Previsão de Preço PERL.eco - Projeção PERL
Previsão de Preço PERL.eco até $0.000241 até 2026
| Ano | Preço Mínimo | Preço Máximo |
|---|---|---|
| 2026 | $0.000081 | $0.000241 |
| 2027 | $0.000078 | $0.0002049 |
| 2028 | $0.00014 | $0.000344 |
| 2029 | $0.0003093 | $0.001017 |
| 2030 | $0.000263 | $0.00076 |
| 2031 | $0.000311 | $0.000694 |
| 2032 | $0.000474 | $0.001288 |
| 2033 | $0.0011033 | $0.003431 |
| 2034 | $0.000887 | $0.001987 |
| 2035 | $0.001048 | $0.002341 |
Calculadora de lucro do investimento
Se você abrir um short de $10,000.00 em PERL.eco hoje e fechar em Apr 06, 2026, nossa previsão mostra que pode lucrar cerca de $3,990.03, com um retorno de 39.9% nos próximos 90 dias.
Previsão de preço de longo prazo de Perlin para os anos 2027, 2028, 2029, 2030, 2031, 2032 e 2037
[
'name' => 'PERL.eco'
'name_with_ticker' => 'PERL.eco <small>PERL</small>'
'name_lang' => 'Perlin'
'name_lang_with_ticker' => 'Perlin <small>PERL</small>'
'name_with_lang' => 'Perlin/PERL.eco'
'name_with_lang_with_ticker' => 'Perlin/PERL.eco <small>PERL</small>'
'image' => '/uploads/coins/perlin.png?1717088819'
'price_for_sd' => 0.0002346
'ticker' => 'PERL'
'marketcap' => '$0'
'low24h' => '$0.0002346'
'high24h' => '$0.0002818'
'volume24h' => '$11.92K'
'current_supply' => '0'
'max_supply' => '693.17M'
'algo' => null
'proof' => null
'ico_price_and_roi' => '0.07743 USD'
'price' => '$0.0002346'
'change_24h_pct' => '-15.8517%'
'ath_price' => '$0.3094'
'ath_days' => 2325
'ath_exchange' => null
'ath_pair' => null
'ath_date' => '26 de ago. de 2019'
'ath_pct' => '-99.92%'
'fdv' => '$162.62K'
'new_prediction' => true
'change_24h_pct_is_increased' => false
'change_30d_pct' => null
'change_30d_pct_is_increased' => false
'max_price' => '$0.011567'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.000236'
'next_week_prediction_price_date' => '13 de janeiro de 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.000207'
'next_month_prediction_price_date' => '5 de fevereiro de 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.000081'
'current_year_max_price_prediction' => '$0.000241'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.000263'
'grand_prediction_max_price' => '$0.00076'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.00023905573609514
107 => 0.00023994828343649
108 => 0.00024195923817114
109 => 0.00022477585013898
110 => 0.00023249068688765
111 => 0.00023702243069505
112 => 0.00021654784730697
113 => 0.00023661771401227
114 => 0.00022447672558293
115 => 0.00022035589175848
116 => 0.00022590405162452
117 => 0.00022374192832896
118 => 0.00022188306168358
119 => 0.00022084578215608
120 => 0.00022491973843364
121 => 0.00022472968350386
122 => 0.00021806390031293
123 => 0.00020936865787244
124 => 0.00021228706664707
125 => 0.00021122678137902
126 => 0.00020738417078808
127 => 0.0002099736263678
128 => 0.00019857097448818
129 => 0.00017895330458756
130 => 0.00019191333822939
131 => 0.00019141439103198
201 => 0.0001911627992296
202 => 0.00020090190632241
203 => 0.00019996571589486
204 => 0.00019826652110167
205 => 0.00020735296374317
206 => 0.00020403628994912
207 => 0.00021425749707576
208 => 0.00022098984515559
209 => 0.0002192823039139
210 => 0.00022561410982324
211 => 0.00021235430089088
212 => 0.00021675867752701
213 => 0.00021766641344752
214 => 0.00020724083845143
215 => 0.00020011888822687
216 => 0.00019964393534307
217 => 0.00018729545511889
218 => 0.0001938919135812
219 => 0.00019969652404803
220 => 0.00019691656609039
221 => 0.00019603651444988
222 => 0.00020053250742132
223 => 0.00020088188458078
224 => 0.00019291604831983
225 => 0.00019457239792371
226 => 0.00020147965111709
227 => 0.00019439835286542
228 => 0.00018064054708592
301 => 0.00017722842103606
302 => 0.00017677318052304
303 => 0.00016751922405669
304 => 0.00017745643561442
305 => 0.00017311857646876
306 => 0.00018682182153438
307 => 0.00017899460144488
308 => 0.00017865718563088
309 => 0.0001781471321399
310 => 0.00017018186953318
311 => 0.0001719257558252
312 => 0.00017772269946127
313 => 0.00017979111425787
314 => 0.00017957536164856
315 => 0.00017769429127495
316 => 0.00017855543565935
317 => 0.0001757813895546
318 => 0.00017480181613823
319 => 0.00017171001298329
320 => 0.00016716591647794
321 => 0.00016779780096757
322 => 0.00015879475676295
323 => 0.00015388942045256
324 => 0.00015253168801313
325 => 0.00015071607145159
326 => 0.00015273676673493
327 => 0.00015876925226989
328 => 0.00015149279485153
329 => 0.00013901781899188
330 => 0.00013976758629736
331 => 0.00014145209082489
401 => 0.00013831302778196
402 => 0.00013534216805342
403 => 0.00013792508955392
404 => 0.00013263927782748
405 => 0.00014209085591876
406 => 0.00014183521721914
407 => 0.0001453581810499
408 => 0.00014756116263177
409 => 0.00014248400330931
410 => 0.00014120711146981
411 => 0.00014193448709309
412 => 0.00012991258828955
413 => 0.00014437573543816
414 => 0.00014450081333529
415 => 0.00014342982044302
416 => 0.00015113099980008
417 => 0.00016738289030156
418 => 0.00016126827536413
419 => 0.00015890051164513
420 => 0.00015439939108451
421 => 0.00016039686698145
422 => 0.00015993635440776
423 => 0.00015785374190535
424 => 0.00015659417136574
425 => 0.00015891496870551
426 => 0.00015630659889221
427 => 0.00015583806400053
428 => 0.00015299925232796
429 => 0.00015198592571856
430 => 0.00015123569903865
501 => 0.00015040977317982
502 => 0.00015223155981649
503 => 0.00014810315162179
504 => 0.00014312469605182
505 => 0.00014271079133881
506 => 0.0001438536186423
507 => 0.00014334800263399
508 => 0.00014270837064389
509 => 0.00014148713898138
510 => 0.00014112482563459
511 => 0.00014230216824219
512 => 0.00014097301708155
513 => 0.00014293425202168
514 => 0.00014240090463805
515 => 0.00013942166950866
516 => 0.00013570843948332
517 => 0.00013567538394733
518 => 0.00013487537462929
519 => 0.00013385644248055
520 => 0.00013357299886679
521 => 0.0001377075631095
522 => 0.00014626598735482
523 => 0.00014458576388973
524 => 0.00014579989753948
525 => 0.00015177223342404
526 => 0.00015367065940733
527 => 0.00015232320161107
528 => 0.00015047871827198
529 => 0.00015055986617799
530 => 0.00015686302411076
531 => 0.00015725614433941
601 => 0.00015824943233183
602 => 0.00015952608810525
603 => 0.0001525406216097
604 => 0.00015023085133424
605 => 0.00014913635403655
606 => 0.00014576572598342
607 => 0.00014940065936291
608 => 0.00014728273934605
609 => 0.00014756851911477
610 => 0.00014738240466549
611 => 0.0001474840357398
612 => 0.00014208821401006
613 => 0.00014405416785234
614 => 0.00014078538828654
615 => 0.00013640885938566
616 => 0.00013639418772617
617 => 0.00013746533697444
618 => 0.0001368281754875
619 => 0.00013511359030905
620 => 0.00013535713904104
621 => 0.00013322339587483
622 => 0.00013561621409408
623 => 0.00013568483155869
624 => 0.00013476346620659
625 => 0.00013844993281862
626 => 0.00013996028119744
627 => 0.00013935381878513
628 => 0.00013991773017789
629 => 0.00014465558476046
630 => 0.0001454280617845
701 => 0.00014577114505162
702 => 0.00014531145892351
703 => 0.00014000432946226
704 => 0.00014023972322152
705 => 0.00013851256000226
706 => 0.00013705328908596
707 => 0.00013711165226974
708 => 0.00013786190721266
709 => 0.00014113831455026
710 => 0.00014803332063747
711 => 0.00014829498107829
712 => 0.00014861212116575
713 => 0.00014732215304823
714 => 0.00014693308632066
715 => 0.00014744636576097
716 => 0.00015003576752513
717 => 0.00015669641187827
718 => 0.00015434209531439
719 => 0.00015242799930084
720 => 0.00015410717754131
721 => 0.00015384868121302
722 => 0.00015166671206078
723 => 0.00015160547145395
724 => 0.00014741757503306
725 => 0.00014586940508005
726 => 0.0001445756383888
727 => 0.00014316287893659
728 => 0.00014232534777719
729 => 0.00014361217628913
730 => 0.00014390648919511
731 => 0.00014109281616385
801 => 0.00014070932292657
802 => 0.00014300702906125
803 => 0.00014199589425849
804 => 0.00014303587147806
805 => 0.00014327715511376
806 => 0.00014323830289118
807 => 0.00014218256202901
808 => 0.00014285545977191
809 => 0.00014126385600948
810 => 0.00013953322596899
811 => 0.00013842919182522
812 => 0.00013746577560591
813 => 0.00013800033491846
814 => 0.00013609472857587
815 => 0.0001354850867546
816 => 0.0001426274971573
817 => 0.00014790367251562
818 => 0.00014782695483632
819 => 0.00014735995569374
820 => 0.00014666608969517
821 => 0.00014998500690551
822 => 0.00014882876251328
823 => 0.00014967002691608
824 => 0.00014988416401435
825 => 0.00015053229251684
826 => 0.00015076394274796
827 => 0.0001500637348581
828 => 0.00014771375165654
829 => 0.00014185781694797
830 => 0.00013913186353333
831 => 0.00013823225350215
901 => 0.00013826495261819
902 => 0.00013736296502278
903 => 0.00013762864079388
904 => 0.00013727057383175
905 => 0.00013659248163118
906 => 0.00013795846463589
907 => 0.00013811588145217
908 => 0.00013779704469659
909 => 0.00013787214229459
910 => 0.00013523231013534
911 => 0.000135433010841
912 => 0.00013431548380811
913 => 0.00013410596096143
914 => 0.00013128094993649
915 => 0.00012627603341392
916 => 0.00012904924300643
917 => 0.00012569959579096
918 => 0.00012443103363502
919 => 0.00013043620957933
920 => 0.00012983345647217
921 => 0.0001288018051632
922 => 0.00012727577786226
923 => 0.0001267097594921
924 => 0.00012327081105465
925 => 0.00012306761963489
926 => 0.00012477205533991
927 => 0.0001239855169081
928 => 0.00012288091906443
929 => 0.00011888017764597
930 => 0.00011438201969165
1001 => 0.00011451779080588
1002 => 0.00011594857115995
1003 => 0.00012010875800641
1004 => 0.00011848330103353
1005 => 0.00011730401334974
1006 => 0.00011708316821582
1007 => 0.00011984750743739
1008 => 0.00012375962658288
1009 => 0.00012559510535721
1010 => 0.00012377620163617
1011 => 0.00012168674297817
1012 => 0.00012181391864506
1013 => 0.0001226599613812
1014 => 0.00012274886851037
1015 => 0.00012138884572383
1016 => 0.00012177168417186
1017 => 0.00012119011756182
1018 => 0.00011762104434948
1019 => 0.00011755649113272
1020 => 0.00011668058300733
1021 => 0.00011665406085741
1022 => 0.0001151639226306
1023 => 0.00011495544199183
1024 => 0.00011199668209758
1025 => 0.00011394414681993
1026 => 0.00011263788973066
1027 => 0.00011066905218225
1028 => 0.0001103296238468
1029 => 0.00011031942022117
1030 => 0.00011234097615937
1031 => 0.00011392052376178
1101 => 0.00011266061263199
1102 => 0.00011237375529009
1103 => 0.0001154366412216
1104 => 0.00011504686106799
1105 => 0.00011470931396878
1106 => 0.0001234093392219
1107 => 0.00011652259036262
1108 => 0.00011351957477808
1109 => 0.00010980277273504
1110 => 0.00011101298222199
1111 => 0.00011126799114257
1112 => 0.00010232975223296
1113 => 9.8703509820523E-5
1114 => 9.7459120076635E-5
1115 => 9.674295618594E-5
1116 => 9.706932106395E-5
1117 => 9.380527757694E-5
1118 => 9.5998768782507E-5
1119 => 9.3172383025484E-5
1120 => 9.2698530255465E-5
1121 => 9.7752458111029E-5
1122 => 9.8455682647513E-5
1123 => 9.5455508300136E-5
1124 => 9.7382105915259E-5
1125 => 9.6683494838305E-5
1126 => 9.3220833297069E-5
1127 => 9.3088585095808E-5
1128 => 9.1351143252855E-5
1129 => 8.8632383203667E-5
1130 => 8.7389836907117E-5
1201 => 8.6742708007592E-5
1202 => 8.7009726003827E-5
1203 => 8.6874713534046E-5
1204 => 8.5993665842766E-5
1205 => 8.6925214156392E-5
1206 => 8.4545493157416E-5
1207 => 8.3597869080908E-5
1208 => 8.3169849270261E-5
1209 => 8.1057709912039E-5
1210 => 8.4419062903606E-5
1211 => 8.5081291788154E-5
1212 => 8.5744825468177E-5
1213 => 9.1520433139097E-5
1214 => 9.1231900101556E-5
1215 => 9.3840098239641E-5
1216 => 9.3738748456163E-5
1217 => 9.2994848097173E-5
1218 => 8.9856454848262E-5
1219 => 9.1107362460797E-5
1220 => 8.7257263263619E-5
1221 => 9.0142019363442E-5
1222 => 8.8825537149778E-5
1223 => 8.969691540274E-5
1224 => 8.8130098734904E-5
1225 => 8.8997239771159E-5
1226 => 8.5238330823752E-5
1227 => 8.172831453794E-5
1228 => 8.3140847555114E-5
1229 => 8.4676432487526E-5
1230 => 8.8005971880761E-5
1231 => 8.6022925686254E-5
]
'min_raw' => 8.1057709912039E-5
'max_raw' => 0.00024195923817114
'avg_raw' => 0.00016150847404159
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.000081'
'max' => '$0.000241'
'avg' => '$0.000161'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.00015355229008796
'max_diff' => 7.3492381711391E-6
'year' => 2026
]
1 => [
'items' => [
101 => 8.6736104085077E-5
102 => 8.4347075833641E-5
103 => 7.9417828158747E-5
104 => 7.9445727165272E-5
105 => 7.8687469799987E-5
106 => 7.8032224728993E-5
107 => 8.6250702396559E-5
108 => 8.5228604783692E-5
109 => 8.3600026006416E-5
110 => 8.5779943416948E-5
111 => 8.6356348180234E-5
112 => 8.6372757613515E-5
113 => 8.7963169084427E-5
114 => 8.8811971971549E-5
115 => 8.8961577159327E-5
116 => 9.1464123971921E-5
117 => 9.2302944654111E-5
118 => 9.5757928329709E-5
119 => 8.8739956976833E-5
120 => 8.8595426475124E-5
121 => 8.5810619325366E-5
122 => 8.4044450604931E-5
123 => 8.5931550408678E-5
124 => 8.7603263219986E-5
125 => 8.5862564102295E-5
126 => 8.6089862658902E-5
127 => 8.3753116313745E-5
128 => 8.4588393178003E-5
129 => 8.5307846137448E-5
130 => 8.4910606500733E-5
131 => 8.4315919537955E-5
201 => 8.746620183342E-5
202 => 8.7288450560254E-5
203 => 9.0222065858469E-5
204 => 9.2509028768269E-5
205 => 9.6607675146152E-5
206 => 9.2330523983563E-5
207 => 9.2174647595063E-5
208 => 9.3698364296017E-5
209 => 9.2302711381023E-5
210 => 9.3184715846998E-5
211 => 9.6465570590947E-5
212 => 9.6534889881784E-5
213 => 9.5373702447412E-5
214 => 9.5303044086501E-5
215 => 9.5526062835271E-5
216 => 9.683229061268E-5
217 => 9.6375854490928E-5
218 => 9.6904053926568E-5
219 => 9.7564575408912E-5
220 => 0.00010029677231519
221 => 0.00010095549573949
222 => 9.935513932739E-5
223 => 9.9499633592971E-5
224 => 9.890105636408E-5
225 => 9.8322838261121E-5
226 => 9.96225881146E-5
227 => 0.00010199790651848
228 => 0.00010198312978597
301 => 0.00010253415748608
302 => 0.00010287744317828
303 => 0.00010140380968684
304 => 0.00010044452847092
305 => 0.00010081237792976
306 => 0.00010140057722515
307 => 0.00010062163282581
308 => 9.5813627150944E-5
309 => 9.7272068936107E-5
310 => 9.7029312908896E-5
311 => 9.6683598806006E-5
312 => 9.8150073298784E-5
313 => 9.8008628256468E-5
314 => 9.3771800093209E-5
315 => 9.4043028085866E-5
316 => 9.3788294365778E-5
317 => 9.4611391128997E-5
318 => 9.2258261454636E-5
319 => 9.29820682939E-5
320 => 9.3436033158218E-5
321 => 9.3703421950824E-5
322 => 9.4669413619928E-5
323 => 9.4556065646992E-5
324 => 9.4662367750782E-5
325 => 9.6094678383718E-5
326 => 0.00010333881405545
327 => 0.00010373309637678
328 => 0.00010179150602458
329 => 0.0001025671330741
330 => 0.00010107809875
331 => 0.00010207769746743
401 => 0.00010276159752285
402 => 9.9671184678848E-5
403 => 9.9488190486839E-5
404 => 9.7993010388399E-5
405 => 9.8796435481971E-5
406 => 9.7518128389789E-5
407 => 9.7831780236927E-5
408 => 9.6954782328653E-5
409 => 9.8533203955004E-5
410 => 0.00010029812459519
411 => 0.00010074401324773
412 => 9.9571072170031E-5
413 => 9.8721785529197E-5
414 => 9.7230717960303E-5
415 => 9.9710396557981E-5
416 => 0.00010043553014678
417 => 9.9706587739938E-5
418 => 9.9537675856567E-5
419 => 9.9217588142796E-5
420 => 9.9605583978196E-5
421 => 0.00010043158091352
422 => 0.00010004205601259
423 => 0.0001002993440722
424 => 9.931882730326E-5
425 => 0.00010140429752085
426 => 0.00010471652612211
427 => 0.00010472717547867
428 => 0.00010433764847806
429 => 0.00010417826242188
430 => 0.00010457794076299
501 => 0.00010479474986737
502 => 0.00010608723633404
503 => 0.00010747412580771
504 => 0.00011394613383403
505 => 0.0001121288198784
506 => 0.00011787117042083
507 => 0.000122412624149
508 => 0.00012377440754838
509 => 0.00012252163089781
510 => 0.00011823594964989
511 => 0.00011802567368195
512 => 0.00012443029083429
513 => 0.0001226206931387
514 => 0.00012240544725091
515 => 0.00012011559466841
516 => 0.00012146918114842
517 => 0.00012117313192933
518 => 0.00012070580375376
519 => 0.00012328835246598
520 => 0.00012812265310955
521 => 0.00012736918201846
522 => 0.00012680675080149
523 => 0.00012434234092996
524 => 0.00012582646611849
525 => 0.0001252979975654
526 => 0.00012756863384391
527 => 0.00012622355921327
528 => 0.00012260698365637
529 => 0.0001231829352342
530 => 0.00012309588131186
531 => 0.0001248874448648
601 => 0.00012434966195555
602 => 0.00012299087056772
603 => 0.0001281061299955
604 => 0.00012777397350083
605 => 0.00012824489546873
606 => 0.00012845220988275
607 => 0.00013156577815545
608 => 0.00013284130745371
609 => 0.0001331308749357
610 => 0.00013434252911607
611 => 0.0001331007278759
612 => 0.00013806881822585
613 => 0.00014137230841245
614 => 0.00014520948226024
615 => 0.00015081662458697
616 => 0.00015292496197078
617 => 0.00015254410969339
618 => 0.00015679538101208
619 => 0.00016443482107132
620 => 0.00015408825894931
621 => 0.0001649832139872
622 => 0.00016153399701051
623 => 0.00015335596560754
624 => 0.00015282939679785
625 => 0.00015836765461283
626 => 0.00017065097740892
627 => 0.00016757414436479
628 => 0.00017065601000553
629 => 0.00016706085003268
630 => 0.00016688232003764
701 => 0.0001704814011102
702 => 0.00017889085021193
703 => 0.00017489583616718
704 => 0.0001691680039164
705 => 0.00017339734611544
706 => 0.00016973349849549
707 => 0.00016147782436138
708 => 0.00016757179156855
709 => 0.00016349692924331
710 => 0.00016468619070141
711 => 0.00017325094521904
712 => 0.00017222041129595
713 => 0.0001735540176173
714 => 0.00017120023736667
715 => 0.0001690014354555
716 => 0.00016489720840313
717 => 0.00016368214910888
718 => 0.00016401794778456
719 => 0.00016368198270373
720 => 0.00016138570538772
721 => 0.00016088982451996
722 => 0.00016006333468199
723 => 0.00016031949844218
724 => 0.00015876545574866
725 => 0.00016169825539294
726 => 0.00016224260885066
727 => 0.00016437685585657
728 => 0.00016459844046082
729 => 0.00017054228799319
730 => 0.00016726851665466
731 => 0.00016946484511236
801 => 0.00016926838482246
802 => 0.000153533208346
803 => 0.00015570137683182
804 => 0.000159074366587
805 => 0.00015755483927427
806 => 0.00015540658316871
807 => 0.00015367175118125
808 => 0.00015104330332459
809 => 0.00015474279320798
810 => 0.00015960722900774
811 => 0.00016472181058024
