Previsão de Preço Slerf [OLD] - Projeção SLERF
Previsão de Preço Slerf [OLD] até $0.007577 até 2026
| Ano | Preço Mínimo | Preço Máximo |
|---|---|---|
| 2026 | $0.002538 | $0.007577 |
| 2027 | $0.002443 | $0.00642 |
| 2028 | $0.00441 | $0.0108026 |
| 2029 | $0.009688 | $0.03187 |
| 2030 | $0.008239 | $0.023823 |
| 2031 | $0.009741 | $0.021748 |
| 2032 | $0.01487 | $0.040341 |
| 2033 | $0.034555 | $0.107455 |
| 2034 | $0.02778 | $0.062232 |
| 2035 | $0.032845 | $0.073325 |
Calculadora de lucro do investimento
Se você abrir um short de $10,000.00 em Slerf [OLD] hoje e fechar em Apr 06, 2026, nossa previsão mostra que pode lucrar cerca de $3,954.58, com um retorno de 39.55% nos próximos 90 dias.
Previsão de preço de longo prazo de Slerf [OLD] para os anos 2027, 2028, 2029, 2030, 2031, 2032 e 2037
[
'name' => 'Slerf [OLD]'
'name_with_ticker' => 'Slerf [OLD] <small>SLERF</small>'
'name_lang' => 'Slerf [OLD]'
'name_lang_with_ticker' => 'Slerf [OLD] <small>SLERF</small>'
'name_with_lang' => 'Slerf [OLD]'
'name_with_lang_with_ticker' => 'Slerf [OLD] <small>SLERF</small>'
'image' => '/uploads/coins/slerf.jpeg?1717130407'
'price_for_sd' => 0.007347
'ticker' => 'SLERF'
'marketcap' => '$0'
'low24h' => '$0.006334'
'high24h' => '$0.007599'
'volume24h' => '$52.38K'
'current_supply' => '0'
'max_supply' => '500M'
'algo' => null
'proof' => null
'ico_price_and_roi' => '—'
'price' => '$0.007347'
'change_24h_pct' => '3.6132%'
'ath_price' => '$1.3'
'ath_days' => 658
'ath_exchange' => null
'ath_pair' => null
'ath_date' => '19 de mar. de 2024'
'ath_pct' => '-99.44%'
'fdv' => '$3.67M'
'new_prediction' => true
'change_24h_pct_is_increased' => true
'change_30d_pct' => null
'change_30d_pct_is_increased' => false
'max_price' => '$0.362292'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.00741'
'next_week_prediction_price_date' => '13 de janeiro de 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.006494'
'next_month_prediction_price_date' => '5 de fevereiro de 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.002538'
'current_year_max_price_prediction' => '$0.007577'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.008239'
'grand_prediction_max_price' => '$0.023823'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.0074869452396045
107 => 0.0075148987753681
108 => 0.0075778795187863
109 => 0.0070397159619141
110 => 0.0072813355992978
111 => 0.0074232644995624
112 => 0.0067820245647496
113 => 0.0074105892477947
114 => 0.0070303477316948
115 => 0.0069012880500946
116 => 0.0070750499090492
117 => 0.0070073347436256
118 => 0.0069491172207624
119 => 0.0069166308427007
120 => 0.0070442223745204
121 => 0.0070382700770562
122 => 0.00682950556655
123 => 0.0065571807729248
124 => 0.006648581912422
125 => 0.0066153750215524
126 => 0.0064950289652668
127 => 0.0065761276765651
128 => 0.0062190099951261
129 => 0.0056046075855721
130 => 0.0060105006369782
131 => 0.0059948741960258
201 => 0.0059869946358949
202 => 0.0062920120459666
203 => 0.0062626916599371
204 => 0.0062094748721876
205 => 0.0064940515972267
206 => 0.0063901772644903
207 => 0.006710293482113
208 => 0.0069211427268581
209 => 0.0068676645381322
210 => 0.0070659692719378
211 => 0.0066506876100717
212 => 0.0067886275199352
213 => 0.0068170567441816
214 => 0.0064905399646134
215 => 0.0062674888377029
216 => 0.006252613870507
217 => 0.0058658739547828
218 => 0.0060724672961071
219 => 0.0062542608870592
220 => 0.0061671958647457
221 => 0.0061396336796748
222 => 0.0062804429056934
223 => 0.0062913849885045
224 => 0.0060419043408213
225 => 0.0060937792674992
226 => 0.0063101063352354
227 => 0.0060883283804304
228 => 0.0056574500414674
301 => 0.0055505862560455
302 => 0.0055363286571799
303 => 0.005246505595642
304 => 0.0055577274051765
305 => 0.0054218707450887
306 => 0.0058510403064933
307 => 0.0056059009547015
308 => 0.0055953334871996
309 => 0.00557935921016
310 => 0.0053298965286544
311 => 0.0053845130017237
312 => 0.0055660664765296
313 => 0.0056308468016866
314 => 0.0056240896830432
315 => 0.0055651767654569
316 => 0.0055921467974449
317 => 0.0055052669274293
318 => 0.0054745878370787
319 => 0.0053777561889835
320 => 0.0052354404167091
321 => 0.0052552302977173
322 => 0.0049732655138942
323 => 0.0048196361346637
324 => 0.0047771135472954
325 => 0.0047202505663252
326 => 0.0047835363723026
327 => 0.0049724667430887
328 => 0.0047445766321065
329 => 0.0043538750214603
330 => 0.0043773568539832
331 => 0.0044301135598438
401 => 0.0043318017874932
402 => 0.0042387579456451
403 => 0.0043196520172465
404 => 0.0041541065942874
405 => 0.0044501189333058
406 => 0.0044421126291003
407 => 0.0045524477238061
408 => 0.0046214425228297
409 => 0.0044624318484117
410 => 0.0044224410938062
411 => 0.004445221645108
412 => 0.0040687098763948
413 => 0.0045216786796654
414 => 0.004525595972686
415 => 0.0044920537315859
416 => 0.0047332456354846
417 => 0.0052422357823525
418 => 0.0050507332150196
419 => 0.0049765776327525
420 => 0.0048356078166555
421 => 0.0050234417266454
422 => 0.0050090190130236
423 => 0.0049437940323743
424 => 0.0049043457605632
425 => 0.0049770304109251
426 => 0.004895339328018
427 => 0.004880665364807
428 => 0.004791757113178
429 => 0.0047600209124142
430 => 0.0047365246928232
501 => 0.0047106576637443
502 => 0.0047677138842302
503 => 0.0046384169822383
504 => 0.0044824975935677
505 => 0.0044695345834709
506 => 0.0045053265940677
507 => 0.0044894912937804
508 => 0.0044694587701454
509 => 0.0044312112269931
510 => 0.0044198639979692
511 => 0.0044567369874038
512 => 0.004415109532161
513 => 0.0044765331099366
514 => 0.0044598292955032
515 => 0.0043665231459249
516 => 0.0042502291371892
517 => 0.0042491938765765
518 => 0.0042241385231548
519 => 0.0041922267634747
520 => 0.0041833496419738
521 => 0.0043128393441682
522 => 0.0045808791524098
523 => 0.004528256524403
524 => 0.0045662817661218
525 => 0.0047533283204132
526 => 0.0048127847953363
527 => 0.0047705839977397
528 => 0.0047128169431576
529 => 0.0047153584003864
530 => 0.0049127659131701
531 => 0.0049250779775974
601 => 0.0049561865923828
602 => 0.0049961699536755
603 => 0.0047773933370608
604 => 0.0047050540414181
605 => 0.0046707756699113
606 => 0.0045652115530696
607 => 0.0046790534027
608 => 0.0046127226321144
609 => 0.0046216729192482
610 => 0.0046158440330107
611 => 0.0046190269990439
612 => 0.0044500361918243
613 => 0.0045116075600798
614 => 0.0044092332183917
615 => 0.0042721654669306
616 => 0.0042717059677655
617 => 0.0043052531057519
618 => 0.004285297955378
619 => 0.0042315991588155
620 => 0.0042392268194161
621 => 0.0041724004863539
622 => 0.0042473407461796
623 => 0.0042494897646823
624 => 0.0042206336826258
625 => 0.0043360894926505
626 => 0.0043833918322205
627 => 0.0043643981408538
628 => 0.0043820591842009
629 => 0.0045304432321736
630 => 0.004554636306443
701 => 0.0045653812719288
702 => 0.004550984441613
703 => 0.0043847713722054
704 => 0.0043921436286262
705 => 0.0043380509025796
706 => 0.0042923482492212
707 => 0.0042941761156767
708 => 0.004317673220432
709 => 0.0044202864549852
710 => 0.0046362299577219
711 => 0.0046444248557981
712 => 0.0046543573113285
713 => 0.0046139570230341
714 => 0.0046017719095059
715 => 0.0046178472194943
716 => 0.0046989442453522
717 => 0.0049075478134866
718 => 0.004833813380344
719 => 0.0047738661384543
720 => 0.004826456031252
721 => 0.004818360229469
722 => 0.0047500235150936
723 => 0.0047481055311235
724 => 0.004616945527668
725 => 0.0045684586607592
726 => 0.0045279394055912
727 => 0.0044836934367296
728 => 0.0044574629432502
729 => 0.0044977649027807
730 => 0.0045069824377641
731 => 0.0044188614988929
801 => 0.0044068509405429
802 => 0.0044788124014476
803 => 0.0044471448454971
804 => 0.0044797157121098
805 => 0.0044872724325517
806 => 0.0044860556265145
807 => 0.0044529910611065
808 => 0.004474065429098
809 => 0.0044242182662267
810 => 0.0043700169634058
811 => 0.0043354399090666
812 => 0.0043052668431749
813 => 0.0043220086138005
814 => 0.0042623272584468
815 => 0.0042432339917208
816 => 0.0044669259074108
817 => 0.0046321695306243
818 => 0.0046297668228991
819 => 0.0046151409575484
820 => 0.0045934098883855
821 => 0.0046973544822885
822 => 0.0046611422642105
823 => 0.0046874896784943
824 => 0.004694196201227
825 => 0.0047144948256636
826 => 0.0047217498391739
827 => 0.0046998201494148
828 => 0.0046262214320971
829 => 0.0044428204260975
830 => 0.0043574467627232
831 => 0.0043292720317988
901 => 0.0043302961297565
902 => 0.0043020469363094
903 => 0.0043103675898196
904 => 0.0042991533525821
905 => 0.0042779163002696
906 => 0.0043206972856647
907 => 0.004325627395699
908 => 0.0043156418025131
909 => 0.0043179937711921
910 => 0.0042353173245154
911 => 0.0042416030351924
912 => 0.0042066033993933
913 => 0.0042000413896078
914 => 0.0041115653580745
915 => 0.0039548172434073
916 => 0.0040416709148405
917 => 0.0039367638932235
918 => 0.0038970340145363
919 => 0.0040851090809775
920 => 0.0040662315606972
921 => 0.004033921451838
922 => 0.0039861280668185
923 => 0.0039684010354107
924 => 0.0038606972042726
925 => 0.0038543334873514
926 => 0.0039077144143115
927 => 0.0038830809532449
928 => 0.0038484862444863
929 => 0.0037231877161718
930 => 0.0035823106854293
1001 => 0.003586562877466
1002 => 0.0036313732398348
1003 => 0.0037616654119229
1004 => 0.0037107580062107
1005 => 0.0036738240992712
1006 => 0.0036669074887306
1007 => 0.0037534833505511
1008 => 0.0038760063332309
1009 => 0.003933491375407
1010 => 0.0038765254444572
1011 => 0.0038110860502455
1012 => 0.0038150690429542
1013 => 0.0038415661090331
1014 => 0.0038443505760296
1015 => 0.0038017562576763
1016 => 0.0038137463087951
1017 => 0.0037955323247523
1018 => 0.0036837531383024
1019 => 0.0036817314072751
1020 => 0.0036542989922374
1021 => 0.0036534683496124
1022 => 0.0036067989682967
1023 => 0.0036002695992404
1024 => 0.003507604710009
1025 => 0.0035685970207162
1026 => 0.0035276865809338
1027 => 0.0034660248983847
1028 => 0.0034553944010715
1029 => 0.0034550748354855
1030 => 0.0035183875961636
1031 => 0.0035678571742452
1101 => 0.0035283982355491
1102 => 0.0035194142000874
1103 => 0.003615340194665
1104 => 0.0036031327374702
1105 => 0.0035925611582691
1106 => 0.0038650357439758
1107 => 0.0036493508479319
1108 => 0.0035552999223932
1109 => 0.0034388940422529
1110 => 0.003476796383796
1111 => 0.0034847829640604
1112 => 0.0032048478060597
1113 => 0.0030912781473226
1114 => 0.0030523053202263
1115 => 0.0030298759072375
1116 => 0.0030400972723873
1117 => 0.0029378712591316
1118 => 0.0030065688307016
1119 => 0.0029180497441719
1120 => 0.0029032092312492
1121 => 0.0030614923233749
1122 => 0.0030835164909678
1123 => 0.002989554549644
1124 => 0.0030498933270304
1125 => 0.0030280136475784
1126 => 0.0029195671498453
1127 => 0.0029154252913104
1128 => 0.0028610106508266
1129 => 0.0027758622752202
1130 => 0.0027369471827322
1201 => 0.0027166798646881
1202 => 0.0027250425551152
1203 => 0.0027208141229327
1204 => 0.00269322074272
1205 => 0.0027223957431868
1206 => 0.0026478656729367
1207 => 0.0026181871984335
1208 => 0.0026047821200358
1209 => 0.002538632392898
1210 => 0.0026439060256914
1211 => 0.002664646257554
1212 => 0.0026854273540803
1213 => 0.0028663126114849
1214 => 0.0028572760952014
1215 => 0.0029389618014423
1216 => 0.0029357876451082
1217 => 0.0029124895584676
1218 => 0.00281419876328
1219 => 0.0028533757223768
1220 => 0.0027327951317281
1221 => 0.0028231423089253
1222 => 0.0027819116302408
1223 => 0.0028092021749877
1224 => 0.0027601313148435
1225 => 0.0027872891549335
1226 => 0.0026695645359405
1227 => 0.0025596349431549
1228 => 0.0026038738203367
1229 => 0.0026519665391625
1230 => 0.0027562438073739
1231 => 0.002694137126696
]
'min_raw' => 0.002538632392898
'max_raw' => 0.0075778795187863
'avg_raw' => 0.0050582559558421
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.002538'
'max' => '$0.007577'
'avg' => '$0.005058'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.004809077607102
'max_diff' => 0.00023016951878633
'year' => 2026
]
1 => [
'items' => [
101 => 0.0027164730375814
102 => 0.0026416514751017
103 => 0.0024872732199834
104 => 0.0024881469841419
105 => 0.0024643992529051
106 => 0.0024438777458909
107 => 0.0027012708260783
108 => 0.0026692599277745
109 => 0.0026182547508103
110 => 0.0026865272070421
111 => 0.0027045795280993
112 => 0.0027050934523013
113 => 0.0027549032740008
114 => 0.0027814867847708
115 => 0.0027861722437635
116 => 0.0028645490744202
117 => 0.0028908199542409
118 => 0.0029990259902284
119 => 0.0027792313596106
120 => 0.0027747048338329
121 => 0.0026874879405106
122 => 0.002632173607921
123 => 0.0026912753601865
124 => 0.0027436314444999
125 => 0.0026891147899922
126 => 0.0026962335141615
127 => 0.0026230493596593
128 => 0.0026492092512593
129 => 0.0026717416740232
130 => 0.0026593005945676
131 => 0.0026406756964674
201 => 0.0027393388426471
202 => 0.0027337718812757
203 => 0.0028256492712541
204 => 0.0028972742669575
205 => 0.0030256390637574
206 => 0.0028916837064885
207 => 0.0028868018408453
208 => 0.0029345228605835
209 => 0.0028908126484014
210 => 0.0029184359936752
211 => 0.0030211885157786
212 => 0.0030233595146553
213 => 0.0029869924862959
214 => 0.0029847795493151
215 => 0.0029917642349233
216 => 0.0030326737566928
217 => 0.0030183787127639
218 => 0.0030349212995046
219 => 0.003055608057533
220 => 0.003141177259742
221 => 0.0031618077047015
222 => 0.0031116864191094
223 => 0.0031162118100141
224 => 0.0030974650733426
225 => 0.0030793559606139
226 => 0.0031200626014046
227 => 0.0031944547875406
228 => 0.0031939919976116
301 => 0.0032112495388177
302 => 0.0032220008440199
303 => 0.0031758483716556
304 => 0.0031458048092199
305 => 0.0031573254227793
306 => 0.0031757471347471
307 => 0.0031513515098697
308 => 0.0030007704119742
309 => 0.0030464470979179
310 => 0.003038844263901
311 => 0.0030280169037248
312 => 0.0030739451646486
313 => 0.0030695152718398
314 => 0.0029368227836106
315 => 0.0029453173261873
316 => 0.0029373393648795
317 => 0.0029631177900023
318 => 0.0028894205288472
319 => 0.0029120893100199
320 => 0.0029263069570648
321 => 0.0029346812603993
322 => 0.0029649349863573
323 => 0.0029613850608033
324 => 0.0029647143180005
325 => 0.0030095726069086
326 => 0.0032364504386999
327 => 0.0032487988985065
328 => 0.0031879905661815
329 => 0.003212282295554
330 => 0.003165647487176
331 => 0.0031969537464662
401 => 0.0032183726939798
402 => 0.0031215845887925
403 => 0.0031158534253529
404 => 0.0030690261385318
405 => 0.0030941884700364
406 => 0.0030541533913769
407 => 0.0030639765993123
408 => 0.003036510053553
409 => 0.0030859443673851
410 => 0.0031412196115652
411 => 0.0031551843211306
412 => 0.0031184491824494
413 => 0.0030918505210807
414 => 0.0030451520338609
415 => 0.0031228126588511
416 => 0.0031455229922628
417 => 0.0031226933711377
418 => 0.003117403249086
419 => 0.0031073784773569
420 => 0.0031195300517984
421 => 0.0031453993069098
422 => 0.0031331998439294
423 => 0.0031412578041548
424 => 0.003110549169108
425 => 0.0031758636500443
426 => 0.003279598764557
427 => 0.0032799322899126
428 => 0.0032677327611725
429 => 0.0032627409768546
430 => 0.0032752584336712
501 => 0.0032820486405012
502 => 0.0033225278005371
503 => 0.0033659635520164
504 => 0.0035686592516672
505 => 0.0035117431103052
506 => 0.0036915867934566
507 => 0.0038338197970498
508 => 0.0038764692557319
509 => 0.0038372337605565
510 => 0.0037030112510209
511 => 0.0036964256543608
512 => 0.0038970107508887
513 => 0.0038403362737402
514 => 0.00383359502502
515 => 0.0037618795281573
516 => 0.0038042722689403
517 => 0.003795000354667
518 => 0.0037803641843892
519 => 0.0038612465806991
520 => 0.0040126512061701
521 => 0.0039890533754268
522 => 0.0039714386894489
523 => 0.0038942562630515
524 => 0.0039407373230618
525 => 0.0039241863078782
526 => 0.0039952999726407
527 => 0.0039531738129959
528 => 0.0038399069088349
529 => 0.0038579450366551
530 => 0.0038552186099228
531 => 0.0039113282788779
601 => 0.0038944855489852
602 => 0.0038519297965951
603 => 0.00401213372162
604 => 0.0040017309698299
605 => 0.0040164796934681
606 => 0.004022972537733
607 => 0.0041204858437859
608 => 0.004160433925198
609 => 0.0041695028390682
610 => 0.0042074504267142
611 => 0.0041685586685181
612 => 0.0043241534306561
613 => 0.0044276148682718
614 => 0.0045477906521393
615 => 0.0047233997725753
616 => 0.0047894304263345
617 => 0.0047775025797503
618 => 0.0049106474106657
619 => 0.0051499057121774
620 => 0.0048258635231425
621 => 0.0051670807350321
622 => 0.00505905530529
623 => 0.004802928954666
624 => 0.0047864374372171
625 => 0.0049598891755478
626 => 0.0053445884370541
627 => 0.0052482256352697
628 => 0.0053447460520768
629 => 0.0052321498588875
630 => 0.0052265585088604
701 => 0.005339277506293
702 => 0.0056026515877869
703 => 0.0054775324340989
704 => 0.0052981434468121
705 => 0.0054306014834229
706 => 0.0053158540736981
707 => 0.0050572960438103
708 => 0.0052481519484512
709 => 0.005120532040281
710 => 0.0051577783141326
711 => 0.0054260163790776
712 => 0.0053937412654335
713 => 0.005435508251084
714 => 0.0053617906146432
715 => 0.0052929267180033
716 => 0.0051643871410247
717 => 0.0051263329092058
718 => 0.0051368497298327
719 => 0.0051263276975918
720 => 0.005054410985612
721 => 0.0050388805785072
722 => 0.0050129958862631
723 => 0.0050210186347495
724 => 0.0049723478404969
725 => 0.0050641996851509
726 => 0.0050812481969143
