Previsão de Preço Optio - Projeção OPT
Previsão de Preço Optio até $0.003738 até 2026
| Ano | Preço Mínimo | Preço Máximo |
|---|---|---|
| 2026 | $0.001252 | $0.003738 |
| 2027 | $0.0012058 | $0.003167 |
| 2028 | $0.002176 | $0.005329 |
| 2029 | $0.00478 | $0.015725 |
| 2030 | $0.004065 | $0.011754 |
| 2031 | $0.0048066 | $0.01073 |
| 2032 | $0.007336 | $0.0199044 |
| 2033 | $0.017049 | $0.053018 |
| 2034 | $0.0137069 | $0.0307052 |
| 2035 | $0.0162058 | $0.036178 |
Calculadora de lucro do investimento
Se você abrir um short de $10,000.00 em Optio hoje e fechar em Apr 06, 2026, nossa previsão mostra que pode lucrar cerca de $3,956.43, com um retorno de 39.56% nos próximos 90 dias.
Previsão de preço de longo prazo de Optio para os anos 2027, 2028, 2029, 2030, 2031, 2032 e 2037
[
'name' => 'Optio'
'name_with_ticker' => 'Optio <small>OPT</small>'
'name_lang' => 'Optio'
'name_lang_with_ticker' => 'Optio <small>OPT</small>'
'name_with_lang' => 'Optio'
'name_with_lang_with_ticker' => 'Optio <small>OPT</small>'
'image' => '/uploads/coins/optio.png?1740062516'
'price_for_sd' => 0.003625
'ticker' => 'OPT'
'marketcap' => '$44.96M'
'low24h' => '$0.002509'
'high24h' => '$0.004497'
'volume24h' => '$43.15K'
'current_supply' => '12.39B'
'max_supply' => '14.59B'
'algo' => null
'proof' => null
'ico_price_and_roi' => '—'
'price' => '$0.003625'
'change_24h_pct' => '-15.8759%'
'ath_price' => '$0.03491'
'ath_days' => 287
'ath_exchange' => null
'ath_pair' => null
'ath_date' => '25 de mar. de 2025'
'ath_pct' => '-89.61%'
'fdv' => '$52.91M'
'new_prediction' => true
'change_24h_pct_is_increased' => false
'change_30d_pct' => null
'change_30d_pct_is_increased' => false
'max_price' => '$0.178754'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.003656'
'next_week_prediction_price_date' => '13 de janeiro de 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.003204'
'next_month_prediction_price_date' => '5 de fevereiro de 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.001252'
'current_year_max_price_prediction' => '$0.003738'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.004065'
'grand_prediction_max_price' => '$0.011754'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.0036940382860712
107 => 0.0037078304840955
108 => 0.0037389050104913
109 => 0.0034733765847272
110 => 0.0035925910523903
111 => 0.0036626183832573
112 => 0.0033462323547839
113 => 0.003656364448733
114 => 0.0034687543255821
115 => 0.0034050766319751
116 => 0.0034908102575187
117 => 0.0034573997802657
118 => 0.0034286754138526
119 => 0.0034126467238468
120 => 0.003475600036371
121 => 0.0034726631890963
122 => 0.0033696593510953
123 => 0.0032352950433965
124 => 0.0032803921154183
125 => 0.0032640079263655
126 => 0.0032046295116357
127 => 0.0032446433937864
128 => 0.0030684425073568
129 => 0.0027652980403797
130 => 0.0029655645608309
131 => 0.0029578545176416
201 => 0.0029539667642429
202 => 0.0031044615194019
203 => 0.0030899949211981
204 => 0.0030637379038009
205 => 0.0032041472809201
206 => 0.003152895969499
207 => 0.0033108404349714
208 => 0.003414872875139
209 => 0.0033884868832156
210 => 0.0034863298960257
211 => 0.0032814310608744
212 => 0.0033494902347972
213 => 0.0033635171362168
214 => 0.0032024146510017
215 => 0.0030923618355757
216 => 0.0030850225674807
217 => 0.0028942061517442
218 => 0.0029961387408144
219 => 0.003085835200939
220 => 0.0030428775572658
221 => 0.0030292784506019
222 => 0.0030987533372611
223 => 0.0031041521309667
224 => 0.0029810590623409
225 => 0.0030066540091587
226 => 0.0031133891921949
227 => 0.0030039645564005
228 => 0.0027913703634648
301 => 0.002738644064272
302 => 0.0027316094040212
303 => 0.002588611498835
304 => 0.0027421674877047
305 => 0.0026751361835184
306 => 0.0028868872702845
307 => 0.0027659361851676
308 => 0.0027607222256301
309 => 0.0027528405610675
310 => 0.0026297563569047
311 => 0.0026567039752071
312 => 0.0027462819626825
313 => 0.002778244397782
314 => 0.0027749104539406
315 => 0.0027458429816748
316 => 0.0027591499216285
317 => 0.0027162836315922
318 => 0.0027011466523958
319 => 0.0026533701822976
320 => 0.0025831519698399
321 => 0.0025929162429555
322 => 0.0024537955904821
323 => 0.0023779952753228
324 => 0.0023570147471187
325 => 0.0023289587079677
326 => 0.0023601837513951
327 => 0.0024534014791532
328 => 0.0023409611222328
329 => 0.0021481900170666
330 => 0.0021597758889531
331 => 0.0021858059032058
401 => 0.0021372991438517
402 => 0.0020913915669868
403 => 0.0021313044804714
404 => 0.0020496248219559
405 => 0.0021956764997082
406 => 0.0021917262111301
407 => 0.0022461652448209
408 => 0.0022802070897893
409 => 0.0022017516583154
410 => 0.0021820203294658
411 => 0.0021932601911175
412 => 0.0020074903151171
413 => 0.0022309838826707
414 => 0.0022329166643236
415 => 0.0022163670143851
416 => 0.0023353704395176
417 => 0.0025865047846463
418 => 0.0024920179421533
419 => 0.00245542978086
420 => 0.0023858756594958
421 => 0.0024785523964986
422 => 0.0024714362690791
423 => 0.0024392544421769
424 => 0.0024197907728531
425 => 0.0024556531803709
426 => 0.0024153470236899
427 => 0.0024081069304109
428 => 0.0023642398424392
429 => 0.0023485812878586
430 => 0.0023369883174322
501 => 0.0023242255960944
502 => 0.0023523769790935
503 => 0.0022885822415947
504 => 0.0022116520420464
505 => 0.0022052561283503
506 => 0.0022229158083998
507 => 0.0022151027145864
508 => 0.002205218722263
509 => 0.0021863474891724
510 => 0.0021807487974345
511 => 0.0021989418294835
512 => 0.0021784029570199
513 => 0.0022087091821503
514 => 0.0022004675658348
515 => 0.0021544305670539
516 => 0.0020970514214929
517 => 0.0020965406267406
518 => 0.0020841783839501
519 => 0.0020684332090808
520 => 0.002064053261633
521 => 0.0021279431262239
522 => 0.0022601932338644
523 => 0.0022342293732577
524 => 0.0022529909234295
525 => 0.002345279181286
526 => 0.0023746148432538
527 => 0.0023537930852423
528 => 0.002325290978646
529 => 0.0023265449266856
530 => 0.0024239452530996
531 => 0.0024300199919843
601 => 0.0024453688973611
602 => 0.0024650965783704
603 => 0.0023571527946231
604 => 0.0023214607841783
605 => 0.0023045479295122
606 => 0.0022524628832392
607 => 0.0023086321402103
608 => 0.0022759047195806
609 => 0.0022803207667514
610 => 0.0022774448102382
611 => 0.0022790152769657
612 => 0.0021956356752877
613 => 0.0022260148198363
614 => 0.0021755035998922
615 => 0.0021078747465376
616 => 0.0021076480309075
617 => 0.0021242000969563
618 => 0.002114354280388
619 => 0.002087859441162
620 => 0.0020916229080219
621 => 0.0020586509782229
622 => 0.0020956262972756
623 => 0.002096686617122
624 => 0.0020824491052274
625 => 0.0021394146858389
626 => 0.0021627535306949
627 => 0.0021533820953689
628 => 0.0021620960058101
629 => 0.0022353082888857
630 => 0.0022472450855029
701 => 0.0022525466220597
702 => 0.0022454432653925
703 => 0.0021634341919471
704 => 0.0021670716430839
705 => 0.0021403824401287
706 => 0.0021178328760704
707 => 0.0021187347403759
708 => 0.00213032814754
709 => 0.0021809572365698
710 => 0.0022875031696852
711 => 0.0022915465099628
712 => 0.0022964471563319
713 => 0.0022765137646813
714 => 0.0022705016630226
715 => 0.0022784331769655
716 => 0.0023184462275247
717 => 0.002421370657
718 => 0.0023849902895319
719 => 0.0023554124844862
720 => 0.0023813601936303
721 => 0.0023773657471924
722 => 0.002343648599388
723 => 0.0023427022713476
724 => 0.0022779882846868
725 => 0.0022540649972844
726 => 0.002234072907704
727 => 0.0022122420677889
728 => 0.0021993000141109
729 => 0.0022191848906186
730 => 0.0022237327971468
731 => 0.0021802541671346
801 => 0.002174328190523
802 => 0.0022098337783424
803 => 0.0021942090929248
804 => 0.0022102794693503
805 => 0.0022140079345302
806 => 0.0022134075657624
807 => 0.0021970935997028
808 => 0.0022074916351797
809 => 0.0021828971814732
810 => 0.0021561544070348
811 => 0.0021390941830768
812 => 0.0021242068749632
813 => 0.0021324672187601
814 => 0.0021030206014034
815 => 0.0020936000358677
816 => 0.0022039690147233
817 => 0.0022854997660705
818 => 0.0022843142766561
819 => 0.0022770979147297
820 => 0.0022663758646925
821 => 0.0023176618427809
822 => 0.0022997948335104
823 => 0.0023127945755933
824 => 0.0023161035555508
825 => 0.0023261188412813
826 => 0.0023296984450871
827 => 0.0023188783961914
828 => 0.0022825649905398
829 => 0.0021920754362309
830 => 0.0021499523044283
831 => 0.0021360509693172
901 => 0.0021365562564461
902 => 0.0021226181817301
903 => 0.0021267235693946
904 => 0.0021211904954401
905 => 0.0021107121919645
906 => 0.0021318202130475
907 => 0.0021342527158425
908 => 0.0021293258514997
909 => 0.0021304863064075
910 => 0.00208969397394
911 => 0.0020927953263812
912 => 0.0020755266018877
913 => 0.0020722889242228
914 => 0.0020286350924631
915 => 0.0019512960017766
916 => 0.0019941493655041
917 => 0.0019423885282161
918 => 0.0019227859148305
919 => 0.0020155816377662
920 => 0.0020062675209362
921 => 0.0019903258016724
922 => 0.0019667446763359
923 => 0.0019579982075661
924 => 0.0019048574321166
925 => 0.0019017175916081
926 => 0.0019280555948425
927 => 0.0019159015125851
928 => 0.001898832577985
929 => 0.0018370106271132
930 => 0.0017675022857889
1001 => 0.0017696003056997
1002 => 0.0017917096158263
1003 => 0.001855995416866
1004 => 0.0018308778422441
1005 => 0.001812654753665
1006 => 0.0018092421169582
1007 => 0.0018519584101832
1008 => 0.0019124109144366
1009 => 0.0019407738768838
1010 => 0.0019126670424946
1011 => 0.0018803794245278
1012 => 0.001882344622227
1013 => 0.0018954182020959
1014 => 0.0018967920504896
1015 => 0.001875776130414
1016 => 0.0018816919888138
1017 => 0.001872705258947
1018 => 0.0018175537143427
1019 => 0.0018165561977883
1020 => 0.0018030211193036
1021 => 0.0018026112825062
1022 => 0.0017795847375202
1023 => 0.0017763631647017
1024 => 0.0017306425620205
1025 => 0.00176073600116
1026 => 0.0017405509021617
1027 => 0.0017101271967878
1028 => 0.001704882138514
1029 => 0.0017047244657287
1030 => 0.0017359628085316
1031 => 0.0017603709629365
1101 => 0.0017409020306008
1102 => 0.0017364693320973
1103 => 0.0017837989552292
1104 => 0.0017777758292665
1105 => 0.0017725598410279
1106 => 0.0019069980557296
1107 => 0.0018005797184485
1108 => 0.0017541752492476
1109 => 0.0016967409066418
1110 => 0.0017154418182033
1111 => 0.0017193823750429
1112 => 0.0015812631343943
1113 => 0.0015252281756649
1114 => 0.0015059990894618
1115 => 0.0014949324784925
1116 => 0.001499975672077
1117 => 0.0014495376369753
1118 => 0.0014834328307317
1119 => 0.0014397577557547
1120 => 0.0014324354873038
1121 => 0.0015105319316663
1122 => 0.0015213985956666
1123 => 0.0014750380310337
1124 => 0.0015048090186216
1125 => 0.0014940136446746
1126 => 0.0014405064395601
1127 => 0.0014384628578971
1128 => 0.0014116148232399
1129 => 0.0013696028478052
1130 => 0.0013504022476998
1201 => 0.0013404024084576
1202 => 0.0013445285370219
1203 => 0.0013424422401582
1204 => 0.0013288277418968
1205 => 0.001343222607262
1206 => 0.001306449674623
1207 => 0.0012918063965465
1208 => 0.0012851923675608
1209 => 0.0012525542732727
1210 => 0.0013044959955115
1211 => 0.0013147291691371
1212 => 0.001324982505276
1213 => 0.0014142307961148
1214 => 0.0014097722037175
1215 => 0.0014500757075662
1216 => 0.00144850958752
1217 => 0.0014370143753489
1218 => 0.0013885179660696
1219 => 0.001407847770443
1220 => 0.0013483536371004
1221 => 0.0013929306870085
1222 => 0.0013725875830125
1223 => 0.0013860526630841
1224 => 0.0013618412350181
1225 => 0.0013752408389752
1226 => 0.0013171558342295
1227 => 0.001262916874076
1228 => 0.0012847442149757
1229 => 0.0013084730307929
1230 => 0.0013599231494744
1231 => 0.001329279883242
]
'min_raw' => 0.0012525542732727
'max_raw' => 0.0037389050104913
'avg_raw' => 0.002495729641882
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.001252'
'max' => '$0.003738'
'avg' => '$0.002495'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.0023727857267273
'max_diff' => 0.00011356501049127
'year' => 2026
]
1 => [
'items' => [
101 => 0.0013403003605294
102 => 0.0013033836064223
103 => 0.0012272137979499
104 => 0.0012276449107939
105 => 0.0012159278452099
106 => 0.0012058025898257
107 => 0.0013327996309891
108 => 0.0013170055413943
109 => 0.0012918397267043
110 => 0.0013255251697165
111 => 0.0013344321355088
112 => 0.0013346857043032
113 => 0.0013592617339778
114 => 0.0013723779654206
115 => 0.0013746897580614
116 => 0.0014133606717547
117 => 0.001426322651943
118 => 0.0014797112138904
119 => 0.0013712651448207
120 => 0.0013690317693931
121 => 0.0013259991929799
122 => 0.0012987072527006
123 => 0.0013278678954801
124 => 0.0013537002441582
125 => 0.0013268018760608
126 => 0.0013303142350787
127 => 0.0012942053735854
128 => 0.0013071125924894
129 => 0.0013182300281997
130 => 0.0013120916336532
131 => 0.0013029021599153
201 => 0.0013515822861548
202 => 0.0013488355626534
203 => 0.0013941676153588
204 => 0.0014295071921689
205 => 0.0014928420315176
206 => 0.0014267488249374
207 => 0.0014243401257929
208 => 0.0014478855462978
209 => 0.0014263190472617
210 => 0.0014399483302023
211 => 0.001490646143328
212 => 0.0014917173082308
213 => 0.0014737739159912
214 => 0.0014726820589427
215 => 0.0014761282837016
216 => 0.0014963129297548
217 => 0.0014892597942123
218 => 0.0014974218612256
219 => 0.0015076286510078
220 => 0.0015498482611362
221 => 0.0015600272662044
222 => 0.0015352975610978
223 => 0.0015375303765822
224 => 0.0015282807880267
225 => 0.0015193458013792
226 => 0.0015394303465129
227 => 0.0015761352475074
228 => 0.0015759069082233
301 => 0.0015844217318127
302 => 0.0015897263963682
303 => 0.0015669548928439
304 => 0.0015521314813809
305 => 0.001557815720574
306 => 0.0015669049428303
307 => 0.0015548682082977
308 => 0.0014805719068045
309 => 0.0015031086586114
310 => 0.0014993574411199
311 => 0.0014940152512483
312 => 0.0015166761294617
313 => 0.0015144904324765
314 => 0.0014490203220234
315 => 0.0014532115060774
316 => 0.0014492752018074
317 => 0.0014619942061958
318 => 0.0014256321792846
319 => 0.0014368168938605
320 => 0.0014438318419923
321 => 0.0014479637003333
322 => 0.0014628908059029
323 => 0.0014611392823523
324 => 0.0014627819287397
325 => 0.0014849148856896
326 => 0.0015968557868283
327 => 0.0016029484830936
328 => 0.0015729458183843
329 => 0.0015849312911593
330 => 0.0015619218043661
331 => 0.0015773682270005
401 => 0.0015879362770704
402 => 0.0015401812909237
403 => 0.0015373535505714
404 => 0.0015142490954413
405 => 0.001526664120925
406 => 0.0015069109227085
407 => 0.0015117576666133
408 => 0.0014982057481239
409 => 0.0015225965032447
410 => 0.0015498691574098
411 => 0.0015567593068817
412 => 0.0015386342900171
413 => 0.0015255105833103
414 => 0.0015024696775509
415 => 0.0015407872173288
416 => 0.0015519924336657
417 => 0.0015407283610976
418 => 0.0015381182293587
419 => 0.0015331720344299
420 => 0.001539167587995
421 => 0.0015519314076511
422 => 0.0015459122260121
423 => 0.001549888001529
424 => 0.0015347364450603
425 => 0.0015669624311591
426 => 0.0016181450526898
427 => 0.0016183096131872
428 => 0.0016122903991025
429 => 0.0016098274663848
430 => 0.0016160035453122
501 => 0.0016193538147742
502 => 0.0016393261215262
503 => 0.0016607572024028
504 => 0.0017607667057409
505 => 0.001732684437398
506 => 0.0018214188183516
507 => 0.0018915961929685
508 => 0.0019126393191314
509 => 0.0018932806332171
510 => 0.0018270556144399
511 => 0.0018238062990756
512 => 0.0019227744366104
513 => 0.001894811404729
514 => 0.0018914852910643
515 => 0.0018561010612299
516 => 0.0018770175234842
517 => 0.0018724427863632
518 => 0.0018652213400139
519 => 0.0019051284929416
520 => 0.0019798311206861
521 => 0.0019681880155953
522 => 0.0019594969777531
523 => 0.0019214153798518
524 => 0.0019443490076212
525 => 0.0019361827820373
526 => 0.0019712700695609
527 => 0.0019504851377105
528 => 0.0018945995572601
529 => 0.0019034995201481
530 => 0.0019021543086618
531 => 0.0019298386657268
601 => 0.0019215285089039
602 => 0.0019005316171689
603 => 0.0019795757952257
604 => 0.0019744431059695
605 => 0.0019817200858387
606 => 0.0019849236374251
607 => 0.0020330364356937
608 => 0.0020527467097065
609 => 0.0020572212869843
610 => 0.0020759445228491
611 => 0.0020567554358195
612 => 0.0021335254655253
613 => 0.0021845730556242
614 => 0.0022438674584091
615 => 0.0023305125177107
616 => 0.0023630918615198
617 => 0.0023572066946671
618 => 0.0024228999897632
619 => 0.002540949380771
620 => 0.002381067851751
621 => 0.0025494234900318
622 => 0.0024961240387114
623 => 0.002369751998447
624 => 0.0023616151288824
625 => 0.002447195741759
626 => 0.0026370053042907
627 => 0.0025894601616787
628 => 0.0026370830711114
629 => 0.0025815284176184
630 => 0.0025787696608211
701 => 0.0026343849055916
702 => 0.0027643329564269
703 => 0.0027025995085049
704 => 0.0026140894732462
705 => 0.0026794439059125
706 => 0.0026228278480697
707 => 0.0024952560239132
708 => 0.0025894238048042
709 => 0.0025264564914664
710 => 0.0025448337010249
711 => 0.00267718162798
712 => 0.0026612571752596
713 => 0.0026818648916445
714 => 0.002645492811623
715 => 0.0026115155535325
716 => 0.0025480944781221
717 => 0.0025293186243143
718 => 0.0025345075948223
719 => 0.0025293160529182
720 => 0.0024938325440959
721 => 0.0024861698837441
722 => 0.0024733984474489
723 => 0.0024773568495903
724 => 0.0024533428129399
725 => 0.0024986622616522
726 => 0.0025070739506869
727 => 0.0025400536661313
728 => 0.0025434777295948
729 => 0.0026353257676707
730 => 0.002584737411742
731 => 0.0026186764484875
801 => 0.0026156406215943
802 => 0.002372490863753
803 => 0.0024059947550551
