Previsão de Preço Pavia - Projeção PAVIA
Previsão de Preço Pavia até $0.000921 até 2026
| Ano | Preço Mínimo | Preço Máximo |
|---|---|---|
| 2026 | $0.0003087 | $0.000921 |
| 2027 | $0.000297 | $0.00078 |
| 2028 | $0.000536 | $0.001313 |
| 2029 | $0.001178 | $0.003876 |
| 2030 | $0.0010022 | $0.002897 |
| 2031 | $0.001184 | $0.002645 |
| 2032 | $0.0018087 | $0.0049068 |
| 2033 | $0.004203 | $0.01307 |
| 2034 | $0.003379 | $0.007569 |
| 2035 | $0.003995 | $0.008918 |
Calculadora de lucro do investimento
Se você abrir um short de $10,000.00 em Pavia hoje e fechar em Apr 06, 2026, nossa previsão mostra que pode lucrar cerca de $3,957.91, com um retorno de 39.58% nos próximos 90 dias.
Previsão de preço de longo prazo de Pavia para os anos 2027, 2028, 2029, 2030, 2031, 2032 e 2037
[
'name' => 'Pavia'
'name_with_ticker' => 'Pavia <small>PAVIA</small>'
'name_lang' => 'Pavia'
'name_lang_with_ticker' => 'Pavia <small>PAVIA</small>'
'name_with_lang' => 'Pavia'
'name_with_lang_with_ticker' => 'Pavia <small>PAVIA</small>'
'image' => '/uploads/coins/pavia.jpg?1717581192'
'price_for_sd' => 0.0008937
'ticker' => 'PAVIA'
'marketcap' => '$0'
'low24h' => '$0.0007796'
'high24h' => '$0.001328'
'volume24h' => '$450.04'
'current_supply' => '0'
'max_supply' => '2B'
'algo' => null
'proof' => null
'ico_price_and_roi' => '—'
'price' => '$0.0008937'
'change_24h_pct' => '14.6258%'
'ath_price' => '$0.08495'
'ath_days' => 1373
'ath_exchange' => null
'ath_pair' => null
'ath_date' => '4 de abr. de 2022'
'ath_pct' => '-98.93%'
'fdv' => '$1.79M'
'new_prediction' => true
'change_24h_pct_is_increased' => true
'change_30d_pct' => null
'change_30d_pct_is_increased' => false
'max_price' => '$0.044067'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.000901'
'next_week_prediction_price_date' => '13 de janeiro de 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.000789'
'next_month_prediction_price_date' => '5 de fevereiro de 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.0003087'
'current_year_max_price_prediction' => '$0.000921'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.0010022'
'grand_prediction_max_price' => '$0.002897'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.00091066571339802
107 => 0.00091406580860019
108 => 0.00092172639670386
109 => 0.00085626751010063
110 => 0.00088565662841354
111 => 0.00090291998203439
112 => 0.00082492352232923
113 => 0.00090137824280375
114 => 0.00085512801651775
115 => 0.00083942999506119
116 => 0.00086056531289538
117 => 0.00085232885898063
118 => 0.00084524763956552
119 => 0.0008412961974611
120 => 0.00085681564225862
121 => 0.00085609164160907
122 => 0.00083069881772589
123 => 0.0007975749141142
124 => 0.00080869238342136
125 => 0.00080465330259524
126 => 0.00079001515262958
127 => 0.00079987949828947
128 => 0.00075644191223443
129 => 0.00068170980311599
130 => 0.00073108012350604
131 => 0.0007291794198756
201 => 0.00072822099891508
202 => 0.00076532143019277
203 => 0.000761755079778
204 => 0.00075528211885339
205 => 0.00078989627162604
206 => 0.00077726164023797
207 => 0.00081619859708247
208 => 0.00084184499514473
209 => 0.00083534023902207
210 => 0.00085946080035943
211 => 0.00080894850746006
212 => 0.00082572666495979
213 => 0.00082918461996696
214 => 0.00078946913835385
215 => 0.00076233857881166
216 => 0.00076052927980122
217 => 0.00071348862837647
218 => 0.0007386173646687
219 => 0.0007607296127081
220 => 0.00075013956187699
221 => 0.00074678706815263
222 => 0.00076391423152321
223 => 0.00076524515880133
224 => 0.00073489987581467
225 => 0.00074120962105773
226 => 0.00076752230762917
227 => 0.00074054660886753
228 => 0.00068813723262904
301 => 0.00067513898270557
302 => 0.00067340477656051
303 => 0.00063815249186387
304 => 0.00067600758791901
305 => 0.00065948282403744
306 => 0.00071168435514225
307 => 0.00068186712053761
308 => 0.00068058175914875
309 => 0.00067863874688798
310 => 0.00064829564919605
311 => 0.00065493885918612
312 => 0.00067702190098259
313 => 0.00068490137907884
314 => 0.00068407948495874
315 => 0.00067691368203042
316 => 0.00068019414991616
317 => 0.00066962661986543
318 => 0.0006658950050604
319 => 0.00065411700227421
320 => 0.00063680659193483
321 => 0.00063921371066344
322 => 0.00060491725826587
323 => 0.00058623073074917
324 => 0.00058105854621702
325 => 0.00057414208490017
326 => 0.00058183977892677
327 => 0.00060482010072535
328 => 0.00057710095708902
329 => 0.00052957842959639
330 => 0.00053243461447314
331 => 0.00053885161388231
401 => 0.00052689357793603
402 => 0.00051557630047476
403 => 0.00052541575502759
404 => 0.00050527983365055
405 => 0.00054128494378022
406 => 0.00054031110645437
407 => 0.00055373158496963
408 => 0.00056212368560117
409 => 0.00054278261062032
410 => 0.00053791838256646
411 => 0.00054068926793278
412 => 0.000494892705051
413 => 0.00054998902874193
414 => 0.00055046550403713
415 => 0.00054638563328305
416 => 0.00057572272474032
417 => 0.00063763313818344
418 => 0.00061433995030553
419 => 0.00060532012391887
420 => 0.00058817342736438
421 => 0.00061102038245314
422 => 0.00060926609277034
423 => 0.00060133252953013
424 => 0.00059653428572823
425 => 0.00060537519705542
426 => 0.00059543879897675
427 => 0.00059365394884787
428 => 0.0005828396990029
429 => 0.00057897950382526
430 => 0.00057612156899454
501 => 0.00057297526356079
502 => 0.00057991522933718
503 => 0.00056418835385935
504 => 0.0005452232837577
505 => 0.00054364654338365
506 => 0.00054800006218483
507 => 0.00054607395419667
508 => 0.00054363732191963
509 => 0.00053898512732545
510 => 0.00053760492056777
511 => 0.00054208992294911
512 => 0.00053702661675246
513 => 0.00054449780085818
514 => 0.0005424660521809
515 => 0.00053111686922966
516 => 0.00051697158526672
517 => 0.00051684566256871
518 => 0.00051379808434181
519 => 0.0005099165352634
520 => 0.0005088367771076
521 => 0.00052458710360962
522 => 0.0005571898081012
523 => 0.0005507891170929
524 => 0.00055541427231559
525 => 0.00057816545832686
526 => 0.00058539737620781
527 => 0.00058026433219328
528 => 0.00057323790495382
529 => 0.00057354703209263
530 => 0.00059755846101405
531 => 0.00059905602438286
601 => 0.00060283988388359
602 => 0.0006077032126606
603 => 0.00058109257811363
604 => 0.00057229367359852
605 => 0.00056812426449463
606 => 0.00055528409821902
607 => 0.0005691311167146
608 => 0.00056106305202568
609 => 0.00056215170959655
610 => 0.00056144271992535
611 => 0.0005618298762275
612 => 0.00054127487961815
613 => 0.00054876404004378
614 => 0.00053631185828962
615 => 0.0005196397847438
616 => 0.00051958389410729
617 => 0.00052366436048832
618 => 0.00052123713941622
619 => 0.00051470554992075
620 => 0.00051563333138035
621 => 0.00050750498953674
622 => 0.00051662025924855
623 => 0.00051688165256788
624 => 0.00051337177721674
625 => 0.00052741510787259
626 => 0.00053316867190056
627 => 0.00053085839675562
628 => 0.00053300657683767
629 => 0.00055105509470168
630 => 0.00055399779062556
701 => 0.00055530474177137
702 => 0.00055355360037383
703 => 0.00053333647061209
704 => 0.0005342331862869
705 => 0.00052765368164536
706 => 0.00052209469355438
707 => 0.00052231702392497
708 => 0.0005251750664216
709 => 0.00053765630562637
710 => 0.00056392233772356
711 => 0.00056491911444143
712 => 0.00056612723690151
713 => 0.00056121319570265
714 => 0.00055973107385603
715 => 0.00056168637513983
716 => 0.00057155051579317
717 => 0.00059692376364165
718 => 0.00058795516322975
719 => 0.0005806635514903
720 => 0.00058706026079021
721 => 0.00058607553753255
722 => 0.00057776348224747
723 => 0.00057753019053978
724 => 0.00056157669892289
725 => 0.00055567905631555
726 => 0.00055075054472196
727 => 0.00054536873872382
728 => 0.00054217822372835
729 => 0.00054708030482452
730 => 0.00054820146877094
731 => 0.00053748298278043
801 => 0.00053602209274609
802 => 0.00054477503978053
803 => 0.00054092319413343
804 => 0.00054488491290265
805 => 0.0005458040656401
806 => 0.00054565606087949
807 => 0.00054163429164226
808 => 0.00054419764742318
809 => 0.00053813454682816
810 => 0.00053154183557934
811 => 0.00052733609654302
812 => 0.0005236660314235
813 => 0.00052570239685724
814 => 0.00051844312591157
815 => 0.00051612073903579
816 => 0.00054332924016194
817 => 0.0005634284524845
818 => 0.00056313620197717
819 => 0.00056135720217451
820 => 0.0005587139693247
821 => 0.00057135714684653
822 => 0.00056695251660624
823 => 0.00057015725312522
824 => 0.00057097299307167
825 => 0.00057344199220442
826 => 0.00057432444717673
827 => 0.00057165705534602
828 => 0.00056270496256768
829 => 0.0005403971985035
830 => 0.00053001287411297
831 => 0.00052658587409949
901 => 0.00052671043904118
902 => 0.00052327438186697
903 => 0.00052428645469806
904 => 0.00052292242423873
905 => 0.00052033928054319
906 => 0.00052554289501315
907 => 0.00052614256310579
908 => 0.00052492797730994
909 => 0.00052521405623351
910 => 0.00051515780460023
911 => 0.00051592235957088
912 => 0.00051166522033937
913 => 0.00051086705805404
914 => 0.00050010538078829
915 => 0.00048103950958195
916 => 0.00049160385299916
917 => 0.00047884361172265
918 => 0.00047401111500203
919 => 0.00049688740287002
920 => 0.00049459125805753
921 => 0.0004906612562487
922 => 0.00048484796448931
923 => 0.00048269175802768
924 => 0.00046959133013885
925 => 0.00046881728697112
926 => 0.00047531021277413
927 => 0.00047231395092397
928 => 0.00046810606451326
929 => 0.00045286552648025
930 => 0.00043573011576242
1001 => 0.00043624732610264
1002 => 0.00044169778143634
1003 => 0.00045754571541309
1004 => 0.00045135365343633
1005 => 0.00044686124142647
1006 => 0.00044601994769843
1007 => 0.00045655050007255
1008 => 0.00047145343790085
1009 => 0.00047844556289545
1010 => 0.0004715165793798
1011 => 0.00046355693619998
1012 => 0.0004640414027989
1013 => 0.00046726434203665
1014 => 0.00046760302738064
1015 => 0.00046242211793511
1016 => 0.00046388051359668
1017 => 0.00046166507722827
1018 => 0.00044806894832471
1019 => 0.00044782303746664
1020 => 0.00044448632816651
1021 => 0.00044438529393499
1022 => 0.00043870871903434
1023 => 0.00043791452696542
1024 => 0.0004266433429567
1025 => 0.00043406207040353
1026 => 0.00042908597753287
1027 => 0.00042158583183513
1028 => 0.00042029280388987
1029 => 0.00042025393390846
1030 => 0.00042795490653814
1031 => 0.00043397208005463
1101 => 0.0004291725387988
1102 => 0.00042807977629005
1103 => 0.00043974762098368
1104 => 0.00043826278139165
1105 => 0.00043697691988114
1106 => 0.00047011904327518
1107 => 0.00044388446649666
1108 => 0.00043244469360393
1109 => 0.00041828580229523
1110 => 0.00042289600870067
1111 => 0.00042386744692832
1112 => 0.00038981786566288
1113 => 0.00037600395478409
1114 => 0.00037126354113674
1115 => 0.00036853536606308
1116 => 0.00036977862970242
1117 => 0.00035734448970137
1118 => 0.00036570043742377
1119 => 0.00035493352321455
1120 => 0.00035312841500881
1121 => 0.00037238099137961
1122 => 0.00037505987490969
1123 => 0.0003636309255065
1124 => 0.00037097016120218
1125 => 0.00036830885231592
1126 => 0.00035511809105575
1127 => 0.00035461430100029
1128 => 0.00034799564067761
1129 => 0.0003376387188978
1130 => 0.00033290532773112
1201 => 0.00033044013651432
1202 => 0.00033145732245599
1203 => 0.00033094300211748
1204 => 0.00032758671400901
1205 => 0.00033113538062313
1206 => 0.00032207000383435
1207 => 0.00031846009775235
1208 => 0.0003168295869243
1209 => 0.00030878354324064
1210 => 0.00032158837683321
1211 => 0.00032411109036199
1212 => 0.00032663877441573
1213 => 0.00034864053838031
1214 => 0.00034754139242898
1215 => 0.00035747713652323
1216 => 0.00035709105177838
1217 => 0.00035425721661432
1218 => 0.00034230173220041
1219 => 0.00034706697520177
1220 => 0.00033240029792675
1221 => 0.00034338956977831
1222 => 0.00033837452502822
1223 => 0.00034169397810362
1224 => 0.00033572530217103
1225 => 0.00033902861387272
1226 => 0.00032470931932617
1227 => 0.00031133816355651
1228 => 0.00031671910696659
1229 => 0.00032256880783887
1230 => 0.00033525244980603
1231 => 0.00032769817728816
]
'min_raw' => 0.00030878354324064
'max_raw' => 0.00092172639670386
'avg_raw' => 0.00061525496997225
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.0003087'
'max' => '$0.000921'
'avg' => '$0.000615'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.00058494645675936
'max_diff' => 2.7996396703858E-5
'year' => 2026
]
1 => [
'items' => [
101 => 0.00033041497934426
102 => 0.00032131414724351
103 => 0.00030253653109551
104 => 0.00030264281036366
105 => 0.00029975428321189
106 => 0.0002972581740209
107 => 0.00032856587636024
108 => 0.00032467226867281
109 => 0.00031846831440567
110 => 0.00032677255372758
111 => 0.0003289683264103
112 => 0.00032903083697168
113 => 0.00033508939561751
114 => 0.00033832284945285
115 => 0.00033889275970592
116 => 0.00034842603263895
117 => 0.0003516214599792
118 => 0.00036478297295985
119 => 0.0003380485134858
120 => 0.00033749793488604
121 => 0.00032688941140471
122 => 0.00032016131809874
123 => 0.00032735008970951
124 => 0.00033371835999147
125 => 0.00032708729131386
126 => 0.00032795316889365
127 => 0.00031905150097218
128 => 0.0003222334283917
129 => 0.0003249741329373
130 => 0.00032346087697839
131 => 0.00032119545956548
201 => 0.00033319623445114
202 => 0.00033251910370068
203 => 0.00034369450117083
204 => 0.00035240652265916
205 => 0.00036802002262636
206 => 0.00035172652146042
207 => 0.00035113272151714
208 => 0.00035693721121128
209 => 0.00035162057134207
210 => 0.00035498050421524
211 => 0.00036747868549613
212 => 0.00036774275237222
213 => 0.00036331929196678
214 => 0.0003630501239991
215 => 0.00036389969795732
216 => 0.00036887567916658
217 => 0.0003671369184356
218 => 0.00036914905637352
219 => 0.00037166526567583
220 => 0.00038207337420084
221 => 0.00038458273392973
222 => 0.00037848629074237
223 => 0.00037903673130321
224 => 0.00037675649420003
225 => 0.00037455381372964
226 => 0.00037950511775142
227 => 0.00038855372316934
228 => 0.00038849743226466
301 => 0.00039059653284187
302 => 0.00039190425511158
303 => 0.00038629055381877
304 => 0.00038263624069868
305 => 0.00038403753687891
306 => 0.00038627823998736
307 => 0.00038331090706028
308 => 0.00036499515363204
309 => 0.00037055098320731
310 => 0.0003696262214998
311 => 0.00036830924837344
312 => 0.00037389567797333
313 => 0.00037335685321023
314 => 0.00035721695962365
315 => 0.0003582501832453
316 => 0.00035727979337422
317 => 0.00036041532157077
318 => 0.00035145124252953
319 => 0.00035420853286862
320 => 0.00035593787952131
321 => 0.00035695647798521
322 => 0.00036063635409632
323 => 0.00036020456310765
324 => 0.0003606095133622
325 => 0.00036606579818371
326 => 0.00039366181444004
327 => 0.0003951638047177
328 => 0.00038776745526339
329 => 0.00039072215098384
330 => 0.0003850497813215
331 => 0.0003888576810774
401 => 0.00039146294938023
402 => 0.00037969024288405
403 => 0.00037899313960958
404 => 0.00037329735805986
405 => 0.00037635794843912
406 => 0.00037148832908148
407 => 0.00037268316333979
408 => 0.00036934230258978
409 => 0.00037535518678106
410 => 0.00038207852561466
411 => 0.00038377710651673
412 => 0.00037930887144846
413 => 0.00037607357478799
414 => 0.00037039345962517
415 => 0.00037983961773055
416 => 0.00038260196222702
417 => 0.00037982510831088
418 => 0.00037918165058305
419 => 0.00037796229935153
420 => 0.00037944034171107
421 => 0.00038258691790565
422 => 0.00038110305068042
423 => 0.00038208317112506
424 => 0.00037834796268591
425 => 0.00038629241218749
426 => 0.00039891010993188
427 => 0.00039895067789333
428 => 0.0003974668026695
429 => 0.00039685963289845
430 => 0.00039838217892717
501 => 0.00039920809768965
502 => 0.00040413173235933
503 => 0.00040941498852617
504 => 0.00043406963979152
505 => 0.00042714671237339
506 => 0.00044902178568778
507 => 0.0004663221285567
508 => 0.00047150974493078
509 => 0.00046673738196283
510 => 0.00045041138604748
511 => 0.0004496103548006
512 => 0.00047400828535582
513 => 0.00046711475247796
514 => 0.00046629478867717
515 => 0.00045757175918756
516 => 0.00046272814998414
517 => 0.00046160037167724
518 => 0.00045982011844699
519 => 0.00046965815288957
520 => 0.00048807407511869
521 => 0.00048520378093586
522 => 0.00048306123947749
523 => 0.00047367324649136
524 => 0.00047932691515316
525 => 0.00047731375203158
526 => 0.00048596357838676
527 => 0.00048083961287106
528 => 0.00046706252718643
529 => 0.00046925657349158
530 => 0.00046892494780636
531 => 0.00047574978090882
601 => 0.00047370113541424
602 => 0.00046852491689396
603 => 0.00048801113149858
604 => 0.00048674580511018
605 => 0.00048853974863505
606 => 0.00048932949805425
607 => 0.00050119041349846
608 => 0.000506049451049
609 => 0.00050715253764239
610 => 0.00051176824750395
611 => 0.00050703769457622
612 => 0.00052596327911421
613 => 0.0005385476884935
614 => 0.00055316512757533
615 => 0.00057452513487111
616 => 0.00058255669520543
617 => 0.00058110586571875
618 => 0.00059730077947201
619 => 0.00062640267949392
620 => 0.00058698819176834
621 => 0.00062849174304923
622 => 0.00061535219789524
623 => 0.00058419857270546
624 => 0.00058219264652035
625 => 0.0006032902431999
626 => 0.00065008268206671
627 => 0.00063836170684602
628 => 0.00065010185338324
629 => 0.00063640634883297
630 => 0.00063572625159728
701 => 0.00064943669329617
702 => 0.00068147188764292
703 => 0.00066625316763009
704 => 0.00064443340070844
705 => 0.00066054477705021
706 => 0.00064658761182548
707 => 0.00061513821220959
708 => 0.00063835274403716
709 => 0.00062282984771587
710 => 0.00062736025410498
711 => 0.00065998707331577
712 => 0.00065606132810847
713 => 0.00066114160592094
714 => 0.00065217504855596
715 => 0.00064379887008076
716 => 0.00062816411093361
717 => 0.00062353542953445
718 => 0.00062481463055066
719 => 0.00062353479562595
720 => 0.00061478729157398
721 => 0.00061289826890681
722 => 0.00060974981503488
723 => 0.00061072565254136
724 => 0.00060480563814947
725 => 0.00061597792844436
726 => 0.00061805160397297
727 => 0.0006261818651579
728 => 0.00062702597584522
