Previsão de Preço Small Thing - Projeção ST
Previsão de Preço Small Thing até $0.003562 até 2026
| Ano | Preço Mínimo | Preço Máximo |
|---|---|---|
| 2026 | $0.001193 | $0.003562 |
| 2027 | $0.001148 | $0.003018 |
| 2028 | $0.002073 | $0.005078 |
| 2029 | $0.004555 | $0.014983 |
| 2030 | $0.003873 | $0.01120045 |
| 2031 | $0.00458 | $0.010224 |
| 2032 | $0.006991 | $0.018966 |
| 2033 | $0.016245 | $0.050519 |
| 2034 | $0.01306 | $0.029258 |
| 2035 | $0.015442 | $0.034473 |
Calculadora de lucro do investimento
Se você abrir um short de $10,000.00 em Small Thing hoje e fechar em Apr 06, 2026, nossa previsão mostra que pode lucrar cerca de $3,954.53, com um retorno de 39.55% nos próximos 90 dias.
Previsão de preço de longo prazo de Small Thing para os anos 2027, 2028, 2029, 2030, 2031, 2032 e 2037
[
'name' => 'Small Thing'
'name_with_ticker' => 'Small Thing <small>ST</small>'
'name_lang' => 'Small Thing'
'name_lang_with_ticker' => 'Small Thing <small>ST</small>'
'name_with_lang' => 'Small Thing'
'name_with_lang_with_ticker' => 'Small Thing <small>ST</small>'
'image' => '/uploads/coins/small-thing.png?1762828606'
'price_for_sd' => 0.003454
'ticker' => 'ST'
'marketcap' => '$1.26M'
'low24h' => '$0.003381'
'high24h' => '$0.004072'
'volume24h' => '$642.59K'
'current_supply' => '364.64M'
'max_supply' => '1B'
'algo' => null
'proof' => null
'ico_price_and_roi' => '—'
'price' => '$0.003454'
'change_24h_pct' => '-14.2566%'
'ath_price' => '$0.01236'
'ath_days' => 59
'ath_exchange' => null
'ath_pair' => null
'ath_date' => '8 de nov. de 2025'
'ath_pct' => '-72.14%'
'fdv' => '$3.45M'
'new_prediction' => true
'change_24h_pct_is_increased' => false
'change_30d_pct' => null
'change_30d_pct_is_increased' => false
'max_price' => '$0.17033'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.003484'
'next_week_prediction_price_date' => '13 de janeiro de 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.0030531'
'next_month_prediction_price_date' => '5 de fevereiro de 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.001193'
'current_year_max_price_prediction' => '$0.003562'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.003873'
'grand_prediction_max_price' => '$0.01120045'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.0035199507684383
107 => 0.0035330929868655
108 => 0.0035627030760403
109 => 0.0033096881059912
110 => 0.003423284399414
111 => 0.0034900115792666
112 => 0.003188535753137
113 => 0.0034840523715027
114 => 0.0033052836782702
115 => 0.0032446068987714
116 => 0.0033263001888087
117 => 0.0032944642342318
118 => 0.0032670935499566
119 => 0.003251820237843
120 => 0.003311806773887
121 => 0.0033090083302811
122 => 0.0032108587144282
123 => 0.0030828265416383
124 => 0.0031257983413394
125 => 0.0031101862836452
126 => 0.003053606172566
127 => 0.0030917343359247
128 => 0.0029238372007147
129 => 0.0026349789061195
130 => 0.0028258075434979
131 => 0.0028184608485404
201 => 0.0028147563117968
202 => 0.0029581587586705
203 => 0.002944373922261
204 => 0.0029193543091961
205 => 0.0030531466677514
206 => 0.0030043106571176
207 => 0.0031548117346798
208 => 0.0032539414781618
209 => 0.0032287989687035
210 => 0.0033220309715838
211 => 0.0031267883248137
212 => 0.0031916401002953
213 => 0.0032050059613414
214 => 0.0030514956908149
215 => 0.0029466292919775
216 => 0.0029396358987396
217 => 0.0027578120146355
218 => 0.0028549408658928
219 => 0.0029404102355342
220 => 0.002899477040167
221 => 0.0028865188133582
222 => 0.002952719583828
223 => 0.0029578639506648
224 => 0.002840571841611
225 => 0.0028649605852413
226 => 0.0029666657004709
227 => 0.002862397877286
228 => 0.0026598225288898
301 => 0.0026095810416642
302 => 0.002602877901134
303 => 0.0024666190030757
304 => 0.0026129384180797
305 => 0.0025490660723139
306 => 0.0027508380472798
307 => 0.0026355869773041
308 => 0.0026306187340268
309 => 0.0026231085056304
310 => 0.0025058248432874
311 => 0.0025315025115749
312 => 0.002616858991782
313 => 0.0026473151455295
314 => 0.0026441383191737
315 => 0.0026164406984629
316 => 0.0026291205273896
317 => 0.0025882743804717
318 => 0.0025738507558559
319 => 0.0025283258290381
320 => 0.002461416763198
321 => 0.0024707208791802
322 => 0.0023381565120415
323 => 0.0022659284091009
324 => 0.002245936622158
325 => 0.0022192027691437
326 => 0.002248956281992
327 => 0.0023377809738452
328 => 0.0022306395502606
329 => 0.0020469530946219
330 => 0.0020579929635923
331 => 0.0020827962714022
401 => 0.0020365754713887
402 => 0.0019928313631936
403 => 0.0020308633161976
404 => 0.0019530329434477
405 => 0.00209220170011
406 => 0.0020884375752582
407 => 0.0021403110816038
408 => 0.0021727486496732
409 => 0.0020979905570606
410 => 0.0020791890989359
411 => 0.0020898992639624
412 => 0.0019128840932627
413 => 0.0021258451656526
414 => 0.00212768686185
415 => 0.0021119171408814
416 => 0.0022253123374936
417 => 0.0024646115711941
418 => 0.0023745775736866
419 => 0.0023397136885597
420 => 0.0022734374174482
421 => 0.0023617466136087
422 => 0.0023549658451817
423 => 0.0023243006388244
424 => 0.0023057542263383
425 => 0.002339926560008
426 => 0.0023015198960281
427 => 0.0022946210038328
428 => 0.0022528212231978
429 => 0.0022379006032799
430 => 0.0022268539702997
501 => 0.0022146927128082
502 => 0.0022415174164378
503 => 0.0021807291089295
504 => 0.0021074243692258
505 => 0.0021013298732877
506 => 0.0021181573124063
507 => 0.0021107124232518
508 => 0.0021012942300227
509 => 0.0020833123342559
510 => 0.0020779774899043
511 => 0.0020953131459484
512 => 0.0020757422010061
513 => 0.002104620196353
514 => 0.002096766979511
515 => 0.0020528995486167
516 => 0.0019982244879192
517 => 0.0019977377651942
518 => 0.001985958113052
519 => 0.0019709549549663
520 => 0.0019667814196127
521 => 0.0020276603711953
522 => 0.0021536779790177
523 => 0.0021289377072564
524 => 0.002146815089089
525 => 0.0022347541138102
526 => 0.0022627072853503
527 => 0.0022428667862983
528 => 0.0022157078874872
529 => 0.0022169027412011
530 => 0.0023097129199964
531 => 0.0023155013770046
601 => 0.0023301269404373
602 => 0.002348924922632
603 => 0.0022460681639508
604 => 0.002212058197117
605 => 0.00219594238803
606 => 0.0021463119336451
607 => 0.0021998341237056
608 => 0.002168649035606
609 => 0.002172856969425
610 => 0.0021701165470051
611 => 0.0021716130029529
612 => 0.0020921627996063
613 => 0.002121110277926
614 => 0.0020729794807637
615 => 0.0020085377462988
616 => 0.0020083217150087
617 => 0.0020240937382244
618 => 0.0020147119216564
619 => 0.0019894656945003
620 => 0.001993051801909
621 => 0.0019616337275293
622 => 0.0019968665249813
623 => 0.0019978768755432
624 => 0.0019843103293807
625 => 0.0020385913150446
626 => 0.0020608302791601
627 => 0.0020519004878524
628 => 0.002060203741197
629 => 0.0021299657772437
630 => 0.0021413400330504
701 => 0.0021463917261385
702 => 0.0021396231266215
703 => 0.0020614788631519
704 => 0.0020649448935319
705 => 0.0020395134623511
706 => 0.0020180265829016
707 => 0.0020188859453958
708 => 0.0020299329945316
709 => 0.0020781761060088
710 => 0.0021797008900257
711 => 0.0021835536813655
712 => 0.0021882233768632
713 => 0.0021692293784732
714 => 0.0021635006068107
715 => 0.0021710583353549
716 => 0.0022091857063122
717 => 0.0023072596558943
718 => 0.0022725937719731
719 => 0.0022444098687386
720 => 0.002269134750201
721 => 0.0022653285484999
722 => 0.0022332003757165
723 => 0.0022322986449126
724 => 0.002170634409343
725 => 0.0021478385454796
726 => 0.0021287886153946
727 => 0.0021079865890527
728 => 0.002095654450547
729 => 0.0021146022201484
730 => 0.0021189357992397
731 => 0.0020775061698557
801 => 0.0020718594644584
802 => 0.0021056917941341
803 => 0.0020908034472402
804 => 0.0021061164812338
805 => 0.0021096692364731
806 => 0.0021090971610526
807 => 0.0020935520169797
808 => 0.0021034600282489
809 => 0.0020800246278769
810 => 0.0020545421498556
811 => 0.0020382859164926
812 => 0.0020241001968068
813 => 0.0020319712585673
814 => 0.0020039123605902
815 => 0.0019949357544132
816 => 0.0021001034169682
817 => 0.0021777919000405
818 => 0.0021766622787286
819 => 0.0021697859995075
820 => 0.0021595692433873
821 => 0.0022084382869657
822 => 0.0021914132893503
823 => 0.0022038003976017
824 => 0.0022069534365369
825 => 0.0022164967357594
826 => 0.0022199076449571
827 => 0.0022095975083328
828 => 0.0021749954305444
829 => 0.0020887703425625
830 => 0.0020486323313467
831 => 0.0020353861190941
901 => 0.0020358675937513
902 => 0.002022586373307
903 => 0.0020264982879504
904 => 0.0020212259690381
905 => 0.0020112414725293
906 => 0.0020313547440435
907 => 0.0020336726112174
908 => 0.0020289779333103
909 => 0.0020300836999072
910 => 0.0019912137719596
911 => 0.0019941689681604
912 => 0.0019777140601861
913 => 0.0019746289633078
914 => 0.0019330323888415
915 => 0.0018593380276546
916 => 0.0019001718574369
917 => 0.0018508503331652
918 => 0.0018321715245805
919 => 0.0019205940992699
920 => 0.0019117189252315
921 => 0.0018965284852233
922 => 0.001874058658486
923 => 0.0018657243811767
924 => 0.0018150879505571
925 => 0.0018120960801012
926 => 0.0018371928624149
927 => 0.0018256115609047
928 => 0.0018093470274025
929 => 0.0017504385357667
930 => 0.0016842058872368
1001 => 0.0016862050345723
1002 => 0.0017072724077675
1003 => 0.0017685286366546
1004 => 0.0017445947682849
1005 => 0.0017272304721732
1006 => 0.0017239786614802
1007 => 0.0017646818804288
1008 => 0.0018222854628289
1009 => 0.0018493117748836
1010 => 0.0018225295204387
1011 => 0.0017917635085915
1012 => 0.0017936360931766
1013 => 0.0018060935594891
1014 => 0.0018074026630595
1015 => 0.001787377152144
1016 => 0.0017930142161666
1017 => 0.0017844510004523
1018 => 0.0017318985614204
1019 => 0.0017309480544439
1020 => 0.0017180508383829
1021 => 0.0017176603158062
1022 => 0.0016957189339251
1023 => 0.0016926491829264
1024 => 0.0016490832374548
1025 => 0.001677758474694
1026 => 0.0016585246310715
1027 => 0.0016295346919273
1028 => 0.0016245368154918
1029 => 0.0016243865732911
1030 => 0.0016541527587604
1031 => 0.0016774106394861
1101 => 0.001658859212016
1102 => 0.0016546354115854
1103 => 0.0016997345498214
1104 => 0.0016939952733931
1105 => 0.0016890250970206
1106 => 0.0018171276938266
1107 => 0.0017157244924843
1108 => 0.0016715069088067
1109 => 0.0016167792523143
1110 => 0.001634598853229
1111 => 0.0016383537049662
1112 => 0.0015067435565034
1113 => 0.001453349335663
1114 => 0.0014350264511894
1115 => 0.0014244813721272
1116 => 0.0014292868970726
1117 => 0.0013812258357988
1118 => 0.0014135236638314
1119 => 0.0013719068472687
1120 => 0.0013649296525391
1121 => 0.0014393456758875
1122 => 0.0014497002308043
1123 => 0.0014055244826211
1124 => 0.0014338924643587
1125 => 0.0014236058398362
1126 => 0.0013726202481411
1127 => 0.001370672973563
1128 => 0.0013450901958806
1129 => 0.0013050581026096
1130 => 0.0012867623617803
1201 => 0.0012772337811054
1202 => 0.0012811654592002
1203 => 0.0012791774824442
1204 => 0.0012662045893917
1205 => 0.0012799210734884
1206 => 0.0012448811246637
1207 => 0.0012309279347057
1208 => 0.0012246256025132
1209 => 0.0011935256311071
1210 => 0.0012430195158343
1211 => 0.0012527704346331
1212 => 0.0012625405657541
1213 => 0.0013475828868108
1214 => 0.0013433344127779
1215 => 0.0013817385489444
1216 => 0.0013802462348337
1217 => 0.0013692927530932
1218 => 0.0013230818153905
1219 => 0.0013415006715281
1220 => 0.0012848102952625
1221 => 0.0013272865797315
1222 => 0.0013079021773519
1223 => 0.001320732693788
1224 => 0.0012976622683549
1225 => 0.0013104303943441
1226 => 0.0012550827392155
1227 => 0.0012033998776189
1228 => 0.0012241985698421
1229 => 0.0012468091269078
1230 => 0.0012958345756889
1231 => 0.001266635422846
]
'min_raw' => 0.0011935256311071
'max_raw' => 0.0035627030760403
'avg_raw' => 0.0023781143535737
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.001193'
'max' => '$0.003562'
'avg' => '$0.002378'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.0022609643688929
'max_diff' => 0.00010821307604031
'year' => 2026
]
1 => [
'items' => [
101 => 0.0012771365423505
102 => 0.0012419595498766
103 => 0.0011693793665918
104 => 0.001169790162547
105 => 0.0011586252825939
106 => 0.0011489771962153
107 => 0.0012699892967985
108 => 0.0012549395291727
109 => 0.001230959694126
110 => 0.0012630576562568
111 => 0.0012715448669074
112 => 0.001271786485863
113 => 0.0012952043304653
114 => 0.0013077024383274
115 => 0.001309905284008
116 => 0.0013467537684658
117 => 0.0013591048944128
118 => 0.0014099774341916
119 => 0.0013066420611947
120 => 0.0013045139371896
121 => 0.0012635093404087
122 => 0.0012375035768732
123 => 0.0012652899772869
124 => 0.0012899049348315
125 => 0.0012642741957535
126 => 0.0012676210291827
127 => 0.0012332138560789
128 => 0.0012455128014555
129 => 0.0012561063100607
130 => 0.0012502571972666
131 => 0.0012415007923135
201 => 0.0012878867890181
202 => 0.0012852695092958
203 => 0.0013284652158366
204 => 0.0013621393580397
205 => 0.0014224894408407
206 => 0.0013595109833169
207 => 0.001357215798008
208 => 0.0013796516025615
209 => 0.001359101459608
210 => 0.0013720884405878
211 => 0.0014203970374269
212 => 0.0014214177219544
213 => 0.0014043199410407
214 => 0.0014032795395183
215 => 0.001406563355372
216 => 0.0014257967673952
217 => 0.0014190760222513
218 => 0.0014268534386803
219 => 0.0014365792170169
220 => 0.0014768091598616
221 => 0.0014865084628836
222 => 0.0014629441850521
223 => 0.0014650717755023
224 => 0.0014562580887394
225 => 0.0014477441777617
226 => 0.0014668822062828
227 => 0.001501857329564
228 => 0.0015016397511373
301 => 0.0015097532999193
302 => 0.0015148079735942
303 => 0.0014931096139342
304 => 0.0014789847796663
305 => 0.0014844011399112
306 => 0.0014930620178957
307 => 0.0014815925339092
308 => 0.0014107975655627
309 => 0.0014322722365589
310 => 0.0014286978012474
311 => 0.0014236073706976
312 => 0.001445200318443
313 => 0.0014431176259566
314 => 0.0013807329001491
315 => 0.0013847265678886
316 => 0.0013809757683118
317 => 0.0013930953690858
318 => 0.0013584469613931
319 => 0.0013691045782388
320 => 0.0013757889356154
321 => 0.0013797260734619
322 => 0.0013939497150842
323 => 0.0013922807349085
324 => 0.0013938459689331
325 => 0.0014149358745568
326 => 0.0015216013800197
327 => 0.0015274069481378
328 => 0.0014988182074372
329 => 0.0015102388454591
330 => 0.001488313717876
331 => 0.0015030322029081
401 => 0.0015131022165581
402 => 0.001467597761226
403 => 0.0014649032827027
404 => 0.0014428876623188
405 => 0.0014547176096846
406 => 0.0014358953128223
407 => 0.0014405136460963
408 => 0.0014276003836431
409 => 0.001450841685054
410 => 0.0014768290713645
411 => 0.0014833945114195
412 => 0.0014661236652344
413 => 0.0014536184343922
414 => 0.0014316633685124
415 => 0.0014681751323711
416 => 0.0014788522847992
417 => 0.0014681190498348
418 => 0.0014656319247677
419 => 0.0014609188272597
420 => 0.0014666318306843
421 => 0.0014787941347341
422 => 0.0014730586167467
423 => 0.0014768470274242
424 => 0.0014624095125137
425 => 0.0014931167969941
426 => 0.0015418873548595
427 => 0.0015420441601778
428 => 0.0015363086112738
429 => 0.0015339617482365
430 => 0.0015398467694741
501 => 0.0015430391520794
502 => 0.0015620702316337
503 => 0.0015824913382272
504 => 0.001677787732272
505 => 0.0016510288861589
506 => 0.0017355815161633
507 => 0.0018024516687118
508 => 0.0018225031035838
509 => 0.0018040567269945
510 => 0.0017409526691363
511 => 0.001737856483004
512 => 0.0018321605872901
513 => 0.0018055153584277
514 => 0.0018023459932389
515 => 0.0017686293023574
516 => 0.0017885600425618
517 => 0.0017842008973127
518 => 0.0017773197732805
519 => 0.0018153462372031
520 => 0.0018865283830203
521 => 0.0018754339780528
522 => 0.0018671525193991
523 => 0.0018308655782752
524 => 0.0018527184218136
525 => 0.0018449370427932
526 => 0.0018783707852498
527 => 0.0018585653768666
528 => 0.0018053134946127
529 => 0.0018137940323822
530 => 0.0018125122161588
531 => 0.0018388919032054
601 => 0.0018309733759381
602 => 0.001810965996622
603 => 0.0018862850901844
604 => 0.0018813942871953
605 => 0.0018883283276407
606 => 0.001891380906687
607 => 0.0019372263116672
608 => 0.0019560077071982
609 => 0.0019602714127984
610 => 0.0019781122859476
611 => 0.0019598275156217
612 => 0.0020329796337454
613 => 0.0020816215237532
614 => 0.002138121582086
615 => 0.0022206833530942
616 => 0.0022517273427324
617 => 0.0022461195238682
618 => 0.0023087169163822
619 => 0.002421203039268
620 => 0.0022688561854048
621 => 0.0024292777924498
622 => 0.0023784901638159
623 => 0.0022580736099552
624 => 0.0022503202035045
625 => 0.0023318676918439
626 => 0.0025127321723257
627 => 0.0024674276713129
628 => 0.0025128062742594
629 => 0.0024598697234959
630 => 0.0024572409775662
701 => 0.0025102352641454
702 => 0.0026340593033059
703 => 0.0025752351437755
704 => 0.0024908962868129
705 => 0.0025531707863361
706 => 0.0024992228516163
707 => 0.0023776630556163
708 => 0.0024673930278148
709 => 0.0024073931507681
710 => 0.0024249043046593
711 => 0.0025510151219033
712 => 0.0025358411347246
713 => 0.0025554776792072
714 => 0.0025208196921733
715 => 0.0024884436672208
716 => 0.0024280114123718
717 => 0.0024101204009851
718 => 0.0024150648328813
719 => 0.0024101179507703
720 => 0.0023763066595833
721 => 0.0023690051144707
722 => 0.0023568355527283
723 => 0.0023606074087785
724 => 0.0023377250723719
725 => 0.0023809087689031
726 => 0.0023889240435127
727 => 0.0024203495366266
728 => 0.0024236122355718
729 => 0.0025111317865802
730 => 0.0024629274885911
731 => 0.002495267093441
801 => 0.0024923743347911
