Previsão de Preço Radix - Projeção XRD
Previsão de Preço Radix até $0.00152 até 2026
| Ano | Preço Mínimo | Preço Máximo |
|---|---|---|
| 2026 | $0.0005093 | $0.00152 |
| 2027 | $0.00049 | $0.001288 |
| 2028 | $0.000884 | $0.002167 |
| 2029 | $0.001943 | $0.006394 |
| 2030 | $0.001653 | $0.004779 |
| 2031 | $0.001954 | $0.004363 |
| 2032 | $0.002983 | $0.008093 |
| 2033 | $0.006932 | $0.021559 |
| 2034 | $0.005573 | $0.012485 |
| 2035 | $0.006589 | $0.014711 |
Calculadora de lucro do investimento
Se você abrir um short de $10,000.00 em Radix hoje e fechar em Apr 06, 2026, nossa previsão mostra que pode lucrar cerca de $3,956.04, com um retorno de 39.56% nos próximos 90 dias.
Previsão de preço de longo prazo de Radix para os anos 2027, 2028, 2029, 2030, 2031, 2032 e 2037
[
'name' => 'Radix'
'name_with_ticker' => 'Radix <small>XRD</small>'
'name_lang' => 'Radix'
'name_lang_with_ticker' => 'Radix <small>XRD</small>'
'name_with_lang' => 'Radix'
'name_with_lang_with_ticker' => 'Radix <small>XRD</small>'
'image' => '/uploads/coins/radix.png?1719379947'
'price_for_sd' => 0.001474
'ticker' => 'XRD'
'marketcap' => '$19.62M'
'low24h' => '$0.001471'
'high24h' => '$0.00151'
'volume24h' => '$250.37K'
'current_supply' => '13.33B'
'max_supply' => '13.33B'
'algo' => null
'proof' => null
'ico_price_and_roi' => '—'
'price' => '$0.001474'
'change_24h_pct' => '-1.9863%'
'ath_price' => '$0.6512'
'ath_days' => 1514
'ath_exchange' => null
'ath_pair' => null
'ath_date' => '14 de nov. de 2021'
'ath_pct' => '-99.77%'
'fdv' => '$19.62M'
'new_prediction' => true
'change_24h_pct_is_increased' => false
'change_30d_pct' => '-91.11%'
'change_30d_pct_is_increased' => false
'max_price' => '$0.072688'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.001486'
'next_week_prediction_price_date' => '13 de janeiro de 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.001302'
'next_month_prediction_price_date' => '5 de fevereiro de 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.0005093'
'current_year_max_price_prediction' => '$0.00152'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.001653'
'grand_prediction_max_price' => '$0.004779'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.0015021353145708
107 => 0.0015077437425603
108 => 0.001520379817194
109 => 0.0014124059429474
110 => 0.0014608830425377
111 => 0.0014893587968571
112 => 0.0013607043028854
113 => 0.001486815711167
114 => 0.0014105263580169
115 => 0.0013846326057302
116 => 0.0014194951319418
117 => 0.0014059091715722
118 => 0.0013942287606408
119 => 0.0013877108906461
120 => 0.0014133100822594
121 => 0.001412115849373
122 => 0.0013702306033047
123 => 0.0013155930072697
124 => 0.001333931177917
125 => 0.0013272687485996
126 => 0.0013031232452827
127 => 0.0013193943991791
128 => 0.001247744472062
129 => 0.0011244744964962
130 => 0.0012059104182165
131 => 0.0012027752238155
201 => 0.0012011943166287
202 => 0.0012623911610779
203 => 0.0012565084965356
204 => 0.0012458314027879
205 => 0.001302927152083
206 => 0.0012820864355441
207 => 0.0013463126132266
208 => 0.001388616127737
209 => 0.0013778865880818
210 => 0.0014176732479495
211 => 0.0013343536523308
212 => 0.0013620290797934
213 => 0.0013677329470369
214 => 0.0013022225993994
215 => 0.0012574709732068
216 => 0.0012544865499457
217 => 0.0011768933972817
218 => 0.0012183430331248
219 => 0.0012548169973642
220 => 0.0012373487989875
221 => 0.001231818889229
222 => 0.001260069998894
223 => 0.0012622653520693
224 => 0.001212211067018
225 => 0.0012226189378932
226 => 0.0012660214896075
227 => 0.0012215253049495
228 => 0.0011350764865695
301 => 0.0011136359843628
302 => 0.0011107754261416
303 => 0.0010526270836894
304 => 0.001115068741242
305 => 0.0010878112843879
306 => 0.0011739172639955
307 => 0.0011247339902393
308 => 0.001122613797609
309 => 0.0011194088154837
310 => 0.0010693581350574
311 => 0.0010803160531841
312 => 0.0011167418419752
313 => 0.0011297389737818
314 => 0.001128383266452
315 => 0.0011165633357381
316 => 0.0011219744394911
317 => 0.0011045433889493
318 => 0.001098388122207
319 => 0.0010789604072289
320 => 0.0010504070332543
321 => 0.0010543775550334
322 => 0.00099780584979305
323 => 0.00096698258229043
324 => 0.00095845110808985
325 => 0.00094704246423397
326 => 0.00095973974477061
327 => 0.00099764558925996
328 => 0.00095192309863228
329 => 0.00087353509551094
330 => 0.00087824634806519
331 => 0.00088883113377116
401 => 0.00086910645563346
402 => 0.00085043870314288
403 => 0.00086666879937081
404 => 0.00083345476907751
405 => 0.0008928448906502
406 => 0.00089123855430055
407 => 0.00091337551896237
408 => 0.00092721821726164
409 => 0.0008953152793086
410 => 0.00088729177668812
411 => 0.00089186232842861
412 => 0.00081632128918822
413 => 0.00090720220443685
414 => 0.00090798814636583
415 => 0.0009012584344107
416 => 0.00094964971614714
417 => 0.0010517704142303
418 => 0.0010133484998158
419 => 0.00099847037324606
420 => 0.00097018704376105
421 => 0.0010078729010019
422 => 0.0010049792151567
423 => 0.00099189287036725
424 => 0.00098397820820668
425 => 0.00099856121591432
426 => 0.0009821712121687
427 => 0.0009792271171288
428 => 0.00096138910439403
429 => 0.00095502174542558
430 => 0.0009503076063372
501 => 0.00094511780240264
502 => 0.00095656521666372
503 => 0.00093062386991536
504 => 0.00089934114879841
505 => 0.00089674032902127
506 => 0.00090392142109237
507 => 0.00090074432242034
508 => 0.00089672511829514
509 => 0.00088905136305504
510 => 0.00088677472379914
511 => 0.00089417269691247
512 => 0.00088582081659615
513 => 0.00089814447095334
514 => 0.00089479311886708
515 => 0.00087607273854337
516 => 0.00085274021348751
517 => 0.00085253250507289
518 => 0.00084750555082262
519 => 0.00084110296877726
520 => 0.00083932191692348
521 => 0.00086530194593591
522 => 0.0009190798284748
523 => 0.00090852194333675
524 => 0.00091615109736458
525 => 0.00095367898433024
526 => 0.00096560797109369
527 => 0.00095714105884253
528 => 0.00094555102713674
529 => 0.00094606092971139
530 => 0.00098566757659126
531 => 0.00098813779457466
601 => 0.00099437923849618
602 => 0.0010024012577672
603 => 0.00095850724341257
604 => 0.00094399352558261
605 => 0.00093711612088436
606 => 0.00091593637630435
607 => 0.00093877691501983
608 => 0.0009254687112397
609 => 0.00092726444260262
610 => 0.00092609497019675
611 => 0.00092673358120973
612 => 0.00089282828990084
613 => 0.00090518159604415
614 => 0.00088464182861777
615 => 0.00085714138573094
616 => 0.00085704919460348
617 => 0.00086377988904018
618 => 0.00085977620861713
619 => 0.00084900240754274
620 => 0.00085053277513445
621 => 0.00083712514470262
622 => 0.00085216070422186
623 => 0.00085259187026906
624 => 0.00084680236086168
625 => 0.00086996671480847
626 => 0.00087945716952078
627 => 0.00087564639040554
628 => 0.00087918979509929
629 => 0.00090896067113023
630 => 0.00091381462291766
701 => 0.00091597042766758
702 => 0.00091308193489209
703 => 0.00087973395206197
704 => 0.00088121307690706
705 => 0.00087036024020856
706 => 0.00086119073684208
707 => 0.00086155746888902
708 => 0.00086627178557139
709 => 0.00088685948301432
710 => 0.00093018507857191
711 => 0.00093182925325272
712 => 0.00093382204092982
713 => 0.0009257163719522
714 => 0.00092327162462775
715 => 0.00092649687739153
716 => 0.00094276769313137
717 => 0.00098462064869761
718 => 0.00096982701893558
719 => 0.00095779956766249
720 => 0.00096835088500657
721 => 0.00096672659240541
722 => 0.0009530159282213
723 => 0.00095263111554244
724 => 0.00092631596740864
725 => 0.0009165878563105
726 => 0.00090845831854041
727 => 0.00089958107552242
728 => 0.00089431834829347
729 => 0.00090240428918388
730 => 0.00090425363953556
731 => 0.00088657358846062
801 => 0.00088416386282914
802 => 0.00089860177418734
803 => 0.00089224818769819
804 => 0.00089878300896365
805 => 0.00090029914355189
806 => 0.00090005501096364
807 => 0.0008934211369642
808 => 0.00089764937042648
809 => 0.00088764833779114
810 => 0.00087677371690674
811 => 0.00086983638629532
812 => 0.00086378264523348
813 => 0.00086714161262008
814 => 0.00085516750721005
815 => 0.00085133674989825
816 => 0.00089621694006772
817 => 0.00092937041908927
818 => 0.00092888835437407
819 => 0.00092595390939732
820 => 0.00092159391939229
821 => 0.0009424487327058
822 => 0.00093518333275253
823 => 0.00094046951826301
824 => 0.00094181507433594
825 => 0.00094588766731312
826 => 0.00094734326925127
827 => 0.00094294342921364
828 => 0.00092817702865214
829 => 0.00089138056240012
830 => 0.00087425170802965
831 => 0.00086859890078375
901 => 0.00086880436959093
902 => 0.0008631366226358
903 => 0.00086480602812468
904 => 0.00086255607153474
905 => 0.00085829519807634
906 => 0.00086687851569085
907 => 0.00086786766308679
908 => 0.00086586421419256
909 => 0.00086633609893306
910 => 0.000849748397773
911 => 0.00085100952466561
912 => 0.00084398740987132
913 => 0.00084267084800025
914 => 0.00082491955328577
915 => 0.00079347056160777
916 => 0.00081089635582487
917 => 0.00078984844684807
918 => 0.00078187728479069
919 => 0.00081961152620028
920 => 0.0008158240549477
921 => 0.00080934155053745
922 => 0.0007997525754424
923 => 0.0007961959313041
924 => 0.00077458688741645
925 => 0.0007733101098238
926 => 0.00078402013546778
927 => 0.00077907782714256
928 => 0.00077213695445542
929 => 0.00074699781716759
930 => 0.00071873310357375
1001 => 0.00071958623761149
1002 => 0.000728576717122
1003 => 0.00075471774883015
1004 => 0.00074450399549734
1005 => 0.00073709380026506
1006 => 0.00073570609344771
1007 => 0.0007530761496279
1008 => 0.00077765841826215
1009 => 0.00078919186870808
1010 => 0.00077776256959226
1011 => 0.00076463320616518
1012 => 0.00076543232968137
1013 => 0.00077074854042097
1014 => 0.00077130719900253
1015 => 0.00076276133313187
1016 => 0.00076516694431676
1017 => 0.00076151260095321
1018 => 0.00073908590247646
1019 => 0.00073868027461685
1020 => 0.00073317640113129
1021 => 0.00073300974602953
1022 => 0.00072364628422501
1023 => 0.000722336271192
1024 => 0.00070374454945762
1025 => 0.00071598167700411
1026 => 0.00070777365432396
1027 => 0.00069540222806816
1028 => 0.00069326938951858
1029 => 0.0006932052738163
1030 => 0.00070590796238072
1031 => 0.00071583323869237
1101 => 0.00070791643639264
1102 => 0.00070611393396975
1103 => 0.00072535994411526
1104 => 0.00072291071389297
1105 => 0.00072078969631631
1106 => 0.00077545734572664
1107 => 0.00073218363544848
1108 => 0.00071331382779017
1109 => 0.00068995885753373
1110 => 0.00069756335361521
1111 => 0.00069916573267287
1112 => 0.00064300123925594
1113 => 0.00062021531127153
1114 => 0.00061239603945687
1115 => 0.00060789593797925
1116 => 0.00060994669073132
1117 => 0.00058943668302257
1118 => 0.00060321974740707
1119 => 0.00058545981439908
1120 => 0.00058248230383447
1121 => 0.00061423926408627
1122 => 0.00061865805958383
1123 => 0.00059980610517906
1124 => 0.00061191211176111
1125 => 0.00060752230548838
1126 => 0.00058576425747641
1127 => 0.00058493326008372
1128 => 0.00057401583642368
1129 => 0.0005569321824255
1130 => 0.0005491244941327
1201 => 0.00054505818228035
1202 => 0.00054673602180147
1203 => 0.00054588765479685
1204 => 0.0005403514862342
1205 => 0.00054620498149846
1206 => 0.00053125171992951
1207 => 0.00052529721068614
1208 => 0.00052260769700447
1209 => 0.0005093358166844
1210 => 0.0005304572803056
1211 => 0.00053461847472016
1212 => 0.00053878786797318
1213 => 0.00057507958967502
1214 => 0.00057326655781814
1215 => 0.00058965548282204
1216 => 0.00058901863933368
1217 => 0.00058434425243959
1218 => 0.00056462378303273
1219 => 0.00057248401065473
1220 => 0.00054829145178478
1221 => 0.00056641816182425
1222 => 0.00055814588835174
1223 => 0.00056362129784203
1224 => 0.00055377601788072
1225 => 0.00055922480231296
1226 => 0.00053560524828599
1227 => 0.0005135496410717
1228 => 0.00052242546125804
1229 => 0.00053207449287375
1230 => 0.00055299605194415
1231 => 0.00054053534396094
]
'min_raw' => 0.0005093358166844
'max_raw' => 0.001520379817194
'avg_raw' => 0.0010148578169392
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.0005093'
'max' => '$0.00152'
'avg' => '$0.001014'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.0009648641833156
'max_diff' => 4.6179817194038E-5
'year' => 2026
]
1 => [
'items' => [
101 => 0.00054501668574324
102 => 0.00053000494094009
103 => 0.00049903142351828
104 => 0.00049920673026317
105 => 0.00049444212940259
106 => 0.00049032481861592
107 => 0.00054196660616771
108 => 0.0005355441335498
109 => 0.00052531076398559
110 => 0.00053900853580523
111 => 0.00054263044408721
112 => 0.0005427335547242
113 => 0.00055272709545314
114 => 0.00055806064993162
115 => 0.0005590007120254
116 => 0.00057472576428714
117 => 0.00057999659438682
118 => 0.0006017063976116
119 => 0.00055760813509759
120 => 0.00055669996040079
121 => 0.00053920129154535
122 => 0.00052810335911423
123 => 0.00053996117647361
124 => 0.00055046558390053
125 => 0.00053952769276503
126 => 0.00054095595043584
127 => 0.00052627272524497
128 => 0.00053152128734075
129 => 0.0005360420560753
130 => 0.00053354595329858
131 => 0.0005298091666291
201 => 0.00054960434228221
202 => 0.00054848742089394
203 => 0.00056692114355123
204 => 0.00058129154857074
205 => 0.00060704588338288
206 => 0.00058016989240258
207 => 0.00057919042446887
208 => 0.00058876488063249
209 => 0.00057999512858746
210 => 0.00058553730915837
211 => 0.00060615295241113
212 => 0.00060658852846735
213 => 0.00059929206831752
214 => 0.0005988480780543
215 => 0.00060024944304061
216 => 0.00060845728153622
217 => 0.00060558921056445
218 => 0.00060890821490365
219 => 0.00061305868065222
220 => 0.00063022676674933
221 => 0.00063436593418506
222 => 0.0006243099032285
223 => 0.00062521785023127
224 => 0.00062145661860929
225 => 0.00061782331599056
226 => 0.00062599044967624
227 => 0.00064091604701224
228 => 0.00064082319564585
301 => 0.00064428564411565
302 => 0.00064644272082786
303 => 0.00063718296850238
304 => 0.00063115521022903
305 => 0.00063346663630726
306 => 0.00063716265694266
307 => 0.00063226806662892
308 => 0.00060205638781775
309 => 0.00061122068123954
310 => 0.0006096952947031
311 => 0.00060752295878187
312 => 0.00061673772668287
313 => 0.00061584893983924
314 => 0.00058922632324884
315 => 0.00059093061678608
316 => 0.00058932996698363
317 => 0.0005945019939575
318 => 0.00057971582215773
319 => 0.00058426394901695
320 => 0.00058711649154701
321 => 0.00058879666101148
322 => 0.00059486658522014
323 => 0.00059415434967306
324 => 0.00059482231165851
325 => 0.00060382240685937
326 => 0.0006493417999256
327 => 0.00065181932005732
328 => 0.00063961910481834
329 => 0.0006444928501677
330 => 0.00063513632486786
331 => 0.00064141742298492
401 => 0.00064571479079401
402 => 0.00062629581200101
403 => 0.00062514594610502
404 => 0.00061575080309696
405 => 0.00062079922078139
406 => 0.00061276682525138
407 => 0.00061473769415318
408 => 0.00060922697288649
409 => 0.00061914517399287
410 => 0.00063023526396243
411 => 0.00063303705864966
412 => 0.000625666743076
413 => 0.0006203301488732
414 => 0.00061096084743651
415 => 0.00062654220453423
416 => 0.00063109866818286
417 => 0.00062651827137043
418 => 0.00062545689334535
419 => 0.00062344558390567
420 => 0.00062588360215104
421 => 0.00063107385270328
422 => 0.00062862622639172
423 => 0.00063024292669213
424 => 0.00062408173228109
425 => 0.0006371860338657
426 => 0.00065799881850399
427 => 0.00065806573500984
428 => 0.00065561809550466
429 => 0.00065461657415427
430 => 0.00065712800082177
501 => 0.00065849034676477
502 => 0.00066661184009055
503 => 0.00067532652600369
504 => 0.00071599416264494
505 => 0.00070457485301025
506 => 0.0007406575995669
507 => 0.00076919436733497
508 => 0.00077775129622699
509 => 0.00076987932428094
510 => 0.00074294973348909
511 => 0.00074162843929044
512 => 0.00078187261731344
513 => 0.00077050179372182
514 => 0.00076914927043726
515 => 0.00075476070781366
516 => 0.00076326613038235
517 => 0.00076140586969956
518 => 0.0007584693572047
519 => 0.0007746971109729
520 => 0.0008050740173654
521 => 0.0008003394916313
522 => 0.00079680538779913
523 => 0.0007813199735687
524 => 0.00079064565172791
525 => 0.00078732495635701
526 => 0.00080159277103572
527 => 0.00079314083369085
528 => 0.0007704156485496
529 => 0.00077403470918653
530 => 0.0007734876954518
531 => 0.0007847451993508
601 => 0.00078136597610874
602 => 0.00077282784787919
603 => 0.00080497019240174
604 => 0.00080288304733356
605 => 0.00080584214185245
606 => 0.0008071448267727
607 => 0.00082670930547194
608 => 0.00083472424640152
609 => 0.00083654377831383
610 => 0.00084415735229916
611 => 0.00083635434565727
612 => 0.00086757193567427
613 => 0.00088832981143871
614 => 0.00091244115232961
615 => 0.0009476743018887
616 => 0.00096092229204777
617 => 0.00095852916120369
618 => 0.00098524253308901
619 => 0.001033245868562
620 => 0.00096823200777068
621 => 0.00103669176105
622 => 0.0010150181935676
623 => 0.00096363055495775
624 => 0.00096032179685174
625 => 0.00099512210234108
626 => 0.0010723058305112
627 => 0.0010529721820152
628 => 0.001072337453434
629 => 0.001049746835677
630 => 0.0010486250210966
701 => 0.0010712402775528
702 => 0.0011240820569559
703 => 0.0010989789083059
704 => 0.0010629873891717
705 => 0.0010895629668104
706 => 0.0010665407420061
707 => 0.0010146652260072
708 => 0.0010529573979385
709 => 0.0010273525130663
710 => 0.0010348253797026
711 => 0.0010886430392648
712 => 0.0010821675560824
713 => 0.001090547430934
714 => 0.0010757571711604
715 => 0.001061940736322
716 => 0.0010361513346741
717 => 0.0010285163642484
718 => 0.0010306263953966
719 => 0.0010285153186217
720 => 0.0010140863854166
721 => 0.0010109704586647
722 => 0.0010057771108997
723 => 0.0010073867465302
724 => 0.00099762173336461
725 => 0.0010160503307628