812 => 0.00017086664521894
813 => 0.00016949518966135
814 => 0.00016460693717093
815 => 0.00016482622060678
816 => 0.00016618174452235
817 => 0.00016442621788935
818 => 0.00016390847881333
819 => 0.00016611061512373
820 => 0.00016612578002622
821 => 0.00016410583447248
822 => 0.00016186103463563
823 => 0.00016185162884235
824 => 0.00016145218839358
825 => 0.00016713190960115
826 => 0.00017025518198073
827 => 0.00017061326012565
828 => 0.00017023108046856
829 => 0.00017037816625041
830 => 0.00016856080286934
831 => 0.00017271475663609
901 => 0.00017652683539591
902 => 0.0001755051168551
903 => 0.00017397341551656
904 => 0.00017275334162369
905 => 0.00017521770622044
906 => 0.00017510797194422
907 => 0.00017649354021353
908 => 0.0001764306828334
909 => 0.00017596476833829
910 => 0.00017550513349437
911 => 0.00017732753369576
912 => 0.00017680271170461
913 => 0.00017627707451995
914 => 0.00017522282867509
915 => 0.00017536611819457
916 => 0.00017383468132587
917 => 0.00017312616855663
918 => 0.00016247183646703
919 => 0.00015962465079235
920 => 0.00016052043336541
921 => 0.00016081534824745
922 => 0.00015957624939306
923 => 0.00016135279885188
924 => 0.00016107592550055
925 => 0.00016215307774506
926 => 0.00016148011978721
927 => 0.00016150773821653
928 => 0.00016348676408083
929 => 0.00016406128370861
930 => 0.00016376907838898
1001 => 0.00016397372897864
1002 => 0.0001686898154397
1003 => 0.00016801933875689
1004 => 0.00016766316138224
1005 => 0.00016776182494918
1006 => 0.00016896688615402
1007 => 0.00016930423749747
1008 => 0.00016787485615001
1009 => 0.00016854896065662
1010 => 0.0001714192120892
1011 => 0.00017242363764844
1012 => 0.00017562928188192
1013 => 0.00017426746723576
1014 => 0.00017676713695675
1015 => 0.00018445026947887
1016 => 0.00019058808736987
1017 => 0.00018494349638126
1018 => 0.00019621481729169
1019 => 0.00020499115739542
1020 => 0.00020465430684447
1021 => 0.00020312394894699
1022 => 0.00019313231906997
1023 => 0.00018393787229032
1024 => 0.00019162941743833
1025 => 0.00019164902476869
1026 => 0.00019098831421918
1027 => 0.00018688469774081
1028 => 0.00019084551726084
1029 => 0.00019115991273076
1030 => 0.00019098393487211
1031 => 0.00018783770173958
1101 => 0.00018303398526728
1102 => 0.0001839726199675
1103 => 0.00018551012275408
1104 => 0.0001825993092224
1105 => 0.00018166912792662
1106 => 0.00018339851192971
1107 => 0.00018897094751913
1108 => 0.00018791751084987
1109 => 0.00018789000136117
1110 => 0.00019239705015893
1111 => 0.00018917097590174
1112 => 0.00018398445915699
1113 => 0.00018267479527719
1114 => 0.0001780263707992
1115 => 0.00018123705414327
1116 => 0.00018135260092095
1117 => 0.0001795941424658
1118 => 0.00018412714836921
1119 => 0.00018408537592179
1120 => 0.00018838879037819
1121 => 0.00019661530253018
1122 => 0.00019418231808476
1123 => 0.00019135302188269
1124 => 0.00019166064482773
1125 => 0.00019503450925668
1126 => 0.0001929945938051
1127 => 0.00019372816162428
1128 => 0.00019503339891393
1129 => 0.00019582088097799
1130 => 0.00019154733827737
1201 => 0.00019055097104668
1202 => 0.00018851275337006
1203 => 0.00018798102042337
1204 => 0.00018964110619217
1205 => 0.00018920373224378
1206 => 0.00018134288966171
1207 => 0.00018052138787457
1208 => 0.00018054658216154
1209 => 0.00017848087685749
1210 => 0.00017533018044274
1211 => 0.00018361002250241
1212 => 0.0001829450353087
1213 => 0.00018221094091277
1214 => 0.00018230086328759
1215 => 0.0001858948620958
1216 => 0.00018381016128575
1217 => 0.00018935268006503
1218 => 0.00018821330482737
1219 => 0.00018704470891413
1220 => 0.00018688317336261
1221 => 0.00018643336363593
1222 => 0.00018489079871632
1223 => 0.0001830280588821
1224 => 0.00018179811669579
1225 => 0.00016769915283978
1226 => 0.00017031583852155
1227 => 0.00017332609688003
1228 => 0.00017436522600253
1229 => 0.00017258772373295
1230 => 0.00018496098533992
1231 => 0.00018722169946723
]
'min_raw' => 7.8032224728993E-5
'max_raw' => 0.00020499115739542
'avg_raw' => 0.0001415116910622
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.000078'
'max' => '$0.0002049'
'avg' => '$0.000141'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -3.0254851830461E-6
'max_diff' => -3.6968080775724E-5
'year' => 2027
]
2 => [
'items' => [
101 => 0.00018037384891288
102 => 0.00017909289567006
103 => 0.00018504496442127
104 => 0.00018145513935348
105 => 0.00018307163736169
106 => 0.00017957765284506
107 => 0.0001866771596354
108 => 0.00018662307328859
109 => 0.00018386120479751
110 => 0.00018619551713371
111 => 0.00018578987292069
112 => 0.00018267173019645
113 => 0.00018677601032149
114 => 0.00018677804599323
115 => 0.00018411980761877
116 => 0.0001810155671606
117 => 0.00018046060228557
118 => 0.00018004251080127
119 => 0.00018296881248603
120 => 0.00018559252542628
121 => 0.00019047460473448
122 => 0.00019170207546791
123 => 0.00019649297545782
124 => 0.00019364022777851
125 => 0.00019490481387548
126 => 0.00019627770097037
127 => 0.00019693591352991
128 => 0.00019586339148577
129 => 0.00020330563118322
130 => 0.00020393398423801
131 => 0.00020414466558205
201 => 0.00020163518422936
202 => 0.00020386419102198
203 => 0.00020282131256066
204 => 0.00020553459259702
205 => 0.00020596006955163
206 => 0.00020559970570786
207 => 0.00020573475880895
208 => 0.00019938412012823
209 => 0.00019905480601034
210 => 0.00019456458464594
211 => 0.00019639438304198
212 => 0.00019297366264511
213 => 0.00019405840832028
214 => 0.00019453655387806
215 => 0.0001942867977732
216 => 0.00019649783709788
217 => 0.00019461800198641
218 => 0.00018965680805373
219 => 0.00018469426244708
220 => 0.00018463196172939
221 => 0.00018332541106736
222 => 0.00018238101424541
223 => 0.00018256293857759
224 => 0.00018320406365298
225 => 0.00018234375089052
226 => 0.00018252734223736
227 => 0.00018557618185754
228 => 0.00018618760490004
229 => 0.00018410975050323
301 => 0.00017576686526705
302 => 0.00017371950030355
303 => 0.0001751911056383
304 => 0.00017448777307181
305 => 0.00014082525108128
306 => 0.00014873376129971
307 => 0.00014403479307555
308 => 0.00014620029382238
309 => 0.00014140386405743
310 => 0.00014369297174369
311 => 0.00014327025713886
312 => 0.00015598690754027
313 => 0.00015578835453543
314 => 0.00015588339135165
315 => 0.00015134703649616
316 => 0.00015857357295642
317 => 0.00016213362467459
318 => 0.00016147475384927
319 => 0.00016164057744119
320 => 0.00015879117873216
321 => 0.00015591097975963
322 => 0.00015271639583966
323 => 0.00015865153790047
324 => 0.00015799165141956
325 => 0.0001595051935871
326 => 0.00016335455746625
327 => 0.00016392139091977
328 => 0.00016468322082956
329 => 0.00016441015903764
330 => 0.00017091559874046
331 => 0.00017012774706818
401 => 0.00017202624291799
402 => 0.0001681208929157
403 => 0.00016370161868889
404 => 0.00016454157824245
405 => 0.00016446068338291
406 => 0.00016343079897422
407 => 0.0001625010653793
408 => 0.00016095332089458
409 => 0.00016585061346733
410 => 0.00016565179233239
411 => 0.0001688704754029
412 => 0.00016830154190557
413 => 0.00016450206476874
414 => 0.00016463776383798
415 => 0.0001655504052934
416 => 0.00016870906779095
417 => 0.00016964677387837
418 => 0.00016921239105755
419 => 0.00017024054297449
420 => 0.00017105315232851
421 => 0.0001703425941982
422 => 0.0001804025988889
423 => 0.00017622498356024
424 => 0.00017826112420377
425 => 0.00017874673174961
426 => 0.00017750285823216
427 => 0.00017777260985832
428 => 0.00017818121006904
429 => 0.00018066215053641
430 => 0.0001871728561887
501 => 0.00019005640340223
502 => 0.00019873169746583
503 => 0.00018981696494706
504 => 0.00018928800161222
505 => 0.00019085068404186
506 => 0.00019594400003034
507 => 0.00020007165424815
508 => 0.00020144103528229
509 => 0.00020162202159196
510 => 0.00020419107144673
511 => 0.00020566360291354
512 => 0.00020387912122164
513 => 0.00020236695983078
514 => 0.0001969505854251
515 => 0.00019757754551086
516 => 0.00020189667877531
517 => 0.00020799770890703
518 => 0.00021323302746404
519 => 0.00021139980137465
520 => 0.00022538602238078
521 => 0.00022677269906495
522 => 0.00022658110518383
523 => 0.00022974016103552
524 => 0.00022347007850044
525 => 0.00022078949673957
526 => 0.00020269390628725
527 => 0.00020777802909481
528 => 0.00021516810017566
529 => 0.00021418999655676
530 => 0.00020882312940068
531 => 0.00021322895621404
601 => 0.0002117722520866
602 => 0.00021062328910258
603 => 0.00021588691126982
604 => 0.00021009934247926
605 => 0.00021511036474971
606 => 0.00020868367685547
607 => 0.000211408175397
608 => 0.00020986161825566
609 => 0.00021086243026502
610 => 0.00020501170370824
611 => 0.00020816861373992
612 => 0.00020488036587197
613 => 0.00020487880681433
614 => 0.0002048062185604
615 => 0.00020867482759473
616 => 0.00020880098279645
617 => 0.00020594207487494
618 => 0.00020553006157891
619 => 0.00020705349067923
620 => 0.00020526995418947
621 => 0.00020610445968758
622 => 0.00020529523051088
623 => 0.00020511305597824
624 => 0.00020366145830765
625 => 0.00020303607011865
626 => 0.00020328130094182
627 => 0.00020244420171717
628 => 0.00020193981915512
629 => 0.00020470588417368
630 => 0.00020322808721701
701 => 0.00020447939059548
702 => 0.00020305337246864
703 => 0.00019811017235447
704 => 0.00019526728569542
705 => 0.00018593003891466
706 => 0.00018857807051886
707 => 0.00019033371821204
708 => 0.00018975347665992
709 => 0.00019100006003755
710 => 0.0001910765901326
711 => 0.00019067131316912
712 => 0.00019020205436461
713 => 0.00018997364513021
714 => 0.00019167602043124
715 => 0.00019266430659281
716 => 0.00019050992094559
717 => 0.0001900051785315
718 => 0.00019218338136773
719 => 0.00019351208383953
720 => 0.00020332247635785
721 => 0.00020259569079294
722 => 0.0002044197799364
723 => 0.00020421441549177
724 => 0.0002061263515143
725 => 0.00020925155886668
726 => 0.00020289713849757
727 => 0.00020400004615432
728 => 0.00020372963866674
729 => 0.00020668187671148
730 => 0.00020669109327641
731 => 0.00020492107909336
801 => 0.00020588063249719
802 => 0.00020534503611114
803 => 0.00020631293117092
804 => 0.00020258598412862
805 => 0.00020712500332707
806 => 0.00020969833472466
807 => 0.00020973406543361
808 => 0.00021095380409285
809 => 0.00021219312921313
810 => 0.00021457190585904
811 => 0.00021212678642356
812 => 0.0002077282545867
813 => 0.00020804581437815
814 => 0.00020546695677157
815 => 0.00020551030783384
816 => 0.00020527889646593
817 => 0.00020597337940086
818 => 0.00020273838407868
819 => 0.00020349763101478
820 => 0.00020243468085809
821 => 0.00020399773550827
822 => 0.00020231614708687
823 => 0.00020372950826807
824 => 0.00020433946810021
825 => 0.0002065902330123
826 => 0.00020198370727931
827 => 0.00019259068947537
828 => 0.00019456521569709
829 => 0.00019164473631948
830 => 0.00019191503780493
831 => 0.00019246108982369
901 => 0.00019069115657377
902 => 0.00019102880406085
903 => 0.00019101674091662
904 => 0.00019091278725671
905 => 0.00019045235926034
906 => 0.0001897846475727
907 => 0.00019244460542544
908 => 0.0001928965840973
909 => 0.00019390127669653
910 => 0.00019689056038235
911 => 0.00019659186044998
912 => 0.00019707905243262
913 => 0.00019601551506997
914 => 0.00019196437225288
915 => 0.00019218436879848
916 => 0.0001894410083496
917 => 0.00019383112280194
918 => 0.00019279148575294
919 => 0.00019212122498422
920 => 0.00019193833812355
921 => 0.00019493503166544
922 => 0.00019583168934059
923 => 0.00019527295244989
924 => 0.00019412696678612
925 => 0.00019632759804081
926 => 0.00019691639412739
927 => 0.00019704820385721
928 => 0.00020094730051133
929 => 0.00019726612004661
930 => 0.00019815221677226
1001 => 0.00020506529047828
1002 => 0.00019879608656588
1003 => 0.00020211702369821
1004 => 0.0002019544811069
1005 => 0.00020365336016942
1006 => 0.00020181512343721
1007 => 0.00020183791058462
1008 => 0.00020334640010009
1009 => 0.00020122799863312
1010 => 0.00020070345263875
1011 => 0.0001999787961044
1012 => 0.00020156105713613
1013 => 0.00020250955106514
1014 => 0.00021015371554091
1015 => 0.00021509219440851
1016 => 0.00021487780201656
1017 => 0.00021683694715328
1018 => 0.00021595433432547
1019 => 0.00021310414468299
1020 => 0.00021796907085911
1021 => 0.00021642960465983
1022 => 0.00021655651638285
1023 => 0.00021655179272218
1024 => 0.00021757540316223
1025 => 0.00021685008135293
1026 => 0.00021542039761406
1027 => 0.00021636948840047
1028 => 0.00021918794872995
1029 => 0.00022793653607358
1030 => 0.00023283236145444
1031 => 0.00022764180123827
1101 => 0.00023122218017101
1102 => 0.00022907522863083
1103 => 0.0002286850636697
1104 => 0.00023093380622738
1105 => 0.00023318648491123
1106 => 0.00023304299901767
1107 => 0.00023140766996953
1108 => 0.00023048391408517
1109 => 0.00023747890312245
1110 => 0.0002426326918886
1111 => 0.00024228123804619
1112 => 0.00024383244100768
1113 => 0.00024838682087954
1114 => 0.00024880321629768
1115 => 0.00024875076004573
1116 => 0.00024771868055551
1117 => 0.00025220305900032
1118 => 0.0002559440063941
1119 => 0.00024747978397317
1120 => 0.00025070284906625
1121 => 0.00025214978682721
1122 => 0.00025427432074738
1123 => 0.00025785876558395
1124 => 0.00026175242340349
1125 => 0.00026230302931096
1126 => 0.00026191234807069
1127 => 0.00025934437607156
1128 => 0.0002636048629187
1129 => 0.00026610055619305
1130 => 0.000267586684425
1201 => 0.00027135525835306
1202 => 0.00025215872262223
1203 => 0.00023857046050221
1204 => 0.00023644845715529
1205 => 0.00024076363440492
1206 => 0.00024190151223275
1207 => 0.00024144283510713
1208 => 0.00022614801070031
1209 => 0.00023636793307012
1210 => 0.00024736371022456
1211 => 0.00024778610280678
1212 => 0.00025329081876114
1213 => 0.00025508337992182
1214 => 0.0002595153977847
1215 => 0.00025923817386067
1216 => 0.00026031729968147
1217 => 0.00026006922734312
1218 => 0.00026827860716264
1219 => 0.00027733477220828
1220 => 0.00027702118600959
1221 => 0.0002757192551366
1222 => 0.00027765284449519
1223 => 0.00028699977733991
1224 => 0.00028613926154511
1225 => 0.00028697517934119
1226 => 0.00029799573993517
1227 => 0.0003123240363638
1228 => 0.00030566710413526
1229 => 0.00032011073159054
1230 => 0.00032920222944985
1231 => 0.0003449250349191
]
'min_raw' => 0.00014082525108128
'max_raw' => 0.0003449250349191
'avg_raw' => 0.00024287514300019
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.00014'
'max' => '$0.000344'
'avg' => '$0.000242'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 6.2793026352288E-5
'max_diff' => 0.00013993387752368
'year' => 2028
]
3 => [
'items' => [
101 => 0.0003429564622379
102 => 0.0003490772350278
103 => 0.00033943230628504
104 => 0.00031728560032994
105 => 0.00031378079933836
106 => 0.0003207974996792
107 => 0.00033804737278754
108 => 0.00032025423978793
109 => 0.00032385376741993
110 => 0.00032281710321976
111 => 0.00032276186379007
112 => 0.00032487012814625
113 => 0.00032181198073794
114 => 0.00030935253804624
115 => 0.00031506262720789
116 => 0.00031285768756157
117 => 0.0003153042324883
118 => 0.00032850722642597
119 => 0.00032266986808606
120 => 0.00031652068526345
121 => 0.00032423312513591
122 => 0.00033405371137542
123 => 0.00033343915673784
124 => 0.00033224666387703
125 => 0.00033896868369654
126 => 0.00035007149107135
127 => 0.00035307253529007
128 => 0.00035528784477868
129 => 0.0003555932985292
130 => 0.00035873966199799
131 => 0.00034182087264061
201 => 0.0003686714258561
202 => 0.00037330777466486
203 => 0.00037243633324578
204 => 0.00037758943981933
205 => 0.00037607326514369
206 => 0.00037387656591922
207 => 0.00038204533593549
208 => 0.00037268050029758
209 => 0.0003593882951096
210 => 0.00035209592845346
211 => 0.0003616991051247
212 => 0.00036756343001315
213 => 0.00037143937572329
214 => 0.00037261223455328
215 => 0.0003431342300968
216 => 0.00032724722061984
217 => 0.00033743061154964
218 => 0.00034985505130409
219 => 0.00034175185425045
220 => 0.00034206948423357
221 => 0.00033051645471779
222 => 0.00035087723806369
223 => 0.00034791084319133
224 => 0.00036330050503657
225 => 0.00035962763872745
226 => 0.00037217731053901
227 => 0.00036887256136572
228 => 0.00038259039041799
301 => 0.00038806280382234
302 => 0.00039725183764137
303 => 0.00040401132832475
304 => 0.00040798063054248
305 => 0.00040774232852581
306 => 0.00042347068141097
307 => 0.00041419622122139
308 => 0.00040254531340083
309 => 0.0004023345852365
310 => 0.0004083687554914
311 => 0.00042101472095193
312 => 0.00042429363580453
313 => 0.00042612610188934
314 => 0.00042331961629184
315 => 0.0004132528544626
316 => 0.00040890607774437
317 => 0.00041260965744654
318 => 0.00040808049772302
319 => 0.0004158990980636
320 => 0.00042663570629413
321 => 0.00042441863915168
322 => 0.00043182996220763
323 => 0.00043949990187661
324 => 0.0004504682600818
325 => 0.00045333579507376
326 => 0.00045807572137289
327 => 0.00046295466251937
328 => 0.00046452164692447
329 => 0.00046751350636051
330 => 0.00046749773778446
331 => 0.00047651390757033
401 => 0.00048645902205168
402 => 0.00049021307253846
403 => 0.00049884530463326
404 => 0.0004840629096804
405 => 0.00049527552606006
406 => 0.00050538958670449
407 => 0.00049333118665042
408 => 0.00050995088187809
409 => 0.00051059618698274
410 => 0.00052033952792147
411 => 0.0005104627852818
412 => 0.00050459800703005
413 => 0.00052152940209249
414 => 0.00052972197082925
415 => 0.0005272543024524
416 => 0.00050847522426076
417 => 0.00049754499528067
418 => 0.00046893847775606
419 => 0.00050282413347355
420 => 0.00051932884791541
421 => 0.0005084324810376
422 => 0.00051392797468696
423 => 0.00054390960611806
424 => 0.00055532467020015
425 => 0.00055295041666839
426 => 0.00055335162643172
427 => 0.00055951098781234
428 => 0.0005868249881963
429 => 0.00057045780603266
430 => 0.00058296990353015
501 => 0.00058960627492709
502 => 0.00059577050652957
503 => 0.00058063310193929
504 => 0.00056093956097997
505 => 0.00055470178987955
506 => 0.00050734905209552
507 => 0.00050488413645135
508 => 0.00050350050460568
509 => 0.00049477690153738
510 => 0.00048792253912168
511 => 0.00048247169564256
512 => 0.00046816705459368
513 => 0.00047299445103054
514 => 0.00045019583880924
515 => 0.00046478158297522
516 => 0.0004283944473783
517 => 0.00045869873515299
