Previsão de Preço SALT - Projeção SALT
Previsão de Preço SALT até $0.006881 até 2026
| Ano | Preço Mínimo | Preço Máximo |
|---|---|---|
| 2026 | $0.0023052 | $0.006881 |
| 2027 | $0.002219 | $0.005829 |
| 2028 | $0.004005 | $0.0098095 |
| 2029 | $0.008797 | $0.028941 |
| 2030 | $0.007482 | $0.021633 |
| 2031 | $0.008846 | $0.019748 |
| 2032 | $0.0135032 | $0.036633 |
| 2033 | $0.031378 | $0.097577 |
| 2034 | $0.025226 | $0.056511 |
| 2035 | $0.029826 | $0.066584 |
Calculadora de lucro do investimento
Se você abrir um short de $10,000.00 em SALT hoje e fechar em Apr 06, 2026, nossa previsão mostra que pode lucrar cerca de $3,954.51, com um retorno de 39.55% nos próximos 90 dias.
Previsão de preço de longo prazo de SALT para os anos 2027, 2028, 2029, 2030, 2031, 2032 e 2037
[
'name' => 'SALT'
'name_with_ticker' => 'SALT <small>SALT</small>'
'name_lang' => 'SALT'
'name_lang_with_ticker' => 'SALT <small>SALT</small>'
'name_with_lang' => 'SALT'
'name_with_lang_with_ticker' => 'SALT <small>SALT</small>'
'image' => '/uploads/coins/salt.png?1717112665'
'price_for_sd' => 0.006672
'ticker' => 'SALT'
'marketcap' => '$583.68K'
'low24h' => '$0.006511'
'high24h' => '$0.006976'
'volume24h' => '$492.55'
'current_supply' => '87.48M'
'max_supply' => '120M'
'algo' => null
'proof' => null
'ico_price_and_roi' => '—'
'price' => '$0.006672'
'change_24h_pct' => '-2.365%'
'ath_price' => '$17.22'
'ath_days' => 2931
'ath_exchange' => null
'ath_pair' => null
'ath_date' => '28 de dez. de 2017'
'ath_pct' => '-99.96%'
'fdv' => '$800.67K'
'new_prediction' => true
'change_24h_pct_is_increased' => false
'change_30d_pct' => null
'change_30d_pct_is_increased' => false
'max_price' => '$0.328987'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.006729'
'next_week_prediction_price_date' => '13 de janeiro de 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.005897'
'next_month_prediction_price_date' => '5 de fevereiro de 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.0023052'
'current_year_max_price_prediction' => '$0.006881'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.007482'
'grand_prediction_max_price' => '$0.021633'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.0067986856278965
107 => 0.0068240694521082
108 => 0.0068812605041873
109 => 0.006392569225906
110 => 0.0066119772626322
111 => 0.0067408589284559
112 => 0.006158566873509
113 => 0.0067293488867413
114 => 0.0063840621979911
115 => 0.0062668667097972
116 => 0.0064246549953187
117 => 0.0063631647469969
118 => 0.0063102990423182
119 => 0.0062807990707594
120 => 0.0063966613731889
121 => 0.0063912562582952
122 => 0.0062016830436167
123 => 0.0059543925130615
124 => 0.0060373913321508
125 => 0.0060072370830576
126 => 0.0058979541943682
127 => 0.0059715976664786
128 => 0.005647309085413
129 => 0.0050893874367434
130 => 0.0054579675674568
131 => 0.0054437776333624
201 => 0.0054366224251297
202 => 0.0057136002065542
203 => 0.0056869751838349
204 => 0.0056386505068863
205 => 0.0058970666737794
206 => 0.0058027412966755
207 => 0.0060934298830558
208 => 0.0062848961866049
209 => 0.0062363341387388
210 => 0.0064164091226636
211 => 0.0060393034573086
212 => 0.0061645628324863
213 => 0.0061903786161084
214 => 0.0058938778583929
215 => 0.005691331366829
216 => 0.0056778238250408
217 => 0.0053266361212949
218 => 0.0055142377579478
219 => 0.0056793194347192
220 => 0.0056002581224013
221 => 0.005575229672811
222 => 0.0057030945937595
223 => 0.0057130307932062
224 => 0.0054864843928305
225 => 0.0055335905632601
226 => 0.0057300311247007
227 => 0.0055286407651263
228 => 0.0051373721934019
301 => 0.005040332177903
302 => 0.0050273852510331
303 => 0.0047642050326595
304 => 0.0050468168557536
305 => 0.004923449221447
306 => 0.0053131661000502
307 => 0.0050905619090856
308 => 0.0050809658873265
309 => 0.0050664600930072
310 => 0.0048399300072151
311 => 0.0048895256992656
312 => 0.0050543893332786
313 => 0.0051132145352162
314 => 0.0051070785847134
315 => 0.0050535814115309
316 => 0.005078072143464
317 => 0.0049991789627708
318 => 0.0049713201386484
319 => 0.0048833900265451
320 => 0.0047541570530665
321 => 0.0047721276906606
322 => 0.0045160833545527
323 => 0.0043765768109397
324 => 0.0043379632383343
325 => 0.0042863275552741
326 => 0.0043437956261333
327 => 0.0045153580131188
328 => 0.0043084173754235
329 => 0.0039536321672927
330 => 0.0039749553628259
331 => 0.0040228622522755
401 => 0.003933588080722
402 => 0.0038490975695598
403 => 0.0039225552140835
404 => 0.0037722280443477
405 => 0.0040410285725416
406 => 0.0040337582715587
407 => 0.0041339504859562
408 => 0.0041966027337702
409 => 0.0040522095864651
410 => 0.0040158951003984
411 => 0.0040365814820633
412 => 0.0036946816726266
413 => 0.0041060099773123
414 => 0.004109567161572
415 => 0.0040791083903112
416 => 0.0042981280142197
417 => 0.0047603277346005
418 => 0.0045864296078526
419 => 0.0045190909970771
420 => 0.0043910802487686
421 => 0.0045616469703635
422 => 0.0045485501074004
423 => 0.0044893211262433
424 => 0.0044534992536338
425 => 0.0045195021522753
426 => 0.0044453207640704
427 => 0.0044319957483806
428 => 0.0043512606510603
429 => 0.0043224418945298
430 => 0.0043011056345024
501 => 0.0042776165086698
502 => 0.004329427667131
503 => 0.0042120167657324
504 => 0.0040704307285783
505 => 0.0040586593815711
506 => 0.0040911611056055
507 => 0.004076781512189
508 => 0.0040585905376101
509 => 0.0040238590131217
510 => 0.0040135549117276
511 => 0.0040470382424191
512 => 0.0040092375142679
513 => 0.0040650145477672
514 => 0.0040498462809394
515 => 0.0039651175754619
516 => 0.0038595142378524
517 => 0.0038585741466372
518 => 0.0038358220807734
519 => 0.0038068439040999
520 => 0.0037987828382802
521 => 0.0039163688161517
522 => 0.0041597682712936
523 => 0.0041119831341939
524 => 0.0041465127929662
525 => 0.0043163645388668
526 => 0.0043703553012684
527 => 0.004332033936957
528 => 0.0042795772899288
529 => 0.0042818851161761
530 => 0.0044611453587784
531 => 0.0044723256002244
601 => 0.0045005744634759
602 => 0.0045368822358818
603 => 0.004338217307597
604 => 0.0042725280159195
605 => 0.0042414007852196
606 => 0.004145540962418
607 => 0.0042489175629094
608 => 0.0041886844448305
609 => 0.0041968119503156
610 => 0.0041915189017062
611 => 0.0041944092641613
612 => 0.0040409534373158
613 => 0.0040968646752175
614 => 0.0040039013980429
615 => 0.0038794340055238
616 => 0.0038790167471802
617 => 0.0039094799651664
618 => 0.0038913592510824
619 => 0.0038425968754084
620 => 0.003849523340721
621 => 0.0037888402162136
622 => 0.0038568913707396
623 => 0.0038588428343527
624 => 0.0038326394330887
625 => 0.0039374816258858
626 => 0.0039804355578178
627 => 0.0039631879177746
628 => 0.0039792254174137
629 => 0.0041139688223774
630 => 0.0041359378766534
701 => 0.0041456950793685
702 => 0.0041326217203119
703 => 0.0039816882795045
704 => 0.0039883828194228
705 => 0.003939262727399
706 => 0.0038977614257866
707 => 0.0038994212602054
708 => 0.0039207583240257
709 => 0.0040139385331314
710 => 0.0042100307899209
711 => 0.0042174723477245
712 => 0.004226491732868
713 => 0.0041898053607096
714 => 0.0041787403998253
715 => 0.0041933379393404
716 => 0.0042669798809495
717 => 0.0044564069483602
718 => 0.0043894507713288
719 => 0.0043350143571673
720 => 0.0043827697683388
721 => 0.0043754181971083
722 => 0.0043133635375625
723 => 0.0043116218699485
724 => 0.0041925191382053
725 => 0.0041484895701179
726 => 0.0041116951674679
727 => 0.0040715166403164
728 => 0.0040476974626246
729 => 0.0040842945451819
730 => 0.0040926647309667
731 => 0.0040126445703476
801 => 0.0040017381181398
802 => 0.0040670843086566
803 => 0.0040383278865617
804 => 0.0040679045798112
805 => 0.0040747666263493
806 => 0.0040736616788103
807 => 0.0040436366714892
808 => 0.0040627737157971
809 => 0.0040175089009815
810 => 0.0039682902134249
811 => 0.0039368917571964
812 => 0.0039094924397362
813 => 0.0039246951735208
814 => 0.0038705002034882
815 => 0.0038531621418455
816 => 0.0040562905157827
817 => 0.0042063436296082
818 => 0.0042041617979056
819 => 0.0041908804585377
820 => 0.0041711470822583
821 => 0.0042655362615631
822 => 0.0042326529588645
823 => 0.0042565783090696
824 => 0.0042626683148406
825 => 0.0042811009281169
826 => 0.0042876890030266
827 => 0.0042677752649374
828 => 0.0042009423276518
829 => 0.004034401002221
830 => 0.0039568755656633
831 => 0.003931290880311
901 => 0.0039322208350313
902 => 0.0039065685323441
903 => 0.003914124285141
904 => 0.0039039409498695
905 => 0.0038846561764787
906 => 0.003923504393107
907 => 0.0039279812881772
908 => 0.0039189136502145
909 => 0.003921049407208
910 => 0.003845973237716
911 => 0.0038516811158256
912 => 0.0038198989251892
913 => 0.0038139401475849
914 => 0.003733597537248
915 => 0.0035912589571886
916 => 0.0036701283476818
917 => 0.0035748652146805
918 => 0.0035387876227409
919 => 0.0037095733317663
920 => 0.0036924311834383
921 => 0.0036630912770136
922 => 0.0036196914404393
923 => 0.0036035940188874
924 => 0.0035057911813623
925 => 0.0035000124679635
926 => 0.0035484861951397
927 => 0.003526117237927
928 => 0.0034947027502138
929 => 0.0033809226601523
930 => 0.0032529961676299
1001 => 0.0032568574643218
1002 => 0.0032975485014362
1003 => 0.0034158631797802
1004 => 0.0033696355880865
1005 => 0.0033360969399122
1006 => 0.0033298161592772
1007 => 0.0034084332786289
1008 => 0.0035196929733073
1009 => 0.003571893532755
1010 => 0.0035201643636969
1011 => 0.0034607406795792
1012 => 0.0034643575238886
1013 => 0.0034884187687043
1014 => 0.0034909472653267
1015 => 0.0034522685558195
1016 => 0.0034631563859839
1017 => 0.0034466167763601
1018 => 0.0033451132226283
1019 => 0.0033432773452125
1020 => 0.0033183667361608
1021 => 0.0033176124528188
1022 => 0.0032752332925792
1023 => 0.0032693041551084
1024 => 0.0031851577602216
1025 => 0.0032405431721548
1026 => 0.0032033935456946
1027 => 0.0031474002959081
1028 => 0.0031377470385398
1029 => 0.0031374568499667
1030 => 0.0031949493976358
1031 => 0.0032398713382615
1101 => 0.003204039779352
1102 => 0.0031958816279539
1103 => 0.0032829893414212
1104 => 0.003271904090878
1105 => 0.0032623043353999
1106 => 0.0035097308879559
1107 => 0.0033138734646731
1108 => 0.003228468448971
1109 => 0.0031227635240669
1110 => 0.0031571815806262
1111 => 0.0031644339708497
1112 => 0.0029102326812003
1113 => 0.0028071032496483
1114 => 0.0027717131150903
1115 => 0.0027513455923091
1116 => 0.0027606273281997
1117 => 0.0026677987439271
1118 => 0.0027301810878014
1119 => 0.0026497993804262
1120 => 0.0026363231256
1121 => 0.0027800555757696
1122 => 0.0028000551065379
1123 => 0.0027147308949132
1124 => 0.0027695228515114
1125 => 0.0027496545263837
1126 => 0.0026511772940896
1127 => 0.0026474161881655
1128 => 0.0025980037746424
1129 => 0.0025206829156075
1130 => 0.0024853452082329
1201 => 0.0024669410234161
1202 => 0.0024745349487619
1203 => 0.0024706952277291
1204 => 0.0024456384507028
1205 => 0.0024721314528579
1206 => 0.0024044527800161
1207 => 0.0023775025871663
1208 => 0.0023653298102958
1209 => 0.0023052610927096
1210 => 0.0024008571350692
1211 => 0.0024196907597012
1212 => 0.0024385614923918
1213 => 0.0026028183368669
1214 => 0.0025946125291019
1215 => 0.0026687890349066
1216 => 0.0026659066722929
1217 => 0.0026447503312577
1218 => 0.0025554952084792
1219 => 0.0025910707095991
1220 => 0.0024815748468125
1221 => 0.0025636165922072
1222 => 0.0025261761657542
1223 => 0.0025509579463618
1224 => 0.0025063980703464
1225 => 0.0025310593455655
1226 => 0.0024241569107829
1227 => 0.0023243329213408
1228 => 0.0023645050087362
1229 => 0.0024081766619705
1230 => 0.0025028679335127
1231 => 0.0024464705933682
]
'min_raw' => 0.0023052610927096
'max_raw' => 0.0068812605041873
'avg_raw' => 0.0045932607984485
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.0023052'
'max' => '$0.006881'
'avg' => '$0.004593'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.0043669889072904
'max_diff' => 0.0002090105041873
'year' => 2026
]
1 => [
'items' => [
101 => 0.0024667532095037
102 => 0.0023988098407187
103 => 0.0022586232638515
104 => 0.0022594167046523
105 => 0.0022378520539319
106 => 0.0022192170472189
107 => 0.0024529485063102
108 => 0.0024238803046246
109 => 0.0023775639295908
110 => 0.0024395602381132
111 => 0.0024559530461002
112 => 0.002456419726298
113 => 0.0025016506326396
114 => 0.0025257903754621
115 => 0.0025300451097622
116 => 0.0026012169181691
117 => 0.0026250727695682
118 => 0.0027233316452747
119 => 0.0025237422869386
120 => 0.0025196318754471
121 => 0.0024404326533126
122 => 0.0023902032545448
123 => 0.0024438719032194
124 => 0.002491414999444
125 => 0.0024419099498382
126 => 0.0024483742642081
127 => 0.0023819177798235
128 => 0.0024056728459227
129 => 0.0024261339090004
130 => 0.0024148365126146
131 => 0.0023979237634249
201 => 0.0024875170077279
202 => 0.0024824618057656
203 => 0.0025658930946003
204 => 0.0026309337504756
205 => 0.0027474982332122
206 => 0.0026258571188327
207 => 0.002621424033145
208 => 0.0026647581568309
209 => 0.0026250661353396
210 => 0.0026501501228001
211 => 0.0027434568150354
212 => 0.0027454282384115
213 => 0.0027124043568251
214 => 0.0027103948506294
215 => 0.0027167374483297
216 => 0.0027538862411681
217 => 0.0027409053114833
218 => 0.0027559271719515
219 => 0.0027747122384899
220 => 0.0028524152383959
221 => 0.002871149168611
222 => 0.0028256354306175
223 => 0.0028297448115626
224 => 0.002812721424173
225 => 0.0027962770452571
226 => 0.0028332416075514
227 => 0.0029007950716846
228 => 0.0029003748250902
301 => 0.0029160459157174
302 => 0.0029258088753518
303 => 0.0028838991056777
304 => 0.0028566173866847
305 => 0.0028670789337275
306 => 0.0028838071752718
307 => 0.0028616541904523
308 => 0.0027249157058859
309 => 0.0027663934272151
310 => 0.002759489506229
311 => 0.0027496574831992
312 => 0.0027913636527335
313 => 0.0027873409909391
314 => 0.0026668466526231
315 => 0.0026745603092192
316 => 0.0026673157456292
317 => 0.0026907244126868
318 => 0.0026238019904978
319 => 0.0026443868768338
320 => 0.0026572975245723
321 => 0.0026649019952746
322 => 0.0026923745578857
323 => 0.0026891509697504
324 => 0.0026921741751211
325 => 0.0027329087329856
326 => 0.0029389301482523
327 => 0.0029501434393247
328 => 0.002894925093016
329 => 0.0029169837332326
330 => 0.002874635967711
331 => 0.002903064306411
401 => 0.002922514253748
402 => 0.0028346236817418
403 => 0.0028294193724727
404 => 0.0027868968226589
405 => 0.0028097460323285
406 => 0.0027733912968278
407 => 0.002782311477285
408 => 0.0027573698750793
409 => 0.0028022597932261
410 => 0.0028524536969022
411 => 0.0028651346591882
412 => 0.0028317765069114
413 => 0.0028076230062537
414 => 0.0027652174157565
415 => 0.0028357388578236
416 => 0.002856361476586
417 => 0.0028356305359865
418 => 0.0028308267240697
419 => 0.0028217235091674
420 => 0.0028327580141448
421 => 0.0028562491613753
422 => 0.0028451711701548
423 => 0.002852488378525
424 => 0.0028246027256902
425 => 0.0028839129795553
426 => 0.002978111936483
427 => 0.0029784148015326
428 => 0.0029673367505976
429 => 0.0029628038508349
430 => 0.0029741706033666
501 => 0.0029803366003264
502 => 0.0030170945937079
503 => 0.0030565373851093
504 => 0.0032405996823414
505 => 0.0031889157258158
506 => 0.0033522267458352
507 => 0.0034813845593886
508 => 0.0035201133402866
509 => 0.0034844846841904
510 => 0.0033626009763075
511 => 0.0033566207801219
512 => 0.0035387664976731
513 => 0.0034873019896625
514 => 0.0034811804501933
515 => 0.0034160576127457
516 => 0.0034545532752976
517 => 0.0034461337092002
518 => 0.0034328430122162
519 => 0.003506290054734
520 => 0.0036437763616648
521 => 0.0036223478313912
522 => 0.0036063524275829
523 => 0.0035362652242869
524 => 0.0035784733752147
525 => 0.0035634438611132
526 => 0.0036280201916586
527 => 0.0035897666039844
528 => 0.0034869120953975
529 => 0.0035032920149029
530 => 0.0035008162230215
531 => 0.0035517678445044
601 => 0.0035364734324322
602 => 0.0034978297435978
603 => 0.0036433064484144
604 => 0.0036338600003876
605 => 0.003647252903931
606 => 0.0036531488742601
607 => 0.0037416979808948
608 => 0.0037779737166277
609 => 0.0037862089437352
610 => 0.0038206680870154
611 => 0.0037853515688588
612 => 0.0039266428217356
613 => 0.0040205932603255
614 => 0.0041297215293931
615 => 0.0042891872614142
616 => 0.0043491478517947
617 => 0.0043383165078289
618 => 0.0044592216058901
619 => 0.0046764853795367
620 => 0.0043822317282919
621 => 0.0046920815375563
622 => 0.0045939866653313
623 => 0.0043614054879371
624 => 0.0043464300020648
625 => 0.0045039366757192
626 => 0.004853271318429
627 => 0.0047657669525509
628 => 0.004853414444224
629 => 0.0047511689895167
630 => 0.0047460916408982
701 => 0.004848448610705
702 => 0.0050876112498467
703 => 0.004973994044868
704 => 0.0048110959214493
705 => 0.0049313773608061
706 => 0.0048271784465135
707 => 0.0045923891291726
708 => 0.0047657000396115
709 => 0.0046498119694116
710 => 0.0046836342692446
711 => 0.0049272137557553
712 => 0.0048979056275069
713 => 0.0049358330593199
714 => 0.0048688921349037
715 => 0.0048063587558841
716 => 0.0046896355601544
717 => 0.0046550795762828
718 => 0.0046646296070308
719 => 0.0046550748437618
720 => 0.0045897692884926
721 => 0.00457566656005
722 => 0.0045521613947909
723 => 0.0045594466283655
724 => 0.0045152500409999
725 => 0.0045986581328397
726 => 0.0046141394096748
727 => 0.0046748368632582
728 => 0.0046811386742454
