Previsão de Preço Parcl - Projeção PRCL
Previsão de Preço Parcl até $0.03995 até 2026
| Ano | Preço Mínimo | Preço Máximo |
|---|---|---|
| 2026 | $0.013383 | $0.03995 |
| 2027 | $0.012884 | $0.033846 |
| 2028 | $0.023252 | $0.056951 |
| 2029 | $0.051078 | $0.168024 |
| 2030 | $0.043439 | $0.125597 |
| 2031 | $0.051359 | $0.114656 |
| 2032 | $0.078396 | $0.212681 |
| 2033 | $0.182175 | $0.5665057 |
| 2034 | $0.14646 | $0.328089 |
| 2035 | $0.173161 | $0.386571 |
Calculadora de lucro do investimento
Se você abrir um short de $10,000.00 em Parcl hoje e fechar em Apr 06, 2026, nossa previsão mostra que pode lucrar cerca de $3,954.66, com um retorno de 39.55% nos próximos 90 dias.
Previsão de preço de longo prazo de Parcl para os anos 2027, 2028, 2029, 2030, 2031, 2032 e 2037
[
'name' => 'Parcl'
'name_with_ticker' => 'Parcl <small>PRCL</small>'
'name_lang' => 'Parcl'
'name_lang_with_ticker' => 'Parcl <small>PRCL</small>'
'name_with_lang' => 'Parcl'
'name_with_lang_with_ticker' => 'Parcl <small>PRCL</small>'
'image' => '/uploads/coins/parcl.png?1737615227'
'price_for_sd' => 0.03873
'ticker' => 'PRCL'
'marketcap' => '$17.63M'
'low24h' => '$0.02064'
'high24h' => '$0.05135'
'volume24h' => '$53.7M'
'current_supply' => '452.69M'
'max_supply' => '1000M'
'algo' => null
'proof' => null
'ico_price_and_roi' => '—'
'price' => '$0.03873'
'change_24h_pct' => '87.029%'
'ath_price' => '$0.7369'
'ath_days' => 624
'ath_exchange' => null
'ath_pair' => null
'ath_date' => '22 de abr. de 2024'
'ath_pct' => '-94.57%'
'fdv' => '$38.94M'
'new_prediction' => true
'change_24h_pct_is_increased' => true
'change_30d_pct' => null
'change_30d_pct_is_increased' => false
'max_price' => '$1.91'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.0390687'
'next_week_prediction_price_date' => '13 de janeiro de 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.034236'
'next_month_prediction_price_date' => '5 de fevereiro de 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.013383'
'current_year_max_price_prediction' => '$0.03995'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.043439'
'grand_prediction_max_price' => '$0.125597'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.039471310701201
107 => 0.039618682247274
108 => 0.039950717865553
109 => 0.037113509861279
110 => 0.038387332959147
111 => 0.039135584688062
112 => 0.035754956155196
113 => 0.039068760531516
114 => 0.037064120382143
115 => 0.036383715406761
116 => 0.037299791069573
117 => 0.036942795492862
118 => 0.03663587165949
119 => 0.036464602886847
120 => 0.037137267750036
121 => 0.037105887130159
122 => 0.03600527685536
123 => 0.034569575618497
124 => 0.035051444078875
125 => 0.034876376749679
126 => 0.034241910164537
127 => 0.034669464037135
128 => 0.032786733162277
129 => 0.02954759254792
130 => 0.031687468055325
131 => 0.031605085176026
201 => 0.031563543992518
202 => 0.033171601294518
203 => 0.033017023689124
204 => 0.032736463821708
205 => 0.034236757462554
206 => 0.033689130101848
207 => 0.035376788590311
208 => 0.03648838962172
209 => 0.036206451643629
210 => 0.037251917786503
211 => 0.035062545354964
212 => 0.035789767054346
213 => 0.035939646438702
214 => 0.034218244071911
215 => 0.03304231449706
216 => 0.032963893400996
217 => 0.030924993571283
218 => 0.032014157402891
219 => 0.032972576502045
220 => 0.032513568129877
221 => 0.032368259791734
222 => 0.033110608577775
223 => 0.033168295436238
224 => 0.031853028949907
225 => 0.032126514501488
226 => 0.03326699471477
227 => 0.032097777326284
228 => 0.029826178931032
301 => 0.029262791121705
302 => 0.029187624802643
303 => 0.027659672380897
304 => 0.029300439389068
305 => 0.028584200620179
306 => 0.030846790309241
307 => 0.029554411213361
308 => 0.029498699333583
309 => 0.029414482656142
310 => 0.028099310887825
311 => 0.028387249921561
312 => 0.029344403124049
313 => 0.0296859261698
314 => 0.029650302518113
315 => 0.029339712551184
316 => 0.029481899047566
317 => 0.029023866801661
318 => 0.028862126082515
319 => 0.028351627882601
320 => 0.027601336557454
321 => 0.02770566916802
322 => 0.0262191457285
323 => 0.025409208862879
324 => 0.025185029013271
325 => 0.024885246349255
326 => 0.025218890262863
327 => 0.026214934594367
328 => 0.02501349380798
329 => 0.022953707850992
330 => 0.023077504496711
331 => 0.023355638804089
401 => 0.022837337362333
402 => 0.022346808545454
403 => 0.02277328355387
404 => 0.021900525090215
405 => 0.023461107494769
406 => 0.023418898114207
407 => 0.024000586728856
408 => 0.024364328557048
409 => 0.023526021405881
410 => 0.023315189424386
411 => 0.023435288902825
412 => 0.021450312049124
413 => 0.023838371771702
414 => 0.023859023811349
415 => 0.023682188509673
416 => 0.024953756588874
417 => 0.027637161848017
418 => 0.026627556849801
419 => 0.026236607279019
420 => 0.02549341185918
421 => 0.026483675629538
422 => 0.026407638822495
423 => 0.026063771544948
424 => 0.025855799542556
425 => 0.026238994333733
426 => 0.0258083174673
427 => 0.02573095606788
428 => 0.025262230157427
429 => 0.025094916333065
430 => 0.024971043838463
501 => 0.024834672393366
502 => 0.025135473819603
503 => 0.024453818214026
504 => 0.023631808377223
505 => 0.023563467153563
506 => 0.023752163280711
507 => 0.023668679291223
508 => 0.02356306746434
509 => 0.023361425725151
510 => 0.023301602928528
511 => 0.023495997995658
512 => 0.023276537298804
513 => 0.023600363511655
514 => 0.023512300699881
515 => 0.023020388991905
516 => 0.022407284874726
517 => 0.022401826962054
518 => 0.0222697346857
519 => 0.022101495311557
520 => 0.022054694966465
521 => 0.022737367018196
522 => 0.024150477734625
523 => 0.023873050288116
524 => 0.024073520050127
525 => 0.025059632867003
526 => 0.025373088478041
527 => 0.02515060510993
528 => 0.024846056153482
529 => 0.024859454761953
530 => 0.025900190739374
531 => 0.025965100165693
601 => 0.026129105345427
602 => 0.026339898349243
603 => 0.025186504069974
604 => 0.024805129995123
605 => 0.02462441380063
606 => 0.024067877867562
607 => 0.024668054157591
608 => 0.024318357135502
609 => 0.024365543211133
610 => 0.024334813217477
611 => 0.024351593871966
612 => 0.023460671280182
613 => 0.023785276647115
614 => 0.023245557266342
615 => 0.022522933601831
616 => 0.022520511113923
617 => 0.022697372232072
618 => 0.022592168318421
619 => 0.022309067291825
620 => 0.022349280456454
621 => 0.021996970820026
622 => 0.022392057225088
623 => 0.022403386889498
624 => 0.022251257103048
625 => 0.022859942221463
626 => 0.023109321011118
627 => 0.02300918592674
628 => 0.023102295266659
629 => 0.023884578651029
630 => 0.024012124976098
701 => 0.024068772628456
702 => 0.023992872278672
703 => 0.023116593970867
704 => 0.023155460640041
705 => 0.022870282810081
706 => 0.022629337595064
707 => 0.022638974140073
708 => 0.022762851301278
709 => 0.023303830129556
710 => 0.024442288181224
711 => 0.024485491832083
712 => 0.024537855917263
713 => 0.024324864866754
714 => 0.024260624727871
715 => 0.024345374052845
716 => 0.024772919039771
717 => 0.025872680823476
718 => 0.025483951558495
719 => 0.025167908615133
720 => 0.025445163481027
721 => 0.025402482267618
722 => 0.025042209873592
723 => 0.025032098227417
724 => 0.02434062031723
725 => 0.024084996678024
726 => 0.023871378432005
727 => 0.023638112883999
728 => 0.023499825248009
729 => 0.023712297907496
730 => 0.023760892918624
731 => 0.023296317735268
801 => 0.023232997854441
802 => 0.023612379977721
803 => 0.023445428050057
804 => 0.023617142247868
805 => 0.023656981414697
806 => 0.023650566391264
807 => 0.023476249404476
808 => 0.023587353853647
809 => 0.023324558709526
810 => 0.023038808460849
811 => 0.022856517605062
812 => 0.022697444656015
813 => 0.02278570757352
814 => 0.022471066388785
815 => 0.022370406341313
816 => 0.023549714166197
817 => 0.024420881536135
818 => 0.024408214417556
819 => 0.024331106590924
820 => 0.024216540001301
821 => 0.024764537780149
822 => 0.02457362631156
823 => 0.024712530356145
824 => 0.024747887265276
825 => 0.024854901980397
826 => 0.024893150542828
827 => 0.024777536821829
828 => 0.024389523053131
829 => 0.023422629632777
830 => 0.022972538135523
831 => 0.022824000444563
901 => 0.022829399507516
902 => 0.022680469248789
903 => 0.02272433588457
904 => 0.02266521422305
905 => 0.022553252099196
906 => 0.022778794227873
907 => 0.022804785857133
908 => 0.022752141629272
909 => 0.022764541250682
910 => 0.022328669528637
911 => 0.022361807909
912 => 0.022177289196114
913 => 0.022142694161855
914 => 0.021676246923562
915 => 0.020849868028318
916 => 0.021307762154823
917 => 0.020754690439662
918 => 0.020545233800727
919 => 0.021536768952257
920 => 0.021437246323947
921 => 0.021266906845728
922 => 0.021014939255584
923 => 0.020921482025416
924 => 0.020353665479882
925 => 0.020320115849188
926 => 0.020601541061491
927 => 0.020471673009264
928 => 0.020289289079058
929 => 0.019628712971818
930 => 0.018886006718046
1001 => 0.018908424351362
1002 => 0.019144665392146
1003 => 0.019831568079669
1004 => 0.019563183316117
1005 => 0.019368467090799
1006 => 0.019332002594945
1007 => 0.019788432104148
1008 => 0.020434375484608
1009 => 0.020737437666552
1010 => 0.020437112248381
1011 => 0.020092114578656
1012 => 0.020113112988247
1013 => 0.020252805999802
1014 => 0.020267485760163
1015 => 0.020042927743505
1016 => 0.020106139509839
1017 => 0.020010115056573
1018 => 0.019420813164133
1019 => 0.019410154561596
1020 => 0.019265530373414
1021 => 0.019261151210473
1022 => 0.019015109388182
1023 => 0.018980686436437
1024 => 0.018492155464606
1025 => 0.018813708029673
1026 => 0.018598027451294
1027 => 0.018272945945771
1028 => 0.018216901771688
1029 => 0.01821521701614
1030 => 0.018549003035417
1031 => 0.018809807545698
1101 => 0.018601779307295
1102 => 0.018554415309869
1103 => 0.01906013888806
1104 => 0.018995780952963
1105 => 0.018940047396232
1106 => 0.020376538339657
1107 => 0.01923944366715
1108 => 0.018743605486842
1109 => 0.018129911581595
1110 => 0.018329733411657
1111 => 0.018371838807244
1112 => 0.016896015591765
1113 => 0.016297274297047
1114 => 0.016091808847789
1115 => 0.015973560576887
1116 => 0.016027447798805
1117 => 0.01548851040821
1118 => 0.015850685247892
1119 => 0.01538401102288
1120 => 0.015305771570367
1121 => 0.016140242894532
1122 => 0.016256354704378
1123 => 0.01576098565046
1124 => 0.016079092776041
1125 => 0.015963742710285
1126 => 0.015392010813031
1127 => 0.015370174859931
1128 => 0.015083299891237
1129 => 0.01463439611517
1130 => 0.014429235043811
1201 => 0.014322385376558
1202 => 0.014366473631725
1203 => 0.01434418126079
1204 => 0.014198708461295
1205 => 0.014352519591372
1206 => 0.013959595713171
1207 => 0.013803130258868
1208 => 0.013732458443131
1209 => 0.013383715885372
1210 => 0.013938720381285
1211 => 0.014048063258743
1212 => 0.014157621575446
1213 => 0.015111251923711
1214 => 0.015063611246443
1215 => 0.015494259766994
1216 => 0.015477525557397
1217 => 0.015354697623293
1218 => 0.014836506773519
1219 => 0.015043048410375
1220 => 0.01440734535583
1221 => 0.014883657307901
1222 => 0.014666288424238
1223 => 0.014810164669681
1224 => 0.014551462207577
1225 => 0.014694638831668
1226 => 0.014073992511341
1227 => 0.013494441710149
1228 => 0.013727669870691
1229 => 0.013981215554076
1230 => 0.014530967197893
1231 => 0.014203539654188
]
'min_raw' => 0.013383715885372
'max_raw' => 0.039950717865553
'avg_raw' => 0.026667216875463
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.013383'
'max' => '$0.03995'
'avg' => '$0.026667'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.025353544114628
'max_diff' => 0.0012134578655528
'year' => 2026
]
1 => [
'items' => [
101 => 0.014321294980311
102 => 0.013926834349804
103 => 0.01311294939696
104 => 0.013117555897405
105 => 0.012992357428857
106 => 0.012884167672757
107 => 0.014241148646341
108 => 0.014072386611581
109 => 0.01380348639622
110 => 0.014163420020151
111 => 0.014258592183233
112 => 0.014261301600919
113 => 0.014523899881707
114 => 0.014664048631237
115 => 0.014688750455782
116 => 0.015101954524413
117 => 0.015240455077925
118 => 0.015810919256508
119 => 0.014652157989005
120 => 0.014628294063244
121 => 0.014168485024371
122 => 0.013876866862625
123 => 0.014188452369396
124 => 0.014464474592733
125 => 0.014177061804259
126 => 0.014214591846819
127 => 0.013828763660781
128 => 0.013966679082386
129 => 0.014085470422686
130 => 0.014019880826804
131 => 0.013921690027198
201 => 0.014441843918135
202 => 0.014412494797109
203 => 0.014896874058636
204 => 0.01527448233129
205 => 0.015951223861438
206 => 0.015245008795395
207 => 0.015219271511437
208 => 0.01547085759051
209 => 0.015240416561407
210 => 0.015386047337246
211 => 0.015927760492007
212 => 0.015939206037347
213 => 0.015747478406155
214 => 0.015735811762373
215 => 0.015772635151214
216 => 0.015988310889813
217 => 0.0159129471597
218 => 0.016000159976162
219 => 0.016109220938599
220 => 0.016560343320125
221 => 0.016669107399043
222 => 0.016404867074981
223 => 0.01642872501767
224 => 0.016329891882912
225 => 0.016234420313111
226 => 0.016449026459521
227 => 0.016841223410179
228 => 0.016838783573304
301 => 0.016929765642637
302 => 0.016986446718095
303 => 0.016743130049144
304 => 0.016584739844659
305 => 0.016645476727689
306 => 0.016742596326332
307 => 0.016613982150795
308 => 0.015820115879499
309 => 0.016060924193836
310 => 0.016020841915405
311 => 0.015963759876748
312 => 0.01620589449893
313 => 0.01618254002393
314 => 0.015482982826302
315 => 0.015527766208386
316 => 0.015485706252094
317 => 0.015621610575532
318 => 0.015233077281941
319 => 0.015352587506238
320 => 0.015427543198579
321 => 0.015471692677204
322 => 0.015631190867579
323 => 0.01561247559586
324 => 0.015630027500011
325 => 0.015866521210377
326 => 0.017062625242563
327 => 0.01712772654598
328 => 0.016807143918271
329 => 0.016935210354828
330 => 0.016689350801689
331 => 0.016854397966827
401 => 0.016967319045471
402 => 0.016457050404555
403 => 0.016426835607256
404 => 0.016179961304284
405 => 0.016312617571026
406 => 0.016101551912317
407 => 0.016153340042201
408 => 0.016008535916237
409 => 0.016269154512757
410 => 0.016560566599702
411 => 0.016634188801077
412 => 0.016440520485611
413 => 0.01630029186185
414 => 0.016054096592707
415 => 0.016463524812112
416 => 0.016583254100565
417 => 0.01646289592513
418 => 0.016435006306004
419 => 0.016382155528155
420 => 0.016446218848366
421 => 0.016582602029147
422 => 0.016518286239693
423 => 0.016560767951726
424 => 0.016398871472407
425 => 0.016743210597086
426 => 0.0172901039968
427 => 0.017291862348506
428 => 0.017227546212365
429 => 0.017201229435167
430 => 0.017267221693877
501 => 0.017303019787082
502 => 0.017516426650838
503 => 0.017745420718153
504 => 0.018814036112372
505 => 0.018513973185809
506 => 0.019462112335775
507 => 0.020211967302937
508 => 0.020436816020406
509 => 0.020229965780284
510 => 0.01952234228266
511 => 0.01948762289797
512 => 0.020545111154356
513 => 0.020246322285896
514 => 0.020210782300731
515 => 0.019832696904329
516 => 0.02005619220039
517 => 0.020007310500663
518 => 0.01993014834627
519 => 0.020356561802338
520 => 0.021154769725904
521 => 0.02103036153547
522 => 0.02093749659244
523 => 0.020530589444664
524 => 0.020775638433627
525 => 0.020688381182262
526 => 0.021063293708948
527 => 0.020841203833468
528 => 0.020244058666351
529 => 0.020339156002431
530 => 0.020324782231391
531 => 0.020620593420841
601 => 0.020531798244253
602 => 0.020307443548051
603 => 0.021152041537998
604 => 0.021097198042431
605 => 0.021174953580176
606 => 0.021209183972561
607 => 0.021723275885555
608 => 0.021933882893203
609 => 0.021981694371134
610 => 0.022181754739468
611 => 0.021976716686919
612 => 0.022797015086771
613 => 0.023342465656934
614 => 0.023976034562808
615 => 0.024901849021558
616 => 0.025249963822311
617 => 0.025187079999409
618 => 0.025889021955859
619 => 0.027150396048306
620 => 0.025442039767558
621 => 0.027240943079399
622 => 0.026671431060208
623 => 0.025321128307789
624 => 0.025234184729557
625 => 0.026148625430832
626 => 0.028176766894605
627 => 0.02766874046092
628 => 0.028177597843855
629 => 0.02758398867711
630 => 0.02755451097865
701 => 0.028148767571587
702 => 0.029537280492223
703 => 0.028877650051257
704 => 0.027931908066113
705 => 0.028630229230568
706 => 0.028025278811344
707 => 0.026662156201871
708 => 0.027668351982681
709 => 0.026995537518859
710 => 0.027191900548186
711 => 0.02860605647754
712 => 0.028435901494728
713 => 0.028656097798414
714 => 0.028267457085949
715 => 0.02790440537749
716 => 0.027226742403079
717 => 0.027026119804737
718 => 0.027081564673274
719 => 0.027026092329014
720 => 0.026646946122875
721 => 0.026565069535758
722 => 0.026428604970134
723 => 0.026470901045242
724 => 0.026214307737753
725 => 0.026698552323868
726 => 0.0267884323862
727 => 0.027140825213327
728 => 0.027177411805657
729 => 0.028158820813209
730 => 0.027618277223758
731 => 0.02798092053185
