Previsão de Preço Radix - Projeção XRD
Previsão de Preço Radix até $0.001513 até 2026
| Ano | Preço Mínimo | Preço Máximo |
|---|---|---|
| 2026 | $0.0005071 | $0.001513 |
| 2027 | $0.000488 | $0.001282 |
| 2028 | $0.000881 | $0.002158 |
| 2029 | $0.001935 | $0.006366 |
| 2030 | $0.001646 | $0.004759 |
| 2031 | $0.001946 | $0.004344 |
| 2032 | $0.00297 | $0.008059 |
| 2033 | $0.0069031 | $0.021466 |
| 2034 | $0.005549 | $0.012432 |
| 2035 | $0.006561 | $0.014648 |
Calculadora de lucro do investimento
Se você abrir um short de $10,000.00 em Radix hoje e fechar em Apr 06, 2026, nossa previsão mostra que pode lucrar cerca de $3,957.19, com um retorno de 39.57% nos próximos 90 dias.
Previsão de preço de longo prazo de Radix para os anos 2027, 2028, 2029, 2030, 2031, 2032 e 2037
[
'name' => 'Radix'
'name_with_ticker' => 'Radix <small>XRD</small>'
'name_lang' => 'Radix'
'name_lang_with_ticker' => 'Radix <small>XRD</small>'
'name_with_lang' => 'Radix'
'name_with_lang_with_ticker' => 'Radix <small>XRD</small>'
'image' => '/uploads/coins/radix.png?1719379947'
'price_for_sd' => 0.001467
'ticker' => 'XRD'
'marketcap' => '$19.58M'
'low24h' => '$0.001461'
'high24h' => '$0.001509'
'volume24h' => '$276.99K'
'current_supply' => '13.33B'
'max_supply' => '13.33B'
'algo' => null
'proof' => null
'ico_price_and_roi' => '—'
'price' => '$0.001467'
'change_24h_pct' => '-2.7605%'
'ath_price' => '$0.6512'
'ath_days' => 1514
'ath_exchange' => null
'ath_pair' => null
'ath_date' => '14 de nov. de 2021'
'ath_pct' => '-99.77%'
'fdv' => '$19.58M'
'new_prediction' => true
'change_24h_pct_is_increased' => false
'change_30d_pct' => '-91.15%'
'change_30d_pct_is_increased' => false
'max_price' => '$0.072375'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.00148'
'next_week_prediction_price_date' => '13 de janeiro de 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.001297'
'next_month_prediction_price_date' => '5 de fevereiro de 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.0005071'
'current_year_max_price_prediction' => '$0.001513'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.001646'
'grand_prediction_max_price' => '$0.004759'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.0014956751749056
107 => 0.0015012594830786
108 => 0.0015138412145343
109 => 0.0014063316967947
110 => 0.0014546003139462
111 => 0.0014829536043648
112 => 0.0013548524067517
113 => 0.0014804214555648
114 => 0.0014044601952779
115 => 0.0013786778026367
116 => 0.0014133903977562
117 => 0.001399862865679
118 => 0.0013882326879624
119 => 0.0013817428489647
120 => 0.0014072319477311
121 => 0.0014060428508076
122 => 0.0013643377380049
123 => 0.0013099351184717
124 => 0.0013281944232921
125 => 0.001321560646669
126 => 0.0012975189844124
127 => 0.0013137201619719
128 => 0.0012423783752279
129 => 0.0011196385391582
130 => 0.0012007242344887
131 => 0.0011976025234227
201 => 0.0011960284151449
202 => 0.0012569620741418
203 => 0.001251104708808
204 => 0.0012404735333715
205 => 0.0012973237345384
206 => 0.0012765726463694
207 => 0.001340522610535
208 => 0.0013826441929589
209 => 0.0013719607971657
210 => 0.0014115763490266
211 => 0.0013286150807966
212 => 0.0013561714862742
213 => 0.0013618508232517
214 => 0.0012966222118806
215 => 0.0012520630462158
216 => 0.0012490914578777
217 => 0.0011718320052462
218 => 0.0012131033812254
219 => 0.0012494204841616
220 => 0.0012320274101762
221 => 0.0012265212825557
222 => 0.0012546508944353
223 => 0.0012568368061922
224 => 0.0012069977864828
225 => 0.0012173608968769
226 => 0.0012605767899439
227 => 0.0012162719672522
228 => 0.0011301949339139
301 => 0.0011088466395379
302 => 0.001105998383541
303 => 0.0010481001160387
304 => 0.0011102732346489
305 => 0.0010831330022396
306 => 0.0011688686712308
307 => 0.0011198969169126
308 => 0.0011177858424626
309 => 0.001114594643804
310 => 0.0010647592132175
311 => 0.0010756700053091
312 => 0.0011119391399822
313 => 0.0011248803758346
314 => 0.0011235304989108
315 => 0.0011117614014358
316 => 0.0011171492339923
317 => 0.0010997931480824
318 => 0.0010936643529119
319 => 0.001074320189496
320 => 0.0010458896132361
321 => 0.0010498430592399
322 => 0.00099351464840403
323 => 0.00096282394060564
324 => 0.00095432915718407
325 => 0.00094296957777132
326 => 0.00095561225190543
327 => 0.00099335507709342
328 => 0.00094782922232966
329 => 0.00086977833760459
330 => 0.00087446932876881
331 => 0.00088500859314702
401 => 0.00086536874370243
402 => 0.00084678127445076
403 => 0.00086294157091604
404 => 0.0008298703821314
405 => 0.00088900508831217
406 => 0.00088740566023308
407 => 0.00090944742183157
408 => 0.00092323058770159
409 => 0.00089146485272413
410 => 0.00088347585628099
411 => 0.00088802675173465
412 => 0.00081281058713052
413 => 0.00090330065649483
414 => 0.00090408321837237
415 => 0.00089738244846974
416 => 0.00094556561683878
417 => 0.0010472471308045
418 => 0.0010089904551212
419 => 0.00099417631398247
420 => 0.00096601462084866
421 => 0.0010035384048736
422 => 0.0010006571637227
423 => 0.00098762709856008
424 => 0.00097974647449345
425 => 0.00099426676596933
426 => 0.00097794724969064
427 => 0.00097501581613667
428 => 0.00095725451823078
429 => 0.00095091454296594
430 => 0.00094622067768154
501 => 0.00094105319321309
502 => 0.00095245137629359
503 => 0.00092662159387733
504 => 0.00089547340840811
505 => 0.00089288377381438
506 => 0.00090003398261067
507 => 0.00089687054748875
508 => 0.00089286862850408
509 => 0.00088522787530455
510 => 0.00088296102704912
511 => 0.00089032718416086
512 => 0.00088201122225534
513 => 0.00089428187704082
514 => 0.00089094493790547
515 => 0.00087230506715389
516 => 0.00084907288683339
517 => 0.00084886607169739
518 => 0.00084386073655575
519 => 0.00083748568969569
520 => 0.00083571229750054
521 => 0.00086158059582247
522 => 0.00091512719917584
523 => 0.00090461471967595
524 => 0.00091221106347685
525 => 0.0009495775565995
526 => 0.00096145524111354
527 => 0.00095302474198385
528 => 0.00094148455480459
529 => 0.00094199226447304
530 => 0.00098142857751679
531 => 0.00098388817198776
601 => 0.00099010277372066
602 => 0.00099809029319367
603 => 0.00095438505108911
604 => 0.00093993375150026
605 => 0.00093308592402749
606 => 0.00091199726585409
607 => 0.00093473957568919
608 => 0.00092148860567108
609 => 0.00092327661424411
610 => 0.00092211217131529
611 => 0.00092274803589372
612 => 0.00088898855895662
613 => 0.00090128873800663
614 => 0.00088083730467703
615 => 0.00085345513122983
616 => 0.000853363336583
617 => 0.00086006508474191
618 => 0.00085607862269756
619 => 0.00084535115583753
620 => 0.00084687494187278
621 => 0.00083352497280096
622 => 0.00084849586982709
623 => 0.00084892518158536
624 => 0.00084316057076003
625 => 0.00086622530321446
626 => 0.00087567494292007
627 => 0.00087188055258491
628 => 0.00087540871837908
629 => 0.00090505156066017
630 => 0.00090988463735987
701 => 0.00091203117077475
702 => 0.00090915510035999
703 => 0.00087595053511985
704 => 0.00087742329878496
705 => 0.0008666171362044
706 => 0.00085748706754918
707 => 0.00085785222241449
708 => 0.00086254626452912
709 => 0.00088304542174563
710 => 0.00092618468961644
711 => 0.00092782179329775
712 => 0.00092980601071717
713 => 0.0009217352012846
714 => 0.0009193009679325
715 => 0.00092251235005286
716 => 0.00093871319091019
717 => 0.00098038615208063
718 => 0.00096565614435951
719 => 0.000953680418796
720 => 0.00096418635874762
721 => 0.00096256905164035
722 => 0.00094891735205462
723 => 0.00094853419431565
724 => 0.00092233221809825
725 => 0.00091264594408081
726 => 0.0009045513685068
727 => 0.00089571230329422
728 => 0.00089047220914805
729 => 0.00089852337533676
730 => 0.00090036477230272
731 => 0.0008827607567208
801 => 0.00088036139444606
802 => 0.00089473721357932
803 => 0.00088841095156333
804 => 0.00089491766893052
805 => 0.0008964272831733
806 => 0.00089618420051085
807 => 0.00088957885639959
808 => 0.00089378890576191
809 => 0.0008838308839439
810 => 0.00087300303086334
811 => 0.00086609553519702
812 => 0.00086006782908181
813 => 0.00086341235076687
814 => 0.00085148974164519
815 => 0.00084767545903246
816 => 0.00089236263576707
817 => 0.00092537353368903
818 => 0.00092489354215949
819 => 0.00092197171716724
820 => 0.00091763047789932
821 => 0.00093839560221783
822 => 0.00093116144811703
823 => 0.00093642489965917
824 => 0.00093776466898301
825 => 0.00094181974721356
826 => 0.00094326908913524
827 => 0.00093888817121525
828 => 0.00092418527559173
829 => 0.00088754705760727
830 => 0.00087049186823253
831 => 0.00086486337166222
901 => 0.00086506795682251
902 => 0.00085942458479323
903 => 0.00086108681077405
904 => 0.00085884653043208
905 => 0.00085460398144643
906 => 0.00086315038532219
907 => 0.00086413527875361
908 => 0.00086214044596709
909 => 0.00086261030130232
910 => 0.00084609393783413
911 => 0.00084734964107696
912 => 0.00084035772585383
913 => 0.00083904682603829
914 => 0.00082137187320991
915 => 0.00079005813224907
916 => 0.00080740898443976
917 => 0.00078645159489242
918 => 0.00077851471391457
919 => 0.00081608667402547
920 => 0.00081231549131429
921 => 0.00080586086580647
922 => 0.00079631312941859
923 => 0.00079277178111791
924 => 0.00077125566989764
925 => 0.00076998438326276
926 => 0.0007806483489674
927 => 0.00077572729571936
928 => 0.00076881627321051
929 => 0.00074378525024258
930 => 0.00071564209293974
1001 => 0.00071649155795713
1002 => 0.00072544337267311
1003 => 0.00075147198127651
1004 => 0.00074130215359566
1005 => 0.00073392382692788
1006 => 0.00073254208813469
1007 => 0.00074983744199757
1008 => 0.0007743139912022
1009 => 0.00078579784045709
1010 => 0.00077441769461518
1011 => 0.00076134479582256
1012 => 0.00076214048259809
1013 => 0.00076743383024171
1014 => 0.00076799008623515
1015 => 0.00075948097303686
1016 => 0.00076187623855976
1017 => 0.0007582376112028
1018 => 0.00073590736182954
1019 => 0.00073550347842836
1020 => 0.00073002327510825
1021 => 0.00072985733672968
1022 => 0.00072053414378139
1023 => 0.00071922976463973
1024 => 0.00070071799916352
1025 => 0.00071290249925875
1026 => 0.00070472977630984
1027 => 0.00069241155507538
1028 => 0.00069028788909154
1029 => 0.00069022404912766
1030 => 0.00070287210803159
1031 => 0.0007127546993264
1101 => 0.00070487194432458
1102 => 0.00070307719381145
1103 => 0.00072224043384143
1104 => 0.0007198017368708
1105 => 0.00071768984102215
1106 => 0.00077212238468207
1107 => 0.00072903477895089
1108 => 0.00071024612349755
1109 => 0.00068699159450513
1110 => 0.00069456338640457
1111 => 0.00069615887421055
1112 => 0.00064023592392771
1113 => 0.00061754798996271
1114 => 0.00060976234600268
1115 => 0.00060528159783084
1116 => 0.00060732353103844
1117 => 0.00058690172944072
1118 => 0.00060062551785981
1119 => 0.0005829419638881
1120 => 0.00057997725851748
1121 => 0.00061159764359088
1122 => 0.00061599743545023
1123 => 0.00059722655647004
1124 => 0.00060928049950459
1125 => 0.00060490957219792
1126 => 0.00058324509766607
1127 => 0.00058241767409204
1128 => 0.00057154720231506
1129 => 0.00055453701892219
1130 => 0.0005467629086675
1201 => 0.00054271408454893
1202 => 0.00054438470829026
1203 => 0.00054353998980471
1204 => 0.00053802763029693
1205 => 0.00054385595179916
1206 => 0.00052896699878967
1207 => 0.00052303809773284
1208 => 0.00052036015067493
1209 => 0.00050714534790284
1210 => 0.0005281759757627
1211 => 0.00053231927438796
1212 => 0.00053647073659144
1213 => 0.00057260638074914
1214 => 0.00057080114608529
1215 => 0.00058711958826153
1216 => 0.00058648548360625
1217 => 0.00058183119955635
1218 => 0.00056219554074238
1219 => 0.00057002196437367
1220 => 0.00054593344893285
1221 => 0.00056398220256094
1222 => 0.00055574550513905
1223 => 0.00056119736687723
1224 => 0.00055139442789743
1225 => 0.00055681977908228
1226 => 0.00053330180419826
1227 => 0.00051134105015839
1228 => 0.00052017869865841
1229 => 0.00052978623328562
1230 => 0.00055061781631172
1231 => 0.00053821069731821
]
'min_raw' => 0.00050714534790284
'max_raw' => 0.0015138412145343
'avg_raw' => 0.0010104932812186
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.0005071'
'max' => '$0.001513'
'avg' => '$0.00101'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.00096071465209716
'max_diff' => 4.5981214534283E-5
'year' => 2026
]
1 => [
'items' => [
101 => 0.00054267276647339
102 => 0.00052772558174489
103 => 0.00049688527019776
104 => 0.00049705982301187
105 => 0.00049231571297306
106 => 0.00048821610924811
107 => 0.00053963580418487
108 => 0.0005332409522944
109 => 0.00052305159274446
110 => 0.00053669045541111
111 => 0.00054029678717803
112 => 0.00054039945437353
113 => 0.00055035001650512
114 => 0.00055566063329849
115 => 0.00055659665252585
116 => 0.00057225407703603
117 => 0.00057750223920542
118 => 0.00059911867643343
119 => 0.00055521006456678
120 => 0.00055430579560026
121 => 0.00053688238217865
122 => 0.00052583217793339
123 => 0.00053763899911718
124 => 0.0005480982308942
125 => 0.00053720737966495
126 => 0.00053862949491708
127 => 0.00052400941695705
128 => 0.00052923540688915
129 => 0.00053373673343555
130 => 0.00053125136549237
131 => 0.00052753064938827
201 => 0.00054724069316399
202 => 0.00054612857524988
203 => 0.00056448302114578
204 => 0.00057879162426065
205 => 0.00060443519901125
206 => 0.00057767479192922
207 => 0.00057669953633216
208 => 0.00058623281622928
209 => 0.00057750077970994
210 => 0.00058301912537051
211 => 0.00060354610821204
212 => 0.00060397981101349
213 => 0.00059671473029478
214 => 0.00059627264947279
215 => 0.0005976679876961
216 => 0.00060584052725258
217 => 0.00060298479081477
218 => 0.00060628952131901
219 => 0.00061042213741838
220 => 0.00062751638979831
221 => 0.00063163775617479
222 => 0.00062162497256341
223 => 0.00062252901481514
224 => 0.00061878395888742
225 => 0.00061516628178666
226 => 0.00062329829158986
227 => 0.00063815969934024
228 => 0.00063806724729393
301 => 0.00064151480502754
302 => 0.00064366260493446
303 => 0.00063444267544832
304 => 0.00062844084037904
305 => 0.00063074232585129
306 => 0.00063442245124125
307 => 0.00062954891078682
308 => 0.00059946716145852
309 => 0.00060859204257514
310 => 0.00060707321617345
311 => 0.00060491022268183
312 => 0.00061408536120521
313 => 0.00061320039671173
314 => 0.00058669227434814
315 => 0.00058838923833647
316 => 0.00058679547234879
317 => 0.00059194525630881
318 => 0.00057722267447595
319 => 0.00058175124148964
320 => 0.00058459151626794
321 => 0.00058626445993238
322 => 0.00059230827959655
323 => 0.00059159910711647
324 => 0.00059226419643947
325 => 0.00060122558549219
326 => 0.00064654921614353
327 => 0.00064901608135893
328 => 0.00063686833482475
329 => 0.00064172111996145
330 => 0.00063240483368643
331 => 0.00063865891907654
401 => 0.00064293780546391
402 => 0.00062360234066192
403 => 0.00062245741992247
404 => 0.00061310268202001
405 => 0.00061812938828936
406 => 0.00061013153718186
407 => 0.00061209393009068
408 => 0.00060660690843927
409 => 0.0006164824549567
410 => 0.00062752485046797
411 => 0.00063031459565153
412 => 0.0006229759771344
413 => 0.00061766233368947
414 => 0.00060833332622314
415 => 0.00062384767355014
416 => 0.00062838454149972
417 => 0.00062382384331421
418 => 0.0006227670298914
419 => 0.0006207643703648
420 => 0.00062319190357715
421 => 0.00062835983274253
422 => 0.0006259227327848
423 => 0.00062753248024306
424 => 0.00062139778289656
425 => 0.00063444572762862
426 => 0.00065516900402202
427 => 0.00065523563274422
428 => 0.00065279851964962
429 => 0.00065180130547964
430 => 0.0006543019314111
501 => 0.00065565841839786
502 => 0.00066374498412381
503 => 0.00067242219133074
504 => 0.00071291493120336
505 => 0.00070154473188145
506 => 0.00073747229962032
507 => 0.00076588634109097
508 => 0.00077440646973257
509 => 0.00076656835228532
510 => 0.00073975457590509
511 => 0.000738438964114
512 => 0.00077851006651045
513 => 0.0007671881447107
514 => 0.00076584143813867
515 => 0.00075151475550899
516 => 0.0007599835993373
517 => 0.0007581313389616
518 => 0.00075520745534289
519 => 0.00077136541942252
520 => 0.00080161168574818
521 => 0.00079689752149364
522 => 0.00079337861656141
523 => 0.0007779597994862
524 => 0.00078724537128295
525 => 0.00078393895701954
526 => 0.00079814541099748
527 => 0.00078972982237244
528 => 0.00076710237001765
529 => 0.00077070586638621
530 => 0.00077016120515932
531 => 0.00078137029461339
601 => 0.00077800560418598
602 => 0.00076950419535202
603 => 0.00080150830729807
604 => 0.00079943013828452
605 => 0.00080237650681016
606 => 0.00080367358935462
607 => 0.00082315392832047
608 => 0.00083113439989346
609 => 0.00083294610665835
610 => 0.00084052693742086
611 => 0.000832757488683
612 => 0.00086384082315754
613 => 0.00088450942682025
614 => 0.00090851707357112
615 => 0.00094359869812124
616 => 0.00095678971347526
617 => 0.00095440687461976
618 => 0.00098100536197262
619 => 0.0010288022524945
620 => 0.00096406799275964
621 => 0.0010322333254476
622 => 0.0010106529681252
623 => 0.00095948632912785
624 => 0.00095619180079147
625 => 0.00099084244277735
626 => 0.0010676942317013
627 => 0.0010484437302217
628 => 0.0010677257186254
629 => 0.0010452322549293
630 => 0.001044115264867
701 => 0.0010666332613001
702 => 0.0011192477873581
703 => 0.0010942525982539
704 => 0.0010584158656013
705 => 0.0010848771513107
706 => 0.0010619539367529
707 => 0.0010103015185503
708 => 0.001048429009726
709 => 0.0010229342421852
710 => 0.00103037497073
711 => 0.0010839611800402
712 => 0.0010775135455644
713 => 0.0010858573816109
714 => 0.0010711307293851
715 => 0.0010573737140263
716 => 0.0010316952232498
717 => 0.0010240930880651
718 => 0.001026194044734
719 => 0.0010240920469353
720 => 0.0010097251673434
721 => 0.0010066226410633
722 => 0.0010014516280052
723 => 0.0010030543411762
724 => 0.00099333132379363