726 => 0.0010194708408322
727 => 0.0010328816372011
728 => 0.0010342739905688
729 => 0.0010716228675655
730 => 0.0010510517337381
731 => 0.0010648526263358
801 => 0.0010636181446028
802 => 0.00096474428090737
803 => 0.00097836822695312
804 => 0.00099956281157051
805 => 0.00099001467992896
806 => 0.00097651585570651
807 => 0.00096561483138572
808 => 0.00094909866485276
809 => 0.00097234485208302
810 => 0.0010029111163344
811 => 0.0010350492014722
812 => 0.0010736610049945
813 => 0.0010650432999393
814 => 0.0010343273806632
815 => 0.0010357052743639
816 => 0.0010442228710406
817 => 0.001033191809439
818 => 0.0010299385340208
819 => 0.0010437759209556
820 => 0.0010438712114346
821 => 0.0010311786419135
822 => 0.0010170731736066
823 => 0.0010170140711794
824 => 0.0010145041393368
825 => 0.0010501933469759
826 => 0.0010698188025915
827 => 0.0010720688294498
828 => 0.0010696673578567
829 => 0.0010705915889619
830 => 0.0010591719687566
831 => 0.0010852738341628
901 => 0.0011092274870664
902 => 0.0011028073963931
903 => 0.0010931827678041
904 => 0.001085516287548
905 => 0.001101001417289
906 => 0.0011003118888375
907 => 0.001109018272805
908 => 0.0011086233009377
909 => 0.0011056956714731
910 => 0.001102807500948
911 => 0.0011142587706163
912 => 0.0011109609888536
913 => 0.0011076580847249
914 => 0.0011010336048456
915 => 0.0011019339816821
916 => 0.0010923110149209
917 => 0.0010878589901802
918 => 0.0010209112199808
919 => 0.001003020588202
920 => 0.001008649345157
921 => 0.0010105024780972
922 => 0.0010027164522196
923 => 0.0010138796132622
924 => 0.0010121398464384
925 => 0.0010189082614201
926 => 0.00101467964959
927 => 0.0010148531932945
928 => 0.0010272886390519
929 => 0.0010308987018594
930 => 0.0010290625947787
1001 => 0.00103034854124
1002 => 0.0010599826346754
1003 => 0.0010557696142339
1004 => 0.0010535315310929
1005 => 0.0010541514954183
1006 => 0.0010617236416532
1007 => 0.0010638434291751
1008 => 0.0010548617404899
1009 => 0.0010590975567964
1010 => 0.0010771331250241
1011 => 0.001083444553179
1012 => 0.0011035876021923
1013 => 0.0010950304769573
1014 => 0.0011107374506698
1015 => 0.00115901533296
1016 => 0.0011975830459088
1017 => 0.001162114583203
1018 => 0.0012329392764648
1019 => 0.001288086459368
1020 => 0.0012859698186357
1021 => 0.0012763536317192
1022 => 0.0012135700301477
1023 => 0.0011557956239308
1024 => 0.0012041263679621
1025 => 0.0012042495729679
1026 => 0.0012000979191932
1027 => 0.0011743123541601
1028 => 0.0011992006374235
1029 => 0.001201176178968
1030 => 0.001200070401042
1031 => 0.0011803006687886
1101 => 0.0011501159416949
1102 => 0.0011560139651169
1103 => 0.0011656750477987
1104 => 0.0011473846027691
1105 => 0.001141539697325
1106 => 0.0011524064885844
1107 => 0.0011874215542079
1108 => 0.0011808021588802
1109 => 0.0011806292997171
1110 => 0.0012089498799893
1111 => 0.0011886784564782
1112 => 0.0011560883580804
1113 => 0.0011478589284243
1114 => 0.0011186499971535
1115 => 0.0011388247100209
1116 => 0.0011395507620207
1117 => 0.0011285012779638
1118 => 0.0011569849628144
1119 => 0.0011567224806441
1120 => 0.0011837635001728
1121 => 0.0012354557733685
1122 => 0.0012201678245622
1123 => 0.0012023896034247
1124 => 0.0012043225889989
1125 => 0.0012255226697336
1126 => 0.0012127046169706
1127 => 0.0012173140781148
1128 => 0.0012255156927621
1129 => 0.0012304639305134
1130 => 0.0012036106137356
1201 => 0.001197349821052
1202 => 0.0011845424364611
1203 => 0.0011812012288825
1204 => 0.001191632576397
1205 => 0.0011888842848719
1206 => 0.0011394897401615
1207 => 0.0011343277354106
1208 => 0.0011344860467267
1209 => 0.0011215059403406
1210 => 0.0011017081625194
1211 => 0.0011537355405697
1212 => 0.0011495570139895
1213 => 0.0011449442440374
1214 => 0.0011455092820364
1215 => 0.0011680926034765
1216 => 0.0011549931365562
1217 => 0.0011898202163244
1218 => 0.0011826608157219
1219 => 0.0011753178035088
1220 => 0.0011743027755474
1221 => 0.0011714763423217
1222 => 0.0011617834511214
1223 => 0.0011500787025446
1224 => 0.0011423502136863
1225 => 0.0010537576877217
1226 => 0.0010701999452217
1227 => 0.0010891152637166
1228 => 0.0010956447558626
1229 => 0.0010844756077197
1230 => 0.0011622244771669
1231 => 0.0011764299448216
]
'min_raw' => 0.00049032481861592
'max_raw' => 0.001288086459368
'avg_raw' => 0.00088920563899195
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.00049'
'max' => '$0.001288'
'avg' => '$0.000889'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -1.9010998068482E-5
'max_diff' => -0.00023229335782606
'year' => 2027
]
2 => [
'items' => [
101 => 0.0011334006566957
102 => 0.0011253516337615
103 => 0.0011627521697704
104 => 0.0011401950745275
105 => 0.0011503525331342
106 => 0.0011283976634593
107 => 0.0011730082636482
108 => 0.001172668405618
109 => 0.0011553138745684
110 => 0.0011699818053728
111 => 0.0011674328914355
112 => 0.0011478396686228
113 => 0.0011736294037592
114 => 0.001173642195146
115 => 0.0011569388363309
116 => 0.0011374329700701
117 => 0.0011339457818907
118 => 0.0011313186540354
119 => 0.0011497064207276
120 => 0.0011661928348469
121 => 0.0011968699641941
122 => 0.0012045829233826
123 => 0.0012346871165761
124 => 0.0012167615352759
125 => 0.0012247077132912
126 => 0.0012333344135822
127 => 0.0012374703709381
128 => 0.0012307310503743
129 => 0.0012774952537841
130 => 0.0012814435853701
131 => 0.0012827674267979
201 => 0.001266998800524
202 => 0.0012810050313482
203 => 0.0012744519797831
204 => 0.0012915011994652
205 => 0.0012941747348067
206 => 0.0012919103454862
207 => 0.0012927589678025
208 => 0.0012528539699631
209 => 0.0012507846853094
210 => 0.0012225698422277
211 => 0.0012340675993371
212 => 0.001212573093523
213 => 0.0012193892227346
214 => 0.0012223937075446
215 => 0.0012208243351828
216 => 0.001234717665273
217 => 0.0012229054964765
218 => 0.0011917312409224
219 => 0.0011605484919632
220 => 0.0011601570179509
221 => 0.0011519471505712
222 => 0.0011460129201678
223 => 0.0011471560634717
224 => 0.0011511846495768
225 => 0.0011457787714198
226 => 0.0011469323896096
227 => 0.0011660901380776
228 => 0.0011699320879061
229 => 0.0011568756412423
301 => 0.001104452123851
302 => 0.0010915872611888
303 => 0.0011008342693491
304 => 0.001096414795032
305 => 0.00088489231125708
306 => 0.00093458638126266
307 => 0.00090505985231651
308 => 0.00091866703530517
309 => 0.00088852809510875
310 => 0.00090291197708768
311 => 0.00090025579930144
312 => 0.00098016239331597
313 => 0.00097891476175836
314 => 0.00097951193696179
315 => 0.00095100720857011
316 => 0.00099641601488578
317 => 0.0010187860257247
318 => 0.001014645932077
319 => 0.0010156879044533
320 => 0.00099778336680854
321 => 0.00097968529202358
322 => 0.00095961174181331
323 => 0.00099690591693819
324 => 0.0009927594412971
325 => 0.0010022699645629
326 => 0.0010264579029741
327 => 0.0010300196687862
328 => 0.0010348067181575
329 => 0.0010330909017233
330 => 0.001073968610303
331 => 0.0010690180500742
401 => 0.0010809474758522
402 => 0.0010564077419391
403 => 0.0010286387036834
404 => 0.0010339166900175
405 => 0.0010334083774907
406 => 0.0010269369756097
407 => 0.0010210948833476
408 => 0.0010113694457303
409 => 0.0010421421694452
410 => 0.00104089285306
411 => 0.0010611178331655
412 => 0.0010575428714769
413 => 0.0010336684023787
414 => 0.0010345210837132
415 => 0.0010402557754722
416 => 0.0010601036091276
417 => 0.0010659957975001
418 => 0.0010632663010828
419 => 0.0010697268166446
420 => 0.0010748329447282
421 => 0.0010703680677166
422 => 0.0011335813106091
423 => 0.0011073307649482
424 => 0.0011201250982532
425 => 0.0011231764713579
426 => 0.0011153604433138
427 => 0.0011170554599256
428 => 0.001119622948228
429 => 0.0011352122344349
430 => 0.0011761230322381
501 => 0.0011942421460959
502 => 0.0012487543941185
503 => 0.0011927376059203
504 => 0.0011894138015291
505 => 0.0011992331035101
506 => 0.0012312375638068
507 => 0.0012571741728512
508 => 0.0012657788423901
509 => 0.0012669160915173
510 => 0.0012830590235999
511 => 0.0012923118512218
512 => 0.0012810988470438
513 => 0.0012715970000534
514 => 0.0012375625635467
515 => 0.001241502142245
516 => 0.0012686419327845
517 => 0.0013069784854471
518 => 0.0013398752358701
519 => 0.0013283559404395
520 => 0.00141624003322
521 => 0.0014249533820449
522 => 0.0014237494789736
523 => 0.0014435997843168
524 => 0.0014042009706549
525 => 0.0013873572144984
526 => 0.0012736514072233
527 => 0.001305598101068
528 => 0.0013520344967348
529 => 0.0013458884656408
530 => 0.0013121651138591
531 => 0.0013398496536837
601 => 0.0013306962790421
602 => 0.0013234766326884
603 => 0.0013565512322321
604 => 0.0013201843514041
605 => 0.0013516717092793
606 => 0.0013112888471094
607 => 0.0013284085596107
608 => 0.0013186905828076
609 => 0.0013249793047896
610 => 0.0012882155645825
611 => 0.0013080523864089
612 => 0.0012873902875771
613 => 0.0012873804910519
614 => 0.001286924374075
615 => 0.0013112332417209
616 => 0.0013120259530221
617 => 0.0012940616631031
618 => 0.0012914727282709
619 => 0.0013010453772615
620 => 0.0012898383123742
621 => 0.0012950820274985
622 => 0.0012899971391635
623 => 0.0012888524236951
624 => 0.001279731136086
625 => 0.0012758014345889
626 => 0.0012773423718019
627 => 0.0012720823586866
628 => 0.0012689130105216
629 => 0.0012862939109537
630 => 0.0012770079969963
701 => 0.001284870711461
702 => 0.0012759101559749
703 => 0.0012448489667319
704 => 0.0012269853483321
705 => 0.0011683136412258
706 => 0.0011849528645791
707 => 0.0011959846868769
708 => 0.0011923386696733
709 => 0.001200171725448
710 => 0.0012006526114551
711 => 0.0011981060051742
712 => 0.0011951573613414
713 => 0.0011937221245938
714 => 0.0012044192034429
715 => 0.0012106292177619
716 => 0.0011970918778312
717 => 0.001193920268493
718 => 0.0012076072665799
719 => 0.0012159563275062
720 => 0.001277601102454
721 => 0.0012730342584159
722 => 0.0012844961407537
723 => 0.0012832057086994
724 => 0.0012952195874105
725 => 0.0013148572016592
726 => 0.0012749284411283
727 => 0.0012818586933238
728 => 0.0012801595555284
729 => 0.0012987102964412
730 => 0.0012987682098294
731 => 0.001287646113974
801 => 0.0012936755825726
802 => 0.0012903100986107
803 => 0.0012963919830023
804 => 0.0012729732654295
805 => 0.0013014947355389
806 => 0.0013176645712079
807 => 0.0013178890893919
808 => 0.0013255534631673
809 => 0.0013333409108137
810 => 0.0013482882384272
811 => 0.0013329240379592
812 => 0.0013052853369921
813 => 0.0013072807619295
814 => 0.0012910762016651
815 => 0.0012913486032507
816 => 0.0012898945022381
817 => 0.0012942583688366
818 => 0.0012739308887464
819 => 0.0012787017076936
820 => 0.0012720225332296
821 => 0.001281844174103
822 => 0.0012712777120986
823 => 0.0012801587361527
824 => 0.0012839914917238
825 => 0.0012981344422946
826 => 0.0012691887868
827 => 0.0012101666357981
828 => 0.0012225738075131
829 => 0.0012042226259843
830 => 0.0012059210977027
831 => 0.0012093522808835
901 => 0.001198230693581
902 => 0.0012003523419569
903 => 0.0012002765417471
904 => 0.0011996233364897
905 => 0.0011967301820962
906 => 0.0011925345358325
907 => 0.0012092486991952
908 => 0.0012120887612473
909 => 0.00121840186738
910 => 0.0012371853890101
911 => 0.0012353084722533
912 => 0.0012383698013562
913 => 0.0012316869371133
914 => 0.001206231096608
915 => 0.0012076134712192
916 => 0.0011903752376667
917 => 0.0012179610469912
918 => 0.0012114283632283
919 => 0.0012072166995087
920 => 0.001206067508042
921 => 0.0012248975903891
922 => 0.0012305318461527
923 => 0.0012270209560617
924 => 0.0012198200180559
925 => 0.0012336479477932
926 => 0.0012373477184374
927 => 0.0012381759606423
928 => 0.0012626764008943
929 => 0.0012395452630865
930 => 0.0012451131578605
1001 => 0.0012885522834622
1002 => 0.0012491589907311
1003 => 0.001270026496466
1004 => 0.0012690051406496
1005 => 0.0012796802504657
1006 => 0.0012681294700615
1007 => 0.0012682726558281
1008 => 0.0012777514301503
1009 => 0.0012644402011208
1010 => 0.0012611441536169
1011 => 0.0012565906875969
1012 => 0.0012665330140662
1013 => 0.0012724929891319
1014 => 0.0013205260110414
1015 => 0.0013515575337668
1016 => 0.0013502103735255
1017 => 0.0013625208963529
1018 => 0.0013569748930677
1019 => 0.0013390653854979
1020 => 0.0013696347310878
1021 => 0.0013599613110674
1022 => 0.0013607587760607
1023 => 0.0013607290943738
1024 => 0.0013671610730223
1025 => 0.0013626034266676
1026 => 0.0013536198378698
1027 => 0.0013595835633603
1028 => 0.0013772936959963
1029 => 0.0014322664911115
1030 => 0.0014630299955506
1031 => 0.0014304144895165
1101 => 0.0014529122288398
1102 => 0.00143942160201
1103 => 0.0014369699538036
1104 => 0.0014511001966686
1105 => 0.0014652551726531
1106 => 0.0014643535618765
1107 => 0.0014540777761778
1108 => 0.001448273245575
1109 => 0.0014922270959598
1110 => 0.001524611544189
1111 => 0.0015224031419278
1112 => 0.0015321503112976
1113 => 0.0015607683020358
1114 => 0.0015633847724566
1115 => 0.0015630551573224
1116 => 0.0015565699623841
1117 => 0.0015847480907816
1118 => 0.0016082547812377
1119 => 0.0015550688271312
1120 => 0.0015753213421997
1121 => 0.0015844133487092
1122 => 0.001597763111742
1123 => 0.0016202863996584
1124 => 0.0016447526643426
1125 => 0.0016482124624279
1126 => 0.0016457575701198
1127 => 0.0016296214108721
1128 => 0.0016563926896328
1129 => 0.0016720746768671
1130 => 0.0016814129413892
1201 => 0.0017050932264783
1202 => 0.0015844694978461
1203 => 0.001499086027332
1204 => 0.0014857521654589
1205 => 0.001512867097906
1206 => 0.0015200170893548
1207 => 0.0015171349367671
1208 => 0.0014210280779779
1209 => 0.0014852461827372
1210 => 0.0015543394638466
1211 => 0.0015569936181652
1212 => 0.001591583159361
1213 => 0.0016028469318475
1214 => 0.0016306960462649
1215 => 0.0016289540765756
1216 => 0.00163573489276
1217 => 0.0016341761005466
1218 => 0.0016857607206819
1219 => 0.0017426662170813
1220 => 0.0017406957606894
1221 => 0.0017325149223067
1222 => 0.0017446648623452
1223 => 0.001803397432993
1224 => 0.001797990279058
1225 => 0.0018032428685256
1226 => 0.001872491879342
1227 => 0.0019625254439602
1228 => 0.001920695813973
1229 => 0.0020114540748935
1230 => 0.0020685815892544
1231 => 0.0021673777182462
]
'min_raw' => 0.00088489231125708
'max_raw' => 0.0021673777182462
'avg_raw' => 0.0015261350147516
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.000884'
'max' => '$0.002167'
'avg' => '$0.001526'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 0.00039456749264116
'max_diff' => 0.00087929125887819
'year' => 2028
]
3 => [
'items' => [
101 => 0.0021550079563152
102 => 0.0021934685643322
103 => 0.0021328635008116
104 => 0.0019937020246639
105 => 0.0019716791883748
106 => 0.0020157694643326
107 => 0.0021241611055087
108 => 0.0020123558258189
109 => 0.0020349738882846
110 => 0.0020284598847729
111 => 0.0020281127812085
112 => 0.0020413603124897
113 => 0.0020221440774215
114 => 0.0019438536788191
115 => 0.0019797337071304
116 => 0.0019658787050989
117 => 0.0019812518628117
118 => 0.0020642144546147
119 => 0.0020275347151974
120 => 0.0019888955893414
121 => 0.0020373576278733
122 => 0.0020990664562876
123 => 0.0020952048287069
124 => 0.0020877116571652
125 => 0.0021299502728163
126 => 0.0021997160911188
127 => 0.0022185735114642
128 => 0.0022324936736402
129 => 0.0022344130288212
130 => 0.0022541835800581
131 => 0.0021478723432368
201 => 0.0023165910063385
202 => 0.0023457240586971
203 => 0.002340248252295
204 => 0.0023726284138854
205 => 0.0023631013489401
206 => 0.002349298126585
207 => 0.0024006275701637
208 => 0.0023417825051733
209 => 0.002258259343807
210 => 0.0022124368855807
211 => 0.0022727795949654
212 => 0.0023096287819163
213 => 0.0023339837504424
214 => 0.0023413535492027
215 => 0.0021561249819219
216 => 0.0020562970574049
217 => 0.0021202856124909
218 => 0.0021983560659498
219 => 0.0021474386579259
220 => 0.0021494345239211
221 => 0.0020768396809384
222 => 0.0022047790987319
223 => 0.0021861394016992
224 => 0.0022828421828776
225 => 0.0022597632880611
226 => 0.0023386206521316
227 => 0.0023178548653738
228 => 0.0024040524852061
301 => 0.0024384390494646
302 => 0.002496179442696
303 => 0.0025386535110027
304 => 0.0025635950963119
305 => 0.0025620976970834
306 => 0.0026609286839268
307 => 0.0026026515038769
308 => 0.0025294416308576
309 => 0.0025281174952289
310 => 0.0025660339258575
311 => 0.0026454963625904
312 => 0.0026660998163038
313 => 0.0026776143361547
314 => 0.0026599794481797
315 => 0.0025967237459987
316 => 0.0025694102545107
317 => 0.0025926821406065
318 => 0.0025642226236873
319 => 0.00261335173422
320 => 0.0026808164963932
321 => 0.002666885289789
322 => 0.0027134552247836
323 => 0.0027616502082029
324 => 0.0028305711990648
325 => 0.0028485896982129
326 => 0.0028783735921227
327 => 0.0029090310024554
328 => 0.0029188773364138
329 => 0.0029376770430785
330 => 0.0029375779593446
331 => 0.002994232140745
401 => 0.0030567234572635
402 => 0.0030803124825719
403 => 0.0031345541455622
404 => 0.0030416671985459
405 => 0.0031121230148661
406 => 0.0031756759248104
407 => 0.0030999055255959
408 => 0.0032043373686743
409 => 0.0032083922204934
410 => 0.0032696156688198
411 => 0.0032075539749475
412 => 0.003170701939234
413 => 0.003277092385511
414 => 0.0033285713711968
415 => 0.0033130654817584
416 => 0.0031950648975117
417 => 0.0031263834961969
418 => 0.0029466310213034
419 => 0.0031595555925438
420 => 0.0032632649401002
421 => 0.0031947963153558
422 => 0.0032293279070948
423 => 0.0034177210747165
424 => 0.0034894489953926
425 => 0.003474530089308
426 => 0.0034770511388502
427 => 0.0035157542228931
428 => 0.0036873850117173
429 => 0.0035845398646833
430 => 0.0036631611260566
501 => 0.003704861559599
502 => 0.0037435952462635
503 => 0.0036484775537228
504 => 0.0035247308332837
505 => 0.0034855350523866