727 => 0.0051480903096454
728 => 0.0051550300795293
729 => 0.0053411844120472
730 => 0.0052386537338928
731 => 0.0053074401648717
801 => 0.0053012872590419
802 => 0.004808479989327
803 => 0.0048763844830184
804 => 0.0049820225655981
805 => 0.004934432752585
806 => 0.0048671518912856
807 => 0.0048128189884149
808 => 0.0047304990847411
809 => 0.0048463627683482
810 => 0.0049987111915625
811 => 0.0051588938869552
812 => 0.0053513428998835
813 => 0.0053083905205514
814 => 0.0051552961865232
815 => 0.0051621638865123
816 => 0.005204617305504
817 => 0.0051496362706098
818 => 0.0051334212900622
819 => 0.0052023896161748
820 => 0.0052028645631324
821 => 0.0051396022378066
822 => 0.0050692977400902
823 => 0.0050690031616777
824 => 0.00505649315537
825 => 0.0052343753612185
826 => 0.0053321925885156
827 => 0.0053434071759849
828 => 0.0053314377574258
829 => 0.00533604431158
830 => 0.0052791266222713
831 => 0.0054092235816145
901 => 0.0055286134167636
902 => 0.0054966143905518
903 => 0.0054486433013308
904 => 0.0054104320181655
905 => 0.0054876130266101
906 => 0.0054841762777982
907 => 0.0055275706507069
908 => 0.0055256020312938
909 => 0.0055110101358295
910 => 0.0054966149116743
911 => 0.0055536903482871
912 => 0.0055372535391461
913 => 0.0055207911991005
914 => 0.005487773455881
915 => 0.0054922611155511
916 => 0.005444298309215
917 => 0.0054221085203752
918 => 0.0050884273369727
919 => 0.0049992568214204
920 => 0.0050273116808464
921 => 0.0050365480690135
922 => 0.00499774094637
923 => 0.0050533803915089
924 => 0.0050447090429208
925 => 0.005078444187708
926 => 0.0050573679338547
927 => 0.0050582329106645
928 => 0.0051202136793161
929 => 0.0051382069601407
930 => 0.0051290554322897
1001 => 0.0051354648487005
1002 => 0.0052831671446418
1003 => 0.0052621686014125
1004 => 0.0052510135438384
1005 => 0.0052541035710214
1006 => 0.0052918446744074
1007 => 0.0053024101227676
1008 => 0.0052576435756445
1009 => 0.0052787557380601
1010 => 0.0053686486460933
1011 => 0.005400106076407
1012 => 0.0055005030935451
1013 => 0.0054578526562501
1014 => 0.0055361393797727
1015 => 0.0057767660779702
1016 => 0.0059689953345914
1017 => 0.0057922133659926
1018 => 0.0061452179155292
1019 => 0.0064200825928386
1020 => 0.0064095328287124
1021 => 0.006361603814489
1022 => 0.0060486776870277
1023 => 0.0057607183990722
1024 => 0.0060016085708442
1025 => 0.0060022226494316
1026 => 0.0059815299700415
1027 => 0.0058530095155242
1028 => 0.0059770577368085
1029 => 0.0059869042341371
1030 => 0.005981392814028
1031 => 0.0058828564828818
1101 => 0.0057324097177796
1102 => 0.0057618066555619
1103 => 0.0058099594393306
1104 => 0.0057187961739334
1105 => 0.005689663986862
1106 => 0.0057438262652532
1107 => 0.0059183484113883
1108 => 0.0058853560105994
1109 => 0.0058844944456821
1110 => 0.0060256499272123
1111 => 0.0059246130656961
1112 => 0.0057621774450894
1113 => 0.0057211603086235
1114 => 0.0055755771066238
1115 => 0.0056761319427946
1116 => 0.0056797507323341
1117 => 0.0056246778762088
1118 => 0.0057666463038401
1119 => 0.0057653380397864
1120 => 0.0059001159326105
1121 => 0.0061577606434252
1122 => 0.0060815624245111
1123 => 0.0059929521862565
1124 => 0.0060025865760502
1125 => 0.0061082520523865
1126 => 0.0060443642932854
1127 => 0.0060673387768994
1128 => 0.0061082172777539
1129 => 0.0061328802922755
1130 => 0.0059990379478028
1201 => 0.0059678328948868
1202 => 0.005903998308106
1203 => 0.0058873450559439
1204 => 0.0059393369949245
1205 => 0.0059256389559054
1206 => 0.0056794465870859
1207 => 0.0056537181147429
1208 => 0.0056545071702578
1209 => 0.005589811703229
1210 => 0.005491135587319
1211 => 0.0057504505282859
1212 => 0.005729623909416
1213 => 0.0057066329340359
1214 => 0.0057094491973352
1215 => 0.0058220090242102
1216 => 0.0057567186402152
1217 => 0.0059303038269493
1218 => 0.0058946199310052
1219 => 0.0058580208777777
1220 => 0.0058529617737872
1221 => 0.0058388742607791
1222 => 0.0057905629369416
1223 => 0.0057322241103474
1224 => 0.0056937037638072
1225 => 0.00525214075407
1226 => 0.0053340922802233
1227 => 0.0054283700409461
1228 => 0.0054609143461532
1229 => 0.0054052450600991
1230 => 0.0057927610996633
1231 => 0.0058635640142892
]
'min_raw' => 0.0024438777458909
'max_raw' => 0.0064200825928386
'avg_raw' => 0.0044319801693648
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.002443'
'max' => '$0.00642'
'avg' => '$0.004431'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -9.475464700703E-5
'max_diff' => -0.0011577969259477
'year' => 2027
]
2 => [
'items' => [
101 => 0.0056490973675276
102 => 0.005608979414534
103 => 0.0057953912259827
104 => 0.005682962115762
105 => 0.0057335889372102
106 => 0.0056241614406299
107 => 0.0058465096655071
108 => 0.0058448157445687
109 => 0.0057583172631291
110 => 0.0058314251873258
111 => 0.005818720886399
112 => 0.00572106431389
113 => 0.0058496055530426
114 => 0.0058496693078935
115 => 0.005766416400147
116 => 0.005669195230304
117 => 0.0056518143813976
118 => 0.0056387202465351
119 => 0.0057303685827191
120 => 0.0058125401943648
121 => 0.0059654411915673
122 => 0.0060038841351021
123 => 0.00615392950301
124 => 0.0060645847919972
125 => 0.0061041901451815
126 => 0.0061471873585823
127 => 0.0061678018038568
128 => 0.0061342116715141
129 => 0.0063672938890125
130 => 0.006386973169624
131 => 0.0063935714621879
201 => 0.0063149774498697
202 => 0.0063847873279659
203 => 0.0063521255978649
204 => 0.0064371023458978
205 => 0.0064504277850269
206 => 0.0064391416121508
207 => 0.0064433713168581
208 => 0.006244476762744
209 => 0.0062341630308608
210 => 0.0060935345648047
211 => 0.0061508417041957
212 => 0.0060437087539069
213 => 0.0060776817160352
214 => 0.006092656674035
215 => 0.0060848346057973
216 => 0.0061540817638739
217 => 0.006095207533249
218 => 0.0059398287588101
219 => 0.0057844076515281
220 => 0.0057824564661294
221 => 0.0057415368319925
222 => 0.0057119594313163
223 => 0.0057176570880012
224 => 0.0057377363733158
225 => 0.0057107923867517
226 => 0.0057165422523799
227 => 0.0058120283329632
228 => 0.0058311773854486
229 => 0.0057661014230854
301 => 0.0055048120437806
302 => 0.0054406909747044
303 => 0.0054867799275803
304 => 0.0054647523766143
305 => 0.0044104816743636
306 => 0.004658166937639
307 => 0.0045110007647975
308 => 0.0045788217080329
309 => 0.0044286031540575
310 => 0.0045002953216435
311 => 0.0044870563960692
312 => 0.0048853269698763
313 => 0.0048791085226696
314 => 0.0048820849642745
315 => 0.0047400116513924
316 => 0.0049663382965245
317 => 0.0050778349403595
318 => 0.0050571998789727
319 => 0.0050623932793588
320 => 0.0049731534541669
321 => 0.004882949000851
322 => 0.0047828983797579
323 => 0.0049687800671184
324 => 0.0049481131965901
325 => 0.0049955155618767
326 => 0.0051160731232274
327 => 0.0051338256820899
328 => 0.0051576853012298
329 => 0.0051491333262115
330 => 0.0053528760667545
331 => 0.0053282014765369
401 => 0.0053876601395973
402 => 0.0052653491585424
403 => 0.0051269426736138
404 => 0.0051532492215499
405 => 0.0051507156894397
406 => 0.0051184609178249
407 => 0.0050893427522193
408 => 0.0050408692104783
409 => 0.0051942466692812
410 => 0.0051880198245539
411 => 0.0052888252027733
412 => 0.0052710068730018
413 => 0.005152011705903
414 => 0.0051562616415753
415 => 0.0051848445014209
416 => 0.0052837701056999
417 => 0.0053131379604186
418 => 0.0052995336000062
419 => 0.0053317341120118
420 => 0.0053571840837804
421 => 0.0053349302366313
422 => 0.0056499977830524
423 => 0.0055191597713457
424 => 0.0055829293078865
425 => 0.0055981379665996
426 => 0.0055591813071097
427 => 0.0055676296116197
428 => 0.0055804264909271
429 => 0.0056581266361958
430 => 0.0058620343000992
501 => 0.0059523436163956
502 => 0.0062240436502565
503 => 0.0059448446848436
504 => 0.0059282781736761
505 => 0.0059772195543294
506 => 0.0061367362365752
507 => 0.0062660095248953
508 => 0.006308896932586
509 => 0.0063145652115063
510 => 0.006395024839435
511 => 0.0064411427976805
512 => 0.0063852549243062
513 => 0.0063378958033256
514 => 0.0061682613104039
515 => 0.006187896964859
516 => 0.0063231671523129
517 => 0.0065142442594658
518 => 0.0066782082955876
519 => 0.0066207938048613
520 => 0.007058825840789
521 => 0.0071022549279508
522 => 0.0070962544323355
523 => 0.0071951923560049
524 => 0.006998820725879
525 => 0.0069148680494791
526 => 0.0063481353828305
527 => 0.0065073641454337
528 => 0.0067388125030548
529 => 0.0067081794450368
530 => 0.0065400954611
531 => 0.0066780807888133
601 => 0.0066324585242711
602 => 0.0065964743513573
603 => 0.0067613248233509
604 => 0.0065800649577097
605 => 0.0067370042972384
606 => 0.0065357279709633
607 => 0.0066210560694187
608 => 0.0065726197138797
609 => 0.0066039639720499
610 => 0.0064207260792553
611 => 0.0065195967983588
612 => 0.0064166127322838
613 => 0.0064165639044276
614 => 0.0064142905254611
615 => 0.0065354508224971
616 => 0.0065394018554336
617 => 0.006449864212861
618 => 0.0064369604397254
619 => 0.0064846724521489
620 => 0.0064288141813968
621 => 0.006454949914714
622 => 0.0064296058061341
623 => 0.0064239003134642
624 => 0.0063784379771607
625 => 0.0063588515526682
626 => 0.0063665318943917
627 => 0.0063403149286019
628 => 0.0063245182584044
629 => 0.0064111481701624
630 => 0.0063648653029508
701 => 0.0064040546569724
702 => 0.006359393441974
703 => 0.0062045782128241
704 => 0.0061155423373987
705 => 0.005823110720914
706 => 0.0059060439645887
707 => 0.0059610287909458
708 => 0.0059428563061628
709 => 0.0059818978352947
710 => 0.0059842946681012
711 => 0.0059716018689992
712 => 0.0059569052336872
713 => 0.0059497517243923
714 => 0.0060030681219165
715 => 0.0060340200852268
716 => 0.0059665472538728
717 => 0.0059507393135318
718 => 0.0060189580713078
719 => 0.0060605714741424
720 => 0.0063678214601224
721 => 0.0063450593887567
722 => 0.0064021877210539
723 => 0.0063957559475429
724 => 0.0064556355410474
725 => 0.0065535133694229
726 => 0.0063545003772643
727 => 0.0063890421513515
728 => 0.0063805733060314
729 => 0.0064730339385862
730 => 0.0064733225905886
731 => 0.0064178878226209
801 => 0.0064479399096626
802 => 0.0064311656591118
803 => 0.006461478997033
804 => 0.0063447553874162
805 => 0.0064869121443944
806 => 0.006567505865222
807 => 0.0065686249091138
808 => 0.0066068256931548
809 => 0.0066456399021806
810 => 0.0067201403964005
811 => 0.006643562123832
812 => 0.0065058052662259
813 => 0.0065157508663931
814 => 0.006434984071182
815 => 0.0064363417756012
816 => 0.0064290942430062
817 => 0.0064508446338925
818 => 0.0063495283750852
819 => 0.0063733070985192
820 => 0.0063400167464635
821 => 0.0063889697846276
822 => 0.0063363044077902
823 => 0.0063805692220978
824 => 0.0063996724485511
825 => 0.0064701637654269
826 => 0.0063258927829729
827 => 0.0060317144834622
828 => 0.0060935543285865
829 => 0.0060020883402327
830 => 0.0060105538656904
831 => 0.0060276555743934
901 => 0.0059722233411562
902 => 0.0059827980643874
903 => 0.0059824202608604
904 => 0.0059791645541707
905 => 0.0059647444894112
906 => 0.0059438325425872
907 => 0.0060271393023764
908 => 0.0060412947442033
909 => 0.0060727605378963
910 => 0.0061663813964751
911 => 0.0061570264649712
912 => 0.0061722847463864
913 => 0.0061389760037286
914 => 0.0060120989627305
915 => 0.0060189889964806
916 => 0.0059330701652121
917 => 0.0060705634002089
918 => 0.0060380031873397
919 => 0.0060170114062861
920 => 0.0060112836043382
921 => 0.006105136530917
922 => 0.0061332187975138
923 => 0.0061157198135015
924 => 0.0060798288867654
925 => 0.0061487500762987
926 => 0.0061671904790663
927 => 0.0061713186051901
928 => 0.0062934337387159
929 => 0.0061781434846242
930 => 0.0062058949946707
1001 => 0.006422404354035
1002 => 0.0062260602413408
1003 => 0.0063300680968311
1004 => 0.0063249774535356
1005 => 0.0063781843529705
1006 => 0.006320612934789
1007 => 0.006321326601516
1008 => 0.0063685707236667
1009 => 0.0063022248746284
1010 => 0.0062857967093828
1011 => 0.0062631013167567
1012 => 0.0063126558762615
1013 => 0.0063423615935246
1014 => 0.0065817678582205
1015 => 0.0067364352234661
1016 => 0.0067297207052346
1017 => 0.0067910788328188
1018 => 0.0067634364343661
1019 => 0.006674171838066
1020 => 0.0068265356192924
1021 => 0.006778321343741
1022 => 0.0067822960700371
1023 => 0.0067821481305258
1024 => 0.0068142064088024
1025 => 0.0067914901805454
1026 => 0.0067467141628779
1027 => 0.0067764385730148
1028 => 0.0068647094444505
1029 => 0.0071387049378679
1030 => 0.0072920364459418
1031 => 0.0071294741885532
1101 => 0.0072416074569045
1102 => 0.0071743674530625
1103 => 0.0071621479441476
1104 => 0.0072325759232557
1105 => 0.007303127177218
1106 => 0.0072986333673421
1107 => 0.0072474167798124
1108 => 0.0072184858290897
1109 => 0.0074375606805417
1110 => 0.0075989712992488
1111 => 0.0075879641771635
1112 => 0.0076365460343402
1113 => 0.0077791838695912
1114 => 0.007792224885651
1115 => 0.0077905820173718
1116 => 0.0077582584983783
1117 => 0.0078987039710464
1118 => 0.0080158660552492
1119 => 0.0077507765376475
1120 => 0.0078517191556737
1121 => 0.0078970355490736
1122 => 0.0079635734593528
1123 => 0.0080758340670424
1124 => 0.0081977788626489
1125 => 0.0082150231938043
1126 => 0.0082027875156323
1127 => 0.0081223616448778
1128 => 0.0082557950953343
1129 => 0.0083339572812124
1130 => 0.0083805010741929
1201 => 0.0084985283890429
1202 => 0.0078973154076917
1203 => 0.0074717469772674
1204 => 0.007405288321574
1205 => 0.007540434611284
1206 => 0.0075760716101091
1207 => 0.0075617063805677
1208 => 0.0070826904211362
1209 => 0.0074027664016822
1210 => 0.0077471412439969
1211 => 0.0077603700842009
1212 => 0.0079327713308019
1213 => 0.0079889122436611
1214 => 0.008127717844323
1215 => 0.0081190355162089
1216 => 0.0081528324710905
1217 => 0.0081450631364449
1218 => 0.0084021712827033
1219 => 0.0086857997489555
1220 => 0.0086759785970525
1221 => 0.0086352036492891
1222 => 0.0086957613998795
1223 => 0.0089884963725255
1224 => 0.0089615460272266
1225 => 0.0089877259920595
1226 => 0.0093328770226291
1227 => 0.0097816224595312
1228 => 0.009573135150785
1229 => 0.010025492620157
1230 => 0.010310227668688
1231 => 0.010802647492969
]
'min_raw' => 0.0044104816743636
'max_raw' => 0.010802647492969
'avg_raw' => 0.0076065645836662
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.00441'
'max' => '$0.0108026'
'avg' => '$0.0076065'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 0.0019666039284726
'max_diff' => 0.0043825649001302
'year' => 2028
]
3 => [
'items' => [
101 => 0.01074099410575
102 => 0.010932689529799
103 => 0.010630621675178
104 => 0.0099370128229841
105 => 0.0098272465670964
106 => 0.010047001391108
107 => 0.010587247182578
108 => 0.010029987128563
109 => 0.010142720111713
110 => 0.010110253004982
111 => 0.010108522970841
112 => 0.01017455133746
113 => 0.010078773747871
114 => 0.0096885586178241
115 => 0.0098673919123722
116 => 0.009798335789067
117 => 0.0098749587063492
118 => 0.010288460989226
119 => 0.010105641773303
120 => 0.009913056580355
121 => 0.010154601150387
122 => 0.010462170391758
123 => 0.010442923261388
124 => 0.010405575783794
125 => 0.010616101559541
126 => 0.01096382846281
127 => 0.011057817647484
128 => 0.011127198542086
129 => 0.011136764995252
130 => 0.011235305408377
131 => 0.010705428771621
201 => 0.011546356602349
202 => 0.011691561608553
203 => 0.011664269085518
204 => 0.011825658338753
205 => 0.011778173526401
206 => 0.011709375483442
207 => 0.011965211778298
208 => 0.01167191611117
209 => 0.011255619836579
210 => 0.011027231466931
211 => 0.011327991695647
212 => 0.011511655472239
213 => 0.011633045545355
214 => 0.011669778108135
215 => 0.010746561586567
216 => 0.010248999085378
217 => 0.010567930944075
218 => 0.010957049823186
219 => 0.010703267196601
220 => 0.010713214995089
221 => 0.01035138766248
222 => 0.01098906351346
223 => 0.010896159505671
224 => 0.011378145662428
225 => 0.011263115797937
226 => 0.011656156798178
227 => 0.011552655930576
228 => 0.011982282245336
301 => 0.012153671813961
302 => 0.01244146157434
303 => 0.01265316089359
304 => 0.012777474783016
305 => 0.012770011443384
306 => 0.013262605006224
307 => 0.012972139792126
308 => 0.012607247025823
309 => 0.012600647266903
310 => 0.012789630401141
311 => 0.013185687205514
312 => 0.013288378972496
313 => 0.01334576966077
314 => 0.013257873823894
315 => 0.012942594651819
316 => 0.012806458703819
317 => 0.012922450475754
318 => 0.012780602505965
319 => 0.013025471897331
320 => 0.013361729872957
321 => 0.013292293930698
322 => 0.013524407875251
323 => 0.013764621388763
324 => 0.01410813750175
325 => 0.01419794533405
326 => 0.014346394265755
327 => 0.014499196979413
328 => 0.014548273092892
329 => 0.014641974620946
330 => 0.014641480767641
331 => 0.014923856629272
401 => 0.015235325949104
402 => 0.015352898406809
403 => 0.015623249790319
404 => 0.015160282520301
405 => 0.015511448512795
406 => 0.015828209028279
407 => 0.015450554083215
408 => 0.015971063442668
409 => 0.015991273641596
410 => 0.016296423650756
411 => 0.015987095656805
412 => 0.015803417681406
413 => 0.016333689114057
414 => 0.016590270756923
415 => 0.016512986277961
416 => 0.015924847577056
417 => 0.015582525626673
418 => 0.014686603053548
419 => 0.015747862042389
420 => 0.016264770338505
421 => 0.015923508909445
422 => 0.016095621324271
423 => 0.017034610851923
424 => 0.017392117268984
425 => 0.017317758433394
426 => 0.017330323852558
