Previsão de Preço NEM - Projeção XEM
Previsão de Preço NEM até $0.001361 até 2026
| Ano | Preço Mínimo | Preço Máximo |
|---|---|---|
| 2026 | $0.000456 | $0.001361 |
| 2027 | $0.000439 | $0.001153 |
| 2028 | $0.000792 | $0.001941 |
| 2029 | $0.001741 | $0.005728 |
| 2030 | $0.00148 | $0.004281 |
| 2031 | $0.00175 | $0.0039087 |
| 2032 | $0.002672 | $0.00725 |
| 2033 | $0.00621 | $0.019312 |
| 2034 | $0.004992 | $0.011184 |
| 2035 | $0.0059032 | $0.013178 |
Calculadora de lucro do investimento
Se você abrir um short de $10,000.00 em NEM hoje e fechar em Apr 06, 2026, nossa previsão mostra que pode lucrar cerca de $3,957.25, com um retorno de 39.57% nos próximos 90 dias.
Previsão de preço de longo prazo de NEM para os anos 2027, 2028, 2029, 2030, 2031, 2032 e 2037
[
'name' => 'NEM'
'name_with_ticker' => 'NEM <small>XEM</small>'
'name_lang' => 'NEM'
'name_lang_with_ticker' => 'NEM <small>XEM</small>'
'name_with_lang' => 'NEM'
'name_with_lang_with_ticker' => 'NEM <small>XEM</small>'
'image' => '/uploads/coins/nem.png?1717109909'
'price_for_sd' => 0.00132
'ticker' => 'XEM'
'marketcap' => '$11.88M'
'low24h' => '$0.001282'
'high24h' => '$0.001341'
'volume24h' => '$1.6M'
'current_supply' => '9B'
'max_supply' => '9B'
'algo' => 'Proof of Importance'
'proof' => null
'ico_price_and_roi' => '—'
'price' => '$0.00132'
'change_24h_pct' => '0.8787%'
'ath_price' => '$1.87'
'ath_days' => 2921
'ath_exchange' => null
'ath_pair' => null
'ath_date' => '7 de jan. de 2018'
'ath_pct' => '-99.93%'
'fdv' => '$11.88M'
'new_prediction' => true
'change_24h_pct_is_increased' => true
'change_30d_pct' => '-92.31%'
'change_30d_pct_is_increased' => false
'max_price' => '$0.065114'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.001331'
'next_week_prediction_price_date' => '13 de janeiro de 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.001167'
'next_month_prediction_price_date' => '5 de fevereiro de 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.000456'
'current_year_max_price_prediction' => '$0.001361'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.00148'
'grand_prediction_max_price' => '$0.004281'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.0013456144858697
107 => 0.0013506385219018
108 => 0.001361957931616
109 => 0.0012652348149484
110 => 0.0013086606546906
111 => 0.0013341692670883
112 => 0.0012189204282644
113 => 0.001331891168098
114 => 0.0012635510806767
115 => 0.0012403554285722
116 => 0.0012715853183361
117 => 0.0012594149999231
118 => 0.0012489516748166
119 => 0.0012431129596244
120 => 0.0012660447439499
121 => 0.0012649749488017
122 => 0.0012274540987777
123 => 0.001178509679467
124 => 0.0011949370331335
125 => 0.0011889688215392
126 => 0.0011673392528069
127 => 0.0011819149705684
128 => 0.0011177308861487
129 => 0.001007305504903
130 => 0.0010802558941748
131 => 0.0010774473835426
201 => 0.001076031205126
202 => 0.0011308514064631
203 => 0.0011255817090218
204 => 0.0011160171565647
205 => 0.0011671635923004
206 => 0.0011484944552402
207 => 0.0012060283366578
208 => 0.0012439238720175
209 => 0.0012343123384581
210 => 0.0012699532726289
211 => 0.0011953154861834
212 => 0.0012201071648924
213 => 0.0012252166955145
214 => 0.0011665324532227
215 => 0.0011264438966946
216 => 0.0011237704470172
217 => 0.0010542624145409
218 => 0.0010913930444405
219 => 0.0011240664621823
220 => 0.0011084184306436
221 => 0.0011034647313301
222 => 0.0011287721067965
223 => 0.0011307387066132
224 => 0.0010859000223805
225 => 0.0010952234046889
226 => 0.0011341034587985
227 => 0.0010942437270813
228 => 0.0010168027794049
301 => 0.00099759635367634
302 => 0.00099503386243948
303 => 0.00094294451258268
304 => 0.00099887981888262
305 => 0.00097446255870969
306 => 0.0010515963910323
307 => 0.0010075379596867
308 => 0.0010056386887698
309 => 0.0010027676622166
310 => 0.00095793220701085
311 => 0.00096774832225908
312 => 0.0010003785843807
313 => 0.001012021429512
314 => 0.0010108069853778
315 => 0.001000218678295
316 => 0.0010050659510566
317 => 0.00098945119658967
318 => 0.00098393730179441
319 => 0.0009665339331043
320 => 0.00094095578893314
321 => 0.00094451258676001
322 => 0.00089383559027147
323 => 0.00086622407295274
324 => 0.00085858156887286
325 => 0.00084836169301502
326 => 0.00085973593104506
327 => 0.00089369202870765
328 => 0.00085273377073858
329 => 0.00078251371033835
330 => 0.00078673405561757
331 => 0.0007962159184282
401 => 0.00077854652980938
402 => 0.00076182393636105
403 => 0.00077636287461748
404 => 0.00074660970933121
405 => 0.00079981144630562
406 => 0.00079837248841661
407 => 0.00081820280598732
408 => 0.00083060311052337
409 => 0.00080202442321404
410 => 0.00079483696064073
411 => 0.00079893126597445
412 => 0.00073126151898594
413 => 0.00081267274396775
414 => 0.00081337679162207
415 => 0.00080734830816608
416 => 0.00085069727217932
417 => 0.00094217710712819
418 => 0.00090775871345259
419 => 0.00089443087111994
420 => 0.00086909463310298
421 => 0.00090285366594362
422 => 0.00090026149894441
423 => 0.00088853873672384
424 => 0.00088144877355559
425 => 0.00089451224808322
426 => 0.00087983006449455
427 => 0.0008771927408826
428 => 0.00086121342923057
429 => 0.00085550954198316
430 => 0.00085128661094346
501 => 0.00084663757880539
502 => 0.00085689218523534
503 => 0.00083365389795925
504 => 0.00080563080158167
505 => 0.00080330098433197
506 => 0.000809733814598
507 => 0.00080688776607317
508 => 0.00080328735854659
509 => 0.0007964132000657
510 => 0.00079437378408758
511 => 0.0008010008966325
512 => 0.00079351927295395
513 => 0.00080455881623679
514 => 0.00080155667130965
515 => 0.00078478693378984
516 => 0.00076388563188813
517 => 0.00076369956645924
518 => 0.00075919641524952
519 => 0.00075346097513062
520 => 0.00075186550689864
521 => 0.00077513844578992
522 => 0.00082331273279442
523 => 0.00081385496754245
524 => 0.00082068917220777
525 => 0.00085430669510017
526 => 0.00086499269471348
527 => 0.00085740802529972
528 => 0.00084702566200414
529 => 0.00084748243329776
530 => 0.00088296211163387
531 => 0.00088517493565144
601 => 0.00089076602805974
602 => 0.00089795216184693
603 => 0.0008586318549574
604 => 0.00084563045037928
605 => 0.0008394696635997
606 => 0.00082049682484314
607 => 0.00084095740483383
608 => 0.00082903590108264
609 => 0.00083064451923524
610 => 0.00082959690455307
611 => 0.00083016897300893
612 => 0.00079979657533588
613 => 0.00081086268072171
614 => 0.00079246313421133
615 => 0.00076782820687995
616 => 0.00076774562196541
617 => 0.00077377498552949
618 => 0.00077018848415256
619 => 0.00076053730116461
620 => 0.00076190820615575
621 => 0.00074989763589935
622 => 0.00076336650684327
623 => 0.000763752745868
624 => 0.00075856649690024
625 => 0.00077931715093536
626 => 0.00078781871082448
627 => 0.00078440501065367
628 => 0.00078757919652027
629 => 0.00081424798038792
630 => 0.00081859615579897
701 => 0.00082052732809221
702 => 0.00081793981305057
703 => 0.00078806665293279
704 => 0.0007893916546145
705 => 0.00077966967142655
706 => 0.00077145562011008
707 => 0.00077178413908571
708 => 0.00077600722921431
709 => 0.00079444971148683
710 => 0.00083326082818564
711 => 0.00083473368169381
712 => 0.00083651882311187
713 => 0.00082925775582442
714 => 0.00082706774845147
715 => 0.00082995693346526
716 => 0.00084453234830576
717 => 0.00088202427246206
718 => 0.00086877212246381
719 => 0.00085799791823322
720 => 0.00086744980004805
721 => 0.00086599475692895
722 => 0.00085371272870016
723 => 0.00085336801307434
724 => 0.00082979487410133
725 => 0.00082108042135741
726 => 0.0008137979723791
727 => 0.00080584572820794
728 => 0.00080113137130164
729 => 0.00080837476614662
730 => 0.00081003141624899
731 => 0.00079419360682758
801 => 0.00079203497192615
802 => 0.00080496846898254
803 => 0.0007992769191374
804 => 0.00080513081929677
805 => 0.00080648897434757
806 => 0.00080627028010343
807 => 0.00080032764839476
808 => 0.00080411530463404
809 => 0.00079515636847348
810 => 0.00078541487098757
811 => 0.0007792004025083
812 => 0.00077377745453051
813 => 0.00077678642125217
814 => 0.00076606000430506
815 => 0.00076262840764356
816 => 0.00080283213192514
817 => 0.00083253105531481
818 => 0.00083209922120666
819 => 0.00082947054213201
820 => 0.00082556485823516
821 => 0.0008442466232017
822 => 0.00083773826984104
823 => 0.00084247364070204
824 => 0.00084367899132906
825 => 0.00084732722464865
826 => 0.00084863115448415
827 => 0.00084468977288376
828 => 0.00083146201483362
829 => 0.00079849969943019
830 => 0.00078315565262981
831 => 0.00077809186161038
901 => 0.00077827592079643
902 => 0.00077319874676883
903 => 0.00077469420206293
904 => 0.00077267868844666
905 => 0.00076886179326254
906 => 0.00077655073873029
907 => 0.00077743681806796
908 => 0.00077564212631973
909 => 0.00077606484119523
910 => 0.00076120556004277
911 => 0.00076233527891613
912 => 0.00075604486067153
913 => 0.00075486548308279
914 => 0.00073896385352982
915 => 0.00071079181179867
916 => 0.00072640185764399
917 => 0.00070754711736745
918 => 0.00070040654152879
919 => 0.00073420891696163
920 => 0.00073081609600012
921 => 0.00072500906133785
922 => 0.00071641924678028
923 => 0.00071323320100453
924 => 0.00069387579545061
925 => 0.00069273205666274
926 => 0.00070232610954918
927 => 0.00069789878425329
928 => 0.00069168114277865
929 => 0.00066916147562973
930 => 0.00064384191374878
1001 => 0.00064460615216888
1002 => 0.00065265983371601
1003 => 0.00067607699900123
1004 => 0.00066692750740322
1005 => 0.00066028944627055
1006 => 0.00065904633695978
1007 => 0.00067460645260963
1008 => 0.00069662727619917
1009 => 0.00070695895393923
1010 => 0.00069672057507655
1011 => 0.00068495927671257
1012 => 0.00068567513244738
1013 => 0.00069043739994203
1014 => 0.00069093784692088
1015 => 0.00068328245076693
1016 => 0.00068543739994253
1017 => 0.00068216383509212
1018 => 0.00066207397364767
1019 => 0.00066171061175978
1020 => 0.00065678023576853
1021 => 0.00065663094594297
1022 => 0.00064824314644194
1023 => 0.00064706963530962
1024 => 0.00063041515029727
1025 => 0.00064137718276683
1026 => 0.00063402442691879
1027 => 0.00062294208951603
1028 => 0.0006210314903706
1029 => 0.00062097405545318
1030 => 0.00063235313800051
1031 => 0.00064124421156204
1101 => 0.00063415233125475
1102 => 0.00063253764757911
1103 => 0.00064977824487802
1104 => 0.0006475842217202
1105 => 0.00064568421181546
1106 => 0.00069465555297323
1107 => 0.00065589091516545
1108 => 0.00063898732047309
1109 => 0.00061806591213572
1110 => 0.00062487802818526
1111 => 0.00062631344112771
1112 => 0.00057600122544363
1113 => 0.00055558956580659
1114 => 0.00054858505341632
1115 => 0.00054455385750646
1116 => 0.00054639092410316
1117 => 0.00052801803638094
1118 => 0.00054036492078978
1119 => 0.00052445555304388
1120 => 0.00052178829576772
1121 => 0.00055023621608987
1122 => 0.00055419457801236
1123 => 0.00053730697628437
1124 => 0.00054815155044811
1125 => 0.00054421915710548
1126 => 0.00052472827349123
1127 => 0.0005239838651024
1128 => 0.00051420402484245
1129 => 0.00049890046858587
1130 => 0.00049190633272738
1201 => 0.0004882637260464
1202 => 0.00048976673655596
1203 => 0.00048900676844945
1204 => 0.00048404746249221
1205 => 0.00048929103006176
1206 => 0.00047589588171328
1207 => 0.00047056182570886
1208 => 0.00046815255636083
1209 => 0.00045626359120557
1210 => 0.00047518422181439
1211 => 0.00047891182440015
1212 => 0.00048264677151451
1213 => 0.0005151569361884
1214 => 0.00051353282023406
1215 => 0.00052821403748471
1216 => 0.00052764355237937
1217 => 0.00052345623139954
1218 => 0.00050579061296648
1219 => 0.00051283181361453
1220 => 0.00049116009246538
1221 => 0.00050739801948412
1222 => 0.00049998770770481
1223 => 0.00050489258561743
1224 => 0.00049607317287553
1225 => 0.00050095420003152
1226 => 0.00047979577725817
1227 => 0.00046003833977945
1228 => 0.00046798930937644
1229 => 0.00047663292263204
1230 => 0.00049537447852186
1231 => 0.00048421216244836
]
'min_raw' => 0.00045626359120557
'max_raw' => 0.001361957931616
'avg_raw' => 0.00090911076141078
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.000456'
'max' => '$0.001361'
'avg' => '$0.0009091'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.00086432640879442
'max_diff' => 4.1367931615978E-5
'year' => 2026
]
1 => [
'items' => [
101 => 0.00048822655340229
102 => 0.00047477901570755
103 => 0.00044703290434406
104 => 0.00044718994432116
105 => 0.00044292180956978
106 => 0.00043923351798671
107 => 0.00048549428872543
108 => 0.0004797410306095
109 => 0.00047057396676959
110 => 0.00048284444600395
111 => 0.00048608895547221
112 => 0.00048618132209553
113 => 0.00049513354699801
114 => 0.00049991135103324
115 => 0.00050075345970264
116 => 0.00051483997901231
117 => 0.00051956159447923
118 => 0.00053900926035945
119 => 0.00049950598774151
120 => 0.00049869244383779
121 => 0.00048301711681039
122 => 0.0004730755765925
123 => 0.00048369782257447
124 => 0.00049310768243332
125 => 0.00048330950738609
126 => 0.00048458894219649
127 => 0.00047143569273589
128 => 0.00047613736050015
129 => 0.00048018707016177
130 => 0.00047795105851755
131 => 0.00047460364086198
201 => 0.00049233618123352
202 => 0.00049133564181137
203 => 0.0005078485910747
204 => 0.00052072161587779
205 => 0.00054379237765337
206 => 0.00051971683503454
207 => 0.0005188394265699
208 => 0.00052741623505254
209 => 0.00051956028141454
210 => 0.00052452497293546
211 => 0.00054299248909552
212 => 0.00054338267861125
213 => 0.00053684650149196
214 => 0.00053644877452024
215 => 0.00053770411883394
216 => 0.00054505670968927
217 => 0.00054248748852212
218 => 0.00054546065630146
219 => 0.00054917864813629
220 => 0.00056455783876102
221 => 0.00056826570955464
222 => 0.00055925750583674
223 => 0.00056007084577189
224 => 0.00055670153030067
225 => 0.00055344681377287
226 => 0.00056076294121418
227 => 0.00057413330791201
228 => 0.00057405013155471
301 => 0.00057715179674582
302 => 0.0005790841084643
303 => 0.00057078921202996
304 => 0.000565389539463
305 => 0.00056746011751527
306 => 0.00057077101691216
307 => 0.00056638643746404
308 => 0.00053932278197547
309 => 0.0005475321662177
310 => 0.00054616572326141
311 => 0.00054421974232652
312 => 0.00055247434166336
313 => 0.0005516781654201
314 => 0.00052782959586161
315 => 0.00052935630390825
316 => 0.00052792244003454
317 => 0.00053255554755144
318 => 0.00051931007840407
319 => 0.0005233842955042
320 => 0.00052593960627599
321 => 0.0005274447039514
322 => 0.00053288214881011
323 => 0.0005322441274147
324 => 0.00053284248850435
325 => 0.0005409047837976
326 => 0.00058168110674519
327 => 0.00058390047203534
328 => 0.00057297150565191
329 => 0.00057733741215776
330 => 0.00056895582638532
331 => 0.0005745824410661
401 => 0.00057843202793018
402 => 0.00056103648512442
403 => 0.0005600064339756
404 => 0.00055159025441718
405 => 0.0005561126325951
406 => 0.00054891720374354
407 => 0.00055068271029829
408 => 0.0005457462000571
409 => 0.00055463093564187
410 => 0.00056456545057397
411 => 0.0005670753013717
412 => 0.00056047296448157
413 => 0.00055569243745792
414 => 0.00054729940680788
415 => 0.00056125720382978
416 => 0.00056533888903514
417 => 0.00056123576447502
418 => 0.0005602849808594
419 => 0.00055848324762583
420 => 0.00056066722708225
421 => 0.00056531665930093
422 => 0.00056312407292813
423 => 0.00056457231485576
424 => 0.00055905311004822
425 => 0.00057079195798583
426 => 0.00058943607361836
427 => 0.00058949601749874
428 => 0.00058730341930708
429 => 0.00058640625536724
430 => 0.00058865599416987
501 => 0.00058987638518117
502 => 0.00059715162793731
503 => 0.0006049582532731
504 => 0.00064138836741777
505 => 0.00063115893714341
506 => 0.00066348190164974
507 => 0.00068904516996261
508 => 0.0006967104763834
509 => 0.00068965875515681
510 => 0.00066553519776716
511 => 0.00066435158095412
512 => 0.00070040236039748
513 => 0.00069021636397443
514 => 0.00068900477211148
515 => 0.00067611548170645
516 => 0.00068373464870549
517 => 0.00068206822511636
518 => 0.00067943769395669
519 => 0.0006939745338351
520 => 0.00072118620037483
521 => 0.00071694500695522
522 => 0.00071377915281078
523 => 0.00069990730151614
524 => 0.00070826125438567
525 => 0.00070528657177826
526 => 0.00071806769603993
527 => 0.00071049644116388
528 => 0.00069013919503332
529 => 0.00069338115357797
530 => 0.00069289113806586
531 => 0.00070297562258219
601 => 0.00069994851064268
602 => 0.00069230004587626
603 => 0.00072109319385688
604 => 0.00071922352698292
605 => 0.00072187428714484
606 => 0.0007230412337456
607 => 0.00074056711552923
608 => 0.00074774690853031
609 => 0.00074937684724153
610 => 0.00075619709528744
611 => 0.00074920715325704
612 => 0.00077717190512284
613 => 0.00079576683332509
614 => 0.00081736579931825
615 => 0.00084892769388902
616 => 0.00086079525821148
617 => 0.00085865148893907
618 => 0.00088258135719171
619 => 0.0009255827985106
620 => 0.00086734330968788
621 => 0.00092866963283473
622 => 0.00090925442697289
623 => 0.00086322132313909
624 => 0.00086025733394684
625 => 0.00089143148631841
626 => 0.00096057275587758
627 => 0.0009432536520468
628 => 0.00096060108372705
629 => 0.00094036438320895
630 => 0.00093935946045992
701 => 0.00095961823235205
702 => 0.0010069539571262
703 => 0.00098446652863909
704 => 0.00095222528575919
705 => 0.00097603171777241
706 => 0.00095540838318128
707 => 0.00090893823823959
708 => 0.0009432404084545
709 => 0.00092030352410135
710 => 0.00092699772634744
711 => 0.00097520764565369
712 => 0.00096940690061514
713 => 0.00097691360182956
714 => 0.00096366447067069
715 => 0.00095128769297209
716 => 0.00092818551828607
717 => 0.00092134610328499
718 => 0.00092323627153492
719 => 0.00092134516661148
720 => 0.0009084197121946
721 => 0.00090562846154391
722 => 0.00090097625483861
723 => 0.00090241816822709
724 => 0.00089367065857005
725 => 0.00091017901662061
