Previsão de Preço Sophon - Projeção SOPH
Previsão de Preço Sophon até $0.013848 até 2026
| Ano | Preço Mínimo | Preço Máximo |
|---|---|---|
| 2026 | $0.004639 | $0.013848 |
| 2027 | $0.004466 | $0.011732 |
| 2028 | $0.00806 | $0.019742 |
| 2029 | $0.0177061 | $0.058245 |
| 2030 | $0.015058 | $0.043537 |
| 2031 | $0.0178035 | $0.039745 |
| 2032 | $0.027175 | $0.073725 |
| 2033 | $0.06315 | $0.196377 |
| 2034 | $0.05077 | $0.113731 |
| 2035 | $0.060026 | $0.1340038 |
Calculadora de lucro do investimento
Se você abrir um short de $10,000.00 em Sophon hoje e fechar em Apr 06, 2026, nossa previsão mostra que pode lucrar cerca de $3,954.50, com um retorno de 39.54% nos próximos 90 dias.
Previsão de preço de longo prazo de Sophon para os anos 2027, 2028, 2029, 2030, 2031, 2032 e 2037
[
'name' => 'Sophon'
'name_with_ticker' => 'Sophon <small>SOPH</small>'
'name_lang' => 'Sophon'
'name_lang_with_ticker' => 'Sophon <small>SOPH</small>'
'name_with_lang' => 'Sophon'
'name_with_lang_with_ticker' => 'Sophon <small>SOPH</small>'
'image' => '/uploads/coins/sophon.png?1747900863'
'price_for_sd' => 0.01342
'ticker' => 'SOPH'
'marketcap' => '$26.86M'
'low24h' => '$0.01311'
'high24h' => '$0.01348'
'volume24h' => '$34.77M'
'current_supply' => '2B'
'max_supply' => '10B'
'algo' => null
'proof' => null
'ico_price_and_roi' => '—'
'price' => '$0.01342'
'change_24h_pct' => '1.9322%'
'ath_price' => '$0.1107'
'ath_days' => 223
'ath_exchange' => null
'ath_pair' => null
'ath_date' => '28 de mai. de 2025'
'ath_pct' => '-87.88%'
'fdv' => '$134.28M'
'new_prediction' => true
'change_24h_pct_is_increased' => true
'change_30d_pct' => null
'change_30d_pct_is_increased' => false
'max_price' => '$0.66210074'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.013543'
'next_week_prediction_price_date' => '13 de janeiro de 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.011868'
'next_month_prediction_price_date' => '5 de fevereiro de 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.004639'
'current_year_max_price_prediction' => '$0.013848'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.015058'
'grand_prediction_max_price' => '$0.043537'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.013682616568788
107 => 0.013733702492266
108 => 0.013848801686374
109 => 0.012865291674704
110 => 0.013306858795607
111 => 0.013566238109893
112 => 0.012394352931647
113 => 0.013543073707817
114 => 0.012848170953513
115 => 0.012612310521613
116 => 0.012929865520917
117 => 0.012806114028856
118 => 0.012699719762913
119 => 0.012640349934431
120 => 0.012873527278654
121 => 0.012862649276839
122 => 0.012481125883918
123 => 0.011983444170736
124 => 0.012150482489525
125 => 0.012089795902316
126 => 0.011869859881546
127 => 0.012018070204369
128 => 0.011365426950186
129 => 0.010242588152809
130 => 0.010984369855839
131 => 0.010955812067175
201 => 0.010941411935139
202 => 0.011498840383625
203 => 0.011445256500366
204 => 0.011348001227555
205 => 0.011868073712193
206 => 0.011678240259338
207 => 0.01226326223065
208 => 0.012648595537805
209 => 0.012550862546884
210 => 0.012913270384741
211 => 0.01215433071502
212 => 0.012406420029927
213 => 0.012458375288348
214 => 0.011861656098461
215 => 0.01145402348635
216 => 0.011426839038474
217 => 0.010720060264308
218 => 0.011097615780548
219 => 0.011429849010532
220 => 0.01127073507571
221 => 0.011220364357339
222 => 0.01147769743342
223 => 0.01149769441734
224 => 0.011041761064773
225 => 0.011136564046303
226 => 0.011531908238969
227 => 0.011126602386997
228 => 0.01033915932295
301 => 0.010143862555814
302 => 0.010117806367045
303 => 0.0095881460453904
304 => 0.010156913219642
305 => 0.0099086311060685
306 => 0.01069295132797
307 => 0.010244951823614
308 => 0.010225639460386
309 => 0.01019644599086
310 => 0.00974054547202
311 => 0.0098403587116565
312 => 0.010172153122194
313 => 0.010290541105805
314 => 0.01027819226919
315 => 0.010170527148572
316 => 0.010219815689457
317 => 0.010061040126002
318 => 0.010004973169919
319 => 0.0098280104340891
320 => 0.0095679240996225
321 => 0.0096040906996322
322 => 0.0090887916157624
323 => 0.0088080293258778
324 => 0.0087303180244253
325 => 0.0086263992243441
326 => 0.0087420559294118
327 => 0.0090873318382017
328 => 0.0086708558378307
329 => 0.0079568369475893
330 => 0.0079997506995218
331 => 0.0080961651589069
401 => 0.0079164974516883
402 => 0.0077464570451737
403 => 0.0078942933828239
404 => 0.007591754166284
405 => 0.0081327255778275
406 => 0.0081180938172001
407 => 0.0083197345059759
408 => 0.0084458245667509
409 => 0.0081552277988065
410 => 0.0080821434975257
411 => 0.0081237756370315
412 => 0.0074356891077368
413 => 0.0082635031566482
414 => 0.0082706621269189
415 => 0.0082093626771242
416 => 0.0086501481022781
417 => 0.0095803428337746
418 => 0.0092303661587892
419 => 0.0090948446121339
420 => 0.0088372180528764
421 => 0.0091804901467355
422 => 0.009154132205806
423 => 0.0090349316009705
424 => 0.0089628387032374
425 => 0.0090956720777995
426 => 0.0089463791781273
427 => 0.0089195620710516
428 => 0.0087570795794734
429 => 0.0086990807224623
430 => 0.0086561406777323
501 => 0.0086088679076862
502 => 0.0087131398587675
503 => 0.0084768458994998
504 => 0.0081918985488053
505 => 0.0081682082597682
506 => 0.0082336192306713
507 => 0.0082046797453207
508 => 0.0081680697086461
509 => 0.008098171178484
510 => 0.0080774337777308
511 => 0.0081448202698224
512 => 0.0080687448491275
513 => 0.0081809982764054
514 => 0.0081504715554512
515 => 0.0079799517737067
516 => 0.007767420991144
517 => 0.0077655290213808
518 => 0.007719739612898
519 => 0.0076614199167115
520 => 0.0076451967114063
521 => 0.0078818430188161
522 => 0.0083716937929265
523 => 0.008275524364833
524 => 0.0083450166324699
525 => 0.0086868498102184
526 => 0.0087955082981423
527 => 0.0087183850771312
528 => 0.0086128140554582
529 => 0.0086174586446298
530 => 0.0089782267842082
531 => 0.0090007274505465
601 => 0.0090575793753933
602 => 0.0091306501651735
603 => 0.0087308293485978
604 => 0.0085986271201244
605 => 0.0085359823699732
606 => 0.0083430607860772
607 => 0.0085511101744625
608 => 0.0084298887054134
609 => 0.0084462456231032
610 => 0.0084355931589996
611 => 0.0084414101247166
612 => 0.008132574365293
613 => 0.0082450978840973
614 => 0.0080580057097897
615 => 0.007807510290474
616 => 0.0078066705419934
617 => 0.0078679789409943
618 => 0.0078315103062707
619 => 0.0077333741479237
620 => 0.0077473139260273
621 => 0.0076251868017161
622 => 0.0077621423701016
623 => 0.0077660697657523
624 => 0.0077133344119037
625 => 0.0079243333612281
626 => 0.008010779802925
627 => 0.0079760682633211
628 => 0.0080083443487726
629 => 0.0082795206387492
630 => 0.0083237342062665
701 => 0.0083433709523733
702 => 0.0083170603139605
703 => 0.008013300953548
704 => 0.0080267739728668
705 => 0.007927917896594
706 => 0.0078443949293402
707 => 0.0078477354100101
708 => 0.0078906770724043
709 => 0.0080782058305749
710 => 0.008472849046721
711 => 0.0084878254682933
712 => 0.008505977328132
713 => 0.0084321445917743
714 => 0.0084098759320047
715 => 0.0084392540422696
716 => 0.0085874612848995
717 => 0.0089686905508176
718 => 0.0088339386667956
719 => 0.0087243832875476
720 => 0.0088204928910662
721 => 0.0088056975709365
722 => 0.0086808101795578
723 => 0.0086773050064322
724 => 0.0084376061734622
725 => 0.0083489949725915
726 => 0.0082749448207106
727 => 0.0081940839879847
728 => 0.0081461469758652
729 => 0.0082198000134632
730 => 0.008236645334599
731 => 0.0080756016806562
801 => 0.0080536520257005
802 => 0.0081851637498789
803 => 0.0081272903433193
804 => 0.0081868145771573
805 => 0.0082006247099971
806 => 0.0081984009605356
807 => 0.0081379744773689
808 => 0.0081764885157957
809 => 0.0080853913333289
810 => 0.0079863368297507
811 => 0.0079231462277814
812 => 0.0078680040465462
813 => 0.0078986001335779
814 => 0.0077895306699347
815 => 0.0077546371533806
816 => 0.00816344082617
817 => 0.0084654284946396
818 => 0.0084610374743398
819 => 0.0084343082675436
820 => 0.0083945940880659
821 => 0.0085845559453064
822 => 0.008518377032651
823 => 0.008566527721041
824 => 0.0085787840921143
825 => 0.0086158804359702
826 => 0.0086291391903603
827 => 0.0085890620257966
828 => 0.0084545581665076
829 => 0.0081193873374025
830 => 0.0079633644116778
831 => 0.0079118742474212
901 => 0.0079137458170982
902 => 0.0078621195703521
903 => 0.0078773258137449
904 => 0.0078568314594627
905 => 0.0078180201105689
906 => 0.0078962036421512
907 => 0.007905213565836
908 => 0.0078869645953411
909 => 0.007891262888515
910 => 0.0077401692070543
911 => 0.0077516565314975
912 => 0.007687693649259
913 => 0.0076757013799233
914 => 0.0075140087835096
915 => 0.007227546911246
916 => 0.0073862745960068
917 => 0.0071945538733058
918 => 0.0071219463305759
919 => 0.0074656591450696
920 => 0.0074311599116039
921 => 0.007372112220367
922 => 0.0072847683784104
923 => 0.0072523716978025
924 => 0.0070555397219712
925 => 0.0070439098387814
926 => 0.0071414650809137
927 => 0.0070964466933406
928 => 0.0070332238273912
929 => 0.0068042370157218
930 => 0.0065467800244776
1001 => 0.0065545510327263
1002 => 0.0066364433114835
1003 => 0.0068745561566484
1004 => 0.0067815213486484
1005 => 0.006714023527993
1006 => 0.0067013832151613
1007 => 0.0068596031945376
1008 => 0.0070835176134657
1009 => 0.0071885732490239
1010 => 0.0070844663047728
1011 => 0.006964873852733
1012 => 0.0069721528911506
1013 => 0.0070205770726762
1014 => 0.0070256657694735
1015 => 0.0069478233774983
1016 => 0.0069697355548749
1017 => 0.0069364489537483
1018 => 0.006732169144077
1019 => 0.0067284743700983
1020 => 0.0066783408103481
1021 => 0.0066768227860832
1022 => 0.0065915330945454
1023 => 0.0065796004771195
1024 => 0.006410252617857
1025 => 0.0065217178916561
1026 => 0.0064469528381812
1027 => 0.0063342642673014
1028 => 0.0063148367152068
1029 => 0.0063142526995314
1030 => 0.0064299586651216
1031 => 0.0065203658000809
1101 => 0.0064482534082961
1102 => 0.0064318348145267
1103 => 0.00660714244144
1104 => 0.0065848329479508
1105 => 0.0065655130704699
1106 => 0.0070634685331655
1107 => 0.0066692979284926
1108 => 0.0064974170463837
1109 => 0.0062846818154797
1110 => 0.0063539494793662
1111 => 0.0063685451939008
1112 => 0.0058569553119842
1113 => 0.005649403360605
1114 => 0.005578179352322
1115 => 0.0055371889285955
1116 => 0.005555868779413
1117 => 0.005369047679756
1118 => 0.0054945945484613
1119 => 0.0053328232677528
1120 => 0.0053057017860927
1121 => 0.0055949688756157
1122 => 0.005635218701249
1123 => 0.0054635004404567
1124 => 0.0055737713625465
1125 => 0.0055337855933163
1126 => 0.0053355963720488
1127 => 0.0053280270015776
1128 => 0.0052285826170336
1129 => 0.0050729714114494
1130 => 0.0050018529148914
1201 => 0.0049648137844049
1202 => 0.0049800968515219
1203 => 0.004972369265118
1204 => 0.0049219415366915
1205 => 0.0049752597234828
1206 => 0.0048390537888269
1207 => 0.0047848154881611
1208 => 0.0047603173060694
1209 => 0.0046394266993412
1210 => 0.0048318174149426
1211 => 0.0048697208095904
1212 => 0.0049076988856347
1213 => 0.0052382721088662
1214 => 0.0052217576048238
1215 => 0.0053710406784775
1216 => 0.0053652398127493
1217 => 0.0053226618619178
1218 => 0.0051430324910926
1219 => 0.0052146295567179
1220 => 0.0049942649173777
1221 => 0.0051593770885103
1222 => 0.0050840267888545
1223 => 0.0051339010764011
1224 => 0.0050442226104091
1225 => 0.0050938543762222
1226 => 0.0048787091105847
1227 => 0.004677809488708
1228 => 0.0047586573611767
1229 => 0.004846548244626
1230 => 0.0050371180741245
1231 => 0.0049236162558421
]
'min_raw' => 0.0046394266993412
'max_raw' => 0.013848801686374
'avg_raw' => 0.0092441141928575
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.004639'
'max' => '$0.013848'
'avg' => '$0.009244'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.0087887333006588
'max_diff' => 0.00042064168637382
'year' => 2026
]
1 => [
'items' => [
101 => 0.0049644358016754
102 => 0.0048276971562434
103 => 0.0045455662732541
104 => 0.0045471631034125
105 => 0.00450376341362
106 => 0.0044662597451808
107 => 0.0049366533050312
108 => 0.0048781524300421
109 => 0.0047849389421521
110 => 0.0049097088998496
111 => 0.0049427000570303
112 => 0.0049436392688952
113 => 0.0050346682092525
114 => 0.0050832503710391
115 => 0.0050918131876211
116 => 0.0052350491920838
117 => 0.0052830600114511
118 => 0.0054808097816797
119 => 0.0050791285140362
120 => 0.0050708561526627
121 => 0.0049114646690257
122 => 0.0048103760702234
123 => 0.0049183862918707
124 => 0.0050140686033847
125 => 0.0049144377851578
126 => 0.0049274474666969
127 => 0.0047937012333642
128 => 0.0048415092184354
129 => 0.0048826878956098
130 => 0.0048599514504449
131 => 0.0048259138915766
201 => 0.0050062237449872
202 => 0.0049960499564178
203 => 0.0051639586372194
204 => 0.0052948554611693
205 => 0.0055294459702935
206 => 0.0052846385445425
207 => 0.0052757167889268
208 => 0.0053629283811653
209 => 0.0052830466598108
210 => 0.0053335291502836
211 => 0.005521312460622
212 => 0.0055252800260644
213 => 0.0054588181929851
214 => 0.0054547739844022
215 => 0.0054675387064578
216 => 0.0055423020822367
217 => 0.0055161774614931
218 => 0.0055464095340121
219 => 0.005584215203627
220 => 0.0057405954824262
221 => 0.0057782982382217
222 => 0.0056867000882762
223 => 0.0056949703756353
224 => 0.0056607101531302
225 => 0.0056276152074696
226 => 0.0057020078121859
227 => 0.0058379617594952
228 => 0.005837115997045
301 => 0.0058686546702537
302 => 0.0058883030023822
303 => 0.0058039579774284
304 => 0.005749052467636
305 => 0.0057701067338188
306 => 0.0058037729639473
307 => 0.0057591892291302
308 => 0.0054839977646444
309 => 0.0055674732756706
310 => 0.0055535788688919
311 => 0.0055337915440214
312 => 0.0056177268158553
313 => 0.0056096310541254
314 => 0.0053671315593522
315 => 0.0053826555902199
316 => 0.0053680756270865
317 => 0.0054151864707504
318 => 0.0052805025196483
319 => 0.0053219303958971
320 => 0.0053479135715181
321 => 0.005363217861571
322 => 0.0054185074514921
323 => 0.0054120198562649
324 => 0.0054181041734638
325 => 0.0055000840394062
326 => 0.0059147100692504
327 => 0.0059372772492341
328 => 0.0058261482014363
329 => 0.005870542064108
330 => 0.0057853155556489
331 => 0.0058425286817454
401 => 0.0058816724495649
402 => 0.0057047892897025
403 => 0.0056943154169377
404 => 0.0056087371483614
405 => 0.0056547220624934
406 => 0.0055815567576771
407 => 0.0055995089642653
408 => 0.0055493130295994
409 => 0.0056396557180871
410 => 0.0057406728816508
411 => 0.0057661938064557
412 => 0.005699059240743
413 => 0.0056504493907836
414 => 0.0055651065073348
415 => 0.0057070336245003
416 => 0.00574853743871
417 => 0.005706815622633
418 => 0.0056971477662083
419 => 0.0056788271957528
420 => 0.0057010345618373
421 => 0.0057483114000245
422 => 0.0057260165162015
423 => 0.0057407426797519
424 => 0.0056846217298518
425 => 0.0058039858991413
426 => 0.0059935649265246
427 => 0.0059941744540969
428 => 0.0059718794500962
429 => 0.0059627568148117
430 => 0.0059856328418904
501 => 0.0059980421481568
502 => 0.0060720190249833
503 => 0.0061513991611868
504 => 0.0065218316205822
505 => 0.0064178156682934
506 => 0.0067464853833945
507 => 0.0070064204556184
508 => 0.0070843636181952
509 => 0.0070126595761338
510 => 0.0067673639216177
511 => 0.0067553285465624
512 => 0.0071219038155635
513 => 0.0070183295118597
514 => 0.0070060096780048
515 => 0.0068749474604769
516 => 0.0069524214634073
517 => 0.0069354767624914
518 => 0.0069087287231325
519 => 0.0070565437238379
520 => 0.0073332402096224
521 => 0.0072901144674697
522 => 0.0072579231014983
523 => 0.0071168699065773
524 => 0.0072018154352914
525 => 0.0071715679595407
526 => 0.0073015303108879
527 => 0.0072245434929684
528 => 0.007017544834641
529 => 0.0070505100532562
530 => 0.0070455274267793
531 => 0.0071480695266004
601 => 0.0071172889334855
602 => 0.0070395170219627
603 => 0.0073322944911147
604 => 0.0073132831507818
605 => 0.0073402368847764
606 => 0.0073521027520527
607 => 0.0075303112382079
608 => 0.0076033175529501
609 => 0.007619891264552
610 => 0.0076892416170461
611 => 0.0076181657646053
612 => 0.0079025198505928
613 => 0.0080915987252535
614 => 0.008311223568082
615 => 0.0086321544930469
616 => 0.0087528274896107
617 => 0.0087310289928835
618 => 0.0089743551574579
619 => 0.0094116068663613
620 => 0.0088194100647577
621 => 0.0094429947348125
622 => 0.0092455750279044
623 => 0.0087774964542541
624 => 0.0087473577123949
625 => 0.0090643459569748
626 => 0.0097673953744653
627 => 0.0095912894693044
628 => 0.0097676834206379
629 => 0.009561910506691
630 => 0.0095516921471232
701 => 0.0097576894895012
702 => 0.010239013508298
703 => 0.010010354509129
704 => 0.0096825157643327
705 => 0.0099245867917542
706 => 0.0097148824651857
707 => 0.0092423599248815
708 => 0.0095911548044377
709 => 0.0093579256015847
710 => 0.0094259942821236
711 => 0.0099162073762948
712 => 0.0098572236398611
713 => 0.0099335540565532
714 => 0.0097988328690065
715 => 0.0096729820362566
716 => 0.0094380721111233
717 => 0.0093685268632106
718 => 0.0093877466677578
719 => 0.00936851733883
720 => 0.0092370873946516
721 => 0.0092087051107198
722 => 0.0091614000607105