427 => 0.017523227826003
428 => 0.018378670278419
429 => 0.017866069331931
430 => 0.01825793354873
501 => 0.018465776916349
502 => 0.01865883341943
503 => 0.018184747663997
504 => 0.017567969061882
505 => 0.017372609387988
506 => 0.015889577185852
507 => 0.015812378919249
508 => 0.015769045192857
509 => 0.015495832177636
510 => 0.015281161587016
511 => 0.015110447563146
512 => 0.01466244298499
513 => 0.014813631378806
514 => 0.014099605587047
515 => 0.014556413985094
516 => 0.013416811580691
517 => 0.014365906326546
518 => 0.01384935720642
519 => 0.014196206048041
520 => 0.014194995925107
521 => 0.013556337239159
522 => 0.01318797223757
523 => 0.013422708753563
524 => 0.013674364932114
525 => 0.013715195300411
526 => 0.014041474104802
527 => 0.014132531505768
528 => 0.013856623329778
529 => 0.013393195853868
530 => 0.013500839486867
531 => 0.013185790842783
601 => 0.012633680212198
602 => 0.013030215706011
603 => 0.013165610358034
604 => 0.01322540834963
605 => 0.012682470954784
606 => 0.012511868237579
607 => 0.012421040782434
608 => 0.01332310945411
609 => 0.013372526812249
610 => 0.013119700621098
611 => 0.014262498979063
612 => 0.014003848514437
613 => 0.014292824454326
614 => 0.013491071955439
615 => 0.0135216999806
616 => 0.013142137498973
617 => 0.01335466712631
618 => 0.013204458035858
619 => 0.01333749683268
620 => 0.013417239738955
621 => 0.013796739938114
622 => 0.014370239609221
623 => 0.013740055263576
624 => 0.013465474919772
625 => 0.013635823020769
626 => 0.014089482461935
627 => 0.014776799737701
628 => 0.014369894076899
629 => 0.014550471899457
630 => 0.014589920120337
701 => 0.014289882950528
702 => 0.014787862536121
703 => 0.015054733841619
704 => 0.015328488579825
705 => 0.015566182148575
706 => 0.01521914491739
707 => 0.015590524500591
708 => 0.015291258113852
709 => 0.015022785227357
710 => 0.015023192389905
711 => 0.014854775426444
712 => 0.014528446337834
713 => 0.014468266247108
714 => 0.014781330678973
715 => 0.015032378706016
716 => 0.015053056223962
717 => 0.015192049311047
718 => 0.015274303988241
719 => 0.016080511644553
720 => 0.016404775033221
721 => 0.016801278166893
722 => 0.016955738483151
723 => 0.017420608657997
724 => 0.017045188236899
725 => 0.016963963667289
726 => 0.015836340680987
727 => 0.016020988881823
728 => 0.016316628467264
729 => 0.01584121566886
730 => 0.016142755664505
731 => 0.016202286047136
801 => 0.015825061323889
802 => 0.016026553347494
803 => 0.015491450271022
804 => 0.01438190339402
805 => 0.014789097778976
806 => 0.015088929906451
807 => 0.014661032491509
808 => 0.015428022045876
809 => 0.014979962582093
810 => 0.014837949242721
811 => 0.01428390457442
812 => 0.014545392330723
813 => 0.014899058265267
814 => 0.014680533835797
815 => 0.015134004838556
816 => 0.015776240714762
817 => 0.016233936245954
818 => 0.016269072425611
819 => 0.015974804862273
820 => 0.016446370510512
821 => 0.016449805351439
822 => 0.015917877373824
823 => 0.015592074449322
824 => 0.01551805133938
825 => 0.015702975581101
826 => 0.015927507749448
827 => 0.016281532398289
828 => 0.016495462079054
829 => 0.017053277226953
830 => 0.017204206012161
831 => 0.017370030988356
901 => 0.017591624295082
902 => 0.017857703875163
903 => 0.017275536901864
904 => 0.017298667481008
905 => 0.016756561656122
906 => 0.016177243836393
907 => 0.016616873848582
908 => 0.017191631607989
909 => 0.01705978154293
910 => 0.017044945717159
911 => 0.017069895460992
912 => 0.016970484817758
913 => 0.016520854162741
914 => 0.016295052462629
915 => 0.016586394263931
916 => 0.016741229465192
917 => 0.016981365359298
918 => 0.016951763541696
919 => 0.017570327816202
920 => 0.017810683188863
921 => 0.01774918999915
922 => 0.017760506225973
923 => 0.018195658147306
924 => 0.018679636579646
925 => 0.019132946248112
926 => 0.019594072312978
927 => 0.019038166843725
928 => 0.018755912329921
929 => 0.019047126940507
930 => 0.018892604368988
1001 => 0.01978053689931
1002 => 0.01984201542119
1003 => 0.020729883743884
1004 => 0.021572576507514
1005 => 0.021043296281087
1006 => 0.021542383695303
1007 => 0.022082187424971
1008 => 0.0231235563995
1009 => 0.022772859964681
1010 => 0.022504231991723
1011 => 0.022250379855279
1012 => 0.022778605853327
1013 => 0.0234581601612
1014 => 0.023604529650425
1015 => 0.023841704140419
1016 => 0.023592344164508
1017 => 0.023892670789393
1018 => 0.024952955745443
1019 => 0.024666457390924
1020 => 0.024259583670598
1021 => 0.02509657681255
1022 => 0.025399481376894
1023 => 0.027525424241812
1024 => 0.03020951492709
1025 => 0.029098283758695
1026 => 0.028408506713267
1027 => 0.028570620680673
1028 => 0.029550759736733
1029 => 0.029865549293481
1030 => 0.029009842763773
1031 => 0.029312092776328
1101 => 0.030977520062071
1102 => 0.031870968367568
1103 => 0.030657545562587
1104 => 0.027309760168691
1105 => 0.024222949143785
1106 => 0.025041710428502
1107 => 0.024948888307936
1108 => 0.026738182160182
1109 => 0.02465962449992
1110 => 0.02469462208016
1111 => 0.026520916634376
1112 => 0.026033692557926
1113 => 0.025244451953023
1114 => 0.024228711473626
1115 => 0.022351021252839
1116 => 0.020687898661023
1117 => 0.023949665057833
1118 => 0.023809011759666
1119 => 0.023605324940268
1120 => 0.024058607915622
1121 => 0.026259621377325
1122 => 0.026208880893047
1123 => 0.025886095820096
1124 => 0.026130925453032
1125 => 0.025201532134635
1126 => 0.025441057954679
1127 => 0.024222460177147
1128 => 0.02477331726573
1129 => 0.025242758597151
1130 => 0.025337005894631
1201 => 0.025549349868241
1202 => 0.023734893862867
1203 => 0.02454953133965
1204 => 0.025028054536051
1205 => 0.022866069325888
1206 => 0.024985319039759
1207 => 0.023703308220613
1208 => 0.023268174493439
1209 => 0.02385402473257
1210 => 0.023625718324622
1211 => 0.023429433881671
1212 => 0.02331990378991
1213 => 0.023750087547596
1214 => 0.023730018961119
1215 => 0.023026154838475
1216 => 0.022107992783658
1217 => 0.022416158106897
1218 => 0.022304198755899
1219 => 0.021898443624838
1220 => 0.022171873592112
1221 => 0.02096782639598
1222 => 0.018896325775962
1223 => 0.020264822537326
1224 => 0.020212136900651
1225 => 0.020185570413537
1226 => 0.021213957907229
1227 => 0.021115102178647
1228 => 0.020935678063272
1229 => 0.021895148360253
1230 => 0.021544928795158
1231 => 0.022624222972674
]
'min_raw' => 0.0096885586178241
'max_raw' => 0.031870968367568
'avg_raw' => 0.020779763492696
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.009688'
'max' => '$0.03187'
'avg' => '$0.020779'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072435
'min_diff' => 0.0052780769434605
'max_diff' => 0.021068320874599
'year' => 2029
]
4 => [
'items' => [
101 => 0.023335115922356
102 => 0.023154810475339
103 => 0.023823408730559
104 => 0.022423257613538
105 => 0.022888331650299
106 => 0.022984182764711
107 => 0.021883308645723
108 => 0.021131276198412
109 => 0.021081124207974
110 => 0.019777203580792
111 => 0.020473747454953
112 => 0.021086677239271
113 => 0.020793131437855
114 => 0.020700203606559
115 => 0.021174951743066
116 => 0.021211843739216
117 => 0.020370702317369
118 => 0.020545602254456
119 => 0.021274964066802
120 => 0.020527224208134
121 => 0.019074487805356
122 => 0.018714189091815
123 => 0.018666118601805
124 => 0.01768895991503
125 => 0.018738265974689
126 => 0.018280215759994
127 => 0.019727190899931
128 => 0.018900686460282
129 => 0.018865057505802
130 => 0.018811199115475
131 => 0.017970118267851
201 => 0.018154261520004
202 => 0.018766381735971
203 => 0.018984793125056
204 => 0.018962011027782
205 => 0.018763382012972
206 => 0.018854313358807
207 => 0.018561391811291
208 => 0.018457955116228
209 => 0.018131480454105
210 => 0.017651652891712
211 => 0.017718375857216
212 => 0.016767711902404
213 => 0.016249739724268
214 => 0.016106371852123
215 => 0.015914654341736
216 => 0.016128026855062
217 => 0.016765018790865
218 => 0.015996671370909
219 => 0.0146793936127
220 => 0.0147585642505
221 => 0.014936437167665
222 => 0.014604972163276
223 => 0.014291268354372
224 => 0.01456400836462
225 => 0.014005860413101
226 => 0.015003886681023
227 => 0.014976892867412
228 => 0.015348895342562
301 => 0.015581516124534
302 => 0.015045400533963
303 => 0.014910568912745
304 => 0.014987375131946
305 => 0.013717939416517
306 => 0.015245155362016
307 => 0.015258362788932
308 => 0.015145272781218
309 => 0.015958468124694
310 => 0.017674563941416
311 => 0.017028899665371
312 => 0.01677887894238
313 => 0.016303589365211
314 => 0.016936884506886
315 => 0.016888257320949
316 => 0.016668346744827
317 => 0.016535344142225
318 => 0.016780405515601
319 => 0.01650497832609
320 => 0.016455504034621
321 => 0.016155743656878
322 => 0.016048742840252
323 => 0.015969523695447
324 => 0.015882311200929
325 => 0.016074680231836
326 => 0.015638746699549
327 => 0.015113053594702
328 => 0.015069347901112
329 => 0.015190023163757
330 => 0.015136633343253
331 => 0.015069092291192
401 => 0.014940138029095
402 => 0.014901880054203
403 => 0.015026199912472
404 => 0.014885850040785
405 => 0.015092943921712
406 => 0.015036625845127
407 => 0.014722037647396
408 => 0.014329944277556
409 => 0.01432645382412
410 => 0.01424197795075
411 => 0.014134385224981
412 => 0.01410445539006
413 => 0.01454103896169
414 => 0.015444753889119
415 => 0.015267333024799
416 => 0.015395537782092
417 => 0.016026178299059
418 => 0.01622663995538
419 => 0.016084357019918
420 => 0.015889591362227
421 => 0.015898160062713
422 => 0.016563733274616
423 => 0.016605244259433
424 => 0.016710129126116
425 => 0.016844935820264
426 => 0.016107315182852
427 => 0.015863418197024
428 => 0.015747846274249
429 => 0.015391929484066
430 => 0.015775755228279
501 => 0.015552116404184
502 => 0.015582292922144
503 => 0.015562640425235
504 => 0.015573372017443
505 => 0.015003607712341
506 => 0.01521119987919
507 => 0.01486603763864
508 => 0.014403904144824
509 => 0.014402354911308
510 => 0.014515461429216
511 => 0.014448181246506
512 => 0.014267132004765
513 => 0.014292849195026
514 => 0.014067539547441
515 => 0.014320205865606
516 => 0.014327451431527
517 => 0.014230161136207
518 => 0.014619428460572
519 => 0.014778911600976
520 => 0.014714873044436
521 => 0.014774418485136
522 => 0.015274705662719
523 => 0.015356274301725
524 => 0.015392501703049
525 => 0.015343961784485
526 => 0.014783562816352
527 => 0.014808418893589
528 => 0.014626041491089
529 => 0.014471951804434
530 => 0.014478114583806
531 => 0.014557336713004
601 => 0.014903304397528
602 => 0.015631372993698
603 => 0.015659002664712
604 => 0.015692490631994
605 => 0.015556278239352
606 => 0.015515195278354
607 => 0.015569394308322
608 => 0.015842818593016
609 => 0.016546140087217
610 => 0.016297539297903
611 => 0.016095422986489
612 => 0.016272733481765
613 => 0.016245437920823
614 => 0.016015035917189
615 => 0.016008569300325
616 => 0.015566354191376
617 => 0.015402877334348
618 => 0.015266263836585
619 => 0.015117085463413
620 => 0.015028647523293
621 => 0.015164528393643
622 => 0.015195605956387
623 => 0.014898500058575
624 => 0.014858005622548
625 => 0.015100628712177
626 => 0.014993859336331
627 => 0.015103674287141
628 => 0.015129152297705
629 => 0.015125049751196
630 => 0.015013570260428
701 => 0.015084623963477
702 => 0.014916560773638
703 => 0.014733817296964
704 => 0.014617238344166
705 => 0.014515507745896
706 => 0.014571953794434
707 => 0.01437073393804
708 => 0.014306359656224
709 => 0.015060552567643
710 => 0.015617682980249
711 => 0.015609582083402
712 => 0.015560269957226
713 => 0.015487002140329
714 => 0.015837458595853
715 => 0.015715366574346
716 => 0.015804198721122
717 => 0.01582681023075
718 => 0.015895248460242
719 => 0.015919709244821
720 => 0.015845771764716
721 => 0.015597628550781
722 => 0.014979279254405
723 => 0.014691435987739
724 => 0.014596442915331
725 => 0.014599895733095
726 => 0.014504651605092
727 => 0.014532705269332
728 => 0.014494895685532
729 => 0.014423293480937
730 => 0.01456753256007
731 => 0.01458415477026
801 => 0.014550487645662
802 => 0.014558417472272
803 => 0.014279668060016
804 => 0.014300860772418
805 => 0.014182857056725
806 => 0.014160732782588
807 => 0.013862429665074
808 => 0.01333394245267
809 => 0.013626775669837
810 => 0.013273074322081
811 => 0.013139122262235
812 => 0.013773230479724
813 => 0.013709583602112
814 => 0.013600647814274
815 => 0.013439509079853
816 => 0.0133797411558
817 => 0.013016610169476
818 => 0.012995154453576
819 => 0.013175131975759
820 => 0.01309207854192
821 => 0.012975440066015
822 => 0.012552987329739
823 => 0.01207801058487
824 => 0.0120923471472
825 => 0.012243428412486
826 => 0.01268271756739
827 => 0.01251107969479
828 => 0.0123865544489
829 => 0.012363234613561
830 => 0.012655131176222
831 => 0.013068225966608
901 => 0.013262040799783
902 => 0.013069976186351
903 => 0.012849342699934
904 => 0.012862771637935
905 => 0.012952108346186
906 => 0.01296149637107
907 => 0.012817886652901
908 => 0.012858311947367
909 => 0.012796902228507
910 => 0.012420030897217
911 => 0.012413214489906
912 => 0.012320724187337
913 => 0.012317923617733
914 => 0.012160574540275
915 => 0.012138560316635
916 => 0.011826134172936
917 => 0.012031774006832
918 => 0.01189384160283
919 => 0.011685944935035
920 => 0.011650103471146
921 => 0.011649026033461
922 => 0.011862489426443
923 => 0.012029279562801
924 => 0.011896240996052
925 => 0.011865950693248
926 => 0.012189371881305
927 => 0.012148213587075
928 => 0.012112570769714
929 => 0.013031237858993
930 => 0.012304041173342
1001 => 0.011986941911463
1002 => 0.01159447135937
1003 => 0.01172226175014
1004 => 0.011749189063107
1005 => 0.010805368133459
1006 => 0.010422460099846
1007 => 0.010291060492295
1008 => 0.010215438160432
1009 => 0.010249900206667
1010 => 0.0099052380657832
1011 => 0.010136856724643
1012 => 0.0098384084442029
1013 => 0.0097883726187524
1014 => 0.010322035114827
1015 => 0.010396291133544
1016 => 0.010079491888158
1017 => 0.010282928288835
1018 => 0.010209159421972
1019 => 0.0098435244833725
1020 => 0.0098295599181466
1021 => 0.0096460971586468
1022 => 0.0093590134654201
1023 => 0.0092278085141316
1024 => 0.009159475836327
1025 => 0.0091876712309665
1026 => 0.0091734147766435
1027 => 0.0090803817687482
1028 => 0.0091787473197555
1029 => 0.0089274639843837
1030 => 0.0088274009355113
1031 => 0.0087822047777807
1101 => 0.0085591763543091
1102 => 0.0089141137572425
1103 => 0.0089840408970039
1104 => 0.0090541058148323
1105 => 0.0096639730891773
1106 => 0.009633505843618
1107 => 0.0099089149053233
1108 => 0.0098982130156302
1109 => 0.0098196618899008
1110 => 0.0094882676114818
1111 => 0.0096203554643246
1112 => 0.0092138095842844
1113 => 0.0095184214000432
1114 => 0.0093794092882244
1115 => 0.0094714212652037
1116 => 0.0093059754342095
1117 => 0.0093975399881726
1118 => 0.0090006232159672
1119 => 0.0086299879188515
1120 => 0.0087791423819297
1121 => 0.0089412903411775
1122 => 0.0092928684313584
1123 => 0.0090834714213029
1124 => 0.0091587785042965
1125 => 0.0089065123825216
1126 => 0.0083860153170447
1127 => 0.0083889612739095
1128 => 0.0083088941400308
1129 => 0.0082397044463667
1130 => 0.0091075231868293
1201 => 0.0089995962082687
1202 => 0.008827628693066
1203 => 0.0090578140458822
1204 => 0.0091186787066995
1205 => 0.0091204114380274
1206 => 0.0092883487294981
1207 => 0.0093779768920605
1208 => 0.0093937742441828
1209 => 0.0096580272008374
1210 => 0.0097466013063272
1211 => 0.010111425511363
1212 => 0.0093703725686642
1213 => 0.0093551110709727
1214 => 0.0090610532258475
1215 => 0.0088745570915985
1216 => 0.0090738227757139
1217 => 0.0092503449693618
1218 => 0.0090665382624579
1219 => 0.0090905395380082
1220 => 0.0088437940515493
1221 => 0.0089319939525041
1222 => 0.0090079635890161
1223 => 0.008966017621023
1224 => 0.0089032224767296
1225 => 0.0092358721625152
1226 => 0.0092171027635786
1227 => 0.0095268737985654
1228 => 0.0097683624722769
1229 => 0.010201153346832
1230 => 0.0097495135073352
1231 => 0.0097330539564782
]
'min_raw' => 0.0082397044463667
'max_raw' => 0.023823408730559
'avg_raw' => 0.016031556588463
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.008239'
'max' => '$0.023823'
'avg' => '$0.016031'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -0.0014488541714573
'max_diff' => -0.0080475596370091
'year' => 2030
]
5 => [
'items' => [
101 => 0.0098939487063006
102 => 0.0097465766741793
103 => 0.0098397107113703
104 => 0.010186148013594
105 => 0.010193467687881
106 => 0.010070853712702
107 => 0.010063392641169
108 => 0.010086941996352
109 => 0.01022487130521
110 => 0.010176674566556
111 => 0.010232449052718
112 => 0.010302195901714
113 => 0.010590698441213
114 => 0.010660255426766
115 => 0.010491268013035
116 => 0.010506525684423
117 => 0.01044331975288
118 => 0.010382263614977
119 => 0.01051950889645
120 => 0.010770327345904
121 => 0.010768767017347
122 => 0.010826952022407
123 => 0.010863200798528
124 => 0.010707594515689
125 => 0.010606300547363
126 => 0.010645143100322
127 => 0.010707253188384
128 => 0.010625001635862
129 => 0.010117306951071
130 => 0.010271309086774
131 => 0.010245675601074
201 => 0.010209170400297
202 => 0.010364020738611
203 => 0.01034908504572
204 => 0.009901703057362
205 => 0.0099303430007294
206 => 0.0099034447471766
207 => 0.0099903585072705
208 => 0.0097418830459076
209 => 0.0098183124243151
210 => 0.0098662482139713
211 => 0.0098944827623389
212 => 0.0099964853116538
213 => 0.0099845164898007