729 => 0.00064966863751822
730 => 0.00063719743996321
731 => 0.0006455641959945
801 => 0.0006448157945841
802 => 0.00058487376622938
803 => 0.00059313324886366
804 => 0.00060598241187418
805 => 0.00060019388135457
806 => 0.00059201025350738
807 => 0.00058540153524241
808 => 0.00057538865129484
809 => 0.00058948159317064
810 => 0.00060801231312003
811 => 0.00062749594548349
812 => 0.00065090425315002
813 => 0.00064567979138159
814 => 0.00062705834345414
815 => 0.00062789368800519
816 => 0.00063305745932381
817 => 0.0006263699062881
818 => 0.00062439761634132
819 => 0.00063278649697169
820 => 0.00063284426658215
821 => 0.00062514942859678
822 => 0.00061659802431653
823 => 0.00061656219362036
824 => 0.00061504055382546
825 => 0.00063667704517214
826 => 0.00064857492771681
827 => 0.00064993900077616
828 => 0.00064848311473155
829 => 0.00064904342748807
830 => 0.00064212031178728
831 => 0.0006579445012931
901 => 0.00067246634243378
902 => 0.00066857417879419
903 => 0.00066273927219479
904 => 0.00065809148804118
905 => 0.00066747930855631
906 => 0.00066706128368657
907 => 0.00067233950681999
908 => 0.00067210005613017
909 => 0.00067032518821441
910 => 0.00066857424218031
911 => 0.00067551654528753
912 => 0.00067351727348263
913 => 0.0006715148962564
914 => 0.00066749882218058
915 => 0.00066804467334741
916 => 0.0006622107742269
917 => 0.00065951174555269
918 => 0.00061892483016786
919 => 0.00060807868016131
920 => 0.00061149109974711
921 => 0.00061261455687819
922 => 0.00060789429849562
923 => 0.00061466193648134
924 => 0.00061360720726997
925 => 0.00061771054163546
926 => 0.00061514695646997
927 => 0.00061525216689937
928 => 0.0006227911242571
929 => 0.00062497971565107
930 => 0.000623866580404
1001 => 0.000624646182175
1002 => 0.00064261177593845
1003 => 0.00064005764301264
1004 => 0.00063870081080156
1005 => 0.00063907666259678
1006 => 0.00064366725699002
1007 => 0.00064495237278296
1008 => 0.00063950724686477
1009 => 0.00064207519972569
1010 => 0.00065300921708573
1011 => 0.00065683550434996
1012 => 0.00066904717657529
1013 => 0.0006638594411688
1014 => 0.00067338175402734
1015 => 0.00070265009735881
1016 => 0.0007260316752273
1017 => 0.00070452900993487
1018 => 0.00074746630006436
1019 => 0.00078089913941863
1020 => 0.0007796159313589
1021 => 0.00077378614250198
1022 => 0.00073572374375517
1023 => 0.00070069815694996
1024 => 0.00072999854757749
1025 => 0.00073007324029888
1026 => 0.00072755631075875
1027 => 0.00071192387754953
1028 => 0.00072701233596833
1029 => 0.00072821000300438
1030 => 0.00072753962794956
1031 => 0.00071555427806024
1101 => 0.00069725486404215
1102 => 0.00070083052573868
1103 => 0.00070668753253911
1104 => 0.00069559899676627
1105 => 0.00069205553770878
1106 => 0.00069864350226733
1107 => 0.00071987129673192
1108 => 0.00071585830515263
1109 => 0.00071575350972472
1110 => 0.00073292278947419
1111 => 0.00072063329053604
1112 => 0.00070087562628353
1113 => 0.00069588655548819
1114 => 0.00067817871520553
1115 => 0.00069040958356193
1116 => 0.00069084975073988
1117 => 0.00068415102913753
1118 => 0.00070141919062279
1119 => 0.00070126006147471
1120 => 0.00071765361077832
1121 => 0.00074899191991089
1122 => 0.00073972363983585
1123 => 0.00072894563849459
1124 => 0.00073011750608194
1125 => 0.00074297000109958
1126 => 0.00073519908921799
1127 => 0.00073799356331133
1128 => 0.00074296577132835
1129 => 0.00074596562787799
1130 => 0.00072968587288962
1201 => 0.00072589028325114
1202 => 0.00071812583892173
1203 => 0.00071610024032641
1204 => 0.00072242421822226
1205 => 0.00072075807347614
1206 => 0.00069081275639298
1207 => 0.00068768330414362
1208 => 0.00068777927997628
1209 => 0.00067991012349792
1210 => 0.00066790777105446
1211 => 0.00069944923665264
1212 => 0.00069691601554258
1213 => 0.00069411953549281
1214 => 0.00069446208834241
1215 => 0.00070815316951913
1216 => 0.00070021165102046
1217 => 0.00072132547953845
1218 => 0.00071698511113493
1219 => 0.00071253342865957
1220 => 0.00071191807053991
1221 => 0.0007102045525866
1222 => 0.00070432826195275
1223 => 0.00069723228790205
1224 => 0.00069254691119103
1225 => 0.00063883791768251
1226 => 0.00064880599446685
1227 => 0.00066027335818844
1228 => 0.00066423184619256
1229 => 0.00065746057854248
1230 => 0.00070459563287094
1231 => 0.00071320766150143
]
'min_raw' => 0.0002972581740209
'max_raw' => 0.00078089913941863
'avg_raw' => 0.00053907865671976
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.000297'
'max' => '$0.00078'
'avg' => '$0.000539'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -1.1525369219742E-5
'max_diff' => -0.00014082725728523
'year' => 2027
]
2 => [
'items' => [
101 => 0.00068712126503094
102 => 0.00068224156535186
103 => 0.00070491554516952
104 => 0.00069124036355817
105 => 0.00069739829700041
106 => 0.00068408821310778
107 => 0.00071113327599398
108 => 0.00071092723792766
109 => 0.00070040609762448
110 => 0.00070929849336307
111 => 0.00070775322077237
112 => 0.00069587487928251
113 => 0.00071150984060622
114 => 0.00071151759535197
115 => 0.00070139122655948
116 => 0.00068956584475702
117 => 0.00068745174579379
118 => 0.00068585905621423
119 => 0.00069700659299749
120 => 0.00070700143961992
121 => 0.00072559937125164
122 => 0.00073027533313982
123 => 0.00074852592368577
124 => 0.00073765858562078
125 => 0.0007424759358294
126 => 0.00074770585093665
127 => 0.00075021326456283
128 => 0.00074612756861421
129 => 0.00077447824797483
130 => 0.00077687191395524
131 => 0.00077767448945334
201 => 0.00076811479988624
202 => 0.00077660604169503
203 => 0.00077263327085306
204 => 0.00078296931691632
205 => 0.0007845901409163
206 => 0.00078321736065081
207 => 0.00078373183577137
208 => 0.00075953953233963
209 => 0.00075828503378212
210 => 0.00074117985693542
211 => 0.00074815034293553
212 => 0.0007351193534624
213 => 0.0007392516144584
214 => 0.0007410730757318
215 => 0.00074012164772959
216 => 0.00074854444375555
217 => 0.00074138334646994
218 => 0.00072248403333983
219 => 0.00070357957110449
220 => 0.00070334224098037
221 => 0.00069836502976528
222 => 0.00069476741767848
223 => 0.00069546044539854
224 => 0.00069790276547707
225 => 0.00069462546559562
226 => 0.00069532484368865
227 => 0.00070693917996481
228 => 0.00070926835227533
229 => 0.00070135291469779
301 => 0.00066957129063178
302 => 0.00066177200036781
303 => 0.0006673779755429
304 => 0.00066469868048025
305 => 0.00053646371275254
306 => 0.000566590616284
307 => 0.00054869023321858
308 => 0.00055693955329215
309 => 0.00053866789746408
310 => 0.00054738808932477
311 => 0.00054577778829852
312 => 0.00059422095765723
313 => 0.00059346458419909
314 => 0.00059382662014711
315 => 0.00057654570106862
316 => 0.00060407467438873
317 => 0.00061763643655608
318 => 0.00061512651531352
319 => 0.00061575820841614
320 => 0.0006049036280137
321 => 0.00059393171621234
322 => 0.00058176217745951
323 => 0.00060437167626182
324 => 0.00060185788595202
325 => 0.0006076236164895
326 => 0.00062228749262314
327 => 0.00062444680408647
328 => 0.00062734894059076
329 => 0.00062630873124212
330 => 0.00065109073808581
331 => 0.0006480894735401
401 => 0.00065532165757253
402 => 0.00064044450631068
403 => 0.00062360959750574
404 => 0.00062680936329493
405 => 0.00062650120011854
406 => 0.00062257792918986
407 => 0.00061903617561675
408 => 0.0006131401538004
409 => 0.00063179603927437
410 => 0.00063103864439378
411 => 0.00064329998713539
412 => 0.00064113267570548
413 => 0.00062665883954548
414 => 0.00062717577543549
415 => 0.00063065241772674
416 => 0.00064268511639234
417 => 0.00064625724060489
418 => 0.0006446024903451
419 => 0.00064851916147049
420 => 0.00065161473863246
421 => 0.00064890791830169
422 => 0.00068723078600645
423 => 0.00067131645947442
424 => 0.00067907299149496
425 => 0.00068092287867772
426 => 0.00067618443155802
427 => 0.00067721203106721
428 => 0.00067876856431953
429 => 0.00068821952942717
430 => 0.0007130215965284
501 => 0.00072400626321415
502 => 0.00075705417491215
503 => 0.00072309413955984
504 => 0.00072107909160263
505 => 0.00072703201845076
506 => 0.00074643464109422
507 => 0.00076215864435106
508 => 0.00076737520337086
509 => 0.00076806465776133
510 => 0.00077785126927277
511 => 0.00078346077248163
512 => 0.00077666291722185
513 => 0.0007709024466543
514 => 0.00075026915609725
515 => 0.00075265751566181
516 => 0.00076911094463943
517 => 0.00079235238217245
518 => 0.00081229595343522
519 => 0.00080531240988263
520 => 0.00085859191757546
521 => 0.00086387436313593
522 => 0.00086314449996138
523 => 0.00087517869708144
524 => 0.00085129326651975
525 => 0.00084108178219621
526 => 0.00077214792577512
527 => 0.00079151552765398
528 => 0.00081966747440429
529 => 0.0008159414586875
530 => 0.00079549676245374
531 => 0.0008122804442998
601 => 0.00080673123420724
602 => 0.00080235434197029
603 => 0.00082240573381004
604 => 0.00080035840481646
605 => 0.00081944753543225
606 => 0.00079496552796572
607 => 0.00080534431012132
608 => 0.0007994528114046
609 => 0.00080326533310925
610 => 0.00078097740912649
611 => 0.00079300343189882
612 => 0.00078047708704127
613 => 0.00078047114792283
614 => 0.00078019462816583
615 => 0.00079493181734041
616 => 0.00079541239655031
617 => 0.00078452159148364
618 => 0.00078295205632718
619 => 0.00078875545042728
620 => 0.00078196119584739
621 => 0.00078514018480279
622 => 0.00078205748418436
623 => 0.00078136350334354
624 => 0.00077583374593279
625 => 0.0007734513743964
626 => 0.00077438556366197
627 => 0.000771196694091
628 => 0.00076927528482803
629 => 0.00077981241150225
630 => 0.00077418284978669
701 => 0.00077894960043006
702 => 0.00077351728646005
703 => 0.00075468651949346
704 => 0.00074385674627923
705 => 0.00070828717309236
706 => 0.00071837465992423
707 => 0.00072506267413003
708 => 0.00072285228547491
709 => 0.00072760105561296
710 => 0.00072789259153153
711 => 0.00072634871795167
712 => 0.00072456111012864
713 => 0.0007236910015013
714 => 0.00073017607834284
715 => 0.000733940883727
716 => 0.00072573390582967
717 => 0.00072381112573615
718 => 0.00073210883351002
719 => 0.00073717043045865
720 => 0.0007745424184617
721 => 0.00077177378088051
722 => 0.00077872251789163
723 => 0.00077794019674123
724 => 0.0007852235801495
725 => 0.00079712883383453
726 => 0.00077292212433158
727 => 0.00077712357209626
728 => 0.00077609347412996
729 => 0.00078733981361984
730 => 0.00078737492346415
731 => 0.00078063218114364
801 => 0.00078428753114409
802 => 0.00078224721505312
803 => 0.00078593434199476
804 => 0.00077173680403765
805 => 0.00078902787273989
806 => 0.0007988307944822
807 => 0.00079896690806011
808 => 0.00080361341516516
809 => 0.00080833453549145
810 => 0.00081739631483483
811 => 0.00080808180738385
812 => 0.00079132591522857
813 => 0.00079253563652098
814 => 0.00078271166308108
815 => 0.00078287680584945
816 => 0.00078199526080941
817 => 0.00078464084383417
818 => 0.00077231736073754
819 => 0.00077520965758849
820 => 0.0007711604250599
821 => 0.00077711476985554
822 => 0.00077070887914388
823 => 0.00077609297738553
824 => 0.00077841657570094
825 => 0.0007869907035083
826 => 0.00076944247349533
827 => 0.00073366044458814
828 => 0.00074118226087959
829 => 0.00073005690375861
830 => 0.00073108659791738
831 => 0.0007331667439927
901 => 0.00072642430998114
902 => 0.00072771055391203
903 => 0.00072766460022766
904 => 0.00072726859620194
905 => 0.00072551462871038
906 => 0.00072297102883571
907 => 0.00073310394785761
908 => 0.00073482572825232
909 => 0.00073865303278628
910 => 0.0007500404949939
911 => 0.00074890261898451
912 => 0.00075075854196585
913 => 0.00074670707251815
914 => 0.00073127453396516
915 => 0.00073211259505677
916 => 0.00072166195981538
917 => 0.00073838578654693
918 => 0.00073442536363317
919 => 0.0007318720532166
920 => 0.00073117535881318
921 => 0.00074259104833703
922 => 0.00074600680156158
923 => 0.00074387833337471
924 => 0.00073951278302611
925 => 0.00074789593025452
926 => 0.00075013890679626
927 => 0.00075064102652616
928 => 0.00076549435610585
929 => 0.00075147116264975
930 => 0.00075484668469319
1001 => 0.00078118154409084
1002 => 0.00075729946057936
1003 => 0.00076995033284941
1004 => 0.00076933113848375
1005 => 0.00077580289665493
1006 => 0.00076880026541725
1007 => 0.00076888707142401
1008 => 0.00077463355424515
1009 => 0.0007665636555065
1010 => 0.00076456543509157
1011 => 0.00076180490789987
1012 => 0.00076783241803108
1013 => 0.00077144563775391
1014 => 0.00080056553510242
1015 => 0.00081937831681821
1016 => 0.00081856160434875
1017 => 0.00082602482749797
1018 => 0.00082266257711396
1019 => 0.00081180498370714
1020 => 0.00083033757171012
1021 => 0.00082447308542956
1022 => 0.00082495654655318
1023 => 0.00082493855210601
1024 => 0.0008288379228003
1025 => 0.00082607486129132
1026 => 0.00082062858343468
1027 => 0.00082424407684306
1028 => 0.00083498079970341
1029 => 0.00086830791690482
1030 => 0.0008869582132163
1031 => 0.00086718514564887
1101 => 0.00088082434288496
1102 => 0.00087264568468619
1103 => 0.00087115937919747
1104 => 0.0008797258029905
1105 => 0.00088830722117436
1106 => 0.00088776062193454
1107 => 0.00088153095299375
1108 => 0.0008780119710811
1109 => 0.00090465888106914
1110 => 0.00092429187043006
1111 => 0.00092295303217688
1112 => 0.0009288622288129
1113 => 0.00094621181290086
1114 => 0.0009477980414378
1115 => 0.00094759821310119
1116 => 0.00094366658016656
1117 => 0.00096074949882934
1118 => 0.00097500037012319
1119 => 0.00094275652073799
1120 => 0.00095503455648089
1121 => 0.00096054656229949
1122 => 0.00096863982217962
1123 => 0.00098229450818524
1124 => 0.00099712711891394
1125 => 0.00099922461270228
1126 => 0.00099773634048514
1127 => 0.00098795383498758
1128 => 0.0010041838546368
1129 => 0.0010136910195065
1130 => 0.0010193523186188
1201 => 0.0010337084312172
1202 => 0.00096058060257091
1203 => 0.00090881709076613
1204 => 0.00090073347092364
1205 => 0.00091717182974599
1206 => 0.00092150649387399
1207 => 0.0009197591961992
1208 => 0.00086149465753031
1209 => 0.00090042672018567
1210 => 0.00094231434610203
1211 => 0.0009439234204062
1212 => 0.00096489324176888
1213 => 0.00097172187518659
1214 => 0.00098860532996087
1215 => 0.00098754926526787
1216 => 0.00099166011783096
1217 => 0.00099071510401675
1218 => 0.0010219881487553
1219 => 0.0010564869611939
1220 => 0.0010552923770187
1221 => 0.0010503327645592
1222 => 0.0010576986348011
1223 => 0.0010933051063552
1224 => 0.0010900270330366
1225 => 0.00109321140204
1226 => 0.0011351934386951
1227 => 0.0011897760582218
1228 => 0.0011644169514462
1229 => 0.0012194389162628
1230 => 0.0012540723265258
1231 => 0.0013139672284142
]
'min_raw' => 0.00053646371275254
'max_raw' => 0.0013139672284142
'avg_raw' => 0.00092521547058335
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.000536'
'max' => '$0.001313'
'avg' => '$0.000925'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 0.00023920553873164
'max_diff' => 0.00053306808899553
'year' => 2028
]
3 => [
'items' => [
101 => 0.0013064680917091
102 => 0.0013297847374852
103 => 0.00129304307189
104 => 0.0012086767809679
105 => 0.0011953254924883
106 => 0.0012220551101329
107 => 0.0012877672668744
108 => 0.0012199856004674
109 => 0.0012336977433025
110 => 0.0012297486452436
111 => 0.0012295382145906
112 => 0.0012375694967314
113 => 0.0012259197031027
114 => 0.0011784563481014
115 => 0.0012002085239952
116 => 0.0011918089642573
117 => 0.0012011289020151
118 => 0.0012514247622594
119 => 0.0012291877635418
120 => 0.00120576289178
121 => 0.0012351428793645
122 => 0.0012725536996187
123 => 0.0012702125977209
124 => 0.0012656698815345
125 => 0.0012912769348285
126 => 0.0013335722847074
127 => 0.0013450045478232
128 => 0.0013534436107329
129 => 0.001354607214929
130 => 0.001366593061325
131 => 0.0013021421444316
201 => 0.0014044274047584
202 => 0.0014220892436436
203 => 0.0014187695499414
204 => 0.0014383999405385
205 => 0.0014326241816499
206 => 0.0014242560132091
207 => 0.0014553743578092
208 => 0.0014196996868461
209 => 0.0013690639827301
210 => 0.0013412842339913
211 => 0.0013778668480589
212 => 0.0014002065739127
213 => 0.0014149717116286
214 => 0.0014194396333801
215 => 0.0013071452856418
216 => 0.0012466248603409
217 => 0.0012854177590907
218 => 0.0013327477729083
219 => 0.0013018792238151
220 => 0.0013030892124976
221 => 0.0012590787736027
222 => 0.0013366417201938
223 => 0.0013253414512825
224 => 0.0013839672663839
225 => 0.0013699757451084
226 => 0.0014177828214826
227 => 0.0014051936160837
228 => 0.0014574507038416
301 => 0.0014782974709524
302 => 0.0015133024374716
303 => 0.0015390522333391
304 => 0.0015541730059875
305 => 0.0015532652115143
306 => 0.0016131812458865
307 => 0.001577850853724
308 => 0.0015334675544338
309 => 0.0015326648005772
310 => 0.0015556515401958
311 => 0.0016038254403323
312 => 0.001616316231736
313 => 0.0016232968801055
314 => 0.0016126057741294
315 => 0.0015742571655891
316 => 0.0015576984308532
317 => 0.0015718069526009
318 => 0.0015545534428626
319 => 0.0015843378411508
320 => 0.0016252381816046
321 => 0.0016167924230384
322 => 0.0016450253276664
323 => 0.0016742434137683
324 => 0.0017160265891603
325 => 0.0017269502584343
326 => 0.0017450066683543
327 => 0.0017635926453836
328 => 0.0017695619602992
329 => 0.0017809592346429
330 => 0.0017808991653813
331 => 0.001815245618741
401 => 0.0018531308204179
402 => 0.0018674316070065
403 => 0.001900315477217
404 => 0.0018440030018698
405 => 0.0018867166612917
406 => 0.0019252454512826
407 => 0.0018793098394999
408 => 0.0019426213787175
409 => 0.0019450796223183
410 => 0.0019821961821289
411 => 0.0019445714380883
412 => 0.0019222299851795
413 => 0.001986728922604
414 => 0.0020179379267262
415 => 0.0020085375206973
416 => 0.001936999966662
417 => 0.0018953620418234
418 => 0.001786387561165
419 => 0.0019154725408521
420 => 0.0019783460689972
421 => 0.0019368371394132
422 => 0.0019577718290652
423 => 0.0020719847077102
424 => 0.002115469577162
425 => 0.0021064250282982
426 => 0.0021079534081702
427 => 0.0021314170544202