726 => 0.00091324311334594
727 => 0.00092525651965232
728 => 0.000926503791348
729 => 0.00095996095691113
730 => 0.00094153331234378
731 => 0.00095389616728585
801 => 0.00095279031717612
802 => 0.00086421900008375
803 => 0.00087642334610773
804 => 0.00089540947858629
805 => 0.00088685625163979
806 => 0.00087476398988432
807 => 0.00086499884017072
808 => 0.00085020363981679
809 => 0.00087102760019829
810 => 0.00089840889371866
811 => 0.00092719822613769
812 => 0.00096178672268737
813 => 0.00095406697291196
814 => 0.00092655161825395
815 => 0.00092778593696393
816 => 0.00093541600954251
817 => 0.00092553437228805
818 => 0.00092262008454924
819 => 0.00093501563115913
820 => 0.00093510099247616
821 => 0.00092373097457915
822 => 0.00091109528037793
823 => 0.00091104233635786
824 => 0.00090879393662108
825 => 0.00094076436852727
826 => 0.00095834487350043
827 => 0.00096036045006321
828 => 0.00095820920913848
829 => 0.00095903713639071
830 => 0.00094880742790682
831 => 0.00097218950797517
901 => 0.00099364721689394
902 => 0.00098789609252662
903 => 0.00097927433952951
904 => 0.00097240669798743
905 => 0.0009862782944361
906 => 0.00098566061408215
907 => 0.00099345980252583
908 => 0.00099310598628773
909 => 0.00099048341255644
910 => 0.00098789618618699
911 => 0.00099815424629504
912 => 0.00099520008972333
913 => 0.0009922413445305
914 => 0.00098630712808505
915 => 0.00098711368665689
916 => 0.00097849342232699
917 => 0.00097450529361152
918 => 0.00091453340658965
919 => 0.00089850695873947
920 => 0.00090354920548156
921 => 0.00090520924403094
922 => 0.00089823451338809
923 => 0.00090823448546864
924 => 0.00090667600041248
925 => 0.00091273915408275
926 => 0.00090895115890109
927 => 0.00090910661954466
928 => 0.00092024630568817
929 => 0.00092348020396724
930 => 0.00092183541720175
1001 => 0.00092298736947231
1002 => 0.00094953362333877
1003 => 0.00094575959494037
1004 => 0.0009437547175729
1005 => 0.00094431008230526
1006 => 0.00095109321932625
1007 => 0.00095299212734657
1008 => 0.00094494632063056
1009 => 0.00094874076959009
1010 => 0.00096489705167248
1011 => 0.00097055083603494
1012 => 0.00098859500174948
1013 => 0.00098092951944448
1014 => 0.00099499984396962
1015 => 0.0010382472246328
1016 => 0.0010727962247977
1017 => 0.0010410235364482
1018 => 0.0011044683754624
1019 => 0.0011538692832565
1020 => 0.0011519731941339
1021 => 0.0011433590031964
1022 => 0.0010871173830638
1023 => 0.0010353630057026
1024 => 0.0010786577399722
1025 => 0.0010787681071535
1026 => 0.0010750490510835
1027 => 0.0010519503132413
1028 => 0.001074245265076
1029 => 0.0010760149573893
1030 => 0.0010750244002931
1031 => 0.0010573146521473
1101 => 0.0010302751400372
1102 => 0.00103555859598
1103 => 0.001044213004594
1104 => 0.001027828403589
1105 => 0.0010225925307899
1106 => 0.001032327014489
1107 => 0.0010636935492276
1108 => 0.0010577638875292
1109 => 0.0010576090400987
1110 => 0.0010829786474122
1111 => 0.0010648194836796
1112 => 0.0010356252372794
1113 => 0.0010282533050386
1114 => 0.0010020879119122
1115 => 0.0010201604421425
1116 => 0.0010208108403316
1117 => 0.0010109127002212
1118 => 0.0010364284167976
1119 => 0.0010361932849774
1120 => 0.0010604166603535
1121 => 0.0011067226561882
1122 => 0.0010930276946402
1123 => 0.0010771019443675
1124 => 0.0010788335149953
1125 => 0.0010978245709018
1126 => 0.0010863421449771
1127 => 0.001090471305398
1128 => 0.001097818320923
1129 => 0.0011022509578054
1130 => 0.0010781957267623
1201 => 0.0010725873017115
1202 => 0.0010611144323472
1203 => 0.0010581213748813
1204 => 0.0010674657875892
1205 => 0.0010650038649837
1206 => 0.0010207561768823
1207 => 0.0010161320472839
1208 => 0.0010162738627369
1209 => 0.0010046462689964
1210 => 0.00098691139759974
1211 => 0.0010335175807359
1212 => 0.001029774451977
1213 => 0.0010256423275222
1214 => 0.0010261484891904
1215 => 0.0010463786536597
1216 => 0.0010346441366197
1217 => 0.00106584227342
1218 => 0.0010594288743957
1219 => 0.0010528509958864
1220 => 0.0010519417327093
1221 => 0.0010494098106815
1222 => 0.0010407269079612
1223 => 0.001030241781165
1224 => 0.001023318592248
1225 => 0.00094395730893261
1226 => 0.00095868630149259
1227 => 0.00097563066484293
1228 => 0.00098147979117119
1229 => 0.00097147445583948
1230 => 0.0010411219795834
1231 => 0.0010538472533116
]
'min_raw' => 0.00043923351798671
'max_raw' => 0.0011538692832565
'avg_raw' => 0.00079655140062161
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.000439'
'max' => '$0.001153'
'avg' => '$0.000796'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -1.7030073218869E-5
'max_diff' => -0.00020808864835946
'year' => 2027
]
2 => [
'items' => [
101 => 0.0010153015691397
102 => 0.001008091245441
103 => 0.0010415946872046
104 => 0.001021388016192
105 => 0.0010304870789117
106 => 0.0010108198822329
107 => 0.00105078210751
108 => 0.0010504776623084
109 => 0.0010349314540878
110 => 0.00104807100282
111 => 0.0010457876828794
112 => 0.001028236052087
113 => 0.0010513385255124
114 => 0.001051349984051
115 => 0.0010363870966424
116 => 0.0010189137199464
117 => 0.0010157898928959
118 => 0.0010134365088404
119 => 0.0010299082906992
120 => 0.0010446768388078
121 => 0.0010721574454043
122 => 0.0010790667228258
123 => 0.0011060340925785
124 => 0.0010899763369082
125 => 0.0010970945320141
126 => 0.0011048223397317
127 => 0.0011085273349323
128 => 0.001102490244074
129 => 0.0011443816695121
130 => 0.0011479185893392
131 => 0.001149104487963
201 => 0.0011349789350047
202 => 0.0011475257321585
203 => 0.0011416555012765
204 => 0.0011569282112344
205 => 0.0011593231671676
206 => 0.0011572947246952
207 => 0.0011580549215102
208 => 0.0011223079800526
209 => 0.0011204543125579
210 => 0.0010951794247372
211 => 0.0011054791283466
212 => 0.0010862243261264
213 => 0.0010923302222568
214 => 0.0010950216430921
215 => 0.0010936157975845
216 => 0.0011060614581352
217 => 0.0010954801041867
218 => 0.0010675541713809
219 => 0.0010396206301734
220 => 0.0010392699473177
221 => 0.0010319155389857
222 => 0.0010265996487888
223 => 0.0010276236778321
224 => 0.0010312324897468
225 => 0.0010263898980799
226 => 0.0010274233105376
227 => 0.0010445848429276
228 => 0.001048026465858
229 => 0.0010363304864117
301 => 0.00098936944121314
302 => 0.00097784508292854
303 => 0.00098612856312555
304 => 0.00098216959311583
305 => 0.00079268751683828
306 => 0.00083720352003232
307 => 0.00081075362255505
308 => 0.00082294295221385
309 => 0.0007959444560573
310 => 0.00080882955353562
311 => 0.0008064501465198
312 => 0.00087803056233153
313 => 0.00087691293259427
314 => 0.00087744788280584
315 => 0.00085191331540198
316 => 0.00089259057461539
317 => 0.00091262965521085
318 => 0.00090892095471549
319 => 0.00090985435472936
320 => 0.00089381544998894
321 => 0.00087760317446304
322 => 0.00085962126585351
323 => 0.00089302942941894
324 => 0.00088931501192684
325 => 0.0008978345492485
326 => 0.00091950213138554
327 => 0.00092269276516236
328 => 0.00092698100931462
329 => 0.00092544397904404
330 => 0.00096206227586491
331 => 0.0009576275585046
401 => 0.00096831395138768
402 => 0.0009463312304486
403 => 0.000921455695087
404 => 0.00092618372111672
405 => 0.00092572837418967
406 => 0.0009199312851855
407 => 0.0009146979324379
408 => 0.00090598587460113
409 => 0.00093355211473862
410 => 0.0009324329757309
411 => 0.00095055053540904
412 => 0.00094734808075134
413 => 0.00092596130477366
414 => 0.00092672513766166
415 => 0.00093186228091901
416 => 0.00094964199238759
417 => 0.00095492022128653
418 => 0.00095247513535948
419 => 0.00095826247238687
420 => 0.00096283654760457
421 => 0.00095883690581051
422 => 0.0010154633991164
423 => 0.00099194813111043
424 => 0.0010034093091183
425 => 0.00100614273254
426 => 0.00099914112592304
427 => 0.0010006595236895
428 => 0.0010029594825671
429 => 0.0010169243824938
430 => 0.0010535723206779
501 => 0.0010698034430286
502 => 0.0011186355754503
503 => 0.0010684556742655
504 => 0.0010654782065943
505 => 0.0010742743482326
506 => 0.0011029439793703
507 => 0.0011261780226059
508 => 0.0011338860951513
509 => 0.0011349048441845
510 => 0.0011493657007026
511 => 0.0011576543939797
512 => 0.001147609772363
513 => 0.0011390980072586
514 => 0.0011086099211736
515 => 0.0011121390001542
516 => 0.0011364508547116
517 => 0.001170792781235
518 => 0.0012002617268605
519 => 0.0011899427291989
520 => 0.0012686693972799
521 => 0.0012764748248505
522 => 0.00127539636714
523 => 0.0012931782927492
524 => 0.001257884791641
525 => 0.0012427961361379
526 => 0.0011409383474868
527 => 0.0011695562313725
528 => 0.0012111540062699
529 => 0.0012056483847785
530 => 0.0011754389687364
531 => 0.0012002388103095
601 => 0.0011920392071227
602 => 0.0011855718398874
603 => 0.001215200102953
604 => 0.0011826226106504
605 => 0.0012108290208637
606 => 0.0011746540080072
607 => 0.001189989865511
608 => 0.0011812844910799
609 => 0.0011869179352273
610 => 0.0011539849358513
611 => 0.0011717547829112
612 => 0.0011532456517917
613 => 0.0011532368760536
614 => 0.0011528282859583
615 => 0.0011746041966383
616 => 0.0011753143083038
617 => 0.0011592218774097
618 => 0.0011569027067068
619 => 0.0011654778963219
620 => 0.0011554385951284
621 => 0.0011601359209702
622 => 0.0011555808723429
623 => 0.0011545554349529
624 => 0.0011463845753655
625 => 0.0011428643443928
626 => 0.0011442447176623
627 => 0.0011395327920621
628 => 0.0011366936864501
629 => 0.0011522635163928
630 => 0.0011439451843396
701 => 0.001150988612704
702 => 0.0011429617371312
703 => 0.0011151370892528
704 => 0.0010991348400175
705 => 0.0010465766595214
706 => 0.0010614820943119
707 => 0.0010713644129988
708 => 0.0010680983067317
709 => 0.0010751151668087
710 => 0.0010755459450288
711 => 0.0010732646922894
712 => 0.0010706232938637
713 => 0.0010693376071885
714 => 0.0010789200623217
715 => 0.0010844830000571
716 => 0.0010723562358873
717 => 0.0010695151047138
718 => 0.0010817759328265
719 => 0.0010892550308923
720 => 0.0011444764888684
721 => 0.0011403855048986
722 => 0.0011506530718478
723 => 0.0011494971013779
724 => 0.0011602591472924
725 => 0.0011778505439826
726 => 0.0011420823158796
727 => 0.001148290443506
728 => 0.0011467683539786
729 => 0.0011633861283254
730 => 0.001163438007203
731 => 0.0011534748213627
801 => 0.0011588760260409
802 => 0.0011558612217638
803 => 0.0011613093805678
804 => 0.0011403308673135
805 => 0.0011658804319667
806 => 0.0011803653887474
807 => 0.0011805665123864
808 => 0.0011874322669408
809 => 0.0011944082712057
810 => 0.0012077981039103
811 => 0.0011940348360389
812 => 0.0011692760569654
813 => 0.0011710635608441
814 => 0.0011565474977322
815 => 0.0011567915153757
816 => 0.0011554889300709
817 => 0.0011593980866246
818 => 0.0011411887073461
819 => 0.0011454624122663
820 => 0.0011394792003512
821 => 0.0011482774371718
822 => 0.0011388119887534
823 => 0.0011467676199809
824 => 0.0011502010066854
825 => 0.0011628702775402
826 => 0.0011369407271471
827 => 0.0010840686186193
828 => 0.0010951829768442
829 => 0.0010787439680156
830 => 0.0010802654608704
831 => 0.0010833391185809
901 => 0.0010733763883029
902 => 0.0010752769632783
903 => 0.001075209061366
904 => 0.0010746239193697
905 => 0.0010720322284455
906 => 0.001068273763855
907 => 0.0010832463299892
908 => 0.001085790460735
909 => 0.0010914457482318
910 => 0.0011082720478041
911 => 0.0011065907036854
912 => 0.0011093330457014
913 => 0.0011033465284781
914 => 0.0010805431582346
915 => 0.0010817814909492
916 => 0.0010663394621559
917 => 0.0010910508608372
918 => 0.0010851988754549
919 => 0.0010814260624096
920 => 0.0010803966154153
921 => 0.0010972646241297
922 => 0.0011023117967106
923 => 0.0010991667374613
924 => 0.0010927161291849
925 => 0.0011051032040267
926 => 0.0011084174626857
927 => 0.0011091594029743
928 => 0.0011311069246079
929 => 0.001110386025627
930 => 0.0011153737519597
1001 => 0.0011542865689984
1002 => 0.001118998013546
1003 => 0.0011376911483978
1004 => 0.0011367762167212
1005 => 0.0011463389919702
1006 => 0.0011359917900343
1007 => 0.0011361200560033
1008 => 0.0011446111525859
1009 => 0.001132686938813
1010 => 0.0011297343357922
1011 => 0.001125655335866
1012 => 0.0011345616829777
1013 => 0.0011399006352718
1014 => 0.0011829286697335
1015 => 0.0012107267423125
1016 => 0.0012095199546697
1017 => 0.0012205477347136
1018 => 0.0012155796188009
1019 => 0.0011995362619961
1020 => 0.0012269203157829
1021 => 0.0012182548553673
1022 => 0.0012189692253954
1023 => 0.0012189426365073
1024 => 0.001224704410136
1025 => 0.0012206216654613
1026 => 0.0012125741566223
1027 => 0.0012179164685511
1028 => 0.0012337812250683
1029 => 0.001283025916088
1030 => 0.001310583897588
1031 => 0.0012813668909989
1101 => 0.0013015203909127
1102 => 0.0012894354723907
1103 => 0.0012872392832001
1104 => 0.0012998971704779
1105 => 0.0013125772137118
1106 => 0.0013117695497751
1107 => 0.0013025644895148
1108 => 0.0012973647845434
1109 => 0.0013367386926153
1110 => 0.0013657487173657
1111 => 0.0013637704281634
1112 => 0.0013725019533282
1113 => 0.0013981379812681
1114 => 0.0014004818183818
1115 => 0.0014001865487779
1116 => 0.0013943771039376
1117 => 0.0014196191027033
1118 => 0.0014406764221644
1119 => 0.0013930323853081
1120 => 0.0014111746108367
1121 => 0.0014193192403825
1122 => 0.0014312779729585
1123 => 0.0014514543593304
1124 => 0.0014733712664525
1125 => 0.0014764705574262
1126 => 0.0014742714621656
1127 => 0.0014598166727605
1128 => 0.0014837984140566
1129 => 0.0014978463556668
1130 => 0.0015062115834142
1201 => 0.0015274244091406
1202 => 0.0014193695388418
1203 => 0.0013428829309689
1204 => 0.0013309384426695
1205 => 0.0013552280293201
1206 => 0.001361632999614
1207 => 0.0013590511641197
1208 => 0.0012729585331006
1209 => 0.0013304851827845
1210 => 0.0013923790208663
1211 => 0.0013947566152577
1212 => 0.0014257419647405
1213 => 0.0014358320646646
1214 => 0.0014607793323409
1215 => 0.0014592188739553
1216 => 0.0014652931366368
1217 => 0.0014638967688379
1218 => 0.0015101063289413
1219 => 0.0015610823359214
1220 => 0.0015593171988935
1221 => 0.0015519887947693
1222 => 0.0015628727245723
1223 => 0.0016154854266967
1224 => 0.0016106416921864
1225 => 0.0016153469676748
1226 => 0.0016773803086014
1227 => 0.0017580324759459
1228 => 0.0017205614468692
1229 => 0.0018018627979675
1230 => 0.0018530376888844
1231 => 0.0019415393711428
]
'min_raw' => 0.00079268751683828
'max_raw' => 0.0019415393711428
'avg_raw' => 0.0013671134439905
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.000792'
'max' => '$0.001941'
'avg' => '$0.001367'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 0.00035345399885157
'max_diff' => 0.00078767008788628
'year' => 2028
]
3 => [
'items' => [
101 => 0.0019304585246441
102 => 0.0019649115800919
103 => 0.0019106214967689
104 => 0.0017859604916232
105 => 0.0017662324103757
106 => 0.0018057285286277
107 => 0.0019028258813755
108 => 0.0018026705874496
109 => 0.0018229318729682
110 => 0.0018170966213758
111 => 0.0018167856856167
112 => 0.0018286528388758
113 => 0.0018114389141243
114 => 0.0017413062879608
115 => 0.0017734476572374
116 => 0.0017610363310044
117 => 0.0017748076227856
118 => 0.0018491256048159
119 => 0.0018162678534409
120 => 0.0017816548815142
121 => 0.0018250672295436
122 => 0.0018803460666863
123 => 0.0018768868164035
124 => 0.0018701744250005
125 => 0.0019080118238899
126 => 0.0019705081215375
127 => 0.0019874006196612
128 => 0.0019998703164242
129 => 0.0020015896769305
130 => 0.0020193001587227
131 => 0.0019240664345103
201 => 0.0020752048006108
202 => 0.0021013022213233
203 => 0.0020963969878566
204 => 0.0021254031726312
205 => 0.0021168688172546
206 => 0.0021045038753133
207 => 0.0021504848479734
208 => 0.0020977713732918
209 => 0.0020229512324231
210 => 0.0019819034233679
211 => 0.0020359584895641
212 => 0.0020689680322282
213 => 0.002090785240128
214 => 0.0020973871140561
215 => 0.0019314591574253
216 => 0.0018420331915876
217 => 0.0018993542104187
218 => 0.0019692898094782
219 => 0.0019236779387264
220 => 0.0019254658377052
221 => 0.0018604352966019
222 => 0.0019750435693897
223 => 0.0019583461080518
224 => 0.0020449725670101
225 => 0.0020242984673589
226 => 0.0020949389818196
227 => 0.0020763369669407
228 => 0.0021535528906786
301 => 0.0021843564131953
302 => 0.0022360803216863
303 => 0.0022741286393265
304 => 0.0022964713391931
305 => 0.0022951299672985
306 => 0.002383662875259
307 => 0.0023314581125389
308 => 0.0022658766268445
309 => 0.0022646904646753
310 => 0.0022986560454132
311 => 0.0023698385846379
312 => 0.0023882951813951
313 => 0.0023986099010871
314 => 0.0023828125488208
315 => 0.0023261480204372
316 => 0.0023016805643768
317 => 0.0023225275458307
318 => 0.0022970334789141
319 => 0.0023410433907839
320 => 0.002401478399791
321 => 0.002388998809417
322 => 0.0024307162089927
323 => 0.0024738893287551
324 => 0.0025356288290415
325 => 0.0025517698206234
326 => 0.0025784502659214
327 => 0.0026059132082028
328 => 0.0026147335651165
329 => 0.0026315743632608
330 => 0.0026314856039417
331 => 0.0026822364826661
401 => 0.002738216273523
402 => 0.0027593473486363
403 => 0.0028079370906851
404 => 0.0027247288602142
405 => 0.0027878432588536
406 => 0.0028447740262823
407 => 0.0027768988183738
408 => 0.0028704489795805
409 => 0.002874081320351
410 => 0.0029289253534709
411 => 0.0028733304190584
412 => 0.0028403183244696
413 => 0.0029356230046005
414 => 0.0029817379372465
415 => 0.0029678477442378
416 => 0.0028621426895977
417 => 0.0028006178138941
418 => 0.0026395953469156
419 => 0.0028303334147046
420 => 0.0029232363636188
421 => 0.0028619020934037
422 => 0.0028928355316988
423 => 0.0030615983408356
424 => 0.0031258522919722
425 => 0.0031124879193049
426 => 0.0031147462782893
427 => 0.003149416544031
428 => 0.0033031635955933
429 => 0.0032110347984684
430 => 0.0032814638118702
501 => 0.0033188191066279
502 => 0.003353516786232
