832766676088
1029 => 0.13121094099063
1030 => 0.13121237105868
1031 => 0.12934494730394
1101 => 0.12716420519002
1102 => 0.12677434000689
1103 => 0.12648062896241
1104 => 0.12853636833182
1105 => 0.13037953782231
1106 => 0.13380921928363
1107 => 0.13467152269023
1108 => 0.13803715029298
1109 => 0.13603308292498
1110 => 0.13692146003219
1111 => 0.13788591905069
1112 => 0.13834831617097
1113 => 0.13759486487708
1114 => 0.14282306989173
1115 => 0.14326449058303
1116 => 0.14341249512255
1117 => 0.14164957380777
1118 => 0.14321546055216
1119 => 0.14248283400118
1120 => 0.14438892475732
1121 => 0.14468782412607
1122 => 0.14443466699439
1123 => 0.14452954237184
1124 => 0.1400681917104
1125 => 0.13983684714311
1126 => 0.13668244755257
1127 => 0.13796788870186
1128 => 0.13556481808607
1129 => 0.13632685653271
1130 => 0.13666275581901
1201 => 0.13648730109396
1202 => 0.13804056561578
1203 => 0.13671997346126
1204 => 0.13323471364002
1205 => 0.12974850426208
1206 => 0.12970473774314
1207 => 0.12878688035064
1208 => 0.12812343756982
1209 => 0.12825124018631
1210 => 0.12870163327635
1211 => 0.12809725990466
1212 => 0.12822623360602
1213 => 0.13036805639582
1214 => 0.13079758368153
1215 => 0.12933788213753
1216 => 0.12347696980446
1217 => 0.12203868721694
1218 => 0.12307249621846
1219 => 0.12257840210156
1220 => 0.098930337347993
1221 => 0.10448609938514
1222 => 0.10118505423852
1223 => 0.10270632771587
1224 => 0.099336815422663
1225 => 0.10094492330025
1226 => 0.10064796449396
1227 => 0.10958146544274
1228 => 0.10944198111305
1229 => 0.10950874488033
1230 => 0.10632193631625
1231 => 0.11139860889011
]
'min_raw' => 0.064811820740718
'max_raw' => 0.14468782412607
'avg_raw' => 0.1047498224334
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.064811'
'max' => '$0.144687'
'avg' => '$0.104749'
'bar_min_pct' => 61.631153054958
'bar_max_pct' => 60.119598047091
'min_diff' => 0.0099938512559834
'max_diff' => 0.021888805435768
'year' => 2035
]
10 => [
'items' => [
101 => 0.11389956035124
102 => 0.11343670079645
103 => 0.11355319257447
104 => 0.11155147787233
105 => 0.10952812585418
106 => 0.10728391707441
107 => 0.11145337959463
108 => 0.11098980653748
109 => 0.11205307634226
110 => 0.11475727082596
111 => 0.11515547373592
112 => 0.11569066248509
113 => 0.11549883541584
114 => 0.12006893445316
115 => 0.11951546530526
116 => 0.12084916670776
117 => 0.11810564173464
118 => 0.11500108280977
119 => 0.11559115796571
120 => 0.1155343289831
121 => 0.11481083080931
122 => 0.1141576890078
123 => 0.11307039192985
124 => 0.11651076077418
125 => 0.11637108808195
126 => 0.11863222661739
127 => 0.11823254841772
128 => 0.11556339958251
129 => 0.11565872875533
130 => 0.1162998632562
131 => 0.11851883708406
201 => 0.11917757959543
202 => 0.11887242381781
203 => 0.11959470490879
204 => 0.12016556643332
205 => 0.11966639632713
206 => 0.12673359237423
207 => 0.12379879985228
208 => 0.12522919730732
209 => 0.12557033867196
210 => 0.12469651223988
211 => 0.12488601390362
212 => 0.12517305728807
213 => 0.12691592850962
214 => 0.13148972689882
215 => 0.1335154310705
216 => 0.13960986201748
217 => 0.13334722453821
218 => 0.13297562554756
219 => 0.13407341659529
220 => 0.1376514927222
221 => 0.14055118735146
222 => 0.14151318334738
223 => 0.14164032699906
224 => 0.14344509543969
225 => 0.14447955505293
226 => 0.14322594908088
227 => 0.14216364927758
228 => 0.13835862323969
229 => 0.13879906536432
301 => 0.14183327483757
302 => 0.14611927443258
303 => 0.14979710796735
304 => 0.14850925884891
305 => 0.1583346385428
306 => 0.15930878480637
307 => 0.15917418929066
308 => 0.16139343945148
309 => 0.15698867982469
310 => 0.15510555974604
311 => 0.14239333055267
312 => 0.14596494843092
313 => 0.15115650477071
314 => 0.1504693828218
315 => 0.14669913583715
316 => 0.14979424789692
317 => 0.14877090705686
318 => 0.14796375567785
319 => 0.15166147261908
320 => 0.14759568094836
321 => 0.15111594538863
322 => 0.14660116983151
323 => 0.1485151416352
324 => 0.14742867867102
325 => 0.14813175336074
326 => 0.14402159309084
327 => 0.14623933580398
328 => 0.14392932770271
329 => 0.1439282324581
330 => 0.14387723890123
331 => 0.14659495318823
401 => 0.14668357775356
402 => 0.14467518278923
403 => 0.14438574169784
404 => 0.14545595711491
405 => 0.14420301515138
406 => 0.1447892588102
407 => 0.14422077187459
408 => 0.14409279349122
409 => 0.1430730399588
410 => 0.14263370209832
411 => 0.14280597779376
412 => 0.14221791203103
413 => 0.14186358113772
414 => 0.14380675356817
415 => 0.14276859492593
416 => 0.14364764086696
417 => 0.14264585707272
418 => 0.13917323798546
419 => 0.13717609802609
420 => 0.13061664248222
421 => 0.13247689593748
422 => 0.1337102459029
423 => 0.13330262374668
424 => 0.13417835386706
425 => 0.13423211658406
426 => 0.13394740779492
427 => 0.13361775149054
428 => 0.13345729303271
429 => 0.13465321891625
