Previsão de Preço NEM - Projeção XEM
Previsão de Preço NEM até $0.001377 até 2026
| Ano | Preço Mínimo | Preço Máximo |
|---|---|---|
| 2026 | $0.000461 | $0.001377 |
| 2027 | $0.000444 | $0.001167 |
| 2028 | $0.0008017 | $0.001963 |
| 2029 | $0.001761 | $0.005793 |
| 2030 | $0.001497 | $0.00433 |
| 2031 | $0.00177 | $0.003953 |
| 2032 | $0.0027031 | $0.007333 |
| 2033 | $0.006281 | $0.019533 |
| 2034 | $0.005049 | $0.011312 |
| 2035 | $0.00597 | $0.013329 |
Calculadora de lucro do investimento
Se você abrir um short de $10,000.00 em NEM hoje e fechar em Apr 06, 2026, nossa previsão mostra que pode lucrar cerca de $3,958.09, com um retorno de 39.58% nos próximos 90 dias.
Previsão de preço de longo prazo de NEM para os anos 2027, 2028, 2029, 2030, 2031, 2032 e 2037
[
'name' => 'NEM'
'name_with_ticker' => 'NEM <small>XEM</small>'
'name_lang' => 'NEM'
'name_lang_with_ticker' => 'NEM <small>XEM</small>'
'name_with_lang' => 'NEM'
'name_with_lang_with_ticker' => 'NEM <small>XEM</small>'
'image' => '/uploads/coins/nem.png?1717109909'
'price_for_sd' => 0.001335
'ticker' => 'XEM'
'marketcap' => '$12.02M'
'low24h' => '$0.001282'
'high24h' => '$0.001341'
'volume24h' => '$1.53M'
'current_supply' => '9B'
'max_supply' => '9B'
'algo' => 'Proof of Importance'
'proof' => null
'ico_price_and_roi' => '—'
'price' => '$0.001335'
'change_24h_pct' => '0.7297%'
'ath_price' => '$1.87'
'ath_days' => 2921
'ath_exchange' => null
'ath_pair' => null
'ath_date' => '7 de jan. de 2018'
'ath_pct' => '-99.93%'
'fdv' => '$12.02M'
'new_prediction' => true
'change_24h_pct_is_increased' => true
'change_30d_pct' => '-92.23%'
'change_30d_pct_is_increased' => false
'max_price' => '$0.065857'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.001347'
'next_week_prediction_price_date' => '13 de janeiro de 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.00118'
'next_month_prediction_price_date' => '5 de fevereiro de 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.000461'
'current_year_max_price_prediction' => '$0.001377'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.001497'
'grand_prediction_max_price' => '$0.00433'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.0013609802439376
107 => 0.0013660616501326
108 => 0.0013775103177531
109 => 0.0012796827064282
110 => 0.0013236044318453
111 => 0.0013494043306187
112 => 0.0012328394493521
113 => 0.0013471002177007
114 => 0.0012779797453619
115 => 0.0012545192188954
116 => 0.0012861057270932
117 => 0.0012737964341296
118 => 0.0012632136268655
119 => 0.0012573082385764
120 => 0.0012805018841211
121 => 0.0012794198728341
122 => 0.0012414705670302
123 => 0.0011919672446208
124 => 0.0012085821845126
125 => 0.001202545821084
126 => 0.0011806692613124
127 => 0.0011954114212126
128 => 0.0011304944098488
129 => 0.0010188080658901
130 => 0.0010925914857544
131 => 0.0010897509043506
201 => 0.0010883185543966
202 => 0.0011437647552008
203 => 0.0011384348823549
204 => 0.0011287611109495
205 => 0.0011804915949143
206 => 0.001161609272394
207 => 0.0012198001411669
208 => 0.0012581284108903
209 => 0.0012484071218988
210 => 0.0012844550448302
211 => 0.0012089649591702
212 => 0.0012340397374899
213 => 0.0012392076145494
214 => 0.0011798532487721
215 => 0.0011393069154682
216 => 0.0011366029372988
217 => 0.0010663011829787
218 => 0.0011038558126806
219 => 0.0011369023327021
220 => 0.0011210756141253
221 => 0.0011160653478337
222 => 0.0011416617117235
223 => 0.0011436507684157
224 => 0.0010983000650413
225 => 0.0011077299123429
226 => 0.0011470539431719
227 => 0.001106739047661
228 => 0.0010284137910841
301 => 0.0010089880445217
302 => 0.0010063962918427
303 => 0.0009537121264899
304 => 0.0010102861657948
305 => 0.00098559008154822
306 => 0.0010636047157786
307 => 0.0010190431751071
308 => 0.0010171222161528
309 => 0.0010142184049499
310 => 0.00096887096747528
311 => 0.00097879917430223
312 => 0.0010118020459036
313 => 0.0010235778422949
314 => 0.001022349530255
315 => 0.0010116403138281
316 => 0.0010165429382683
317 => 0.0010007498767588
318 => 0.00099517301803568
319 => 0.0009775709178696
320 => 0.00095170069332974
321 => 0.00095529810672332
322 => 0.00090404242259739
323 => 0.00087611560554054
324 => 0.00086838583064873
325 => 0.00085804925261388
326 => 0.00086955337464236
327 => 0.0009038972216842
328 => 0.00086247125569813
329 => 0.00079144934270866
330 => 0.00079571788069477
331 => 0.00080530801820928
401 => 0.00078743686039611
402 => 0.00077052330933852
403 => 0.00078522826974332
404 => 0.00075513534894434
405 => 0.00080894460391721
406 => 0.00080748921436889
407 => 0.00082754597708076
408 => 0.0008400878824107
409 => 0.00081118285111526
410 => 0.00080391331391197
411 => 0.00080805437268501
412 => 0.0007396118954891
413 => 0.00082195276651755
414 => 0.00082266485378948
415 => 0.00081656753024647
416 => 0.00086041150207994
417 => 0.00095293595792631
418 => 0.00091812453584929
419 => 0.00090464450104027
420 => 0.00087901894501447
421 => 0.00091316347692389
422 => 0.00091054170961092
423 => 0.00089868508354594
424 => 0.00089151415910691
425 => 0.00090472680725836
426 => 0.00088987696578305
427 => 0.00088720952620772
428 => 0.00087104774458416
429 => 0.00086527872385876
430 => 0.000861007570585
501 => 0.00085630545050545
502 => 0.00086667715570562
503 => 0.00084317350721059
504 => 0.00081483041121664
505 => 0.00081247398946129
506 => 0.00081898027710653
507 => 0.00081610172915966
508 => 0.00081246020808118
509 => 0.00080550755263311
510 => 0.00080344484828164
511 => 0.00081014763674201
512 => 0.0008025805793671
513 => 0.00081374618472273
514 => 0.00081070975788712
515 => 0.00079374852441339
516 => 0.0007726085476522
517 => 0.00077242035751642
518 => 0.00076786578419973
519 => 0.00076206485029625
520 => 0.00076045116319169
521 => 0.0007839898589935
522 => 0.00083271425484937
523 => 0.00082314849006688
524 => 0.00083006073546124
525 => 0.00086406214150072
526 => 0.00087487016602273
527 => 0.0008671988862191
528 => 0.00085669796527996
529 => 0.00085715995250821
530 => 0.00089304477820218
531 => 0.00089528287076349
601 => 0.00090093780862989
602 => 0.00090820600187347
603 => 0.00086843669095704
604 => 0.00085528682154044
605 => 0.00084905568388388
606 => 0.00082986619165542
607 => 0.00085056041384109
608 => 0.00083850277678845
609 => 0.00084012976397438
610 => 0.00083907018643515
611 => 0.00083964878741989
612 => 0.00080892956313381
613 => 0.00082012203390876
614 => 0.00080151238042999
615 => 0.00077659614345356
616 => 0.00077651261549046
617 => 0.00078261082919163
618 => 0.00077898337305905
619 => 0.00076922198187669
620 => 0.00077060854142168
621 => 0.00075846082080107
622 => 0.0007720834946466
623 => 0.00077247414418822
624 => 0.00076722867272563
625 => 0.00078821628135139
626 => 0.00079681492172963
627 => 0.00079336224004406
628 => 0.00079657267237842
629 => 0.00082354599078043
630 => 0.00082794381860835
701 => 0.00082989704322532
702 => 0.00082727998099126
703 => 0.00079706569512319
704 => 0.00079840582718251
705 => 0.00078857282732286
706 => 0.00078026497861746
707 => 0.00078059724899675
708 => 0.00078486856317606
709 => 0.00080352164270638
710 => 0.00084277594891883
711 => 0.00084426562114507
712 => 0.00084607114734007
713 => 0.00083872716492023
714 => 0.00083651214954996
715 => 0.00083943432656732
716 => 0.00085417618008735
717 => 0.00089209622971506
718 => 0.00087869275158167
719 => 0.00086779551522165
720 => 0.00087735532938321
721 => 0.00087588367092534
722 => 0.00086346139251618
723 => 0.00086311274053491
724 => 0.00083927041662508
725 => 0.00083045645233906
726 => 0.00082309084406788
727 => 0.00081504779211981
728 => 0.00081027960131946
729 => 0.00081760570949276
730 => 0.00081928127711197
731 => 0.00080326261355257
801 => 0.00080107932890042
802 => 0.00081416051534989
803 => 0.00080840397290926
804 => 0.00081432471956483
805 => 0.00081569838357615
806 => 0.00081547719203216
807 => 0.00080946670058946
808 => 0.0008132976085996
809 => 0.00080423636910697
810 => 0.00079438363211289
811 => 0.00078809819975788
812 => 0.00078261332638651
813 => 0.00078565665291566
814 => 0.00077480774952872
815 => 0.00077133696698996
816 => 0.00081199978316392
817 => 0.00084203784267057
818 => 0.00084160107738897
819 => 0.00083894238106412
820 => 0.00083499209762224
821 => 0.00085388719224878
822 => 0.00084730451910024
823 => 0.00085209396381655
824 => 0.00085331307850921
825 => 0.00085700297151005
826 => 0.00085832179110083
827 => 0.00085433540231839
828 => 0.00084095659466816
829 => 0.00080761787802264
830 => 0.000792098615428
831 => 0.00078697700027801
901 => 0.00078716316126138
902 => 0.0007820280102808
903 => 0.0007835405423859
904 => 0.00078150201334066
905 => 0.00077764153250212
906 => 0.00078541827910243
907 => 0.00078631447670271
908 => 0.00078449929112099
909 => 0.00078492683303616
910 => 0.00076989787169547
911 => 0.00077104049098501
912 => 0.00076467824158379
913 => 0.00076348539651912
914 => 0.00074740218405726
915 => 0.00071890844188214
916 => 0.00073469674100163
917 => 0.00071562669583609
918 => 0.00070840458077356
919 => 0.00074259295021024
920 => 0.00073916138615655
921 => 0.00073328804016169
922 => 0.00072460013732272
923 => 0.00072137770964926
924 => 0.00070179925920196
925 => 0.00070064245990256
926 => 0.00071034606860687
927 => 0.00070586818707062
928 => 0.00069957954548737
929 => 0.0006768027231422
930 => 0.00065119403367952
1001 => 0.00065196699904391
1002 => 0.00066011264669539
1003 => 0.0006837972158323
1004 => 0.0006745432449233
1005 => 0.00066782938285174
1006 => 0.00066657207830369
1007 => 0.0006823098770679
1008 => 0.00070458215949003
1009 => 0.00071503181608827
1010 => 0.00070467652376021
1011 => 0.00069278092150227
1012 => 0.0006935049516928
1013 => 0.00069832160017913
1014 => 0.00069882776183131
1015 => 0.00069108494764906
1016 => 0.00069326450448757
1017 => 0.00068995355834702
1018 => 0.00066963428799399
1019 => 0.00066926677682641
1020 => 0.00066428010018928
1021 => 0.00066412910560254
1022 => 0.00065564552465799
1023 => 0.00065445861303963
1024 => 0.00063761394815769
1025 => 0.00064870115759332
1026 => 0.00064126443960852
1027 => 0.00063005555146099
1028 => 0.00062812313491947
1029 => 0.00062806504414477
1030 => 0.00063957406601076
1031 => 0.00064856666797194
1101 => 0.0006413938045018
1102 => 0.00063976068252977
1103 => 0.0006571981525956
1104 => 0.00065497907558366
1105 => 0.00065305736920282
1106 => 0.00070258792088366
1107 => 0.00066338062431113
1108 => 0.00064628400513126
1109 => 0.00062512369233624
1110 => 0.00063201359688185
1111 => 0.00063346540100337
1112 => 0.00058257866316442
1113 => 0.00056193391996069
1114 => 0.00055484942207391
1115 => 0.00055077219337997
1116 => 0.00055263023769441
1117 => 0.0005340475474242
1118 => 0.00054653542261511
1119 => 0.00053044438359681
1120 => 0.00052774666854063
1121 => 0.00055651943960257
1122 => 0.00056052300260775
1123 => 0.00054344255901812
1124 => 0.0005544109688753
1125 => 0.00055043367098879
1126 => 0.0005307202182767
1127 => 0.00052996730938544
1128 => 0.00052007579177589
1129 => 0.00050459748209216
1130 => 0.00049752347922821
1201 => 0.00049383927711735
1202 => 0.00049535945071196
1203 => 0.00049459080442444
1204 => 0.00048957486746604
1205 => 0.00049487831205945
1206 => 0.00048133020265788
1207 => 0.00047593523632964
1208 => 0.00047349845520144
1209 => 0.00046147372830746
1210 => 0.0004806104162161
1211 => 0.00048438058481175
1212 => 0.00048815818180419
1213 => 0.00052103958454839
1214 => 0.00051939692258917
1215 => 0.0005342457866917
1216 => 0.00053366878713799
1217 => 0.0005294336505603
1218 => 0.00051156630598516
1219 => 0.00051868791107801
1220 => 0.00049676871754536
1221 => 0.00051319206770031
1222 => 0.00050569713654509
1223 => 0.00051065802393751
1224 => 0.00050173790110076
1225 => 0.00050667466538146
1226 => 0.00048527463164981
1227 => 0.00046529158125779
1228 => 0.00047333334407714
1229 => 0.00048207565994891
1230 => 0.00050103122825956
1231 => 0.00048974144815378
]
'min_raw' => 0.00046147372830746
'max_raw' => 0.0013775103177531
'avg_raw' => 0.00091949202303026
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.000461'
'max' => '$0.001377'
'avg' => '$0.000919'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.00087419627169254
'max_diff' => 4.184031775306E-5
'year' => 2026
]
1 => [
'items' => [
101 => 0.00049380167999367
102 => 0.00048020058300464
103 => 0.000452137634955
104 => 0.00045229646819334
105 => 0.00044797959502045
106 => 0.00044424918632528
107 => 0.00049103821520827
108 => 0.00048521925984158
109 => 0.00047594751603081
110 => 0.00048835811356598
111 => 0.00049163967253694
112 => 0.00049173309390752
113 => 0.00050078754550529
114 => 0.00050561990794612
115 => 0.00050647163277097
116 => 0.00052071900799444
117 => 0.00052549454024192
118 => 0.00054516428171068
119 => 0.00050520991575485
120 => 0.00050438708188069
121 => 0.00048853275612426
122 => 0.00047847769208255
123 => 0.00048922123496168
124 => 0.00049873854731273
125 => 0.00048882848554841
126 => 0.00049012253040201
127 => 0.00047681908216521
128 => 0.00048157443892444
129 => 0.00048567039278123
130 => 0.00048340884781055
131 => 0.00048002320552943
201 => 0.00049795823623394
202 => 0.00049694627151364
203 => 0.00051364778443025
204 => 0.00052666780808539
205 => 0.00055000201808303
206 => 0.00052565155351062
207 => 0.00052476412579727
208 => 0.00053343887404314
209 => 0.00052549321218316
210 => 0.00053051459620374
211 => 0.00054919299548702
212 => 0.00054958764063084
213 => 0.00054297682600032
214 => 0.00054257455732926
215 => 0.00054384423659344
216 => 0.00055128078770145
217 => 0.00054868222824218
218 => 0.00055168934703593
219 => 0.00055544979513415
220 => 0.00057100460286534
221 => 0.00057475481434877
222 => 0.00056564374470574
223 => 0.00056646637228219
224 => 0.00056305858213124
225 => 0.00055976669954491
226 => 0.00056716637085814
227 => 0.00058068941562396
228 => 0.00058060528946432
301 => 0.00058374237299956
302 => 0.00058569675005301
303 => 0.00057730713304815
304 => 0.00057184580087275
305 => 0.00057394002314239
306 => 0.00057728873015778
307 => 0.00057285408259005
308 => 0.00054548138347343
309 => 0.00055378451181062
310 => 0.00055240246525308
311 => 0.00055043426289254
312 => 0.00055878312264178
313 => 0.00055797785475179
314 => 0.0005338569550765
315 => 0.00053540109681364
316 => 0.00053395085944989
317 => 0.00053863687306282
318 => 0.00052524015206988
319 => 0.00052936089321901
320 => 0.0005319453834382
321 => 0.0005334676680323
322 => 0.00053896720382647
323 => 0.00053832189677643
324 => 0.00053892709063419
325 => 0.00054708145039333
326 => 0.00058832340381673
327 => 0.00059056811234633
328 => 0.00057951434658303
329 => 0.00058393010797958
330 => 0.00057545281171907
331 => 0.0005811436774917
401 => 0.00058503722332101
402 => 0.00056744303840415
403 => 0.00056640122495868
404 => 0.00055788893988096
405 => 0.00056246295972126
406 => 0.00055518536527168
407 => 0.00055697103239016
408 => 0.00055197815145523
409 => 0.00056096434306543
410 => 0.00057101230159863
411 => 0.00057355081273002
412 => 0.00056687308284108
413 => 0.00056203796631764
414 => 0.00055354909448889
415 => 0.00056766627752696
416 => 0.00057179457206064
417 => 0.00056764459335324
418 => 0.00056668295260791
419 => 0.00056486064513315
420 => 0.00056706956375328
421 => 0.00057177208848202
422 => 0.00056955446466194
423 => 0.0005710192442646
424 => 0.00056543701489342
425 => 0.00057730991036047
426 => 0.00059616692573004
427 => 0.00059622755411789
428 => 0.00059400991834399
429 => 0.00059310250956494
430 => 0.00059537793844635
501 => 0.00059661226527153
502 => 0.00060397058503171
503 => 0.00061186635530277
504 => 0.00064871246996335
505 => 0.00063836622840877
506 => 0.0006710582933208
507 => 0.00069691347213288
508 => 0.00070466630974868
509 => 0.00069753406394134
510 => 0.00067313503631079
511 => 0.00067193790361353
512 => 0.00070840035189733
513 => 0.00069809804017123
514 => 0.00069687261297309
515 => 0.00068383613797685
516 => 0.00069154230929847
517 => 0.00068985685658772
518 => 0.00068719628702863
519 => 0.00070189912509373
520 => 0.00072942152542019
521 => 0.00072513190122587
522 => 0.00072192989575476
523 => 0.00070789963987011
524 => 0.00071634898768377
525 => 0.00071334033676392
526 => 0.00072626741045264
527 => 0.00071860969836919
528 => 0.0006980199900273
529 => 0.00070129896894531
530 => 0.00070080335787824
531 => 0.00071100299851911
601 => 0.00070794131956937
602 => 0.00070020551592511
603 => 0.00072932745684794
604 => 0.00072743643998916
605 => 0.00073011746954827
606 => 0.00073129774167379
607 => 0.00074902375392735
608 => 0.00075628553397851
609 => 0.00075793408518548
610 => 0.00076483221458785
611 => 0.0007577624534419
612 => 0.00078604653868
613 => 0.00080485380494121
614 => 0.00082669941251668
615 => 0.00085862171673021
616 => 0.00087062479841232
617 => 0.00086845654914186
618 => 0.00089265967587234
619 => 0.00093615215660171
620 => 0.00087724762299488
621 => 0.00093927423991426
622 => 0.00091963732912931
623 => 0.00087307856691115
624 => 0.00087008073151605
625 => 0.00090161086584853
626 => 0.00097154166913502
627 => 0.00095402479606036
628 => 0.00097157032046412
629 => 0.00095110253426173
630 => 0.00095008613616073
701 => 0.00097057624577322
702 => 0.0010184525037405
703 => 0.00099570828819496
704 => 0.00096309887809992
705 => 0.00098717715905548
706 => 0.00096631832375207
707 => 0.0009193175297931
708 => 0.00095401140123764
709 => 0.00093081259742725
710 => 0.00093758324169536
711 => 0.00098634367674318
712 => 0.00098047669219411
713 => 0.00098806911346874
714 => 0.00097466868864729
715 => 0.00096215057881101
716 => 0.00093878459719456
717 => 0.0009318670819669
718 => 0.0009337788343097
719 => 0.00093186613459738
720 => 0.00091879308262743
721 => 0.00091596995829921
722 => 0.00091126462740161
723 => 0.00091272300619866
724 => 0.00090387560751805
725 => 0.0009205724767942
