Previsão de Preço SALT - Projeção SALT
Previsão de Preço SALT até $0.006715 até 2026
| Ano | Preço Mínimo | Preço Máximo |
|---|---|---|
| 2026 | $0.002249 | $0.006715 |
| 2027 | $0.002165 | $0.005689 |
| 2028 | $0.0039084 | $0.009572 |
| 2029 | $0.008585 | $0.028242 |
| 2030 | $0.0073017 | $0.021111 |
| 2031 | $0.008632 | $0.019272 |
| 2032 | $0.013177 | $0.035749 |
| 2033 | $0.030621 | $0.095222 |
| 2034 | $0.024618 | $0.055148 |
| 2035 | $0.0291064 | $0.064978 |
Calculadora de lucro do investimento
Se você abrir um short de $10,000.00 em SALT hoje e fechar em Apr 06, 2026, nossa previsão mostra que pode lucrar cerca de $3,955.11, com um retorno de 39.55% nos próximos 90 dias.
Previsão de preço de longo prazo de SALT para os anos 2027, 2028, 2029, 2030, 2031, 2032 e 2037
[
'name' => 'SALT'
'name_with_ticker' => 'SALT <small>SALT</small>'
'name_lang' => 'SALT'
'name_lang_with_ticker' => 'SALT <small>SALT</small>'
'name_with_lang' => 'SALT'
'name_with_lang_with_ticker' => 'SALT <small>SALT</small>'
'image' => '/uploads/coins/salt.png?1717112665'
'price_for_sd' => 0.006511
'ticker' => 'SALT'
'marketcap' => '$590.7K'
'low24h' => '$0.006727'
'high24h' => '$0.007131'
'volume24h' => '$633'
'current_supply' => '87.48M'
'max_supply' => '120M'
'algo' => null
'proof' => null
'ico_price_and_roi' => '—'
'price' => '$0.006511'
'change_24h_pct' => '-8.6991%'
'ath_price' => '$17.22'
'ath_days' => 2931
'ath_exchange' => null
'ath_pair' => null
'ath_date' => '28 de dez. de 2017'
'ath_pct' => '-99.96%'
'fdv' => '$810.29K'
'new_prediction' => true
'change_24h_pct_is_increased' => false
'change_30d_pct' => null
'change_30d_pct_is_increased' => false
'max_price' => '$0.32105'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.006567'
'next_week_prediction_price_date' => '13 de janeiro de 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.005754'
'next_month_prediction_price_date' => '5 de fevereiro de 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.002249'
'current_year_max_price_prediction' => '$0.006715'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.0073017'
'grand_prediction_max_price' => '$0.021111'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.0066346653310667
107 => 0.0066594367630294
108 => 0.006715248064102
109 => 0.0062383466071051
110 => 0.0064524613602056
111 => 0.0065782337178128
112 => 0.0060099896305057
113 => 0.0065670013592508
114 => 0.0062300448137488
115 => 0.0061156767012879
116 => 0.0062696582978634
117 => 0.0062096515199259
118 => 0.0061580612159715
119 => 0.006129272939931
120 => 0.0062423400301274
121 => 0.0062370653152253
122 => 0.0060520656102875
123 => 0.0058107410367488
124 => 0.0058917374848375
125 => 0.0058623107159011
126 => 0.005755664309147
127 => 0.005827531110763
128 => 0.005511066087402
129 => 0.0049666044631299
130 => 0.0053262924894346
131 => 0.0053124448916872
201 => 0.0053054623049643
202 => 0.0055757579156855
203 => 0.0055497752294954
204 => 0.0055026163996371
205 => 0.0057547982002542
206 => 0.0056627484507051
207 => 0.0059464240891669
208 => 0.0061332712116478
209 => 0.0060858807375154
210 => 0.0062616113593192
211 => 0.0058936034794116
212 => 0.0060158409352035
213 => 0.0060410339054284
214 => 0.0057516863159798
215 => 0.0055540263182894
216 => 0.0055408446499324
217 => 0.0051981294531627
218 => 0.0053812051449767
219 => 0.005542304177586
220 => 0.0054651502427561
221 => 0.0054407256118972
222 => 0.0055655057538993
223 => 0.0055752022396025
224 => 0.0053541213379819
225 => 0.0054000910581504
226 => 0.0055917924330834
227 => 0.0053952606753572
228 => 0.0050134315733754
301 => 0.0049187326768836
302 => 0.0049060980984446
303 => 0.0046492671804946
304 => 0.0049250609099675
305 => 0.0048046695562402
306 => 0.0051849844001551
307 => 0.0049677506009803
308 => 0.0049583860860776
309 => 0.0049442302483264
310 => 0.0047231652676952
311 => 0.004771564449041
312 => 0.0049324506992379
313 => 0.0049898567258215
314 => 0.0049838688069351
315 => 0.0049316622688408
316 => 0.0049555621546396
317 => 0.0048785722952093
318 => 0.0048513855734391
319 => 0.0047655768012353
320 => 0.0046394616113741
321 => 0.0046569987020337
322 => 0.0044071315110843
323 => 0.0042709906039995
324 => 0.0042333085952267
325 => 0.0041829186382563
326 => 0.0042390002749491
327 => 0.0044064236687265
328 => 0.0042044755349765
329 => 0.0038582496246768
330 => 0.003879058391826
331 => 0.003925809513432
401 => 0.0038386891076089
402 => 0.0037562369549587
403 => 0.0038279224121335
404 => 0.0036812219297239
405 => 0.0039435375658614
406 => 0.0039364426630349
407 => 0.0040342177106968
408 => 0.0040953584545458
409 => 0.0039544488345248
410 => 0.0039190104461497
411 => 0.0039391977627531
412 => 0.0036055463871018
413 => 0.0040069512750682
414 => 0.0040104226412081
415 => 0.0039806986967913
416 => 0.0041944344076479
417 => 0.0046454834233953
418 => 0.0044757806402665
419 => 0.0044100665933453
420 => 0.0042851441421113
421 => 0.0044515958912194
422 => 0.0044388149939396
423 => 0.0043810149294294
424 => 0.0043460572700664
425 => 0.0044104678293031
426 => 0.0043380760889769
427 => 0.0043250725432224
428 => 0.004246285203947
429 => 0.0042181617084213
430 => 0.0041973401919626
501 => 0.0041744177482216
502 => 0.0042249789471972
503 => 0.0041104006184388
504 => 0.0039722303862082
505 => 0.0039607430264208
506 => 0.0039924606367727
507 => 0.0039784279552904
508 => 0.0039606758433407
509 => 0.0039267822271286
510 => 0.0039167267152211
511 => 0.0039494022506798
512 => 0.0039125134762489
513 => 0.0039669448723573
514 => 0.0039521425444423
515 => 0.003869457943985
516 => 0.0037664023180552
517 => 0.0037654849068179
518 => 0.0037432817412565
519 => 0.0037150026716457
520 => 0.0037071360814174
521 => 0.0038218852628772
522 => 0.004059412634345
523 => 0.0040127803277776
524 => 0.0040464769483436
525 => 0.0042122309707569
526 => 0.0042649191900847
527 => 0.0042275223399947
528 => 0.0041763312250542
529 => 0.0041785833743123
530 => 0.0043535189106683
531 => 0.0043644294254905
601 => 0.0043919967765808
602 => 0.0044274286132643
603 => 0.0042335565349935
604 => 0.0041694520168603
605 => 0.0041390757397856
606 => 0.0040455285634941
607 => 0.0041464111729957
608 => 0.0040876311966632
609 => 0.0040955626236803
610 => 0.0040903972714304
611 => 0.0040932179030385
612 => 0.003943464243295
613 => 0.0039980266060849
614 => 0.0039073060954025
615 => 0.0037858415154539
616 => 0.0037854343235909
617 => 0.0038151626074546
618 => 0.0037974790609446
619 => 0.0037498930919718
620 => 0.003756652454265
621 => 0.0036974333280418
622 => 0.0037638427283854
623 => 0.003765747112363
624 => 0.0037401758758862
625 => 0.0038424887198467
626 => 0.0038844063754967
627 => 0.0038675748398587
628 => 0.0038832254300869
629 => 0.0040147181106477
630 => 0.004036157155007
701 => 0.0040456789623276
702 => 0.0040329210019157
703 => 0.003885628874903
704 => 0.0038921619070705
705 => 0.0038442268517604
706 => 0.003803726781295
707 => 0.0038053465717187
708 => 0.0038261688725786
709 => 0.0039171010816453
710 => 0.0041084625548797
711 => 0.0041157245829056
712 => 0.0041245263727212
713 => 0.0040887250701159
714 => 0.0040779270546779
715 => 0.004092172424245
716 => 0.0041640377322835
717 => 0.0043488948157996
718 => 0.0042835539762955
719 => 0.004230430856688
720 => 0.004277034154474
721 => 0.0042698599420686
722 => 0.0042093023694945
723 => 0.0042076027201256
724 => 0.0040913733769289
725 => 0.0040484060351631
726 => 0.0040124993083339
727 => 0.0039732901000052
728 => 0.0039500455670033
729 => 0.0039857597341454
730 => 0.0039939279867285
731 => 0.0039158383360954
801 => 0.0039051950052653
802 => 0.0039689646996544
803 => 0.0039409020347276
804 => 0.0039697651815254
805 => 0.003976461679166
806 => 0.0039753833888125
807 => 0.0039460827436523
808 => 0.0039647581011196
809 => 0.0039205853133175
810 => 0.003872554041121
811 => 0.0038419130819136
812 => 0.0038151747810717
813 => 0.0038300107444179
814 => 0.0037771232440284
815 => 0.0037602034682387
816 => 0.0039584313102185
817 => 0.0041048643483975
818 => 0.0041027351540285
819 => 0.0040897742308917
820 => 0.0040705169281377
821 => 0.0041626289406408
822 => 0.0041305389573225
823 => 0.0041538871013944
824 => 0.0041598301839792
825 => 0.0041778181050214
826 => 0.00418424724068
827 => 0.004164813927398
828 => 0.0040995933544445
829 => 0.0039370698876304
830 => 0.0038614147751046
831 => 0.0038364473278356
901 => 0.0038373548471239
902 => 0.0038123214138082
903 => 0.0038196948818394
904 => 0.0038097572225361
905 => 0.0037909376999935
906 => 0.0038288486919329
907 => 0.0038332175805886
908 => 0.0038243687020674
909 => 0.0038264529332932
910 => 0.0037531879985425
911 => 0.0037587581724085
912 => 0.0037277427364991
913 => 0.0037219277161627
914 => 0.0036435233950065
915 => 0.0035046187751902
916 => 0.0035815854183661
917 => 0.0034886205365574
918 => 0.0034534133271686
919 => 0.0036200787805707
920 => 0.0036033501916293
921 => 0.0035747181191043
922 => 0.003532365316393
923 => 0.0035166562498859
924 => 0.0034212129346744
925 => 0.0034155736344414
926 => 0.0034628779186465
927 => 0.0034410486191269
928 => 0.0034103920151991
929 => 0.0032993569033828
930 => 0.0031745166752392
1001 => 0.0031782848170092
1002 => 0.0032179941708467
1003 => 0.003333454472665
1004 => 0.0032883421352611
1005 => 0.0032556126168701
1006 => 0.0032494833619212
1007 => 0.0033262038200713
1008 => 0.0034347793417867
1009 => 0.0034857205473352
1010 => 0.0034352393597441
1011 => 0.0033772492895395
1012 => 0.0033807788764128
1013 => 0.0034042596365977
1014 => 0.003406727132493
1015 => 0.0033689815582654
1016 => 0.0033796067163145
1017 => 0.0033634661296531
1018 => 0.0032644113791052
1019 => 0.0032626197927738
1020 => 0.0032383101595158
1021 => 0.003237574073482
1022 => 0.0031962173229878
1023 => 0.0031904312277079
1024 => 0.0031083148894264
1025 => 0.0031623641119545
1026 => 0.0031261107311942
1027 => 0.0030714683350805
1028 => 0.0030620479653945
1029 => 0.0030617647777063
1030 => 0.0031178703006989
1031 => 0.0031617084862521
1101 => 0.0031267413742739
1102 => 0.0031187800406855
1103 => 0.0032037862548629
1104 => 0.00319296843926
1105 => 0.0031836002807153
1106 => 0.0034250575946839
1107 => 0.0032339252895285
1108 => 0.0031505806950303
1109 => 0.0030474259326294
1110 => 0.0030810136434186
1111 => 0.003088091067588
1112 => 0.0028400224590574
1113 => 0.0027393810554715
1114 => 0.0027048447183521
1115 => 0.0026849685680678
1116 => 0.0026940263793414
1117 => 0.0026034373120548
1118 => 0.0026643146634762
1119 => 0.0025858721885093
1120 => 0.0025727210523072
1121 => 0.002712985914706
1122 => 0.0027325029508934
1123 => 0.0026492372110503
1124 => 0.0027027072955284
1125 => 0.0026833182996068
1126 => 0.0025872168595991
1127 => 0.0025835464914651
1128 => 0.0025353261669982
1129 => 0.0024598706965022
1130 => 0.0024253855217449
1201 => 0.0024074253433173
1202 => 0.0024148360629734
1203 => 0.0024110889763435
1204 => 0.0023866367014564
1205 => 0.0024124905521173
1206 => 0.0023464446472274
1207 => 0.0023201446357322
1208 => 0.0023082655306955
1209 => 0.0022496459886453
1210 => 0.0023429357482758
1211 => 0.0023613150061565
1212 => 0.0023797304768528
1213 => 0.0025400245764884
1214 => 0.002532016736257
1215 => 0.0026044037119722
1216 => 0.0026015908872071
1217 => 0.0025809449491418
1218 => 0.0024938431325365
1219 => 0.0025285603641948
1220 => 0.0024217061214063
1221 => 0.0025017685854857
1222 => 0.0024652314203683
1223 => 0.0024894153332064
1224 => 0.002445930477348
1225 => 0.0024699967920257
1226 => 0.0023656734100255
1227 => 0.0022682577037833
1228 => 0.0023074606277169
1229 => 0.0023500786894309
1230 => 0.002442485506107
1231 => 0.0023874487684344
]
'min_raw' => 0.0022496459886453
'max_raw' => 0.006715248064102
'avg_raw' => 0.0044824470263736
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.002249'
'max' => '$0.006715'
'avg' => '$0.004482'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.0042616340113547
'max_diff' => 0.00020396806410202
'year' => 2026
]
1 => [
'items' => [
101 => 0.0024072420604709
102 => 0.0023409378455056
103 => 0.0022041333111695
104 => 0.0022049076099769
105 => 0.0021838632128181
106 => 0.0021656777811406
107 => 0.0023937703998153
108 => 0.0023654034770724
109 => 0.0023202044982527
110 => 0.0023807051275389
111 => 0.0023967024541963
112 => 0.0023971578755966
113 => 0.0024412975729766
114 => 0.0024648549373808
115 => 0.0024690070249605
116 => 0.0025384617924892
117 => 0.0025617421144343
118 => 0.0026576304657716
119 => 0.0024628562595973
120 => 0.0024588450129958
121 => 0.0023815564954643
122 => 0.0023325388957626
123 => 0.0023849127724522
124 => 0.0024313088774521
125 => 0.0023829981517753
126 => 0.0023893065126536
127 => 0.0023244533105637
128 => 0.0023476352786841
129 => 0.0023676027125776
130 => 0.0023565778692131
131 => 0.002340073145088
201 => 0.0024275049259363
202 => 0.0024225716822129
203 => 0.0025039901665868
204 => 0.0025674616974479
205 => 0.0026812140276443
206 => 0.0025625075410413
207 => 0.0025581814048539
208 => 0.0026004700800195
209 => 0.0025617356402584
210 => 0.00258621446912
211 => 0.0026772701098735
212 => 0.002679193972079
213 => 0.0026469668013801
214 => 0.0026450057751143
215 => 0.0026511953557736
216 => 0.0026874479230234
217 => 0.0026747801620975
218 => 0.0026894396157495
219 => 0.0027077714870148
220 => 0.0027835998791206
221 => 0.0028018818477415
222 => 0.0027574661421067
223 => 0.0027614763830239
224 => 0.0027448636898781
225 => 0.0027288160364557
226 => 0.0027648888177777
227 => 0.002830812534656
228 => 0.0028304024266347
301 => 0.0028456954475765
302 => 0.0028552228729291
303 => 0.0028143241888144
304 => 0.0027877006493421
305 => 0.0027979098084756
306 => 0.0028142344762567
307 => 0.0027926159387326
308 => 0.0026591763104531
309 => 0.0026996533695166
310 => 0.0026929160076614
311 => 0.0026833211850883
312 => 0.0027240211809766
313 => 0.0027200955670848
314 => 0.0026025081902345
315 => 0.0026100357525891
316 => 0.0026029659662333
317 => 0.0026258098922911
318 => 0.0025605019932839
319 => 0.0025805902631631
320 => 0.0025931894377155
321 => 0.0026006104483183
322 => 0.0026274202272502
323 => 0.0026242744091298
324 => 0.0026272246787789
325 => 0.0026669765034156
326 => 0.0028680275912492
327 => 0.0028789703583658
328 => 0.0028250841709548
329 => 0.0028466106399674
330 => 0.0028052845267844
331 => 0.0028330270234251
401 => 0.0028520077350436
402 => 0.0027662375490205
403 => 0.0027611587952481
404 => 0.0027196621144954
405 => 0.0027419600802398
406 => 0.0027064824134601
407 => 0.0027151873919317
408 => 0.0026908475132386
409 => 0.0027346544488647
410 => 0.0027836374098041
411 => 0.0027960124401332
412 => 0.002763459063123
413 => 0.0027398882727955
414 => 0.0026985057296815
415 => 0.0027673258211502
416 => 0.00278745091315
417 => 0.0027672201126095
418 => 0.0027625321940725
419 => 0.0027536485969158
420 => 0.0027644168912048
421 => 0.0027873413075769
422 => 0.0027765305761633
423 => 0.0027836712547225
424 => 0.0027564583514904
425 => 0.0028143377279807
426 => 0.0029062641072776
427 => 0.0029065596656185
428 => 0.0028957488759311
429 => 0.0028913253337127
430 => 0.0029024178599856
501 => 0.0029084351004494
502 => 0.0029443062963945
503 => 0.0029827975188151
504 => 0.0031624192588161
505 => 0.0031119821929919
506 => 0.0032713532864659
507 => 0.0033973951296573
508 => 0.0034351895672886
509 => 0.0034004204630335
510 => 0.003281477235567
511 => 0.0032756413133788
512 => 0.0034533927117492
513 => 0.0034031698001798
514 => 0.0033971959446566
515 => 0.0033336442148779
516 => 0.0033712111582119
517 => 0.003362994716631
518 => 0.0033500246616333
519 => 0.0034216997725788
520 => 0.0035558691817874
521 => 0.0035349576211295
522 => 0.0035193481111577
523 => 0.0034509517823216
524 => 0.003492141649154
525 => 0.0034774747265149
526 => 0.0035404931340317
527 => 0.0035031624254474
528 => 0.003402789312229
529 => 0.0034187740613432
530 => 0.0034163579986714
531 => 0.003466080397252
601 => 0.0034511549673839
602 => 0.0034134435689451
603 => 0.0035554106053328
604 => 0.0035461920556519
605 => 0.0035592618514456
606 => 0.0035650155797508
607 => 0.0036514284130602
608 => 0.0036868289859648
609 => 0.0036948655357884
610 => 0.0037284933420692
611 => 0.0036940288453339
612 => 0.0038319114050449
613 => 0.0039235952615823
614 => 0.0040300907789586
615 => 0.0041857093531419
616 => 0.0042442233765872
617 => 0.0042336533419905
618 => 0.004351641568886
619 => 0.0045636637898864
620 => 0.004276509094802
621 => 0.004578883685992
622 => 0.0044831553815038
623 => 0.0042561852936408
624 => 0.004241571095784
625 => 0.0043952778744617
626 => 0.0047361847158396
627 => 0.0046507914186078
628 => 0.0047363243886825
629 => 0.0046365456357392
630 => 0.0046315907796542
701 => 0.0047314783573624
702 => 0.0049648711272662
703 => 0.0048539949708821
704 => 0.0046950268127565
705 => 0.0048124064268979
706 => 0.0047107213421582
707 => 0.0044815963863763
708 => 0.0046507261199628
709 => 0.004537633883651
710 => 0.0045706402105207
711 => 0.0048083432700475
712 => 0.0047797422090409
713 => 0.0048167546303703
714 => 0.0047514286755077
715 => 0.0046904039327083
716 => 0.0045764967185165
717 => 0.0045427744079521
718 => 0.0045520940413905
719 => 0.0045427697896046
720 => 0.0044790397501257
721 => 0.004465277254168
722 => 0.0044423391579563
723 => 0.0044494486331213
724 => 0.0044063183014668
725 => 0.0044877141484802
726 => 0.0045028219349436
727 => 0.0045620550445496
728 => 0.0045682048224872