428 => 0.0022354677835586
429 => 0.0021731181747819
430 => 0.0022207821144964
501 => 0.0022460628962559
502 => 0.0022695450952673
503 => 0.0022118802361204
504 => 0.0021368591016352
505 => 0.0021130967591708
506 => 0.0019327098944177
507 => 0.0019233199747268
508 => 0.0019180491282607
509 => 0.0018848171868676
510 => 0.0018587059839275
511 => 0.0018379413859027
512 => 0.0017834488798517
513 => 0.0018018385009996
514 => 0.0017149888198243
515 => 0.0017705521680766
516 => 0.0016319379798619
517 => 0.0017473799947499
518 => 0.0016845501545507
519 => 0.0017267387024414
520 => 0.0017265915105722
521 => 0.0016489090180142
522 => 0.0016041033774991
523 => 0.0016326552754969
524 => 0.0016632651766031
525 => 0.0016682315300736
526 => 0.0017079180658579
527 => 0.0017189937249361
528 => 0.0016854339608561
529 => 0.0016290655089106
530 => 0.0016421586146701
531 => 0.0016038380461287
601 => 0.0015366827237394
602 => 0.0015849148486989
603 => 0.0016013834167769
604 => 0.0016086568746337
605 => 0.0015426173279047
606 => 0.0015218662685342
607 => 0.0015108185786435
608 => 0.001620540632717
609 => 0.0016265514545227
610 => 0.0015957992403203
611 => 0.0017348021645598
612 => 0.0017033415217542
613 => 0.0017384907678127
614 => 0.0016409705525578
615 => 0.001644695956109
616 => 0.0015985283233765
617 => 0.0016243791127844
618 => 0.0016061086080408
619 => 0.0016222906244627
620 => 0.0016319900583851
621 => 0.0016781501154632
622 => 0.0017479070684538
623 => 0.001671255342238
624 => 0.0016378570874528
625 => 0.0016585771768826
626 => 0.0017137575054957
627 => 0.0017973585279735
628 => 0.0017478650400392
629 => 0.0017698294095305
630 => 0.0017746276471376
701 => 0.0017381329814834
702 => 0.0017987041383516
703 => 0.0018311647133964
704 => 0.0018644625466229
705 => 0.0018933741222294
706 => 0.0018511626597972
707 => 0.0018963349753751
708 => 0.0018599340630064
709 => 0.0018272786815546
710 => 0.0018273282062888
711 => 0.001806843008485
712 => 0.0017671503564393
713 => 0.0017598304224075
714 => 0.0017979096436466
715 => 0.0018284455729646
716 => 0.0018309606583605
717 => 0.0018478669178236
718 => 0.0018578718680256
719 => 0.0019559339810753
720 => 0.0019953753741562
721 => 0.0020436035630281
722 => 0.0020623911605856
723 => 0.0021189350935069
724 => 0.0020732712753992
725 => 0.0020633916211127
726 => 0.0019262345352251
727 => 0.0019486940003555
728 => 0.0019846537710454
729 => 0.0019268274985989
730 => 0.001963504958693
731 => 0.0019707458662504
801 => 0.0019248625839887
802 => 0.0019493708275443
803 => 0.0018842841988485
804 => 0.0017493257790982
805 => 0.0017988543856527
806 => 0.0018353241112255
807 => 0.0017832773161484
808 => 0.001876569181835
809 => 0.0018220699998359
810 => 0.0018047963755642
811 => 0.0017374058087889
812 => 0.0017692115622061
813 => 0.0018122292991173
814 => 0.0017856493390548
815 => 0.0018408067471855
816 => 0.001918924347042
817 => 0.0019745956006832
818 => 0.0019788693482651
819 => 0.0019430764618581
820 => 0.0020004347907525
821 => 0.002000852583559
822 => 0.0019361521542505
823 => 0.0018965235015525
824 => 0.0018875197882801
825 => 0.0019100128293165
826 => 0.0019373235335791
827 => 0.0019803849022788
828 => 0.0020064059855265
829 => 0.0020742551701204
830 => 0.0020926132140829
831 => 0.0021127831385866
901 => 0.0021397363778978
902 => 0.0021721006523596
903 => 0.0021012894623363
904 => 0.0021041029229245
905 => 0.0020381645232224
906 => 0.0019676998866176
907 => 0.0020211737622597
908 => 0.0020910837413301
909 => 0.0020750463148877
910 => 0.002073241776798
911 => 0.0020762765093277
912 => 0.0020641848135235
913 => 0.0020094945215403
914 => 0.0019820293992856
915 => 0.0020174664140941
916 => 0.0020362996103447
917 => 0.0020655082553021
918 => 0.0020619076732914
919 => 0.0021371460059222
920 => 0.0021663813468934
921 => 0.0021589016956222
922 => 0.002160278131464
923 => 0.0022132073198305
924 => 0.0022720754630119
925 => 0.002327213247437
926 => 0.0023833017699771
927 => 0.0023156848668827
928 => 0.0022813531735222
929 => 0.0023167747176385
930 => 0.002297979547736
1001 => 0.0024059821690051
1002 => 0.0024134600361719
1003 => 0.0025214548476222
1004 => 0.0026239547834714
1005 => 0.0025595764102416
1006 => 0.0026202823165317
1007 => 0.0026859407036096
1008 => 0.0028126063849723
1009 => 0.0027699498396418
1010 => 0.0027372755944318
1011 => 0.0027063985905893
1012 => 0.0027706487339993
1013 => 0.0028533055170753
1014 => 0.002871108996473
1015 => 0.0028999574345499
1016 => 0.0028696268293312
1017 => 0.0029061567025106
1018 => 0.0030351232068732
1019 => 0.0030002753189756
1020 => 0.0029507857160835
1021 => 0.0030525923852031
1022 => 0.0030894358229941
1023 => 0.0033480223644693
1024 => 0.003674498554759
1025 => 0.0035393352682208
1026 => 0.0034554350545746
1027 => 0.0034751535949211
1028 => 0.0035943716476985
1029 => 0.0036326607024587
1030 => 0.0035285778525917
1031 => 0.0035653416747514
1101 => 0.0037679139493903
1102 => 0.0038765874754375
1103 => 0.0037289942302637
1104 => 0.0033217903204623
1105 => 0.0029463297188205
1106 => 0.0030459187775872
1107 => 0.0030346284689313
1108 => 0.003252267106625
1109 => 0.0029994442083742
1110 => 0.0030037010975803
1111 => 0.0032258402718181
1112 => 0.003166577348561
1113 => 0.0030705790027063
1114 => 0.0029470306129834
1115 => 0.0027186399877377
1116 => 0.0025163480418138
1117 => 0.0029130891328234
1118 => 0.0028959809355522
1119 => 0.0028712057306107
1120 => 0.0029263402682508
1121 => 0.0031940579328194
1122 => 0.0031878861741336
1123 => 0.0031486245942333
1124 => 0.003178404156552
1125 => 0.0030653585014498
1126 => 0.0030944929407713
1127 => 0.0029462702439429
1128 => 0.003013273093236
1129 => 0.0030703730333712
1130 => 0.0030818366917324
1201 => 0.003107664899369
1202 => 0.0028869656929928
1203 => 0.0029860531572674
1204 => 0.003044257759289
1205 => 0.0027812872498541
1206 => 0.0030390596778321
1207 => 0.0028831238108212
1208 => 0.0028301968354795
1209 => 0.0029014560351783
1210 => 0.0028736862557538
1211 => 0.0028498114301008
1212 => 0.0028364888671649
1213 => 0.0028888137588328
1214 => 0.0028863727400947
1215 => 0.0028007590615022
1216 => 0.0026890795078383
1217 => 0.0027265628318043
1218 => 0.0027129447887994
1219 => 0.0026635912441872
1220 => 0.0026968495742861
1221 => 0.0025503967201862
1222 => 0.0022984321966641
1223 => 0.0024648876787849
1224 => 0.0024584793237919
1225 => 0.0024552479406087
1226 => 0.0025803346349309
1227 => 0.0025683104355128
1228 => 0.0025464863958278
1229 => 0.0026631904285838
1230 => 0.0026205918867371
1231 => 0.0027518705552298
]
'min_raw' => 0.0011784563481014
'max_raw' => 0.0038765874754375
'avg_raw' => 0.0025275219117694
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.001178'
'max' => '$0.003876'
'avg' => '$0.002527'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072435
'min_diff' => 0.00064199263534883
'max_diff' => 0.0025626202470233
'year' => 2029
]
4 => [
'items' => [
101 => 0.0028383391768711
102 => 0.002816407937456
103 => 0.0028977320940487
104 => 0.0027274263718828
105 => 0.0027839951013067
106 => 0.0027956538380401
107 => 0.0026617503189351
108 => 0.0025702777432434
109 => 0.0025641775653085
110 => 0.0024055767247565
111 => 0.0024903000135981
112 => 0.0025648530016908
113 => 0.00252914790594
114 => 0.0025178447392847
115 => 0.0025755901663689
116 => 0.0025800774806095
117 => 0.00247776624038
118 => 0.0024990399869993
119 => 0.002587755046868
120 => 0.00249680459511
121 => 0.0023201027240161
122 => 0.0022762782168904
123 => 0.0022704312197939
124 => 0.0021515756807032
125 => 0.0022792067800115
126 => 0.0022234923848627
127 => 0.002399493491577
128 => 0.0022989626033347
129 => 0.0022946289176711
130 => 0.0022880779161771
131 => 0.0021857740438213
201 => 0.0022081720901169
202 => 0.0022826266073225
203 => 0.0023091928178516
204 => 0.0023064217444428
205 => 0.0022822617395696
206 => 0.0022933220660813
207 => 0.0022576929007139
208 => 0.0022451115008658
209 => 0.0022054011421582
210 => 0.0021470378851247
211 => 0.0021551536539779
212 => 0.0020395207702176
213 => 0.0019765178380434
214 => 0.0019590794567829
215 => 0.0019357601245612
216 => 0.0019617134374077
217 => 0.0020391931967865
218 => 0.0019457361687278
219 => 0.0017855106493695
220 => 0.0017951404760939
221 => 0.0018167758376225
222 => 0.0017764584845462
223 => 0.0017383014934384
224 => 0.0017714759014321
225 => 0.0017035862366643
226 => 0.001824979979263
227 => 0.0018216966187277
228 => 0.0018669446990298
301 => 0.0018952392522268
302 => 0.0018300294675781
303 => 0.001813629383085
304 => 0.0018229716165546
305 => 0.0016685653073847
306 => 0.0018543264094112
307 => 0.0018559328791354
308 => 0.0018421773100405
309 => 0.001941089362139
310 => 0.0021498246435096
311 => 0.0020712900343007
312 => 0.0020408790598939
313 => 0.0019830677753163
314 => 0.0020600978795216
315 => 0.0020541831693754
316 => 0.0020274346070074
317 => 0.0020112569930265
318 => 0.0020410647428189
319 => 0.0020075634829595
320 => 0.0020015457361357
321 => 0.0019650847377566
322 => 0.001952069820205
323 => 0.0019424340933885
324 => 0.0019318261049506
325 => 0.0019552246840987
326 => 0.0019022004254098
327 => 0.0018382583674632
328 => 0.0018329422772076
329 => 0.0018476204697987
330 => 0.00184112646224
331 => 0.0018329111863978
401 => 0.0018172259875177
402 => 0.0018125725240712
403 => 0.0018276940227327
404 => 0.001810622732382
405 => 0.0018358123512158
406 => 0.0018289621686982
407 => 0.0017906976060035
408 => 0.0017430057935302
409 => 0.0017425812363622
410 => 0.0017323061135951
411 => 0.0017192191998762
412 => 0.0017155787198676
413 => 0.0017686820453218
414 => 0.0018786043397633
415 => 0.0018570239631469
416 => 0.0018726179968982
417 => 0.0019493252089723
418 => 0.0019737081250243
419 => 0.0019564017087516
420 => 0.0019327116187443
421 => 0.0019337538624753
422 => 0.0020147100715083
423 => 0.0020197592109628
424 => 0.0020325167574502
425 => 0.0020489138099686
426 => 0.0019591941976983
427 => 0.0019295280768058
428 => 0.0019154706229131
429 => 0.0018721791058431
430 => 0.001918865295469
501 => 0.001891663252076
502 => 0.0018953337370838
503 => 0.0018929433289072
504 => 0.0018942486534103
505 => 0.0018249460472379
506 => 0.0018501962744894
507 => 0.0018082128743217
508 => 0.0017520018143549
509 => 0.0017518133751718
510 => 0.0017655709524645
511 => 0.0017573874071567
512 => 0.0017353656971518
513 => 0.0017384937771184
514 => 0.00171108850509
515 => 0.0017418212733311
516 => 0.0017427025791572
517 => 0.0017308687893591
518 => 0.0017782168591394
519 => 0.0017976154019607
520 => 0.0017898261480113
521 => 0.001797068887139
522 => 0.0018579207252248
523 => 0.0018678422299847
524 => 0.0018722487070212
525 => 0.0018663446115386
526 => 0.0017981811470319
527 => 0.0018012044865362
528 => 0.001779021227271
529 => 0.0017602787108061
530 => 0.0017610283131731
531 => 0.0017706644029927
601 => 0.0018127457723838
602 => 0.0019013035334353
603 => 0.0019046642357323
604 => 0.0019087375049549
605 => 0.0018921694719655
606 => 0.0018871723946812
607 => 0.0018937648294743
608 => 0.0019270224683794
609 => 0.0020125701450041
610 => 0.0019823318825477
611 => 0.0019577477044841
612 => 0.0019793146564927
613 => 0.0019759945932783
614 => 0.0019479699185555
615 => 0.0019471833592751
616 => 0.0018933950484516
617 => 0.0018735107346407
618 => 0.0018568939137052
619 => 0.0018387487790368
620 => 0.0018279917349749
621 => 0.001844519443643
622 => 0.0018482995261655
623 => 0.0018121614023077
624 => 0.0018072359095609
625 => 0.0018367470815987
626 => 0.0018237603150723
627 => 0.001837117526501
628 => 0.0018402165141286
629 => 0.0018397175057448
630 => 0.0018261578299705
701 => 0.0018348003629537
702 => 0.0018143581959854
703 => 0.0017921304097216
704 => 0.0017779504669253
705 => 0.0017655765861391
706 => 0.0017724423343735
707 => 0.001747967195554
708 => 0.0017401371060585
709 => 0.0018318724672421
710 => 0.0018996383648699
711 => 0.0018986530218801
712 => 0.0018926549998397
713 => 0.0018837431557419
714 => 0.0019263705114752
715 => 0.0019115199930986
716 => 0.0019223249860199
717 => 0.0019250753102025
718 => 0.0019333997131586
719 => 0.0019363749717088
720 => 0.0019273816739202
721 => 0.0018971990681028
722 => 0.0018219868840821
723 => 0.001786975409389
724 => 0.0017754210395781
725 => 0.0017758410189759
726 => 0.0017642561123152
727 => 0.0017676683865258
728 => 0.0017630694625987
729 => 0.0017543602132798
730 => 0.00177190456277
731 => 0.0017739263856119
801 => 0.0017698313248015
802 => 0.0017707958598657
803 => 0.001736890505379
804 => 0.0017394682558421
805 => 0.0017251150136991
806 => 0.0017224239538282
807 => 0.0016861402075704
808 => 0.0016218582916616
809 => 0.0016574767130716
810 => 0.0016144546687163
811 => 0.0015981615686285
812 => 0.0016752905703469
813 => 0.0016675489577999
814 => 0.0016542986823175
815 => 0.0016346987632796
816 => 0.0016274289626527
817 => 0.0015832599553828
818 => 0.0015806502148009
819 => 0.0016025415674673
820 => 0.0015924394614472
821 => 0.0015782522786282
822 => 0.0015268677405896
823 => 0.0014690945069982
824 => 0.0014708383177707
825 => 0.0014892149084669
826 => 0.001542647324337
827 => 0.0015217703550664
828 => 0.0015066238743249
829 => 0.0015037873937836
830 => 0.0015392918863326
831 => 0.0015895381817106
901 => 0.0016131126193045
902 => 0.0015897510676153
903 => 0.00156291457491
904 => 0.0015645479878726
905 => 0.0015754143525312
906 => 0.0015765562538146
907 => 0.0015590884558995
908 => 0.0015640055386944
909 => 0.0015565360403015
910 => 0.0015106957424517
911 => 0.0015098666368248
912 => 0.0014986166884578
913 => 0.0014982760444923
914 => 0.0014791370758889
915 => 0.0014764594018798
916 => 0.0014384578180655
917 => 0.0014634705756115
918 => 0.0014466933310783
919 => 0.001421406066215
920 => 0.0014170465322212
921 => 0.0014169154793651
922 => 0.0014428798462508
923 => 0.0014631671668672
924 => 0.00144698517843
925 => 0.0014433008533375
926 => 0.0014826398063449
927 => 0.0014776335659922
928 => 0.0014732981941335
929 => 0.0015850391770657
930 => 0.0014965874698173
1001 => 0.00145801747681
1002 => 0.0014102797862205
1003 => 0.0014258234189908
1004 => 0.0014290986907989
1005 => 0.0013142981502967
1006 => 0.0012677235853124
1007 => 0.0012517409497352
1008 => 0.0012425427169993
1009 => 0.0012467344671612
1010 => 0.0012048118960237
1011 => 0.0012329845571634
1012 => 0.0011966831541851
1013 => 0.0011905971058408
1014 => 0.0012555085112469
1015 => 0.0012645405541023
1016 => 0.0012260070532457
1017 => 0.0012507517988027
1018 => 0.001241779010086
1019 => 0.0011973054375478
1020 => 0.0011956068742023
1021 => 0.0011732915988243
1022 => 0.0011383725139465
1023 => 0.0011224135551532
1024 => 0.0011141019908516
1025 => 0.0011175315042716
1026 => 0.0011157974373416
1027 => 0.0011044814776554
1028 => 0.0011164460549049
1029 => 0.0010858815041371
1030 => 0.0010737104537461
1031 => 0.0010682130726507
1101 => 0.0010410852746144
1102 => 0.0010842576650766
1103 => 0.0010927631698692
1104 => 0.0011012854331336
1105 => 0.0011754659164543
1106 => 0.0011717600691395
1107 => 0.0012052591240447
1108 => 0.0012039574123719
1109 => 0.0011944029392642
1110 => 0.0011540941888574
1111 => 0.0011701605383352
1112 => 0.0011207108119077
1113 => 0.0011577619092017
1114 => 0.0011408533356876
1115 => 0.0011520451034881
1116 => 0.0011319212958617
1117 => 0.0011430586418938
1118 => 0.0010947801405889
1119 => 0.0010496983553672
1120 => 0.0010678405817598
1121 => 0.0010875632566637
1122 => 0.0011303270410996
1123 => 0.0011048572838832
1124 => 0.0011140171716963
1125 => 0.0010833330808689
1126 => 0.0010200230370146
1127 => 0.0010203813649873
1128 => 0.0010106424940246
1129 => 0.0010022266876144
1130 => 0.0011077827918855
1201 => 0.0010946552217243
1202 => 0.0010737381567664
1203 => 0.0011017364794237
1204 => 0.0011091396803274
1205 => 0.0011093504390495
1206 => 0.0011297772925189
1207 => 0.0011406791078773
1208 => 0.0011426006000854
1209 => 0.001174742695371
1210 => 0.0011855163017462
1211 => 0.001229891261668
1212 => 0.0011397541650109
1213 => 0.0011378978508216
1214 => 0.0011021304732409
1215 => 0.0010794462369193
1216 => 0.001103683682309
1217 => 0.0011251547501831
1218 => 0.0011027976391701
1219 => 0.001105717005884
1220 => 0.0010757044109922
1221 => 0.0010864325014422
1222 => 0.0010956729781675
1223 => 0.0010905709300499
1224 => 0.0010829329170759
1225 => 0.0011233943674702
1226 => 0.0011211113738693
1227 => 0.0011587900066813
1228 => 0.0011881631953831
1229 => 0.0012408052006222
1230 => 0.0011858705238654
1231 => 0.0011838684858988
]
'min_raw' => 0.0010022266876144
'max_raw' => 0.0028977320940487
'avg_raw' => 0.0019499793908315
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.0010022'
'max' => '$0.002897'
'avg' => '$0.001949'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -0.00017622966048695
'max_diff' => -0.00097885538138878
'year' => 2030
]
5 => [
'items' => [
101 => 0.0012034387281591
102 => 0.0011855133056441
103 => 0.001196841553909
104 => 0.0012389800446927
105 => 0.001239870364602
106 => 0.0012249563590089
107 => 0.0012240488404132
108 => 0.0012269132383287
109 => 0.0012436901063876
110 => 0.0012378277531867
111 => 0.0012446118167274
112 => 0.0012530953920663
113 => 0.0012881870566293
114 => 0.0012966475381531
115 => 0.0012760929543069
116 => 0.0012779488030883
117 => 0.0012702608244938
118 => 0.0012628343335017
119 => 0.0012795280007001
120 => 0.0013100360056201
121 => 0.0013098462169049
122 => 0.0013169234810554
123 => 0.00132133255799
124 => 0.0013024055721452
125 => 0.0012900848003248
126 => 0.0012948093682318
127 => 0.0013023640552029
128 => 0.0012923594850667
129 => 0.0012306066436183
130 => 0.0012493385109269
131 => 0.0012462206122653
201 => 0.0012417803454216
202 => 0.0012606153828497
203 => 0.0012587986975414
204 => 0.0012043819194628
205 => 0.0012078655050406
206 => 0.0012045937678398
207 => 0.00121516542007
208 => 0.0011849424017305
209 => 0.0011942387986166
210 => 0.0012000694115953
211 => 0.0012035036874326
212 => 0.0012159106466619
213 => 0.001214454833197
214 => 0.0012158201512529