726 => 0.00092367156286416
727 => 0.00093582215191999
728 => 0.0009370836663838
729 => 0.00097092288395148
730 => 0.00095228481156015
731 => 0.00096478883965401
801 => 0.00096367036168882
802 => 0.00087408763646693
803 => 0.00088643134560743
804 => 0.00090563428336073
805 => 0.00089698338593184
806 => 0.00088475304096562
807 => 0.00087487638165579
808 => 0.00085991223286114
809 => 0.00088097398492859
810 => 0.00090866794922967
811 => 0.00093778603102047
812 => 0.00097276949839983
813 => 0.00096496159573321
814 => 0.00093713203943181
815 => 0.00093838045299799
816 => 0.00094609765443146
817 => 0.00093610317739342
818 => 0.00093315561099954
819 => 0.0009456927040719
820 => 0.00094577904014163
821 => 0.00093427918643647
822 => 0.00092149920349419
823 => 0.00092144565489903
824 => 0.00091917158037444
825 => 0.00095150708706777
826 => 0.00096928834626063
827 => 0.00097132693897116
828 => 0.00096915113272855
829 => 0.00096998851419667
830 => 0.00095964199125566
831 => 0.00098329107453275
901 => 0.0010049938119997
902 => 0.00099917701474722
903 => 0.00099045680875926
904 => 0.00098351074466781
905 => 0.00099754074279637
906 => 0.00099691600906497
907 => 0.001004804257521
908 => 0.0010044464010063
909 => 0.0010017938797426
910 => 0.00099917710947711
911 => 0.0010095523077934
912 => 0.0010065644172989
913 => 0.0010035718857852
914 => 0.00099756990570076
915 => 0.00099838567447656
916 => 0.00098966697415511
917 => 0.00098563330444582
918 => 0.00092497659014501
919 => 0.00090876713406852
920 => 0.00091386695892409
921 => 0.00091554595368344
922 => 0.00090849157762596
923 => 0.00091860574077185
924 => 0.00091702945915912
925 => 0.00092316184882038
926 => 0.00091933059799743
927 => 0.0009194878338676
928 => 0.00093075472562909
929 => 0.00093402555224023
930 => 0.000932361983427
1001 => 0.00093352708999998
1002 => 0.00096037647921376
1003 => 0.00095655935466269
1004 => 0.00095453158332306
1005 => 0.00095509328984217
1006 => 0.00096195388444369
1007 => 0.00096387447635754
1008 => 0.00095573679346097
1009 => 0.00095957457175837
1010 => 0.00097591534466214
1011 => 0.00098163369037081
1012 => 0.00099988390491124
1013 => 0.00099213088940277
1014 => 0.0010063618849112
1015 => 0.0010501031134003
1016 => 0.0010850466333802
1017 => 0.0010529111283046
1018 => 0.0011170804527172
1019 => 0.0011670454763153
1020 => 0.0011651277354885
1021 => 0.0011564151779124
1022 => 0.0010995313269348
1023 => 0.0010471859591749
1024 => 0.0010909750820078
1025 => 0.0010910867094872
1026 => 0.0010873251850012
1027 => 0.0010639626794743
1028 => 0.00108651222045
1029 => 0.0010883021211248
1030 => 0.0010873002527199
1031 => 0.0010693882745088
1101 => 0.0010420399944672
1102 => 0.0010473837829248
1103 => 0.0010561370174287
1104 => 0.0010395653183968
1105 => 0.0010342696564415
1106 => 0.0010441152995574
1107 => 0.0010758400130978
1108 => 0.0010698426397718
1109 => 0.0010696860241169
1110 => 0.0010953453304879
1111 => 0.0010769788047512
1112 => 0.0010474511852104
1113 => 0.0010399950718549
1114 => 0.0010135308924827
1115 => 0.0010318097954373
1116 => 0.0010324676206133
1117 => 0.001022456452271
1118 => 0.0010482635363467
1119 => 0.0010480257195237
1120 => 0.0010725257049761
1121 => 0.0011193604753867
1122 => 0.0011055091291772
1123 => 0.0010894015205577
1124 => 0.0010911528642302
1125 => 0.0011103607816328
1126 => 0.0010987472362971
1127 => 0.0011029235481723
1128 => 0.0011103544602846
1129 => 0.0011148377140611
1130 => 0.0010905077930051
1201 => 0.0010848353245723
1202 => 0.0010732314449247
1203 => 0.0010702042093214
1204 => 0.0010796553271714
1205 => 0.0010771652915309
1206 => 0.0010324123329545
1207 => 0.0010277353997801
1208 => 0.0010278788346435
1209 => 0.0010161184638006
1210 => 0.00099818107545267
1211 => 0.0010453194610451
1212 => 0.0010415335889807
1213 => 0.0010373542792249
1214 => 0.0010378662208232
1215 => 0.0010583273963407
1216 => 0.0010464588812264
1217 => 0.0010780132738692
1218 => 0.0010715266393537
1219 => 0.0010648736471392
1220 => 0.0010639540009601
1221 => 0.0010613931665641
1222 => 0.0010526111125759
1223 => 0.0010420062546654
1224 => 0.0010350040088959
1225 => 0.00095473648810155
1226 => 0.00096963367306629
1227 => 0.00098677152644709
1228 => 0.0009926874447585
1229 => 0.00098256785711774
1230 => 0.0010530106955755
1231 => 0.0010658812809659
]
'min_raw' => 0.00044424918632528
'max_raw' => 0.0011670454763153
'avg_raw' => 0.00080564733132029
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.000444'
'max' => '$0.001167'
'avg' => '$0.0008056'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -1.7224541982179E-5
'max_diff' => -0.00021046484143775
'year' => 2027
]
2 => [
'items' => [
101 => 0.0010268954382911
102 => 0.0010196027789081
103 => 0.0010534888011106
104 => 0.0010330513873247
105 => 0.0010422543535011
106 => 0.0010223625743812
107 => 0.0010627811338401
108 => 0.0010624732121366
109 => 0.0010467494796125
110 => 0.0010600390706704
111 => 0.0010577296771833
112 => 0.0010399776218895
113 => 0.0010633439056566
114 => 0.0010633554950419
115 => 0.0010482217443509
116 => 0.0010305488367478
117 => 0.0010273893382838
118 => 0.0010250090806101
119 => 0.0010416689560258
120 => 0.0010566061482295
121 => 0.0010844005596765
122 => 0.0010913887350932
123 => 0.0011186640489738
124 => 0.0011024229275688
125 => 0.0011096224063299
126 => 0.0011174384589536
127 => 0.0011211857620071
128 => 0.0011150797327727
129 => 0.0011574495221964
130 => 0.0011610268306005
131 => 0.0011622262711648
201 => 0.0011479394165621
202 => 0.0011606294873293
203 => 0.0011546922234683
204 => 0.0011701393346152
205 => 0.0011725616388816
206 => 0.0011705100333439
207 => 0.0011712789109516
208 => 0.0011351237702215
209 => 0.0011332489354411
210 => 0.0011076854301779
211 => 0.0011181027475286
212 => 0.0010986280720566
213 => 0.0011048036922601
214 => 0.0011075258468024
215 => 0.0011061039477504
216 => 0.0011186917270216
217 => 0.0011079895431277
218 => 0.0010797447202298
219 => 0.0010514922020489
220 => 0.0010511375146971
221 => 0.0010436991253584
222 => 0.0010383225322755
223 => 0.0010393582548482
224 => 0.0010430082762856
225 => 0.0010381103863942
226 => 0.0010391555995319
227 => 0.0010565131018357
228 => 0.0010599940251347
229 => 0.0010481644876802
301 => 0.0010006671878063
302 => 0.00098901123127933
303 => 0.00099738930168327
304 => 0.00099338512364703
305 => 0.00080173932531322
306 => 0.00084676366290944
307 => 0.0008200117303918
308 => 0.00083234025169316
309 => 0.00080503345597199
310 => 0.00081806569016192
311 => 0.00081565911236803
312 => 0.00088805691485575
313 => 0.00088692652274982
314 => 0.00088746758163191
315 => 0.00086164143146848
316 => 0.00090278318993521
317 => 0.00092305109956571
318 => 0.00091930004890605
319 => 0.00092024410754387
320 => 0.00090402205233019
321 => 0.00088762464658603
322 => 0.00086943740007311
323 => 0.00090322705608251
324 => 0.00089947022314293
325 => 0.0009080870462405
326 => 0.00093000205349709
327 => 0.00093322912156264
328 => 0.00093756633376844
329 => 0.00093601175193644
330 => 0.00097304819815725
331 => 0.00096856284014557
401 => 0.00097937126242815
402 => 0.00095713751775591
403 => 0.00093197792521286
404 => 0.00093675994122625
405 => 0.00093629939462961
406 => 0.0009304361078637
407 => 0.00092514299473669
408 => 0.00091633145270561
409 => 0.00094421247555481
410 => 0.00094308055694386
411 => 0.00096140500354371
412 => 0.00095816597961301
413 => 0.00093653498508018
414 => 0.00093730754028165
415 => 0.00094250334528892
416 => 0.00096048608574374
417 => 0.00096582458746907
418 => 0.00096335158076739
419 => 0.00096920500419734
420 => 0.00097383131141308
421 => 0.00096978599715576
422 => 0.0010270591162266
423 => 0.0010032753241205
424 => 0.0010148673789065
425 => 0.0010176320156686
426 => 0.0010105504567365
427 => 0.0010120861932972
428 => 0.0010144124157236
429 => 0.0010285367827755
430 => 0.0010656032088383
501 => 0.0010820196766218
502 => 0.0011314094299228
503 => 0.0010806565175007
504 => 0.001077645049714
505 => 0.0010865416357112
506 => 0.0011155386493352
507 => 0.0011390380053264
508 => 0.0011468340974191
509 => 0.0011478644796886
510 => 0.0011624904667288
511 => 0.0011708738097418
512 => 0.0011607144872005
513 => 0.0011521055250722
514 => 0.0011212692913122
515 => 0.0011248386693342
516 => 0.0011494281443238
517 => 0.0011841622260596
518 => 0.0012139676816542
519 => 0.00120353084993
520 => 0.0012831565087308
521 => 0.0012910510675593
522 => 0.0012899602947908
523 => 0.0013079452746699
524 => 0.0012722487521874
525 => 0.0012569877972386
526 => 0.0011539668804002
527 => 0.0011829115558632
528 => 0.0012249843415098
529 => 0.0012194158505646
530 => 0.0011888614690193
531 => 0.0012139445034159
601 => 0.0012056512678254
602 => 0.0011991100488285
603 => 0.0012290766411311
604 => 0.0011961271419346
605 => 0.0012246556450503
606 => 0.0011880675447148
607 => 0.0012035785244982
608 => 0.0011947737421915
609 => 0.0012004715154174
610 => 0.001167162449563
611 => 0.0011851352129662
612 => 0.0011664147235165
613 => 0.001166405847567
614 => 0.0011659925917249
615 => 0.0011880171645431
616 => 0.001188735385072
617 => 0.001172459192482
618 => 0.0011701135388479
619 => 0.0011787866497401
620 => 0.0011686327083767
621 => 0.0011733836736325
622 => 0.0011687766102744
623 => 0.0011677394632729
624 => 0.0011594752995089
625 => 0.0011559148705314
626 => 0.0011573110064744
627 => 0.0011525452747435
628 => 0.0011496737489916
629 => 0.0011654213729775
630 => 0.0011570080527392
701 => 0.001164131910987
702 => 0.001156013375411
703 => 0.0011278709940271
704 => 0.0011116860128929
705 => 0.0010585276632588
706 => 0.0010736033052723
707 => 0.0010835984715241
708 => 0.0010802950691375
709 => 0.001087392055711
710 => 0.0010878277530472
711 => 0.001085520450367
712 => 0.0010828488894471
713 => 0.0010815485213378
714 => 0.0010912403998525
715 => 0.0010968668615439
716 => 0.0010846016201756
717 => 0.0010817280457319
718 => 0.0010941288819379
719 => 0.0011016933848598
720 => 0.001157545424308
721 => 0.0011534077248259
722 => 0.0011637925385433
723 => 0.0011626233678867
724 => 0.0011735083070931
725 => 0.001191300582377
726 => 0.0011551239119264
727 => 0.0011614029310215
728 => 0.0011598634605431
729 => 0.0011766709955553
730 => 0.001176723466845
731 => 0.0011666465100065
801 => 0.0011721093917886
802 => 0.0011690601610442
803 => 0.0011745705331276
804 => 0.0011533524633267
805 => 0.0011791937819951
806 => 0.0011938441445023
807 => 0.0011940475647999
808 => 0.0012009917203559
809 => 0.0012080473845791
810 => 0.0012215901176367
811 => 0.0012076696851044
812 => 0.0011826281821057
813 => 0.0011844360977387
814 => 0.0011697542736928
815 => 0.0011700010778075
816 => 0.0011686836181009
817 => 0.0011726374138543
818 => 0.0011542200991533
819 => 0.0011585426061016
820 => 0.0011524910710615
821 => 0.0011613897761661
822 => 0.0011518162404822
823 => 0.0011598627181638
824 => 0.0011633353111862
825 => 0.0011761492541986
826 => 0.0011499236106805
827 => 0.0010964477482271
828 => 0.001107689022847
829 => 0.0010910622947012
830 => 0.0010926011616935
831 => 0.0010957099179268
901 => 0.0010856334218528
902 => 0.0010875556997568
903 => 0.0010874870224632
904 => 0.0010868951986495
905 => 0.0010842739128479
906 => 0.00108047252983
907 => 0.0010956160697694
908 => 0.0010981892522963
909 => 0.0011039091183038
910 => 0.0011209275597199
911 => 0.0011192270161
912 => 0.001122000673299
913 => 0.001115945795207
914 => 0.0010928820301224
915 => 0.0010941345035296
916 => 0.0010785161400721
917 => 0.0011035097216353
918 => 0.001097590911622
919 => 0.0010937750163023
920 => 0.0010927338139102
921 => 0.0011097944407509
922 => 0.0011148992476942
923 => 0.001111718274578
924 => 0.0011051940059128
925 => 0.0011177225304768
926 => 0.0011210746351141
927 => 0.0011218250477216
928 => 0.0011440231911426
929 => 0.0011230656773482
930 => 0.0011281103592183
1001 => 0.0011674675271008
1002 => 0.0011317760067493
1003 => 0.0011506826010954
1004 => 0.0011497572216873
1005 => 0.0011594291955905
1006 => 0.0011489638375235
1007 => 0.0011490935681793
1008 => 0.0011576816257691
1009 => 0.0011456212477486
1010 => 0.0011426349285453
1011 => 0.0011385093499543
1012 => 0.0011475173998764
1013 => 0.0011529173184057
1014 => 0.0011964366959487
1015 => 0.0012245521985662
1016 => 0.0012233316304482
1017 => 0.0012344853382389
1018 => 0.0012294604907229
1019 => 0.0012132339326062
1020 => 0.0012409306886935
1021 => 0.001232166276186
1022 => 0.0012328888037043
1023 => 0.001232861911194
1024 => 0.0012386894793133
1025 => 0.001234560113212
1026 => 0.0012264207087557
1027 => 0.0012318240252839
1028 => 0.0012478699436517
1029 => 0.0012976769666144
1030 => 0.0013255496365196
1031 => 0.0012959989968881
1101 => 0.0013163826324071
1102 => 0.0013041597145277
1103 => 0.0013019384467487
1104 => 0.0013147408761934
1105 => 0.0013275657145961
1106 => 0.0013267488278331
1107 => 0.0013174386537155
1108 => 0.0013121795725934
1109 => 0.0013520030967715
1110 => 0.0013813443910099
1111 => 0.0013793435114494
1112 => 0.0013881747431087
1113 => 0.0014141035124
1114 => 0.0014164741141141
1115 => 0.0014161754727858
1116 => 0.0014102996890907
1117 => 0.0014358299297342
1118 => 0.0014571277056409
1119 => 0.0014089396149331
1120 => 0.0014272890090462
1121 => 0.0014355266432441
1122 => 0.0014476219342426
1123 => 0.0014680287175632
1124 => 0.0014901958968814
1125 => 0.0014933305790877
1126 => 0.001491106372054
1127 => 0.0014764865214079
1128 => 0.0015007421135272
1129 => 0.0015149504705271
1130 => 0.0015234112219681
1201 => 0.0015448662798876
1202 => 0.0014355775160685
1203 => 0.0013582174970333
1204 => 0.0013461366129688
1205 => 0.0013707035657713
1206 => 0.0013771816753076
1207 => 0.0013745703574764
1208 => 0.0012874946227871
1209 => 0.0013456781772464
1210 => 0.0014082787896323
1211 => 0.0014106835341031
1212 => 0.0014420227095806
1213 => 0.0014522280297522
1214 => 0.0014774601737313
1215 => 0.0014758818962554
1216 => 0.0014820255217832
1217 => 0.0014806132086671
1218 => 0.0015273504421335
1219 => 0.0015789085511932
1220 => 0.0015771232578212
1221 => 0.001569711169636
1222 => 0.0015807193845398
1223 => 0.0016339328783922
1224 => 0.0016290338326071
1225 => 0.0016337928382876
1226 => 0.0016965345465206
1227 => 0.0017781076921275
1228 => 0.0017402087761832
1229 => 0.001822438518663
1230 => 0.0018741977827428
1231 => 0.0019637100779608
]
'min_raw' => 0.00080173932531322
'max_raw' => 0.0019637100779608
'avg_raw' => 0.001382724701637
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.0008017'
'max' => '$0.001963'
'avg' => '$0.001382'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 0.00035749013898794
'max_diff' => 0.00079666460164553
'year' => 2028
]
3 => [
'items' => [
101 => 0.0019525026977422
102 => 0.001987349177399
103 => 0.0019324391481
104 => 0.0018063546216815
105 => 0.0017864012627436
106 => 0.0018263483926368
107 => 0.0019245545134953
108 => 0.001823255532405
109 => 0.0018437481843475
110 => 0.0018378462992095
111 => 0.0018375318128319
112 => 0.0018495344787567
113 => 0.0018321239858158
114 => 0.0017611905054866
115 => 0.0017936989015078
116 => 0.0017811458486227
117 => 0.0017950743966909
118 => 0.0018702410260448
119 => 0.0018370080674588
120 => 0.0018019998452147
121 => 0.0018459079248552
122 => 0.0019018179986906
123 => 0.0018983192467501
124 => 0.0018915302056205
125 => 0.0019297996750051
126 => 0.001993009626526
127 => 0.002010095022424
128 => 0.0020227071123803
129 => 0.0020244461065023
130 => 0.0020423588267374
131 => 0.0019460376154464
201 => 0.0020989018514693
202 => 0.0021252972822412
203 => 0.0021203360352346
204 => 0.002149673445648
205 => 0.0021410416352861
206 => 0.0021285354963613
207 => 0.0021750415321127
208 => 0.0021217261149673
209 => 0.0020460515925537
210 => 0.0020045350528853
211 => 0.0020592073813644
212 => 0.0020925938645653
213 => 0.0021146602061819
214 => 0.0021213374678222
215 => 0.0019535147568876
216 => 0.0018630676235681
217 => 0.0019210431990474
218 => 0.0019917774023926
219 => 0.0019456446833754
220 => 0.00194745299862
221 => 0.0018816798647667
222 => 0.001997596865285
223 => 0.0019807087333249
224 => 0.0020683243918085
225 => 0.0020474142117518
226 => 0.0021188613800249
227 => 0.0021000469461632
228 => 0.0021781446092221
301 => 0.0022092998814261
302 => 0.0022616144323876
303 => 0.0023000972290334
304 => 0.0023226950632824
305 => 0.0023213383740764
306 => 0.0024108822515673
307 => 0.0023580813554357
308 => 0.0022917509856787
309 => 0.0022905512785595
310 => 0.0023249047169652
311 => 0.0023969000994581
312 => 0.0024155674546483
313 => 0.0024259999595522
314 => 0.0024100222151337
315 => 0.0023527106266572
316 => 0.0023279637733294
317 => 0.0023490488093501
318 => 0.0023232636221546
319 => 0.0023677760892997
320 => 0.0024289012140398
321 => 0.0024162791174959
322 => 0.0024584728938317
323 => 0.0025021390134245
324 => 0.0025645835256104
325 => 0.0025809088334094
326 => 0.0026078939464052
327 => 0.0026356704918258
328 => 0.002644591569616
329 => 0.0026616246751653
330 => 0.0026615349022913
331 => 0.0027128653123245
401 => 0.0027694843441616
402 => 0.0027908567179466
403 => 0.0028400013129854
404 => 0.0027558429162134
405 => 0.0028196780269069
406 => 0.002877258894649
407 => 0.0028086086103464
408 => 0.0029032270337927
409 => 0.0029069008527652
410 => 0.0029623711574906
411 => 0.0029061413768268
412 => 0.0028727523125605
413 => 0.0029691452900255
414 => 0.0030157868154704
415 => 0.0030017380084251
416 => 0.0028948258931349
417 => 0.0028325984563596
418 => 0.0026697372515427
419 => 0.0028626533837288
420 => 0.002956617204276
421 => 0.0028945825495396
422 => 0.0029258692210483
423 => 0.003096559156062
424 => 0.0031615468319604
425 => 0.0031480298496717
426 => 0.00315031399717
427 => 0.003185380167475
428 => 0.0033408828779002
429 => 0.0032477020492888
430 => 0.0033189353013431
501 => 0.0033567171613822
502 => 0.0033918110585923