729 => 0.004850180218501
730 => 0.0047570749765528
731 => 0.0048195380111715
801 => 0.0048139507294303
802 => 0.004366446227299
803 => 0.0044281083993271
804 => 0.0045240353883471
805 => 0.0044808204098196
806 => 0.0044197245409292
807 => 0.0043703863510469
808 => 0.0042956339482864
809 => 0.0044008465196791
810 => 0.0045391898629509
811 => 0.004684647289732
812 => 0.0048594048572614
813 => 0.0048204010025911
814 => 0.0046813803185659
815 => 0.0046876166848966
816 => 0.0047261674476333
817 => 0.0046762407071831
818 => 0.0046615163367386
819 => 0.0047241445452423
820 => 0.0047245758312944
821 => 0.0046671290825583
822 => 0.0046032875339823
823 => 0.0046030200355627
824 => 0.0045916600486298
825 => 0.0047531899059558
826 => 0.0048420149949744
827 => 0.0048521986482816
828 => 0.0048413295539677
829 => 0.0048455126369902
830 => 0.0047938272748175
831 => 0.0049119646859262
901 => 0.0050203792569386
902 => 0.0049913218359678
903 => 0.0049477606311768
904 => 0.0049130620333689
905 => 0.0049831479490616
906 => 0.0049800271335613
907 => 0.0050194323502397
908 => 0.0050176447019956
909 => 0.0050043942097318
910 => 0.0049913223091846
911 => 0.0050431509172734
912 => 0.0050282251104858
913 => 0.0050132761197977
914 => 0.0049832936303966
915 => 0.0049873687486627
916 => 0.0049438150653278
917 => 0.0049236651385362
918 => 0.0046206585860243
919 => 0.0045396853341684
920 => 0.0045651611675648
921 => 0.0045735484733986
922 => 0.0045383088104209
923 => 0.0045888334348043
924 => 0.0045809592256129
925 => 0.0046115931673181
926 => 0.0045924544105118
927 => 0.004593239871767
928 => 0.0046495228747211
929 => 0.0046658620699236
930 => 0.0046575518233701
1001 => 0.0046633720351976
1002 => 0.0047974963602042
1003 => 0.0047784281702428
1004 => 0.0047682985743689
1005 => 0.0047711045416528
1006 => 0.00480537618235
1007 => 0.004814970370583
1008 => 0.0047743191208681
1009 => 0.0047934904852357
1010 => 0.0048751197215045
1011 => 0.004903685334384
1012 => 0.0049948530584231
1013 => 0.0049561233888742
1014 => 0.0050272133735121
1015 => 0.0052457197499271
1016 => 0.0054202777628986
1017 => 0.005259747000255
1018 => 0.0055803005612483
1019 => 0.0058298974891588
1020 => 0.0058203175433402
1021 => 0.005776794545678
1022 => 0.0054926350791295
1023 => 0.0052311473014326
1024 => 0.0054498929308336
1025 => 0.0054504505584284
1026 => 0.005431660114867
1027 => 0.0053149542837097
1028 => 0.0054275990049172
1029 => 0.0054365403338212
1030 => 0.0054315355673262
1031 => 0.0053420574802092
1101 => 0.0052054409794963
1102 => 0.0052321355167219
1103 => 0.0052758617132513
1104 => 0.005193078900981
1105 => 0.0051666247764732
1106 => 0.0052158080270364
1107 => 0.0053742867080881
1108 => 0.0053443272314397
1109 => 0.0053435448684287
1110 => 0.0054717242143255
1111 => 0.0053799754654975
1112 => 0.0052324722203241
1113 => 0.005195225705589
1114 => 0.0050630256705382
1115 => 0.0051543367056282
1116 => 0.0051576228272232
1117 => 0.0051076127064806
1118 => 0.0052365302660008
1119 => 0.0052353422679944
1120 => 0.0053577303039124
1121 => 0.0055916902617406
1122 => 0.0055224967897405
1123 => 0.0054420323100327
1124 => 0.0054507810300149
1125 => 0.0055467328945393
1126 => 0.0054887182068799
1127 => 0.005509580693055
1128 => 0.0055467013166679
1129 => 0.0055690971105467
1130 => 0.0054475586199275
1201 => 0.0054192221839061
1202 => 0.0053612557805439
1203 => 0.0053461334279009
1204 => 0.0053933458539307
1205 => 0.0053809070477115
1206 => 0.0051573466414276
1207 => 0.0051339833350926
1208 => 0.0051346998543427
1209 => 0.0050759517096987
1210 => 0.0049863466879462
1211 => 0.0052218233350739
1212 => 0.005202911264816
1213 => 0.0051820338029292
1214 => 0.0051845911728852
1215 => 0.0052868036043592
1216 => 0.0052275152322528
1217 => 0.0053851430866709
1218 => 0.0053527395385296
1219 => 0.0053195049616482
1220 => 0.0053149109307732
1221 => 0.0053021184541147
1222 => 0.0052582482917819
1223 => 0.0052052724345769
1224 => 0.00517029318496
1225 => 0.0047693221624619
1226 => 0.0048437400518965
1227 => 0.0049293510502868
1228 => 0.0049589036238666
1229 => 0.0049083519017825
1230 => 0.0052602443818861
1231 => 0.0053245385289214
]
'min_raw' => 0.0022192170472189
'max_raw' => 0.0058298974891588
'avg_raw' => 0.0040245572681889
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.002219'
'max' => '$0.005829'
'avg' => '$0.004024'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -8.6044045490726E-5
'max_diff' => -0.0010513630150285
'year' => 2027
]
2 => [
'items' => [
101 => 0.0051297873637482
102 => 0.005093357372382
103 => 0.0052626327260552
104 => 0.0051605389947198
105 => 0.0052065117956889
106 => 0.0051071437457715
107 => 0.005309051951653
108 => 0.0053075137494129
109 => 0.0052289668970214
110 => 0.0052953541587971
111 => 0.0052838177383533
112 => 0.0051951385354556
113 => 0.0053118632405591
114 => 0.0053119211345565
115 => 0.0052363214968855
116 => 0.0051480376709745
117 => 0.0051322546080725
118 => 0.005120364190332
119 => 0.0052035874818206
120 => 0.0052782052247368
121 => 0.0054170503449966
122 => 0.0054519593071086
123 => 0.0055882113102529
124 => 0.0055070798763701
125 => 0.0055430443901824
126 => 0.0055820889574167
127 => 0.0056008083587653
128 => 0.0055703060988063
129 => 0.0057819615432514
130 => 0.0057998317477178
131 => 0.0058058234726987
201 => 0.0057344544476978
202 => 0.0057978468460269
203 => 0.0057681876421843
204 => 0.0058453526510187
205 => 0.0058574531096962
206 => 0.0058472044516827
207 => 0.0058510453282596
208 => 0.0056704347450047
209 => 0.0056610691334662
210 => 0.0055333683555854
211 => 0.0055854073664883
212 => 0.0054881229299
213 => 0.0055189728268829
214 => 0.0055325711675243
215 => 0.0055254681660723
216 => 0.0055883495740861
217 => 0.0055348875314514
218 => 0.0053937924109649
219 => 0.0052526588492072
220 => 0.0052508870323042
221 => 0.0052137290567077
222 => 0.0051868706461741
223 => 0.0051920445288962
224 => 0.0052102779664489
225 => 0.005185810885637
226 => 0.0051910321778407
227 => 0.0052777404177102
228 => 0.0052951291368412
229 => 0.005236035475023
301 => 0.0049987658956484
302 => 0.0049405393457242
303 => 0.0049823914351271
304 => 0.0049623888320123
305 => 0.0040050350860026
306 => 0.0042299511479988
307 => 0.0040963136613884
308 => 0.0041578999635836
309 => 0.0040214906950138
310 => 0.0040865923477976
311 => 0.0040745704496602
312 => 0.0044362288215998
313 => 0.0044305820235668
314 => 0.0044332848469633
315 => 0.0043042720440794
316 => 0.0045097929421528
317 => 0.0046110399268362
318 => 0.0045923018045725
319 => 0.0045970177862493
320 => 0.0045159815962476
321 => 0.0044340694544189
322 => 0.0043432162829425
323 => 0.0045120102457542
324 => 0.0044932432384986
325 => 0.0045362880009869
326 => 0.0046457629515119
327 => 0.0046618835538316
328 => 0.0046835498068284
329 => 0.0046757839974379
330 => 0.0048607970832277
331 => 0.0048383907777829
401 => 0.0048923835271708
402 => 0.0047813163452401
403 => 0.0046556332862919
404 => 0.0046795215269092
405 => 0.0046772208972407
406 => 0.0046479312410203
407 => 0.0046214898490135
408 => 0.0045774723811383
409 => 0.004716750162855
410 => 0.0047110957392684
411 => 0.0048026342845872
412 => 0.0047864539575441
413 => 0.0046783977735528
414 => 0.0046822570213034
415 => 0.0047082123171173
416 => 0.0047980438922815
417 => 0.0048247120199903
418 => 0.0048123582806945
419 => 0.0048415986652809
420 => 0.0048647090730315
421 => 0.0048445009766803
422 => 0.0051306050059095
423 => 0.0050117946658702
424 => 0.0050697019989283
425 => 0.0050835125566529
426 => 0.0050481371034462
427 => 0.0050558087725467
428 => 0.0050674292608293
429 => 0.0051379865901563
430 => 0.0053231494382382
501 => 0.0054051568032075
502 => 0.0056518800068897
503 => 0.0053983472331444
504 => 0.0053833036475733
505 => 0.0054277459468834
506 => 0.0055725985857484
507 => 0.0056899880442319
508 => 0.0057289328999712
509 => 0.0057340801055666
510 => 0.0058071432439386
511 => 0.0058490216723066
512 => 0.0057982714571889
513 => 0.0057552659636458
514 => 0.0056012256238124
515 => 0.005619056212586
516 => 0.0057418912874922
517 => 0.0059154030657471
518 => 0.0060642942223134
519 => 0.0060121577286645
520 => 0.0064099223725765
521 => 0.0064493591122975
522 => 0.0064439102300106
523 => 0.0065337529920688
524 => 0.0063554334055435
525 => 0.0062791983275247
526 => 0.0057645642394829
527 => 0.005909155426571
528 => 0.0061193272085462
529 => 0.0060915101850981
530 => 0.0059388778191198
531 => 0.0060641784369769
601 => 0.0060227501342007
602 => 0.0059900739129393
603 => 0.006139770017135
604 => 0.0059751730013948
605 => 0.006117685227404
606 => 0.005934911823447
607 => 0.0060123958837759
608 => 0.0059684121836509
609 => 0.0059968750280713
610 => 0.0058304818211812
611 => 0.0059202635566523
612 => 0.0058267466058106
613 => 0.0058267022665996
614 => 0.0058246378747266
615 => 0.0059346601526743
616 => 0.0059382479752082
617 => 0.0058569413455705
618 => 0.0058452237899914
619 => 0.0058885497343867
620 => 0.0058378264005826
621 => 0.0058615595292207
622 => 0.0058385452528718
623 => 0.0058333642545108
624 => 0.0057920811780964
625 => 0.0057742952936752
626 => 0.0057812695972425
627 => 0.0057574627036674
628 => 0.0057431181891554
629 => 0.005821784389744
630 => 0.005779756212155
701 => 0.0058153429687596
702 => 0.0057747873682019
703 => 0.005634203987435
704 => 0.0055533529985136
705 => 0.0052878040243311
706 => 0.0053631133839968
707 => 0.0054130435673683
708 => 0.0053965416420619
709 => 0.0054319941630175
710 => 0.0054341706598707
711 => 0.0054226446839124
712 => 0.0054092990803216
713 => 0.0054028031785518
714 => 0.0054512183083515
715 => 0.0054793249207786
716 => 0.0054180547292493
717 => 0.0054036999806351
718 => 0.0054656475270912
719 => 0.0055034354946435
720 => 0.0057824406158248
721 => 0.005761771015273
722 => 0.0058136476564537
723 => 0.0058078071427687
724 => 0.0058621821273232
725 => 0.0059510622464866
726 => 0.0057703441129552
727 => 0.0058017105321733
728 => 0.0057940202105374
729 => 0.0058779811256475
730 => 0.0058782432424599
731 => 0.0058279044796926
801 => 0.0058551939396419
802 => 0.0058399617117454
803 => 0.0058674884063134
804 => 0.005761494960156
805 => 0.0058905835362903
806 => 0.0059637684406743
807 => 0.0059647846131427
808 => 0.0059994736769894
809 => 0.0060347197749128
810 => 0.0061023715905885
811 => 0.0060328330024917
812 => 0.0059077398519506
813 => 0.0059167711733712
814 => 0.0058434291049788
815 => 0.0058446619983988
816 => 0.0058380807166992
817 => 0.0058578316384954
818 => 0.0057658291767996
819 => 0.0057874219706677
820 => 0.0057571919328051
821 => 0.0058016448179748
822 => 0.0057538208618574
823 => 0.0057940165020315
824 => 0.0058113636078241
825 => 0.0058753748016552
826 => 0.0057443663564826
827 => 0.0054772312682837
828 => 0.005533386302523
829 => 0.0054503285960003
830 => 0.005458015902962
831 => 0.0054735454864504
901 => 0.005423209025401
902 => 0.005432811635885
903 => 0.005432468563066
904 => 0.0054295121468546
905 => 0.0054164176892493
906 => 0.0053974281350621
907 => 0.0054730766742673
908 => 0.0054859308351868
909 => 0.0055145040426172
910 => 0.0055995185265383
911 => 0.005591023574815
912 => 0.0056048791935279
913 => 0.0055746324556737
914 => 0.0054594189623813
915 => 0.0054656756093759
916 => 0.0053876551210971
917 => 0.0055125088833179
918 => 0.0054829418644349
919 => 0.0054638798150162
920 => 0.0054586785582236
921 => 0.0055439037766067
922 => 0.0055694044976886
923 => 0.0055535141596001
924 => 0.0055209226125854
925 => 0.0055835080176795
926 => 0.0056002532318164
927 => 0.005604001867722
928 => 0.0057148912059876
929 => 0.0056101993499041
930 => 0.005635399720211
1001 => 0.005832005815582
1002 => 0.0056537112168671
1003 => 0.0057481578422504
1004 => 0.0057435351714144
1005 => 0.0057918508690609
1006 => 0.0057395718739778
1007 => 0.0057402199347777
1008 => 0.005783121001099
1009 => 0.0057228741906988
1010 => 0.0057079562331909
1011 => 0.0056873471817382
1012 => 0.0057323462916182
1013 => 0.0057593212228565
1014 => 0.0059767193577335
1015 => 0.0061171684674234
1016 => 0.0061110712011636
1017 => 0.0061667888011741
1018 => 0.0061416875120547
1019 => 0.0060606288281024
1020 => 0.0061989861175555
1021 => 0.0061552040820577
1022 => 0.0061588134198689
1023 => 0.0061586790801353
1024 => 0.0061877903062494
1025 => 0.0061671623345429
1026 => 0.0061265024848915
1027 => 0.0061534943906058
1028 => 0.0062336507007945
1029 => 0.0064824583471162
1030 => 0.0066216944022607
1031 => 0.0064740761617666
1101 => 0.0065759012473724
1102 => 0.0065148424799967
1103 => 0.0065037462856235
1104 => 0.0065676999641987
1105 => 0.0066317655852222
1106 => 0.0066276848821263
1107 => 0.0065811765310693
1108 => 0.0065549051436629
1109 => 0.0067538408906645
1110 => 0.0069004133602732
1111 => 0.0068904181004802
1112 => 0.0069345339265739
1113 => 0.0070640593564362
1114 => 0.0070759015384773
1115 => 0.0070744096957296
1116 => 0.0070450576119369
1117 => 0.0071725922186388
1118 => 0.0072789838313075
1119 => 0.0070382634526021
1120 => 0.007129926621552
1121 => 0.0071710771712964
1122 => 0.0072314983871392
1123 => 0.0073334391060376
1124 => 0.0074441737652015
1125 => 0.007459832860151
1126 => 0.0074487219829277
1127 => 0.0073756894985017
1128 => 0.0074968566838981
1129 => 0.0075678335793831
1130 => 0.0076100986963671
1201 => 0.0077172760007936
1202 => 0.0071713313030823
1203 => 0.0067848845108302
1204 => 0.0067245352638607
1205 => 0.0068472578306901
1206 => 0.0068796187928689
1207 => 0.0068665741295918
1208 => 0.0064315931307068
1209 => 0.006722245178923
1210 => 0.0070349623440852
1211 => 0.0070469750839798
1212 => 0.0072035278354676
1213 => 0.0072545078286661
1214 => 0.0073805533134519
1215 => 0.0073726691340601
1216 => 0.0074033592037837
1217 => 0.0073963040882322
1218 => 0.0076297768067898
1219 => 0.007887331886393
1220 => 0.0078784135729613
1221 => 0.007841386983015
1222 => 0.0078963777830571
1223 => 0.0081622022264873
1224 => 0.0081377293714862
1225 => 0.008161502665527
1226 => 0.0084749246655403
1227 => 0.0088824178493173
1228 => 0.0086930963538062
1229 => 0.0091038695232726
1230 => 0.0093624294593016
1231 => 0.0098095821330674
]
'min_raw' => 0.0040050350860026
'max_raw' => 0.0098095821330674
'avg_raw' => 0.006907308609535
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.004005'
'max' => '$0.0098095'
'avg' => '$0.0069073'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 0.0017858180387837
'max_diff' => 0.0039796846439086
'year' => 2028
]
3 => [
'items' => [
101 => 0.0097535964160386
102 => 0.0099276696705777
103 => 0.0096533702979853
104 => 0.0090235234934634
105 => 0.0089238478256911
106 => 0.0091234010367612
107 => 0.0096139831340593
108 => 0.0091079508606838
109 => 0.0092103205305298
110 => 0.0091808380587274
111 => 0.0091792670630975
112 => 0.0092392255765903
113 => 0.0091522526255432
114 => 0.0087979091768424
115 => 0.0089603026912229
116 => 0.0088975947565435
117 => 0.0089671738852565
118 => 0.0093426637463052
119 => 0.0091766507281753
120 => 0.0090017694993779
121 => 0.0092211093695412
122 => 0.0095004043976158
123 => 0.0094829266167003
124 => 0.0094490124165786
125 => 0.009640184986975
126 => 0.0099559460649623
127 => 0.010041295015512
128 => 0.010104297865925
129 => 0.010112984894555
130 => 0.010202466688402
131 => 0.0097213005305668
201 => 0.010484923580275
202 => 0.010616780186299
203 => 0.010591996609263
204 => 0.010738549677484
205 => 0.010695430047121
206 => 0.010632956467987
207 => 0.010865274253849
208 => 0.010598940659437
209 => 0.010220913652636
210 => 0.010013520560179
211 => 0.01028663251425
212 => 0.010453412454308
213 => 0.01056364338549
214 => 0.010596999198662
215 => 0.0097586520896952
216 => 0.0093068294948244
217 => 0.00959644259798
218 => 0.0099497905718585
219 => 0.009719337664731
220 => 0.0097283709823853
221 => 0.00939980569878
222 => 0.0099788613088548
223 => 0.0098944977770911
224 => 0.010332175929117
225 => 0.01022772052555
226 => 0.010584630067959
227 => 0.010490643824101
228 => 0.010880775467655
301 => 0.011036409542661
302 => 0.011297743377105
303 => 0.011489981609543
304 => 0.011602867576561
305 => 0.011596090326526
306 => 0.01204340076742
307 => 0.011779637428261
308 => 0.011448288510032
309 => 0.011442295453494
310 => 0.011613905753495
311 => 0.011973553863311
312 => 0.01206680538552
313 => 0.012118920264827
314 => 0.012039104513035
315 => 0.011752808312468
316 => 0.011629187064617
317 => 0.011734515949438
318 => 0.011605707774316
319 => 0.011828066821767
320 => 0.012133413287247
321 => 0.012070360449596
322 => 0.012281136632453
323 => 0.012499267807409
324 => 0.01281120518448
325 => 0.012892757165853
326 => 0.01302755948992
327 => 0.013166315361642
328 => 0.013210880008063
329 => 0.01329596774568
330 => 0.013295519291302
331 => 0.013551936915673
401 => 0.013834773495948
402 => 0.013941537757319
403 => 0.014187036289328
404 => 0.013766628656558
405 => 0.014085512675309
406 => 0.014373154042407
407 => 0.014030216146491
408 => 0.014502876141729
409 => 0.014521228458274
410 => 0.014798326649222
411 => 0.014517434547106
412 => 0.014350641713509
413 => 0.014832166374458
414 => 0.015065160990007
415 => 0.01499498111563
416 => 0.014460908806419
417 => 0.014150055815018
418 => 0.01333649357746
419 => 0.014300193191121
420 => 0.014769583161432
421 => 0.014459693199792
422 => 0.014615983671221
423 => 0.015468653805981
424 => 0.015793295386995
425 => 0.01572577220756
426 => 0.015737182513358
427 => 0.015912353217812
