Previsão de Preço Velora - Projeção VLR
Previsão de Preço Velora até $0.0040013 até 2026
| Ano | Preço Mínimo | Preço Máximo |
|---|---|---|
| 2026 | $0.00134 | $0.0040013 |
| 2027 | $0.00129 | $0.00339 |
| 2028 | $0.002328 | $0.0057041 |
| 2029 | $0.005115 | $0.016829 |
| 2030 | $0.00435 | $0.012579 |
| 2031 | $0.005144 | $0.011483 |
| 2032 | $0.007852 | $0.0213018 |
| 2033 | $0.018246 | $0.05674 |
| 2034 | $0.014669 | $0.03286 |
| 2035 | $0.017343 | $0.038718 |
Calculadora de lucro do investimento
Se você abrir um short de $10,000.00 em Velora hoje e fechar em Apr 06, 2026, nossa previsão mostra que pode lucrar cerca de $3,955.97, com um retorno de 39.56% nos próximos 90 dias.
Previsão de preço de longo prazo de Velora para os anos 2027, 2028, 2029, 2030, 2031, 2032 e 2037
[
'name' => 'Velora'
'name_with_ticker' => 'Velora <small>VLR</small>'
'name_lang' => 'Velora'
'name_lang_with_ticker' => 'Velora <small>VLR</small>'
'name_with_lang' => 'Velora'
'name_with_lang_with_ticker' => 'Velora <small>VLR</small>'
'image' => '/uploads/coins/velora.png?1746825954'
'price_for_sd' => 0.003879
'ticker' => 'VLR'
'marketcap' => '$6.49M'
'low24h' => '$0.003832'
'high24h' => '$0.003948'
'volume24h' => '$607K'
'current_supply' => '1.67B'
'max_supply' => '2B'
'algo' => null
'proof' => null
'ico_price_and_roi' => '—'
'price' => '$0.003879'
'change_24h_pct' => '0.8366%'
'ath_price' => '$0.06457'
'ath_days' => 112
'ath_exchange' => null
'ath_pair' => null
'ath_date' => '16 de set. de 2025'
'ath_pct' => '-93.99%'
'fdv' => '$7.78M'
'new_prediction' => true
'change_24h_pct_is_increased' => true
'change_30d_pct' => null
'change_30d_pct_is_increased' => false
'max_price' => '$0.1913038'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.003913'
'next_week_prediction_price_date' => '13 de janeiro de 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.003429'
'next_month_prediction_price_date' => '5 de fevereiro de 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.00134'
'current_year_max_price_prediction' => '$0.0040013'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.00435'
'grand_prediction_max_price' => '$0.012579'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.0039533813061936
107 => 0.0039681417969136
108 => 0.0040013979361949
109 => 0.0037172278671848
110 => 0.0038448118853754
111 => 0.0039197555430565
112 => 0.0035811573711795
113 => 0.0039130625458747
114 => 0.0037122810985046
115 => 0.0036441328596311
116 => 0.0037358854854266
117 => 0.0037001293979217
118 => 0.003669388413553
119 => 0.003652234416078
120 => 0.0037196074180944
121 => 0.0037164643870222
122 => 0.0036062290791872
123 => 0.0034624316138824
124 => 0.0035106947632296
125 => 0.0034931603086023
126 => 0.0034296131830434
127 => 0.0034724362729609
128 => 0.0032838650572341
129 => 0.0029594380816551
130 => 0.0031737644791896
131 => 0.0031655131460268
201 => 0.0031613524496779
202 => 0.0033224128138786
203 => 0.0033069305761555
204 => 0.0032788301630856
205 => 0.0034290970969208
206 => 0.0033742476446955
207 => 0.0035432807322976
208 => 0.0036546168561671
209 => 0.0036263784138075
210 => 0.0037310905764409
211 => 0.0035118066487127
212 => 0.0035846439733598
213 => 0.0035996556450215
214 => 0.0034272428262826
215 => 0.0033094636617191
216 => 0.0033016091342235
217 => 0.003097396293839
218 => 0.0032064851448239
219 => 0.0033024788192873
220 => 0.0032565052986294
221 => 0.003241951455409
222 => 0.0033163038840787
223 => 0.0033220817045718
224 => 0.0031903467850227
225 => 0.0032177386462993
226 => 0.0033319672613408
227 => 0.0032148603782807
228 => 0.0029873408337955
301 => 0.0029309128410594
302 => 0.0029233843066542
303 => 0.0027703471149933
304 => 0.002934683629355
305 => 0.0028629463368914
306 => 0.0030895635842393
307 => 0.0029601210279268
308 => 0.0029545410180378
309 => 0.0029461060146809
310 => 0.0028143805819317
311 => 0.0028432200801158
312 => 0.0029390869644594
313 => 0.002973293348811
314 => 0.0029697253426784
315 => 0.0029386171644261
316 => 0.0029528583291304
317 => 0.0029069825756672
318 => 0.0028907828922982
319 => 0.0028396522355114
320 => 0.0027645042952394
321 => 0.0027749540772433
322 => 0.0026260663440361
323 => 0.0025449444049148
324 => 0.002522490921336
325 => 0.0024924651846987
326 => 0.0025258824081846
327 => 0.0026256445637947
328 => 0.0025053102384069
329 => 0.002299005478001
330 => 0.0023114047456276
331 => 0.002339262218609
401 => 0.0022873500020038
402 => 0.0022382194456491
403 => 0.0022809344783115
404 => 0.0021935204316599
405 => 0.0023498257885213
406 => 0.0023455981666589
407 => 0.0024038591378384
408 => 0.0024402909187524
409 => 0.0023563274586747
410 => 0.0023352108755265
411 => 0.0023472398409829
412 => 0.0021484278368402
413 => 0.0023876119555734
414 => 0.0023896804297646
415 => 0.0023719688979329
416 => 0.0024993270571772
417 => 0.0027680924971887
418 => 0.0026669721275916
419 => 0.0026278152641042
420 => 0.0025533780379913
421 => 0.0026525612221416
422 => 0.0026449455010976
423 => 0.00261050432236
424 => 0.0025896741899964
425 => 0.002628054347563
426 => 0.0025849184637396
427 => 0.0025771700737101
428 => 0.0025302232604628
429 => 0.0025134653840774
430 => 0.0025010585195519
501 => 0.0024873997807827
502 => 0.0025175275549619
503 => 0.0024492540550331
504 => 0.0023669229070526
505 => 0.0023600779629334
506 => 0.0023789774554602
507 => 0.0023706158369188
508 => 0.0023600379307208
509 => 0.0023398418270674
510 => 0.0023338500745349
511 => 0.0023533203634804
512 => 0.0023313395424493
513 => 0.002363773441238
514 => 0.0023549532154169
515 => 0.0023056841509733
516 => 0.0022442766549326
517 => 0.0022437299994113
518 => 0.0022304998551178
519 => 0.0022136492771945
520 => 0.0022089618319053
521 => 0.0022773371374026
522 => 0.0024188719734814
523 => 0.0023910852985175
524 => 0.0024111640188719
525 => 0.0025099314503755
526 => 0.0025413266468102
527 => 0.0025190430800168
528 => 0.0024885399593995
529 => 0.0024898819419007
530 => 0.0025941203389726
531 => 0.0026006215599365
601 => 0.0026170480479391
602 => 0.0026381607271473
603 => 0.0025226386605798
604 => 0.0024844408629541
605 => 0.0024663406273059
606 => 0.0024105989071823
607 => 0.0024707115734017
608 => 0.0024356864970767
609 => 0.0024404125764999
610 => 0.0024373347110756
611 => 0.0024390154337216
612 => 0.0023497820979885
613 => 0.0023822940355636
614 => 0.002328236633551
615 => 0.0022558598404843
616 => 0.0022556172080954
617 => 0.0022733313256624
618 => 0.0022627942753801
619 => 0.0022344393440027
620 => 0.0022384670281734
621 => 0.00220318027671
622 => 0.0022427514786883
623 => 0.0022438862391684
624 => 0.0022286491709489
625 => 0.0022896140673699
626 => 0.0023145914351763
627 => 0.0023045620704645
628 => 0.0023138877482119
629 => 0.0023922399603116
630 => 0.0024050147896305
701 => 0.0024106885249561
702 => 0.0024030864712457
703 => 0.0023153198828159
704 => 0.0023192127042251
705 => 0.0022906497636519
706 => 0.002266517088756
707 => 0.0022674822691926
708 => 0.0022798896011172
709 => 0.0023340731473124
710 => 0.0024480992259856
711 => 0.0024524264323193
712 => 0.0024576711326292
713 => 0.0024363383006936
714 => 0.0024299041144541
715 => 0.0024383924669084
716 => 0.0024812146668516
717 => 0.0025913649912196
718 => 0.0025524305098951
719 => 0.0025207761705271
720 => 0.0025485455601015
721 => 0.0025442706802402
722 => 0.0025081863921237
723 => 0.0025071736263387
724 => 0.0024379163405983
725 => 0.0024123134989722
726 => 0.00239091784817
727 => 0.0023675543560415
728 => 0.0023537036947564
729 => 0.0023749846055033
730 => 0.0023798518015795
731 => 0.0023333207183047
801 => 0.0023269787035926
802 => 0.002364976990638
803 => 0.0023482553612282
804 => 0.0023654539717526
805 => 0.0023694441969212
806 => 0.0023688016787664
807 => 0.0023513423771957
808 => 0.002362470415373
809 => 0.0023361492876559
810 => 0.0023075290145691
811 => 0.0022892710634458
812 => 0.0022733385795249
813 => 0.0022821788476056
814 => 0.002250664906067
815 => 0.0022405829619185
816 => 0.0023587004864273
817 => 0.0024459551717594
818 => 0.002444686454078
819 => 0.0024369634614803
820 => 0.002425488661032
821 => 0.0024803752137267
822 => 0.0024612538362591
823 => 0.0024751662360113
824 => 0.0024787075256499
825 => 0.0024894259428174
826 => 0.0024932568556758
827 => 0.0024816771762779
828 => 0.0024428143578797
829 => 0.0023459719093975
830 => 0.0023008914882078
831 => 0.0022860141983414
901 => 0.002286554959572
902 => 0.0022716383507663
903 => 0.0022760319605751
904 => 0.0022701104325768
905 => 0.0022588964911196
906 => 0.0022814864183207
907 => 0.0022840896969909
908 => 0.0022788169380526
909 => 0.0022800588636592
910 => 0.0022364026716752
911 => 0.0022397217571355
912 => 0.0022212406675236
913 => 0.0022177756860143
914 => 0.0021710571008081
915 => 0.0020882883551482
916 => 0.0021341502748003
917 => 0.0020787555250224
918 => 0.002057776693914
919 => 0.0021570872175033
920 => 0.0021471191953801
921 => 0.0021300582745002
922 => 0.0021048216167114
923 => 0.0020954610948511
924 => 0.002038589527209
925 => 0.0020352292515947
926 => 0.0020634163361796
927 => 0.0020504089665021
928 => 0.0020321416931986
929 => 0.0019659794810174
930 => 0.00189159124897
1001 => 0.0018938365621078
1002 => 0.0019174980746798
1003 => 0.0019862971136726
1004 => 0.0019594161389027
1005 => 0.0019399136832834
1006 => 0.0019362614595876
1007 => 0.001981976685589
1008 => 0.002046673308017
1009 => 0.0020770275157548
1010 => 0.0020469474177576
1011 => 0.0020123930208059
1012 => 0.0020144961868387
1013 => 0.0020284876082199
1014 => 0.002029957908779
1015 => 0.0020074665486128
1016 => 0.0020137977347557
1017 => 0.0020041800840689
1018 => 0.0019451565795566
1019 => 0.0019440890315255
1020 => 0.0019296037116356
1021 => 0.0019291651019062
1022 => 0.0019045219592411
1023 => 0.0019010742132323
1024 => 0.0018521437577389
1025 => 0.0018843499317197
1026 => 0.0018627477211134
1027 => 0.0018301880942833
1028 => 0.0018245748023454
1029 => 0.0018244060600115
1030 => 0.0018578375165666
1031 => 0.0018839592656851
1101 => 0.0018631235008156
1102 => 0.0018583796010391
1103 => 0.0019090320395978
1104 => 0.001902586055084
1105 => 0.0018970038740671
1106 => 0.0020408804350773
1107 => 0.0019269909102097
1108 => 0.0018773285767806
1109 => 0.0018158620085408
1110 => 0.001835875833101
1111 => 0.0018400930400001
1112 => 0.001692277023565
1113 => 0.0016323080841066
1114 => 0.0016117290039663
1115 => 0.0015998854524001
1116 => 0.0016052827075708
1117 => 0.0015513036284032
1118 => 0.0015875784623354
1119 => 0.0015408371425142
1120 => 0.0015330008081368
1121 => 0.0016165800781154
1122 => 0.0016282096452699
1123 => 0.0015785942987655
1124 => 0.0016104553832163
1125 => 0.0015989021110922
1126 => 0.0015416383882868
1127 => 0.0015394513352791
1128 => 0.0015107184120925
1129 => 0.0014657569510958
1130 => 0.0014452083569432
1201 => 0.0014345064706975
1202 => 0.0014389222775381
1203 => 0.0014366895104736
1204 => 0.0014221191950757
1205 => 0.0014375246638968
1206 => 0.0013981700570382
1207 => 0.0013824987354855
1208 => 0.001375420363112
1209 => 0.0013404908843584
1210 => 0.0013960792182651
1211 => 0.0014070308203281
1212 => 0.0014180040004303
1213 => 0.0015135180415117
1214 => 0.0015087464299391
1215 => 0.0015518794746859
1216 => 0.0015502034038836
1217 => 0.0015379011608128
1218 => 0.001486000020918
1219 => 0.0015066868902312
1220 => 0.0014430159219385
1221 => 0.0014907225405884
1222 => 0.0014689512321126
1223 => 0.0014833616392928
1224 => 0.0014574504278488
1225 => 0.0014717907621096
1226 => 0.0014096278514549
1227 => 0.0013515810001414
1228 => 0.0013749407476032
1229 => 0.0014003354646053
1230 => 0.0014553976815195
1231 => 0.0014226030793788
]
'min_raw' => 0.0013404908843584
'max_raw' => 0.0040013979361949
'avg_raw' => 0.0026709444102766
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.00134'
'max' => '$0.0040013'
'avg' => '$0.00267'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.0025393691156416
'max_diff' => 0.00012153793619486
'year' => 2026
]
1 => [
'items' => [
101 => 0.0014343972584098
102 => 0.0013948887329778
103 => 0.0013133713599591
104 => 0.0013138327394376
105 => 0.0013012930675512
106 => 0.0012904569602192
107 => 0.0014263699339342
108 => 0.0014094670071866
109 => 0.0013825344056146
110 => 0.0014185847630778
111 => 0.0014281170497871
112 => 0.0014283884205889
113 => 0.0014546898307996
114 => 0.0014687268981439
115 => 0.0014712009921034
116 => 0.0015125868293495
117 => 0.001526458816102
118 => 0.0015835955662986
119 => 0.0014675359510513
120 => 0.0014651457796504
121 => 0.0014190920655373
122 => 0.0013898840719664
123 => 0.0014210919618457
124 => 0.0014487378919769
125 => 0.0014199511016492
126 => 0.0014237100487437
127 => 0.0013850661346961
128 => 0.001398879515603
129 => 0.0014107774601033
130 => 0.0014042081144791
131 => 0.0013943734861196
201 => 0.0014464712409761
202 => 0.0014435316814744
203 => 0.001492046308519
204 => 0.0015298669296145
205 => 0.0015976482438624
206 => 0.0015269149089249
207 => 0.0015243371050602
208 => 0.0015495355513301
209 => 0.0015264549583512
210 => 0.0015410410963989
211 => 0.0015952981915221
212 => 0.0015964445584448
213 => 0.0015772414354785
214 => 0.0015760729237008
215 => 0.0015797610935257
216 => 0.0016013628193875
217 => 0.0015938145126174
218 => 0.0016025496043116
219 => 0.0016134729702315
220 => 0.0016586566430878
221 => 0.0016695502736449
222 => 0.0016430843990911
223 => 0.0016454739712375
224 => 0.0016355750076499
225 => 0.0016260127328579
226 => 0.0016475073301322
227 => 0.0016867891291283
228 => 0.0016865447590954
301 => 0.0016956573729335
302 => 0.0017013344558616
303 => 0.0016769642600554
304 => 0.0016611001587025
305 => 0.0016671834646202
306 => 0.0016769108032598
307 => 0.0016640290198012
308 => 0.0015845166848722
309 => 0.001608635648022
310 => 0.0016046210731968
311 => 0.0015989038304568
312 => 0.0016231556344104
313 => 0.0016208164887564
314 => 0.0015507499949262
315 => 0.001555235424531
316 => 0.0015510227687567
317 => 0.0015646347213919
318 => 0.0015257198682383
319 => 0.0015376898149728
320 => 0.0015451972533534
321 => 0.0015496191922344
322 => 0.0015655942676246
323 => 0.0015637197769112
324 => 0.00156547774665
325 => 0.0015891645661901
326 => 0.001708964371089
327 => 0.0017154848101462
328 => 0.0016833757834897
329 => 0.0016962027063164
330 => 0.0016715778194287
331 => 0.0016881086709688
401 => 0.0016994186597545
402 => 0.0016483109952179
403 => 0.0016452847310101
404 => 0.0016205582084546
405 => 0.0016338448410941
406 => 0.001612704853222
407 => 0.0016178918668004
408 => 0.0016033885246394
409 => 0.0016294916529426
410 => 0.0016586790064016
411 => 0.0016660528845289
412 => 0.0016466553858302
413 => 0.0016326103184149
414 => 0.0016079518067664
415 => 0.0016489594611886
416 => 0.0016609513490272
417 => 0.0016488964729069
418 => 0.0016461030947055
419 => 0.0016408096480615
420 => 0.0016472261244348
421 => 0.0016608860386307
422 => 0.0016544442753549
423 => 0.0016586991734878
424 => 0.001642483889437
425 => 0.0016769723276042
426 => 0.0017317482675084
427 => 0.001731924381112
428 => 0.0017254825831127
429 => 0.0017228467381618
430 => 0.0017294564138301
501 => 0.001733041891737
502 => 0.0017544163708409
503 => 0.0017773520385163
504 => 0.0018843827919411
505 => 0.0018543289846699
506 => 0.0019492930363964
507 => 0.0020243972717733
508 => 0.0020469177480527
509 => 0.002026199969546
510 => 0.0019553255684269
511 => 0.0019518481321838
512 => 0.002057764409856
513 => 0.0020278382101408
514 => 0.002024278583909
515 => 0.0019864101748867
516 => 0.0020087950947126
517 => 0.0020038991843797
518 => 0.0019961707504031
519 => 0.0020388796180839
520 => 0.0021188268057355
521 => 0.0021063662868
522 => 0.0020970650874415
523 => 0.002056309939391
524 => 0.0020808536415093
525 => 0.0020721140992886
526 => 0.0021096647189192
527 => 0.0020874205636981
528 => 0.0020276114897447
529 => 0.0020371362819051
530 => 0.0020356966287313
531 => 0.0020653245890335
601 => 0.0020564310107619
602 => 0.0020339600148369
603 => 0.0021185535549395
604 => 0.0021130605209792
605 => 0.0021208483872525
606 => 0.0021242768468338
607 => 0.0021757674439888
608 => 0.0021968614941279
609 => 0.0022016502128128
610 => 0.0022216879289726
611 => 0.0022011516561808
612 => 0.0022833113894622
613 => 0.002337942817941
614 => 0.0024014000334267
615 => 0.0024941280809428
616 => 0.0025289946845913
617 => 0.002522696344721
618 => 0.0025930016920572
619 => 0.0027193388384202
620 => 0.0025482326941183
621 => 0.0027284078795464
622 => 0.0026713664960624
623 => 0.0025361224019525
624 => 0.0025274142767149
625 => 0.0026190031474624
626 => 0.0028221384476781
627 => 0.0027712553589155
628 => 0.0028222216741829
629 => 0.0027627667601883
630 => 0.0027598143225831
701 => 0.0028193340817161
702 => 0.0029584052431834
703 => 0.0028923377473748
704 => 0.0027976137917186
705 => 0.0028675564865071
706 => 0.0028069656513905
707 => 0.0026704375415657
708 => 0.0027712164495765
709 => 0.0027038284638077
710 => 0.0027234958605974
711 => 0.002865135383477
712 => 0.0028480929413525
713 => 0.0028701474395493
714 => 0.0028312218274986
715 => 0.0027948591678376
716 => 0.0027269855632538
717 => 0.0027068915350649
718 => 0.0027124448015489
719 => 0.0027068887831418
720 => 0.0026689141251678
721 => 0.0026607135013939
722 => 0.0026470454358265
723 => 0.0026512817408716
724 => 0.0026255817788713
725 => 0.0026740829170489
726 => 0.0026830851556853
727 => 0.0027183802393917
728 => 0.002722044692069
729 => 0.0028203409977974
730 => 0.0027662010444045
731 => 0.0028025227993591
801 => 0.0027992738397224
802 => 0.0025390535515678