725 => 0.0010116806664724
726 => 0.0010150864661674
727 => 0.0010284395875608
728 => 0.0010298259529211
729 => 0.0010670142059319
730 => 0.0010465315410967
731 => 0.0010602730810563
801 => 0.001059043908382
802 => 0.00096059526534574
803 => 0.0009741606197364
804 => 0.00099526405412556
805 => 0.00098575698553827
806 => 0.00097231621486729
807 => 0.00096146207190194
808 => 0.00094501693541634
809 => 0.00096816314921895
810 => 0.00099859795904397
811 => 0.0010305978299233
812 => 0.0010690435780703
813 => 0.0010604629346418
814 => 0.001029879113404
815 => 0.0010312510812833
816 => 0.0010397320468632
817 => 0.0010287484258602
818 => 0.0010255091416007
819 => 0.0010392870189485
820 => 0.0010393818996176
821 => 0.0010267439162388
822 => 0.0010126991104397
823 => 0.0010126402621906
824 => 0.0010101411246554
825 => 0.001045676845945
826 => 0.0010652178995876
827 => 0.0010674582498957
828 => 0.0010650671061616
829 => 0.0010659873624838
830 => 0.0010546168539269
831 => 0.0010806064646684
901 => 0.0011044571015909
902 => 0.0010980646214011
903 => 0.0010884813848521
904 => 0.0010808478753495
905 => 0.0010962664091588
906 => 0.0010955798461193
907 => 0.0011042487870842
908 => 0.0011038555138478
909 => 0.0011009404750567
910 => 0.0010980647255064
911 => 0.0011094667474134
912 => 0.001106183148215
913 => 0.0011028944486802
914 => 0.0010962984582883
915 => 0.0010971949629303
916 => 0.0010876133810622
917 => 0.0010831805028666
918 => 0.0010165206507672
919 => 0.00099870696011276
920 => 0.0010043115098238
921 => 0.0010061566731107
922 => 0.00099840413210901
923 => 0.001009519284441
924 => 0.001007786999724
925 => 0.0010145263062055
926 => 0.0010103158801025
927 => 0.0010104886774584
928 => 0.0010228706428698
929 => 0.0010264651801054
930 => 0.0010246369694559
1001 => 0.0010259173855274
1002 => 0.0010554240334654
1003 => 0.0010512291316981
1004 => 0.0010490006737417
1005 => 0.0010496179718252
1006 => 0.001057157553003
1007 => 0.0010592682240869
1008 => 0.0010503251623901
1009 => 0.0010545427619856
1010 => 0.0010725007657698
1011 => 0.0010787850507593
1012 => 0.0010988414718179
1013 => 0.0010903211476778
1014 => 0.001105960571388
1015 => 0.0011540308280007
1016 => 0.0011924326751918
1017 => 0.0011571167494915
1018 => 0.001227636851412
1019 => 0.001282546866265
1020 => 0.0012804393284375
1021 => 0.0012708644972564
1022 => 0.0012083509052046
1023 => 0.0011508249657733
1024 => 0.001198947856788
1025 => 0.0011990705319337
1026 => 0.0011949367329175
1027 => 0.0011692620622558
1028 => 0.0011940433100315
1029 => 0.0011960103554877
1030 => 0.0011949093331118
1031 => 0.001175224623313
1101 => 0.0011451697097926
1102 => 0.0011510423679532
1103 => 0.0011606619018192
1104 => 0.0011424501173658
1105 => 0.001136630348742
1106 => 0.0011474504058699
1107 => 0.0011823148843844
1108 => 0.0011757239566774
1109 => 0.001175551840919
1110 => 0.0012037506246378
1111 => 0.0011835663811736
1112 => 0.0011511164409794
1113 => 0.0011429224031183
1114 => 0.0011138390888765
1115 => 0.0011339270376145
1116 => 0.0011346499671277
1117 => 0.0011236480028978
1118 => 0.0011520091897414
1119 => 0.0011517478364117
1120 => 0.0011786725623142
1121 => 0.0012301425257744
1122 => 0.0012149203248962
1123 => 0.0011972185614455
1124 => 0.0011991432339492
1125 => 0.0012202521408188
1126 => 0.001207489213856
1127 => 0.0012120788513781
1128 => 0.0012202451938528
1129 => 0.0012251721510266
1130 => 0.0011984343206335
1201 => 0.0011922004533506
1202 => 0.0011794481486799
1203 => 0.0011761213104243
1204 => 0.001186507796493
1205 => 0.0011837713243739
1206 => 0.0011345892077014
1207 => 0.0011294494028624
1208 => 0.0011296070333389
1209 => 0.0011166827496869
1210 => 0.001096970114934
1211 => 0.0011487737420842
1212 => 0.0011446131858328
1213 => 0.0011400202537326
1214 => 0.001140582861708
1215 => 0.0011630690604661
1216 => 0.0011500259296061
1217 => 0.0011847032307244
1218 => 0.0011775746201096
1219 => 0.0011702631875312
1220 => 0.0011692525248372
1221 => 0.0011664382470766
1222 => 0.001156787041489
1223 => 0.0011451326307944
1224 => 0.0011374373793661
1225 => 0.0010492258577528
1226 => 0.0010655974030614
1227 => 0.0010844313736257
1228 => 0.0010909327847921
1229 => 0.001079811671108
1230 => 0.0011572261708412
1231 => 0.0011713705459272
]
'min_raw' => 0.00048821610924811
'max_raw' => 0.001282546866265
'avg_raw' => 0.00088538148775656
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.000488'
'max' => '$0.001282'
'avg' => '$0.000885'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -1.8929238654729E-5
'max_diff' => -0.00023129434826928
'year' => 2027
]
2 => [
'items' => [
101 => 0.0011285263111771
102 => 0.0011205119041739
103 => 0.0011577515940301
104 => 0.0011352915086799
105 => 0.0011454052837378
106 => 0.0011235448340017
107 => 0.0011679635801646
108 => 0.0011676251837406
109 => 0.0011503452882404
110 => 0.0011649501375895
111 => 0.0011624121856074
112 => 0.0011429032261462
113 => 0.001168582048977
114 => 0.0011685947853528
115 => 0.0011519632616311
116 => 0.0011325412830329
117 => 0.0011290690919862
118 => 0.0011264532624558
119 => 0.0011447619500266
120 => 0.0011611774620528
121 => 0.0011917226601831
122 => 0.001199402448729
123 => 0.0012293771746964
124 => 0.0012115286848257
125 => 0.0012194406892088
126 => 0.0012280302891879
127 => 0.0012321484592899
128 => 0.0012254381221018
129 => 0.0012720012096185
130 => 0.001275932560861
131 => 0.0012772507089266
201 => 0.0012615498978002
202 => 0.0012754958929011
203 => 0.0012689710236362
204 => 0.0012859469208025
205 => 0.0012886089582373
206 => 0.0012863543072347
207 => 0.0012871992799339
208 => 0.00124746589903
209 => 0.0012454055136198
210 => 0.0012173120123541
211 => 0.0012287603217765
212 => 0.001207358256043
213 => 0.0012141450715528
214 => 0.0012171366351624
215 => 0.0012155740121025
216 => 0.0012294075920144
217 => 0.0012176462230756
218 => 0.0011866060366981
219 => 0.0011555573934426
220 => 0.0011551676030182
221 => 0.0011469930433031
222 => 0.0011410843338744
223 => 0.0011422225609331
224 => 0.0011462338215492
225 => 0.0011408511921153
226 => 0.0011419998490112
227 => 0.0011610752069452
228 => 0.0011649006339396
229 => 0.0011519003383218
301 => 0.0010997022754823
302 => 0.0010868927399325
303 => 0.0010960999800615
304 => 0.0010916995123021
305 => 0.00088108671008128
306 => 0.0009305670638992
307 => 0.00090116751785464
308 => 0.00091471618128005
309 => 0.00088470685774409
310 => 0.00089902887985885
311 => 0.00089638412533076
312 => 0.00097594707003987
313 => 0.00097470480409349
314 => 0.00097529941106277
315 => 0.00094691727117875
316 => 0.00099213079067307
317 => 0.0010144045962015
318 => 0.0010102823075964
319 => 0.0010113197988271
320 => 0.00099349226211069
321 => 0.00097547202058725
322 => 0.00095548479944246
323 => 0.00099261858583428
324 => 0.00098848994268238
325 => 0.00099795956463392
326 => 0.0010220434794869
327 => 0.0010255899274349
328 => 0.0010303563894415
329 => 0.001028647952112
330 => 0.0010693498604798
331 => 0.0010644205908166
401 => 0.0010762987124573
402 => 0.0010518645150473
403 => 0.0010242149013626
404 => 0.0010294701889901
405 => 0.0010289640625312
406 => 0.0010225204918047
407 => 0.0010167035242644
408 => 0.0010070199122302
409 => 0.0010376602936114
410 => 0.0010364163500832
411 => 0.0010565543498781
412 => 0.0010529947628042
413 => 0.0010292229691464
414 => 0.0010300719834074
415 => 0.0010357820123352
416 => 0.0010555444876502
417 => 0.0010614113358557
418 => 0.0010586935780134
419 => 0.0010651263092389
420 => 0.0010702104777159
421 => 0.0010657648025224
422 => 0.0011287061881636
423 => 0.0011025685365872
424 => 0.0011153078461009
425 => 0.0011183460963556
426 => 0.0011105636822158
427 => 0.0011122514091754
428 => 0.001114807855641
429 => 0.001130330097977
430 => 0.0011710649532635
501 => 0.0011891061433783
502 => 0.0012433839539755
503 => 0.0011876080736848
504 => 0.0011842985637719
505 => 0.0011940756364933
506 => 0.0012259424572036
507 => 0.001251767522291
508 => 0.0012603351862643
509 => 0.001261467544495
510 => 0.0012775410516764
511 => 0.0012867540862396
512 => 0.0012755893051294
513 => 0.0012661283221398
514 => 0.0012322402554115
515 => 0.0012361628914094
516 => 0.0012631859635443
517 => 0.0013013576445858
518 => 0.0013341129180059
519 => 0.0013226431628907
520 => 0.0014101492980344
521 => 0.0014188251739034
522 => 0.001417626448383
523 => 0.001437391384756
524 => 0.0013981620111149
525 => 0.00138139069385
526 => 0.0012681738940488
527 => 0.0012999831967397
528 => 0.0013462198862957
529 => 0.0013401002870543
530 => 0.0013065219671885
531 => 0.0013340874458392
601 => 0.0013249734365451
602 => 0.0013177848392742
603 => 0.0013507171969503
604 => 0.0013145067168987
605 => 0.0013458586590576
606 => 0.0013056494689445
607 => 0.0013226955557659
608 => 0.0013130193724596
609 => 0.0013192810489272
610 => 0.0012826754162447
611 => 0.0013024269270887
612 => 0.0012818536884567
613 => 0.0012818439340629
614 => 0.0012813897786798
615 => 0.0013055941026947
616 => 0.0013063834048318
617 => 0.0012884963728141
618 => 0.0012859185720524
619 => 0.0012954500525485
620 => 0.0012842911851863
621 => 0.001289512348992
622 => 0.0012844493289191
623 => 0.0012833095364571
624 => 0.0012742274762008
625 => 0.0012703146749259
626 => 0.0012718489851262
627 => 0.0012666115934213
628 => 0.0012634558754743
629 => 0.0012807620269519
630 => 0.0012715160483456
701 => 0.0012793449481245
702 => 0.0012704229287405
703 => 0.0012394953224169
704 => 0.0012217085289667
705 => 0.0011632891476121
706 => 0.0011798568116952
707 => 0.0011908411901229
708 => 0.0011872108531181
709 => 0.0011950102217583
710 => 0.001195489039649
711 => 0.0011929533853989
712 => 0.0011900174226147
713 => 0.0011885883583003
714 => 0.0011992394328895
715 => 0.0012054227401872
716 => 0.0011919436194501
717 => 0.0011887856500543
718 => 0.0012024137853222
719 => 0.0012107269399629
720 => 0.0012721066030716
721 => 0.0012675593993748
722 => 0.0012789719883101
723 => 0.0012776871059365
724 => 0.0012896493173086
725 => 0.0013092024772944
726 => 0.0012694454358938
727 => 0.0012763458835859
728 => 0.0012746540531664
729 => 0.0012931250140647
730 => 0.0012931826783884
731 => 0.001282108414637
801 => 0.001288111952676
802 => 0.0012847609424411
803 => 0.0012908166708518
804 => 0.0012674986686972
805 => 0.0012958974782988
806 => 0.001311997773364
807 => 0.0013122213259766
808 => 0.0013198527380577
809 => 0.0013276066947137
810 => 0.0013424897392875
811 => 0.0013271916146783
812 => 0.0012996717777488
813 => 0.0013016586210865
814 => 0.0012855237507639
815 => 0.001285794980849
816 => 0.0012843471333979
817 => 0.0012886922325875
818 => 0.0012684521736231
819 => 0.0012732024750068
820 => 0.0012665520252519
821 => 0.0012763314268069
822 => 0.0012658104073268
823 => 0.0012746532373145
824 => 0.0012784695095928
825 => 0.0012925516364581
826 => 0.0012637304657389
827 => 0.0012049621476208
828 => 0.0012173159605862
829 => 0.0011990437008393
830 => 0.0012007348680463
831 => 0.0012041512949516
901 => 0.0011930775375661
902 => 0.001195190061501
903 => 0.0011951145872805
904 => 0.0011944641912222
905 => 0.0011915834792374
906 => 0.0011874058769279
907 => 0.0012040481587306
908 => 0.001206876006705
909 => 0.0012131619624559
910 => 0.0012318647029659
911 => 0.001229995858148
912 => 0.0012330440215837
913 => 0.0012263898979183
914 => 0.0012010435337586
915 => 0.0012024199632775
916 => 0.001185255865121
917 => 0.0012127230378758
918 => 0.0012062184488185
919 => 0.0012020248979384
920 => 0.0012008806487278
921 => 0.0012196297497141
922 => 0.0012252397745854
923 => 0.0012217439835604
924 => 0.0012145740141796
925 => 0.0012283424750018
926 => 0.0012320263342732
927 => 0.0012328510145085
928 => 0.0012572460872451
929 => 0.001234214428079
930 => 0.0012397583773553
1001 => 0.0012830106870186
1002 => 0.0012437868105647
1003 => 0.0012645645727192
1004 => 0.001263547609384
1005 => 0.0012741768094211
1006 => 0.0012626757047378
1007 => 0.0012628182747143
1008 => 0.0012722562842629
1009 => 0.0012590023020059
1010 => 0.0012557204296079
1011 => 0.0012511865463953
1012 => 0.0012610861145213
1013 => 0.0012670204578938
1014 => 0.0013148469071816
1015 => 0.0013457449745726
1016 => 0.0013444036079793
1017 => 0.001356661187709
1018 => 0.0013511390357742
1019 => 0.0013333065505067
1020 => 0.0013637444284184
1021 => 0.0013541126102723
1022 => 0.0013549066456576
1023 => 0.0013548770916209
1024 => 0.0013612814086599
1025 => 0.0013567433630907
1026 => 0.001347798409453
1027 => 0.0013537364871212
1028 => 0.0013713704548943
1029 => 0.001426106831938
1030 => 0.0014567380336921
1031 => 0.0014242627951307
1101 => 0.0014466637798296
1102 => 0.0014332311712972
1103 => 0.0014307900667414
1104 => 0.0014448595405521
1105 => 0.0014589536411142
1106 => 0.0014580559078389
1107 => 0.0014478243145709
1108 => 0.0014420447471508
1109 => 0.0014858095679525
1110 => 0.0015180547424048
1111 => 0.0015158558376816
1112 => 0.0015255610880079
1113 => 0.0015540560031381
1114 => 0.0015566612210678
1115 => 0.0015563330234889
1116 => 0.001549875719024
1117 => 0.001577932663502
1118 => 0.0016013382602005
1119 => 0.0015483810396098
1120 => 0.0015685464559498
1121 => 0.001577599361034
1122 => 0.0015908917115735
1123 => 0.0016133181349902
1124 => 0.0016376791791358
1125 => 0.0016411240978832
1126 => 0.0016386797631774
1127 => 0.0016226129997033
1128 => 0.0016492691448951
1129 => 0.001664883689585
1130 => 0.0016741817936153
1201 => 0.0016977602383791
1202 => 0.0015776552686938
1203 => 0.0014926390015463
1204 => 0.0014793624837814
1205 => 0.0015063608047296
1206 => 0.001513480046656
1207 => 0.0015106102891622
1208 => 0.0014149167511468
1209 => 0.001478858677108
1210 => 0.0015476548130524
1211 => 0.0015502975528151
1212 => 0.0015847383369282
1213 => 0.0015959536680109
1214 => 0.0016236830134787
1215 => 0.0016219485353698
1216 => 0.001628700189721
1217 => 0.001627148101308
1218 => 0.0016785108746846
1219 => 0.0017351716411646
1220 => 0.0017332096589916
1221 => 0.0017250640034304
1222 => 0.0017371616909795
1223 => 0.0017956416741237
1224 => 0.0017902577743984
1225 => 0.001795487774382
1226 => 0.0018644389702964
1227 => 0.0019540853331783
1228 => 0.001912435597272
1229 => 0.0020028035398
1230 => 0.0020596853694227
1231 => 0.002158056612064
]
'min_raw' => 0.00088108671008128
'max_raw' => 0.002158056612064
'avg_raw' => 0.0015195716610727
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.000881'
'max' => '$0.002158'
'avg' => '$0.001519'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 0.00039287060083316
'max_diff' => 0.00087550974579904
'year' => 2028
]
3 => [
'items' => [
101 => 0.0021457400479968
102 => 0.0021840352508755
103 => 0.0021236908277718
104 => 0.0019851278347057
105 => 0.0019631997106552
106 => 0.0020071003703129
107 => 0.0021150258583177
108 => 0.0020037014126214
109 => 0.0020262222029965
110 => 0.0020197362138534
111 => 0.0020193906030557
112 => 0.0020325811615053
113 => 0.0020134475685009
114 => 0.0019354938685331
115 => 0.0019712195898443
116 => 0.001957424173156
117 => 0.0019727312164881
118 => 0.0020553370162466
119 => 0.0020188150230971
120 => 0.0019803420701198
121 => 0.002028595690985
122 => 0.0020900391320895
123 => 0.0020861941119697
124 => 0.0020787331658435
125 => 0.0021207901285145
126 => 0.0021902559093133
127 => 0.0022090322307271
128 => 0.0022228925273297
129 => 0.0022248036280596
130 => 0.0022444891533199
131 => 0.0021386351226045
201 => 0.0023066281878741
202 => 0.0023356359495314
203 => 0.0023301836925883
204 => 0.0023624245988372
205 => 0.0023529385063459
206 => 0.0023391946466484
207 => 0.0023903033408903
208 => 0.0023317113472009
209 => 0.0022485473886858
210 => 0.0022029219962478
211 => 0.0022630051935056
212 => 0.0022996959054563
213 => 0.0023239461320881
214 => 0.0023312842360145
215 => 0.0021468522696811
216 => 0.0020474536688932
217 => 0.002111167032391
218 => 0.0021889017331198
219 => 0.002138203302417
220 => 0.0021401905849157
221 => 0.0020679079460469
222 => 0.0021952971427653
223 => 0.0021767376083152
224 => 0.0022730245058735
225 => 0.0022500448650205
226 => 0.0023285630921435
227 => 0.0023078866115097
228 => 0.0023937135266142
301 => 0.0024279522067203
302 => 0.0024854442794436
303 => 0.0025277356821737
304 => 0.0025525700027624
305 => 0.0025510790433054
306 => 0.0026494849938873
307 => 0.0025914584428712
308 => 0.002518563418987
309 => 0.0025172449779858
310 => 0.0025549983437859
311 => 0.0026341190413729
312 => 0.0026546338870979
313 => 0.0026660988871714
314 => 0.0026485398404592
315 => 0.0025855561781316
316 => 0.002558360152073
317 => 0.0025815319542197
318 => 0.0025531948313699
319 => 0.002602112655401
320 => 0.002669287276079
321 => 0.0026554159825463
322 => 0.0027017856371258
323 => 0.0027497733513857
324 => 0.0028183979380404
325 => 0.002836338946153
326 => 0.0028659947503278
327 => 0.0028965203142478
328 => 0.0029063243026919
329 => 0.0029250431586306
330 => 0.0029249445010199
331 => 0.0029813550333156
401 => 0.0030435775973265
402 => 0.0030670651747849
403 => 0.0031210735640381
404 => 0.0030285860901218
405 => 0.0030987389015068
406 => 0.0031620184934148
407 => 0.0030865739552307
408 => 0.0031905566747946
409 => 0.0031945940881654
410 => 0.0032555542366259
411 => 0.0031937594476098
412 => 0.0031570658991481
413 => 0.0032629987986679
414 => 0.0033142563918905
415 => 0.0032988171876637
416 => 0.0031813240811704
417 => 0.003112938053675
418 => 0.0029339586290397
419 => 0.0031459674888559
420 => 0.0032492308200892
421 => 0.0031810566540891
422 => 0.0032154397379651
423 => 0.0034030226948402
424 => 0.0034744421397212
425 => 0.0034595873944455
426 => 0.0034620976018672
427 => 0.0035006342379704
428 => 0.0036715269049649
429 => 0.0035691240576408
430 => 0.0036474071974586
501 => 0.0036889282925471
502 => 0.0037274953996611
503 => 0.0036327867738485
504 => 0.0035095722432124