804 => 0.0024581162958208
805 => 0.0024346356123549
806 => 0.0024014394195679
807 => 0.0023746317140252
808 => 0.0023340152988993
809 => 0.0023911821232198
810 => 0.0024663504181873
811 => 0.0025453841216017
812 => 0.0026403379377607
813 => 0.0026191453513783
814 => 0.0025436090260571
815 => 0.0025469975304317
816 => 0.0025679439311481
817 => 0.0025408164390392
818 => 0.0025328160120247
819 => 0.0025668447953312
820 => 0.0025670791328599
821 => 0.0025358656747217
822 => 0.0025011776280036
823 => 0.0025010322838213
824 => 0.0024948598809546
825 => 0.0025826264743763
826 => 0.0026308892265548
827 => 0.0026364224733128
828 => 0.0026305167949614
829 => 0.0026327896561709
830 => 0.0026047066240754
831 => 0.0026688961076812
901 => 0.0027278027255199
902 => 0.0027120144935828
903 => 0.0026883456894796
904 => 0.0026694923469674
905 => 0.0027075732452547
906 => 0.0027058775627989
907 => 0.0027272882276021
908 => 0.0027263169161726
909 => 0.0027191173148951
910 => 0.0027120147507032
911 => 0.0027401756148867
912 => 0.0027320657382515
913 => 0.0027239432647379
914 => 0.0027076524006178
915 => 0.0027098665996143
916 => 0.0026862018822639
917 => 0.0026752535011938
918 => 0.0025106161187391
919 => 0.0024666196304656
920 => 0.0024804618213075
921 => 0.002485019029945
922 => 0.0024658717018654
923 => 0.0024933240517866
924 => 0.0024890456321306
925 => 0.0025056904602203
926 => 0.0024952914942643
927 => 0.0024957182714544
928 => 0.0025262994130378
929 => 0.0025351772485409
930 => 0.0025306619097511
1001 => 0.0025338242982627
1002 => 0.0026067002067523
1003 => 0.0025963395830054
1004 => 0.0025908357081348
1005 => 0.0025923603190881
1006 => 0.0026109816761843
1007 => 0.0026161946394828
1008 => 0.0025941069476785
1009 => 0.0026045236308209
1010 => 0.002648876545567
1011 => 0.0026643975555705
1012 => 0.0027139331689945
1013 => 0.0026928895599867
1014 => 0.0027315160150666
1015 => 0.0028502405692534
1016 => 0.002945085958252
1017 => 0.0028578622188774
1018 => 0.0030320336972859
1019 => 0.0031676511766416
1020 => 0.0031624459519012
1021 => 0.0031387979074867
1022 => 0.0029844010128175
1023 => 0.0028423226884148
1024 => 0.002961177239742
1025 => 0.002961480224436
1026 => 0.0029512705130701
1027 => 0.0028878588726298
1028 => 0.0029490639254354
1029 => 0.0029539221602631
1030 => 0.0029512028406685
1031 => 0.0029025852846194
1101 => 0.0028283552625587
1102 => 0.0028428596311878
1103 => 0.0028666180828833
1104 => 0.0028216383772914
1105 => 0.0028072646359383
1106 => 0.0028339881558299
1107 => 0.0029200969049871
1108 => 0.0029038185447529
1109 => 0.0029033934509812
1110 => 0.0029730391791619
1111 => 0.0029231878682733
1112 => 0.0028430425777256
1113 => 0.0028228048348758
1114 => 0.0027509744815361
1115 => 0.0028005879624388
1116 => 0.0028023734632913
1117 => 0.0027752006668383
1118 => 0.0028452475003999
1119 => 0.0028446020064972
1120 => 0.0029111010498686
1121 => 0.0030382222448947
1122 => 0.0030006262522714
1123 => 0.0029569062032828
1124 => 0.0029616597848334
1125 => 0.0030137948416035
1126 => 0.0029822727961527
1127 => 0.0029936083434763
1128 => 0.003013777683895
1129 => 0.0030259463477462
1130 => 0.0029599089013703
1201 => 0.0029445124136838
1202 => 0.0029130166033103
1203 => 0.002904799934281
1204 => 0.0029304526146486
1205 => 0.0029236940396943
1206 => 0.0028022233988584
1207 => 0.0027895290410348
1208 => 0.0027899183588659
1209 => 0.0027579977925346
1210 => 0.0027093112670657
1211 => 0.0028372565490766
1212 => 0.0028269807523381
1213 => 0.0028156370680222
1214 => 0.0028170266046247
1215 => 0.0028725633150778
1216 => 0.0028403492183439
1217 => 0.0029259956742975
1218 => 0.0029083893377216
1219 => 0.0028903314650473
1220 => 0.0028878353169874
1221 => 0.0028808845766331
1222 => 0.0028570479017016
1223 => 0.0028282636843597
1224 => 0.0028092578508244
1225 => 0.0025913918705774
1226 => 0.0026318265292431
1227 => 0.0026783429183029
1228 => 0.0026944001894037
1229 => 0.0026669331160565
1230 => 0.0028581324691711
1231 => 0.002893066433428
]
'min_raw' => 0.0012058025898257
'max_raw' => 0.0031676511766416
'avg_raw' => 0.0021867268832337
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.0012058'
'max' => '$0.003167'
'avg' => '$0.002186'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -4.6751683447015E-5
'max_diff' => -0.00057125383384965
'year' => 2027
]
2 => [
'items' => [
101 => 0.0027872491770079
102 => 0.0027674550888218
103 => 0.0028594301662972
104 => 0.0028039579510836
105 => 0.0028289370861977
106 => 0.0027749458589374
107 => 0.0028846518644244
108 => 0.0028838160884704
109 => 0.0028411379745135
110 => 0.0028772092241827
111 => 0.0028709409568829
112 => 0.002822757471337
113 => 0.0028861793668595
114 => 0.0028862108233284
115 => 0.0028451340665471
116 => 0.0027971654074848
117 => 0.0027885897442136
118 => 0.002782129133917
119 => 0.0028273481721074
120 => 0.0028678914203525
121 => 0.0029433323538132
122 => 0.0029622999969175
123 => 0.0030363319707014
124 => 0.0029922495348645
125 => 0.0030117907077079
126 => 0.003033005415097
127 => 0.0030431765259644
128 => 0.0030266032466179
129 => 0.0031416053746803
130 => 0.003151315077863
131 => 0.0031545706573515
201 => 0.003115792586821
202 => 0.0031502365895725
203 => 0.0031341213813506
204 => 0.0031760486762103
205 => 0.0031826234113989
206 => 0.0031770548445971
207 => 0.0031791417693211
208 => 0.0030810077407854
209 => 0.0030759189737076
210 => 0.0030065332735191
211 => 0.0030348084592191
212 => 0.0029819493548179
213 => 0.0029987115213326
214 => 0.0030061001246165
215 => 0.0030022407375606
216 => 0.0030364070957948
217 => 0.0030073587115698
218 => 0.0029306952496036
219 => 0.0028540109007284
220 => 0.0028530481911939
221 => 0.0028328585557263
222 => 0.0028182651471993
223 => 0.0028210763554106
224 => 0.0028309834198188
225 => 0.0028176893306059
226 => 0.0028205262985669
227 => 0.0028676388693382
228 => 0.0028770869594149
229 => 0.0028449786577272
301 => 0.0027160591932452
302 => 0.0026844220332913
303 => 0.002707162196474
304 => 0.0026962938631267
305 => 0.0021761195846512
306 => 0.0022983268155249
307 => 0.0022257154287051
308 => 0.0022591780964409
309 => 0.0021850606731255
310 => 0.0022204333923586
311 => 0.0022139013427211
312 => 0.0024104069535912
313 => 0.0024073387887621
314 => 0.0024088073569021
315 => 0.0023387087732448
316 => 0.0024503777203948
317 => 0.0025053898592463
318 => 0.0024952085764456
319 => 0.0024977709859794
320 => 0.0024537403005194
321 => 0.0024092336701837
322 => 0.00235986896762
323 => 0.0024515824833216
324 => 0.0024413855059775
325 => 0.0024647737032482
326 => 0.0025242564739982
327 => 0.0025330155379442
328 => 0.0025447878087133
329 => 0.0025405682876498
330 => 0.0026410943980979
331 => 0.00262892002283
401 => 0.0026582567644188
402 => 0.0025979088611867
403 => 0.002529619480404
404 => 0.0025425990591427
405 => 0.002541349021335
406 => 0.0025254346053161
407 => 0.0025110677821159
408 => 0.0024871510693148
409 => 0.0025628270876248
410 => 0.0025597547794821
411 => 0.0026094918771457
412 => 0.0026007003620132
413 => 0.0025419884723102
414 => 0.0025440853789369
415 => 0.0025581880837405
416 => 0.0026069977060877
417 => 0.0026214877252129
418 => 0.0026147753710267
419 => 0.0026306630155029
420 => 0.0026432199619055
421 => 0.0026322399746409
422 => 0.002787693439563
423 => 0.0027231383227496
424 => 0.0027546020375128
425 => 0.0027621059480889
426 => 0.0027428848389385
427 => 0.0027470532092569
428 => 0.0027533671544764
429 => 0.0027917041934516
430 => 0.0028923116766342
501 => 0.0029368700460774
502 => 0.0030709260990187
503 => 0.0029331700937776
504 => 0.0029249962225176
505 => 0.0029491437657573
506 => 0.0030278488601082
507 => 0.003091631946686
508 => 0.0031127924762384
509 => 0.003115589189541
510 => 0.0031552877497067
511 => 0.0031780422240593
512 => 0.0031504673003268
513 => 0.0031271004396783
514 => 0.0030434032452369
515 => 0.0030530914233934
516 => 0.0031198333635876
517 => 0.0032141102851925
518 => 0.0032950096917714
519 => 0.0032666815392164
520 => 0.0034828053466517
521 => 0.0035042331393723
522 => 0.0035012725112618
523 => 0.0035500882119625
524 => 0.0034531989872162
525 => 0.0034117769664968
526 => 0.0031321526201756
527 => 0.003210715655763
528 => 0.0033249116418346
529 => 0.003309797374865
530 => 0.0032268651973124
531 => 0.003294946780278
601 => 0.0032724368798416
602 => 0.0032546823874308
603 => 0.0033360191590423
604 => 0.0032465860375251
605 => 0.0033240194780347
606 => 0.0032247102896347
607 => 0.0032668109398311
608 => 0.0032429125746003
609 => 0.0032583777457781
610 => 0.0031679686710781
611 => 0.00321675121323
612 => 0.0031659391569425
613 => 0.0031659150654119
614 => 0.0031647933864531
615 => 0.0032245735453402
616 => 0.0032265229741753
617 => 0.0031823453464349
618 => 0.0031759786600933
619 => 0.0031995196364137
620 => 0.003171959318534
621 => 0.0031848546178073
622 => 0.0031723499040123
623 => 0.0031695348295475
624 => 0.0031471038372663
625 => 0.0031374399490386
626 => 0.0031412294086204
627 => 0.0031282940294673
628 => 0.0031204999956345
629 => 0.0031632429569507
630 => 0.0031404071169656
701 => 0.003159743036961
702 => 0.0031377073157386
703 => 0.0030613219054753
704 => 0.0030173918482718
705 => 0.0028731068892156
706 => 0.002914025924619
707 => 0.0029411552874252
708 => 0.0029321890331796
709 => 0.002951452016779
710 => 0.0029526346075245
711 => 0.0029463720151935
712 => 0.0029391207355619
713 => 0.0029355912136582
714 => 0.0029618973782456
715 => 0.0029771689922133
716 => 0.0029438780819269
717 => 0.0029360784874361
718 => 0.0029697374357772
719 => 0.0029902693748212
720 => 0.0031418656768218
721 => 0.00313063493312
722 => 0.0031588218958894
723 => 0.0031556484764457
724 => 0.0031851929039634
725 => 0.003233485556548
726 => 0.0031352930910054
727 => 0.0031523359077836
728 => 0.0031481574026857
729 => 0.0031937772256817
730 => 0.0031939196457895
731 => 0.0031665682830243
801 => 0.0031813959005045
802 => 0.0031731195312014
803 => 0.0031880760491505
804 => 0.0031304849396908
805 => 0.0032006246944366
806 => 0.0032403894156715
807 => 0.0032409415488644
808 => 0.0032597897111374
809 => 0.0032789405356188
810 => 0.0033156988755254
811 => 0.0032779153654694
812 => 0.0032099465090293
813 => 0.0032148536409262
814 => 0.0031750035252642
815 => 0.0031756734129079
816 => 0.0031720975001654
817 => 0.003182829083488
818 => 0.0031328399187408
819 => 0.0031445722757901
820 => 0.0031281469072165
821 => 0.0031523002022401
822 => 0.0031263152494774
823 => 0.003148155387684
824 => 0.0031575808673219
825 => 0.0031923610901019
826 => 0.0031211781822939
827 => 0.0029760314146142
828 => 0.0030065430249149
829 => 0.0029614139566449
830 => 0.0029655908237318
831 => 0.0029740287599907
901 => 0.0029466786478545
902 => 0.002951896187349
903 => 0.002951709780123
904 => 0.0029501034233546
905 => 0.0029429886028766
906 => 0.002932670705559
907 => 0.0029737740327908
908 => 0.0029807582890383
909 => 0.0029962834255104
910 => 0.0030424757008506
911 => 0.0030378600032552
912 => 0.0030453883975367
913 => 0.0030289539550904
914 => 0.0029663531703817
915 => 0.0029697526941729
916 => 0.0029273605780236
917 => 0.00299519936379
918 => 0.0029791342438923
919 => 0.0029687769565845
920 => 0.0029659508747829
921 => 0.0030122576518391
922 => 0.0030261133653041
923 => 0.003017479414495
924 => 0.0029997709294931
925 => 0.0030337764557405
926 => 0.0030428748999863
927 => 0.0030449117061152
928 => 0.0031051629787126
929 => 0.0030482790829452
930 => 0.0030619716020337
1001 => 0.0031687967272602
1002 => 0.0030719210795394
1003 => 0.0031232382707219
1004 => 0.0031207265612553
1005 => 0.0031469786997851
1006 => 0.0031185731196533
1007 => 0.0031189252408628
1008 => 0.0031422353614034
1009 => 0.0031095005011065
1010 => 0.0031013948893456
1011 => 0.0030901970447515
1012 => 0.0031146471287579
1013 => 0.0031293038483376
1014 => 0.0032474262439755
1015 => 0.0033237386985932
1016 => 0.0033204257736785
1017 => 0.0033506997058636
1018 => 0.0033370610221368
1019 => 0.0032930181146798
1020 => 0.0033681939872485
1021 => 0.0033444051956756
1022 => 0.0033463663147495
1023 => 0.0033462933217997
1024 => 0.0033621107885433
1025 => 0.0033509026637059
1026 => 0.0033288102991609
1027 => 0.0033434762417534
1028 => 0.0033870288480825
1029 => 0.0035222174744853
1030 => 0.0035978708208313
1031 => 0.0035176630480421
1101 => 0.0035729892956872
1102 => 0.0035398132618579
1103 => 0.0035337841896096
1104 => 0.0035685331617083
1105 => 0.0036033429572827
1106 => 0.0036011257237915
1107 => 0.0035758555997072
1108 => 0.0035615811478177
1109 => 0.0036696720798174
1110 => 0.0037493116372337
1111 => 0.0037438807533283
1112 => 0.0037678509086688
1113 => 0.0038382280261175
1114 => 0.0038446624277423
1115 => 0.0038438518410306
1116 => 0.0038279035052432
1117 => 0.003897198916995
1118 => 0.0039550063686151
1119 => 0.0038242119263002
1120 => 0.0038740167377087
1121 => 0.0038963757221608
1122 => 0.0039292053449483
1123 => 0.0039845944214744
1124 => 0.0040447616498086
1125 => 0.0040532699555952
1126 => 0.0040472329054797
1127 => 0.0040075510010113
1128 => 0.004073386700199
1129 => 0.004111951708746
1130 => 0.0041349162887913
1201 => 0.0041931506428442
1202 => 0.0038965138036369
1203 => 0.0036865395050385
1204 => 0.0036537489862467
1205 => 0.0037204297956333
1206 => 0.003738012993299
1207 => 0.0037309252283674
1208 => 0.0034945800652668
1209 => 0.0036525046778758
1210 => 0.0038224182823644
1211 => 0.0038289453559077
1212 => 0.0039140076590406
1213 => 0.0039417074317623
1214 => 0.0040101937351553
1215 => 0.0040059098982312
1216 => 0.0040225852232523
1217 => 0.0040187518548063
1218 => 0.0041456083103492
1219 => 0.0042855498191788
1220 => 0.0042807040897148
1221 => 0.0042605858421078
1222 => 0.0042904648704752
1223 => 0.0044348995046309
1224 => 0.0044216022780357
1225 => 0.0044345194010179
1226 => 0.0046048159746667
1227 => 0.0048262257448153
1228 => 0.0047233586774038
1229 => 0.0049465506144855
1230 => 0.0050870381079822
1231 => 0.0053299967013068
]
'min_raw' => 0.0021761195846512
'max_raw' => 0.0053299967013068
'avg_raw' => 0.003753058142979
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.002176'
'max' => '$0.005329'
'avg' => '$0.003753'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 0.00097031699482546
'max_diff' => 0.0021623455246652
'year' => 2028
]
3 => [
'items' => [
101 => 0.0052995770888263
102 => 0.0053941590862951
103 => 0.0052451196337214
104 => 0.0049028949247694
105 => 0.0048487365545942
106 => 0.0049571629831933
107 => 0.0052237187778082
108 => 0.0049487681926294
109 => 0.0050043903379146
110 => 0.0049883711563306
111 => 0.0049875175622211
112 => 0.0050200957775616
113 => 0.0049728393770447
114 => 0.0047803083000747
115 => 0.0048685441580573
116 => 0.0048344720558563
117 => 0.0048722775934918
118 => 0.0050762984879208
119 => 0.0049860959872431
120 => 0.0048910749802352
121 => 0.0050102524098726
122 => 0.0051620062316089
123 => 0.0051525097501725
124 => 0.0051340826069645
125 => 0.0052379554484139
126 => 0.0054095229506014
127 => 0.0054558969570287
128 => 0.0054901293004984
129 => 0.0054948493623027
130 => 0.005543468932389
131 => 0.0052820292503256
201 => 0.0056969407400075
202 => 0.005768584492577
203 => 0.0057551184364232
204 => 0.0058347474521742
205 => 0.0058113185757471
206 => 0.0057773738096823
207 => 0.005903602737225
208 => 0.0057588914579465
209 => 0.0055534920156541
210 => 0.0054408058192722
211 => 0.0055892000928041
212 => 0.0056798192974036
213 => 0.0057397128271799
214 => 0.0057578365731016
215 => 0.0053023240686209
216 => 0.0050568280925874
217 => 0.0052141881986078
218 => 0.005406178388367
219 => 0.0052809627351277
220 => 0.0052858709516701
221 => 0.0051073463362456
222 => 0.0054219738555125
223 => 0.0053761352723893
224 => 0.0056139459227197
225 => 0.0055571905024686
226 => 0.0057511158560568
227 => 0.0057000488113107
228 => 0.0059120252589317
301 => 0.0059965884029209
302 => 0.0061385830828812
303 => 0.0062430349474824
304 => 0.006304371080222
305 => 0.0063006886888783
306 => 0.0065437330043325
307 => 0.0064004182628308
308 => 0.0062203811708135
309 => 0.0062171248678286
310 => 0.0063103686289297
311 => 0.006505781972021
312 => 0.0065564498087361
313 => 0.0065847662172264
314 => 0.0065413986519222
315 => 0.0063858407714821
316 => 0.0063186716674045
317 => 0.0063759016901549
318 => 0.006305914290163
319 => 0.0064267321775452
320 => 0.0065926409422291
321 => 0.0065583814383962
322 => 0.0066729058232377
323 => 0.0067914265132319
324 => 0.0069609164230209
325 => 0.0070052273616329
326 => 0.0070784716581645
327 => 0.0071538640987936
328 => 0.0071780781188404
329 => 0.0072243101962789
330 => 0.00722406653041
331 => 0.0073633900075487
401 => 0.0075170681173216
402 => 0.0075750780461044
403 => 0.0077084686786544
404 => 0.0074800418949778
405 => 0.0076533062343743
406 => 0.0078095950055977
407 => 0.0076232610895154
408 => 0.0078800789826005
409 => 0.0078900506394271
410 => 0.008040610818613
411 => 0.0078879892331679
412 => 0.0077973630229159
413 => 0.0080589974961935
414 => 0.0081855941764039
415 => 0.0081474622260466
416 => 0.0078572762010208
417 => 0.0076883754877917
418 => 0.0072463297427567
419 => 0.0077699520227058
420 => 0.0080249931609976
421 => 0.0078566157060861
422 => 0.0079415355004118
423 => 0.0084048303629173
424 => 0.0085812230504385
425 => 0.0085445346045121
426 => 0.0085507343479304
427 => 0.0086459126403631
428 => 0.0090679856046527
429 => 0.0088150697008757
430 => 0.0090084144327351
501 => 0.009110963781357
502 => 0.0092062173314944
503 => 0.0089723047175507
504 => 0.0086679878436688
505 => 0.008571597915357
506 => 0.007839873886552