803 => 0.0025749096113325
804 => 0.0026306903880749
805 => 0.0026055612237615
806 => 0.0025700344647412
807 => 0.002541344702008
808 => 0.0024978767777884
809 => 0.0025590570464
810 => 0.002639502593828
811 => 0.0027240849239072
812 => 0.0028257050514435
813 => 0.0028030246219661
814 => 0.0027221852063084
815 => 0.0027258116034415
816 => 0.0027482285635842
817 => 0.0027191965634039
818 => 0.0027106344597787
819 => 0.0027470522620261
820 => 0.0027473030514153
821 => 0.0027138982265735
822 => 0.0026767748767802
823 => 0.002676619328589
824 => 0.0026700135870623
825 => 0.0027639419069312
826 => 0.0028155929856347
827 => 0.0028215146985682
828 => 0.0028151944071726
829 => 0.0028176268364874
830 => 0.0027875722118436
831 => 0.0028562681713572
901 => 0.002919310377133
902 => 0.0029024137192848
903 => 0.0028770832271689
904 => 0.0028569062701168
905 => 0.0028976606694363
906 => 0.0028958459401879
907 => 0.0029187597584624
908 => 0.0029177202553089
909 => 0.0029100152000554
910 => 0.0029024139944566
911 => 0.0029325519154547
912 => 0.0029238726782074
913 => 0.0029151799597075
914 => 0.0028977453819672
915 => 0.0029001150306398
916 => 0.0028747889121905
917 => 0.0028630718909515
918 => 0.002686876004582
919 => 0.0026397907063774
920 => 0.0026546046997022
921 => 0.0026594818509499
922 => 0.0026389902688298
923 => 0.0026683699337344
924 => 0.0026637911440798
925 => 0.0026816045361236
926 => 0.0026704755021422
927 => 0.0026709322415788
928 => 0.0027036603575578
929 => 0.0027131614688619
930 => 0.0027083291269693
1001 => 0.0027117135335879
1002 => 0.002789705755645
1003 => 0.0027786177557193
1004 => 0.0027727274767508
1005 => 0.00277435912428
1006 => 0.0027942878091877
1007 => 0.002799866752896
1008 => 0.0027762283763785
1009 => 0.002787376371396
1010 => 0.0028348431192891
1011 => 0.0028514537946664
1012 => 0.0029044670968944
1013 => 0.0028819461038716
1014 => 0.0029232843612506
1015 => 0.0030503440711832
1016 => 0.0031518481593405
1017 => 0.0030585008050372
1018 => 0.0032449001364704
1019 => 0.0033900387533872
1020 => 0.0033844680915289
1021 => 0.0033591598165528
1022 => 0.0031939233599028
1023 => 0.0030418703089567
1024 => 0.0031690691425867
1025 => 0.0031693933985723
1026 => 0.0031584669059564
1027 => 0.0030906033987326
1028 => 0.0031561054030077
1029 => 0.0031613047142387
1030 => 0.0031583944825578
1031 => 0.0031063636906837
1101 => 0.0030269222883898
1102 => 0.0030424449482422
1103 => 0.0030678713817341
1104 => 0.0030197338386242
1105 => 0.003004350976844
1106 => 0.0030329506436026
1107 => 0.0031251047288759
1108 => 0.0031076835328673
1109 => 0.0031072285950349
1110 => 0.0031817638592968
1111 => 0.0031284126958021
1112 => 0.0030426407386933
1113 => 0.0030209821883303
1114 => 0.0029441089254891
1115 => 0.0029972055619466
1116 => 0.0029991164153666
1117 => 0.0029700359302133
1118 => 0.0030450004597918
1119 => 0.0030443096484545
1120 => 0.0031154773122916
1121 => 0.0032515231561942
1122 => 0.0032112877057428
1123 => 0.0031644982544724
1124 => 0.0031695855651562
1125 => 0.0032253808068054
1126 => 0.0031916457300229
1127 => 0.0032037770988432
1128 => 0.0032253624445258
1129 => 0.00323838541951
1130 => 0.0031677117594682
1201 => 0.0031512343486005
1202 => 0.0031175273487506
1203 => 0.0031087338216607
1204 => 0.0031361874697188
1205 => 0.0031289544034072
1206 => 0.0029989558155359
1207 => 0.002985370239798
1208 => 0.0029857868900102
1209 => 0.0029516253138584
1210 => 0.0028995207105092
1211 => 0.0030364484971066
1212 => 0.0030254512795397
1213 => 0.0030133112024629
1214 => 0.0030147982926345
1215 => 0.0030742340038831
1216 => 0.0030397582897835
1217 => 0.0031314176261757
1218 => 0.0031125752221454
1219 => 0.0030932495815505
1220 => 0.0030905781893469
1221 => 0.003083139466504
1222 => 0.0030576293180491
1223 => 0.0030268242808674
1224 => 0.0030064841270335
1225 => 0.0027733226850387
1226 => 0.0028165960924352
1227 => 0.0028663782031497
1228 => 0.0028835627882791
1229 => 0.0028541673662782
1230 => 0.0030587900284769
1231 => 0.0030961765606536
]
'min_raw' => 0.0012904569602192
'max_raw' => 0.0033900387533872
'avg_raw' => 0.0023402478568032
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.00129'
'max' => '$0.00339'
'avg' => '$0.00234'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -5.003392413918E-5
'max_diff' => -0.00061135918280765
'year' => 2027
]
2 => [
'items' => [
101 => 0.0029829303160271
102 => 0.0029617465674712
103 => 0.0030601788315055
104 => 0.0030008121434379
105 => 0.0030275449594397
106 => 0.0029697632333125
107 => 0.0030871712398577
108 => 0.00308627678756
109 => 0.0030406024212338
110 => 0.0030792060828881
111 => 0.0030724977466862
112 => 0.003020931499595
113 => 0.0030888059818675
114 => 0.0030888396467639
115 => 0.0030448790622213
116 => 0.002993542723685
117 => 0.0029843649988648
118 => 0.0029774508160667
119 => 0.0030258444943185
120 => 0.0030692341149158
121 => 0.0031499714416484
122 => 0.0031702707238605
123 => 0.0032495001737342
124 => 0.0032023228939463
125 => 0.0032232359710282
126 => 0.003245940074536
127 => 0.0032568252566734
128 => 0.0032390884365116
129 => 0.003362164384308
130 => 0.0033725557652517
131 => 0.003376039905397
201 => 0.003334539388279
202 => 0.0033714015607967
203 => 0.0033541549710225
204 => 0.0033990258063744
205 => 0.0034060621262971
206 => 0.0034001026136469
207 => 0.0034023360526511
208 => 0.0032973124432919
209 => 0.0032918664151029
210 => 0.003217609434314
211 => 0.0032478697028654
212 => 0.003191299581221
213 => 0.0032092385495312
214 => 0.0032171458758336
215 => 0.0032130155373101
216 => 0.0032495805730471
217 => 0.0032184928229273
218 => 0.003136447139062
219 => 0.0030543791019049
220 => 0.0030533488045496
221 => 0.0030317417389873
222 => 0.0030161237881172
223 => 0.0030191323595314
224 => 0.003029734957609
225 => 0.0030155075458425
226 => 0.003018543685491
227 => 0.0030689638333482
228 => 0.0030790752344209
229 => 0.0030447127427963
301 => 0.00290674238044
302 => 0.0028728841074453
303 => 0.0028972207626351
304 => 0.0028855894089357
305 => 0.0023288958640306
306 => 0.002459682754854
307 => 0.0023819736254299
308 => 0.0024177855674936
309 => 0.0023384646690331
310 => 0.002376320759343
311 => 0.0023693301217458
312 => 0.0025796315719244
313 => 0.00257634800404
314 => 0.0025779196742237
315 => 0.0025028997613911
316 => 0.002622408519546
317 => 0.0026812828312091
318 => 0.0026703867630093
319 => 0.0026731290686286
320 => 0.0026260071723957
321 => 0.0025783759171826
322 => 0.0025255455247536
323 => 0.0026236978638528
324 => 0.0026127849992613
325 => 0.0026378151843095
326 => 0.0027014739922894
327 => 0.0027108479935808
328 => 0.0027234467463781
329 => 0.0027189309903405
330 => 0.0028265146197057
331 => 0.00281348553233
401 => 0.0028448818841813
402 => 0.0027802972063762
403 => 0.0027072135130057
404 => 0.0027211043338295
405 => 0.0027197665360813
406 => 0.0027027348352932
407 => 0.0026873593773605
408 => 0.002661763571911
409 => 0.0027427524878197
410 => 0.0027394644857369
411 => 0.0027926934175725
412 => 0.0027832846868323
413 => 0.0027204508802423
414 => 0.002722695001937
415 => 0.0027377877988221
416 => 0.0027900241411679
417 => 0.0028055314440975
418 => 0.0027983478435213
419 => 0.0028153508932484
420 => 0.0028287894104825
421 => 0.00281703856411
422 => 0.0029834057684032
423 => 0.0029143185060996
424 => 0.0029479911570403
425 => 0.0029560218858789
426 => 0.0029354513428269
427 => 0.002939912357039
428 => 0.0029466695780166
429 => 0.0029876981005933
430 => 0.0030953688155334
501 => 0.003143055442241
502 => 0.0032865230115075
503 => 0.0031390957317228
504 => 0.0031303480070551
505 => 0.0031561908485856
506 => 0.0032404214993296
507 => 0.0033086825303748
508 => 0.0033313286524459
509 => 0.0033343217113243
510 => 0.0033768073418154
511 => 0.0034011593129028
512 => 0.0033716484687908
513 => 0.00334664111832
514 => 0.0032570678929604
515 => 0.0032674362376955
516 => 0.0033388638511281
517 => 0.0034397595621671
518 => 0.0035263385786481
519 => 0.0034960216246598
520 => 0.0037273185831563
521 => 0.0037502507318279
522 => 0.0037470822503666
523 => 0.0037993250978018
524 => 0.0036956336847139
525 => 0.0036513035966923
526 => 0.0033520479913373
527 => 0.0034361266099645
528 => 0.0035583398199033
529 => 0.0035421644432919
530 => 0.0034534099434659
531 => 0.0035262712504012
601 => 0.0035021810237446
602 => 0.0034831800624762
603 => 0.0035702271495644
604 => 0.0034745153016137
605 => 0.0035573850210043
606 => 0.0034511037487083
607 => 0.0034961601099519
608 => 0.0034705839401791
609 => 0.0034871348565196
610 => 0.0033903785377838
611 => 0.0034425858987468
612 => 0.0033882065399259
613 => 0.0033881807570294
614 => 0.0033869803296694
615 => 0.0034509574041672
616 => 0.0034530436942697
617 => 0.0034057645395519
618 => 0.0033989508747178
619 => 0.0034241445647956
620 => 0.0033946493519524
621 => 0.0034084499764011
622 => 0.003395067358808
623 => 0.0033920546497068
624 => 0.0033680488710179
625 => 0.0033577065215061
626 => 0.0033617620232392
627 => 0.0033479185050696
628 => 0.0033395772846306
629 => 0.0033853210509786
630 => 0.0033608820019171
701 => 0.0033815754162046
702 => 0.0033579926589069
703 => 0.0032762445475948
704 => 0.0032292303443086
705 => 0.0030748157400939
706 => 0.0031186075302985
707 => 0.00314764153251
708 => 0.0031380457949523
709 => 0.0031586611522837
710 => 0.0031599267677929
711 => 0.0031532245049757
712 => 0.0031454641432465
713 => 0.0031416868283316
714 => 0.0031698398390109
715 => 0.003186183609297
716 => 0.0031505554830567
717 => 0.0031422083115691
718 => 0.0031782303142808
719 => 0.0032002037151257
720 => 0.0033624429611771
721 => 0.0033504237538038
722 => 0.0033805896056605
723 => 0.0033771933936742
724 => 0.0034088120122172
725 => 0.0034604950905097
726 => 0.003355408941525
727 => 0.0033736482633831
728 => 0.003369176402871
729 => 0.0034179990033579
730 => 0.0034181514221875
731 => 0.0033888798343258
801 => 0.0034047484369829
802 => 0.003395891018312
803 => 0.0034118975710022
804 => 0.0033502632299615
805 => 0.0034253272043331
806 => 0.003467883640786
807 => 0.0034684745369475
808 => 0.0034886459500774
809 => 0.0035091412740669
810 => 0.0035484802636983
811 => 0.0035080441309974
812 => 0.0034353034646467
813 => 0.0034405551058063
814 => 0.0033979072797397
815 => 0.0033986241974008
816 => 0.0033947972347398
817 => 0.0034062822377658
818 => 0.003352783542268
819 => 0.0033653395791697
820 => 0.0033477610539793
821 => 0.0033736100511024
822 => 0.0033458008031902
823 => 0.0033691742464044
824 => 0.0033792614496538
825 => 0.0034164834468058
826 => 0.0033403030839466
827 => 0.0031849661671195
828 => 0.0032176198703146
829 => 0.003169322478396
830 => 0.0031737925858992
831 => 0.003182822914468
901 => 0.0031535526650369
902 => 0.0031591365062168
903 => 0.0031589370121169
904 => 0.00315721787974
905 => 0.0031496035573923
906 => 0.0031385612835404
907 => 0.0031825503039339
908 => 0.0031900248956811
909 => 0.003206639987229
910 => 0.0032560752295515
911 => 0.0032511354830802
912 => 0.003259192414523
913 => 0.0032416041784211
914 => 0.0031746084537277
915 => 0.0031782466439047
916 => 0.0031328783540994
917 => 0.0032054798180569
918 => 0.0031882868330992
919 => 0.0031772024038501
920 => 0.0031741779146329
921 => 0.0032237356973593
922 => 0.0032385641626741
923 => 0.0032293240581912
924 => 0.0032103723343199
925 => 0.003246765246727
926 => 0.0032565024547934
927 => 0.0032586822565851
928 => 0.0033231635197217
929 => 0.0032622860428969
930 => 0.0032769398566387
1001 => 0.0033912647283366
1002 => 0.0032875878454605
1003 => 0.0033425078025904
1004 => 0.0033398197564785
1005 => 0.0033679149481561
1006 => 0.0033375151307238
1007 => 0.0033378919728947
1008 => 0.0033628385997713
1009 => 0.003327805561471
1010 => 0.0033191308885171
1011 => 0.0033071468899605
1012 => 0.003333313512383
1013 => 0.0033489992191108
1014 => 0.0034754144954544
1015 => 0.0035570845292094
1016 => 0.0035535390176547
1017 => 0.0035859383563451
1018 => 0.0035713421575211
1019 => 0.0035242071812359
1020 => 0.0036046608382568
1021 => 0.0035792019348514
1022 => 0.0035813007359156
1023 => 0.0035812226184351
1024 => 0.0035981505635438
1025 => 0.0035861555630109
1026 => 0.0035625121856991
1027 => 0.0035782077629489
1028 => 0.0036248180161092
1029 => 0.003769497672096
1030 => 0.0038504623243367
1031 => 0.0037646234983689
1101 => 0.0038238339710938
1102 => 0.0037883287863075
1103 => 0.003781876438044
1104 => 0.0038190649905348
1105 => 0.0038563186366638
1106 => 0.0038539457404573
1107 => 0.0038269015063636
1108 => 0.0038116249047461
1109 => 0.003927304450231
1110 => 0.0040125351687946
1111 => 0.0040067230051825
1112 => 0.0040323760051492
1113 => 0.004107694006469
1114 => 0.0041145801405937
1115 => 0.00411371264597
1116 => 0.004096644644048
1117 => 0.0041708049976257
1118 => 0.0042326708693075
1119 => 0.0040926938947451
1120 => 0.0041459952942253
1121 => 0.0041699240097158
1122 => 0.0042050584633858
1123 => 0.0042643361759453
1124 => 0.0043287274944216
1125 => 0.0043378331328691
1126 => 0.0043313722466457
1127 => 0.004288904441179
1128 => 0.004359362190204
1129 => 0.0044006346871453
1130 => 0.0044252115145696
1201 => 0.0044875342597233
1202 => 0.0041700717853163
1203 => 0.0039453560670223
1204 => 0.0039102634626764
1205 => 0.0039816256535623
1206 => 0.0040004432941962
1207 => 0.003992857926852
1208 => 0.0037399199556528
1209 => 0.0039089317966048
1210 => 0.0040907743265499
1211 => 0.0040977596387021
1212 => 0.0041887938113406
1213 => 0.0042184382695685
1214 => 0.0042917327106643
1215 => 0.0042871481234178
1216 => 0.0043049941534553
1217 => 0.0043008916601999
1218 => 0.0044366541783643
1219 => 0.0045864203968288
1220 => 0.0045812344689108
1221 => 0.004559703803053
1222 => 0.0045916805133758
1223 => 0.0047462553007545
1224 => 0.0047320245313431
1225 => 0.0047458485116522
1226 => 0.0049281008974249
1227 => 0.005165054924029
1228 => 0.0050549659888761
1229 => 0.0052938273009201
1230 => 0.0054441778353578
1231 => 0.0057041935381323
]
'min_raw' => 0.0023288958640306
'max_raw' => 0.0057041935381323
'avg_raw' => 0.0040165447010814
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.002328'
'max' => '$0.0057041'
'avg' => '$0.004016'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 0.0010384389038114
'max_diff' => 0.0023141547847451
'year' => 2028
]
3 => [
'items' => [
101 => 0.0056716382915406
102 => 0.0057728604965473
103 => 0.0056133576056564
104 => 0.0052471067273182
105 => 0.0051891461238691
106 => 0.0053051847197704
107 => 0.0055904542849131
108 => 0.0052962005659759
109 => 0.00535572771008
110 => 0.0053385838885734
111 => 0.0053376703671819
112 => 0.0053725357631368
113 => 0.0053219616878474
114 => 0.0051159138070162
115 => 0.0052103443365534
116 => 0.0051738801741726
117 => 0.0052143398809174
118 => 0.0054326842313672
119 => 0.0053361489893541
120 => 0.0052344569537797
121 => 0.0053620013336593
122 => 0.00552440915825
123 => 0.0055142459684621
124 => 0.0054945251323896
125 => 0.0056056904527805
126 => 0.0057893029936835
127 => 0.0058389327256746
128 => 0.0058755683791953
129 => 0.0058806198168514
130 => 0.0059326527641598
131 => 0.0056528584924913
201 => 0.0060968991872557
202 => 0.0061735727488649
203 => 0.0061591612970759
204 => 0.0062443807338878
205 => 0.0062193070137693
206 => 0.0061829791272637
207 => 0.0063180700613046
208 => 0.006163199206703
209 => 0.0059433795262944
210 => 0.0058227821020819
211 => 0.0059815945186016
212 => 0.0060785757195806
213 => 0.0061426741242649
214 => 0.006162070262793
215 => 0.0056745781253288
216 => 0.005411846900789
217 => 0.0055802546034994
218 => 0.0057857236236848
219 => 0.0056517171017098
220 => 0.0056569699036633
221 => 0.0054659118196214
222 => 0.0058026280246953
223 => 0.0057535713058451
224 => 0.0060080776500199
225 => 0.0059473376684416
226 => 0.0061548777122368
227 => 0.0061002254632812
228 => 0.0063270838931297
301 => 0.006417583862743
302 => 0.0065695473969194
303 => 0.0066813323912624
304 => 0.0067469746780468
305 => 0.0067430337613662
306 => 0.0070031412044635
307 => 0.0068497649327309
308 => 0.0066570881874231
309 => 0.0066536032729878
310 => 0.0067533932896334
311 => 0.0069625257884683
312 => 0.0070167508026621
313 => 0.0070470551880839
314 => 0.0070006429669071
315 => 0.0068341640165178
316 => 0.0067622792498072
317 => 0.0068235271537468
318 => 0.006748626230321
319 => 0.0068779262376413
320 => 0.0070554827646833
321 => 0.0070188180439838
322 => 0.0071413827082003
323 => 0.0072682242414857
324 => 0.0074496133308936
325 => 0.0074970351556834
326 => 0.0075754216287703
327 => 0.0076561070581919
328 => 0.0076820210435888
329 => 0.0077314988823489
330 => 0.0077312381097157
331 => 0.0078803429070619
401 => 0.0080448101159261
402 => 0.0081068926798476
403 => 0.0082496481123327
404 => 0.008005184436949
405 => 0.0081906129429239
406 => 0.0083578740968897
407 => 0.0081584584537636
408 => 0.0084333064599272
409 => 0.0084439781851876
410 => 0.0086051085665631
411 => 0.0084417720561931
412 => 0.0083447833577239
413 => 0.0086247860960852
414 => 0.0087602706011747
415 => 0.0087194615656323
416 => 0.0084089027901639
417 => 0.0082281442623488
418 => 0.0077550643293408
419 => 0.0083154479455211
420 => 0.0085883944583483
421 => 0.0084081959246347
422 => 0.0084990775835171
423 => 0.0089948984459026
424 => 0.0091836749282756
425 => 0.0091444107395892
426 => 0.0091510457411337
427 => 0.0092529061044866
428 => 0.0097046110511202
429 => 0.0094339389766586
430 => 0.0096408576356953
501 => 0.0097506065463477
502 => 0.0098525474509348
503 => 0.0096022128080226
504 => 0.00927653111574
505 => 0.0091733740526067
