Previsão de Preço Prime Numbers Labs - Projeção PRFI
Previsão de Preço Prime Numbers Labs até $0.03632 até 2026
| Ano | Preço Mínimo | Preço Máximo |
|---|---|---|
| 2026 | $0.012167 | $0.03632 |
| 2027 | $0.011713 | $0.030771 |
| 2028 | $0.021139 | $0.051776 |
| 2029 | $0.046437 | $0.152757 |
| 2030 | $0.039492 | $0.114185 |
| 2031 | $0.046692 | $0.104238 |
| 2032 | $0.071272 | $0.193356 |
| 2033 | $0.165622 | $0.515031 |
| 2034 | $0.133152 | $0.298278 |
| 2035 | $0.157427 | $0.351446 |
Calculadora de lucro do investimento
Se você abrir um short de $10,000.00 em Prime Numbers Labs hoje e fechar em Apr 06, 2026, nossa previsão mostra que pode lucrar cerca de $3,954.43, com um retorno de 39.54% nos próximos 90 dias.
Previsão de preço de longo prazo de Prime Numbers Labs para os anos 2027, 2028, 2029, 2030, 2031, 2032 e 2037
[
'name' => 'Prime Numbers Labs'
'name_with_ticker' => 'Prime Numbers Labs <small>PRFI</small>'
'name_lang' => 'Prime Numbers Labs'
'name_lang_with_ticker' => 'Prime Numbers Labs <small>PRFI</small>'
'name_with_lang' => 'Prime Numbers Labs'
'name_with_lang_with_ticker' => 'Prime Numbers Labs <small>PRFI</small>'
'image' => '/uploads/coins/primefi.png?1745594695'
'price_for_sd' => 0.03521
'ticker' => 'PRFI'
'marketcap' => '$407.87K'
'low24h' => '$0.03317'
'high24h' => '$0.03588'
'volume24h' => '$4.02K'
'current_supply' => '11.55M'
'max_supply' => '95.92M'
'algo' => null
'proof' => null
'ico_price_and_roi' => '—'
'price' => '$0.03521'
'change_24h_pct' => '0.4103%'
'ath_price' => '$0.2853'
'ath_days' => 116
'ath_exchange' => null
'ath_pair' => null
'ath_date' => '12 de set. de 2025'
'ath_pct' => '-87.62%'
'fdv' => '$3.39M'
'new_prediction' => true
'change_24h_pct_is_increased' => true
'change_30d_pct' => null
'change_30d_pct_is_increased' => false
'max_price' => '$1.73'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.035518'
'next_week_prediction_price_date' => '13 de janeiro de 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.031125'
'next_month_prediction_price_date' => '5 de fevereiro de 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.012167'
'current_year_max_price_prediction' => '$0.03632'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.039492'
'grand_prediction_max_price' => '$0.114185'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.03588486329009
107 => 0.03601884434341
108 => 0.036320710497781
109 => 0.033741297259401
110 => 0.03489937807584
111 => 0.035579642057999
112 => 0.032506184638386
113 => 0.035518889686733
114 => 0.033696395413597
115 => 0.033077813484349
116 => 0.033910652560109
117 => 0.033586094362323
118 => 0.033307058282563
119 => 0.033151351355609
120 => 0.033762896455752
121 => 0.033734367145876
122 => 0.032733760666253
123 => 0.031428510303521
124 => 0.031866595168636
125 => 0.031707434830073
126 => 0.031130617231025
127 => 0.031519322647561
128 => 0.029807660712447
129 => 0.026862835317529
130 => 0.028808277175853
131 => 0.028733379780541
201 => 0.028695613117498
202 => 0.030157558905965
203 => 0.030017026551232
204 => 0.029761958951295
205 => 0.031125932714526
206 => 0.03062806394291
207 => 0.032162378184393
208 => 0.033172976777057
209 => 0.032916656284518
210 => 0.033867129145565
211 => 0.031876687759122
212 => 0.032537832545051
213 => 0.032674093569123
214 => 0.031109101490011
215 => 0.030040019382459
216 => 0.029968723794314
217 => 0.028115082748408
218 => 0.029105282833063
219 => 0.029976617930296
220 => 0.029559316037057
221 => 0.029427210724196
222 => 0.030102108117452
223 => 0.030154553425014
224 => 0.028958794854712
225 => 0.029207430926227
226 => 0.030244284676752
227 => 0.029181304872006
228 => 0.027116108748151
301 => 0.026603911555865
302 => 0.026535575008747
303 => 0.025146455600395
304 => 0.02663813902142
305 => 0.025986979233512
306 => 0.028043985201421
307 => 0.026869034424496
308 => 0.026818384644847
309 => 0.0267418200742
310 => 0.025546147615631
311 => 0.025807923895109
312 => 0.026678108117746
313 => 0.02698859965171
314 => 0.026956212840935
315 => 0.026673843740328
316 => 0.026803110868622
317 => 0.026386696408733
318 => 0.026239651796029
319 => 0.025775538550527
320 => 0.025093420294195
321 => 0.025188273021412
322 => 0.023836818269668
323 => 0.023100473993786
324 => 0.022896663603083
325 => 0.022624119830813
326 => 0.022927448147372
327 => 0.023832989768158
328 => 0.022740714452119
329 => 0.020868085036974
330 => 0.02098063325563
331 => 0.021233495687083
401 => 0.020762288218923
402 => 0.020316329895755
403 => 0.020704054476007
404 => 0.019910596706373
405 => 0.021329381267754
406 => 0.021291007121466
407 => 0.0218198422689
408 => 0.02215053373938
409 => 0.021388396962558
410 => 0.021196721624225
411 => 0.021305908608098
412 => 0.019501290981684
413 => 0.021672366508463
414 => 0.021691142059775
415 => 0.021530374390478
416 => 0.022686405084052
417 => 0.025125990422507
418 => 0.024208120286087
419 => 0.023852693226494
420 => 0.023177026126391
421 => 0.024077312420135
422 => 0.024008184479429
423 => 0.023695561715566
424 => 0.023506486492539
425 => 0.023854863388329
426 => 0.023463318739834
427 => 0.023392986562037
428 => 0.022966850086751
429 => 0.022814738753048
430 => 0.022702121577301
501 => 0.022578141132338
502 => 0.022851611099923
503 => 0.022231892175405
504 => 0.021484571904232
505 => 0.021422440309802
506 => 0.02159399110469
507 => 0.021518092648407
508 => 0.021422076937193
509 => 0.021238756796164
510 => 0.021184369626335
511 => 0.021361101543374
512 => 0.021161581513148
513 => 0.021455984186165
514 => 0.021375922949147
515 => 0.020928707387314
516 => 0.020371311216862
517 => 0.020366349221767
518 => 0.020246259131157
519 => 0.020093306345098
520 => 0.020050758379102
521 => 0.02067140139331
522 => 0.021956113858438
523 => 0.02170389406097
524 => 0.021886148713165
525 => 0.022782661217908
526 => 0.023067635584094
527 => 0.022865367528963
528 => 0.022588490539749
529 => 0.0226006717221
530 => 0.023546844210608
531 => 0.023605855828118
601 => 0.023754959147695
602 => 0.023946599049944
603 => 0.02289800463299
604 => 0.02255128301936
605 => 0.022386987083439
606 => 0.021881019191332
607 => 0.022426662184561
608 => 0.022108739379169
609 => 0.022151638027406
610 => 0.022123700226464
611 => 0.022138956154924
612 => 0.021328984688554
613 => 0.021624095720052
614 => 0.02113341639246
615 => 0.020476451854154
616 => 0.02047424947866
617 => 0.020635040618689
618 => 0.020539395756842
619 => 0.020282017892864
620 => 0.020318577203653
621 => 0.019998279171629
622 => 0.020357467183924
623 => 0.02036776741088
624 => 0.020229460461043
625 => 0.020782839152377
626 => 0.021009558853731
627 => 0.020918522256526
628 => 0.021003171483386
629 => 0.021714374932259
630 => 0.021830332126407
701 => 0.021881832652345
702 => 0.0218128287701
703 => 0.021016170976857
704 => 0.021051506137637
705 => 0.020792240173075
706 => 0.020573187753794
707 => 0.020581948701787
708 => 0.020694570120118
709 => 0.021186394459132
710 => 0.022221409785956
711 => 0.022260687861023
712 => 0.022308294033826
713 => 0.022114655804091
714 => 0.022056252661134
715 => 0.022133301481824
716 => 0.022521998820059
717 => 0.023521833904297
718 => 0.023168425408787
719 => 0.022881098800807
720 => 0.023133161698703
721 => 0.023094358591306
722 => 0.02276682131481
723 => 0.022757628434356
724 => 0.022128979680758
725 => 0.021896582550192
726 => 0.021702374113268
727 => 0.021490303570086
728 => 0.021364581043419
729 => 0.021557747984247
730 => 0.021601927549098
731 => 0.021179564656999
801 => 0.02112199815549
802 => 0.021466908810515
803 => 0.021315126490804
804 => 0.021471238370647
805 => 0.021507457665873
806 => 0.021501625525141
807 => 0.021343147351274
808 => 0.021444156613409
809 => 0.021205239596149
810 => 0.020945453224054
811 => 0.02077972570392
812 => 0.020635106462038
813 => 0.020715349622754
814 => 0.020429297406624
815 => 0.02033778354559
816 => 0.021409936948178
817 => 0.022201948194262
818 => 0.022190432037073
819 => 0.0221203303919
820 => 0.022016173566773
821 => 0.022514379099548
822 => 0.022340814253863
823 => 0.022467097180927
824 => 0.022499241485943
825 => 0.022596532615979
826 => 0.022631305832512
827 => 0.022526197020598
828 => 0.022173439009854
829 => 0.021294399586306
830 => 0.020885204361722
831 => 0.020750163121924
901 => 0.020755071614511
902 => 0.020619673476491
903 => 0.020659554296257
904 => 0.020605804554901
905 => 0.020504015548233
906 => 0.020709064438426
907 => 0.020732694412858
908 => 0.020684833551735
909 => 0.020696106517118
910 => 0.020299839028663
911 => 0.020329966385162
912 => 0.020162213435773
913 => 0.020130761780055
914 => 0.019706696931921
915 => 0.018955404584267
916 => 0.01937169347458
917 => 0.018868875034158
918 => 0.018678450071828
919 => 0.019579892226342
920 => 0.019489412436142
921 => 0.01933455036594
922 => 0.019105477088026
923 => 0.019020511580967
924 => 0.018504288056883
925 => 0.018473786817135
926 => 0.018729641134879
927 => 0.01861157317065
928 => 0.018445761033037
929 => 0.017845206278712
930 => 0.017169983898005
1001 => 0.017190364617382
1002 => 0.017405140293726
1003 => 0.018029629539142
1004 => 0.017785630787185
1005 => 0.017608606893076
1006 => 0.017575455639028
1007 => 0.017990412990288
1008 => 0.018577664578572
1009 => 0.018853189884782
1010 => 0.018580152674156
1011 => 0.018266502227957
1012 => 0.018285592677301
1013 => 0.018412592884114
1014 => 0.018425938810164
1015 => 0.018221784613475
1016 => 0.018279252824003
1017 => 0.018191953357208
1018 => 0.017656196690628
1019 => 0.017646506551432
1020 => 0.01751502322521
1021 => 0.017511041962347
1022 => 0.017287356024391
1023 => 0.017256060815403
1024 => 0.016811918808825
1025 => 0.01710425442254
1026 => 0.016908171041168
1027 => 0.016612627134047
1028 => 0.016561675253062
1029 => 0.016560143577994
1030 => 0.016863601088199
1031 => 0.017100708344852
1101 => 0.016911581995538
1102 => 0.016868521591859
1103 => 0.017328294047944
1104 => 0.017269783811988
1105 => 0.017219114325001
1106 => 0.018525082639873
1107 => 0.017491306812673
1108 => 0.017040521546153
1109 => 0.016482589177034
1110 => 0.016664254769758
1111 => 0.016702534379368
1112 => 0.015360807606504
1113 => 0.014816469221855
1114 => 0.014629672801202
1115 => 0.014522168820203
1116 => 0.014571159734295
1117 => 0.014081191343586
1118 => 0.014410458205471
1119 => 0.013986186995115
1120 => 0.013915056546
1121 => 0.014673706027236
1122 => 0.014779267670584
1123 => 0.014328908904629
1124 => 0.014618112138833
1125 => 0.014513243025885
1126 => 0.013993459907284
1127 => 0.013973608015419
1128 => 0.013712799117765
1129 => 0.01330468369549
1130 => 0.013118163996312
1201 => 0.013021022917542
1202 => 0.013061105219884
1203 => 0.013040838381281
1204 => 0.012908583550378
1205 => 0.013048419073377
1206 => 0.012691197096143
1207 => 0.012548948426476
1208 => 0.012484698002531
1209 => 0.012167642936807
1210 => 0.012672218541402
1211 => 0.012771626291983
1212 => 0.012871229906542
1213 => 0.013738211368997
1214 => 0.013694899425197
1215 => 0.014086418303378
1216 => 0.014071204599729
1217 => 0.013959537073486
1218 => 0.013488430148686
1219 => 0.013676204972238
1220 => 0.013098263252032
1221 => 0.013531296485027
1222 => 0.013333678201388
1223 => 0.013464481544543
1224 => 0.013229285339489
1225 => 0.013359452630379
1226 => 0.012795199557431
1227 => 0.012268307977166
1228 => 0.012480344529989
1229 => 0.012710852512228
1230 => 0.013210652550064
1231 => 0.012912975770789
]
'min_raw' => 0.012167642936807
'max_raw' => 0.036320710497781
'avg_raw' => 0.024244176717294
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.012167'
'max' => '$0.03632'
'avg' => '$0.024244'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.023049867063193
'max_diff' => 0.0011032004977813
'year' => 2026
]
1 => [
'items' => [
101 => 0.013020031597022
102 => 0.012661412500073
103 => 0.011921478868586
104 => 0.011925666812584
105 => 0.01181184414371
106 => 0.011713484739421
107 => 0.012947167529764
108 => 0.012793739573146
109 => 0.01254927220443
110 => 0.012876501492203
111 => 0.012963026109718
112 => 0.012965489343939
113 => 0.013204227385288
114 => 0.013331641920753
115 => 0.013354099284874
116 => 0.013729758751214
117 => 0.013855674849263
118 => 0.014374305436814
119 => 0.013320831687614
120 => 0.013299136089007
121 => 0.012881106279346
122 => 0.012615985165269
123 => 0.012899259348848
124 => 0.013150201604716
125 => 0.012888903754734
126 => 0.012923023737643
127 => 0.012572252722861
128 => 0.012697636855336
129 => 0.012805634561289
130 => 0.012746004575873
131 => 0.012656735601582
201 => 0.013129627201443
202 => 0.013102944804102
203 => 0.013543312333623
204 => 0.013886610313869
205 => 0.014501861666324
206 => 0.013859814806259
207 => 0.013836416066773
208 => 0.014065142498524
209 => 0.013855639832438
210 => 0.013988038285618
211 => 0.014480530228645
212 => 0.014490935807342
213 => 0.014316628957328
214 => 0.014306022369664
215 => 0.014339499906917
216 => 0.014535578888261
217 => 0.014467062867281
218 => 0.014546351341373
219 => 0.014645502792332
220 => 0.015055635232846
221 => 0.015154516775758
222 => 0.014914285890686
223 => 0.014935976049856
224 => 0.014846123104354
225 => 0.014759326284853
226 => 0.014954432859434
227 => 0.015310993959309
228 => 0.015308775811213
301 => 0.015391491055826
302 => 0.015443021967971
303 => 0.015221813570114
304 => 0.015077815037168
305 => 0.015133033237564
306 => 0.015221328342494
307 => 0.015104400325047
308 => 0.01438266643504
309 => 0.014601594392729
310 => 0.014565154075539
311 => 0.014513258632567
312 => 0.014733392386943
313 => 0.014712159949313
314 => 0.01407616600955
315 => 0.014116880278097
316 => 0.01407864197907
317 => 0.014202197746044
318 => 0.013848967415546
319 => 0.013957618686165
320 => 0.014025763744554
321 => 0.014065901707461
322 => 0.014210907552338
323 => 0.014193892790093
324 => 0.014209849890827
325 => 0.014424855278655
326 => 0.015512278749354
327 => 0.0155714648096
328 => 0.015280011002666
329 => 0.015396441049864
330 => 0.015172920819697
331 => 0.015322971447663
401 => 0.015425632276446
402 => 0.014961727731721
403 => 0.014934258315298
404 => 0.014709815537631
405 => 0.014830418373261
406 => 0.014638530590123
407 => 0.014685613140155
408 => 0.014553966225682
409 => 0.014790904461094
410 => 0.015055838224766
411 => 0.01512277095602
412 => 0.014946699756442
413 => 0.014819212604289
414 => 0.014595387161989
415 => 0.01496761386081
416 => 0.015076464290949
417 => 0.01496704211584
418 => 0.014941686606945
419 => 0.014893637963407
420 => 0.014951880353813
421 => 0.015075871468129
422 => 0.015017399548374
423 => 0.015056021281515
424 => 0.014908835061339
425 => 0.015221886799298
426 => 0.015719088299181
427 => 0.015720686883304
428 => 0.015662214648363
429 => 0.015638289069627
430 => 0.015698285131068
501 => 0.015730830533233
502 => 0.015924846794538
503 => 0.016133033972867
504 => 0.017104552694946
505 => 0.016831754125381
506 => 0.017693743331518
507 => 0.018375464878282
508 => 0.018579883362086
509 => 0.018391827975619
510 => 0.017748500657068
511 => 0.017716935949665
512 => 0.018678338569368
513 => 0.018406698294272
514 => 0.018374387547902
515 => 0.018030655796388
516 => 0.018233843833538
517 => 0.018189403629225
518 => 0.018119252592627
519 => 0.018506921213308
520 => 0.019232602263808
521 => 0.019119498066694
522 => 0.019035071030301
523 => 0.018665136333168
524 => 0.018887919648748
525 => 0.018808590777203
526 => 0.019149437952705
527 => 0.018947527636627
528 => 0.018404640352023
529 => 0.018491096941476
530 => 0.018478029201907
531 => 0.018746962356253
601 => 0.01866623529865
602 => 0.018462265948287
603 => 0.019230121964869
604 => 0.019180261666192
605 => 0.019250952170065
606 => 0.019282072316047
607 => 0.0197494527422
608 => 0.019940923548289
609 => 0.01998439077344
610 => 0.020166273230341
611 => 0.019979865372221
612 => 0.020725629711252
613 => 0.021221519480152
614 => 0.021797520964984
615 => 0.022639213948927
616 => 0.022955698296985
617 => 0.02289852823225
618 => 0.023536690246566
619 => 0.024683453200747
620 => 0.023130321812498
621 => 0.024765772935622
622 => 0.024248007992232
623 => 0.023020396625648
624 => 0.022941352926227
625 => 0.023772705596539
626 => 0.025616565804562
627 => 0.025154699735341
628 => 0.025617321251992
629 => 0.02507764867923
630 => 0.025050849387275
701 => 0.025591110559705
702 => 0.02685346023719
703 => 0.026253765223887
704 => 0.025393955371067
705 => 0.026028825586266
706 => 0.025478842251396
707 => 0.02423957586729
708 => 0.025154346555063
709 => 0.024542665447319
710 => 0.024721186513315
711 => 0.026006849221095
712 => 0.025852154882653
713 => 0.026052343680907
714 => 0.025699015691842
715 => 0.025368951635346
716 => 0.024752862563017
717 => 0.024570468961525
718 => 0.024620875991143
719 => 0.024570443982304
720 => 0.024225747808487
721 => 0.02415131070257
722 => 0.024027245598211
723 => 0.024065698561794
724 => 0.023832419869072
725 => 0.024272664960076
726 => 0.024354378328393
727 => 0.024674751992231
728 => 0.02470801424881