503 => 0.0032683102514386
504 => 0.003157457801605
505 => 0.0031223461774734
506 => 0.0028558036089972
507 => 0.0028419289107723
508 => 0.0028341406222123
509 => 0.0027850365645167
510 => 0.0027464542259013
511 => 0.002715772117764
512 => 0.0026352531035585
513 => 0.0026624259071924
514 => 0.0025340954041733
515 => 0.0026161967122512
516 => 0.0024113781307843
517 => 0.0025819571316469
518 => 0.0024891187367529
519 => 0.0025514572220436
520 => 0.0025512397289411
521 => 0.002436454813086
522 => 0.002370249269121
523 => 0.0024124380184938
524 => 0.0024576677067686
525 => 0.0024650060715203
526 => 0.0025236475429842
527 => 0.0025400131171756
528 => 0.0024904246633401
529 => 0.0024071337209362
530 => 0.0024264803071925
531 => 0.002369857211168
601 => 0.0022706274133609
602 => 0.002341895986532
603 => 0.0023662302108706
604 => 0.0023769775906287
605 => 0.0022793964811047
606 => 0.0022487343779033
607 => 0.0022324101314389
608 => 0.0023945372250677
609 => 0.002403418913238
610 => 0.002357978940815
611 => 0.0025633719249617
612 => 0.0025168851668998
613 => 0.0025688222651872
614 => 0.0024247248072711
615 => 0.0024302295242164
616 => 0.0023620114783747
617 => 0.0024002090257146
618 => 0.0023732122304192
619 => 0.002397123041365
620 => 0.002411455082858
621 => 0.0024796619347897
622 => 0.0025827359443338
623 => 0.0024694741056092
624 => 0.0024201243005374
625 => 0.0024507406420501
626 => 0.0025322759940726
627 => 0.0026558062261046
628 => 0.0025826738424641
629 => 0.0026151287524553
630 => 0.00262221870647
701 => 0.0025682935942814
702 => 0.002657794521909
703 => 0.0027057587961288
704 => 0.0027549602166703
705 => 0.002797680431534
706 => 0.0027353080873436
707 => 0.0028020554363516
708 => 0.0027482688555444
709 => 0.0027000167322058
710 => 0.0027000899107592
711 => 0.0026698206489379
712 => 0.0026111701399866
713 => 0.0026003540862757
714 => 0.0026566205635966
715 => 0.0027017409499528
716 => 0.0027054572810852
717 => 0.0027304382453411
718 => 0.0027452217226634
719 => 0.0028901198975845
720 => 0.0029483991421983
721 => 0.0030196618993425
722 => 0.003047422759399
723 => 0.0031309729953501
724 => 0.0030634993942012
725 => 0.0030489010561638
726 => 0.0028462355128203
727 => 0.0028794219841892
728 => 0.0029325567268692
729 => 0.0028471116851563
730 => 0.0029013068973856
731 => 0.0029120061802912
801 => 0.0028442082953349
802 => 0.0028804220750637
803 => 0.0027842490127413
804 => 0.0025848322542818
805 => 0.0026580165297675
806 => 0.0027119047900857
807 => 0.002634999598237
808 => 0.0027728491779838
809 => 0.0026923202992887
810 => 0.0026667965108102
811 => 0.002567219112068
812 => 0.0026142158111887
813 => 0.0026777795196774
814 => 0.0026385045379057
815 => 0.0027200060222503
816 => 0.0028354338597342
817 => 0.0029176946105717
818 => 0.0029240095695852
819 => 0.0028711214178389
820 => 0.00295587501854
821 => 0.0029564923559935
822 => 0.0028608899481741
823 => 0.0028023340057011
824 => 0.0027890299723685
825 => 0.0028222660560427
826 => 0.0028626207973428
827 => 0.0029262489768727
828 => 0.0029646981531631
829 => 0.0030649532130613
830 => 0.0030920793577319
831 => 0.0031218827665917
901 => 0.0031617093118593
902 => 0.0032095312907697
903 => 0.0031048995234206
904 => 0.0031090567385954
905 => 0.0030116250855653
906 => 0.0029075053911902
907 => 0.0029865192605177
908 => 0.003089819383889
909 => 0.0030661222214511
910 => 0.0030634558065878
911 => 0.0030679399767861
912 => 0.0030500730901849
913 => 0.0029692618242656
914 => 0.0029286789124262
915 => 0.002981041222504
916 => 0.0030088694599321
917 => 0.0030520286293057
918 => 0.0030467083507009
919 => 0.0031578817360509
920 => 0.0032010803518893
921 => 0.0031900282973848
922 => 0.0031920621413962
923 => 0.0032702711719367
924 => 0.0033572556988116
925 => 0.0034387281868492
926 => 0.0035216055010059
927 => 0.0034216936640334
928 => 0.0033709645949242
929 => 0.0034233040452555
930 => 0.0033955319961786
1001 => 0.0035551184278994
1002 => 0.0035661678461819
1003 => 0.0037257427379872
1004 => 0.0038771983121351
1005 => 0.0037820717796213
1006 => 0.0038717718151887
1007 => 0.0039687897170061
1008 => 0.004155952990199
1009 => 0.004092922984271
1010 => 0.0040446429875362
1011 => 0.0039990186239091
1012 => 0.0040939556819534
1013 => 0.0042160906904708
1014 => 0.0042423974015108
1015 => 0.0042850243233328
1016 => 0.004240207327209
1017 => 0.00429418446261
1018 => 0.0044847474693305
1019 => 0.0044332556627684
1020 => 0.0043601290197293
1021 => 0.0045105602116694
1022 => 0.0045650006752461
1023 => 0.0049470923593194
1024 => 0.0054294988938821
1025 => 0.005229779420921
1026 => 0.005105807099147
1027 => 0.0051349435354267
1028 => 0.0053111020713572
1029 => 0.0053676786021057
1030 => 0.0052138840884318
1031 => 0.0052682069106553
1101 => 0.0055675310020089
1102 => 0.0057281087735535
1103 => 0.0055100225913239
1104 => 0.004908331463976
1105 => 0.0043535447656196
1106 => 0.0045006991803943
1107 => 0.004484016436492
1108 => 0.0048056028312106
1109 => 0.0044320276002114
1110 => 0.0044383176490143
1111 => 0.0047665541098098
1112 => 0.0046789862494671
1113 => 0.0045371375305561
1114 => 0.0043545804182468
1115 => 0.004017106711654
1116 => 0.0037181968385742
1117 => 0.0043044279345162
1118 => 0.0042791485836671
1119 => 0.0042425403374478
1120 => 0.004324008027983
1121 => 0.004719592008215
1122 => 0.0047104725170902
1123 => 0.0046524589673599
1124 => 0.0046964617335224
1125 => 0.0045294236328976
1126 => 0.0045724731548155
1127 => 0.0043534568845721
1128 => 0.0044524613856495
1129 => 0.0045368331869128
1130 => 0.0045537720751623
1201 => 0.0045919362553095
1202 => 0.0042658275144723
1203 => 0.0044122407650586
1204 => 0.0044982448327117
1205 => 0.0041096753262001
1206 => 0.0044905640629142
1207 => 0.0042601506868207
1208 => 0.0041819449262819
1209 => 0.004287238680022
1210 => 0.0042462056017879
1211 => 0.0042109277706655
1212 => 0.0041912421347491
1213 => 0.0042685582466483
1214 => 0.0042649513576155
1215 => 0.0041384471921377
1216 => 0.0039734276652414
1217 => 0.0040288136350491
1218 => 0.0040086913929717
1219 => 0.0039357657918624
1220 => 0.0039849088419394
1221 => 0.0037685077201287
1222 => 0.0033962008376049
1223 => 0.0036421581682684
1224 => 0.0036326890785879
1225 => 0.003627914334182
1226 => 0.0038127444704143
1227 => 0.0037949773175723
1228 => 0.0037627297611877
1229 => 0.0039351735402006
1230 => 0.0038722292411647
1231 => 0.0040662087392512
]
'min_raw' => 0.0017413062879608
'max_raw' => 0.0057281087735535
'avg_raw' => 0.0037347075307571
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.001741'
'max' => '$0.005728'
'avg' => '$0.003734'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072434
'min_diff' => 0.0009486187711225
'max_diff' => 0.0037865694024107
'year' => 2029
]
4 => [
'items' => [
101 => 0.0041939761824983
102 => 0.004161570226047
103 => 0.0042817361239745
104 => 0.0040300896159295
105 => 0.0041136764915966
106 => 0.0041309036308251
107 => 0.0039330456107353
108 => 0.0037978842435073
109 => 0.0037888705212656
110 => 0.0035545193368761
111 => 0.0036797078479603
112 => 0.0037898685570618
113 => 0.0037371101262186
114 => 0.0037204083831269
115 => 0.0038057339664162
116 => 0.003812364495002
117 => 0.0036611877405742
118 => 0.0036926221749649
119 => 0.0038237089919142
120 => 0.003689319123512
121 => 0.0034282215616668
122 => 0.003363465756373
123 => 0.0033548261382605
124 => 0.003179203258456
125 => 0.0033677930489247
126 => 0.0032854685514929
127 => 0.0035455306524808
128 => 0.0033969845751376
129 => 0.0033905810506386
130 => 0.0033809011841656
131 => 0.003229735316628
201 => 0.0032628310345267
202 => 0.003372846241442
203 => 0.0034121009066794
204 => 0.0034080063234912
205 => 0.0033723071069095
206 => 0.003388650025451
207 => 0.0033360037905786
208 => 0.0033174133093085
209 => 0.0032587366367054
210 => 0.0031724981378234
211 => 0.0031844901300244
212 => 0.0030136290982083
213 => 0.0029205349397936
214 => 0.0028947677037057
215 => 0.0028603106787221
216 => 0.0028986597163643
217 => 0.0030131450703727
218 => 0.0028750514440158
219 => 0.0026382996077683
220 => 0.0026525287965323
221 => 0.0026844975590009
222 => 0.0026249239816352
223 => 0.00256854259029
224 => 0.0026175616356978
225 => 0.0025172467616355
226 => 0.0026966201322714
227 => 0.0026917685852837
228 => 0.0027586278854819
301 => 0.0028004363779869
302 => 0.0027040813384232
303 => 0.0026798483065447
304 => 0.0026936525428326
305 => 0.00246549926631
306 => 0.0027399828952864
307 => 0.0027423566411079
308 => 0.0027220311882408
309 => 0.0028681852469394
310 => 0.0031766158973877
311 => 0.0030605718800949
312 => 0.0030156361291501
313 => 0.0029302132337563
314 => 0.0030440341699589
315 => 0.0030352944979418
316 => 0.002995770386658
317 => 0.0029718660808308
318 => 0.0030159104972634
319 => 0.0029664084902168
320 => 0.0029575165695271
321 => 0.0029036412046524
322 => 0.002884410150565
323 => 0.0028701722437291
324 => 0.0028544977072905
325 => 0.0028890718288228
326 => 0.0028107223208261
327 => 0.002716240494879
328 => 0.002708385353359
329 => 0.0027300740897267
330 => 0.0027204784384205
331 => 0.0027083394130722
401 => 0.0026851627078155
402 => 0.0026782866744578
403 => 0.0027006304470932
404 => 0.0026754056305107
405 => 0.0027126262214451
406 => 0.0027025042802202
407 => 0.0026459639393464
408 => 0.0025754937407025
409 => 0.0025748664081183
410 => 0.0025596837194148
411 => 0.0025403462826183
412 => 0.0025349670500821
413 => 0.0026134333884188
414 => 0.0027758563604758
415 => 0.0027439688446087
416 => 0.0027670108427867
417 => 0.0028803546683189
418 => 0.0029163832620879
419 => 0.0028908110196147
420 => 0.0028558061568902
421 => 0.0028573461931974
422 => 0.0029769684058196
423 => 0.0029844290964893
424 => 0.0030032798549015
425 => 0.0030275084066848
426 => 0.0028949372467506
427 => 0.0028511021034864
428 => 0.0028303305807267
429 => 0.0027663623302176
430 => 0.0028353466041683
501 => 0.0027951524219384
502 => 0.00280057599035
503 => 0.0027970438843069
504 => 0.0027989726530464
505 => 0.0026965699937586
506 => 0.0027338801406778
507 => 0.0026718447850027
508 => 0.0025887864075492
509 => 0.002588507966744
510 => 0.002608836386957
511 => 0.0025967442471631
512 => 0.0025642046098952
513 => 0.0025688267117864
514 => 0.0025283322356157
515 => 0.0025737434743696
516 => 0.0025750457062079
517 => 0.0025575599057207
518 => 0.0026275221845645
519 => 0.0026561857872906
520 => 0.0026446762588278
521 => 0.0026553782480916
522 => 0.0027452939148565
523 => 0.0027599540918347
524 => 0.0027664651740515
525 => 0.0027577411864341
526 => 0.0026570217414196
527 => 0.0026614890770981
528 => 0.0026287107320128
529 => 0.0026010164845125
530 => 0.0026021241091753
531 => 0.0026163625523906
601 => 0.0026785426689854
602 => 0.0028093970586411
603 => 0.0028143628870752
604 => 0.0028203816160008
605 => 0.0027959004206897
606 => 0.0027885166579303
607 => 0.0027982577469208
608 => 0.0028473997756785
609 => 0.002973806415574
610 => 0.0029291258666193
611 => 0.002892799884825
612 => 0.002924667564273
613 => 0.0029197617848091
614 => 0.0028783520691319
615 => 0.0028771898363322
616 => 0.0027977113524607
617 => 0.0027683299666109
618 => 0.0027437766814362
619 => 0.0027169651350051
620 => 0.0027010703515497
621 => 0.0027254919629872
622 => 0.002731077474471
623 => 0.0026776791942461
624 => 0.0026704012059649
625 => 0.0027140073942784
626 => 0.0026948179366042
627 => 0.0027145547696978
628 => 0.0027191338842749
629 => 0.0027183965413621
630 => 0.002698360543655
701 => 0.0027111308911114
702 => 0.0026809252123531
703 => 0.0026480810734498
704 => 0.0026271285590916
705 => 0.0026088447113663
706 => 0.0026189896527478
707 => 0.002582824789116
708 => 0.0025712549213854
709 => 0.0027068045847351
710 => 0.002806936578456
711 => 0.0028054806196107
712 => 0.002796617844582
713 => 0.0027834495586376
714 => 0.0028464364335415
715 => 0.0028244930657873
716 => 0.0028404586992582
717 => 0.0028445226230521
718 => 0.0028568228964006
719 => 0.0028612191868784
720 => 0.0028479305436343
721 => 0.0028033322338356
722 => 0.0026921974860976
723 => 0.002640463961023
724 => 0.0026233910360584
725 => 0.0026240116044547
726 => 0.0026068935577437
727 => 0.0026119355896771
728 => 0.0026051401448012
729 => 0.0025922712162008
730 => 0.0026181950326704
731 => 0.0026211825110214
801 => 0.0026151315824909
802 => 0.0026165567952066
803 => 0.0025664576913592
804 => 0.0025702666174152
805 => 0.0025490580331206
806 => 0.0025450816792386
807 => 0.0024914682249845
808 => 0.0023964842193788
809 => 0.0024491145788048
810 => 0.0023855445055666
811 => 0.0023614695555874
812 => 0.0024754366243657
813 => 0.0024639974916148
814 => 0.0024444186688168
815 => 0.0024154575093142
816 => 0.0024047155335387
817 => 0.0023394506892227
818 => 0.0023355944940461
819 => 0.0023679415131881
820 => 0.0023530144768471
821 => 0.0023320512645135
822 => 0.0022561246344479
823 => 0.002170757963811
824 => 0.0021733346470017
825 => 0.002200488196628
826 => 0.0022794408043214
827 => 0.0022485926546016
828 => 0.0022262119680381
829 => 0.0022220207382058
830 => 0.0022744827544918
831 => 0.0023487274986688
901 => 0.0023835614715041
902 => 0.0023490420623478
903 => 0.002309388023766
904 => 0.0023118015813553
905 => 0.0023278578987044
906 => 0.0023295451906337
907 => 0.002303734488018
908 => 0.0023110000496173
909 => 0.0022999629971711
910 => 0.0022322286266818
911 => 0.0022310035267077
912 => 0.0022143804198253
913 => 0.0022138770787554
914 => 0.0021855970271202
915 => 0.0021816404524057
916 => 0.0021254886934075
917 => 0.0021624479512233
918 => 0.0021376576215286
919 => 0.0021002927472311
920 => 0.0020938510288185
921 => 0.0020936573829844
922 => 0.002132022754255
923 => 0.0021619996295226
924 => 0.0021380888599273
925 => 0.0021326448411812
926 => 0.0021907727186746
927 => 0.0021833754164162
928 => 0.0021769694003679
929 => 0.0023420796961512
930 => 0.0022113820133217
1001 => 0.0021543903636451
1002 => 0.0020838523747495
1003 => 0.0021068198996173
1004 => 0.0021116594945701
1005 => 0.0019420283467045
1006 => 0.0018732090111417
1007 => 0.0018495928085785
1008 => 0.0018360013501192
1009 => 0.0018421951484099
1010 => 0.0017802496747004
1011 => 0.0018218780575167
1012 => 0.0017682385134048
1013 => 0.0017592456692763
1014 => 0.0018551598188128
1015 => 0.0018685057123985
1016 => 0.0018115679841179
1017 => 0.0018481312230549
1018 => 0.0018348728843493
1019 => 0.0017691580094338
1020 => 0.0017666481845779
1021 => 0.0017336747703349
1022 => 0.0016820777619557
1023 => 0.0016584965445938
1024 => 0.0016462152418502
1025 => 0.00165128274672
1026 => 0.0016487204611896
1027 => 0.0016319998149071
1028 => 0.001649678869062
1029 => 0.0016045161911857
1030 => 0.001586532048955
1031 => 0.0015784090291382
1101 => 0.0015383245530563
1102 => 0.0016021167801501
1103 => 0.0016146846525209
1104 => 0.0016272772874827
1105 => 0.0017368875774679
1106 => 0.0017314117571357
1107 => 0.0017809105061061
1108 => 0.0017789870757435
1109 => 0.0017648692307105
1110 => 0.0017053083647894
1111 => 0.0017290482643752
1112 => 0.0016559805434496
1113 => 0.0017107278480891
1114 => 0.0016857434645538
1115 => 0.0017022806028838
1116 => 0.0016725453370727
1117 => 0.0016890020609116
1118 => 0.0016176649612974
1119 => 0.0015510513814176
1120 => 0.0015778586305329
1121 => 0.0016070011761019
1122 => 0.0016701896402781
1123 => 0.0016325551123083
1124 => 0.0016460899116853
1125 => 0.0016007505994703
1126 => 0.0015072026478367
1127 => 0.0015077321190837
1128 => 0.0014933418047777
1129 => 0.0014809064721971
1130 => 0.0016368778905666
1201 => 0.0016174803791491
1202 => 0.0015865729833889
1203 => 0.001627943760825
1204 => 0.0016388828510217
1205 => 0.001639194271541
1206 => 0.0016693773228241
1207 => 0.0016854860227045
1208 => 0.0016883252508775
1209 => 0.0017358189342195
1210 => 0.0017517381904189
1211 => 0.0018173073537267
1212 => 0.0016841193120649
1213 => 0.0016813763919937
1214 => 0.0016285259325044
1215 => 0.0015950073355636
1216 => 0.0016308209795134
1217 => 0.0016625469790029
1218 => 0.0016295117477444
1219 => 0.001633825451535
1220 => 0.001589478352648
1221 => 0.0016053303537752
1222 => 0.001618984232641
1223 => 0.0016114453632692
1224 => 0.0016001593109342
1225 => 0.0016599458088433
1226 => 0.0016565724203261
1227 => 0.0017122469816647
1228 => 0.0017556492835542
1229 => 0.0018334339676297
1230 => 0.0017522615947896
1231 => 0.0017493033508924
]
'min_raw' => 0.0014809064721971
'max_raw' => 0.0042817361239745
'avg_raw' => 0.0028813212980858
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.00148'
'max' => '$0.004281'
'avg' => '$0.002881'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -0.00026039981576367
'max_diff' => -0.001446372649579
'year' => 2030
]
5 => [
'items' => [
101 => 0.0017782206595053
102 => 0.0017517337633296
103 => 0.001768472567416
104 => 0.0018307370875105
105 => 0.0018320526387049
106 => 0.0018100154612059
107 => 0.0018086744969524
108 => 0.0018129069779514
109 => 0.0018376967513616
110 => 0.0018290344428193
111 => 0.0018390586855673
112 => 0.0018515941546203
113 => 0.0019034461695524
114 => 0.0019159475148083
115 => 0.0018855757270407
116 => 0.0018883179594177
117 => 0.0018769580770684
118 => 0.0018659845730578
119 => 0.0018906514075219
120 => 0.0019357305323329
121 => 0.001935450097437
122 => 0.0019459075781802
123 => 0.0019524225020487
124 => 0.0019244556795892
125 => 0.0019062503065366
126 => 0.0019132314050029
127 => 0.0019243943334792
128 => 0.0019096114177483
129 => 0.0018183644137445
130 => 0.0018460429258781
131 => 0.0018414358680489
201 => 0.0018348748574629
202 => 0.0018627058154448
203 => 0.0018600214516534
204 => 0.001779614334333
205 => 0.0017847617371036
206 => 0.0017799273649442
207 => 0.0017955482104106
208 => 0.0017508901864112
209 => 0.001764626693817
210 => 0.0017732421024902
211 => 0.0017783166443854
212 => 0.0017966493693568
213 => 0.001794498235677