505 => 0.0034705450291658
506 => 0.0031742780768464
507 => 0.003158856095356
508 => 0.0031501992698116
509 => 0.0030956192092863
510 => 0.0030527342324502
511 => 0.0030186305066531
512 => 0.0029291321459268
513 => 0.00295933521542
514 => 0.0028166935081818
515 => 0.0029079506175611
516 => 0.0026802910086045
517 => 0.0028698926958854
518 => 0.0027667011176293
519 => 0.0028359914870996
520 => 0.0028357497395281
521 => 0.0027081642008015
522 => 0.0026345755247063
523 => 0.0026814690932283
524 => 0.0027317427211
525 => 0.0027398994480814
526 => 0.002805080518893
527 => 0.002823271154694
528 => 0.0027681526789772
529 => 0.0026755732692307
530 => 0.0026970773546033
531 => 0.0026341397451026
601 => 0.0025238440053128
602 => 0.0026030603312087
603 => 0.0026301082677655
604 => 0.002642054177436
605 => 0.002533590984904
606 => 0.00249950949496
607 => 0.0024813647956852
608 => 0.0026615720330973
609 => 0.0026714441923576
610 => 0.0026209368297993
611 => 0.0028492348978671
612 => 0.0027975640138767
613 => 0.0028552930509679
614 => 0.0026951260842509
615 => 0.0027012446780729
616 => 0.0026254190692396
617 => 0.0026678763435172
618 => 0.0026378689105196
619 => 0.0026644462153266
620 => 0.0026803765422455
621 => 0.0027561897088426
622 => 0.0028707583604675
623 => 0.0027448657498993
624 => 0.0026900125366593
625 => 0.0027240431616472
626 => 0.0028146712004933
627 => 0.0029519773185091
628 => 0.0028706893331006
629 => 0.0029067635606654
630 => 0.0029146441745576
701 => 0.0028547054235622
702 => 0.002954187345754
703 => 0.0030075005160463
704 => 0.0030621887971601
705 => 0.0031096730993204
706 => 0.0030403450950622
707 => 0.0031145359973975
708 => 0.0030547512265725
709 => 0.0030011181067065
710 => 0.0030011994460105
711 => 0.0029675546064637
712 => 0.0029023634903192
713 => 0.002890341248291
714 => 0.0029528824695636
715 => 0.0030030346063485
716 => 0.0030071653765466
717 => 0.0030349321763806
718 => 0.0030513642825015
719 => 0.0032124212608518
720 => 0.0032771997098776
721 => 0.0033564095711529
722 => 0.0033872662761428
723 => 0.0034801338954215
724 => 0.0034051357505147
725 => 0.0033889094301037
726 => 0.0031636429625004
727 => 0.0032005303339508
728 => 0.0032595905747447
729 => 0.0031646168441178
730 => 0.0032248558162612
731 => 0.0032367482653982
801 => 0.0031613896730933
802 => 0.0032016419532959
803 => 0.0030947438310471
804 => 0.0028730884474137
805 => 0.0029544341115596
806 => 0.0030143319010254
807 => 0.0029288503701135
808 => 0.003082072705681
809 => 0.0029925633803935
810 => 0.0029641932214827
811 => 0.0028535111168796
812 => 0.0029057488097074
813 => 0.0029764010372286
814 => 0.0029327461748235
815 => 0.0030233365691246
816 => 0.0031516367270306
817 => 0.0032430710599609
818 => 0.0032500902526987
819 => 0.003191304102249
820 => 0.0032855092835128
821 => 0.0032861954654122
822 => 0.0031799316361072
823 => 0.0031148456323374
824 => 0.0031000579553387
825 => 0.0031370004717761
826 => 0.0031818555066959
827 => 0.0032525793949616
828 => 0.0032953163594318
829 => 0.0034067516968356
830 => 0.0034369029040356
831 => 0.0034700299394735
901 => 0.0035142978748179
902 => 0.0035674528812646
903 => 0.0034511527532755
904 => 0.0034557735741711
905 => 0.0033474765052725
906 => 0.0032317455557837
907 => 0.0033195709203792
908 => 0.0034343909016691
909 => 0.0034080510710964
910 => 0.0034050873020831
911 => 0.0034100715394826
912 => 0.0033902121674092
913 => 0.0033003889635439
914 => 0.0032552803128858
915 => 0.0033134819806789
916 => 0.0033444135768527
917 => 0.0033923857849996
918 => 0.0033864721977751
919 => 0.0035100434541225
920 => 0.0035580595077383
921 => 0.0035457749465006
922 => 0.0035480356014128
923 => 0.0036349663729386
924 => 0.0037316512695519
925 => 0.0038222094339261
926 => 0.0039143290882912
927 => 0.0038032752494628
928 => 0.0037468889589543
929 => 0.0038050652177199
930 => 0.0037741960759288
1001 => 0.0039515793210431
1002 => 0.0039638609520719
1003 => 0.0041412313703587
1004 => 0.0043095770181893
1005 => 0.0042038421330124
1006 => 0.0043035453673304
1007 => 0.0044113825441693
1008 => 0.0046194179542428
1009 => 0.004549358946904
1010 => 0.0044956948452471
1011 => 0.0044449825284844
1012 => 0.0045505068093141
1013 => 0.0046862621108099
1014 => 0.004715502502504
1015 => 0.0047628831077377
1016 => 0.0047130681947592
1017 => 0.0047730647705091
1018 => 0.0049848790467378
1019 => 0.0049276449595645
1020 => 0.0048463633549397
1021 => 0.0050135703831629
1022 => 0.005074081956676
1023 => 0.005498783869748
1024 => 0.0060349875785624
1025 => 0.0058129957222099
1026 => 0.0056751982133394
1027 => 0.0057075838965246
1028 => 0.0059033873393426
1029 => 0.0059662731906851
1030 => 0.0057953277686833
1031 => 0.0058557085816752
1101 => 0.0061884127977712
1102 => 0.0063668979352776
1103 => 0.0061244911447919
1104 => 0.0054557004238347
1105 => 0.0048390448357646
1106 => 0.0050026096660838
1107 => 0.0049840664903332
1108 => 0.0053415156648322
1109 => 0.004926279945514
1110 => 0.0049332714500959
1111 => 0.0052981122949783
1112 => 0.0052007790125192
1113 => 0.0050431115604405
1114 => 0.00484019598265
1115 => 0.0044650877696851
1116 => 0.0041328439647957
1117 => 0.0047844505773624
1118 => 0.0047563521153588
1119 => 0.0047156613784188
1120 => 0.0048062142102811
1121 => 0.005245913057935
1122 => 0.0052357765763303
1123 => 0.0051712934520396
1124 => 0.0052202033334859
1125 => 0.0050345374217471
1126 => 0.0050823877547365
1127 => 0.0048389471543688
1128 => 0.0049489924727125
1129 => 0.0050427732769004
1130 => 0.0050616011617896
1201 => 0.0051040213478207
1202 => 0.0047415455026869
1203 => 0.0049042865154203
1204 => 0.0049998816136304
1205 => 0.0045679794821376
1206 => 0.004991344297162
1207 => 0.004735235604659
1208 => 0.0046483084678001
1209 => 0.0047653444058012
1210 => 0.004719735386941
1211 => 0.0046805234307764
1212 => 0.0046586424854897
1213 => 0.0047445807615726
1214 => 0.0047405716382749
1215 => 0.0045999599387026
1216 => 0.0044165377086766
1217 => 0.0044781002297028
1218 => 0.0044557339886622
1219 => 0.0043746758458289
1220 => 0.0044292992471011
1221 => 0.0041887654321691
1222 => 0.0037749395054383
1223 => 0.0040483255884676
1224 => 0.0040378005216578
1225 => 0.0040324933056985
1226 => 0.0042379353912587
1227 => 0.0042181868750874
1228 => 0.0041823431248585
1229 => 0.0043740175472469
1230 => 0.0043040538046904
1231 => 0.0045196655737187
]
'min_raw' => 0.0019354938685331
'max_raw' => 0.0063668979352776
'avg_raw' => 0.0041511959019053
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.001935'
'max' => '$0.006366'
'avg' => '$0.004151'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072435
'min_diff' => 0.0010544071584518
'max_diff' => 0.0042088413232135
'year' => 2029
]
4 => [
'items' => [
101 => 0.0046616814296957
102 => 0.0046256616148883
103 => 0.0047592282138568
104 => 0.0044795185058484
105 => 0.0045724268508431
106 => 0.0045915751319811
107 => 0.0043716523146275
108 => 0.004221417976567
109 => 0.0042113990590153
110 => 0.0039509134203855
111 => 0.0040900627459749
112 => 0.0042125083941032
113 => 0.0041538664308159
114 => 0.004135302137118
115 => 0.0042301430875167
116 => 0.0042375130416205
117 => 0.0040694773070213
118 => 0.0041044172572441
119 => 0.0042501226579568
120 => 0.0041007458549877
121 => 0.0038105311273811
122 => 0.0037385538624022
123 => 0.0037289507684498
124 => 0.0035337427172379
125 => 0.0037433637274207
126 => 0.0036518585389821
127 => 0.0039409223328592
128 => 0.0037758106440768
129 => 0.003768693009178
130 => 0.0037579336600983
131 => 0.0035899100264773
201 => 0.0036266965237813
202 => 0.0037489804435616
203 => 0.0037926127237662
204 => 0.0037880615194722
205 => 0.003748381185643
206 => 0.0037665466392738
207 => 0.0037080293838653
208 => 0.0036873657230492
209 => 0.003622145525526
210 => 0.0035262898527063
211 => 0.0035396191719289
212 => 0.0033497040020718
213 => 0.0032462281379728
214 => 0.0032175873825801
215 => 0.0031792877674895
216 => 0.003221913426016
217 => 0.0033491659962572
218 => 0.0031956723984075
219 => 0.0029325183912182
220 => 0.0029483343954429
221 => 0.002983868261122
222 => 0.0029176511375091
223 => 0.0028549821871914
224 => 0.0029094677549999
225 => 0.0027979659330559
226 => 0.0029973427235977
227 => 0.0029919501401605
228 => 0.0030662654782965
301 => 0.0031127363843371
302 => 0.0030056359910479
303 => 0.0029787005317659
304 => 0.0029940441935213
305 => 0.0027404476431335
306 => 0.0030455412298102
307 => 0.0030481796918171
308 => 0.0030255875782575
309 => 0.0031880404944551
310 => 0.0035308668179673
311 => 0.0034018817649051
312 => 0.0033519348537656
313 => 0.0032569857391783
314 => 0.0033834997968453
315 => 0.0033737854911432
316 => 0.0033298537167174
317 => 0.0033032836424691
318 => 0.0033522398189544
319 => 0.0032972174304286
320 => 0.0032873338975352
321 => 0.0032274504415913
322 => 0.0032060747723429
323 => 0.0031902490778214
324 => 0.0031728265431538
325 => 0.0032112563132054
326 => 0.0031241693984111
327 => 0.0030191511164048
328 => 0.0030104199825695
329 => 0.0030345274107378
330 => 0.0030238616683603
331 => 0.0030103689190984
401 => 0.0029846075862259
402 => 0.0029769647490664
403 => 0.0030018002620573
404 => 0.0029737624158909
405 => 0.0030151337852099
406 => 0.0030038830619374
407 => 0.0029410374363043
408 => 0.0028627085183347
409 => 0.0028620112266643
410 => 0.0028451353897729
411 => 0.0028236414741927
412 => 0.0028176623585924
413 => 0.0029048791324517
414 => 0.0030854152441621
415 => 0.0030499716855703
416 => 0.0030755832890548
417 => 0.0032015670294631
418 => 0.0032416134720756
419 => 0.0032131894556612
420 => 0.0031742809088762
421 => 0.0031759926874705
422 => 0.003308954970253
423 => 0.0033172476647353
424 => 0.0033382006283674
425 => 0.0033651311079414
426 => 0.0032177758327834
427 => 0.003169052267262
428 => 0.0031459643388375
429 => 0.0030748624554428
430 => 0.0031515397408692
501 => 0.0031068631703
502 => 0.0031128915660387
503 => 0.0031089655654054
504 => 0.0031111094272262
505 => 0.0029972869937214
506 => 0.0030387579061596
507 => 0.0029698044708153
508 => 0.0028774835612758
509 => 0.0028771740692151
510 => 0.002899769481034
511 => 0.0028863288459256
512 => 0.0028501604424392
513 => 0.0028552979934444
514 => 0.0028102876406537
515 => 0.0028607630652119
516 => 0.0028622105197785
517 => 0.0028427747319086
518 => 0.0029205390877069
519 => 0.0029523992077272
520 => 0.0029396061557963
521 => 0.0029515016131
522 => 0.0030514445254479
523 => 0.0030677395809755
524 => 0.00307497676825
525 => 0.0030652798960458
526 => 0.00295332838607
527 => 0.002958293911592
528 => 0.0029218601799894
529 => 0.0028910775160773
530 => 0.0028923086612
531 => 0.002908134951917
601 => 0.0029772492916779
602 => 0.0031226963451919
603 => 0.0031282159545523
604 => 0.0031349058821156
605 => 0.0031076945846277
606 => 0.0030994873969284
607 => 0.0031103147959587
608 => 0.0031649370620158
609 => 0.0033054403601152
610 => 0.0032557771106671
611 => 0.0032154001158113
612 => 0.0032508216258595
613 => 0.0032453687620305
614 => 0.003199341103746
615 => 0.0031980492606778
616 => 0.0031097074684973
617 => 0.0030770495193735
618 => 0.0030497580926805
619 => 0.0030199565671924
620 => 0.0030022892239269
621 => 0.0030294342928466
622 => 0.0030356426912796
623 => 0.0029762895236721
624 => 0.0029681999062446
625 => 0.0030166689841401
626 => 0.0029953395500676
627 => 0.0030172774019556
628 => 0.0030223671717731
629 => 0.0030215476016051
630 => 0.0029992772227636
701 => 0.0030134716981249
702 => 0.0029798975323186
703 => 0.0029433906696809
704 => 0.002920101565776
705 => 0.0028997787337676
706 => 0.0029110550221358
707 => 0.0028708571130721
708 => 0.0028579969929385
709 => 0.0030086629292583
710 => 0.0031199614763495
711 => 0.0031183431513957
712 => 0.0031084920144391
713 => 0.0030938552231516
714 => 0.0031638662895662
715 => 0.0031394758339428
716 => 0.0031572219282996
717 => 0.0031617390541146
718 => 0.0031754110334854
719 => 0.0031802975909642
720 => 0.003165527020331
721 => 0.0031159551812129
722 => 0.0029924268712797
723 => 0.0029349241095474
724 => 0.0029159472403915
725 => 0.0029166370135431
726 => 0.0028976099907387
727 => 0.002903214301686
728 => 0.0028956610401017
729 => 0.0028813569899912
730 => 0.0029101717873492
731 => 0.0029134924243163
801 => 0.0029067667063018
802 => 0.0029083508563688
803 => 0.0028526647838001
804 => 0.0028568984749537
805 => 0.002833324744619
806 => 0.0028289049543668
807 => 0.0027693126168801
808 => 0.002663736152975
809 => 0.0027222357625338
810 => 0.0026515764604767
811 => 0.0026248167121246
812 => 0.0027514931988289
813 => 0.0027387783930226
814 => 0.0027170161724755
815 => 0.002684825312642
816 => 0.0026728854095973
817 => 0.0026003423384112
818 => 0.0025960561067633
819 => 0.0026320104116708
820 => 0.0026154187370681
821 => 0.0025921177421673
822 => 0.0025077239006207
823 => 0.0024128372808817
824 => 0.0024157013114956
825 => 0.0024458829798063
826 => 0.002533640250972
827 => 0.0024993519669114
828 => 0.0024744754234126
829 => 0.0024698167946014
830 => 0.0025281292876732
831 => 0.0026106536822147
901 => 0.0026493722817543
902 => 0.0026110033255119
903 => 0.0025669271345119
904 => 0.0025696098480287
905 => 0.0025874567391789
906 => 0.0025893321950973
907 => 0.002560643125862
908 => 0.0025687189308046
909 => 0.0025564510446297
910 => 0.0024811630498195
911 => 0.0024798013287342
912 => 0.0024613244406249
913 => 0.0024607649677961
914 => 0.0024293311718464
915 => 0.0024249333665015
916 => 0.0023625196567482
917 => 0.0024036005495139
918 => 0.0023760456434904
919 => 0.0023345139005676
920 => 0.0023273538124335
921 => 0.0023271385715381
922 => 0.002369782385192
923 => 0.0024031022317229
924 => 0.0023765249728779
925 => 0.0023704738462174
926 => 0.0024350840479132
927 => 0.0024268618108123
928 => 0.0024197414065107
929 => 0.002603264527819
930 => 0.0024579916568158
1001 => 0.0023946443931728
1002 => 0.0023162401250955
1003 => 0.0023417689501301
1004 => 0.0023471482486614
1005 => 0.002158600117367
1006 => 0.0020821061639831
1007 => 0.0020558563217955
1008 => 0.0020407491664983
1009 => 0.002047633686871
1010 => 0.0019787801569796
1011 => 0.0020250508677989
1012 => 0.0019654295309569
1013 => 0.0019554338198108
1014 => 0.0020620441557505
1015 => 0.002076878361188
1016 => 0.0020135910321654
1017 => 0.0020542317426858
1018 => 0.0020394948561029
1019 => 0.0019664515676535
1020 => 0.0019636618513048
1021 => 0.0019270112967566
1022 => 0.0018696602758345
1023 => 0.0018434493203397
1024 => 0.0018297984271441
1025 => 0.0018354310517272
1026 => 0.0018325830243768
1027 => 0.0018139977194357
1028 => 0.0018336483123009
1029 => 0.0017834491677159
1030 => 0.0017634594638601
1031 => 0.0017544305783861
1101 => 0.0017098759482119
1102 => 0.001780782178353
1103 => 0.0017947515989439
1104 => 0.0018087485436088
1105 => 0.0019305823907966
1106 => 0.0019244959160899
1107 => 0.0019795146832044
1108 => 0.0019773767550874
1109 => 0.0019616845114614
1110 => 0.0018954815168521
1111 => 0.0019218688505485
1112 => 0.0018406527389333
1113 => 0.0019015053719142
1114 => 0.0018737347714884
1115 => 0.0018921161039755
1116 => 0.0018590648107858
1117 => 0.0018773567610914
1118 => 0.0017980642667974
1119 => 0.0017240220513011
1120 => 0.0017538188002438
1121 => 0.0017862112740161
1122 => 0.0018564464106033
1123 => 0.0018146149426792
1124 => 0.0018296591203677
1125 => 0.0017792636434764
1126 => 0.0016752833798935
1127 => 0.0016758718968932
1128 => 0.0016598767986741
1129 => 0.0016460546984903
1130 => 0.001819419789978
1201 => 0.001797859100355
1202 => 0.001763504963234
1203 => 0.0018094893409496
1204 => 0.0018216483402878
1205 => 0.0018219944899054
1206 => 0.0018555435048581
1207 => 0.0018734486201524
1208 => 0.0018766044743282
1209 => 0.0019293945742308
1210 => 0.0019470891193998
1211 => 0.0020199704467255
1212 => 0.0018719294962158
1213 => 0.0018688806902611
1214 => 0.0018101364354462
1215 => 0.0017728799003327
1216 => 0.0018126874222798
1217 => 0.0018479514524563
1218 => 0.0018112321871619
1219 => 0.0018160269480233
1220 => 0.0017667343344399
1221 => 0.0017843541243629
1222 => 0.0017995306610867
1223 => 0.0017911510695434
1224 => 0.0017786064154263
1225 => 0.0018450602041275
1226 => 0.0018413106209345
1227 => 0.001903193916739
1228 => 0.0019514363711355
1229 => 0.0020378954737844
1230 => 0.0019476708929554
1231 => 0.0019443827506197
]
'min_raw' => 0.0016460546984903
'max_raw' => 0.0047592282138568
'avg_raw' => 0.0032026414561736
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.001646'
'max' => '$0.004759'
'avg' => '$0.0032026'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -0.00028943917004283
'max_diff' => -0.0016076697214207
'year' => 2030
]
5 => [
'items' => [
101 => 0.0019765248693852
102 => 0.0019470841986089
103 => 0.0019656896862821
104 => 0.0020348978420805
105 => 0.0020363601013558
106 => 0.0020118653744809
107 => 0.0020103748681245
108 => 0.0020150793483638
109 => 0.0020426336360669
110 => 0.0020330053212857
111 => 0.0020441474509096
112 => 0.0020580808546187
113 => 0.0021157153200003
114 => 0.0021296107944832
115 => 0.0020958519954672
116 => 0.0020989000370371
117 => 0.0020862733195053
118 => 0.002074076068582
119 => 0.0021014937073922
120 => 0.002151599981213
121 => 0.0021512882726841
122 => 0.0021629119542837
123 => 0.0021701534116245
124 => 0.0021390677756471
125 => 0.0021188321696763
126 => 0.0021265917886305
127 => 0.0021389995883209
128 => 0.0021225681064191
129 => 0.0020211453883181
130 => 0.0020519105620816
131 => 0.0020467897328272
201 => 0.0020394970492549
202 => 0.0020704316693741
203 => 0.0020674479497981
204 => 0.0019780739645113
205 => 0.0019837953970762
206 => 0.0019784219037755
207 => 0.0019957847599432
208 => 0.0019461465473958
209 => 0.0019614149272569
210 => 0.0019709911119736
211 => 0.0019766315583395
212 => 0.0019970087183033
213 => 0.0019946176937738