729 => 0.025600250342368
730 => 0.025108821695455
731 => 0.025438514459712
801 => 0.025409023635688
802 => 0.023047002686405
803 => 0.023372468332929
804 => 0.023878790742174
805 => 0.023650693183113
806 => 0.023328216601209
807 => 0.023067799471222
808 => 0.022673240890272
809 => 0.023228574516132
810 => 0.023958779180992
811 => 0.024726533444132
812 => 0.025648939886043
813 => 0.025443069506203
814 => 0.024709289697313
815 => 0.024742206523513
816 => 0.02494568539079
817 => 0.024682161769662
818 => 0.024604443509199
819 => 0.024935008095248
820 => 0.024937284511877
821 => 0.024634068737875
822 => 0.024297099892974
823 => 0.02429568798121
824 => 0.024235727629993
825 => 0.025088315492509
826 => 0.025557152610538
827 => 0.025610904030551
828 => 0.025553534711702
829 => 0.02557561388562
830 => 0.02530280789676
831 => 0.025926361489191
901 => 0.026498595928664
902 => 0.02634522487488
903 => 0.026115299862277
904 => 0.025932153515049
905 => 0.026302081415948
906 => 0.026285609108841
907 => 0.026493597960042
908 => 0.026484162384349
909 => 0.026414223556547
910 => 0.026345227372615
911 => 0.026618789442929
912 => 0.026540007959951
913 => 0.02646110410757
914 => 0.026302850352045
915 => 0.026324359665737
916 => 0.026094474352929
917 => 0.025988118888388
918 => 0.024388787884131
919 => 0.023961394380146
920 => 0.024095861076897
921 => 0.024140131004893
922 => 0.023954128804239
923 => 0.024220808179932
924 => 0.024179246481714
925 => 0.024340938736702
926 => 0.024239920435647
927 => 0.024244066261959
928 => 0.024541139545988
929 => 0.024627381184182
930 => 0.024583517990941
1001 => 0.024614238267944
1002 => 0.025322174085272
1003 => 0.025221528250561
1004 => 0.025168062156817
1005 => 0.025182872630178
1006 => 0.02536376540982
1007 => 0.02541440551174
1008 => 0.025199839841487
1009 => 0.025301030251968
1010 => 0.025731886176819
1011 => 0.025882661366184
1012 => 0.026363863394439
1013 => 0.026159440220152
1014 => 0.026534667803784
1015 => 0.027687989471356
1016 => 0.028609342623202
1017 => 0.027762028188235
1018 => 0.029453975917984
1019 => 0.03077139992108
1020 => 0.030720834993557
1021 => 0.030491111646051
1022 => 0.028991259444055
1023 => 0.027611073086242
1024 => 0.028765657580361
1025 => 0.028768600853679
1026 => 0.028669421021684
1027 => 0.028053423603146
1028 => 0.02864798564677
1029 => 0.028695179822661
1030 => 0.028668763634107
1031 => 0.028196479857596
1101 => 0.027475389823496
1102 => 0.027616289090113
1103 => 0.0278470849631
1104 => 0.027410140226474
1105 => 0.027270509907706
1106 => 0.02753010923605
1107 => 0.028366592361641
1108 => 0.028208460072165
1109 => 0.028204330599024
1110 => 0.02888088759193
1111 => 0.028396618795146
1112 => 0.027618066281087
1113 => 0.027421471503442
1114 => 0.026723692484909
1115 => 0.027205650938413
1116 => 0.027222995765141
1117 => 0.026959032045653
1118 => 0.027639485482137
1119 => 0.027633214983928
1120 => 0.028279204249742
1121 => 0.029514093103489
1122 => 0.029148875704246
1123 => 0.028724167604466
1124 => 0.02877034515079
1125 => 0.029276798858072
1126 => 0.028970585385436
1127 => 0.029080701885192
1128 => 0.029276632183561
1129 => 0.029394841797242
1130 => 0.028753336606524
1201 => 0.028603771059828
1202 => 0.02829781244166
1203 => 0.028217993549168
1204 => 0.028467190459629
1205 => 0.028401535877979
1206 => 0.027221537999617
1207 => 0.027098221655882
1208 => 0.027102003592089
1209 => 0.026791918782394
1210 => 0.026318965018729
1211 => 0.02756185927104
1212 => 0.027462037468286
1213 => 0.027351841923638
1214 => 0.027365340249091
1215 => 0.027904838518424
1216 => 0.027591902276895
1217 => 0.028423894564242
1218 => 0.028252861961941
1219 => 0.028077443018756
1220 => 0.028053194777416
1221 => 0.027985673450331
1222 => 0.027754117696176
1223 => 0.027474500208691
1224 => 0.027289872523401
1225 => 0.025173464865634
1226 => 0.025566257816338
1227 => 0.02601813030192
1228 => 0.026174114873177
1229 => 0.025907292470238
1230 => 0.027764653470946
1231 => 0.028104011223751
]
'min_raw' => 0.011713484739421
'max_raw' => 0.03077139992108
'avg_raw' => 0.021242442330251
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.011713'
'max' => '$0.030771'
'avg' => '$0.021242'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -0.0004541581973862
'max_diff' => -0.0055493105767012
'year' => 2027
]
2 => [
'items' => [
101 => 0.027076074454745
102 => 0.026883789455646
103 => 0.027777259643475
104 => 0.027238387897926
105 => 0.027481041811951
106 => 0.026956556774423
107 => 0.028022269878655
108 => 0.028014150930359
109 => 0.02759956446259
110 => 0.027949970106183
111 => 0.027889078502549
112 => 0.02742101140152
113 => 0.028037108440634
114 => 0.028037414017079
115 => 0.027638383555739
116 => 0.027172403335894
117 => 0.027089097078547
118 => 0.027026337004258
119 => 0.027465606680938
120 => 0.02785945449949
121 => 0.028592307646659
122 => 0.028776564340019
123 => 0.029495730480864
124 => 0.029067502059555
125 => 0.029257330172235
126 => 0.029463415441375
127 => 0.029562220297936
128 => 0.029401223086331
129 => 0.030518384123657
130 => 0.030612706744137
131 => 0.030644332302897
201 => 0.030267631886746
202 => 0.030602230024118
203 => 0.030445682636367
204 => 0.030852975449178
205 => 0.030916844162802
206 => 0.030862749634558
207 => 0.030883022572361
208 => 0.029929722707715
209 => 0.029880289080676
210 => 0.029206258068344
211 => 0.029480930688055
212 => 0.028967443390907
213 => 0.029130275502338
214 => 0.029202050345536
215 => 0.029164559240636
216 => 0.029496460265858
217 => 0.029214276591519
218 => 0.028469547479648
219 => 0.027724615466828
220 => 0.027715263452215
221 => 0.027519136002382
222 => 0.027377371778687
223 => 0.027404680597527
224 => 0.027500920437063
225 => 0.027371778144259
226 => 0.027399337200109
227 => 0.027857001152252
228 => 0.027948782393944
229 => 0.027636873873428
301 => 0.026384516155369
302 => 0.026077184430055
303 => 0.026298088379558
304 => 0.026192510519732
305 => 0.021139400231054
306 => 0.022326553539534
307 => 0.021621187355552
308 => 0.021946252545469
309 => 0.021226256325311
310 => 0.021569876259805
311 => 0.021506422204895
312 => 0.023415329594512
313 => 0.023385524631239
314 => 0.023399790689914
315 => 0.022718834539337
316 => 0.023803616177181
317 => 0.024338018619469
318 => 0.024239114950062
319 => 0.024264006872856
320 => 0.023836281168372
321 => 0.023403932009696
322 => 0.022924390254665
323 => 0.023815319562359
324 => 0.023716263432014
325 => 0.023943462555755
326 => 0.024521293896737
327 => 0.024606381756664
328 => 0.024720740703282
329 => 0.024679751161544
330 => 0.025656288341495
331 => 0.025538023245603
401 => 0.025823008099512
402 => 0.025236772633168
403 => 0.024573391557019
404 => 0.024699478612033
405 => 0.024687335414707
406 => 0.024532738575435
407 => 0.024393175461431
408 => 0.024160842198278
409 => 0.024895979021747
410 => 0.024866133809231
411 => 0.02534929310859
412 => 0.025263890009269
413 => 0.024693547210322
414 => 0.024713917114964
415 => 0.024850914513125
416 => 0.025325064072369
417 => 0.025465823944116
418 => 0.025400618363212
419 => 0.02555495513665
420 => 0.025676936629559
421 => 0.0255702741341
422 => 0.027080390138509
423 => 0.026453284688558
424 => 0.026758931521493
425 => 0.026831826490172
426 => 0.026645107560716
427 => 0.026685600210611
428 => 0.026746935541616
429 => 0.027119351660789
430 => 0.028096679316969
501 => 0.028529531082997
502 => 0.029831786977622
503 => 0.028493588769416
504 => 0.028414185625756
505 => 0.028648761236738
506 => 0.029413323304669
507 => 0.030032929049064
508 => 0.030238488020392
509 => 0.030265656031862
510 => 0.030651298327377
511 => 0.030872341299363
512 => 0.030604471209302
513 => 0.030377479355143
514 => 0.029564422708812
515 => 0.029658536229504
516 => 0.030306885059189
517 => 0.031222715968673
518 => 0.032008594164976
519 => 0.031733407011251
520 => 0.033832890742319
521 => 0.034041045978632
522 => 0.034012285655438
523 => 0.034486494261413
524 => 0.033545286749457
525 => 0.033142902303059
526 => 0.030426557570479
527 => 0.031189739642072
528 => 0.032299069603245
529 => 0.03215224562311
530 => 0.031346620552831
531 => 0.032007983026118
601 => 0.031789315909733
602 => 0.031616844082533
603 => 0.032406970958245
604 => 0.031538194001776
605 => 0.032290402888524
606 => 0.031325687210666
607 => 0.031734664042989
608 => 0.031502509012979
609 => 0.031652741769246
610 => 0.030774484145868
611 => 0.031248370640944
612 => 0.030754768909678
613 => 0.030754534878189
614 => 0.030743638592613
615 => 0.031324358840482
616 => 0.031343296106917
617 => 0.030914142966322
618 => 0.03085229529413
619 => 0.0310809785539
620 => 0.03081325034895
621 => 0.030938518690985
622 => 0.030817044599418
623 => 0.03078969822277
624 => 0.030571797641039
625 => 0.030477920079128
626 => 0.03051473189008
627 => 0.030389074201511
628 => 0.030313360898911
629 => 0.03072857731105
630 => 0.030506743931827
701 => 0.030694578164145
702 => 0.030480517349848
703 => 0.029738489305636
704 => 0.029311741130606
705 => 0.027910118941125
706 => 0.028307617255355
707 => 0.028571159048931
708 => 0.028484058487726
709 => 0.028671184196637
710 => 0.028682672195392
711 => 0.028621835719904
712 => 0.028551394874925
713 => 0.028517108167212
714 => 0.028772653195931
715 => 0.028921005686353
716 => 0.028597608993651
717 => 0.028521841673351
718 => 0.028848813584894
719 => 0.02904826626205
720 => 0.03052091276739
721 => 0.030411814357689
722 => 0.030685629956557
723 => 0.030654802522167
724 => 0.030941804892027
725 => 0.031410932470496
726 => 0.030457064933334
727 => 0.030622623355528
728 => 0.030582032253708
729 => 0.031025195259815
730 => 0.031026578766348
731 => 0.030760880406552
801 => 0.030904919797861
802 => 0.030824520961146
803 => 0.030969812525644
804 => 0.030410357281913
805 => 0.031091713379316
806 => 0.031477998380926
807 => 0.031483361948548
808 => 0.031666457973564
809 => 0.031852494139187
810 => 0.032209574358765
811 => 0.031842535365668
812 => 0.031182267947614
813 => 0.031229937122547
814 => 0.030842822576924
815 => 0.030849330042374
816 => 0.030814592681803
817 => 0.030918842115782
818 => 0.030433234170217
819 => 0.030547205384422
820 => 0.030387645017121
821 => 0.030622276502451
822 => 0.030369851810209
823 => 0.03058201267945
824 => 0.03067357427737
825 => 0.031011438544874
826 => 0.03031994898319
827 => 0.028909954957187
828 => 0.029206352795978
829 => 0.028767957110859
830 => 0.028808532300607
831 => 0.028890500641391
901 => 0.028624814430537
902 => 0.028675498986833
903 => 0.02867368817782
904 => 0.028658083604028
905 => 0.028588968359296
906 => 0.028488737580401
907 => 0.028888026154112
908 => 0.028955873063434
909 => 0.029106688338403
910 => 0.029555412297733
911 => 0.029510574192556
912 => 0.029583707002414
913 => 0.029424058489117
914 => 0.028815937937256
915 => 0.028848961808978
916 => 0.028437153599429
917 => 0.029096157476614
918 => 0.02894009666007
919 => 0.028839483236409
920 => 0.028812029931586
921 => 0.029261866190818
922 => 0.0293964642499
923 => 0.02931259177202
924 => 0.029140566872937
925 => 0.029470905533772
926 => 0.029559290223542
927 => 0.02957907629608
928 => 0.030164373066923
929 => 0.029611787883734
930 => 0.029744800629552
1001 => 0.030782528102262
1002 => 0.029841452481116
1003 => 0.030339961226128
1004 => 0.030315561817174
1005 => 0.030570582022505
1006 => 0.030294642716855
1007 => 0.030298063315258
1008 => 0.030524503981028
1009 => 0.030206508904744
1010 => 0.030127768851881
1011 => 0.030018990032798
1012 => 0.030256504604672
1013 => 0.030398883848651
1014 => 0.031546355989085
1015 => 0.032287675322892
1016 => 0.032255492695521
1017 => 0.03254958166634
1018 => 0.03241709189144
1019 => 0.03198924745925
1020 => 0.032719525734928
1021 => 0.032488435132363
1022 => 0.032507485960863
1023 => 0.032506776888075
1024 => 0.032660431936489
1025 => 0.032551553252409
1026 => 0.032336942189919
1027 => 0.032479411028679
1028 => 0.032902492546253
1029 => 0.03421575055853
1030 => 0.034950667140554
1031 => 0.034171507657503
1101 => 0.03470896143555
1102 => 0.034386680683084
1103 => 0.034328112683339
1104 => 0.034665673373475
1105 => 0.035003824918913
1106 => 0.034982286127338
1107 => 0.034736805469624
1108 => 0.034598139674922
1109 => 0.035648163528852
1110 => 0.036421803217738
1111 => 0.036369046177503
1112 => 0.036601898595595
1113 => 0.037285560496967
1114 => 0.037348065973298
1115 => 0.037340191719953
1116 => 0.037185265375093
1117 => 0.03785841930171
1118 => 0.038419976150311
1119 => 0.03714940440251
1120 => 0.037633221491067
1121 => 0.037850422569733
1122 => 0.038169338193871
1123 => 0.038707402308257
1124 => 0.039291882650938
1125 => 0.039374534579894
1126 => 0.039315889081041
1127 => 0.038930408583368
1128 => 0.03956995394863
1129 => 0.039944584624416
1130 => 0.040167668618576
1201 => 0.040733372510129
1202 => 0.037851763929651
1203 => 0.03581201815115
1204 => 0.03549348239355
1205 => 0.036141237382428
1206 => 0.036312045207246
1207 => 0.036243192787237
1208 => 0.033947273467961
1209 => 0.035481394853486
1210 => 0.037131980471721
1211 => 0.037195386187539
1212 => 0.038021703860146
1213 => 0.038290786766252
1214 => 0.038956080800633
1215 => 0.038914466477643
1216 => 0.039076454987874
1217 => 0.039039216634622
1218 => 0.040271533739127
1219 => 0.041630962506256
1220 => 0.041583889810769
1221 => 0.041388455841463
1222 => 0.041678708612326
1223 => 0.043081784785243
1224 => 0.042952612015078
1225 => 0.043078092358383
1226 => 0.044732398240161
1227 => 0.046883231208739
1228 => 0.045883953354735
1229 => 0.048052098763468
1230 => 0.049416831369815
1231 => 0.051776995296508
]
'min_raw' => 0.021139400231054
'max_raw' => 0.051776995296508
'avg_raw' => 0.036458197763781
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.021139'
'max' => '$0.051776'
'avg' => '$0.036458'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 0.0094259154916327
'max_diff' => 0.021005595375428
'year' => 2028
]
3 => [
'items' => [
101 => 0.051481491148833
102 => 0.052400285645812
103 => 0.05095247705092
104 => 0.047628015866654
105 => 0.047101907158718
106 => 0.0481551901152
107 => 0.050744583485865
108 => 0.04807364090309
109 => 0.048613969108942
110 => 0.048458354549307
111 => 0.048450062510743
112 => 0.04876653589656
113 => 0.048307474744291
114 => 0.046437177026421
115 => 0.047294323448787
116 => 0.04696333805156
117 => 0.047330591026379
118 => 0.049312503864834
119 => 0.048436252956052
120 => 0.047513193804494
121 => 0.048670914823772
122 => 0.050145091517416
123 => 0.050052840189278
124 => 0.049873834054626
125 => 0.050882882263201
126 => 0.052549534280381
127 => 0.053000023623475
128 => 0.053332565646697
129 => 0.053378417573356
130 => 0.053850720914756
131 => 0.051311026812281
201 => 0.055341586576879
202 => 0.056037552906258
203 => 0.055906740081184
204 => 0.056680277365549
205 => 0.056452683073742
206 => 0.056122934653364
207 => 0.057349155785182
208 => 0.055943392208495
209 => 0.053948087792102
210 => 0.052853424326623
211 => 0.054294965481949
212 => 0.055175264362654
213 => 0.055757085925275
214 => 0.055933144778578
215 => 0.051508176035874
216 => 0.049123363303574
217 => 0.050652000923045
218 => 0.052517044319732
219 => 0.051300666402044
220 => 0.05134834611351
221 => 0.04961411086138
222 => 0.052670485658242
223 => 0.052225197558497
224 => 0.054535353007674
225 => 0.053984015869572
226 => 0.055867857958657
227 => 0.055371779202177
228 => 0.057430974384935
301 => 0.05825244309382
302 => 0.059631816907435
303 => 0.060646489899792
304 => 0.061242325288505
305 => 0.061206553566689
306 => 0.063567550220782
307 => 0.062175352980804
308 => 0.060426425131694
309 => 0.0603947925447
310 => 0.061300587060253
311 => 0.063198883872263
312 => 0.063691084616522
313 => 0.063966157685302
314 => 0.063544873705103
315 => 0.062033743380781
316 => 0.061381244968343
317 => 0.061937192520439
318 => 0.061257316437344
319 => 0.062430973296303
320 => 0.064042654843232
321 => 0.063709848977071
322 => 0.064822369090604
323 => 0.065973710367582
324 => 0.067620180103632
325 => 0.068050628261234
326 => 0.068762142697271
327 => 0.069494524772271
328 => 0.06972974615651
329 => 0.070178856763932
330 => 0.070176489729344
331 => 0.071529914773441
401 => 0.073022784509165
402 => 0.073586308274386
403 => 0.074882100099632
404 => 0.07266310200886
405 => 0.074346237550723
406 => 0.0758644679411
407 => 0.074054371080401
408 => 0.076549167904396
409 => 0.076646035211741
410 => 0.078108616546479
411 => 0.076626010167042
412 => 0.075745643231579
413 => 0.078287229587341
414 => 0.079517023165675
415 => 0.079146599331489
416 => 0.076327655663252
417 => 0.074686909538157
418 => 0.070392760452491
419 => 0.075479365537898
420 => 0.077956902496695
421 => 0.076321239441058
422 => 0.077146172745483
423 => 0.081646741368905
424 => 0.083360266510465
425 => 0.083003865259466
426 => 0.083064091204021
427 => 0.083988678267725
428 => 0.088088806487588
429 => 0.085631914618018
430 => 0.087510116394322
501 => 0.088506307844114
502 => 0.089431625981033