518 => 0.00044220548908411
519 => 0.00045328026023493
520 => 0.00045324162140169
521 => 0.00043284945645364
522 => 0.00042108768128524
523 => 0.00042858274219768
524 => 0.0004366180424545
525 => 0.00043792174288718
526 => 0.00044833971941294
527 => 0.00045124715272762
528 => 0.00044243749404905
529 => 0.00042764040487119
530 => 0.00043107743120153
531 => 0.00042101803005635
601 => 0.0004033893164787
602 => 0.00041605056633798
603 => 0.0004203736737158
604 => 0.00042228300421584
605 => 0.00040494718908365
606 => 0.00039949989959026
607 => 0.00039659980837116
608 => 0.00042540256883147
609 => 0.00042698044906804
610 => 0.00041890779068796
611 => 0.00045539697204679
612 => 0.00044713834650145
613 => 0.00045636525464798
614 => 0.00043076555708726
615 => 0.00043174350000864
616 => 0.00041962419293005
617 => 0.00042641019508167
618 => 0.00042161406748396
619 => 0.0004258619531684
620 => 0.00042840811833296
621 => 0.00044052543675252
622 => 0.00045883709546502
623 => 0.0004387155134576
624 => 0.0004299482520306
625 => 0.00043538741171096
626 => 0.00044987261070384
627 => 0.00047181842866174
628 => 0.00045882606272991
629 => 0.00046459185410578
630 => 0.0004658514230192
701 => 0.0004562713333846
702 => 0.00047217166023146
703 => 0.00048069277456272
704 => 0.00048943367467043
705 => 0.00049702315331949
706 => 0.0004859423669509
707 => 0.00049780039673363
708 => 0.00048824491795279
709 => 0.00047967266565913
710 => 0.00047968566622739
711 => 0.00047430816714296
712 => 0.00046388858505838
713 => 0.00046196705425691
714 => 0.00047196310014873
715 => 0.00047997898232489
716 => 0.00048063920877441
717 => 0.00048507721301803
718 => 0.00048770357821433
719 => 0.00051344552750838
720 => 0.00052379915246302
721 => 0.00053645936907347
722 => 0.00054139123693395
723 => 0.00055623439102151
724 => 0.00054424733859377
725 => 0.00054165386439894
726 => 0.00050564922774121
727 => 0.0005115449849769
728 => 0.00052098466116719
729 => 0.00050580488452474
730 => 0.00051543295890143
731 => 0.00051733374473388
801 => 0.00050528908152304
802 => 0.00051172265656313
803 => 0.00049463698867872
804 => 0.00045920951633516
805 => 0.00047221110113566
806 => 0.00048178464383495
807 => 0.00046812201799376
808 => 0.00049261174599746
809 => 0.0004783053524683
810 => 0.00047377091254755
811 => 0.00045608044577217
812 => 0.00046442966512164
813 => 0.0004757221038411
814 => 0.00046874468959938
815 => 0.00048322387181497
816 => 0.0005037302552891
817 => 0.00051834432532901
818 => 0.00051946621216304
819 => 0.00051007034419403
820 => 0.000525127282578
821 => 0.00052523695593609
822 => 0.00050825266792958
823 => 0.0004978498860945
824 => 0.00049548635217393
825 => 0.00050139092330563
826 => 0.00050856016270348
827 => 0.00051986405505425
828 => 0.00052669476045828
829 => 0.00054450561742578
830 => 0.00054932472464389
831 => 0.00055461946241459
901 => 0.00056169486491289
902 => 0.00057019069970807
903 => 0.00055160229684436
904 => 0.00055234084874326
905 => 0.00053503158537053
906 => 0.00051653415505731
907 => 0.0005305713989278
908 => 0.00054892322799218
909 => 0.00054471329812784
910 => 0.00054423959501704
911 => 0.00054503623225512
912 => 0.00054186208262087
913 => 0.00052750552146461
914 => 0.00052029574632876
915 => 0.00052959819566381
916 => 0.000534542033481
917 => 0.00054220949478749
918 => 0.00054126431834099
919 => 0.0005610148752413
920 => 0.00056868934442691
921 => 0.00056672588680018
922 => 0.00056708721025675
923 => 0.00058098147013688
924 => 0.00059643474469608
925 => 0.00061090877555994
926 => 0.00062563238142875
927 => 0.00060788249988178
928 => 0.00059887020469273
929 => 0.0006081685928694
930 => 0.00060323473721857
1001 => 0.0006315861352649
1002 => 0.00063354912455247
1003 => 0.00066189847247002
1004 => 0.00068880537942134
1005 => 0.00067190563325253
1006 => 0.00068784133270843
1007 => 0.00070507709092663
1008 => 0.00073832766493052
1009 => 0.00072713004137531
1010 => 0.00071855283722115
1011 => 0.00071044742074021
1012 => 0.0007273135057384
1013 => 0.00074901145464629
1014 => 0.00075368498502068
1015 => 0.0007612578896532
1016 => 0.00075329590640283
1017 => 0.00076288523824422
1018 => 0.00079673979341024
1019 => 0.00078759199376195
1020 => 0.00077460064767922
1021 => 0.00080132556755675
1022 => 0.00081099721216993
1023 => 0.00087887787914487
1024 => 0.00096458002521121
1025 => 0.00092909877398911
1026 => 0.00090707441638274
1027 => 0.00091225066284498
1028 => 0.00094354618538768
1029 => 0.00095359731395817
1030 => 0.00092627488167181
1031 => 0.00093592562665841
1101 => 0.00098910218037491
1102 => 0.0010176296953357
1103 => 0.00097888549826252
1104 => 0.00087199179515476
1105 => 0.00077343091910586
1106 => 0.00079957370168812
1107 => 0.00079660992144829
1108 => 0.00085374149450648
1109 => 0.00078737382176572
1110 => 0.00078849128316529
1111 => 0.00084680427665095
1112 => 0.00083124736972677
1113 => 0.00080604717288771
1114 => 0.00077361490843099
1115 => 0.0007136608679614
1116 => 0.00066055790237537
1117 => 0.00076470504677217
1118 => 0.00076021403252648
1119 => 0.00075371037836771
1120 => 0.00076818355692918
1121 => 0.00083846120374024
1122 => 0.0008368410765147
1123 => 0.00082653465370199
1124 => 0.00083435198456879
1125 => 0.00080467675699052
1126 => 0.00081232473882981
1127 => 0.00077341530655953
1128 => 0.00079100399494713
1129 => 0.00080599310458327
1130 => 0.00080900239026029
1201 => 0.00081578246454854
1202 => 0.00075784747209227
1203 => 0.00078385858282313
1204 => 0.00079913767346602
1205 => 0.00073010618608335
1206 => 0.00079777314291362
1207 => 0.00075683895276734
1208 => 0.00074294527382078
1209 => 0.0007616512821693
1210 => 0.0007543615325237
1211 => 0.00074809423384686
1212 => 0.00074459697349933
1213 => 0.00075833260152368
1214 => 0.00075769181805872
1215 => 0.00073521766464037
1216 => 0.00070590104766982
1217 => 0.00071574066661028
1218 => 0.00071216584080229
1219 => 0.00069921021091243
1220 => 0.00070794074118948
1221 => 0.00066949590426961
1222 => 0.00060335356053771
1223 => 0.00064704921880178
1224 => 0.00064536698349034
1225 => 0.00064451872416302
1226 => 0.00067735480368918
1227 => 0.00067419837229999
1228 => 0.00066846941842073
1229 => 0.00069910499418173
1230 => 0.00068792259692233
1231 => 0.00072238411037167
]
'min_raw' => 0.00030935253804624
'max_raw' => 0.0010176296953357
'avg_raw' => 0.00066349111669097
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.0003093'
'max' => '$0.001017'
'avg' => '$0.000663'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072434
'min_diff' => 0.00016852728696495
'max_diff' => 0.00067270466041661
'year' => 2029
]
4 => [
'items' => [
101 => 0.00074508269196035
102 => 0.00073932559744727
103 => 0.00076067372314319
104 => 0.00071596735155743
105 => 0.00073081701488991
106 => 0.00073387750992199
107 => 0.00069872695593228
108 => 0.0006747148035115
109 => 0.00067311346670362
110 => 0.00063147970348442
111 => 0.00065372012374012
112 => 0.00067329077319401
113 => 0.00066391795084935
114 => 0.00066095079530013
115 => 0.00067610934950356
116 => 0.00067728729898941
117 => 0.00065042992587867
118 => 0.00065601442421079
119 => 0.00067930271060131
120 => 0.00065542761914534
121 => 0.00060904221642043
122 => 0.00059753799521628
123 => 0.00059600312004278
124 => 0.00056480275972585
125 => 0.00059830676228672
126 => 0.00058368136731746
127 => 0.00062988281478622
128 => 0.00060349279577539
129 => 0.0006023551748009
130 => 0.00060063549384524
131 => 0.0005737800548498
201 => 0.00057965968923762
202 => 0.00059920448943632
203 => 0.00060617829433515
204 => 0.00060545086934951
205 => 0.00059910870925272
206 => 0.00060201211766791
207 => 0.00059265922754802
208 => 0.00058935652738312
209 => 0.00057893229718342
210 => 0.00056361155855696
211 => 0.00056574200123052
212 => 0.00053538760912217
213 => 0.00051884892527203
214 => 0.00051427123555865
215 => 0.00050814975755911
216 => 0.00051496267278733
217 => 0.00053530161894316
218 => 0.0005107685347311
219 => 0.00046870828264528
220 => 0.00047123617546282
221 => 0.00047691560008572
222 => 0.0004663320298741
223 => 0.00045631556888053
224 => 0.00046502406905327
225 => 0.00044720258577401
226 => 0.00047906924119688
227 => 0.00047820733747296
228 => 0.00049008525599385
301 => 0.00049751276220439
302 => 0.00048039476507279
303 => 0.00047608963508617
304 => 0.0004785420327838
305 => 0.00043800936162547
306 => 0.0004867728720217
307 => 0.00048719458088455
308 => 0.00048358365357391
309 => 0.00050954871745543
310 => 0.00056434310095194
311 => 0.00054372724978158
312 => 0.00053574416909102
313 => 0.00052056832686266
314 => 0.0005407892355796
315 => 0.00053923658528545
316 => 0.00053221491183019
317 => 0.00052796818181549
318 => 0.00053579291207942
319 => 0.00052699861114333
320 => 0.00052541891304398
321 => 0.0005158476612904
322 => 0.00051243115987858
323 => 0.00050990171824811
324 => 0.00050711705155077
325 => 0.00051325933238941
326 => 0.00049934011592471
327 => 0.00048255490538589
328 => 0.00048115939674808
329 => 0.00048501251879144
330 => 0.00048330779911846
331 => 0.00048115123520614
401 => 0.0004770337673923
402 => 0.00047581220264771
403 => 0.00047978169544866
404 => 0.0004753003695122
405 => 0.0004819128100419
406 => 0.00048011459210084
407 => 0.00047006989285855
408 => 0.00045755047857868
409 => 0.00045743902953123
410 => 0.00045474174226058
411 => 0.00045130634138156
412 => 0.00045035069144835
413 => 0.00046429066345871
414 => 0.0004931459883319
415 => 0.00048748099760989
416 => 0.00049157453397814
417 => 0.0005117106813881
418 => 0.00051811135713464
419 => 0.00051356830909806
420 => 0.00050734950474258
421 => 0.00050762310057326
422 => 0.00052887463761602
423 => 0.00053020006991371
424 => 0.00053354900972931
425 => 0.00053785334380264
426 => 0.00051430135580321
427 => 0.00050651380405648
428 => 0.00050282363000196
429 => 0.00049145932219111
430 => 0.00050371475386299
501 => 0.00049657403865769
502 => 0.00049753756510045
503 => 0.00049691006724059
504 => 0.00049725272350329
505 => 0.00047906033381724
506 => 0.00048568868445499
507 => 0.00047466776592999
508 => 0.00045991199318117
509 => 0.00045986252665688
510 => 0.00046347398113266
511 => 0.00046132574669424
512 => 0.0004555449030566
513 => 0.00045636604461051
514 => 0.00044917198055248
515 => 0.00045723953423989
516 => 0.00045747088281255
517 => 0.00045436443520028
518 => 0.00046679361476362
519 => 0.00047188585977196
520 => 0.00046984112940701
521 => 0.00047174239603872
522 => 0.00048771640355029
523 => 0.00049032086376948
524 => 0.00049147759295787
525 => 0.00048992772908268
526 => 0.00047203437157214
527 => 0.00047282801806616
528 => 0.00046700476668573
529 => 0.00046208473290838
530 => 0.0004622815084573
531 => 0.00046481104537848
601 => 0.00047585768146864
602 => 0.00049910467588562
603 => 0.00049998688233042
604 => 0.00050105614227728
605 => 0.00049670692470638
606 => 0.00049539515907059
607 => 0.00049712571653964
608 => 0.00050585606537376
609 => 0.0005283128928417
610 => 0.00052037515017346
611 => 0.00051392164182584
612 => 0.00051958310850006
613 => 0.0005187115700816
614 => 0.0005113549087446
615 => 0.00051114843176299
616 => 0.00049702864659038
617 => 0.00049180888350402
618 => 0.00048744685877656
619 => 0.00048268364164772
620 => 0.00047985984686925
621 => 0.00048419847904075
622 => 0.00048519077555156
623 => 0.00047570428048227
624 => 0.00047441130625813
625 => 0.00048215818291193
626 => 0.00047874907132926
627 => 0.00048225542713393
628 => 0.00048306893175758
629 => 0.00048293793877657
630 => 0.0004793784347503
701 => 0.00048164715647071
702 => 0.00047628095326344
703 => 0.0004704460132532
704 => 0.00046672368505628
705 => 0.00046347546000928
706 => 0.0004652777640533
707 => 0.00045885287922407
708 => 0.00045679742925981
709 => 0.00048087856459969
710 => 0.00049866755819108
711 => 0.00049840889917905
712 => 0.00049683437896499
713 => 0.00049449496130666
714 => 0.00050568492240072
715 => 0.00050178656370589
716 => 0.00050462294537515
717 => 0.00050534492355254
718 => 0.00050753013404958
719 => 0.00050831115897709
720 => 0.00050595035918948
721 => 0.00049802722675485
722 => 0.00047828353403657
723 => 0.00046909279177913
724 => 0.00046605969375026
725 => 0.00046616994110293
726 => 0.00046312882695027
727 => 0.0004640245713614
728 => 0.00046281732359916
729 => 0.00046053108840206
730 => 0.00046513659547232
731 => 0.0004656673372589
801 => 0.00046459235687699
802 => 0.00046484555367179
803 => 0.0004559451752397
804 => 0.00045662185168128
805 => 0.00045285403126665
806 => 0.00045214761036065
807 => 0.00044262288845411
808 => 0.00042574846296614
809 => 0.00043509853272659
810 => 0.00042380496327473
811 => 0.00041952791739781
812 => 0.00043977478736205
813 => 0.0004377425631784
814 => 0.0004342642787626
815 => 0.00042911917117365
816 => 0.00042721080072052
817 => 0.00041561614596396
818 => 0.00041493107190586
819 => 0.00042067769588523
820 => 0.00041802582664801
821 => 0.00041430159789754
822 => 0.00040081281888234
823 => 0.00038564696528801
824 => 0.00038610472707886
825 => 0.00039092870293648
826 => 0.00040495506334429
827 => 0.00039947472167446
828 => 0.00039549867091333
829 => 0.00039475407612541
830 => 0.00040407423881093
831 => 0.00041726422164538
901 => 0.00042345266648208
902 => 0.00041732010559478
903 => 0.00041027534984797
904 => 0.00041070413148803
905 => 0.00041355662364174
906 => 0.00041385638023503
907 => 0.00040927096845645
908 => 0.00041056173501292
909 => 0.00040860094258348
910 => 0.00039656756306335
911 => 0.00039634991738609
912 => 0.00039339673198739
913 => 0.00039330731070719
914 => 0.00038828320563738
915 => 0.00038758029860811
916 => 0.00037760463305063
917 => 0.00038417064632967
918 => 0.00037976650935326
919 => 0.00037312843609893
920 => 0.00037198402976784
921 => 0.00037194962753162
922 => 0.0003787654445178
923 => 0.00038409099953982
924 => 0.00037984312120154
925 => 0.00037887596164557
926 => 0.00038920269540754
927 => 0.00038788852440606
928 => 0.00038675046079428
929 => 0.00041608320335156
930 => 0.00039286404875502
1001 => 0.00038273917204793
1002 => 0.00037020771446095
1003 => 0.00037428802024037
1004 => 0.00037514780062025
1005 => 0.00034501190408859
1006 => 0.00033278577461888
1007 => 0.00032859022771685
1008 => 0.0003261756311584
1009 => 0.00032727599313068
1010 => 0.00031627104262599
1011 => 0.00032366655137022
1012 => 0.00031413719445847
1013 => 0.00031253956676101
1014 => 0.00032957923738002
1015 => 0.00033195020800234
1016 => 0.00032183491072467
1017 => 0.00032833056909481
1018 => 0.00032597515307339
1019 => 0.00031430054793181
1020 => 0.00031385466388798
1021 => 0.00030799675741015
1022 => 0.00029883026808655
1023 => 0.00029464093649592
1024 => 0.00029245909623007
1025 => 0.00029335936604698
1026 => 0.00029290416207884
1027 => 0.00028993364827491
1028 => 0.00029307442845292
1029 => 0.00028505103295806
1030 => 0.00028185605222311
1031 => 0.00028041295354813
1101 => 0.00027329172823702
1102 => 0.00028462476453026
1103 => 0.00028685751544986
1104 => 0.0002890946655785
1105 => 0.00030856753008106
1106 => 0.00030759472080025
1107 => 0.00031638844292139
1108 => 0.00031604673505038
1109 => 0.00031353862305258
1110 => 0.00030295731109825
1111 => 0.0003071748334495
1112 => 0.00029419395520087
1113 => 0.00030392011179866
1114 => 0.00029948150010144
1115 => 0.00030241941271899
1116 => 0.00029713678093173
1117 => 0.00030006040747732
1118 => 0.0002873869835225
1119 => 0.00027555271855337
1120 => 0.00028031517224068
1121 => 0.00028549250405142
1122 => 0.00029671827857673
1123 => 0.00029003229988008
1124 => 0.00029243683064424
1125 => 0.0002843820550979
1126 => 0.00026776275241291
1127 => 0.00026785681586126
1128 => 0.00026530029821436
1129 => 0.00026309109370975
1130 => 0.00029080026496174
1201 => 0.00028735419149938
1202 => 0.00028186332444806
1203 => 0.00028921306819464
1204 => 0.00029115645709735
1205 => 0.00029121178264733
1206 => 0.00029657396596049
1207 => 0.00029943576415595
1208 => 0.00029994016849164
1209 => 0.00030837767979254
1210 => 0.00031120582228714
1211 => 0.00032285454096867
1212 => 0.00029919296057334
1213 => 0.00029870566589603
1214 => 0.00028931649416159
1215 => 0.00028336173301068
1216 => 0.00028972422175212
1217 => 0.0002953605182107
1218 => 0.00028949162960368
1219 => 0.00029025798255676
1220 => 0.00028237947910764
1221 => 0.00028519567337266
1222 => 0.00028762135925602
1223 => 0.00028628203808645
1224 => 0.00028427700947173
1225 => 0.00029489840617658
1226 => 0.0002942991053489
1227 => 0.00030418999414531
1228 => 0.00031190064926635
1229 => 0.00032571952168774
1230 => 0.00031129880792191
1231 => 0.00031077325979514
]
'min_raw' => 0.00026309109370975
'max_raw' => 0.00076067372314319
'avg_raw' => 0.00051188240842647
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.000263'
'max' => '$0.00076'
'avg' => '$0.000511'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -4.6261444336482E-5
'max_diff' => -0.00025695597219252
'year' => 2030
]
5 => [
'items' => [
101 => 0.00031591057703491
102 => 0.00031120503579064
103 => 0.00031417877542726
104 => 0.00032524040625844
105 => 0.00032547412108722
106 => 0.00032155909658071
107 => 0.00032132086698369
108 => 0.00032207279026584
109 => 0.00032647682841529
110 => 0.00032493792216345
111 => 0.00032671878343842
112 => 0.00032894577773228
113 => 0.00033815757035771
114 => 0.00034037850237332
115 => 0.0003349827889966
116 => 0.00033546996150128
117 => 0.00033345181658275
118 => 0.00033150231387872
119 => 0.00033588451125536
120 => 0.00034389306309347
121 => 0.00034384324230813
122 => 0.00034570107067057
123 => 0.00034685848234929
124 => 0.0003418900241471
125 => 0.00033865574055274
126 => 0.00033989597068563
127 => 0.00034187912567682
128 => 0.00033925286025029
129 => 0.00032304233343323
130 => 0.00032795957173706
131 => 0.00032714110284264
201 => 0.00032597550360776
202 => 0.00033091982474614
203 => 0.00033044293291059
204 => 0.00031615817095227
205 => 0.00031707263506604
206 => 0.00031621378254383
207 => 0.0003189889107478
208 => 0.00031105516976043
209 => 0.00031349553505358
210 => 0.00031502610928845
211 => 0.00031592762927121
212 => 0.00031918453762698
213 => 0.00031880237702252
214 => 0.00031916078198722
215 => 0.0003239899172869
216 => 0.00034841402647355
217 => 0.00034974337684782
218 => 0.00034319716941786
219 => 0.0003458122501679