214 => 0.0019968600888614
215 => 0.0020270740377168
216 => 0.0021798858228527
217 => 0.0021882030311574
218 => 0.0021472460555888
219 => 0.0021636075594879
220 => 0.0021321970498693
221 => 0.0021532831354084
222 => 0.0021677096996057
223 => 0.0021025188300667
224 => 0.0020986586498579
225 => 0.0020671184978928
226 => 0.0020840663890333
227 => 0.0020571010756322
228 => 0.0020637174203342
301 => 0.0020452175437449
302 => 0.002078513638317
303 => 0.0021157438457387
304 => 0.0021251496663989
305 => 0.0021004070017024
306 => 0.0020824916818411
307 => 0.0020510382818378
308 => 0.002103345987028
309 => 0.002118642354074
310 => 0.0021032656417237
311 => 0.0020997025214844
312 => 0.0020929504150692
313 => 0.0021011350127796
314 => 0.002118559046774
315 => 0.0021103421941136
316 => 0.0021157695700581
317 => 0.0020950860096435
318 => 0.0021390780662861
319 => 0.0022089480394994
320 => 0.0022091726828881
321 => 0.0022009557859359
322 => 0.0021975936087385
323 => 0.0022060246436546
324 => 0.0022105981342373
325 => 0.0022378625551683
326 => 0.0022671183650898
327 => 0.0024036424646831
328 => 0.0023653070438273
329 => 0.0024864393468416
330 => 0.0025822392714649
331 => 0.0026109654800365
401 => 0.0025845387198232
402 => 0.0024941342006792
403 => 0.0024896985236724
404 => 0.0026248010430771
405 => 0.0025866283932579
406 => 0.0025820878780263
407 => 0.0025337844672833
408 => 0.0025623377655262
409 => 0.0025560927403488
410 => 0.0025462346625893
411 => 0.0026007123665968
412 => 0.0027026897652407
413 => 0.002686795631324
414 => 0.0026749313976629
415 => 0.0026229457793864
416 => 0.0026542527329971
417 => 0.0026431049264615
418 => 0.0026910029779111
419 => 0.0026626292333041
420 => 0.0025863391978917
421 => 0.0025984886374863
422 => 0.0025966522741329
423 => 0.0026344445018209
424 => 0.0026231002131297
425 => 0.0025944371196966
426 => 0.0027023412175785
427 => 0.0026953345256561
428 => 0.0027052684128492
429 => 0.0027096416172073
430 => 0.0027753209401045
501 => 0.0028022276571915
502 => 0.0028083359530387
503 => 0.0028338952532312
504 => 0.0028077000143659
505 => 0.0029124996467159
506 => 0.0029821852870006
507 => 0.0030631287441815
508 => 0.0031814088906731
509 => 0.0032258833199064
510 => 0.0032178494123406
511 => 0.0033075280694978
512 => 0.0034686786229649
513 => 0.0032504225466669
514 => 0.0034802467249758
515 => 0.0034074870435709
516 => 0.0032349751478508
517 => 0.0032238674155481
518 => 0.0033406944742341
519 => 0.0035998056462118
520 => 0.003534901236446
521 => 0.0035999118065748
522 => 0.0035240735232798
523 => 0.0035203075132989
524 => 0.0035962285104294
525 => 0.0037736220584629
526 => 0.0036893490332899
527 => 0.0035685229871109
528 => 0.003657739059348
529 => 0.0035804518410185
530 => 0.0034063021067919
531 => 0.003534851605267
601 => 0.0034488942165156
602 => 0.0034739811522994
603 => 0.0036546507982582
604 => 0.0036329121484639
605 => 0.0036610439742425
606 => 0.0036113920380813
607 => 0.003565009300315
608 => 0.0034784324758468
609 => 0.0034528013463077
610 => 0.0034598848684008
611 => 0.0034527978360659
612 => 0.0034043588984581
613 => 0.0033938985144936
614 => 0.0033764640829395
615 => 0.0033818677422931
616 => 0.0033490859103486
617 => 0.0034109520003001
618 => 0.0034224348917572
619 => 0.0034674558728201
620 => 0.0034721301004255
621 => 0.0035975128918522
622 => 0.0035284541573066
623 => 0.0035747847186841
624 => 0.0035706404771943
625 => 0.0032387140037329
626 => 0.0032844505431638
627 => 0.0033556022456016
628 => 0.0033235485000972
629 => 0.0032782320033754
630 => 0.0032416365025556
701 => 0.0031861905767317
702 => 0.0032642296525842
703 => 0.0033668427387998
704 => 0.0034747325376293
705 => 0.0036043550617032
706 => 0.0035754248233024
707 => 0.0034723093347052
708 => 0.0034769350201978
709 => 0.0035055291877726
710 => 0.0034684971427091
711 => 0.0034575756696685
712 => 0.0035040287450875
713 => 0.0035043486418877
714 => 0.00346173879857
715 => 0.0034143857552414
716 => 0.0034141873442609
717 => 0.0034057613275767
718 => 0.0035255724929294
719 => 0.0035914565195983
720 => 0.0035990100170784
721 => 0.0035909481090347
722 => 0.0035940508174751
723 => 0.0035557143540119
724 => 0.0036433401411636
725 => 0.0037237542287461
726 => 0.0037022015354776
727 => 0.0036698909843722
728 => 0.0036441540741298
729 => 0.0036961387373553
730 => 0.0036938239421333
731 => 0.0037230518818428
801 => 0.0037217259336688
802 => 0.0037118976768629
803 => 0.0037022018864756
804 => 0.0037406445993989
805 => 0.0037295737154481
806 => 0.0037184856353566
807 => 0.0036962467932331
808 => 0.0036992694212257
809 => 0.0036669644489925
810 => 0.0036520186906624
811 => 0.0034272703452671
812 => 0.0033672102435135
813 => 0.0033861063741613
814 => 0.0033923274710084
815 => 0.003366189237756
816 => 0.0034036647498786
817 => 0.0033978242310107
818 => 0.0034205462733365
819 => 0.0034063505277678
820 => 0.0034069331261176
821 => 0.0034486797869833
822 => 0.0034607990202356
823 => 0.0034546350803893
824 => 0.0034589520925701
825 => 0.0035584358161814
826 => 0.0035442924119943
827 => 0.0035367790104084
828 => 0.0035388602739952
829 => 0.003564280498333
830 => 0.0035713967732547
831 => 0.0035412446163594
901 => 0.0035554645478588
902 => 0.0036160112114052
903 => 0.0036371991170021
904 => 0.0037048207408957
905 => 0.0036760938731872
906 => 0.0037288232821359
907 => 0.003890895508464
908 => 0.0040203700173999
909 => 0.003901299908222
910 => 0.0041390633554036
911 => 0.0043241963041752
912 => 0.0043170905932463
913 => 0.0042848083814257
914 => 0.0040740394412633
915 => 0.003880086720138
916 => 0.0040423364070268
917 => 0.0040427500148457
918 => 0.0040288126228498
919 => 0.0039422486781656
920 => 0.004025800385213
921 => 0.0040324324163032
922 => 0.0040287202424921
923 => 0.0039623518690626
924 => 0.0038610196297616
925 => 0.0038808197067659
926 => 0.0039132526368096
927 => 0.0038518503340189
928 => 0.0038322285777805
929 => 0.0038687091558195
930 => 0.0039862571792914
1001 => 0.0039640354063633
1002 => 0.0039634551060669
1003 => 0.0040585292741513
1004 => 0.0039904766880925
1005 => 0.0038810694491455
1006 => 0.0038534426784072
1007 => 0.0037553862539089
1008 => 0.0038231141755749
1009 => 0.003825551582902
1010 => 0.0037884576923681
1011 => 0.0038840794139263
1012 => 0.0038831982429282
1013 => 0.0039739768361327
1014 => 0.004147511411457
1015 => 0.0040961886984158
1016 => 0.0040365059670441
1017 => 0.0040429951347669
1018 => 0.0041141652880546
1019 => 0.0040711341887203
1020 => 0.0040866084720644
1021 => 0.0041141418658734
1022 => 0.0041307534459741
1023 => 0.0040406049840281
1024 => 0.004019587065249
1025 => 0.0039765917797142
1026 => 0.0039653751122632
1027 => 0.0040003938752053
1028 => 0.0039911676684012
1029 => 0.0038253467282542
1030 => 0.0038080175173899
1031 => 0.0038085489795467
1101 => 0.0037649738548692
1102 => 0.0036985113305078
1103 => 0.0038731708762584
1104 => 0.0038591432703759
1105 => 0.003843657879132
1106 => 0.0038455547512009
1107 => 0.00392136854025
1108 => 0.0038773927139134
1109 => 0.0039943096557255
1110 => 0.0039702750473339
1111 => 0.003945624041928
1112 => 0.0039422165220929
1113 => 0.0039327279881365
1114 => 0.0039001882746723
1115 => 0.0038608946153305
1116 => 0.0038349495378747
1117 => 0.0035375382340238
1118 => 0.0035927360420565
1119 => 0.0036562360887597
1120 => 0.0036781560504212
1121 => 0.0036406604391841
1122 => 0.0039016688299423
1123 => 0.0039493575780733
1124 => 0.0038049052493245
1125 => 0.0037778841165653
1126 => 0.0039034403309075
1127 => 0.0038277145850362
1128 => 0.0038618138837653
1129 => 0.0037881098512322
1130 => 0.0039378707551381
1201 => 0.0039367298279685
1202 => 0.0038784694538457
1203 => 0.0039277107231045
1204 => 0.0039191538408026
1205 => 0.0038533780219069
1206 => 0.0039399559659193
1207 => 0.0039399989074994
1208 => 0.0038839245640959
1209 => 0.0038184420072529
1210 => 0.0038067352727183
1211 => 0.003797915820825
1212 => 0.0038596448392418
1213 => 0.0039149908841327
1214 => 0.0040179761522264
1215 => 0.0040438690954948
1216 => 0.0041449309768622
1217 => 0.0040847535471216
1218 => 0.0041114294222974
1219 => 0.0041403898583337
1220 => 0.0041542745563543
1221 => 0.0041316501860238
1222 => 0.0042886408865172
1223 => 0.0043018957117096
1224 => 0.0043063399399429
1225 => 0.0042534035590347
1226 => 0.0043004234551954
1227 => 0.0042784244029171
1228 => 0.0043356598254325
1229 => 0.0043446350705014
1230 => 0.0043370333572316
1231 => 0.0043398822416811
]
'min_raw' => 0.0019461465473958
'max_raw' => 0.0043446350705014
'avg_raw' => 0.0031453908089486
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.001946'
'max' => '$0.004344'
'avg' => '$0.003145'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 0.00030009184890559
'max_diff' => -0.00041459314335542
'year' => 2031
]
6 => [
'items' => [
101 => 0.0042059183738673
102 => 0.0041989716406054
103 => 0.0041042524396624
104 => 0.0041428512141757
105 => 0.0040706926553106
106 => 0.0040935748776422
107 => 0.0041036611432162
108 => 0.0040983926504709
109 => 0.0041450335309735
110 => 0.0041053792544439
111 => 0.0040007250989155
112 => 0.0038960424304325
113 => 0.0038947282248024
114 => 0.0038671671259933
115 => 0.0038472454996215
116 => 0.0038510831116184
117 => 0.003864607356843
118 => 0.0038464594459033
119 => 0.0038503322228247
120 => 0.003914646123898
121 => 0.0039275438180925
122 => 0.0038837124137652
123 => 0.0037077230005495
124 => 0.0036645347571103
125 => 0.0036955776100343
126 => 0.0036807411257524
127 => 0.0029706453585487
128 => 0.0031374718260538
129 => 0.0030383492039538
130 => 0.00308402946863
131 => 0.0029828509391445
201 => 0.0030311386366361
202 => 0.0030222216620938
203 => 0.0032904736850879
204 => 0.0032862852987175
205 => 0.0032882900576285
206 => 0.0031925976914318
207 => 0.0033450382291141
208 => 0.0034201359195607
209 => 0.0034062373357194
210 => 0.003409735309839
211 => 0.0033496285251209
212 => 0.0032888720226915
213 => 0.0032214837111387
214 => 0.0033466828645568
215 => 0.0033327628559176
216 => 0.003364690347475
217 => 0.003445890947887
218 => 0.0034578480447488
219 => 0.0034739185041879
220 => 0.0034681583884522
221 => 0.0036053877142308
222 => 0.0035887683374108
223 => 0.0036288162538261
224 => 0.0035464346513171
225 => 0.0034532120483448
226 => 0.0034709306174933
227 => 0.0034692241768006
228 => 0.0034474992282206
229 => 0.0034278869160306
301 => 0.003395237941969
302 => 0.0034985441270389
303 => 0.0034943500845843
304 => 0.003562246756883
305 => 0.0035502453605412
306 => 0.0034700970985301
307 => 0.0034729596093875
308 => 0.003492211370579
309 => 0.0035588419358756
310 => 0.0035786224242104
311 => 0.0035694593138975
312 => 0.0035911477163431
313 => 0.0036082893453286
314 => 0.0035933004410265
315 => 0.003805511717143
316 => 0.0037173867999809
317 => 0.0037603382714365
318 => 0.0037705819442939
319 => 0.0037443429916709
320 => 0.0037500332809484
321 => 0.0037586525186927
322 => 0.0038109868424567
323 => 0.0039483272510719
324 => 0.0040091543831398
325 => 0.0041921558111239
326 => 0.0040041035365761
327 => 0.0039929452928421
328 => 0.0040259093761358
329 => 0.0041333505870309
330 => 0.0042204215970217
331 => 0.0042493080742827
401 => 0.0042531258991165
402 => 0.0043073188507948
403 => 0.0043383812400581
404 => 0.0043007384010449
405 => 0.0042688400363508
406 => 0.0041545840533871
407 => 0.0041678094945239
408 => 0.0042589196689172
409 => 0.0043876181566103
410 => 0.0044980548478464
411 => 0.0044593837676827
412 => 0.0047544168118031
413 => 0.0047836681330257
414 => 0.0047796265462411
415 => 0.0048462654091665
416 => 0.0047140008370281
417 => 0.0046574551699335
418 => 0.0042757368248595
419 => 0.0043829841097363
420 => 0.004538874336717
421 => 0.0045182416806178
422 => 0.0044050300308267
423 => 0.0044979689666581
424 => 0.004467240448003
425 => 0.0044430035904123
426 => 0.0045540373335812
427 => 0.0044319511719522
428 => 0.0045376564338637
429 => 0.0044020883420813
430 => 0.0044595604139195
501 => 0.0044269364863328
502 => 0.0044480481657196
503 => 0.0043246297194069
504 => 0.0043912233172238
505 => 0.0043218592067983
506 => 0.0043218263191785
507 => 0.0043202951025963
508 => 0.0044019016709044
509 => 0.0044045628581672
510 => 0.0043442554808868
511 => 0.0043355642456424
512 => 0.0043677002976017
513 => 0.0043300773972027
514 => 0.0043476809155037
515 => 0.0043306105898391
516 => 0.0043267676999759
517 => 0.0042961468997323
518 => 0.0042829546170509
519 => 0.0042881276510136
520 => 0.0042704694192173
521 => 0.004259829695834
522 => 0.0043181785938174
523 => 0.0042870051314127
524 => 0.0043134008136135
525 => 0.004283319602345
526 => 0.0041790450183285
527 => 0.0041190756023769
528 => 0.0039221105794288
529 => 0.0039779696156025
530 => 0.0040150042143761
531 => 0.0040027642797023
601 => 0.0040290603956074
602 => 0.0040306747635558
603 => 0.0040221256282179
604 => 0.0040122268247087
605 => 0.0040074086345985
606 => 0.0040433194762103
607 => 0.0040641669284693
608 => 0.004018721131822
609 => 0.0040080738175218
610 => 0.0040540220270635
611 => 0.0040820504083405
612 => 0.0042889962279028
613 => 0.0042736650131634
614 => 0.0043121433535602
615 => 0.0043078112829298
616 => 0.0043481427137461
617 => 0.0044140675577962
618 => 0.004280023916966
619 => 0.0043032892581337
620 => 0.0042975851337546
621 => 0.0043598612680244
622 => 0.0043600556873179
623 => 0.0043227180338995
624 => 0.0043429593815519
625 => 0.0043316612165847
626 => 0.004352078527719
627 => 0.0042734602554435
628 => 0.004369208824757
629 => 0.0044234920936562
630 => 0.0044242458168976
701 => 0.0044499756555371
702 => 0.0044761186617667
703 => 0.0045262978856484
704 => 0.0044747191904475
705 => 0.0043819341388658
706 => 0.0043886329198961
707 => 0.0043342330781025
708 => 0.0043351475492712
709 => 0.0043302660305044
710 => 0.0043449158357872
711 => 0.0042766750638731
712 => 0.0042926910366436
713 => 0.0042702685809755
714 => 0.0043032405160941
715 => 0.0042677681643626
716 => 0.0042975823830531
717 => 0.0043104492114829
718 => 0.0043579280853919
719 => 0.0042607554960823
720 => 0.0040626140084742
721 => 0.0041042657514027
722 => 0.0040426595519376
723 => 0.0040483614402494
724 => 0.0040598801620881
725 => 0.0040225442159176
726 => 0.0040296667378561
727 => 0.004029412271252
728 => 0.0040272194155322
729 => 0.0040175068939506
730 => 0.0040034218160934
731 => 0.0040595324311181
801 => 0.0040690667179978
802 => 0.0040902602566833
803 => 0.0041533178520967
804 => 0.0041470169113144
805 => 0.0041572940071539
806 => 0.0041348591646398
807 => 0.004049402128249
808 => 0.0040540428564712
809 => 0.0039961729011774
810 => 0.0040887803918171
811 => 0.0040668497156744
812 => 0.0040527108660978
813 => 0.0040488529499953
814 => 0.004112066852991
815 => 0.0041309814435239
816 => 0.0041191951400148
817 => 0.0040950210876561
818 => 0.0041414424146017
819 => 0.0041538628033338
820 => 0.0041566432703246
821 => 0.0042388929612655
822 => 0.0041612401143681
823 => 0.0041799319264192
824 => 0.004325760108229
825 => 0.004193514070241
826 => 0.0042635677460018
827 => 0.0042601389831151
828 => 0.0042959760731472
829 => 0.0042571992957262
830 => 0.0042576799803558
831 => 0.0042895008884896
901 => 0.0042448141619468
902 => 0.0042337491000239
903 => 0.004218462796227
904 => 0.0042518398813294
905 => 0.0042718479343325
906 => 0.0044330981472424
907 => 0.0045372731386853
908 => 0.0045327506275648
909 => 0.0045740779134203
910 => 0.0045554595926278
911 => 0.004495336123524
912 => 0.0045979595540083
913 => 0.0045654852066563
914 => 0.0045681623523957
915 => 0.0045680627088976
916 => 0.0045896553109299
917 => 0.0045743549734571
918 => 0.0045441964377508
919 => 0.0045642170811925
920 => 0.0046236712347036
921 => 0.0048082187514782
922 => 0.0049114939867947
923 => 0.004802001452636
924 => 0.0048775279365352
925 => 0.0048322389590335
926 => 0.0048240086045911
927 => 0.0048714448178431
928 => 0.004918964061907
929 => 0.0049159372914914
930 => 0.0048814407604413
1001 => 0.0048619545453681
1002 => 0.005009510694263
1003 => 0.0051182275512154
1004 => 0.0051108137904183
1005 => 0.0051435357194925
1006 => 0.0052396083153056
1007 => 0.0052483919894457
1008 => 0.0052472854483945
1009 => 0.0052255141955565
1010 => 0.0053201101427375
1011 => 0.0053990237461332
1012 => 0.0052204747795564
1013 => 0.0052884638886513
1014 => 0.0053189863901962
1015 => 0.0053638024780823
1016 => 0.0054394147303947
1017 => 0.0055215496915653
1018 => 0.0055331644756388
1019 => 0.0055249232305201
1020 => 0.0054707530157218
1021 => 0.0055606260703085
1022 => 0.005613271597903
1023 => 0.005644620804814
1024 => 0.0057241171775297
1025 => 0.0053191748867746
1026 => 0.0050325366064405
1027 => 0.0049877738998594
1028 => 0.0050788006238986
1029 => 0.0051028036451032
1030 => 0.0050931280573528
1031 => 0.0047704906128244
1101 => 0.0049860752804853
1102 => 0.0052180262560146
1103 => 0.0052269364376348
1104 => 0.005343055945851
1105 => 0.0053808692176256
1106 => 0.0054743606418715
1107 => 0.00546851272783
1108 => 0.0054912764018604
1109 => 0.0054860434274127
1110 => 0.0056592166038861
1111 => 0.0058502523340019
1112 => 0.0058436373741245
1113 => 0.0058161737276881
1114 => 0.0058569619258937
1115 => 0.0060541312720062
1116 => 0.0060359790781905
1117 => 0.0060536123882822
1118 => 0.0062860861593263
1119 => 0.0065883351306919
1120 => 0.006447910138192
1121 => 0.0067525919657137
1122 => 0.0069443730256489
1123 => 0.0072760385382751
1124 => 0.0072345123826072
1125 => 0.0073636273327986
1126 => 0.0071601718971915
1127 => 0.0066929970919098
1128 => 0.0066190648907006
1129 => 0.0067670790297829
1130 => 0.007130957347708
1201 => 0.0067556192066184
1202 => 0.0068315496237194
1203 => 0.0068096816584862
1204 => 0.0068085164075518
1205 => 0.0068529892963001
1206 => 0.0067884790516208
1207 => 0.0065256527096259
1208 => 0.0066461044733168
1209 => 0.006599592262787