723 => 0.0091760618737536
724 => 0.0090871145401555
725 => 0.009254976536112
726 => 0.0092861332017564
727 => 0.0094082891638847
728 => 0.0094209718011097
729 => 0.0097611744168559
730 => 0.0095737965329756
731 => 0.0096995057949107
801 => 0.0096882611753017
802 => 0.0087876411362835
803 => 0.0089117386314223
804 => 0.0091047953899191
805 => 0.0090178235818985
806 => 0.0088948657936263
807 => 0.008795570787017
808 => 0.0086451286985682
809 => 0.0088568730490755
810 => 0.0091352943534914
811 => 0.0094280330248548
812 => 0.0097797393575005
813 => 0.009701242598367
814 => 0.0094214581196078
815 => 0.0094340090469423
816 => 0.009511593941116
817 => 0.0094111144538301
818 => 0.0093814810914369
819 => 0.0095075227721744
820 => 0.0095083907519583
821 => 0.0093927769584843
822 => 0.0092642933841387
823 => 0.0092637550332708
824 => 0.0092408926222202
825 => 0.0095659776788278
826 => 0.0097447415901556
827 => 0.0097652365844969
828 => 0.0097433621137408
829 => 0.0097517807293681
830 => 0.0096477619481605
831 => 0.0098855180361898
901 => 0.010103706534206
902 => 0.01004522735582
903 => 0.0099575587541149
904 => 0.0098877264901649
905 => 0.010028777093735
906 => 0.010022496332392
907 => 0.010101800848019
908 => 0.010098203137105
909 => 0.010071536011293
910 => 0.010045228308187
911 => 0.010149535377316
912 => 0.010119496616527
913 => 0.010089411197246
914 => 0.01002907028303
915 => 0.010037271615428
916 => 0.0099496181509434
917 => 0.009909065647523
918 => 0.0092992532951415
919 => 0.0091362915083917
920 => 0.0091875626038962
921 => 0.0092044423797897
922 => 0.009133521201355
923 => 0.0092352039530745
924 => 0.0092193568039277
925 => 0.0092810087909857
926 => 0.0092424913060899
927 => 0.0092440720771055
928 => 0.0093573437873902
929 => 0.0093902270467782
930 => 0.009373502355653
1001 => 0.0093852157560282
1002 => 0.0096551461237574
1003 => 0.0096167706573535
1004 => 0.0095963844556779
1005 => 0.0096020315728638
1006 => 0.009671004569191
1007 => 0.0096903132423766
1008 => 0.0096085010372928
1009 => 0.009647084146161
1010 => 0.0098113661267966
1011 => 0.0098688555224642
1012 => 0.01005233407696
1013 => 0.0099743891259388
1014 => 0.010117460456916
1015 => 0.01055721295173
1016 => 0.010908517673145
1017 => 0.01058544333305
1018 => 0.011230569715543
1019 => 0.011732893142197
1020 => 0.011713613132418
1021 => 0.011626021424031
1022 => 0.011054139557745
1023 => 0.01052788533811
1024 => 0.010968119338769
1025 => 0.010969241585772
1026 => 0.010931425094691
1027 => 0.010696550116428
1028 => 0.010923251954568
1029 => 0.01094124672322
1030 => 0.01093117443797
1031 => 0.01075109634283
1101 => 0.010476150375545
1102 => 0.010529874159425
1103 => 0.010617874813356
1104 => 0.010451271216606
1105 => 0.010398031272576
1106 => 0.010497014457841
1107 => 0.010815958904729
1108 => 0.010755664304564
1109 => 0.010754089768884
1110 => 0.011012055637279
1111 => 0.010827407748027
1112 => 0.010530551788387
1113 => 0.010455591743529
1114 => 0.010189534083419
1115 => 0.010373301056922
1116 => 0.010379914503144
1117 => 0.01027926720981
1118 => 0.010538718761542
1119 => 0.010536327869818
1120 => 0.010782638503921
1121 => 0.011253491926276
1122 => 0.011114237399996
1123 => 0.010952299536781
1124 => 0.010969906672563
1125 => 0.011163013493969
1126 => 0.011046256701547
1127 => 0.011088243258159
1128 => 0.011162949942287
1129 => 0.011208022339684
1130 => 0.010963421448202
1201 => 0.010906393279784
1202 => 0.010789733661369
1203 => 0.010759299344479
1204 => 0.010854316169496
1205 => 0.010829282593098
1206 => 0.010379358668598
1207 => 0.010332339115135
1208 => 0.010333781137711
1209 => 0.010215548234869
1210 => 0.010035214678888
1211 => 0.01050912049685
1212 => 0.01047105922736
1213 => 0.010429042531551
1214 => 0.010434189337044
1215 => 0.010639895790462
1216 => 0.010520575659055
1217 => 0.010837807784587
1218 => 0.010772594396448
1219 => 0.010705708530976
1220 => 0.010696462866975
1221 => 0.010670717515202
1222 => 0.010582427124549
1223 => 0.010475811172406
1224 => 0.010405414085886
1225 => 0.0095984444661224
1226 => 0.0097482133336242
1227 => 0.0099205087638232
1228 => 0.0099799844558973
1229 => 0.0098782471690119
1230 => 0.010586444332732
1231 => 0.010715838778901
]
'min_raw' => 0.0044662597451808
'max_raw' => 0.011732893142197
'avg_raw' => 0.0080995764436889
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.004466'
'max' => '$0.011732'
'avg' => '$0.008099'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -0.0001731669541604
'max_diff' => -0.0021159085441769
'year' => 2027
]
2 => [
'items' => [
101 => 0.010323894561263
102 => 0.01025057780112
103 => 0.010591250967321
104 => 0.010385783402501
105 => 0.010478305434358
106 => 0.010278323408328
107 => 0.01068467144593
108 => 0.010681575754703
109 => 0.010523497190289
110 => 0.010657104110456
111 => 0.010633886620172
112 => 0.01045541631028
113 => 0.010690329273086
114 => 0.010690445786984
115 => 0.01053829860566
116 => 0.010360624007175
117 => 0.010328859985452
118 => 0.01030493006198
119 => 0.010472420140115
120 => 0.010622591220443
121 => 0.010902022370365
122 => 0.010972278000576
123 => 0.011246490402471
124 => 0.011083210268302
125 => 0.011155590236947
126 => 0.011234168931683
127 => 0.011271842447576
128 => 0.011210455475102
129 => 0.011636420205572
130 => 0.011672384680046
131 => 0.011684443257245
201 => 0.011540810346794
202 => 0.011668389988976
203 => 0.011608699699393
204 => 0.011763997250448
205 => 0.011788349889392
206 => 0.011767724070577
207 => 0.011775453982558
208 => 0.011411968230429
209 => 0.011393119576641
210 => 0.011136116844803
211 => 0.011240847357695
212 => 0.011045058683707
213 => 0.011107145289076
214 => 0.011134512473139
215 => 0.011120217409258
216 => 0.011246768663758
217 => 0.01113917424472
218 => 0.010855214882719
219 => 0.01057117815618
220 => 0.010567612306449
221 => 0.010492830450016
222 => 0.010438776864795
223 => 0.010449189502963
224 => 0.010485884998007
225 => 0.010436644055914
226 => 0.010447152107489
227 => 0.010621655778408
228 => 0.010656651245107
229 => 0.010537722975651
301 => 0.010060208812516
302 => 0.0099430256391293
303 => 0.010027254580316
304 => 0.0099869985714675
305 => 0.0080602873004544
306 => 0.0085129395342667
307 => 0.0082439889475528
308 => 0.0083679337517321
309 => 0.0080934048471141
310 => 0.0082244244296905
311 => 0.0082002298968577
312 => 0.0089280812938745
313 => 0.0089167168954369
314 => 0.0089221564315784
315 => 0.0086625131989098
316 => 0.0090761319186329
317 => 0.0092798953732166
318 => 0.0092421841807619
319 => 0.009251675275447
320 => 0.0090885868232558
321 => 0.0089237354842893
322 => 0.0087408899789362
323 => 0.0090805943274947
324 => 0.0090428250028817
325 => 0.00912945424457
326 => 0.0093497767971786
327 => 0.0093822201299741
328 => 0.0094258242982592
329 => 0.0094101953078851
330 => 0.009782541265857
331 => 0.0097374477135289
401 => 0.0098461102003392
402 => 0.0096225832207276
403 => 0.0093696412259213
404 => 0.0094177172298372
405 => 0.0094130871240573
406 => 0.0093541405632911
407 => 0.0093009262439101
408 => 0.0092123393951824
409 => 0.0094926412929437
410 => 0.0094812615477859
411 => 0.009665486394383
412 => 0.0096329228632823
413 => 0.009415455632944
414 => 0.0094232225176192
415 => 0.0094754585496978
416 => 0.0096562480531424
417 => 0.0097099186868528
418 => 0.0096850563109132
419 => 0.0097439037106191
420 => 0.0097904142959449
421 => 0.0097497447240464
422 => 0.010325540097591
423 => 0.010086429714182
424 => 0.010202970451336
425 => 0.01023076473045
426 => 0.010159570268952
427 => 0.010175009798368
428 => 0.010198396478414
429 => 0.010340395820072
430 => 0.010713043180422
501 => 0.010878086159625
502 => 0.011374626105634
503 => 0.010864381637711
504 => 0.010834105842586
505 => 0.010923547680932
506 => 0.011215069193331
507 => 0.011451319997907
508 => 0.01152969801942
509 => 0.011540056968843
510 => 0.011687099347675
511 => 0.011771381297044
512 => 0.011669244535287
513 => 0.011582694323862
514 => 0.011272682209547
515 => 0.011308566955914
516 => 0.011555777273191
517 => 0.01190497640696
518 => 0.012204625591712
519 => 0.01209969889104
520 => 0.012900215550457
521 => 0.012979583507421
522 => 0.012968617422042
523 => 0.013149429439541
524 => 0.012790554406532
525 => 0.012637128377044
526 => 0.011601407461959
527 => 0.011892402792591
528 => 0.012315381595221
529 => 0.012259398764604
530 => 0.011952220251878
531 => 0.012204392569265
601 => 0.012121016514979
602 => 0.012055254361688
603 => 0.012356523534534
604 => 0.012025265703535
605 => 0.012312077044958
606 => 0.011944238532899
607 => 0.012100178187371
608 => 0.01201165929754
609 => 0.012068941867728
610 => 0.011734069132888
611 => 0.011914758332031
612 => 0.011726551868153
613 => 0.011726462633784
614 => 0.011722307965662
615 => 0.01194373203578
616 => 0.011950952666757
617 => 0.011787319944387
618 => 0.01176373791267
619 => 0.011850933043771
620 => 0.011748850381692
621 => 0.011796614216778
622 => 0.011750297099599
623 => 0.011739870140935
624 => 0.011656786360293
625 => 0.011620991583157
626 => 0.01163502763759
627 => 0.011587115347728
628 => 0.011558246460023
629 => 0.011716565217278
630 => 0.011631981891837
701 => 0.011703601609559
702 => 0.011621981902086
703 => 0.011339052435972
704 => 0.011176336708085
705 => 0.010641909174171
706 => 0.010793472159834
707 => 0.010893958576131
708 => 0.010860747816144
709 => 0.010932097379454
710 => 0.010936477663164
711 => 0.01091328119281
712 => 0.010886422651791
713 => 0.010873349399393
714 => 0.01097078671205
715 => 0.011027352351636
716 => 0.010904043732342
717 => 0.010875154248112
718 => 0.010999826070274
719 => 0.011075875809772
720 => 0.01163738435757
721 => 0.0115957859907
722 => 0.011700189728275
723 => 0.01168843546963
724 => 0.011797867219429
725 => 0.011976741881042
726 => 0.011613039679841
727 => 0.011676165806094
728 => 0.011660688737732
729 => 0.011829663311803
730 => 0.011830190831979
731 => 0.011728882133917
801 => 0.011783803222682
802 => 0.011753147777615
803 => 0.011808546310183
804 => 0.011595230419149
805 => 0.011855026148401
806 => 0.012002313586021
807 => 0.012004358672235
808 => 0.012074171748721
809 => 0.012145105877731
810 => 0.012281257761306
811 => 0.012141308675595
812 => 0.011889553894169
813 => 0.011907729776225
814 => 0.011760126039988
815 => 0.011762607285461
816 => 0.011749362202668
817 => 0.011789111693174
818 => 0.011603953197007
819 => 0.011647409525968
820 => 0.011586570410943
821 => 0.011676033553739
822 => 0.011579786000878
823 => 0.011660681274221
824 => 0.011695592992475
825 => 0.011824417984427
826 => 0.011560758444822
827 => 0.011023138795386
828 => 0.011136152963706
829 => 0.01096899613169
830 => 0.010984467132904
831 => 0.011015721017548
901 => 0.010914416951782
902 => 0.010933742575072
903 => 0.010933052127816
904 => 0.010927102226372
905 => 0.010900749126317
906 => 0.010862531917437
907 => 0.011014777514981
908 => 0.011040647008704
909 => 0.011098151688697
910 => 0.011269246610562
911 => 0.011252150193171
912 => 0.011280035159259
913 => 0.011219162434858
914 => 0.010987290844002
915 => 0.010999882586953
916 => 0.010842863350581
917 => 0.011094136353796
918 => 0.011034631589993
919 => 0.010996268481668
920 => 0.01098580075213
921 => 0.011157319785212
922 => 0.011208640968141
923 => 0.011176661050976
924 => 0.011111069307867
925 => 0.011237024845095
926 => 0.011270725233219
927 => 0.011278269507298
928 => 0.011501438569687
929 => 0.011290742178787
930 => 0.011341458894218
1001 => 0.011737136230292
1002 => 0.011378311486213
1003 => 0.011568388955898
1004 => 0.011559085652873
1005 => 0.011656322854493
1006 => 0.011551109364199
1007 => 0.011552413611508
1008 => 0.011638753659128
1009 => 0.011517504633755
1010 => 0.011487481669944
1011 => 0.011446005160468
1012 => 0.011536567601522
1013 => 0.011590855689147
1014 => 0.012028377805199
1015 => 0.012311037045602
1016 => 0.012298766062515
1017 => 0.012410899877609
1018 => 0.012360382566881
1019 => 0.012197248844748
1020 => 0.012475698216391
1021 => 0.012387585184387
1022 => 0.012394849115688
1023 => 0.012394578751802
1024 => 0.01245316621511
1025 => 0.012411651627894
1026 => 0.012329822115107
1027 => 0.012384144364518
1028 => 0.012545462024711
1029 => 0.013046196991781
1030 => 0.013326414913209
1031 => 0.013029327521059
1101 => 0.013234254426006
1102 => 0.01311137130596
1103 => 0.013089039787592
1104 => 0.013217749027877
1105 => 0.01334668355665
1106 => 0.013338470984566
1107 => 0.013244871137539
1108 => 0.013191998958961
1109 => 0.013592364808631
1110 => 0.013887347546613
1111 => 0.013867231701472
1112 => 0.013956016499901
1113 => 0.014216691414099
1114 => 0.014240524261369
1115 => 0.014237521870405
1116 => 0.014178449671746
1117 => 0.014435117977689
1118 => 0.014649235194156
1119 => 0.014164776164516
1120 => 0.014349251820969
1121 => 0.014432068886585
1122 => 0.014553668909625
1123 => 0.014758828531025
1124 => 0.014981686295767
1125 => 0.015013200827212
1126 => 0.014990839759042
1127 => 0.014843859072457
1128 => 0.015087712697883
1129 => 0.015230556432587
1130 => 0.015315616607682
1201 => 0.015531315059061
1202 => 0.014432580336588
1203 => 0.013654841289363
1204 => 0.01353338610645
1205 => 0.013780369996892
1206 => 0.013845497679141
1207 => 0.01381924479209
1208 => 0.012943828785497
1209 => 0.013528777222347
1210 => 0.014158132556537
1211 => 0.014182308658053
1212 => 0.014497377097548
1213 => 0.014599976296539
1214 => 0.014853647687296
1215 => 0.014837780472737
1216 => 0.014899545419593
1217 => 0.014885346727931
1218 => 0.015355219562496
1219 => 0.015873559075812
1220 => 0.015855610626685
1221 => 0.015781093188931
1222 => 0.015891764291107
1223 => 0.016426746217487
1224 => 0.016377493654617
1225 => 0.016425338324122
1226 => 0.017056112165585
1227 => 0.017876207886019
1228 => 0.017495191087613
1229 => 0.018321887905523
1230 => 0.018842249731083
1231 => 0.01974216170197
]
'min_raw' => 0.0080602873004544
'max_raw' => 0.01974216170197
'avg_raw' => 0.013901224501212
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.00806'
'max' => '$0.019742'
'avg' => '$0.0139012'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 0.0035940275552736
'max_diff' => 0.0080092685597733
'year' => 2028
]
3 => [
'items' => [
101 => 0.019629488291055
102 => 0.019979817417463
103 => 0.019427779369867
104 => 0.01816018842729
105 => 0.017959587308484
106 => 0.018361195828363
107 => 0.019348511186099
108 => 0.018330101754191
109 => 0.018536124655887
110 => 0.018476790046338
111 => 0.018473628357151
112 => 0.018594297173899
113 => 0.018419260761544
114 => 0.017706130929163
115 => 0.018032954128843
116 => 0.017906751996107
117 => 0.01804678267137
118 => 0.018802470472717
119 => 0.018468362882394
120 => 0.018116407676686
121 => 0.018557837609757
122 => 0.019119929606338
123 => 0.019084754899368
124 => 0.01901650126596
125 => 0.019401243423837
126 => 0.020036724749775
127 => 0.020208492798605
128 => 0.020335288460608
129 => 0.020352771440168
130 => 0.020532856995247
131 => 0.019564491578184
201 => 0.021101312364451
202 => 0.021366678860422
203 => 0.021316800957494
204 => 0.021611744649436
205 => 0.021524964733268
206 => 0.021399234250091
207 => 0.021866782738142
208 => 0.021330776125809
209 => 0.020569982220958
210 => 0.020152595637959
211 => 0.020702243960067
212 => 0.021037895010295
213 => 0.02125973900308
214 => 0.021326868861254
215 => 0.019639663028928
216 => 0.018730352662029
217 => 0.019313210181946
218 => 0.020024336582923
219 => 0.019560541235121
220 => 0.019578721134674
221 => 0.018917470851981
222 => 0.020082842560322
223 => 0.019913057704736
224 => 0.020793901835863
225 => 0.020583681314754
226 => 0.021301975509516
227 => 0.021112824575375
228 => 0.021897979527707
301 => 0.022211199095414
302 => 0.022737143498326
303 => 0.023124030342088
304 => 0.023351217696711
305 => 0.023337578220098
306 => 0.024237807703404
307 => 0.023706973828721
308 => 0.02304012137418
309 => 0.02302806011717
310 => 0.023373432452749
311 => 0.024097238119849
312 => 0.024284910398384
313 => 0.024389793599362
314 => 0.024229161326054
315 => 0.023652979200292
316 => 0.023404186679697
317 => 0.023616165115457
318 => 0.023356933704038
319 => 0.023804439847635
320 => 0.024418961364949
321 => 0.024292065101705
322 => 0.024716260284378
323 => 0.02515525767181
324 => 0.025783043652444
325 => 0.02594717015463
326 => 0.02621846502157
327 => 0.026497716555373
328 => 0.026587404621991
329 => 0.026758646969737
330 => 0.026757744438036
331 => 0.027273794778908
401 => 0.027843014285638
402 => 0.028057881471966
403 => 0.028551956719083
404 => 0.027705870172857
405 => 0.028347636537311
406 => 0.028926525862503
407 => 0.028236350144204
408 => 0.029187596581561
409 => 0.029224531325153
410 => 0.029782202102442
411 => 0.029216895932866
412 => 0.028881218933893
413 => 0.029850305852275
414 => 0.030319216486128
415 => 0.03017797678709
416 => 0.029103135703548
417 => 0.028477532090823
418 => 0.026840206766399
419 => 0.02877968934037
420 => 0.029724354726669
421 => 0.029100689248412
422 => 0.02941522983919
423 => 0.031131261312349
424 => 0.031784614992519
425 => 0.03164872199433
426 => 0.031671685674035
427 => 0.032024223460646
428 => 0.033587570152585
429 => 0.032650776576683
430 => 0.033366920164475