506 => 0.0083902787317818
507 => 0.0083495152195223
508 => 0.0083266334248302
509 => 0.0081823669459905
510 => 0.0080690130115368
511 => 0.0079788697542975
512 => 0.0077423069282462
513 => 0.0078221399376639
514 => 0.0074451081674372
515 => 0.0076863197328427
516 => 0.0070845679238104
517 => 0.0075857247115241
518 => 0.0073129678567746
519 => 0.0074961167489668
520 => 0.0074954777597356
521 => 0.0071582425818006
522 => 0.0069637323690863
523 => 0.0070876818470786
524 => 0.0072205655266081
525 => 0.0072421254565374
526 => 0.0074144126156664
527 => 0.0074624942584792
528 => 0.0073168046360391
529 => 0.0070720979550894
530 => 0.0071289377359089
531 => 0.0069625805127422
601 => 0.0066710458779807
602 => 0.0068804311423728
603 => 0.0069519244776564
604 => 0.0069835000074032
605 => 0.0066968091770943
606 => 0.0066067246938505
607 => 0.0065587644708535
608 => 0.0070350897690058
609 => 0.0070611839440821
610 => 0.006927682455047
611 => 0.0075311218446164
612 => 0.0073945449258647
613 => 0.0075471348062679
614 => 0.0071237801215659
615 => 0.0071399528406442
616 => 0.0069395299483465
617 => 0.0070517533757707
618 => 0.0069724374743972
619 => 0.0070426868318483
620 => 0.0070847940070556
621 => 0.0072851840119289
622 => 0.0075880128434889
623 => 0.0072552524276186
624 => 0.007110263949207
625 => 0.0072002139857674
626 => 0.0074397627866049
627 => 0.0078026914821514
628 => 0.0075878303897672
629 => 0.0076831820939893
630 => 0.0077040121994598
701 => 0.0075455815845257
702 => 0.0078085330449071
703 => 0.0079494508687393
704 => 0.0080940033971562
705 => 0.0082195143073107
706 => 0.0080362659385283
707 => 0.0082323679607473
708 => 0.0080743443475056
709 => 0.007932580830247
710 => 0.0079327958269852
711 => 0.0078438655017743
712 => 0.0076715517907361
713 => 0.0076397744986541
714 => 0.0078050839850946
715 => 0.0079376465383533
716 => 0.0079485650251715
717 => 0.0080219584659654
718 => 0.0080653919482147
719 => 0.0084910991192135
720 => 0.0086623220650236
721 => 0.0088716902420758
722 => 0.0089532509463815
723 => 0.0091987194252109
724 => 0.009000483692581
725 => 0.0089575941448653
726 => 0.0083621679073527
727 => 0.008459668920389
728 => 0.0086157774497085
729 => 0.0083647420795028
730 => 0.0085239662415212
731 => 0.0085554004639325
801 => 0.0083562119936831
802 => 0.0084626071620691
803 => 0.008180053138805
804 => 0.007594171749065
805 => 0.0078091852983769
806 => 0.0079675076434486
807 => 0.0077415621360269
808 => 0.0081465607127817
809 => 0.0079099689051091
810 => 0.0078349806604865
811 => 0.0075424247829743
812 => 0.0076804998956517
813 => 0.007867248462593
814 => 0.0077518595600744
815 => 0.0079913088585313
816 => 0.0083304329239417
817 => 0.0085721129281403
818 => 0.0085906661179102
819 => 0.0084352820665132
820 => 0.0086842860005246
821 => 0.0086860997223401
822 => 0.0084052222675643
823 => 0.0082331863904462
824 => 0.0081940994771985
825 => 0.0082917462499322
826 => 0.0084103074586196
827 => 0.0085972454398483
828 => 0.0087102081467613
829 => 0.0090047549756003
830 => 0.0090844509021647
831 => 0.0091720125631638
901 => 0.0092890219452749
902 => 0.009429521709089
903 => 0.0091221162245197
904 => 0.0091343300174972
905 => 0.008848078286585
906 => 0.0085421772594546
907 => 0.0087743180079452
908 => 0.009077811156207
909 => 0.0090081894926656
910 => 0.0090003556332757
911 => 0.0090135300118382
912 => 0.0089610375511589
913 => 0.0087236160969681
914 => 0.0086043845290103
915 => 0.0087582236708929
916 => 0.008839982328211
917 => 0.0089667828756072
918 => 0.0089511520317058
919 => 0.0092777766244137
920 => 0.009404693064525
921 => 0.0093722224080838
922 => 0.009378197790319
923 => 0.0096079739428212
924 => 0.0098635322814736
925 => 0.010102896389514
926 => 0.010346387841141
927 => 0.010052849392572
928 => 0.0099038086713232
929 => 0.010057580651849
930 => 0.0099759870744846
1001 => 0.010444847972247
1002 => 0.010477310883535
1003 => 0.010946137877318
1004 => 0.011391110521298
1005 => 0.011111631176127
1006 => 0.011375167610597
1007 => 0.011660203750917
1008 => 0.012210084711041
1009 => 0.012024904148717
1010 => 0.011883058740125
1011 => 0.011749015514399
1012 => 0.012027938188373
1013 => 0.012386767752542
1014 => 0.012464056203838
1015 => 0.012589293021397
1016 => 0.012457621820963
1017 => 0.012616205278778
1018 => 0.01317607456997
1019 => 0.013024792945387
1020 => 0.012809948718745
1021 => 0.013251911753722
1022 => 0.013411856457993
1023 => 0.014534432156255
1024 => 0.015951730346601
1025 => 0.015364959589316
1026 => 0.015000732045295
1027 => 0.015086334157733
1028 => 0.015603883478276
1029 => 0.01577010389384
1030 => 0.015318259504724
1031 => 0.015477858581676
1101 => 0.016357265187116
1102 => 0.016829038616194
1103 => 0.016188306931882
1104 => 0.014420553626653
1105 => 0.012790604346797
1106 => 0.013222940293388
1107 => 0.013173926813991
1108 => 0.014118739503329
1109 => 0.013021184928673
1110 => 0.013039664932875
1111 => 0.014004015348054
1112 => 0.013746743190436
1113 => 0.013329995244022
1114 => 0.012793647068007
1115 => 0.01180215785844
1116 => 0.010923968215805
1117 => 0.012646300340009
1118 => 0.012572030246955
1119 => 0.012464476146003
1120 => 0.012703826159103
1121 => 0.013866041882032
1122 => 0.013839249047894
1123 => 0.013668806706927
1124 => 0.01379808572034
1125 => 0.013307332007916
1126 => 0.013433810413862
1127 => 0.012790346154504
1128 => 0.013081218873175
1129 => 0.0133291010901
1130 => 0.013378867115107
1201 => 0.013490992510564
1202 => 0.012532893282775
1203 => 0.012963051707737
1204 => 0.013215729482008
1205 => 0.012074122105355
1206 => 0.013193163574719
1207 => 0.012516214906798
1208 => 0.012286448361478
1209 => 0.012595798745311
1210 => 0.012475244599878
1211 => 0.012371599224812
1212 => 0.012313763324671
1213 => 0.012540916104802
1214 => 0.012530319156103
1215 => 0.012158653119354
1216 => 0.01167382992546
1217 => 0.01183655250311
1218 => 0.011777433865117
1219 => 0.011563180294577
1220 => 0.011707561332046
1221 => 0.011071780312602
1222 => 0.0099779521136688
1223 => 0.010700568526748
1224 => 0.0106727485809
1225 => 0.010658720502669
1226 => 0.011201746765447
1227 => 0.011149547320028
1228 => 0.011054804815455
1229 => 0.011561440274182
1230 => 0.011376511516538
1231 => 0.011946418372902
]
'min_raw' => 0.0051159138070162
'max_raw' => 0.016829038616194
'avg_raw' => 0.010972476211605
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.005115'
'max' => '$0.016829'
'avg' => '$0.010972'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072434
'min_diff' => 0.0027870179429856
'max_diff' => 0.011124845078061
'year' => 2029
]
4 => [
'items' => [
101 => 0.012321795887768
102 => 0.012226588007808
103 => 0.012579632374896
104 => 0.011840301302645
105 => 0.012085877428033
106 => 0.012136490327121
107 => 0.011555188471265
108 => 0.01115808779486
109 => 0.011131605707023
110 => 0.010443087857982
111 => 0.010810888535418
112 => 0.011134537910935
113 => 0.010979534976268
114 => 0.010930465677734
115 => 0.011181150082115
116 => 0.011200630407302
117 => 0.010756476928603
118 => 0.010848830501336
119 => 0.011233960252136
120 => 0.010839126219757
121 => 0.010072028190618
122 => 0.0098817772734318
123 => 0.0098563942940591
124 => 0.0093404187176589
125 => 0.0098944907494384
126 => 0.0096526234593594
127 => 0.010416679330704
128 => 0.0099802547147058
129 => 0.0099614413217809
130 => 0.0099330021190503
131 => 0.00948888062576
201 => 0.0095861150073973
202 => 0.0099093369011739
203 => 0.010024666114229
204 => 0.010012636332443
205 => 0.0099077529375613
206 => 0.0099557680186481
207 => 0.0098010947129043
208 => 0.0097464763493997
209 => 0.0095740857702147
210 => 0.0093207192429258
211 => 0.0093559514125325
212 => 0.008853966025015
213 => 0.0085804577435144
214 => 0.0085047542559763
215 => 0.0084035203885738
216 => 0.0085161888906725
217 => 0.0088525439634833
218 => 0.008446828383964
219 => 0.0077512574805171
220 => 0.0077930624770094
221 => 0.0078869858921128
222 => 0.0077119602294333
223 => 0.0075463131284975
224 => 0.007690329843387
225 => 0.0073956072820474
226 => 0.007922601705597
227 => 0.0079083479833248
228 => 0.0081047789153075
301 => 0.0082276112082449
302 => 0.0079445225404514
303 => 0.0078733265060545
304 => 0.0079138830029263
305 => 0.0072435744503482
306 => 0.0080500004059593
307 => 0.008056974411111
308 => 0.0079972587449609
309 => 0.0084266556707157
310 => 0.0093328171163181
311 => 0.0089918827302228
312 => 0.0088598626311303
313 => 0.0086088923262494
314 => 0.008943295356361
315 => 0.0089176184211484
316 => 0.0088014975824282
317 => 0.0087312673368511
318 => 0.0088606687177037
319 => 0.0087152330737418
320 => 0.0086891088357821
321 => 0.008530824377197
322 => 0.0084743240269662
323 => 0.008432493416999
324 => 0.0083864420256159
325 => 0.0084880199197151
326 => 0.0082578310480015
327 => 0.0079802458344082
328 => 0.0079571676274115
329 => 0.008020888585986
330 => 0.0079926968052842
331 => 0.0079570326560117
401 => 0.0078889400824973
402 => 0.0078687384705032
403 => 0.0079343839090551
404 => 0.0078602740362968
405 => 0.0079696271905254
406 => 0.0079398891833612
407 => 0.0077737750927333
408 => 0.0075667354324976
409 => 0.0075648923452412
410 => 0.0075202859900565
411 => 0.0074634730901184
412 => 0.0074476690410587
413 => 0.0076782011573543
414 => 0.0081553957388407
415 => 0.0080617110241963
416 => 0.0081294078317226
417 => 0.0084624091227587
418 => 0.0085682602194809
419 => 0.0084931296182482
420 => 0.008390286217427
421 => 0.0083948108051241
422 => 0.0087462578385444
423 => 0.0087681771589251
424 => 0.0088235602100864
425 => 0.0088947430820771
426 => 0.0085052523691516
427 => 0.0083764658275716
428 => 0.0083154396193657
429 => 0.0081275025182063
430 => 0.0083301765692974
501 => 0.0082120870790948
502 => 0.0082280213858346
503 => 0.0082176441476666
504 => 0.0082233108214121
505 => 0.0079224543999154
506 => 0.0080320706673608
507 => 0.0078498123623082
508 => 0.0076057889512975
509 => 0.0076049708992582
510 => 0.0076646952833953
511 => 0.0076291688826951
512 => 0.0075335682518783
513 => 0.0075471478702636
514 => 0.0074281761240626
515 => 0.0075615931943054
516 => 0.0075654191184907
517 => 0.0075140462791703
518 => 0.0077195936838872
519 => 0.0078038066233104
520 => 0.0077699919199568
521 => 0.00780143409358
522 => 0.0080656040470509
523 => 0.0081086752760098
524 => 0.0081278046707877
525 => 0.0081021738159445
526 => 0.0078062626353858
527 => 0.0078193875545551
528 => 0.0077230856062116
529 => 0.0076417206079107
530 => 0.0076449747811395
531 => 0.0076868069669756
601 => 0.007869490575947
602 => 0.0082539374612403
603 => 0.0082685269395102
604 => 0.0082862098127784
605 => 0.0082142846804966
606 => 0.0081925913723696
607 => 0.008221210445307
608 => 0.0083655884821663
609 => 0.0087369679912229
610 => 0.0086056976691189
611 => 0.008498972853904
612 => 0.008592599289651
613 => 0.008578186233736
614 => 0.0084565255370267
615 => 0.0084531109264736
616 => 0.0082196051522108
617 => 0.008133283384135
618 => 0.0080611464536586
619 => 0.0079823748087605
620 => 0.0079356763372156
621 => 0.0080074264135844
622 => 0.0080238365049719
623 => 0.0078669537090147
624 => 0.0078455711636276
625 => 0.0079736850413566
626 => 0.0079173069003348
627 => 0.0079752932164863
628 => 0.0079887465392309
629 => 0.0079865802444127
630 => 0.0079277149901977
701 => 0.0079652339478472
702 => 0.0078764904280666
703 => 0.0077799951791508
704 => 0.007718437222209
705 => 0.0076647197402992
706 => 0.0076945253213411
707 => 0.0075882738672107
708 => 0.0075542818886151
709 => 0.0079525233691988
710 => 0.0082467086327235
711 => 0.0082424310624817
712 => 0.0082163924537365
713 => 0.00817770436288
714 => 0.0083627582073469
715 => 0.0082982891482031
716 => 0.0083451957753004
717 => 0.0083571354805616
718 => 0.0083932733723781
719 => 0.0084061895625457
720 => 0.0083671478649882
721 => 0.0082361191594436
722 => 0.0079096080830618
723 => 0.0077576162956063
724 => 0.0077074564741225
725 => 0.0077092796883664
726 => 0.0076589873003336
727 => 0.007673800662556
728 => 0.0076538358174819
729 => 0.0076160272309263
730 => 0.0076921907476632
731 => 0.0077009678834548
801 => 0.0076831904085622
802 => 0.0076873776474534
803 => 0.0075401877482012
804 => 0.0075513782765617
805 => 0.007489067992627
806 => 0.0074773855655509
807 => 0.0073198705937409
808 => 0.0070408099890193
809 => 0.0071954366531034
810 => 0.0070086693866889
811 => 0.0069379377929119
812 => 0.0072727701568327
813 => 0.0072391622742992
814 => 0.0071816401883972
815 => 0.007096553034695
816 => 0.0070649933817122
817 => 0.0068732469207609
818 => 0.0068619175169204
819 => 0.0069569522405578
820 => 0.0069130969855443
821 => 0.0068515075982215
822 => 0.0066284370805543
823 => 0.0063776319625861
824 => 0.0063852021925928
825 => 0.0064649786342234
826 => 0.0066969393975831
827 => 0.0066063083143765
828 => 0.0065405544236383
829 => 0.0065282406964577
830 => 0.0066823727726566
831 => 0.0069005019521464
901 => 0.0070028432827977
902 => 0.0069014261322747
903 => 0.006784923570441
904 => 0.0067920145415589
905 => 0.0068391875955955
906 => 0.0068441448165836
907 => 0.0067683136254868
908 => 0.0067896596615968
909 => 0.0067572330808232
910 => 0.0065582312144706
911 => 0.0065546319017501
912 => 0.0065057936344085
913 => 0.006504314831083
914 => 0.0064212287550584
915 => 0.0064096044386756
916 => 0.0062446319917643
917 => 0.0063532173559039
918 => 0.0062803839946266
919 => 0.0061706069395286
920 => 0.0061516813338522
921 => 0.0061511124072922
922 => 0.0062638288971775
923 => 0.0063519001980928
924 => 0.0062816509621287
925 => 0.0062656565728238
926 => 0.0064364348058647
927 => 0.0064147017190321
928 => 0.0063958810059984
929 => 0.0068809708765848
930 => 0.006496984391981
1001 => 0.0063295443675115
1002 => 0.0061223055412322
1003 => 0.0061897835480576
1004 => 0.0062040021555539
1005 => 0.0057056301359582
1006 => 0.0055034406696766
1007 => 0.005434056864198
1008 => 0.0053941255032021
1009 => 0.0054123227258344
1010 => 0.0052303284917219
1011 => 0.0053526316269523
1012 => 0.0051950400038005
1013 => 0.0051686192553316
1014 => 0.0054504125993829
1015 => 0.0054896224969948
1016 => 0.0053223408922221
1017 => 0.005429762762918
1018 => 0.005390810099328
1019 => 0.0051977414598641
1020 => 0.0051903676579533
1021 => 0.0050934926013612
1022 => 0.0049419018965018
1023 => 0.0048726208766594
1024 => 0.0048365387200001
1025 => 0.0048514269210649
1026 => 0.0048438989910201
1027 => 0.0047947741553893
1028 => 0.0048467147690949
1029 => 0.0047140279644204
1030 => 0.0046611910096687
1031 => 0.0046373257830154
1101 => 0.0045195586066992
1102 => 0.0047069785555193
1103 => 0.0047439026464912
1104 => 0.0047808994893287
1105 => 0.0051029317474119
1106 => 0.0050868439258517
1107 => 0.0052322699976683
1108 => 0.0052266190079389
1109 => 0.0051851411365107
1110 => 0.0050101528197335
1111 => 0.005079900043934
1112 => 0.0048652289289699
1113 => 0.0050260751245179
1114 => 0.0049526716379675
1115 => 0.005001257331878
1116 => 0.0049138958734316
1117 => 0.0049622453116021
1118 => 0.0047526587182541
1119 => 0.0045569497063487
1120 => 0.0046357087258416
1121 => 0.0047213287872169
1122 => 0.0049069748958642
1123 => 0.004796405605101
1124 => 0.0048361705031472
1125 => 0.0047029647512559
1126 => 0.0044281232367621
1127 => 0.0044296788098864
1128 => 0.0043874004306294
1129 => 0.0043508657382069
1130 => 0.0048091058182279
1201 => 0.0047521164205737
1202 => 0.0046613112739996
1203 => 0.0047828575711421
1204 => 0.0048149963413057
1205 => 0.0048159112869105
1206 => 0.0049045883277417
1207 => 0.0049519152803295
1208 => 0.0049602568608499
1209 => 0.005099792100592
1210 => 0.0051465624724393
1211 => 0.0053392030148873
1212 => 0.0049478999190575
1213 => 0.004939841289303
1214 => 0.0047845679768032
1215 => 0.0046860911872419
1216 => 0.0047913107668351
1217 => 0.0048845209504496
1218 => 0.0047874642770305
1219 => 0.0048001378296009
1220 => 0.0046698471753573
1221 => 0.0047164199535043
1222 => 0.0047565347040752
1223 => 0.004734385696646
1224 => 0.0047012275605004
1225 => 0.0048768787783482
1226 => 0.0048669678482545
1227 => 0.0050305383005184
1228 => 0.0051580531650934
1229 => 0.0053865825984203
1230 => 0.0051481002212349
1231 => 0.0051394089755286
]
'min_raw' => 0.0043508657382069
'max_raw' => 0.012579632374896
'avg_raw' => 0.0084652490565514
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.00435'
'max' => '$0.012579'
'avg' => '$0.008465'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -0.00076504806880925
'max_diff' => -0.0042494062412978
'year' => 2030
]
5 => [
'items' => [
101 => 0.0052243672964267
102 => 0.005146549465763
103 => 0.0051957276485623
104 => 0.0053786592328796
105 => 0.0053825242889964
106 => 0.0053177796191963
107 => 0.005313839900155
108 => 0.0053262748222192
109 => 0.0053991065491468
110 => 0.0053736569058654
111 => 0.0054031078773768
112 => 0.0054399367682211
113 => 0.0055922766758793
114 => 0.0056290053118714
115 => 0.0055397737680251
116 => 0.0055478303773512
117 => 0.005514455330492
118 => 0.0054822154534142
119 => 0.0055546859888292
120 => 0.0056871273167122
121 => 0.0056863034060852
122 => 0.0057170272198625
123 => 0.0057361679013159
124 => 0.0056540020846825
125 => 0.005600515159375
126 => 0.0056210254499994
127 => 0.0056538218513638
128 => 0.0056103900190558
129 => 0.0053423086304687
130 => 0.0054236273986606
131 => 0.0054100919793489
201 => 0.0053908158962857
202 => 0.0054725825465221
203 => 0.0054646959536358
204 => 0.0052284618778009
205 => 0.0052435848168763
206 => 0.0052293815538148
207 => 0.0052752752024806
208 => 0.0051440710581249
209 => 0.0051844285692553