215 => 0.0012342163964742
216 => 0.0013272582919748
217 => 0.0013323223570615
218 => 0.0013073850484797
219 => 0.0013173470113915
220 => 0.0012982222210427
221 => 0.0013110608209288
222 => 0.0013198446649058
223 => 0.0012801521630098
224 => 0.0012778018306497
225 => 0.0012585981054881
226 => 0.0012689170996353
227 => 0.0012524988379851
228 => 0.0012565273051077
301 => 0.0012452633598375
302 => 0.0012655362186946
303 => 0.0012882044249806
304 => 0.0012939313090831
305 => 0.0012788663425882
306 => 0.0012679583140162
307 => 0.0012488074091718
308 => 0.0012806557907338
309 => 0.0012899692280644
310 => 0.0012806068712123
311 => 0.0012784374085582
312 => 0.0012743262807487
313 => 0.0012793096037575
314 => 0.0012899185050845
315 => 0.0012849155431343
316 => 0.0012882200876433
317 => 0.0012756265716068
318 => 0.0013024118377651
319 => 0.0013449532866498
320 => 0.0013450900643642
321 => 0.0013400870754462
322 => 0.0013380399601719
323 => 0.0013431733304085
324 => 0.00134595797318
325 => 0.001362558351226
326 => 0.0013803712182577
327 => 0.0014634960963316
328 => 0.001440154963198
329 => 0.0015139083001463
330 => 0.0015722376140002
331 => 0.0015897280247932
401 => 0.0015736376698511
402 => 0.0015185934347778
403 => 0.0015158927020028
404 => 0.0015981520282788
405 => 0.00157491000089
406 => 0.0015721454356876
407 => 0.0015427351327409
408 => 0.0015601202643193
409 => 0.0015563178810186
410 => 0.0015503156329595
411 => 0.0015834852529523
412 => 0.0016455758205064
413 => 0.0016358984232715
414 => 0.0016286746951571
415 => 0.0015970224213556
416 => 0.0016160841599754
417 => 0.0016092966399564
418 => 0.0016384601334245
419 => 0.0016211843259445
420 => 0.0015747339196734
421 => 0.0015821312999746
422 => 0.0015810132008235
423 => 0.0016040236021231
424 => 0.0015971164508062
425 => 0.0015796644686731
426 => 0.0016453636016966
427 => 0.0016410974654358
428 => 0.0016471458712791
429 => 0.0016498085665845
430 => 0.0016897984711073
501 => 0.0017061810554561
502 => 0.0017099001889208
503 => 0.0017254623769776
504 => 0.0017095129875051
505 => 0.001773321917117
506 => 0.0018157511319547
507 => 0.0018650348483761
508 => 0.0019370516042819
509 => 0.0019641305706947
510 => 0.0019592389977867
511 => 0.0020138412801986
512 => 0.0021119603679522
513 => 0.0019790716707538
514 => 0.0021190037915827
515 => 0.0020747028977223
516 => 0.0019696662753183
517 => 0.0019629031551359
518 => 0.0020340351753282
519 => 0.0021917991499114
520 => 0.0021522810636225
521 => 0.0021918637873436
522 => 0.0021456884375627
523 => 0.0021433954422497
524 => 0.00218962115367
525 => 0.0022976300480359
526 => 0.0022463190709756
527 => 0.0021727522033918
528 => 0.0022270728335884
529 => 0.0021800152765751
530 => 0.0020739814300431
531 => 0.0021522508448866
601 => 0.0020999143161654
602 => 0.0021151888976091
603 => 0.0022251924965101
604 => 0.0022119565724569
605 => 0.0022290850837953
606 => 0.0021988537096142
607 => 0.002170612839079
608 => 0.0021178991570304
609 => 0.0021022932345289
610 => 0.002106606150066
611 => 0.0021022910972621
612 => 0.0020727982766197
613 => 0.00206642930481
614 => 0.0020558140727627
615 => 0.0020591041770466
616 => 0.0020391444352022
617 => 0.0020768125919558
618 => 0.0020838041337799
619 => 0.0021112158770016
620 => 0.0021140618551178
621 => 0.0021904031698085
622 => 0.0021483556565405
623 => 0.0021765647586483
624 => 0.0021740414710414
625 => 0.0019719427374247
626 => 0.0019997901597849
627 => 0.0020431120099747
628 => 0.0020235955751856
629 => 0.0019960039025361
630 => 0.0019737221474998
701 => 0.0019399630101933
702 => 0.0019874783476654
703 => 0.0020499559637483
704 => 0.0021156463905654
705 => 0.002194569134179
706 => 0.0021769544965665
707 => 0.0021141709847711
708 => 0.0021169874072469
709 => 0.0021343974227706
710 => 0.0021118498708007
711 => 0.0021052001575442
712 => 0.0021334838542825
713 => 0.0021336786285574
714 => 0.0021077349450533
715 => 0.0020789032884825
716 => 0.0020787824827887
717 => 0.0020736521679827
718 => 0.0021466011091697
719 => 0.0021867156508526
720 => 0.0021913147184088
721 => 0.0021864060969627
722 => 0.0021882952305411
723 => 0.0021649534625993
724 => 0.0022183058223278
725 => 0.0022672672236162
726 => 0.0022541445221632
727 => 0.0022344717271831
728 => 0.0022188013984113
729 => 0.0022504530907147
730 => 0.0022490436906808
731 => 0.002266839588489
801 => 0.0022660322637703
802 => 0.002260048172675
803 => 0.0022541447358739
804 => 0.002277551195496
805 => 0.0022708105110211
806 => 0.0022640593564013
807 => 0.0022505188822614
808 => 0.0022523592575805
809 => 0.0022326898593858
810 => 0.0022235898957705
811 => 0.0020867482768626
812 => 0.0020501797248616
813 => 0.0020616849357426
814 => 0.0020654727498973
815 => 0.0020495580692026
816 => 0.0020723756331728
817 => 0.0020688195399978
818 => 0.0020826542182968
819 => 0.0020740109119275
820 => 0.0020743656362358
821 => 0.0020997837573206
822 => 0.0021071627460079
823 => 0.0021034097328058
824 => 0.0021060382146068
825 => 0.002166610468298
826 => 0.0021579990308147
827 => 0.002153424376284
828 => 0.0021546915868528
829 => 0.0021701690963546
830 => 0.0021745019539745
831 => 0.0021561433317747
901 => 0.0021648013641341
902 => 0.0022016661670522
903 => 0.0022145667617063
904 => 0.0022557392672058
905 => 0.0022382484550867
906 => 0.0022703535977159
907 => 0.0023690338607084
908 => 0.0024478664829417
909 => 0.0023753687456401
910 => 0.0025201348170976
911 => 0.0026328559691868
912 => 0.0026285295436227
913 => 0.0026088740034687
914 => 0.002480543968662
915 => 0.0023624527573399
916 => 0.0024612410700285
917 => 0.0024614929017536
918 => 0.0024530068980826
919 => 0.0024003010580961
920 => 0.0024511728490976
921 => 0.0024552108671281
922 => 0.0024529506508267
923 => 0.0024125412068844
924 => 0.0023508434548982
925 => 0.0023628990479527
926 => 0.0023826463553035
927 => 0.0023452605827686
928 => 0.0023333135631598
929 => 0.002355525345626
930 => 0.0024270963367406
1001 => 0.0024135662554529
1002 => 0.0024132129303511
1003 => 0.0024711003557473
1004 => 0.0024296654520519
1005 => 0.0023630511075885
1006 => 0.0023462301070762
1007 => 0.0022865268872413
1008 => 0.0023277641138369
1009 => 0.0023292481682088
1010 => 0.0023066629606367
1011 => 0.0023648837727088
1012 => 0.002364347257676
1013 => 0.0024196192537142
1014 => 0.0025252785509255
1015 => 0.0024940298975618
1016 => 0.0024576911135438
1017 => 0.0024616421469317
1018 => 0.0025049752312162
1019 => 0.0024787750592597
1020 => 0.0024881968237694
1021 => 0.0025049609702472
1022 => 0.0025150751960476
1023 => 0.0024601868654881
1024 => 0.0024473897700224
1025 => 0.0024212114038696
1026 => 0.0024143819567827
1027 => 0.0024357036897846
1028 => 0.0024300861664465
1029 => 0.0023291234391854
1030 => 0.0023185722724353
1031 => 0.0023188958616559
1101 => 0.0022923644511822
1102 => 0.0022518976819416
1103 => 0.0023582419353606
1104 => 0.0023497010035242
1105 => 0.0023402724757924
1106 => 0.0023414274166411
1107 => 0.0023875878527092
1108 => 0.0023608124686318
1109 => 0.0024319992156006
1110 => 0.0024173653604933
1111 => 0.0024023562022211
1112 => 0.0024002814793577
1113 => 0.0023945042339441
1114 => 0.0023746919098026
1115 => 0.0023507673378656
1116 => 0.0023349702631618
1117 => 0.0021538866417057
1118 => 0.002187494708533
1119 => 0.0022261577259461
1120 => 0.0022395040446248
1121 => 0.0022166742429877
1122 => 0.0023755933695205
1123 => 0.0024046294253209
1124 => 0.0023166773183266
1125 => 0.0023002250701688
1126 => 0.0023766719761707
1127 => 0.0023305651465974
1128 => 0.0023513270491311
1129 => 0.0023064511720067
1130 => 0.0023976354897535
1201 => 0.0023969408180278
1202 => 0.0023614680589331
1203 => 0.002391449392013
1204 => 0.002386239397586
1205 => 0.0023461907399336
1206 => 0.0023989051036346
1207 => 0.0023989312493013
1208 => 0.0023647894899169
1209 => 0.0023249193895481
1210 => 0.0023177915572919
1211 => 0.0023124216931764
1212 => 0.0023500063917373
1213 => 0.0023837047149428
1214 => 0.0024464089399053
1215 => 0.0024621742718765
1216 => 0.0025237074121177
1217 => 0.0024870674230983
1218 => 0.0025033094556633
1219 => 0.0025209424795884
1220 => 0.0025293963996911
1221 => 0.0025156211905461
1222 => 0.0026112074853917
1223 => 0.002619277897365
1224 => 0.0026219838366909
1225 => 0.0025897526758792
1226 => 0.0026183814904771
1227 => 0.0026049870162135
1228 => 0.0026398357171554
1229 => 0.0026453004384337
1230 => 0.0026406720139241
1231 => 0.0026424066027126
]
'min_raw' => 0.0011849424017305
'max_raw' => 0.0026453004384337
'avg_raw' => 0.0019151214200821
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.001184'
'max' => '$0.002645'
'avg' => '$0.001915'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 0.00018271571411606
'max_diff' => -0.00025243165561501
'year' => 2031
]
6 => [
'items' => [
101 => 0.0025608405626398
102 => 0.0025566109331669
103 => 0.0024989396351829
104 => 0.0025224411153961
105 => 0.0024785062245928
106 => 0.002492438431046
107 => 0.0024985796148997
108 => 0.0024953718089636
109 => 0.002523769853826
110 => 0.0024996257143557
111 => 0.0024359053606296
112 => 0.0023721676463358
113 => 0.0023713674712524
114 => 0.002354586456143
115 => 0.0023424568558151
116 => 0.0023447934471589
117 => 0.002353027899821
118 => 0.0023419782544569
119 => 0.0023443362565266
120 => 0.0023834948021687
121 => 0.0023913477692313
122 => 0.0023646603188004
123 => 0.0022575063543397
124 => 0.0022312105026857
125 => 0.0022501114393852
126 => 0.0022410780090191
127 => 0.0018087248622455
128 => 0.0019102998208951
129 => 0.0018499474296252
130 => 0.0018777605882024
131 => 0.0018161564248918
201 => 0.0018455571605744
202 => 0.0018401279182368
203 => 0.0020034574459238
204 => 0.0020009072800013
205 => 0.0020021279094766
206 => 0.0019438640842883
207 => 0.0020366799398486
208 => 0.0020824043678478
209 => 0.0020739419931414
210 => 0.0020760717905403
211 => 0.0020394748148708
212 => 0.0020024822481981
213 => 0.0019614517986429
214 => 0.0020376813023997
215 => 0.0020292058828629
216 => 0.0020486454459205
217 => 0.0020980857281042
218 => 0.0021053659974612
219 => 0.0021151507533061
220 => 0.002111643614862
221 => 0.00219519788116
222 => 0.0021850789082025
223 => 0.0022094627216029
224 => 0.002159303367434
225 => 0.0021025432970223
226 => 0.0021133315307811
227 => 0.0021122925371166
228 => 0.0020990649552666
229 => 0.0020871236858175
301 => 0.0020672448366166
302 => 0.0021301444570044
303 => 0.0021275908472848
304 => 0.0021689308203978
305 => 0.002161623578595
306 => 0.0021128240294506
307 => 0.0021145669148951
308 => 0.0021262886571114
309 => 0.0021668577407587
310 => 0.002178901406939
311 => 0.0021733223009072
312 => 0.0021865276310597
313 => 0.0021969645855876
314 => 0.0021878383518582
315 => 0.002317046575942
316 => 0.0022633903129365
317 => 0.0022895420021875
318 => 0.0022957790259792
319 => 0.0022798030206873
320 => 0.0022832676441772
321 => 0.0022885156047111
322 => 0.0023203801934168
323 => 0.0024040020942736
324 => 0.0024410376649296
325 => 0.0025524610065509
326 => 0.0024379623763466
327 => 0.0024311685014728
328 => 0.0024512392099613
329 => 0.0025166565068516
330 => 0.0025696710816469
331 => 0.0025872590745907
401 => 0.0025895836182043
402 => 0.0026225798621945
403 => 0.0026414926939062
404 => 0.0026185732502867
405 => 0.002599151421585
406 => 0.0025295848419016
407 => 0.0025376373629235
408 => 0.0025931112474632
409 => 0.0026714713767711
410 => 0.0027387125196992
411 => 0.0027151670150362
412 => 0.0028948025950791
413 => 0.0029126127290948
414 => 0.0029101519444444
415 => 0.0029507260802354
416 => 0.0028701946834692
417 => 0.0028357659511293
418 => 0.0026033506413974
419 => 0.0026686498633348
420 => 0.0027635661173096
421 => 0.0027510035951784
422 => 0.0026820728744231
423 => 0.0027386602295664
424 => 0.0027199506803058
425 => 0.0027051936825441
426 => 0.0027727983500753
427 => 0.0026984642410781
428 => 0.0027628245777097
429 => 0.0026802817802572
430 => 0.0027152745689182
501 => 0.0026954109696635
502 => 0.0027082651527725
503 => 0.0026331198609714
504 => 0.0026736664363784
505 => 0.0026314329901297
506 => 0.0026314129659773
507 => 0.0026304806603105
508 => 0.0026801681225303
509 => 0.0026817884288895
510 => 0.0026450693192355
511 => 0.002639777521874
512 => 0.0026593440702625
513 => 0.0026364367665867
514 => 0.0026471549497998
515 => 0.0026367614094375
516 => 0.0026344216045805
517 => 0.0026157776413948
518 => 0.002607745309428
519 => 0.0026108949937599
520 => 0.0026001434973615
521 => 0.0025936653318829
522 => 0.0026291919901438
523 => 0.0026102115297763
524 => 0.0026262829623743
525 => 0.0026079675365524
526 => 0.0025444782910024
527 => 0.0025079649545
528 => 0.0023880396551121
529 => 0.0024220503212517
530 => 0.0024445994280887
531 => 0.0024371469484136
601 => 0.0024531577584826
602 => 0.0024541406921864
603 => 0.0024489354146221
604 => 0.00244290837004
605 => 0.0024399747380539
606 => 0.0024618396273987
607 => 0.0024745329316017
608 => 0.002446862532628
609 => 0.0024403797452984
610 => 0.0024683560463855
611 => 0.0024854215738872
612 => 0.0026114238406684
613 => 0.0026020891857633
614 => 0.0026255173377416
615 => 0.0026228796873631
616 => 0.0026474361230337
617 => 0.0026875755170311
618 => 0.0026059609058834
619 => 0.0026201263803577
620 => 0.0026166533331452
621 => 0.0026545711519296
622 => 0.002654689527221
623 => 0.0026319559007242
624 => 0.0026442801684591
625 => 0.0026374011003081
626 => 0.0026498325062188
627 => 0.002601964515756
628 => 0.0026602625611094
629 => 0.0026933137961818
630 => 0.0026937727126128
701 => 0.0027094387357263
702 => 0.0027253563225245
703 => 0.0027559087442539
704 => 0.0027245042320648
705 => 0.0026680105718042
706 => 0.0026720892316016
707 => 0.0026389670192611
708 => 0.0026395238096345
709 => 0.0026365516189845
710 => 0.0026454713868612
711 => 0.0026039219032028
712 => 0.0026136734839695
713 => 0.002600021213791
714 => 0.0026200967029886
715 => 0.0025984987952092
716 => 0.0026166516583367
717 => 0.0026244858322855
718 => 0.0026533941028145
719 => 0.0025942290201475
720 => 0.0024735874114654
721 => 0.0024989477402485
722 => 0.0024614378219675
723 => 0.0024649095077147
724 => 0.0024719228654388
725 => 0.0024491902784271
726 => 0.0024535269396428
727 => 0.0024533720035876
728 => 0.0024520368483667
729 => 0.0024461232245108
730 => 0.0024375472999449
731 => 0.0024717111438851
801 => 0.0024775162466967
802 => 0.0024904202711468
803 => 0.0025288138950271
804 => 0.0025249774666174
805 => 0.0025312348405254
806 => 0.0025175750284179
807 => 0.0024655431472211
808 => 0.002468368728703
809 => 0.0024331336823466
810 => 0.0024895192317923
811 => 0.0024761663894307
812 => 0.0024675577250948
813 => 0.002465208771272
814 => 0.0025036975655196
815 => 0.0025152140159965
816 => 0.0025080377368996
817 => 0.0024933189791063
818 => 0.0025215833452795
819 => 0.0025291456972896
820 => 0.0025308386290158
821 => 0.0025809176667201
822 => 0.0025336374909148
823 => 0.0025450182991557
824 => 0.002633808116256
825 => 0.0025532880043032
826 => 0.0025959413034174
827 => 0.0025938536463828
828 => 0.0026156736309006
829 => 0.0025920637707747
830 => 0.0025923564432871
831 => 0.0026117311113252
901 => 0.0025845228843055
902 => 0.0025777857446653
903 => 0.0025684784345046
904 => 0.0025888006057393
905 => 0.0026009828283017
906 => 0.0026991625952986
907 => 0.0027625912023198
908 => 0.002759837599208
909 => 0.0027850003771212
910 => 0.0027736643152067
911 => 0.0027370571809826
912 => 0.0027995410953387
913 => 0.0027797685703984
914 => 0.0027813985933308
915 => 0.0027813379237959
916 => 0.002794484924337
917 => 0.0027851690695487
918 => 0.0027668065635081
919 => 0.0027789964519601
920 => 0.0028151960626979
921 => 0.0029275607651674
922 => 0.0029904415413037
923 => 0.0029237752634886
924 => 0.0029697607692284
925 => 0.0029421858520956
926 => 0.0029371746693698
927 => 0.0029660569652766
928 => 0.002994989815819
929 => 0.0029931469183196
930 => 0.0029721431545441
1001 => 0.0029602786613382
1002 => 0.0030501205787907
1003 => 0.0031163145731526
1004 => 0.0031118005865073
1005 => 0.0031317238555326
1006 => 0.0031902191895944
1007 => 0.0031955672698536
1008 => 0.0031948935346652
1009 => 0.0031816377597282
1010 => 0.0032392340126911
1011 => 0.0032872818202224
1012 => 0.0031785694308265
1013 => 0.0032199656855588
1014 => 0.0032385497980121
1015 => 0.0032658367887513
1016 => 0.003311874515959
1017 => 0.0033618836986106
1018 => 0.0033689555453604
1019 => 0.0033639377316724
1020 => 0.0033309553313947
1021 => 0.0033856759757857
1022 => 0.003417730045913
1023 => 0.0034368175111294
1024 => 0.0034852201470669
1025 => 0.0032386645671638
1026 => 0.003064140273101
1027 => 0.0030368857844217
1028 => 0.0030923088588809
1029 => 0.003106923481625
1030 => 0.003101032345522
1031 => 0.0029045893854997
1101 => 0.003035851552892
1102 => 0.0031770786081697
1103 => 0.0031825037145282
1104 => 0.0032532049313186
1105 => 0.0032762281456464
1106 => 0.0033331518921831
1107 => 0.0033295912963385
1108 => 0.0033434513227656
1109 => 0.0033402651427122
1110 => 0.0034457043964623
1111 => 0.0035620195512294
1112 => 0.0035579919272793
1113 => 0.0035412702476031
1114 => 0.0035661047933924
1115 => 0.0036861544982015
1116 => 0.00367510224514
1117 => 0.0036858385675606
1118 => 0.0038273839352354
1119 => 0.0040114130478065
1120 => 0.0039259130487964
1121 => 0.0041114234446863
1122 => 0.0042281924054155
1123 => 0.0044301322488606
1124 => 0.0044048483858866
1125 => 0.0044834620850368
1126 => 0.0043595849942617
1127 => 0.0040751381541513
1128 => 0.0040301233528851
1129 => 0.0041202441249764
1130 => 0.0043417972493065
1201 => 0.0041132666286506
1202 => 0.0041594980755704
1203 => 0.0041461834157473
1204 => 0.004145473934109
1205 => 0.0041725519625729
1206 => 0.004133273869991
1207 => 0.0039732478548185
1208 => 0.0040465868345329
1209 => 0.0040182671324381
1210 => 0.0040496899532859
1211 => 0.0042192659576444
1212 => 0.0041442923639304
1213 => 0.004065313773313
1214 => 0.0041643704526996
1215 => 0.0042905036451267
1216 => 0.0042826104566277
1217 => 0.0042672943718429
1218 => 0.0043536303398508