729 => 0.0047331681896094
730 => 0.0046423091390953
731 => 0.0047032652345732
801 => 0.0046978127476526
802 => 0.0042611044236783
803 => 0.0043212789776118
804 => 0.004414891699717
805 => 0.0043727192952977
806 => 0.0043130973822715
807 => 0.0042649494907782
808 => 0.0041920005117911
809 => 0.0042946747988544
810 => 0.0044296805681494
811 => 0.00457162879159
812 => 0.0047421702812378
813 => 0.0047041074060702
814 => 0.0045684406370672
815 => 0.00457452654922
816 => 0.0046121472634307
817 => 0.0045634250203256
818 => 0.0045490558796627
819 => 0.0046101731641568
820 => 0.0046105940453056
821 => 0.0045545332163334
822 => 0.0044922318639542
823 => 0.0044919708190129
824 => 0.0044808848951167
825 => 0.0046385177969728
826 => 0.0047251999545097
827 => 0.004735137924176
828 => 0.0047245310499695
829 => 0.0047286132148798
830 => 0.0046781747773201
831 => 0.0047934620885275
901 => 0.0048992611260249
902 => 0.0048709047239088
903 => 0.0048283944460368
904 => 0.0047945329621393
905 => 0.004862928034436
906 => 0.0048598825095305
907 => 0.0048983370637294
908 => 0.0048965925430267
909 => 0.0048836617227985
910 => 0.0048709051857091
911 => 0.0049214834133349
912 => 0.0049069176960402
913 => 0.0048923293541633
914 => 0.0048630702011659
915 => 0.0048670470060013
916 => 0.0048245440681281
917 => 0.0048048802642658
918 => 0.0045091838342401
919 => 0.0044301640859776
920 => 0.0044550253073763
921 => 0.004463210266982
922 => 0.0044288207712716
923 => 0.0044781264741837
924 => 0.0044704422326125
925 => 0.004500337121435
926 => 0.0044816600927839
927 => 0.0044824266045546
928 => 0.0045373517634552
929 => 0.0045532967707523
930 => 0.004545187011349
1001 => 0.0045508668088488
1002 => 0.0046817553449392
1003 => 0.0046631471806869
1004 => 0.0046532619643024
1005 => 0.0046560002367977
1006 => 0.0046894450640506
1007 => 0.0046988077896616
1008 => 0.0046591372633409
1009 => 0.0046778461128863
1010 => 0.0047575060197442
1011 => 0.0047853824787842
1012 => 0.0048743507545804
1013 => 0.0048365554497372
1014 => 0.0049059303675195
1015 => 0.0051191652131298
1016 => 0.0052895119625324
1017 => 0.0051328540519046
1018 => 0.0054456741636547
1019 => 0.005689249492032
1020 => 0.0056799006652329
1021 => 0.0056374276727315
1022 => 0.0053601236371591
1023 => 0.0051049443292551
1024 => 0.0053184126558025
1025 => 0.005318956830467
1026 => 0.0053006197119009
1027 => 0.0051867294433562
1028 => 0.005296656577427
1029 => 0.0053053821941329
1030 => 0.0053004981691064
1031 => 0.005213178767243
1101 => 0.0050798581799205
1102 => 0.005105908703559
1103 => 0.005148579992695
1104 => 0.0050677943401971
1105 => 0.0050419784292487
1106 => 0.0050899751193797
1107 => 0.0052446304554895
1108 => 0.0052153937600553
1109 => 0.0052146302717827
1110 => 0.0053397172531386
1111 => 0.0052501819699479
1112 => 0.0051062372840874
1113 => 0.0050698893525104
1114 => 0.0049408786823129
1115 => 0.0050299868117386
1116 => 0.0050331936546805
1117 => 0.004984390042857
1118 => 0.0051101974282148
1119 => 0.0051090380910108
1120 => 0.0052284734794498
1121 => 0.0054567890842619
1122 => 0.0053892649251904
1123 => 0.0053107416747978
1124 => 0.005319279329329
1125 => 0.0054129163268097
1126 => 0.0053563012606082
1127 => 0.0053766604331485
1128 => 0.0054128855107637
1129 => 0.005434740999507
1130 => 0.0053161346608358
1201 => 0.0052884818496945
1202 => 0.0052319139029173
1203 => 0.0052171563814939
1204 => 0.005263229793815
1205 => 0.005251091077466
1206 => 0.0050329241319487
1207 => 0.0050101244722727
1208 => 0.0050108237052846
1209 => 0.0049534928769646
1210 => 0.0048660496028012
1211 => 0.0050958453063359
1212 => 0.0050773894953533
1213 => 0.0050570157083947
1214 => 0.0050595113810459
1215 => 0.0051592579074514
1216 => 0.0051013998848159
1217 => 0.0052552249207357
1218 => 0.0052236031177544
1219 => 0.0051911703348467
1220 => 0.0051866871363221
1221 => 0.0051742032819376
1222 => 0.0051313915002156
1223 => 0.0050796937011971
1224 => 0.0050455583362984
1225 => 0.0046542608580307
1226 => 0.0047268833939244
1227 => 0.0048104290017178
1228 => 0.00483926861074
1229 => 0.0047899364638673
1230 => 0.0051333394340571
1231 => 0.0051960824658242
]
'min_raw' => 0.0021656777811406
'max_raw' => 0.005689249492032
'avg_raw' => 0.0039274636365863
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.002165'
'max' => '$0.005689'
'avg' => '$0.003927'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -8.3968207504641E-5
'max_diff' => -0.0010259985720701
'year' => 2027
]
2 => [
'items' => [
101 => 0.0050060297299751
102 => 0.0049704786228998
103 => 0.0051356701587184
104 => 0.0050360394687758
105 => 0.0050809031623565
106 => 0.0049839323959635
107 => 0.0051809695068019
108 => 0.0051794684141448
109 => 0.0051028165277436
110 => 0.0051676021772404
111 => 0.0051563440763438
112 => 0.0050698042853822
113 => 0.0051837129725336
114 => 0.0051837694698213
115 => 0.0051099936957159
116 => 0.0050238397431545
117 => 0.005008437451302
118 => 0.004996833893398
119 => 0.0050780493984231
120 => 0.0051508669662743
121 => 0.0052863624070395
122 => 0.0053204291801401
123 => 0.0054533940635054
124 => 0.005374219949404
125 => 0.0054093168087087
126 => 0.0054474194142379
127 => 0.0054656872045054
128 => 0.0054359208205681
129 => 0.0056424700149638
130 => 0.0056599090954746
131 => 0.0056657562683224
201 => 0.0055961090421081
202 => 0.0056579720801226
203 => 0.0056290284133241
204 => 0.0057043317935517
205 => 0.0057161403250932
206 => 0.0057061389189782
207 => 0.0057098871332745
208 => 0.0055336338336325
209 => 0.0055244941702358
210 => 0.0053998742113014
211 => 0.0054506577657114
212 => 0.0053557203448611
213 => 0.0053858259789765
214 => 0.0053990962556376
215 => 0.0053921646161914
216 => 0.0054535289916827
217 => 0.0054013567366014
218 => 0.005263665577529
219 => 0.0051259369045923
220 => 0.0051242078332949
221 => 0.0050879463048237
222 => 0.0050617358613692
223 => 0.005066784922644
224 => 0.0050845784731357
225 => 0.0050607016678677
226 => 0.0050657969948564
227 => 0.0051504133728545
228 => 0.0051673825840056
229 => 0.0051097145742153
301 => 0.0048781691934532
302 => 0.0048213473762265
303 => 0.0048621897716234
304 => 0.0048426697372108
305 => 0.0039084124328056
306 => 0.0041279023284411
307 => 0.0039974888856271
308 => 0.0040575894001098
309 => 0.0039244710453939
310 => 0.0039880021015951
311 => 0.0039762702352974
312 => 0.0043292034923012
313 => 0.0043236929249369
314 => 0.0043263305419214
315 => 0.0042004302109744
316 => 0.0044009928567396
317 => 0.004499797228043
318 => 0.0044815111685079
319 => 0.0044861133757352
320 => 0.0044070322077283
321 => 0.0043270962204906
322 => 0.0042384349085838
323 => 0.0044031566672374
324 => 0.0043848424195693
325 => 0.0044268487144616
326 => 0.0045336825495029
327 => 0.004549414237535
328 => 0.0045705577857852
329 => 0.0045629793288378
330 => 0.0047435289193419
331 => 0.0047216631726273
401 => 0.0047743533310048
402 => 0.0046659656776103
403 => 0.0045433147595439
404 => 0.0045666266893077
405 => 0.0045643815630088
406 => 0.0045357985283871
407 => 0.0045099950427644
408 => 0.0044670395092897
409 => 0.0046029571734265
410 => 0.0045974391644773
411 => 0.0046867693153804
412 => 0.0046709793435015
413 => 0.0045655300468326
414 => 0.0045692961890925
415 => 0.0045946253057363
416 => 0.0046822896676436
417 => 0.0047083144189026
418 => 0.0046962587172124
419 => 0.0047247936688928
420 => 0.0047473465312373
421 => 0.0047276259611733
422 => 0.005006827646278
423 => 0.004890883640749
424 => 0.0049473939423107
425 => 0.0049608713162551
426 => 0.0049263493062951
427 => 0.0049338358941149
428 => 0.0049451760346889
429 => 0.0050140311476268
430 => 0.0051947268873635
501 => 0.0052747558004554
502 => 0.0055155267340494
503 => 0.0052681105132794
504 => 0.005253429858649
505 => 0.0052967999743749
506 => 0.0054381580005863
507 => 0.0055527154037463
508 => 0.0055907207033496
509 => 0.0055957437310913
510 => 0.0056670441996917
511 => 0.0057079122986184
512 => 0.0056583864474151
513 => 0.0056164184740931
514 => 0.0054660944029102
515 => 0.0054834948234684
516 => 0.0056033664659482
517 => 0.0057726922213553
518 => 0.0059179913348368
519 => 0.0058671126494809
520 => 0.0062552811039919
521 => 0.0062937664207308
522 => 0.0062884489943367
523 => 0.0063761242732508
524 => 0.0062021066993664
525 => 0.0061277108150991
526 => 0.005625492426282
527 => 0.0057665953083178
528 => 0.0059716966340384
529 => 0.0059445507044888
530 => 0.0057956006393763
531 => 0.0059178783428557
601 => 0.0058774495101081
602 => 0.0058455616123262
603 => 0.005991646253838
604 => 0.0058310201896695
605 => 0.0059700942661758
606 => 0.0057917303245193
607 => 0.0058673450590299
608 => 0.0058244224786485
609 => 0.0058521986485489
610 => 0.0056898197268718
611 => 0.0057774354514833
612 => 0.0056861746246742
613 => 0.0056861313551598
614 => 0.0056841167673499
615 => 0.0057914847253782
616 => 0.0057949859906349
617 => 0.005715640907428
618 => 0.0057042060413347
619 => 0.0057464867345374
620 => 0.0056969871161281
621 => 0.0057201476760349
622 => 0.0056976886258936
623 => 0.0056926326206469
624 => 0.0056523455106322
625 => 0.0056349887159207
626 => 0.0056417947623566
627 => 0.0056185622171135
628 => 0.0056045637682466
629 => 0.0056813321235344
630 => 0.0056403178881308
701 => 0.0056750461037319
702 => 0.0056354689190042
703 => 0.0054982771537795
704 => 0.0054193767188222
705 => 0.0051602341919962
706 => 0.0052337266911388
707 => 0.0052824522941038
708 => 0.0052663484826145
709 => 0.0053009457010412
710 => 0.0053030696892657
711 => 0.0052918217808783
712 => 0.0052787981439119
713 => 0.005272458957689
714 => 0.0053197060581967
715 => 0.0053471345903057
716 => 0.0052873425602258
717 => 0.0052733341241575
718 => 0.0053337871677767
719 => 0.0053706634894619
720 => 0.00564293752977
721 => 0.0056227665894304
722 => 0.0056733916913356
723 => 0.0056676920817666
724 => 0.0057207552537745
725 => 0.0058074911138377
726 => 0.0056311328586013
727 => 0.0056617425537007
728 => 0.0056542377633434
729 => 0.0057361730966025
730 => 0.0057364288897694
731 => 0.0056873045645071
801 => 0.005713935658183
802 => 0.005699070912279
803 => 0.0057259335172184
804 => 0.0056224971942245
805 => 0.00574847147037
806 => 0.0058198907673415
807 => 0.0058208824243492
808 => 0.0058547346042951
809 => 0.0058891303797061
810 => 0.005955150075367
811 => 0.0058872891262264
812 => 0.0057652138848528
813 => 0.0057740273229793
814 => 0.0057024546536276
815 => 0.00570365780313
816 => 0.0056972352967933
817 => 0.0057165097217734
818 => 0.0056267268466127
819 => 0.0056477987079575
820 => 0.0056182979786781
821 => 0.0056616784248766
822 => 0.0056150082358117
823 => 0.0056542341443063
824 => 0.0056711627460531
825 => 0.0057336296509455
826 => 0.0056057818231688
827 => 0.005345091447795
828 => 0.0053998917252639
829 => 0.0053188378104186
830 => 0.0053263396588315
831 => 0.005341494586536
901 => 0.005292372507462
902 => 0.0053017434521347
903 => 0.0053014086560486
904 => 0.0052985235642507
905 => 0.0052857450142988
906 => 0.0052672135887096
907 => 0.0053410370845852
908 => 0.0053535811350797
909 => 0.0053814650054498
910 => 0.0054644284898615
911 => 0.0054561384813551
912 => 0.0054696598291782
913 => 0.0054401428027995
914 => 0.0053277088690283
915 => 0.0053338145725681
916 => 0.0052576763515902
917 => 0.0053795179799574
918 => 0.0053506642741291
919 => 0.0053320621022771
920 => 0.0053269863273394
921 => 0.005410155462182
922 => 0.0054350409708434
923 => 0.00541953399185
924 => 0.0053877287255237
925 => 0.0054488042392531
926 => 0.005465145470158
927 => 0.0054688036691162
928 => 0.0055770177693766
929 => 0.0054748516352121
930 => 0.0054994440391495
1001 => 0.005691306954458
1002 => 0.0055173137655457
1003 => 0.0056094818382237
1004 => 0.0056049706906856
1005 => 0.0056521207578702
1006 => 0.0056011030089692
1007 => 0.005601735435111
1008 => 0.0056436015005487
1009 => 0.0055848081622262
1010 => 0.0055702501048449
1011 => 0.0055501382528395
1012 => 0.0055940517459159
1013 => 0.0056203758989787
1014 => 0.0058325292397052
1015 => 0.0059695899731822
1016 => 0.00596363980527
1017 => 0.0060180132017399
1018 => 0.005993517488627
1019 => 0.0059144143693426
1020 => 0.0060494337483633
1021 => 0.0060067079673904
1022 => 0.006010230228862
1023 => 0.0060100991301141
1024 => 0.0060385080393084
1025 => 0.0060183777235059
1026 => 0.0059786988047247
1027 => 0.0060050395227493
1028 => 0.0060832620383033
1029 => 0.006326067126743
1030 => 0.0064619440709734
1031 => 0.0063178871640882
1101 => 0.0064172556894588
1102 => 0.0063576699828623
1103 => 0.0063468414874525
1104 => 0.0064092522646615
1105 => 0.0064717722836743
1106 => 0.0064677900287446
1107 => 0.0064224037053799
1108 => 0.0063967661229465
1109 => 0.0065909024863526
1110 => 0.0067339388518835
1111 => 0.0067241847306823
1112 => 0.0067672362494544
1113 => 0.0068936368401028
1114 => 0.006905193326008
1115 => 0.0069037374744067
1116 => 0.0068750935182963
1117 => 0.0069995513149805
1118 => 0.0071033761986011
1119 => 0.0068684632700602
1120 => 0.0069579150380125
1121 => 0.0069980728186023
1122 => 0.0070570363547847
1123 => 0.0071565177237604
1124 => 0.0072645808765981
1125 => 0.0072798621912615
1126 => 0.0072690193672296
1127 => 0.0071977488130397
1128 => 0.0073159928043361
1129 => 0.0073852573612748
1130 => 0.0074265028198406
1201 => 0.0075310944401735
1202 => 0.0069983208193838
1203 => 0.0066211971700219
1204 => 0.0065623038664425
1205 => 0.006682065715136
1206 => 0.0067136459595536
1207 => 0.0067009160026271
1208 => 0.0062764290486881
1209 => 0.0065600690304796
1210 => 0.0068652418017603
1211 => 0.0068769647307604
1212 => 0.0070297406009252
1213 => 0.0070794906867454
1214 => 0.0072024952870191
1215 => 0.0071948013157815
1216 => 0.0072247509785175
1217 => 0.0072178660697103
1218 => 0.007445706190043
1219 => 0.0076970476773552
1220 => 0.0076883445208665
1221 => 0.0076522112083279
1222 => 0.0077058753390931
1223 => 0.00796528668939
1224 => 0.0079414042492368
1225 => 0.0079646040055442
1226 => 0.0082704646073273
1227 => 0.0086681268978085
1228 => 0.0084833728392388
1229 => 0.0088842359847869
1230 => 0.0091365580860671
1231 => 0.0095729230696391
]
'min_raw' => 0.0039084124328056
'max_raw' => 0.0095729230696391
'avg_raw' => 0.0067406677512223
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.0039084'
'max' => '$0.009572'
'avg' => '$0.00674'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 0.001742734651665
'max_diff' => 0.0038836735776071
'year' => 2028
]
3 => [
'items' => [
101 => 0.009518288024553
102 => 0.0096881617104634
103 => 0.009420479891171
104 => 0.0088058283266542
105 => 0.0087085573637777
106 => 0.0089032962947495
107 => 0.0093820429541965
108 => 0.0088882188587288
109 => 0.008988118830084
110 => 0.0089593476316131
111 => 0.0089578145367163
112 => 0.0090163265333794
113 => 0.0089314518304391
114 => 0.0085856570219926
115 => 0.008744132744922
116 => 0.0086829376576697
117 => 0.0087508381693721
118 => 0.0091172692267289
119 => 0.0089552613216461
120 => 0.0087845991540948
121 => 0.0089986473851709
122 => 0.0092712043382829
123 => 0.0092541482139891
124 => 0.0092210522039522
125 => 0.0094076126796794
126 => 0.0097157559284901
127 => 0.0097990458104238
128 => 0.0098605286984806
129 => 0.0098690061499817
130 => 0.00995632916915
131 => 0.0094867712868477
201 => 0.010231971705163
202 => 0.01036064723166
203 => 0.010336461565733
204 => 0.01047947899794
205 => 0.010437399641383
206 => 0.01037643325578
207 => 0.010603146306509
208 => 0.010343238088648
209 => 0.0099743310949287
210 => 0.0097719414220214
211 => 0.010038464469615
212 => 0.010201220794408
213 => 0.010308792371849
214 => 0.010341343466187
215 => 0.0095232217285909
216 => 0.0090822994871386
217 => 0.0093649255887258
218 => 0.0097097489384737
219 => 0.0094848557757293
220 => 0.0094936711619298
221 => 0.0091730326127397
222 => 0.0097381183353621
223 => 0.009655790098695
224 => 0.01008290913616
225 => 0.0099809737500245
226 => 0.010329272744412
227 => 0.010237553946419
228 => 0.010618273548957
301 => 0.010770152905981
302 => 0.01102518198456
303 => 0.011212782412917
304 => 0.011322944972672
305 => 0.011316331225794
306 => 0.011752850170315
307 => 0.011495450199541
308 => 0.011172095171734
309 => 0.011166246699453
310 => 0.011333716850331
311 => 0.011684688343378
312 => 0.011775690145097
313 => 0.011826547737564
314 => 0.011748657564336
315 => 0.011469268344083
316 => 0.011348629495313
317 => 0.011451417289709
318 => 0.011325716649818
319 => 0.011542711219639
320 => 0.011840691111542
321 => 0.011779159442204
322 => 0.011984850587457
323 => 0.012197719283454
324 => 0.012502131079261
325 => 0.012581715595021
326 => 0.012713265773244
327 => 0.012848674118619
328 => 0.012892163629796
329 => 0.012975198600635
330 => 0.012974760965352
331 => 0.013224992438875
401 => 0.013501005503195
402 => 0.013605194045259
403 => 0.013844769852745
404 => 0.013434504678163
405 => 0.01374569552587
406 => 0.014026397460114
407 => 0.013691733042126
408 => 0.014152989975513
409 => 0.014170899537006
410 => 0.014441312652336
411 => 0.014167197155065
412 => 0.014004428247793
413 => 0.014474335984215
414 => 0.014701709535915
415 => 0.014633222771716
416 => 0.01411203511455
417 => 0.013808681543289
418 => 0.013014746734766
419 => 0.013955196810893
420 => 0.01441326260967
421 => 0.014110848834792
422 => 0.014263368752482
423 => 0.015095467968648
424 => 0.015412277475729
425 => 0.015346383312922
426 => 0.015357518341726
427 => 0.015528463001248