507 => 0.0078017844731364
508 => 0.0077804037311588
509 => 0.0076456011773562
510 => 0.0075396832955944
511 => 0.0074554534635386
512 => 0.0072344092310671
513 => 0.0073090051707047
514 => 0.006956706799662
515 => 0.0071820948127675
516 => 0.0066198181060417
517 => 0.0070880988555455
518 => 0.0068332349337036
519 => 0.0070043692026772
520 => 0.0070037721313346
521 => 0.0066886596839847
522 => 0.0065069094005823
523 => 0.0066227277549932
524 => 0.006746894224594
525 => 0.0067670398165406
526 => 0.0069280248854546
527 => 0.006972952357826
528 => 0.0068368200190775
529 => 0.0066081661710741
530 => 0.0066612772449263
531 => 0.0065058331063658
601 => 0.0062334232326111
602 => 0.0064290727597619
603 => 0.0064958761104336
604 => 0.0065253802757932
605 => 0.0062574964514407
606 => 0.0061733215377884
607 => 0.0061285075200559
608 => 0.0065735857332912
609 => 0.0065979681225195
610 => 0.0064732243719052
611 => 0.0070370779533699
612 => 0.0069094605221669
613 => 0.0070520404598504
614 => 0.0066564579716582
615 => 0.0066715697554296
616 => 0.0064842946660288
617 => 0.0065891562023672
618 => 0.0065150434483283
619 => 0.006580684426493
620 => 0.006620029358157
621 => 0.0068072737175584
622 => 0.0070902368853551
623 => 0.0067793056543129
624 => 0.0066438284643306
625 => 0.006727877751043
626 => 0.0069517120774436
627 => 0.0072908325398088
628 => 0.0070900664006532
629 => 0.0071791630039803
630 => 0.0071986266481753
701 => 0.0070505891299285
702 => 0.0072962908942651
703 => 0.0074279644658506
704 => 0.0075630343042909
705 => 0.0076803116604377
706 => 0.0075090844405684
707 => 0.0076923221102863
708 => 0.0075446648942967
709 => 0.0074122011070315
710 => 0.0074124019999181
711 => 0.0073293055311796
712 => 0.0071682956521697
713 => 0.0071386029601456
714 => 0.0072930680938288
715 => 0.0074169345031402
716 => 0.0074271367338912
717 => 0.0074957155425718
718 => 0.0075362997751312
719 => 0.0079340804258012
720 => 0.0080940710941149
721 => 0.0082897046548604
722 => 0.0083659149520742
723 => 0.0085952806237838
724 => 0.0084100492157092
725 => 0.0083699732354121
726 => 0.0078136071407839
727 => 0.0079047120576111
728 => 0.0080505798197683
729 => 0.0078160124464555
730 => 0.0079647914548557
731 => 0.0079941635826842
801 => 0.0078080419368686
802 => 0.0079074575497403
803 => 0.0076434391566281
804 => 0.0070959917648459
805 => 0.0072969003597083
806 => 0.0074448367106287
807 => 0.0072337132974447
808 => 0.0076121438439727
809 => 0.0073910725310831
810 => 0.0073210035381916
811 => 0.0070476394155222
812 => 0.0071766567586722
813 => 0.0073511545626329
814 => 0.0072433352073322
815 => 0.0074670765587387
816 => 0.0077839539819691
817 => 0.0080097797041399
818 => 0.008027115798999
819 => 0.0078819249887915
820 => 0.0081145941887444
821 => 0.0081162889298553
822 => 0.0078538371218269
823 => 0.0076930868507473
824 => 0.0076565640509365
825 => 0.0077478051655805
826 => 0.0078585887227972
827 => 0.0080332635154102
828 => 0.0081388158342774
829 => 0.0084140403012589
830 => 0.0084885081507203
831 => 0.0085703257400371
901 => 0.0086796592709744
902 => 0.0088109422074066
903 => 0.0085237026164347
904 => 0.0085351151808656
905 => 0.0082676416508554
906 => 0.0079818078244552
907 => 0.0081987200690035
908 => 0.0084823039741237
909 => 0.0084172495129567
910 => 0.0084099295571334
911 => 0.0084222396924418
912 => 0.008373190753202
913 => 0.0081513442188589
914 => 0.0080399342781446
915 => 0.0081836815253733
916 => 0.0082600767898214
917 => 0.0083785591826132
918 => 0.0083639537268417
919 => 0.0086691516465934
920 => 0.0087877423295028
921 => 0.0087574017580332
922 => 0.0087629851533702
923 => 0.0089776879201485
924 => 0.0092164815537976
925 => 0.0094401433033053
926 => 0.0096676616414002
927 => 0.009393379404635
928 => 0.0092541158001821
929 => 0.0093978002918594
930 => 0.0093215592780698
1001 => 0.0097596627578587
1002 => 0.0097899960922597
1003 => 0.01022806789218
1004 => 0.010643850194925
1005 => 0.010382704780085
1006 => 0.010628953144031
1007 => 0.010895290826563
1008 => 0.011409099427898
1009 => 0.011236066766973
1010 => 0.011103526460472
1011 => 0.010978276511258
1012 => 0.011238901772702
1013 => 0.01157419200796
1014 => 0.011646410313264
1015 => 0.011763431557373
1016 => 0.011640398027869
1017 => 0.011788578362458
1018 => 0.012311720057294
1019 => 0.01217036255345
1020 => 0.011969612173639
1021 => 0.01238258229865
1022 => 0.01253203458151
1023 => 0.013580968971395
1024 => 0.014905291967943
1025 => 0.014357013551399
1026 => 0.014016679445416
1027 => 0.014096666033155
1028 => 0.014580263960332
1029 => 0.01473558026591
1030 => 0.014313377006607
1031 => 0.014462506335407
1101 => 0.015284223599166
1102 => 0.015725048547327
1103 => 0.015126349057035
1104 => 0.013474560908087
1105 => 0.011951536798394
1106 => 0.012355511374954
1107 => 0.012309713194763
1108 => 0.013192545883356
1109 => 0.012166991223734
1110 => 0.01218425893402
1111 => 0.013085347667677
1112 => 0.012844952642109
1113 => 0.012455543488158
1114 => 0.011954379916164
1115 => 0.011027932701314
1116 => 0.010207352567229
1117 => 0.011816699178488
1118 => 0.011747301226203
1119 => 0.011646802707095
1120 => 0.011870451286295
1121 => 0.012956425303131
1122 => 0.012931390087088
1123 => 0.012772128815703
1124 => 0.012892927086384
1125 => 0.012434366967256
1126 => 0.012552548351175
1127 => 0.011951295543594
1128 => 0.012223086923156
1129 => 0.012454707991006
1130 => 0.012501209349585
1201 => 0.012605979284883
1202 => 0.011710731658817
1203 => 0.012112671559831
1204 => 0.012348773595001
1205 => 0.011282056010636
1206 => 0.012327688018117
1207 => 0.011695147389393
1208 => 0.011480453599563
1209 => 0.011769510503813
1210 => 0.01165686474711
1211 => 0.011560018540277
1212 => 0.011505976692835
1213 => 0.01171822818127
1214 => 0.01170832639564
1215 => 0.011361041764321
1216 => 0.010908023119898
1217 => 0.011060071046796
1218 => 0.011004830609497
1219 => 0.010804632138567
1220 => 0.010939541735919
1221 => 0.010345468145368
1222 => 0.0093233954100838
1223 => 0.009998607965947
1224 => 0.0099726130170362
1225 => 0.0099595051850183
1226 => 0.010466908759245
1227 => 0.010418133613375
1228 => 0.010329606246014
1229 => 0.010803006264042
1230 => 0.010630208889333
1231 => 0.011162729682003
]
'min_raw' => 0.0047803083000747
'max_raw' => 0.015725048547327
'avg_raw' => 0.010252678423701
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.00478'
'max' => '$0.015725'
'avg' => '$0.010252'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072435
'min_diff' => 0.0026041887154236
'max_diff' => 0.01039505184602
'year' => 2029
]
4 => [
'items' => [
101 => 0.011513482317342
102 => 0.011424520103361
103 => 0.011754404652231
104 => 0.011063573923939
105 => 0.011293040180559
106 => 0.011340332858022
107 => 0.010797164581303
108 => 0.010426113830452
109 => 0.010401368975659
110 => 0.0097580181076263
111 => 0.010101690948382
112 => 0.010404108826099
113 => 0.010259274131248
114 => 0.010213423793672
115 => 0.010447663224625
116 => 0.010465865634535
117 => 0.01005084875958
118 => 0.010137143909758
119 => 0.010497009031377
120 => 0.010128076232012
121 => 0.0094113000676767
122 => 0.0092335296687157
123 => 0.0092098118205358
124 => 0.0087276843994055
125 => 0.0092454091368165
126 => 0.0090194084147762
127 => 0.009733341987797
128 => 0.0093255469597901
129 => 0.0093079677311823
130 => 0.0092813941488295
131 => 0.0088664071610297
201 => 0.0089572629375589
202 => 0.0092592813764676
203 => 0.0093670449579515
204 => 0.0093558043335217
205 => 0.0092578013213514
206 => 0.0093026665984663
207 => 0.0091581399087803
208 => 0.0091071045265892
209 => 0.0089460228220065
210 => 0.0087092772162264
211 => 0.0087421981447553
212 => 0.0082731431518477
213 => 0.0080175770970789
214 => 0.0079468397814254
215 => 0.0078522468866175
216 => 0.007957524300596
217 => 0.0082718143779864
218 => 0.0078927138642941
219 => 0.0072427726243776
220 => 0.0072818352003426
221 => 0.007369597210753
222 => 0.007206053284957
223 => 0.0070512726843925
224 => 0.0071858418588363
225 => 0.0069104531874598
226 => 0.0074028766160039
227 => 0.0073895579422625
228 => 0.0075731029451632
301 => 0.0076878774021996
302 => 0.0074233594374024
303 => 0.0073568338845885
304 => 0.0073947298628891
305 => 0.0067683937559152
306 => 0.0075219179227447
307 => 0.0075284344310302
308 => 0.0074726361308028
309 => 0.0078738644871908
310 => 0.0087205814654324
311 => 0.0084020124791064
312 => 0.0082786529388024
313 => 0.0080441463625092
314 => 0.0083566124517971
315 => 0.0083326199313702
316 => 0.0082241166551061
317 => 0.0081584935350708
318 => 0.0082794061458506
319 => 0.0081435111245146
320 => 0.0081191006445372
321 => 0.0079711996947383
322 => 0.0079184057847245
323 => 0.0078793192755365
324 => 0.0078362888694815
325 => 0.0079312032227297
326 => 0.0077161148112462
327 => 0.007456739272374
328 => 0.007435175002799
329 => 0.0074947158470456
330 => 0.007468373455761
331 => 0.0074350488855642
401 => 0.0073714232056519
402 => 0.0073525468255694
403 => 0.0074138859033196
404 => 0.0073446376608301
405 => 0.0074468172147704
406 => 0.0074190300299512
407 => 0.0072638130743609
408 => 0.007070355279018
409 => 0.007068633098848
410 => 0.0070269529341758
411 => 0.006973866977811
412 => 0.0069590996791925
413 => 0.0071745088183086
414 => 0.007620399289626
415 => 0.0075328603208517
416 => 0.0075961161971455
417 => 0.0079072725018691
418 => 0.0080061797343443
419 => 0.0079359777234796
420 => 0.0078398808811366
421 => 0.0078441086545
422 => 0.0081725006552784
423 => 0.0081929820615531
424 => 0.0082447319676572
425 => 0.0083112452215228
426 => 0.0079473052182244
427 => 0.0078269671130732
428 => 0.0077699442427487
429 => 0.0075943358727774
430 => 0.0077837144442677
501 => 0.0076733716606593
502 => 0.0076882606720143
503 => 0.0076785641838369
504 => 0.0076838591220554
505 => 0.00740273897362
506 => 0.0075051643804699
507 => 0.0073348622758476
508 => 0.0071068468750668
509 => 0.0071060824874909
510 => 0.0071618889338028
511 => 0.00712869307583
512 => 0.0070393638755688
513 => 0.007052052666844
514 => 0.0069408855034999
515 => 0.0070655503732204
516 => 0.0070691253156117
517 => 0.0070211225502279
518 => 0.0072131859824693
519 => 0.0072918745273674
520 => 0.007260278078873
521 => 0.0072896576363114
522 => 0.0075364979602191
523 => 0.0075767437034144
524 => 0.0075946182040572
525 => 0.0075706687411134
526 => 0.0072941694243013
527 => 0.0073064333447678
528 => 0.0072164488336237
529 => 0.0071404214040411
530 => 0.007143462102513
531 => 0.0071825500841925
601 => 0.0073532495926666
602 => 0.0077124766449647
603 => 0.0077261090490079
604 => 0.0077426319203935
605 => 0.0076754250987385
606 => 0.0076551548782447
607 => 0.0076818965312638
608 => 0.0078168033248459
609 => 0.0081638202247761
610 => 0.0080411612758613
611 => 0.0079414376410933
612 => 0.0080289221540837
613 => 0.0080154545990351
614 => 0.0079017748811566
615 => 0.0078985842700978
616 => 0.0076803965458846
617 => 0.007599737512137
618 => 0.0075323327863135
619 => 0.0074587285853592
620 => 0.0074150935477983
621 => 0.0074821367972617
622 => 0.0074974703816464
623 => 0.0073508791449792
624 => 0.0073308993010947
625 => 0.0074506088693488
626 => 0.0073979291515827
627 => 0.0074521115476993
628 => 0.0074646823283663
629 => 0.0074626581431493
630 => 0.0074076544675744
701 => 0.0074427121701526
702 => 0.0073597902523511
703 => 0.0072696251212112
704 => 0.0072121053850302
705 => 0.0071619117863264
706 => 0.0071897621121563
707 => 0.0070904807858411
708 => 0.0070587186914146
709 => 0.0074308354093424
710 => 0.0077057220298046
711 => 0.007701725069476
712 => 0.0076773946014106
713 => 0.0076412444611206
714 => 0.0078141587169184
715 => 0.0077539188477281
716 => 0.0077977483857735
717 => 0.007808904842726
718 => 0.0078426720778113
719 => 0.0078547409619624
720 => 0.0078182604116788
721 => 0.0076958272292034
722 => 0.0073907353790722
723 => 0.0072487142992564
724 => 0.0072018449773691
725 => 0.0072035485882021
726 => 0.0071565553961718
727 => 0.0071703969973119
728 => 0.0071517418521672
729 => 0.0071164135204276
730 => 0.007187580687224
731 => 0.0071957820402293
801 => 0.0071791707731147
802 => 0.0071830833278568
803 => 0.0070455491309129
804 => 0.007056005557198
805 => 0.0069977828469043
806 => 0.0069868667906095
807 => 0.0068396848490184
808 => 0.0065789307051262
809 => 0.0067234138128596
810 => 0.006548898536117
811 => 0.0064828069564765
812 => 0.0067956742151448
813 => 0.0067642710199615
814 => 0.0067105224004484
815 => 0.0066310169899947
816 => 0.0066015276598786
817 => 0.0064223598252801
818 => 0.0064117736337888
819 => 0.0065005740505543
820 => 0.0064595957136528
821 => 0.0064020466089333
822 => 0.0061936095852986
823 => 0.0059592573596062
824 => 0.0059663309802143
825 => 0.0060408740629289
826 => 0.0062576181294258
827 => 0.006172932472935
828 => 0.006111492057495
829 => 0.0060999861145752
830 => 0.0062440070795397
831 => 0.0064478269182894
901 => 0.0065434546264189
902 => 0.0064486904719192
903 => 0.0063398305136944
904 => 0.0063464563149431
905 => 0.0063905348022392
906 => 0.0063951668280178
907 => 0.006324310186198
908 => 0.0063442559158251
909 => 0.0063139565286457
910 => 0.0061280092454544
911 => 0.0061246460487467
912 => 0.0060790115866466
913 => 0.0060776297932705
914 => 0.0059999941891881
915 => 0.0059891324315073
916 => 0.0058349822274574
917 => 0.0059364443585729
918 => 0.0058683888880216
919 => 0.0057658132412382
920 => 0.0057481291610696
921 => 0.0057475975562656
922 => 0.0058529198100172
923 => 0.0059352136067162
924 => 0.0058695727420689
925 => 0.0058546275895834
926 => 0.0060142027184211
927 => 0.0059938953287169
928 => 0.0059763092602017
929 => 0.0064295770872449
930 => 0.0060707802332106
1001 => 0.0059143243254432
1002 => 0.0057206804294099
1003 => 0.0057837318583956
1004 => 0.0057970177209011
1005 => 0.005331339057877
1006 => 0.0051424132822847
1007 => 0.0050775810756191
1008 => 0.0050402692240902
1009 => 0.0050572727033647
1010 => 0.0048872173465483
1011 => 0.0050014973587849
1012 => 0.0048542437942034
1013 => 0.0048295562548968
1014 => 0.0050928638695847
1015 => 0.0051295015859477
1016 => 0.0049731937054967
1017 => 0.0050735686686935
1018 => 0.005037171311722
1019 => 0.0048567680339248
1020 => 0.0048498779556697
1021 => 0.0047593579323529
1022 => 0.0046177116239925
1023 => 0.004552975460194
1024 => 0.0045192603040226
1025 => 0.0045331718345542
1026 => 0.0045261377390175
1027 => 0.0044802355075953
1028 => 0.0045287688011914
1029 => 0.0044047862913949
1030 => 0.004355415456999
1031 => 0.004333115796497
1101 => 0.0042230741828857
1102 => 0.004398199325869
1103 => 0.0044327011852052
1104 => 0.0044672710238624
1105 => 0.0047681778675421
1106 => 0.0047531454119858
1107 => 0.0048890314891122
1108 => 0.0048837512060335
1109 => 0.0048449942956286
1110 => 0.0046814852658324
1111 => 0.0047466570508409
1112 => 0.0045460684265287
1113 => 0.0046963630625641
1114 => 0.0046277748671316
1115 => 0.0046731733246948
1116 => 0.0045915428045822
1117 => 0.0046367205048541
1118 => 0.0044408828559884
1119 => 0.0042580124149877
1120 => 0.0043316048187673
1121 => 0.004411608177988
1122 => 0.0045850758452553
1123 => 0.0044817599337081
1124 => 0.0045189162423076
1125 => 0.0043944488283902
1126 => 0.0041376370011194
1127 => 0.004139090528172
1128 => 0.0040995856234962
1129 => 0.0040654476180458
1130 => 0.0044936270089783
1201 => 0.0044403761332013
1202 => 0.0043555278319531
1203 => 0.0044691006549113
1204 => 0.0044991311119445
1205 => 0.0044999860368384
1206 => 0.0045828458367299
1207 => 0.0046270681267854
1208 => 0.0046348624970781
1209 => 0.0047652441825118
1210 => 0.0048089464036931
1211 => 0.0049889496677693
1212 => 0.0046233161744382
1213 => 0.0046157861932548
1214 => 0.0044706988574391
1215 => 0.0043786821753248
1216 => 0.0044769993183872
1217 => 0.0045640948855121
1218 => 0.0044734051594876
1219 => 0.0044852473231418
1220 => 0.0043635037755768
1221 => 0.004407021365265
1222 => 0.0044445045759568
1223 => 0.0044238085501741
1224 => 0.0043928255978783
1225 => 0.0045569540422326
1226 => 0.0045476932721776
1227 => 0.0047005334528569
1228 => 0.0048196833034026
1229 => 0.0050332211361639
1230 => 0.0048103832756985
1231 => 0.0048022621783629
]
'min_raw' => 0.0040654476180458
'max_raw' => 0.011754404652231
'avg_raw' => 0.0079099261351384
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.004065'
'max' => '$0.011754'
'avg' => '$0.0079099'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -0.00071486068202898
'max_diff' => -0.0039706438950958
'year' => 2030
]
5 => [
'items' => [
101 => 0.0048816472074837
102 => 0.0048089342502588
103 => 0.0048548863292589
104 => 0.0050258175458206
105 => 0.0050294290530767
106 => 0.0049689316533733
107 => 0.0049652503811034
108 => 0.0049768695684854
109 => 0.0050449235119009
110 => 0.0050211433729851
111 => 0.0050486623517779
112 => 0.0050830752561439
113 => 0.0052254216193709
114 => 0.0052597408456335
115 => 0.005176362918294
116 => 0.0051838910115897
117 => 0.0051527053779894
118 => 0.0051225804466863
119 => 0.0051902968928626
120 => 0.0053140500292199
121 => 0.0053132801673815
122 => 0.0053419884895991
123 => 0.0053598735365081
124 => 0.0052830978225201
125 => 0.0052331196558351
126 => 0.0052522844651355
127 => 0.0052829294125621
128 => 0.0052423467217074
129 => 0.0049918515540209
130 => 0.0050678357862037
131 => 0.0050551882945293
201 => 0.0050371767283975
202 => 0.005113579461426
203 => 0.0051062102314397
204 => 0.0048854731830702
205 => 0.0048996040527272
206 => 0.0048863325280569
207 => 0.004929215539365
208 => 0.0048066184269181
209 => 0.0048443284730026
210 => 0.0048679798603971