802 => 0.0022606834018123
803 => 0.0022926083681504
804 => 0.0023422735971661
805 => 0.0023198994788141
806 => 0.0022882677102019
807 => 0.0022627233610593
808 => 0.0022240210600646
809 => 0.0022784938055028
810 => 0.0023501196732235
811 => 0.0024254287857779
812 => 0.0025159077500634
813 => 0.0024957138985262
814 => 0.0024237373444764
815 => 0.0024269661601122
816 => 0.0024469254278803
817 => 0.0024210763626299
818 => 0.0024134529686538
819 => 0.0024458780906132
820 => 0.0024461013846076
821 => 0.002416358911073
822 => 0.0023833055945545
823 => 0.0023831670999514
824 => 0.0023772855815341
825 => 0.0024609160325565
826 => 0.0025069043246265
827 => 0.0025121768081985
828 => 0.0025065494444732
829 => 0.002508715193429
830 => 0.0024819556195563
831 => 0.0025431200701241
901 => 0.0025992506185023
902 => 0.0025842064324827
903 => 0.0025616530589822
904 => 0.0025436882106714
905 => 0.0025799744851518
906 => 0.002578358714469
907 => 0.0025987603671294
908 => 0.0025978348303191
909 => 0.0025909745218744
910 => 0.0025842066774859
911 => 0.0026110404154838
912 => 0.0026033127298771
913 => 0.0025955730410401
914 => 0.0025800499101906
915 => 0.0025821597614849
916 => 0.0025596102821424
917 => 0.0025491778612045
918 => 0.0023922992811773
919 => 0.0023503761984385
920 => 0.0023635660536912
921 => 0.0023679084965148
922 => 0.002349663517181
923 => 0.002375822130795
924 => 0.0023717453385721
925 => 0.0023876057522678
926 => 0.0023776968543698
927 => 0.0023781035189959
928 => 0.002407243474914
929 => 0.0024157029280873
930 => 0.0024114003819272
1001 => 0.0024144137377751
1002 => 0.0024838552514312
1003 => 0.0024739828888039
1004 => 0.0024687383929217
1005 => 0.0024701911541226
1006 => 0.0024879349497046
1007 => 0.0024929022436922
1008 => 0.002471855470021
1009 => 0.0024817812501543
1010 => 0.0025240439621927
1011 => 0.0025388335195438
1012 => 0.0025860346872183
1013 => 0.0025659827922563
1014 => 0.0026027889132847
1015 => 0.0027159183811946
1016 => 0.0028062940281248
1017 => 0.0027231808482762
1018 => 0.0028891442145943
1019 => 0.0030183705013038
1020 => 0.0030134105811823
1021 => 0.0029908769890366
1022 => 0.0028437562972764
1023 => 0.0027083736432727
1024 => 0.0028216269819979
1025 => 0.0028219156880491
1026 => 0.0028121871258132
1027 => 0.002751763861296
1028 => 0.002810084527183
1029 => 0.0028147138098515
1030 => 0.0028121226425828
1031 => 0.0027657962673473
1101 => 0.0026950644549081
1102 => 0.0027088852817507
1103 => 0.0027315240780561
1104 => 0.0026886641137023
1105 => 0.0026749677581144
1106 => 0.0027004318889905
1107 => 0.0027824826243356
1108 => 0.0027669714081061
1109 => 0.0027665663475647
1110 => 0.0028329299083736
1111 => 0.0027854279209872
1112 => 0.0027090596066376
1113 => 0.00268977560009
1114 => 0.0026213303681094
1115 => 0.0026686057336319
1116 => 0.0026703070898744
1117 => 0.0026444148553202
1118 => 0.0027111606187714
1119 => 0.0027105455448108
1120 => 0.0027739107134119
1121 => 0.0028950411169066
1122 => 0.0028592168961281
1123 => 0.0028175572250268
1124 => 0.0028220867863729
1125 => 0.0028717648944295
1126 => 0.0028417283762576
1127 => 0.0028525297176142
1128 => 0.0028717485453057
1129 => 0.0028833437412286
1130 => 0.0028204184161195
1201 => 0.0028057475127703
1202 => 0.0027757359933053
1203 => 0.0027679065480684
1204 => 0.0027923503044618
1205 => 0.0027859102382628
1206 => 0.0026701640974702
1207 => 0.0026580679817519
1208 => 0.0026584389523517
1209 => 0.0026280226942391
1210 => 0.0025816305998791
1211 => 0.0027035462539292
1212 => 0.0026937547207005
1213 => 0.0026829456258205
1214 => 0.0026842696782675
1215 => 0.0027371891315857
1216 => 0.0027064931761647
1217 => 0.0027881034046197
1218 => 0.0027713267950774
1219 => 0.0027541199288042
1220 => 0.0027517414157513
1221 => 0.002745118240257
1222 => 0.0027224049071119
1223 => 0.0026949771924796
1224 => 0.0026768670395313
1225 => 0.0024692683453113
1226 => 0.0025077974554125
1227 => 0.002552121684545
1228 => 0.0025674222308233
1229 => 0.0025412495876487
1230 => 0.0027234383625886
1231 => 0.0027567260073849
]
'min_raw' => 0.0011489771962153
'max_raw' => 0.0030183705013038
'avg_raw' => 0.0020836738487595
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.001148'
'max' => '$0.003018'
'avg' => '$0.002083'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -4.4548434891866E-5
'max_diff' => -0.0005443325747365
'year' => 2027
]
2 => [
'items' => [
101 => 0.0026558955599977
102 => 0.0026370343001716
103 => 0.0027246749036428
104 => 0.0026718169061216
105 => 0.0026956188591688
106 => 0.0026441720556529
107 => 0.0027487079885295
108 => 0.0027479115998665
109 => 0.0027072447609264
110 => 0.0027416160947241
111 => 0.0027356432296398
112 => 0.0026897304686344
113 => 0.0027501635049464
114 => 0.0027501934789785
115 => 0.002711052530672
116 => 0.0026653444721053
117 => 0.0026571729508097
118 => 0.002651016807203
119 => 0.00269410482522
120 => 0.0027327374074414
121 => 0.002804623065126
122 => 0.0028226968274291
123 => 0.0028932399249362
124 => 0.0028512349450518
125 => 0.002869855208579
126 => 0.0028900701386349
127 => 0.0028997619194831
128 => 0.0028839696826806
129 => 0.0029935521498065
130 => 0.003002804267552
131 => 0.0030059064226015
201 => 0.0029689558312455
202 => 0.0030017766047633
203 => 0.002986420851744
204 => 0.003026372255149
205 => 0.003032637145328
206 => 0.0030273310062263
207 => 0.0030293195812537
208 => 0.0029358102772335
209 => 0.0029309613265192
210 => 0.0028648455394636
211 => 0.002891788211392
212 => 0.0028414201776178
213 => 0.0028573923999758
214 => 0.0028644328034023
215 => 0.0028607552961917
216 => 0.0028933115096384
217 => 0.0028656320774137
218 => 0.0027925815048528
219 => 0.0027195110297123
220 => 0.0027185936894188
221 => 0.0026993555231153
222 => 0.0026854498525238
223 => 0.0026881285780099
224 => 0.0026975687560146
225 => 0.0026849011722169
226 => 0.0026876044434829
227 => 0.0027324967583013
228 => 0.0027414995918808
229 => 0.0027109044457436
301 => 0.002588060519144
302 => 0.0025579143114258
303 => 0.0025795828077084
304 => 0.0025692266621152
305 => 0.0020735664362464
306 => 0.0021900144540822
307 => 0.0021208249960852
308 => 0.0021527106815842
309 => 0.0020820861614925
310 => 0.0021157918842285
311 => 0.0021095676679751
312 => 0.0022968126347077
313 => 0.0022938890620992
314 => 0.0022952884215949
315 => 0.0022284933468548
316 => 0.0023348997145996
317 => 0.0023873193176
318 => 0.0023776178441872
319 => 0.0023800594960351
320 => 0.0023381038277075
321 => 0.0022956946441748
322 => 0.0022486563329105
323 => 0.0023360477011286
324 => 0.0023263312728032
325 => 0.0023486172635212
326 => 0.0024052968126747
327 => 0.0024136430915922
328 => 0.0024248605750969
329 => 0.0024208399057753
330 => 0.0025166285609861
331 => 0.0025050279228061
401 => 0.0025329821230883
402 => 0.0024754782122176
403 => 0.0024104070787459
404 => 0.0024227749738833
405 => 0.0024215838461252
406 => 0.0024064194226524
407 => 0.0023927296591882
408 => 0.0023699400600874
409 => 0.0024420497238684
410 => 0.0024391222032066
411 => 0.0024865153598507
412 => 0.0024781381590613
413 => 0.0024221931619409
414 => 0.0024241912484578
415 => 0.0024376293405311
416 => 0.0024841387306303
417 => 0.0024979458842124
418 => 0.0024915498605532
419 => 0.0025066887741356
420 => 0.0025186539541679
421 => 0.0025081914165285
422 => 0.0026563188859627
423 => 0.0025948060332425
424 => 0.0026247869696546
425 => 0.002631937246331
426 => 0.0026136219629786
427 => 0.0026175938921166
428 => 0.0026236102824748
429 => 0.0026601406265996
430 => 0.0027560068197234
501 => 0.0027984653040747
502 => 0.0029262037491102
503 => 0.0027949397179999
504 => 0.0027871510536184
505 => 0.0028101606049008
506 => 0.0028851565946243
507 => 0.0029459338002801
508 => 0.0029660971057172
509 => 0.0029687620193906
510 => 0.0030065897208218
511 => 0.0030282718538374
512 => 0.0030019964429008
513 => 0.0029797307832822
514 => 0.0028999779542439
515 => 0.0029092095613648
516 => 0.0029728061798837
517 => 0.0030626401493638
518 => 0.0031397270408092
519 => 0.0031127338981744
520 => 0.0033186725222889
521 => 0.003339090495686
522 => 0.0033362693919546
523 => 0.0033827845739551
524 => 0.0032904614103363
525 => 0.0032509914692122
526 => 0.0029845448716177
527 => 0.0030594054973263
528 => 0.0031682198132041
529 => 0.0031538178304649
530 => 0.0030747939656594
531 => 0.0031396670941215
601 => 0.0031182180090817
602 => 0.0031013002257874
603 => 0.0031788038707322
604 => 0.0030935854294411
605 => 0.0031673696940635
606 => 0.0030727406114848
607 => 0.0031128572005763
608 => 0.0030900850843869
609 => 0.003104821434407
610 => 0.0030186730333024
611 => 0.0030651566194042
612 => 0.0030167391632968
613 => 0.0030167162071184
614 => 0.0030156473890913
615 => 0.0030726103114859
616 => 0.0030744678703401
617 => 0.0030323721846243
618 => 0.0030263055386545
619 => 0.0030487371084629
620 => 0.0030224756150547
621 => 0.0030347632025325
622 => 0.0030228477935618
623 => 0.0030201653840256
624 => 0.0029987914884667
625 => 0.0029895830265725
626 => 0.0029931939017541
627 => 0.0029808681232256
628 => 0.0029734413958193
629 => 0.0030141700260822
630 => 0.002992410361921
701 => 0.003010835045472
702 => 0.0029898377931852
703 => 0.0029170521686919
704 => 0.0028751923863517
705 => 0.0027377070889148
706 => 0.0027766977487179
707 => 0.0028025485965062
708 => 0.0027940048914664
709 => 0.0028123600758668
710 => 0.0028134869351144
711 => 0.0028075194775568
712 => 0.0028006099261838
713 => 0.0027972467386976
714 => 0.002822313182812
715 => 0.0028368650973181
716 => 0.0028051430749214
717 => 0.0027977110489122
718 => 0.002829783764976
719 => 0.0028493481032472
720 => 0.0029938001847893
721 => 0.0029830987080146
722 => 0.0030099573146604
723 => 0.003006933447731
724 => 0.0030350855464074
725 => 0.0030811023297786
726 => 0.0029875373426899
727 => 0.0030037769892147
728 => 0.002999795402915
729 => 0.0030432653181068
730 => 0.0030434010264371
731 => 0.0030173386407963
801 => 0.0030314674828661
802 => 0.0030235811508273
803 => 0.0030378328187232
804 => 0.0029829557832679
805 => 0.0030497900888425
806 => 0.0030876808333958
807 => 0.0030882069464207
808 => 0.0031061668586194
809 => 0.0031244151695813
810 => 0.0031594412133796
811 => 0.0031234383122301
812 => 0.003058672597874
813 => 0.0030633484732585
814 => 0.0030253763586284
815 => 0.0030260146767355
816 => 0.0030226072846537
817 => 0.0030328331247879
818 => 0.0029851997801285
819 => 0.0029963792309119
820 => 0.0029807279343484
821 => 0.0030037429663526
822 => 0.0029789825964371
823 => 0.0029997934828735
824 => 0.0030087747715676
825 => 0.0030419159202023
826 => 0.0029740876218376
827 => 0.0028357811298997
828 => 0.0028648548313092
829 => 0.0028218525432346
830 => 0.0028258325687172
831 => 0.0028338728536083
901 => 0.0028078116596587
902 => 0.0028127833141817
903 => 0.0028126056916971
904 => 0.0028110750370846
905 => 0.0028042955140073
906 => 0.0027944638642573
907 => 0.0028336301308389
908 => 0.0028402852427359
909 => 0.002855078732089
910 => 0.0028990941218841
911 => 0.0028946959464892
912 => 0.0029018695530369
913 => 0.0028862096102215
914 => 0.0028265589885506
915 => 0.0028297983042951
916 => 0.0027894039850544
917 => 0.0028540457585272
918 => 0.0028387377333391
919 => 0.0028288685499157
920 => 0.0028261756517813
921 => 0.0028703001472142
922 => 0.0028835028878145
923 => 0.0028752758258754
924 => 0.0028584018818165
925 => 0.0028908048427433
926 => 0.0028994745081161
927 => 0.0029014153264681
928 => 0.0029588271605788
929 => 0.002904624010229
930 => 0.0029176712472512
1001 => 0.0030194620660002
1002 => 0.0029271518395677
1003 => 0.0029760506252727
1004 => 0.0029736572841694
1005 => 0.0029986722482914
1006 => 0.0029716053269793
1007 => 0.0029719408539084
1008 => 0.0029941524473883
1009 => 0.0029629602702278
1010 => 0.0029552366485063
1011 => 0.0029445665204156
1012 => 0.0029678643547427
1013 => 0.0029818303527514
1014 => 0.0030943860398062
1015 => 0.0031671021468065
1016 => 0.0031639453488265
1017 => 0.0031927925730853
1018 => 0.0031797966343464
1019 => 0.0031378293200032
1020 => 0.0032094624082183
1021 => 0.0031867947018513
1022 => 0.0031886634000229
1023 => 0.0031885938469837
1024 => 0.0032036658900724
1025 => 0.0031929859662116
1026 => 0.0031719347400102
1027 => 0.0031859095263822
1028 => 0.0032274096458298
1029 => 0.0033562272899741
1030 => 0.003428315350244
1031 => 0.0033518874982294
1101 => 0.0034046064071394
1102 => 0.0033729938474613
1103 => 0.0033672489049756
1104 => 0.0034003602756679
1105 => 0.0034335296034313
1106 => 0.0034314168606477
1107 => 0.0034073376319553
1108 => 0.0033937358866548
1109 => 0.0034967328589893
1110 => 0.0035726192736978
1111 => 0.0035674443289637
1112 => 0.003590284852038
1113 => 0.0036573453342149
1114 => 0.0036634765042759
1115 => 0.0036627041177715
1116 => 0.003647507373054
1117 => 0.0037135371266613
1118 => 0.0037686203088034
1119 => 0.0036439897657281
1120 => 0.0036914474449976
1121 => 0.0037127527262126
1122 => 0.0037440352000283
1123 => 0.0037968139769067
1124 => 0.0038541457274759
1125 => 0.003862253065617
1126 => 0.0038565005212341
1127 => 0.0038186886905735
1128 => 0.0038814217761563
1129 => 0.0039181693464189
1130 => 0.003940051683557
1201 => 0.0039955416496656
1202 => 0.0037128843003762
1203 => 0.0035128053795673
1204 => 0.0034815601669084
1205 => 0.0035450985355076
1206 => 0.0035618530965983
1207 => 0.0035550993540311
1208 => 0.003329892338281
1209 => 0.0034803744985781
1210 => 0.0036422806501583
1211 => 0.0036485001248241
1212 => 0.0037295537296031
1213 => 0.0037559481058187
1214 => 0.0038212068816047
1215 => 0.0038171249274112
1216 => 0.0038330144008212
1217 => 0.0038293616860515
1218 => 0.0039502398263385
1219 => 0.0040835863656526
1220 => 0.0040789689990122
1221 => 0.0040597988563012
1222 => 0.0040882697872221
1223 => 0.0042258977060779
1224 => 0.0042132271327521
1225 => 0.0042255355154612
1226 => 0.0043878065881618
1227 => 0.0045987820654634
1228 => 0.0045007627746652
1229 => 0.0047134364314062
1230 => 0.0048473032249785
1231 => 0.005078812002377
]
'min_raw' => 0.0020735664362464
'max_raw' => 0.005078812002377
'avg_raw' => 0.0035761892193117
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.002073'
'max' => '$0.005078'
'avg' => '$0.003576'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 0.00092458924003117
'max_diff' => 0.0020604415010732
'year' => 2028
]
3 => [
'items' => [
101 => 0.005049825963242
102 => 0.0051399506313933
103 => 0.0049979349036213
104 => 0.0046718380865427
105 => 0.0046202320169915
106 => 0.0047235486751068
107 => 0.004977542597591
108 => 0.0047155495026001
109 => 0.0047685503644962
110 => 0.0047532861127046
111 => 0.0047524727455955
112 => 0.0047835156599461
113 => 0.004738486293591
114 => 0.0045550285544322
115 => 0.0046391061551655
116 => 0.0046066397557843
117 => 0.0046426636464281
118 => 0.0048370697268498
119 => 0.0047511181646333
120 => 0.004660575175976
121 => 0.0047741361768499
122 => 0.0049187383547559
123 => 0.0049096894103376
124 => 0.0048921306760009
125 => 0.0049911083421118
126 => 0.0051545904487919
127 => 0.0051987790053032
128 => 0.0052313980943246
129 => 0.0052358957155967
130 => 0.0052822240099546
131 => 0.0050331050949587
201 => 0.0054284632108847
202 => 0.0054967306359575
203 => 0.0054838991894387
204 => 0.0055597755592748
205 => 0.0055374508064713
206 => 0.0055051057423055
207 => 0.0056253859278624
208 => 0.0054874944012318
209 => 0.0052917747392402
210 => 0.0051843990617757
211 => 0.0053258000156098
212 => 0.0054121486439031
213 => 0.0054692195944008
214 => 0.0054864892295382
215 => 0.0050524434871792
216 => 0.0048185169053282
217 => 0.004968461162321
218 => 0.005151403504452
219 => 0.0050320888410111
220 => 0.0050367657499255
221 => 0.0048666543952008
222 => 0.0051664545847092
223 => 0.0051227762188143
224 => 0.0053493796583427
225 => 0.005295298928893
226 => 0.0054800852371335
227 => 0.0054314248093102
228 => 0.0056334115246369
301 => 0.0057139894939527
302 => 0.0058492924453934
303 => 0.0059488218472553
304 => 0.0060072674157227
305 => 0.0060037585630157
306 => 0.0062353490227501
307 => 0.0060987882197991
308 => 0.0059272356663826
309 => 0.0059241328219327
310 => 0.0060129823202656
311 => 0.0061991864941018
312 => 0.006247466527217
313 => 0.0062744484792451
314 => 0.0062331246804655
315 => 0.0060848977162632
316 => 0.0060208940646483
317 => 0.0060754270301885
318 => 0.006008737899404
319 => 0.0061238620488032
320 => 0.0062819520951197
321 => 0.0062493071257111
322 => 0.0063584343640366
323 => 0.0064713695751832
324 => 0.0066328719993605
325 => 0.0066750947134579
326 => 0.0067448872542749
327 => 0.0068167267044309
328 => 0.0068397995996936
329 => 0.0068838529158489
330 => 0.0068836207331274
331 => 0.0070163783664917
401 => 0.0071628141472542
402 => 0.0072180902644959
403 => 0.0073451946481503
404 => 0.0071275328454109
405 => 0.0072926318231073
406 => 0.0074415552336849
407 => 0.0072640026042027
408 => 0.007508717539487
409 => 0.0075182192658881
410 => 0.0076616840535758
411 => 0.0075162550067266
412 => 0.0074298997029335
413 => 0.0076792042292932
414 => 0.0077998348365797
415 => 0.0077634999159405
416 => 0.0074869893758005
417 => 0.007326048381344
418 => 0.0069048347556521
419 => 0.0074037804903587
420 => 0.0076468024032877
421 => 0.0074863600077558
422 => 0.0075672778196853
423 => 0.0080087391638838
424 => 0.0081768190612493
425 => 0.0081418596175645
426 => 0.0081477671880658
427 => 0.0082384600498183
428 => 0.0086406421443001
429 => 0.0083996453107786
430 => 0.0085838783600267
501 => 0.0086815949050462
502 => 0.0087723594778625
503 => 0.0085494703734634
504 => 0.0082594949235315
505 => 0.0081676475261967