220 => 0.00034079186698312
221 => 0.0003441620838487
222 => 0.00034646790063391
223 => 0.00033604835796463
224 => 0.00033543138027002
225 => 0.00033039027617799
226 => 0.00033309907997432
227 => 0.00032878917836448
228 => 0.00032984667746557
301 => 0.00032688981778779
302 => 0.00033221157650291
303 => 0.00033816212966411
304 => 0.0003396654743871
305 => 0.00033571082165152
306 => 0.00033284739244665
307 => 0.00032782015403511
308 => 0.00033618056355281
309 => 0.00033862540207465
310 => 0.00033616772185686
311 => 0.00033559822364902
312 => 0.00033451902557423
313 => 0.00033582718062229
314 => 0.00033861208695901
315 => 0.00033729877655975
316 => 0.00033816624121601
317 => 0.00033486036047203
318 => 0.0003418916689135
319 => 0.00035305907889509
320 => 0.00035309498394424
321 => 0.00035178166646575
322 => 0.00035124428524938
323 => 0.00035259182868107
324 => 0.00035332281571364
325 => 0.00035768052407454
326 => 0.00036235651876454
327 => 0.00038417734568645
328 => 0.00037805014480423
329 => 0.00039741088057615
330 => 0.00041272270889485
331 => 0.00041731405670252
401 => 0.00041309023275907
402 => 0.00039864075921501
403 => 0.00039793179910809
404 => 0.00041952541299328
405 => 0.00041342422802054
406 => 0.00041269851148185
407 => 0.00040497811362754
408 => 0.00040954182494931
409 => 0.00040854367433764
410 => 0.0004069680447659
411 => 0.00041567528805695
412 => 0.00043197447019683
413 => 0.00042943408980756
414 => 0.00042753781369184
415 => 0.00041922888375039
416 => 0.00042423271544183
417 => 0.00042245094681859
418 => 0.00043010655556233
419 => 0.00042557154253504
420 => 0.00041337800554369
421 => 0.00041531986649999
422 => 0.00041502635812293
423 => 0.00042106673972464
424 => 0.00041925356709929
425 => 0.00041467230706745
426 => 0.00043191876136422
427 => 0.00043079887255201
428 => 0.0004323866188455
429 => 0.00043308559386658
430 => 0.00044358320668041
501 => 0.0004478837427641
502 => 0.00044886003974657
503 => 0.00045294521641068
504 => 0.00044875839682966
505 => 0.0004655086603055
506 => 0.00047664660811195
507 => 0.00048958390764271
508 => 0.00050848877947544
509 => 0.00051559718616438
510 => 0.0005143131161209
511 => 0.00052864657418616
512 => 0.00055440347971454
513 => 0.0005195193231463
514 => 0.00055625242471801
515 => 0.00054462314886446
516 => 0.00051705034501743
517 => 0.00051527498151168
518 => 0.00053394760440373
519 => 0.00057536168480493
520 => 0.00056498792737904
521 => 0.00057537865255578
522 => 0.00056325731970125
523 => 0.0005626553933584
524 => 0.00057478994647435
525 => 0.00060314299124983
526 => 0.00058967352247499
527 => 0.00057036173613702
528 => 0.0005846212586443
529 => 0.00057226834059199
530 => 0.00054443375885605
531 => 0.00056497999476224
601 => 0.00055124131193488
602 => 0.00055525098997245
603 => 0.00058412765780072
604 => 0.00058065314072944
605 => 0.0005851494875513
606 => 0.0005772135531006
607 => 0.00056980013894165
608 => 0.00055596245088661
609 => 0.00055186579364329
610 => 0.00055299796232306
611 => 0.00055186523259672
612 => 0.00054412317330484
613 => 0.00054245127633789
614 => 0.00053966470814548
615 => 0.00054052838214775
616 => 0.00053528881870674
617 => 0.00054517695746897
618 => 0.00054701228315722
619 => 0.00055420804594602
620 => 0.00055495513390979
621 => 0.00057499523085134
622 => 0.00056395748221608
623 => 0.00057136255695398
624 => 0.00057070017737015
625 => 0.00051764793128485
626 => 0.00052495806271147
627 => 0.00053633033316569
628 => 0.00053120714074081
629 => 0.00052396414529444
630 => 0.00051811503812665
701 => 0.00050925304266552
702 => 0.0005217261310975
703 => 0.00053812691602048
704 => 0.00055537108488085
705 => 0.00057608882388388
706 => 0.00057146486571947
707 => 0.00055498378116115
708 => 0.00055572311057499
709 => 0.00056029335409599
710 => 0.00055437447348589
711 => 0.00055262888004369
712 => 0.00056005353636244
713 => 0.00056010466588999
714 => 0.00055329427842745
715 => 0.00054572577905059
716 => 0.00054569406676185
717 => 0.00054434732540077
718 => 0.00056349690199758
719 => 0.00057402723288526
720 => 0.00057523451835105
721 => 0.00057394597295426
722 => 0.00057444188293695
723 => 0.00056831451541342
724 => 0.00058231986055781
725 => 0.00059517255024739
726 => 0.00059172775485292
727 => 0.00058656351685008
728 => 0.00058244995253742
729 => 0.00059075872983181
730 => 0.00059038875305812
731 => 0.00059506029321539
801 => 0.00059484836516974
802 => 0.00059327750192036
803 => 0.00059172781095339
804 => 0.00059787216046828
805 => 0.00059610268648323
806 => 0.00059433046401633
807 => 0.00059077600054529
808 => 0.00059125911116439
809 => 0.00058609576484006
810 => 0.00058370696457177
811 => 0.00054778514006998
812 => 0.00053818565478363
813 => 0.00054120584827026
814 => 0.00054220017438534
815 => 0.00053802246608665
816 => 0.00054401222662177
817 => 0.0005430787287871
818 => 0.00054671042278384
819 => 0.0005444414980445
820 => 0.00054453461550723
821 => 0.00055120703937988
822 => 0.00055314407241663
823 => 0.00055215888178036
824 => 0.00055284887553165
825 => 0.00056874949030175
826 => 0.00056648893135448
827 => 0.00056528805446835
828 => 0.00056562070557275
829 => 0.00056968365355953
830 => 0.0005708210571671
831 => 0.00056600179815791
901 => 0.00056827458856645
902 => 0.00057795184166595
903 => 0.00058133833256568
904 => 0.00059214638590978
905 => 0.00058755493275138
906 => 0.00059598274373707
907 => 0.00062188696145459
908 => 0.00064258104300287
909 => 0.00062354991039198
910 => 0.00066155195578
911 => 0.00069114199918421
912 => 0.00069000628403356
913 => 0.000684846575536
914 => 0.00065115909781231
915 => 0.00062015937855897
916 => 0.000646091960032
917 => 0.00064615806751526
918 => 0.00064393043576825
919 => 0.00063009480630607
920 => 0.00064344898585344
921 => 0.00064450899213065
922 => 0.00064391567049383
923 => 0.00063330792582453
924 => 0.00061711186035341
925 => 0.00062027653277857
926 => 0.00062546033076854
927 => 0.00061564631971998
928 => 0.00061251014853807
929 => 0.00061834088744622
930 => 0.00063712874309099
1001 => 0.00063357700781199
1002 => 0.00063348425765016
1003 => 0.00064868008734391
1004 => 0.00063780315274849
1005 => 0.00062031644943253
1006 => 0.00061590082622397
1007 => 0.0006002283385538
1008 => 0.00061105338161107
1009 => 0.00061144295563925
1010 => 0.00060551419018604
1011 => 0.00062079753607377
1012 => 0.00062065669735083
1013 => 0.0006351659596454
1014 => 0.00066290221972254
1015 => 0.00065469924279926
1016 => 0.00064516007311884
1017 => 0.00064619724535559
1018 => 0.00065757246483349
1019 => 0.00065069474746615
1020 => 0.00065316802258459
1021 => 0.00065756872123538
1022 => 0.0006602237719946
1023 => 0.00064581522441025
1024 => 0.00064245590272784
1025 => 0.00063558390952731
1026 => 0.00063379113477312
1027 => 0.00063938822984611
1028 => 0.00063791359304266
1029 => 0.00061141021345069
1030 => 0.00060864046281992
1031 => 0.00060872540711747
1101 => 0.00060176073746193
1102 => 0.00059113794452498
1103 => 0.00061905401010927
1104 => 0.00061681195935776
1105 => 0.00061433690884904
1106 => 0.00061464008841392
1107 => 0.00062675750632081
1108 => 0.00061972879199054
1109 => 0.00063841578102118
1110 => 0.00063457429785879
1111 => 0.00063063429514853
1112 => 0.00063008966675855
1113 => 0.00062857310186034
1114 => 0.00062337223653541
1115 => 0.000617091879132
1116 => 0.00061294504317903
1117 => 0.00056540940218026
1118 => 0.00057423174064753
1119 => 0.00058438103687267
1120 => 0.00058788453325884
1121 => 0.00058189156025573
1122 => 0.00062360887563717
1123 => 0.00063123103115541
1124 => 0.00060814302490975
1125 => 0.00060382420161827
1126 => 0.00062389201697315
1127 => 0.00061178867112351
1128 => 0.0006172388070185
1129 => 0.00060545859427847
1130 => 0.00062939507709384
1201 => 0.00062921272119936
1202 => 0.0006199008887542
1203 => 0.00062777118577217
1204 => 0.0006264035279868
1205 => 0.00061589049209024
1206 => 0.00062972835908352
1207 => 0.0006297352224929
1208 => 0.00062077278622113
1209 => 0.00061030662278528
1210 => 0.0006084355199627
1211 => 0.00060702589533318
1212 => 0.0006168921257712
1213 => 0.00062573815713104
1214 => 0.00064219842837454
1215 => 0.00064633693165155
1216 => 0.0006624897854575
1217 => 0.00065287154748423
1218 => 0.00065713518780075
1219 => 0.00066176397249307
1220 => 0.00066398318209249
1221 => 0.00066036709913959
1222 => 0.0006854591298801
1223 => 0.00068757766607456
1224 => 0.00068828799293529
1225 => 0.00067982710134831
1226 => 0.00068734235337388
1227 => 0.0006838262158301
1228 => 0.00069297422890787
1229 => 0.00069440875416616
1230 => 0.00069319376230711
1231 => 0.00069364910326653
]
'min_raw' => 0.00031105516976043
'max_raw' => 0.00069440875416616
'avg_raw' => 0.00050273196196329
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.000311'
'max' => '$0.000694'
'avg' => '$0.0005027'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 4.7964076050673E-5
'max_diff' => -6.6264968977024E-5
'year' => 2031
]
6 => [
'items' => [
101 => 0.00067223748156705
102 => 0.00067112717602663
103 => 0.0006559880811993
104 => 0.00066215737424398
105 => 0.00065062417659887
106 => 0.00065428147237723
107 => 0.00065589357350834
108 => 0.00065505150336338
109 => 0.00066250617681639
110 => 0.00065616818149216
111 => 0.00063944116976863
112 => 0.00062270960078194
113 => 0.00062249954956255
114 => 0.00061809442278508
115 => 0.00061491032296418
116 => 0.00061552369355169
117 => 0.00061768529150528
118 => 0.00061478468696154
119 => 0.00061540367800533
120 => 0.00062568305364798
121 => 0.00062774450912396
122 => 0.00062073887795393
123 => 0.00059261025789852
124 => 0.00058570742398162
125 => 0.00059066904411194
126 => 0.0005882977092589
127 => 0.00047480216612559
128 => 0.00050146626048158
129 => 0.00048562336104234
130 => 0.00049292449800069
131 => 0.00047675300017215
201 => 0.00048447088655675
202 => 0.0004830456747536
203 => 0.00052592074943011
204 => 0.00052525131411177
205 => 0.00052557173737293
206 => 0.00051027710025944
207 => 0.00053464187247588
208 => 0.00054664483539857
209 => 0.0005444234064101
210 => 0.00054498249222769
211 => 0.00053537554554155
212 => 0.0005256647536166
213 => 0.00051489399089167
214 => 0.00053490473672808
215 => 0.0005326798833859
216 => 0.00053778289647591
217 => 0.00055076129554847
218 => 0.00055267241411205
219 => 0.00055524097684215
220 => 0.00055432032994616
221 => 0.0005762538740995
222 => 0.00057359757718035
223 => 0.00057999848848673
224 => 0.0005668313282912
225 => 0.00055193143669163
226 => 0.00055476341897055
227 => 0.00055449067630373
228 => 0.0005510183491156
229 => 0.00054788368738841
301 => 0.00054266535879808
302 => 0.00055917692262518
303 => 0.00055850658328745
304 => 0.00056935859798096
305 => 0.00056744039897304
306 => 0.0005546301965352
307 => 0.00055508771542136
308 => 0.00055816474980689
309 => 0.00056881440094816
310 => 0.00057197594249043
311 => 0.0005705113904824
312 => 0.00057397787645365
313 => 0.0005767176456253
314 => 0.00057432194927938
315 => 0.00060823995746115
316 => 0.0005941548357088
317 => 0.00060101982604725
318 => 0.0006026570857921
319 => 0.00059846327938353
320 => 0.0005993727658246
321 => 0.0006007503899626
322 => 0.00060911505396207
323 => 0.00063106635263171
324 => 0.00064078843338495
325 => 0.00067003779301009
326 => 0.00063998114991629
327 => 0.00063819771310186
328 => 0.00064346640601639
329 => 0.0006606388764755
330 => 0.00067455555085448
331 => 0.00067917251461819
401 => 0.00067978272259733
402 => 0.000688444453548
403 => 0.00069340919619721
404 => 0.00068739269158445
405 => 0.00068229433387943
406 => 0.00066403264941149
407 => 0.00066614648911357
408 => 0.00068070874846693
409 => 0.00070127879751634
410 => 0.00071893003954957
411 => 0.00071274918979743
412 => 0.00075990471040638
413 => 0.00076457998766173
414 => 0.00076393401551486
415 => 0.00077458499287708
416 => 0.00075344497184688
417 => 0.00074440720328785
418 => 0.00068339665668407
419 => 0.00070053813169188
420 => 0.00072545427229925
421 => 0.00072215652765914
422 => 0.00070406176033971
423 => 0.00071891631304596
424 => 0.00071400493337646
425 => 0.0007101311244578
426 => 0.000727877794089
427 => 0.00070836460183649
428 => 0.00072525961327972
429 => 0.00070359158634726
430 => 0.00071277742339846
501 => 0.00070756309801925
502 => 0.00071093740558328
503 => 0.0006912112725124
504 => 0.00070185501509264
505 => 0.00069076845782769
506 => 0.00069076320135603
507 => 0.00069051846498994
508 => 0.00070356175044683
509 => 0.00070398709151731
510 => 0.00069434808385735
511 => 0.00069295895226396
512 => 0.00069809529983809
513 => 0.00069208198204034
514 => 0.00069489557559054
515 => 0.00069216720292272
516 => 0.00069155298876688
517 => 0.00068665882587318
518 => 0.00068455028593076
519 => 0.00068537709877256
520 => 0.00068255476029225
521 => 0.00068085419926942
522 => 0.0006901801806
523 => 0.00068519768498408
524 => 0.00068941654168781
525 => 0.00068460862201175
526 => 0.00066794227770363
527 => 0.00065835728684864
528 => 0.00062687610742155
529 => 0.00063580413085479
530 => 0.00064172341962774
531 => 0.00063976709472359
601 => 0.00064397003761494
602 => 0.00064422806417358
603 => 0.00064286164459567
604 => 0.00064127950577364
605 => 0.00064050940809284
606 => 0.00064624908527633
607 => 0.00064958116106999
608 => 0.00064231749944597
609 => 0.00064061572515689
610 => 0.00064795968809652
611 => 0.00065243950124723
612 => 0.00068551592456247
613 => 0.00068306551628784
614 => 0.00068921556018883
615 => 0.00068852315962569
616 => 0.00069496938541275
617 => 0.00070550624019632
618 => 0.0006840818682704
619 => 0.0006878003984377
620 => 0.00068688870071408
621 => 0.00069684237740058
622 => 0.00069687345169271
623 => 0.00069090572529613
624 => 0.00069414092659102
625 => 0.00069233512598132
626 => 0.00069559845175164
627 => 0.00068303278959138
628 => 0.00069833640972316
629 => 0.00070701257619439
630 => 0.00070713304477426
701 => 0.0007112454788233
702 => 0.00071542394999325
703 => 0.00072344416153582
704 => 0.0007152002706463
705 => 0.00070037031346266
706 => 0.00070144098847085
707 => 0.00069274619000016
708 => 0.00069289235113329
709 => 0.00069211213154976
710 => 0.00069445362925213
711 => 0.00068354661666322
712 => 0.00068610647071721
713 => 0.00068252266005114
714 => 0.00068779260793321
715 => 0.00068212301516569
716 => 0.00068688826106583
717 => 0.00068894478322592
718 => 0.00069653339427043
719 => 0.00068100217114431
720 => 0.00064933295581876
721 => 0.00065599020883231
722 => 0.00064614360870933
723 => 0.00064705494903936
724 => 0.00064889600154477
725 => 0.00064292854801986
726 => 0.00064406695009634
727 => 0.00064402627836335
728 => 0.00064367579134114
729 => 0.00064212342620533
730 => 0.00063987218963231
731 => 0.00064884042324514
801 => 0.00065036430089346
802 => 0.00065375169213718
803 => 0.00066383027078905
804 => 0.00066282318311248
805 => 0.00066446578489663
806 => 0.00066087999442463
807 => 0.00064722128357506
808 => 0.00064796301728824
809 => 0.0006387135859995
810 => 0.00065351516338357
811 => 0.00065000995448775
812 => 0.00064775012350988
813 => 0.00064713350769038
814 => 0.00065723706918931
815 => 0.00066026021314372
816 => 0.00065837639270698
817 => 0.0006545126220314
818 => 0.00066193220394976
819 => 0.00066391737106409
820 => 0.00066436177677084
821 => 0.00067750785336646
822 => 0.00066509649641784
823 => 0.00066808403339365
824 => 0.00069139194404889
825 => 0.0006702548853564
826 => 0.00068145165675847
827 => 0.00068090363306353
828 => 0.00068663152243474
829 => 0.00068043377895052
830 => 0.00068051060740894
831 => 0.00068559658512974
901 => 0.00067845424668179
902 => 0.00067668570323914
903 => 0.00067424247313968
904 => 0.00067957717667808
905 => 0.00068277509018146
906 => 0.00070854792441005
907 => 0.00072519835070576
908 => 0.00072447551178789
909 => 0.00073108090639948
910 => 0.00072810511562848
911 => 0.00071849550225497
912 => 0.00073489794051604
913 => 0.00072970752274307
914 => 0.00073013541447792
915 => 0.00073011948832618
916 => 0.000733570662391
917 => 0.00073112518927062
918 => 0.00072630491072766
919 => 0.00072950483657745
920 => 0.00073900747235691
921 => 0.00076850394539283
922 => 0.00078501056248001
923 => 0.00076751022631786
924 => 0.00077958172386367
925 => 0.00077234312685056
926 => 0.00077102765844366
927 => 0.0007786094509791
928 => 0.0007862045144387
929 => 0.00078572074173069
930 => 0.00078020711566984
1001 => 0.00077709260821115
1002 => 0.0008006767021249
1003 => 0.00081805306077599
1004 => 0.00081686810960857
1005 => 0.00082209809869479
1006 => 0.00083745350840941
1007 => 0.00083885741463345
1008 => 0.00083868055471764
1009 => 0.00083520082665888
1010 => 0.00085032022167484
1011 => 0.0008629330869976
1012 => 0.00083439537015229
1013 => 0.00084526215914084
1014 => 0.00085014061082387
1015 => 0.00085730362526596
1016 => 0.00086938883129038
1017 => 0.00088251657047548
1018 => 0.00088437297673458
1019 => 0.00088305576765653
1020 => 0.00087439767077139
1021 => 0.00088876219963422
1022 => 0.00089717660375242
1023 => 0.00090218718884459
1024 => 0.00091489319895647
1025 => 0.00085017073848065
1026 => 0.00080435696404085
1027 => 0.00079720248160315
1028 => 0.00081175140297634
1029 => 0.00081558783751697
1030 => 0.00081404137556412
1031 => 0.00076247380722599
1101 => 0.00079693098902801
1102 => 0.00083400401940484
1103 => 0.00083542814548629
1104 => 0.00085398767965344
1105 => 0.00086003142475928
1106 => 0.00087497428241759
1107 => 0.00087403960260256
1108 => 0.00087767795064956
1109 => 0.00087684155744096
1110 => 0.00090452005466307
1111 => 0.00093505354739566
1112 => 0.00093399626963289
1113 => 0.00092960671879669
1114 => 0.00093612595031809
1115 => 0.00096763978698607
1116 => 0.00096473849790462
1117 => 0.00096755685311603
1118 => 0.0010047134425896
1119 => 0.0010530222943684
1120 => 0.0010305779825877
1121 => 0.0010792756809751
1122 => 0.0011099283007559
1123 => 0.0011629388371266
1124 => 0.0011563016568906
1125 => 0.0011769382696905
1126 => 0.0011444197190468
1127 => 0.0010697505536856
1128 => 0.0010579338724451
1129 => 0.0010815911675346
1130 => 0.0011397503190671
1201 => 0.001079759528882
1202 => 0.0010918955876043
1203 => 0.0010884004018758
1204 => 0.0010882141582819
1205 => 0.0010953223187531
1206 => 0.001085011561253
1207 => 0.0010430036803274
1208 => 0.0010622556446016
1209 => 0.00105482153664
1210 => 0.0010630702336728