214 => 0.001796515651867
215 => 0.0018236982433396
216 => 0.0019611784630694
217 => 0.0019686612080963
218 => 0.0019318134348985
219 => 0.0019465333935008
220 => 0.0019182742918854
221 => 0.0019372448161193
222 => 0.0019502239670011
223 => 0.0018915736799135
224 => 0.0018881007905494
225 => 0.0018597250535693
226 => 0.0018749725673385
227 => 0.0018507126765967
228 => 0.0018566652052098
301 => 0.0018400214162754
302 => 0.0018699769226119
303 => 0.0019034718333112
304 => 0.0019119339705079
305 => 0.0018896737307224
306 => 0.0018735558500964
307 => 0.0018452581612771
308 => 0.0018923178484387
309 => 0.0019060795350828
310 => 0.0018922455641573
311 => 0.0018890399308157
312 => 0.0018829652614257
313 => 0.0018903287006436
314 => 0.0019060045859818
315 => 0.0018986121279444
316 => 0.0019034949767165
317 => 0.0018848865923693
318 => 0.0019244649377711
319 => 0.0019873248753168
320 => 0.0019875269802946
321 => 0.0019801344824091
322 => 0.001977109631548
323 => 0.0019846947829928
324 => 0.0019888094164924
325 => 0.0020133384053859
326 => 0.0020396589877467
327 => 0.0021624856610548
328 => 0.0021279964226888
329 => 0.0022369755542392
330 => 0.0023231638981265
331 => 0.0023490080138987
401 => 0.0023252326434478
402 => 0.0022438983854557
403 => 0.002239907738733
404 => 0.0023614554586113
405 => 0.0023271126605074
406 => 0.0023230276939509
407 => 0.0022795705514488
408 => 0.0023052591049393
409 => 0.0022996406414626
410 => 0.0022907716219999
411 => 0.0023397835925797
412 => 0.0024315296261763
413 => 0.0024172301464514
414 => 0.0024065562481706
415 => 0.002359786333029
416 => 0.002387952268383
417 => 0.0023779229182864
418 => 0.0024210153710842
419 => 0.0023954883566615
420 => 0.0023268524800347
421 => 0.0023377829696143
422 => 0.0023361308481035
423 => 0.0023701313917265
424 => 0.0023599252724762
425 => 0.0023341379395175
426 => 0.0024312160482076
427 => 0.002424912335806
428 => 0.0024338495587621
429 => 0.0024377840007002
430 => 0.0024968737347517
501 => 0.002521080908132
502 => 0.0025265763602955
503 => 0.0025495713027568
504 => 0.0025260042251792
505 => 0.0026202893385313
506 => 0.0026829834372216
507 => 0.0027558058590592
508 => 0.0028622189901857
509 => 0.0029022313118657
510 => 0.0028950034440906
511 => 0.0029756846656344
512 => 0.0031206670273059
513 => 0.0029243085245888
514 => 0.0031310745047455
515 => 0.003065614782656
516 => 0.0029104109591516
517 => 0.0029004176626508
518 => 0.0030055234938814
519 => 0.0032386381114894
520 => 0.0031802455437427
521 => 0.0032387336208117
522 => 0.0031705041721336
523 => 0.0031671160049238
524 => 0.0032354198687804
525 => 0.0033950155697311
526 => 0.0033191976345648
527 => 0.0032104940331835
528 => 0.0032907590808281
529 => 0.0032212260683789
530 => 0.003064548730266
531 => 0.0031802008920467
601 => 0.0031028675850479
602 => 0.0031254375552948
603 => 0.003287980664145
604 => 0.0032684230472524
605 => 0.003293732414498
606 => 0.003249062043771
607 => 0.0032073328736412
608 => 0.0031294422787449
609 => 0.0031063827135561
610 => 0.003112755547778
611 => 0.0031063795554959
612 => 0.003062800483503
613 => 0.0030533895870553
614 => 0.0030377043473417
615 => 0.0030425658590022
616 => 0.0030130730194618
617 => 0.003068732101206
618 => 0.0030790629172439
619 => 0.0031195669553551
620 => 0.0031237722189588
621 => 0.0032365753885596
622 => 0.0031744452983237
623 => 0.0032161275269079
624 => 0.003212399076055
625 => 0.0029137746966261
626 => 0.0029549225013262
627 => 0.0030189355725471
628 => 0.0029900977707298
629 => 0.0029493278659664
630 => 0.002916403981926
701 => 0.0028665209309649
702 => 0.0029367303672736
703 => 0.0030290483100784
704 => 0.0031261135543361
705 => 0.0032427310853451
706 => 0.0032167034100016
707 => 0.0031239334707114
708 => 0.0031280950624195
709 => 0.0031538203848328
710 => 0.0031205037549155
711 => 0.003110678030335
712 => 0.0031524704811597
713 => 0.0031527582827998
714 => 0.0031144234736307
715 => 0.0030718213484353
716 => 0.0030716428439752
717 => 0.0030640622072844
718 => 0.0031718527505604
719 => 0.0032311266505091
720 => 0.0032379223076135
721 => 0.003230669248641
722 => 0.0032334606631759
723 => 0.0031989704868071
724 => 0.0032778048022422
725 => 0.0033501509659912
726 => 0.0033307606486561
727 => 0.0033016918064748
728 => 0.0032785370735322
729 => 0.0033253061294429
730 => 0.0033232235770045
731 => 0.0033495190853643
801 => 0.0033483261692149
802 => 0.0033394839787776
803 => 0.0033307609644386
804 => 0.0033653467302878
805 => 0.0033553865851536
806 => 0.003345410969163
807 => 0.0033254033441034
808 => 0.0033281227126405
809 => 0.0032990588896046
810 => 0.0032856126351981
811 => 0.0030834132310005
812 => 0.0030293789431427
813 => 0.0030463792300721
814 => 0.0030519761659415
815 => 0.003028460374619
816 => 0.0030621759786644
817 => 0.0030569214374875
818 => 0.0030773637834027
819 => 0.0030645922931784
820 => 0.0030651164395921
821 => 0.003102674669173
822 => 0.0031135779830045
823 => 0.0031080324695892
824 => 0.0031119163570962
825 => 0.0032014189054072
826 => 0.0031886945051678
827 => 0.0031819349211473
828 => 0.0031838073721168
829 => 0.0032066771921665
830 => 0.0032130794931346
831 => 0.0031859524940512
901 => 0.0031987457436382
902 => 0.0032532177766746
903 => 0.0032722799053873
904 => 0.0033331170698973
905 => 0.0033072723611191
906 => 0.0033547114426143
907 => 0.0035005230059559
908 => 0.0036170073721459
909 => 0.0035098835350776
910 => 0.0037237922393909
911 => 0.0038903508490801
912 => 0.0038839580522223
913 => 0.003854914706053
914 => 0.0036652921571116
915 => 0.0034907986604629
916 => 0.0036367698797948
917 => 0.0036371419904521
918 => 0.003624602933256
919 => 0.0035467239259185
920 => 0.0036218929126132
921 => 0.0036278595538034
922 => 0.0036245198213949
923 => 0.0035648101690662
924 => 0.0034736445661486
925 => 0.003491458106739
926 => 0.0035206370496126
927 => 0.0034653952233878
928 => 0.0034477421126887
929 => 0.0034805626041201
930 => 0.003586317065933
1001 => 0.0035663247975211
1002 => 0.0035658027185978
1003 => 0.0036513381209049
1004 => 0.0035901132325482
1005 => 0.0034916827925327
1006 => 0.0034668278082909
1007 => 0.0033786093585557
1008 => 0.0034395421560111
1009 => 0.003441735018915
1010 => 0.0034083627484668
1011 => 0.0034943907683545
1012 => 0.0034935980050063
1013 => 0.0035752688063088
1014 => 0.003731392704247
1015 => 0.0036852191852363
1016 => 0.0036315244062913
1017 => 0.0036373625175574
1018 => 0.0037013921884594
1019 => 0.0036626783877768
1020 => 0.0036766001404245
1021 => 0.0037013711162194
1022 => 0.0037163160609452
1023 => 0.003635212170001
1024 => 0.0036163029733743
1025 => 0.0035776213933024
1026 => 0.0035675300910875
1027 => 0.0035990354309385
1028 => 0.0035907348869878
1029 => 0.0034415507172791
1030 => 0.0034259601414916
1031 => 0.0034264382821928
1101 => 0.0033872350380838
1102 => 0.0033274406809609
1103 => 0.0034845766813443
1104 => 0.0034719564613966
1105 => 0.0034580247153018
1106 => 0.003459731274705
1107 => 0.0035279386866382
1108 => 0.0034883749431601
1109 => 0.0035935616395668
1110 => 0.0035719384169871
1111 => 0.0035497606403401
1112 => 0.0035466949960559
1113 => 0.0035381584441658
1114 => 0.0035088834314236
1115 => 0.0034735320943819
1116 => 0.0034501900795865
1117 => 0.003182617972061
1118 => 0.0032322777988224
1119 => 0.0032894069028757
1120 => 0.0033091276406644
1121 => 0.0032753939540434
1122 => 0.0035102154429806
1123 => 0.0035531195918057
1124 => 0.0034231601264463
1125 => 0.0033988500166876
1126 => 0.0035118092097292
1127 => 0.0034436810076254
1128 => 0.0034743591328612
1129 => 0.0034080498061387
1130 => 0.0035427852387338
1201 => 0.0035417587804811
1202 => 0.0034893436540638
1203 => 0.0035336445599884
1204 => 0.0035259461873922
1205 => 0.0034667696387599
1206 => 0.0035446612408768
1207 => 0.0035446998741397
1208 => 0.0034942514545661
1209 => 0.0034353387450834
1210 => 0.003424806544084
1211 => 0.003416871945433
1212 => 0.0034724077079928
1213 => 0.0035222008990481
1214 => 0.0036148536828231
1215 => 0.00363814879404
1216 => 0.0037290711639628
1217 => 0.0036749313196036
1218 => 0.0036989308113797
1219 => 0.003724985654638
1220 => 0.0037374773046312
1221 => 0.0037171228313062
1222 => 0.0038583626969369
1223 => 0.0038702876690738
1224 => 0.0038742860090807
1225 => 0.0038266607210671
1226 => 0.0038689631236606
1227 => 0.0038491712303954
1228 => 0.0039006642383251
1229 => 0.0039087389994642
1230 => 0.0039018999640473
1231 => 0.0039044630206843
]
'min_raw' => 0.0017508901864112
'max_raw' => 0.0039087389994642
'avg_raw' => 0.0028298145929377
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.00175'
'max' => '$0.0039087'
'avg' => '$0.002829'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 0.00026998371421405
'max_diff' => -0.00037299712451033
'year' => 2031
]
6 => [
'items' => [
101 => 0.0037839397117882
102 => 0.0037776899424108
103 => 0.003692473893487
104 => 0.0037272000633087
105 => 0.0036622811532957
106 => 0.0036828676083997
107 => 0.0036919419216546
108 => 0.003687202015373
109 => 0.0037291634288477
110 => 0.0036934876552437
111 => 0.0035993334230628
112 => 0.0035051535386242
113 => 0.0035039711868923
114 => 0.0034791752857327
115 => 0.0034612523907901
116 => 0.0034647049762049
117 => 0.0034768723375344
118 => 0.0034605452016305
119 => 0.0034640294238824
120 => 0.0035218907285153
121 => 0.0035334944005115
122 => 0.0034940605892212
123 => 0.0033357281466186
124 => 0.0032968729680571
125 => 0.0033248012998755
126 => 0.0033114533560812
127 => 0.0026726013066953
128 => 0.0028226901194722
129 => 0.0027335124434547
130 => 0.0027746096194311
131 => 0.0026835823046645
201 => 0.0027270253104215
202 => 0.0027190029735427
203 => 0.002960341343037
204 => 0.0029565731763474
205 => 0.0029583767983348
206 => 0.0028722852215661
207 => 0.0030094314409996
208 => 0.0030769946003112
209 => 0.0030644904576579
210 => 0.0030676374809725
211 => 0.0030135611938396
212 => 0.0029589003749991
213 => 0.0028982731146653
214 => 0.0030109110706097
215 => 0.0029983876527027
216 => 0.0030271118675978
217 => 0.0031001656335551
218 => 0.0031109230780966
219 => 0.0031253811926516
220 => 0.0031201989877823
221 => 0.0032436601321217
222 => 0.0032287081729193
223 => 0.0032647380926248
224 => 0.0031906218141941
225 => 0.003106752209968
226 => 0.0031226930798275
227 => 0.0031211578458716
228 => 0.0031016125555542
229 => 0.0030839679413847
301 => 0.0030545946301315
302 => 0.0031475361333685
303 => 0.0031437628780682
304 => 0.0032048474954507
305 => 0.003194050195984
306 => 0.0031219431875982
307 => 0.0031245185035092
308 => 0.0031418387406653
309 => 0.0032017842792214
310 => 0.0032195801964683
311 => 0.0032113364185549
312 => 0.0032308488294017
313 => 0.0032462706433499
314 => 0.0032327855717951
315 => 0.0034237057475113
316 => 0.0033444223796457
317 => 0.0033830645414933
318 => 0.0033922804694011
319 => 0.0033686740638553
320 => 0.0033737934479362
321 => 0.00338154791987
322 => 0.0034286315549711
323 => 0.0035521926372359
324 => 0.0036069169994622
325 => 0.0037715579432726
326 => 0.0036023729029792
327 => 0.0035923341628455
328 => 0.003621990968506
329 => 0.0037186526315365
330 => 0.0037969878304544
331 => 0.0038229761352015
401 => 0.003826410918694
402 => 0.0038751667060695
403 => 0.0039031126141514
404 => 0.0038692464710776
405 => 0.0038405484607554
406 => 0.0037377557499097
407 => 0.0037496542860854
408 => 0.003831623401125
409 => 0.0039474096040753
410 => 0.0040467662117078
411 => 0.0040119749906423
412 => 0.004277407448598
413 => 0.0043037239926099
414 => 0.0043000878971432
415 => 0.0043600409008292
416 => 0.0042410463977293
417 => 0.0041901739422442
418 => 0.0038467532963233
419 => 0.003943240489881
420 => 0.0040834902922112
421 => 0.004064927704963
422 => 0.0039630745496229
423 => 0.0040466889469561
424 => 0.0040190434123338
425 => 0.0039972382321629
426 => 0.0040971319896679
427 => 0.0039872946998817
428 => 0.0040823945812244
429 => 0.0039604279997201
430 => 0.0040121339140095
501 => 0.0039827831363252
502 => 0.004001776686583
503 => 0.0038907407798779
504 => 0.0039506530598917
505 => 0.003888248232056
506 => 0.0038882186440423
507 => 0.003886841054009
508 => 0.0039602600572123
509 => 0.0039626542482709
510 => 0.0039083974939738
511 => 0.0039005782480297
512 => 0.0039294900985175
513 => 0.003895641893622
514 => 0.0039114792556545
515 => 0.0038961215911842
516 => 0.00389266425743
517 => 0.0038651156338598
518 => 0.0038532469293606
519 => 0.0038579009542136
520 => 0.0038420143680761
521 => 0.0038324421252854
522 => 0.0038849368939881
523 => 0.0038568910567032
524 => 0.0038806384671903
525 => 0.0038535752957781
526 => 0.003759762552801
527 => 0.0037058098522631
528 => 0.0035286062772253
529 => 0.0035788609912857
530 => 0.0036121799187
531 => 0.0036011680133883
601 => 0.0036248258470394
602 => 0.0036262782458846
603 => 0.0036185868430016
604 => 0.0036096811837927
605 => 0.0036053464014037
606 => 0.0036376543179108
607 => 0.0036564101508777
608 => 0.0036155239188157
609 => 0.0036059448467028
610 => 0.0036472830847082
611 => 0.0036724993860111
612 => 0.0038586823870165
613 => 0.0038448893489389
614 => 0.0038795071677668
615 => 0.0038756097326205
616 => 0.0039118947218031
617 => 0.0039712053439362
618 => 0.0038506102656289
619 => 0.003871541401359
620 => 0.0038664095702485
621 => 0.0039224375566746
622 => 0.0039226124699326
623 => 0.0038890208932646
624 => 0.0039072314319374
625 => 0.0038970668088303
626 => 0.0039154356566161
627 => 0.0038447051345061
628 => 0.003930847275548
629 => 0.0039796843186418
630 => 0.0039803624210325
701 => 0.0040035107918642
702 => 0.0040270308772924
703 => 0.0040721756331042
704 => 0.0040257718145552
705 => 0.0039422958623062
706 => 0.0039483225564329
707 => 0.003899380636172
708 => 0.0039002033586936
709 => 0.0038958116013951
710 => 0.0039089915956442
711 => 0.0038475974020684
712 => 0.0038620064965877
713 => 0.0038418336798812
714 => 0.0038714975495952
715 => 0.0038395841293963
716 => 0.0038664070955242
717 => 0.0038779829985095
718 => 0.003920698329737
719 => 0.0038332750402432
720 => 0.003655013034929
721 => 0.003692485869664
722 => 0.0036370606036633
723 => 0.0036421904230506
724 => 0.0036525534746175
725 => 0.0036189634339097
726 => 0.0036253713551329
727 => 0.0036251424190949
728 => 0.0036231695720012
729 => 0.0036144315051042
730 => 0.0036017595793297
731 => 0.0036522406314023
801 => 0.0036608183458373
802 => 0.0036798855424723
803 => 0.0037366165862551
804 => 0.0037309478171711
805 => 0.0037401938147421
806 => 0.0037200098539586
807 => 0.0036431266991023
808 => 0.003647301824307
809 => 0.0035952379461024
810 => 0.0036785541520511
811 => 0.0036588237747623
812 => 0.0036461034721704
813 => 0.0036426326197555
814 => 0.0036995042888228
815 => 0.0037165211835619
816 => 0.0037059173967218
817 => 0.0036841687205509
818 => 0.003725932608218
819 => 0.0037371068626807
820 => 0.0037396083661643
821 => 0.0038136059676792
822 => 0.0037437440100782
823 => 0.0037605604776409
824 => 0.0038917577570927
825 => 0.0037727799286169
826 => 0.0038358051378827
827 => 0.0038327203818565
828 => 0.0038649619462601
829 => 0.0038300756325147
830 => 0.0038305080901844
831 => 0.0038591364151421
901 => 0.0038189330958847
902 => 0.003808978188656
903 => 0.003795225555618
904 => 0.0038252539267265
905 => 0.0038432545771396
906 => 0.0039883265994488
907 => 0.0040820497419484
908 => 0.0040779809731553
909 => 0.0041151619035083
910 => 0.004098411553846
911 => 0.0040443202562674
912 => 0.0041366475055031
913 => 0.0041074313007087
914 => 0.0041098398491343
915 => 0.0041097502028416
916 => 0.0041291764249049
917 => 0.0041154111661859
918 => 0.004088278428276
919 => 0.0041062904059325
920 => 0.0041597795401723
921 => 0.0043258114540996
922 => 0.0044187251127636
923 => 0.0043202179351822
924 => 0.0043881668672142
925 => 0.0043474217206751
926 => 0.0043400171154858
927 => 0.0043826940661885
928 => 0.004425445717244
929 => 0.0044227226218922
930 => 0.0043916871185475
1001 => 0.0043741559502048
1002 => 0.0045069078302678
1003 => 0.0046047171541288
1004 => 0.0045980472139635
1005 => 0.0046274861606724
1006 => 0.0047139198187221
1007 => 0.0047218222291922
1008 => 0.0047208267071078
1009 => 0.0047012397582262
1010 => 0.0047863449194049
1011 => 0.004857341142143
1012 => 0.0046967059454815
1013 => 0.004757873725501
1014 => 0.0047853339126546
1015 => 0.0048256536144665
1016 => 0.0048936797097897
1017 => 0.0049675740923414
1018 => 0.0049780235682448
1019 => 0.0049706091650379
1020 => 0.0049218738333574
1021 => 0.0050027299484888
1022 => 0.0050500935644235
1023 => 0.0050782975138156
1024 => 0.0051498180367841
1025 => 0.0047855034974219
1026 => 0.0045276235588539
1027 => 0.004487351882615
1028 => 0.0045692459198522
1029 => 0.0045908407243789
1030 => 0.0045821358857518
1031 => 0.0042918685694752
1101 => 0.004485823685267
1102 => 0.0046945030816497
1103 => 0.0047025193071384
1104 => 0.004806988576248
1105 => 0.0048410080526101
1106 => 0.0049251195073434
1107 => 0.0049198583129488
1108 => 0.0049403381136708
1109 => 0.0049356301621455
1110 => 0.0050914289202826
1111 => 0.0052632980868473
1112 => 0.0052573468041196
1113 => 0.0052326385779623
1114 => 0.0052693345071846
1115 => 0.0054467219056985
1116 => 0.0054303909166185
1117 => 0.0054462550814394
1118 => 0.0056554048214031
1119 => 0.0059273292345594
1120 => 0.0058009930438836
1121 => 0.0060751062253906
1122 => 0.0062476459430338
1123 => 0.0065460355437581
1124 => 0.0065086756961476
1125 => 0.0066248365780255
1126 => 0.0064417937716895
1127 => 0.0060214904892872
1128 => 0.0059549758859907
1129 => 0.0060881398062083
1130 => 0.0064155103101179
1201 => 0.0060778297440275
1202 => 0.0061461420827515
1203 => 0.0061264681246034
1204 => 0.0061254197829826
1205 => 0.006165430718734
1206 => 0.0061073927695965
1207 => 0.0058709357239825
1208 => 0.0059793025945373
1209 => 0.0059374569416115
1210 => 0.0059838878133327
1211 => 0.0062344560784639