503 => 0.08715933708656
504 => 0.084203122621405
505 => 0.083266765406849
506 => 0.07615860498557
507 => 0.075788594366466
508 => 0.075580896193494
509 => 0.074271388592395
510 => 0.073242474322251
511 => 0.072424243493494
512 => 0.070276961454429
513 => 0.071001606108488
514 => 0.067579286710809
515 => 0.069768765381892
516 => 0.064306660988405
517 => 0.068855663834609
518 => 0.066379848403199
519 => 0.068042291878548
520 => 0.068036491769875
521 => 0.064975406253573
522 => 0.063209836010995
523 => 0.064334926086588
524 => 0.065541111957384
525 => 0.065736811556824
526 => 0.067300663022984
527 => 0.067737100352315
528 => 0.066414674869133
529 => 0.064193471015537
530 => 0.064709406010461
531 => 0.06319938060479
601 => 0.060553119163641
602 => 0.062453710329967
603 => 0.063102655717245
604 => 0.06338926696987
605 => 0.06078697276768
606 => 0.059969275430796
607 => 0.059533940229784
608 => 0.063857547512245
609 => 0.06409440447917
610 => 0.062882610748182
611 => 0.068360033319243
612 => 0.067120323896246
613 => 0.068505383057916
614 => 0.064662590317446
615 => 0.064809390175139
616 => 0.062990150508315
617 => 0.064008803160098
618 => 0.063288852298525
619 => 0.063926506092356
620 => 0.064308713147232
621 => 0.066127654294728
622 => 0.068876433220708
623 => 0.065855965143634
624 => 0.064539903948553
625 => 0.065356380912172
626 => 0.067530766660366
627 => 0.070825072373637
628 => 0.068874777087299
629 => 0.069740285017214
630 => 0.069929359996133
701 => 0.068491284455844
702 => 0.070878096270057
703 => 0.072157208111719
704 => 0.073469312186363
705 => 0.074608575390055
706 => 0.072945228965163
707 => 0.074725248071141
708 => 0.073290866887393
709 => 0.07200407868197
710 => 0.072006030208515
711 => 0.071198809170277
712 => 0.069634716692295
713 => 0.069346274041871
714 => 0.070846789135667
715 => 0.072050060141583
716 => 0.072149167304909
717 => 0.072815359960081
718 => 0.073209605911081
719 => 0.077073752182267
720 => 0.078627943778433
721 => 0.080528379842882
722 => 0.081268706792693
723 => 0.083496825489723
724 => 0.081697438682919
725 => 0.081308130028593
726 => 0.075903442881669
727 => 0.076788460099202
728 => 0.078205458055931
729 => 0.075926808656063
730 => 0.077372087227486
731 => 0.077657415832671
801 => 0.075849381021391
802 => 0.076815130534668
803 => 0.074250386152179
804 => 0.068932337639609
805 => 0.070884016778297
806 => 0.072321109552465
807 => 0.070270200971465
808 => 0.073946375221785
809 => 0.071798830116388
810 => 0.071118161418322
811 => 0.068462630151254
812 => 0.069715938688538
813 => 0.071411056430864
814 => 0.070363670744696
815 => 0.072537153309247
816 => 0.075615384267279
817 => 0.077809114959795
818 => 0.077977522362704
819 => 0.076567100495958
820 => 0.078827310538611
821 => 0.078843773701244
822 => 0.076294247539903
823 => 0.074732676961902
824 => 0.074377884841007
825 => 0.075264225120094
826 => 0.076340405846347
827 => 0.078037242903174
828 => 0.079062605998837
829 => 0.081736209141761
830 => 0.082459609494027
831 => 0.083254407159884
901 => 0.084316501947992
902 => 0.08559181905663
903 => 0.082801497826774
904 => 0.082912362491045
905 => 0.08031405399643
906 => 0.077537388734803
907 => 0.079644531552167
908 => 0.082399340484407
909 => 0.081767384271558
910 => 0.081696276287918
911 => 0.08181586019269
912 => 0.081339385845962
913 => 0.079184310034675
914 => 0.078102044453734
915 => 0.079498443168544
916 => 0.080240566938908
917 => 0.08139153618675
918 => 0.08124965493294
919 => 0.084214428110307
920 => 0.085366449316944
921 => 0.085071712994519
922 => 0.085125951571071
923 => 0.087211630937983
924 => 0.089531335346667
925 => 0.091704044637355
926 => 0.093914217847879
927 => 0.091249767778064
928 => 0.089896924353046
929 => 0.09129271344386
930 => 0.09055208810512
1001 => 0.094807940985264
1002 => 0.095102607004892
1003 => 0.099358152138433
1004 => 0.10339717121105
1005 => 0.10086033569808
1006 => 0.10325245732523
1007 => 0.10583973189753
1008 => 0.11083100431766
1009 => 0.10915011936164
1010 => 0.10786258782816
1011 => 0.10664587675032
1012 => 0.10917765935586
1013 => 0.11243475723166
1014 => 0.11313630491802
1015 => 0.11427308018175
1016 => 0.1130778999902
1017 => 0.11451736288614
1018 => 0.11959929944087
1019 => 0.11822611532429
1020 => 0.11627597312838
1021 => 0.12028767396396
1022 => 0.12173949290127
1023 => 0.13192911852676
1024 => 0.14479394179138
1025 => 0.13946782048484
1026 => 0.13616172511702
1027 => 0.13693873595009
1028 => 0.14163653390458
1029 => 0.1431453175069
1030 => 0.13904392356688
1031 => 0.14049260524316
1101 => 0.14847498371073
1102 => 0.15275727365322
1103 => 0.14694134872305
1104 => 0.13089544250365
1105 => 0.11610038416061
1106 => 0.12002469986334
1107 => 0.11957980424834
1108 => 0.12815587408975
1109 => 0.11819336533725
1110 => 0.11836110843437
1111 => 0.12711452231788
1112 => 0.12477926156526
1113 => 0.12099643822362
1114 => 0.11612800295732
1115 => 0.10712825009181
1116 => 0.099156918002147
1117 => 0.11479053591812
1118 => 0.11411638588569
1119 => 0.1131401167353
1120 => 0.11531269808614
1121 => 0.12586213642783
1122 => 0.12561893772886
1123 => 0.12407183168704
1124 => 0.12524529798419
1125 => 0.12079072390811
1126 => 0.12193876907628
1127 => 0.11609804054777
1128 => 0.11873829377303
1129 => 0.12098832198369
1130 => 0.12144004845921
1201 => 0.1224578112743
1202 => 0.11376113945222
1203 => 0.11766568977946
1204 => 0.11995924728983
1205 => 0.10959687101766
1206 => 0.11975441642851
1207 => 0.11360974974414
1208 => 0.11152415758167
1209 => 0.11433213267256
1210 => 0.1132378620488
1211 => 0.11229707242421
1212 => 0.11177209564887
1213 => 0.11383396265072
1214 => 0.11373777409062
1215 => 0.11036415948446
1216 => 0.10596341675684
1217 => 0.10744045046568
1218 => 0.106903830272
1219 => 0.10495904946469
1220 => 0.10626959691508
1221 => 0.10049860919643
1222 => 0.090569924776319
1223 => 0.097129117828071
1224 => 0.096876596030608
1225 => 0.096749263089375
1226 => 0.10167831538499
1227 => 0.10120450073935
1228 => 0.10034452251791
1229 => 0.10494325529025
1230 => 0.10326465596666
1231 => 0.10843770355422
]
'min_raw' => 0.046437177026421
'max_raw' => 0.15275727365322
'avg_raw' => 0.099597225339821
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.046437'
'max' => '$0.152757'
'avg' => '$0.099597'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072434
'min_diff' => 0.025297776795367
'max_diff' => 0.10098027835671
'year' => 2029
]
4 => [
'items' => [
101 => 0.11184500726713
102 => 0.1109808048308
103 => 0.11418539044172
104 => 0.10747447833915
105 => 0.10970357414456
106 => 0.11016298770066
107 => 0.10488650764168
108 => 0.10128202267514
109 => 0.10104164462201
110 => 0.09479196441865
111 => 0.098130493137628
112 => 0.10106826025262
113 => 0.099661297784478
114 => 0.099215895498871
115 => 0.10149135918007
116 => 0.10166818219612
117 => 0.097636598691153
118 => 0.098474892565482
119 => 0.10197071737619
120 => 0.098386806749614
121 => 0.091423853830649
122 => 0.089696945236389
123 => 0.089466543796675
124 => 0.084783030726196
125 => 0.089812345526193
126 => 0.087616914838737
127 => 0.094552254075111
128 => 0.090590825498264
129 => 0.090420056229924
130 => 0.090161913434421
131 => 0.086130620261171
201 => 0.087013217264067
202 => 0.08994710412501
203 => 0.090993948009595
204 => 0.090884753615894
205 => 0.089932726478815
206 => 0.090368559627002
207 => 0.088964589202356
208 => 0.088468818024296
209 => 0.086904027813734
210 => 0.084604218488536
211 => 0.084924021080755
212 => 0.080367497029693
213 => 0.07788486089364
214 => 0.077197699931798
215 => 0.076278799575191
216 => 0.077301492172178
217 => 0.080354588969553
218 => 0.0766719064813
219 => 0.07035820566533
220 => 0.070737669842392
221 => 0.071590213184326
222 => 0.070001504306771
223 => 0.068497924684394
224 => 0.06980516517678
225 => 0.067129966909006
226 => 0.071913498114076
227 => 0.07178411700067
228 => 0.073567121622335
301 => 0.0746820710032
302 => 0.072112473649454
303 => 0.071466226863918
304 => 0.071834358403238
305 => 0.065749964081406
306 => 0.073069896799594
307 => 0.073133199881708
308 => 0.072591160460235
309 => 0.076488798655102
310 => 0.084714030950112
311 => 0.081619367701527
312 => 0.080421020554983
313 => 0.078142961753416
314 => 0.081178339848757
315 => 0.080945270170309
316 => 0.079891240695319
317 => 0.079253760380072
318 => 0.080428337407127
319 => 0.079108217287952
320 => 0.078871087440073
321 => 0.077434338561747
322 => 0.076921484580093
323 => 0.076541787909382
324 => 0.076123779183153
325 => 0.077045802271929
326 => 0.074956376650524
327 => 0.072436734180029
328 => 0.072227253171517
329 => 0.072805648653778
330 => 0.072549751709357
331 => 0.072226028035397
401 => 0.071607951380912
402 => 0.071424581240645
403 => 0.072020445237969
404 => 0.07134774952602
405 => 0.072340348692633
406 => 0.072070416642331
407 => 0.070562598152017
408 => 0.068683298047182
409 => 0.068666568334284
410 => 0.068261676209367
411 => 0.067745985212347
412 => 0.067602531774387
413 => 0.069695073028701
414 => 0.074026570800642
415 => 0.073176194144053
416 => 0.073790678428543
417 => 0.076813332930788
418 => 0.077774143902659
419 => 0.07709218303288
420 => 0.076158672932812
421 => 0.076199742639571
422 => 0.079389829244229
423 => 0.079588791032722
424 => 0.080091503284737
425 => 0.080737630595042
426 => 0.077202221307758
427 => 0.076033225180074
428 => 0.075479289961341
429 => 0.073773383887552
430 => 0.0756130573348
501 => 0.07454115839976
502 => 0.074685794187378
503 => 0.074591599940949
504 => 0.074643036368886
505 => 0.071912161019615
506 => 0.072907148466307
507 => 0.071252788855193
508 => 0.069037787046494
509 => 0.069030361583751
510 => 0.069572480138439
511 => 0.06925000680901
512 => 0.068382239371061
513 => 0.068505501639875
514 => 0.067425594462412
515 => 0.06863662192357
516 => 0.068671349857891
517 => 0.068205038320234
518 => 0.070070793213732
519 => 0.07083519451591
520 => 0.070528258272463
521 => 0.07081365905084
522 => 0.073211531133354
523 => 0.073602488909298
524 => 0.073776126528151
525 => 0.073543475121464
526 => 0.070857487750673
527 => 0.070976622712268
528 => 0.070102489411374
529 => 0.069363938886016
530 => 0.069393477033843
531 => 0.069773188008725
601 => 0.071431408105787
602 => 0.074921034542639
603 => 0.075053463315034
604 => 0.075213970850397
605 => 0.074561106039454
606 => 0.074364195765399
607 => 0.074623971243732
608 => 0.075934491457572
609 => 0.079305505250337
610 => 0.078113963833533
611 => 0.077145222114224
612 => 0.07799506977295
613 => 0.077864242387215
614 => 0.076759927591586
615 => 0.076728933153308
616 => 0.074609399989699
617 => 0.073825856838548
618 => 0.073171069534257
619 => 0.072456058891628
620 => 0.072032176615303
621 => 0.072683452442787
622 => 0.072832406930202
623 => 0.071408380951055
624 => 0.071214291472054
625 => 0.072377181826361
626 => 0.071865437138353
627 => 0.072391779240627
628 => 0.072513895123233
629 => 0.072494231653567
630 => 0.071959911425783
701 => 0.072300471205314
702 => 0.071494945800967
703 => 0.070619057909743
704 => 0.070060296004886
705 => 0.069572702133887
706 => 0.06984324755264
707 => 0.068878802534429
708 => 0.06857025716266
709 => 0.072185097214846
710 => 0.074855418427475
711 => 0.07481659089948
712 => 0.074580238308441
713 => 0.074229066300529
714 => 0.075908801037878
715 => 0.075323615042742
716 => 0.075749386748129
717 => 0.075857763516733
718 => 0.076185787354301
719 => 0.07630302768163
720 => 0.075948645983799
721 => 0.074759297721798
722 => 0.071795554932732
723 => 0.070415924663951
724 => 0.069960623695693
725 => 0.06997717302115
726 => 0.069520668745617
727 => 0.069655129713848
728 => 0.069473908708182
729 => 0.069130719965519
730 => 0.069822056614861
731 => 0.069901726723451
801 => 0.069740360488637
802 => 0.069778368078478
803 => 0.068442324574638
804 => 0.068543901060501
805 => 0.0679783102795
806 => 0.06787226882636
807 => 0.066442504583612
808 => 0.063909469979944
809 => 0.065313017037995
810 => 0.063617729560451
811 => 0.062975698504908
812 => 0.066014973665533
813 => 0.065709914735778
814 => 0.065187786453965
815 => 0.064415449904095
816 => 0.064128982764941
817 => 0.062388499111918
818 => 0.062285662052578
819 => 0.063148292748028
820 => 0.062750218363388
821 => 0.062191171164794
822 => 0.060166358881194
823 => 0.057889799482119
824 => 0.057958514500435
825 => 0.058682645688388
826 => 0.060788154779754
827 => 0.05996549595208
828 => 0.05936864753368
829 => 0.059256875766111
830 => 0.060655933447279
831 => 0.062635893177778
901 => 0.063564845984226
902 => 0.062644281965752
903 => 0.061586787588016
904 => 0.061651152370832
905 => 0.062079342434974
906 => 0.062124339156434
907 => 0.061436019028706
908 => 0.061629777112803
909 => 0.061335440865449
910 => 0.05952909985874
911 => 0.059496428877898
912 => 0.059053123663668
913 => 0.059039700557962
914 => 0.058285527800888
915 => 0.058180013818824
916 => 0.05668255803464
917 => 0.057668187966504
918 => 0.057007079156104
919 => 0.056010632239028
920 => 0.055838844414941
921 => 0.055833680265509
922 => 0.056856808447892
923 => 0.057656232117998
924 => 0.057018579426906
925 => 0.056873398269522
926 => 0.058423553205499
927 => 0.05822628185992
928 => 0.058055446146912
929 => 0.0624586095003
930 => 0.058973162122972
1001 => 0.057453308124076
1002 => 0.055572200187996
1003 => 0.056184698417353
1004 => 0.05631376079375
1005 => 0.051790035302668
1006 => 0.04995476043433
1007 => 0.049324963260391
1008 => 0.048962506082764
1009 => 0.04912768237006
1010 => 0.047475719732284
1011 => 0.04858586594581
1012 => 0.047155405938422
1013 => 0.046915584663064
1014 => 0.049473424356264
1015 => 0.04982933280689
1016 => 0.048310916784431
1017 => 0.049285985680074
1018 => 0.048932412144042
1019 => 0.047179927069579
1020 => 0.047112995030142
1021 => 0.046233659622606
1022 => 0.044857669982698
1023 => 0.044228805794529
1024 => 0.043901287865281
1025 => 0.044036428146086
1026 => 0.04396809708475
1027 => 0.043522190688624
1028 => 0.043993655917417
1029 => 0.042789257080733
1030 => 0.042309655759465
1031 => 0.042093030969314
1101 => 0.041024057679147
1102 => 0.042725269558383
1103 => 0.043060429729895
1104 => 0.043396250270481
1105 => 0.046319338801862
1106 => 0.046173309559397
1107 => 0.047493342792159
1108 => 0.047442048728119
1109 => 0.047065553867015
1110 => 0.045477183978415
1111 => 0.04611027990604
1112 => 0.044161709045761
1113 => 0.045621710824221
1114 => 0.044955426983664
1115 => 0.045396439587507
1116 => 0.044603459161293
1117 => 0.04504232727052
1118 => 0.043139908640183
1119 => 0.041363456890927
1120 => 0.042078352932687
1121 => 0.042855526688359
1122 => 0.044540637410846
1123 => 0.043536999366395
1124 => 0.043897945558936
1125 => 0.042688836235586
1126 => 0.040194098336512
1127 => 0.040208218282093
1128 => 0.03982445720714
1129 => 0.039492831608347
1130 => 0.043652279268969
1201 => 0.043134986201233
1202 => 0.04231074739944
1203 => 0.043414023789588
1204 => 0.043705747578494
1205 => 0.043714052544649
1206 => 0.044518974519216
1207 => 0.044948561521332
1208 => 0.045024278092392
1209 => 0.046290840210863
1210 => 0.046715375126617
1211 => 0.048463974362174
1212 => 0.04491211406556
1213 => 0.044838965840118
1214 => 0.043429549150935
1215 => 0.042535674804659
1216 => 0.043490753492167
1217 => 0.044336822828058
1218 => 0.04345583888361
1219 => 0.043570876788169
1220 => 0.042388227821781
1221 => 0.042810969178459
1222 => 0.04317509098424
1223 => 0.042974044325178
1224 => 0.042673067745794
1225 => 0.044267454790962
1226 => 0.044177493225421
1227 => 0.045662223096681
1228 => 0.04681967620538
1229 => 0.048894039095661
1230 => 0.04672933328067
1231 => 0.046650442796846
]
'min_raw' => 0.039492831608347
'max_raw' => 0.11418539044172
'avg_raw' => 0.076839111025034
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.039492'
'max' => '$0.114185'
'avg' => '$0.076839'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -0.0069443454180746
'max_diff' => -0.038571883211499
'year' => 2030
]
5 => [
'items' => [
101 => 0.047421609930663
102 => 0.046715257064946
103 => 0.047161647693607
104 => 0.048822118664212
105 => 0.048857201799285
106 => 0.048269514084746
107 => 0.048233753233907
108 => 0.048346625088083
109 => 0.049007719063483
110 => 0.048776712515112
111 => 0.049044039141257
112 => 0.049378335180701
113 => 0.050761125338426
114 => 0.05109451136404
115 => 0.050284556162635
116 => 0.050357686048638
117 => 0.050054740569545
118 => 0.049762099032637
119 => 0.050419914470742
120 => 0.051622085113273
121 => 0.051614606472099
122 => 0.051893486694308
123 => 0.052067226762376
124 => 0.051321407204726
125 => 0.050835906097241
126 => 0.051022078115089
127 => 0.051319771225926
128 => 0.050925540251451
129 => 0.04849216405144
130 => 0.04923029494585
131 => 0.049107433872263
201 => 0.048932464763059
202 => 0.049674661085185
203 => 0.049603074439316
204 => 0.047458776467726
205 => 0.047596047466709
206 => 0.04746712437183
207 => 0.047883701266569
208 => 0.046692760545542