210 => 0.0052097404219082
211 => 0.0052246492975755
212 => 0.0052785103795976
213 => 0.0052721904032846
214 => 0.0052781175209963
215 => 0.0053579792868367
216 => 0.0057618926932086
217 => 0.0057838768087327
218 => 0.0056756189835795
219 => 0.005718865849437
220 => 0.0056358413240404
221 => 0.0056915762441551
222 => 0.0057297086609841
223 => 0.0055573956017759
224 => 0.0055471923407121
225 => 0.0054638251435657
226 => 0.0055086219531527
227 => 0.0054373470080951
228 => 0.0054548353865205
301 => 0.0054059363558337
302 => 0.0054939448753701
303 => 0.0055923520753532
304 => 0.005617213620287
305 => 0.0055518135991342
306 => 0.0055044596737482
307 => 0.005421321780123
308 => 0.0055595819500704
309 => 0.0056000134371654
310 => 0.0055593695806809
311 => 0.0055499515110477
312 => 0.0055321042861107
313 => 0.0055537378841873
314 => 0.0055997932386035
315 => 0.0055780743839697
316 => 0.0055924200700923
317 => 0.0055377491078002
318 => 0.0056540292849868
319 => 0.0058387101907076
320 => 0.0058393039700179
321 => 0.0058175849983113
322 => 0.0058086980630308
323 => 0.0058309830460191
324 => 0.0058430717351124
325 => 0.0059151372837297
326 => 0.0059924664886142
327 => 0.0063533281464347
328 => 0.0062519996369299
329 => 0.0065721775675044
330 => 0.0068253967406878
331 => 0.0069013260987931
401 => 0.0068314746620886
402 => 0.0065925166704231
403 => 0.0065807922513426
404 => 0.0069378963763528
405 => 0.0068369981046323
406 => 0.0068249965762668
407 => 0.00669732059136
408 => 0.0067727929114183
409 => 0.0067562860079094
410 => 0.0067302290531753
411 => 0.0068742249823991
412 => 0.0071437725073009
413 => 0.0071017609977443
414 => 0.0070704013547181
415 => 0.0069329925276322
416 => 0.0070157433329105
417 => 0.0069862773561382
418 => 0.0071128818919231
419 => 0.007037884169558
420 => 0.0068362337009878
421 => 0.0068683472027563
422 => 0.0068634933115674
423 => 0.0069633860482845
424 => 0.0069334007282122
425 => 0.0068576381965761
426 => 0.0071428512231643
427 => 0.0071243310756559
428 => 0.0071505884105277
429 => 0.0071621477013733
430 => 0.0073357518446403
501 => 0.0074068719074239
502 => 0.0074230174068077
503 => 0.007490575965829
504 => 0.0074213364883148
505 => 0.0076983437652823
506 => 0.007882537440643
507 => 0.0080964878730943
508 => 0.0084091269593605
509 => 0.0085266821478698
510 => 0.0085054468552613
511 => 0.0087424862423678
512 => 0.0091684407519085
513 => 0.008591544440145
514 => 0.0091990176572457
515 => 0.0090066986503272
516 => 0.0085507137445945
517 => 0.0085213536923743
518 => 0.00883015196463
519 => 0.009515036811761
520 => 0.0093434809254543
521 => 0.0095153174157327
522 => 0.0093148610221904
523 => 0.0093049066726718
524 => 0.0095055816961255
525 => 0.0099744698266509
526 => 0.009751718651847
527 => 0.0094323502219367
528 => 0.0096681669006593
529 => 0.0094638806697465
530 => 0.0090035666153841
531 => 0.0093433497399012
601 => 0.0091161464410028
602 => 0.0091824564424131
603 => 0.0096600039827574
604 => 0.0096025441992691
605 => 0.0096769024797356
606 => 0.0095456620610072
607 => 0.0094230628152004
608 => 0.0091942222185624
609 => 0.009126473799603
610 => 0.0091451970252706
611 => 0.0091264645213022
612 => 0.0089984303106369
613 => 0.008970781335034
614 => 0.0089246984976997
615 => 0.0089389814959285
616 => 0.0088523322797304
617 => 0.0090158572533377
618 => 0.0090462089294163
619 => 0.0091652087683566
620 => 0.0091775637264022
621 => 0.0095089765839942
622 => 0.0093264399511993
623 => 0.0094489012839328
624 => 0.0094379471896823
625 => 0.0085605963201689
626 => 0.0086814875290556
627 => 0.0088695563123321
628 => 0.0087848315803873
629 => 0.0086650506319513
630 => 0.0085683210938411
701 => 0.008421765952501
702 => 0.0086280394995949
703 => 0.0088992672792772
704 => 0.0091844425104889
705 => 0.0095270618653685
706 => 0.0094505932138883
707 => 0.0091780374799705
708 => 0.009190264131092
709 => 0.009265844477315
710 => 0.0091679610617576
711 => 0.0091390933315985
712 => 0.0092618784944853
713 => 0.0092627240484206
714 => 0.0091500973492159
715 => 0.0090249333835182
716 => 0.0090244089419319
717 => 0.0090021372231764
718 => 0.00931882311148
719 => 0.0094929683294923
720 => 0.0095129337980884
721 => 0.0094916244943793
722 => 0.0094998255996409
723 => 0.0093984943343076
724 => 0.0096301075580062
725 => 0.0098426587562459
726 => 0.0097856904946236
727 => 0.0097002869719363
728 => 0.0096322589525248
729 => 0.0097696652552118
730 => 0.0097635467688508
731 => 0.0098408023069549
801 => 0.0098372975494968
802 => 0.0098113194177602
803 => 0.0097856914223845
804 => 0.0098873035271919
805 => 0.0098580408728478
806 => 0.009828732765519
807 => 0.0097699508694244
808 => 0.0097779403053675
809 => 0.0096925515288025
810 => 0.0096530467736389
811 => 0.0090589900411403
812 => 0.0089002386708529
813 => 0.0089501850836275
814 => 0.0089666287395709
815 => 0.0088975399397764
816 => 0.0089965955312252
817 => 0.0089811578222237
818 => 0.0090412169171907
819 => 0.0090036946021181
820 => 0.009005234531017
821 => 0.0091155796590445
822 => 0.0091476133191526
823 => 0.0091313207410783
824 => 0.0091427315042846
825 => 0.009405687726193
826 => 0.0093683037603043
827 => 0.0093484442735159
828 => 0.0093539454870785
829 => 0.009421136439621
830 => 0.009439946237843
831 => 0.0093602478010356
901 => 0.0093978340445651
902 => 0.0095578714991093
903 => 0.0096138755508644
904 => 0.0097926136005965
905 => 0.0097166825002548
906 => 0.009856057321153
907 => 0.010284448004216
908 => 0.010626676124228
909 => 0.01031194900189
910 => 0.010940407361803
911 => 0.011429752341993
912 => 0.011410970466606
913 => 0.011325641850557
914 => 0.01076853560052
915 => 0.010255878123251
916 => 0.010684737871573
917 => 0.010685831123267
918 => 0.01064899169055
919 => 0.010420185137866
920 => 0.010641029718483
921 => 0.010658559559303
922 => 0.010648747510005
923 => 0.010473322062527
924 => 0.010205479828272
925 => 0.010257815559721
926 => 0.010343542555456
927 => 0.010181243468005
928 => 0.010129379075516
929 => 0.010225804848758
930 => 0.01053650878125
1001 => 0.010477772002598
1002 => 0.010476238147933
1003 => 0.010727538995278
1004 => 0.010547661822696
1005 => 0.010258475680897
1006 => 0.010185452366196
1007 => 0.0099262687934075
1008 => 0.010105287810313
1009 => 0.01011173038603
1010 => 0.010013683500001
1011 => 0.010266431645331
1012 => 0.010264102526677
1013 => 0.010504049274071
1014 => 0.010962737335206
1015 => 0.01082708070486
1016 => 0.010669326803166
1017 => 0.010686479026322
1018 => 0.010874596579041
1019 => 0.010760856412361
1020 => 0.010801758169324
1021 => 0.010874534669333
1022 => 0.010918442538728
1023 => 0.01068016135962
1024 => 0.010624606618463
1025 => 0.010510961115121
1026 => 0.010481313124593
1027 => 0.010573875015774
1028 => 0.010549488227708
1029 => 0.010111188912488
1030 => 0.010065384195373
1031 => 0.010066788960653
1101 => 0.0099516108215721
1102 => 0.0097759365135531
1103 => 0.010237598106059
1104 => 0.010200520219231
1105 => 0.010159589101773
1106 => 0.010164602930112
1107 => 0.010364994580256
1108 => 0.010248757303152
1109 => 0.010557793155249
1110 => 0.010494264674525
1111 => 0.010429106927987
1112 => 0.010420100142662
1113 => 0.010395019969242
1114 => 0.010309010722664
1115 => 0.010205149389067
1116 => 0.010136571140312
1117 => 0.0093504510598147
1118 => 0.0094963503741048
1119 => 0.0096641942360547
1120 => 0.0097221332646078
1121 => 0.0096230245470091
1122 => 0.01031292413891
1123 => 0.010438975442388
1124 => 0.01005715782203
1125 => 0.0099857353347712
1126 => 0.010317606585284
1127 => 0.010117447651614
1128 => 0.01020757920719
1129 => 0.010012764083361
1130 => 0.010408613374593
1201 => 0.010405597666223
1202 => 0.010251603351272
1203 => 0.010381758291761
1204 => 0.010359140667895
1205 => 0.010185281465587
1206 => 0.010414125021413
1207 => 0.010414238524962
1208 => 0.010266022344947
1209 => 0.010092938295383
1210 => 0.010061994955383
1211 => 0.010038683305347
1212 => 0.010201845970311
1213 => 0.010348137105522
1214 => 0.010620348639501
1215 => 0.010688789086729
1216 => 0.010955916708602
1217 => 0.010796855215985
1218 => 0.010867365115471
1219 => 0.010943913585597
1220 => 0.010980613737153
1221 => 0.010920812809632
1222 => 0.011335771960516
1223 => 0.01137080722687
1224 => 0.011382554248625
1225 => 0.011242632357688
1226 => 0.011366915745966
1227 => 0.011308767664424
1228 => 0.011460052818595
1229 => 0.011483776262474
1230 => 0.011463683349494
1231 => 0.011471213545031
]
'min_raw' => 0.0051440710581249
'max_raw' => 0.011483776262474
'avg_raw' => 0.0083139236602997
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.005144'
'max' => '$0.011483'
'avg' => '$0.008313'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 0.00079320531991801
'max_diff' => -0.0010958561124215
'year' => 2031
]
6 => [
'items' => [
101 => 0.011117119113562
102 => 0.011098757449293
103 => 0.010848394854106
104 => 0.010950419462232
105 => 0.010759689347508
106 => 0.010820171831625
107 => 0.010846831934325
108 => 0.010832906209622
109 => 0.010956187780499
110 => 0.010851373260493
111 => 0.010574750509094
112 => 0.010298052392011
113 => 0.010294578672545
114 => 0.010221728942444
115 => 0.010169071930676
116 => 0.01017921553925
117 => 0.010214962938918
118 => 0.010166994226822
119 => 0.010177230783623
120 => 0.010347225832346
121 => 0.010381317127018
122 => 0.010265461587393
123 => 0.0098002848779256
124 => 0.0096861293466149
125 => 0.0097681820787185
126 => 0.0097289661576457
127 => 0.007852035003896
128 => 0.0082929921375562
129 => 0.0080309903822246
130 => 0.0081517328452025
131 => 0.0078842968980347
201 => 0.0080119313495421
202 => 0.0079883619268126
203 => 0.008697407948868
204 => 0.0086863371704945
205 => 0.0086916361662493
206 => 0.0084387012924113
207 => 0.0088416334143655
208 => 0.0090401322666106
209 => 0.0090033954119359
210 => 0.0090126412867931
211 => 0.0088537665236982
212 => 0.0086931744212391
213 => 0.0085150530646646
214 => 0.008845980528715
215 => 0.0088091870438328
216 => 0.0088935780602745
217 => 0.0091082081758949
218 => 0.0091398132757205
219 => 0.0091822908503935
220 => 0.0091670656636329
221 => 0.0095297913812869
222 => 0.0094858629035376
223 => 0.0095917178958277
224 => 0.0093739661454494
225 => 0.0091275593707105
226 => 0.009174393242944
227 => 0.0091698827644337
228 => 0.0091124591961113
229 => 0.0090606197662111
301 => 0.008974321721096
302 => 0.0092473815055476
303 => 0.0092362957769646
304 => 0.0094157608369738
305 => 0.0093840386443866
306 => 0.0091721900785519
307 => 0.0091797562915252
308 => 0.0092306427099687
309 => 0.0094067611852126
310 => 0.0094590451397252
311 => 0.0094348251288396
312 => 0.0094921520981094
313 => 0.0095374609972115
314 => 0.0094978421982486
315 => 0.01005876084291
316 => 0.0098258283145354
317 => 0.0099393580081313
318 => 0.0099664341710981
319 => 0.009897079149009
320 => 0.0099121197698829
321 => 0.0099349022121832
322 => 0.010073232740571
323 => 0.01043625207332
324 => 0.010597030864639
325 => 0.011080741791007
326 => 0.010583680424169
327 => 0.010554186859705
328 => 0.010641317804214
329 => 0.010925307323994
330 => 0.011155454155996
331 => 0.011231807137661
401 => 0.011241898444638
402 => 0.01138514171409
403 => 0.011467246084812
404 => 0.011367748213507
405 => 0.011283434185437
406 => 0.010981431802334
407 => 0.011016389400504
408 => 0.011257212586108
409 => 0.01159738952019
410 => 0.011889296719009
411 => 0.011787080991976
412 => 0.012566914836185
413 => 0.012644232176503
414 => 0.01263354942004
415 => 0.012809689827646
416 => 0.012460086988917
417 => 0.012310625002124
418 => 0.011301663835311
419 => 0.011585140768194
420 => 0.011997191138157
421 => 0.011942654726583
422 => 0.011643412733778
423 => 0.011889069717124
424 => 0.011807847836026
425 => 0.011743784768505
426 => 0.012037270100056
427 => 0.011714570922302
428 => 0.011993971967007
429 => 0.011635637237139
430 => 0.011787547904807
501 => 0.011701316062747
502 => 0.011757118632737
503 => 0.011430897948809
504 => 0.011606918711297
505 => 0.011423574906387
506 => 0.011423487977551
507 => 0.011419440652896
508 => 0.011635143826302
509 => 0.011642177899042
510 => 0.011482772927986
511 => 0.011459800181283
512 => 0.011544742466348
513 => 0.011445297296957
514 => 0.011491827065814
515 => 0.011446706636255
516 => 0.011436549077179
517 => 0.0113556119183
518 => 0.011320741964841
519 => 0.01133441537208
520 => 0.011287740984048
521 => 0.011259617976972
522 => 0.011413846278943
523 => 0.011331448318752
524 => 0.01140121760979
525 => 0.011321706697065
526 => 0.011046087232306
527 => 0.010887575563499
528 => 0.010366955944506
529 => 0.010514603022626
530 => 0.010612493188171
531 => 0.010580140489043
601 => 0.010649646605604
602 => 0.010653913716655
603 => 0.01063131656963
604 => 0.010605151968249
605 => 0.01059241648729
606 => 0.010687336328376
607 => 0.010742440490981
608 => 0.010622317775885
609 => 0.010594174704434
610 => 0.010715625401552
611 => 0.010789710256635
612 => 0.011336711201879
613 => 0.011296187605066
614 => 0.011397893880714
615 => 0.011386443314886
616 => 0.011493047694845
617 => 0.011667300801705
618 => 0.011312995513523
619 => 0.011374490660596
620 => 0.011359413470664
621 => 0.011524022276891
622 => 0.011524536167616
623 => 0.011425844965464
624 => 0.011479347067233
625 => 0.011449483661779
626 => 0.011503450871715
627 => 0.011295646387724
628 => 0.011548729818117
629 => 0.011692211814814
630 => 0.011694204062478
701 => 0.011762213390168
702 => 0.011831314805937
703 => 0.011963948956039
704 => 0.011827615711478
705 => 0.011582365476285
706 => 0.011600071751113
707 => 0.011456281627953
708 => 0.011458698765901
709 => 0.011445795894099
710 => 0.011484518383659
711 => 0.011304143796628
712 => 0.011346477351677
713 => 0.011287210126704
714 => 0.011374361825224
715 => 0.011280601004308
716 => 0.011359406199987
717 => 0.011393415910008
718 => 0.011518912472163
719 => 0.01126206506004
720 => 0.01073833579968
721 => 0.010848430039811
722 => 0.010685592010942
723 => 0.010700663290482
724 => 0.010731109673729
725 => 0.010632422984188
726 => 0.010651249294577
727 => 0.010650576686291
728 => 0.010644780511457
729 => 0.010619108292046
730 => 0.010581878494808
731 => 0.01073019054828
801 => 0.010755391656215
802 => 0.010811410597397
803 => 0.010978084968346
804 => 0.010961430268236
805 => 0.010988594775112
806 => 0.010929294809123
807 => 0.010703414045827
808 => 0.010715680458019
809 => 0.010562718101428
810 => 0.010807499006033
811 => 0.010749531656872
812 => 0.010712159729769
813 => 0.01070196245321
814 => 0.010869049977686
815 => 0.010919045183785
816 => 0.010887891526397
817 => 0.010823994466198
818 => 0.010946695711251
819 => 0.010979525388077
820 => 0.010986874742006
821 => 0.011204277822609
822 => 0.010999025159165
823 => 0.011048431515292
824 => 0.011433885802129
825 => 0.011084331953024
826 => 0.011269498422876
827 => 0.011260435487736
828 => 0.011355160388021
829 => 0.0112526652811
830 => 0.01125393583079
831 => 0.011338045125022
901 => 0.011219928790464
902 => 0.011190681524954
903 => 0.011150276637124
904 => 0.011238499231517
905 => 0.011291384686891
906 => 0.011717602617116
907 => 0.011992958837941
908 => 0.011981004898194
909 => 0.012090241530638
910 => 0.012041029427229
911 => 0.011882110563825
912 => 0.012153365685566
913 => 0.012067529215251
914 => 0.012074605469572
915 => 0.012074342091033
916 => 0.012131415839838
917 => 0.012090973858077
918 => 0.012011258560743
919 => 0.01206417729527
920 => 0.012221327018024
921 => 0.012709124579395
922 => 0.012982102557196
923 => 0.01269269096237
924 => 0.012892323205105
925 => 0.012772614995705
926 => 0.012750860453047
927 => 0.012876244254191
928 => 0.013001847523081
929 => 0.012993847137851
930 => 0.012902665614436
1001 => 0.012851159485504
1002 => 0.013241181149594
1003 => 0.01352854246785
1004 => 0.01350894635244
1005 => 0.013595437232863
1006 => 0.013849377132847
1007 => 0.013872594214824
1008 => 0.013869669396133
1009 => 0.013812123436003
1010 => 0.014062160245801
1011 => 0.014270745351513
1012 => 0.013798803208896
1013 => 0.013978512598628
1014 => 0.014059189933554
1015 => 0.014177648197112
1016 => 0.014377507143644
1017 => 0.014594606969545
1018 => 0.014625307265306
1019 => 0.014603523936319
1020 => 0.014460340765181
1021 => 0.014697893985222
1022 => 0.014837047090213
1023 => 0.014919909579773
1024 => 0.015130035066294
1025 => 0.014059688169309
1026 => 0.01330204343593
1027 => 0.01318372627029
1028 => 0.013424328879211
1029 => 0.013487773868414
1030 => 0.01346219927282
1031 => 0.012609401243356
1101 => 0.013179236465156
1102 => 0.013792331250706
1103 => 0.013815882718326
1104 => 0.01412281078718
1105 => 0.014222759147805
1106 => 0.014469876473214
1107 => 0.014454419217227
1108 => 0.014514588353468
1109 => 0.014500756511031
1110 => 0.014958489319658
1111 => 0.015463436581555
1112 => 0.015445951863509
1113 => 0.015373359720347
1114 => 0.015481171431743
1115 => 0.016002331119457
1116 => 0.015954351086826
1117 => 0.016000959601597
1118 => 0.016615436244685
1119 => 0.017414343288983
1120 => 0.017043170757951
1121 => 0.017848508348272
1122 => 0.018355425672267
1123 => 0.019232086767888
1124 => 0.019122324481069
1125 => 0.019463602212358
1126 => 0.018925827079583
1127 => 0.017690986672446
1128 => 0.017495568451238
1129 => 0.017886800678875
1130 => 0.018848606934639
1201 => 0.017856509977103
1202 => 0.018057209899503
1203 => 0.01799940830835
1204 => 0.017996328307198
1205 => 0.018113879423884
1206 => 0.017943365398077
1207 => 0.017248660582051
1208 => 0.017567039705315
1209 => 0.017444098236001
1210 => 0.017580510962098
