Previsão de Preço Maximus - Projeção MAXI
Previsão de Preço Maximus até $0.003873 até 2026
| Ano | Preço Mínimo | Preço Máximo |
|---|---|---|
| 2026 | $0.001297 | $0.003873 |
| 2027 | $0.001249 | $0.003281 |
| 2028 | $0.002254 | $0.005521 |
| 2029 | $0.004952 | $0.01629 |
| 2030 | $0.004211 | $0.012177 |
| 2031 | $0.004979 | $0.011116 |
| 2032 | $0.00760092 | $0.02062 |
| 2033 | $0.017662 | $0.054925 |
| 2034 | $0.01420011 | $0.03181 |
| 2035 | $0.016788 | $0.03748 |
Calculadora de lucro do investimento
Se você abrir um short de $10,000.00 em Maximus hoje e fechar em Apr 06, 2026, nossa previsão mostra que pode lucrar cerca de $3,955.98, com um retorno de 39.56% nos próximos 90 dias.
Previsão de preço de longo prazo de Maximus para os anos 2027, 2028, 2029, 2030, 2031, 2032 e 2037
[
'name' => 'Maximus'
'name_with_ticker' => 'Maximus <small>MAXI</small>'
'name_lang' => 'Maximus'
'name_lang_with_ticker' => 'Maximus <small>MAXI</small>'
'name_with_lang' => 'Maximus'
'name_with_lang_with_ticker' => 'Maximus <small>MAXI</small>'
'image' => '/uploads/coins/maximus.jpg?1717280727'
'price_for_sd' => 0.003755
'ticker' => 'MAXI'
'marketcap' => '$0'
'low24h' => '$0'
'high24h' => '$0'
'volume24h' => '$537.22'
'current_supply' => '0'
'max_supply' => '1.75M'
'algo' => null
'proof' => null
'ico_price_and_roi' => '—'
'price' => '$0.003755'
'change_24h_pct' => '0%'
'ath_price' => '$2.85'
'ath_days' => 1511
'ath_exchange' => null
'ath_pair' => null
'ath_date' => '17 de nov. de 2021'
'ath_pct' => '-99.87%'
'fdv' => '$6.57K'
'new_prediction' => true
'change_24h_pct_is_increased' => false
'change_30d_pct' => null
'change_30d_pct_is_increased' => false
'max_price' => '$0.185185'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.003787'
'next_week_prediction_price_date' => '13 de janeiro de 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.003319'
'next_month_prediction_price_date' => '5 de fevereiro de 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.001297'
'current_year_max_price_prediction' => '$0.003873'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.004211'
'grand_prediction_max_price' => '$0.012177'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.0038269500554597
107 => 0.0038412384977839
108 => 0.0038734310879263
109 => 0.0035983489298622
110 => 0.0037218527428452
111 => 0.0037943996622303
112 => 0.0034666300411687
113 => 0.0037879207106816
114 => 0.0035935603614929
115 => 0.0035275915397837
116 => 0.0036164098674837
117 => 0.0035817972788004
118 => 0.0035520394075699
119 => 0.0035354340041181
120 => 0.0036006523814598
121 => 0.003597609866204
122 => 0.0034908999425314
123 => 0.0033517011971533
124 => 0.0033984208651453
125 => 0.0033814471717646
126 => 0.0033199323173029
127 => 0.0033613859018782
128 => 0.0031788452945876
129 => 0.0028647936673794
130 => 0.0030722657919747
131 => 0.003064278340864
201 => 0.0030602507058119
202 => 0.0032161602733369
203 => 0.0032011731658651
204 => 0.0031739714190496
205 => 0.0033194327358908
206 => 0.0032663373985129
207 => 0.0034299647174766
208 => 0.0035377402524976
209 => 0.0035104048906429
210 => 0.0036117683022545
211 => 0.0033994971919353
212 => 0.0034700051399446
213 => 0.0034845367303095
214 => 0.0033176377658203
215 => 0.0032036252419962
216 => 0.003196021906495
217 => 0.0029983399020776
218 => 0.003103940033204
219 => 0.0031968637785649
220 => 0.003152360515711
221 => 0.0031382721121886
222 => 0.0032102467103826
223 => 0.003215839753083
224 => 0.0030883177867893
225 => 0.0031148336416772
226 => 0.003225409164454
227 => 0.0031120474222108
228 => 0.0028918040745678
301 => 0.0028371806792498
302 => 0.0028298929114055
303 => 0.002681749931067
304 => 0.0028408308757169
305 => 0.002771387780273
306 => 0.0029907576867243
307 => 0.0028654547726637
308 => 0.0028600532144783
309 => 0.0028518879670448
310 => 0.002724375184158
311 => 0.0027522923797501
312 => 0.0028450933898072
313 => 0.0028782058356738
314 => 0.0028747519362876
315 => 0.0028446386142305
316 => 0.0028584243388631
317 => 0.0028140157165567
318 => 0.0027983341077347
319 => 0.0027488386367263
320 => 0.0026760939678169
321 => 0.0026862095601977
322 => 0.0025420833364101
323 => 0.0024635557203329
324 => 0.0024418203111801
325 => 0.0024127548136757
326 => 0.0024451033364635
327 => 0.0025416750449266
328 => 0.0024251890756893
329 => 0.0022254820519727
330 => 0.0022374847843822
331 => 0.0022644513604633
401 => 0.002214199324338
402 => 0.002166639989479
403 => 0.0022079889725281
404 => 0.0021233704738882
405 => 0.0022746771017543
406 => 0.0022705846815024
407 => 0.0023269824356319
408 => 0.0023622491086874
409 => 0.0022809708450154
410 => 0.0022605295815016
411 => 0.0022721738542027
412 => 0.0020797199643924
413 => 0.0023112548469542
414 => 0.0023132571702333
415 => 0.002296112062672
416 => 0.0024193972397986
417 => 0.0026795674171468
418 => 0.0025816809311073
419 => 0.0025437763250781
420 => 0.0024717196413084
421 => 0.0025677308941289
422 => 0.0025603587279212
423 => 0.0025270189965187
424 => 0.0025068550229402
425 => 0.0025440077625198
426 => 0.0025022513873551
427 => 0.0024947507949871
428 => 0.0024493053659619
429 => 0.0024330834154351
430 => 0.0024210733290796
501 => 0.0024078514040889
502 => 0.00243701567592
503 => 0.0023709255990712
504 => 0.0022912274452816
505 => 0.0022846014061399
506 => 0.0023028964827773
507 => 0.0022948022732735
508 => 0.0022845626541789
509 => 0.0022650124327329
510 => 0.0022592122996543
511 => 0.0022780599183353
512 => 0.0022567820557289
513 => 0.0022881787010698
514 => 0.0022796405507927
515 => 0.0022319471374077
516 => 0.0021725034859667
517 => 0.0021719743127816
518 => 0.0021591672755858
519 => 0.002142855588166
520 => 0.0021383180498866
521 => 0.0022045066765074
522 => 0.0023415151527534
523 => 0.0023146171105313
524 => 0.002334053702659
525 => 0.002429662498825
526 => 0.0024600536600694
527 => 0.0024384827336722
528 => 0.002408955119183
529 => 0.0024102541843654
530 => 0.0025111589816917
531 => 0.0025174522901286
601 => 0.0025333534502504
602 => 0.0025537909346742
603 => 0.0024419633256438
604 => 0.0024049871140365
605 => 0.0023874657336149
606 => 0.0023335066635438
607 => 0.0023916968945144
608 => 0.002357791938882
609 => 0.002362366875755
610 => 0.0023593874421147
611 => 0.0023610144143508
612 => 0.0022746348084682
613 => 0.0023061069968734
614 => 0.0022537783795184
615 => 0.0021837162350431
616 => 0.0021834813621679
617 => 0.0022006289727712
618 => 0.0021904289029983
619 => 0.002162980777507
620 => 0.0021668796541816
621 => 0.0021327213919219
622 => 0.0021710270856752
623 => 0.0021721255559077
624 => 0.0021573757772874
625 => 0.0022163909836815
626 => 0.0022405695618931
627 => 0.0022308609416343
628 => 0.0022398883792145
629 => 0.0023157348456231
630 => 0.002328101129061
701 => 0.0023335934152933
702 => 0.0023262344793305
703 => 0.0022412747133871
704 => 0.0022450430402835
705 => 0.0022173935578419
706 => 0.0021940326588093
707 => 0.0021949669722589
708 => 0.0022069775110659
709 => 0.0022594282384449
710 => 0.0023698077020749
711 => 0.0023739965220333
712 => 0.0023790734940194
713 => 0.0023584228974703
714 => 0.0023521944799514
715 => 0.0023604113703497
716 => 0.0024018640934126
717 => 0.002508491751435
718 => 0.0024708024156681
719 => 0.0024401603990201
720 => 0.0024670417086488
721 => 0.0024629035417341
722 => 0.0024279732484704
723 => 0.0024269928714774
724 => 0.002359950470814
725 => 0.0023351664217704
726 => 0.0023144550153356
727 => 0.0022918387001937
728 => 0.0022784309904719
729 => 0.0022990313262997
730 => 0.0023037428668395
731 => 0.0022586998725198
801 => 0.0022525606788336
802 => 0.0022893437603157
803 => 0.0022731568975669
804 => 0.0022898054873189
805 => 0.0022936681029503
806 => 0.0022930461328701
807 => 0.002276145189111
808 => 0.0022869173466696
809 => 0.0022614379827087
810 => 0.002233733001278
811 => 0.0022160589492065
812 => 0.0022006359946513
813 => 0.0022091935462259
814 => 0.0021786874374097
815 => 0.0021689279192327
816 => 0.00228326798207
817 => 0.0023677322158507
818 => 0.00236650407244
819 => 0.0023590280652803
820 => 0.0023479202350937
821 => 0.0024010514864481
822 => 0.0023825416208691
823 => 0.0023960090946289
824 => 0.0023994371319288
825 => 0.0024098127683769
826 => 0.0024135211665911
827 => 0.0024023118115398
828 => 0.0023646918468804
829 => 0.0022709464717482
830 => 0.0022273077465633
831 => 0.0022129062403918
901 => 0.0022134297077888
902 => 0.0021989901401188
903 => 0.0022032432399336
904 => 0.002197511085571
905 => 0.0021866557719652
906 => 0.0022085232612002
907 => 0.0022110432856248
908 => 0.0022059391523403
909 => 0.0022071413605011
910 => 0.0021648813169094
911 => 0.0021680942562397
912 => 0.0021502042017681
913 => 0.0021468500322225
914 => 0.0021016255323834
915 => 0.0020215037755225
916 => 0.0020658990064306
917 => 0.0020122758104077
918 => 0.0019919678935498
919 => 0.0020881024134259
920 => 0.0020784531739869
921 => 0.0020619378704908
922 => 0.0020375082945293
923 => 0.0020284471271695
924 => 0.0019733943427085
925 => 0.0019701415305074
926 => 0.0019974271770365
927 => 0.0019848357900051
928 => 0.0019671527138818
929 => 0.0019031064046681
930 => 0.0018310971481076
1001 => 0.0018332706549291
1002 => 0.0018561754596611
1003 => 0.0019227742685533
1004 => 0.0018967529617481
1005 => 0.0018778742051007
1006 => 0.001874338781474
1007 => 0.0019185920100729
1008 => 0.0019812195998783
1009 => 0.0020106030638017
1010 => 0.0019814849434427
1011 => 0.0019480356146052
1012 => 0.0019500715202623
1013 => 0.001963615488497
1014 => 0.0019650387680571
1015 => 0.0019432666936304
1016 => 0.0019493954050509
1017 => 0.0019400853319821
1018 => 0.0018829494307442
1019 => 0.0018819160234707
1020 => 0.001867893951866
1021 => 0.0018674693691106
1022 => 0.0018436143273413
1023 => 0.0018402768420957
1024 => 0.0017929112087654
1025 => 0.0018240874120598