506 => 0.0074704071734942
507 => 0.0074341127851746
508 => 0.0074137396451784
509 => 0.0072852898793397
510 => 0.0071843635487424
511 => 0.0071041031834971
512 => 0.0068934760173195
513 => 0.0069645565028791
514 => 0.0066288607612981
515 => 0.0068436270004351
516 => 0.0063078484912146
517 => 0.0067540607544378
518 => 0.0065112077063475
519 => 0.0066742769966283
520 => 0.0066737080632366
521 => 0.006373445798664
522 => 0.0062002607907721
523 => 0.0063106210182621
524 => 0.0064289359425372
525 => 0.0064481321409417
526 => 0.0066015305285998
527 => 0.0066443407213079
528 => 0.0065146238387856
529 => 0.0062967456724925
530 => 0.0063473538012505
531 => 0.0061992352186581
601 => 0.0059396630999638
602 => 0.0061260923273044
603 => 0.006189747462233
604 => 0.0062178611961705
605 => 0.005962601829494
606 => 0.0058823937945337
607 => 0.0058396917097315
608 => 0.0062637948936644
609 => 0.0062870282234391
610 => 0.0061681632234502
611 => 0.0067054442946418
612 => 0.0065838410409011
613 => 0.00671970166885
614 => 0.006342761644015
615 => 0.0063571612605808
616 => 0.0061787118120921
617 => 0.0062786315792493
618 => 0.006208011508387
619 => 0.0062705590494894
620 => 0.006308049787733
621 => 0.0064864699544231
622 => 0.0067560980261411
623 => 0.0064598199313079
624 => 0.0063307273226085
625 => 0.0064108156510012
626 => 0.0066241014234274
627 => 0.0069472402865508
628 => 0.0067559355758061
629 => 0.0068408333578699
630 => 0.0068593797464115
701 => 0.0067183187351936
702 => 0.0069524414072418
703 => 0.0070779096492016
704 => 0.0072066141034579
705 => 0.0073183645748717
706 => 0.0071552067141563
707 => 0.0073298090128824
708 => 0.007189110381564
709 => 0.0070628891641141
710 => 0.0070630805895991
711 => 0.0069839001760951
712 => 0.0068304781475569
713 => 0.0068021847715782
714 => 0.0069493704864788
715 => 0.0070673994912899
716 => 0.007077120925447
717 => 0.0071424678470596
718 => 0.0071811394821432
719 => 0.0075601740775007
720 => 0.0077126249272921
721 => 0.0078990389406701
722 => 0.007971657704599
723 => 0.0081902141487571
724 => 0.0080137120698129
725 => 0.0079755247347832
726 => 0.0074453782905236
727 => 0.0075321897410718
728 => 0.0076711832494584
729 => 0.0074476702422824
730 => 0.0075894377997331
731 => 0.0076174257186214
801 => 0.0074400753558269
802 => 0.0075348058474522
803 => 0.0072832297473286
804 => 0.0067615816976457
805 => 0.0069530221506421
806 => 0.0070939867622071
807 => 0.0068928128806925
808 => 0.0072534092768031
809 => 0.0070427563064158
810 => 0.0069759894279289
811 => 0.0067155080308405
812 => 0.0068384452234178
813 => 0.0070047195366696
814 => 0.0069019813425437
815 => 0.0071151785215724
816 => 0.0074171225846879
817 => 0.0076323059051439
818 => 0.0076488250085466
819 => 0.0075104765496562
820 => 0.0077321808379561
821 => 0.0077337957116563
822 => 0.0074837123687654
823 => 0.0073305377137146
824 => 0.0072957361098048
825 => 0.0073826773396278
826 => 0.0074882400428693
827 => 0.0076546830038974
828 => 0.0077552609993416
829 => 0.0080175150690132
830 => 0.0080884735008529
831 => 0.0081664353041924
901 => 0.0082706163159837
902 => 0.0083957123321024
903 => 0.0081220093705549
904 => 0.0081328840994634
905 => 0.0078780156913458
906 => 0.0076056522454453
907 => 0.007812342150301
908 => 0.008082561706094
909 => 0.008020573041429
910 => 0.0080135980503407
911 => 0.00802532805065
912 => 0.0079785906218531
913 => 0.0077671989635748
914 => 0.0076610393961692
915 => 0.0077980123223165
916 => 0.0078708073366002
917 => 0.0079837060553619
918 => 0.0079697889052716
919 => 0.0082606038803645
920 => 0.0083736057858972
921 => 0.0083446950628377
922 => 0.0083500153316561
923 => 0.0085545998839485
924 => 0.0087821399821199
925 => 0.0089952613106179
926 => 0.0092120574797401
927 => 0.0089507012361648
928 => 0.0088180006538894
929 => 0.008954913781942
930 => 0.0088822657490055
1001 => 0.0092997228950652
1002 => 0.0093286267221144
1003 => 0.0097460536812709
1004 => 0.010142241571788
1005 => 0.0098934030561976
1006 => 0.010128046568467
1007 => 0.010381832657752
1008 => 0.010871427199292
1009 => 0.010706548981845
1010 => 0.010580254851251
1011 => 0.010460907508089
1012 => 0.010709250383352
1013 => 0.011028739525004
1014 => 0.011097554426086
1015 => 0.011209060855156
1016 => 0.011091825479347
1017 => 0.011233022576456
1018 => 0.011731510374399
1019 => 0.011596814571121
1020 => 0.011405524877036
1021 => 0.011799033118235
1022 => 0.011941442221
1023 => 0.012940943884434
1024 => 0.014202856021874
1025 => 0.013680416110812
1026 => 0.013356120798986
1027 => 0.013432337889652
1028 => 0.013893145483824
1029 => 0.01404114225777
1030 => 0.013638836008638
1031 => 0.013780937377074
1101 => 0.014563929888254
1102 => 0.014983980249095
1103 => 0.014413495438783
1104 => 0.012839550472888
1105 => 0.011388301333029
1106 => 0.01177323795552
1107 => 0.011729598088504
1108 => 0.012570825861462
1109 => 0.01159360212076
1110 => 0.011610056062323
1111 => 0.012468679534751
1112 => 0.01223961351284
1113 => 0.011868555893904
1114 => 0.011391010464285
1115 => 0.010508223570027
1116 => 0.0097263145994489
1117 => 0.011259818153634
1118 => 0.011193690691882
1119 => 0.011097928327725
1120 => 0.011311037106587
1121 => 0.012345832844758
1122 => 0.012321977453686
1123 => 0.012170221626815
1124 => 0.012285327083982
1125 => 0.011848377350736
1126 => 0.011960989246154
1127 => 0.011388071447751
1128 => 0.01164705421979
1129 => 0.011867759770904
1130 => 0.011912069677892
1201 => 0.012011902160855
1202 => 0.011158844524394
1203 => 0.011541842358709
1204 => 0.011766817704325
1205 => 0.010750370908159
1206 => 0.01174672581929
1207 => 0.011143994688825
1208 => 0.010939418690427
1209 => 0.011214853321431
1210 => 0.01110751617786
1211 => 0.011015234004866
1212 => 0.010963738966727
1213 => 0.011165987761125
1214 => 0.011156552613127
1215 => 0.010825634330691
1216 => 0.010393964921209
1217 => 0.010538847344097
1218 => 0.010486210201582
1219 => 0.010295446406781
1220 => 0.010423998171568
1221 => 0.009857921258004
1222 => 0.0088840153503342
1223 => 0.0095274074244856
1224 => 0.0095026375295067
1225 => 0.009490147425233
1226 => 0.0099736387869069
1227 => 0.0099271622485256
1228 => 0.0098428068762638
1229 => 0.010293897154217
1230 => 0.010129243134744
1231 => 0.010636668025395
]
'min_raw' => 0.0045550285544322
'max_raw' => 0.014983980249095
'avg_raw' => 0.0097695044017638
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.004555'
'max' => '$0.014983'
'avg' => '$0.009769'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072435
'min_diff' => 0.0024814621181858
'max_diff' => 0.0099051682467183
'year' => 2029
]
4 => [
'items' => [
101 => 0.010970890876562
102 => 0.010886121150529
103 => 0.011200459357491
104 => 0.010542185142499
105 => 0.010760837431342
106 => 0.010805901365033
107 => 0.010288330770208
108 => 0.0099347663849898
109 => 0.0099111876714248
110 => 0.0092981557516299
111 => 0.0096256324549636
112 => 0.0099137984019905
113 => 0.0097757892759455
114 => 0.009732099709545
115 => 0.0099553002291742
116 => 0.0099726448211326
117 => 0.0095771862863843
118 => 0.0096594146383016
119 => 0.010002320535123
120 => 0.0096507742895076
121 => 0.0089677773590307
122 => 0.0087983846771011
123 => 0.0087757845708052
124 => 0.0083163781827091
125 => 0.0088097043060903
126 => 0.0085943542329163
127 => 0.0092746425337831
128 => 0.0088860655047873
129 => 0.0088693147257063
130 => 0.0088439934663204
131 => 0.0084485634102472
201 => 0.0085351374616362
202 => 0.0088229227940535
203 => 0.0089256078427938
204 => 0.0089148969509364
205 => 0.0088215124889239
206 => 0.0088642634174274
207 => 0.0087265477813068
208 => 0.0086779175238895
209 => 0.0085244270546744
210 => 0.0082988384677526
211 => 0.0083302079443793
212 => 0.0078832579252226
213 => 0.0076397358333531
214 => 0.0075723321278932
215 => 0.0074821970759575
216 => 0.0075825131218495
217 => 0.0078819917719746
218 => 0.0075207569819839
219 => 0.006901445272219
220 => 0.0069386669612317
221 => 0.0070222930452245
222 => 0.0068664563909458
223 => 0.00671897007605
224 => 0.0068471974609089
225 => 0.0065847869252396
226 => 0.007054004104779
227 => 0.0070413130950384
228 => 0.007216208243375
301 => 0.0073255737688396
302 => 0.007073521640153
303 => 0.0070101312114098
304 => 0.0070462412805563
305 => 0.0064494222737376
306 => 0.0071674353977675
307 => 0.0071736448050803
308 => 0.007120476089828
309 => 0.0075027959122058
310 => 0.0083096099859659
311 => 0.0080060540773964
312 => 0.0078885080545724
313 => 0.0076650529792584
314 => 0.0079627935996648
315 => 0.0079399317654948
316 => 0.007836541881285
317 => 0.0077740113567188
318 => 0.0078892257655226
319 => 0.0077597350164466
320 => 0.0077364749197447
321 => 0.0075955440409663
322 => 0.0075452381291888
323 => 0.0075079936348448
324 => 0.0074669911061404
325 => 0.0075574324672686
326 => 0.0073524804444002
327 => 0.0071053283965155
328 => 0.0070847803779561
329 => 0.0071415152637989
330 => 0.007116414300229
331 => 0.0070846602041996
401 => 0.007024032987166
402 => 0.0070060461869677
403 => 0.0070644945616574
404 => 0.0069985097543847
405 => 0.007095873931894
406 => 0.0070693962630171
407 => 0.0069214941570305
408 => 0.0067371533725982
409 => 0.0067355123529489
410 => 0.0066957964333224
411 => 0.0066452122383496
412 => 0.0066311408725178
413 => 0.0068363985082114
414 => 0.007261275671253
415 => 0.0071778621176991
416 => 0.0072381369587066
417 => 0.0075346295202608
418 => 0.0076288755897364
419 => 0.0075619819619631
420 => 0.0074704138384477
421 => 0.0074744423711663
422 => 0.0077873583687745
423 => 0.0078068745557147
424 => 0.0078561856639522
425 => 0.0079195643733549
426 => 0.0075727756302317
427 => 0.0074581086525514
428 => 0.0074037730770447
429 => 0.0072364405349983
430 => 0.0074168943355874
501 => 0.0073117516337863
502 => 0.0073259389764455
503 => 0.0073166994509268
504 => 0.007321744856634
505 => 0.0070538729490146
506 => 0.0071514713932181
507 => 0.0069891950502003
508 => 0.0067719252432737
509 => 0.0067711968786962
510 => 0.0068243733561356
511 => 0.0067927419065589
512 => 0.0067076224890669
513 => 0.0067197133005693
514 => 0.0066137850692585
515 => 0.006732574905743
516 => 0.0067359813732029
517 => 0.0066902408156302
518 => 0.0068732529485732
519 => 0.0069482331687637
520 => 0.0069181257539117
521 => 0.0069461207522774
522 => 0.0071813283274389
523 => 0.0072196774250162
524 => 0.0072367095609608
525 => 0.0072138887551206
526 => 0.0069504199149748
527 => 0.0069621058783913
528 => 0.0068763620325996
529 => 0.0068039175183696
530 => 0.0068068149190174
531 => 0.0068440608164592
601 => 0.0070067158350309
602 => 0.007349013732578
603 => 0.0073620036875734
604 => 0.0073777478919716
605 => 0.0073137083002812
606 => 0.007294393346651
607 => 0.0073198747561017
608 => 0.007448423849252
609 => 0.0077790870175727
610 => 0.0076622085696377
611 => 0.0075671845721451
612 => 0.0076505462362319
613 => 0.0076377133614561
614 => 0.0075293909837993
615 => 0.0075263507354373
616 => 0.0073184454599549
617 => 0.0072415876133831
618 => 0.0071773594440776
619 => 0.0071072239599149
620 => 0.0070656452939405
621 => 0.0071295290220429
622 => 0.00714413998651
623 => 0.0070044570985175
624 => 0.0069854188370302
625 => 0.0070994868986293
626 => 0.0070492897976055
627 => 0.0071009187608367
628 => 0.0071128971231714
629 => 0.0071109683309504
630 => 0.0070585567923812
701 => 0.0070919623441307
702 => 0.007012948255569
703 => 0.0069270323017905
704 => 0.0068722232760329
705 => 0.0068243951316971
706 => 0.0068509329659626
707 => 0.006756330432423
708 => 0.0067260651779708
709 => 0.0070806452948467
710 => 0.0073425774395615
711 => 0.0073387688424408
712 => 0.0073155849869604
713 => 0.0072811384803898
714 => 0.0074459038727423
715 => 0.0073885029046347
716 => 0.0074302669049443
717 => 0.0074408975958527
718 => 0.0074730734954731
719 => 0.0074845736139754
720 => 0.0074498122685157
721 => 0.0073331489474121
722 => 0.0070424350432377
723 => 0.0069071069360773
724 => 0.0068624464066465
725 => 0.0068640697320689
726 => 0.0068192911700756
727 => 0.006832480463417
728 => 0.0068147044721029
729 => 0.0067810410450281
730 => 0.0068488543442018
731 => 0.006856669195207
801 => 0.0068408407608713
802 => 0.006844568930155
803 => 0.0067135162542679
804 => 0.0067234799045841
805 => 0.0066680010335038
806 => 0.006657599413984
807 => 0.0065173536589908
808 => 0.0062688879750731
809 => 0.006406562083111
810 => 0.0062402711205103
811 => 0.0061772942132542
812 => 0.0064754170972863
813 => 0.0064454938283711
814 => 0.0063942781993207
815 => 0.0063185196096827
816 => 0.0062904200118538
817 => 0.0061196957506971
818 => 0.0061096084505694
819 => 0.0061942240043415
820 => 0.0061551768377191
821 => 0.0061003398274629
822 => 0.0059017257350533
823 => 0.0056784177363189
824 => 0.0056851580011366
825 => 0.005756188120741
826 => 0.0059627177732075
827 => 0.0058820230649896
828 => 0.0058234781283124
829 => 0.0058125144215271
830 => 0.0059497481660201
831 => 0.0061439626658359
901 => 0.006235083763845
902 => 0.0061447855231069
903 => 0.0060410557661495
904 => 0.0060473693158181
905 => 0.0060893705332431
906 => 0.0060937842673292
907 => 0.0060262668591413
908 => 0.0060452726140607
909 => 0.0060164011344154
910 => 0.005839216917125
911 => 0.0058360122164915
912 => 0.0057925283520869
913 => 0.0057912116779543
914 => 0.0057172347770439
915 => 0.0057068848972284
916 => 0.0055599992703938
917 => 0.005656679834787
918 => 0.0055918315881495
919 => 0.0054940899843118
920 => 0.0054772392949692
921 => 0.0054767327428997
922 => 0.0055770915154183
923 => 0.0056555070840983
924 => 0.0055929596511637
925 => 0.0055787188131155
926 => 0.0057307737063996
927 => 0.005711423335218
928 => 0.0056946660385714
929 => 0.0061265728875407
930 => 0.0057846849144697
1001 => 0.0056356022439276
1002 => 0.0054510841291003
1003 => 0.0055111641577091
1004 => 0.0055238239024963
1005 => 0.0050800910982269
1006 => 0.0049000687547981
1007 => 0.0048382918705323
1008 => 0.0048027384002404
1009 => 0.0048189405631048
1010 => 0.0046568993395041
1011 => 0.0047657937216782
1012 => 0.0046254797190437
1013 => 0.0046019556198808
1014 => 0.0048528544381608
1015 => 0.0048877655429948
1016 => 0.0047388239237427
1017 => 0.0048344685547604
1018 => 0.0047997864819936
1019 => 0.0046278849998933
1020 => 0.0046213196276987
1021 => 0.0045350655066101
1022 => 0.0044000945091953
1023 => 0.0043384091416214
1024 => 0.004306282866612
1025 => 0.0043195387938095
1026 => 0.0043128361913803
1027 => 0.0042690971767153
1028 => 0.0043153432605019
1029 => 0.0041972036266284
1030 => 0.0041501594725043
1031 => 0.0041289107195025
1101 => 0.0040240549945762
1102 => 0.0041909270824865
1103 => 0.004223802986004
1104 => 0.0042567436652073
1105 => 0.0045434697881152
1106 => 0.0045291457612944
1107 => 0.004658627987671
1108 => 0.0046535965464566
1109 => 0.0046166661180209
1110 => 0.0044608627152117
1111 => 0.0045229631746428
1112 => 0.0043318276130678
1113 => 0.0044750393717547
1114 => 0.004409683505756
1115 => 0.0044529424877184
1116 => 0.0043751589376449
1117 => 0.0044182075658596
1118 => 0.0042315990823436
1119 => 0.0040573467060885
1120 => 0.0041274709490375
1121 => 0.004203704020803
1122 => 0.004368996744216
1123 => 0.0042705497617866
1124 => 0.0043059550193608
1125 => 0.0041873533332558
1126 => 0.0039426441779245
1127 => 0.0039440292051684
1128 => 0.0039063860328994
1129 => 0.0038738568360659
1130 => 0.0042818575819773
1201 => 0.0042311162396859
1202 => 0.0041502665516072
1203 => 0.0042584870719394
1204 => 0.0042871022952058
1205 => 0.0042879169303839
1206 => 0.0043668718284424
1207 => 0.0044090100716896
1208 => 0.0044164371196995
1209 => 0.0045406743577279
1210 => 0.0045823170411862
1211 => 0.0047538373608579
1212 => 0.0044054349361536
1213 => 0.0043982598174894
1214 => 0.004260009956593
1215 => 0.0041723297091687
1216 => 0.0042660134981479
1217 => 0.0043490045460709
1218 => 0.0042625887197886
1219 => 0.0042738728023635
1220 => 0.0041578666160119
1221 => 0.0041993333690342
1222 => 0.0042350501229118
1223 => 0.0042153294307543
1224 => 0.0041858066001023
1225 => 0.0043422002265587
1226 => 0.0043333758852424
1227 => 0.0044790132256725
1228 => 0.0045925479471639
1229 => 0.0047960224648356
1230 => 0.0045836861982787
1231 => 0.0045759478207652
]
'min_raw' => 0.0038738568360659
'max_raw' => 0.011200459357491
'avg_raw' => 0.0075371580967783
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.003873'
'max' => '$0.01120045'
'avg' => '$0.007537'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -0.00068117171836636
'max_diff' => -0.0037835208916045
'year' => 2030
]
5 => [
'items' => [
101 => 0.0046515917022349
102 => 0.0045823054605021
103 => 0.0046260919735975
104 => 0.0047889677806391
105 => 0.0047924090897855
106 => 0.004734762727706
107 => 0.0047312549413346
108 => 0.0047423265557541
109 => 0.0048071733472245
110 => 0.0047845138857441
111 => 0.0048107359882366
112 => 0.0048435271289305
113 => 0.0049791651899961
114 => 0.0050118670673186
115 => 0.0049324184594045
116 => 0.0049395917791508
117 => 0.0049098758188778
118 => 0.0048811705735941
119 => 0.0049456957729276
120 => 0.0050636168429555
121 => 0.0050628832620989
122 => 0.0050902386582873
123 => 0.0051072808434884
124 => 0.0050341233089635
125 => 0.0049865004440648
126 => 0.0050047620807886
127 => 0.0050339628355966
128 => 0.0049952926695623
129 => 0.0047566024910352
130 => 0.0048290058436127
131 => 0.0048169543854008
201 => 0.0047997916433995
202 => 0.0048725937742948
203 => 0.0048655718311679
204 => 0.0046552373725455
205 => 0.0046687023021581
206 => 0.0046560562195125
207 => 0.0046969182996854
208 => 0.0045800987740749
209 => 0.0046160316733611
210 => 0.0046385684509435
