Previsão de Preço SuperWalk GRND - Projeção GRND
Previsão de Preço SuperWalk GRND até $0.0372062 até 2026
| Ano | Preço Mínimo | Preço Máximo |
|---|---|---|
| 2026 | $0.012464 | $0.0372062 |
| 2027 | $0.011999 | $0.031521 |
| 2028 | $0.021654 | $0.053039 |
| 2029 | $0.047569 | $0.156481 |
| 2030 | $0.040455 | $0.116969 |
| 2031 | $0.047831 | $0.106779 |
| 2032 | $0.07301 | $0.19807 |
| 2033 | $0.16966 | $0.527588 |
| 2034 | $0.136399 | $0.30555 |
| 2035 | $0.161266 | $0.360015 |
Calculadora de lucro do investimento
Se você abrir um short de $10,000.00 em SuperWalk GRND hoje e fechar em Apr 06, 2026, nossa previsão mostra que pode lucrar cerca de $3,954.45, com um retorno de 39.54% nos próximos 90 dias.
Previsão de preço de longo prazo de SuperWalk GRND para os anos 2027, 2028, 2029, 2030, 2031, 2032 e 2037
[
'name' => 'SuperWalk GRND'
'name_with_ticker' => 'SuperWalk GRND <small>GRND</small>'
'name_lang' => 'SuperWalk GRND'
'name_lang_with_ticker' => 'SuperWalk GRND <small>GRND</small>'
'name_with_lang' => 'SuperWalk GRND'
'name_with_lang_with_ticker' => 'SuperWalk GRND <small>GRND</small>'
'image' => '/uploads/coins/superwalk.png?1717234101'
'price_for_sd' => 0.03607
'ticker' => 'GRND'
'marketcap' => '$25.35M'
'low24h' => '$0.03575'
'high24h' => '$0.03623'
'volume24h' => '$107.41K'
'current_supply' => '707.66M'
'max_supply' => '987.52M'
'algo' => null
'proof' => null
'ico_price_and_roi' => '—'
'price' => '$0.03607'
'change_24h_pct' => '-0.3638%'
'ath_price' => '$0.3848'
'ath_days' => 1045
'ath_exchange' => null
'ath_pair' => null
'ath_date' => '26 de fev. de 2023'
'ath_pct' => '-90.64%'
'fdv' => '$35.37M'
'new_prediction' => true
'change_24h_pct_is_increased' => false
'change_30d_pct' => null
'change_30d_pct_is_increased' => false
'max_price' => '$1.77'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.036384'
'next_week_prediction_price_date' => '13 de janeiro de 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.031884'
'next_month_prediction_price_date' => '5 de fevereiro de 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.012464'
'current_year_max_price_prediction' => '$0.0372062'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.040455'
'grand_prediction_max_price' => '$0.116969'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.036759753687456
107 => 0.036897001263934
108 => 0.037206227061775
109 => 0.034563926475744
110 => 0.035750241865002
111 => 0.036447091013472
112 => 0.033298701209098
113 => 0.036384857469884
114 => 0.034517929901129
115 => 0.033884266643983
116 => 0.034737410740945
117 => 0.034404939656649
118 => 0.034119100541728
119 => 0.033959597404263
120 => 0.034586052270994
121 => 0.034556827402686
122 => 0.033531825651064
123 => 0.03219475265049
124 => 0.032643518237408
125 => 0.032480477492481
126 => 0.031889596800191
127 => 0.032287779043588
128 => 0.03053438595909
129 => 0.027517764290655
130 => 0.029510636966444
131 => 0.029433913536254
201 => 0.029395226103622
202 => 0.030892814840523
203 => 0.03074885623872
204 => 0.030487569966802
205 => 0.031884798072904
206 => 0.031374791018807
207 => 0.03294651258676
208 => 0.033981750063991
209 => 0.033719180353341
210 => 0.034692826204414
211 => 0.032653856890152
212 => 0.033331120707099
213 => 0.033470703841125
214 => 0.031867556494961
215 => 0.030772409646341
216 => 0.030699375837127
217 => 0.028800542122152
218 => 0.029814883765841
219 => 0.030707462435978
220 => 0.030279986519886
221 => 0.03014466041533
222 => 0.030836012134852
223 => 0.030889736084486
224 => 0.029664824339424
225 => 0.029919522279133
226 => 0.030981655027726
227 => 0.02989275925902
228 => 0.027777212650538
301 => 0.027252527841914
302 => 0.027182525216584
303 => 0.02575953840232
304 => 0.027287589789705
305 => 0.02662055440988
306 => 0.028727711182435
307 => 0.02752411453486
308 => 0.027472229888981
309 => 0.027393798636913
310 => 0.02616897510303
311 => 0.026437133615354
312 => 0.027328533352013
313 => 0.02764659482039
314 => 0.027613418403438
315 => 0.027324165007002
316 => 0.027456583730673
317 => 0.027030016883987
318 => 0.026879387252201
319 => 0.02640395870034
320 => 0.025705210069594
321 => 0.025802375352373
322 => 0.02441797147734
323 => 0.023663674770347
324 => 0.023454895383322
325 => 0.023175706861501
326 => 0.023486430469754
327 => 0.024414049635103
328 => 0.023295144116308
329 => 0.02137685908643
330 => 0.021492151285324
331 => 0.021751178625679
401 => 0.021268482890566
402 => 0.020811651886863
403 => 0.021208829380712
404 => 0.020396026725248
405 => 0.021849401943381
406 => 0.021810092216767
407 => 0.022351820621967
408 => 0.022690574511124
409 => 0.021909856469491
410 => 0.021713507993306
411 => 0.021825357008882
412 => 0.019976741928179
413 => 0.022200749330858
414 => 0.02221998263923
415 => 0.022055295376066
416 => 0.023239510659468
417 => 0.025738574273454
418 => 0.024798326017271
419 => 0.024434233473323
420 => 0.023742093281128
421 => 0.02466432899201
422 => 0.024593515678533
423 => 0.024273271019836
424 => 0.024079586051032
425 => 0.024436456544758
426 => 0.024035365847548
427 => 0.023963318937094
428 => 0.023526793047553
429 => 0.023370973165649
430 => 0.023255610328456
501 => 0.023128607180024
502 => 0.023408744478252
503 => 0.022773916505338
504 => 0.022008376202958
505 => 0.021944729810076
506 => 0.022120463096671
507 => 0.022042714199157
508 => 0.021944357578267
509 => 0.021756568003155
510 => 0.021700854847709
511 => 0.021881895574729
512 => 0.021677511149253
513 => 0.021979091502438
514 => 0.021897078333574
515 => 0.021438959439117
516 => 0.020867973679286
517 => 0.02086289070834
518 => 0.020739872762989
519 => 0.020583190913712
520 => 0.020539605607638
521 => 0.021175380199998
522 => 0.022491414579049
523 => 0.022233045540408
524 => 0.022419743649551
525 => 0.023338113564622
526 => 0.023630035744276
527 => 0.023422836295713
528 => 0.023139208911015
529 => 0.023151687076508
530 => 0.024120927709871
531 => 0.024181378059279
601 => 0.024334116590211
602 => 0.024530428766363
603 => 0.02345626910819
604 => 0.023101094253206
605 => 0.022932792702564
606 => 0.022414489067484
607 => 0.022973435101923
608 => 0.022647761184111
609 => 0.022691705722229
610 => 0.02266308678413
611 => 0.022678714659536
612 => 0.021848995695388
613 => 0.022151301677178
614 => 0.021648659349242
615 => 0.020975677696384
616 => 0.020973421625906
617 => 0.02113813293203
618 => 0.021040156201993
619 => 0.020776503340676
620 => 0.02081395398522
621 => 0.020485846931597
622 => 0.0208537921221
623 => 0.020864343473592
624 => 0.020722664533139
625 => 0.02128953486576
626 => 0.021521782103557
627 => 0.021428525989893
628 => 0.02151523900602
629 => 0.02224378194043
630 => 0.022362566227295
701 => 0.022415322361071
702 => 0.02234463613066
703 => 0.021528555433456
704 => 0.02156475208262
705 => 0.021299165087909
706 => 0.021074772064245
707 => 0.021083746608405
708 => 0.02119911379162
709 => 0.021702929046912
710 => 0.022763178550143
711 => 0.022803414243758
712 => 0.022852181078178
713 => 0.022653821854345
714 => 0.022593994814395
715 => 0.022672922122759
716 => 0.023071096090902
717 => 0.024095307640143
718 => 0.023733282873852
719 => 0.023438951103606
720 => 0.023697159417387
721 => 0.023657410271384
722 => 0.023321887476993
723 => 0.023312470469647
724 => 0.022668494954083
725 => 0.022430431868592
726 => 0.022231488535643
727 => 0.02201424760961
728 => 0.021885459906675
729 => 0.022083336351347
730 => 0.022128593035448
731 => 0.021695932730886
801 => 0.021636962730109
802 => 0.021990282474436
803 => 0.021834799628045
804 => 0.021994717591347
805 => 0.022031819930584
806 => 0.022025845599427
807 => 0.021863503650704
808 => 0.021966975567714
809 => 0.021722233637523
810 => 0.021456113547491
811 => 0.021286345509917
812 => 0.021138200380672
813 => 0.021220399908623
814 => 0.020927373600519
815 => 0.020833628587103
816 => 0.021931921610423
817 => 0.022743242475389
818 => 0.022731445548694
819 => 0.022659634791362
820 => 0.022552938572247
821 => 0.023063290597904
822 => 0.022885494156976
823 => 0.023014855923141
824 => 0.023047783921926
825 => 0.02314744705697
826 => 0.023183068061412
827 => 0.023075396645609
828 => 0.022714038223218
829 => 0.021813567391548
830 => 0.021394395788631
831 => 0.021256062177813
901 => 0.021261090341833
902 => 0.021122391131441
903 => 0.021163244264964
904 => 0.021108184078806
905 => 0.021003913406714
906 => 0.021213961488448
907 => 0.021238167573135
908 => 0.02118913984097
909 => 0.021200687646725
910 => 0.020794758964422
911 => 0.020825620840506
912 => 0.020653777992729
913 => 0.020621559530367
914 => 0.020187155775254
915 => 0.01941754655524
916 => 0.019843984770902
917 => 0.019328907372669
918 => 0.019133839757262
919 => 0.020057259509361
920 => 0.019964573777927
921 => 0.019805936095232
922 => 0.019571277899535
923 => 0.019484240892143
924 => 0.018955431587797
925 => 0.018924186713009
926 => 0.019186278883295
927 => 0.019065332364749
928 => 0.018895477646682
929 => 0.018280281075739
930 => 0.017588596445414
1001 => 0.017609474056629
1002 => 0.017829486068285
1003 => 0.018469200664838
1004 => 0.01821925310479
1005 => 0.018037913282157
1006 => 0.018003953784433
1007 => 0.018429027997474
1008 => 0.019030597064726
1009 => 0.019312839811732
1010 => 0.019033145821289
1011 => 0.018711848424862
1012 => 0.018731404308634
1013 => 0.018861500842177
1014 => 0.018875172148386
1015 => 0.018666040573218
1016 => 0.018724909886633
1017 => 0.018635482016433
1018 => 0.018086663342089
1019 => 0.018076736952593
1020 => 0.017942047999013
1021 => 0.017937969671027
1022 => 0.017708830161252
1023 => 0.017676771959868
1024 => 0.017221801555437
1025 => 0.017521264453411
1026 => 0.017320400463957
1027 => 0.017017651052826
1028 => 0.016965456940234
1029 => 0.016963887922183
1030 => 0.017274743873885
1031 => 0.017517631920626
1101 => 0.017323894579051
1102 => 0.017279784341815
1103 => 0.017750766273704
1104 => 0.017690829529776
1105 => 0.017638924696084
1106 => 0.018976733152821
1107 => 0.017917753368818
1108 => 0.01745597773854
1109 => 0.016884442707257
1110 => 0.017070537395373
1111 => 0.017109750280458
1112 => 0.015735311557155
1113 => 0.015177701938287
1114 => 0.014986351330166
1115 => 0.014876226349892
1116 => 0.014926411686266
1117 => 0.014424497628199
1118 => 0.014761792176112
1119 => 0.014327177027566
1120 => 0.014254312383552
1121 => 0.015031458107638
1122 => 0.015139593395126
1123 => 0.014678254663705
1124 => 0.014974508813233
1125 => 0.014867082940373
1126 => 0.014334627256866
1127 => 0.014314291366235
1128 => 0.014047123820974
1129 => 0.01362905834647
1130 => 0.013437991206428
1201 => 0.013338481780972
1202 => 0.013379541309315
1203 => 0.013358780355343
1204 => 0.013223301087422
1205 => 0.013366545868394
1206 => 0.013000614645842
1207 => 0.012854897884514
1208 => 0.012789081004025
1209 => 0.012464295981795
1210 => 0.012981173384718
1211 => 0.013083004744544
1212 => 0.013185036743605
1213 => 0.014073155635235
1214 => 0.014028787725207
1215 => 0.01442985202381
1216 => 0.014414267402676
1217 => 0.014299877367904
1218 => 0.013817284627446
1219 => 0.014009637492404
1220 => 0.013417605272335
1221 => 0.013861196065888
1222 => 0.013658759752505
1223 => 0.013792752144701
1224 => 0.013551821741926
1225 => 0.013685162574594
1226 => 0.013107152737653
1227 => 0.012567415284735
1228 => 0.012784621391707
1229 => 0.013020749270518
1230 => 0.013532734676044
1231 => 0.013227800392301
]
'min_raw' => 0.012464295981795
'max_raw' => 0.037206227061775
'avg_raw' => 0.024835261521785
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.012464'
'max' => '$0.0372062'
'avg' => '$0.024835'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.023611834018205
'max_diff' => 0.0011300970617748
'year' => 2026
]
1 => [
'items' => [
101 => 0.013337466291577
102 => 0.012970103886852
103 => 0.012212130314022
104 => 0.012216420362128
105 => 0.0120998226413
106 => 0.011999065186959
107 => 0.013262825762967
108 => 0.013105657158242
109 => 0.012855229556331
110 => 0.013190436853086
111 => 0.013279070982803
112 => 0.013281594271871
113 => 0.013526152862631
114 => 0.013656673826358
115 => 0.013679678711926
116 => 0.014064496938524
117 => 0.014193482932205
118 => 0.014724757985394
119 => 0.013645600034485
120 => 0.013623375486646
121 => 0.013195153907175
122 => 0.01292356901156
123 => 0.013213749557329
124 => 0.013470809907286
125 => 0.013203141488802
126 => 0.013238093333467
127 => 0.012878770350964
128 => 0.013007211409491
129 => 0.013117842151974
130 => 0.013056758358549
131 => 0.012965312963304
201 => 0.013449733890067
202 => 0.013422400962918
203 => 0.013873504866709
204 => 0.014225172618464
205 => 0.014855424097738
206 => 0.014197723823363
207 => 0.014173754611243
208 => 0.014408057504499
209 => 0.014193447061652
210 => 0.014329073453431
211 => 0.014833572589247
212 => 0.014844231861007
213 => 0.014665675325323
214 => 0.0146548101439
215 => 0.014689103879772
216 => 0.014889963361923
217 => 0.014819776887071
218 => 0.014900998452674
219 => 0.015002567264169
220 => 0.015422698932796
221 => 0.015523991255753
222 => 0.015277903425016
223 => 0.015300122400803
224 => 0.015208078796845
225 => 0.015119165828725
226 => 0.015319029196363
227 => 0.015684283429046
228 => 0.015682011201421
301 => 0.015766743083876
302 => 0.015819530344688
303 => 0.015592928778645
304 => 0.015445419491521
305 => 0.015501983938464
306 => 0.015592431720939
307 => 0.015472652941632
308 => 0.014733322828818
309 => 0.014957588356455
310 => 0.014920259606632
311 => 0.014867098927553
312 => 0.015092599649787
313 => 0.015070849555015
314 => 0.014419349774079
315 => 0.014461056676268
316 => 0.014421886108939
317 => 0.014548454225526
318 => 0.014186611967996
319 => 0.014297912209367
320 => 0.01436771867738
321 => 0.014408835223319
322 => 0.014557376381127
323 => 0.014539946790714
324 => 0.014556292933315
325 => 0.014776540256934
326 => 0.015890475640042
327 => 0.015951104685185
328 => 0.015652545092871
329 => 0.015771813761173
330 => 0.015542843999223
331 => 0.015696552934384
401 => 0.015801716684037
402 => 0.01532650192118
403 => 0.015298362787042
404 => 0.015068447985436
405 => 0.015191991176779
406 => 0.014995425076283
407 => 0.015043655521754
408 => 0.014908798991561
409 => 0.015151513896242
410 => 0.015422906873757
411 => 0.015491471457511
412 => 0.015311107556564
413 => 0.015180512205718
414 => 0.014951229790415
415 => 0.015332531556955
416 => 0.015444035813453
417 => 0.015331945872565
418 => 0.015305972184047
419 => 0.015256752091241
420 => 0.015316414459415
421 => 0.015443428537325
422 => 0.015383531043764
423 => 0.015423094393519
424 => 0.015272319701803
425 => 0.015593003793192
426 => 0.016102327307147
427 => 0.016103964865527
428 => 0.016044067049097
429 => 0.01601955815313
430 => 0.016081016947691
501 => 0.016114355822569
502 => 0.016313102294564
503 => 0.016526365177423
504 => 0.017521569997843
505 => 0.017242120466645
506 => 0.018125125388321
507 => 0.018823467637528
508 => 0.01903286994326
509 => 0.018840229675126
510 => 0.018181217724066
511 => 0.018148883453764
512 => 0.019133725536318
513 => 0.018855462539372
514 => 0.01882236404131
515 => 0.018470251942733
516 => 0.018678393802924
517 => 0.018632870124844
518 => 0.018561008771899
519 => 0.018958128941855
520 => 0.019701502448851
521 => 0.019585640716473
522 => 0.019499155307924
523 => 0.019120201423186
524 => 0.019348416304213
525 => 0.019267153356247
526 => 0.019616310551448
527 => 0.01940947756379
528 => 0.01885335442349
529 => 0.018941918866589
530 => 0.018928532529182
531 => 0.01920402240446
601 => 0.019121327181981
602 => 0.018912384959782
603 => 0.019698961679019
604 => 0.019647885762042
605 => 0.019720299734736
606 => 0.019752178604992
607 => 0.020230953992956
608 => 0.020427092950301
609 => 0.020471619927514
610 => 0.02065793676706
611 => 0.020466984194815
612 => 0.021230930630672
613 => 0.021738910433007
614 => 0.02232895511382
615 => 0.023191168981546
616 => 0.023515369371736
617 => 0.023456805473053
618 => 0.024110526187253
619 => 0.025285247779275
620 => 0.023694250293377
621 => 0.025369574509271
622 => 0.024839186205067
623 => 0.023581645077078
624 => 0.023500674253871
625 => 0.024352295706098
626 => 0.026241110121611
627 => 0.025767983533281
628 => 0.026241883987216
629 => 0.025689053934996
630 => 0.025661601263285
701 => 0.02621503426552
702 => 0.027508160641303
703 => 0.026893844772286
704 => 0.026013072337619
705 => 0.02666342099704
706 => 0.026100028801322
707 => 0.024830548500823
708 => 0.025767621742295
709 => 0.025141027552032
710 => 0.02532390104833
711 => 0.026640908837411
712 => 0.026482442975858
713 => 0.026687512474251
714 => 0.026325570177191
715 => 0.025987458998676
716 => 0.025356349375511
717 => 0.02516950892942
718 => 0.025221144906904
719 => 0.025169483341194
720 => 0.02481638330723
721 => 0.024740131388514
722 => 0.024613041516649
723 => 0.024652431982161
724 => 0.0244134658416
725 => 0.024864444321763
726 => 0.02494814990169
727 => 0.025276334431068
728 => 0.025310407637619