801 => 0.027948482301043
802 => 0.02535039346291
803 => 0.025708387181673
804 => 0.02626531306345
805 => 0.026014418708605
806 => 0.025659712791091
807 => 0.02537326874457
808 => 0.024939276723684
809 => 0.025550112159003
810 => 0.02635329580134
811 => 0.027197781868282
812 => 0.028212376544793
813 => 0.02798593082418
814 => 0.027178814726542
815 => 0.027215021365083
816 => 0.027438836557759
817 => 0.027148975547489
818 => 0.027063489876802
819 => 0.027427092139328
820 => 0.027429596068278
821 => 0.02709607594509
822 => 0.026725429361704
823 => 0.026723876338986
824 => 0.026657923359494
825 => 0.027595721565646
826 => 0.028111415756937
827 => 0.028170539264886
828 => 0.028107436273781
829 => 0.028131722110589
830 => 0.027831651023223
831 => 0.028517524545625
901 => 0.029146949915642
902 => 0.028978250470765
903 => 0.028725346020857
904 => 0.028523895444976
905 => 0.028930795117279
906 => 0.028912676515391
907 => 0.029141452434133
908 => 0.029131073836985
909 => 0.02905414510021
910 => 0.028978253218133
911 => 0.029279155952139
912 => 0.029192500797095
913 => 0.029105711042661
914 => 0.028931640903296
915 => 0.028955299926235
916 => 0.028702439143845
917 => 0.028585454175789
918 => 0.026826280942419
919 => 0.026356172371819
920 => 0.026504078098072
921 => 0.026552772503525
922 => 0.026348180651139
923 => 0.026641512812126
924 => 0.026595797305552
925 => 0.026773649598955
926 => 0.026662535207485
927 => 0.026667095380869
928 => 0.026993859114094
929 => 0.027088720016002
930 => 0.027040472995671
1001 => 0.0270742635549
1002 => 0.027852952730231
1003 => 0.027742248030577
1004 => 0.027683438365312
1005 => 0.027699729044503
1006 => 0.027898700824085
1007 => 0.027954402058911
1008 => 0.027718392012895
1009 => 0.027829695714954
1010 => 0.028303612751778
1011 => 0.028469456893285
1012 => 0.028998751783271
1013 => 0.028773897906539
1014 => 0.029186626928729
1015 => 0.030455215233251
1016 => 0.031468651350537
1017 => 0.030536653615062
1018 => 0.032397699984147
1019 => 0.033846791533725
1020 => 0.033791172986463
1021 => 0.033538490356703
1022 => 0.031888738153601
1023 => 0.030370611579886
1024 => 0.031640588921857
1025 => 0.031643826355275
1026 => 0.031534734175313
1027 => 0.030857172014864
1028 => 0.03151115648083
1029 => 0.031563067392816
1030 => 0.03153401108633
1031 => 0.031014525766542
1101 => 0.030221367700162
1102 => 0.03037634888778
1103 => 0.03063021123463
1104 => 0.03014959685081
1105 => 0.029996011433727
1106 => 0.030281555944905
1107 => 0.031201639855484
1108 => 0.031027703321872
1109 => 0.031023161136047
1110 => 0.031767335387407
1111 => 0.031234667226288
1112 => 0.030378303696875
1113 => 0.03016206061165
1114 => 0.029394543337902
1115 => 0.029924670252683
1116 => 0.029943748576579
1117 => 0.029653403483119
1118 => 0.030401863601026
1119 => 0.030394966409275
1120 => 0.031105517897641
1121 => 0.032463825472444
1122 => 0.032062107084318
1123 => 0.031594952305764
1124 => 0.03164574498299
1125 => 0.032202815285147
1126 => 0.031865997863785
1127 => 0.031987119756881
1128 => 0.032202631952655
1129 => 0.032332655811233
1130 => 0.031627036550695
1201 => 0.031462522947392
1202 => 0.031125985851464
1203 => 0.031038189604899
1204 => 0.031312292047456
1205 => 0.031240075738024
1206 => 0.02994214511733
1207 => 0.02980650414585
1208 => 0.029810664060795
1209 => 0.029469588388631
1210 => 0.02894936612104
1211 => 0.030316479179411
1212 => 0.030206680868089
1213 => 0.030085472030103
1214 => 0.030100319421148
1215 => 0.030693736864027
1216 => 0.030349524778858
1217 => 0.03126466902253
1218 => 0.031076542877785
1219 => 0.030883592007292
1220 => 0.030856920319563
1221 => 0.030782650696218
1222 => 0.030527952523258
1223 => 0.030220389174422
1224 => 0.03001730921084
1225 => 0.027689381038038
1226 => 0.028121430965975
1227 => 0.028618465025476
1228 => 0.028790039191077
1229 => 0.028496549708246
1230 => 0.03053954127688
1231 => 0.030912815523226
]
'min_raw' => 0.012884167672757
'max_raw' => 0.033846791533725
'avg_raw' => 0.023365479603241
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.012884'
'max' => '$0.033846'
'avg' => '$0.023365'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -0.00049954821261584
'max_diff' => -0.0061039263318283
'year' => 2027
]
2 => [
'items' => [
101 => 0.029782143482967
102 => 0.02957064090927
103 => 0.0305534073504
104 => 0.029960679048087
105 => 0.030227584566326
106 => 0.029650680825407
107 => 0.030822904688027
108 => 0.030813974306206
109 => 0.03035795274777
110 => 0.030743379046259
111 => 0.030676401742021
112 => 0.030161554525679
113 => 0.030839226263102
114 => 0.030839562379829
115 => 0.030400651544598
116 => 0.029888099778985
117 => 0.029796467629226
118 => 0.029727435113429
119 => 0.03021060679921
120 => 0.030643817021842
121 => 0.031449913844239
122 => 0.031652585737777
123 => 0.03244362763089
124 => 0.031972600698672
125 => 0.032181400836905
126 => 0.032408082923539
127 => 0.032516762651829
128 => 0.032339674866656
129 => 0.033568488532494
130 => 0.033672238055768
131 => 0.033707024373492
201 => 0.033292675319214
202 => 0.033660714259017
203 => 0.033488521027252
204 => 0.033936519979647
205 => 0.03400677193572
206 => 0.033947271028212
207 => 0.033969570107921
208 => 0.032920994421714
209 => 0.032866620240707
210 => 0.032125224424457
211 => 0.0324273486997
212 => 0.031862541848327
213 => 0.032041647919052
214 => 0.032120596168443
215 => 0.032079358083235
216 => 0.032444430352919
217 => 0.03213404434435
218 => 0.031314884635554
219 => 0.030495501747243
220 => 0.030485215062535
221 => 0.030269486011352
222 => 0.030113553420093
223 => 0.030143591569175
224 => 0.030249449924479
225 => 0.030107400740043
226 => 0.030137714135619
227 => 0.030641118479276
228 => 0.030742072630281
229 => 0.030398990979833
301 => 0.029021468646838
302 => 0.028683421211068
303 => 0.028926403004128
304 => 0.028810273357077
305 => 0.023252139148804
306 => 0.024557940336067
307 => 0.023782077611414
308 => 0.024139630850662
309 => 0.023347675917469
310 => 0.023725638321503
311 => 0.023655842466455
312 => 0.025755532134109
313 => 0.025722748367977
314 => 0.025738440221946
315 => 0.0249894271471
316 => 0.026182625313251
317 => 0.026770437635915
318 => 0.026661649219108
319 => 0.026689028919864
320 => 0.02621855494759
321 => 0.025742995438403
322 => 0.02521552675463
323 => 0.02619549837198
324 => 0.026086542256804
325 => 0.026336448383845
326 => 0.026972030027515
327 => 0.027065621838885
328 => 0.027191410182481
329 => 0.027146324015526
330 => 0.028220459428264
331 => 0.028090374542407
401 => 0.028403841689345
402 => 0.027759015985285
403 => 0.027029334493723
404 => 0.027168023090184
405 => 0.027154666263081
406 => 0.026984618523815
407 => 0.026831107028154
408 => 0.026575553639473
409 => 0.027384162376044
410 => 0.027351334338032
411 => 0.027882782115024
412 => 0.027788843558232
413 => 0.027161498885314
414 => 0.027183904623036
415 => 0.02733459397705
416 => 0.027856131551834
417 => 0.028010959413015
418 => 0.027939236978892
419 => 0.028108998660518
420 => 0.028243171371933
421 => 0.028125848687312
422 => 0.029786890489898
423 => 0.029097110126034
424 => 0.02943330427592
425 => 0.029513484599697
426 => 0.029308104386353
427 => 0.029352644000513
428 => 0.029420109379648
429 => 0.029829745950676
430 => 0.030904750842352
501 => 0.03138086319107
502 => 0.032813270683156
503 => 0.031341328688313
504 => 0.03125398974184
505 => 0.031512009585727
506 => 0.032352984419314
507 => 0.033034515533186
508 => 0.033260618722131
509 => 0.033290501991107
510 => 0.033714686604623
511 => 0.033957821314515
512 => 0.033663179435379
513 => 0.033413501293101
514 => 0.032519185178655
515 => 0.032622704704044
516 => 0.033335851578601
517 => 0.034343213543054
518 => 0.035207634906703
519 => 0.034904944673279
520 => 0.037214257488301
521 => 0.037443216421213
522 => 0.037411581699813
523 => 0.037933184222645
524 => 0.03689790943733
525 => 0.036455309409103
526 => 0.033467484541429
527 => 0.034306941457453
528 => 0.03552714138447
529 => 0.035365643348614
530 => 0.034479501545577
531 => 0.035206962688683
601 => 0.034966441284959
602 => 0.0347767320746
603 => 0.035645826744196
604 => 0.034690221454534
605 => 0.035517608490705
606 => 0.034456476058592
607 => 0.034906327336769
608 => 0.034650969994418
609 => 0.034816217490338
610 => 0.03385018400575
611 => 0.034371432224896
612 => 0.033828498366129
613 => 0.033828240944788
614 => 0.033816255649763
615 => 0.034455014926866
616 => 0.03447584484396
617 => 0.03400380077307
618 => 0.03393577184774
619 => 0.034187310440087
620 => 0.03389282462651
621 => 0.034030612685211
622 => 0.033896998086441
623 => 0.033866918625904
624 => 0.033627240366747
625 => 0.033523980382611
626 => 0.033564471283072
627 => 0.033426254965306
628 => 0.03334297463435
629 => 0.033799689095801
630 => 0.033555684982856
701 => 0.03376229196598
702 => 0.03352683723283
703 => 0.032710648544989
704 => 0.032241249799573
705 => 0.030699545028972
706 => 0.031136770589436
707 => 0.031426651588366
708 => 0.031330845919949
709 => 0.031536673567581
710 => 0.031549309713482
711 => 0.031482393047073
712 => 0.031404912119926
713 => 0.031367198689555
714 => 0.031648283701506
715 => 0.03181146301183
716 => 0.031455745024716
717 => 0.031372405277359
718 => 0.031732055802059
719 => 0.031951442414363
720 => 0.033571269896926
721 => 0.033451267845044
722 => 0.033752449446055
723 => 0.033718541019789
724 => 0.03403422731964
725 => 0.034550241000912
726 => 0.033501040907192
727 => 0.033683145764852
728 => 0.033638497859169
729 => 0.034125951986107
730 => 0.034127473764684
731 => 0.033835220665445
801 => 0.033993655811807
802 => 0.033905221659549
803 => 0.034065034125272
804 => 0.033449665144479
805 => 0.034199118138109
806 => 0.034624009691813
807 => 0.034629909311448
808 => 0.034831304535756
809 => 0.035035933747677
810 => 0.035428701700512
811 => 0.035024979662648
812 => 0.034298723018078
813 => 0.034351156402021
814 => 0.033925352397037
815 => 0.033932510239289
816 => 0.03389430111638
817 => 0.034008969570478
818 => 0.033474828421787
819 => 0.033600190281759
820 => 0.033424682943681
821 => 0.033682764246175
822 => 0.033405111427059
823 => 0.033638476328597
824 => 0.033739188883932
825 => 0.034110820381305
826 => 0.033350221152732
827 => 0.031799307837631
828 => 0.032125328619472
829 => 0.03164311827475
830 => 0.031687748678058
831 => 0.031777909195617
901 => 0.031485669459523
902 => 0.031541419591638
903 => 0.031539427804611
904 => 0.031522263660065
905 => 0.031446240817873
906 => 0.031335992656033
907 => 0.031775187400207
908 => 0.031849815145513
909 => 0.032015703378907
910 => 0.032509274238425
911 => 0.032459954870357
912 => 0.032540396805917
913 => 0.032364792512251
914 => 0.031695894457596
915 => 0.03173221884013
916 => 0.031279253207879
917 => 0.032004120029285
918 => 0.031832461998202
919 => 0.03172179294886
920 => 0.031691595873406
921 => 0.032186390199617
922 => 0.032334440416971
923 => 0.032242185456797
924 => 0.032052967841973
925 => 0.032416321599601
926 => 0.032513539736478
927 => 0.032535303292058
928 => 0.033179096484402
929 => 0.032571284179859
930 => 0.032717590642698
1001 => 0.03385903190074
1002 => 0.032823902187822
1003 => 0.033372233482902
1004 => 0.033345395519386
1005 => 0.03362590325543
1006 => 0.033322385697623
1007 => 0.033326148161515
1008 => 0.033575220027881
1009 => 0.033225443511917
1010 => 0.033138833927646
1011 => 0.033019183407286
1012 => 0.033280435941167
1013 => 0.033437045019792
1014 => 0.034699199176823
1015 => 0.035514608323486
1016 => 0.035479209261941
1017 => 0.035802690420199
1018 => 0.035656959195656
1019 => 0.035186354629652
1020 => 0.035989619239707
1021 => 0.035735432707067
1022 => 0.035756387535981
1023 => 0.035755607596203
1024 => 0.035924619419036
1025 => 0.035804859052852
1026 => 0.035568799077955
1027 => 0.03572550670575
1028 => 0.036190872336297
1029 => 0.037635381532678
1030 => 0.038443748016174
1031 => 0.037586716855357
1101 => 0.038177885473984
1102 => 0.037823394957724
1103 => 0.037758973485741
1104 => 0.038130271065256
1105 => 0.038502218552033
1106 => 0.038478527105099
1107 => 0.038208512329414
1108 => 0.038055987834
1109 => 0.039210954412725
1110 => 0.040061914113586
1111 => 0.040003884366894
1112 => 0.04026000879651
1113 => 0.041011998043494
1114 => 0.041080750516002
1115 => 0.041072089284724
1116 => 0.040901679108034
1117 => 0.041642110179833
1118 => 0.042259790806573
1119 => 0.040862234075753
1120 => 0.041394405383488
1121 => 0.041633314229019
1122 => 0.041984103295319
1123 => 0.042575943249241
1124 => 0.043218838416994
1125 => 0.043309750842701
1126 => 0.043245244126102
1127 => 0.042821237481019
1128 => 0.043524701044909
1129 => 0.043936773502386
1130 => 0.044182153220703
1201 => 0.044804395359062
1202 => 0.041634789648715
1203 => 0.039391185187306
1204 => 0.039040813952616
1205 => 0.039753307636027
1206 => 0.039941186538311
1207 => 0.03986545278838
1208 => 0.037340071987471
1209 => 0.039027518345339
1210 => 0.040843068741884
1211 => 0.040912811426677
1212 => 0.041821713916556
1213 => 0.042117689824433
1214 => 0.042849475461359
1215 => 0.042803702070525
1216 => 0.042981880227864
1217 => 0.042940920155107
1218 => 0.044296398951866
1219 => 0.045791693355239
1220 => 0.045739916064796
1221 => 0.04552494980279
1222 => 0.045844211359063
1223 => 0.047387515428831
1224 => 0.047245432721031
1225 => 0.047383453969082
1226 => 0.049203096444145
1227 => 0.051568890502851
1228 => 0.050469741640742
1229 => 0.052854578399953
1230 => 0.054355706725112
1231 => 0.056951752943908
]
'min_raw' => 0.023252139148804
'max_raw' => 0.056951752943908
'avg_raw' => 0.040101946046356
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.023252'
'max' => '$0.056951'
'avg' => '$0.0401019'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 0.010367971476047
'max_diff' => 0.023104961410183
'year' => 2028
]
3 => [
'items' => [
101 => 0.056626715171517
102 => 0.057637336913827
103 => 0.056044829721508
104 => 0.052388111309139
105 => 0.051809421623025
106 => 0.052967973029381
107 => 0.055816158612113
108 => 0.052878273529549
109 => 0.053472603855442
110 => 0.053301436681602
111 => 0.053292315910321
112 => 0.053640418653232
113 => 0.053135477468822
114 => 0.051078256246353
115 => 0.05202106860933
116 => 0.051657003478416
117 => 0.052060960884018
118 => 0.054240952397347
119 => 0.053277126184797
120 => 0.05226181356476
121 => 0.053535240906194
122 => 0.055156751508949
123 => 0.055055280289564
124 => 0.054858383712276
125 => 0.055968279409277
126 => 0.057801501931796
127 => 0.058297014613148
128 => 0.058662791944211
129 => 0.058713226458306
130 => 0.05923273329836
131 => 0.056439214086808
201 => 0.060872600818203
202 => 0.061638124236878
203 => 0.061494237561862
204 => 0.062345084623569
205 => 0.062094743834108
206 => 0.061732039307446
207 => 0.063080812880612
208 => 0.061534552819392
209 => 0.059339831331218
210 => 0.058135763716137
211 => 0.05972137708104
212 => 0.060689655832705
213 => 0.061329626493461
214 => 0.061523281228725
215 => 0.056656067031072
216 => 0.054032908526611
217 => 0.055714323053397
218 => 0.057765764821107
219 => 0.056427818224209
220 => 0.056480263197739
221 => 0.054572702956742
222 => 0.057934541575188
223 => 0.057444749965994
224 => 0.05998578970092
225 => 0.059379350175062
226 => 0.061451469436299
227 => 0.060905810990537
228 => 0.063170808691544
301 => 0.064074377596841
302 => 0.065591610418105
303 => 0.066707693057675
304 => 0.06736307813089
305 => 0.067323731269381
306 => 0.069920693441004
307 => 0.068389355579346
308 => 0.06646563431648
309 => 0.066430840268097
310 => 0.067427162769477
311 => 0.069515181404638
312 => 0.0700565742573
313 => 0.070359139003767
314 => 0.069895750562198
315 => 0.068233593065341
316 => 0.067515881885528
317 => 0.068127392604824
318 => 0.067379567542841
319 => 0.068670523402477
320 => 0.070443281531049
321 => 0.070077213987744
322 => 0.071300922901099
323 => 0.07256733288849
324 => 0.074378356048489
325 => 0.074851824564507
326 => 0.075634450017088
327 => 0.076440028686863
328 => 0.076698758844641
329 => 0.077192754995092
330 => 0.077190151391536
331 => 0.078678842040696
401 => 0.080320913927631
402 => 0.080940758050897
403 => 0.082366055433944
404 => 0.079925283613854
405 => 0.081776637076958
406 => 0.083446604243061
407 => 0.081455600542968
408 => 0.084199735299181
409 => 0.084306283833421
410 => 0.085915040200209
411 => 0.084284257422042
412 => 0.08331590381401
413 => 0.086111504396663
414 => 0.087464207458016
415 => 0.087056762287274
416 => 0.083956084419877
417 => 0.082151356906722
418 => 0.077428036898857
419 => 0.083023013480413
420 => 0.085748163365585
421 => 0.083949026940022
422 => 0.08485640670356
423 => 0.089806776474544
424 => 0.091691556770629
425 => 0.091299535644652
426 => 0.091365780761725
427 => 0.09238277399831
428 => 0.096892682077733
429 => 0.094190240617692
430 => 0.096256155855344
501 => 0.097351909848183
502 => 0.098369707223765
503 => 0.095870318547499