211 => 0.0046518427860752
212 => 0.0046997987868676
213 => 0.0046941717036807
214 => 0.0046994489994759
215 => 0.0047705550887363
216 => 0.0051301852875522
217 => 0.0051497591657944
218 => 0.00505337023052
219 => 0.0050918757089745
220 => 0.0050179536105644
221 => 0.0050675780104621
222 => 0.005101529764549
223 => 0.0049481083163771
224 => 0.0049390236939133
225 => 0.0048647964927075
226 => 0.0049046819861919
227 => 0.0048412212981898
228 => 0.0048567923312649
301 => 0.0048132543653286
302 => 0.0048916140356913
303 => 0.0049792323230186
304 => 0.0050013681625484
305 => 0.0049431382988234
306 => 0.0049009760399515
307 => 0.0048269530024839
308 => 0.0049500549635035
309 => 0.0049860537283699
310 => 0.0049498658773168
311 => 0.0049414803615076
312 => 0.0049255898242016
313 => 0.0049448516141165
314 => 0.0049858576713653
315 => 0.0049665199720298
316 => 0.0049792928631273
317 => 0.0049306157736116
318 => 0.0050341475271515
319 => 0.0051985808680462
320 => 0.0051991095481247
321 => 0.0051797717445517
322 => 0.0051718591319685
323 => 0.0051917008919504
324 => 0.0052024642327889
325 => 0.0052666288462139
326 => 0.0053354800328499
327 => 0.0056567784787537
328 => 0.0055665591608404
329 => 0.0058516342561763
330 => 0.0060770916442188
331 => 0.006144696456836
401 => 0.0060825032102804
402 => 0.0058697434734268
403 => 0.0058593044657129
404 => 0.006177257337416
405 => 0.0060874210879958
406 => 0.0060767353519838
407 => 0.0059630571746525
408 => 0.0060302550567715
409 => 0.0060155578942186
410 => 0.0059923577041191
411 => 0.0061205665821571
412 => 0.0063605621565587
413 => 0.006323156595624
414 => 0.0062952350795802
415 => 0.0061728911241076
416 => 0.0062465695118139
417 => 0.0062203340491682
418 => 0.0063330582461299
419 => 0.0062662829289965
420 => 0.00608674049005
421 => 0.0061153332152319
422 => 0.0061110114823412
423 => 0.0061999524389896
424 => 0.006173254571454
425 => 0.0061057982952194
426 => 0.0063597418777763
427 => 0.0063432521940334
428 => 0.0063666307955142
429 => 0.0063769227788934
430 => 0.0065314937626078
501 => 0.0065948165489159
502 => 0.0066091919300292
503 => 0.0066693436794618
504 => 0.0066076952997063
505 => 0.0068543327732779
506 => 0.0070183323015075
507 => 0.0072088261928847
508 => 0.0074871889681177
509 => 0.007591855946605
510 => 0.0075729487937791
511 => 0.0077840002730503
512 => 0.00816325508989
513 => 0.0076496070355726
514 => 0.0081904796840037
515 => 0.0080192456481854
516 => 0.007613252829629
517 => 0.0075871116784549
518 => 0.0078620547288548
519 => 0.008471851952354
520 => 0.0083191046641303
521 => 0.0084721017921973
522 => 0.0082936225153862
523 => 0.0082847595149511
524 => 0.0084634334520958
525 => 0.0088809148452437
526 => 0.0086825850844152
527 => 0.0083982307398149
528 => 0.0086081935628241
529 => 0.0084263043343916
530 => 0.0080164569951437
531 => 0.0083189878611577
601 => 0.0081166940866371
602 => 0.0081757341645708
603 => 0.0086009255896851
604 => 0.0085497654324984
605 => 0.008615971413201
606 => 0.008499119590173
607 => 0.0083899615616238
608 => 0.0081862099951549
609 => 0.0081258892011543
610 => 0.0081425596985013
611 => 0.0081258809400838
612 => 0.008011883811218
613 => 0.0079872661420932
614 => 0.007946235615027
615 => 0.007958952691043
616 => 0.0078818032962545
617 => 0.0080274001440987
618 => 0.0080544242020536
619 => 0.008160377446145
620 => 0.008171377863433
621 => 0.0084664561400778
622 => 0.0083039319838908
623 => 0.0084129672195216
624 => 0.0084032140817673
625 => 0.007622051925085
626 => 0.0077296891780238
627 => 0.0078971389651658
628 => 0.0078217030630311
629 => 0.0077150543466953
630 => 0.0076289297901118
701 => 0.0074984422801996
702 => 0.0076821009446103
703 => 0.0079235925583888
704 => 0.0081775024892803
705 => 0.0084825586344087
706 => 0.008414473654061
707 => 0.0081717996768397
708 => 0.0081826858541844
709 => 0.0082499799189764
710 => 0.0081628279907603
711 => 0.0081371251857216
712 => 0.0082464487482575
713 => 0.0082472015995496
714 => 0.0081469227734745
715 => 0.0080354812091235
716 => 0.0080350142648998
717 => 0.0080151843149214
718 => 0.0082971502194349
719 => 0.0084522029569489
720 => 0.008469979503425
721 => 0.008451006453735
722 => 0.0084583084275473
723 => 0.0083680866559418
724 => 0.0085743068713966
725 => 0.0087635549341636
726 => 0.0087128324106469
727 => 0.0086367921372638
728 => 0.0085762223969183
729 => 0.0086985641047555
730 => 0.0086931164210892
731 => 0.0087619020174317
801 => 0.0087587815054567
802 => 0.0087356514965639
803 => 0.0087128332366923
804 => 0.008803305057824
805 => 0.0087772506262711
806 => 0.0087511557249895
807 => 0.0086988184055398
808 => 0.0087059319164839
809 => 0.0086299047725261
810 => 0.0085947311369658
811 => 0.0080658040514912
812 => 0.0079244574510613
813 => 0.0079689279689319
814 => 0.0079835688180914
815 => 0.0079220545964437
816 => 0.0080102501885795
817 => 0.0079965049989674
818 => 0.0080499794910812
819 => 0.0080165709500011
820 => 0.0080179420481803
821 => 0.008116189444045
822 => 0.0081447110810388
823 => 0.008130204746266
824 => 0.0081403644858928
825 => 0.0083744913974362
826 => 0.0083412060375719
827 => 0.0083235238535458
828 => 0.0083284219393632
829 => 0.0083882463850001
830 => 0.0084049939634848
831 => 0.0083340332966137
901 => 0.0083674987573288
902 => 0.0085099904416547
903 => 0.0085598544668378
904 => 0.0087189964991326
905 => 0.0086513901352897
906 => 0.0087754845420582
907 => 0.0091569084415637
908 => 0.009461616245015
909 => 0.0091813943563787
910 => 0.0097409514331122
911 => 0.010176646881045
912 => 0.010159924164064
913 => 0.0100839505849
914 => 0.0095879229009917
915 => 0.0091314708309031
916 => 0.0095133123695108
917 => 0.0095142857621192
918 => 0.0094814852353143
919 => 0.0092777639803771
920 => 0.0094743961772339
921 => 0.0094900041269571
922 => 0.0094812678256009
923 => 0.0093250752170904
924 => 0.009086597973114
925 => 0.0091331958557531
926 => 0.009209524138087
927 => 0.0090650187758811
928 => 0.0090188405567677
929 => 0.0091046946518652
930 => 0.0093813344346806
1001 => 0.0093290372862045
1002 => 0.0093276715963084
1003 => 0.0095514209749315
1004 => 0.0093912647079755
1005 => 0.0091337836042803
1006 => 0.0090687662298387
1007 => 0.0088379983515226
1008 => 0.0089973905470425
1009 => 0.0090031267883988
1010 => 0.0089158293118613
1011 => 0.0091408673133774
1012 => 0.0091387935485763
1013 => 0.0093524336385296
1014 => 0.0097608332509669
1015 => 0.0096400493894448
1016 => 0.0094995908997413
1017 => 0.0095148626320636
1018 => 0.0096823558417913
1019 => 0.0095810856236918
1020 => 0.0096175031002014
1021 => 0.0096823007195789
1022 => 0.0097213947321838
1023 => 0.0095092376052724
1024 => 0.0094597736303409
1025 => 0.0093585876971272
1026 => 0.0093321901758766
1027 => 0.0094146040071654
1028 => 0.0093928908743445
1029 => 0.0090026446795247
1030 => 0.0089618617808567
1031 => 0.0089631125341342
1101 => 0.0088605619963124
1102 => 0.008704147811185
1103 => 0.0091151949506942
1104 => 0.0090821821127906
1105 => 0.0090457384947357
1106 => 0.009050202630003
1107 => 0.0092286242615838
1108 => 0.0091251307047586
1109 => 0.0094002852878389
1110 => 0.0093437217774614
1111 => 0.0092857076264765
1112 => 0.0092776883036561
1113 => 0.0092553578050617
1114 => 0.0091787782165688
1115 => 0.0090863037617438
1116 => 0.0090252441166682
1117 => 0.0083253106250275
1118 => 0.0084552142097502
1119 => 0.0086046564428894
1120 => 0.0086562433029168
1121 => 0.0085680004091378
1122 => 0.0091822625838619
1123 => 0.0092944942023616
1124 => 0.0089545373092387
1125 => 0.0088909452548839
1126 => 0.0091864316683585
1127 => 0.0090082172392884
1128 => 0.0090884671857865
1129 => 0.0089150106958315
1130 => 0.0092674608919905
1201 => 0.0092647758120113
1202 => 0.0091276647252568
1203 => 0.0092435500768855
1204 => 0.0092234121452416
1205 => 0.0090686140659854
1206 => 0.0092723682672112
1207 => 0.009272469326753
1208 => 0.0091405028868038
1209 => 0.0089863949761116
1210 => 0.0089588441215462
1211 => 0.0089380882535677
1212 => 0.0090833625146216
1213 => 0.0092136149628217
1214 => 0.0094559824766018
1215 => 0.0095169194280762
1216 => 0.0097547604064834
1217 => 0.009613137684109
1218 => 0.0096759172026163
1219 => 0.009744073250661
1220 => 0.0097767497664494
1221 => 0.0097235051374908
1222 => 0.01009297007621
1223 => 0.010124164237151
1224 => 0.010134623369486
1225 => 0.010010041870921
1226 => 0.010120699400309
1227 => 0.010068926406901
1228 => 0.010203625352798
1229 => 0.010224747867437
1230 => 0.010206857848993
1231 => 0.010213562468536
]
'min_raw' => 0.0045800987740749
'max_raw' => 0.010224747867437
'avg_raw' => 0.0074024233207561
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.00458'
'max' => '$0.010224'
'avg' => '$0.0074024'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 0.000706241938009
'max_diff' => -0.00097571149005347
'year' => 2031
]
6 => [
'items' => [
101 => 0.0098982893214209
102 => 0.0098819407455446
103 => 0.0096590267534299
104 => 0.0097498658529137
105 => 0.00958004651046
106 => 0.0096338979732852
107 => 0.0096576351849829
108 => 0.0096452362126669
109 => 0.0097550017593046
110 => 0.0096616786210429
111 => 0.0094153835154257
112 => 0.0091690213068718
113 => 0.0091659284300257
114 => 0.0091010656091676
115 => 0.0090541816699054
116 => 0.0090632131799045
117 => 0.0090950413991393
118 => 0.009052331755943
119 => 0.0090614460237528
120 => 0.0092128035974443
121 => 0.0092431572794153
122 => 0.0091400036081287
123 => 0.0087258267329093
124 => 0.0086241866888464
125 => 0.0086972435369091
126 => 0.0086623270689988
127 => 0.0069911740115903
128 => 0.0073837866338647
129 => 0.0071505095455741
130 => 0.0072580143604212
131 => 0.0070198988600856
201 => 0.0071335400575484
202 => 0.0071125546778891
203 => 0.0077438641562543
204 => 0.0077340071270874
205 => 0.0077387251653272
206 => 0.0075135209073579
207 => 0.007872277405265
208 => 0.0080490137566004
209 => 0.0080163045616539
210 => 0.00802453676133
211 => 0.0078830802963123
212 => 0.0077400947731171
213 => 0.0075815018225794
214 => 0.0078761479219973
215 => 0.0078433883055187
216 => 0.0079185270791827
217 => 0.0081096261363934
218 => 0.0081377661984824
219 => 0.0081755867272983
220 => 0.0081620307599664
221 => 0.0084849888987597
222 => 0.0084458765372054
223 => 0.0085401260751568
224 => 0.0083462476248611
225 => 0.00812685575524
226 => 0.0081685549771944
227 => 0.0081645390067962
228 => 0.0081134110943113
229 => 0.0080672551010033
301 => 0.0079904183765159
302 => 0.0082335411424895
303 => 0.0082236708021852
304 => 0.0083834601386951
305 => 0.0083552158213562
306 => 0.00816659335761
307 => 0.0081733300458034
308 => 0.0082186375114463
309 => 0.0083754471673476
310 => 0.0084219989496346
311 => 0.0084004343093114
312 => 0.0084514762134196
313 => 0.0084918176532805
314 => 0.0084565424771584
315 => 0.0089559645822854
316 => 0.008748569704649
317 => 0.0088496525249647
318 => 0.0088737601819954
319 => 0.0088120089254406
320 => 0.0088254005618406
321 => 0.0088456852419842
322 => 0.0089688498476682
323 => 0.0092920694109489
324 => 0.009435221155296
325 => 0.0098659002411467
326 => 0.0094233343956964
327 => 0.0093970743699469
328 => 0.0094746526785711
329 => 0.0097275068939766
330 => 0.009932421486174
331 => 0.010000403478212
401 => 0.010009388420721
402 => 0.010136927157142
403 => 0.010210029982402
404 => 0.010121440599938
405 => 0.010046370373996
406 => 0.0097774781427284
407 => 0.0098086031506668
408 => 0.010023023590177
409 => 0.010325905090287
410 => 0.01058580892683
411 => 0.010494799661836
412 => 0.011189136111213
413 => 0.011257976734059
414 => 0.011248465185866
415 => 0.011405294369566
416 => 0.011094020377628
417 => 0.010960944715425
418 => 0.010062601408928
419 => 0.010314999235106
420 => 0.010681874298261
421 => 0.010633317007942
422 => 0.01036688253048
423 => 0.010585606812387
424 => 0.010513289724648
425 => 0.010456250237109
426 => 0.010717559187172
427 => 0.010430239262598
428 => 0.010679008062225
429 => 0.01035995950352
430 => 0.010495215384492
501 => 0.010418437604861
502 => 0.010468122237813
503 => 0.0101776668888
504 => 0.010334389544723
505 => 0.010171146711057
506 => 0.010171069312699
507 => 0.010167465718099
508 => 0.010359520187976
509 => 0.010365783077344
510 => 0.010223854533926
511 => 0.010203400413479
512 => 0.01027903001721
513 => 0.010190487558666
514 => 0.010231916017739
515 => 0.010191742384487
516 => 0.010182698453456
517 => 0.010110634872301
518 => 0.010079587900111
519 => 0.010091762217889
520 => 0.010050204995021
521 => 0.010025165265054
522 => 0.010162484685567
523 => 0.010089120458636
524 => 0.010151240565599
525 => 0.010080446863533
526 => 0.0098350450488233
527 => 0.0096939118701069
528 => 0.0092303705908813
529 => 0.0093618303226485
530 => 0.0094489882608151
531 => 0.009420182562771
601 => 0.0094820683484951
602 => 0.009485867633123
603 => 0.0094657479333332
604 => 0.0094424518984698
605 => 0.0094311126770498
606 => 0.0095156259434646
607 => 0.0095646887392041
608 => 0.0094577357259329
609 => 0.0094326781313551
610 => 0.00954081353281
611 => 0.0096067760652297
612 => 0.010093806343471
613 => 0.010057725567372
614 => 0.010148281234886
615 => 0.010138086056414
616 => 0.010233002822618
617 => 0.010388151620544
618 => 0.010072690734075
619 => 0.01012744383615
620 => 0.010114019639955
621 => 0.010260581493996
622 => 0.010261039044107
623 => 0.010173167891301
624 => 0.010220804268784
625 => 0.010194214949709
626 => 0.01024226544304
627 => 0.01005724368661
628 => 0.010282580214077
629 => 0.010410331504786
630 => 0.010412105331581
701 => 0.01047265842948
702 => 0.010534183883944
703 => 0.010652276636051
704 => 0.010530890341183
705 => 0.010312528213434
706 => 0.010328293253752
707 => 0.010200267618148
708 => 0.010202419752212
709 => 0.010190931491911
710 => 0.010225408625869
711 => 0.010064809478696
712 => 0.010102501777537
713 => 0.010049732338434
714 => 0.010127329125695
715 => 0.010043847809811
716 => 0.010114013166401
717 => 0.010144294208287
718 => 0.010256031904749
719 => 0.010027344061192
720 => 0.0095610340673729
721 => 0.0096590580815359
722 => 0.0095140728649687
723 => 0.0095274917987596
724 => 0.0095546001806248
725 => 0.0094667330456891
726 => 0.0094834953260232
727 => 0.0094828964594153
728 => 0.0094777357505225
729 => 0.0094548781151359
730 => 0.0094217300215801
731 => 0.0095537818238613
801 => 0.0095762199982671
802 => 0.0096260972804695
803 => 0.0097744982402202
804 => 0.0097596694848055
805 => 0.0097838558001261
806 => 0.0097310572095817
807 => 0.0095299409739449
808 => 0.0095408625531394
809 => 0.0094046702855779
810 => 0.009622614537986
811 => 0.0095710024622922
812 => 0.009537727821336
813 => 0.0095286485272637
814 => 0.0096774173442896
815 => 0.0097219313060093
816 => 0.0096941931922864
817 => 0.0096373015117909
818 => 0.0097465503568579
819 => 0.0097757807389591
820 => 0.0097823243435365
821 => 0.009975892350607
822 => 0.0097931426448594
823 => 0.0098371323154087
824 => 0.010180327167629
825 => 0.0098690967943175
826 => 0.010033962464326
827 => 0.010025893147699
828 => 0.010110232845725
829 => 0.010018974830769
830 => 0.010020106083236
831 => 0.010094994021418
901 => 0.0099898274183529
902 => 0.0099637866884728
903 => 0.0099278116066506
904 => 0.010006361881687
905 => 0.010053449219048
906 => 0.010432938576341
907 => 0.010678106007969
908 => 0.010667462643179
909 => 0.010764723073816
910 => 0.01072090635901
911 => 0.010579410628638
912 => 0.010820926586818
913 => 0.010744500832193
914 => 0.010750801278547
915 => 0.010750566775619
916 => 0.010801383221189
917 => 0.010765375112244
918 => 0.010694399433356
919 => 0.010741516401298
920 => 0.010881436951461
921 => 0.011315754632454
922 => 0.011558804560682
923 => 0.011301122721592
924 => 0.011478868203699
925 => 0.011372284251626
926 => 0.011352914776936
927 => 0.011464552074987
928 => 0.01157638477935
929 => 0.011569261519548
930 => 0.011488076718854
1001 => 0.01144221748493
1002 => 0.011789478968175
1003 => 0.012045335313585
1004 => 0.01202788762611
1005 => 0.01210489604433
1006 => 0.012330995142003
1007 => 0.012351666809928
1008 => 0.012349062654902
1009 => 0.012297825769084
1010 => 0.012520449693421
1011 => 0.012706166487798
1012 => 0.012285965910393
1013 => 0.01244597278944
1014 => 0.012517805032543
1015 => 0.012623276077085
1016 => 0.012801223408228
1017 => 0.012994521408047
1018 => 0.013021855864626
1019 => 0.013002460759609
1020 => 0.012874975532599
1021 => 0.013086484510526
1022 => 0.013210381509299
1023 => 0.013284159336736
1024 => 0.013471247631657
1025 => 0.012518248644022
1026 => 0.011843668593451
1027 => 0.0117383231775
1028 => 0.01195254722334
1029 => 0.012009036395823
1030 => 0.011986265681226
1031 => 0.011226964504173
1101 => 0.011734325613944
1102 => 0.012280203507923
1103 => 0.012301172900989
1104 => 0.012574450788483
1105 => 0.01266344127069
1106 => 0.012883465789475
1107 => 0.012869703195919
1108 => 0.012923275664888
1109 => 0.012910960282018
1110 => 0.013318509371438
1111 => 0.013768096538693
1112 => 0.013752528764691
1113 => 0.013687895290124
1114 => 0.013783887021501
1115 => 0.014247909158798
1116 => 0.014205189436199
1117 => 0.014246688007846
1118 => 0.014793796258861
1119 => 0.015505114810421
1120 => 0.015174635928006
1121 => 0.015891680010109
1122 => 0.016343021250919
1123 => 0.017123569257345
1124 => 0.01702584080266
1125 => 0.017329702413636
1126 => 0.016850886472231
1127 => 0.015751428286098
1128 => 0.015577434819585
1129 => 0.01592577414576
1130 => 0.016782132388705
1201 => 0.015898804377169
1202 => 0.016077500483454
1203 => 0.016026035992822
1204 => 0.016023293668826
1205 => 0.016127957021907
1206 => 0.015976137369391