729 => 0.026224396880523
730 => 0.025720986964497
731 => 0.026058717798488
801 => 0.02602850797385
802 => 0.023608899806519
803 => 0.023942300463594
804 => 0.024460967259112
805 => 0.024227308570768
806 => 0.023896969853161
807 => 0.023630203627052
808 => 0.023226025516249
809 => 0.02379489844565
810 => 0.024542905854921
811 => 0.025329378339918
812 => 0.026274273498923
813 => 0.026063383899226
814 => 0.025311714182176
815 => 0.025345433536588
816 => 0.025553873317484
817 => 0.025283924862472
818 => 0.025204311793069
819 => 0.02554293570429
820 => 0.025545267621062
821 => 0.02523465929921
822 => 0.024889474990194
823 => 0.024888028655336
824 => 0.024826606441631
825 => 0.025699980810363
826 => 0.026180248405058
827 => 0.026235310310799
828 => 0.026176542300091
829 => 0.026199159774994
830 => 0.025919702643615
831 => 0.026558458775508
901 => 0.027144644568567
902 => 0.026987534253994
903 => 0.026752003557903
904 => 0.02656439201377
905 => 0.026943338936577
906 => 0.026926465026623
907 => 0.027139524747042
908 => 0.027129859127431
909 => 0.027058215157036
910 => 0.026987536812626
911 => 0.027267768459092
912 => 0.027187066245292
913 => 0.027106238678664
914 => 0.02694412661971
915 => 0.026966160340918
916 => 0.026730670312522
917 => 0.026621721850095
918 => 0.024983398379112
919 => 0.024545584813901
920 => 0.024683329874033
921 => 0.024728679124378
922 => 0.024538142099725
923 => 0.024811323248131
924 => 0.024768748255523
925 => 0.024934382646226
926 => 0.024830901469924
927 => 0.024835148373495
928 => 0.025139464448486
929 => 0.025227808699709
930 => 0.025182876100511
1001 => 0.02521434535279
1002 => 0.02593954098921
1003 => 0.025836441360162
1004 => 0.025781671737082
1005 => 0.025796843296977
1006 => 0.025982146330452
1007 => 0.026034021062655
1008 => 0.02581422417714
1009 => 0.02591788165898
1010 => 0.026359242060558
1011 => 0.026513693222276
1012 => 0.027006627189714
1013 => 0.026797220079144
1014 => 0.027181595893523
1015 => 0.028363036103554
1016 => 0.029306852292771
1017 => 0.028438879920313
1018 => 0.030172078157543
1019 => 0.031521621597747
1020 => 0.03146982387273
1021 => 0.031234499758428
1022 => 0.029698080431224
1023 => 0.02828424445961
1024 => 0.029466978284512
1025 => 0.029469993316263
1026 => 0.029368395431789
1027 => 0.028737379696979
1028 => 0.029346437452024
1029 => 0.029394782244846
1030 => 0.029367722016784
1031 => 0.028883923732399
1101 => 0.028145253173013
1102 => 0.02828958763219
1103 => 0.028526010420664
1104 => 0.028078412759122
1105 => 0.02793537818536
1106 => 0.028201306671424
1107 => 0.029058183661922
1108 => 0.028896196030418
1109 => 0.028891965878716
1110 => 0.029585017659733
1111 => 0.029088942154461
1112 => 0.028291408151943
1113 => 0.028090020298126
1114 => 0.02737522908819
1115 => 0.027868937922892
1116 => 0.02788670562492
1117 => 0.027616306341735
1118 => 0.028313349563518
1119 => 0.028306926187517
1120 => 0.028968664985407
1121 => 0.030233661029231
1122 => 0.029859539452398
1123 => 0.029424476762852
1124 => 0.029471780140185
1125 => 0.02999058143485
1126 => 0.029676902329014
1127 => 0.029789703522521
1128 => 0.029990410696734
1129 => 0.030111502318215
1130 => 0.029454356919349
1201 => 0.029301144891975
1202 => 0.028987726854083
1203 => 0.028905961938221
1204 => 0.029161234390403
1205 => 0.029093979118162
1206 => 0.027885212318364
1207 => 0.02775888946227
1208 => 0.027762763603919
1209 => 0.027445118775947
1210 => 0.026960634169795
1211 => 0.028233830787689
1212 => 0.028131575280897
1213 => 0.028018693115346
1214 => 0.028032520536529
1215 => 0.02858517203572
1216 => 0.02826460625662
1217 => 0.029116882920056
1218 => 0.028941680459835
1219 => 0.028761984717609
1220 => 0.028737145292367
1221 => 0.02866797776253
1222 => 0.028430776566616
1223 => 0.028144341868967
1224 => 0.02795521287103
1225 => 0.025787206166564
1226 => 0.026189575600198
1227 => 0.026652464956466
1228 => 0.026812252507338
1229 => 0.026538924844611
1230 => 0.028441569208692
1231 => 0.028789200668347
]
'min_raw' => 0.011999065186959
'max_raw' => 0.031521621597747
'avg_raw' => 0.021760343392353
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.011999'
'max' => '$0.031521'
'avg' => '$0.02176'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -0.00046523079483672
'max_diff' => -0.0056846054640277
'year' => 2027
]
2 => [
'items' => [
101 => 0.027736202301613
102 => 0.027539229300837
103 => 0.02845448272583
104 => 0.027902473025379
105 => 0.028151042959692
106 => 0.027613770722191
107 => 0.028705466429553
108 => 0.028697149537354
109 => 0.028272455250124
110 => 0.02863140395351
111 => 0.028569027783002
112 => 0.028089548978696
113 => 0.028720666762881
114 => 0.028720979789428
115 => 0.028312220771619
116 => 0.027834879727674
117 => 0.027749542423309
118 => 0.027685252227923
119 => 0.028135231512688
120 => 0.028538681532359
121 => 0.029289401995225
122 => 0.029478150956268
123 => 0.030214850716948
124 => 0.029776181878723
125 => 0.029970638092996
126 => 0.030181747821099
127 => 0.030282961588056
128 => 0.030118039186231
129 => 0.031262437152286
130 => 0.031359059404068
131 => 0.031391456009312
201 => 0.031005571454041
202 => 0.031348327256526
203 => 0.031187963167422
204 => 0.031605185976844
205 => 0.031670611840729
206 => 0.031615198461611
207 => 0.031635965663485
208 => 0.030659423885092
209 => 0.030608785042214
210 => 0.029918320826405
211 => 0.030199690098001
212 => 0.029673683731133
213 => 0.029840485768533
214 => 0.029914010517271
215 => 0.029875605361023
216 => 0.030215598294454
217 => 0.02992653484507
218 => 0.029163648875714
219 => 0.028400555058586
220 => 0.028390975037314
221 => 0.028190065904989
222 => 0.028044845400661
223 => 0.028072820021769
224 => 0.02817140623534
225 => 0.028039115390708
226 => 0.028067346349727
227 => 0.028536168371324
228 => 0.02863018728427
229 => 0.02831067428252
301 => 0.027027783474987
302 => 0.02671295885293
303 => 0.026939248548021
304 => 0.02683109664869
305 => 0.021654789076727
306 => 0.022870885759504
307 => 0.022148322405339
308 => 0.02248131284248
309 => 0.021743762764751
310 => 0.022095760320155
311 => 0.022030759224564
312 => 0.023986206703553
313 => 0.023955675080799
314 => 0.023970288952914
315 => 0.023272730760624
316 => 0.02438395990171
317 => 0.024931391335117
318 => 0.024830076346209
319 => 0.024855575146171
320 => 0.024417421281253
321 => 0.023974531240083
322 => 0.023483298024137
323 => 0.024395948621104
324 => 0.024294477454186
325 => 0.024527215802922
326 => 0.025119134952666
327 => 0.025206297295948
328 => 0.025323444369233
329 => 0.025281455482557
330 => 0.026281801113289
331 => 0.026160652656914
401 => 0.026452585579987
402 => 0.025852057408222
403 => 0.025172502779211
404 => 0.025301663897872
405 => 0.025289224643497
406 => 0.02513085865819
407 => 0.024987892927677
408 => 0.024749895266717
409 => 0.02550295508302
410 => 0.025472382229727
411 => 0.025967321187489
412 => 0.025879835919124
413 => 0.025295587885706
414 => 0.025316454418517
415 => 0.025456791879789
416 => 0.025942501435596
417 => 0.026086693101388
418 => 0.026019897776748
419 => 0.026177997355689
420 => 0.026302952816645
421 => 0.026193689837737
422 => 0.027740623203843
423 => 0.027098228618418
424 => 0.027411327269602
425 => 0.027485999453024
426 => 0.027294728225374
427 => 0.027336208105742
428 => 0.027399038821909
429 => 0.02778053462696
430 => 0.028781690006116
501 => 0.029225094908449
502 => 0.030559100434329
503 => 0.029188276303804
504 => 0.029106937272933
505 => 0.029347231951252
506 => 0.030130434413769
507 => 0.030765146447174
508 => 0.030975717046069
509 => 0.031003547426855
510 => 0.031398591868852
511 => 0.031625023975863
512 => 0.031350623082894
513 => 0.031118097057074
514 => 0.030285217694779
515 => 0.03038162574882
516 => 0.031045781637894
517 => 0.031983940949798
518 => 0.032788979238252
519 => 0.032507082888052
520 => 0.034657753052266
521 => 0.034870983214348
522 => 0.034841521700504
523 => 0.03532729174263
524 => 0.03436313713436
525 => 0.033950942359708
526 => 0.031168371823138
527 => 0.031950160644337
528 => 0.033086536608798
529 => 0.03293613298871
530 => 0.032110866387902
531 => 0.032788353199532
601 => 0.032564354872636
602 => 0.032387678098514
603 => 0.033197068651244
604 => 0.032307110490586
605 => 0.033077658595363
606 => 0.032089422680687
607 => 0.032508370566835
608 => 0.032270555484428
609 => 0.032424450988265
610 => 0.031524781017433
611 => 0.03201022109544
612 => 0.031504585114209
613 => 0.031504345376918
614 => 0.031493183434608
615 => 0.032088061924193
616 => 0.032107460890381
617 => 0.031667844787766
618 => 0.031604489239285
619 => 0.031838747908007
620 => 0.031564492359377
621 => 0.031692814804437
622 => 0.031568379115513
623 => 0.03154036602092
624 => 0.031317152917166
625 => 0.031220986574696
626 => 0.03125869587548
627 => 0.031129974591428
628 => 0.031052415361735
629 => 0.031477754951684
630 => 0.031250513166924
701 => 0.031442926889064
702 => 0.031223647168138
703 => 0.030463528119783
704 => 0.030026375616961
705 => 0.028590581197691
706 => 0.028997770713898
707 => 0.029267737784412
708 => 0.029178513669218
709 => 0.029370201593804
710 => 0.029381969675549
711 => 0.029319649977239
712 => 0.029247491750243
713 => 0.029212369115942
714 => 0.029474144456588
715 => 0.029626113852786
716 => 0.029294832591631
717 => 0.02921721802726
718 => 0.029552161672827
719 => 0.029756477103132
720 => 0.031265027445581
721 => 0.031153269163659
722 => 0.031433760519828
723 => 0.031402181497614
724 => 0.031696181124656
725 => 0.032176746261357
726 => 0.031199622970318
727 => 0.031369217787261
728 => 0.031327637054663
729 => 0.031781604590117
730 => 0.03178302182721
731 => 0.031510845612345
801 => 0.031658396753978
802 => 0.031576037754573
803 => 0.031724871597985
804 => 0.031151776563668
805 => 0.03184974445368
806 => 0.03224544727126
807 => 0.032250941605266
808 => 0.032438501600307
809 => 0.032629073418011
810 => 0.032994859426787
811 => 0.032618871844757
812 => 0.031942506786339
813 => 0.031991338158911
814 => 0.031594785572633
815 => 0.031601451693251
816 => 0.031565867418957
817 => 0.031672658504773
818 => 0.031175211201621
819 => 0.031291961089387
820 => 0.031128510562828
821 => 0.031368862477738
822 => 0.031110283548889
823 => 0.031327617003175
824 => 0.031421410917326
825 => 0.031767512479783
826 => 0.031059164066708
827 => 0.029614793701475
828 => 0.029918417863545
829 => 0.02946933387868
830 => 0.029510898311263
831 => 0.02959486508001
901 => 0.029322701310284
902 => 0.029374621580681
903 => 0.029372766623265
904 => 0.029356781602384
905 => 0.029285981294415
906 => 0.029183306840445
907 => 0.02959233026353
908 => 0.029661831313456
909 => 0.029816323538084
910 => 0.030275987605501
911 => 0.030230056325541
912 => 0.030304972148826
913 => 0.030141431327229
914 => 0.02951848450093
915 => 0.029552313510686
916 => 0.029130465216961
917 => 0.02980553592877
918 => 0.029645670273715
919 => 0.029542603845914
920 => 0.029514481216185
921 => 0.029975284701915
922 => 0.030113164327056
923 => 0.030027246997426
924 => 0.029851028047746
925 => 0.030189420525587
926 => 0.030279960077025
927 => 0.030300228543622
928 => 0.030899795134035
929 => 0.030333737655672
930 => 0.030469993316841
1001 => 0.031533021089391
1002 => 0.030569001587494
1003 => 0.031079664217849
1004 => 0.031054669939453
1005 => 0.031315907661262
1006 => 0.031033240821307
1007 => 0.031036744815562
1008 => 0.031268706214752
1009 => 0.030942958264048
1010 => 0.03086229849045
1011 => 0.030750867590921
1012 => 0.030994172883425
1013 => 0.03114002340253
1014 => 0.032315471471109
1015 => 0.033074864530356
1016 => 0.033041897274897
1017 => 0.033343156277673
1018 => 0.033207436337706
1019 => 0.032769160850443
1020 => 0.033517243665199
1021 => 0.033280518961496
1022 => 0.033300034258449
1023 => 0.033299307898122
1024 => 0.033456709131252
1025 => 0.033345175931968
1026 => 0.033125332547532
1027 => 0.033271274845781
1028 => 0.033704671296257
1029 => 0.035049947176762
1030 => 0.035802781382027
1031 => 0.035004625612318
1101 => 0.035555182774532
1102 => 0.035225044660779
1103 => 0.035165048744752
1104 => 0.035510839328477
1105 => 0.035857235172843
1106 => 0.035835171255067
1107 => 0.035583705659681
1108 => 0.03544165912555
1109 => 0.036517283071067
1110 => 0.037309784471348
1111 => 0.037255741188846
1112 => 0.037494270661994
1113 => 0.038194600572597
1114 => 0.038258629962802
1115 => 0.038250563731335
1116 => 0.038091860206935
1117 => 0.038781425953254
1118 => 0.039356673830589
1119 => 0.038055124926422
1120 => 0.038550737710603
1121 => 0.038773234257068
1122 => 0.039099925199029
1123 => 0.039651107577878
1124 => 0.040249837835213
1125 => 0.040334504858343
1126 => 0.040274429553742
1127 => 0.039879550854297
1128 => 0.04053468864621
1129 => 0.040918452999841
1130 => 0.041146975890137
1201 => 0.041726471917346
1202 => 0.038774608319992
1203 => 0.036685132548645
1204 => 0.036358830734553
1205 => 0.037022378304694
1206 => 0.037197350507247
1207 => 0.037126819431794
1208 => 0.034774924484317
1209 => 0.036346448494391
1210 => 0.038037276191738
1211 => 0.038102227769705
1212 => 0.038948691468537
1213 => 0.039224334746596
1214 => 0.039905848972689
1215 => 0.03986322007229
1216 => 0.040029157941084
1217 => 0.039991011698692
1218 => 0.041253373292777
1219 => 0.042645945593564
1220 => 0.042597725242897
1221 => 0.042397526498491
1222 => 0.042694855772892
1223 => 0.044132139624421
1224 => 0.043999817559377
1225 => 0.044128357174401
1226 => 0.045822995837122
1227 => 0.048026267158199
1228 => 0.047002626424735
1229 => 0.049223632271665
1230 => 0.050621637721847
1231 => 0.053039343591475
]
'min_raw' => 0.021654789076727
'max_raw' => 0.053039343591475
'avg_raw' => 0.037347066334101
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.021654'
'max' => '$0.053039'
'avg' => '$0.037347'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 0.0096557238897683
'max_diff' => 0.021517721993728
'year' => 2028
]
3 => [
'items' => [
101 => 0.052736634909145
102 => 0.053677830062246
103 => 0.052194723190566
104 => 0.048789210027838
105 => 0.048250274534055
106 => 0.049329237040628
107 => 0.051981761079416
108 => 0.049245699619115
109 => 0.04979920128908
110 => 0.049639792770894
111 => 0.049631298568402
112 => 0.049955487729086
113 => 0.049485234442945
114 => 0.047569337958254
115 => 0.048447382026739
116 => 0.048108327044757
117 => 0.048484533825489
118 => 0.05051476666162
119 => 0.04961715233006
120 => 0.04867158854803
121 => 0.049857535368097
122 => 0.051367653205584
123 => 0.051273152745257
124 => 0.051089782354094
125 => 0.052123431648118
126 => 0.05383071745102
127 => 0.054292189943115
128 => 0.054632839502389
129 => 0.054679809321291
130 => 0.055163627647566
131 => 0.052562014569268
201 => 0.05669084133869
202 => 0.057403775665232
203 => 0.057269773559942
204 => 0.058062170059031
205 => 0.05782902690784
206 => 0.057491239060804
207 => 0.058747356059428
208 => 0.057307319283921
209 => 0.055263368376677
210 => 0.054142016484198
211 => 0.055618703113091
212 => 0.056520464108095
213 => 0.057116470763021
214 => 0.057296822016685
215 => 0.052763970386694
216 => 0.050321014761605
217 => 0.051886921308744
218 => 0.05379743536935
219 => 0.052551401567197
220 => 0.052600243733187
221 => 0.050823726983241
222 => 0.053954617682223
223 => 0.053498473242317
224 => 0.055864951403456
225 => 0.055300172398126
226 => 0.057229943472382
227 => 0.056721770074859
228 => 0.058831169436385
301 => 0.059672665951405
302 => 0.061085669568599
303 => 0.062125080781366
304 => 0.062735442926271
305 => 0.062698799072502
306 => 0.065117357971829
307 => 0.063691218286908
308 => 0.06189965072733
309 => 0.061867246922501
310 => 0.062795125148315
311 => 0.064739703358661
312 => 0.065243904196141
313 => 0.065525683679949
314 => 0.065094128591683
315 => 0.063546156176052
316 => 0.062877749535382
317 => 0.063447251358838
318 => 0.062750799566601
319 => 0.063953070749862
320 => 0.065604045875747
321 => 0.065263126040915
322 => 0.0664027699352
323 => 0.067582181471752
324 => 0.069268792939707
325 => 0.069709735632472
326 => 0.070438597136064
327 => 0.071188835041792
328 => 0.071429791237633
329 => 0.071889851379811
330 => 0.071887426635769
331 => 0.073273848839841
401 => 0.074803115464853
402 => 0.075380378213191
403 => 0.076707762072541
404 => 0.074434663730482
405 => 0.076158834934406
406 => 0.077714080519149
407 => 0.075859852617769
408 => 0.07841547380013
409 => 0.078514702779479
410 => 0.080012942557578
411 => 0.078494189514464
412 => 0.077592358805494
413 => 0.080195910271134
414 => 0.081455686814255
415 => 0.081076231867065
416 => 0.078188560982952
417 => 0.076507812670367
418 => 0.072108970144196
419 => 0.077319589132301
420 => 0.079857529645568
421 => 0.078181988330144
422 => 0.079027033909226
423 => 0.083637328581748
424 => 0.08539263029857
425 => 0.085027539811956
426 => 0.085089234094293
427 => 0.08603636303971
428 => 0.090236454377129
429 => 0.087719662290393
430 => 0.089643655538302
501 => 0.090664134619519
502 => 0.091612012462071