428 => 0.016286525762511
429 => 0.015832276984205
430 => 0.016179533154843
501 => 0.016363716575625
502 => 0.0165347964015
503 => 0.016114678419485
504 => 0.015568111097642
505 => 0.015394990283479
506 => 0.014080779744804
507 => 0.014012369378939
508 => 0.013973968567533
509 => 0.013731856883519
510 => 0.013541623419855
511 => 0.013390342706634
512 => 0.012993336938898
513 => 0.013127314731282
514 => 0.012494570399053
515 => 0.012899377799731
516 => 0.011889502567347
517 => 0.012730556669481
518 => 0.012272809159727
519 => 0.012580174301447
520 => 0.012579101933423
521 => 0.01201314525731
522 => 0.011686713257742
523 => 0.01189472843279
524 => 0.012117737212707
525 => 0.012153919636957
526 => 0.012443056341243
527 => 0.012523748180437
528 => 0.012279248140538
529 => 0.011868575147818
530 => 0.011963965117574
531 => 0.01168478018305
601 => 0.011195519323991
602 => 0.011546915014642
603 => 0.011666896953208
604 => 0.011719887812499
605 => 0.011238755949604
606 => 0.011087573872401
607 => 0.011007085803039
608 => 0.011806467066114
609 => 0.011850258976206
610 => 0.011626213372621
611 => 0.012638920745701
612 => 0.012409713877533
613 => 0.012665794106322
614 => 0.011955309477649
615 => 0.011982450947258
616 => 0.011646096138023
617 => 0.011834432355958
618 => 0.011701322387481
619 => 0.011819216650724
620 => 0.011889881986015
621 => 0.012226181602736
622 => 0.012734396670898
623 => 0.012175949654602
624 => 0.011932626292493
625 => 0.012083582737843
626 => 0.012485599644617
627 => 0.013094675837247
628 => 0.01273409047241
629 => 0.012894112134188
630 => 0.012929069748418
701 => 0.012663187449983
702 => 0.013104479296841
703 => 0.013340971182621
704 => 0.013583562922331
705 => 0.013794198532655
706 => 0.013486666446784
707 => 0.013815769861659
708 => 0.013550570603843
709 => 0.013312659453787
710 => 0.013313020266796
711 => 0.013163775127039
712 => 0.012874593862661
713 => 0.012821264400673
714 => 0.013098690996703
715 => 0.013321160854322
716 => 0.013339484537354
717 => 0.013462655281446
718 => 0.01353554645904
719 => 0.014249979090213
720 => 0.014537329804567
721 => 0.014888696818809
722 => 0.015025574072816
723 => 0.015437525534165
724 => 0.015104841272064
725 => 0.015032862939276
726 => 0.014033603442338
727 => 0.014197232128982
728 => 0.014459217444119
729 => 0.014037923483689
730 => 0.014305137533079
731 => 0.014357891246796
801 => 0.014023608076124
802 => 0.014202163161103
803 => 0.013727973793291
804 => 0.012744732703307
805 => 0.013105573925249
806 => 0.01337127452244
807 => 0.012992087009601
808 => 0.013671765949782
809 => 0.013274711544349
810 => 0.0131488643598
811 => 0.012657889625111
812 => 0.012889610800534
813 => 0.01320301700822
814 => 0.013009368409252
815 => 0.013411218328594
816 => 0.01398034498384
817 => 0.014385938530447
818 => 0.014417074966681
819 => 0.01415630548887
820 => 0.014574190241271
821 => 0.014577234075477
822 => 0.014105858367659
823 => 0.013817143371252
824 => 0.013751546716606
825 => 0.013915420020892
826 => 0.014114392464976
827 => 0.01442811655255
828 => 0.014617693448177
829 => 0.015112009448157
830 => 0.015245757184601
831 => 0.015392705397173
901 => 0.01558907352632
902 => 0.015824863813116
903 => 0.015308968089156
904 => 0.015329465588018
905 => 0.014849070632929
906 => 0.01433569972781
907 => 0.014725284252208
908 => 0.015234614193602
909 => 0.015117773342287
910 => 0.015104626359672
911 => 0.015126735937761
912 => 0.015038641751535
913 => 0.014640195012157
914 => 0.01444009755405
915 => 0.014698274325314
916 => 0.014835483789115
917 => 0.015048283701547
918 => 0.015022051620678
919 => 0.015570201342062
920 => 0.015783195748604
921 => 0.015728702664866
922 => 0.015738730703723
923 => 0.01612434690283
924 => 0.016553231424256
925 => 0.016954938374869
926 => 0.017363571938747
927 => 0.016870948228252
928 => 0.016620824288869
929 => 0.016878888348232
930 => 0.01674195592582
1001 => 0.017528810241795
1002 => 0.01758329032742
1003 => 0.018370087744873
1004 => 0.019116852184129
1005 => 0.018647822819507
1006 => 0.019090096384799
1007 => 0.019568451304756
1008 => 0.02049127555564
1009 => 0.020180500813291
1010 => 0.019942452231113
1011 => 0.019717497471196
1012 => 0.02018559261602
1013 => 0.020787789541832
1014 => 0.020917496991882
1015 => 0.021127672613022
1016 => 0.020906698646446
1017 => 0.021172837449703
1018 => 0.022112424372517
1019 => 0.021858539692009
1020 => 0.02149798263169
1021 => 0.022239696268364
1022 => 0.022508119550138
1023 => 0.02439205471599
1024 => 0.026770600684358
1025 => 0.025785867035079
1026 => 0.025174611081815
1027 => 0.025318270730017
1028 => 0.026186835198803
1029 => 0.026465790539319
1030 => 0.025707493762124
1031 => 0.025975337003318
1101 => 0.02745117959606
1102 => 0.028242921796366
1103 => 0.027167629543186
1104 => 0.02420094086337
1105 => 0.021465518413348
1106 => 0.022191075624772
1107 => 0.022108819953658
1108 => 0.023694428704446
1109 => 0.021852484626345
1110 => 0.021883498240691
1111 => 0.023501895701256
1112 => 0.023070135005134
1113 => 0.022370737973148
1114 => 0.021470624785681
1115 => 0.019806682308255
1116 => 0.01833288205353
1117 => 0.021223343748974
1118 => 0.021098701784702
1119 => 0.020918201749534
1120 => 0.021319885045658
1121 => 0.023270345111844
1122 => 0.023225380694295
1123 => 0.022939340010898
1124 => 0.023156299348208
1125 => 0.022332703952335
1126 => 0.02254496323877
1127 => 0.021465085108456
1128 => 0.021953235123052
1129 => 0.022369237381233
1130 => 0.022452755993581
1201 => 0.022640927691768
1202 => 0.021033021133306
1203 => 0.021754923972399
1204 => 0.022178974257218
1205 => 0.020263099643326
1206 => 0.022141103576108
1207 => 0.021005031057393
1208 => 0.020619430981304
1209 => 0.02113859068481
1210 => 0.020936273643455
1211 => 0.020762333331752
1212 => 0.020665271649149
1213 => 0.021046485237838
1214 => 0.021028701168277
1215 => 0.020404961746812
1216 => 0.019591319098383
1217 => 0.019864404278105
1218 => 0.019765189872125
1219 => 0.019405624065939
1220 => 0.019647928005167
1221 => 0.018580944084023
1222 => 0.016745253704693
1223 => 0.017957966997995
1224 => 0.017911278855381
1225 => 0.017887736576737
1226 => 0.01879905709972
1227 => 0.018711454659177
1228 => 0.018552455371785
1229 => 0.019402703919337
1230 => 0.019092351762024
1231 => 0.020048783982698
]
'min_raw' => 0.0085856570219926
'max_raw' => 0.028242921796366
'avg_raw' => 0.018414289409179
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.008585'
'max' => '$0.028242'
'avg' => '$0.018414'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072434
'min_diff' => 0.004677244589187
'max_diff' => 0.018669998726727
'year' => 2029
]
4 => [
'items' => [
101 => 0.020678752101392
102 => 0.020518971809158
103 => 0.021111459869689
104 => 0.019870695609091
105 => 0.02028282772564
106 => 0.02036776758367
107 => 0.019392211984241
108 => 0.018725787501847
109 => 0.018681344586667
110 => 0.017525856373147
111 => 0.018143108850034
112 => 0.018686265486052
113 => 0.018426135608057
114 => 0.018343786259843
115 => 0.018764491220475
116 => 0.01879718359901
117 => 0.01805179390382
118 => 0.018206784024872
119 => 0.018853118594621
120 => 0.018190498052038
121 => 0.01690313457625
122 => 0.016583850635062
123 => 0.016541252271737
124 => 0.015675328900506
125 => 0.016605186714728
126 => 0.01619927886018
127 => 0.017481536909174
128 => 0.016749117988476
129 => 0.016717544872672
130 => 0.016669817477365
131 => 0.015924481460903
201 => 0.016087662679933
202 => 0.016630101905191
203 => 0.016823650331779
204 => 0.01680346164519
205 => 0.016627443657061
206 => 0.016708023790669
207 => 0.016448447104339
208 => 0.016356785173774
209 => 0.016067474907312
210 => 0.015642268739614
211 => 0.015701396265173
212 => 0.014858951585717
213 => 0.014399943012426
214 => 0.014272895488975
215 => 0.014103002230934
216 => 0.014292085384539
217 => 0.014856565045788
218 => 0.014175682813281
219 => 0.013008357983984
220 => 0.01307851619525
221 => 0.013236140865803
222 => 0.012942408335018
223 => 0.012664415145733
224 => 0.012906107669516
225 => 0.012411496750772
226 => 0.013295912232302
227 => 0.013271991272072
228 => 0.0136016466717
301 => 0.013807786958298
302 => 0.013332700336401
303 => 0.013213217335765
304 => 0.013281280283127
305 => 0.012156351375324
306 => 0.013509715980297
307 => 0.0135214199336
308 => 0.01342120357974
309 => 0.014141828451444
310 => 0.015662571699273
311 => 0.015090406917684
312 => 0.014868847420481
313 => 0.014447662654338
314 => 0.015008866347746
315 => 0.014965774660234
316 => 0.014770897707266
317 => 0.014653035518058
318 => 0.014870200215526
319 => 0.014626126408786
320 => 0.014582284046396
321 => 0.014316647031273
322 => 0.014221826702588
323 => 0.014151625506136
324 => 0.014074340886669
325 => 0.014244811499086
326 => 0.013858502664073
327 => 0.01339265207937
328 => 0.013353921643825
329 => 0.013460859781579
330 => 0.013413547616231
331 => 0.01335369513138
401 => 0.013239420437944
402 => 0.013205517577495
403 => 0.013315685426627
404 => 0.013191312348141
405 => 0.013374831600399
406 => 0.013324924518368
407 => 0.013046147615072
408 => 0.012698688377136
409 => 0.012695595261098
410 => 0.012620735738232
411 => 0.012525390880657
412 => 0.012498868122475
413 => 0.012885752999298
414 => 0.013686593115834
415 => 0.013529369038478
416 => 0.013642979547339
417 => 0.014201830806482
418 => 0.01437947281652
419 => 0.014253386725476
420 => 0.014080792307405
421 => 0.014088385585869
422 => 0.014678192960302
423 => 0.014714978522773
424 => 0.014807923771665
425 => 0.014927384682815
426 => 0.014273731435209
427 => 0.014057598576688
428 => 0.013955182837727
429 => 0.013639782001605
430 => 0.013979914762939
501 => 0.013781733968846
502 => 0.013808475328789
503 => 0.013791059983045
504 => 0.013800569939442
505 => 0.013295665020151
506 => 0.013479625835719
507 => 0.013173755300049
508 => 0.012764228988367
509 => 0.012762856112572
510 => 0.01286308709718
511 => 0.012803465785496
512 => 0.012643026368758
513 => 0.012665816030653
514 => 0.012466154612044
515 => 0.012690058541859
516 => 0.012696479305399
517 => 0.012610264096291
518 => 0.012955218992959
519 => 0.01309654729558
520 => 0.013039798598036
521 => 0.01309256565568
522 => 0.013535902408716
523 => 0.0136081856436
524 => 0.013640289081773
525 => 0.013597274727512
526 => 0.01310066903768
527 => 0.013122695611755
528 => 0.012961079226058
529 => 0.012824530410859
530 => 0.012829991647363
531 => 0.012900195488479
601 => 0.013206779780031
602 => 0.013851968347473
603 => 0.01387645278198
604 => 0.013906128630865
605 => 0.013785422039564
606 => 0.013749015776622
607 => 0.013797045034697
608 => 0.014039343938225
609 => 0.014662602501608
610 => 0.014442301299269
611 => 0.014263192992574
612 => 0.014420319264798
613 => 0.014396130906786
614 => 0.014191956822857
615 => 0.014186226336344
616 => 0.013794350990883
617 => 0.013649483598236
618 => 0.013528421561803
619 => 0.013396224978424
620 => 0.013317854412526
621 => 0.01343826722053
622 => 0.013465807054402
623 => 0.013202522345248
624 => 0.01316663761226
625 => 0.013381641589151
626 => 0.013287026355078
627 => 0.013384340469667
628 => 0.013406918178997
629 => 0.013403282647786
630 => 0.013304493476923
701 => 0.013367458748496
702 => 0.013218527110375
703 => 0.013056586322728
704 => 0.012953278189477
705 => 0.01286312814138
706 => 0.012913148627616
707 => 0.012734834727565
708 => 0.012677788522189
709 => 0.01334612753125
710 => 0.013839836743099
711 => 0.013832658015628
712 => 0.01378895935837
713 => 0.013724032017633
714 => 0.014034594098842
715 => 0.013926400479634
716 => 0.014005120377487
717 => 0.014025157895355
718 => 0.014085805427025
719 => 0.014107481706766
720 => 0.014041960934245
721 => 0.013822065218977
722 => 0.013274106003587
723 => 0.013019029509636
724 => 0.012934850017997
725 => 0.012937909782638
726 => 0.012853507814436
727 => 0.012878367976702
728 => 0.012844862464536
729 => 0.012781411130346
730 => 0.012909230686531
731 => 0.01292396069966
801 => 0.012894126087916
802 => 0.012901153219011
803 => 0.012654135376304
804 => 0.012672915606391
805 => 0.012568344898793
806 => 0.012548739151737
807 => 0.012284393508944
808 => 0.011816066885223
809 => 0.01207556529633
810 => 0.011762127706711
811 => 0.011643424142168
812 => 0.012205348354524
813 => 0.012148946748955
814 => 0.012052411717409
815 => 0.01190961628609
816 => 0.011856652071589
817 => 0.011534858270714
818 => 0.011515844976255
819 => 0.011675334673132
820 => 0.011601735665729
821 => 0.011498374785211
822 => 0.011124012153498
823 => 0.010703104608246
824 => 0.010715809161306
825 => 0.010849692020188
826 => 0.011238974488949
827 => 0.011086875093749
828 => 0.010976525237392
829 => 0.010955860026401
830 => 0.011214528407505
831 => 0.01158059835947
901 => 0.011752350190578
902 => 0.01158214934213
903 => 0.011386631771698
904 => 0.011398532020269
905 => 0.011477699042607
906 => 0.011486018377293
907 => 0.011358756538473
908 => 0.01139458000066
909 => 0.011340160885832
910 => 0.011006190878578
911 => 0.011000150420177
912 => 0.010918188794403
913 => 0.010915707028948
914 => 0.010776269857221
915 => 0.010756761633012
916 => 0.010479900665317
917 => 0.010662131392666
918 => 0.010539900588303
919 => 0.010355669934795
920 => 0.010323908500689
921 => 0.010322953713627
922 => 0.010512117401559
923 => 0.010659920904836
924 => 0.010542026845476
925 => 0.01051518465344
926 => 0.010801789039483
927 => 0.010765316018902
928 => 0.010733730618305
929 => 0.011547820810362
930 => 0.010903404899099
1001 => 0.010622402779814
1002 => 0.010274609296344
1003 => 0.010387852608289
1004 => 0.010411714638006
1005 => 0.0095753340047482
1006 => 0.0092360144859999
1007 => 0.0091195728141519
1008 => 0.0090525589857597
1009 => 0.0090830980288647
1010 => 0.0087776706637814
1011 => 0.0089829229044197
1012 => 0.0087184486233901
1013 => 0.0086741086495017
1014 => 0.0091470214260592
1015 => 0.0092128244762008
1016 => 0.0089320882208915
1017 => 0.0091123663438714
1018 => 0.0090469949904255
1019 => 0.0087229822758511
1020 => 0.0087106073734306
1021 => 0.0085480291828548
1022 => 0.0082936257959447
1023 => 0.0081773566215726
1024 => 0.0081168026260643
1025 => 0.0081417883847849
1026 => 0.008129154820599
1027 => 0.0080467122686136
1028 => 0.008133880331175
1029 => 0.0079112019516609
1030 => 0.0078225296266967
1031 => 0.0077824783946928
1101 => 0.0075848385159847
1102 => 0.0078993714538622
1103 => 0.0079613384050056
1104 => 0.0080234274501853
1105 => 0.0085638701984834
1106 => 0.0085368712060538
1107 => 0.0087809289485749
1108 => 0.0087714453134939
1109 => 0.0087018360918536
1110 => 0.0084081662359142
1111 => 0.0085252178063298
1112 => 0.0081649512664435
1113 => 0.0084348874538698
1114 => 0.0083116998507331
1115 => 0.0083932376013337
1116 => 0.0082466253737913
1117 => 0.0083277666339837
1118 => 0.0079760330679441
1119 => 0.007647589213001
1120 => 0.0077797646081039
1121 => 0.0079234543786707
1122 => 0.0082350104127321
1123 => 0.0080494502091266
1124 => 0.0081161846751513
1125 => 0.0078926353851833
1126 => 0.0074313893462816
1127 => 0.0074339999487706
1128 => 0.0073630472944768
1129 => 0.0073017338419098
1130 => 0.0080707640306896
1201 => 0.0079751229701466
1202 => 0.0078227314573639
1203 => 0.0080267135530215
1204 => 0.0080806496567446
1205 => 0.0080821851417923
1206 => 0.0082310052132442
1207 => 0.0083104305120556
1208 => 0.00832442956522
1209 => 0.00855860116312
1210 => 0.008637092393938
1211 => 0.0089603866651827
1212 => 0.0083036918303651
1213 => 0.0082901676323921
1214 => 0.0080295839994225
1215 => 0.0078643177397289
1216 => 0.0080408999216152
1217 => 0.0081973276288948
1218 => 0.0080344446443282
1219 => 0.0080557137234651
1220 => 0.0078370566247133
1221 => 0.0079152162487443
1222 => 0.0079825378461982
1223 => 0.0079453668170648
1224 => 0.0078897199873539
1225 => 0.0081845023407759
1226 => 0.0081678695651344
1227 => 0.0084423776696581
1228 => 0.0086563763673971
1229 => 0.0090399002905884
1230 => 0.008639673083184
1231 => 0.0086250872129871
]
'min_raw' => 0.0073017338419098
'max_raw' => 0.021111459869689
'avg_raw' => 0.014206596855799
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.0073017'
'max' => '$0.021111'
'avg' => '$0.0142065'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -0.0012839231800829
'max_diff' => -0.0071314619266771
'year' => 2030
]
5 => [
'items' => [
101 => 0.0087676664338088
102 => 0.0086370705658022
103 => 0.0087196026463662
104 => 0.0090266030964685
105 => 0.0090330895322142
106 => 0.0089244333761735
107 => 0.0089178216392037
108 => 0.0089386902425395
109 => 0.0090609183040957
110 => 0.009018208063699
111 => 0.0090676334351771
112 => 0.0091294406190385
113 => 0.0093851013371925
114 => 0.0094467402708041
115 => 0.0092969896182508
116 => 0.0093105104254894
117 => 0.0092544995706871
118 => 0.009200393786762
119 => 0.0093220156875104
120 => 0.0095442821016124
121 => 0.0095428993937859
122 => 0.0095944608816158
123 => 0.0096265832613755
124 => 0.009488690492428
125 => 0.0093989273703008
126 => 0.0094333482631002
127 => 0.009488388020276
128 => 0.0094154996116554
129 => 0.0089655985884538
130 => 0.0091020698191045
131 => 0.009079354333222
201 => 0.0090470047190278
202 => 0.009184227596748
203 => 0.0091709921154344
204 => 0.008774538064695
205 => 0.0087999177667313
206 => 0.008776081488436
207 => 0.0088531013800518
208 => 0.0086329112388972
209 => 0.0087006402433131
210 => 0.0087431192399628
211 => 0.0087681396953285
212 => 0.0088585307367963