1211 => 0.0011075850495373
1212 => 0.0010879039883429
1213 => 0.0010671715891343
1214 => 0.0010931746186296
1215 => 0.0011262854107876
1216 => 0.0011242133969201
1217 => 0.0011201928239827
1218 => 0.0011428565831206
1219 => 0.0011802904733581
1220 => 0.0011904087034677
1221 => 0.0011978777740765
1222 => 0.0011989076327225
1223 => 0.0012095158168296
1224 => 0.001152472937279
1225 => 0.0012430014520908
1226 => 0.0012586332257991
1227 => 0.0012556951002126
1228 => 0.0012730691588037
1229 => 0.0012679572700289
1230 => 0.0012605509452249
1231 => 0.0012880925236601
]
'min_raw' => 0.00047480216612559
'max_raw' => 0.0012880925236601
'avg_raw' => 0.00088144734489283
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.000474'
'max' => '$0.001288'
'avg' => '$0.000881'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.00016374699636516
'max_diff' => 0.00059368376949391
'year' => 2032
]
7 => [
'items' => [
101 => 0.0012565183264749
102 => 0.0012117027286515
103 => 0.0011871160053335
104 => 0.001219493785953
105 => 0.0012392657667485
106 => 0.0012523337883202
107 => 0.0012562881637518
108 => 0.0011569010136383
109 => 0.0011033368519911
110 => 0.0011376708654926
111 => 0.0011795607315714
112 => 0.0011522402369579
113 => 0.0011533111486222
114 => 0.001114359303003
115 => 0.0011830071055982
116 => 0.001173005698179
117 => 0.001224893017562
118 => 0.0012125096923695
119 => 0.0012548217870723
120 => 0.0012436795945043
121 => 0.0012899302129023
122 => 0.0013083808367668
123 => 0.0013393623058455
124 => 0.0013621524006171
125 => 0.001375535180172
126 => 0.0013747317282851
127 => 0.0014277609681559
128 => 0.0013964914781046
129 => 0.0013572096289472
130 => 0.0013564991442286
131 => 0.0013768437705353
201 => 0.0014194805259986
202 => 0.0014305356163506
203 => 0.0014367139036943
204 => 0.0014272516415597
205 => 0.0013933108512136
206 => 0.0013786553900258
207 => 0.0013911422675674
208 => 0.0013758718893437
209 => 0.0014022328462692
210 => 0.0014384320705245
211 => 0.001430957073863
212 => 0.0014559448669882
213 => 0.0014818046040802
214 => 0.0015187851895553
215 => 0.0015284532839857
216 => 0.0015444342764343
217 => 0.0015608839671464
218 => 0.0015661671644716
219 => 0.0015762544274451
220 => 0.00157620126259
221 => 0.001606599908512
222 => 0.0016401305563316
223 => 0.0016527875996472
224 => 0.001681891772838
225 => 0.0016320518961806
226 => 0.0016698560151445
227 => 0.0017039562767484
228 => 0.0016633005390754
301 => 0.0017193350018856
302 => 0.0017215106930997
303 => 0.0017543610473329
304 => 0.0017210609199512
305 => 0.0017012874106096
306 => 0.0017583727911749
307 => 0.0017859946086578
308 => 0.0017776746924381
309 => 0.0017143597192016
310 => 0.0016775076890711
311 => 0.0015810588179936
312 => 0.001695306672066
313 => 0.0017509534691291
314 => 0.0017142156074405
315 => 0.0017327440479625
316 => 0.0018338292115831
317 => 0.0018723158971101
318 => 0.0018643109355627
319 => 0.0018656636422914
320 => 0.001886430359219
321 => 0.0019785214185161
322 => 0.0019233383211313
323 => 0.0019655237314108
324 => 0.0019878987209122
325 => 0.0020086818581329
326 => 0.0019576450416969
327 => 0.0018912468933935
328 => 0.0018702158126211
329 => 0.0017105627511197
330 => 0.0017022521159305
331 => 0.0016975871045607
401 => 0.0016681748677534
402 => 0.0016450649063126
403 => 0.001626687006957
404 => 0.0015784579109426
405 => 0.0015947338150675
406 => 0.0015178667022151
407 => 0.0015670435570148
408 => 0.0014443617888811
409 => 0.0015465348108913
410 => 0.0014909266802484
411 => 0.0015282660443992
412 => 0.0015281357708753
413 => 0.0014593821630175
414 => 0.0014197265168562
415 => 0.001444996638011
416 => 0.0014720882138336
417 => 0.0014764837308638
418 => 0.0015116086660803
419 => 0.0015214112804913
420 => 0.0014917089011858
421 => 0.0014418194819228
422 => 0.0014534076561611
423 => 0.0014194916828752
424 => 0.0013600552442506
425 => 0.0014027435321314
426 => 0.0014173191904855
427 => 0.0014237566315715
428 => 0.0013653077205054
429 => 0.0013469418036608
430 => 0.0013371639436378
501 => 0.0014342744614742
502 => 0.0014395943948559
503 => 0.0014123768635124
504 => 0.001535402686057
505 => 0.0015075581534321
506 => 0.0015386673184503
507 => 0.0014523561508105
508 => 0.0014556533536477
509 => 0.0014147922636892
510 => 0.001437671743727
511 => 0.0014215012646764
512 => 0.0014358233078393
513 => 0.0014444078814592
514 => 0.0014852622665149
515 => 0.0015470013023433
516 => 0.0014791599837613
517 => 0.0014496005497495
518 => 0.0014679390563619
519 => 0.0015167769160906
520 => 0.0015907687735438
521 => 0.0015469641047066
522 => 0.001566403872885
523 => 0.0015706505974169
524 => 0.0015383506563534
525 => 0.001591959718443
526 => 0.001620689250336
527 => 0.0016501598053193
528 => 0.0016757482624651
529 => 0.0016383886175876
530 => 0.0016783687929013
531 => 0.0016461518290494
601 => 0.0016172498819458
602 => 0.0016172937142694
603 => 0.0015991631006612
604 => 0.0015640327521911
605 => 0.0015575541769369
606 => 0.0015912565435628
607 => 0.0016182826499708
608 => 0.0016205086495409
609 => 0.0016354716906998
610 => 0.0016443266643261
611 => 0.0017311174436165
612 => 0.0017660254130181
613 => 0.0018087102172283
614 => 0.0018253383540519
615 => 0.0018753830843741
616 => 0.0018349679002047
617 => 0.0018262238208862
618 => 0.0017048316746312
619 => 0.0017247096317799
620 => 0.0017565361591127
621 => 0.0017053564823445
622 => 0.0017378182073162
623 => 0.0017442268394589
624 => 0.001703617416512
625 => 0.0017253086639376
626 => 0.0016677031417821
627 => 0.0015482569453086
628 => 0.0015920926962051
629 => 0.0016243705638192
630 => 0.0015783060669016
701 => 0.0016608748946842
702 => 0.0016126398900602
703 => 0.0015973517092829
704 => 0.0015377070654407
705 => 0.0015658570414014
706 => 0.0016039302869569
707 => 0.0015804054476935
708 => 0.0016292230214375
709 => 0.0016983617250305
710 => 0.0017476340824919
711 => 0.0017514166022805
712 => 0.0017197377774244
713 => 0.0017705032964278
714 => 0.0017708730678118
715 => 0.0017136093549927
716 => 0.0016785356497367
717 => 0.0016705668301068
718 => 0.0016904745039213
719 => 0.0017146460950915
720 => 0.0017527579573647
721 => 0.001775788157539
722 => 0.0018358387053192
723 => 0.0018520866617644
724 => 0.0018699382398251
725 => 0.001893793453337
726 => 0.0019224377535092
727 => 0.0018597656554533
728 => 0.0018622557347445
729 => 0.0018038963447891
730 => 0.0017415309670388
731 => 0.0017888585147972
801 => 0.0018507329877716
802 => 0.001836538915306
803 => 0.0018349417921951
804 => 0.0018376277102627
805 => 0.0018269258431588
806 => 0.0017785216948773
807 => 0.0017542134346364
808 => 0.0017855772920458
809 => 0.0018022457864142
810 => 0.0018280971675341
811 => 0.0018249104391546
812 => 0.0018915008206838
813 => 0.0019173758293574
814 => 0.0019107558948847
815 => 0.0019119741221453
816 => 0.0019588195893974
817 => 0.0020109213834869
818 => 0.002059721589089
819 => 0.002109363254245
820 => 0.0020495182893523
821 => 0.002019132706904
822 => 0.0020504828718344
823 => 0.0020338480330368
824 => 0.0021294367509814
825 => 0.002136055106416
826 => 0.0022316369122083
827 => 0.0023223554275749
828 => 0.0022653767534642
829 => 0.0023191050767747
830 => 0.0023772166389696
831 => 0.0024893232707047
901 => 0.0024515697010952
902 => 0.0024226510584481
903 => 0.0023953230808806
904 => 0.0024521882640044
905 => 0.0025253444136498
906 => 0.0025411015476025
907 => 0.0025666341242944
908 => 0.0025397897418778
909 => 0.0025721208436868
910 => 0.0026862638400786
911 => 0.0026554213948855
912 => 0.0026116201645407
913 => 0.0027017250977821
914 => 0.0027343337228481
915 => 0.0029631981308309
916 => 0.0032521488998264
917 => 0.0031325213841092
918 => 0.0030582647247478
919 => 0.0030757168010892
920 => 0.0031812318403256
921 => 0.0032151199220483
922 => 0.0031230004340036
923 => 0.0031555385945194
924 => 0.003334827058043
925 => 0.0034310095664608
926 => 0.0033003808009951
927 => 0.0029399812178873
928 => 0.0026076763429878
929 => 0.0026958185596947
930 => 0.0026858259676915
1001 => 0.0028784490550563
1002 => 0.0026546858127679
1003 => 0.0026584534118952
1004 => 0.0028550597407153
1005 => 0.0028026085428719
1006 => 0.0027176443198074
1007 => 0.0026082966758432
1008 => 0.0024061574425425
1009 => 0.0022271170865386
1010 => 0.0025782564551938
1011 => 0.0025631146871119
1012 => 0.0025411871630449
1013 => 0.00258998449505
1014 => 0.0028269304879021
1015 => 0.0028214681158475
1016 => 0.002786719291763
1017 => 0.002813075968569
1018 => 0.0027130238669306
1019 => 0.0027388095716668
1020 => 0.0026076237041978
1021 => 0.0026669251950996
1022 => 0.0027174620247441
1023 => 0.0027276080415057
1024 => 0.0027504675353383
1025 => 0.00255513566338
1026 => 0.0026428339392468
1027 => 0.0026943484601013
1028 => 0.0024616039807661
1029 => 0.0026897478500754
1030 => 0.0025517353700633
1031 => 0.0025048918614694
1101 => 0.0025679604746282
1102 => 0.002543382574744
1103 => 0.0025222519396862
1104 => 0.0025104606822536
1105 => 0.0025567713111286
1106 => 0.0025546108649384
1107 => 0.0024788376875931
1108 => 0.0023799946666561
1109 => 0.0024131696288941
1110 => 0.0024011168540961
1111 => 0.0023574360433893
1112 => 0.0023868716357645
1113 => 0.0022572521839563
1114 => 0.0020342486541533
1115 => 0.002181571616724
1116 => 0.0021758998429216
1117 => 0.002173039877376
1118 => 0.0022837490120403
1119 => 0.0022731068832366
1120 => 0.0022537913152499
1121 => 0.0023570812978357
1122 => 0.0023193790647456
1123 => 0.0024355684633661
1124 => 0.0025120983159567
1125 => 0.0024926878698583
1126 => 0.0025646645661206
1127 => 0.0024139339130201
1128 => 0.0024640005897159
1129 => 0.0024743192623935
1130 => 0.0023558067154839
1201 => 0.0022748480671223
1202 => 0.0022694490482728
1203 => 0.0021290779088027
1204 => 0.0022040630384714
1205 => 0.0022700468494843
1206 => 0.0022384457245597
1207 => 0.0022284417524653
1208 => 0.0022795498762986
1209 => 0.002283521415232
1210 => 0.0021929699066672
1211 => 0.0022117984326912
1212 => 0.002290316516193
1213 => 0.0022098199784436
1214 => 0.0020534283546311
1215 => 0.0020146410696423
1216 => 0.0020094661308333
1217 => 0.0019042719376851
1218 => 0.0020172330214939
1219 => 0.0019679224812425
1220 => 0.0021236938870655
1221 => 0.0020347180954782
1222 => 0.0020308825269366
1223 => 0.0020250845025303
1224 => 0.0019345395149703
1225 => 0.0019543631128118
1226 => 0.0020202597712561
1227 => 0.002043772441368
1228 => 0.0020413198772417
1229 => 0.0020199368416799
1230 => 0.0020297258858612
1231 => 0.0019981919638241
]
'min_raw' => 0.0011033368519911
'max_raw' => 0.0034310095664608
'avg_raw' => 0.002267173209226
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.0011033'
'max' => '$0.003431'
'avg' => '$0.002267'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.00062853468586554
'max_diff' => 0.0021429170428007
'year' => 2033
]
8 => [
'items' => [
101 => 0.0019870566796309
102 => 0.0019519106597161
103 => 0.0019002557197772
104 => 0.0019074386559939
105 => 0.0018050967037246
106 => 0.0017493353764298
107 => 0.0017339013759571
108 => 0.0017132623854937
109 => 0.0017362326048482
110 => 0.0018048067818324
111 => 0.0017220917755662
112 => 0.0015802826991059
113 => 0.001588805666232
114 => 0.0016079542428729
115 => 0.0015722709969832
116 => 0.0015384997994163
117 => 0.0015678611157568
118 => 0.0015077747406245
119 => 0.0016152153942416
120 => 0.0016123094256602
121 => 0.0016523566572432
122 => 0.0016773990130039
123 => 0.0016196844905343
124 => 0.0016051694442099
125 => 0.0016134378742684
126 => 0.0014767791435573
127 => 0.0016411887234178
128 => 0.0016426105442917
129 => 0.001630436050757
130 => 0.0017179790764564
131 => 0.0019027221660365
201 => 0.0018332143844629
202 => 0.0018062988705538
203 => 0.0017551324589374
204 => 0.0018233086644553
205 => 0.001818073795586
206 => 0.001794399733294
207 => 0.0017800815865522
208 => 0.0018064632109423
209 => 0.0017768126113378
210 => 0.0017714865489049
211 => 0.0017392164053742
212 => 0.0017276974323317
213 => 0.0017191692432746
214 => 0.0017097805450853
215 => 0.0017304896737731
216 => 0.0016835600636537
217 => 0.0016269675544161
218 => 0.0016222624996125
219 => 0.0016352535695981
220 => 0.0016295059882008
221 => 0.001622234982404
222 => 0.0016083526521972
223 => 0.0016042340613739
224 => 0.0016176174834934
225 => 0.0016025083802225
226 => 0.0016248026851342
227 => 0.0016187398677984
228 => 0.0015848734630045
301 => 0.0015426633836823
302 => 0.0015422876254377
303 => 0.0015331935330861
304 => 0.0015216108391705
305 => 0.0015183887986993
306 => 0.00156538838759
307 => 0.0016626761300144
308 => 0.0016435762182781
309 => 0.0016573778619453
310 => 0.0017252682887989
311 => 0.0017468486139593
312 => 0.0017315314103184
313 => 0.0017105642772509
314 => 0.0017114867246959
315 => 0.0017831377655705
316 => 0.0017876065531009
317 => 0.0017988977375047
318 => 0.0018134101003519
319 => 0.0017340029284645
320 => 0.0017077466540409
321 => 0.0016953049745764
322 => 0.0016569894173615
323 => 0.0016983094608901
324 => 0.0016742340410267
325 => 0.0016774826376997
326 => 0.0016753669848546
327 => 0.0016765222743679
328 => 0.0016151853623892
329 => 0.0016375333093411
330 => 0.0016003755130781
331 => 0.0015506253950403
401 => 0.0015504586152
402 => 0.0015626348861088
403 => 0.0015553919637147
404 => 0.0015359014457848
405 => 0.0015386699818641
406 => 0.0015144146926189
407 => 0.0015416150131346
408 => 0.0015423950209996
409 => 0.0015319214159896
410 => 0.001573827262665
411 => 0.0015909961222398
412 => 0.0015841021710558
413 => 0.0015905124242469
414 => 0.0016443699058417
415 => 0.0016531510253083
416 => 0.0016570510185272
417 => 0.001651825544264
418 => 0.0015914968401429
419 => 0.0015941726747081
420 => 0.0015745391761125
421 => 0.0015579509387264
422 => 0.001558614381228
423 => 0.0015671428915644
424 => 0.0016043873963939
425 => 0.0016827662611241
426 => 0.0016857406817464
427 => 0.0016893457663106
428 => 0.0016746820756176
429 => 0.001670259366192
430 => 0.0016760940615226
501 => 0.0017055290421503
502 => 0.0017812438038441
503 => 0.0017544811502426
504 => 0.0017327226962791
505 => 0.0017518107264421
506 => 0.0017488722738155
507 => 0.0017240687764921
508 => 0.0017233726249328
509 => 0.0016757667834114
510 => 0.0016581679877335
511 => 0.0016434611168181
512 => 0.001627401597711
513 => 0.0016178809764643
514 => 0.0016325089777441
515 => 0.0016358545747103
516 => 0.0016038701942582
517 => 0.001599510841389
518 => 0.0016256299768969
519 => 0.0016141359191794
520 => 0.0016259578425808
521 => 0.0016287006302165
522 => 0.0016282589782354
523 => 0.0016162578618941
524 => 0.0016239070155716
525 => 0.001605814486802
526 => 0.0015861415791749
527 => 0.0015735914897744
528 => 0.0015626398722446
529 => 0.0015687164661618
530 => 0.0015470545183889
531 => 0.0015401244253275
601 => 0.0016213156544171
602 => 0.0016812924882983
603 => 0.0016804204013803
604 => 0.0016751117965491
605 => 0.0016672242865811
606 => 0.0017049520216679
607 => 0.0016918084331535
608 => 0.0017013714919813
609 => 0.0017038056918132
610 => 0.0017111732815706
611 => 0.0017138065616431
612 => 0.0017058469603334
613 => 0.0016791335661546
614 => 0.0016125663276943
615 => 0.0015815790984962
616 => 0.0015713527967277
617 => 0.0015717245033745
618 => 0.001561471174685
619 => 0.001564491239506
620 => 0.0015604209193882
621 => 0.0015527127178014
622 => 0.001568240506435
623 => 0.0015700299394237
624 => 0.0015664055680133
625 => 0.0015672592386846
626 => 0.0015372509913962
627 => 0.0015395324532631
628 => 0.0015268289836743
629 => 0.001524447236269
630 => 0.0014923339713662
701 => 0.0014354406676988
702 => 0.0014669650806972
703 => 0.0014288880227984
704 => 0.0014144676640105
705 => 0.0014827313996863
706 => 0.0014758796139658
707 => 0.0014641523352118
708 => 0.0014468052457557
709 => 0.0014403710415348
710 => 0.0014012788535102
711 => 0.0013989690784929
712 => 0.0014183442224558
713 => 0.001409403260175
714 => 0.0013968467629254
715 => 0.0013513684027192
716 => 0.0013002356684798
717 => 0.0013017790443176
718 => 0.0013180434157208
719 => 0.0013653342691249
720 => 0.0013468569145599
721 => 0.0013334513818197
722 => 0.0013309409285063
723 => 0.0013623645077135
724 => 0.0014068354557351
725 => 0.0014277002295654
726 => 0.0014070238723721
727 => 0.0013832719865226
728 => 0.0013847176537587
729 => 0.0013943350302095
730 => 0.0013953456804922
731 => 0.0013798856445375
801 => 0.001384237554101
802 => 0.001377626605527
803 => 0.0013370552263312
804 => 0.0013363214187347
805 => 0.0013263645479782
806 => 0.0013260630578888
807 => 0.0013091239368741
808 => 0.0013067540367496
809 => 0.0012731203838438
810 => 0.0012952581560385
811 => 0.0012804093007355
812 => 0.001258028573303
813 => 0.0012541701274579
814 => 0.0012540541379166
815 => 0.0012770341407506
816 => 0.0012949896213257
817 => 0.0012806676029308
818 => 0.001277406756963
819 => 0.001312224060831
820 => 0.001307793241547
821 => 0.0013039561806228
822 => 0.0014028535701014
823 => 0.0013245685692695
824 => 0.0012904318405552
825 => 0.0012481811563823
826 => 0.0012619381921955
827 => 0.0012648370017742
828 => 0.0011632317225966
829 => 0.0011220104734884
830 => 0.0011078648941845
831 => 0.0010997239133059
901 => 0.0011034338605203
902 => 0.0010663299015526
903 => 0.0010912643756217
904 => 0.0010591354834753
905 => 0.0010537489701505
906 => 0.0011111994093143
907 => 0.0011191933023033
908 => 0.0010850888713042
909 => 0.0011069894370115
910 => 0.0010990479874454
911 => 0.0010596862411156
912 => 0.0010581829119312
913 => 0.0010384325712552
914 => 0.0010075271125169
915 => 0.00099340248856926
916 => 0.00098604626178174
917 => 0.00098908158432427
918 => 0.00098754683236437
919 => 0.00097753153767975
920 => 0.00098812089733221
921 => 0.00096106945924569
922 => 0.00095029735863139
923 => 0.00094543185069474
924 => 0.00092142214237027
925 => 0.00095963226548026
926 => 0.00096716014109137
927 => 0.00097470284894292
928 => 0.0010403569711653
929 => 0.0010370770767557
930 => 0.0010667257248451
1001 => 0.0010655736329007
1002 => 0.0010571173581894
1003 => 0.0010214417261718
1004 => 0.001035661397237
1005 => 0.00099189545992575
1006 => 0.0010246878759538
1007 => 0.0010097227867226
1008 => 0.0010196281642312
1009 => 0.0010018174023389
1010 => 0.0010116746133584
1011 => 0.00096894527966454
1012 => 0.00092904522907913