1219 => 0.0044962320649346
1220 => 0.0045347767382046
1221 => 0.0045632296280013
1222 => 0.0045671528007888
1223 => 0.004607563918738
1224 => 0.0043902631526123
1225 => 0.0047351250491332
1226 => 0.0047946731720447
1227 => 0.0047834805929542
1228 => 0.0048496658254022
1229 => 0.0048301924510587
1230 => 0.0048019785869138
1231 => 0.0049068962583467
]
'min_raw' => 0.0018087248622455
'max_raw' => 0.0049068962583467
'avg_raw' => 0.0033578105602961
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.0018087'
'max' => '$0.0049068'
'avg' => '$0.003357'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.00062378246051506
'max_diff' => 0.002261595819913
'year' => 2032
]
7 => [
'items' => [
101 => 0.0047866166144684
102 => 0.0046158948027693
103 => 0.0045222334403766
104 => 0.0046455742778219
105 => 0.0047208942232477
106 => 0.0047706759159259
107 => 0.0047857398260514
108 => 0.0044071315925107
109 => 0.0042030827532076
110 => 0.0043338757197762
111 => 0.0044934521658383
112 => 0.0043893766973972
113 => 0.0043934562587192
114 => 0.0042450719912743
115 => 0.004506580880978
116 => 0.0044684812353841
117 => 0.0046661422641223
118 => 0.0046189688732851
119 => 0.0047801537690641
120 => 0.0047377083841113
121 => 0.0049138968039605
122 => 0.0049841831347494
123 => 0.0051022048233378
124 => 0.0051890220578982
125 => 0.0052400027985811
126 => 0.0052369421061344
127 => 0.0054389531992242
128 => 0.0053198343153592
129 => 0.0051701929230594
130 => 0.0051674863823852
131 => 0.0052449877798922
201 => 0.0054074094475968
202 => 0.0054495230228935
203 => 0.0054730587662447
204 => 0.0054370129560172
205 => 0.005307717944909
206 => 0.0052518890146531
207 => 0.005299456880751
208 => 0.0052412854680666
209 => 0.0053417056463755
210 => 0.0054796039997862
211 => 0.0054511285351161
212 => 0.0055463177442281
213 => 0.0056448285614621
214 => 0.0057857034545045
215 => 0.0058225333681279
216 => 0.0058834118148313
217 => 0.0059460757340171
218 => 0.0059662016960196
219 => 0.0060046284022016
220 => 0.0060044258744921
221 => 0.0061202273399872
222 => 0.0062479599425012
223 => 0.0062961760429337
224 => 0.0064070463072268
225 => 0.0062171848649822
226 => 0.0063611969498958
227 => 0.0064910994553442
228 => 0.006336224333097
301 => 0.0065496836078394
302 => 0.0065579717477685
303 => 0.0066831128205655
304 => 0.0065562583691571
305 => 0.0064809326008446
306 => 0.0066983952715431
307 => 0.0068036186078842
308 => 0.0067719244826424
309 => 0.0065307306246199
310 => 0.0063903454539596
311 => 0.0060229303840645
312 => 0.0064581494055051
313 => 0.0066701318953359
314 => 0.0065301816411825
315 => 0.0066007644089573
316 => 0.0069858411033977
317 => 0.007132453376771
318 => 0.0071019590488065
319 => 0.0071071120882531
320 => 0.0071862214097643
321 => 0.0075370357076443
322 => 0.0073268196485429
323 => 0.0074875219490805
324 => 0.0075727578698303
325 => 0.0076519297432723
326 => 0.0074575086446264
327 => 0.0072045696519013
328 => 0.0071244532552486
329 => 0.0065162663465249
330 => 0.006484607576704
331 => 0.0064668365498446
401 => 0.0063547927392577
402 => 0.0062667569955191
403 => 0.0061967477035406
404 => 0.0060130224148445
405 => 0.006075024306467
406 => 0.0057822045427335
407 => 0.005969540250675
408 => 0.0055021928373757
409 => 0.0058914136504747
410 => 0.0056795784576037
411 => 0.0058218200923273
412 => 0.0058213238246638
413 => 0.0055594118773862
414 => 0.0054083465321594
415 => 0.0055046112496891
416 => 0.0056078146683838
417 => 0.005624559075849
418 => 0.0057583650020714
419 => 0.0057957073599313
420 => 0.0056825582722678
421 => 0.005492508101014
422 => 0.0055366524212133
423 => 0.0054074519489196
424 => 0.0051810330908492
425 => 0.0053436510676093
426 => 0.005399175994683
427 => 0.005423698965664
428 => 0.0052010420231333
429 => 0.0051310783776727
430 => 0.0050938303198814
501 => 0.0054637658857394
502 => 0.0054840317911194
503 => 0.005380348553885
504 => 0.0058490066178327
505 => 0.0057429348641015
506 => 0.0058614430012299
507 => 0.0055326467868541
508 => 0.0055452072450261
509 => 0.0053895498479475
510 => 0.0054767075892805
511 => 0.0054151073069315
512 => 0.0054696661050904
513 => 0.0055023684237525
514 => 0.0056580002789838
515 => 0.0058931907162665
516 => 0.0056347540696773
517 => 0.0055221495218773
518 => 0.0055920087500204
519 => 0.0057780530805068
520 => 0.0060599197646276
521 => 0.0058930490145324
522 => 0.0059671034197756
523 => 0.00598328101287
524 => 0.0058602366996408
525 => 0.006064456583965
526 => 0.0061738996790537
527 => 0.0062861656485572
528 => 0.0063836430442561
529 => 0.006241324151556
530 => 0.006393625767357
531 => 0.0062708975498757
601 => 0.006160797651385
602 => 0.0061609646274837
603 => 0.0060918973528577
604 => 0.005958070805233
605 => 0.0059333911365834
606 => 0.0060617778895972
607 => 0.0061647319072434
608 => 0.0061732116932533
609 => 0.0062302123273907
610 => 0.00626394471552
611 => 0.0065945679761449
612 => 0.0067275473866273
613 => 0.0068901520925938
614 => 0.0069534957894668
615 => 0.0071441376070825
616 => 0.0069901788561864
617 => 0.0069568689119841
618 => 0.0064944342209119
619 => 0.0065701578756689
620 => 0.0066913987531808
621 => 0.0064964334383263
622 => 0.006620094055772
623 => 0.0066445072811458
624 => 0.0064898085915319
625 => 0.0065724398457905
626 => 0.0063529957329392
627 => 0.0058979739982551
628 => 0.0060649631532306
629 => 0.0061879233792342
630 => 0.0060124439758404
701 => 0.0063269840144331
702 => 0.0061432362173116
703 => 0.0060849969870738
704 => 0.0058577849861316
705 => 0.0059650203043844
706 => 0.0061100576077831
707 => 0.006020441416679
708 => 0.0062064084691589
709 => 0.0064697874110717
710 => 0.0066574869295659
711 => 0.0066718961679217
712 => 0.006551217952421
713 => 0.0067446055629189
714 => 0.0067460141805354
715 => 0.0065278721658821
716 => 0.0063942613965267
717 => 0.0063639047486098
718 => 0.0064397416068778
719 => 0.0065318215530715
720 => 0.0066770059640916
721 => 0.0067647378629952
722 => 0.0069934961259321
723 => 0.0070553915528695
724 => 0.0071233958615527
725 => 0.0072142705897056
726 => 0.0073233890006553
727 => 0.0070846441296121
728 => 0.0070941299084147
729 => 0.006871813990147
730 => 0.0066342375481504
731 => 0.0068145284533043
801 => 0.007050234828699
802 => 0.006996163525751
803 => 0.0069900793995929
804 => 0.007000311212195
805 => 0.0069595432155759
806 => 0.0067751510778002
807 => 0.0066825505005652
808 => 0.0068020288701252
809 => 0.0068655263061759
810 => 0.0069640052919322
811 => 0.0069518656782986
812 => 0.0072055369697359
813 => 0.0073041059629667
814 => 0.0072788877964932
815 => 0.0072835285460334
816 => 0.0074619830000091
817 => 0.0076604610547877
818 => 0.007846361944574
819 => 0.0080354683142935
820 => 0.0078074932046494
821 => 0.0076917415035221
822 => 0.0078111677125636
823 => 0.0077477984850006
824 => 0.0081119368631116
825 => 0.0081371490143522
826 => 0.0085012610611138
827 => 0.0088468467511466
828 => 0.0086297905710478
829 => 0.0088344647724559
830 => 0.0090558366086113
831 => 0.0094828987968411
901 => 0.0093390792760742
902 => 0.009228915777106
903 => 0.0091248118028872
904 => 0.009341435647196
905 => 0.0096201187622489
906 => 0.0096801444360376
907 => 0.0097774089591475
908 => 0.0096751472060374
909 => 0.0097983102238959
910 => 0.010233129797508
911 => 0.01011563771046
912 => 0.0099487800590552
913 => 0.010292028351907
914 => 0.010416248574746
915 => 0.011288091153265
916 => 0.012388828422667
917 => 0.011933115965304
918 => 0.01165024053727
919 => 0.011716722972753
920 => 0.01211867496123
921 => 0.01224776918261
922 => 0.011896846587452
923 => 0.012020798380631
924 => 0.012703784947721
925 => 0.013070185328132
926 => 0.012572564397397
927 => 0.011199647985433
928 => 0.0099337563531753
929 => 0.010269527817893
930 => 0.010231461753996
1001 => 0.010965245616024
1002 => 0.010112835563041
1003 => 0.010127187962206
1004 => 0.01087614569741
1005 => 0.010676336614044
1006 => 0.010352671488604
1007 => 0.0099361194667803
1008 => 0.0091660845280402
1009 => 0.0084840431087852
1010 => 0.0098216833967023
1011 => 0.0097640019151463
1012 => 0.0096804705819366
1013 => 0.0098663605249605
1014 => 0.010768989322504
1015 => 0.010748180807196
1016 => 0.010615807649407
1017 => 0.010716211522907
1018 => 0.010335070204134
1019 => 0.010433299000408
1020 => 0.0099335558294731
1021 => 0.010159460613854
1022 => 0.01035197704861
1023 => 0.010390627573142
1024 => 0.010477709178457
1025 => 0.0097336063954331
1026 => 0.010067686699301
1027 => 0.010263927578732
1028 => 0.0093773041461579
1029 => 0.010246401884182
1030 => 0.0097206532214599
1031 => 0.0095422062288521
1101 => 0.0097824615957949
1102 => 0.0096888338456413
1103 => 0.0096083382040652
1104 => 0.009563420252975
1105 => 0.0097398372784406
1106 => 0.0097316072133387
1107 => 0.0094429547186079
1108 => 0.0090664193062126
1109 => 0.0091927969499661
1110 => 0.0091468827671937
1111 => 0.0089804838457792
1112 => 0.0090926166277302
1113 => 0.0085988406051204
1114 => 0.0077493246224645
1115 => 0.0083105409019852
1116 => 0.0082889346857095
1117 => 0.0082780398516994
1118 => 0.0086997783748806
1119 => 0.0086592379470399
1120 => 0.0085856566735361
1121 => 0.0089791324679882
1122 => 0.0088355085100169
1123 => 0.0092781237064241
1124 => 0.0095696587013339
1125 => 0.0094957159964556
1126 => 0.0097699060682792
1127 => 0.0091957084356312
1128 => 0.0093864338563864
1129 => 0.00942574210127
1130 => 0.0089742770377623
1201 => 0.0086658708624066
1202 => 0.0086453036865982
1203 => 0.0081105698795202
1204 => 0.0083962203630408
1205 => 0.0086475809675187
1206 => 0.0085271987443446
1207 => 0.0084890893288044
1208 => 0.0086837820678759
1209 => 0.0086989113611323
1210 => 0.0083539618715557
1211 => 0.0084256877935683
1212 => 0.0087247968118034
1213 => 0.0084181510137435
1214 => 0.0078223883184198
1215 => 0.0076746309329158
1216 => 0.0076549173739807
1217 => 0.0072541876257079
1218 => 0.0076845047879447
1219 => 0.0074966598148454
1220 => 0.0080900598341377
1221 => 0.0077511129255861
1222 => 0.007736501601803
1223 => 0.0077144144428897
1224 => 0.0073694897946139
1225 => 0.0074450063714814
1226 => 0.0076960349744882
1227 => 0.0077856048080806
1228 => 0.0077762619406129
1229 => 0.0076948047973853
1230 => 0.0077320954604268
1231 => 0.0076119692418417
]
'min_raw' => 0.0042030827532076
'max_raw' => 0.013070185328132
'avg_raw' => 0.0086366340406697
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.004203'
'max' => '$0.01307'
'avg' => '$0.008636'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.0023943578909621
'max_diff' => 0.0081632890697852
'year' => 2033
]
8 => [
'items' => [
101 => 0.0075695501738482
102 => 0.0074356639269771
103 => 0.0072388881310962
104 => 0.0072662510124095
105 => 0.0068763866715817
106 => 0.0066639678870321
107 => 0.0066051731671033
108 => 0.0065265504104141
109 => 0.0066140538166785
110 => 0.006875282234888
111 => 0.0065601853398269
112 => 0.0060199738147217
113 => 0.0060524414478562
114 => 0.0061253865797826
115 => 0.0059894538090181
116 => 0.0058608048494623
117 => 0.0059726546821761
118 => 0.0057437599375064
119 => 0.0061530474161183
120 => 0.0061419773368368
121 => 0.0062945343986954
122 => 0.0063899314602617
123 => 0.0061700721185169
124 => 0.0061147780886309
125 => 0.0061462760810275
126 => 0.0056256844293572
127 => 0.0062519909542653
128 => 0.0062574072791007
129 => 0.0062110294175142
130 => 0.0065445183069832
131 => 0.0072482838815559
201 => 0.006983498963497
202 => 0.0068809662400581
203 => 0.0066860514578497
204 => 0.0069457638322478
205 => 0.0069258219740382
206 => 0.0068356373284892
207 => 0.006781093373468
208 => 0.0068815922830036
209 => 0.0067686404464044
210 => 0.0067483511928423
211 => 0.0066254203911814
212 => 0.0065815396879836
213 => 0.0065490521622771
214 => 0.0065132865886325
215 => 0.0065921765318668
216 => 0.0064134015416617
217 => 0.0061978164290027
218 => 0.0061798928595484
219 => 0.0062293814106682
220 => 0.006207486410787
221 => 0.0061797880347126
222 => 0.0061269042915826
223 => 0.0061112148146784
224 => 0.0061621980031651
225 => 0.0061046409558681
226 => 0.0061895695144495
227 => 0.0061664736458268
228 => 0.006037462001155
301 => 0.0058766657256655
302 => 0.005875234301532
303 => 0.0058405910077365
304 => 0.0057964675644339
305 => 0.0057841934319147
306 => 0.0059632350012395
307 => 0.0063338456914785
308 => 0.0062610859450224
309 => 0.0063136623185557
310 => 0.00657228603959
311 => 0.0066544947434201
312 => 0.0065961449526613
313 => 0.0065162721602124
314 => 0.0065197861577188
315 => 0.0067927356686556
316 => 0.006809759194846
317 => 0.0068527721535316
318 => 0.0069080559609032
319 => 0.0066055600241107
320 => 0.0065055386262989
321 => 0.0064581429390398
322 => 0.0063121825667212
323 => 0.0064695883145703
324 => 0.0063778747260847
325 => 0.0063902500225538
326 => 0.0063821905944936
327 => 0.0063865915871906
328 => 0.0061529330119267
329 => 0.0062380659160197
330 => 0.0060965159511669
331 => 0.0059069964379581
401 => 0.0059063611020957
402 => 0.0059527457344615
403 => 0.0059251543400995
404 => 0.005850906607311
405 => 0.0058614531473142
406 => 0.0057690543592954
407 => 0.0058726720331137
408 => 0.005875643417237
409 => 0.0058357449687241
410 => 0.0059953822917248
411 => 0.0060607858332099
412 => 0.0060345238196911
413 => 0.0060589432203323
414 => 0.0062641094409782
415 => 0.0062975604869733
416 => 0.0063124172319522
417 => 0.006292511161822
418 => 0.0060626932822167
419 => 0.0060728866824383
420 => 0.0059980942750397
421 => 0.0059349025722176
422 => 0.0059374299089336
423 => 0.0059699186585306
424 => 0.0061117989334603
425 => 0.0064103776077508
426 => 0.0064217084501819
427 => 0.0064354417617525
428 => 0.0063795814817857
429 => 0.0063627334868368
430 => 0.0063849603410108
501 => 0.0064970907925534
502 => 0.0067855207570417
503 => 0.006683570344002
504 => 0.0066006830712479
505 => 0.0066733975557015
506 => 0.0066622037307748
507 => 0.0065677165833266
508 => 0.0065650646437969
509 => 0.0063837135984753
510 => 0.0063166722461834
511 => 0.0062606474742501
512 => 0.0061994698858626
513 => 0.0061632017607751
514 => 0.0062189260844775
515 => 0.0062316708966191
516 => 0.0061098286889493
517 => 0.0060932220462663
518 => 0.0061927210231962
519 => 0.0061489352331451
520 => 0.006193970004048
521 => 0.0062044184571986
522 => 0.006202736015593
523 => 0.0061570186220137
524 => 0.0061861575253689
525 => 0.0061172353322088
526 => 0.0060422927989259
527 => 0.0059944841317763
528 => 0.0059527647287887
529 => 0.0059759130783121
530 => 0.0058933934389828
531 => 0.0058669937455691
601 => 0.0061762859205582
602 => 0.006404763375674
603 => 0.0064014412229896
604 => 0.0063812184729117
605 => 0.006351171568331
606 => 0.0064948926743328
607 => 0.006444823114796
608 => 0.0064812529028107
609 => 0.0064905258128138
610 => 0.0065185921185715
611 => 0.0065286234104993
612 => 0.0064983018791131
613 => 0.0063965391163177
614 => 0.0061429559867448
615 => 0.0060249123553941
616 => 0.0059859559908761
617 => 0.0059873719807377
618 => 0.0059483126590988
619 => 0.0059598173798375
620 => 0.0059443117867304
621 => 0.0059149479445915
622 => 0.0059740999438052
623 => 0.0059809166606756
624 => 0.0059671098772453
625 => 0.005970361874556
626 => 0.005856047604708
627 => 0.005864738670367
628 => 0.0058163457123704
629 => 0.0058072726161319
630 => 0.0056849394323735
701 => 0.005468208464867
702 => 0.0055882984594496
703 => 0.0054432466332023
704 => 0.0053883133087087
705 => 0.005648359122977
706 => 0.0056222577357726
707 => 0.0055775835068789
708 => 0.0055115010114201
709 => 0.0054869903710453
710 => 0.0053380714792534
711 => 0.0053292725566749
712 => 0.0054030807805953
713 => 0.0053690208248419
714 => 0.0053211877474503
715 => 0.0051479411898991
716 => 0.0049531546992475
717 => 0.0049590340790161
718 => 0.0050209920375608
719 => 0.0052011431581988
720 => 0.0051307549987195
721 => 0.0050796875814062
722 => 0.0050701241892244
723 => 0.0051898300646979
724 => 0.0053592389576492
725 => 0.0054387218199116
726 => 0.00535995671734
727 => 0.00526947560852
728 => 0.0052749827743648
729 => 0.0053116194814764
730 => 0.0053154694813787
731 => 0.0052565755811451
801 => 0.0052731538690879
802 => 0.0052479699337524
803 => 0.0050934161690846
804 => 0.005090620781577
805 => 0.0050526907952115
806 => 0.0050515422902986
807 => 0.0049870139214122
808 => 0.0049779859565415
809 => 0.0048498609635255
810 => 0.0049341932219268
811 => 0.0048776275706335
812 => 0.0047923697916462
813 => 0.0047776713184132
814 => 0.0047772294645589
815 => 0.0048647701402883
816 => 0.0049331702581623
817 => 0.0048786115543556
818 => 0.0048661895950749
819 => 0.0049988236216975
820 => 0.0049819447328238
821 => 0.0049673277239163
822 => 0.0053440702493784
823 => 0.0050458491428893
824 => 0.0049158077185944
825 => 0.0047548567618327
826 => 0.0048072632049395
827 => 0.0048183060125129
828 => 0.0044312479750917
829 => 0.0042742185775149
830 => 0.0042203320057946
831 => 0.0041893195219252
901 => 0.0042034523002547
902 => 0.0040621074247244
903 => 0.0041570935187092
904 => 0.0040347008040848
905 => 0.0040141812671777
906 => 0.004233034602474
907 => 0.0042634867655579
908 => 0.0041335683770967
909 => 0.0042169970143653
910 => 0.0041867446307469
911 => 0.0040367988758887
912 => 0.0040310720509794
913 => 0.0039558345420397
914 => 0.0038381024094015
915 => 0.003784295665611
916 => 0.0037562726462734
917 => 0.0037678354902098
918 => 0.0037619889624867
919 => 0.0037238364143494
920 => 0.0037641758218861
921 => 0.0036611253050238
922 => 0.0036200897588748
923 => 0.0036015549546968
924 => 0.003510091689615
925 => 0.0036556504182587
926 => 0.003684327321502
927 => 0.0037130607271035
928 => 0.0039631654057352
929 => 0.0039506708827792
930 => 0.0040636152852216
1001 => 0.0040592264734341
1002 => 0.0040270129002795
1003 => 0.003891109134016
1004 => 0.0039452779529969
1005 => 0.0037785547478771
1006 => 0.0039034751092288
1007 => 0.0038464666731069
1008 => 0.0038842004996307
1009 => 0.003816351677219
1010 => 0.0038539020169508
1011 => 0.003691127679104
1012 => 0.0035391312927193