1211 => 0.018316674183955
1212 => 0.017991198875633
1213 => 0.017648337077782
1214 => 0.018078361859411
1215 => 0.01862593117897
1216 => 0.018591665275029
1217 => 0.018525175099346
1218 => 0.018899976738359
1219 => 0.019519039239431
1220 => 0.019686369345877
1221 => 0.019809889009541
1222 => 0.019826920284279
1223 => 0.020002352998954
1224 => 0.019059007077411
1225 => 0.020556121281741
1226 => 0.020814631547883
1227 => 0.020766042332001
1228 => 0.021053365613043
1229 => 0.020968827815073
1230 => 0.020846345809387
1231 => 0.021301814325254
]
'min_raw' => 0.007852035003896
'max_raw' => 0.021301814325254
'avg_raw' => 0.014576924664575
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.007852'
'max' => '$0.0213018'
'avg' => '$0.014576'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.002707963945771
'max_diff' => 0.0098180380627793
'year' => 2032
]
7 => [
'items' => [
101 => 0.020779656426226
102 => 0.020038519026409
103 => 0.019631916390833
104 => 0.020167363541058
105 => 0.02049434243117
106 => 0.020710454677771
107 => 0.020775850113014
108 => 0.019132236335939
109 => 0.018246419669095
110 => 0.018814217996633
111 => 0.019506971143577
112 => 0.019055158798702
113 => 0.019072868987227
114 => 0.01842870331763
115 => 0.019563965511812
116 => 0.019398567359177
117 => 0.020256653267628
118 => 0.020051864179007
119 => 0.020751599926646
120 => 0.020567336053594
121 => 0.021332205088578
122 => 0.021637332054635
123 => 0.022149687719866
124 => 0.022526578632872
125 => 0.022747896185764
126 => 0.02273460911003
127 => 0.023611579514554
128 => 0.023094460706018
129 => 0.022444837606952
130 => 0.022433087974625
131 => 0.022769536982861
201 => 0.023474641803848
202 => 0.023657465225072
203 => 0.023759638576306
204 => 0.023603156532211
205 => 0.023041861127784
206 => 0.022799496617985
207 => 0.02300599820231
208 => 0.022753464509564
209 => 0.023189408511683
210 => 0.023788052739206
211 => 0.023664435073518
212 => 0.024077670396116
213 => 0.024505325481381
214 => 0.025116891460501
215 => 0.025276777453666
216 => 0.025541062920448
217 => 0.025813099479019
218 => 0.025900470290041
219 => 0.026067288277854
220 => 0.026066409064714
221 => 0.026569126299132
222 => 0.027123638976551
223 => 0.027332954675279
224 => 0.027814264582768
225 => 0.026990038233303
226 => 0.027615223387402
227 => 0.028179156045799
228 => 0.027506812282244
301 => 0.028433481524299
302 => 0.028469461991091
303 => 0.029012724321662
304 => 0.028462023873159
305 => 0.028135019704735
306 => 0.029079068486287
307 => 0.029535863954422
308 => 0.029398273441895
309 => 0.028351202847882
310 => 0.027741762851196
311 => 0.026146740827674
312 => 0.02803611331436
313 => 0.028956371538874
314 => 0.028348819601399
315 => 0.028655233459476
316 => 0.030326928114116
317 => 0.030963401204389
318 => 0.030831019250895
319 => 0.030853389621843
320 => 0.031196818948551
321 => 0.032719773713158
322 => 0.031807183916391
323 => 0.032504824621932
324 => 0.032874850736621
325 => 0.033218551613723
326 => 0.032374530887338
327 => 0.031276472323437
328 => 0.030928671082888
329 => 0.028288410534757
330 => 0.028150973507156
331 => 0.028073825938796
401 => 0.027587421433024
402 => 0.027205240728895
403 => 0.026901316443511
404 => 0.02610372835919
405 => 0.026372890924205
406 => 0.025101701987367
407 => 0.025914963620986
408 => 0.023886115383864
409 => 0.02557580048329
410 => 0.024656181704227
411 => 0.0252736809813
412 => 0.025271526584494
413 => 0.024134514637078
414 => 0.023478709874642
415 => 0.02389661419357
416 => 0.024344640796746
417 => 0.024417331605769
418 => 0.024998209791477
419 => 0.025160320407174
420 => 0.024669117673392
421 => 0.023844072013696
422 => 0.024035711303155
423 => 0.023474826310558
424 => 0.022491896935162
425 => 0.023197853972872
426 => 0.023438898744286
427 => 0.02354535784736
428 => 0.022578759696859
429 => 0.022275033572105
430 => 0.022113332331795
501 => 0.023719296330486
502 => 0.023807274663593
503 => 0.023357165072534
504 => 0.025391703105261
505 => 0.024931224488193
506 => 0.025445691923458
507 => 0.024018322046305
508 => 0.02407284949782
509 => 0.023397109723359
510 => 0.023775478844109
511 => 0.023508059744969
512 => 0.023744910358269
513 => 0.02388687763931
514 => 0.024562506531523
515 => 0.025583515079962
516 => 0.024461590105265
517 => 0.023972751327528
518 => 0.024276024155902
519 => 0.025083679662689
520 => 0.026307319098596
521 => 0.0255828999245
522 => 0.025904384852529
523 => 0.025974615007434
524 => 0.025440455127911
525 => 0.026327014335272
526 => 0.02680212861689
527 => 0.027289497558783
528 => 0.027712666355261
529 => 0.027094831685919
530 => 0.027756003345236
531 => 0.027223215700335
601 => 0.026745250104285
602 => 0.026745974980799
603 => 0.026446140180433
604 => 0.025865172473109
605 => 0.025758033114234
606 => 0.026315385589308
607 => 0.026762329492842
608 => 0.026799141933454
609 => 0.027046593043257
610 => 0.027193032061089
611 => 0.028628333510037
612 => 0.029205623626241
613 => 0.029911523052791
614 => 0.030186510661745
615 => 0.03101412477618
616 => 0.030345759163241
617 => 0.030201154058665
618 => 0.028193632927559
619 => 0.028522364400314
620 => 0.029048695206065
621 => 0.028202311928686
622 => 0.028739147307607
623 => 0.028845129983134
624 => 0.028173552148793
625 => 0.02853227088728
626 => 0.027579620270553
627 => 0.025604280260112
628 => 0.026329213453384
629 => 0.026863008293507
630 => 0.026101217240223
701 => 0.027466698217849
702 => 0.026669012419969
703 => 0.026416184317712
704 => 0.02542981175108
705 => 0.025895341633568
706 => 0.02652497746538
707 => 0.026135935724342
708 => 0.026943255751906
709 => 0.028086636215323
710 => 0.028901477223038
711 => 0.028964030597689
712 => 0.028440142419836
713 => 0.029279676568255
714 => 0.029285791657986
715 => 0.028338793708972
716 => 0.027758762738107
717 => 0.027626978481131
718 => 0.027956201392883
719 => 0.028355938785651
720 => 0.028986213240957
721 => 0.029367074894119
722 => 0.030360160092152
723 => 0.030628860472756
724 => 0.030924080726175
725 => 0.031318586027296
726 => 0.031792290790376
727 => 0.030755851736785
728 => 0.030797031392548
729 => 0.02983191369632
730 => 0.028800547026022
731 => 0.029583225767108
801 => 0.030606474105688
802 => 0.030371739806228
803 => 0.030345327402353
804 => 0.030389745739482
805 => 0.030212763743395
806 => 0.029412280734354
807 => 0.029010283178502
808 => 0.029528962586065
809 => 0.02980461760742
810 => 0.030232134505898
811 => 0.030179434024374
812 => 0.031280671642889
813 => 0.031708579281748
814 => 0.031599102196527
815 => 0.031619248614921
816 => 0.032393954955541
817 => 0.033255587736821
818 => 0.034062620538949
819 => 0.034883568968139
820 => 0.033893883594588
821 => 0.033391382397206
822 => 0.033909835365566
823 => 0.0336347369228
824 => 0.035215534174429
825 => 0.035324985146325
826 => 0.036905668088319
827 => 0.038405924424495
828 => 0.037463640299627
829 => 0.038352171787968
830 => 0.039313191035645
831 => 0.041167153084166
901 => 0.040542803889396
902 => 0.040064562191
903 => 0.039612626096864
904 => 0.040553033365927
905 => 0.041762852294204
906 => 0.042023435703853
907 => 0.042445680378009
908 => 0.042001741732757
909 => 0.042536416932726
910 => 0.044424055336803
911 => 0.043913998777376
912 => 0.043189636467307
913 => 0.044679745696607
914 => 0.045219010434037
915 => 0.049003852776462
916 => 0.053782372577812
917 => 0.0518040340026
918 => 0.05057601540838
919 => 0.050864628907012
920 => 0.052609582575361
921 => 0.053170006311574
922 => 0.051646581406901
923 => 0.052184680837697
924 => 0.055149661606149
925 => 0.056740278660452
926 => 0.054580007052338
927 => 0.048619903363165
928 => 0.043124415566705
929 => 0.044582066395366
930 => 0.044416814027568
1001 => 0.047602315974386
1002 => 0.043901834097121
1003 => 0.043964140721519
1004 => 0.047215515475093
1005 => 0.046348104433514
1006 => 0.04494300963577
1007 => 0.043134674313699
1008 => 0.03979179922008
1009 => 0.036830921526693
1010 => 0.042637884532834
1011 => 0.042387477728732
1012 => 0.042024851568183
1013 => 0.042831836848236
1014 => 0.046750328301401
1015 => 0.046659994390486
1016 => 0.046085336138014
1017 => 0.046521209357709
1018 => 0.044866598952941
1019 => 0.045293029729028
1020 => 0.04312354505336
1021 => 0.044104242732446
1022 => 0.044939994933394
1023 => 0.045107784561257
1024 => 0.045485823160383
1025 => 0.042255524721544
1026 => 0.043705833884003
1027 => 0.044557754641357
1028 => 0.04070874566649
1029 => 0.044481672109431
1030 => 0.042199292412489
1031 => 0.041424618463154
1101 => 0.042467614880401
1102 => 0.042061158162253
1103 => 0.041711710543928
1104 => 0.04151671276863
1105 => 0.042282574226143
1106 => 0.042246845873747
1107 => 0.040993747881954
1108 => 0.039359132634467
1109 => 0.03990776316594
1110 => 0.039708440550417
1111 => 0.038986069678634
1112 => 0.039472860426824
1113 => 0.037329280330953
1114 => 0.033641362189604
1115 => 0.036077713877767
1116 => 0.035983916988013
1117 => 0.035936620342849
1118 => 0.037767471300689
1119 => 0.037591477226011
1120 => 0.037272046257131
1121 => 0.038980203078389
1122 => 0.038356702860679
1123 => 0.040278183616536
1124 => 0.041543795115927
1125 => 0.041222795101438
1126 => 0.042413108833847
1127 => 0.039920402505307
1128 => 0.040748379557629
1129 => 0.040919024480585
1130 => 0.038959124688365
1201 => 0.037620272033183
1202 => 0.03753098582512
1203 => 0.035209599826296
1204 => 0.036449665489295
1205 => 0.03754087195533
1206 => 0.037018268739142
1207 => 0.036852828173224
1208 => 0.037698028144819
1209 => 0.03776370742126
1210 => 0.036266212958023
1211 => 0.036577589476412
1212 => 0.037876081320134
1213 => 0.036544870813538
1214 => 0.033958546251222
1215 => 0.033317102001033
1216 => 0.033231521513894
1217 => 0.031491873833797
1218 => 0.033359966373015
1219 => 0.032544493917879
1220 => 0.035120561632795
1221 => 0.033649125569763
1222 => 0.033585694902008
1223 => 0.03348981014444
1224 => 0.031992423522239
1225 => 0.032320256028617
1226 => 0.033410021210117
1227 => 0.03379886170396
1228 => 0.033758302454776
1229 => 0.033404680766208
1230 => 0.033566566964398
1231 => 0.033045075115138
]
'min_raw' => 0.018246419669095
'max_raw' => 0.056740278660452
'avg_raw' => 0.037493349164773
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.018246'
'max' => '$0.05674'
'avg' => '$0.037493'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.010394384665199
'max_diff' => 0.035438464335198
'year' => 2033
]
8 => [
'items' => [
101 => 0.03286092548925
102 => 0.032279698615601
103 => 0.031425455679361
104 => 0.031544243399021
105 => 0.029851764617505
106 => 0.028929612350688
107 => 0.028674372757004
108 => 0.028333055705134
109 => 0.028712925426223
110 => 0.029846970037766
111 => 0.02847907163526
112 => 0.026133905771079
113 => 0.026274854235484
114 => 0.026591523587029
115 => 0.026001412345403
116 => 0.025442921579487
117 => 0.025928483988663
118 => 0.024934806296234
119 => 0.026711604788808
120 => 0.026663547369004
121 => 0.027325827970553
122 => 0.027739965622068
123 => 0.026785512413983
124 => 0.026545470013265
125 => 0.026682209074033
126 => 0.024422216989567
127 => 0.027141138401772
128 => 0.027164651747051
129 => 0.026963316209411
130 => 0.028411057924129
131 => 0.03146624450415
201 => 0.03031676041815
202 => 0.029871645436711
203 => 0.029025481531618
204 => 0.030152944694913
205 => 0.030066373115138
206 => 0.029674863600094
207 => 0.029438077423812
208 => 0.029874363213873
209 => 0.029384016786263
210 => 0.029295937094045
211 => 0.028762269990858
212 => 0.028571775115326
213 => 0.028430740293302
214 => 0.028275474812048
215 => 0.028617951773946
216 => 0.02784185392169
217 => 0.026905955993679
218 => 0.026828146207521
219 => 0.02704298586821
220 => 0.026947935311287
221 => 0.026827691142023
222 => 0.026598112276347
223 => 0.026530001131078
224 => 0.026751329310374
225 => 0.026501462700183
226 => 0.026870154494458
227 => 0.026769890727063
228 => 0.026209825472795
301 => 0.025511776803263
302 => 0.025505562705898
303 => 0.025355169265076
304 => 0.025163620606385
305 => 0.025110336151577
306 => 0.025887591276906
307 => 0.027496486125049
308 => 0.027180621568768
309 => 0.027408866081783
310 => 0.028531603183919
311 => 0.028888487546805
312 => 0.028635179479298
313 => 0.028288435773132
314 => 0.02830369073645
315 => 0.029488618946875
316 => 0.029562521465896
317 => 0.029749249289608
318 => 0.029989247312354
319 => 0.028676052180352
320 => 0.028241839363826
321 => 0.028036085242146
322 => 0.027402442184238
323 => 0.028085771897742
324 => 0.027687624936779
325 => 0.02774134856445
326 => 0.027706360981451
327 => 0.027725466567618
328 => 0.026711108137418
329 => 0.027080687036273
330 => 0.02646619043592
331 => 0.025643448468527
401 => 0.025640690348961
402 => 0.025842055279903
403 => 0.025722275539568
404 => 0.025399951338147
405 => 0.025445735969631
406 => 0.025044614420973
407 => 0.025494439388178
408 => 0.025507338758687
409 => 0.025334131644181
410 => 0.026027149070045
411 => 0.02631107887487
412 => 0.026197070241647
413 => 0.02630307972524
414 => 0.027193747167124
415 => 0.027338964822696
416 => 0.027403460912762
417 => 0.027317044696169
418 => 0.026319359491056
419 => 0.026363611072388
420 => 0.02603892232996
421 => 0.025764594557466
422 => 0.025775566229706
423 => 0.025916606364883
424 => 0.026532536907092
425 => 0.027828726422083
426 => 0.027877915866674
427 => 0.027937534908477
428 => 0.027695034303337
429 => 0.027621893800408
430 => 0.027718385002936
501 => 0.02820516563436
502 => 0.029457297578034
503 => 0.029014710522059
504 => 0.028654880356273
505 => 0.028970548421183
506 => 0.028921953796878
507 => 0.028511766263844
508 => 0.028500253665964
509 => 0.027712972645184
510 => 0.027421932777324
511 => 0.027178718079783
512 => 0.026913133979348
513 => 0.026755686822151
514 => 0.026997597214059
515 => 0.027052924982888
516 => 0.026523983683111
517 => 0.026451890938457
518 => 0.026883835821846
519 => 0.026693752983195
520 => 0.026889257896575
521 => 0.026934616713489
522 => 0.026927312899264
523 => 0.026728844584837
524 => 0.026855342370042
525 => 0.026556137397227
526 => 0.026230796928425
527 => 0.026023249978756
528 => 0.025842137738062
529 => 0.025942629335504
530 => 0.025584395139664
531 => 0.025469788810585
601 => 0.026812487766705
602 => 0.027804353922037
603 => 0.027789931795317
604 => 0.027702140807975
605 => 0.027571701208536
606 => 0.028195623165203
607 => 0.027978261231213
608 => 0.028136410199388
609 => 0.02817666574928
610 => 0.028298507174606
611 => 0.028342055011536
612 => 0.028210423202417
613 => 0.027768650773541
614 => 0.026667795883244
615 => 0.02615534496011
616 => 0.025986227619931
617 => 0.025992374714047
618 => 0.025822810416492
619 => 0.025872754701461
620 => 0.025805441832392
621 => 0.025677967543109
622 => 0.025934758157354
623 => 0.025964350883476
624 => 0.025904412885692
625 => 0.025918530453957
626 => 0.025422269432158
627 => 0.025459999079823
628 => 0.025249915607172
629 => 0.025210527488644
630 => 0.024679454763842
701 => 0.023738582451634
702 => 0.024259917045283
703 => 0.023630218166892
704 => 0.023391741660151
705 => 0.024520652352359
706 => 0.02440734102997
707 => 0.024213401301287
708 => 0.023926524021985
709 => 0.023820118448529
710 => 0.023173631868121
711 => 0.023135433992079
712 => 0.023455850197935
713 => 0.023307989143781
714 => 0.023100336224388
715 => 0.022348238399787
716 => 0.021502631433903
717 => 0.021528154992908
718 => 0.021797126835678
719 => 0.022579198744329
720 => 0.022273629719638
721 => 0.022051935886224
722 => 0.022010419295318
723 => 0.02253008635138
724 => 0.023265524109323
725 => 0.023610575050857
726 => 0.023268640047149
727 => 0.022875843525978
728 => 0.022899751230178
729 => 0.02305879847538
730 => 0.023075512092043
731 => 0.022819841936896
801 => 0.022891811587973
802 => 0.022782483106944
803 => 0.022111534420669
804 => 0.022099399086536
805 => 0.021934737458415
806 => 0.021929751569756
807 => 0.021649621063554
808 => 0.021610428869286
809 => 0.021054212746516
810 => 0.021420315882901
811 => 0.021174753120292
812 => 0.020804632114639
813 => 0.020740823113758
814 => 0.02073890493814
815 => 0.021118936453402
816 => 0.02141587499338
817 => 0.021179024789682
818 => 0.021125098589448
819 => 0.0217008893255
820 => 0.021627614705889
821 => 0.021564159357875
822 => 0.023199673724451
823 => 0.021905036482529
824 => 0.021340500749741
825 => 0.020641780577987
826 => 0.020869287389163
827 => 0.020917226417048
828 => 0.019236930357758
829 => 0.018555234455772
830 => 0.018321302111378
831 => 0.018186670739862
901 => 0.018248023946456
902 => 0.017634417679714
903 => 0.018046771239076
904 => 0.017515440078924
905 => 0.017426360680823
906 => 0.018376446614475
907 => 0.018508645521821
908 => 0.017944643912102
909 => 0.018306824249108
910 => 0.018175492624226
911 => 0.017524548226652
912 => 0.017499686938687
913 => 0.017173065921786
914 => 0.016661967276628
915 => 0.016428381481183
916 => 0.01630672797083
917 => 0.016356924580181
918 => 0.016331543638452
919 => 0.016165915825336
920 => 0.016341037230823
921 => 0.015893674404966
922 => 0.015715530923062
923 => 0.015635067645184
924 => 0.015238007387992
925 => 0.015869906830682
926 => 0.015994398981351
927 => 0.016119136420015
928 => 0.017204890661716
929 => 0.017150649448111
930 => 0.017640963602564
1001 => 0.017621910896152
1002 => 0.017482065356739
1003 => 0.016892080029431
1004 => 0.017127237665419
1005 => 0.016403459013459
1006 => 0.016945763191672
1007 => 0.016698278211899
1008 => 0.016862088271063
1009 => 0.016567543014529
1010 => 0.01673055652097
1011 => 0.016023920688629