503 => 0.0033056315385843
504 => 0.0031935132492823
505 => 0.0031580006806548
506 => 0.0028884144256955
507 => 0.0028743812903711
508 => 0.002866504066266
509 => 0.0028168392825388
510 => 0.0027778163668584
511 => 0.0027467838954814
512 => 0.0026653454235077
513 => 0.0026928285171474
514 => 0.0025630325903514
515 => 0.0026460714246303
516 => 0.0024389139914316
517 => 0.0026114408575158
518 => 0.0025175423281402
519 => 0.0025805926652231
520 => 0.0025803726885367
521 => 0.0024642770278396
522 => 0.0023973154736041
523 => 0.0024399859821456
524 => 0.0024857321544913
525 => 0.0024931543170458
526 => 0.0025524654235893
527 => 0.0025690178785376
528 => 0.002518863167284
529 => 0.00243462111408
530 => 0.0024541886216826
531 => 0.0023969189386871
601 => 0.0022965560220839
602 => 0.0023686384209567
603 => 0.0023932505211712
604 => 0.0024041206267464
605 => 0.002305425225026
606 => 0.0022744129870241
607 => 0.0022579023317297
608 => 0.0024218807770816
609 => 0.0024308638864784
610 => 0.0023849050287208
611 => 0.002592643423783
612 => 0.0025456258269963
613 => 0.002598156002198
614 => 0.0024524130754646
615 => 0.0024579806515347
616 => 0.002388983614385
617 => 0.0024276173448051
618 => 0.0024003122693675
619 => 0.0024244961211732
620 => 0.0024389918222317
621 => 0.0025079775376465
622 => 0.0026122285635726
623 => 0.0024976733722344
624 => 0.0024477600349078
625 => 0.0024787259886619
626 => 0.002561192404155
627 => 0.002686133245005
628 => 0.002612165752553
629 => 0.0026449912696537
630 => 0.0026521621848346
701 => 0.0025976212943259
702 => 0.0026881442454344
703 => 0.0027366562303405
704 => 0.0027864194887134
705 => 0.0028296275316238
706 => 0.0027665429490018
707 => 0.002834052495227
708 => 0.0027796517180086
709 => 0.0027308485969947
710 => 0.0027309226111843
711 => 0.0027003077004724
712 => 0.0026409874532412
713 => 0.0026300478895159
714 => 0.0026869568815296
715 => 0.0027325925038229
716 => 0.0027363512722549
717 => 0.0027616174975994
718 => 0.0027765697894955
719 => 0.0029231225767321
720 => 0.0029820673201069
721 => 0.0030541438365388
722 => 0.0030822217016989
723 => 0.003166726009359
724 => 0.0030984819178191
725 => 0.003083716879339
726 => 0.002878737070104
727 => 0.0029123025023831
728 => 0.0029660439980443
729 => 0.0028796232475733
730 => 0.0029344373224324
731 => 0.0029452587819305
801 => 0.0028766867035416
802 => 0.0029133140134337
803 => 0.0028160427376008
804 => 0.002614348811574
805 => 0.0026883687884313
806 => 0.0027428724062531
807 => 0.0026650890233738
808 => 0.0028045127265523
809 => 0.0027230642774448
810 => 0.0026972490292928
811 => 0.0025965345424514
812 => 0.0026440679033844
813 => 0.0027083574546586
814 => 0.0026686339864337
815 => 0.0027510661475091
816 => 0.0028678120714462
817 => 0.0029510121691837
818 => 0.0029573992395883
819 => 0.0029039071507167
820 => 0.0029896285645154
821 => 0.0029902529514307
822 => 0.0028935588464835
823 => 0.0028343342455984
824 => 0.0028208782916677
825 => 0.0028544939027818
826 => 0.0028953094604585
827 => 0.0029596642189775
828 => 0.002998552451734
829 => 0.003099952338038
830 => 0.0031273882399093
831 => 0.0031575319780201
901 => 0.0031978133081207
902 => 0.0032461813728276
903 => 0.0031403548008444
904 => 0.0031445594878347
905 => 0.0030460152492726
906 => 0.0029407065976957
907 => 0.0030206227373339
908 => 0.0031251024591122
909 => 0.0031011346954964
910 => 0.0030984378324727
911 => 0.0031029732080312
912 => 0.0030849022969789
913 => 0.0030031682360285
914 => 0.0029621219023014
915 => 0.0030150821448458
916 => 0.003043228156769
917 => 0.0030868801666715
918 => 0.0030814991350689
919 => 0.0031939420246944
920 => 0.0032376339315063
921 => 0.0032264556720617
922 => 0.0032285127408194
923 => 0.0033076148511049
924 => 0.0033955926663323
925 => 0.0034779954999878
926 => 0.0035618192016664
927 => 0.0034607664575981
928 => 0.0034094581062271
929 => 0.0034623952279863
930 => 0.0034343060460369
1001 => 0.0035957148173107
1002 => 0.0036068904104301
1003 => 0.0037682875100125
1004 => 0.0039214725763254
1005 => 0.0038252597807698
1006 => 0.0039159841134592
1007 => 0.0040141098761262
1008 => 0.0042034103926421
1009 => 0.004139660638352
1010 => 0.0040908293256518
1011 => 0.0040446839711013
1012 => 0.0041407051285521
1013 => 0.0042642348136372
1014 => 0.0042908419246519
1015 => 0.0043339556091944
1016 => 0.0042886268415885
1017 => 0.0043432203493698
1018 => 0.0045359594214409
1019 => 0.0044838796228125
1020 => 0.0044099179365146
1021 => 0.0045620669230575
1022 => 0.0046171290498232
1023 => 0.0050035838917243
1024 => 0.0054914990932776
1025 => 0.0052894989960106
1026 => 0.0051641110171345
1027 => 0.005193580166413
1028 => 0.0053717502810484
1029 => 0.0054289728670326
1030 => 0.0052734221525195
1031 => 0.0053283652945691
1101 => 0.0056311074091529
1102 => 0.0057935188404972
1103 => 0.0055729423019663
1104 => 0.0049643803803519
1105 => 0.0044032584958959
1106 => 0.0045520932873014
1107 => 0.0045352200408373
1108 => 0.0048604786751097
1109 => 0.0044826375368391
1110 => 0.00448899941258
1111 => 0.0048209840509542
1112 => 0.0047324162410936
1113 => 0.0045889477320273
1114 => 0.0044043059747838
1115 => 0.0040629786092238
1116 => 0.0037606554429296
1117 => 0.0043535807928996
1118 => 0.0043280127736441
1119 => 0.004290986492794
1120 => 0.0043733844741639
1121 => 0.004773485682621
1122 => 0.0047642620547649
1123 => 0.0047055860402802
1124 => 0.0047500912801202
1125 => 0.0045811457483037
1126 => 0.004624686858671
1127 => 0.0044031696113225
1128 => 0.0045033046585015
1129 => 0.0045886399130418
1130 => 0.0046057722288008
1201 => 0.0046443722110036
1202 => 0.0043145395893163
1203 => 0.0044626247530769
1204 => 0.0045496109130828
1205 => 0.0041566042775924
1206 => 0.0045418424355119
1207 => 0.0043087979371841
1208 => 0.0042296991342407
1209 => 0.0043361952519291
1210 => 0.004294693611295
1211 => 0.004259012937736
1212 => 0.0042391025088183
1213 => 0.004317301504101
1214 => 0.0043136534275031
1215 => 0.0041857046934496
1216 => 0.0040188007857344
1217 => 0.0040748192155976
1218 => 0.0040544671948527
1219 => 0.0039807088462103
1220 => 0.0040304130675783
1221 => 0.0038115408314044
1222 => 0.0034349825250561
1223 => 0.0036837484765226
1224 => 0.0036741712579965
1225 => 0.0036693419901233
1226 => 0.0038562827272645
1227 => 0.003838312688845
1228 => 0.0038056968931504
1229 => 0.0039801098315448
1230 => 0.0039164467628458
1231 => 0.0041126413396706
]
'min_raw' => 0.0017611905054866
'max_raw' => 0.0057935188404972
'avg_raw' => 0.0037773546729919
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.001761'
'max' => '$0.005793'
'avg' => '$0.003777'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072435
'min_diff' => 0.0009594511801734
'max_diff' => 0.0038298087625364
'year' => 2029
]
4 => [
'items' => [
101 => 0.0042418677770371
102 => 0.0042090917724837
103 => 0.0043306298614324
104 => 0.0040761097670803
105 => 0.0041606511328503
106 => 0.0041780749911662
107 => 0.0039779576029584
108 => 0.0038412528093696
109 => 0.003832136158186
110 => 0.0035951088851841
111 => 0.0037217269412044
112 => 0.0038331455906911
113 => 0.0037797847040235
114 => 0.0037628922414156
115 => 0.0038491921693509
116 => 0.0038558984128604
117 => 0.0037029953501486
118 => 0.0037347887386967
119 => 0.0038673724541531
120 => 0.003731447969242
121 => 0.0034673688981982
122 => 0.0034018736374005
123 => 0.0033931353622929
124 => 0.003215507020515
125 => 0.0034062503439048
126 => 0.0033229857716419
127 => 0.0035860175577576
128 => 0.0034357752121961
129 => 0.0034292985649645
130 => 0.0034195081627564
131 => 0.0032666161112537
201 => 0.003300089753736
202 => 0.0034113612395269
203 => 0.0034510641592201
204 => 0.0034469228194197
205 => 0.0034108159485426
206 => 0.003427345489133
207 => 0.0033740980796175
208 => 0.0033552953110686
209 => 0.0032959486014193
210 => 0.0032087253331818
211 => 0.0032208542636016
212 => 0.0030480421460135
213 => 0.0029538849325182
214 => 0.0029278234567948
215 => 0.0028929729622735
216 => 0.0029317599128846
217 => 0.003047552590997
218 => 0.0029078820544064
219 => 0.0026684267161708
220 => 0.0026828183900108
221 => 0.002715152208203
222 => 0.0026548983519114
223 => 0.0025978731336544
224 => 0.0026474519343267
225 => 0.0025459915508323
226 => 0.0027274132108155
227 => 0.0027225062633413
228 => 0.0027901290391429
301 => 0.0028324149486106
302 => 0.0027349596175132
303 => 0.0027104498652894
304 => 0.0027244117340622
305 => 0.002493653143695
306 => 0.0027712711392235
307 => 0.0027736719911772
308 => 0.0027531144391504
309 => 0.0029009374512753
310 => 0.0032128901140125
311 => 0.003095520974024
312 => 0.0030500720955194
313 => 0.0029636737442592
314 => 0.0030787944174869
315 => 0.0030699549459453
316 => 0.003029979503364
317 => 0.0030058022309599
318 => 0.0030503495966801
319 => 0.0030002823193633
320 => 0.0029912888606004
321 => 0.002936798285477
322 => 0.0029173476293211
323 => 0.0029029471378563
324 => 0.0028870936117165
325 => 0.0029220625399282
326 => 0.0028428183480549
327 => 0.0027472576210595
328 => 0.0027393127805912
329 => 0.0027612491836417
330 => 0.002751543958265
331 => 0.002739266315706
401 => 0.0027158249524439
402 => 0.0027088704007096
403 => 0.0027314693199774
404 => 0.0027059564577228
405 => 0.002743602075737
406 => 0.0027333645506642
407 => 0.002676178567812
408 => 0.0026049036602156
409 => 0.0026042691640338
410 => 0.0025889131021065
411 => 0.0025693548484426
412 => 0.0025639141897055
413 => 0.0026432765460206
414 => 0.0028075542484773
415 => 0.0027753026046528
416 => 0.0027986077225975
417 => 0.002913245836962
418 => 0.0029496858462301
419 => 0.0029238215907805
420 => 0.0028884170026833
421 => 0.0028899746248782
422 => 0.003010962820104
423 => 0.0030185087054331
424 => 0.0030375747232648
425 => 0.0030620799442346
426 => 0.0029279949358752
427 => 0.0028836592330426
428 => 0.0028626505173893
429 => 0.0027979518045735
430 => 0.002867723819497
501 => 0.0028270706543366
502 => 0.0028325561552266
503 => 0.0028289837155758
504 => 0.0028309345091925
505 => 0.0027273624997642
506 => 0.0027650986964153
507 => 0.0027023549504271
508 => 0.002618348117865
509 => 0.0026180664975056
510 => 0.0026386270507628
511 => 0.0026263968291509
512 => 0.002593485617261
513 => 0.0025981604995734
514 => 0.0025572036113743
515 => 0.0026031334073492
516 => 0.0026044505095531
517 => 0.0025867650362898
518 => 0.0026575262240796
519 => 0.0026865171404527
520 => 0.0026748761830913
521 => 0.0026857003798518
522 => 0.0027766428060612
523 => 0.0027914703896295
524 => 0.0027980558227954
525 => 0.0027892322147559
526 => 0.0026873626404576
527 => 0.0026918809892606
528 => 0.0026587283437157
529 => 0.0026307178517699
530 => 0.0026318381245521
531 => 0.0026462391585213
601 => 0.0027091293184742
602 => 0.0028414779525176
603 => 0.0028465004864339
604 => 0.0028525879440582
605 => 0.0028278271945892
606 => 0.0028203591156209
607 => 0.0028302114394548
608 => 0.002879914627841
609 => 0.0030077647226541
610 => 0.0029625739603264
611 => 0.0029258331671179
612 => 0.0029580647480085
613 => 0.0029531029487699
614 => 0.0029112203698176
615 => 0.0029100448653207
616 => 0.0028296588056408
617 => 0.0027999419096791
618 => 0.0027751082471425
619 => 0.0027479905359516
620 => 0.0027319142477638
621 => 0.0027566147329626
622 => 0.0027622640261751
623 => 0.0027082559835973
624 => 0.0027008948869605
625 => 0.0027449990203741
626 => 0.0027255904356266
627 => 0.0027455526463492
628 => 0.0027501840504695
629 => 0.0027494382877358
630 => 0.0027291734961976
701 => 0.0027420896700193
702 => 0.0027115390684344
703 => 0.0026783198777627
704 => 0.0026571281037429
705 => 0.0026386354702297
706 => 0.002648896258101
707 => 0.0026123184228857
708 => 0.002600616437234
709 => 0.0027377139609516
710 => 0.0028389893757687
711 => 0.0028375167911277
712 => 0.0028285528108443
713 => 0.00281523415442
714 => 0.0028789402851667
715 => 0.0028567463430589
716 => 0.0028728942903083
717 => 0.0028770046206105
718 => 0.0028894453524829
719 => 0.0028938918448102
720 => 0.0028804514567095
721 => 0.0028353438726382
722 => 0.0027229400618329
723 => 0.0026706157844748
724 => 0.0026533479014169
725 => 0.0026539755561696
726 => 0.0026366620361138
727 => 0.0026417616437078
728 => 0.0026348886007062
729 => 0.0026218727200289
730 => 0.002648092564147
731 => 0.0026511141569268
801 => 0.0026449941320059
802 => 0.0026464356194229
803 => 0.0025957644269742
804 => 0.002599616847684
805 => 0.0025781660796297
806 => 0.0025741443192124
807 => 0.0025199186455032
808 => 0.0024238500043902
809 => 0.0024770813571754
810 => 0.0024127853684718
811 => 0.0023884355033065
812 => 0.002503703977818
813 => 0.0024921342200268
814 => 0.0024723318239412
815 => 0.0024430399529496
816 => 0.0024321753130658
817 => 0.002366165200459
818 => 0.0023622649708559
819 => 0.0023949813650868
820 => 0.0023798838748517
821 => 0.0023586812806948
822 => 0.0022818876339311
823 => 0.0021955461494661
824 => 0.0021981522561588
825 => 0.0022256158759267
826 => 0.0023054700543756
827 => 0.0022742696453643
828 => 0.0022516333906432
829 => 0.0022473943005773
830 => 0.0023004553878888
831 => 0.0023755479430761
901 => 0.0024107796898688
902 => 0.0023758660988013
903 => 0.0023357592452642
904 => 0.0023382003636018
905 => 0.0023544400302611
906 => 0.0023561465896105
907 => 0.002330041151009
908 => 0.0023373896790619
909 => 0.0023262265929861
910 => 0.0022577187543447
911 => 0.0022564796647844
912 => 0.0022396667363437
913 => 0.0022391576475524
914 => 0.0022105546620932
915 => 0.0022065529067043
916 => 0.0021497599429979
917 => 0.0021871412436944
918 => 0.0021620678297936
919 => 0.0021242762808246
920 => 0.0021177610035378
921 => 0.0021175651464352
922 => 0.0021563686171906
923 => 0.0021866878025461
924 => 0.0021625039925632
925 => 0.0021569978078136
926 => 0.0022157894555858
927 => 0.002208307682509
928 => 0.0022018285152768
929 => 0.0023688242283815
930 => 0.0022366340906211
1001 => 0.0021789916454084
1002 => 0.0021076481734541
1003 => 0.0021308779676674
1004 => 0.0021357728266248
1005 => 0.0019642046372022
1006 => 0.0018945994441209
1007 => 0.0018707135648718
1008 => 0.0018569669036671
1009 => 0.0018632314297978
1010 => 0.0018005785921498
1011 => 0.0018426823352315
1012 => 0.0017884302737409
1013 => 0.0017793347390805
1014 => 0.0018763441455665
1015 => 0.0018898424377584
1016 => 0.0018322545296774
1017 => 0.0018692352893008
1018 => 0.0018558255517904
1019 => 0.0017893602696223
1020 => 0.001786821784729
1021 => 0.0017534718425046
1022 => 0.0017012856407449
1023 => 0.001677435146198
1024 => 0.0016650136015584
1025 => 0.0016701389729678
1026 => 0.0016675474283443
1027 => 0.0016506358466875
1028 => 0.0016685167804088
1029 => 0.0016228383836626
1030 => 0.0016046488780225
1031 => 0.0015964331003181
1101 => 0.0015558908940554
1102 => 0.0016204115734203
1103 => 0.0016331229600653
1104 => 0.0016458593920687
1105 => 0.001756721337127
1106 => 0.0017511829876445
1107 => 0.0018012469696808
1108 => 0.0017993015754006
1109 => 0.0017850225167411
1110 => 0.0017247815170479
1111 => 0.001748792505833
1112 => 0.0016748904144885
1113 => 0.0017302628861776
1114 => 0.0017049932025084
1115 => 0.00172171918071
1116 => 0.0016916443637828
1117 => 0.0017082890092291
1118 => 0.0016361373014002
1119 => 0.0015687630518314
1120 => 0.0015958764166349
1121 => 0.0016253517449655
1122 => 0.0016892617669604
1123 => 0.0016511974851065
1124 => 0.001664886840231
1125 => 0.0016190297921342
1126 => 0.0015244136034924
1127 => 0.0015249491208448
1128 => 0.001510394481548
1129 => 0.0014978171481834
1130 => 0.0016555696257681
1201 => 0.0016359506114828
1202 => 0.0016046902798923
1203 => 0.0016465334759624
1204 => 0.0016575974811441
1205 => 0.0016579124578175
1206 => 0.001688440173541
1207 => 0.001704732820895
1208 => 0.0017076044706075
1209 => 0.0017556404908934
1210 => 0.0017717415312828
1211 => 0.0018380594379422
1212 => 0.0017033505035974
1213 => 0.0017005762617423
1214 => 0.0016471222955408
1215 => 0.001613220945102
1216 => 0.0016494435500092
1217 => 0.0016815318330783
1218 => 0.0016481193679415
1219 => 0.0016524823305127
1220 => 0.0016076288259652
1221 => 0.0016236618432874
1222 => 0.0016374716376859
1223 => 0.0016298466809213
1224 => 0.0016184317515925
1225 => 0.0016789009597966
1226 => 0.0016754890500889
1227 => 0.0017317993669497
1228 => 0.001775697285732
1229 => 0.0018543702038816
1230 => 0.0017722709124806
1231 => 0.0017692788879868
]
'min_raw' => 0.0014978171481834
'max_raw' => 0.0043306298614324
'avg_raw' => 0.0029142235048079
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.001497'
'max' => '$0.00433'
'avg' => '$0.002914'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -0.00026337335730322
'max_diff' => -0.0014628889790648
'year' => 2030
]
5 => [
'items' => [
101 => 0.0017985264073493
102 => 0.00177173705364
103 => 0.0017886670004472
104 => 0.001851642527715
105 => 0.0018529731013706
106 => 0.0018306842782915
107 => 0.0018293280013815
108 => 0.0018336088136669
109 => 0.0018586816649309
110 => 0.0018499204402884
111 => 0.0018600591512518
112 => 0.0018727377645611
113 => 0.0019251818848288
114 => 0.0019378259846766
115 => 0.0019071073772605
116 => 0.0019098809235685
117 => 0.0018983913211503
118 => 0.0018872925091786
119 => 0.0019122410176397
120 => 0.0019578349072165
121 => 0.0019575512699958
122 => 0.001968128166159
123 => 0.001974717484845
124 => 0.0019464313053687
125 => 0.0019280180426413
126 => 0.0019350788592374
127 => 0.001946369258739
128 => 0.0019314175348472
129 => 0.0018391285686747
130 => 0.0018671231455694
131 => 0.0018624634791093
201 => 0.0018558275474352
202 => 0.0018839763109785
203 => 0.0018812612940654
204 => 0.0017999359967428
205 => 0.0018051421784181
206 => 0.0018002526018938
207 => 0.0018160518239569
208 => 0.0017708838438
209 => 0.0017847772102852
210 => 0.0017934909995026
211 => 0.0017986234882941
212 => 0.0018171655571895
213 => 0.0018149898594164