211 => 0.004881910709271
212 => 0.0049322384878759
213 => 0.0049263331039377
214 => 0.0049318714009188
215 => 0.0050064942105489
216 => 0.0053839107742024
217 => 0.0054044527250393
218 => 0.0053032966462526
219 => 0.0053437065045125
220 => 0.0052661284133181
221 => 0.0053182071056649
222 => 0.0053538380243133
223 => 0.0051928287543731
224 => 0.0051832948303488
225 => 0.005105396546776
226 => 0.0051472546719837
227 => 0.0050806553850725
228 => 0.0050969965205364
301 => 0.0050513052811849
302 => 0.0051335404149825
303 => 0.0052254920726162
304 => 0.0052487226926155
305 => 0.0051876129328081
306 => 0.0051433654393782
307 => 0.0050656814169457
308 => 0.0051948716775523
309 => 0.0052326508467555
310 => 0.0051946732396596
311 => 0.0051858729982683
312 => 0.0051691965567336
313 => 0.0051894109841745
314 => 0.0052324450932866
315 => 0.0052121510021446
316 => 0.0052255556068797
317 => 0.0051744710763976
318 => 0.0052831232384761
319 => 0.0054556890204234
320 => 0.0054562438476297
321 => 0.005435949647095
322 => 0.0054276456974808
323 => 0.0054484687787845
324 => 0.0054597644461842
325 => 0.0055271024728203
326 => 0.0055993588582661
327 => 0.005936547881211
328 => 0.0058418665528518
329 => 0.0061410407134732
330 => 0.006377648631622
331 => 0.0064485970006645
401 => 0.0063833278395241
402 => 0.0061600455650336
403 => 0.0061490902714228
404 => 0.0064827682568563
405 => 0.0063884889425514
406 => 0.0063772747181091
407 => 0.0062579743167745
408 => 0.0063284956296054
409 => 0.0063130715840041
410 => 0.0062887239734522
411 => 0.0064232737257763
412 => 0.0066751388507879
413 => 0.0066358833090787
414 => 0.0066065808682049
415 => 0.0064781861021083
416 => 0.0065555084293077
417 => 0.0065279754296036
418 => 0.0066462746692057
419 => 0.0065761968203144
420 => 0.0063877746840193
421 => 0.0064177815302718
422 => 0.0064132460558261
423 => 0.0065065857985308
424 => 0.0064785675246057
425 => 0.006407775038165
426 => 0.0066742780031719
427 => 0.0066569727829917
428 => 0.0066815076286831
429 => 0.0066923086265217
430 => 0.0068545242850124
501 => 0.0069209788499739
502 => 0.0069360651996711
503 => 0.006999191896604
504 => 0.0069344945499443
505 => 0.0071933300650097
506 => 0.0073654405790571
507 => 0.0075653557978493
508 => 0.0078574856646497
509 => 0.007967329196919
510 => 0.0079474869459859
511 => 0.0081689764769619
512 => 0.0085669882406901
513 => 0.0080279365030272
514 => 0.0085955592917061
515 => 0.0084158564703306
516 => 0.007989784313565
517 => 0.00796235028973
518 => 0.0082508913010912
519 => 0.008890847493247
520 => 0.008730545725435
521 => 0.0088911096895126
522 => 0.008703803296559
523 => 0.0086945019554066
524 => 0.0088820126360825
525 => 0.009320141562157
526 => 0.0091120029323962
527 => 0.0088135851689484
528 => 0.0090339322015836
529 => 0.0088430472097598
530 => 0.0084129298978355
531 => 0.0087304231456942
601 => 0.0085181244525382
602 => 0.0085800844976204
603 => 0.009026304773587
604 => 0.0089726143694303
605 => 0.0090420947240067
606 => 0.0089194637167969
607 => 0.0088049070189281
608 => 0.0085910784352639
609 => 0.0085277743332627
610 => 0.0085452693096128
611 => 0.0085277656636213
612 => 0.0084081305362473
613 => 0.0083822953418814
614 => 0.0083392355527391
615 => 0.0083525815819254
616 => 0.0082716165807523
617 => 0.0084244142661888
618 => 0.0084527748630543
619 => 0.0085639682762455
620 => 0.008575512745273
621 => 0.0088851848182711
622 => 0.0087146226442915
623 => 0.0088290504762266
624 => 0.0088188149739018
625 => 0.0079990185891659
626 => 0.0081119792978577
627 => 0.0082877107115591
628 => 0.008208543947885
629 => 0.0080966206662194
630 => 0.0080062366153278
701 => 0.0078692955359832
702 => 0.0080620374754402
703 => 0.0083154726300059
704 => 0.0085819402790244
705 => 0.0089020836996682
706 => 0.0088306314150608
707 => 0.0085759554204626
708 => 0.0085873799995394
709 => 0.0086580022519856
710 => 0.0085665400183595
711 => 0.0085395660201082
712 => 0.0086542964388398
713 => 0.0086550865241789
714 => 0.0085498481708118
715 => 0.0084328949994597
716 => 0.0084324049614014
717 => 0.0084115942741929
718 => 0.0087075054715822
719 => 0.0088702267101497
720 => 0.0088888824379131
721 => 0.0088689710310302
722 => 0.0088766341412839
723 => 0.0087819502378793
724 => 0.0089983695634229
725 => 0.0091969773381947
726 => 0.0091437462119196
727 => 0.0090639451863828
728 => 0.0090003798258046
729 => 0.0091287722331036
730 => 0.009123055121315
731 => 0.0091952426725437
801 => 0.0091919678282445
802 => 0.0091676938698774
803 => 0.0091437470788191
804 => 0.0092386933985426
805 => 0.0092113503832535
806 => 0.0091839648967093
807 => 0.0091290391109367
808 => 0.0091365044374439
809 => 0.0090567171906792
810 => 0.0090198039595099
811 => 0.0084647175299488
812 => 0.0083163802979978
813 => 0.0083630502108524
814 => 0.0083784151579479
815 => 0.0083138586045035
816 => 0.0084064161189248
817 => 0.0083919911283449
818 => 0.0084481103283541
819 => 0.0084130494886008
820 => 0.008414488397694
821 => 0.0085175948516493
822 => 0.0085475270938787
823 => 0.008532303313898
824 => 0.0085429655275559
825 => 0.0087886717410619
826 => 0.0087537401747437
827 => 0.0087351834763492
828 => 0.0087403238086232
829 => 0.0088031070141746
830 => 0.0088206828838931
831 => 0.0087462126888615
901 => 0.0087813332633455
902 => 0.0089308722120336
903 => 0.008983202380903
904 => 0.009150215160028
905 => 0.0090792651630403
906 => 0.0092094969531552
907 => 0.0096097850766794
908 => 0.0099295629275819
909 => 0.0096354820005134
910 => 0.010222713300232
911 => 0.01067995710039
912 => 0.01066240732176
913 => 0.010582676288963
914 => 0.010062116378939
915 => 0.0095830893886235
916 => 0.0099838158065828
917 => 0.0099848373406323
918 => 0.0099504145859429
919 => 0.0097366178129391
920 => 0.0099429749216738
921 => 0.0099593547995862
922 => 0.0099501864237163
923 => 0.0097862689391274
924 => 0.009535997237175
925 => 0.0095848997286707
926 => 0.0096650030073244
927 => 0.0095133507895384
928 => 0.0094648887170239
929 => 0.009554988930115
930 => 0.0098453105898192
1001 => 0.009790426961771
1002 => 0.0097889937284405
1003 => 0.010023809163511
1004 => 0.0098557319883431
1005 => 0.0095855165456959
1006 => 0.0095172835827237
1007 => 0.0092751025314037
1008 => 0.0094423778461697
1009 => 0.0094483977869537
1010 => 0.0093567828065686
1011 => 0.0095929505964352
1012 => 0.0095907742686751
1013 => 0.0098149804362168
1014 => 0.010243578420566
1015 => 0.010116820906568
1016 => 0.0099694157089666
1017 => 0.0099854427410486
1018 => 0.010161219724903
1019 => 0.010054940947866
1020 => 0.010093159537091
1021 => 0.010161161876491
1022 => 0.010202189376254
1023 => 0.0099795395152101
1024 => 0.0099276291820268
1025 => 0.0098214388583851
1026 => 0.0097937357850832
1027 => 0.0098802255879556
1028 => 0.0098574385806286
1029 => 0.0094478918342411
1030 => 0.0094050919205471
1031 => 0.0094064045327958
1101 => 0.0092987821147871
1102 => 0.0091346320949839
1103 => 0.0095660085461383
1104 => 0.0095313629800011
1105 => 0.0094931169563394
1106 => 0.0094978018760091
1107 => 0.0096850477727508
1108 => 0.0095764356964962
1109 => 0.0098651987023883
1110 => 0.0098058377093874
1111 => 0.0097449543309056
1112 => 0.0097365383934463
1113 => 0.0097131034870565
1114 => 0.0096327364733015
1115 => 0.0095356884748834
1116 => 0.0094716089801742
1117 => 0.0087370586168543
1118 => 0.0088733868916036
1119 => 0.0090302201449894
1120 => 0.0090843583555883
1121 => 0.0089917512001087
1122 => 0.0096363931682471
1123 => 0.0097541754677505
1124 => 0.0093974051998053
1125 => 0.0093306680495067
1126 => 0.0096407684447101
1127 => 0.0094537399981709
1128 => 0.0095379588961956
1129 => 0.0093559237039405
1130 => 0.0097258051608685
1201 => 0.0097229872838876
1202 => 0.009579095042991
1203 => 0.0097007117796653
1204 => 0.0096795778788272
1205 => 0.0095171238932459
1206 => 0.0097309552419753
1207 => 0.0097310612996565
1208 => 0.0095925681462806
1209 => 0.0094308384631873
1210 => 0.0094019250157348
1211 => 0.0093801426170545
1212 => 0.0095326017614056
1213 => 0.0096692961535034
1214 => 0.0099236505277837
1215 => 0.0099876012607886
1216 => 0.010237205229148
1217 => 0.010088578218987
1218 => 0.010154462647549
1219 => 0.010225989514675
1220 => 0.010260282125089
1221 => 0.010204404156663
1222 => 0.010592141860618
1223 => 0.010624878802808
1224 => 0.010635855216351
1225 => 0.010505112244159
1226 => 0.010621242604239
1227 => 0.010566909054591
1228 => 0.01070826985648
1229 => 0.010730437035202
1230 => 0.010711662223445
1231 => 0.010718698435856
]
'min_raw' => 0.0048066184269181
'max_raw' => 0.010730437035202
'avg_raw' => 0.00776852773106
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.0048066'
'max' => '$0.01073'
'avg' => '$0.007768'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 0.00074117080887237
'max_diff' => -0.001023967617029
'year' => 2031
]
6 => [
'items' => [
101 => 0.010387832707149
102 => 0.01037067557366
103 => 0.01013673684112
104 => 0.010232068603818
105 => 0.010053850442824
106 => 0.010110365257526
107 => 0.010135276449353
108 => 0.01012226425644
109 => 0.010237458518646
110 => 0.010139519863138
111 => 0.0098810436486466
112 => 0.0096224970124836
113 => 0.0096192511700741
114 => 0.0095511804044995
115 => 0.0095019777087717
116 => 0.0095114558935283
117 => 0.0095448582528696
118 => 0.0095000363029246
119 => 0.0095096013384759
120 => 0.0096684446601259
121 => 0.0097002995554641
122 => 0.0095920441745939
123 => 0.0091573831992234
124 => 0.0090507163056029
125 => 0.0091273863534408
126 => 0.0090907430087578
127 => 0.007336939111469
128 => 0.0077489693225961
129 => 0.0075041549623682
130 => 0.0076169766829284
131 => 0.007367084615507
201 => 0.0074863462080459
202 => 0.00746432294664
203 => 0.008126855333272
204 => 0.0081165108013382
205 => 0.0081214621813545
206 => 0.0078851199124273
207 => 0.0082616195642202
208 => 0.008447096831183
209 => 0.0084127699253858
210 => 0.0084214092680308
211 => 0.0082729567378781
212 => 0.0081228995263475
213 => 0.0079564629851208
214 => 0.0082656815065418
215 => 0.008231301685496
216 => 0.0083101566255059
217 => 0.0085107069400439
218 => 0.0085402387356761
219 => 0.0085799297684878
220 => 0.0085657033586249
221 => 0.0089046341585094
222 => 0.008863587402306
223 => 0.0089624982747985
224 => 0.0087590311056954
225 => 0.0085287886905742
226 => 0.0085725502464971
227 => 0.0085683356567535
228 => 0.0085146790920368
229 => 0.0084662403445577
301 => 0.0083856034775373
302 => 0.0086407504568004
303 => 0.0086303919553955
304 => 0.0087980840527014
305 => 0.0087684428456285
306 => 0.0085704916103615
307 => 0.0085775614774548
308 => 0.0086251097313196
309 => 0.0087896747808422
310 => 0.0088385288919835
311 => 0.0088158977212031
312 => 0.0088694640237946
313 => 0.0089118006452888
314 => 0.0088747808516282
315 => 0.0093989030620272
316 => 0.0091812509785965
317 => 0.0092873330896472
318 => 0.0093126330480607
319 => 0.0092478277365853
320 => 0.0092618816881401
321 => 0.009283169595273
322 => 0.0094124255987845
323 => 0.0097516307525248
324 => 0.0099018624060687
325 => 0.010353841748055
326 => 0.0098893877585675
327 => 0.009861828980933
328 => 0.0099432441088932
329 => 0.010208603829511
330 => 0.010423652959101
331 => 0.010494997161868
401 => 0.010504426476028
402 => 0.010638272943292
403 => 0.010714991242238
404 => 0.010622020461654
405 => 0.010543237459556
406 => 0.010261046524945
407 => 0.010293710894007
408 => 0.010518736005145
409 => 0.01083659722854
410 => 0.011109355226037
411 => 0.01101384488189
412 => 0.01174252138794
413 => 0.011814766687139
414 => 0.01180478472276
415 => 0.011969370265875
416 => 0.011642701480054
417 => 0.011503044245205
418 => 0.010560271238835
419 => 0.010825151998414
420 => 0.011210171738363
421 => 0.011159212932031
422 => 0.010879601305272
423 => 0.011109143115545
424 => 0.011033249414633
425 => 0.010973388903891
426 => 0.011247621508131
427 => 0.010946091494914
428 => 0.011207163745823
429 => 0.010872335883586
430 => 0.011014281165097
501 => 0.010933706158191
502 => 0.01098584806256
503 => 0.010681027555049
504 => 0.010845501301803
505 => 0.010674184906445
506 => 0.010674103680167
507 => 0.010670321861245
508 => 0.01087187484065
509 => 0.010878447476072
510 => 0.010729499519762
511 => 0.010708033792254
512 => 0.010787403837496
513 => 0.010694482301565
514 => 0.010737959703386
515 => 0.010695799187775
516 => 0.010686307967674
517 => 0.010610680311117
518 => 0.010578097837246
519 => 0.010590874264797
520 => 0.010547261730864
521 => 0.010520983601634
522 => 0.01066509447993
523 => 0.010588101851073
524 => 0.010653294255328
525 => 0.010578999282742
526 => 0.01032146053898
527 => 0.01017334728402
528 => 0.0096868804709076
529 => 0.0098248418556459
530 => 0.0099163103964589
531 => 0.0098860800442658
601 => 0.0099510265383698
602 => 0.0099550137256342
603 => 0.0099338989583499
604 => 0.0099094507628038
605 => 0.009897550733282
606 => 0.0099862438038262
607 => 0.010037733116549
608 => 0.0099254904882206
609 => 0.0098991936108447
610 => 0.01001267710517
611 => 0.01008190197115
612 => 0.010593019487461
613 => 0.010555154250965
614 => 0.010650188563893
615 => 0.010639489158678
616 => 0.01073910025878
617 => 0.010901922308654
618 => 0.010570859555498
619 => 0.010628320602157
620 => 0.010614232480486
621 => 0.010768042898791
622 => 0.010768523078128
623 => 0.010676306048954
624 => 0.01072629839652
625 => 0.010698394039577
626 => 0.010748820984073
627 => 0.010554648537646
628 => 0.010791129617773
629 => 0.010925199151701
630 => 0.01092706070731
701 => 0.01099060860235
702 => 0.011055176944156
703 => 0.011179110253537
704 => 0.011051720511423
705 => 0.010822558766501
706 => 0.010839103504296
707 => 0.010704746057095
708 => 0.010707004630056
709 => 0.010694948190583
710 => 0.01073113047301
711 => 0.010562588513933
712 => 0.010602144974852
713 => 0.010546765697923
714 => 0.010628200218425
715 => 0.010540590135974
716 => 0.010614225686767
717 => 0.010646004349432
718 => 0.010763268298812
719 => 0.010523270155306
720 => 0.01003389769425
721 => 0.010136769718631
722 => 0.009984613914148
723 => 0.009998696513151
724 => 0.010027145604366
725 => 0.0099349327917749
726 => 0.0099525240904576
727 => 0.0099518956054805
728 => 0.0099464796614837
729 => 0.009922491547501
730 => 0.0098877040363223
731 => 0.010026286773827
801 => 0.010049834681391
802 => 0.010102178762937
803 => 0.010257919244288
804 => 0.010242357097587
805 => 0.010267739604523
806 => 0.010212329734399
807 => 0.010001266818107
808 => 0.010012728549916
809 => 0.0098698005705956
810 => 0.01009852377316
811 => 0.010044359099794
812 => 0.010009438782513
813 => 0.009999910450408
814 => 0.010156036982289
815 => 0.010202752487611
816 => 0.010173642519655
817 => 0.010113937126104
818 => 0.010228589132037
819 => 0.010259265172045
820 => 0.010266132406114
821 => 0.010469273778285
822 => 0.010277485752199
823 => 0.010323651036287
824 => 0.01068381940428
825 => 0.010357196394348
826 => 0.010530215887271
827 => 0.010521747483443
828 => 0.010610258401362
829 => 0.010514487004733
830 => 0.010515674205975
831 => 0.010594265904839
901 => 0.010483898037873
902 => 0.010456569401905
903 => 0.010418815087047
904 => 0.010501250252326
905 => 0.010550666405688
906 => 0.010948924309623
907 => 0.011206217078333
908 => 0.011195047320681
909 => 0.011297117996702
910 => 0.011251134222295
911 => 0.011102640484826
912 => 0.011356101187803
913 => 0.011275895616135
914 => 0.011282507666013
915 => 0.011282261565187
916 => 0.011335591258653
917 => 0.011297802283237
918 => 0.011223316333734
919 => 0.011272763583128
920 => 0.011419604236113
921 => 0.011875402128598
922 => 0.012130472667752
923 => 0.011860046561865
924 => 0.012046582868556
925 => 0.011934727554224
926 => 0.011914400116202
927 => 0.012031558701729
928 => 0.01214892235785
929 => 0.012141446800332
930 => 0.012056246812678
1001 => 0.012008119501522
1002 => 0.012372555625427
1003 => 0.012641065953513
1004 => 0.012622755349253
1005 => 0.012703572401527
1006 => 0.012940853766578
1007 => 0.012962547800892
1008 => 0.0129598148512
1009 => 0.012906043923616
1010 => 0.013139678242388
1011 => 0.013334580101513
1012 => 0.012893597507471
1013 => 0.013061517906396
1014 => 0.013136902783531
1015 => 0.01324759014885
1016 => 0.013434338287499
1017 => 0.01363719629857
1018 => 0.01366588264556
1019 => 0.013645528309603
1020 => 0.013511737998186
1021 => 0.013733707654499
1022 => 0.013863732273338
1023 => 0.013941158958296
1024 => 0.014137500148778
1025 => 0.013137368334868
1026 => 0.012429425327206
1027 => 0.012318869803739
1028 => 0.012543688808091
1029 => 0.012602971786641
1030 => 0.012579074892322
1031 => 0.011782220673836
1101 => 0.012314674531191
1102 => 0.012887550111714
1103 => 0.012909556595871
1104 => 0.013196350089744
1105 => 0.013289741807411
1106 => 0.013520648160862
1107 => 0.013506204905584
1108 => 0.013562426928127
1109 => 0.013549502458774
1110 => 0.013977207855472
1111 => 0.014449030422895
1112 => 0.014432692707689
1113 => 0.014364862631271
1114 => 0.014465601861499
1115 => 0.014952573314659
1116 => 0.01490774078681
1117 => 0.014951291768789
1118 => 0.015525458556573
1119 => 0.016271957054966
1120 => 0.015925133555239
1121 => 0.016677640753873
1122 => 0.017151304146721
1123 => 0.017970456006942
1124 => 0.017867894159635
1125 => 0.018186783967605
1126 => 0.01768428704765
1127 => 0.016530452548052
1128 => 0.01634785382179
1129 => 0.016713421095903
1130 => 0.017612132567779
1201 => 0.016685117473412
1202 => 0.016872651419655
1203 => 0.016818641630521
1204 => 0.016815763678385
1205 => 0.016925603405944
1206 => 0.016766275152264
1207 => 0.01611714318417
1208 => 0.016414636539789
1209 => 0.01629976006838