430 => 0.13534749414466
501 => 0.13383402907202
502 => 0.13347944538112
503 => 0.13500964213026
504 => 0.13594306126327
505 => 0.1428349036985
506 => 0.14232433375054
507 => 0.14360576412562
508 => 0.14346149473054
509 => 0.1448046379115
510 => 0.1470001093577
511 => 0.1425361020441
512 => 0.14331089935998
513 => 0.14312093695081
514 => 0.14519489672333
515 => 0.14520137139936
516 => 0.14395792891376
517 => 0.14463201925775
518 => 0.14425576052043
519 => 0.14493571091318
520 => 0.1423175147776
521 => 0.14550619505393
522 => 0.14731397129659
523 => 0.14733907227147
524 => 0.14819594386309
525 => 0.14906657502684
526 => 0.15073767572965
527 => 0.14901996893523
528 => 0.14592998162745
529 => 0.14615306873047
530 => 0.14434141030251
531 => 0.14437186460798
601 => 0.1442092971386
602 => 0.14469717435173
603 => 0.14242457639017
604 => 0.14295795058934
605 => 0.14221122358706
606 => 0.14330927612131
607 => 0.14212795310905
608 => 0.14312084534518
609 => 0.1435493447194
610 => 0.1451305166352
611 => 0.14189441273147
612 => 0.13529577780681
613 => 0.13668289086869
614 => 0.13463124169479
615 => 0.13482112963701
616 => 0.13520473350075
617 => 0.13396134787101
618 => 0.13419854666558
619 => 0.1341900722555
620 => 0.13411704436764
621 => 0.13379359174351
622 => 0.13332452144538
623 => 0.13519315314092
624 => 0.13551067007867
625 => 0.13621647089926
626 => 0.13831645539207
627 => 0.1381066174202
628 => 0.13844887185842
629 => 0.13770173234145
630 => 0.13485578729636
701 => 0.13501033580456
702 => 0.13308311343079
703 => 0.13616718749018
704 => 0.13543683804513
705 => 0.1349659770067
706 => 0.13483749820986
707 => 0.13694268815805
708 => 0.13757259398536
709 => 0.13718007894519
710 => 0.13637501914631
711 => 0.13792097195473
712 => 0.13833460370775
713 => 0.1384272006031
714 => 0.14116633257256
715 => 0.13858028765223
716 => 0.13920277436763
717 => 0.14405923802451
718 => 0.13965509563389
719 => 0.1419880680823
720 => 0.14187388122115
721 => 0.14306735098228
722 => 0.14177598186597
723 => 0.14179198993386
724 => 0.14285171022909
725 => 0.141363524196
726 => 0.1409950284058
727 => 0.14048595411085
728 => 0.14159749920976
729 => 0.14226382022569
730 => 0.14763387825523
731 => 0.15110318064672
801 => 0.15095256908027
802 => 0.15232887686457
803 => 0.15170883760221
804 => 0.14970656726595
805 => 0.15312419857909
806 => 0.15204271703185
807 => 0.1521318730566
808 => 0.15212855466491
809 => 0.15284764534907
810 => 0.15233810369565
811 => 0.15133374479337
812 => 0.15200048510417
813 => 0.15398046546321
814 => 0.16012638525087
815 => 0.16356572338666
816 => 0.15991933277654
817 => 0.16243456419228
818 => 0.16092632161143
819 => 0.16065222906816
820 => 0.16223198027139
821 => 0.16381449661997
822 => 0.16371369716997
823 => 0.16256487156401
824 => 0.16191592912958
825 => 0.16682993865479
826 => 0.170450497165
827 => 0.17020359934714
828 => 0.17129332601972
829 => 0.17449279723439
830 => 0.17478531678518
831 => 0.17474846604527
901 => 0.17402342581738
902 => 0.17717372073206
903 => 0.17980175217406
904 => 0.17385559995304
905 => 0.17611981687796
906 => 0.17713629680406
907 => 0.17862879091159
908 => 0.18114687864205
909 => 0.18388218980711
910 => 0.18426899279701
911 => 0.18399453756545
912 => 0.18219052632298
913 => 0.18518353643884
914 => 0.18693677156998
915 => 0.18798078296851
916 => 0.19062822216824
917 => 0.17714257423804
918 => 0.16759676235285
919 => 0.16610604598378
920 => 0.16913747633981
921 => 0.16993684034949
922 => 0.1696146177195
923 => 0.15886993857548
924 => 0.16604947747175
925 => 0.17377405765137
926 => 0.17407079023541
927 => 0.17793787658668
928 => 0.17919715841988
929 => 0.18231066980325
930 => 0.1821159188185
1001 => 0.18287400929356
1002 => 0.18269973742164
1003 => 0.18846686163216
1004 => 0.19482885606259
1005 => 0.19460856042537
1006 => 0.1936939484543
1007 => 0.19505230319586
1008 => 0.20161856324082
1009 => 0.20101404723806
1010 => 0.20160128304219
1011 => 0.2093432736934
1012 => 0.21940896282531
1013 => 0.21473243964487
1014 => 0.22487914931312
1015 => 0.23126596519532
1016 => 0.24231130285448
1017 => 0.24092837218012
1018 => 0.2452282410764
1019 => 0.23845263764667
1020 => 0.22289448259662
1021 => 0.22043234500573
1022 => 0.22536160681395
1023 => 0.23747971597914
1024 => 0.22497996443165
1025 => 0.22750864789
1026 => 0.22678038688388
1027 => 0.22674158094978
1028 => 0.22822264561946
1029 => 0.22607428406894
1030 => 0.21732147262928
1031 => 0.22133283453144
1101 => 0.21978385505959
1102 => 0.22150256326767
1103 => 0.23077772261749
1104 => 0.22667695357675
1105 => 0.22235712651176
1106 => 0.22777514829763
1107 => 0.23467415186531
1108 => 0.23424242462075
1109 => 0.23340469331831
1110 => 0.238126940808
1111 => 0.24592671017227
1112 => 0.24803495648943
1113 => 0.24959122081955
1114 => 0.24980580337737
1115 => 0.25201613708526
1116 => 0.24013061566212