1013 => 0.0036002990756516
1014 => 0.0036667954510835
1015 => 0.0038109765359812
1016 => 0.0037251034712843
1017 => 0.0037559866725694
1018 => 0.0036525331180498
1019 => 0.0034390788850289
1020 => 0.0034402870128067
1021 => 0.0034074517294097
1022 => 0.0033790772505248
1023 => 0.0037349670257666
1024 => 0.0036907065064305
1025 => 0.003620183161542
1026 => 0.0037145814611616
1027 => 0.0037395418698835
1028 => 0.0037402524576296
1029 => 0.0038091230202593
1030 => 0.0038458792518805
1031 => 0.0038523576970143
1101 => 0.0039607270153591
1102 => 0.0039970509814424
1103 => 0.0041466642569795
1104 => 0.0038427607424289
1105 => 0.003836502049536
1106 => 0.003715909838824
1107 => 0.003639428352303
1108 => 0.0037211465916388
1109 => 0.0037935377960383
1110 => 0.0037181592353344
1111 => 0.003728002084034
1112 => 0.0036268125249437
1113 => 0.0036629830309072
1114 => 0.0036941379433363
1115 => 0.0036769360318941
1116 => 0.0036511839378831
1117 => 0.003787602542816
1118 => 0.0037799052704968
1119 => 0.0039069414116605
1120 => 0.0040059751681392
1121 => 0.0041834613641505
1122 => 0.003998245266048
1123 => 0.0039914952552659
1124 => 0.0040574776933973
1125 => 0.0039970408798749
1126 => 0.0040352348598132
1127 => 0.0041773077235058
1128 => 0.0041803094992402
1129 => 0.0041300258881204
1130 => 0.004126966125814
1201 => 0.004136623643372
1202 => 0.0041931880253561
1203 => 0.004173422692243
1204 => 0.0041962956361185
1205 => 0.0042248986026779
1206 => 0.0043432125997738
1207 => 0.0043717377039234
1208 => 0.0043024364894106
1209 => 0.0043086936131483
1210 => 0.0042827730565596
1211 => 0.0042577341236785
1212 => 0.0043140179881527
1213 => 0.0044168778567413
1214 => 0.0044162379708372
1215 => 0.0044400994610396
1216 => 0.0044549649717565
1217 => 0.0043911513175408
1218 => 0.0043496109751395
1219 => 0.0043655401856969
1220 => 0.0043910113402711
1221 => 0.0043572802335601
1222 => 0.0041490762171712
1223 => 0.0042122320156195
1224 => 0.0042017198025969
1225 => 0.004186749132924
1226 => 0.0042502527766332
1227 => 0.0042441276952792
1228 => 0.0040606577287293
1229 => 0.0040724028807209
1230 => 0.004061371990323
1231 => 0.0040970150539065
]
'min_raw' => 0.0033790772505248
'max_raw' => 0.0075695501738482
'avg_raw' => 0.0054743137121865
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.003379'
'max' => '$0.007569'
'avg' => '$0.005474'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.00082400550268278
'max_diff' => -0.0055006351542836
'year' => 2034
]
9 => [
'items' => [
101 => 0.0039951160374709
102 => 0.0040264594886261
103 => 0.0040461178073641
104 => 0.0040576967081231
105 => 0.0040995276373911
106 => 0.0040946192606523
107 => 0.0040992225258013
108 => 0.0041612467509499
109 => 0.0044749439976078
110 => 0.0044920178466094
111 => 0.0044079399696585
112 => 0.0044415274231376
113 => 0.0043770468572264
114 => 0.0044203330931048
115 => 0.0044499484363417
116 => 0.0043161223949573
117 => 0.0043081980853104
118 => 0.0042434513851666
119 => 0.0042782425943833
120 => 0.0042228872789431
121 => 0.0042364695371054
122 => 0.0041984923592036
123 => 0.0042668437182461
124 => 0.004343271158383
125 => 0.0043625797479727
126 => 0.0043117871616328
127 => 0.0042750099817281
128 => 0.0042104413689718
129 => 0.004317820410991
130 => 0.0043492213151944
131 => 0.004317655475409
201 => 0.0043103409806035
202 => 0.004296480026164
203 => 0.0043132816476128
204 => 0.0043490502991264
205 => 0.0043321824636159
206 => 0.0043433239661436
207 => 0.0043008640475754
208 => 0.0043911724425156
209 => 0.0045346039075796
210 => 0.0045350650631932
211 => 0.0045181971367587
212 => 0.0045112951446863
213 => 0.0045286026608394
214 => 0.004537991278361
215 => 0.0045939606119447
216 => 0.0046540179367965
217 => 0.0049342792668164
218 => 0.0048555830068307
219 => 0.0051042475316454
220 => 0.0053009088857266
221 => 0.0053598790268567
222 => 0.0053056292717765
223 => 0.0051200437901613
224 => 0.005110938081051
225 => 0.0053882811427534
226 => 0.0053099190247055
227 => 0.0053005981001099
228 => 0.0052014392103633
301 => 0.0052600543952709
302 => 0.0052472343944988
303 => 0.005226997396104
304 => 0.0053388310857386
305 => 0.0055481737692722
306 => 0.0055155457488403
307 => 0.0054911904451581
308 => 0.0053844725941452
309 => 0.0054487405767499
310 => 0.0054258559791165
311 => 0.0055241827334742
312 => 0.005465936142397
313 => 0.00530932535459
314 => 0.0053342661387442
315 => 0.0053304963893932
316 => 0.0054080775639096
317 => 0.0053847896210029
318 => 0.0053259490447825
319 => 0.0055474582587384
320 => 0.0055330746824831
321 => 0.0055534673050698
322 => 0.0055624447681953
323 => 0.0056972735233
324 => 0.0057525085502275
325 => 0.0057650478683653
326 => 0.0058175168719161
327 => 0.0057637423917588
328 => 0.0059788786529426
329 => 0.006121931713081
330 => 0.006288095203875
331 => 0.0065309047244607
401 => 0.0066222033503146
402 => 0.0066057110707364
403 => 0.0067898064780978
404 => 0.0071206218329151
405 => 0.006672578312318
406 => 0.0071443692274414
407 => 0.0069950056708014
408 => 0.0066408673649435
409 => 0.0066180650330626
410 => 0.0068578916054199
411 => 0.0073898038604561
412 => 0.0072565658734683
413 => 0.0073900217900716
414 => 0.0072343383744255
415 => 0.0072266073806359
416 => 0.0073824605940655
417 => 0.0077466201223604
418 => 0.0075736215807833
419 => 0.0073255857504498
420 => 0.0075087315477031
421 => 0.0073500737087789
422 => 0.0069925731921498
423 => 0.0072564639888907
424 => 0.0070800077282873
425 => 0.0071315070460621
426 => 0.0075023918599627
427 => 0.0074577660179147
428 => 0.0075155159897666
429 => 0.007413588801028
430 => 0.0073183727343037
501 => 0.007140644874925
502 => 0.0070880284176405
503 => 0.0071025697134921
504 => 0.0070880212116965
505 => 0.0069885841077774
506 => 0.0069671106746536
507 => 0.0069313206786745
508 => 0.0069424134949754
509 => 0.0068751178318021
510 => 0.0070021186522036
511 => 0.0070256911235976
512 => 0.0071181117296963
513 => 0.007127707143615
514 => 0.0073850972160749
515 => 0.0072433310894285
516 => 0.0073384400466814
517 => 0.0073299326063445
518 => 0.0066485426158727
519 => 0.0067424321446049
520 => 0.0068884947871551
521 => 0.0068226937646695
522 => 0.0067296665139428
523 => 0.0066545420211754
524 => 0.0065407207327589
525 => 0.0067009220104608
526 => 0.0069115696551322
527 => 0.0071330495155054
528 => 0.0073991430558085
529 => 0.0073397540752832
530 => 0.0071280750818603
531 => 0.0071375708468736
601 => 0.0071962699297403
602 => 0.0071202492840539
603 => 0.0070978293115417
604 => 0.0071931897697992
605 => 0.0071938464648661
606 => 0.0071063755246019
607 => 0.0070091675815113
608 => 0.0070087602766804
609 => 0.0069914630621248
610 => 0.007237415510469
611 => 0.007372664488461
612 => 0.0073881705658232
613 => 0.0073716208059086
614 => 0.0073779901516632
615 => 0.0072992917513775
616 => 0.007479172957145
617 => 0.0076442497399646
618 => 0.0076000056358179
619 => 0.0075336774340319
620 => 0.0074808438265103
621 => 0.007587559716962
622 => 0.0075828078263466
623 => 0.0076428079382765
624 => 0.0076400859866219
625 => 0.0076199102056982
626 => 0.0076000063563585
627 => 0.0076789228691613
628 => 0.0076561961808345
629 => 0.0076334341916835
630 => 0.0075877815377549
701 => 0.0075939864916341
702 => 0.0075276697423473
703 => 0.0074969885796793
704 => 0.0070356175075546
705 => 0.0069123240813481
706 => 0.0069511147031018
707 => 0.0069638855829811
708 => 0.0069102281258913
709 => 0.0069871591358884
710 => 0.0069751695194704
711 => 0.0070218141032616
712 => 0.0069926725923813
713 => 0.0069938685701528
714 => 0.0070795675400266
715 => 0.0071044463155705
716 => 0.0070917927695326
717 => 0.0071006548794393
718 => 0.0073048784617788
719 => 0.0072758443990727
720 => 0.0072604206319304
721 => 0.0072646931208367
722 => 0.0073168766247274
723 => 0.0073314851567032
724 => 0.0072695877801987
725 => 0.0072987789407827
726 => 0.0074230711976394
727 => 0.0074665664532067
728 => 0.0076053824300706
729 => 0.0075464109358416
730 => 0.0076546556657255
731 => 0.0079873630620408
801 => 0.0082531527518181
802 => 0.0080087215688754
803 => 0.0084968104860385
804 => 0.0088768577202468
805 => 0.0088622708743961
806 => 0.008796000848461
807 => 0.0083633271763933
808 => 0.0079651744125557
809 => 0.0082982461059652
810 => 0.0082990951742085
811 => 0.008270484020358
812 => 0.0080927826010393
813 => 0.0082643003961559
814 => 0.0082779148558711
815 => 0.0082702943788076
816 => 0.0081340511172589
817 => 0.0079260328388378
818 => 0.0079666791125159
819 => 0.0080332585379621
820 => 0.0079072097956692
821 => 0.007866929584944
822 => 0.0079418181603058
823 => 0.0081831247537758
824 => 0.0081375071400742
825 => 0.0081363158798252
826 => 0.0083314873761194
827 => 0.0081917867054178
828 => 0.0079671917921944
829 => 0.0079104786145625
830 => 0.0077091850405434
831 => 0.0078482192291015
901 => 0.0078532228220299
902 => 0.0077770752178516
903 => 0.0079733707506
904 => 0.0079715618527086
905 => 0.0081579152463189
906 => 0.0085141529437634
907 => 0.0084087959272366
908 => 0.0082862771798267
909 => 0.0082995983647466
910 => 0.0084456988838311
911 => 0.0083573631748422
912 => 0.008389129311693
913 => 0.0084456508019784
914 => 0.0084797516204172
915 => 0.008294691781755
916 => 0.0082515454809275
917 => 0.0081632832917283
918 => 0.008140257334058
919 => 0.0082121450455098
920 => 0.0081932051733726
921 => 0.0078528022894191
922 => 0.0078172282940622
923 => 0.0078183192977119
924 => 0.0077288667949357
925 => 0.0075924302571414
926 => 0.0079509773322624
927 => 0.0079221809842671
928 => 0.0078903920447406
929 => 0.0078942860084474
930 => 0.0080499191414695
1001 => 0.0079596440646551
1002 => 0.0081996551521604
1003 => 0.008150316087963
1004 => 0.0080997116629423
1005 => 0.0080927165899559
1006 => 0.0080732382036896
1007 => 0.0080064395695941
1008 => 0.0079257762049481
1009 => 0.0078725152646679
1010 => 0.0072619791920737
1011 => 0.0073752911358223
1012 => 0.0075056461983963
1013 => 0.0075506442436317
1014 => 0.0074736719734866
1015 => 0.0080094789039709
1016 => 0.0081073759933345
1017 => 0.0078108393239832
1018 => 0.00775536942066
1019 => 0.0080131155015981
1020 => 0.0078576631066155
1021 => 0.0079276633105576
1022 => 0.0077763611576991
1023 => 0.0080837954512682
1024 => 0.0080814533170445
1025 => 0.0079618544331277
1026 => 0.0080629385908364
1027 => 0.0080453727308755
1028 => 0.0079103458854925
1029 => 0.0080880760431099
1030 => 0.0080881641950507
1031 => 0.0079730528695847
1101 => 0.0078386280425498
1102 => 0.0078145960584486
1103 => 0.0077964911866712
1104 => 0.0079232106219492
1105 => 0.0080368268713781
1106 => 0.0082482385437083
1107 => 0.0083013924611496
1108 => 0.0085088557395795
1109 => 0.0083853214584782
1110 => 0.0084400826052536
1111 => 0.0084995335765155
1112 => 0.0085280365583756
1113 => 0.008481592478989
1114 => 0.0088038683456828
1115 => 0.0088310783031092
1116 => 0.008840201566469
1117 => 0.0087315319574846
1118 => 0.0088280560047015
1119 => 0.0087828955995491
1120 => 0.0089003904278336
1121 => 0.0089188151171579
1122 => 0.0089032100607775
1123 => 0.008909058347983
1124 => 0.0086340527491185
1125 => 0.0086197922580473
1126 => 0.0084253494504128
1127 => 0.0085045863317725
1128 => 0.0083564567799931
1129 => 0.0084034301867658
1130 => 0.0084241356168922
1201 => 0.008413320275217
1202 => 0.0085090662661585
1203 => 0.0084276626142445
1204 => 0.008212824992844
1205 => 0.0079979288390773
1206 => 0.0079952309929173
1207 => 0.0079386526288627
1208 => 0.0078977568344955
1209 => 0.0079056348153469
1210 => 0.0079333978474083
1211 => 0.0078961431966016
1212 => 0.00790409336521
1213 => 0.0080361191358048
1214 => 0.0080625959625329
1215 => 0.0079726173601469
1216 => 0.0076113402877167
1217 => 0.0075226819879475
1218 => 0.0075864078156511
1219 => 0.0075559509744777
1220 => 0.006098242154198
1221 => 0.0064407092190222
1222 => 0.0062372269181863
1223 => 0.006331000924182
1224 => 0.0061232981865149
1225 => 0.0062224248195628
1226 => 0.0062041197499639
1227 => 0.006754796655864
1228 => 0.0067461985934097
1229 => 0.0067503140309072
1230 => 0.0065538734764343
1231 => 0.0068668086136519
]
'min_raw' => 0.0039951160374709
'max_raw' => 0.0089188151171579
'avg_raw' => 0.0064569655773144
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.003995'
'max' => '$0.008918'
'avg' => '$0.006456'
'bar_min_pct' => 61.631153054958
'bar_max_pct' => 60.119598047091
'min_diff' => 0.00061603878694607
'max_diff' => 0.0013492649433096
'year' => 2035
]
10 => [
'items' => [
101 => 0.0070209717150289
102 => 0.0069924402278821
103 => 0.0069996209885102
104 => 0.0068762317299215
105 => 0.0067515087086459
106 => 0.0066131716833159
107 => 0.0068701847774059
108 => 0.0068416093087029
109 => 0.0069071511527784
110 => 0.0070738425159712
111 => 0.0070983884524002
112 => 0.0071313784398812
113 => 0.0071195538777565
114 => 0.0074012629201527
115 => 0.0073671460963424
116 => 0.0074493578256451
117 => 0.0072802420610505
118 => 0.007088871520796
119 => 0.0071252448041241
120 => 0.0071217417644441
121 => 0.0070771440487164
122 => 0.007036883225056
123 => 0.0069698602970782
124 => 0.007181930758727
125 => 0.0071733210852702
126 => 0.0073127016908852
127 => 0.0072880648149718
128 => 0.0071235337279557
129 => 0.0071294099879162
130 => 0.0071689306601845
131 => 0.0073057121581443
201 => 0.0073463182195332
202 => 0.0073275078740261
203 => 0.007372030566602
204 => 0.0074072194874776
205 => 0.0073764497532858
206 => 0.0078120843018144
207 => 0.0076311784649306
208 => 0.007719350711093
209 => 0.0077403792722617
210 => 0.0076865150550111
211 => 0.0076981962749997
212 => 0.0077158901403406
213 => 0.0078233238258765
214 => 0.0081052609029099
215 => 0.0082301289151174
216 => 0.008605800490723
217 => 0.0082197603649503
218 => 0.0081968543414798
219 => 0.008264524136441
220 => 0.0084850831201963
221 => 0.0086638254604781
222 => 0.0087231246066425
223 => 0.0087309619677304
224 => 0.0088422111080676
225 => 0.0089059770406352
226 => 0.0088287025362878
227 => 0.0087632204848312
228 => 0.008528671904445
229 => 0.0085558215412793
301 => 0.008742855616068
302 => 0.0090070522629592
303 => 0.009233760470968
304 => 0.009154375158102
305 => 0.0097600290579721
306 => 0.0098200771682699
307 => 0.0098117804610146
308 => 0.0099485789926299
309 => 0.00967706176591
310 => 0.0095609828910887
311 => 0.0087773784476089
312 => 0.0089975393334169
313 => 0.0093175561105342
314 => 0.0092752006900814
315 => 0.0090427959524658
316 => 0.0092335841711343
317 => 0.0091705036195433
318 => 0.0091207493712889
319 => 0.0093486832278775
320 => 0.0090980605895516
321 => 0.0093150559580005
322 => 0.0090367571534351
323 => 0.0091547377835243
324 => 0.0090877662718047
325 => 0.0091311050476071
326 => 0.0088777474498232
327 => 0.0090144530596794
328 => 0.0088720600470069
329 => 0.0088719925341787
330 => 0.0088688492005319
331 => 0.0090363739484738
401 => 0.0090418369244898
402 => 0.0089180358826449
403 => 0.0089001942183793
404 => 0.008966164202364
405 => 0.0088889306286841
406 => 0.0089250677317066
407 => 0.0088900251847212
408 => 0.0088821363692858
409 => 0.0088192769457254
410 => 0.0087921953776998
411 => 0.0088028147583287
412 => 0.0087665653375763
413 => 0.0087447237503741
414 => 0.0088645043590926
415 => 0.0088005104117903
416 => 0.0088546963688661
417 => 0.0087929446319652
418 => 0.0085788862079157
419 => 0.0084557789446181
420 => 0.008051442424815
421 => 0.0081661117602533
422 => 0.0082421376482829
423 => 0.0082170110927426
424 => 0.0082709926567293
425 => 0.0082743066863379
426 => 0.008256756729609
427 => 0.0082364361280055
428 => 0.0082265451829447
429 => 0.0083002641839287
430 => 0.0083430605452674
501 => 0.0082497678632418
502 => 0.0082279106931465
503 => 0.0083222347455045
504 => 0.0083797723629537
505 => 0.0088045978026037
506 => 0.0087731253618664
507 => 0.0088521150119626
508 => 0.0088432219895568
509 => 0.0089260157268957
510 => 0.0090613484962007
511 => 0.0087861791365661
512 => 0.0088339390227581
513 => 0.0088222294016007
514 => 0.0089500719749701
515 => 0.0089504710855297
516 => 0.0088738230765846
517 => 0.0089153752057056
518 => 0.0088921819471533
519 => 0.0089340953001143
520 => 0.0087727050282325
521 => 0.0089692609583812
522 => 0.0090806955049912
523 => 0.009082242773779
524 => 0.0091350618644729
525 => 0.0091887291196933
526 => 0.009291738742656
527 => 0.0091858562372174
528 => 0.0089953839173875
529 => 0.0090091354036574
530 => 0.0088974615522322
531 => 0.0088993388098502
601 => 0.0088893178615621
602 => 0.0089193914817166
603 => 0.00877930449667
604 => 0.0088121826320586
605 => 0.0087661530499805
606 => 0.0088338389634361
607 => 0.0087610201094402
608 => 0.0088222237548668
609 => 0.0088486372193
610 => 0.0089461034716995
611 => 0.0087466242647134
612 => 0.0083398726581137
613 => 0.0084253767772075
614 => 0.0082989094688641
615 => 0.0083106144997463
616 => 0.0083342605249701
617 => 0.0082576160207217
618 => 0.0082722373767864
619 => 0.0082717149990588
620 => 0.0082672134300142
621 => 0.008247275234308
622 => 0.0082183609058822
623 => 0.0083335466909698
624 => 0.0083531190003985
625 => 0.0083966258197623
626 => 0.0085260726032317
627 => 0.0085131378169978
628 => 0.0085342349900045
629 => 0.0084881799797864
630 => 0.0083127508595814
701 => 0.0083222775048235
702 => 0.0082034800860004
703 => 0.00839358790267
704 => 0.0083485678623821
705 => 0.0083195431495358
706 => 0.0083116234877236
707 => 0.0084413911447313
708 => 0.0084802196615669
709 => 0.0084560243355598
710 => 0.0084063990160289
711 => 0.008501694299937
712 => 0.0085271912977255
713 => 0.0085328991352373
714 => 0.008701744107264
715 => 0.0085423356935399
716 => 0.0085807068831067
717 => 0.0088800679505675
718 => 0.008608588771384
719 => 0.0087523973473056
720 => 0.008745358665858
721 => 0.0088189262670826
722 => 0.0087393239752802
723 => 0.0087403107410896
724 => 0.0088056337870761
725 => 0.0087138993500614
726 => 0.0086911846133923
727 => 0.00865980436737
728 => 0.0087283219865365
729 => 0.0087693952004414
730 => 0.0091004151395636
731 => 0.0093142691165797
801 => 0.0093049851514377