504 => 0.092618650602988
505 => 0.091588710869227
506 => 0.083770138279604
507 => 0.083363147621974
508 => 0.083134691432767
509 => 0.081694307475589
510 => 0.080562560239618
511 => 0.079662552818493
512 => 0.077300664580494
513 => 0.078097732526862
514 => 0.074333375639878
515 => 0.076741677775554
516 => 0.070733673290352
517 => 0.075737317954445
518 => 0.073014061651585
519 => 0.074842655017212
520 => 0.074836275227223
521 => 0.07146925508505
522 => 0.069527228134961
523 => 0.070764763292377
524 => 0.07209149921679
525 => 0.072306757656851
526 => 0.074026905414203
527 => 0.074506961678827
528 => 0.073052368785331
529 => 0.070609170751462
530 => 0.071176669931315
531 => 0.069515727782195
601 => 0.066604990553078
602 => 0.068695532847626
603 => 0.069409335901641
604 => 0.069724591994757
605 => 0.06686221623035
606 => 0.065962795619973
607 => 0.065483951633877
608 => 0.070239673984452
609 => 0.070500203190253
610 => 0.069167298938259
611 => 0.075192152548439
612 => 0.073828542621358
613 => 0.075352029002451
614 => 0.071125175328988
615 => 0.071286646831528
616 => 0.069285586564176
617 => 0.070406046602998
618 => 0.069614141561671
619 => 0.070315524504463
620 => 0.070735930548462
621 => 0.072736662461514
622 => 0.075760163099072
623 => 0.072437819832234
624 => 0.07099022729404
625 => 0.071888305563166
626 => 0.074280006341218
627 => 0.077903555448878
628 => 0.075758341446421
629 => 0.076710350992615
630 => 0.076918322726502
701 => 0.07533652134123
702 => 0.077961878722211
703 => 0.079368829071043
704 => 0.080812069001593
705 => 0.082065193794625
706 => 0.080235607235805
707 => 0.082193527114674
708 => 0.08061578931169
709 => 0.079200395398878
710 => 0.079202541967195
711 => 0.078314644690082
712 => 0.076594231833419
713 => 0.076276961306782
714 => 0.0779274426532
715 => 0.079250972391862
716 => 0.079359984640418
717 => 0.080092758709155
718 => 0.08052640685486
719 => 0.084776748198838
720 => 0.086486270648053
721 => 0.08857664233935
722 => 0.089390959920004
723 => 0.09184176388876
724 => 0.089862540639423
725 => 0.089434323239531
726 => 0.083489474463196
727 => 0.084462943117285
728 => 0.086021560358234
729 => 0.083515175487425
730 => 0.085104899797681
731 => 0.08541874505149
801 => 0.083430009488595
802 => 0.084492279080928
803 => 0.081671205984676
804 => 0.075821654783467
805 => 0.07796839094488
806 => 0.079549111343259
807 => 0.077293228433353
808 => 0.081336811234634
809 => 0.078974633638618
810 => 0.078225936745202
811 => 0.075305003234271
812 => 0.076683571414389
813 => 0.078548104617193
814 => 0.077396039873111
815 => 0.079786747200474
816 => 0.083172626354376
817 => 0.085585605472036
818 => 0.085770844046609
819 => 0.084219460130999
820 => 0.086705562756564
821 => 0.086723671300051
822 => 0.083919337382386
823 => 0.082201698472413
824 => 0.081811447298124
825 => 0.082786371244748
826 => 0.083970108896838
827 => 0.085836533247905
828 => 0.086964374393718
829 => 0.089905185941276
830 => 0.090700885226371
831 => 0.091575117499741
901 => 0.092743361420211
902 => 0.094146137778328
903 => 0.09107694296687
904 => 0.091198887798424
905 => 0.088340896085889
906 => 0.085286722063574
907 => 0.087604459438344
908 => 0.090634592740174
909 => 0.089939476812735
910 => 0.089861262070968
911 => 0.089992797571659
912 => 0.089468702862734
913 => 0.08709824191812
914 => 0.085907811271605
915 => 0.087443770516857
916 => 0.088260064498027
917 => 0.089526065274505
918 => 0.08937000395677
919 => 0.092631085998421
920 => 0.093898243869805
921 => 0.093574050661562
922 => 0.093633710014024
923 => 0.095927838812815
924 => 0.098479381860643
925 => 0.10086923863069
926 => 0.10330030358393
927 => 0.10036955989672
928 => 0.098881508995505
929 => 0.100416797689
930 => 0.099602151897478
1001 => 0.1042833482552
1002 => 0.10460746413436
1003 => 0.1092883219883
1004 => 0.11373101347787
1005 => 0.11094063855235
1006 => 0.11357183642587
1007 => 0.11641769145078
1008 => 0.12190780751718
1009 => 0.12005892957063
1010 => 0.11864271803918
1011 => 0.11730440498505
1012 => 0.12008922199949
1013 => 0.12367184460002
1014 => 0.12444350719425
1015 => 0.12569389539469
1016 => 0.12437926509212
1017 => 0.12596259248978
1018 => 0.13155243395285
1019 => 0.13004200944664
1020 => 0.12789696383495
1021 => 0.13230960681596
1022 => 0.13390652515708
1023 => 0.14511453438764
1024 => 0.15926510902098
1025 => 0.1534066782051
1026 => 0.14977016114729
1027 => 0.15062482891521
1028 => 0.15579213974413
1029 => 0.15745171598013
1030 => 0.15294041568045
1031 => 0.15453388321269
1101 => 0.16331404598163
1102 => 0.16802432160581
1103 => 0.16162713463375
1104 => 0.14397754949395
1105 => 0.12770382594707
1106 => 0.13202035024703
1107 => 0.13153099034876
1108 => 0.14096417989637
1109 => 0.13000598632169
1110 => 0.13019049419764
1111 => 0.13981875211517
1112 => 0.1372500979729
1113 => 0.13308920723079
1114 => 0.12773420505421
1115 => 0.11783498825304
1116 => 0.10906697587217
1117 => 0.12626306730372
1118 => 0.12552154057213
1119 => 0.12444769997668
1120 => 0.12683741602016
1121 => 0.13844119879459
1122 => 0.13817369404386
1123 => 0.13647196530184
1124 => 0.13776271155431
1125 => 0.13286293317207
1126 => 0.13412571762705
1127 => 0.12770124810612
1128 => 0.13060537663913
1129 => 0.13308027982801
1130 => 0.13357715328475
1201 => 0.13469663455376
1202 => 0.12513078967981
1203 => 0.12942557318977
1204 => 0.13194835613507
1205 => 0.12055033100856
1206 => 0.13172305382576
1207 => 0.12496426960264
1208 => 0.12267023672378
1209 => 0.12575884977932
1210 => 0.1245552142678
1211 => 0.12352039913485
1212 => 0.12294295451028
1213 => 0.12521089106048
1214 => 0.12510508910964
1215 => 0.121394304726
1216 => 0.11655373776846
1217 => 0.1181783909256
1218 => 0.11758813920241
1219 => 0.11544899081356
1220 => 0.11689051854588
1221 => 0.11054275995323
1222 => 0.099621771222347
1223 => 0.1068365108969
1224 => 0.10655875126755
1225 => 0.10641869226704
1226 => 0.11184036973171
1227 => 0.11131920054286
1228 => 0.1103732733618
1229 => 0.11543161811908
1230 => 0.11358525423833
1231 => 0.11927531266074
]
'min_raw' => 0.051078256246353
'max_raw' => 0.16802432160581
'avg_raw' => 0.10955128892608
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.051078'
'max' => '$0.168024'
'avg' => '$0.109551'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072434
'min_diff' => 0.027826117097549
'max_diff' => 0.11107256866191
'year' => 2029
]
4 => [
'items' => [
101 => 0.12302315314764
102 => 0.12207257957022
103 => 0.12559744166304
104 => 0.11821581965301
105 => 0.12066769838547
106 => 0.12117302719407
107 => 0.11536919892996
108 => 0.11140447026757
109 => 0.111140068067
110 => 0.10426577493968
111 => 0.10793796684094
112 => 0.11116934374842
113 => 0.10962176497472
114 => 0.10913184776756
115 => 0.11163472852884
116 => 0.11182922379971
117 => 0.10739471101207
118 => 0.10831678664338
119 => 0.11216199530825
120 => 0.10821989725082
121 => 0.10056104466329
122 => 0.098661543329661
123 => 0.098408114837
124 => 0.09325651656885
125 => 0.098788477091593
126 => 0.096373628076091
127 => 0.10400210718173
128 => 0.099644760828943
129 => 0.099456924336592
130 => 0.099172981928781
131 => 0.09473878848954
201 => 0.09570959504504
202 => 0.098936703893534
203 => 0.10008817268666
204 => 0.099968065057831
205 => 0.098920889299633
206 => 0.099400280999329
207 => 0.097855993303469
208 => 0.097310673176493
209 => 0.095589492853636
210 => 0.093059833267236
211 => 0.093411597948029
212 => 0.088399680385934
213 => 0.085668921695507
214 => 0.084913083680818
215 => 0.083902345498931
216 => 0.085027249247934
217 => 0.088385482253195
218 => 0.084334740759974
219 => 0.077390028596325
220 => 0.077807417630574
221 => 0.078745166866615
222 => 0.076997677369084
223 => 0.075343825215348
224 => 0.076781715481755
225 => 0.073839149387494
226 => 0.079100761920831
227 => 0.078958450047303
228 => 0.080919653823794
301 => 0.082146034793187
302 => 0.07931962370429
303 => 0.07860878895886
304 => 0.079013712735495
305 => 0.072321224686586
306 => 0.080372734770262
307 => 0.080442364563812
308 => 0.079846151997965
309 => 0.084133332555037
310 => 0.09318062073561
311 => 0.089776666995755
312 => 0.088458553222636
313 => 0.085952817976403
314 => 0.089291561416172
315 => 0.089035198012509
316 => 0.087875825478211
317 => 0.087174633352005
318 => 0.088466601344264
319 => 0.087014544220187
320 => 0.086753714860842
321 => 0.08517337272835
322 => 0.084609262488037
323 => 0.084191617723984
324 => 0.083731831875689
325 => 0.084746004885533
326 => 0.082447755419656
327 => 0.079676291863981
328 => 0.079445874656978
329 => 0.080082076824001
330 => 0.079800604724774
331 => 0.079444527076857
401 => 0.078764677875005
402 => 0.078562981139495
403 => 0.079218397680556
404 => 0.078478470618857
405 => 0.079570273304307
406 => 0.079273363386063
407 => 0.077614848718442
408 => 0.075547725381811
409 => 0.075529323648177
410 => 0.075083965316062
411 => 0.074516734520039
412 => 0.074358943889068
413 => 0.07666062037412
414 => 0.081425021814798
415 => 0.080489655809529
416 => 0.0811655536085
417 => 0.084490301818797
418 => 0.085547139296183
419 => 0.084797021087302
420 => 0.083770213017709
421 => 0.083815387361632
422 => 0.087324301371372
423 => 0.087543148034038
424 => 0.088096102947986
425 => 0.088806806277449
426 => 0.084918056937477
427 => 0.083632227617428
428 => 0.083022930350495
429 => 0.081146530596056
430 => 0.083170066860861
501 => 0.081991038935821
502 => 0.082150130084238
503 => 0.082046521765125
504 => 0.082103098913325
505 => 0.079099291192895
506 => 0.080193720850734
507 => 0.078374019276454
508 => 0.075937643139582
509 => 0.075929475552467
510 => 0.076525775160355
511 => 0.076171072820378
512 => 0.075216577943729
513 => 0.075352159435868
514 => 0.074164322899178
515 => 0.075496384297897
516 => 0.075534583052467
517 => 0.075021666856086
518 => 0.077073891229862
519 => 0.077914689230254
520 => 0.077577076802066
521 => 0.077891001442287
522 => 0.080528524489972
523 => 0.080958555829943
524 => 0.081149547344883
525 => 0.080893644016391
526 => 0.077939210521829
527 => 0.078070252210534
528 => 0.077108755246343
529 => 0.076296391631655
530 => 0.076328881915957
531 => 0.076746542413784
601 => 0.07857049030326
602 => 0.082408881109062
603 => 0.082554545234315
604 => 0.082731094403444
605 => 0.082012980206093
606 => 0.081796390092745
607 => 0.082082128358903
608 => 0.083523626132562
609 => 0.087231549769239
610 => 0.085920921912144
611 => 0.084855361063188
612 => 0.085790145200865
613 => 0.08564624250995
614 => 0.084431558980077
615 => 0.084397466859023
616 => 0.082066100807382
617 => 0.081204247860726
618 => 0.080484019029926
619 => 0.079697547948742
620 => 0.079231301529067
621 => 0.079947667934896
622 => 0.080111509407707
623 => 0.07854516174142
624 => 0.078331674342358
625 => 0.079610787658611
626 => 0.079047897578279
627 => 0.079626843984903
628 => 0.07976116451735
629 => 0.079739535817962
630 => 0.079151813926581
701 => 0.079526410334028
702 => 0.078640378157853
703 => 0.077676951243991
704 => 0.077062344896565
705 => 0.076526019342734
706 => 0.076823603931424
707 => 0.075762769209545
708 => 0.075423386831631
709 => 0.079399505499871
710 => 0.082336707110579
711 => 0.0822939990359
712 => 0.082034024614916
713 => 0.081647755359218
714 => 0.083495368130585
715 => 0.082851696785224
716 => 0.083320021469514
717 => 0.083439229757192
718 => 0.083800037340751
719 => 0.083928995039413
720 => 0.083539195307174
721 => 0.082230979795752
722 => 0.078971031122686
723 => 0.077453516215311
724 => 0.076952711019667
725 => 0.076970914337364
726 => 0.076468785572088
727 => 0.076616684997294
728 => 0.076417352187735
729 => 0.076039864070217
730 => 0.076800295103901
731 => 0.076887927696628
801 => 0.076710434006892
802 => 0.07675224019619
803 => 0.075282668253722
804 => 0.075394396616765
805 => 0.074772278893586
806 => 0.074655639320231
807 => 0.07308297989002
808 => 0.070296785748773
809 => 0.071840607765433
810 => 0.069975887863534
811 => 0.069269690181567
812 => 0.072612720171725
813 => 0.072277172681931
814 => 0.071702861238393
815 => 0.070853334916406
816 => 0.070538237339921
817 => 0.068623804212965
818 => 0.068510689290721
819 => 0.069459534042483
820 => 0.069021674837299
821 => 0.068406754682973
822 => 0.066179576217459
823 => 0.063675490228773
824 => 0.063751072844648
825 => 0.064547576007473
826 => 0.066863516376472
827 => 0.065958638408129
828 => 0.065302139059818
829 => 0.065179196466177
830 => 0.066718080423345
831 => 0.068895923628894
901 => 0.069917718934442
902 => 0.068905150819029
903 => 0.067741967088581
904 => 0.067812764692579
905 => 0.068283749434092
906 => 0.068333243271059
907 => 0.067576130239757
908 => 0.067789253123253
909 => 0.067465499974857
910 => 0.065478627500751
911 => 0.065442691278135
912 => 0.064955080730343
913 => 0.064940316076744
914 => 0.064110768894798
915 => 0.063994709509655
916 => 0.062347593229986
917 => 0.063431730153191
918 => 0.062704548024848
919 => 0.061608513032512
920 => 0.061419556186712
921 => 0.061413875915756
922 => 0.062539258783945
923 => 0.063418579399147
924 => 0.062717197669304
925 => 0.062557506645133
926 => 0.064262588997497
927 => 0.064045601725988
928 => 0.063857692148279
929 => 0.06870092165663
930 => 0.064867127578859
1001 => 0.063195374535634
1002 => 0.061126262687352
1003 => 0.06179997593852
1004 => 0.061941937219449
1005 => 0.056966096209773
1006 => 0.054947398131849
1007 => 0.054254657024538
1008 => 0.053855974723358
1009 => 0.054037659254343
1010 => 0.052220594214543
1011 => 0.053441691972771
1012 => 0.051868267240988
1013 => 0.051604477464338
1014 => 0.054417955794686
1015 => 0.054809434868252
1016 => 0.053139263517405
1017 => 0.05421178390083
1018 => 0.053822873100651
1019 => 0.051895239092012
1020 => 0.051821617651598
1021 => 0.050854398665674
1022 => 0.049340888243205
1023 => 0.04864917336723
1024 => 0.048288922254079
1025 => 0.048437568884519
1026 => 0.048362408599506
1027 => 0.047871936899423
1028 => 0.04839052186323
1029 => 0.047065751574805
1030 => 0.046538217371554
1031 => 0.046299942410647
1101 => 0.045124132528737
1102 => 0.046995368935883
1103 => 0.047364026081306
1104 => 0.04773340959519
1105 => 0.050948640894709
1106 => 0.050788017025134
1107 => 0.052239978579092
1108 => 0.052183558023091
1109 => 0.051769435067685
1110 => 0.050022318438745
1111 => 0.050718687987681
1112 => 0.048575370755911
1113 => 0.050181289757358
1114 => 0.049448415389879
1115 => 0.049933504196508
1116 => 0.049061270783494
1117 => 0.049544000767891
1118 => 0.047451448366764
1119 => 0.045497452377599
1120 => 0.046283797404338
1121 => 0.047138644377865
1122 => 0.048992170427429
1123 => 0.047888225603567
1124 => 0.048285245907003
1125 => 0.046955294350887
1126 => 0.04421122440874
1127 => 0.044226755546607
1128 => 0.043804640168821
1129 => 0.04343987085256
1130 => 0.048015026946387
1201 => 0.047446033963605
1202 => 0.046539418113502
1203 => 0.047752959456346
1204 => 0.048073839048885
1205 => 0.048082974039781
1206 => 0.048968342477485
1207 => 0.049440863771398
1208 => 0.049524147697475
1209 => 0.050917294063852
1210 => 0.051384258349817
1211 => 0.053307618156447
1212 => 0.049400773640932
1213 => 0.049320314749105
1214 => 0.047770036471703
1215 => 0.046786825479244
1216 => 0.04783735776953
1217 => 0.048767985966765
1218 => 0.047798953683907
1219 => 0.04792548884266
1220 => 0.046624642175769
1221 => 0.047089633648658
1222 => 0.047490146946226
1223 => 0.047269007044392
1224 => 0.046937949908055
1225 => 0.048691685067336
1226 => 0.048592732456706
1227 => 0.050225850955225
1228 => 0.051498983610245
1229 => 0.053780664927725
1230 => 0.051399611526197
1231 => 0.051312836476416
]
'min_raw' => 0.04343987085256
'max_raw' => 0.12559744166304
'avg_raw' => 0.084518656257799
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.043439'
'max' => '$0.125597'
'avg' => '$0.084518'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -0.0076383853937931
'max_diff' => -0.042426879942775
'year' => 2030
]
5 => [
'items' => [
101 => 0.052161076507188
102 => 0.051384128488688
103 => 0.051875132817046
104 => 0.053701556539529
105 => 0.053740145994744
106 => 0.053093722900184
107 => 0.053054387996133
108 => 0.053178540622537
109 => 0.053905706433223
110 => 0.053651612355421
111 => 0.053945656455128
112 => 0.054313363104375
113 => 0.05583435371005
114 => 0.056201059395788
115 => 0.055310154694542
116 => 0.055390593414028
117 => 0.055057370599881
118 => 0.054735481536685
119 => 0.055459041142627
120 => 0.056781360544087
121 => 0.056773134463719
122 => 0.057079886862642
123 => 0.057270991065896
124 => 0.056450631928701
125 => 0.055916608295828
126 => 0.056121386937478
127 => 0.056448832444975
128 => 0.056015200772597
129 => 0.053338625212948
130 => 0.054150527257437
131 => 0.054015387057252
201 => 0.05382293097858
202 => 0.054639304762566
203 => 0.054560563519543
204 => 0.052201957586217
205 => 0.052352947885591
206 => 0.052211139806418
207 => 0.052669350721429
208 => 0.051359383595558