501 => 0.033746760141192
502 => 0.034099576680278
503 => 0.033233170769094
504 => 0.032105989408673
505 => 0.031748963755974
506 => 0.029038678007702
507 => 0.02889759586433
508 => 0.028818402182029
509 => 0.028319097217289
510 => 0.027926780286144
511 => 0.027614795296703
512 => 0.026796053517807
513 => 0.027072354833767
514 => 0.025767451322896
515 => 0.026602282346211
516 => 0.024519624834864
517 => 0.026254123896816
518 => 0.02531011491539
519 => 0.025943991557377
520 => 0.025941780021488
521 => 0.024774612152818
522 => 0.024101414084341
523 => 0.024530402094835
524 => 0.024990311295196
525 => 0.025064930015634
526 => 0.02566121429876
527 => 0.025827624425093
528 => 0.025323393973359
529 => 0.02447646638709
530 => 0.024673188349018
531 => 0.024097427520061
601 => 0.023088428813634
602 => 0.023813109300017
603 => 0.02406054708002
604 => 0.024169829699889
605 => 0.023177595356402
606 => 0.022865813783223
607 => 0.022699823889763
608 => 0.024348381393291
609 => 0.024438693094742
610 => 0.023976645661329
611 => 0.026065143873491
612 => 0.025592452405937
613 => 0.026120564587417
614 => 0.024655337892915
615 => 0.024711311525835
616 => 0.024017649727358
617 => 0.024406053984007
618 => 0.024131542374261
619 => 0.024374674758355
620 => 0.024520407306909
621 => 0.02521395528231
622 => 0.026262043100633
623 => 0.025110362342572
624 => 0.024608558543912
625 => 0.024919874798349
626 => 0.02574895100869
627 => 0.027005043906988
628 => 0.02626141162997
629 => 0.026591423006816
630 => 0.026663515811472
701 => 0.026115188901163
702 => 0.027025261502296
703 => 0.02751297680266
704 => 0.028013271782373
705 => 0.02844766389531
706 => 0.027813442965753
707 => 0.028492150272378
708 => 0.027945231991206
709 => 0.027454589753622
710 => 0.027455333855368
711 => 0.027147546812593
712 => 0.026551170633552
713 => 0.026441189716084
714 => 0.027013324337808
715 => 0.02747212212308
716 => 0.027509910906168
717 => 0.027763924933976
718 => 0.027914247819081
719 => 0.029387616447155
720 => 0.029980217497711
721 => 0.030704838844967
722 => 0.030987119697144
723 => 0.031836683858912
724 => 0.031150591800057
725 => 0.031002151467402
726 => 0.028941386701272
727 => 0.02927883681628
728 => 0.0298191270095
729 => 0.028950295887557
730 => 0.029501369257072
731 => 0.029610162813545
801 => 0.028920773338496
802 => 0.02928900604388
803 => 0.028311089151767
804 => 0.026283359016543
805 => 0.027027518945594
806 => 0.027575471134899
807 => 0.026793475798743
808 => 0.028195172171405
809 => 0.027376330087382
810 => 0.027116796458099
811 => 0.026104263239845
812 => 0.026582139942883
813 => 0.027228475026277
814 => 0.026829115089258
815 => 0.027657846922769
816 => 0.028831552213729
817 => 0.029668004499424
818 => 0.029732216919651
819 => 0.029194434137899
820 => 0.03005623447774
821 => 0.030062511752367
822 => 0.029090397448469
823 => 0.028494982850086
824 => 0.02835970340057
825 => 0.028697657988559
826 => 0.029107997248235
827 => 0.029754987892747
828 => 0.03014595078895
829 => 0.031165374671549
830 => 0.031441201545007
831 => 0.031744251653455
901 => 0.032149220055534
902 => 0.032635488453996
903 => 0.031571560881436
904 => 0.031613832707303
905 => 0.030623118082814
906 => 0.0295643974237
907 => 0.030367834432575
908 => 0.031418221444932
909 => 0.031177261503723
910 => 0.031150148587972
911 => 0.031195744991769
912 => 0.031014069065113
913 => 0.030192355582073
914 => 0.029779696215089
915 => 0.030312132079131
916 => 0.030595098044875
917 => 0.031033953580519
918 => 0.030979855372635
919 => 0.03211030010281
920 => 0.032549556742081
921 => 0.032437176096904
922 => 0.032457856840208
923 => 0.033253110003978
924 => 0.034137595078377
925 => 0.034966032068637
926 => 0.035808753757326
927 => 0.034792819869624
928 => 0.03427699129554
929 => 0.03480919471474
930 => 0.034526800089207
1001 => 0.036149523371206
1002 => 0.036261877210479
1003 => 0.037884483151115
1004 => 0.039424529405099
1005 => 0.038457253945766
1006 => 0.039369351136874
1007 => 0.040355858613432
1008 => 0.042258991590782
1009 => 0.041618083357036
1010 => 0.041127157694299
1011 => 0.040663235315148
1012 => 0.041628584140558
1013 => 0.042870489982623
1014 => 0.043137984606177
1015 => 0.043571428087147
1016 => 0.043115715265855
1017 => 0.04366457116398
1018 => 0.045602273663866
1019 => 0.045078689343824
1020 => 0.044335115438984
1021 => 0.045864745463718
1022 => 0.046418312623383
1023 => 0.050303536855283
1024 => 0.055208792938665
1025 => 0.053177984710497
1026 => 0.051917396509501
1027 => 0.052213664638287
1028 => 0.054004898106541
1029 => 0.054580185445635
1030 => 0.053016356144538
1031 => 0.053568727091213
1101 => 0.056612345315302
1102 => 0.058245148841563
1103 => 0.056027582338131
1104 => 0.049909404305125
1105 => 0.044268164744472
1106 => 0.045764475504285
1107 => 0.045594840300051
1108 => 0.04886482838273
1109 => 0.045066202030952
1110 => 0.045130161156595
1111 => 0.048467769129846
1112 => 0.047577352543669
1113 => 0.046134991710003
1114 => 0.04427869557477
1115 => 0.040847160482181
1116 => 0.03780775415524
1117 => 0.043768729895845
1118 => 0.043511681782579
1119 => 0.043139438022174
1120 => 0.043967826229974
1121 => 0.047990244224954
1122 => 0.047897514470873
1123 => 0.047307615086548
1124 => 0.047755048570424
1125 => 0.04605655445697
1126 => 0.046494295063999
1127 => 0.044267271143303
1128 => 0.045273978964192
1129 => 0.046131897051451
1130 => 0.046304136809162
1201 => 0.046692201778066
1202 => 0.043376229107244
1203 => 0.044865003484601
1204 => 0.045739518952003
1205 => 0.041788426255134
1206 => 0.045661418553118
1207 => 0.043318505400419
1208 => 0.042523285487018
1209 => 0.043593944338155
1210 => 0.043176707542617
1211 => 0.04281799184678
1212 => 0.042617822324985
1213 => 0.043403996020955
1214 => 0.043367320078357
1215 => 0.042080987322012
1216 => 0.04040301867899
1217 => 0.040966200033031
1218 => 0.040761590967255
1219 => 0.040020061317786
1220 => 0.040519762768897
1221 => 0.038319330471322
1222 => 0.034533601071864
1223 => 0.037034569873174
1224 => 0.036938285294854
1225 => 0.036889734244307
1226 => 0.038769143176791
1227 => 0.038588481373274
1228 => 0.038260578430845
1229 => 0.040014039123104
1230 => 0.039374002383055
1231 => 0.041346444804264
]
'min_raw' => 0.017706130929163
'max_raw' => 0.058245148841563
'avg_raw' => 0.037975639885363
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.0177061'
'max' => '$0.058245'
'avg' => '$0.037975'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072435
'min_diff' => 0.0096458436287086
'max_diff' => 0.038502987139593
'year' => 2029
]
4 => [
'items' => [
101 => 0.04264562295245
102 => 0.04231610935006
103 => 0.043537992677901
104 => 0.040979174593962
105 => 0.041829111319484
106 => 0.042004282100653
107 => 0.039992401690344
108 => 0.038618039878611
109 => 0.038526385614641
110 => 0.03614343163182
111 => 0.03741638641491
112 => 0.038536533945582
113 => 0.03800007020535
114 => 0.037830241811591
115 => 0.038697858244021
116 => 0.038765279471453
117 => 0.037228068341021
118 => 0.037547703212183
119 => 0.038880633759806
120 => 0.037514116782331
121 => 0.034859197514377
122 => 0.034200740828794
123 => 0.034112890569173
124 => 0.032327103815014
125 => 0.034244742053058
126 => 0.033407641572642
127 => 0.036052031960273
128 => 0.034541570353008
129 => 0.034476457372041
130 => 0.03437802955131
131 => 0.032840929122083
201 => 0.033177456428256
202 => 0.034296124448528
203 => 0.034695277800859
204 => 0.034653642836044
205 => 0.034290642364942
206 => 0.034456822121749
207 => 0.033921499224207
208 => 0.033732465567303
209 => 0.033135823348308
210 => 0.032258924113006
211 => 0.03238086233001
212 => 0.03064349549171
213 => 0.029696885829167
214 => 0.02943487675069
215 => 0.029084507260837
216 => 0.029474451916866
217 => 0.030638573749745
218 => 0.029234395837069
219 => 0.026827031297413
220 => 0.026971718008196
221 => 0.027296786089455
222 => 0.026691023870569
223 => 0.026117720768163
224 => 0.026616161302154
225 => 0.025596129210976
226 => 0.027420052094413
227 => 0.027370720091901
228 => 0.028050565752212
301 => 0.028475687195441
302 => 0.027495919903499
303 => 0.027249511079147
304 => 0.027389876744154
305 => 0.02506994496997
306 => 0.027860977832006
307 => 0.027885114800097
308 => 0.027678439425323
309 => 0.029164578260885
310 => 0.032300794742248
311 => 0.031120823947944
312 => 0.030663903591583
313 => 0.029795297660134
314 => 0.030952663491072
315 => 0.030863795852976
316 => 0.030461902691452
317 => 0.03021883645338
318 => 0.030666693449846
319 => 0.030163342015304
320 => 0.030072926266488
321 => 0.029525105201966
322 => 0.029329558006203
323 => 0.029184782647417
324 => 0.029025399202728
325 => 0.029376959365833
326 => 0.028580277784645
327 => 0.02761955789739
328 => 0.027539684433898
329 => 0.027760222089146
330 => 0.027662650593796
331 => 0.027539217299116
401 => 0.027303549524515
402 => 0.027233631930037
403 => 0.027460830192898
404 => 0.027204336600609
405 => 0.02758280686796
406 => 0.027479883896956
407 => 0.026904964547493
408 => 0.026188402175658
409 => 0.026182023267508
410 => 0.026027641079894
411 => 0.02583101215245
412 => 0.025776314483095
413 => 0.026574184030645
414 => 0.028225750115847
415 => 0.027901508174695
416 => 0.028135806206828
417 => 0.029288320631637
418 => 0.029654670309966
419 => 0.029394643985756
420 => 0.029038703915452
421 => 0.029054363472119
422 => 0.030270718442735
423 => 0.03034658101024
424 => 0.030538261244136
425 => 0.03078462451352
426 => 0.029436600715837
427 => 0.028990871672474
428 => 0.028779660523622
429 => 0.028129211934162
430 => 0.028830664972648
501 => 0.028421958326336
502 => 0.02847710681633
503 => 0.028441191289874
504 => 0.028460803595917
505 => 0.027419542270795
506 => 0.027798923170585
507 => 0.027168128842549
508 => 0.026323566047294
509 => 0.026320734776663
510 => 0.02652744032431
511 => 0.02640448377618
512 => 0.026073610866666
513 => 0.026120609801786
514 => 0.025708849675528
515 => 0.026170604936272
516 => 0.02618384642491
517 => 0.026006045497545
518 => 0.026717443186668
519 => 0.027008903400347
520 => 0.02689187102109
521 => 0.027000692096634
522 => 0.027914981891214
523 => 0.028064051020992
524 => 0.028130257681485
525 => 0.028041549527126
526 => 0.027017403635694
527 => 0.027062828860983
528 => 0.026729528697919
529 => 0.026447925182435
530 => 0.026459187846238
531 => 0.026603968659092
601 => 0.027236234960104
602 => 0.02856680211645
603 => 0.028617296167401
604 => 0.02867849643017
605 => 0.028429564204703
606 => 0.028354483863541
607 => 0.028453534213413
608 => 0.028953225279439
609 => 0.03023856636606
610 => 0.029784240981003
611 => 0.029414867370957
612 => 0.029738907609378
613 => 0.029689024154584
614 => 0.029267957595192
615 => 0.029256139659275
616 => 0.028447978308679
617 => 0.028149219458307
618 => 0.027899554201224
619 => 0.027626926258165
620 => 0.027465303274949
621 => 0.027713629633502
622 => 0.027770424809814
623 => 0.027227454886837
624 => 0.027153450092678
625 => 0.027596851052601
626 => 0.027401726821792
627 => 0.027602416932027
628 => 0.027648978759089
629 => 0.027641481232522
630 => 0.027437749125683
701 => 0.027567601895203
702 => 0.027260461384314
703 => 0.026926492209736
704 => 0.02671344068337
705 => 0.026527524969431
706 => 0.026630681813009
707 => 0.026262946501349
708 => 0.026145300574099
709 => 0.02752361069867
710 => 0.028541783207021
711 => 0.028526978575509
712 => 0.028436859188622
713 => 0.028302960059757
714 => 0.028943429724157
715 => 0.028720302899675
716 => 0.028882646307356
717 => 0.028923969518142
718 => 0.029049042431436
719 => 0.029093745247559
720 => 0.028958622289134
721 => 0.028505133136782
722 => 0.027375081285574
723 => 0.02684903909832
724 => 0.026675436414601
725 => 0.026681746542435
726 => 0.026507685047102
727 => 0.026558953958366
728 => 0.026489855812034
729 => 0.026359000639517
730 => 0.026622601874846
731 => 0.026652979461602
801 => 0.026591451783476
802 => 0.026605943779009
803 => 0.026096520882941
804 => 0.02613525119932
805 => 0.025919595876107
806 => 0.025879163102769
807 => 0.025334005224943
808 => 0.024368179022477
809 => 0.024903340493661
810 => 0.024256940691561
811 => 0.024012139291951
812 => 0.025170991043279
813 => 0.025054674468989
814 => 0.024855591055406
815 => 0.024561105194097
816 => 0.024451877523563
817 => 0.023788244774679
818 => 0.023749033811532
819 => 0.02407794812147
820 => 0.023926165484684
821 => 0.023713005178056
822 => 0.022940960155164
823 => 0.022072925934111
824 => 0.022099126430976
825 => 0.022375231966342
826 => 0.023178046048324
827 => 0.022864372697669
828 => 0.022636799082782
829 => 0.022594181385551
830 => 0.023127631092585
831 => 0.023882574189206
901 => 0.024236776599241
902 => 0.023885772768184
903 => 0.023482558466453
904 => 0.023507100252684
905 => 0.023670365761566
906 => 0.0236875226581
907 => 0.023425071598773
908 => 0.023498950034658
909 => 0.023386721934963
910 => 0.022697978294296
911 => 0.022685521105866
912 => 0.022516492308954
913 => 0.02251137418416
914 => 0.022223814034404
915 => 0.022183582381644
916 => 0.021612614250651
917 => 0.021988427203521
918 => 0.021736351605801
919 => 0.021356414221415
920 => 0.02129091287314
921 => 0.021288943823516
922 => 0.021679054564836
923 => 0.021983868532375
924 => 0.021740736568747
925 => 0.021685380133543
926 => 0.022276442037269
927 => 0.022201224022371
928 => 0.022136085706574
929 => 0.023814977315192
930 => 0.022486003601425
1001 => 0.021906495207055
1002 => 0.021189243523362
1003 => 0.021422784288269
1004 => 0.021471994758863
1005 => 0.019747133753916
1006 => 0.019047357859027
1007 => 0.018807221142399
1008 => 0.018669019066945
1009 => 0.018731999488162
1010 => 0.018102119107236
1011 => 0.018525409140478
1012 => 0.017979985973059
1013 => 0.017888544004081
1014 => 0.018863828192391
1015 => 0.018999533289667
1016 => 0.018420573184419
1017 => 0.018792359297115
1018 => 0.018657544484438
1019 => 0.017989335687805
1020 => 0.017963815026785
1021 => 0.01762853134131
1022 => 0.017103877297255
1023 => 0.016864096320775
1024 => 0.01673921630635
1025 => 0.016790744234165
1026 => 0.016764690137081
1027 => 0.01659466952994
1028 => 0.016774435519264
1029 => 0.016315207700977
1030 => 0.016132339483485
1031 => 0.016049742152154
1101 => 0.015642151031257
1102 => 0.016290809761198
1103 => 0.016418603702584
1104 => 0.016546649437512
1105 => 0.017661200139522
1106 => 0.017605520336137
1107 => 0.018108838641572
1108 => 0.018089280617766
1109 => 0.01794572608384
1110 => 0.017340093118781
1111 => 0.017581487624284
1112 => 0.016838512857381
1113 => 0.017395200070118
1114 => 0.017141151274038
1115 => 0.017309305916613
1116 => 0.017006948707371
1117 => 0.017174285670989
1118 => 0.016448908386929
1119 => 0.015771561285408
1120 => 0.016044145532055
1121 => 0.016340475781949
1122 => 0.016982995267264
1123 => 0.016600315962481
1124 => 0.016737941911188
1125 => 0.016276918021327
1126 => 0.015325694051579
1127 => 0.015331077875945
1128 => 0.01518475279174
1129 => 0.015058306555175
1130 => 0.01664427128404
1201 => 0.016447031499613
1202 => 0.016132755717235
1203 => 0.016553426340772
1204 => 0.016664658330576
1205 => 0.016667824948952
1206 => 0.016974735376804
1207 => 0.017138533527166
1208 => 0.017167403661109
1209 => 0.017650333850573
1210 => 0.017812205680079
1211 => 0.018478932836852
1212 => 0.017124636398502
1213 => 0.017096745554573
1214 => 0.016559346039133
1215 => 0.01621851877049
1216 => 0.016582682773807
1217 => 0.016905282367402
1218 => 0.016569370107749
1219 => 0.016613233157365
1220 => 0.01616229839382
1221 => 0.016323486353334
1222 => 0.016462323138431
1223 => 0.01638566562615
1224 => 0.016270905619999
1225 => 0.016878832879605
1226 => 0.016844531241132
1227 => 0.017410647081464
1228 => 0.017851974862335
1229 => 0.018642913142434
1230 => 0.017817527814606
1231 => 0.01778744749265
]
'min_raw' => 0.015058306555175
'max_raw' => 0.043537992677901
'avg_raw' => 0.029298149616538
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.015058'
'max' => '$0.043537'
'avg' => '$0.029298'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -0.0026478243739882
'max_diff' => -0.014707156163662
'year' => 2030
]
5 => [
'items' => [
101 => 0.018081487464802
102 => 0.017812160664091
103 => 0.017982365905295
104 => 0.018615490446713
105 => 0.018628867370609
106 => 0.018404786660165
107 => 0.01839115132857
108 => 0.018434188480185
109 => 0.018686258421436
110 => 0.018598177438636
111 => 0.018700106981869
112 => 0.018827571436484
113 => 0.019354818464577
114 => 0.019481935938064
115 => 0.019173106380345
116 => 0.019200990231589
117 => 0.019085479499441
118 => 0.018973897579531
119 => 0.019224717440257
120 => 0.019683095665612
121 => 0.019680244118462
122 => 0.019786578957145
123 => 0.019852824680719
124 => 0.019568449540306
125 => 0.01938333178066
126 => 0.019454317709057
127 => 0.019567825754437
128 => 0.019417508579764
129 => 0.018489681343996
130 => 0.018771124857494
131 => 0.018724278894964
201 => 0.018657564547656
202 => 0.018940558176817
203 => 0.018913262750917
204 => 0.018095658773515
205 => 0.018147999127439
206 => 0.018098841763794
207 => 0.018257679262381
208 => 0.017803582917907
209 => 0.017943259895082
210 => 0.018030863985775
211 => 0.0180824634682
212 => 0.018268876180815