802 => 0.0093898232139812
803 => 0.0093516028897777
804 => 0.0092281793809128
805 => 0.0094388482606518
806 => 0.0093721838123421
807 => 0.0093776795484634
808 => 0.0093774749968905
809 => 0.0094218010271092
810 => 0.0093903919722783
811 => 0.009328481501133
812 => 0.0093695805611199
813 => 0.0094916300760983
814 => 0.0098704755155274
815 => 0.010082482442466
816 => 0.0098577124323219
817 => 0.010012755775529
818 => 0.0099197850171967
819 => 0.0099028894647672
820 => 0.010000268141914
821 => 0.010097817267545
822 => 0.010091603809959
823 => 0.010020788153954
824 => 0.0099807861867577
825 => 0.010283694484011
826 => 0.010506872157519
827 => 0.010491652936388
828 => 0.010558825628905
829 => 0.010756046731709
830 => 0.010774078157694
831 => 0.010771806612467
901 => 0.010727113841778
902 => 0.010921303629885
903 => 0.011083300167567
904 => 0.010716768756662
905 => 0.010856339119686
906 => 0.010918996752324
907 => 0.011010996746718
908 => 0.011166216158251
909 => 0.01133482560909
910 => 0.011358668834147
911 => 0.011341750924966
912 => 0.011230548459672
913 => 0.01141504293271
914 => 0.011523115468087
915 => 0.011587470189709
916 => 0.011750663056136
917 => 0.010919383704532
918 => 0.010330962862202
919 => 0.010239072450772
920 => 0.010425935215827
921 => 0.010475209436769
922 => 0.010455347060092
923 => 0.0097930259051671
924 => 0.010235585466962
925 => 0.010711742343989
926 => 0.010730033468846
927 => 0.010968407557456
928 => 0.011046031931991
929 => 0.011237954317729
930 => 0.011225949520246
1001 => 0.011272679567021
1002 => 0.011261937138519
1003 => 0.011617432944071
1004 => 0.012009597609233
1005 => 0.011996018193886
1006 => 0.011939639883387
1007 => 0.012023371288408
1008 => 0.012428127249775
1009 => 0.012390863806934
1010 => 0.012427062067561
1011 => 0.012904292157059
1012 => 0.013524759158595
1013 => 0.013236489942513
1014 => 0.013861951194178
1015 => 0.014255645897825
1016 => 0.01493650017899
1017 => 0.01485125386971
1018 => 0.015116305445028
1019 => 0.014698645184658
1020 => 0.013739612803781
1021 => 0.013587842258479
1022 => 0.013891690733616
1023 => 0.014638672560641
1024 => 0.013868165617601
1025 => 0.014024038168667
1026 => 0.013979146863474
1027 => 0.013976754796596
1028 => 0.01406805026009
1029 => 0.013935621428641
1030 => 0.013396082545827
1031 => 0.013643350036298
1101 => 0.013547868183467
1102 => 0.013653812417827
1103 => 0.01422554975594
1104 => 0.013972771050244
1105 => 0.013706489217869
1106 => 0.014040465728337
1107 => 0.014465732592943
1108 => 0.014439120156834
1109 => 0.014387480907647
1110 => 0.014678568651571
1111 => 0.015159360323825
1112 => 0.015289316380858
1113 => 0.015385247285325
1114 => 0.015398474536285
1115 => 0.015534723441865
1116 => 0.014802078737417
1117 => 0.015964804699026
1118 => 0.01616557535294
1119 => 0.016127838791095
1120 => 0.016350986923199
1121 => 0.016285331082012
1122 => 0.016190206069219
1123 => 0.016543943323572
1124 => 0.01613841210658
1125 => 0.01556281159902
1126 => 0.015247025776486
1127 => 0.015662878021315
1128 => 0.015916824475989
1129 => 0.0160846669285
1130 => 0.016135455953217
1201 => 0.014858951860252
1202 => 0.014170986952306
1203 => 0.014611964570766
1204 => 0.015149987699936
1205 => 0.014799089991769
1206 => 0.014812844517592
1207 => 0.014312556600043
1208 => 0.015194252079647
1209 => 0.015065796464495
1210 => 0.015732224423138
1211 => 0.015573176042389
1212 => 0.016116622172078
1213 => 0.015973514593268
1214 => 0.016567546151872
1215 => 0.016804521423362
1216 => 0.017202439786449
1217 => 0.017495150154155
1218 => 0.017667035280729
1219 => 0.017656715942454
1220 => 0.01833781044677
1221 => 0.017936192813204
1222 => 0.017431666411437
1223 => 0.01742254112059
1224 => 0.017683842493259
1225 => 0.018231458485844
1226 => 0.018373447345233
1227 => 0.018452799747155
1228 => 0.018331268781334
1229 => 0.017895341624294
1230 => 0.017707110488085
1231 => 0.017867488869716
]
'min_raw' => 0.0066131716833159
'max_raw' => 0.018452799747155
'avg_raw' => 0.012532985715235
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$0.006613'
'max' => '$0.018452'
'avg' => '$0.012532'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.0026180556458451
'max_diff' => 0.0095339846299967
'year' => 2036
]
11 => [
'items' => [
101 => 0.017671359890452
102 => 0.018009933532733
103 => 0.018474867459013
104 => 0.018378860441785
105 => 0.018699797506204
106 => 0.019031933604314
107 => 0.019506903141778
108 => 0.019631077766941
109 => 0.019836333700399
110 => 0.020047609478989
111 => 0.02011546556503
112 => 0.02024502388779
113 => 0.020244341051477
114 => 0.020634773777394
115 => 0.021065433164776
116 => 0.021227997113724
117 => 0.021601803950504
118 => 0.020961672842273
119 => 0.021447219641162
120 => 0.021885195007785
121 => 0.021363022720092
122 => 0.022082715568137
123 => 0.022110659610568
124 => 0.022532581474573
125 => 0.022104882834955
126 => 0.021850916748012
127 => 0.022584107325031
128 => 0.022938875149964
129 => 0.022832016193898
130 => 0.022018814261958
131 => 0.021545495857697
201 => 0.020306730297445
202 => 0.021774101614253
203 => 0.022488815378862
204 => 0.022016963325969
205 => 0.022254938055454
206 => 0.023553251015956
207 => 0.024047564531776
208 => 0.023944750775998
209 => 0.023962124608266
210 => 0.024228847208977
211 => 0.025411642107352
212 => 0.024702883987275
213 => 0.025244703013413
214 => 0.025532081871204
215 => 0.025799015370117
216 => 0.025143511061985
217 => 0.024290709588375
218 => 0.024020591563513
219 => 0.021970046938497
220 => 0.021863307185701
221 => 0.021803390927911
222 => 0.021425627397868
223 => 0.021128808741394
224 => 0.020892767525596
225 => 0.020273324887467
226 => 0.020482368593906
227 => 0.019495106316455
228 => 0.020126721735141
301 => 0.018551027302049
302 => 0.019863312447941
303 => 0.019149095305316
304 => 0.01962867290778
305 => 0.019626999706704
306 => 0.01874394529035
307 => 0.018234617931872
308 => 0.018559181148012
309 => 0.018907138679573
310 => 0.018963593618399
311 => 0.01941472964069
312 => 0.019540632007375
313 => 0.0191591419585
314 => 0.018518374537238
315 => 0.018667210194849
316 => 0.018231601782021
317 => 0.017468214793977
318 => 0.018016492656248
319 => 0.018203698824504
320 => 0.018286379733306
321 => 0.017535676306152
322 => 0.017299788990776
323 => 0.017174204563356
324 => 0.018421468151723
325 => 0.018489796066632
326 => 0.018140220793363
327 => 0.019720334176624
328 => 0.019362705853226
329 => 0.019762264311528
330 => 0.018653704918942
331 => 0.018696053380612
401 => 0.018171243598709
402 => 0.018465102008772
403 => 0.018257412356038
404 => 0.018441361153205
405 => 0.018551619303777
406 => 0.019076342969559
407 => 0.019869303949329
408 => 0.018997966751883
409 => 0.018618312657177
410 => 0.018853847922277
411 => 0.019481109371712
412 => 0.020431442576529
413 => 0.019868826192039
414 => 0.02011850578963
415 => 0.020173049674232
416 => 0.019758197181499
417 => 0.020446738779676
418 => 0.02081573381584
419 => 0.021194246370181
420 => 0.021522898215434
421 => 0.021043060132308
422 => 0.02155655566334
423 => 0.021142768909491
424 => 0.020771559414801
425 => 0.020772122386376
426 => 0.020539257247851
427 => 0.020088051699063
428 => 0.020004842473131
429 => 0.020437707374594
430 => 0.020784824033108
501 => 0.02081341422368
502 => 0.021005595841332
503 => 0.02111932694303
504 => 0.022234046349606
505 => 0.022682395716373
506 => 0.023230628835237
507 => 0.02344419653176
508 => 0.024086958730038
509 => 0.023567876052335
510 => 0.023455569249831
511 => 0.021896438402722
512 => 0.022151745991592
513 => 0.022560518074891
514 => 0.021903178903816
515 => 0.022320109309242
516 => 0.022402420203067
517 => 0.021880842770316
518 => 0.022159439813179
519 => 0.021419568665602
520 => 0.019885431118512
521 => 0.020448446713322
522 => 0.020863015700102
523 => 0.020271374639979
524 => 0.021331868340579
525 => 0.020712349813722
526 => 0.020515992182842
527 => 0.01974993105823
528 => 0.02011148242065
529 => 0.02060048581524
530 => 0.02029833857013
531 => 0.020925339471371
601 => 0.02181333996256
602 => 0.022446181993926
603 => 0.022494763747063
604 => 0.022087888718018
605 => 0.022739908548704
606 => 0.022744657801344
607 => 0.022009176768752
608 => 0.021558698731464
609 => 0.021456349173579
610 => 0.02171203843599
611 => 0.022022492403398
612 => 0.022511991781604
613 => 0.022807786004004
614 => 0.023579060458887
615 => 0.023787745212207
616 => 0.024017026486842
617 => 0.02432341697748
618 => 0.024691317318401
619 => 0.023886372317045
620 => 0.023918354282554
621 => 0.023168800642512
622 => 0.022367795081263
623 => 0.022975658455499
624 => 0.023770358956635
625 => 0.023588053783609
626 => 0.023567540727486
627 => 0.023602037998037
628 => 0.023464585851105
629 => 0.022842894884746
630 => 0.022530685573432
701 => 0.022933515238117
702 => 0.023147601277012
703 => 0.023479630053072
704 => 0.023438700498146
705 => 0.024293970967991
706 => 0.024626303210536
707 => 0.024541278401594
708 => 0.024556925012676
709 => 0.025158596663547
710 => 0.025827779282528
711 => 0.026454557111628
712 => 0.027092142440123
713 => 0.026323508441244
714 => 0.025933243499367
715 => 0.026335897301222
716 => 0.026122243526195
717 => 0.027349961491326
718 => 0.02743496601949
719 => 0.028662595206638
720 => 0.029827761488606
721 => 0.029095941423025
722 => 0.029786014782969
723 => 0.030532385384255
724 => 0.031972255368401
725 => 0.031487357812977
726 => 0.031115933884836
727 => 0.03076494006745
728 => 0.031495302482731
729 => 0.032434902062165
730 => 0.032637282812203
731 => 0.03296521694266
801 => 0.032620434302362
802 => 0.033035687016039
803 => 0.034501711566607
804 => 0.034105578792087
805 => 0.033543006570747
806 => 0.034700292154926
807 => 0.035119109309006
808 => 0.03805858743259
809 => 0.0417697999874
810 => 0.040233333620573
811 => 0.039279599365224
812 => 0.03950374953811
813 => 0.040858958730653
814 => 0.041294208911108
815 => 0.040111048880897
816 => 0.040528961005639
817 => 0.042831697901181
818 => 0.044067042364995
819 => 0.04238927865424
820 => 0.037760395117338
821 => 0.033492353097451
822 => 0.034624430033562
823 => 0.034496087641445
824 => 0.036970091163427
825 => 0.034096131156424
826 => 0.034144521272261
827 => 0.036669684567063
828 => 0.035996014292268
829 => 0.034904754724271
830 => 0.033500320499958
831 => 0.030904093941873
901 => 0.028604543678244
902 => 0.033114491300019
903 => 0.03292001415776
904 => 0.032638382435872
905 => 0.033265123357199
906 => 0.036308399367647
907 => 0.036238242005483
908 => 0.035791936661997
909 => 0.036130455331476
910 => 0.034845410764797
911 => 0.035176596009551
912 => 0.033491677017789
913 => 0.034253330770498
914 => 0.034902413371347
915 => 0.0350327263133
916 => 0.035326328025463
917 => 0.032817533540899
918 => 0.033943908610132
919 => 0.034605548436235
920 => 0.031616235631239
921 => 0.034546459333454
922 => 0.032773861010487
923 => 0.032172214516139
924 => 0.032982252259881
925 => 0.032666579763357
926 => 0.032395183087757
927 => 0.032243739079585
928 => 0.032838541397986
929 => 0.03281079315889
930 => 0.031837581119832
1001 => 0.030568065688078
1002 => 0.030994156737398
1003 => 0.030839353864555
1004 => 0.030278328283404
1005 => 0.030656391786613
1006 => 0.028991591452043
1007 => 0.026127389005207
1008 => 0.02801956887448
1009 => 0.027946722007809
1010 => 0.027909989314291
1011 => 0.029331910190039
1012 => 0.029195225307132
1013 => 0.028947140906234
1014 => 0.030273772018832
1015 => 0.029789533817027
1016 => 0.03128184185412
1017 => 0.032264772443782
1018 => 0.03201546945177
1019 => 0.032939920422263
1020 => 0.031003973014591
1021 => 0.031647017086691
1022 => 0.03177954757873
1023 => 0.03025740159683
1024 => 0.029217588644386
1025 => 0.029148244975194
1026 => 0.027345352610708
1027 => 0.028308443159378
1028 => 0.029155922986812
1029 => 0.028750045916562
1030 => 0.028621557361354
1031 => 0.029277977524147
1101 => 0.029328986992654
1102 => 0.028165965704942
1103 => 0.028407794658752
1104 => 0.029416261596856
1105 => 0.028382383879371
1106 => 0.026373728357264
1107 => 0.025875554015947
1108 => 0.02580908837564
1109 => 0.024458000051281
1110 => 0.025908844407547
1111 => 0.025275511965825
1112 => 0.027276201560736
1113 => 0.026133418394036
1114 => 0.026084155295772
1115 => 0.026009686897419
1116 => 0.024846749363888
1117 => 0.025101358775195
1118 => 0.02594771923649
1119 => 0.026249710184013
1120 => 0.026218210054047
1121 => 0.025943571608499
1122 => 0.026069299682495
1123 => 0.02566428574959
1124 => 0.025521266900246
1125 => 0.02506986007128
1126 => 0.024406416737021
1127 => 0.024498672601784
1128 => 0.023184217757224
1129 => 0.022468032994509
1130 => 0.022269802491353
1201 => 0.022004720377909
1202 => 0.022299744221423
1203 => 0.023180494071802
1204 => 0.02211812289074
1205 => 0.020296762017484
1206 => 0.020406228909415
1207 => 0.020652168514571
1208 => 0.020193861687416
1209 => 0.01976011273829
1210 => 0.02013722225839
1211 => 0.019365487645816
1212 => 0.020745428955495
1213 => 0.020708105410309
1214 => 0.021222462195559
1215 => 0.02154410004904
1216 => 0.020802828928258
1217 => 0.020616401245992
1218 => 0.020722598926477
1219 => 0.018967387826322
1220 => 0.021079024002375
1221 => 0.021097285519713
1222 => 0.020940919321375
1223 => 0.022065300395671
1224 => 0.024438095165686
1225 => 0.023545354327758
1226 => 0.023199658092077
1227 => 0.022542489295346
1228 => 0.023418127698168
1229 => 0.023350892330918
1230 => 0.023046828501959
1231 => 0.022862929749468
]
'min_raw' => 0.017174204563356
'max_raw' => 0.044067042364995
'avg_raw' => 0.030620623464176
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$0.017174'
'max' => '$0.044067'
'avg' => '$0.03062'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 0.01056103288004
'max_diff' => 0.025614242617841
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.00053907865671976
]
1 => [
'year' => 2028
'avg' => 0.00092521547058335
]
2 => [
'year' => 2029
'avg' => 0.0025275219117694
]
3 => [
'year' => 2030
'avg' => 0.0019499793908315
]
4 => [
'year' => 2031
'avg' => 0.0019151214200821
]
5 => [
'year' => 2032
'avg' => 0.0033578105602961
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.00053907865671976
'min' => '$0.000539'
'max_raw' => 0.0033578105602961
'max' => '$0.003357'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.0033578105602961
]
1 => [
'year' => 2033
'avg' => 0.0086366340406697
]
2 => [
'year' => 2034
'avg' => 0.0054743137121865
]
3 => [
'year' => 2035
'avg' => 0.0064569655773144
]
4 => [
'year' => 2036
'avg' => 0.012532985715235
]
5 => [
'year' => 2037
'avg' => 0.030620623464176
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.0033578105602961
'min' => '$0.003357'
'max_raw' => 0.030620623464176
'max' => '$0.03062'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 0.030620623464176
]
]
]
]
'prediction_2025_max_price' => '$0.000921'
'last_price' => 0.00089373
'sma_50day_nextmonth' => '$0.000844'
'sma_200day_nextmonth' => '$0.001688'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'increase'
'sma_200day_direction_label' => 'aumentar'
'sma_200day_date_nextmonth' => '4 de fev. de 2026'
'sma_50day_date_nextmonth' => '4 de fev. de 2026'
'daily_sma3' => '$0.000795'
'daily_sma3_action' => 'BUY'
'daily_sma5' => '$0.00075'
'daily_sma5_action' => 'BUY'
'daily_sma10' => '$0.000895'
'daily_sma10_action' => 'SELL'
'daily_sma21' => '$0.000912'
'daily_sma21_action' => 'SELL'
'daily_sma50' => '$0.001045'
'daily_sma50_action' => 'SELL'
'daily_sma100' => '$0.001359'
'daily_sma100_action' => 'SELL'
'daily_sma200' => '$0.001641'
'daily_sma200_action' => 'SELL'
'daily_ema3' => '$0.00082'
'daily_ema3_action' => 'BUY'
'daily_ema5' => '$0.000814'
'daily_ema5_action' => 'BUY'
'daily_ema10' => '$0.000851'
'daily_ema10_action' => 'BUY'
'daily_ema21' => '$0.00092'
'daily_ema21_action' => 'SELL'
'daily_ema50' => '$0.001074'
'daily_ema50_action' => 'SELL'
'daily_ema100' => '$0.0013033'
'daily_ema100_action' => 'SELL'
'daily_ema200' => '$0.001485'
'daily_ema200_action' => 'SELL'
'weekly_sma21' => '$0.001682'
'weekly_sma21_action' => 'SELL'
'weekly_sma50' => '$0.001293'
'weekly_sma50_action' => 'SELL'
'weekly_sma100' => '$0.00264'
'weekly_sma100_action' => 'SELL'
'weekly_sma200' => '—'
'weekly_sma200_action' => '—'
'weekly_ema3' => '$0.000837'
'weekly_ema3_action' => 'BUY'
'weekly_ema5' => '$0.000862'
'weekly_ema5_action' => 'BUY'
'weekly_ema10' => '$0.001022'
'weekly_ema10_action' => 'SELL'
'weekly_ema21' => '$0.001279'
'weekly_ema21_action' => 'SELL'
'weekly_ema50' => '$0.00169'
'weekly_ema50_action' => 'SELL'
'weekly_ema100' => '$0.003297'
'weekly_ema100_action' => 'SELL'
'weekly_ema200' => '$0.006886'
'weekly_ema200_action' => 'SELL'
'rsi_14' => '48.93'
'rsi_14_action' => 'NEUTRAL'
'stoch_rsi_14' => 23
'stoch_rsi_14_action' => 'NEUTRAL'
'momentum_10' => -0
'momentum_10_action' => 'SELL'
'vwma_10' => '0.001168'
'vwma_10_action' => 'SELL'
'hma_9' => '0.000721'
'hma_9_action' => 'BUY'
'stochastic_fast_14' => 23.56
'stochastic_fast_14_action' => 'NEUTRAL'
'cci_20' => 5.04
'cci_20_action' => 'NEUTRAL'
'adx_14' => 11.87
'adx_14_action' => 'NEUTRAL'
'ao_5_34' => '-0.000278'
'ao_5_34_action' => 'NEUTRAL'
'macd_12_26' => -0
'macd_12_26_action' => 'NEUTRAL'
'williams_percent_r_14' => -76.44
'williams_percent_r_14_action' => 'NEUTRAL'
'ultimate_oscillator' => 53.23
'ultimate_oscillator_action' => 'NEUTRAL'
'ichimoku_cloud' => '0.000055'
'ichimoku_cloud_action' => 'NEUTRAL'
'sell_signals' => 19
'buy_signals' => 12
'sell_pct' => 61.29
'buy_pct' => 38.71
'overall_action' => 'bearish'
'overall_action_label' => 'Baixista'
'overall_action_dir' => -1
'last_updated' => 1767712636
'last_updated_date' => '6 de janeiro de 2026'
]
Previsão de preço de Pavia para 2026
A previsão de preço para Pavia em 2026 sugere que o preço médio poderia variar entre $0.0003087 na extremidade inferior e $0.000921 na extremidade superior. No mercado de criptomoedas, comparado ao preço médio de hoje, Pavia poderia potencialmente ganhar 3.13% até 2026 se PAVIA atingir a meta de preço prevista.