506 => 0.0031879884599941
507 => 0.0031724998676807
508 => 0.0031638056514629
509 => 0.0031089898480304
510 => 0.0030659196418447
511 => 0.0030316686147916
512 => 0.0029417836915818
513 => 0.0029721172145655
514 => 0.0028288594074105
515 => 0.0029205106756833
516 => 0.0026918677563833
517 => 0.0028822883737374
518 => 0.0027786510890746
519 => 0.0028482407384099
520 => 0.0028479979466791
521 => 0.0027198613388345
522 => 0.0026459548175725
523 => 0.0026930509294055
524 => 0.0027435416997844
525 => 0.0027517336574071
526 => 0.0028171962591473
527 => 0.0028354654641791
528 => 0.0027801089200252
529 => 0.0026871296400882
530 => 0.002708726606186
531 => 0.0026455171557439
601 => 0.0025347450251605
602 => 0.0026143035032413
603 => 0.0026414682655975
604 => 0.0026534657721963
605 => 0.0025445341040327
606 => 0.0025103054088741
607 => 0.0024920823387783
608 => 0.0026730679296336
609 => 0.0026829827288526
610 => 0.0026322572142372
611 => 0.0028615413502893
612 => 0.0028096472887449
613 => 0.0028676256698438
614 => 0.0027067669078813
615 => 0.0027129119292133
616 => 0.0026367588134243
617 => 0.0026793994697131
618 => 0.0026492624282207
619 => 0.0026759545260682
620 => 0.0026919536594623
621 => 0.0027680942792744
622 => 0.0028831577773093
623 => 0.0027567214097404
624 => 0.0027016312737885
625 => 0.0027358088842943
626 => 0.0028268283649444
627 => 0.0029647275373306
628 => 0.0028830884517985
629 => 0.0029193184916361
630 => 0.0029272331435783
701 => 0.0028670355043501
702 => 0.002966947110154
703 => 0.0030204905513847
704 => 0.0030754150428334
705 => 0.003123104439809
706 => 0.0030534769931333
707 => 0.0031279883417787
708 => 0.0030679453477942
709 => 0.0030140805750594
710 => 0.0030141622656853
711 => 0.00298037210691
712 => 0.0029148994164488
713 => 0.0029028252477965
714 => 0.0029656365979253
715 => 0.0030160053524716
716 => 0.0030201539643461
717 => 0.0030480406949029
718 => 0.0030645437747903
719 => 0.0032262963925359
720 => 0.0032913546334811
721 => 0.0033709066190193
722 => 0.0034018966006906
723 => 0.0034951653349981
724 => 0.0034198432571286
725 => 0.0034035468517834
726 => 0.0031773074103239
727 => 0.0032143541061887
728 => 0.0032736694407428
729 => 0.0031782854983435
730 => 0.0032387846554387
731 => 0.0032507284705967
801 => 0.0031750443884799
802 => 0.0032154705268546
803 => 0.0031081106888461
804 => 0.0028854979283973
805 => 0.0029671949417936
806 => 0.0030273514425706
807 => 0.0029415006987187
808 => 0.0030953848341906
809 => 0.0030054888990613
810 => 0.0029769962033912
811 => 0.0028658360392026
812 => 0.0029182993577525
813 => 0.0029892567472936
814 => 0.0029454133302392
815 => 0.0030363950037493
816 => 0.0031652493173658
817 => 0.0032570785746559
818 => 0.0032641280847822
819 => 0.0032050880244271
820 => 0.0032997000979348
821 => 0.0033003892436
822 => 0.0031936664381816
823 => 0.0031282993140979
824 => 0.0031134477659725
825 => 0.0031505498450073
826 => 0.0031955986183772
827 => 0.0032666279781807
828 => 0.0033095495327036
829 => 0.0034214661830659
830 => 0.0034517476197521
831 => 0.0034850177379122
901 => 0.0035294768758987
902 => 0.0035828614701404
903 => 0.0034660590171261
904 => 0.0034706997963314
905 => 0.0033619349693246
906 => 0.0032457041532138
907 => 0.0033339088542661
908 => 0.0034492247675123
909 => 0.0034227711696009
910 => 0.0034197945994379
911 => 0.0034248003648203
912 => 0.0034048552158888
913 => 0.0033146440464734
914 => 0.0032693405619448
915 => 0.0033277936151382
916 => 0.0033588588114645
917 => 0.0034070382217967
918 => 0.0034010990925293
919 => 0.0035252040794541
920 => 0.003573427524633
921 => 0.0035610899037587
922 => 0.003563360322921
923 => 0.0036506665669656
924 => 0.0037477690662417
925 => 0.003838718370617
926 => 0.0039312359093912
927 => 0.003819702405378
928 => 0.0037630725704702
929 => 0.0038215001048893
930 => 0.0037904976326994
1001 => 0.0039686470338328
1002 => 0.003980981711842
1003 => 0.004159118230746
1004 => 0.0043281909992879
1005 => 0.00422199942262
1006 => 0.0043221332964442
1007 => 0.0044304362450195
1008 => 0.0046393702043416
1009 => 0.0045690085972272
1010 => 0.0045151127088846
1011 => 0.0044641813548238
1012 => 0.0045701614174995
1013 => 0.0047065030750589
1014 => 0.004735869762233
1015 => 0.004783455014393
1016 => 0.0047334249401946
1017 => 0.0047936806539347
1018 => 0.0050064098011397
1019 => 0.0049489285077528
1020 => 0.0048672958305643
1021 => 0.0050352250615582
1022 => 0.0050959979974465
1023 => 0.0055225342885442
1024 => 0.0060610539753905
1025 => 0.0058381032889253
1026 => 0.0056997106032626
1027 => 0.0057322361671117
1028 => 0.0059288853267061
1029 => 0.0059920427954355
1030 => 0.005820359023744
1031 => 0.0058810006343286
1101 => 0.0062151418708013
1102 => 0.0063943979236345
1103 => 0.0061509441265872
1104 => 0.0054792647560511
1105 => 0.004859945701146
1106 => 0.0050242170028073
1107 => 0.0050055937351309
1108 => 0.0053645868087527
1109 => 0.0049475575979158
1110 => 0.0049545793002953
1111 => 0.0053209959704992
1112 => 0.0052232422848609
1113 => 0.0050648938334728
1114 => 0.00486110182008
1115 => 0.0044843734348438
1116 => 0.0041506945981918
1117 => 0.004805115638513
1118 => 0.0047768958132669
1119 => 0.0047360293243668
1120 => 0.004826973273198
1121 => 0.0052685712738326
1122 => 0.0052583910106047
1123 => 0.005193629369965
1124 => 0.0052427505036073
1125 => 0.0050562826612481
1126 => 0.0051043396700179
1127 => 0.0048598475978435
1128 => 0.0049703682253572
1129 => 0.005064554088814
1130 => 0.0050834632953485
1201 => 0.0051260667031988
1202 => 0.004762025247681
1203 => 0.0049254691735129
1204 => 0.0050214771673143
1205 => 0.0045877095585187
1206 => 0.0050129029763576
1207 => 0.0047556880958595
1208 => 0.0046683855021806
1209 => 0.0047859269433272
1210 => 0.0047401209293996
1211 => 0.004700739608444
1212 => 0.0046787641546938
1213 => 0.0047650736164964
1214 => 0.0047610471769412
1215 => 0.0046198281454875
1216 => 0.0044356136757804
1217 => 0.004497442098448
1218 => 0.0044749792528483
1219 => 0.0043935710026303
1220 => 0.0044484303340076
1221 => 0.0042068576022942
1222 => 0.0037912442732394
1223 => 0.0040658111689936
1224 => 0.0040552406421784
1225 => 0.0040499105032229
1226 => 0.0042562399369106
1227 => 0.0042364061226914
1228 => 0.0042004075556705
1229 => 0.0043929098607166
1230 => 0.0043226439298533
1231 => 0.0045391869720383
]
'min_raw' => 0.0019438536788191
'max_raw' => 0.0063943979236345
'avg_raw' => 0.0041691258012268
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.001943'
'max' => '$0.006394'
'avg' => '$0.004169'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072434
'min_diff' => 0.0010589613675621
'max_diff' => 0.0042270202053884
'year' => 2029
]
4 => [
'items' => [
101 => 0.0046818162247472
102 => 0.0046456408326873
103 => 0.004779784334247
104 => 0.0044988665004304
105 => 0.004592176136357
106 => 0.0046114071229999
107 => 0.0043905344121537
108 => 0.0042396511799866
109 => 0.0042295889885958
110 => 0.0039679782570084
111 => 0.0041077285981744
112 => 0.0042307031151384
113 => 0.0041718078647206
114 => 0.0041531633878839
115 => 0.004248413976549
116 => 0.0042558157630544
117 => 0.0040870542463251
118 => 0.0041221451096353
119 => 0.0042684798430095
120 => 0.0041184578498106
121 => 0.0038269896229785
122 => 0.0037547014728607
123 => 0.0037450569011
124 => 0.0035490057047349
125 => 0.0037595321127108
126 => 0.0036676316938724
127 => 0.0039579440158469
128 => 0.0037921191745113
129 => 0.0037849707970312
130 => 0.0037741649760311
131 => 0.0036054156125467
201 => 0.0036423609985683
202 => 0.0037651730886451
203 => 0.0038089938259617
204 => 0.0038044229640469
205 => 0.0037645712424038
206 => 0.0037828151564982
207 => 0.0037240451525992
208 => 0.0037032922410306
209 => 0.0036377903435821
210 => 0.0035415206496938
211 => 0.0035549075410854
212 => 0.003364172087157
213 => 0.0032602492887602
214 => 0.0032314848278444
215 => 0.0031930197885582
216 => 0.0032358295563833
217 => 0.0033636317575807
218 => 0.0032094751881871
219 => 0.0029451845627879
220 => 0.0029610688797037
221 => 0.0029967562237175
222 => 0.0029302530942432
223 => 0.0028673134633804
224 => 0.002922034365962
225 => 0.0028100509438986
226 => 0.0030102888852668
227 => 0.0030048730101131
228 => 0.0030795093320239
301 => 0.0031261809558063
302 => 0.0030186179731056
303 => 0.0029915661738376
304 => 0.0030069761081364
305 => 0.0027522842202305
306 => 0.0030586955710941
307 => 0.0030613454291804
308 => 0.0030386557354702
309 => 0.003201810320416
310 => 0.0035461173838428
311 => 0.0034165752168621
312 => 0.0033664125743744
313 => 0.0032710533543367
314 => 0.0033981138531667
315 => 0.0033883575893091
316 => 0.0033442360641919
317 => 0.0033175512281335
318 => 0.0033667188567729
319 => 0.003311458814831
320 => 0.0033015325928538
321 => 0.0032413904875083
322 => 0.0032199224921913
323 => 0.0032040284431242
324 => 0.0031865306568183
325 => 0.0032251264132325
326 => 0.0031376633515034
327 => 0.0030321914731677
328 => 0.0030234226277057
329 => 0.0030476341809912
330 => 0.0030369223710005
331 => 0.0030233713436805
401 => 0.0029974987421241
402 => 0.0029898228939229
403 => 0.0030147656767845
404 => 0.0029866067291884
405 => 0.0030281567902637
406 => 0.003016857472721
407 => 0.0029537404034443
408 => 0.0028750731661936
409 => 0.002874372862772
410 => 0.0028574241355465
411 => 0.0028358373831665
412 => 0.0028298324424924
413 => 0.0029174259241756
414 => 0.0030987418098073
415 => 0.0030631451629364
416 => 0.0030888673883917
417 => 0.0032153952794098
418 => 0.003255614691138
419 => 0.0032270679053423
420 => 0.0031879913042561
421 => 0.0031897104763868
422 => 0.00332324705159
423 => 0.0033315755639862
424 => 0.0033526190279313
425 => 0.0033796658259829
426 => 0.0032316740920042
427 => 0.003182740079025
428 => 0.0031595524289198
429 => 0.0030881434413458
430 => 0.0031651519123005
501 => 0.0031202823741067
502 => 0.0031263368077707
503 => 0.0031223938499044
504 => 0.0031245469715211
505 => 0.0030102329146813
506 => 0.0030518829488238
507 => 0.0029826316889049
508 => 0.0028899120256924
509 => 0.0028896011968696
510 => 0.002912294203085
511 => 0.0028987955150106
512 => 0.0028624708924856
513 => 0.0028676306336679
514 => 0.0028224258715761
515 => 0.0028731193102444
516 => 0.0028745730166756
517 => 0.002855053281498
518 => 0.0029331535181131
519 => 0.0029651512487781
520 => 0.0029523029409309
521 => 0.0029642497772486
522 => 0.0030646243643231
523 => 0.0030809898016665
524 => 0.0030882582478943
525 => 0.0030785194928336
526 => 0.0029660844404401
527 => 0.0029710714131245
528 => 0.0029344803164746
529 => 0.0029035646956802
530 => 0.0029048011583809
531 => 0.0029206958062186
601 => 0.0029901086655346
602 => 0.0031361839358535
603 => 0.0031417273855825
604 => 0.0031484462083678
605 => 0.00312111737949
606 => 0.0031128747431988
607 => 0.0031237489080719
608 => 0.0031786070993308
609 => 0.0033197172611024
610 => 0.0032698395055015
611 => 0.0032292881138044
612 => 0.0032648626168995
613 => 0.0032593862009902
614 => 0.0032131597394454
615 => 0.0032118623166319
616 => 0.0031231389574338
617 => 0.0030903399516714
618 => 0.0030629306474933
619 => 0.0030330004028689
620 => 0.0030152567505846
621 => 0.003042519064839
622 => 0.0030487542786672
623 => 0.0029891447520863
624 => 0.0029810201938781
625 => 0.003029698620045
626 => 0.0030082770596036
627 => 0.0030303096657467
628 => 0.0030354214193642
629 => 0.0030345983092981
630 => 0.0030122317399467
701 => 0.0030264875242706
702 => 0.0029927683444907
703 => 0.0029561038009372
704 => 0.0029327141064318
705 => 0.0029123034957831
706 => 0.0029236284888427
707 => 0.0028832569564474
708 => 0.0028703412907157
709 => 0.0030216579853069
710 => 0.00313343725453
711 => 0.0031318119396861
712 => 0.0031219182535706
713 => 0.0031072182428638
714 => 0.0031775317019869
715 => 0.0031530358987904
716 => 0.0031708586423087
717 => 0.0031753952785523
718 => 0.0031891263101142
719 => 0.0031940339736756
720 => 0.0031791996058017
721 => 0.0031294136553514
722 => 0.0030053518003355
723 => 0.002947600671927
724 => 0.0029285418376311
725 => 0.0029292345900599
726 => 0.0029101253854912
727 => 0.0029157539026511
728 => 0.0029081680169212
729 => 0.0028938021845715
730 => 0.0029227414391769
731 => 0.0029260764186824
801 => 0.0029193216508591
802 => 0.0029209126432077
803 => 0.0028649860506302
804 => 0.0028692380279977
805 => 0.0028455624777004
806 => 0.0028411235974327
807 => 0.002781273867947
808 => 0.0026752413968061
809 => 0.0027339936786392
810 => 0.0026630291840058
811 => 0.0026361538546006
812 => 0.0027633774840336
813 => 0.0027506077602728
814 => 0.0027287515440596
815 => 0.0026964216450458
816 => 0.0026844301710165
817 => 0.002611573770854
818 => 0.0026072690260587
819 => 0.0026433786252675
820 => 0.0026267152876881
821 => 0.0026033136508271
822 => 0.0025185552943027
823 => 0.0024232588390417
824 => 0.0024261352400139
825 => 0.0024564472693788
826 => 0.0025445835828914
827 => 0.0025101472004283
828 => 0.0024851632098394
829 => 0.0024804844594181
830 => 0.0025390488165682
831 => 0.0026219296515478
901 => 0.002660815484966
902 => 0.0026222808050289
903 => 0.0025780142395716
904 => 0.0025807085402994
905 => 0.002598632515974
906 => 0.002600516072386
907 => 0.0025717030889498
908 => 0.002579813775014
909 => 0.0025674929012257
910 => 0.0024918797215293
911 => 0.0024905121188806
912 => 0.0024719554251558
913 => 0.0024713935358447
914 => 0.0024398239706348
915 => 0.0024354071702318
916 => 0.0023727238823718
917 => 0.0024139822122637
918 => 0.0023863082907318
919 => 0.0023445971633649
920 => 0.002337406149285
921 => 0.0023371899787184
922 => 0.0023800179800867
923 => 0.0024134817421321
924 => 0.002386789690445
925 => 0.0023807124276796
926 => 0.0024456016945987
927 => 0.0024373439439044
928 => 0.00243019278506
929 => 0.0026145085818203
930 => 0.0024686082463435
1001 => 0.0024049873723757
1002 => 0.0023262444595641
1003 => 0.0023518835490318
1004 => 0.0023572860818992
1005 => 0.0021679235710643
1006 => 0.0020910992240022
1007 => 0.0020647360031549
1008 => 0.0020495635968361
1009 => 0.0020564778529187
1010 => 0.0019873269299656
1011 => 0.0020337974938408
1012 => 0.0019739186397454
1013 => 0.0019638797549937
1014 => 0.0020709505636828
1015 => 0.0020858488412133
1016 => 0.0020222881607362
1017 => 0.0020631044071419
1018 => 0.002048303868807
1019 => 0.0019749450908362
1020 => 0.0019721433251083
1021 => 0.0019353344690083
1022 => 0.0018777357368108
1023 => 0.0018514115706163
1024 => 0.0018377017163053
1025 => 0.0018433586693937
1026 => 0.0018404983408066
1027 => 0.0018218327619746
1028 => 0.0018415682299361
1029 => 0.001791152264553
1030 => 0.0017710762209084
1031 => 0.0017620083377548
1101 => 0.0017172612666426
1102 => 0.0017884737558949
1103 => 0.001802503513389
1104 => 0.0018165609138393
1105 => 0.0019389209873641
1106 => 0.0019328082238768
1107 => 0.0019880646287656
1108 => 0.0019859174664817
1109 => 0.001970157444713
1110 => 0.0019036685052685
1111 => 0.0019301698114797
1112 => 0.0018486029101791
1113 => 0.0019097183786437
1114 => 0.0018818278310794
1115 => 0.0019002885564568
1116 => 0.0018670945076917
1117 => 0.001885465464827
1118 => 0.0018058304893605
1119 => 0.0017314684697642
1120 => 0.0017613939172124
1121 => 0.0017939263009787
1122 => 0.0018644647980811
1123 => 0.0018224526511369
1124 => 0.0018375618078332
1125 => 0.0017869486621428
1126 => 0.0016825192856533
1127 => 0.0016831103445832
1128 => 0.0016670461601279
1129 => 0.0016531643593492
1130 => 0.0018272782515946
1201 => 0.0018056244367605
1202 => 0.0017711219168037
1203 => 0.0018173049108415
1204 => 0.0018295164274878
1205 => 0.0018298640721994
1206 => 0.0018635579924937
1207 => 0.0018815404437948
1208 => 0.001884709928777
1209 => 0.0019377280403656
1210 => 0.0019554990120442
1211 => 0.0020286951293467
1212 => 0.0018800147584383
1213 => 0.0018769527840413
1214 => 0.0018179548002772
1215 => 0.0017805373462527
1216 => 0.0018205168053662
1217 => 0.0018559331484004
1218 => 0.0018190552847779
1219 => 0.0018238707552328
1220 => 0.0017743652363517
1221 => 0.0017920611299006
1222 => 0.0018073032173191
1223 => 0.0017988874325351
1224 => 0.0017862885953848
1225 => 0.0018530294121543
1226 => 0.0018492636337128
1227 => 0.0019114142166532
1228 => 0.0019598650404862
1229 => 0.0020466975784155
1230 => 0.0019560832984037
1231 => 0.0019527809538809
]
'min_raw' => 0.0016531643593492
'max_raw' => 0.004779784334247
'avg_raw' => 0.0032164743467981
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.001653'
'max' => '$0.004779'
'avg' => '$0.003216'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -0.00029068931946993
'max_diff' => -0.0016146135893876
'year' => 2030
]
5 => [
'items' => [
101 => 0.0019850619013037
102 => 0.0019554940699994
103 => 0.0019741799187369
104 => 0.0020436869993018
105 => 0.0020451555743863
106 => 0.0020205550495686
107 => 0.0020190581053977
108 => 0.0020237829052892
109 => 0.0020514562058302
110 => 0.0020417863043065
111 => 0.0020529765591616
112 => 0.0020669701442092
113 => 0.0021248535451231
114 => 0.0021388090371201
115 => 0.0021049044266604
116 => 0.0021079656333711
117 => 0.0020952843783568
118 => 0.0020830344449086
119 => 0.002110570506341
120 => 0.0021608931998312
121 => 0.0021605801449668
122 => 0.0021722540317231
123 => 0.0021795267664606
124 => 0.002148306865
125 => 0.0021279838571368
126 => 0.0021357769915381
127 => 0.0021482383831583
128 => 0.0021317359301861
129 => 0.0020298751457622
130 => 0.0020607732008643
131 => 0.0020556302536576
201 => 0.0020483060714316
202 => 0.0020793743047643
203 => 0.0020763776978679
204 => 0.0019866176873016
205 => 0.0019923638319524
206 => 0.0019869671293897
207 => 0.0020044049794314
208 => 0.001954552368871
209 => 0.0019698866961169
210 => 0.0019795042424152
211 => 0.0019851690510703
212 => 0.0020056342243284
213 => 0.0020032328724547
214 => 0.0020054849529243