213 => 0.0088479243913695
214 => 0.0088578714314725
215 => 0.008991897483619
216 => 0.0096697552631887
217 => 0.0097066495665218
218 => 0.0095249685234522
219 => 0.0095975465166584
220 => 0.0094582126407648
221 => 0.009551748405108
222 => 0.0096157431995208
223 => 0.0093265630290606
224 => 0.0093094396561298
225 => 0.0091695306997666
226 => 0.0092447098480678
227 => 0.0091250944175485
228 => 0.0091544438602278
301 => 0.009072380259858
302 => 0.0092200784018237
303 => 0.0093852278745123
304 => 0.0094269511532638
305 => 0.0093171951698696
306 => 0.0092377246046205
307 => 0.0090982004712746
308 => 0.0093302322145269
309 => 0.0093980853672931
310 => 0.0093298758108014
311 => 0.009314070166154
312 => 0.0092841184981074
313 => 0.0093204245541208
314 => 0.009397715824451
315 => 0.0093612666887089
316 => 0.0093853419850177
317 => 0.0092935917818264
318 => 0.0094887361406722
319 => 0.0097986723465668
320 => 0.0097996688421484
321 => 0.0097632195099319
322 => 0.0097483052285007
323 => 0.0097857044552853
324 => 0.0098059920016193
325 => 0.0099269342431953
326 => 0.010056710086958
327 => 0.01066231732416
328 => 0.01049226523533
329 => 0.011029596003912
330 => 0.011454554878193
331 => 0.01158198146339
401 => 0.011464755000893
402 => 0.011063729605138
403 => 0.01104405338603
404 => 0.011643354635842
405 => 0.011474024583034
406 => 0.011453883312056
407 => 0.011239614218067
408 => 0.011366273790358
409 => 0.011338571483914
410 => 0.01129484203795
411 => 0.011536499678699
412 => 0.011988861209254
413 => 0.011918356422498
414 => 0.011865727869807
415 => 0.011635124871856
416 => 0.011773999383667
417 => 0.011724548829977
418 => 0.011937019790725
419 => 0.011811156700386
420 => 0.011472741741343
421 => 0.011526635439001
422 => 0.011518489515019
423 => 0.011686132053341
424 => 0.01163580992448
425 => 0.011508663311718
426 => 0.011987315086721
427 => 0.011956234102853
428 => 0.012000299831876
429 => 0.012019698928569
430 => 0.012311045829223
501 => 0.01243040133236
502 => 0.012457497121184
503 => 0.012570875617879
504 => 0.012454676160901
505 => 0.01291955683762
506 => 0.013228675361098
507 => 0.013587732433212
508 => 0.014112411321013
509 => 0.014309695436377
510 => 0.014274057826758
511 => 0.014671863371411
512 => 0.015386711092433
513 => 0.014418548989455
514 => 0.015438026034772
515 => 0.015115271372653
516 => 0.014350025874878
517 => 0.014300753086473
518 => 0.014818986222249
519 => 0.01596837743931
520 => 0.015680467975724
521 => 0.015968848356052
522 => 0.015632437324173
523 => 0.015615731680946
524 => 0.015952509623117
525 => 0.016739409641811
526 => 0.016365582939436
527 => 0.015829610695513
528 => 0.016225364259774
529 => 0.015882525897148
530 => 0.015110015111735
531 => 0.015680247816783
601 => 0.01529894944621
602 => 0.01541023258168
603 => 0.016211665042772
604 => 0.016115234568726
605 => 0.016240024531363
606 => 0.016019773513631
607 => 0.015814024332671
608 => 0.015429978207276
609 => 0.015316281082791
610 => 0.015347702877605
611 => 0.01531626551171
612 => 0.015101395234118
613 => 0.01505499401813
614 => 0.014977656625265
615 => 0.015001626717152
616 => 0.014856209792715
617 => 0.015130641573797
618 => 0.015181578530651
619 => 0.015381287095211
620 => 0.015402021500891
621 => 0.015958207010518
622 => 0.015651869378134
623 => 0.015857387109856
624 => 0.015839003669523
625 => 0.014366611065242
626 => 0.014569493775082
627 => 0.014885115603491
628 => 0.014742928397608
629 => 0.014541908955171
630 => 0.014379574977423
701 => 0.014133622401633
702 => 0.014479795928957
703 => 0.014934977305937
704 => 0.015413565651775
705 => 0.015988558190949
706 => 0.015860226549857
707 => 0.015402816566212
708 => 0.01542333564394
709 => 0.015550176508496
710 => 0.015385906064188
711 => 0.015337459503222
712 => 0.015543520694966
713 => 0.015544939725145
714 => 0.015355926726223
715 => 0.015145873366935
716 => 0.015144993235689
717 => 0.015107616269279
718 => 0.015639086603464
719 => 0.015931341549555
720 => 0.015964848108132
721 => 0.015929086291197
722 => 0.015942849595199
723 => 0.015772792881467
724 => 0.016161492100306
725 => 0.016518200941882
726 => 0.016422595352367
727 => 0.016279268982548
728 => 0.016165102625454
729 => 0.016395701386894
730 => 0.016385433187043
731 => 0.016515085401336
801 => 0.016509203627989
802 => 0.016465606464788
803 => 0.016422596909359
804 => 0.016593124935058
805 => 0.016544015602253
806 => 0.016494829989089
807 => 0.01639618071195
808 => 0.016409588787104
809 => 0.016266287164604
810 => 0.016199989277
811 => 0.015203028118302
812 => 0.014936607520053
813 => 0.015020428863753
814 => 0.01504802502652
815 => 0.014932078440734
816 => 0.015098316060517
817 => 0.015072408103563
818 => 0.015173200808422
819 => 0.015110229902337
820 => 0.015112814250287
821 => 0.015297998258273
822 => 0.01535175796362
823 => 0.015324415343587
824 => 0.015343565177408
825 => 0.015784865015183
826 => 0.015722126290225
827 => 0.015688797593021
828 => 0.015698029869919
829 => 0.015810791440046
830 => 0.015842358523128
831 => 0.01570860657393
901 => 0.015771684766382
902 => 0.016040263704031
903 => 0.016134251131956
904 => 0.01643421388537
905 => 0.016306784376307
906 => 0.016540686755212
907 => 0.017259622924769
908 => 0.01783395888361
909 => 0.017305775800422
910 => 0.01836047064759
911 => 0.019181701873101
912 => 0.019150181650834
913 => 0.019006980991245
914 => 0.018072031074563
915 => 0.017211676221915
916 => 0.017931399588752
917 => 0.017933234311627
918 => 0.017871409436124
919 => 0.017487420444161
920 => 0.017858047451548
921 => 0.017887466477475
922 => 0.017870999646107
923 => 0.017576596186278
924 => 0.017127096517974
925 => 0.017214927677211
926 => 0.017358796907747
927 => 0.017086422440076
928 => 0.016999382293905
929 => 0.017161206485703
930 => 0.017682637749088
1001 => 0.017584064189191
1002 => 0.017581490035175
1003 => 0.01800322952611
1004 => 0.017701355067679
1005 => 0.017216035509403
1006 => 0.01709348592036
1007 => 0.016658517438552
1008 => 0.016958951718241
1009 => 0.016969763813114
1010 => 0.016805219028492
1011 => 0.017229387411817
1012 => 0.017225478625491
1013 => 0.017628163376326
1014 => 0.018397945378437
1015 => 0.018170282961741
1016 => 0.017905536340724
1017 => 0.017934321639056
1018 => 0.018250025313589
1019 => 0.018059143665152
1020 => 0.018127786036804
1021 => 0.018249921415138
1022 => 0.018323608721338
1023 => 0.017923719169677
1024 => 0.017830485786257
1025 => 0.01763976300425
1026 => 0.017590006990433
1027 => 0.017745346716817
1028 => 0.017704420187148
1029 => 0.016968855098407
1030 => 0.016891984453988
1031 => 0.016894341966906
1101 => 0.016701047076515
1102 => 0.016406225972578
1103 => 0.017180998230869
1104 => 0.017118773175598
1105 => 0.017050081530415
1106 => 0.017058495865001
1107 => 0.017394798242856
1108 => 0.017199725880023
1109 => 0.017718357728348
1110 => 0.017611742611832
1111 => 0.017502393219874
1112 => 0.017487277803042
1113 => 0.01744518761639
1114 => 0.017300844705291
1115 => 0.017126541966475
1116 => 0.017011452200464
1117 => 0.015692165432967
1118 => 0.015937017383076
1119 => 0.016218697232719
1120 => 0.016315931988055
1121 => 0.016149605210613
1122 => 0.017307412300238
1123 => 0.017518954812419
1124 => 0.016878178744446
1125 => 0.016758315704842
1126 => 0.017315270501159
1127 => 0.016979358674025
1128 => 0.017130619749215
1129 => 0.016803676040039
1130 => 0.017468000415922
1201 => 0.017462939377226
1202 => 0.017204502190561
1203 => 0.017422931531029
1204 => 0.01738497405784
1205 => 0.017093199110598
1206 => 0.017477250202179
1207 => 0.017477440686729
1208 => 0.017228700513473
1209 => 0.016938226447335
1210 => 0.016886296545001
1211 => 0.016847174339393
1212 => 0.017120998084871
1213 => 0.017366507598841
1214 => 0.017823339937371
1215 => 0.017938198441346
1216 => 0.018386498828923
1217 => 0.01811955777547
1218 => 0.018237889287001
1219 => 0.018366354881781
1220 => 0.018427946012085
1221 => 0.018327586570417
1222 => 0.019023981600127
1223 => 0.019082778677626
1224 => 0.019102492829119
1225 => 0.018867672343324
1226 => 0.019076247895129
1227 => 0.018978662301736
1228 => 0.019232552905687
1229 => 0.019272366194225
1230 => 0.019238645755232
1231 => 0.019251283121424
]
'min_raw' => 0.0086329112388972
'max_raw' => 0.019272366194225
'avg_raw' => 0.013952638716561
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.008632'
'max' => '$0.019272'
'avg' => '$0.013952'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 0.0013311773969875
'max_diff' => -0.0018390936754645
'year' => 2031
]
6 => [
'items' => [
101 => 0.018657032816069
102 => 0.018626217802816
103 => 0.018206052910581
104 => 0.018377273209869
105 => 0.018057185067153
106 => 0.018158688314481
107 => 0.018203429978745
108 => 0.018180059472401
109 => 0.018386953748694
110 => 0.018211051348136
111 => 0.017746815992034
112 => 0.017282454155319
113 => 0.01727662447072
114 => 0.01715436619578
115 => 0.017065995855719
116 => 0.017083019118321
117 => 0.01714301131611
118 => 0.017062509000123
119 => 0.01707968825081
120 => 0.017364978276957
121 => 0.017422191157106
122 => 0.017227759435846
123 => 0.016447088018624
124 => 0.016255509294672
125 => 0.016393212282278
126 => 0.01632739912341
127 => 0.013177485393846
128 => 0.013917510901276
129 => 0.013477812873653
130 => 0.013680445954315
131 => 0.013231628127364
201 => 0.013445827518943
202 => 0.013406272712628
203 => 0.014596211829629
204 => 0.014577632567025
205 => 0.014586525476841
206 => 0.014162043720972
207 => 0.014838254684006
208 => 0.015171380520157
209 => 0.015109727793742
210 => 0.015125244456725
211 => 0.014858616777519
212 => 0.014589107015595
213 => 0.014290179212366
214 => 0.014845550122172
215 => 0.014783802357499
216 => 0.014925429513514
217 => 0.015285627247257
218 => 0.015338667731808
219 => 0.015409954680929
220 => 0.01538440338422
221 => 0.015993138934174
222 => 0.015919417042508
223 => 0.016097065590187
224 => 0.015731629049384
225 => 0.015318102915909
226 => 0.015396700714695
227 => 0.015389131114628
228 => 0.015292761417797
229 => 0.015205763164479
301 => 0.015060935584309
302 => 0.015519191478415
303 => 0.015500587125988
304 => 0.015801769966589
305 => 0.015748532973979
306 => 0.015393003308025
307 => 0.015405701119598
308 => 0.015491100004785
309 => 0.015786666521486
310 => 0.015874410787345
311 => 0.015833764147395
312 => 0.015929971729232
313 => 0.016006010279217
314 => 0.0159395210004
315 => 0.01688086897497
316 => 0.016489955665377
317 => 0.016680484092515
318 => 0.016725923999729
319 => 0.016609530632899
320 => 0.01663477218643
321 => 0.016673006262119
322 => 0.0169051560827
323 => 0.017514384384996
324 => 0.017784207452925
325 => 0.018595983465627
326 => 0.017761802403252
327 => 0.017712305551195
328 => 0.01785853092437
329 => 0.018335129379043
330 => 0.01872136766194
331 => 0.018849505182998
401 => 0.018866440671726
402 => 0.019106835179651
403 => 0.019244624828502
404 => 0.019077644963386
405 => 0.01893614701122
406 => 0.018429318909936
407 => 0.018487985642707
408 => 0.018892141254498
409 => 0.0194630348608
410 => 0.019952920966363
411 => 0.019781379926449
412 => 0.021090116971889
413 => 0.021219872904233
414 => 0.021201944829895
415 => 0.021497548154046
416 => 0.020910835754176
417 => 0.020660004836214
418 => 0.018966740474549
419 => 0.019442478692821
420 => 0.020133992132205
421 => 0.02004246773546
422 => 0.019540272191572
423 => 0.01995254000601
424 => 0.01981623137375
425 => 0.019708719100037
426 => 0.020201253668198
427 => 0.0196596916783
428 => 0.020128589637083
429 => 0.019527223154815
430 => 0.01978216351147
501 => 0.019637447034955
502 => 0.019731096331044
503 => 0.019183624459676
504 => 0.019479026992338
505 => 0.019171334743124
506 => 0.019171188856935
507 => 0.01916439653348
508 => 0.019526395100164
509 => 0.019538199860427
510 => 0.019270682372698
511 => 0.019232128923308
512 => 0.019374681232385
513 => 0.019207789812965
514 => 0.019285877257709
515 => 0.019210155002117
516 => 0.019193108327428
517 => 0.019057277523258
518 => 0.018998757878075
519 => 0.019021704938817
520 => 0.018943374790485
521 => 0.01889617804279
522 => 0.019155007912438
523 => 0.019016725554252
524 => 0.019133814157798
525 => 0.019000376916298
526 => 0.01853782530142
527 => 0.018271806976309
528 => 0.017398089854362
529 => 0.017645874946303
530 => 0.017810156718613
531 => 0.017755861593844
601 => 0.017872508531271
602 => 0.017879669705861
603 => 0.017841746597429
604 => 0.017797836496116
605 => 0.017776463487178
606 => 0.017935760385227
607 => 0.018028237596231
608 => 0.01782664459227
609 => 0.017779414172028
610 => 0.017983235829287
611 => 0.018107566922472
612 => 0.019025557858937
613 => 0.018957550125292
614 => 0.019128236190897
615 => 0.019109019559301
616 => 0.019287925748478
617 => 0.019580361756385
618 => 0.018985757585916
619 => 0.019088960310044
620 => 0.019063657385387
621 => 0.019339908082012
622 => 0.019340770506533
623 => 0.01917514441416
624 => 0.019264933005812
625 => 0.019214815477173
626 => 0.019305384625214
627 => 0.018956641840546
628 => 0.019381372907814
629 => 0.019622168053889
630 => 0.019625511494726
701 => 0.019739646482897
702 => 0.019855614241132
703 => 0.020078204254401
704 => 0.019849406326473
705 => 0.019437821127161
706 => 0.019467536249139
707 => 0.019226223997375
708 => 0.019230280499924
709 => 0.019208626571405
710 => 0.019273611640923
711 => 0.018970902408878
712 => 0.019041947660592
713 => 0.018942483892152
714 => 0.019088744095236
715 => 0.018931392294395
716 => 0.01906364518355
717 => 0.019120721146257
718 => 0.019331332677402
719 => 0.018900284800002
720 => 0.018021348998609
721 => 0.018206111960128
722 => 0.017932833027223
723 => 0.01795812603291
724 => 0.018009221929749
725 => 0.017843603410557
726 => 0.017875198204779
727 => 0.017874069416401
728 => 0.017864342127973
729 => 0.017821258354641
730 => 0.017758778359444
731 => 0.01800767942998
801 => 0.01804997257202
802 => 0.018143984987762
803 => 0.018423702167782
804 => 0.018395751825313
805 => 0.018441339993529
806 => 0.01834182127828
807 => 0.017962742420684
808 => 0.017983328226455
809 => 0.017726622898627
810 => 0.018137420455378
811 => 0.018040138171676
812 => 0.017977419650515
813 => 0.017960306320934
814 => 0.018240716865739
815 => 0.018324620095641
816 => 0.018272337233302
817 => 0.01816510355731
818 => 0.018371023916005
819 => 0.01842611951691
820 => 0.018438453390105
821 => 0.0188033047844
822 => 0.018458844530052
823 => 0.018541759536914
824 => 0.019188638751318
825 => 0.018602008567083
826 => 0.018912759659087
827 => 0.018897550010204
828 => 0.019056519753629
829 => 0.018884509851264
830 => 0.018886642120155
831 => 0.019027796482774
901 => 0.0188295706378
902 => 0.018780487130928
903 => 0.018712678617727
904 => 0.018860736025576
905 => 0.018949489745521
906 => 0.019664779545854
907 => 0.020126889378046
908 => 0.020106827971503
909 => 0.02029015167393
910 => 0.020207562666934
911 => 0.019940860977464
912 => 0.020396088240584
913 => 0.020252035287015
914 => 0.020263910837483
915 => 0.020263468828901
916 => 0.020359251449697
917 => 0.020291380684515
918 => 0.02015760043955
919 => 0.02024641000942
920 => 0.020510142681932
921 => 0.021328776989717
922 => 0.021786895593815
923 => 0.021301197674519
924 => 0.021636225595495
925 => 0.021435328225564
926 => 0.021398819197268
927 => 0.02160924149001
928 => 0.02182003209912
929 => 0.021806605648592
930 => 0.021653582490596
1001 => 0.021567143591463
1002 => 0.022221687894854
1003 => 0.022703944987722
1004 => 0.022671058287081
1005 => 0.022816209488383
1006 => 0.023242377904761
1007 => 0.023281341403838
1008 => 0.02327643289852
1009 => 0.023179857800637
1010 => 0.023599475951524
1011 => 0.023949528795472
1012 => 0.0231575034558
1013 => 0.023459096336774
1014 => 0.023594491097759
1015 => 0.023793290776701
1016 => 0.02412869915777
1017 => 0.02449304162229
1018 => 0.024544563641585
1019 => 0.02450800630334
1020 => 0.024267712653938
1021 => 0.024666380526126
1022 => 0.024899910815741
1023 => 0.025038972758962
1024 => 0.025391610709268
1025 => 0.023595327249709
1026 => 0.022323828535953
1027 => 0.022125265651136
1028 => 0.022529051085511
1029 => 0.022635526084427
1030 => 0.022592606145873
1031 => 0.021161418743934
1101 => 0.022117730745656
1102 => 0.023146642050511
1103 => 0.023186166724104
1104 => 0.023701261236835
1105 => 0.023868997124618
1106 => 0.024283715722348
1107 => 0.024257774961144
1108 => 0.024358752340077
1109 => 0.024335539389345
1110 => 0.025103718262336
1111 => 0.025951133634911
1112 => 0.025921790335174
1113 => 0.025799964349203
1114 => 0.025980896712788
1115 => 0.026855520191836
1116 => 0.026774998877441
1117 => 0.026853218475587
1118 => 0.027884448849003
1119 => 0.029225195025255
1120 => 0.028602283817671
1121 => 0.029953821900258
1122 => 0.030804543481291
1123 => 0.032275778489434
1124 => 0.032091572620429
1125 => 0.032664313612678
1126 => 0.031761805669986
1127 => 0.029689465006615
1128 => 0.029361509164036
1129 => 0.030018085066045
1130 => 0.031632212853395
1201 => 0.029967250437828
1202 => 0.030304070166046
1203 => 0.03020706606166
1204 => 0.030201897125178
1205 => 0.030399174407105
1206 => 0.030113013420379
1207 => 0.028947142081079
1208 => 0.029481454045357
1209 => 0.029275130536182
1210 => 0.029504061852049
1211 => 0.030739509745327
1212 => 0.030193288782309
1213 => 0.029617889369158
1214 => 0.030339567924601
1215 => 0.031258512721337
1216 => 0.03120100680746
1217 => 0.031089421298931
1218 => 0.031718422968082