1012 => 0.015364074091023
1013 => 0.015629615624023
1014 => 0.015918289638751
1015 => 0.016544208455453
1016 => 0.016171416371944
1017 => 0.016305486502003
1018 => 0.015856374009373
1019 => 0.014929726654435
1020 => 0.01493497137783
1021 => 0.014792426870383
1022 => 0.01466924760411
1023 => 0.016214236027202
1024 => 0.016022092294138
1025 => 0.01571593640265
1026 => 0.016125738229558
1027 => 0.016234096337021
1028 => 0.016237181140007
1029 => 0.016536161974403
1030 => 0.016695728099315
1031 => 0.01672385232043
1101 => 0.01719430512326
1102 => 0.017351994697346
1103 => 0.018001495735943
1104 => 0.016682190028443
1105 => 0.01665501979559
1106 => 0.016131504981661
1107 => 0.015799483610225
1108 => 0.01615423876902
1109 => 0.016468503410803
1110 => 0.01614127006009
1111 => 0.01618399982742
1112 => 0.015744715790035
1113 => 0.015901739163165
1114 => 0.016036988845438
1115 => 0.015962311920496
1116 => 0.015850516949454
1117 => 0.016442737294004
1118 => 0.016409321901234
1119 => 0.016960811101166
1120 => 0.017390736369884
1121 => 0.018161239309761
1122 => 0.017357179324773
1123 => 0.017327876183071
1124 => 0.017614319093579
1125 => 0.017351950844429
1126 => 0.017517758521248
1127 => 0.018134525129649
1128 => 0.018147556436197
1129 => 0.017929265261637
1130 => 0.017915982223827
1201 => 0.017957907431745
1202 => 0.01820346468403
1203 => 0.01811765943487
1204 => 0.018216955441521
1205 => 0.018341126618314
1206 => 0.018854751253016
1207 => 0.018978584413575
1208 => 0.01867773403355
1209 => 0.018704897454387
1210 => 0.01859237115373
1211 => 0.018483672157246
1212 => 0.018728011627129
1213 => 0.019174546810845
1214 => 0.019171768938642
1215 => 0.01927535642186
1216 => 0.01933989056574
1217 => 0.019062862778327
1218 => 0.018882527875315
1219 => 0.018951679752138
1220 => 0.019062255109109
1221 => 0.018915821654169
1222 => 0.018011966535703
1223 => 0.018286138440157
1224 => 0.018240502828935
1225 => 0.018175512169074
1226 => 0.018451194139111
1227 => 0.018424603940571
1228 => 0.017628124260557
1229 => 0.017679112305499
1230 => 0.017631225012448
1231 => 0.017785958653116
]
'min_raw' => 0.01466924760411
'max_raw' => 0.03286092548925
'avg_raw' => 0.02376508654668
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.014669'
'max' => '$0.03286'
'avg' => '$0.023765'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.0035771720649847
'max_diff' => -0.023879353171202
'year' => 2034
]
9 => [
'items' => [
101 => 0.017343594720041
102 => 0.017479662886488
103 => 0.017565003564924
104 => 0.017615269880141
105 => 0.017796866278639
106 => 0.017775558037253
107 => 0.017795541728437
108 => 0.018064801247738
109 => 0.019426623497654
110 => 0.019500744478026
111 => 0.019135745662201
112 => 0.01928155548984
113 => 0.019001632505878
114 => 0.019189546680333
115 => 0.019318112785992
116 => 0.018737147276358
117 => 0.018702746269312
118 => 0.018421667943621
119 => 0.018572703514757
120 => 0.018332395061238
121 => 0.018391358350099
122 => 0.018226491854117
123 => 0.018523218722293
124 => 0.018855005467607
125 => 0.018938827902129
126 => 0.018718327164728
127 => 0.018558670099144
128 => 0.018278364886284
129 => 0.018744518702279
130 => 0.018880836283856
131 => 0.018743802684055
201 => 0.018712049004738
202 => 0.018651875839809
203 => 0.018724815026134
204 => 0.018880093869031
205 => 0.018806867234271
206 => 0.018855234716617
207 => 0.018670907750244
208 => 0.019062954486052
209 => 0.019685619053699
210 => 0.019687621022099
211 => 0.019614393992621
212 => 0.019584431069856
213 => 0.019659566445889
214 => 0.019700324305173
215 => 0.019943298333792
216 => 0.020204019147012
217 => 0.021420689420911
218 => 0.021079053276585
219 => 0.022158555523626
220 => 0.023012301645212
221 => 0.023268302777282
222 => 0.023032793781561
223 => 0.022227130229147
224 => 0.022187600531645
225 => 0.02339160202133
226 => 0.023051416453732
227 => 0.023010952462928
228 => 0.022580483965762
301 => 0.022834944162147
302 => 0.022779289984492
303 => 0.022691437142367
304 => 0.02317692947122
305 => 0.024085727770634
306 => 0.023944083033014
307 => 0.023838351807091
308 => 0.023375068352993
309 => 0.023654068470465
310 => 0.023554721872529
311 => 0.023981577904174
312 => 0.023728717847046
313 => 0.023048839213476
314 => 0.023157112126781
315 => 0.02314074689375
316 => 0.02347754222988
317 => 0.023376444629748
318 => 0.023121005964766
319 => 0.024082621596846
320 => 0.024020179626485
321 => 0.024108708064234
322 => 0.024147681020364
323 => 0.024732999510043
324 => 0.024972785767162
325 => 0.025027221445577
326 => 0.025254999844106
327 => 0.025021554111521
328 => 0.025955503485847
329 => 0.026576525322317
330 => 0.027297874142869
331 => 0.02835195864998
401 => 0.02874830417548
402 => 0.02867670790385
403 => 0.029475902747041
404 => 0.030912038115151
405 => 0.028966991922426
406 => 0.031015130286307
407 => 0.030366713327197
408 => 0.02882932838167
409 => 0.028730338915756
410 => 0.029771473850273
411 => 0.032080610929508
412 => 0.031502198281176
413 => 0.03208155700539
414 => 0.031405704279143
415 => 0.031372142494751
416 => 0.032048732347008
417 => 0.033629621415798
418 => 0.032878600277956
419 => 0.031801827318922
420 => 0.03259689971543
421 => 0.031908134425098
422 => 0.030356153452715
423 => 0.031501755979924
424 => 0.030735724194861
425 => 0.030959292994232
426 => 0.032569377867807
427 => 0.032375648196062
428 => 0.032626352330185
429 => 0.032183866095528
430 => 0.031770514178685
501 => 0.03099896212998
502 => 0.030770543605414
503 => 0.030833670267967
504 => 0.030770512322975
505 => 0.030338836042654
506 => 0.030245615591019
507 => 0.030090244087546
508 => 0.030138400213281
509 => 0.029846256331214
510 => 0.03039759219668
511 => 0.030499924991666
512 => 0.030901141256956
513 => 0.030942796860603
514 => 0.032060178448481
515 => 0.031444743446712
516 => 0.03185763038
517 => 0.031820697886444
518 => 0.028862648175198
519 => 0.029270241326314
520 => 0.029904328359674
521 => 0.02961867301063
522 => 0.02921482318014
523 => 0.02888869278896
524 => 0.028394571897779
525 => 0.029090037563365
526 => 0.030004500959083
527 => 0.030965989161412
528 => 0.032121154237308
529 => 0.031863334839972
530 => 0.030944394153835
531 => 0.030985617161728
601 => 0.03124044157587
602 => 0.030910420806317
603 => 0.030813091238605
604 => 0.031227069987864
605 => 0.031229920831991
606 => 0.030850192052278
607 => 0.030428193003259
608 => 0.030426424811835
609 => 0.03035133415709
610 => 0.031419062739808
611 => 0.032006205500767
612 => 0.032073520472083
613 => 0.03200167466686
614 => 0.032029325265832
615 => 0.031687679830038
616 => 0.032468579984457
617 => 0.033185211189173
618 => 0.032993138717716
619 => 0.032705194778292
620 => 0.032475833561282
621 => 0.032939108504193
622 => 0.032918479600247
623 => 0.033178952040775
624 => 0.033167135506311
625 => 0.033079548421425
626 => 0.032993141845727
627 => 0.033335734151415
628 => 0.033237073069241
629 => 0.033138258739155
630 => 0.032940071472451
701 => 0.032967008413538
702 => 0.032679114191695
703 => 0.032545921151527
704 => 0.030543017402192
705 => 0.030007776073601
706 => 0.030176173891418
707 => 0.03023161482549
708 => 0.029998677113357
709 => 0.030332649955767
710 => 0.030280600642043
711 => 0.030483094073916
712 => 0.030356584968924
713 => 0.030361776946721
714 => 0.030733813249917
715 => 0.03084181697149
716 => 0.030786885407001
717 => 0.030825357591825
718 => 0.031711932853006
719 => 0.031585890201947
720 => 0.031518932555695
721 => 0.031537480281304
722 => 0.031764019268924
723 => 0.031827437816887
724 => 0.031558728972824
725 => 0.031685453617071
726 => 0.032225031068525
727 => 0.032413852639095
728 => 0.033016480452859
729 => 0.032760473446717
730 => 0.033230385386215
731 => 0.034674734483445
801 => 0.035828580483669
802 => 0.034767456017161
803 => 0.036886347255168
804 => 0.038536208020853
805 => 0.038472883616679
806 => 0.038185192230215
807 => 0.036306869612301
808 => 0.034578409135084
809 => 0.036024339718584
810 => 0.036028025693
811 => 0.035903818973545
812 => 0.035132381706408
813 => 0.035876974628836
814 => 0.035936077711054
815 => 0.03590299570179
816 => 0.035311536557807
817 => 0.034408487764866
818 => 0.034584941337413
819 => 0.034873975888801
820 => 0.0343267731841
821 => 0.034151908763767
822 => 0.034477014990483
823 => 0.035524574991535
824 => 0.035326539841438
825 => 0.035321368343346
826 => 0.036168646695435
827 => 0.035562178249452
828 => 0.034587166982045
829 => 0.034340963778207
830 => 0.03346710826693
831 => 0.034070683381135
901 => 0.034092404974971
902 => 0.033761833053309
903 => 0.034613991071602
904 => 0.034606138285444
905 => 0.035415135496831
906 => 0.036961634319526
907 => 0.03650425851907
908 => 0.035972380225485
909 => 0.036030210143383
910 => 0.036664461606325
911 => 0.036280978693278
912 => 0.036418881822548
913 => 0.036664252873423
914 => 0.036812291320636
915 => 0.036008909689012
916 => 0.035821603000494
917 => 0.035438439251502
918 => 0.03533847898148
919 => 0.03565055786006
920 => 0.035568336101464
921 => 0.03409057935912
922 => 0.033936145557384
923 => 0.033940881821602
924 => 0.03355255068421
925 => 0.032960252489536
926 => 0.034516776780853
927 => 0.034391766096717
928 => 0.034253763976489
929 => 0.034270668448788
930 => 0.034946302888145
1001 => 0.034554400792961
1002 => 0.035596336744499
1003 => 0.035382146036325
1004 => 0.035162462144701
1005 => 0.035132095139143
1006 => 0.035047535583417
1007 => 0.034757549403607
1008 => 0.034407373666018
1009 => 0.034176157312359
1010 => 0.031525698575811
1011 => 0.032017608300305
1012 => 0.032583505599353
1013 => 0.032778851079294
1014 => 0.03244469911836
1015 => 0.034770743759705
1016 => 0.035195734530002
1017 => 0.033908409765309
1018 => 0.033667603862959
1019 => 0.034786530954573
1020 => 0.034111681135056
1021 => 0.034415565967463
1022 => 0.033758733175915
1023 => 0.03509336669862
1024 => 0.0350831990273
1025 => 0.034563996442902
1026 => 0.035002822911889
1027 => 0.034926566013914
1028 => 0.034340387574868
1029 => 0.035111949600685
1030 => 0.035112332285824
1031 => 0.034612611086779
1101 => 0.034029046129331
1102 => 0.033924718498129
1103 => 0.033846121642463
1104 => 0.034396235959044
1105 => 0.034889466735127
1106 => 0.03580724692714
1107 => 0.036037998673331
1108 => 0.03693863810073
1109 => 0.036402351173052
1110 => 0.036640080222013
1111 => 0.036898168733488
1112 => 0.037021905856779
1113 => 0.036820282854476
1114 => 0.038219346603204
1115 => 0.038337470449802
1116 => 0.038377076353799
1117 => 0.037905319929471
1118 => 0.03832435005024
1119 => 0.038128299733551
1120 => 0.038638368193229
1121 => 0.038718353440588
1122 => 0.038650608781633
1123 => 0.038675997361625
1124 => 0.037482143263844
1125 => 0.037420235630792
1126 => 0.036576120661362
1127 => 0.036920103750787
1128 => 0.036277043852645
1129 => 0.036480964770597
1130 => 0.0365708511682
1201 => 0.0365238996151
1202 => 0.036939552038555
1203 => 0.036586162566438
1204 => 0.035653509646914
1205 => 0.034720602626725
1206 => 0.034708890739016
1207 => 0.034463272787777
1208 => 0.034285735996202
1209 => 0.034319935880716
1210 => 0.034440460734501
1211 => 0.034278730872598
1212 => 0.034313244138547
1213 => 0.034886394313992
1214 => 0.035001335494157
1215 => 0.034610720453537
1216 => 0.033042344699966
1217 => 0.032657461356067
1218 => 0.032934107871093
1219 => 0.032801888655228
1220 => 0.026473684227213
1221 => 0.027960401989992
1222 => 0.027077044779513
1223 => 0.027484136423413
1224 => 0.026582457455755
1225 => 0.027012785920165
1226 => 0.026933319965868
1227 => 0.02932391813324
1228 => 0.029286592231017
1229 => 0.029304458165168
1230 => 0.028451670578674
1231 => 0.029810184359665
]
'min_raw' => 0.017343594720041
'max_raw' => 0.038718353440588
'avg_raw' => 0.028030974080314
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.017343'
'max' => '$0.038718'
'avg' => '$0.02803'
'bar_min_pct' => 61.631153054957
'bar_max_pct' => 60.119598047091
'min_diff' => 0.0026743471159305
'max_diff' => 0.005857427951338
'year' => 2035
]
10 => [
'items' => [
101 => 0.030479437098757
102 => 0.030355576228336
103 => 0.030386749340943
104 => 0.029851091984887
105 => 0.029309644499264
106 => 0.028709095909537
107 => 0.0298248409592
108 => 0.029700789156081
109 => 0.029985319360007
110 => 0.030708959779817
111 => 0.030815518580477
112 => 0.030958734689176
113 => 0.030907401909024
114 => 0.032130356990796
115 => 0.031982249061076
116 => 0.032339146558141
117 => 0.031604981328799
118 => 0.030774203684195
119 => 0.030932107354267
120 => 0.030916899961058
121 => 0.030723292391274
122 => 0.030548512134052
123 => 0.030257552249809
124 => 0.031178192377513
125 => 0.031140816069615
126 => 0.031745895049286
127 => 0.031638941462205
128 => 0.030924679231699
129 => 0.030950189246995
130 => 0.031121756359553
131 => 0.031715552095037
201 => 0.031891831098026
202 => 0.031810171640338
203 => 0.032003453519672
204 => 0.032156215636361
205 => 0.032022638089561
206 => 0.033913814462128
207 => 0.033128466179882
208 => 0.03351123946823
209 => 0.033602528642071
210 => 0.033368693342884
211 => 0.033419403846263
212 => 0.033496216441098
213 => 0.033962607475485
214 => 0.035186552501051
215 => 0.035728629421199
216 => 0.037359494581067
217 => 0.035683617479055
218 => 0.035584177867291
219 => 0.035877945929993
220 => 0.036835436423445
221 => 0.037611392535879
222 => 0.037868821944355
223 => 0.037902845490381
224 => 0.038385800174267
225 => 0.038662620792498
226 => 0.038327156772674
227 => 0.03804288614042
228 => 0.037024664020655
229 => 0.037142526003545
301 => 0.037954478187549
302 => 0.0391014084712
303 => 0.04008559397233
304 => 0.039740966512161
305 => 0.042370230764172
306 => 0.042630911575178
307 => 0.042594893915917
308 => 0.043188763597893
309 => 0.042010053218627
310 => 0.041506131695053
311 => 0.038104348677722
312 => 0.039060110948666
313 => 0.040449367539433
314 => 0.0402654942202
315 => 0.03925657894905
316 => 0.040084828619625
317 => 0.039810983376771
318 => 0.039594990271882
319 => 0.0405844965577
320 => 0.039496493749766
321 => 0.040438513879145
322 => 0.039230363319265
323 => 0.03974254074137
324 => 0.039451804065349
325 => 0.039639946326082
326 => 0.038540070514217
327 => 0.039133536804323
328 => 0.038515380365413
329 => 0.038515087278774
330 => 0.038501441441124
331 => 0.039228699750177
401 => 0.039252415617526
402 => 0.038714970628309
403 => 0.038637516408895
404 => 0.038923905253471
405 => 0.038588618921829
406 => 0.038745497286137
407 => 0.03859337060767
408 => 0.038559123688069
409 => 0.038286238406054
410 => 0.038168671923425
411 => 0.038214772770579
412 => 0.038057406812627
413 => 0.037962588130785
414 => 0.038482579618754
415 => 0.038204769143129
416 => 0.038440001179001
417 => 0.038171924585475
418 => 0.037242654316901
419 => 0.03670822115859
420 => 0.034952915764653
421 => 0.035450718196924
422 => 0.035780761724533
423 => 0.035671682340627
424 => 0.035906027065375
425 => 0.035920413928206
426 => 0.035844226069328
427 => 0.035756010289018
428 => 0.035713071725801
429 => 0.036033100597113
430 => 0.036218888128586
501 => 0.035813886007941
502 => 0.035718999677656
503 => 0.036128479182408
504 => 0.036378261443758
505 => 0.038222513321037
506 => 0.038085885185113
507 => 0.038428794994365
508 => 0.038390188612223
509 => 0.038749612722135
510 => 0.039337119237879
511 => 0.038142554221966
512 => 0.038349889403778
513 => 0.038299055605266
514 => 0.03885404568808
515 => 0.038855778306539
516 => 0.038523034028082
517 => 0.038703420099593
518 => 0.038602733543109
519 => 0.03878468775928
520 => 0.03808406043306
521 => 0.03893734888835
522 => 0.039421108457807
523 => 0.039427825459898
524 => 0.039657123656467
525 => 0.039890103904237
526 => 0.040337289201528
527 => 0.039877632149005
528 => 0.039050753858229
529 => 0.039110451800023
530 => 0.038625653360684
531 => 0.038633802910035
601 => 0.038590299976906
602 => 0.038720855553974
603 => 0.038112710040449
604 => 0.038255440576929
605 => 0.038055616990028
606 => 0.038349455026325
607 => 0.038033333872437
608 => 0.03829903109167
609 => 0.038413697203488
610 => 0.038836817624683
611 => 0.037970838642197
612 => 0.036205048875286
613 => 0.036576239292422
614 => 0.036027219509099
615 => 0.036078033380312
616 => 0.036180685487128
617 => 0.035847956423257
618 => 0.035911430643146
619 => 0.03590916289735
620 => 0.035889620689219
621 => 0.0358030650091
622 => 0.035677542148408
623 => 0.036177586591505
624 => 0.036262553886393
625 => 0.036451425657708
626 => 0.037013379936194
627 => 0.036957227451979
628 => 0.037048814483478
629 => 0.036848880507955
630 => 0.036087307744012
701 => 0.036128664809131
702 => 0.035612941544392
703 => 0.036438237454325
704 => 0.036242796489479
705 => 0.036116794428024
706 => 0.036082413598155
707 => 0.036645760852604
708 => 0.036814323180521
709 => 0.03670928644956
710 => 0.036493853049948
711 => 0.03690754886437
712 => 0.037018236411884
713 => 0.037043015271773
714 => 0.037776004936625
715 => 0.037083981251539
716 => 0.037250558230663
717 => 0.038550144270293
718 => 0.037371599062963
719 => 0.03799590074398
720 => 0.037965344425404
721 => 0.038284716040195
722 => 0.037939146631232
723 => 0.037943430378217
724 => 0.038227010736045
725 => 0.037828773267463
726 => 0.037730164069816
727 => 0.037593936169519
728 => 0.037891384806019
729 => 0.038069691811156
730 => 0.039506715320497
731 => 0.040435098043764
801 => 0.040394794501312
802 => 0.040763093434255
803 => 0.040597171391733
804 => 0.040061365348403
805 => 0.040975920929781
806 => 0.040686517277202
807 => 0.040710375362695
808 => 0.040709487363561