215 => 0.0020358294022606
216 => 0.0021893012140459
217 => 0.0021976543461449
218 => 0.0021565204686749
219 => 0.0021729526413943
220 => 0.0021414064630941
221 => 0.002162583623928
222 => 0.0021770724995291
223 => 0.0021116000567386
224 => 0.0021077232035892
225 => 0.0020760468229896
226 => 0.002093067915682
227 => 0.0020659861333486
228 => 0.0020726310554527
301 => 0.0020540512739558
302 => 0.0020874911814526
303 => 0.0021248821940703
304 => 0.0021343286404734
305 => 0.0021094791069378
306 => 0.0020914864069939
307 => 0.0020598971530564
308 => 0.002112430786367
309 => 0.0021277932216805
310 => 0.0021123500940343
311 => 0.0021087715839196
312 => 0.0021019903137186
313 => 0.0021102102624499
314 => 0.0021277095545585
315 => 0.0021194572115613
316 => 0.0021249080294985
317 => 0.0021041351323808
318 => 0.0021483172000865
319 => 0.0022184889565967
320 => 0.0022187145702681
321 => 0.0022104621827877
322 => 0.0022070854836308
323 => 0.0022155529339825
324 => 0.0022201461784453
325 => 0.0022475283602177
326 => 0.0022769105322138
327 => 0.0024140243084735
328 => 0.0023755233087694
329 => 0.0024971788080021
330 => 0.0025933925129056
331 => 0.0026222427960908
401 => 0.0025957018930711
402 => 0.0025049068975524
403 => 0.0025004520619119
404 => 0.0026361381178752
405 => 0.0025978005922505
406 => 0.0025932404655664
407 => 0.0025447284221036
408 => 0.0025734050481236
409 => 0.0025671330493523
410 => 0.0025572323924551
411 => 0.0026119453972702
412 => 0.0027143632580204
413 => 0.0026984004739539
414 => 0.0026864849961404
415 => 0.0026342748409055
416 => 0.0026657170159173
417 => 0.0026545210596307
418 => 0.002702625992967
419 => 0.0026741296961134
420 => 0.0025975101477879
421 => 0.0026097120634
422 => 0.0026078677684021
423 => 0.0026458232287714
424 => 0.002634429941681
425 => 0.002605643046242
426 => 0.0027140132049066
427 => 0.0027069762495894
428 => 0.0027169530433572
429 => 0.0027213451365164
430 => 0.0027873081423992
501 => 0.0028143310753286
502 => 0.0028204657542066
503 => 0.0028461354504609
504 => 0.0028198270687792
505 => 0.0029250793530641
506 => 0.0029950659804725
507 => 0.0030763590496862
508 => 0.0031951500733246
509 => 0.0032398165970911
510 => 0.0032317479893672
511 => 0.0033218139877466
512 => 0.0034836605847798
513 => 0.0032644618139989
514 => 0.0034952786518873
515 => 0.0034222047059204
516 => 0.0032489476945769
517 => 0.0032377919856124
518 => 0.0033551236452495
519 => 0.0036153539735707
520 => 0.0035501692278342
521 => 0.0036154605924629
522 => 0.0035392947474685
523 => 0.0035355124712883
524 => 0.0036117613873769
525 => 0.0037899211359298
526 => 0.0037052841176106
527 => 0.0035839361980018
528 => 0.0036735376134582
529 => 0.0035959165751703
530 => 0.003421014651147
531 => 0.0035501193822876
601 => 0.0034637907252649
602 => 0.003488986016868
603 => 0.003670436013511
604 => 0.0036486034698578
605 => 0.0036768568029842
606 => 0.0036269904095346
607 => 0.0035804073348441
608 => 0.0034934565666299
609 => 0.0034677147307827
610 => 0.0034748288481167
611 => 0.0034677112053795
612 => 0.0034190630496825
613 => 0.0034085574850915
614 => 0.0033910477505139
615 => 0.0033964747494234
616 => 0.003363551325764
617 => 0.0034256846285357
618 => 0.0034372171170469
619 => 0.0034824325533167
620 => 0.0034871269699067
621 => 0.0036130513163166
622 => 0.0035436943023867
623 => 0.0035902249753274
624 => 0.0035860628339759
625 => 0.003252702699374
626 => 0.0032986367846607
627 => 0.0033700958064569
628 => 0.0033379036139982
629 => 0.0032923913856744
630 => 0.0032556378210916
701 => 0.0031999524125038
702 => 0.0032783285557476
703 => 0.0033813848497395
704 => 0.0034897406475911
705 => 0.0036199230389566
706 => 0.0035908678446939
707 => 0.0034873069783375
708 => 0.003491952643151
709 => 0.0035206703150263
710 => 0.0034834783206722
711 => 0.0034725096754632
712 => 0.0035191633916095
713 => 0.0035194846701122
714 => 0.0034766907858052
715 => 0.003429133214596
716 => 0.0034289339466362
717 => 0.0034204715361912
718 => 0.0035408001914873
719 => 0.0036069687853009
720 => 0.0036145549079456
721 => 0.0036064581788039
722 => 0.0036095742885028
723 => 0.0035710722416882
724 => 0.0036590765032792
725 => 0.0037398379164345
726 => 0.003718192132493
727 => 0.003685742025235
728 => 0.0036598939517952
729 => 0.0037121031478541
730 => 0.0037097783545385
731 => 0.0037391325359453
801 => 0.0037378008607187
802 => 0.0037279301535782
803 => 0.003718192485007
804 => 0.0037568012401958
805 => 0.0037456825387391
806 => 0.0037345465668679
807 => 0.0037122116704483
808 => 0.003715247353815
809 => 0.0036828028495257
810 => 0.0036677925372819
811 => 0.0034420734559105
812 => 0.0033817539417843
813 => 0.0034007316888454
814 => 0.0034069796559349
815 => 0.0033807285260856
816 => 0.0034183659029275
817 => 0.0034125001576145
818 => 0.003435320341281
819 => 0.0034210632812634
820 => 0.0034216483959796
821 => 0.0034635753695657
822 => 0.0034757469483679
823 => 0.0034695563851524
824 => 0.0034738920434285
825 => 0.0035738054584325
826 => 0.00355960096587
827 => 0.0035520551123023
828 => 0.0035541453653099
829 => 0.0035796753850111
830 => 0.0035868223966401
831 => 0.0035565400061566
901 => 0.003570821356569
902 => 0.003631629534052
903 => 0.0036529089547263
904 => 0.0037208226508171
905 => 0.003691971705648
906 => 0.0037449288641456
907 => 0.0039077011149412
908 => 0.0040377348518598
909 => 0.003918150453518
910 => 0.0041569408516725
911 => 0.0043428734290839
912 => 0.0043357370270759
913 => 0.0043033153815062
914 => 0.0040916360853967
915 => 0.0038968456411561
916 => 0.0040597961190025
917 => 0.0040602115132816
918 => 0.0040462139227209
919 => 0.0039592760899212
920 => 0.0040431886745882
921 => 0.0040498493508333
922 => 0.0040461211433528
923 => 0.0039794661107818
924 => 0.003877696195955
925 => 0.0038975817937094
926 => 0.0039301548084863
927 => 0.0038684872960709
928 => 0.0038487807892878
929 => 0.0038854189347139
930 => 0.0040034746731373
1001 => 0.0039811569196387
1002 => 0.0039805741129017
1003 => 0.0040760589265692
1004 => 0.0040077124068958
1005 => 0.0038978326147796
1006 => 0.0038700865181339
1007 => 0.0037716065670518
1008 => 0.0038396270200377
1009 => 0.0038420749550462
1010 => 0.003804820848098
1011 => 0.0039008555802393
1012 => 0.0038999706032761
1013 => 0.0039911412885608
1014 => 0.0041654253966795
1015 => 0.0041138810099087
1016 => 0.0040539404961076
1017 => 0.0040604576919279
1018 => 0.0041319352442672
1019 => 0.0040887182844491
1020 => 0.004104259404519
1021 => 0.0041319117209207
1022 => 0.0041485950499742
1023 => 0.004058057217619
1024 => 0.0040369485179719
1025 => 0.0039937675266407
1026 => 0.0039825024120137
1027 => 0.004017672428452
1028 => 0.0040084063716956
1029 => 0.0038418692155876
1030 => 0.0038244651561703
1031 => 0.0038249989138254
1101 => 0.0037812355789027
1102 => 0.0037144859887419
1103 => 0.0038898999262737
1104 => 0.0038758117321734
1105 => 0.0038602594562263
1106 => 0.0038621645212898
1107 => 0.0039383057662424
1108 => 0.0038941399989449
1109 => 0.0040115619299324
1110 => 0.0039874235109477
1111 => 0.0039626660325986
1112 => 0.0039592437949595
1113 => 0.003949714278004
1114 => 0.0039170340185861
1115 => 0.00387757064156
1116 => 0.0038515135017882
1117 => 0.0035528176151662
1118 => 0.0036082538342892
1119 => 0.0036720281512199
1120 => 0.0036940427898648
1121 => 0.003656385227096
1122 => 0.0039185209686898
1123 => 0.0039664156946819
1124 => 0.0038213394455563
1125 => 0.0037942016027691
1126 => 0.003920300121145
1127 => 0.0038442472996474
1128 => 0.003878493880511
1129 => 0.0038044715045621
1130 => 0.0039548792577117
1201 => 0.0039537334026346
1202 => 0.0038952213895462
1203 => 0.0039446753423355
1204 => 0.0039360815010364
1205 => 0.0038700215823683
1206 => 0.0039569734749624
1207 => 0.0039570166020163
1208 => 0.0039007000615796
1209 => 0.0038349346716255
1210 => 0.0038231773732109
1211 => 0.0038143198282263
1212 => 0.0038763154674221
1213 => 0.0039319005636698
1214 => 0.0040353306470728
1215 => 0.0040613354274784
1216 => 0.004162833816638
1217 => 0.0041023964677604
1218 => 0.0041291875617231
1219 => 0.0041582730840513
1220 => 0.0041722177530401
1221 => 0.0041494956632351
1222 => 0.0043071644400036
1223 => 0.0043204765156094
1224 => 0.004324939939411
1225 => 0.004271774914998
1226 => 0.0043189979001056
1227 => 0.0042969038292346
1228 => 0.0043543864637312
1229 => 0.0043634004747954
1230 => 0.0043557659281068
1231 => 0.0043586271174951
]
'min_raw' => 0.001954552368871
'max_raw' => 0.0043634004747954
'avg_raw' => 0.0031589764218332
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.001954'
'max' => '$0.004363'
'avg' => '$0.003158'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 0.00030138800952177
'max_diff' => -0.00041638385945156
'year' => 2031
]
6 => [
'items' => [
101 => 0.0042240846312013
102 => 0.0042171078935188
103 => 0.0041219795801714
104 => 0.0041607450710135
105 => 0.0040882748439625
106 => 0.0041112558994865
107 => 0.0041213857297899
108 => 0.0041160944813022
109 => 0.0041629368137024
110 => 0.0041231112619059
111 => 0.0040180050827881
112 => 0.003912870267562
113 => 0.0039115503855978
114 => 0.0038838702445325
115 => 0.0038638625724129
116 => 0.0038677167598734
117 => 0.0038812994191939
118 => 0.0038630731235613
119 => 0.0038669626278311
120 => 0.0039315543143423
121 => 0.0039445077164253
122 => 0.0039004869949264
123 => 0.0037237374459486
124 => 0.0036803626632867
125 => 0.0037115395969047
126 => 0.003696639030687
127 => 0.0029834762086115
128 => 0.0031510232351645
129 => 0.0030514724813461
130 => 0.0030973500488156
131 => 0.0029957345077097
201 => 0.0030442307700523
202 => 0.0030352752811975
203 => 0.0033046859418178
204 => 0.0033004794649144
205 => 0.0033024928828063
206 => 0.0032063872008971
207 => 0.003359486161732
208 => 0.0034349082150999
209 => 0.0034209496003144
210 => 0.0034244626829294
211 => 0.0033640962842051
212 => 0.0033030773615003
213 => 0.0032353979854759
214 => 0.0033611379007056
215 => 0.003347157768584
216 => 0.0033792231617782
217 => 0.0034607744848794
218 => 0.0034727832269894
219 => 0.0034889230981659
220 => 0.0034831381032634
221 => 0.0036209601517305
222 => 0.003604268992282
223 => 0.0036444898841786
224 => 0.0035617524579808
225 => 0.0034681272067295
226 => 0.0034859223061523
227 => 0.0034842084949787
228 => 0.0034623897117183
229 => 0.0034426926897745
301 => 0.0034099026978396
302 => 0.0035136550843273
303 => 0.00350944292691
304 => 0.0035776328593987
305 => 0.0035655796264697
306 => 0.0034850851870431
307 => 0.0034879600616946
308 => 0.0035072949753434
309 => 0.0035742133322441
310 => 0.0035940792567213
311 => 0.0035848765689832
312 => 0.0036066586482587
313 => 0.0036238743155911
314 => 0.0036088206710185
315 => 0.0038219485328385
316 => 0.0037334429853881
317 => 0.0037765799733978
318 => 0.0037868678908602
319 => 0.0037605156066118
320 => 0.0037662304734608
321 => 0.0037748869395289
322 => 0.0038274473063846
323 => 0.0039653809174787
324 => 0.0040264707748864
325 => 0.004210262625018
326 => 0.0040213981126406
327 => 0.0040101916740751
328 => 0.004043298136266
329 => 0.0041512034086364
330 => 0.0042386504968657
331 => 0.004267661740975
401 => 0.0042714960558074
402 => 0.0043259230783874
403 => 0.0043571196327263
404 => 0.0043193142062734
405 => 0.0042872780657476
406 => 0.0041725285868566
407 => 0.0041858111514907
408 => 0.004277314850134
409 => 0.0044065692140087
410 => 0.0045174829048377
411 => 0.0044786447960418
412 => 0.0047749521507229
413 => 0.0048043298146325
414 => 0.0048002707713738
415 => 0.0048671974617425
416 => 0.0047343616107441
417 => 0.0046775717108689
418 => 0.0042942046429549
419 => 0.0044019151516993
420 => 0.0045584787017755
421 => 0.0045377569288398
422 => 0.0044240562938187
423 => 0.0045173966527103
424 => 0.0044865354110378
425 => 0.0044621938692967
426 => 0.004573707190853
427 => 0.0044510937130871
428 => 0.0045572555385404
429 => 0.004421101899293
430 => 0.0044788222052513
501 => 0.0044460573679723
502 => 0.0044672602331992
503 => 0.0043433087163283
504 => 0.0044101899460789
505 => 0.0043405262372856
506 => 0.0043404932076172
507 => 0.0043389553773845
508 => 0.0044209144218436
509 => 0.0044235871033409
510 => 0.0043630192456524
511 => 0.0043542904711117
512 => 0.0043865653255246
513 => 0.0043487799238049
514 => 0.0043664594754511
515 => 0.0043493154194138
516 => 0.0043454559312908
517 => 0.0043147028732886
518 => 0.0043014536103283
519 => 0.0043066489877265
520 => 0.0042889144862659
521 => 0.0042782288076509
522 => 0.0043368297269533
523 => 0.0043055216197244
524 => 0.004332031310499
525 => 0.0043018201720716
526 => 0.0041970952039159
527 => 0.004136866767283
528 => 0.0039390510104465
529 => 0.0039951513136956
530 => 0.0040323458727898
531 => 0.0040200530712311
601 => 0.0040464627656619
602 => 0.0040480841064093
603 => 0.0040394980455349
604 => 0.0040295564869848
605 => 0.0040247174860853
606 => 0.0040607834342712
607 => 0.0040817209311171
608 => 0.0040360788443939
609 => 0.0040253855420753
610 => 0.0040715322117211
611 => 0.004099681653547
612 => 0.0043075213161843
613 => 0.0042921238826628
614 => 0.0043307684192079
615 => 0.0043264176374417
616 => 0.0043669232682984
617 => 0.0044331328557923
618 => 0.0042985102519254
619 => 0.0043218760810573
620 => 0.00431614731935
621 => 0.0043786924375088
622 => 0.0043788876965406
623 => 0.0043413887738441
624 => 0.0043617175481884
625 => 0.0043503705840401
626 => 0.0043708760818902
627 => 0.0042919182405508
628 => 0.00438808036833
629 => 0.0044425980982301
630 => 0.0044433550769627
701 => 0.0044691960482559
702 => 0.0044954519716979
703 => 0.0045458479303359
704 => 0.0044940464557639
705 => 0.0044008606457809
706 => 0.0044075883602734
707 => 0.0043529535539757
708 => 0.0043538719749401
709 => 0.0043489693718539
710 => 0.0043636824527663
711 => 0.0042951469344227
712 => 0.0043112320835911
713 => 0.0042887127805609
714 => 0.0043218271284904
715 => 0.004286201564116
716 => 0.0043161445567676
717 => 0.0043290669597701
718 => 0.0043767509050487
719 => 0.0042791586066278
720 => 0.0040801613037297
721 => 0.0041219929494079
722 => 0.0040601206596449
723 => 0.0040658471756269
724 => 0.0040774156492788
725 => 0.004039918441204
726 => 0.0040470717268319
727 => 0.0040468161611323
728 => 0.0040446138340016
729 => 0.0040348593619705
730 => 0.0040207134476619
731 => 0.0040770664163846
801 => 0.0040866418838802
802 => 0.0041079269619736
803 => 0.0041712569165731
804 => 0.0041649287606855
805 => 0.0041752502454909
806 => 0.0041527185021133
807 => 0.0040668923585796
808 => 0.0040715531310955
809 => 0.0040134332231383
810 => 0.0041064407052558
811 => 0.0040844153058516
812 => 0.004070215387572
813 => 0.0040663408083081
814 => 0.0041298277456156
815 => 0.0041488240322939
816 => 0.0041369868212294
817 => 0.0041127083559895
818 => 0.004159330186534
819 => 0.0041718042215706
820 => 0.0041745966979906
821 => 0.0042572016428662
822 => 0.0041792133967827
823 => 0.0041979859427515
824 => 0.0043444439875405
825 => 0.0042116267507455
826 => 0.0042819830032537
827 => 0.0042785394308096
828 => 0.004314531308867
829 => 0.0042755870462847
830 => 0.0042760698070937
831 => 0.0043080281565077
901 => 0.0042631484184745
902 => 0.0042520355641923
903 => 0.0042366832355932
904 => 0.0042702044834356
905 => 0.0042902989554815
906 => 0.0044522456424078
907 => 0.0045568705878284
908 => 0.0045523285430191
909 => 0.0045938343302251
910 => 0.0045751355929394
911 => 0.004514752437766
912 => 0.0046178191207056
913 => 0.0045852045097304
914 => 0.0045878932186324
915 => 0.0045877931447528
916 => 0.0046094790098326
917 => 0.0045941125869432
918 => 0.0045638237900973
919 => 0.0045839309069626
920 => 0.0046436418556266
921 => 0.0048289864724356
922 => 0.0049327077754914
923 => 0.0048227423197553
924 => 0.0048985950186259
925 => 0.0048531104283837
926 => 0.0048448445252873
927 => 0.0048924856256485
928 => 0.0049402101154492
929 => 0.0049371702717675
930 => 0.0049025247428519
1001 => 0.0048829543626652
1002 => 0.0050311478379972
1003 => 0.0051403342662119
1004 => 0.0051328884838027
1005 => 0.0051657517458585
1006 => 0.0052622392996767
1007 => 0.0052710609123765
1008 => 0.0052699495919387
1009 => 0.0052480843044223
1010 => 0.0053430888316485
1011 => 0.0054223432797062
1012 => 0.0052430231221112
1013 => 0.0053113058906501
1014 => 0.0053419602253807
1015 => 0.0053869698834964
1016 => 0.0054629087212322
1017 => 0.0055453984407951
1018 => 0.0055570633915951
1019 => 0.0055487865507832
1020 => 0.0054943823632888
1021 => 0.0055846435987416
1022 => 0.0056375165135835
1023 => 0.0056690011243966
1024 => 0.0057488408588791
1025 => 0.005342149536116
1026 => 0.005054273203994
1027 => 0.0050093171577485
1028 => 0.0051007370455979
1029 => 0.0051248437409638
1030 => 0.005115126362289
1031 => 0.0047910953779147
1101 => 0.0050076112016755
1102 => 0.0052405640228747
1103 => 0.0052495126894671
1104 => 0.0053661337425732
1105 => 0.005404110337923
1106 => 0.0054980055715443
1107 => 0.0054921323991164
1108 => 0.0055149943943037
1109 => 0.0055097388175247
1110 => 0.0056836599658339
1111 => 0.0058755208199595
1112 => 0.0058688772886612
1113 => 0.0058412950208861
1114 => 0.0058822593920077
1115 => 0.0060802803545239
1116 => 0.0060620497575167
1117 => 0.0060797592296307
1118 => 0.0063132371044097
1119 => 0.0066167915534629
1120 => 0.0064757600355093
1121 => 0.0067817578487425
1122 => 0.0069743672519257
1123 => 0.007307465298547
1124 => 0.0072657597825675
1125 => 0.0073954324077308
1126 => 0.0071910982047605
1127 => 0.0067219055719847
1128 => 0.0066476540418507
1129 => 0.0067963074855272
1130 => 0.007161757471415
1201 => 0.0067847981649455
1202 => 0.0068610565416914
1203 => 0.0068390941240584
1204 => 0.006837923840157
1205 => 0.0068825888167847
1206 => 0.0068177999386177
1207 => 0.0065538383936687
1208 => 0.0066748104141837
1209 => 0.0066280973075093
1210 => 0.0066799289820573