428 => 0.016689156589629
429 => 0.016223678003075
430 => 0.016579518941345
501 => 0.016768255691924
502 => 0.016943564904275
503 => 0.016513060885787
504 => 0.015952981483094
505 => 0.015775580825727
506 => 0.01442888075037
507 => 0.014358779163026
508 => 0.014319429017754
509 => 0.014071331918004
510 => 0.013876395557115
511 => 0.013721374925413
512 => 0.013314554494747
513 => 0.013451844447758
514 => 0.0128034575913
515 => 0.013218272524643
516 => 0.012183431445888
517 => 0.013045277846744
518 => 0.012576214034105
519 => 0.012891177768861
520 => 0.012890078890062
521 => 0.012310130795034
522 => 0.011975628837029
523 => 0.012188786503681
524 => 0.012417308442807
525 => 0.012454385358591
526 => 0.012750670017702
527 => 0.012833356697442
528 => 0.012582812197557
529 => 0.012161986664685
530 => 0.012259734837963
531 => 0.011973647973418
601 => 0.011472291747475
602 => 0.011832374541787
603 => 0.011955322639488
604 => 0.012009623523631
605 => 0.011516597256568
606 => 0.011361677699336
607 => 0.011279199826966
608 => 0.012098343164766
609 => 0.012143217685922
610 => 0.011913633291069
611 => 0.012951376525891
612 => 0.012716503271149
613 => 0.01297891424204
614 => 0.012250865215786
615 => 0.012278677669037
616 => 0.011934007592505
617 => 0.0121269998045
618 => 0.011990599129491
619 => 0.012111407940957
620 => 0.012183820244436
621 => 0.012528433764
622 => 0.013049212779577
623 => 0.012476959996025
624 => 0.012227621263421
625 => 0.012382309610794
626 => 0.012794265064442
627 => 0.013418398664329
628 => 0.013048899011337
629 => 0.013212876682824
630 => 0.013248698509185
701 => 0.012976243144689
702 => 0.013428444482244
703 => 0.013670782852718
704 => 0.013919371875963
705 => 0.014135214759541
706 => 0.013820079953489
707 => 0.014157319368765
708 => 0.013885563930823
709 => 0.013641771209429
710 => 0.013642140942354
711 => 0.01348920620698
712 => 0.013192875886176
713 => 0.013138228028497
714 => 0.013422513085407
715 => 0.013650482779154
716 => 0.013669259455032
717 => 0.013795475190996
718 => 0.013870168363414
719 => 0.014602262993554
720 => 0.014896717510001
721 => 0.015256770918974
722 => 0.015397032013267
723 => 0.015819167620704
724 => 0.015478258833521
725 => 0.015404501072997
726 => 0.01438053816886
727 => 0.014548212037049
728 => 0.014816674078141
729 => 0.014384965009037
730 => 0.014658785047654
731 => 0.014712842923578
801 => 0.014370295700064
802 => 0.014553264972735
803 => 0.014067352831131
804 => 0.013059804336419
805 => 0.013429566171742
806 => 0.013701835343028
807 => 0.013313273665056
808 => 0.014009755433407
809 => 0.013602885162638
810 => 0.013473926820022
811 => 0.012970814348507
812 => 0.013208264068487
813 => 0.013529418214713
814 => 0.013330982290522
815 => 0.013742766628522
816 => 0.01432596307
817 => 0.014741583584146
818 => 0.014773489766442
819 => 0.014506273620258
820 => 0.014934489199868
821 => 0.014937608282872
822 => 0.014454579359759
823 => 0.014158726833869
824 => 0.014091508517508
825 => 0.014259433050705
826 => 0.014463324434586
827 => 0.014784804319235
828 => 0.014979067880601
829 => 0.015485604219211
830 => 0.015622658428904
831 => 0.015773239453117
901 => 0.015974462138933
902 => 0.016216081565693
903 => 0.015687432015344
904 => 0.015708436247505
905 => 0.015216165105871
906 => 0.014690102792213
907 => 0.015089318513687
908 => 0.015611239964072
909 => 0.015491510606681
910 => 0.015478038608126
911 => 0.015500694772875
912 => 0.015410422747398
913 => 0.015002125721803
914 => 0.014797081511624
915 => 0.015061640855112
916 => 0.015202242371994
917 => 0.015420303062938
918 => 0.015393422480076
919 => 0.015955123401938
920 => 0.01617338339522
921 => 0.016117543149067
922 => 0.016127819098229
923 => 0.016522968390609
924 => 0.016962455672386
925 => 0.017374093507224
926 => 0.017792829193078
927 => 0.017288026980249
928 => 0.017031719548447
929 => 0.017296163393602
930 => 0.017155845767046
1001 => 0.017962152470147
1002 => 0.018017979396851
1003 => 0.0188242277948
1004 => 0.019589453530728
1005 => 0.019108828956435
1006 => 0.019562036282187
1007 => 0.020052216955523
1008 => 0.020997855003336
1009 => 0.02067939737678
1010 => 0.020435463825706
1011 => 0.020204947798618
1012 => 0.020684615057598
1013 => 0.021301699323404
1014 => 0.021434613363899
1015 => 0.021649984886572
1016 => 0.021423548064858
1017 => 0.021696266275414
1018 => 0.022659081397133
1019 => 0.022398920252241
1020 => 0.022029449603502
1021 => 0.022789499672352
1022 => 0.023064558837649
1023 => 0.024995068109306
1024 => 0.027432415810134
1025 => 0.026423337857503
1026 => 0.025796970609564
1027 => 0.025944181770459
1028 => 0.026834218641375
1029 => 0.027120070235955
1030 => 0.026343027062933
1031 => 0.026617491848052
1101 => 0.028129819798843
1102 => 0.028941135223152
1103 => 0.027839259902741
1104 => 0.024799229594737
1105 => 0.021996182814049
1106 => 0.022739677043129
1107 => 0.022655387870864
1108 => 0.024280195587234
1109 => 0.022392715494976
1110 => 0.022424495819017
1111 => 0.02408290283826
1112 => 0.02364046827782
1113 => 0.022923780952645
1114 => 0.022001415424657
1115 => 0.020296337437686
1116 => 0.018786102315008
1117 => 0.021748021176956
1118 => 0.021620297849729
1119 => 0.021435335544367
1120 => 0.021846949139937
1121 => 0.023845627921469
1122 => 0.023799551906463
1123 => 0.023506439807183
1124 => 0.023728762751115
1125 => 0.022884806665658
1126 => 0.023102313365403
1127 => 0.021995738797118
1128 => 0.022495956716619
1129 => 0.022922243263526
1130 => 0.023007826599097
1201 => 0.023200650224134
1202 => 0.021552993460073
1203 => 0.022292742974475
1204 => 0.022727276509031
1205 => 0.020764038191444
1206 => 0.022688469599784
1207 => 0.021524311421516
1208 => 0.021129178650743
1209 => 0.021661172871805
1210 => 0.021453854206476
1211 => 0.021275613792186
1212 => 0.021176152578453
1213 => 0.021566790420342
1214 => 0.021548566698104
1215 => 0.020909407369237
1216 => 0.020075650080197
1217 => 0.020355486393549
1218 => 0.020253819237428
1219 => 0.019885364348325
1220 => 0.020133658456168
1221 => 0.019040296863999
1222 => 0.017159225072664
1223 => 0.018401918716807
1224 => 0.018354076363298
1225 => 0.018329952079181
1226 => 0.019263802007225
1227 => 0.019174033884227
1228 => 0.019011103861974
1229 => 0.019882372010695
1230 => 0.019564347416201
1231 => 0.020544424280412
]
'min_raw' => 0.0087979091768424
'max_raw' => 0.028941135223152
'avg_raw' => 0.018869522199997
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.008797'
'max' => '$0.028941'
'avg' => '$0.018869'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072434
'min_diff' => 0.0047928740908398
'max_diff' => 0.019131553090084
'year' => 2029
]
4 => [
'items' => [
101 => 0.021189966290578
102 => 0.021026235955703
103 => 0.02163337133644
104 => 0.020361933257018
105 => 0.02078425398576
106 => 0.020871293702643
107 => 0.019871620696983
108 => 0.019188721059331
109 => 0.019143179439125
110 => 0.017959125576804
111 => 0.018591637592707
112 => 0.019148221991576
113 => 0.018881661257212
114 => 0.018797276091988
115 => 0.019228381600209
116 => 0.019261882190367
117 => 0.018498065184536
118 => 0.018656886926987
119 => 0.019319199994926
120 => 0.018640198336995
121 => 0.017321009029927
122 => 0.016993831842555
123 => 0.016950180374688
124 => 0.016062849893785
125 => 0.017015695386674
126 => 0.016599752794356
127 => 0.01791371045973
128 => 0.017163184888165
129 => 0.017130831230831
130 => 0.017081923932522
131 => 0.016318161932448
201 => 0.016485377270857
202 => 0.017041226523343
203 => 0.01723955979872
204 => 0.017218872013202
205 => 0.017038502558763
206 => 0.017121074771364
207 => 0.016855080904511
208 => 0.016761152933941
209 => 0.016464690421901
210 => 0.01602897242906
211 => 0.016089561688378
212 => 0.015226290332746
213 => 0.014755934280918
214 => 0.014625745924966
215 => 0.01445165261444
216 => 0.014645410227634
217 => 0.015223844793459
218 => 0.014526129985336
219 => 0.01332994688581
220 => 0.013401839528289
221 => 0.01356336095082
222 => 0.013262366848504
223 => 0.012977501191181
224 => 0.013225168768342
225 => 0.01271833022007
226 => 0.013624609967929
227 => 0.013600097640569
228 => 0.013937902686607
301 => 0.014149139114353
302 => 0.013662307537006
303 => 0.013539870711836
304 => 0.013609616291896
305 => 0.012456877213697
306 => 0.01384369931097
307 => 0.013855692606057
308 => 0.013752998732188
309 => 0.014491438685657
310 => 0.016049777312675
311 => 0.015463467637164
312 => 0.015236430809503
313 => 0.014804833634156
314 => 0.015379911244602
315 => 0.015335754256728
316 => 0.015136059611521
317 => 0.015015283667015
318 => 0.01523781704796
319 => 0.014987709318448
320 => 0.014942783097727
321 => 0.014670579080367
322 => 0.014573414630663
323 => 0.014501477940331
324 => 0.014422282712628
325 => 0.014596967650719
326 => 0.014201108599287
327 => 0.0137237413898
328 => 0.013684053471516
329 => 0.013793635303296
330 => 0.013745153500141
331 => 0.013683821359295
401 => 0.013566721599605
402 => 0.013531980602345
403 => 0.013644871989503
404 => 0.013517424195379
405 => 0.01370548035805
406 => 0.013654339487425
407 => 0.013368670741339
408 => 0.013012621715599
409 => 0.013009452132431
410 => 0.012932741953873
411 => 0.012835040008027
412 => 0.01280786156181
413 => 0.013204310895795
414 => 0.014024949152413
415 => 0.013863838226429
416 => 0.013980257381764
417 => 0.014552924401738
418 => 0.01473495802669
419 => 0.014605754871402
420 => 0.01442889362354
421 => 0.01443667462086
422 => 0.015041063044344
423 => 0.015078758008959
424 => 0.015174001023684
425 => 0.015296415213278
426 => 0.014626602537223
427 => 0.014405126504053
428 => 0.014300178872514
429 => 0.01397698078722
430 => 0.0143255222133
501 => 0.014122442050355
502 => 0.014149844502543
503 => 0.014131998619607
504 => 0.014141743678423
505 => 0.01362435664427
506 => 0.013812865286453
507 => 0.013499433106971
508 => 0.013079782603056
509 => 0.013078375787419
510 => 0.013181084653733
511 => 0.013119989401051
512 => 0.012955583646986
513 => 0.012978936708378
514 => 0.012774339317341
515 => 0.013003778536005
516 => 0.013010358031823
517 => 0.012922011434999
518 => 0.013275494207862
519 => 0.013420316388319
520 => 0.013362164765721
521 => 0.013416236315457
522 => 0.013870533112776
523 => 0.013944603313098
524 => 0.013977500403278
525 => 0.013933422660466
526 => 0.013424540026948
527 => 0.01344711113568
528 => 0.013281499315966
529 => 0.013141574780052
530 => 0.013147171027681
531 => 0.013219110428057
601 => 0.013533274008692
602 => 0.014194412743182
603 => 0.014219502474869
604 => 0.014249911961594
605 => 0.014126221296501
606 => 0.014088915008349
607 => 0.014138131631992
608 => 0.014386420579643
609 => 0.015025087162794
610 => 0.014799339737201
611 => 0.014615803566227
612 => 0.014776814269168
613 => 0.014752027933494
614 => 0.014542806316317
615 => 0.014536934162357
616 => 0.014135370986798
617 => 0.013986922223945
618 => 0.013862867326507
619 => 0.013727402617041
620 => 0.013647094596451
621 => 0.01377048421542
622 => 0.013798704881181
623 => 0.013528911322824
624 => 0.013492139457742
625 => 0.013712458701394
626 => 0.013615504416592
627 => 0.013715224302862
628 => 0.013738360171858
629 => 0.013734634764085
630 => 0.013633403355623
701 => 0.013697925236613
702 => 0.013545311753173
703 => 0.013379367511737
704 => 0.013273505424393
705 => 0.013181126712616
706 => 0.013232383790992
707 => 0.013049661665755
708 => 0.012991205180422
709 => 0.013676066675122
710 => 0.014181981224758
711 => 0.014174625026842
712 => 0.01412984606389
713 => 0.014063313608023
714 => 0.014381553316091
715 => 0.014270684965204
716 => 0.014351350953835
717 => 0.014371883833483
718 => 0.014434030676068
719 => 0.014456242830591
720 => 0.01438910227229
721 => 0.014163770358105
722 => 0.013602264651871
723 => 0.013340882229864
724 => 0.013254621676933
725 => 0.0132577570842
726 => 0.013171268554703
727 => 0.013196743302784
728 => 0.013162409476938
729 => 0.013097389517031
730 => 0.013228368991689
731 => 0.013243463155985
801 => 0.013212890981512
802 => 0.013220091835329
803 => 0.012966967288236
804 => 0.012986211797794
805 => 0.012879055923102
806 => 0.01285896548838
807 => 0.012588084768287
808 => 0.012108180307855
809 => 0.012374093964388
810 => 0.012052907660414
811 => 0.011931269540333
812 => 0.012507085482189
813 => 0.012449289532275
814 => 0.012350367989317
815 => 0.012204042410227
816 => 0.012149768829579
817 => 0.011820019734487
818 => 0.011800536398806
819 => 0.011963968954308
820 => 0.011888550453315
821 => 0.0117826343147
822 => 0.011399016797186
823 => 0.010967703696104
824 => 0.010980722327488
825 => 0.011117915000077
826 => 0.01151682119858
827 => 0.011360961645678
828 => 0.011247883751764
829 => 0.011226707661343
830 => 0.01149177076811
831 => 0.011866890596622
901 => 0.012042888427326
902 => 0.011868479922232
903 => 0.0116681288224
904 => 0.011680323265509
905 => 0.011761447432307
906 => 0.011769972435204
907 => 0.011639564465639
908 => 0.011676273545202
909 => 0.011620509096597
910 => 0.011278282778438
911 => 0.011272092989554
912 => 0.011188105131933
913 => 0.011185562012983
914 => 0.011042677715417
915 => 0.011022687214475
916 => 0.0107389817692
917 => 0.010925717552419
918 => 0.010800464993105
919 => 0.010611679842126
920 => 0.010579133210939
921 => 0.010578154819905
922 => 0.010771994958373
923 => 0.010923452417542
924 => 0.010802643814999
925 => 0.010775138037977
926 => 0.011068827775598
927 => 0.011031453079444
928 => 0.010999086833616
929 => 0.011833302730329
930 => 0.011172955753402
1001 => 0.010885006780175
1002 => 0.010528615245779
1003 => 0.01064465812646
1004 => 0.010669110066444
1005 => 0.009812052670624
1006 => 0.0094643445918795
1007 => 0.0093450242823569
1008 => 0.0092763537572851
1009 => 0.0093076477778705
1010 => 0.0089946697249105
1011 => 0.0092049961526788
1012 => 0.0089339836141918
1013 => 0.0088885474801633
1014 => 0.0093731514709894
1015 => 0.0094405812852974
1016 => 0.0091529047486582
1017 => 0.0093376396557813
1018 => 0.0092706522104512
1019 => 0.008938629346311
1020 => 0.0089259485150957
1021 => 0.0087593511130381
1022 => 0.0084986584384318
1023 => 0.0083795148908184
1024 => 0.0083174638967696
1025 => 0.0083430673462639
1026 => 0.0083301214587211
1027 => 0.0082456407855686
1028 => 0.0083349637920167
1029 => 0.0081067804213564
1030 => 0.0080159159645611
1031 => 0.0079748745974661
1101 => 0.0077723487222603
1102 => 0.0080946574533781
1103 => 0.0081581563337468
1104 => 0.0082217803265255
1105 => 0.0087755837457199
1106 => 0.0087479172919291
1107 => 0.0089980085600879
1108 => 0.0089882904732956
1109 => 0.0089169603924068
1110 => 0.0086160305143656
1111 => 0.0087359758001935
1112 => 0.0083668028540513
1113 => 0.0086434123266213
1114 => 0.0085171793148281
1115 => 0.008600732818355
1116 => 0.0084504960852979
1117 => 0.0085336432964944
1118 => 0.0081732142739353
1119 => 0.0078366507240429
1120 => 0.0079720937214221
1121 => 0.0081193357493589
1122 => 0.0084385939824968
1123 => 0.0082484464126631
1124 => 0.008316830669051
1125 => 0.0080877548575379
1126 => 0.0076151060261158
1127 => 0.0076177811671722
1128 => 0.0075450744416724
1129 => 0.0074822452154849
1130 => 0.0082702871484207
1201 => 0.0081722816769607
1202 => 0.0080161227848282
1203 => 0.0082251476674552
1204 => 0.0082804171640928
1205 => 0.0082819906089623
1206 => 0.0084344897676139
1207 => 0.0085158785959232
1208 => 0.0085302237296721
1209 => 0.0087701844507727
1210 => 0.0088506161193272
1211 => 0.0091819027789874
1212 => 0.0085089733224733
1213 => 0.0084951147831499
1214 => 0.0082280890762103
1215 => 0.0080587371513598
1216 => 0.0082396847473917
1217 => 0.0083999796156659
1218 => 0.0082330698845878
1219 => 0.0082548647718099
1220 => 0.0080308020948636
1221 => 0.008110893958743
1222 => 0.0081798798614552
1223 => 0.0081417899007815
1224 => 0.008084767386078
1225 => 0.008386837264446
1226 => 0.0083697932980871
1227 => 0.0086510877133799
1228 => 0.0088703768256572
1229 => 0.0092633821174759
1230 => 0.0088532606076339
1231 => 0.0088383141497299
]
'min_raw' => 0.0074822452154849
'max_raw' => 0.02163337133644
'avg_raw' => 0.014557808275962
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.007482'
'max' => '$0.021633'
'avg' => '$0.014557'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -0.0013156639613575
'max_diff' => -0.0073077638867122
'year' => 2030
]
5 => [
'items' => [
101 => 0.0089844181732287
102 => 0.0088505937515625
103 => 0.0089351661665935
104 => 0.0092497561939299
105 => 0.0092564029854831
106 => 0.0091450606630607
107 => 0.0091382854726225
108 => 0.0091596699835952
109 => 0.0092849197322957
110 => 0.0092411536215638
111 => 0.0092918008729252
112 => 0.0093551360362908
113 => 0.0096171171255241
114 => 0.0096802798792054
115 => 0.0095268271338928
116 => 0.009540682198657
117 => 0.0094832866595381
118 => 0.0094278432879131
119 => 0.0095524718904718
120 => 0.009780233111229
121 => 0.0097788162204955
122 => 0.0098316523966657
123 => 0.0098645688967012
124 => 0.0097232671821981
125 => 0.0096312849618646
126 => 0.0096665567981212
127 => 0.0097229572324162
128 => 0.0096482668974254
129 => 0.0091872435499335
130 => 0.0093270885832771
131 => 0.0093038115316559
201 => 0.0092706621795612
202 => 0.0094112774419779
203 => 0.0093977147568846
204 => 0.0089914596826064
205 => 0.0090174668143703
206 => 0.0089930412624272
207 => 0.009071965217753
208 => 0.0088463315989686
209 => 0.008915734980441
210 => 0.0089592641306843
211 => 0.0089849031345842
212 => 0.0090775287975005