503 => 0.089284324060633
504 => 0.086256035650895
505 => 0.085296849592631
506 => 0.078015388767635
507 => 0.077636357109912
508 => 0.077423595154598
509 => 0.076082161122117
510 => 0.075028161422292
511 => 0.074189981728491
512 => 0.071990347910314
513 => 0.072732659753021
514 => 0.069226902546103
515 => 0.071469761770682
516 => 0.065874488618975
517 => 0.070534398364156
518 => 0.067998221349951
519 => 0.069701196004728
520 => 0.069695254486587
521 => 0.066559538218537
522 => 0.064750922515855
523 => 0.06590344283398
524 => 0.067139036102187
525 => 0.067339506952919
526 => 0.068941485877434
527 => 0.069388563760844
528 => 0.06803389690204
529 => 0.065758539019588
530 => 0.066287052760294
531 => 0.064740212201768
601 => 0.062029433621315
602 => 0.06397636212345
603 => 0.064641129114482
604 => 0.064934728088662
605 => 0.06226898868981
606 => 0.061431355494672
607 => 0.060985406610005
608 => 0.065414425538118
609 => 0.065657057192945
610 => 0.064415719342191
611 => 0.070026684136083
612 => 0.068756749995189
613 => 0.070175577571986
614 => 0.066239095677944
615 => 0.066389474587472
616 => 0.064525880973911
617 => 0.065569368872135
618 => 0.064831865258856
619 => 0.065485065361907
620 => 0.065876590810431
621 => 0.067739878626617
622 => 0.070555674117977
623 => 0.067461565562052
624 => 0.066113418155785
625 => 0.066949801224364
626 => 0.069177199553263
627 => 0.072551822039966
628 => 0.070553977607231
629 => 0.07144058704088
630 => 0.071634271759625
701 => 0.070161135239146
702 => 0.072606138684737
703 => 0.073916435894401
704 => 0.075260529703713
705 => 0.076427568697685
706 => 0.074723669079017
707 => 0.076547085915408
708 => 0.075077733821678
709 => 0.073759573094776
710 => 0.073761572200485
711 => 0.072934670721244
712 => 0.071332444908922
713 => 0.071036969886575
714 => 0.072574068267203
715 => 0.073806675604708
716 => 0.073908199048816
717 => 0.07459063380451
718 => 0.074994491663293
719 => 0.078952847697502
720 => 0.080544931239699
721 => 0.082491700858499
722 => 0.083250077338945
723 => 0.085532518652073
724 => 0.083689261920902
725 => 0.083290461732485
726 => 0.077754005687701
727 => 0.078660600054876
728 => 0.080112145110069
729 => 0.077777941131024
730 => 0.079258456296034
731 => 0.079550741351206
801 => 0.07769862577301
802 => 0.078687920728514
803 => 0.076060646632207
804 => 0.070612941513764
805 => 0.072612203537842
806 => 0.074084333331885
807 => 0.071983422603492
808 => 0.075749223767662
809 => 0.073549320469469
810 => 0.072852056737923
811 => 0.070131782328693
812 => 0.071415647136885
813 => 0.073152092673139
814 => 0.072079171215195
815 => 0.074305644340396
816 => 0.077458924064373
817 => 0.079706138976734
818 => 0.079878652233926
819 => 0.078433843596984
820 => 0.080749158658329
821 => 0.080766023200864
822 => 0.078154338353328
823 => 0.076554695926134
824 => 0.076191253800999
825 => 0.077099203486612
826 => 0.078201622021704
827 => 0.079939828790181
828 => 0.080990190736165
829 => 0.083728977622363
830 => 0.084470014826594
831 => 0.085284190045602
901 => 0.086372179220536
902 => 0.087678589179742
903 => 0.084820238562959
904 => 0.084933806161596
905 => 0.082272149643806
906 => 0.079427787934391
907 => 0.081586303917144
908 => 0.084408276429246
909 => 0.083760912816967
910 => 0.083688071186147
911 => 0.083810570604603
912 => 0.083322479581864
913 => 0.081114861975512
914 => 0.08000621023402
915 => 0.081436653827769
916 => 0.082196870936127
917 => 0.083375901373291
918 => 0.083230560985597
919 => 0.086267616773107
920 => 0.087447724816334
921 => 0.087145802679206
922 => 0.0872013636186
923 => 0.089337892861554
924 => 0.091714152790471
925 => 0.093939833789016
926 => 0.09620389209596
927 => 0.09347448143924
928 => 0.092088655034403
929 => 0.093518474141228
930 => 0.092759791996986
1001 => 0.097119404637543
1002 => 0.097421254757858
1003 => 0.1017805521488
1004 => 0.10591804446828
1005 => 0.10331935967329
1006 => 0.10576980238763
1007 => 0.10842015597072
1008 => 0.11353311803687
1009 => 0.11181125228916
1010 => 0.1104923301115
1011 => 0.10924595502659
1012 => 0.11183946372181
1013 => 0.1151759712259
1014 => 0.11589462298561
1015 => 0.11705911338244
1016 => 0.11583479411728
1017 => 0.11730935181782
1018 => 0.1225151884542
1019 => 0.12110852544186
1020 => 0.11911083783197
1021 => 0.12322034588253
1022 => 0.12470756087072
1023 => 0.13514561451837
1024 => 0.14832408842301
1025 => 0.14286811369196
1026 => 0.1394814141132
1027 => 0.1402773688478
1028 => 0.14508970139828
1029 => 0.14663526987769
1030 => 0.14243388196124
1031 => 0.14391788320046
1101 => 0.15209487593235
1102 => 0.15648157018367
1103 => 0.15052385017874
1104 => 0.13408673697172
1105 => 0.11893096791988
1106 => 0.1229509603456
1107 => 0.12249521795941
1108 => 0.13128037654921
1109 => 0.12107497699423
1110 => 0.12124680974953
1111 => 0.13021363611532
1112 => 0.12782144057125
1113 => 0.12394639015911
1114 => 0.11895926007627
1115 => 0.10974008886445
1116 => 0.10157441182653
1117 => 0.117589184941
1118 => 0.11689859880333
1119 => 0.11589852773685
1120 => 0.11812407767631
1121 => 0.12893071644895
1122 => 0.12868158844757
1123 => 0.12709676320898
1124 => 0.12829883918444
1125 => 0.12373566042866
1126 => 0.12491169549567
1127 => 0.11892856716863
1128 => 0.12163319104996
1129 => 0.1239380760413
1130 => 0.12440081582772
1201 => 0.12544339219459
1202 => 0.11653469128926
1203 => 0.12053443645004
1204 => 0.12288391200655
1205 => 0.11226889596755
1206 => 0.12267408726934
1207 => 0.11637961062656
1208 => 0.11424317071414
1209 => 0.11711960560166
1210 => 0.11599865612857
1211 => 0.11503492959597
1212 => 0.11449715363185
1213 => 0.11660928995271
1214 => 0.1165107562688
1215 => 0.11305489129987
1216 => 0.10854685632698
1217 => 0.11005990083508
1218 => 0.10951019758042
1219 => 0.10751800207239
1220 => 0.1088605013062
1221 => 0.10294881410382
1222 => 0.092778063534892
1223 => 0.099497172899243
1224 => 0.0992384944977
1225 => 0.09910805711751
1226 => 0.10415728210228
1227 => 0.10367191562543
1228 => 0.10279097071724
1229 => 0.10750182282831
1230 => 0.10578229843786
1231 => 0.11108146743831
]
'min_raw' => 0.047569337958254
'max_raw' => 0.15648157018367
'avg_raw' => 0.10202545407096
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.047569'
'max' => '$0.156481'
'avg' => '$0.102025'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072435
'min_diff' => 0.025914548881527
'max_diff' => 0.1034422265922
'year' => 2029
]
4 => [
'items' => [
101 => 0.11457184287077
102 => 0.11368657075928
103 => 0.11696928572396
104 => 0.11009475832463
105 => 0.11237820056852
106 => 0.11284881485027
107 => 0.1074436916445
108 => 0.10375132758367
109 => 0.10350508899685
110 => 0.097103038554475
111 => 0.10052296222524
112 => 0.10353235352946
113 => 0.10209108863294
114 => 0.10163482722327
115 => 0.10396576781427
116 => 0.10414690186135
117 => 0.10001702639227
118 => 0.10087575827843
119 => 0.10445681299606
120 => 0.10078552488759
121 => 0.093652811794345
122 => 0.091883800329747
123 => 0.091647781591019
124 => 0.086850082196959
125 => 0.092002014134669
126 => 0.089753057780667
127 => 0.096857483956325
128 => 0.092799473826591
129 => 0.09262454112054
130 => 0.092360104678296
131 => 0.088230526619362
201 => 0.089134641765892
202 => 0.092140058213581
203 => 0.093212424660556
204 => 0.093100568054498
205 => 0.092125330033388
206 => 0.092571789005426
207 => 0.091133589099877
208 => 0.090625730779685
209 => 0.089022790223723
210 => 0.08666691043009
211 => 0.086994509964846
212 => 0.082326895644178
213 => 0.079783731633237
214 => 0.079079817353372
215 => 0.078138513759733
216 => 0.079186140098987
217 => 0.082313672879263
218 => 0.078541204803156
219 => 0.072073572894539
220 => 0.072462288592556
221 => 0.073335617355272
222 => 0.071708174983598
223 => 0.070167937359694
224 => 0.07150704901025
225 => 0.068766628109284
226 => 0.073666784128638
227 => 0.073534248640843
228 => 0.075360723781243
301 => 0.076502856169578
302 => 0.073870610784217
303 => 0.073208608188148
304 => 0.07358571495321
305 => 0.067352980142438
306 => 0.074851376375807
307 => 0.074916222817811
308 => 0.074360968211957
309 => 0.078353632719215
310 => 0.08677940017282
311 => 0.083609287531063
312 => 0.082381724099013
313 => 0.080048125117343
314 => 0.083157507205022
315 => 0.082918755174605
316 => 0.08183902794904
317 => 0.081186005554065
318 => 0.082389219339567
319 => 0.081036914050664
320 => 0.080794002861913
321 => 0.079322225348061
322 => 0.078796867737226
323 => 0.078407913877253
324 => 0.077979713895239
325 => 0.078924216354774
326 => 0.076783849521822
327 => 0.074202776944031
328 => 0.073988188686779
329 => 0.074580685731842
330 => 0.074318549895619
331 => 0.073986933681247
401 => 0.073353788017707
402 => 0.073165947224351
403 => 0.073776338675359
404 => 0.073087242315204
405 => 0.074104041531634
406 => 0.073827528406832
407 => 0.072282948569332
408 => 0.070357830215108
409 => 0.070340692623683
410 => 0.069925929032093
411 => 0.069397665238079
412 => 0.069250714335622
413 => 0.071394272762127
414 => 0.075831374553685
415 => 0.074960265301155
416 => 0.075589731010975
417 => 0.078686079298178
418 => 0.079670315308238
419 => 0.078971727901205
420 => 0.078015458371463
421 => 0.078057529377622
422 => 0.081325391843223
423 => 0.08152920441676
424 => 0.082044173037662
425 => 0.082706053245636
426 => 0.079084448962674
427 => 0.07788695214158
428 => 0.077319511713151
429 => 0.075572014820673
430 => 0.07745654040015
501 => 0.07635850804842
502 => 0.076506670126795
503 => 0.076410179378884
504 => 0.076462869851919
505 => 0.073665414435165
506 => 0.074684660159102
507 => 0.072989966457098
508 => 0.070720961828409
509 => 0.070713355329278
510 => 0.071268690997653
511 => 0.070938355611817
512 => 0.070049431582231
513 => 0.07017569904503
514 => 0.069069463206038
515 => 0.07031001610493
516 => 0.070345590723159
517 => 0.069867910283712
518 => 0.071779153187767
519 => 0.072562190964984
520 => 0.072247771466834
521 => 0.072540130454816
522 => 0.07499646382342
523 => 0.075396953339841
524 => 0.075574824328183
525 => 0.075336500767195
526 => 0.072585027719639
527 => 0.072707067249465
528 => 0.071811622154103
529 => 0.071055065408201
530 => 0.07108532371042
531 => 0.071474292223306
601 => 0.073172940531781
602 => 0.076747645756181
603 => 0.076883303206371
604 => 0.077047723993409
605 => 0.076378942021259
606 => 0.076177230979078
607 => 0.076443339909753
608 => 0.077785811242966
609 => 0.081239011989401
610 => 0.080018420214087
611 => 0.079026060101115
612 => 0.079896627458557
613 => 0.079762610437611
614 => 0.078631371910866
615 => 0.078599621813128
616 => 0.076428413401469
617 => 0.075625767087703
618 => 0.074955015750884
619 => 0.074222572801485
620 => 0.073788356069371
621 => 0.074455510317873
622 => 0.074608096388043
623 => 0.073149351963832
624 => 0.072950530489058
625 => 0.074141772675054
626 => 0.073617551402982
627 => 0.07415672598137
628 => 0.07428181910851
629 => 0.074261676233901
630 => 0.073714329019429
701 => 0.074063191811805
702 => 0.073238027306832
703 => 0.072340784843375
704 => 0.071768400051871
705 => 0.071268918405458
706 => 0.071546059852931
707 => 0.070558101196717
708 => 0.070242033338915
709 => 0.073945004947409
710 => 0.076680429888257
711 => 0.07664065572627
712 => 0.076398540744257
713 => 0.076038806992217
714 => 0.077759494478361
715 => 0.077160041364421
716 => 0.077596193590796
717 => 0.07770721263766
718 => 0.078043233855719
719 => 0.078163332559175
720 => 0.077800310863417
721 => 0.076581965713087
722 => 0.073545965435244
723 => 0.072132699110383
724 => 0.071666297683366
725 => 0.071683250489415
726 => 0.071215616417907
727 => 0.071353355609856
728 => 0.071167716348046
729 => 0.070816160497141
730 => 0.071524352269796
731 => 0.071605964774332
801 => 0.071440664352333
802 => 0.071479598585676
803 => 0.070110981692255
804 => 0.070215034662183
805 => 0.069635654503216
806 => 0.069527027707942
807 => 0.068062405118477
808 => 0.065467613900799
809 => 0.06690538011787
810 => 0.065168760708172
811 => 0.064511076623642
812 => 0.06762445078895
813 => 0.06731195437431
814 => 0.066777096351374
815 => 0.065985929861271
816 => 0.065692478514119
817 => 0.06390956102423
818 => 0.063804216747433
819 => 0.064687878798243
820 => 0.064280099166749
821 => 0.063707422125908
822 => 0.061633243935321
823 => 0.059301180912304
824 => 0.059371571236143
825 => 0.06011335709419
826 => 0.062270199519913
827 => 0.06142748387043
828 => 0.060816083997683
829 => 0.06070158718013
830 => 0.062134754567129
831 => 0.064162986677582
901 => 0.065114587804672
902 => 0.064171579988282
903 => 0.06308830338396
904 => 0.063154237411445
905 => 0.063592866957335
906 => 0.063638960720721
907 => 0.062933859013942
908 => 0.063132341014243
909 => 0.06283082870621
910 => 0.060980448228364
911 => 0.060946980713139
912 => 0.06049286750246
913 => 0.060479117134917
914 => 0.059706557279701
915 => 0.059598470815503
916 => 0.058064506331942
917 => 0.059074166400294
918 => 0.058396939435976
919 => 0.057376198659058
920 => 0.057200222564377
921 => 0.057194932510474
922 => 0.058243005054907
923 => 0.059061919062395
924 => 0.058408720088966
925 => 0.058259999344447
926 => 0.059847947810719
927 => 0.059645866893914
928 => 0.059470866123244
929 => 0.063981380737936
930 => 0.060410956460562
1001 => 0.058854047682935
1002 => 0.056927077421662
1003 => 0.05755450865536
1004 => 0.057686717635183
1005 => 0.053052701519319
1006 => 0.051172681758244
1007 => 0.050527529823292
1008 => 0.050156235763619
1009 => 0.050325439129029
1010 => 0.048633200839737
1011 => 0.049770412957179
1012 => 0.048305077639994
1013 => 0.048059409405454
1014 => 0.050679610472794
1015 => 0.051044196144322
1016 => 0.049488760401695
1017 => 0.050487601950635
1018 => 0.050125408120053
1019 => 0.04833019660824
1020 => 0.048261632733171
1021 => 0.047360858701279
1022 => 0.04595132176559
1023 => 0.045307125563056
1024 => 0.044971622587608
1025 => 0.0451100576541
1026 => 0.045040060648299
1027 => 0.044583282837644
1028 => 0.04506624261772
1029 => 0.043832479952386
1030 => 0.043341185717948
1031 => 0.043119279510193
1101 => 0.042024244131979
1102 => 0.04376693238316
1103 => 0.044110263922451
1104 => 0.044454271930934
1105 => 0.047448626780543
1106 => 0.047299037274215
1107 => 0.048651253558371
1108 => 0.048598708920135
1109 => 0.048213034931442
1110 => 0.046585939813439
1111 => 0.047234470927294
1112 => 0.045238392962962
1113 => 0.046733990293947
1114 => 0.046051462129724
1115 => 0.046503226835062
1116 => 0.045690913160883
1117 => 0.046140481087783
1118 => 0.044191680567177
1119 => 0.042371918061398
1120 => 0.043104243615903
1121 => 0.043900365245235
1122 => 0.045626559785645
1123 => 0.044598452558172
1124 => 0.04496819879421
1125 => 0.043729610798257
1126 => 0.041174049977435
1127 => 0.041188514174147
1128 => 0.040795396817783
1129 => 0.04045568602581
1130 => 0.044716543040766
1201 => 0.044186638116775
1202 => 0.043342303972636
1203 => 0.044472478777071
1204 => 0.044771314933649
1205 => 0.044779822378913
1206 => 0.045604368742194
1207 => 0.046044429284086
1208 => 0.046121991861926
1209 => 0.047419433380052
1210 => 0.047854318663261
1211 => 0.049645549597528
1212 => 0.046007093221638
1213 => 0.045932161606929
1214 => 0.044488382654268
1215 => 0.043572715217249
1216 => 0.044551079187069
1217 => 0.045417776104329
1218 => 0.044515313343396
1219 => 0.044633155927945
1220 => 0.043421673405309
1221 => 0.0438547214016
1222 => 0.044227720673871
1223 => 0.044021772399607
1224 => 0.043713457865024
1225 => 0.045346716840795
1226 => 0.045254561968589
1227 => 0.046775490275288
1228 => 0.047961162652987
1229 => 0.050086099518114
1230 => 0.04786861712389
1231 => 0.047787803251751
]
'min_raw' => 0.04045568602581
'max_raw' => 0.11696928572396
'avg_raw' => 0.078712485874883
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.040455'
'max' => '$0.116969'
'avg' => '$0.078712'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -0.0071136519324439
'max_diff' => -0.039512284459715
'year' => 2030
]
5 => [
'items' => [
101 => 0.048577771814869
102 => 0.04785419772319
103 => 0.048311471572203
104 => 0.050012425631611
105 => 0.050048364110558
106 => 0.049446348284081
107 => 0.049409715566329
108 => 0.049525339291135
109 => 0.050202551058768
110 => 0.049965912458542
111 => 0.05023975663768
112 => 0.050582202976944
113 => 0.051998706230377
114 => 0.05234022036923
115 => 0.051510518066596
116 => 0.051585430894741
117 => 0.051275099457718
118 => 0.050975323177996
119 => 0.051649176476002
120 => 0.052880656622729
121 => 0.05287299564865
122 => 0.053158675106137
123 => 0.053336651041455
124 => 0.052572648040722
125 => 0.052075310180414
126 => 0.052266021162487
127 => 0.052570972175965
128 => 0.052167129658843
129 => 0.049674426565111
130 => 0.050430553449259
131 => 0.050304696963021
201 => 0.050125462021947
202 => 0.050885753450914
203 => 0.050812421487847
204 => 0.048615844490159
205 => 0.048756462222774
206 => 0.04862439592022
207 => 0.049051129161997
208 => 0.047831152727715
209 => 0.048206409262233