1210 => 0.016427224078016
1211 => 0.017115094767868
1212 => 0.016810970739095
1213 => 0.016490600779813
1214 => 0.016892415804538
1215 => 0.017404064409635
1216 => 0.017372046359449
1217 => 0.017309917959582
1218 => 0.017660132496699
1219 => 0.018238584308784
1220 => 0.018394937509183
1221 => 0.018510354245218
1222 => 0.018526268263135
1223 => 0.018690192538191
1224 => 0.017808730396978
1225 => 0.019207633452636
1226 => 0.019449185366431
1227 => 0.019403783617939
1228 => 0.019672258404064
1229 => 0.019593266311438
1230 => 0.019478819162702
1231 => 0.019904408804935
]
'min_raw' => 0.007336939111469
'max_raw' => 0.019904408804935
'avg_raw' => 0.013620673958202
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.007336'
'max' => '$0.0199044'
'avg' => '$0.01362'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.0025303206845509
'max_diff' => 0.0091739717697329
'year' => 2032
]
7 => [
'items' => [
101 => 0.019416504623429
102 => 0.018723986063209
103 => 0.018344056684608
104 => 0.018844378338378
105 => 0.019149907313516
106 => 0.01935184253079
107 => 0.019412948005524
108 => 0.0178771557938
109 => 0.017049448970622
110 => 0.017579999554601
111 => 0.018227307883701
112 => 0.017805134566527
113 => 0.01782168296128
114 => 0.017219774756186
115 => 0.018280563403986
116 => 0.018126015420639
117 => 0.018927810631637
118 => 0.018736455769724
119 => 0.019390288638782
120 => 0.019218112532033
121 => 0.01993280592491
122 => 0.02021791646888
123 => 0.020696661446119
124 => 0.021048828200218
125 => 0.021255627254101
126 => 0.02124321181459
127 => 0.022062652692956
128 => 0.021579457036067
129 => 0.020972449410542
130 => 0.020961470557681
131 => 0.021275848408305
201 => 0.021934698137861
202 => 0.022105528286861
203 => 0.022200999035075
204 => 0.022054782260825
205 => 0.021530308006217
206 => 0.021303842682222
207 => 0.021496797699598
208 => 0.021260830294161
209 => 0.021668176236705
210 => 0.022227549220217
211 => 0.022112040911123
212 => 0.022498167870453
213 => 0.022897768651619
214 => 0.02346921571588
215 => 0.023618613139101
216 => 0.023865561398611
217 => 0.024119752275924
218 => 0.024201391535081
219 => 0.024357266211985
220 => 0.024356444675496
221 => 0.024826183505924
222 => 0.025344319982486
223 => 0.025539904507501
224 => 0.02598964033818
225 => 0.025219483488766
226 => 0.025803656305971
227 => 0.026330594809884
228 => 0.025702357002394
301 => 0.026568236459383
302 => 0.026601856596573
303 => 0.027109480752474
304 => 0.026594906421447
305 => 0.026289353826263
306 => 0.027171472719654
307 => 0.027598302265681
308 => 0.027469737732763
309 => 0.026491355289248
310 => 0.025921894742325
311 => 0.024431506650291
312 => 0.026196935725279
313 => 0.027056824729434
314 => 0.026489128384461
315 => 0.026775441399941
316 => 0.028337472375093
317 => 0.028932192636415
318 => 0.028808494979468
319 => 0.028829397847255
320 => 0.029150298105328
321 => 0.030573346572624
322 => 0.029720622945015
323 => 0.030372498207377
324 => 0.030718250496023
325 => 0.031039404490702
326 => 0.030250751781533
327 => 0.029224726194515
328 => 0.028899740821482
329 => 0.026432682171026
330 => 0.026304261054377
331 => 0.026232174390044
401 => 0.025777678168284
402 => 0.025420568634974
403 => 0.025136581875459
404 => 0.024391315812866
405 => 0.024642821231476
406 => 0.023455022676819
407 => 0.024214934099092
408 => 0.02231917892546
409 => 0.02389802016673
410 => 0.02303872866021
411 => 0.023615719796267
412 => 0.023613706728549
413 => 0.022551283111861
414 => 0.02193849934197
415 => 0.022328989010046
416 => 0.022747624931331
417 => 0.022815547201099
418 => 0.023358319600561
419 => 0.023509795710397
420 => 0.02305081602585
421 => 0.022279893613205
422 => 0.022458961306795
423 => 0.021934870540875
424 => 0.021016421632461
425 => 0.021676067673063
426 => 0.021901299833914
427 => 0.022000775187339
428 => 0.021097586170483
429 => 0.0208137845722
430 => 0.0206626909826
501 => 0.022163303252891
502 => 0.022245510180498
503 => 0.021824927915972
504 => 0.02372599963288
505 => 0.023295728553614
506 => 0.023776446768128
507 => 0.0224427127905
508 => 0.022493663224556
509 => 0.021862252185512
510 => 0.022215800176476
511 => 0.021965923851847
512 => 0.022187236992636
513 => 0.022319891176716
514 => 0.022951198607422
515 => 0.023905228683506
516 => 0.022856902329522
517 => 0.022400131524781
518 => 0.022683509563066
519 => 0.023438182622139
520 => 0.024581550937638
521 => 0.023904653882431
522 => 0.024205049301074
523 => 0.024270672336386
524 => 0.023771553507967
525 => 0.024599954160777
526 => 0.025043900800533
527 => 0.02549929819111
528 => 0.025894706985402
529 => 0.02531740245891
530 => 0.02593520105561
531 => 0.025437364442803
601 => 0.024990753535712
602 => 0.024991430860105
603 => 0.024711265314143
604 => 0.024168409265711
605 => 0.024068298281474
606 => 0.024589088264098
607 => 0.025006712511168
608 => 0.025041110044442
609 => 0.025272328285928
610 => 0.025409160859502
611 => 0.026750306095395
612 => 0.027289725803806
613 => 0.027949318012559
614 => 0.028206266350448
615 => 0.028979588726417
616 => 0.028355068101649
617 => 0.028219949136062
618 => 0.026344122003783
619 => 0.026651288591608
620 => 0.027143091935883
621 => 0.026352231659787
622 => 0.026853850474027
623 => 0.026952880653698
624 => 0.026325358530232
625 => 0.026660545210005
626 => 0.025770388764452
627 => 0.023924631661502
628 => 0.024602009016071
629 => 0.025100786751785
630 => 0.024388969424069
701 => 0.025664874432865
702 => 0.024919517066752
703 => 0.024683274565157
704 => 0.023761608339904
705 => 0.024196599320037
706 => 0.024784930849138
707 => 0.024421410365035
708 => 0.025175769952425
709 => 0.026244144308521
710 => 0.027005531497468
711 => 0.027063981351653
712 => 0.02657446039814
713 => 0.027358920850226
714 => 0.027364634788204
715 => 0.026479760193637
716 => 0.025937779431466
717 => 0.025814640261964
718 => 0.026122266050237
719 => 0.026495780548054
720 => 0.027084708806753
721 => 0.027440585819242
722 => 0.028368524325229
723 => 0.028619597878867
724 => 0.02889545159357
725 => 0.029264077226549
726 => 0.029706706812612
727 => 0.028738258477222
728 => 0.028776736735001
729 => 0.027874931054166
730 => 0.026911222352177
731 => 0.027642557129001
801 => 0.02859868006431
802 => 0.028379344406528
803 => 0.028354664664407
804 => 0.028396169145065
805 => 0.02823079722193
806 => 0.027482826142562
807 => 0.02710719974905
808 => 0.027591853629194
809 => 0.027849425597028
810 => 0.028248897256502
811 => 0.028199653942648
812 => 0.029228650037329
813 => 0.029628486804495
814 => 0.029526191449474
815 => 0.029545016256673
816 => 0.030268901624935
817 => 0.031074011032822
818 => 0.031828102236852
819 => 0.032595196198562
820 => 0.031670434487534
821 => 0.031200897522047
822 => 0.031685339817467
823 => 0.031428287916498
824 => 0.032905384386015
825 => 0.033007655340753
826 => 0.034484644999383
827 => 0.035886484062079
828 => 0.035006014063355
829 => 0.035836257614912
830 => 0.036734233706671
831 => 0.038466575279044
901 => 0.03788318358198
902 => 0.037436314684942
903 => 0.037014025736497
904 => 0.037892742001729
905 => 0.039023196439116
906 => 0.039266685497571
907 => 0.039661230792248
908 => 0.039246414657599
909 => 0.039746015001285
910 => 0.041509823750013
911 => 0.041033227056536
912 => 0.040356383135058
913 => 0.041748740744185
914 => 0.042252629550276
915 => 0.045789185080033
916 => 0.050254232524174
917 => 0.048405673563218
918 => 0.047258213363527
919 => 0.047527893728574
920 => 0.04915837790378
921 => 0.049682037671875
922 => 0.048258549905846
923 => 0.048761349849771
924 => 0.051531826975003
925 => 0.053018099065142
926 => 0.050999541933761
927 => 0.045430422865416
928 => 0.040295440745438
929 => 0.041657469234915
930 => 0.041503057472873
1001 => 0.044479589519874
1002 => 0.041021860383018
1003 => 0.041080079673842
1004 => 0.044118163251373
1005 => 0.043307654638826
1006 => 0.0419947344886
1007 => 0.040305026515499
1008 => 0.037181445048152
1009 => 0.03441480183501
1010 => 0.039840826295862
1011 => 0.039606846254525
1012 => 0.039268008480769
1013 => 0.040022055280186
1014 => 0.043683492498234
1015 => 0.043599084519443
1016 => 0.043062124023699
1017 => 0.043469403827168
1018 => 0.041923336369883
1019 => 0.042321793156927
1020 => 0.040294627338035
1021 => 0.041210990950097
1022 => 0.04199191755162
1023 => 0.042148700128692
1024 => 0.042501939280351
1025 => 0.039483549404875
1026 => 0.040838717843693
1027 => 0.041634752339387
1028 => 0.038038239527857
1029 => 0.041563660844774
1030 => 0.039431005952455
1031 => 0.0387071508506
1101 => 0.039681726384589
1102 => 0.039301933351188
1103 => 0.038975409603265
1104 => 0.038793203741533
1105 => 0.039508824453718
1106 => 0.039475439892143
1107 => 0.038304545511013
1108 => 0.03677716152259
1109 => 0.037289801723775
1110 => 0.037103554732657
1111 => 0.036428571610506
1112 => 0.036883428737063
1113 => 0.034880468149628
1114 => 0.031434478563778
1115 => 0.033711004837706
1116 => 0.033623361052544
1117 => 0.033579167081736
1118 => 0.035289913658028
1119 => 0.035125464848356
1120 => 0.034826988648515
1121 => 0.036423089861028
1122 => 0.03584049144787
1123 => 0.037635922479773
1124 => 0.038818509478583
1125 => 0.038518567163003
1126 => 0.039630795951322
1127 => 0.037301611918623
1128 => 0.038075273423642
1129 => 0.038234723987578
1130 => 0.036403394219822
1201 => 0.035152370707392
1202 => 0.035068941701825
1203 => 0.03289983933293
1204 => 0.034058556310011
1205 => 0.035078179298876
1206 => 0.03458985901315
1207 => 0.034435271398843
1208 => 0.035225025994375
1209 => 0.035286396690239
1210 => 0.033887138320774
1211 => 0.034178088444536
1212 => 0.035391398827054
1213 => 0.03414751613593
1214 => 0.03173085525416
1215 => 0.03113148994253
1216 => 0.031051523561464
1217 => 0.029425997300061
1218 => 0.03117154239863
1219 => 0.030409565185404
1220 => 0.032816642072094
1221 => 0.031441732663829
1222 => 0.031382463067235
1223 => 0.031292868379025
1224 => 0.029893710776191
1225 => 0.030200037370107
1226 => 0.031218313623142
1227 => 0.031581646061928
1228 => 0.031543747511868
1229 => 0.031213323513984
1230 => 0.03136458992817
1231 => 0.030877308103363
]
'min_raw' => 0.017049448970622
'max_raw' => 0.053018099065142
'avg_raw' => 0.035033774017882
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.017049'
'max' => '$0.053018'
'avg' => '$0.035033'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.0097125098591525
'max_diff' => 0.033113690260207
'year' => 2033
]
8 => [
'items' => [
101 => 0.030705238749129
102 => 0.030162140535763
103 => 0.029363936196825
104 => 0.029474931405826
105 => 0.027893479748864
106 => 0.027031820952159
107 => 0.026793325153711
108 => 0.026474398604602
109 => 0.026829348756064
110 => 0.027888999695019
111 => 0.026610835845152
112 => 0.024419513577326
113 => 0.024551215779453
114 => 0.0248471115249
115 => 0.024295711760807
116 => 0.023773858159567
117 => 0.024227567526524
118 => 0.023299075393955
119 => 0.024959315363197
120 => 0.024914410524798
121 => 0.025533245316781
122 => 0.025920215411976
123 => 0.025028374625607
124 => 0.024804079079629
125 => 0.024931848016283
126 => 0.02282011210223
127 => 0.025360671440073
128 => 0.025382642302725
129 => 0.025194514437795
130 => 0.026547283854227
131 => 0.02940204926226
201 => 0.028327971683086
202 => 0.027912056380263
203 => 0.027121401085564
204 => 0.028174902321284
205 => 0.02809400986356
206 => 0.027728183492179
207 => 0.02750693056132
208 => 0.027914595870413
209 => 0.027456416318091
210 => 0.027374114680562
211 => 0.026875456302201
212 => 0.026697457948636
213 => 0.026565675053976
214 => 0.026420595035674
215 => 0.026740605404359
216 => 0.026015419808049
217 => 0.02514091706972
218 => 0.025068211629279
219 => 0.025268957742665
220 => 0.025180142531282
221 => 0.025067786416216
222 => 0.024853267994188
223 => 0.024789624960834
224 => 0.024996433944026
225 => 0.024762958659715
226 => 0.025107464159773
227 => 0.025013777726116
228 => 0.024490452923441
301 => 0.023838196459651
302 => 0.023832390008969
303 => 0.023691862423761
304 => 0.023512879415533
305 => 0.023463090437221
306 => 0.024189357389137
307 => 0.025692708244262
308 => 0.025397564499264
309 => 0.025610836102573
310 => 0.026659921308188
311 => 0.02699339394796
312 => 0.026756702966982
313 => 0.026432705753756
314 => 0.026446959986824
315 => 0.027554156545046
316 => 0.027623211036267
317 => 0.02779768945776
318 => 0.028021943536975
319 => 0.026794894406375
320 => 0.02638916608312
321 => 0.026196909494611
322 => 0.025604833614668
323 => 0.026243336690437
324 => 0.025871308291614
325 => 0.025921507632915
326 => 0.025888815246038
327 => 0.025906667499922
328 => 0.02495885129229
329 => 0.025304185702598
330 => 0.024730000266751
331 => 0.023961230423491
401 => 0.023958653237411
402 => 0.024146808567434
403 => 0.024034886414618
404 => 0.023733706779171
405 => 0.023776487924859
406 => 0.023401680072201
407 => 0.023821996384287
408 => 0.023834049552153
409 => 0.023672204877216
410 => 0.024319760148458
411 => 0.024585064071441
412 => 0.024478534439348
413 => 0.024577589668467
414 => 0.025409829054363
415 => 0.025545520387414
416 => 0.025605785514289
417 => 0.025525038227876
418 => 0.024592801476678
419 => 0.02463415014077
420 => 0.02433076107893
421 => 0.024074429292027
422 => 0.02408468121922
423 => 0.024216469078488
424 => 0.024791994389168
425 => 0.026003153476423
426 => 0.026049116078438
427 => 0.026104824092905
428 => 0.025878231601464
429 => 0.025809889137848
430 => 0.025900050488045
501 => 0.026354898161498
502 => 0.027524889867559
503 => 0.027111336657518
504 => 0.026775111460416
505 => 0.027070071603937
506 => 0.027024664801816
507 => 0.026641385696124
508 => 0.026630628328178
509 => 0.025894993182613
510 => 0.025623045618899
511 => 0.025395785879737
512 => 0.025147624177339
513 => 0.025000505601701
514 => 0.025226546598077
515 => 0.025278244848387
516 => 0.02478400225929
517 => 0.024716638820685
518 => 0.025120247987909
519 => 0.02494263464148
520 => 0.025125314372881
521 => 0.025167697637564
522 => 0.025160872955781
523 => 0.024975424223346
524 => 0.025093623715239
525 => 0.024814046679948
526 => 0.024510048645182
527 => 0.024316116838747
528 => 0.024146885616312
529 => 0.024240784934296
530 => 0.023906051011023
531 => 0.023798962892105
601 => 0.025053580386959
602 => 0.025980379819818
603 => 0.025966903789011
604 => 0.02588487191723
605 => 0.02576298919532
606 => 0.02634598168123
607 => 0.026142878756441
608 => 0.026290653104042
609 => 0.026328267877576
610 => 0.02644211646822
611 => 0.026482807553757
612 => 0.026359810831486
613 => 0.025947018808758
614 => 0.024918380335208
615 => 0.024439546349014
616 => 0.024281523157959
617 => 0.024287267000825
618 => 0.024128826172935
619 => 0.024175494097569
620 => 0.024112596973253
621 => 0.023993485036247
622 => 0.024233430107834
623 => 0.024261081542092
624 => 0.024205075495253
625 => 0.024218266946732
626 => 0.023754560799405
627 => 0.023789815370669
628 => 0.023593513437934
629 => 0.023556709192002
630 => 0.023060475000012
701 => 0.022181324198607
702 => 0.022668459083818
703 => 0.022080068644013
704 => 0.021857236268889
705 => 0.022912090075183
706 => 0.022806212010121
707 => 0.022624994786824
708 => 0.022356936744589
709 => 0.022257511409223
710 => 0.021653434545776
711 => 0.021617742462059
712 => 0.021917139267031
713 => 0.021778977943151
714 => 0.021584947118639
715 => 0.020882187140846
716 => 0.020092052249975
717 => 0.020115901455719
718 => 0.020367228663523
719 => 0.021097996416305
720 => 0.020812472812883
721 => 0.020605322162594
722 => 0.020566529072721
723 => 0.021052105811321
724 => 0.021739298627912
725 => 0.022061714122384
726 => 0.021742210159267
727 => 0.021375181209752
728 => 0.021397520561261
729 => 0.021546134258641
730 => 0.021561751456951
731 => 0.021322853342003
801 => 0.021390101762007
802 => 0.021287945262697
803 => 0.020661011014992
804 => 0.020649671762481
805 => 0.020495811987414
806 => 0.020491153174573
807 => 0.020229399315064
808 => 0.0201927781407
809 => 0.019673049965322
810 => 0.020015136624238
811 => 0.019785682853793
812 => 0.01943984189906
813 => 0.019380218788108
814 => 0.019378426445396
815 => 0.019733527777285
816 => 0.020010987058425
817 => 0.019789674300368
818 => 0.019739285675325
819 => 0.020277304363381
820 => 0.020208836581177
821 => 0.020149543923358
822 => 0.021677768048383
823 => 0.02046805940461
824 => 0.01994055738817
825 => 0.019287673472909
826 => 0.019500255767844
827 => 0.019545049980871
828 => 0.017974981855839
829 => 0.017338005413053
830 => 0.01711941910184
831 => 0.01699361958938
901 => 0.017050948006899
902 => 0.016477594498506
903 => 0.016862897538538
904 => 0.016366421864636
905 => 0.016283186102234
906 => 0.017170946108705
907 => 0.017294472727387
908 => 0.016767469795379
909 => 0.017105890991753
910 => 0.016983174761541
911 => 0.016374932515093
912 => 0.016351702135206
913 => 0.016046507556687
914 => 0.015568937138621
915 => 0.015350674642639
916 => 0.015237001639691
917 => 0.01528390533615
918 => 0.015260189391943
919 => 0.015105426813912
920 => 0.015269060201757
921 => 0.014851044513796
922 => 0.014684587298669
923 => 0.014609402436374
924 => 0.014238389453223
925 => 0.014828836099638
926 => 0.014945161527233
927 => 0.015061716151855
928 => 0.016076244583966
929 => 0.016025561610525
930 => 0.01648371100682
1001 => 0.016465908163763
1002 => 0.016335236534411
1003 => 0.015783954424618
1004 => 0.016003685647923
1005 => 0.015327387096403
1006 => 0.015834115955033
1007 => 0.015602866065457
1008 => 0.015755930134751
1009 => 0.015480707136931
1010 => 0.015633026907603
1011 => 0.014972746601505