1117 => 0.25899324340248
1118 => 0.26225029814367
1119 => 0.26163810684341
1120 => 0.26525818611043
1121 => 0.26419306695752
1122 => 0.26264987641704
1123 => 0.2683884720682
1124 => 0.26180963523494
1125 => 0.25247180460265
1126 => 0.24734888603643
1127 => 0.25409515845848
1128 => 0.25821487161417
1129 => 0.26093773994711
1130 => 0.26176167825945
1201 => 0.24105325485646
1202 => 0.22989256318406
1203 => 0.23704643858848
1204 => 0.24577466031597
1205 => 0.24008212994973
1206 => 0.2403052663627
1207 => 0.23218921403109
1208 => 0.24649275085856
1209 => 0.24440884585448
1210 => 0.25522014870202
1211 => 0.25263994451133
1212 => 0.26145614229114
1213 => 0.25913454195275
1214 => 0.26877137515847
1215 => 0.27261576883107
1216 => 0.27907110413947
1217 => 0.28381967507027
1218 => 0.28660812674652
1219 => 0.2864407185671
1220 => 0.29748995330952
1221 => 0.29097460561277
1222 => 0.28278979335611
1223 => 0.28264175592514
1224 => 0.28688078617255
1225 => 0.29576463064998
1226 => 0.29806808226829
1227 => 0.29935539748028
1228 => 0.29738382942136
1229 => 0.29031188645571
1230 => 0.28725825733871
1231 => 0.28986003781855
]
'min_raw' => 0.10728391707441
'max_raw' => 0.29935539748028
'avg_raw' => 0.20331965727735
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$0.107283'
'max' => '$0.299355'
'avg' => '$0.203319'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.04247209633369
'max_diff' => 0.15466757335421
'year' => 2036
]
11 => [
'items' => [
101 => 0.28667828386525
102 => 0.29217088383112
103 => 0.29971339674031
104 => 0.29815589765089
105 => 0.30336238359351
106 => 0.30875054880582
107 => 0.31645586705706
108 => 0.31847032257505
109 => 0.32180014094339
110 => 0.32522761783278
111 => 0.32632843103655
112 => 0.32843022500484
113 => 0.32841914751315
114 => 0.33475304510364
115 => 0.34173953029042
116 => 0.34437676671093
117 => 0.35044094644182
118 => 0.34005625116687
119 => 0.3479331618237
120 => 0.35503833240802
121 => 0.34656725512559
122 => 0.35824266165155
123 => 0.35869599122991
124 => 0.36554072964553
125 => 0.35860227596809
126 => 0.35448224432275
127 => 0.36637662130726
128 => 0.37213193566071
129 => 0.37039838813915
130 => 0.35720600590429
131 => 0.34952747359572
201 => 0.3294312734659
202 => 0.35323609061091
203 => 0.3648307226462
204 => 0.35717597860838
205 => 0.36103658625119
206 => 0.38209880974412
207 => 0.39011794077224
208 => 0.38845001757635
209 => 0.3887318691401
210 => 0.39305884668536
211 => 0.41224704803107
212 => 0.40074903300569
213 => 0.40953883467019
214 => 0.41420091377905
215 => 0.41853131267585
216 => 0.40789722162193
217 => 0.39406242540661
218 => 0.38968036469998
219 => 0.35641486517233
220 => 0.35468325145718
221 => 0.35371124420559
222 => 0.34758287597752
223 => 0.34276765725159
224 => 0.33893841654312
225 => 0.32888934541602
226 => 0.33228061192784
227 => 0.31626448995539
228 => 0.32651103721685
301 => 0.30094891982604
302 => 0.32223781077153
303 => 0.31065123531699
304 => 0.31843130911477
305 => 0.31840416517021
306 => 0.30407858263387
307 => 0.29581588559419
308 => 0.30108119773685
309 => 0.30672603031479
310 => 0.30764188540906
311 => 0.31496055819156
312 => 0.31700304245081
313 => 0.31081421979081
314 => 0.30041920176035
315 => 0.30283372736371
316 => 0.2957669553099
317 => 0.28338270910506
318 => 0.29227729093757
319 => 0.29531429224235
320 => 0.29665560503268
321 => 0.28447712123051
322 => 0.28065037721213
323 => 0.27861305080623
324 => 0.29884711243234
325 => 0.29995558000403
326 => 0.29428450318574
327 => 0.31991830815796
328 => 0.31411658861578
329 => 0.3205985308002
330 => 0.30261463447306
331 => 0.30330164353129
401 => 0.2947877788053
402 => 0.2995549741552
403 => 0.29618567413577
404 => 0.29916983188127
405 => 0.30095852372979
406 => 0.30947099141435
407 => 0.32233500947872
408 => 0.30819951260806
409 => 0.30204047419747
410 => 0.30586150698765
411 => 0.31603742083772
412 => 0.33145445121603
413 => 0.32232725893542
414 => 0.32637775187978
415 => 0.32726260439423
416 => 0.32053255071354
417 => 0.33170259789489
418 => 0.33768871692467
419 => 0.34382923639644
420 => 0.34916087740032
421 => 0.3413765778865
422 => 0.34970689420179
423 => 0.34299412975045
424 => 0.33697208608476
425 => 0.33698121903921
426 => 0.3332035030797
427 => 0.32588370238531
428 => 0.32453381883137
429 => 0.33155608355045
430 => 0.33718727484421
501 => 0.33765108673075
502 => 0.34076880357203
503 => 0.34261383628366
504 => 0.36069766505799
505 => 0.3679711305883
506 => 0.37686498655911
507 => 0.38032964469
508 => 0.39075702351528
509 => 0.38233606824356
510 => 0.38051414160023
511 => 0.35522073133971
512 => 0.3593625258529
513 => 0.36599393849226
514 => 0.35533008089163
515 => 0.36209384405756
516 => 0.36342915418261
517 => 0.35496772709093
518 => 0.35948734089728
519 => 0.34748458659973
520 => 0.32259663672267
521 => 0.3317303052977
522 => 0.33845575972852