213 => 0.018247002800557
214 => 0.018267516500787
215 => 0.018543917342463
216 => 0.019941857950348
217 => 0.020017944773253
218 => 0.01964326542982
219 => 0.019792942437298
220 => 0.019505595313704
221 => 0.019698493362831
222 => 0.019830469308965
223 => 0.019234095385901
224 => 0.019198781992612
225 => 0.018910248885223
226 => 0.019065290233784
227 => 0.018818608300357
228 => 0.018879135418252
301 => 0.018709896319958
302 => 0.019014493001719
303 => 0.019355079421467
304 => 0.019441125001261
305 => 0.019214776125775
306 => 0.019050884622805
307 => 0.018763145132808
308 => 0.019241662317366
309 => 0.019381595324678
310 => 0.01924092730885
311 => 0.019208331455926
312 => 0.019146562373534
313 => 0.019221436058757
314 => 0.019380833219468
315 => 0.01930566446208
316 => 0.019355314750638
317 => 0.019166099049811
318 => 0.01956854368031
319 => 0.020207722607118
320 => 0.020209777671884
321 => 0.020134608509308
322 => 0.020103850907524
323 => 0.020180979029973
324 => 0.02022281787244
325 => 0.020472236077562
326 => 0.020739871748916
327 => 0.021988810648536
328 => 0.021638113603232
329 => 0.022746246494683
330 => 0.023622635738773
331 => 0.023885426553218
401 => 0.023643671369192
402 => 0.022816639943995
403 => 0.022776061836713
404 => 0.024011995949618
405 => 0.023662787953354
406 => 0.023621250773369
407 => 0.023179365356502
408 => 0.023440574366444
409 => 0.023383444124264
410 => 0.023293261242077
411 => 0.023791629837069
412 => 0.024724531357223
413 => 0.024579129906612
414 => 0.02447059446871
415 => 0.023995023774015
416 => 0.024281423554782
417 => 0.024179442078477
418 => 0.024617619219726
419 => 0.024358052788062
420 => 0.023660142359327
421 => 0.023771286895446
422 => 0.023754487622403
423 => 0.024100215471211
424 => 0.023996436552491
425 => 0.023734223122931
426 => 0.024721342801247
427 => 0.024657244739985
428 => 0.024748121135998
429 => 0.024788127735968
430 => 0.025388970089159
501 => 0.025635115976451
502 => 0.025690995402256
503 => 0.025924814957577
504 => 0.025685177758715
505 => 0.02664389741259
506 => 0.027281390039575
507 => 0.028021870530888
508 => 0.029103911551088
509 => 0.029510768984123
510 => 0.029437273830485
511 => 0.030257664982838
512 => 0.031731889647345
513 => 0.029735256784878
514 => 0.031837716037259
515 => 0.031172101712015
516 => 0.02959394212075
517 => 0.029492327248352
518 => 0.030561075246366
519 => 0.032931455442778
520 => 0.032337702088206
521 => 0.03293242661056
522 => 0.032238648864582
523 => 0.032204196951876
524 => 0.032898731373978
525 => 0.034521548908321
526 => 0.033750609128161
527 => 0.032645277911111
528 => 0.033461437280922
529 => 0.032754404502807
530 => 0.031161261767702
531 => 0.032337248056206
601 => 0.031550899515244
602 => 0.031780397824085
603 => 0.033433185496668
604 => 0.033234317711169
605 => 0.033491671040266
606 => 0.033037449150519
607 => 0.032613134281278
608 => 0.031821119067804
609 => 0.031586642408973
610 => 0.031651443321887
611 => 0.031586610296858
612 => 0.031143485063915
613 => 0.031047792212051
614 => 0.030888299933212
615 => 0.030937733259542
616 => 0.030637841114211
617 => 0.031203799553329
618 => 0.031308846426838
619 => 0.031720703781811
620 => 0.031763464178688
621 => 0.032910481049864
622 => 0.032278723432056
623 => 0.03270256098541
624 => 0.032664648965325
625 => 0.029628145624491
626 => 0.030046548993562
627 => 0.030697453333627
628 => 0.030404221810708
629 => 0.029989661042909
630 => 0.02965488099557
701 => 0.029147654990834
702 => 0.029861565852088
703 => 0.03080028271868
704 => 0.031787271587544
705 => 0.03297307404341
706 => 0.032708416739523
707 => 0.031765103835458
708 => 0.031807420163244
709 => 0.032069003050755
710 => 0.031730229444117
711 => 0.031630318493873
712 => 0.032055276820428
713 => 0.03205820327487
714 => 0.031668403298275
715 => 0.031235211956932
716 => 0.031233396869395
717 => 0.031156314654335
718 => 0.032252361619402
719 => 0.032855076627341
720 => 0.032924176931677
721 => 0.032850425626297
722 => 0.032878809576653
723 => 0.032528102993452
724 => 0.033329714243843
725 => 0.034065351998338
726 => 0.033868185365525
727 => 0.03357260455405
728 => 0.033337160200609
729 => 0.033812722158383
730 => 0.033791546133008
731 => 0.034058926844308
801 => 0.034046796910778
802 => 0.033956886834265
803 => 0.033868188576497
804 => 0.034219867142551
805 => 0.034118589363312
806 => 0.034017154271709
807 => 0.033813710666562
808 => 0.033841362031342
809 => 0.033545832256062
810 => 0.033409106659495
811 => 0.031353081737701
812 => 0.030803644696046
813 => 0.030976508774173
814 => 0.031033420117106
815 => 0.030794304412455
816 => 0.03113713490914
817 => 0.031083705139379
818 => 0.031291569118149
819 => 0.031161704728619
820 => 0.031167034408463
821 => 0.031548937888067
822 => 0.031659806092929
823 => 0.03160341762912
824 => 0.031642910176288
825 => 0.032552999257024
826 => 0.032423613692754
827 => 0.032354880190485
828 => 0.032373919840347
829 => 0.032606467113004
830 => 0.032671567652738
831 => 0.032395732091352
901 => 0.032525817736688
902 => 0.033079705904203
903 => 0.033273535415477
904 => 0.033892146172023
905 => 0.033629349327713
906 => 0.034111724309025
907 => 0.035594380547828
908 => 0.036778828943393
909 => 0.035689561249432
910 => 0.037864649889292
911 => 0.039558268393357
912 => 0.039493264494302
913 => 0.039197942934016
914 => 0.037269803294315
915 => 0.03549550045092
916 => 0.036979780120299
917 => 0.036983563854421
918 => 0.036856062914479
919 => 0.036064165526819
920 => 0.036828506601925
921 => 0.036889177220788
922 => 0.036855217807845
923 => 0.036248071937427
924 => 0.035321072412614
925 => 0.035502205900839
926 => 0.035798906249575
927 => 0.035237190591241
928 => 0.035057688402851
929 => 0.035391417122756
930 => 0.036466760593431
1001 => 0.03626347313934
1002 => 0.036258164482365
1003 => 0.03712791441826
1004 => 0.036505361167943
1005 => 0.035504490574195
1006 => 0.035251757549413
1007 => 0.0343547255728
1008 => 0.034974308754165
1009 => 0.034996606449839
1010 => 0.034657267073392
1011 => 0.035532026094388
1012 => 0.035523965036011
1013 => 0.036354418535748
1014 => 0.037941933723155
1015 => 0.037472427365361
1016 => 0.036926442553393
1017 => 0.036985806240971
1018 => 0.037636879371632
1019 => 0.03724322569428
1020 => 0.037384786301307
1021 => 0.037636665102698
1022 => 0.037788629837377
1023 => 0.036963940854255
1024 => 0.036771666402855
1025 => 0.036378340354453
1026 => 0.036275728930204
1027 => 0.03659608478961
1028 => 0.036511682338996
1029 => 0.034994732414859
1030 => 0.034836202707557
1031 => 0.034841064587351
1101 => 0.034442434100664
1102 => 0.033834426926186
1103 => 0.035432233478491
1104 => 0.035303907251053
1105 => 0.035162245027622
1106 => 0.035179597841679
1107 => 0.035873151511346
1108 => 0.035470855357639
1109 => 0.036540425617311
1110 => 0.036320554126148
1111 => 0.036095043760887
1112 => 0.036063871359194
1113 => 0.035977069108209
1114 => 0.035679391891886
1115 => 0.035319928765548
1116 => 0.035082580073377
1117 => 0.032361825659524
1118 => 0.032866781852835
1119 => 0.033447687925033
1120 => 0.033648214373322
1121 => 0.033305200007517
1122 => 0.035692936189745
1123 => 0.036129198599036
1124 => 0.0348077313046
1125 => 0.034560538728965
1126 => 0.03570914209385
1127 => 0.035016393853774
1128 => 0.035328338343863
1129 => 0.034654084980804
1130 => 0.036024115759892
1201 => 0.036013678420785
1202 => 0.035480705504171
1203 => 0.035931170563652
1204 => 0.035852891174167
1205 => 0.035251166063964
1206 => 0.036043191519163
1207 => 0.036043584353908
1208 => 0.035530609509497
1209 => 0.034931567195859
1210 => 0.034824472578928
1211 => 0.034743791171208
1212 => 0.035308495663424
1213 => 0.035814807945359
1214 => 0.036756929576582
1215 => 0.036993801338929
1216 => 0.037918327596816
1217 => 0.03736781722461
1218 => 0.037611851342306
1219 => 0.037876784897799
1220 => 0.03800380378691
1221 => 0.037796833323312
1222 => 0.039233003152
1223 => 0.039354259888648
1224 => 0.039394916223579
1225 => 0.038910647837864
1226 => 0.039340791508806
1227 => 0.039139541530033
1228 => 0.039663138065946
1229 => 0.039745244688393
1230 => 0.039675703300208
1231 => 0.039701765238138
]
'min_raw' => 0.017803582917907
'max_raw' => 0.039745244688393
'avg_raw' => 0.02877441380315
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.0178035'
'max' => '$0.039745'
'avg' => '$0.028774'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 0.0027452763627322
'max_diff' => -0.0037927479895082
'year' => 2031
]
6 => [
'items' => [
101 => 0.038476247647071
102 => 0.038412698094854
103 => 0.037546195441103
104 => 0.037899301677371
105 => 0.037239186493491
106 => 0.037448515818239
107 => 0.037540786190025
108 => 0.037492589384101
109 => 0.037919265774173
110 => 0.037556503678385
111 => 0.036599114863988
112 => 0.03564146520965
113 => 0.035629442698324
114 => 0.035377310448257
115 => 0.035195065011784
116 => 0.035230171948353
117 => 0.035353893371892
118 => 0.035187874097734
119 => 0.035223302727267
120 => 0.035811654037226
121 => 0.035929643696509
122 => 0.03552866873273
123 => 0.033918696392748
124 => 0.033523605142206
125 => 0.033807588898095
126 => 0.033671862953676
127 => 0.02717582138477
128 => 0.028701969994238
129 => 0.027795184313602
130 => 0.028213072874443
131 => 0.027287479505527
201 => 0.027729221175678
202 => 0.027647647619024
203 => 0.030101649421028
204 => 0.030063333558259
205 => 0.030081673334136
206 => 0.029206268047482
207 => 0.030600812438966
208 => 0.031287815152405
209 => 0.031160669234132
210 => 0.03119266912251
211 => 0.030642805019476
212 => 0.030086997220597
213 => 0.029470520833434
214 => 0.030615857761999
215 => 0.030488515847096
216 => 0.030780592383709
217 => 0.031523425252258
218 => 0.031632810213899
219 => 0.031779824711618
220 => 0.03172713047939
221 => 0.032982520873057
222 => 0.032830484813052
223 => 0.033196847973906
224 => 0.032443211155989
225 => 0.031590399560654
226 => 0.031752491164416
227 => 0.031736880439515
228 => 0.031538137994374
229 => 0.031358722201277
301 => 0.031060045455855
302 => 0.03200510287421
303 => 0.031966735268903
304 => 0.032587862201373
305 => 0.032478071982753
306 => 0.031744866032591
307 => 0.03177105262654
308 => 0.031947170055696
309 => 0.032556714488879
310 => 0.032737668777598
311 => 0.032653843541282
312 => 0.032852251657985
313 => 0.033009065343676
314 => 0.032871945042562
315 => 0.034813279345218
316 => 0.034007101993399
317 => 0.03440002722533
318 => 0.034493737577895
319 => 0.034253700480315
320 => 0.034305755931696
321 => 0.034384605756277
322 => 0.034863366450754
323 => 0.036119773043583
324 => 0.036676226970898
325 => 0.038350346066179
326 => 0.036630021218447
327 => 0.036527944261395
328 => 0.036829503664008
329 => 0.037812388796442
330 => 0.038608924878573
331 => 0.038873181850285
401 => 0.038908107771504
402 => 0.039403871417907
403 => 0.03968803389458
404 => 0.039343672671355
405 => 0.039051862590795
406 => 0.038006635103028
407 => 0.038127623030797
408 => 0.03896110987517
409 => 0.040138459134977
410 => 0.041148747282204
411 => 0.040794979585142
412 => 0.043493977392654
413 => 0.043761572000851
414 => 0.043724599078368
415 => 0.044334219419259
416 => 0.043124247189614
417 => 0.042606960619333
418 => 0.039114955242397
419 => 0.040096066316268
420 => 0.041522168880772
421 => 0.04133341885875
422 => 0.040297745056576
423 => 0.041147961630754
424 => 0.0408668534426
425 => 0.040645131751414
426 => 0.041660881801603
427 => 0.040544022896708
428 => 0.041511027358843
429 => 0.040270834133775
430 => 0.040796595566183
501 => 0.040498147948929
502 => 0.040691280133657
503 => 0.039562233328077
504 => 0.040171439578306
505 => 0.039536888345183
506 => 0.039536587485278
507 => 0.039522579731637
508 => 0.040269126443374
509 => 0.040293471304842
510 => 0.039741772156898
511 => 0.039662263690519
512 => 0.039956248162797
513 => 0.039612069340415
514 => 0.039773108445172
515 => 0.039616947050845
516 => 0.03958179183172
517 => 0.039301669064563
518 => 0.039180984474336
519 => 0.039228308011823
520 => 0.039066768381424
521 => 0.038969434910966
522 => 0.039503217654514
523 => 0.039218039067371
524 => 0.039459509945998
525 => 0.039184323403748
526 => 0.03823040695524
527 => 0.037681799518219
528 => 0.035879939775089
529 => 0.036390944963041
530 => 0.036729741931326
531 => 0.036617769535329
601 => 0.036858329569496
602 => 0.036873098001846
603 => 0.036794889482519
604 => 0.03670433403627
605 => 0.036660256653067
606 => 0.036988773355544
607 => 0.037179488358696
608 => 0.036763744739612
609 => 0.036666341826532
610 => 0.03708668157926
611 => 0.037343088585601
612 => 0.039236253857776
613 => 0.03909600205957
614 => 0.039448006550041
615 => 0.039408376246363
616 => 0.03977733303109
617 => 0.040380421441348
618 => 0.039154174077123
619 => 0.039367008219109
620 => 0.039314826202552
621 => 0.03988453577646
622 => 0.039886314347564
623 => 0.039544744998902
624 => 0.039729915284141
625 => 0.039626558310802
626 => 0.039813338331159
627 => 0.039094128911297
628 => 0.03997004835083
629 => 0.040466638230043
630 => 0.040473533380998
701 => 0.040708913042564
702 => 0.040948072410985
703 => 0.04140711799228
704 => 0.04093526987887
705 => 0.040086461056335
706 => 0.040147742311686
707 => 0.039650086009601
708 => 0.039658451701948
709 => 0.039613794980568
710 => 0.039747813163029
711 => 0.039123538365851
712 => 0.039270054412966
713 => 0.039064931089008
714 => 0.039366562321062
715 => 0.039042056976801
716 => 0.039314801038804
717 => 0.039432508334355
718 => 0.039866850788996
719 => 0.038977904243097
720 => 0.037165282059619
721 => 0.037546317218506
722 => 0.036982736288846
723 => 0.03703489784959
724 => 0.037140272503744
725 => 0.036798718773191
726 => 0.036863876461385
727 => 0.036861548570255
728 => 0.036841488062126
729 => 0.036752636745379
730 => 0.036623784757397
731 => 0.037137091418965
801 => 0.037224312223202
802 => 0.03741819326665
803 => 0.037995051741182
804 => 0.037937409976317
805 => 0.038031426086346
806 => 0.03782618944603
807 => 0.037044418188702
808 => 0.03708687212919
809 => 0.036557470811027
810 => 0.037404655284688
811 => 0.037204030819036
812 => 0.037074686920892
813 => 0.03703939423992
814 => 0.037617682635033
815 => 0.037790715586411
816 => 0.037682893062922
817 => 0.03746174592156
818 => 0.037886413809258
819 => 0.038000037020706
820 => 0.038025473067487
821 => 0.038777903142498
822 => 0.038067525550224
823 => 0.038238520497231
824 => 0.039572574261112
825 => 0.038362771584107
826 => 0.039003631043936
827 => 0.038972264308249
828 => 0.039300106322396
829 => 0.038945371694098
830 => 0.038949769054961
831 => 0.039240870553582
901 => 0.038832070999201
902 => 0.038730846480575
903 => 0.038591005533077
904 => 0.03889634312596
905 => 0.039079379203662
906 => 0.04055451556475
907 => 0.041507520928405
908 => 0.041466148452196
909 => 0.041844215438716
910 => 0.041673892798592
911 => 0.041123876064788
912 => 0.042062687561996
913 => 0.041765608322738
914 => 0.041790099174271
915 => 0.041789187623554
916 => 0.041986719346543
917 => 0.041846750017289
918 => 0.041570856101772
919 => 0.041754007358322
920 => 0.042297901112502
921 => 0.043986164014177
922 => 0.044930938300463
923 => 0.043929287415849
924 => 0.044620212783416
925 => 0.044205903764757
926 => 0.04413061149144
927 => 0.044564563681256
928 => 0.044999275446934
929 => 0.044971586186771
930 => 0.044656007767585
1001 => 0.044477745526093
1002 => 0.045827606940904
1003 => 0.046822161837048
1004 => 0.046754339860711
1005 => 0.047053684007372
1006 => 0.047932567680333
1007 => 0.04801292178886
1008 => 0.048002799018103
1009 => 0.047803632976036
1010 => 0.048669008089533
1011 => 0.049390919234038
1012 => 0.047757531791757
1013 => 0.048379504347166
1014 => 0.048658727865993
1015 => 0.049068710833517
1016 => 0.049760420820852
1017 => 0.050511801334112
1018 => 0.050618054777155
1019 => 0.05054266287462
1020 => 0.050047107227933
1021 => 0.050869276751376
1022 => 0.05135088437596
1023 => 0.051637670695006
1024 => 0.052364913083412
1025 => 0.048660452255387
1026 => 0.046038250757661
1027 => 0.045628756128742
1028 => 0.046461479559229
1029 => 0.046681062087003
1030 => 0.046592548645391
1031 => 0.04364102245957
1101 => 0.045613216954206
1102 => 0.047735132403612
1103 => 0.047816643817796
1104 => 0.048878919058928
1105 => 0.049224839421574
1106 => 0.050080110226284
1107 => 0.050026612804584
1108 => 0.0502348576352
1109 => 0.050186985754939
1110 => 0.051771194822149
1111 => 0.053518812680604
1112 => 0.05345829823125
1113 => 0.053207057487221
1114 => 0.053580192835017
1115 => 0.055383921751054
1116 => 0.055217863296632
1117 => 0.055379174940278
1118 => 0.057505872985992
1119 => 0.060270882964691
1120 => 0.058986258227122
1121 => 0.061773524266836
1122 => 0.063527960492211
1123 => 0.066562076531906
1124 => 0.0661821902604
1125 => 0.067363349369281
1126 => 0.065502114549746
1127 => 0.061228343186475
1128 => 0.060552002508898
1129 => 0.061906053673081
1130 => 0.065234856333846
1201 => 0.061801217831091
1202 => 0.062495838428218
1203 => 0.062295787649516
1204 => 0.062285127793679
1205 => 0.062691971134171
1206 => 0.062101823649266
1207 => 0.059697456630258
1208 => 0.060799363866046
1209 => 0.060373864564376
1210 => 0.060845987762653
1211 => 0.063393841945332