209 => 0.047059085890222
210 => 0.047288841712318
211 => 0.0474241696566
212 => 0.047913066986588
213 => 0.047855700527745
214 => 0.04790950100696
215 => 0.048634406683221
216 => 0.052300730836164
217 => 0.052500280770521
218 => 0.05151762391179
219 => 0.051910175944804
220 => 0.05115656188311
221 => 0.0516624680515
222 => 0.052008596203289
223 => 0.050444509641971
224 => 0.050351894586647
225 => 0.049595170091646
226 => 0.050001790972194
227 => 0.049354827914167
228 => 0.0495135700188
301 => 0.049069713255359
302 => 0.049868567058552
303 => 0.050761809739854
304 => 0.050987478116373
305 => 0.050393841774096
306 => 0.049964009939746
307 => 0.049209366834035
308 => 0.05046435513715
309 => 0.050831351962056
310 => 0.050462427459064
311 => 0.050376939590561
312 => 0.050214940234221
313 => 0.050411308519829
314 => 0.050829353218531
315 => 0.050632211058697
316 => 0.050762426928465
317 => 0.050266178310929
318 => 0.051321654102033
319 => 0.052998003672387
320 => 0.053003393410366
321 => 0.052806250187862
322 => 0.052725583428723
323 => 0.052927864338664
324 => 0.053037593434309
325 => 0.053691732805081
326 => 0.054393650411982
327 => 0.057669193612745
328 => 0.056749434189269
329 => 0.059655690979922
330 => 0.061954162771115
331 => 0.062643373961304
401 => 0.062009332096223
402 => 0.059840309126048
403 => 0.059733886511261
404 => 0.062975322566579
405 => 0.062059468413775
406 => 0.061950530476523
407 => 0.060791614877708
408 => 0.061476677531097
409 => 0.061326844279538
410 => 0.061090325161859
411 => 0.062397376982646
412 => 0.064844061309839
413 => 0.064462722612586
414 => 0.064178070964879
415 => 0.062930810305478
416 => 0.063681939808191
417 => 0.063414476979213
418 => 0.064563667028609
419 => 0.063882912301023
420 => 0.0620525299178
421 => 0.062344024345348
422 => 0.062299965549029
423 => 0.063206692455222
424 => 0.062934515544328
425 => 0.062246818638894
426 => 0.064835698808797
427 => 0.064667591330672
428 => 0.064905929299934
429 => 0.06501085304485
430 => 0.066586658783085
501 => 0.06723221597388
502 => 0.06737876875826
503 => 0.067991998160331
504 => 0.067363511052097
505 => 0.069877907588744
506 => 0.07154983456651
507 => 0.073491863787759
508 => 0.07632969044825
509 => 0.077396739523958
510 => 0.077203986659218
511 => 0.079355594445534
512 => 0.083221985809989
513 => 0.077985494898334
514 => 0.0834995325435
515 => 0.081753851887667
516 => 0.077614874456139
517 => 0.077348373104887
518 => 0.080151336676034
519 => 0.086368040101591
520 => 0.084810826402755
521 => 0.086370587145346
522 => 0.084551043387544
523 => 0.084460687703651
524 => 0.086282215966327
525 => 0.090538316038407
526 => 0.088516402431687
527 => 0.085617493482898
528 => 0.087758002738665
529 => 0.08590369552654
530 => 0.081725422389713
531 => 0.084809635630787
601 => 0.082747310069817
602 => 0.083349206307765
603 => 0.08768390788915
604 => 0.08716234512668
605 => 0.087837295636727
606 => 0.086646025653023
607 => 0.08553319164221
608 => 0.083456004320889
609 => 0.082841051559143
610 => 0.083011002378807
611 => 0.082840967339957
612 => 0.081678800124014
613 => 0.081427830224382
614 => 0.081009536063086
615 => 0.081139182914506
616 => 0.080352667514995
617 => 0.081836984576245
618 => 0.082112486902571
619 => 0.083192649077978
620 => 0.08330479509833
621 => 0.086313031381694
622 => 0.084656145388174
623 => 0.085767727561281
624 => 0.085668297189102
625 => 0.077704578647557
626 => 0.078801908798098
627 => 0.08050901015117
628 => 0.079739963305532
629 => 0.078652710995048
630 => 0.077774696459552
701 => 0.076444414656679
702 => 0.078316760748423
703 => 0.080778696757258
704 => 0.083367233858327
705 => 0.086477191577591
706 => 0.08578308521855
707 => 0.083309095362007
708 => 0.08342007673972
709 => 0.084106119947185
710 => 0.08321763165992
711 => 0.082955599118654
712 => 0.084070120699798
713 => 0.084077795797397
714 => 0.083055482645503
715 => 0.081919368658505
716 => 0.081914608299416
717 => 0.081712447788989
718 => 0.084587007293247
719 => 0.086167724369842
720 => 0.086348951035221
721 => 0.086155526371324
722 => 0.086229967847708
723 => 0.085310183409561
724 => 0.087412537881562
725 => 0.089341866246379
726 => 0.088824765030519
727 => 0.088049556797677
728 => 0.08743206610113
729 => 0.08867930384655
730 => 0.08862376631308
731 => 0.089325015246221
801 => 0.089293202544004
802 => 0.089057398903095
803 => 0.08882477345181
804 => 0.089747107071367
805 => 0.089481489801159
806 => 0.089215459953965
807 => 0.088681896368286
808 => 0.088754416521133
809 => 0.087979342138921
810 => 0.08762075726472
811 => 0.082228501122143
812 => 0.080787514083794
813 => 0.081240877940054
814 => 0.081390137093123
815 => 0.080763017687358
816 => 0.081662145821467
817 => 0.081522017654179
818 => 0.082067174380862
819 => 0.081726584125984
820 => 0.081740562068847
821 => 0.082742165386945
822 => 0.083032935091314
823 => 0.082885047272873
824 => 0.082988622831612
825 => 0.085375477866232
826 => 0.085036143407636
827 => 0.084855878739694
828 => 0.084905813284665
829 => 0.085515705920759
830 => 0.085686442559962
831 => 0.084963019422208
901 => 0.085304189956032
902 => 0.086756850788069
903 => 0.087265199865799
904 => 0.088887606100514
905 => 0.088198379096036
906 => 0.089463485091802
907 => 0.09335198961637
908 => 0.096458396094641
909 => 0.093601616319546
910 => 0.099306136218412
911 => 0.10374792322446
912 => 0.10357744004098
913 => 0.10280291173609
914 => 0.097746055320728
915 => 0.093092660653827
916 => 0.096985422886264
917 => 0.096995346337748
918 => 0.096660954609662
919 => 0.094584076305495
920 => 0.096588683746572
921 => 0.096747802205579
922 => 0.096658738181548
923 => 0.095066400455242
924 => 0.092635195060376
925 => 0.09311024677505
926 => 0.093888391174477
927 => 0.092415201488434
928 => 0.091944428120032
929 => 0.092819685380189
930 => 0.095639946639506
1001 => 0.095106792585093
1002 => 0.095092869778088
1003 => 0.097373928915371
1004 => 0.095741182856448
1005 => 0.093116238698498
1006 => 0.092453405679856
1007 => 0.090100795001499
1008 => 0.091725751576752
1009 => 0.091784230871041
1010 => 0.090894258761429
1011 => 0.093188455030277
1012 => 0.093167313607774
1013 => 0.095345311518994
1014 => 0.099508825506589
1015 => 0.098277469546377
1016 => 0.096845536535798
1017 => 0.097001227357243
1018 => 0.09870877139081
1019 => 0.097676351288677
1020 => 0.098047616755693
1021 => 0.09870820943606
1022 => 0.09910676140172
1023 => 0.096943881862751
1024 => 0.09643961117973
1025 => 0.095408050337228
1026 => 0.095138935368414
1027 => 0.095979120150409
1028 => 0.09575776114452
1029 => 0.091779315912799
1030 => 0.091363546250224
1031 => 0.091376297312193
1101 => 0.090330824726877
1102 => 0.088736228092101
1103 => 0.092926732839875
1104 => 0.092590176662553
1105 => 0.092218644690168
1106 => 0.092264155236853
1107 => 0.094083111318478
1108 => 0.093028024931651
1109 => 0.095833145016288
1110 => 0.095256496656515
1111 => 0.094665059442207
1112 => 0.094583304803572
1113 => 0.094355651935115
1114 => 0.093574945543276
1115 => 0.09263219566195
1116 => 0.092009710530702
1117 => 0.084874094349676
1118 => 0.086198423206904
1119 => 0.087721942840772
1120 => 0.088247855713262
1121 => 0.087348245352805
1122 => 0.093610467643496
1123 => 0.094754636000281
1124 => 0.091288875415325
1125 => 0.090640573115952
1126 => 0.093652970234313
1127 => 0.091836126521371
1128 => 0.092654251134062
1129 => 0.090885913211661
1130 => 0.094479039348292
1201 => 0.094451665747264
1202 => 0.09305385852568
1203 => 0.094235275617592
1204 => 0.094029975324625
1205 => 0.092451854414104
1206 => 0.094529068595999
1207 => 0.094530098868318
1208 => 0.093184739808493
1209 => 0.091613654963586
1210 => 0.091332782100684
1211 => 0.091121182128447
1212 => 0.092602210512206
1213 => 0.093930095930028
1214 => 0.096400961481882
1215 => 0.097022195787936
1216 => 0.099446914642373
1217 => 0.098003112621974
1218 => 0.098643131357251
1219 => 0.099337962230571
1220 => 0.0996710897028
1221 => 0.099128276363409
1222 => 0.10289486279845
1223 => 0.10321287809879
1224 => 0.10331950587817
1225 => 0.10204943412474
1226 => 0.10317755510578
1227 => 0.10264974465819
1228 => 0.10402296081286
1229 => 0.10423829864002
1230 => 0.10405591516128
1231 => 0.1041242667865
]
'min_raw' => 0.046692760545542
'max_raw' => 0.10423829864002
'avg_raw' => 0.075465529592779
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.046692'
'max' => '$0.104238'
'avg' => '$0.075465'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 0.007199928937195
'max_diff' => -0.0099470918017053
'year' => 2031
]
6 => [
'items' => [
101 => 0.10091014973557
102 => 0.10074348081066
103 => 0.098470938193245
104 => 0.099397016107629
105 => 0.097665757834757
106 => 0.098214757667021
107 => 0.098456751562021
108 => 0.098330347684306
109 => 0.099449375163432
110 => 0.098497973203964
111 => 0.095987067007963
112 => 0.093475476717249
113 => 0.093443945747046
114 => 0.092782688356752
115 => 0.092304720378901
116 => 0.09239679396826
117 => 0.092721273306508
118 => 0.092285861049891
119 => 0.092378778330802
120 => 0.09392182429853
121 => 0.094231271162857
122 => 0.093179649809178
123 => 0.088957238325917
124 => 0.087921047956808
125 => 0.088665841045576
126 => 0.088309877919963
127 => 0.07127296378479
128 => 0.07527553404873
129 => 0.07289734271234
130 => 0.07399332269547
131 => 0.071565805170677
201 => 0.072724343770603
202 => 0.072510403994252
203 => 0.078946418534003
204 => 0.078845929019413
205 => 0.07889402803226
206 => 0.076598136827748
207 => 0.080255553856775
208 => 0.082057329001737
209 => 0.081723868375097
210 => 0.081807793230695
211 => 0.080365686155172
212 => 0.078907990781041
213 => 0.07729118227342
214 => 0.080295012637008
215 => 0.079961037977672
216 => 0.0807270556859
217 => 0.082675254394916
218 => 0.082962134055306
219 => 0.083347703228116
220 => 0.083209504126346
221 => 0.086501967408201
222 => 0.086103228380396
223 => 0.087064074712358
224 => 0.085087540907926
225 => 0.082850905293899
226 => 0.083276016602998
227 => 0.083235074965403
228 => 0.082713840928188
229 => 0.082243294145339
301 => 0.081459966327629
302 => 0.083938531453567
303 => 0.083837906235845
304 => 0.085466911546739
305 => 0.085178969034725
306 => 0.083256018468012
307 => 0.083324697023694
308 => 0.083786593316447
309 => 0.085385221659502
310 => 0.085859803394638
311 => 0.085639958226111
312 => 0.086160315433208
313 => 0.086571584553026
314 => 0.086211964502647
315 => 0.091303426044446
316 => 0.089189096236831
317 => 0.090219605873651
318 => 0.090465376349917
319 => 0.089835840442957
320 => 0.089972364239186
321 => 0.090179160589965
322 => 0.091434787537017
323 => 0.094729915964668
324 => 0.096189305914576
325 => 0.10057995258391
326 => 0.096068123894925
327 => 0.095800410652324
328 => 0.096591298702298
329 => 0.099169073094346
330 => 0.10125811712106
331 => 0.10195117354457
401 => 0.10204277239205
402 => 0.10334299231606
403 => 0.10408825412884
404 => 0.10318511141811
405 => 0.10241979253375
406 => 0.099678515284837
407 => 0.099995825590648
408 => 0.1021817789362
409 => 0.1052695667888
410 => 0.1079192099959
411 => 0.10699139729416
412 => 0.11406995327473
413 => 0.11477176318689
414 => 0.11467479574926
415 => 0.11627362317249
416 => 0.11310027633292
417 => 0.11174360907831
418 => 0.10258526316328
419 => 0.10515838480133
420 => 0.10889856821637
421 => 0.10840354091642
422 => 0.10568731974503
423 => 0.10791714949857
424 => 0.10717989804883
425 => 0.10659839724182
426 => 0.10926236516818
427 => 0.10633322300338
428 => 0.10886934778259
429 => 0.1056167415204
430 => 0.10699563546443
501 => 0.1062129085722
502 => 0.10671942879887
503 => 0.10375832190366
504 => 0.10535606330751
505 => 0.10369185060838
506 => 0.10369106155487
507 => 0.1036543239673
508 => 0.10561226282758
509 => 0.10567611114352
510 => 0.10422919136749
511 => 0.10402066762263
512 => 0.1047916891991
513 => 0.10388902486392
514 => 0.10431137582505
515 => 0.10390181744428
516 => 0.10380961722615
517 => 0.10307495020151
518 => 0.10275843544721
519 => 0.10288254903795
520 => 0.1024588853678
521 => 0.10220361268195
522 => 0.10360354380496
523 => 0.102855617079
524 => 0.10348891330743
525 => 0.10276719232678
526 => 0.10026539296897
527 => 0.09882658170225
528 => 0.094100914632281
529 => 0.095441107951152
530 => 0.096329657508094
531 => 0.096035991884826
601 => 0.096666899277117
602 => 0.096705631866986
603 => 0.096500517442413
604 => 0.096263021215542
605 => 0.096147421186666
606 => 0.097009009092578
607 => 0.097509189871676
608 => 0.096418835343393
609 => 0.096163380533097
610 => 0.097265789161315
611 => 0.097938257787687
612 => 0.10290338829734
613 => 0.10253555539202
614 => 0.1034587438008
615 => 0.10335480695345
616 => 0.1043224554813
617 => 0.10590415186555
618 => 0.1026881208671
619 => 0.10324631264645
620 => 0.10310945691268
621 => 0.10460361192843
622 => 0.10460827651729
623 => 0.10371245594678
624 => 0.10419809481108
625 => 0.10392702451983
626 => 0.10441688517347
627 => 0.10253064275931
628 => 0.10482788241247
629 => 0.10613026926496
630 => 0.10614835290767
701 => 0.10676567393936
702 => 0.10739290786039
703 => 0.10859682875124
704 => 0.10735933116018
705 => 0.10513319346181
706 => 0.10529391341325
707 => 0.10398872969521
708 => 0.10401067006931
709 => 0.10389355063286
710 => 0.10424503487798
711 => 0.10260777378544
712 => 0.10299203569135
713 => 0.10245406677285
714 => 0.10324514320708
715 => 0.10239407573346
716 => 0.10310939091671
717 => 0.10341809723672
718 => 0.10455723020354
719 => 0.10222582486806
720 => 0.097471931566756
721 => 0.098471257574076
722 => 0.096993175913886
723 => 0.09712997799899
724 => 0.097406339982791
725 => 0.096510560373278
726 => 0.096681446893514
727 => 0.096675341624501
728 => 0.096622729714482
729 => 0.096389702841398
730 => 0.096051767772463
731 => 0.097397997076168
801 => 0.097626747667867
802 => 0.098135231897011
803 => 0.099648136054797
804 => 0.099496961252698
805 => 0.099743533627105
806 => 0.099205267518219
807 => 0.097154946619997
808 => 0.097266288909162
809 => 0.095877848779137
810 => 0.098099726361248
811 => 0.097573556422453
812 => 0.097234331239974
813 => 0.097141770506035
814 => 0.098658424860599
815 => 0.099112231614129
816 => 0.098829449699168
817 => 0.098249455741515
818 => 0.099363215600029
819 => 0.099661210752411
820 => 0.099727920877391
821 => 0.10170128980441
822 => 0.099838210279017
823 => 0.1002866720382
824 => 0.10378544266426
825 => 0.10061254050376
826 => 0.10229329754234
827 => 0.10221103323154
828 => 0.10307085165876
829 => 0.10214050302429
830 => 0.10215203581062
831 => 0.10291549632485
901 => 0.10184335372345
902 => 0.10157787613777
903 => 0.10121112075453
904 => 0.10201191771635
905 => 0.10249195927802
906 => 0.10636074171344
907 => 0.10886015160464
908 => 0.10875164562953
909 => 0.10974318712729
910 => 0.10929648860107
911 => 0.1078539812268
912 => 0.11031616541965
913 => 0.10953702731887
914 => 0.10960125851724
915 => 0.10959886782883
916 => 0.11011692655241
917 => 0.10974983446737
918 => 0.10902625828652
919 => 0.10950660192325
920 => 0.11093305079836
921 => 0.1153607918755
922 => 0.11783861444203
923 => 0.11521162384575
924 => 0.11702368678226
925 => 0.1159370947244
926 => 0.11573962862417
927 => 0.1168777380587
928 => 0.11801783960313
929 => 0.11794522006354
930 => 0.11711756488715
1001 => 0.11665004347897
1002 => 0.12019027221282
1003 => 0.1227986524377
1004 => 0.12262077839317
1005 => 0.123405856578
1006 => 0.12571087041023
1007 => 0.12592161198767
1008 => 0.12589506339275
1009 => 0.12537271840445
1010 => 0.12764230386614
1011 => 0.12953563198785
1012 => 0.12525181063165
1013 => 0.12688303372475
1014 => 0.12761534232597
1015 => 0.12869058861873
1016 => 0.13050470934682
1017 => 0.13247532562928
1018 => 0.13275399237833
1019 => 0.13255626498445
1020 => 0.13125659057315
1021 => 0.13341286242377
1022 => 0.13467595590306
1023 => 0.1354280991646
1024 => 0.13733540933115
1025 => 0.12761986481458
1026 => 0.12074271951186
1027 => 0.11966875396566
1028 => 0.12185270513547
1029 => 0.12242859564227
1030 => 0.12219645490108
1031 => 0.11445560262018
1101 => 0.11962799998041
1102 => 0.1251930646325
1103 => 0.12540684143022
1104 => 0.12819282915507
1105 => 0.12910006095978
1106 => 0.13134314624604
1107 => 0.13120284065066
1108 => 0.13174899622258
1109 => 0.13162344451469
1110 => 0.13577828767016
1111 => 0.14036169667082
1112 => 0.14020298779148
1113 => 0.1395440685192
1114 => 0.14052267600097
1115 => 0.14525324527761
1116 => 0.14481773026444
1117 => 0.14524079600265
1118 => 0.15081840378301
1119 => 0.15807008730294
1120 => 0.15470095225081
1121 => 0.16201100587143
1122 => 0.16661229713632
1123 => 0.17456975459655
1124 => 0.17357344173122
1125 => 0.17667122152597
1126 => 0.17178983376552
1127 => 0.1605811807763
1128 => 0.15880736853576
1129 => 0.16235858556141
1130 => 0.17108890609628
1201 => 0.16208363669919
1202 => 0.16390539096973
1203 => 0.16338072561726
1204 => 0.16335276843031
1205 => 0.16441978054606
1206 => 0.16287202382056
1207 => 0.15656618448474