1212 => 0.006123673875648
1213 => 0.0060069738241968
1214 => 0.0061533415865312
1215 => 0.0063397180454028
1216 => 0.0063280549415573
1217 => 0.0063054236452979
1218 => 0.0064329950773763
1219 => 0.0066437057082474
1220 => 0.006700659945068
1221 => 0.0067427023983108
1222 => 0.0067484993422999
1223 => 0.0068082114681685
1224 => 0.0064871243179801
1225 => 0.0069966978714319
1226 => 0.0070846871474277
1227 => 0.0070681488103223
1228 => 0.0071659451874369
1229 => 0.0071371710124351
1230 => 0.0070954817473874
1231 => 0.0072505098069999
]
'min_raw' => 0.0026726013066953
'max_raw' => 0.0072505098069999
'avg_raw' => 0.0049615555568476
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.002672'
'max' => '$0.00725'
'avg' => '$0.004961'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.00092171112028418
'max_diff' => 0.0033417708075357
'year' => 2032
]
7 => [
'items' => [
101 => 0.0070727826467734
102 => 0.0068205213180592
103 => 0.0066821257639633
104 => 0.0068643761936477
105 => 0.0069756701713925
106 => 0.0070492284110554
107 => 0.0070714870899323
108 => 0.0065120493994313
109 => 0.006210543512088
110 => 0.0064038053291031
111 => 0.0066395980840795
112 => 0.0064858144773207
113 => 0.0064918425035548
114 => 0.0062725874939377
115 => 0.006658997287336
116 => 0.0066027006306558
117 => 0.0068947677850998
118 => 0.0068250636147064
119 => 0.0070632330411739
120 => 0.0070005150492583
121 => 0.0072608539271841
122 => 0.0073647101539825
123 => 0.0075391009227079
124 => 0.0076673834820805
125 => 0.0077427134545984
126 => 0.007738190925604
127 => 0.0080366858059632
128 => 0.0078606738036322
129 => 0.0076395612458606
130 => 0.0076355620172917
131 => 0.0077500793441508
201 => 0.0079900762449531
202 => 0.0080523039495182
203 => 0.0080870807471105
204 => 0.0080338188710089
205 => 0.0078427704573724
206 => 0.0077602767210016
207 => 0.0078305637744631
208 => 0.007744608747915
209 => 0.0078929912384579
210 => 0.0080967520907631
211 => 0.0080546762805198
212 => 0.0081953294058051
213 => 0.008340890593335
214 => 0.0085490496290648
215 => 0.0086034701091114
216 => 0.0086934250932028
217 => 0.0087860183205058
218 => 0.0088157567696581
219 => 0.0088725366963887
220 => 0.0088722374381474
221 => 0.0090433475690798
222 => 0.0092320873423379
223 => 0.009303332237407
224 => 0.009467155945152
225 => 0.0091866135867061
226 => 0.0093994081882257
227 => 0.0095913542453907
228 => 0.0093625082430315
301 => 0.0096779191430037
302 => 0.0096901658335131
303 => 0.0098750763202651
304 => 0.0096876341173791
305 => 0.009576331535642
306 => 0.0098976579186635
307 => 0.010053137633721
308 => 0.01000630587821
309 => 0.0096499139063999
310 => 0.0094424784924357
311 => 0.0088995800027881
312 => 0.0095426667152451
313 => 0.0098558954937863
314 => 0.009649102719534
315 => 0.0097533969664496
316 => 0.010322392560098
317 => 0.010539029242422
318 => 0.010493970326903
319 => 0.010501584541893
320 => 0.010618477763442
321 => 0.011136846682061
322 => 0.010826228010327
323 => 0.011063684346208
324 => 0.011189630330546
325 => 0.011306615979846
326 => 0.01101933619886
327 => 0.010645589424775
328 => 0.0105272081326
329 => 0.0096285412535748
330 => 0.0095817617398091
331 => 0.009555502981168
401 => 0.0093899452223115
402 => 0.0092598621739369
403 => 0.0091564153041955
404 => 0.0088849398261439
405 => 0.0089765548307401
406 => 0.0085438795800615
407 => 0.0088206898723763
408 => 0.0081301297249841
409 => 0.0087052487358379
410 => 0.0083922376056828
411 => 0.0086024161611746
412 => 0.0086016828679945
413 => 0.0082146775101625
414 => 0.0079914608963607
415 => 0.0081337032103958
416 => 0.0082861982622503
417 => 0.0083109400713587
418 => 0.0085086538866162
419 => 0.0085638315626104
420 => 0.0083966406283488
421 => 0.0081158194008459
422 => 0.0081810477671446
423 => 0.0079901390455996
424 => 0.0076555788542899
425 => 0.0078958658245491
426 => 0.0079779103608678
427 => 0.0080141459020803
428 => 0.0076851443784248
429 => 0.0075817649567217
430 => 0.0075267266200443
501 => 0.0080733494355662
502 => 0.0081032946673318
503 => 0.0079500906277902
504 => 0.0086425874139211
505 => 0.0084858540635134
506 => 0.008660963616522
507 => 0.0081751289765944
508 => 0.0081936885141027
509 => 0.0079636866097155
510 => 0.0080924723074395
511 => 0.008001450727245
512 => 0.0080820676957485
513 => 0.0081303891742733
514 => 0.0083603533376112
515 => 0.0087078745571867
516 => 0.0083260043602376
517 => 0.0081596180469449
518 => 0.0082628431799195
519 => 0.0085377453118799
520 => 0.0089542361137812
521 => 0.0087076651763971
522 => 0.0088170891713621
523 => 0.0088409934463273
524 => 0.0086591811656525
525 => 0.008960939791904
526 => 0.0091226546911948
527 => 0.009288540715684
528 => 0.009432574902727
529 => 0.0092222821895912
530 => 0.0094473255369228
531 => 0.009265980324472
601 => 0.0091032949217801
602 => 0.0091035416483824
603 => 0.0090014867188193
604 => 0.0088037424330421
605 => 0.0087672753528031
606 => 0.0089569817094907
607 => 0.0091091082422954
608 => 0.0091216381121741
609 => 0.0092058631772782
610 => 0.0092557067032197
611 => 0.0097442410164336
612 => 0.0099407335585761
613 => 0.010181000919694
614 => 0.010274598597576
615 => 0.010556294051377
616 => 0.010328802094247
617 => 0.01027958277833
618 => 0.0095962817492913
619 => 0.0097081722545172
620 => 0.0098873197492118
621 => 0.0095992358254947
622 => 0.0097819587673145
623 => 0.0098180321466308
624 => 0.0095894468440034
625 => 0.0097115441307246
626 => 0.0093872899365157
627 => 0.008714942412536
628 => 0.0089616883068989
629 => 0.00914337633892
630 => 0.0088840851152531
701 => 0.0093488545977199
702 => 0.0090773458608523
703 => 0.0089912906259831
704 => 0.0086555584738518
705 => 0.0088140111261422
706 => 0.0090283206071883
707 => 0.0088959022640531
708 => 0.0091706902087728
709 => 0.009559863221764
710 => 0.0098372110864752
711 => 0.0098585024116856
712 => 0.0096801863155401
713 => 0.0099659389976113
714 => 0.0099680203939369
715 => 0.0096456902012266
716 => 0.0094482647529335
717 => 0.0094034092756947
718 => 0.0095154670522717
719 => 0.0096515258800429
720 => 0.0098660527297056
721 => 0.0099956868120046
722 => 0.010333703746036
723 => 0.01042516143668
724 => 0.010525645710458
725 => 0.010659923688429
726 => 0.010821158829149
727 => 0.010468385520375
728 => 0.010482401861584
729 => 0.010153904240932
730 => 0.0098028574219417
731 => 0.010069258198952
801 => 0.010417541777082
802 => 0.01033764513944
803 => 0.010328655135565
804 => 0.010343773828463
805 => 0.010283534372861
806 => 0.010011073547752
807 => 0.0098742454270768
808 => 0.010050788611324
809 => 0.010144613456718
810 => 0.010290127609538
811 => 0.010272189918772
812 => 0.010647018749358
813 => 0.010792665898688
814 => 0.010755403125296
815 => 0.010762260372379
816 => 0.011025947579226
817 => 0.011319221984651
818 => 0.011593912166297
819 => 0.011873338817286
820 => 0.011536479083311
821 => 0.011365442485019
822 => 0.011541908596035
823 => 0.01144827319359
824 => 0.011986329990105
825 => 0.012023583875291
826 => 0.012561601764175
827 => 0.013072244806705
828 => 0.012751519060813
829 => 0.013053948993385
830 => 0.013381051622935
831 => 0.014012085665828
901 => 0.013799575600227
902 => 0.013636796220434
903 => 0.013482970493074
904 => 0.013803057412564
905 => 0.014214844120974
906 => 0.014303539033922
907 => 0.014447258676961
908 => 0.014296155045507
909 => 0.014478142726075
910 => 0.015120639207917
911 => 0.01494703098705
912 => 0.014700479404504
913 => 0.015207668670901
914 => 0.015391218494762
915 => 0.016679467284404
916 => 0.018305934596231
917 => 0.017632566449174
918 => 0.017214585110842
919 => 0.01731282064
920 => 0.017906751442886
921 => 0.018097503166352
922 => 0.01757897422591
923 => 0.017762127413735
924 => 0.018771319485874
925 => 0.019312718653819
926 => 0.018577425864141
927 => 0.016548782219555
928 => 0.014678280132075
929 => 0.015174421515482
930 => 0.015118174479663
1001 => 0.016202425461902
1002 => 0.014942890488398
1003 => 0.014964097827095
1004 => 0.016070769971404
1005 => 0.015775528816466
1006 => 0.015297275957097
1007 => 0.014681771907215
1008 => 0.013543955743776
1009 => 0.012536160237466
1010 => 0.014512679306783
1011 => 0.014427448210447
1012 => 0.014304020952413
1013 => 0.014578694958945
1014 => 0.015912433967088
1015 => 0.015881686966059
1016 => 0.015686090232766
1017 => 0.015834448631058
1018 => 0.015271268012574
1019 => 0.015416412481341
1020 => 0.014677983834988
1021 => 0.015011784422644
1022 => 0.015296249841255
1023 => 0.015353360485623
1024 => 0.015482033683527
1025 => 0.014382535295609
1026 => 0.014876177792208
1027 => 0.015166146510913
1028 => 0.013856057290652
1029 => 0.015140250259286
1030 => 0.014363395474839
1031 => 0.01409971929303
1101 => 0.01445472453514
1102 => 0.014316378647036
1103 => 0.014197436976387
1104 => 0.014131065480488
1105 => 0.014391742149795
1106 => 0.014379581271595
1107 => 0.013953063645448
1108 => 0.013396688789222
1109 => 0.013583426453354
1110 => 0.0135155829093
1111 => 0.013269709153657
1112 => 0.01343539837805
1113 => 0.012705786887221
1114 => 0.011450528239155
1115 => 0.01227979055168
1116 => 0.012247864854711
1117 => 0.012231766470585
1118 => 0.01285493417932
1119 => 0.01279503098305
1120 => 0.012686306095247
1121 => 0.013267712335829
1122 => 0.013055491236999
1123 => 0.013709506658014
1124 => 0.014140283513359
1125 => 0.014031024568672
1126 => 0.01443617228325
1127 => 0.013587728511978
1128 => 0.013869547499139
1129 => 0.013927630001808
1130 => 0.01326053787307
1201 => 0.012804831886795
1202 => 0.012774441492939
1203 => 0.011984310112893
1204 => 0.012406391918396
1205 => 0.012777806440307
1206 => 0.012599927707243
1207 => 0.012543616614331
1208 => 0.012831297775633
1209 => 0.012853653065688
1210 => 0.012343950083311
1211 => 0.012449933473542
1212 => 0.012891901829075
1213 => 0.012438797004956
1214 => 0.011558488345946
1215 => 0.011340159627292
1216 => 0.011311030551627
1217 => 0.010718905750768
1218 => 0.011354749396252
1219 => 0.011077186605448
1220 => 0.011954004135884
1221 => 0.011453170664966
1222 => 0.011431580735037
1223 => 0.011398944389397
1224 => 0.01088927811293
1225 => 0.011000862636495
1226 => 0.011371786587626
1227 => 0.011504136432148
1228 => 0.011490331259054
1229 => 0.011369968857909
1230 => 0.011425070148798
1231 => 0.011247569692283
]
'min_raw' => 0.006210543512088
'max_raw' => 0.019312718653819
'avg_raw' => 0.012761631082954
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.00621'
'max' => '$0.019312'
'avg' => '$0.012761'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.0035379422053927
'max_diff' => 0.012062208846819
'year' => 2033
]
8 => [
'items' => [
101 => 0.011184890586735
102 => 0.010987058088379
103 => 0.010696298968418
104 => 0.010736730807378
105 => 0.010160660909474
106 => 0.0098467874547523
107 => 0.0097599114192709
108 => 0.0096437371538259
109 => 0.0097730336116809
110 => 0.010159028975833
111 => 0.0096934366731809
112 => 0.0088952113277874
113 => 0.0089431860311553
114 => 0.0090509709458059
115 => 0.0088501144704232
116 => 0.0086600206730796
117 => 0.0088252918070726
118 => 0.0084870732054105
119 => 0.0090918430479583
120 => 0.0090754857185652
121 => 0.0093009065171508
122 => 0.0094418667686069
123 => 0.0091169990254241
124 => 0.0090352956665494
125 => 0.009081837612975
126 => 0.0083126029120259
127 => 0.0092380436309548
128 => 0.0092460468807219
129 => 0.0091775181973025
130 => 0.0096702868103555
131 => 0.010710182282282
201 => 0.010318931776045
202 => 0.010167427754421
203 => 0.0098794184985642
204 => 0.010263173731695
205 => 0.010233707317305
206 => 0.010100449016627
207 => 0.010019853980585
208 => 0.01016835280567
209 => 0.010001453332793
210 => 0.0099714736013736
211 => 0.0097898290472406
212 => 0.0097249902057158
213 => 0.0096769861087594
214 => 0.0096241383147956
215 => 0.00974070737943
216 => 0.0094765465430309
217 => 0.0091579944703398
218 => 0.0091315103122767
219 => 0.0092046354011998
220 => 0.009172282992874
221 => 0.0091313554213925
222 => 0.0090532135414735
223 => 0.0090300305149387
224 => 0.0091053641043714
225 => 0.0090203168741229
226 => 0.0091458086951169
227 => 0.0091116818635857
228 => 0.0089210521568095
301 => 0.0086834569620093
302 => 0.0086813418664028
303 => 0.0086301523714173
304 => 0.0085649548531612
305 => 0.0085468183950995
306 => 0.0088113731331464
307 => 0.0093589935234463
308 => 0.0092514825373851
309 => 0.0093291702429833
310 => 0.0097113168641784
311 => 0.0098327897835065
312 => 0.0097465711826112
313 => 0.009628549843974
314 => 0.0096337421839056
315 => 0.010037056825518
316 => 0.010062211064999
317 => 0.010125767713104
318 => 0.010207455967025
319 => 0.0097604830454839
320 => 0.0096126897994966
321 => 0.0095426571602907
322 => 0.0093269837375788
323 => 0.0095595690335318
324 => 0.0094240515418754
325 => 0.0094423374814366
326 => 0.0094304287393086
327 => 0.0094369317177761
328 => 0.009091674002462
329 => 0.0092174677677112
330 => 0.0090083112348824
331 => 0.0087282741163474
401 => 0.0087273353337324
402 => 0.0087958740217655
403 => 0.0087551045282043
404 => 0.0086453948693105
405 => 0.0086609786085414
406 => 0.0085244486548979
407 => 0.0086775558168683
408 => 0.0086819463824298
409 => 0.0086229917852678
410 => 0.008858874493
411 => 0.0089555158308199
412 => 0.008916710652038
413 => 0.0089527931560299
414 => 0.0092559501042389
415 => 0.009305377914462
416 => 0.0093273304827452
417 => 0.0092979169494036
418 => 0.0089583343085301
419 => 0.0089733962426697
420 => 0.0088628817637035
421 => 0.0087695086747058
422 => 0.0087732431085884
423 => 0.0088212490139851
424 => 0.0090308936183616
425 => 0.0094720783290475
426 => 0.0094888209663162
427 => 0.0095091135311031
428 => 0.009426573471889
429 => 0.0094016786002281
430 => 0.0094345213618604
501 => 0.009600207142804
502 => 0.010026395954642
503 => 0.0098757523643445
504 => 0.0097532767805258
505 => 0.0098607208867151
506 => 0.009844180708742
507 => 0.0097045649612022
508 => 0.0097006464121735
509 => 0.0094326791547901
510 => 0.0093336177610547
511 => 0.0092508346458326
512 => 0.009160437645118
513 => 0.0091068472729595
514 => 0.0091891864409835
515 => 0.009208018382919
516 => 0.0090279823529921
517 => 0.009003444107369
518 => 0.009150465415755
519 => 0.0090857668194411
520 => 0.0091523109301979
521 => 0.0091677497346983
522 => 0.0091652637315879
523 => 0.0090977109664498
524 => 0.0091407670844964
525 => 0.0090389265296697
526 => 0.0089281902222524
527 => 0.0088575473572359
528 => 0.0087959020880927
529 => 0.0088301064662574
530 => 0.008708174103573
531 => 0.0086691654867366
601 => 0.0091261806404955
602 => 0.0094637826483181
603 => 0.0094588737814193
604 => 0.0094289923166308
605 => 0.009384594521189
606 => 0.0095969591675306
607 => 0.0095229755711103
608 => 0.0095768048190424
609 => 0.0095905066218476
610 => 0.0096319778522197
611 => 0.0096468002525051
612 => 0.0096019966640238
613 => 0.0094516303487833
614 => 0.0090769317876041
615 => 0.0089025085958957
616 => 0.0088449460373839
617 => 0.008847038327059
618 => 0.0087893236374289
619 => 0.0088063232001159
620 => 0.0087834118832739
621 => 0.0087400233920178
622 => 0.0088274273491879
623 => 0.0088374998410276
624 => 0.0088170987130246
625 => 0.0088219039172009
626 => 0.0086529912907716
627 => 0.0086658333509001
628 => 0.0085943271282147
629 => 0.0085809205734815
630 => 0.0084001590692918
701 => 0.0080799138628206
702 => 0.00825736079416
703 => 0.0080430298539164
704 => 0.0079618594792024
705 => 0.0083461074085151
706 => 0.0083075395737907
707 => 0.0082415282057772
708 => 0.0081438836345108
709 => 0.0081076663132027
710 => 0.0078876213339456
711 => 0.0078746199026768
712 => 0.0079836801361108
713 => 0.0079333525909145
714 => 0.007862673656927
715 => 0.007606681722633
716 => 0.0073188620324699
717 => 0.0073275494997458
718 => 0.007419099588111
719 => 0.0076852938172443
720 => 0.007581287126715
721 => 0.0075058290793968
722 => 0.0074916980553946
723 => 0.007668577406084
724 => 0.0079188987446791
725 => 0.0080363439161236
726 => 0.0079199593180849
727 => 0.0077862629584499
728 => 0.0077944004363716
729 => 0.0078485354313304
730 => 0.007854224253873
731 => 0.0077672016679584
801 => 0.0077916980161556
802 => 0.007754485823251
803 => 0.0075261146640836
804 => 0.0075219841539871
805 => 0.007465938188545
806 => 0.0074642411389855
807 => 0.0073688929704472
808 => 0.007355553102558
809 => 0.0071662335267051
810 => 0.0072908442448439
811 => 0.0072072619174727
812 => 0.0070812836350465
813 => 0.0070595649316722
814 => 0.0070589120412226
815 => 0.0071882635690458
816 => 0.0072893326969292
817 => 0.0072087158678421
818 => 0.0071903609785505
819 => 0.0073863431758781
820 => 0.0073614026548508
821 => 0.0073398043244903
822 => 0.0078964852143563
823 => 0.0074558288516758
824 => 0.0072636775257612
825 => 0.0070258537713948
826 => 0.007103290385028
827 => 0.007119607417301
828 => 0.0065476841590037
829 => 0.0063156549643409
830 => 0.0062360312885684
831 => 0.0061902067374478
901 => 0.006211089560822
902 => 0.0060022360713155
903 => 0.0061425890703817
904 => 0.0059617396024151
905 => 0.0059314196005754
906 => 0.0062548008522498
907 => 0.0062997974642544
908 => 0.0061078279380911
909 => 0.0062311034509312
910 => 0.0061864020363176
911 => 0.0059648397474739
912 => 0.005956377697742
913 => 0.0058452055294912
914 => 0.0056712426133525
915 => 0.005591736892629
916 => 0.0055503296229758
917 => 0.0055674150694463
918 => 0.0055587761448875
919 => 0.0055024013185478
920 => 0.0055620074839433
921 => 0.0054097383623258
922 => 0.005349103571182
923 => 0.0053217162427389
924 => 0.0051865686330197
925 => 0.0054016485804977
926 => 0.0054440220396567
927 => 0.00548647898762
928 => 0.0058560377330512
929 => 0.0058375756224916
930 => 0.0060044641105376
1001 => 0.0059979791307804
1002 => 0.0059503798305754
1003 => 0.0057495662127154
1004 => 0.0058296069416359
1005 => 0.0055832540191098
1006 => 0.0057678383790367