1212 => 0.062267374877912
1213 => 0.061080733329138
1214 => 0.06256904516814
1215 => 0.064464177578625
1216 => 0.064345583598257
1217 => 0.064115461707905
1218 => 0.065412646755027
1219 => 0.067555216413315
1220 => 0.068134344382408
1221 => 0.068561844809442
1222 => 0.068620789895651
1223 => 0.069227960917772
1224 => 0.065963049305028
1225 => 0.07114454788333
1226 => 0.072039249551793
1227 => 0.071871082719707
1228 => 0.072865505969402
1229 => 0.072572921423258
1230 => 0.072149012321006
1231 => 0.073725384691663
]
'min_raw' => 0.02717582138477
'max_raw' => 0.073725384691663
'avg_raw' => 0.050450603038217
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.027175'
'max' => '$0.073725'
'avg' => '$0.05045'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.0093722384668635
'max_diff' => 0.03398014000327
'year' => 2032
]
7 => [
'items' => [
101 => 0.071918200975395
102 => 0.069353131208255
103 => 0.067945883202675
104 => 0.069799060895882
105 => 0.070930731846134
106 => 0.07167869435646
107 => 0.071905027360154
108 => 0.066216495099514
109 => 0.063150691711492
110 => 0.065115836533707
111 => 0.06751344884386
112 => 0.065949730447587
113 => 0.06601102524821
114 => 0.063781573753091
115 => 0.067710705831419
116 => 0.067138264336809
117 => 0.070108091823477
118 => 0.069399318659429
119 => 0.071821097686768
120 => 0.071183362106216
121 => 0.073830566845771
122 => 0.074886608486586
123 => 0.076659866761273
124 => 0.077964282766592
125 => 0.078730260794417
126 => 0.078684274346738
127 => 0.08171946090172
128 => 0.079929717431588
129 => 0.077681377822954
130 => 0.077640712452855
131 => 0.078805159395385
201 => 0.081245520736511
202 => 0.081878270926451
203 => 0.082231891961259
204 => 0.081690309036814
205 => 0.079747670772056
206 => 0.078908849418733
207 => 0.079623549514758
208 => 0.078749532712199
209 => 0.080258330919218
210 => 0.082330233119364
211 => 0.081902393508223
212 => 0.083332597182967
213 => 0.084812707524513
214 => 0.086929331788839
215 => 0.087482695749903
216 => 0.088397385334996
217 => 0.089338901377932
218 => 0.089641290956354
219 => 0.090218646487538
220 => 0.090215603538898
221 => 0.09195550329263
222 => 0.093874666601207
223 => 0.094599106321462
224 => 0.096264915512349
225 => 0.093412275649871
226 => 0.095576035754325
227 => 0.097527801530971
228 => 0.095200825910196
301 => 0.098408019687651
302 => 0.098532547754373
303 => 0.10041277371533
304 => 0.098506804496191
305 => 0.097375046057933
306 => 0.10064239026275
307 => 0.10222335520308
308 => 0.10174715569673
309 => 0.098123253940559
310 => 0.096013987682009
311 => 0.090493631036309
312 => 0.097032731944801
313 => 0.10021773724914
314 => 0.098115005546262
315 => 0.099175501108595
316 => 0.10496122102984
317 => 0.10716404857823
318 => 0.10670587584709
319 => 0.10678329949649
320 => 0.10797190525745
321 => 0.1132428377787
322 => 0.11008437283271
323 => 0.1124989009385
324 => 0.11377955793958
325 => 0.11496910353397
326 => 0.11204795551389
327 => 0.10824758485994
328 => 0.10704384794513
329 => 0.097905930318723
330 => 0.097430262022304
331 => 0.097163254993299
401 => 0.095479813444319
402 => 0.094157089520269
403 => 0.093105210346274
404 => 0.090344765275999
405 => 0.091276334453502
406 => 0.086876761161147
407 => 0.089691452242292
408 => 0.082669627036281
409 => 0.088517611722509
410 => 0.085334819533031
411 => 0.087471978887344
412 => 0.08746452253969
413 => 0.083529334581409
414 => 0.08125960029235
415 => 0.082705963320719
416 => 0.08425657929957
417 => 0.08450816152524
418 => 0.086518575617038
419 => 0.087079638976353
420 => 0.085379590804086
421 => 0.082524115316384
422 => 0.083187377145715
423 => 0.081246159312548
424 => 0.077844249727789
425 => 0.080287560583206
426 => 0.081121814334041
427 => 0.081490268316797
428 => 0.078144880952142
429 => 0.077093687610274
430 => 0.07653404109543
501 => 0.082092267817182
502 => 0.082396760023987
503 => 0.080838934843114
504 => 0.087880452379708
505 => 0.086286740094585
506 => 0.088067307186057
507 => 0.083127193086685
508 => 0.083315912098027
509 => 0.080977182914544
510 => 0.082286714983354
511 => 0.081361179925308
512 => 0.082180917733242
513 => 0.082672265195412
514 => 0.085010610616449
515 => 0.088544311871082
516 => 0.084661339787494
517 => 0.082969473245491
518 => 0.084019097732731
519 => 0.08681438606015
520 => 0.091049390964365
521 => 0.088542182823653
522 => 0.089654839221346
523 => 0.089897905145604
524 => 0.088049182684533
525 => 0.091117555998495
526 => 0.092761922184868
527 => 0.094448701638448
528 => 0.095913284975505
529 => 0.093774964831613
530 => 0.09606327390173
531 => 0.094219300732144
601 => 0.092565066172582
602 => 0.092567574963571
603 => 0.091529849459847
604 => 0.089519125534555
605 => 0.089148317192692
606 => 0.091077309014997
607 => 0.092624177780281
608 => 0.092751585300791
609 => 0.093608011330239
610 => 0.094114835432576
611 => 0.099082400629441
612 => 0.10108039644547
613 => 0.10352350790919
614 => 0.10447523751053
615 => 0.10733960239661
616 => 0.10502639511876
617 => 0.10452591817344
618 => 0.097577905886432
619 => 0.098715642509194
620 => 0.10053726861749
621 => 0.097607943830011
622 => 0.099465926170046
623 => 0.099832731241416
624 => 0.097508406494652
625 => 0.098749928770043
626 => 0.095452813692306
627 => 0.088616179969801
628 => 0.091125167126184
629 => 0.092972626189227
630 => 0.090336074316205
701 => 0.095061991499949
702 => 0.092301208243938
703 => 0.09142617249275
704 => 0.088012346054595
705 => 0.089623540723174
706 => 0.091802704582513
707 => 0.090456234672432
708 => 0.093250361909324
709 => 0.09720759124328
710 => 0.10002774852374
711 => 0.1002442451817
712 => 0.098431072986228
713 => 0.10133669300098
714 => 0.10135785727065
715 => 0.098080306024203
716 => 0.096072824135236
717 => 0.095616720026285
718 => 0.096756157514923
719 => 0.098139644977894
720 => 0.10032101910731
721 => 0.10163917780802
722 => 0.1050762366021
723 => 0.10600620616358
724 => 0.1070279607625
725 => 0.1083933400041
726 => 0.11003282785969
727 => 0.10644572176775
728 => 0.10658824417999
729 => 0.10324798065404
730 => 0.099678430034318
731 => 0.10238727400392
801 => 0.10592872715176
802 => 0.10511631388669
803 => 0.10502490079827
804 => 0.10517863225711
805 => 0.10456609918618
806 => 0.10179563480791
807 => 0.10040432494117
808 => 0.10219946963027
809 => 0.10315350913983
810 => 0.10463314121817
811 => 0.10445074533327
812 => 0.10826211866618
813 => 0.10974310309341
814 => 0.10936420390203
815 => 0.10943393047196
816 => 0.11211518203641
817 => 0.11509728521752
818 => 0.11789041836981
819 => 0.12073171338018
820 => 0.11730642134755
821 => 0.11556726929602
822 => 0.11736163028111
823 => 0.11640951708496
824 => 0.12188064192515
825 => 0.12225945073855
826 => 0.12773017995413
827 => 0.13292255342204
828 => 0.12966131667788
829 => 0.13273651603829
830 => 0.13606259487126
831 => 0.1424791405769
901 => 0.14031827372004
902 => 0.13866308357278
903 => 0.13709893688145
904 => 0.14035367784482
905 => 0.14454085009844
906 => 0.14544272689763
907 => 0.14690411185578
908 => 0.14536764426194
909 => 0.14721815024237
910 => 0.1537512495068
911 => 0.15198594841629
912 => 0.14947893708145
913 => 0.15463619150519
914 => 0.15650258183283
915 => 0.16960188658838
916 => 0.18614029994754
917 => 0.17929328821977
918 => 0.17504312708865
919 => 0.17604201576964
920 => 0.18208128446778
921 => 0.18402090589682
922 => 0.17874834622509
923 => 0.18061070343711
924 => 0.19087247477827
925 => 0.19637758586576
926 => 0.18890090557389
927 => 0.16827304117806
928 => 0.14925320814055
929 => 0.15429812433634
930 => 0.15372618740172
1001 => 0.16475118052574
1002 => 0.1519438465691
1003 => 0.15215948922669
1004 => 0.16341246753285
1005 => 0.16041036584566
1006 => 0.15554734559253
1007 => 0.14928871357014
1008 => 0.13771905342335
1009 => 0.12747148278749
1010 => 0.14756932867898
1011 => 0.14670267301857
1012 => 0.14544762719114
1013 => 0.14824059586995
1014 => 0.16180245897629
1015 => 0.16148981413622
1016 => 0.15950092717651
1017 => 0.1610094804062
1018 => 0.15528288891762
1019 => 0.15675876193629
1020 => 0.14925019530182
1021 => 0.15264438100605
1022 => 0.15553691173517
1023 => 0.15611763010369
1024 => 0.15742601824018
1025 => 0.14624598486668
1026 => 0.15126549162285
1027 => 0.15421398157791
1028 => 0.14089259669394
1029 => 0.15395066063027
1030 => 0.14605136535898
1031 => 0.14337022590047
1101 => 0.14698002696809
1102 => 0.14557328398139
1103 => 0.14436384896814
1104 => 0.14368896345002
1105 => 0.14633960295488
1106 => 0.14621594745378
1107 => 0.14187898675688
1108 => 0.1362215983249
1109 => 0.13812040358012
1110 => 0.1374305498295
1111 => 0.13493043084437
1112 => 0.13661520917483
1113 => 0.12919629805428
1114 => 0.11643244707282
1115 => 0.1248646379985
1116 => 0.12454000782032
1117 => 0.12437631456368
1118 => 0.13071287299569
1119 => 0.13010375911173
1120 => 0.12899821144788
1121 => 0.13491012659454
1122 => 0.13275219803953
1123 => 0.13940242537417
1124 => 0.1437826952065
1125 => 0.14267171709013
1126 => 0.14679138203912
1127 => 0.13816414821815
1128 => 0.14102976922893
1129 => 0.14162036974768
1130 => 0.13483717447932
1201 => 0.13020341767618
1202 => 0.12989439892611
1203 => 0.12186010320049
1204 => 0.12615195912655
1205 => 0.12992861473241
1206 => 0.12811988977752
1207 => 0.12754730149092
1208 => 0.1304725308679
1209 => 0.13069984624339
1210 => 0.12551703159248
1211 => 0.1265947028768
1212 => 0.13108877128035
1213 => 0.12648146388362
1214 => 0.11753021821117
1215 => 0.11531018552375
1216 => 0.11501399223993
1217 => 0.10899308751863
1218 => 0.11545853872343
1219 => 0.11263619600921
1220 => 0.12155194282655
1221 => 0.1164593160606
1222 => 0.11623978309922
1223 => 0.11590792682962
1224 => 0.11072548541555
1225 => 0.1118601107239
1226 => 0.11563177805716
1227 => 0.11697755145254
1228 => 0.1168371762618
1229 => 0.1156132948296
1230 => 0.11617358148197
1231 => 0.11436870295786
]
'min_raw' => 0.063150691711492
'max_raw' => 0.19637758586576
'avg_raw' => 0.12976413878863
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.06315'
'max' => '$0.196377'
'avg' => '$0.129764'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.035974870326722
'max_diff' => 0.1226522011741
'year' => 2033
]
8 => [
'items' => [
101 => 0.1137313627857
102 => 0.11171974188813
103 => 0.10876321489316
104 => 0.10917433810524
105 => 0.10331668451083
106 => 0.10012512394339
107 => 0.099241742042418
108 => 0.098060446845363
109 => 0.099375172478232
110 => 0.10330009051418
111 => 0.098565806645015
112 => 0.090449209022741
113 => 0.090937030369849
114 => 0.092033020101343
115 => 0.089990650487401
116 => 0.088057719050894
117 => 0.089738246111253
118 => 0.086299136699479
119 => 0.092448620043216
120 => 0.092282293752496
121 => 0.094574440861542
122 => 0.096007767488422
123 => 0.092704413658469
124 => 0.091873629103455
125 => 0.092346881743044
126 => 0.084525069793917
127 => 0.093935231951962
128 => 0.09401661142507
129 => 0.093319790969407
130 => 0.098330411812404
131 => 0.10890438464296
201 => 0.10492603072703
202 => 0.1033854918444
203 => 0.1004569263024
204 => 0.10435906600611
205 => 0.10405944255972
206 => 0.10270443170636
207 => 0.10188491691436
208 => 0.10339489804632
209 => 0.10169781354189
210 => 0.10139297053213
211 => 0.099545953565447
212 => 0.09888665254226
213 => 0.098398532312223
214 => 0.097861159900655
215 => 0.099046469535712
216 => 0.096360401962203
217 => 0.093121267787002
218 => 0.092851968828252
219 => 0.093595526930368
220 => 0.093266557821572
221 => 0.092850393850722
222 => 0.092055823494856
223 => 0.091820091443581
224 => 0.092586106249294
225 => 0.091721320195081
226 => 0.092997359125407
227 => 0.092650347142813
228 => 0.090711966416513
301 => 0.088296026351081
302 => 0.088274519416893
303 => 0.087754009092732
304 => 0.087091060935661
305 => 0.086906643924564
306 => 0.0895967168096
307 => 0.09516508717452
308 => 0.094071882832077
309 => 0.09486183500558
310 => 0.098747617854811
311 => 0.099982791373015
312 => 0.099106094466482
313 => 0.09790601766851
314 => 0.097958814957128
315 => 0.10205984066375
316 => 0.10231561660665
317 => 0.10296187989792
318 => 0.10379251086118
319 => 0.099247554511275
320 => 0.097744747921768
321 => 0.097032634787125
322 => 0.094839601954888
323 => 0.09720459984803
324 => 0.095826616855003
325 => 0.096012553839365
326 => 0.095891462134375
327 => 0.095957586393485
328 => 0.092446901137295
329 => 0.093726010328465
330 => 0.091599243210836
331 => 0.088751740781144
401 => 0.088742194954537
402 => 0.08943911714015
403 => 0.089024560553579
404 => 0.087908999438342
405 => 0.088067459629461
406 => 0.086679181615606
407 => 0.088236021715928
408 => 0.088280666319364
409 => 0.087681198079086
410 => 0.090079725056167
411 => 0.091062403515688
412 => 0.090667820678083
413 => 0.091034718531924
414 => 0.094117310408027
415 => 0.094619907386745
416 => 0.094843127764998
417 => 0.094544042029172
418 => 0.091091062652626
419 => 0.091244216971178
420 => 0.090120472201131
421 => 0.089171026287748
422 => 0.089208999145096
423 => 0.089697137763904
424 => 0.09182886774119
425 => 0.096314967806043
426 => 0.096485212024207
427 => 0.096691552982997
428 => 0.095852260604942
429 => 0.095599121992774
430 => 0.095933077162843
501 => 0.097617820479266
502 => 0.10195143769245
503 => 0.10041964793675
504 => 0.099174279021638
505 => 0.10026680330924
506 => 0.10009861775865
507 => 0.098678962455733
508 => 0.098639117459689
509 => 0.095914345042129
510 => 0.094907058719424
511 => 0.094065294874096
512 => 0.0931461107298
513 => 0.09260118755773
514 => 0.093438437213182
515 => 0.093629926115431
516 => 0.091799265111165
517 => 0.091549752780808
518 => 0.093044710074454
519 => 0.092386835107146
520 => 0.093063475825537
521 => 0.09322046227632
522 => 0.093195183842039
523 => 0.092508286819711
524 => 0.092946094498179
525 => 0.091910548821851
526 => 0.090784548432776
527 => 0.09006623033685
528 => 0.089439402527085
529 => 0.089787203027389
530 => 0.088547357749668
531 => 0.08815070629217
601 => 0.092797775107699
602 => 0.096230614806139
603 => 0.096180699957369
604 => 0.095876856152545
605 => 0.09542540589104
606 => 0.097584794080727
607 => 0.09683250641377
608 => 0.097379858547219
609 => 0.097519182637479
610 => 0.097940874696963
611 => 0.098091593362572
612 => 0.097636016874259
613 => 0.096107046535501
614 => 0.092296997821454
615 => 0.090523409860034
616 => 0.089938096291322
617 => 0.089959371327876
618 => 0.089372510843772
619 => 0.089545367557583
620 => 0.089312398332944
621 => 0.088871210982786
622 => 0.08975996095175
623 => 0.089862381106394
624 => 0.089654936243867
625 => 0.089703797018605
626 => 0.087986242157738
627 => 0.088116824123477
628 => 0.08738972714469
629 => 0.087253405226453
630 => 0.085415367379657
701 => 0.082159016906211
702 => 0.083963351170089
703 => 0.081783969107116
704 => 0.080958604096841
705 => 0.084865753684888
706 => 0.084473584233708
707 => 0.083802360605252
708 => 0.082809480963503
709 => 0.082441212246266
710 => 0.080203728100042
711 => 0.08007152560017
712 => 0.081180483160192
713 => 0.080668737403141
714 => 0.079950052546969
715 => 0.077347048849826
716 => 0.074420410869331
717 => 0.074508747673772
718 => 0.075439656763332
719 => 0.078146400491422
720 => 0.077088828889715
721 => 0.076321548558441
722 => 0.076177860016756
723 => 0.077976422948289
724 => 0.080521766306991
725 => 0.081715984462046
726 => 0.080532550539331
727 => 0.079173085369523
728 => 0.079255829715254
729 => 0.079806290777284
730 => 0.079864136451803
731 => 0.078979264381535
801 => 0.079228350686148
802 => 0.078849965812512
803 => 0.076527818541456
804 => 0.076485818260931
805 => 0.07591592587093
806 => 0.075898669755851
807 => 0.074929140634141
808 => 0.074793496807976
809 => 0.07286843789061
810 => 0.074135517499635
811 => 0.073285627022566
812 => 0.072004641604727
813 => 0.071783799235859
814 => 0.071777160447575
815 => 0.073092446048598
816 => 0.07412014762159
817 => 0.073300411231284
818 => 0.073113773145134
819 => 0.075106579620169
820 => 0.074852976831387
821 => 0.074633358451864
822 => 0.08029385872679
823 => 0.075813131064841
824 => 0.073859278053238
825 => 0.071441013924756
826 => 0.072228412918936
827 => 0.072394329456307
828 => 0.066578840152179
829 => 0.064219496865768
830 => 0.063409859159847
831 => 0.062943901213493
901 => 0.063156244100779
902 => 0.061032558419642
903 => 0.062459710319885
904 => 0.060620778030703
905 => 0.060312475048018
906 => 0.063600713781072
907 => 0.064058252991165
908 => 0.06210624857462
909 => 0.063359751410851
910 => 0.062905213857441
911 => 0.060652301246745
912 => 0.06056625655632
913 => 0.05943582420198
914 => 0.057666916462275
915 => 0.056858478159099
916 => 0.056437436471621
917 => 0.056611166477813
918 => 0.056523323270457
919 => 0.05595008692302
920 => 0.056556180506885
921 => 0.055007861855268
922 => 0.054391308892543
923 => 0.0541128262232
924 => 0.052738604301994
925 => 0.054925602497896
926 => 0.055356468693566
927 => 0.055788183828742
928 => 0.059545969336015
929 => 0.059358240991464
930 => 0.0610552137988
1001 => 0.060989272556039
1002 => 0.06050526842225
1003 => 0.05846333459661
1004 => 0.059277213025539
1005 => 0.056772221726084
1006 => 0.058649131530487
1007 => 0.057792588277385
1008 => 0.058359533395008