1208 => 0.1594561134918
1209 => 0.15834017311639
1210 => 0.15957839216178
1211 => 0.16626054966936
1212 => 0.16330620855252
1213 => 0.16019405017711
1214 => 0.1640973874231
1215 => 0.16906767706946
1216 => 0.16875664527586
1217 => 0.16815311359507
1218 => 0.17155519007978
1219 => 0.17717442371763
1220 => 0.17869327999003
1221 => 0.17981446863866
1222 => 0.17996906161067
1223 => 0.18156146530137
1224 => 0.1729987093191
1225 => 0.18658802297013
1226 => 0.18893452204046
1227 => 0.18849347746766
1228 => 0.19110151242854
1229 => 0.19033416238359
1230 => 0.18922239256198
1231 => 0.19335668271993
]
'min_raw' => 0.07127296378479
'max_raw' => 0.19335668271993
'avg_raw' => 0.13231482325236
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.071272'
'max' => '$0.193356'
'avg' => '$0.132314'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.024580203239249
'max_diff' => 0.089118384079917
'year' => 2032
]
7 => [
'items' => [
101 => 0.18861705267386
102 => 0.18188974452628
103 => 0.17819901022545
104 => 0.18305926687583
105 => 0.18602725601263
106 => 0.18798890803249
107 => 0.18858250274844
108 => 0.17366341169096
109 => 0.1656228490617
110 => 0.17077675752182
111 => 0.17706488154692
112 => 0.17296377847264
113 => 0.17312453394874
114 => 0.16727743871575
115 => 0.17758221973264
116 => 0.17608089981533
117 => 0.18386975020213
118 => 0.18201087854789
119 => 0.18836238367689
120 => 0.18668981951431
121 => 0.19363253984139
122 => 0.19640217894652
123 => 0.20105283406392
124 => 0.20447387489986
125 => 0.2064827755128
126 => 0.2063621686552
127 => 0.214322433714
128 => 0.2096285435193
129 => 0.20373191116979
130 => 0.20362525969422
131 => 0.20667920914396
201 => 0.2130794493805
202 => 0.21473893855413
203 => 0.21566636661051
204 => 0.21424597825816
205 => 0.20915109686596
206 => 0.20695115291244
207 => 0.20882556889935
208 => 0.20653331921776
209 => 0.21049038525985
210 => 0.21592428211933
211 => 0.21480220390581
212 => 0.21855314314226
213 => 0.22243497064167
214 => 0.22798615830961
215 => 0.22943744432589
216 => 0.23183636492334
217 => 0.23430564222249
218 => 0.23509870754208
219 => 0.23661291531091
220 => 0.23660493468853
221 => 0.24116810171783
222 => 0.24620141626065
223 => 0.24810137597907
224 => 0.25247022858718
225 => 0.24498872159865
226 => 0.25066353059081
227 => 0.25578235035142
228 => 0.24967948240865
301 => 0.2580908640819
302 => 0.25841745897168
303 => 0.26334865405591
304 => 0.25834994313537
305 => 0.2553817245472
306 => 0.26395086039354
307 => 0.26809719530434
308 => 0.26684828548522
309 => 0.2573440200954
310 => 0.2518121299814
311 => 0.23733410653116
312 => 0.25448395071204
313 => 0.26283713954473
314 => 0.2573223873543
315 => 0.26010370758518
316 => 0.27527768891871
317 => 0.28105495856799
318 => 0.2798533268671
319 => 0.28005638284401
320 => 0.2831736926819
321 => 0.29699756123697
322 => 0.28871397876401
323 => 0.29504646718468
324 => 0.29840519620951
325 => 0.30152497091179
326 => 0.29386379025793
327 => 0.28389670679235
328 => 0.2807397130691
329 => 0.25677405393285
330 => 0.25552653729722
331 => 0.25482626840603
401 => 0.25041117210202
402 => 0.24694211580373
403 => 0.24418339343752
404 => 0.23694368212437
405 => 0.2393868721686
406 => 0.22784828338062
407 => 0.23523026358469
408 => 0.2168143972701
409 => 0.23215167796732
410 => 0.2238042933844
411 => 0.22940933762964
412 => 0.2293897821583
413 => 0.21906911862192
414 => 0.21311637528089
415 => 0.21690969502203
416 => 0.22097643489863
417 => 0.22163624976145
418 => 0.22690888416423
419 => 0.22838036309115
420 => 0.22392171324581
421 => 0.21643276937391
422 => 0.21817228023072
423 => 0.2130811241489
424 => 0.20415906894399
425 => 0.21056704475629
426 => 0.21275500943742
427 => 0.21372133928621
428 => 0.20494752269714
429 => 0.20219059903603
430 => 0.20072283601169
501 => 0.21530017982913
502 => 0.21609875962994
503 => 0.21201311246118
504 => 0.23048062508094
505 => 0.22630085820756
506 => 0.23097068187287
507 => 0.21801443785316
508 => 0.21850938382261
509 => 0.21237569027065
510 => 0.2158101488062
511 => 0.21338278421104
512 => 0.2155326784965
513 => 0.21682131626687
514 => 0.22295400334006
515 => 0.23222170340262
516 => 0.22203798439842
517 => 0.21760079219475
518 => 0.22035360128219
519 => 0.22768469464299
520 => 0.23879167635636
521 => 0.23221611963321
522 => 0.23513424004675
523 => 0.23577171953897
524 => 0.23092314745165
525 => 0.23897045012515
526 => 0.24328306500405
527 => 0.24770691549989
528 => 0.25154802093196
529 => 0.2459399323293
530 => 0.25194139102207
531 => 0.24710527471577
601 => 0.2427667784405
602 => 0.2427733581485
603 => 0.2400517560597
604 => 0.23477830906874
605 => 0.23380580453441
606 => 0.23886489593576
607 => 0.24292180814191
608 => 0.2432559548625
609 => 0.2455020699115
610 => 0.24683129766067
611 => 0.25985953660005
612 => 0.26509960207671
613 => 0.27150705495222
614 => 0.27400311895148
615 => 0.2815153767008
616 => 0.27544861845248
617 => 0.27413603714376
618 => 0.2559137570847
619 => 0.25889765442354
620 => 0.26367516196629
621 => 0.25599253642441
622 => 0.26086539403409
623 => 0.26182739934748
624 => 0.25573148374829
625 => 0.25898757565878
626 => 0.25034036090849
627 => 0.23241018905407
628 => 0.23899041153204
629 => 0.24383567015476
630 => 0.23692088868405
701 => 0.2493153668313
702 => 0.24207476857164
703 => 0.23977984653334
704 => 0.23082653746315
705 => 0.23505215469981
706 => 0.2407673625174
707 => 0.23723602855035
708 => 0.24456407676444
709 => 0.25494254735467
710 => 0.26233886354588
711 => 0.26290666086261
712 => 0.25815132506637
713 => 0.265771781028
714 => 0.26582728773024
715 => 0.25723138227504
716 => 0.25196643804594
717 => 0.25077023163955
718 => 0.25375858977279
719 => 0.25738700822789
720 => 0.26310801283436
721 => 0.26656509609995
722 => 0.27557933576133
723 => 0.2780183305552
724 => 0.28069804637664
725 => 0.28427897310783
726 => 0.2885787937794
727 => 0.27917103093893
728 => 0.27954481889485
729 => 0.27078444039715
730 => 0.261422719607
731 => 0.26852709873175
801 => 0.27781512938142
802 => 0.27568444488802
803 => 0.27544469935658
804 => 0.2758478848406
805 => 0.27424141831423
806 => 0.26697542975389
807 => 0.26332649578638
808 => 0.2680345515468
809 => 0.27053667365201
810 => 0.27441724682922
811 => 0.27393888427616
812 => 0.28393482403751
813 => 0.28781894396724
814 => 0.28682521987835
815 => 0.28700808902601
816 => 0.29404010262904
817 => 0.3018611479995
818 => 0.30918658906678
819 => 0.31663834235543
820 => 0.30765496291908
821 => 0.30309375685912
822 => 0.30779975722968
823 => 0.30530268719131
824 => 0.31965159231088
825 => 0.32064507936898
826 => 0.33499294689938
827 => 0.34861078169802
828 => 0.34005766364985
829 => 0.34812286872838
830 => 0.35684604558663
831 => 0.37367446903062
901 => 0.36800724804576
902 => 0.36366624558803
903 => 0.35956401924104
904 => 0.36810010105903
905 => 0.37908163395062
906 => 0.38144695095565
907 => 0.38527966812445
908 => 0.38125003466382
909 => 0.38610328431758
910 => 0.40323738822133
911 => 0.39860760209962
912 => 0.39203256153153
913 => 0.40555829098671
914 => 0.4104531998966
915 => 0.44480823410988
916 => 0.48818288393983
917 => 0.47022549409693
918 => 0.45907876274009
919 => 0.46169850901295
920 => 0.47753746280629
921 => 0.48262443206144
922 => 0.46879629604247
923 => 0.47368062745779
924 => 0.50059377377307
925 => 0.5150318132941
926 => 0.49542301633713
927 => 0.441323123229
928 => 0.39144055106745
929 => 0.4046716554462
930 => 0.40317165881862
1001 => 0.432086477051
1002 => 0.39849718323179
1003 => 0.39906274079516
1004 => 0.42857548684727
1005 => 0.42070199217712
1006 => 0.4079479391725
1007 => 0.39153366976887
1008 => 0.3611903746401
1009 => 0.33431447195918
1010 => 0.38702430626721
1011 => 0.38475136236524
1012 => 0.38145980276376
1013 => 0.3887848124729
1014 => 0.42435298038018
1015 => 0.423533018987
1016 => 0.41831684295152
1017 => 0.42227326650116
1018 => 0.40725435899522
1019 => 0.41112507343367
1020 => 0.39143264941316
1021 => 0.4003344474987
1022 => 0.40792057470289
1023 => 0.40944360205366
1024 => 0.41287506044265
1025 => 0.38355362421227
1026 => 0.39671808824757
1027 => 0.40445097752484
1028 => 0.36951350244521
1029 => 0.40376037597506
1030 => 0.3830432032418
1031 => 0.37601148365464
1101 => 0.38547876772014
1102 => 0.38178935791258
1103 => 0.37861742000945
1104 => 0.3768474241587
1105 => 0.38379915271039
1106 => 0.38347484626434
1107 => 0.3721004690814
1108 => 0.35726305772519
1109 => 0.36224297999776
1110 => 0.36043372754912
1111 => 0.35387676327702
1112 => 0.35829536550553
1113 => 0.33883807749458
1114 => 0.30536282477358
1115 => 0.32747760209579
1116 => 0.32662620722514
1117 => 0.32619689532367
1118 => 0.34281553927376
1119 => 0.34121804011531
1120 => 0.33831856349996
1121 => 0.35382351211518
1122 => 0.34816399729964
1123 => 0.36560528841174
1124 => 0.37709325077016
1125 => 0.37417953191941
1126 => 0.38498401604364
1127 => 0.36235770734889
1128 => 0.36987325948735
1129 => 0.37142220436698
1130 => 0.35363218345604
1201 => 0.34147941073424
1202 => 0.34066895934545
1203 => 0.31959772620109
1204 => 0.33085380886576
1205 => 0.34075869580231
1206 => 0.33601502360998
1207 => 0.33451331870706
1208 => 0.34218520337601
1209 => 0.34278137452003
1210 => 0.32918860925686
1211 => 0.33201497558197
1212 => 0.34380139300197
1213 => 0.33171798810381
1214 => 0.30824190619967
1215 => 0.30241951330522
1216 => 0.30164269876511
1217 => 0.28585190745555
1218 => 0.30280859343928
1219 => 0.29540654559645
1220 => 0.31878952604181
1221 => 0.30543329301686
1222 => 0.30485753250592
1223 => 0.30398718604793
1224 => 0.29039539965841
1225 => 0.29337113707463
1226 => 0.30326294146374
1227 => 0.30679244870892
1228 => 0.30642429218685
1229 => 0.30321446622578
1230 => 0.30468390811379
1231 => 0.29995032380501
]
'min_raw' => 0.1656228490617
'max_raw' => 0.5150318132941
'avg_raw' => 0.3403273311779
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.165622'
'max' => '$0.515031'
'avg' => '$0.340327'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.094349885276913
'max_diff' => 0.32167513057417
'year' => 2033
]
8 => [
'items' => [
101 => 0.29827879666454
102 => 0.29300299721947
103 => 0.285249029512
104 => 0.28632726627957
105 => 0.27096462731507
106 => 0.26259424625024
107 => 0.26027743509135
108 => 0.25717929838347
109 => 0.26062737787633
110 => 0.2709211068891
111 => 0.25850468576327
112 => 0.23721760265371
113 => 0.23849699262002
114 => 0.24137140202003
115 => 0.23601495911924
116 => 0.23094553544581
117 => 0.23535298803451
118 => 0.22633337029833
119 => 0.24246137973171
120 => 0.24202516227476
121 => 0.24803668684211
122 => 0.25179581652298
123 => 0.24313223964127
124 => 0.24095337348432
125 => 0.24219455467126
126 => 0.22168059441636
127 => 0.24636025863711
128 => 0.24657368939814
129 => 0.24474616564466
130 => 0.25788732494306
131 => 0.28561926989307
201 => 0.27518539668798
202 => 0.27114508561748
203 => 0.26346445131901
204 => 0.27369844049078
205 => 0.27291262979749
206 => 0.26935889583257
207 => 0.26720958644226
208 => 0.27116975489533
209 => 0.26671887774568
210 => 0.26591937790768
211 => 0.2610752787538
212 => 0.25934615574834
213 => 0.25806598191346
214 => 0.25665663630854
215 => 0.25976530152595
216 => 0.25272065716434
217 => 0.24422550665925
218 => 0.24351922681355
219 => 0.24546932756428
220 => 0.24460655315001
221 => 0.24351509618159
222 => 0.24143120758826
223 => 0.24081296235785
224 => 0.24282195942673
225 => 0.24055391886777
226 => 0.24390053625907
227 => 0.24299044150542
228 => 0.23790672619281
301 => 0.23157053468081
302 => 0.23151412928574
303 => 0.23014900721792
304 => 0.22841031901707
305 => 0.22792665573539
306 => 0.23498180467088
307 => 0.24958575182449
308 => 0.2467186475554
309 => 0.24879042422248
310 => 0.2589815149118
311 => 0.26222095618514
312 => 0.25992167749969
313 => 0.25677428302172
314 => 0.25691275240545
315 => 0.26766835211779
316 => 0.26833916567876
317 => 0.27003409513468
318 => 0.27221255847254
319 => 0.26029267922607
320 => 0.25635132716488
321 => 0.2544836959004
322 => 0.24873211447006
323 => 0.25493470193936
324 => 0.25132071984228
325 => 0.25180836949838
326 => 0.25149078702011
327 => 0.25166420852808
328 => 0.24245687162438
329 => 0.24581154126871
330 => 0.24023375233614
331 => 0.23276571909162
401 => 0.23274068362556
402 => 0.2345684741822
403 => 0.23348123283765
404 => 0.23055549433502
405 => 0.23097108168023
406 => 0.2273300992347
407 => 0.23141316287123
408 => 0.23153025052642
409 => 0.22995804862038
410 => 0.23624857150665
411 => 0.23882580386574
412 => 0.23779094689135
413 => 0.2387531955417
414 => 0.24683778868198
415 => 0.24815593011937
416 => 0.24874136147433
417 => 0.24795696101348
418 => 0.23890096706321
419 => 0.23930263890396
420 => 0.23635543744996
421 => 0.23386536278977
422 => 0.23396495271745
423 => 0.23524517477984
424 => 0.24083597961031
425 => 0.2526014987801
426 => 0.25304799163211
427 => 0.25358915399386
428 => 0.2513879747022
429 => 0.25072407796539
430 => 0.25159992912754
501 => 0.2560184395261
502 => 0.26738404788507
503 => 0.26336668280755
504 => 0.26010050246551
505 => 0.26296582318138
506 => 0.2625247295163
507 => 0.25880145508204
508 => 0.25869695516942
509 => 0.25155080112723
510 => 0.24890903068789
511 => 0.24670136957569
512 => 0.24429066127361
513 => 0.24286151258447
514 => 0.24505733450745
515 => 0.24555954496144
516 => 0.24075834195043
517 => 0.24010395572109
518 => 0.24402472174104
519 => 0.24229933879655
520 => 0.2440739379424
521 => 0.24448566016647
522 => 0.24441936340562
523 => 0.2426178654526
524 => 0.24376608652642
525 => 0.24105020138567
526 => 0.23809708420787
527 => 0.23621317943414
528 => 0.23456922265535
529 => 0.23548138542355
530 => 0.23222969170925
531 => 0.23118940944638
601 => 0.2433770950624
602 => 0.25238026946665
603 => 0.25224935974517
604 => 0.25145248048287
605 => 0.25026847954014
606 => 0.25593182248245
607 => 0.25395882704347
608 => 0.25539434607461
609 => 0.25575974591658
610 => 0.25686570118684
611 => 0.25726098513589
612 => 0.25606616249951
613 => 0.25205619179653
614 => 0.24206372606128
615 => 0.23741220628737
616 => 0.2358771272848
617 => 0.23593292449101
618 => 0.23439378845394
619 => 0.2348471329961
620 => 0.23423613372304
621 => 0.23307904891648
622 => 0.23540993869732
623 => 0.23567855203082
624 => 0.23513449450392
625 => 0.23526263974667
626 => 0.2307580757939
627 => 0.23110054800783
628 => 0.22919361920139
629 => 0.22883609303856
630 => 0.22401554307118
701 => 0.21547524005408
702 => 0.22020739695283
703 => 0.2144916168611
704 => 0.21232696433216
705 => 0.22257409273162
706 => 0.22154556525142
707 => 0.21978517329545
708 => 0.21718118669475
709 => 0.2162153427346
710 => 0.21034718058174
711 => 0.21000045825632
712 => 0.21290887787298
713 => 0.2115667422925
714 => 0.20968187563102
715 => 0.20285507964898
716 => 0.1951795006907
717 => 0.19541117817248
718 => 0.19785263702988
719 => 0.20495150793338
720 => 0.20217785625967
721 => 0.20016554014641
722 => 0.19978869382839
723 => 0.20450571447954
724 => 0.21118128694729
725 => 0.21431331619164
726 => 0.21120957033163
727 => 0.2076441542052
728 => 0.20786116456426
729 => 0.20930483726079
730 => 0.20945654684877
731 => 0.20713582748116
801 => 0.20778909638945
802 => 0.20679672118159
803 => 0.20070651636277
804 => 0.20059636386985
805 => 0.19910172938949
806 => 0.19905647245143
807 => 0.1965137263463
808 => 0.19615797858901
809 => 0.19110920186362
810 => 0.19443232199338
811 => 0.19220334748197
812 => 0.18884375713135
813 => 0.18826456248859
814 => 0.18824715119824
815 => 0.19169669929767
816 => 0.19439201201541
817 => 0.1922421214479
818 => 0.19175263303956
819 => 0.19697908863456
820 => 0.1963139745199
821 => 0.19573798998613
822 => 0.21058356265112
823 => 0.1988321334723
824 => 0.1937078396022
825 => 0.18736555286094
826 => 0.18943063340448
827 => 0.18986577621735
828 => 0.17461371988774
829 => 0.16842596253434
830 => 0.16630255739137
831 => 0.16508050771105
901 => 0.16563741109591
902 => 0.1600677037263
903 => 0.16381063919313
904 => 0.1589877434067
905 => 0.15817916923304
906 => 0.16680310434133
907 => 0.16800307453135
908 => 0.16288362889921
909 => 0.166171141758
910 => 0.16497904389556
911 => 0.1590704181124
912 => 0.1588447520684
913 => 0.15588001134865
914 => 0.15124076620917
915 => 0.14912050669286
916 => 0.14801625712783
917 => 0.14847189201976
918 => 0.14824150907574
919 => 0.14673810452901
920 => 0.14832768246454
921 => 0.14426696769822
922 => 0.14264995835887
923 => 0.14191959275462
924 => 0.13831547467349
925 => 0.14405122929915
926 => 0.14518124521754
927 => 0.14631348761637
928 => 0.15616888468344
929 => 0.15567653689703
930 => 0.16012712110307
1001 => 0.15995417958492
1002 => 0.15868480087468
1003 => 0.15332950089882
1004 => 0.15546402802015
1005 => 0.14889428531985
1006 => 0.15381678324999
1007 => 0.1515703607631
1008 => 0.15305726554748
1009 => 0.15038367667637
1010 => 0.15186335114742
1011 => 0.14544921391262
1012 => 0.1394597828121
1013 => 0.14187010472934