1207 => 0.015357596793206
1208 => 0.015641070294189
1209 => 0.015531607561944
1210 => 0.015653064624357
1211 => 0.016308518297498
1212 => 0.016018726604538
1213 => 0.015713454596771
1214 => 0.016096333439793
1215 => 0.016583869778405
1216 => 0.016553360630522
1217 => 0.016494160131793
1218 => 0.016827870243486
1219 => 0.017379061580115
1220 => 0.017528046383539
1221 => 0.017638023919567
1222 => 0.017653187963699
1223 => 0.017809387042665
1224 => 0.016969465227829
1225 => 0.018302442718696
1226 => 0.018532611108609
1227 => 0.018489348990807
1228 => 0.018745171469229
1229 => 0.018669902006487
1230 => 0.018560848364392
1231 => 0.018966381407691
]
'min_raw' => 0.0069911740115903
'max_raw' => 0.018966381407691
'avg_raw' => 0.012978777709641
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.006991'
'max' => '$0.018966'
'avg' => '$0.012978'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.0024110752375154
'max_diff' => 0.0087416335402541
'year' => 2032
]
7 => [
'items' => [
101 => 0.018501470498378
102 => 0.017841587993262
103 => 0.01747956339996
104 => 0.017956306588112
105 => 0.018247437017071
106 => 0.01843985571124
107 => 0.018498081491833
108 => 0.017034665967364
109 => 0.016245966164421
110 => 0.016751513695646
111 => 0.017368316574767
112 => 0.016966038856693
113 => 0.016981807381629
114 => 0.016408265072379
115 => 0.017419062342687
116 => 0.017271797682546
117 => 0.018035806999863
118 => 0.017853470044728
119 => 0.018476489984329
120 => 0.01831242795456
121 => 0.018993440267546
122 => 0.019265114516868
123 => 0.019721297864201
124 => 0.020056868191499
125 => 0.020253921506126
126 => 0.020242091164245
127 => 0.021022914568369
128 => 0.020562490286849
129 => 0.019984088875588
130 => 0.019973627418892
131 => 0.020273189705795
201 => 0.020900990078244
202 => 0.021063769580696
203 => 0.021154741115779
204 => 0.021015415043058
205 => 0.020515657484373
206 => 0.020299864704362
207 => 0.02048372640505
208 => 0.020258879344524
209 => 0.020647028451935
210 => 0.021180040080585
211 => 0.021069975287025
212 => 0.02143790539006
213 => 0.021818674339326
214 => 0.022363191038179
215 => 0.022505547866654
216 => 0.022740858290778
217 => 0.022983070012649
218 => 0.023060861889925
219 => 0.023209390721047
220 => 0.023208607900791
221 => 0.023656209530521
222 => 0.024149927989181
223 => 0.024336295277717
224 => 0.024764836581352
225 => 0.024030974616755
226 => 0.024587617346901
227 => 0.025089723023164
228 => 0.024491091936536
301 => 0.025316165426298
302 => 0.025348201160249
303 => 0.025831902708329
304 => 0.025341578523346
305 => 0.025050425587472
306 => 0.02589097320398
307 => 0.026297687718606
308 => 0.026175181996848
309 => 0.025242907405417
310 => 0.024700283606066
311 => 0.023280132458849
312 => 0.024962362838691
313 => 0.025781728185379
314 => 0.025240785447113
315 => 0.025513605499535
316 => 0.027002023243347
317 => 0.027568716352278
318 => 0.027450848147104
319 => 0.027470765933503
320 => 0.027776543248875
321 => 0.029132528259877
322 => 0.028319990609798
323 => 0.028941145198079
324 => 0.029270603351963
325 => 0.029576622446194
326 => 0.028825136269092
327 => 0.027847463794207
328 => 0.027537793881512
329 => 0.025186999352609
330 => 0.025064630288396
331 => 0.024995940824492
401 => 0.02456286347089
402 => 0.02422258330083
403 => 0.023951979875806
404 => 0.023241835679519
405 => 0.023481488499264
406 => 0.022349666868996
407 => 0.023073766238746
408 => 0.021267351588048
409 => 0.02277178738705
410 => 0.021952991379955
411 => 0.022502790877272
412 => 0.02250087267862
413 => 0.021488517489971
414 => 0.020904612144473
415 => 0.02127669935656
416 => 0.021675606384238
417 => 0.021740327707394
418 => 0.022257521081317
419 => 0.022401858634945
420 => 0.021964509108978
421 => 0.021229917659552
422 => 0.021400546499007
423 => 0.020901154356487
424 => 0.020025988835563
425 => 0.020654547991615
426 => 0.020869165723286
427 => 0.020963953140095
428 => 0.020103328363705
429 => 0.01983290137389
430 => 0.019688928313615
501 => 0.021118821808184
502 => 0.021197154601618
503 => 0.020796392955266
504 => 0.022607873598555
505 => 0.0221978797385
506 => 0.022655943331116
507 => 0.021385063720273
508 => 0.021433613032874
509 => 0.020831958258351
510 => 0.021168844729497
511 => 0.020930744230049
512 => 0.021141627631806
513 => 0.021268030273314
514 => 0.021869586322208
515 => 0.022778656190836
516 => 0.02177973390863
517 => 0.021344489165442
518 => 0.021614512556206
519 => 0.022333620429078
520 => 0.023423105666934
521 => 0.022778108478189
522 => 0.023064347277792
523 => 0.023126877721627
524 => 0.02265128067374
525 => 0.023440641608474
526 => 0.023863666546154
527 => 0.024297602599537
528 => 0.024674377116078
529 => 0.024124278997358
530 => 0.024712962837856
531 => 0.024238587579101
601 => 0.023813023931985
602 => 0.023813669336373
603 => 0.023546707044044
604 => 0.023029433963243
605 => 0.022934040870751
606 => 0.023430287784716
607 => 0.023828230814959
608 => 0.023861007308949
609 => 0.024081329017542
610 => 0.024211713135194
611 => 0.025489654736792
612 => 0.026003653420642
613 => 0.026632161281757
614 => 0.026877000514423
615 => 0.027613878825026
616 => 0.027018789742884
617 => 0.026890038476677
618 => 0.025102612726213
619 => 0.025395303592718
620 => 0.02586392991046
621 => 0.025110340201586
622 => 0.025588319419426
623 => 0.025682682642012
624 => 0.025084733511644
625 => 0.02540412397803
626 => 0.024555917591981
627 => 0.022797144772171
628 => 0.023442599625394
629 => 0.023917871655121
630 => 0.023239599868082
701 => 0.024455375793605
702 => 0.023745144596624
703 => 0.023520035404291
704 => 0.022641804187777
705 => 0.023056295515752
706 => 0.023616900971782
707 => 0.023270511977335
708 => 0.023989321151382
709 => 0.025007346641237
710 => 0.025732852229774
711 => 0.025788547540223
712 => 0.025322096051894
713 => 0.026069587538796
714 => 0.026075032198223
715 => 0.025231858747405
716 => 0.024715419703588
717 => 0.024598083666236
718 => 0.024891212092627
719 => 0.025247124116758
720 => 0.025808298180541
721 => 0.026147403914312
722 => 0.027031611820205
723 => 0.027270853127312
724 => 0.02753370679039
725 => 0.027884960345331
726 => 0.0283067302976
727 => 0.027383921653412
728 => 0.027420586561176
729 => 0.026561279928864
730 => 0.025642987555201
731 => 0.026339857000051
801 => 0.027250921098534
802 => 0.027041921987705
803 => 0.027018405318273
804 => 0.027057953833278
805 => 0.026900375328986
806 => 0.026187653594207
807 => 0.025829729200874
808 => 0.026291542984524
809 => 0.026536976457567
810 => 0.026917622370209
811 => 0.026870699727016
812 => 0.027851202719594
813 => 0.028232196533639
814 => 0.028134722012362
815 => 0.028152659670132
816 => 0.028842430771823
817 => 0.029609598099151
818 => 0.030328151537838
819 => 0.031059094958258
820 => 0.030177914135734
821 => 0.029730504857733
822 => 0.030192117027932
823 => 0.029947179112763
824 => 0.031354665026631
825 => 0.031452116297528
826 => 0.032859500434144
827 => 0.034195275567978
828 => 0.033356299139314
829 => 0.034147416123215
830 => 0.035003073642019
831 => 0.036653775821221
901 => 0.036097877399669
902 => 0.035672067920798
903 => 0.035269680020763
904 => 0.036106985363457
905 => 0.037184165310554
906 => 0.037416179554057
907 => 0.037792131264795
908 => 0.037396864010142
909 => 0.037872919881112
910 => 0.039553606295184
911 => 0.039099469990273
912 => 0.038454523431244
913 => 0.039781263940315
914 => 0.040261406172975
915 => 0.04363129581422
916 => 0.04788592068949
917 => 0.046124478053755
918 => 0.045031093768356
919 => 0.045288065010847
920 => 0.046841709987154
921 => 0.047340691443318
922 => 0.045984287836243
923 => 0.046463392521126
924 => 0.049103306439363
925 => 0.050519535557918
926 => 0.048596106189973
927 => 0.043289440848128
928 => 0.038396453050117
929 => 0.039694293748261
930 => 0.039547158889778
1001 => 0.042383417058955
1002 => 0.039088638989593
1003 => 0.039144114602352
1004 => 0.042039023586819
1005 => 0.041266711501067
1006 => 0.040015664832409
1007 => 0.038405587075289
1008 => 0.035429209427086
1009 => 0.032792948741642
1010 => 0.037963263040375
1011 => 0.037740309686207
1012 => 0.037417440189536
1013 => 0.038135951316249
1014 => 0.041624837394624
1015 => 0.041544407278096
1016 => 0.041032751912546
1017 => 0.041420837997792
1018 => 0.039947631465297
1019 => 0.04032731033301
1020 => 0.03839567797585
1021 => 0.039268856473379
1022 => 0.040012980648132
1023 => 0.04016237459316
1024 => 0.040498966779552
1025 => 0.037622823399639
1026 => 0.038914127338087
1027 => 0.039672647423108
1028 => 0.036245626083785
1029 => 0.039604906229944
1030 => 0.037572756142237
1031 => 0.036883013880599
1101 => 0.037811660969261
1102 => 0.03744976629567
1103 => 0.037138630506486
1104 => 0.036965011390129
1105 => 0.037646907321003
1106 => 0.037615096060786
1107 => 0.036499381967579
1108 => 0.035043978415314
1109 => 0.035532459619447
1110 => 0.03535498981845
1111 => 0.034711816365576
1112 => 0.035145237615754
1113 => 0.033236669779444
1114 => 0.029953078015796
1115 => 0.032122319313998
1116 => 0.032038805883697
1117 => 0.031996694625107
1118 => 0.03362681950728
1119 => 0.033470120613239
1120 => 0.033185710586154
1121 => 0.034706592952391
1122 => 0.03415145042996
1123 => 0.035862268876064
1124 => 0.036989124553468
1125 => 0.036703317503716
1126 => 0.03776313071488
1127 => 0.035543713239797
1128 => 0.036280914697446
1129 => 0.03643285089615
1130 => 0.034687825500072
1201 => 0.033495758490232
1202 => 0.033416261211235
1203 => 0.031349381293124
1204 => 0.032453491862107
1205 => 0.033425063471612
1206 => 0.032959756067662
1207 => 0.032812453644234
1208 => 0.033564989779527
1209 => 0.033623468282275
1210 => 0.032290152222338
1211 => 0.032567390851828
1212 => 0.033723522023885
1213 => 0.032538259312619
1214 => 0.030235487476193
1215 => 0.029664368222448
1216 => 0.029588170386182
1217 => 0.028039249673986
1218 => 0.029702533141896
1219 => 0.028976465334928
1220 => 0.031270104837513
1221 => 0.029959990254672
1222 => 0.029903513833498
1223 => 0.029818141439605
1224 => 0.028484921397509
1225 => 0.028776811856174
1226 => 0.02974710019695
1227 => 0.030093310008019
1228 => 0.030057197488311
1229 => 0.029742345254741
1230 => 0.029886482994965
1231 => 0.029422165112786
]
'min_raw' => 0.016245966164421
'max_raw' => 0.050519535557918
'avg_raw' => 0.03338275086117
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.016245'
'max' => '$0.050519'
'avg' => '$0.033382'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.0092547921528309
'max_diff' => 0.031553154150227
'year' => 2033
]
8 => [
'items' => [
101 => 0.029258204804647
102 => 0.028740700971326
103 => 0.027980113300427
104 => 0.028085877681021
105 => 0.02657895448638
106 => 0.025757902751473
107 => 0.025530646452538
108 => 0.025226749831908
109 => 0.025564972384476
110 => 0.026574685562305
111 => 0.025356757247243
112 => 0.023268704578808
113 => 0.02339420010205
114 => 0.023676151282818
115 => 0.02315073712275
116 => 0.022653476714913
117 => 0.023085804295515
118 => 0.022201068853587
119 => 0.023783067334102
120 => 0.023740278708703
121 => 0.024329949912109
122 => 0.02469868341687
123 => 0.023848872067286
124 => 0.023635146811
125 => 0.023756894430252
126 => 0.02174467748019
127 => 0.024165508857933
128 => 0.024186444308214
129 => 0.02400718227262
130 => 0.025296200246484
131 => 0.028016430226127
201 => 0.026992970286788
202 => 0.026596655664035
203 => 0.025843261276479
204 => 0.026847114565766
205 => 0.026770034295699
206 => 0.026421448082635
207 => 0.026210622053318
208 => 0.026599075476613
209 => 0.026162488375348
210 => 0.026084065335349
211 => 0.025608907038068
212 => 0.025439297144264
213 => 0.025313724731255
214 => 0.025175481843023
215 => 0.025480411206481
216 => 0.024789401152087
217 => 0.023956110767039
218 => 0.023886831687849
219 => 0.024078117316571
220 => 0.023993487665402
221 => 0.023886426513639
222 => 0.023682017618553
223 => 0.023621373865886
224 => 0.023818436641887
225 => 0.023595964257255
226 => 0.023924234379478
227 => 0.023834963070248
228 => 0.023336300793719
301 => 0.022714782968742
302 => 0.022709250156422
303 => 0.022575345160525
304 => 0.022404797015498
305 => 0.022357354423165
306 => 0.023049394872536
307 => 0.024481897891707
308 => 0.024200663272152
309 => 0.024403884106864
310 => 0.025403529478593
311 => 0.025721286681881
312 => 0.025495750145479
313 => 0.025187021823965
314 => 0.025200604303289
315 => 0.026255622436322
316 => 0.026321422623168
317 => 0.026487678467382
318 => 0.026701364211093
319 => 0.025532141751637
320 => 0.025145534030595
321 => 0.024962337844185
322 => 0.024398164495891
323 => 0.025006577083459
324 => 0.024652081123508
325 => 0.024699914739812
326 => 0.024668763034442
327 => 0.024685773972043
328 => 0.023782625133285
329 => 0.024111685102023
330 => 0.023564559081766
331 => 0.022832018758419
401 => 0.022829563026394
402 => 0.023008851232744
403 => 0.022902203592058
404 => 0.022615217533136
405 => 0.02265598254827
406 => 0.022298838120733
407 => 0.022699346348082
408 => 0.022710831490955
409 => 0.022556614007595
410 => 0.023173652191311
411 => 0.023426453238635
412 => 0.023324943987429
413 => 0.023419331078968
414 => 0.024212349840293
415 => 0.024341646500223
416 => 0.024399071535706
417 => 0.024322129595518
418 => 0.02343382600616
419 => 0.023473226047706
420 => 0.023184134685176
421 => 0.022939882947534
422 => 0.022949651736109
423 => 0.023075228879759
424 => 0.023623631631085
425 => 0.024777712891141
426 => 0.024821509431337
427 => 0.024874592115691
428 => 0.024658678161205
429 => 0.024593556446514
430 => 0.024679468797532
501 => 0.025112881040099
502 => 0.026227734998258
503 => 0.025833671150853
504 => 0.025513291108943
505 => 0.025794350779537
506 => 0.025751083846267
507 => 0.025385867387171
508 => 0.025375616977555
509 => 0.024674649825783
510 => 0.024415518230023
511 => 0.024198968472942
512 => 0.023962501791384
513 => 0.023822316416121
514 => 0.024037704865638
515 => 0.024086966752444
516 => 0.02361601614323
517 => 0.023551827315416
518 => 0.023936415749075
519 => 0.023767172718324
520 => 0.023941243372477
521 => 0.023981629257391
522 => 0.023975126199754
523 => 0.023798417038211
524 => 0.023911046188235
525 => 0.023644644672062
526 => 0.023354973035438
527 => 0.023170180578452
528 => 0.023008924650569
529 => 0.023098398811608
530 => 0.022779439764841
531 => 0.022677398346403
601 => 0.023872889966443
602 => 0.024756012479868
603 => 0.024743171528767
604 => 0.02466500554137
605 => 0.024548866739489
606 => 0.025104384763358
607 => 0.024910853391776
608 => 0.025051663634689
609 => 0.025087505751298
610 => 0.025195989043317
611 => 0.02523476249576
612 => 0.025117562192583
613 => 0.02472422366031
614 => 0.023744061435389
615 => 0.023287793273791
616 => 0.023137217180717
617 => 0.023142690335715
618 => 0.022991716287615
619 => 0.023036184910963
620 => 0.022976251915167
621 => 0.022862753320479
622 => 0.023091390593217
623 => 0.023117738908996
624 => 0.023064372237527
625 => 0.02307694202056
626 => 0.022635088774001
627 => 0.022668681916682
628 => 0.022481631029423
629 => 0.022446561242995
630 => 0.021973712888389
701 => 0.021135993487741
702 => 0.02160017135509
703 => 0.021039509764617
704 => 0.020827178724896
705 => 0.021832320842685
706 => 0.021731432452362
707 => 0.021558755383257
708 => 0.021303330008997
709 => 0.021208590253066
710 => 0.020632981486988
711 => 0.020598971450335
712 => 0.020884258697547
713 => 0.020752608449093
714 => 0.020567721640417
715 => 0.019898080361065
716 => 0.019145181852465
717 => 0.019167907125888
718 => 0.019407390133299
719 => 0.02010371927603
720 => 0.019831651433349
721 => 0.019634263091864
722 => 0.019597298188976
723 => 0.020059991339888
724 => 0.020714799085641
725 => 0.02102202022945
726 => 0.02071757340638
727 => 0.020367841288618
728 => 0.020389127862123
729 => 0.020530737899103
730 => 0.020545619111732
731 => 0.020317979456111
801 => 0.020382058685761
802 => 0.020284716476395
803 => 0.019687327517193
804 => 0.019676522645262
805 => 0.019529913760476
806 => 0.019525474501711
807 => 0.019276056215389
808 => 0.019241160872985
809 => 0.018745925726885
810 => 0.019071890999758
811 => 0.01885325060866
812 => 0.018523707967221
813 => 0.018466894691624
814 => 0.018465186815956
815 => 0.018803553424328
816 => 0.019067936988933
817 => 0.018857053951871
818 => 0.018809039972128
819 => 0.019321703660969
820 => 0.019256462533531
821 => 0.01919996413793
822 => 0.020656168234003
823 => 0.019503469062938
824 => 0.019000826430586
825 => 0.018378710723802
826 => 0.01858127473491
827 => 0.018623957948335
828 => 0.017127881818306
829 => 0.016520923918677
830 => 0.016312638840251
831 => 0.016192767832898
901 => 0.016247394556194
902 => 0.015701061257467
903 => 0.01606820626973
904 => 0.015595127813437
905 => 0.015515814670709
906 => 0.016361737553736
907 => 0.0164794427811
908 => 0.015977275713019
909 => 0.01629974826419
910 => 0.016182815234432
911 => 0.015603237385753
912 => 0.015581101775019
913 => 0.015290289983698
914 => 0.01483522584254
915 => 0.01462724931903
916 => 0.014518933339851
917 => 0.014563626623897
918 => 0.014541028331846
919 => 0.014393559190142
920 => 0.014549481090427
921 => 0.014151165066577
922 => 0.01399255241643
923 => 0.013920910762143
924 => 0.013567382364761
925 => 0.014130003259788
926 => 0.01424084666382
927 => 0.014351908463598
928 => 0.015318625605561
929 => 0.015270331149063
930 => 0.015706889515452
1001 => 0.015689925660114
1002 => 0.015565412142243
1003 => 0.015040110091825
1004 => 0.015249486126513
1005 => 0.014605059236004
1006 => 0.015087907679142
1007 => 0.014867555813927
1008 => 0.015013406491859
1009 => 0.014751153822112