1211 => 0.0069596431525845
1212 => 0.0068359748502414
1213 => 0.0067057003397201
1214 => 0.006869093486142
1215 => 0.0070771491095138
1216 => 0.0070641293625151
1217 => 0.0070388656115056
1218 => 0.0071812760531794
1219 => 0.0074164963804802
1220 => 0.0074800754897578
1221 => 0.0075270082884088
1222 => 0.0075334795284067
1223 => 0.0076001373222378
1224 => 0.0072417015648811
1225 => 0.0078105483170893
1226 => 0.0079087724371212
1227 => 0.0078903103735279
1228 => 0.0079994823490406
1229 => 0.007967361184419
1230 => 0.0079208226565387
1231 => 0.0080938834592715
]
'min_raw' => 0.0029834762086115
'max_raw' => 0.0080938834592715
'avg_raw' => 0.0055386798339415
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.002983'
'max' => '$0.008093'
'avg' => '$0.005538'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.0010289238397405
'max_diff' => 0.003730482984476
'year' => 2032
]
7 => [
'items' => [
101 => 0.007895483214225
102 => 0.0076138790442779
103 => 0.007459385427146
104 => 0.0076628350848299
105 => 0.0077870746913629
106 => 0.0078691891681581
107 => 0.0078940369592215
108 => 0.0072695259123889
109 => 0.0069329490951167
110 => 0.0071486909761271
111 => 0.0074119109606691
112 => 0.0072402393645766
113 => 0.0072469685661261
114 => 0.0070022099846001
115 => 0.0074335666641355
116 => 0.0073707216242079
117 => 0.0076967618025232
118 => 0.0076189496973324
119 => 0.0078848228059417
120 => 0.0078148095060667
121 => 0.008105430799457
122 => 0.0082213675016477
123 => 0.0084160432687329
124 => 0.0085592475554737
125 => 0.0086433398517094
126 => 0.0086382912656657
127 => 0.0089715068379671
128 => 0.0087750212566463
129 => 0.0085281890584115
130 => 0.0085237246426911
131 => 0.0086515625357962
201 => 0.0089194756891312
202 => 0.0089889416718132
203 => 0.0090277636794087
204 => 0.0089683064233723
205 => 0.0087550354070971
206 => 0.0086629460635781
207 => 0.0087414088523414
208 => 0.0086454556040681
209 => 0.0088110978303142
210 => 0.0090385599862205
211 => 0.0089915899505087
212 => 0.0091486037377519
213 => 0.0093110964892166
214 => 0.0095434684218171
215 => 0.0096042190497066
216 => 0.0097046375274685
217 => 0.009808001126837
218 => 0.0098411987292271
219 => 0.0099045832528008
220 => 0.0099042491850741
221 => 0.010095262713134
222 => 0.01030595654978
223 => 0.010385488595541
224 => 0.010568368149345
225 => 0.01025519332232
226 => 0.010492740026111
227 => 0.010707013099111
228 => 0.010451547908039
301 => 0.010803647158176
302 => 0.010817318374185
303 => 0.011023737504702
304 => 0.010814492170803
305 => 0.010690242959468
306 => 0.011048945777034
307 => 0.011222510771422
308 => 0.011170231582594
309 => 0.010772384374268
310 => 0.010540820234553
311 => 0.0099347722155326
312 => 0.010652662273389
313 => 0.01100232557943
314 => 0.010771478830778
315 => 0.010887904503245
316 => 0.011523085221072
317 => 0.011764920913515
318 => 0.011714620780046
319 => 0.011723120674592
320 => 0.011853610824605
321 => 0.012432276012005
322 => 0.012085526418361
323 => 0.012350603490243
324 => 0.012491199413362
325 => 0.012621792742251
326 => 0.012301096800945
327 => 0.011883876093264
328 => 0.011751724781408
329 => 0.010748525671117
330 => 0.010696304800753
331 => 0.010666991643764
401 => 0.010482176335374
402 => 0.010336962128153
403 => 0.010221482399113
404 => 0.0099184291049465
405 => 0.010020700695505
406 => 0.0095376969967414
407 => 0.0098467056466103
408 => 0.0090758200808514
409 => 0.0097178364870037
410 => 0.009368416146039
411 => 0.0096030425073669
412 => 0.0096022239180953
413 => 0.0091702023985351
414 => 0.0089210214021119
415 => 0.0090798092313023
416 => 0.0092500423887879
417 => 0.0092776621458568
418 => 0.009498373878077
419 => 0.0095599697783568
420 => 0.0093733313248713
421 => 0.0090598451909579
422 => 0.0091326608700085
423 => 0.0089195457947
424 => 0.0085460698225749
425 => 0.0088143067860201
426 => 0.008905894678887
427 => 0.0089463451100242
428 => 0.0085790743854443
429 => 0.008463669949946
430 => 0.0084022295968236
501 => 0.0090124351524029
502 => 0.0090458635901987
503 => 0.0088748389761306
504 => 0.0096478864489376
505 => 0.0094729219973129
506 => 0.0096684001571091
507 => 0.0091260536103525
508 => 0.0091467719788051
509 => 0.0088900164320816
510 => 0.0090337823818349
511 => 0.0089321732423421
512 => 0.0090221675138177
513 => 0.0090761097090798
514 => 0.0093328231247446
515 => 0.0097207677418462
516 => 0.0092944787010823
517 => 0.0091087384614499
518 => 0.0092239706614751
519 => 0.0095308491952638
520 => 0.0099957858827768
521 => 0.0097205340060462
522 => 0.0098426861148593
523 => 0.0098693709164659
524 => 0.0096664103729431
525 => 0.010003269327516
526 => 0.010183794777909
527 => 0.010368976535534
528 => 0.010529764667005
529 => 0.010295010869305
530 => 0.010546231083479
531 => 0.010343791937192
601 => 0.010162183095199
602 => 0.010162458520847
603 => 0.010048532641383
604 => 0.0098277868943356
605 => 0.0097870779917328
606 => 0.0099988508440404
607 => 0.010168672616627
608 => 0.010182659951209
609 => 0.010276682010271
610 => 0.010332323296319
611 => 0.010877683540256
612 => 0.011097031941824
613 => 0.011365247015208
614 => 0.011469731902064
615 => 0.011784193951597
616 => 0.011530240307241
617 => 0.011475295838841
618 => 0.010712513766427
619 => 0.010837419288052
620 => 0.011037405079766
621 => 0.010715811458473
622 => 0.010919788590535
623 => 0.010960057997231
624 => 0.01070488383028
625 => 0.010841183378274
626 => 0.010479212188803
627 => 0.0097286577246235
628 => 0.010004104909192
629 => 0.010206926751555
630 => 0.0099174749747508
701 => 0.010436306081341
702 => 0.010133215659719
703 => 0.010037150546971
704 => 0.0096623662924544
705 => 0.0098392500338173
706 => 0.010078487826742
707 => 0.0099306666850931
708 => 0.01023741774947
709 => 0.010671859064149
710 => 0.010981467816417
711 => 0.011005235731989
712 => 0.010806178046456
713 => 0.011125169257891
714 => 0.011127492760616
715 => 0.010767669371
716 => 0.010547279548364
717 => 0.010497206516958
718 => 0.010622298766808
719 => 0.01077418385143
720 => 0.011013664297119
721 => 0.01115837731488
722 => 0.011535712115347
723 => 0.011637808093317
724 => 0.01174998061954
725 => 0.011899877707299
726 => 0.012079867593978
727 => 0.011686059968754
728 => 0.011701706679853
729 => 0.011334998471882
730 => 0.010943118160388
731 => 0.011240506468241
801 => 0.011629302120851
802 => 0.011540111968561
803 => 0.011530076254439
804 => 0.011546953541918
805 => 0.011479707079769
806 => 0.011175553823742
807 => 0.011022809962666
808 => 0.011219888512569
809 => 0.011324626990886
810 => 0.0114870672366
811 => 0.011467043047618
812 => 0.011885471675769
813 => 0.012048060388043
814 => 0.01200646323788
815 => 0.012014118114601
816 => 0.012308477211925
817 => 0.012635865067714
818 => 0.012942506997293
819 => 0.013254436338639
820 => 0.012878393342837
821 => 0.012687461900677
822 => 0.012884454412251
823 => 0.01277992741274
824 => 0.013380570556655
825 => 0.013422157784743
826 => 0.014022757495322
827 => 0.014592798138745
828 => 0.01423476582395
829 => 0.014572374170672
830 => 0.014937525123264
831 => 0.015641960554422
901 => 0.015404731483545
902 => 0.015223017733107
903 => 0.015051299116978
904 => 0.01540861829758
905 => 0.015868303715112
906 => 0.015967315551237
907 => 0.01612775255119
908 => 0.015959072663042
909 => 0.016162229008836
910 => 0.016879460180913
911 => 0.016685657987043
912 => 0.016410427716491
913 => 0.016976612843231
914 => 0.017181513039609
915 => 0.018619609924858
916 => 0.020435266647304
917 => 0.019683572841967
918 => 0.019216972239986
919 => 0.019326634449366
920 => 0.019989650820544
921 => 0.020202590635879
922 => 0.019623746813043
923 => 0.019828204236991
924 => 0.020954784744755
925 => 0.02155915904214
926 => 0.020738337567994
927 => 0.018473723675075
928 => 0.016385646241987
929 => 0.016939498404594
930 => 0.016876708757388
1001 => 0.0180870789692
1002 => 0.016681035868814
1003 => 0.016704710028626
1004 => 0.017940109414613
1005 => 0.017610526038539
1006 => 0.017076643179149
1007 => 0.016389544177691
1008 => 0.015119378124531
1009 => 0.013994356630046
1010 => 0.016200782857707
1011 => 0.016105637746645
1012 => 0.015967853526111
1013 => 0.016274477399099
1014 => 0.017763355889626
1015 => 0.01772903242139
1016 => 0.01751068402846
1017 => 0.017676299360063
1018 => 0.01704761001078
1019 => 0.017209637571081
1020 => 0.016385315479853
1021 => 0.01675794349182
1022 => 0.017075497706311
1023 => 0.017139251416341
1024 => 0.017282891780383
1025 => 0.016055500596542
1026 => 0.016606563203775
1027 => 0.01693026085794
1028 => 0.015467783080199
1029 => 0.016901352374499
1030 => 0.01603413444673
1031 => 0.015739787656869
1101 => 0.016136086832176
1102 => 0.015981648658146
1103 => 0.015848871785028
1104 => 0.015774780008432
1105 => 0.016065778384833
1106 => 0.016052202962756
1107 => 0.015576073138612
1108 => 0.014954981192551
1109 => 0.015163440036297
1110 => 0.015087704984052
1111 => 0.0148132313847
1112 => 0.014998193450595
1113 => 0.014183714119553
1114 => 0.012782444763449
1115 => 0.013708166222133
1116 => 0.013672526952965
1117 => 0.013654556017338
1118 => 0.014350210108477
1119 => 0.014283339019084
1120 => 0.014161967337033
1121 => 0.014811002298578
1122 => 0.014574095806862
1123 => 0.015304185792141
1124 => 0.015785070275706
1125 => 0.01566310241569
1126 => 0.016115376596799
1127 => 0.01516824250703
1128 => 0.015482842459227
1129 => 0.015547681073358
1130 => 0.0148029933079
1201 => 0.014294279956318
1202 => 0.014260354575524
1203 => 0.013378315728899
1204 => 0.013849493761197
1205 => 0.014264110930948
1206 => 0.014065541482229
1207 => 0.014002680326859
1208 => 0.014323824336727
1209 => 0.014348779976706
1210 => 0.0137797887405
1211 => 0.013898100036117
1212 => 0.014391477806452
1213 => 0.013885668182181
1214 => 0.012902962705755
1215 => 0.012659238160635
1216 => 0.012626720813582
1217 => 0.011965720517179
1218 => 0.012675525000154
1219 => 0.012365676321758
1220 => 0.013344484584255
1221 => 0.012785394554171
1222 => 0.012761293300413
1223 => 0.012724860720473
1224 => 0.012155910459781
1225 => 0.012280474408197
1226 => 0.012694543944357
1227 => 0.012842288619687
1228 => 0.012826877639613
1229 => 0.012692514777735
1230 => 0.012754025407854
1231 => 0.012555878236518
]
'min_raw' => 0.0069329490951167
'max_raw' => 0.02155915904214
'avg_raw' => 0.014246054068628
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.006932'
'max' => '$0.021559'
'avg' => '$0.014246'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.0039494728865052
'max_diff' => 0.013465275582869
'year' => 2033
]
8 => [
'items' => [
101 => 0.012485908346242
102 => 0.012265064125798
103 => 0.011940484131519
104 => 0.011985618970488
105 => 0.011342541070844
106 => 0.010992158100391
107 => 0.010895176712143
108 => 0.010765489146647
109 => 0.010909825267752
110 => 0.011340719311953
111 => 0.010820969675375
112 => 0.0099298953796592
113 => 0.0099834504631485
114 => 0.010103772835102
115 => 0.0098795528909789
116 => 0.0096673475312202
117 => 0.0098518428747654
118 => 0.0094742829488458
119 => 0.010149399148335
120 => 0.01013113914713
121 => 0.010382780717394
122 => 0.010540137355485
123 => 0.010177481249502
124 => 0.010086274219574
125 => 0.010138229888949
126 => 0.0092795184068549
127 => 0.010312605669249
128 => 0.010321539850794
129 => 0.010245039964306
130 => 0.01079512703854
131 => 0.011955982341635
201 => 0.011519221881315
202 => 0.011350095029924
203 => 0.011028584761798
204 => 0.011456978104685
205 => 0.011424084179928
206 => 0.011275325377529
207 => 0.011185355589682
208 => 0.011351127682414
209 => 0.011164814592874
210 => 0.011131347642451
211 => 0.010928574335291
212 => 0.010856193490233
213 => 0.010802605594116
214 => 0.010743610585929
215 => 0.010873738873349
216 => 0.010578851054253
217 => 0.010223245252633
218 => 0.010193680477937
219 => 0.010275311420236
220 => 0.010239195804977
221 => 0.010193507570265
222 => 0.01010627628775
223 => 0.01008039662963
224 => 0.010164492963497
225 => 0.010069553105682
226 => 0.01020964203753
227 => 0.010171545599541
228 => 0.009958741993782
301 => 0.0096935099110202
302 => 0.0096911487891405
303 => 0.0096340049719773
304 => 0.0095612237291895
305 => 0.0095409776524552
306 => 0.0098363051915313
307 => 0.01044762435901
308 => 0.010327607778806
309 => 0.010414332057797
310 => 0.01084092967626
311 => 0.010976532230931
312 => 0.010880284749548
313 => 0.010748535260744
314 => 0.010754331569612
315 => 0.011204559456136
316 => 0.011232639617157
317 => 0.011303589125056
318 => 0.011394779293034
319 => 0.010895814829472
320 => 0.010730830388249
321 => 0.010652651607009
322 => 0.010411891219787
323 => 0.010671530656171
324 => 0.010520249875459
325 => 0.010540662821265
326 => 0.01052736886353
327 => 0.010534628263386
328 => 0.010149210439599
329 => 0.010289636437622
330 => 0.010056150979838
331 => 0.0097435401618362
401 => 0.0097424921807588
402 => 0.0098190032355892
403 => 0.0097734914662982
404 => 0.0096510204653507
405 => 0.0096684168929885
406 => 0.0095160058815003
407 => 0.0096869223492736
408 => 0.0096918236220008
409 => 0.0096260114720252
410 => 0.0098893318725575
411 => 0.0099972144555045
412 => 0.0099538954885577
413 => 0.009994175081304
414 => 0.010332595009556
415 => 0.010387772224157
416 => 0.010412278298081
417 => 0.010379443405456
418 => 0.010000360776346
419 => 0.010017174702931
420 => 0.0098938052658673
421 => 0.0097895710918993
422 => 0.0097937399122218
423 => 0.0098473298271355
424 => 0.01008136012857
425 => 0.0105738631011
426 => 0.010592553228893
427 => 0.010615206209007
428 => 0.010523065154407
429 => 0.010495274530669
430 => 0.010531937536748
501 => 0.010716895758655
502 => 0.011192658521065
503 => 0.011024492185702
504 => 0.010887770337388
505 => 0.011007712258305
506 => 0.010989248139716
507 => 0.010833392397189
508 => 0.01082901804559
509 => 0.010529881045587
510 => 0.010419296907706
511 => 0.010326884525013
512 => 0.010225972615598
513 => 0.0101661486531
514 => 0.010258065449002
515 => 0.010279087907753
516 => 0.010078110227081
517 => 0.010050717711843
518 => 0.010214840424285
519 => 0.010142616137651
520 => 0.01021690060753
521 => 0.010234135241742
522 => 0.010231360068687
523 => 0.010155949618534
524 => 0.010204013990689
525 => 0.010090327421864
526 => 0.0099667103534363
527 => 0.0098878503653951
528 => 0.0098190345665697
529 => 0.0098572175713558
530 => 0.0097211021312347
531 => 0.0096775560624774
601 => 0.010187730862886
602 => 0.010564602473251
603 => 0.010559122610779
604 => 0.010525765357285
605 => 0.010476203244865
606 => 0.010713269981428
607 => 0.010630680670708
608 => 0.010690771294825
609 => 0.010706066880658
610 => 0.010752362012239
611 => 0.010768908542578
612 => 0.010718893435589
613 => 0.010551036627702
614 => 0.010132753421793
615 => 0.009938041460309
616 => 0.009873783269835
617 => 0.0098761189330151
618 => 0.0098116909156496
619 => 0.0098306678542249
620 => 0.0098050915108568
621 => 0.0097566561040994
622 => 0.0098542268214759
623 => 0.0098654709377194
624 => 0.0098426967664005
625 => 0.0098480609081831
626 => 0.0096595004966383
627 => 0.0096738363351964
628 => 0.0095940125643948
629 => 0.0095790465696594
630 => 0.0093772590281238
701 => 0.0090197631487216
702 => 0.009217850568875
703 => 0.0089785888206359
704 => 0.0088879767711707
705 => 0.0093169201202743
706 => 0.0092738661050608
707 => 0.0092001763461459
708 => 0.0090911738344193
709 => 0.0090507437425117
710 => 0.0088051033026925
711 => 0.0087905895550672
712 => 0.0089123355898914
713 => 0.0088561539838453
714 => 0.0087772537313185
715 => 0.0084914850146568
716 => 0.0081701863623586
717 => 0.0081798843490601
718 => 0.0082820834723823
719 => 0.0085792412068709
720 => 0.0084631365391252
721 => 0.0083789012705281
722 => 0.0083631265368227
723 => 0.0085605803557872
724 => 0.0088400188774759
725 => 0.0089711251797677
726 => 0.0088412028159541
727 => 0.0086919549999219
728 => 0.008701039022936
729 => 0.0087614709583348
730 => 0.0087678215002836
731 => 0.00867067651497
801 => 0.0086980222593058
802 => 0.0086564815731125
803 => 0.0084015464586224
804 => 0.0083969354908092
805 => 0.0083343703023293
806 => 0.0083324758532871
807 => 0.0082260368600651
808 => 0.0082111453091353
809 => 0.0079998042277078
810 => 0.0081389095675031
811 => 0.0080456050089266
812 => 0.0079049730308314
813 => 0.0078807280248004
814 => 0.0078799991906424
815 => 0.0080243967874112
816 => 0.0081372221975125
817 => 0.0080472280816701
818 => 0.0080267381659555
819 => 0.0082455168597972
820 => 0.0082176752767938
821 => 0.0081935646454718
822 => 0.0088149982227672
823 => 0.0083230850552711
824 => 0.0081085828368208
825 => 0.0078430956086221
826 => 0.0079295395888264
827 => 0.0079477546055818
828 => 0.0073093056794336
829 => 0.0070502870296091
830 => 0.0069614015899012
831 => 0.0069102467626936
901 => 0.006933558659814
902 => 0.0067004114951145
903 => 0.0068570902456908
904 => 0.0066552045085002
905 => 0.0066213577076672
906 => 0.0069823544146076
907 => 0.0070325849974662
908 => 0.0068182857255726
909 => 0.006955900550029
910 => 0.006905999501692
911 => 0.0066586652600172
912 => 0.0066492189112527
913 => 0.0065251152829993
914 => 0.0063309171359804
915 => 0.0062421633717608
916 => 0.0061959396407597
917 => 0.0062150124530533
918 => 0.00620536865552
919 => 0.006142436353299
920 => 0.0062089758614174
921 => 0.006038994914198
922 => 0.0059713071313857
923 => 0.005940734130234
924 => 0.0057898662558384
925 => 0.00602996413525
926 => 0.0060772664421674
927 => 0.0061246619492419
928 => 0.0065372074800385
929 => 0.0065165978711615
930 => 0.0067028986981233
1001 => 0.0066956593905728
1002 => 0.00664252337685
1003 => 0.0064183512754035
1004 => 0.0065077022795566
1005 => 0.0062326937770025
1006 => 0.0064387488458765
1007 => 0.0063447139175078
1008 => 0.0064069555420044
1009 => 0.0062950394890585