1219 => 0.032757349445322
1220 => 0.033038167097375
1221 => 0.033245460947056
1222 => 0.033274043266669
1223 => 0.033568458922494
1224 => 0.031985311738827
1225 => 0.034497806977409
1226 => 0.034931645498832
1227 => 0.034850101837569
1228 => 0.035332295095415
1229 => 0.035190421606894
1230 => 0.034984869181297
1231 => 0.035749248060429
]
'min_raw' => 0.013177485393846
'max_raw' => 0.035749248060429
'avg_raw' => 0.024463366727138
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.013177'
'max' => '$0.035749'
'avg' => '$0.024463'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.0045445741549489
'max_diff' => 0.016476881866205
'year' => 2032
]
7 => [
'items' => [
101 => 0.034872949357698
102 => 0.033629153672111
103 => 0.032946782759508
104 => 0.033845383822515
105 => 0.034394128134837
106 => 0.034756813218589
107 => 0.034866561505793
108 => 0.032108206948053
109 => 0.030621606826788
110 => 0.031574500460614
111 => 0.032737096459087
112 => 0.031978853459355
113 => 0.0320085751494
114 => 0.030927519894537
115 => 0.032832745861384
116 => 0.032555170463487
117 => 0.033995232118799
118 => 0.033651549847542
119 => 0.034825864224577
120 => 0.034516627893544
121 => 0.035800250614495
122 => 0.03631232247058
123 => 0.037172170814567
124 => 0.037804678756617
125 => 0.038176099518138
126 => 0.03815380080878
127 => 0.039625554907013
128 => 0.038757712934457
129 => 0.037667498882278
130 => 0.037647780349655
131 => 0.038212417655731
201 => 0.039395742548587
202 => 0.039702561476627
203 => 0.039874031400394
204 => 0.039611419243234
205 => 0.038669438980819
206 => 0.038262696679456
207 => 0.038609252904676
208 => 0.038185444421148
209 => 0.038917056763376
210 => 0.039921716773218
211 => 0.039714258454042
212 => 0.040407760511158
213 => 0.04112546218173
214 => 0.042151807804646
215 => 0.042420132555944
216 => 0.042863663166365
217 => 0.043320201856703
218 => 0.043466829779977
219 => 0.043746787981479
220 => 0.043745312463566
221 => 0.044588985347154
222 => 0.045519582664126
223 => 0.045870861607905
224 => 0.046678608169492
225 => 0.04529537048959
226 => 0.046344572159285
227 => 0.047290978328571
228 => 0.046162633877802
301 => 0.047717793832648
302 => 0.047778177169627
303 => 0.048689893867602
304 => 0.047765694330419
305 => 0.047216907595389
306 => 0.048801234336649
307 => 0.04956784014092
308 => 0.049336932233829
309 => 0.047579711659534
310 => 0.046556933914558
311 => 0.043880127276864
312 => 0.047050920368654
313 => 0.048595321190363
314 => 0.047575712034506
315 => 0.048089943585597
316 => 0.050895424188213
317 => 0.051963569560272
318 => 0.051741402789783
319 => 0.051778945316819
320 => 0.052355297171372
321 => 0.054911158697225
322 => 0.053379627226528
323 => 0.054550425650486
324 => 0.055171412912926
325 => 0.055748220490276
326 => 0.054331763382211
327 => 0.052488973496506
328 => 0.051905284584646
329 => 0.047474331998256
330 => 0.047243681673482
331 => 0.047114210656767
401 => 0.046297914210415
402 => 0.045656528805997
403 => 0.045146475319291
404 => 0.043807942655309
405 => 0.044259658136364
406 => 0.042126316443456
407 => 0.043491152857591
408 => 0.040086288004373
409 => 0.042921960630239
410 => 0.041378632942193
411 => 0.042414935977051
412 => 0.042411320413388
413 => 0.040503157966039
414 => 0.039402569688742
415 => 0.040103907374572
416 => 0.040855797046036
417 => 0.040977788615571
418 => 0.041952633200953
419 => 0.042224691370519
420 => 0.041400342415553
421 => 0.040015729748325
422 => 0.040337343691269
423 => 0.039396052192453
424 => 0.037746475047033
425 => 0.038931230151728
426 => 0.039335757634475
427 => 0.039514420016279
428 => 0.037892250348973
429 => 0.037382529420488
430 => 0.037111158275136
501 => 0.03980632801461
502 => 0.03995397549694
503 => 0.039198590102089
504 => 0.042613003715397
505 => 0.041840216756657
506 => 0.042703609126971
507 => 0.040308160596945
508 => 0.040399669956691
509 => 0.039265626233811
510 => 0.039900614941795
511 => 0.039451825389633
512 => 0.039849314129271
513 => 0.040087567240902
514 => 0.041221424878366
515 => 0.042934907463118
516 => 0.041052064358149
517 => 0.040231682654504
518 => 0.040740642849443
519 => 0.042096070918557
520 => 0.044149613826351
521 => 0.042933875093535
522 => 0.043473399298576
523 => 0.043591261335617
524 => 0.042694820603132
525 => 0.044182666874828
526 => 0.044980015779071
527 => 0.045797930766717
528 => 0.046508103433032
529 => 0.045471237534315
530 => 0.046580832674831
531 => 0.045686694861485
601 => 0.044884560808645
602 => 0.044885777314897
603 => 0.044382586906242
604 => 0.043407592083401
605 => 0.043227788078965
606 => 0.044163151216784
607 => 0.044913223874097
608 => 0.044975003450759
609 => 0.045390282213971
610 => 0.045636039908329
611 => 0.048044799404421
612 => 0.049013622400053
613 => 0.05019828082023
614 => 0.05065977203858
615 => 0.052048695152053
616 => 0.050927026935103
617 => 0.050684346960742
618 => 0.047315273800745
619 => 0.047866959341955
620 => 0.048750261123171
621 => 0.047329839121777
622 => 0.048230769945585
623 => 0.048408632774528
624 => 0.0472815737257
625 => 0.047883584661026
626 => 0.046284822100604
627 => 0.042969756118021
628 => 0.044186357490928
629 => 0.045082185604982
630 => 0.043803728431417
701 => 0.046095313431907
702 => 0.044756616782537
703 => 0.044332314213459
704 => 0.042676958616696
705 => 0.043458222737888
706 => 0.044514893648425
707 => 0.043861993876891
708 => 0.045216858936217
709 => 0.047135709189535
710 => 0.048503196149558
711 => 0.048608174818195
712 => 0.047728972317411
713 => 0.049137899935912
714 => 0.049148162435452
715 => 0.047558886326144
716 => 0.04658546355832
717 => 0.046364299857371
718 => 0.046916810144038
719 => 0.047587659631079
720 => 0.048645402295851
721 => 0.049284574035294
722 => 0.050951194941268
723 => 0.051402134772659
724 => 0.051897580930942
725 => 0.052559649788346
726 => 0.05335463320263
727 => 0.051615254750608
728 => 0.051684363499114
729 => 0.050064678367924
730 => 0.048333812518905
731 => 0.049647323942837
801 => 0.051364565400525
802 => 0.050970628312748
803 => 0.050926302342969
804 => 0.051000846329139
805 => 0.050703830629738
806 => 0.049360439629261
807 => 0.048685797078894
808 => 0.049556258088538
809 => 0.050018869375401
810 => 0.050736339137382
811 => 0.050647895845269
812 => 0.052496020901505
813 => 0.053214146413958
814 => 0.053030419177549
815 => 0.053064229410691
816 => 0.054364361348841
817 => 0.05581037545659
818 => 0.057164758486865
819 => 0.058542495077365
820 => 0.056881579843543
821 => 0.056038269518818
822 => 0.056908350512416
823 => 0.056446673289936
824 => 0.059099607552663
825 => 0.059283290965024
826 => 0.061936033390408
827 => 0.064453801834789
828 => 0.06287243658538
829 => 0.064363592789318
830 => 0.065976399799625
831 => 0.069087766191015
901 => 0.068039967449584
902 => 0.067237370034748
903 => 0.06647891935585
904 => 0.068057134817982
905 => 0.070087483797407
906 => 0.070524801521134
907 => 0.0712334233018
908 => 0.070488394145578
909 => 0.071385699701978
910 => 0.07455358261211
911 => 0.073697592686117
912 => 0.072481949383958
913 => 0.074982688694799
914 => 0.075887696530014
915 => 0.082239515473837
916 => 0.090258949270967
917 => 0.086938851020514
918 => 0.084877958897557
919 => 0.085362317431466
920 => 0.088290743179212
921 => 0.089231260585801
922 => 0.086674610058901
923 => 0.087577662246802
924 => 0.092553568588271
925 => 0.09522298269428
926 => 0.091597559788174
927 => 0.081595161776586
928 => 0.072372494005241
929 => 0.074818760800344
930 => 0.074541430062276
1001 => 0.079887420669226
1002 => 0.073677177609476
1003 => 0.073781742175546
1004 => 0.079238282206745
1005 => 0.0777825708752
1006 => 0.075424504951517
1007 => 0.072389710496075
1008 => 0.06677961226068
1009 => 0.061810591804428
1010 => 0.071555985216206
1011 => 0.071135746131442
1012 => 0.070527177660761
1013 => 0.071881480938276
1014 => 0.078457593228195
1015 => 0.078305992555115
1016 => 0.077341586420317
1017 => 0.078073079973675
1018 => 0.075296270594894
1019 => 0.07601191759858
1020 => 0.072371033087546
1021 => 0.074016864943302
1022 => 0.075419445601106
1023 => 0.075701034433722
1024 => 0.076335468451888
1025 => 0.070914299229584
1026 => 0.073348245053232
1027 => 0.074777960194743
1028 => 0.068318455171914
1029 => 0.074650276549334
1030 => 0.070819928734436
1031 => 0.069519851156167
1101 => 0.07127023434311
1102 => 0.070588108312855
1103 => 0.070001656407826
1104 => 0.069674406168297
1105 => 0.070959694398045
1106 => 0.070899734165876
1107 => 0.068796753158312
1108 => 0.066053500162416
1109 => 0.066974225912049
1110 => 0.066639717615357
1111 => 0.065427416395719
1112 => 0.066244361043948
1113 => 0.062646950259372
1114 => 0.056457791981651
1115 => 0.060546539518958
1116 => 0.060389127186474
1117 => 0.060309752750354
1118 => 0.063382333519959
1119 => 0.063086975775461
1120 => 0.062550898577045
1121 => 0.065417570917573
1122 => 0.064371196951096
1123 => 0.067595874959065
1124 => 0.069719856454211
1125 => 0.069181146043438
1126 => 0.071178760905716
1127 => 0.066995437573716
1128 => 0.068384969778805
1129 => 0.068671350440466
1130 => 0.065382196625873
1201 => 0.063135299955211
1202 => 0.062985457563776
1203 => 0.059089648378283
1204 => 0.0611707581993
1205 => 0.063002048719619
1206 => 0.062125002674272
1207 => 0.06184735609732
1208 => 0.063265792244771
1209 => 0.063376016881512
1210 => 0.060862883482733
1211 => 0.061385443496924
1212 => 0.063564605624472
1213 => 0.061330534202464
1214 => 0.056990098362996
1215 => 0.055913610263588
1216 => 0.055769986907515
1217 => 0.052850465804572
1218 => 0.055985546345819
1219 => 0.054616999674629
1220 => 0.05894022221121
1221 => 0.056470820684223
1222 => 0.056364369719924
1223 => 0.056203453474426
1224 => 0.053690501057225
1225 => 0.054240677930135
1226 => 0.05606954964999
1227 => 0.056722111683349
1228 => 0.056654044116986
1229 => 0.056060587180825
1230 => 0.056332268727209
1231 => 0.055457087806182
]
'min_raw' => 0.030621606826788
'max_raw' => 0.09522298269428
'avg_raw' => 0.062922294760534
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.030621'
'max' => '$0.095222'
'avg' => '$0.062922'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.017444121432942
'max_diff' => 0.05947373463385
'year' => 2033
]
8 => [
'items' => [
101 => 0.055148043207652
102 => 0.054172613445277
103 => 0.052739001163936
104 => 0.052938353744512
105 => 0.050097992690115
106 => 0.04855041323831
107 => 0.048122063642819
108 => 0.047549256661767
109 => 0.04818676371551
110 => 0.050089946304121
111 => 0.047794304319546
112 => 0.043858587157555
113 => 0.044095130465126
114 => 0.044626573046901
115 => 0.043636233311609
116 => 0.042698959865068
117 => 0.043513843083437
118 => 0.041846227838258
119 => 0.044828096382155
120 => 0.044747445194632
121 => 0.045858901390283
122 => 0.046553917758801
123 => 0.044952130043589
124 => 0.044549284764908
125 => 0.044778763743942
126 => 0.040985987391254
127 => 0.04554895064582
128 => 0.045588411341527
129 => 0.045250524907603
130 => 0.047680161974974
131 => 0.052807454009933
201 => 0.050878360501537
202 => 0.050131357187927
203 => 0.048711303342696
204 => 0.050603440777012
205 => 0.050458154143998
206 => 0.049801112891193
207 => 0.049403732291402
208 => 0.05013591823087
209 => 0.049313006350759
210 => 0.049165188764985
211 => 0.048269575022313
212 => 0.047949881664009
213 => 0.047713193428879
214 => 0.047452622938507
215 => 0.048027376510147
216 => 0.046724909301681
217 => 0.045154261530705
218 => 0.045023679163193
219 => 0.045384228560813
220 => 0.045224712292112
221 => 0.045022915460669
222 => 0.044637630353346
223 => 0.044523324492318
224 => 0.044894763087341
225 => 0.044475430569775
226 => 0.045094178541668
227 => 0.0449259133302
228 => 0.043985997537154
301 => 0.042814514457623
302 => 0.042804085800946
303 => 0.042551691693078
304 => 0.042230229849001
305 => 0.042140806518029
306 => 0.04344521589168
307 => 0.04614530425745
308 => 0.04561521230361
309 => 0.045998258066268
310 => 0.047882464104217
311 => 0.048481396543628
312 => 0.048056288484626
313 => 0.047474374353941
314 => 0.047499975622427
315 => 0.049488552364365
316 => 0.049612577456522
317 => 0.049925948852391
318 => 0.050328719654828
319 => 0.048124882093912
320 => 0.047396175071496
321 => 0.047050873257149
322 => 0.04598747731758
323 => 0.047134258669727
324 => 0.046466078285904
325 => 0.046556238647974
326 => 0.046497521593898
327 => 0.046529585075853
328 => 0.044827262889126
329 => 0.045447499622549
330 => 0.04441623575634
331 => 0.043035489204288
401 => 0.043030860457693
402 => 0.043368796220206
403 => 0.043167778805236
404 => 0.042626846110181
405 => 0.042703683046383
406 => 0.042030510633629
407 => 0.042785418365472
408 => 0.042807066418031
409 => 0.04251638582117
410 => 0.043679425339266
411 => 0.04415592357878
412 => 0.043964591382944
413 => 0.044142499201868
414 => 0.045637240017514
415 => 0.045880947990579
416 => 0.045989186973769
417 => 0.045844161075211
418 => 0.044169820320043
419 => 0.044244084452382
420 => 0.043699183524309
421 => 0.043238799660333
422 => 0.043257212600496
423 => 0.043493909752293
424 => 0.044527580096295
425 => 0.04670287839705
426 => 0.046785429377442
427 => 0.046885483573858
428 => 0.046478512873823
429 => 0.046355766616507
430 => 0.046517700613404
501 => 0.047334628283416
502 => 0.049435988044388
503 => 0.048693227159761
504 => 0.048089350998798
505 => 0.048619113195807
506 => 0.04853756045799
507 => 0.047849173279047
508 => 0.047829852543679
509 => 0.046508617456593
510 => 0.046020186927964
511 => 0.045612017819851
512 => 0.045166307809315
513 => 0.044902075974735
514 => 0.045308056163872
515 => 0.045400908636544
516 => 0.044513225857677
517 => 0.044392237975019
518 => 0.045117138894204
519 => 0.044798137026701
520 => 0.045126238358294
521 => 0.045202360681624
522 => 0.045190103234322
523 => 0.044857028647518
524 => 0.04506932045672
525 => 0.044567187040722
526 => 0.044021192368826
527 => 0.043672881784826
528 => 0.043368934603591
529 => 0.043537582165254
530 => 0.042936384401754
531 => 0.04274404913749
601 => 0.044997400768479
602 => 0.046661975845903
603 => 0.046637772265033
604 => 0.046490439191144
605 => 0.046271532128767
606 => 0.047318613868316
607 => 0.046953831527317
608 => 0.047219241158978
609 => 0.047286799049443
610 => 0.047491276436745
611 => 0.047564359527281
612 => 0.047343451668213
613 => 0.046602057911559
614 => 0.044754575159581
615 => 0.043894566951351
616 => 0.043610749918065
617 => 0.04362106612818
618 => 0.043336498999628
619 => 0.04342031677239
620 => 0.043307350598841
621 => 0.043093419995591
622 => 0.043524372553344
623 => 0.043574035821024
624 => 0.043473446344545
625 => 0.043497138807648
626 => 0.042664300904729
627 => 0.042727619761659
628 => 0.042375052320101
629 => 0.042308950175072
630 => 0.041417690384372
701 => 0.039838694474975
702 => 0.040713611485623
703 => 0.039656834768709
704 => 0.039256617413233
705 => 0.041151184127486
706 => 0.040961022176476
707 => 0.040635547577759
708 => 0.040154102811408
709 => 0.039975530264375
710 => 0.038890579997799
711 => 0.038826475348065
712 => 0.039364205996302
713 => 0.039116061804322
714 => 0.038767573379229
715 => 0.037505383629246
716 => 0.036086264453601
717 => 0.036129098741248
718 => 0.03658049414737
719 => 0.037892987169634
720 => 0.037380173439476
721 => 0.037008121194386
722 => 0.03693844699273
723 => 0.037810565499274
724 => 0.03904479590051
725 => 0.039623869190421
726 => 0.039050025146836
727 => 0.038390824007524
728 => 0.03843094652643
729 => 0.038697863669506
730 => 0.038725912887238
731 => 0.038296840712518
801 => 0.038417622016397
802 => 0.038234144171331
803 => 0.037108140974833
804 => 0.037087775147603
805 => 0.036811435803928
806 => 0.036803068358426
807 => 0.036332946198755
808 => 0.036267172858816
809 => 0.035333716776414
810 => 0.035948120396616
811 => 0.035536010705822
812 => 0.034914864194948
813 => 0.034807778302348
814 => 0.034804559171107
815 => 0.035442337751957
816 => 0.035940667582566
817 => 0.035543179530333
818 => 0.035452679205822
819 => 0.036418985903446
820 => 0.036296014568092
821 => 0.036189522184756
822 => 0.038934284105237
823 => 0.036761590868733
824 => 0.035814172604623
825 => 0.034641562592938
826 => 0.035023370325555
827 => 0.035103822824741
828 => 0.03228390712548
829 => 0.031139867677488
830 => 0.030747276451154
831 => 0.030521334649974
901 => 0.030624299165971
902 => 0.029594529480335
903 => 0.030286551739901
904 => 0.029394858236404
905 => 0.029245362918722
906 => 0.030839821362601
907 => 0.031061680940376
908 => 0.030115159055221
909 => 0.030722979333464
910 => 0.030502575251239
911 => 0.029410143762206
912 => 0.029368420914707
913 => 0.028820277194334
914 => 0.02796253841349
915 => 0.02757052877444
916 => 0.027366366750839
917 => 0.027450607980815
918 => 0.027408013037115
919 => 0.027130052217141
920 => 0.027423945425946
921 => 0.026673169722507
922 => 0.026374204787986
923 => 0.026239169262997
924 => 0.025572812613157
925 => 0.026633282373199
926 => 0.026842208275374
927 => 0.027051545826116
928 => 0.028873686284511
929 => 0.028782657296525
930 => 0.029605515015002
1001 => 0.0295735402772
1002 => 0.029338847926479
1003 => 0.028348719503805
1004 => 0.028743367045741
1005 => 0.027528703253507
1006 => 0.028438811955758
1007 => 0.028023476351099
1008 => 0.028298386570033
1009 => 0.027804073208735
1010 => 0.028077646632575
1011 => 0.026891752357419
1012 => 0.025784380969261
1013 => 0.026230019542042
1014 => 0.026714479635607