523 => 0.32885770701319
524 => 0.34606184500949
525 => 0.33601154275754
526 => 0.33282607944326
527 => 0.32039845135459
528 => 0.32626381342917
529 => 0.33419679961894
530 => 0.32929513646229
531 => 0.33946682350075
601 => 0.35387264503706
602 => 0.36413909134534
603 => 0.36492722161392
604 => 0.35832658443618
605 => 0.36890414763821
606 => 0.36898119363835
607 => 0.35704965913584
608 => 0.34974166068812
609 => 0.34808126806464
610 => 0.35222925437725
611 => 0.35726567552127
612 => 0.3652067079357
613 => 0.3700053075104
614 => 0.38251751022065
615 => 0.38590295352108
616 => 0.38962252930598
617 => 0.39459302962929
618 => 0.40056138967755
619 => 0.38750295767088
620 => 0.38802179351847
621 => 0.37586196244016
622 => 0.36286743903681
623 => 0.37272866250974
624 => 0.38562090041701
625 => 0.38266340679643
626 => 0.382330628348
627 => 0.38289026939321
628 => 0.380660415786
629 => 0.37057487056282
630 => 0.3655099728906
701 => 0.37204498308097
702 => 0.37551805015732
703 => 0.38090447430945
704 => 0.38024048383908
705 => 0.39411533399525
706 => 0.39950668121225
707 => 0.39812734388538
708 => 0.39838117514913
709 => 0.4081419517612
710 => 0.41899794281063
711 => 0.42916601100261
712 => 0.43950940669618
713 => 0.42704003947798
714 => 0.42070886380822
715 => 0.42724102101758
716 => 0.42377496645553
717 => 0.44369194406767
718 => 0.44507095238428
719 => 0.46498648977225
720 => 0.48388870625151
721 => 0.47201656274927
722 => 0.4832114593388
723 => 0.49531965273368
724 => 0.51867832227598
725 => 0.51081194414204
726 => 0.50478642177329
727 => 0.49909233224995
728 => 0.51094082863678
729 => 0.52618372995408
730 => 0.52946690490314
731 => 0.53478690258997
801 => 0.52919357552063
802 => 0.53593012189088
803 => 0.55971309076631
804 => 0.55328672263809
805 => 0.5441602468058
806 => 0.56293461659234
807 => 0.56972898803458
808 => 0.61741544505613
809 => 0.67762156687513
810 => 0.65269583710735
811 => 0.63722363229222
812 => 0.64085996742938
813 => 0.66284520501184
814 => 0.66990616554677
815 => 0.65071204075379
816 => 0.65749173011953
817 => 0.69484848508914
818 => 0.71488918558214
819 => 0.68767122248747
820 => 0.61257794178937
821 => 0.54333850751204
822 => 0.56170392337475
823 => 0.55962185516112
824 => 0.59975702802587
825 => 0.55313345588358
826 => 0.55391847726564
827 => 0.59488360300135
828 => 0.58395480977511
829 => 0.56625156440269
830 => 0.54346776079484
831 => 0.50134979257898
901 => 0.46404473358375
902 => 0.53720854511538
903 => 0.53405358852238
904 => 0.52948474383734
905 => 0.53965221328327
906 => 0.58902255882611
907 => 0.58788441256514
908 => 0.58064410674013
909 => 0.58613581489527
910 => 0.56528884141107
911 => 0.57066158115471
912 => 0.54332753963189
913 => 0.55568366797062
914 => 0.56621358118905
915 => 0.56832761716568
916 => 0.57309064816638
917 => 0.53239106976021
918 => 0.55066398558774
919 => 0.56139761169574
920 => 0.51290269844712
921 => 0.56043902318385
922 => 0.53168258064854
923 => 0.52192221214479
924 => 0.53506326250432
925 => 0.52994218239912
926 => 0.52553937844458
927 => 0.52308253818818
928 => 0.53273187524742
929 => 0.53228172214015
930 => 0.51649353385562
1001 => 0.49589848584733
1002 => 0.50281085996831
1003 => 0.50029952964631
1004 => 0.49119814459129
1005 => 0.49733137921295
1006 => 0.47032371789817
1007 => 0.42385844034218
1008 => 0.45455482596561
1009 => 0.45337304851035
1010 => 0.45277714272807
1011 => 0.4758446281383
1012 => 0.47362722167354
1013 => 0.4696026072271
1014 => 0.49112422939084
1015 => 0.48326854779441
1016 => 0.50747790744325
1017 => 0.52342375747119
1018 => 0.5193793741099
1019 => 0.53437652313416
1020 => 0.50297010710703
1021 => 0.51340205870453
1022 => 0.51555206947072
1023 => 0.49085865591405
1024 => 0.4739900167943
1025 => 0.47286507088158
1026 => 0.44361717528958
1027 => 0.45924116503406
1028 => 0.47298962944458
1029 => 0.46640518191588
1030 => 0.46432074253307
1031 => 0.47496969128011
1101 => 0.47579720579983
1102 => 0.45692978705408
1103 => 0.46085292086477
1104 => 0.47721304102206
1105 => 0.46044068781255
1106 => 0.42785474527481
1107 => 0.41977298098954
1108 => 0.41869472465742
1109 => 0.39677633894298
1110 => 0.42031304312355
1111 => 0.41003864100427
1112 => 0.44249535419282
1113 => 0.42395625368836
1114 => 0.42315707011925
1115 => 0.42194898693979
1116 => 0.40308292691826
1117 => 0.40721339506231
1118 => 0.4209437002612
1119 => 0.42584282783913
1120 => 0.42533180869538
1121 => 0.42087641427519
1122 => 0.42291607102544
1123 => 0.41634562596935
1124 => 0.41402546506806
1125 => 0.40670239905305
1126 => 0.3959395150596
1127 => 0.39743616009149
1128 => 0.37611207063868
1129 => 0.3644935749497
1130 => 0.3612777284723
1201 => 0.35697736416325
1202 => 0.36176346606384
1203 => 0.37605166217249
1204 => 0.35881706625556
1205 => 0.32926956042232
1206 => 0.3310454158694
1207 => 0.33503523580277
1208 => 0.32760023275223