1013 => 0.00094510217418979
1014 => 0.00096255790985948
1015 => 0.0010004063924301
1016 => 0.00097786414845424
1017 => 0.00098597119180458
1018 => 0.00095881395368361
1019 => 0.00090278081435851
1020 => 0.00090309795584191
1021 => 0.00089447847810504
1022 => 0.00088702999087602
1023 => 0.00098045339634465
1024 => 0.00096883471906914
1025 => 0.00095032187744551
1026 => 0.00097510205162983
1027 => 0.00098165432299841
1028 => 0.00098184085695286
1029 => 0.00099991983236887
1030 => 0.0010095685847892
1031 => 0.0010112692192234
1101 => 0.0010397168776626
1102 => 0.0010492521575378
1103 => 0.0010885266258601
1104 => 0.0010087499555584
1105 => 0.0010071070075321
1106 => 0.00097545075949839
1107 => 0.00095537386652995
1108 => 0.00097682544153647
1109 => 0.00099582860856025
1110 => 0.00097604124086895
1111 => 0.0009786250533553
1112 => 0.00095206212891706
1113 => 0.00096155712450197
1114 => 0.00096973549381372
1115 => 0.0009652198789821
1116 => 0.00095845978502093
1117 => 0.00099427056557356
1118 => 0.0009922499809912
1119 => 0.0010255978031281
1120 => 0.0010515948152094
1121 => 0.001098186108381
1122 => 0.0010495656650974
1123 => 0.0010477937428954
1124 => 0.0010651145666454
1125 => 0.0010492495058099
1126 => 0.0010592756766146
1127 => 0.0010965707372604
1128 => 0.001097358723123
1129 => 0.0010841589446611
1130 => 0.0010833557369421
1201 => 0.0010858908987854
1202 => 0.0011007394208864
1203 => 0.0010955508910153
1204 => 0.0011015551891396
1205 => 0.0011090636558852
1206 => 0.0011401218578686
1207 => 0.0011476098852198
1208 => 0.0011294178608535
1209 => 0.0011310603969663
1210 => 0.0011242560804711
1211 => 0.0011176831959946
1212 => 0.0011324580804052
1213 => 0.0011594594720666
1214 => 0.0011592914978104
1215 => 0.0011655552958438
1216 => 0.0011694575901265
1217 => 0.0011527060864112
1218 => 0.0011418014734623
1219 => 0.0011459829959455
1220 => 0.0011526693414577
1221 => 0.0011438147042122
1222 => 0.0010891597812656
1223 => 0.0011057385935176
1224 => 0.0011029790684964
1225 => 0.0010990491692964
1226 => 0.001115719293216
1227 => 0.0011141114190969
1228 => 0.0010659493468242
1229 => 0.0010690325264296
1230 => 0.0010661368451878
1231 => 0.0010754933836808
]
'min_raw' => 0.00088702999087602
'max_raw' => 0.0019870566796309
'avg_raw' => 0.0014370433352535
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.000887'
'max' => '$0.001987'
'avg' => '$0.001437'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.00021630686111511
'max_diff' => -0.0014439528868299
'year' => 2034
]
9 => [
'items' => [
101 => 0.0010487442220257
102 => 0.0010569720839925
103 => 0.0010621325218866
104 => 0.0010651720594506
105 => 0.0010761529533621
106 => 0.0010748644722026
107 => 0.0010760728595641
108 => 0.0010923546263865
109 => 0.0011747022157461
110 => 0.0011791842133452
111 => 0.0011571132179535
112 => 0.0011659301452814
113 => 0.0011490035728619
114 => 0.0011603664943253
115 => 0.0011681407166036
116 => 0.0011330105010249
117 => 0.0011309303176515
118 => 0.0011139338832466
119 => 0.0011230668043685
120 => 0.0011085356701832
121 => 0.0011121011022348
122 => 0.0011021318433898
123 => 0.0011200745244512
124 => 0.0011401372298885
125 => 0.0011452058615822
126 => 0.0011318724737792
127 => 0.0011222182222967
128 => 0.0011052685370016
129 => 0.0011334562413957
130 => 0.0011416991851653
131 => 0.0011334129447212
201 => 0.0011314928417524
202 => 0.0011278542500961
203 => 0.001132264786173
204 => 0.0011416542923233
205 => 0.0011372263746198
206 => 0.0011401510922728
207 => 0.0011290050845352
208 => 0.0011527116318559
209 => 0.0011903633342925
210 => 0.0011904843906725
211 => 0.0011860564491009
212 => 0.0011842446308112
213 => 0.0011887879675736
214 => 0.0011912525413898
215 => 0.001205944859374
216 => 0.0012217103019389
217 => 0.0012952807433876
218 => 0.0012746224578257
219 => 0.0013398985302041
220 => 0.0013915234284183
221 => 0.0014070034781096
222 => 0.0013927625607863
223 => 0.0013440451519024
224 => 0.0013416548434039
225 => 0.0014144592202358
226 => 0.0013938886491291
227 => 0.001391441845151
228 => 0.0013654119847642
301 => 0.0013807988561137
302 => 0.0013774335216378
303 => 0.0013721211765298
304 => 0.0014014782552059
305 => 0.001456432085763
306 => 0.0014478670159169
307 => 0.001441473588599
308 => 0.0014134594511904
309 => 0.0014303302190945
310 => 0.0014243228617821
311 => 0.0014501342811592
312 => 0.0014348441681131
313 => 0.0013937328068213
314 => 0.0014002799266118
315 => 0.0013992903426264
316 => 0.0014196559109226
317 => 0.0014135426728246
318 => 0.0013980966347738
319 => 0.0014562442595444
320 => 0.0014524684762259
321 => 0.0014578216737073
322 => 0.0014601783167918
323 => 0.0014955717513135
324 => 0.0015100713089735
325 => 0.0015133629624128
326 => 0.0015271364207537
327 => 0.0015130202662219
328 => 0.0015694949489968
329 => 0.0016070473176529
330 => 0.0016506663262743
331 => 0.0017144054215543
401 => 0.0017383719109992
402 => 0.0017340425791967
403 => 0.0017823688337938
404 => 0.0018692100390725
405 => 0.0017515956696686
406 => 0.0018754438862409
407 => 0.0018362349707705
408 => 0.0017432713375286
409 => 0.001737285575517
410 => 0.0018002416272784
411 => 0.0019398720907898
412 => 0.0019048962433558
413 => 0.0019399292987465
414 => 0.001899061378743
415 => 0.001897031942053
416 => 0.0019379444350908
417 => 0.0020335387050977
418 => 0.0019881254507151
419 => 0.0019230144147707
420 => 0.0019710913904721
421 => 0.0019294426648055
422 => 0.0018355964291344
423 => 0.0019048694979845
424 => 0.0018585485696278
425 => 0.0018720674790783
426 => 0.0019694271807659
427 => 0.001957712603877
428 => 0.0019728723511118
429 => 0.001946115794042
430 => 0.0019211209506171
501 => 0.001874466219223
502 => 0.0018606540533077
503 => 0.001864471239057
504 => 0.0018606521617
505 => 0.0018345492682641
506 => 0.0018289123509119
507 => 0.0018195172416992
508 => 0.0018224291788977
509 => 0.0018047636249417
510 => 0.0018381021751463
511 => 0.0018442901038426
512 => 0.0018685511204772
513 => 0.001871069979707
514 => 0.0019386365657003
515 => 0.0019014220255455
516 => 0.0019263887520302
517 => 0.0019241554930175
518 => 0.0017452861413513
519 => 0.0017699327598333
520 => 0.0018082751636562
521 => 0.0017910019627059
522 => 0.0017665816978686
523 => 0.0017468610246808
524 => 0.0017169821882589
525 => 0.0017590360767505
526 => 0.0018143324681846
527 => 0.0018724723874467
528 => 0.0019423236909618
529 => 0.001926733693176
530 => 0.001871166565915
531 => 0.0018736592666522
601 => 0.0018890681617674
602 => 0.0018691122425474
603 => 0.0018632268523836
604 => 0.0018882595995352
605 => 0.0018884319863071
606 => 0.0018654702894911
607 => 0.0018399525654262
608 => 0.0018398456452307
609 => 0.0018353050127053
610 => 0.0018998691471822
611 => 0.0019353728929742
612 => 0.0019394433402121
613 => 0.0019350989194435
614 => 0.0019367709145734
615 => 0.0019161120671687
616 => 0.001963332066145
617 => 0.0020066658067796
618 => 0.0019950514385992
619 => 0.001977639849617
620 => 0.001963770680337
621 => 0.0019917843030853
622 => 0.0019905369005619
623 => 0.0020062873243587
624 => 0.0020055727941564
625 => 0.0020002765190369
626 => 0.0019950516277458
627 => 0.0020157677311201
628 => 0.0020098018260387
629 => 0.002003826654259
630 => 0.0019918425325016
701 => 0.0019934713736836
702 => 0.0019760627910578
703 => 0.0019680087841726
704 => 0.0018468958448831
705 => 0.0018145305100255
706 => 0.0018247133032289
707 => 0.0018280657431475
708 => 0.0018139803079402
709 => 0.0018341752037761
710 => 0.0018310278506517
711 => 0.0018432723605185
712 => 0.0018356225223486
713 => 0.0018359364743754
714 => 0.0018584330173158
715 => 0.0018649638594385
716 => 0.0018616422204246
717 => 0.0018639685825308
718 => 0.0019175786153737
719 => 0.0019099569830558
720 => 0.0019059081427917
721 => 0.0019070296992151
722 => 0.0019207282120185
723 => 0.0019245630476924
724 => 0.001908314579473
725 => 0.0019159774510166
726 => 0.0019486049854858
727 => 0.0019600227759915
728 => 0.0019964628824353
729 => 0.0019809824775467
730 => 0.0020093974306959
731 => 0.0020967353093053
801 => 0.0021665068500599
802 => 0.0021023420577511
803 => 0.0022304686069949
804 => 0.002330233504243
805 => 0.0023264043613195
806 => 0.0023090080438806
807 => 0.0021954283607506
808 => 0.0020909106429567
809 => 0.002178344151948
810 => 0.0021785670379433
811 => 0.00217105642198
812 => 0.0021244086312755
813 => 0.0021694331799785
814 => 0.0021730070651493
815 => 0.0021710066398264
816 => 0.0021352418880648
817 => 0.0020806357225557
818 => 0.0020913056365875
819 => 0.0021087831734319
820 => 0.0020756945499893
821 => 0.002065120729889
822 => 0.0020847794732071
823 => 0.0021481240402396
824 => 0.0021361491167722
825 => 0.002135836403126
826 => 0.0021870702038774
827 => 0.0021503978594856
828 => 0.0020914402183733
829 => 0.0020765526364366
830 => 0.0020237117500385
831 => 0.0020602091384865
901 => 0.0020615226145217
902 => 0.002041533367863
903 => 0.0020930622355726
904 => 0.0020925873879852
905 => 0.0021415063788156
906 => 0.0022350211161496
907 => 0.0022073642067392
908 => 0.0021752022301581
909 => 0.0021786991287673
910 => 0.0022170514754295
911 => 0.0021938627711386
912 => 0.002202201590879
913 => 0.0022170388536271
914 => 0.0022259905426316
915 => 0.0021774111184782
916 => 0.0021660849308856
917 => 0.0021429155260228
918 => 0.0021368710607715
919 => 0.0021557420575868
920 => 0.0021507702166481
921 => 0.0020614122219469
922 => 0.0020520738143175
923 => 0.0020523602099473
924 => 0.0020288783399459
925 => 0.0019930628518993
926 => 0.0020871838160542
927 => 0.0020796245854105
928 => 0.0020712797798178
929 => 0.0020723019708881
930 => 0.0021131566913723
1001 => 0.0020894588902787
1002 => 0.0021524633784794
1003 => 0.0021395115497936
1004 => 0.0021262275555737
1005 => 0.0021243913029322
1006 => 0.0021192780984947
1007 => 0.0021017430179388
1008 => 0.0020805683544727
1009 => 0.0020665870075344
1010 => 0.0019063172750746
1011 => 0.001936062405173
1012 => 0.0019702814659973
1013 => 0.0019820937486696
1014 => 0.0019618880217736
1015 => 0.002102540863192
1016 => 0.0021282394926837
1017 => 0.0020503966676733
1018 => 0.0020358354534155
1019 => 0.0021034954939746
1020 => 0.0020626882184139
1021 => 0.0020810637321002
1022 => 0.002041345922379
1023 => 0.0021220494453829
1024 => 0.002121434619753
1025 => 0.0020900391265327
1026 => 0.0021165743824154
1027 => 0.0021119632287052
1028 => 0.0020765177941833
1029 => 0.0021231731288801
1030 => 0.002123196269344
1031 => 0.0020929787897164
1101 => 0.0020576913889683
1102 => 0.0020513828351657
1103 => 0.0020466301873104
1104 => 0.0020798948720704
1105 => 0.0021097198844103
1106 => 0.0021652168381272
1107 => 0.0021791700908667
1108 => 0.0022336305652297
1109 => 0.0022012020043789
1110 => 0.0022155771653839
1111 => 0.0022311834361455
1112 => 0.0022386656562502
1113 => 0.0022264737801077
1114 => 0.0023110733136189
1115 => 0.00231821610631
1116 => 0.0023206110229144
1117 => 0.0022920845362083
1118 => 0.0023174227331107
1119 => 0.002305567829893
1120 => 0.0023364109946785
1121 => 0.0023412475967422
1122 => 0.0023371511668614
1123 => 0.002338686380697
1124 => 0.0022664956032255
1125 => 0.0022627521305769
1126 => 0.0022117096153887
1127 => 0.0022325098176151
1128 => 0.0021936248365325
1129 => 0.0022059556645935
1130 => 0.0022113909761103
1201 => 0.0022085518778251
1202 => 0.0022336858298406
1203 => 0.0022123168361003
1204 => 0.0021559205482317
1205 => 0.0020995088952323
1206 => 0.0020988006928808
1207 => 0.0020839485003944
1208 => 0.0020732130855415
1209 => 0.0020752811073015
1210 => 0.0020825690857199
1211 => 0.002072789494987
1212 => 0.0020748764665077
1213 => 0.00210953409917
1214 => 0.0021164844402335
1215 => 0.0020928644656262
1216 => 0.0019980268592318
1217 => 0.0019747534727405
1218 => 0.0019914819214191
1219 => 0.0019834868004008
1220 => 0.0016008286527211
1221 => 0.0016907285084699
1222 => 0.0016373130668946
1223 => 0.0016619293598988
1224 => 0.0016074060259119
1225 => 0.0016334274187032
1226 => 0.0016286222176038
1227 => 0.0017731785253178
1228 => 0.0017709214774035
1229 => 0.0017720018067998
1230 => 0.0017204348699342
1231 => 0.001802582400556
]
'min_raw' => 0.0010487442220257
'max_raw' => 0.0023412475967422
'avg_raw' => 0.001694995909384
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.001048'
'max' => '$0.002341'
'avg' => '$0.001694'
'bar_min_pct' => 61.631153054958
'bar_max_pct' => 60.119598047091
'min_diff' => 0.0001617142311497
'max_diff' => 0.00035419091711128
'year' => 2035
]
10 => [
'items' => [
101 => 0.0018430512280699
102 => 0.0018355615251401
103 => 0.0018374465220082
104 => 0.0018050560305203
105 => 0.0017723154175595
106 => 0.0017360010390417
107 => 0.0018034686657348
108 => 0.0017959674173574
109 => 0.0018131725822713
110 => 0.0018569301608674
111 => 0.0018633736305345
112 => 0.0018720337191104
113 => 0.001868929693823
114 => 0.0019428801692872
115 => 0.0019339242787675
116 => 0.0019555053981343
117 => 0.0019111113982333
118 => 0.0018608753734282
119 => 0.0018704235994042
120 => 0.0018695040284608
121 => 0.0018577968349159
122 => 0.0018472281040475
123 => 0.0018296341448732
124 => 0.0018853040351168
125 => 0.0018830439392381
126 => 0.0019196322644407
127 => 0.0019131649225611
128 => 0.0018699744306622
129 => 0.0018715169875298
130 => 0.0018818914237923
131 => 0.00191779746615
201 => 0.0019284568241915
202 => 0.0019235189848447
203 => 0.0019352064843191
204 => 0.0019444438073659
205 => 0.0019363665498734
206 => 0.002050723482538
207 => 0.0020032345111581
208 => 0.0020263803053825
209 => 0.0020319004409221
210 => 0.0020177607298134
211 => 0.0020208271268478
212 => 0.0020254718828117
213 => 0.0020536739314881
214 => 0.0021276842675436
215 => 0.0021604629415771
216 => 0.0022590791996783
217 => 0.0021577411289998
218 => 0.0021517281472644
219 => 0.0021694919132741
220 => 0.0022273900963706
221 => 0.0022743111356705
222 => 0.0022898775513459
223 => 0.002291934910151
224 => 0.0023211385407939
225 => 0.002337877517263
226 => 0.0023175924519021
227 => 0.0023004029829437
228 => 0.0022388324387699
229 => 0.0022459593969091
301 => 0.0022950570710234
302 => 0.0023644104275484
303 => 0.0024239228224339
304 => 0.0024030836559613
305 => 0.0025620717859878
306 => 0.0025778348096716
307 => 0.0025756568694781
308 => 0.0026115673832823
309 => 0.0025402923264299
310 => 0.0025098208587362
311 => 0.0023041195412413
312 => 0.0023619132210096
313 => 0.0024459197286568
314 => 0.0024348011523615
315 => 0.0023737933810077
316 => 0.0024238765425686
317 => 0.0024073174831113
318 => 0.0023942566658813
319 => 0.0024540908015758
320 => 0.0023883007115289
321 => 0.0024452634221818
322 => 0.0023722081565657
323 => 0.0024031788475184
324 => 0.0023855983854499
325 => 0.0023969750989886
326 => 0.0023304670641055
327 => 0.0023663531853372
328 => 0.0023289740834797
329 => 0.0023289563609185
330 => 0.0023281312151733
331 => 0.0023721075627443
401 => 0.0023735416298598
402 => 0.0023410430425602
403 => 0.002336359488407
404 => 0.0023536770428615
405 => 0.00233340272207
406 => 0.0023428889491633
407 => 0.0023336900502248
408 => 0.0023316191843153
409 => 0.0023151181724197
410 => 0.0023080090827903
411 => 0.0023107967400126
412 => 0.0023012810287769
413 => 0.002295547468559
414 => 0.0023269906657343
415 => 0.0023101918338985
416 => 0.0023244160038263
417 => 0.0023082057669602
418 => 0.0022520140235184
419 => 0.0022196975576481
420 => 0.0021135565632639
421 => 0.0021436580176038
422 => 0.0021636153129733
423 => 0.0021570194269727
424 => 0.002171189942371
425 => 0.0021720598969283
426 => 0.002167452917921
427 => 0.0021621186264212
428 => 0.0021595221883238
429 => 0.0021788739106794
430 => 0.0021901082368559
501 => 0.0021656182945578
502 => 0.0021598806437281
503 => 0.0021846413275182
504 => 0.0021997453303264
505 => 0.0023112648008558
506 => 0.0023030030782759
507 => 0.0023237383806704
508 => 0.0023214039038299
509 => 0.0023431378041321
510 => 0.0023786635456946
511 => 0.0023064297799445
512 => 0.002318967064023
513 => 0.0023158932114951
514 => 0.0023494527273872
515 => 0.0023495574965327
516 => 0.0023294368903332
517 => 0.0023403445973735
518 => 0.0023342562145409
519 => 0.0023452587452137
520 => 0.0023028927379339
521 => 0.0023544899616728
522 => 0.0023837422626811
523 => 0.002384148430909
524 => 0.0023980137894263
525 => 0.0024121017967073
526 => 0.0024391424998764
527 => 0.0024113476461723
528 => 0.0023613474101331
529 => 0.0023649572656754
530 => 0.00233564214558
531 => 0.002336134938045
601 => 0.0023335043732459
602 => 0.0023413988962276
603 => 0.0023046251417808
604 => 0.0023132558684471
605 => 0.0023011728005728
606 => 0.0023189407977932
607 => 0.0022998253699392
608 => 0.0023158917291904
609 => 0.0023228254372349
610 => 0.0023484109691914
611 => 0.0022960463660663
612 => 0.0021892713955222
613 => 0.002211716788852
614 => 0.0021785182890697
615 => 0.0021815909366201
616 => 0.0021877981736803
617 => 0.0021676784874867
618 => 0.0021715166895683
619 => 0.0021713795619809
620 => 0.0021701978705153
621 => 0.0021649639630772
622 => 0.002157373761795
623 => 0.0021876107875627
624 => 0.0021927486474478
625 => 0.0022041694735261
626 => 0.0022381501051147
627 => 0.0022347546387006
628 => 0.0022402927852986
629 => 0.0022282030423704
630 => 0.0021821517451203
701 => 0.0021846525521205
702 => 0.0021534674487559
703 => 0.0022033720003194
704 => 0.0021915539438012
705 => 0.002183934765883
706 => 0.0021818558025968
707 => 0.0022159206655986
708 => 0.00222611340651
709 => 0.0022197619743834
710 => 0.0022067350017909
711 => 0.0022317506402473
712 => 0.0022384437697732
713 => 0.0022399421146409
714 => 0.0022842650297128
715 => 0.0022424192732273
716 => 0.0022524919627244
717 => 0.0023310762108049
718 => 0.0022598111416808
719 => 0.0022975618381965
720 => 0.0022957141380472
721 => 0.0023150261169707
722 => 0.0022941299921011
723 => 0.0022943890246126
724 => 0.0023115367535899
725 => 0.0022874558608505
726 => 0.0022814930931579
727 => 0.0022732555722966
728 => 0.0022912418977335
729 => 0.0023020238863813
730 => 0.0023889187963848
731 => 0.0024450568711364
801 => 0.0024426197692578
802 => 0.0024648903183647
803 => 0.0024548572320172
804 => 0.0024224577496067
805 => 0.0024777597153855
806 => 0.0024602598594806
807 => 0.0024617025263391
808 => 0.0024616488302065
809 => 0.0024732847045194
810 => 0.0024650396211565