1007 => 0.0056836017855933
1008 => 0.0057393579020591
1009 => 0.0056391033773272
1010 => 0.0056945883707217
1011 => 0.005454070358775
1012 => 0.0052294780233989
1013 => 0.0053198605354132
1014 => 0.0054181166624668
1015 => 0.0056311609811145
1016 => 0.0055042735425054
1017 => 0.0055499070635745
1018 => 0.0053970424069521
1019 => 0.0050816389567099
1020 => 0.0050834241059855
1021 => 0.0050349061566034
1022 => 0.0049929795646007
1023 => 0.00551884809121
1024 => 0.005453448027175
1025 => 0.0053492415844839
1026 => 0.0054887260490253
1027 => 0.0055256079553662
1028 => 0.0055266579313899
1029 => 0.0056284221961042
1030 => 0.0056827338024245
1031 => 0.0056923064584384
1101 => 0.0058524347277289
1102 => 0.0059061076114521
1103 => 0.0061271786234372
1104 => 0.0056781258420823
1105 => 0.0056688778955577
1106 => 0.0054906888814884
1107 => 0.0053776785917087
1108 => 0.0054984267927141
1109 => 0.0056053932150317
1110 => 0.0054940126263975
1111 => 0.0055085565799006
1112 => 0.0053590372397876
1113 => 0.0054124833683392
1114 => 0.0054585183742188
1115 => 0.0054331005497846
1116 => 0.0053950488363701
1117 => 0.0055966231882306
1118 => 0.0055852495733224
1119 => 0.0057729602439493
1120 => 0.0059192941350217
1121 => 0.0061815506281355
1122 => 0.0059078723058311
1123 => 0.0058978983799935
1124 => 0.0059953951049239
1125 => 0.0059060926852115
1126 => 0.005962528731855
1127 => 0.0061724579085234
1128 => 0.0061768933812243
1129 => 0.0061025934986998
1130 => 0.0060980723440958
1201 => 0.0061123424492863
1202 => 0.0061959229011056
1203 => 0.006166717323072
1204 => 0.0062005147573672
1205 => 0.006242778966478
1206 => 0.0064176016550136
1207 => 0.0064597508133601
1208 => 0.0063573502104111
1209 => 0.0063665958383265
1210 => 0.0063282952018641
1211 => 0.0062912972669471
1212 => 0.0063744632215261
1213 => 0.0065264506381502
1214 => 0.0065255051323195
1215 => 0.0065607632587631
1216 => 0.0065827287794434
1217 => 0.0064884366849398
1218 => 0.0064270559986344
1219 => 0.0064505932595185
1220 => 0.0064882298522469
1221 => 0.0064383882197499
1222 => 0.0061307425750888
1223 => 0.0062240626111991
1224 => 0.0062085295940737
1225 => 0.0061864086888077
1226 => 0.0062802427067392
1227 => 0.0062711921868001
1228 => 0.0060000939769087
1229 => 0.0060174488047299
1230 => 0.0060011493814695
1231 => 0.0060538161525723
]
'min_raw' => 0.0049929795646007
'max_raw' => 0.011184890586735
'avg_raw' => 0.0080889350756676
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.004992'
'max' => '$0.011184'
'avg' => '$0.008088'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.0012175639474873
'max_diff' => -0.0081278280670844
'year' => 2034
]
9 => [
'items' => [
101 => 0.0059032485067343
102 => 0.0059495621005055
103 => 0.0059786095523558
104 => 0.0059957187246487
105 => 0.0060575287868398
106 => 0.0060502760894507
107 => 0.0060570779489869
108 => 0.0061487259539648
109 => 0.0066122501133461
110 => 0.0066374787106329
111 => 0.0065132438706671
112 => 0.0065628732388096
113 => 0.0064675957047258
114 => 0.0065315561516602
115 => 0.0065753162650336
116 => 0.0063775727272853
117 => 0.0063658636383248
118 => 0.0062701928599658
119 => 0.0063216009171861
120 => 0.0062398070017785
121 => 0.0062598763675898
122 => 0.0062037606711655
123 => 0.0063047577522055
124 => 0.0064176881821681
125 => 0.0064462188685344
126 => 0.0063711669159373
127 => 0.0063168243560923
128 => 0.0062214167225565
129 => 0.0063800817434243
130 => 0.006426480230755
131 => 0.0063798380319228
201 => 0.0063690300153012
202 => 0.006348548843333
203 => 0.006373375192755
204 => 0.0064262275346284
205 => 0.0064013033462304
206 => 0.0064177662117749
207 => 0.0063550267447524
208 => 0.0064884678995466
209 => 0.0067004045677225
210 => 0.0067010859787658
211 => 0.0066761616560172
212 => 0.0066659631601505
213 => 0.0066915370278249
214 => 0.0067054098019433
215 => 0.0067881110005572
216 => 0.0068768526816311
217 => 0.0072909713861738
218 => 0.007174688511061
219 => 0.0075421192617633
220 => 0.0078327092806571
221 => 0.0079198445213619
222 => 0.0078396841999434
223 => 0.0075654600705461
224 => 0.0075520053265026
225 => 0.0079618119502632
226 => 0.0078460228087184
227 => 0.0078322500587696
228 => 0.007685731268743
301 => 0.0077723420203539
302 => 0.0077533989784735
303 => 0.0077234964601401
304 => 0.0078887437408563
305 => 0.0081980718986307
306 => 0.0081498602043805
307 => 0.0081138724110988
308 => 0.0079561843768277
309 => 0.0080511477943565
310 => 0.0080173331402789
311 => 0.0081626223535058
312 => 0.0080765562421403
313 => 0.0078451455920894
314 => 0.0078819985008495
315 => 0.0078764282578281
316 => 0.0079910634644954
317 => 0.0079566528208746
318 => 0.0078697090273901
319 => 0.0081970146486157
320 => 0.0081757612421429
321 => 0.0082058937133163
322 => 0.0082191589590044
323 => 0.0084183841228725
324 => 0.008500000298015
325 => 0.0085185285986646
326 => 0.0085960576526286
327 => 0.0085165996051747
328 => 0.0088344884476179
329 => 0.0090458659785145
330 => 0.0092913918580391
331 => 0.0096501711591595
401 => 0.0097850754952748
402 => 0.0097607062344375
403 => 0.010032728605855
404 => 0.010521546760576
405 => 0.0098595103593524
406 => 0.010556636297391
407 => 0.010335934274114
408 => 0.009812653747184
409 => 0.0097789606503219
410 => 0.010133332298571
411 => 0.010919294507379
412 => 0.010722419888382
413 => 0.010919616523727
414 => 0.010689576173881
415 => 0.010678152731579
416 => 0.010908443977395
417 => 0.011446532025766
418 => 0.011190906563914
419 => 0.010824404782414
420 => 0.011095023994474
421 => 0.010860588588362
422 => 0.010332340004052
423 => 0.010722269342071
424 => 0.010461534698286
425 => 0.010537630928758
426 => 0.011085656368644
427 => 0.011019716497822
428 => 0.011105048796533
429 => 0.010954439522842
430 => 0.010813746712312
501 => 0.010551133133471
502 => 0.01047338619947
503 => 0.010494872654986
504 => 0.010473375551849
505 => 0.010326445668032
506 => 0.01029471617361
507 => 0.010241832292807
508 => 0.010258223218791
509 => 0.010158786051156
510 => 0.01034644453125
511 => 0.010381275598796
512 => 0.010517837791189
513 => 0.010532016131031
514 => 0.010912339893006
515 => 0.010702863955992
516 => 0.010843398499823
517 => 0.010830827767461
518 => 0.0098239948229279
519 => 0.0099627275193222
520 => 0.010178552058193
521 => 0.010081323395975
522 => 0.0099438648156017
523 => 0.0098328596418874
524 => 0.0096646754528484
525 => 0.0099013914692295
526 => 0.010212647858829
527 => 0.010539910106723
528 => 0.010933094254495
529 => 0.010845340129881
530 => 0.010532559802573
531 => 0.01054659089957
601 => 0.010633325620171
602 => 0.010520996276312
603 => 0.010487868159879
604 => 0.01062877432569
605 => 0.010629744669014
606 => 0.010500496183449
607 => 0.010356860143968
608 => 0.010356258303717
609 => 0.010330699657851
610 => 0.010694123000202
611 => 0.01089396909225
612 => 0.010916881124635
613 => 0.010892426929917
614 => 0.010901838378912
615 => 0.010785552341257
616 => 0.011051347739783
617 => 0.011295267881911
618 => 0.011229892073227
619 => 0.01113188444229
620 => 0.011053816643563
621 => 0.011211501780877
622 => 0.011204480309931
623 => 0.01129313745226
624 => 0.011289115452176
625 => 0.011259303389774
626 => 0.011229893137909
627 => 0.011346501462171
628 => 0.011312920137456
629 => 0.011279286651668
630 => 0.011211829546892
701 => 0.011220998087775
702 => 0.011123007379238
703 => 0.011077672393719
704 => 0.010395942985355
705 => 0.010213762611289
706 => 0.010271080265594
707 => 0.010289950725643
708 => 0.010210665593379
709 => 0.010324340106366
710 => 0.010306624053928
711 => 0.01037554685042
712 => 0.010332486879452
713 => 0.010334254075681
714 => 0.010460884268945
715 => 0.010497645552772
716 => 0.010478948467118
717 => 0.010492043265012
718 => 0.010793807355511
719 => 0.010750906151714
720 => 0.01072811574225
721 => 0.010734428841424
722 => 0.010811536036441
723 => 0.01083312184115
724 => 0.010741661269794
725 => 0.010784794603972
726 => 0.01096845086647
727 => 0.011032720164301
728 => 0.011237836911961
729 => 0.011150699671895
730 => 0.011310643847247
731 => 0.011802257713292
801 => 0.01219499288658
802 => 0.011833817390757
803 => 0.012555025521978
804 => 0.013116589503296
805 => 0.013095035742359
806 => 0.012997114073008
807 => 0.012357788410228
808 => 0.01176947140353
809 => 0.012261623560893
810 => 0.012262878157954
811 => 0.012220601851168
812 => 0.011958027340591
813 => 0.012211464827363
814 => 0.012231581774714
815 => 0.012220321633726
816 => 0.012019006372105
817 => 0.011711635176889
818 => 0.011771694772691
819 => 0.011870073615798
820 => 0.01168382194182
821 => 0.011624303246597
822 => 0.011734959824912
823 => 0.012091518376455
824 => 0.012024113047689
825 => 0.012022352822148
826 => 0.012310741402918
827 => 0.012104317417238
828 => 0.011772452316532
829 => 0.011688652001841
830 => 0.011391217339343
831 => 0.011596656520156
901 => 0.011604049910537
902 => 0.011491532970744
903 => 0.01178158244608
904 => 0.011778909589102
905 => 0.012054268397767
906 => 0.012580651019888
907 => 0.012424973776811
908 => 0.012243938080749
909 => 0.012263621680486
910 => 0.012479502186341
911 => 0.012348975904428
912 => 0.012395914065466
913 => 0.012479431139813
914 => 0.012529819064378
915 => 0.012256371633567
916 => 0.012192617956942
917 => 0.012062200309068
918 => 0.012028176779098
919 => 0.012134399232039
920 => 0.012106413368583
921 => 0.011603428524704
922 => 0.011550863809938
923 => 0.011552475894695
924 => 0.011420299420098
925 => 0.011218698570349
926 => 0.011748493566527
927 => 0.011705943613858
928 => 0.011658971759216
929 => 0.011664725543392
930 => 0.011894691594814
1001 => 0.011761299671425
1002 => 0.012115943962261
1003 => 0.012043039757648
1004 => 0.01196826583528
1005 => 0.01195792980154
1006 => 0.011929148220839
1007 => 0.011830445471463
1008 => 0.011711255970475
1009 => 0.011632556737905
1010 => 0.010730418696095
1011 => 0.010897850269159
1012 => 0.011090465032102
1013 => 0.011156954876414
1014 => 0.01104321939676
1015 => 0.011834936441425
1016 => 0.011979590774661
1017 => 0.011541423363722
1018 => 0.011459460131392
1019 => 0.011840309937291
1020 => 0.011610610947339
1021 => 0.01171404438845
1022 => 0.011490477863836
1023 => 0.011944747781758
1024 => 0.011941287006093
1025 => 0.01176456574787
1026 => 0.011913929345185
1027 => 0.011887973744494
1028 => 0.011688455879206
1029 => 0.011951072853961
1030 => 0.011951203108704
1031 => 0.011781112739916
1101 => 0.011582484426741
1102 => 0.011546974375736
1103 => 0.011520222322409
1104 => 0.011707465023262
1105 => 0.011875346243355
1106 => 0.012187731572663
1107 => 0.012266272666543
1108 => 0.012572823784735
1109 => 0.012390287519555
1110 => 0.012471203481669
1111 => 0.012559049204805
1112 => 0.012601165674896
1113 => 0.012532539146977
1114 => 0.013008739215004
1115 => 0.013048945091138
1116 => 0.013062425773627
1117 => 0.012901853789998
1118 => 0.013044479293801
1119 => 0.012977749543832
1120 => 0.013151361815193
1121 => 0.013178586436136
1122 => 0.013155528150742
1123 => 0.01316416967514
1124 => 0.012757816924528
1125 => 0.012736745390727
1126 => 0.012449433532186
1127 => 0.012566515238244
1128 => 0.012347636600641
1129 => 0.012417045271325
1130 => 0.012447639952012
1201 => 0.012431659027054
1202 => 0.012573134862236
1203 => 0.012452851500728
1204 => 0.012135403933291
1205 => 0.011817869877477
1206 => 0.011813883496063
1207 => 0.011730282384109
1208 => 0.011669854092474
1209 => 0.011681494725251
1210 => 0.011722517833472
1211 => 0.011667469754848
1212 => 0.011679217053431
1213 => 0.011874300481748
1214 => 0.011913423072025
1215 => 0.011780469224079
1216 => 0.011246640339427
1217 => 0.011115637392125
1218 => 0.011209799712744
1219 => 0.011164796188318
1220 => 0.0090108619005879
1221 => 0.0095168968117312
1222 => 0.0092162280508517
1223 => 0.0093547900489695
1224 => 0.0090478851019097
1225 => 0.0091943562289131
1226 => 0.0091673083600247
1227 => 0.0099809975224815
1228 => 0.0099682928854026
1229 => 0.0099743739228579
1230 => 0.0096841101610603
1231 => 0.010146508215124
]
'min_raw' => 0.0059032485067343
'max_raw' => 0.013178586436136
'avg_raw' => 0.009540917471435
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.0059032'
'max' => '$0.013178'
'avg' => '$0.00954'
'bar_min_pct' => 61.631153054957
'bar_max_pct' => 60.119598047091
'min_diff' => 0.00091026894213365
'max_diff' => 0.0019936958494011
'year' => 2035
]
10 => [
'items' => [
101 => 0.010374302123852
102 => 0.010332143533885
103 => 0.010342753942708
104 => 0.010160431965154
105 => 0.0099761391981367
106 => 0.0097717301570611
107 => 0.010151496889658
108 => 0.010109273311828
109 => 0.010206119007807
110 => 0.010452424880184
111 => 0.010488694355516
112 => 0.010537440898171
113 => 0.010519968732645
114 => 0.010936226600567
115 => 0.010885815026203
116 => 0.011007292416019
117 => 0.010757404208657
118 => 0.01047463198242
119 => 0.010528377738107
120 => 0.010523201589638
121 => 0.010457303278724
122 => 0.010397813230144
123 => 0.010298779060475
124 => 0.010612137827607
125 => 0.010599416033922
126 => 0.010805367086219
127 => 0.010768963237223
128 => 0.0105258494241
129 => 0.010534532281497
130 => 0.010592928670329
131 => 0.010795039238835
201 => 0.010855039416304
202 => 0.010827244943507
203 => 0.01089303239899
204 => 0.010945028121433
205 => 0.010899562261188
206 => 0.011543262963236
207 => 0.01127595355309
208 => 0.011406238299668
209 => 0.011437310444045
210 => 0.011357719799601
211 => 0.011374980160453
212 => 0.011401124903978
213 => 0.011559870666996
214 => 0.011976465482611
215 => 0.01216097249059
216 => 0.01271607092751
217 => 0.012145651752039
218 => 0.012111805438796
219 => 0.012211795429652
220 => 0.012537696975261
221 => 0.012801809567602
222 => 0.012889430951502
223 => 0.012901011563856
224 => 0.013065395105013
225 => 0.013159616685232
226 => 0.0130454346194
227 => 0.012948677273968
228 => 0.012602104472594
229 => 0.012642221218039
301 => 0.012918585812296
302 => 0.013308967079477
303 => 0.013643954818967
304 => 0.013526653788099
305 => 0.014421577851999
306 => 0.014510305917498
307 => 0.014498046567768
308 => 0.014700182305481
309 => 0.014298984030348
310 => 0.014127463994879
311 => 0.012969597310293
312 => 0.013294910619893
313 => 0.013767772620378
314 => 0.013705187561472
315 => 0.013361782537083
316 => 0.013643694315462
317 => 0.013550485465334
318 => 0.013476967777998
319 => 0.013813766555786
320 => 0.013443442464677
321 => 0.013764078354286
322 => 0.013352859509309
323 => 0.013527189609328
324 => 0.013428231413159
325 => 0.01349226949394
326 => 0.013117904182205
327 => 0.013319902617213
328 => 0.013109500383199
329 => 0.013109400625145
330 => 0.013104755984168
331 => 0.013352293279419
401 => 0.01336036546173
402 => 0.013177435026532
403 => 0.013151071892909
404 => 0.013248550215389
405 => 0.013134428629378
406 => 0.0131878254012
407 => 0.0131360459632
408 => 0.013124389321065
409 => 0.013031507213315
410 => 0.012991491047449
411 => 0.013007182417174
412 => 0.012953619682846
413 => 0.012921346197964
414 => 0.013098335975713
415 => 0.013003777477209
416 => 0.013083843529658
417 => 0.012992598157751
418 => 0.012676301945007
419 => 0.012494396648287
420 => 0.011896942423088
421 => 0.012066379700215
422 => 0.012178716790245
423 => 0.01214158938266
424 => 0.012221353420552
425 => 0.012226250284662
426 => 0.012200318182845
427 => 0.012170292131049
428 => 0.01215567710958
429 => 0.012264605505751
430 => 0.012327842106089
501 => 0.012189991320106
502 => 0.012157694809688
503 => 0.012297069565267
504 => 0.012382088085656
505 => 0.013009817072427
506 => 0.012963312881549
507 => 0.013080029274667
508 => 0.013066888799961
509 => 0.013189226174327
510 => 0.013389196077784
511 => 0.012982601351592
512 => 0.013053172137071
513 => 0.013035869810189
514 => 0.013224772078173
515 => 0.013225361810435
516 => 0.01311210546441
517 => 0.013173503566964
518 => 0.013139232830487
519 => 0.013201164683269
520 => 0.012962691789728
521 => 0.013253126032503
522 => 0.013417783532987
523 => 0.013420069802541
524 => 0.013498116150968
525 => 0.013577415761109
526 => 0.013729624457234
527 => 0.013573170743185
528 => 0.013291725742073
529 => 0.013312045162091
530 => 0.013147034060916
531 => 0.013149807927338
601 => 0.013135000810984
602 => 0.013179438081792
603 => 0.012972443271746
604 => 0.013021024539928
605 => 0.012953010479981
606 => 0.013053024287787
607 => 0.012945425963463
608 => 0.013035861466483
609 => 0.013074890431602
610 => 0.013218908153124
611 => 0.012924154428897
612 => 0.012323131632124
613 => 0.012449473910703
614 => 0.012262603756713
615 => 0.01227989930093
616 => 0.012314839052813
617 => 0.012201587885385
618 => 0.012223192639176
619 => 0.01222242076534
620 => 0.012215769173624
621 => 0.012186308171008
622 => 0.012143583888533
623 => 0.012313784280071
624 => 0.012342704643165
625 => 0.01240699102785
626 => 0.012598263702798
627 => 0.012579151052051
628 => 0.012610324578396
629 => 0.012542272945415
630 => 0.012283056021007
701 => 0.012297132747133
702 => 0.012121595746782
703 => 0.01240250215209
704 => 0.012335979807529
705 => 0.012293092419238
706 => 0.012281390197994
707 => 0.012473137000907
708 => 0.012530510649602
709 => 0.012494759241938
710 => 0.012421432061783
711 => 0.012562241924914
712 => 0.012599916703997
713 => 0.012608350697641
714 => 0.012857838777496
715 => 0.012622294309838
716 => 0.012678992204314
717 => 0.013121332991888
718 => 0.012720190936415
719 => 0.012932684829734
720 => 0.012922284359421
721 => 0.013030989044842
722 => 0.012913367402365
723 => 0.012914825463591
724 => 0.013011347859952
725 => 0.012875799562169
726 => 0.012842235897418
727 => 0.012795867934953
728 => 0.012897110684659
729 => 0.012957801134292
730 => 0.013446921586112
731 => 0.013762915704591
801 => 0.013749197566533
802 => 0.013874555669107
803 => 0.013818080695749
804 => 0.013635708109429
805 => 0.01394699587631
806 => 0.013848491402035