213 => 0.0090666602450386
214 => 0.0090768531930193
215 => 0.0092141925988557
216 => 0.0099088081843832
217 => 0.0099466145781206
218 => 0.009760442068319
219 => 0.0098348143138943
220 => 0.0096920358658118
221 => 0.0097878839945421
222 => 0.0098534608499408
223 => 0.009557131650098
224 => 0.0095395849580439
225 => 0.009396217212517
226 => 0.0094732549181989
227 => 0.0093506823892518
228 => 0.0093807574004504
301 => 0.0092966650472469
302 => 0.0094480145403928
303 => 0.0096172467910634
304 => 0.0096600015407669
305 => 0.009547532201374
306 => 0.009466096987563
307 => 0.0093231235785378
308 => 0.0095608915441169
309 => 0.0096304221430996
310 => 0.0095605263294805
311 => 0.0095443299422112
312 => 0.0095136378176023
313 => 0.0095508414215381
314 => 0.0096300434645251
315 => 0.0095926932436845
316 => 0.0096173637225759
317 => 0.0095233452971292
318 => 0.0097233139589451
319 => 0.010040912318988
320 => 0.010041933449648
321 => 0.010004583027476
322 => 0.0099893000394491
323 => 0.010027623839211
324 => 0.010048412928457
325 => 0.010172345069504
326 => 0.010305329194521
327 => 0.010925908080459
328 => 0.010751652012574
329 => 0.011302266518581
330 => 0.011737731104487
331 => 0.011868307893242
401 => 0.0117481833917
402 => 0.011337243960924
403 => 0.01131708131196
404 => 0.011931198315692
405 => 0.011757682133797
406 => 0.011737042936084
407 => 0.011517476742898
408 => 0.011647267556873
409 => 0.011618880401941
410 => 0.011574069889132
411 => 0.01182170172089
412 => 0.012285246403695
413 => 0.012212998617785
414 => 0.012159068997082
415 => 0.011922765097837
416 => 0.012065072825569
417 => 0.012014399769449
418 => 0.012232123376458
419 => 0.012103148734834
420 => 0.011756367578061
421 => 0.011811593620283
422 => 0.0118032463151
423 => 0.011975033264259
424 => 0.011923467086135
425 => 0.011793177191214
426 => 0.012283662058362
427 => 0.01225181269931
428 => 0.012296967808669
429 => 0.012316846484277
430 => 0.012615395979598
501 => 0.012737702155312
502 => 0.01276546779847
503 => 0.0128816492059
504 => 0.012762577099214
505 => 0.013238950422929
506 => 0.013555710886045
507 => 0.013923644464299
508 => 0.01446129431335
509 => 0.014663455630132
510 => 0.014626936997731
511 => 0.015034576977169
512 => 0.015767096958891
513 => 0.014775000229585
514 => 0.015819680494543
515 => 0.015488946784071
516 => 0.014704783106187
517 => 0.014654292210014
518 => 0.015185336957004
519 => 0.016363143094666
520 => 0.016068116015749
521 => 0.016363625653277
522 => 0.016018897964182
523 => 0.016001779328825
524 => 0.016346882998864
525 => 0.017153236534533
526 => 0.016770168195447
527 => 0.016220945799157
528 => 0.01662648306973
529 => 0.016275169155257
530 => 0.015483560579376
531 => 0.016067890414102
601 => 0.015677165694376
602 => 0.01579119993966
603 => 0.016612445184608
604 => 0.01651363078399
605 => 0.016641505768357
606 => 0.016415809768021
607 => 0.016204974114716
608 => 0.015811433710959
609 => 0.015694925798715
610 => 0.015727124394144
611 => 0.01569490984269
612 => 0.015474727603611
613 => 0.015427179270046
614 => 0.015347929964297
615 => 0.015372492637932
616 => 0.015223480757922
617 => 0.015504696962927
618 => 0.015556893168645
619 => 0.015761538871162
620 => 0.015782785866884
621 => 0.016352721235445
622 => 0.016038810411816
623 => 0.016249408894063
624 => 0.016230570983581
625 => 0.014721778310879
626 => 0.014929676628987
627 => 0.015253101169877
628 => 0.015107398852597
629 => 0.014901409865056
630 => 0.014735062713186
701 => 0.014483029768233
702 => 0.01483776129839
703 => 0.015304195539055
704 => 0.015794615408961
705 => 0.01638382274907
706 => 0.016252318529887
707 => 0.015783600587581
708 => 0.015804626932074
709 => 0.01593460352017
710 => 0.015766272028968
711 => 0.015716627785992
712 => 0.015927783163524
713 => 0.01592923727456
714 => 0.015735551550392
715 => 0.015520305312094
716 => 0.015519403422496
717 => 0.015481102433423
718 => 0.016025711625052
719 => 0.016325191614248
720 => 0.016359526512373
721 => 0.016322880602038
722 => 0.016336984158502
723 => 0.01616272335138
724 => 0.016561031881023
725 => 0.016926559176455
726 => 0.016828590052928
727 => 0.016681720409629
728 => 0.01656473166454
729 => 0.016801031222541
730 => 0.016790509175193
731 => 0.016923366614409
801 => 0.016917339433544
802 => 0.016872664473757
803 => 0.016828591648411
804 => 0.01700333541914
805 => 0.016953012019469
806 => 0.016902610453659
807 => 0.016801522397333
808 => 0.016815261943083
809 => 0.016668417658898
810 => 0.016600480773897
811 => 0.015578873026861
812 => 0.015305866054857
813 => 0.015391759605819
814 => 0.015420037993021
815 => 0.015301225008937
816 => 0.015471572307562
817 => 0.015445023861514
818 => 0.015548308334766
819 => 0.015483780679969
820 => 0.01548642891743
821 => 0.015676190991443
822 => 0.015731279728834
823 => 0.015703261152376
824 => 0.015722884402907
825 => 0.016175093928928
826 => 0.016110804195175
827 => 0.01607665155546
828 => 0.016086112070064
829 => 0.016201661299444
830 => 0.016234008774917
831 => 0.016096950248323
901 => 0.016161587841791
902 => 0.016436806511042
903 => 0.016533117469253
904 => 0.016840495815978
905 => 0.016709916031075
906 => 0.016949600877625
907 => 0.017686310381337
908 => 0.018274844909321
909 => 0.017733604235169
910 => 0.018814372946392
911 => 0.019655906415144
912 => 0.019623606958966
913 => 0.019476866133669
914 => 0.01851880265282
915 => 0.017637178353822
916 => 0.018374694515679
917 => 0.018376574596047
918 => 0.018313221303673
919 => 0.017919739445785
920 => 0.01829952898794
921 => 0.018329675302603
922 => 0.018312801382944
923 => 0.018011119765068
924 => 0.017550507694655
925 => 0.017640510190664
926 => 0.017787936115129
927 => 0.017508828083848
928 => 0.017419636156102
929 => 0.017585460919241
930 => 0.018119782857035
1001 => 0.018018772389811
1002 => 0.018016134598296
1003 => 0.018448300212184
1004 => 0.018138962899817
1005 => 0.017641645410367
1006 => 0.017516066185469
1007 => 0.017070344537384
1008 => 0.017378206067322
1009 => 0.01738928545571
1010 => 0.017220672842031
1011 => 0.01765532739469
1012 => 0.017651321976468
1013 => 0.018063961784425
1014 => 0.018852774116806
1015 => 0.018619483495023
1016 => 0.018348191883838
1017 => 0.018377688804074
1018 => 0.018701197214463
1019 => 0.018505596644563
1020 => 0.018575935973275
1021 => 0.018701090747465
1022 => 0.018776599730152
1023 => 0.018366824223483
1024 => 0.01827128595105
1025 => 0.018075848175029
1026 => 0.018024862107284
1027 => 0.01818404209791
1028 => 0.018142103794292
1029 => 0.017388354276017
1030 => 0.017309583257535
1031 => 0.017311999052212
1101 => 0.01711392558088
1102 => 0.016811815994019
1103 => 0.017605741950265
1104 => 0.017541978584991
1105 => 0.017471588764622
1106 => 0.017480211115979
1107 => 0.017824827464938
1108 => 0.017624932578999
1109 => 0.018156385895395
1110 => 0.018047135070493
1111 => 0.017935082374173
1112 => 0.017919593278333
1113 => 0.017876462550137
1114 => 0.017728551234915
1115 => 0.017549939433692
1116 => 0.017432004451436
1117 => 0.01608010265418
1118 => 0.0163310077641
1119 => 0.016619651222342
1120 => 0.016719289787461
1121 => 0.016548851127046
1122 => 0.017735281192064
1123 => 0.017952053397667
1124 => 0.017295436247194
1125 => 0.017172609987842
1126 => 0.017743333661179
1127 => 0.017399117518025
1128 => 0.01755411802621
1129 => 0.017219091708258
1130 => 0.017899839321169
1201 => 0.017894653164922
1202 => 0.017629826968118
1203 => 0.017853656256205
1204 => 0.017814760409232
1205 => 0.017515772285278
1206 => 0.017909317777993
1207 => 0.017909512971648
1208 => 0.017654623515042
1209 => 0.017356968432203
1210 => 0.01730375473369
1211 => 0.017263665360116
1212 => 0.017544258497834
1213 => 0.017795837427721
1214 => 0.018263963444533
1215 => 0.01838166144756
1216 => 0.018841044588972
1217 => 0.01856750429522
1218 => 0.018688761164501
1219 => 0.018820402648936
1220 => 0.01888351641753
1221 => 0.018780675918478
1222 => 0.019494287026736
1223 => 0.019554537668752
1224 => 0.019574739187854
1225 => 0.019334113537237
1226 => 0.01954784543412
1227 => 0.019447847357625
1228 => 0.019708014572399
1229 => 0.019748812113657
1230 => 0.019714258047626
1231 => 0.019727207831167
]
'min_raw' => 0.0088463315989686
'max_raw' => 0.019748812113657
'avg_raw' => 0.014297571856313
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.008846'
'max' => '$0.019748'
'avg' => '$0.014297'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 0.0013640863834837
'max_diff' => -0.0018845592227823
'year' => 2031
]
6 => [
'items' => [
101 => 0.019118266639895
102 => 0.019086689826707
103 => 0.018656137738298
104 => 0.018831590896805
105 => 0.018503589626665
106 => 0.018607602208214
107 => 0.018653449963092
108 => 0.018629501697781
109 => 0.018841510755139
110 => 0.018661259745796
111 => 0.018185547696129
112 => 0.017709706039032
113 => 0.017703732234639
114 => 0.017578451525629
115 => 0.01748789651932
116 => 0.017505340626147
117 => 0.017566815933874
118 => 0.017484323462679
119 => 0.017501927413883
120 => 0.017794270298379
121 => 0.017852897578971
122 => 0.017653659172363
123 => 0.016853688219869
124 => 0.016657373341551
125 => 0.016798480582993
126 => 0.016731040410054
127 => 0.013503255415078
128 => 0.014261575621236
129 => 0.013811007504858
130 => 0.014018650022527
131 => 0.013558736649753
201 => 0.013778231417366
202 => 0.013737698748454
203 => 0.014957055199629
204 => 0.014938016625814
205 => 0.014947129383601
206 => 0.014512153711291
207 => 0.015205081768157
208 => 0.015546443045855
209 => 0.01548326615839
210 => 0.015499166419872
211 => 0.015225947247515
212 => 0.014949774742417
213 => 0.014643456931618
214 => 0.015212557562056
215 => 0.015149283286823
216 => 0.015294411708842
217 => 0.015663514147834
218 => 0.015717865884059
219 => 0.015790915168727
220 => 0.015764732200176
221 => 0.016388516736117
222 => 0.016312972312952
223 => 0.016495012637166
224 => 0.016120541878824
225 => 0.015696792670669
226 => 0.015777333541734
227 => 0.015769576808182
228 => 0.015670824687296
229 => 0.015581675688067
301 => 0.015433267721924
302 => 0.015902852487046
303 => 0.015883788203144
304 => 0.016192416799704
305 => 0.016137863697404
306 => 0.015773544728835
307 => 0.01578655645207
308 => 0.015874066544048
309 => 0.016176939971554
310 => 0.016266853426034
311 => 0.016225201931487
312 => 0.016323787929619
313 => 0.016401706282867
314 => 0.016333573275135
315 => 0.017298192984827
316 => 0.016897615628311
317 => 0.017092854244677
318 => 0.017139417504268
319 => 0.017020146693946
320 => 0.017046012261938
321 => 0.017085191549499
322 => 0.01732308051148
323 => 0.017947369981446
324 => 0.018223863538011
325 => 0.01905570804489
326 => 0.018200904597114
327 => 0.018150184098052
328 => 0.018300024413038
329 => 0.018788405198259
330 => 0.019184191953407
331 => 0.019315497253575
401 => 0.019332851416606
402 => 0.019579188888733
403 => 0.019720384933834
404 => 0.019549277040298
405 => 0.01940428101627
406 => 0.018884923255768
407 => 0.018945040330711
408 => 0.019359187361828
409 => 0.01994419443642
410 => 0.020446191366031
411 => 0.020270409537641
412 => 0.021611500805631
413 => 0.021744464526985
414 => 0.021726093239926
415 => 0.022029004384826
416 => 0.021427787448981
417 => 0.021170755560877
418 => 0.019435630802439
419 => 0.019923130084741
420 => 0.020631738921396
421 => 0.020537951884718
422 => 0.020023341206371
423 => 0.020445800987686
424 => 0.020306122572444
425 => 0.02019595241108
426 => 0.020700663277824
427 => 0.02014571294746
428 => 0.020626202867336
429 => 0.020009969575063
430 => 0.020271212494226
501 => 0.020122918378411
502 => 0.020218882845587
503 => 0.019657876531354
504 => 0.019960581920855
505 => 0.019645282991948
506 => 0.019645133499202
507 => 0.019638173257871
508 => 0.020009121049482
509 => 0.020021217643648
510 => 0.019747086665177
511 => 0.019707580108449
512 => 0.019853656554898
513 => 0.019682639293588
514 => 0.019762657193785
515 => 0.019685062954269
516 => 0.01966759485657
517 => 0.019528406082146
518 => 0.019468439731049
519 => 0.019491954082457
520 => 0.019411687478624
521 => 0.019363323946445
522 => 0.019628552534028
523 => 0.019486851598973
524 => 0.019606834833453
525 => 0.019470098794672
526 => 0.018996112111198
527 => 0.018723517357214
528 => 0.01782820045072
529 => 0.018082111214764
530 => 0.018250454314016
531 => 0.018194816920717
601 => 0.018314347570335
602 => 0.018321685781434
603 => 0.018282825148772
604 => 0.018237829514506
605 => 0.018215928128159
606 => 0.018379163118516
607 => 0.018473926524655
608 => 0.018267349796166
609 => 0.018218951758996
610 => 0.018427812236912
611 => 0.018555217007787
612 => 0.019495902253365
613 => 0.019426213251999
614 => 0.019601118969651
615 => 0.019581427269991
616 => 0.019764756326756
617 => 0.020064421853927
618 => 0.019455118049389
619 => 0.019560872121717
620 => 0.0195349436654
621 => 0.019818023752658
622 => 0.019818907497791
623 => 0.019649186844581
624 => 0.019741195164089
625 => 0.019689838644256
626 => 0.019782646816844
627 => 0.019425282512899
628 => 0.019860513660012
629 => 0.02010726167475
630 => 0.020110687771174
701 => 0.020227644371846
702 => 0.020346479051799
703 => 0.020574571871648
704 => 0.02034011766685
705 => 0.019918357376076
706 => 0.019948807106793
707 => 0.019701529202628
708 => 0.019705685988871
709 => 0.019683496738131
710 => 0.019750088349932
711 => 0.019439895626918
712 => 0.019512697239005
713 => 0.019410774555757
714 => 0.019560650561708
715 => 0.019399408754696
716 => 0.019534931161913
717 => 0.019593418140229
718 => 0.01980923634935
719 => 0.019367532229733
720 => 0.018466867629094
721 => 0.018656198247651
722 => 0.018376163391206
723 => 0.018402081683338
724 => 0.01845444075831
725 => 0.018284727865502
726 => 0.018317103737182
727 => 0.01831594704322
728 => 0.018305979279553
729 => 0.018261830401511
730 => 0.018197805793761
731 => 0.018452860125303
801 => 0.018496198826292
802 => 0.018592535390061
803 => 0.018879167658123
804 => 0.018850526335289
805 => 0.018897241521148
806 => 0.018795262532713
807 => 0.018406812196129
808 => 0.018427906918296
809 => 0.018164855394848
810 => 0.018585808571186
811 => 0.018486121302719
812 => 0.018421852272234
813 => 0.018404315871818
814 => 0.018691658645831
815 => 0.018777636107362
816 => 0.018724060723069
817 => 0.01861417604684
818 => 0.018825187109688
819 => 0.018881644768264
820 => 0.018894283555941
821 => 0.01926815470195
822 => 0.018915178799812
823 => 0.019000143607735
824 => 0.019663014784878
825 => 0.019061882097179
826 => 0.019380315488712
827 => 0.019364729831244
828 => 0.019527629579153
829 => 0.019351367297228
830 => 0.019353552279461
831 => 0.01949819621982
901 => 0.019295069892258
902 => 0.019244772956981
903 => 0.019175288101131
904 => 0.019327005741828
905 => 0.019417953605828
906 => 0.020150926595819
907 => 0.020624460574982
908 => 0.020603903216089
909 => 0.020791758994604
910 => 0.020707128245821
911 => 0.02043383323354
912 => 0.020900314494728
913 => 0.020752700305283
914 => 0.02076486943971
915 => 0.020764416503919
916 => 0.020862567035243
917 => 0.020793018388436
918 => 0.020655930866556
919 => 0.020746935961186
920 => 0.021017188557323
921 => 0.021856060908091
922 => 0.022325504989162
923 => 0.021827799784959
924 => 0.02217111017028
925 => 0.021965246273086
926 => 0.021927834679045
927 => 0.022143458971465
928 => 0.022359460685664
929 => 0.022345702310271
930 => 0.022188896157573
1001 => 0.022100320340722
1002 => 0.022771046100988
1003 => 0.023265225415637
1004 => 0.023231525699398
1005 => 0.023380265287142
1006 => 0.023816969317099
1007 => 0.023856896060646
1008 => 0.023851866208665
1009 => 0.02375290360886
1010 => 0.024182895439538
1011 => 0.024541602189676
1012 => 0.02372999662631
1013 => 0.024039045400143
1014 => 0.024177787351646
1015 => 0.024381501699334
1016 => 0.024725201950374
1017 => 0.025098551584992
1018 => 0.025151347316898
1019 => 0.025113886218602
1020 => 0.024867652098395
1021 => 0.025276175723581
1022 => 0.025515479282158
1023 => 0.025657979074926
1024 => 0.02601933483968
1025 => 0.024178644174705
1026 => 0.022875711833773
1027 => 0.022672240134166
1028 => 0.023086007836447
1029 => 0.023195115079803
1030 => 0.023151134086815
1031 => 0.021684565279671
1101 => 0.02266451895291
1102 => 0.023718866708469
1103 => 0.023759368499727
1104 => 0.024287197031532
1105 => 0.02445907963791
1106 => 0.02488405079008
1107 => 0.024857468728805
1108 => 0.02496094244159
1109 => 0.024937155626936
1110 => 0.025724325198098
1111 => 0.026592690130901
1112 => 0.02656262141451
1113 => 0.026437783681392
1114 => 0.026623189003069
1115 => 0.027519434673364
1116 => 0.027436922734087
1117 => 0.027517076054744
1118 => 0.028573800210214
1119 => 0.029947691929584
1120 => 0.029309381289463
1121 => 0.030694331709586
1122 => 0.031566084585986
1123 => 0.033073691044791
1124 => 0.03288493129103
1125 => 0.033471831422115
1126 => 0.032547011936449
1127 => 0.030423439460504
1128 => 0.030087375987477
1129 => 0.03076018357096
1130 => 0.032414215363349
1201 => 0.030708092223618
1202 => 0.031053238712726
1203 => 0.030953836500644
1204 => 0.030948539779194
1205 => 0.031150694093605
1206 => 0.030857458716892
1207 => 0.029662765040128
1208 => 0.030210286111815
1209 => 0.029998861931915
1210 => 0.03023345282223
1211 => 0.031499443104621
1212 => 0.030939718623337
1213 => 0.030350094350629
1214 => 0.031089614036706
1215 => 0.032031276723615
1216 => 0.031972349164999
1217 => 0.031858005071475
1218 => 0.032502556739809