1010 => 0.0063569784536593
1011 => 0.0060884835739375
1012 => 0.0058377668330781
1013 => 0.0059386625684778
1014 => 0.0060483477716842
1015 => 0.0062861732395058
1016 => 0.0061445263528888
1017 => 0.006195467929578
1018 => 0.006024822175186
1019 => 0.0056727312413252
1020 => 0.0056747240377739
1021 => 0.0056205625183174
1022 => 0.0055737590577956
1023 => 0.0061607962017445
1024 => 0.0060877888532106
1025 => 0.0059714611982872
1026 => 0.0061271703870794
1027 => 0.0061683423680331
1028 => 0.0061695144764499
1029 => 0.0062831158811568
1030 => 0.006343744971213
1031 => 0.006354431111117
1101 => 0.006533185375944
1102 => 0.0065931014476883
1103 => 0.0068398872675631
1104 => 0.0063386010165136
1105 => 0.0063282773560538
1106 => 0.0061293615346854
1107 => 0.0060032059760387
1108 => 0.0061379995137167
1109 => 0.0062574081869465
1110 => 0.006133071895013
1111 => 0.0061493075898571
1112 => 0.0059823962765847
1113 => 0.0060420592171723
1114 => 0.0060934489790725
1115 => 0.0060650745731018
1116 => 0.0060225967140269
1117 => 0.0062476180374602
1118 => 0.0062349214525264
1119 => 0.0064444664821254
1120 => 0.0066078218174066
1121 => 0.0069005837814896
1122 => 0.0065950714099427
1123 => 0.0065839373248218
1124 => 0.0066927747928417
1125 => 0.006593084785239
1126 => 0.0066560854288618
1127 => 0.0068904334038158
1128 => 0.0068953848072459
1129 => 0.0068124424202691
1130 => 0.0068073953684838
1201 => 0.006823325361193
1202 => 0.0069166278260549
1203 => 0.006884025077937
1204 => 0.0069217538034596
1205 => 0.0069689341524484
1206 => 0.0071640920799196
1207 => 0.0072111439955288
1208 => 0.0070968322342196
1209 => 0.0071071533063713
1210 => 0.0070643975697136
1211 => 0.0070230960638301
1212 => 0.0071159358174557
1213 => 0.0072856022919763
1214 => 0.007284546805644
1215 => 0.0073239061298878
1216 => 0.0073484266628215
1217 => 0.0072431665853431
1218 => 0.007174646145425
1219 => 0.0072009212421585
1220 => 0.0072429356940325
1221 => 0.0071872965216724
1222 => 0.0068438657752943
1223 => 0.0069480407253044
1224 => 0.0069307009197279
1225 => 0.0069060069279946
1226 => 0.0070107556457908
1227 => 0.0070006523764232
1228 => 0.0066980202339551
1229 => 0.0067173937618283
1230 => 0.0066991984023522
1231 => 0.0067579913312399
]
'min_raw' => 0.0055737590577956
'max_raw' => 0.012485908346242
'avg_raw' => 0.009029833702019
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.005573'
'max' => '$0.012485'
'avg' => '$0.009029'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.0013591900373211
'max_diff' => -0.0090732506958979
'year' => 2034
]
9 => [
'items' => [
101 => 0.0065899097741371
102 => 0.0066416105290554
103 => 0.0066740367578756
104 => 0.0066931360557608
105 => 0.0067621358162331
106 => 0.0067540394907339
107 => 0.0067616325372723
108 => 0.0068639409667913
109 => 0.0073813818952854
110 => 0.0074095450633542
111 => 0.0072708593235883
112 => 0.0073262615411695
113 => 0.0072199013985467
114 => 0.0072913016748404
115 => 0.0073401519305102
116 => 0.0071194070185024
117 => 0.0071063359374359
118 => 0.00699953680867
119 => 0.007056924611057
120 => 0.0069656164911303
121 => 0.0069880203099379
122 => 0.0069253772794222
123 => 0.0070381222622475
124 => 0.0071641886718453
125 => 0.0071960380254231
126 => 0.0071122560881688
127 => 0.0070515924440979
128 => 0.0069450870689562
129 => 0.007122207881444
130 => 0.0071740034046744
131 => 0.0071219358216105
201 => 0.0071098706249154
202 => 0.0070870070989796
203 => 0.0071147212300256
204 => 0.0071737213151312
205 => 0.0071458979645559
206 => 0.0071642757777952
207 => 0.0070942385048456
208 => 0.0072432014308086
209 => 0.0074797904071184
210 => 0.0074805510793634
211 => 0.0074527275788099
212 => 0.007441342801849
213 => 0.0074698914018882
214 => 0.0074853778462845
215 => 0.0075776987838932
216 => 0.0076767628281757
217 => 0.0081390514978134
218 => 0.0080092426892571
219 => 0.0084194126986358
220 => 0.0087438039221444
221 => 0.0088410746661656
222 => 0.0087515901586083
223 => 0.0084454684921127
224 => 0.0084304487027239
225 => 0.0088879237137022
226 => 0.0087586660694179
227 => 0.0087432912839247
228 => 0.0085797295423871
301 => 0.0086764147891516
302 => 0.0086552683073972
303 => 0.0086218875514266
304 => 0.0088063562671006
305 => 0.0091516652352066
306 => 0.0090978455942403
307 => 0.0090576717288802
308 => 0.0088816415453089
309 => 0.0089876510335837
310 => 0.008949903085287
311 => 0.0091120922266095
312 => 0.0090160149722194
313 => 0.0087576868156341
314 => 0.008798826426031
315 => 0.0087926082566809
316 => 0.0089205777412816
317 => 0.0088821644784024
318 => 0.0087851074505929
319 => 0.0091504850066935
320 => 0.0091267594205371
321 => 0.0091603968772828
322 => 0.0091752051260151
323 => 0.0093976040057388
324 => 0.0094887137107912
325 => 0.009509397208938
326 => 0.0095959443820603
327 => 0.0095072438364281
328 => 0.0098621092613743
329 => 0.010098074061992
330 => 0.010372159320547
331 => 0.010772671550468
401 => 0.010923267853864
402 => 0.010896063979591
403 => 0.011199727781334
404 => 0.011745404883
405 => 0.011006360923343
406 => 0.011784576007401
407 => 0.011538202096713
408 => 0.01095405398655
409 => 0.01091644173491
410 => 0.011312033617211
411 => 0.012189418337847
412 => 0.011969643416543
413 => 0.012189777810886
414 => 0.011932979346758
415 => 0.011920227138547
416 => 0.012177305682669
417 => 0.012777983713631
418 => 0.0124926240972
419 => 0.012083491113998
420 => 0.01238558854198
421 => 0.012123883792065
422 => 0.011534189743958
423 => 0.011969475358803
424 => 0.011678412264376
425 => 0.011763359949095
426 => 0.012375131281211
427 => 0.012301521335985
428 => 0.012396779421205
429 => 0.01222865139413
430 => 0.012071593305484
501 => 0.011778432719741
502 => 0.011691642322945
503 => 0.011715628066228
504 => 0.011691630436802
505 => 0.011527609783364
506 => 0.01149218953887
507 => 0.011433154246251
508 => 0.011451451751975
509 => 0.011340448130468
510 => 0.011549934898771
511 => 0.011588817488959
512 => 0.011741264489184
513 => 0.011757092042471
514 => 0.012181654768149
515 => 0.011947812753332
516 => 0.012104694165819
517 => 0.012090661215661
518 => 0.01096671424739
519 => 0.011121584222949
520 => 0.011362513304045
521 => 0.011253975079583
522 => 0.011100527424227
523 => 0.010976610215184
524 => 0.0107888629723
525 => 0.011053113611294
526 => 0.011400575101648
527 => 0.011765904239265
528 => 0.012204823260798
529 => 0.012106861644772
530 => 0.011757698953463
531 => 0.011773362136732
601 => 0.011870185772463
602 => 0.011744790366836
603 => 0.011707808813707
604 => 0.011865105074953
605 => 0.011866188287856
606 => 0.011721905719141
607 => 0.011561562047446
608 => 0.011560890201607
609 => 0.011532358593965
610 => 0.011938055056374
611 => 0.012161147090161
612 => 0.012186724232303
613 => 0.012159425544706
614 => 0.012169931726116
615 => 0.012040119387154
616 => 0.012336831899369
617 => 0.012609124642404
618 => 0.012536144370585
619 => 0.012426736568371
620 => 0.012339587984113
621 => 0.012515614933756
622 => 0.01250777673078
623 => 0.012606746402837
624 => 0.012602256566836
625 => 0.012568976788561
626 => 0.01253614555911
627 => 0.012666317672807
628 => 0.012628830194563
629 => 0.01259128448791
630 => 0.012515980825259
701 => 0.012526215843674
702 => 0.01241682693226
703 => 0.012366218616543
704 => 0.011605190974497
705 => 0.011401819521246
706 => 0.011465804320447
707 => 0.011486869777708
708 => 0.011398362260626
709 => 0.011525259304406
710 => 0.01150548253455
711 => 0.011582422377036
712 => 0.01153435370379
713 => 0.011536326458907
714 => 0.011677686177601
715 => 0.011718723505325
716 => 0.011697851589233
717 => 0.011712469563816
718 => 0.012049334618234
719 => 0.012001443179834
720 => 0.011976001807696
721 => 0.011983049241647
722 => 0.012069125485519
723 => 0.012093222134215
724 => 0.011991122940451
725 => 0.012039273510458
726 => 0.012244292526333
727 => 0.012316037578818
728 => 0.012545013346772
729 => 0.012447740370825
730 => 0.012626289128051
731 => 0.013175087136004
801 => 0.01361350495869
802 => 0.013210317810565
803 => 0.014015416309756
804 => 0.014642300975896
805 => 0.014618240098279
806 => 0.014508928256634
807 => 0.013795236730824
808 => 0.013138487148232
809 => 0.01368788606113
810 => 0.013689286591944
811 => 0.013642092738088
812 => 0.013348975764999
813 => 0.013631892902793
814 => 0.013654349837787
815 => 0.013641779925971
816 => 0.013417047829952
817 => 0.013073923456765
818 => 0.013140969137962
819 => 0.013250791331458
820 => 0.013042875007861
821 => 0.012976433144378
822 => 0.013099961209675
823 => 0.013497994374158
824 => 0.013422748510062
825 => 0.013420783536458
826 => 0.013742717252275
827 => 0.013512282189394
828 => 0.013141814798712
829 => 0.0130482668967
830 => 0.012716234865976
831 => 0.012945570572255
901 => 0.012953823956046
902 => 0.012828219133471
903 => 0.013152006937816
904 => 0.013149023176198
905 => 0.013456411506969
906 => 0.014044022545619
907 => 0.013870237046907
908 => 0.013668143419714
909 => 0.013690116600438
910 => 0.013931108158553
911 => 0.013785399161215
912 => 0.013837797132577
913 => 0.013931028847948
914 => 0.013987277856645
915 => 0.01368202323371
916 => 0.013610853779087
917 => 0.013465266052013
918 => 0.013427284931543
919 => 0.013545863097457
920 => 0.013514621940167
921 => 0.012953130291097
922 => 0.012894451289659
923 => 0.012896250890858
924 => 0.012748699751708
925 => 0.012523648848173
926 => 0.013115069185572
927 => 0.013067569855557
928 => 0.013015134271376
929 => 0.013021557331245
930 => 0.013278272854614
1001 => 0.013129364886615
1002 => 0.013525261125077
1003 => 0.013443876760179
1004 => 0.013360405193414
1005 => 0.013348866880281
1006 => 0.013316737448535
1007 => 0.013206553672245
1008 => 0.013073500141357
1009 => 0.012985646675364
1010 => 0.011978572639338
1011 => 0.012165479722544
1012 => 0.012380499284656
1013 => 0.012454723175861
1014 => 0.012327758073819
1015 => 0.013211567028335
1016 => 0.01337304744092
1017 => 0.012883912738093
1018 => 0.012792415606433
1019 => 0.013217565565054
1020 => 0.012961148167537
1021 => 0.013076612905938
1022 => 0.012827041297349
1023 => 0.013334151538227
1024 => 0.013330288207834
1025 => 0.013133010870528
1026 => 0.013299748325122
1027 => 0.013270773589179
1028 => 0.013048047961233
1029 => 0.013341212337901
1030 => 0.013341357743775
1031 => 0.013151482595797
1101 => 0.012929749991974
1102 => 0.012890109439501
1103 => 0.012860245608171
1104 => 0.013069268234117
1105 => 0.013256677266944
1106 => 0.013605399014395
1107 => 0.013693075947128
1108 => 0.014035284852571
1109 => 0.013831516111229
1110 => 0.013921844155019
1111 => 0.014019908024235
1112 => 0.014066923449316
1113 => 0.013990314337133
1114 => 0.01452190562609
1115 => 0.014566788218415
1116 => 0.014581836963388
1117 => 0.014402587371716
1118 => 0.01456180296301
1119 => 0.01448731126051
1120 => 0.014681117976024
1121 => 0.014711509343665
1122 => 0.014685768936478
1123 => 0.014695415636262
1124 => 0.014241796250266
1125 => 0.01421827369207
1126 => 0.013897541941972
1127 => 0.014028242500866
1128 => 0.013783904070654
1129 => 0.013861386303839
1130 => 0.013895539733949
1201 => 0.01387769992025
1202 => 0.014035632114364
1203 => 0.013901357485951
1204 => 0.013546984664777
1205 => 0.013192515294964
1206 => 0.01318806522077
1207 => 0.013094739692602
1208 => 0.01302728242916
1209 => 0.013040277091274
1210 => 0.013086071975484
1211 => 0.013024620747239
1212 => 0.013037734482442
1213 => 0.013255509863162
1214 => 0.013299183162662
1215 => 0.0131507642267
1216 => 0.012554840782062
1217 => 0.012408599673987
1218 => 0.012513714882384
1219 => 0.012463476583056
1220 => 0.010058998336991
1221 => 0.010623894834774
1222 => 0.010288252517864
1223 => 0.010442931939656
1224 => 0.010100328048248
1225 => 0.010263836582636
1226 => 0.01023364252671
1227 => 0.011141979378643
1228 => 0.011127796948077
1229 => 0.011134585327071
1230 => 0.01081055831063
1231 => 0.011326742146113
]
'min_raw' => 0.0065899097741371
'max_raw' => 0.014711509343665
'avg_raw' => 0.010650709558901
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.006589'
'max' => '$0.014711'
'avg' => '$0.01065'
'bar_min_pct' => 61.631153054957
'bar_max_pct' => 60.119598047091
'min_diff' => 0.0010161507163415
'max_diff' => 0.0022256009974232
'year' => 2035
]
10 => [
'items' => [
101 => 0.011581032864842
102 => 0.011533970420534
103 => 0.011545815023846
104 => 0.011342285495899
105 => 0.011136555937795
106 => 0.010908370196306
107 => 0.011332311099383
108 => 0.011285176107874
109 => 0.011393286819762
110 => 0.011668242799329
111 => 0.011708731111777
112 => 0.011763147814298
113 => 0.011743643300089
114 => 0.012208319958924
115 => 0.012152044549504
116 => 0.012287652094666
117 => 0.012008697085698
118 => 0.011693033014398
119 => 0.011753030434516
120 => 0.01174725220049
121 => 0.011673688649388
122 => 0.011607278764703
123 => 0.01149672501757
124 => 0.011846533432374
125 => 0.011832331849558
126 => 0.012062238967813
127 => 0.012021600651462
128 => 0.011750208028994
129 => 0.011759900869598
130 => 0.011825089880886
131 => 0.012050709793267
201 => 0.012117689144636
202 => 0.012086661640416
203 => 0.01216010144147
204 => 0.01221814526584
205 => 0.012167390852152
206 => 0.01288596631839
207 => 0.012587563685901
208 => 0.012733003052704
209 => 0.012767689484708
210 => 0.012678840918507
211 => 0.012698108991088
212 => 0.012727294870811
213 => 0.012904505817313
214 => 0.013369558617334
215 => 0.013575527336742
216 => 0.014195194391398
217 => 0.013558424501818
218 => 0.013520641211786
219 => 0.013632261960482
220 => 0.013996072119984
221 => 0.01429090608331
222 => 0.014388719518325
223 => 0.014401647178486
224 => 0.014585151685088
225 => 0.014690333046115
226 => 0.014562869411338
227 => 0.014454857326864
228 => 0.01406797144723
229 => 0.014112754541253
301 => 0.014421265649813
302 => 0.014857055761868
303 => 0.015231009014245
304 => 0.015100063618849
305 => 0.016099084552675
306 => 0.01619813339763
307 => 0.016184448049889
308 => 0.01641009605914
309 => 0.015962230713196
310 => 0.015770759600822
311 => 0.014478210765517
312 => 0.014841364265856
313 => 0.015369229205856
314 => 0.015299364301655
315 => 0.014916014672356
316 => 0.015230718209175
317 => 0.015126667378213
318 => 0.015044598170761
319 => 0.015420573119999
320 => 0.015007173219112
321 => 0.01536510522561
322 => 0.014906053724944
323 => 0.015100661766385
324 => 0.014990192829931
325 => 0.015061679770381
326 => 0.014643768577232
327 => 0.014869263312834
328 => 0.014634387254873
329 => 0.01463427589304
330 => 0.014629090991042
331 => 0.014905421631634
401 => 0.014914432763903
402 => 0.014710224002993
403 => 0.014680794330206
404 => 0.014789611255217
405 => 0.014662215135227
406 => 0.014721822977949
407 => 0.014664020596059
408 => 0.014651008062392
409 => 0.014547321980227
410 => 0.014502651165123
411 => 0.01452016774275
412 => 0.014460374632892
413 => 0.014424347121392
414 => 0.014621924212205
415 => 0.014516366742821
416 => 0.014605746016115
417 => 0.014503887053633
418 => 0.014150799511832
419 => 0.013947735132709
420 => 0.013280785497479
421 => 0.013469931586682
422 => 0.013595335639509
423 => 0.013553889600798
424 => 0.013642931729438
425 => 0.013648398192966
426 => 0.013619449689268
427 => 0.013585931030519
428 => 0.013569616001138
429 => 0.013691214863491
430 => 0.013761807095916
501 => 0.0136079216139
502 => 0.013571868398551
503 => 0.013727455117119
504 => 0.013822362925566
505 => 0.01452310885905
506 => 0.014471195336918
507 => 0.014601488089955
508 => 0.014586819125468
509 => 0.014723386687914
510 => 0.014946616934756
511 => 0.014492727426769
512 => 0.014571506951037
513 => 0.014552192030971
514 => 0.014763067263604
515 => 0.014763725593063
516 => 0.0146372953571
517 => 0.014705835239112
518 => 0.014667578157266
519 => 0.014736713874916
520 => 0.014470502000179
521 => 0.014794719327812
522 => 0.014978529660477
523 => 0.014981081867124
524 => 0.015068206505998
525 => 0.015156730185013
526 => 0.015326643678095
527 => 0.015151991389912
528 => 0.014837808925529
529 => 0.014860491884654
530 => 0.014676286820741
531 => 0.014679383341145
601 => 0.014662853872551
602 => 0.014712460052081
603 => 0.014481387766989
604 => 0.014535619970439
605 => 0.014459694568025
606 => 0.01457134190404
607 => 0.014451227826454
608 => 0.014552182716732
609 => 0.014595751500668
610 => 0.014756521251362
611 => 0.014427482003559
612 => 0.01375654870329
613 => 0.013897587017286
614 => 0.013688980272565
615 => 0.013708287621011
616 => 0.013747291537613
617 => 0.013620867082618
618 => 0.013644984884538
619 => 0.013644123226939
620 => 0.013636697927257
621 => 0.013603810043768
622 => 0.01355611610604
623 => 0.013746114074528
624 => 0.013778398431727
625 => 0.013850162558596
626 => 0.014063683922084
627 => 0.014042348102691
628 => 0.014077147709336
629 => 0.014001180363422
630 => 0.013711811528308
701 => 0.01372752564825
702 => 0.01353157032077
703 => 0.013845151540304
704 => 0.013770891368449
705 => 0.013723015352562
706 => 0.01370995193806
707 => 0.013924002579709
708 => 0.013988049886523
709 => 0.013948139902971
710 => 0.013866283362346
711 => 0.01402347211906
712 => 0.014065529199095
713 => 0.014074944228309
714 => 0.01435345256725
715 => 0.014090509750614
716 => 0.014153802700005
717 => 0.014647596223386
718 => 0.014199793636528
719 => 0.014437004653976
720 => 0.014425394409059
721 => 0.014546743538802
722 => 0.014415440238504
723 => 0.014417067900277
724 => 0.014524817706587
725 => 0.014373502536404
726 => 0.014336034772317
727 => 0.01428427332458
728 => 0.014397292552059
729 => 0.014465042467513
730 => 0.015011057029242
731 => 0.015363807337408
801 => 0.015348493516218
802 => 0.015488433175625
803 => 0.015425389077362
804 => 0.015221803053877
805 => 0.015569299571294
806 => 0.015459337133312
807 => 0.015468402303095
808 => 0.015468064897023
809 => 0.015541180305198