809 => 0.04090191549242
810 => 0.040765562527345
811 => 0.040496796836837
812 => 0.040675216044966
813 => 0.041205057307074
814 => 0.042849700842172
815 => 0.043770065153042
816 => 0.042794293755014
817 => 0.043467367799274
818 => 0.043063763213522
819 => 0.042990416254094
820 => 0.043413156493671
821 => 0.043836636684075
822 => 0.043809662826701
823 => 0.043502237954416
824 => 0.04332858144468
825 => 0.044643566715603
826 => 0.04561242546303
827 => 0.045546355791767
828 => 0.045837965833713
829 => 0.046694141936029
830 => 0.046772419948876
831 => 0.046762558718457
901 => 0.046568538496149
902 => 0.047411555057394
903 => 0.04811481430425
904 => 0.046523628420467
905 => 0.047129531174859
906 => 0.047401540442273
907 => 0.04780093074835
908 => 0.048474769140289
909 => 0.049206736360741
910 => 0.049310244551325
911 => 0.049236800536782
912 => 0.048754048478559
913 => 0.049554975745363
914 => 0.050024140154201
915 => 0.050303516823027
916 => 0.051011969571326
917 => 0.047403220278906
918 => 0.044848768163253
919 => 0.044449853578658
920 => 0.045261062072973
921 => 0.045474971283658
922 => 0.04538874474905
923 => 0.042513476652257
924 => 0.044434715887179
925 => 0.046501807761572
926 => 0.046581213178964
927 => 0.047616042592138
928 => 0.047953025468158
929 => 0.048786198783955
930 => 0.048734083566203
1001 => 0.048936948009916
1002 => 0.048890312987429
1003 => 0.050433591109602
1004 => 0.052136056057377
1005 => 0.052077105109743
1006 => 0.051832355630849
1007 => 0.052195850342994
1008 => 0.05395297661633
1009 => 0.053791208586456
1010 => 0.05394835244811
1011 => 0.05602010335167
1012 => 0.058713674229428
1013 => 0.057462240126615
1014 => 0.060177492039256
1015 => 0.061886599188945
1016 => 0.064842323279354
1017 => 0.064472252065986
1018 => 0.065622893764277
1019 => 0.063809747357866
1020 => 0.0596463967114
1021 => 0.05898753053493
1022 => 0.060306597305371
1023 => 0.063549394247846
1024 => 0.060204470089518
1025 => 0.060881143890309
1026 => 0.060686261790159
1027 => 0.060675877351237
1028 => 0.061072209148302
1029 => 0.060497309205384
1030 => 0.05815506341541
1031 => 0.059228500858014
1101 => 0.058813995110724
1102 => 0.059273920140792
1103 => 0.061755945840558
1104 => 0.060658583114589
1105 => 0.05950260062529
1106 => 0.060952459199921
1107 => 0.062798627390886
1108 => 0.062683097503379
1109 => 0.062458921233868
1110 => 0.063722591127614
1111 => 0.065809803571544
1112 => 0.06637396870804
1113 => 0.066790423877952
1114 => 0.066847846009815
1115 => 0.067439329655662
1116 => 0.064258773018873
1117 => 0.069306398083945
1118 => 0.070177983494855
1119 => 0.070014161561118
1120 => 0.070982892063423
1121 => 0.070697866975324
1122 => 0.070284910341735
1123 => 0.071820554242776
1124 => 0.070060062430305
1125 => 0.067561265942259
1126 => 0.066190376768327
1127 => 0.067995674219036
1128 => 0.069098106375986
1129 => 0.069826743903876
1130 => 0.07004722917956
1201 => 0.064505670576703
1202 => 0.061519077838693
1203 => 0.063433449542402
1204 => 0.065769115143804
1205 => 0.064245798278526
1206 => 0.064305509415625
1207 => 0.062133659886368
1208 => 0.065961275635526
1209 => 0.06540362421619
1210 => 0.068296720766177
1211 => 0.067606260055972
1212 => 0.069965467983126
1213 => 0.069344209470239
1214 => 0.071923018823137
1215 => 0.072951775692485
1216 => 0.07467921858934
1217 => 0.075949932616225
1218 => 0.076696120197697
1219 => 0.076651321894185
1220 => 0.079608088841156
1221 => 0.077864586674096
1222 => 0.075674337040358
1223 => 0.075634722334633
1224 => 0.076769083656023
1225 => 0.079146393788826
1226 => 0.079762795717807
1227 => 0.080107280305009
1228 => 0.079579690168114
1229 => 0.077687243523696
1230 => 0.076870094657559
1231 => 0.07756632916659
]
'min_raw' => 0.028709095909537
'max_raw' => 0.080107280305009
'avg_raw' => 0.054408188107273
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$0.028709'
'max' => '$0.0801072'
'avg' => '$0.0544081'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.011365501189496
'max_diff' => 0.041388926864421
'year' => 2036
]
11 => [
'items' => [
101 => 0.076714894190158
102 => 0.078184709829939
103 => 0.080203080639039
104 => 0.079786295048463
105 => 0.08117954678977
106 => 0.082621415767665
107 => 0.084683353164443
108 => 0.085222419953281
109 => 0.086113476856357
110 => 0.087030667106567
111 => 0.087325243895964
112 => 0.087887682388732
113 => 0.087884718060248
114 => 0.089579664314683
115 => 0.091449242521441
116 => 0.092154965013657
117 => 0.093777734970742
118 => 0.090998798287875
119 => 0.093106653683954
120 => 0.095007992014259
121 => 0.09274113807389
122 => 0.095865468121461
123 => 0.095986778777324
124 => 0.097818425654211
125 => 0.095961700643403
126 => 0.094859183258862
127 => 0.098042109637246
128 => 0.099582227450505
129 => 0.099118331431257
130 => 0.095588059819408
131 => 0.09353329032084
201 => 0.088155562207651
202 => 0.094525713458289
203 => 0.097628428312615
204 => 0.095580024537496
205 => 0.096613120253134
206 => 0.10224935549525
207 => 0.10439526895624
208 => 0.10394893395742
209 => 0.10402435722492
210 => 0.10518225317738
211 => 0.11031700149556
212 => 0.10724014128078
213 => 0.10959228562723
214 => 0.1108398545073
215 => 0.11199866601088
216 => 0.10915299120423
217 => 0.10545081009203
218 => 0.10427817392681
219 => 0.095376351151686
220 => 0.094912972617584
221 => 0.094652864204586
222 => 0.093012917453698
223 => 0.09172436852672
224 => 0.090699666579233
225 => 0.088010542667124
226 => 0.0889180430474
227 => 0.084632140795277
228 => 0.087374109173136
301 => 0.080533705692018
302 => 0.08623059697478
303 => 0.083130038055435
304 => 0.08521197998051
305 => 0.085204716281264
306 => 0.081371201116912
307 => 0.079160109573534
308 => 0.080569103161944
309 => 0.082079656134771
310 => 0.082324738272502
311 => 0.084283209631238
312 => 0.084829776890261
313 => 0.083173652578638
314 => 0.080391953534121
315 => 0.081038078778362
316 => 0.079147015866082
317 => 0.075833000850995
318 => 0.078213184291981
319 => 0.079025883568013
320 => 0.079384817866764
321 => 0.076125864716623
322 => 0.075101830881533
323 => 0.074556643860207
324 => 0.079971263606619
325 => 0.08026788869914
326 => 0.078750312787239
327 => 0.085609899811485
328 => 0.084057364004452
329 => 0.085791926881415
330 => 0.080979449684812
331 => 0.081163292794582
401 => 0.078884988966341
402 => 0.080160686873839
403 => 0.079259064710483
404 => 0.080057623089606
405 => 0.080536275689473
406 => 0.082814205670473
407 => 0.086256607276074
408 => 0.082473958893582
409 => 0.080825804824808
410 => 0.081848310339505
411 => 0.084571377269345
412 => 0.088696963059283
413 => 0.086254533236488
414 => 0.087338442116696
415 => 0.087575227987272
416 => 0.08577427065961
417 => 0.088763366924813
418 => 0.090365247896709
419 => 0.092008446311314
420 => 0.093435189453341
421 => 0.091352116729814
422 => 0.093581303140734
423 => 0.091784972397905
424 => 0.09017347802033
425 => 0.090175921992104
426 => 0.089165008028875
427 => 0.087206234841761
428 => 0.086845007013085
429 => 0.088724159795904
430 => 0.090231062371294
501 => 0.09035517808498
502 => 0.091189476778166
503 => 0.091683206150833
504 => 0.096522425195508
505 => 0.098468799127397
506 => 0.10084878832834
507 => 0.10177592825094
508 => 0.10456628701993
509 => 0.10231284569212
510 => 0.10182529948603
511 => 0.095056801831857
512 => 0.09616514294355
513 => 0.097939704002381
514 => 0.095086063690106
515 => 0.096896041650787
516 => 0.097253369640801
517 => 0.094989098084254
518 => 0.096198543356004
519 => 0.092986615289768
520 => 0.086326618530731
521 => 0.088770781405066
522 => 0.090570507976905
523 => 0.088002076254205
524 => 0.09260589070511
525 => 0.089916437344912
526 => 0.089064009746258
527 => 0.085738385771526
528 => 0.087307952272593
529 => 0.089430813439315
530 => 0.088119132047381
531 => 0.090841067885596
601 => 0.094696054946282
602 => 0.097443348294175
603 => 0.097654251364149
604 => 0.095887925795813
605 => 0.09871847379161
606 => 0.09873909124358
607 => 0.095546221541192
608 => 0.093590606626453
609 => 0.093146286803175
610 => 0.094256284835755
611 => 0.095604027364249
612 => 0.097729041694669
613 => 0.099013143349215
614 => 0.10236139942938
615 => 0.10326734152265
616 => 0.10426269721867
617 => 0.10559279938488
618 => 0.10718992806661
619 => 0.10369550143557
620 => 0.10383434152004
621 => 0.10058037982485
622 => 0.097103055088215
623 => 0.09974191110867
624 => 0.10319186432311
625 => 0.10240044124386
626 => 0.10231138998013
627 => 0.10246114950496
628 => 0.10186444234866
629 => 0.099165557995739
630 => 0.097810195169612
701 => 0.09955895900525
702 => 0.10048834915537
703 => 0.10192975222686
704 => 0.10175206887397
705 => 0.10546496839075
706 => 0.10690768887072
707 => 0.10653857923446
708 => 0.10660650429065
709 => 0.10921848080632
710 => 0.11212353588568
711 => 0.11484450332329
712 => 0.11761238826909
713 => 0.11427559493454
714 => 0.11258137706405
715 => 0.11432937744411
716 => 0.11340186383756
717 => 0.11873163213917
718 => 0.11910065373254
719 => 0.12443003663123
720 => 0.1294882556132
721 => 0.12631127889803
722 => 0.12930702484626
723 => 0.13254716833602
724 => 0.13879793082211
725 => 0.13669289392127
726 => 0.13508046864536
727 => 0.13355673455081
728 => 0.1367273833156
729 => 0.14080637229914
730 => 0.14168494745813
731 => 0.14310857485723
801 => 0.14161180471995
802 => 0.14341449948648
803 => 0.14977880415653
804 => 0.14805911285541
805 => 0.14561687475365
806 => 0.15064088205634
807 => 0.15245905076885
808 => 0.16521991097559
809 => 0.18133102411144
810 => 0.17466091748192
811 => 0.17052056705399
812 => 0.17149364761498
813 => 0.17737688073659
814 => 0.17926638849077
815 => 0.17413005506253
816 => 0.17594429486236
817 => 0.18594093453155
818 => 0.19130381098346
819 => 0.18402030443136
820 => 0.16392539872216
821 => 0.14539697793369
822 => 0.15031154947246
823 => 0.14975438957687
824 => 0.16049453179521
825 => 0.14801809878662
826 => 0.14822816992089
827 => 0.1591904069063
828 => 0.15626587001891
829 => 0.15152849480773
830 => 0.14543156601543
831 => 0.1341608292452
901 => 0.12417802338007
902 => 0.14375660458448
903 => 0.14291234056161
904 => 0.14168972114357
905 => 0.14441052835718
906 => 0.15762199587186
907 => 0.1573174287843
908 => 0.15537992836474
909 => 0.15684950535663
910 => 0.15127087085575
911 => 0.15270861198977
912 => 0.14539404293717
913 => 0.14870053363234
914 => 0.15151833052819
915 => 0.15208404497323
916 => 0.15335862850399
917 => 0.14246745178521
918 => 0.14735727038379
919 => 0.15022958069642
920 => 0.13725237820843
921 => 0.14997306312812
922 => 0.14227786062922
923 => 0.13966599332303
924 => 0.14318252856346
925 => 0.14181213136032
926 => 0.14063394431748
927 => 0.13997649570376
928 => 0.1425586510785
929 => 0.14243819044393
930 => 0.13821328307609
1001 => 0.13270206364399
1002 => 0.13455180978501
1003 => 0.13387977967052
1004 => 0.13144425584198
1005 => 0.13308550483615
1006 => 0.12585827488293
1007 => 0.11342420138715
1008 => 0.12163853120444
1009 => 0.12132228844194
1010 => 0.12116282450063
1011 => 0.12733566633091
1012 => 0.12674229002062
1013 => 0.12566530620709
1014 => 0.13142447618966
1015 => 0.12932230167425
1016 => 0.13580070819613
1017 => 0.1400678057285
1018 => 0.13898553176815
1019 => 0.14299875762201
1020 => 0.13459442420014
1021 => 0.13738600663956
1022 => 0.13796134791135
1023 => 0.13135340892605
1024 => 0.12683937372339
1025 => 0.12653833903915
1026 => 0.11871162407011
1027 => 0.12289259203154
1028 => 0.12657167081738
1029 => 0.12480967758701
1030 => 0.12425188316832
1031 => 0.12710153388253
1101 => 0.12732297614864
1102 => 0.12227406901411
1103 => 0.12332389668547
1104 => 0.12770185259438
1105 => 0.12321358342924
1106 => 0.11449360959598
1107 => 0.11233093552226
1108 => 0.11204239493484
1109 => 0.10617705132306
1110 => 0.1124754557451
1111 => 0.10972603342814
1112 => 0.11841142558428
1113 => 0.11345037616538
1114 => 0.11323651524046
1115 => 0.11291323308586
1116 => 0.10786468954491
1117 => 0.1089699997287
1118 => 0.1126442191231
1119 => 0.11395522199607
1120 => 0.11381847365569
1121 => 0.1126262134436
1122 => 0.11317202406334
1123 => 0.11141377788416
1124 => 0.11079290456356
1125 => 0.10883325757909
1126 => 0.10595311787822
1127 => 0.10635361896855
1128 => 0.10064730859157
1129 => 0.097538207841379
1130 => 0.096677649731016
1201 => 0.095526875460638
1202 => 0.096807632746948
1203 => 0.10063114333123
1204 => 0.096019178363565
1205 => 0.088112287918227
1206 => 0.088587505506677
1207 => 0.089655178334557
1208 => 0.087665577083166
1209 => 0.085782586473299
1210 => 0.087419694036721
1211 => 0.084069440320336
1212 => 0.090060040490156
1213 => 0.089898011544025
1214 => 0.092130936831105
1215 => 0.093527230837355
1216 => 0.090309225208501
1217 => 0.089499905495256
1218 => 0.089960930785451
1219 => 0.082341209685066
1220 => 0.091508243055346
1221 => 0.091587519940601
1222 => 0.090908703118651
1223 => 0.095789865387922
1224 => 0.10609064024878
1225 => 0.10221507439841
1226 => 0.10071433816156
1227 => 0.097861437478257
1228 => 0.10166275825027
1229 => 0.10137087612482
1230 => 0.10005087446053
1231 => 0.099252533335315
]
'min_raw' => 0.074556643860207
'max_raw' => 0.19130381098346
'avg_raw' => 0.13293022742184
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$0.074556'
'max' => '$0.1913038'
'avg' => '$0.13293'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 0.045847547950671
'max_diff' => 0.11119653067846
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.0023402478568032
]
1 => [
'year' => 2028
'avg' => 0.0040165447010814
]
2 => [
'year' => 2029
'avg' => 0.010972476211605
]
3 => [
'year' => 2030
'avg' => 0.0084652490565514
]
4 => [
'year' => 2031
'avg' => 0.0083139236602997
]
5 => [
'year' => 2032
'avg' => 0.014576924664575
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.0023402478568032
'min' => '$0.00234'
'max_raw' => 0.014576924664575
'max' => '$0.014576'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.014576924664575
]
1 => [
'year' => 2033
'avg' => 0.037493349164773
]
2 => [
'year' => 2034
'avg' => 0.02376508654668
]
3 => [
'year' => 2035
'avg' => 0.028030974080314
]
4 => [
'year' => 2036
'avg' => 0.054408188107273
]
5 => [
'year' => 2037
'avg' => 0.13293022742184
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.014576924664575
'min' => '$0.014576'
'max_raw' => 0.13293022742184
'max' => '$0.13293'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 0.13293022742184
]
]
]
]
'prediction_2025_max_price' => '$0.0040013'
'last_price' => 0.00387986
'sma_50day_nextmonth' => '$0.003687'
'sma_200day_nextmonth' => '—'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'decrease'
'sma_200day_direction_label' => 'diminuir'
'sma_200day_date_nextmonth' => '4 de fev. de 2026'
'sma_50day_date_nextmonth' => '4 de fev. de 2026'
'daily_sma3' => '$0.003843'
'daily_sma3_action' => 'BUY'
'daily_sma5' => '$0.003835'
'daily_sma5_action' => 'BUY'
'daily_sma10' => '$0.003846'
'daily_sma10_action' => 'BUY'
'daily_sma21' => '$0.003874'
'daily_sma21_action' => 'BUY'
'daily_sma50' => '$0.005078'
'daily_sma50_action' => 'SELL'
'daily_sma100' => '$0.007745'
'daily_sma100_action' => 'SELL'
'daily_sma200' => '—'
'daily_sma200_action' => '—'
'daily_ema3' => '$0.003855'
'daily_ema3_action' => 'BUY'
'daily_ema5' => '$0.003848'
'daily_ema5_action' => 'BUY'
'daily_ema10' => '$0.003873'
'daily_ema10_action' => 'BUY'
'daily_ema21' => '$0.00413'
'daily_ema21_action' => 'SELL'
'daily_ema50' => '$0.005377'
'daily_ema50_action' => 'SELL'
'daily_ema100' => '$0.008151'
'daily_ema100_action' => 'SELL'
'daily_ema200' => '$0.00489'
'daily_ema200_action' => 'SELL'
'weekly_sma21' => '—'
'weekly_sma21_action' => '—'
'weekly_sma50' => '—'
'weekly_sma50_action' => '—'
'weekly_sma100' => '—'
'weekly_sma100_action' => '—'
'weekly_sma200' => '—'
'weekly_sma200_action' => '—'
'weekly_ema3' => '$0.003927'
'weekly_ema3_action' => 'SELL'
'weekly_ema5' => '$0.0042059'
'weekly_ema5_action' => 'SELL'
'weekly_ema10' => '$0.005546'
'weekly_ema10_action' => 'SELL'
'weekly_ema21' => '$0.0068056'
'weekly_ema21_action' => 'SELL'
'weekly_ema50' => '$0.002858'
'weekly_ema50_action' => 'BUY'
'weekly_ema100' => '$0.001429'
'weekly_ema100_action' => 'BUY'
'weekly_ema200' => '$0.000714'
'weekly_ema200_action' => 'BUY'
'rsi_14' => '28.52'
'rsi_14_action' => 'BUY'
'stoch_rsi_14' => 109.47
'stoch_rsi_14_action' => 'SELL'
'momentum_10' => -0
'momentum_10_action' => 'BUY'
'vwma_10' => '0.003850'
'vwma_10_action' => 'BUY'
'hma_9' => '0.003844'
'hma_9_action' => 'BUY'
'stochastic_fast_14' => 88.34
'stochastic_fast_14_action' => 'SELL'
'cci_20' => 23.29
'cci_20_action' => 'NEUTRAL'
'adx_14' => 53.68
'adx_14_action' => 'SELL'
'ao_5_34' => '-0.000753'
'ao_5_34_action' => 'NEUTRAL'
'macd_12_26' => 0
'macd_12_26_action' => 'BUY'
'williams_percent_r_14' => -11.66
'williams_percent_r_14_action' => 'SELL'
'ultimate_oscillator' => 45.81
'ultimate_oscillator_action' => 'NEUTRAL'
'ichimoku_cloud' => '-0.001832'
'ichimoku_cloud_action' => 'SELL'
'sell_signals' => 11
'buy_signals' => 19
'sell_pct' => 36.67
'buy_pct' => 63.33
'overall_action' => 'bullish'
'overall_action_label' => 'Altista'
'overall_action_dir' => 1
'last_updated' => 1767711834
'last_updated_date' => '6 de janeiro de 2026'
]
Previsão de preço de Velora para 2026
A previsão de preço para Velora em 2026 sugere que o preço médio poderia variar entre $0.00134 na extremidade inferior e $0.0040013 na extremidade superior. No mercado de criptomoedas, comparado ao preço médio de hoje, Velora poderia potencialmente ganhar 3.13% até 2026 se VLR atingir a meta de preço prevista.