1219 => 0.033567167259978
1220 => 0.033854927205628
1221 => 0.034067345714514
1222 => 0.034096634638049
1223 => 0.034398328753426
1224 => 0.032776043458335
1225 => 0.035350651884886
1226 => 0.035795215638029
1227 => 0.035711656077718
1228 => 0.036205769979233
1229 => 0.036060389134948
1230 => 0.035849755101133
1231 => 0.036633030736077
]
'min_raw' => 0.013503255415078
'max_raw' => 0.036633030736077
'avg_raw' => 0.025068143075577
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.0135032'
'max' => '$0.036633'
'avg' => '$0.025068'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.0046569238161096
'max_diff' => 0.016884218622419
'year' => 2032
]
7 => [
'items' => [
101 => 0.035735068427698
102 => 0.034460523981267
103 => 0.033761283690323
104 => 0.034682099711543
105 => 0.035244409923651
106 => 0.035616061204208
107 => 0.035728522657147
108 => 0.032901976847739
109 => 0.031378625423886
110 => 0.032355076221316
111 => 0.033546413585215
112 => 0.032769425519127
113 => 0.032799881980284
114 => 0.031692101186914
115 => 0.033644427604652
116 => 0.033359990067237
117 => 0.034835652514507
118 => 0.034483473828535
119 => 0.035686819269397
120 => 0.03536993808632
121 => 0.036685294160682
122 => 0.037210025310588
123 => 0.038091130579164
124 => 0.038739275201472
125 => 0.039119878120722
126 => 0.039097028149056
127 => 0.040605166530746
128 => 0.039715870017405
129 => 0.038598704005553
130 => 0.038578497997012
131 => 0.039157094104915
201 => 0.04036967281699
202 => 0.040684076834728
203 => 0.040859785788858
204 => 0.040590681409135
205 => 0.039625413780358
206 => 0.03920861611227
207 => 0.039563739801272
208 => 0.039129454045749
209 => 0.039879153098843
210 => 0.040908650025817
211 => 0.040696062981469
212 => 0.041406709597894
213 => 0.04214215408369
214 => 0.043193872729256
215 => 0.043468830928236
216 => 0.043923326375425
217 => 0.04439115148456
218 => 0.044541404301374
219 => 0.044828283549383
220 => 0.044826771554138
221 => 0.045691301477213
222 => 0.046644904754628
223 => 0.047004867915886
224 => 0.047832583356712
225 => 0.046415149670905
226 => 0.047490289403895
227 => 0.048460092355544
228 => 0.047303853296305
301 => 0.048897459470317
302 => 0.048959335586865
303 => 0.049893591484026
304 => 0.04894654415048
305 => 0.048384190466903
306 => 0.050007684480273
307 => 0.05079324209376
308 => 0.050556625747498
309 => 0.048755963669252
310 => 0.047707901105683
311 => 0.044964919220654
312 => 0.04821409975147
313 => 0.049796680808136
314 => 0.048751865166639
315 => 0.049278809402913
316 => 0.052153646293786
317 => 0.053248198049926
318 => 0.053020538936143
319 => 0.053059009578785
320 => 0.053649609838878
321 => 0.056268656641637
322 => 0.054699263088394
323 => 0.055899005655794
324 => 0.056535344787549
325 => 0.057126412036688
326 => 0.055674937681525
327 => 0.05378659087185
328 => 0.05318847216982
329 => 0.048647978842157
330 => 0.048411626446089
331 => 0.048278954683966
401 => 0.047442477990571
402 => 0.046785236439812
403 => 0.046262573556834
404 => 0.044890950071551
405 => 0.045353832733404
406 => 0.043167751177932
407 => 0.04456632868715
408 => 0.041077289739833
409 => 0.04398306505251
410 => 0.042401583659211
411 => 0.043463505881006
412 => 0.043459800934413
413 => 0.041504465441342
414 => 0.040376668735749
415 => 0.041095344691057
416 => 0.041865822363716
417 => 0.041990829773907
418 => 0.042989774188034
419 => 0.043268558101778
420 => 0.042423829827956
421 => 0.041004987162779
422 => 0.041334551953544
423 => 0.040369990115783
424 => 0.038679632596442
425 => 0.039893676877644
426 => 0.040308204973005
427 => 0.040491284195061
428 => 0.038829011713662
429 => 0.038306689610315
430 => 0.038028609705201
501 => 0.040790408659355
502 => 0.040941706240472
503 => 0.040167646424154
504 => 0.043666470193274
505 => 0.042874578616586
506 => 0.043759315525893
507 => 0.041304647403117
508 => 0.041398419031056
509 => 0.040236339803932
510 => 0.040887026520959
511 => 0.040427142121976
512 => 0.040834457464435
513 => 0.041078600601281
514 => 0.042240489142638
515 => 0.043996331953285
516 => 0.042066941740128
517 => 0.041226278794878
518 => 0.041747821358043
519 => 0.043136757931827
520 => 0.045241067939464
521 => 0.043995274061757
522 => 0.044548136229731
523 => 0.044668912018308
524 => 0.043750309734683
525 => 0.045274938115942
526 => 0.046091998851517
527 => 0.046930134099321
528 => 0.047657863450973
529 => 0.046595364450359
530 => 0.047732390684265
531 => 0.046816148251886
601 => 0.045994184070641
602 => 0.045995430651012
603 => 0.045479800513136
604 => 0.044480702147423
605 => 0.044296453079867
606 => 0.045254939997387
607 => 0.04602355573619
608 => 0.046086862609859
609 => 0.046512407775763
610 => 0.046764241021481
611 => 0.049232549180215
612 => 0.050225323140573
613 => 0.05143926834705
614 => 0.051912168419176
615 => 0.053335428092216
616 => 0.052186030314737
617 => 0.051937350875529
618 => 0.048484988453425
619 => 0.04905031260664
620 => 0.049955451121604
621 => 0.048499913854154
622 => 0.049423117231854
623 => 0.049605377134734
624 => 0.048450455254774
625 => 0.049067348932089
626 => 0.047429062221369
627 => 0.044032042126658
628 => 0.045278719970397
629 => 0.046196694490613
630 => 0.044886631664822
701 => 0.04723486857362
702 => 0.045863077048949
703 => 0.045428284993235
704 => 0.043732006169332
705 => 0.044532584478455
706 => 0.04561537810472
707 => 0.044946337531958
708 => 0.046334697177386
709 => 0.048300984697306
710 => 0.049702278278447
711 => 0.049809852199675
712 => 0.04890891430638
713 => 0.050352673030094
714 => 0.050363189236209
715 => 0.048734623497932
716 => 0.047737136051129
717 => 0.047510504804484
718 => 0.048076674092277
719 => 0.048764108128274
720 => 0.049848000004375
721 => 0.050502973164569
722 => 0.052210795795431
723 => 0.052672883632231
724 => 0.053180578068595
725 => 0.053859014402743
726 => 0.054673651169394
727 => 0.052891272301259
728 => 0.05296208953646
729 => 0.051302363013168
730 => 0.049528707194171
731 => 0.050874690871471
801 => 0.052634385480835
802 => 0.052230709593157
803 => 0.052185287809444
804 => 0.052261674650698
805 => 0.051957316214211
806 => 0.050580714286029
807 => 0.049889393415681
808 => 0.050781373713194
809 => 0.051255421543847
810 => 0.051990628387875
811 => 0.051899998626014
812 => 0.053793812500778
813 => 0.054529691306552
814 => 0.054341422018006
815 => 0.054376068098052
816 => 0.055708341525753
817 => 0.057190103580285
818 => 0.058577969280078
819 => 0.059989765880126
820 => 0.058287789975409
821 => 0.057423631574274
822 => 0.058315222461093
823 => 0.057842131786496
824 => 0.060560651130539
825 => 0.060748875511633
826 => 0.063467198275785
827 => 0.066047210270818
828 => 0.064426750962454
829 => 0.065954771103151
830 => 0.067607449466625
831 => 0.070795734167168
901 => 0.069722032045234
902 => 0.068899593046889
903 => 0.06812239216745
904 => 0.069739623820398
905 => 0.071820166506009
906 => 0.0722682954733
907 => 0.072994435598752
908 => 0.072230988045029
909 => 0.073150476532498
910 => 0.076396674936979
911 => 0.075519523473102
912 => 0.074273827385263
913 => 0.076836389257392
914 => 0.077763770437208
915 => 0.084272617230454
916 => 0.092490305173977
917 => 0.08908812840511
918 => 0.086976287497116
919 => 0.087472620204031
920 => 0.090473441654713
921 => 0.09143721026336
922 => 0.088817354954096
923 => 0.089742732139645
924 => 0.0948416514131
925 => 0.097577058010393
926 => 0.09386200843715
927 => 0.083612334005576
928 => 0.07416166608201
929 => 0.076668408784463
930 => 0.076384221955287
1001 => 0.081862374611481
1002 => 0.075498603700782
1003 => 0.075605753282118
1004 => 0.081197188333777
1005 => 0.079705489323459
1006 => 0.077289127969119
1007 => 0.074179308194002
1008 => 0.068430518716186
1009 => 0.063338655558829
1010 => 0.073324971796457
1011 => 0.072894343681353
1012 => 0.072270730355171
1013 => 0.073658514330579
1014 => 0.080397199385809
1015 => 0.080241850884291
1016 => 0.079253602977135
1017 => 0.080003180304695
1018 => 0.077157723439444
1019 => 0.077891062463468
1020 => 0.074160169047926
1021 => 0.075846688687623
1022 => 0.077283943542895
1023 => 0.077572493734013
1024 => 0.078222612048339
1025 => 0.072667422232586
1026 => 0.075161539368055
1027 => 0.076626599517971
1028 => 0.070007404461305
1029 => 0.076495759314035
1030 => 0.072570718737075
1031 => 0.071238501013124
1101 => 0.073032156672086
1102 => 0.072333167317401
1103 => 0.071732217316275
1104 => 0.071396876890015
1105 => 0.072713939647405
1106 => 0.072652497095543
1107 => 0.070497526793587
1108 => 0.067686455882512
1109 => 0.068629943550526
1110 => 0.068287165635493
1111 => 0.06704489425218
1112 => 0.067882035172114
1113 => 0.06419569022805
1114 => 0.057853525351324
1115 => 0.062043353734653
1116 => 0.061882049899551
1117 => 0.061800713191346
1118 => 0.064949253423067
1119 => 0.064646593928969
1120 => 0.064097263983531
1121 => 0.067034805376942
1122 => 0.06596256325284
1123 => 0.069266960827306
1124 => 0.071443450784885
1125 => 0.070891422529569
1126 => 0.072938421854561
1127 => 0.06865167960082
1128 => 0.070075563423265
1129 => 0.070369023905653
1130 => 0.06699855657213
1201 => 0.064696112765257
1202 => 0.064542566013119
1203 => 0.060550445748301
1204 => 0.062683004170498
1205 => 0.064559567330768
1206 => 0.063660839204183
1207 => 0.063376328728045
1208 => 0.064829831047839
1209 => 0.064942780626493
1210 => 0.062367518263332
1211 => 0.062902996856586
1212 => 0.065136031606364
1213 => 0.062846730110269
1214 => 0.058398991258632
1215 => 0.057295890528625
1216 => 0.057148716557062
1217 => 0.054157019889262
1218 => 0.057369604994086
1219 => 0.055967225503902
1220 => 0.060397325510306
1221 => 0.057866876145751
1222 => 0.05775779353119
1223 => 0.057592899160341
1224 => 0.055017822252932
1225 => 0.05558160044098
1226 => 0.057455685003893
1227 => 0.058124379489014
1228 => 0.058054629175763
1229 => 0.057446500967131
1230 => 0.057724898946923
1231 => 0.056828082053728
]
'min_raw' => 0.031378625423886
'max_raw' => 0.097577058010393
'avg_raw' => 0.064477841717139
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.031378'
'max' => '$0.097577'
'avg' => '$0.064477'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.017875370008808
'max_diff' => 0.060944027274316
'year' => 2033
]
8 => [
'items' => [
101 => 0.056511397343112
102 => 0.055511853285414
103 => 0.054042799651693
104 => 0.054247080569691
105 => 0.051336500922495
106 => 0.049750662654549
107 => 0.049311723522994
108 => 0.04872475577175
109 => 0.049378023092359
110 => 0.05132825561605
111 => 0.048975861427568
112 => 0.044942846592682
113 => 0.045185237656181
114 => 0.045729818409312
115 => 0.044714995778615
116 => 0.043754551326268
117 => 0.044589579854262
118 => 0.042880738302426
119 => 0.045936323746765
120 => 0.045853678723674
121 => 0.046992612021188
122 => 0.047704810385387
123 => 0.046063423732866
124 => 0.045650619428539
125 => 0.045885771521193
126 => 0.041999231237375
127 => 0.046674998763158
128 => 0.046715434994886
129 => 0.046369195429279
130 => 0.048858897288632
131 => 0.054112944769351
201 => 0.052136160763534
202 => 0.051370690247869
203 => 0.049915530238034
204 => 0.051854444552287
205 => 0.051705566184728
206 => 0.051032281746179
207 => 0.05062507721697
208 => 0.051375364047611
209 => 0.050532108375597
210 => 0.050380636485787
211 => 0.04946288163658
212 => 0.049135284910599
213 => 0.048892745336683
214 => 0.048625733097248
215 => 0.049214695562137
216 => 0.047880029132235
217 => 0.046270552256737
218 => 0.046136741669321
219 => 0.046506204465925
220 => 0.046342744681698
221 => 0.046135959086761
222 => 0.045741149071322
223 => 0.045624017373522
224 => 0.04600463856715
225 => 0.045574939431138
226 => 0.046208983913247
227 => 0.046036558897395
228 => 0.045073406775208
301 => 0.043872962626377
302 => 0.043862276155435
303 => 0.043603642432693
304 => 0.043274233500939
305 => 0.043182599471981
306 => 0.044519256080719
307 => 0.04728609525804
308 => 0.046742898522681
309 => 0.047135413833018
310 => 0.049066200673195
311 => 0.049679939748901
312 => 0.049244322290172
313 => 0.048648022244948
314 => 0.048674256420664
315 => 0.050711994187492
316 => 0.050839085392469
317 => 0.05116020386627
318 => 0.051572931853173
319 => 0.049314611651028
320 => 0.04856788974223
321 => 0.048214051475288
322 => 0.047124366565748
323 => 0.048299498318163
324 => 0.047614799370189
325 => 0.047707188650918
326 => 0.047647020010641
327 => 0.047679876156818
328 => 0.04593546964836
329 => 0.046571039696735
330 => 0.045514281220473
331 => 0.044099400247464
401 => 0.044094657070322
402 => 0.044440947184005
403 => 0.044234960274053
404 => 0.043680654795779
405 => 0.043759391272719
406 => 0.043069576884304
407 => 0.043843147228966
408 => 0.043865330458483
409 => 0.043567463739127
410 => 0.044759255587215
411 => 0.045247533679786
412 => 0.045051471424182
413 => 0.045233777429271
414 => 0.046765470799422
415 => 0.047015203651223
416 => 0.047126118487568
417 => 0.046977507300266
418 => 0.045261773972308
419 => 0.045337874041264
420 => 0.044779502228451
421 => 0.044307736886396
422 => 0.044326605025995
423 => 0.044569153737013
424 => 0.045628378183322
425 => 0.047857453585888
426 => 0.047942045367982
427 => 0.048044573075597
428 => 0.04762754136243
429 => 0.047501760607283
430 => 0.04766769789009
501 => 0.048504821412076
502 => 0.050658130387446
503 => 0.04989700718088
504 => 0.049278202166353
505 => 0.049821060992727
506 => 0.049737492131475
507 => 0.049032086841777
508 => 0.04901228846472
509 => 0.047658390182077
510 => 0.047157884813756
511 => 0.046739625065809
512 => 0.046282896339999
513 => 0.046012132241653
514 => 0.046428148956794
515 => 0.046523296901712
516 => 0.045613669083328
517 => 0.045489690172872
518 => 0.046232511885045
519 => 0.045905623744702
520 => 0.04624183630348
521 => 0.046319840501095
522 => 0.04630728002869
523 => 0.045965971267308
524 => 0.046183511293839
525 => 0.045668964279291
526 => 0.045109471683432
527 => 0.044752550264895
528 => 0.044441088988465
529 => 0.044613905806864
530 => 0.043997845404376
531 => 0.043800755282774
601 => 0.046109813627656
602 => 0.047815539853581
603 => 0.047790737918714
604 => 0.047639762518753
605 => 0.047415443698653
606 => 0.04848841109319
607 => 0.048114610707594
608 => 0.048386581720183
609 => 0.048455809757474
610 => 0.048665342176204
611 => 0.04874023200598
612 => 0.048513862926066
613 => 0.047754140645219
614 => 0.045860984953575
615 => 0.044979715868639
616 => 0.044688882391912
617 => 0.04469945363642
618 => 0.044407851520787
619 => 0.044493741412531
620 => 0.044377982521581
621 => 0.044158763187205
622 => 0.04460036963071
623 => 0.044651260659475
624 => 0.044548184438757
625 => 0.04457246262015
626 => 0.043719035537034
627 => 0.043783919744617
628 => 0.043422636231707
629 => 0.043354899928375
630 => 0.042441606668294
701 => 0.040823575274086
702 => 0.041720121732585
703 => 0.040637219684227
704 => 0.040227108269871
705 => 0.042168511920025
706 => 0.041973648839704
707 => 0.041640127951141
708 => 0.041146781045112
709 => 0.040963793878696
710 => 0.039852021782248
711 => 0.039786332355716
712 => 0.040337356627088
713 => 0.040083077885437
714 => 0.03972597422927
715 => 0.038432580985649
716 => 0.036978378752033
717 => 0.037022271976677
718 => 0.037484826650795
719 => 0.038829766749793
720 => 0.038304275385415
721 => 0.03792302537124
722 => 0.037851628703918
723 => 0.038745307474496
724 => 0.040010050166354
725 => 0.040603439140351
726 => 0.040015408688611
727 => 0.03933991096746
728 => 0.039381025383791
729 => 0.039654541176061
730 => 0.039683283818524
731 => 0.039243604244342
801 => 0.039367371469036
802 => 0.039179357737213
803 => 0.038025517812063
804 => 0.038004648506683
805 => 0.037721477580869
806 => 0.037712903277774
807 => 0.037231158892667
808 => 0.037163759523048
809 => 0.036207226806623
810 => 0.036836819537222
811 => 0.036414521788638
812 => 0.035778019471554
813 => 0.035668286232176
814 => 0.035664987518494
815 => 0.036318533078826
816 => 0.036829182476837
817 => 0.036421867838776
818 => 0.036329130191152
819 => 0.037319325646304
820 => 0.037193314248804
821 => 0.037084189191256
822 => 0.039896806330117
823 => 0.037670400393456
824 => 0.036699560326264
825 => 0.035497961385585
826 => 0.035889208059658
827 => 0.035971649482494
828 => 0.03308202063465
829 => 0.03190969857096
830 => 0.031507401816727
831 => 0.031275874347024
901 => 0.031381384322306
902 => 0.030326156965322
903 => 0.031035287201065
904 => 0.030121549506065
905 => 0.029968358407938
906 => 0.031602234596979
907 => 0.031829578923717
908 => 0.030859657395504
909 => 0.031482504032649
910 => 0.031256651183804
911 => 0.030137212916259
912 => 0.03009445860847
913 => 0.029532763835973
914 => 0.028653820282557
915 => 0.028252119493441
916 => 0.028042910234744
917 => 0.02812923405229
918 => 0.028085586088586
919 => 0.0278007536008
920 => 0.028101912353373
921 => 0.027332576187938
922 => 0.027026220327899
923 => 0.026887846493321
924 => 0.02620501636516
925 => 0.027291702755
926 => 0.027505793663514
927 => 0.027720306397252
928 => 0.029587493290386
929 => 0.029494213909821
930 => 0.030337414081233
1001 => 0.030304648873117
1002 => 0.030064154525293
1003 => 0.029049548431224
1004 => 0.029453952336706
1005 => 0.028209259973955
1006 => 0.029141868122981
1007 => 0.028716264710413
1008 => 0.028997971181074
1009 => 0.028491437546378
1010 => 0.02877177417408
1011 => 0.027556562560171
1012 => 0.026421815053592
1013 => 0.026878470575584
1014 => 0.027374907352883