209 => 0.051762320660712
210 => 0.052015039010677
211 => 0.05216389206028
212 => 0.052701651344938
213 => 0.052638551499678
214 => 0.05269772896996
215 => 0.05349508402592
216 => 0.057527832279753
217 => 0.057747325869451
218 => 0.056666459157767
219 => 0.057098244089931
220 => 0.056269311441159
221 => 0.056825779481646
222 => 0.057206500782191
223 => 0.055486094433523
224 => 0.055384223134899
225 => 0.054551869186218
226 => 0.054999129051302
227 => 0.054287506446831
228 => 0.054462113742466
301 => 0.05397389652188
302 => 0.054852590315856
303 => 0.055835106512733
304 => 0.056083328904805
305 => 0.055430362657724
306 => 0.054957572062264
307 => 0.054127507523541
308 => 0.055507923350632
309 => 0.055911599005884
310 => 0.055505803014265
311 => 0.05541177121619
312 => 0.055233581128748
313 => 0.055449575085599
314 => 0.055909400501571
315 => 0.055692555327041
316 => 0.055835785385138
317 => 0.055289940101865
318 => 0.05645090350171
319 => 0.058294792781721
320 => 0.058300721187263
321 => 0.058083874843856
322 => 0.057995145992154
323 => 0.058217643499826
324 => 0.058338339270412
325 => 0.059057855411157
326 => 0.059829924896964
327 => 0.063432836306918
328 => 0.062421153200285
329 => 0.065617870541355
330 => 0.068146058916346
331 => 0.068904152065727
401 => 0.068206742039336
402 => 0.0658209400124
403 => 0.065703881182889
404 => 0.069269276670765
405 => 0.068261889139981
406 => 0.068142063598675
407 => 0.066867322287625
408 => 0.067620852282238
409 => 0.067456044218798
410 => 0.067195886627972
411 => 0.06863356936634
412 => 0.071324783109742
413 => 0.070905332209791
414 => 0.070592231570744
415 => 0.069220315712666
416 => 0.070046515487729
417 => 0.069752321572644
418 => 0.071016365331923
419 => 0.070267573810924
420 => 0.068254257188643
421 => 0.068574884496719
422 => 0.068526422324116
423 => 0.069523770402223
424 => 0.069224391264876
425 => 0.068467963742686
426 => 0.07131558483374
427 => 0.071130676159388
428 => 0.071392834383611
429 => 0.071508244541427
430 => 0.073241541318839
501 => 0.073951617549235
502 => 0.074112817285168
503 => 0.074787334784777
504 => 0.074096034675307
505 => 0.076861728001814
506 => 0.078700752681262
507 => 0.080836874481785
508 => 0.083958322567762
509 => 0.085132015923098
510 => 0.084919998723778
511 => 0.087286645037971
512 => 0.091539455856983
513 => 0.085779613382815
514 => 0.091844741494104
515 => 0.089924591959342
516 => 0.085371951954434
517 => 0.085078815610218
518 => 0.088161916278779
519 => 0.094999936824204
520 => 0.093287090233762
521 => 0.095002738427615
522 => 0.093001343677466
523 => 0.092901957559041
524 => 0.094905535151797
525 => 0.0995870034066
526 => 0.097363013320956
527 => 0.094174378188445
528 => 0.096528816749634
529 => 0.09448918417493
530 => 0.089893321126909
531 => 0.093285780452255
601 => 0.091017339513075
602 => 0.091679391176081
603 => 0.096447316625112
604 => 0.095873627220718
605 => 0.096616034432212
606 => 0.095305705136105
607 => 0.094081650953578
608 => 0.091796862922432
609 => 0.091120449825099
610 => 0.091307386070408
611 => 0.09112035718878
612 => 0.08984203928364
613 => 0.089565986653735
614 => 0.089105886843083
615 => 0.089248491013327
616 => 0.088383368762354
617 => 0.090016033193318
618 => 0.090319070098695
619 => 0.091507187118635
620 => 0.091630541369073
621 => 0.094939430357821
622 => 0.093116949906439
623 => 0.094339627138617
624 => 0.094230259378687
625 => 0.085470621468152
626 => 0.086677622285284
627 => 0.08855533677902
628 => 0.087709428944774
629 => 0.086513513179099
630 => 0.08554774707737
701 => 0.084084512678596
702 => 0.086143986995942
703 => 0.088851976722576
704 => 0.091699220457403
705 => 0.095119997245999
706 => 0.094356519689016
707 => 0.091635271414783
708 => 0.091757344624492
709 => 0.092511953172876
710 => 0.091534666539303
711 => 0.091246445632161
712 => 0.092472356046167
713 => 0.09248079821744
714 => 0.09135631183648
715 => 0.090106651002878
716 => 0.090101414878356
717 => 0.089879049803308
718 => 0.09304090193033
719 => 0.094779600900885
720 => 0.094978939935806
721 => 0.094766183795585
722 => 0.094848065189967
723 => 0.093836354568618
724 => 0.096148825035556
725 => 0.098270976615644
726 => 0.097702194659024
727 => 0.096849509648932
728 => 0.09617030496752
729 => 0.097542195621519
730 => 0.097481107490252
731 => 0.098252441472916
801 => 0.098217449308022
802 => 0.09795807870099
803 => 0.097702203921966
804 => 0.098716718498025
805 => 0.098424554592725
806 => 0.098131936876183
807 => 0.097545047248127
808 => 0.097624815295784
809 => 0.096772277513781
810 => 0.096377854526352
811 => 0.09044667914849
812 => 0.088861675280779
813 => 0.08936034976329
814 => 0.08952452635101
815 => 0.088834730636544
816 => 0.089823720497107
817 => 0.089669587474938
818 => 0.090269228899397
819 => 0.089894598970799
820 => 0.089909973913745
821 => 0.091011680654229
822 => 0.091331510807987
823 => 0.091168842610439
824 => 0.091282769840062
825 => 0.093908174761034
826 => 0.093534926136995
827 => 0.093336645244596
828 => 0.093391570406866
829 => 0.094062417653491
830 => 0.094250218255644
831 => 0.093454493907807
901 => 0.093829762110275
902 => 0.095427606487756
903 => 0.095986761589716
904 => 0.097771316265494
905 => 0.097013205721293
906 => 0.09840475043543
907 => 0.10268188447413
908 => 0.10609875509941
909 => 0.10295645966425
910 => 0.10923110743173
911 => 0.11411682076347
912 => 0.11392929894822
913 => 0.11307736182025
914 => 0.10751510708546
915 => 0.10239663734997
916 => 0.10667845462542
917 => 0.10668936985822
918 => 0.1063215579569
919 => 0.10403710982707
920 => 0.10624206411381
921 => 0.10641708537787
922 => 0.10631912001191
923 => 0.10456763898694
924 => 0.10189345118961
925 => 0.1024159810841
926 => 0.10327189571061
927 => 0.10165147076014
928 => 0.10113364680345
929 => 0.10209638005897
930 => 0.10519850720169
1001 => 0.10461206803476
1002 => 0.10459675373812
1003 => 0.10710578918317
1004 => 0.10530986128826
1005 => 0.10242257185945
1006 => 0.1016934932
1007 => 0.099105755125214
1008 => 0.10089311503068
1009 => 0.1009574389317
1010 => 0.099978520177853
1011 => 0.10250200572119
1012 => 0.10247875135766
1013 => 0.1048744253098
1014 => 0.10945405413226
1015 => 0.10809963253961
1016 => 0.10652458758801
1017 => 0.10669583864551
1018 => 0.10857404006264
1019 => 0.10743843661068
1020 => 0.10784680752971
1021 => 0.10857342194434
1022 => 0.10901180646151
1023 => 0.10663276185984
1024 => 0.10607809276034
1025 => 0.10494343444515
1026 => 0.10464742327011
1027 => 0.10557157879241
1028 => 0.10532809646318
1029 => 0.10095203275689
1030 => 0.1004947097514
1031 => 0.10050873519507
1101 => 0.099358774753226
1102 => 0.097604809057285
1103 => 0.10221412618237
1104 => 0.10184393350987
1105 => 0.10143526945007
1106 => 0.10148532846559
1107 => 0.10348607680534
1108 => 0.10232554172807
1109 => 0.10541101443894
1110 => 0.10477673400739
1111 => 0.10412618667612
1112 => 0.10403626121879
1113 => 0.10378585599834
1114 => 0.10292712332575
1115 => 0.10189015202176
1116 => 0.10120545374595
1117 => 0.093356681380595
1118 => 0.094813367877396
1119 => 0.096489152910814
1120 => 0.097067627189063
1121 => 0.096078106906917
1122 => 0.10296619561768
1123 => 0.10422471580041
1124 => 0.10041257607568
1125 => 0.099699480381823
1126 => 0.10301294605266
1127 => 0.10101452119844
1128 => 0.10191441178793
1129 => 0.099969340547289
1130 => 0.10392157514217
1201 => 0.10389146573636
1202 => 0.10235395721368
1203 => 0.10365344888864
1204 => 0.1034276302312
1205 => 0.10169178689582
1206 => 0.10397660447207
1207 => 0.10397773771308
1208 => 0.10249791918832
1209 => 0.10076981512534
1210 => 0.10046087093487
1211 => 0.10022812298817
1212 => 0.10185717006075
1213 => 0.10331776857212
1214 => 0.10603558028872
1215 => 0.10671890272788
1216 => 0.10938595569929
1217 => 0.10779785551127
1218 => 0.10850183975528
1219 => 0.1092661142368
1220 => 0.10963253552851
1221 => 0.10903547169693
1222 => 0.11317850276433
1223 => 0.11352830152561
1224 => 0.11364558602452
1225 => 0.11224857925909
1226 => 0.1134894482403
1227 => 0.11290888673725
1228 => 0.11441934648354
1229 => 0.11465620585828
1230 => 0.11445559439439
1231 => 0.11453077729851
]
'min_raw' => 0.051359383595558
'max_raw' => 0.11465620585828
'avg_raw' => 0.083007794726918
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.051359'
'max' => '$0.114656'
'avg' => '$0.0830077'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 0.0079195127429977
'max_diff' => -0.010941235804761
'year' => 2031
]
6 => [
'items' => [
101 => 0.11099543116324
102 => 0.11081210481569
103 => 0.1083124370586
104 => 0.10933107014623
105 => 0.10742678441327
106 => 0.1080306530355
107 => 0.10829683257032
108 => 0.10815779548689
109 => 0.10938866213266
110 => 0.10834217403431
111 => 0.1055803198842
112 => 0.10281771326877
113 => 0.10278303099308
114 => 0.1020556854353
115 => 0.101529947817
116 => 0.10163122353383
117 => 0.10198813236953
118 => 0.10150920362665
119 => 0.10161140735625
120 => 0.10330867024746
121 => 0.10364904421596
122 => 0.10249232047828
123 => 0.097847907757051
124 => 0.096708157225634
125 => 0.097527387305381
126 => 0.097135848092437
127 => 0.078396210552705
128 => 0.082798810423692
129 => 0.080182935078517
130 => 0.081388450788211
131 => 0.078718319438424
201 => 0.079992646072117
202 => 0.079757324473831
203 => 0.086836574783978
204 => 0.086726042027575
205 => 0.086778948208801
206 => 0.084253598332535
207 => 0.088276549256149
208 => 0.090258399541757
209 => 0.089891611799128
210 => 0.089983924371816
211 => 0.088397688526852
212 => 0.086794306439121
213 => 0.085015908945092
214 => 0.088319951672423
215 => 0.087952598523034
216 => 0.088795174478241
217 => 0.090938082364767
218 => 0.091253633691173
219 => 0.091677737873869
220 => 0.091525726714164
221 => 0.095147249251949
222 => 0.094708658977048
223 => 0.095765535348525
224 => 0.093591460466994
225 => 0.091131288373458
226 => 0.091598886659354
227 => 0.091553853184234
228 => 0.090980525358944
229 => 0.090462950633491
301 => 0.089601334541386
302 => 0.092327615351994
303 => 0.092216933329857
304 => 0.094008746614483
305 => 0.09369202621168
306 => 0.09157688984713
307 => 0.09165243235618
308 => 0.092160492034033
309 => 0.093918892380005
310 => 0.094440905323715
311 => 0.094199088129569
312 => 0.094771451491551
313 => 0.095223824155727
314 => 0.094828262533319
315 => 0.10042858094097
316 => 0.098102938285278
317 => 0.099236440333946
318 => 0.099506773893571
319 => 0.098814320165093
320 => 0.098964488583891
321 => 0.099191952819925
322 => 0.10057307111906
323 => 0.10419752516579
324 => 0.10580277119059
325 => 0.11063223305766
326 => 0.10566947785434
327 => 0.1053750084985
328 => 0.10624494041653
329 => 0.10908034578296
330 => 0.11137817551636
331 => 0.11214049820391
401 => 0.11224125173164
402 => 0.11367141977174
403 => 0.11449116542126
404 => 0.11349775975451
405 => 0.11265595246585
406 => 0.10964070324684
407 => 0.10998972655419
408 => 0.11239415103209
409 => 0.11579054222701
410 => 0.11870499920652
411 => 0.11768445795138
412 => 0.12547046733829
413 => 0.12624241836601
414 => 0.12613575969414
415 => 0.127894379017
416 => 0.12440387779773
417 => 0.12291162090122
418 => 0.11283796075658
419 => 0.11566824835797
420 => 0.11978223760354
421 => 0.11923773570022
422 => 0.11625004674284
423 => 0.11870273277653
424 => 0.11789179807121
425 => 0.11725218022341
426 => 0.12018239358021
427 => 0.11696050362788
428 => 0.11975009678665
429 => 0.11617241470588
430 => 0.11768911969786
501 => 0.11682816458965
502 => 0.11738530805935
503 => 0.11412825871976
504 => 0.115885683483
505 => 0.11405514407174
506 => 0.11405427615771
507 => 0.11401386689875
508 => 0.11616748839825
509 => 0.11623771791803
510 => 0.11464618837596
511 => 0.11441682410458
512 => 0.11526490403054
513 => 0.11427202454973
514 => 0.11473658660969
515 => 0.11428609566127
516 => 0.11418468065999
517 => 0.11337658867544
518 => 0.11302844042954
519 => 0.11316495832743
520 => 0.11269895236213
521 => 0.11241816691186
522 => 0.11395801160543
523 => 0.11313533470281
524 => 0.11383192457125
525 => 0.11303807249951
526 => 0.11028623535398
527 => 0.10870362471144
528 => 0.10350565943897
529 => 0.10497979594218
530 => 0.10595714996892
531 => 0.10563413446892
601 => 0.10632809675333
602 => 0.10637070040147
603 => 0.1061450861887
604 => 0.10588385383328
605 => 0.10575670036971
606 => 0.10670439811223
607 => 0.10725456854981
608 => 0.10605524052081
609 => 0.105774254744
610 => 0.10698684159803
611 => 0.1077265188785
612 => 0.1131878803287
613 => 0.11278328503251
614 => 0.11379873982814
615 => 0.11368441520158
616 => 0.11474877360204
617 => 0.11648854975537
618 => 0.11295109838658
619 => 0.11356507762834
620 => 0.11341454409711
621 => 0.11505802971904
622 => 0.11506316050176
623 => 0.11407780877322
624 => 0.11461198393077
625 => 0.11431382201215
626 => 0.11485264089809
627 => 0.11277788141565
628 => 0.11530471450881
629 => 0.11673726604711
630 => 0.11675715702661
701 => 0.11743617508632
702 => 0.11812609676107
703 => 0.11945034133624
704 => 0.11808916429861
705 => 0.11564053931582
706 => 0.11581732213057
707 => 0.11438169419908
708 => 0.11440582736397
709 => 0.11427700263841
710 => 0.1146636153373
711 => 0.11286272116194
712 => 0.11328538742532
713 => 0.11269365218146
714 => 0.11356379131148
715 => 0.11262766544673
716 => 0.11341447150528
717 => 0.11375403091712
718 => 0.115007012457
719 => 0.11244259905452
720 => 0.10721358653135
721 => 0.10831278835937
722 => 0.10668698251529
723 => 0.10683745703604
724 => 0.10714143951579
725 => 0.10615613284203
726 => 0.1063440983048
727 => 0.10633738285578
728 => 0.10627951274408
729 => 0.10602319642388
730 => 0.10565148704896
731 => 0.10713226279254
801 => 0.10738387544618
802 => 0.10794317920701
803 => 0.1096072878199
804 => 0.10944100412709
805 => 0.1097122197291
806 => 0.10912015759271
807 => 0.10686492110047
808 => 0.10698739129227
809 => 0.10546018603808
810 => 0.10790412513504
811 => 0.10732536809846
812 => 0.10695223967194
813 => 0.10685042812375
814 => 0.10851866174001
815 => 0.10901782338435
816 => 0.10870677934509
817 => 0.10806881894596
818 => 0.10929389150835
819 => 0.10962166924439
820 => 0.10969504659151
821 => 0.1118656402877
822 => 0.10981635866684
823 => 0.11030964112109
824 => 0.11415809001546
825 => 0.11066807791791
826 => 0.11251681516254
827 => 0.11242632909478
828 => 0.11337208051128
829 => 0.11234874987421
830 => 0.11236143528391
831 => 0.11320119847101
901 => 0.11202190252682
902 => 0.11172989226656
903 => 0.11132648218343
904 => 0.11220731334148
905 => 0.11273533178416
906 => 0.11699077264538
907 => 0.11973998151341
908 => 0.11962063110592
909 => 0.12071127041572
910 => 0.12021992741755
911 => 0.1186332512667
912 => 0.12134151398165
913 => 0.12048450634011
914 => 0.12055515700882
915 => 0.1205525273874
916 => 0.12112236254811
917 => 0.12071858211212
918 => 0.11992268942558
919 => 0.12045104013366
920 => 0.12202005284784
921 => 0.12689031645585
922 => 0.12961578049331
923 => 0.1267262400986
924 => 0.12871940637038
925 => 0.12752421684507
926 => 0.12730701535452
927 => 0.12855887106702
928 => 0.12981291798724
929 => 0.12973304061981
930 => 0.12882266695176
1001 => 0.12830841996655
1002 => 0.13220247042391
1003 => 0.13507154046748
1004 => 0.134875889125
1005 => 0.13573943052149
1006 => 0.13827481476991
1007 => 0.13850661853111
1008 => 0.13847741658515
1009 => 0.13790286677678
1010 => 0.1403992818306
1011 => 0.14248183518873
1012 => 0.13776987509648
1013 => 0.13956412781552
1014 => 0.14036962566831
1015 => 0.14155233549665
1016 => 0.14354776522225
1017 => 0.14571533116584
1018 => 0.14602184875641
1019 => 0.14580435985768
1020 => 0.14437479185058
1021 => 0.1467465683705
1022 => 0.14813589943086
1023 => 0.14896321428303
1024 => 0.15106114709607
1025 => 0.14037460014883
1026 => 0.13281013106373
1027 => 0.13162882998383
1028 => 0.13403105218217
1029 => 0.13466449901851
1030 => 0.13440915739306
1031 => 0.12589465970633
1101 => 0.13158400291563
1102 => 0.13770525783526
1103 => 0.13794040016632
1104 => 0.14100482836849
1105 => 0.14200273180628
1106 => 0.14446999817281
1107 => 0.14431566998982
1108 => 0.14491641008729
1109 => 0.14477831034225
1110 => 0.14934840174203
1111 => 0.15438989122112
1112 => 0.15421532047142
1113 => 0.1534905467106
1114 => 0.1545669593377
1115 => 0.15977031675898
1116 => 0.15929127498973
1117 => 0.15975662326387
1118 => 0.16589167491193
1119 => 0.17386811475532
1120 => 0.1701622576266
1121 => 0.17820290126426
1122 => 0.18326406021797
1123 => 0.1920168112948
1124 => 0.19092092375177
1125 => 0.19432830551533
1126 => 0.18895905633112
1127 => 0.17663017489989
1128 => 0.17467908222034
1129 => 0.17858521917434
1130 => 0.18818807572049
1201 => 0.17828279104804
1202 => 0.1802866172366
1203 => 0.17970951515949
1204 => 0.17967876384233
1205 => 0.18085241654381
1206 => 0.1791499720867
1207 => 0.17221390710455
1208 => 0.17539266481138
1209 => 0.17416519380429
1210 => 0.17552716440068
1211 => 0.18287715799002