1014 => 0.14449040030713
1015 => 0.15017186875867
1016 => 0.14678803302003
1017 => 0.14800498830864
1018 => 0.14392839180765
1019 => 0.13551720880388
1020 => 0.13556481518623
1021 => 0.13427093792868
1022 => 0.13315283906899
1023 => 0.14717670726014
1024 => 0.14543261756602
1025 => 0.14265363889926
1026 => 0.14637341227694
1027 => 0.14735697939874
1028 => 0.14738498017197
1029 => 0.15009883080708
1030 => 0.15154721337752
1031 => 0.15180249708321
1101 => 0.15607279969418
1102 => 0.15750414880272
1103 => 0.16339967320871
1104 => 0.15142432823571
1105 => 0.15117770388658
1106 => 0.14642575711667
1107 => 0.14341199734989
1108 => 0.14663211182629
1109 => 0.14948469366292
1110 => 0.14651439478588
1111 => 0.14690225311279
1112 => 0.14291486955269
1113 => 0.14434017155159
1114 => 0.14556783364196
1115 => 0.1448899907943
1116 => 0.14387522724339
1117 => 0.14925081448273
1118 => 0.14894750278359
1119 => 0.15395337320507
1120 => 0.15785580717185
1121 => 0.16484966648382
1122 => 0.15755120969364
1123 => 0.15728522491947
1124 => 0.15988526875231
1125 => 0.15750375074956
1126 => 0.15900878792009
1127 => 0.16460718172786
1128 => 0.16472546696719
1129 => 0.16274403680657
1130 => 0.16262346660123
1201 => 0.16300402193805
1202 => 0.16523294643221
1203 => 0.16445409172602
1204 => 0.16535540211021
1205 => 0.166482504547
1206 => 0.1711446781071
1207 => 0.17226871236873
1208 => 0.16953789185792
1209 => 0.16978445437435
1210 => 0.16876305254061
1211 => 0.16777639116734
1212 => 0.16999426184412
1213 => 0.17404746409829
1214 => 0.17402224933743
1215 => 0.1749625134774
1216 => 0.17554829024704
1217 => 0.17303370753696
1218 => 0.17139680665647
1219 => 0.17202449861276
1220 => 0.17302819172022
1221 => 0.17169901446545
1222 => 0.16349471671421
1223 => 0.16598337655936
1224 => 0.16556914187188
1225 => 0.16497922130424
1226 => 0.16748158802279
1227 => 0.16724022864822
1228 => 0.1600105783269
1229 => 0.16047339708393
1230 => 0.16003872386842
1231 => 0.1614432419535
]
'min_raw' => 0.13315283906899
'max_raw' => 0.29827879666454
'avg_raw' => 0.21571581786677
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.133152'
'max' => '$0.298278'
'avg' => '$0.215715'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.032470009992711
'max_diff' => -0.21675301662956
'year' => 2034
]
9 => [
'items' => [
101 => 0.15742790216373
102 => 0.15866299363934
103 => 0.15943763143458
104 => 0.15989389904702
105 => 0.16154225052879
106 => 0.16134883550761
107 => 0.16153022757951
108 => 0.16397429767832
109 => 0.17633556553455
110 => 0.17700836207036
111 => 0.17369526586424
112 => 0.17501878245065
113 => 0.172477920026
114 => 0.17418361799397
115 => 0.17535061322362
116 => 0.1700771861811
117 => 0.1697649280559
118 => 0.16721357858819
119 => 0.16858452927632
120 => 0.16640324815666
121 => 0.16693845824545
122 => 0.16544196417842
123 => 0.16813535555008
124 => 0.1711469856143
125 => 0.1719078423014
126 => 0.16990635592704
127 => 0.16845714788763
128 => 0.16591281596923
129 => 0.17014409665366
130 => 0.17138145207174
131 => 0.17013759735241
201 => 0.16984936903518
202 => 0.16930317689485
203 => 0.16996524627977
204 => 0.17137471316839
205 => 0.17071003461249
206 => 0.17114906650879
207 => 0.1694759296478
208 => 0.17303453996847
209 => 0.17868646958391
210 => 0.1787046414618
211 => 0.17803995932303
212 => 0.17776798571262
213 => 0.17844998992329
214 => 0.1788199492303
215 => 0.18102542578941
216 => 0.1833919900074
217 => 0.19443571259989
218 => 0.19133467948809
219 => 0.20113332716615
220 => 0.20888278528433
221 => 0.21120650893124
222 => 0.20906879251573
223 => 0.20175578013544
224 => 0.20139696885949
225 => 0.21232569682984
226 => 0.20923783061076
227 => 0.20887053874951
228 => 0.20496317389521
301 => 0.20727291046065
302 => 0.206767737192
303 => 0.20597029647351
304 => 0.21037711294273
305 => 0.21862627997391
306 => 0.2173405699319
307 => 0.21638084702792
308 => 0.21217562063379
309 => 0.21470810619437
310 => 0.21380633659281
311 => 0.21768091107824
312 => 0.21538569898541
313 => 0.20921443698715
314 => 0.21019723080112
315 => 0.21004868349325
316 => 0.21310577656313
317 => 0.21218811310526
318 => 0.20986949497513
319 => 0.2185980852178
320 => 0.21803129911841
321 => 0.218834872222
322 => 0.21918862995353
323 => 0.22450156901923
324 => 0.22667811015936
325 => 0.22717222310388
326 => 0.22923976884727
327 => 0.2271207806823
328 => 0.23559824415516
329 => 0.24123526269091
330 => 0.24778294979851
331 => 0.25735088051508
401 => 0.26094851097282
402 => 0.26029863123177
403 => 0.26755292710379
404 => 0.28058873553188
405 => 0.26293354082311
406 => 0.28152450372161
407 => 0.27563881951093
408 => 0.26168396812636
409 => 0.26078544021408
410 => 0.27023582759087
411 => 0.29119587722651
412 => 0.2859456225197
413 => 0.29120446476236
414 => 0.28506974594644
415 => 0.28476510544976
416 => 0.29090651516242
417 => 0.30525625370686
418 => 0.2984392308163
419 => 0.2886653569001
420 => 0.2958822333015
421 => 0.28963030707223
422 => 0.2755429674737
423 => 0.28594160774887
424 => 0.27898833313309
425 => 0.28101766832238
426 => 0.29563241734322
427 => 0.2938739320752
428 => 0.29614957484337
429 => 0.2921331249215
430 => 0.28838112735845
501 => 0.28137774528003
502 => 0.27930438910917
503 => 0.27987739016326
504 => 0.27930410515831
505 => 0.27538577724983
506 => 0.27453961471106
507 => 0.27312930674189
508 => 0.2735664201531
509 => 0.2709146285709
510 => 0.27591910717462
511 => 0.27684798250278
512 => 0.28048982469168
513 => 0.28086793282908
514 => 0.29101041148679
515 => 0.28542410467955
516 => 0.28917188158438
517 => 0.28883664514256
518 => 0.26198641207067
519 => 0.26568613728637
520 => 0.27144174868426
521 => 0.26884885355106
522 => 0.26518310647673
523 => 0.26222281916928
524 => 0.25773768119359
525 => 0.26405042676493
526 => 0.2723510159056
527 => 0.28107844946775
528 => 0.29156388904856
529 => 0.28922366099809
530 => 0.2808824314683
531 => 0.28125661293174
601 => 0.28356965550371
602 => 0.28057405521093
603 => 0.27969059420352
604 => 0.28344828152776
605 => 0.28347415865517
606 => 0.28002735848794
607 => 0.27619687085983
608 => 0.2761808209768
609 => 0.2754992227015
610 => 0.28519100076544
611 => 0.29052049875132
612 => 0.29113151710649
613 => 0.29047937234768
614 => 0.29073035698265
615 => 0.28762923953214
616 => 0.29471747441619
617 => 0.30122233969958
618 => 0.29947889684745
619 => 0.29686522816711
620 => 0.29478331517188
621 => 0.29898846430992
622 => 0.29880121563832
623 => 0.30116552537605
624 => 0.30105826662943
625 => 0.30026323819082
626 => 0.29947892524042
627 => 0.30258863743403
628 => 0.30169309026272
629 => 0.3007961520593
630 => 0.29899720517796
701 => 0.29924171193648
702 => 0.29662849454289
703 => 0.29541950060392
704 => 0.27723913254392
705 => 0.27238074413763
706 => 0.27390929203186
707 => 0.27441252968737
708 => 0.27229815282676
709 => 0.27532962610603
710 => 0.27485717420658
711 => 0.27669520817222
712 => 0.27554688434864
713 => 0.27559401195892
714 => 0.2789709874756
715 => 0.27995133783477
716 => 0.2794527237297
717 => 0.2798019359574
718 => 0.28784938435152
719 => 0.28670529453279
720 => 0.28609751961914
721 => 0.28626587742383
722 => 0.28832217302777
723 => 0.28889782352729
724 => 0.28645875191056
725 => 0.28760903218512
726 => 0.29250677960187
727 => 0.29422071400923
728 => 0.29969076990236
729 => 0.29736699293647
730 => 0.30163238612808
731 => 0.31474275061937
801 => 0.32521621694324
802 => 0.31558438447751
803 => 0.3348175715934
804 => 0.34979336659995
805 => 0.3492185706441
806 => 0.34660719438833
807 => 0.32955764992549
808 => 0.31386840491639
809 => 0.32699312456703
810 => 0.32702658217654
811 => 0.32589915711882
812 => 0.3188968169133
813 => 0.32565549085812
814 => 0.32619196985196
815 => 0.32589168427668
816 => 0.32052300645897
817 => 0.31232602772884
818 => 0.31392769775192
819 => 0.31655126592289
820 => 0.31158430404158
821 => 0.30999705876167
822 => 0.31294804972279
823 => 0.32245675746293
824 => 0.32065919134485
825 => 0.32061224962898
826 => 0.32830299976879
827 => 0.32279808243644
828 => 0.31394789994016
829 => 0.31171311214029
830 => 0.30378112098418
831 => 0.30925977552849
901 => 0.30945694255208
902 => 0.30645633944865
903 => 0.31419138234474
904 => 0.31412010256273
905 => 0.32146337458336
906 => 0.3355009526798
907 => 0.33134935008942
908 => 0.32652148796988
909 => 0.32704641044437
910 => 0.33280351437046
911 => 0.32932263791485
912 => 0.33057438535782
913 => 0.33280161970079
914 => 0.33414536547902
915 => 0.32685306610596
916 => 0.3251528822911
917 => 0.32167490288932
918 => 0.32076756298296
919 => 0.32360030463528
920 => 0.32285397729214
921 => 0.30944037142721
922 => 0.30803857498173
923 => 0.30808156607741
924 => 0.30455668226345
925 => 0.29918038837812
926 => 0.31330896770694
927 => 0.3121742450575
928 => 0.31092159907307
929 => 0.31107504105866
930 => 0.31720777848332
1001 => 0.31365048106635
1002 => 0.32310813927893
1003 => 0.32116392907366
1004 => 0.31916985721279
1005 => 0.3188942157407
1006 => 0.31812666820049
1007 => 0.31549446209322
1008 => 0.31231591504764
1009 => 0.31021716296711
1010 => 0.28615893481997
1011 => 0.2906240020238
1012 => 0.29576065483813
1013 => 0.29753380680579
1014 => 0.29450070766673
1015 => 0.31561422733419
1016 => 0.31947187083237
1017 => 0.30778681704852
1018 => 0.30560102058316
1019 => 0.31575752778656
1020 => 0.3096319123604
1021 => 0.31239027661173
1022 => 0.30642820184494
1023 => 0.31854267747865
1024 => 0.31845038547162
1025 => 0.31373758083226
1026 => 0.31772081104155
1027 => 0.31702862677021
1028 => 0.3117078819395
1029 => 0.31871135458022
1030 => 0.31871482821528
1031 => 0.31417885621511
1101 => 0.30888183397086
1102 => 0.30793485150367
1103 => 0.30722142742384
1104 => 0.31221481802178
1105 => 0.31669187641796
1106 => 0.32502257213637
1107 => 0.32711710697242
1108 => 0.33529221587862
1109 => 0.33042433656381
1110 => 0.33258220441447
1111 => 0.33492487521541
1112 => 0.33604803774625
1113 => 0.33421790467448
1114 => 0.34691721381488
1115 => 0.3479894246031
1116 => 0.34834892760581
1117 => 0.34406679201552
1118 => 0.34787033066601
1119 => 0.34609078089141
1120 => 0.35072067503176
1121 => 0.35144670155042
1122 => 0.35083178291826
1123 => 0.35106223519483
1124 => 0.34022561515515
1125 => 0.33966367923836
1126 => 0.33200164313988
1127 => 0.33512397948493
1128 => 0.32928692134535
1129 => 0.33113791260977
1130 => 0.33195381192223
1201 => 0.33152763242328
1202 => 0.33530051169716
1203 => 0.33209279356605
1204 => 0.32362709802036
1205 => 0.31515909600158
1206 => 0.31505278713412
1207 => 0.31282331167523
1208 => 0.31121180926724
1209 => 0.31152224180214
1210 => 0.31261624654547
1211 => 0.31114822372277
1212 => 0.31146150082264
1213 => 0.31666398803486
1214 => 0.31770730974283
1215 => 0.31416169492704
1216 => 0.29992553981188
1217 => 0.29643195163792
1218 => 0.2989430735365
1219 => 0.29774291900594
1220 => 0.24030177351984
1221 => 0.25379671861525
1222 => 0.24577848048459
1223 => 0.2494736535166
1224 => 0.2412891086979
1225 => 0.24519520247413
1226 => 0.24447388958136
1227 => 0.26617336195032
1228 => 0.26583455453592
1229 => 0.2659967237159
1230 => 0.25825596622589
1231 => 0.27058720309195
]
'min_raw' => 0.15742790216373
'max_raw' => 0.35144670155042
'avg_raw' => 0.25443730185708
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.157427'
'max' => '$0.351446'
'avg' => '$0.254437'
'bar_min_pct' => 61.631153054957
'bar_max_pct' => 60.119598047091
'min_diff' => 0.024275063094739
'max_diff' => 0.053167904885878
'year' => 2035
]
10 => [
'items' => [
101 => 0.27666201378912
102 => 0.27553772800492
103 => 0.27582068651502
104 => 0.27095852182519
105 => 0.26604380009827
106 => 0.26059261733286
107 => 0.27072024112443
108 => 0.26959422224311
109 => 0.27217690442806
110 => 0.27874539239439
111 => 0.27971262719869
112 => 0.2810126005844
113 => 0.28054665266403
114 => 0.29164742249125
115 => 0.29030304601994
116 => 0.2935426065123
117 => 0.28687858479347
118 => 0.27933761166387
119 => 0.28077090412282
120 => 0.28063286653321
121 => 0.27887548958535
122 => 0.27728900825444
123 => 0.27464796382683
124 => 0.28300461919682
125 => 0.28266535424985
126 => 0.28815765938904
127 => 0.28718684110628
128 => 0.28070347901449
129 => 0.28093503355996
130 => 0.28249234915954
131 => 0.28788223623082
201 => 0.28948232168507
202 => 0.28874109835028
203 => 0.29049551900419
204 => 0.29188214155555
205 => 0.29066965744782
206 => 0.30783587551049
207 => 0.30070726494632
208 => 0.30418170013475
209 => 0.30501033245462
210 => 0.30288780819152
211 => 0.30334810770229
212 => 0.304045336037
213 => 0.30827876995406
214 => 0.31938852550641
215 => 0.32430896061388
216 => 0.33911233240469
217 => 0.32390038697396
218 => 0.32299777308539
219 => 0.32566430736392
220 => 0.33435545370117
221 => 0.34139881148965
222 => 0.34373549960914
223 => 0.34404433151865
224 => 0.34842811377092
225 => 0.35094081600522
226 => 0.34789580730057
227 => 0.34531548124909
228 => 0.33607307361453
229 => 0.33714290746447
301 => 0.34451300178738
302 => 0.35492369411488
303 => 0.3638571511798
304 => 0.36072896587807
305 => 0.38459481157556
306 => 0.38696101269323
307 => 0.38663408020721
308 => 0.39202463849119
309 => 0.38132547806558
310 => 0.37675137969716
311 => 0.34587337702936
312 => 0.35454883628165
313 => 0.36715912579672
314 => 0.36549010669324
315 => 0.3563321773734
316 => 0.3638502040692
317 => 0.36136450933313
318 => 0.35940393876323
319 => 0.36838569261926
320 => 0.35850988530444
321 => 0.36706060706415
322 => 0.35609421796144
323 => 0.36074325516503
324 => 0.35810423679964
325 => 0.35981200510798
326 => 0.3498284264729
327 => 0.35521532316672
328 => 0.34960431385996
329 => 0.34960165351098
330 => 0.34947779016954
331 => 0.35607911773591
401 => 0.35629438679085
402 => 0.35141599574525
403 => 0.35071294338079
404 => 0.35331249645687
405 => 0.35026910062881
406 => 0.35169308638186
407 => 0.35031223170664
408 => 0.35000137223399
409 => 0.34752439106761
410 => 0.34645723947512
411 => 0.34687569711164
412 => 0.34544728546848
413 => 0.34458661578557
414 => 0.34930658130687
415 => 0.3467848941317
416 => 0.34892009658119
417 => 0.34648676390597
418 => 0.33805177270108
419 => 0.33320072006073
420 => 0.31726780359879
421 => 0.32178635894268
422 => 0.32478216581046
423 => 0.32379205165853
424 => 0.32591919998018
425 => 0.32604978961115
426 => 0.32535823200807
427 => 0.32455749689772
428 => 0.32416774332943
429 => 0.32707264710836
430 => 0.32875904152659
501 => 0.32508283510836
502 => 0.32422155138017
503 => 0.32793839903791
504 => 0.33020567396199
505 => 0.34694595812961
506 => 0.34570578380807
507 => 0.34881837798322
508 => 0.34846794764575
509 => 0.35173044221645
510 => 0.35706324200646
511 => 0.34622016895909
512 => 0.34810215151486
513 => 0.34764073285351
514 => 0.35267838080766
515 => 0.3526941077947
516 => 0.349673786197
517 => 0.35131115153423
518 => 0.35039721912176
519 => 0.35204881851647
520 => 0.3456892205239
521 => 0.35343452440267
522 => 0.35782561260558
523 => 0.35788658286954
524 => 0.35996792382788
525 => 0.3620826867847
526 => 0.36614179012328
527 => 0.36196948059567
528 => 0.35446390192165
529 => 0.35500578045904
530 => 0.35060526242865
531 => 0.35067923593176
601 => 0.35028435957475
602 => 0.35146941324703
603 => 0.34594927316362
604 => 0.3472448390077
605 => 0.34543103923917
606 => 0.34809820866839
607 => 0.34522877526145
608 => 0.34764051034346
609 => 0.34868133525457
610 => 0.35252200158394
611 => 0.34466150572185
612 => 0.32863342255026
613 => 0.33200271995465
614 => 0.32701926444096
615 => 0.3274805022221
616 => 0.32841227594547
617 => 0.32539209245066
618 => 0.32596824828455
619 => 0.32594766394381
620 => 0.32577027921594
621 => 0.32498461284392
622 => 0.32384524116513
623 => 0.3283841472533
624 => 0.32915539584407
625 => 0.33086978592387
626 => 0.33597064791944
627 => 0.33546095151947
628 => 0.33629228749492
629 => 0.33447748572827
630 => 0.32756468567108
701 => 0.32794008397267
702 => 0.3232588611365
703 => 0.33075007653112
704 => 0.32897605784646
705 => 0.32783233645979
706 => 0.32752026148293
707 => 0.33263376752877
708 => 0.33416380868207
709 => 0.33321038971258
710 => 0.33125489959047
711 => 0.33501001871368
712 => 0.33601473017529
713 => 0.33623964801921
714 => 0.34289299913286
715 => 0.33661149643695
716 => 0.33812351656863
717 => 0.34991986601075
718 => 0.33922220485169
719 => 0.34488899455396
720 => 0.34461163468658
721 => 0.34751057254455
722 => 0.34437383716857
723 => 0.3444127207629
724 => 0.34698678118972
725 => 0.3433719775545
726 => 0.34247690133932
727 => 0.34124035995871
728 => 0.34394030282531
729 => 0.34555879646593
730 => 0.35860266655671
731 => 0.3670296015081
801 => 0.3666637660374
802 => 0.37000681742429
803 => 0.36850074215566
804 => 0.36363722783065
805 => 0.37193865374105
806 => 0.36931173523659
807 => 0.36952829520639
808 => 0.3695202348335
809 => 0.37126690598976
810 => 0.37002922939549
811 => 0.36758964178328
812 => 0.36920915389105
813 => 0.37401852586496
814 => 0.38894696404154
815 => 0.39730111582065