1209 => 0.32056362633741
1210 => 0.32668138471718
1211 => 0.31416171697775
1212 => 0.33654817783566
1213 => 0.33594268680678
1214 => 0.34428697504516
1215 => 0.34950482972265
1216 => 0.33747936399155
1217 => 0.33445499188049
1218 => 0.336177811685
1219 => 0.30770343794506
1220 => 0.34196001122812
1221 => 0.34225626349641
1222 => 0.33971957171537
1223 => 0.35796013943556
1224 => 0.3964534267009
1225 => 0.38197070364278
1226 => 0.37636255553206
1227 => 0.36570146187404
1228 => 0.37990673618024
1229 => 0.37881599275033
1230 => 0.37388323730808
1231 => 0.37089989142548
]
'min_raw' => 0.27861305080623
'max_raw' => 0.71488918558214
'avg_raw' => 0.49675111819418
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$0.278613'
'max' => '$0.714889'
'avg' => '$0.496751'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 0.17132913373182
'max_diff' => 0.41553378810186
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.0087453453008054
]
1 => [
'year' => 2028
'avg' => 0.015009551328063
]
2 => [
'year' => 2029
'avg' => 0.041003389019844
]
3 => [
'year' => 2030
'avg' => 0.031634053564731
]
4 => [
'year' => 2031
'avg' => 0.031068560965664
]
5 => [
'year' => 2032
'avg' => 0.054472965008788
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.0087453453008054
'min' => '$0.008745'
'max_raw' => 0.054472965008788
'max' => '$0.054472'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.054472965008788
]
1 => [
'year' => 2033
'avg' => 0.14011006739154
]
2 => [
'year' => 2034
'avg' => 0.08880849408752
]
3 => [
'year' => 2035
'avg' => 0.1047498224334
]
4 => [
'year' => 2036
'avg' => 0.20331965727735
]
5 => [
'year' => 2037
'avg' => 0.49675111819418
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.054472965008788
'min' => '$0.054472'
'max_raw' => 0.49675111819418
'max' => '$0.496751'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 0.49675111819418
]
]
]
]
'prediction_2025_max_price' => '$0.014952'
'last_price' => 0.01449877
'sma_50day_nextmonth' => '—'
'sma_200day_nextmonth' => '—'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'decrease'
'sma_200day_direction_label' => 'diminuir'
'sma_200day_date_nextmonth' => '4 de fev. de 2026'
'sma_50day_date_nextmonth' => '4 de fev. de 2026'
'daily_sma3' => '$0.008164'
'daily_sma3_action' => 'BUY'
'daily_sma5' => '—'
'daily_sma5_action' => '—'
'daily_sma10' => '—'
'daily_sma10_action' => '—'
'daily_sma21' => '—'
'daily_sma21_action' => '—'
'daily_sma50' => '—'
'daily_sma50_action' => '—'
'daily_sma100' => '—'
'daily_sma100_action' => '—'
'daily_sma200' => '—'
'daily_sma200_action' => '—'
'daily_ema3' => '$0.011413'
'daily_ema3_action' => 'BUY'
'daily_ema5' => '$0.007896'
'daily_ema5_action' => 'BUY'
'daily_ema10' => '$0.003948'
'daily_ema10_action' => 'BUY'
'daily_ema21' => '$0.00188'
'daily_ema21_action' => 'BUY'
'daily_ema50' => '$0.000789'
'daily_ema50_action' => 'BUY'
'daily_ema100' => '$0.000394'
'daily_ema100_action' => 'BUY'
'daily_ema200' => '$0.000197'
'daily_ema200_action' => 'BUY'
'weekly_sma21' => '—'
'weekly_sma21_action' => '—'
'weekly_sma50' => '—'
'weekly_sma50_action' => '—'
'weekly_sma100' => '—'
'weekly_sma100_action' => '—'
'weekly_sma200' => '—'
'weekly_sma200_action' => '—'
'weekly_ema3' => '$0.006498'
'weekly_ema3_action' => 'BUY'
'weekly_ema5' => '$0.003899'
'weekly_ema5_action' => 'BUY'
'weekly_ema10' => '$0.001949'
'weekly_ema10_action' => 'BUY'
'weekly_ema21' => '$0.000928'
'weekly_ema21_action' => 'BUY'
'weekly_ema50' => '$0.000389'
'weekly_ema50_action' => 'BUY'
'weekly_ema100' => '$0.000194'
'weekly_ema100_action' => 'BUY'
'weekly_ema200' => '$0.000097'
'weekly_ema200_action' => 'BUY'
'rsi_14' => '—'
'rsi_14_action' => '—'
'stoch_rsi_14' => '—'
'stoch_rsi_14_action' => '—'
'momentum_10' => '—'
'momentum_10_action' => '—'
'vwma_10' => '—'
'vwma_10_action' => '—'
'hma_9' => '—'
'hma_9_action' => '—'
'stochastic_fast_14' => '—'
'stochastic_fast_14_action' => '—'
'cci_20' => '—'
'cci_20_action' => '—'
'adx_14' => '—'
'adx_14_action' => '—'
'ao_5_34' => '—'
'ao_5_34_action' => '—'
'macd_12_26' => -0
'macd_12_26_action' => 'NEUTRAL'
'williams_percent_r_14' => '—'
'williams_percent_r_14_action' => '—'
'ultimate_oscillator' => '—'
'ultimate_oscillator_action' => '—'
'ichimoku_cloud' => '—'
'ichimoku_cloud_action' => '—'
'sell_signals' => 0
'buy_signals' => 18
'sell_pct' => 0
'buy_pct' => 100
'overall_action' => 'bullish'
'overall_action_label' => 'Altista'
'overall_action_dir' => 1
'last_updated' => 1767693929
'last_updated_date' => '6 de janeiro de 2026'
]
Previsão de preço de Xauras para 2026
A previsão de preço para Xauras em 2026 sugere que o preço médio poderia variar entre $0.0050093 na extremidade inferior e $0.014952 na extremidade superior. No mercado de criptomoedas, comparado ao preço médio de hoje, Xauras poderia potencialmente ganhar 3.13% até 2026 se XRS atingir a meta de preço prevista.