Previsão de preço de Velora 2027-2032
A previsão de preço de VLR para 2027-2032 está atualmente dentro de uma faixa de preço entre $0.00234 na extremidade inferior e $0.014576 na extremidade superior. Considerando a volatilidade de preços no mercado, se Velora atingir a meta de preço superior, poderia ganhar 275.71% até 2032 em comparação com o preço de hoje.
| Previsão de Preço de Velora | Potencial Mínimo ($) | Preço Médio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2027 | $0.00129 | $0.00234 | $0.00339 |
| 2028 | $0.002328 | $0.004016 | $0.0057041 |
| 2029 | $0.005115 | $0.010972 | $0.016829 |
| 2030 | $0.00435 | $0.008465 | $0.012579 |
| 2031 | $0.005144 | $0.008313 | $0.011483 |
| 2032 | $0.007852 | $0.014576 | $0.0213018 |
Previsão de preço de Velora 2032-2037
A previsão de preço de Velora para 2032-2037 é atualmente estimada entre $0.014576 na extremidade inferior e $0.13293 na extremidade superior. Comparado ao preço atual, Velora poderia potencialmente ganhar 3326.16% até 2037 se atingir a meta de preço superior. Por favor, note que esta informação é apenas para fins gerais e não deve ser considerada como aconselhamento de investimento a longo prazo.
| Previsão de Preço de Velora | Potencial Mínimo ($) | Preço Médio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2032 | $0.007852 | $0.014576 | $0.0213018 |
| 2033 | $0.018246 | $0.037493 | $0.05674 |
| 2034 | $0.014669 | $0.023765 | $0.03286 |
| 2035 | $0.017343 | $0.02803 | $0.038718 |
| 2036 | $0.028709 | $0.0544081 | $0.0801072 |
| 2037 | $0.074556 | $0.13293 | $0.1913038 |
Velora Histograma de preços potenciais
Previsão de preço de Velora baseada na análise técnica
Em 6 de janeiro de 2026, o sentimento geral de previsão de preço para Velora é Altista, com 19 indicadores técnicos mostrando sinais de alta e 11 indicando sinais de baixa. A previsão de preço de VLR foi atualizada pela última vez em 6 de janeiro de 2026.
Médias Móveis Simples de 50 e 200 dias e Índice de Força Relativa de 14 dias - RSI (14) de Velora
De acordo com nossos indicadores técnicos, o SMA de 200 dias de Velora está projetado para diminuir no próximo mês, alcançando — até 4 de fev. de 2026. O SMA de 50 dias de curto prazo para Velora é esperado para alcançar $0.003687 até 4 de fev. de 2026.
O oscilador de momentum Índice de Força Relativa (RSI) é uma ferramenta comumente usada para identificar se uma criptomoeda está sobrevendida (abaixo de 30) ou sobrecomprada (acima de 70). No momento, o RSI está em 28.52, sugerindo que o mercado de VLR está em um estado BUY.
Médias Móveis e Osciladores Populares de VLR para Sábado, 19 de Outubro de 2024
Médias móveis (MA) são indicadores amplamente utilizados nos mercados financeiros, projetados para suavizar movimentos de preços ao longo de um período definido. Como indicadores atrasados, eles se baseiam em dados históricos de preços. A tabela abaixo destaca dois tipos: a média móvel simples (SMA) e a média móvel exponencial (EMA).
Média Móvel Simples Diária (SMA)
| Período | Valor | Ação |
|---|---|---|
| SMA 3 | $0.003843 | BUY |
| SMA 5 | $0.003835 | BUY |
| SMA 10 | $0.003846 | BUY |
| SMA 21 | $0.003874 | BUY |
| SMA 50 | $0.005078 | SELL |
| SMA 100 | $0.007745 | SELL |
| SMA 200 | — | — |
Média Móvel Exponencial Diária (EMA)
| Período | Valor | Ação |
|---|---|---|
| EMA 3 | $0.003855 | BUY |
| EMA 5 | $0.003848 | BUY |
| EMA 10 | $0.003873 | BUY |
| EMA 21 | $0.00413 | SELL |
| EMA 50 | $0.005377 | SELL |
| EMA 100 | $0.008151 | SELL |
| EMA 200 | $0.00489 | SELL |
Média Móvel Simples Semanal (SMA)
| Período | Valor | Ação |
|---|---|---|
| SMA 21 | — | — |
| SMA 50 | — | — |
| SMA 100 | — | — |
| SMA 200 | — | — |
Média Móvel Exponencial Semanal (EMA)
| Período | Valor | Ação |
|---|---|---|
| EMA 21 | $0.0068056 | SELL |
| EMA 50 | $0.002858 | BUY |
| EMA 100 | $0.001429 | BUY |
| EMA 200 | $0.000714 | BUY |
Osciladores de Velora
Um oscilador é uma ferramenta de análise técnica que define limites altos e baixos entre dois extremos, criando um indicador de tendência que flutua dentro desses limites. Os traders usam esse indicador para identificar condições de sobrecompra ou sobrevenda de curto prazo.
| Período | Valor | Ação |
|---|---|---|
| RSI (14) | 28.52 | BUY |
| Stoch RSI (14) | 109.47 | SELL |
| Estocástico Rápido (14) | 88.34 | SELL |
| Índice de Canal de Commodities (20) | 23.29 | NEUTRAL |
| Índice Direcional Médio (14) | 53.68 | SELL |
| Oscilador Impressionante (5, 34) | -0.000753 | NEUTRAL |
| Momentum (10) | -0 | BUY |
| MACD (12, 26) | 0 | BUY |
| Williams Percent Range (14) | -11.66 | SELL |
| Oscilador Ultimate (7, 14, 28) | 45.81 | NEUTRAL |
| VWMA (10) | 0.003850 | BUY |
| Média Móvel de Hull (9) | 0.003844 | BUY |
| Nuvem Ichimoku B/L (9, 26, 52, 26) | -0.001832 | SELL |
Previsão do preço de Velora com base nos fluxos financeiros mundiais
Definições dos fluxos financeiros mundiais, usadas na previsão do preço do Velora
M0: o total de todas as moedas físicas, mais as contas no Banco Central que podem ser trocadas por moedas físicas.
M1: o valor de M0, mais o valor em contas de demanda, incluindo contas 'correntes'.
M2: o valor de M1, mais a maioria das contas de poupança, do mercado de moedas e de certificados de depósito (CD) de menos de US$ 100.000.
Previsões de preço de Velora por empresas de Internet ou nichos tecnológicos
| Comparação | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Facebook stock | $0.005451 | $0.00766 | $0.010764 | $0.015126 | $0.021254 | $0.029866 |
| Amazon.com stock | $0.008095 | $0.016891 | $0.035245 | $0.073542 | $0.153451 | $0.320184 |
| Apple stock | $0.0055032 | $0.0078059 | $0.011072 | $0.015705 | $0.022276 | $0.031597 |
| Netflix stock | $0.006121 | $0.009659 | $0.01524 | $0.024047 | $0.037943 | $0.059868 |
| Google stock | $0.005024 | $0.0065065 | $0.008425 | $0.010911 | $0.01413 | $0.018298 |
| Tesla stock | $0.008795 | $0.019938 | $0.045198 | $0.102462 | $0.232274 | $0.526548 |
| Kodak stock | $0.0029094 | $0.002181 | $0.001636 | $0.001226 | $0.00092 | $0.000689 |
| Nokia stock | $0.00257 | $0.0017026 | $0.001127 | $0.000747 | $0.000495 | $0.000327 |
Este cálculo mostra quanto a criptomoeda pode custar, se assumirmos que sua capitalização se comportará da mesma forma que a de algumas empresas de Internet ou nichos tecnológicos. Se você extrapolar os dados, poderá obter uma imagem em potencial do preço futuro para 2024, 2025, 2026, 2027, 2028, 2029 e 2030.
Visão geral da previsão para Velora
Você pode fazer perguntas como: 'Devo investir em Velora agora?', 'Devo comprar VLR hoje?', 'Velora será um bom ou mau investimento no curto ou no longo prazo?'.
Atualizamos a previsão para Velora regularmente com novos valores. Veja nossas previsões semelhantes. Fazemos previsões de preços futuros para uma enorme quantidade de moedas digitais, como Velora, com métodos de análise técnica.
Se você estiver tentando encontrar criptomoedas com bom retorno, você deve explorar o máximo de fontes de informações disponíveis sobre Velora para poder tomar sozinho uma decisão de tão grande responsabilidade sobre o seu investimento.
O preço de Velora é de $0.003879 USD hoje, mas o preço pode tanto subir quanto descer e seu investimento pode ser perdido, porque criptomoedas são ativos de alto risco
Previsão de curto prazo para Velora
com base no histórico de preços de 4 horas
Previsão de longo prazo para Velora
com base no histórico de preços de 1 mês
Previsão do preço de Velora com base no padrão de crescimento do Bitcoin
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| Se Velora tiver 1% da média anterior do crescimento anual do Bitcoin | $0.00398 | $0.004084 | $0.00419 | $0.004299 |
| Se Velora tiver 2% da média anterior do crescimento anual do Bitcoin | $0.004081 | $0.004293 | $0.004516 | $0.004751 |
| Se Velora tiver 5% da média anterior do crescimento anual do Bitcoin | $0.004384 | $0.004953 | $0.005597 | $0.006325 |
| Se Velora tiver 10% da média anterior do crescimento anual do Bitcoin | $0.004888 | $0.006159 | $0.007759 | $0.009776 |
| Se Velora tiver 20% da média anterior do crescimento anual do Bitcoin | $0.005896 | $0.008962 | $0.013621 | $0.020703 |
| Se Velora tiver 50% da média anterior do crescimento anual do Bitcoin | $0.008922 | $0.020518 | $0.047185 | $0.10851 |
| Se Velora tiver 100% da média anterior do crescimento anual do Bitcoin | $0.013964 | $0.050264 | $0.180916 | $0.651176 |
Perguntas Frequentes sobre Velora
VLR é um bom investimento?
A decisão de adquirir Velora depende inteiramente da sua tolerância individual ao risco. Como você pode perceber, o valor de Velora experimentou uma escalada de 0.8366% nas últimas 24 horas, e Velora registrou um declínio de durante os últimos 30 dias. Consequentemente, a decisão de investir ou não em Velora dependerá de quão alinhado esse investimento está com suas aspirações de negociação.
Velora pode subir?
Parece que o valor médio de Velora pode potencialmente subir para $0.0040013 até o final deste ano. Observando as perspectivas de Velora em um horizonte de cinco anos mais longo, a moeda digital poderia potencialmente crescer até $0.012579. No entanto, dada a imprevisibilidade do mercado, é vital conduzir uma pesquisa aprofundada antes de investir quaisquer fundos em um projeto, rede ou ativo específico.
Qual será o preço de Velora na próxima semana?
Com base na nossa nova previsão experimental de Velora, o preço de Velora aumentará 0.86% na próxima semana e atingirá $0.003913 até 13 de janeiro de 2026.
Qual será o preço de Velora no próximo mês?
Com base na nossa nova previsão experimental de Velora, o preço de Velora diminuirá -11.62% no próximo mês e atingirá $0.003429 até 5 de fevereiro de 2026.
Até onde o preço de Velora pode subir este ano em 2026?
De acordo com nossa previsão mais recente sobre o valor de Velora em 2026, espera-se que VLR fluctue dentro do intervalo de $0.00134 e $0.0040013. No entanto, é crucial lembrar que o mercado de criptomoedas é excepcionalmente instável, e essa previsão de preço de Velora não considera flutuações repentinas e extremas de preço.
Onde estará Velora em 5 anos?
O futuro de Velora parece seguir uma tendência de alta, com um preço máximo de $0.012579 projetada após um período de cinco anos. Com base na previsão de Velora para 2030, o valor de Velora pode potencialmente atingir seu pico mais alto de aproximadamente $0.012579, enquanto seu pico mais baixo está previsto para cerca de $0.00435.
Quanto será Velora em 2026?
Com base na nossa nova simulação experimental de previsão de preços de Velora, espera-se que o valor de VLR em 2026 aumente 3.13% para $0.0040013 se o melhor cenário ocorrer. O preço ficará entre $0.0040013 e $0.00134 durante 2026.
Quanto será Velora em 2027?
De acordo com nossa última simulação experimental para previsão de preços de Velora, o valor de VLR pode diminuir -12.62% para $0.00339 em 2027, assumindo as condições mais favoráveis. O preço está projetado para flutuar entre $0.00339 e $0.00129 ao longo do ano.
Quanto será Velora em 2028?
Nosso novo modelo experimental de previsão de preços de Velora sugere que o valor de VLR em 2028 pode aumentar 47.02%, alcançando $0.0057041 no melhor cenário. O preço é esperado para variar entre $0.0057041 e $0.002328 durante o ano.
Quanto será Velora em 2029?
Com base no nosso modelo de previsão experimental, o valor de Velora pode experimentar um 333.75% crescimento em 2029, potencialmente alcançando $0.016829 sob condições ótimas. A faixa de preço prevista para 2029 está entre $0.016829 e $0.005115.
Quanto será Velora em 2030?
Usando nossa nova simulação experimental para previsões de preços de Velora, espera-se que o valor de VLR em 2030 aumente 224.23%, alcançando $0.012579 no melhor cenário. O preço está previsto para variar entre $0.012579 e $0.00435 ao longo de 2030.
Quanto será Velora em 2031?
Nossa simulação experimental indica que o preço de Velora poderia aumentar 195.98% em 2031, potencialmente atingindo $0.011483 sob condições ideais. O preço provavelmente oscilará entre $0.011483 e $0.005144 durante o ano.
Quanto será Velora em 2032?
Com base nos achados da nossa mais recente previsão experimental de preços de Velora, VLR poderia ver um 449.04% aumento em valor, atingindo $0.0213018 se o cenário mais positivo se desenrolar em 2032. O preço é esperado para permanecer dentro de uma faixa de $0.0213018 e $0.007852 ao longo do ano.
Quanto será Velora em 2033?
De acordo com nossa previsão experimental de preços de Velora, espera-se que o valor de VLR seja aumentar 1362.43% em 2033, com o preço potencial mais alto sendo $0.05674. Ao longo do ano, o preço de VLR poderia variar entre $0.05674 e $0.018246.
Quanto será Velora em 2034?
Os resultados da nossa nova simulação de previsão de preços de Velora sugerem que VLR pode aumentar 746.96% em 2034, atingindo potencialmente $0.03286 nas melhores circunstâncias. A faixa de preço prevista para o ano é entre $0.03286 e $0.014669.
Quanto será Velora em 2035?
Com base em nossa previsão experimental para o preço de Velora, VLR poderia aumentar 897.93%, com o valor potencialmente atingindo $0.038718 em 2035. A faixa de preço esperada para o ano está entre $0.038718 e $0.017343.
Quanto será Velora em 2036?
Nossa recente simulação de previsão de preços de Velora sugere que o valor de VLR pode aumentar 1964.7% em 2036, possivelmente atingindo $0.0801072 se as condições forem ideais. A faixa de preço esperada para 2036 está entre $0.0801072 e $0.028709.
Quanto será Velora em 2037?
De acordo com a simulação experimental, o valor de Velora poderia aumentar 4830.69% em 2037, com um pico de $0.1913038 sob condições favoráveis. O preço é esperado para cair entre $0.1913038 e $0.074556 ao longo do ano.
Previsões relacionadas
Como ler e prever os movimentos de preço de Velora?
Traders de Velora utilizam indicadores e padrões de gráfico para prever a direção do mercado. Eles também identificam níveis-chave de suporte e resistência para avaliar quando uma tendência de baixa pode desacelerar ou uma tendência de alta pode estagnar.
Indicadores de Previsão de Preço de Velora
Médias móveis são ferramentas populares para a previsão de preço de Velora. Uma média móvel simples (SMA) calcula o preço médio de fechamento de VLR em um período específico, como uma SMA de 12 dias. Uma média móvel exponencial (EMA) dá mais peso aos preços recentes, reagindo mais rapidamente às mudanças de preço.
Médias móveis comumente usadas no mercado de criptomoedas incluem as de 50 dias, 100 dias e 200 dias, que ajudam a identificar níveis-chave de resistência e suporte. Um movimento de preço de VLR acima dessas médias é visto como altista, enquanto uma queda abaixo indica fraqueza.
Traders também usam RSI e níveis de retração de Fibonacci para avaliar a direção futura de VLR.
Como ler gráficos de Velora e prever movimentos de preço?
A maioria dos traders prefere gráficos de velas em vez de gráficos de linha simples porque eles fornecem informações mais detalhadas. Velas podem representar a ação de preço de Velora em diferentes períodos de tempo, como 5 minutos para tendências de curto prazo e semanal para tendências de longo prazo. Opções populares incluem gráficos de 1 hora, 4 horas e 1 dia.
Por exemplo, um gráfico de velas de 1 hora mostra os preços de abertura, fechamento, máximo e mínimo de VLR dentro de cada hora. A cor da vela é crucial: verde indica que o preço fechou mais alto do que abriu, enquanto vermelho significa o oposto. Alguns gráficos usam velas vazias e preenchidas para transmitir a mesma informação.
O que afeta o preço de Velora?
A ação de preço de Velora é impulsionada pela oferta e demanda, influenciada por fatores como reduções pela metade das recompensas de bloco, hard forks e atualizações de protocolo. Eventos do mundo real, como regulamentações, adoção por empresas e governos e hacks de exchanges de criptomoedas, também impactam o preço de VLR. A capitalização de mercado de Velora pode mudar rapidamente.
Traders frequentemente monitoram a atividade de "baleias" de VLR, grandes detentores de Velora, pois suas ações podem influenciar significativamente os movimentos de preço no relativamente pequeno mercado de Velora.
Padrões de previsão de preço altistas e baixistas
Traders frequentemente identificam padrões de velas para ganhar vantagem em previsões de preço de criptomoedas. Certas formações indicam tendências altistas, enquanto outras sugerem movimentos baixistas.
Padrões de velas altistas comumente seguidos:
- Martelo
- Engolfo de Alta
- Linha de Perfuração
- Estrela da Manhã
- Três Soldados Brancos
Padrões de velas baixistas comuns:
- Harami de Baixa
- Nuvem Negra
- Estrela da Noite
- Estrela Cadente
- Homem Enforcado