1026 => 0.001803176051714
1027 => 0.0017716576991818
1028 => 0.0017662239233253
1029 => 0.0017660605774615
1030 => 0.0017984228781375
1031 => 0.0018237092397341
1101 => 0.0018035398137802
1102 => 0.0017989476264584
1103 => 0.0018479801729136
1104 => 0.0018417403344356
1105 => 0.0018363366745563
1106 => 0.0019756119861167
1107 => 0.0018653647092285
1108 => 0.0018172906038107
1109 => 0.0017577897693312
1110 => 0.001777163541067
1111 => 0.0017812458794316
1112 => 0.0016381570983399
1113 => 0.0015801059976716
1114 => 0.0015601850475318
1115 => 0.0015487202590854
1116 => 0.0015539449071462
1117 => 0.0015016921078297
1118 => 0.0015368068531519
1119 => 0.001491560345763
1120 => 0.0014839746215544
1121 => 0.0015648809817324
1122 => 0.0015761386291031
1123 => 0.0015281100079429
1124 => 0.0015589521578552
1125 => 0.0015477683655591
1126 => 0.0014923359672668
1127 => 0.0014902188573852
1128 => 0.0014624048284651
1129 => 0.0014188812590626
1130 => 0.0013989898199523
1201 => 0.0013886301857583
1202 => 0.001392904772732
1203 => 0.0013907434107536
1204 => 0.0013766390618428
1205 => 0.0013915518555232
1206 => 0.0013534558300616
1207 => 0.0013382856857623
1208 => 0.001331433683527
1209 => 0.0012976212682044
1210 => 0.0013514318574319
1211 => 0.0013620332213977
1212 => 0.0013726554733254
1213 => 0.0014651149242366
1214 => 0.0014604959113568
1215 => 0.00150224953824
1216 => 0.0015006270690793
1217 => 0.0014887182583283
1218 => 0.0014384769446742
1219 => 0.0014585022368314
1220 => 0.0013968675001928
1221 => 0.0014430484356371
1222 => 0.0014219733852623
1223 => 0.0014359229399058
1224 => 0.0014108403828762
1225 => 0.0014247221055698
1226 => 0.0013645471980786
1227 => 0.0013083567161472
1228 => 0.0013309694063789
1229 => 0.0013555519867354
1230 => 0.0014088532844735
1231 => 0.0013771074712669
]
'min_raw' => 0.0012976212682044
'max_raw' => 0.0038734310879263
'avg_raw' => 0.0025855261780654
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.001297'
'max' => '$0.003873'
'avg' => '$0.002585'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.0024581587317956
'max_diff' => 0.00011765108792635
'year' => 2026
]
1 => [
'items' => [
101 => 0.0013885244661381
102 => 0.0013502794445014
103 => 0.0012713690407146
104 => 0.0012718156650304
105 => 0.0012596770185644
106 => 0.0012491874557464
107 => 0.0013807538597969
108 => 0.0013643914976961
109 => 0.0013383202151416
110 => 0.0013732176628724
111 => 0.0013824451019494
112 => 0.0013827077941677
113 => 0.0014081680711986
114 => 0.001421756225614
115 => 0.0014241511967242
116 => 0.001464213492738
117 => 0.0014776418459274
118 => 0.0015329513322627
119 => 0.001420603365647
120 => 0.0014182896332072
121 => 0.0013737087415277
122 => 0.0013454348352286
123 => 0.0013756446800814
124 => 0.001402406478566
125 => 0.0013745403052049
126 => 0.0013781790391588
127 => 0.0013407709781716
128 => 0.0013541425997617
129 => 0.001365660041627
130 => 0.0013593007871929
131 => 0.0013497806755137
201 => 0.0014002123162778
202 => 0.0013973667654626
203 => 0.0014443298687606
204 => 0.001480940966145
205 => 0.0015465545976745
206 => 0.0014780833526575
207 => 0.0014755879883406
208 => 0.001499980574808
209 => 0.0014776381115495
210 => 0.0014917577770932
211 => 0.0015442797012662
212 => 0.001545389406761
213 => 0.0015268004099482
214 => 0.0015256692678027
215 => 0.001529239487982
216 => 0.0015501503790857
217 => 0.0015428434712073
218 => 0.0015512992099924
219 => 0.0015618732408222
220 => 0.00160561191563
221 => 0.0016161571620496
222 => 0.0015905376803334
223 => 0.0015928508326832
224 => 0.0015832684432509
225 => 0.0015740119751262
226 => 0.0015948191636718
227 => 0.0016328447097053
228 => 0.001632608154757
301 => 0.0016414293423258
302 => 0.0016469248691025
303 => 0.0016233340452055
304 => 0.0016079772863071
305 => 0.0016138660448447
306 => 0.0016232822979868
307 => 0.0016108124808598
308 => 0.0015338429929712
309 => 0.0015571906187667
310 => 0.0015533044321937
311 => 0.0015477700299374
312 => 0.0015712462482167
313 => 0.001568981909693
314 => 0.0015011561798477
315 => 0.0015054981630124
316 => 0.0015014202302251
317 => 0.0015145968653274
318 => 0.0014769265300119
319 => 0.0014885136714414
320 => 0.0014957810179232
321 => 0.0015000615408314
322 => 0.0015155257247579
323 => 0.0015137111812611
324 => 0.0015154129301864
325 => 0.0015383422325562
326 => 0.0016543107755559
327 => 0.0016606226874813
328 => 0.0016295405246877
329 => 0.0016419572356552
330 => 0.0016181198658338
331 => 0.0016341220518914
401 => 0.0016450703411805
402 => 0.0015955971271179
403 => 0.0015926676444596
404 => 0.0015687318893335
405 => 0.0015815936083478
406 => 0.0015611296886058
407 => 0.0015661508187129
408 => 0.001552111301199
409 => 0.001577379637484
410 => 0.0016056335637531
411 => 0.00161277162131
412 => 0.0015939944650047
413 => 0.0015803985663648
414 => 0.0015565286471205
415 => 0.0015962248547996
416 => 0.001607833235645
417 => 0.0015961638809169
418 => 0.0015934598364459
419 => 0.0015883356770596
420 => 0.0015945469510832
421 => 0.0016077700139099
422 => 0.0016015342616724
423 => 0.0016056530858851
424 => 0.0015899563752996
425 => 0.0016233418547498
426 => 0.0016763660307699
427 => 0.0016765365121661
428 => 0.0016703007263156
429 => 0.0016677491770975
430 => 0.0016741474717992
501 => 0.0016776182842031
502 => 0.0016983091960218
503 => 0.0017205113687655
504 => 0.0018241192213937
505 => 0.0017950265509692
506 => 0.0018869536014797
507 => 0.0019596559631999
508 => 0.0019814562225908
509 => 0.0019614010097327
510 => 0.0018927932099061
511 => 0.0018894269839359
512 => 0.0019919560023426
513 => 0.0019629868585162
514 => 0.0019595410710371
515 => 0.0019228837140092
516 => 0.0019445527521147
517 => 0.0019398134156154
518 => 0.001932332141095
519 => 0.0019736751563219
520 => 0.0020510655901103
521 => 0.0020390035652415
522 => 0.0020299998232182
523 => 0.0019905480466218
524 => 0.0020143068280061
525 => 0.0020058467810247
526 => 0.0020421965117355
527 => 0.0020206637365075
528 => 0.0019627673887597
529 => 0.0019719875729674
530 => 0.0019705939606729
531 => 0.0019992744029424
601 => 0.0019906652460655
602 => 0.0019689128846206
603 => 0.002050801078021
604 => 0.0020454837142277
605 => 0.0020530225203681
606 => 0.0020563413359764
607 => 0.0021061852362674
608 => 0.0021266046873897
609 => 0.0021312402602873
610 => 0.0021506371595565
611 => 0.0021307576477633
612 => 0.0022102898687876
613 => 0.0022631741549351
614 => 0.0023246019746958
615 => 0.0024143645296076
616 => 0.0024481160806045
617 => 0.0024420191650153
618 => 0.0025100761097036
619 => 0.0026323729264875
620 => 0.0024667388482872
621 => 0.0026411519348231
622 => 0.0025859347653217
623 => 0.0024550158497485
624 => 0.0024465862150182
625 => 0.0025352460246443
626 => 0.0027318849492044
627 => 0.0026826291288623
628 => 0.0027319655140811
629 => 0.002674412000067
630 => 0.0026715539829971
701 => 0.0027291702683673
702 => 0.0028637938596349
703 => 0.0027998392377135
704 => 0.0027081446048726
705 => 0.0027758504948358
706 => 0.0027171973870653
707 => 0.0025850355192872
708 => 0.0026825914638648
709 => 0.0026173585819591
710 => 0.0026363970048699
711 => 0.0027735068199769
712 => 0.0027570094042756
713 => 0.0027783585878126
714 => 0.0027406778376752
715 => 0.0027054780753381
716 => 0.0026397751049671
717 => 0.0026203236945575
718 => 0.0026256993646063
719 => 0.0026203210306424
720 => 0.0025835608225613
721 => 0.0025756224591261
722 => 0.0025623915056132
723 => 0.0025664923313549
724 => 0.0025416142678986
725 => 0.0025885643137108
726 => 0.0025972786559359
727 => 0.0026314449839691
728 => 0.002634992245488
729 => 0.0027301449827332
730 => 0.0026777364540353
731 => 0.0027128966198206
801 => 0.0027097515636524
802 => 0.0024578532596298
803 => 0.0024925626234066
804 => 0.0025465595010448
805 => 0.0025222339808598
806 => 0.0024878433866134
807 => 0.0024600711378523
808 => 0.0024179933411211
809 => 0.0024772170319878
810 => 0.0025550898877401
811 => 0.0026369672296196
812 => 0.002735337491072
813 => 0.0027133823938719
814 => 0.0026351282660067
815 => 0.0026386386890181
816 => 0.0026603387427737
817 => 0.0026322352015024
818 => 0.0026239469185351
819 => 0.0026592000599693
820 => 0.0026594428289796
821 => 0.0026271063083204
822 => 0.0025911701831286
823 => 0.0025910196094519
824 => 0.0025846251230758
825 => 0.0026755495649879
826 => 0.0027255488145416
827 => 0.0027312811479251
828 => 0.002725162982832
829 => 0.002727517621755
830 => 0.002698424160098
831 => 0.0027649231860479
901 => 0.0028259492683315
902 => 0.0028095929746474
903 => 0.0027850725652308
904 => 0.0027655408780675
905 => 0.0028049919298777
906 => 0.0028032352366423
907 => 0.0028254162587408
908 => 0.0028244099994546
909 => 0.0028169513559933
910 => 0.0028095932410191
911 => 0.0028387673351684
912 => 0.002830365664575
913 => 0.0028219509438666
914 => 0.0028050739332566
915 => 0.0028073677992959
916 => 0.0027828516236737
917 => 0.002771509319047
918 => 0.0026009482714554
919 => 0.0025553687862959
920 => 0.0025697090201831
921 => 0.0025744301975227
922 => 0.0025545939471696
923 => 0.0025830340346613
924 => 0.0025786016771513
925 => 0.0025958453873806
926 => 0.0025850722658642
927 => 0.002585514398529
928 => 0.0026171958518371
929 => 0.0026263931125149
930 => 0.0026217153115032
1001 => 0.0026249914829862
1002 => 0.0027004894720264
1003 => 0.0026897560722746
1004 => 0.0026840541675811
1005 => 0.0026856336341487
1006 => 0.0027049249890436
1007 => 0.0027103255151453
1008 => 0.0026874431065644
1009 => 0.0026982345827328
1010 => 0.0027441833186155
1011 => 0.0027602627757013
1012 => 0.0028115806841417
1013 => 0.0027897799245331
1014 => 0.0028297961623094
1015 => 0.0029527924346931
1016 => 0.0030510503677679
1017 => 0.0029606883118315
1018 => 0.003141126492851
1019 => 0.0032816234990945
1020 => 0.0032762309899848
1021 => 0.003251732087192
1022 => 0.00309177998089