1012 => 0.014356186142064
1013 => 0.014604308069465
1014 => 0.014874044980734
1015 => 0.015458903332051
1016 => 0.015110566522983
1017 => 0.015235841611597
1018 => 0.014816191035537
1019 => 0.013950332029864
1020 => 0.013955232697804
1021 => 0.013822039153545
1022 => 0.01370694048473
1023 => 0.015150577195789
1024 => 0.01497103815025
1025 => 0.014684966178672
1026 => 0.015067884880677
1027 => 0.015169134663224
1028 => 0.015172017102193
1029 => 0.015451384702613
1030 => 0.015600483241037
1031 => 0.015626762504665
1101 => 0.016066353460063
1102 => 0.016213698549968
1103 => 0.016820592122227
1104 => 0.015587833271746
1105 => 0.015562445414459
1106 => 0.015073273332083
1107 => 0.014763032663934
1108 => 0.015094515776053
1109 => 0.015388164561433
1110 => 0.015082397818387
1111 => 0.015122324499941
1112 => 0.014711857629462
1113 => 0.014858580221397
1114 => 0.014984957483239
1115 => 0.014915179387362
1116 => 0.014810718200536
1117 => 0.015364088709758
1118 => 0.015332865376952
1119 => 0.015848176717073
1120 => 0.016249898756964
1121 => 0.016969856468855
1122 => 0.016218543064253
1123 => 0.016191162217589
1124 => 0.016458814385755
1125 => 0.016213657573815
1126 => 0.016368588216436
1127 => 0.01694489474711
1128 => 0.016957071195971
1129 => 0.016753099989078
1130 => 0.016740688322601
1201 => 0.016779863224086
1202 => 0.017009311845686
1203 => 0.016929135447055
1204 => 0.017021917605368
1205 => 0.017137943115071
1206 => 0.017617873816996
1207 => 0.017733583484432
1208 => 0.017452468981146
1209 => 0.017477850473287
1210 => 0.017372705932292
1211 => 0.017271137623149
1212 => 0.017499448349243
1213 => 0.01791669068864
1214 => 0.017914095045702
1215 => 0.01801088715841
1216 => 0.018071187842757
1217 => 0.017812333162738
1218 => 0.017643828284395
1219 => 0.017708443776995
1220 => 0.017811765356806
1221 => 0.017674937981196
1222 => 0.016830376034327
1223 => 0.017086562178181
1224 => 0.017043920276982
1225 => 0.016983193024241
1226 => 0.017240790172915
1227 => 0.017215944299513
1228 => 0.016471713929566
1229 => 0.016519357143201
1230 => 0.016474611271187
1231 => 0.016619194337808
]
'min_raw' => 0.01370694048473
'max_raw' => 0.030705238749129
'avg_raw' => 0.022206089616929
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.0137069'
'max' => '$0.0307052'
'avg' => '$0.022206'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.0033425084858917
'max_diff' => -0.022312860316013
'year' => 2034
]
9 => [
'items' => [
101 => 0.016205849613736
102 => 0.016332991666942
103 => 0.016412733970829
104 => 0.016459702800428
105 => 0.016629386419768
106 => 0.01660947600552
107 => 0.016628148760463
108 => 0.016879744773129
109 => 0.01815223106787
110 => 0.01822148968931
111 => 0.017880434907189
112 => 0.018016679565638
113 => 0.017755119614847
114 => 0.017930706562112
115 => 0.018050838692006
116 => 0.017507984697095
117 => 0.017475840406609
118 => 0.017213200904859
119 => 0.017354328496438
120 => 0.017129784350803
121 => 0.017184879629921
122 => 0.017030828426387
123 => 0.01730808992146
124 => 0.017618111355031
125 => 0.017696435012269
126 => 0.017490399190532
127 => 0.017341215677171
128 => 0.017079298571815
129 => 0.017514872555226
130 => 0.017642247661852
131 => 0.017514203508016
201 => 0.017484532879752
202 => 0.017428307092806
203 => 0.017496461446249
204 => 0.017641553949666
205 => 0.017573131004493
206 => 0.017618325565237
207 => 0.017446090504108
208 => 0.017812418854408
209 => 0.018394236436401
210 => 0.018396107075064
211 => 0.018327683761065
212 => 0.018299686415178
213 => 0.018369892887614
214 => 0.018407977018891
215 => 0.018635011877085
216 => 0.018878629325396
217 => 0.02001548565804
218 => 0.019696260949038
219 => 0.020704947519246
220 => 0.021502687634722
221 => 0.021741895014406
222 => 0.021521835480673
223 => 0.020769023703158
224 => 0.020732087165875
225 => 0.021857105790417
226 => 0.021539236499867
227 => 0.021501426959207
228 => 0.02109919732682
301 => 0.02133696485667
302 => 0.021284961610052
303 => 0.021202871941181
304 => 0.021656515825105
305 => 0.022505696678743
306 => 0.022373343879136
307 => 0.022274548653899
308 => 0.021841656735768
309 => 0.022102354360394
310 => 0.022009524929599
311 => 0.022408379075306
312 => 0.02217210671509
313 => 0.021536828327358
314 => 0.021637998504509
315 => 0.021622706835759
316 => 0.02193740829506
317 => 0.021842942728348
318 => 0.02160426091774
319 => 0.022502794270903
320 => 0.022444448512854
321 => 0.022527169458071
322 => 0.022563585776385
323 => 0.023110507194522
324 => 0.0233345634
325 => 0.023385428081299
326 => 0.023598264147374
327 => 0.023380132526086
328 => 0.024252814536447
329 => 0.024833097150931
330 => 0.025507125268723
331 => 0.026492061510497
401 => 0.026862406648573
402 => 0.026795507114211
403 => 0.027542274531801
404 => 0.028884198981505
405 => 0.027066748412584
406 => 0.028980528274773
407 => 0.028374647666055
408 => 0.026938115642111
409 => 0.026845619915369
410 => 0.027818456080464
411 => 0.029976113062632
412 => 0.029435644460541
413 => 0.029976997075647
414 => 0.029345480494489
415 => 0.029314120373395
416 => 0.029946325724872
417 => 0.031423507988316
418 => 0.030721754066303
419 => 0.029715617741975
420 => 0.030458533146644
421 => 0.029814951069545
422 => 0.028364780522561
423 => 0.029435231174387
424 => 0.02871945130819
425 => 0.028928353926097
426 => 0.030432816740623
427 => 0.030251795794465
428 => 0.030486053660882
429 => 0.030072594658251
430 => 0.029686358753293
501 => 0.028965420754434
502 => 0.028751986554786
503 => 0.028810972089011
504 => 0.028751957324485
505 => 0.028348599139885
506 => 0.028261493978325
507 => 0.028116314892894
508 => 0.028161311962085
509 => 0.027888332807834
510 => 0.028403500872277
511 => 0.028499120604683
512 => 0.028874016960533
513 => 0.028912939943868
514 => 0.029957020958595
515 => 0.029381958680752
516 => 0.029767760105217
517 => 0.029733250394509
518 => 0.026969249647016
519 => 0.027350104563036
520 => 0.027942595293506
521 => 0.027675679022531
522 => 0.027298321864162
523 => 0.026993585726168
524 => 0.026531879316237
525 => 0.027181722221928
526 => 0.028036196539824
527 => 0.028934610822667
528 => 0.030013996717068
529 => 0.029773090350874
530 => 0.028914432454177
531 => 0.028952951220172
601 => 0.029191059074983
602 => 0.028882687768623
603 => 0.028791743050255
604 => 0.029178564667231
605 => 0.029181228495113
606 => 0.028826410039229
607 => 0.028432094256606
608 => 0.028430442059079
609 => 0.0283602773742
610 => 0.029357962636057
611 => 0.029906588652722
612 => 0.029969487741377
613 => 0.029902355042902
614 => 0.029928191754144
615 => 0.029608958363196
616 => 0.030338631229181
617 => 0.031008251208176
618 => 0.030828778749461
619 => 0.030559724020334
620 => 0.030345408969153
621 => 0.030778292934433
622 => 0.030759017292882
623 => 0.031002402661823
624 => 0.030991361295626
625 => 0.030909519950238
626 => 0.030828781672273
627 => 0.031148899818161
628 => 0.031056710933086
629 => 0.030964378853208
630 => 0.03077919273168
701 => 0.030804362601211
702 => 0.030535354328177
703 => 0.03041089879209
704 => 0.028539386139928
705 => 0.02803925680583
706 => 0.028196607675409
707 => 0.028248411667287
708 => 0.028030754740155
709 => 0.028342818862186
710 => 0.028294183999325
711 => 0.028483393800273
712 => 0.028365183731176
713 => 0.028370035113645
714 => 0.028717665721818
715 => 0.028818584366297
716 => 0.028767256329201
717 => 0.028803204726961
718 => 0.029631620380456
719 => 0.029513846165771
720 => 0.029451280961546
721 => 0.029468611950694
722 => 0.029680289911594
723 => 0.029739548183458
724 => 0.029488466721566
725 => 0.029606878190479
726 => 0.030111059196457
727 => 0.030287494014376
728 => 0.030850589259656
729 => 0.030611376391241
730 => 0.031050461964107
731 => 0.032400061319793
801 => 0.033478214670288
802 => 0.032486700292601
803 => 0.034466591618783
804 => 0.036008221014758
805 => 0.035949050710822
806 => 0.035680231967104
807 => 0.033925127886124
808 => 0.032310054943679
809 => 0.033661132039654
810 => 0.033664576213023
811 => 0.033548517492268
812 => 0.032827686745272
813 => 0.033523434144764
814 => 0.033578660046752
815 => 0.033547748227391
816 => 0.032995088983746
817 => 0.032151280467202
818 => 0.032316158631542
819 => 0.032586232428156
820 => 0.03207492638787
821 => 0.031911533126874
822 => 0.032215312285906
823 => 0.03319415203121
824 => 0.033009108047393
825 => 0.033004275801154
826 => 0.033795972434785
827 => 0.033229288503932
828 => 0.032318238273208
829 => 0.032088186074673
830 => 0.031271655751607
831 => 0.03183563615413
901 => 0.031855932804782
902 => 0.03154704650206
903 => 0.032343302694304
904 => 0.032335965053314
905 => 0.033091891800756
906 => 0.034536939828744
907 => 0.034109568020373
908 => 0.033612581105158
909 => 0.033666617362794
910 => 0.034259261736216
911 => 0.03390093541929
912 => 0.034029792061196
913 => 0.034259066696255
914 => 0.034397393776155
915 => 0.03364671422473
916 => 0.033471694912139
917 => 0.033113666822009
918 => 0.033020263976205
919 => 0.033311870385114
920 => 0.033235042398973
921 => 0.031854226949887
922 => 0.031709924052673
923 => 0.031714349616514
924 => 0.03135149312024
925 => 0.030798049867885
926 => 0.032252465690694
927 => 0.032135655745586
928 => 0.032006706606559
929 => 0.032022502140316
930 => 0.032653814754272
1001 => 0.032287621556126
1002 => 0.033261206191281
1003 => 0.033061066458926
1004 => 0.032855793897633
1005 => 0.032827418976907
1006 => 0.032748406553841
1007 => 0.03247744355592
1008 => 0.032150239453578
1009 => 0.031934190963279
1010 => 0.029457603128677
1011 => 0.02991724342513
1012 => 0.030446017688669
1013 => 0.030628548445512
1014 => 0.030316316955187
1015 => 0.032489772358231
1016 => 0.032886883604304
1017 => 0.031684007737022
1018 => 0.031458998775352
1019 => 0.032504523908298
1020 => 0.031873944442882
1021 => 0.032157894337548
1022 => 0.031544149977569
1023 => 0.0327912311339
1024 => 0.032781730464921
1025 => 0.032296587728503
1026 => 0.03270662704721
1027 => 0.032635372625012
1028 => 0.03208764767045
1029 => 0.032808594991919
1030 => 0.032808952572796
1031 => 0.032342013236906
1101 => 0.031796730318751
1102 => 0.031699246611992
1103 => 0.031625805734043
1104 => 0.03213983238358
1105 => 0.032600707070236
1106 => 0.033458280601577
1107 => 0.033673894962801
1108 => 0.034515452168918
1109 => 0.034014345827352
1110 => 0.034236479778155
1111 => 0.034477637604517
1112 => 0.03459325753476
1113 => 0.034404861062936
1114 => 0.035712145802801
1115 => 0.035822520689015
1116 => 0.035859528433624
1117 => 0.035418719374696
1118 => 0.035810260991669
1119 => 0.035627071635583
1120 => 0.03610367944865
1121 => 0.036178417639373
1122 => 0.036115117050719
1123 => 0.036138840132117
1124 => 0.035023303227473
1125 => 0.034965456754041
1126 => 0.0341767159842
1127 => 0.034498133677988
1128 => 0.033897258705403
1129 => 0.034087802348908
1130 => 0.034171792171398
1201 => 0.03412792065451
1202 => 0.034516306152143
1203 => 0.03418609913724
1204 => 0.033314628533849
1205 => 0.032442920498876
1206 => 0.032431976914575
1207 => 0.032202471575891
1208 => 0.032036581252022
1209 => 0.032068537613675
1210 => 0.032181156000272
1211 => 0.032030035666664
1212 => 0.032062284851835
1213 => 0.032597836200864
1214 => 0.032705237204535
1215 => 0.032340246629782
1216 => 0.03087475680426
1217 => 0.030515121925174
1218 => 0.030773620344391
1219 => 0.030650074749435
1220 => 0.024737002463048
1221 => 0.026126191086894
1222 => 0.025300782378993
1223 => 0.025681168686822
1224 => 0.024838640134604
1225 => 0.025240738920428
1226 => 0.025166485956983
1227 => 0.027400260155047
1228 => 0.0273653828434
1229 => 0.027382076766819
1230 => 0.02658523230624
1231 => 0.027854627168627
]
'min_raw' => 0.016205849613736
'max_raw' => 0.036178417639373
'avg_raw' => 0.026192133626555
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.0162058'
'max' => '$0.036178'
'avg' => '$0.026192'
'bar_min_pct' => 61.631153054957
'bar_max_pct' => 60.119598047091
'min_diff' => 0.0024989091290066
'max_diff' => 0.0054731788902442
'year' => 2035
]
10 => [
'items' => [
101 => 0.028479976723801
102 => 0.028364241164278
103 => 0.028393369311185
104 => 0.02789285124115
105 => 0.027386922875815
106 => 0.026825770456841
107 => 0.02786832229076
108 => 0.027752408323781
109 => 0.028018273259501
110 => 0.028694442646941
111 => 0.02879401115776
112 => 0.028927832246024
113 => 0.028879866911915
114 => 0.030022595767118
115 => 0.029884203762785
116 => 0.03021768867513
117 => 0.029531684908875
118 => 0.028755406531282
119 => 0.02890295167241
120 => 0.028888741888836
121 => 0.028707835034712
122 => 0.028544520415701
123 => 0.028272647588656
124 => 0.029132893443034
125 => 0.02909796903234
126 => 0.029663354646296
127 => 0.029563417247166
128 => 0.02889601083695
129 => 0.028919847387457
130 => 0.029080159645075
131 => 0.029635002199106
201 => 0.029799717245703
202 => 0.02972341467336
203 => 0.029904017202427
204 => 0.030046758077643
205 => 0.029921943258677
206 => 0.031689057884081
207 => 0.030955228688811
208 => 0.031312891932635
209 => 0.031398192508813
210 => 0.031179696876611
211 => 0.031227080755494
212 => 0.031298854420667
213 => 0.031734650060872
214 => 0.032878303919254
215 => 0.033384820428017
216 => 0.034908700335714
217 => 0.033342761283015
218 => 0.033249844940127
219 => 0.033524341728268
220 => 0.034419020553156
221 => 0.035144073707819
222 => 0.035384615668541
223 => 0.035416407259566
224 => 0.035867679968807
225 => 0.036126341070006
226 => 0.035812883592254
227 => 0.035547261200226
228 => 0.034595834762244
229 => 0.034705964963089
301 => 0.035464652836042
302 => 0.036536344143082
303 => 0.037455966774998
304 => 0.037133946981385
305 => 0.039590730696103
306 => 0.039834310766356
307 => 0.039800655876534
308 => 0.040355567526144
309 => 0.03925418090746
310 => 0.038783316789611
311 => 0.035604691776324
312 => 0.036497755750629
313 => 0.037795876685088
314 => 0.037624065511709
315 => 0.036681335390232
316 => 0.037455251629664
317 => 0.03719937071831
318 => 0.036997546827015
319 => 0.03792214119852
320 => 0.036905511706807
321 => 0.037785735028227
322 => 0.036656839513762
323 => 0.037135417940678
324 => 0.036863753679326
325 => 0.03703955375034
326 => 0.036011830127378
327 => 0.036566364847748
328 => 0.03598875965987
329 => 0.035988485799805
330 => 0.035975735133269
331 => 0.036655285075313
401 => 0.036677445174527
402 => 0.036175256740613
403 => 0.036102883541628
404 => 0.036370485190604
405 => 0.036057193744636
406 => 0.036203780840371
407 => 0.036061633718435
408 => 0.036029633407211
409 => 0.035774649482971
410 => 0.03566479539748
411 => 0.035707872014992
412 => 0.035560829311905
413 => 0.035472230764527
414 => 0.035958110652202
415 => 0.035698524628556
416 => 0.035918325371091
417 => 0.035667834683908
418 => 0.034799524828533
419 => 0.034300150648497
420 => 0.032659993824062
421 => 0.033125140264864
422 => 0.033433532836344
423 => 0.033331609093309
424 => 0.0335505807326
425 => 0.033564023812839
426 => 0.033492833900754
427 => 0.033410405102552
428 => 0.033370283322185
429 => 0.033669318201877
430 => 0.03384291801459
501 => 0.033464484156652
502 => 0.03337582239859
503 => 0.033758439922871
504 => 0.033991836391651
505 => 0.035715104782978
506 => 0.035587439494465
507 => 0.035907854315586
508 => 0.035871780523894
509 => 0.036207626302512
510 => 0.036756592211536
511 => 0.035640391025207
512 => 0.035834124955821
513 => 0.035786625870004
514 => 0.036305208434021
515 => 0.036306827392181
516 => 0.035995911239933
517 => 0.036164463930105
518 => 0.036070382442452
519 => 0.036240400406517
520 => 0.035585734446703
521 => 0.036383046918933
522 => 0.036835071713006
523 => 0.03684134807771
524 => 0.03705560424261
525 => 0.037273300915029
526 => 0.037691150720352
527 => 0.037261647310747
528 => 0.03648901248818
529 => 0.036544794226775
530 => 0.036091798713
531 => 0.036099413649427
601 => 0.036058764521987
602 => 0.036180755613358
603 => 0.035612504631105
604 => 0.035745872000836
605 => 0.035559156902215
606 => 0.035833719073661
607 => 0.035538335563937
608 => 0.035786602964507
609 => 0.035893746944398
610 => 0.036289110536841
611 => 0.035479940039873
612 => 0.033829986620529
613 => 0.034176826833027
614 => 0.033663822915032
615 => 0.033711303380786
616 => 0.03380722147807
617 => 0.033496319542326
618 => 0.03355562983402
619 => 0.03355351085304
620 => 0.033535250619726
621 => 0.033454373018637
622 => 0.033337084495911
623 => 0.033804325870946
624 => 0.03388371928536
625 => 0.034060201010839
626 => 0.034585290917167
627 => 0.034532822053052
628 => 0.034618400947336
629 => 0.03443158270162
630 => 0.033719969343397
701 => 0.033758613372424
702 => 0.033276721711233
703 => 0.034047877957622
704 => 0.033865257979712
705 => 0.03374752169194
706 => 0.033715396255003
707 => 0.034241787757645
708 => 0.034399292345412
709 => 0.034301146056055
710 => 0.034099845153201
711 => 0.034486402395951
712 => 0.03458982880657
713 => 0.034612982165689
714 => 0.035297887484843
715 => 0.03465126076468
716 => 0.03480691024314
717 => 0.036021243041982
718 => 0.034920010759904
719 => 0.035503358060131
720 => 0.035474806245378
721 => 0.035773226984777
722 => 0.035450327034498
723 => 0.035454329766374
724 => 0.035719307166189
725 => 0.035347194197075
726 => 0.035255053792886
727 => 0.03512776248442
728 => 0.035405698399595
729 => 0.035572308410782
730 => 0.036915062739379
731 => 0.03778254327269
801 => 0.037744883654921
802 => 0.038089022065472
803 => 0.037933984559572
804 => 0.037433327556195
805 => 0.038287888012343
806 => 0.03801746932769
807 => 0.038039762315494
808 => 0.038038932569374
809 => 0.038218737354257