1210 => 0.0066512010280848
1211 => 0.0069297122493235
1212 => 0.0068065757995356
1213 => 0.006676861552477
1214 => 0.0068395520041843
1215 => 0.0070467128557122
1216 => 0.0070337491019274
1217 => 0.0070085940011562
1218 => 0.0071503919871251
1219 => 0.0073846007170341
1220 => 0.0074479063956016
1221 => 0.0074946373532925
1222 => 0.007501080762832
1223 => 0.0075674518856464
1224 => 0.0072105576305971
1225 => 0.0077769579790548
1226 => 0.0078747596727396
1227 => 0.0078563770077917
1228 => 0.007965079474198
1229 => 0.0079330964510658
1230 => 0.00788675806853
1231 => 0.0080590745994615
]
'min_raw' => 0.0029706453585487
'max_raw' => 0.0080590745994615
'avg_raw' => 0.0055148599790051
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.00297'
'max' => '$0.008059'
'avg' => '$0.005514'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.0010244988111528
'max_diff' => 0.0037144395289601
'year' => 2032
]
7 => [
'items' => [
101 => 0.0078615276019755
102 => 0.0075811345095195
103 => 0.0074273053134517
104 => 0.0076298800078811
105 => 0.0077535853048866
106 => 0.0078353466370727
107 => 0.0078600875667906
108 => 0.0072382623156689
109 => 0.0069031329933238
110 => 0.0071179470466816
111 => 0.007380035017452
112 => 0.0072091017186863
113 => 0.0072158019803784
114 => 0.0069720960168193
115 => 0.0074015975875851
116 => 0.0073390228214013
117 => 0.0076636608190556
118 => 0.0075861833555327
119 => 0.0078509130402452
120 => 0.0077812008422026
121 => 0.0080705722787212
122 => 0.0081860103791674
123 => 0.0083798489163223
124 => 0.0085224373333182
125 => 0.0086061679790599
126 => 0.0086011411051553
127 => 0.0089329236380263
128 => 0.0087372830699911
129 => 0.0084915124075973
130 => 0.0084870671917111
131 => 0.0086143553003621
201 => 0.0088811162563073
202 => 0.0089502834909698
203 => 0.0089889385391785
204 => 0.008929736987255
205 => 0.0087173831723386
206 => 0.008625689871716
207 => 0.0087038152204571
208 => 0.0086082746323344
209 => 0.0087732044913886
210 => 0.0089996884149868
211 => 0.0089529203803783
212 => 0.0091092589082191
213 => 0.0092710528372415
214 => 0.0095024254223636
215 => 0.0095629147838165
216 => 0.0096629013980938
217 => 0.0097658204680769
218 => 0.0097988752996088
219 => 0.009861987229315
220 => 0.0098616545982925
221 => 0.010051846646385
222 => 0.010261634365188
223 => 0.01034082437244
224 => 0.010522917427552
225 => 0.010211089451974
226 => 0.010447614553472
227 => 0.01066096611563
228 => 0.010406599587772
301 => 0.010757184586624
302 => 0.010770797007686
303 => 0.010976328404323
304 => 0.010767982958781
305 => 0.01064426809828
306 => 0.01100142826501
307 => 0.011174246819251
308 => 0.011122192464269
309 => 0.010726056252621
310 => 0.01049548798636
311 => 0.0098920463602576
312 => 0.010606849033114
313 => 0.010955008563982
314 => 0.010725154603545
315 => 0.010841079571383
316 => 0.011473528607111
317 => 0.011714324251874
318 => 0.011664240441052
319 => 0.011672703780631
320 => 0.011802632739795
321 => 0.012378809297912
322 => 0.01203355094862
323 => 0.01229748802007
324 => 0.012437479291071
325 => 0.012567510985376
326 => 0.012248194241103
327 => 0.0118327678485
328 => 0.011701184871549
329 => 0.010702300157106
330 => 0.010650303869783
331 => 0.010621116778059
401 => 0.01043709629334
402 => 0.010292506599804
403 => 0.010177523507233
404 => 0.0098757735354679
405 => 0.0099776052929752
406 => 0.0094966788180958
407 => 0.0098043585337359
408 => 0.0090367882674526
409 => 0.0096760435936869
410 => 0.0093281259829907
411 => 0.0095617433013591
412 => 0.0095609282325434
413 => 0.0091307646809889
414 => 0.0088826553217365
415 => 0.0090407602620128
416 => 0.0092102613083748
417 => 0.0092377622828771
418 => 0.0094575248139154
419 => 0.0095188558125484
420 => 0.0093330200234199
421 => 0.0090208820797717
422 => 0.0090933846049727
423 => 0.0088811860603774
424 => 0.0085093162730734
425 => 0.0087763996465387
426 => 0.0088675936530668
427 => 0.0089078701215575
428 => 0.0085421788952776
429 => 0.0084272707724377
430 => 0.0083660946520103
501 => 0.0089736759346128
502 => 0.0090069606088109
503 => 0.0088366715096345
504 => 0.009606394385387
505 => 0.0094321823924676
506 => 0.0096268198715331
507 => 0.0090868057607462
508 => 0.0091074350270037
509 => 0.0088517836928472
510 => 0.0089949313573465
511 => 0.008893759201943
512 => 0.0089833664406677
513 => 0.0090370766500949
514 => 0.0092926860343831
515 => 0.0096789622422645
516 => 0.0092545065161922
517 => 0.0090695650780246
518 => 0.0091843017061137
519 => 0.0094898604665309
520 => 0.0099527976298282
521 => 0.0096787295116775
522 => 0.0098003562885344
523 => 0.0098269263284789
524 => 0.0096248386447078
525 => 0.0099602488909837
526 => 0.010139997966831
527 => 0.01032438332482
528 => 0.010484479964801
529 => 0.010250735758118
530 => 0.010500875565185
531 => 0.010299307036309
601 => 0.010118479228136
602 => 0.010118753469279
603 => 0.010005317543739
604 => 0.0097855211441592
605 => 0.0097449873157949
606 => 0.009955849409804
607 => 0.010124940840485
608 => 0.010138868020609
609 => 0.010232485724865
610 => 0.010287887717905
611 => 0.010830902565052
612 => 0.011049307628629
613 => 0.011316369206175
614 => 0.011420404741395
615 => 0.011733514403603
616 => 0.011480652921846
617 => 0.011425944749695
618 => 0.010666443126568
619 => 0.010790811474807
620 => 0.010989937200098
621 => 0.010669726636436
622 => 0.010872826536768
623 => 0.010912922759338
624 => 0.010658846004012
625 => 0.01079455937704
626 => 0.01043414489449
627 => 0.009686818293085
628 => 0.0099610808791257
629 => 0.01016303045824
630 => 0.0098748235086404
701 => 0.010391423310648
702 => 0.0100896363711
703 => 0.0099939843995907
704 => 0.0096208119563438
705 => 0.0097969349848318
706 => 0.010035143902701
707 => 0.0098879584862167
708 => 0.010193390325422
709 => 0.010625963265433
710 => 0.010934240502649
711 => 0.010957906201029
712 => 0.01075970459047
713 => 0.011077323936296
714 => 0.011079637446478
715 => 0.010721361526872
716 => 0.010501919521003
717 => 0.010452061835559
718 => 0.010576616108972
719 => 0.010727847990883
720 => 0.010966298517955
721 => 0.011110389177465
722 => 0.011486101197689
723 => 0.011587758097854
724 => 0.011699448210689
725 => 0.011848700645391
726 => 0.01202791646079
727 => 0.011635802459459
728 => 0.011651381879724
729 => 0.011286250750873
730 => 0.010896055774594
731 => 0.011192165123099
801 => 0.011579288706493
802 => 0.011490482128729
803 => 0.011480489574577
804 => 0.011497294278957
805 => 0.011430337019475
806 => 0.011127491816387
807 => 0.010975404851308
808 => 0.011171635837783
809 => 0.011275923873858
810 => 0.011437665522938
811 => 0.011417727450737
812 => 0.011834356568982
813 => 0.011996246046122
814 => 0.011954827790228
815 => 0.011962449746099
816 => 0.01225554291161
817 => 0.012581522790866
818 => 0.012886845964623
819 => 0.013197433810904
820 => 0.012823008039762
821 => 0.012632897724548
822 => 0.012829043042713
823 => 0.012724965575949
824 => 0.013323025571355
825 => 0.013364433947844
826 => 0.013962450696705
827 => 0.014530039801884
828 => 0.014173547254337
829 => 0.014509703669897
830 => 0.014873284240561
831 => 0.015574690150192
901 => 0.015338481315586
902 => 0.015157549050141
903 => 0.014986568933555
904 => 0.015342351413842
905 => 0.015800059890968
906 => 0.015898645913063
907 => 0.016058392931617
908 => 0.015890438474544
909 => 0.016092721118512
910 => 0.016806867739217
911 => 0.016613899018356
912 => 0.016339852413464
913 => 0.01690360258314
914 => 0.017107621578022
915 => 0.018539533729685
916 => 0.020347381970501
917 => 0.019598920927832
918 => 0.01913432700596
919 => 0.019243517597915
920 => 0.019903682575936
921 => 0.020115706614287
922 => 0.019539352188979
923 => 0.019742930315635
924 => 0.02086466580887
925 => 0.021466440911407
926 => 0.020649149492983
927 => 0.018394274883799
928 => 0.016315177515102
929 => 0.016866647760255
930 => 0.016804128148569
1001 => 0.018009292996696
1002 => 0.016609296778183
1003 => 0.016632869124012
1004 => 0.017862955504907
1005 => 0.017534789547504
1006 => 0.01700320272483
1007 => 0.016319058687197
1008 => 0.015054355157966
1009 => 0.01393417197326
1010 => 0.016131109161249
1011 => 0.016036373234832
1012 => 0.015899181574303
1013 => 0.016204486769123
1014 => 0.017686962132782
1015 => 0.017652786277345
1016 => 0.017435376921731
1017 => 0.017600280001806
1018 => 0.016974294417599
1019 => 0.017135625156076
1020 => 0.016314848175456
1021 => 0.016685873649371
1022 => 0.017002062178257
1023 => 0.017065541706682
1024 => 0.017208564325568
1025 => 0.015986451706444
1026 => 0.01653514439309
1027 => 0.016857449940942
1028 => 0.01540126175017
1029 => 0.016828665782412
1030 => 0.0159651774447
1031 => 0.015672096533722
1101 => 0.016066691369881
1102 => 0.015912917378473
1103 => 0.015780711530573
1104 => 0.01570693839586
1105 => 0.015996685293693
1106 => 0.015983168254586
1107 => 0.015509086092283
1108 => 0.014890665237619
1109 => 0.015098227575417
1110 => 0.015022818232188
1111 => 0.014749525044326
1112 => 0.014933691655399
1113 => 0.014122715104821
1114 => 0.012727472100445
1115 => 0.013649212366585
1116 => 0.013613726368999
1117 => 0.013595832719854
1118 => 0.014288495054829
1119 => 0.01422191155376
1120 => 0.014101061847333
1121 => 0.014747305544696
1122 => 0.014511417901954
1123 => 0.015238368034766
1124 => 0.015717184408423
1125 => 0.015595741087977
1126 => 0.016046070201721
1127 => 0.015103009392463
1128 => 0.015416256364266
1129 => 0.015480816131013
1130 => 0.014739330997784
1201 => 0.014232805437987
1202 => 0.014199025957963
1203 => 0.013320780440796
1204 => 0.013789932107116
1205 => 0.014202766158663
1206 => 0.014005050685189
1207 => 0.013942459872869
1208 => 0.014262222758722
1209 => 0.014287071073536
1210 => 0.013720526862455
1211 => 0.013838329344061
1212 => 0.014329585275389
1213 => 0.013825950955024
1214 => 0.012847471738753
1215 => 0.012604795364584
1216 => 0.012572417862857
1217 => 0.011914260289206
1218 => 0.012621012160308
1219 => 0.012312496028799
1220 => 0.013287094791646
1221 => 0.012730409205186
1222 => 0.012706411602187
1223 => 0.012670135705571
1224 => 0.012103632293782
1225 => 0.012227660537794
1226 => 0.012639949310924
1227 => 0.012787058589942
1228 => 0.01277171388691
1229 => 0.012637928871012
1230 => 0.0126991749662
1231 => 0.012501879954046
]
'min_raw' => 0.0069031329933238
'max_raw' => 0.021466440911407
'avg_raw' => 0.014184786952365
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.0069031'
'max' => '$0.021466'
'avg' => '$0.014184'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.0039324876347751
'max_diff' => 0.013407366311945
'year' => 2033
]
8 => [
'items' => [
101 => 0.012432210978914
102 => 0.012212316529436
103 => 0.011889132436095
104 => 0.011934073166477
105 => 0.01129376091185
106 => 0.010944884811586
107 => 0.010848320505146
108 => 0.010719190678874
109 => 0.010862906062625
110 => 0.011291946987684
111 => 0.010774432605953
112 => 0.0098871904978881
113 => 0.0099405152603697
114 => 0.010060320169402
115 => 0.0098370645140092
116 => 0.0096257717726067
117 => 0.0098094736685342
118 => 0.0094335374910411
119 => 0.010105750260396
120 => 0.010087568788839
121 => 0.010338128139896
122 => 0.010494808044107
123 => 0.010133711590622
124 => 0.010042896809079
125 => 0.010094629035947
126 => 0.0092396105607692
127 => 0.010268254889204
128 => 0.010277150648071
129 => 0.010200979759874
130 => 0.010748701108935
131 => 0.011904563994026
201 => 0.011469681882178
202 => 0.011301282384089
203 => 0.010981154815122
204 => 0.011407705793476
205 => 0.01137495333357
206 => 0.011226834288875
207 => 0.011137251428484
208 => 0.011302310595515
209 => 0.01111679877106
210 => 0.011083475749863
211 => 0.010881574497219
212 => 0.010809504935947
213 => 0.010756147501953
214 => 0.010697406209918
215 => 0.010826974862728
216 => 0.010533355249285
217 => 0.010179278779358
218 => 0.010149841152044
219 => 0.010231121029241
220 => 0.010195160734157
221 => 0.010149668987987
222 => 0.010062812855608
223 => 0.010037044496519
224 => 0.010120779162528
225 => 0.010026247606638
226 => 0.010165734066754
227 => 0.01012780146774
228 => 0.0099159130531765
301 => 0.0096518216374916
302 => 0.0096494706699415
303 => 0.0095925726076289
304 => 0.0095201043705929
305 => 0.0094999453648981
306 => 0.0097940028072454
307 => 0.010402692912506
308 => 0.010283192480123
309 => 0.010369543789416
310 => 0.010794306766107
311 => 0.010929326143328
312 => 0.010833492587486
313 => 0.010702309705492
314 => 0.010708081086535
315 => 0.011156372706066
316 => 0.011184332104491
317 => 0.011254976484266
318 => 0.011345774476376
319 => 0.010848955878164
320 => 0.010684680975238
321 => 0.010606838412607
322 => 0.010367113448567
323 => 0.010625636269819
324 => 0.010475006092926
325 => 0.010495331250048
326 => 0.010482094464809
327 => 0.010489322644617
328 => 0.010105562363227
329 => 0.010245384439919
330 => 0.010012903118481
331 => 0.0097016367263281
401 => 0.0097005932522376
402 => 0.0097767752607461
403 => 0.0097314592210829
404 => 0.0096095149235312
405 => 0.0096268365354376
406 => 0.0094750809884812
407 => 0.009645262406461
408 => 0.0096501426005902
409 => 0.0095846134848236
410 => 0.0098468014397315
411 => 0.0099542200587823
412 => 0.009911087391015
413 => 0.0099511937558289
414 => 0.010288158262601
415 => 0.010343098179997
416 => 0.010367498862177
417 => 0.010334805180527
418 => 0.0099573528484382
419 => 0.0099740944644176
420 => 0.0098512555945977
421 => 0.0097474696940411
422 => 0.009751620585778
423 => 0.0098049800298868
424 => 0.0100380038518
425 => 0.010528388747511
426 => 0.010546998495837
427 => 0.010569554053692
428 => 0.01047780926438
429 => 0.010450138158044
430 => 0.010486643489819
501 => 0.010670806273436
502 => 0.011144522952605
503 => 0.010977079839713
504 => 0.010840945982525
505 => 0.010960372076703
506 => 0.010941987365597
507 => 0.010786801902142
508 => 0.010782446363045
509 => 0.010484595842881
510 => 0.010374487287305
511 => 0.010282472336783
512 => 0.010181994412924
513 => 0.01012242773161
514 => 0.010213949226681
515 => 0.010234881275454
516 => 0.010034767926959
517 => 0.010007493217004
518 => 0.010170910097131
519 => 0.010098996420982
520 => 0.010172961420274
521 => 0.01019012193457
522 => 0.010187358696529
523 => 0.010112272559396
524 => 0.010160130224103
525 => 0.010046932580014
526 => 0.0099238471438034
527 => 0.0098453263039946
528 => 0.0097768064569835
529 => 0.0098148252505021
530 => 0.0096792951935655
531 => 0.0096359364006703
601 => 0.010143917124132
602 => 0.010519167946267
603 => 0.010513711650697
604 => 0.010480497854663
605 => 0.010431148890929
606 => 0.010667196089363
607 => 0.010584961965341
608 => 0.010644794161458
609 => 0.010660023966519
610 => 0.010706119999515
611 => 0.010722595369223
612 => 0.010672795359085
613 => 0.010505660442503
614 => 0.010089176121092
615 => 0.0098953015451969
616 => 0.0098313197059151
617 => 0.0098336453242542
618 => 0.0097694943884449
619 => 0.009788389714084
620 => 0.0097629233653006
621 => 0.0097146962616764
622 => 0.0098118473627538
623 => 0.0098230431221278
624 => 0.0098003668942671
625 => 0.0098057079668198
626 => 0.0096179584852771
627 => 0.0096322326705883
628 => 0.0095527521928995
629 => 0.0095378505614843
630 => 0.0093369308350439
701 => 0.0089809724158746
702 => 0.0091782079338142
703 => 0.0089399751636539
704 => 0.0088497528037787
705 => 0.0092768514229723
706 => 0.009233982567477
707 => 0.0091606097215125
708 => 0.00905207599009
709 => 0.0090118197733572
710 => 0.0087672357440579
711 => 0.0087527844148018
712 => 0.0088740068640469
713 => 0.0088180668747301
714 => 0.0087395059435986
715 => 0.0084549662146345
716 => 0.008135049351412
717 => 0.008144705630587
718 => 0.0082464652325132
719 => 0.0085423449992657
720 => 0.0084267396556236
721 => 0.0083428666523927
722 => 0.0083271597601008
723 => 0.0085237644017405
724 => 0.0088020011596064
725 => 0.0089325436212005
726 => 0.0088031800063942
727 => 0.0086545740511365
728 => 0.0086636190070593
729 => 0.0087237910466024
730 => 0.0087301142771715
731 => 0.0086333870772377
801 => 0.0086606152174363
802 => 0.0086192531826814
803 => 0.0083654144517388
804 => 0.0083608233140274
805 => 0.0082985271957516
806 => 0.0082966408940483
807 => 0.0081906596563662
808 => 0.0081758321486008
809 => 0.0079653999685817
810 => 0.0081039070667176
811 => 0.0080110037772371
812 => 0.0078709766063194
813 => 0.0078468358692738
814 => 0.0078461101695674
815 => 0.0079898867645974
816 => 0.0081022269534939
817 => 0.008012619869733
818 => 0.0079922180737209
819 => 0.0082100558796784
820 => 0.0081823340332346
821 => 0.0081583270930011
822 => 0.008777088109667
823 => 0.0082872904824517
824 => 0.0080737107603146
825 => 0.0078093652964808
826 => 0.0078954375124506
827 => 0.0079135741930194
828 => 0.0072778710043504
829 => 0.0070199662998792
830 => 0.0069314631242385
831 => 0.006880528295406
901 => 0.0069037399365043
902 => 0.0066715954532755
903 => 0.0068276003853206
904 => 0.0066265828855292
905 => 0.0065928816475216
906 => 0.0069523258384384
907 => 0.007002340397762
908 => 0.006788962749382
909 => 0.0069259857423454
910 => 0.0068762993003348
911 => 0.0066300287536079
912 => 0.0066206230301664
913 => 0.0064970531266472
914 => 0.0063036901554878
915 => 0.0062153180890468
916 => 0.0061692931495629
917 => 0.0061882839366021
918 => 0.0061786816135474
919 => 0.0061160199603537
920 => 0.0061822733061594
921 => 0.0060130233853986
922 => 0.0059456267032124
923 => 0.00591518518546
924 => 0.0057649661391229
925 => 0.0060040314445584
926 => 0.0060511303213946
927 => 0.0060983219975677
928 => 0.0065090933195288
929 => 0.0064885723451113
930 => 0.0066740719597254
1001 => 0.0066668637858134
1002 => 0.0066139562908309
1003 => 0.0063907482723604
1004 => 0.0064797150102224
1005 => 0.0062058892195841
1006 => 0.0064110581202742
1007 => 0.0063174276020573
1008 => 0.0063794015478812