1212 => 0.17962755062221
1213 => 0.17620435323689
1214 => 0.18049780242639
1215 => 0.18596483863384
1216 => 0.18562272133318
1217 => 0.18495887077598
1218 => 0.18870096160886
1219 => 0.19488179933504
1220 => 0.19655245493581
1221 => 0.19778569874525
1222 => 0.19795574223075
1223 => 0.1997072958128
1224 => 0.19028875075377
1225 => 0.20523622364784
1226 => 0.20781723930104
1227 => 0.20733211533038
1228 => 0.21020080560317
1229 => 0.20935676415327
1230 => 0.2081338805184
1231 => 0.2126813647887
]
'min_raw' => 0.078396210552705
'max_raw' => 0.2126813647887
'avg_raw' => 0.1455387876707
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.078396'
'max' => '$0.212681'
'avg' => '$0.145538'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.027036826957148
'max_diff' => 0.098025158930419
'year' => 2032
]
7 => [
'items' => [
101 => 0.20746804103586
102 => 0.20006838430792
103 => 0.19600878627836
104 => 0.20135479244212
105 => 0.20461941185643
106 => 0.20677711762049
107 => 0.20743003808097
108 => 0.19101988559554
109 => 0.18217572355467
110 => 0.18784473002435
111 => 0.19476130917127
112 => 0.19025032880738
113 => 0.19042715069723
114 => 0.1839956781631
115 => 0.19533035178127
116 => 0.19367898517471
117 => 0.20224627805075
118 => 0.20020162484906
119 => 0.20718791960907
120 => 0.20534819406253
121 => 0.21298479194856
122 => 0.21603123759794
123 => 0.22114669398464
124 => 0.22490964452635
125 => 0.22711932105822
126 => 0.22698666036753
127 => 0.23574249964327
128 => 0.23057948712809
129 => 0.22409352658041
130 => 0.22397621601705
131 => 0.22733538689146
201 => 0.23437528750072
202 => 0.23620063130231
203 => 0.23722074946941
204 => 0.23565840298592
205 => 0.23005432293714
206 => 0.2276345095854
207 => 0.22969626066982
208 => 0.22717491626187
209 => 0.23152746407429
210 => 0.23750444187479
211 => 0.23627021959452
212 => 0.24039603963252
213 => 0.24466582932293
214 => 0.25077182034847
215 => 0.25236815250674
216 => 0.25500682886128
217 => 0.25772289359014
218 => 0.25859522038105
219 => 0.260260762892
220 => 0.26025198466083
221 => 0.26527120912154
222 => 0.27080756913414
223 => 0.27289741687187
224 => 0.27770290650989
225 => 0.26947367390921
226 => 0.27571564136744
227 => 0.28134605226134
228 => 0.27463324427904
301 => 0.28388528619898
302 => 0.28424452202115
303 => 0.28966855643156
304 => 0.28417025843735
305 => 0.28090538663958
306 => 0.2903309491866
307 => 0.29489168200066
308 => 0.29351795216059
309 => 0.28306380024824
310 => 0.27697903543559
311 => 0.2610540322574
312 => 0.27991788643091
313 => 0.28910591953265
314 => 0.28304000546218
315 => 0.28609929968618
316 => 0.30278981699283
317 => 0.30914448535224
318 => 0.30782275875597
319 => 0.30804610879326
320 => 0.31147497249461
321 => 0.32668044245611
322 => 0.31756897239515
323 => 0.32453434985648
324 => 0.32822876094644
325 => 0.33166033585856
326 => 0.32323347243479
327 => 0.31227024693566
328 => 0.30879773321519
329 => 0.28243686985397
330 => 0.28106467243659
331 => 0.28029441644438
401 => 0.27543806136835
402 => 0.27162229654621
403 => 0.26858785868937
404 => 0.26062458759319
405 => 0.26331195782388
406 => 0.25062016576041
407 => 0.25873992455312
408 => 0.23848351796579
409 => 0.25535365529409
410 => 0.24617200653732
411 => 0.25233723673784
412 => 0.25231572683047
413 => 0.24096358334329
414 => 0.23441590389308
415 => 0.23858834007825
416 => 0.24306152287715
417 => 0.24378728173668
418 => 0.24958687999747
419 => 0.25120542321011
420 => 0.24630116171326
421 => 0.23806374896343
422 => 0.23997711206983
423 => 0.23437712965079
424 => 0.22456337586164
425 => 0.23161178516471
426 => 0.23401842199746
427 => 0.23508132992588
428 => 0.22543063019149
429 => 0.22239817080806
430 => 0.22078371487712
501 => 0.23681796481602
502 => 0.23769635722294
503 => 0.23320237747694
504 => 0.25351559206551
505 => 0.24891808599215
506 => 0.25405462669243
507 => 0.23980349442285
508 => 0.24034790686724
509 => 0.2336011924663
510 => 0.23737890171521
511 => 0.23470893857933
512 => 0.23707370013994
513 => 0.2384911284691
514 => 0.2452367358006
515 => 0.2554306792942
516 => 0.24422916701145
517 => 0.23934850770125
518 => 0.24237644128743
519 => 0.25044022744385
520 => 0.26265727624844
521 => 0.2554245374651
522 => 0.25863430411728
523 => 0.2593354953382
524 => 0.25400234152991
525 => 0.26285391723648
526 => 0.26759754856771
527 => 0.27246353275735
528 => 0.27668853048744
529 => 0.27051995166673
530 => 0.27712121523593
531 => 0.27180176207904
601 => 0.26702966268234
602 => 0.26703689998729
603 => 0.2640432923265
604 => 0.25824280026487
605 => 0.25717310053319
606 => 0.26273781362557
607 => 0.26720018654536
608 => 0.26756772895236
609 => 0.27003832788576
610 => 0.27150040288535
611 => 0.28583072547593
612 => 0.2915944997685
613 => 0.2986423338708
614 => 0.30138786244781
615 => 0.30965091913814
616 => 0.30297782976805
617 => 0.30153406490713
618 => 0.28149059220163
619 => 0.2847727097343
620 => 0.29002769658134
621 => 0.28157724499921
622 => 0.28693711150224
623 => 0.28799526268743
624 => 0.28129010188805
625 => 0.2848716179839
626 => 0.27536017307885
627 => 0.25563800280135
628 => 0.26287587364989
629 => 0.26820538283539
630 => 0.26059951610393
701 => 0.27423273783238
702 => 0.26626849114544
703 => 0.26374420729694
704 => 0.25389607603177
705 => 0.2585440148996
706 => 0.2648304187704
707 => 0.26094615205114
708 => 0.2690065887192
709 => 0.28042231668111
710 => 0.28855784424513
711 => 0.28918238903224
712 => 0.2839517898466
713 => 0.29233385842283
714 => 0.2923949126415
715 => 0.28293990504575
716 => 0.27714876553906
717 => 0.27583300645847
718 => 0.27912003061153
719 => 0.28311108475148
720 => 0.28940386476068
721 => 0.29320645992715
722 => 0.30312161138065
723 => 0.30580436707429
724 => 0.30875190222091
725 => 0.31269071816296
726 => 0.31742027659307
727 => 0.3070722720019
728 => 0.3074834175154
729 => 0.29784749891798
730 => 0.28755013796612
731 => 0.29536455134442
801 => 0.30558085732869
802 => 0.30323722544788
803 => 0.30297351898524
804 => 0.30341700010933
805 => 0.30164997820707
806 => 0.293657803632
807 => 0.28964418359406
808 => 0.29482277742668
809 => 0.29757496957602
810 => 0.30184337958327
811 => 0.30131720795467
812 => 0.31231217373957
813 => 0.31658448497308
814 => 0.31549144493705
815 => 0.31569259060915
816 => 0.32342740602524
817 => 0.33203011155403
818 => 0.34008768050873
819 => 0.34828418573009
820 => 0.3384029787707
821 => 0.33338591126484
822 => 0.33856224428539
823 => 0.33581560912252
824 => 0.35159858947326
825 => 0.3526913687889
826 => 0.36847320785052
827 => 0.38345205238643
828 => 0.3740441085073
829 => 0.38291537584222
830 => 0.39251037474997
831 => 0.4110206843755
901 => 0.40478706329417
902 => 0.40001220723916
903 => 0.39549999133912
904 => 0.40488919633301
905 => 0.41696825856144
906 => 0.41956997287362
907 => 0.42378574399072
908 => 0.41935337614106
909 => 0.42469167500667
910 => 0.44353821576968
911 => 0.4384457140925
912 => 0.4312135430504
913 => 0.44609107694178
914 => 0.45147519862212
915 => 0.48926378426116
916 => 0.53697343459907
917 => 0.51722132608072
918 => 0.50496055492683
919 => 0.50784212697737
920 => 0.52526407620719
921 => 0.53085945335478
922 => 0.51564928942547
923 => 0.52102177646278
924 => 0.55062470824963
925 => 0.56650573137752
926 => 0.54493716886388
927 => 0.48543036031037
928 => 0.43056236517696
929 => 0.44511582822436
930 => 0.44346591716132
1001 => 0.47527057432535
1002 => 0.4383242596117
1003 => 0.43894634079737
1004 => 0.47140868458983
1005 => 0.46274828781146
1006 => 0.44871955417033
1007 => 0.43066479045767
1008 => 0.39728888987129
1009 => 0.3677269239661
1010 => 0.42570474682034
1011 => 0.42320463767303
1012 => 0.41958410913232
1013 => 0.42764120361757
1014 => 0.46676416739179
1015 => 0.46586225644812
1016 => 0.46012475918349
1017 => 0.46447660029073
1018 => 0.44795665538339
1019 => 0.45221422133816
1020 => 0.4305536738062
1021 => 0.44034514591502
1022 => 0.44868945480856
1023 => 0.45036469835855
1024 => 0.45413910761671
1025 => 0.42188719375824
1026 => 0.43636735621425
1027 => 0.44487309504942
1028 => 0.40644385755071
1029 => 0.44411347258349
1030 => 0.421325759692
1031 => 0.41359126767666
1101 => 0.42400474223347
1102 => 0.41994660107125
1103 => 0.41645764960201
1104 => 0.41451075473438
1105 => 0.42215726115566
1106 => 0.42180054249155
1107 => 0.40928937386341
1108 => 0.39296906440847
1109 => 0.39844669595744
1110 => 0.39645662106263
1111 => 0.38924433291906
1112 => 0.39410454431283
1113 => 0.37270263303135
1114 => 0.3358817570461
1115 => 0.36020675557589
1116 => 0.359270269593
1117 => 0.35879805089416
1118 => 0.37707761499572
1119 => 0.37532045668866
1120 => 0.37213119715518
1121 => 0.38918575966668
1122 => 0.38296061493375
1123 => 0.40214504417208
1124 => 0.41478115003953
1125 => 0.41157622485635
1126 => 0.42346054350029
1127 => 0.39857288952507
1128 => 0.40683956985627
1129 => 0.4085433212154
1130 => 0.3889753090126
1201 => 0.37560794951884
1202 => 0.37471649903966
1203 => 0.35153933981308
1204 => 0.36392039119242
1205 => 0.37481520404353
1206 => 0.36959743415948
1207 => 0.36794564409063
1208 => 0.37638428132282
1209 => 0.3770400357078
1210 => 0.36208876623649
1211 => 0.3651976086047
1212 => 0.37816199808219
1213 => 0.36487093925307
1214 => 0.33904858303021
1215 => 0.33264428166494
1216 => 0.33178982980812
1217 => 0.31442085657394
1218 => 0.33307224770552
1219 => 0.32493041565038
1220 => 0.35065036555845
1221 => 0.33595926810982
1222 => 0.33532596426153
1223 => 0.33436863260937
1224 => 0.31941843984347
1225 => 0.32269158192489
1226 => 0.33357200471713
1227 => 0.33745426214614
1228 => 0.3370493108899
1229 => 0.33351868470966
1230 => 0.33513498729524
1231 => 0.32992831350992
]
'min_raw' => 0.18217572355467
'max_raw' => 0.56650573137752
'avg_raw' => 0.37434072746609
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.182175'
'max' => '$0.5665057'
'avg' => '$0.37434'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.10377951300197
'max_diff' => 0.35382436658882
'year' => 2033
]
8 => [
'items' => [
101 => 0.32808972862879
102 => 0.3222866490013
103 => 0.31375772509056
104 => 0.31494372427128
105 => 0.29804569428977
106 => 0.28883875070951
107 => 0.28629039007206
108 => 0.28288261572434
109 => 0.28667530725238
110 => 0.29799782429396
111 => 0.28434046653582
112 => 0.26092588461176
113 => 0.2623331408819
114 => 0.26549482790278
115 => 0.25960304505603
116 => 0.25402696705144
117 => 0.25887491447492
118 => 0.24895384744472
119 => 0.26669374145492
120 => 0.26621392703742
121 => 0.27282626249674
122 => 0.27696109155823
123 => 0.26743164923829
124 => 0.26503502026518
125 => 0.26640024904898
126 => 0.24383605833749
127 => 0.27098228672309
128 => 0.27121704843344
129 => 0.26920687614145
130 => 0.28366140471101
131 => 0.3141649684733
201 => 0.30268830078291
202 => 0.29824418816908
203 => 0.28979592684156
204 => 0.30105273345236
205 => 0.30018838633819
206 => 0.296279480894
207 => 0.29391536268482
208 => 0.29827132297305
209 => 0.29337561099984
210 => 0.29249620660428
211 => 0.28716797276862
212 => 0.28526603570848
213 => 0.28385791722745
214 => 0.2823077171387
215 => 0.28572707224869
216 => 0.27797836371583
217 => 0.26863418084047
218 => 0.26785731313984
219 => 0.27000231316418
220 => 0.26905331032988
221 => 0.26785276967938
222 => 0.26556061062978
223 => 0.26488057600399
224 => 0.2670903586319
225 => 0.26459564288332
226 => 0.26827673186455
227 => 0.2672756793456
228 => 0.26168388134992
301 => 0.25471443069852
302 => 0.25465238796881
303 => 0.25315083125816
304 => 0.25123837302658
305 => 0.25070637089767
306 => 0.25846663386494
307 => 0.27453014596207
308 => 0.27137649417014
309 => 0.27365533078905
310 => 0.28486495150657
311 => 0.28842815284762
312 => 0.28589907693479
313 => 0.28243712183871
314 => 0.28258943029322
315 => 0.29441997886161
316 => 0.29515783566417
317 => 0.29702216176263
318 => 0.29941834765763
319 => 0.28630715775411
320 => 0.28197189442783
321 => 0.27991760615259
322 => 0.27359119337445
323 => 0.28041368717003
324 => 0.27643851220366
325 => 0.27697489911793
326 => 0.27662557643634
327 => 0.27681633024159
328 => 0.266688782793
329 => 0.27037872879504
330 => 0.26424347788985
331 => 0.25602906564204
401 => 0.25600152805184
402 => 0.25801199381214
403 => 0.25681609010838
404 => 0.25359794399105
405 => 0.2540550664578
406 => 0.25005019264225
407 => 0.25454133064959
408 => 0.25467012041757
409 => 0.25294078765081
410 => 0.25986000540873
411 => 0.26269481456969
412 => 0.26155653069671
413 => 0.26261494953873
414 => 0.27150754263998
415 => 0.27295742332652
416 => 0.27360136455374
417 => 0.27273856861513
418 => 0.26277748981626
419 => 0.26321930601876
420 => 0.25997755187442
421 => 0.25723861123008
422 => 0.257348154492
423 => 0.25875632602055
424 => 0.2649058936739
425 => 0.27784729626355
426 => 0.27833841303178
427 => 0.27893366088177
428 => 0.27651248872827
429 => 0.27578224003928
430 => 0.27674562655324
501 => 0.28160573693929
502 => 0.29410726035931
503 => 0.289688387034
504 => 0.28609577423666
505 => 0.28924746422138
506 => 0.28876228625199
507 => 0.28466689592453
508 => 0.28455195195816
509 => 0.27669158854427
510 => 0.27378579116197
511 => 0.27135748937416
512 => 0.26870584721429
513 => 0.26713386485807
514 => 0.26954914421043
515 => 0.27010154717506
516 => 0.26482049665927
517 => 0.26410070898812
518 => 0.26841332883871
519 => 0.26651550563314
520 => 0.26846746386382
521 => 0.26892033491692
522 => 0.26884741224687
523 => 0.26686586685664
524 => 0.26812884479784
525 => 0.26514152545507
526 => 0.26189326435067
527 => 0.25982107613988
528 => 0.25801281709008
529 => 0.25901614430754
530 => 0.25543946597761
531 => 0.25429521459555
601 => 0.26770097628926
602 => 0.27760395658863
603 => 0.27745996333307
604 => 0.27658344142189
605 => 0.27528110765784
606 => 0.28151046311271
607 => 0.27934028023213
608 => 0.2809192696026
609 => 0.28132118866736
610 => 0.28253767662611
611 => 0.28297246651069
612 => 0.2816582294985
613 => 0.27724748956505
614 => 0.26625634501146
615 => 0.26113993755174
616 => 0.25945143786952
617 => 0.25951281162605
618 => 0.25781984943641
619 => 0.2583185026745
620 => 0.2576464381901
621 => 0.25637371064651
622 => 0.25893755696818
623 => 0.25923301637287
624 => 0.25863458400571
625 => 0.25877553649174
626 => 0.25382077208547
627 => 0.2541974720621
628 => 0.25209995872353
629 => 0.25170670025845
630 => 0.24640436918992
701 => 0.23701052111684
702 => 0.24221562483222
703 => 0.23592859149238
704 => 0.23354759670248
705 => 0.2448188557172
706 => 0.24368753392818
707 => 0.24175120279915
708 => 0.23888696549254
709 => 0.23782459201401
710 => 0.23136994706502
711 => 0.23098857220724
712 => 0.23418766853403
713 => 0.2327113956534
714 => 0.23063814942074
715 => 0.22312906172762
716 => 0.21468636098707
717 => 0.2149411930535
718 => 0.21762665907704
719 => 0.22543501372491
720 => 0.22238415447808
721 => 0.22017072108993
722 => 0.21975621155189
723 => 0.22494466625493
724 => 0.2322874166746
725 => 0.23573247088672
726 => 0.23231852679036
727 => 0.22839677163226
728 => 0.22863547069707
729 => 0.23022342863618
730 => 0.23039030056307
731 => 0.22783764111809
801 => 0.22855619979956
802 => 0.22746464345602
803 => 0.22076576419057
804 => 0.22064460270703
805 => 0.21900058970127
806 => 0.21895080964082
807 => 0.21615393339976
808 => 0.21576263107974
809 => 0.21020926354485
810 => 0.21386450687346
811 => 0.21141276155752
812 => 0.20771740305813
813 => 0.20708032185998
814 => 0.20706117042986
815 => 0.21085547734169
816 => 0.21382016818804
817 => 0.21145541071697
818 => 0.2109170012797
819 => 0.21666580547575
820 => 0.21593421774029
821 => 0.21530066747961
822 => 0.23162995391051
823 => 0.21870404951034
824 => 0.21306761740704
825 => 0.20609146234978
826 => 0.20836293361326
827 => 0.20884156598332
828 => 0.19206517061708
829 => 0.18525898910636
830 => 0.18292336409742
831 => 0.18157917888388
901 => 0.18219174096491
902 => 0.17606537931979
903 => 0.18018239566598
904 => 0.17487748432977
905 => 0.17398809868058
906 => 0.18347393730213
907 => 0.18479383633086
908 => 0.17916273701383
909 => 0.18277881436753
910 => 0.18146757445185
911 => 0.17496842180861
912 => 0.17472020198217
913 => 0.17145915564205
914 => 0.16635624958277
915 => 0.16402408458444
916 => 0.16280947280451
917 => 0.16331064529722
918 => 0.16305723714878
919 => 0.16140357756831
920 => 0.16315202298023
921 => 0.15868546746029
922 => 0.15690684906277
923 => 0.15610348839625
924 => 0.15213916328696
925 => 0.15844816747921
926 => 0.15969112078382
927 => 0.16093652309042
928 => 0.17177689989703
929 => 0.17123534530636
930 => 0.17613073505824
1001 => 0.17594050921453
1002 => 0.17454426475723
1003 => 0.16865373906297
1004 => 0.17100159761618
1005 => 0.16377525392764
1006 => 0.1691897219627
1007 => 0.16671878486509
1008 => 0.16835429564446
1009 => 0.16541349979509
1010 => 0.16704105764062
1011 => 0.15998587112288
1012 => 0.15339783722176
1013 => 0.15604905438027
1014 => 0.15893123063502