1010 => 0.014896295277697
1011 => 0.014267131746935
1012 => 0.013679627694478
1013 => 0.013916056475499
1014 => 0.01417308159938
1015 => 0.014730377556736
1016 => 0.014398456682126
1017 => 0.014517827979954
1018 => 0.014117954114746
1019 => 0.013292900112499
1020 => 0.013297569828551
1021 => 0.013170653245084
1022 => 0.013060978786843
1023 => 0.014436581787386
1024 => 0.014265503809203
1025 => 0.013992913441101
1026 => 0.014357786481116
1027 => 0.01445426470421
1028 => 0.014457011303589
1029 => 0.014723213254848
1030 => 0.014865285283954
1031 => 0.01489032609486
1101 => 0.01530920061684
1102 => 0.015449601831519
1103 => 0.016027894564458
1104 => 0.014853231464887
1105 => 0.01482904005136
1106 => 0.014362920993051
1107 => 0.01406730091722
1108 => 0.014383162352557
1109 => 0.014662972464879
1110 => 0.014371615473208
1111 => 0.014409660545439
1112 => 0.014018537588861
1113 => 0.014158345641792
1114 => 0.014278767171155
1115 => 0.014212277480691
1116 => 0.014112739195929
1117 => 0.014640031226581
1118 => 0.014610279343738
1119 => 0.015101305805072
1120 => 0.015484096045322
1121 => 0.016170124587789
1122 => 0.015454218040247
1123 => 0.015428127560184
1124 => 0.015683166187847
1125 => 0.015449562786434
1126 => 0.015597192072411
1127 => 0.016146339227478
1128 => 0.01615794184153
1129 => 0.015963583107038
1130 => 0.015951756360381
1201 => 0.015989085081392
1202 => 0.016207720566292
1203 => 0.016131322609878
1204 => 0.0162197322592
1205 => 0.016330289879454
1206 => 0.016787603072284
1207 => 0.016897859734849
1208 => 0.016629993206342
1209 => 0.016654178554692
1210 => 0.016553989119929
1211 => 0.016457207381319
1212 => 0.016674758595877
1213 => 0.017072337716463
1214 => 0.017069864397388
1215 => 0.01716209502553
1216 => 0.017219553942783
1217 => 0.016972898207436
1218 => 0.016812334393508
1219 => 0.016873904776709
1220 => 0.016972357160276
1221 => 0.016841977995626
1222 => 0.016037217393906
1223 => 0.016281330352162
1224 => 0.016240698019394
1225 => 0.016182832636473
1226 => 0.016428290103668
1227 => 0.01640461513216
1228 => 0.015695457819831
1229 => 0.015740855770111
1230 => 0.015698218619551
1231 => 0.015835987975753
]
'min_raw' => 0.013060978786843
'max_raw' => 0.029258204804647
'avg_raw' => 0.021159591795745
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.01306'
'max' => '$0.029258'
'avg' => '$0.021159'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.0031849873775779
'max_diff' => -0.021261330753271
'year' => 2034
]
9 => [
'items' => [
101 => 0.015442122789078
102 => 0.015563273067777
103 => 0.015639257386863
104 => 0.015684012734544
105 => 0.015845699739397
106 => 0.015826727635562
107 => 0.015844520406785
108 => 0.016084259551195
109 => 0.017296777875081
110 => 0.017362772572179
111 => 0.017037790547241
112 => 0.017167614456217
113 => 0.016918380940351
114 => 0.017085693069271
115 => 0.017200163778611
116 => 0.016682892654556
117 => 0.016652263215651
118 => 0.016402001024408
119 => 0.016536477750407
120 => 0.016322515610124
121 => 0.016375014435272
122 => 0.016228223143394
123 => 0.016492418242919
124 => 0.016787829415956
125 => 0.016862461944406
126 => 0.016666135893378
127 => 0.016523982893917
128 => 0.016274409054971
129 => 0.016689455911253
130 => 0.016810828260354
131 => 0.016688818393973
201 => 0.016660546041965
202 => 0.016606969985995
203 => 0.016671912455509
204 => 0.016810167240475
205 => 0.01674496883705
206 => 0.01678803353116
207 => 0.016623915325332
208 => 0.016972979860748
209 => 0.017527378349943
210 => 0.017529160831739
211 => 0.017463962076871
212 => 0.017437284151105
213 => 0.017504182030192
214 => 0.017540471385301
215 => 0.017756806859294
216 => 0.017988943442073
217 => 0.019072223584779
218 => 0.018768042855523
219 => 0.019729193442756
220 => 0.020489338767473
221 => 0.020717273113229
222 => 0.020507584240273
223 => 0.019790249933061
224 => 0.019755054089725
225 => 0.020827054395433
226 => 0.020524165208346
227 => 0.020488137503327
228 => 0.020104863591698
301 => 0.020331425942868
302 => 0.020281873433198
303 => 0.020203652372492
304 => 0.020635917556055
305 => 0.021445079391106
306 => 0.021318963930842
307 => 0.021224824590082
308 => 0.020812333402424
309 => 0.021060745230637
310 => 0.020972290536625
311 => 0.021352348036834
312 => 0.021127210393015
313 => 0.020521870524854
314 => 0.020618272894085
315 => 0.02060370186991
316 => 0.02090357251491
317 => 0.020813558790528
318 => 0.020586125245556
319 => 0.021442313763921
320 => 0.021386717643909
321 => 0.021465540231044
322 => 0.02150024037157
323 => 0.022021387234964
324 => 0.022234884430058
325 => 0.022283352031138
326 => 0.022486157854011
327 => 0.022278306037513
328 => 0.023109861499339
329 => 0.023662797358846
330 => 0.024305060813483
331 => 0.02524358034485
401 => 0.025596472370434
402 => 0.025532725584627
403 => 0.026244300382133
404 => 0.027522984475834
405 => 0.025791184198941
406 => 0.027614774095649
407 => 0.027037446588709
408 => 0.025668613455433
409 => 0.025580476739132
410 => 0.026507466429466
411 => 0.028563440343176
412 => 0.028048442196455
413 => 0.028564282695651
414 => 0.027962527352858
415 => 0.027932645128096
416 => 0.028535056781795
417 => 0.029942624446413
418 => 0.029273941810838
419 => 0.028315221285032
420 => 0.029023125601944
421 => 0.028409873369183
422 => 0.027028044450281
423 => 0.028048048387078
424 => 0.027366000802582
425 => 0.027565058547381
426 => 0.028998621123072
427 => 0.028826131081228
428 => 0.029049349167521
429 => 0.028655375087849
430 => 0.028287341173425
501 => 0.027600378541595
502 => 0.027397002773159
503 => 0.027453208518861
504 => 0.027396974920382
505 => 0.027012625641386
506 => 0.026929625451181
507 => 0.026791288164518
508 => 0.026834164674183
509 => 0.026574050103255
510 => 0.027064940041009
511 => 0.027156053539164
512 => 0.027513282299037
513 => 0.027550370973948
514 => 0.028545247985363
515 => 0.027997286445705
516 => 0.028364906355231
517 => 0.02833202297035
518 => 0.025698280220096
519 => 0.026061186733372
520 => 0.026625755381692
521 => 0.026371417970878
522 => 0.026011844377777
523 => 0.025721469422231
524 => 0.025281521672215
525 => 0.025900739681914
526 => 0.026714945518174
527 => 0.0275710205776
528 => 0.02859953866924
529 => 0.028369985404457
530 => 0.027551793147299
531 => 0.027588496654265
601 => 0.027815383292033
602 => 0.027521544481299
603 => 0.027434885679599
604 => 0.027803477703416
605 => 0.027806015994109
606 => 0.027467918930753
607 => 0.027092185915942
608 => 0.027090611580891
609 => 0.027023753520056
610 => 0.027974421253354
611 => 0.028497192383319
612 => 0.028557127250882
613 => 0.028493158289196
614 => 0.028517777403712
615 => 0.028213588401661
616 => 0.028908874255903
617 => 0.029546937312399
618 => 0.029375922783029
619 => 0.029119547692356
620 => 0.028915332583937
621 => 0.029327816193535
622 => 0.029309448947709
623 => 0.029541364388235
624 => 0.029530843364244
625 => 0.029452858924376
626 => 0.029375925568099
627 => 0.029680957629585
628 => 0.029593113294542
629 => 0.029505132512984
630 => 0.029328673586384
701 => 0.029352657285181
702 => 0.029096326461282
703 => 0.028977736093246
704 => 0.027194421496058
705 => 0.026717861564204
706 => 0.026867797020038
707 => 0.02691715966517
708 => 0.026709760172099
709 => 0.027007117768605
710 => 0.026960774902169
711 => 0.0271410678858
712 => 0.027028428657039
713 => 0.027033051410277
714 => 0.027364299364849
715 => 0.027460462055291
716 => 0.027411552934804
717 => 0.027445807206287
718 => 0.028235182434774
719 => 0.028122958520082
720 => 0.028063341802107
721 => 0.028079856040414
722 => 0.028281558335688
723 => 0.028338023965828
724 => 0.028098775123157
725 => 0.028211606260442
726 => 0.028692026922598
727 => 0.028860146964898
728 => 0.029396705437722
729 => 0.0291687658619
730 => 0.029587158818314
731 => 0.030873156125664
801 => 0.031900499759019
802 => 0.030955712097014
803 => 0.032842297848249
804 => 0.034311275470238
805 => 0.034254893662396
806 => 0.033998743435937
807 => 0.032326351468093
808 => 0.030787391445324
809 => 0.032074796852065
810 => 0.032078078713204
811 => 0.031967489447022
812 => 0.031280629012637
813 => 0.031943588192761
814 => 0.031996211484966
815 => 0.031966756434994
816 => 0.031440142150381
817 => 0.030636099472365
818 => 0.030793207487043
819 => 0.031050553620003
820 => 0.030563343702283
821 => 0.030407650612482
822 => 0.030697113688245
823 => 0.03162982403038
824 => 0.031453500543022
825 => 0.031448896024188
826 => 0.032203282675899
827 => 0.031663304640103
828 => 0.030795189122238
829 => 0.03057597850494
830 => 0.029797928491498
831 => 0.030335330407102
901 => 0.030354670545326
902 => 0.030060341008265
903 => 0.030819072342028
904 => 0.030812080499215
905 => 0.031532382978367
906 => 0.03290933078525
907 => 0.032502099563268
908 => 0.032028533958735
909 => 0.032080023670497
910 => 0.032644738721097
911 => 0.032303299110314
912 => 0.032426083174953
913 => 0.032644552872709
914 => 0.032776361065663
915 => 0.032061058499944
916 => 0.031894287254998
917 => 0.031553131816592
918 => 0.031464130730679
919 => 0.03174199471682
920 => 0.031668787373551
921 => 0.030353045081597
922 => 0.030215542691367
923 => 0.030219759693367
924 => 0.029874003395251
925 => 0.029346642049604
926 => 0.030732516178854
927 => 0.030621211090979
928 => 0.030498338888295
929 => 0.030513390032025
930 => 0.0311149510199
1001 => 0.030766015267374
1002 => 0.031693718154909
1003 => 0.031503010330533
1004 => 0.031307411570069
1005 => 0.031280373863289
1006 => 0.031205085028212
1007 => 0.030946891598992
1008 => 0.030635107518189
1009 => 0.030429240661769
1010 => 0.028069366026906
1011 => 0.028507345032378
1012 => 0.02901119995513
1013 => 0.029185128655392
1014 => 0.028887611578094
1015 => 0.030958639386592
1016 => 0.031337036124125
1017 => 0.030190847723929
1018 => 0.029976442672816
1019 => 0.030972695746048
1020 => 0.030371833355904
1021 => 0.030642401653395
1022 => 0.030057580987166
1023 => 0.031245891430803
1024 => 0.031236838496187
1025 => 0.030774558894404
1026 => 0.031165274448277
1027 => 0.031097378005754
1028 => 0.030575465473885
1029 => 0.031262436988982
1030 => 0.031262777718283
1031 => 0.030817843652391
1101 => 0.030298258072022
1102 => 0.030205368442315
1103 => 0.030135388584297
1104 => 0.030625190898166
1105 => 0.031064346121208
1106 => 0.031881505115477
1107 => 0.032086958301855
1108 => 0.032888855766082
1109 => 0.032411364869814
1110 => 0.032623030399587
1111 => 0.032852823274073
1112 => 0.032962994428455
1113 => 0.0327834764445
1114 => 0.034029153280608
1115 => 0.034134326572128
1116 => 0.034169590267029
1117 => 0.033749555046615
1118 => 0.03412264463281
1119 => 0.033948088370858
1120 => 0.034402235271331
1121 => 0.034473451304164
1122 => 0.034413133857939
1123 => 0.034435738950828
1124 => 0.033372773523662
1125 => 0.033317653158674
1126 => 0.032566083070901
1127 => 0.032872353436994
1128 => 0.032299795667504
1129 => 0.032481359634208
1130 => 0.032561391300726
1201 => 0.032519587299894
1202 => 0.032889669503969
1203 => 0.032575024027706
1204 => 0.031744622883343
1205 => 0.030913995496743
1206 => 0.030903567646519
1207 => 0.030684878117418
1208 => 0.030526805642864
1209 => 0.030557256009385
1210 => 0.030664567072711
1211 => 0.030520568528782
1212 => 0.030551297919041
1213 => 0.03106161054619
1214 => 0.031163950104182
1215 => 0.03081616029948
1216 => 0.029419734047771
1217 => 0.029077047542932
1218 => 0.029323363806842
1219 => 0.029205640497492
1220 => 0.023571231288259
1221 => 0.024894952155595
1222 => 0.024108442165537
1223 => 0.024470902154541
1224 => 0.023668079120466
1225 => 0.024051228351887
1226 => 0.023980474679213
1227 => 0.026108978662141
1228 => 0.026075745000109
1229 => 0.026091652195438
1230 => 0.025332360316435
1231 => 0.026541932896708
]
'min_raw' => 0.015442122789078
'max_raw' => 0.034473451304164
'avg_raw' => 0.024957787046621
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.015442'
'max' => '$0.034473'
'avg' => '$0.024957'
'bar_min_pct' => 61.631153054957
'bar_max_pct' => 60.119598047091
'min_diff' => 0.0023811440022348
'max_diff' => 0.0052152464995173
'year' => 2035
]
10 => [
'items' => [
101 => 0.027137811844573
102 => 0.027027530510128
103 => 0.02705528594609
104 => 0.026578355598107
105 => 0.026096269923724
106 => 0.02556156271838
107 => 0.026554982614102
108 => 0.026444531279941
109 => 0.02669786690137
110 => 0.027342170714866
111 => 0.027437046898876
112 => 0.027564561452324
113 => 0.027518856562016
114 => 0.028607732475175
115 => 0.028475862417457
116 => 0.028793631314953
117 => 0.02813995658362
118 => 0.027400261577741
119 => 0.027540853415907
120 => 0.027527313291324
121 => 0.027354931964744
122 => 0.027199313810797
123 => 0.026940253429619
124 => 0.027759958809389
125 => 0.027726680267928
126 => 0.028265421172106
127 => 0.028170193484243
128 => 0.027534239678522
129 => 0.027556952893107
130 => 0.027709710176788
131 => 0.02823840487976
201 => 0.028395357463882
202 => 0.028322650773438
203 => 0.02849474211677
204 => 0.028630756097811
205 => 0.028511823378681
206 => 0.030195659874654
207 => 0.029496413564855
208 => 0.029837221350927
209 => 0.029918501999749
210 => 0.029710303326939
211 => 0.029755454164036
212 => 0.029823845379371
213 => 0.030239103446513
214 => 0.031328860770583
215 => 0.031811506871185
216 => 0.033263571478184
217 => 0.031771429831288
218 => 0.031682892321057
219 => 0.031944453004928
220 => 0.032796968645885
221 => 0.033487852500159
222 => 0.033717058532667
223 => 0.033747351893642
224 => 0.034177357647957
225 => 0.034423828927197
226 => 0.034125143639109
227 => 0.033872039131107
228 => 0.032965450199933
229 => 0.033070390337276
301 => 0.033793323819443
302 => 0.034814509943574
303 => 0.035690793874385
304 => 0.035383949783393
305 => 0.037724953599492
306 => 0.037957054565715
307 => 0.037924985716906
308 => 0.038453746259217
309 => 0.037404264262941
310 => 0.036955590376777
311 => 0.033926763198595
312 => 0.034777740091409
313 => 0.036014684981235
314 => 0.035850970686761
315 => 0.034952668244138
316 => 0.03569011243143
317 => 0.035446290321099
318 => 0.035253977706493
319 => 0.036134999075639
320 => 0.0351662798899
321 => 0.036005021266326
322 => 0.034929326775391
323 => 0.035385351421354
324 => 0.035126489776875
325 => 0.035294004985743
326 => 0.0343147144976
327 => 0.034843115874069
328 => 0.034292731263116
329 => 0.034292470309148
330 => 0.034280320538357
331 => 0.034927845592364
401 => 0.034948961361128
402 => 0.034470439367861
403 => 0.034401476872712
404 => 0.034656467361982
405 => 0.034357940281162
406 => 0.034497619223371
407 => 0.034362171014028
408 => 0.03433167876913
409 => 0.034088711373949
410 => 0.033984034339577
411 => 0.034025080901949
412 => 0.03388496782362
413 => 0.033800544625815
414 => 0.034263526639412
415 => 0.034016174026189
416 => 0.0342256163039
417 => 0.033986930394725
418 => 0.033159541043025
419 => 0.032683700677379
420 => 0.031120838891051
421 => 0.03156406455493
422 => 0.031857923628631
423 => 0.031760803206526
424 => 0.031969455453822
425 => 0.031982265007203
426 => 0.031914430034649
427 => 0.03183588582663
428 => 0.031797654849933
429 => 0.032082597228178
430 => 0.032248015869469
501 => 0.031887416318005
502 => 0.03180293288842
503 => 0.032167518944198
504 => 0.032389916227608
505 => 0.034031972814068
506 => 0.03391032395837
507 => 0.034215638713789
508 => 0.034181264957766
509 => 0.0345012834619
510 => 0.035024378466249
511 => 0.033960780062744
512 => 0.034145383969127
513 => 0.034100123354409
514 => 0.034594266877933
515 => 0.034595809540075
516 => 0.034299545813423
517 => 0.034460155185971
518 => 0.034370507440303
519 => 0.034532513033346
520 => 0.033908699263736
521 => 0.034668437098585
522 => 0.03509915949452
523 => 0.035105140075405
524 => 0.035309299072654
525 => 0.03551673643795
526 => 0.03591489439665
527 => 0.035505632028583
528 => 0.034769408869319
529 => 0.034822561803431
530 => 0.034390914434528
531 => 0.034398170504783
601 => 0.034359437033095
602 => 0.034475679097351
603 => 0.033934207859982
604 => 0.034061290077115
605 => 0.033883374228936
606 => 0.034144997214819
607 => 0.033863534129838
608 => 0.03410010152837
609 => 0.034202196175243
610 => 0.034578927620144
611 => 0.033807890589115
612 => 0.032235693888229
613 => 0.032566188695798
614 => 0.032077360915597
615 => 0.032122603787753
616 => 0.032214001589859
617 => 0.031917751409735
618 => 0.031974266608187
619 => 0.031972247487607
620 => 0.031954847797265
621 => 0.031877781683691
622 => 0.031766020571941
623 => 0.032211242442895
624 => 0.032286894314487
625 => 0.032455059053753
626 => 0.032955403250577
627 => 0.032905407066385
628 => 0.032986952917123
629 => 0.032808938782823
630 => 0.032130861352887
701 => 0.032167684219661
702 => 0.031708502480937
703 => 0.032443316744313
704 => 0.032269303027671
705 => 0.032157115252526
706 => 0.032126503778665
707 => 0.032628088231975
708 => 0.032778170161778
709 => 0.032684649174749
710 => 0.032492834901907
711 => 0.032861175010562
712 => 0.032959727284616
713 => 0.032981789504309
714 => 0.033634417554634
715 => 0.033018264162529
716 => 0.033166578408046
717 => 0.034323683813407
718 => 0.033274348880376
719 => 0.033830204997364
720 => 0.033802998732973
721 => 0.034087355913278
722 => 0.033779673144424
723 => 0.033783487241098
724 => 0.034035977153185
725 => 0.033681400608454
726 => 0.033593602469558
727 => 0.033472309969494
728 => 0.033737147705986
729 => 0.033895905951431
730 => 0.035175380814643
731 => 0.036001979927421
801 => 0.035966095079935
802 => 0.036294015412335
803 => 0.036146284299183
804 => 0.035669221565316
805 => 0.036483509480424
806 => 0.03622583471283
807 => 0.036247077107596