Previsão de preço de Pavia 2027-2032
A previsão de preço de PAVIA para 2027-2032 está atualmente dentro de uma faixa de preço entre $0.000539 na extremidade inferior e $0.003357 na extremidade superior. Considerando a volatilidade de preços no mercado, se Pavia atingir a meta de preço superior, poderia ganhar 275.71% até 2032 em comparação com o preço de hoje.
| Previsão de Preço de Pavia | Potencial Mínimo ($) | Preço Médio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2027 | $0.000297 | $0.000539 | $0.00078 |
| 2028 | $0.000536 | $0.000925 | $0.001313 |
| 2029 | $0.001178 | $0.002527 | $0.003876 |
| 2030 | $0.0010022 | $0.001949 | $0.002897 |
| 2031 | $0.001184 | $0.001915 | $0.002645 |
| 2032 | $0.0018087 | $0.003357 | $0.0049068 |
Previsão de preço de Pavia 2032-2037
A previsão de preço de Pavia para 2032-2037 é atualmente estimada entre $0.003357 na extremidade inferior e $0.03062 na extremidade superior. Comparado ao preço atual, Pavia poderia potencialmente ganhar 3326.16% até 2037 se atingir a meta de preço superior. Por favor, note que esta informação é apenas para fins gerais e não deve ser considerada como aconselhamento de investimento a longo prazo.
| Previsão de Preço de Pavia | Potencial Mínimo ($) | Preço Médio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2032 | $0.0018087 | $0.003357 | $0.0049068 |
| 2033 | $0.004203 | $0.008636 | $0.01307 |
| 2034 | $0.003379 | $0.005474 | $0.007569 |
| 2035 | $0.003995 | $0.006456 | $0.008918 |
| 2036 | $0.006613 | $0.012532 | $0.018452 |
| 2037 | $0.017174 | $0.03062 | $0.044067 |
Pavia Histograma de preços potenciais
Previsão de preço de Pavia baseada na análise técnica
Em 6 de janeiro de 2026, o sentimento geral de previsão de preço para Pavia é Baixista, com 12 indicadores técnicos mostrando sinais de alta e 19 indicando sinais de baixa. A previsão de preço de PAVIA foi atualizada pela última vez em 6 de janeiro de 2026.
Médias Móveis Simples de 50 e 200 dias e Índice de Força Relativa de 14 dias - RSI (14) de Pavia
De acordo com nossos indicadores técnicos, o SMA de 200 dias de Pavia está projetado para aumentar no próximo mês, alcançando $0.001688 até 4 de fev. de 2026. O SMA de 50 dias de curto prazo para Pavia é esperado para alcançar $0.000844 até 4 de fev. de 2026.
O oscilador de momentum Índice de Força Relativa (RSI) é uma ferramenta comumente usada para identificar se uma criptomoeda está sobrevendida (abaixo de 30) ou sobrecomprada (acima de 70). No momento, o RSI está em 48.93, sugerindo que o mercado de PAVIA está em um estado NEUTRAL.
Médias Móveis e Osciladores Populares de PAVIA para Sábado, 19 de Outubro de 2024
Médias móveis (MA) são indicadores amplamente utilizados nos mercados financeiros, projetados para suavizar movimentos de preços ao longo de um período definido. Como indicadores atrasados, eles se baseiam em dados históricos de preços. A tabela abaixo destaca dois tipos: a média móvel simples (SMA) e a média móvel exponencial (EMA).
Média Móvel Simples Diária (SMA)
| Período | Valor | Ação |
|---|---|---|
| SMA 3 | $0.000795 | BUY |
| SMA 5 | $0.00075 | BUY |
| SMA 10 | $0.000895 | SELL |
| SMA 21 | $0.000912 | SELL |
| SMA 50 | $0.001045 | SELL |
| SMA 100 | $0.001359 | SELL |
| SMA 200 | $0.001641 | SELL |
Média Móvel Exponencial Diária (EMA)
| Período | Valor | Ação |
|---|---|---|
| EMA 3 | $0.00082 | BUY |
| EMA 5 | $0.000814 | BUY |
| EMA 10 | $0.000851 | BUY |
| EMA 21 | $0.00092 | SELL |
| EMA 50 | $0.001074 | SELL |
| EMA 100 | $0.0013033 | SELL |
| EMA 200 | $0.001485 | SELL |
Média Móvel Simples Semanal (SMA)
| Período | Valor | Ação |
|---|---|---|
| SMA 21 | $0.001682 | SELL |
| SMA 50 | $0.001293 | SELL |
| SMA 100 | $0.00264 | SELL |
| SMA 200 | — | — |
Média Móvel Exponencial Semanal (EMA)
| Período | Valor | Ação |
|---|---|---|
| EMA 21 | $0.001279 | SELL |
| EMA 50 | $0.00169 | SELL |
| EMA 100 | $0.003297 | SELL |
| EMA 200 | $0.006886 | SELL |
Osciladores de Pavia
Um oscilador é uma ferramenta de análise técnica que define limites altos e baixos entre dois extremos, criando um indicador de tendência que flutua dentro desses limites. Os traders usam esse indicador para identificar condições de sobrecompra ou sobrevenda de curto prazo.
| Período | Valor | Ação |
|---|---|---|
| RSI (14) | 48.93 | NEUTRAL |
| Stoch RSI (14) | 23 | NEUTRAL |
| Estocástico Rápido (14) | 23.56 | NEUTRAL |
| Índice de Canal de Commodities (20) | 5.04 | NEUTRAL |
| Índice Direcional Médio (14) | 11.87 | NEUTRAL |
| Oscilador Impressionante (5, 34) | -0.000278 | NEUTRAL |
| Momentum (10) | -0 | SELL |
| MACD (12, 26) | -0 | NEUTRAL |
| Williams Percent Range (14) | -76.44 | NEUTRAL |
| Oscilador Ultimate (7, 14, 28) | 53.23 | NEUTRAL |
| VWMA (10) | 0.001168 | SELL |
| Média Móvel de Hull (9) | 0.000721 | BUY |
| Nuvem Ichimoku B/L (9, 26, 52, 26) | 0.000055 | NEUTRAL |
Previsão do preço de Pavia com base nos fluxos financeiros mundiais
Definições dos fluxos financeiros mundiais, usadas na previsão do preço do Pavia
M0: o total de todas as moedas físicas, mais as contas no Banco Central que podem ser trocadas por moedas físicas.
M1: o valor de M0, mais o valor em contas de demanda, incluindo contas 'correntes'.
M2: o valor de M1, mais a maioria das contas de poupança, do mercado de moedas e de certificados de depósito (CD) de menos de US$ 100.000.
Previsões de preço de Pavia por empresas de Internet ou nichos tecnológicos
| Comparação | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Facebook stock | $0.001255 | $0.001764 | $0.002479 | $0.003484 | $0.004896 | $0.006879 |
| Amazon.com stock | $0.001864 | $0.003891 | $0.008118 | $0.01694 | $0.035347 | $0.073754 |
| Apple stock | $0.001267 | $0.001798 | $0.00255 | $0.003617 | $0.005131 | $0.007278 |
| Netflix stock | $0.00141 | $0.002225 | $0.00351 | $0.005539 | $0.00874 | $0.01379 |
| Google stock | $0.001157 | $0.001498 | $0.00194 | $0.002513 | $0.003254 | $0.004215 |
| Tesla stock | $0.002026 | $0.004592 | $0.010411 | $0.0236023 | $0.0535046 | $0.12129 |
| Kodak stock | $0.00067 | $0.0005025 | $0.000376 | $0.000282 | $0.000211 | $0.000158 |
| Nokia stock | $0.000592 | $0.000392 | $0.000259 | $0.000172 | $0.000114 | $0.000075 |
Este cálculo mostra quanto a criptomoeda pode custar, se assumirmos que sua capitalização se comportará da mesma forma que a de algumas empresas de Internet ou nichos tecnológicos. Se você extrapolar os dados, poderá obter uma imagem em potencial do preço futuro para 2024, 2025, 2026, 2027, 2028, 2029 e 2030.
Visão geral da previsão para Pavia
Você pode fazer perguntas como: 'Devo investir em Pavia agora?', 'Devo comprar PAVIA hoje?', 'Pavia será um bom ou mau investimento no curto ou no longo prazo?'.
Atualizamos a previsão para Pavia regularmente com novos valores. Veja nossas previsões semelhantes. Fazemos previsões de preços futuros para uma enorme quantidade de moedas digitais, como Pavia, com métodos de análise técnica.
Se você estiver tentando encontrar criptomoedas com bom retorno, você deve explorar o máximo de fontes de informações disponíveis sobre Pavia para poder tomar sozinho uma decisão de tão grande responsabilidade sobre o seu investimento.
O preço de Pavia é de $0.0008937 USD hoje, mas o preço pode tanto subir quanto descer e seu investimento pode ser perdido, porque criptomoedas são ativos de alto risco
Previsão do preço de Pavia com base no padrão de crescimento do Bitcoin
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| Se Pavia tiver 1% da média anterior do crescimento anual do Bitcoin | $0.000916 | $0.00094 | $0.000965 | $0.00099 |
| Se Pavia tiver 2% da média anterior do crescimento anual do Bitcoin | $0.00094 | $0.000989 | $0.00104 | $0.001094 |
| Se Pavia tiver 5% da média anterior do crescimento anual do Bitcoin | $0.0010098 | $0.001141 | $0.001289 | $0.001457 |
| Se Pavia tiver 10% da média anterior do crescimento anual do Bitcoin | $0.001126 | $0.001418 | $0.001787 | $0.002252 |
| Se Pavia tiver 20% da média anterior do crescimento anual do Bitcoin | $0.001358 | $0.002064 | $0.003137 | $0.004768 |
| Se Pavia tiver 50% da média anterior do crescimento anual do Bitcoin | $0.002055 | $0.004726 | $0.010869 | $0.024995 |
| Se Pavia tiver 100% da média anterior do crescimento anual do Bitcoin | $0.003216 | $0.011578 | $0.041674 | $0.149999 |
Perguntas Frequentes sobre Pavia
PAVIA é um bom investimento?
A decisão de adquirir Pavia depende inteiramente da sua tolerância individual ao risco. Como você pode perceber, o valor de Pavia experimentou uma escalada de 14.6258% nas últimas 24 horas, e Pavia registrou um declínio de durante os últimos 30 dias. Consequentemente, a decisão de investir ou não em Pavia dependerá de quão alinhado esse investimento está com suas aspirações de negociação.
Pavia pode subir?
Parece que o valor médio de Pavia pode potencialmente subir para $0.000921 até o final deste ano. Observando as perspectivas de Pavia em um horizonte de cinco anos mais longo, a moeda digital poderia potencialmente crescer até $0.002897. No entanto, dada a imprevisibilidade do mercado, é vital conduzir uma pesquisa aprofundada antes de investir quaisquer fundos em um projeto, rede ou ativo específico.
Qual será o preço de Pavia na próxima semana?
Com base na nossa nova previsão experimental de Pavia, o preço de Pavia aumentará 0.86% na próxima semana e atingirá $0.000901 até 13 de janeiro de 2026.
Qual será o preço de Pavia no próximo mês?
Com base na nossa nova previsão experimental de Pavia, o preço de Pavia diminuirá -11.62% no próximo mês e atingirá $0.000789 até 5 de fevereiro de 2026.
Até onde o preço de Pavia pode subir este ano em 2026?
De acordo com nossa previsão mais recente sobre o valor de Pavia em 2026, espera-se que PAVIA fluctue dentro do intervalo de $0.0003087 e $0.000921. No entanto, é crucial lembrar que o mercado de criptomoedas é excepcionalmente instável, e essa previsão de preço de Pavia não considera flutuações repentinas e extremas de preço.
Onde estará Pavia em 5 anos?
O futuro de Pavia parece seguir uma tendência de alta, com um preço máximo de $0.002897 projetada após um período de cinco anos. Com base na previsão de Pavia para 2030, o valor de Pavia pode potencialmente atingir seu pico mais alto de aproximadamente $0.002897, enquanto seu pico mais baixo está previsto para cerca de $0.0010022.
Quanto será Pavia em 2026?
Com base na nossa nova simulação experimental de previsão de preços de Pavia, espera-se que o valor de PAVIA em 2026 aumente 3.13% para $0.000921 se o melhor cenário ocorrer. O preço ficará entre $0.000921 e $0.0003087 durante 2026.
Quanto será Pavia em 2027?
De acordo com nossa última simulação experimental para previsão de preços de Pavia, o valor de PAVIA pode diminuir -12.62% para $0.00078 em 2027, assumindo as condições mais favoráveis. O preço está projetado para flutuar entre $0.00078 e $0.000297 ao longo do ano.
Quanto será Pavia em 2028?
Nosso novo modelo experimental de previsão de preços de Pavia sugere que o valor de PAVIA em 2028 pode aumentar 47.02%, alcançando $0.001313 no melhor cenário. O preço é esperado para variar entre $0.001313 e $0.000536 durante o ano.
Quanto será Pavia em 2029?
Com base no nosso modelo de previsão experimental, o valor de Pavia pode experimentar um 333.75% crescimento em 2029, potencialmente alcançando $0.003876 sob condições ótimas. A faixa de preço prevista para 2029 está entre $0.003876 e $0.001178.
Quanto será Pavia em 2030?
Usando nossa nova simulação experimental para previsões de preços de Pavia, espera-se que o valor de PAVIA em 2030 aumente 224.23%, alcançando $0.002897 no melhor cenário. O preço está previsto para variar entre $0.002897 e $0.0010022 ao longo de 2030.
Quanto será Pavia em 2031?
Nossa simulação experimental indica que o preço de Pavia poderia aumentar 195.98% em 2031, potencialmente atingindo $0.002645 sob condições ideais. O preço provavelmente oscilará entre $0.002645 e $0.001184 durante o ano.
Quanto será Pavia em 2032?
Com base nos achados da nossa mais recente previsão experimental de preços de Pavia, PAVIA poderia ver um 449.04% aumento em valor, atingindo $0.0049068 se o cenário mais positivo se desenrolar em 2032. O preço é esperado para permanecer dentro de uma faixa de $0.0049068 e $0.0018087 ao longo do ano.
Quanto será Pavia em 2033?
De acordo com nossa previsão experimental de preços de Pavia, espera-se que o valor de PAVIA seja aumentar 1362.43% em 2033, com o preço potencial mais alto sendo $0.01307. Ao longo do ano, o preço de PAVIA poderia variar entre $0.01307 e $0.004203.
Quanto será Pavia em 2034?
Os resultados da nossa nova simulação de previsão de preços de Pavia sugerem que PAVIA pode aumentar 746.96% em 2034, atingindo potencialmente $0.007569 nas melhores circunstâncias. A faixa de preço prevista para o ano é entre $0.007569 e $0.003379.
Quanto será Pavia em 2035?
Com base em nossa previsão experimental para o preço de Pavia, PAVIA poderia aumentar 897.93%, com o valor potencialmente atingindo $0.008918 em 2035. A faixa de preço esperada para o ano está entre $0.008918 e $0.003995.
Quanto será Pavia em 2036?
Nossa recente simulação de previsão de preços de Pavia sugere que o valor de PAVIA pode aumentar 1964.7% em 2036, possivelmente atingindo $0.018452 se as condições forem ideais. A faixa de preço esperada para 2036 está entre $0.018452 e $0.006613.
Quanto será Pavia em 2037?
De acordo com a simulação experimental, o valor de Pavia poderia aumentar 4830.69% em 2037, com um pico de $0.044067 sob condições favoráveis. O preço é esperado para cair entre $0.044067 e $0.017174 ao longo do ano.
Previsões relacionadas
Previsão de Preço do SolPod
Previsão de Preço do zuzalu
Previsão de Preço do SOFT COQ INU
Previsão de Preço do All Street Bets
Previsão de Preço do MagicRing
Previsão de Preço do AI INU
Previsão de Preço do Wall Street Baby On Solana
Previsão de Preço do Meta Masters Guild Games
Previsão de Preço do Morfey
Previsão de Preço do PANTIESPrevisão de Preço do Celer Bridged BUSD (zkSync)
Previsão de Preço do Bridged BUSD
Previsão de Preço do Multichain Bridged BUSD (Moonriver)
Previsão de Preço do tooker kurlson
Previsão de Preço do dogwifsaudihatPrevisão de Preço do Harmony Horizen Bridged BUSD (Harmony)
Previsão de Preço do IoTeX Bridged BUSD (IoTeX)
Previsão de Preço do MIMANY
Previsão de Preço do The Open League MEME
Previsão de Preço do Sandwich Cat
Previsão de Preço do Hege
Previsão de Preço do DexNet
Previsão de Preço do SolDocs
Previsão de Preço do Secret Society
Previsão de Preço do duk
Como ler e prever os movimentos de preço de Pavia?
Traders de Pavia utilizam indicadores e padrões de gráfico para prever a direção do mercado. Eles também identificam níveis-chave de suporte e resistência para avaliar quando uma tendência de baixa pode desacelerar ou uma tendência de alta pode estagnar.
Indicadores de Previsão de Preço de Pavia
Médias móveis são ferramentas populares para a previsão de preço de Pavia. Uma média móvel simples (SMA) calcula o preço médio de fechamento de PAVIA em um período específico, como uma SMA de 12 dias. Uma média móvel exponencial (EMA) dá mais peso aos preços recentes, reagindo mais rapidamente às mudanças de preço.
Médias móveis comumente usadas no mercado de criptomoedas incluem as de 50 dias, 100 dias e 200 dias, que ajudam a identificar níveis-chave de resistência e suporte. Um movimento de preço de PAVIA acima dessas médias é visto como altista, enquanto uma queda abaixo indica fraqueza.
Traders também usam RSI e níveis de retração de Fibonacci para avaliar a direção futura de PAVIA.
Como ler gráficos de Pavia e prever movimentos de preço?
A maioria dos traders prefere gráficos de velas em vez de gráficos de linha simples porque eles fornecem informações mais detalhadas. Velas podem representar a ação de preço de Pavia em diferentes períodos de tempo, como 5 minutos para tendências de curto prazo e semanal para tendências de longo prazo. Opções populares incluem gráficos de 1 hora, 4 horas e 1 dia.
Por exemplo, um gráfico de velas de 1 hora mostra os preços de abertura, fechamento, máximo e mínimo de PAVIA dentro de cada hora. A cor da vela é crucial: verde indica que o preço fechou mais alto do que abriu, enquanto vermelho significa o oposto. Alguns gráficos usam velas vazias e preenchidas para transmitir a mesma informação.
O que afeta o preço de Pavia?
A ação de preço de Pavia é impulsionada pela oferta e demanda, influenciada por fatores como reduções pela metade das recompensas de bloco, hard forks e atualizações de protocolo. Eventos do mundo real, como regulamentações, adoção por empresas e governos e hacks de exchanges de criptomoedas, também impactam o preço de PAVIA. A capitalização de mercado de Pavia pode mudar rapidamente.
Traders frequentemente monitoram a atividade de "baleias" de PAVIA, grandes detentores de Pavia, pois suas ações podem influenciar significativamente os movimentos de preço no relativamente pequeno mercado de Pavia.
Padrões de previsão de preço altistas e baixistas
Traders frequentemente identificam padrões de velas para ganhar vantagem em previsões de preço de criptomoedas. Certas formações indicam tendências altistas, enquanto outras sugerem movimentos baixistas.
Padrões de velas altistas comumente seguidos:
- Martelo
- Engolfo de Alta
- Linha de Perfuração
- Estrela da Manhã
- Três Soldados Brancos
Padrões de velas baixistas comuns:
- Harami de Baixa
- Nuvem Negra
- Estrela da Noite
- Estrela Cadente
- Homem Enforcado