214 => 0.0099957413128824
215 => 0.010146984165842
216 => 0.01091191861583
217 => 0.010953552310211
218 => 0.010748532772274
219 => 0.010830434033848
220 => 0.010673201521463
221 => 0.010778752760394
222 => 0.010850968237359
223 => 0.01052464038319
224 => 0.010505317365517
225 => 0.010347435898622
226 => 0.010432272456068
227 => 0.010297291393208
228 => 0.010330411024596
301 => 0.010237805647916
302 => 0.010404476888394
303 => 0.010590841233342
304 => 0.010637924226626
305 => 0.010514069141797
306 => 0.010424389897933
307 => 0.010266942687888
308 => 0.010528780907134
309 => 0.010605350381816
310 => 0.01052837872028
311 => 0.010510542704438
312 => 0.010476743486646
313 => 0.010517713368271
314 => 0.010604933368013
315 => 0.010563802026835
316 => 0.010590970002324
317 => 0.010487433695256
318 => 0.010707646027844
319 => 0.011057396208978
320 => 0.011058520713
321 => 0.011017389150109
322 => 0.011000559000766
323 => 0.011042762480364
324 => 0.011065656136769
325 => 0.011202134450994
326 => 0.011348581119694
327 => 0.012031983822828
328 => 0.011840087078468
329 => 0.012446442612498
330 => 0.012925991114504
331 => 0.013069786742141
401 => 0.012937501530822
402 => 0.012484960968807
403 => 0.012462757169875
404 => 0.013139043827223
405 => 0.012947961870631
406 => 0.012925233279912
407 => 0.012683439475224
408 => 0.01282636956054
409 => 0.012795108654224
410 => 0.012745761784267
411 => 0.013018462430455
412 => 0.013528933695963
413 => 0.013449371962064
414 => 0.013389982818472
415 => 0.013129756879168
416 => 0.013286471018197
417 => 0.01323066811495
418 => 0.013470432800694
419 => 0.013328401512298
420 => 0.012946514236876
421 => 0.013007331044204
422 => 0.012998138706122
423 => 0.013187316372457
424 => 0.013130529932702
425 => 0.012987050242371
426 => 0.013527188960673
427 => 0.013492115356716
428 => 0.013541841708185
429 => 0.01356373278594
430 => 0.013892505705459
501 => 0.014027193451026
502 => 0.01405776992731
503 => 0.014185712868475
504 => 0.014054586590381
505 => 0.014579185194209
506 => 0.014928012654577
507 => 0.015333193700292
508 => 0.015925272110479
509 => 0.016147899069741
510 => 0.016107683502207
511 => 0.016556590595513
512 => 0.017363266663541
513 => 0.016270735799307
514 => 0.017421173452217
515 => 0.017056958173747
516 => 0.016193410300448
517 => 0.016137807997968
518 => 0.016722612643763
519 => 0.018019653062776
520 => 0.017694759148724
521 => 0.01802018447283
522 => 0.017640558546277
523 => 0.017621706919285
524 => 0.018001746888918
525 => 0.018889730992866
526 => 0.018467883030667
527 => 0.01786306053549
528 => 0.018309652053848
529 => 0.017922773150553
530 => 0.017051026700841
531 => 0.017694510708471
601 => 0.017264231277938
602 => 0.01738980969068
603 => 0.018294193054426
604 => 0.018185375255399
605 => 0.018326195563597
606 => 0.018077651405536
607 => 0.017845471970091
608 => 0.017412091811961
609 => 0.017283789312522
610 => 0.017319247507526
611 => 0.017283771741201
612 => 0.017041299525697
613 => 0.016988937673845
614 => 0.016901665626732
615 => 0.016928714883384
616 => 0.016764617902475
617 => 0.017074302809617
618 => 0.017131783057317
619 => 0.017357145907157
620 => 0.01738054382584
621 => 0.018008176154804
622 => 0.017662486814943
623 => 0.017894405069504
624 => 0.017873660117917
625 => 0.016212126001368
626 => 0.016441070742789
627 => 0.016797236913622
628 => 0.016636784536434
629 => 0.016409942415163
630 => 0.016226755239732
701 => 0.015949207937104
702 => 0.016339850435729
703 => 0.016853503781223
704 => 0.017393570922339
705 => 0.018042426205787
706 => 0.01789760926003
707 => 0.017381441024149
708 => 0.017404595954149
709 => 0.017547730620283
710 => 0.017362358222484
711 => 0.017307688283474
712 => 0.017540219810177
713 => 0.017541821127005
714 => 0.017328527780334
715 => 0.01709149125778
716 => 0.017090498066096
717 => 0.017048319706408
718 => 0.017648061982766
719 => 0.017977859593979
720 => 0.018015670358609
721 => 0.017975314628259
722 => 0.017990845947209
723 => 0.017798943983838
724 => 0.018237574965343
725 => 0.018640106130081
726 => 0.018532219179107
727 => 0.018370481302564
728 => 0.018241649293546
729 => 0.018501870452123
730 => 0.018490283213557
731 => 0.018636590371517
801 => 0.018629953033721
802 => 0.01858075543939
803 => 0.018532220936108
804 => 0.018724654755528
805 => 0.018669236905928
806 => 0.0186137329771
807 => 0.01850241135061
808 => 0.018517541808506
809 => 0.018355831858288
810 => 0.018281017435973
811 => 0.017155988029255
812 => 0.016855343410384
813 => 0.016949932327666
814 => 0.016981073455236
815 => 0.016850232531817
816 => 0.017037824805725
817 => 0.017008588748545
818 => 0.017122329144508
819 => 0.017051269083145
820 => 0.01705418541285
821 => 0.017263157901717
822 => 0.017323823504268
823 => 0.017292968489179
824 => 0.0173145782841
825 => 0.017812566887111
826 => 0.017741768832542
827 => 0.017704158777109
828 => 0.017714577019496
829 => 0.017841823784561
830 => 0.017877445931364
831 => 0.017726512392238
901 => 0.017797693521826
902 => 0.018100773737382
903 => 0.018206834659973
904 => 0.01854533021275
905 => 0.018401531285651
906 => 0.018665480439812
907 => 0.019476770152805
908 => 0.020124884512521
909 => 0.019528851762867
910 => 0.02071903124762
911 => 0.021645756697608
912 => 0.021610187431295
913 => 0.021448591413544
914 => 0.020393539127004
915 => 0.019422664282987
916 => 0.020234842315531
917 => 0.020236912724362
918 => 0.020167145911081
919 => 0.019733830225665
920 => 0.020152067464495
921 => 0.020185265617699
922 => 0.020166683480006
923 => 0.01983446135996
924 => 0.01932721958756
925 => 0.019426333415721
926 => 0.019588683888118
927 => 0.019281320574015
928 => 0.019183099371359
929 => 0.019365711274445
930 => 0.019954124874886
1001 => 0.019842888692171
1002 => 0.019839983865899
1003 => 0.020315899427039
1004 => 0.019975246594269
1005 => 0.019427583558501
1006 => 0.019289291419181
1007 => 0.018798447489345
1008 => 0.019137475140009
1009 => 0.019149676141597
1010 => 0.018963994162107
1011 => 0.019442650627785
1012 => 0.019438239724188
1013 => 0.019892652799736
1014 => 0.020761319930427
1015 => 0.020504412315368
1016 => 0.020205656710524
1017 => 0.020238139728365
1018 => 0.020594398259161
1019 => 0.02037899621885
1020 => 0.020456456294382
1021 => 0.020594281014059
1022 => 0.020677434089435
1023 => 0.020226175280471
1024 => 0.020120965265898
1025 => 0.019905742499778
1026 => 0.01984959489742
1027 => 0.020024889349655
1028 => 0.019978705454735
1029 => 0.019148650694658
1030 => 0.019061905353849
1031 => 0.019064565709608
1101 => 0.018846440425627
1102 => 0.01851374701149
1103 => 0.019388045439751
1104 => 0.019317827040163
1105 => 0.01924031136149
1106 => 0.019249806589829
1107 => 0.019629309904814
1108 => 0.019409178816746
1109 => 0.019994433393151
1110 => 0.019874122646605
1111 => 0.019750726383384
1112 => 0.019733669261065
1113 => 0.019686172227399
1114 => 0.019523287226092
1115 => 0.019326593799143
1116 => 0.019196719761378
1117 => 0.017707959245104
1118 => 0.017984264537203
1119 => 0.018302128589743
1120 => 0.01841185398692
1121 => 0.018224161102283
1122 => 0.01953069848518
1123 => 0.019769415455142
1124 => 0.019046326182003
1125 => 0.018911065702539
1126 => 0.019539566139695
1127 => 0.019160503545036
1128 => 0.019331195408201
1129 => 0.018962252963496
1130 => 0.019711915527527
1201 => 0.019706204354817
1202 => 0.019414568685512
1203 => 0.019661057156174
1204 => 0.019618223718613
1205 => 0.019288967766235
1206 => 0.019722353528501
1207 => 0.019722568482432
1208 => 0.019441875491432
1209 => 0.019114087529541
1210 => 0.019055486783961
1211 => 0.019011338994069
1212 => 0.019320337758196
1213 => 0.019597385083898
1214 => 0.020112901471173
1215 => 0.020242514539301
1216 => 0.020748402973036
1217 => 0.020447171042007
1218 => 0.020580703255426
1219 => 0.020725671362376
1220 => 0.020795174403874
1221 => 0.020681922927492
1222 => 0.021467775897069
1223 => 0.021534125965614
1224 => 0.021556372569671
1225 => 0.021291387369882
1226 => 0.021526756247853
1227 => 0.021416634944448
1228 => 0.021703139983328
1229 => 0.021748067631705
1230 => 0.021710015511877
1231 => 0.021724276256607
]
'min_raw' => 0.0097418830459076
'max_raw' => 0.021748067631705
'avg_raw' => 0.015744975338806
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.009741'
'max' => '$0.021748'
'avg' => '$0.015744'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 0.0015021785995409
'max_diff' => -0.0020753410988542
'year' => 2031
]
6 => [
'items' => [
101 => 0.021053689381037
102 => 0.021018915913911
103 => 0.020544777222237
104 => 0.02073799224375
105 => 0.020376786022068
106 => 0.020491328235799
107 => 0.020541817352214
108 => 0.020515444703031
109 => 0.020748916331169
110 => 0.020550417752149
111 => 0.020026547365929
112 => 0.019502534251572
113 => 0.019495955693774
114 => 0.019357992290363
115 => 0.019258270018955
116 => 0.019277480066266
117 => 0.019345178778595
118 => 0.019254335246725
119 => 0.019273721320134
120 => 0.019595659307445
121 => 0.019660221674844
122 => 0.019440813524278
123 => 0.01855985813931
124 => 0.018343669478129
125 => 0.018499061600578
126 => 0.018424794174582
127 => 0.014870246895114
128 => 0.01570533505308
129 => 0.015209154026531
130 => 0.015437817071756
131 => 0.014931344729103
201 => 0.015173059877507
202 => 0.015128423915621
203 => 0.016471220961575
204 => 0.016450255032659
205 => 0.016460290313339
206 => 0.015981280219715
207 => 0.016744356305399
208 => 0.017120275024536
209 => 0.017050702474377
210 => 0.01706821238637
211 => 0.01676733408521
212 => 0.016463203472982
213 => 0.016125875818655
214 => 0.016752588905436
215 => 0.016682909108535
216 => 0.016842729492626
217 => 0.01724919772778
218 => 0.017309051719429
219 => 0.017389496091185
220 => 0.017360662510331
221 => 0.018047595384935
222 => 0.017964403281292
223 => 0.018164872315071
224 => 0.017752492302964
225 => 0.017285845175796
226 => 0.017374539538826
227 => 0.017365997558432
228 => 0.017257248343976
229 => 0.017159074415671
301 => 0.016995642485377
302 => 0.017512765296203
303 => 0.017491771054461
304 => 0.017831643425134
305 => 0.017771567682273
306 => 0.017370367168423
307 => 0.017384696123263
308 => 0.017481065230824
309 => 0.017814599812415
310 => 0.017913615584998
311 => 0.017867747534041
312 => 0.017976313808436
313 => 0.018062120165114
314 => 0.017987089765737
315 => 0.019049361995809
316 => 0.018608232504522
317 => 0.018823235949216
318 => 0.018874513003902
319 => 0.018743167906565
320 => 0.018771651955062
321 => 0.018814797527096
322 => 0.019076768991721
323 => 0.01976425791695
324 => 0.020068742082038
325 => 0.020984797715691
326 => 0.020043458910752
327 => 0.019987603761714
328 => 0.020152613043564
329 => 0.020690434674855
330 => 0.021126288591999
331 => 0.021270886481332
401 => 0.021289997479458
402 => 0.021561272732531
403 => 0.021716762648609
404 => 0.021528332781561
405 => 0.021368658198667
406 => 0.020796723662279
407 => 0.020862926642192
408 => 0.021318999523456
409 => 0.021963229330799
410 => 0.022516045526187
411 => 0.022322468562152
412 => 0.023799324153702
413 => 0.02394574835319
414 => 0.023925517263282
415 => 0.024259093380559
416 => 0.02359701271936
417 => 0.023313960409489
418 => 0.021403181655872
419 => 0.021940032545986
420 => 0.022720376842913
421 => 0.022617095349074
422 => 0.022050388461982
423 => 0.022515615628195
424 => 0.022361796978047
425 => 0.022240473826733
426 => 0.022796278702552
427 => 0.022185148410383
428 => 0.022714280350759
429 => 0.022035663164058
430 => 0.022323352805418
501 => 0.022160046251
502 => 0.022265725605807
503 => 0.021647926256989
504 => 0.021981275789379
505 => 0.02163405782049
506 => 0.021633893193963
507 => 0.021626228338055
508 => 0.022034728738654
509 => 0.022048049922052
510 => 0.0217461675088
511 => 0.02170266153676
512 => 0.021863525917793
513 => 0.021675195858052
514 => 0.021763314307669
515 => 0.021677864876123
516 => 0.021658628409242
517 => 0.021505348968316
518 => 0.021439311970659
519 => 0.021465206779004
520 => 0.021376814448433
521 => 0.021323554871974
522 => 0.021615633667774
523 => 0.021459587749603
524 => 0.0215917173928
525 => 0.021441138988287
526 => 0.020919168634354
527 => 0.020618977964071
528 => 0.019633024352169
529 => 0.019912639573433
530 => 0.020098024754413
531 => 0.020036754953205
601 => 0.020168386194466
602 => 0.020176467283615
603 => 0.020133672625259
604 => 0.020084121893219
605 => 0.020060003337189
606 => 0.020239763293874
607 => 0.020344119999171
608 => 0.020116630637459
609 => 0.020063333062924
610 => 0.020293337367647
611 => 0.020433639860659
612 => 0.0214695546399
613 => 0.021392810727093
614 => 0.021585422888006
615 => 0.021563737714561
616 => 0.021765625944722
617 => 0.022095627876701
618 => 0.021424641678995
619 => 0.02154110168196
620 => 0.021512548378687
621 => 0.021824285856741
622 => 0.02182525906712
623 => 0.021638356876585
624 => 0.021739679586216
625 => 0.021683124029343
626 => 0.021785327564554
627 => 0.021391785765349
628 => 0.021871077196569
629 => 0.022142804553213
630 => 0.022146577487823
701 => 0.022275374098311
702 => 0.022406238913963
703 => 0.022657422531684
704 => 0.022399233539195
705 => 0.021934776675899
706 => 0.021968308961243
707 => 0.021695998072231
708 => 0.021700575667472
709 => 0.021676140105321
710 => 0.021749473066758
711 => 0.021407878226514
712 => 0.021488049852749
713 => 0.021375809106536
714 => 0.021540857692498
715 => 0.021363292697511
716 => 0.02151253460942
717 => 0.021576942471152
718 => 0.021814608867545
719 => 0.021328189177523
720 => 0.02033634650185
721 => 0.020544843857207
722 => 0.02023645989152
723 => 0.020265002001645
724 => 0.020322661606541
725 => 0.020135767962026
726 => 0.020171421379704
727 => 0.020170147588735
728 => 0.020159170746325
729 => 0.020110552491211
730 => 0.020040046402469
731 => 0.02032092095939
801 => 0.020368647019811
802 => 0.020474736140119
803 => 0.020790385401216
804 => 0.020758844596511
805 => 0.020810288957601
806 => 0.020697986206188
807 => 0.020270211404191
808 => 0.020293441634026
809 => 0.020003760295744
810 => 0.020467328337006
811 => 0.020357549306036
812 => 0.020286774050615
813 => 0.020267462366445
814 => 0.020583894061008
815 => 0.02067857538348
816 => 0.020619576337142
817 => 0.020498567571827
818 => 0.020730940174262
819 => 0.020793113279661
820 => 0.020807031545104
821 => 0.021218751243593
822 => 0.020830042102614
823 => 0.020923608256284
824 => 0.021653584677582
825 => 0.020991596793325
826 => 0.021342266539707
827 => 0.021325103080419
828 => 0.021504493856651
829 => 0.021310387800744
830 => 0.021312793977941
831 => 0.021472080834251
901 => 0.021248391172099
902 => 0.021193002465996
903 => 0.021116483365215
904 => 0.021283560022374
905 => 0.021383714922114
906 => 0.022190889858348
907 => 0.022712361678804
908 => 0.022689723211794
909 => 0.022896596422832
910 => 0.022803398146518
911 => 0.022502436327837
912 => 0.023016141453941
913 => 0.022853583657706
914 => 0.02286698472492
915 => 0.022866485936529
916 => 0.022974572659976
917 => 0.022897983310411
918 => 0.022747017840683
919 => 0.022847235764752
920 => 0.023144847170673
921 => 0.024068642106484
922 => 0.024585609991219
923 => 0.024037519990699
924 => 0.024415585133841
925 => 0.02418888076634
926 => 0.024147681838895
927 => 0.024385134687582
928 => 0.024623003166047
929 => 0.024607851972303
930 => 0.024435171671618
1001 => 0.024337628951362
1002 => 0.025076255108351
1003 => 0.025620462278651
1004 => 0.025583350998048
1005 => 0.025747148121396
1006 => 0.0262280615416
1007 => 0.026272030237741
1008 => 0.026266491192636
1009 => 0.026157510191593
1010 => 0.026631031908284
1011 => 0.027026052055169
1012 => 0.026132284238616
1013 => 0.026472619322879
1014 => 0.026625406707117
1015 => 0.026849743917152
1016 => 0.027228238393762
1017 => 0.027639383786063
1018 => 0.027697524252515
1019 => 0.02765627080929
1020 => 0.027385109370886
1021 => 0.027834989565127
1022 => 0.028098518831924
1023 => 0.028255444479542
1024 => 0.028653381811962
1025 => 0.026626350269987
1026 => 0.025191516594572
1027 => 0.024967446596907
1028 => 0.025423101748277
1029 => 0.025543254377911
1030 => 0.025494821003564
1031 => 0.023879785252515
1101 => 0.024958943767917
1102 => 0.026120027592264
1103 => 0.02616462955062
1104 => 0.026745892390207
1105 => 0.026935175397545
1106 => 0.027403168171274
1107 => 0.027373895095856
1108 => 0.027487843888868
1109 => 0.027461649034672
1110 => 0.0283285071005
1111 => 0.029284780276777
1112 => 0.029251667577445
1113 => 0.029114191994244
1114 => 0.029318366678367
1115 => 0.030305343076746
1116 => 0.030214478105958
1117 => 0.030302745685219
1118 => 0.03146644648246
1119 => 0.032979423053381
1120 => 0.032276493535824
1121 => 0.033801648326403
1122 => 0.034761652422091
1123 => 0.036421880239307
1124 => 0.036214011539797
1125 => 0.036860326045725
1126 => 0.035841883184168
1127 => 0.033503332512771
1128 => 0.03313324791741
1129 => 0.033874166649357
1130 => 0.035695643054057
1201 => 0.033816801875289
1202 => 0.034196888998746
1203 => 0.03408742388162
1204 => 0.034081590950726
1205 => 0.034304210198736
1206 => 0.033981289368458
1207 => 0.032665651813555
1208 => 0.033268600751866
1209 => 0.033035773210798
1210 => 0.033294112726056
1211 => 0.034688264542583
1212 => 0.034071876792068
1213 => 0.033422562368176
1214 => 0.034236946750143
1215 => 0.035273937921222
1216 => 0.035209044877388
1217 => 0.035083125249162
1218 => 0.035792927600534
1219 => 0.036965313132423