210 => 0.048441766642872
211 => 0.048580393948169
212 => 0.049081210832533
213 => 0.04902244575156
214 => 0.04907755791259
215 => 0.049820137141347
216 => 0.053575848057982
217 => 0.053780263116666
218 => 0.052773648606413
219 => 0.053175771248666
220 => 0.052403783710096
221 => 0.052922024116605
222 => 0.053276591040859
223 => 0.051674371289452
224 => 0.051579498234094
225 => 0.050804324428341
226 => 0.051220858923464
227 => 0.050558122591833
228 => 0.050720734906083
301 => 0.050266056699154
302 => 0.051084386946097
303 => 0.051999407317844
304 => 0.052230577598996
305 => 0.051622468114347
306 => 0.051182156771094
307 => 0.050409115099913
308 => 0.051694700627443
309 => 0.052070645013202
310 => 0.051692725951629
311 => 0.051605153847368
312 => 0.051439204868033
313 => 0.051640360707826
314 => 0.052068597539339
315 => 0.05186664895789
316 => 0.052000039553813
317 => 0.051491692153939
318 => 0.052572900957506
319 => 0.054290120744638
320 => 0.054295641887047
321 => 0.05409369221702
322 => 0.054011058763111
323 => 0.05421827137989
324 => 0.054330675724186
325 => 0.055000763330553
326 => 0.055719794029653
327 => 0.059075196564679
328 => 0.058133012959704
329 => 0.061110125702569
330 => 0.063464635352469
331 => 0.064170649846245
401 => 0.06352114973252
402 => 0.061299244928773
403 => 0.061190227678944
404 => 0.064510691519753
405 => 0.063572508397846
406 => 0.063460914500769
407 => 0.062273743976736
408 => 0.062975508790369
409 => 0.062822022531359
410 => 0.062579736962706
411 => 0.063918655341759
412 => 0.066424991021277
413 => 0.066034355101357
414 => 0.065742763508215
415 => 0.064465094028106
416 => 0.065234536432942
417 => 0.064960552730278
418 => 0.066137760591274
419 => 0.065440408732767
420 => 0.063565400737969
421 => 0.063864001941248
422 => 0.063818868970075
423 => 0.064747702318665
424 => 0.064468889602479
425 => 0.063764426312455
426 => 0.066416424638398
427 => 0.066244218618301
428 => 0.066488367383021
429 => 0.066595849219803
430 => 0.068210073867352
501 => 0.068871370056025
502 => 0.069021495868473
503 => 0.06964967610123
504 => 0.069005866172023
505 => 0.071581564917552
506 => 0.07329425428714
507 => 0.075283631124105
508 => 0.078190645376996
509 => 0.079283709627468
510 => 0.079086257354259
511 => 0.081290322383506
512 => 0.085250978247449
513 => 0.079886819143847
514 => 0.085535291705136
515 => 0.083747050506984
516 => 0.07950716279525
517 => 0.079234164011607
518 => 0.082105465196101
519 => 0.088473734870813
520 => 0.086878555545615
521 => 0.088476344012732
522 => 0.086612438894308
523 => 0.086519880294953
524 => 0.088385818301444
525 => 0.092745684160597
526 => 0.090674475318041
527 => 0.087704889560994
528 => 0.089897585472126
529 => 0.087998069349477
530 => 0.083717927884061
531 => 0.086877335742048
601 => 0.084764729682168
602 => 0.085381300442756
603 => 0.089821684154189
604 => 0.089287405438231
605 => 0.089978811569557
606 => 0.088758497845016
607 => 0.087618532400482
608 => 0.085490702243314
609 => 0.084860756634536
610 => 0.085034850937734
611 => 0.084860670362045
612 => 0.083670168944879
613 => 0.08341308027719
614 => 0.082984587901063
615 => 0.083117395605694
616 => 0.082311704578709
617 => 0.08383221001089
618 => 0.084114429217751
619 => 0.085220926271662
620 => 0.085335806466462
621 => 0.088417385011606
622 => 0.086720103332765
623 => 0.087858786419181
624 => 0.087756931886231
625 => 0.079599054018427
626 => 0.080723137611045
627 => 0.082471858924294
628 => 0.081684062343011
629 => 0.080570302293086
630 => 0.079670881336737
701 => 0.078308166617352
702 => 0.080226161416268
703 => 0.082748120620834
704 => 0.085399767513757
705 => 0.088585547512816
706 => 0.087874518503593
707 => 0.085340211572657
708 => 0.085453898730266
709 => 0.08615666800436
710 => 0.085246517941087
711 => 0.084978096919188
712 => 0.086119791077836
713 => 0.086127653298043
714 => 0.085080415654938
715 => 0.083916602657091
716 => 0.083911726238136
717 => 0.083704636956269
718 => 0.086649279617501
719 => 0.088268535344225
720 => 0.088454180403733
721 => 0.088256039952578
722 => 0.088332296348314
723 => 0.087390087118799
724 => 0.089543698014004
725 => 0.091520064341487
726 => 0.090990355946814
727 => 0.090196247760712
728 => 0.089563702341051
729 => 0.090841348348524
730 => 0.090784456783012
731 => 0.091502802505761
801 => 0.091470214194411
802 => 0.0912286615462
803 => 0.090990364573419
804 => 0.091935185134626
805 => 0.091663091986353
806 => 0.091390576202266
807 => 0.0908440040772
808 => 0.090918292306598
809 => 0.090124321234471
810 => 0.089756993886861
811 => 0.084233271920348
812 => 0.082757152918074
813 => 0.083221570005362
814 => 0.083374468169082
815 => 0.082732059287594
816 => 0.083653108602346
817 => 0.083509564042274
818 => 0.084068011954754
819 => 0.083719117944026
820 => 0.083733436675926
821 => 0.084759459569428
822 => 0.085057318380426
823 => 0.084905824985137
824 => 0.085011925766307
825 => 0.087456973486039
826 => 0.087109365888518
827 => 0.086924706280411
828 => 0.086975858253843
829 => 0.087600620368649
830 => 0.087775519650047
831 => 0.087034459104806
901 => 0.087383947541962
902 => 0.088872024950684
903 => 0.08939276782585
904 => 0.091054729112619
905 => 0.090348698418993
906 => 0.091644648313436
907 => 0.095627956467076
908 => 0.098810098644162
909 => 0.095883669190526
910 => 0.10172726805538
911 => 0.10627734798615
912 => 0.10610270833985
913 => 0.10530929665867
914 => 0.10012915162764
915 => 0.095362304938462
916 => 0.099349974604957
917 => 0.099360139995009
918 => 0.099017595634168
919 => 0.096890082028143
920 => 0.098943562772331
921 => 0.099106560616658
922 => 0.09901532516846
923 => 0.097384165474941
924 => 0.094893686111639
925 => 0.095380319817863
926 => 0.096177435755716
927 => 0.094668328989555
928 => 0.094186077937763
929 => 0.095082674395061
930 => 0.097971694993765
1001 => 0.097425542384537
1002 => 0.097411280132734
1003 => 0.099747952599763
1004 => 0.09807539939885
1005 => 0.095386457827315
1006 => 0.094707464617721
1007 => 0.092297496148292
1008 => 0.09396206995414
1009 => 0.094021975002028
1010 => 0.093110304940098
1011 => 0.09546043482834
1012 => 0.095438777967688
1013 => 0.097669876525902
1014 => 0.10193489900686
1015 => 0.10067352199023
1016 => 0.09920667775732
1017 => 0.099366164396616
1018 => 0.10111533918313
1019 => 0.10005774817743
1020 => 0.10043806527686
1021 => 0.10111476352765
1022 => 0.10152303238382
1023 => 0.099307420791114
1024 => 0.098790855743901
1025 => 0.097734144946999
1026 => 0.097458468824529
1027 => 0.098319137719611
1028 => 0.098092381873638
1029 => 0.094016940214717
1030 => 0.093591033885817
1031 => 0.09360409582487
1101 => 0.092533134110107
1102 => 0.090899660434832
1103 => 0.09519233172381
1104 => 0.094847570143409
1105 => 0.094466980041073
1106 => 0.094513600156993
1107 => 0.096376903271409
1108 => 0.095296093365985
1109 => 0.098169603640816
1110 => 0.097578896313936
1111 => 0.096973039573064
1112 => 0.096889291716628
1113 => 0.096656088560661
1114 => 0.095856348167776
1115 => 0.094890613586421
1116 => 0.094252951965314
1117 => 0.086943365995812
1118 => 0.088299982633846
1119 => 0.089860646416407
1120 => 0.090399381300179
1121 => 0.089477838002167
1122 => 0.095892736314054
1123 => 0.097064800051134
1124 => 0.093514542539693
1125 => 0.092850434315362
1126 => 0.09593627513868
1127 => 0.09407513589352
1128 => 0.094913206781657
1129 => 0.093101755921773
1130 => 0.096782484218904
1201 => 0.096754443236187
1202 => 0.095322556795584
1203 => 0.096532777410046
1204 => 0.096322471796217
1205 => 0.094705875531356
1206 => 0.096833733203971
1207 => 0.096834788594829
1208 => 0.095456629027645
1209 => 0.093847240371096
1210 => 0.093559519691368
1211 => 0.093342760809028
1212 => 0.094859897384162
1213 => 0.096220157293464
1214 => 0.098751263747647
1215 => 0.099387644047834
1216 => 0.1018714787257
1217 => 0.10039247611075
1218 => 0.10104809881367
1219 => 0.10175987000118
1220 => 0.10210111928299
1221 => 0.10154507189072
1222 => 0.10540348953259
1223 => 0.10572925820043
1224 => 0.10583848561686
1225 => 0.10453744889717
1226 => 0.10569307401569
1227 => 0.10515239529302
1228 => 0.10655909112455
1229 => 0.10677967899253
1230 => 0.10659284891599
1231 => 0.10666286698703
]
'min_raw' => 0.047831152727715
'max_raw' => 0.10677967899253
'avg_raw' => 0.07730541586012
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.047831'
'max' => '$0.106779'
'avg' => '$0.0773054'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 0.0073754667019051
'max_diff' => -0.010189606731431
'year' => 2031
]
6 => [
'items' => [
101 => 0.10337038820121
102 => 0.10319965580695
103 => 0.10087170749668
104 => 0.10182036364044
105 => 0.10004689644995
106 => 0.10060928116479
107 => 0.1008571749885
108 => 0.10072768932285
109 => 0.10187399923546
110 => 0.10089940163409
111 => 0.098327278325413
112 => 0.095754454243456
113 => 0.095722154532884
114 => 0.095044775366222
115 => 0.094555154296908
116 => 0.094649472685098
117 => 0.094981862987222
118 => 0.094535835168296
119 => 0.094631017817648
120 => 0.096211683995573
121 => 0.09652867532476
122 => 0.095451414931674
123 => 0.0911260590055
124 => 0.090064605811883
125 => 0.090827557317923
126 => 0.090462915638406
127 => 0.073010633261278
128 => 0.07711078813242
129 => 0.074674615336091
130 => 0.07579731584356
131 => 0.073310614262395
201 => 0.074497398596124
202 => 0.074278242864109
203 => 0.080871170564503
204 => 0.080768231066737
205 => 0.08081750275688
206 => 0.078465636609619
207 => 0.082212223242331
208 => 0.084057926540503
209 => 0.083716335981814
210 => 0.083802306966157
211 => 0.082325040619657
212 => 0.080831805924259
213 => 0.07917557883989
214 => 0.082252644046793
215 => 0.08191052692304
216 => 0.082695220515073
217 => 0.084690917254913
218 => 0.084984791180769
219 => 0.085379760717295
220 => 0.085238192254296
221 => 0.088610927390211
222 => 0.088202466911228
223 => 0.089186739143476
224 => 0.087162016484829
225 => 0.084870850608132
226 => 0.085306326337437
227 => 0.08526438652283
228 => 0.084730444546609
229 => 0.084248425604635
301 => 0.083445999874244
302 => 0.085984993621865
303 => 0.085881915112459
304 => 0.087550636364089
305 => 0.08725567367377
306 => 0.085285840638205
307 => 0.085356193610435
308 => 0.085829351159161
309 => 0.087466954837722
310 => 0.087953107106079
311 => 0.087727902005558
312 => 0.088260945774117
313 => 0.088682241834842
314 => 0.088313854072956
315 => 0.09352944792022
316 => 0.091363569724902
317 => 0.092419203687217
318 => 0.092670966167072
319 => 0.092026081868917
320 => 0.092165934181611
321 => 0.092377772327869
322 => 0.093664012069786
323 => 0.097039477329046
324 => 0.098534447914802
325 => 0.1030321406826
326 => 0.098410311418651
327 => 0.098136071197159
328 => 0.098946241481949
329 => 0.10158686326578
330 => 0.10372683920058
331 => 0.10443679267633
401 => 0.1045306247482
402 => 0.10586254466552
403 => 0.10662597632329
404 => 0.10570081455458
405 => 0.10491683682408
406 => 0.10210872590432
407 => 0.10243377238952
408 => 0.10467302033941
409 => 0.10783608995969
410 => 0.11055033275519
411 => 0.10959989952912
412 => 0.11685103414276
413 => 0.11756995452147
414 => 0.11747062297061
415 => 0.11910843058302
416 => 0.11585771600611
417 => 0.11446797254486
418 => 0.10508634170794
419 => 0.10772219730136
420 => 0.11155356820478
421 => 0.11104647189881
422 => 0.10826402793591
423 => 0.11054822202194
424 => 0.10979299602374
425 => 0.10919731794461
426 => 0.11192623470299
427 => 0.10892567862943
428 => 0.11152363536264
429 => 0.10819172897988
430 => 0.10960424102804
501 => 0.10880243087398
502 => 0.10932130030981
503 => 0.1062880001902
504 => 0.10792469530555
505 => 0.10621990829245
506 => 0.10621910000143
507 => 0.10618146673363
508 => 0.10818714109436
509 => 0.10825254606326
510 => 0.10677034968027
511 => 0.10655674202523
512 => 0.10734656148224
513 => 0.10642188975212
514 => 0.10685453783483
515 => 0.1064349942218
516 => 0.10634054611757
517 => 0.10558796755402
518 => 0.10526373601626
519 => 0.10539087555663
520 => 0.10495688276042
521 => 0.1046953864025
522 => 0.10612944852627
523 => 0.10536328698344
524 => 0.10601202328153
525 => 0.10527270639281
526 => 0.10270991195146
527 => 0.10123602176718
528 => 0.09639514063865
529 => 0.097768008521608
530 => 0.098678221348343
531 => 0.098377396014537
601 => 0.099023685235503
602 => 0.099063362144727
603 => 0.098853246930852
604 => 0.098609960430611
605 => 0.098491542016881
606 => 0.099374135854438
607 => 0.099886511283883
608 => 0.098769573382583
609 => 0.09850789045993
610 => 0.099637176345976
611 => 0.1003260400841
612 => 0.10541222288728
613 => 0.10503542203707
614 => 0.10598111822768
615 => 0.1058746473495
616 => 0.10686588761848
617 => 0.10848614652885
618 => 0.10519170713254
619 => 0.1057635078986
620 => 0.10562331555557
621 => 0.10715389879635
622 => 0.10715867711016
623 => 0.10624101599901
624 => 0.10673849497472
625 => 0.1064608158581
626 => 0.10696261955241
627 => 0.10503038963199
628 => 0.10738363710373
629 => 0.10871777678029
630 => 0.10873630131099
701 => 0.10936867292929
702 => 0.11001119911798
703 => 0.11124447218493
704 => 0.1099768038015
705 => 0.10769639178475
706 => 0.10786103016667
707 => 0.10652402543562
708 => 0.1065465007267
709 => 0.1064265258615
710 => 0.10678657946324
711 => 0.10510940115
712 => 0.10550303154782
713 => 0.10495194668578
714 => 0.10576230994773
715 => 0.10489049303572
716 => 0.10562324795058
717 => 0.10593948068062
718 => 0.10710638626248
719 => 0.10471814013249
720 => 0.099848344603392
721 => 0.10087203466417
722 => 0.099357916655159
723 => 0.099498054041547
724 => 0.09978115386475
725 => 0.09886353471325
726 => 0.099038587529854
727 => 0.099032333411417
728 => 0.098978438797476
729 => 0.098739730616038
730 => 0.098393556525978
731 => 0.099772607554011
801 => 0.10000693519625
802 => 0.10052781651788
803 => 0.1020776060139
804 => 0.10192274549669
805 => 0.10217532942536
806 => 0.10162394012728
807 => 0.099523631409662
808 => 0.099637688277919
809 => 0.098215397303117
810 => 0.10049144533991
811 => 0.099952447122433
812 => 0.099604951465233
813 => 0.099510134055641
814 => 0.10106376518005
815 => 0.10152863596266
816 => 0.10123895968726
817 => 0.1006448251952
818 => 0.10178573906005
819 => 0.10209099947899
820 => 0.10215933602922
821 => 0.1041808166492
822 => 0.10227231434003
823 => 0.10273170981473
824 => 0.10631578216811
825 => 0.10306552311177
826 => 0.10478725782334
827 => 0.10470298786868
828 => 0.1055837690868
829 => 0.10463073810072
830 => 0.10464255206199
831 => 0.10542462611439
901 => 0.1043263441556
902 => 0.10405439409742
903 => 0.1036786970398
904 => 0.10449901782052
905 => 0.10499076302863
906 => 0.10895386825901
907 => 0.11151421497739
908 => 0.11140306357392
909 => 0.112418779335
910 => 0.11196119008174
911 => 0.11048351367702
912 => 0.11300572711644
913 => 0.11220759325032
914 => 0.11227339043651
915 => 0.11227094146195
916 => 0.11280163070885
917 => 0.11242558874047
918 => 0.11168437142087
919 => 0.11217642606878
920 => 0.11363765246034
921 => 0.11817334401562
922 => 0.12071157709988
923 => 0.11802053919685
924 => 0.11987678110792
925 => 0.1187636974079
926 => 0.11856141698823
927 => 0.11972727408359
928 => 0.12089517185745
929 => 0.12082078181822
930 => 0.11997294800661
1001 => 0.11949402819941
1002 => 0.12312056942939
1003 => 0.12579254323112
1004 => 0.12561033253098
1005 => 0.1264145513033
1006 => 0.12877576249237
1007 => 0.12899164205183
1008 => 0.12896444618927
1009 => 0.12842936617643
1010 => 0.13075428523409
1011 => 0.13269377361505
1012 => 0.12830551061341
1013 => 0.12997650371785
1014 => 0.13072666635847
1015 => 0.13182812767813
1016 => 0.13368647755074
1017 => 0.13570513841536
1018 => 0.13599059919511
1019 => 0.13578805111132
1020 => 0.13445669000659
1021 => 0.13666553281228
1022 => 0.13795942112412
1023 => 0.13872990200372
1024 => 0.14068371331857
1025 => 0.13073129910756
1026 => 0.12368648566192
1027 => 0.12258633631404
1028 => 0.12482353327419
1029 => 0.12541346427126
1030 => 0.12517566382605
1031 => 0.11724608580657
1101 => 0.12254458872684
1102 => 0.12824533235826
1103 => 0.12846432113815
1104 => 0.13131823259697
1105 => 0.13224758315375
1106 => 0.13454535594882
1107 => 0.13440162963488
1108 => 0.13496110074493
1109 => 0.13483248802541
1110 => 0.13908862827514
1111 => 0.14378378301354
1112 => 0.14362120473463
1113 => 0.14294622069043
1114 => 0.14394868709795
1115 => 0.14879458995133
1116 => 0.1483484568706
1117 => 0.148781837157
1118 => 0.15449542972426
1119 => 0.16192391281076
1120 => 0.15847263660958
1121 => 0.16596091288818
1122 => 0.17067438586909
1123 => 0.17882585000737
1124 => 0.17780524655045
1125 => 0.18097855172128
1126 => 0.1759781533562
1127 => 0.16449622796272
1128 => 0.16267916931816
1129 => 0.16631696673983
1130 => 0.17526013672991
1201 => 0.1660353144908
1202 => 0.16790148401534
1203 => 0.16736402706673
1204 => 0.16733538826998
1205 => 0.16842841465939
1206 => 0.16684292287313
1207 => 0.16038334411137
1208 => 0.16334373099135
1209 => 0.16220058344753