214 => 0.0018170303127611
215 => 0.0018445233060083
216 => 0.0019835734313965
217 => 0.0019911416229246
218 => 0.0019538730799043
219 => 0.0019687611277514
220 => 0.0019401793315432
221 => 0.0019593664828191
222 => 0.0019724938444214
223 => 0.0019131738215874
224 => 0.0019096612748189
225 => 0.0018809615113706
226 => 0.00189638313861
227 => 0.0018718462208179
228 => 0.0018778667221791
301 => 0.0018610328755152
302 => 0.0018913304479248
303 => 0.0019252078416456
304 => 0.0019337666091582
305 => 0.0019112521766135
306 => 0.0018949502436777
307 => 0.0018663294196329
308 => 0.001913926487876
309 => 0.0019278453211246
310 => 0.0019138533781704
311 => 0.0019106111392579
312 => 0.0019044671023773
313 => 0.0019119146257268
314 => 0.0019277695161695
315 => 0.0019202926426306
316 => 0.0019252312493286
317 => 0.0019064103732649
318 => 0.0019464406692711
319 => 0.0020100184131444
320 => 0.002010222825987
321 => 0.0020027459121449
322 => 0.0019996865200931
323 => 0.0020073582874321
324 => 0.0020115199065012
325 => 0.0020363289953141
326 => 0.002062950136048
327 => 0.0021871793841397
328 => 0.002152296308387
329 => 0.002262519887725
330 => 0.0023496924282408
331 => 0.0023758316615483
401 => 0.0023517847968514
402 => 0.0022695217717093
403 => 0.0022654855552393
404 => 0.002388421245355
405 => 0.002353686282086
406 => 0.0023495546687309
407 => 0.0023056012831035
408 => 0.002331583177742
409 => 0.0023259005562531
410 => 0.0023169302602296
411 => 0.0023665019052855
412 => 0.0024592955995388
413 => 0.0024448328320757
414 => 0.0024340370470729
415 => 0.0023867330597966
416 => 0.002415220625865
417 => 0.0024050767492314
418 => 0.0024486612807124
419 => 0.0024228427697787
420 => 0.0023534231305765
421 => 0.0023644784369296
422 => 0.0023628074496145
423 => 0.0023971962501513
424 => 0.0023868735858127
425 => 0.0023607917837295
426 => 0.0024589784407798
427 => 0.0024526027454138
428 => 0.0024616420237559
429 => 0.002465621393631
430 => 0.0025253858815346
501 => 0.0025498694799784
502 => 0.0025554276854708
503 => 0.0025786852103629
504 => 0.0025548490170644
505 => 0.0026502107851764
506 => 0.0027136207964575
507 => 0.0027872747876098
508 => 0.0028949030650098
509 => 0.0029353722929295
510 => 0.0029280618891318
511 => 0.0030096644207119
512 => 0.0031563023560391
513 => 0.0029577016084004
514 => 0.0031668286779042
515 => 0.0031006214621874
516 => 0.0029436453447399
517 => 0.0029335379334031
518 => 0.0030398439826688
519 => 0.0032756205683619
520 => 0.0032165612078017
521 => 0.0032757171683184
522 => 0.0032067085981218
523 => 0.0032032817409617
524 => 0.003272365576094
525 => 0.0034337837224443
526 => 0.003357100011782
527 => 0.0032471551089303
528 => 0.0033283367142638
529 => 0.003258009694721
530 => 0.0030995432363977
531 => 0.0032165160462217
601 => 0.0031382996594862
602 => 0.0031611273593475
603 => 0.003325526570456
604 => 0.0033057456224291
605 => 0.0033313440008424
606 => 0.0032861635329691
607 => 0.0032439578516696
608 => 0.003165177813289
609 => 0.0031418549277334
610 => 0.0031483005342315
611 => 0.0031418517336109
612 => 0.0030977750261629
613 => 0.0030882566653861
614 => 0.0030723923137491
615 => 0.0030773093396841
616 => 0.0030474797173268
617 => 0.0031037743778295
618 => 0.0031142231628857
619 => 0.0031551897222144
620 => 0.0031594430063053
621 => 0.0032735342909135
622 => 0.0032106947285774
623 => 0.0032528529322992
624 => 0.00324908190575
625 => 0.0029470474931982
626 => 0.0029886651703757
627 => 0.0030534092157172
628 => 0.0030242421110493
629 => 0.0029830066491003
630 => 0.0029497068026709
701 => 0.0028992541302462
702 => 0.0029702652978262
703 => 0.0030636374319981
704 => 0.0031618110777154
705 => 0.0032797602804526
706 => 0.0032534353914817
707 => 0.003159606099414
708 => 0.0031638152129138
709 => 0.0031898342963445
710 => 0.0031561372192187
711 => 0.0031461992933292
712 => 0.0031884689779346
713 => 0.0031887600660214
714 => 0.0031499875063603
715 => 0.0031068989016005
716 => 0.0031067183587733
717 => 0.0030990511577428
718 => 0.0032080725761524
719 => 0.003268023332969
720 => 0.0032748965906225
721 => 0.0032675607079656
722 => 0.0032703839980495
723 => 0.0032354999735827
724 => 0.0033152345089777
725 => 0.0033884068035844
726 => 0.0033687950655317
727 => 0.003339394282218
728 => 0.0033159751421749
729 => 0.0033632782604086
730 => 0.0033611719270156
731 => 0.0033877677074251
801 => 0.0033865611692011
802 => 0.0033776180085673
803 => 0.0033687953849202
804 => 0.0034037760904168
805 => 0.0033937022090067
806 => 0.0033836126800763
807 => 0.0033633765851768
808 => 0.0033661270065596
809 => 0.0033367312997056
810 => 0.0033231315006589
811 => 0.0031186231534772
812 => 0.0030639718406072
813 => 0.0030811662561661
814 => 0.0030868271042209
815 => 0.0030630427828224
816 => 0.0030971433900171
817 => 0.0030918288465072
818 => 0.0031125046264
819 => 0.003099587296761
820 => 0.0031001174284751
821 => 0.0031381045406783
822 => 0.0031491323609596
823 => 0.0031435235225591
824 => 0.003147451760715
825 => 0.0032379763510138
826 => 0.0032251066490867
827 => 0.0032182698764407
828 => 0.003220163709187
829 => 0.0032432946828774
830 => 0.0032497700926064
831 => 0.0032223333265657
901 => 0.0032352726640405
902 => 0.0032903667207619
903 => 0.0033096465225609
904 => 0.0033711783950732
905 => 0.0033450385619881
906 => 0.0033930193569212
907 => 0.0035404959626872
908 => 0.003658310479978
909 => 0.0035499633809866
910 => 0.0037663147384028
911 => 0.0039347753039102
912 => 0.0039283095068203
913 => 0.003898934510661
914 => 0.0037071466355866
915 => 0.003530660573547
916 => 0.0036782986584371
917 => 0.0036786750182776
918 => 0.0036659927758518
919 => 0.0035872244573498
920 => 0.0036632518091081
921 => 0.0036692865841999
922 => 0.0036659087149247
923 => 0.0036055172298114
924 => 0.0035133105942553
925 => 0.0035313275501315
926 => 0.0035608396913926
927 => 0.0035049670511077
928 => 0.0034871123570941
929 => 0.00352030763026
930 => 0.0036272697169104
1001 => 0.0036070491540183
1002 => 0.0036065211134035
1003 => 0.003693033256309
1004 => 0.0036311092324776
1005 => 0.0035315548016434
1006 => 0.0035064159948961
1007 => 0.0034171901664727
1008 => 0.0034788187639762
1009 => 0.0034810366674851
1010 => 0.0034472833144614
1011 => 0.0035342937002159
1012 => 0.0035334918841933
1013 => 0.0036160952956804
1014 => 0.0037740019940191
1015 => 0.0037273012132036
1016 => 0.0036729932861457
1017 => 0.0036788980636124
1018 => 0.0037436588981891
1019 => 0.003704503019258
1020 => 0.0037185837463261
1021 => 0.0037436375853223
1022 => 0.0037587531884405
1023 => 0.0036767231609396
1024 => 0.0036575980375793
1025 => 0.0036184747471904
1026 => 0.0036082682109988
1027 => 0.0036401333146863
1028 => 0.0036317379856754
1029 => 0.0034808502612833
1030 => 0.003465081654553
1031 => 0.003465565255209
1101 => 0.0034259143438292
1102 => 0.0033654371866659
1103 => 0.0035243675447877
1104 => 0.0035116032128016
1105 => 0.0034975123781697
1106 => 0.003499238425011
1107 => 0.003568224706822
1108 => 0.0035282091794809
1109 => 0.0036345970173333
1110 => 0.003612726876182
1111 => 0.0035902958484337
1112 => 0.0035871951971331
1113 => 0.0035785611651754
1114 => 0.0035489518570106
1115 => 0.003513196838158
1116 => 0.0034895882776648
1117 => 0.0032189607272073
1118 => 0.0032691876264042
1119 => 0.0033269690956043
1120 => 0.0033469150272274
1121 => 0.0033127961309696
1122 => 0.0035502990789919
1123 => 0.003593693156231
1124 => 0.0034622496657483
1125 => 0.0034376619554814
1126 => 0.0035519110451836
1127 => 0.00348300487771
1128 => 0.0035140333207042
1129 => 0.0034469667986016
1130 => 0.003583240793751
1201 => 0.0035822026142294
1202 => 0.0035291889522285
1203 => 0.0035739957363297
1204 => 0.0035662094549513
1205 => 0.0035063571611192
1206 => 0.0035851382182221
1207 => 0.0035851772926435
1208 => 0.0035341527955841
1209 => 0.0034745673537173
1210 => 0.0034639148840569
1211 => 0.0034558896791256
1212 => 0.0035120596122451
1213 => 0.0035624213986412
1214 => 0.0036561321973787
1215 => 0.003679693318695
1216 => 0.003771653943745
1217 => 0.0037168958690093
1218 => 0.0037411694143038
1219 => 0.0037675217814237
1220 => 0.0037801560752972
1221 => 0.003759569171424
1222 => 0.0039024218746301
1223 => 0.0039144830196744
1224 => 0.0039185270172792
1225 => 0.0038703578895098
1226 => 0.0039131433490938
1227 => 0.0038931254494599
1228 => 0.0039452064631745
1229 => 0.0039533734311288
1230 => 0.0039464562998199
1231 => 0.0039490486243553
]
'min_raw' => 0.0017708838438
'max_raw' => 0.0039533734311288
'avg_raw' => 0.0028621286374644
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.00177'
'max' => '$0.003953'
'avg' => '$0.002862'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 0.00027306669561657
'max_diff' => -0.00037725643030367
'year' => 2031
]
6 => [
'items' => [
101 => 0.0038271490431127
102 => 0.0038208279067537
103 => 0.003734638763972
104 => 0.0037697614767335
105 => 0.0037041012487013
106 => 0.0037249227833856
107 => 0.0037341007174796
108 => 0.0037293066855521
109 => 0.0037717472622154
110 => 0.0037356641020146
111 => 0.0036404347096239
112 => 0.003545179372049
113 => 0.003543983518879
114 => 0.0035189044698919
115 => 0.0035007769109312
116 => 0.0035042689218967
117 => 0.0035165752240094
118 => 0.0035000616462807
119 => 0.0035035856553488
120 => 0.0035621076862282
121 => 0.003573843862161
122 => 0.0035339597507213
123 => 0.0033738192880411
124 => 0.0033345204168174
125 => 0.0033627676661225
126 => 0.0033492673003105
127 => 0.0027031201109457
128 => 0.0028549228086502
129 => 0.0027647268004067
130 => 0.0028062932707241
131 => 0.0027142265024506
201 => 0.0027581655899035
202 => 0.0027500516448495
203 => 0.00299414589059
204 => 0.0029903346946834
205 => 0.0029921589124799
206 => 0.0029050842440797
207 => 0.0030437965551761
208 => 0.0031121312275556
209 => 0.0030994842983665
210 => 0.003102667257976
211 => 0.0030479734662354
212 => 0.0029926884679386
213 => 0.0029313688965273
214 => 0.0030452930808815
215 => 0.003032626656332
216 => 0.0030616788770128
217 => 0.0031355668540353
218 => 0.003146447139325
219 => 0.0031610703530914
220 => 0.0031558289719074
221 => 0.0032806999361429
222 => 0.0032655772384488
223 => 0.0033020185887945
224 => 0.0032270559663216
225 => 0.003142228643476
226 => 0.0031583515443348
227 => 0.00315679877933
228 => 0.0031370302986371
229 => 0.003119184198176
301 => 0.003089475469016
302 => 0.0031834782841429
303 => 0.0031796619415181
304 => 0.0032414440926015
305 => 0.0032305234972777
306 => 0.0031575930889824
307 => 0.0031601978127823
308 => 0.0031777158321238
309 => 0.0032383458970821
310 => 0.0032563450283713
311 => 0.0032480071136168
312 => 0.0032677423393838
313 => 0.0032833402571602
314 => 0.0032697011977068
315 => 0.0034628015173357
316 => 0.0033826128017185
317 => 0.0034216962237608
318 => 0.003431017389625
319 => 0.0034071414192669
320 => 0.0034123192623032
321 => 0.0034201622836254
322 => 0.0034677835732727
323 => 0.0035927556166387
324 => 0.003648104883932
325 => 0.0038146258854686
326 => 0.0036435088977823
327 => 0.0036333555238854
328 => 0.0036633509847147
329 => 0.0037611164406548
330 => 0.003840346160052
331 => 0.0038666312288482
401 => 0.0038701052346088
402 => 0.0039194177710688
403 => 0.0039476827973434
404 => 0.0039134299320941
405 => 0.0038844042152199
406 => 0.0037804377001809
407 => 0.0037924721073881
408 => 0.0038753772390982
409 => 0.0039924856207265
410 => 0.0040929767952141
411 => 0.0040577882883796
412 => 0.0043262517563126
413 => 0.0043528688125832
414 => 0.0043491911960391
415 => 0.0044098288113726
416 => 0.0042894754935711
417 => 0.0042380221184753
418 => 0.003890679904664
419 => 0.0039882688988402
420 => 0.0041301202330759
421 => 0.0041113456770746
422 => 0.0040083294464556
423 => 0.0040928986481655
424 => 0.0040649374253567
425 => 0.0040428832488153
426 => 0.0041439177069642
427 => 0.0040328261699627
428 => 0.0041290120100138
429 => 0.0040056526752332
430 => 0.0040579490265147
501 => 0.0040282630882374
502 => 0.0040474735284746
503 => 0.0039351696873818
504 => 0.0039957661140138
505 => 0.0039326486768114
506 => 0.003932618750928
507 => 0.0039312254300035
508 => 0.0040054828149666
509 => 0.0040079043456243
510 => 0.0039530280259399
511 => 0.0039451194909441
512 => 0.0039743614898544
513 => 0.0039401267676221
514 => 0.0039561449786838
515 => 0.0039406119429172
516 => 0.0039371151293903
517 => 0.0039092519242744
518 => 0.0038972476893958
519 => 0.0039019548592027
520 => 0.0038858868619392
521 => 0.0038762053123831
522 => 0.0039292995261157
523 => 0.0039009334295328
524 => 0.0039249520149873
525 => 0.0038975798054748
526 => 0.0038026958018005
527 => 0.0037481270079073
528 => 0.0035688999207184
529 => 0.0036197285003147
530 => 0.0036534279011729
531 => 0.0036422902493903
601 => 0.0036662182351185
602 => 0.0036676872191071
603 => 0.00365990798703
604 => 0.003650900632866
605 => 0.0036465163509968
606 => 0.0036791931960745
607 => 0.0036981632044941
608 => 0.0036568100868889
609 => 0.0036471216300256
610 => 0.0036889319150926
611 => 0.0037144361648305
612 => 0.003902745215295
613 => 0.0038887946726064
614 => 0.0039238077970991
615 => 0.0039198658566014
616 => 0.0039565651890979
617 => 0.0040165530874346
618 => 0.0038945809172359
619 => 0.0039157510685021
620 => 0.0039105606363018
621 => 0.00396722841406
622 => 0.0039674053246767
623 => 0.0039334301611452
624 => 0.0039518486484797
625 => 0.0039415679541344
626 => 0.0039601465583356
627 => 0.0038886083546035
628 => 0.0039757341646773
629 => 0.004025128884726
630 => 0.0040258147304618
701 => 0.0040492274357441
702 => 0.0040730161002834
703 => 0.0041186763703105
704 => 0.0040717426601345
705 => 0.0039873134844324
706 => 0.0039934089982135
707 => 0.0039439082033908
708 => 0.0039447403206948
709 => 0.0039402984133117
710 => 0.0039536289117395
711 => 0.0038915336493694
712 => 0.0039061072833334
713 => 0.0038857041104407
714 => 0.0039157067159889
715 => 0.0038834288720275
716 => 0.0039105581333183
717 => 0.0039222662231421
718 => 0.0039654693266493
719 => 0.0038770477385121
720 => 0.003696750134685
721 => 0.0037346508769066
722 => 0.0036785927021218
723 => 0.0036837810996266
724 => 0.0036942624883138
725 => 0.0036602888782818
726 => 0.0036667699724444
727 => 0.0036665384221541
728 => 0.0036645430468464
729 => 0.003655705198754
730 => 0.003642888570505
731 => 0.0036939460726987
801 => 0.0037026217372421
802 => 0.0037219066648347
803 => 0.0037792855282589
804 => 0.003773552026716
805 => 0.0037829036056131
806 => 0.0037624891613876
807 => 0.0036847280671442
808 => 0.0036889508686816
809 => 0.0036362924658453
810 => 0.0037205600710819
811 => 0.0037006043898838
812 => 0.0036877388323961
813 => 0.003684228345837
814 => 0.0037417494403652
815 => 0.0037589606533808
816 => 0.003748235780431
817 => 0.0037262387531166
818 => 0.0037684795483977
819 => 0.0037797814032188
820 => 0.0037823114717169
821 => 0.0038571540620859
822 => 0.0037864943411211
823 => 0.0038035028382546
824 => 0.0039361982776002
825 => 0.0038158618248326
826 => 0.0038796067276868
827 => 0.0038764867464045
828 => 0.0039090964816948
829 => 0.0038738117963039
830 => 0.0038742491922676
831 => 0.0039032044280305
901 => 0.0038625420215058
902 => 0.0038524734378135
903 => 0.0038385637615553
904 => 0.0038689350307899
905 => 0.0038871412331217
906 => 0.0040338698529337
907 => 0.0041286632329703
908 => 0.0041245480023432
909 => 0.0041621535068863
910 => 0.0041452118826627
911 => 0.0040905029090699
912 => 0.0041838844559442
913 => 0.0041543346272633
914 => 0.0041567706792367
915 => 0.0041566800092606
916 => 0.0041763280620425
917 => 0.0041624056159289
918 => 0.0041349630455293
919 => 0.0041531807044517
920 => 0.0042072806385191
921 => 0.0043752084938529
922 => 0.0044691831464459
923 => 0.0043695511017688
924 => 0.0044382759520608
925 => 0.0043970655310536
926 => 0.0043895763716527
927 => 0.0044327406563627
928 => 0.004475980494439
929 => 0.0044732263036845
930 => 0.0044418364016314
1001 => 0.0044241050424508
1002 => 0.0045583728346071
1003 => 0.0046572990566756
1004 => 0.0046505529515404
1005 => 0.0046803280656565
1006 => 0.0047677487216112
1007 => 0.0047757413708003
1008 => 0.0047747344807114
1009 => 0.0047549238657494
1010 => 0.0048410008545435
1011 => 0.004912807792976
1012 => 0.0047503382807694
1013 => 0.0048122045441356
1014 => 0.0048399783029672
1015 => 0.0048807584210349
1016 => 0.0049495613157565
1017 => 0.0050242995084906
1018 => 0.0050348683084058
1019 => 0.0050273692391023
1020 => 0.0049780773919237
1021 => 0.0050598568142255
1022 => 0.0051077612818464
1023 => 0.0051362872960405
1024 => 0.0052086245217603
1025 => 0.0048401498242464
1026 => 0.0045793251189653
1027 => 0.0045385935748812
1028 => 0.004621422771465
1029 => 0.0046432641700537
1030 => 0.0046344599296694
1031 => 0.0043408780107307
1101 => 0.0045370479268362
1102 => 0.0047481102621306
1103 => 0.0047562180260077
1104 => 0.0048618802441614
1105 => 0.0048962881936329
1106 => 0.0049813601287102
1107 => 0.0049760388560085
1108 => 0.0049967525184097
1109 => 0.0049919908061343
1110 => 0.0051495686518555
1111 => 0.0053234004162225
1112 => 0.0053173811749737
1113 => 0.0052923908021618
1114 => 0.0053295057672792
1115 => 0.0055089187770499
1116 => 0.0054924013021451
1117 => 0.00550844662206
1118 => 0.0057199846718538
1119 => 0.0059950142275225
1120 => 0.0058672353863985
1121 => 0.0061444787042666
1122 => 0.0063189886768278
1123 => 0.0066207856297044
1124 => 0.0065829991648229
1125 => 0.0067004865038895
1126 => 0.0065153535064119
1127 => 0.0060902507226515
1128 => 0.0060229765798933
1129 => 0.0061576611173478
1130 => 0.0064887699103547
1201 => 0.0061472333231398
1202 => 0.0062163257299152
1203 => 0.0061964271121158
1204 => 0.0061953667993369
1205 => 0.0062358346255019
1206 => 0.0061771339329898
1207 => 0.0059379767516426
1208 => 0.0060475810784919
1209 => 0.0060052575842633
1210 => 0.0060522186565354
1211 => 0.0063056481953687