1220 => 0.037282204230666
1221 => 0.037516126760836
1222 => 0.037548380725593
1223 => 0.037880616608316
1224 => 0.03609410053269
1225 => 0.038929347425695
1226 => 0.039418916242002
1227 => 0.039326897595085
1228 => 0.039871032730205
1229 => 0.039710934370077
1230 => 0.039478976964914
1231 => 0.040341546894942
]
'min_raw' => 0.014870246895114
'max_raw' => 0.040341546894942
'avg_raw' => 0.027605896895028
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.01487'
'max' => '$0.040341'
'avg' => '$0.0276058'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.0051283638492062
'max_diff' => 0.018593479263237
'year' => 2032
]
7 => [
'items' => [
101 => 0.039352680075969
102 => 0.037949108121307
103 => 0.037179080787474
104 => 0.038193114896998
105 => 0.038812350142771
106 => 0.039221625249469
107 => 0.039345471649465
108 => 0.036232782690082
109 => 0.034555215978619
110 => 0.035630517007325
111 => 0.03694245847566
112 => 0.036086812631592
113 => 0.036120352328728
114 => 0.034900426214859
115 => 0.037050394867545
116 => 0.036737162518931
117 => 0.038362212497638
118 => 0.037974381278379
119 => 0.039299546451937
120 => 0.038950586050618
121 => 0.04039910116638
122 => 0.040976953063039
123 => 0.041947256332995
124 => 0.04266101536822
125 => 0.043080148325738
126 => 0.043054985155097
127 => 0.044715798743996
128 => 0.04373647499503
129 => 0.042506213557442
130 => 0.042483962009461
131 => 0.043121131840927
201 => 0.044456465008673
202 => 0.044802697470763
203 => 0.044996194183169
204 => 0.044699847232449
205 => 0.043636861491712
206 => 0.043177869638321
207 => 0.043568943995684
208 => 0.043090693662032
209 => 0.043916287911259
210 => 0.045050005152864
211 => 0.044815897025676
212 => 0.045598485395412
213 => 0.046408382027392
214 => 0.047566570585856
215 => 0.047869363962637
216 => 0.048369869900254
217 => 0.048885054917699
218 => 0.049050518460676
219 => 0.049366439704542
220 => 0.049364774643644
221 => 0.050316824575987
222 => 0.051366965133894
223 => 0.051763368883694
224 => 0.052674877448529
225 => 0.051113950974319
226 => 0.052297931635638
227 => 0.053365911829106
228 => 0.052092621814798
301 => 0.053847555460998
302 => 0.053915695557715
303 => 0.054944530118489
304 => 0.053901609190292
305 => 0.053282326072249
306 => 0.055070173229801
307 => 0.055935256152683
308 => 0.055674686136032
309 => 0.053691735443396
310 => 0.052537573087525
311 => 0.049516907580919
312 => 0.053095016356533
313 => 0.05483780876627
314 => 0.053687222032082
315 => 0.054267511055173
316 => 0.057433379805809
317 => 0.05863873765123
318 => 0.05838803164547
319 => 0.058430396833471
320 => 0.059080786048068
321 => 0.061964970001471
322 => 0.060236700121731
323 => 0.061557897687756
324 => 0.062258656112843
325 => 0.062909559591755
326 => 0.061311146367704
327 => 0.059231634248567
328 => 0.058572965468456
329 => 0.053572818856953
330 => 0.053312539511288
331 => 0.053166436827295
401 => 0.052245280071354
402 => 0.051521503187255
403 => 0.050945928936907
404 => 0.049435450222973
405 => 0.049945192448358
406 => 0.047537804639755
407 => 0.049077966047114
408 => 0.045235716976172
409 => 0.0484356561755
410 => 0.046694074752688
411 => 0.047863499838424
412 => 0.047859419824466
413 => 0.045706137475065
414 => 0.044464169153786
415 => 0.045255599706235
416 => 0.046104076082296
417 => 0.046241738519694
418 => 0.047341810288756
419 => 0.047648816673538
420 => 0.046718572994892
421 => 0.045156094904391
422 => 0.045519022928483
423 => 0.044456814428962
424 => 0.04259533489081
425 => 0.043932281993425
426 => 0.044388774515672
427 => 0.044590387619302
428 => 0.042759836285899
429 => 0.042184637313741
430 => 0.041878406207351
501 => 0.044919793714328
502 => 0.045086407787504
503 => 0.044233986632278
504 => 0.04808701108379
505 => 0.047214952983907
506 => 0.048189255540898
507 => 0.045486091014328
508 => 0.045589355539537
509 => 0.044309634132526
510 => 0.045026192609437
511 => 0.044519752173714
512 => 0.044968301765671
513 => 0.045237160541651
514 => 0.046516671958972
515 => 0.048450266140578
516 => 0.04632555562117
517 => 0.045399788821449
518 => 0.045974129337286
519 => 0.047503673816668
520 => 0.049821011998872
521 => 0.04844910115423
522 => 0.049057931890525
523 => 0.049190934321412
524 => 0.048179338055472
525 => 0.049858310996123
526 => 0.05075808623497
527 => 0.051681069447776
528 => 0.052482469910052
529 => 0.051312409655745
530 => 0.052564541849403
531 => 0.051555544332401
601 => 0.050650369251405
602 => 0.050651742028363
603 => 0.050083912477556
604 => 0.04898367117174
605 => 0.048780769794217
606 => 0.049836288383709
607 => 0.050682714334499
608 => 0.050752430029913
609 => 0.051221054927206
610 => 0.051498382314204
611 => 0.054216567715081
612 => 0.055309844369323
613 => 0.056646682367463
614 => 0.057167456107799
615 => 0.058734798358493
616 => 0.057469042197744
617 => 0.057195187890386
618 => 0.053393328263946
619 => 0.054015882564792
620 => 0.055012652068
621 => 0.053409764625921
622 => 0.054426427774089
623 => 0.054627138615407
624 => 0.053355299123992
625 => 0.054034643549297
626 => 0.052230506167271
627 => 0.048489591405368
628 => 0.049862475703651
629 => 0.050873380655045
630 => 0.049430694645724
701 => 0.052016653477773
702 => 0.050505989713115
703 => 0.050027181824368
704 => 0.048159181543027
705 => 0.049040805769895
706 => 0.050233215160378
707 => 0.04949644478953
708 => 0.051025353935667
709 => 0.053190697031772
710 => 0.054733849470467
711 => 0.05485231355331
712 => 0.053860169918413
713 => 0.055450086425112
714 => 0.055461667231112
715 => 0.053668234916556
716 => 0.052569767609763
717 => 0.052320193526465
718 => 0.052943678518425
719 => 0.053700704400344
720 => 0.054894323221124
721 => 0.055615602075916
722 => 0.057496314792468
723 => 0.058005181729308
724 => 0.05856427221408
725 => 0.059311389518855
726 => 0.060208495400182
727 => 0.058245678804104
728 => 0.058323665166614
729 => 0.056495917529392
730 => 0.054542707053495
731 => 0.056024950333578
801 => 0.057962786247726
802 => 0.057518244547902
803 => 0.057468224525509
804 => 0.057552344328776
805 => 0.057217174404484
806 => 0.055701213258885
807 => 0.054939907061985
808 => 0.055922186285911
809 => 0.05644422397721
810 => 0.057253858909943
811 => 0.057154054315164
812 => 0.05923958695344
813 => 0.060049961873441
814 => 0.059842633291007
815 => 0.059880786739816
816 => 0.061347931823926
817 => 0.062979698898856
818 => 0.064508064095158
819 => 0.066062782817649
820 => 0.064188508715982
821 => 0.063236867916311
822 => 0.064218718307856
823 => 0.063697734669557
824 => 0.06669146118901
825 => 0.06689874031782
826 => 0.069892250356771
827 => 0.072733447844279
828 => 0.070948942607715
829 => 0.072631650669914
830 => 0.074451636632383
831 => 0.077962684836066
901 => 0.07678028732123
902 => 0.075874589355398
903 => 0.075018709153987
904 => 0.076799659985967
905 => 0.079090824779926
906 => 0.079584319732042
907 => 0.080383970084049
908 => 0.079543235515506
909 => 0.080555807699441
910 => 0.084130632455496
911 => 0.083164683250559
912 => 0.081792880095465
913 => 0.084614860910552
914 => 0.085636124797359
915 => 0.09280388959502
916 => 0.10185348873766
917 => 0.098106895269737
918 => 0.09578126380238
919 => 0.096327842361925
920 => 0.099632449620555
921 => 0.10069378458904
922 => 0.097808710280603
923 => 0.098827767300354
924 => 0.10444287167066
925 => 0.10745519501121
926 => 0.10336405530574
927 => 0.092076763115307
928 => 0.081669364230573
929 => 0.084429875066084
930 => 0.084116918805962
1001 => 0.090149647953317
1002 => 0.083141645681482
1003 => 0.083259642466716
1004 => 0.089417122064068
1005 => 0.087774412073419
1006 => 0.085113432270968
1007 => 0.081688792327947
1008 => 0.075358028652419
1009 => 0.069750694718598
1010 => 0.080747967854703
1011 => 0.08027374543983
1012 => 0.079587001107271
1013 => 0.081115276305884
1014 => 0.088536146861867
1015 => 0.088365071776538
1016 => 0.087276779366948
1017 => 0.088102239567853
1018 => 0.084968725106708
1019 => 0.085776303132143
1020 => 0.081667715645416
1021 => 0.083524968779187
1022 => 0.085107723003419
1023 => 0.08542548434701
1024 => 0.086141416879418
1025 => 0.080023851776026
1026 => 0.082770458905174
1027 => 0.084383833271263
1028 => 0.077094549190209
1029 => 0.084239747561816
1030 => 0.07991735857793
1031 => 0.078450274836695
1101 => 0.080425509820682
1102 => 0.079655758826443
1103 => 0.078993972122891
1104 => 0.078624683771371
1105 => 0.080075078344881
1106 => 0.08000741570443
1107 => 0.077634288672712
1108 => 0.074538641200868
1109 => 0.075577642103583
1110 => 0.075200163334941
1111 => 0.073832131581653
1112 => 0.074754019806585
1113 => 0.070694490620936
1114 => 0.063710281652992
1115 => 0.068324264029322
1116 => 0.06814663072688
1117 => 0.06805705996076
1118 => 0.071524340195466
1119 => 0.071191041204664
1120 => 0.070586100272686
1121 => 0.073821021367036
1122 => 0.07264023165177
1123 => 0.076279147325176
1124 => 0.07867597253799
1125 => 0.078068060134847
1126 => 0.080322285832361
1127 => 0.075601578585895
1128 => 0.077169608171269
1129 => 0.07749277689562
1130 => 0.073781102942876
1201 => 0.071245573041538
1202 => 0.071076482104275
1203 => 0.066680222672898
1204 => 0.069028668975774
1205 => 0.071095204536993
1206 => 0.070105494372807
1207 => 0.069792181701576
1208 => 0.071392828189668
1209 => 0.071517212130403
1210 => 0.068681245100028
1211 => 0.069270932449039
1212 => 0.071730026721779
1213 => 0.069208969582752
1214 => 0.064310967373968
1215 => 0.063096195106011
1216 => 0.06293412209277
1217 => 0.059639563357267
1218 => 0.063177371997615
1219 => 0.061633023718726
1220 => 0.066511601427603
1221 => 0.06372498400463
1222 => 0.063604858497067
1223 => 0.063423271173805
1224 => 0.06058750837365
1225 => 0.061208360204757
1226 => 0.063272166249758
1227 => 0.064008555497054
1228 => 0.063931744065502
1229 => 0.063262052474232
1230 => 0.063568633855339
1231 => 0.062581028406759
]
'min_raw' => 0.034555215978619
'max_raw' => 0.10745519501121
'avg_raw' => 0.071005205494914
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.034555'
'max' => '$0.107455'
'avg' => '$0.0710052'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.019684969083505
'max_diff' => 0.067113648116267
'year' => 2033
]
8 => [
'items' => [
101 => 0.062232284367635
102 => 0.061131552250555
103 => 0.059513780123457
104 => 0.059738741260103
105 => 0.056533511363217
106 => 0.054787132000967
107 => 0.054303757210407
108 => 0.053657368238846
109 => 0.05437676856472
110 => 0.056524431349635
111 => 0.05393389437895
112 => 0.049492600447752
113 => 0.049759529780613
114 => 0.050359240739523
115 => 0.04924168333508
116 => 0.048184009041257
117 => 0.049103571027908
118 => 0.047221736240716
119 => 0.050586651482983
120 => 0.050495639955746
121 => 0.051749872273101
122 => 0.052534169480581
123 => 0.050726618336575
124 => 0.050272024111996
125 => 0.050530981642472
126 => 0.046250990498732
127 => 0.051400105685794
128 => 0.051444635447753
129 => 0.051063344591055
130 => 0.053805089467069
131 => 0.059591026327131
201 => 0.057414124141605
202 => 0.056571161818152
203 => 0.054968689825067
204 => 0.057103888610481
205 => 0.056939938658051
206 => 0.05619849479699
207 => 0.055750067236374
208 => 0.056576308766348
209 => 0.0556476867672
210 => 0.055480880739327
211 => 0.054470217697166
212 => 0.054109456973352
213 => 0.053842364095739
214 => 0.053548321081491
215 => 0.054196906699968
216 => 0.052727126359955
217 => 0.050954715354243
218 => 0.050807358556871
219 => 0.051214223630157
220 => 0.05103421612277
221 => 0.050806496750179
222 => 0.050371718452222
223 => 0.050242729018787
224 => 0.050661882100675
225 => 0.050188682709366
226 => 0.050886914187747
227 => 0.050697033860538
228 => 0.049636377788042
301 => 0.048314407616539
302 => 0.048302639309086
303 => 0.048017823004102
304 => 0.047655066617285
305 => 0.047554156089215
306 => 0.049026128082259
307 => 0.052073066055446
308 => 0.051474879224263
309 => 0.051907130514445
310 => 0.054033379047314
311 => 0.054709249517388
312 => 0.054229532666599
313 => 0.053572866653591
314 => 0.053601756625527
315 => 0.055845783178295
316 => 0.055985740361812
317 => 0.056339367012661
318 => 0.056793877193882
319 => 0.054306937715818
320 => 0.053484621999757
321 => 0.053094963193148
322 => 0.051894964885729
323 => 0.053189060180201
324 => 0.052435046270798
325 => 0.052536788507959
326 => 0.052470528742535
327 => 0.052506711054923
328 => 0.050585710920596
329 => 0.05128562240475
330 => 0.050121883812279
331 => 0.048563768472748
401 => 0.048558545123784
402 => 0.048939891645754
403 => 0.048713051812396
404 => 0.048102631653413
405 => 0.048189338955895
406 => 0.047429691748445
407 => 0.048281573880736
408 => 0.048306002812109
409 => 0.047977981788844
410 => 0.049290423750718
411 => 0.049828132293349
412 => 0.049612221828944
413 => 0.049812983439593
414 => 0.05149973658775
415 => 0.051774750949099
416 => 0.051896894161982
417 => 0.051733238437594
418 => 0.049843814190725
419 => 0.049927618190526
420 => 0.049312720044814
421 => 0.048793195908058
422 => 0.048813974148983
423 => 0.049081077088686
424 => 0.050247531291749
425 => 0.052702265395865
426 => 0.052795420760729
427 => 0.052908327780478
428 => 0.052449078188638
429 => 0.052310564117312
430 => 0.052493299930906
501 => 0.053415168996624
502 => 0.055786466518661
503 => 0.054948291600737
504 => 0.054266842345495
505 => 0.054864657059742
506 => 0.05477262817031
507 => 0.053995811728905
508 => 0.053974009078662
509 => 0.052483049964366
510 => 0.051931876327307
511 => 0.051471274381549
512 => 0.0509683090811
513 => 0.050670134391444
514 => 0.051128266232728
515 => 0.051233046405287
516 => 0.050231333127544
517 => 0.050094803309245
518 => 0.050912823995333
519 => 0.050552843590271
520 => 0.050923092363962
521 => 0.051008993255393
522 => 0.050995161233407
523 => 0.050619300347036
524 => 0.050858862867676
525 => 0.050292226089338
526 => 0.049676093698987
527 => 0.049283039620348
528 => 0.048940047805677
529 => 0.049130359599258
530 => 0.048451932804704
531 => 0.048234890419092
601 => 0.050777704476011
602 => 0.052656108559714
603 => 0.052628795820407
604 => 0.052462536544144
605 => 0.052215508984079
606 => 0.053397097391966
607 => 0.052985455617264
608 => 0.053284959402181
609 => 0.053361195685576
610 => 0.053591939954515
611 => 0.053674411197521
612 => 0.053425125821197
613 => 0.052588493650609
614 => 0.050503685826105
615 => 0.049533202155967
616 => 0.049212926380138
617 => 0.049224567796299
618 => 0.048903445569005
619 => 0.048998030456632
620 => 0.048870552805072
621 => 0.048629140973173
622 => 0.049115453098919
623 => 0.0491714960411
624 => 0.049057984979954
625 => 0.049084720944014
626 => 0.048144897838932
627 => 0.048216350548423
628 => 0.047818492782206
629 => 0.047743899247288
630 => 0.046738149459731
701 => 0.04495631792531
702 => 0.045943625561951
703 => 0.044751096773351
704 => 0.044299468051348
705 => 0.046437408178633
706 => 0.046222818287082
707 => 0.04585553367273
708 => 0.045312243179284
709 => 0.045110731450475
710 => 0.04388640997709
711 => 0.043814070532941
712 => 0.044420877314611
713 => 0.044140856863817
714 => 0.043747602098864
715 => 0.042323273203801
716 => 0.040721855946659
717 => 0.040770192667503
718 => 0.041279573701572
719 => 0.04276066775752
720 => 0.042181978686674
721 => 0.041762133126083
722 => 0.041683508673096
723 => 0.042667658313676
724 => 0.044060436240821
725 => 0.044713896482588
726 => 0.044066337228879
727 => 0.043322456025286
728 => 0.043367732627335
729 => 0.043668937576493
730 => 0.04370058995784
731 => 0.043216399766524
801 => 0.04335269646922
802 => 0.043145649314594
803 => 0.041875001308834
804 => 0.041852019315679
805 => 0.041540181803098
806 => 0.04153073948715
807 => 0.041000226086737
808 => 0.040926003594754
809 => 0.039872637038374
810 => 0.040565966095671
811 => 0.040100917365445
812 => 0.03939997923509
813 => 0.039279137237217
814 => 0.03927550458084
815 => 0.039995211313817
816 => 0.040557555903462
817 => 0.040109007087212
818 => 0.040006881216506
819 => 0.041097318332587
820 => 0.040958550270011
821 => 0.040838378022778
822 => 0.043935728253567
823 => 0.041483933856645
824 => 0.040414811556055
825 => 0.039091569688257
826 => 0.039522423912777
827 => 0.039613211228449
828 => 0.036431053068668
829 => 0.035140051899558
830 => 0.034697028948672
831 => 0.034442062977012
901 => 0.034558254171959
902 => 0.033396201700426
903 => 0.03417712017987
904 => 0.033170880965372
905 => 0.033002181686476
906 => 0.034801462051117
907 => 0.035051821402613
908 => 0.033983710628576
909 => 0.034669610656935
910 => 0.034420893771928
911 => 0.033188130048623
912 => 0.033141047541989
913 => 0.032522490039375
914 => 0.031554567324118
915 => 0.031112200670411
916 => 0.030881812276358
917 => 0.030976875017924
918 => 0.03092880838682
919 => 0.030615141105344
920 => 0.030946787428229
921 => 0.030099568118981
922 => 0.029762198563528
923 => 0.029609816562245
924 => 0.028857860661163
925 => 0.030054556896091
926 => 0.030290321129954
927 => 0.030526549892188
928 => 0.032582759987216
929 => 0.032480037541658
930 => 0.033408598421644
1001 => 0.033372516253361
1002 => 0.0331076756487
1003 => 0.031990356701801
1004 => 0.03243570011974
1005 => 0.031065002301057
1006 => 0.032092022305206
1007 => 0.031623333264693
1008 => 0.03193355806915
1009 => 0.031375745898894
1010 => 0.031684462185414
1011 => 0.030346229576079
1012 => 0.029096606794923
1013 => 0.029599491480823
1014 => 0.030146184646236
1015 => 0.03133155472368