1015 => 0.028451308775806
1016 => 0.027810212968432
1017 => 0.02804077526328
1018 => 0.027268430171201
1019 => 0.025674861636774
1020 => 0.025683881061618
1021 => 0.025438745260374
1022 => 0.025226912137686
1023 => 0.02788385053391
1024 => 0.027553418244359
1025 => 0.027026917636869
1026 => 0.027731659622297
1027 => 0.027918004589004
1028 => 0.027923309568236
1029 => 0.028437471128781
1030 => 0.028711879245812
1031 => 0.028760244865792
1101 => 0.029569289190505
1102 => 0.029840470176596
1103 => 0.030957426279337
1104 => 0.028688597634265
1105 => 0.028641872601364
1106 => 0.027741576787278
1107 => 0.02717059494887
1108 => 0.02778067240225
1109 => 0.028321117742066
1110 => 0.027758369930471
1111 => 0.027831852914411
1112 => 0.02707640995553
1113 => 0.027346445266435
1114 => 0.027579036053871
1115 => 0.027450613092103
1116 => 0.027258357702596
1117 => 0.028276807387359
1118 => 0.028219342464808
1119 => 0.029167746225316
1120 => 0.029907094777636
1121 => 0.031232139557756
1122 => 0.029849386253555
1123 => 0.029798993227203
1124 => 0.030291593143086
1125 => 0.029840394762116
1126 => 0.030125536564051
1127 => 0.031186198805189
1128 => 0.031208608926975
1129 => 0.030833210513255
1130 => 0.030810367485664
1201 => 0.030882466857428
1202 => 0.03130475512983
1203 => 0.031157194631845
1204 => 0.031327955375888
1205 => 0.031541494301095
1206 => 0.03242478183438
1207 => 0.0326377394683
1208 => 0.03212036282375
1209 => 0.032167076141932
1210 => 0.031973563074564
1211 => 0.031786631876198
1212 => 0.032206825911015
1213 => 0.032974738768579
1214 => 0.032969961622547
1215 => 0.033148102479409
1216 => 0.033259082757435
1217 => 0.032782674161617
1218 => 0.032472549683769
1219 => 0.032591471142309
1220 => 0.032781629144287
1221 => 0.032529805465153
1222 => 0.030975433061462
1223 => 0.031446930355048
1224 => 0.031368450150356
1225 => 0.031256684795355
1226 => 0.031730778970037
1227 => 0.031685051430328
1228 => 0.030315334083576
1229 => 0.030403018944078
1230 => 0.030320666490364
1231 => 0.030586764116039
]
'min_raw' => 0.025226912137686
'max_raw' => 0.056511397343112
'avg_raw' => 0.040869154740399
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.025226'
'max' => '$0.056511'
'avg' => '$0.040869'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.0061517132861997
'max_diff' => -0.041065660667281
'year' => 2034
]
9 => [
'items' => [
101 => 0.029826024617071
102 => 0.030060022963295
103 => 0.030206784532449
104 => 0.030293228224155
105 => 0.030605522113595
106 => 0.030568878030152
107 => 0.030603244265917
108 => 0.031066293661426
109 => 0.033408238604543
110 => 0.033535705500587
111 => 0.032908011885641
112 => 0.033158763104103
113 => 0.03267737559792
114 => 0.033000534255837
115 => 0.033221631202243
116 => 0.032222536615929
117 => 0.032163376718598
118 => 0.031680002354937
119 => 0.031939740358245
120 => 0.031526478519159
121 => 0.031627878519186
122 => 0.031344355279219
123 => 0.031854640662245
124 => 0.032425219010799
125 => 0.032569369634466
126 => 0.032190171404344
127 => 0.031915606895355
128 => 0.031433562064742
129 => 0.032235213361121
130 => 0.032469640630063
131 => 0.032233982014476
201 => 0.032179374764002
202 => 0.032075894123027
203 => 0.03220132867117
204 => 0.032468363888811
205 => 0.032342435011537
206 => 0.032425613253558
207 => 0.032108623568007
208 => 0.032782831872686
209 => 0.03385363691758
210 => 0.033857079730893
211 => 0.033731150174816
212 => 0.03367962251366
213 => 0.033808833880239
214 => 0.033878925746081
215 => 0.034296771612286
216 => 0.034745136874437
217 => 0.036837461915809
218 => 0.036249945416766
219 => 0.038106380666445
220 => 0.039574579920993
221 => 0.04001482868086
222 => 0.039609820537087
223 => 0.038224309555351
224 => 0.038156329776658
225 => 0.04022686813102
226 => 0.039641846209248
227 => 0.039572259713178
228 => 0.038831976963229
301 => 0.039269575754251
302 => 0.039173866479468
303 => 0.039022784706964
304 => 0.039857692716838
305 => 0.04142056597857
306 => 0.041176977524196
307 => 0.040995150042749
308 => 0.040198434948234
309 => 0.040678235387891
310 => 0.040507387641302
311 => 0.04124145798331
312 => 0.040806610974353
313 => 0.039637414092806
314 => 0.039823612549916
315 => 0.039795469027703
316 => 0.040374660720571
317 => 0.040200801750794
318 => 0.039761520273517
319 => 0.041415224247667
320 => 0.041307841909971
321 => 0.041460085513804
322 => 0.041527107856502
323 => 0.042533688324034
324 => 0.0429460521346
325 => 0.043039665939043
326 => 0.043431379665718
327 => 0.04302991974468
328 => 0.044636045664906
329 => 0.045704025681811
330 => 0.046944539429196
331 => 0.048757263432785
401 => 0.04943886442677
402 => 0.04931573930798
403 => 0.050690125959169
404 => 0.053159868220456
405 => 0.04981494483162
406 => 0.053337157282173
407 => 0.052222065486226
408 => 0.049578202897681
409 => 0.049407969316071
410 => 0.05119842375691
411 => 0.055169479381836
412 => 0.054174774987132
413 => 0.055171106361883
414 => 0.054008832889979
415 => 0.053951116215689
416 => 0.055114657333595
417 => 0.057833334576907
418 => 0.056541792926702
419 => 0.054690051272128
420 => 0.056057348493575
421 => 0.054872869102974
422 => 0.052203905521043
423 => 0.054174014355428
424 => 0.052856658683344
425 => 0.053241133102938
426 => 0.05601001878379
427 => 0.055676859133107
428 => 0.056107998570844
429 => 0.055347048748122
430 => 0.054636201622927
501 => 0.053309352675549
502 => 0.052916538115093
503 => 0.053025097927616
504 => 0.052916484318242
505 => 0.052174124526555
506 => 0.052013812000221
507 => 0.051746617432878
508 => 0.051829432201952
509 => 0.051327028244819
510 => 0.052275168313882
511 => 0.052451151465682
512 => 0.053141128739626
513 => 0.053212764469119
514 => 0.055134341355842
515 => 0.054075969097423
516 => 0.054786016583835
517 => 0.054722503253424
518 => 0.049635503416868
519 => 0.050336447111365
520 => 0.051426895531755
521 => 0.050935649996438
522 => 0.05024114374325
523 => 0.049680292706732
524 => 0.048830546036444
525 => 0.050026548156935
526 => 0.051599163764735
527 => 0.053252648596144
528 => 0.055239202280464
529 => 0.054795826624158
530 => 0.053215511356833
531 => 0.053286403145304
601 => 0.053724628286742
602 => 0.053157086911628
603 => 0.052989707880382
604 => 0.053701632978129
605 => 0.05370653561501
606 => 0.053053510673274
607 => 0.052327792952837
608 => 0.052324752169091
609 => 0.05219561771034
610 => 0.054031805623317
611 => 0.055041523315917
612 => 0.055157285822132
613 => 0.055033731576901
614 => 0.055081282702198
615 => 0.054493750224485
616 => 0.055836675241192
617 => 0.057069076038042
618 => 0.056738766298083
619 => 0.056243585041589
620 => 0.055849149319631
621 => 0.056645849777338
622 => 0.056610373960079
623 => 0.057058312092204
624 => 0.057037991031115
625 => 0.056887366285087
626 => 0.056738771677367
627 => 0.057327932500601
628 => 0.057158263645143
629 => 0.056988331247089
630 => 0.056647505807443
701 => 0.056693829645202
702 => 0.056198733888733
703 => 0.05596967993775
704 => 0.052525258092244
705 => 0.051604796025394
706 => 0.051894392129358
707 => 0.051989734686143
708 => 0.051589148415045
709 => 0.052163486225629
710 => 0.052073976286224
711 => 0.052422207098886
712 => 0.052204647605559
713 => 0.052213576323053
714 => 0.052853372404354
715 => 0.053039107928643
716 => 0.05294464134192
717 => 0.053010802501135
718 => 0.054535458490377
719 => 0.05431870116446
720 => 0.054203553155201
721 => 0.054235449940701
722 => 0.054625032234946
723 => 0.054734094006929
724 => 0.0542719916154
725 => 0.054489921774627
726 => 0.055417840733163
727 => 0.055742559852986
728 => 0.056778907409441
729 => 0.05633864854785
730 => 0.057146762742257
731 => 0.059630630269435
801 => 0.061614915520704
802 => 0.059790084799581
803 => 0.063433971966333
804 => 0.066271260810219
805 => 0.066162360938639
806 => 0.065667614001034
807 => 0.062437436085497
808 => 0.05946497820838
809 => 0.061951565439816
810 => 0.06195790426204
811 => 0.061744304213615
812 => 0.060417652657721
813 => 0.061698139615154
814 => 0.061799780019789
815 => 0.061742888421559
816 => 0.060725747784153
817 => 0.059172762029848
818 => 0.059476211728916
819 => 0.059973268526197
820 => 0.059032236312034
821 => 0.058731519500457
822 => 0.059290609266894
823 => 0.061092112985332
824 => 0.060751549142762
825 => 0.060742655644506
826 => 0.062199732184567
827 => 0.061156779838681
828 => 0.059480039201402
829 => 0.059056640076997
830 => 0.057553858421186
831 => 0.058591835063579
901 => 0.058629189995065
902 => 0.05806070079589
903 => 0.059526168966792
904 => 0.059512664419607
905 => 0.060903908341727
906 => 0.063563444193466
907 => 0.062776888574295
908 => 0.061862209966208
909 => 0.061961660892194
910 => 0.063052392084458
911 => 0.062392911106644
912 => 0.062630065064331
913 => 0.063052033123539
914 => 0.063306616930538
915 => 0.06192503020019
916 => 0.061602916244413
917 => 0.06094398413753
918 => 0.060772081050394
919 => 0.061308767502381
920 => 0.061167369583695
921 => 0.058626050457719
922 => 0.058360468469288
923 => 0.05836861348971
924 => 0.057700794952066
925 => 0.056682211387345
926 => 0.059358988178967
927 => 0.059144005541133
928 => 0.058906681347298
929 => 0.05893575220689
930 => 0.06009765028775
1001 => 0.059423690723591
1002 => 0.061215522684707
1003 => 0.0608471759009
1004 => 0.060469382411989
1005 => 0.060417159843951
1006 => 0.060271741582546
1007 => 0.059773048256436
1008 => 0.059170846098336
1009 => 0.0587732200717
1010 => 0.054215188775485
1011 => 0.055061132871214
1012 => 0.05603431444312
1013 => 0.056370252821962
1014 => 0.055795606978725
1015 => 0.059795738776835
1016 => 0.060526601402578
1017 => 0.058312770836211
1018 => 0.05789865352735
1019 => 0.059822888238661
1020 => 0.058662339479614
1021 => 0.059184934514751
1022 => 0.058055369892986
1023 => 0.060350557998193
1024 => 0.060333072510323
1025 => 0.059440192498223
1026 => 0.060194848570271
1027 => 0.060063708506579
1028 => 0.059055649171984
1029 => 0.060382515277142
1030 => 0.060383173386176
1031 => 0.059523795787415
1101 => 0.05852023089401
1102 => 0.058340817194213
1103 => 0.058205653072256
1104 => 0.059151692426461
1105 => 0.059999908353253
1106 => 0.061578227902452
1107 => 0.061975054937068
1108 => 0.063523897271446
1109 => 0.062601637073089
1110 => 0.063010463073752
1111 => 0.06345430152944
1112 => 0.063667094006716
1113 => 0.063320360084069
1114 => 0.065726349758297
1115 => 0.065929489004421
1116 => 0.065997599836498
1117 => 0.065186313655497
1118 => 0.065906925668121
1119 => 0.065569775171576
1120 => 0.066446947100481
1121 => 0.066584498859227
1122 => 0.066467997413115
1123 => 0.066511658512448
1124 => 0.064458570771157
1125 => 0.064352107340871
1126 => 0.062900470914613
1127 => 0.063492023488268
1128 => 0.062386144305673
1129 => 0.062736829986292
1130 => 0.062891408892853
1201 => 0.062810665644341
1202 => 0.063525468983224
1203 => 0.062917740120499
1204 => 0.061313843731892
1205 => 0.059709510362787
1206 => 0.0596893692642
1207 => 0.05926697660695
1208 => 0.058961664080833
1209 => 0.059020478104907
1210 => 0.059227746396977
1211 => 0.058949617270905
1212 => 0.059008970221457
1213 => 0.059994624667264
1214 => 0.060192290637005
1215 => 0.059520544438746
1216 => 0.056823386520222
1217 => 0.056161497201708
1218 => 0.056637250118021
1219 => 0.056409870866435
1220 => 0.045527168399123
1221 => 0.048083897918411
1222 => 0.04656477605638
1223 => 0.04726485730184
1224 => 0.045714227255406
1225 => 0.046454269189049
1226 => 0.046317610465909
1227 => 0.050428755873797
1228 => 0.050364565992949
1229 => 0.050395290292058
1230 => 0.048928739443836
1231 => 0.051264994766249
]
'min_raw' => 0.029826024617071
'max_raw' => 0.066584498859227
'avg_raw' => 0.048205261738149
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.029826'
'max' => '$0.066584'
'avg' => '$0.0482052'
'bar_min_pct' => 61.631153054958
'bar_max_pct' => 60.119598047091
'min_diff' => 0.0045991124793852
'max_diff' => 0.010073101516115
'year' => 2035
]
10 => [
'items' => [
101 => 0.052415918147093
102 => 0.052202912860133
103 => 0.052256521701842
104 => 0.051335344186688
105 => 0.050404209303999
106 => 0.049371437418465
107 => 0.051290199927324
108 => 0.051076866290707
109 => 0.051566176898086
110 => 0.052810631541057
111 => 0.052993882214458
112 => 0.053240172977854
113 => 0.053151895271347
114 => 0.055255028385518
115 => 0.055000325088473
116 => 0.055614086751212
117 => 0.054351532444748
118 => 0.052922832404229
119 => 0.053194381574208
120 => 0.053168229205479
121 => 0.052835279535261
122 => 0.052534707460173
123 => 0.052034339640809
124 => 0.05361757746178
125 => 0.05355330089758
126 => 0.05459386375864
127 => 0.054409934165459
128 => 0.053181607326992
129 => 0.053225477260329
130 => 0.053520523645191
131 => 0.054541682551977
201 => 0.054844832041311
202 => 0.054704401119433
203 => 0.055036790695188
204 => 0.05529949786325
205 => 0.055069782670786
206 => 0.05832206536961
207 => 0.0569714908447
208 => 0.057629751470904
209 => 0.057786742751557
210 => 0.057384612887335
211 => 0.057471820455694
212 => 0.057603916159118
213 => 0.058405975403315
214 => 0.060510810937801
215 => 0.061443028267925
216 => 0.064247650100396
217 => 0.06136562059575
218 => 0.061194612891968
219 => 0.061699809975461
220 => 0.063346419890493
221 => 0.064680842568422
222 => 0.065123547555382
223 => 0.065182058327671
224 => 0.066012602313679
225 => 0.06648865463773
226 => 0.065911752428302
227 => 0.065422888209991
228 => 0.06367183726006
229 => 0.063874526175468
301 => 0.065270851805703
302 => 0.067243244001578
303 => 0.068935761698071
304 => 0.068343100990956
305 => 0.072864683832986
306 => 0.073312980302764
307 => 0.073251040225801
308 => 0.074272326299414
309 => 0.072245281424584
310 => 0.071378680468449
311 => 0.065528586202834
312 => 0.067172224069228
313 => 0.069561348235499
314 => 0.069245138693337
315 => 0.067510092862319
316 => 0.068934445510222
317 => 0.0684635099812
318 => 0.068092063590327
319 => 0.069793731515342
320 => 0.067922677731123
321 => 0.069542683042719
322 => 0.067465009473787
323 => 0.068345808215144
324 => 0.067845824250109
325 => 0.068169375151216
326 => 0.06627790319457
327 => 0.06729849554949
328 => 0.06623544319721
329 => 0.066234939171981
330 => 0.066211472232385
331 => 0.067462148610547
401 => 0.067502933122339
402 => 0.066578681389209
403 => 0.06644548227494
404 => 0.066937989212876
405 => 0.066361392576324
406 => 0.066631178513511
407 => 0.066369564117526
408 => 0.066310669206548
409 => 0.065841384535729
410 => 0.065639203796289
411 => 0.065718484073779
412 => 0.065447859614921
413 => 0.065284798589545
414 => 0.066179035290251
415 => 0.065701280694469
416 => 0.066105812546482
417 => 0.065644797445124
418 => 0.064046718249098
419 => 0.063127646004082
420 => 0.060109022544809
421 => 0.060965100413268
422 => 0.061532680925733
423 => 0.06134509556975
424 => 0.061748101500299
425 => 0.061772842791356
426 => 0.061641821455175
427 => 0.061490115532751
428 => 0.061416273479578
429 => 0.061966631646267
430 => 0.062286133086235
501 => 0.061589645223407
502 => 0.061426467862047
503 => 0.062130655545515
504 => 0.062560209625634
505 => 0.065731795607648
506 => 0.065496834274013
507 => 0.066086541112604
508 => 0.066020149172368
509 => 0.066638255886879
510 => 0.067648599133716
511 => 0.065594288816481
512 => 0.065950846054847
513 => 0.065863426454109
514 => 0.066817850732318
515 => 0.066820830340736
516 => 0.066248605308921
517 => 0.066558817781959
518 => 0.066385665689743
519 => 0.066698574923286
520 => 0.065493696222153
521 => 0.066961108421514
522 => 0.067793036580598
523 => 0.067804587903894
524 => 0.06819891524871
525 => 0.068599574668943
526 => 0.069368605535998
527 => 0.068578126815453
528 => 0.067156132548744
529 => 0.067258795941787
530 => 0.066425081223504
531 => 0.066439096118541
601 => 0.066364283510465
602 => 0.066588801778931
603 => 0.065542965356324
604 => 0.065788421074321
605 => 0.065444781631738
606 => 0.06595009904981
607 => 0.065406461039926
608 => 0.06586338429773
609 => 0.066060577228553
610 => 0.066788223388549
611 => 0.065298987110463
612 => 0.062262333527015
613 => 0.062900674926122
614 => 0.061956517856209
615 => 0.062043903187688
616 => 0.06222043546455
617 => 0.061648236597474
618 => 0.061757394109254
619 => 0.061753494234803
620 => 0.061719887223673
621 => 0.061571036198978
622 => 0.061355172763892
623 => 0.062215106250012
624 => 0.062361225706208
625 => 0.06268603115696
626 => 0.063652431860756
627 => 0.063555865641149
628 => 0.063713369151822
629 => 0.063369539872367
630 => 0.062059852441836
701 => 0.06213097477041
702 => 0.061244078193433
703 => 0.062663351217471
704 => 0.06232724863189
705 => 0.06211056110849
706 => 0.062051435910134
707 => 0.063020232134352
708 => 0.063310111148658
709 => 0.063129477999999
710 => 0.06275899414219
711 => 0.063470432672904
712 => 0.063660783610542
713 => 0.063703396165606
714 => 0.064963928837225
715 => 0.063773845939178
716 => 0.064060310721145
717 => 0.066295227175069
718 => 0.064268466348749
719 => 0.065342086760611
720 => 0.065289538628301
721 => 0.065838766501675
722 => 0.065244485911924
723 => 0.065251852732073
724 => 0.06573952987571
725 => 0.065054675280507
726 => 0.064885095651603
727 => 0.064650822608825
728 => 0.065162349227024
729 => 0.065468986300276
730 => 0.06794025591057
731 => 0.069536808782406
801 => 0.069467498211631
802 => 0.070100867084563
803 => 0.069815528606313
804 => 0.068894095391557
805 => 0.070466869532336
806 => 0.069969177986528