1023 => 0.0029445896679193
1024 => 0.0030677206147501
1025 => 0.0030680345008557
1026 => 0.0030574574433235
1027 => 0.0029917642473935
1028 => 0.0030551714625034
1029 => 0.0030602044969776
1030 => 0.0030573873360639
1031 => 0.0030070205167702
1101 => 0.002930119693053
1102 => 0.0029451459299328
1103 => 0.0029697592124688
1104 => 0.0029231611337595
1105 => 0.0029082702241347
1106 => 0.0029359552582386
1107 => 0.0030251622065275
1108 => 0.0030082981496941
1109 => 0.0030078577610172
1110 => 0.0030800093476233
1111 => 0.0030283643829003
1112 => 0.0029453354589005
1113 => 0.0029243695605736
1114 => 0.0028499547458345
1115 => 0.0029013533234313
1116 => 0.0029032030667358
1117 => 0.0028750525910668
1118 => 0.0029476197148549
1119 => 0.002946950996034
1120 => 0.0030158426798798
1121 => 0.0031475377048582
1122 => 0.0031085890056535
1123 => 0.0030632959060848
1124 => 0.0030682205218494
1125 => 0.0031222314017989
1126 => 0.003089575190833
1127 => 0.0031013185919835
1128 => 0.0031222136267548
1129 => 0.0031348201200269
1130 => 0.0030664066414704
1201 => 0.003050456187024
1202 => 0.0030178271550753
1203 => 0.0030093148496896
1204 => 0.0030358905153847
1205 => 0.0030288887664062
1206 => 0.0029030476029736
1207 => 0.0028898965012213
1208 => 0.0028902998267366
1209 => 0.0028572307560796
1210 => 0.0028067924858413
1211 => 0.0029393412485149
1212 => 0.0029286957278535
1213 => 0.0029169438969411
1214 => 0.0029183834291729
1215 => 0.0029759183545551
1216 => 0.00294254519225
1217 => 0.0030312732139918
1218 => 0.0030130334001302
1219 => 0.0029943258038681
1220 => 0.0029917398442174
1221 => 0.0029845390157136
1222 => 0.0029598446954638
1223 => 0.0029300248198637
1224 => 0.002910335155039
1225 => 0.0026846303407893
1226 => 0.0027265198414495
1227 => 0.002774709893611
1228 => 0.0027913449065077
1229 => 0.0027628895658401
1230 => 0.0029609682857507
1231 => 0.0029971591766124
]
'min_raw' => 0.0012491874557464
'max_raw' => 0.0032816234990945
'avg_raw' => 0.0022654054774204
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.001249'
'max' => '$0.003281'
'avg' => '$0.002265'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -4.843381245804E-5
'max_diff' => -0.00059180758883189
'year' => 2027
]
2 => [
'items' => [
101 => 0.0028875346075189
102 => 0.0028670283265832
103 => 0.002962312674115
104 => 0.0029048445645155
105 => 0.0029307224507493
106 => 0.0028747886151589
107 => 0.0029884418507968
108 => 0.0029875760035625
109 => 0.0029433623279246
110 => 0.0029807314238116
111 => 0.0029742376237929
112 => 0.0029243204928912
113 => 0.002990024312882
114 => 0.002990056901157
115 => 0.0029475021996437
116 => 0.0028978076246982
117 => 0.0028889234084314
118 => 0.0028822303449009
119 => 0.0029290763674131
120 => 0.0029710783647138
121 => 0.0030492336685123
122 => 0.0030688837688115
123 => 0.0031455794184603
124 => 0.0030999108933378
125 => 0.0031201551590182
126 => 0.0031421331731405
127 => 0.0031526702413254
128 => 0.0031355006541683
129 => 0.0032546405672618
130 => 0.0032646996262795
131 => 0.0032680723417576
201 => 0.0032278990333957
202 => 0.003263582333901
203 => 0.0032468872993013
204 => 0.0032903231413156
205 => 0.0032971344359601
206 => 0.003291365511715
207 => 0.0032935275241442
208 => 0.0031918626260398
209 => 0.003186590764748
210 => 0.0031147085619604
211 => 0.0031440010909228
212 => 0.0030892401120551
213 => 0.0031066053825546
214 => 0.0031142598283285
215 => 0.0031102615802422
216 => 0.0031456572465602
217 => 0.003115563699333
218 => 0.0030361418803633
219 => 0.0029566984229721
220 => 0.0029557010750778
221 => 0.0029347850150402
222 => 0.0029196665346005
223 => 0.0029225788902901
224 => 0.0029328424116047
225 => 0.0029190700000836
226 => 0.0029220090423606
227 => 0.0029708167268954
228 => 0.0029806047599484
229 => 0.002947341199203
301 => 0.0028137832029013
302 => 0.0027810077356041
303 => 0.0028045660915316
304 => 0.0027933067147507
305 => 0.0022544165274543
306 => 0.0023810207834884
307 => 0.0023057968336272
308 => 0.0023404634906108
309 => 0.0022636793169499
310 => 0.0023003247492242
311 => 0.0022935576759601
312 => 0.0024971335731707
313 => 0.0024939550155453
314 => 0.002495476422875
315 => 0.002422855687019
316 => 0.0025385424911055
317 => 0.0025955339707614
318 => 0.0025849863646562
319 => 0.0025876409698736
320 => 0.0025420260571104
321 => 0.0024959180749398
322 => 0.0024447772267451
323 => 0.0025397906014911
324 => 0.0025292267361517
325 => 0.0025534564424814
326 => 0.0026150794077005
327 => 0.0026241536234119
328 => 0.0026363494613496
329 => 0.0026319781216078
330 => 0.0027361211689078
331 => 0.0027235087587218
401 => 0.0027539010384319
402 => 0.0026913818132003
403 => 0.0026206353754715
404 => 0.0026340819604084
405 => 0.0026327869461484
406 => 0.0026162999282699
407 => 0.0026014161857137
408 => 0.0025766389478259
409 => 0.002655037794844
410 => 0.0026518549448281
411 => 0.002703381586926
412 => 0.0026942737524321
413 => 0.0026334494046167
414 => 0.0026356217580982
415 => 0.0026502318792585
416 => 0.0027007976754098
417 => 0.0027158090464895
418 => 0.0027088551813057
419 => 0.0027253144643994
420 => 0.0027383232106576
421 => 0.0027269481626432
422 => 0.0028879948546734
423 => 0.0028211170400063
424 => 0.0028537128215422
425 => 0.0028614867233731
426 => 0.0028415740373009
427 => 0.0028458923858902
428 => 0.0028524335073233
429 => 0.0028921499157821
430 => 0.0029963772636136
501 => 0.0030425388464687
502 => 0.0031814182460604
503 => 0.0030387057696128
504 => 0.0030302378018633
505 => 0.0030552541754859
506 => 0.0031367910849237
507 => 0.0032028690916505
508 => 0.0032247909786135
509 => 0.0032276883178665
510 => 0.0032688152351485
511 => 0.003292388417163
512 => 0.0032638213456452
513 => 0.0032396137436309
514 => 0.003152905117974
515 => 0.0031629418774936
516 => 0.0032320851976076
517 => 0.00332975420979
518 => 0.0034135643829713
519 => 0.0033842169814026
520 => 0.0036081169393346
521 => 0.0036303157056143
522 => 0.0036272485538865
523 => 0.0036778206470909
524 => 0.0035774453409078
525 => 0.0035345329528346
526 => 0.0032448477019544
527 => 0.0033262374413439
528 => 0.0034445422073984
529 => 0.0034288841279909
530 => 0.0033429680445867
531 => 0.0034134992079177
601 => 0.0033901793996071
602 => 0.0033717860992528
603 => 0.0034560493738926
604 => 0.0033633984420816
605 => 0.0034436179434793
606 => 0.0033407356031722
607 => 0.0033843510378609
608 => 0.0033595928076904
609 => 0.0033756144168653
610 => 0.0032819524170041
611 => 0.0033324901586127
612 => 0.0032798498808005
613 => 0.0032798249224549
614 => 0.0032786628854046
615 => 0.0033405939388079
616 => 0.003342613508236
617 => 0.0032968463661983
618 => 0.0032902506060136
619 => 0.0033146385883944
620 => 0.0032860866482491
621 => 0.0032994459213394
622 => 0.0032864912870217
623 => 0.0032835749259705
624 => 0.0032603368649362
625 => 0.0032503252692989
626 => 0.0032542510739153
627 => 0.0032408502788684
628 => 0.0032327758151247
629 => 0.0032770566713347
630 => 0.0032533991961463
701 => 0.0032734308239661
702 => 0.0032506022558725
703 => 0.0031714684929264
704 => 0.0031259578290318
705 => 0.0029764814865304
706 => 0.003018872791839
707 => 0.0030469782711155
708 => 0.0030376894103823
709 => 0.0030576454775492
710 => 0.0030588706179968
711 => 0.0030523826971328
712 => 0.0030448705159264
713 => 0.0030412140015649
714 => 0.0030684666638901
715 => 0.0030842877516523
716 => 0.0030497990319637
717 => 0.0030417188074892
718 => 0.0030765888072687
719 => 0.0030978594869905
720 => 0.0032549102350935
721 => 0.0032432754084068
722 => 0.003272476540171
723 => 0.0032691889408622
724 => 0.0032997963790562
725 => 0.0033498266048349
726 => 0.0032481011671557
727 => 0.0032657571857358
728 => 0.003261428337717
729 => 0.0033086895653017
730 => 0.0033088371096955
731 => 0.0032805016428851
801 => 0.0032958627591335
802 => 0.0032872886054538
803 => 0.0033027832600193
804 => 0.003243120018203
805 => 0.0033157834064863
806 => 0.0033569788653177
807 => 0.0033575508643035
808 => 0.0033770771848422
809 => 0.0033969170573977
810 => 0.0034349979650793
811 => 0.0033958550015509
812 => 0.0033254406206541
813 => 0.0033305243115177
814 => 0.0032892403857615
815 => 0.003289934376012
816 => 0.0032862298016658
817 => 0.0032973475081462
818 => 0.0032455597295725
819 => 0.0032577142176918
820 => 0.0032406978631482
821 => 0.0032657201955043
822 => 0.0032388003022289
823 => 0.0032614262502154
824 => 0.0032711908593043
825 => 0.0033072224770595
826 => 0.00323347840299
827 => 0.0030831092439274
828 => 0.0031147186642122
829 => 0.0030679658487446
830 => 0.0030722929998166
831 => 0.0030810345336432
901 => 0.0030527003624595
902 => 0.003058105629409
903 => 0.0030579125152373
904 => 0.0030562483616342
905 => 0.0030488775493917
906 => 0.0030381884133694
907 => 0.0030807706413398
908 => 0.0030880061916412
909 => 0.0031040899236661
910 => 0.0031519442004724
911 => 0.0031471624297379
912 => 0.0031549616961996
913 => 0.0031379359413047
914 => 0.0030730827757552
915 => 0.0030766046146625
916 => 0.0030326872270545
917 => 0.0031029668573252
918 => 0.0030863237132313
919 => 0.0030755937699639
920 => 0.0030726660055312
921 => 0.0031206389038336
922 => 0.0031349931468888
923 => 0.0031260485458943
924 => 0.0031077029082987
925 => 0.003142931955883
926 => 0.0031523577628224
927 => 0.0031544678533857
928 => 0.0032168869712052
929 => 0.0031579563886819
930 => 0.0031721415656149
1001 => 0.0032828102667086
1002 => 0.0031824490260534
1003 => 0.0032356126135512
1004 => 0.0032330105325932
1005 => 0.0032602072249993
1006 => 0.0032307796100039
1007 => 0.0032311444005604
1008 => 0.0032552932209536
1009 => 0.0032213805579741
1010 => 0.0032129833057056
1011 => 0.0032013825618388
1012 => 0.0032267123616672
1013 => 0.0032418964310959
1014 => 0.0033642688792219
1015 => 0.0034433270615729
1016 => 0.0034398949373759
1017 => 0.003471258127869