1212 => 0.0061936009552449
1213 => 0.0060755682897531
1214 => 0.0062236074458251
1215 => 0.0064121121632779
1216 => 0.0064003158768353
1217 => 0.0063774261506713
1218 => 0.0065064543385905
1219 => 0.0067195711033211
1220 => 0.0067771757084553
1221 => 0.006819698250291
1222 => 0.0068255613903859
1223 => 0.0068859553772848
1224 => 0.0065612016884851
1225 => 0.0070765941328766
1226 => 0.007165588170594
1227 => 0.0071488609799281
1228 => 0.0072477741074094
1229 => 0.0072186713561206
1230 => 0.0071765060355848
1231 => 0.0073333043820683
]
'min_raw' => 0.0027031201109457
'max_raw' => 0.0073333043820683
'avg_raw' => 0.005018212246507
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.0027031'
'max' => '$0.007333'
'avg' => '$0.005018'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.00093223626714573
'max_diff' => 0.0033799309509396
'year' => 2032
]
7 => [
'items' => [
101 => 0.007153547730799
102 => 0.0068984057950554
103 => 0.0067584298829711
104 => 0.0069427614555384
105 => 0.0070553263146199
106 => 0.0071297245260031
107 => 0.007152237379815
108 => 0.0065864113928914
109 => 0.0062814625680875
110 => 0.0064769312685414
111 => 0.0067154165736243
112 => 0.0065598768905739
113 => 0.0065659737516739
114 => 0.0063442150387537
115 => 0.0067350372990679
116 => 0.0066780977830727
117 => 0.0069735000927799
118 => 0.0069029999608167
119 => 0.0071438890769313
120 => 0.0070804548995849
121 => 0.0073437666231927
122 => 0.0074488087986202
123 => 0.007625190959672
124 => 0.0077549383953464
125 => 0.0078311285712473
126 => 0.0078265543988683
127 => 0.0081284578335827
128 => 0.0079504359258342
129 => 0.0077267984531601
130 => 0.0077227535568466
131 => 0.007838578572912
201 => 0.0080813160315438
202 => 0.0081442543228807
203 => 0.0081794282415384
204 => 0.0081255581607012
205 => 0.0079323281387854
206 => 0.0078488923950206
207 => 0.0079199820660744
208 => 0.0078330455071806
209 => 0.0079831223979215
210 => 0.0081892100236027
211 => 0.0081466537438583
212 => 0.0082889130066498
213 => 0.0084361363775281
214 => 0.0086466724100993
215 => 0.0087017143251401
216 => 0.0087926965176461
217 => 0.008886347079828
218 => 0.0089164251164474
219 => 0.0089738534210205
220 => 0.008973550745508
221 => 0.0091466148067098
222 => 0.0093375098255632
223 => 0.0094095682759505
224 => 0.00957526270929
225 => 0.0092915167988216
226 => 0.00950674133135
227 => 0.00970087924711
228 => 0.0094694200205741
301 => 0.0097884326412707
302 => 0.0098008191784343
303 => 0.009987841183629
304 => 0.0097982585522832
305 => 0.0096856849909593
306 => 0.010010680644425
307 => 0.01016793580387
308 => 0.01012056927006
309 => 0.0097601076089939
310 => 0.0095503034613253
311 => 0.0090012055386789
312 => 0.0096516357473186
313 => 0.0099684413286376
314 => 0.0097592871590729
315 => 0.0098647723564299
316 => 0.010440265389519
317 => 0.010659375876105
318 => 0.010613802426593
319 => 0.010621503589358
320 => 0.010739731630783
321 => 0.011264019875834
322 => 0.010949854206493
323 => 0.011190022089141
324 => 0.011317406268108
325 => 0.01143572779273
326 => 0.011145167524161
327 => 0.01076715288393
328 => 0.010647419779394
329 => 0.0097384908988878
330 => 0.0096911772033794
331 => 0.0096646185923388
401 => 0.0094971703065181
402 => 0.0093656018218087
403 => 0.0092609736779431
404 => 0.0089863981838312
405 => 0.0090790593528458
406 => 0.0086414433235908
407 => 0.0089214145509483
408 => 0.0082229688016489
409 => 0.008804655176093
410 => 0.0084880697285171
411 => 0.008700648342026
412 => 0.0086999066752696
413 => 0.008308482049689
414 => 0.0080827164944776
415 => 0.0082265830931851
416 => 0.0083808195071444
417 => 0.0084058438463957
418 => 0.0086058153830763
419 => 0.0086616231405901
420 => 0.0084925230299083
421 => 0.0082084950659387
422 => 0.0082744682839807
423 => 0.0080813795493197
424 => 0.0077429989688771
425 => 0.0079860298093091
426 => 0.0080690112235443
427 => 0.0081056605434175
428 => 0.0077729021058245
429 => 0.0076683421801956
430 => 0.0076126753531335
501 => 0.0081655401302469
502 => 0.0081958273107589
503 => 0.008040873813084
504 => 0.0087412783158679
505 => 0.0085827552056376
506 => 0.0087598643588698
507 => 0.0082684819059419
508 => 0.008287253377378
509 => 0.0080546250494088
510 => 0.0081848813688411
511 => 0.0080928204006235
512 => 0.008174357945449
513 => 0.0082232312136255
514 => 0.0084558213695751
515 => 0.0088073109820592
516 => 0.0084210801564744
517 => 0.0082527938548398
518 => 0.0083571977298958
519 => 0.0086352390073518
520 => 0.0090564857753687
521 => 0.0088070992103214
522 => 0.0089177727330309
523 => 0.0089419499742206
524 => 0.0087580615539472
525 => 0.0090632660037199
526 => 0.0092268275478296
527 => 0.0093946078477935
528 => 0.0095402867811549
529 => 0.0093275927064201
530 => 0.0095552058548844
531 => 0.0093717898363516
601 => 0.0092072467065282
602 => 0.0092074962505357
603 => 0.0091042759416059
604 => 0.0089042735864586
605 => 0.0088673900835828
606 => 0.0090592627234157
607 => 0.0092131264101551
608 => 0.0092257993603523
609 => 0.0093109862031329
610 => 0.0093613988991962
611 => 0.0098555118533534
612 => 0.010054248171032
613 => 0.010297259178404
614 => 0.010391925661125
615 => 0.010676837834303
616 => 0.010446748115026
617 => 0.010396966756929
618 => 0.0097058630188597
619 => 0.0098190312172521
620 => 0.010000224421985
621 => 0.0097088508280681
622 => 0.0098936603084523
623 => 0.0099301456146801
624 => 0.0096989500648423
625 => 0.0098224415973807
626 => 0.0094944846996464
627 => 0.0088144595462271
628 => 0.0090640230661111
629 => 0.0092477858189183
630 => 0.0089855337128785
701 => 0.0094556104623968
702 => 0.0091810013296819
703 => 0.0090939634181744
704 => 0.0087543974941274
705 => 0.0089146595391865
706 => 0.0091314162498604
707 => 0.0089974858033363
708 => 0.0092754115896316
709 => 0.0096690286231257
710 => 0.0099495435614932
711 => 0.0099710780152932
712 => 0.0097907257029642
713 => 0.010079741434465
714 => 0.010081846598543
715 => 0.0097558356727465
716 => 0.0095561557959327
717 => 0.0095107881077905
718 => 0.0096241254876288
719 => 0.009761737989987
720 => 0.0099787145514398
721 => 0.010109828943268
722 => 0.010451705739456
723 => 0.010544207798128
724 => 0.010645839515738
725 => 0.010781650832525
726 => 0.010944727139634
727 => 0.010587925463618
728 => 0.010602101859367
729 => 0.010269853078916
730 => 0.0099147976077093
731 => 0.010184240452066
801 => 0.010536501128583
802 => 0.010455692140176
803 => 0.010446599478203
804 => 0.010461890813548
805 => 0.010400963475265
806 => 0.01012539138228
807 => 0.0099870008023563
808 => 0.010165559957661
809 => 0.010260456201951
810 => 0.010407632001024
811 => 0.010389489477284
812 => 0.010768598530168
813 => 0.010915908844456
814 => 0.010878220562298
815 => 0.010885156113234
816 => 0.011151854400795
817 => 0.011448477747248
818 => 0.0117263046541
819 => 0.012008922116694
820 => 0.01166821573479
821 => 0.011495226045908
822 => 0.011673707247871
823 => 0.011579002609805
824 => 0.012123203551355
825 => 0.012160882843812
826 => 0.01270504443344
827 => 0.013221518579553
828 => 0.012897130421975
829 => 0.013203013843808
830 => 0.013533851703561
831 => 0.014172091611535
901 => 0.01395715486408
902 => 0.013792516684018
903 => 0.013636934399385
904 => 0.013960676435714
905 => 0.014377165393545
906 => 0.01446687312598
907 => 0.014612233923517
908 => 0.01445940481878
909 => 0.014643470641862
910 => 0.015293303879962
911 => 0.01511771320279
912 => 0.014868346213597
913 => 0.01538132714443
914 => 0.015566972949135
915 => 0.01686993243002
916 => 0.018514972597209
917 => 0.017833915166076
918 => 0.017411160840987
919 => 0.017510518135249
920 => 0.018111231116183
921 => 0.018304161059982
922 => 0.017779710965797
923 => 0.017964955605225
924 => 0.018985671781323
925 => 0.019533253261305
926 => 0.018789564061486
927 => 0.016737755054326
928 => 0.014845893444604
929 => 0.015347700335141
930 => 0.015290811006635
1001 => 0.016387443200917
1002 => 0.015113525423212
1003 => 0.015134974931444
1004 => 0.01625428431815
1005 => 0.015955671763598
1006 => 0.015471957668629
1007 => 0.014849425092807
1008 => 0.013698616049106
1009 => 0.012679312386416
1010 => 0.014678401600566
1011 => 0.014592197238544
1012 => 0.014467360547565
1013 => 0.014745171094597
1014 => 0.016094140253084
1015 => 0.016063042147794
1016 => 0.015865211868331
1017 => 0.016015264391708
1018 => 0.015445652735788
1019 => 0.015592454629335
1020 => 0.014845593764059
1021 => 0.015183206066829
1022 => 0.015470919835429
1023 => 0.01552868263415
1024 => 0.015658825169112
1025 => 0.014546771456914
1026 => 0.015046050925509
1027 => 0.015339330837149
1028 => 0.014014281526746
1029 => 0.015313138872641
1030 => 0.014527413075881
1031 => 0.014260725939256
1101 => 0.014619785035364
1102 => 0.014479859356414
1103 => 0.014359559474365
1104 => 0.014292430073167
1105 => 0.014556083445442
1106 => 0.014543783700491
1107 => 0.014112395610535
1108 => 0.013549667432814
1109 => 0.01373853748018
1110 => 0.013669919221306
1111 => 0.013421237799215
1112 => 0.013588819051795
1113 => 0.012850876026363
1114 => 0.011581283406048
1115 => 0.012420015179702
1116 => 0.012387724918781
1117 => 0.012371442704977
1118 => 0.013001726452035
1119 => 0.012941139212875
1120 => 0.012831172780529
1121 => 0.013419218179448
1122 => 0.013204573698516
1123 => 0.013866057412149
1124 => 0.014301753368031
1125 => 0.014191246780332
1126 => 0.014601020932741
1127 => 0.013742888664607
1128 => 0.014027925781791
1129 => 0.014086671536598
1130 => 0.013411961790505
1201 => 0.012951052034497
1202 => 0.012920314608527
1203 => 0.012121160608885
1204 => 0.012548062224948
1205 => 0.012923717980694
1206 => 0.012743808025756
1207 => 0.01268685390868
1208 => 0.012977820140982
1209 => 0.013000430709189
1210 => 0.012484907357905
1211 => 0.012592100987139
1212 => 0.013039116240499
1213 => 0.012580837349677
1214 => 0.011690476324241
1215 => 0.011469654479729
1216 => 0.011440192775116
1217 => 0.010841306419198
1218 => 0.01148441085128
1219 => 0.011203678532549
1220 => 0.01209050856373
1221 => 0.011583956006084
1222 => 0.011562119537758
1223 => 0.011529110513169
1224 => 0.011013624286946
1225 => 0.01112648300963
1226 => 0.011501642592701
1227 => 0.011635503758416
1228 => 0.01162154094214
1229 => 0.011499804106076
1230 => 0.011555534606233
1231 => 0.011376007247436
]
'min_raw' => 0.0062814625680875
'max_raw' => 0.019533253261305
'avg_raw' => 0.012907357914696
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.006281'
'max' => '$0.019533'
'avg' => '$0.0129073'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.0035783424571418
'max_diff' => 0.012199948879236
'year' => 2033
]
8 => [
'items' => [
101 => 0.011312612400506
102 => 0.011112520825468
103 => 0.010818441486871
104 => 0.010859335022596
105 => 0.010276686902791
106 => 0.0099592292836452
107 => 0.0098713611986897
108 => 0.0097538603232272
109 => 0.0098846332352311
110 => 0.010275036333874
111 => 0.009804127368273
112 => 0.0089967869771737
113 => 0.0090453095103199
114 => 0.0091543252358299
115 => 0.0089511751525531
116 => 0.0087589106478258
117 => 0.0089260690357739
118 => 0.0085839882690848
119 => 0.0091956640621741
120 => 0.0091791199461726
121 => 0.009407114856059
122 => 0.0095496847521374
123 => 0.0092211072992285
124 => 0.0091384709583898
125 => 0.0091855443737438
126 => 0.0084075256752706
127 => 0.0093435341298643
128 => 0.0093516287698482
129 => 0.0092823175479074
130 => 0.0097807131539596
131 => 0.010832483336218
201 => 0.010436765086295
202 => 0.010283531019277
203 => 0.0099922329458631
204 => 0.010380370333119
205 => 0.010350567437664
206 => 0.010215787442005
207 => 0.010134272080091
208 => 0.010284466633815
209 => 0.010115661312756
210 => 0.010085339238633
211 => 0.0099016204601942
212 => 0.0098360412149633
213 => 0.0097874889525793
214 => 0.0097340376823413
215 => 0.0098519378652597
216 => 0.0095847605397059
217 => 0.0092625708768041
218 => 0.0092357842924743
219 => 0.0093097444069095
220 => 0.0092770225619549
221 => 0.0092356276328696
222 => 0.0091565934400078
223 => 0.0091331456832841
224 => 0.0092093395174019
225 => 0.0091233211210594
226 => 0.0092502459505273
227 => 0.0092157294199832
228 => 0.0090229228861992
301 => 0.0087826145589827
302 => 0.0087804753108067
303 => 0.0087287012758926
304 => 0.0086627592581512
305 => 0.0086444156973645
306 => 0.0089119914225836
307 => 0.0094658651659194
308 => 0.0093571264970272
309 => 0.0094357013292889
310 => 0.0098222117356463
311 => 0.0099450717710539
312 => 0.009857868628021
313 => 0.009738499587382
314 => 0.009743751219362
315 => 0.010151671366692
316 => 0.010177112845915
317 => 0.010241395256182
318 => 0.010324016319582
319 => 0.0098719393523815
320 => 0.0097224584348615
321 => 0.0096516260832549
322 => 0.0094334898558765
323 => 0.0096687310755173
324 => 0.009531666090866
325 => 0.0095501608401021
326 => 0.0095381161103994
327 => 0.0095446933472781
328 => 0.0091954930863239
329 => 0.0093227233079902
330 => 0.0091111783877626
331 => 0.0088279434866096
401 => 0.008826993983906
402 => 0.0088963153247045
403 => 0.0088550802786532
404 => 0.008744117829979
405 => 0.0087598795220852
406 => 0.0086217905140032
407 => 0.0087766460278485
408 => 0.008781086729886
409 => 0.0087214589220187
410 => 0.0089600352070403
411 => 0.0090577801056734
412 => 0.0090185318051838
413 => 0.0090550263402831
414 => 0.0093616450796453
415 => 0.0094116373128749
416 => 0.0094338405605739
417 => 0.0094040911500239
418 => 0.0090606307679707
419 => 0.0090758646964211
420 => 0.0089640882373226
421 => 0.0088696489080974
422 => 0.0088734259859974
423 => 0.0089219800774726
424 => 0.0091340186426045
425 => 0.0095802413025685
426 => 0.0095971751263296
427 => 0.0096176994147226
428 => 0.0095342168191475
429 => 0.0095090376695012
430 => 0.0095422554671746
501 => 0.0097098332369842
502 => 0.010140888757855
503 => 0.0099885249475492
504 => 0.0098646507980864
505 => 0.0099733218233962
506 => 0.0099565927708414
507 => 0.0098153827317555
508 => 0.009811419436273
509 => 0.0095403922236868
510 => 0.0094401996341847
511 => 0.0093564712071114
512 => 0.0092650419505333
513 => 0.0092108396224974
514 => 0.0092941190328781
515 => 0.0093131660193652
516 => 0.0091310741330927
517 => 0.0091062556818464
518 => 0.0092549558469029
519 => 0.0091895184483625
520 => 0.0092568224355307
521 => 0.0092724375378766
522 => 0.0092699231467526
523 => 0.0092015989872391
524 => 0.0092451467690572
525 => 0.0091421432828387
526 => 0.0090301424621994
527 => 0.0089586929165292
528 => 0.008896343711525
529 => 0.0089309386742184
530 => 0.0088076139490071
531 => 0.0087681598873757
601 => 0.0092303937604333
602 => 0.0095718508923126
603 => 0.0095668859703832
604 => 0.0095366632850123
605 => 0.009491758504999
606 => 0.0097065481726317
607 => 0.0096317197472834
608 => 0.0096861636788484
609 => 0.0097000219444363
610 => 0.0097419667405284
611 => 0.0097569583998542
612 => 0.0097116431929946
613 => 0.0095595598239873
614 => 0.009180582528074
615 => 0.0090041675737966
616 => 0.0089459477004617
617 => 0.0089480638822821
618 => 0.0088896901406226
619 => 0.0089068838236689
620 => 0.0088837108793285
621 => 0.0088398269288852
622 => 0.0089282289639403
623 => 0.0089384164749584
624 => 0.0089177823836509
625 => 0.0089226424591188
626 => 0.0087518009960283
627 => 0.0087647897014189
628 => 0.0086924669392791
629 => 0.0086789072932417
630 => 0.0084960816484155
701 => 0.0081721795176048
702 => 0.0083516527400145
703 => 0.0081348743250975
704 => 0.0080527770546395
705 => 0.0084414127642428
706 => 0.0084024045180753
707 => 0.0083356393571135
708 => 0.0082368797689723
709 => 0.0082002488770591
710 => 0.0079776911737263
711 => 0.0079645412773142
712 => 0.0080748468846494
713 => 0.0080239446422484
714 => 0.0079524586157307
715 => 0.0076935434741057
716 => 0.0074024371310619
717 => 0.0074112238017292
718 => 0.0075038193132254
719 => 0.0077730532511065
720 => 0.0076678588937819
721 => 0.0075915391805768
722 => 0.0075772467924556
723 => 0.0077561459529333
724 => 0.0080093257455422
725 => 0.0081281120396556
726 => 0.0080103984297826
727 => 0.0078751753729112
728 => 0.0078834057738197
729 => 0.007938158943779
730 => 0.0079439127277736
731 => 0.0078558964189052
801 => 0.0078806724942932
802 => 0.007843035370207
803 => 0.007612056409163
804 => 0.0076078787322
805 => 0.0075511927701209
806 => 0.0075494763417175
807 => 0.0074530393792451
808 => 0.007439547181558
809 => 0.0072480657392637
810 => 0.007374099404441
811 => 0.0072895626389045
812 => 0.0071621457930339
813 => 0.0071401790807795
814 => 0.0071395187348835
815 => 0.0072703473457072
816 => 0.0073725705959514
817 => 0.0072910331921343
818 => 0.0072724687058213
819 => 0.0074706888509872
820 => 0.0074454635306981
821 => 0.0074236185660136
822 => 0.0079866562720143
823 => 0.0075409679933347
824 => 0.0073466224648328
825 => 0.0071060829680968
826 => 0.0071844038411395
827 => 0.0072009071998626
828 => 0.0066224530707157
829 => 0.0063877743025627
830 => 0.0063072413930154
831 => 0.0062608935650027
901 => 0.0062820148522275
902 => 0.0060707764358158
903 => 0.0062127321452054
904 => 0.0060298175321317
905 => 0.0059991513019942
906 => 0.0063262252889425
907 => 0.0063717357234878
908 => 0.0061775740707337
909 => 0.0063022572837181
910 => 0.0062570454174636
911 => 0.0060329530781761
912 => 0.0060243943991269
913 => 0.005911952740499
914 => 0.0057360033177418
915 => 0.0056555897101884
916 => 0.0056137096051917
917 => 0.0056309901527403
918 => 0.0056222525791063
919 => 0.0055652340008214
920 => 0.00562552081727
921 => 0.0054715129134764
922 => 0.0054101857252597
923 => 0.0053824856571222
924 => 0.0052457947781412
925 => 0.0054633307533098
926 => 0.005506188080864
927 => 0.0055491298505929
928 => 0.0059229086384908
929 => 0.0059042357065353
930 => 0.0060730299173262
1001 => 0.0060664708846875
1002 => 0.006018328041485
1003 => 0.005815221305127
1004 => 0.0058961760302098
1005 => 0.0056470099695624