1015 => 0.16518052312019
1016 => 0.16145849607157
1017 => 0.16279707774367
1018 => 0.15831305321798
1019 => 0.14906122982318
1020 => 0.14911359413885
1021 => 0.14769040267149
1022 => 0.14646055745434
1023 => 0.16188601565187
1024 => 0.1599676160846
1025 => 0.15691089744808
1026 => 0.16100243681223
1027 => 0.16208430476158
1028 => 0.16211510402117
1029 => 0.16510018552333
1030 => 0.16669332405615
1031 => 0.16697412162761
1101 => 0.17167121186823
1102 => 0.17324561456076
1103 => 0.17973035643351
1104 => 0.16655815738228
1105 => 0.16628688461102
1106 => 0.16106001316179
1107 => 0.15774504865511
1108 => 0.16128699161763
1109 => 0.164424669559
1110 => 0.16115750956167
1111 => 0.16158413168381
1112 => 0.15719823632417
1113 => 0.15876598753968
1114 => 0.16011634608538
1115 => 0.15937075746685
1116 => 0.15825457521802
1117 => 0.16416741574941
1118 => 0.16383379011402
1119 => 0.16933996315247
1120 => 0.17363241878616
1121 => 0.18132526664994
1122 => 0.17329737886685
1123 => 0.17300481072807
1124 => 0.17586471121405
1125 => 0.1732451767249
1126 => 0.17490063209879
1127 => 0.18105854719597
1128 => 0.18118865423846
1129 => 0.17900919364333
1130 => 0.17887657326804
1201 => 0.17929516251603
1202 => 0.18174685281585
1203 => 0.18089015689226
1204 => 0.18188154710392
1205 => 0.18312129574432
1206 => 0.18824942176352
1207 => 0.18948579558556
1208 => 0.18648204818433
1209 => 0.18675325294313
1210 => 0.18562976896036
1211 => 0.18454449751022
1212 => 0.18698402923897
1213 => 0.19144232142239
1214 => 0.1914145866181
1215 => 0.19244882374783
1216 => 0.19309314491158
1217 => 0.19032724680488
1218 => 0.18852674884231
1219 => 0.18921717432982
1220 => 0.19032117971986
1221 => 0.18885916026124
1222 => 0.17983489888935
1223 => 0.18257228331753
1224 => 0.18211664869742
1225 => 0.18146776959132
1226 => 0.18422023080143
1227 => 0.18395474920304
1228 => 0.17600254462622
1229 => 0.17651161896237
1230 => 0.17603350312271
1231 => 0.17757839321394
]
'min_raw' => 0.14646055745434
'max_raw' => 0.32808972862879
'avg_raw' => 0.23727514304156
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.14646'
'max' => '$0.328089'
'avg' => '$0.237275'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.035715166100336
'max_diff' => -0.23841600274873
'year' => 2034
]
9 => [
'items' => [
101 => 0.17316174759008
102 => 0.17452027803741
103 => 0.17537233559855
104 => 0.17587420404788
105 => 0.17768729702125
106 => 0.17747455148747
107 => 0.17767407246017
108 => 0.18036241070089
109 => 0.19395910299617
110 => 0.1946991409584
111 => 0.19105492337625
112 => 0.1925107164213
113 => 0.18971591212174
114 => 0.1915920829716
115 => 0.1928757114175
116 => 0.18707524129803
117 => 0.18673177510229
118 => 0.18392543565121
119 => 0.18543340351303
120 => 0.18303411821815
121 => 0.18362281890608
122 => 0.18197676046064
123 => 0.18493933793547
124 => 0.18825195989033
125 => 0.18908885901553
126 => 0.18688733772485
127 => 0.18529329122307
128 => 0.18249467067752
129 => 0.18714883901611
130 => 0.18850985967152
131 => 0.18714169015401
201 => 0.18682465538171
202 => 0.18622387506106
203 => 0.1869521137668
204 => 0.18850244726074
205 => 0.18777133861516
206 => 0.18825424875604
207 => 0.18641389327378
208 => 0.19032816243224
209 => 0.19654496387603
210 => 0.19656495190923
211 => 0.1958338393227
212 => 0.19553468380434
213 => 0.19628484968573
214 => 0.19669178390297
215 => 0.19911768280651
216 => 0.20172076898208
217 => 0.21386823634798
218 => 0.21045727612051
219 => 0.2212352318236
220 => 0.22975919544236
221 => 0.23231515942387
222 => 0.22996379282828
223 => 0.22191989472309
224 => 0.2215252227066
225 => 0.23354620252194
226 => 0.23014972512835
227 => 0.22974572494989
228 => 0.22544784562009
301 => 0.22798842460671
302 => 0.22743276271429
303 => 0.22655562323319
304 => 0.23140287096141
305 => 0.24047648599183
306 => 0.23906227799752
307 => 0.23800663733298
308 => 0.23338112723337
309 => 0.23616671745842
310 => 0.23517482213374
311 => 0.23943663392087
312 => 0.23691203102887
313 => 0.23012399347157
314 => 0.23120501082623
315 => 0.23104161722778
316 => 0.23440424590574
317 => 0.23339486824219
318 => 0.23084452003904
319 => 0.24044547336208
320 => 0.23982204085659
321 => 0.24070592561287
322 => 0.24109503901762
323 => 0.24693897011759
324 => 0.2493330417043
325 => 0.24987653786861
326 => 0.25215072071185
327 => 0.24981995412774
328 => 0.2591446822726
329 => 0.26534508237596
330 => 0.27254716616568
331 => 0.2830713463201
401 => 0.28702853541227
402 => 0.2863137046222
403 => 0.29429301790447
404 => 0.30863166650254
405 => 0.28921195546152
406 => 0.30966095834245
407 => 0.30318704012544
408 => 0.28783749649372
409 => 0.28684916684307
410 => 0.29724405600233
411 => 0.32029891968658
412 => 0.31452393781978
413 => 0.32030836548809
414 => 0.31356052335504
415 => 0.31322543611786
416 => 0.31998063785715
417 => 0.33576453492789
418 => 0.32826619708012
419 => 0.31751549110746
420 => 0.32545364509816
421 => 0.31857688146995
422 => 0.30308160833063
423 => 0.31451952179998
424 => 0.30687131479605
425 => 0.30910346820084
426 => 0.32517886173818
427 => 0.32324462785755
428 => 0.32574770560432
429 => 0.32132983889822
430 => 0.3172028547611
501 => 0.30949953239528
502 => 0.30721895841197
503 => 0.3078492270145
504 => 0.30721864608215
505 => 0.30290870801567
506 => 0.30197797730056
507 => 0.30042671866581
508 => 0.30090751858209
509 => 0.29799069851203
510 => 0.30349534063001
511 => 0.30451705071385
512 => 0.30852287019826
513 => 0.30893876766593
514 => 0.32009491791075
515 => 0.31395029782739
516 => 0.31807263948028
517 => 0.31770389844186
518 => 0.28817016764811
519 => 0.29223965517317
520 => 0.29857050068664
521 => 0.29571846336408
522 => 0.29168634986394
523 => 0.28843020202432
524 => 0.28349680508909
525 => 0.29044046653793
526 => 0.29957064296708
527 => 0.30917032400726
528 => 0.32070371178102
529 => 0.31812959389335
530 => 0.30895471534529
531 => 0.3093662936947
601 => 0.31191050910066
602 => 0.3086155189836
603 => 0.30764376207223
604 => 0.31177700462338
605 => 0.31180546799324
606 => 0.3080141836507
607 => 0.30380086490168
608 => 0.30378321094228
609 => 0.30303349156672
610 => 0.31369389676644
611 => 0.31955604173775
612 => 0.32022812721139
613 => 0.31951080503048
614 => 0.31978687386841
615 => 0.31637582087316
616 => 0.32417247650397
617 => 0.33132745872013
618 => 0.3294097706423
619 => 0.32653488359821
620 => 0.32424489759427
621 => 0.32887032271657
622 => 0.32866435981697
623 => 0.33126496619234
624 => 0.33114698766532
625 => 0.33027250155504
626 => 0.32940980187295
627 => 0.33283030859728
628 => 0.33184525759233
629 => 0.33085867653109
630 => 0.32887993717478
701 => 0.32914888071668
702 => 0.32627449006237
703 => 0.32494466542252
704 => 0.30494729353462
705 => 0.29960334233319
706 => 0.30128465816732
707 => 0.30183819099526
708 => 0.29951249658394
709 => 0.3028469449479
710 => 0.30232727470243
711 => 0.30434900763062
712 => 0.30308591667053
713 => 0.30313775436411
714 => 0.30685223555836
715 => 0.30793056525158
716 => 0.30738211806642
717 => 0.30776623167524
718 => 0.31661796766622
719 => 0.31535953387088
720 => 0.31469101599863
721 => 0.31487620001797
722 => 0.31713800834703
723 => 0.31777119118901
724 => 0.31508835099457
725 => 0.31635359393958
726 => 0.3217408378162
727 => 0.32362606828141
728 => 0.32964281896443
729 => 0.32708679633507
730 => 0.33177848649333
731 => 0.34619914252478
801 => 0.3577193603962
802 => 0.3471248919485
803 => 0.36828030497846
804 => 0.38475282858605
805 => 0.38412058569357
806 => 0.38124822018625
807 => 0.36249469000371
808 => 0.34523741193036
809 => 0.35967385782145
810 => 0.35971065929091
811 => 0.35847055578581
812 => 0.35076837942101
813 => 0.35820253674375
814 => 0.35879263315514
815 => 0.35846233608406
816 => 0.35255709552387
817 => 0.34354088465935
818 => 0.34530263068052
819 => 0.34818840660184
820 => 0.34272503074685
821 => 0.34097915112357
822 => 0.34422507351044
823 => 0.35468411175573
824 => 0.35270689116054
825 => 0.35265525794023
826 => 0.36111464611847
827 => 0.35505954983308
828 => 0.34532485193974
829 => 0.34286671233678
830 => 0.33414197274752
831 => 0.34016818145828
901 => 0.34038505398152
902 => 0.337084561057
903 => 0.34559266875051
904 => 0.34551426504029
905 => 0.35359144703056
906 => 0.36903198534494
907 => 0.36446545838263
908 => 0.35915508436219
909 => 0.35973246925891
910 => 0.36606495646859
911 => 0.362236190145
912 => 0.36361304121007
913 => 0.3660628724396
914 => 0.36754091644627
915 => 0.35951980147215
916 => 0.35764969587741
917 => 0.35382411614843
918 => 0.35282609380497
919 => 0.35594194867088
920 => 0.35512103099849
921 => 0.34036682668572
922 => 0.33882493024341
923 => 0.33887221800598
924 => 0.33499504608863
925 => 0.32908142828679
926 => 0.34462206278625
927 => 0.3433739323449
928 => 0.34199609293528
929 => 0.34216487040112
930 => 0.34891053311636
1001 => 0.34499770807739
1002 => 0.35540059474291
1003 => 0.35326207398387
1004 => 0.35106870823675
1005 => 0.35076551827894
1006 => 0.34992125959547
1007 => 0.34702598243502
1008 => 0.3435297612846
1009 => 0.34122125324361
1010 => 0.31475856923003
1011 => 0.3196698894566
1012 => 0.32531991569634
1013 => 0.32727028211324
1014 => 0.32393404539588
1015 => 0.34715771739523
1016 => 0.35140090605838
1017 => 0.33854801082135
1018 => 0.33614375890275
1019 => 0.34731533975075
1020 => 0.34057751082919
1021 => 0.34361155478
1022 => 0.33705361129165
1023 => 0.35037884616449
1024 => 0.35027733020064
1025 => 0.34509351287102
1026 => 0.34947483978076
1027 => 0.34871347641104
1028 => 0.34286095941308
1029 => 0.35056438139228
1030 => 0.35056820219347
1031 => 0.34557889071962
1101 => 0.33975246721889
1102 => 0.33871084031094
1103 => 0.33792611435869
1104 => 0.34341856030032
1105 => 0.34834307015716
1106 => 0.35750636211121
1107 => 0.3598102314229
1108 => 0.36880238672371
1109 => 0.36344799606218
1110 => 0.36582152809147
1111 => 0.36839833286587
1112 => 0.36963374783357
1113 => 0.36762070543972
1114 => 0.38158922394066
1115 => 0.38276859488649
1116 => 0.3831640277631
1117 => 0.37845392191757
1118 => 0.3826375983224
1119 => 0.38068019468138
1120 => 0.38577281517293
1121 => 0.38657140309185
1122 => 0.38589502753511
1123 => 0.38614851194543
1124 => 0.3742288456204
1125 => 0.3736107480402
1126 => 0.36518294367594
1127 => 0.36861733624956
1128 => 0.3621969039479
1129 => 0.36423288916854
1130 => 0.36513033205421
1201 => 0.36466155882017
1202 => 0.36881151165275
1203 => 0.36528320396571
1204 => 0.35597141987211
1205 => 0.34665709878916
1206 => 0.34654016507524
1207 => 0.34408786874553
1208 => 0.34231530765962
1209 => 0.34265676580975
1210 => 0.34386010886789
1211 => 0.34224536717352
1212 => 0.3425899541835
1213 => 0.34831239452032
1214 => 0.34945998911929
1215 => 0.34556001427783
1216 => 0.32990105252566
1217 => 0.32605830403415
1218 => 0.32882039544483
1219 => 0.32750029365199
1220 => 0.26431829732708
1221 => 0.27916197017182
1222 => 0.27034236381097
1223 => 0.27440684419263
1224 => 0.2654043099242
1225 => 0.26970079114034
1226 => 0.26890738794209
1227 => 0.29277557462022
1228 => 0.29240290571486
1229 => 0.29258128259866
1230 => 0.28406688917653
1231 => 0.29763054908896
]
'min_raw' => 0.17316174759008
'max_raw' => 0.38657140309185
'avg_raw' => 0.27986657534096
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.173161'
'max' => '$0.386571'
'avg' => '$0.279866'
'bar_min_pct' => 61.631153054957
'bar_max_pct' => 60.119598047091
'min_diff' => 0.02670119013574
'max_diff' => 0.058481674463059
'year' => 2035
]
10 => [
'items' => [
101 => 0.30431249569525
102 => 0.30307584521268
103 => 0.30338708349655
104 => 0.29803897859781
105 => 0.29263306394446
106 => 0.28663707262959
107 => 0.29777688336569
108 => 0.29653832657474
109 => 0.2993791302345
110 => 0.30660409378697
111 => 0.30766799711504
112 => 0.30909789397701
113 => 0.30858537773898
114 => 0.32079559382175
115 => 0.31931685608853
116 => 0.32288018856372
117 => 0.31555014331157
118 => 0.30725550133449
119 => 0.30883204160205
120 => 0.30868020809655
121 => 0.30674719330512
122 => 0.30500215398234
123 => 0.30209715517169
124 => 0.3112890012675
125 => 0.31091582910229
126 => 0.31695705269182
127 => 0.31588920774106
128 => 0.30875787781387
129 => 0.30901257465734
130 => 0.31072553333282
131 => 0.31665410286686
201 => 0.31841410595235
202 => 0.31759880239915
203 => 0.31952856543521
204 => 0.32105377145613
205 => 0.31972010782895
206 => 0.3386019723421
207 => 0.33076090575724
208 => 0.33458258705291
209 => 0.33549403552327
210 => 0.33315937943213
211 => 0.33366568274053
212 => 0.33443259429337
213 => 0.3390891310655
214 => 0.35130923093536
215 => 0.35672142998268
216 => 0.37300429784976
217 => 0.35627202219325
218 => 0.35527919820083
219 => 0.3582122343992
220 => 0.36777200155378
221 => 0.3755192949293
222 => 0.37808951909403
223 => 0.37842921664718
224 => 0.3832511280455
225 => 0.38601495773569
226 => 0.38266562117288
227 => 0.37982740912606
228 => 0.36966128586618
229 => 0.37083804231495
301 => 0.37894472731372
302 => 0.39039589735585
303 => 0.40022219254317
304 => 0.39678136644953
305 => 0.42303244069934
306 => 0.42563512748518
307 => 0.42527552032632
308 => 0.4312048281562
309 => 0.41943635959643
310 => 0.41440511128378
311 => 0.38044106278566
312 => 0.38998357503809
313 => 0.40385417700911
314 => 0.40201835082616
315 => 0.39194514891255
316 => 0.40021455111624
317 => 0.39748042813958
318 => 0.39532391190903
319 => 0.40520333082243
320 => 0.39434050390299
321 => 0.40374581200096
322 => 0.39168340707985
323 => 0.39679708385329
324 => 0.39389431359597
325 => 0.3957727617026
326 => 0.38479139245425
327 => 0.39071667274299
328 => 0.38454488131373
329 => 0.384541955081
330 => 0.38440571244313
331 => 0.39166679768974
401 => 0.39190358141896
402 => 0.38653762845081
403 => 0.38576431079617
404 => 0.38862367147759
405 => 0.38527610898739
406 => 0.38684241240725
407 => 0.38532355072236
408 => 0.38498162296497
409 => 0.38225708441987
410 => 0.3810832783019
411 => 0.38154355792601
412 => 0.3799723862785
413 => 0.37902569852911
414 => 0.38421739242199
415 => 0.38144367980735
416 => 0.38379228118316
417 => 0.38111575349831
418 => 0.37183774243502
419 => 0.36650186015933
420 => 0.34897655733285
421 => 0.35394671147437
422 => 0.35724192881219
423 => 0.3561528595017
424 => 0.35849260179452
425 => 0.3586362429687
426 => 0.35787556889845
427 => 0.35699480577349
428 => 0.35656609899352
429 => 0.35976132809857
430 => 0.36161626614052
501 => 0.35757264795637
502 => 0.35662528479205
503 => 0.36071360603051
504 => 0.36320747962422
505 => 0.38162084105366
506 => 0.3802567197646
507 => 0.38368039650487
508 => 0.38329494304452
509 => 0.3868835017028
510 => 0.39274927847106
511 => 0.38082251420422
512 => 0.38289258808446
513 => 0.38238505377402
514 => 0.38792618029285
515 => 0.38794347908501
516 => 0.38462129693717
517 => 0.38642230577576
518 => 0.38541703205015
519 => 0.38723369754322
520 => 0.38023850109312
521 => 0.38875789528455
522 => 0.39358784281346
523 => 0.39365490663959
524 => 0.39594426343546
525 => 0.39827038253066
526 => 0.40273516557164
527 => 0.39814586215492
528 => 0.38989015206792
529 => 0.39048618767042
530 => 0.38564586786706
531 => 0.38572723451743
601 => 0.38529289296093
602 => 0.38659638466767
603 => 0.38052454422105
604 => 0.38194959303765
605 => 0.37995451634933
606 => 0.38288825117738
607 => 0.37973203746614
608 => 0.3823848090256
609 => 0.3835296572899
610 => 0.38775417203196
611 => 0.37910807320389
612 => 0.36147809240402
613 => 0.36518412811101
614 => 0.35970261019755
615 => 0.36020994555005
616 => 0.36123484370392
617 => 0.3579128134614
618 => 0.35854655214247
619 => 0.35852391053723
620 => 0.35832879741528
621 => 0.3574646090463
622 => 0.35621136493683
623 => 0.36120390374077
624 => 0.36205223336956
625 => 0.36393796504856
626 => 0.36954862342124
627 => 0.36898798634137
628 => 0.36990240867924
629 => 0.36790622984993
630 => 0.36030254256076
701 => 0.36071545936301
702 => 0.35556638022246
703 => 0.36380629151823
704 => 0.36185497176187
705 => 0.36059694322087
706 => 0.3602536784779
707 => 0.36587824458747
708 => 0.36756120292172
709 => 0.36651249622695
710 => 0.3643615682003
711 => 0.36849198587625
712 => 0.369597111398
713 => 0.36984450824685
714 => 0.37716281643959
715 => 0.37025352037857
716 => 0.37191665661295
717 => 0.38489197075045
718 => 0.3731251512987
719 => 0.37935829799368
720 => 0.37905321789869
721 => 0.38224188482966
722 => 0.37879165414013
723 => 0.3788344238846
724 => 0.38166574410029
725 => 0.37768966548864
726 => 0.37670513250868
727 => 0.37534500724822
728 => 0.37831479099524
729 => 0.38009504203982
730 => 0.39444255800881
731 => 0.40371170765099
801 => 0.40330930941938
802 => 0.40698647599837
803 => 0.40532987877555
804 => 0.39998028935479
805 => 0.40911138618309
806 => 0.4062219250853
807 => 0.40646012874751
808 => 0.4064512627953
809 => 0.40837250182426
810 => 0.40701112789327
811 => 0.40432772013313
812 => 0.40610909143371