811 => 0.0024487877155078
812 => 0.0024595764889221
813 => 0.0024916152889054
814 => 0.002591064707124
815 => 0.0026467179190886
816 => 0.0025877143138835
817 => 0.0026284142106642
818 => 0.0026040087754518
819 => 0.0025995735818749
820 => 0.0026251361247519
821 => 0.0026507434114764
822 => 0.0026491123380154
823 => 0.0026305227628022
824 => 0.0026200219834572
825 => 0.0026995374026763
826 => 0.0027581230090471
827 => 0.0027541278634555
828 => 0.0027717611368058
829 => 0.0028235329727391
830 => 0.0028282663405911
831 => 0.002827670045037
901 => 0.00281593789894
902 => 0.0028669139948388
903 => 0.0029094391508766
904 => 0.0028132222460929
905 => 0.0028498603838627
906 => 0.0028663084243147
907 => 0.0028904590276119
908 => 0.0029312051434854
909 => 0.0029754662326974
910 => 0.0029817252360101
911 => 0.0029772841736389
912 => 0.0029480927955016
913 => 0.002996523807462
914 => 0.0030248935584214
915 => 0.0030417870958876
916 => 0.0030846262960851
917 => 0.002866410001813
918 => 0.0027119456626736
919 => 0.0026878238256249
920 => 0.0027368765298078
921 => 0.0027498113367129
922 => 0.0027445973322683
923 => 0.0025707336752837
924 => 0.0026869084694528
925 => 0.0028119027797246
926 => 0.0028167043202375
927 => 0.0028792790854674
928 => 0.0028996559940525
929 => 0.0029500368819245
930 => 0.0029468855436709
1001 => 0.0029591524881327
1002 => 0.0029563325300348
1003 => 0.0030496525158701
1004 => 0.0031525983183984
1005 => 0.0031490336326045
1006 => 0.0031342339554916
1007 => 0.0031562139997241
1008 => 0.003262465100276
1009 => 0.0032526832015764
1010 => 0.003262185482943
1011 => 0.0033874615185433
1012 => 0.0035503381851319
1013 => 0.0034746656209515
1014 => 0.0036388533110292
1015 => 0.0037422007587177
1016 => 0.0039209294831693
1017 => 0.0038985517666104
1018 => 0.0039681295474674
1019 => 0.0038584909835997
1020 => 0.0036067386793496
1021 => 0.0035668979135329
1022 => 0.0036466601356268
1023 => 0.0038427477755607
1024 => 0.0036404846380286
1025 => 0.0036814022073233
1026 => 0.0036696179446138
1027 => 0.0036689900113339
1028 => 0.0036929556706384
1029 => 0.0036581922318524
1030 => 0.0035165597284153
1031 => 0.0035814690700949
1101 => 0.0035564044560698
1102 => 0.0035842155140214
1103 => 0.0037343003236336
1104 => 0.0036679442517291
1105 => 0.0035980435203072
1106 => 0.0036857145497243
1107 => 0.0037973498972066
1108 => 0.0037903639577891
1109 => 0.0037768083154232
1110 => 0.0038532207616897
1111 => 0.003979431736176
1112 => 0.0040135460554229
1113 => 0.0040387285484544
1114 => 0.0040422007887817
1115 => 0.0040779670221386
1116 => 0.0038856429711272
1117 => 0.0041908661793143
1118 => 0.0042435697957472
1119 => 0.0042336637001989
1120 => 0.0042922415517569
1121 => 0.0042750064618519
1122 => 0.0042500355206823
1123 => 0.0043428938752681
1124 => 0.0042364392650183
1125 => 0.0040853403480315
1126 => 0.0040024444937748
1127 => 0.0041116084416778
1128 => 0.0041782710553654
1129 => 0.0042223308024744
1130 => 0.0042356632553279
1201 => 0.0039005725397309
1202 => 0.0037199772290072
1203 => 0.0038357367526516
1204 => 0.0039769713607934
1205 => 0.0038848584057479
1206 => 0.0038884690591928
1207 => 0.0037571401921566
1208 => 0.0039885910514428
1209 => 0.0039548706080529
1210 => 0.00412981232801
1211 => 0.0040880610825472
1212 => 0.0042307192639737
1213 => 0.0041931525838078
1214 => 0.0043490897728516
1215 => 0.0044112973393921
1216 => 0.0045157535254481
1217 => 0.0045925919211241
1218 => 0.0046377128967493
1219 => 0.0046350040026173
1220 => 0.0048137957872252
1221 => 0.0047083685183511
1222 => 0.0045759270213457
1223 => 0.0045735315725125
1224 => 0.0046421249005221
1225 => 0.0047858776983697
1226 => 0.0048231507073334
1227 => 0.0048439812344667
1228 => 0.0048120785570462
1229 => 0.0046976448127237
1230 => 0.0046482329021176
1231 => 0.0046903332815549
]
'min_raw' => 0.0017360010390417
'max_raw' => 0.0048439812344667
'avg_raw' => 0.0032899911367542
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$0.001736'
'max' => '$0.004843'
'avg' => '$0.003289'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.000687256817016
'max_diff' => 0.0025027336377245
'year' => 2036
]
11 => [
'items' => [
101 => 0.0046388481352299
102 => 0.0047277259419675
103 => 0.0048497741538934
104 => 0.0048245716807616
105 => 0.0049088197698752
106 => 0.0049960076789502
107 => 0.0051206903047816
108 => 0.0051532869601582
109 => 0.0052071679919559
110 => 0.0052626292726726
111 => 0.0052804419413154
112 => 0.005314451852701
113 => 0.0053142726036802
114 => 0.0054167637607717
115 => 0.0055298146809305
116 => 0.0055724887861557
117 => 0.005670615538057
118 => 0.0055025769141975
119 => 0.0056300361406835
120 => 0.0057450075534853
121 => 0.005607933895428
122 => 0.0057968579989937
123 => 0.005804193493824
124 => 0.0059149507566599
125 => 0.0058026770522516
126 => 0.0057360092849643
127 => 0.005928476631114
128 => 0.0060216055172513
129 => 0.0059935543388388
130 => 0.0057800834860617
131 => 0.0056558342935498
201 => 0.0053306501908669
202 => 0.0057158448074026
203 => 0.0059034618688361
204 => 0.0057795976031975
205 => 0.0058420675340316
206 => 0.0061828832207192
207 => 0.0063126437680283
208 => 0.0062856544812827
209 => 0.0062902152264613
210 => 0.0063602316624687
211 => 0.0066707230984814
212 => 0.0064846694328875
213 => 0.0066269004889362
214 => 0.0067023393282122
215 => 0.006772411126384
216 => 0.0066003369364934
217 => 0.0063764709437176
218 => 0.0063055631865504
219 => 0.0057672817430776
220 => 0.005739261856307
221 => 0.0057235334447732
222 => 0.0056243680348806
223 => 0.0055464511863969
224 => 0.0054844888156155
225 => 0.0053218810511549
226 => 0.0053767563982593
227 => 0.0051175935605872
228 => 0.0052833967599628
301 => 0.0048697666133325
302 => 0.0052142500905324
303 => 0.0050267633956342
304 => 0.0051526556688199
305 => 0.0051522164425385
306 => 0.0049204088534222
307 => 0.0047867070737209
308 => 0.0048719070514977
309 => 0.004963248190857
310 => 0.0049780679834096
311 => 0.0050964941548367
312 => 0.00512954435372
313 => 0.0050294007081374
314 => 0.0048611950479244
315 => 0.0049002653864293
316 => 0.0047859153145581
317 => 0.0045855212120159
318 => 0.0047294477550071
319 => 0.0047785906047876
320 => 0.0048002948868571
321 => 0.004603230302425
322 => 0.0045413083315162
323 => 0.00450834159378
324 => 0.0048357564847053
325 => 0.0048536930115275
326 => 0.0047619272043358
327 => 0.0051767173544335
328 => 0.0050828375686454
329 => 0.0051877242904767
330 => 0.0048967201627259
331 => 0.004907836912295
401 => 0.0047700708946697
402 => 0.0048472106590112
403 => 0.0047926907599053
404 => 0.0048409785283624
405 => 0.0048699220176777
406 => 0.0050076654292551
407 => 0.0052158228990323
408 => 0.0049870911569034
409 => 0.004887429461359
410 => 0.0049492590167561
411 => 0.0051139192705822
412 => 0.005363387983932
413 => 0.0052156974846031
414 => 0.005281240020258
415 => 0.0052955581485141
416 => 0.0051866566421085
417 => 0.0053674033378086
418 => 0.0054642669604179
419 => 0.0055636289941125
420 => 0.0056499022639086
421 => 0.0055239416128369
422 => 0.0056587375652337
423 => 0.0055501158222906
424 => 0.0054526708897614
425 => 0.0054528186735005
426 => 0.0053916900438815
427 => 0.0052732456212919
428 => 0.0052514026525029
429 => 0.0053650325346061
430 => 0.0054561529392631
501 => 0.0054636580522279
502 => 0.0055141069901814
503 => 0.0055439621519969
504 => 0.0058365833239133
505 => 0.0059542779799473
506 => 0.0060981927774999
507 => 0.0061542557017402
508 => 0.0063229850040328
509 => 0.0061867223889076
510 => 0.0061572411149933
511 => 0.0057479590185656
512 => 0.0058149789389272
513 => 0.0059222842978866
514 => 0.0057497284444118
515 => 0.0058591754165591
516 => 0.0058807825672648
517 => 0.0057438650625401
518 => 0.0058169986176697
519 => 0.0056227775778333
520 => 0.0052200563869559
521 => 0.005367851681618
522 => 0.0054766787658476
523 => 0.0053213690983693
524 => 0.00559975566601
525 => 0.0054371279802595
526 => 0.0053855828113822
527 => 0.0051844867304123
528 => 0.0052793963397321
529 => 0.0054077629453118
530 => 0.0053284473072832
531 => 0.0054930391654956
601 => 0.0057261451317695
602 => 0.0058922703250365
603 => 0.0059050233545908
604 => 0.0057982159848437
605 => 0.005969375476499
606 => 0.0059706221865367
607 => 0.0057775535807424
608 => 0.0056593001347038
609 => 0.0056324327029565
610 => 0.0056995528151316
611 => 0.0057810490223684
612 => 0.0059095458269077
613 => 0.0059871937547126
614 => 0.006189658369149
615 => 0.0062444394887001
616 => 0.0063046273304891
617 => 0.0063850568483622
618 => 0.0064816331062739
619 => 0.0062703297520525
620 => 0.0062787252282344
621 => 0.0060819624704775
622 => 0.0058716932451805
623 => 0.006031261376752
624 => 0.0062398754823227
625 => 0.0061920191760067
626 => 0.0061866343639305
627 => 0.0061956901242203
628 => 0.0061596080320989
629 => 0.0059964100666984
630 => 0.0059144530701475
701 => 0.0060201985051578
702 => 0.006076397497678
703 => 0.0061635572340095
704 => 0.0061528129567878
705 => 0.0063773270773055
706 => 0.0064645664755841
707 => 0.0064422469043201
708 => 0.0064463542425832
709 => 0.0066042970060698
710 => 0.0067799618424737
711 => 0.0069444951427826
712 => 0.0071118654827266
713 => 0.0069100940053486
714 => 0.0068076468926707
715 => 0.0069133461625321
716 => 0.0068572606421187
717 => 0.0071795446784601
718 => 0.0072018589258866
719 => 0.0075241196574239
720 => 0.0078299834657469
721 => 0.0076378758878585
722 => 0.0078190246810919
723 => 0.0080149518702516
724 => 0.0083929272061815
725 => 0.008265638410373
726 => 0.0081681371876534
727 => 0.0080759990033058
728 => 0.0082677239384082
729 => 0.0085143750045368
730 => 0.0085675012817864
731 => 0.0086535861467305
801 => 0.0085630784371982
802 => 0.0086720850042327
803 => 0.0090569260857772
804 => 0.0089529386284577
805 => 0.0088052597222461
806 => 0.0091090547955951
807 => 0.0092189970516666
808 => 0.0099906293819834
809 => 0.01096484707355
810 => 0.010561514552183
811 => 0.010311153040712
812 => 0.010369993934562
813 => 0.010725745256172
814 => 0.010840001289691
815 => 0.01052941400417
816 => 0.010639118684091
817 => 0.011243602256382
818 => 0.011567888298761
819 => 0.011127464295784
820 => 0.0099123519390407
821 => 0.0087919628525316
822 => 0.0090891404900519
823 => 0.0090554497684529
824 => 0.0097048919560177
825 => 0.0089504585619916
826 => 0.0089631612854947
827 => 0.0096260332497271
828 => 0.0094491903741724
829 => 0.0091627275640979
830 => 0.0087940543480639
831 => 0.00811252781008
901 => 0.0075088807496143
902 => 0.0086927716468032
903 => 0.0086417201185505
904 => 0.008567789940228
905 => 0.0087323135520039
906 => 0.0095311935099457
907 => 0.009512776741193
908 => 0.0093956186547067
909 => 0.0094844820307226
910 => 0.0091471493846342
911 => 0.0092340876884527
912 => 0.0087917853771761
913 => 0.0089917244940493
914 => 0.0091621129435644
915 => 0.0091963209474487
916 => 0.009273393326904
917 => 0.0086148182829607
918 => 0.0089104991429438
919 => 0.0090841839466339
920 => 0.0082994696848546
921 => 0.0090686726687273
922 => 0.0086033539566429
923 => 0.0084454177969089
924 => 0.0086580580294839
925 => 0.00857519192405
926 => 0.0085039485126589
927 => 0.0084641934649855
928 => 0.0086203329835425
929 => 0.0086130488883748
930 => 0.0083575743306409
1001 => 0.0080243181845523
1002 => 0.0081361698859397
1003 => 0.0080955331142104
1004 => 0.0079482602112154
1005 => 0.0080475043660359
1006 => 0.0076104833345236
1007 => 0.0068586113641833
1008 => 0.0073553210182514
1009 => 0.0073361982368859
1010 => 0.0073265556633723
1011 => 0.007699819240358
1012 => 0.0076639385600868
1013 => 0.0075988147740498
1014 => 0.0079470641618141
1015 => 0.0078199484506649
1016 => 0.0082116891201986
1017 => 0.0084697148613515
1018 => 0.0084042711871368
1019 => 0.0086469456438377
1020 => 0.008138746723231
1021 => 0.0083075500192548
1022 => 0.008342340144614
1023 => 0.0079427668184264
1024 => 0.007669809083123
1025 => 0.0076516059141243
1026 => 0.007178334817001
1027 => 0.0074311524169734
1028 => 0.007653621442646
1029 => 0.0075470760436426
1030 => 0.0075133469532714
1031 => 0.0076856615610308
1101 => 0.0076990518818285
1102 => 0.007393751148598
1103 => 0.0074572328386535
1104 => 0.0077219620391376
1105 => 0.0074505623420265
1106 => 0.0069232770634283
1107 => 0.0067925030240467
1108 => 0.0067750553565494
1109 => 0.0064203857899265
1110 => 0.0068012419706786
1111 => 0.0066349880414692
1112 => 0.0071601822118137
1113 => 0.0068601941183857
1114 => 0.0068472622312567
1115 => 0.0068277137871657
1116 => 0.006522435039958
1117 => 0.00658927168412
1118 => 0.0068114468688227
1119 => 0.0068907214777073
1120 => 0.0068824524865229
1121 => 0.0068103580892105
1122 => 0.006843362535117
1123 => 0.0067370437153407
1124 => 0.0066995003272428
1125 => 0.0065810030672833
1126 => 0.0064068448308465
1127 => 0.0064310626017976
1128 => 0.0060860095644348
1129 => 0.0058980063563288
1130 => 0.0058459695461675
1201 => 0.0057763837488519
1202 => 0.0058538294471351
1203 => 0.0060850320725336
1204 => 0.0058061526539297
1205 => 0.0053280334518501
1206 => 0.0053567692305706
1207 => 0.0054213299936262
1208 => 0.0053010214387842
1209 => 0.005187159488358
1210 => 0.0052861532163416
1211 => 0.0050835678074864
1212 => 0.0054458114724231
1213 => 0.0054360137964627
1214 => 0.0055710358337531
1215 => 0.005655467884602
1216 => 0.0054608793425965
1217 => 0.0054119408505054
1218 => 0.0054398184397309
1219 => 0.0049790639879308
1220 => 0.0055333823651407
1221 => 0.0055381761334853
1222 => 0.005497128978537
1223 => 0.0057922864017414
1224 => 0.0064151606266116
1225 => 0.0061808102881578
1226 => 0.006090062753832
1227 => 0.0059175516247426
1228 => 0.0061474124615569
1229 => 0.0061297627356772
1230 => 0.0060499439817895
1231 => 0.0060016693503885
]
'min_raw' => 0.00450834159378
'max_raw' => 0.011567888298761
'avg_raw' => 0.0080381149462704
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$0.0045083'
'max' => '$0.011567'
'avg' => '$0.008038'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 0.0027723405547383
'max_diff' => 0.0067239070642942
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.0001415116910622
]
1 => [
'year' => 2028
'avg' => 0.00024287514300019
]
2 => [
'year' => 2029
'avg' => 0.00066349111669097
]
3 => [
'year' => 2030
'avg' => 0.00051188240842647
]
4 => [
'year' => 2031
'avg' => 0.00050273196196329
]
5 => [
'year' => 2032
'avg' => 0.00088144734489283
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.0001415116910622
'min' => '$0.000141'
'max_raw' => 0.00088144734489283
'max' => '$0.000881'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.00088144734489283
]
1 => [
'year' => 2033
'avg' => 0.002267173209226
]
2 => [
'year' => 2034
'avg' => 0.0014370433352535
]
3 => [
'year' => 2035
'avg' => 0.001694995909384
]
4 => [
'year' => 2036
'avg' => 0.0032899911367542
]
5 => [
'year' => 2037
'avg' => 0.0080381149462704
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.00088144734489283
'min' => '$0.000881'
'max_raw' => 0.0080381149462704
'max' => '$0.008038'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 0.0080381149462704
]
]
]
]
'prediction_2025_max_price' => '$0.000241'
'last_price' => 0.00023461
'sma_50day_nextmonth' => '$0.000252'
'sma_200day_nextmonth' => '$0.00032'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'increase'
'sma_200day_direction_label' => 'aumentar'
'sma_200day_date_nextmonth' => '4 de fev. de 2026'
'sma_50day_date_nextmonth' => '4 de fev. de 2026'
'daily_sma3' => '$0.000262'
'daily_sma3_action' => 'SELL'
'daily_sma5' => '$0.000283'
'daily_sma5_action' => 'SELL'
'daily_sma10' => '$0.000294'
'daily_sma10_action' => 'SELL'
'daily_sma21' => '$0.00031'
'daily_sma21_action' => 'SELL'
'daily_sma50' => '$0.000282'
'daily_sma50_action' => 'SELL'
'daily_sma100' => '$0.000285'
'daily_sma100_action' => 'SELL'
'daily_sma200' => '$0.000342'
'daily_sma200_action' => 'SELL'
'daily_ema3' => '$0.000257'
'daily_ema3_action' => 'SELL'
'daily_ema5' => '$0.000269'
'daily_ema5_action' => 'SELL'
'daily_ema10' => '$0.000285'
'daily_ema10_action' => 'SELL'
'daily_ema21' => '$0.000295'
'daily_ema21_action' => 'SELL'
'daily_ema50' => '$0.000292'
'daily_ema50_action' => 'SELL'
'daily_ema100' => '$0.0003045'
'daily_ema100_action' => 'SELL'
'daily_ema200' => '$0.000418'
'daily_ema200_action' => 'SELL'
'weekly_sma21' => '$0.000316'
'weekly_sma21_action' => 'SELL'
'weekly_sma50' => '$0.000364'
'weekly_sma50_action' => 'SELL'
'weekly_sma100' => '$0.0010039'
'weekly_sma100_action' => 'SELL'
'weekly_sma200' => '$0.010874'
'weekly_sma200_action' => 'SELL'
'weekly_ema3' => '$0.000277'
'weekly_ema3_action' => 'SELL'
'weekly_ema5' => '$0.000289'
'weekly_ema5_action' => 'SELL'
'weekly_ema10' => '$0.000294'
'weekly_ema10_action' => 'SELL'
'weekly_ema21' => '$0.000327'
'weekly_ema21_action' => 'SELL'
'weekly_ema50' => '$0.000792'
'weekly_ema50_action' => 'SELL'
'weekly_ema100' => '$0.003749'
'weekly_ema100_action' => 'SELL'
'weekly_ema200' => '$0.013556'
'weekly_ema200_action' => 'SELL'
'rsi_14' => '46.34'
'rsi_14_action' => 'NEUTRAL'
'stoch_rsi_14' => 42.53
'stoch_rsi_14_action' => 'NEUTRAL'
'momentum_10' => -0
'momentum_10_action' => 'SELL'
'vwma_10' => '0.000289'
'vwma_10_action' => 'SELL'
'hma_9' => '0.000259'
'hma_9_action' => 'SELL'
'stochastic_fast_14' => 23.99
'stochastic_fast_14_action' => 'NEUTRAL'
'cci_20' => -66.37
'cci_20_action' => 'NEUTRAL'
'adx_14' => 10.88
'adx_14_action' => 'NEUTRAL'
'ao_5_34' => '-0.000012'
'ao_5_34_action' => 'SELL'
'macd_12_26' => -0
'macd_12_26_action' => 'SELL'
'williams_percent_r_14' => -76.01
'williams_percent_r_14_action' => 'NEUTRAL'
'ultimate_oscillator' => 42.16
'ultimate_oscillator_action' => 'NEUTRAL'
'ichimoku_cloud' => '—'
'ichimoku_cloud_action' => '—'
'sell_signals' => 34
'buy_signals' => 0
'sell_pct' => 100
'buy_pct' => 0
'overall_action' => 'bearish'
'overall_action_label' => 'Baixista'
'overall_action_dir' => -1
'last_updated' => 1767696488
'last_updated_date' => '6 de janeiro de 2026'
]
Previsão de preço de Perlin para 2026
A previsão de preço para Perlin em 2026 sugere que o preço médio poderia variar entre $0.000081 na extremidade inferior e $0.000241 na extremidade superior. No mercado de criptomoedas, comparado ao preço médio de hoje, Perlin poderia potencialmente ganhar 3.13% até 2026 se PERL atingir a meta de preço prevista.