807 => 0.013856611991211
808 => 0.013856309742477
809 => 0.013921806606459
810 => 0.013875396075628
811 => 0.013783916155418
812 => 0.013844644795642
813 => 0.014024987146224
814 => 0.014584775336008
815 => 0.014898040223218
816 => 0.014565916396451
817 => 0.01479501096484
818 => 0.014657635858548
819 => 0.014632670715179
820 => 0.014776559034083
821 => 0.014920699210441
822 => 0.014911518104342
823 => 0.014806879737986
824 => 0.014747772179932
825 => 0.015195354412004
826 => 0.015525125376231
827 => 0.015502637207283
828 => 0.015601892671474
829 => 0.015893309784193
830 => 0.015919953312822
831 => 0.015916596840609
901 => 0.015850558074938
902 => 0.016137496067704
903 => 0.016376864789464
904 => 0.015835272008728
905 => 0.016041503449662
906 => 0.01613408738786
907 => 0.01627002807755
908 => 0.016499382807363
909 => 0.016748522877277
910 => 0.016783754014844
911 => 0.016758755836775
912 => 0.016594441263422
913 => 0.016867053300781
914 => 0.017026743038727
915 => 0.017121834623239
916 => 0.017362971059831
917 => 0.016134659154743
918 => 0.015265198937258
919 => 0.01512942016914
920 => 0.015405531633344
921 => 0.015478340024507
922 => 0.015448991053324
923 => 0.01447033453068
924 => 0.015124267745086
925 => 0.015827844899521
926 => 0.015854872163431
927 => 0.016207097598045
928 => 0.016321796637764
929 => 0.016605384279872
930 => 0.016587645795645
1001 => 0.016656694873633
1002 => 0.016640821686367
1003 => 0.017166108076948
1004 => 0.017745576971543
1005 => 0.017725511806322
1006 => 0.017642206296759
1007 => 0.01776592918416
1008 => 0.018364003183042
1009 => 0.018308942113166
1010 => 0.01836242925246
1011 => 0.019067592203116
1012 => 0.019984404347229
1013 => 0.019558453059854
1014 => 0.020482644789276
1015 => 0.021064374493649
1016 => 0.022070415865387
1017 => 0.021944454530787
1018 => 0.022336099054133
1019 => 0.02171895745293
1020 => 0.020301875591673
1021 => 0.020077616962757
1022 => 0.020526588416979
1023 => 0.021630340927189
1024 => 0.020491827322511
1025 => 0.020722147141934
1026 => 0.020655815018445
1027 => 0.020652280461478
1028 => 0.020787180124838
1029 => 0.020591501127241
1030 => 0.01979426968905
1031 => 0.020159636159058
1101 => 0.020018550618649
1102 => 0.020175095544357
1103 => 0.021019903944365
1104 => 0.020646394013004
1105 => 0.020252931641799
1106 => 0.02074642077158
1107 => 0.021374802015055
1108 => 0.021335479046148
1109 => 0.021259176050742
1110 => 0.021689292040748
1111 => 0.022399717644076
1112 => 0.022591742829935
1113 => 0.022733491896353
1114 => 0.022753036697742
1115 => 0.022954360299075
1116 => 0.021871792554626
1117 => 0.023589855367378
1118 => 0.023886517354613
1119 => 0.023830757196393
1120 => 0.02416048450976
1121 => 0.024063470369792
1122 => 0.023922912102032
1123 => 0.02444560002873
1124 => 0.023846380499512
1125 => 0.022995863817428
1126 => 0.022529253544325
1127 => 0.023143723592325
1128 => 0.023518959008589
1129 => 0.023766965749284
1130 => 0.023842012439169
1201 => 0.021955829206953
1202 => 0.020939281057306
1203 => 0.021590876766481
1204 => 0.022385868502409
1205 => 0.021867376335393
1206 => 0.021887700246705
1207 => 0.021148466673885
1208 => 0.022451274270597
1209 => 0.022261466162093
1210 => 0.023246190964778
1211 => 0.023011178487707
1212 => 0.023814183337501
1213 => 0.023602725248927
1214 => 0.024480475952134
1215 => 0.024830634471795
1216 => 0.025418605124127
1217 => 0.025851118729454
1218 => 0.026105098991169
1219 => 0.026089850968912
1220 => 0.02709624729829
1221 => 0.026502810543665
1222 => 0.025757314117552
1223 => 0.025743830439215
1224 => 0.026129933602065
1225 => 0.026939099909168
1226 => 0.027148904959709
1227 => 0.02726615736083
1228 => 0.027086581226928
1229 => 0.026442448161778
1230 => 0.026164314770076
1231 => 0.026401292478106
]
'min_raw' => 0.0097717301570611
'max_raw' => 0.02726615736083
'avg_raw' => 0.018518943758946
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$0.009771'
'max' => '$0.027266'
'avg' => '$0.018518'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.0038684816503267
'max_diff' => 0.014087570924695
'year' => 2036
]
11 => [
'items' => [
101 => 0.026111489104911
102 => 0.026611771031511
103 => 0.027298764971186
104 => 0.027156903439312
105 => 0.027631125271299
106 => 0.028121894977814
107 => 0.028823717699977
108 => 0.02900720014797
109 => 0.029310489657291
110 => 0.029622674187796
111 => 0.029722939445385
112 => 0.029914376932605
113 => 0.029913367962551
114 => 0.030490277715517
115 => 0.031126627038447
116 => 0.031366834176332
117 => 0.031919177244801
118 => 0.030973309096458
119 => 0.031690760952326
120 => 0.032337920485304
121 => 0.031566350210832
122 => 0.032629780081374
123 => 0.032671070653463
124 => 0.033294509269586
125 => 0.032662534795759
126 => 0.032287270370534
127 => 0.033370644705183
128 => 0.033894855419747
129 => 0.033736958886352
130 => 0.032535358470901
131 => 0.031835975490043
201 => 0.030005555328234
202 => 0.032173767078163
203 => 0.03322983977395
204 => 0.032532623497748
205 => 0.032884258832815
206 => 0.034802667202803
207 => 0.035533072902351
208 => 0.035381153622766
209 => 0.035406825480212
210 => 0.035800939137887
211 => 0.037548656138372
212 => 0.036501383599918
213 => 0.037301984215013
214 => 0.037726619894479
215 => 0.038121045178771
216 => 0.037152461339942
217 => 0.035892347996948
218 => 0.035493217205263
219 => 0.03246329907971
220 => 0.032305578683008
221 => 0.032217045444922
222 => 0.031658855902063
223 => 0.03122027182236
224 => 0.030871493478597
225 => 0.029956194950533
226 => 0.030265081334885
227 => 0.028806286518801
228 => 0.029739571745617
301 => 0.027411299995315
302 => 0.029350353893935
303 => 0.028295015014878
304 => 0.029003646688917
305 => 0.029001174339763
306 => 0.027696358755981
307 => 0.026943768358063
308 => 0.027423348250873
309 => 0.027937495965065
310 => 0.028020914701892
311 => 0.02868752063397
312 => 0.028873556020967
313 => 0.028309860113206
314 => 0.027363051738368
315 => 0.027582973729443
316 => 0.026939311645933
317 => 0.025811318602685
318 => 0.026621462899215
319 => 0.02689808178158
320 => 0.027020252438663
321 => 0.025911000831505
322 => 0.025562449893512
323 => 0.025376884298751
324 => 0.027219861285269
325 => 0.027320823724876
326 => 0.026804285609197
327 => 0.029139086872219
328 => 0.028610649438546
329 => 0.029201043522273
330 => 0.027563018113866
331 => 0.027625592890361
401 => 0.026850125411499
402 => 0.027284335382906
403 => 0.026977449770357
404 => 0.027249255508163
405 => 0.027412174746707
406 => 0.028187514978986
407 => 0.029359207033942
408 => 0.028071705003602
409 => 0.027510721931614
410 => 0.027858752674387
411 => 0.028785604405345
412 => 0.030189832222415
413 => 0.029358501091991
414 => 0.029727431730755
415 => 0.029808026662743
416 => 0.02919503386472
417 => 0.030212434141242
418 => 0.030757667214775
419 => 0.031316963528132
420 => 0.031802584845893
421 => 0.031093568281388
422 => 0.031852317638941
423 => 0.031240899594045
424 => 0.030692394400537
425 => 0.030693226256502
426 => 0.030349140936233
427 => 0.02968243227067
428 => 0.029559480963594
429 => 0.030199089190041
430 => 0.030711994416527
501 => 0.030754239747631
502 => 0.031038210435036
503 => 0.031206261362711
504 => 0.032853388908088
505 => 0.033515877232593
506 => 0.034325955415535
507 => 0.034641526521295
508 => 0.035591282411132
509 => 0.034824277394687
510 => 0.034658331034691
511 => 0.032354533908732
512 => 0.032731780559047
513 => 0.033335788845088
514 => 0.032364493782899
515 => 0.032980556938553
516 => 0.03310218085548
517 => 0.032331489548356
518 => 0.032743149075097
519 => 0.031649903420617
520 => 0.029383036801714
521 => 0.030214957811807
522 => 0.030827531696819
523 => 0.029953313233091
524 => 0.031520315992397
525 => 0.030604905329913
526 => 0.030314764097367
527 => 0.029182819706386
528 => 0.029717053886394
529 => 0.030439613264351
530 => 0.029993155575317
531 => 0.030919622316021
601 => 0.032231746300513
602 => 0.033166843990196
603 => 0.033238629179656
604 => 0.032637424011869
605 => 0.033600859130088
606 => 0.033607876703118
607 => 0.03252111795402
608 => 0.031855484271295
609 => 0.031704250898075
610 => 0.032082061515428
611 => 0.032540793352583
612 => 0.033264085604007
613 => 0.033701155963241
614 => 0.034840803655916
615 => 0.035149159645294
616 => 0.035487949389926
617 => 0.035940676967642
618 => 0.036484292501659
619 => 0.03529489266128
620 => 0.035342149734257
621 => 0.034234597071258
622 => 0.033051018211725
623 => 0.033949207030923
624 => 0.035123469430973
625 => 0.034854092338957
626 => 0.03482378191323
627 => 0.034874755641891
628 => 0.034671654111544
629 => 0.03375303341708
630 => 0.03329170785519
701 => 0.033886935526731
702 => 0.034203272543619
703 => 0.034693883669326
704 => 0.034633405492538
705 => 0.035897167064571
706 => 0.036388226597296
707 => 0.036262592555203
708 => 0.0362857122425
709 => 0.037174752070439
710 => 0.038163547204093
711 => 0.03908968432977
712 => 0.040031790792523
713 => 0.038896044680633
714 => 0.038319382848097
715 => 0.038914350661857
716 => 0.038598652365098
717 => 0.040412748420475
718 => 0.040538352495361
719 => 0.042352317370945
720 => 0.044073986040794
721 => 0.04299263679616
722 => 0.04401230042881
723 => 0.045115149781917
724 => 0.047242725114919
725 => 0.046526232591767
726 => 0.045977410547901
727 => 0.045458776368337
728 => 0.046537971765153
729 => 0.047926339402588
730 => 0.048225380494072
731 => 0.048709941304765
801 => 0.048200484861598
802 => 0.048814069032606
803 => 0.05098029077881
804 => 0.050394958541217
805 => 0.049563692666983
806 => 0.051273716689463
807 => 0.051892567735648
808 => 0.056235988472586
809 => 0.061719736570732
810 => 0.059449428849868
811 => 0.058040175585156
812 => 0.058371383530298
813 => 0.060373862699152
814 => 0.061016995452677
815 => 0.059268738927443
816 => 0.059886252687542
817 => 0.0632888142183
818 => 0.065114179312308
819 => 0.062635088335406
820 => 0.055795374652307
821 => 0.049488846270085
822 => 0.051161621583725
823 => 0.050971980775419
824 => 0.054627608662024
825 => 0.050380998560933
826 => 0.050452500583996
827 => 0.054183722983919
828 => 0.053188296816965
829 => 0.051575833911052
830 => 0.049500619033757
831 => 0.045664392398933
901 => 0.042266539487375
902 => 0.048930511525731
903 => 0.04864314893379
904 => 0.04822700531591
905 => 0.04915308790606
906 => 0.0536498820907
907 => 0.053546216430042
908 => 0.052886748387618
909 => 0.053386949085512
910 => 0.051488146310277
911 => 0.05197751102039
912 => 0.049487847283768
913 => 0.050613279270264
914 => 0.05157237428985
915 => 0.051764926814677
916 => 0.052198757485086
917 => 0.048491721905695
918 => 0.050156072047995
919 => 0.051133721828078
920 => 0.046716664554461
921 => 0.0510464108077
922 => 0.048427190663667
923 => 0.047538188007416
924 => 0.048735112966865
925 => 0.04826867014612
926 => 0.047867649999285
927 => 0.04764387386695
928 => 0.048522763457382
929 => 0.048481762207488
930 => 0.047043728252424
1001 => 0.045167871579804
1002 => 0.045797470652032
1003 => 0.045568731406569
1004 => 0.044739750873061
1005 => 0.045298383661154
1006 => 0.042838447579978
1007 => 0.038606255408665
1008 => 0.041402171192586
1009 => 0.041294531476276
1010 => 0.04124025465024
1011 => 0.043341308088421
1012 => 0.04313934027989
1013 => 0.042772766729732
1014 => 0.044733018462342
1015 => 0.044017500210833
1016 => 0.046222558864682
1017 => 0.047674953108359
1018 => 0.047306578948131
1019 => 0.04867256275434
1020 => 0.045811975343044
1021 => 0.04676214773423
1022 => 0.046957976947171
1023 => 0.044708829260244
1024 => 0.043172384711144
1025 => 0.043069921376469
1026 => 0.04040593826343
1027 => 0.041829016539495
1028 => 0.043081266531452
1029 => 0.042481535963829
1030 => 0.042291679182561
1031 => 0.043261616303148
1101 => 0.043336988724368
1102 => 0.041618489532957
1103 => 0.041975819932643
1104 => 0.04346594710057
1105 => 0.041938272551284
1106 => 0.038970250446242
1107 => 0.038234139928075
1108 => 0.038135929215743
1109 => 0.036139539108815
1110 => 0.038283330352749
1111 => 0.037347508024738
1112 => 0.040303759546051
1113 => 0.038615164531772
1114 => 0.038542372575658
1115 => 0.038432336857735
1116 => 0.036713961422864
1117 => 0.037090176434645
1118 => 0.038340772432968
1119 => 0.038786999174142
1120 => 0.03874045406921
1121 => 0.038334643830316
1122 => 0.038520421679597
1123 => 0.03792196649777
1124 => 0.037710639517299
1125 => 0.037043633436868
1126 => 0.036063318763768
1127 => 0.036199637531682
1128 => 0.034257377650982
1129 => 0.033199131384443
1130 => 0.032906222765327
1201 => 0.032514533118351
1202 => 0.032950465153199
1203 => 0.034251875472772
1204 => 0.032682098517766
1205 => 0.029990826035458
1206 => 0.03015257609735
1207 => 0.030515980462396
1208 => 0.029838778832292
1209 => 0.029197864322623
1210 => 0.029755087489743
1211 => 0.02861475986057
1212 => 0.030653783608402
1213 => 0.030598633730321
1214 => 0.03135865569113
1215 => 0.031833913020445
1216 => 0.030738598742762
1217 => 0.03046313016397
1218 => 0.030620049585799
1219 => 0.028026521085297
1220 => 0.031146709081374
1221 => 0.031173692596732
1222 => 0.030942643356064
1223 => 0.032604047138978
1224 => 0.036110127325762
1225 => 0.034790998927745
1226 => 0.034280192541166
1227 => 0.033309149226882
1228 => 0.034603006788319
1229 => 0.034503658714923
1230 => 0.034054369050387
1231 => 0.033782637259407
]
'min_raw' => 0.025376884298751
'max_raw' => 0.065114179312308
'avg_raw' => 0.04524553180553
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$0.025376'
'max' => '$0.065114'
'avg' => '$0.045245'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 0.01560515414169
'max_diff' => 0.037848021951478
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.00079655140062161
]
1 => [
'year' => 2028
'avg' => 0.0013671134439905
]
2 => [
'year' => 2029
'avg' => 0.0037347075307571
]
3 => [
'year' => 2030
'avg' => 0.0028813212980858
]
4 => [
'year' => 2031
'avg' => 0.0028298145929377
]
5 => [
'year' => 2032
'avg' => 0.0049615555568476
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.00079655140062161
'min' => '$0.000796'
'max_raw' => 0.0049615555568476
'max' => '$0.004961'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.0049615555568476
]
1 => [
'year' => 2033
'avg' => 0.012761631082954
]
2 => [
'year' => 2034
'avg' => 0.0080889350756676
]
3 => [
'year' => 2035
'avg' => 0.009540917471435
]
4 => [
'year' => 2036
'avg' => 0.018518943758946
]
5 => [
'year' => 2037
'avg' => 0.04524553180553
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.0049615555568476
'min' => '$0.004961'
'max_raw' => 0.04524553180553
'max' => '$0.045245'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 0.04524553180553
]
]
]
]
'prediction_2025_max_price' => '$0.001361'
'last_price' => 0.00132059
'sma_50day_nextmonth' => '$0.001229'
'sma_200day_nextmonth' => '$0.001724'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'increase'
'sma_200day_direction_label' => 'aumentar'
'sma_200day_date_nextmonth' => '4 de fev. de 2026'
'sma_50day_date_nextmonth' => '4 de fev. de 2026'
'daily_sma3' => '$0.001292'
'daily_sma3_action' => 'BUY'
'daily_sma5' => '$0.00127'
'daily_sma5_action' => 'BUY'
'daily_sma10' => '$0.001247'
'daily_sma10_action' => 'BUY'
'daily_sma21' => '$0.001253'
'daily_sma21_action' => 'BUY'
'daily_sma50' => '$0.001297'
'daily_sma50_action' => 'BUY'
'daily_sma100' => '$0.001324'
'daily_sma100_action' => 'SELL'
'daily_sma200' => '$0.002017'
'daily_sma200_action' => 'SELL'
'daily_ema3' => '$0.001298'
'daily_ema3_action' => 'BUY'
'daily_ema5' => '$0.001281'
'daily_ema5_action' => 'BUY'
'daily_ema10' => '$0.001265'
'daily_ema10_action' => 'BUY'
'daily_ema21' => '$0.001271'
'daily_ema21_action' => 'BUY'
'daily_ema50' => '$0.00131'
'daily_ema50_action' => 'BUY'
'daily_ema100' => '$0.001667'
'daily_ema100_action' => 'SELL'
'daily_ema200' => '$0.003749'
'daily_ema200_action' => 'SELL'
'weekly_sma21' => '$0.001578'
'weekly_sma21_action' => 'SELL'
'weekly_sma50' => '$0.008114'
'weekly_sma50_action' => 'SELL'
'weekly_sma100' => '$0.017667'
'weekly_sma100_action' => 'SELL'
'weekly_sma200' => '$0.0301011'
'weekly_sma200_action' => 'SELL'
'weekly_ema3' => '$0.001279'
'weekly_ema3_action' => 'BUY'
'weekly_ema5' => '$0.001276'
'weekly_ema5_action' => 'BUY'
'weekly_ema10' => '$0.001355'
'weekly_ema10_action' => 'SELL'
'weekly_ema21' => '$0.002363'
'weekly_ema21_action' => 'SELL'
'weekly_ema50' => '$0.007436'
'weekly_ema50_action' => 'SELL'
'weekly_ema100' => '$0.017115'
'weekly_ema100_action' => 'SELL'
'weekly_ema200' => '$0.037881'
'weekly_ema200_action' => 'SELL'
'rsi_14' => '54.16'
'rsi_14_action' => 'NEUTRAL'
'stoch_rsi_14' => 116.58
'stoch_rsi_14_action' => 'SELL'
'momentum_10' => 0
'momentum_10_action' => 'BUY'
'vwma_10' => '0.001249'
'vwma_10_action' => 'BUY'
'hma_9' => '0.00130042'
'hma_9_action' => 'BUY'
'stochastic_fast_14' => 100
'stochastic_fast_14_action' => 'SELL'
'cci_20' => 152.42
'cci_20_action' => 'SELL'
'adx_14' => 9.27
'adx_14_action' => 'NEUTRAL'
'ao_5_34' => '-0.000042'
'ao_5_34_action' => 'SELL'
'macd_12_26' => 0
'macd_12_26_action' => 'BUY'
'williams_percent_r_14' => -0
'williams_percent_r_14_action' => 'SELL'
'ultimate_oscillator' => 59.34
'ultimate_oscillator_action' => 'NEUTRAL'
'ichimoku_cloud' => '0.000080'
'ichimoku_cloud_action' => 'NEUTRAL'
'sell_signals' => 15
'buy_signals' => 20
'sell_pct' => 42.86
'buy_pct' => 57.14
'overall_action' => 'bullish'
'overall_action_label' => 'Altista'
'overall_action_dir' => 1
'last_updated' => 1767697612
'last_updated_date' => '6 de janeiro de 2026'
]
Previsão de preço de NEM para 2026
A previsão de preço para NEM em 2026 sugere que o preço médio poderia variar entre $0.000456 na extremidade inferior e $0.001361 na extremidade superior. No mercado de criptomoedas, comparado ao preço médio de hoje, NEM poderia potencialmente ganhar 3.13% até 2026 se XEM atingir a meta de preço prevista.