1210 => 0.16346899087469
1211 => 0.17031406262803
1212 => 0.16728769323975
1213 => 0.16409965893148
1214 => 0.1680981614355
1215 => 0.17318962915765
1216 => 0.17287101425784
1217 => 0.17225276818152
1218 => 0.17573778894342
1219 => 0.18149402222679
1220 => 0.18304990895287
1221 => 0.18419843272535
1222 => 0.18435679474911
1223 => 0.18598802201526
1224 => 0.17721650188295
1225 => 0.19113712960154
1226 => 0.19354083745896
1227 => 0.19308904000525
1228 => 0.19576066012528
1229 => 0.19497460171351
1230 => 0.19383572640363
1231 => 0.19807081256378
]
'min_raw' => 0.073010633261278
'max_raw' => 0.19807081256378
'avg_raw' => 0.13554072291253
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.07301'
'max' => '$0.19807'
'avg' => '$0.13554'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.025179480533563
'max_diff' => 0.091291133571255
'year' => 2032
]
7 => [
'items' => [
101 => 0.193215628035
102 => 0.18632430484713
103 => 0.18254358865135
104 => 0.18752234071963
105 => 0.19056269087323
106 => 0.19257216892217
107 => 0.19318023576562
108 => 0.17789741002151
109 => 0.16966081456981
110 => 0.17494037782159
111 => 0.18138180936476
112 => 0.1771807194055
113 => 0.17734539417818
114 => 0.1713557439233
115 => 0.18191176050673
116 => 0.1803738376806
117 => 0.1883525840231
118 => 0.18644839217503
119 => 0.19295475008419
120 => 0.19124140799491
121 => 0.19835339521585
122 => 0.20119055946766
123 => 0.20595459981579
124 => 0.209459047289
125 => 0.21151692587468
126 => 0.2113933785633
127 => 0.21954771875077
128 => 0.21473938923317
129 => 0.2086989941228
130 => 0.20858974243246
131 => 0.21171814865318
201 => 0.21827442985547
202 => 0.21997437818122
203 => 0.22092441738409
204 => 0.21946939927379
205 => 0.21425030219851
206 => 0.21199672254282
207 => 0.21391683770195
208 => 0.21156870185971
209 => 0.21562224309397
210 => 0.2211886209983
211 => 0.2200391859729
212 => 0.22388157492988
213 => 0.22785804326924
214 => 0.23354457158891
215 => 0.2350312406632
216 => 0.23748864811005
217 => 0.24001812758915
218 => 0.24083052822645
219 => 0.24238165311617
220 => 0.24237347792235
221 => 0.24704789718028
222 => 0.2522039263765
223 => 0.25415020803572
224 => 0.2586255753925
225 => 0.25096166562959
226 => 0.2567748292214
227 => 0.26201844829415
228 => 0.25576678946658
301 => 0.26438324471069
302 => 0.26471780214251
303 => 0.26976922215813
304 => 0.26464864023732
305 => 0.26160805503822
306 => 0.27038611057878
307 => 0.2746335351487
308 => 0.27335417630156
309 => 0.26361819230502
310 => 0.25795143202305
311 => 0.24312042732868
312 => 0.26068839304088
313 => 0.2692452366747
314 => 0.26359603214719
315 => 0.26644516231627
316 => 0.28198909268517
317 => 0.28790721497469
318 => 0.28667628690927
319 => 0.28688429348952
320 => 0.29007760485543
321 => 0.30423850604055
322 => 0.2957529658033
323 => 0.30223984336755
324 => 0.30568045983745
325 => 0.30887629616233
326 => 0.30102833220286
327 => 0.29081824640109
328 => 0.28758428363742
329 => 0.26303433009059
330 => 0.26175639839343
331 => 0.26103905660652
401 => 0.25651631811008
402 => 0.25296268453421
403 => 0.25013670317672
404 => 0.24272048418521
405 => 0.24522324038945
406 => 0.23340333520218
407 => 0.24096529166928
408 => 0.2221004375888
409 => 0.23781164863919
410 => 0.22926075076557
411 => 0.23500244871204
412 => 0.23498241646881
413 => 0.22441013014236
414 => 0.21831225602725
415 => 0.22219805874621
416 => 0.22636394771634
417 => 0.227039849186
418 => 0.2324410329766
419 => 0.2339483872745
420 => 0.22938103338023
421 => 0.22170950541912
422 => 0.22349142639556
423 => 0.21827614545554
424 => 0.20913656621102
425 => 0.21570077158618
426 => 0.21794207990899
427 => 0.21893196934886
428 => 0.20994424284965
429 => 0.20712010405056
430 => 0.20561655625075
501 => 0.22054930279111
502 => 0.22136735235536
503 => 0.2171820951241
504 => 0.23609985467176
505 => 0.23181818305177
506 => 0.23660185928632
507 => 0.22332973574416
508 => 0.22383674873676
509 => 0.21755351275669
510 => 0.22107170505955
511 => 0.21858516013652
512 => 0.22078746988893
513 => 0.22210752527406
514 => 0.22838973023694
515 => 0.23788338132862
516 => 0.22745137830856
517 => 0.22290600520368
518 => 0.2257259291138
519 => 0.23323575809166
520 => 0.2446135334142
521 => 0.23787766142419
522 => 0.24086692703084
523 => 0.24151994858272
524 => 0.23655316595282
525 => 0.24479666577431
526 => 0.24921442429873
527 => 0.25374613041845
528 => 0.25768088386669
529 => 0.25193606733988
530 => 0.25808384451067
531 => 0.25312982133977
601 => 0.24868555041798
602 => 0.24869229054245
603 => 0.24590433447277
604 => 0.24050231828269
605 => 0.23950610361545
606 => 0.24468853812251
607 => 0.24884435981881
608 => 0.24918665319876
609 => 0.25148752962365
610 => 0.252849164591
611 => 0.26619503832392
612 => 0.27156285914217
613 => 0.27812652883106
614 => 0.28068344808304
615 => 0.28837885832522
616 => 0.282164189564
617 => 0.28081960688541
618 => 0.2621530587874
619 => 0.26520970499273
620 => 0.27010369048996
621 => 0.26223375880569
622 => 0.26722541905079
623 => 0.26821087852099
624 => 0.26196634153852
625 => 0.26530181855137
626 => 0.25644378050525
627 => 0.2380764623518
628 => 0.24481711384999
629 => 0.24978050223143
630 => 0.24269713502975
701 => 0.25539379657459
702 => 0.24797666901239
703 => 0.24562579566008
704 => 0.23645420056587
705 => 0.24078284040327
706 => 0.2466373877635
707 => 0.24301995815906
708 => 0.25052666774806
709 => 0.26115817049241
710 => 0.26873481246497
711 => 0.26931645295609
712 => 0.26444517976332
713 => 0.27225142614278
714 => 0.27230828612538
715 => 0.2635028083199
716 => 0.25810950219315
717 => 0.25688413169353
718 => 0.2599453474496
719 => 0.26366222850907
720 => 0.26952271398671
721 => 0.27306408262153
722 => 0.28229809382434
723 => 0.28479655249597
724 => 0.28754160109075
725 => 0.29120983255502
726 => 0.29561448494311
727 => 0.28597735627496
728 => 0.2863602573628
729 => 0.27738629658215
730 => 0.26779633249186
731 => 0.27507391983049
801 => 0.28458839717887
802 => 0.28240576556259
803 => 0.28216017491864
804 => 0.2825731902606
805 => 0.28092755730001
806 => 0.27348442040925
807 => 0.26974652365922
808 => 0.27456936410593
809 => 0.27713248916342
810 => 0.28110767259959
811 => 0.28061764733514
812 => 0.2908572929632
813 => 0.29483610962345
814 => 0.29381815805859
815 => 0.2940054856449
816 => 0.30120894315523
817 => 0.30922066941074
818 => 0.31672470828942
819 => 0.32435813894278
820 => 0.31515574035228
821 => 0.31048332987307
822 => 0.31530406481851
823 => 0.3127461149997
824 => 0.32744485339577
825 => 0.32846256215092
826 => 0.3431602376609
827 => 0.35711008188652
828 => 0.34834843466583
829 => 0.35661027336169
830 => 0.36554612550885
831 => 0.38278483409048
901 => 0.37697944350526
902 => 0.37253260529906
903 => 0.36833036468116
904 => 0.37707456032009
905 => 0.38832382831765
906 => 0.39074681290017
907 => 0.39467297357521
908 => 0.39054509569349
909 => 0.39551666993118
910 => 0.41306851161065
911 => 0.40832584905447
912 => 0.40159050580363
913 => 0.41544599911278
914 => 0.4204602482795
915 => 0.45565287491417
916 => 0.50008501977534
917 => 0.48168982004562
918 => 0.470271325964
919 => 0.47295494292348
920 => 0.48918005810376
921 => 0.49439105014025
922 => 0.4802257774484
923 => 0.48522919123609
924 => 0.51279849313105
925 => 0.5275885390686
926 => 0.50750167011723
927 => 0.45208279533719
928 => 0.40098406183688
929 => 0.41453774696712
930 => 0.41300117969317
1001 => 0.44262095523886
1002 => 0.40821273812101
1003 => 0.40879208425248
1004 => 0.43902436538856
1005 => 0.43095891109397
1006 => 0.41789390808206
1007 => 0.40107945081747
1008 => 0.36999637141482
1009 => 0.3424652211721
1010 => 0.39646014684331
1011 => 0.39413178746497
1012 => 0.3907599780416
1013 => 0.39826357504542
1014 => 0.43469891216281
1015 => 0.43385895971258
1016 => 0.4285156107717
1017 => 0.43256849384924
1018 => 0.41718341808317
1019 => 0.42114850241975
1020 => 0.40097596753643
1021 => 0.41009479578316
1022 => 0.41786587645339
1023 => 0.41942603595075
1024 => 0.42294115496203
1025 => 0.39290484787405
1026 => 0.40639026793691
1027 => 0.41431168881086
1028 => 0.3785224211186
1029 => 0.41360425005985
1030 => 0.3923819825924
1031 => 0.38517882626619
1101 => 0.39487692731575
1102 => 0.39109756790502
1103 => 0.38784829661511
1104 => 0.38603514740577
1105 => 0.39315636247622
1106 => 0.39282414928149
1107 => 0.38117245925796
1108 => 0.36597330460591
1109 => 0.37107463980238
1110 => 0.36922127690023
1111 => 0.36250445065426
1112 => 0.36703078055135
1113 => 0.34709911440771
1114 => 0.31280771876543
1115 => 0.33546166510057
1116 => 0.33458951280942
1117 => 0.33414973407527
1118 => 0.35117354863704
1119 => 0.34953710167315
1120 => 0.34656693440956
1121 => 0.36244990120323
1122 => 0.35665240466749
1123 => 0.37451892292867
1124 => 0.38628696738943
1125 => 0.38330221065782
1126 => 0.39437011335306
1127 => 0.37119216426206
1128 => 0.37889094921217
1129 => 0.38047765812034
1130 => 0.36225390785845
1201 => 0.34980484463472
1202 => 0.34897463404741
1203 => 0.32738967400407
1204 => 0.33892018543151
1205 => 0.34906655832268
1206 => 0.34420723309815
1207 => 0.34266891590028
1208 => 0.35052784484392
1209 => 0.35113855093002
1210 => 0.33721438744731
1211 => 0.34010966195628
1212 => 0.352183437958
1213 => 0.33980543377915
1214 => 0.31575699359515
1215 => 0.30979264793382
1216 => 0.3089968942779
1217 => 0.29282111580615
1218 => 0.31019121403054
1219 => 0.3026087006659
1220 => 0.32656176953233
1221 => 0.31287990505871
1222 => 0.31229010722685
1223 => 0.31139854129946
1224 => 0.29747538055583
1225 => 0.30052366789566
1226 => 0.31065663928052
1227 => 0.31427219762673
1228 => 0.31389506526983
1229 => 0.31060698219271
1230 => 0.31211224978771
1231 => 0.30726325839424
]
'min_raw' => 0.16966081456981
'max_raw' => 0.5275885390686
'avg_raw' => 0.3486246768192
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.16966'
'max' => '$0.527588'
'avg' => '$0.348624'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.096650181308531
'max_diff' => 0.32951772650481
'year' => 2033
]
8 => [
'items' => [
101 => 0.30555097861018
102 => 0.30014655261202
103 => 0.29220353940551
104 => 0.2933080641092
105 => 0.27757087654465
106 => 0.26899642152372
107 => 0.26662312538343
108 => 0.26344945459776
109 => 0.26698159994349
110 => 0.27752629506955
111 => 0.26480715556565
112 => 0.24300108303011
113 => 0.24431166514523
114 => 0.2472561540426
115 => 0.2417691184621
116 => 0.23657609977715
117 => 0.24109100820079
118 => 0.23185148780311
119 => 0.24837270594033
120 => 0.24792585328989
121 => 0.25408394174617
122 => 0.25793472083458
123 => 0.24905992174034
124 => 0.24682793376814
125 => 0.2480993755553
126 => 0.22708527498514
127 => 0.25236664140725
128 => 0.2525852757139
129 => 0.25071319604362
130 => 0.26417474318878
131 => 0.2925828064269
201 => 0.28189455032502
202 => 0.27775573450813
203 => 0.26988784261475
204 => 0.28037134141348
205 => 0.27956637227379
206 => 0.27592599654866
207 => 0.27372428595143
208 => 0.27778100523495
209 => 0.27322161353848
210 => 0.27240262150608
211 => 0.26744042086191
212 => 0.26566914099768
213 => 0.26435775590289
214 => 0.26291404976756
215 => 0.26609850575294
216 => 0.25888210954
217 => 0.25017984313925
218 => 0.24945634384785
219 => 0.2514539890021
220 => 0.25057017972854
221 => 0.24945211250907
222 => 0.24731741769963
223 => 0.24668409935021
224 => 0.24874207674345
225 => 0.24641874025402
226 => 0.24984694980287
227 => 0.24891466649707
228 => 0.24370700773581
301 => 0.23721633679708
302 => 0.23715855621108
303 => 0.23576015180416
304 => 0.23397907354044
305 => 0.23348361831303
306 => 0.24071077520646
307 => 0.25567077368525
308 => 0.25273376802144
309 => 0.25485605560999
310 => 0.26529561004043
311 => 0.26861403046551
312 => 0.26625869424888
313 => 0.26303456476475
314 => 0.26317641009932
315 => 0.27419423655696
316 => 0.27488140487839
317 => 0.27661765753772
318 => 0.2788492328699
319 => 0.26663874117756
320 => 0.26260129703868
321 => 0.26068813201681
322 => 0.25479632423748
323 => 0.26115013380206
324 => 0.25744804106604
325 => 0.25794757985762
326 => 0.25762225456427
327 => 0.25779990417284
328 => 0.24836808792315
329 => 0.25180454604287
330 => 0.24609076790683
331 => 0.23844066038436
401 => 0.23841501454147
402 => 0.2402873675197
403 => 0.23917361870307
404 => 0.23617654927462
405 => 0.23660226884117
406 => 0.23287251747508
407 => 0.23705512818634
408 => 0.23717507049544
409 => 0.23556453754326
410 => 0.242008426433
411 => 0.24464849296884
412 => 0.24358840567875
413 => 0.24457411441859
414 => 0.25285581386656
415 => 0.25420609223245
416 => 0.2548057966882
417 => 0.25400227216312
418 => 0.24472548868157
419 => 0.2451369534769
420 => 0.24211789781991
421 => 0.23956711393
422 => 0.23966913190849
423 => 0.2409805664066
424 => 0.24670767777447
425 => 0.25876004601648
426 => 0.25921742458109
427 => 0.25977178074409
428 => 0.25751693563212
429 => 0.25683685277039
430 => 0.25773405760929
501 => 0.26226029343757
502 => 0.27390300084895
503 => 0.26978769045949
504 => 0.26644187905423
505 => 0.26937705768092
506 => 0.26892520993803
507 => 0.26511116026456
508 => 0.26500411259331
509 => 0.25768373184448
510 => 0.25497755375864
511 => 0.25271606879619
512 => 0.25024658625476
513 => 0.24878259422639
514 => 0.25103195135444
515 => 0.25154640594323
516 => 0.24662814727072
517 => 0.24595780678725
518 => 0.24997416298721
519 => 0.24820671436846
520 => 0.25002457910346
521 => 0.25044633931534
522 => 0.25037842620726
523 => 0.24853300685911
524 => 0.24970922212042
525 => 0.24692712238076
526 => 0.24390200677175
527 => 0.24197217148456
528 => 0.24028813424099
529 => 0.24122253598054
530 => 0.23789156439404
531 => 0.23682591954431
601 => 0.24931074685557
602 => 0.25853342302491
603 => 0.25839932166083
604 => 0.25758301409504
605 => 0.25637014663423
606 => 0.26217156462833
607 => 0.2601504666022
608 => 0.2616209842846
609 => 0.2619952927522
610 => 0.26312821174914
611 => 0.26353313291287
612 => 0.26230917992025
613 => 0.25820144418377
614 => 0.24796535728026
615 => 0.24320043119488
616 => 0.24162792622059
617 => 0.24168508378979
618 => 0.24010842286853
619 => 0.24057282017083
620 => 0.23994692443872
621 => 0.23876162934255
622 => 0.24114934734843
623 => 0.24142450960547
624 => 0.24086718769179
625 => 0.24099845717781
626 => 0.23638406976786
627 => 0.23673489162072
628 => 0.23478147096373
629 => 0.23441522813939
630 => 0.22947715082232
701 => 0.22072863106938
702 => 0.22557616025187
703 => 0.21972102666518
704 => 0.21750359885615
705 => 0.22800055722333
706 => 0.22694695374357
707 => 0.22514364257664
708 => 0.22247616951778
709 => 0.22148677781274
710 => 0.21547554701625
711 => 0.21512037143213
712 => 0.21809969973175
713 => 0.2167248422339
714 => 0.21479402160767
715 => 0.20780078502361
716 => 0.19993807172207
717 => 0.20017539761339
718 => 0.20267638042363
719 => 0.20994832524788
720 => 0.20710705059912
721 => 0.20504567324158
722 => 0.20465963922729
723 => 0.20949166313311
724 => 0.21632998930014
725 => 0.21953837893879
726 => 0.21635896224713
727 => 0.21270661954371
728 => 0.21292892072074
729 => 0.21440779085884
730 => 0.21456319920026
731 => 0.21218589956723
801 => 0.21285509548881
802 => 0.21183852569136
803 => 0.20559983872086
804 => 0.20548700065666
805 => 0.20395592626168
806 => 0.20390956593749
807 => 0.20130482644722
808 => 0.20094040538682
809 => 0.19576853703252
810 => 0.19917267644518
811 => 0.19688935845251
812 => 0.19344785965728
813 => 0.19285454396781
814 => 0.19283670818173
815 => 0.19637035793938
816 => 0.19913138369037
817 => 0.19692907774656
818 => 0.19642765537306
819 => 0.20178153449412
820 => 0.20110020457428
821 => 0.2005101772578
822 => 0.2157176921953
823 => 0.20367975746508
824 => 0.19843053082141
825 => 0.19193361604876
826 => 0.19404904425902
827 => 0.19449479606503
828 => 0.17887088719372
829 => 0.17253226931047
830 => 0.17035709451871
831 => 0.1691052506736
901 => 0.16967573163348
902 => 0.16397023209283
903 => 0.1678044221444
904 => 0.16286394181606
905 => 0.1620356542113
906 => 0.17086984504644
907 => 0.17209907109255
908 => 0.16685481088923
909 => 0.17022247490837
910 => 0.169001313121
911 => 0.16294863217125
912 => 0.16271746427948
913 => 0.15968044174092
914 => 0.15492808955152
915 => 0.15275613707833
916 => 0.15162496537254
917 => 0.15209170886445
918 => 0.15185570907235
919 => 0.15031565079253
920 => 0.15194398341023
921 => 0.14778426644549
922 => 0.14612783363302
923 => 0.14537966136057
924 => 0.14168767313
925 => 0.14756326823946
926 => 0.14872083449482
927 => 0.1498806815133
928 => 0.15997635794793
929 => 0.15947200648334
930 => 0.1640310980941
1001 => 0.16385394017774
1002 => 0.16255361339796
1003 => 0.15706774860746
1004 => 0.15925431653682
1005 => 0.15252440031836
1006 => 0.15756691113905
1007 => 0.15526571978077
1008 => 0.15678887602603
1009 => 0.1540501037596
1010 => 0.15556585341298
1011 => 0.14899533639685
1012 => 0.14285988005685
1013 => 0.1453289667932
1014 => 0.14801314644993