810 => 0.038091329185301
811 => 0.037840194606109
812 => 0.038006909459737
813 => 0.038501992973361
814 => 0.040038747390668
815 => 0.040898735521882
816 => 0.039986975025336
817 => 0.040615895206894
818 => 0.040238767205133
819 => 0.040170231828627
820 => 0.040565240179481
821 => 0.040960939940163
822 => 0.040935735576065
823 => 0.040648477869217
824 => 0.040486213279514
825 => 0.041714935115376
826 => 0.042620236433309
827 => 0.042558500952643
828 => 0.042830981286849
829 => 0.043630991975577
830 => 0.043704134926893
831 => 0.043694920596199
901 => 0.043513628159682
902 => 0.04430134257725
903 => 0.044958467802902
904 => 0.043471664198671
905 => 0.044037819547474
906 => 0.044291984923938
907 => 0.044665175104055
908 => 0.045294809491851
909 => 0.04597875943927
910 => 0.046075477460964
911 => 0.046006851396189
912 => 0.045555768020304
913 => 0.04630415421399
914 => 0.046742541294435
915 => 0.047003590768531
916 => 0.047665568800345
917 => 0.044293554562774
918 => 0.04190667528544
919 => 0.041533929619329
920 => 0.042291922588864
921 => 0.04249179929005
922 => 0.042411229242426
923 => 0.039724579610216
924 => 0.041519784965031
925 => 0.043451274981658
926 => 0.043525471379437
927 => 0.044492415667312
928 => 0.04480729236383
929 => 0.045585809255855
930 => 0.045537112812291
1001 => 0.04572666928659
1002 => 0.045683093535809
1003 => 0.047125132142212
1004 => 0.048715914869879
1005 => 0.048660831122399
1006 => 0.04843213728401
1007 => 0.048771786632112
1008 => 0.050413644885703
1009 => 0.050262488887954
1010 => 0.050409324064329
1011 => 0.052345167476389
1012 => 0.05486203928258
1013 => 0.053692699638806
1014 => 0.056229830197377
1015 => 0.057826819396485
1016 => 0.060588647084578
1017 => 0.06024285265574
1018 => 0.061318011907487
1019 => 0.059623808458646
1020 => 0.0557335748851
1021 => 0.05511793053087
1022 => 0.056350466118636
1023 => 0.059380534592094
1024 => 0.056255038479308
1025 => 0.05688732227227
1026 => 0.056705224497361
1027 => 0.056695521280802
1028 => 0.057065853591032
1029 => 0.056528667259809
1030 => 0.054340073508431
1031 => 0.055343093127223
1101 => 0.054955779083449
1102 => 0.055385532891191
1103 => 0.057704736947623
1104 => 0.056679361551355
1105 => 0.05559921186612
1106 => 0.056953959275809
1107 => 0.05867901827006
1108 => 0.058571067178429
1109 => 0.058361596940608
1110 => 0.059542369703696
1111 => 0.061492660374359
1112 => 0.062019816105736
1113 => 0.062408951689415
1114 => 0.062462606911904
1115 => 0.063015289050083
1116 => 0.060043377899264
1117 => 0.064759877219706
1118 => 0.065574286361682
1119 => 0.065421211196791
1120 => 0.066326392682521
1121 => 0.066060065327182
1122 => 0.065674198774776
1123 => 0.067109103967283
1124 => 0.065464100954952
1125 => 0.063129226279069
1126 => 0.061848267853294
1127 => 0.063535137240323
1128 => 0.064565249511352
1129 => 0.065246088195057
1130 => 0.065452109569372
1201 => 0.060274078901956
1202 => 0.057483407558965
1203 => 0.05927219589471
1204 => 0.061454641119895
1205 => 0.060031254305843
1206 => 0.060087048374127
1207 => 0.058057672836763
1208 => 0.06163419582472
1209 => 0.061113126508667
1210 => 0.063816435042102
1211 => 0.063171268765191
1212 => 0.065375711932374
1213 => 0.06479520816752
1214 => 0.067204846839904
1215 => 0.068166116944681
1216 => 0.069780239060346
1217 => 0.070967593859289
1218 => 0.071664831307706
1219 => 0.071622971786575
1220 => 0.074385773919522
1221 => 0.072756646026678
1222 => 0.070710077437302
1223 => 0.070673061468361
1224 => 0.0717330083409
1225 => 0.073954366203518
1226 => 0.074530331977852
1227 => 0.074852218271009
1228 => 0.074359238208097
1229 => 0.072590936641063
1230 => 0.07182739298991
1231 => 0.072477954302681
]
'min_raw' => 0.026825770456841
'max_raw' => 0.074852218271009
'avg_raw' => 0.050838994363925
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$0.026825'
'max' => '$0.074852'
'avg' => '$0.050838'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.010619920843105
'max_diff' => 0.038673800631636
'year' => 2036
]
11 => [
'items' => [
101 => 0.071682373720533
102 => 0.073055769005807
103 => 0.074941734073892
104 => 0.074552289745246
105 => 0.075854143747151
106 => 0.077201425680087
107 => 0.079128099354404
108 => 0.07963180319739
109 => 0.080464406495704
110 => 0.081321428785605
111 => 0.081596681247723
112 => 0.082122223603729
113 => 0.082119453736098
114 => 0.083703210999002
115 => 0.085450144304866
116 => 0.08610957118623
117 => 0.087625886938917
118 => 0.085029249350482
119 => 0.086998828789333
120 => 0.088775438744947
121 => 0.086657291114833
122 => 0.089576664157844
123 => 0.089690016797663
124 => 0.09140150708047
125 => 0.08966658379698
126 => 0.088636391889315
127 => 0.091610517325957
128 => 0.093049602940675
129 => 0.092616138641855
130 => 0.089317453925061
131 => 0.087397477932644
201 => 0.082372530424779
202 => 0.088324797809424
203 => 0.091223973622464
204 => 0.089309945760095
205 => 0.090275270081522
206 => 0.095541766571766
207 => 0.097546907454856
208 => 0.097129852168166
209 => 0.097200327646302
210 => 0.098282265270936
211 => 0.10308017253249
212 => 0.10020515528675
213 => 0.10240299824628
214 => 0.1035687262271
215 => 0.10465151934242
216 => 0.10199252167148
217 => 0.098533204770031
218 => 0.097437493895097
219 => 0.089119633410548
220 => 0.088686652649691
221 => 0.088443607427961
222 => 0.086911241684387
223 => 0.08570722196024
224 => 0.084749740773212
225 => 0.082237024210365
226 => 0.083084992288758
227 => 0.079080246532283
228 => 0.0816423409478
301 => 0.0752506700225
302 => 0.080573843498617
303 => 0.077676682190565
304 => 0.079622048090019
305 => 0.07961526089166
306 => 0.076033225491946
307 => 0.073967182228563
308 => 0.075283745407597
309 => 0.076695205644438
310 => 0.076924210319143
311 => 0.078754205359088
312 => 0.079264917639125
313 => 0.077717435587736
314 => 0.075118216849419
315 => 0.075721956080463
316 => 0.073954947472315
317 => 0.070858332853542
318 => 0.073082375534449
319 => 0.073841761489965
320 => 0.074177149589184
321 => 0.071131984760212
322 => 0.070175127857205
323 => 0.06966570527085
324 => 0.074725124309541
325 => 0.075002290705473
326 => 0.073584268236505
327 => 0.07999386425865
328 => 0.078543175274339
329 => 0.080163950297244
330 => 0.075667173073341
331 => 0.075838956019007
401 => 0.07371010961716
402 => 0.074902121352626
403 => 0.07405964587833
404 => 0.07480581858409
405 => 0.075253071427337
406 => 0.077381568506439
407 => 0.080598147516209
408 => 0.077063642021943
409 => 0.075523607363041
410 => 0.07647903620394
411 => 0.079023469112196
412 => 0.082878415215327
413 => 0.080596209534253
414 => 0.081609013661148
415 => 0.081830266306355
416 => 0.080147452328977
417 => 0.082940462967013
418 => 0.084437260058315
419 => 0.085972664155474
420 => 0.087305812511991
421 => 0.085359389994809
422 => 0.087442341096902
423 => 0.085763850198981
424 => 0.084258070344347
425 => 0.084260353990828
426 => 0.083315756292082
427 => 0.081485479223793
428 => 0.081147948050912
429 => 0.082903827837726
430 => 0.084311877144316
501 => 0.084427850829308
502 => 0.085207419273621
503 => 0.085668759848772
504 => 0.090190524647354
505 => 0.092009215855343
506 => 0.09423307703841
507 => 0.095099396299164
508 => 0.097706706681387
509 => 0.095601091792346
510 => 0.095145528766163
511 => 0.088821046623616
512 => 0.089856680220154
513 => 0.09151482953199
514 => 0.088848388895034
515 => 0.090539631749151
516 => 0.090873518913975
517 => 0.088757784262516
518 => 0.089887889555358
519 => 0.086886664950437
520 => 0.080663566011196
521 => 0.0829473910551
522 => 0.084629055014611
523 => 0.082229113196718
524 => 0.086530916014717
525 => 0.084017891615677
526 => 0.083221383527626
527 => 0.080113921500503
528 => 0.081580523960122
529 => 0.083564124786483
530 => 0.082338490094139
531 => 0.084881866110727
601 => 0.088483964843822
602 => 0.091051034909713
603 => 0.091248102673937
604 => 0.089597648601905
605 => 0.092242511785392
606 => 0.092261776726221
607 => 0.089278360250664
608 => 0.087451034271118
609 => 0.087035861963839
610 => 0.088073043786749
611 => 0.089332373994088
612 => 0.091317986735951
613 => 0.092517850930095
614 => 0.095646460389628
615 => 0.096492972405115
616 => 0.097423032463728
617 => 0.098665879521935
618 => 0.10015823607476
619 => 0.096893044897088
620 => 0.097022777029654
621 => 0.093982276214658
622 => 0.09073306504191
623 => 0.093198811302135
624 => 0.0964224465329
625 => 0.095682941049162
626 => 0.095599731575515
627 => 0.095739666829806
628 => 0.095182103845058
629 => 0.092660267129296
630 => 0.091393816518173
701 => 0.09302786091253
702 => 0.093896282785183
703 => 0.09524312937532
704 => 0.095077102104603
705 => 0.098546434280034
706 => 0.099894511856247
707 => 0.09954961592476
708 => 0.099613085076537
709 => 0.10205371513569
710 => 0.10476819771533
711 => 0.10731066885868
712 => 0.10989697970738
713 => 0.10677908103384
714 => 0.10519600437268
715 => 0.10682933539437
716 => 0.10596266696346
717 => 0.11094280083802
718 => 0.11128761450225
719 => 0.11626738825645
720 => 0.12099378652961
721 => 0.11802522045646
722 => 0.12082444455628
723 => 0.12385203364434
724 => 0.12969274420382
725 => 0.12772579836606
726 => 0.12621914868031
727 => 0.12479537200735
728 => 0.12775802524559
729 => 0.13156943130705
730 => 0.1323903716675
731 => 0.13372060867477
801 => 0.13232202711526
802 => 0.13400646455498
803 => 0.13995326889651
804 => 0.13834638986954
805 => 0.13606436333254
806 => 0.14075879422302
807 => 0.14245769051314
808 => 0.15438143439614
809 => 0.16943565359372
810 => 0.16320310799459
811 => 0.15933436581822
812 => 0.16024361199746
813 => 0.16574090323094
814 => 0.16750645869983
815 => 0.16270707031192
816 => 0.16440229542723
817 => 0.17374315248349
818 => 0.1787542226036
819 => 0.17194851630399
820 => 0.15317184254159
821 => 0.13585889181108
822 => 0.14045106595714
823 => 0.13993045592073
824 => 0.14996604153203
825 => 0.13830806633618
826 => 0.13850435673993
827 => 0.1487474676338
828 => 0.14601478125869
829 => 0.14158817930705
830 => 0.13589121090409
831 => 0.12535983790544
901 => 0.11603190715147
902 => 0.13432612745416
903 => 0.13353724740883
904 => 0.13239483219771
905 => 0.13493715362781
906 => 0.14728194484185
907 => 0.14699735744818
908 => 0.14518695764739
909 => 0.14656012994015
910 => 0.14134745556494
911 => 0.14269088044182
912 => 0.13585614935123
913 => 0.13894573324776
914 => 0.14157868180735
915 => 0.14210728521215
916 => 0.14329825567434
917 => 0.13312154347193
918 => 0.13769058847824
919 => 0.14037447435783
920 => 0.12824858031325
921 => 0.14013478442029
922 => 0.13294438955362
923 => 0.13050386153977
924 => 0.13378971099531
925 => 0.13250921226689
926 => 0.13140831465361
927 => 0.13079399486957
928 => 0.13320676006375
929 => 0.13309420168356
930 => 0.12914644952835
1001 => 0.12399676777283
1002 => 0.12572517000253
1003 => 0.12509722526862
1004 => 0.12282147254647
1005 => 0.12435505510577
1006 => 0.11760193364299
1007 => 0.10598353916299
1008 => 0.11365900643752
1009 => 0.11336350929676
1010 => 0.11321450623865
1011 => 0.11898240776113
1012 => 0.11842795711788
1013 => 0.11742162377117
1014 => 0.12280299044538
1015 => 0.1208387192197
1016 => 0.12689214029675
1017 => 0.13087931492882
1018 => 0.12986803847054
1019 => 0.1336179954837
1020 => 0.12576498889902
1021 => 0.12837344267851
1022 => 0.1289110413873
1023 => 0.12273658521595
1024 => 0.11851867210012
1025 => 0.11823738538302
1026 => 0.1109241053044
1027 => 0.11483080049167
1028 => 0.11826853058643
1029 => 0.11662212464967
1030 => 0.11610092171507
1031 => 0.11876363447282
1101 => 0.11897055005868
1102 => 0.11425285277293
1103 => 0.11523381142869
1104 => 0.11932457209397
1105 => 0.11513073475573
1106 => 0.10698279386697
1107 => 0.10496199187246
1108 => 0.10469237963562
1109 => 0.099211804354682
1110 => 0.10509703152457
1111 => 0.10252797215063
1112 => 0.11064359993085
1113 => 0.10600799686777
1114 => 0.10580816528479
1115 => 0.10550609053818
1116 => 0.10078873299417
1117 => 0.10182153449259
1118 => 0.10525472397348
1119 => 0.1064797246579
1120 => 0.10635194705038
1121 => 0.10523789947205
1122 => 0.10574790474857
1123 => 0.1041050000553
1124 => 0.103524856214
1125 => 0.10169376266973
1126 => 0.099002561012152
1127 => 0.099376789108737
1128 => 0.09404481443386
1129 => 0.091139671641673
1130 => 0.090335566405962
1201 => 0.089260283278899
1202 => 0.090457022496383
1203 => 0.094029709619533
1204 => 0.089720290961159
1205 => 0.082332094941947
1206 => 0.082776138111575
1207 => 0.083773771276129
1208 => 0.081914688473986
1209 => 0.080155222622751
1210 => 0.081684935430423
1211 => 0.078554459380216
1212 => 0.08415207435077
1213 => 0.084000674552951
1214 => 0.086087119259786
1215 => 0.087391815953126
1216 => 0.084384912475549
1217 => 0.08362868438247
1218 => 0.084059466272938
1219 => 0.076939601202016
1220 => 0.085505274385742
1221 => 0.085579350683132
1222 => 0.084945064451853
1223 => 0.089506020986697
1224 => 0.099131061873236
1225 => 0.095509734325347
1226 => 0.0941074468436
1227 => 0.091441697315733
1228 => 0.094993650285071
1229 => 0.094720915716124
1230 => 0.093487506563831
1231 => 0.092741536860054
]
'min_raw' => 0.06966570527085
'max_raw' => 0.1787542226036
'avg_raw' => 0.12420996393722
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$0.069665'
'max' => '$0.178754'
'avg' => '$0.1242099'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 0.042839934814009
'max_diff' => 0.10390200433259
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.0021867268832337
]
1 => [
'year' => 2028
'avg' => 0.003753058142979
]
2 => [
'year' => 2029
'avg' => 0.010252678423701
]
3 => [
'year' => 2030
'avg' => 0.0079099261351384
]
4 => [
'year' => 2031
'avg' => 0.00776852773106
]
5 => [
'year' => 2032
'avg' => 0.013620673958202
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.0021867268832337
'min' => '$0.002186'
'max_raw' => 0.013620673958202
'max' => '$0.01362'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.013620673958202
]
1 => [
'year' => 2033
'avg' => 0.035033774017882
]
2 => [
'year' => 2034
'avg' => 0.022206089616929
]
3 => [
'year' => 2035
'avg' => 0.026192133626555
]
4 => [
'year' => 2036
'avg' => 0.050838994363925
]
5 => [
'year' => 2037
'avg' => 0.12420996393722
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.013620673958202
'min' => '$0.01362'
'max_raw' => 0.12420996393722
'max' => '$0.1242099'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 0.12420996393722
]
]
]
]
'prediction_2025_max_price' => '$0.003738'
'last_price' => 0.00362534
'sma_50day_nextmonth' => '$0.003975'
'sma_200day_nextmonth' => '$0.004756'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'increase'
'sma_200day_direction_label' => 'aumentar'
'sma_200day_date_nextmonth' => '4 de fev. de 2026'
'sma_50day_date_nextmonth' => '4 de fev. de 2026'
'daily_sma3' => '$0.004289'
'daily_sma3_action' => 'SELL'
'daily_sma5' => '$0.004412'
'daily_sma5_action' => 'SELL'
'daily_sma10' => '$0.004488'
'daily_sma10_action' => 'SELL'
'daily_sma21' => '$0.0050042'
'daily_sma21_action' => 'SELL'
'daily_sma50' => '$0.005385'
'daily_sma50_action' => 'SELL'
'daily_sma100' => '$0.005085'
'daily_sma100_action' => 'SELL'
'daily_sma200' => '$0.00519'
'daily_sma200_action' => 'SELL'
'daily_ema3' => '$0.004097'
'daily_ema3_action' => 'SELL'
'daily_ema5' => '$0.004263'
'daily_ema5_action' => 'SELL'
'daily_ema10' => '$0.004514'
'daily_ema10_action' => 'SELL'
'daily_ema21' => '$0.0049019'
'daily_ema21_action' => 'SELL'
'daily_ema50' => '$0.00517'
'daily_ema50_action' => 'SELL'
'daily_ema100' => '$0.005378'
'daily_ema100_action' => 'SELL'
'daily_ema200' => '$0.007642'
'daily_ema200_action' => 'SELL'
'weekly_sma21' => '$0.004679'
'weekly_sma21_action' => 'SELL'
'weekly_sma50' => '—'
'weekly_sma50_action' => '—'
'weekly_sma100' => '—'
'weekly_sma100_action' => '—'
'weekly_sma200' => '—'
'weekly_sma200_action' => '—'
'weekly_ema3' => '$0.0041036'
'weekly_ema3_action' => 'SELL'
'weekly_ema5' => '$0.004334'
'weekly_ema5_action' => 'SELL'
'weekly_ema10' => '$0.004613'
'weekly_ema10_action' => 'SELL'
'weekly_ema21' => '$0.005698'
'weekly_ema21_action' => 'SELL'
'weekly_ema50' => '$0.0089015'
'weekly_ema50_action' => 'SELL'
'weekly_ema100' => '$0.00445'
'weekly_ema100_action' => 'SELL'
'weekly_ema200' => '$0.002225'
'weekly_ema200_action' => 'BUY'
'rsi_14' => '39.61'
'rsi_14_action' => 'NEUTRAL'
'stoch_rsi_14' => 26.36
'stoch_rsi_14_action' => 'NEUTRAL'
'momentum_10' => -0
'momentum_10_action' => 'BUY'
'vwma_10' => '0.004391'
'vwma_10_action' => 'SELL'
'hma_9' => '0.004359'
'hma_9_action' => 'SELL'
'stochastic_fast_14' => 0
'stochastic_fast_14_action' => 'BUY'
'cci_20' => -161.66
'cci_20_action' => 'BUY'
'adx_14' => 11.7
'adx_14_action' => 'NEUTRAL'
'ao_5_34' => '-0.001114'
'ao_5_34_action' => 'NEUTRAL'
'macd_12_26' => -0
'macd_12_26_action' => 'SELL'
'williams_percent_r_14' => -100
'williams_percent_r_14_action' => 'BUY'
'ultimate_oscillator' => 30.84
'ultimate_oscillator_action' => 'NEUTRAL'
'ichimoku_cloud' => '0.000338'
'ichimoku_cloud_action' => 'NEUTRAL'
'sell_signals' => 28
'buy_signals' => 2
'sell_pct' => 93.33
'buy_pct' => 6.67
'overall_action' => 'bearish'
'overall_action_label' => 'Baixista'
'overall_action_dir' => -1
'last_updated' => 1767681328
'last_updated_date' => '6 de janeiro de 2026'
]
Previsão de preço de Optio para 2026
A previsão de preço para Optio em 2026 sugere que o preço médio poderia variar entre $0.001252 na extremidade inferior e $0.003738 na extremidade superior. No mercado de criptomoedas, comparado ao preço médio de hoje, Optio poderia potencialmente ganhar 3.13% até 2026 se OPT atingir a meta de preço prevista.