1009 => 0.0062679668053245
1010 => 0.0063296393928831
1011 => 0.0060622992123456
1012 => 0.0058126607133374
1013 => 0.0059131225327404
1014 => 0.006022336019634
1015 => 0.0062591386862983
1016 => 0.0061181009716126
1017 => 0.00616882346704
1018 => 0.0059989115982014
1019 => 0.0056483348798614
1020 => 0.0056503191060147
1021 => 0.005596390515627
1022 => 0.005549788339829
1023 => 0.0061343008497441
1024 => 0.0060616074793608
1025 => 0.0059457801075281
1026 => 0.0061008196475229
1027 => 0.0061418145627059
1028 => 0.0061429816303091
1029 => 0.0062560944765397
1030 => 0.0063164628228495
1031 => 0.006327103005538
1101 => 0.0065050885130465
1102 => 0.0065647469074778
1103 => 0.0068104713909681
1104 => 0.0063113409904353
1105 => 0.0063010617282982
1106 => 0.0061030013717971
1107 => 0.0059773883624937
1108 => 0.0061116022020107
1109 => 0.0062304973418066
1110 => 0.0061066957752094
1111 => 0.0061228616462133
1112 => 0.0059566681580162
1113 => 0.0060160745099163
1114 => 0.0060672432630724
1115 => 0.0060389908851399
1116 => 0.0059966957079443
1117 => 0.0062207492962056
1118 => 0.0062081073146828
1119 => 0.0064167511670415
1120 => 0.0065794039702201
1121 => 0.0068709068711826
1122 => 0.0065667083976383
1123 => 0.006555622196183
1124 => 0.0066639915936919
1125 => 0.0065647303166876
1126 => 0.0066274600173715
1127 => 0.006860800146605
1128 => 0.0068657302558431
1129 => 0.0067831445740173
1130 => 0.0067781192277728
1201 => 0.0067939807113558
1202 => 0.006886881916126
1203 => 0.0068544193806136
1204 => 0.0068919858485594
1205 => 0.0069389632919637
1206 => 0.0071332819159074
1207 => 0.0071801314782777
1208 => 0.0070663113304311
1209 => 0.0070765880153915
1210 => 0.007034016155664
1211 => 0.006992892272591
1212 => 0.0070853327560782
1213 => 0.0072542695565733
1214 => 0.0072532186095052
1215 => 0.0072924086635579
1216 => 0.0073168237425648
1217 => 0.0072120163505371
1218 => 0.0071437905922016
1219 => 0.0071699526892652
1220 => 0.0072117864522063
1221 => 0.0071563865637648
1222 => 0.0068144327885792
1223 => 0.0069181597198788
1224 => 0.0069008944865227
1225 => 0.0068763066946996
1226 => 0.0069806049262179
1227 => 0.0069705451073508
1228 => 0.0066692144760638
1229 => 0.006688504685414
1230 => 0.0066703875775856
1231 => 0.0067289276593907
]
'min_raw' => 0.005549788339829
'max_raw' => 0.012432210978914
'avg_raw' => 0.0089909996593716
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.005549'
'max' => '$0.012432'
'avg' => '$0.00899'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.0013533446534948
'max_diff' => -0.0090342299324927
'year' => 2034
]
9 => [
'items' => [
101 => 0.006561568960158
102 => 0.0066130473688639
103 => 0.0066453341442242
104 => 0.0066643513029501
105 => 0.0067330543204558
106 => 0.0067249928143187
107 => 0.0067325532059154
108 => 0.0068344216439522
109 => 0.0073496372465158
110 => 0.0073776792950042
111 => 0.00723958999235
112 => 0.0072947539450693
113 => 0.0071888512188785
114 => 0.007259944428457
115 => 0.0073085845968788
116 => 0.007088789028747
117 => 0.0070757741616637
118 => 0.0069694343372503
119 => 0.0070265753354945
120 => 0.0069356598987048
121 => 0.006957967366806
122 => 0.0068955937412648
123 => 0.007007853848774
124 => 0.0071333780924263
125 => 0.0071650904734754
126 => 0.0070816688519735
127 => 0.0070212661002534
128 => 0.0069152187661362
129 => 0.0070915778461921
130 => 0.007143150615646
131 => 0.0070913069563893
201 => 0.0070792936477332
202 => 0.0070565284495375
203 => 0.0070841233921485
204 => 0.0071428697392677
205 => 0.007115166046841
206 => 0.0071334648237651
207 => 0.0070637287557472
208 => 0.0072120510461449
209 => 0.0074476225389993
210 => 0.0074483799398687
211 => 0.0074206760981087
212 => 0.0074093402829481
213 => 0.0074377661058035
214 => 0.0074531859486143
215 => 0.0075451098473243
216 => 0.0076437478530498
217 => 0.0081040483866371
218 => 0.0079747978387281
219 => 0.0083832038555281
220 => 0.0087061999899328
221 => 0.0088030524077316
222 => 0.0087139527406151
223 => 0.008409147592479
224 => 0.0083941923977617
225 => 0.0088496999744912
226 => 0.0087209982204964
227 => 0.0087056895563843
228 => 0.0085428312346278
301 => 0.0086391006731814
302 => 0.0086180451347823
303 => 0.0085848079373471
304 => 0.0087684833199202
305 => 0.0091123072392825
306 => 0.0090587190570896
307 => 0.0090187179649668
308 => 0.0088434448234276
309 => 0.0089489984033077
310 => 0.008911412795258
311 => 0.0090729044198555
312 => 0.0089772403589214
313 => 0.0087200231781282
314 => 0.0087609858619684
315 => 0.0087547944347115
316 => 0.0088822135689307
317 => 0.0088439655075754
318 => 0.0087473258868724
319 => 0.0091111320865046
320 => 0.0090875085354969
321 => 0.0091210013297302
322 => 0.0091357458935508
323 => 0.0093571883162825
324 => 0.0094479061915086
325 => 0.0094685007374248
326 => 0.0095546757025173
327 => 0.0094663566257897
328 => 0.0098196959031345
329 => 0.01005464590465
330 => 0.010327552421828
331 => 0.01072634219378
401 => 0.010876290837046
402 => 0.010849203956778
403 => 0.011151561810547
404 => 0.011694892152734
405 => 0.010959026553343
406 => 0.011733894816323
407 => 0.011488580470548
408 => 0.010906944569731
409 => 0.010869494074756
410 => 0.01126338465972
411 => 0.012136996066607
412 => 0.011918166317601
413 => 0.012137353993683
414 => 0.011881659926694
415 => 0.011868962561109
416 => 0.012124935503569
417 => 0.012723030235986
418 => 0.012438897847861
419 => 0.012031524397363
420 => 0.012332322613778
421 => 0.012071743361159
422 => 0.011484585373467
423 => 0.011917998982616
424 => 0.011628187645087
425 => 0.011712770000596
426 => 0.012321910325898
427 => 0.012248616950372
428 => 0.012343465365087
429 => 0.012176060395731
430 => 0.012019677757013
501 => 0.011727777948718
502 => 0.011641360805968
503 => 0.011665243395261
504 => 0.011641348970943
505 => 0.011478033710899
506 => 0.011442765796042
507 => 0.011383984392825
508 => 0.011402203207607
509 => 0.011291676972452
510 => 0.011500262814075
511 => 0.011538978184333
512 => 0.011690769565251
513 => 0.011706529049967
514 => 0.012129265885209
515 => 0.011896429540161
516 => 0.012052636262542
517 => 0.012038663663018
518 => 0.010919550383376
519 => 0.011073754319291
520 => 0.011313647251713
521 => 0.011205575810824
522 => 0.01105278807823
523 => 0.0109294037922
524 => 0.010742463982173
525 => 0.011005578174924
526 => 0.011351545359317
527 => 0.011715303348696
528 => 0.012152334738567
529 => 0.012054794419954
530 => 0.011707133350855
531 => 0.011722729172448
601 => 0.011819136404808
602 => 0.011694280279381
603 => 0.011657457770512
604 => 0.011814077557537
605 => 0.011815156111934
606 => 0.011671494050264
607 => 0.011511839958597
608 => 0.011511171002124
609 => 0.011482762098587
610 => 0.011886713807522
611 => 0.012108846403312
612 => 0.012134313547435
613 => 0.012107132261601
614 => 0.012117593259732
615 => 0.0119883391966
616 => 0.012283775655819
617 => 0.012554897366436
618 => 0.01248223095632
619 => 0.012373293677417
620 => 0.012286519887641
621 => 0.012461789809159
622 => 0.012453985315454
623 => 0.012552529354815
624 => 0.012548058827971
625 => 0.012514922173963
626 => 0.012482232139734
627 => 0.012611844430339
628 => 0.012574518172155
629 => 0.012537133935981
630 => 0.012462154127095
701 => 0.012472345128406
702 => 0.01236342665906
703 => 0.012313035991371
704 => 0.011555281253442
705 => 0.011352784427117
706 => 0.011416494050882
707 => 0.011437468913245
708 => 0.011349342034922
709 => 0.0114756933405
710 => 0.011456001623365
711 => 0.011532610575469
712 => 0.011484748628168
713 => 0.01148671289918
714 => 0.011627464680948
715 => 0.011668325521996
716 => 0.011647543368451
717 => 0.011662098476423
718 => 0.011997514796311
719 => 0.011949829321633
720 => 0.011924497363617
721 => 0.011931514489109
722 => 0.012017220550247
723 => 0.012041213567988
724 => 0.011939553465859
725 => 0.011987496957713
726 => 0.012191634261093
727 => 0.012263070764106
728 => 0.012491061790254
729 => 0.012394207150129
730 => 0.012571988033849
731 => 0.013118425860436
801 => 0.013554958206935
802 => 0.013153505020632
803 => 0.013955141082918
804 => 0.014579329745272
805 => 0.01455537234477
806 => 0.014446530613745
807 => 0.01373590841657
808 => 0.013081983275949
809 => 0.013629019423206
810 => 0.013630413930845
811 => 0.013583423040653
812 => 0.013291566657449
813 => 0.013573267071153
814 => 0.013595627427007
815 => 0.013583111573827
816 => 0.013359345969118
817 => 0.013017697249523
818 => 0.013084454591541
819 => 0.013193804479578
820 => 0.012986782328747
821 => 0.012920626207642
822 => 0.013043623023493
823 => 0.013439944391569
824 => 0.013365022132668
825 => 0.013363065609703
826 => 0.013683614805266
827 => 0.013454170760089
828 => 0.01308529661541
829 => 0.012992151029026
830 => 0.012661546947749
831 => 0.012889896364259
901 => 0.012898114253236
902 => 0.012773049611489
903 => 0.013095444921817
904 => 0.013092473992276
905 => 0.013398540357224
906 => 0.013983624293727
907 => 0.013810586183471
908 => 0.013609361687736
909 => 0.013631240369773
910 => 0.013871195510524
911 => 0.013726113154783
912 => 0.013778285781457
913 => 0.013871116541005
914 => 0.013927123643098
915 => 0.013623181809682
916 => 0.013552318429094
917 => 0.013407356822079
918 => 0.013369539044645
919 => 0.013487607248836
920 => 0.013456500448443
921 => 0.012897423571489
922 => 0.012838996927173
923 => 0.01284078878894
924 => 0.012693872213772
925 => 0.012469789172622
926 => 0.01305866602546
927 => 0.013011370972851
928 => 0.012959160895117
929 => 0.012965556331733
930 => 0.013221167814662
1001 => 0.013072900245874
1002 => 0.013467093878073
1003 => 0.013386059517838
1004 => 0.013302946932034
1005 => 0.013291458241004
1006 => 0.013259466986302
1007 => 0.013149757070507
1008 => 0.013017275754641
1009 => 0.012929800114571
1010 => 0.011927057139044
1011 => 0.012113160402614
1012 => 0.012327255243505
1013 => 0.01240115992465
1014 => 0.012274740853504
1015 => 0.013154748865969
1016 => 0.013315534809815
1017 => 0.012828503698099
1018 => 0.012737400062446
1019 => 0.013160721605156
1020 => 0.012905406965948
1021 => 0.01302037513235
1022 => 0.012771876840813
1023 => 0.013276806184305
1024 => 0.013272959468695
1025 => 0.013076530549731
1026 => 0.013242550926952
1027 => 0.013213700800849
1028 => 0.012991933035121
1029 => 0.013283836618038
1030 => 0.013283981398573
1031 => 0.013094922834803
1101 => 0.012874143822561
1102 => 0.012834673749739
1103 => 0.012804938351926
1104 => 0.013013062047301
1105 => 0.013199665101788
1106 => 0.013546887123368
1107 => 0.013634186989385
1108 => 0.01397492417833
1109 => 0.013772031772506
1110 => 0.013861971348111
1111 => 0.013959613480161
1112 => 0.014006426708936
1113 => 0.013930147064783
1114 => 0.014459452172238
1115 => 0.014504141740796
1116 => 0.014519125766571
1117 => 0.014340647062439
1118 => 0.014499177925169
1119 => 0.014425006584488
1120 => 0.014617979807548
1121 => 0.01464824047293
1122 => 0.014622610765906
1123 => 0.01463221597873
1124 => 0.014180547445337
1125 => 0.014157126049139
1126 => 0.013837773650077
1127 => 0.013967912113228
1128 => 0.013724624494065
1129 => 0.013801773504242
1130 => 0.013835780052825
1201 => 0.0138180169617
1202 => 0.013975269946677
1203 => 0.013841572784784
1204 => 0.0134887239927
1205 => 0.013135779067199
1206 => 0.013131348131162
1207 => 0.013038423962273
1208 => 0.012971256808077
1209 => 0.012984195584858
1210 => 0.013029793521865
1211 => 0.012968606573086
1212 => 0.012981663910865
1213 => 0.013198502718587
1214 => 0.013241988195052
1215 => 0.013094207555151
1216 => 0.012500846961306
1217 => 0.012355234783244
1218 => 0.01245989792922
1219 => 0.012409875686613
1220 => 0.010015738230183
1221 => 0.010578205312828
1222 => 0.010244006471898
1223 => 0.010398020673548
1224 => 0.010056890197328
1225 => 0.01021969554076
1226 => 0.010189631338527
1227 => 0.01109406176281
1228 => 0.011079940325739
1229 => 0.011086699510375
1230 => 0.010764066016715
1231 => 0.011278029932569
]
'min_raw' => 0.006561568960158
'max_raw' => 0.01464824047293
'avg_raw' => 0.010604904716544
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.006561'
'max' => '$0.014648'
'avg' => '$0.0106049'
'bar_min_pct' => 61.631153054958
'bar_max_pct' => 60.119598047091
'min_diff' => 0.001011780620329
'max_diff' => 0.0022160294940154
'year' => 2035
]
10 => [
'items' => [
101 => 0.011531227039064
102 => 0.011484366993274
103 => 0.011496160657239
104 => 0.011293506436041
105 => 0.011088661646216
106 => 0.010861457248914
107 => 0.011283574935789
108 => 0.011236642654798
109 => 0.01134428842169
110 => 0.011618061915224
111 => 0.011658376102112
112 => 0.011712558778114
113 => 0.011693138145753
114 => 0.012155816398661
115 => 0.012099783009384
116 => 0.012234807355635
117 => 0.011957052031076
118 => 0.011642745516561
119 => 0.011702484909516
120 => 0.01169673152558
121 => 0.011623484344655
122 => 0.011557360064819
123 => 0.011447281769292
124 => 0.011795585784862
125 => 0.011781445277908
126 => 0.012010363648958
127 => 0.01196990010328
128 => 0.011699674642137
129 => 0.011709325797347
130 => 0.011774234454319
131 => 0.011998884057214
201 => 0.012065575354664
202 => 0.012034681288496
203 => 0.012107805251578
204 => 0.012165599450493
205 => 0.012115063313146
206 => 0.012830548446691
207 => 0.012533429135794
208 => 0.012678243020582
209 => 0.012712780278811
210 => 0.012624313818098
211 => 0.01264349902568
212 => 0.012672559387511
213 => 0.012849008213947
214 => 0.013312060990395
215 => 0.013517143912976
216 => 0.014134146004176
217 => 0.013500114631148
218 => 0.013462493833355
219 => 0.013573634541658
220 => 0.013935880085497
221 => 0.014229446074785
222 => 0.01432683884966
223 => 0.014339710912639
224 => 0.014522426232853
225 => 0.014627155246961
226 => 0.014500239787089
227 => 0.01439269222345
228 => 0.01400747019979
229 => 0.014052060697954
301 => 0.01435924501203
302 => 0.014793160948729
303 => 0.015165505963675
304 => 0.015035123716975
305 => 0.016029848223776
306 => 0.01612847109554
307 => 0.016114844603521
308 => 0.016339522182451
309 => 0.015893582943069
310 => 0.015702935278567
311 => 0.014415945227426
312 => 0.014777536936154
313 => 0.015303131720328
314 => 0.015233567279763
315 => 0.014851866298308
316 => 0.015165216409252
317 => 0.01506161306321
318 => 0.01497989680568
319 => 0.015354254822902
320 => 0.014942632805186
321 => 0.015299025475827
322 => 0.01484194818932
323 => 0.015035719292095
324 => 0.014925725442506
325 => 0.014996904943529
326 => 0.014580791034985
327 => 0.014805315999442
328 => 0.014571450058294
329 => 0.014571339175388
330 => 0.014566176571775
331 => 0.014841318814415
401 => 0.014850291193069
402 => 0.014646960660042
403 => 0.014617657553613
404 => 0.014726006496461
405 => 0.014599158261019
406 => 0.014658509752009
407 => 0.014600955957218
408 => 0.014587999385743
409 => 0.014484759219846
410 => 0.01444028051773
411 => 0.014457721762904
412 => 0.014398185801545
413 => 0.014362313231316
414 => 0.014559040614657
415 => 0.014453937109698
416 => 0.014542931995126
417 => 0.014441511091131
418 => 0.0140899420509
419 => 0.013887750978089
420 => 0.01322366965156
421 => 0.013412002291973
422 => 0.013536867027412
423 => 0.013495599233094
424 => 0.013584258423804
425 => 0.013589701378054
426 => 0.01356087737138
427 => 0.013527502864237
428 => 0.013511257999885
429 => 0.013632333909594
430 => 0.013702622550408
501 => 0.013549398874087
502 => 0.013513500710552
503 => 0.013668418307024
504 => 0.013762917951378
505 => 0.014460650230528
506 => 0.014408959969643
507 => 0.014538692380763
508 => 0.014524086502177
509 => 0.014660066737025
510 => 0.014882336951465
511 => 0.014430399457778
512 => 0.014508840179859
513 => 0.014489608326266
514 => 0.014699576660937
515 => 0.01470023215916
516 => 0.014574345653828
517 => 0.014642590770643
518 => 0.014604498218644
519 => 0.014673336608624
520 => 0.014408269614695
521 => 0.014731092601087
522 => 0.014914112432118
523 => 0.014916653662649
524 => 0.015003403610022
525 => 0.015091546580772
526 => 0.01526072933749
527 => 0.015086828165511
528 => 0.014773996886058
529 => 0.014796582293995
530 => 0.014613169429313
531 => 0.014616252632704
601 => 0.014599794251365
602 => 0.014649187092693
603 => 0.014419108565766
604 => 0.014473107536161
605 => 0.01439750866139
606 => 0.01450867584267
607 => 0.014389078332207
608 => 0.014489599052084
609 => 0.014532980462468
610 => 0.014693058800722
611 => 0.014365434631491
612 => 0.013697386772223
613 => 0.013837818531538
614 => 0.013630108928834
615 => 0.013649333243371
616 => 0.013688169418261
617 => 0.013562288669035
618 => 0.013586302749029
619 => 0.013585444797107
620 => 0.013578051430948
621 => 0.013545304986329
622 => 0.013497816162944
623 => 0.013686997019018
624 => 0.013719142532896
625 => 0.013790598028259
626 => 0.014003201113737
627 => 0.013981957051971
628 => 0.014016606998118
629 => 0.013940966360231
630 => 0.01365284199562
701 => 0.013668488534826
702 => 0.013473375940202
703 => 0.013785608560542
704 => 0.013711667754776
705 => 0.013663997636286
706 => 0.013650990402795
707 => 0.013864120490199
708 => 0.013927892352755
709 => 0.01388815400758
710 => 0.013806649502275
711 => 0.013963162247105
712 => 0.014005038454879
713 => 0.014014412993465
714 => 0.014291723568962
715 => 0.014029911574099
716 => 0.01409293232345
717 => 0.01458460221982
718 => 0.01413872546962
719 => 0.014374916328439
720 => 0.014363356014978
721 => 0.014484183266087
722 => 0.014353444653704
723 => 0.014355065315493
724 => 0.014462351728931
725 => 0.014311687310464
726 => 0.014274380681653
727 => 0.014222841841146
728 => 0.014335375013883
729 => 0.014402833561501
730 => 0.014946499912457
731 => 0.015297733169372
801 => 0.015282485207377
802 => 0.015421823037018
803 => 0.015359050068577
804 => 0.015156339594807
805 => 0.015502341655623
806 => 0.01539285212624
807 => 0.015401878310013
808 => 0.015401542355002