Previsão de preço de NEM 2027-2032
A previsão de preço de XEM para 2027-2032 está atualmente dentro de uma faixa de preço entre $0.000796 na extremidade inferior e $0.004961 na extremidade superior. Considerando a volatilidade de preços no mercado, se NEM atingir a meta de preço superior, poderia ganhar 275.71% até 2032 em comparação com o preço de hoje.
| Previsão de Preço de NEM | Potencial Mínimo ($) | Preço Médio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2027 | $0.000439 | $0.000796 | $0.001153 |
| 2028 | $0.000792 | $0.001367 | $0.001941 |
| 2029 | $0.001741 | $0.003734 | $0.005728 |
| 2030 | $0.00148 | $0.002881 | $0.004281 |
| 2031 | $0.00175 | $0.002829 | $0.0039087 |
| 2032 | $0.002672 | $0.004961 | $0.00725 |
Previsão de preço de NEM 2032-2037
A previsão de preço de NEM para 2032-2037 é atualmente estimada entre $0.004961 na extremidade inferior e $0.045245 na extremidade superior. Comparado ao preço atual, NEM poderia potencialmente ganhar 3326.16% até 2037 se atingir a meta de preço superior. Por favor, note que esta informação é apenas para fins gerais e não deve ser considerada como aconselhamento de investimento a longo prazo.
| Previsão de Preço de NEM | Potencial Mínimo ($) | Preço Médio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2032 | $0.002672 | $0.004961 | $0.00725 |
| 2033 | $0.00621 | $0.012761 | $0.019312 |
| 2034 | $0.004992 | $0.008088 | $0.011184 |
| 2035 | $0.0059032 | $0.00954 | $0.013178 |
| 2036 | $0.009771 | $0.018518 | $0.027266 |
| 2037 | $0.025376 | $0.045245 | $0.065114 |
NEM Histograma de preços potenciais
Previsão de preço de NEM baseada na análise técnica
Em 6 de janeiro de 2026, o sentimento geral de previsão de preço para NEM é Altista, com 20 indicadores técnicos mostrando sinais de alta e 15 indicando sinais de baixa. A previsão de preço de XEM foi atualizada pela última vez em 6 de janeiro de 2026.
Médias Móveis Simples de 50 e 200 dias e Índice de Força Relativa de 14 dias - RSI (14) de NEM
De acordo com nossos indicadores técnicos, o SMA de 200 dias de NEM está projetado para aumentar no próximo mês, alcançando $0.001724 até 4 de fev. de 2026. O SMA de 50 dias de curto prazo para NEM é esperado para alcançar $0.001229 até 4 de fev. de 2026.
O oscilador de momentum Índice de Força Relativa (RSI) é uma ferramenta comumente usada para identificar se uma criptomoeda está sobrevendida (abaixo de 30) ou sobrecomprada (acima de 70). No momento, o RSI está em 54.16, sugerindo que o mercado de XEM está em um estado NEUTRAL.
Médias Móveis e Osciladores Populares de XEM para Sábado, 19 de Outubro de 2024
Médias móveis (MA) são indicadores amplamente utilizados nos mercados financeiros, projetados para suavizar movimentos de preços ao longo de um período definido. Como indicadores atrasados, eles se baseiam em dados históricos de preços. A tabela abaixo destaca dois tipos: a média móvel simples (SMA) e a média móvel exponencial (EMA).
Média Móvel Simples Diária (SMA)
| Período | Valor | Ação |
|---|---|---|
| SMA 3 | $0.001292 | BUY |
| SMA 5 | $0.00127 | BUY |
| SMA 10 | $0.001247 | BUY |
| SMA 21 | $0.001253 | BUY |
| SMA 50 | $0.001297 | BUY |
| SMA 100 | $0.001324 | SELL |
| SMA 200 | $0.002017 | SELL |
Média Móvel Exponencial Diária (EMA)
| Período | Valor | Ação |
|---|---|---|
| EMA 3 | $0.001298 | BUY |
| EMA 5 | $0.001281 | BUY |
| EMA 10 | $0.001265 | BUY |
| EMA 21 | $0.001271 | BUY |
| EMA 50 | $0.00131 | BUY |
| EMA 100 | $0.001667 | SELL |
| EMA 200 | $0.003749 | SELL |
Média Móvel Simples Semanal (SMA)
| Período | Valor | Ação |
|---|---|---|
| SMA 21 | $0.001578 | SELL |
| SMA 50 | $0.008114 | SELL |
| SMA 100 | $0.017667 | SELL |
| SMA 200 | $0.0301011 | SELL |
Média Móvel Exponencial Semanal (EMA)
| Período | Valor | Ação |
|---|---|---|
| EMA 21 | $0.002363 | SELL |
| EMA 50 | $0.007436 | SELL |
| EMA 100 | $0.017115 | SELL |
| EMA 200 | $0.037881 | SELL |
Osciladores de NEM
Um oscilador é uma ferramenta de análise técnica que define limites altos e baixos entre dois extremos, criando um indicador de tendência que flutua dentro desses limites. Os traders usam esse indicador para identificar condições de sobrecompra ou sobrevenda de curto prazo.
| Período | Valor | Ação |
|---|---|---|
| RSI (14) | 54.16 | NEUTRAL |
| Stoch RSI (14) | 116.58 | SELL |
| Estocástico Rápido (14) | 100 | SELL |
| Índice de Canal de Commodities (20) | 152.42 | SELL |
| Índice Direcional Médio (14) | 9.27 | NEUTRAL |
| Oscilador Impressionante (5, 34) | -0.000042 | SELL |
| Momentum (10) | 0 | BUY |
| MACD (12, 26) | 0 | BUY |
| Williams Percent Range (14) | -0 | SELL |
| Oscilador Ultimate (7, 14, 28) | 59.34 | NEUTRAL |
| VWMA (10) | 0.001249 | BUY |
| Média Móvel de Hull (9) | 0.00130042 | BUY |
| Nuvem Ichimoku B/L (9, 26, 52, 26) | 0.000080 | NEUTRAL |
Previsão do preço de NEM com base nos fluxos financeiros mundiais
Definições dos fluxos financeiros mundiais, usadas na previsão do preço do NEM
M0: o total de todas as moedas físicas, mais as contas no Banco Central que podem ser trocadas por moedas físicas.
M1: o valor de M0, mais o valor em contas de demanda, incluindo contas 'correntes'.
M2: o valor de M1, mais a maioria das contas de poupança, do mercado de moedas e de certificados de depósito (CD) de menos de US$ 100.000.
Previsões de preço de NEM por empresas de Internet ou nichos tecnológicos
| Comparação | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Facebook stock | $0.001855 | $0.0026074 | $0.003663 | $0.005148 | $0.007234 | $0.010165 |
| Amazon.com stock | $0.002755 | $0.005749 | $0.011996 | $0.025031 | $0.05223 | $0.108981 |
| Apple stock | $0.001873 | $0.002656 | $0.003768 | $0.005345 | $0.007582 | $0.010754 |
| Netflix stock | $0.002083 | $0.003287 | $0.005187 | $0.008185 | $0.012914 | $0.020377 |
| Google stock | $0.00171 | $0.002214 | $0.002867 | $0.003713 | $0.0048096 | $0.006228 |
| Tesla stock | $0.002993 | $0.006786 | $0.015384 | $0.034875 | $0.079059 | $0.179221 |
| Kodak stock | $0.00099 | $0.000742 | $0.000556 | $0.000417 | $0.000313 | $0.000234 |
| Nokia stock | $0.000874 | $0.000579 | $0.000383 | $0.000254 | $0.000168 | $0.000111 |
Este cálculo mostra quanto a criptomoeda pode custar, se assumirmos que sua capitalização se comportará da mesma forma que a de algumas empresas de Internet ou nichos tecnológicos. Se você extrapolar os dados, poderá obter uma imagem em potencial do preço futuro para 2024, 2025, 2026, 2027, 2028, 2029 e 2030.
Visão geral da previsão para NEM
Você pode fazer perguntas como: 'Devo investir em NEM agora?', 'Devo comprar XEM hoje?', 'NEM será um bom ou mau investimento no curto ou no longo prazo?'.
Atualizamos a previsão para NEM regularmente com novos valores. Veja nossas previsões semelhantes. Fazemos previsões de preços futuros para uma enorme quantidade de moedas digitais, como NEM, com métodos de análise técnica.
Se você estiver tentando encontrar criptomoedas com bom retorno, você deve explorar o máximo de fontes de informações disponíveis sobre NEM para poder tomar sozinho uma decisão de tão grande responsabilidade sobre o seu investimento.
O preço de NEM é de $0.00132 USD hoje, mas o preço pode tanto subir quanto descer e seu investimento pode ser perdido, porque criptomoedas são ativos de alto risco
Previsão de curto prazo para NEM
com base no histórico de preços de 4 horas
Previsão de longo prazo para NEM
com base no histórico de preços de 1 mês
Previsão do preço de NEM com base no padrão de crescimento do Bitcoin
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| Se NEM tiver 1% da média anterior do crescimento anual do Bitcoin | $0.001354 | $0.00139 | $0.001426 | $0.001463 |
| Se NEM tiver 2% da média anterior do crescimento anual do Bitcoin | $0.001389 | $0.001461 | $0.001537 | $0.001617 |
| Se NEM tiver 5% da média anterior do crescimento anual do Bitcoin | $0.001492 | $0.001686 | $0.0019053 | $0.002152 |
| Se NEM tiver 10% da média anterior do crescimento anual do Bitcoin | $0.001663 | $0.002096 | $0.002641 | $0.003327 |
| Se NEM tiver 20% da média anterior do crescimento anual do Bitcoin | $0.0020071 | $0.00305 | $0.004636 | $0.007046 |
| Se NEM tiver 50% da média anterior do crescimento anual do Bitcoin | $0.003036 | $0.006983 | $0.01606 | $0.036933 |
| Se NEM tiver 100% da média anterior do crescimento anual do Bitcoin | $0.004753 | $0.0171083 | $0.061578 | $0.221641 |
Perguntas Frequentes sobre NEM
XEM é um bom investimento?
A decisão de adquirir NEM depende inteiramente da sua tolerância individual ao risco. Como você pode perceber, o valor de NEM experimentou uma escalada de 0.8787% nas últimas 24 horas, e NEM registrou um declínio de -92.31% durante os últimos 30 dias. Consequentemente, a decisão de investir ou não em NEM dependerá de quão alinhado esse investimento está com suas aspirações de negociação.
NEM pode subir?
Parece que o valor médio de NEM pode potencialmente subir para $0.001361 até o final deste ano. Observando as perspectivas de NEM em um horizonte de cinco anos mais longo, a moeda digital poderia potencialmente crescer até $0.004281. No entanto, dada a imprevisibilidade do mercado, é vital conduzir uma pesquisa aprofundada antes de investir quaisquer fundos em um projeto, rede ou ativo específico.
Qual será o preço de NEM na próxima semana?
Com base na nossa nova previsão experimental de NEM, o preço de NEM aumentará 0.86% na próxima semana e atingirá $0.001331 até 13 de janeiro de 2026.
Qual será o preço de NEM no próximo mês?
Com base na nossa nova previsão experimental de NEM, o preço de NEM diminuirá -11.62% no próximo mês e atingirá $0.001167 até 5 de fevereiro de 2026.
Até onde o preço de NEM pode subir este ano em 2026?
De acordo com nossa previsão mais recente sobre o valor de NEM em 2026, espera-se que XEM fluctue dentro do intervalo de $0.000456 e $0.001361. No entanto, é crucial lembrar que o mercado de criptomoedas é excepcionalmente instável, e essa previsão de preço de NEM não considera flutuações repentinas e extremas de preço.
Onde estará NEM em 5 anos?
O futuro de NEM parece seguir uma tendência de alta, com um preço máximo de $0.004281 projetada após um período de cinco anos. Com base na previsão de NEM para 2030, o valor de NEM pode potencialmente atingir seu pico mais alto de aproximadamente $0.004281, enquanto seu pico mais baixo está previsto para cerca de $0.00148.
Quanto será NEM em 2026?
Com base na nossa nova simulação experimental de previsão de preços de NEM, espera-se que o valor de XEM em 2026 aumente 3.13% para $0.001361 se o melhor cenário ocorrer. O preço ficará entre $0.001361 e $0.000456 durante 2026.
Quanto será NEM em 2027?
De acordo com nossa última simulação experimental para previsão de preços de NEM, o valor de XEM pode diminuir -12.62% para $0.001153 em 2027, assumindo as condições mais favoráveis. O preço está projetado para flutuar entre $0.001153 e $0.000439 ao longo do ano.
Quanto será NEM em 2028?
Nosso novo modelo experimental de previsão de preços de NEM sugere que o valor de XEM em 2028 pode aumentar 47.02%, alcançando $0.001941 no melhor cenário. O preço é esperado para variar entre $0.001941 e $0.000792 durante o ano.
Quanto será NEM em 2029?
Com base no nosso modelo de previsão experimental, o valor de NEM pode experimentar um 333.75% crescimento em 2029, potencialmente alcançando $0.005728 sob condições ótimas. A faixa de preço prevista para 2029 está entre $0.005728 e $0.001741.
Quanto será NEM em 2030?
Usando nossa nova simulação experimental para previsões de preços de NEM, espera-se que o valor de XEM em 2030 aumente 224.23%, alcançando $0.004281 no melhor cenário. O preço está previsto para variar entre $0.004281 e $0.00148 ao longo de 2030.
Quanto será NEM em 2031?
Nossa simulação experimental indica que o preço de NEM poderia aumentar 195.98% em 2031, potencialmente atingindo $0.0039087 sob condições ideais. O preço provavelmente oscilará entre $0.0039087 e $0.00175 durante o ano.
Quanto será NEM em 2032?
Com base nos achados da nossa mais recente previsão experimental de preços de NEM, XEM poderia ver um 449.04% aumento em valor, atingindo $0.00725 se o cenário mais positivo se desenrolar em 2032. O preço é esperado para permanecer dentro de uma faixa de $0.00725 e $0.002672 ao longo do ano.
Quanto será NEM em 2033?
De acordo com nossa previsão experimental de preços de NEM, espera-se que o valor de XEM seja aumentar 1362.43% em 2033, com o preço potencial mais alto sendo $0.019312. Ao longo do ano, o preço de XEM poderia variar entre $0.019312 e $0.00621.
Quanto será NEM em 2034?
Os resultados da nossa nova simulação de previsão de preços de NEM sugerem que XEM pode aumentar 746.96% em 2034, atingindo potencialmente $0.011184 nas melhores circunstâncias. A faixa de preço prevista para o ano é entre $0.011184 e $0.004992.
Quanto será NEM em 2035?
Com base em nossa previsão experimental para o preço de NEM, XEM poderia aumentar 897.93%, com o valor potencialmente atingindo $0.013178 em 2035. A faixa de preço esperada para o ano está entre $0.013178 e $0.0059032.
Quanto será NEM em 2036?
Nossa recente simulação de previsão de preços de NEM sugere que o valor de XEM pode aumentar 1964.7% em 2036, possivelmente atingindo $0.027266 se as condições forem ideais. A faixa de preço esperada para 2036 está entre $0.027266 e $0.009771.
Quanto será NEM em 2037?
De acordo com a simulação experimental, o valor de NEM poderia aumentar 4830.69% em 2037, com um pico de $0.065114 sob condições favoráveis. O preço é esperado para cair entre $0.065114 e $0.025376 ao longo do ano.
Previsões relacionadas
Previsão de Preço do Gas
Previsão de Preço do SafePal
Previsão de Preço do LoopringPrevisão de Preço do Centrifuge
Previsão de Preço do Yield Guild Games
Previsão de Preço do Zcash
Previsão de Preço do Decred
Previsão de Preço do ZetaChain
Previsão de Preço do Polymath Network
Previsão de Preço do Pocket Network
Previsão de Preço do cETH
Previsão de Preço do Uniswap Protocol
Previsão de Preço do Arkham
Previsão de Preço do Chia
Previsão de Preço do SPACE ID
Previsão de Preço do SSV Network
Previsão de Preço do Moonbeam
Previsão de Preço do ZelCash
Previsão de Preço do PAAL AI
Previsão de Preço do Aragon
Previsão de Preço do Kusama
Previsão de Preço do GMX
Previsão de Preço do API3
Previsão de Preço do BENQI Liquid Staked AVAX
Previsão de Preço do Blox
Como ler e prever os movimentos de preço de NEM?
Traders de NEM utilizam indicadores e padrões de gráfico para prever a direção do mercado. Eles também identificam níveis-chave de suporte e resistência para avaliar quando uma tendência de baixa pode desacelerar ou uma tendência de alta pode estagnar.
Indicadores de Previsão de Preço de NEM
Médias móveis são ferramentas populares para a previsão de preço de NEM. Uma média móvel simples (SMA) calcula o preço médio de fechamento de XEM em um período específico, como uma SMA de 12 dias. Uma média móvel exponencial (EMA) dá mais peso aos preços recentes, reagindo mais rapidamente às mudanças de preço.
Médias móveis comumente usadas no mercado de criptomoedas incluem as de 50 dias, 100 dias e 200 dias, que ajudam a identificar níveis-chave de resistência e suporte. Um movimento de preço de XEM acima dessas médias é visto como altista, enquanto uma queda abaixo indica fraqueza.
Traders também usam RSI e níveis de retração de Fibonacci para avaliar a direção futura de XEM.
Como ler gráficos de NEM e prever movimentos de preço?
A maioria dos traders prefere gráficos de velas em vez de gráficos de linha simples porque eles fornecem informações mais detalhadas. Velas podem representar a ação de preço de NEM em diferentes períodos de tempo, como 5 minutos para tendências de curto prazo e semanal para tendências de longo prazo. Opções populares incluem gráficos de 1 hora, 4 horas e 1 dia.
Por exemplo, um gráfico de velas de 1 hora mostra os preços de abertura, fechamento, máximo e mínimo de XEM dentro de cada hora. A cor da vela é crucial: verde indica que o preço fechou mais alto do que abriu, enquanto vermelho significa o oposto. Alguns gráficos usam velas vazias e preenchidas para transmitir a mesma informação.
O que afeta o preço de NEM?
A ação de preço de NEM é impulsionada pela oferta e demanda, influenciada por fatores como reduções pela metade das recompensas de bloco, hard forks e atualizações de protocolo. Eventos do mundo real, como regulamentações, adoção por empresas e governos e hacks de exchanges de criptomoedas, também impactam o preço de XEM. A capitalização de mercado de NEM pode mudar rapidamente.
Traders frequentemente monitoram a atividade de "baleias" de XEM, grandes detentores de NEM, pois suas ações podem influenciar significativamente os movimentos de preço no relativamente pequeno mercado de NEM.
Padrões de previsão de preço altistas e baixistas
Traders frequentemente identificam padrões de velas para ganhar vantagem em previsões de preço de criptomoedas. Certas formações indicam tendências altistas, enquanto outras sugerem movimentos baixistas.
Padrões de velas altistas comumente seguidos:
- Martelo
- Engolfo de Alta
- Linha de Perfuração
- Estrela da Manhã
- Três Soldados Brancos
Padrões de velas baixistas comuns:
- Harami de Baixa
- Nuvem Negra
- Estrela da Noite
- Estrela Cadente
- Homem Enforcado