Previsão de preço de Xauras 2027-2032
A previsão de preço de XRS para 2027-2032 está atualmente dentro de uma faixa de preço entre $0.008745 na extremidade inferior e $0.054472 na extremidade superior. Considerando a volatilidade de preços no mercado, se Xauras atingir a meta de preço superior, poderia ganhar 275.71% até 2032 em comparação com o preço de hoje.
| Previsão de Preço de Xauras | Potencial Mínimo ($) | Preço Médio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2027 | $0.004822 | $0.008745 | $0.012668 |
| 2028 | $0.0087029 | $0.0150095 | $0.021316 |
| 2029 | $0.019117 | $0.0410033 | $0.062888 |
| 2030 | $0.016258 | $0.031634 | $0.0470092 |
| 2031 | $0.019223 | $0.031068 | $0.042914 |
| 2032 | $0.029342 | $0.054472 | $0.0796034 |
Previsão de preço de Xauras 2032-2037
A previsão de preço de Xauras para 2032-2037 é atualmente estimada entre $0.054472 na extremidade inferior e $0.496751 na extremidade superior. Comparado ao preço atual, Xauras poderia potencialmente ganhar 3326.16% até 2037 se atingir a meta de preço superior. Por favor, note que esta informação é apenas para fins gerais e não deve ser considerada como aconselhamento de investimento a longo prazo.
| Previsão de Preço de Xauras | Potencial Mínimo ($) | Preço Médio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2032 | $0.029342 | $0.054472 | $0.0796034 |
| 2033 | $0.068185 | $0.14011 | $0.212034 |
| 2034 | $0.054817 | $0.0888084 | $0.122799 |
| 2035 | $0.064811 | $0.104749 | $0.144687 |
| 2036 | $0.107283 | $0.203319 | $0.299355 |
| 2037 | $0.278613 | $0.496751 | $0.714889 |
Xauras Histograma de preços potenciais
Previsão de preço de Xauras baseada na análise técnica
Em 6 de janeiro de 2026, o sentimento geral de previsão de preço para Xauras é Altista, com 18 indicadores técnicos mostrando sinais de alta e 0 indicando sinais de baixa. A previsão de preço de XRS foi atualizada pela última vez em 6 de janeiro de 2026.
Médias Móveis Simples de 50 e 200 dias e Índice de Força Relativa de 14 dias - RSI (14) de Xauras
De acordo com nossos indicadores técnicos, o SMA de 200 dias de Xauras está projetado para diminuir no próximo mês, alcançando — até 4 de fev. de 2026. O SMA de 50 dias de curto prazo para Xauras é esperado para alcançar — até 4 de fev. de 2026.
O oscilador de momentum Índice de Força Relativa (RSI) é uma ferramenta comumente usada para identificar se uma criptomoeda está sobrevendida (abaixo de 30) ou sobrecomprada (acima de 70). No momento, o RSI está em —, sugerindo que o mercado de XRS está em um estado —.
Médias Móveis e Osciladores Populares de XRS para Sábado, 19 de Outubro de 2024
Médias móveis (MA) são indicadores amplamente utilizados nos mercados financeiros, projetados para suavizar movimentos de preços ao longo de um período definido. Como indicadores atrasados, eles se baseiam em dados históricos de preços. A tabela abaixo destaca dois tipos: a média móvel simples (SMA) e a média móvel exponencial (EMA).
Média Móvel Simples Diária (SMA)
| Período | Valor | Ação |
|---|---|---|
| SMA 3 | $0.008164 | BUY |
| SMA 5 | — | — |
| SMA 10 | — | — |
| SMA 21 | — | — |
| SMA 50 | — | — |
| SMA 100 | — | — |
| SMA 200 | — | — |
Média Móvel Exponencial Diária (EMA)
| Período | Valor | Ação |
|---|---|---|
| EMA 3 | $0.011413 | BUY |
| EMA 5 | $0.007896 | BUY |
| EMA 10 | $0.003948 | BUY |
| EMA 21 | $0.00188 | BUY |
| EMA 50 | $0.000789 | BUY |
| EMA 100 | $0.000394 | BUY |
| EMA 200 | $0.000197 | BUY |
Média Móvel Simples Semanal (SMA)
| Período | Valor | Ação |
|---|---|---|
| SMA 21 | — | — |
| SMA 50 | — | — |
| SMA 100 | — | — |
| SMA 200 | — | — |
Média Móvel Exponencial Semanal (EMA)
| Período | Valor | Ação |
|---|---|---|
| EMA 21 | $0.000928 | BUY |
| EMA 50 | $0.000389 | BUY |
| EMA 100 | $0.000194 | BUY |
| EMA 200 | $0.000097 | BUY |
Osciladores de Xauras
Um oscilador é uma ferramenta de análise técnica que define limites altos e baixos entre dois extremos, criando um indicador de tendência que flutua dentro desses limites. Os traders usam esse indicador para identificar condições de sobrecompra ou sobrevenda de curto prazo.
| Período | Valor | Ação |
|---|---|---|
| RSI (14) | — | — |
| Stoch RSI (14) | — | — |
| Estocástico Rápido (14) | — | — |
| Índice de Canal de Commodities (20) | — | — |
| Índice Direcional Médio (14) | — | — |
| Oscilador Impressionante (5, 34) | — | — |
| Momentum (10) | — | — |
| MACD (12, 26) | -0 | NEUTRAL |
| Williams Percent Range (14) | — | — |
| Oscilador Ultimate (7, 14, 28) | — | — |
| VWMA (10) | — | — |
| Média Móvel de Hull (9) | — | — |
| Nuvem Ichimoku B/L (9, 26, 52, 26) | — | — |
Previsão do preço de Xauras com base nos fluxos financeiros mundiais
Definições dos fluxos financeiros mundiais, usadas na previsão do preço do Xauras
M0: o total de todas as moedas físicas, mais as contas no Banco Central que podem ser trocadas por moedas físicas.
M1: o valor de M0, mais o valor em contas de demanda, incluindo contas 'correntes'.
M2: o valor de M1, mais a maioria das contas de poupança, do mercado de moedas e de certificados de depósito (CD) de menos de US$ 100.000.