1006 => 0.0058337021238447
1007 => 0.005748503621081
1008 => 0.0058048964243583
1009 => 0.0057034970793317
1010 => 0.0057596156635457
1011 => 0.0055163511431292
1012 => 0.0052891941567884
1013 => 0.0053806087592177
1014 => 0.0054799868865863
1015 => 0.0056954639877973
1016 => 0.0055671276039635
1017 => 0.0056132822205261
1018 => 0.005458671981231
1019 => 0.0051396668953337
1020 => 0.005141472429476
1021 => 0.0050924004469143
1022 => 0.0050499950893542
1023 => 0.0055818685814572
1024 => 0.0055157217050385
1025 => 0.0054103253145545
1026 => 0.0055514025715034
1027 => 0.0055887056374378
1028 => 0.005589767603283
1029 => 0.0056926939282219
1030 => 0.0057476257262923
1031 => 0.0057573076937903
1101 => 0.005919264489952
1102 => 0.0059735502717636
1103 => 0.0061971457242342
1104 => 0.0057429651470131
1105 => 0.0057336115969071
1106 => 0.005553387817822
1107 => 0.005439087047901
1108 => 0.0055612140893271
1109 => 0.0056694019760269
1110 => 0.0055567495170343
1111 => 0.0055714595499556
1112 => 0.0054202328278021
1113 => 0.0054742892650933
1114 => 0.005520849951077
1115 => 0.0054951418769874
1116 => 0.0054566556457905
1117 => 0.0056605318030759
1118 => 0.0056490283112848
1119 => 0.0058388824760416
1120 => 0.005986887374071
1121 => 0.00625213861038
1122 => 0.0059753351174319
1123 => 0.0059652472979547
1124 => 0.0060638573514821
1125 => 0.0059735351750782
1126 => 0.0060306156727499
1127 => 0.0062429420597441
1128 => 0.0062474281817217
1129 => 0.0061722798585544
1130 => 0.0061677070762602
1201 => 0.006182140133757
1202 => 0.0062666750023245
1203 => 0.0062371359217529
1204 => 0.0062713192936284
1205 => 0.006314066123593
1206 => 0.0064908851366071
1207 => 0.0065335156020269
1208 => 0.006429945672419
1209 => 0.0064392968774393
1210 => 0.0064005588807078
1211 => 0.0063631384612509
1212 => 0.0064472540993767
1213 => 0.0066009770813485
1214 => 0.0066000207786559
1215 => 0.0066356815225256
1216 => 0.0066578978705269
1217 => 0.0065625290415448
1218 => 0.0065004474406864
1219 => 0.0065242534768104
1220 => 0.0065623198470007
1221 => 0.0065119090660034
1222 => 0.0062007503731429
1223 => 0.0062951360436625
1224 => 0.0062794256528646
1225 => 0.0062570521459195
1226 => 0.0063519576674898
1227 => 0.0063428037984108
1228 => 0.0060686098805364
1229 => 0.0060861628855388
1230 => 0.006069677336908
1231 => 0.0061229455171599
]
'min_raw' => 0.0050499950893542
'max_raw' => 0.011312612400506
'avg_raw' => 0.0081813037449299
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.005049'
'max' => '$0.011312'
'avg' => '$0.008181'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.0012314674787333
'max_diff' => -0.0082206408607991
'year' => 2034
]
9 => [
'items' => [
101 => 0.0059706585185333
102 => 0.0060175009736423
103 => 0.0060468801223659
104 => 0.0060641846666653
105 => 0.0061267005465121
106 => 0.0061193650295676
107 => 0.0061262445604793
108 => 0.0062189391067116
109 => 0.0066877563126277
110 => 0.0067132729987589
111 => 0.0065876195039596
112 => 0.0066378155967263
113 => 0.006541450075293
114 => 0.0066061408954241
115 => 0.0066504007115891
116 => 0.0064503991130125
117 => 0.0064385563163445
118 => 0.006341793060125
119 => 0.0063937881530664
120 => 0.0063110602216172
121 => 0.0063313587622946
122 => 0.0062746022729656
123 => 0.0063767526536536
124 => 0.0064909726518272
125 => 0.0065198291340502
126 => 0.0064439201528181
127 => 0.0063889570477604
128 => 0.0062924599412514
129 => 0.0064529367799541
130 => 0.0064998650980338
131 => 0.0064526902854772
201 => 0.0064417588506178
202 => 0.006421043801312
203 => 0.0064461536462544
204 => 0.0064996095163352
205 => 0.00647440071518
206 => 0.0064910515724649
207 => 0.0064275956747844
208 => 0.0065625606125954
209 => 0.0067769174149205
210 => 0.0067776066070909
211 => 0.0067523976700509
212 => 0.0067420827161482
213 => 0.0067679486153575
214 => 0.0067819798046038
215 => 0.0068656253796518
216 => 0.006955380414265
217 => 0.0073742279976153
218 => 0.0072566172722562
219 => 0.0076282437655589
220 => 0.0079221520721006
221 => 0.0080102823221798
222 => 0.0079292066389556
223 => 0.0076518511062679
224 => 0.0076382427206398
225 => 0.0080527289829607
226 => 0.0079356176291816
227 => 0.0079216876062948
228 => 0.0077734956979244
301 => 0.0078610954696962
302 => 0.0078419361145986
303 => 0.0078116921352693
304 => 0.0079788263975569
305 => 0.0082916868163807
306 => 0.0082429245861206
307 => 0.0082065258432461
308 => 0.0080470371474852
309 => 0.0081430849654231
310 => 0.0081088841771302
311 => 0.0082558324679931
312 => 0.0081687835557891
313 => 0.0079347303954945
314 => 0.0079720041327207
315 => 0.0079663702823233
316 => 0.0080823145242827
317 => 0.0080475109407595
318 => 0.0079595743240629
319 => 0.0082906174934814
320 => 0.0082691213914182
321 => 0.0082995979494507
322 => 0.0083130146728155
323 => 0.0085145148164056
324 => 0.0085970629779491
325 => 0.0086158028558284
326 => 0.0086942172247908
327 => 0.0086138518348948
328 => 0.0089353706940306
329 => 0.0091491619742103
330 => 0.0093974915477378
331 => 0.0097603677993583
401 => 0.0098968126267606
402 => 0.0098721650899607
403 => 0.01014729372249
404 => 0.010641693759379
405 => 0.009972097472854
406 => 0.010677183988472
407 => 0.010453961738242
408 => 0.0099247057985456
409 => 0.0098906279555468
410 => 0.010249046222697
411 => 0.011043983442757
412 => 0.010844860685236
413 => 0.011044309136255
414 => 0.010811641923813
415 => 0.010800088035642
416 => 0.011033009009069
417 => 0.011577241559345
418 => 0.011318697074961
419 => 0.010948010158888
420 => 0.011221719609189
421 => 0.010984607152725
422 => 0.010450326424713
423 => 0.010844708419816
424 => 0.010580996411043
425 => 0.010657961594904
426 => 0.011212245013143
427 => 0.011145552165809
428 => 0.011231858885851
429 => 0.011079529784017
430 => 0.010937230382809
501 => 0.010671617983162
502 => 0.010592983246159
503 => 0.010614715058485
504 => 0.010592972476952
505 => 0.010444364780454
506 => 0.010412272962544
507 => 0.010358785193386
508 => 0.010375363289622
509 => 0.010274790635207
510 => 0.010464592013459
511 => 0.010499820821787
512 => 0.010637942436758
513 => 0.010652282681025
514 => 0.01103694941268
515 => 0.010825081440946
516 => 0.010967220768186
517 => 0.010954506488891
518 => 0.0099361763796032
519 => 0.01007649328386
520 => 0.010294782353014
521 => 0.010196443423244
522 => 0.010057415184315
523 => 0.0099451424271574
524 => 0.0097750377195844
525 => 0.010014456828922
526 => 0.010329267498317
527 => 0.010660266799117
528 => 0.011057940771096
529 => 0.010969184569986
530 => 0.010652832560828
531 => 0.010667023880863
601 => 0.010754749037244
602 => 0.01064113698906
603 => 0.010607630578079
604 => 0.010750145770902
605 => 0.01075112719471
606 => 0.010620402802798
607 => 0.010475126563501
608 => 0.010474517850753
609 => 0.010448667347172
610 => 0.010816240670972
611 => 0.011018368833208
612 => 0.011041542501262
613 => 0.01101680906071
614 => 0.011026327980343
615 => 0.010908714056329
616 => 0.0111775446093
617 => 0.011424250109293
618 => 0.011358127765201
619 => 0.011259000971561
620 => 0.011180041705834
621 => 0.011339527471557
622 => 0.011332425821463
623 => 0.011422095351972
624 => 0.011418027424112
625 => 0.011387874933643
626 => 0.011358128842041
627 => 0.011476068732898
628 => 0.011442103938388
629 => 0.011408086387171
630 => 0.011339858980378
701 => 0.011349132218098
702 => 0.011250022540097
703 => 0.011204169868104
704 => 0.010514655697264
705 => 0.01033039498029
706 => 0.010388367152822
707 => 0.010407453097267
708 => 0.010327262597103
709 => 0.010442235175089
710 => 0.010424316820596
711 => 0.010494026656041
712 => 0.010450474977304
713 => 0.010452262353391
714 => 0.010580338554359
715 => 0.010617519620375
716 => 0.010598609030112
717 => 0.010611853359315
718 => 0.010917063335732
719 => 0.010873672237152
720 => 0.010850621580847
721 => 0.010857006770174
722 => 0.010934994462925
723 => 0.010956826758925
724 => 0.010864321786645
725 => 0.010907947666337
726 => 0.011093701125117
727 => 0.011158704322955
728 => 0.011366163327149
729 => 0.011278031054877
730 => 0.011439801654907
731 => 0.011937029327734
801 => 0.012334249198327
802 => 0.011968949389525
803 => 0.012698393096223
804 => 0.013266369654372
805 => 0.013244569768056
806 => 0.013145529917608
807 => 0.012498903706593
808 => 0.011903868626563
809 => 0.012401640737532
810 => 0.012402909661011
811 => 0.012360150595226
812 => 0.012094577709969
813 => 0.012350909234482
814 => 0.012371255900038
815 => 0.012359867177942
816 => 0.012156253069483
817 => 0.011845371960044
818 => 0.011906117384685
819 => 0.012005619629418
820 => 0.011817241121795
821 => 0.011757042774353
822 => 0.011868962955452
823 => 0.012229593098448
824 => 0.012161418058903
825 => 0.012159637733103
826 => 0.012451319462994
827 => 0.012242538293249
828 => 0.011906883579023
829 => 0.011822126336939
830 => 0.011521295226861
831 => 0.011729080346116
901 => 0.011736558162645
902 => 0.011622756376342
903 => 0.011916117966784
904 => 0.011913414588083
905 => 0.012191917757098
906 => 0.01272431121524
907 => 0.012566856272176
908 => 0.012383753304442
909 => 0.01240366167393
910 => 0.012622007349162
911 => 0.01248999056957
912 => 0.012537464723965
913 => 0.012621935491344
914 => 0.012672898802594
915 => 0.012396328837721
916 => 0.012331847149039
917 => 0.012199940243992
918 => 0.012165528194624
919 => 0.012272963616457
920 => 0.012244658178553
921 => 0.011735929681121
922 => 0.011682764722601
923 => 0.011684395215977
924 => 0.011550709399921
925 => 0.011346806442165
926 => 0.011882651240736
927 => 0.011839615404268
928 => 0.011792107171516
929 => 0.01179792665895
930 => 0.012030518724544
1001 => 0.011895603580318
1002 => 0.012254297603399
1003 => 0.012180560895583
1004 => 0.012104933119446
1005 => 0.012094479057105
1006 => 0.012065368815551
1007 => 0.011965538965817
1008 => 0.01184498842342
1009 => 0.01176539051342
1010 => 0.010852950832441
1011 => 0.011022294329813
1012 => 0.011217108587394
1013 => 0.011284357688442
1014 => 0.011169323447604
1015 => 0.011970081218787
1016 => 0.012116387379877
1017 => 0.011673216474623
1018 => 0.011590317292799
1019 => 0.011975516075347
1020 => 0.011743194120834
1021 => 0.011847808682726
1022 => 0.011621689221022
1023 => 0.012081146510015
1024 => 0.012077646215274
1025 => 0.011898906952542
1026 => 0.01204997615345
1027 => 0.012023724162161
1028 => 0.011821927974753
1029 => 0.012087543809093
1030 => 0.012087675551233
1031 => 0.01191564289698
1101 => 0.011714746419604
1102 => 0.011678830874412
1103 => 0.011651773335684
1104 => 0.011841154186856
1105 => 0.012010952465838
1106 => 0.012326904966461
1107 => 0.012406342931963
1108 => 0.012716394599806
1109 => 0.012531773927747
1110 => 0.012613613880433
1111 => 0.012702462726041
1112 => 0.012745060129934
1113 => 0.012675649946193
1114 => 0.01315728780871
1115 => 0.013197952801309
1116 => 0.013211587421577
1117 => 0.013049181844241
1118 => 0.013193436008414
1119 => 0.013125944262193
1120 => 0.013301539036112
1121 => 0.013329074538769
1122 => 0.013305752947623
1123 => 0.013314493150784
1124 => 0.012903500201868
1125 => 0.012882188049306
1126 => 0.012591595336884
1127 => 0.012710014015148
1128 => 0.012488635972087
1129 => 0.012558837229988
1130 => 0.012589781275569
1201 => 0.012573617862217
1202 => 0.012716709229544
1203 => 0.012595052335681
1204 => 0.012273979790532
1205 => 0.011952819769383
1206 => 0.011948787866928
1207 => 0.011864232102305
1208 => 0.011803113771643
1209 => 0.011814887330418
1210 => 0.01185637888719
1211 => 0.011800702206936
1212 => 0.011812583649548
1213 => 0.012009894762535
1214 => 0.012049464099086
1215 => 0.011914992032748
1216 => 0.011375067282171
1217 => 0.011242568394081
1218 => 0.011337805967273
1219 => 0.011292288541372
1220 => 0.0091137581798728
1221 => 0.0096255715737095
1222 => 0.0093214694346323
1223 => 0.0094616136913857
1224 => 0.0091512041542551
1225 => 0.0092993478553316
1226 => 0.0092719911230845
1227 => 0.010094971914715
1228 => 0.010082122201626
1229 => 0.01008827267929
1230 => 0.0097946943554195
1231 => 0.010262372596865
]
'min_raw' => 0.0059706585185333
'max_raw' => 0.013329074538769
'avg_raw' => 0.0096498665286513
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.00597'
'max' => '$0.013329'
'avg' => '$0.009649'
'bar_min_pct' => 61.631153054958
'bar_max_pct' => 60.119598047091
'min_diff' => 0.00092066342917912
'max_diff' => 0.0020164621382636
'year' => 2035
]
10 => [
'items' => [
101 => 0.010492767715767
102 => 0.010450127711026
103 => 0.010460859281577
104 => 0.010276455344124
105 => 0.010090058112492
106 => 0.0098833148962826
107 => 0.010267418237765
108 => 0.010224712503055
109 => 0.010322664093442
110 => 0.010571782566667
111 => 0.010608466208158
112 => 0.010657769394332
113 => 0.010640097711728
114 => 0.011061108885861
115 => 0.011010121654752
116 => 0.011132986211696
117 => 0.010880244496306
118 => 0.010594243254877
119 => 0.010648602740788
120 => 0.010643367485163
121 => 0.010576716672316
122 => 0.010516547298637
123 => 0.010416382244076
124 => 0.010733319298344
125 => 0.010720452232736
126 => 0.010928755068605
127 => 0.01089193551902
128 => 0.010646045555614
129 => 0.010654827563761
130 => 0.01071389078904
131 => 0.010918309286103
201 => 0.010978994613904
202 => 0.010950882752174
203 => 0.011017421443717
204 => 0.011070010912512
205 => 0.011024025871316
206 => 0.011675077080779
207 => 0.011404715227478
208 => 0.011536487713611
209 => 0.011567914675105
210 => 0.011487415174076
211 => 0.011504872633378
212 => 0.011531315927348
213 => 0.011691874430207
214 => 0.012113226399684
215 => 0.012299840318726
216 => 0.012861277501532
217 => 0.012284344630541
218 => 0.012250111821562
219 => 0.012351243611964
220 => 0.012680866672432
221 => 0.012947995203022
222 => 0.013036617147633
223 => 0.013048330000603
224 => 0.013214590660169
225 => 0.013309888169654
226 => 0.013194402243008
227 => 0.013096540012056
228 => 0.012746009647892
229 => 0.012786584492006
301 => 0.013066104931818
302 => 0.013460944016724
303 => 0.013799757027579
304 => 0.013681116520003
305 => 0.01458625984566
306 => 0.01467600110922
307 => 0.014663601768278
308 => 0.014868045721959
309 => 0.01446226610819
310 => 0.014288787461695
311 => 0.013117698937171
312 => 0.013446727044482
313 => 0.013924988721602
314 => 0.013861688995246
315 => 0.01351436258135
316 => 0.013799493549348
317 => 0.013705220334458
318 => 0.013630863138475
319 => 0.013971507868125
320 => 0.013596954994961
321 => 0.013921252270174
322 => 0.013505337660288
323 => 0.013681658459848
324 => 0.01358157024634
325 => 0.01364633958683
326 => 0.013267699345782
327 => 0.013472004428879
328 => 0.013259199582632
329 => 0.013259098685427
330 => 0.013254401006651
331 => 0.01350476496454
401 => 0.013512929324218
402 => 0.01332790998106
403 => 0.013301245803165
404 => 0.013399837244102
405 => 0.013284412487904
406 => 0.013338419004855
407 => 0.013286048290285
408 => 0.01327425853934
409 => 0.013180315797945
410 => 0.013139842681942
411 => 0.013155713233591
412 => 0.013101538858985
413 => 0.013068896838712
414 => 0.013247907687231
415 => 0.013152269412145
416 => 0.013233249749928
417 => 0.01314096243449
418 => 0.012821054391513
419 => 0.01263707189303
420 => 0.012032795255337
421 => 0.012204167360184
422 => 0.012317787242995
423 => 0.012280235872404
424 => 0.012360910746885
425 => 0.012365863528964
426 => 0.012339635304887
427 => 0.01230926638145
428 => 0.012294484469027
429 => 0.012404656733631
430 => 0.012468615441461
501 => 0.012329190518273
502 => 0.012296525209532
503 => 0.012437491504736
504 => 0.012523480863378
505 => 0.013158377974337
506 => 0.013111342745666
507 => 0.013229391939432
508 => 0.013216101411826
509 => 0.013339835773604
510 => 0.013542089161067
511 => 0.013130851473417
512 => 0.013202228116464
513 => 0.013184728211916
514 => 0.013375787581046
515 => 0.013376384047542
516 => 0.013261834411625
517 => 0.013323933627611
518 => 0.013289271548851
519 => 0.013351910610032
520 => 0.013110714561511
521 => 0.013404465313105
522 => 0.013571003060378
523 => 0.013573315437161
524 => 0.013652253007643
525 => 0.013732458151008
526 => 0.013886404939303
527 => 0.013728164658638
528 => 0.013443505798101
529 => 0.013464057248389
530 => 0.01329716186261
531 => 0.013299967404197
601 => 0.013284991203331
602 => 0.013329935909485
603 => 0.013120577397052
604 => 0.01316971342146
605 => 0.013100922699549
606 => 0.013202078578869
607 => 0.013093251574386
608 => 0.013184719772933
609 => 0.013224194415206
610 => 0.013369856695025
611 => 0.013071737137222
612 => 0.012463851177943
613 => 0.012591636176488
614 => 0.012402632126344
615 => 0.012420125170774
616 => 0.01245546390452
617 => 0.012340919506336
618 => 0.0123627709678
619 => 0.012361990279831
620 => 0.012355262732668
621 => 0.012325465310785
622 => 0.012282253153816
623 => 0.012454397087183
624 => 0.012483647695906
625 => 0.012548668175715
626 => 0.012742125019814
627 => 0.012722794119062
628 => 0.01275432362022
629 => 0.012685494896223
630 => 0.012423317937875
701 => 0.012437555408085
702 => 0.01226001392643
703 => 0.012544128040862
704 => 0.012476846068441
705 => 0.012433468943127
706 => 0.012421633092598
707 => 0.012615569478795
708 => 0.012673598285125
709 => 0.012637438627189
710 => 0.012563274113814
711 => 0.012705691904263
712 => 0.012743796896863
713 => 0.012752327199448
714 => 0.01300466421822
715 => 0.012766430035682
716 => 0.012823775371263
717 => 0.013271167309517
718 => 0.012865444557388
719 => 0.013080364947888
720 => 0.013069845713165
721 => 0.013179791712435
722 => 0.013060826932141
723 => 0.013062301643171
724 => 0.013159926242136
725 => 0.013022830099579
726 => 0.012988883166694
727 => 0.012941985722047
728 => 0.013044384576726
729 => 0.013105768059004
730 => 0.013600473844965
731 => 0.013920076344021
801 => 0.013906201556646
802 => 0.014032991140745
803 => 0.013975871271849
804 => 0.013791416147722
805 => 0.0141062585527