1015 => 0.15383313186198
1016 => 0.1503667965644
1017 => 0.15161342181406
1018 => 0.14743743591025
1019 => 0.13882118417929
1020 => 0.13886995122837
1021 => 0.1375445286148
1022 => 0.13639916996182
1023 => 0.15076494687128
1024 => 0.14897833542326
1025 => 0.14613160390677
1026 => 0.14994206716621
1027 => 0.15094961413219
1028 => 0.15097829757786
1029 => 0.15375831320966
1030 => 0.15524200805069
1031 => 0.15550351569712
1101 => 0.15987793035996
1102 => 0.16134417645502
1103 => 0.16738343660965
1104 => 0.15511612690943
1105 => 0.15486348973888
1106 => 0.14999568819855
1107 => 0.14690845150478
1108 => 0.15020707393622
1109 => 0.15312920310361
1110 => 0.15008648689719
1111 => 0.1504838013985
1112 => 0.14639920349042
1113 => 0.14785925504437
1114 => 0.14911684813281
1115 => 0.14842247914728
1116 => 0.1473829751681
1117 => 0.15288962183541
1118 => 0.15257891524972
1119 => 0.15770683122358
1120 => 0.16170440842599
1121 => 0.16886878142512
1122 => 0.16139238471332
1123 => 0.16111991510116
1124 => 0.16378334926555
1125 => 0.16134376869713
1126 => 0.16288549940491
1127 => 0.16862038477303
1128 => 0.16874155386394
1129 => 0.16671181547357
1130 => 0.16658830570806
1201 => 0.16697813916883
1202 => 0.16926140592482
1203 => 0.16846356236258
1204 => 0.16938684713173
1205 => 0.1705414288734
1206 => 0.17531726848945
1207 => 0.17646870725235
1208 => 0.17367130801105
1209 => 0.17392388184139
1210 => 0.17287757773482
1211 => 0.17186686107802
1212 => 0.17413880451919
1213 => 0.17829082581307
1214 => 0.1782649963041
1215 => 0.17922818454052
1216 => 0.17982824283232
1217 => 0.17725235337437
1218 => 0.17557554405532
1219 => 0.17621853944639
1220 => 0.17724670307933
1221 => 0.17588511983747
1222 => 0.16748079732198
1223 => 0.17003013190298
1224 => 0.16960579797261
1225 => 0.16900149485499
1226 => 0.17156487048961
1227 => 0.17131762665625
1228 => 0.16391171394844
1229 => 0.16438581645157
1230 => 0.16394054569193
1231 => 0.16537930661015
]
'min_raw' => 0.13639916996182
'max_raw' => 0.30555097861018
'avg_raw' => 0.220975074286
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.136399'
'max' => '$0.30555'
'avg' => '$0.220975'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.033261644607991
'max_diff' => -0.22203756045842
'year' => 2034
]
9 => [
'items' => [
101 => 0.16126607088593
102 => 0.16253127449164
103 => 0.16332479833259
104 => 0.16379218997104
105 => 0.1654807290626
106 => 0.16528259848925
107 => 0.16546841298797
108 => 0.16797207070295
109 => 0.18063471227375
110 => 0.1813239119159
111 => 0.17793004081501
112 => 0.17928582537867
113 => 0.17668301549393
114 => 0.17843029920687
115 => 0.17962574634706
116 => 0.17422375059178
117 => 0.17390387946182
118 => 0.17129032685481
119 => 0.17269470198663
120 => 0.17046024017376
121 => 0.17100849894448
122 => 0.16947551962521
123 => 0.17223457718677
124 => 0.17531963225479
125 => 0.17609903899749
126 => 0.17404875541315
127 => 0.17256421497781
128 => 0.16995785101138
129 => 0.17429229237417
130 => 0.17555981511835
131 => 0.17428563461679
201 => 0.17399037915319
202 => 0.17343087058317
203 => 0.17410908154128
204 => 0.17555291191727
205 => 0.17487202817532
206 => 0.17532176388251
207 => 0.17360783513215
208 => 0.17725320610096
209 => 0.18304293250574
210 => 0.18306154742284
211 => 0.18238066001067
212 => 0.18210205555153
213 => 0.18280068735612
214 => 0.18317966645074
215 => 0.18543891359963
216 => 0.18786317580276
217 => 0.19917614971633
218 => 0.195999511911
219 => 0.20603705537894
220 => 0.21397544905019
221 => 0.21635582620831
222 => 0.21416599122824
223 => 0.20667468405397
224 => 0.20630712478483
225 => 0.2175023004515
226 => 0.21433915055414
227 => 0.21396290393891
228 => 0.20996027563153
301 => 0.21232632469635
302 => 0.21180883505803
303 => 0.21099195234747
304 => 0.21550620914275
305 => 0.22395649487301
306 => 0.22263943859567
307 => 0.22165631718112
308 => 0.2173485653249
309 => 0.21994279411355
310 => 0.21901903893109
311 => 0.22298807742447
312 => 0.22063690694596
313 => 0.21431518658262
314 => 0.21532194138715
315 => 0.21516977242375
316 => 0.2183013989076
317 => 0.21736136236889
318 => 0.21498621520252
319 => 0.22392761271505
320 => 0.22334700809525
321 => 0.22417017270143
322 => 0.22453255521828
323 => 0.22997502631906
324 => 0.23220463258939
325 => 0.23271079224751
326 => 0.2348287457604
327 => 0.2326580956347
328 => 0.24134224378479
329 => 0.24711669557051
330 => 0.2538240184702
331 => 0.26362521998507
401 => 0.26731056242085
402 => 0.26664483829605
403 => 0.27407599742506
404 => 0.2874296251945
405 => 0.26934398826308
406 => 0.28838820786723
407 => 0.28235902781664
408 => 0.26806395037703
409 => 0.26714351591781
410 => 0.27682430832918
411 => 0.29829537415586
412 => 0.29291711568909
413 => 0.29830417106
414 => 0.29201988481954
415 => 0.29170781703957
416 => 0.29799895730409
417 => 0.31269854944434
418 => 0.30571532422448
419 => 0.29570315851474
420 => 0.30309598586826
421 => 0.29669163464077
422 => 0.28226083886018
423 => 0.2929130030362
424 => 0.28579020420787
425 => 0.28786901557479
426 => 0.30284007927557
427 => 0.30103872128257
428 => 0.30336984532677
429 => 0.2992554724049
430 => 0.29541199931881
501 => 0.28823787138356
502 => 0.28611396578216
503 => 0.28670093688027
504 => 0.28611367490844
505 => 0.28209981626231
506 => 0.28123302386984
507 => 0.27978833190734
508 => 0.28023610235584
509 => 0.27751965880681
510 => 0.28264614902971
511 => 0.28359767078956
512 => 0.28732830285998
513 => 0.28771562945742
514 => 0.29810538667132
515 => 0.29238288299068
516 => 0.29622203251685
517 => 0.29587862284775
518 => 0.26837376805161
519 => 0.27216369436513
520 => 0.27805963036457
521 => 0.27540351918858
522 => 0.27164839942001
523 => 0.26861593887011
524 => 0.264021451052
525 => 0.27048810442667
526 => 0.27899106596243
527 => 0.28793127859399
528 => 0.29867235828488
529 => 0.29627507433783
530 => 0.28773048158051
531 => 0.28811378576978
601 => 0.29048322144317
602 => 0.28741458696019
603 => 0.2865095867443
604 => 0.29035888831073
605 => 0.29038539633508
606 => 0.28685456150555
607 => 0.28293068472848
608 => 0.28291424354152
609 => 0.28221602756919
610 => 0.29214409588992
611 => 0.29760352962539
612 => 0.29822944490485
613 => 0.29756140054005
614 => 0.29781850430233
615 => 0.29464178010207
616 => 0.30190282959557
617 => 0.30856628665417
618 => 0.30678033781847
619 => 0.30410294662616
620 => 0.30197027558086
621 => 0.30627794829745
622 => 0.30608613441229
623 => 0.30850808716983
624 => 0.30839821340287
625 => 0.30758380178476
626 => 0.30678036690367
627 => 0.30996589539104
628 => 0.3090485143447
629 => 0.30812970835221
630 => 0.3062869022721
701 => 0.30653737022416
702 => 0.30386044132119
703 => 0.30262197152275
704 => 0.2839983572587
705 => 0.27902151898319
706 => 0.28058733361755
707 => 0.28110284045154
708 => 0.27893691405605
709 => 0.28204229612634
710 => 0.2815583256201
711 => 0.28344117174661
712 => 0.28226485123044
713 => 0.28231312783474
714 => 0.28577243565482
715 => 0.28677668743193
716 => 0.28626591687279
717 => 0.28662364306422
718 => 0.29486729215908
719 => 0.29369530887485
720 => 0.29307271611359
721 => 0.29324517856334
722 => 0.2953516076529
723 => 0.29594129279122
724 => 0.29344275542374
725 => 0.29462108009011
726 => 0.29963823696787
727 => 0.3013939579286
728 => 0.30699737644137
729 => 0.30461694466432
730 => 0.30898633021377
731 => 0.32241633175946
801 => 0.33314514627958
802 => 0.32327848505986
803 => 0.34298058661977
804 => 0.35832149878277
805 => 0.35773268902233
806 => 0.35505764614502
807 => 0.3375924255067
808 => 0.32152066908354
809 => 0.33496537577433
810 => 0.33499964909662
811 => 0.33384473686836
812 => 0.32667167620739
813 => 0.33359512990587
814 => 0.33414468851816
815 => 0.33383708183471
816 => 0.32833751304407
817 => 0.31994068799098
818 => 0.3215814075072
819 => 0.32426893954453
820 => 0.31918088071995
821 => 0.31755493762914
822 => 0.32057787518328
823 => 0.33031840983679
824 => 0.32847701818362
825 => 0.32842893200591
826 => 0.33630718636976
827 => 0.33066805647894
828 => 0.32160210223461
829 => 0.31931282922267
830 => 0.31118745226937
831 => 0.31679967907261
901 => 0.31700165312401
902 => 0.31392789385944
903 => 0.32185152085847
904 => 0.32177850324075
905 => 0.3293008078001
906 => 0.343680628869
907 => 0.33942780819091
908 => 0.33448224044786
909 => 0.33501996078725
910 => 0.34091742570345
911 => 0.33735168378908
912 => 0.33863394944273
913 => 0.34091548484081
914 => 0.34229199179381
915 => 0.33482190261995
916 => 0.33308026749785
917 => 0.3295174932689
918 => 0.3285880319749
919 => 0.33148983724466
920 => 0.33072531407837
921 => 0.31698467798707
922 => 0.31554870506335
923 => 0.31559274430282
924 => 0.31198192210934
925 => 0.30647455156766
926 => 0.32094759252319
927 => 0.31978520478438
928 => 0.31850201868241
929 => 0.31865920165814
930 => 0.32494145820006
1001 => 0.32129743214419
1002 => 0.33098567265786
1003 => 0.32899406166342
1004 => 0.326951373362
1005 => 0.32666901161694
1006 => 0.32588275089487
1007 => 0.32318637032417
1008 => 0.3199303287577
1009 => 0.31778040808202
1010 => 0.29313562864685
1011 => 0.29770955635793
1012 => 0.3029714432629
1013 => 0.30478782553681
1014 => 0.30168077796746
1015 => 0.32330905549989
1016 => 0.32726075022033
1017 => 0.31529080914944
1018 => 0.31305172190455
1019 => 0.32345584968689
1020 => 0.31718088878125
1021 => 0.32000650329284
1022 => 0.31389907024728
1023 => 0.3263089026813
1024 => 0.32621436055031
1025 => 0.3213866554447
1026 => 0.32546699874126
1027 => 0.32475793868117
1028 => 0.31930747150705
1029 => 0.32648169221254
1030 => 0.32648525053651
1031 => 0.32183868933572
1101 => 0.31641252311623
1102 => 0.31544245275651
1103 => 0.31471163505108
1104 => 0.31982676693724
1105 => 0.32441297819177
1106 => 0.33294678031825
1107 => 0.33509238093099
1108 => 0.34346680296322
1109 => 0.33848024238623
1110 => 0.34069072010324
1111 => 0.34309050635621
1112 => 0.34424105213511
1113 => 0.34236629953009
1114 => 0.35537522399577
1115 => 0.35647357580382
1116 => 0.35684184366435
1117 => 0.35245530752841
1118 => 0.35635157829869
1119 => 0.3545286422362
1120 => 0.35927141544457
1121 => 0.36001514284242
1122 => 0.35938523219531
1123 => 0.35962130301033
1124 => 0.34852048091041
1125 => 0.34794484472302
1126 => 0.34009600446278
1127 => 0.34329446488453
1128 => 0.33731509643227
1129 => 0.3392112157628
1130 => 0.34004700709681
1201 => 0.33961043713466
1202 => 0.34347530103784
1203 => 0.34018937718061
1204 => 0.33151728386547
1205 => 0.32284282784432
1206 => 0.32273392711503
1207 => 0.32045009596152
1208 => 0.31879930434208
1209 => 0.31911730537296
1210 => 0.32023798248333
1211 => 0.31873416855115
1212 => 0.31905508349888
1213 => 0.32438440987634
1214 => 0.32545316827432
1215 => 0.32182110964711
1216 => 0.30723787015531
1217 => 0.30365910660474
1218 => 0.30623145087492
1219 => 0.30500203599396
1220 => 0.24616044748003
1221 => 0.25998440589176
1222 => 0.25177067922078
1223 => 0.25555594236616
1224 => 0.2471718543693
1225 => 0.2511731806091
1226 => 0.25043428175765
1227 => 0.27266279780304
1228 => 0.27231573009932
1229 => 0.27248185304268
1230 => 0.26455237212513
1231 => 0.27718425053565
]
'min_raw' => 0.16126607088593
'max_raw' => 0.36001514284242
'avg_raw' => 0.26064060686417
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.161266'
'max' => '$0.360015'
'avg' => '$0.26064'
'bar_min_pct' => 61.631153054958
'bar_max_pct' => 60.119598047091
'min_diff' => 0.024866900924114
'max_diff' => 0.05446416423224
'year' => 2035
]
10 => [
'items' => [
101 => 0.28340716806832
102 => 0.28225547165061
103 => 0.28254532882663
104 => 0.27756462219996
105 => 0.27253007717011
106 => 0.26694599192108
107 => 0.27732053209998
108 => 0.27616706033139
109 => 0.27881270956249
110 => 0.28554134045596
111 => 0.2865321569146
112 => 0.28786382428289
113 => 0.2873865163259
114 => 0.29875792831348
115 => 0.29738077529079
116 => 0.30069931784151
117 => 0.29387282403626
118 => 0.28614799831888
119 => 0.28761623514418
120 => 0.28747483213109
121 => 0.28567460947962
122 => 0.28404944896327
123 => 0.28134401458968
124 => 0.28990440927666
125 => 0.28955687288549
126 => 0.29518308309176
127 => 0.29418859578771
128 => 0.28754716617895
129 => 0.28778436613671
130 => 0.28937964984705
131 => 0.29490094498315
201 => 0.29654004129799
202 => 0.29578074657826
203 => 0.29757794085989
204 => 0.29899836994257
205 => 0.29775632488336
206 => 0.31534106368055
207 => 0.30803865412824
208 => 0.3115977977342
209 => 0.31244663251253
210 => 0.31027236007691
211 => 0.31074388191334
212 => 0.31145810901351
213 => 0.31579475610578
214 => 0.32717537289483
215 => 0.33221577060022
216 => 0.34738005578574
217 => 0.33179723573651
218 => 0.33087261568291
219 => 0.33360416136236
220 => 0.34250720206887
221 => 0.3497222803414
222 => 0.35211593805225
223 => 0.35243229943372
224 => 0.35692296042663
225 => 0.35949692356189
226 => 0.35637767606598
227 => 0.35373444041202
228 => 0.34426669839001
229 => 0.34536261530886
301 => 0.35291239611124
302 => 0.36357690617447
303 => 0.37272816526188
304 => 0.36952371328305
305 => 0.39397141989099
306 => 0.39639531014124
307 => 0.39606040688241
308 => 0.40158238959572
309 => 0.39062237844203
310 => 0.38593676133361
311 => 0.3543059379624
312 => 0.36319290912519
313 => 0.37611064362383
314 => 0.37440093302392
315 => 0.36501972893897
316 => 0.37272104877735
317 => 0.37017475159625
318 => 0.36816638136354
319 => 0.37736711474128
320 => 0.36725053044716
321 => 0.37600972295671
322 => 0.36477596796097
323 => 0.36953835094977
324 => 0.36683499203478
325 => 0.36858439656398
326 => 0.35835741343246
327 => 0.36387564528425
328 => 0.35812783684516
329 => 0.35812511163557
330 => 0.35799822844571
331 => 0.36476049958461
401 => 0.36498101700367
402 => 0.3599836884148
403 => 0.3592634952922
404 => 0.36192642673495
405 => 0.35880883143834
406 => 0.36026753465572
407 => 0.35885301407279
408 => 0.35853457569521
409 => 0.35599720452485
410 => 0.35490403525818
411 => 0.35533269509514
412 => 0.3538694580823
413 => 0.35298780485447
414 => 0.3578228454278
415 => 0.35523967829445
416 => 0.35742693801678
417 => 0.354934279509
418 => 0.34629363912141
419 => 0.34132431546139
420 => 0.32500294675701
421 => 0.32963166667498
422 => 0.33270051276934
423 => 0.33168625915346
424 => 0.33386526838442
425 => 0.33399904185402
426 => 0.33329062374067
427 => 0.33247036631938
428 => 0.33207111036978
429 => 0.33504683711384
430 => 0.33677434664713
501 => 0.33300851253078
502 => 0.33212623028694
503 => 0.33593369649596
504 => 0.33825624868397
505 => 0.35540466911086
506 => 0.35413425873697
507 => 0.35732273946999
508 => 0.35696376547068
509 => 0.3603058012437
510 => 0.36576861728289
511 => 0.35466118484783
512 => 0.35658905105244
513 => 0.35611638278
514 => 0.36127685103821
515 => 0.36129296145683
516 => 0.35819900295152
517 => 0.35987628805099
518 => 0.35894007352238
519 => 0.36063193971257
520 => 0.35411729163189
521 => 0.36205142978135
522 => 0.36654957484752
523 => 0.36661203159613
524 => 0.36874411665801
525 => 0.37091043856292
526 => 0.37506850481252
527 => 0.37079447235201
528 => 0.36310590402424
529 => 0.36366099382358
530 => 0.35915318902614
531 => 0.35922896603919
601 => 0.35882446240479
602 => 0.36003840826122
603 => 0.35438368448128
604 => 0.35571083684993
605 => 0.35385281576202
606 => 0.35658501207746
607 => 0.35364562049028
608 => 0.35611615484505
609 => 0.35718235557305
610 => 0.36111665921305
611 => 0.35306452064377
612 => 0.33664566501914
613 => 0.34009710753082
614 => 0.33499215295109
615 => 0.33546463593337
616 => 0.3364191267527
617 => 0.33332530971729
618 => 0.33391551251027
619 => 0.33389442631331
620 => 0.33371271685961
621 => 0.33290789555982
622 => 0.33174074544608
623 => 0.33639031226936
624 => 0.33718036427539
625 => 0.33893655201806
626 => 0.34416177550673
627 => 0.34363965246095
628 => 0.34449125681128
629 => 0.34263220929606
630 => 0.33555087181573
701 => 0.33593542251025
702 => 0.33114006918752
703 => 0.33881392405217
704 => 0.33699665393029
705 => 0.33582504806067
706 => 0.33550536454429
707 => 0.34074354035131
708 => 0.34231088465112
709 => 0.34133422086404
710 => 0.33933105494291
711 => 0.34317772569432
712 => 0.34420693250939
713 => 0.34443733395959
714 => 0.35125289700513
715 => 0.34481824822238
716 => 0.34636713213929
717 => 0.35845108231066
718 => 0.34749260697637
719 => 0.3532975557641
720 => 0.35301343372844
721 => 0.35598304909949
722 => 0.35276983859144
723 => 0.35280967018668
724 => 0.355446487457
725 => 0.35174355315334
726 => 0.35082665454527
727 => 0.34955996568517
728 => 0.35232573447031
729 => 0.35398368777203
730 => 0.36734557375143
731 => 0.37597796147015
801 => 0.37560320675297
802 => 0.3790277633565
803 => 0.37748496924127
804 => 0.37250288007466
805 => 0.38100669878101
806 => 0.37831573472743
807 => 0.37853757453449
808 => 0.37852931764579
809 => 0.38031857349325
810 => 0.37905072174243
811 => 0.37655165579926
812 => 0.37821065239886
813 => 0.38313727919755
814 => 0.39842967994806
815 => 0.40698751000541