808 => 0.036246286464602
809 => 0.036417617658732
810 => 0.036296213805417
811 => 0.036056914348684
812 => 0.036215772495702
813 => 0.036687524399518
814 => 0.038151856784078
815 => 0.038971316586302
816 => 0.03810252427504
817 => 0.038701805577756
818 => 0.038342450341888
819 => 0.038277144805639
820 => 0.038653537750285
821 => 0.039030589520954
822 => 0.039006572953202
823 => 0.038732852729519
824 => 0.038578235120554
825 => 0.039749051456337
826 => 0.040611688988206
827 => 0.040552862891728
828 => 0.040812502150311
829 => 0.04157481104385
830 => 0.041644507015509
831 => 0.041635726925024
901 => 0.041462978187244
902 => 0.042213570291252
903 => 0.042839727429827
904 => 0.041422991845639
905 => 0.041962466209667
906 => 0.042204653632458
907 => 0.042560256622885
908 => 0.043160218473717
909 => 0.043811936175742
910 => 0.043904096204529
911 => 0.043838704253841
912 => 0.043408878910244
913 => 0.044121996196409
914 => 0.044539723577986
915 => 0.044788470674194
916 => 0.045419251922608
917 => 0.04220614929953
918 => 0.039931755561354
919 => 0.039576576136494
920 => 0.040298847463688
921 => 0.040489304652663
922 => 0.0404125315986
923 => 0.037852494667451
924 => 0.039563098071864
925 => 0.041403563503392
926 => 0.041474263276149
927 => 0.042395638753489
928 => 0.042695676377368
929 => 0.043437504404072
930 => 0.043391102859024
1001 => 0.043571726178464
1002 => 0.043530204005284
1003 => 0.044904284214432
1004 => 0.046420098738008
1005 => 0.046367610901052
1006 => 0.046149694628984
1007 => 0.04647333745325
1008 => 0.048037820486137
1009 => 0.047893787958799
1010 => 0.048033703290446
1011 => 0.04987831695662
1012 => 0.052276577115879
1013 => 0.05116234449052
1014 => 0.053579908675749
1015 => 0.055101637180779
1016 => 0.057733309280565
1017 => 0.057403810972414
1018 => 0.058428301608758
1019 => 0.05681394023245
1020 => 0.053107040196183
1021 => 0.052520409076
1022 => 0.053694859434472
1023 => 0.056582131039584
1024 => 0.0536039289767
1025 => 0.054206415375202
1026 => 0.054032899251902
1027 => 0.054023653315088
1028 => 0.054376533117359
1029 => 0.053864662559192
1030 => 0.051779209821462
1031 => 0.052734960521513
1101 => 0.052365899277305
1102 => 0.052775400243093
1103 => 0.054985308064401
1104 => 0.054008255138978
1105 => 0.052979009251379
1106 => 0.054269912002375
1107 => 0.055913674806705
1108 => 0.055810811084536
1109 => 0.055611212469827
1110 => 0.056736339410296
1111 => 0.058594719484688
1112 => 0.059097032151221
1113 => 0.059467829092325
1114 => 0.059518955725837
1115 => 0.060045591826042
1116 => 0.057213736785854
1117 => 0.061707963461828
1118 => 0.062483992258262
1119 => 0.062338131007631
1120 => 0.063200654354583
1121 => 0.062946878105805
1122 => 0.062579196137597
1123 => 0.063946479106495
1124 => 0.0623789995167
1125 => 0.060154159579179
1126 => 0.058933568387111
1127 => 0.060540941331109
1128 => 0.061522507898424
1129 => 0.06217126096006
1130 => 0.062367573244524
1201 => 0.057433565631367
1202 => 0.054774409180482
1203 => 0.056478897978209
1204 => 0.058558491948967
1205 => 0.057202184536345
1206 => 0.057255349219091
1207 => 0.05532161128001
1208 => 0.058729584848466
1209 => 0.058233071765111
1210 => 0.060808982519872
1211 => 0.060194220745273
1212 => 0.062294775969501
1213 => 0.06174162938169
1214 => 0.064037709941683
1215 => 0.064953678640964
1216 => 0.066491732646201
1217 => 0.067623131433459
1218 => 0.068287510441548
1219 => 0.068247623617925
1220 => 0.070880224240278
1221 => 0.069327871629337
1222 => 0.067377750888575
1223 => 0.067342479356927
1224 => 0.068352474521992
1225 => 0.070469147309326
1226 => 0.071017969766746
1227 => 0.071324686648706
1228 => 0.070854939067092
1229 => 0.069169971566029
1230 => 0.068442411142049
1231 => 0.069062313702734
]
'min_raw' => 0.02556156271838
'max_raw' => 0.071324686648706
'avg_raw' => 0.048443124683543
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$0.025561'
'max' => '$0.071324'
'avg' => '$0.048443'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.010119439929302
'max_diff' => 0.036851235344542
'year' => 2036
]
11 => [
'items' => [
101 => 0.06830422613985
102 => 0.069612897955191
103 => 0.07140998387487
104 => 0.071038892738904
105 => 0.072279394769345
106 => 0.073563183866232
107 => 0.075399059933357
108 => 0.075879025919597
109 => 0.076672391443381
110 => 0.077489025174353
111 => 0.077751305919844
112 => 0.078252081243924
113 => 0.078249441910777
114 => 0.079758562055958
115 => 0.081423168309653
116 => 0.0820515186347
117 => 0.083496375559705
118 => 0.081022108709459
119 => 0.0828988685377
120 => 0.084591752881119
121 => 0.082573426377465
122 => 0.08535521925299
123 => 0.085463229966668
124 => 0.087094063506986
125 => 0.085440901283971
126 => 0.084459258833026
127 => 0.087293223807243
128 => 0.088664490189206
129 => 0.088251453595223
130 => 0.085108224720878
131 => 0.083278730696581
201 => 0.078490591951954
202 => 0.084162349127165
203 => 0.086924896599786
204 => 0.085101070390306
205 => 0.086020902244733
206 => 0.091039206586004
207 => 0.092949851968016
208 => 0.092552451084977
209 => 0.092619605292435
210 => 0.093650554859902
211 => 0.098222352996347
212 => 0.095482825579538
213 => 0.097577091641555
214 => 0.09868788280941
215 => 0.099719647551179
216 => 0.097185959437991
217 => 0.093889668430003
218 => 0.09284559469889
219 => 0.084919726817459
220 => 0.084507150973931
221 => 0.084275559650632
222 => 0.082815409116469
223 => 0.081668130765509
224 => 0.080755772425112
225 => 0.078361471686646
226 => 0.079169477900443
227 => 0.075353462252729
228 => 0.077794813832846
301 => 0.071704360718175
302 => 0.076776671050864
303 => 0.074016043146433
304 => 0.075869730537409
305 => 0.07586326319673
306 => 0.07245003699782
307 => 0.070481359358501
308 => 0.071735877372355
309 => 0.07308082026697
310 => 0.07329903272669
311 => 0.075042786296159
312 => 0.07552943043554
313 => 0.074054875973973
314 => 0.071578149614699
315 => 0.072153436659844
316 => 0.070469701184893
317 => 0.067519019528992
318 => 0.069638250608219
319 => 0.070361849274681
320 => 0.070681431668297
321 => 0.067779775147795
322 => 0.066868011671026
323 => 0.06638259644643
324 => 0.071203582195344
325 => 0.07146768667743
326 => 0.07011649080647
327 => 0.076224024268859
328 => 0.074841701344826
329 => 0.07638609472831
330 => 0.072101235390371
331 => 0.072264922787408
401 => 0.070236401708911
402 => 0.071372237967042
403 => 0.070569465509507
404 => 0.071280473621938
405 => 0.071706648952933
406 => 0.073734837171082
407 => 0.076799829702392
408 => 0.073431893485407
409 => 0.071964435445931
410 => 0.072874838160325
411 => 0.075299360560221
412 => 0.078972636105081
413 => 0.076797983050964
414 => 0.077763057148378
415 => 0.077973882905505
416 => 0.07637037425343
417 => 0.079031759756304
418 => 0.080458017868352
419 => 0.081921063568781
420 => 0.083191385156854
421 => 0.081336690942965
422 => 0.083321479611799
423 => 0.081722090307083
424 => 0.080287272758926
425 => 0.08028944878488
426 => 0.079389366777581
427 => 0.077645344470809
428 => 0.077323719999338
429 => 0.078996851116626
430 => 0.080338543826584
501 => 0.080449052064451
502 => 0.081191882087345
503 => 0.081631481243135
504 => 0.085940150575957
505 => 0.0876731330248
506 => 0.089792191159566
507 => 0.09061768372663
508 => 0.093102120398028
509 => 0.091095736009793
510 => 0.090661642126649
511 => 0.084635211414879
512 => 0.085622039106324
513 => 0.087202045455038
514 => 0.084661265137617
515 => 0.086272805442007
516 => 0.086590957635185
517 => 0.084574930394672
518 => 0.085651777651225
519 => 0.082791990600782
520 => 0.076862165245196
521 => 0.079038361347056
522 => 0.080640774177712
523 => 0.078353933492288
524 => 0.082453006907954
525 => 0.080058412840573
526 => 0.079299441481999
527 => 0.076338423619377
528 => 0.077735910070505
529 => 0.079626030505734
530 => 0.078458155826848
531 => 0.080881671142802
601 => 0.084314015158119
602 => 0.086760107903054
603 => 0.086947888530756
604 => 0.085375214771248
605 => 0.087895434507528
606 => 0.087913791556921
607 => 0.085070973398997
608 => 0.083329763106147
609 => 0.082934156464073
610 => 0.083922459419223
611 => 0.085122441657566
612 => 0.087014479193532
613 => 0.088157797850549
614 => 0.091138966538688
615 => 0.091945585308895
616 => 0.09283181478582
617 => 0.094016090670042
618 => 0.095438117511155
619 => 0.092326803738834
620 => 0.092450422035222
621 => 0.089553209729508
622 => 0.08645712287858
623 => 0.08880666686576
624 => 0.09187838308226
625 => 0.09117372798825
626 => 0.091094439895377
627 => 0.091227780474907
628 => 0.090696493545907
629 => 0.088293502456455
630 => 0.087086735374852
701 => 0.088643772789236
702 => 0.089471268879219
703 => 0.09075464314954
704 => 0.090596440181979
705 => 0.09390227447799
706 => 0.09518682172218
707 => 0.094858179568241
708 => 0.094918657633781
709 => 0.097244269061413
710 => 0.099830827267409
711 => 0.10225348035374
712 => 0.10471790712853
713 => 0.10174694446331
714 => 0.10023847284541
715 => 0.10179483050597
716 => 0.10096900522396
717 => 0.10571444225009
718 => 0.10604300601375
719 => 0.11078809989077
720 => 0.11529175901534
721 => 0.11246309141063
722 => 0.11513039755588
723 => 0.11801530662063
724 => 0.12358076426615
725 => 0.1217065139263
726 => 0.12027086753922
727 => 0.11891418864042
728 => 0.12173722206211
729 => 0.12536900946005
730 => 0.12615126168074
731 => 0.1274188091216
801 => 0.12608613797586
802 => 0.127691193582
803 => 0.13335774516882
804 => 0.13182659291002
805 => 0.12965211055753
806 => 0.13412530881393
807 => 0.1357441418738
808 => 0.14710596007744
809 => 0.16145072489283
810 => 0.15551189806646
811 => 0.15182547661058
812 => 0.1526918730958
813 => 0.15793009560545
814 => 0.15961244642267
815 => 0.15503923696035
816 => 0.15665457185545
817 => 0.16555522594369
818 => 0.17033014129486
819 => 0.16384516489128
820 => 0.14595337219171
821 => 0.12945632221321
822 => 0.13383208273935
823 => 0.13333600729135
824 => 0.14289864972995
825 => 0.13179007543504
826 => 0.13197711533664
827 => 0.14173750309386
828 => 0.13913359897564
829 => 0.13491560778697
830 => 0.1294871182168
831 => 0.11945205317183
901 => 0.11056371621301
902 => 0.12799579185101
903 => 0.12724408905133
904 => 0.12615551200127
905 => 0.12857802242983
906 => 0.14034104542932
907 => 0.14006986967599
908 => 0.1383447878884
909 => 0.13965324722011
910 => 0.13468622853981
911 => 0.13596634235064
912 => 0.12945370899621
913 => 0.13239769126401
914 => 0.13490655787227
915 => 0.13541024998829
916 => 0.13654509404483
917 => 0.12684797583353
918 => 0.13120169721797
919 => 0.1337591006428
920 => 0.12220465893028
921 => 0.13353070648051
922 => 0.12667917057961
923 => 0.12435365638824
924 => 0.12748465488373
925 => 0.12626450172504
926 => 0.125215485689
927 => 0.1246301167165
928 => 0.1269291764559
929 => 0.12682192257108
930 => 0.12306021460916
1001 => 0.11815321991967
1002 => 0.11980016840407
1003 => 0.11920181657947
1004 => 0.11703331237817
1005 => 0.11849462238365
1006 => 0.11205975267158
1007 => 0.10098889378738
1008 => 0.10830264227586
1009 => 0.10802107091488
1010 => 0.10787908986643
1011 => 0.11337516971836
1012 => 0.11284684845673
1013 => 0.11188794019354
1014 => 0.11701570127593
1015 => 0.11514399950274
1016 => 0.12091214333931
1017 => 0.12471141593022
1018 => 0.12374779750757
1019 => 0.12732103174281
1020 => 0.11983811077079
1021 => 0.12232363695501
1022 => 0.12283590045679
1023 => 0.11695242550013
1024 => 0.11293328834899
1025 => 0.11266525772253
1026 => 0.10569662777367
1027 => 0.10941921364354
1028 => 0.11269493515795
1029 => 0.1111261187588
1030 => 0.11062947835389
1031 => 0.11316670647443
1101 => 0.11336387082928
1102 => 0.10886850264405
1103 => 0.10980323203956
1104 => 0.11370120900465
1105 => 0.10970501302121
1106 => 0.10194105700031
1107 => 0.10001548856204
1108 => 0.099758582237102
1109 => 0.094536287913743
1110 => 0.10014416425254
1111 => 0.097696175948915
1112 => 0.10542934166868
1113 => 0.10101219888335
1114 => 0.1008217846863
1115 => 0.10053394569978
1116 => 0.096038901245406
1117 => 0.097023030305937
1118 => 0.10029442519023
1119 => 0.10146169573985
1120 => 0.10133993985835
1121 => 0.10027839357059
1122 => 0.10076436402513
1123 => 0.099198883867726
1124 => 0.098646080241494
1125 => 0.096901279936489
1126 => 0.094336905501517
1127 => 0.094693497494923
1128 => 0.089612800734173
1129 => 0.086844567485931
1130 => 0.086078357007546
1201 => 0.085053748333708
1202 => 0.086194089283635
1203 => 0.089598407758606
1204 => 0.085492077411337
1205 => 0.078452062056527
1206 => 0.078875178974953
1207 => 0.079825797066117
1208 => 0.078054326542201
1209 => 0.076377778359566
1210 => 0.077835400981714
1211 => 0.074852453668998
1212 => 0.08018627199766
1213 => 0.080042007159722
1214 => 0.082030124791535
1215 => 0.083273335546988
1216 => 0.08040813724993
1217 => 0.07968754762654
1218 => 0.080098028224995
1219 => 0.073313698289362
1220 => 0.08147570029647
1221 => 0.081546285628762
1222 => 0.08094189116008
1223 => 0.085287905255324
1224 => 0.09445935055208
1225 => 0.091008683910908
1226 => 0.089672481490495
1227 => 0.087132359712532
1228 => 0.090516921164161
1229 => 0.090257039652059
1230 => 0.089081756897199
1231 => 0.088370942219955
]
'min_raw' => 0.06638259644643
'max_raw' => 0.17033014129486
'avg_raw' => 0.11835636887064
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$0.066382'
'max' => '$0.17033'
'avg' => '$0.118356'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 0.04082103372805
'max_diff' => 0.099005454646152
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.0020836738487595
]
1 => [
'year' => 2028
'avg' => 0.0035761892193117
]
2 => [
'year' => 2029
'avg' => 0.0097695044017638
]
3 => [
'year' => 2030
'avg' => 0.0075371580967783
]
4 => [
'year' => 2031
'avg' => 0.0074024233207561
]
5 => [
'year' => 2032
'avg' => 0.012978777709641
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.0020836738487595
'min' => '$0.002083'
'max_raw' => 0.012978777709641
'max' => '$0.012978'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.012978777709641
]
1 => [
'year' => 2033
'avg' => 0.03338275086117
]
2 => [
'year' => 2034
'avg' => 0.021159591795745
]
3 => [
'year' => 2035
'avg' => 0.024957787046621
]
4 => [
'year' => 2036
'avg' => 0.048443124683543
]
5 => [
'year' => 2037
'avg' => 0.11835636887064
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.012978777709641
'min' => '$0.012978'
'max_raw' => 0.11835636887064
'max' => '$0.118356'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 0.11835636887064
]
]
]
]
'prediction_2025_max_price' => '$0.003562'
'last_price' => 0.00345449
'sma_50day_nextmonth' => '$0.003246'
'sma_200day_nextmonth' => '—'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'decrease'
'sma_200day_direction_label' => 'diminuir'
'sma_200day_date_nextmonth' => '4 de fev. de 2026'
'sma_50day_date_nextmonth' => '4 de fev. de 2026'
'daily_sma3' => '$0.003428'
'daily_sma3_action' => 'BUY'
'daily_sma5' => '$0.003234'
'daily_sma5_action' => 'BUY'
'daily_sma10' => '$0.003132'
'daily_sma10_action' => 'BUY'
'daily_sma21' => '$0.003381'
'daily_sma21_action' => 'BUY'
'daily_sma50' => '$0.003414'
'daily_sma50_action' => 'BUY'
'daily_sma100' => '—'
'daily_sma100_action' => '—'
'daily_sma200' => '—'
'daily_sma200_action' => '—'
'daily_ema3' => '$0.00338'
'daily_ema3_action' => 'BUY'
'daily_ema5' => '$0.003296'
'daily_ema5_action' => 'BUY'
'daily_ema10' => '$0.003269'
'daily_ema10_action' => 'BUY'
'daily_ema21' => '$0.003444'
'daily_ema21_action' => 'BUY'
'daily_ema50' => '$0.003649'
'daily_ema50_action' => 'SELL'
'daily_ema100' => '$0.002389'
'daily_ema100_action' => 'BUY'
'daily_ema200' => '$0.001194'
'daily_ema200_action' => 'BUY'
'weekly_sma21' => '—'
'weekly_sma21_action' => '—'
'weekly_sma50' => '—'
'weekly_sma50_action' => '—'
'weekly_sma100' => '—'
'weekly_sma100_action' => '—'
'weekly_sma200' => '—'
'weekly_sma200_action' => '—'
'weekly_ema3' => '$0.003365'
'weekly_ema3_action' => 'BUY'
'weekly_ema5' => '$0.003465'
'weekly_ema5_action' => 'SELL'
'weekly_ema10' => '$0.003885'
'weekly_ema10_action' => 'SELL'
'weekly_ema21' => '$0.00206'
'weekly_ema21_action' => 'BUY'
'weekly_ema50' => '$0.000865'
'weekly_ema50_action' => 'BUY'
'weekly_ema100' => '$0.000432'
'weekly_ema100_action' => 'BUY'
'weekly_ema200' => '$0.000216'
'weekly_ema200_action' => 'BUY'
'rsi_14' => '50.28'
'rsi_14_action' => 'NEUTRAL'
'stoch_rsi_14' => 98.56
'stoch_rsi_14_action' => 'SELL'
'momentum_10' => -0
'momentum_10_action' => 'BUY'
'vwma_10' => '0.003158'
'vwma_10_action' => 'BUY'
'hma_9' => '0.0035020'
'hma_9_action' => 'BUY'
'stochastic_fast_14' => 76.8
'stochastic_fast_14_action' => 'NEUTRAL'
'cci_20' => 23.41
'cci_20_action' => 'NEUTRAL'
'adx_14' => 6.92
'adx_14_action' => 'NEUTRAL'
'ao_5_34' => '-0.000783'
'ao_5_34_action' => 'SELL'
'macd_12_26' => 0
'macd_12_26_action' => 'BUY'
'williams_percent_r_14' => -23.2
'williams_percent_r_14_action' => 'NEUTRAL'
'ultimate_oscillator' => 50.31
'ultimate_oscillator_action' => 'NEUTRAL'
'ichimoku_cloud' => '—'
'ichimoku_cloud_action' => '—'
'sell_signals' => 5
'buy_signals' => 24
'sell_pct' => 17.24
'buy_pct' => 82.76
'overall_action' => 'bullish'
'overall_action_label' => 'Altista'
'overall_action_dir' => 1
'last_updated' => 1767713594
'last_updated_date' => '6 de janeiro de 2026'
]
Previsão de preço de Small Thing para 2026
A previsão de preço para Small Thing em 2026 sugere que o preço médio poderia variar entre $0.001193 na extremidade inferior e $0.003562 na extremidade superior. No mercado de criptomoedas, comparado ao preço médio de hoje, Small Thing poderia potencialmente ganhar 3.13% até 2026 se ST atingir a meta de preço prevista.