1018 => 0.0034571287232979
1019 => 0.0034115011487894
1020 => 0.0034893818547855
1021 => 0.0034647371407412
1022 => 0.0034667688210237
1023 => 0.0034666932017821
1024 => 0.0034830797821433
1025 => 0.0034714683881494
1026 => 0.0034485811387022
1027 => 0.0034637747629884
1028 => 0.0035088943952984
1029 => 0.0036489471184281
1030 => 0.0037273224777433
1031 => 0.0036442288233864
1101 => 0.0037015457134934
1102 => 0.0036671760035253
1103 => 0.0036609300048138
1104 => 0.003696929247486
1105 => 0.0037329915020669
1106 => 0.0037306944923515
1107 => 0.003704515147343
1108 => 0.003689727099624
1109 => 0.0038017071513118
1110 => 0.0038842121458649
1111 => 0.0038785858583568
1112 => 0.0039034184616505
1113 => 0.0039763277529643
1114 => 0.0039829936648331
1115 => 0.0039821539131518
1116 => 0.0039656317550692
1117 => 0.0040374204208354
1118 => 0.0040973077888191
1119 => 0.0039618073528441
1120 => 0.0040134041450324
1121 => 0.0040365676073906
1122 => 0.0040705784424219
1123 => 0.0041279604219977
1124 => 0.0041902924716353
1125 => 0.0041991069068902
1126 => 0.0041928526432673
1127 => 0.0041517429809558
1128 => 0.0042199474534453
1129 => 0.004259900033838
1130 => 0.0042836908811633
1201 => 0.0043440205115607
1202 => 0.0040367106570483
1203 => 0.0038191814677337
1204 => 0.0037852111436626
1205 => 0.0038542911334781
1206 => 0.0038725069758899
1207 => 0.0038651641926544
1208 => 0.0036203153131921
1209 => 0.0037839220649849
1210 => 0.0039599491734675
1211 => 0.0039667110915972
1212 => 0.0040548339426569
1213 => 0.0040835303552396
1214 => 0.0041544808008688
1215 => 0.0041500428311769
1216 => 0.0041673181356195
1217 => 0.0041633468422947
1218 => 0.0042947676024437
1219 => 0.0044397442170598
1220 => 0.004434724137893
1221 => 0.0044138820342565
1222 => 0.0044448361122635
1223 => 0.0045944675151855
1224 => 0.0045806918533988
1225 => 0.0045940737354165
1226 => 0.0047704975923179
1227 => 0.0049998737022907
1228 => 0.0048933054702234
1229 => 0.0051245278696267
1230 => 0.0052700701134783
1231 => 0.0055217703748708
]
'min_raw' => 0.0022544165274543
'max_raw' => 0.0055217703748708
'avg_raw' => 0.0038880934511626
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.002254'
'max' => '$0.005521'
'avg' => '$0.003888'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 0.0010052290717079
'max_diff' => 0.0022401468757764
'year' => 2028
]
3 => [
'items' => [
101 => 0.0054902562624946
102 => 0.0055882413271928
103 => 0.0054338394241473
104 => 0.0050793014449818
105 => 0.005023194452662
106 => 0.0051355220721416
107 => 0.0054116685638634
108 => 0.0051268252363954
109 => 0.0051844486705614
110 => 0.005167853117645
111 => 0.0051669688111567
112 => 0.0052007191930827
113 => 0.0051517625037975
114 => 0.0049523041445091
115 => 0.0050437147351555
116 => 0.0050084167162098
117 => 0.0050475824998717
118 => 0.0052589440810968
119 => 0.0051654960878064
120 => 0.0050670562179735
121 => 0.0051905216602998
122 => 0.0053477355957102
123 => 0.0053378974301729
124 => 0.0053188072769962
125 => 0.0054264174709253
126 => 0.0056041579844677
127 => 0.0056522005310589
128 => 0.005687664556766
129 => 0.0056925544467414
130 => 0.0057429233525375
131 => 0.0054720770514732
201 => 0.0059019170870885
202 => 0.0059761385871479
203 => 0.0059621880213027
204 => 0.0060446820949006
205 => 0.0060204102457754
206 => 0.0059852441445296
207 => 0.0061160147981748
208 => 0.0059660967964181
209 => 0.0057533070670761
210 => 0.0056365664130554
211 => 0.0057902999234698
212 => 0.0058841796137197
213 => 0.0059462281171051
214 => 0.0059650039567388
215 => 0.0054931020788243
216 => 0.0052387731395064
217 => 0.005401795073722
218 => 0.0056006930846378
219 => 0.00547097216298
220 => 0.0054760569775148
221 => 0.0052911090332892
222 => 0.0056170568738537
223 => 0.0055695690151363
224 => 0.0058159361101668
225 => 0.0057571386257183
226 => 0.0059580414278001
227 => 0.0059051369870259
228 => 0.0061247403628323
301 => 0.0062123460949655
302 => 0.0063594497539607
303 => 0.0064676598043371
304 => 0.0065312028156466
305 => 0.0065273879315914
306 => 0.006779176999402
307 => 0.0066307057829541
308 => 0.0064441909431165
309 => 0.0064408174781106
310 => 0.0065374161565982
311 => 0.006739860486155
312 => 0.0067923513553639
313 => 0.0068216865903155
314 => 0.0067767586568202
315 => 0.0066156037923939
316 => 0.0065460179390083
317 => 0.0066053071021891
318 => 0.0065328015503949
319 => 0.0066579664742564
320 => 0.0068298446485034
321 => 0.0067943524852014
322 => 0.0069129974658376
323 => 0.0070357825389801
324 => 0.0072113707081966
325 => 0.0072572759576409
326 => 0.007333155589352
327 => 0.0074112606555432
328 => 0.0074363458978133
329 => 0.0074842414088004
330 => 0.0074839889758156
331 => 0.007628325321915
401 => 0.0077875327813872
402 => 0.0078476299116767
403 => 0.0079858199490025
404 => 0.0077491743528386
405 => 0.0079286727559176
406 => 0.0080905848086314
407 => 0.0078975465845356
408 => 0.0081636048043139
409 => 0.008173935242087
410 => 0.0083299125876002
411 => 0.0081717996662789
412 => 0.0080779127183126
413 => 0.0083489608191932
414 => 0.0084801124572742
415 => 0.0084406085165367
416 => 0.0081399815769749
417 => 0.0079650038036539
418 => 0.007507053220181
419 => 0.0080495154682976
420 => 0.0083137330055145
421 => 0.0081392973173838
422 => 0.0082272725321589
423 => 0.0087072367779126
424 => 0.0088899760873121
425 => 0.0088519675884012
426 => 0.008858390399044
427 => 0.0089569932134429
428 => 0.0093942523940493
429 => 0.0091322365574415
430 => 0.009332537846982
501 => 0.0094387769287143
502 => 0.0095374577085956
503 => 0.0092951289015879
504 => 0.0089798626841881
505 => 0.0088800046391621
506 => 0.0081219531259508
507 => 0.0080824932526373
508 => 0.0080603432299899
509 => 0.0079206904703809
510 => 0.0078109616554385
511 => 0.0077237012278266
512 => 0.0074947038076035
513 => 0.007571983714639
514 => 0.0072070096222795
515 => 0.0074405071126835
516 => 0.00685799964867
517 => 0.0073431291740032
518 => 0.0070790952294972
519 => 0.0072563869220628
520 => 0.0072557683680493
521 => 0.0069293181516537
522 => 0.0067410284796789
523 => 0.0068610139870049
524 => 0.0069896479753198
525 => 0.0070105184071472
526 => 0.0071772957306881
527 => 0.0072238396968218
528 => 0.0070828093065067
529 => 0.0068459284762248
530 => 0.0069009504904228
531 => 0.0067399134603173
601 => 0.0064577022592574
602 => 0.0066603912707935
603 => 0.0067295982109386
604 => 0.0067601639383392
605 => 0.0064826416342721
606 => 0.0063954381010319
607 => 0.0063490116716434
608 => 0.0068101038317456
609 => 0.0068353635011327
610 => 0.006706131461191
611 => 0.0072902725360125
612 => 0.007158063420243
613 => 0.0073057733945773
614 => 0.0068959578193478
615 => 0.0069116133262114
616 => 0.0067176000653118
617 => 0.0068262345274448
618 => 0.0067494551910614
619 => 0.0068174579364511
620 => 0.0068582185016519
621 => 0.0070521999268845
622 => 0.0073453441302827
623 => 0.0070232255706652
624 => 0.0068828739014172
625 => 0.0069699472876509
626 => 0.007201835189588
627 => 0.0075531572311461
628 => 0.0073451675115287
629 => 0.0074374698172004
630 => 0.0074576337647459
701 => 0.007304269845698
702 => 0.0075588119775974
703 => 0.0076952231739788
704 => 0.0078351528351464
705 => 0.0079566498391982
706 => 0.0077792618513569
707 => 0.0079690924259163
708 => 0.0078161224924287
709 => 0.0076788926483494
710 => 0.0076791007693768
711 => 0.0075930144835777
712 => 0.0074262114572719
713 => 0.0073954504200035
714 => 0.0075554732205643
715 => 0.0076837963523984
716 => 0.0076943656601626
717 => 0.0077654119394265
718 => 0.00780745639566
719 => 0.0082195492234151
720 => 0.0083852963677489
721 => 0.0085879688384074
722 => 0.0086669211877234
723 => 0.0089045394531809
724 => 0.008712643405412
725 => 0.0086711254883945
726 => 0.0080947413007369
727 => 0.0081891241791762
728 => 0.0083402402741507
729 => 0.0080972331494835
730 => 0.0082513652375551
731 => 0.0082817941767044
801 => 0.0080889758603752
802 => 0.0081919684543142
803 => 0.007918450659988
804 => 0.0073513060707611
805 => 0.0075594433716521
806 => 0.0077127024833658
807 => 0.0074939828342381
808 => 0.0078860293396801
809 => 0.0076570038646835
810 => 0.0075844137842711
811 => 0.0073012140003503
812 => 0.0074348733970016
813 => 0.0076156496447906
814 => 0.0075039509411515
815 => 0.0077357425228474
816 => 0.0080640212190857
817 => 0.0082979721673594
818 => 0.0083159320161873
819 => 0.0081655172299435
820 => 0.0084065578848335
821 => 0.0084083136028544
822 => 0.0081364187594584
823 => 0.0079698846817953
824 => 0.0079320477889595
825 => 0.008026571765623
826 => 0.0081413413233813
827 => 0.0083223009278874
828 => 0.0084316510269554
829 => 0.0087167780905136
830 => 0.0087939252986788
831 => 0.0088786866908804
901 => 0.0089919540503071
902 => 0.0091279605564536
903 => 0.0088303860638597
904 => 0.0088422092531987
905 => 0.0085651120058946
906 => 0.0082689938573851
907 => 0.0084937106204555
908 => 0.0087874978953517
909 => 0.0087201027698844
910 => 0.0087125194415119
911 => 0.0087252724963946
912 => 0.0086744587727113
913 => 0.0084446301837362
914 => 0.008329211705156
915 => 0.0084781309889187
916 => 0.0085572749606038
917 => 0.0086800203586077
918 => 0.0086648893974627
919 => 0.0089810683608275
920 => 0.0091039259452356
921 => 0.0090724937177715
922 => 0.0090782780040837
923 => 0.0093007057922113
924 => 0.0095480912383727
925 => 0.0097798003540877
926 => 0.010015504818731
927 => 0.0097313538869016
928 => 0.0095870795677117
929 => 0.0097359338379738
930 => 0.0096569496668972
1001 => 0.01011081614213
1002 => 0.010142240872135
1003 => 0.010596074527656
1004 => 0.011026816708252
1005 => 0.010756275262168
1006 => 0.011011383660371
1007 => 0.011287304192321
1008 => 0.011819599664945
1009 => 0.011640341276146
1010 => 0.011503032159663
1011 => 0.011373275708059
1012 => 0.01164327828559
1013 => 0.011990632288187
1014 => 0.012065449013431
1015 => 0.012186680690515