816 => 0.38844403361465
817 => 0.39455353031929
818 => 0.39089000933277
819 => 0.39022423858921
820 => 0.39406145400798
821 => 0.39790538596438
822 => 0.39766054411653
823 => 0.39487004690428
824 => 0.39329376583532
825 => 0.40522989418237
826 => 0.41402423022184
827 => 0.41342451546192
828 => 0.4160714613745
829 => 0.42384297644077
830 => 0.42455350638264
831 => 0.42446399594131
901 => 0.42270287334427
902 => 0.43035493918577
903 => 0.43673842713605
904 => 0.42229522434678
905 => 0.42779500689352
906 => 0.43026403647068
907 => 0.43388930441802
908 => 0.44000573911064
909 => 0.446649809491
910 => 0.4475893538913
911 => 0.44692270217795
912 => 0.4425407591599
913 => 0.44981078025034
914 => 0.45406938810214
915 => 0.45660529162138
916 => 0.46303592101206
917 => 0.43027928435679
918 => 0.40709250882172
919 => 0.40347155900082
920 => 0.41083490284844
921 => 0.41277655789949
922 => 0.41199387918304
923 => 0.38589505526891
924 => 0.40333415409419
925 => 0.42209715810911
926 => 0.42281792150807
927 => 0.43221107363385
928 => 0.43526986900432
929 => 0.44283258765417
930 => 0.44235953754351
1001 => 0.44420093918561
1002 => 0.44377763283673
1003 => 0.45778597661728
1004 => 0.4732392600664
1005 => 0.47270416199899
1006 => 0.47048256966823
1007 => 0.47378201311719
1008 => 0.48973145771119
1009 => 0.48826308843762
1010 => 0.4896894841115
1011 => 0.50849477815913
1012 => 0.53294433544293
1013 => 0.52158506138919
1014 => 0.54623141754275
1015 => 0.56174499229422
1016 => 0.58857411569331
1017 => 0.58521497730753
1018 => 0.59565935816559
1019 => 0.57920141852364
1020 => 0.54141066240732
1021 => 0.53543013059471
1022 => 0.54740330673474
1023 => 0.57683819194957
1024 => 0.54647629744946
1025 => 0.55261846916342
1026 => 0.5508495232966
1027 => 0.55075526368889
1028 => 0.55435276953354
1029 => 0.54913439967259
1030 => 0.52787382209224
1031 => 0.53761741950794
1101 => 0.53385494861976
1102 => 0.53802969058099
1103 => 0.56055905115115
1104 => 0.5505982838102
1105 => 0.54010542456355
1106 => 0.55326579861072
1107 => 0.57002347716794
1108 => 0.56897481176027
1109 => 0.56693996256126
1110 => 0.57841030095484
1111 => 0.59735593948722
1112 => 0.60247686945278
1113 => 0.60625703526055
1114 => 0.60677825625902
1115 => 0.61214715648028
1116 => 0.58327722685351
1117 => 0.62909454660357
1118 => 0.63700593204648
1119 => 0.63551891947655
1120 => 0.64431209143436
1121 => 0.64172491718313
1122 => 0.6379765076083
1123 => 0.65191555552274
1124 => 0.635935561912
1125 => 0.61325397280679
1126 => 0.60081040443271
1127 => 0.61719709906173
1128 => 0.62720388165484
1129 => 0.63381772839797
1130 => 0.63581907442625
1201 => 0.58551831730829
1202 => 0.55840899902959
1203 => 0.57578576123727
1204 => 0.5969866104107
1205 => 0.5831594550659
1206 => 0.58370145337714
1207 => 0.56398756356795
1208 => 0.59873085222325
1209 => 0.59366904730322
1210 => 0.61992970018249
1211 => 0.61366238461795
1212 => 0.63507692760832
1213 => 0.62943776075946
1214 => 0.65284562706748
1215 => 0.66218365868042
1216 => 0.67786366710713
1217 => 0.68939794513493
1218 => 0.69617109380844
1219 => 0.69576445936752
1220 => 0.72260304878122
1221 => 0.70677727027285
1222 => 0.68689636261674
1223 => 0.6865367797207
1224 => 0.69683338351044
1225 => 0.71841224031844
1226 => 0.72400732392916
1227 => 0.72713421237221
1228 => 0.72234527387391
1229 => 0.70516752554685
1230 => 0.69775026091238
1231 => 0.70406998527979
]
'min_raw' => 0.26059261733286
'max_raw' => 0.72713421237221
'avg_raw' => 0.49386341485253
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$0.260592'
'max' => '$0.727134'
'avg' => '$0.493863'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.10316471516913
'max_diff' => 0.37568751082179
'year' => 2036
]
11 => [
'items' => [
101 => 0.69634150543855
102 => 0.70968302987298
103 => 0.72800379251729
104 => 0.72422062747939
105 => 0.7368671809973
106 => 0.7499550334321
107 => 0.76867125022611
108 => 0.77356436235557
109 => 0.78165249063717
110 => 0.78997783145066
111 => 0.79265170654573
112 => 0.79775696375694
113 => 0.79773005653141
114 => 0.81311509276082
115 => 0.83008526415676
116 => 0.83649111099836
117 => 0.85122100259016
118 => 0.82599657943617
119 => 0.84512959415576
120 => 0.86238805236325
121 => 0.84181180700556
122 => 0.87017136758084
123 => 0.87127250505384
124 => 0.88789837356539
125 => 0.87104487069792
126 => 0.86103731449351
127 => 0.88992875427742
128 => 0.90390841191703
129 => 0.89969762526575
130 => 0.86765333093735
131 => 0.84900217719378
201 => 0.80018851030799
202 => 0.85801040732769
203 => 0.88617376667813
204 => 0.8675803946404
205 => 0.87695780998437
206 => 0.92811794746392
207 => 0.94759641544254
208 => 0.94354503026776
209 => 0.94422964767082
210 => 0.95473987543288
211 => 1.001348013418
212 => 0.97341933676914
213 => 0.99476976359965
214 => 1.0060939530059
215 => 1.0166124912303
216 => 0.99078228576925
217 => 0.95717756798552
218 => 0.94653354323333
219 => 0.86573165022656
220 => 0.86152556079072
221 => 0.85916455533283
222 => 0.84427874989169
223 => 0.83258258438022
224 => 0.82328135931472
225 => 0.79887216716192
226 => 0.80710955297414
227 => 0.76820639527691
228 => 0.79309525692834
301 => 0.73100487789397
302 => 0.78271559057937
303 => 0.7545718006623
304 => 0.77346959866681
305 => 0.77340366602985
306 => 0.73860682835124
307 => 0.71853673856969
308 => 0.73132618091807
309 => 0.74503747834274
310 => 0.74726209021955
311 => 0.7650391452321
312 => 0.77000033916959
313 => 0.75496768992301
314 => 0.72971819279753
315 => 0.73558307510007
316 => 0.71841788691702
317 => 0.68833655487567
318 => 0.70994149271744
319 => 0.71731836839868
320 => 0.72057641695085
321 => 0.69099488175251
322 => 0.68169972114682
323 => 0.6767510556343
324 => 0.72589958807244
325 => 0.72859205562594
326 => 0.71481701094568
327 => 0.77708151910377
328 => 0.76298914326816
329 => 0.77873377979244
330 => 0.7350508985039
331 => 0.73671964339592
401 => 0.7160394673447
402 => 0.72761898408352
403 => 0.71943495487777
404 => 0.72668347356204
405 => 0.73102820577463
406 => 0.75170498841245
407 => 0.78295168622352
408 => 0.7486165665963
409 => 0.73365626328675
410 => 0.74293755132005
411 => 0.76765484442658
412 => 0.80510280873792
413 => 0.78293286015509
414 => 0.79277150686601
415 => 0.79492081348142
416 => 0.77857351417255
417 => 0.80570555698098
418 => 0.82024583914235
419 => 0.83516115995246
420 => 0.84811171509408
421 => 0.82920365282597
422 => 0.84943798981711
423 => 0.83313268604356
424 => 0.81850514294736
425 => 0.81852732689225
426 => 0.80935125543369
427 => 0.79157146072334
428 => 0.78829259378776
429 => 0.80534967366189
430 => 0.81902783640947
501 => 0.82015443540735
502 => 0.82772736911378
503 => 0.83220895327383
504 => 0.87613457046055
505 => 0.89380181706481
506 => 0.91540499178863
507 => 0.92382064583178
508 => 0.94914874732269
509 => 0.92869424832095
510 => 0.92426878879709
511 => 0.86283109933901
512 => 0.87289151754597
513 => 0.88899921778128
514 => 0.86309670938305
515 => 0.87952588902615
516 => 0.8827693571053
517 => 0.8622165520594
518 => 0.8731946932687
519 => 0.84404000500882
520 => 0.78358717875702
521 => 0.80577285825796
522 => 0.82210898598963
523 => 0.79879531748651
524 => 0.84058416591477
525 => 0.81617198335991
526 => 0.80843449348144
527 => 0.77824778685121
528 => 0.79249475038779
529 => 0.81176397256787
530 => 0.7998578335481
531 => 0.8245648597299
601 => 0.85955659792653
602 => 0.88449379435948
603 => 0.8864081626552
604 => 0.87037521601122
605 => 0.8960681153291
606 => 0.89625526005105
607 => 0.86727356466191
608 => 0.84952243760681
609 => 0.8454893441912
610 => 0.85556480227793
611 => 0.86779826842739
612 => 0.8870870348859
613 => 0.89874283248169
614 => 0.92913497085414
615 => 0.93735821208683
616 => 0.9463930610706
617 => 0.95846640555715
618 => 0.97296355115524
619 => 0.94124462190957
620 => 0.94250487409999
621 => 0.91296864636489
622 => 0.88140495110642
623 => 0.90535786133744
624 => 0.93667310514238
625 => 0.92948935361326
626 => 0.92868103481551
627 => 0.93004040282439
628 => 0.92462408877082
629 => 0.9001263010445
630 => 0.88782366541261
701 => 0.90369720411483
702 => 0.91213328348514
703 => 0.92521690688505
704 => 0.92360407413923
705 => 0.95730608293883
706 => 0.97040166446251
707 => 0.96705125431722
708 => 0.96766781041608
709 => 0.9913767352382
710 => 1.0177459357527
711 => 1.042444171757
712 => 1.0675682782344
713 => 1.0372801872653
714 => 1.0219017625809
715 => 1.0377683713927
716 => 1.0293493254184
717 => 1.0777276608376
718 => 1.0810772718171
719 => 1.1294521089319
720 => 1.1753655897224
721 => 1.1465281550634
722 => 1.1737205570803
723 => 1.2031313568906
724 => 1.259869561455
725 => 1.2407621302318
726 => 1.2261261373665
727 => 1.2122951948293
728 => 1.2410751906489
729 => 1.278100195499
730 => 1.2860750269227
731 => 1.298997300449
801 => 1.2854111098965
802 => 1.3017741799472
803 => 1.3595430075236
804 => 1.3439333603729
805 => 1.321765152043
806 => 1.3673680932374
807 => 1.3838716203787
808 => 1.4997020168207
809 => 1.6459426770437
810 => 1.5853980834434
811 => 1.5478161004339
812 => 1.5566487578977
813 => 1.6100508964524
814 => 1.627201968457
815 => 1.5805794424194
816 => 1.5970473067993
817 => 1.6877868586171
818 => 1.736465716894
819 => 1.6703532889111
820 => 1.4879517221631
821 => 1.3197691474305
822 => 1.3643787396096
823 => 1.3593213962533
824 => 1.4568097246919
825 => 1.3435610754508
826 => 1.3454678922617
827 => 1.4449721760905
828 => 1.4184261391003
829 => 1.3754249589356
830 => 1.3200831036336
831 => 1.2177785656058
901 => 1.1271645833014
902 => 1.3048794697541
903 => 1.2972160806967
904 => 1.286118357691
905 => 1.3108151393412
906 => 1.4307357007308
907 => 1.4279711436458
908 => 1.4103844419604
909 => 1.4237238001867
910 => 1.3730865049437
911 => 1.3861368889176
912 => 1.3197425064514
913 => 1.3497555402004
914 => 1.3753326977158
915 => 1.3804676907633
916 => 1.3920370922986
917 => 1.2931778228905
918 => 1.3375627324991
919 => 1.3636347085905
920 => 1.2458405721029
921 => 1.3613062972492
922 => 1.2914569029522
923 => 1.2677489694251
924 => 1.2996685786366
925 => 1.287229475884
926 => 1.276535065786
927 => 1.270567401198
928 => 1.2940056393642
929 => 1.292912217539
930 => 1.2545627107331
1001 => 1.2045373424306
1002 => 1.2213274980597
1003 => 1.2152274771111
1004 => 1.1931202142751
1005 => 1.2080178401855
1006 => 1.1424162351921
1007 => 1.0295520834757
1008 => 1.104113599222
1009 => 1.1012430619731
1010 => 1.0997956069237
1011 => 1.1558265252781
1012 => 1.1504404453316
1013 => 1.1406646574879
1014 => 1.1929406742651
1015 => 1.1738592249298
1016 => 1.2326637556263
1017 => 1.2713962227816
1018 => 1.261572416247
1019 => 1.2980004888168
1020 => 1.221714309334
1021 => 1.2470535180879
1022 => 1.2522758938935
1023 => 1.1922955963326
1024 => 1.1513216746216
1025 => 1.1485891811804
1026 => 1.0775460474877
1027 => 1.1154967160662
1028 => 1.1488917339099
1029 => 1.1328981119208
1030 => 1.127835008995
1031 => 1.1537013037902
1101 => 1.1557113364256
1102 => 1.1098823793243
1103 => 1.1194116707199
1104 => 1.1591503999529
1105 => 1.1184103567024
1106 => 1.0392591075148
1107 => 1.0196285033647
1108 => 1.0170094189073
1109 => 0.96376966352923
1110 => 1.0209403142014
1111 => 0.99598379310482
1112 => 1.0748211442239
1113 => 1.0297896720779
1114 => 1.0278484553169
1115 => 1.0249140214682
1116 => 0.97908836470769
1117 => 0.98912127116582
1118 => 1.0224721802874
1119 => 1.0343721603869
1120 => 1.0331308949689
1121 => 1.0223087426382
1122 => 1.0272630685568
1123 => 1.0113034585714
1124 => 1.0056677881151
1125 => 0.98788006194144
1126 => 0.96173701845098
1127 => 0.96537236899293
1128 => 0.9135761591389
1129 => 0.88535483497751
1130 => 0.87754354440071
1201 => 0.8670979601851
1202 => 0.8787234009325
1203 => 0.91342942698424
1204 => 0.87156659627167
1205 => 0.79979570935112
1206 => 0.80410926194668
1207 => 0.81380053392366
1208 => 0.79574091270874
1209 => 0.77864899685794
1210 => 0.79350903097925
1211 => 0.76309876005213
1212 => 0.81747546987842
1213 => 0.81600473226658
1214 => 0.83627300705664
1215 => 0.84894717522974
1216 => 0.81973732090143
1217 => 0.8123911215297
1218 => 0.81657585055798
1219 => 0.74741160131961
1220 => 0.83062081231902
1221 => 0.83134040903108
1222 => 0.82517878510258
1223 => 0.8694851211636
1224 => 0.96298530974511
1225 => 0.92780677776437
1226 => 0.91418458690467
1227 => 0.88828879212262
1228 => 0.92279340112955
1229 => 0.92014398551357
1230 => 0.90816232333707
1231 => 0.90091577666766
]
'min_raw' => 0.6767510556343
'max_raw' => 1.736465716894
'avg_raw' => 1.2066083862641
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$0.676751'
'max' => '$1.73'
'avg' => '$1.20'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 0.41615843830144
'max_diff' => 1.0093315045218
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.021242442330251
]
1 => [
'year' => 2028
'avg' => 0.036458197763781
]
2 => [
'year' => 2029
'avg' => 0.099597225339821
]
3 => [
'year' => 2030
'avg' => 0.076839111025034
]
4 => [
'year' => 2031
'avg' => 0.075465529592779
]
5 => [
'year' => 2032
'avg' => 0.13231482325236
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.021242442330251
'min' => '$0.021242'
'max_raw' => 0.13231482325236
'max' => '$0.132314'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.13231482325236
]
1 => [
'year' => 2033
'avg' => 0.3403273311779
]
2 => [
'year' => 2034
'avg' => 0.21571581786677
]
3 => [
'year' => 2035
'avg' => 0.25443730185708
]
4 => [
'year' => 2036
'avg' => 0.49386341485253
]
5 => [
'year' => 2037
'avg' => 1.2066083862641
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.13231482325236
'min' => '$0.132314'
'max_raw' => 1.2066083862641
'max' => '$1.20'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 1.2066083862641
]
]
]
]
'prediction_2025_max_price' => '$0.03632'
'last_price' => 0.03521751
'sma_50day_nextmonth' => '$0.03351'
'sma_200day_nextmonth' => '$0.07844'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'increase'
'sma_200day_direction_label' => 'aumentar'
'sma_200day_date_nextmonth' => '4 de fev. de 2026'
'sma_50day_date_nextmonth' => '4 de fev. de 2026'
'daily_sma3' => '$0.035754'
'daily_sma3_action' => 'SELL'
'daily_sma5' => '$0.035344'
'daily_sma5_action' => 'SELL'
'daily_sma10' => '$0.034614'
'daily_sma10_action' => 'BUY'
'daily_sma21' => '$0.03546'
'daily_sma21_action' => 'SELL'
'daily_sma50' => '$0.043938'
'daily_sma50_action' => 'SELL'
'daily_sma100' => '$0.061996'
'daily_sma100_action' => 'SELL'
'daily_sma200' => '$0.096144'
'daily_sma200_action' => 'SELL'
'daily_ema3' => '$0.035482'
'daily_ema3_action' => 'SELL'
'daily_ema5' => '$0.035299'
'daily_ema5_action' => 'SELL'
'daily_ema10' => '$0.0352014'
'daily_ema10_action' => 'BUY'
'daily_ema21' => '$0.036922'
'daily_ema21_action' => 'SELL'
'daily_ema50' => '$0.045012'
'daily_ema50_action' => 'SELL'
'daily_ema100' => '$0.062069'
'daily_ema100_action' => 'SELL'
'daily_ema200' => '$0.098843'
'daily_ema200_action' => 'SELL'
'weekly_sma21' => '$0.067729'
'weekly_sma21_action' => 'SELL'
'weekly_sma50' => '—'
'weekly_sma50_action' => '—'
'weekly_sma100' => '—'
'weekly_sma100_action' => '—'
'weekly_sma200' => '—'
'weekly_sma200_action' => '—'
'weekly_ema3' => '$0.035558'
'weekly_ema3_action' => 'SELL'
'weekly_ema5' => '$0.037261'
'weekly_ema5_action' => 'SELL'
'weekly_ema10' => '$0.045294'
'weekly_ema10_action' => 'SELL'
'weekly_ema21' => '$0.070038'
'weekly_ema21_action' => 'SELL'
'weekly_ema50' => '$0.088298'
'weekly_ema50_action' => 'SELL'
'weekly_ema100' => '$0.044149'
'weekly_ema100_action' => 'SELL'
'weekly_ema200' => '$0.022074'
'weekly_ema200_action' => 'BUY'
'rsi_14' => '40.09'
'rsi_14_action' => 'NEUTRAL'
'stoch_rsi_14' => 120.73
'stoch_rsi_14_action' => 'SELL'
'momentum_10' => 0
'momentum_10_action' => 'SELL'
'vwma_10' => '0.034318'
'vwma_10_action' => 'BUY'
'hma_9' => '0.036115'
'hma_9_action' => 'BUY'
'stochastic_fast_14' => 56.03
'stochastic_fast_14_action' => 'NEUTRAL'
'cci_20' => 2.13
'cci_20_action' => 'NEUTRAL'
'adx_14' => 26.13
'adx_14_action' => 'SELL'
'ao_5_34' => '-0.004544'
'ao_5_34_action' => 'NEUTRAL'
'macd_12_26' => 0
'macd_12_26_action' => 'NEUTRAL'
'williams_percent_r_14' => -43.97
'williams_percent_r_14_action' => 'NEUTRAL'
'ultimate_oscillator' => 57.91
'ultimate_oscillator_action' => 'NEUTRAL'
'ichimoku_cloud' => '-0.025034'
'ichimoku_cloud_action' => 'SELL'
'sell_signals' => 25
'buy_signals' => 5
'sell_pct' => 83.33
'buy_pct' => 16.67
'overall_action' => 'bearish'
'overall_action_label' => 'Baixista'
'overall_action_dir' => -1
'last_updated' => 1767711458
'last_updated_date' => '6 de janeiro de 2026'
]
Previsão de preço de Prime Numbers Labs para 2026
A previsão de preço para Prime Numbers Labs em 2026 sugere que o preço médio poderia variar entre $0.012167 na extremidade inferior e $0.03632 na extremidade superior. No mercado de criptomoedas, comparado ao preço médio de hoje, Prime Numbers Labs poderia potencialmente ganhar 3.13% até 2026 se PRFI atingir a meta de preço prevista.