1016 => 0.030625558084645
1017 => 0.030879461172731
1018 => 0.030028928330508
1019 => 0.028274036134308
1020 => 0.028283968633558
1021 => 0.028014016701578
1022 => 0.027780738818719
1023 => 0.030706650291358
1024 => 0.03034276694792
1025 => 0.029762966464026
1026 => 0.030539052452073
1027 => 0.030744261905454
1028 => 0.030750103930101
1029 => 0.031316316233302
1030 => 0.03161850384102
1031 => 0.031671765716636
1101 => 0.032562713009549
1102 => 0.032861346790255
1103 => 0.034091377068746
1104 => 0.031592865333772
1105 => 0.031541410128782
1106 => 0.030549973573479
1107 => 0.029921188836114
1108 => 0.030593027002395
1109 => 0.031188183902665
1110 => 0.030568466757364
1111 => 0.030649388733597
1112 => 0.029817469098781
1113 => 0.030114841222771
1114 => 0.030370978156302
1115 => 0.030229554396639
1116 => 0.030017836183437
1117 => 0.031139387823923
1118 => 0.03107610548497
1119 => 0.032120520156951
1120 => 0.03293471608057
1121 => 0.034393900730626
1122 => 0.032871165479277
1123 => 0.032815670954393
1124 => 0.033358138836732
1125 => 0.032861263741248
1126 => 0.033175271650049
1127 => 0.034343309201975
1128 => 0.034367987994878
1129 => 0.033954586416928
1130 => 0.03392943089334
1201 => 0.034008829188503
1202 => 0.034473867483233
1203 => 0.034311368813871
1204 => 0.034499416388019
1205 => 0.034734572758979
1206 => 0.035707279213503
1207 => 0.035941795446606
1208 => 0.035372042582891
1209 => 0.035423484887232
1210 => 0.035210381676136
1211 => 0.035004526644394
1212 => 0.035467258693038
1213 => 0.036312910606958
1214 => 0.036307649850291
1215 => 0.036503824657196
1216 => 0.036626039936698
1217 => 0.036101402490023
1218 => 0.035759882803691
1219 => 0.035890843182893
1220 => 0.036100251681182
1221 => 0.035822934829234
1222 => 0.034111206753349
1223 => 0.03463043570596
1224 => 0.034544010619247
1225 => 0.034420930786118
1226 => 0.034943019513047
1227 => 0.03489266278169
1228 => 0.033384283172727
1229 => 0.033480844741367
1230 => 0.033390155401538
1231 => 0.033683191211819
]
'min_raw' => 0.027780738818719
'max_raw' => 0.062232284367635
'avg_raw' => 0.045006511593177
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.02778'
'max' => '$0.062232'
'avg' => '$0.0450065'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.0067744771598999
'max_diff' => -0.045222910643573
'year' => 2034
]
9 => [
'items' => [
101 => 0.032845438845832
102 => 0.033103125831261
103 => 0.033264744692857
104 => 0.033359939443952
105 => 0.033703848160557
106 => 0.033663494442043
107 => 0.033701339716755
108 => 0.034211265554947
109 => 0.036790295459101
110 => 0.036930666366476
111 => 0.036239428680317
112 => 0.036515564501877
113 => 0.035985444108747
114 => 0.036341317480153
115 => 0.036584797002665
116 => 0.035484559858852
117 => 0.035419410955676
118 => 0.034887102567109
119 => 0.035173134943637
120 => 0.034718036866126
121 => 0.034829702015692
122 => 0.034517476522713
123 => 0.0350794202466
124 => 0.035707760647133
125 => 0.035866504246222
126 => 0.035448918180436
127 => 0.035146558348543
128 => 0.034615714087261
129 => 0.03549851992441
130 => 0.035756679254212
131 => 0.035497163923352
201 => 0.03543702855067
202 => 0.035323072128099
203 => 0.035461204944425
204 => 0.03575527326306
205 => 0.035616596074581
206 => 0.035708194800749
207 => 0.035359114912792
208 => 0.036101576166848
209 => 0.037280783321318
210 => 0.03728457466514
211 => 0.037145896729139
212 => 0.037089152705585
213 => 0.037231444683603
214 => 0.037308632244555
215 => 0.037768778409578
216 => 0.038262533577679
217 => 0.040566673504951
218 => 0.039919680233538
219 => 0.041964050250911
220 => 0.04358088150643
221 => 0.044065698504498
222 => 0.043619689678678
223 => 0.04209391757847
224 => 0.042019055920154
225 => 0.044299203602229
226 => 0.043654957444663
227 => 0.043578326414195
228 => 0.042763101720182
301 => 0.043245000481886
302 => 0.043139602153673
303 => 0.042973225736327
304 => 0.043892655004299
305 => 0.045613744515927
306 => 0.045345496575264
307 => 0.045145261931224
308 => 0.044267892008466
309 => 0.044796264669633
310 => 0.044608121285303
311 => 0.045416504663126
312 => 0.044937636257988
313 => 0.043650076646386
314 => 0.043855124758386
315 => 0.043824132148756
316 => 0.044461957858765
317 => 0.044270498412428
318 => 0.043786746619045
319 => 0.045607862019082
320 => 0.04548960891458
321 => 0.045657264780341
322 => 0.045731072077379
323 => 0.046839552929729
324 => 0.047293662067506
325 => 0.047396752792081
326 => 0.047828121350908
327 => 0.047386019949369
328 => 0.049154740768479
329 => 0.050330836905467
330 => 0.051696933089931
331 => 0.053693166787472
401 => 0.054443769123941
402 => 0.054308179530239
403 => 0.055821701137014
404 => 0.058541465820694
405 => 0.054857921733859
406 => 0.05873670260164
407 => 0.057508725361579
408 => 0.054597213415762
409 => 0.054409746370922
410 => 0.056381456063979
411 => 0.060754518393152
412 => 0.059659115878556
413 => 0.060756310079248
414 => 0.05947637476324
415 => 0.059412815186658
416 => 0.060694146477819
417 => 0.06368804688135
418 => 0.062265757024311
419 => 0.060226555754465
420 => 0.061732270238633
421 => 0.060427881005149
422 => 0.057488726986552
423 => 0.059658278244898
424 => 0.058207561103704
425 => 0.05863095748987
426 => 0.061680149142769
427 => 0.061313262335932
428 => 0.061788047836783
429 => 0.060950063855081
430 => 0.060167254678226
501 => 0.058706083217454
502 => 0.058273502382802
503 => 0.058393052162872
504 => 0.058273443139868
505 => 0.057455931136425
506 => 0.057279389497117
507 => 0.056985145697138
508 => 0.05707634415446
509 => 0.05652307972644
510 => 0.057567204012379
511 => 0.057761002680641
512 => 0.058520829263208
513 => 0.058599716979638
514 => 0.060715823196632
515 => 0.059550307452032
516 => 0.060332236039298
517 => 0.060262292986655
518 => 0.054660314708104
519 => 0.055432217888216
520 => 0.056633056999907
521 => 0.056092080607789
522 => 0.055327266558315
523 => 0.054709638206629
524 => 0.053773868098084
525 => 0.055090946555988
526 => 0.056822764672453
527 => 0.058643638745006
528 => 0.060831299634783
529 => 0.060343039191365
530 => 0.058602741946377
531 => 0.058680810409499
601 => 0.059163398929713
602 => 0.058538402948246
603 => 0.05835407943194
604 => 0.059138075709053
605 => 0.059143474660536
606 => 0.058424341250571
607 => 0.057625156065419
608 => 0.057621807450312
609 => 0.057479600165827
610 => 0.059501673123234
611 => 0.060613608795173
612 => 0.060741090427987
613 => 0.060605028265564
614 => 0.060657393191766
615 => 0.060010382324096
616 => 0.061489257302478
617 => 0.062846419228218
618 => 0.062482670840584
619 => 0.061937360297641
620 => 0.061502994184472
621 => 0.062380347988675
622 => 0.062341280804857
623 => 0.062834565602759
624 => 0.062812187354975
625 => 0.06264631423082
626 => 0.062482676764436
627 => 0.06313148082191
628 => 0.062944635672832
629 => 0.062757500301629
630 => 0.06238217166569
701 => 0.062433185060863
702 => 0.061887968673473
703 => 0.061635726625262
704 => 0.057842611433468
705 => 0.056828967110607
706 => 0.057147880249212
707 => 0.057252874735017
708 => 0.056811735426687
709 => 0.057444215875441
710 => 0.057345644467466
711 => 0.057729128153555
712 => 0.057489544195412
713 => 0.057499376804625
714 => 0.058203942140836
715 => 0.058408480455373
716 => 0.058304450617773
717 => 0.058377309550094
718 => 0.0600563128936
719 => 0.059817612309658
720 => 0.059690807381918
721 => 0.059725933213502
722 => 0.060154954566005
723 => 0.060275057121009
724 => 0.059766174156002
725 => 0.060006166304117
726 => 0.06102802241125
727 => 0.0613856142167
728 => 0.062526875605893
729 => 0.06204204748346
730 => 0.062931970485055
731 => 0.065667290394848
801 => 0.067852453208532
802 => 0.065842887179396
803 => 0.06985566040792
804 => 0.072980179964458
805 => 0.072860255699718
806 => 0.072315423443596
807 => 0.068758240998128
808 => 0.065484868677206
809 => 0.068223183618388
810 => 0.068230164146313
811 => 0.067994940464374
812 => 0.066533986377857
813 => 0.067944102428964
814 => 0.068056032320312
815 => 0.067993381345718
816 => 0.066873271272974
817 => 0.065163070222838
818 => 0.065497239414391
819 => 0.066044615367023
820 => 0.065008318494105
821 => 0.064677158851766
822 => 0.065292847632574
823 => 0.06727672516819
824 => 0.066901684611902
825 => 0.066891890787319
826 => 0.068496473329066
827 => 0.067347938519761
828 => 0.065501454358055
829 => 0.06503519275509
830 => 0.063380278176017
831 => 0.064523333570386
901 => 0.064564470099087
902 => 0.063938430341334
903 => 0.065552254034095
904 => 0.065537382364658
905 => 0.067069467774976
906 => 0.069998239654504
907 => 0.069132057693616
908 => 0.068124782313433
909 => 0.068234301075976
910 => 0.06943545158573
911 => 0.068709208567934
912 => 0.068970370620679
913 => 0.069435056285684
914 => 0.069715412684878
915 => 0.068193962104572
916 => 0.067839239194909
917 => 0.067113600612562
918 => 0.066924295051113
919 => 0.067515312535489
920 => 0.067359600309312
921 => 0.064561012733139
922 => 0.064268544760234
923 => 0.064277514335415
924 => 0.063542089711453
925 => 0.062420390637777
926 => 0.065368148830226
927 => 0.065131402593523
928 => 0.064870053070906
929 => 0.064902066896187
930 => 0.066181588818734
1001 => 0.065439401486251
1002 => 0.067412628151769
1003 => 0.067006992069962
1004 => 0.066590952953261
1005 => 0.066533443674471
1006 => 0.066373304109331
1007 => 0.065824125955157
1008 => 0.065160960333501
1009 => 0.064723080947661
1010 => 0.059703620925103
1011 => 0.060635203508434
1012 => 0.061706904354132
1013 => 0.062076851191495
1014 => 0.061444031526643
1015 => 0.065849113532606
1016 => 0.066653964463522
1017 => 0.064216018494651
1018 => 0.063759978344553
1019 => 0.065879011448924
1020 => 0.064600975445727
1021 => 0.065176474979711
1022 => 0.063932559768652
1023 => 0.066460099443051
1024 => 0.066440843825519
1025 => 0.065457573805105
1026 => 0.066288626893216
1027 => 0.066144210967945
1028 => 0.065034101536585
1029 => 0.066495291892091
1030 => 0.066496016624278
1031 => 0.065549640607763
1101 => 0.064444480608823
1102 => 0.064246904103726
1103 => 0.064098056747805
1104 => 0.065139867654664
1105 => 0.066073952056095
1106 => 0.067812051547997
1107 => 0.068249051056486
1108 => 0.069954689230825
1109 => 0.068939064744022
1110 => 0.069389277924483
1111 => 0.069878048018416
1112 => 0.070112382375373
1113 => 0.069730547115787
1114 => 0.072380105269217
1115 => 0.07260380915773
1116 => 0.072678815136518
1117 => 0.071785399034752
1118 => 0.072578961639762
1119 => 0.072207679976909
1120 => 0.073173651718637
1121 => 0.073325128421886
1122 => 0.073196833043174
1123 => 0.073244914139682
1124 => 0.070983983669817
1125 => 0.070866742497596
1126 => 0.06926815079531
1127 => 0.069919588730185
1128 => 0.068701756735169
1129 => 0.069087943805848
1130 => 0.069258171386878
1201 => 0.069169254158878
1202 => 0.069956420053613
1203 => 0.069287168235721
1204 => 0.067520902653117
1205 => 0.065754155852636
1206 => 0.065731975785717
1207 => 0.065266822538821
1208 => 0.064930601938383
1209 => 0.064995369954094
1210 => 0.065223620889285
1211 => 0.064917335579092
1212 => 0.064982697079081
1213 => 0.066068133480295
1214 => 0.06628581000958
1215 => 0.065546060111359
1216 => 0.062575857524598
1217 => 0.061846962359618
1218 => 0.062370877749586
1219 => 0.062120479937654
1220 => 0.05013607561436
1221 => 0.052951633642936
1222 => 0.051278724669673
1223 => 0.052049678091394
1224 => 0.05034207122737
1225 => 0.051157030726226
1226 => 0.051006537464343
1227 => 0.055533871455874
1228 => 0.055463183362741
1229 => 0.055497018012193
1230 => 0.053882002038122
1231 => 0.056454766337279
]
'min_raw' => 0.032845438845832
'max_raw' => 0.073325128421886
'avg_raw' => 0.053085283633859
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.032845'
'max' => '$0.073325'
'avg' => '$0.053085'
'bar_min_pct' => 61.631153054958
'bar_max_pct' => 60.119598047091
'min_diff' => 0.0050647000271128
'max_diff' => 0.011092844054251
'year' => 2035
]
10 => [
'items' => [
101 => 0.057722202544655
102 => 0.057487633834392
103 => 0.057546669725181
104 => 0.056532237526167
105 => 0.055506839933318
106 => 0.054369516195291
107 => 0.056482523123083
108 => 0.056247592822944
109 => 0.05678643840621
110 => 0.058156874439737
111 => 0.058358676351455
112 => 0.058629900167276
113 => 0.05853268573633
114 => 0.060848727883181
115 => 0.060568239897459
116 => 0.061244135241148
117 => 0.059853767238877
118 => 0.058280433869366
119 => 0.058579473106767
120 => 0.058550673223483
121 => 0.058184017654318
122 => 0.057853017400754
123 => 0.057301995237314
124 => 0.059045510898376
125 => 0.058974727346571
126 => 0.060120630773426
127 => 0.059918081212018
128 => 0.058565405668644
129 => 0.058613716740304
130 => 0.058938631914722
131 => 0.060063167043199
201 => 0.060397005633521
202 => 0.060242358297316
203 => 0.060608397071293
204 => 0.060897699193642
205 => 0.060644728963687
206 => 0.064226253952855
207 => 0.062738955074301
208 => 0.063463854199149
209 => 0.063636738369072
210 => 0.063193899203177
211 => 0.063289935161378
212 => 0.06343540346982
213 => 0.064318658553065
214 => 0.066636575463418
215 => 0.067663165084419
216 => 0.07075171061024
217 => 0.067577921107212
218 => 0.067389601572549
219 => 0.067945941886889
220 => 0.069759245066293
221 => 0.071228756978293
222 => 0.071716278857679
223 => 0.071780712922149
224 => 0.072695336377719
225 => 0.073219581485735
226 => 0.072584277033228
227 => 0.072045923028878
228 => 0.070117605808252
229 => 0.070340813777173
301 => 0.071878495338345
302 => 0.074050561112493
303 => 0.075914419511638
304 => 0.07526176126228
305 => 0.080241082999957
306 => 0.080734762411543
307 => 0.080666551879428
308 => 0.081791227048366
309 => 0.079558975874139
310 => 0.078604645249327
311 => 0.072162321275196
312 => 0.073972351532947
313 => 0.076603336811938
314 => 0.076255116044575
315 => 0.074344424208533
316 => 0.075912970080544
317 => 0.075394359762293
318 => 0.074985310287126
319 => 0.076859245231007
320 => 0.074798776783206
321 => 0.076582782062995
322 => 0.074294776838494
323 => 0.075264742550188
324 => 0.074714143100268
325 => 0.075070448423296
326 => 0.072987494785383
327 => 0.07411140600756
328 => 0.072940736383463
329 => 0.072940181333636
330 => 0.0729143387368
331 => 0.074291626358005
401 => 0.074336539657887
402 => 0.073318722024849
403 => 0.073172038602629
404 => 0.073714404094471
405 => 0.073079436149272
406 => 0.07337653365439
407 => 0.073088434930044
408 => 0.073023577838906
409 => 0.072506785502194
410 => 0.072284137154038
411 => 0.072371443308291
412 => 0.072073422394417
413 => 0.071893854013921
414 => 0.072878618066248
415 => 0.072352498358358
416 => 0.072797982675395
417 => 0.072290297071528
418 => 0.070530437580438
419 => 0.069518323776935
420 => 0.066194112337325
421 => 0.067136854577927
422 => 0.067761893658783
423 => 0.067555318246289
424 => 0.067999122166399
425 => 0.068026368122668
426 => 0.067882082944195
427 => 0.067715019191599
428 => 0.06763370179604
429 => 0.068239775040442
430 => 0.068591620958306
501 => 0.067824624692491
502 => 0.067644928198829
503 => 0.068420403770592
504 => 0.068893443421389
505 => 0.072386102424859
506 => 0.072127354964742
507 => 0.072776760313011
508 => 0.072703647236734
509 => 0.073384327500105
510 => 0.074496952053774
511 => 0.072234675241447
512 => 0.07262732827242
513 => 0.072531058816908
514 => 0.073582103488982
515 => 0.073585384735723
516 => 0.072955230951239
517 => 0.073296847540885
518 => 0.073106166532306
519 => 0.073450752886893
520 => 0.072123899234662
521 => 0.073739863758078
522 => 0.074656011512402
523 => 0.074668732224859
524 => 0.075102978989411
525 => 0.075544198852071
526 => 0.076391081956297
527 => 0.075520579741941
528 => 0.073954630999997
529 => 0.074067687441182
530 => 0.073149572266739
531 => 0.073165005948692
601 => 0.073082619744865
602 => 0.073329866944294
603 => 0.07217815609102
604 => 0.072448460326276
605 => 0.072070032814018
606 => 0.072626505644914
607 => 0.072027832867124
608 => 0.072531012392862
609 => 0.072748167995505
610 => 0.073549476844283
611 => 0.071909478898635
612 => 0.068565412069359
613 => 0.069268375459764
614 => 0.068228637388773
615 => 0.068324869105805
616 => 0.068519272489374
617 => 0.067889147518397
618 => 0.068009355505339
619 => 0.068005060830155
620 => 0.067968051639589
621 => 0.067804131798057
622 => 0.067566415597283
623 => 0.068513403775979
624 => 0.068674315520815
625 => 0.069032002396838
626 => 0.070096235918557
627 => 0.069989893893382
628 => 0.07016334214853
629 => 0.069784705581413
630 => 0.068342432970197
701 => 0.068420755311969
702 => 0.067444074455044
703 => 0.069007026471448
704 => 0.068636898804005
705 => 0.068398275088981
706 => 0.068333164397504
707 => 0.069400035948277
708 => 0.069719260637431
709 => 0.069520341233523
710 => 0.0691123517327
711 => 0.069895812185548
712 => 0.070105433151187
713 => 0.07015235955487
714 => 0.071540501263676
715 => 0.070229941256062
716 => 0.070545406075741
717 => 0.073006572545471
718 => 0.070774634175183
719 => 0.07195694170809
720 => 0.071899073906785
721 => 0.072503902433515
722 => 0.071849460313972
723 => 0.071857572908385
724 => 0.072394619665488
725 => 0.07164043435203
726 => 0.071453687462286
727 => 0.071195697971611
728 => 0.071759008586143
729 => 0.072096687823207
730 => 0.074818134475874
731 => 0.076576313126541
801 => 0.07649998595445
802 => 0.077197473428889
803 => 0.076883248933401
804 => 0.075868535149236
805 => 0.077600527847643