813 => 0.41139912734454
814 => 0.42781956112989
815 => 0.43700865341799
816 => 0.42726636623599
817 => 0.43398646547971
818 => 0.42995680054967
819 => 0.42922449055973
820 => 0.43344520949622
821 => 0.43767331624248
822 => 0.43740400412135
823 => 0.43433461573925
824 => 0.43260079612505
825 => 0.44572985911596
826 => 0.45540312907991
827 => 0.4547434769188
828 => 0.45765496702759
829 => 0.46620319203601
830 => 0.46698473460094
831 => 0.46688627820131
901 => 0.4649491434086
902 => 0.47336598105668
903 => 0.48038745510288
904 => 0.4645007526733
905 => 0.47055020098628
906 => 0.47326599323502
907 => 0.47725358199544
908 => 0.48398131263173
909 => 0.49128941254516
910 => 0.49232285800215
911 => 0.4915895789955
912 => 0.48676969065032
913 => 0.49476630077936
914 => 0.49945052744937
915 => 0.50223987723474
916 => 0.50931320418688
917 => 0.47328276504339
918 => 0.4477786293886
919 => 0.44379579032192
920 => 0.45189505018142
921 => 0.45403076041599
922 => 0.45316985829839
923 => 0.42446263488436
924 => 0.44364465273174
925 => 0.46428289106566
926 => 0.46507568985194
927 => 0.47540762348711
928 => 0.47877212459899
929 => 0.4870906854128
930 => 0.486570357169
1001 => 0.48859579434995
1002 => 0.48813018141773
1003 => 0.50353856364568
1004 => 0.52053629741001
1005 => 0.51994771993923
1006 => 0.51750409460255
1007 => 0.52113329492756
1008 => 0.53867677776019
1009 => 0.53706165498955
1010 => 0.5386306091854
1011 => 0.55931536415244
1012 => 0.58620848798169
1013 => 0.57371393193752
1014 => 0.60082352334172
1015 => 0.61788757411297
1016 => 0.64739808546606
1017 => 0.64370322410232
1018 => 0.65519144961395
1019 => 0.63708865112039
1020 => 0.59552096659998
1021 => 0.58894272140993
1022 => 0.60211253486812
1023 => 0.6344892361635
1024 => 0.60109287732543
1025 => 0.60784891722286
1026 => 0.6059031772779
1027 => 0.6057994970651
1028 => 0.60975654908995
1029 => 0.60401663874195
1030 => 0.58063121139402
1031 => 0.59134861493639
1101 => 0.58721011073669
1102 => 0.59180208969218
1103 => 0.61658310623878
1104 => 0.60562682811788
1105 => 0.59408527913327
1106 => 0.60856094283472
1107 => 0.6269934371044
1108 => 0.62583996473938
1109 => 0.6236017462372
1110 => 0.6362184667447
1111 => 0.65705759267082
1112 => 0.66269032467027
1113 => 0.66684829227612
1114 => 0.66742160575953
1115 => 0.67332709095098
1116 => 0.64157180870264
1117 => 0.69196825716425
1118 => 0.70067033163977
1119 => 0.69903470230241
1120 => 0.70870669184268
1121 => 0.70586094716524
1122 => 0.70173790961129
1123 => 0.7170700703238
1124 => 0.69949298530848
1125 => 0.6745445260227
1126 => 0.66085730783395
1127 => 0.67888174086129
1128 => 0.68988863314506
1129 => 0.69716348877481
1130 => 0.69936485569278
1201 => 0.64403688086789
1202 => 0.61421817106743
1203 => 0.63333162217732
1204 => 0.65665135167132
1205 => 0.64144226642786
1206 => 0.6420384337748
1207 => 0.62035427509493
1208 => 0.65856991856022
1209 => 0.65300222075148
1210 => 0.6818874468323
1211 => 0.67499375580969
1212 => 0.69854853636059
1213 => 0.69234577323488
1214 => 0.71809309617789
1215 => 0.7283644003808
1216 => 0.74561151873833
1217 => 0.75829856921053
1218 => 0.76574864791241
1219 => 0.76530137313169
1220 => 0.79482229656301
1221 => 0.77741483939807
1222 => 0.75554697057625
1223 => 0.75515144982151
1224 => 0.76647712895442
1225 => 0.79021264536868
1226 => 0.79636691943718
1227 => 0.79980631905996
1228 => 0.79453875881131
1229 => 0.77564421166246
1230 => 0.76748564200112
1231 => 0.7744369797291
]
'min_raw' => 0.28663707262959
'max_raw' => 0.79980631905996
'avg_raw' => 0.54322169584478
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$0.286637'
'max' => '$0.7998063'
'avg' => '$0.543221'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.11347532503952
'max_diff' => 0.41323491596812
'year' => 2036
]
11 => [
'items' => [
101 => 0.76593609102304
102 => 0.78061100985781
103 => 0.80076280781146
104 => 0.79660154122288
105 => 0.81051203153657
106 => 0.82490792558498
107 => 0.84549470063426
108 => 0.85087684595821
109 => 0.85977332751405
110 => 0.86893072937697
111 => 0.87187184005643
112 => 0.87748733291658
113 => 0.87745773649733
114 => 0.89438040219765
115 => 0.91304662651644
116 => 0.9200926940727
117 => 0.93629473789588
118 => 0.90854930563602
119 => 0.92959453472168
120 => 0.9485778581532
121 => 0.92594515736758
122 => 0.9571390626576
123 => 0.9583502513131
124 => 0.97663776202178
125 => 0.9580998664554
126 => 0.94709212324315
127 => 0.97887106544218
128 => 0.99424789454499
129 => 0.98961626847843
130 => 0.95436936542039
131 => 0.93385415602981
201 => 0.88016189596633
202 => 0.94376269734455
203 => 0.97474079243507
204 => 0.95428913963786
205 => 0.96460376370717
206 => 1.0208770081013
207 => 1.0423022161438
208 => 1.0378459226444
209 => 1.038598962889
210 => 1.0501596162537
211 => 1.1014259198409
212 => 1.0707059623879
213 => 1.0941902188059
214 => 1.1066461837312
215 => 1.1182159781323
216 => 1.0898042197543
217 => 1.052840939556
218 => 1.0411331171043
219 => 0.9522556258252
220 => 0.94762916642874
221 => 0.94503219457344
222 => 0.92865865437475
223 => 0.91579353686869
224 => 0.90556271777669
225 => 0.87871399329807
226 => 0.88777464965703
227 => 0.84498338660241
228 => 0.87235972027551
301 => 0.80406383120916
302 => 0.86094267704692
303 => 0.8299861072212
304 => 0.85077261128489
305 => 0.85070008913042
306 => 0.81242554478205
307 => 0.79034958637127
308 => 0.80441724627978
309 => 0.81949889439392
310 => 0.82194584105969
311 => 0.84149959151097
312 => 0.84695662295547
313 => 0.83042156291421
314 => 0.80264855071037
315 => 0.80909958801036
316 => 0.79021885630629
317 => 0.75713110023176
318 => 0.78089530430129
319 => 0.78900944840892
320 => 0.79259311669944
321 => 0.7600551087546
322 => 0.74983096022381
323 => 0.74438770933494
324 => 0.7984483024795
325 => 0.80140986380685
326 => 0.78625809733356
327 => 0.85474551854227
328 => 0.83924470582832
329 => 0.85656291142112
330 => 0.80851422399196
331 => 0.81034974855789
401 => 0.78760272991455
402 => 0.80033954039849
403 => 0.79133757327501
404 => 0.799310531979
405 => 0.80408949055243
406 => 0.82683277663384
407 => 0.86120236884092
408 => 0.82343568811503
409 => 0.80698020449393
410 => 0.81718909398331
411 => 0.84437671200525
412 => 0.88556734501704
413 => 0.86118166123532
414 => 0.87200361360188
415 => 0.87436772875883
416 => 0.85638662834526
417 => 0.88623033383726
418 => 0.90222381806026
419 => 0.91862982348781
420 => 0.93287469831471
421 => 0.91207690414425
422 => 0.93433352515333
423 => 0.9163986174425
424 => 0.90030915114921
425 => 0.90033355222814
426 => 0.89024039499276
427 => 0.87068363102956
428 => 0.86707706370015
429 => 0.88583888240696
430 => 0.90088408425897
501 => 0.90212327914516
502 => 0.91045307594082
503 => 0.91538256388076
504 => 0.96369824700606
505 => 0.98313121444736
506 => 1.0068934791873
507 => 1.0161502204714
508 => 1.044009693011
509 => 1.0215109062995
510 => 1.0166431522705
511 => 0.94906518465334
512 => 0.96013107306487
513 => 0.97784862811113
514 => 0.94935734061028
515 => 0.96742850473918
516 => 0.97099613533782
517 => 0.94838921756332
518 => 0.96046454913393
519 => 0.92839604856868
520 => 0.86190137452015
521 => 0.88630436141799
522 => 0.90427317373138
523 => 0.87862946302159
524 => 0.92459482192023
525 => 0.89774280816925
526 => 0.88923200893416
527 => 0.85602834679908
528 => 0.87169919720068
529 => 0.89289424675381
530 => 0.87979817031896
531 => 0.90697449530704
601 => 0.94546341915131
602 => 0.97289291833777
603 => 0.97499861469186
604 => 0.95736328434868
605 => 0.9856240137708
606 => 0.9858298623317
607 => 0.95395164409508
608 => 0.93442641292382
609 => 0.92999023932027
610 => 0.941072670745
611 => 0.95452878842433
612 => 0.97574533557325
613 => 0.98856605066569
614 => 1.0219956760449
615 => 1.0310407741701
616 => 1.0409785947072
617 => 1.0542585876552
618 => 1.0702046241095
619 => 1.0353156041558
620 => 1.0367018099598
621 => 1.0042136376503
622 => 0.96949536626231
623 => 0.99584220655215
624 => 1.0302871954578
625 => 1.0223854769445
626 => 1.0214963721943
627 => 1.0229915997671
628 => 1.0170339620541
629 => 0.99008778747842
630 => 0.97655558729851
701 => 0.99401557796305
702 => 1.0032947859465
703 => 1.0176860282968
704 => 1.0159120039148
705 => 1.0529822987026
706 => 1.0673866943096
707 => 1.0637014335145
708 => 1.0643796101916
709 => 1.0904580803945
710 => 1.1194627027065
711 => 1.1466293589988
712 => 1.1742644486143
713 => 1.1409492694669
714 => 1.1240338760904
715 => 1.1414862442692
716 => 1.1322257720537
717 => 1.1854391922387
718 => 1.1891235739968
719 => 1.2423331462459
720 => 1.2928353663882
721 => 1.2611158267581
722 => 1.2910259239498
723 => 1.3233761326688
724 => 1.3857849339198
725 => 1.3647678452266
726 => 1.3486690846673
727 => 1.3334558337275
728 => 1.3651121938977
729 => 1.405837595534
730 => 1.4146094569835
731 => 1.4288232236405
801 => 1.4138791859773
802 => 1.4318776333109
803 => 1.4954200613168
804 => 1.4782503363651
805 => 1.4538665667626
806 => 1.5040272109936
807 => 1.5221801531463
808 => 1.6495870079431
809 => 1.8104434250388
810 => 1.743847812121
811 => 1.7025097661559
812 => 1.7122251875093
813 => 1.7709645056992
814 => 1.7898297104091
815 => 1.7385475807817
816 => 1.756661295923
817 => 1.8564696472531
818 => 1.9100136255064
819 => 1.8372937111227
820 => 1.6366623514519
821 => 1.4516710750985
822 => 1.5007390918531
823 => 1.495176301511
824 => 1.6024079236698
825 => 1.4778408441034
826 => 1.4799382342532
827 => 1.5893872927979
828 => 1.5601881604101
829 => 1.5128893054841
830 => 1.4520164090835
831 => 1.3394872300256
901 => 1.2398169980257
902 => 1.4352932756611
903 => 1.4268639831189
904 => 1.4146571183666
905 => 1.441822174952
906 => 1.5737279787949
907 => 1.5706871230789
908 => 1.551342750472
909 => 1.5660152866009
910 => 1.51031713896
911 => 1.5246718198303
912 => 1.4516417715352
913 => 1.4846544033688
914 => 1.5127878233844
915 => 1.518436023975
916 => 1.5311617083097
917 => 1.4224221289792
918 => 1.4712430076723
919 => 1.4999207000067
920 => 1.3703538427362
921 => 1.4973595798277
922 => 1.4205292148267
923 => 1.3944518349921
924 => 1.4295615915059
925 => 1.4158792852471
926 => 1.4041160417778
927 => 1.3975519498037
928 => 1.423332680065
929 => 1.4221299781837
930 => 1.379947699652
1001 => 1.3249226368771
1002 => 1.3433908540805
1003 => 1.33668117763
1004 => 1.3123644446081
1005 => 1.3287509866513
1006 => 1.2565929485321
1007 => 1.1324487943963
1008 => 1.2144622252567
1009 => 1.211304797382
1010 => 1.2097126790696
1011 => 1.2713435056764
1012 => 1.2654191237633
1013 => 1.2546663125792
1014 => 1.3121669607982
1015 => 1.2911784507054
1016 => 1.3558600932965
1017 => 1.3984636064534
1018 => 1.3876579774376
1019 => 1.4277267874822
1020 => 1.3438163245043
1021 => 1.3716880144021
1022 => 1.3774323310616
1023 => 1.3114574117248
1024 => 1.2663884259124
1025 => 1.2633828383827
1026 => 1.1852394278727
1027 => 1.2269830070156
1028 => 1.2637156291946
1029 => 1.2461235537375
1030 => 1.2405544281961
1031 => 1.2690058827912
1101 => 1.2712168044835
1102 => 1.2208075555967
1103 => 1.2312892346936
1104 => 1.2749995789617
1105 => 1.2301878461672
1106 => 1.1431259693025
1107 => 1.1215334201154
1108 => 1.1186525760242
1109 => 1.0600918701022
1110 => 1.1229763375009
1111 => 1.0955255822824
1112 => 1.182242189107
1113 => 1.1327101283593
1114 => 1.130574900219
1115 => 1.1273471897149
1116 => 1.0769415710156
1117 => 1.0879771980666
1118 => 1.1246613031575
1119 => 1.1377506051299
1120 => 1.1363852836967
1121 => 1.1244815310296
1122 => 1.1299310080435
1123 => 1.112376343858
1124 => 1.1061774265653
1125 => 1.0866119384432
1126 => 1.0578560760077
1127 => 1.0618547550493
1128 => 1.0048818671838
1129 => 0.97384001409471
1130 => 0.9652480382847
1201 => 0.95375848914815
1202 => 0.96654581343219
1203 => 1.0047204701508
1204 => 0.95867373494295
1205 => 0.87972983723206
1206 => 0.88447449999835
1207 => 0.89513434853116
1208 => 0.87526979131222
1209 => 0.8564696550104
1210 => 0.87281484822156
1211 => 0.83936527806244
1212 => 0.89917656927768
1213 => 0.89755884146951
1214 => 0.91985279212912
1215 => 0.93379365699449
1216 => 0.9016644768884
1217 => 0.89358407497826
1218 => 0.89818703914007
1219 => 0.82211029477478
1220 => 0.91363569906597
1221 => 0.91442721456296
1222 => 0.90764977833478
1223 => 0.95638423059
1224 => 1.0592291255054
1225 => 1.0205347391119
1226 => 1.0055511031563
1227 => 0.97706720025181
1228 => 1.0150203096653
1229 => 1.0121061030231
1230 => 0.9989269554069
1231 => 0.99095616580721
]
'min_raw' => 0.74438770933494
'max_raw' => 1.9100136255064
'avg_raw' => 1.3272006674207
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$0.744387'
'max' => '$1.91'
'avg' => '$1.32'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 0.45775063670534
'max_diff' => 1.1102073064464
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.023365479603241
]
1 => [
'year' => 2028
'avg' => 0.040101946046356
]
2 => [
'year' => 2029
'avg' => 0.10955128892608
]
3 => [
'year' => 2030
'avg' => 0.084518656257799
]
4 => [
'year' => 2031
'avg' => 0.083007794726918
]
5 => [
'year' => 2032
'avg' => 0.1455387876707
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.023365479603241
'min' => '$0.023365'
'max_raw' => 0.1455387876707
'max' => '$0.145538'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.1455387876707
]
1 => [
'year' => 2033
'avg' => 0.37434072746609
]
2 => [
'year' => 2034
'avg' => 0.23727514304156
]
3 => [
'year' => 2035
'avg' => 0.27986657534096
]
4 => [
'year' => 2036
'avg' => 0.54322169584478
]
5 => [
'year' => 2037
'avg' => 1.3272006674207
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.1455387876707
'min' => '$0.145538'
'max_raw' => 1.3272006674207
'max' => '$1.32'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 1.3272006674207
]
]
]
]
'prediction_2025_max_price' => '$0.03995'
'last_price' => 0.03873726
'sma_50day_nextmonth' => '$0.029838'
'sma_200day_nextmonth' => '$0.053574'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'increase'
'sma_200day_direction_label' => 'aumentar'
'sma_200day_date_nextmonth' => '4 de fev. de 2026'
'sma_50day_date_nextmonth' => '4 de fev. de 2026'
'daily_sma3' => '$0.027226'
'daily_sma3_action' => 'BUY'
'daily_sma5' => '$0.024654'
'daily_sma5_action' => 'BUY'
'daily_sma10' => '$0.022251'
'daily_sma10_action' => 'BUY'
'daily_sma21' => '$0.02113'
'daily_sma21_action' => 'BUY'
'daily_sma50' => '$0.024969'
'daily_sma50_action' => 'BUY'
'daily_sma100' => '$0.037789'
'daily_sma100_action' => 'BUY'
'daily_sma200' => '$0.060448'
'daily_sma200_action' => 'SELL'
'daily_ema3' => '$0.030065'
'daily_ema3_action' => 'BUY'
'daily_ema5' => '$0.02697'
'daily_ema5_action' => 'BUY'
'daily_ema10' => '$0.02408'
'daily_ema10_action' => 'BUY'
'daily_ema21' => '$0.023067'
'daily_ema21_action' => 'BUY'
'daily_ema50' => '$0.027119'
'daily_ema50_action' => 'BUY'
'daily_ema100' => '$0.0380033'
'daily_ema100_action' => 'BUY'
'daily_ema200' => '$0.061497'
'daily_ema200_action' => 'SELL'
'weekly_sma21' => '$0.048769'
'weekly_sma21_action' => 'SELL'
'weekly_sma50' => '$0.0804044'
'weekly_sma50_action' => 'SELL'
'weekly_sma100' => '—'
'weekly_sma100_action' => '—'
'weekly_sma200' => '—'
'weekly_sma200_action' => '—'
'weekly_ema3' => '$0.030154'
'weekly_ema3_action' => 'BUY'
'weekly_ema5' => '$0.028637'
'weekly_ema5_action' => 'BUY'
'weekly_ema10' => '$0.032301'
'weekly_ema10_action' => 'BUY'
'weekly_ema21' => '$0.047122'
'weekly_ema21_action' => 'SELL'
'weekly_ema50' => '$0.096751'
'weekly_ema50_action' => 'SELL'
'weekly_ema100' => '$0.163691'
'weekly_ema100_action' => 'SELL'
'weekly_ema200' => '$0.081845'
'weekly_ema200_action' => 'SELL'
'rsi_14' => '75.61'
'rsi_14_action' => 'SELL'
'stoch_rsi_14' => 136.54
'stoch_rsi_14_action' => 'SELL'
'momentum_10' => 0.02
'momentum_10_action' => 'BUY'
'vwma_10' => '0.035462'
'vwma_10_action' => 'BUY'
'hma_9' => '0.027154'
'hma_9_action' => 'BUY'
'stochastic_fast_14' => 100
'stochastic_fast_14_action' => 'SELL'
'cci_20' => 510.67
'cci_20_action' => 'SELL'
'adx_14' => 23.14
'adx_14_action' => 'NEUTRAL'
'ao_5_34' => '0.001712'
'ao_5_34_action' => 'BUY'
'macd_12_26' => 0
'macd_12_26_action' => 'BUY'
'williams_percent_r_14' => -0
'williams_percent_r_14_action' => 'SELL'
'ultimate_oscillator' => 85.87
'ultimate_oscillator_action' => 'SELL'
'ichimoku_cloud' => '-0.007484'
'ichimoku_cloud_action' => 'NEUTRAL'
'sell_signals' => 10
'buy_signals' => 24
'sell_pct' => 29.41
'buy_pct' => 70.59
'overall_action' => 'bullish'
'overall_action_label' => 'Altista'
'overall_action_dir' => 1
'last_updated' => 1767696321
'last_updated_date' => '6 de janeiro de 2026'
]
Previsão de preço de Parcl para 2026
A previsão de preço para Parcl em 2026 sugere que o preço médio poderia variar entre $0.013383 na extremidade inferior e $0.03995 na extremidade superior. No mercado de criptomoedas, comparado ao preço médio de hoje, Parcl poderia potencialmente ganhar 3.13% até 2026 se PRCL atingir a meta de preço prevista.