1016 => 0.012059220405565
1017 => 0.012212732279497
1018 => 0.012754696651014
1019 => 0.012608253093778
1020 => 0.012400279700527
1021 => 0.012828108521028
1022 => 0.012982938108024
1023 => 0.014069613234452
1024 => 0.015441585469877
1025 => 0.014873579955555
1026 => 0.014521000603393
1027 => 0.014603865114445
1028 => 0.015104862930631
1029 => 0.015265767528314
1030 => 0.01482837336467
1031 => 0.014982868377695
1101 => 0.015834151089077
1102 => 0.016290836951315
1103 => 0.015670596209302
1104 => 0.013959376601195
1105 => 0.012381553971951
1106 => 0.012800063583505
1107 => 0.01275261758142
1108 => 0.013667214655119
1109 => 0.01260476046337
1110 => 0.012622649467143
1111 => 0.013556159439751
1112 => 0.013307114983472
1113 => 0.012903694859504
1114 => 0.012384499385307
1115 => 0.011424718531487
1116 => 0.010574613863788
1117 => 0.012241864884557
1118 => 0.012169969988842
1119 => 0.012065855525621
1120 => 0.012297550997159
1121 => 0.013422598439041
1122 => 0.013396662454083
1123 => 0.013231670950432
1124 => 0.013356815551783
1125 => 0.012881756405822
1126 => 0.013004189964632
1127 => 0.012381304036785
1128 => 0.012662874490186
1129 => 0.012902829301103
1130 => 0.012951003781986
1201 => 0.013059543347266
1202 => 0.01213208464573
1203 => 0.012548486373963
1204 => 0.012793083377734
1205 => 0.011687985216181
1206 => 0.012771239140242
1207 => 0.012115939653146
1208 => 0.011893521164957
1209 => 0.012192978357895
1210 => 0.012076279598576
1211 => 0.011975948858094
1212 => 0.011919962581004
1213 => 0.012139850893613
1214 => 0.012129592841007
1215 => 0.011769812883095
1216 => 0.011300494594507
1217 => 0.011458013217005
1218 => 0.011400785224707
1219 => 0.011193383598059
1220 => 0.011333147252652
1221 => 0.010717698850593
1222 => 0.0096588518630762
1223 => 0.01035835861639
1224 => 0.010331428367305
1225 => 0.010317848914526
1226 => 0.010843508906695
1227 => 0.010792978827487
1228 => 0.010701266238934
1229 => 0.011191699224449
1230 => 0.011012684587481
1231 => 0.011564365517462
]
'min_raw' => 0.0049523041445091
'max_raw' => 0.016290836951315
'avg_raw' => 0.010621570547912
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.004952'
'max' => '$0.01629'
'avg' => '$0.010621'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072434
'min_diff' => 0.0026978876170548
'max_diff' => 0.010769066576444
'year' => 2029
]
4 => [
'items' => [
101 => 0.011927738258432
102 => 0.011835575177446
103 => 0.012177328996661
104 => 0.011461642127925
105 => 0.011699364597346
106 => 0.011748358868824
107 => 0.011185647357535
108 => 0.010801246173362
109 => 0.010775610996872
110 => 0.010109112317261
111 => 0.01046515053212
112 => 0.010778449427333
113 => 0.010628403569502
114 => 0.010580903533406
115 => 0.010823570916323
116 => 0.010842428250281
117 => 0.010412479037622
118 => 0.010501879093655
119 => 0.010874692188833
120 => 0.010492485160196
121 => 0.0097499193367184
122 => 0.0095657527457202
123 => 0.0095411815276173
124 => 0.0090417071263935
125 => 0.0095780596379575
126 => 0.0093439273933061
127 => 0.010083548348825
128 => 0.0096610808256993
129 => 0.0096428690951525
130 => 0.0096153393933509
131 => 0.0091854211431899
201 => 0.0092795459172451
202 => 0.0095924310018121
203 => 0.0097040719248884
204 => 0.0096924268619645
205 => 0.0095908976942039
206 => 0.0096373772272912
207 => 0.0094876504566741
208 => 0.009434778817676
209 => 0.0092679013815078
210 => 0.009022637651409
211 => 0.0090567430773691
212 => 0.0085708114512974
213 => 0.0083060501110701
214 => 0.0082327676615936
215 => 0.0081347713074692
216 => 0.0082438366105503
217 => 0.0085694348680548
218 => 0.0081766942899806
219 => 0.0075033681164208
220 => 0.0075438361667438
221 => 0.0076347558607474
222 => 0.0074653276124656
223 => 0.0073049779945019
224 => 0.0074443889777456
225 => 0.0071590918017062
226 => 0.0076692326614484
227 => 0.0076554347808456
228 => 0.0078455837464583
301 => 0.0079644877969055
302 => 0.0076904524562681
303 => 0.0076215333091682
304 => 0.0076607927875569
305 => 0.0070119210613602
306 => 0.0077925570831663
307 => 0.0077993080558995
308 => 0.0077415021287235
309 => 0.0081571667109021
310 => 0.0090343486283333
311 => 0.0087043175064348
312 => 0.0085765194807922
313 => 0.0083335753406259
314 => 0.0086572839828018
315 => 0.0086324282097242
316 => 0.0085200209775951
317 => 0.0084520367328715
318 => 0.0085772997882855
319 => 0.0084365152540808
320 => 0.0084112264832374
321 => 0.0082580040463803
322 => 0.008203310607599
323 => 0.0081628177629338
324 => 0.0081182391197022
325 => 0.0082165684983653
326 => 0.0079937411900076
327 => 0.0077250333001586
328 => 0.0077026931465773
329 => 0.0077643762747817
330 => 0.0077370860823201
331 => 0.0077025624916351
401 => 0.0076366475550771
402 => 0.0076170920014501
403 => 0.0076806380637319
404 => 0.0076088982643814
405 => 0.0077147542461922
406 => 0.0076859672764183
407 => 0.0075251656033429
408 => 0.0073247471822865
409 => 0.0073229630379472
410 => 0.0072797832178827
411 => 0.0072247872249011
412 => 0.0072094885977915
413 => 0.0074326481735857
414 => 0.0078945818168756
415 => 0.0078038931895625
416 => 0.0078694250169406
417 => 0.0081917767484071
418 => 0.0082942426703856
419 => 0.0082215147860036
420 => 0.0081219603722011
421 => 0.0081263402611612
422 => 0.008466547830295
423 => 0.0084877661590747
424 => 0.0085413780306089
425 => 0.0086102844362435
426 => 0.0082332498448429
427 => 0.0081085819658124
428 => 0.0080495074084171
429 => 0.0078675806363706
430 => 0.0080637730628001
501 => 0.007949460137717
502 => 0.0079648848567963
503 => 0.0079548394882607
504 => 0.007960324938746
505 => 0.0076690900666814
506 => 0.0077752007472075
507 => 0.0075987711603279
508 => 0.0073625517486466
509 => 0.0073617598583495
510 => 0.0074195742247066
511 => 0.007385183977321
512 => 0.0072926407058604
513 => 0.0073057860407795
514 => 0.0071906190747171
515 => 0.0073197693956246
516 => 0.0073234729647062
517 => 0.0072737430562913
518 => 0.0074727169449593
519 => 0.0075542367094938
520 => 0.0075215034184572
521 => 0.0075519400545344
522 => 0.007807661711462
523 => 0.0078493554994593
524 => 0.0078678731259507
525 => 0.0078430619595676
526 => 0.0075566141769882
527 => 0.0075693193542156
528 => 0.0074760971937383
529 => 0.0073973342916442
530 => 0.007400484394671
531 => 0.0074409787648079
601 => 0.0076178200541592
602 => 0.0079899721222356
603 => 0.0080040950211795
604 => 0.0080212123866935
605 => 0.0079515874586494
606 => 0.0079305879141305
607 => 0.0079582917337933
608 => 0.0080980524837366
609 => 0.0084575550772644
610 => 0.0083304828503408
611 => 0.0082271711518549
612 => 0.008317803364061
613 => 0.0083038512453906
614 => 0.0081860813228967
615 => 0.0081827759134172
616 => 0.0079567377788297
617 => 0.0078731766271119
618 => 0.0078033466742928
619 => 0.0077270941887714
620 => 0.0076818891593479
621 => 0.0077513446298609
622 => 0.0077672299177402
623 => 0.0076153643175896
624 => 0.0075946655974517
625 => 0.0077186823247814
626 => 0.0076641071868932
627 => 0.0077202390696095
628 => 0.00773326214789
629 => 0.0077311651323399
630 => 0.00767418242047
701 => 0.007710501501767
702 => 0.0076245960472604
703 => 0.0075311867680667
704 => 0.0074715974675448
705 => 0.0074195978994657
706 => 0.0074484502820686
707 => 0.0073455968063261
708 => 0.0073126919094046
709 => 0.0076981974142288
710 => 0.0079829744755249
711 => 0.0079788337042696
712 => 0.0079536278241726
713 => 0.0079161769991745
714 => 0.0080953127226213
715 => 0.0080329054185043
716 => 0.0080783119465541
717 => 0.0080898698136488
718 => 0.0081248519963375
719 => 0.0081373551198285
720 => 0.0080995619966611
721 => 0.0079727236592699
722 => 0.0076566545819184
723 => 0.007509523573199
724 => 0.0074609678896609
725 => 0.0074627327965371
726 => 0.0074140487859992
727 => 0.0074283884089669
728 => 0.0074090620503271
729 => 0.0073724626026115
730 => 0.0074461903693067
731 => 0.0074546868075966
801 => 0.0074374778658688
802 => 0.0074415311946185
803 => 0.007299048507147
804 => 0.0073098811564193
805 => 0.0072495635887244
806 => 0.0072382547719208
807 => 0.0070857772132397
808 => 0.0068156411160605
809 => 0.0069653227366432
810 => 0.0067845283874002
811 => 0.0067160588278604
812 => 0.0070401830735205
813 => 0.0070076499890634
814 => 0.0069519674902647
815 => 0.0068696014692919
816 => 0.0068390511109079
817 => 0.0066534368044351
818 => 0.0066424697209948
819 => 0.0067344651832906
820 => 0.0066920124428117
821 => 0.0066323927170692
822 => 0.0064164561139845
823 => 0.0061736718779651
824 => 0.0061810000079632
825 => 0.0062582251562797
826 => 0.00648276769024
827 => 0.0063950350375965
828 => 0.0063313839914874
829 => 0.0063194640638945
830 => 0.0064686669137774
831 => 0.006679820205325
901 => 0.0067788886054305
902 => 0.006680714829678
903 => 0.0065679380821449
904 => 0.0065748022802102
905 => 0.0066204667147231
906 => 0.00662526540113
907 => 0.006551859332123
908 => 0.00657252271057
909 => 0.0065411331492101
910 => 0.0063484954690851
911 => 0.0063450112643123
912 => 0.0062977348709074
913 => 0.0062963033605039
914 => 0.0062158744216732
915 => 0.0062046218571518
916 => 0.0060449253174157
917 => 0.0061500380634757
918 => 0.0060795339520855
919 => 0.005973267625982
920 => 0.0059549472713076
921 => 0.0059543965393236
922 => 0.0060635082955162
923 => 0.0061487630290766
924 => 0.0060807604012886
925 => 0.0060652775211168
926 => 0.0062305941748337
927 => 0.0062095561237535
928 => 0.0061913373071989
929 => 0.0066609137440165
930 => 0.006289207352769
1001 => 0.0061271221499261
1002 => 0.0059265109322627
1003 => 0.0059918309563035
1004 => 0.0060055948451197
1005 => 0.0055231610295292
1006 => 0.0053274376906275
1007 => 0.0052602728163948
1008 => 0.005221618481702
1009 => 0.0052392337474121
1010 => 0.0050630597863426
1011 => 0.0051814516018297
1012 => 0.0050288998431577
1013 => 0.00500332404437
1014 => 0.005276105486412