810 => 0.015489371337577
811 => 0.015387250544315
812 => 0.01545504309266
813 => 0.015656362724966
814 => 0.016281265040885
815 => 0.016630968655728
816 => 0.016260212444171
817 => 0.01651595511428
818 => 0.016362600642645
819 => 0.016334731573249
820 => 0.016495356869312
821 => 0.016656263318693
822 => 0.016646014273485
823 => 0.016529204453872
824 => 0.016463221550712
825 => 0.016962866199332
826 => 0.017330995865211
827 => 0.017305891889971
828 => 0.017416692672432
829 => 0.017742007196675
830 => 0.017771749879798
831 => 0.017768002985352
901 => 0.017694282641905
902 => 0.018014597038452
903 => 0.018281808943448
904 => 0.017677218512383
905 => 0.017907438633862
906 => 0.018010791863624
907 => 0.018162545068435
908 => 0.018418578161741
909 => 0.018696698010496
910 => 0.018736027206539
911 => 0.018708121259871
912 => 0.018524693743355
913 => 0.018829015800522
914 => 0.01900728052438
915 => 0.019113433087922
916 => 0.019382618326962
917 => 0.018011430137985
918 => 0.017040834985352
919 => 0.016889262536704
920 => 0.017197491071321
921 => 0.017278768477823
922 => 0.017246005657176
923 => 0.016153512570237
924 => 0.016883510786698
925 => 0.017668927487618
926 => 0.01769909854181
927 => 0.018092294564579
928 => 0.018220335307243
929 => 0.018536909642952
930 => 0.01851710783206
1001 => 0.018594188645007
1002 => 0.018576469100964
1003 => 0.019162856395276
1004 => 0.019809728660257
1005 => 0.019787329530649
1006 => 0.019694333989112
1007 => 0.01983244822639
1008 => 0.020500089726896
1009 => 0.020438623996266
1010 => 0.020498332717934
1011 => 0.021285519673656
1012 => 0.022308974692134
1013 => 0.021833477082847
1014 => 0.022865170074248
1015 => 0.023514566124639
1016 => 0.024637629444986
1017 => 0.024497016386075
1018 => 0.024934216695267
1019 => 0.024245289663794
1020 => 0.022663373944407
1021 => 0.022413029726483
1022 => 0.022914225190491
1023 => 0.024146365332815
1024 => 0.022875420712594
1025 => 0.023132531153983
1026 => 0.023058483329567
1027 => 0.023054537635686
1028 => 0.023205128722796
1029 => 0.022986688496641
1030 => 0.022096723718639
1031 => 0.022504589331802
1101 => 0.022347092831244
1102 => 0.022521846940755
1103 => 0.023464922795707
1104 => 0.023047966480112
1105 => 0.022608736872413
1106 => 0.02315962827332
1107 => 0.023861102333498
1108 => 0.023817205347482
1109 => 0.023732026847094
1110 => 0.024212173593977
1111 => 0.025005235350031
1112 => 0.025219596755912
1113 => 0.025377833963307
1114 => 0.025399652200767
1115 => 0.025624393606567
1116 => 0.024415902425454
1117 => 0.026333808966136
1118 => 0.026664978444613
1119 => 0.026602732308228
1120 => 0.026970813245813
1121 => 0.026862514496663
1122 => 0.026705606600698
1123 => 0.027289093179831
1124 => 0.026620172901794
1125 => 0.025670724781842
1126 => 0.025149838765282
1127 => 0.025835783490565
1128 => 0.026254665998123
1129 => 0.026531520689688
1130 => 0.026615296752075
1201 => 0.024509714155711
1202 => 0.023374921917234
1203 => 0.024102310731678
1204 => 0.024989775286994
1205 => 0.02441097251504
1206 => 0.024433660487882
1207 => 0.023608439841768
1208 => 0.025062789003184
1209 => 0.024850902563367
1210 => 0.025950169787956
1211 => 0.025687820842637
1212 => 0.026584230590981
1213 => 0.02634817586228
1214 => 0.027328025843476
1215 => 0.027718914529354
1216 => 0.02837527746991
1217 => 0.028858100720861
1218 => 0.029141623768756
1219 => 0.029124602108428
1220 => 0.030248061674811
1221 => 0.029585596819203
1222 => 0.02875338482958
1223 => 0.028738332740283
1224 => 0.029169347122244
1225 => 0.030072635023812
1226 => 0.030306844434384
1227 => 0.030437735543459
1228 => 0.030237271253559
1229 => 0.02951821313208
1230 => 0.029207727480933
1231 => 0.029472270251346
]
'min_raw' => 0.010908370196306
'max_raw' => 0.030437735543459
'avg_raw' => 0.020673052869882
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$0.0109083'
'max' => '$0.030437'
'avg' => '$0.020673'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.0043184604221687
'max_diff' => 0.015726226199793
'year' => 2036
]
11 => [
'items' => [
101 => 0.02914875717555
102 => 0.02970723150611
103 => 0.030474136045649
104 => 0.030315773290903
105 => 0.030845156236946
106 => 0.031393011893391
107 => 0.032176470087844
108 => 0.032381295071247
109 => 0.032719862980015
110 => 0.033068360571902
111 => 0.033180288606143
112 => 0.033393993952738
113 => 0.033392867620073
114 => 0.034036883066066
115 => 0.034747252046493
116 => 0.035015399891525
117 => 0.035631991075417
118 => 0.034576100280934
119 => 0.035377005577749
120 => 0.036099442203435
121 => 0.035238123475726
122 => 0.036425250680349
123 => 0.036471344139616
124 => 0.037167300649879
125 => 0.036461815397593
126 => 0.036042900506774
127 => 0.037252292100031
128 => 0.03783747859653
129 => 0.037661215661379
130 => 0.036319846021705
131 => 0.035539111357364
201 => 0.033495778148314
202 => 0.035916194599859
203 => 0.037095108848891
204 => 0.036316792918604
205 => 0.036709330201907
206 => 0.038850886338964
207 => 0.039666252260464
208 => 0.03949666184863
209 => 0.039525319836534
210 => 0.039965276487837
211 => 0.041916286568268
212 => 0.040747196104014
213 => 0.041640921958952
214 => 0.042114950929843
215 => 0.042555255455928
216 => 0.041474006699538
217 => 0.040067317954173
218 => 0.039621760579739
219 => 0.036239404738268
220 => 0.036063338427892
221 => 0.035964507072523
222 => 0.035341389356895
223 => 0.034851789518717
224 => 0.034462441549722
225 => 0.033440676209934
226 => 0.033785492017876
227 => 0.032157011325253
228 => 0.033198855562581
301 => 0.030599761056114
302 => 0.03276436419361
303 => 0.031586269118298
304 => 0.032377328276605
305 => 0.032374568345724
306 => 0.030917977629747
307 => 0.030077846503045
308 => 0.030613210755372
309 => 0.031187163731134
310 => 0.031280285670442
311 => 0.032024430685224
312 => 0.032232105563505
313 => 0.031602840986898
314 => 0.030545900599506
315 => 0.030791403745254
316 => 0.030072871389632
317 => 0.028813671074352
318 => 0.029718050724314
319 => 0.030026845699578
320 => 0.030163227152316
321 => 0.028924948262372
322 => 0.028535854150808
323 => 0.028328703710628
324 => 0.030386054344455
325 => 0.030498760656383
326 => 0.029922139229495
327 => 0.032528522756515
328 => 0.031938617892234
329 => 0.032597686155836
330 => 0.03076912690802
331 => 0.030838980333768
401 => 0.02997331108189
402 => 0.030458028018901
403 => 0.030115445710977
404 => 0.030418867680457
405 => 0.030600737557907
406 => 0.031466264761979
407 => 0.032774247123965
408 => 0.031336983860479
409 => 0.030710747674589
410 => 0.031099261082229
411 => 0.032133923484473
412 => 0.033701489987266
413 => 0.032773459067397
414 => 0.033185303430648
415 => 0.033275273102338
416 => 0.032590977459598
417 => 0.033726720943683
418 => 0.034335375103568
419 => 0.034959728328378
420 => 0.0355018367395
421 => 0.034710347920567
422 => 0.035557354412291
423 => 0.034874816696734
424 => 0.034262509806429
425 => 0.034263438423232
426 => 0.033879329366567
427 => 0.033135069668422
428 => 0.032997816761092
429 => 0.033711823718155
430 => 0.034284389681009
501 => 0.034331548956116
502 => 0.034648550892654
503 => 0.034836149373317
504 => 0.036674869511585
505 => 0.037414417961887
506 => 0.038318723807981
507 => 0.038671001898919
508 => 0.039731232653958
509 => 0.038875010211533
510 => 0.038689761100222
511 => 0.036117988087334
512 => 0.036539115774121
513 => 0.037213381833445
514 => 0.036129106486305
515 => 0.036816829628283
516 => 0.036952600744477
517 => 0.036092263224912
518 => 0.036551806667102
519 => 0.035331395529781
520 => 0.03280084875176
521 => 0.033729538165642
522 => 0.034413366167736
523 => 0.033437459293364
524 => 0.035186734592865
525 => 0.034164844075268
526 => 0.033840953840585
527 => 0.032577342559882
528 => 0.033173718443515
529 => 0.03398032536541
530 => 0.033481936065798
531 => 0.034516168696021
601 => 0.035980917920185
602 => 0.037024785444648
603 => 0.037104920631422
604 => 0.036433783746884
605 => 0.037509284887494
606 => 0.037517118739152
607 => 0.036303949058993
608 => 0.035560889384853
609 => 0.035392064663478
610 => 0.03581382191751
611 => 0.03632591308459
612 => 0.037133338127221
613 => 0.037621248170143
614 => 0.038893458794593
615 => 0.039237682512432
616 => 0.039615880016227
617 => 0.040121268513088
618 => 0.04072811698252
619 => 0.039400367079305
620 => 0.039453121058195
621 => 0.03821673873227
622 => 0.036895486901859
623 => 0.037898152344776
624 => 0.039209004032395
625 => 0.038908293206893
626 => 0.038874457096059
627 => 0.038931360049127
628 => 0.038704633906995
629 => 0.037679159968999
630 => 0.037164173377143
701 => 0.037828637467728
702 => 0.03818177055998
703 => 0.03872944918962
704 => 0.038661936238424
705 => 0.040072697571987
706 => 0.040620876767001
707 => 0.040480629071006
708 => 0.040506438022319
709 => 0.041498890270441
710 => 0.042602701283725
711 => 0.043636565958357
712 => 0.044688257510914
713 => 0.043420402296087
714 => 0.042776663608436
715 => 0.043440837614786
716 => 0.04308841753809
717 => 0.045113527833365
718 => 0.045253742076391
719 => 0.047278705933142
720 => 0.049200637761409
721 => 0.047993506815059
722 => 0.049131776927095
723 => 0.050362908857785
724 => 0.052737962096044
725 => 0.051938127720779
726 => 0.051325467124328
727 => 0.050746505821037
728 => 0.051951232385667
729 => 0.053501093865087
730 => 0.053834919183366
731 => 0.054375843730063
801 => 0.053807127710318
802 => 0.054492083514087
803 => 0.056910278486223
804 => 0.056256860858754
805 => 0.055328902785624
806 => 0.057237835470211
807 => 0.057928670787976
808 => 0.062777314841311
809 => 0.068898928246142
810 => 0.066364540099861
811 => 0.06479136359327
812 => 0.065161097388565
813 => 0.067396503374318
814 => 0.068114444828703
815 => 0.066162832466425
816 => 0.066852174946028
817 => 0.070650519783293
818 => 0.072688209922993
819 => 0.069920753014983
820 => 0.062285449164715
821 => 0.055245350314147
822 => 0.057112701549101
823 => 0.056901001869712
824 => 0.060981849544185
825 => 0.056241277064439
826 => 0.056321096147122
827 => 0.06048633142981
828 => 0.059375118066599
829 => 0.057575094731653
830 => 0.055258492476518
831 => 0.050976038948127
901 => 0.04718295043298
902 => 0.054622070507298
903 => 0.054301282122532
904 => 0.053836733003214
905 => 0.05487053679879
906 => 0.059890394579779
907 => 0.059774670610233
908 => 0.059038493758871
909 => 0.059596877412264
910 => 0.057477207377468
911 => 0.058023494609424
912 => 0.05524423512652
913 => 0.056500576484922
914 => 0.057571232690008
915 => 0.057786182774515
916 => 0.058270476290533
917 => 0.054132241220496
918 => 0.055990187274744
919 => 0.057081556515612
920 => 0.052150710581018
921 => 0.056984089545364
922 => 0.054060203754669
923 => 0.053067793002017
924 => 0.054403943340289
925 => 0.053883244254015
926 => 0.053435577756114
927 => 0.053185772158398
928 => 0.054166893501293
929 => 0.054121123017953
930 => 0.05251581807353
1001 => 0.05042176321413
1002 => 0.051124596759952
1003 => 0.050869250743655
1004 => 0.049943843840304
1005 => 0.050567456359107
1006 => 0.047821382429371
1007 => 0.043096904961762
1008 => 0.046218039491523
1009 => 0.046097879207268
1010 => 0.046037288943112
1011 => 0.048382735280405
1012 => 0.048157274733728
1013 => 0.047748061633793
1014 => 0.049936328320815
1015 => 0.049137581543711
1016 => 0.051599130902335
1017 => 0.053220466512955
1018 => 0.052809243357389
1019 => 0.054334117335772
1020 => 0.051140788625324
1021 => 0.052201484328824
1022 => 0.052420092243255
1023 => 0.049909325449573
1024 => 0.048194162867482
1025 => 0.048079781077541
1026 => 0.045105925524159
1027 => 0.046694535156653
1028 => 0.048092445892114
1029 => 0.047422955132083
1030 => 0.047211014357925
1031 => 0.048293773808753
1101 => 0.04837791349129
1102 => 0.046459519812724
1103 => 0.046858414606125
1104 => 0.048521872205348
1105 => 0.046816499742617
1106 => 0.043503239618542
1107 => 0.042681505298366
1108 => 0.042571870792486
1109 => 0.040343262143598
1110 => 0.042736417514916
1111 => 0.041691741062759
1112 => 0.044991861457976
1113 => 0.043106850387129
1114 => 0.043025591327388
1115 => 0.042902756340478
1116 => 0.040984500813717
1117 => 0.041404476862579
1118 => 0.042800541213156
1119 => 0.043298672701232
1120 => 0.043246713505955
1121 => 0.042793699736218
1122 => 0.043001087120198
1123 => 0.042333020097844
1124 => 0.042097111727639
1125 => 0.041352520019561
1126 => 0.040258175907395
1127 => 0.040410351168194
1128 => 0.038242169131281
1129 => 0.03706082848344
1130 => 0.036733848961938
1201 => 0.036296598280369
1202 => 0.0367832375899
1203 => 0.038236026943988
1204 => 0.036483654756503
1205 => 0.033479335555677
1206 => 0.033659900258758
1207 => 0.034065575536438
1208 => 0.033309602340291
1209 => 0.03259413715416
1210 => 0.033216176085976
1211 => 0.031943206435346
1212 => 0.034219407837032
1213 => 0.034157842968097
1214 => 0.035006270091296
1215 => 0.035536808982909
1216 => 0.034314088601746
1217 => 0.034006577732471
1218 => 0.0341817498992
1219 => 0.031286544183997
1220 => 0.034769670017008
1221 => 0.034799792233852
1222 => 0.034541867525507
1223 => 0.03639652450214
1224 => 0.040310429204854
1225 => 0.038837860819241
1226 => 0.038267637831717
1227 => 0.037183643515603
1228 => 0.038628001580611
1229 => 0.038517097416714
1230 => 0.038015546728418
1231 => 0.037712207307202
]
'min_raw' => 0.028328703710628
'max_raw' => 0.072688209922993
'avg_raw' => 0.05050845681681
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$0.028328'
'max' => '$0.072688'
'avg' => '$0.0505084'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 0.017420333514322
'max_diff' => 0.042250474379534
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.00088920563899195
]
1 => [
'year' => 2028
'avg' => 0.0015261350147516
]
2 => [
'year' => 2029
'avg' => 0.0041691258012268
]
3 => [
'year' => 2030
'avg' => 0.0032164743467981
]
4 => [
'year' => 2031
'avg' => 0.0031589764218332
]
5 => [
'year' => 2032
'avg' => 0.0055386798339415
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.00088920563899195
'min' => '$0.000889'
'max_raw' => 0.0055386798339415
'max' => '$0.005538'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.0055386798339415
]
1 => [
'year' => 2033
'avg' => 0.014246054068628
]
2 => [
'year' => 2034
'avg' => 0.009029833702019
]
3 => [
'year' => 2035
'avg' => 0.010650709558901
]
4 => [
'year' => 2036
'avg' => 0.020673052869882
]
5 => [
'year' => 2037
'avg' => 0.05050845681681
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.0055386798339415
'min' => '$0.005538'
'max_raw' => 0.05050845681681
'max' => '$0.0505084'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 0.05050845681681
]
]
]
]
'prediction_2025_max_price' => '$0.00152'
'last_price' => 0.0014742
'sma_50day_nextmonth' => '$0.001421'
'sma_200day_nextmonth' => '$0.003255'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'increase'
'sma_200day_direction_label' => 'aumentar'
'sma_200day_date_nextmonth' => '4 de fev. de 2026'
'sma_50day_date_nextmonth' => '4 de fev. de 2026'
'daily_sma3' => '$0.001497'
'daily_sma3_action' => 'SELL'
'daily_sma5' => '$0.0015012'
'daily_sma5_action' => 'SELL'
'daily_sma10' => '$0.00151'
'daily_sma10_action' => 'SELL'
'daily_sma21' => '$0.001522'
'daily_sma21_action' => 'SELL'
'daily_sma50' => '$0.0018022'
'daily_sma50_action' => 'SELL'
'daily_sma100' => '$0.002323'
'daily_sma100_action' => 'SELL'
'daily_sma200' => '$0.004133'
'daily_sma200_action' => 'SELL'
'daily_ema3' => '$0.001491'
'daily_ema3_action' => 'SELL'
'daily_ema5' => '$0.001497'
'daily_ema5_action' => 'SELL'
'daily_ema10' => '$0.00151'
'daily_ema10_action' => 'SELL'
'daily_ema21' => '$0.001569'
'daily_ema21_action' => 'SELL'
'daily_ema50' => '$0.001842'
'daily_ema50_action' => 'SELL'
'daily_ema100' => '$0.002521'
'daily_ema100_action' => 'SELL'
'daily_ema200' => '$0.004332'
'daily_ema200_action' => 'SELL'
'weekly_sma21' => '$0.002969'
'weekly_sma21_action' => 'SELL'
'weekly_sma50' => '$0.005893'
'weekly_sma50_action' => 'SELL'
'weekly_sma100' => '$0.01916'
'weekly_sma100_action' => 'SELL'
'weekly_sma200' => '$0.040766'
'weekly_sma200_action' => 'SELL'
'weekly_ema3' => '$0.001522'
'weekly_ema3_action' => 'SELL'
'weekly_ema5' => '$0.001612'
'weekly_ema5_action' => 'SELL'
'weekly_ema10' => '$0.001965'
'weekly_ema10_action' => 'SELL'
'weekly_ema21' => '$0.003088'
'weekly_ema21_action' => 'SELL'
'weekly_ema50' => '$0.007813'
'weekly_ema50_action' => 'SELL'
'weekly_ema100' => '$0.020881'
'weekly_ema100_action' => 'SELL'
'weekly_ema200' => '$0.052918'
'weekly_ema200_action' => 'SELL'
'rsi_14' => '31.30'
'rsi_14_action' => 'NEUTRAL'
'stoch_rsi_14' => 77.77
'stoch_rsi_14_action' => 'NEUTRAL'
'momentum_10' => -0
'momentum_10_action' => 'SELL'
'vwma_10' => '0.0015050'
'vwma_10_action' => 'SELL'
'hma_9' => '0.001498'
'hma_9_action' => 'SELL'
'stochastic_fast_14' => 0
'stochastic_fast_14_action' => 'BUY'
'cci_20' => -133.78
'cci_20_action' => 'BUY'
'adx_14' => 36.48
'adx_14_action' => 'SELL'
'ao_5_34' => '-0.000142'
'ao_5_34_action' => 'NEUTRAL'
'macd_12_26' => 0
'macd_12_26_action' => 'NEUTRAL'
'williams_percent_r_14' => -100
'williams_percent_r_14_action' => 'BUY'
'ultimate_oscillator' => 28.55
'ultimate_oscillator_action' => 'BUY'
'ichimoku_cloud' => '-0.000230'
'ichimoku_cloud_action' => 'SELL'
'sell_signals' => 32
'buy_signals' => 0
'sell_pct' => 100
'buy_pct' => 0
'overall_action' => 'bearish'
'overall_action_label' => 'Baixista'
'overall_action_dir' => -1
'last_updated' => 1767688022
'last_updated_date' => '6 de janeiro de 2026'
]
Previsão de preço de Radix para 2026
A previsão de preço para Radix em 2026 sugere que o preço médio poderia variar entre $0.0005093 na extremidade inferior e $0.00152 na extremidade superior. No mercado de criptomoedas, comparado ao preço médio de hoje, Radix poderia potencialmente ganhar 3.13% até 2026 se XRD atingir a meta de preço prevista.