Previsões de preço de Xauras por empresas de Internet ou nichos tecnológicos
| Comparação | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Facebook stock | $0.020373 | $0.028627 | $0.040226 | $0.056525 | $0.079427 | $0.1116088 |
| Amazon.com stock | $0.030252 | $0.063123 | $0.131711 | $0.274823 | $0.573436 | $1.19 |
| Apple stock | $0.020565 | $0.02917 | $0.041376 | $0.058688 | $0.083245 | $0.118077 |
| Netflix stock | $0.022876 | $0.036095 | $0.056953 | $0.089864 | $0.141791 | $0.223724 |
| Google stock | $0.018775 | $0.024314 | $0.031487 | $0.040775 | $0.0528046 | $0.068381 |
| Tesla stock | $0.032867 | $0.0745083 | $0.1689049 | $0.382894 | $0.867993 | $1.96 |
| Kodak stock | $0.010872 | $0.008153 | $0.006114 | $0.004584 | $0.003438 | $0.002578 |
| Nokia stock | $0.0096048 | $0.006362 | $0.004215 | $0.002792 | $0.001849 | $0.001225 |
Este cálculo mostra quanto a criptomoeda pode custar, se assumirmos que sua capitalização se comportará da mesma forma que a de algumas empresas de Internet ou nichos tecnológicos. Se você extrapolar os dados, poderá obter uma imagem em potencial do preço futuro para 2024, 2025, 2026, 2027, 2028, 2029 e 2030.
Visão geral da previsão para Xauras
Você pode fazer perguntas como: 'Devo investir em Xauras agora?', 'Devo comprar XRS hoje?', 'Xauras será um bom ou mau investimento no curto ou no longo prazo?'.
Atualizamos a previsão para Xauras regularmente com novos valores. Veja nossas previsões semelhantes. Fazemos previsões de preços futuros para uma enorme quantidade de moedas digitais, como Xauras, com métodos de análise técnica.
Se você estiver tentando encontrar criptomoedas com bom retorno, você deve explorar o máximo de fontes de informações disponíveis sobre Xauras para poder tomar sozinho uma decisão de tão grande responsabilidade sobre o seu investimento.
O preço de Xauras é de $0.01449 USD hoje, mas o preço pode tanto subir quanto descer e seu investimento pode ser perdido, porque criptomoedas são ativos de alto risco
Previsão do preço de Xauras com base no padrão de crescimento do Bitcoin
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| Se Xauras tiver 1% da média anterior do crescimento anual do Bitcoin | $0.014875 | $0.015262 | $0.015659 | $0.016066 |
| Se Xauras tiver 2% da média anterior do crescimento anual do Bitcoin | $0.015252 | $0.016045 | $0.016879 | $0.017757 |
| Se Xauras tiver 5% da média anterior do crescimento anual do Bitcoin | $0.016383 | $0.018512 | $0.020918 | $0.023637 |
| Se Xauras tiver 10% da média anterior do crescimento anual do Bitcoin | $0.018267 | $0.023015 | $0.028998 | $0.036535 |
| Se Xauras tiver 20% da média anterior do crescimento anual do Bitcoin | $0.022036 | $0.033491 | $0.0509032 | $0.077366 |
| Se Xauras tiver 50% da média anterior do crescimento anual do Bitcoin | $0.033342 | $0.076675 | $0.176328 | $0.405495 |
| Se Xauras tiver 100% da média anterior do crescimento anual do Bitcoin | $0.052185 | $0.187833 | $0.676072 | $2.43 |
Perguntas Frequentes sobre Xauras
XRS é um bom investimento?
A decisão de adquirir Xauras depende inteiramente da sua tolerância individual ao risco. Como você pode perceber, o valor de Xauras experimentou uma escalada de 0.0241% nas últimas 24 horas, e Xauras registrou um declínio de durante os últimos 30 dias. Consequentemente, a decisão de investir ou não em Xauras dependerá de quão alinhado esse investimento está com suas aspirações de negociação.
Xauras pode subir?
Parece que o valor médio de Xauras pode potencialmente subir para $0.014952 até o final deste ano. Observando as perspectivas de Xauras em um horizonte de cinco anos mais longo, a moeda digital poderia potencialmente crescer até $0.0470092. No entanto, dada a imprevisibilidade do mercado, é vital conduzir uma pesquisa aprofundada antes de investir quaisquer fundos em um projeto, rede ou ativo específico.
Qual será o preço de Xauras na próxima semana?
Com base na nossa nova previsão experimental de Xauras, o preço de Xauras aumentará 0.86% na próxima semana e atingirá $0.014622 até 13 de janeiro de 2026.
Qual será o preço de Xauras no próximo mês?
Com base na nossa nova previsão experimental de Xauras, o preço de Xauras diminuirá -11.62% no próximo mês e atingirá $0.012814 até 5 de fevereiro de 2026.
Até onde o preço de Xauras pode subir este ano em 2026?
De acordo com nossa previsão mais recente sobre o valor de Xauras em 2026, espera-se que XRS fluctue dentro do intervalo de $0.0050093 e $0.014952. No entanto, é crucial lembrar que o mercado de criptomoedas é excepcionalmente instável, e essa previsão de preço de Xauras não considera flutuações repentinas e extremas de preço.
Onde estará Xauras em 5 anos?
O futuro de Xauras parece seguir uma tendência de alta, com um preço máximo de $0.0470092 projetada após um período de cinco anos. Com base na previsão de Xauras para 2030, o valor de Xauras pode potencialmente atingir seu pico mais alto de aproximadamente $0.0470092, enquanto seu pico mais baixo está previsto para cerca de $0.016258.
Quanto será Xauras em 2026?
Com base na nossa nova simulação experimental de previsão de preços de Xauras, espera-se que o valor de XRS em 2026 aumente 3.13% para $0.014952 se o melhor cenário ocorrer. O preço ficará entre $0.014952 e $0.0050093 durante 2026.
Quanto será Xauras em 2027?
De acordo com nossa última simulação experimental para previsão de preços de Xauras, o valor de XRS pode diminuir -12.62% para $0.012668 em 2027, assumindo as condições mais favoráveis. O preço está projetado para flutuar entre $0.012668 e $0.004822 ao longo do ano.