809 => 0.015474343320301
810 => 0.015422757164276
811 => 0.01532107555554
812 => 0.015388576552701
813 => 0.01558903038222
814 => 0.016211245219722
815 => 0.016559444886038
816 => 0.016190283162597
817 => 0.016444925976154
818 => 0.016292231026532
819 => 0.016264481811904
820 => 0.016424416316774
821 => 0.016584630765823
822 => 0.016574425798045
823 => 0.016458118335138
824 => 0.016392419200535
825 => 0.016889915058576
826 => 0.017256461532159
827 => 0.017231465520019
828 => 0.017341789788465
829 => 0.017665705252823
830 => 0.017695320023443
831 => 0.017691589243033
901 => 0.017618185944069
902 => 0.017937122784468
903 => 0.018203185507888
904 => 0.017601195201184
905 => 0.017830425229345
906 => 0.017933333974317
907 => 0.018084434543585
908 => 0.018339366531335
909 => 0.018616290287401
910 => 0.018655450342823
911 => 0.01862766440952
912 => 0.018445025748284
913 => 0.01874803902656
914 => 0.018925537098438
915 => 0.01903123313827
916 => 0.019299260709141
917 => 0.017933969503692
918 => 0.0169675485291
919 => 0.016816627938629
920 => 0.01712353089401
921 => 0.017204458755839
922 => 0.017171836836211
923 => 0.016084042166156
924 => 0.016810900924815
925 => 0.017592939833113
926 => 0.017622981132534
927 => 0.01801448616169
928 => 0.018141976247517
929 => 0.018457189111724
930 => 0.018437472461245
1001 => 0.018514221777547
1002 => 0.018496578438842
1003 => 0.019080443893888
1004 => 0.019724534195662
1005 => 0.019702231396593
1006 => 0.019609635795183
1007 => 0.019747156053174
1008 => 0.020411926269516
1009 => 0.020350724880721
1010 => 0.020410176816814
1011 => 0.021193978366689
1012 => 0.022213031875997
1013 => 0.021739579209624
1014 => 0.022766835263319
1015 => 0.023413438496617
1016 => 0.024531671928583
1017 => 0.024391663595485
1018 => 0.024826983664573
1019 => 0.024141019458619
1020 => 0.022565906985508
1021 => 0.02231663940735
1022 => 0.022815679411283
1023 => 0.024042520565341
1024 => 0.022777041817385
1025 => 0.023033046519933
1026 => 0.022959317148377
1027 => 0.022955388423496
1028 => 0.023105331872909
1029 => 0.022887831079012
1030 => 0.022001693717027
1031 => 0.022407805247984
1101 => 0.022250986082804
1102 => 0.022424988638214
1103 => 0.023364008665653
1104 => 0.022948845528081
1105 => 0.022511504887763
1106 => 0.023060027104379
1107 => 0.023758484378814
1108 => 0.023714776177828
1109 => 0.023629963999305
1110 => 0.024108045809019
1111 => 0.024897696893838
1112 => 0.02511113640899
1113 => 0.025268693095496
1114 => 0.025290417500623
1115 => 0.025514192375075
1116 => 0.024310898476616
1117 => 0.02622055679625
1118 => 0.026550302034805
1119 => 0.026488323596496
1120 => 0.026854821551349
1121 => 0.026746988555875
1122 => 0.026590755463913
1123 => 0.027171732678705
1124 => 0.02650568918439
1125 => 0.025560324296754
1126 => 0.0250416784222
1127 => 0.025724673147782
1128 => 0.026141754193464
1129 => 0.026417418233323
1130 => 0.026500834005224
1201 => 0.024404306756615
1202 => 0.023274394848346
1203 => 0.02399865542708
1204 => 0.02488230331893
1205 => 0.02430598976796
1206 => 0.024328580168052
1207 => 0.023506908496905
1208 => 0.024955003029584
1209 => 0.024744027836565
1210 => 0.025838567511158
1211 => 0.025577346833586
1212 => 0.026469901448431
1213 => 0.02623486190558
1214 => 0.027210497907071
1215 => 0.027599705522356
1216 => 0.028253245683748
1217 => 0.028733992486855
1218 => 0.029016296204861
1219 => 0.028999347748526
1220 => 0.030117975722418
1221 => 0.029458359888099
1222 => 0.028629726940678
1223 => 0.028614739584963
1224 => 0.029043900330252
1225 => 0.029943303517876
1226 => 0.030176505678643
1227 => 0.030306833872488
1228 => 0.030107231706857
1229 => 0.029391265993797
1230 => 0.029082115628926
1231 => 0.029345520696744
]
'min_raw' => 0.010861457248914
'max_raw' => 0.030306833872488
'avg_raw' => 0.020584145560701
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$0.010861'
'max' => '$0.0303068'
'avg' => '$0.020584'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.0042998882887562
'max_diff' => 0.015658593399558
'year' => 2036
]
11 => [
'items' => [
101 => 0.029023398933458
102 => 0.029579471468294
103 => 0.030343077829308
104 => 0.030185396135385
105 => 0.030712502397208
106 => 0.031258001924998
107 => 0.032038090749655
108 => 0.032242034855026
109 => 0.032579146705905
110 => 0.032926145535933
111 => 0.033037592208257
112 => 0.033250378485596
113 => 0.03324925699688
114 => 0.033890502765809
115 => 0.034597816706665
116 => 0.034864811344983
117 => 0.035478750793625
118 => 0.03442740100283
119 => 0.035224861896184
120 => 0.03594419158373
121 => 0.035086577075755
122 => 0.036268598876446
123 => 0.036314494104448
124 => 0.03700745755795
125 => 0.036305006342091
126 => 0.035887893052417
127 => 0.037092083490674
128 => 0.037674753312103
129 => 0.037499248419964
130 => 0.036163647525043
131 => 0.035386270517582
201 => 0.03335172494423
202 => 0.035761732061694
203 => 0.036935576227739
204 => 0.036160607552233
205 => 0.036551456674923
206 => 0.038683802755061
207 => 0.039495662083194
208 => 0.039326801018267
209 => 0.03935533575855
210 => 0.039793400315721
211 => 0.041736019808776
212 => 0.04057195717897
213 => 0.041461839442862
214 => 0.041933829786921
215 => 0.042372240722791
216 => 0.041295642025494
217 => 0.039895002938687
218 => 0.039451361745066
219 => 0.036083552190418
220 => 0.035908243077443
221 => 0.03580983675992
222 => 0.035189398847789
223 => 0.034701904601102
224 => 0.034314231076635
225 => 0.03329685997932
226 => 0.033640192859422
227 => 0.032018715672152
228 => 0.033056079314944
301 => 0.030468162572125
302 => 0.032623456535906
303 => 0.031450428020611
304 => 0.032238085120131
305 => 0.032235337058712
306 => 0.030785010611586
307 => 0.029948492584425
308 => 0.030481554429101
309 => 0.031053039041095
310 => 0.031145760496686
311 => 0.031886705213412
312 => 0.032093486957297
313 => 0.03146692861961
314 => 0.030414533749825
315 => 0.030658981075504
316 => 0.029943538867172
317 => 0.028689753916157
318 => 0.029590244156961
319 => 0.029897711116933
320 => 0.030033506042462
321 => 0.028800552541314
322 => 0.02841313178253
323 => 0.028206872221328
324 => 0.030255374935593
325 => 0.030367596538514
326 => 0.029793454951435
327 => 0.03238862936737
328 => 0.031801261470149
329 => 0.032457495319974
330 => 0.030636800042874
331 => 0.030706353054351
401 => 0.029844406732236
402 => 0.030327039077346
403 => 0.029985930091789
404 => 0.030288047153327
405 => 0.030469134874338
406 => 0.031330939759543
407 => 0.032633296963359
408 => 0.031202214848354
409 => 0.030578671877372
410 => 0.03096551442963
411 => 0.031995727123809
412 => 0.033556552091106
413 => 0.032632512295936
414 => 0.033042585465819
415 => 0.033132168210553
416 => 0.032450815475407
417 => 0.033581674538322
418 => 0.034187711097221
419 => 0.034809379205055
420 => 0.035349156204343
421 => 0.034561071292011
422 => 0.03540443511574
423 => 0.03472483274757
424 => 0.034115159167321
425 => 0.034116083790479
426 => 0.033733626647679
427 => 0.032992567740802
428 => 0.03285590510849
429 => 0.033566841380363
430 => 0.034136944944489
501 => 0.034183901404643
502 => 0.034499540030722
503 => 0.034686331718299
504 => 0.036517144187542
505 => 0.037253512107947
506 => 0.038153928862286
507 => 0.038504691932809
508 => 0.039560363019563
509 => 0.038707822879596
510 => 0.038523370457585
511 => 0.035962657708502
512 => 0.036381974277711
513 => 0.037053340563044
514 => 0.035973728291268
515 => 0.03665849378522
516 => 0.036793680999042
517 => 0.035937043479392
518 => 0.036394610591759
519 => 0.035179448000505
520 => 0.032659784187192
521 => 0.03358447964443
522 => 0.034265366750083
523 => 0.033293656897542
524 => 0.035035409197858
525 => 0.034017913461079
526 => 0.033695416160929
527 => 0.032437239214454
528 => 0.033031050301518
529 => 0.033834188299328
530 => 0.033337942391495
531 => 0.034367727161947
601 => 0.035826177030472
602 => 0.036865555258975
603 => 0.036945345813349
604 => 0.036277095245354
605 => 0.037347971045283
606 => 0.037355771206384
607 => 0.036147818929408
608 => 0.035407954885667
609 => 0.035239856218242
610 => 0.035659799647155
611 => 0.036169688495689
612 => 0.036973641095796
613 => 0.037459452814426
614 => 0.038726192121986
615 => 0.039068935458349
616 => 0.039445506471726
617 => 0.039948721475798
618 => 0.040552960109864
619 => 0.039230920377851
620 => 0.039283447480995
621 => 0.038052382387431
622 => 0.036736812782365
623 => 0.037735166124543
624 => 0.039040380314062
625 => 0.038740962736853
626 => 0.038707272142871
627 => 0.038763930376958
628 => 0.038538179301806
629 => 0.037517115555619
630 => 0.037004343734482
701 => 0.037665950205792
702 => 0.038017564600578
703 => 0.038562887862892
704 => 0.038495665260435
705 => 0.039900359420714
706 => 0.040446181095652
707 => 0.040306536554176
708 => 0.040332234510542
709 => 0.041320418581176
710 => 0.042419482503275
711 => 0.043448900900579
712 => 0.044496069508866
713 => 0.04323366687989
714 => 0.042592696679066
715 => 0.043254014313688
716 => 0.042903109868038
717 => 0.044919510897764
718 => 0.045059122130139
719 => 0.04707537735112
720 => 0.048989043647036
721 => 0.047787104133464
722 => 0.048920478958218
723 => 0.050146316236595
724 => 0.052511155231514
725 => 0.051714760654064
726 => 0.051104734888832
727 => 0.05052826348831
728 => 0.051727808960538
729 => 0.053271005047352
730 => 0.053603394703904
731 => 0.054141992930139
801 => 0.05357572275191
802 => 0.054257732808972
803 => 0.056665528000805
804 => 0.056014920485776
805 => 0.055090953224057
806 => 0.056991676280901
807 => 0.057679540566299
808 => 0.062507332358544
809 => 0.068602618922386
810 => 0.066079130261146
811 => 0.064512719416644
812 => 0.064880863120864
813 => 0.067106655435508
814 => 0.067821509283855
815 => 0.06587829009915
816 => 0.066564667966542
817 => 0.070346677499053
818 => 0.072375604271852
819 => 0.06962004919317
820 => 0.062017582017988
821 => 0.055007760081484
822 => 0.056867080515441
823 => 0.056656291279661
824 => 0.060719588707046
825 => 0.055999403711713
826 => 0.056078879521445
827 => 0.060226201636522
828 => 0.059119767199321
829 => 0.05732748511247
830 => 0.055020845724176
831 => 0.050756809476595
901 => 0.046980033660666
902 => 0.054387160775229
903 => 0.054067751985062
904 => 0.05360520072317
905 => 0.054634558503237
906 => 0.059632827694935
907 => 0.059517601412248
908 => 0.058784590590758
909 => 0.059340572838397
910 => 0.057230018736324
911 => 0.057773956584852
912 => 0.055006649689875
913 => 0.056257587979349
914 => 0.057323639680067
915 => 0.057537665342151
916 => 0.058019876087248
917 => 0.053899438066692
918 => 0.055749393768217
919 => 0.056836069425455
920 => 0.051926429272455
921 => 0.056739021625327
922 => 0.053827710407901
923 => 0.05283956765428
924 => 0.054169971694123
925 => 0.053651511945936
926 => 0.053205770699423
927 => 0.052957039425061
928 => 0.053933941320586
929 => 0.053888367679509
930 => 0.052289966569944
1001 => 0.05020491748168
1002 => 0.050904728395105
1003 => 0.050650480529495
1004 => 0.049729053465899
1005 => 0.050349984053235
1006 => 0.047615719992387
1007 => 0.042911560790376
1008 => 0.046019272451517
1009 => 0.045899628933103
1010 => 0.045839299245717
1011 => 0.048174658668223
1012 => 0.047950167745658
1013 => 0.047542714522981
1014 => 0.049721570267936
1015 => 0.048926258611282
1016 => 0.051377221738096
1017 => 0.052991584571771
1018 => 0.052582129937985
1019 => 0.054100445985949
1020 => 0.05092085062513
1021 => 0.05197698466077
1022 => 0.052194652421777
1023 => 0.049694683526258
1024 => 0.047986897236916
1025 => 0.047873007361606
1026 => 0.044911941283334
1027 => 0.046493718881457
1028 => 0.0478856177094
1029 => 0.047219006186528
1030 => 0.047007976892839
1031 => 0.048086079787625
1101 => 0.048169857615876
1102 => 0.046259714253361
1103 => 0.046656893544801
1104 => 0.048313197215671
1105 => 0.046615158941933
1106 => 0.043316147949038
1107 => 0.042497947610405
1108 => 0.042388784602807
1109 => 0.040169760392146
1110 => 0.04255262366941
1111 => 0.041512439992119
1112 => 0.044798367765367
1113 => 0.042921463444072
1114 => 0.042840553850102
1115 => 0.042718247131959
1116 => 0.040808241327108
1117 => 0.041226411211169
1118 => 0.04261647159486
1119 => 0.043112460799912
1120 => 0.043060725062305
1121 => 0.042609659540635
1122 => 0.042816155026627
1123 => 0.042150961118452
1124 => 0.041916067304661
1125 => 0.041174677815705
1126 => 0.040085040081012
1127 => 0.040236560891158
1128 => 0.03807770341951
1129 => 0.036901443289718
1130 => 0.036575869988651
1201 => 0.036140499763819
1202 => 0.036625046214022
1203 => 0.038071587647539
1204 => 0.036326751777832
1205 => 0.033335353065226
1206 => 0.033515141224949
1207 => 0.033919071840263
1208 => 0.033166349810894
1209 => 0.032453961581267
1210 => 0.033073325349044
1211 => 0.0318058302796
1212 => 0.034072242563876
1213 => 0.034010942463133
1214 => 0.034855720808716
1215 => 0.035383978044806
1216 => 0.03416651614093
1217 => 0.033860327764472
1218 => 0.034034746579189
1219 => 0.031151992094643
1220 => 0.034620138265612
1221 => 0.034650130937717
1222 => 0.034393315470079
1223 => 0.036239996239121
1224 => 0.040137068655974
1225 => 0.038670833253379
1226 => 0.038103062588295
1227 => 0.037023730138931
1228 => 0.038461876543288
1229 => 0.038351449338013
1230 => 0.037852055637481
1231 => 0.037550020769197
]
'min_raw' => 0.028206872221328
'max_raw' => 0.072375604271852
'avg_raw' => 0.05029123824659
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$0.0282068'
'max' => '$0.072375'
'avg' => '$0.050291'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 0.017345414972414
'max_diff' => 0.042068770399364
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.00088538148775656
]
1 => [
'year' => 2028
'avg' => 0.0015195716610727
]
2 => [
'year' => 2029
'avg' => 0.0041511959019053
]
3 => [
'year' => 2030
'avg' => 0.0032026414561736
]
4 => [
'year' => 2031
'avg' => 0.0031453908089486
]
5 => [
'year' => 2032
'avg' => 0.0055148599790051
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.00088538148775656
'min' => '$0.000885'
'max_raw' => 0.0055148599790051
'max' => '$0.005514'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.0055148599790051
]
1 => [
'year' => 2033
'avg' => 0.014184786952365
]
2 => [
'year' => 2034
'avg' => 0.0089909996593716
]
3 => [
'year' => 2035
'avg' => 0.010604904716544
]
4 => [
'year' => 2036
'avg' => 0.020584145560701
]
5 => [
'year' => 2037
'avg' => 0.05029123824659
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.0055148599790051
'min' => '$0.005514'
'max_raw' => 0.05029123824659
'max' => '$0.050291'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 0.05029123824659
]
]
]
]
'prediction_2025_max_price' => '$0.001513'
'last_price' => 0.00146786
'sma_50day_nextmonth' => '$0.001417'
'sma_200day_nextmonth' => '$0.003254'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'increase'
'sma_200day_direction_label' => 'aumentar'
'sma_200day_date_nextmonth' => '4 de fev. de 2026'
'sma_50day_date_nextmonth' => '4 de fev. de 2026'
'daily_sma3' => '$0.001495'
'daily_sma3_action' => 'SELL'
'daily_sma5' => '$0.001499'
'daily_sma5_action' => 'SELL'
'daily_sma10' => '$0.00151'
'daily_sma10_action' => 'SELL'
'daily_sma21' => '$0.001522'
'daily_sma21_action' => 'SELL'
'daily_sma50' => '$0.001802'
'daily_sma50_action' => 'SELL'
'daily_sma100' => '$0.002323'
'daily_sma100_action' => 'SELL'
'daily_sma200' => '$0.004133'
'daily_sma200_action' => 'SELL'
'daily_ema3' => '$0.001488'
'daily_ema3_action' => 'SELL'
'daily_ema5' => '$0.001495'
'daily_ema5_action' => 'SELL'
'daily_ema10' => '$0.0015095'
'daily_ema10_action' => 'SELL'
'daily_ema21' => '$0.001569'
'daily_ema21_action' => 'SELL'
'daily_ema50' => '$0.001842'
'daily_ema50_action' => 'SELL'
'daily_ema100' => '$0.002521'
'daily_ema100_action' => 'SELL'
'daily_ema200' => '$0.004332'
'daily_ema200_action' => 'SELL'
'weekly_sma21' => '$0.002969'
'weekly_sma21_action' => 'SELL'
'weekly_sma50' => '$0.005893'
'weekly_sma50_action' => 'SELL'
'weekly_sma100' => '$0.01916'
'weekly_sma100_action' => 'SELL'
'weekly_sma200' => '$0.040766'
'weekly_sma200_action' => 'SELL'
'weekly_ema3' => '$0.001518'
'weekly_ema3_action' => 'SELL'
'weekly_ema5' => '$0.00161'
'weekly_ema5_action' => 'SELL'
'weekly_ema10' => '$0.001963'
'weekly_ema10_action' => 'SELL'
'weekly_ema21' => '$0.003088'
'weekly_ema21_action' => 'SELL'
'weekly_ema50' => '$0.007813'
'weekly_ema50_action' => 'SELL'
'weekly_ema100' => '$0.020881'
'weekly_ema100_action' => 'SELL'
'weekly_ema200' => '$0.052918'
'weekly_ema200_action' => 'SELL'
'rsi_14' => '30.83'
'rsi_14_action' => 'NEUTRAL'
'stoch_rsi_14' => 75.63
'stoch_rsi_14_action' => 'NEUTRAL'
'momentum_10' => -0
'momentum_10_action' => 'SELL'
'vwma_10' => '0.0015034'
'vwma_10_action' => 'SELL'
'hma_9' => '0.001496'
'hma_9_action' => 'SELL'
'stochastic_fast_14' => 0
'stochastic_fast_14_action' => 'BUY'
'cci_20' => -149.37
'cci_20_action' => 'BUY'
'adx_14' => 36.55
'adx_14_action' => 'SELL'
'ao_5_34' => '-0.000144'
'ao_5_34_action' => 'NEUTRAL'
'macd_12_26' => 0
'macd_12_26_action' => 'NEUTRAL'
'williams_percent_r_14' => -100
'williams_percent_r_14_action' => 'BUY'
'ultimate_oscillator' => 27.54
'ultimate_oscillator_action' => 'BUY'
'ichimoku_cloud' => '-0.000230'
'ichimoku_cloud_action' => 'SELL'
'sell_signals' => 32
'buy_signals' => 0
'sell_pct' => 100
'buy_pct' => 0
'overall_action' => 'bearish'
'overall_action_label' => 'Baixista'
'overall_action_dir' => -1
'last_updated' => 1767707366
'last_updated_date' => '6 de janeiro de 2026'
]
Previsão de preço de Radix para 2026
A previsão de preço para Radix em 2026 sugere que o preço médio poderia variar entre $0.0005071 na extremidade inferior e $0.001513 na extremidade superior. No mercado de criptomoedas, comparado ao preço médio de hoje, Radix poderia potencialmente ganhar 3.13% até 2026 se XRD atingir a meta de preço prevista.