1009 => 0.057340114954141
1010 => 0.057904303210073
1011 => 0.055458643052641
1012 => 0.053174920008998
1013 => 0.054093956827792
1014 => 0.055093054954429
1015 => 0.057259354258446
1016 => 0.055969124264555
1017 => 0.056433139759356
1018 => 0.054878765527028
1019 => 0.051671647500688
1020 => 0.051689799440425
1021 => 0.051196454202936
1022 => 0.050770131888162
1023 => 0.056117322700053
1024 => 0.055452314996017
1025 => 0.054392712253692
1026 => 0.055811032631233
1027 => 0.056186059050826
1028 => 0.056196735525767
1029 => 0.057231505461073
1030 => 0.057783762361039
1031 => 0.057881100033276
1101 => 0.059509332884165
1102 => 0.060055095058872
1103 => 0.062303012217338
1104 => 0.057736907221481
1105 => 0.0576428712939
1106 => 0.055830991307557
1107 => 0.054681868375528
1108 => 0.05590967273783
1109 => 0.05699733979082
1110 => 0.055864788154753
1111 => 0.056012675488954
1112 => 0.054492317450402
1113 => 0.05503577390969
1114 => 0.055503871823919
1115 => 0.055245415669205
1116 => 0.054858494296179
1117 => 0.056908163496067
1118 => 0.056792513127091
1119 => 0.058701212207717
1120 => 0.060189179633446
1121 => 0.062855883266346
1122 => 0.060073039007011
1123 => 0.059971621101397
1124 => 0.06096299739672
1125 => 0.060054943284327
1126 => 0.060628802138397
1127 => 0.062763425733132
1128 => 0.062808526965993
1129 => 0.062053023205916
1130 => 0.062007050733455
1201 => 0.062152153494883
1202 => 0.063002024900771
1203 => 0.062705053717643
1204 => 0.063048716289149
1205 => 0.063478471597166
1206 => 0.065256121763596
1207 => 0.065684707200516
1208 => 0.064643466784872
1209 => 0.06473747913613
1210 => 0.06434802663799
1211 => 0.063971820404613
1212 => 0.064817477076737
1213 => 0.066362931266466
1214 => 0.066353317076161
1215 => 0.066711832408841
1216 => 0.066935184491
1217 => 0.065976393850658
1218 => 0.065352256399505
1219 => 0.065591590413175
1220 => 0.06597429071305
1221 => 0.065467485863831
1222 => 0.062339251559609
1223 => 0.063288158015129
1224 => 0.063130213581775
1225 => 0.06290528150198
1226 => 0.063859414280682
1227 => 0.063767385846554
1228 => 0.061010776953457
1229 => 0.061187246110997
1230 => 0.061021508627411
1231 => 0.061557040343577
]
'min_raw' => 0.050770131888162
'max_raw' => 0.1137313627857
'avg_raw' => 0.08225074733693
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.05077'
'max' => '$0.113731'
'avg' => '$0.08225'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.01238055982333
'max_diff' => -0.082646223080063
'year' => 2034
]
9 => [
'items' => [
101 => 0.060026022814189
102 => 0.060496953494668
103 => 0.060792316802764
104 => 0.06096628806032
105 => 0.061594791535822
106 => 0.061521043907131
107 => 0.061590207279676
108 => 0.062522112015078
109 => 0.067235366375658
110 => 0.067491898411295
111 => 0.066228640845635
112 => 0.066733287326462
113 => 0.065764476437328
114 => 0.066414845677673
115 => 0.066859811794329
116 => 0.064849095475222
117 => 0.064730033904246
118 => 0.063757224387946
119 => 0.064279957119258
120 => 0.063448251757927
121 => 0.063652323161779
122 => 0.063081721725984
123 => 0.064108690704803
124 => 0.065257001597969
125 => 0.065547110277754
126 => 0.064783959240879
127 => 0.064231387596078
128 => 0.063261253816222
129 => 0.064874607912963
130 => 0.065346401816926
131 => 0.064872129780435
201 => 0.064762230586531
202 => 0.064553971812667
203 => 0.064806413669909
204 => 0.065343832326002
205 => 0.065090395612353
206 => 0.065257795026698
207 => 0.06461984108074
208 => 0.065976711250256
209 => 0.068131747628036
210 => 0.068138676422374
211 => 0.067885238342607
212 => 0.067781536940766
213 => 0.068041579790516
214 => 0.068182642368989
215 => 0.069023573261378
216 => 0.069925925613075
217 => 0.074136810311273
218 => 0.072954410738146
219 => 0.076690558149038
220 => 0.079645365673031
221 => 0.080531383251403
222 => 0.079716288769649
223 => 0.076927894578108
224 => 0.076791082656335
225 => 0.080958120808158
226 => 0.07978074166783
227 => 0.079640696165477
228 => 0.078150848631054
301 => 0.079031533045105
302 => 0.078838914444891
303 => 0.078534856561229
304 => 0.08021514107423
305 => 0.083360483682533
306 => 0.082870252540193
307 => 0.082504317733604
308 => 0.080900897933153
309 => 0.081866514789803
310 => 0.081522677122322
311 => 0.083000021946593
312 => 0.08212487559989
313 => 0.079771821862857
314 => 0.080146553426246
315 => 0.080089913504295
316 => 0.081255559084498
317 => 0.080905661214423
318 => 0.080021590329503
319 => 0.083349733243441
320 => 0.083133622154713
321 => 0.083440018268656
322 => 0.083574903313628
323 => 0.085600685256886
324 => 0.086430583301247
325 => 0.086618984686727
326 => 0.087407323642251
327 => 0.086599370095353
328 => 0.089831760344062
329 => 0.091981111244253
330 => 0.094477692919411
331 => 0.09812586976471
401 => 0.099497618006065
402 => 0.099249823964307
403 => 0.10201583001235
404 => 0.10698628139581
405 => 0.10025449429955
406 => 0.10734308245797
407 => 0.1050989172887
408 => 0.099778042043167
409 => 0.099435440406353
410 => 0.10303879889926
411 => 0.11103070122612
412 => 0.10902882033665
413 => 0.1110339755861
414 => 0.10869485547752
415 => 0.10857869844848
416 => 0.11092036974344
417 => 0.11639181236198
418 => 0.11379253506787
419 => 0.11006583369783
420 => 0.11281757199557
421 => 0.11043376162071
422 => 0.10506236965963
423 => 0.10902728953606
424 => 0.10637606052911
425 => 0.10714983010042
426 => 0.11272231913249
427 => 0.11205182250917
428 => 0.11291950722606
429 => 0.11138806641202
430 => 0.10995745920565
501 => 0.10728712461669
502 => 0.1064965701908
503 => 0.10671505099295
504 => 0.10649646192257
505 => 0.10500243426168
506 => 0.10467979913056
507 => 0.10414205977706
508 => 0.1043087276881
509 => 0.10329762038232
510 => 0.10520578877376
511 => 0.10555996164194
512 => 0.10694856746919
513 => 0.1070927371327
514 => 0.11095998459603
515 => 0.10882996967968
516 => 0.11025896758221
517 => 0.11013114455955
518 => 0.099893361544043
519 => 0.10130403771486
520 => 0.10349860714207
521 => 0.10250995658978
522 => 0.10111223601744
523 => 0.099983501714238
524 => 0.098273353825881
525 => 0.10068035413826
526 => 0.1038453035931
527 => 0.10717300547383
528 => 0.11117102124387
529 => 0.11027871066603
530 => 0.10709826534997
531 => 0.10724093780354
601 => 0.10812288277191
602 => 0.10698068390472
603 => 0.10664382716041
604 => 0.10807660382803
605 => 0.1080864705735
606 => 0.10677223273745
607 => 0.10531169788566
608 => 0.1053055781913
609 => 0.10504569012152
610 => 0.10874108898779
611 => 0.11077318471728
612 => 0.11100616121778
613 => 0.11075750354253
614 => 0.11085320201287
615 => 0.10967077028205
616 => 0.11237345857945
617 => 0.11485371262932
618 => 0.11418895156106
619 => 0.11319238021838
620 => 0.11239856314255
621 => 0.11400195348586
622 => 0.11393055703785
623 => 0.11483204977392
624 => 0.11479115285614
625 => 0.11448801475585
626 => 0.11418896238707
627 => 0.11537467122594
628 => 0.11503320612225
629 => 0.11469121062893
630 => 0.1140052863102
701 => 0.11409851481712
702 => 0.11310211554653
703 => 0.11264113565183
704 => 0.10570910408092
705 => 0.10385663873451
706 => 0.1044394620429
707 => 0.10463134260903
708 => 0.10382514731627
709 => 0.1049810242715
710 => 0.10480088207241
711 => 0.10550170998943
712 => 0.10506386313328
713 => 0.10508183252099
714 => 0.10636944676612
715 => 0.10674324665938
716 => 0.10655312901673
717 => 0.10668628089679
718 => 0.10975470977288
719 => 0.10931847730954
720 => 0.10908673750782
721 => 0.10915093101663
722 => 0.10993498038233
723 => 0.11015447139722
724 => 0.10922447254378
725 => 0.10966306537932
726 => 0.11153053800733
727 => 0.11218404773734
728 => 0.11426973709306
729 => 0.11338369918458
730 => 0.11501006011241
731 => 0.12000893913729
801 => 0.12400238959848
802 => 0.12032984751805
803 => 0.12766331072718
804 => 0.1333734637583
805 => 0.13315429857421
806 => 0.13215860131502
807 => 0.12565774390136
808 => 0.11967555798698
809 => 0.12467991052139
810 => 0.12469266764515
811 => 0.1242627893243
812 => 0.1215928519933
813 => 0.12416988129261
814 => 0.12437443651999
815 => 0.12425993998828
816 => 0.1222129052966
817 => 0.11908746167765
818 => 0.11969816587954
819 => 0.12069851182026
820 => 0.11880464826045
821 => 0.11819944409985
822 => 0.11932463377921
823 => 0.12295022936867
824 => 0.12226483152413
825 => 0.1222469330165
826 => 0.12517935564937
827 => 0.12308037390065
828 => 0.11970586881527
829 => 0.11885376177696
830 => 0.11582935583904
831 => 0.11791832379293
901 => 0.11799350203067
902 => 0.11684939563106
903 => 0.11979870674407
904 => 0.11977152832295
905 => 0.12257146027772
906 => 0.12792387856884
907 => 0.12634090510365
908 => 0.12450007919065
909 => 0.12470022800796
910 => 0.12689536652446
911 => 0.12556813566725
912 => 0.12604541713728
913 => 0.12689464410179
914 => 0.1274070038146
915 => 0.12462650733006
916 => 0.12397824059299
917 => 0.12265211435965
918 => 0.1223061527787
919 => 0.12338625492522
920 => 0.12310168617018
921 => 0.11798718359089
922 => 0.11745268961453
923 => 0.1174690817817
924 => 0.11612507126435
925 => 0.11407513262589
926 => 0.11946224897228
927 => 0.11902958813702
928 => 0.11855196406018
929 => 0.11861047028431
930 => 0.12094883490396
1001 => 0.11959246533432
1002 => 0.12319859613981
1003 => 0.12245728405642
1004 => 0.12169696011531
1005 => 0.12159186018661
1006 => 0.12129920033708
1007 => 0.12029556081908
1008 => 0.11908360579172
1009 => 0.11828336810491
1010 => 0.1091101546416
1011 => 0.11081264970226
1012 => 0.11277121508225
1013 => 0.11344730400296
1014 => 0.11229080712015
1015 => 0.12034122636495
1016 => 0.12181211553674
1017 => 0.11735669629165
1018 => 0.11652326926446
1019 => 0.1203958657021
1020 => 0.11806021664455
1021 => 0.11911195927215
1022 => 0.11683866698373
1023 => 0.12145782140792
1024 => 0.12142263119041
1025 => 0.11962567579106
1026 => 0.12114445018957
1027 => 0.12088052576263
1028 => 0.11885176754247
1029 => 0.12152213666213
1030 => 0.1215234611319
1031 => 0.11979393062921
1101 => 0.11777421764498
1102 => 0.11741314066689
1103 => 0.11714111766776
1104 => 0.11904505828968
1105 => 0.12075212549782
1106 => 0.12392855435432
1107 => 0.12472718403893
1108 => 0.12784428886576
1109 => 0.12598820471046
1110 => 0.12681098277619
1111 => 0.1277042247556
1112 => 0.12813247780842
1113 => 0.12743466244018
1114 => 0.13227680928778
1115 => 0.13268563484126
1116 => 0.13282271051302
1117 => 0.13118996584004
1118 => 0.13264022525829
1119 => 0.13196169690403
1120 => 0.1337270391812
1121 => 0.13400386739129
1122 => 0.1337694037458
1123 => 0.13385727338911
1124 => 0.12972535526793
1125 => 0.12951109351574
1126 => 0.12658961932133
1127 => 0.12778014165
1128 => 0.12555451721978
1129 => 0.12626028565307
1130 => 0.12657138165366
1201 => 0.1264088827575
1202 => 0.12784745199622
1203 => 0.12662437426303
1204 => 0.12339647103254
1205 => 0.12016768836197
1206 => 0.12012715362565
1207 => 0.11927707214124
1208 => 0.1186626189282
1209 => 0.11878098441593
1210 => 0.11919811983334
1211 => 0.11863837425943
1212 => 0.11875782435744
1213 => 0.12074149187635
1214 => 0.1211393022504
1215 => 0.11978738716484
1216 => 0.11435925301591
1217 => 0.11302717528032
1218 => 0.11398464634041
1219 => 0.11352703684272
1220 => 0.091625179154013
1221 => 0.096770695743127
1222 => 0.093713404511108
1223 => 0.095122344970029
1224 => 0.092001642303864
1225 => 0.093491005186198
1226 => 0.093215974244655
1227 => 0.10148981265305
1228 => 0.10136062804659
1229 => 0.1014224618814
1230 => 0.098470971838605
1231 => 0.10317277561847
]
'min_raw' => 0.060026022814189
'max_raw' => 0.13400386739129
'avg_raw' => 0.097014945102738
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.060026'
'max' => '$0.1340038'
'avg' => '$0.097014'
'bar_min_pct' => 61.631153054957
'bar_max_pct' => 60.119598047091
'min_diff' => 0.0092558909260265
'max_diff' => 0.020272504605588
'year' => 2035
]
10 => [
'items' => [
101 => 0.10548905323183
102 => 0.10506037189133
103 => 0.10516826174916
104 => 0.10331435653549
105 => 0.10144041173631
106 => 0.09936191855598
107 => 0.10322350197551
108 => 0.10279415981868
109 => 0.10377891625401
110 => 0.10628342913325
111 => 0.10665222816844
112 => 0.10714789781173
113 => 0.10697023552878
114 => 0.11120287188958
115 => 0.11069027169846
116 => 0.11192549067393
117 => 0.10938455152509
118 => 0.10650923769001
119 => 0.10705574084897
120 => 0.10700310820006
121 => 0.10633303417051
122 => 0.10572812129767
123 => 0.10472111179754
124 => 0.10790743886533
125 => 0.10777807980529
126 => 0.10987225262381
127 => 0.10950208723643
128 => 0.10703003218465
129 => 0.10711832211444
130 => 0.10771211432296
131 => 0.10976723593648
201 => 0.11037733595472
202 => 0.11009471331798
203 => 0.11076366013586
204 => 0.11129236842555
205 => 0.11083005775691
206 => 0.11737540189795
207 => 0.11465731867079
208 => 0.1159820935234
209 => 0.11629804451973
210 => 0.11548874268638
211 => 0.11566425127511
212 => 0.1159300989638
213 => 0.11754427407123
214 => 0.12178033661846
215 => 0.12365645988478
216 => 0.12930086929778
217 => 0.12350067396441
218 => 0.12315651437692
219 => 0.12417324295704
220 => 0.12748710880388
221 => 0.13017268581716
222 => 0.13106364664712
223 => 0.13118140182896
224 => 0.13285290357592
225 => 0.13381097720562
226 => 0.13264993929898
227 => 0.13166608123884
228 => 0.12814202378838
229 => 0.12854994303396
301 => 0.13136010212196
302 => 0.1353296173513
303 => 0.13873587437574
304 => 0.13754312188583
305 => 0.14664298143186
306 => 0.14754519533626
307 => 0.14742053854674
308 => 0.14947591608839
309 => 0.14539641023858
310 => 0.14365234245108
311 => 0.13187880251871
312 => 0.13518668700325
313 => 0.13999489136678
314 => 0.13935850748942
315 => 0.13586666095696
316 => 0.13873322549703
317 => 0.13778544961432
318 => 0.13703789945237
319 => 0.14046257166399
320 => 0.13669700388953
321 => 0.13995732694772
322 => 0.13577592890187
323 => 0.13754857027873
324 => 0.13654233330021
325 => 0.13719349194508
326 => 0.13338683181254
327 => 0.13544081321861
328 => 0.13330137943318
329 => 0.133300365063
330 => 0.13325313694361
331 => 0.13577017130446
401 => 0.13585225170461
402 => 0.13399215950891
403 => 0.13372409116341
404 => 0.13471528033703
405 => 0.13355485740757
406 => 0.13409781199265
407 => 0.13357130294884
408 => 0.1334527746731
409 => 0.13250832120608
410 => 0.1321014246842
411 => 0.13226097929486
412 => 0.13171633715264
413 => 0.13138817056138
414 => 0.13318785634878
415 => 0.13222635683169
416 => 0.13304049275794
417 => 0.13211268211783
418 => 0.12889648621137
419 => 0.12704681793491
420 => 0.12097172200911
421 => 0.12269461167753
422 => 0.12383688931016
423 => 0.12345936655939
424 => 0.12427043150995
425 => 0.12432022431072
426 => 0.12405653882746
427 => 0.12375122481805
428 => 0.1236026148432
429 => 0.1247102318419
430 => 0.12535324079033
501 => 0.12395153215229
502 => 0.12362313143039
503 => 0.1250403362539
504 => 0.12590483037754
505 => 0.13228776926926
506 => 0.13181490053954
507 => 0.13300170825533
508 => 0.13286809191958
509 => 0.13411205547903
510 => 0.1361454101605
511 => 0.13201103155816
512 => 0.13272861672747
513 => 0.13255268141541
514 => 0.1344734970197
515 => 0.13447949359635
516 => 0.13332786868973
517 => 0.13395218323459
518 => 0.13360370798282
519 => 0.13423344986202
520 => 0.13180858508936
521 => 0.13476180863448
522 => 0.13643609608305
523 => 0.1364593435659
524 => 0.13725294252855
525 => 0.13805928503676
526 => 0.13960698926363
527 => 0.13801612040589
528 => 0.13515430219877
529 => 0.13536091622971
530 => 0.13368303326197
531 => 0.13371123877779
601 => 0.13356067552383
602 => 0.13401252718285
603 => 0.13190774111869
604 => 0.13240173020096
605 => 0.13171014259298
606 => 0.13272711335107
607 => 0.13163302092666
608 => 0.13255259657408
609 => 0.13294945493909
610 => 0.13441387084974
611 => 0.13141672550597
612 => 0.12530534326114
613 => 0.12659002990235
614 => 0.12468987745004
615 => 0.12486574379389
616 => 0.12522102179739
617 => 0.12406944954831
618 => 0.12428913324323
619 => 0.12428128459575
620 => 0.12421364919202
621 => 0.1239140807742
622 => 0.12347964730056
623 => 0.12521029654796
624 => 0.12550436757901
625 => 0.12615805105334
626 => 0.1281029696752
627 => 0.12790862644053
628 => 0.12822560831949
629 => 0.1275336386575
630 => 0.12489784228189
701 => 0.12504097870629
702 => 0.12325606520048
703 => 0.12611240680196
704 => 0.12543598740886
705 => 0.12499989542577
706 => 0.12488090368781
707 => 0.12683064338675
708 => 0.12741403606309
709 => 0.12705050489722
710 => 0.12630489187012
711 => 0.12773668930286
712 => 0.12811977789317
713 => 0.12820553730078
714 => 0.13074240783167
715 => 0.12834732018234
716 => 0.12892384158466
717 => 0.13342169699025
718 => 0.129342762799
719 => 0.13150346521119
720 => 0.13139771007186
721 => 0.13250305231176
722 => 0.13130703974567
723 => 0.13132186575484
724 => 0.13230333478149
725 => 0.13092503854242
726 => 0.13058375301061
727 => 0.13011226949274
728 => 0.13114173650513
729 => 0.13175885542027
730 => 0.13673238065241
731 => 0.13994550477268
801 => 0.13980601458061
802 => 0.14108069382146
803 => 0.14050643914873
804 => 0.13865201932977
805 => 0.14181728783833
806 => 0.14081566444177
807 => 0.14089823705761
808 => 0.14089516370072
809 => 0.141561155696
810 => 0.14108923933008