Previsão de preço de Perlin 2027-2032
A previsão de preço de PERL para 2027-2032 está atualmente dentro de uma faixa de preço entre $0.000141 na extremidade inferior e $0.000881 na extremidade superior. Considerando a volatilidade de preços no mercado, se Perlin atingir a meta de preço superior, poderia ganhar 275.71% até 2032 em comparação com o preço de hoje.
| Previsão de Preço de Perlin | Potencial Mínimo ($) | Preço Médio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2027 | $0.000078 | $0.000141 | $0.0002049 |
| 2028 | $0.00014 | $0.000242 | $0.000344 |
| 2029 | $0.0003093 | $0.000663 | $0.001017 |
| 2030 | $0.000263 | $0.000511 | $0.00076 |
| 2031 | $0.000311 | $0.0005027 | $0.000694 |
| 2032 | $0.000474 | $0.000881 | $0.001288 |
Previsão de preço de Perlin 2032-2037
A previsão de preço de Perlin para 2032-2037 é atualmente estimada entre $0.000881 na extremidade inferior e $0.008038 na extremidade superior. Comparado ao preço atual, Perlin poderia potencialmente ganhar 3326.16% até 2037 se atingir a meta de preço superior. Por favor, note que esta informação é apenas para fins gerais e não deve ser considerada como aconselhamento de investimento a longo prazo.
| Previsão de Preço de Perlin | Potencial Mínimo ($) | Preço Médio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2032 | $0.000474 | $0.000881 | $0.001288 |
| 2033 | $0.0011033 | $0.002267 | $0.003431 |
| 2034 | $0.000887 | $0.001437 | $0.001987 |
| 2035 | $0.001048 | $0.001694 | $0.002341 |
| 2036 | $0.001736 | $0.003289 | $0.004843 |
| 2037 | $0.0045083 | $0.008038 | $0.011567 |
Perlin Histograma de preços potenciais
Previsão de preço de Perlin baseada na análise técnica
Em 6 de janeiro de 2026, o sentimento geral de previsão de preço para Perlin é Baixista, com 0 indicadores técnicos mostrando sinais de alta e 34 indicando sinais de baixa. A previsão de preço de PERL foi atualizada pela última vez em 6 de janeiro de 2026.
Médias Móveis Simples de 50 e 200 dias e Índice de Força Relativa de 14 dias - RSI (14) de Perlin
De acordo com nossos indicadores técnicos, o SMA de 200 dias de Perlin está projetado para aumentar no próximo mês, alcançando $0.00032 até 4 de fev. de 2026. O SMA de 50 dias de curto prazo para Perlin é esperado para alcançar $0.000252 até 4 de fev. de 2026.
O oscilador de momentum Índice de Força Relativa (RSI) é uma ferramenta comumente usada para identificar se uma criptomoeda está sobrevendida (abaixo de 30) ou sobrecomprada (acima de 70). No momento, o RSI está em 46.34, sugerindo que o mercado de PERL está em um estado NEUTRAL.
Médias Móveis e Osciladores Populares de PERL para Sábado, 19 de Outubro de 2024
Médias móveis (MA) são indicadores amplamente utilizados nos mercados financeiros, projetados para suavizar movimentos de preços ao longo de um período definido. Como indicadores atrasados, eles se baseiam em dados históricos de preços. A tabela abaixo destaca dois tipos: a média móvel simples (SMA) e a média móvel exponencial (EMA).
Média Móvel Simples Diária (SMA)
| Período | Valor | Ação |
|---|---|---|
| SMA 3 | $0.000262 | SELL |
| SMA 5 | $0.000283 | SELL |
| SMA 10 | $0.000294 | SELL |
| SMA 21 | $0.00031 | SELL |
| SMA 50 | $0.000282 | SELL |
| SMA 100 | $0.000285 | SELL |
| SMA 200 | $0.000342 | SELL |
Média Móvel Exponencial Diária (EMA)
| Período | Valor | Ação |
|---|---|---|
| EMA 3 | $0.000257 | SELL |
| EMA 5 | $0.000269 | SELL |
| EMA 10 | $0.000285 | SELL |
| EMA 21 | $0.000295 | SELL |
| EMA 50 | $0.000292 | SELL |
| EMA 100 | $0.0003045 | SELL |
| EMA 200 | $0.000418 | SELL |
Média Móvel Simples Semanal (SMA)
| Período | Valor | Ação |
|---|---|---|
| SMA 21 | $0.000316 | SELL |
| SMA 50 | $0.000364 | SELL |
| SMA 100 | $0.0010039 | SELL |
| SMA 200 | $0.010874 | SELL |
Média Móvel Exponencial Semanal (EMA)
| Período | Valor | Ação |
|---|---|---|
| EMA 21 | $0.000327 | SELL |
| EMA 50 | $0.000792 | SELL |
| EMA 100 | $0.003749 | SELL |
| EMA 200 | $0.013556 | SELL |
Osciladores de Perlin
Um oscilador é uma ferramenta de análise técnica que define limites altos e baixos entre dois extremos, criando um indicador de tendência que flutua dentro desses limites. Os traders usam esse indicador para identificar condições de sobrecompra ou sobrevenda de curto prazo.
| Período | Valor | Ação |
|---|---|---|
| RSI (14) | 46.34 | NEUTRAL |
| Stoch RSI (14) | 42.53 | NEUTRAL |
| Estocástico Rápido (14) | 23.99 | NEUTRAL |
| Índice de Canal de Commodities (20) | -66.37 | NEUTRAL |
| Índice Direcional Médio (14) | 10.88 | NEUTRAL |
| Oscilador Impressionante (5, 34) | -0.000012 | SELL |
| Momentum (10) | -0 | SELL |
| MACD (12, 26) | -0 | SELL |
| Williams Percent Range (14) | -76.01 | NEUTRAL |
| Oscilador Ultimate (7, 14, 28) | 42.16 | NEUTRAL |
| VWMA (10) | 0.000289 | SELL |
| Média Móvel de Hull (9) | 0.000259 | SELL |
| Nuvem Ichimoku B/L (9, 26, 52, 26) | — | — |
Previsão do preço de Perlin com base nos fluxos financeiros mundiais
Definições dos fluxos financeiros mundiais, usadas na previsão do preço do Perlin
M0: o total de todas as moedas físicas, mais as contas no Banco Central que podem ser trocadas por moedas físicas.
M1: o valor de M0, mais o valor em contas de demanda, incluindo contas 'correntes'.
M2: o valor de M1, mais a maioria das contas de poupança, do mercado de moedas e de certificados de depósito (CD) de menos de US$ 100.000.
Previsões de preço de Perlin por empresas de Internet ou nichos tecnológicos
| Comparação | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Facebook stock | $0.000329 | $0.000463 | $0.00065 | $0.000914 | $0.001285 | $0.0018059 |
| Amazon.com stock | $0.000489 | $0.001021 | $0.002131 | $0.004447 | $0.009278 | $0.019361 |
| Apple stock | $0.000332 | $0.000472 | $0.000669 | $0.000949 | $0.001347 | $0.00191 |
| Netflix stock | $0.00037 | $0.000584 | $0.000921 | $0.001454 | $0.002294 | $0.00362 |
| Google stock | $0.0003038 | $0.000393 | $0.0005095 | $0.000659 | $0.000854 | $0.0011065 |
| Tesla stock | $0.000531 | $0.0012056 | $0.002733 | $0.006195 | $0.014045 | $0.031839 |
| Kodak stock | $0.000175 | $0.000131 | $0.000098 | $0.000074 | $0.000055 | $0.000041 |
| Nokia stock | $0.000155 | $0.0001029 | $0.000068 | $0.000045 | $0.000029 | $0.000019 |
Este cálculo mostra quanto a criptomoeda pode custar, se assumirmos que sua capitalização se comportará da mesma forma que a de algumas empresas de Internet ou nichos tecnológicos. Se você extrapolar os dados, poderá obter uma imagem em potencial do preço futuro para 2024, 2025, 2026, 2027, 2028, 2029 e 2030.
Visão geral da previsão para Perlin
Você pode fazer perguntas como: 'Devo investir em Perlin agora?', 'Devo comprar PERL hoje?', 'Perlin será um bom ou mau investimento no curto ou no longo prazo?'.
Atualizamos a previsão para Perlin/PERL.eco regularmente com novos valores. Veja nossas previsões semelhantes. Fazemos previsões de preços futuros para uma enorme quantidade de moedas digitais, como Perlin, com métodos de análise técnica.
Se você estiver tentando encontrar criptomoedas com bom retorno, você deve explorar o máximo de fontes de informações disponíveis sobre Perlin para poder tomar sozinho uma decisão de tão grande responsabilidade sobre o seu investimento.
O preço de Perlin é de $0.0002346 USD hoje, mas o preço pode tanto subir quanto descer e seu investimento pode ser perdido, porque criptomoedas são ativos de alto risco
Previsão de curto prazo para Perlin
com base no histórico de preços de 4 horas
Previsão de longo prazo para Perlin
com base no histórico de preços de 1 mês
Previsão do preço de Perlin com base no padrão de crescimento do Bitcoin
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| Se Perlin tiver 1% da média anterior do crescimento anual do Bitcoin | $0.00024 | $0.000246 | $0.000253 | $0.000259 |
| Se Perlin tiver 2% da média anterior do crescimento anual do Bitcoin | $0.000246 | $0.000259 | $0.000273 | $0.000287 |
| Se Perlin tiver 5% da média anterior do crescimento anual do Bitcoin | $0.000265 | $0.000299 | $0.000338 | $0.000382 |
| Se Perlin tiver 10% da média anterior do crescimento anual do Bitcoin | $0.000295 | $0.000372 | $0.000469 | $0.000591 |
| Se Perlin tiver 20% da média anterior do crescimento anual do Bitcoin | $0.000356 | $0.000541 | $0.000823 | $0.001251 |
| Se Perlin tiver 50% da média anterior do crescimento anual do Bitcoin | $0.000539 | $0.00124 | $0.002853 | $0.006561 |
| Se Perlin tiver 100% da média anterior do crescimento anual do Bitcoin | $0.000844 | $0.003039 | $0.010939 | $0.039375 |
Perguntas Frequentes sobre Perlin
PERL é um bom investimento?
A decisão de adquirir Perlin depende inteiramente da sua tolerância individual ao risco. Como você pode perceber, o valor de Perlin experimentou uma queda de -15.8517% nas últimas 24 horas, e Perlin registrou um declínio de durante os últimos 30 dias. Consequentemente, a decisão de investir ou não em Perlin dependerá de quão alinhado esse investimento está com suas aspirações de negociação.
Perlin pode subir?
Parece que o valor médio de Perlin pode potencialmente subir para $0.000241 até o final deste ano. Observando as perspectivas de Perlin em um horizonte de cinco anos mais longo, a moeda digital poderia potencialmente crescer até $0.00076. No entanto, dada a imprevisibilidade do mercado, é vital conduzir uma pesquisa aprofundada antes de investir quaisquer fundos em um projeto, rede ou ativo específico.
Qual será o preço de Perlin na próxima semana?
Com base na nossa nova previsão experimental de Perlin, o preço de Perlin aumentará 0.86% na próxima semana e atingirá $0.000236 até 13 de janeiro de 2026.
Qual será o preço de Perlin no próximo mês?
Com base na nossa nova previsão experimental de Perlin, o preço de Perlin diminuirá -11.62% no próximo mês e atingirá $0.000207 até 5 de fevereiro de 2026.
Até onde o preço de Perlin pode subir este ano em 2026?
De acordo com nossa previsão mais recente sobre o valor de Perlin em 2026, espera-se que PERL fluctue dentro do intervalo de $0.000081 e $0.000241. No entanto, é crucial lembrar que o mercado de criptomoedas é excepcionalmente instável, e essa previsão de preço de Perlin não considera flutuações repentinas e extremas de preço.
Onde estará Perlin em 5 anos?
O futuro de Perlin parece seguir uma tendência de alta, com um preço máximo de $0.00076 projetada após um período de cinco anos. Com base na previsão de Perlin para 2030, o valor de Perlin pode potencialmente atingir seu pico mais alto de aproximadamente $0.00076, enquanto seu pico mais baixo está previsto para cerca de $0.000263.
Quanto será Perlin em 2026?
Com base na nossa nova simulação experimental de previsão de preços de Perlin, espera-se que o valor de PERL em 2026 aumente 3.13% para $0.000241 se o melhor cenário ocorrer. O preço ficará entre $0.000241 e $0.000081 durante 2026.
Quanto será Perlin em 2027?
De acordo com nossa última simulação experimental para previsão de preços de Perlin, o valor de PERL pode diminuir -12.62% para $0.0002049 em 2027, assumindo as condições mais favoráveis. O preço está projetado para flutuar entre $0.0002049 e $0.000078 ao longo do ano.
Quanto será Perlin em 2028?
Nosso novo modelo experimental de previsão de preços de Perlin sugere que o valor de PERL em 2028 pode aumentar 47.02%, alcançando $0.000344 no melhor cenário. O preço é esperado para variar entre $0.000344 e $0.00014 durante o ano.
Quanto será Perlin em 2029?
Com base no nosso modelo de previsão experimental, o valor de Perlin pode experimentar um 333.75% crescimento em 2029, potencialmente alcançando $0.001017 sob condições ótimas. A faixa de preço prevista para 2029 está entre $0.001017 e $0.0003093.
Quanto será Perlin em 2030?
Usando nossa nova simulação experimental para previsões de preços de Perlin, espera-se que o valor de PERL em 2030 aumente 224.23%, alcançando $0.00076 no melhor cenário. O preço está previsto para variar entre $0.00076 e $0.000263 ao longo de 2030.
Quanto será Perlin em 2031?
Nossa simulação experimental indica que o preço de Perlin poderia aumentar 195.98% em 2031, potencialmente atingindo $0.000694 sob condições ideais. O preço provavelmente oscilará entre $0.000694 e $0.000311 durante o ano.
Quanto será Perlin em 2032?
Com base nos achados da nossa mais recente previsão experimental de preços de Perlin, PERL poderia ver um 449.04% aumento em valor, atingindo $0.001288 se o cenário mais positivo se desenrolar em 2032. O preço é esperado para permanecer dentro de uma faixa de $0.001288 e $0.000474 ao longo do ano.
Quanto será Perlin em 2033?
De acordo com nossa previsão experimental de preços de Perlin, espera-se que o valor de PERL seja aumentar 1362.43% em 2033, com o preço potencial mais alto sendo $0.003431. Ao longo do ano, o preço de PERL poderia variar entre $0.003431 e $0.0011033.
Quanto será Perlin em 2034?
Os resultados da nossa nova simulação de previsão de preços de Perlin sugerem que PERL pode aumentar 746.96% em 2034, atingindo potencialmente $0.001987 nas melhores circunstâncias. A faixa de preço prevista para o ano é entre $0.001987 e $0.000887.
Quanto será Perlin em 2035?
Com base em nossa previsão experimental para o preço de Perlin, PERL poderia aumentar 897.93%, com o valor potencialmente atingindo $0.002341 em 2035. A faixa de preço esperada para o ano está entre $0.002341 e $0.001048.
Quanto será Perlin em 2036?
Nossa recente simulação de previsão de preços de Perlin sugere que o valor de PERL pode aumentar 1964.7% em 2036, possivelmente atingindo $0.004843 se as condições forem ideais. A faixa de preço esperada para 2036 está entre $0.004843 e $0.001736.
Quanto será Perlin em 2037?
De acordo com a simulação experimental, o valor de Perlin poderia aumentar 4830.69% em 2037, com um pico de $0.011567 sob condições favoráveis. O preço é esperado para cair entre $0.011567 e $0.0045083 ao longo do ano.
Previsões relacionadas
Previsão de Preço do SolPod
Previsão de Preço do zuzalu
Previsão de Preço do SOFT COQ INU
Previsão de Preço do All Street Bets
Previsão de Preço do MagicRing
Previsão de Preço do AI INU
Previsão de Preço do Wall Street Baby On Solana
Previsão de Preço do Meta Masters Guild Games
Previsão de Preço do Morfey
Previsão de Preço do PANTIESPrevisão de Preço do Celer Bridged BUSD (zkSync)
Previsão de Preço do Bridged BUSD
Previsão de Preço do Multichain Bridged BUSD (Moonriver)
Previsão de Preço do tooker kurlson
Previsão de Preço do dogwifsaudihatPrevisão de Preço do Harmony Horizen Bridged BUSD (Harmony)
Previsão de Preço do IoTeX Bridged BUSD (IoTeX)
Previsão de Preço do MIMANY
Previsão de Preço do The Open League MEME
Previsão de Preço do Sandwich Cat
Previsão de Preço do Hege
Previsão de Preço do DexNet
Previsão de Preço do SolDocs
Previsão de Preço do Secret Society
Previsão de Preço do duk
Como ler e prever os movimentos de preço de Perlin?
Traders de Perlin utilizam indicadores e padrões de gráfico para prever a direção do mercado. Eles também identificam níveis-chave de suporte e resistência para avaliar quando uma tendência de baixa pode desacelerar ou uma tendência de alta pode estagnar.
Indicadores de Previsão de Preço de Perlin
Médias móveis são ferramentas populares para a previsão de preço de Perlin. Uma média móvel simples (SMA) calcula o preço médio de fechamento de PERL em um período específico, como uma SMA de 12 dias. Uma média móvel exponencial (EMA) dá mais peso aos preços recentes, reagindo mais rapidamente às mudanças de preço.
Médias móveis comumente usadas no mercado de criptomoedas incluem as de 50 dias, 100 dias e 200 dias, que ajudam a identificar níveis-chave de resistência e suporte. Um movimento de preço de PERL acima dessas médias é visto como altista, enquanto uma queda abaixo indica fraqueza.
Traders também usam RSI e níveis de retração de Fibonacci para avaliar a direção futura de PERL.
Como ler gráficos de Perlin e prever movimentos de preço?
A maioria dos traders prefere gráficos de velas em vez de gráficos de linha simples porque eles fornecem informações mais detalhadas. Velas podem representar a ação de preço de Perlin em diferentes períodos de tempo, como 5 minutos para tendências de curto prazo e semanal para tendências de longo prazo. Opções populares incluem gráficos de 1 hora, 4 horas e 1 dia.
Por exemplo, um gráfico de velas de 1 hora mostra os preços de abertura, fechamento, máximo e mínimo de PERL dentro de cada hora. A cor da vela é crucial: verde indica que o preço fechou mais alto do que abriu, enquanto vermelho significa o oposto. Alguns gráficos usam velas vazias e preenchidas para transmitir a mesma informação.
O que afeta o preço de Perlin?
A ação de preço de Perlin é impulsionada pela oferta e demanda, influenciada por fatores como reduções pela metade das recompensas de bloco, hard forks e atualizações de protocolo. Eventos do mundo real, como regulamentações, adoção por empresas e governos e hacks de exchanges de criptomoedas, também impactam o preço de PERL. A capitalização de mercado de Perlin pode mudar rapidamente.
Traders frequentemente monitoram a atividade de "baleias" de PERL, grandes detentores de Perlin, pois suas ações podem influenciar significativamente os movimentos de preço no relativamente pequeno mercado de Perlin.
Padrões de previsão de preço altistas e baixistas
Traders frequentemente identificam padrões de velas para ganhar vantagem em previsões de preço de criptomoedas. Certas formações indicam tendências altistas, enquanto outras sugerem movimentos baixistas.
Padrões de velas altistas comumente seguidos:
- Martelo
- Engolfo de Alta
- Linha de Perfuração
- Estrela da Manhã
- Três Soldados Brancos
Padrões de velas baixistas comuns:
- Harami de Baixa
- Nuvem Negra
- Estrela da Noite
- Estrela Cadente
- Homem Enforcado