806 => 0.077052452888214
807 => 0.077097635521959
808 => 0.077095953822074
809 => 0.077460375756549
810 => 0.077202149417194
811 => 0.076693158795934
812 => 0.077031050523924
813 => 0.078034468157551
814 => 0.081149107280942
815 => 0.082892100597871
816 => 0.081044176894695
817 => 0.082318849920461
818 => 0.081554500317441
819 => 0.081415595257141
820 => 0.082216184114918
821 => 0.083018174297511
822 => 0.082967090989979
823 => 0.082384887300068
824 => 0.082056015208509
825 => 0.084546344866027
826 => 0.086381177336026
827 => 0.086256054062445
828 => 0.086808307499764
829 => 0.088429740672286
830 => 0.088577984201119
831 => 0.088559308923825
901 => 0.088191871869999
902 => 0.089788383398051
903 => 0.0911202214027
904 => 0.088106820808315
905 => 0.089254284306346
906 => 0.089769417639578
907 => 0.090525786205934
908 => 0.091801906759468
909 => 0.093188112154865
910 => 0.093384136796743
911 => 0.093245047932688
912 => 0.092330808211222
913 => 0.093847610695736
914 => 0.094736118017769
915 => 0.095265203794911
916 => 0.096606877294264
917 => 0.089772598927671
918 => 0.084934957014123
919 => 0.084179489372926
920 => 0.085715762528597
921 => 0.086120865508199
922 => 0.085957569005077
923 => 0.080512363212218
924 => 0.084150821491338
925 => 0.08806549666941
926 => 0.088215875286016
927 => 0.090175643532156
928 => 0.090813824406715
929 => 0.092391694717554
930 => 0.092292998500003
1001 => 0.092677184811292
1002 => 0.092588867031506
1003 => 0.095511539522542
1004 => 0.098735681301219
1005 => 0.098624039523567
1006 => 0.098160530996568
1007 => 0.098848920199109
1008 => 0.10217658003474
1009 => 0.10187022244173
1010 => 0.10216782274786
1011 => 0.10609132123275
1012 => 0.11119242737426
1013 => 0.10882245142885
1014 => 0.11396461728819
1015 => 0.11720133812215
1016 => 0.1227989121213
1017 => 0.12209806828797
1018 => 0.12427716276894
1019 => 0.12084341155579
1020 => 0.11295882469479
1021 => 0.11171105864305
1022 => 0.1142091178771
1023 => 0.12035035274696
1024 => 0.11401570853625
1025 => 0.11529719880982
1026 => 0.11492812952482
1027 => 0.11490846339106
1028 => 0.11565903972851
1029 => 0.11457028960362
1030 => 0.11013452573238
1031 => 0.11216741017445
1101 => 0.11138241586424
1102 => 0.11225342557662
1103 => 0.11695390576261
1104 => 0.11487571142693
1105 => 0.11268650251309
1106 => 0.1154322563154
1107 => 0.1189285444491
1108 => 0.11870975302113
1109 => 0.11828520620314
1110 => 0.1206783543876
1111 => 0.12463113406171
1112 => 0.12569955452407
1113 => 0.12648824066648
1114 => 0.12659698716056
1115 => 0.12771714363513
1116 => 0.12169377995559
1117 => 0.13125301280597
1118 => 0.13290362825076
1119 => 0.13259338095814
1120 => 0.1344279705565
1121 => 0.13388818775761
1122 => 0.13310612717136
1123 => 0.13601434191316
1124 => 0.13268030839251
1125 => 0.12794806755311
1126 => 0.1253518666355
1127 => 0.12877075343336
1128 => 0.13085854829811
1129 => 0.13223844789501
1130 => 0.13265600467928
1201 => 0.12216135653172
1202 => 0.11650532324005
1203 => 0.12013077573345
1204 => 0.12455407799077
1205 => 0.12166920828821
1206 => 0.12178228971877
1207 => 0.11766922365334
1208 => 0.12491799307189
1209 => 0.12386190833936
1210 => 0.12934087779993
1211 => 0.12803327776669
1212 => 0.13250116466942
1213 => 0.13132462031273
1214 => 0.13620839015762
1215 => 0.13815665817154
1216 => 0.14142810339061
1217 => 0.14383459181093
1218 => 0.14524772784013
1219 => 0.14516288845348
1220 => 0.15076243742275
1221 => 0.14746057902891
1222 => 0.14331266669798
1223 => 0.1432376440504
1224 => 0.14538590662297
1225 => 0.14988807562801
1226 => 0.15105542254712
1227 => 0.15170781022251
1228 => 0.15070865578788
1229 => 0.14712472514768
1230 => 0.14557720206819
1231 => 0.14689573656798
]
'min_raw' => 0.054369516195291
'max_raw' => 0.15170781022251
'avg_raw' => 0.1030386632089
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$0.054369'
'max' => '$0.1517078'
'avg' => '$0.103038'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.021524077349459
'max_diff' => 0.078382681800626
'year' => 2036
]
11 => [
'items' => [
101 => 0.1452832821777
102 => 0.14806683083012
103 => 0.1518892376638
104 => 0.15109992576808
105 => 0.15373847709522
106 => 0.15646910013511
107 => 0.16037401372212
108 => 0.16139490273229
109 => 0.16308239344518
110 => 0.16481937570056
111 => 0.16537724758801
112 => 0.16644239811862
113 => 0.16643678424955
114 => 0.16964668706645
115 => 0.1731873092759
116 => 0.17452381219438
117 => 0.17759702696022
118 => 0.17233425437201
119 => 0.17632612783454
120 => 0.17992689762081
121 => 0.1756339114393
122 => 0.18155079275302
123 => 0.18178053184649
124 => 0.18524931939908
125 => 0.18173303867524
126 => 0.1796450824058
127 => 0.18567293392099
128 => 0.18858962139364
129 => 0.18771109139009
130 => 0.18102543468467
131 => 0.17713409572081
201 => 0.16694971106916
202 => 0.17901355462171
203 => 0.18488950090902
204 => 0.18101021740331
205 => 0.18296670235915
206 => 0.19364064988581
207 => 0.19770459801705
208 => 0.19685932521489
209 => 0.19700216240408
210 => 0.19919499504982
211 => 0.20891922261601
212 => 0.20309224005252
213 => 0.20754674988944
214 => 0.20990940584501
215 => 0.21210397236879
216 => 0.20671481058626
217 => 0.19970359028969
218 => 0.19748284251076
219 => 0.18062449911099
220 => 0.17974694912495
221 => 0.17925435372531
222 => 0.17614860940954
223 => 0.17370834511231
224 => 0.17176775634195
225 => 0.16667507189967
226 => 0.16839370340162
227 => 0.16027702732646
228 => 0.16546978904201
301 => 0.15251537804207
302 => 0.16330419646522
303 => 0.15743233310488
304 => 0.16137513142809
305 => 0.16136137537617
306 => 0.15410143359779
307 => 0.14991405069114
308 => 0.15258241405464
309 => 0.15544311139526
310 => 0.15590724991423
311 => 0.15961621868818
312 => 0.16065131214898
313 => 0.15751493063888
314 => 0.15224692666802
315 => 0.15347056384008
316 => 0.14988925372291
317 => 0.14361314549568
318 => 0.14812075599481
319 => 0.14965985240486
320 => 0.15033960505992
321 => 0.14416777343434
322 => 0.1422284499406
323 => 0.14119597038503
324 => 0.1514502207077
325 => 0.15201197168804
326 => 0.14913797424905
327 => 0.1621287151969
328 => 0.15918851042799
329 => 0.16247343952252
330 => 0.15335953159227
331 => 0.15370769514871
401 => 0.14939302507768
402 => 0.1518089520111
403 => 0.15010145272351
404 => 0.15161376898953
405 => 0.15252024512387
406 => 0.1568342072
407 => 0.16335345498252
408 => 0.15618984512378
409 => 0.15306855772355
410 => 0.15500498687187
411 => 0.16016195287349
412 => 0.16797502034618
413 => 0.16334952714971
414 => 0.16540224248433
415 => 0.165850669466
416 => 0.16244000202799
417 => 0.16810077651954
418 => 0.17113443155761
419 => 0.17424633390022
420 => 0.17694831151078
421 => 0.17300337167238
422 => 0.17722502278438
423 => 0.17382311720985
424 => 0.17077125622696
425 => 0.17077588464032
426 => 0.16886140766518
427 => 0.16515186728623
428 => 0.16446777112579
429 => 0.16802652574422
430 => 0.17088030993288
501 => 0.17111536126736
502 => 0.17269536282693
503 => 0.17363039147457
504 => 0.18279494333128
505 => 0.18648100190119
506 => 0.19098824454697
507 => 0.19274406957177
508 => 0.19802847339833
509 => 0.19376088813009
510 => 0.19283756921294
511 => 0.18001933404503
512 => 0.18211831933568
513 => 0.18547899730798
514 => 0.18007475038698
515 => 0.18350250117218
516 => 0.18417921178687
517 => 0.17989111614456
518 => 0.18218157330479
519 => 0.17609879816044
520 => 0.16348604285836
521 => 0.16811481812174
522 => 0.1715231547445
523 => 0.16665903813895
524 => 0.17537777888708
525 => 0.17028447053336
526 => 0.16867013630715
527 => 0.162372042939
528 => 0.16534450057292
529 => 0.1693647920843
530 => 0.16688071933932
531 => 0.17203554327055
601 => 0.17933614869849
602 => 0.18453899488502
603 => 0.18493840481122
604 => 0.18159332327691
605 => 0.18695383778367
606 => 0.18699288327964
607 => 0.18094620101767
608 => 0.17724264180028
609 => 0.17640118535374
610 => 0.17850330853446
611 => 0.18105567414921
612 => 0.18508004333928
613 => 0.18751188535629
614 => 0.19385283958731
615 => 0.19556851999282
616 => 0.19745353259668
617 => 0.1999724907518
618 => 0.20299714586462
619 => 0.19637937267147
620 => 0.19664230913751
621 => 0.19047993036935
622 => 0.18389454488106
623 => 0.18889203158678
624 => 0.19542558066671
625 => 0.19392677728884
626 => 0.19375813129106
627 => 0.19404174708083
628 => 0.19291169828027
629 => 0.18780052943685
630 => 0.1852337324413
701 => 0.18854555542531
702 => 0.19030564194904
703 => 0.19303538265165
704 => 0.19269888449222
705 => 0.19973040338941
706 => 0.20246263901076
707 => 0.20176361621986
708 => 0.20189225323631
709 => 0.20683883532019
710 => 0.21234045193965
711 => 0.21749344190604
712 => 0.22273528462591
713 => 0.2164160386345
714 => 0.21320751523697
715 => 0.21651789238267
716 => 0.21476135967223
717 => 0.22485491764787
718 => 0.22555377370243
719 => 0.23564660179894
720 => 0.24522589749415
721 => 0.2392093134989
722 => 0.24488268121353
723 => 0.25101889095335
724 => 0.26285663510563
725 => 0.258870099332
726 => 0.25581647540639
727 => 0.25293081555168
728 => 0.25893541562372
729 => 0.26666023769057
730 => 0.26832409037634
731 => 0.27102016736794
801 => 0.26818557207189
802 => 0.27159952988556
803 => 0.28365230113689
804 => 0.28039553595203
805 => 0.27577040583839
806 => 0.28528491118086
807 => 0.2887281736776
808 => 0.31289479313027
809 => 0.34340614846253
810 => 0.33077424700661
811 => 0.32293321814401
812 => 0.32477604591842
813 => 0.3359177600112
814 => 0.33949612495747
815 => 0.32976889549713
816 => 0.33320471738751
817 => 0.35213643380606
818 => 0.36229269226243
819 => 0.34849912911119
820 => 0.31044323543757
821 => 0.2753539634763
822 => 0.28466121849094
823 => 0.28360606461003
824 => 0.30394583212203
825 => 0.28031786317945
826 => 0.28071569757914
827 => 0.30147606994311
828 => 0.29593755851929
829 => 0.28696587933165
830 => 0.27541946666302
831 => 0.25407485493118
901 => 0.23516933708174
902 => 0.27224741126521
903 => 0.27064853728432
904 => 0.26833313082014
905 => 0.27348581735303
906 => 0.29850580054116
907 => 0.2979290089469
908 => 0.29425975510581
909 => 0.29704285180495
910 => 0.28647798902421
911 => 0.28920079472026
912 => 0.27534840515634
913 => 0.28161026376613
914 => 0.28694663013749
915 => 0.2880179846928
916 => 0.29043180121063
917 => 0.26980600334978
918 => 0.27906638104769
919 => 0.28450598536516
920 => 0.25992965516433
921 => 0.28402019033602
922 => 0.26944695409729
923 => 0.2645005788352
924 => 0.27116022149021
925 => 0.26856495227084
926 => 0.26633369219534
927 => 0.2650886107353
928 => 0.2699787173032
929 => 0.26975058798687
930 => 0.26174942451299
1001 => 0.25131223293047
1002 => 0.2548152970147
1003 => 0.25354260099149
1004 => 0.24893018642236
1005 => 0.2520383969369
1006 => 0.2383514108602
1007 => 0.21480366270288
1008 => 0.23036002642264
1009 => 0.2297611233415
1010 => 0.22945912924989
1011 => 0.24114930663898
1012 => 0.2400255658213
1013 => 0.23798596523351
1014 => 0.24889272755809
1015 => 0.24491161259296
1016 => 0.25718047084683
1017 => 0.26526153439282
1018 => 0.26321191528254
1019 => 0.27081219460672
1020 => 0.254896000536
1021 => 0.26018272175942
1022 => 0.26127230767649
1023 => 0.24875813980401
1024 => 0.24020942371661
1025 => 0.23963932181608
1026 => 0.22481702620616
1027 => 0.23273497687959
1028 => 0.23970244580514
1029 => 0.23636556888723
1030 => 0.23530921334138
1031 => 0.24070590472956
1101 => 0.24112527386995
1102 => 0.23156361302615
1103 => 0.233551785094
1104 => 0.24184279312302
1105 => 0.2333428729642
1106 => 0.21682891654969
1107 => 0.21273322703558
1108 => 0.21218678655586
1109 => 0.20107895176037
1110 => 0.21300692059322
1111 => 0.20780004254799
1112 => 0.22424850790488
1113 => 0.21485323270791
1114 => 0.21444822117227
1115 => 0.21383598683387
1116 => 0.20427501456651
1117 => 0.20636825986158
1118 => 0.21332652603264
1119 => 0.21580931379295
1120 => 0.21555033868867
1121 => 0.21329242673233
1122 => 0.21432608726356
1123 => 0.21099630654126
1124 => 0.20982049166483
1125 => 0.20610929648143
1126 => 0.20065486480567
1127 => 0.20141333698416
1128 => 0.1906066806048
1129 => 0.18471864065667
1130 => 0.18308890880214
1201 => 0.18090956325509
1202 => 0.1833350716807
1203 => 0.19057606670507
1204 => 0.18184189044289
1205 => 0.16686775787261
1206 => 0.16776772875477
1207 => 0.16978969612321
1208 => 0.16602177330876
1209 => 0.16245575058268
1210 => 0.16555611802244
1211 => 0.15921138065191
1212 => 0.1705564273221
1213 => 0.1702495756038
1214 => 0.17447830742946
1215 => 0.17712262022236
1216 => 0.17102833534116
1217 => 0.16949563917423
1218 => 0.17036873256807
1219 => 0.15593844360751
1220 => 0.17329904496043
1221 => 0.17344918016185
1222 => 0.17216363141761
1223 => 0.18140761568961
1224 => 0.20091530577452
1225 => 0.19357572806956
1226 => 0.19073362174229
1227 => 0.18533077553658
1228 => 0.19252974731642
1229 => 0.19197697860519
1230 => 0.18947714886166
1231 => 0.18796524403283
]
'min_raw' => 0.14119597038503
'max_raw' => 0.36229269226243
'avg_raw' => 0.25174433132373
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$0.141195'
'max' => '$0.362292'
'avg' => '$0.251744'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 0.086826454189744
'max_diff' => 0.21058488203992
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.0044319801693648
]
1 => [
'year' => 2028
'avg' => 0.0076065645836662
]
2 => [
'year' => 2029
'avg' => 0.020779763492696
]
3 => [
'year' => 2030
'avg' => 0.016031556588463
]
4 => [
'year' => 2031
'avg' => 0.015744975338806
]
5 => [
'year' => 2032
'avg' => 0.027605896895028
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.0044319801693648
'min' => '$0.004431'
'max_raw' => 0.027605896895028
'max' => '$0.0276058'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.027605896895028
]
1 => [
'year' => 2033
'avg' => 0.071005205494914
]
2 => [
'year' => 2034
'avg' => 0.045006511593177
]
3 => [
'year' => 2035
'avg' => 0.053085283633859
]
4 => [
'year' => 2036
'avg' => 0.1030386632089
]
5 => [
'year' => 2037
'avg' => 0.25174433132373
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.027605896895028
'min' => '$0.0276058'
'max_raw' => 0.25174433132373
'max' => '$0.251744'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 0.25174433132373
]
]
]
]
'prediction_2025_max_price' => '$0.007577'
'last_price' => 0.00734771
'sma_50day_nextmonth' => '$0.006595'
'sma_200day_nextmonth' => '$0.04156'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'increase'
'sma_200day_direction_label' => 'aumentar'
'sma_200day_date_nextmonth' => '4 de fev. de 2026'
'sma_50day_date_nextmonth' => '4 de fev. de 2026'
'daily_sma3' => '$0.006557'
'daily_sma3_action' => 'BUY'
'daily_sma5' => '$0.006348'
'daily_sma5_action' => 'BUY'
'daily_sma10' => '$0.006405'
'daily_sma10_action' => 'BUY'
'daily_sma21' => '$0.006365'
'daily_sma21_action' => 'BUY'
'daily_sma50' => '$0.007574'
'daily_sma50_action' => 'SELL'
'daily_sma100' => '$0.024398'
'daily_sma100_action' => 'SELL'
'daily_sma200' => '$0.051177'
'daily_sma200_action' => 'SELL'
'daily_ema3' => '$0.006753'
'daily_ema3_action' => 'BUY'
'daily_ema5' => '$0.006548'
'daily_ema5_action' => 'BUY'
'daily_ema10' => '$0.006416'
'daily_ema10_action' => 'BUY'
'daily_ema21' => '$0.006603'
'daily_ema21_action' => 'BUY'
'daily_ema50' => '$0.010588'
'daily_ema50_action' => 'SELL'
'daily_ema100' => '$0.023275'
'daily_ema100_action' => 'SELL'
'daily_ema200' => '$0.04545'
'daily_ema200_action' => 'SELL'
'weekly_sma21' => '$0.039325'
'weekly_sma21_action' => 'SELL'
'weekly_sma50' => '$0.060592'
'weekly_sma50_action' => 'SELL'
'weekly_sma100' => '—'
'weekly_sma100_action' => '—'
'weekly_sma200' => '—'
'weekly_sma200_action' => '—'
'weekly_ema3' => '$0.007064'
'weekly_ema3_action' => 'BUY'
'weekly_ema5' => '$0.007636'
'weekly_ema5_action' => 'SELL'
'weekly_ema10' => '$0.013717'
'weekly_ema10_action' => 'SELL'
'weekly_ema21' => '$0.03093'
'weekly_ema21_action' => 'SELL'
'weekly_ema50' => '$0.074897'
'weekly_ema50_action' => 'SELL'
'weekly_ema100' => '$0.143121'
'weekly_ema100_action' => 'SELL'
'weekly_ema200' => '$0.07156'
'weekly_ema200_action' => 'SELL'
'rsi_14' => '52.21'
'rsi_14_action' => 'NEUTRAL'
'stoch_rsi_14' => 51.25
'stoch_rsi_14_action' => 'NEUTRAL'
'momentum_10' => 0
'momentum_10_action' => 'BUY'
'vwma_10' => '0.006410'
'vwma_10_action' => 'BUY'
'hma_9' => '0.0065087'
'hma_9_action' => 'BUY'
'stochastic_fast_14' => 62.17
'stochastic_fast_14_action' => 'NEUTRAL'
'cci_20' => 175.25
'cci_20_action' => 'SELL'
'adx_14' => 11.54
'adx_14_action' => 'NEUTRAL'
'ao_5_34' => '-0.000562'
'ao_5_34_action' => 'NEUTRAL'
'macd_12_26' => 0
'macd_12_26_action' => 'BUY'
'williams_percent_r_14' => -37.83
'williams_percent_r_14_action' => 'NEUTRAL'
'ultimate_oscillator' => 77.73
'ultimate_oscillator_action' => 'SELL'
'ichimoku_cloud' => '-0.008772'
'ichimoku_cloud_action' => 'SELL'
'sell_signals' => 14
'buy_signals' => 17
'sell_pct' => 45.16
'buy_pct' => 54.84
'overall_action' => 'bullish'
'overall_action_label' => 'Altista'
'overall_action_dir' => 1
'last_updated' => 1767706554
'last_updated_date' => '6 de janeiro de 2026'
]
Previsão de preço de Slerf [OLD] para 2026
A previsão de preço para Slerf [OLD] em 2026 sugere que o preço médio poderia variar entre $0.002538 na extremidade inferior e $0.007577 na extremidade superior. No mercado de criptomoedas, comparado ao preço médio de hoje, Slerf [OLD] poderia potencialmente ganhar 3.13% até 2026 se SLERF atingir a meta de preço prevista.