811 => 0.14015904373161
812 => 0.14077655098028
813 => 0.14261032674595
814 => 0.1483024229897
815 => 0.15148779545795
816 => 0.14811065956744
817 => 0.15044016268306
818 => 0.14904329090052
819 => 0.14878943774429
820 => 0.15025253784983
821 => 0.15171819891842
822 => 0.15162484264458
823 => 0.15056084797131
824 => 0.14995982437825
825 => 0.1545109763826
826 => 0.15786418765255
827 => 0.15763552112416
828 => 0.15864478081416
829 => 0.16160799847925
830 => 0.16187891796629
831 => 0.16184478833794
901 => 0.16117328612178
902 => 0.16409095873549
903 => 0.16652493256142
904 => 0.1610178527603
905 => 0.1631148766556
906 => 0.16405629824409
907 => 0.16543858444319
908 => 0.16777073295914
909 => 0.17030406481931
910 => 0.17066230572091
911 => 0.17040811665782
912 => 0.16873731619642
913 => 0.17150931814675
914 => 0.17313309187781
915 => 0.17410001197525
916 => 0.17655196046221
917 => 0.16406211214332
918 => 0.15522117671748
919 => 0.15384053698608
920 => 0.15664812217085
921 => 0.15738845999401
922 => 0.1570900307458
923 => 0.14713875414133
924 => 0.15378814557422
925 => 0.16094233165929
926 => 0.16121715308316
927 => 0.16479868822433
928 => 0.16596498287838
929 => 0.16884858810956
930 => 0.16866821781722
1001 => 0.16937032980284
1002 => 0.16920892641623
1003 => 0.17455019789227
1004 => 0.18044241351683
1005 => 0.18023838482585
1006 => 0.17939130911629
1007 => 0.18064936099286
1008 => 0.18673075896561
1009 => 0.1861708812927
1010 => 0.18671475476167
1011 => 0.19388506570411
1012 => 0.20320748989413
1013 => 0.19887628790178
1014 => 0.20827374995537
1015 => 0.21418895418005
1016 => 0.2244186882431
1017 => 0.22313787515591
1018 => 0.22712023555739
1019 => 0.22084495241607
1020 => 0.20643563387961
1021 => 0.20415530406456
1022 => 0.20872058210144
1023 => 0.21994387268179
1024 => 0.20836712074076
1025 => 0.21070908258084
1026 => 0.21003459741334
1027 => 0.20999865696514
1028 => 0.21137035769251
1029 => 0.20938063424437
1030 => 0.20127414297224
1031 => 0.2049893001504
1101 => 0.20355469954741
1102 => 0.20514649587299
1103 => 0.21373676413539
1104 => 0.20993880177017
1105 => 0.20593795693981
1106 => 0.21095590421562
1107 => 0.21734547545149
1108 => 0.21694562756671
1109 => 0.21616975554679
1110 => 0.22054330549973
1111 => 0.22776712869208
1112 => 0.2297196990733
1113 => 0.23116104661018
1114 => 0.23135978408374
1115 => 0.23340690357615
1116 => 0.22239902612494
1117 => 0.23986881034236
1118 => 0.24288535948366
1119 => 0.24231837326825
1120 => 0.24567114068301
1121 => 0.24468467145808
1122 => 0.24325543232345
1123 => 0.24857028182993
1124 => 0.24247723575699
1125 => 0.23382892394963
1126 => 0.2290842890479
1127 => 0.23533240702528
1128 => 0.23914791464479
1129 => 0.24166972246943
1130 => 0.24243281999345
1201 => 0.22325353631607
1202 => 0.21291696614579
1203 => 0.21954258911592
1204 => 0.22762630641555
1205 => 0.22235412066718
1206 => 0.22256078036695
1207 => 0.21504402899582
1208 => 0.22829137212114
1209 => 0.22636134565548
1210 => 0.23637432637351
1211 => 0.23398464816596
1212 => 0.24214984523985
1213 => 0.23999967520474
1214 => 0.24892491080608
1215 => 0.25248542892857
1216 => 0.25846409300661
1217 => 0.26286202263996
1218 => 0.26544457103965
1219 => 0.26528952452063
1220 => 0.27552286790071
1221 => 0.26948862283526
1222 => 0.26190818887069
1223 => 0.26177108273624
1224 => 0.26569709690207
1225 => 0.27392494554426
1226 => 0.27605830698685
1227 => 0.27725056499474
1228 => 0.27542458035286
1229 => 0.26887483981256
1230 => 0.26604669505519
1231 => 0.26845635632771
]
'min_raw' => 0.09936191855598
'max_raw' => 0.27725056499474
'avg_raw' => 0.18830624177536
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$0.099361'
'max' => '$0.27725'
'avg' => '$0.1883062'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.039335895741791
'max_diff' => 0.14324669760346
'year' => 2036
]
11 => [
'items' => [
101 => 0.26550954765598
102 => 0.27059656615187
103 => 0.27758212907525
104 => 0.27613963795548
105 => 0.28096166949852
106 => 0.28595196485304
107 => 0.2930883113382
108 => 0.29495401656757
109 => 0.2980379563653
110 => 0.30121234343861
111 => 0.30223187101442
112 => 0.30417846549749
113 => 0.30416820598369
114 => 0.31003439947932
115 => 0.31650499256589
116 => 0.3189474916615
117 => 0.32456388365166
118 => 0.31494600919036
119 => 0.32224127745143
120 => 0.32882179203533
121 => 0.32097623126563
122 => 0.33178950900545
123 => 0.33220936407667
124 => 0.33854867717723
125 => 0.33212256888437
126 => 0.32830676629294
127 => 0.33932284539815
128 => 0.34465317907392
129 => 0.34304763919109
130 => 0.33082940140741
131 => 0.32371786295245
201 => 0.30510559510247
202 => 0.3271526303609
203 => 0.33789109811445
204 => 0.33080159137016
205 => 0.3343771262
206 => 0.35388408486055
207 => 0.36131107173644
208 => 0.35976631038481
209 => 0.3600273496243
210 => 0.36403481693319
211 => 0.38180613393335
212 => 0.37115714885095
213 => 0.37929789893659
214 => 0.38361572342835
215 => 0.38762635945128
216 => 0.37777750495351
217 => 0.36496428996032
218 => 0.3609058069098
219 => 0.33009667964334
220 => 0.32849293077187
221 => 0.32759269793174
222 => 0.32191685721522
223 => 0.31745720115565
224 => 0.31391071708067
225 => 0.30460368379812
226 => 0.30774453432015
227 => 0.29291106579657
228 => 0.30240099329211
301 => 0.27872641936186
302 => 0.29844330802474
303 => 0.28771230194246
304 => 0.29491788391722
305 => 0.29489274432052
306 => 0.28162498337313
307 => 0.27397241574978
308 => 0.27884892968176
309 => 0.28407693971501
310 => 0.28492516675377
311 => 0.2917034182269
312 => 0.29359508251502
313 => 0.28786325140865
314 => 0.27823581643893
315 => 0.28047205000398
316 => 0.27392709854796
317 => 0.2624573228692
318 => 0.27069511600475
319 => 0.27350786077143
320 => 0.27475012909893
321 => 0.26347092203151
322 => 0.25992675028742
323 => 0.25803986298935
324 => 0.27677981244474
325 => 0.27780642917895
326 => 0.27255411281775
327 => 0.29629508081544
328 => 0.2909217685767
329 => 0.29692507484083
330 => 0.28026913524704
331 => 0.28090541456972
401 => 0.27302022584275
402 => 0.27743540464135
403 => 0.27431489857436
404 => 0.27707870182607
405 => 0.27873531409957
406 => 0.28661920894466
407 => 0.29853332943979
408 => 0.28544161795952
409 => 0.27973737179081
410 => 0.28327625403198
411 => 0.29270076378867
412 => 0.30697937850184
413 => 0.29852615120774
414 => 0.30227754993575
415 => 0.30309706366971
416 => 0.29686396681853
417 => 0.30720920167354
418 => 0.31275329707687
419 => 0.3184403917718
420 => 0.32337833674663
421 => 0.31616884108875
422 => 0.32388403488329
423 => 0.31766695059993
424 => 0.3120895832874
425 => 0.31209804185138
426 => 0.30859927786389
427 => 0.30181998176551
428 => 0.30056977555191
429 => 0.30707350615872
430 => 0.3122888821998
501 => 0.31271844555051
502 => 0.31560594570255
503 => 0.31731473854891
504 => 0.33406323143446
505 => 0.34079961382383
506 => 0.34903673469636
507 => 0.35224555749491
508 => 0.36190296369188
509 => 0.35410382385164
510 => 0.35241643088832
511 => 0.32899072236794
512 => 0.33282668082582
513 => 0.33896842043182
514 => 0.3290919973919
515 => 0.33535631457151
516 => 0.33659302347915
517 => 0.32875640031626
518 => 0.33294227934806
519 => 0.32182582566625
520 => 0.29877563775229
521 => 0.30723486312193
522 => 0.31346370033845
523 => 0.30457438162038
524 => 0.32050814135838
525 => 0.31119996785901
526 => 0.30824972373083
527 => 0.29673976954884
528 => 0.30217202486397
529 => 0.3095192279601
530 => 0.30497951065073
531 => 0.31440010570965
601 => 0.32774218069401
602 => 0.33725053786216
603 => 0.33798047145979
604 => 0.33186723481112
605 => 0.34166373555477
606 => 0.34173509236761
607 => 0.33068459950889
608 => 0.32391623416233
609 => 0.32237844731483
610 => 0.32622014036076
611 => 0.33088466493417
612 => 0.33823932011018
613 => 0.34268358420051
614 => 0.35427186789255
615 => 0.35740732519749
616 => 0.36085224216436
617 => 0.36545571360514
618 => 0.37098336137565
619 => 0.35888918274294
620 => 0.35936970700639
621 => 0.3481077753189
622 => 0.33607278618645
623 => 0.34520584275541
624 => 0.35714609929972
625 => 0.35440699125564
626 => 0.35409878564578
627 => 0.35461710199246
628 => 0.35255190397813
629 => 0.34321108989913
630 => 0.33852019154525
701 => 0.34457264719756
702 => 0.34778925801295
703 => 0.35277794086969
704 => 0.35216298040927
705 => 0.36501329170279
706 => 0.3700065340982
707 => 0.36872904902057
708 => 0.36896413701925
709 => 0.37800416386781
710 => 0.38805853294672
711 => 0.39747577637998
712 => 0.40705540088031
713 => 0.39550678964606
714 => 0.38964311708062
715 => 0.39569293042013
716 => 0.3924828143049
717 => 0.41092909368531
718 => 0.41220627404728
719 => 0.43065121955174
720 => 0.44815766921872
721 => 0.43716218184351
722 => 0.4475304311907
723 => 0.45874453819546
724 => 0.48037837003094
725 => 0.47309285655613
726 => 0.46751226741298
727 => 0.46223863763791
728 => 0.47321222403468
729 => 0.48732956762679
730 => 0.49037030822229
731 => 0.49529746963932
801 => 0.49011716187395
802 => 0.49635627198516
803 => 0.51838307228162
804 => 0.51243123640557
805 => 0.50397867265622
806 => 0.52136671601389
807 => 0.52765938131072
808 => 0.57182460185829
809 => 0.62758501717387
810 => 0.60449983909059
811 => 0.59017012410026
812 => 0.59353794702837
813 => 0.61389976309244
814 => 0.62043933216048
815 => 0.60266252910891
816 => 0.60894159647486
817 => 0.64353987500557
818 => 0.66210074139162
819 => 0.63689259178243
820 => 0.56734430678039
821 => 0.50321761177209
822 => 0.520226898951
823 => 0.51829857364455
824 => 0.55547010770265
825 => 0.51228928708833
826 => 0.51301634136408
827 => 0.55095654338117
828 => 0.54083474794274
829 => 0.5244387356341
830 => 0.50333732080686
831 => 0.46432940385407
901 => 0.42977900399275
902 => 0.49754029460269
903 => 0.49461830453567
904 => 0.49038682990397
905 => 0.49980351880344
906 => 0.54552828712549
907 => 0.54447418321904
908 => 0.53776851197471
909 => 0.54285470451246
910 => 0.52354710149085
911 => 0.52852311041547
912 => 0.50320745377597
913 => 0.51465118785223
914 => 0.52440355715551
915 => 0.52636148967944
916 => 0.53077281163036
917 => 0.49307854854661
918 => 0.51000216602579
919 => 0.5199432057663
920 => 0.47502922656058
921 => 0.51905540080685
922 => 0.49242237528849
923 => 0.48338272641294
924 => 0.49555342274069
925 => 0.49081049054538
926 => 0.48673279595817
927 => 0.48445737231482
928 => 0.49339418846718
929 => 0.49297727531187
930 => 0.47835490952534
1001 => 0.45928062944068
1002 => 0.46568258392899
1003 => 0.46335669384474
1004 => 0.45492736813364
1005 => 0.46060771590226
1006 => 0.43559433908749
1007 => 0.39256012435988
1008 => 0.42098984478259
1009 => 0.4198953314719
1010 => 0.41934342822842
1011 => 0.44070757738633
1012 => 0.43865390739957
1013 => 0.43492647626403
1014 => 0.45485891093775
1015 => 0.44758330415276
1016 => 0.47000500991554
1017 => 0.48477339547592
1018 => 0.48102765519058
1019 => 0.49491739319192
1020 => 0.46583007203027
1021 => 0.4754917133394
1022 => 0.47748296422275
1023 => 0.45461294778791
1024 => 0.43898991320757
1025 => 0.4379480349167
1026 => 0.41085984594118
1027 => 0.42533013784368
1028 => 0.43806339589651
1029 => 0.43196515342995
1030 => 0.43003463204485
1031 => 0.43989724712233
1101 => 0.44066365678144
1102 => 0.42318943533335
1103 => 0.42682287930904
1104 => 0.44197494469744
1105 => 0.42644108613744
1106 => 0.39626133639677
1107 => 0.38877634119339
1108 => 0.38777770485743
1109 => 0.36747780422343
1110 => 0.38927652436378
1111 => 0.37976079885314
1112 => 0.40982086172536
1113 => 0.3926507150281
1114 => 0.39191054432152
1115 => 0.39079166773908
1116 => 0.37331870468506
1117 => 0.37714417312916
1118 => 0.38986061287264
1119 => 0.39439798183406
1120 => 0.39392469707782
1121 => 0.38979829538047
1122 => 0.39168734094692
1123 => 0.38560206699028
1124 => 0.38345323010216
1125 => 0.37667090979912
1126 => 0.36670277261745
1127 => 0.3680889032307
1128 => 0.34833941516884
1129 => 0.33757884588807
1130 => 0.33460046213318
1201 => 0.33061764290091
1202 => 0.33505033216334
1203 => 0.34828346735055
1204 => 0.33232149874853
1205 => 0.30495582318228
1206 => 0.30660054691266
1207 => 0.31029575281195
1208 => 0.30340976106485
1209 => 0.29689274777371
1210 => 0.30255876208836
1211 => 0.29096356459561
1212 => 0.31169697703224
1213 => 0.31113619633054
1214 => 0.31886433034129
1215 => 0.32369689113549
1216 => 0.312559403065
1217 => 0.30975835493424
1218 => 0.31135395925006
1219 => 0.28498217416211
1220 => 0.3167091928745
1221 => 0.31698356944982
1222 => 0.3146341906331
1223 => 0.33152784863564
1224 => 0.36717873628507
1225 => 0.35376543829772
1226 => 0.34857140389794
1227 => 0.33869754070715
1228 => 0.3518538771569
1229 => 0.35084367578838
1230 => 0.34627516209243
1231 => 0.3435121107545
]
'min_raw' => 0.25803986298935
'max_raw' => 0.66210074139162
'avg_raw' => 0.46007030219049
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$0.258039'
'max' => '$0.66210074'
'avg' => '$0.46007'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 0.15867794443337
'max_diff' => 0.38485017639688
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.0080995764436889
]
1 => [
'year' => 2028
'avg' => 0.013901224501212
]
2 => [
'year' => 2029
'avg' => 0.037975639885363
]
3 => [
'year' => 2030
'avg' => 0.029298149616538
]
4 => [
'year' => 2031
'avg' => 0.02877441380315
]
5 => [
'year' => 2032
'avg' => 0.050450603038217
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.0080995764436889
'min' => '$0.008099'
'max_raw' => 0.050450603038217
'max' => '$0.05045'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.050450603038217
]
1 => [
'year' => 2033
'avg' => 0.12976413878863
]
2 => [
'year' => 2034
'avg' => 0.08225074733693
]
3 => [
'year' => 2035
'avg' => 0.097014945102738
]
4 => [
'year' => 2036
'avg' => 0.18830624177536
]
5 => [
'year' => 2037
'avg' => 0.46007030219049
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.050450603038217
'min' => '$0.05045'
'max_raw' => 0.46007030219049
'max' => '$0.46007'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 0.46007030219049
]
]
]
]
'prediction_2025_max_price' => '$0.013848'
'last_price' => 0.01342816
'sma_50day_nextmonth' => '$0.012775'
'sma_200day_nextmonth' => '$0.023842'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'increase'
'sma_200day_direction_label' => 'aumentar'
'sma_200day_date_nextmonth' => '4 de fev. de 2026'
'sma_50day_date_nextmonth' => '4 de fev. de 2026'
'daily_sma3' => '$0.013355'
'daily_sma3_action' => 'BUY'
'daily_sma5' => '$0.013123'
'daily_sma5_action' => 'BUY'
'daily_sma10' => '$0.012863'
'daily_sma10_action' => 'BUY'
'daily_sma21' => '$0.0134047'
'daily_sma21_action' => 'BUY'
'daily_sma50' => '$0.014937'
'daily_sma50_action' => 'SELL'
'daily_sma100' => '$0.020024'
'daily_sma100_action' => 'SELL'
'daily_sma200' => '$0.027097'
'daily_sma200_action' => 'SELL'
'daily_ema3' => '$0.013328'
'daily_ema3_action' => 'BUY'
'daily_ema5' => '$0.013193'
'daily_ema5_action' => 'BUY'
'daily_ema10' => '$0.013133'
'daily_ema10_action' => 'BUY'
'daily_ema21' => '$0.013536'
'daily_ema21_action' => 'SELL'
'daily_ema50' => '$0.0156016'
'daily_ema50_action' => 'SELL'
'daily_ema100' => '$0.0197085'
'daily_ema100_action' => 'SELL'
'daily_ema200' => '$0.0277083'
'daily_ema200_action' => 'SELL'
'weekly_sma21' => '$0.021535'
'weekly_sma21_action' => 'SELL'
'weekly_sma50' => '—'
'weekly_sma50_action' => '—'
'weekly_sma100' => '—'
'weekly_sma100_action' => '—'
'weekly_sma200' => '—'
'weekly_sma200_action' => '—'
'weekly_ema3' => '$0.013392'
'weekly_ema3_action' => 'BUY'
'weekly_ema5' => '$0.013859'
'weekly_ema5_action' => 'SELL'
'weekly_ema10' => '$0.015963'
'weekly_ema10_action' => 'SELL'
'weekly_ema21' => '$0.02158'
'weekly_ema21_action' => 'SELL'
'weekly_ema50' => '$0.019266'
'weekly_ema50_action' => 'SELL'
'weekly_ema100' => '$0.009633'
'weekly_ema100_action' => 'BUY'
'weekly_ema200' => '$0.004816'
'weekly_ema200_action' => 'BUY'
'rsi_14' => '46.99'
'rsi_14_action' => 'NEUTRAL'
'stoch_rsi_14' => 83.74
'stoch_rsi_14_action' => 'NEUTRAL'
'momentum_10' => 0
'momentum_10_action' => 'BUY'
'vwma_10' => '0.012919'
'vwma_10_action' => 'BUY'
'hma_9' => '0.0135075'
'hma_9_action' => 'BUY'
'stochastic_fast_14' => 72.98
'stochastic_fast_14_action' => 'NEUTRAL'
'cci_20' => 1.19
'cci_20_action' => 'NEUTRAL'
'adx_14' => 19.89
'adx_14_action' => 'NEUTRAL'
'ao_5_34' => '-0.000945'
'ao_5_34_action' => 'NEUTRAL'
'macd_12_26' => 0
'macd_12_26_action' => 'BUY'
'williams_percent_r_14' => -27.02
'williams_percent_r_14_action' => 'NEUTRAL'
'ultimate_oscillator' => 56.52
'ultimate_oscillator_action' => 'NEUTRAL'
'ichimoku_cloud' => '-0.006338'
'ichimoku_cloud_action' => 'SELL'
'sell_signals' => 12
'buy_signals' => 18
'sell_pct' => 40
'buy_pct' => 60
'overall_action' => 'bullish'
'overall_action_label' => 'Altista'
'overall_action_dir' => 1
'last_updated' => 1767706161
'last_updated_date' => '6 de janeiro de 2026'
]
Previsão de preço de Sophon para 2026
A previsão de preço para Sophon em 2026 sugere que o preço médio poderia variar entre $0.004639 na extremidade inferior e $0.013848 na extremidade superior. No mercado de criptomoedas, comparado ao preço médio de hoje, Sophon poderia potencialmente ganhar 3.13% até 2026 se SOPH atingir a meta de preço prevista.