Previsão de preço de Prime Numbers Labs 2027-2032
A previsão de preço de PRFI para 2027-2032 está atualmente dentro de uma faixa de preço entre $0.021242 na extremidade inferior e $0.132314 na extremidade superior. Considerando a volatilidade de preços no mercado, se Prime Numbers Labs atingir a meta de preço superior, poderia ganhar 275.71% até 2032 em comparação com o preço de hoje.
| Previsão de Preço de Prime Numbers Labs | Potencial Mínimo ($) | Preço Médio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2027 | $0.011713 | $0.021242 | $0.030771 |
| 2028 | $0.021139 | $0.036458 | $0.051776 |
| 2029 | $0.046437 | $0.099597 | $0.152757 |
| 2030 | $0.039492 | $0.076839 | $0.114185 |
| 2031 | $0.046692 | $0.075465 | $0.104238 |
| 2032 | $0.071272 | $0.132314 | $0.193356 |
Previsão de preço de Prime Numbers Labs 2032-2037
A previsão de preço de Prime Numbers Labs para 2032-2037 é atualmente estimada entre $0.132314 na extremidade inferior e $1.20 na extremidade superior. Comparado ao preço atual, Prime Numbers Labs poderia potencialmente ganhar 3326.16% até 2037 se atingir a meta de preço superior. Por favor, note que esta informação é apenas para fins gerais e não deve ser considerada como aconselhamento de investimento a longo prazo.
| Previsão de Preço de Prime Numbers Labs | Potencial Mínimo ($) | Preço Médio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2032 | $0.071272 | $0.132314 | $0.193356 |
| 2033 | $0.165622 | $0.340327 | $0.515031 |
| 2034 | $0.133152 | $0.215715 | $0.298278 |
| 2035 | $0.157427 | $0.254437 | $0.351446 |
| 2036 | $0.260592 | $0.493863 | $0.727134 |
| 2037 | $0.676751 | $1.20 | $1.73 |
Prime Numbers Labs Histograma de preços potenciais
Previsão de preço de Prime Numbers Labs baseada na análise técnica
Em 6 de janeiro de 2026, o sentimento geral de previsão de preço para Prime Numbers Labs é Baixista, com 5 indicadores técnicos mostrando sinais de alta e 25 indicando sinais de baixa. A previsão de preço de PRFI foi atualizada pela última vez em 6 de janeiro de 2026.
Médias Móveis Simples de 50 e 200 dias e Índice de Força Relativa de 14 dias - RSI (14) de Prime Numbers Labs
De acordo com nossos indicadores técnicos, o SMA de 200 dias de Prime Numbers Labs está projetado para aumentar no próximo mês, alcançando $0.07844 até 4 de fev. de 2026. O SMA de 50 dias de curto prazo para Prime Numbers Labs é esperado para alcançar $0.03351 até 4 de fev. de 2026.
O oscilador de momentum Índice de Força Relativa (RSI) é uma ferramenta comumente usada para identificar se uma criptomoeda está sobrevendida (abaixo de 30) ou sobrecomprada (acima de 70). No momento, o RSI está em 40.09, sugerindo que o mercado de PRFI está em um estado NEUTRAL.
Médias Móveis e Osciladores Populares de PRFI para Sábado, 19 de Outubro de 2024
Médias móveis (MA) são indicadores amplamente utilizados nos mercados financeiros, projetados para suavizar movimentos de preços ao longo de um período definido. Como indicadores atrasados, eles se baseiam em dados históricos de preços. A tabela abaixo destaca dois tipos: a média móvel simples (SMA) e a média móvel exponencial (EMA).
Média Móvel Simples Diária (SMA)
| Período | Valor | Ação |
|---|---|---|
| SMA 3 | $0.035754 | SELL |
| SMA 5 | $0.035344 | SELL |
| SMA 10 | $0.034614 | BUY |
| SMA 21 | $0.03546 | SELL |
| SMA 50 | $0.043938 | SELL |
| SMA 100 | $0.061996 | SELL |
| SMA 200 | $0.096144 | SELL |
Média Móvel Exponencial Diária (EMA)
| Período | Valor | Ação |
|---|---|---|
| EMA 3 | $0.035482 | SELL |
| EMA 5 | $0.035299 | SELL |
| EMA 10 | $0.0352014 | BUY |
| EMA 21 | $0.036922 | SELL |
| EMA 50 | $0.045012 | SELL |
| EMA 100 | $0.062069 | SELL |
| EMA 200 | $0.098843 | SELL |
Média Móvel Simples Semanal (SMA)
| Período | Valor | Ação |
|---|---|---|
| SMA 21 | $0.067729 | SELL |
| SMA 50 | — | — |
| SMA 100 | — | — |
| SMA 200 | — | — |
Média Móvel Exponencial Semanal (EMA)
| Período | Valor | Ação |
|---|---|---|
| EMA 21 | $0.070038 | SELL |
| EMA 50 | $0.088298 | SELL |
| EMA 100 | $0.044149 | SELL |
| EMA 200 | $0.022074 | BUY |
Osciladores de Prime Numbers Labs
Um oscilador é uma ferramenta de análise técnica que define limites altos e baixos entre dois extremos, criando um indicador de tendência que flutua dentro desses limites. Os traders usam esse indicador para identificar condições de sobrecompra ou sobrevenda de curto prazo.
| Período | Valor | Ação |
|---|---|---|
| RSI (14) | 40.09 | NEUTRAL |
| Stoch RSI (14) | 120.73 | SELL |
| Estocástico Rápido (14) | 56.03 | NEUTRAL |
| Índice de Canal de Commodities (20) | 2.13 | NEUTRAL |
| Índice Direcional Médio (14) | 26.13 | SELL |
| Oscilador Impressionante (5, 34) | -0.004544 | NEUTRAL |
| Momentum (10) | 0 | SELL |
| MACD (12, 26) | 0 | NEUTRAL |
| Williams Percent Range (14) | -43.97 | NEUTRAL |
| Oscilador Ultimate (7, 14, 28) | 57.91 | NEUTRAL |
| VWMA (10) | 0.034318 | BUY |
| Média Móvel de Hull (9) | 0.036115 | BUY |
| Nuvem Ichimoku B/L (9, 26, 52, 26) | -0.025034 | SELL |
Previsão do preço de Prime Numbers Labs com base nos fluxos financeiros mundiais
Definições dos fluxos financeiros mundiais, usadas na previsão do preço do Prime Numbers Labs
M0: o total de todas as moedas físicas, mais as contas no Banco Central que podem ser trocadas por moedas físicas.
M1: o valor de M0, mais o valor em contas de demanda, incluindo contas 'correntes'.
M2: o valor de M1, mais a maioria das contas de poupança, do mercado de moedas e de certificados de depósito (CD) de menos de US$ 100.000.
Previsões de preço de Prime Numbers Labs por empresas de Internet ou nichos tecnológicos
| Comparação | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Facebook stock | $0.049486 | $0.069536 | $0.09771 | $0.137299 | $0.192929 | $0.271097 |
| Amazon.com stock | $0.073483 | $0.153327 | $0.319927 | $0.667546 | $1.39 | $2.90 |
| Apple stock | $0.049953 | $0.070855 | $0.1005024 | $0.142555 | $0.2022034 | $0.28681 |
| Netflix stock | $0.055567 | $0.087677 | $0.13834 | $0.21828 | $0.344411 | $0.543427 |
| Google stock | $0.0456065 | $0.05906 | $0.076482 | $0.099044 | $0.128262 | $0.166099 |
| Tesla stock | $0.079835 | $0.18098 | $0.41027 | $0.930051 | $2.10 | $4.77 |
| Kodak stock | $0.0264093 | $0.0198042 | $0.014851 | $0.011136 | $0.008351 | $0.006262 |
| Nokia stock | $0.02333 | $0.015455 | $0.010238 | $0.006782 | $0.004493 | $0.002976 |
Este cálculo mostra quanto a criptomoeda pode custar, se assumirmos que sua capitalização se comportará da mesma forma que a de algumas empresas de Internet ou nichos tecnológicos. Se você extrapolar os dados, poderá obter uma imagem em potencial do preço futuro para 2024, 2025, 2026, 2027, 2028, 2029 e 2030.
Visão geral da previsão para Prime Numbers Labs
Você pode fazer perguntas como: 'Devo investir em Prime Numbers Labs agora?', 'Devo comprar PRFI hoje?', 'Prime Numbers Labs será um bom ou mau investimento no curto ou no longo prazo?'.
Atualizamos a previsão para Prime Numbers Labs regularmente com novos valores. Veja nossas previsões semelhantes. Fazemos previsões de preços futuros para uma enorme quantidade de moedas digitais, como Prime Numbers Labs, com métodos de análise técnica.
Se você estiver tentando encontrar criptomoedas com bom retorno, você deve explorar o máximo de fontes de informações disponíveis sobre Prime Numbers Labs para poder tomar sozinho uma decisão de tão grande responsabilidade sobre o seu investimento.
O preço de Prime Numbers Labs é de $0.03521 USD hoje, mas o preço pode tanto subir quanto descer e seu investimento pode ser perdido, porque criptomoedas são ativos de alto risco
Previsão do preço de Prime Numbers Labs com base no padrão de crescimento do Bitcoin
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| Se Prime Numbers Labs tiver 1% da média anterior do crescimento anual do Bitcoin | $0.036132 | $0.037072 | $0.038035 | $0.039024 |
| Se Prime Numbers Labs tiver 2% da média anterior do crescimento anual do Bitcoin | $0.037048 | $0.038974 | $0.04100049 | $0.043131 |
| Se Prime Numbers Labs tiver 5% da média anterior do crescimento anual do Bitcoin | $0.039794 | $0.044966 | $0.05081 | $0.057414 |
| Se Prime Numbers Labs tiver 10% da média anterior do crescimento anual do Bitcoin | $0.044371 | $0.0559052 | $0.070436 | $0.088745 |
| Se Prime Numbers Labs tiver 20% da média anterior do crescimento anual do Bitcoin | $0.053525 | $0.081352 | $0.123644 | $0.187922 |
| Se Prime Numbers Labs tiver 50% da média anterior do crescimento anual do Bitcoin | $0.080988 | $0.186245 | $0.4283017 | $0.984948 |
| Se Prime Numbers Labs tiver 100% da média anterior do crescimento anual do Bitcoin | $0.126759 | $0.456246 | $1.64 | $5.91 |
Perguntas Frequentes sobre Prime Numbers Labs
PRFI é um bom investimento?
A decisão de adquirir Prime Numbers Labs depende inteiramente da sua tolerância individual ao risco. Como você pode perceber, o valor de Prime Numbers Labs experimentou uma escalada de 0.4103% nas últimas 24 horas, e Prime Numbers Labs registrou um declínio de durante os últimos 30 dias. Consequentemente, a decisão de investir ou não em Prime Numbers Labs dependerá de quão alinhado esse investimento está com suas aspirações de negociação.
Prime Numbers Labs pode subir?
Parece que o valor médio de Prime Numbers Labs pode potencialmente subir para $0.03632 até o final deste ano. Observando as perspectivas de Prime Numbers Labs em um horizonte de cinco anos mais longo, a moeda digital poderia potencialmente crescer até $0.114185. No entanto, dada a imprevisibilidade do mercado, é vital conduzir uma pesquisa aprofundada antes de investir quaisquer fundos em um projeto, rede ou ativo específico.
Qual será o preço de Prime Numbers Labs na próxima semana?
Com base na nossa nova previsão experimental de Prime Numbers Labs, o preço de Prime Numbers Labs aumentará 0.86% na próxima semana e atingirá $0.035518 até 13 de janeiro de 2026.
Qual será o preço de Prime Numbers Labs no próximo mês?
Com base na nossa nova previsão experimental de Prime Numbers Labs, o preço de Prime Numbers Labs diminuirá -11.62% no próximo mês e atingirá $0.031125 até 5 de fevereiro de 2026.
Até onde o preço de Prime Numbers Labs pode subir este ano em 2026?
De acordo com nossa previsão mais recente sobre o valor de Prime Numbers Labs em 2026, espera-se que PRFI fluctue dentro do intervalo de $0.012167 e $0.03632. No entanto, é crucial lembrar que o mercado de criptomoedas é excepcionalmente instável, e essa previsão de preço de Prime Numbers Labs não considera flutuações repentinas e extremas de preço.
Onde estará Prime Numbers Labs em 5 anos?
O futuro de Prime Numbers Labs parece seguir uma tendência de alta, com um preço máximo de $0.114185 projetada após um período de cinco anos. Com base na previsão de Prime Numbers Labs para 2030, o valor de Prime Numbers Labs pode potencialmente atingir seu pico mais alto de aproximadamente $0.114185, enquanto seu pico mais baixo está previsto para cerca de $0.039492.
Quanto será Prime Numbers Labs em 2026?
Com base na nossa nova simulação experimental de previsão de preços de Prime Numbers Labs, espera-se que o valor de PRFI em 2026 aumente 3.13% para $0.03632 se o melhor cenário ocorrer. O preço ficará entre $0.03632 e $0.012167 durante 2026.
Quanto será Prime Numbers Labs em 2027?
De acordo com nossa última simulação experimental para previsão de preços de Prime Numbers Labs, o valor de PRFI pode diminuir -12.62% para $0.030771 em 2027, assumindo as condições mais favoráveis. O preço está projetado para flutuar entre $0.030771 e $0.011713 ao longo do ano.
Quanto será Prime Numbers Labs em 2028?
Nosso novo modelo experimental de previsão de preços de Prime Numbers Labs sugere que o valor de PRFI em 2028 pode aumentar 47.02%, alcançando $0.051776 no melhor cenário. O preço é esperado para variar entre $0.051776 e $0.021139 durante o ano.
Quanto será Prime Numbers Labs em 2029?
Com base no nosso modelo de previsão experimental, o valor de Prime Numbers Labs pode experimentar um 333.75% crescimento em 2029, potencialmente alcançando $0.152757 sob condições ótimas. A faixa de preço prevista para 2029 está entre $0.152757 e $0.046437.
Quanto será Prime Numbers Labs em 2030?
Usando nossa nova simulação experimental para previsões de preços de Prime Numbers Labs, espera-se que o valor de PRFI em 2030 aumente 224.23%, alcançando $0.114185 no melhor cenário. O preço está previsto para variar entre $0.114185 e $0.039492 ao longo de 2030.
Quanto será Prime Numbers Labs em 2031?
Nossa simulação experimental indica que o preço de Prime Numbers Labs poderia aumentar 195.98% em 2031, potencialmente atingindo $0.104238 sob condições ideais. O preço provavelmente oscilará entre $0.104238 e $0.046692 durante o ano.
Quanto será Prime Numbers Labs em 2032?
Com base nos achados da nossa mais recente previsão experimental de preços de Prime Numbers Labs, PRFI poderia ver um 449.04% aumento em valor, atingindo $0.193356 se o cenário mais positivo se desenrolar em 2032. O preço é esperado para permanecer dentro de uma faixa de $0.193356 e $0.071272 ao longo do ano.
Quanto será Prime Numbers Labs em 2033?
De acordo com nossa previsão experimental de preços de Prime Numbers Labs, espera-se que o valor de PRFI seja aumentar 1362.43% em 2033, com o preço potencial mais alto sendo $0.515031. Ao longo do ano, o preço de PRFI poderia variar entre $0.515031 e $0.165622.
Quanto será Prime Numbers Labs em 2034?
Os resultados da nossa nova simulação de previsão de preços de Prime Numbers Labs sugerem que PRFI pode aumentar 746.96% em 2034, atingindo potencialmente $0.298278 nas melhores circunstâncias. A faixa de preço prevista para o ano é entre $0.298278 e $0.133152.
Quanto será Prime Numbers Labs em 2035?
Com base em nossa previsão experimental para o preço de Prime Numbers Labs, PRFI poderia aumentar 897.93%, com o valor potencialmente atingindo $0.351446 em 2035. A faixa de preço esperada para o ano está entre $0.351446 e $0.157427.
Quanto será Prime Numbers Labs em 2036?
Nossa recente simulação de previsão de preços de Prime Numbers Labs sugere que o valor de PRFI pode aumentar 1964.7% em 2036, possivelmente atingindo $0.727134 se as condições forem ideais. A faixa de preço esperada para 2036 está entre $0.727134 e $0.260592.
Quanto será Prime Numbers Labs em 2037?
De acordo com a simulação experimental, o valor de Prime Numbers Labs poderia aumentar 4830.69% em 2037, com um pico de $1.73 sob condições favoráveis. O preço é esperado para cair entre $1.73 e $0.676751 ao longo do ano.
Previsões relacionadas
Como ler e prever os movimentos de preço de Prime Numbers Labs?
Traders de Prime Numbers Labs utilizam indicadores e padrões de gráfico para prever a direção do mercado. Eles também identificam níveis-chave de suporte e resistência para avaliar quando uma tendência de baixa pode desacelerar ou uma tendência de alta pode estagnar.
Indicadores de Previsão de Preço de Prime Numbers Labs
Médias móveis são ferramentas populares para a previsão de preço de Prime Numbers Labs. Uma média móvel simples (SMA) calcula o preço médio de fechamento de PRFI em um período específico, como uma SMA de 12 dias. Uma média móvel exponencial (EMA) dá mais peso aos preços recentes, reagindo mais rapidamente às mudanças de preço.
Médias móveis comumente usadas no mercado de criptomoedas incluem as de 50 dias, 100 dias e 200 dias, que ajudam a identificar níveis-chave de resistência e suporte. Um movimento de preço de PRFI acima dessas médias é visto como altista, enquanto uma queda abaixo indica fraqueza.
Traders também usam RSI e níveis de retração de Fibonacci para avaliar a direção futura de PRFI.
Como ler gráficos de Prime Numbers Labs e prever movimentos de preço?
A maioria dos traders prefere gráficos de velas em vez de gráficos de linha simples porque eles fornecem informações mais detalhadas. Velas podem representar a ação de preço de Prime Numbers Labs em diferentes períodos de tempo, como 5 minutos para tendências de curto prazo e semanal para tendências de longo prazo. Opções populares incluem gráficos de 1 hora, 4 horas e 1 dia.
Por exemplo, um gráfico de velas de 1 hora mostra os preços de abertura, fechamento, máximo e mínimo de PRFI dentro de cada hora. A cor da vela é crucial: verde indica que o preço fechou mais alto do que abriu, enquanto vermelho significa o oposto. Alguns gráficos usam velas vazias e preenchidas para transmitir a mesma informação.
O que afeta o preço de Prime Numbers Labs?
A ação de preço de Prime Numbers Labs é impulsionada pela oferta e demanda, influenciada por fatores como reduções pela metade das recompensas de bloco, hard forks e atualizações de protocolo. Eventos do mundo real, como regulamentações, adoção por empresas e governos e hacks de exchanges de criptomoedas, também impactam o preço de PRFI. A capitalização de mercado de Prime Numbers Labs pode mudar rapidamente.
Traders frequentemente monitoram a atividade de "baleias" de PRFI, grandes detentores de Prime Numbers Labs, pois suas ações podem influenciar significativamente os movimentos de preço no relativamente pequeno mercado de Prime Numbers Labs.
Padrões de previsão de preço altistas e baixistas
Traders frequentemente identificam padrões de velas para ganhar vantagem em previsões de preço de criptomoedas. Certas formações indicam tendências altistas, enquanto outras sugerem movimentos baixistas.
Padrões de velas altistas comumente seguidos:
- Martelo
- Engolfo de Alta
- Linha de Perfuração
- Estrela da Manhã
- Três Soldados Brancos
Padrões de velas baixistas comuns:
- Harami de Baixa
- Nuvem Negra
- Estrela da Noite
- Estrela Cadente
- Homem Enforcado