816 => 0.39791448783308
817 => 0.40417293703495
818 => 0.40042009762729
819 => 0.39973809506962
820 => 0.40366886366415
821 => 0.40760651254876
822 => 0.40735570133774
823 => 0.40449717044802
824 => 0.40288245888095
825 => 0.41510959583484
826 => 0.42411834205862
827 => 0.42350400596156
828 => 0.42621548570118
829 => 0.43417647407963
830 => 0.4349043270866
831 => 0.43481263433724
901 => 0.43300857471585
902 => 0.44084720163941
903 => 0.44738632212656
904 => 0.4325909870378
905 => 0.43822485695444
906 => 0.44075408267197
907 => 0.44446773641277
908 => 0.45073329275413
909 => 0.45753934879758
910 => 0.45850179974673
911 => 0.45781889474079
912 => 0.45333011782353
913 => 0.46077738555941
914 => 0.46513982033918
915 => 0.46773755041798
916 => 0.47432496167676
917 => 0.44076970230895
918 => 0.41701762192382
919 => 0.41330839158749
920 => 0.42085125733471
921 => 0.42284025087902
922 => 0.42203849007529
923 => 0.39530336415716
924 => 0.41316763668249
925 => 0.43238809184905
926 => 0.43312642780977
927 => 0.44274858954691
928 => 0.44588195983426
929 => 0.45362906123823
930 => 0.45314447793611
1001 => 0.45503077384467
1002 => 0.45459714708138
1003 => 0.46894702108757
1004 => 0.48477706309331
1005 => 0.4842289190751
1006 => 0.48195316324422
1007 => 0.48533304872711
1008 => 0.50167134852743
1009 => 0.50016717969774
1010 => 0.50162835159099
1011 => 0.5208921278418
1012 => 0.54593777720806
1013 => 0.53430155853535
1014 => 0.55954880482341
1015 => 0.57544060806273
1016 => 0.602923838522
1017 => 0.59948280271074
1018 => 0.61018182264727
1019 => 0.59332263044273
1020 => 0.55461051733619
1021 => 0.54848417725307
1022 => 0.56074926524312
1023 => 0.59090178725689
1024 => 0.55979965502119
1025 => 0.56609157586497
1026 => 0.56427950223869
1027 => 0.56418294453596
1028 => 0.56786815932052
1029 => 0.56252256306764
1030 => 0.54074364227899
1031 => 0.55072479333244
1101 => 0.54687059157646
1102 => 0.55114711577449
1103 => 0.57422575309854
1104 => 0.56402213741158
1105 => 0.5532734571598
1106 => 0.56675468751863
1107 => 0.58392092641878
1108 => 0.5828466940391
1109 => 0.58076223422824
1110 => 0.59251222504334
1111 => 0.6119197674456
1112 => 0.61716554817111
1113 => 0.62103787625741
1114 => 0.621571804877
1115 => 0.62707160149348
1116 => 0.59749780895943
1117 => 0.64443217721983
1118 => 0.65253644608265
1119 => 0.65101317942397
1120 => 0.66002073318522
1121 => 0.65737048236907
1122 => 0.6535306847481
1123 => 0.66780957342131
1124 => 0.65143997980437
1125 => 0.62820540253965
1126 => 0.6154584539244
1127 => 0.63224466412798
1128 => 0.6424954169413
1129 => 0.64927051248058
1130 => 0.65132065229714
1201 => 0.59979353828805
1202 => 0.57202328166191
1203 => 0.58982369777263
1204 => 0.6115414339468
1205 => 0.59737716583842
1206 => 0.59793237833177
1207 => 0.5777378543134
1208 => 0.61332820122197
1209 => 0.60814298703932
1210 => 0.63504388739137
1211 => 0.62862377162914
1212 => 0.6505604115793
1213 => 0.64478375910356
1214 => 0.66876232056206
1215 => 0.6783280179215
1216 => 0.6943903125699
1217 => 0.70620580189856
1218 => 0.71314408322665
1219 => 0.71272753484055
1220 => 0.74022046210046
1221 => 0.72400884342501
1222 => 0.70364322958348
1223 => 0.70327487988178
1224 => 0.71382251987328
1225 => 0.73592747969176
1226 => 0.74165897415861
1227 => 0.74486209766072
1228 => 0.7399564025157
1229 => 0.72235985234068
1230 => 0.71476175119164
1231 => 0.7212355535088
]
'min_raw' => 0.26694599192108
'max_raw' => 0.74486209766072
'avg_raw' => 0.5059040447909
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$0.266945'
'max' => '$0.744862'
'avg' => '$0.505904'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.10567992103514
'max_diff' => 0.3848469548183
'year' => 2036
]
11 => [
'items' => [
101 => 0.71331864957508
102 => 0.72698544685559
103 => 0.74575287859212
104 => 0.74187747815299
105 => 0.75483236078848
106 => 0.76823930142281
107 => 0.78741182867328
108 => 0.79242423725318
109 => 0.80070955803094
110 => 0.80923787469734
111 => 0.811976940166
112 => 0.81720666602779
113 => 0.81717910279104
114 => 0.83293923367669
115 => 0.85032314609419
116 => 0.8568851705933
117 => 0.87197418409685
118 => 0.84613477725411
119 => 0.86573426416604
120 => 0.88341349196758
121 => 0.86233558775358
122 => 0.89138656819077
123 => 0.89251455193021
124 => 0.90954576719176
125 => 0.89228136773813
126 => 0.88202982245248
127 => 0.91162564957176
128 => 0.92594613805497
129 => 0.92163269037982
130 => 0.88880714059082
131 => 0.86970126265956
201 => 0.81969749486483
202 => 0.8789291178197
203 => 0.90777911355089
204 => 0.88873242607152
205 => 0.89833846735647
206 => 0.95074591383779
207 => 0.97069927632701
208 => 0.96654911641378
209 => 0.96725042512167
210 => 0.9780168973417
211 => 1.0257613643699
212 => 0.99715177301851
213 => 1.0190227336257
214 => 1.0306230122701
215 => 1.0413979975656
216 => 1.014938039149
217 => 0.98051402202284
218 => 0.96961049077706
219 => 0.88683860837088
220 => 0.88252997243158
221 => 0.88011140451381
222 => 0.86486267590553
223 => 0.85288135219772
224 => 0.84335335874724
225 => 0.81834905863347
226 => 0.82678727591294
227 => 0.78693564033462
228 => 0.81243130452238
301 => 0.748827131888
302 => 0.80179857686611
303 => 0.77296862768058
304 => 0.79232716317967
305 => 0.79225962307299
306 => 0.75661442158991
307 => 0.73605501327084
308 => 0.7491562684359
309 => 0.76320185395176
310 => 0.76548070294669
311 => 0.7836911711953
312 => 0.78877332145078
313 => 0.77337416891376
314 => 0.74750907678393
315 => 0.75351694776575
316 => 0.73593326395715
317 => 0.70511853442923
318 => 0.72725021114975
319 => 0.73480693864327
320 => 0.73814442000167
321 => 0.70784167260656
322 => 0.69831989147036
323 => 0.69325057508893
324 => 0.74359737262082
325 => 0.74635548384109
326 => 0.73224459688058
327 => 0.7960271439913
328 => 0.78159118918773
329 => 0.79771968759811
330 => 0.75297179644567
331 => 0.75468122614872
401 => 0.73349685736039
402 => 0.74535868834182
403 => 0.7369751285288
404 => 0.74440036961942
405 => 0.74885102851372
406 => 0.77003192115558
407 => 0.80204042863674
408 => 0.76686820211541
409 => 0.75154315934451
410 => 0.76105072968827
411 => 0.78637064240666
412 => 0.82473160627751
413 => 0.80202114357962
414 => 0.81209966127628
415 => 0.81430136903095
416 => 0.79755551462456
417 => 0.82534904981551
418 => 0.84024383111862
419 => 0.8555227946949
420 => 0.86878909066135
421 => 0.84942004065093
422 => 0.87014770060634
423 => 0.85344486560681
424 => 0.83846069590489
425 => 0.83848342070513
426 => 0.82908363216732
427 => 0.81087035742575
428 => 0.80751155012164
429 => 0.82498448988824
430 => 0.8389961328875
501 => 0.84015019891616
502 => 0.84790776442476
503 => 0.85249861178347
504 => 0.89749515685319
505 => 0.91559313951117
506 => 0.93772301012807
507 => 0.94634384190453
508 => 0.9722894548124
509 => 0.95133626518964
510 => 0.94680291081301
511 => 0.88386734064381
512 => 0.8941730367333
513 => 0.91067345052434
514 => 0.88413942638975
515 => 0.90096915741269
516 => 0.90429170281906
517 => 0.88323781040302
518 => 0.89448360402742
519 => 0.86461811030646
520 => 0.80269141478688
521 => 0.82541799193031
522 => 0.84215240239102
523 => 0.81827033532566
524 => 0.86107801617669
525 => 0.83607065275342
526 => 0.82814451911338
527 => 0.79722184591292
528 => 0.81181615734069
529 => 0.83155517251716
530 => 0.81935875604492
531 => 0.84466815152597
601 => 0.88051300529637
602 => 0.9060581826911
603 => 0.90801922421574
604 => 0.89159538654489
605 => 0.91791469122796
606 => 0.91810639862913
607 => 0.88841811542912
608 => 0.87023420727417
609 => 0.86610278508209
610 => 0.87642388773093
611 => 0.88895561172727
612 => 0.90871464768117
613 => 0.92065461928392
614 => 0.95178773275226
615 => 0.96021146060048
616 => 0.96946658359097
617 => 0.98183428208048
618 => 0.99668487512996
619 => 0.96419262298245
620 => 0.9654836007334
621 => 0.93522726541949
622 => 0.90289403193919
623 => 0.92743092575629
624 => 0.95950965041595
625 => 0.95215075553518
626 => 0.95132272953251
627 => 0.95271523959374
628 => 0.94716687317268
629 => 0.92207181748228
630 => 0.90946923761792
701 => 0.92572978090396
702 => 0.93437153598698
703 => 0.94777414448048
704 => 0.94612199008892
705 => 0.98064567023313
706 => 0.99406052839527
707 => 0.99062843362325
708 => 0.99126002165927
709 => 1.0155469815847
710 => 1.042559076016
711 => 1.0678594670108
712 => 1.0935961114077
713 => 1.0625695820689
714 => 1.0468162239209
715 => 1.0630696683624
716 => 1.054445361958
717 => 1.1040031846935
718 => 1.1074344608156
719 => 1.1569886999564
720 => 1.2040215737101
721 => 1.1744810683869
722 => 1.2023364343731
723 => 1.2324642837685
724 => 1.2905857933197
725 => 1.2710125136422
726 => 1.2560196881617
727 => 1.2418515405274
728 => 1.2713332066243
729 => 1.3092608990768
730 => 1.3174301607642
731 => 1.3306674855959
801 => 1.3167500571184
802 => 1.3335120667651
803 => 1.3926893264178
804 => 1.3766991084875
805 => 1.3539904284707
806 => 1.4007051915221
807 => 1.4176110826714
808 => 1.5362654804409
809 => 1.6860715589937
810 => 1.6240508587931
811 => 1.5855526087831
812 => 1.5946006107262
813 => 1.6493047193578
814 => 1.6668739428287
815 => 1.6191147369604
816 => 1.6359840958728
817 => 1.7289359220388
818 => 1.7788015945253
819 => 1.7110773134353
820 => 1.5242287078922
821 => 1.3519457602962
822 => 1.3976429560009
823 => 1.3924623121571
824 => 1.492327453396
825 => 1.3763177470782
826 => 1.3782710530091
827 => 1.4802012996099
828 => 1.4530080573436
829 => 1.4089584875196
830 => 1.3522673709041
831 => 1.2474685985468
901 => 1.1546454033399
902 => 1.3366930650457
903 => 1.3288428388408
904 => 1.3174745479577
905 => 1.3427734491405
906 => 1.4656177320658
907 => 1.4627857737362
908 => 1.4447702997213
909 => 1.4584348779805
910 => 1.4065630208835
911 => 1.4199315795576
912 => 1.3519184697971
913 => 1.3826632358872
914 => 1.4088639769264
915 => 1.4141241635987
916 => 1.425975632763
917 => 1.3247061263478
918 => 1.3701731616117
919 => 1.3968807851442
920 => 1.2762147703929
921 => 1.3944956060034
922 => 1.3229432495455
923 => 1.2986573050833
924 => 1.3313551298717
925 => 1.318612755752
926 => 1.3076576107412
927 => 1.3015444515919
928 => 1.3255541253892
929 => 1.3244340454088
930 => 1.2851495589995
1001 => 1.233904547919
1002 => 1.2511040556977
1003 => 1.2448553132755
1004 => 1.2222090646334
1005 => 1.2374699018997
1006 => 1.1702688979119
1007 => 1.0546530633552
1008 => 1.1310324250721
1009 => 1.1280919027308
1010 => 1.1266091580242
1011 => 1.184006137384
1012 => 1.1784887421922
1013 => 1.1684746158925
1014 => 1.2220251473507
1015 => 1.2024784830122
1016 => 1.2627166967302
1017 => 1.3023934802483
1018 => 1.2923301645386
1019 => 1.3296463712119
1020 => 1.2515002976188
1021 => 1.2774572885902
1022 => 1.2828069884545
1023 => 1.2213643421049
1024 => 1.1793914562803
1025 => 1.1765923433217
1026 => 1.1038171435218
1027 => 1.142693067834
1028 => 1.1769022724338
1029 => 1.160518718172
1030 => 1.1553321743375
1031 => 1.1818291019639
1101 => 1.1838881401713
1102 => 1.1369418508353
1103 => 1.1467034709839
1104 => 1.1874110497378
1105 => 1.1456777444442
1106 => 1.0645967493553
1107 => 1.0444875415409
1108 => 1.0418046025322
1109 => 0.98726683605788
1110 => 1.0458313349629
1111 => 1.0202663617599
1112 => 1.1010258057929
1113 => 1.0548964444828
1114 => 1.0529078999143
1115 => 1.049901923143
1116 => 1.0029590146118
1117 => 1.0132365282027
1118 => 1.0474005486882
1119 => 1.0595906560827
1120 => 1.0583191280108
1121 => 1.0472331263497
1122 => 1.0523082411407
1123 => 1.0359595281118
1124 => 1.0301864572723
1125 => 1.0119650576945
1126 => 0.98518463410531
1127 => 0.98890861625927
1128 => 0.93584958965003
1129 => 0.90694021589763
1130 => 0.89893848226239
1201 => 0.88823822962988
1202 => 0.90014710426952
1203 => 0.93569928009416
1204 => 0.89281581323479
1205 => 0.81929511722984
1206 => 0.82371383633291
1207 => 0.83364138622802
1208 => 0.81514146267579
1209 => 0.79763283761449
1210 => 0.81285516658564
1211 => 0.78170347848213
1212 => 0.83740591890638
1213 => 0.83589932399719
1214 => 0.85666174917154
1215 => 0.86964491972092
1216 => 0.83972291495598
1217 => 0.83219761167531
1218 => 0.83648436642995
1219 => 0.76563385919999
1220 => 0.85087175118077
1221 => 0.8516088920102
1222 => 0.84529704469744
1223 => 0.89068359075254
1224 => 0.98646335934751
1225 => 0.95042715766982
1226 => 0.93647285118026
1227 => 0.90994570434306
1228 => 0.9452915524775
1229 => 0.9425775428219
1230 => 0.93030376190168
1231 => 0.92288054090461
]
'min_raw' => 0.69325057508893
'max_raw' => 1.7788015945253
'avg_raw' => 1.2360260848071
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$0.69325'
'max' => '$1.77'
'avg' => '$1.23'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 0.42630458316785
'max_diff' => 1.0339394968646
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.021760343392353
]
1 => [
'year' => 2028
'avg' => 0.037347066334101
]
2 => [
'year' => 2029
'avg' => 0.10202545407096
]
3 => [
'year' => 2030
'avg' => 0.078712485874883
]
4 => [
'year' => 2031
'avg' => 0.07730541586012
]
5 => [
'year' => 2032
'avg' => 0.13554072291253
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.021760343392353
'min' => '$0.02176'
'max_raw' => 0.13554072291253
'max' => '$0.13554'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.13554072291253
]
1 => [
'year' => 2033
'avg' => 0.3486246768192
]
2 => [
'year' => 2034
'avg' => 0.220975074286
]
3 => [
'year' => 2035
'avg' => 0.26064060686417
]
4 => [
'year' => 2036
'avg' => 0.5059040447909
]
5 => [
'year' => 2037
'avg' => 1.2360260848071
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.13554072291253
'min' => '$0.13554'
'max_raw' => 1.2360260848071
'max' => '$1.23'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 1.2360260848071
]
]
]
]
'prediction_2025_max_price' => '$0.0372062'
'last_price' => 0.03607613
'sma_50day_nextmonth' => '$0.033964'
'sma_200day_nextmonth' => '$0.039148'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'increase'
'sma_200day_direction_label' => 'aumentar'
'sma_200day_date_nextmonth' => '4 de fev. de 2026'
'sma_50day_date_nextmonth' => '4 de fev. de 2026'
'daily_sma3' => '$0.036259'
'daily_sma3_action' => 'SELL'
'daily_sma5' => '$0.036315'
'daily_sma5_action' => 'SELL'
'daily_sma10' => '$0.036335'
'daily_sma10_action' => 'SELL'
'daily_sma21' => '$0.035043'
'daily_sma21_action' => 'BUY'
'daily_sma50' => '$0.031112'
'daily_sma50_action' => 'BUY'
'daily_sma100' => '$0.030499'
'daily_sma100_action' => 'BUY'
'daily_sma200' => '$0.043168'
'daily_sma200_action' => 'SELL'
'daily_ema3' => '$0.036233'
'daily_ema3_action' => 'SELL'
'daily_ema5' => '$0.036247'
'daily_ema5_action' => 'SELL'
'daily_ema10' => '$0.036023'
'daily_ema10_action' => 'BUY'
'daily_ema21' => '$0.035032'
'daily_ema21_action' => 'BUY'
'daily_ema50' => '$0.03309'
'daily_ema50_action' => 'BUY'
'daily_ema100' => '$0.034498'
'daily_ema100_action' => 'BUY'
'daily_ema200' => '$0.040925'
'daily_ema200_action' => 'SELL'
'weekly_sma21' => '$0.035914'
'weekly_sma21_action' => 'BUY'
'weekly_sma50' => '$0.047315'
'weekly_sma50_action' => 'SELL'
'weekly_sma100' => '$0.081564'
'weekly_sma100_action' => 'SELL'
'weekly_sma200' => '—'
'weekly_sma200_action' => '—'
'weekly_ema3' => '$0.035743'
'weekly_ema3_action' => 'BUY'
'weekly_ema5' => '$0.034794'
'weekly_ema5_action' => 'BUY'
'weekly_ema10' => '$0.03386'
'weekly_ema10_action' => 'BUY'
'weekly_ema21' => '$0.037197'
'weekly_ema21_action' => 'SELL'
'weekly_ema50' => '$0.050349'
'weekly_ema50_action' => 'SELL'
'weekly_ema100' => '$0.070424'
'weekly_ema100_action' => 'SELL'
'weekly_ema200' => '$0.089926'
'weekly_ema200_action' => 'SELL'
'rsi_14' => '60.66'
'rsi_14_action' => 'NEUTRAL'
'stoch_rsi_14' => 16.68
'stoch_rsi_14_action' => 'NEUTRAL'
'momentum_10' => 0
'momentum_10_action' => 'SELL'
'vwma_10' => '0.036469'
'vwma_10_action' => 'SELL'
'hma_9' => '0.036368'
'hma_9_action' => 'SELL'
'stochastic_fast_14' => 69.43
'stochastic_fast_14_action' => 'NEUTRAL'
'cci_20' => 48.84
'cci_20_action' => 'NEUTRAL'
'adx_14' => 26.69
'adx_14_action' => 'BUY'
'ao_5_34' => '0.002216'
'ao_5_34_action' => 'NEUTRAL'
'macd_12_26' => -0
'macd_12_26_action' => 'SELL'
'williams_percent_r_14' => -30.57
'williams_percent_r_14_action' => 'NEUTRAL'
'ultimate_oscillator' => 50.96
'ultimate_oscillator_action' => 'NEUTRAL'
'ichimoku_cloud' => '0.0006011'
'ichimoku_cloud_action' => 'BUY'
'sell_signals' => 21
'buy_signals' => 11
'sell_pct' => 65.63
'buy_pct' => 34.38
'overall_action' => 'bearish'
'overall_action_label' => 'Baixista'
'overall_action_dir' => -1
'last_updated' => 1767681005
'last_updated_date' => '6 de janeiro de 2026'
]
Previsão de preço de SuperWalk GRND para 2026
A previsão de preço para SuperWalk GRND em 2026 sugere que o preço médio poderia variar entre $0.012464 na extremidade inferior e $0.0372062 na extremidade superior. No mercado de criptomoedas, comparado ao preço médio de hoje, SuperWalk GRND poderia potencialmente ganhar 3.13% até 2026 se GRND atingir a meta de preço prevista.