Previsão de preço de Optio 2027-2032
A previsão de preço de OPT para 2027-2032 está atualmente dentro de uma faixa de preço entre $0.002186 na extremidade inferior e $0.01362 na extremidade superior. Considerando a volatilidade de preços no mercado, se Optio atingir a meta de preço superior, poderia ganhar 275.71% até 2032 em comparação com o preço de hoje.
| Previsão de Preço de Optio | Potencial Mínimo ($) | Preço Médio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2027 | $0.0012058 | $0.002186 | $0.003167 |
| 2028 | $0.002176 | $0.003753 | $0.005329 |
| 2029 | $0.00478 | $0.010252 | $0.015725 |
| 2030 | $0.004065 | $0.0079099 | $0.011754 |
| 2031 | $0.0048066 | $0.007768 | $0.01073 |
| 2032 | $0.007336 | $0.01362 | $0.0199044 |
Previsão de preço de Optio 2032-2037
A previsão de preço de Optio para 2032-2037 é atualmente estimada entre $0.01362 na extremidade inferior e $0.1242099 na extremidade superior. Comparado ao preço atual, Optio poderia potencialmente ganhar 3326.16% até 2037 se atingir a meta de preço superior. Por favor, note que esta informação é apenas para fins gerais e não deve ser considerada como aconselhamento de investimento a longo prazo.
| Previsão de Preço de Optio | Potencial Mínimo ($) | Preço Médio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2032 | $0.007336 | $0.01362 | $0.0199044 |
| 2033 | $0.017049 | $0.035033 | $0.053018 |
| 2034 | $0.0137069 | $0.022206 | $0.0307052 |
| 2035 | $0.0162058 | $0.026192 | $0.036178 |
| 2036 | $0.026825 | $0.050838 | $0.074852 |
| 2037 | $0.069665 | $0.1242099 | $0.178754 |
Optio Histograma de preços potenciais
Previsão de preço de Optio baseada na análise técnica
Em 6 de janeiro de 2026, o sentimento geral de previsão de preço para Optio é Baixista, com 2 indicadores técnicos mostrando sinais de alta e 28 indicando sinais de baixa. A previsão de preço de OPT foi atualizada pela última vez em 6 de janeiro de 2026.
Médias Móveis Simples de 50 e 200 dias e Índice de Força Relativa de 14 dias - RSI (14) de Optio
De acordo com nossos indicadores técnicos, o SMA de 200 dias de Optio está projetado para aumentar no próximo mês, alcançando $0.004756 até 4 de fev. de 2026. O SMA de 50 dias de curto prazo para Optio é esperado para alcançar $0.003975 até 4 de fev. de 2026.
O oscilador de momentum Índice de Força Relativa (RSI) é uma ferramenta comumente usada para identificar se uma criptomoeda está sobrevendida (abaixo de 30) ou sobrecomprada (acima de 70). No momento, o RSI está em 39.61, sugerindo que o mercado de OPT está em um estado NEUTRAL.
Médias Móveis e Osciladores Populares de OPT para Sábado, 19 de Outubro de 2024
Médias móveis (MA) são indicadores amplamente utilizados nos mercados financeiros, projetados para suavizar movimentos de preços ao longo de um período definido. Como indicadores atrasados, eles se baseiam em dados históricos de preços. A tabela abaixo destaca dois tipos: a média móvel simples (SMA) e a média móvel exponencial (EMA).
Média Móvel Simples Diária (SMA)
| Período | Valor | Ação |
|---|---|---|
| SMA 3 | $0.004289 | SELL |
| SMA 5 | $0.004412 | SELL |
| SMA 10 | $0.004488 | SELL |
| SMA 21 | $0.0050042 | SELL |
| SMA 50 | $0.005385 | SELL |
| SMA 100 | $0.005085 | SELL |
| SMA 200 | $0.00519 | SELL |
Média Móvel Exponencial Diária (EMA)
| Período | Valor | Ação |
|---|---|---|
| EMA 3 | $0.004097 | SELL |
| EMA 5 | $0.004263 | SELL |
| EMA 10 | $0.004514 | SELL |
| EMA 21 | $0.0049019 | SELL |
| EMA 50 | $0.00517 | SELL |
| EMA 100 | $0.005378 | SELL |
| EMA 200 | $0.007642 | SELL |
Média Móvel Simples Semanal (SMA)
| Período | Valor | Ação |
|---|---|---|
| SMA 21 | $0.004679 | SELL |
| SMA 50 | — | — |
| SMA 100 | — | — |
| SMA 200 | — | — |
Média Móvel Exponencial Semanal (EMA)
| Período | Valor | Ação |
|---|---|---|
| EMA 21 | $0.005698 | SELL |
| EMA 50 | $0.0089015 | SELL |
| EMA 100 | $0.00445 | SELL |
| EMA 200 | $0.002225 | BUY |
Osciladores de Optio
Um oscilador é uma ferramenta de análise técnica que define limites altos e baixos entre dois extremos, criando um indicador de tendência que flutua dentro desses limites. Os traders usam esse indicador para identificar condições de sobrecompra ou sobrevenda de curto prazo.
| Período | Valor | Ação |
|---|---|---|
| RSI (14) | 39.61 | NEUTRAL |
| Stoch RSI (14) | 26.36 | NEUTRAL |
| Estocástico Rápido (14) | 0 | BUY |
| Índice de Canal de Commodities (20) | -161.66 | BUY |
| Índice Direcional Médio (14) | 11.7 | NEUTRAL |
| Oscilador Impressionante (5, 34) | -0.001114 | NEUTRAL |
| Momentum (10) | -0 | BUY |
| MACD (12, 26) | -0 | SELL |
| Williams Percent Range (14) | -100 | BUY |
| Oscilador Ultimate (7, 14, 28) | 30.84 | NEUTRAL |
| VWMA (10) | 0.004391 | SELL |
| Média Móvel de Hull (9) | 0.004359 | SELL |
| Nuvem Ichimoku B/L (9, 26, 52, 26) | 0.000338 | NEUTRAL |
Previsão do preço de Optio com base nos fluxos financeiros mundiais
Definições dos fluxos financeiros mundiais, usadas na previsão do preço do Optio
M0: o total de todas as moedas físicas, mais as contas no Banco Central que podem ser trocadas por moedas físicas.
M1: o valor de M0, mais o valor em contas de demanda, incluindo contas 'correntes'.
M2: o valor de M1, mais a maioria das contas de poupança, do mercado de moedas e de certificados de depósito (CD) de menos de US$ 100.000.
Previsões de preço de Optio por empresas de Internet ou nichos tecnológicos
| Comparação | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Facebook stock | $0.005094 | $0.007158 | $0.010058 | $0.014133 | $0.01986 | $0.0279072 |
| Amazon.com stock | $0.007564 | $0.015783 | $0.032933 | $0.068718 | $0.143384 | $0.29918 |
| Apple stock | $0.005142 | $0.007293 | $0.010345 | $0.014674 | $0.020815 | $0.029524 |
| Netflix stock | $0.00572 | $0.009025 | $0.01424 | $0.02247 | $0.035454 | $0.055941 |
| Google stock | $0.004694 | $0.006079 | $0.007873 | $0.010195 | $0.0132035 | $0.017098 |
| Tesla stock | $0.008218 | $0.01863 | $0.042233 | $0.09574 | $0.217037 | $0.4920066 |
| Kodak stock | $0.002718 | $0.002038 | $0.001528 | $0.001146 | $0.000859 | $0.000644 |
| Nokia stock | $0.0024016 | $0.00159 | $0.001053 | $0.000698 | $0.000462 | $0.0003064 |
Este cálculo mostra quanto a criptomoeda pode custar, se assumirmos que sua capitalização se comportará da mesma forma que a de algumas empresas de Internet ou nichos tecnológicos. Se você extrapolar os dados, poderá obter uma imagem em potencial do preço futuro para 2024, 2025, 2026, 2027, 2028, 2029 e 2030.
Visão geral da previsão para Optio
Você pode fazer perguntas como: 'Devo investir em Optio agora?', 'Devo comprar OPT hoje?', 'Optio será um bom ou mau investimento no curto ou no longo prazo?'.
Atualizamos a previsão para Optio regularmente com novos valores. Veja nossas previsões semelhantes. Fazemos previsões de preços futuros para uma enorme quantidade de moedas digitais, como Optio, com métodos de análise técnica.
Se você estiver tentando encontrar criptomoedas com bom retorno, você deve explorar o máximo de fontes de informações disponíveis sobre Optio para poder tomar sozinho uma decisão de tão grande responsabilidade sobre o seu investimento.
O preço de Optio é de $0.003625 USD hoje, mas o preço pode tanto subir quanto descer e seu investimento pode ser perdido, porque criptomoedas são ativos de alto risco
Previsão do preço de Optio com base no padrão de crescimento do Bitcoin
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| Se Optio tiver 1% da média anterior do crescimento anual do Bitcoin | $0.003719 | $0.003816 | $0.003915 | $0.004017 |
| Se Optio tiver 2% da média anterior do crescimento anual do Bitcoin | $0.003813 | $0.004012 | $0.00422 | $0.00444 |
| Se Optio tiver 5% da média anterior do crescimento anual do Bitcoin | $0.004096 | $0.004628 | $0.00523 | $0.00591 |
| Se Optio tiver 10% da média anterior do crescimento anual do Bitcoin | $0.004567 | $0.005754 | $0.00725 | $0.009135 |
| Se Optio tiver 20% da média anterior do crescimento anual do Bitcoin | $0.00551 | $0.008374 | $0.012728 | $0.019344 |
| Se Optio tiver 50% da média anterior do crescimento anual do Bitcoin | $0.008337 | $0.019172 | $0.044089 | $0.101392 |
| Se Optio tiver 100% da média anterior do crescimento anual do Bitcoin | $0.013048 | $0.046966 | $0.169048 | $0.608458 |
Perguntas Frequentes sobre Optio
OPT é um bom investimento?
A decisão de adquirir Optio depende inteiramente da sua tolerância individual ao risco. Como você pode perceber, o valor de Optio experimentou uma queda de -15.8759% nas últimas 24 horas, e Optio registrou um declínio de durante os últimos 30 dias. Consequentemente, a decisão de investir ou não em Optio dependerá de quão alinhado esse investimento está com suas aspirações de negociação.
Optio pode subir?
Parece que o valor médio de Optio pode potencialmente subir para $0.003738 até o final deste ano. Observando as perspectivas de Optio em um horizonte de cinco anos mais longo, a moeda digital poderia potencialmente crescer até $0.011754. No entanto, dada a imprevisibilidade do mercado, é vital conduzir uma pesquisa aprofundada antes de investir quaisquer fundos em um projeto, rede ou ativo específico.
Qual será o preço de Optio na próxima semana?
Com base na nossa nova previsão experimental de Optio, o preço de Optio aumentará 0.86% na próxima semana e atingirá $0.003656 até 13 de janeiro de 2026.
Qual será o preço de Optio no próximo mês?
Com base na nossa nova previsão experimental de Optio, o preço de Optio diminuirá -11.62% no próximo mês e atingirá $0.003204 até 5 de fevereiro de 2026.
Até onde o preço de Optio pode subir este ano em 2026?
De acordo com nossa previsão mais recente sobre o valor de Optio em 2026, espera-se que OPT fluctue dentro do intervalo de $0.001252 e $0.003738. No entanto, é crucial lembrar que o mercado de criptomoedas é excepcionalmente instável, e essa previsão de preço de Optio não considera flutuações repentinas e extremas de preço.
Onde estará Optio em 5 anos?
O futuro de Optio parece seguir uma tendência de alta, com um preço máximo de $0.011754 projetada após um período de cinco anos. Com base na previsão de Optio para 2030, o valor de Optio pode potencialmente atingir seu pico mais alto de aproximadamente $0.011754, enquanto seu pico mais baixo está previsto para cerca de $0.004065.
Quanto será Optio em 2026?
Com base na nossa nova simulação experimental de previsão de preços de Optio, espera-se que o valor de OPT em 2026 aumente 3.13% para $0.003738 se o melhor cenário ocorrer. O preço ficará entre $0.003738 e $0.001252 durante 2026.
Quanto será Optio em 2027?
De acordo com nossa última simulação experimental para previsão de preços de Optio, o valor de OPT pode diminuir -12.62% para $0.003167 em 2027, assumindo as condições mais favoráveis. O preço está projetado para flutuar entre $0.003167 e $0.0012058 ao longo do ano.
Quanto será Optio em 2028?
Nosso novo modelo experimental de previsão de preços de Optio sugere que o valor de OPT em 2028 pode aumentar 47.02%, alcançando $0.005329 no melhor cenário. O preço é esperado para variar entre $0.005329 e $0.002176 durante o ano.
Quanto será Optio em 2029?
Com base no nosso modelo de previsão experimental, o valor de Optio pode experimentar um 333.75% crescimento em 2029, potencialmente alcançando $0.015725 sob condições ótimas. A faixa de preço prevista para 2029 está entre $0.015725 e $0.00478.
Quanto será Optio em 2030?
Usando nossa nova simulação experimental para previsões de preços de Optio, espera-se que o valor de OPT em 2030 aumente 224.23%, alcançando $0.011754 no melhor cenário. O preço está previsto para variar entre $0.011754 e $0.004065 ao longo de 2030.
Quanto será Optio em 2031?
Nossa simulação experimental indica que o preço de Optio poderia aumentar 195.98% em 2031, potencialmente atingindo $0.01073 sob condições ideais. O preço provavelmente oscilará entre $0.01073 e $0.0048066 durante o ano.
Quanto será Optio em 2032?
Com base nos achados da nossa mais recente previsão experimental de preços de Optio, OPT poderia ver um 449.04% aumento em valor, atingindo $0.0199044 se o cenário mais positivo se desenrolar em 2032. O preço é esperado para permanecer dentro de uma faixa de $0.0199044 e $0.007336 ao longo do ano.
Quanto será Optio em 2033?
De acordo com nossa previsão experimental de preços de Optio, espera-se que o valor de OPT seja aumentar 1362.43% em 2033, com o preço potencial mais alto sendo $0.053018. Ao longo do ano, o preço de OPT poderia variar entre $0.053018 e $0.017049.
Quanto será Optio em 2034?
Os resultados da nossa nova simulação de previsão de preços de Optio sugerem que OPT pode aumentar 746.96% em 2034, atingindo potencialmente $0.0307052 nas melhores circunstâncias. A faixa de preço prevista para o ano é entre $0.0307052 e $0.0137069.
Quanto será Optio em 2035?
Com base em nossa previsão experimental para o preço de Optio, OPT poderia aumentar 897.93%, com o valor potencialmente atingindo $0.036178 em 2035. A faixa de preço esperada para o ano está entre $0.036178 e $0.0162058.
Quanto será Optio em 2036?
Nossa recente simulação de previsão de preços de Optio sugere que o valor de OPT pode aumentar 1964.7% em 2036, possivelmente atingindo $0.074852 se as condições forem ideais. A faixa de preço esperada para 2036 está entre $0.074852 e $0.026825.
Quanto será Optio em 2037?
De acordo com a simulação experimental, o valor de Optio poderia aumentar 4830.69% em 2037, com um pico de $0.178754 sob condições favoráveis. O preço é esperado para cair entre $0.178754 e $0.069665 ao longo do ano.
Previsões relacionadas
Como ler e prever os movimentos de preço de Optio?
Traders de Optio utilizam indicadores e padrões de gráfico para prever a direção do mercado. Eles também identificam níveis-chave de suporte e resistência para avaliar quando uma tendência de baixa pode desacelerar ou uma tendência de alta pode estagnar.
Indicadores de Previsão de Preço de Optio
Médias móveis são ferramentas populares para a previsão de preço de Optio. Uma média móvel simples (SMA) calcula o preço médio de fechamento de OPT em um período específico, como uma SMA de 12 dias. Uma média móvel exponencial (EMA) dá mais peso aos preços recentes, reagindo mais rapidamente às mudanças de preço.
Médias móveis comumente usadas no mercado de criptomoedas incluem as de 50 dias, 100 dias e 200 dias, que ajudam a identificar níveis-chave de resistência e suporte. Um movimento de preço de OPT acima dessas médias é visto como altista, enquanto uma queda abaixo indica fraqueza.
Traders também usam RSI e níveis de retração de Fibonacci para avaliar a direção futura de OPT.
Como ler gráficos de Optio e prever movimentos de preço?
A maioria dos traders prefere gráficos de velas em vez de gráficos de linha simples porque eles fornecem informações mais detalhadas. Velas podem representar a ação de preço de Optio em diferentes períodos de tempo, como 5 minutos para tendências de curto prazo e semanal para tendências de longo prazo. Opções populares incluem gráficos de 1 hora, 4 horas e 1 dia.
Por exemplo, um gráfico de velas de 1 hora mostra os preços de abertura, fechamento, máximo e mínimo de OPT dentro de cada hora. A cor da vela é crucial: verde indica que o preço fechou mais alto do que abriu, enquanto vermelho significa o oposto. Alguns gráficos usam velas vazias e preenchidas para transmitir a mesma informação.
O que afeta o preço de Optio?
A ação de preço de Optio é impulsionada pela oferta e demanda, influenciada por fatores como reduções pela metade das recompensas de bloco, hard forks e atualizações de protocolo. Eventos do mundo real, como regulamentações, adoção por empresas e governos e hacks de exchanges de criptomoedas, também impactam o preço de OPT. A capitalização de mercado de Optio pode mudar rapidamente.
Traders frequentemente monitoram a atividade de "baleias" de OPT, grandes detentores de Optio, pois suas ações podem influenciar significativamente os movimentos de preço no relativamente pequeno mercado de Optio.
Padrões de previsão de preço altistas e baixistas
Traders frequentemente identificam padrões de velas para ganhar vantagem em previsões de preço de criptomoedas. Certas formações indicam tendências altistas, enquanto outras sugerem movimentos baixistas.
Padrões de velas altistas comumente seguidos:
- Martelo
- Engolfo de Alta
- Linha de Perfuração
- Estrela da Manhã
- Três Soldados Brancos
Padrões de velas baixistas comuns:
- Harami de Baixa
- Nuvem Negra
- Estrela da Noite
- Estrela Cadente
- Homem Enforcado