1015 => 0.0053140614305061
1016 => 0.0051521295810132
1017 => 0.0052561160427727
1018 => 0.0052184091062188
1019 => 0.0050315149052101
1020 => 0.0050243769214322
1021 => 0.0049305999810148
1022 => 0.0047838572280555
1023 => 0.0047167918523193
1024 => 0.0046818636223477
1025 => 0.0046962756907716
1026 => 0.0046889885079599
1027 => 0.0046414347108731
1028 => 0.0046917142359444
1029 => 0.0045632708263212
1030 => 0.0045121236256704
1031 => 0.0044890216217424
1101 => 0.004375020702775
1102 => 0.004556446861291
1103 => 0.0045921901000651
1104 => 0.0046280037640613
1105 => 0.0049397372581213
1106 => 0.0049241639337078
1107 => 0.0050649392018894
1108 => 0.005059468933837
1109 => 0.0050193175469434
1110 => 0.0048499254502221
1111 => 0.0049174421208514
1112 => 0.0047096363030745
1113 => 0.004865338551175
1114 => 0.0047942825474233
1115 => 0.0048413144448307
1116 => 0.004756746852597
1117 => 0.0048035500498494
1118 => 0.0046006661479652
1119 => 0.0044112160150393
1120 => 0.0044874562789228
1121 => 0.004570338164896
1122 => 0.0047500472115976
1123 => 0.0046430139859495
1124 => 0.0046815071812669
1125 => 0.0045525614206368
1126 => 0.0042865094849212
1127 => 0.0042880153099842
1128 => 0.0042470890159308
1129 => 0.0042117227225319
1130 => 0.0046553080394612
1201 => 0.004600141193255
1202 => 0.0045122400438836
1203 => 0.00462989922537
1204 => 0.0046610101804573
1205 => 0.0046618958656118
1206 => 0.0047477369672013
1207 => 0.0047935503785075
1208 => 0.0048016251908169
1209 => 0.0049366980188877
1210 => 0.0049819726492033
1211 => 0.005168452443968
1212 => 0.0047896634306386
1213 => 0.0047818625201781
1214 => 0.0046315549313424
1215 => 0.0045362274822338
1216 => 0.004638082083339
1217 => 0.0047283113553787
1218 => 0.0046343586063378
1219 => 0.0046466268519117
1220 => 0.0045205029625459
1221 => 0.0045655863183136
1222 => 0.0046044181776846
1223 => 0.0045829775073711
1224 => 0.0045508797861717
1225 => 0.0047209135840325
1226 => 0.0047113196107894
1227 => 0.0048696589924175
1228 => 0.0049930958633545
1229 => 0.0052143168030535
1230 => 0.0049834612199691
1231 => 0.0049750479249537
]
'min_raw' => 0.0042117227225319
'max_raw' => 0.012177328996661
'avg_raw' => 0.0081945258595966
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.004211'
'max' => '$0.012177'
'avg' => '$0.008194'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -0.0007405814219772
'max_diff' => -0.0041135079546534
'year' => 2030
]
5 => [
'items' => [
101 => 0.0050572892332645
102 => 0.0049819600584875
103 => 0.0050295654966718
104 => 0.0052066468309848
105 => 0.0052103882805377
106 => 0.0051477141799408
107 => 0.0051439004552236
108 => 0.0051559377018228
109 => 0.0052264402311307
110 => 0.0052018044810666
111 => 0.0052303135947416
112 => 0.0052659646779393
113 => 0.0054134326737908
114 => 0.0054489867083401
115 => 0.0053626088370388
116 => 0.0053704077916853
117 => 0.005338100096693
118 => 0.0053068912681447
119 => 0.0053770441570379
120 => 0.0055052499403487
121 => 0.0055044523788246
122 => 0.0055341936285884
123 => 0.0055527221808014
124 => 0.0054731840709739
125 => 0.0054214076861736
126 => 0.005441262046723
127 => 0.0054730096016132
128 => 0.005430966742555
129 => 0.0051714587403004
130 => 0.005250176890749
131 => 0.0052370743413935
201 => 0.0052184147177867
202 => 0.0052975664267723
203 => 0.0052899320513488
204 => 0.0050612528677342
205 => 0.0050758921671214
206 => 0.0050621431320168
207 => 0.0051065690772277
208 => 0.0049795609116526
209 => 0.0050186277679704
210 => 0.005043130134024
211 => 0.0050575622158655
212 => 0.0051097007916484
213 => 0.0051035829315615
214 => 0.0051093204968756
215 => 0.0051866282406879
216 => 0.0055776242800769
217 => 0.0055989053318167
218 => 0.0054941096498709
219 => 0.0055359734578048
220 => 0.00545560410118
221 => 0.0055095565887101
222 => 0.0055464695104336
223 => 0.0053796671151118
224 => 0.0053697901597995
225 => 0.0052890890902509
226 => 0.0053324532738841
227 => 0.0052634577397286
228 => 0.005280386830449
301 => 0.0052330516169431
302 => 0.0053182455769068
303 => 0.0054135056619491
304 => 0.0054375721213656
305 => 0.0053742636279031
306 => 0.0053284241064033
307 => 0.0052479450071267
308 => 0.0053817835428174
309 => 0.0054209220093088
310 => 0.0053815779651146
311 => 0.0053724610903905
312 => 0.0053551846292621
313 => 0.00537612637329
314 => 0.0054207088528149
315 => 0.0053996845787801
316 => 0.0054135714821801
317 => 0.0053606489265318
318 => 0.0054732104013979
319 => 0.0056519851128793
320 => 0.0056525599028093
321 => 0.0056315355154458
322 => 0.0056229327891134
323 => 0.0056445050864149
324 => 0.0056562071727589
325 => 0.005725968026549
326 => 0.0058008242020607
327 => 0.006150145310866
328 => 0.0060520573413444
329 => 0.0063619958102822
330 => 0.0066071168987387
331 => 0.0066806179953207
401 => 0.0066130004449591
402 => 0.0063816844578004
403 => 0.0063703349919192
404 => 0.006716018735825
405 => 0.0066183472448531
406 => 0.0066067295317901
407 => 0.0064831366932358
408 => 0.0065561953680923
409 => 0.0065402163641951
410 => 0.0065149927248237
411 => 0.0066543835871384
412 => 0.0069153108378834
413 => 0.0068746428788946
414 => 0.0068442861340417
415 => 0.006711271714812
416 => 0.0067913761050344
417 => 0.0067628524659747
418 => 0.0068854081209236
419 => 0.0068128088658721
420 => 0.0066176072872465
421 => 0.0066486937820354
422 => 0.0066439951208854
423 => 0.0067406932344017
424 => 0.0067116668609189
425 => 0.0066383272556062
426 => 0.0069144190169068
427 => 0.006896491153631
428 => 0.006921908764876
429 => 0.0069330983834117
430 => 0.0071011505732329
501 => 0.0071699961783323
502 => 0.0071856253360018
503 => 0.0072510233361361
504 => 0.0071839981741823
505 => 0.0074521466101282
506 => 0.0076304496731372
507 => 0.0078375578562139
508 => 0.0081401985771205
509 => 0.0082539942877646
510 => 0.0082334381111827
511 => 0.0084628968517833
512 => 0.0088752291080614
513 => 0.0083167822492069
514 => 0.0089048281475956
515 => 0.0087186596054821
516 => 0.00827725734116
517 => 0.0082488362391286
518 => 0.0085477589773131
519 => 0.0092107408403591
520 => 0.0090446714031441
521 => 0.0092110124704656
522 => 0.0090169667797091
523 => 0.0090073307756175
524 => 0.0092015881043837
525 => 0.0096554809414615
526 => 0.0094398534684844
527 => 0.0091306986119462
528 => 0.0093589737470317
529 => 0.0091612206991542
530 => 0.0087156277346933
531 => 0.0090445444129752
601 => 0.0088246071972158
602 => 0.0088887965692799
603 => 0.0093510718836145
604 => 0.0092954496947649
605 => 0.0093674299576122
606 => 0.0092403866777382
607 => 0.0091217082214495
608 => 0.0089001860696088
609 => 0.0088346042813588
610 => 0.0088527287282456
611 => 0.0088345952997831
612 => 0.0087106556917218
613 => 0.0086838909451614
614 => 0.0086392818616369
615 => 0.0086531080819355
616 => 0.0085692299540617
617 => 0.008727525311465
618 => 0.008756906324693
619 => 0.0088721004850738
620 => 0.0088840603249465
621 => 0.0092048744219208
622 => 0.0090281754083692
623 => 0.0091467203621185
624 => 0.0091361165856668
625 => 0.0082868238666766
626 => 0.0084038489099804
627 => 0.0085859031528794
628 => 0.0085038879632221
629 => 0.0083879376736454
630 => 0.008294301597951
701 => 0.0081524333684938
702 => 0.0083521101771169
703 => 0.0086146639471949
704 => 0.0088907191218353
705 => 0.0092223813263143
706 => 0.0091483581832482
707 => 0.008884518927622
708 => 0.0088963545638947
709 => 0.0089695178101813
710 => 0.0088747647586583
711 => 0.0088468202339649
712 => 0.0089656786616058
713 => 0.0089664971742735
714 => 0.0088574723372075
715 => 0.0087363111821432
716 => 0.0087358035124795
717 => 0.0087142440552137
718 => 0.009020802159262
719 => 0.0091893781199684
720 => 0.0092087050821896
721 => 0.0091880772614217
722 => 0.0091960160909464
723 => 0.0090979254537292
724 => 0.0093221315625328
725 => 0.0095278852596571
726 => 0.0094727388735412
727 => 0.0093900666012327
728 => 0.0093242141543029
729 => 0.0094572261298654
730 => 0.0094513033159738
731 => 0.0095260881806083
801 => 0.0095226955071701
802 => 0.0094975481699946
803 => 0.0094727397716318
804 => 0.0095711022669263
805 => 0.0095427754479348
806 => 0.0095144046295693
807 => 0.0094575026099825
808 => 0.0094652365394868
809 => 0.0093825785417118
810 => 0.0093443371697684
811 => 0.0087692786896212
812 => 0.008615604273148
813 => 0.0086639533729017
814 => 0.0086798711519244
815 => 0.0086129918489361
816 => 0.008708879589538
817 => 0.0086939355867354
818 => 0.0087520739596909
819 => 0.0087157516283431
820 => 0.0087172423094913
821 => 0.0088240585412479
822 => 0.0088550677477555
823 => 0.0088392962150507
824 => 0.0088503420559407
825 => 0.0091048887970909
826 => 0.0090687003904459
827 => 0.0090494760206774
828 => 0.009054801302485
829 => 0.0091198434523926
830 => 0.009138051703197
831 => 0.0090609020650677
901 => 0.0090972862804062
902 => 0.0092522056514732
903 => 0.0093064186636696
904 => 0.0094794405748785
905 => 0.0094059377917777
906 => 0.0095408553312851
907 => 0.0099555458509523
908 => 0.010286829332464
909 => 0.0099821673519969
910 => 0.010590527277096
911 => 0.011064222742833
912 => 0.011046041521877
913 => 0.010963441760652
914 => 0.010424152066756
915 => 0.0099278896500755
916 => 0.010343034234044
917 => 0.010344092522963
918 => 0.010308431235027
919 => 0.010086942038397
920 => 0.01030072389109
921 => 0.010317693118215
922 => 0.010308194863507
923 => 0.010138379615759
924 => 0.0098791031195522
925 => 0.0099297651262908
926 => 0.010012750526806
927 => 0.009855641851063
928 => 0.0098054361096129
929 => 0.0098987781350018
930 => 0.010199545589388
1001 => 0.010142687244363
1002 => 0.010141202443192
1003 => 0.010384466554898
1004 => 0.010210341950598
1005 => 0.009930404136438
1006 => 0.0098597161464365
1007 => 0.0096088214030671
1008 => 0.0097821152959688
1009 => 0.0097883518346652
1010 => 0.0096934405405436
1011 => 0.0099381056648699
1012 => 0.0099358510326768