806 => 0.0140066292422
807 => 0.014014842561508
808 => 0.014014536861353
809 => 0.01408078164309
810 => 0.014033841143984
811 => 0.013941316601903
812 => 0.014002738710876
813 => 0.014185140415721
814 => 0.014751320904327
815 => 0.015068163006645
816 => 0.014732246611929
817 => 0.014963957242905
818 => 0.014825013431259
819 => 0.014799763207463
820 => 0.014945294606996
821 => 0.01509108073998
822 => 0.01508179479356
823 => 0.014975961547214
824 => 0.014916179031773
825 => 0.015368872267306
826 => 0.015702408931818
827 => 0.015679663967357
828 => 0.015780052843431
829 => 0.016074797688498
830 => 0.016101745463268
831 => 0.016098350663035
901 => 0.016031557791557
902 => 0.01632177236898
903 => 0.016563874475305
904 => 0.016016097171642
905 => 0.016224683597945
906 => 0.016318324764948
907 => 0.01645581778019
908 => 0.016687791543409
909 => 0.016939776578266
910 => 0.01697541002507
911 => 0.016950126389345
912 => 0.016783935485135
913 => 0.017059660517083
914 => 0.01722117377425
915 => 0.017317351222728
916 => 0.017561241229666
917 => 0.016318903060916
918 => 0.015439514356861
919 => 0.015302185112196
920 => 0.015581449531428
921 => 0.015655089331688
922 => 0.01562540522054
923 => 0.014635573283603
924 => 0.015296973851899
925 => 0.016008585251246
926 => 0.016035921143223
927 => 0.016392168688829
928 => 0.016508177492759
929 => 0.016795003461404
930 => 0.016777062418971
1001 => 0.016846899977939
1002 => 0.01683084553255
1003 => 0.017362130241133
1004 => 0.017948216171243
1005 => 0.017927921879122
1006 => 0.017843665092415
1007 => 0.017968800788592
1008 => 0.01857370427725
1009 => 0.018518014457396
1010 => 0.018572112373737
1011 => 0.019285327677732
1012 => 0.020212609026619
1013 => 0.019781793742536
1014 => 0.020716538945239
1015 => 0.021304911501626
1016 => 0.02232244099904
1017 => 0.022195041294525
1018 => 0.022591158060892
1019 => 0.021966969234323
1020 => 0.020533705519146
1021 => 0.020306886049906
1022 => 0.020760984371308
1023 => 0.021877340784209
1024 => 0.020725826335091
1025 => 0.020958776208412
1026 => 0.020891686629224
1027 => 0.020888111710661
1028 => 0.02102455181195
1029 => 0.020826638328794
1030 => 0.020020303194461
1031 => 0.020389841834763
1101 => 0.020247145219039
1102 => 0.020405477752922
1103 => 0.021259933136984
1104 => 0.020882158044018
1105 => 0.020484202671535
1106 => 0.020983327021995
1107 => 0.021618883837867
1108 => 0.021579111834535
1109 => 0.021501937524663
1110 => 0.021936965068693
1111 => 0.02265550312032
1112 => 0.022849721068355
1113 => 0.022993088786983
1114 => 0.023012856773164
1115 => 0.023216479316568
1116 => 0.022121549581201
1117 => 0.023859231191018
1118 => 0.024159280802548
1119 => 0.024102883911362
1120 => 0.02443637642656
1121 => 0.0243382544687
1122 => 0.024196091146625
1123 => 0.024724747719105
1124 => 0.024118685619142
1125 => 0.023258456769341
1126 => 0.022786518208943
1127 => 0.023408004975473
1128 => 0.023787525256894
1129 => 0.02403836402089
1130 => 0.024114267679314
1201 => 0.022206545859692
1202 => 0.021178389606019
1203 => 0.021837425976788
1204 => 0.022641495833387
1205 => 0.022117082932549
1206 => 0.022137638925417
1207 => 0.021389963942107
1208 => 0.022707648479096
1209 => 0.022515672925528
1210 => 0.023511642437036
1211 => 0.02327394631996
1212 => 0.024086120793282
1213 => 0.023872248035525
1214 => 0.024760021895506
1215 => 0.025114178923771
1216 => 0.025708863694366
1217 => 0.026146316232419
1218 => 0.026403196729897
1219 => 0.026387774588363
1220 => 0.027405663096727
1221 => 0.026805449805661
1222 => 0.02605144045267
1223 => 0.026037802802343
1224 => 0.026428314930652
1225 => 0.027246721219818
1226 => 0.027458922063271
1227 => 0.02757751338579
1228 => 0.027395886647159
1229 => 0.02674439813738
1230 => 0.026463088701979
1231 => 0.02670277249126
]
'min_raw' => 0.0098833148962826
'max_raw' => 0.02757751338579
'avg_raw' => 0.018730414141036
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$0.009883'
'max' => '$0.027577'
'avg' => '$0.01873'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.0039126563777493
'max_diff' => 0.014248438847021
'year' => 2036
]
11 => [
'items' => [
101 => 0.026409659813233
102 => 0.026915654528399
103 => 0.027610493346962
104 => 0.027467011878619
105 => 0.027946648915345
106 => 0.028443022789069
107 => 0.029152859722039
108 => 0.029338437381503
109 => 0.029645190195711
110 => 0.029960939604581
111 => 0.030062349805024
112 => 0.030255973343409
113 => 0.030254952851786
114 => 0.030838450417075
115 => 0.031482066301004
116 => 0.031725016397445
117 => 0.032283666747865
118 => 0.031326997600214
119 => 0.03205264213813
120 => 0.032707191675392
121 => 0.031926810733159
122 => 0.033002384056587
123 => 0.033044146131435
124 => 0.033674703879408
125 => 0.033035512801589
126 => 0.032655963179951
127 => 0.033751708716083
128 => 0.034281905465356
129 => 0.03412220588959
130 => 0.032906884232675
131 => 0.032199514900753
201 => 0.030348192917758
202 => 0.032541163777774
203 => 0.03360929591385
204 => 0.032904118028485
205 => 0.033259768736115
206 => 0.035200083676817
207 => 0.035938829980148
208 => 0.035785175913281
209 => 0.03581114092122
210 => 0.036209755017304
211 => 0.037977429440129
212 => 0.0369181979516
213 => 0.037727940735934
214 => 0.038157425389
215 => 0.038556354670207
216 => 0.037576710438456
217 => 0.036302207686779
218 => 0.035898519165338
219 => 0.032834001985322
220 => 0.032674480557579
221 => 0.032584936346193
222 => 0.032020372759682
223 => 0.031576780427666
224 => 0.031224019335719
225 => 0.030298268887072
226 => 0.030610682487801
227 => 0.029135229491793
228 => 0.030079172031796
301 => 0.027724313424107
302 => 0.029685509647591
303 => 0.028618119707799
304 => 0.029334843345009
305 => 0.029332342763759
306 => 0.028012627310219
307 => 0.027251442978376
308 => 0.027736499260364
309 => 0.02825651809847
310 => 0.028340889405399
311 => 0.029015107402885
312 => 0.029203267153715
313 => 0.028633134324359
314 => 0.027675514213636
315 => 0.027897947524368
316 => 0.027246935374433
317 => 0.026106061622494
318 => 0.026925457068882
319 => 0.027205234700553
320 => 0.027328800441279
321 => 0.026206882136482
322 => 0.025854351047083
323 => 0.02566666645311
324 => 0.027530688648934
325 => 0.027632803992613
326 => 0.027110367456695
327 => 0.029471830138512
328 => 0.02893735840464
329 => 0.029534494280129
330 => 0.027877764032855
331 => 0.027941053359384
401 => 0.027156730710044
402 => 0.027595898985216
403 => 0.027285509003379
404 => 0.027560418528528
405 => 0.027725198164407
406 => 0.028509392114118
407 => 0.029694463882829
408 => 0.028392259688595
409 => 0.027824870673259
410 => 0.028176875627256
411 => 0.029114311206421
412 => 0.0305345740953
413 => 0.02969374987963
414 => 0.030066893388423
415 => 0.030148408645095
416 => 0.029528415997464
417 => 0.030557434108567
418 => 0.031108893274035
419 => 0.03167457626941
420 => 0.032165742964216
421 => 0.031448630041422
422 => 0.032216043662912
423 => 0.031597643750731
424 => 0.031042875100497
425 => 0.031043716455541
426 => 0.030695701977372
427 => 0.030021380073274
428 => 0.029897024768205
429 => 0.030543936769521
430 => 0.031062698931783
501 => 0.03110542666817
502 => 0.03139264005616
503 => 0.031562609980639
504 => 0.033228546303445
505 => 0.033898599673826
506 => 0.034717928251666
507 => 0.035037102907563
508 => 0.035997704191367
509 => 0.035221940638474
510 => 0.035054099314024
511 => 0.032723994809802
512 => 0.033105549291833
513 => 0.033716454832097
514 => 0.03273406841715
515 => 0.033357166483251
516 => 0.033480179240521
517 => 0.032700687302685
518 => 0.033117047626542
519 => 0.032011318048611
520 => 0.029718565766018
521 => 0.030559986597275
522 => 0.03117955554827
523 => 0.0302953542629
524 => 0.031880250843611
525 => 0.030954386980066
526 => 0.030660932584625
527 => 0.029516062363965
528 => 0.030056397038021
529 => 0.030787207421528
530 => 0.030335651570347
531 => 0.031272697763
601 => 0.032599805072889
602 => 0.033545580772523
603 => 0.033618185686997
604 => 0.033010115274183
605 => 0.033984551991371
606 => 0.033991649699039
607 => 0.03289248110136
608 => 0.032219246455479
609 => 0.032066286127437
610 => 0.032448411016525
611 => 0.032912381176023
612 => 0.033643932801781
613 => 0.034085994127944
614 => 0.035238655615367
615 => 0.035550532764469
616 => 0.035893191196089
617 => 0.036351088532679
618 => 0.036900911687724
619 => 0.035697929925936
620 => 0.035745726633971
621 => 0.034625526673811
622 => 0.033428432363455
623 => 0.034336877725103
624 => 0.035524549190034
625 => 0.035252096043719
626 => 0.035221439499045
627 => 0.03527299530377
628 => 0.035067574528935
629 => 0.03413846397761
630 => 0.033671870475274
701 => 0.034273895133985
702 => 0.034593844447055
703 => 0.035090057929114
704 => 0.035028889143655
705 => 0.036307081784002
706 => 0.036803748793502
707 => 0.036676680118892
708 => 0.036700063813099
709 => 0.03759925570989
710 => 0.03859934203204
711 => 0.039536054845746
712 => 0.0404889193526
713 => 0.039340203998653
714 => 0.038756957184832
715 => 0.03935871901841
716 => 0.039039415719103
717 => 0.040874227188435
718 => 0.041001265553638
719 => 0.042835944345217
720 => 0.044577272987913
721 => 0.043483575666579
722 => 0.044514882979387
723 => 0.045630325921909
724 => 0.047782196332128
725 => 0.04705752208168
726 => 0.04650243296293
727 => 0.045977876427882
728 => 0.047069395306311
729 => 0.04847361690597
730 => 0.04877607278907
731 => 0.04926616686673
801 => 0.048750892869923
802 => 0.049371483643509
803 => 0.051562441775671
804 => 0.050970425548238
805 => 0.050129667333926
806 => 0.051859218357412
807 => 0.052485136149352
808 => 0.056878155008882
809 => 0.062424522785596
810 => 0.060128290106622
811 => 0.058702944383817
812 => 0.059037934438329
813 => 0.061063280193987
814 => 0.061713756969443
815 => 0.059945536860962
816 => 0.060570102096161
817 => 0.064011517948006
818 => 0.065857727138681
819 => 0.063350327078769
820 => 0.056432509758401
821 => 0.050053966255662
822 => 0.051745843222146
823 => 0.051554036879201
824 => 0.055251408886638
825 => 0.050956306157007
826 => 0.051028624671569
827 => 0.054802454416534
828 => 0.053795661340398
829 => 0.052164785497373
830 => 0.050065873454152
831 => 0.046185840416392
901 => 0.042749186952122
902 => 0.04948925580958
903 => 0.049198611784427
904 => 0.048777716164973
905 => 0.049714373820404
906 => 0.054262517520264
907 => 0.054157668087078
908 => 0.053490669487798
909 => 0.053996582046696
910 => 0.052076096579747
911 => 0.052571049413221
912 => 0.050052955861782
913 => 0.051191239311908
914 => 0.052161286370277
915 => 0.052356037679037
916 => 0.052794822321921
917 => 0.049045455590137
918 => 0.050728811177084
919 => 0.051717624875327
920 => 0.047250128613315
921 => 0.051629316838323
922 => 0.048980187456925
923 => 0.048081033156291
924 => 0.049291625967524
925 => 0.048819856771646
926 => 0.048414257320247
927 => 0.048187925857283
928 => 0.0490768516096
929 => 0.049035382160758
930 => 0.047580927096915
1001 => 0.045683649757304
1002 => 0.046320438308483
1003 => 0.046089087057915
1004 => 0.045250640280952
1005 => 0.045815652174175
1006 => 0.043327625742394
1007 => 0.039047105582877
1008 => 0.041874948316133
1009 => 0.041766079447003
1010 => 0.041711182826378
1011 => 0.043836228484587
1012 => 0.043631954377695
1013 => 0.043261194873428
1014 => 0.045243830991903
1015 => 0.044520142138441
1016 => 0.046750380662272
1017 => 0.048219359996851
1018 => 0.047846779321099
1019 => 0.049228361485464
1020 => 0.04633510863057
1021 => 0.047296131171809
1022 => 0.047494196585638
1023 => 0.045219365569957
1024 => 0.043665376147883
1025 => 0.043561742770207
1026 => 0.040867339265265
1027 => 0.04230666786914
1028 => 0.043573217477085
1029 => 0.0429666385031
1030 => 0.042774613720967
1031 => 0.043755626687788
1101 => 0.043831859797118
1102 => 0.042093736825574
1103 => 0.042455147630554
1104 => 0.043962290766868
1105 => 0.04241717149045
1106 => 0.039415257130171
1107 => 0.038670740864108
1108 => 0.038571408670058
1109 => 0.036552221508167
1110 => 0.03872049300105
1111 => 0.037773984388343
1112 => 0.040763993754968
1113 => 0.039056116440494
1114 => 0.038982493262958
1115 => 0.038871201031941
1116 => 0.03713320323013
1117 => 0.037513714293204
1118 => 0.038778591020334
1119 => 0.03922991328643
1120 => 0.039182836676502
1121 => 0.03877239243432
1122 => 0.038960291706576
1123 => 0.038355002682192
1124 => 0.038141262529681
1125 => 0.037466639814494
1126 => 0.03647513079245
1127 => 0.036613006203244
1128 => 0.034648567388128
1129 => 0.033578236860994
1130 => 0.033281983477812
1201 => 0.032885821072542
1202 => 0.033326731075636
1203 => 0.034643002379783
1204 => 0.033055299924446
1205 => 0.030333295429149
1206 => 0.030496892537386
1207 => 0.030864446667178
1208 => 0.030179511977925
1209 => 0.029531278776758
1210 => 0.030094864952351
1211 => 0.028941515764142
1212 => 0.031003823406382
1213 => 0.03094804376421
1214 => 0.031716744520988
1215 => 0.032197428879529
1216 => 0.031089607056502
1217 => 0.030810992863879
1218 => 0.030969704170306
1219 => 0.028346559808872
1220 => 0.031502377663558
1221 => 0.031529669307414
1222 => 0.031295981683485
1223 => 0.032976357266161
1224 => 0.036522473867893
1225 => 0.035188282160111
1226 => 0.034671642804701
1227 => 0.033689511012403
1228 => 0.034998143312424
1229 => 0.034897660769626
1230 => 0.034443240604223
1231 => 0.03416840587031
]
'min_raw' => 0.02566666645311
'max_raw' => 0.065857727138681
'avg_raw' => 0.045762196795896
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$0.025666'
'max' => '$0.065857'
'avg' => '$0.045762'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 0.015783351556827
'max_diff' => 0.038280213752891
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.00080564733132029
]
1 => [
'year' => 2028
'avg' => 0.001382724701637
]
2 => [
'year' => 2029
'avg' => 0.0037773546729919
]
3 => [
'year' => 2030
'avg' => 0.0029142235048079
]
4 => [
'year' => 2031
'avg' => 0.0028621286374644
]
5 => [
'year' => 2032
'avg' => 0.005018212246507
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.00080564733132029
'min' => '$0.0008056'
'max_raw' => 0.005018212246507
'max' => '$0.005018'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.005018212246507
]
1 => [
'year' => 2033
'avg' => 0.012907357914696
]
2 => [
'year' => 2034
'avg' => 0.0081813037449299
]
3 => [
'year' => 2035
'avg' => 0.0096498665286513
]
4 => [
'year' => 2036
'avg' => 0.018730414141036
]
5 => [
'year' => 2037
'avg' => 0.045762196795896
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.005018212246507
'min' => '$0.005018'
'max_raw' => 0.045762196795896
'max' => '$0.045762'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 0.045762196795896
]
]
]
]
'prediction_2025_max_price' => '$0.001377'
'last_price' => 0.00133567
'sma_50day_nextmonth' => '$0.001237'
'sma_200day_nextmonth' => '$0.001727'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'increase'
'sma_200day_direction_label' => 'aumentar'
'sma_200day_date_nextmonth' => '4 de fev. de 2026'
'sma_50day_date_nextmonth' => '4 de fev. de 2026'
'daily_sma3' => '$0.001297'
'daily_sma3_action' => 'BUY'
'daily_sma5' => '$0.001273'
'daily_sma5_action' => 'BUY'
'daily_sma10' => '$0.001248'
'daily_sma10_action' => 'BUY'
'daily_sma21' => '$0.001254'
'daily_sma21_action' => 'BUY'
'daily_sma50' => '$0.001297'
'daily_sma50_action' => 'BUY'
'daily_sma100' => '$0.001324'
'daily_sma100_action' => 'BUY'
'daily_sma200' => '$0.002017'
'daily_sma200_action' => 'SELL'
'daily_ema3' => '$0.001306'
'daily_ema3_action' => 'BUY'
'daily_ema5' => '$0.001286'
'daily_ema5_action' => 'BUY'
'daily_ema10' => '$0.001268'
'daily_ema10_action' => 'BUY'
'daily_ema21' => '$0.001272'
'daily_ema21_action' => 'BUY'
'daily_ema50' => '$0.001311'
'daily_ema50_action' => 'BUY'
'daily_ema100' => '$0.001667'
'daily_ema100_action' => 'SELL'
'daily_ema200' => '$0.00375'
'daily_ema200_action' => 'SELL'
'weekly_sma21' => '$0.001578'
'weekly_sma21_action' => 'SELL'
'weekly_sma50' => '$0.008114'
'weekly_sma50_action' => 'SELL'
'weekly_sma100' => '$0.017667'
'weekly_sma100_action' => 'SELL'
'weekly_sma200' => '$0.0301012'
'weekly_sma200_action' => 'SELL'
'weekly_ema3' => '$0.001286'
'weekly_ema3_action' => 'BUY'
'weekly_ema5' => '$0.001281'
'weekly_ema5_action' => 'BUY'
'weekly_ema10' => '$0.001358'
'weekly_ema10_action' => 'SELL'
'weekly_ema21' => '$0.002365'
'weekly_ema21_action' => 'SELL'
'weekly_ema50' => '$0.007436'
'weekly_ema50_action' => 'SELL'
'weekly_ema100' => '$0.017115'
'weekly_ema100_action' => 'SELL'
'weekly_ema200' => '$0.037882'
'weekly_ema200_action' => 'SELL'
'rsi_14' => '55.36'
'rsi_14_action' => 'NEUTRAL'
'stoch_rsi_14' => 119.95
'stoch_rsi_14_action' => 'SELL'
'momentum_10' => 0
'momentum_10_action' => 'BUY'
'vwma_10' => '0.001251'
'vwma_10_action' => 'BUY'
'hma_9' => '0.0013049'
'hma_9_action' => 'BUY'
'stochastic_fast_14' => 100
'stochastic_fast_14_action' => 'SELL'
'cci_20' => 179.48
'cci_20_action' => 'SELL'
'adx_14' => 9.44
'adx_14_action' => 'NEUTRAL'
'ao_5_34' => '-0.000040'
'ao_5_34_action' => 'SELL'
'macd_12_26' => 0
'macd_12_26_action' => 'BUY'
'williams_percent_r_14' => -0
'williams_percent_r_14_action' => 'SELL'
'ultimate_oscillator' => 61.27
'ultimate_oscillator_action' => 'NEUTRAL'
'ichimoku_cloud' => '0.000080'
'ichimoku_cloud_action' => 'NEUTRAL'
'sell_signals' => 14
'buy_signals' => 21
'sell_pct' => 40
'buy_pct' => 60
'overall_action' => 'bullish'
'overall_action_label' => 'Altista'
'overall_action_dir' => 1
'last_updated' => 1767700121
'last_updated_date' => '6 de janeiro de 2026'
]
Previsão de preço de NEM para 2026
A previsão de preço para NEM em 2026 sugere que o preço médio poderia variar entre $0.000461 na extremidade inferior e $0.001377 na extremidade superior. No mercado de criptomoedas, comparado ao preço médio de hoje, NEM poderia potencialmente ganhar 3.13% até 2026 se XEM atingir a meta de preço prevista.