Previsão de preço de SuperWalk GRND 2027-2032
A previsão de preço de GRND para 2027-2032 está atualmente dentro de uma faixa de preço entre $0.02176 na extremidade inferior e $0.13554 na extremidade superior. Considerando a volatilidade de preços no mercado, se SuperWalk GRND atingir a meta de preço superior, poderia ganhar 275.71% até 2032 em comparação com o preço de hoje.
| Previsão de Preço de SuperWalk GRND | Potencial Mínimo ($) | Preço Médio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2027 | $0.011999 | $0.02176 | $0.031521 |
| 2028 | $0.021654 | $0.037347 | $0.053039 |
| 2029 | $0.047569 | $0.102025 | $0.156481 |
| 2030 | $0.040455 | $0.078712 | $0.116969 |
| 2031 | $0.047831 | $0.0773054 | $0.106779 |
| 2032 | $0.07301 | $0.13554 | $0.19807 |
Previsão de preço de SuperWalk GRND 2032-2037
A previsão de preço de SuperWalk GRND para 2032-2037 é atualmente estimada entre $0.13554 na extremidade inferior e $1.23 na extremidade superior. Comparado ao preço atual, SuperWalk GRND poderia potencialmente ganhar 3326.16% até 2037 se atingir a meta de preço superior. Por favor, note que esta informação é apenas para fins gerais e não deve ser considerada como aconselhamento de investimento a longo prazo.
| Previsão de Preço de SuperWalk GRND | Potencial Mínimo ($) | Preço Médio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2032 | $0.07301 | $0.13554 | $0.19807 |
| 2033 | $0.16966 | $0.348624 | $0.527588 |
| 2034 | $0.136399 | $0.220975 | $0.30555 |
| 2035 | $0.161266 | $0.26064 | $0.360015 |
| 2036 | $0.266945 | $0.505904 | $0.744862 |
| 2037 | $0.69325 | $1.23 | $1.77 |
SuperWalk GRND Histograma de preços potenciais
Previsão de preço de SuperWalk GRND baseada na análise técnica
Em 6 de janeiro de 2026, o sentimento geral de previsão de preço para SuperWalk GRND é Baixista, com 11 indicadores técnicos mostrando sinais de alta e 21 indicando sinais de baixa. A previsão de preço de GRND foi atualizada pela última vez em 6 de janeiro de 2026.
Médias Móveis Simples de 50 e 200 dias e Índice de Força Relativa de 14 dias - RSI (14) de SuperWalk GRND
De acordo com nossos indicadores técnicos, o SMA de 200 dias de SuperWalk GRND está projetado para aumentar no próximo mês, alcançando $0.039148 até 4 de fev. de 2026. O SMA de 50 dias de curto prazo para SuperWalk GRND é esperado para alcançar $0.033964 até 4 de fev. de 2026.
O oscilador de momentum Índice de Força Relativa (RSI) é uma ferramenta comumente usada para identificar se uma criptomoeda está sobrevendida (abaixo de 30) ou sobrecomprada (acima de 70). No momento, o RSI está em 60.66, sugerindo que o mercado de GRND está em um estado NEUTRAL.
Médias Móveis e Osciladores Populares de GRND para Sábado, 19 de Outubro de 2024
Médias móveis (MA) são indicadores amplamente utilizados nos mercados financeiros, projetados para suavizar movimentos de preços ao longo de um período definido. Como indicadores atrasados, eles se baseiam em dados históricos de preços. A tabela abaixo destaca dois tipos: a média móvel simples (SMA) e a média móvel exponencial (EMA).
Média Móvel Simples Diária (SMA)
| Período | Valor | Ação |
|---|---|---|
| SMA 3 | $0.036259 | SELL |
| SMA 5 | $0.036315 | SELL |
| SMA 10 | $0.036335 | SELL |
| SMA 21 | $0.035043 | BUY |
| SMA 50 | $0.031112 | BUY |
| SMA 100 | $0.030499 | BUY |
| SMA 200 | $0.043168 | SELL |
Média Móvel Exponencial Diária (EMA)
| Período | Valor | Ação |
|---|---|---|
| EMA 3 | $0.036233 | SELL |
| EMA 5 | $0.036247 | SELL |
| EMA 10 | $0.036023 | BUY |
| EMA 21 | $0.035032 | BUY |
| EMA 50 | $0.03309 | BUY |
| EMA 100 | $0.034498 | BUY |
| EMA 200 | $0.040925 | SELL |
Média Móvel Simples Semanal (SMA)
| Período | Valor | Ação |
|---|---|---|
| SMA 21 | $0.035914 | BUY |
| SMA 50 | $0.047315 | SELL |
| SMA 100 | $0.081564 | SELL |
| SMA 200 | — | — |
Média Móvel Exponencial Semanal (EMA)
| Período | Valor | Ação |
|---|---|---|
| EMA 21 | $0.037197 | SELL |
| EMA 50 | $0.050349 | SELL |
| EMA 100 | $0.070424 | SELL |
| EMA 200 | $0.089926 | SELL |
Osciladores de SuperWalk GRND
Um oscilador é uma ferramenta de análise técnica que define limites altos e baixos entre dois extremos, criando um indicador de tendência que flutua dentro desses limites. Os traders usam esse indicador para identificar condições de sobrecompra ou sobrevenda de curto prazo.
| Período | Valor | Ação |
|---|---|---|
| RSI (14) | 60.66 | NEUTRAL |
| Stoch RSI (14) | 16.68 | NEUTRAL |
| Estocástico Rápido (14) | 69.43 | NEUTRAL |
| Índice de Canal de Commodities (20) | 48.84 | NEUTRAL |
| Índice Direcional Médio (14) | 26.69 | BUY |
| Oscilador Impressionante (5, 34) | 0.002216 | NEUTRAL |
| Momentum (10) | 0 | SELL |
| MACD (12, 26) | -0 | SELL |
| Williams Percent Range (14) | -30.57 | NEUTRAL |
| Oscilador Ultimate (7, 14, 28) | 50.96 | NEUTRAL |
| VWMA (10) | 0.036469 | SELL |
| Média Móvel de Hull (9) | 0.036368 | SELL |
| Nuvem Ichimoku B/L (9, 26, 52, 26) | 0.0006011 | BUY |
Previsão do preço de SuperWalk GRND com base nos fluxos financeiros mundiais
Definições dos fluxos financeiros mundiais, usadas na previsão do preço do SuperWalk GRND
M0: o total de todas as moedas físicas, mais as contas no Banco Central que podem ser trocadas por moedas físicas.
M1: o valor de M0, mais o valor em contas de demanda, incluindo contas 'correntes'.
M2: o valor de M1, mais a maioria das contas de poupança, do mercado de moedas e de certificados de depósito (CD) de menos de US$ 100.000.
Previsões de preço de SuperWalk GRND por empresas de Internet ou nichos tecnológicos
| Comparação | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Facebook stock | $0.050692 | $0.071232 | $0.100093 | $0.140647 | $0.197633 | $0.2777074 |
| Amazon.com stock | $0.075274 | $0.157065 | $0.327727 | $0.683821 | $1.42 | $2.97 |
| Apple stock | $0.051171 | $0.072582 | $0.102952 | $0.14603 | $0.207133 | $0.2938026 |
| Netflix stock | $0.056922 | $0.089814 | $0.141713 | $0.2236018 | $0.3528086 | $0.556676 |
| Google stock | $0.046718 | $0.06050015 | $0.078347 | $0.101459 | $0.131389 | $0.170149 |
| Tesla stock | $0.081781 | $0.185393 | $0.420272 | $0.952726 | $2.15 | $4.89 |
| Kodak stock | $0.027053 | $0.020287 | $0.015213 | $0.0114082 | $0.008554 | $0.006415 |
| Nokia stock | $0.023898 | $0.015832 | $0.010488 | $0.006947 | $0.0046027 | $0.003049 |
Este cálculo mostra quanto a criptomoeda pode custar, se assumirmos que sua capitalização se comportará da mesma forma que a de algumas empresas de Internet ou nichos tecnológicos. Se você extrapolar os dados, poderá obter uma imagem em potencial do preço futuro para 2024, 2025, 2026, 2027, 2028, 2029 e 2030.
Visão geral da previsão para SuperWalk GRND
Você pode fazer perguntas como: 'Devo investir em SuperWalk GRND agora?', 'Devo comprar GRND hoje?', 'SuperWalk GRND será um bom ou mau investimento no curto ou no longo prazo?'.
Atualizamos a previsão para SuperWalk GRND regularmente com novos valores. Veja nossas previsões semelhantes. Fazemos previsões de preços futuros para uma enorme quantidade de moedas digitais, como SuperWalk GRND, com métodos de análise técnica.
Se você estiver tentando encontrar criptomoedas com bom retorno, você deve explorar o máximo de fontes de informações disponíveis sobre SuperWalk GRND para poder tomar sozinho uma decisão de tão grande responsabilidade sobre o seu investimento.
O preço de SuperWalk GRND é de $0.03607 USD hoje, mas o preço pode tanto subir quanto descer e seu investimento pode ser perdido, porque criptomoedas são ativos de alto risco
Previsão do preço de SuperWalk GRND com base no padrão de crescimento do Bitcoin
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| Se SuperWalk GRND tiver 1% da média anterior do crescimento anual do Bitcoin | $0.037013 | $0.037975 | $0.038963 | $0.039975 |
| Se SuperWalk GRND tiver 2% da média anterior do crescimento anual do Bitcoin | $0.037951 | $0.039924 | $0.0420001 | $0.044183 |
| Se SuperWalk GRND tiver 5% da média anterior do crescimento anual do Bitcoin | $0.040764 | $0.046062 | $0.052049 | $0.058814 |
| Se SuperWalk GRND tiver 10% da média anterior do crescimento anual do Bitcoin | $0.045453 | $0.057268 | $0.072154 | $0.0909093 |
| Se SuperWalk GRND tiver 20% da média anterior do crescimento anual do Bitcoin | $0.05483 | $0.083335 | $0.126658 | $0.1925037 |
| Se SuperWalk GRND tiver 50% da média anterior do crescimento anual do Bitcoin | $0.082962 | $0.190786 | $0.438744 | $1.00 |
| Se SuperWalk GRND tiver 100% da média anterior do crescimento anual do Bitcoin | $0.129849 | $0.46737 | $1.68 | $6.05 |
Perguntas Frequentes sobre SuperWalk GRND
GRND é um bom investimento?
A decisão de adquirir SuperWalk GRND depende inteiramente da sua tolerância individual ao risco. Como você pode perceber, o valor de SuperWalk GRND experimentou uma queda de -0.3638% nas últimas 24 horas, e SuperWalk GRND registrou um declínio de durante os últimos 30 dias. Consequentemente, a decisão de investir ou não em SuperWalk GRND dependerá de quão alinhado esse investimento está com suas aspirações de negociação.
SuperWalk GRND pode subir?
Parece que o valor médio de SuperWalk GRND pode potencialmente subir para $0.0372062 até o final deste ano. Observando as perspectivas de SuperWalk GRND em um horizonte de cinco anos mais longo, a moeda digital poderia potencialmente crescer até $0.116969. No entanto, dada a imprevisibilidade do mercado, é vital conduzir uma pesquisa aprofundada antes de investir quaisquer fundos em um projeto, rede ou ativo específico.
Qual será o preço de SuperWalk GRND na próxima semana?
Com base na nossa nova previsão experimental de SuperWalk GRND, o preço de SuperWalk GRND aumentará 0.86% na próxima semana e atingirá $0.036384 até 13 de janeiro de 2026.
Qual será o preço de SuperWalk GRND no próximo mês?
Com base na nossa nova previsão experimental de SuperWalk GRND, o preço de SuperWalk GRND diminuirá -11.62% no próximo mês e atingirá $0.031884 até 5 de fevereiro de 2026.
Até onde o preço de SuperWalk GRND pode subir este ano em 2026?
De acordo com nossa previsão mais recente sobre o valor de SuperWalk GRND em 2026, espera-se que GRND fluctue dentro do intervalo de $0.012464 e $0.0372062. No entanto, é crucial lembrar que o mercado de criptomoedas é excepcionalmente instável, e essa previsão de preço de SuperWalk GRND não considera flutuações repentinas e extremas de preço.
Onde estará SuperWalk GRND em 5 anos?
O futuro de SuperWalk GRND parece seguir uma tendência de alta, com um preço máximo de $0.116969 projetada após um período de cinco anos. Com base na previsão de SuperWalk GRND para 2030, o valor de SuperWalk GRND pode potencialmente atingir seu pico mais alto de aproximadamente $0.116969, enquanto seu pico mais baixo está previsto para cerca de $0.040455.
Quanto será SuperWalk GRND em 2026?
Com base na nossa nova simulação experimental de previsão de preços de SuperWalk GRND, espera-se que o valor de GRND em 2026 aumente 3.13% para $0.0372062 se o melhor cenário ocorrer. O preço ficará entre $0.0372062 e $0.012464 durante 2026.
Quanto será SuperWalk GRND em 2027?
De acordo com nossa última simulação experimental para previsão de preços de SuperWalk GRND, o valor de GRND pode diminuir -12.62% para $0.031521 em 2027, assumindo as condições mais favoráveis. O preço está projetado para flutuar entre $0.031521 e $0.011999 ao longo do ano.
Quanto será SuperWalk GRND em 2028?
Nosso novo modelo experimental de previsão de preços de SuperWalk GRND sugere que o valor de GRND em 2028 pode aumentar 47.02%, alcançando $0.053039 no melhor cenário. O preço é esperado para variar entre $0.053039 e $0.021654 durante o ano.
Quanto será SuperWalk GRND em 2029?
Com base no nosso modelo de previsão experimental, o valor de SuperWalk GRND pode experimentar um 333.75% crescimento em 2029, potencialmente alcançando $0.156481 sob condições ótimas. A faixa de preço prevista para 2029 está entre $0.156481 e $0.047569.
Quanto será SuperWalk GRND em 2030?
Usando nossa nova simulação experimental para previsões de preços de SuperWalk GRND, espera-se que o valor de GRND em 2030 aumente 224.23%, alcançando $0.116969 no melhor cenário. O preço está previsto para variar entre $0.116969 e $0.040455 ao longo de 2030.
Quanto será SuperWalk GRND em 2031?
Nossa simulação experimental indica que o preço de SuperWalk GRND poderia aumentar 195.98% em 2031, potencialmente atingindo $0.106779 sob condições ideais. O preço provavelmente oscilará entre $0.106779 e $0.047831 durante o ano.
Quanto será SuperWalk GRND em 2032?
Com base nos achados da nossa mais recente previsão experimental de preços de SuperWalk GRND, GRND poderia ver um 449.04% aumento em valor, atingindo $0.19807 se o cenário mais positivo se desenrolar em 2032. O preço é esperado para permanecer dentro de uma faixa de $0.19807 e $0.07301 ao longo do ano.
Quanto será SuperWalk GRND em 2033?
De acordo com nossa previsão experimental de preços de SuperWalk GRND, espera-se que o valor de GRND seja aumentar 1362.43% em 2033, com o preço potencial mais alto sendo $0.527588. Ao longo do ano, o preço de GRND poderia variar entre $0.527588 e $0.16966.
Quanto será SuperWalk GRND em 2034?
Os resultados da nossa nova simulação de previsão de preços de SuperWalk GRND sugerem que GRND pode aumentar 746.96% em 2034, atingindo potencialmente $0.30555 nas melhores circunstâncias. A faixa de preço prevista para o ano é entre $0.30555 e $0.136399.
Quanto será SuperWalk GRND em 2035?
Com base em nossa previsão experimental para o preço de SuperWalk GRND, GRND poderia aumentar 897.93%, com o valor potencialmente atingindo $0.360015 em 2035. A faixa de preço esperada para o ano está entre $0.360015 e $0.161266.
Quanto será SuperWalk GRND em 2036?
Nossa recente simulação de previsão de preços de SuperWalk GRND sugere que o valor de GRND pode aumentar 1964.7% em 2036, possivelmente atingindo $0.744862 se as condições forem ideais. A faixa de preço esperada para 2036 está entre $0.744862 e $0.266945.
Quanto será SuperWalk GRND em 2037?
De acordo com a simulação experimental, o valor de SuperWalk GRND poderia aumentar 4830.69% em 2037, com um pico de $1.77 sob condições favoráveis. O preço é esperado para cair entre $1.77 e $0.69325 ao longo do ano.
Previsões relacionadas
Previsão de Preço do WaultSwap
Previsão de Preço do Hanu Yokia
Previsão de Preço do Raven Protocol
Previsão de Preço do Vault AI
Previsão de Preço do Notional Finance
Previsão de Preço do Bellscoin
Previsão de Preço do Polkaswap
Previsão de Preço do f(x) Protocol
Previsão de Preço do STAT
Previsão de Preço do YOUR AI
Previsão de Preço do Gameswap
Previsão de Preço do Canxium
Previsão de Preço do BountyMarketCap
Previsão de Preço do Lovely Inu finance
Previsão de Preço do MAXX AI
Previsão de Preço do SunContract
Previsão de Preço do Boom Token
Previsão de Preço do Black Dragon
Previsão de Preço do 0chain
Previsão de Preço do Shiba Saga
Previsão de Preço do GoChain
Previsão de Preço do KTX.Finance
Previsão de Preço do stake.link
Previsão de Preço do Hydranet
Previsão de Preço do LootBot
Como ler e prever os movimentos de preço de SuperWalk GRND?
Traders de SuperWalk GRND utilizam indicadores e padrões de gráfico para prever a direção do mercado. Eles também identificam níveis-chave de suporte e resistência para avaliar quando uma tendência de baixa pode desacelerar ou uma tendência de alta pode estagnar.
Indicadores de Previsão de Preço de SuperWalk GRND
Médias móveis são ferramentas populares para a previsão de preço de SuperWalk GRND. Uma média móvel simples (SMA) calcula o preço médio de fechamento de GRND em um período específico, como uma SMA de 12 dias. Uma média móvel exponencial (EMA) dá mais peso aos preços recentes, reagindo mais rapidamente às mudanças de preço.
Médias móveis comumente usadas no mercado de criptomoedas incluem as de 50 dias, 100 dias e 200 dias, que ajudam a identificar níveis-chave de resistência e suporte. Um movimento de preço de GRND acima dessas médias é visto como altista, enquanto uma queda abaixo indica fraqueza.
Traders também usam RSI e níveis de retração de Fibonacci para avaliar a direção futura de GRND.
Como ler gráficos de SuperWalk GRND e prever movimentos de preço?
A maioria dos traders prefere gráficos de velas em vez de gráficos de linha simples porque eles fornecem informações mais detalhadas. Velas podem representar a ação de preço de SuperWalk GRND em diferentes períodos de tempo, como 5 minutos para tendências de curto prazo e semanal para tendências de longo prazo. Opções populares incluem gráficos de 1 hora, 4 horas e 1 dia.
Por exemplo, um gráfico de velas de 1 hora mostra os preços de abertura, fechamento, máximo e mínimo de GRND dentro de cada hora. A cor da vela é crucial: verde indica que o preço fechou mais alto do que abriu, enquanto vermelho significa o oposto. Alguns gráficos usam velas vazias e preenchidas para transmitir a mesma informação.
O que afeta o preço de SuperWalk GRND?
A ação de preço de SuperWalk GRND é impulsionada pela oferta e demanda, influenciada por fatores como reduções pela metade das recompensas de bloco, hard forks e atualizações de protocolo. Eventos do mundo real, como regulamentações, adoção por empresas e governos e hacks de exchanges de criptomoedas, também impactam o preço de GRND. A capitalização de mercado de SuperWalk GRND pode mudar rapidamente.
Traders frequentemente monitoram a atividade de "baleias" de GRND, grandes detentores de SuperWalk GRND, pois suas ações podem influenciar significativamente os movimentos de preço no relativamente pequeno mercado de SuperWalk GRND.
Padrões de previsão de preço altistas e baixistas
Traders frequentemente identificam padrões de velas para ganhar vantagem em previsões de preço de criptomoedas. Certas formações indicam tendências altistas, enquanto outras sugerem movimentos baixistas.
Padrões de velas altistas comumente seguidos:
- Martelo
- Engolfo de Alta
- Linha de Perfuração
- Estrela da Manhã
- Três Soldados Brancos
Padrões de velas baixistas comuns:
- Harami de Baixa
- Nuvem Negra
- Estrela da Noite
- Estrela Cadente
- Homem Enforcado