1015 => 0.027764912556593
1016 => 0.027139283374737
1017 => 0.027364283286191
1018 => 0.026610571247351
1019 => 0.025055448024024
1020 => 0.025064249852582
1021 => 0.024825028024874
1022 => 0.024618305438776
1023 => 0.02721114441222
1024 => 0.026888683899154
1025 => 0.026374885274172
1026 => 0.027062625151256
1027 => 0.027244474490657
1028 => 0.0272496514857
1029 => 0.027751408746886
1030 => 0.028019196687125
1031 => 0.028066395472252
1101 => 0.028855921363911
1102 => 0.029120560028696
1103 => 0.030210569235883
1104 => 0.027996476751326
1105 => 0.027950878973631
1106 => 0.027072303061705
1107 => 0.026515096328627
1108 => 0.02711045548343
1109 => 0.027637862419957
1110 => 0.027088691065364
1111 => 0.027160401250634
1112 => 0.026423183576041
1113 => 0.026686704205393
1114 => 0.026913683671452
1115 => 0.02678835895153
1116 => 0.026600741780023
1117 => 0.027594621065632
1118 => 0.027538542501293
1119 => 0.028464065741238
1120 => 0.029185577291577
1121 => 0.030478654975402
1122 => 0.029129261002667
1123 => 0.029080083722945
1124 => 0.029560799520509
1125 => 0.029120486433612
1126 => 0.02939874910544
1127 => 0.030433822557047
1128 => 0.030455692028032
1129 => 0.03008935021181
1130 => 0.030067058279
1201 => 0.030137418232145
1202 => 0.030549518675373
1203 => 0.030405518117942
1204 => 0.030572159208649
1205 => 0.030780546444278
1206 => 0.031642524405195
1207 => 0.03185034437336
1208 => 0.03134544959302
1209 => 0.031391035938617
1210 => 0.031202191431098
1211 => 0.03101977000305
1212 => 0.031429826732793
1213 => 0.032179213466083
1214 => 0.032174551570108
1215 => 0.032348394726235
1216 => 0.032456697572308
1217 => 0.031991782474436
1218 => 0.031689139841123
1219 => 0.031805192284386
1220 => 0.031990762668457
1221 => 0.031745014309887
1222 => 0.030228141599076
1223 => 0.030688263881332
1224 => 0.030611677034735
1225 => 0.030502608051901
1226 => 0.03096526456473
1227 => 0.03092064021541
1228 => 0.029583967703804
1229 => 0.029669537141173
1230 => 0.029589171464705
1231 => 0.029848849406645
]
'min_raw' => 0.024618305438776
'max_raw' => 0.055148043207652
'avg_raw' => 0.039883174323214
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.024618'
'max' => '$0.055148'
'avg' => '$0.039883'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.0060033013880124
'max_diff' => -0.040074939486628
'year' => 2034
]
9 => [
'items' => [
101 => 0.029106462972557
102 => 0.029334816039634
103 => 0.029478036942627
104 => 0.029562395154765
105 => 0.029867154861974
106 => 0.029831394827856
107 => 0.029864931968044
108 => 0.030316810160256
109 => 0.032602254990594
110 => 0.03272664671016
111 => 0.032114096388885
112 => 0.032358798160213
113 => 0.031889024269658
114 => 0.032204386629599
115 => 0.032420149546936
116 => 0.031445158412315
117 => 0.031387425764962
118 => 0.030915712950453
119 => 0.031169184697791
120 => 0.030765892922512
121 => 0.030864846617618
122 => 0.030588163459474
123 => 0.031086138057066
124 => 0.031642951034604
125 => 0.031783623981941
126 => 0.031413574021009
127 => 0.031145633461814
128 => 0.030675218104974
129 => 0.031457529327289
130 => 0.031686300969196
131 => 0.031456327687245
201 => 0.031403037852801
202 => 0.031302053712823
203 => 0.03142446211548
204 => 0.031685055029703
205 => 0.031562164223751
206 => 0.031643335766139
207 => 0.031333993550286
208 => 0.031991936380678
209 => 0.033036907937907
210 => 0.033040267692333
211 => 0.032917376223954
212 => 0.032867091682827
213 => 0.032993185787062
214 => 0.033061586665958
215 => 0.033469351877349
216 => 0.033906900195254
217 => 0.03594874727763
218 => 0.035375404787482
219 => 0.037187052988993
220 => 0.038619831503311
221 => 0.039049459131944
222 => 0.038654221929143
223 => 0.037302136808658
224 => 0.037235797062184
225 => 0.039256383067803
226 => 0.038685474972514
227 => 0.038617567271194
228 => 0.037895144061019
301 => 0.038322185652087
302 => 0.038228785391799
303 => 0.038081348511636
304 => 0.038896114119419
305 => 0.040421282602561
306 => 0.040183570791524
307 => 0.040006129951718
308 => 0.039228635843942
309 => 0.039696860956419
310 => 0.039530134962127
311 => 0.040246495640536
312 => 0.039822139443979
313 => 0.038681149782188
314 => 0.038862856146579
315 => 0.038835391595144
316 => 0.039400610117523
317 => 0.039230945546691
318 => 0.03880226186467
319 => 0.040416069742493
320 => 0.040311278035378
321 => 0.040459848717348
322 => 0.040525254126251
323 => 0.041507550542998
324 => 0.041909965954959
325 => 0.042001321298748
326 => 0.042383584816186
327 => 0.0419918102342
328 => 0.043559187892689
329 => 0.044601402576562
330 => 0.045811988563758
331 => 0.047580980065889
401 => 0.048246137234776
402 => 0.048125982545808
403 => 0.049467211713503
404 => 0.051877370714001
405 => 0.048613144588892
406 => 0.052050382624792
407 => 0.050962192747447
408 => 0.048382114123963
409 => 0.04821598747774
410 => 0.049963246676892
411 => 0.053838499413146
412 => 0.052867792555467
413 => 0.053840087141819
414 => 0.052705853860372
415 => 0.052649529617879
416 => 0.053784999962995
417 => 0.056438088315624
418 => 0.05517770548882
419 => 0.053370637648047
420 => 0.054704948420584
421 => 0.05354904494478
422 => 0.050944470896783
423 => 0.052867050274227
424 => 0.051581476196438
425 => 0.051956675057214
426 => 0.054658760554014
427 => 0.054333638478207
428 => 0.054754376549794
429 => 0.054011784866076
430 => 0.053318087137522
501 => 0.052023248812507
502 => 0.051639911019228
503 => 0.051745851794241
504 => 0.051639858520241
505 => 0.050915408377574
506 => 0.05075896343824
507 => 0.050498215018675
508 => 0.050579031857008
509 => 0.050088748543584
510 => 0.051014014453717
511 => 0.051185751960053
512 => 0.051859083328675
513 => 0.051928990825057
514 => 0.053804209102397
515 => 0.052771370387001
516 => 0.053464287768293
517 => 0.053402306715719
518 => 0.048438032251217
519 => 0.049122065472261
520 => 0.050186206502755
521 => 0.049706812410927
522 => 0.049029061326022
523 => 0.048481740986248
524 => 0.047652494705111
525 => 0.048819642921546
526 => 0.050354318713783
527 => 0.051967912735749
528 => 0.053906540226271
529 => 0.053473861138498
530 => 0.051931671443294
531 => 0.052000852946451
601 => 0.052428505777047
602 => 0.051874656505068
603 => 0.05171131554234
604 => 0.052406065237039
605 => 0.052410849596359
606 => 0.051773579074027
607 => 0.05106536950773
608 => 0.051062402083788
609 => 0.050936383031958
610 => 0.052728272369739
611 => 0.053713630325072
612 => 0.053826600026667
613 => 0.053706026564059
614 => 0.053752430504428
615 => 0.0531790724211
616 => 0.054489598975529
617 => 0.055692267739515
618 => 0.055369926819496
619 => 0.054886691956926
620 => 0.054501772113144
621 => 0.05527925193723
622 => 0.05524463198453
623 => 0.055681763477047
624 => 0.055661932667553
625 => 0.055514941787966
626 => 0.055369932069004
627 => 0.055944879213536
628 => 0.055779303669279
629 => 0.055613470940469
630 => 0.05528086801512
701 => 0.055326074276625
702 => 0.054842922851366
703 => 0.054619394894537
704 => 0.051258070742383
705 => 0.050359815094493
706 => 0.050642424606999
707 => 0.050735466996469
708 => 0.050344544987361
709 => 0.050905026728797
710 => 0.050817676243091
711 => 0.051157505884647
712 => 0.050945195078291
713 => 0.050953908387841
714 => 0.051578269199898
715 => 0.051759523799859
716 => 0.051667336247415
717 => 0.051731901249143
718 => 0.05321977446277
719 => 0.053008246471299
720 => 0.05289587644174
721 => 0.052927003707878
722 => 0.053307187214322
723 => 0.053413617838876
724 => 0.052962663803892
725 => 0.053175336333725
726 => 0.054080868973589
727 => 0.054397754148833
728 => 0.055409099514698
729 => 0.054979462028048
730 => 0.055768080229069
731 => 0.05819202371925
801 => 0.060128437503338
802 => 0.058347631361806
803 => 0.061903608675476
804 => 0.064672447088818
805 => 0.064566174458772
806 => 0.06408336343702
807 => 0.060931114516808
808 => 0.058030368063046
809 => 0.060456965643818
810 => 0.060463151540086
811 => 0.060254704655855
812 => 0.058960058960195
813 => 0.060209653791953
814 => 0.060308842091836
815 => 0.060253323020199
816 => 0.059260721200795
817 => 0.057745201686044
818 => 0.058041330571585
819 => 0.058526395726967
820 => 0.057608066192637
821 => 0.05731460426287
822 => 0.057860205823724
823 => 0.059618247733394
824 => 0.059285900094014
825 => 0.059277221154027
826 => 0.060699145292627
827 => 0.059681354479825
828 => 0.058045065705168
829 => 0.05763188120957
830 => 0.056165354604623
831 => 0.057178289754248
901 => 0.05721474348699
902 => 0.056659969257486
903 => 0.058090082576357
904 => 0.058076903830357
905 => 0.059434583582348
906 => 0.062029957346926
907 => 0.061262377614154
908 => 0.060369765897377
909 => 0.060466817540429
910 => 0.061531234520842
911 => 0.060887663716208
912 => 0.061119096264689
913 => 0.061530884219962
914 => 0.061779326117497
915 => 0.060431070574677
916 => 0.060116727713128
917 => 0.059473692537752
918 => 0.059305936663316
919 => 0.059829675396291
920 => 0.059691688744115
921 => 0.057211679691909
922 => 0.056952504947313
923 => 0.056960453466713
924 => 0.05630874624834
925 => 0.055314736312667
926 => 0.057926935074367
927 => 0.057717138956104
928 => 0.057485540278472
929 => 0.057513909794998
930 => 0.058647776741822
1001 => 0.057990076651011
1002 => 0.059738680137357
1003 => 0.059379219828396
1004 => 0.059010540718879
1005 => 0.058959578035703
1006 => 0.058817668032762
1007 => 0.058331005830292
1008 => 0.057743331976945
1009 => 0.057355298795528
1010 => 0.052907231349251
1011 => 0.053732766794062
1012 => 0.054682470073394
1013 => 0.055010303839722
1014 => 0.054449521497011
1015 => 0.058353148935191
1016 => 0.059066379284436
1017 => 0.056905958033708
1018 => 0.056501831427115
1019 => 0.05837964340824
1020 => 0.057247093230443
1021 => 0.057757080506158
1022 => 0.056654766964187
1023 => 0.058894582979126
1024 => 0.05887751933381
1025 => 0.05800618031546
1026 => 0.058742630087097
1027 => 0.058614653816136
1028 => 0.057630914210433
1029 => 0.058925769279291
1030 => 0.05892641151125
1031 => 0.058087766650632
1101 => 0.057108413056397
1102 => 0.056933327765047
1103 => 0.056801424517415
1104 => 0.057724640393056
1105 => 0.058552392860335
1106 => 0.060092634984702
1107 => 0.060479888450018
1108 => 0.06199136450607
1109 => 0.061091354107124
1110 => 0.061490317059891
1111 => 0.061923447781874
1112 => 0.062131106577848
1113 => 0.061792737713394
1114 => 0.064140682176807
1115 => 0.064338920628679
1116 => 0.064405388266836
1117 => 0.063613674604333
1118 => 0.064316901639525
1119 => 0.06398788499819
1120 => 0.064843894895488
1121 => 0.064978128177467
1122 => 0.064864437363119
1123 => 0.064907045125547
1124 => 0.06290348873181
1125 => 0.062799593763193
1126 => 0.061382978494047
1127 => 0.061960259687315
1128 => 0.060881060166307
1129 => 0.061223285451406
1130 => 0.061374135096235
1201 => 0.061295339802418
1202 => 0.061992898299837
1203 => 0.061399831075245
1204 => 0.059834629160268
1205 => 0.058269000807075
1206 => 0.058249345618434
1207 => 0.057837143308675
1208 => 0.057539196537337
1209 => 0.057596591655726
1210 => 0.057798859539093
1211 => 0.057527440360253
1212 => 0.05758536140336
1213 => 0.05854723664483
1214 => 0.058740133864726
1215 => 0.058084593741709
1216 => 0.055452505553808
1217 => 0.054806584510404
1218 => 0.055270859747231
1219 => 0.055048966087182
1220 => 0.044428812028003
1221 => 0.046923859693235
1222 => 0.045441387094367
1223 => 0.04612457867321
1224 => 0.044611358034184
1225 => 0.045333546237816
1226 => 0.045200184446696
1227 => 0.049212147258562
1228 => 0.049149505977529
1229 => 0.049179489043856
1230 => 0.047748319167576
1231 => 0.050028211640987
]
'min_raw' => 0.029106462972557
'max_raw' => 0.064978128177467
'avg_raw' => 0.047042295575012
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.0291064'
'max' => '$0.064978'
'avg' => '$0.047042'
'bar_min_pct' => 61.631153054958
'bar_max_pct' => 60.119598047091
'min_diff' => 0.0044881575337811
'max_diff' => 0.0098300849698154
'year' => 2035
]
10 => [
'items' => [
101 => 0.051151368655672
102 => 0.05094350218411
103 => 0.050995817696695
104 => 0.050096863860901
105 => 0.049188192882003
106 => 0.048180336922943
107 => 0.050052808720114
108 => 0.049844621820428
109 => 0.050322127665026
110 => 0.05153655947254
111 => 0.051715389169374
112 => 0.051955738095431
113 => 0.051869590114641
114 => 0.053921984521872
115 => 0.053673426017022
116 => 0.054272380498548
117 => 0.053040285687263
118 => 0.051646053456781
119 => 0.05191105142291
120 => 0.051885529987793
121 => 0.05156061282661
122 => 0.051267292141523
123 => 0.050778995843442
124 => 0.052324037584823
125 => 0.052261311711701
126 => 0.053276770686704
127 => 0.05309727844923
128 => 0.051898585358177
129 => 0.051941396916428
130 => 0.052229325220197
131 => 0.053225848367048
201 => 0.053521684285503
202 => 0.053384641301052
203 => 0.053709011880215
204 => 0.053965381160332
205 => 0.053741207914667
206 => 0.056915028333746
207 => 0.055597036817757
208 => 0.056239416712124
209 => 0.056392620531808
210 => 0.056000192169216
211 => 0.056085295829256
212 => 0.056214204684857
213 => 0.056996914013129
214 => 0.059050969769281
215 => 0.059960697081251
216 => 0.062697656584466
217 => 0.059885156892007
218 => 0.059718274799538
219 => 0.060211283854325
220 => 0.061818168819299
221 => 0.063120398156381
222 => 0.063552422754903
223 => 0.063609521937547
224 => 0.064420028804828
225 => 0.064884596226095
226 => 0.064321611952693
227 => 0.063844541727895
228 => 0.062135735398806
229 => 0.062333534384323
301 => 0.063696173246721
302 => 0.065620980898886
303 => 0.067272666106548
304 => 0.066694303513866
305 => 0.07110680183567
306 => 0.071544283020837
307 => 0.071483837266507
308 => 0.072480484512248
309 => 0.070502342693134
310 => 0.06965664874077
311 => 0.063947689725474
312 => 0.06555167434336
313 => 0.067883160184171
314 => 0.067574579290517
315 => 0.065881391952124
316 => 0.06727138167212
317 => 0.066811807601692
318 => 0.0664493224646
319 => 0.06810993714882
320 => 0.066284023089229
321 => 0.067864945294675
322 => 0.065837396213644
323 => 0.066696945425471
324 => 0.066209023721121
325 => 0.066524768861271
326 => 0.064678929223687
327 => 0.065674899486903
328 => 0.06463749358629
329 => 0.064637001720819
330 => 0.064614100928065
331 => 0.065834604369573
401 => 0.065874404942983
402 => 0.06497245105563
403 => 0.064842465409295
404 => 0.065323090472032
405 => 0.06476040439947
406 => 0.065023681671318
407 => 0.06476837879983
408 => 0.064710904745957
409 => 0.064252941706291
410 => 0.064055638636847
411 => 0.06413300625425
412 => 0.063868910690314
413 => 0.063709783560288
414 => 0.064582446536731
415 => 0.064116217911542
416 => 0.064510990313261
417 => 0.064061097337253
418 => 0.062501572273369
419 => 0.061604672917451
420 => 0.058658874639824
421 => 0.059494299377108
422 => 0.060048186842236
423 => 0.059865127038315
424 => 0.060258410331877
425 => 0.060282554731987
426 => 0.060154694324202
427 => 0.060006648351919
428 => 0.059934587760067
429 => 0.060471668373593
430 => 0.060783461747048
501 => 0.06010377685942
502 => 0.059944536200051
503 => 0.060631735147874
504 => 0.061050926109064
505 => 0.064145996643436
506 => 0.063916703821304
507 => 0.064492183808412
508 => 0.064427393593324
509 => 0.065030588300965
510 => 0.066016556718855
511 => 0.06401180724418
512 => 0.064359762433962
513 => 0.064274451856886
514 => 0.065205850367766
515 => 0.065208758092252
516 => 0.064650338158173
517 => 0.064953066663766
518 => 0.064784091916866
519 => 0.065089452122821
520 => 0.063913641475871
521 => 0.06534565192294
522 => 0.066157509569713
523 => 0.066168782213926
524 => 0.066553596295196
525 => 0.066944589688695
526 => 0.067695067459168
527 => 0.066923659270999
528 => 0.065535971035556
529 => 0.065636157643949
530 => 0.064822556539245
531 => 0.064836233320804
601 => 0.064763225588972
602 => 0.064982327287964
603 => 0.063961721977642
604 => 0.064201256004018
605 => 0.063865906964382
606 => 0.064359033450643
607 => 0.063828510868155
608 => 0.064274410717543
609 => 0.064466846310725
610 => 0.065176937792407
611 => 0.063723629778953
612 => 0.060760236359217
613 => 0.061383177583718
614 => 0.060461798581704
615 => 0.060547075716277
616 => 0.060719349099871
617 => 0.0601609546993
618 => 0.060267478753899
619 => 0.06026367296507
620 => 0.060230876732999
621 => 0.060085616783196
622 => 0.059874961117175
623 => 0.060714148454207
624 => 0.060856742735407
625 => 0.06117371215882
626 => 0.062116798160486
627 => 0.06202256162942
628 => 0.062176265321424
629 => 0.061840731024788
630 => 0.060562640189963
701 => 0.060632046671374
702 => 0.059766546736009
703 => 0.061151579379564
704 => 0.060823585368032
705 => 0.060612125495071
706 => 0.060554426709571
707 => 0.061499850439022
708 => 0.061782736036574
709 => 0.061606460715926
710 => 0.061244914890503
711 => 0.061939189756743
712 => 0.062124948421844
713 => 0.062166532936444
714 => 0.06339665488542
715 => 0.062235283088441
716 => 0.062514836823017
717 => 0.064695835258044
718 => 0.062717970634686
719 => 0.063765689637323
720 => 0.06371440924421
721 => 0.064250386833082
722 => 0.063670443437909
723 => 0.063677632531348
724 => 0.064153544319999
725 => 0.063485212043983
726 => 0.063319723573663
727 => 0.063091102437167
728 => 0.063590288324769
729 => 0.06388952768815
730 => 0.06630117718991
731 => 0.067859212752625
801 => 0.067791574319821
802 => 0.068409662981808
803 => 0.06813120837854
804 => 0.067232005011973
805 => 0.068766835512534
806 => 0.068281150922121