Previsão de preço de Radix 2027-2032
A previsão de preço de XRD para 2027-2032 está atualmente dentro de uma faixa de preço entre $0.000889 na extremidade inferior e $0.005538 na extremidade superior. Considerando a volatilidade de preços no mercado, se Radix atingir a meta de preço superior, poderia ganhar 275.71% até 2032 em comparação com o preço de hoje.
| Previsão de Preço de Radix | Potencial Mínimo ($) | Preço Médio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2027 | $0.00049 | $0.000889 | $0.001288 |
| 2028 | $0.000884 | $0.001526 | $0.002167 |
| 2029 | $0.001943 | $0.004169 | $0.006394 |
| 2030 | $0.001653 | $0.003216 | $0.004779 |
| 2031 | $0.001954 | $0.003158 | $0.004363 |
| 2032 | $0.002983 | $0.005538 | $0.008093 |
Previsão de preço de Radix 2032-2037
A previsão de preço de Radix para 2032-2037 é atualmente estimada entre $0.005538 na extremidade inferior e $0.0505084 na extremidade superior. Comparado ao preço atual, Radix poderia potencialmente ganhar 3326.16% até 2037 se atingir a meta de preço superior. Por favor, note que esta informação é apenas para fins gerais e não deve ser considerada como aconselhamento de investimento a longo prazo.
| Previsão de Preço de Radix | Potencial Mínimo ($) | Preço Médio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2032 | $0.002983 | $0.005538 | $0.008093 |
| 2033 | $0.006932 | $0.014246 | $0.021559 |
| 2034 | $0.005573 | $0.009029 | $0.012485 |
| 2035 | $0.006589 | $0.01065 | $0.014711 |
| 2036 | $0.0109083 | $0.020673 | $0.030437 |
| 2037 | $0.028328 | $0.0505084 | $0.072688 |
Radix Histograma de preços potenciais
Previsão de preço de Radix baseada na análise técnica
Em 6 de janeiro de 2026, o sentimento geral de previsão de preço para Radix é Baixista, com 0 indicadores técnicos mostrando sinais de alta e 32 indicando sinais de baixa. A previsão de preço de XRD foi atualizada pela última vez em 6 de janeiro de 2026.
Médias Móveis Simples de 50 e 200 dias e Índice de Força Relativa de 14 dias - RSI (14) de Radix
De acordo com nossos indicadores técnicos, o SMA de 200 dias de Radix está projetado para aumentar no próximo mês, alcançando $0.003255 até 4 de fev. de 2026. O SMA de 50 dias de curto prazo para Radix é esperado para alcançar $0.001421 até 4 de fev. de 2026.
O oscilador de momentum Índice de Força Relativa (RSI) é uma ferramenta comumente usada para identificar se uma criptomoeda está sobrevendida (abaixo de 30) ou sobrecomprada (acima de 70). No momento, o RSI está em 31.30, sugerindo que o mercado de XRD está em um estado NEUTRAL.
Médias Móveis e Osciladores Populares de XRD para Sábado, 19 de Outubro de 2024
Médias móveis (MA) são indicadores amplamente utilizados nos mercados financeiros, projetados para suavizar movimentos de preços ao longo de um período definido. Como indicadores atrasados, eles se baseiam em dados históricos de preços. A tabela abaixo destaca dois tipos: a média móvel simples (SMA) e a média móvel exponencial (EMA).
Média Móvel Simples Diária (SMA)
| Período | Valor | Ação |
|---|---|---|
| SMA 3 | $0.001497 | SELL |
| SMA 5 | $0.0015012 | SELL |
| SMA 10 | $0.00151 | SELL |
| SMA 21 | $0.001522 | SELL |
| SMA 50 | $0.0018022 | SELL |
| SMA 100 | $0.002323 | SELL |
| SMA 200 | $0.004133 | SELL |
Média Móvel Exponencial Diária (EMA)
| Período | Valor | Ação |
|---|---|---|
| EMA 3 | $0.001491 | SELL |
| EMA 5 | $0.001497 | SELL |
| EMA 10 | $0.00151 | SELL |
| EMA 21 | $0.001569 | SELL |
| EMA 50 | $0.001842 | SELL |
| EMA 100 | $0.002521 | SELL |
| EMA 200 | $0.004332 | SELL |
Média Móvel Simples Semanal (SMA)
| Período | Valor | Ação |
|---|---|---|
| SMA 21 | $0.002969 | SELL |
| SMA 50 | $0.005893 | SELL |
| SMA 100 | $0.01916 | SELL |
| SMA 200 | $0.040766 | SELL |
Média Móvel Exponencial Semanal (EMA)
| Período | Valor | Ação |
|---|---|---|
| EMA 21 | $0.003088 | SELL |
| EMA 50 | $0.007813 | SELL |
| EMA 100 | $0.020881 | SELL |
| EMA 200 | $0.052918 | SELL |
Osciladores de Radix
Um oscilador é uma ferramenta de análise técnica que define limites altos e baixos entre dois extremos, criando um indicador de tendência que flutua dentro desses limites. Os traders usam esse indicador para identificar condições de sobrecompra ou sobrevenda de curto prazo.
| Período | Valor | Ação |
|---|---|---|
| RSI (14) | 31.30 | NEUTRAL |
| Stoch RSI (14) | 77.77 | NEUTRAL |
| Estocástico Rápido (14) | 0 | BUY |
| Índice de Canal de Commodities (20) | -133.78 | BUY |
| Índice Direcional Médio (14) | 36.48 | SELL |
| Oscilador Impressionante (5, 34) | -0.000142 | NEUTRAL |
| Momentum (10) | -0 | SELL |
| MACD (12, 26) | 0 | NEUTRAL |
| Williams Percent Range (14) | -100 | BUY |
| Oscilador Ultimate (7, 14, 28) | 28.55 | BUY |
| VWMA (10) | 0.0015050 | SELL |
| Média Móvel de Hull (9) | 0.001498 | SELL |
| Nuvem Ichimoku B/L (9, 26, 52, 26) | -0.000230 | SELL |
Previsão do preço de Radix com base nos fluxos financeiros mundiais
Definições dos fluxos financeiros mundiais, usadas na previsão do preço do Radix
M0: o total de todas as moedas físicas, mais as contas no Banco Central que podem ser trocadas por moedas físicas.
M1: o valor de M0, mais o valor em contas de demanda, incluindo contas 'correntes'.
M2: o valor de M1, mais a maioria das contas de poupança, do mercado de moedas e de certificados de depósito (CD) de menos de US$ 100.000.
Previsões de preço de Radix por empresas de Internet ou nichos tecnológicos
| Comparação | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Facebook stock | $0.002071 | $0.00291 | $0.00409 | $0.005747 | $0.008075 | $0.011348 |
| Amazon.com stock | $0.003076 | $0.006418 | $0.013392 | $0.027943 | $0.0583055 | $0.121658 |
| Apple stock | $0.002091 | $0.002965 | $0.004207 | $0.005967 | $0.008464 | $0.0120058 |
| Netflix stock | $0.002326 | $0.00367 | $0.00579 | $0.009137 | $0.014417 | $0.022747 |
| Google stock | $0.001909 | $0.002472 | $0.0032015 | $0.004146 | $0.005369 | $0.006952 |
| Tesla stock | $0.003341 | $0.007575 | $0.017173 | $0.038931 | $0.088255 | $0.200068 |
| Kodak stock | $0.0011054 | $0.000829 | $0.000621 | $0.000466 | $0.000349 | $0.000262 |
| Nokia stock | $0.000976 | $0.000646 | $0.000428 | $0.000283 | $0.000188 | $0.000124 |
Este cálculo mostra quanto a criptomoeda pode custar, se assumirmos que sua capitalização se comportará da mesma forma que a de algumas empresas de Internet ou nichos tecnológicos. Se você extrapolar os dados, poderá obter uma imagem em potencial do preço futuro para 2024, 2025, 2026, 2027, 2028, 2029 e 2030.
Visão geral da previsão para Radix
Você pode fazer perguntas como: 'Devo investir em Radix agora?', 'Devo comprar XRD hoje?', 'Radix será um bom ou mau investimento no curto ou no longo prazo?'.
Atualizamos a previsão para Radix regularmente com novos valores. Veja nossas previsões semelhantes. Fazemos previsões de preços futuros para uma enorme quantidade de moedas digitais, como Radix, com métodos de análise técnica.
Se você estiver tentando encontrar criptomoedas com bom retorno, você deve explorar o máximo de fontes de informações disponíveis sobre Radix para poder tomar sozinho uma decisão de tão grande responsabilidade sobre o seu investimento.
O preço de Radix é de $0.001474 USD hoje, mas o preço pode tanto subir quanto descer e seu investimento pode ser perdido, porque criptomoedas são ativos de alto risco
Previsão de curto prazo para Radix
com base no histórico de preços de 4 horas
Previsão de longo prazo para Radix
com base no histórico de preços de 1 mês
Previsão do preço de Radix com base no padrão de crescimento do Bitcoin
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| Se Radix tiver 1% da média anterior do crescimento anual do Bitcoin | $0.001512 | $0.001551 | $0.001592 | $0.001633 |
| Se Radix tiver 2% da média anterior do crescimento anual do Bitcoin | $0.00155 | $0.001631 | $0.001716 | $0.0018054 |
| Se Radix tiver 5% da média anterior do crescimento anual do Bitcoin | $0.001665 | $0.001882 | $0.002126 | $0.0024033 |
| Se Radix tiver 10% da média anterior do crescimento anual do Bitcoin | $0.001857 | $0.00234 | $0.002948 | $0.003714 |
| Se Radix tiver 20% da média anterior do crescimento anual do Bitcoin | $0.00224 | $0.0034053 | $0.005175 | $0.007866 |
| Se Radix tiver 50% da média anterior do crescimento anual do Bitcoin | $0.00339 | $0.007796 | $0.017928 | $0.041229 |
| Se Radix tiver 100% da média anterior do crescimento anual do Bitcoin | $0.0053061 | $0.019098 | $0.068741 | $0.247422 |
Perguntas Frequentes sobre Radix
XRD é um bom investimento?
A decisão de adquirir Radix depende inteiramente da sua tolerância individual ao risco. Como você pode perceber, o valor de Radix experimentou uma queda de -1.9863% nas últimas 24 horas, e Radix registrou um declínio de -91.11% durante os últimos 30 dias. Consequentemente, a decisão de investir ou não em Radix dependerá de quão alinhado esse investimento está com suas aspirações de negociação.
Radix pode subir?
Parece que o valor médio de Radix pode potencialmente subir para $0.00152 até o final deste ano. Observando as perspectivas de Radix em um horizonte de cinco anos mais longo, a moeda digital poderia potencialmente crescer até $0.004779. No entanto, dada a imprevisibilidade do mercado, é vital conduzir uma pesquisa aprofundada antes de investir quaisquer fundos em um projeto, rede ou ativo específico.
Qual será o preço de Radix na próxima semana?
Com base na nossa nova previsão experimental de Radix, o preço de Radix aumentará 0.86% na próxima semana e atingirá $0.001486 até 13 de janeiro de 2026.
Qual será o preço de Radix no próximo mês?
Com base na nossa nova previsão experimental de Radix, o preço de Radix diminuirá -11.62% no próximo mês e atingirá $0.001302 até 5 de fevereiro de 2026.
Até onde o preço de Radix pode subir este ano em 2026?
De acordo com nossa previsão mais recente sobre o valor de Radix em 2026, espera-se que XRD fluctue dentro do intervalo de $0.0005093 e $0.00152. No entanto, é crucial lembrar que o mercado de criptomoedas é excepcionalmente instável, e essa previsão de preço de Radix não considera flutuações repentinas e extremas de preço.
Onde estará Radix em 5 anos?
O futuro de Radix parece seguir uma tendência de alta, com um preço máximo de $0.004779 projetada após um período de cinco anos. Com base na previsão de Radix para 2030, o valor de Radix pode potencialmente atingir seu pico mais alto de aproximadamente $0.004779, enquanto seu pico mais baixo está previsto para cerca de $0.001653.
Quanto será Radix em 2026?
Com base na nossa nova simulação experimental de previsão de preços de Radix, espera-se que o valor de XRD em 2026 aumente 3.13% para $0.00152 se o melhor cenário ocorrer. O preço ficará entre $0.00152 e $0.0005093 durante 2026.
Quanto será Radix em 2027?
De acordo com nossa última simulação experimental para previsão de preços de Radix, o valor de XRD pode diminuir -12.62% para $0.001288 em 2027, assumindo as condições mais favoráveis. O preço está projetado para flutuar entre $0.001288 e $0.00049 ao longo do ano.
Quanto será Radix em 2028?
Nosso novo modelo experimental de previsão de preços de Radix sugere que o valor de XRD em 2028 pode aumentar 47.02%, alcançando $0.002167 no melhor cenário. O preço é esperado para variar entre $0.002167 e $0.000884 durante o ano.
Quanto será Radix em 2029?
Com base no nosso modelo de previsão experimental, o valor de Radix pode experimentar um 333.75% crescimento em 2029, potencialmente alcançando $0.006394 sob condições ótimas. A faixa de preço prevista para 2029 está entre $0.006394 e $0.001943.
Quanto será Radix em 2030?
Usando nossa nova simulação experimental para previsões de preços de Radix, espera-se que o valor de XRD em 2030 aumente 224.23%, alcançando $0.004779 no melhor cenário. O preço está previsto para variar entre $0.004779 e $0.001653 ao longo de 2030.
Quanto será Radix em 2031?
Nossa simulação experimental indica que o preço de Radix poderia aumentar 195.98% em 2031, potencialmente atingindo $0.004363 sob condições ideais. O preço provavelmente oscilará entre $0.004363 e $0.001954 durante o ano.
Quanto será Radix em 2032?
Com base nos achados da nossa mais recente previsão experimental de preços de Radix, XRD poderia ver um 449.04% aumento em valor, atingindo $0.008093 se o cenário mais positivo se desenrolar em 2032. O preço é esperado para permanecer dentro de uma faixa de $0.008093 e $0.002983 ao longo do ano.
Quanto será Radix em 2033?
De acordo com nossa previsão experimental de preços de Radix, espera-se que o valor de XRD seja aumentar 1362.43% em 2033, com o preço potencial mais alto sendo $0.021559. Ao longo do ano, o preço de XRD poderia variar entre $0.021559 e $0.006932.
Quanto será Radix em 2034?
Os resultados da nossa nova simulação de previsão de preços de Radix sugerem que XRD pode aumentar 746.96% em 2034, atingindo potencialmente $0.012485 nas melhores circunstâncias. A faixa de preço prevista para o ano é entre $0.012485 e $0.005573.
Quanto será Radix em 2035?
Com base em nossa previsão experimental para o preço de Radix, XRD poderia aumentar 897.93%, com o valor potencialmente atingindo $0.014711 em 2035. A faixa de preço esperada para o ano está entre $0.014711 e $0.006589.
Quanto será Radix em 2036?
Nossa recente simulação de previsão de preços de Radix sugere que o valor de XRD pode aumentar 1964.7% em 2036, possivelmente atingindo $0.030437 se as condições forem ideais. A faixa de preço esperada para 2036 está entre $0.030437 e $0.0109083.
Quanto será Radix em 2037?
De acordo com a simulação experimental, o valor de Radix poderia aumentar 4830.69% em 2037, com um pico de $0.072688 sob condições favoráveis. O preço é esperado para cair entre $0.072688 e $0.028328 ao longo do ano.
Previsões relacionadas
Previsão de Preço do Aerodrome Finance
Previsão de Preço do Curve DAO Token
Previsão de Preço do BOOK OF MEME
Previsão de Preço do Wemix Token
Previsão de Preço do AltLayer
Previsão de Preço do Theta Fuel
Previsão de Preço do Manta Network
Previsão de Preço do MANTRA DAO
Previsão de Preço do Brett
Previsão de Preço do Coinbase Wrapped Staked ETH
Previsão de Preço do Ocean Protocol
Previsão de Preço do 1inch
Previsão de Preço do Ether.fi
Previsão de Preço do Bounce Token
Previsão de Preço do Pendle
Previsão de Preço do Enjin Coin
Previsão de Preço do Ethereum Name Service
Previsão de Preço do XinFin
Previsão de Preço do Celo Gold
Previsão de Preço do Staked Frax Ether
Previsão de Preço do Memecoin
Previsão de Preço do SKALE
Previsão de Preço do FOX Token
Previsão de Preço do Zilliqa
Previsão de Preço do Tether Gold
Como ler e prever os movimentos de preço de Radix?
Traders de Radix utilizam indicadores e padrões de gráfico para prever a direção do mercado. Eles também identificam níveis-chave de suporte e resistência para avaliar quando uma tendência de baixa pode desacelerar ou uma tendência de alta pode estagnar.
Indicadores de Previsão de Preço de Radix
Médias móveis são ferramentas populares para a previsão de preço de Radix. Uma média móvel simples (SMA) calcula o preço médio de fechamento de XRD em um período específico, como uma SMA de 12 dias. Uma média móvel exponencial (EMA) dá mais peso aos preços recentes, reagindo mais rapidamente às mudanças de preço.
Médias móveis comumente usadas no mercado de criptomoedas incluem as de 50 dias, 100 dias e 200 dias, que ajudam a identificar níveis-chave de resistência e suporte. Um movimento de preço de XRD acima dessas médias é visto como altista, enquanto uma queda abaixo indica fraqueza.
Traders também usam RSI e níveis de retração de Fibonacci para avaliar a direção futura de XRD.
Como ler gráficos de Radix e prever movimentos de preço?
A maioria dos traders prefere gráficos de velas em vez de gráficos de linha simples porque eles fornecem informações mais detalhadas. Velas podem representar a ação de preço de Radix em diferentes períodos de tempo, como 5 minutos para tendências de curto prazo e semanal para tendências de longo prazo. Opções populares incluem gráficos de 1 hora, 4 horas e 1 dia.
Por exemplo, um gráfico de velas de 1 hora mostra os preços de abertura, fechamento, máximo e mínimo de XRD dentro de cada hora. A cor da vela é crucial: verde indica que o preço fechou mais alto do que abriu, enquanto vermelho significa o oposto. Alguns gráficos usam velas vazias e preenchidas para transmitir a mesma informação.
O que afeta o preço de Radix?
A ação de preço de Radix é impulsionada pela oferta e demanda, influenciada por fatores como reduções pela metade das recompensas de bloco, hard forks e atualizações de protocolo. Eventos do mundo real, como regulamentações, adoção por empresas e governos e hacks de exchanges de criptomoedas, também impactam o preço de XRD. A capitalização de mercado de Radix pode mudar rapidamente.
Traders frequentemente monitoram a atividade de "baleias" de XRD, grandes detentores de Radix, pois suas ações podem influenciar significativamente os movimentos de preço no relativamente pequeno mercado de Radix.
Padrões de previsão de preço altistas e baixistas
Traders frequentemente identificam padrões de velas para ganhar vantagem em previsões de preço de criptomoedas. Certas formações indicam tendências altistas, enquanto outras sugerem movimentos baixistas.
Padrões de velas altistas comumente seguidos:
- Martelo
- Engolfo de Alta
- Linha de Perfuração
- Estrela da Manhã
- Três Soldados Brancos
Padrões de velas baixistas comuns:
- Harami de Baixa
- Nuvem Negra
- Estrela da Noite
- Estrela Cadente
- Homem Enforcado