Quanto será Xauras em 2028?
Nosso novo modelo experimental de previsão de preços de Xauras sugere que o valor de XRS em 2028 pode aumentar 47.02%, alcançando $0.021316 no melhor cenário. O preço é esperado para variar entre $0.021316 e $0.0087029 durante o ano.
Quanto será Xauras em 2029?
Com base no nosso modelo de previsão experimental, o valor de Xauras pode experimentar um 333.75% crescimento em 2029, potencialmente alcançando $0.062888 sob condições ótimas. A faixa de preço prevista para 2029 está entre $0.062888 e $0.019117.
Quanto será Xauras em 2030?
Usando nossa nova simulação experimental para previsões de preços de Xauras, espera-se que o valor de XRS em 2030 aumente 224.23%, alcançando $0.0470092 no melhor cenário. O preço está previsto para variar entre $0.0470092 e $0.016258 ao longo de 2030.
Quanto será Xauras em 2031?
Nossa simulação experimental indica que o preço de Xauras poderia aumentar 195.98% em 2031, potencialmente atingindo $0.042914 sob condições ideais. O preço provavelmente oscilará entre $0.042914 e $0.019223 durante o ano.
Quanto será Xauras em 2032?
Com base nos achados da nossa mais recente previsão experimental de preços de Xauras, XRS poderia ver um 449.04% aumento em valor, atingindo $0.0796034 se o cenário mais positivo se desenrolar em 2032. O preço é esperado para permanecer dentro de uma faixa de $0.0796034 e $0.029342 ao longo do ano.
Quanto será Xauras em 2033?
De acordo com nossa previsão experimental de preços de Xauras, espera-se que o valor de XRS seja aumentar 1362.43% em 2033, com o preço potencial mais alto sendo $0.212034. Ao longo do ano, o preço de XRS poderia variar entre $0.212034 e $0.068185.
Quanto será Xauras em 2034?
Os resultados da nossa nova simulação de previsão de preços de Xauras sugerem que XRS pode aumentar 746.96% em 2034, atingindo potencialmente $0.122799 nas melhores circunstâncias. A faixa de preço prevista para o ano é entre $0.122799 e $0.054817.
Quanto será Xauras em 2035?
Com base em nossa previsão experimental para o preço de Xauras, XRS poderia aumentar 897.93%, com o valor potencialmente atingindo $0.144687 em 2035. A faixa de preço esperada para o ano está entre $0.144687 e $0.064811.
Quanto será Xauras em 2036?
Nossa recente simulação de previsão de preços de Xauras sugere que o valor de XRS pode aumentar 1964.7% em 2036, possivelmente atingindo $0.299355 se as condições forem ideais. A faixa de preço esperada para 2036 está entre $0.299355 e $0.107283.
Quanto será Xauras em 2037?
De acordo com a simulação experimental, o valor de Xauras poderia aumentar 4830.69% em 2037, com um pico de $0.714889 sob condições favoráveis. O preço é esperado para cair entre $0.714889 e $0.278613 ao longo do ano.
Previsões relacionadas
Como ler e prever os movimentos de preço de Xauras?
Traders de Xauras utilizam indicadores e padrões de gráfico para prever a direção do mercado. Eles também identificam níveis-chave de suporte e resistência para avaliar quando uma tendência de baixa pode desacelerar ou uma tendência de alta pode estagnar.
Indicadores de Previsão de Preço de Xauras
Médias móveis são ferramentas populares para a previsão de preço de Xauras. Uma média móvel simples (SMA) calcula o preço médio de fechamento de XRS em um período específico, como uma SMA de 12 dias. Uma média móvel exponencial (EMA) dá mais peso aos preços recentes, reagindo mais rapidamente às mudanças de preço.
Médias móveis comumente usadas no mercado de criptomoedas incluem as de 50 dias, 100 dias e 200 dias, que ajudam a identificar níveis-chave de resistência e suporte. Um movimento de preço de XRS acima dessas médias é visto como altista, enquanto uma queda abaixo indica fraqueza.
Traders também usam RSI e níveis de retração de Fibonacci para avaliar a direção futura de XRS.
Como ler gráficos de Xauras e prever movimentos de preço?
A maioria dos traders prefere gráficos de velas em vez de gráficos de linha simples porque eles fornecem informações mais detalhadas. Velas podem representar a ação de preço de Xauras em diferentes períodos de tempo, como 5 minutos para tendências de curto prazo e semanal para tendências de longo prazo. Opções populares incluem gráficos de 1 hora, 4 horas e 1 dia.
Por exemplo, um gráfico de velas de 1 hora mostra os preços de abertura, fechamento, máximo e mínimo de XRS dentro de cada hora. A cor da vela é crucial: verde indica que o preço fechou mais alto do que abriu, enquanto vermelho significa o oposto. Alguns gráficos usam velas vazias e preenchidas para transmitir a mesma informação.
O que afeta o preço de Xauras?
A ação de preço de Xauras é impulsionada pela oferta e demanda, influenciada por fatores como reduções pela metade das recompensas de bloco, hard forks e atualizações de protocolo. Eventos do mundo real, como regulamentações, adoção por empresas e governos e hacks de exchanges de criptomoedas, também impactam o preço de XRS. A capitalização de mercado de Xauras pode mudar rapidamente.
Traders frequentemente monitoram a atividade de "baleias" de XRS, grandes detentores de Xauras, pois suas ações podem influenciar significativamente os movimentos de preço no relativamente pequeno mercado de Xauras.
Padrões de previsão de preço altistas e baixistas
Traders frequentemente identificam padrões de velas para ganhar vantagem em previsões de preço de criptomoedas. Certas formações indicam tendências altistas, enquanto outras sugerem movimentos baixistas.
Padrões de velas altistas comumente seguidos:
- Martelo
- Engolfo de Alta
- Linha de Perfuração
- Estrela da Manhã
- Três Soldados Brancos
Padrões de velas baixistas comuns:
- Harami de Baixa
- Nuvem Negra
- Estrela da Noite
- Estrela Cadente
- Homem Enforcado