Previsão de preço de Radix 2027-2032
A previsão de preço de XRD para 2027-2032 está atualmente dentro de uma faixa de preço entre $0.000885 na extremidade inferior e $0.005514 na extremidade superior. Considerando a volatilidade de preços no mercado, se Radix atingir a meta de preço superior, poderia ganhar 275.71% até 2032 em comparação com o preço de hoje.
| Previsão de Preço de Radix | Potencial Mínimo ($) | Preço Médio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2027 | $0.000488 | $0.000885 | $0.001282 |
| 2028 | $0.000881 | $0.001519 | $0.002158 |
| 2029 | $0.001935 | $0.004151 | $0.006366 |
| 2030 | $0.001646 | $0.0032026 | $0.004759 |
| 2031 | $0.001946 | $0.003145 | $0.004344 |
| 2032 | $0.00297 | $0.005514 | $0.008059 |
Previsão de preço de Radix 2032-2037
A previsão de preço de Radix para 2032-2037 é atualmente estimada entre $0.005514 na extremidade inferior e $0.050291 na extremidade superior. Comparado ao preço atual, Radix poderia potencialmente ganhar 3326.16% até 2037 se atingir a meta de preço superior. Por favor, note que esta informação é apenas para fins gerais e não deve ser considerada como aconselhamento de investimento a longo prazo.
| Previsão de Preço de Radix | Potencial Mínimo ($) | Preço Médio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2032 | $0.00297 | $0.005514 | $0.008059 |
| 2033 | $0.0069031 | $0.014184 | $0.021466 |
| 2034 | $0.005549 | $0.00899 | $0.012432 |
| 2035 | $0.006561 | $0.0106049 | $0.014648 |
| 2036 | $0.010861 | $0.020584 | $0.0303068 |
| 2037 | $0.0282068 | $0.050291 | $0.072375 |
Radix Histograma de preços potenciais
Previsão de preço de Radix baseada na análise técnica
Em 6 de janeiro de 2026, o sentimento geral de previsão de preço para Radix é Baixista, com 0 indicadores técnicos mostrando sinais de alta e 32 indicando sinais de baixa. A previsão de preço de XRD foi atualizada pela última vez em 6 de janeiro de 2026.
Médias Móveis Simples de 50 e 200 dias e Índice de Força Relativa de 14 dias - RSI (14) de Radix
De acordo com nossos indicadores técnicos, o SMA de 200 dias de Radix está projetado para aumentar no próximo mês, alcançando $0.003254 até 4 de fev. de 2026. O SMA de 50 dias de curto prazo para Radix é esperado para alcançar $0.001417 até 4 de fev. de 2026.
O oscilador de momentum Índice de Força Relativa (RSI) é uma ferramenta comumente usada para identificar se uma criptomoeda está sobrevendida (abaixo de 30) ou sobrecomprada (acima de 70). No momento, o RSI está em 30.83, sugerindo que o mercado de XRD está em um estado NEUTRAL.
Médias Móveis e Osciladores Populares de XRD para Sábado, 19 de Outubro de 2024
Médias móveis (MA) são indicadores amplamente utilizados nos mercados financeiros, projetados para suavizar movimentos de preços ao longo de um período definido. Como indicadores atrasados, eles se baseiam em dados históricos de preços. A tabela abaixo destaca dois tipos: a média móvel simples (SMA) e a média móvel exponencial (EMA).
Média Móvel Simples Diária (SMA)
| Período | Valor | Ação |
|---|---|---|
| SMA 3 | $0.001495 | SELL |
| SMA 5 | $0.001499 | SELL |
| SMA 10 | $0.00151 | SELL |
| SMA 21 | $0.001522 | SELL |
| SMA 50 | $0.001802 | SELL |
| SMA 100 | $0.002323 | SELL |
| SMA 200 | $0.004133 | SELL |
Média Móvel Exponencial Diária (EMA)
| Período | Valor | Ação |
|---|---|---|
| EMA 3 | $0.001488 | SELL |
| EMA 5 | $0.001495 | SELL |
| EMA 10 | $0.0015095 | SELL |
| EMA 21 | $0.001569 | SELL |
| EMA 50 | $0.001842 | SELL |
| EMA 100 | $0.002521 | SELL |
| EMA 200 | $0.004332 | SELL |
Média Móvel Simples Semanal (SMA)
| Período | Valor | Ação |
|---|---|---|
| SMA 21 | $0.002969 | SELL |
| SMA 50 | $0.005893 | SELL |
| SMA 100 | $0.01916 | SELL |
| SMA 200 | $0.040766 | SELL |
Média Móvel Exponencial Semanal (EMA)
| Período | Valor | Ação |
|---|---|---|
| EMA 21 | $0.003088 | SELL |
| EMA 50 | $0.007813 | SELL |
| EMA 100 | $0.020881 | SELL |
| EMA 200 | $0.052918 | SELL |
Osciladores de Radix
Um oscilador é uma ferramenta de análise técnica que define limites altos e baixos entre dois extremos, criando um indicador de tendência que flutua dentro desses limites. Os traders usam esse indicador para identificar condições de sobrecompra ou sobrevenda de curto prazo.
| Período | Valor | Ação |
|---|---|---|
| RSI (14) | 30.83 | NEUTRAL |
| Stoch RSI (14) | 75.63 | NEUTRAL |
| Estocástico Rápido (14) | 0 | BUY |
| Índice de Canal de Commodities (20) | -149.37 | BUY |
| Índice Direcional Médio (14) | 36.55 | SELL |
| Oscilador Impressionante (5, 34) | -0.000144 | NEUTRAL |
| Momentum (10) | -0 | SELL |
| MACD (12, 26) | 0 | NEUTRAL |
| Williams Percent Range (14) | -100 | BUY |
| Oscilador Ultimate (7, 14, 28) | 27.54 | BUY |
| VWMA (10) | 0.0015034 | SELL |
| Média Móvel de Hull (9) | 0.001496 | SELL |
| Nuvem Ichimoku B/L (9, 26, 52, 26) | -0.000230 | SELL |
Previsão do preço de Radix com base nos fluxos financeiros mundiais
Definições dos fluxos financeiros mundiais, usadas na previsão do preço do Radix
M0: o total de todas as moedas físicas, mais as contas no Banco Central que podem ser trocadas por moedas físicas.
M1: o valor de M0, mais o valor em contas de demanda, incluindo contas 'correntes'.
M2: o valor de M1, mais a maioria das contas de poupança, do mercado de moedas e de certificados de depósito (CD) de menos de US$ 100.000.
Previsões de preço de Radix por empresas de Internet ou nichos tecnológicos
| Comparação | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Facebook stock | $0.002062 | $0.002898 | $0.004072 | $0.005722 | $0.008041 | $0.011299 |
| Amazon.com stock | $0.003062 | $0.00639 | $0.013334 | $0.027823 | $0.058054 | $0.121134 |
| Apple stock | $0.002082 | $0.002953 | $0.004188 | $0.005941 | $0.008427 | $0.011954 |
| Netflix stock | $0.002316 | $0.003654 | $0.005766 | $0.009097 | $0.014355 | $0.022649 |
| Google stock | $0.00190087 | $0.002461 | $0.003187 | $0.004128 | $0.005345 | $0.006922 |
| Tesla stock | $0.003327 | $0.007543 | $0.017099 | $0.038764 | $0.087875 | $0.199208 |
| Kodak stock | $0.00110073 | $0.000825 | $0.000618 | $0.000464 | $0.000348 | $0.000261 |
| Nokia stock | $0.000972 | $0.000644 | $0.000426 | $0.000282 | $0.000187 | $0.000124 |
Este cálculo mostra quanto a criptomoeda pode custar, se assumirmos que sua capitalização se comportará da mesma forma que a de algumas empresas de Internet ou nichos tecnológicos. Se você extrapolar os dados, poderá obter uma imagem em potencial do preço futuro para 2024, 2025, 2026, 2027, 2028, 2029 e 2030.
Visão geral da previsão para Radix
Você pode fazer perguntas como: 'Devo investir em Radix agora?', 'Devo comprar XRD hoje?', 'Radix será um bom ou mau investimento no curto ou no longo prazo?'.
Atualizamos a previsão para Radix regularmente com novos valores. Veja nossas previsões semelhantes. Fazemos previsões de preços futuros para uma enorme quantidade de moedas digitais, como Radix, com métodos de análise técnica.
Se você estiver tentando encontrar criptomoedas com bom retorno, você deve explorar o máximo de fontes de informações disponíveis sobre Radix para poder tomar sozinho uma decisão de tão grande responsabilidade sobre o seu investimento.
O preço de Radix é de $0.001467 USD hoje, mas o preço pode tanto subir quanto descer e seu investimento pode ser perdido, porque criptomoedas são ativos de alto risco
Previsão de curto prazo para Radix
com base no histórico de preços de 4 horas
Previsão de longo prazo para Radix
com base no histórico de preços de 1 mês
Previsão do preço de Radix com base no padrão de crescimento do Bitcoin
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| Se Radix tiver 1% da média anterior do crescimento anual do Bitcoin | $0.001506 | $0.001545 | $0.001585 | $0.001626 |
| Se Radix tiver 2% da média anterior do crescimento anual do Bitcoin | $0.001544 | $0.001624 | $0.0017088 | $0.001797 |
| Se Radix tiver 5% da média anterior do crescimento anual do Bitcoin | $0.001658 | $0.001874 | $0.002117 | $0.002393 |
| Se Radix tiver 10% da média anterior do crescimento anual do Bitcoin | $0.001849 | $0.00233 | $0.002935 | $0.003698 |
| Se Radix tiver 20% da média anterior do crescimento anual do Bitcoin | $0.00223 | $0.00339 | $0.005153 | $0.007832 |
| Se Radix tiver 50% da média anterior do crescimento anual do Bitcoin | $0.003375 | $0.007762 | $0.017851 | $0.041052 |
| Se Radix tiver 100% da média anterior do crescimento anual do Bitcoin | $0.005283 | $0.019016 | $0.068445 | $0.246358 |
Perguntas Frequentes sobre Radix
XRD é um bom investimento?
A decisão de adquirir Radix depende inteiramente da sua tolerância individual ao risco. Como você pode perceber, o valor de Radix experimentou uma queda de -2.7605% nas últimas 24 horas, e Radix registrou um declínio de -91.15% durante os últimos 30 dias. Consequentemente, a decisão de investir ou não em Radix dependerá de quão alinhado esse investimento está com suas aspirações de negociação.
Radix pode subir?
Parece que o valor médio de Radix pode potencialmente subir para $0.001513 até o final deste ano. Observando as perspectivas de Radix em um horizonte de cinco anos mais longo, a moeda digital poderia potencialmente crescer até $0.004759. No entanto, dada a imprevisibilidade do mercado, é vital conduzir uma pesquisa aprofundada antes de investir quaisquer fundos em um projeto, rede ou ativo específico.
Qual será o preço de Radix na próxima semana?
Com base na nossa nova previsão experimental de Radix, o preço de Radix aumentará 0.86% na próxima semana e atingirá $0.00148 até 13 de janeiro de 2026.
Qual será o preço de Radix no próximo mês?
Com base na nossa nova previsão experimental de Radix, o preço de Radix diminuirá -11.62% no próximo mês e atingirá $0.001297 até 5 de fevereiro de 2026.
Até onde o preço de Radix pode subir este ano em 2026?
De acordo com nossa previsão mais recente sobre o valor de Radix em 2026, espera-se que XRD fluctue dentro do intervalo de $0.0005071 e $0.001513. No entanto, é crucial lembrar que o mercado de criptomoedas é excepcionalmente instável, e essa previsão de preço de Radix não considera flutuações repentinas e extremas de preço.
Onde estará Radix em 5 anos?
O futuro de Radix parece seguir uma tendência de alta, com um preço máximo de $0.004759 projetada após um período de cinco anos. Com base na previsão de Radix para 2030, o valor de Radix pode potencialmente atingir seu pico mais alto de aproximadamente $0.004759, enquanto seu pico mais baixo está previsto para cerca de $0.001646.
Quanto será Radix em 2026?
Com base na nossa nova simulação experimental de previsão de preços de Radix, espera-se que o valor de XRD em 2026 aumente 3.13% para $0.001513 se o melhor cenário ocorrer. O preço ficará entre $0.001513 e $0.0005071 durante 2026.
Quanto será Radix em 2027?
De acordo com nossa última simulação experimental para previsão de preços de Radix, o valor de XRD pode diminuir -12.62% para $0.001282 em 2027, assumindo as condições mais favoráveis. O preço está projetado para flutuar entre $0.001282 e $0.000488 ao longo do ano.
Quanto será Radix em 2028?
Nosso novo modelo experimental de previsão de preços de Radix sugere que o valor de XRD em 2028 pode aumentar 47.02%, alcançando $0.002158 no melhor cenário. O preço é esperado para variar entre $0.002158 e $0.000881 durante o ano.
Quanto será Radix em 2029?
Com base no nosso modelo de previsão experimental, o valor de Radix pode experimentar um 333.75% crescimento em 2029, potencialmente alcançando $0.006366 sob condições ótimas. A faixa de preço prevista para 2029 está entre $0.006366 e $0.001935.
Quanto será Radix em 2030?
Usando nossa nova simulação experimental para previsões de preços de Radix, espera-se que o valor de XRD em 2030 aumente 224.23%, alcançando $0.004759 no melhor cenário. O preço está previsto para variar entre $0.004759 e $0.001646 ao longo de 2030.
Quanto será Radix em 2031?
Nossa simulação experimental indica que o preço de Radix poderia aumentar 195.98% em 2031, potencialmente atingindo $0.004344 sob condições ideais. O preço provavelmente oscilará entre $0.004344 e $0.001946 durante o ano.
Quanto será Radix em 2032?
Com base nos achados da nossa mais recente previsão experimental de preços de Radix, XRD poderia ver um 449.04% aumento em valor, atingindo $0.008059 se o cenário mais positivo se desenrolar em 2032. O preço é esperado para permanecer dentro de uma faixa de $0.008059 e $0.00297 ao longo do ano.
Quanto será Radix em 2033?
De acordo com nossa previsão experimental de preços de Radix, espera-se que o valor de XRD seja aumentar 1362.43% em 2033, com o preço potencial mais alto sendo $0.021466. Ao longo do ano, o preço de XRD poderia variar entre $0.021466 e $0.0069031.
Quanto será Radix em 2034?
Os resultados da nossa nova simulação de previsão de preços de Radix sugerem que XRD pode aumentar 746.96% em 2034, atingindo potencialmente $0.012432 nas melhores circunstâncias. A faixa de preço prevista para o ano é entre $0.012432 e $0.005549.
Quanto será Radix em 2035?
Com base em nossa previsão experimental para o preço de Radix, XRD poderia aumentar 897.93%, com o valor potencialmente atingindo $0.014648 em 2035. A faixa de preço esperada para o ano está entre $0.014648 e $0.006561.
Quanto será Radix em 2036?
Nossa recente simulação de previsão de preços de Radix sugere que o valor de XRD pode aumentar 1964.7% em 2036, possivelmente atingindo $0.0303068 se as condições forem ideais. A faixa de preço esperada para 2036 está entre $0.0303068 e $0.010861.
Quanto será Radix em 2037?
De acordo com a simulação experimental, o valor de Radix poderia aumentar 4830.69% em 2037, com um pico de $0.072375 sob condições favoráveis. O preço é esperado para cair entre $0.072375 e $0.0282068 ao longo do ano.
Previsões relacionadas
Previsão de Preço do Aerodrome Finance
Previsão de Preço do Curve DAO Token
Previsão de Preço do BOOK OF MEME
Previsão de Preço do Wemix Token
Previsão de Preço do AltLayer
Previsão de Preço do Theta Fuel
Previsão de Preço do Manta Network
Previsão de Preço do MANTRA DAO
Previsão de Preço do Brett
Previsão de Preço do Coinbase Wrapped Staked ETH
Previsão de Preço do Ocean Protocol
Previsão de Preço do 1inch
Previsão de Preço do Ether.fi
Previsão de Preço do Bounce Token
Previsão de Preço do Pendle
Previsão de Preço do Enjin Coin
Previsão de Preço do Ethereum Name Service
Previsão de Preço do XinFin
Previsão de Preço do Celo Gold
Previsão de Preço do Staked Frax Ether
Previsão de Preço do Memecoin
Previsão de Preço do SKALE
Previsão de Preço do FOX Token
Previsão de Preço do Zilliqa
Previsão de Preço do Tether Gold
Como ler e prever os movimentos de preço de Radix?
Traders de Radix utilizam indicadores e padrões de gráfico para prever a direção do mercado. Eles também identificam níveis-chave de suporte e resistência para avaliar quando uma tendência de baixa pode desacelerar ou uma tendência de alta pode estagnar.
Indicadores de Previsão de Preço de Radix
Médias móveis são ferramentas populares para a previsão de preço de Radix. Uma média móvel simples (SMA) calcula o preço médio de fechamento de XRD em um período específico, como uma SMA de 12 dias. Uma média móvel exponencial (EMA) dá mais peso aos preços recentes, reagindo mais rapidamente às mudanças de preço.
Médias móveis comumente usadas no mercado de criptomoedas incluem as de 50 dias, 100 dias e 200 dias, que ajudam a identificar níveis-chave de resistência e suporte. Um movimento de preço de XRD acima dessas médias é visto como altista, enquanto uma queda abaixo indica fraqueza.
Traders também usam RSI e níveis de retração de Fibonacci para avaliar a direção futura de XRD.
Como ler gráficos de Radix e prever movimentos de preço?
A maioria dos traders prefere gráficos de velas em vez de gráficos de linha simples porque eles fornecem informações mais detalhadas. Velas podem representar a ação de preço de Radix em diferentes períodos de tempo, como 5 minutos para tendências de curto prazo e semanal para tendências de longo prazo. Opções populares incluem gráficos de 1 hora, 4 horas e 1 dia.
Por exemplo, um gráfico de velas de 1 hora mostra os preços de abertura, fechamento, máximo e mínimo de XRD dentro de cada hora. A cor da vela é crucial: verde indica que o preço fechou mais alto do que abriu, enquanto vermelho significa o oposto. Alguns gráficos usam velas vazias e preenchidas para transmitir a mesma informação.
O que afeta o preço de Radix?
A ação de preço de Radix é impulsionada pela oferta e demanda, influenciada por fatores como reduções pela metade das recompensas de bloco, hard forks e atualizações de protocolo. Eventos do mundo real, como regulamentações, adoção por empresas e governos e hacks de exchanges de criptomoedas, também impactam o preço de XRD. A capitalização de mercado de Radix pode mudar rapidamente.
Traders frequentemente monitoram a atividade de "baleias" de XRD, grandes detentores de Radix, pois suas ações podem influenciar significativamente os movimentos de preço no relativamente pequeno mercado de Radix.
Padrões de previsão de preço altistas e baixistas
Traders frequentemente identificam padrões de velas para ganhar vantagem em previsões de preço de criptomoedas. Certas formações indicam tendências altistas, enquanto outras sugerem movimentos baixistas.
Padrões de velas altistas comumente seguidos:
- Martelo
- Engolfo de Alta
- Linha de Perfuração
- Estrela da Manhã
- Três Soldados Brancos
Padrões de velas baixistas comuns:
- Harami de Baixa
- Nuvem Negra
- Estrela da Noite
- Estrela Cadente
- Homem Enforcado