1013 => 0.010168124154627
1014 => 0.010612143125994
1015 => 0.010480824867314
1016 => 0.010328116019855
1017 => 0.010344719705731
1018 => 0.0105268211584
1019 => 0.010416718463145
1020 => 0.010456312160022
1021 => 0.010526761228598
1022 => 0.010569264900822
1023 => 0.010338604081393
1024 => 0.010284826010601
1025 => 0.0101748149513
1026 => 0.010146115119382
1027 => 0.010235716831727
1028 => 0.010212109946199
1029 => 0.0097878276777368
1030 => 0.0097434878199982
1031 => 0.0097448476601323
1101 => 0.0096333529796034
1102 => 0.0094632968300074
1103 => 0.0099101942376206
1104 => 0.0098743021214641
1105 => 0.0098346800030564
1106 => 0.0098395334864807
1107 => 0.010033516504367
1108 => 0.0099209965576157
1109 => 0.010220149277711
1110 => 0.010158652471813
1111 => 0.010095578504893
1112 => 0.010086859761385
1113 => 0.010062581665338
1114 => 0.0099793230405138
1115 => 0.0098787832479706
1116 => 0.0098123981683259
1117 => 0.0090514186288759
1118 => 0.0091926520049835
1119 => 0.009355128130368
1120 => 0.0094112142377685
1121 => 0.0093152750700194
1122 => 0.0099831113036127
1123 => 0.01010513141892
1124 => 0.0097355245304784
1125 => 0.0096663861726008
1126 => 0.0099876440028448
1127 => 0.0097938862590352
1128 => 0.0098811353592087
1129 => 0.0096925505273397
1130 => 0.010075740346309
1201 => 0.010072821081907
1202 => 0.0099237515875932
1203 => 0.010049744103403
1204 => 0.010027849803258
1205 => 0.0098595507113196
1206 => 0.010081075727713
1207 => 0.010081185601357
1208 => 0.0099377094541307
1209 => 0.0097701607251375
1210 => 0.0097402069697178
1211 => 0.00971764083873
1212 => 0.0098755854743147
1213 => 0.0100171981407
1214 => 0.010280704204086
1215 => 0.01034695588917
1216 => 0.010605540626681
1217 => 0.010451566005756
1218 => 0.010519820960907
1219 => 0.010593921369976
1220 => 0.010629447831036
1221 => 0.010571559369193
1222 => 0.010973247904271
1223 => 0.011007162724051
1224 => 0.01101853406976
1225 => 0.010883086955807
1226 => 0.011003395694789
1227 => 0.010947107220026
1228 => 0.011093554193971
1229 => 0.011116518949415
1230 => 0.011097068618549
1231 => 0.011104357994401
]
'min_raw' => 0.0049795609116526
'max_raw' => 0.011116518949415
'avg_raw' => 0.0080480399305336
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.004979'
'max' => '$0.011116'
'avg' => '$0.008048'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 0.00076783818912065
'max_diff' => -0.0010608100472466
'year' => 2031
]
6 => [
'items' => [
101 => 0.010761587692425
102 => 0.01074381324401
103 => 0.010501457378657
104 => 0.010600219185193
105 => 0.010415588721651
106 => 0.010474136943544
107 => 0.010499944441887
108 => 0.010486464069316
109 => 0.010605803029553
110 => 0.010504340534012
111 => 0.010236564326302
112 => 0.0099687151631421
113 => 0.0099653525350839
114 => 0.0098948325783544
115 => 0.0098438595660133
116 => 0.009853678776555
117 => 0.0098882829552435
118 => 0.009841848308241
119 => 0.0098517574944754
120 => 0.010016316010528
121 => 0.010049317047345
122 => 0.0099371666299041
123 => 0.0094868665206516
124 => 0.0093763617443488
125 => 0.0094557903861503
126 => 0.0094178286112289
127 => 0.0076009227206478
128 => 0.0080277778090938
129 => 0.0077741550101683
130 => 0.0078910360645371
131 => 0.0076321528621395
201 => 0.0077557054955548
202 => 0.0077328898355827
203 => 0.0084192601862436
204 => 0.0084085434572896
205 => 0.0084136729883232
206 => 0.0081688271071668
207 => 0.0085588732441391
208 => 0.008751023996817
209 => 0.008715462006423
210 => 0.0087244121932522
211 => 0.0085706183301395
212 => 0.0084151620490949
213 => 0.0082427371088662
214 => 0.0085630813354443
215 => 0.0085274645259071
216 => 0.0086091566724618
217 => 0.008816922802076
218 => 0.0088475171538884
219 => 0.0088886362729817
220 => 0.0088738979958449
221 => 0.0092250235508522
222 => 0.0091824999293398
223 => 0.0092849696223038
224 => 0.0090741816894826
225 => 0.0088356551353211
226 => 0.0088809912352466
227 => 0.0088766250042539
228 => 0.0088210378723899
229 => 0.0087708562952117
301 => 0.0086873181077817
302 => 0.0089516452941357
303 => 0.0089409140930879
304 => 0.0091146397643959
305 => 0.0090839320645111
306 => 0.0088788585292314
307 => 0.008886182770663
308 => 0.0089354418142011
309 => 0.0091059279263163
310 => 0.0091565398119718
311 => 0.0091330943700013
312 => 0.0091885879921021
313 => 0.0092324478883534
314 => 0.0091940961197924
315 => 0.0097370762858934
316 => 0.0095115930644831
317 => 0.0096214920176963
318 => 0.0096477022704754
319 => 0.009580565259124
320 => 0.00959512487289
321 => 0.0096171787204882
322 => 0.0097510853645184
323 => 0.010102495144653
324 => 0.010258132144148
325 => 0.010726373736121
326 => 0.010245208657911
327 => 0.01021665831343
328 => 0.010301002763685
329 => 0.01057591014658
330 => 0.010798696759679
331 => 0.010872607932112
401 => 0.010882376513689
402 => 0.011021038786695
403 => 0.011100517415684
404 => 0.011004201539572
405 => 0.01092258391926
406 => 0.010630239734055
407 => 0.010664079369519
408 => 0.010897200900717
409 => 0.011226498794322
410 => 0.011509070644642
411 => 0.011410123831283
412 => 0.012165018171647
413 => 0.012239862862027
414 => 0.012229521745835
415 => 0.012400029088905
416 => 0.012061606736128
417 => 0.011916924623692
418 => 0.010940230575171
419 => 0.011214641763973
420 => 0.011613514542501
421 => 0.011560722234566
422 => 0.0112710501609
423 => 0.011508850902399
424 => 0.011430226540542
425 => 0.011368212244219
426 => 0.011652311757741
427 => 0.011339932672458
428 => 0.011610398322167
429 => 0.011263523328807
430 => 0.011410575811992
501 => 0.011327101710408
502 => 0.011381119684334
503 => 0.01106533171253
504 => 0.011235723236796
505 => 0.011058242864925
506 => 0.01105815871612
507 => 0.011054240827074
508 => 0.011263045697512
509 => 0.01126985481684
510 => 0.0111155477021
511 => 0.011093309636136
512 => 0.011175535421448
513 => 0.011079270561815
514 => 0.011124312283754
515 => 0.011080634829688
516 => 0.01107080211479
517 => 0.010992453369583
518 => 0.010958698575905
519 => 0.01097193470026
520 => 0.010926752984146
521 => 0.010899529365893
522 => 0.011048825364195
523 => 0.010969062534886
524 => 0.011036600566644
525 => 0.010959632455476
526 => 0.010692827448761
527 => 0.010539385067987
528 => 0.010035415143138
529 => 0.010178340388653
530 => 0.010273099974295
531 => 0.010241781931806
601 => 0.010309065205547
602 => 0.010313195852103
603 => 0.010291321373938
604 => 0.010265993530517
605 => 0.010253665337057
606 => 0.010345549590807
607 => 0.01039889149279
608 => 0.010282610366434
609 => 0.010255367325475
610 => 0.010372933964278
611 => 0.010444649546031
612 => 0.010974157108193
613 => 0.010934929477701
614 => 0.011033383132202
615 => 0.0110222987616
616 => 0.011125493876414
617 => 0.011294174275626
618 => 0.010951199860247
619 => 0.011010728359594
620 => 0.010996133346268
621 => 0.011155477874743
622 => 0.011155975330968
623 => 0.011060440326298
624 => 0.011112231402208
625 => 0.011083323044449
626 => 0.011135564354119
627 => 0.01093440556878
628 => 0.011179395255573
629 => 0.011318288621198
630 => 0.011320217155715
701 => 0.011386051508695
702 => 0.011452943024192
703 => 0.011581335463164
704 => 0.011449362228754
705 => 0.011211955227385
706 => 0.011229095246064
707 => 0.011089903608025
708 => 0.011092243444608
709 => 0.011079753213554
710 => 0.011117237337166
711 => 0.010942631225998
712 => 0.010983610931291
713 => 0.010926239103904
714 => 0.011010603644446
715 => 0.010919841344781
716 => 0.010996126308111
717 => 0.011029048369397
718 => 0.011150531484306
719 => 0.010901898189934
720 => 0.010394918071715
721 => 0.010501491439104
722 => 0.010343861057578
723 => 0.010358450349529
724 => 0.01038792304114
725 => 0.010292392404765
726 => 0.010310616639669
727 => 0.010309965541757
728 => 0.010304354731696
729 => 0.010279503523607
730 => 0.010243464355216
731 => 0.010387033309815
801 => 0.010411428472826
802 => 0.010465655898278
803 => 0.010626999933609
804 => 0.010610877859725
805 => 0.010637173631129
806 => 0.0105797701098
807 => 0.010361113134246
808 => 0.010372987260009
809 => 0.010224916721475
810 => 0.0104618694017
811 => 0.0104057558794
812 => 0.010369579126533
813 => 0.010359707964338
814 => 0.010521451940326
815 => 0.010569848272967
816 => 0.010539690926222
817 => 0.010477837328217
818 => 0.010596614521761
819 => 0.010628394287946
820 => 0.010635508605602
821 => 0.010845959019295
822 => 0.010647270445915
823 => 0.010695096760322
824 => 0.011068224012702
825 => 0.010729849082835
826 => 0.010909093829847
827 => 0.010900320732225
828 => 0.010992016279485
829 => 0.010892799020957
830 => 0.010894028937788
831 => 0.01097544837176
901 => 0.010861109460818
902 => 0.010832797538517
903 => 0.010793684820632
904 => 0.010879086009224
905 => 0.010930280159421
906 => 0.011342867412049
907 => 0.011609417593511
908 => 0.011597845947158
909 => 0.011703589133613
910 => 0.011655950859619
911 => 0.011502114306548
912 => 0.011764694544271
913 => 0.011681603170231
914 => 0.011688453122151
915 => 0.011688198166599
916 => 0.011743446666361
917 => 0.011704298040829
918 => 0.011627132081381
919 => 0.011678358446447
920 => 0.011830482436932
921 => 0.012302679971133
922 => 0.012566927967057
923 => 0.012286771909979
924 => 0.012480019806712
925 => 0.012364139929938
926 => 0.012343081109201
927 => 0.012464455069257
928 => 0.012586041478362
929 => 0.012578296949735
930 => 0.012490031460255
1001 => 0.012440172524902
1002 => 0.012817721087365
1003 => 0.013095892436815
1004 => 0.013076923015667
1005 => 0.013160647871429
1006 => 0.013406466637457
1007 => 0.013428941224722
1008 => 0.013426109943299
1009 => 0.013370404333783
1010 => 0.013612444832539
1011 => 0.013814359274898
1012 => 0.01335751009467
1013 => 0.013531472281906
1014 => 0.013609569512468
1015 => 0.013724239417337
1016 => 0.013917706767758
1017 => 0.014127863624996
1018 => 0.014157582108862