Previsão de preço de Parcl 2027-2032
A previsão de preço de PRCL para 2027-2032 está atualmente dentro de uma faixa de preço entre $0.023365 na extremidade inferior e $0.145538 na extremidade superior. Considerando a volatilidade de preços no mercado, se Parcl atingir a meta de preço superior, poderia ganhar 275.71% até 2032 em comparação com o preço de hoje.
| Previsão de Preço de Parcl | Potencial Mínimo ($) | Preço Médio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2027 | $0.012884 | $0.023365 | $0.033846 |
| 2028 | $0.023252 | $0.0401019 | $0.056951 |
| 2029 | $0.051078 | $0.109551 | $0.168024 |
| 2030 | $0.043439 | $0.084518 | $0.125597 |
| 2031 | $0.051359 | $0.0830077 | $0.114656 |
| 2032 | $0.078396 | $0.145538 | $0.212681 |
Previsão de preço de Parcl 2032-2037
A previsão de preço de Parcl para 2032-2037 é atualmente estimada entre $0.145538 na extremidade inferior e $1.32 na extremidade superior. Comparado ao preço atual, Parcl poderia potencialmente ganhar 3326.16% até 2037 se atingir a meta de preço superior. Por favor, note que esta informação é apenas para fins gerais e não deve ser considerada como aconselhamento de investimento a longo prazo.
| Previsão de Preço de Parcl | Potencial Mínimo ($) | Preço Médio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2032 | $0.078396 | $0.145538 | $0.212681 |
| 2033 | $0.182175 | $0.37434 | $0.5665057 |
| 2034 | $0.14646 | $0.237275 | $0.328089 |
| 2035 | $0.173161 | $0.279866 | $0.386571 |
| 2036 | $0.286637 | $0.543221 | $0.7998063 |
| 2037 | $0.744387 | $1.32 | $1.91 |
Parcl Histograma de preços potenciais
Previsão de preço de Parcl baseada na análise técnica
Em 6 de janeiro de 2026, o sentimento geral de previsão de preço para Parcl é Altista, com 24 indicadores técnicos mostrando sinais de alta e 10 indicando sinais de baixa. A previsão de preço de PRCL foi atualizada pela última vez em 6 de janeiro de 2026.
Médias Móveis Simples de 50 e 200 dias e Índice de Força Relativa de 14 dias - RSI (14) de Parcl
De acordo com nossos indicadores técnicos, o SMA de 200 dias de Parcl está projetado para aumentar no próximo mês, alcançando $0.053574 até 4 de fev. de 2026. O SMA de 50 dias de curto prazo para Parcl é esperado para alcançar $0.029838 até 4 de fev. de 2026.
O oscilador de momentum Índice de Força Relativa (RSI) é uma ferramenta comumente usada para identificar se uma criptomoeda está sobrevendida (abaixo de 30) ou sobrecomprada (acima de 70). No momento, o RSI está em 75.61, sugerindo que o mercado de PRCL está em um estado SELL.
Médias Móveis e Osciladores Populares de PRCL para Sábado, 19 de Outubro de 2024
Médias móveis (MA) são indicadores amplamente utilizados nos mercados financeiros, projetados para suavizar movimentos de preços ao longo de um período definido. Como indicadores atrasados, eles se baseiam em dados históricos de preços. A tabela abaixo destaca dois tipos: a média móvel simples (SMA) e a média móvel exponencial (EMA).
Média Móvel Simples Diária (SMA)
| Período | Valor | Ação |
|---|---|---|
| SMA 3 | $0.027226 | BUY |
| SMA 5 | $0.024654 | BUY |
| SMA 10 | $0.022251 | BUY |
| SMA 21 | $0.02113 | BUY |
| SMA 50 | $0.024969 | BUY |
| SMA 100 | $0.037789 | BUY |
| SMA 200 | $0.060448 | SELL |
Média Móvel Exponencial Diária (EMA)
| Período | Valor | Ação |
|---|---|---|
| EMA 3 | $0.030065 | BUY |
| EMA 5 | $0.02697 | BUY |
| EMA 10 | $0.02408 | BUY |
| EMA 21 | $0.023067 | BUY |
| EMA 50 | $0.027119 | BUY |
| EMA 100 | $0.0380033 | BUY |
| EMA 200 | $0.061497 | SELL |
Média Móvel Simples Semanal (SMA)
| Período | Valor | Ação |
|---|---|---|
| SMA 21 | $0.048769 | SELL |
| SMA 50 | $0.0804044 | SELL |
| SMA 100 | — | — |
| SMA 200 | — | — |
Média Móvel Exponencial Semanal (EMA)
| Período | Valor | Ação |
|---|---|---|
| EMA 21 | $0.047122 | SELL |
| EMA 50 | $0.096751 | SELL |
| EMA 100 | $0.163691 | SELL |
| EMA 200 | $0.081845 | SELL |
Osciladores de Parcl
Um oscilador é uma ferramenta de análise técnica que define limites altos e baixos entre dois extremos, criando um indicador de tendência que flutua dentro desses limites. Os traders usam esse indicador para identificar condições de sobrecompra ou sobrevenda de curto prazo.
| Período | Valor | Ação |
|---|---|---|
| RSI (14) | 75.61 | SELL |
| Stoch RSI (14) | 136.54 | SELL |
| Estocástico Rápido (14) | 100 | SELL |
| Índice de Canal de Commodities (20) | 510.67 | SELL |
| Índice Direcional Médio (14) | 23.14 | NEUTRAL |
| Oscilador Impressionante (5, 34) | 0.001712 | BUY |
| Momentum (10) | 0.02 | BUY |
| MACD (12, 26) | 0 | BUY |
| Williams Percent Range (14) | -0 | SELL |
| Oscilador Ultimate (7, 14, 28) | 85.87 | SELL |
| VWMA (10) | 0.035462 | BUY |
| Média Móvel de Hull (9) | 0.027154 | BUY |
| Nuvem Ichimoku B/L (9, 26, 52, 26) | -0.007484 | NEUTRAL |
Previsão do preço de Parcl com base nos fluxos financeiros mundiais
Definições dos fluxos financeiros mundiais, usadas na previsão do preço do Parcl
M0: o total de todas as moedas físicas, mais as contas no Banco Central que podem ser trocadas por moedas físicas.
M1: o valor de M0, mais o valor em contas de demanda, incluindo contas 'correntes'.
M2: o valor de M1, mais a maioria das contas de poupança, do mercado de moedas e de certificados de depósito (CD) de menos de US$ 100.000.
Previsões de preço de Parcl por empresas de Internet ou nichos tecnológicos
| Comparação | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Facebook stock | $0.054432 | $0.076486 | $0.107476 | $0.151022 | $0.212211 | $0.298192 |
| Amazon.com stock | $0.080827 | $0.168651 | $0.3519015 | $0.734263 | $1.53 | $3.19 |
| Apple stock | $0.054945 | $0.077936 | $0.110546 | $0.1568024 | $0.222412 | $0.315474 |
| Netflix stock | $0.061121 | $0.096439 | $0.152167 | $0.240095 | $0.378833 | $0.597739 |
| Google stock | $0.050164 | $0.064962 | $0.084126 | $0.108943 | $0.141081 | $0.182699 |
| Tesla stock | $0.087814 | $0.199068 | $0.451273 | $1.02 | $2.31 | $5.25 |
| Kodak stock | $0.029048 | $0.021783 | $0.016335 | $0.012249 | $0.009186 | $0.006888 |
| Nokia stock | $0.025661 | $0.016999 | $0.011261 | $0.00746 | $0.004942 | $0.003274 |
Este cálculo mostra quanto a criptomoeda pode custar, se assumirmos que sua capitalização se comportará da mesma forma que a de algumas empresas de Internet ou nichos tecnológicos. Se você extrapolar os dados, poderá obter uma imagem em potencial do preço futuro para 2024, 2025, 2026, 2027, 2028, 2029 e 2030.
Visão geral da previsão para Parcl
Você pode fazer perguntas como: 'Devo investir em Parcl agora?', 'Devo comprar PRCL hoje?', 'Parcl será um bom ou mau investimento no curto ou no longo prazo?'.
Atualizamos a previsão para Parcl regularmente com novos valores. Veja nossas previsões semelhantes. Fazemos previsões de preços futuros para uma enorme quantidade de moedas digitais, como Parcl, com métodos de análise técnica.
Se você estiver tentando encontrar criptomoedas com bom retorno, você deve explorar o máximo de fontes de informações disponíveis sobre Parcl para poder tomar sozinho uma decisão de tão grande responsabilidade sobre o seu investimento.
O preço de Parcl é de $0.03873 USD hoje, mas o preço pode tanto subir quanto descer e seu investimento pode ser perdido, porque criptomoedas são ativos de alto risco
Previsão de curto prazo para Parcl
com base no histórico de preços de 4 horas
Previsão de longo prazo para Parcl
com base no histórico de preços de 1 mês
Previsão do preço de Parcl com base no padrão de crescimento do Bitcoin
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| Se Parcl tiver 1% da média anterior do crescimento anual do Bitcoin | $0.039744 | $0.040777 | $0.041837 | $0.042924 |
| Se Parcl tiver 2% da média anterior do crescimento anual do Bitcoin | $0.040751 | $0.042869 | $0.045098 | $0.047442 |
| Se Parcl tiver 5% da média anterior do crescimento anual do Bitcoin | $0.043771 | $0.04946 | $0.055888 | $0.063152 |
| Se Parcl tiver 10% da média anterior do crescimento anual do Bitcoin | $0.0488063 | $0.061492 | $0.077476 | $0.097615 |
| Se Parcl tiver 20% da média anterior do crescimento anual do Bitcoin | $0.058875 | $0.089482 | $0.1360013 | $0.2067036 |
| Se Parcl tiver 50% da média anterior do crescimento anual do Bitcoin | $0.089082 | $0.204859 | $0.4711076 | $1.08 |
| Se Parcl tiver 100% da média anterior do crescimento anual do Bitcoin | $0.139427 | $0.501845 | $1.80 | $6.50 |
Perguntas Frequentes sobre Parcl
PRCL é um bom investimento?
A decisão de adquirir Parcl depende inteiramente da sua tolerância individual ao risco. Como você pode perceber, o valor de Parcl experimentou uma escalada de 87.029% nas últimas 24 horas, e Parcl registrou um declínio de durante os últimos 30 dias. Consequentemente, a decisão de investir ou não em Parcl dependerá de quão alinhado esse investimento está com suas aspirações de negociação.
Parcl pode subir?
Parece que o valor médio de Parcl pode potencialmente subir para $0.03995 até o final deste ano. Observando as perspectivas de Parcl em um horizonte de cinco anos mais longo, a moeda digital poderia potencialmente crescer até $0.125597. No entanto, dada a imprevisibilidade do mercado, é vital conduzir uma pesquisa aprofundada antes de investir quaisquer fundos em um projeto, rede ou ativo específico.
Qual será o preço de Parcl na próxima semana?
Com base na nossa nova previsão experimental de Parcl, o preço de Parcl aumentará 0.86% na próxima semana e atingirá $0.0390687 até 13 de janeiro de 2026.
Qual será o preço de Parcl no próximo mês?
Com base na nossa nova previsão experimental de Parcl, o preço de Parcl diminuirá -11.62% no próximo mês e atingirá $0.034236 até 5 de fevereiro de 2026.
Até onde o preço de Parcl pode subir este ano em 2026?
De acordo com nossa previsão mais recente sobre o valor de Parcl em 2026, espera-se que PRCL fluctue dentro do intervalo de $0.013383 e $0.03995. No entanto, é crucial lembrar que o mercado de criptomoedas é excepcionalmente instável, e essa previsão de preço de Parcl não considera flutuações repentinas e extremas de preço.
Onde estará Parcl em 5 anos?
O futuro de Parcl parece seguir uma tendência de alta, com um preço máximo de $0.125597 projetada após um período de cinco anos. Com base na previsão de Parcl para 2030, o valor de Parcl pode potencialmente atingir seu pico mais alto de aproximadamente $0.125597, enquanto seu pico mais baixo está previsto para cerca de $0.043439.
Quanto será Parcl em 2026?
Com base na nossa nova simulação experimental de previsão de preços de Parcl, espera-se que o valor de PRCL em 2026 aumente 3.13% para $0.03995 se o melhor cenário ocorrer. O preço ficará entre $0.03995 e $0.013383 durante 2026.
Quanto será Parcl em 2027?
De acordo com nossa última simulação experimental para previsão de preços de Parcl, o valor de PRCL pode diminuir -12.62% para $0.033846 em 2027, assumindo as condições mais favoráveis. O preço está projetado para flutuar entre $0.033846 e $0.012884 ao longo do ano.
Quanto será Parcl em 2028?
Nosso novo modelo experimental de previsão de preços de Parcl sugere que o valor de PRCL em 2028 pode aumentar 47.02%, alcançando $0.056951 no melhor cenário. O preço é esperado para variar entre $0.056951 e $0.023252 durante o ano.
Quanto será Parcl em 2029?
Com base no nosso modelo de previsão experimental, o valor de Parcl pode experimentar um 333.75% crescimento em 2029, potencialmente alcançando $0.168024 sob condições ótimas. A faixa de preço prevista para 2029 está entre $0.168024 e $0.051078.
Quanto será Parcl em 2030?
Usando nossa nova simulação experimental para previsões de preços de Parcl, espera-se que o valor de PRCL em 2030 aumente 224.23%, alcançando $0.125597 no melhor cenário. O preço está previsto para variar entre $0.125597 e $0.043439 ao longo de 2030.
Quanto será Parcl em 2031?
Nossa simulação experimental indica que o preço de Parcl poderia aumentar 195.98% em 2031, potencialmente atingindo $0.114656 sob condições ideais. O preço provavelmente oscilará entre $0.114656 e $0.051359 durante o ano.
Quanto será Parcl em 2032?
Com base nos achados da nossa mais recente previsão experimental de preços de Parcl, PRCL poderia ver um 449.04% aumento em valor, atingindo $0.212681 se o cenário mais positivo se desenrolar em 2032. O preço é esperado para permanecer dentro de uma faixa de $0.212681 e $0.078396 ao longo do ano.
Quanto será Parcl em 2033?
De acordo com nossa previsão experimental de preços de Parcl, espera-se que o valor de PRCL seja aumentar 1362.43% em 2033, com o preço potencial mais alto sendo $0.5665057. Ao longo do ano, o preço de PRCL poderia variar entre $0.5665057 e $0.182175.
Quanto será Parcl em 2034?
Os resultados da nossa nova simulação de previsão de preços de Parcl sugerem que PRCL pode aumentar 746.96% em 2034, atingindo potencialmente $0.328089 nas melhores circunstâncias. A faixa de preço prevista para o ano é entre $0.328089 e $0.14646.
Quanto será Parcl em 2035?
Com base em nossa previsão experimental para o preço de Parcl, PRCL poderia aumentar 897.93%, com o valor potencialmente atingindo $0.386571 em 2035. A faixa de preço esperada para o ano está entre $0.386571 e $0.173161.
Quanto será Parcl em 2036?
Nossa recente simulação de previsão de preços de Parcl sugere que o valor de PRCL pode aumentar 1964.7% em 2036, possivelmente atingindo $0.7998063 se as condições forem ideais. A faixa de preço esperada para 2036 está entre $0.7998063 e $0.286637.
Quanto será Parcl em 2037?
De acordo com a simulação experimental, o valor de Parcl poderia aumentar 4830.69% em 2037, com um pico de $1.91 sob condições favoráveis. O preço é esperado para cair entre $1.91 e $0.744387 ao longo do ano.
Previsões relacionadas
Como ler e prever os movimentos de preço de Parcl?
Traders de Parcl utilizam indicadores e padrões de gráfico para prever a direção do mercado. Eles também identificam níveis-chave de suporte e resistência para avaliar quando uma tendência de baixa pode desacelerar ou uma tendência de alta pode estagnar.
Indicadores de Previsão de Preço de Parcl
Médias móveis são ferramentas populares para a previsão de preço de Parcl. Uma média móvel simples (SMA) calcula o preço médio de fechamento de PRCL em um período específico, como uma SMA de 12 dias. Uma média móvel exponencial (EMA) dá mais peso aos preços recentes, reagindo mais rapidamente às mudanças de preço.
Médias móveis comumente usadas no mercado de criptomoedas incluem as de 50 dias, 100 dias e 200 dias, que ajudam a identificar níveis-chave de resistência e suporte. Um movimento de preço de PRCL acima dessas médias é visto como altista, enquanto uma queda abaixo indica fraqueza.
Traders também usam RSI e níveis de retração de Fibonacci para avaliar a direção futura de PRCL.
Como ler gráficos de Parcl e prever movimentos de preço?
A maioria dos traders prefere gráficos de velas em vez de gráficos de linha simples porque eles fornecem informações mais detalhadas. Velas podem representar a ação de preço de Parcl em diferentes períodos de tempo, como 5 minutos para tendências de curto prazo e semanal para tendências de longo prazo. Opções populares incluem gráficos de 1 hora, 4 horas e 1 dia.
Por exemplo, um gráfico de velas de 1 hora mostra os preços de abertura, fechamento, máximo e mínimo de PRCL dentro de cada hora. A cor da vela é crucial: verde indica que o preço fechou mais alto do que abriu, enquanto vermelho significa o oposto. Alguns gráficos usam velas vazias e preenchidas para transmitir a mesma informação.
O que afeta o preço de Parcl?
A ação de preço de Parcl é impulsionada pela oferta e demanda, influenciada por fatores como reduções pela metade das recompensas de bloco, hard forks e atualizações de protocolo. Eventos do mundo real, como regulamentações, adoção por empresas e governos e hacks de exchanges de criptomoedas, também impactam o preço de PRCL. A capitalização de mercado de Parcl pode mudar rapidamente.
Traders frequentemente monitoram a atividade de "baleias" de PRCL, grandes detentores de Parcl, pois suas ações podem influenciar significativamente os movimentos de preço no relativamente pequeno mercado de Parcl.
Padrões de previsão de preço altistas e baixistas
Traders frequentemente identificam padrões de velas para ganhar vantagem em previsões de preço de criptomoedas. Certas formações indicam tendências altistas, enquanto outras sugerem movimentos baixistas.
Padrões de velas altistas comumente seguidos:
- Martelo
- Engolfo de Alta
- Linha de Perfuração
- Estrela da Manhã
- Três Soldados Brancos
Padrões de velas baixistas comuns:
- Harami de Baixa
- Nuvem Negra
- Estrela da Noite
- Estrela Cadente
- Homem Enforcado