Previsão de preço de NEM 2027-2032
A previsão de preço de XEM para 2027-2032 está atualmente dentro de uma faixa de preço entre $0.0008056 na extremidade inferior e $0.005018 na extremidade superior. Considerando a volatilidade de preços no mercado, se NEM atingir a meta de preço superior, poderia ganhar 275.71% até 2032 em comparação com o preço de hoje.
| Previsão de Preço de NEM | Potencial Mínimo ($) | Preço Médio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2027 | $0.000444 | $0.0008056 | $0.001167 |
| 2028 | $0.0008017 | $0.001382 | $0.001963 |
| 2029 | $0.001761 | $0.003777 | $0.005793 |
| 2030 | $0.001497 | $0.002914 | $0.00433 |
| 2031 | $0.00177 | $0.002862 | $0.003953 |
| 2032 | $0.0027031 | $0.005018 | $0.007333 |
Previsão de preço de NEM 2032-2037
A previsão de preço de NEM para 2032-2037 é atualmente estimada entre $0.005018 na extremidade inferior e $0.045762 na extremidade superior. Comparado ao preço atual, NEM poderia potencialmente ganhar 3326.16% até 2037 se atingir a meta de preço superior. Por favor, note que esta informação é apenas para fins gerais e não deve ser considerada como aconselhamento de investimento a longo prazo.
| Previsão de Preço de NEM | Potencial Mínimo ($) | Preço Médio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2032 | $0.0027031 | $0.005018 | $0.007333 |
| 2033 | $0.006281 | $0.0129073 | $0.019533 |
| 2034 | $0.005049 | $0.008181 | $0.011312 |
| 2035 | $0.00597 | $0.009649 | $0.013329 |
| 2036 | $0.009883 | $0.01873 | $0.027577 |
| 2037 | $0.025666 | $0.045762 | $0.065857 |
NEM Histograma de preços potenciais
Previsão de preço de NEM baseada na análise técnica
Em 6 de janeiro de 2026, o sentimento geral de previsão de preço para NEM é Altista, com 21 indicadores técnicos mostrando sinais de alta e 14 indicando sinais de baixa. A previsão de preço de XEM foi atualizada pela última vez em 6 de janeiro de 2026.
Médias Móveis Simples de 50 e 200 dias e Índice de Força Relativa de 14 dias - RSI (14) de NEM
De acordo com nossos indicadores técnicos, o SMA de 200 dias de NEM está projetado para aumentar no próximo mês, alcançando $0.001727 até 4 de fev. de 2026. O SMA de 50 dias de curto prazo para NEM é esperado para alcançar $0.001237 até 4 de fev. de 2026.
O oscilador de momentum Índice de Força Relativa (RSI) é uma ferramenta comumente usada para identificar se uma criptomoeda está sobrevendida (abaixo de 30) ou sobrecomprada (acima de 70). No momento, o RSI está em 55.36, sugerindo que o mercado de XEM está em um estado NEUTRAL.
Médias Móveis e Osciladores Populares de XEM para Sábado, 19 de Outubro de 2024
Médias móveis (MA) são indicadores amplamente utilizados nos mercados financeiros, projetados para suavizar movimentos de preços ao longo de um período definido. Como indicadores atrasados, eles se baseiam em dados históricos de preços. A tabela abaixo destaca dois tipos: a média móvel simples (SMA) e a média móvel exponencial (EMA).
Média Móvel Simples Diária (SMA)
| Período | Valor | Ação |
|---|---|---|
| SMA 3 | $0.001297 | BUY |
| SMA 5 | $0.001273 | BUY |
| SMA 10 | $0.001248 | BUY |
| SMA 21 | $0.001254 | BUY |
| SMA 50 | $0.001297 | BUY |
| SMA 100 | $0.001324 | BUY |
| SMA 200 | $0.002017 | SELL |
Média Móvel Exponencial Diária (EMA)
| Período | Valor | Ação |
|---|---|---|
| EMA 3 | $0.001306 | BUY |
| EMA 5 | $0.001286 | BUY |
| EMA 10 | $0.001268 | BUY |
| EMA 21 | $0.001272 | BUY |
| EMA 50 | $0.001311 | BUY |
| EMA 100 | $0.001667 | SELL |
| EMA 200 | $0.00375 | SELL |
Média Móvel Simples Semanal (SMA)
| Período | Valor | Ação |
|---|---|---|
| SMA 21 | $0.001578 | SELL |
| SMA 50 | $0.008114 | SELL |
| SMA 100 | $0.017667 | SELL |
| SMA 200 | $0.0301012 | SELL |
Média Móvel Exponencial Semanal (EMA)
| Período | Valor | Ação |
|---|---|---|
| EMA 21 | $0.002365 | SELL |
| EMA 50 | $0.007436 | SELL |
| EMA 100 | $0.017115 | SELL |
| EMA 200 | $0.037882 | SELL |
Osciladores de NEM
Um oscilador é uma ferramenta de análise técnica que define limites altos e baixos entre dois extremos, criando um indicador de tendência que flutua dentro desses limites. Os traders usam esse indicador para identificar condições de sobrecompra ou sobrevenda de curto prazo.
| Período | Valor | Ação |
|---|---|---|
| RSI (14) | 55.36 | NEUTRAL |
| Stoch RSI (14) | 119.95 | SELL |
| Estocástico Rápido (14) | 100 | SELL |
| Índice de Canal de Commodities (20) | 179.48 | SELL |
| Índice Direcional Médio (14) | 9.44 | NEUTRAL |
| Oscilador Impressionante (5, 34) | -0.000040 | SELL |
| Momentum (10) | 0 | BUY |
| MACD (12, 26) | 0 | BUY |
| Williams Percent Range (14) | -0 | SELL |
| Oscilador Ultimate (7, 14, 28) | 61.27 | NEUTRAL |
| VWMA (10) | 0.001251 | BUY |
| Média Móvel de Hull (9) | 0.0013049 | BUY |
| Nuvem Ichimoku B/L (9, 26, 52, 26) | 0.000080 | NEUTRAL |
Previsão do preço de NEM com base nos fluxos financeiros mundiais
Definições dos fluxos financeiros mundiais, usadas na previsão do preço do NEM
M0: o total de todas as moedas físicas, mais as contas no Banco Central que podem ser trocadas por moedas físicas.
M1: o valor de M0, mais o valor em contas de demanda, incluindo contas 'correntes'.
M2: o valor de M1, mais a maioria das contas de poupança, do mercado de moedas e de certificados de depósito (CD) de menos de US$ 100.000.
Previsões de preço de NEM por empresas de Internet ou nichos tecnológicos
| Comparação | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Facebook stock | $0.001876 | $0.002637 | $0.0037058 | $0.0052072 | $0.007317 | $0.010281 |
| Amazon.com stock | $0.002786 | $0.005815 | $0.012133 | $0.025317 | $0.052826 | $0.110225 |
| Apple stock | $0.001894 | $0.002687 | $0.003811 | $0.0054065 | $0.007668 | $0.010877 |
| Netflix stock | $0.0021074 | $0.003325 | $0.005246 | $0.008278 | $0.013062 | $0.02061 |
| Google stock | $0.001729 | $0.002239 | $0.0029007 | $0.003756 | $0.004864 | $0.006299 |
| Tesla stock | $0.003027 | $0.006863 | $0.01556 | $0.035273 | $0.079962 | $0.181268 |
| Kodak stock | $0.0010016 | $0.000751 | $0.000563 | $0.000422 | $0.000316 | $0.000237 |
| Nokia stock | $0.000884 | $0.000586 | $0.000388 | $0.000257 | $0.00017 | $0.000112 |
Este cálculo mostra quanto a criptomoeda pode custar, se assumirmos que sua capitalização se comportará da mesma forma que a de algumas empresas de Internet ou nichos tecnológicos. Se você extrapolar os dados, poderá obter uma imagem em potencial do preço futuro para 2024, 2025, 2026, 2027, 2028, 2029 e 2030.
Visão geral da previsão para NEM
Você pode fazer perguntas como: 'Devo investir em NEM agora?', 'Devo comprar XEM hoje?', 'NEM será um bom ou mau investimento no curto ou no longo prazo?'.
Atualizamos a previsão para NEM regularmente com novos valores. Veja nossas previsões semelhantes. Fazemos previsões de preços futuros para uma enorme quantidade de moedas digitais, como NEM, com métodos de análise técnica.
Se você estiver tentando encontrar criptomoedas com bom retorno, você deve explorar o máximo de fontes de informações disponíveis sobre NEM para poder tomar sozinho uma decisão de tão grande responsabilidade sobre o seu investimento.
O preço de NEM é de $0.001335 USD hoje, mas o preço pode tanto subir quanto descer e seu investimento pode ser perdido, porque criptomoedas são ativos de alto risco
Previsão de curto prazo para NEM
com base no histórico de preços de 4 horas
Previsão de longo prazo para NEM
com base no histórico de preços de 1 mês
Previsão do preço de NEM com base no padrão de crescimento do Bitcoin
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| Se NEM tiver 1% da média anterior do crescimento anual do Bitcoin | $0.00137 | $0.001406 | $0.001442 | $0.00148 |
| Se NEM tiver 2% da média anterior do crescimento anual do Bitcoin | $0.0014051 | $0.001478 | $0.001554 | $0.001635 |
| Se NEM tiver 5% da média anterior do crescimento anual do Bitcoin | $0.0015092 | $0.0017054 | $0.001927 | $0.002177 |
| Se NEM tiver 10% da média anterior do crescimento anual do Bitcoin | $0.001682 | $0.00212 | $0.002671 | $0.003365 |
| Se NEM tiver 20% da média anterior do crescimento anual do Bitcoin | $0.00203 | $0.003085 | $0.004689 | $0.007127 |
| Se NEM tiver 50% da média anterior do crescimento anual do Bitcoin | $0.003071 | $0.007063 | $0.016243 | $0.037355 |
| Se NEM tiver 100% da média anterior do crescimento anual do Bitcoin | $0.0048075 | $0.0173037 | $0.062281 | $0.224172 |
Perguntas Frequentes sobre NEM
XEM é um bom investimento?
A decisão de adquirir NEM depende inteiramente da sua tolerância individual ao risco. Como você pode perceber, o valor de NEM experimentou uma escalada de 0.7297% nas últimas 24 horas, e NEM registrou um declínio de -92.23% durante os últimos 30 dias. Consequentemente, a decisão de investir ou não em NEM dependerá de quão alinhado esse investimento está com suas aspirações de negociação.
NEM pode subir?
Parece que o valor médio de NEM pode potencialmente subir para $0.001377 até o final deste ano. Observando as perspectivas de NEM em um horizonte de cinco anos mais longo, a moeda digital poderia potencialmente crescer até $0.00433. No entanto, dada a imprevisibilidade do mercado, é vital conduzir uma pesquisa aprofundada antes de investir quaisquer fundos em um projeto, rede ou ativo específico.
Qual será o preço de NEM na próxima semana?
Com base na nossa nova previsão experimental de NEM, o preço de NEM aumentará 0.86% na próxima semana e atingirá $0.001347 até 13 de janeiro de 2026.
Qual será o preço de NEM no próximo mês?
Com base na nossa nova previsão experimental de NEM, o preço de NEM diminuirá -11.62% no próximo mês e atingirá $0.00118 até 5 de fevereiro de 2026.
Até onde o preço de NEM pode subir este ano em 2026?
De acordo com nossa previsão mais recente sobre o valor de NEM em 2026, espera-se que XEM fluctue dentro do intervalo de $0.000461 e $0.001377. No entanto, é crucial lembrar que o mercado de criptomoedas é excepcionalmente instável, e essa previsão de preço de NEM não considera flutuações repentinas e extremas de preço.
Onde estará NEM em 5 anos?
O futuro de NEM parece seguir uma tendência de alta, com um preço máximo de $0.00433 projetada após um período de cinco anos. Com base na previsão de NEM para 2030, o valor de NEM pode potencialmente atingir seu pico mais alto de aproximadamente $0.00433, enquanto seu pico mais baixo está previsto para cerca de $0.001497.
Quanto será NEM em 2026?
Com base na nossa nova simulação experimental de previsão de preços de NEM, espera-se que o valor de XEM em 2026 aumente 3.13% para $0.001377 se o melhor cenário ocorrer. O preço ficará entre $0.001377 e $0.000461 durante 2026.
Quanto será NEM em 2027?
De acordo com nossa última simulação experimental para previsão de preços de NEM, o valor de XEM pode diminuir -12.62% para $0.001167 em 2027, assumindo as condições mais favoráveis. O preço está projetado para flutuar entre $0.001167 e $0.000444 ao longo do ano.
Quanto será NEM em 2028?
Nosso novo modelo experimental de previsão de preços de NEM sugere que o valor de XEM em 2028 pode aumentar 47.02%, alcançando $0.001963 no melhor cenário. O preço é esperado para variar entre $0.001963 e $0.0008017 durante o ano.
Quanto será NEM em 2029?
Com base no nosso modelo de previsão experimental, o valor de NEM pode experimentar um 333.75% crescimento em 2029, potencialmente alcançando $0.005793 sob condições ótimas. A faixa de preço prevista para 2029 está entre $0.005793 e $0.001761.
Quanto será NEM em 2030?
Usando nossa nova simulação experimental para previsões de preços de NEM, espera-se que o valor de XEM em 2030 aumente 224.23%, alcançando $0.00433 no melhor cenário. O preço está previsto para variar entre $0.00433 e $0.001497 ao longo de 2030.
Quanto será NEM em 2031?
Nossa simulação experimental indica que o preço de NEM poderia aumentar 195.98% em 2031, potencialmente atingindo $0.003953 sob condições ideais. O preço provavelmente oscilará entre $0.003953 e $0.00177 durante o ano.
Quanto será NEM em 2032?
Com base nos achados da nossa mais recente previsão experimental de preços de NEM, XEM poderia ver um 449.04% aumento em valor, atingindo $0.007333 se o cenário mais positivo se desenrolar em 2032. O preço é esperado para permanecer dentro de uma faixa de $0.007333 e $0.0027031 ao longo do ano.
Quanto será NEM em 2033?
De acordo com nossa previsão experimental de preços de NEM, espera-se que o valor de XEM seja aumentar 1362.43% em 2033, com o preço potencial mais alto sendo $0.019533. Ao longo do ano, o preço de XEM poderia variar entre $0.019533 e $0.006281.
Quanto será NEM em 2034?
Os resultados da nossa nova simulação de previsão de preços de NEM sugerem que XEM pode aumentar 746.96% em 2034, atingindo potencialmente $0.011312 nas melhores circunstâncias. A faixa de preço prevista para o ano é entre $0.011312 e $0.005049.
Quanto será NEM em 2035?
Com base em nossa previsão experimental para o preço de NEM, XEM poderia aumentar 897.93%, com o valor potencialmente atingindo $0.013329 em 2035. A faixa de preço esperada para o ano está entre $0.013329 e $0.00597.
Quanto será NEM em 2036?
Nossa recente simulação de previsão de preços de NEM sugere que o valor de XEM pode aumentar 1964.7% em 2036, possivelmente atingindo $0.027577 se as condições forem ideais. A faixa de preço esperada para 2036 está entre $0.027577 e $0.009883.
Quanto será NEM em 2037?
De acordo com a simulação experimental, o valor de NEM poderia aumentar 4830.69% em 2037, com um pico de $0.065857 sob condições favoráveis. O preço é esperado para cair entre $0.065857 e $0.025666 ao longo do ano.
Previsões relacionadas
Previsão de Preço do Gas
Previsão de Preço do SafePal
Previsão de Preço do LoopringPrevisão de Preço do Centrifuge
Previsão de Preço do Yield Guild Games
Previsão de Preço do Zcash
Previsão de Preço do Decred
Previsão de Preço do ZetaChain
Previsão de Preço do Polymath Network
Previsão de Preço do Pocket Network
Previsão de Preço do cETH
Previsão de Preço do Uniswap Protocol
Previsão de Preço do Arkham
Previsão de Preço do Chia
Previsão de Preço do SPACE ID
Previsão de Preço do SSV Network
Previsão de Preço do Moonbeam
Previsão de Preço do ZelCash
Previsão de Preço do PAAL AI
Previsão de Preço do Aragon
Previsão de Preço do Kusama
Previsão de Preço do GMX
Previsão de Preço do API3
Previsão de Preço do BENQI Liquid Staked AVAX
Previsão de Preço do Blox
Como ler e prever os movimentos de preço de NEM?
Traders de NEM utilizam indicadores e padrões de gráfico para prever a direção do mercado. Eles também identificam níveis-chave de suporte e resistência para avaliar quando uma tendência de baixa pode desacelerar ou uma tendência de alta pode estagnar.
Indicadores de Previsão de Preço de NEM
Médias móveis são ferramentas populares para a previsão de preço de NEM. Uma média móvel simples (SMA) calcula o preço médio de fechamento de XEM em um período específico, como uma SMA de 12 dias. Uma média móvel exponencial (EMA) dá mais peso aos preços recentes, reagindo mais rapidamente às mudanças de preço.
Médias móveis comumente usadas no mercado de criptomoedas incluem as de 50 dias, 100 dias e 200 dias, que ajudam a identificar níveis-chave de resistência e suporte. Um movimento de preço de XEM acima dessas médias é visto como altista, enquanto uma queda abaixo indica fraqueza.
Traders também usam RSI e níveis de retração de Fibonacci para avaliar a direção futura de XEM.
Como ler gráficos de NEM e prever movimentos de preço?
A maioria dos traders prefere gráficos de velas em vez de gráficos de linha simples porque eles fornecem informações mais detalhadas. Velas podem representar a ação de preço de NEM em diferentes períodos de tempo, como 5 minutos para tendências de curto prazo e semanal para tendências de longo prazo. Opções populares incluem gráficos de 1 hora, 4 horas e 1 dia.
Por exemplo, um gráfico de velas de 1 hora mostra os preços de abertura, fechamento, máximo e mínimo de XEM dentro de cada hora. A cor da vela é crucial: verde indica que o preço fechou mais alto do que abriu, enquanto vermelho significa o oposto. Alguns gráficos usam velas vazias e preenchidas para transmitir a mesma informação.
O que afeta o preço de NEM?
A ação de preço de NEM é impulsionada pela oferta e demanda, influenciada por fatores como reduções pela metade das recompensas de bloco, hard forks e atualizações de protocolo. Eventos do mundo real, como regulamentações, adoção por empresas e governos e hacks de exchanges de criptomoedas, também impactam o preço de XEM. A capitalização de mercado de NEM pode mudar rapidamente.
Traders frequentemente monitoram a atividade de "baleias" de XEM, grandes detentores de NEM, pois suas ações podem influenciar significativamente os movimentos de preço no relativamente pequeno mercado de NEM.
Padrões de previsão de preço altistas e baixistas
Traders frequentemente identificam padrões de velas para ganhar vantagem em previsões de preço de criptomoedas. Certas formações indicam tendências altistas, enquanto outras sugerem movimentos baixistas.
Padrões de velas altistas comumente seguidos:
- Martelo
- Engolfo de Alta
- Linha de Perfuração
- Estrela da Manhã
- Três Soldados Brancos
Padrões de velas baixistas comuns:
- Harami de Baixa
- Nuvem Negra
- Estrela da Noite
- Estrela Cadente
- Homem Enforcado