Previsão de preço de Small Thing 2027-2032
A previsão de preço de ST para 2027-2032 está atualmente dentro de uma faixa de preço entre $0.002083 na extremidade inferior e $0.012978 na extremidade superior. Considerando a volatilidade de preços no mercado, se Small Thing atingir a meta de preço superior, poderia ganhar 275.71% até 2032 em comparação com o preço de hoje.
| Previsão de Preço de Small Thing | Potencial Mínimo ($) | Preço Médio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2027 | $0.001148 | $0.002083 | $0.003018 |
| 2028 | $0.002073 | $0.003576 | $0.005078 |
| 2029 | $0.004555 | $0.009769 | $0.014983 |
| 2030 | $0.003873 | $0.007537 | $0.01120045 |
| 2031 | $0.00458 | $0.0074024 | $0.010224 |
| 2032 | $0.006991 | $0.012978 | $0.018966 |
Previsão de preço de Small Thing 2032-2037
A previsão de preço de Small Thing para 2032-2037 é atualmente estimada entre $0.012978 na extremidade inferior e $0.118356 na extremidade superior. Comparado ao preço atual, Small Thing poderia potencialmente ganhar 3326.16% até 2037 se atingir a meta de preço superior. Por favor, note que esta informação é apenas para fins gerais e não deve ser considerada como aconselhamento de investimento a longo prazo.
| Previsão de Preço de Small Thing | Potencial Mínimo ($) | Preço Médio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2032 | $0.006991 | $0.012978 | $0.018966 |
| 2033 | $0.016245 | $0.033382 | $0.050519 |
| 2034 | $0.01306 | $0.021159 | $0.029258 |
| 2035 | $0.015442 | $0.024957 | $0.034473 |
| 2036 | $0.025561 | $0.048443 | $0.071324 |
| 2037 | $0.066382 | $0.118356 | $0.17033 |
Small Thing Histograma de preços potenciais
Previsão de preço de Small Thing baseada na análise técnica
Em 6 de janeiro de 2026, o sentimento geral de previsão de preço para Small Thing é Altista, com 24 indicadores técnicos mostrando sinais de alta e 5 indicando sinais de baixa. A previsão de preço de ST foi atualizada pela última vez em 6 de janeiro de 2026.
Médias Móveis Simples de 50 e 200 dias e Índice de Força Relativa de 14 dias - RSI (14) de Small Thing
De acordo com nossos indicadores técnicos, o SMA de 200 dias de Small Thing está projetado para diminuir no próximo mês, alcançando — até 4 de fev. de 2026. O SMA de 50 dias de curto prazo para Small Thing é esperado para alcançar $0.003246 até 4 de fev. de 2026.
O oscilador de momentum Índice de Força Relativa (RSI) é uma ferramenta comumente usada para identificar se uma criptomoeda está sobrevendida (abaixo de 30) ou sobrecomprada (acima de 70). No momento, o RSI está em 50.28, sugerindo que o mercado de ST está em um estado NEUTRAL.
Médias Móveis e Osciladores Populares de ST para Sábado, 19 de Outubro de 2024
Médias móveis (MA) são indicadores amplamente utilizados nos mercados financeiros, projetados para suavizar movimentos de preços ao longo de um período definido. Como indicadores atrasados, eles se baseiam em dados históricos de preços. A tabela abaixo destaca dois tipos: a média móvel simples (SMA) e a média móvel exponencial (EMA).
Média Móvel Simples Diária (SMA)
| Período | Valor | Ação |
|---|---|---|
| SMA 3 | $0.003428 | BUY |
| SMA 5 | $0.003234 | BUY |
| SMA 10 | $0.003132 | BUY |
| SMA 21 | $0.003381 | BUY |
| SMA 50 | $0.003414 | BUY |
| SMA 100 | — | — |
| SMA 200 | — | — |
Média Móvel Exponencial Diária (EMA)
| Período | Valor | Ação |
|---|---|---|
| EMA 3 | $0.00338 | BUY |
| EMA 5 | $0.003296 | BUY |
| EMA 10 | $0.003269 | BUY |
| EMA 21 | $0.003444 | BUY |
| EMA 50 | $0.003649 | SELL |
| EMA 100 | $0.002389 | BUY |
| EMA 200 | $0.001194 | BUY |
Média Móvel Simples Semanal (SMA)
| Período | Valor | Ação |
|---|---|---|
| SMA 21 | — | — |
| SMA 50 | — | — |
| SMA 100 | — | — |
| SMA 200 | — | — |
Média Móvel Exponencial Semanal (EMA)
| Período | Valor | Ação |
|---|---|---|
| EMA 21 | $0.00206 | BUY |
| EMA 50 | $0.000865 | BUY |
| EMA 100 | $0.000432 | BUY |
| EMA 200 | $0.000216 | BUY |
Osciladores de Small Thing
Um oscilador é uma ferramenta de análise técnica que define limites altos e baixos entre dois extremos, criando um indicador de tendência que flutua dentro desses limites. Os traders usam esse indicador para identificar condições de sobrecompra ou sobrevenda de curto prazo.
| Período | Valor | Ação |
|---|---|---|
| RSI (14) | 50.28 | NEUTRAL |
| Stoch RSI (14) | 98.56 | SELL |
| Estocástico Rápido (14) | 76.8 | NEUTRAL |
| Índice de Canal de Commodities (20) | 23.41 | NEUTRAL |
| Índice Direcional Médio (14) | 6.92 | NEUTRAL |
| Oscilador Impressionante (5, 34) | -0.000783 | SELL |
| Momentum (10) | -0 | BUY |
| MACD (12, 26) | 0 | BUY |
| Williams Percent Range (14) | -23.2 | NEUTRAL |
| Oscilador Ultimate (7, 14, 28) | 50.31 | NEUTRAL |
| VWMA (10) | 0.003158 | BUY |
| Média Móvel de Hull (9) | 0.0035020 | BUY |
| Nuvem Ichimoku B/L (9, 26, 52, 26) | — | — |
Previsão do preço de Small Thing com base nos fluxos financeiros mundiais
Definições dos fluxos financeiros mundiais, usadas na previsão do preço do Small Thing
M0: o total de todas as moedas físicas, mais as contas no Banco Central que podem ser trocadas por moedas físicas.
M1: o valor de M0, mais o valor em contas de demanda, incluindo contas 'correntes'.
M2: o valor de M1, mais a maioria das contas de poupança, do mercado de moedas e de certificados de depósito (CD) de menos de US$ 100.000.
Previsões de preço de Small Thing por empresas de Internet ou nichos tecnológicos
| Comparação | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Facebook stock | $0.004854 | $0.00682 | $0.009584 | $0.013467 | $0.018924 | $0.026592 |
| Amazon.com stock | $0.0072079 | $0.015039 | $0.031381 | $0.065479 | $0.136627 | $0.285081 |
| Apple stock | $0.004899 | $0.00695 | $0.009858 | $0.013983 | $0.019834 | $0.028133 |
| Netflix stock | $0.00545 | $0.00860026 | $0.013569 | $0.021411 | $0.033783 | $0.0533048 |
| Google stock | $0.004473 | $0.005793 | $0.0075022 | $0.009715 | $0.012581 | $0.016292 |
| Tesla stock | $0.007831 | $0.017752 | $0.040243 | $0.091228 | $0.2068088 | $0.46882 |
| Kodak stock | $0.00259 | $0.001942 | $0.001456 | $0.001092 | $0.000819 | $0.000614 |
| Nokia stock | $0.002288 | $0.001516 | $0.0010042 | $0.000665 | $0.00044 | $0.000291 |
Este cálculo mostra quanto a criptomoeda pode custar, se assumirmos que sua capitalização se comportará da mesma forma que a de algumas empresas de Internet ou nichos tecnológicos. Se você extrapolar os dados, poderá obter uma imagem em potencial do preço futuro para 2024, 2025, 2026, 2027, 2028, 2029 e 2030.
Visão geral da previsão para Small Thing
Você pode fazer perguntas como: 'Devo investir em Small Thing agora?', 'Devo comprar ST hoje?', 'Small Thing será um bom ou mau investimento no curto ou no longo prazo?'.
Atualizamos a previsão para Small Thing regularmente com novos valores. Veja nossas previsões semelhantes. Fazemos previsões de preços futuros para uma enorme quantidade de moedas digitais, como Small Thing, com métodos de análise técnica.
Se você estiver tentando encontrar criptomoedas com bom retorno, você deve explorar o máximo de fontes de informações disponíveis sobre Small Thing para poder tomar sozinho uma decisão de tão grande responsabilidade sobre o seu investimento.
O preço de Small Thing é de $0.003454 USD hoje, mas o preço pode tanto subir quanto descer e seu investimento pode ser perdido, porque criptomoedas são ativos de alto risco
Previsão do preço de Small Thing com base no padrão de crescimento do Bitcoin
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| Se Small Thing tiver 1% da média anterior do crescimento anual do Bitcoin | $0.003544 | $0.003636 | $0.00373 | $0.003827 |
| Se Small Thing tiver 2% da média anterior do crescimento anual do Bitcoin | $0.003634 | $0.003822 | $0.004021 | $0.00423 |
| Se Small Thing tiver 5% da média anterior do crescimento anual do Bitcoin | $0.0039034 | $0.00441 | $0.004984 | $0.005631 |
| Se Small Thing tiver 10% da média anterior do crescimento anual do Bitcoin | $0.004352 | $0.005483 | $0.0069091 | $0.008705 |
| Se Small Thing tiver 20% da média anterior do crescimento anual do Bitcoin | $0.00525 | $0.007979 | $0.012128 | $0.018433 |
| Se Small Thing tiver 50% da média anterior do crescimento anual do Bitcoin | $0.007944 | $0.018268 | $0.042012 | $0.096613 |
| Se Small Thing tiver 100% da média anterior do crescimento anual do Bitcoin | $0.012433 | $0.044753 | $0.161081 | $0.579784 |
Perguntas Frequentes sobre Small Thing
ST é um bom investimento?
A decisão de adquirir Small Thing depende inteiramente da sua tolerância individual ao risco. Como você pode perceber, o valor de Small Thing experimentou uma queda de -14.2566% nas últimas 24 horas, e Small Thing registrou um declínio de durante os últimos 30 dias. Consequentemente, a decisão de investir ou não em Small Thing dependerá de quão alinhado esse investimento está com suas aspirações de negociação.
Small Thing pode subir?
Parece que o valor médio de Small Thing pode potencialmente subir para $0.003562 até o final deste ano. Observando as perspectivas de Small Thing em um horizonte de cinco anos mais longo, a moeda digital poderia potencialmente crescer até $0.01120045. No entanto, dada a imprevisibilidade do mercado, é vital conduzir uma pesquisa aprofundada antes de investir quaisquer fundos em um projeto, rede ou ativo específico.
Qual será o preço de Small Thing na próxima semana?
Com base na nossa nova previsão experimental de Small Thing, o preço de Small Thing aumentará 0.86% na próxima semana e atingirá $0.003484 até 13 de janeiro de 2026.
Qual será o preço de Small Thing no próximo mês?
Com base na nossa nova previsão experimental de Small Thing, o preço de Small Thing diminuirá -11.62% no próximo mês e atingirá $0.0030531 até 5 de fevereiro de 2026.
Até onde o preço de Small Thing pode subir este ano em 2026?
De acordo com nossa previsão mais recente sobre o valor de Small Thing em 2026, espera-se que ST fluctue dentro do intervalo de $0.001193 e $0.003562. No entanto, é crucial lembrar que o mercado de criptomoedas é excepcionalmente instável, e essa previsão de preço de Small Thing não considera flutuações repentinas e extremas de preço.
Onde estará Small Thing em 5 anos?
O futuro de Small Thing parece seguir uma tendência de alta, com um preço máximo de $0.01120045 projetada após um período de cinco anos. Com base na previsão de Small Thing para 2030, o valor de Small Thing pode potencialmente atingir seu pico mais alto de aproximadamente $0.01120045, enquanto seu pico mais baixo está previsto para cerca de $0.003873.
Quanto será Small Thing em 2026?
Com base na nossa nova simulação experimental de previsão de preços de Small Thing, espera-se que o valor de ST em 2026 aumente 3.13% para $0.003562 se o melhor cenário ocorrer. O preço ficará entre $0.003562 e $0.001193 durante 2026.
Quanto será Small Thing em 2027?
De acordo com nossa última simulação experimental para previsão de preços de Small Thing, o valor de ST pode diminuir -12.62% para $0.003018 em 2027, assumindo as condições mais favoráveis. O preço está projetado para flutuar entre $0.003018 e $0.001148 ao longo do ano.
Quanto será Small Thing em 2028?
Nosso novo modelo experimental de previsão de preços de Small Thing sugere que o valor de ST em 2028 pode aumentar 47.02%, alcançando $0.005078 no melhor cenário. O preço é esperado para variar entre $0.005078 e $0.002073 durante o ano.
Quanto será Small Thing em 2029?
Com base no nosso modelo de previsão experimental, o valor de Small Thing pode experimentar um 333.75% crescimento em 2029, potencialmente alcançando $0.014983 sob condições ótimas. A faixa de preço prevista para 2029 está entre $0.014983 e $0.004555.
Quanto será Small Thing em 2030?
Usando nossa nova simulação experimental para previsões de preços de Small Thing, espera-se que o valor de ST em 2030 aumente 224.23%, alcançando $0.01120045 no melhor cenário. O preço está previsto para variar entre $0.01120045 e $0.003873 ao longo de 2030.
Quanto será Small Thing em 2031?
Nossa simulação experimental indica que o preço de Small Thing poderia aumentar 195.98% em 2031, potencialmente atingindo $0.010224 sob condições ideais. O preço provavelmente oscilará entre $0.010224 e $0.00458 durante o ano.
Quanto será Small Thing em 2032?
Com base nos achados da nossa mais recente previsão experimental de preços de Small Thing, ST poderia ver um 449.04% aumento em valor, atingindo $0.018966 se o cenário mais positivo se desenrolar em 2032. O preço é esperado para permanecer dentro de uma faixa de $0.018966 e $0.006991 ao longo do ano.
Quanto será Small Thing em 2033?
De acordo com nossa previsão experimental de preços de Small Thing, espera-se que o valor de ST seja aumentar 1362.43% em 2033, com o preço potencial mais alto sendo $0.050519. Ao longo do ano, o preço de ST poderia variar entre $0.050519 e $0.016245.
Quanto será Small Thing em 2034?
Os resultados da nossa nova simulação de previsão de preços de Small Thing sugerem que ST pode aumentar 746.96% em 2034, atingindo potencialmente $0.029258 nas melhores circunstâncias. A faixa de preço prevista para o ano é entre $0.029258 e $0.01306.
Quanto será Small Thing em 2035?
Com base em nossa previsão experimental para o preço de Small Thing, ST poderia aumentar 897.93%, com o valor potencialmente atingindo $0.034473 em 2035. A faixa de preço esperada para o ano está entre $0.034473 e $0.015442.
Quanto será Small Thing em 2036?
Nossa recente simulação de previsão de preços de Small Thing sugere que o valor de ST pode aumentar 1964.7% em 2036, possivelmente atingindo $0.071324 se as condições forem ideais. A faixa de preço esperada para 2036 está entre $0.071324 e $0.025561.
Quanto será Small Thing em 2037?
De acordo com a simulação experimental, o valor de Small Thing poderia aumentar 4830.69% em 2037, com um pico de $0.17033 sob condições favoráveis. O preço é esperado para cair entre $0.17033 e $0.066382 ao longo do ano.
Previsões relacionadas
Como ler e prever os movimentos de preço de Small Thing?
Traders de Small Thing utilizam indicadores e padrões de gráfico para prever a direção do mercado. Eles também identificam níveis-chave de suporte e resistência para avaliar quando uma tendência de baixa pode desacelerar ou uma tendência de alta pode estagnar.
Indicadores de Previsão de Preço de Small Thing
Médias móveis são ferramentas populares para a previsão de preço de Small Thing. Uma média móvel simples (SMA) calcula o preço médio de fechamento de ST em um período específico, como uma SMA de 12 dias. Uma média móvel exponencial (EMA) dá mais peso aos preços recentes, reagindo mais rapidamente às mudanças de preço.
Médias móveis comumente usadas no mercado de criptomoedas incluem as de 50 dias, 100 dias e 200 dias, que ajudam a identificar níveis-chave de resistência e suporte. Um movimento de preço de ST acima dessas médias é visto como altista, enquanto uma queda abaixo indica fraqueza.
Traders também usam RSI e níveis de retração de Fibonacci para avaliar a direção futura de ST.
Como ler gráficos de Small Thing e prever movimentos de preço?
A maioria dos traders prefere gráficos de velas em vez de gráficos de linha simples porque eles fornecem informações mais detalhadas. Velas podem representar a ação de preço de Small Thing em diferentes períodos de tempo, como 5 minutos para tendências de curto prazo e semanal para tendências de longo prazo. Opções populares incluem gráficos de 1 hora, 4 horas e 1 dia.
Por exemplo, um gráfico de velas de 1 hora mostra os preços de abertura, fechamento, máximo e mínimo de ST dentro de cada hora. A cor da vela é crucial: verde indica que o preço fechou mais alto do que abriu, enquanto vermelho significa o oposto. Alguns gráficos usam velas vazias e preenchidas para transmitir a mesma informação.
O que afeta o preço de Small Thing?
A ação de preço de Small Thing é impulsionada pela oferta e demanda, influenciada por fatores como reduções pela metade das recompensas de bloco, hard forks e atualizações de protocolo. Eventos do mundo real, como regulamentações, adoção por empresas e governos e hacks de exchanges de criptomoedas, também impactam o preço de ST. A capitalização de mercado de Small Thing pode mudar rapidamente.
Traders frequentemente monitoram a atividade de "baleias" de ST, grandes detentores de Small Thing, pois suas ações podem influenciar significativamente os movimentos de preço no relativamente pequeno mercado de Small Thing.
Padrões de previsão de preço altistas e baixistas
Traders frequentemente identificam padrões de velas para ganhar vantagem em previsões de preço de criptomoedas. Certas formações indicam tendências altistas, enquanto outras sugerem movimentos baixistas.
Padrões de velas altistas comumente seguidos:
- Martelo
- Engolfo de Alta
- Linha de Perfuração
- Estrela da Manhã
- Três Soldados Brancos
Padrões de velas baixistas comuns:
- Harami de Baixa
- Nuvem Negra
- Estrela da Noite
- Estrela Cadente
- Homem Enforcado