Previsão de preço de Slerf [OLD] 2027-2032
A previsão de preço de SLERF para 2027-2032 está atualmente dentro de uma faixa de preço entre $0.004431 na extremidade inferior e $0.0276058 na extremidade superior. Considerando a volatilidade de preços no mercado, se Slerf [OLD] atingir a meta de preço superior, poderia ganhar 275.71% até 2032 em comparação com o preço de hoje.
| Previsão de Preço de Slerf [OLD] | Potencial Mínimo ($) | Preço Médio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2027 | $0.002443 | $0.004431 | $0.00642 |
| 2028 | $0.00441 | $0.0076065 | $0.0108026 |
| 2029 | $0.009688 | $0.020779 | $0.03187 |
| 2030 | $0.008239 | $0.016031 | $0.023823 |
| 2031 | $0.009741 | $0.015744 | $0.021748 |
| 2032 | $0.01487 | $0.0276058 | $0.040341 |
Previsão de preço de Slerf [OLD] 2032-2037
A previsão de preço de Slerf [OLD] para 2032-2037 é atualmente estimada entre $0.0276058 na extremidade inferior e $0.251744 na extremidade superior. Comparado ao preço atual, Slerf [OLD] poderia potencialmente ganhar 3326.16% até 2037 se atingir a meta de preço superior. Por favor, note que esta informação é apenas para fins gerais e não deve ser considerada como aconselhamento de investimento a longo prazo.
| Previsão de Preço de Slerf [OLD] | Potencial Mínimo ($) | Preço Médio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2032 | $0.01487 | $0.0276058 | $0.040341 |
| 2033 | $0.034555 | $0.0710052 | $0.107455 |
| 2034 | $0.02778 | $0.0450065 | $0.062232 |
| 2035 | $0.032845 | $0.053085 | $0.073325 |
| 2036 | $0.054369 | $0.103038 | $0.1517078 |
| 2037 | $0.141195 | $0.251744 | $0.362292 |
Slerf [OLD] Histograma de preços potenciais
Previsão de preço de Slerf [OLD] baseada na análise técnica
Em 6 de janeiro de 2026, o sentimento geral de previsão de preço para Slerf [OLD] é Altista, com 17 indicadores técnicos mostrando sinais de alta e 14 indicando sinais de baixa. A previsão de preço de SLERF foi atualizada pela última vez em 6 de janeiro de 2026.
Médias Móveis Simples de 50 e 200 dias e Índice de Força Relativa de 14 dias - RSI (14) de Slerf [OLD]
De acordo com nossos indicadores técnicos, o SMA de 200 dias de Slerf [OLD] está projetado para aumentar no próximo mês, alcançando $0.04156 até 4 de fev. de 2026. O SMA de 50 dias de curto prazo para Slerf [OLD] é esperado para alcançar $0.006595 até 4 de fev. de 2026.
O oscilador de momentum Índice de Força Relativa (RSI) é uma ferramenta comumente usada para identificar se uma criptomoeda está sobrevendida (abaixo de 30) ou sobrecomprada (acima de 70). No momento, o RSI está em 52.21, sugerindo que o mercado de SLERF está em um estado NEUTRAL.
Médias Móveis e Osciladores Populares de SLERF para Sábado, 19 de Outubro de 2024
Médias móveis (MA) são indicadores amplamente utilizados nos mercados financeiros, projetados para suavizar movimentos de preços ao longo de um período definido. Como indicadores atrasados, eles se baseiam em dados históricos de preços. A tabela abaixo destaca dois tipos: a média móvel simples (SMA) e a média móvel exponencial (EMA).
Média Móvel Simples Diária (SMA)
| Período | Valor | Ação |
|---|---|---|
| SMA 3 | $0.006557 | BUY |
| SMA 5 | $0.006348 | BUY |
| SMA 10 | $0.006405 | BUY |
| SMA 21 | $0.006365 | BUY |
| SMA 50 | $0.007574 | SELL |
| SMA 100 | $0.024398 | SELL |
| SMA 200 | $0.051177 | SELL |
Média Móvel Exponencial Diária (EMA)
| Período | Valor | Ação |
|---|---|---|
| EMA 3 | $0.006753 | BUY |
| EMA 5 | $0.006548 | BUY |
| EMA 10 | $0.006416 | BUY |
| EMA 21 | $0.006603 | BUY |
| EMA 50 | $0.010588 | SELL |
| EMA 100 | $0.023275 | SELL |
| EMA 200 | $0.04545 | SELL |
Média Móvel Simples Semanal (SMA)
| Período | Valor | Ação |
|---|---|---|
| SMA 21 | $0.039325 | SELL |
| SMA 50 | $0.060592 | SELL |
| SMA 100 | — | — |
| SMA 200 | — | — |
Média Móvel Exponencial Semanal (EMA)
| Período | Valor | Ação |
|---|---|---|
| EMA 21 | $0.03093 | SELL |
| EMA 50 | $0.074897 | SELL |
| EMA 100 | $0.143121 | SELL |
| EMA 200 | $0.07156 | SELL |
Osciladores de Slerf [OLD]
Um oscilador é uma ferramenta de análise técnica que define limites altos e baixos entre dois extremos, criando um indicador de tendência que flutua dentro desses limites. Os traders usam esse indicador para identificar condições de sobrecompra ou sobrevenda de curto prazo.
| Período | Valor | Ação |
|---|---|---|
| RSI (14) | 52.21 | NEUTRAL |
| Stoch RSI (14) | 51.25 | NEUTRAL |
| Estocástico Rápido (14) | 62.17 | NEUTRAL |
| Índice de Canal de Commodities (20) | 175.25 | SELL |
| Índice Direcional Médio (14) | 11.54 | NEUTRAL |
| Oscilador Impressionante (5, 34) | -0.000562 | NEUTRAL |
| Momentum (10) | 0 | BUY |
| MACD (12, 26) | 0 | BUY |
| Williams Percent Range (14) | -37.83 | NEUTRAL |
| Oscilador Ultimate (7, 14, 28) | 77.73 | SELL |
| VWMA (10) | 0.006410 | BUY |
| Média Móvel de Hull (9) | 0.0065087 | BUY |
| Nuvem Ichimoku B/L (9, 26, 52, 26) | -0.008772 | SELL |
Previsão do preço de Slerf [OLD] com base nos fluxos financeiros mundiais
Definições dos fluxos financeiros mundiais, usadas na previsão do preço do Slerf [OLD]
M0: o total de todas as moedas físicas, mais as contas no Banco Central que podem ser trocadas por moedas físicas.
M1: o valor de M0, mais o valor em contas de demanda, incluindo contas 'correntes'.
M2: o valor de M1, mais a maioria das contas de poupança, do mercado de moedas e de certificados de depósito (CD) de menos de US$ 100.000.
Previsões de preço de Slerf [OLD] por empresas de Internet ou nichos tecnológicos
| Comparação | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Facebook stock | $0.010324 | $0.014508 | $0.020386 | $0.028645 | $0.040252 | $0.056561 |
| Amazon.com stock | $0.015331 | $0.031989 | $0.066748 | $0.139275 | $0.2906068 | $0.606368 |
| Apple stock | $0.010422 | $0.014783 | $0.020968 | $0.029742 | $0.042187 | $0.059839 |
| Netflix stock | $0.011593 | $0.018292 | $0.028863 | $0.045541 | $0.071857 | $0.113379 |
| Google stock | $0.009515 | $0.012322 | $0.015957 | $0.020664 | $0.02676 | $0.034654 |
| Tesla stock | $0.016656 | $0.037759 | $0.085597 | $0.194043 | $0.439883 | $0.997181 |
| Kodak stock | $0.00551 | $0.004131 | $0.003098 | $0.002323 | $0.001742 | $0.0013066 |
| Nokia stock | $0.004867 | $0.003224 | $0.002136 | $0.001415 | $0.000937 | $0.000621 |
Este cálculo mostra quanto a criptomoeda pode custar, se assumirmos que sua capitalização se comportará da mesma forma que a de algumas empresas de Internet ou nichos tecnológicos. Se você extrapolar os dados, poderá obter uma imagem em potencial do preço futuro para 2024, 2025, 2026, 2027, 2028, 2029 e 2030.
Visão geral da previsão para Slerf [OLD]
Você pode fazer perguntas como: 'Devo investir em Slerf [OLD] agora?', 'Devo comprar SLERF hoje?', 'Slerf [OLD] será um bom ou mau investimento no curto ou no longo prazo?'.
Atualizamos a previsão para Slerf [OLD] regularmente com novos valores. Veja nossas previsões semelhantes. Fazemos previsões de preços futuros para uma enorme quantidade de moedas digitais, como Slerf [OLD], com métodos de análise técnica.
Se você estiver tentando encontrar criptomoedas com bom retorno, você deve explorar o máximo de fontes de informações disponíveis sobre Slerf [OLD] para poder tomar sozinho uma decisão de tão grande responsabilidade sobre o seu investimento.
O preço de Slerf [OLD] é de $0.007347 USD hoje, mas o preço pode tanto subir quanto descer e seu investimento pode ser perdido, porque criptomoedas são ativos de alto risco
Previsão de curto prazo para Slerf [OLD]
com base no histórico de preços de 4 horas
Previsão de longo prazo para Slerf [OLD]
com base no histórico de preços de 1 mês
Previsão do preço de Slerf [OLD] com base no padrão de crescimento do Bitcoin
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| Se Slerf [OLD] tiver 1% da média anterior do crescimento anual do Bitcoin | $0.007538 | $0.007734 | $0.007935 | $0.008141 |
| Se Slerf [OLD] tiver 2% da média anterior do crescimento anual do Bitcoin | $0.007729 | $0.008131 | $0.008554 | $0.008998 |
| Se Slerf [OLD] tiver 5% da média anterior do crescimento anual do Bitcoin | $0.0083026 | $0.009381 | $0.010601 | $0.011978 |
| Se Slerf [OLD] tiver 10% da média anterior do crescimento anual do Bitcoin | $0.009257 | $0.011663 | $0.014695 | $0.018515 |
| Se Slerf [OLD] tiver 20% da média anterior do crescimento anual do Bitcoin | $0.011167 | $0.016973 | $0.025796 | $0.0392076 |
| Se Slerf [OLD] tiver 50% da média anterior do crescimento anual do Bitcoin | $0.016897 | $0.038857 | $0.08936 | $0.205497 |
| Se Slerf [OLD] tiver 100% da média anterior do crescimento anual do Bitcoin | $0.026446 | $0.09519 | $0.34262 | $1.23 |
Perguntas Frequentes sobre Slerf [OLD]
SLERF é um bom investimento?
A decisão de adquirir Slerf [OLD] depende inteiramente da sua tolerância individual ao risco. Como você pode perceber, o valor de Slerf [OLD] experimentou uma escalada de 3.6132% nas últimas 24 horas, e Slerf [OLD] registrou um declínio de durante os últimos 30 dias. Consequentemente, a decisão de investir ou não em Slerf [OLD] dependerá de quão alinhado esse investimento está com suas aspirações de negociação.
Slerf [OLD] pode subir?
Parece que o valor médio de Slerf [OLD] pode potencialmente subir para $0.007577 até o final deste ano. Observando as perspectivas de Slerf [OLD] em um horizonte de cinco anos mais longo, a moeda digital poderia potencialmente crescer até $0.023823. No entanto, dada a imprevisibilidade do mercado, é vital conduzir uma pesquisa aprofundada antes de investir quaisquer fundos em um projeto, rede ou ativo específico.
Qual será o preço de Slerf [OLD] na próxima semana?
Com base na nossa nova previsão experimental de Slerf [OLD], o preço de Slerf [OLD] aumentará 0.86% na próxima semana e atingirá $0.00741 até 13 de janeiro de 2026.
Qual será o preço de Slerf [OLD] no próximo mês?
Com base na nossa nova previsão experimental de Slerf [OLD], o preço de Slerf [OLD] diminuirá -11.62% no próximo mês e atingirá $0.006494 até 5 de fevereiro de 2026.
Até onde o preço de Slerf [OLD] pode subir este ano em 2026?
De acordo com nossa previsão mais recente sobre o valor de Slerf [OLD] em 2026, espera-se que SLERF fluctue dentro do intervalo de $0.002538 e $0.007577. No entanto, é crucial lembrar que o mercado de criptomoedas é excepcionalmente instável, e essa previsão de preço de Slerf [OLD] não considera flutuações repentinas e extremas de preço.
Onde estará Slerf [OLD] em 5 anos?
O futuro de Slerf [OLD] parece seguir uma tendência de alta, com um preço máximo de $0.023823 projetada após um período de cinco anos. Com base na previsão de Slerf [OLD] para 2030, o valor de Slerf [OLD] pode potencialmente atingir seu pico mais alto de aproximadamente $0.023823, enquanto seu pico mais baixo está previsto para cerca de $0.008239.
Quanto será Slerf [OLD] em 2026?
Com base na nossa nova simulação experimental de previsão de preços de Slerf [OLD], espera-se que o valor de SLERF em 2026 aumente 3.13% para $0.007577 se o melhor cenário ocorrer. O preço ficará entre $0.007577 e $0.002538 durante 2026.
Quanto será Slerf [OLD] em 2027?
De acordo com nossa última simulação experimental para previsão de preços de Slerf [OLD], o valor de SLERF pode diminuir -12.62% para $0.00642 em 2027, assumindo as condições mais favoráveis. O preço está projetado para flutuar entre $0.00642 e $0.002443 ao longo do ano.
Quanto será Slerf [OLD] em 2028?
Nosso novo modelo experimental de previsão de preços de Slerf [OLD] sugere que o valor de SLERF em 2028 pode aumentar 47.02%, alcançando $0.0108026 no melhor cenário. O preço é esperado para variar entre $0.0108026 e $0.00441 durante o ano.
Quanto será Slerf [OLD] em 2029?
Com base no nosso modelo de previsão experimental, o valor de Slerf [OLD] pode experimentar um 333.75% crescimento em 2029, potencialmente alcançando $0.03187 sob condições ótimas. A faixa de preço prevista para 2029 está entre $0.03187 e $0.009688.
Quanto será Slerf [OLD] em 2030?
Usando nossa nova simulação experimental para previsões de preços de Slerf [OLD], espera-se que o valor de SLERF em 2030 aumente 224.23%, alcançando $0.023823 no melhor cenário. O preço está previsto para variar entre $0.023823 e $0.008239 ao longo de 2030.
Quanto será Slerf [OLD] em 2031?
Nossa simulação experimental indica que o preço de Slerf [OLD] poderia aumentar 195.98% em 2031, potencialmente atingindo $0.021748 sob condições ideais. O preço provavelmente oscilará entre $0.021748 e $0.009741 durante o ano.
Quanto será Slerf [OLD] em 2032?
Com base nos achados da nossa mais recente previsão experimental de preços de Slerf [OLD], SLERF poderia ver um 449.04% aumento em valor, atingindo $0.040341 se o cenário mais positivo se desenrolar em 2032. O preço é esperado para permanecer dentro de uma faixa de $0.040341 e $0.01487 ao longo do ano.
Quanto será Slerf [OLD] em 2033?
De acordo com nossa previsão experimental de preços de Slerf [OLD], espera-se que o valor de SLERF seja aumentar 1362.43% em 2033, com o preço potencial mais alto sendo $0.107455. Ao longo do ano, o preço de SLERF poderia variar entre $0.107455 e $0.034555.
Quanto será Slerf [OLD] em 2034?
Os resultados da nossa nova simulação de previsão de preços de Slerf [OLD] sugerem que SLERF pode aumentar 746.96% em 2034, atingindo potencialmente $0.062232 nas melhores circunstâncias. A faixa de preço prevista para o ano é entre $0.062232 e $0.02778.
Quanto será Slerf [OLD] em 2035?
Com base em nossa previsão experimental para o preço de Slerf [OLD], SLERF poderia aumentar 897.93%, com o valor potencialmente atingindo $0.073325 em 2035. A faixa de preço esperada para o ano está entre $0.073325 e $0.032845.
Quanto será Slerf [OLD] em 2036?
Nossa recente simulação de previsão de preços de Slerf [OLD] sugere que o valor de SLERF pode aumentar 1964.7% em 2036, possivelmente atingindo $0.1517078 se as condições forem ideais. A faixa de preço esperada para 2036 está entre $0.1517078 e $0.054369.
Quanto será Slerf [OLD] em 2037?
De acordo com a simulação experimental, o valor de Slerf [OLD] poderia aumentar 4830.69% em 2037, com um pico de $0.362292 sob condições favoráveis. O preço é esperado para cair entre $0.362292 e $0.141195 ao longo do ano.
Previsões relacionadas
Previsão de Preço do ConstitutionDAO
Previsão de Preço do Victoria VR
Previsão de Preço do Dent
Previsão de Preço do Bone ShibaSwap
Previsão de Preço do Milady Meme Coin
Previsão de Preço do tBTC
Previsão de Preço do inSure DeFi
Previsão de Preço do Dione
Previsão de Preço do Nexera
Previsão de Preço do LooksRare
Previsão de Preço do Virtuals Protocol
Previsão de Preço do Autonolas
Previsão de Preço do Covalent
Previsão de Preço do OpSec
Previsão de Preço do Horizen
Previsão de Preço do Hiveterminal token
Previsão de Preço do Ark
Previsão de Preço do Escoin Token
Previsão de Preço do MVL
Previsão de Preço do Nym
Previsão de Preço do Constellation
Previsão de Preço do Alchemy Pay
Previsão de Preço do Metaplex
Previsão de Preço do Streamr DATAcoin
Previsão de Preço do Hashflow
Como ler e prever os movimentos de preço de Slerf [OLD]?
Traders de Slerf [OLD] utilizam indicadores e padrões de gráfico para prever a direção do mercado. Eles também identificam níveis-chave de suporte e resistência para avaliar quando uma tendência de baixa pode desacelerar ou uma tendência de alta pode estagnar.
Indicadores de Previsão de Preço de Slerf [OLD]
Médias móveis são ferramentas populares para a previsão de preço de Slerf [OLD]. Uma média móvel simples (SMA) calcula o preço médio de fechamento de SLERF em um período específico, como uma SMA de 12 dias. Uma média móvel exponencial (EMA) dá mais peso aos preços recentes, reagindo mais rapidamente às mudanças de preço.
Médias móveis comumente usadas no mercado de criptomoedas incluem as de 50 dias, 100 dias e 200 dias, que ajudam a identificar níveis-chave de resistência e suporte. Um movimento de preço de SLERF acima dessas médias é visto como altista, enquanto uma queda abaixo indica fraqueza.
Traders também usam RSI e níveis de retração de Fibonacci para avaliar a direção futura de SLERF.
Como ler gráficos de Slerf [OLD] e prever movimentos de preço?
A maioria dos traders prefere gráficos de velas em vez de gráficos de linha simples porque eles fornecem informações mais detalhadas. Velas podem representar a ação de preço de Slerf [OLD] em diferentes períodos de tempo, como 5 minutos para tendências de curto prazo e semanal para tendências de longo prazo. Opções populares incluem gráficos de 1 hora, 4 horas e 1 dia.
Por exemplo, um gráfico de velas de 1 hora mostra os preços de abertura, fechamento, máximo e mínimo de SLERF dentro de cada hora. A cor da vela é crucial: verde indica que o preço fechou mais alto do que abriu, enquanto vermelho significa o oposto. Alguns gráficos usam velas vazias e preenchidas para transmitir a mesma informação.
O que afeta o preço de Slerf [OLD]?
A ação de preço de Slerf [OLD] é impulsionada pela oferta e demanda, influenciada por fatores como reduções pela metade das recompensas de bloco, hard forks e atualizações de protocolo. Eventos do mundo real, como regulamentações, adoção por empresas e governos e hacks de exchanges de criptomoedas, também impactam o preço de SLERF. A capitalização de mercado de Slerf [OLD] pode mudar rapidamente.
Traders frequentemente monitoram a atividade de "baleias" de SLERF, grandes detentores de Slerf [OLD], pois suas ações podem influenciar significativamente os movimentos de preço no relativamente pequeno mercado de Slerf [OLD].
Padrões de previsão de preço altistas e baixistas
Traders frequentemente identificam padrões de velas para ganhar vantagem em previsões de preço de criptomoedas. Certas formações indicam tendências altistas, enquanto outras sugerem movimentos baixistas.
Padrões de velas altistas comumente seguidos:
- Martelo
- Engolfo de Alta
- Linha de Perfuração
- Estrela da Manhã
- Três Soldados Brancos
Padrões de velas baixistas comuns:
- Harami de Baixa
- Nuvem Negra
- Estrela da Noite
- Estrela Cadente
- Homem Enforcado