807 => 0.070010207072869
808 => 0.070008679968227
809 => 0.070339601337239
810 => 0.070105113218796
811 => 0.069642913067633
812 => 0.069949743097952
813 => 0.070860918594259
814 => 0.073689235293073
815 => 0.075271998787942
816 => 0.073593950943306
817 => 0.07475144587658
818 => 0.074057361374231
819 => 0.073931225572928
820 => 0.074658217929228
821 => 0.07538648278941
822 => 0.075340095466192
823 => 0.074811412574514
824 => 0.074512773023838
825 => 0.076774171753152
826 => 0.078440331814988
827 => 0.07832671086885
828 => 0.078828196773594
829 => 0.080300574900298
830 => 0.08043519070376
831 => 0.080418232206632
901 => 0.080084572892045
902 => 0.081534320370245
903 => 0.082743725222439
904 => 0.080007340401062
905 => 0.081049319919135
906 => 0.081517098095281
907 => 0.082203935241395
908 => 0.08336274463416
909 => 0.084621518993714
910 => 0.084799523489914
911 => 0.084673220781561
912 => 0.083843025253764
913 => 0.085220391178289
914 => 0.086027219833671
915 => 0.086507667834005
916 => 0.087726004023929
917 => 0.081519986934046
918 => 0.077127059578765
919 => 0.076441040537598
920 => 0.077836087234178
921 => 0.078203949922777
922 => 0.078055664934263
923 => 0.073111025808412
924 => 0.076415008035917
925 => 0.079969815105996
926 => 0.080106369722965
927 => 0.081885980469757
928 => 0.082465494677622
929 => 0.083898314587702
930 => 0.083808691312211
1001 => 0.084157560159172
1002 => 0.084077361252822
1003 => 0.086731358420417
1004 => 0.089659111418669
1005 => 0.089557732642024
1006 => 0.089136833508924
1007 => 0.089761940495544
1008 => 0.092783695346818
1009 => 0.092505500582747
1010 => 0.092775743099468
1011 => 0.096338562367761
1012 => 0.10097073422167
1013 => 0.09881862533308
1014 => 0.10348808236868
1015 => 0.1064272580553
1016 => 0.11151025848888
1017 => 0.11087384180029
1018 => 0.1128526165683
1019 => 0.10973452310355
1020 => 0.1025747502378
1021 => 0.10144168877529
1022 => 0.10371010651693
1023 => 0.10928679018578
1024 => 0.10353447690246
1025 => 0.10469816238785
1026 => 0.10436302088977
1027 => 0.1043451626236
1028 => 0.1050267400086
1029 => 0.10403807646297
1030 => 0.10001008332091
1031 => 0.1018560888408
1101 => 0.10114325745711
1102 => 0.10193419702242
1103 => 0.10620257164812
1104 => 0.10431542148075
1105 => 0.10232746207907
1106 => 0.10482080433229
1107 => 0.10799568582599
1108 => 0.10779700744793
1109 => 0.10741148835336
1110 => 0.10958463930431
1111 => 0.11317404800179
1112 => 0.11414425074931
1113 => 0.11486043458261
1114 => 0.11495918423319
1115 => 0.1159763670068
1116 => 0.11050671887006
1117 => 0.11918719093359
1118 => 0.12068606866576
1119 => 0.12040434177423
1120 => 0.12207028129112
1121 => 0.12158011962445
1122 => 0.12086995227344
1123 => 0.12351082076321
1124 => 0.12048327814679
1125 => 0.11618606255979
1126 => 0.11382852509948
1127 => 0.11693312060434
1128 => 0.11882898874371
1129 => 0.12008203698397
1130 => 0.12046120862436
1201 => 0.11093131208482
1202 => 0.1057952264023
1203 => 0.10908739843945
1204 => 0.11310407553836
1205 => 0.11048440602596
1206 => 0.11058709211116
1207 => 0.10685213182352
1208 => 0.11343453664801
1209 => 0.11247553563182
1210 => 0.11745083460025
1211 => 0.11626343957217
1212 => 0.12032060274093
1213 => 0.11925221570825
1214 => 0.12368703054818
1215 => 0.12545619825565
1216 => 0.12842690618546
1217 => 0.13061217103159
1218 => 0.13189540034668
1219 => 0.13181836007188
1220 => 0.13690315392061
1221 => 0.13390482863718
1222 => 0.13013822543018
1223 => 0.13007009946164
1224 => 0.13202087663573
1225 => 0.13610917042303
1226 => 0.13716920551982
1227 => 0.13776162052628
1228 => 0.13685431632177
1229 => 0.13359984911852
1230 => 0.13219458668068
1231 => 0.13339191099209
]
'min_raw' => 0.049371437418465
'max_raw' => 0.13776162052628
'avg_raw' => 0.093566528972373
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$0.049371'
'max' => '$0.137761'
'avg' => '$0.093566'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.019545412801394
'max_diff' => 0.071177121667054
'year' => 2036
]
11 => [
'items' => [
101 => 0.13192768624648
102 => 0.13445534894631
103 => 0.13792636971278
104 => 0.13720961765041
105 => 0.13960561233345
106 => 0.1420852147644
107 => 0.14563115760658
108 => 0.14655819837141
109 => 0.14809056150346
110 => 0.14966786652142
111 => 0.15017445438362
112 => 0.15114168779755
113 => 0.15113659000002
114 => 0.15405141299522
115 => 0.15726655302348
116 => 0.15848019395349
117 => 0.16127089435148
118 => 0.15649191771772
119 => 0.16011682639135
120 => 0.16338658475232
121 => 0.15948824403806
122 => 0.16486119851578
123 => 0.16506981816277
124 => 0.16821972714771
125 => 0.16502669094193
126 => 0.16313067623547
127 => 0.16860439965027
128 => 0.17125296199003
129 => 0.17045519345858
130 => 0.16438413554356
131 => 0.1608505194371
201 => 0.15160236450284
202 => 0.16255720351303
203 => 0.16789298603786
204 => 0.16437031715585
205 => 0.16614694643853
206 => 0.1758396597308
207 => 0.17953001739579
208 => 0.17876244879902
209 => 0.17889215525662
210 => 0.18088340526792
211 => 0.18971370441943
212 => 0.18442238448311
213 => 0.18846740031245
214 => 0.19061286212294
215 => 0.19260568662041
216 => 0.18771193949328
217 => 0.1813452463843
218 => 0.17932864742109
219 => 0.16402005715975
220 => 0.16322317855481
221 => 0.16277586644597
222 => 0.15995562687325
223 => 0.15773969109772
224 => 0.15597749669661
225 => 0.15135297235228
226 => 0.15291361356415
227 => 0.14554308697254
228 => 0.15025848869043
301 => 0.13849495028263
302 => 0.14829197462408
303 => 0.14295989969106
304 => 0.14654024460289
305 => 0.14652775311678
306 => 0.13993520298473
307 => 0.13613275765157
308 => 0.13855582381124
309 => 0.14115354307764
310 => 0.14157501428884
311 => 0.14494302512514
312 => 0.1458829645544
313 => 0.14303490420217
314 => 0.13825117709609
315 => 0.13936232779763
316 => 0.13611024021807
317 => 0.13041108182462
318 => 0.13450431688055
319 => 0.13590192729549
320 => 0.13651919167483
321 => 0.13091472394764
322 => 0.12915367850884
323 => 0.12821611269383
324 => 0.1375277106904
325 => 0.1380378210484
326 => 0.13542802433455
327 => 0.14722455295221
328 => 0.14455463521331
329 => 0.14753758747339
330 => 0.139261502518
331 => 0.13957766010852
401 => 0.13565962886049
402 => 0.13785346455645
403 => 0.13630293219717
404 => 0.13767622431212
405 => 0.13849936994352
406 => 0.14241675828118
407 => 0.14833670490631
408 => 0.14183163109692
409 => 0.1389972772838
410 => 0.14075569444845
411 => 0.14543859107942
412 => 0.1525334191884
413 => 0.14833313815116
414 => 0.15019715155009
415 => 0.15060435555357
416 => 0.14750722381957
417 => 0.15264761485313
418 => 0.15540239216849
419 => 0.15822822367319
420 => 0.16068181399073
421 => 0.15709952442885
422 => 0.1609330877611
423 => 0.15784391243033
424 => 0.15507260280555
425 => 0.1550768057383
426 => 0.15333832272831
427 => 0.14996979283349
428 => 0.14934858423836
429 => 0.1525801898002
430 => 0.15517163142662
501 => 0.15538507497113
502 => 0.15681983020859
503 => 0.15766890357897
504 => 0.16599097686791
505 => 0.16933818358852
506 => 0.17343108460711
507 => 0.17502550021711
508 => 0.17982411957358
509 => 0.17594884471842
510 => 0.17511040462689
511 => 0.16347052368452
512 => 0.16537655353675
513 => 0.16842829123471
514 => 0.16352084571513
515 => 0.16663349035905
516 => 0.16724799234659
517 => 0.16335409259423
518 => 0.16543399269744
519 => 0.15991039467072
520 => 0.14845710424904
521 => 0.15266036563947
522 => 0.15575538082531
523 => 0.15133841254249
524 => 0.15925565722917
525 => 0.15463056632832
526 => 0.15316463455626
527 => 0.14744551207107
528 => 0.15014471773487
529 => 0.15379543204406
530 => 0.15153971504207
531 => 0.15622066651881
601 => 0.16285014217403
602 => 0.16757470131804
603 => 0.16793739430403
604 => 0.16489981929531
605 => 0.16976755263233
606 => 0.16980300875546
607 => 0.16431218566603
608 => 0.16094908709679
609 => 0.16018498402584
610 => 0.16209386330831
611 => 0.16441159515578
612 => 0.16806601229097
613 => 0.17027430002933
614 => 0.17603234326565
615 => 0.17759030466936
616 => 0.17930203190766
617 => 0.18158942737515
618 => 0.18433603211004
619 => 0.1783266173144
620 => 0.17856538256718
621 => 0.1729694987155
622 => 0.16698949428906
623 => 0.17152757223065
624 => 0.17746050546408
625 => 0.17609948402502
626 => 0.17594634130998
627 => 0.17620388487843
628 => 0.17517771916019
629 => 0.17053640964805
630 => 0.16820557306718
701 => 0.17121294691633
702 => 0.17281123227434
703 => 0.17529003347948
704 => 0.1749844689098
705 => 0.18136959461043
706 => 0.18385066138151
707 => 0.18321589833064
708 => 0.18333271000842
709 => 0.18782456288628
710 => 0.19282042710645
711 => 0.197499713211
712 => 0.20225968401655
713 => 0.19652135342563
714 => 0.19360778304259
715 => 0.19661384396639
716 => 0.19501878572685
717 => 0.20418446349625
718 => 0.20481907513852
719 => 0.21398409012509
720 => 0.22268278069703
721 => 0.21721928900202
722 => 0.22237111558934
723 => 0.22794323607812
724 => 0.23869276054492
725 => 0.23507269887733
726 => 0.23229978837356
727 => 0.2296794013461
728 => 0.23513201077552
729 => 0.24214670569891
730 => 0.24365760379949
731 => 0.24610583592994
801 => 0.24353181920036
802 => 0.2466319388325
803 => 0.25757672339554
804 => 0.25461934599432
805 => 0.25041939466245
806 => 0.25905925092668
807 => 0.26218598132212
808 => 0.28413101271872
809 => 0.31183752136096
810 => 0.30036684485233
811 => 0.293246625787
812 => 0.29492004616121
813 => 0.30503752519285
814 => 0.30828693834508
815 => 0.29945391325743
816 => 0.30257388704629
817 => 0.31976524937191
818 => 0.32898786369468
819 => 0.31646231468201
820 => 0.28190482172654
821 => 0.25004123499767
822 => 0.25849289303418
823 => 0.25753473729832
824 => 0.27600471145109
825 => 0.25454881352137
826 => 0.25491007581579
827 => 0.27376198947399
828 => 0.2687326221136
829 => 0.26058569110248
830 => 0.25010071660999
831 => 0.23071827151787
901 => 0.21355069938031
902 => 0.2472202617978
903 => 0.24576836904223
904 => 0.24366581317372
905 => 0.24834482373879
906 => 0.27106477088247
907 => 0.27054100256351
908 => 0.26720905574727
909 => 0.26973630804096
910 => 0.26014265155631
911 => 0.2626151552759
912 => 0.25003618764274
913 => 0.25572240635702
914 => 0.2605682114475
915 => 0.26154107856278
916 => 0.26373299784935
917 => 0.24500328753457
918 => 0.2534123775905
919 => 0.25835193017317
920 => 0.23603485190218
921 => 0.25791079329063
922 => 0.24467724494783
923 => 0.24018557987906
924 => 0.24623301516229
925 => 0.24387632375109
926 => 0.2418501788653
927 => 0.24071955520545
928 => 0.24516012424637
929 => 0.24495296639299
930 => 0.23768733356472
1001 => 0.22820961172533
1002 => 0.23139064627024
1003 => 0.23023494659772
1004 => 0.22604654189626
1005 => 0.22886902095513
1006 => 0.21644025160383
1007 => 0.19505719992614
1008 => 0.20918349884501
1009 => 0.20863965170309
1010 => 0.20836541931263
1011 => 0.21898094252794
1012 => 0.21796050491257
1013 => 0.21610840064854
1014 => 0.22601252654902
1015 => 0.22239738736605
1016 => 0.23353839449403
1017 => 0.24087658234369
1018 => 0.23901538053951
1019 => 0.24591698168065
1020 => 0.23146393088137
1021 => 0.23626465460114
1022 => 0.23725407710627
1023 => 0.22589031117278
1024 => 0.21812746112641
1025 => 0.21760976753129
1026 => 0.20415005533752
1027 => 0.21134012494843
1028 => 0.21766708866074
1029 => 0.21463696403476
1030 => 0.21367771710057
1031 => 0.21857830165205
1101 => 0.21895911904237
1102 => 0.2102764421859
1103 => 0.21208184564897
1104 => 0.21961067821336
1105 => 0.21189213838535
1106 => 0.19689627631584
1107 => 0.19317709518859
1108 => 0.19268088786811
1109 => 0.18259417367903
1110 => 0.19342562865547
1111 => 0.18869740829331
1112 => 0.2036337997646
1113 => 0.19510221306167
1114 => 0.19473443341078
1115 => 0.1941784805269
1116 => 0.18549642894745
1117 => 0.18739724647018
1118 => 0.19371585341845
1119 => 0.19597040356179
1120 => 0.19573523551086
1121 => 0.1936848887973
1122 => 0.19462352702329
1123 => 0.19159984625413
1124 => 0.19053212164207
1125 => 0.1871620890656
1126 => 0.18220907217346
1127 => 0.18289781955093
1128 => 0.17308459706023
1129 => 0.16773783262016
1130 => 0.16625791869237
1201 => 0.16427891593827
1202 => 0.16648145231937
1203 => 0.17305679743388
1204 => 0.1651255361885
1205 => 0.15152794509657
1206 => 0.15234518349037
1207 => 0.15418127552096
1208 => 0.15075973016891
1209 => 0.14752152464173
1210 => 0.1503368816237
1211 => 0.14457540302417
1212 => 0.15487752268392
1213 => 0.15459887921848
1214 => 0.15843887234883
1215 => 0.16084009885783
1216 => 0.1553060491609
1217 => 0.15391425062779
1218 => 0.15470708232597
1219 => 0.14160334040949
1220 => 0.15736801707434
1221 => 0.15750435065278
1222 => 0.15633697978366
1223 => 0.1647311834279
1224 => 0.18244557133502
1225 => 0.17578070604476
1226 => 0.17319986875775
1227 => 0.16829369518856
1228 => 0.17483088016974
1229 => 0.17432892635916
1230 => 0.17205890086738
1231 => 0.17068598236703
]
'min_raw' => 0.12821611269383
'max_raw' => 0.32898786369468
'avg_raw' => 0.22860198819425
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$0.128216'
'max' => '$0.328987'
'avg' => '$0.2286019'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 0.078844675275361
'max_diff' => 0.19122624316839
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.0040245572681889
]
1 => [
'year' => 2028
'avg' => 0.006907308609535
]
2 => [
'year' => 2029
'avg' => 0.018869522199997
]
3 => [
'year' => 2030
'avg' => 0.014557808275962
]
4 => [
'year' => 2031
'avg' => 0.014297571856313
]
5 => [
'year' => 2032
'avg' => 0.025068143075577
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.0040245572681889
'min' => '$0.004024'
'max_raw' => 0.025068143075577
'max' => '$0.025068'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.025068143075577
]
1 => [
'year' => 2033
'avg' => 0.064477841717139
]
2 => [
'year' => 2034
'avg' => 0.040869154740399
]
3 => [
'year' => 2035
'avg' => 0.048205261738149
]
4 => [
'year' => 2036
'avg' => 0.093566528972373
]
5 => [
'year' => 2037
'avg' => 0.22860198819425
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.025068143075577
'min' => '$0.025068'
'max_raw' => 0.22860198819425
'max' => '$0.2286019'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 0.22860198819425
]
]
]
]
'prediction_2025_max_price' => '$0.006881'
'last_price' => 0.00667225
'sma_50day_nextmonth' => '$0.006825'
'sma_200day_nextmonth' => '$0.009573'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'increase'
'sma_200day_direction_label' => 'aumentar'
'sma_200day_date_nextmonth' => '4 de fev. de 2026'
'sma_50day_date_nextmonth' => '4 de fev. de 2026'
'daily_sma3' => '$0.006522'
'daily_sma3_action' => 'BUY'
'daily_sma5' => '$0.006589'
'daily_sma5_action' => 'BUY'
'daily_sma10' => '$0.007565'
'daily_sma10_action' => 'SELL'
'daily_sma21' => '$0.007884'
'daily_sma21_action' => 'SELL'
'daily_sma50' => '$0.007749'
'daily_sma50_action' => 'SELL'
'daily_sma100' => '$0.007387'
'daily_sma100_action' => 'SELL'
'daily_sma200' => '$0.011047'
'daily_sma200_action' => 'SELL'
'daily_ema3' => '$0.006608'
'daily_ema3_action' => 'BUY'
'daily_ema5' => '$0.006752'
'daily_ema5_action' => 'SELL'
'daily_ema10' => '$0.007182'
'daily_ema10_action' => 'SELL'
'daily_ema21' => '$0.0076074'
'daily_ema21_action' => 'SELL'
'daily_ema50' => '$0.007733'
'daily_ema50_action' => 'SELL'
'daily_ema100' => '$0.008318'
'daily_ema100_action' => 'SELL'
'daily_ema200' => '$0.0095068'
'daily_ema200_action' => 'SELL'
'weekly_sma21' => '$0.008775'
'weekly_sma21_action' => 'SELL'
'weekly_sma50' => '$0.0104074'
'weekly_sma50_action' => 'SELL'
'weekly_sma100' => '$0.01300044'
'weekly_sma100_action' => 'SELL'
'weekly_sma200' => '$0.026029'
'weekly_sma200_action' => 'SELL'
'weekly_ema3' => '$0.00700054'
'weekly_ema3_action' => 'SELL'
'weekly_ema5' => '$0.0072079'
'weekly_ema5_action' => 'SELL'
'weekly_ema10' => '$0.007523'
'weekly_ema10_action' => 'SELL'
'weekly_ema21' => '$0.0086069'
'weekly_ema21_action' => 'SELL'
'weekly_ema50' => '$0.010535'
'weekly_ema50_action' => 'SELL'
'weekly_ema100' => '$0.019475'
'weekly_ema100_action' => 'SELL'
'weekly_ema200' => '$0.119496'
'weekly_ema200_action' => 'SELL'
'rsi_14' => '42.13'
'rsi_14_action' => 'NEUTRAL'
'stoch_rsi_14' => 17.17
'stoch_rsi_14_action' => 'BUY'
'momentum_10' => -0
'momentum_10_action' => 'BUY'
'vwma_10' => '0.008096'
'vwma_10_action' => 'SELL'
'hma_9' => '0.006041'
'hma_9_action' => 'BUY'
'stochastic_fast_14' => 21.26
'stochastic_fast_14_action' => 'NEUTRAL'
'cci_20' => -92.75
'cci_20_action' => 'NEUTRAL'
'adx_14' => 17.42
'adx_14_action' => 'NEUTRAL'
'ao_5_34' => '-0.001451'
'ao_5_34_action' => 'SELL'
'macd_12_26' => -0
'macd_12_26_action' => 'NEUTRAL'
'williams_percent_r_14' => -78.74
'williams_percent_r_14_action' => 'NEUTRAL'
'ultimate_oscillator' => 29.74
'ultimate_oscillator_action' => 'BUY'
'ichimoku_cloud' => '0.001348'
'ichimoku_cloud_action' => 'NEUTRAL'
'sell_signals' => 25
'buy_signals' => 9
'sell_pct' => 73.53
'buy_pct' => 26.47
'overall_action' => 'bearish'
'overall_action_label' => 'Baixista'
'overall_action_dir' => -1
'last_updated' => 1767711856
'last_updated_date' => '6 de janeiro de 2026'
]
Previsão de preço de SALT para 2026
A previsão de preço para SALT em 2026 sugere que o preço médio poderia variar entre $0.0023052 na extremidade inferior e $0.006881 na extremidade superior. No mercado de criptomoedas, comparado ao preço médio de hoje, SALT poderia potencialmente ganhar 3.13% até 2026 se SALT atingir a meta de preço prevista.