Previsão de preço de Sophon 2027-2032
A previsão de preço de SOPH para 2027-2032 está atualmente dentro de uma faixa de preço entre $0.008099 na extremidade inferior e $0.05045 na extremidade superior. Considerando a volatilidade de preços no mercado, se Sophon atingir a meta de preço superior, poderia ganhar 275.71% até 2032 em comparação com o preço de hoje.
| Previsão de Preço de Sophon | Potencial Mínimo ($) | Preço Médio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2027 | $0.004466 | $0.008099 | $0.011732 |
| 2028 | $0.00806 | $0.0139012 | $0.019742 |
| 2029 | $0.0177061 | $0.037975 | $0.058245 |
| 2030 | $0.015058 | $0.029298 | $0.043537 |
| 2031 | $0.0178035 | $0.028774 | $0.039745 |
| 2032 | $0.027175 | $0.05045 | $0.073725 |
Previsão de preço de Sophon 2032-2037
A previsão de preço de Sophon para 2032-2037 é atualmente estimada entre $0.05045 na extremidade inferior e $0.46007 na extremidade superior. Comparado ao preço atual, Sophon poderia potencialmente ganhar 3326.16% até 2037 se atingir a meta de preço superior. Por favor, note que esta informação é apenas para fins gerais e não deve ser considerada como aconselhamento de investimento a longo prazo.
| Previsão de Preço de Sophon | Potencial Mínimo ($) | Preço Médio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2032 | $0.027175 | $0.05045 | $0.073725 |
| 2033 | $0.06315 | $0.129764 | $0.196377 |
| 2034 | $0.05077 | $0.08225 | $0.113731 |
| 2035 | $0.060026 | $0.097014 | $0.1340038 |
| 2036 | $0.099361 | $0.1883062 | $0.27725 |
| 2037 | $0.258039 | $0.46007 | $0.66210074 |
Sophon Histograma de preços potenciais
Previsão de preço de Sophon baseada na análise técnica
Em 6 de janeiro de 2026, o sentimento geral de previsão de preço para Sophon é Altista, com 18 indicadores técnicos mostrando sinais de alta e 12 indicando sinais de baixa. A previsão de preço de SOPH foi atualizada pela última vez em 6 de janeiro de 2026.
Médias Móveis Simples de 50 e 200 dias e Índice de Força Relativa de 14 dias - RSI (14) de Sophon
De acordo com nossos indicadores técnicos, o SMA de 200 dias de Sophon está projetado para aumentar no próximo mês, alcançando $0.023842 até 4 de fev. de 2026. O SMA de 50 dias de curto prazo para Sophon é esperado para alcançar $0.012775 até 4 de fev. de 2026.
O oscilador de momentum Índice de Força Relativa (RSI) é uma ferramenta comumente usada para identificar se uma criptomoeda está sobrevendida (abaixo de 30) ou sobrecomprada (acima de 70). No momento, o RSI está em 46.99, sugerindo que o mercado de SOPH está em um estado NEUTRAL.
Médias Móveis e Osciladores Populares de SOPH para Sábado, 19 de Outubro de 2024
Médias móveis (MA) são indicadores amplamente utilizados nos mercados financeiros, projetados para suavizar movimentos de preços ao longo de um período definido. Como indicadores atrasados, eles se baseiam em dados históricos de preços. A tabela abaixo destaca dois tipos: a média móvel simples (SMA) e a média móvel exponencial (EMA).
Média Móvel Simples Diária (SMA)
| Período | Valor | Ação |
|---|---|---|
| SMA 3 | $0.013355 | BUY |
| SMA 5 | $0.013123 | BUY |
| SMA 10 | $0.012863 | BUY |
| SMA 21 | $0.0134047 | BUY |
| SMA 50 | $0.014937 | SELL |
| SMA 100 | $0.020024 | SELL |
| SMA 200 | $0.027097 | SELL |
Média Móvel Exponencial Diária (EMA)
| Período | Valor | Ação |
|---|---|---|
| EMA 3 | $0.013328 | BUY |
| EMA 5 | $0.013193 | BUY |
| EMA 10 | $0.013133 | BUY |
| EMA 21 | $0.013536 | SELL |
| EMA 50 | $0.0156016 | SELL |
| EMA 100 | $0.0197085 | SELL |
| EMA 200 | $0.0277083 | SELL |
Média Móvel Simples Semanal (SMA)
| Período | Valor | Ação |
|---|---|---|
| SMA 21 | $0.021535 | SELL |
| SMA 50 | — | — |
| SMA 100 | — | — |
| SMA 200 | — | — |
Média Móvel Exponencial Semanal (EMA)
| Período | Valor | Ação |
|---|---|---|
| EMA 21 | $0.02158 | SELL |
| EMA 50 | $0.019266 | SELL |
| EMA 100 | $0.009633 | BUY |
| EMA 200 | $0.004816 | BUY |
Osciladores de Sophon
Um oscilador é uma ferramenta de análise técnica que define limites altos e baixos entre dois extremos, criando um indicador de tendência que flutua dentro desses limites. Os traders usam esse indicador para identificar condições de sobrecompra ou sobrevenda de curto prazo.
| Período | Valor | Ação |
|---|---|---|
| RSI (14) | 46.99 | NEUTRAL |
| Stoch RSI (14) | 83.74 | NEUTRAL |
| Estocástico Rápido (14) | 72.98 | NEUTRAL |
| Índice de Canal de Commodities (20) | 1.19 | NEUTRAL |
| Índice Direcional Médio (14) | 19.89 | NEUTRAL |
| Oscilador Impressionante (5, 34) | -0.000945 | NEUTRAL |
| Momentum (10) | 0 | BUY |
| MACD (12, 26) | 0 | BUY |
| Williams Percent Range (14) | -27.02 | NEUTRAL |
| Oscilador Ultimate (7, 14, 28) | 56.52 | NEUTRAL |
| VWMA (10) | 0.012919 | BUY |
| Média Móvel de Hull (9) | 0.0135075 | BUY |
| Nuvem Ichimoku B/L (9, 26, 52, 26) | -0.006338 | SELL |
Previsão do preço de Sophon com base nos fluxos financeiros mundiais
Definições dos fluxos financeiros mundiais, usadas na previsão do preço do Sophon
M0: o total de todas as moedas físicas, mais as contas no Banco Central que podem ser trocadas por moedas físicas.
M1: o valor de M0, mais o valor em contas de demanda, incluindo contas 'correntes'.
M2: o valor de M1, mais a maioria das contas de poupança, do mercado de moedas e de certificados de depósito (CD) de menos de US$ 100.000.
Previsões de preço de Sophon por empresas de Internet ou nichos tecnológicos
| Comparação | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Facebook stock | $0.018868 | $0.026513 | $0.037256 | $0.052351 | $0.073562 | $0.103367 |
| Amazon.com stock | $0.028018 | $0.058462 | $0.121985 | $0.25453 | $0.531092 | $1.10 |
| Apple stock | $0.019046 | $0.027016 | $0.03832 | $0.054355 | $0.077098 | $0.109358 |
| Netflix stock | $0.021187 | $0.03343 | $0.052748 | $0.083228 | $0.131321 | $0.2072047 |
| Google stock | $0.017389 | $0.022519 | $0.029162 | $0.037765 | $0.0489055 | $0.063332 |
| Tesla stock | $0.03044 | $0.0690065 | $0.156432 | $0.354621 | $0.803899 | $1.82 |
| Kodak stock | $0.010069 | $0.007551 | $0.005662 | $0.004246 | $0.003184 | $0.002387 |
| Nokia stock | $0.008895 | $0.005892 | $0.0039038 | $0.002586 | $0.001713 | $0.001134 |
Este cálculo mostra quanto a criptomoeda pode custar, se assumirmos que sua capitalização se comportará da mesma forma que a de algumas empresas de Internet ou nichos tecnológicos. Se você extrapolar os dados, poderá obter uma imagem em potencial do preço futuro para 2024, 2025, 2026, 2027, 2028, 2029 e 2030.
Visão geral da previsão para Sophon
Você pode fazer perguntas como: 'Devo investir em Sophon agora?', 'Devo comprar SOPH hoje?', 'Sophon será um bom ou mau investimento no curto ou no longo prazo?'.
Atualizamos a previsão para Sophon regularmente com novos valores. Veja nossas previsões semelhantes. Fazemos previsões de preços futuros para uma enorme quantidade de moedas digitais, como Sophon, com métodos de análise técnica.
Se você estiver tentando encontrar criptomoedas com bom retorno, você deve explorar o máximo de fontes de informações disponíveis sobre Sophon para poder tomar sozinho uma decisão de tão grande responsabilidade sobre o seu investimento.
O preço de Sophon é de $0.01342 USD hoje, mas o preço pode tanto subir quanto descer e seu investimento pode ser perdido, porque criptomoedas são ativos de alto risco
Previsão de curto prazo para Sophon
com base no histórico de preços de 4 horas
Previsão de longo prazo para Sophon
com base no histórico de preços de 1 mês
Previsão do preço de Sophon com base no padrão de crescimento do Bitcoin
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| Se Sophon tiver 1% da média anterior do crescimento anual do Bitcoin | $0.013777 | $0.014135 | $0.0145027 | $0.014879 |
| Se Sophon tiver 2% da média anterior do crescimento anual do Bitcoin | $0.014126 | $0.01486 | $0.015633 | $0.016445 |
| Se Sophon tiver 5% da média anterior do crescimento anual do Bitcoin | $0.015173 | $0.017145 | $0.019373 | $0.021891 |
| Se Sophon tiver 10% da média anterior do crescimento anual do Bitcoin | $0.016918 | $0.021316 | $0.026857 | $0.033838 |
| Se Sophon tiver 20% da média anterior do crescimento anual do Bitcoin | $0.0204089 | $0.031018 | $0.047144 | $0.071653 |
| Se Sophon tiver 50% da média anterior do crescimento anual do Bitcoin | $0.03088 | $0.071014 | $0.1633081 | $0.375553 |
| Se Sophon tiver 100% da média anterior do crescimento anual do Bitcoin | $0.048332 | $0.173963 | $0.626149 | $2.25 |
Perguntas Frequentes sobre Sophon
SOPH é um bom investimento?
A decisão de adquirir Sophon depende inteiramente da sua tolerância individual ao risco. Como você pode perceber, o valor de Sophon experimentou uma escalada de 1.9322% nas últimas 24 horas, e Sophon registrou um declínio de durante os últimos 30 dias. Consequentemente, a decisão de investir ou não em Sophon dependerá de quão alinhado esse investimento está com suas aspirações de negociação.
Sophon pode subir?
Parece que o valor médio de Sophon pode potencialmente subir para $0.013848 até o final deste ano. Observando as perspectivas de Sophon em um horizonte de cinco anos mais longo, a moeda digital poderia potencialmente crescer até $0.043537. No entanto, dada a imprevisibilidade do mercado, é vital conduzir uma pesquisa aprofundada antes de investir quaisquer fundos em um projeto, rede ou ativo específico.
Qual será o preço de Sophon na próxima semana?
Com base na nossa nova previsão experimental de Sophon, o preço de Sophon aumentará 0.86% na próxima semana e atingirá $0.013543 até 13 de janeiro de 2026.
Qual será o preço de Sophon no próximo mês?
Com base na nossa nova previsão experimental de Sophon, o preço de Sophon diminuirá -11.62% no próximo mês e atingirá $0.011868 até 5 de fevereiro de 2026.
Até onde o preço de Sophon pode subir este ano em 2026?
De acordo com nossa previsão mais recente sobre o valor de Sophon em 2026, espera-se que SOPH fluctue dentro do intervalo de $0.004639 e $0.013848. No entanto, é crucial lembrar que o mercado de criptomoedas é excepcionalmente instável, e essa previsão de preço de Sophon não considera flutuações repentinas e extremas de preço.
Onde estará Sophon em 5 anos?
O futuro de Sophon parece seguir uma tendência de alta, com um preço máximo de $0.043537 projetada após um período de cinco anos. Com base na previsão de Sophon para 2030, o valor de Sophon pode potencialmente atingir seu pico mais alto de aproximadamente $0.043537, enquanto seu pico mais baixo está previsto para cerca de $0.015058.
Quanto será Sophon em 2026?
Com base na nossa nova simulação experimental de previsão de preços de Sophon, espera-se que o valor de SOPH em 2026 aumente 3.13% para $0.013848 se o melhor cenário ocorrer. O preço ficará entre $0.013848 e $0.004639 durante 2026.
Quanto será Sophon em 2027?
De acordo com nossa última simulação experimental para previsão de preços de Sophon, o valor de SOPH pode diminuir -12.62% para $0.011732 em 2027, assumindo as condições mais favoráveis. O preço está projetado para flutuar entre $0.011732 e $0.004466 ao longo do ano.
Quanto será Sophon em 2028?
Nosso novo modelo experimental de previsão de preços de Sophon sugere que o valor de SOPH em 2028 pode aumentar 47.02%, alcançando $0.019742 no melhor cenário. O preço é esperado para variar entre $0.019742 e $0.00806 durante o ano.
Quanto será Sophon em 2029?
Com base no nosso modelo de previsão experimental, o valor de Sophon pode experimentar um 333.75% crescimento em 2029, potencialmente alcançando $0.058245 sob condições ótimas. A faixa de preço prevista para 2029 está entre $0.058245 e $0.0177061.
Quanto será Sophon em 2030?
Usando nossa nova simulação experimental para previsões de preços de Sophon, espera-se que o valor de SOPH em 2030 aumente 224.23%, alcançando $0.043537 no melhor cenário. O preço está previsto para variar entre $0.043537 e $0.015058 ao longo de 2030.
Quanto será Sophon em 2031?
Nossa simulação experimental indica que o preço de Sophon poderia aumentar 195.98% em 2031, potencialmente atingindo $0.039745 sob condições ideais. O preço provavelmente oscilará entre $0.039745 e $0.0178035 durante o ano.
Quanto será Sophon em 2032?
Com base nos achados da nossa mais recente previsão experimental de preços de Sophon, SOPH poderia ver um 449.04% aumento em valor, atingindo $0.073725 se o cenário mais positivo se desenrolar em 2032. O preço é esperado para permanecer dentro de uma faixa de $0.073725 e $0.027175 ao longo do ano.
Quanto será Sophon em 2033?
De acordo com nossa previsão experimental de preços de Sophon, espera-se que o valor de SOPH seja aumentar 1362.43% em 2033, com o preço potencial mais alto sendo $0.196377. Ao longo do ano, o preço de SOPH poderia variar entre $0.196377 e $0.06315.
Quanto será Sophon em 2034?
Os resultados da nossa nova simulação de previsão de preços de Sophon sugerem que SOPH pode aumentar 746.96% em 2034, atingindo potencialmente $0.113731 nas melhores circunstâncias. A faixa de preço prevista para o ano é entre $0.113731 e $0.05077.
Quanto será Sophon em 2035?
Com base em nossa previsão experimental para o preço de Sophon, SOPH poderia aumentar 897.93%, com o valor potencialmente atingindo $0.1340038 em 2035. A faixa de preço esperada para o ano está entre $0.1340038 e $0.060026.
Quanto será Sophon em 2036?
Nossa recente simulação de previsão de preços de Sophon sugere que o valor de SOPH pode aumentar 1964.7% em 2036, possivelmente atingindo $0.27725 se as condições forem ideais. A faixa de preço esperada para 2036 está entre $0.27725 e $0.099361.
Quanto será Sophon em 2037?
De acordo com a simulação experimental, o valor de Sophon poderia aumentar 4830.69% em 2037, com um pico de $0.66210074 sob condições favoráveis. O preço é esperado para cair entre $0.66210074 e $0.258039 ao longo do ano.
Previsões relacionadas
Como ler e prever os movimentos de preço de Sophon?
Traders de Sophon utilizam indicadores e padrões de gráfico para prever a direção do mercado. Eles também identificam níveis-chave de suporte e resistência para avaliar quando uma tendência de baixa pode desacelerar ou uma tendência de alta pode estagnar.
Indicadores de Previsão de Preço de Sophon
Médias móveis são ferramentas populares para a previsão de preço de Sophon. Uma média móvel simples (SMA) calcula o preço médio de fechamento de SOPH em um período específico, como uma SMA de 12 dias. Uma média móvel exponencial (EMA) dá mais peso aos preços recentes, reagindo mais rapidamente às mudanças de preço.
Médias móveis comumente usadas no mercado de criptomoedas incluem as de 50 dias, 100 dias e 200 dias, que ajudam a identificar níveis-chave de resistência e suporte. Um movimento de preço de SOPH acima dessas médias é visto como altista, enquanto uma queda abaixo indica fraqueza.
Traders também usam RSI e níveis de retração de Fibonacci para avaliar a direção futura de SOPH.
Como ler gráficos de Sophon e prever movimentos de preço?
A maioria dos traders prefere gráficos de velas em vez de gráficos de linha simples porque eles fornecem informações mais detalhadas. Velas podem representar a ação de preço de Sophon em diferentes períodos de tempo, como 5 minutos para tendências de curto prazo e semanal para tendências de longo prazo. Opções populares incluem gráficos de 1 hora, 4 horas e 1 dia.
Por exemplo, um gráfico de velas de 1 hora mostra os preços de abertura, fechamento, máximo e mínimo de SOPH dentro de cada hora. A cor da vela é crucial: verde indica que o preço fechou mais alto do que abriu, enquanto vermelho significa o oposto. Alguns gráficos usam velas vazias e preenchidas para transmitir a mesma informação.
O que afeta o preço de Sophon?
A ação de preço de Sophon é impulsionada pela oferta e demanda, influenciada por fatores como reduções pela metade das recompensas de bloco, hard forks e atualizações de protocolo. Eventos do mundo real, como regulamentações, adoção por empresas e governos e hacks de exchanges de criptomoedas, também impactam o preço de SOPH. A capitalização de mercado de Sophon pode mudar rapidamente.
Traders frequentemente monitoram a atividade de "baleias" de SOPH, grandes detentores de Sophon, pois suas ações podem influenciar significativamente os movimentos de preço no relativamente pequeno mercado de Sophon.
Padrões de previsão de preço altistas e baixistas
Traders frequentemente identificam padrões de velas para ganhar vantagem em previsões de preço de criptomoedas. Certas formações indicam tendências altistas, enquanto outras sugerem movimentos baixistas.
Padrões de velas altistas comumente seguidos:
- Martelo
- Engolfo de Alta
- Linha de Perfuração
- Estrela da Manhã
- Três Soldados Brancos
Padrões de velas baixistas comuns:
- Harami de Baixa
- Nuvem Negra
- Estrela da Noite
- Estrela Cadente
- Homem Enforcado