807 => 0.068321190169648
808 => 0.068319699906855
809 => 0.068642637700196
810 => 0.0684138066768
811 => 0.067962757240663
812 => 0.068262184905966
813 => 0.069151378024568
814 => 0.071911460748485
815 => 0.073456039607022
816 => 0.071818475161771
817 => 0.072948045188243
818 => 0.072270705679314
819 => 0.072147612941436
820 => 0.07285706639263
821 => 0.073567761648174
822 => 0.073522493432816
823 => 0.073006565171896
824 => 0.072715130388497
825 => 0.074921972206206
826 => 0.076547935664925
827 => 0.076437055857638
828 => 0.076926443266959
829 => 0.078363299836908
830 => 0.078494667994391
831 => 0.078478118626011
901 => 0.078152508940839
902 => 0.079567280833357
903 => 0.080747508436639
904 => 0.07807713970649
905 => 0.079093981161237
906 => 0.079550474050859
907 => 0.08022074104816
908 => 0.081351593822401
909 => 0.08257999987911
910 => 0.082753709964316
911 => 0.082630454346069
912 => 0.081820287530342
913 => 0.083164424095526
914 => 0.083951787771529
915 => 0.084420644822092
916 => 0.085609588291944
917 => 0.079553293195536
918 => 0.075266346508902
919 => 0.074596877879523
920 => 0.075958268662918
921 => 0.076317256555611
922 => 0.076172548986199
923 => 0.071347200738251
924 => 0.074571473419626
925 => 0.078040519720239
926 => 0.078173779916781
927 => 0.079910457029206
928 => 0.080475990285811
929 => 0.081874242992785
930 => 0.081786781905261
1001 => 0.082127234188349
1002 => 0.082048970104279
1003 => 0.084638938807103
1004 => 0.087496058900393
1005 => 0.087397125916648
1006 => 0.086986381099327
1007 => 0.087596407195447
1008 => 0.090545261319319
1009 => 0.090273778086018
1010 => 0.090537500922283
1011 => 0.094014366124464
1012 => 0.098534785465607
1013 => 0.096434596838964
1014 => 0.10099140184578
1015 => 0.10385966905172
1016 => 0.10882004060002
1017 => 0.10819897765183
1018 => 0.11013001389469
1019 => 0.10708714535481
1020 => 0.10010010412206
1021 => 0.098994378101653
1022 => 0.10120806959594
1023 => 0.1066502141258
1024 => 0.10103667709775
1025 => 0.10217228832744
1026 => 0.10184523221689
1027 => 0.10182780478666
1028 => 0.10249293891613
1029 => 0.10152812717027
1030 => 0.09759731055128
1031 => 0.099398780643314
1101 => 0.09870314652708
1102 => 0.099475004442
1103 => 0.1036404032704
1104 => 0.10179878115766
1105 => 0.099858781863118
1106 => 0.10229197149878
1107 => 0.10539025803965
1108 => 0.10519637283608
1109 => 0.10482015450343
1110 => 0.10694087754646
1111 => 0.11044369070001
1112 => 0.11139048701997
1113 => 0.11208939270696
1114 => 0.11218575999309
1115 => 0.11317840293215
1116 => 0.10784071167061
1117 => 0.1163117647843
1118 => 0.11777448164892
1119 => 0.11749955150177
1120 => 0.11912529973626
1121 => 0.11864696336442
1122 => 0.11795392901031
1123 => 0.12053108576853
1124 => 0.11757658351105
1125 => 0.11338303951805
1126 => 0.1110823783446
1127 => 0.11411207456685
1128 => 0.11596220432795
1129 => 0.11718502240968
1130 => 0.11755504642237
1201 => 0.10825506144878
1202 => 0.10324288534883
1203 => 0.10645563276419
1204 => 0.1103754063429
1205 => 0.10781893713046
1206 => 0.10791914588355
1207 => 0.10427429261492
1208 => 0.11069789498077
1209 => 0.10976203014706
1210 => 0.11461729855984
1211 => 0.11345854978717
1212 => 0.11741783269736
1213 => 0.11637522081709
1214 => 0.12070304444045
1215 => 0.12242953045495
1216 => 0.1253285691794
1217 => 0.12746111386632
1218 => 0.12871338489555
1219 => 0.12863820324011
1220 => 0.13360032493689
1221 => 0.13067433513563
1222 => 0.12699860234239
1223 => 0.12693211993295
1224 => 0.1288358340321
1225 => 0.13282549652547
1226 => 0.13385995796277
1227 => 0.1344380807824
1228 => 0.13355266555954
1229 => 0.13037671333785
1230 => 0.12900535327096
1231 => 0.13017379178007
]
'min_raw' => 0.048180336922943
'max_raw' => 0.1344380807824
'avg_raw' => 0.091309208852671
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$0.04818'
'max' => '$0.134438'
'avg' => '$0.0913092'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.019073873950386
'max_diff' => 0.069459952604931
'year' => 2036
]
11 => [
'items' => [
101 => 0.12874489188849
102 => 0.13121157397986
103 => 0.13459885534616
104 => 0.13389939513878
105 => 0.13623758574312
106 => 0.13865736703378
107 => 0.1421177629586
108 => 0.14302243859144
109 => 0.14451783301079
110 => 0.14605708507978
111 => 0.14655145136034
112 => 0.14749534998276
113 => 0.1474903751711
114 => 0.15033487720147
115 => 0.15347245102787
116 => 0.15465681251234
117 => 0.15738018643979
118 => 0.15271650402743
119 => 0.15625396070973
120 => 0.15944483518545
121 => 0.15564054309118
122 => 0.16088387345675
123 => 0.1610874600932
124 => 0.16416137659445
125 => 0.16104537332929
126 => 0.15919510053707
127 => 0.16453676875939
128 => 0.1671214337512
129 => 0.16634291162096
130 => 0.16041831976951
131 => 0.15696995319426
201 => 0.1479449127266
202 => 0.15863546301328
203 => 0.16384251821029
204 => 0.16040483475448
205 => 0.16213860233148
206 => 0.1715974760556
207 => 0.17519880275303
208 => 0.17444975197514
209 => 0.17457632922617
210 => 0.1765195397434
211 => 0.18513680532237
212 => 0.1799731400408
213 => 0.18392056866971
214 => 0.18601427058097
215 => 0.18795901759943
216 => 0.18318333356571
217 => 0.17697023880657
218 => 0.17500229088838
219 => 0.16006302488413
220 => 0.15928537121067
221 => 0.15884885063843
222 => 0.15609665017756
223 => 0.15393417450647
224 => 0.15221449356524
225 => 0.14770153723526
226 => 0.1492245275174
227 => 0.1420318170546
228 => 0.1466334583147
301 => 0.135153718742
302 => 0.14471438698044
303 => 0.1395109499285
304 => 0.14300491796289
305 => 0.14299272783757
306 => 0.13655922492268
307 => 0.13284851470516
308 => 0.13521312367877
309 => 0.13774817220137
310 => 0.13815947529524
311 => 0.14144623187633
312 => 0.14236349498951
313 => 0.13958414493364
314 => 0.13491582665551
315 => 0.13600017051852
316 => 0.13282654051138
317 => 0.1272648759958
318 => 0.13125936054824
319 => 0.13262325319953
320 => 0.13322562589359
321 => 0.127756367604
322 => 0.12603780790603
323 => 0.12512286114295
324 => 0.13420981409033
325 => 0.13470761788542
326 => 0.13216078328736
327 => 0.14367271717137
328 => 0.14106721198572
329 => 0.14397819964236
330 => 0.1359017776785
331 => 0.13621030787387
401 => 0.13238680028577
402 => 0.13452770904824
403 => 0.13301458373964
404 => 0.1343547447771
405 => 0.13515803177727
406 => 0.13898091196539
407 => 0.14475803813142
408 => 0.1384099011471
409 => 0.13564392695604
410 => 0.13735992178775
411 => 0.14192984215573
412 => 0.14885350544315
413 => 0.14475455742529
414 => 0.14657360095096
415 => 0.14697098103771
416 => 0.14394856852064
417 => 0.14896494610378
418 => 0.15165326360355
419 => 0.1544109210894
420 => 0.15680531781656
421 => 0.15330945204737
422 => 0.15705052953308
423 => 0.15403588146867
424 => 0.15133143050631
425 => 0.15133553204207
426 => 0.14963899044766
427 => 0.14635172733049
428 => 0.14574550557602
429 => 0.14889914770014
430 => 0.15142807003267
501 => 0.1516363641887
502 => 0.15303650553271
503 => 0.15386509475749
504 => 0.16198639557278
505 => 0.16525284994361
506 => 0.16924700851745
507 => 0.17080295838041
508 => 0.175485809629
509 => 0.17170402692318
510 => 0.17088581444624
511 => 0.15952674906614
512 => 0.16138679538578
513 => 0.16436490901131
514 => 0.15957585706291
515 => 0.16261340823636
516 => 0.16321308518213
517 => 0.15941312691026
518 => 0.16144284880977
519 => 0.15605250921527
520 => 0.14487553280448
521 => 0.14897738927363
522 => 0.15199773630488
523 => 0.14768732868518
524 => 0.15541356750769
525 => 0.15090005828952
526 => 0.14946949255401
527 => 0.14388834558629
528 => 0.14652243211701
529 => 0.15008507186629
530 => 0.14788377470256
531 => 0.15245179684373
601 => 0.15892133444264
602 => 0.16353191220325
603 => 0.16388585511394
604 => 0.16092156249858
605 => 0.16567186033255
606 => 0.16570646106625
607 => 0.160348105704
608 => 0.15706614288008
609 => 0.15632047402117
610 => 0.15818330102771
611 => 0.16044511691048
612 => 0.16401137015399
613 => 0.16616638229907
614 => 0.17178551104332
615 => 0.17330588616846
616 => 0.17497631748206
617 => 0.17720852885897
618 => 0.1798888709442
619 => 0.17402443505368
620 => 0.17425744002429
621 => 0.16879655852168
622 => 0.16296082346651
623 => 0.16738941893874
624 => 0.17317921840731
625 => 0.17185103201206
626 => 0.17170158391021
627 => 0.17195291416407
628 => 0.17095150499657
629 => 0.1664221684459
630 => 0.1641475639853
701 => 0.16708238405296
702 => 0.16864211030511
703 => 0.17106110969976
704 => 0.17076291696549
705 => 0.17699399962456
706 => 0.17941520992772
707 => 0.17879576072274
708 => 0.17890975428433
709 => 0.18329323988612
710 => 0.18816857740788
711 => 0.19273497435445
712 => 0.19738010945982
713 => 0.19178021778759
714 => 0.18893693814973
715 => 0.19187047696676
716 => 0.1903138999779
717 => 0.19925845306664
718 => 0.19987775451578
719 => 0.20882166081152
720 => 0.21731049290673
721 => 0.21197880956096
722 => 0.21700634681173
723 => 0.22244403824957
724 => 0.23293422726681
725 => 0.2294015006551
726 => 0.22669548743542
727 => 0.22413831801818
728 => 0.22945938163624
729 => 0.23630484497481
730 => 0.23777929221291
731 => 0.24016846002082
801 => 0.23765654220434
802 => 0.24068187053561
803 => 0.25136260894165
804 => 0.24847657914285
805 => 0.24437795287612
806 => 0.25280937005866
807 => 0.25586066716072
808 => 0.27727626819965
809 => 0.30431434914567
810 => 0.29312040609241
811 => 0.28617196441296
812 => 0.28780501302687
813 => 0.29767840489155
814 => 0.3008494249927
815 => 0.29222949924161
816 => 0.29527420274221
817 => 0.31205081837916
818 => 0.32105093441011
819 => 0.30882756796323
820 => 0.27510378472204
821 => 0.24400891642484
822 => 0.25225667571743
823 => 0.25132163577142
824 => 0.26934601634789
825 => 0.24840774828662
826 => 0.24876029502159
827 => 0.26715740070024
828 => 0.26224936831141
829 => 0.25429898441481
830 => 0.24406696302571
831 => 0.22515212514052
901 => 0.20839872574634
902 => 0.24125600003579
903 => 0.23983913462135
904 => 0.23778730353356
905 => 0.24235343158813
906 => 0.26452525330309
907 => 0.26401412104938
908 => 0.26076255843323
909 => 0.26322884001962
910 => 0.25386663332842
911 => 0.25627948716623
912 => 0.24400399083883
913 => 0.24955302784883
914 => 0.25428192646167
915 => 0.25523132287074
916 => 0.25737036145775
917 => 0.23909251093081
918 => 0.24729872920791
919 => 0.25211911362703
920 => 0.23034044145433
921 => 0.25168861930195
922 => 0.23877433421768
923 => 0.23439103189402
924 => 0.24029257101666
925 => 0.23799273548113
926 => 0.23601547193856
927 => 0.23491212490811
928 => 0.23924556391066
929 => 0.23904340380161
930 => 0.23195305650917
1001 => 0.2227039875057
1002 => 0.2258082786536
1003 => 0.22468046057668
1004 => 0.2205931023745
1005 => 0.22334748829326
1006 => 0.21121856666986
1007 => 0.1903513874233
1008 => 0.20413688521257
1009 => 0.20360615854342
1010 => 0.20333854209029
1011 => 0.21369796267575
1012 => 0.21270214341896
1013 => 0.21089472171678
1014 => 0.22055990765755
1015 => 0.21703198477407
1016 => 0.22790421181777
1017 => 0.2350653637203
1018 => 0.23324906395883
1019 => 0.23998416193601
1020 => 0.22587979525186
1021 => 0.23056470009536
1022 => 0.23153025249061
1023 => 0.22044064076333
1024 => 0.21286507176487
1025 => 0.21235986768049
1026 => 0.19922487501489
1027 => 0.20624148207489
1028 => 0.21241580592077
1029 => 0.20945878394548
1030 => 0.20852267912662
1031 => 0.21330503562981
1101 => 0.21367666568822
1102 => 0.20520346097286
1103 => 0.20696530854468
1104 => 0.21431250580195
1105 => 0.20678017802476
1106 => 0.19214609555245
1107 => 0.18851664076729
1108 => 0.18803240459483
1109 => 0.1781890353618
1110 => 0.18875917829095
1111 => 0.18414502764016
1112 => 0.19872107426
1113 => 0.19039531460365
1114 => 0.19003640774535
1115 => 0.18949386738884
1116 => 0.18102127286551
1117 => 0.18287623260465
1118 => 0.18904240129589
1119 => 0.19124255975178
1120 => 0.19101306519947
1121 => 0.18901218370536
1122 => 0.18992817700719
1123 => 0.18697744342877
1124 => 0.18593547798802
1125 => 0.18264674844184
1126 => 0.17781322454369
1127 => 0.17848535568745
1128 => 0.16890888008488
1129 => 0.16369110791457
1130 => 0.16224689734696
1201 => 0.16031563861824
1202 => 0.16246503815925
1203 => 0.16888175113272
1204 => 0.16114183390512
1205 => 0.14787228871047
1206 => 0.14866981098687
1207 => 0.15046160675546
1208 => 0.14712260719461
1209 => 0.14396252433125
1210 => 0.14670995999531
1211 => 0.14108747876702
1212 => 0.15114105675018
1213 => 0.15086913564056
1214 => 0.15461648780359
1215 => 0.15695978401454
1216 => 0.15155924489946
1217 => 0.15020102391662
1218 => 0.15097472831615
1219 => 0.13818711803987
1220 => 0.15357146722856
1221 => 0.1537045117192
1222 => 0.15256530401674
1223 => 0.16075699502123
1224 => 0.17804401809319
1225 => 0.17153994464463
1226 => 0.16902137081868
1227 => 0.1642335601345
1228 => 0.17061303359911
1229 => 0.17012318957231
1230 => 0.16790792911532
1231 => 0.1665681326789
]
'min_raw' => 0.12512286114295
'max_raw' => 0.32105093441011
'avg_raw' => 0.22308689777653
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$0.125122'
'max' => '$0.32105'
'avg' => '$0.223086'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 0.076942524220008
'max_diff' => 0.18661285362771
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.0039274636365863
]
1 => [
'year' => 2028
'avg' => 0.0067406677512223
]
2 => [
'year' => 2029
'avg' => 0.018414289409179
]
3 => [
'year' => 2030
'avg' => 0.014206596855799
]
4 => [
'year' => 2031
'avg' => 0.013952638716561
]
5 => [
'year' => 2032
'avg' => 0.024463366727138
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.0039274636365863
'min' => '$0.003927'
'max_raw' => 0.024463366727138
'max' => '$0.024463'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.024463366727138
]
1 => [
'year' => 2033
'avg' => 0.062922294760534
]
2 => [
'year' => 2034
'avg' => 0.039883174323214
]
3 => [
'year' => 2035
'avg' => 0.047042295575012
]
4 => [
'year' => 2036
'avg' => 0.091309208852671
]
5 => [
'year' => 2037
'avg' => 0.22308689777653
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.024463366727138
'min' => '$0.024463'
'max_raw' => 0.22308689777653
'max' => '$0.223086'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 0.22308689777653
]
]
]
]
'prediction_2025_max_price' => '$0.006715'
'last_price' => 0.00651128
'sma_50day_nextmonth' => '$0.006733'
'sma_200day_nextmonth' => '$0.00955'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'increase'
'sma_200day_direction_label' => 'aumentar'
'sma_200day_date_nextmonth' => '4 de fev. de 2026'
'sma_50day_date_nextmonth' => '4 de fev. de 2026'
'daily_sma3' => '$0.006468'
'daily_sma3_action' => 'BUY'
'daily_sma5' => '$0.006557'
'daily_sma5_action' => 'SELL'
'daily_sma10' => '$0.007549'
'daily_sma10_action' => 'SELL'
'daily_sma21' => '$0.007876'
'daily_sma21_action' => 'SELL'
'daily_sma50' => '$0.007746'
'daily_sma50_action' => 'SELL'
'daily_sma100' => '$0.007385'
'daily_sma100_action' => 'SELL'
'daily_sma200' => '$0.011046'
'daily_sma200_action' => 'SELL'
'daily_ema3' => '$0.006527'
'daily_ema3_action' => 'SELL'
'daily_ema5' => '$0.006698'
'daily_ema5_action' => 'SELL'
'daily_ema10' => '$0.007153'
'daily_ema10_action' => 'SELL'
'daily_ema21' => '$0.007592'
'daily_ema21_action' => 'SELL'
'daily_ema50' => '$0.007727'
'daily_ema50_action' => 'SELL'
'daily_ema100' => '$0.008314'
'daily_ema100_action' => 'SELL'
'daily_ema200' => '$0.0095052'
'daily_ema200_action' => 'SELL'
'weekly_sma21' => '$0.008768'
'weekly_sma21_action' => 'SELL'
'weekly_sma50' => '$0.0104041'
'weekly_sma50_action' => 'SELL'
'weekly_sma100' => '$0.012998'
'weekly_sma100_action' => 'SELL'
'weekly_sma200' => '$0.026028'
'weekly_sma200_action' => 'SELL'
'weekly_ema3' => '$0.00692'
'weekly_ema3_action' => 'SELL'
'weekly_ema5' => '$0.007154'
'weekly_ema5_action' => 'SELL'
'weekly_ema10' => '$0.007494'
'weekly_ema10_action' => 'SELL'
'weekly_ema21' => '$0.008592'
'weekly_ema21_action' => 'SELL'
'weekly_ema50' => '$0.010529'
'weekly_ema50_action' => 'SELL'
'weekly_ema100' => '$0.019472'
'weekly_ema100_action' => 'SELL'
'weekly_ema200' => '$0.119494'
'weekly_ema200_action' => 'SELL'
'rsi_14' => '40.74'
'rsi_14_action' => 'NEUTRAL'
'stoch_rsi_14' => 16.11
'stoch_rsi_14_action' => 'BUY'
'momentum_10' => -0
'momentum_10_action' => 'BUY'
'vwma_10' => '0.008081'
'vwma_10_action' => 'SELL'
'hma_9' => '0.005992'
'hma_9_action' => 'BUY'
'stochastic_fast_14' => 17.81
'stochastic_fast_14_action' => 'BUY'
'cci_20' => -103.36
'cci_20_action' => 'BUY'
'adx_14' => 17.62
'adx_14_action' => 'NEUTRAL'
'ao_5_34' => '-0.001478'
'ao_5_34_action' => 'SELL'
'macd_12_26' => -0
'macd_12_26_action' => 'NEUTRAL'
'williams_percent_r_14' => -82.19
'williams_percent_r_14_action' => 'BUY'
'ultimate_oscillator' => 28.12
'ultimate_oscillator_action' => 'BUY'
'ichimoku_cloud' => '0.001348'
'ichimoku_cloud_action' => 'NEUTRAL'
'sell_signals' => 29
'buy_signals' => 5
'sell_pct' => 85.29
'buy_pct' => 14.71
'overall_action' => 'bearish'
'overall_action_label' => 'Baixista'
'overall_action_dir' => -1
'last_updated' => 1767701052
'last_updated_date' => '6 de janeiro de 2026'
]
Previsão de preço de SALT para 2026
A previsão de preço para SALT em 2026 sugere que o preço médio poderia variar entre $0.002249 na extremidade inferior e $0.006715 na extremidade superior. No mercado de criptomoedas, comparado ao preço médio de hoje, SALT poderia potencialmente ganhar 3.13% até 2026 se SALT atingir a meta de preço prevista.