Previsão de preço de SALT 2027-2032
A previsão de preço de SALT para 2027-2032 está atualmente dentro de uma faixa de preço entre $0.004024 na extremidade inferior e $0.025068 na extremidade superior. Considerando a volatilidade de preços no mercado, se SALT atingir a meta de preço superior, poderia ganhar 275.71% até 2032 em comparação com o preço de hoje.
| Previsão de Preço de SALT | Potencial Mínimo ($) | Preço Médio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2027 | $0.002219 | $0.004024 | $0.005829 |
| 2028 | $0.004005 | $0.0069073 | $0.0098095 |
| 2029 | $0.008797 | $0.018869 | $0.028941 |
| 2030 | $0.007482 | $0.014557 | $0.021633 |
| 2031 | $0.008846 | $0.014297 | $0.019748 |
| 2032 | $0.0135032 | $0.025068 | $0.036633 |
Previsão de preço de SALT 2032-2037
A previsão de preço de SALT para 2032-2037 é atualmente estimada entre $0.025068 na extremidade inferior e $0.2286019 na extremidade superior. Comparado ao preço atual, SALT poderia potencialmente ganhar 3326.16% até 2037 se atingir a meta de preço superior. Por favor, note que esta informação é apenas para fins gerais e não deve ser considerada como aconselhamento de investimento a longo prazo.
| Previsão de Preço de SALT | Potencial Mínimo ($) | Preço Médio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2032 | $0.0135032 | $0.025068 | $0.036633 |
| 2033 | $0.031378 | $0.064477 | $0.097577 |
| 2034 | $0.025226 | $0.040869 | $0.056511 |
| 2035 | $0.029826 | $0.0482052 | $0.066584 |
| 2036 | $0.049371 | $0.093566 | $0.137761 |
| 2037 | $0.128216 | $0.2286019 | $0.328987 |
SALT Histograma de preços potenciais
Previsão de preço de SALT baseada na análise técnica
Em 6 de janeiro de 2026, o sentimento geral de previsão de preço para SALT é Baixista, com 9 indicadores técnicos mostrando sinais de alta e 25 indicando sinais de baixa. A previsão de preço de SALT foi atualizada pela última vez em 6 de janeiro de 2026.
Médias Móveis Simples de 50 e 200 dias e Índice de Força Relativa de 14 dias - RSI (14) de SALT
De acordo com nossos indicadores técnicos, o SMA de 200 dias de SALT está projetado para aumentar no próximo mês, alcançando $0.009573 até 4 de fev. de 2026. O SMA de 50 dias de curto prazo para SALT é esperado para alcançar $0.006825 até 4 de fev. de 2026.
O oscilador de momentum Índice de Força Relativa (RSI) é uma ferramenta comumente usada para identificar se uma criptomoeda está sobrevendida (abaixo de 30) ou sobrecomprada (acima de 70). No momento, o RSI está em 42.13, sugerindo que o mercado de SALT está em um estado NEUTRAL.
Médias Móveis e Osciladores Populares de SALT para Sábado, 19 de Outubro de 2024
Médias móveis (MA) são indicadores amplamente utilizados nos mercados financeiros, projetados para suavizar movimentos de preços ao longo de um período definido. Como indicadores atrasados, eles se baseiam em dados históricos de preços. A tabela abaixo destaca dois tipos: a média móvel simples (SMA) e a média móvel exponencial (EMA).
Média Móvel Simples Diária (SMA)
| Período | Valor | Ação |
|---|---|---|
| SMA 3 | $0.006522 | BUY |
| SMA 5 | $0.006589 | BUY |
| SMA 10 | $0.007565 | SELL |
| SMA 21 | $0.007884 | SELL |
| SMA 50 | $0.007749 | SELL |
| SMA 100 | $0.007387 | SELL |
| SMA 200 | $0.011047 | SELL |
Média Móvel Exponencial Diária (EMA)
| Período | Valor | Ação |
|---|---|---|
| EMA 3 | $0.006608 | BUY |
| EMA 5 | $0.006752 | SELL |
| EMA 10 | $0.007182 | SELL |
| EMA 21 | $0.0076074 | SELL |
| EMA 50 | $0.007733 | SELL |
| EMA 100 | $0.008318 | SELL |
| EMA 200 | $0.0095068 | SELL |
Média Móvel Simples Semanal (SMA)
| Período | Valor | Ação |
|---|---|---|
| SMA 21 | $0.008775 | SELL |
| SMA 50 | $0.0104074 | SELL |
| SMA 100 | $0.01300044 | SELL |
| SMA 200 | $0.026029 | SELL |
Média Móvel Exponencial Semanal (EMA)
| Período | Valor | Ação |
|---|---|---|
| EMA 21 | $0.0086069 | SELL |
| EMA 50 | $0.010535 | SELL |
| EMA 100 | $0.019475 | SELL |
| EMA 200 | $0.119496 | SELL |
Osciladores de SALT
Um oscilador é uma ferramenta de análise técnica que define limites altos e baixos entre dois extremos, criando um indicador de tendência que flutua dentro desses limites. Os traders usam esse indicador para identificar condições de sobrecompra ou sobrevenda de curto prazo.
| Período | Valor | Ação |
|---|---|---|
| RSI (14) | 42.13 | NEUTRAL |
| Stoch RSI (14) | 17.17 | BUY |
| Estocástico Rápido (14) | 21.26 | NEUTRAL |
| Índice de Canal de Commodities (20) | -92.75 | NEUTRAL |
| Índice Direcional Médio (14) | 17.42 | NEUTRAL |
| Oscilador Impressionante (5, 34) | -0.001451 | SELL |
| Momentum (10) | -0 | BUY |
| MACD (12, 26) | -0 | NEUTRAL |
| Williams Percent Range (14) | -78.74 | NEUTRAL |
| Oscilador Ultimate (7, 14, 28) | 29.74 | BUY |
| VWMA (10) | 0.008096 | SELL |
| Média Móvel de Hull (9) | 0.006041 | BUY |
| Nuvem Ichimoku B/L (9, 26, 52, 26) | 0.001348 | NEUTRAL |
Previsão do preço de SALT com base nos fluxos financeiros mundiais
Definições dos fluxos financeiros mundiais, usadas na previsão do preço do SALT
M0: o total de todas as moedas físicas, mais as contas no Banco Central que podem ser trocadas por moedas físicas.
M1: o valor de M0, mais o valor em contas de demanda, incluindo contas 'correntes'.
M2: o valor de M1, mais a maioria das contas de poupança, do mercado de moedas e de certificados de depósito (CD) de menos de US$ 100.000.
Previsões de preço de SALT por empresas de Internet ou nichos tecnológicos
| Comparação | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Facebook stock | $0.009375 | $0.013174 | $0.018512 | $0.026012 | $0.036552 | $0.051361 |
| Amazon.com stock | $0.013922 | $0.029049 | $0.060612 | $0.126472 | $0.263891 | $0.550626 |
| Apple stock | $0.009464 | $0.013424 | $0.019041 | $0.0270082 | $0.0383091 | $0.054338 |
| Netflix stock | $0.010527 | $0.016611 | $0.0262098 | $0.041354 | $0.065251 | $0.102956 |
| Google stock | $0.00864 | $0.011189 | $0.01449 | $0.018764 | $0.02430041 | $0.031468 |
| Tesla stock | $0.015125 | $0.034288 | $0.077729 | $0.1762059 | $0.399445 | $0.905512 |
| Kodak stock | $0.0050034 | $0.003752 | $0.002813 | $0.0021099 | $0.001582 | $0.001186 |
| Nokia stock | $0.00442 | $0.002928 | $0.001939 | $0.001285 | $0.000851 | $0.000563 |
Este cálculo mostra quanto a criptomoeda pode custar, se assumirmos que sua capitalização se comportará da mesma forma que a de algumas empresas de Internet ou nichos tecnológicos. Se você extrapolar os dados, poderá obter uma imagem em potencial do preço futuro para 2024, 2025, 2026, 2027, 2028, 2029 e 2030.
Visão geral da previsão para SALT
Você pode fazer perguntas como: 'Devo investir em SALT agora?', 'Devo comprar SALT hoje?', 'SALT será um bom ou mau investimento no curto ou no longo prazo?'.
Atualizamos a previsão para SALT regularmente com novos valores. Veja nossas previsões semelhantes. Fazemos previsões de preços futuros para uma enorme quantidade de moedas digitais, como SALT, com métodos de análise técnica.
Se você estiver tentando encontrar criptomoedas com bom retorno, você deve explorar o máximo de fontes de informações disponíveis sobre SALT para poder tomar sozinho uma decisão de tão grande responsabilidade sobre o seu investimento.
O preço de SALT é de $0.006672 USD hoje, mas o preço pode tanto subir quanto descer e seu investimento pode ser perdido, porque criptomoedas são ativos de alto risco
Previsão do preço de SALT com base no padrão de crescimento do Bitcoin
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| Se SALT tiver 1% da média anterior do crescimento anual do Bitcoin | $0.006845 | $0.007023 | $0.0072061 | $0.007393 |
| Se SALT tiver 2% da média anterior do crescimento anual do Bitcoin | $0.007019 | $0.007384 | $0.007767 | $0.008171 |
| Se SALT tiver 5% da média anterior do crescimento anual do Bitcoin | $0.007539 | $0.008519 | $0.009626 | $0.010877 |
| Se SALT tiver 10% da média anterior do crescimento anual do Bitcoin | $0.0084065 | $0.010591 | $0.013344 | $0.016813 |
| Se SALT tiver 20% da média anterior do crescimento anual do Bitcoin | $0.01014 | $0.015412 | $0.023425 | $0.0356034 |
| Se SALT tiver 50% da média anterior do crescimento anual do Bitcoin | $0.015343 | $0.035285 | $0.081145 | $0.1866067 |
| Se SALT tiver 100% da média anterior do crescimento anual do Bitcoin | $0.024015 | $0.086439 | $0.311124 | $1.11 |
Perguntas Frequentes sobre SALT
SALT é um bom investimento?
A decisão de adquirir SALT depende inteiramente da sua tolerância individual ao risco. Como você pode perceber, o valor de SALT experimentou uma queda de -2.365% nas últimas 24 horas, e SALT registrou um declínio de durante os últimos 30 dias. Consequentemente, a decisão de investir ou não em SALT dependerá de quão alinhado esse investimento está com suas aspirações de negociação.
SALT pode subir?
Parece que o valor médio de SALT pode potencialmente subir para $0.006881 até o final deste ano. Observando as perspectivas de SALT em um horizonte de cinco anos mais longo, a moeda digital poderia potencialmente crescer até $0.021633. No entanto, dada a imprevisibilidade do mercado, é vital conduzir uma pesquisa aprofundada antes de investir quaisquer fundos em um projeto, rede ou ativo específico.
Qual será o preço de SALT na próxima semana?
Com base na nossa nova previsão experimental de SALT, o preço de SALT aumentará 0.86% na próxima semana e atingirá $0.006729 até 13 de janeiro de 2026.
Qual será o preço de SALT no próximo mês?
Com base na nossa nova previsão experimental de SALT, o preço de SALT diminuirá -11.62% no próximo mês e atingirá $0.005897 até 5 de fevereiro de 2026.
Até onde o preço de SALT pode subir este ano em 2026?
De acordo com nossa previsão mais recente sobre o valor de SALT em 2026, espera-se que SALT fluctue dentro do intervalo de $0.0023052 e $0.006881. No entanto, é crucial lembrar que o mercado de criptomoedas é excepcionalmente instável, e essa previsão de preço de SALT não considera flutuações repentinas e extremas de preço.
Onde estará SALT em 5 anos?
O futuro de SALT parece seguir uma tendência de alta, com um preço máximo de $0.021633 projetada após um período de cinco anos. Com base na previsão de SALT para 2030, o valor de SALT pode potencialmente atingir seu pico mais alto de aproximadamente $0.021633, enquanto seu pico mais baixo está previsto para cerca de $0.007482.
Quanto será SALT em 2026?
Com base na nossa nova simulação experimental de previsão de preços de SALT, espera-se que o valor de SALT em 2026 aumente 3.13% para $0.006881 se o melhor cenário ocorrer. O preço ficará entre $0.006881 e $0.0023052 durante 2026.
Quanto será SALT em 2027?
De acordo com nossa última simulação experimental para previsão de preços de SALT, o valor de SALT pode diminuir -12.62% para $0.005829 em 2027, assumindo as condições mais favoráveis. O preço está projetado para flutuar entre $0.005829 e $0.002219 ao longo do ano.
Quanto será SALT em 2028?
Nosso novo modelo experimental de previsão de preços de SALT sugere que o valor de SALT em 2028 pode aumentar 47.02%, alcançando $0.0098095 no melhor cenário. O preço é esperado para variar entre $0.0098095 e $0.004005 durante o ano.
Quanto será SALT em 2029?
Com base no nosso modelo de previsão experimental, o valor de SALT pode experimentar um 333.75% crescimento em 2029, potencialmente alcançando $0.028941 sob condições ótimas. A faixa de preço prevista para 2029 está entre $0.028941 e $0.008797.
Quanto será SALT em 2030?
Usando nossa nova simulação experimental para previsões de preços de SALT, espera-se que o valor de SALT em 2030 aumente 224.23%, alcançando $0.021633 no melhor cenário. O preço está previsto para variar entre $0.021633 e $0.007482 ao longo de 2030.
Quanto será SALT em 2031?
Nossa simulação experimental indica que o preço de SALT poderia aumentar 195.98% em 2031, potencialmente atingindo $0.019748 sob condições ideais. O preço provavelmente oscilará entre $0.019748 e $0.008846 durante o ano.
Quanto será SALT em 2032?
Com base nos achados da nossa mais recente previsão experimental de preços de SALT, SALT poderia ver um 449.04% aumento em valor, atingindo $0.036633 se o cenário mais positivo se desenrolar em 2032. O preço é esperado para permanecer dentro de uma faixa de $0.036633 e $0.0135032 ao longo do ano.
Quanto será SALT em 2033?
De acordo com nossa previsão experimental de preços de SALT, espera-se que o valor de SALT seja aumentar 1362.43% em 2033, com o preço potencial mais alto sendo $0.097577. Ao longo do ano, o preço de SALT poderia variar entre $0.097577 e $0.031378.
Quanto será SALT em 2034?
Os resultados da nossa nova simulação de previsão de preços de SALT sugerem que SALT pode aumentar 746.96% em 2034, atingindo potencialmente $0.056511 nas melhores circunstâncias. A faixa de preço prevista para o ano é entre $0.056511 e $0.025226.
Quanto será SALT em 2035?
Com base em nossa previsão experimental para o preço de SALT, SALT poderia aumentar 897.93%, com o valor potencialmente atingindo $0.066584 em 2035. A faixa de preço esperada para o ano está entre $0.066584 e $0.029826.
Quanto será SALT em 2036?
Nossa recente simulação de previsão de preços de SALT sugere que o valor de SALT pode aumentar 1964.7% em 2036, possivelmente atingindo $0.137761 se as condições forem ideais. A faixa de preço esperada para 2036 está entre $0.137761 e $0.049371.
Quanto será SALT em 2037?
De acordo com a simulação experimental, o valor de SALT poderia aumentar 4830.69% em 2037, com um pico de $0.328987 sob condições favoráveis. O preço é esperado para cair entre $0.328987 e $0.128216 ao longo do ano.
Previsões relacionadas
Previsão de Preço do Baby Shiba Inu
Previsão de Preço do VersaGames
Previsão de Preço do King Shiba
Previsão de Preço do Galvan
Previsão de Preço do Artem
Previsão de Preço do CoinBuck
Previsão de Preço do BABYTRUMP
Previsão de Preço do Charged Particles
Previsão de Preço do Gunstar Metaverse
Previsão de Preço do GST
Previsão de Preço do Blockchain Monster Hunt
Previsão de Preço do Modefi
Previsão de Preço do Factor
Previsão de Preço do Stride Staked Stars
Previsão de Preço do OpenDAO
Previsão de Preço do Revenant
Previsão de Preço do Mochimo
Previsão de Preço do Alvey Chain
Previsão de Preço do PAC Global
Previsão de Preço do Satoxcoin
Previsão de Preço do Blastar
Previsão de Preço do PUMLxPrevisão de Preço do Vigorus
Previsão de Preço do BeamSwap
Previsão de Preço do OneLedger
Como ler e prever os movimentos de preço de SALT?
Traders de SALT utilizam indicadores e padrões de gráfico para prever a direção do mercado. Eles também identificam níveis-chave de suporte e resistência para avaliar quando uma tendência de baixa pode desacelerar ou uma tendência de alta pode estagnar.
Indicadores de Previsão de Preço de SALT
Médias móveis são ferramentas populares para a previsão de preço de SALT. Uma média móvel simples (SMA) calcula o preço médio de fechamento de SALT em um período específico, como uma SMA de 12 dias. Uma média móvel exponencial (EMA) dá mais peso aos preços recentes, reagindo mais rapidamente às mudanças de preço.
Médias móveis comumente usadas no mercado de criptomoedas incluem as de 50 dias, 100 dias e 200 dias, que ajudam a identificar níveis-chave de resistência e suporte. Um movimento de preço de SALT acima dessas médias é visto como altista, enquanto uma queda abaixo indica fraqueza.
Traders também usam RSI e níveis de retração de Fibonacci para avaliar a direção futura de SALT.
Como ler gráficos de SALT e prever movimentos de preço?
A maioria dos traders prefere gráficos de velas em vez de gráficos de linha simples porque eles fornecem informações mais detalhadas. Velas podem representar a ação de preço de SALT em diferentes períodos de tempo, como 5 minutos para tendências de curto prazo e semanal para tendências de longo prazo. Opções populares incluem gráficos de 1 hora, 4 horas e 1 dia.
Por exemplo, um gráfico de velas de 1 hora mostra os preços de abertura, fechamento, máximo e mínimo de SALT dentro de cada hora. A cor da vela é crucial: verde indica que o preço fechou mais alto do que abriu, enquanto vermelho significa o oposto. Alguns gráficos usam velas vazias e preenchidas para transmitir a mesma informação.
O que afeta o preço de SALT?
A ação de preço de SALT é impulsionada pela oferta e demanda, influenciada por fatores como reduções pela metade das recompensas de bloco, hard forks e atualizações de protocolo. Eventos do mundo real, como regulamentações, adoção por empresas e governos e hacks de exchanges de criptomoedas, também impactam o preço de SALT. A capitalização de mercado de SALT pode mudar rapidamente.
Traders frequentemente monitoram a atividade de "baleias" de SALT, grandes detentores de SALT, pois suas ações podem influenciar significativamente os movimentos de preço no relativamente pequeno mercado de SALT.
Padrões de previsão de preço altistas e baixistas
Traders frequentemente identificam padrões de velas para ganhar vantagem em previsões de preço de criptomoedas. Certas formações indicam tendências altistas, enquanto outras sugerem movimentos baixistas.
Padrões de velas altistas comumente seguidos:
- Martelo
- Engolfo de Alta
- Linha de Perfuração
- Estrela da Manhã
- Três Soldados Brancos
Padrões de velas baixistas comuns:
- Harami de Baixa
- Nuvem Negra
- Estrela da Noite
- Estrela Cadente
- Homem Enforcado