Previsão de preço de SALT 2027-2032
A previsão de preço de SALT para 2027-2032 está atualmente dentro de uma faixa de preço entre $0.003927 na extremidade inferior e $0.024463 na extremidade superior. Considerando a volatilidade de preços no mercado, se SALT atingir a meta de preço superior, poderia ganhar 275.71% até 2032 em comparação com o preço de hoje.
| Previsão de Preço de SALT | Potencial Mínimo ($) | Preço Médio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2027 | $0.002165 | $0.003927 | $0.005689 |
| 2028 | $0.0039084 | $0.00674 | $0.009572 |
| 2029 | $0.008585 | $0.018414 | $0.028242 |
| 2030 | $0.0073017 | $0.0142065 | $0.021111 |
| 2031 | $0.008632 | $0.013952 | $0.019272 |
| 2032 | $0.013177 | $0.024463 | $0.035749 |
Previsão de preço de SALT 2032-2037
A previsão de preço de SALT para 2032-2037 é atualmente estimada entre $0.024463 na extremidade inferior e $0.223086 na extremidade superior. Comparado ao preço atual, SALT poderia potencialmente ganhar 3326.16% até 2037 se atingir a meta de preço superior. Por favor, note que esta informação é apenas para fins gerais e não deve ser considerada como aconselhamento de investimento a longo prazo.
| Previsão de Preço de SALT | Potencial Mínimo ($) | Preço Médio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2032 | $0.013177 | $0.024463 | $0.035749 |
| 2033 | $0.030621 | $0.062922 | $0.095222 |
| 2034 | $0.024618 | $0.039883 | $0.055148 |
| 2035 | $0.0291064 | $0.047042 | $0.064978 |
| 2036 | $0.04818 | $0.0913092 | $0.134438 |
| 2037 | $0.125122 | $0.223086 | $0.32105 |
SALT Histograma de preços potenciais
Previsão de preço de SALT baseada na análise técnica
Em 6 de janeiro de 2026, o sentimento geral de previsão de preço para SALT é Baixista, com 5 indicadores técnicos mostrando sinais de alta e 29 indicando sinais de baixa. A previsão de preço de SALT foi atualizada pela última vez em 6 de janeiro de 2026.
Médias Móveis Simples de 50 e 200 dias e Índice de Força Relativa de 14 dias - RSI (14) de SALT
De acordo com nossos indicadores técnicos, o SMA de 200 dias de SALT está projetado para aumentar no próximo mês, alcançando $0.00955 até 4 de fev. de 2026. O SMA de 50 dias de curto prazo para SALT é esperado para alcançar $0.006733 até 4 de fev. de 2026.
O oscilador de momentum Índice de Força Relativa (RSI) é uma ferramenta comumente usada para identificar se uma criptomoeda está sobrevendida (abaixo de 30) ou sobrecomprada (acima de 70). No momento, o RSI está em 40.74, sugerindo que o mercado de SALT está em um estado NEUTRAL.
Médias Móveis e Osciladores Populares de SALT para Sábado, 19 de Outubro de 2024
Médias móveis (MA) são indicadores amplamente utilizados nos mercados financeiros, projetados para suavizar movimentos de preços ao longo de um período definido. Como indicadores atrasados, eles se baseiam em dados históricos de preços. A tabela abaixo destaca dois tipos: a média móvel simples (SMA) e a média móvel exponencial (EMA).
Média Móvel Simples Diária (SMA)
| Período | Valor | Ação |
|---|---|---|
| SMA 3 | $0.006468 | BUY |
| SMA 5 | $0.006557 | SELL |
| SMA 10 | $0.007549 | SELL |
| SMA 21 | $0.007876 | SELL |
| SMA 50 | $0.007746 | SELL |
| SMA 100 | $0.007385 | SELL |
| SMA 200 | $0.011046 | SELL |
Média Móvel Exponencial Diária (EMA)
| Período | Valor | Ação |
|---|---|---|
| EMA 3 | $0.006527 | SELL |
| EMA 5 | $0.006698 | SELL |
| EMA 10 | $0.007153 | SELL |
| EMA 21 | $0.007592 | SELL |
| EMA 50 | $0.007727 | SELL |
| EMA 100 | $0.008314 | SELL |
| EMA 200 | $0.0095052 | SELL |
Média Móvel Simples Semanal (SMA)
| Período | Valor | Ação |
|---|---|---|
| SMA 21 | $0.008768 | SELL |
| SMA 50 | $0.0104041 | SELL |
| SMA 100 | $0.012998 | SELL |
| SMA 200 | $0.026028 | SELL |
Média Móvel Exponencial Semanal (EMA)
| Período | Valor | Ação |
|---|---|---|
| EMA 21 | $0.008592 | SELL |
| EMA 50 | $0.010529 | SELL |
| EMA 100 | $0.019472 | SELL |
| EMA 200 | $0.119494 | SELL |
Osciladores de SALT
Um oscilador é uma ferramenta de análise técnica que define limites altos e baixos entre dois extremos, criando um indicador de tendência que flutua dentro desses limites. Os traders usam esse indicador para identificar condições de sobrecompra ou sobrevenda de curto prazo.
| Período | Valor | Ação |
|---|---|---|
| RSI (14) | 40.74 | NEUTRAL |
| Stoch RSI (14) | 16.11 | BUY |
| Estocástico Rápido (14) | 17.81 | BUY |
| Índice de Canal de Commodities (20) | -103.36 | BUY |
| Índice Direcional Médio (14) | 17.62 | NEUTRAL |
| Oscilador Impressionante (5, 34) | -0.001478 | SELL |
| Momentum (10) | -0 | BUY |
| MACD (12, 26) | -0 | NEUTRAL |
| Williams Percent Range (14) | -82.19 | BUY |
| Oscilador Ultimate (7, 14, 28) | 28.12 | BUY |
| VWMA (10) | 0.008081 | SELL |
| Média Móvel de Hull (9) | 0.005992 | BUY |
| Nuvem Ichimoku B/L (9, 26, 52, 26) | 0.001348 | NEUTRAL |
Previsão do preço de SALT com base nos fluxos financeiros mundiais
Definições dos fluxos financeiros mundiais, usadas na previsão do preço do SALT
M0: o total de todas as moedas físicas, mais as contas no Banco Central que podem ser trocadas por moedas físicas.
M1: o valor de M0, mais o valor em contas de demanda, incluindo contas 'correntes'.
M2: o valor de M1, mais a maioria das contas de poupança, do mercado de moedas e de certificados de depósito (CD) de menos de US$ 100.000.
Previsões de preço de SALT por empresas de Internet ou nichos tecnológicos
| Comparação | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Facebook stock | $0.009149 | $0.012856 | $0.018065 | $0.025385 | $0.03567 | $0.050122 |
| Amazon.com stock | $0.013586 | $0.028348 | $0.05915 | $0.123421 | $0.257525 | $0.537342 |
| Apple stock | $0.009235 | $0.01310021 | $0.018581 | $0.026356 | $0.037384 | $0.053027 |
| Netflix stock | $0.010273 | $0.01621 | $0.025577 | $0.040357 | $0.063677 | $0.100473 |
| Google stock | $0.008432 | $0.010919 | $0.01414 | $0.018312 | $0.023714 | $0.0307097 |
| Tesla stock | $0.01476 | $0.033461 | $0.075853 | $0.171954 | $0.3898087 | $0.883666 |
| Kodak stock | $0.004882 | $0.003661 | $0.002745 | $0.002059 | $0.001544 | $0.001157 |
| Nokia stock | $0.004313 | $0.002857 | $0.001892 | $0.001254 | $0.00083 | $0.00055 |
Este cálculo mostra quanto a criptomoeda pode custar, se assumirmos que sua capitalização se comportará da mesma forma que a de algumas empresas de Internet ou nichos tecnológicos. Se você extrapolar os dados, poderá obter uma imagem em potencial do preço futuro para 2024, 2025, 2026, 2027, 2028, 2029 e 2030.
Visão geral da previsão para SALT
Você pode fazer perguntas como: 'Devo investir em SALT agora?', 'Devo comprar SALT hoje?', 'SALT será um bom ou mau investimento no curto ou no longo prazo?'.
Atualizamos a previsão para SALT regularmente com novos valores. Veja nossas previsões semelhantes. Fazemos previsões de preços futuros para uma enorme quantidade de moedas digitais, como SALT, com métodos de análise técnica.
Se você estiver tentando encontrar criptomoedas com bom retorno, você deve explorar o máximo de fontes de informações disponíveis sobre SALT para poder tomar sozinho uma decisão de tão grande responsabilidade sobre o seu investimento.
O preço de SALT é de $0.006511 USD hoje, mas o preço pode tanto subir quanto descer e seu investimento pode ser perdido, porque criptomoedas são ativos de alto risco
Previsão do preço de SALT com base no padrão de crescimento do Bitcoin
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| Se SALT tiver 1% da média anterior do crescimento anual do Bitcoin | $0.00668 | $0.006854 | $0.007032 | $0.007215 |
| Se SALT tiver 2% da média anterior do crescimento anual do Bitcoin | $0.006849 | $0.0072058 | $0.00758 | $0.007974 |
| Se SALT tiver 5% da média anterior do crescimento anual do Bitcoin | $0.007357 | $0.008313 | $0.009394 | $0.010615 |
| Se SALT tiver 10% da média anterior do crescimento anual do Bitcoin | $0.0082037 | $0.010336 | $0.013022 | $0.0164079 |
| Se SALT tiver 20% da média anterior do crescimento anual do Bitcoin | $0.009896 | $0.01504 | $0.02286 | $0.034744 |
| Se SALT tiver 50% da média anterior do crescimento anual do Bitcoin | $0.014973 | $0.034434 | $0.079187 | $0.1821047 |
| Se SALT tiver 100% da média anterior do crescimento anual do Bitcoin | $0.023436 | $0.084354 | $0.303618 | $1.09 |
Perguntas Frequentes sobre SALT
SALT é um bom investimento?
A decisão de adquirir SALT depende inteiramente da sua tolerância individual ao risco. Como você pode perceber, o valor de SALT experimentou uma queda de -8.6991% nas últimas 24 horas, e SALT registrou um declínio de durante os últimos 30 dias. Consequentemente, a decisão de investir ou não em SALT dependerá de quão alinhado esse investimento está com suas aspirações de negociação.
SALT pode subir?
Parece que o valor médio de SALT pode potencialmente subir para $0.006715 até o final deste ano. Observando as perspectivas de SALT em um horizonte de cinco anos mais longo, a moeda digital poderia potencialmente crescer até $0.021111. No entanto, dada a imprevisibilidade do mercado, é vital conduzir uma pesquisa aprofundada antes de investir quaisquer fundos em um projeto, rede ou ativo específico.
Qual será o preço de SALT na próxima semana?
Com base na nossa nova previsão experimental de SALT, o preço de SALT aumentará 0.86% na próxima semana e atingirá $0.006567 até 13 de janeiro de 2026.
Qual será o preço de SALT no próximo mês?
Com base na nossa nova previsão experimental de SALT, o preço de SALT diminuirá -11.62% no próximo mês e atingirá $0.005754 até 5 de fevereiro de 2026.
Até onde o preço de SALT pode subir este ano em 2026?
De acordo com nossa previsão mais recente sobre o valor de SALT em 2026, espera-se que SALT fluctue dentro do intervalo de $0.002249 e $0.006715. No entanto, é crucial lembrar que o mercado de criptomoedas é excepcionalmente instável, e essa previsão de preço de SALT não considera flutuações repentinas e extremas de preço.
Onde estará SALT em 5 anos?
O futuro de SALT parece seguir uma tendência de alta, com um preço máximo de $0.021111 projetada após um período de cinco anos. Com base na previsão de SALT para 2030, o valor de SALT pode potencialmente atingir seu pico mais alto de aproximadamente $0.021111, enquanto seu pico mais baixo está previsto para cerca de $0.0073017.
Quanto será SALT em 2026?
Com base na nossa nova simulação experimental de previsão de preços de SALT, espera-se que o valor de SALT em 2026 aumente 3.13% para $0.006715 se o melhor cenário ocorrer. O preço ficará entre $0.006715 e $0.002249 durante 2026.
Quanto será SALT em 2027?
De acordo com nossa última simulação experimental para previsão de preços de SALT, o valor de SALT pode diminuir -12.62% para $0.005689 em 2027, assumindo as condições mais favoráveis. O preço está projetado para flutuar entre $0.005689 e $0.002165 ao longo do ano.
Quanto será SALT em 2028?
Nosso novo modelo experimental de previsão de preços de SALT sugere que o valor de SALT em 2028 pode aumentar 47.02%, alcançando $0.009572 no melhor cenário. O preço é esperado para variar entre $0.009572 e $0.0039084 durante o ano.
Quanto será SALT em 2029?
Com base no nosso modelo de previsão experimental, o valor de SALT pode experimentar um 333.75% crescimento em 2029, potencialmente alcançando $0.028242 sob condições ótimas. A faixa de preço prevista para 2029 está entre $0.028242 e $0.008585.
Quanto será SALT em 2030?
Usando nossa nova simulação experimental para previsões de preços de SALT, espera-se que o valor de SALT em 2030 aumente 224.23%, alcançando $0.021111 no melhor cenário. O preço está previsto para variar entre $0.021111 e $0.0073017 ao longo de 2030.
Quanto será SALT em 2031?
Nossa simulação experimental indica que o preço de SALT poderia aumentar 195.98% em 2031, potencialmente atingindo $0.019272 sob condições ideais. O preço provavelmente oscilará entre $0.019272 e $0.008632 durante o ano.
Quanto será SALT em 2032?
Com base nos achados da nossa mais recente previsão experimental de preços de SALT, SALT poderia ver um 449.04% aumento em valor, atingindo $0.035749 se o cenário mais positivo se desenrolar em 2032. O preço é esperado para permanecer dentro de uma faixa de $0.035749 e $0.013177 ao longo do ano.
Quanto será SALT em 2033?
De acordo com nossa previsão experimental de preços de SALT, espera-se que o valor de SALT seja aumentar 1362.43% em 2033, com o preço potencial mais alto sendo $0.095222. Ao longo do ano, o preço de SALT poderia variar entre $0.095222 e $0.030621.
Quanto será SALT em 2034?
Os resultados da nossa nova simulação de previsão de preços de SALT sugerem que SALT pode aumentar 746.96% em 2034, atingindo potencialmente $0.055148 nas melhores circunstâncias. A faixa de preço prevista para o ano é entre $0.055148 e $0.024618.
Quanto será SALT em 2035?
Com base em nossa previsão experimental para o preço de SALT, SALT poderia aumentar 897.93%, com o valor potencialmente atingindo $0.064978 em 2035. A faixa de preço esperada para o ano está entre $0.064978 e $0.0291064.
Quanto será SALT em 2036?
Nossa recente simulação de previsão de preços de SALT sugere que o valor de SALT pode aumentar 1964.7% em 2036, possivelmente atingindo $0.134438 se as condições forem ideais. A faixa de preço esperada para 2036 está entre $0.134438 e $0.04818.
Quanto será SALT em 2037?
De acordo com a simulação experimental, o valor de SALT poderia aumentar 4830.69% em 2037, com um pico de $0.32105 sob condições favoráveis. O preço é esperado para cair entre $0.32105 e $0.125122 ao longo do ano.
Previsões relacionadas
Previsão de Preço do Baby Shiba Inu
Previsão de Preço do VersaGames
Previsão de Preço do King Shiba
Previsão de Preço do Galvan
Previsão de Preço do Artem
Previsão de Preço do CoinBuck
Previsão de Preço do BABYTRUMP
Previsão de Preço do Charged Particles
Previsão de Preço do Gunstar Metaverse
Previsão de Preço do GST
Previsão de Preço do Blockchain Monster Hunt
Previsão de Preço do Modefi
Previsão de Preço do Factor
Previsão de Preço do Stride Staked Stars
Previsão de Preço do OpenDAO
Previsão de Preço do Revenant
Previsão de Preço do Mochimo
Previsão de Preço do Alvey Chain
Previsão de Preço do PAC Global
Previsão de Preço do Satoxcoin
Previsão de Preço do Blastar
Previsão de Preço do PUMLxPrevisão de Preço do Vigorus
Previsão de Preço do BeamSwap
Previsão de Preço do OneLedger
Como ler e prever os movimentos de preço de SALT?
Traders de SALT utilizam indicadores e padrões de gráfico para prever a direção do mercado. Eles também identificam níveis-chave de suporte e resistência para avaliar quando uma tendência de baixa pode desacelerar ou uma tendência de alta pode estagnar.
Indicadores de Previsão de Preço de SALT
Médias móveis são ferramentas populares para a previsão de preço de SALT. Uma média móvel simples (SMA) calcula o preço médio de fechamento de SALT em um período específico, como uma SMA de 12 dias. Uma média móvel exponencial (EMA) dá mais peso aos preços recentes, reagindo mais rapidamente às mudanças de preço.
Médias móveis comumente usadas no mercado de criptomoedas incluem as de 50 dias, 100 dias e 200 dias, que ajudam a identificar níveis-chave de resistência e suporte. Um movimento de preço de SALT acima dessas médias é visto como altista, enquanto uma queda abaixo indica fraqueza.
Traders também usam RSI e níveis de retração de Fibonacci para avaliar a direção futura de SALT.
Como ler gráficos de SALT e prever movimentos de preço?
A maioria dos traders prefere gráficos de velas em vez de gráficos de linha simples porque eles fornecem informações mais detalhadas. Velas podem representar a ação de preço de SALT em diferentes períodos de tempo, como 5 minutos para tendências de curto prazo e semanal para tendências de longo prazo. Opções populares incluem gráficos de 1 hora, 4 horas e 1 dia.
Por exemplo, um gráfico de velas de 1 hora mostra os preços de abertura, fechamento, máximo e mínimo de SALT dentro de cada hora. A cor da vela é crucial: verde indica que o preço fechou mais alto do que abriu, enquanto vermelho significa o oposto. Alguns gráficos usam velas vazias e preenchidas para transmitir a mesma informação.
O que afeta o preço de SALT?
A ação de preço de SALT é impulsionada pela oferta e demanda, influenciada por fatores como reduções pela metade das recompensas de bloco, hard forks e atualizações de protocolo. Eventos do mundo real, como regulamentações, adoção por empresas e governos e hacks de exchanges de criptomoedas, também impactam o preço de SALT. A capitalização de mercado de SALT pode mudar rapidamente.
Traders frequentemente monitoram a atividade de "baleias" de SALT, grandes detentores de SALT, pois suas ações podem influenciar significativamente os movimentos de preço no relativamente pequeno mercado de SALT.
Padrões de previsão de preço altistas e baixistas
Traders frequentemente identificam padrões de velas para ganhar vantagem em previsões de preço de criptomoedas. Certas formações indicam tendências altistas, enquanto outras sugerem movimentos baixistas.
Padrões de velas altistas comumente seguidos:
- Martelo
- Engolfo de Alta
- Linha de Perfuração
- Estrela da Manhã
- Três Soldados Brancos
Padrões de velas baixistas comuns:
- Harami de Baixa
- Nuvem Negra
- Estrela da Noite
- Estrela Cadente
- Homem Enforcado