1019 => 0.014136495422399
1020 => 0.013997891325731
1021 => 0.014227847466614
1022 => 0.014362550380807
1023 => 0.014442762883589
1024 => 0.014646168444554
1025 => 0.013610051814376
1026 => 0.012876636965199
1027 => 0.012762103645861
1028 => 0.012995011654535
1029 => 0.013056427639016
1030 => 0.013031670932681
1031 => 0.012206145840771
1101 => 0.012757757427099
1102 => 0.013351245113168
1103 => 0.013374043392245
1104 => 0.013671155737133
1105 => 0.013767907695675
1106 => 0.014007122076716
1107 => 0.013992159152051
1108 => 0.014050404047102
1109 => 0.014037014554391
1110 => 0.014480108822737
1111 => 0.01496890760086
1112 => 0.014951982053458
1113 => 0.014881711445898
1114 => 0.014986075281044
1115 => 0.015490568002926
1116 => 0.015444122397426
1117 => 0.015489240346942
1118 => 0.016084065698006
1119 => 0.016857423267307
1120 => 0.016498121032536
1121 => 0.017277703495557
1122 => 0.017768409332138
1123 => 0.018617034336574
1124 => 0.018510782306452
1125 => 0.018841145793181
1126 => 0.018320568997066
1127 => 0.017125219447259
1128 => 0.016936050805387
1129 => 0.017314771216927
1130 => 0.018245818393699
1201 => 0.017285449228014
1202 => 0.017479730659445
1203 => 0.017423777594123
1204 => 0.017420796093057
1205 => 0.017534587862097
1206 => 0.017369526966125
1207 => 0.016697039182047
1208 => 0.017005236370494
1209 => 0.01688622663519
1210 => 0.017018276809274
1211 => 0.017730897137168
1212 => 0.017415830703459
1213 => 0.017083933809465
1214 => 0.017500206168351
1215 => 0.018030263927913
1216 => 0.017997093865925
1217 => 0.017932730081658
1218 => 0.018295545363594
1219 => 0.018894809914448
1220 => 0.019056788714504
1221 => 0.019176358153195
1222 => 0.019192844758648
1223 => 0.019362667041184
1224 => 0.018449489827261
1225 => 0.019898725517811
1226 => 0.020148968487241
1227 => 0.020101933180497
1228 => 0.020380067709184
1229 => 0.020298233475252
1230 => 0.020179668509683
1231 => 0.020620570898564
]
'min_raw' => 0.0076009227206478
'max_raw' => 0.020620570898564
'avg_raw' => 0.014110746809606
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.00760092'
'max' => '$0.02062'
'avg' => '$0.01411'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.0026213618089952
'max_diff' => 0.0095040519491489
'year' => 2032
]
7 => [
'items' => [
101 => 0.0201151118887
102 => 0.019397676459719
103 => 0.019004077194116
104 => 0.019522400457809
105 => 0.019838922387957
106 => 0.02004812324921
107 => 0.020111427303422
108 => 0.018520377174896
109 => 0.017662889399306
110 => 0.018212529232342
111 => 0.018883127762761
112 => 0.018445764618566
113 => 0.01846290842578
114 => 0.01783934351917
115 => 0.018938299420585
116 => 0.018778190789423
117 => 0.01960883465112
118 => 0.019410594827192
119 => 0.020087952650997
120 => 0.019909581635256
121 => 0.020649989749006
122 => 0.02094535859133
123 => 0.021441328848081
124 => 0.02180616658791
125 => 0.022020406286971
126 => 0.022007544139033
127 => 0.022856468560507
128 => 0.022355887488324
129 => 0.021727039683761
130 => 0.021715665810966
131 => 0.022041354999791
201 => 0.022723910191104
202 => 0.022900886821437
203 => 0.022999792614197
204 => 0.022848314949649
205 => 0.022304970072763
206 => 0.022070356509744
207 => 0.022270254062845
208 => 0.022025796532795
209 => 0.02244779881233
210 => 0.023027298076955
211 => 0.022907633770399
212 => 0.023307653606142
213 => 0.023721632052822
214 => 0.02431363982451
215 => 0.024468412578013
216 => 0.024724246054074
217 => 0.024987582737859
218 => 0.025072159383568
219 => 0.025233642442819
220 => 0.025232791347387
221 => 0.025719431415503
222 => 0.026256210480623
223 => 0.026458832151242
224 => 0.026924749510206
225 => 0.026126882360671
226 => 0.026732073758831
227 => 0.027277971548894
228 => 0.026627129698856
301 => 0.027524163562431
302 => 0.027558993354631
303 => 0.028084881865019
304 => 0.027551793111692
305 => 0.027235246711647
306 => 0.02814910430774
307 => 0.028591291212245
308 => 0.028458100917971
309 => 0.027444516202136
310 => 0.026854566422826
311 => 0.025310554057559
312 => 0.027139503400589
313 => 0.028030331274395
314 => 0.027442209173151
315 => 0.027738823751999
316 => 0.029357056716591
317 => 0.029973175056683
318 => 0.029845026748936
319 => 0.029866681703444
320 => 0.030199127976419
321 => 0.031673377832294
322 => 0.03078997314581
323 => 0.031465302928085
324 => 0.031823495409521
325 => 0.032156204548563
326 => 0.03133917605688
327 => 0.030276233993732
328 => 0.02993955562306
329 => 0.027383732020802
330 => 0.027250690302925
331 => 0.027176009955104
401 => 0.026705160925838
402 => 0.026335202565239
403 => 0.026040997941217
404 => 0.025268917150845
405 => 0.025529471752926
406 => 0.024298936118859
407 => 0.02508618921003
408 => 0.023122224625736
409 => 0.024757872691059
410 => 0.023867663812895
411 => 0.024465415132491
412 => 0.024463329634449
413 => 0.023362679937844
414 => 0.022727848162816
415 => 0.023132387677887
416 => 0.023566086150429
417 => 0.023636452268462
418 => 0.024198753658801
419 => 0.024355679890216
420 => 0.023880186082842
421 => 0.023081525825055
422 => 0.023267036387438
423 => 0.022724088797191
424 => 0.02177259402946
425 => 0.022455974183149
426 => 0.022689310213723
427 => 0.022792364697685
428 => 0.021856678873534
429 => 0.021562666072858
430 => 0.021406136124785
501 => 0.022960740534996
502 => 0.023045905273909
503 => 0.022610190428552
504 => 0.024579662845741
505 => 0.024133910581378
506 => 0.024631925072627
507 => 0.023250203248331
508 => 0.023302986882754
509 => 0.022648857628058
510 => 0.023015126301755
511 => 0.022756259408577
512 => 0.022985535412458
513 => 0.023122962503845
514 => 0.023776984422367
515 => 0.024765340570798
516 => 0.023679295357449
517 => 0.023206089905538
518 => 0.023499663906495
519 => 0.024281490157772
520 => 0.025465996949407
521 => 0.024764745088338
522 => 0.025075948756252
523 => 0.025143932913203
524 => 0.024626855752606
525 => 0.025485062321869
526 => 0.025944982194395
527 => 0.026416764816598
528 => 0.026826400448409
529 => 0.026228324462568
530 => 0.026868351498242
531 => 0.02635260268747
601 => 0.025889922687074
602 => 0.025890624381649
603 => 0.025600378458725
604 => 0.025037990409719
605 => 0.024934277424902
606 => 0.025473805469427
607 => 0.025906455867641
608 => 0.025942091026694
609 => 0.026181628517525
610 => 0.026323384337166
611 => 0.027712784077345
612 => 0.028271612146562
613 => 0.028954936531527
614 => 0.029221129889524
615 => 0.030022276461491
616 => 0.029375285538684
617 => 0.029235304982771
618 => 0.027291985452224
619 => 0.027610203916485
620 => 0.02811970238128
621 => 0.027300386894249
622 => 0.027820053990341
623 => 0.027922647283164
624 => 0.027272546867515
625 => 0.027619793588694
626 => 0.02669760924872
627 => 0.024785441669371
628 => 0.025487191111007
629 => 0.026003914906359
630 => 0.025266486338807
701 => 0.026588298503718
702 => 0.025816123124718
703 => 0.025571380600531
704 => 0.024616552756664
705 => 0.025067194744275
706 => 0.02567669448509
707 => 0.025300094507217
708 => 0.026081596008076
709 => 0.02718841055213
710 => 0.027977192508168
711 => 0.028037745392408
712 => 0.027530611438962
713 => 0.028343296835845
714 => 0.028349216361732
715 => 0.027432503914131
716 => 0.026871022644252
717 => 0.026743452918369
718 => 0.027062147105143
719 => 0.02744910068208
720 => 0.028059218622868
721 => 0.028427900116456
722 => 0.029389225918178
723 => 0.029649333116754
724 => 0.029935112068413
725 => 0.030317000878794
726 => 0.030775556309938
727 => 0.02977226313217
728 => 0.029812125840495
729 => 0.028877873124897
730 => 0.027879490112889
731 => 0.028637138368804
801 => 0.029627662677689
802 => 0.029400435306799
803 => 0.02937486758574
804 => 0.029417865400667
805 => 0.029246543383568
806 => 0.028471660249718
807 => 0.028082518790924
808 => 0.028584610553343
809 => 0.028851449979535
810 => 0.029265294658715
811 => 0.029214279566805
812 => 0.030280299016699
813 => 0.030694521940173
814 => 0.030588545990751
815 => 0.030608048115898
816 => 0.031357978932982
817 => 0.032192056236616
818 => 0.032973279697663
819 => 0.033767973756568
820 => 0.032809939051121
821 => 0.032323508111061
822 => 0.032825380675922
823 => 0.032559080028639
824 => 0.034089322537833
825 => 0.034195273209049
826 => 0.035725405064292
827 => 0.03717768239963
828 => 0.036265533025556
829 => 0.037125648801198
830 => 0.038055934138823
831 => 0.039850605488458
901 => 0.0392462233152
902 => 0.038783276042361
903 => 0.038345793106473
904 => 0.039256125647596
905 => 0.040427253918834
906 => 0.040679503731531
907 => 0.041088244794946
908 => 0.040658503545245
909 => 0.041176079546064
910 => 0.043003350263375
911 => 0.042509605585793
912 => 0.041808408770208
913 => 0.043250863508581
914 => 0.043772882270997
915 => 0.047436683328981
916 => 0.052062383508759
917 => 0.050147313260346
918 => 0.048958567358225
919 => 0.049237950842653
920 => 0.050927099958475
921 => 0.051469601043564
922 => 0.049994896082954
923 => 0.050515786805865
924 => 0.053385945901951
925 => 0.054925694171272
926 => 0.052834509205752
927 => 0.04706501282348
928 => 0.041745273668926
929 => 0.04315630804369
930 => 0.042996340535086
1001 => 0.046079968424191
1002 => 0.042497829938525
1003 => 0.042558143963717
1004 => 0.04570553801195
1005 => 0.044865867239876
1006 => 0.043505708126023
1007 => 0.041755204335699
1008 => 0.038519236177283
1009 => 0.035653048937726
1010 => 0.041274302157997
1011 => 0.041031903497553
1012 => 0.040680874315762
1013 => 0.041462051774514
1014 => 0.045255227773125
1015 => 0.045167782789044
1016 => 0.044611502415147
1017 => 0.045033436175918
1018 => 0.04343174109774
1019 => 0.043844534389305
1020 => 0.041744430995064
1021 => 0.042693765437326
1022 => 0.043502789835443
1023 => 0.043665213461176
1024 => 0.044031162183508
1025 => 0.04090417041818
1026 => 0.042308097917157
1027 => 0.043132773792589
1028 => 0.039406858185422
1029 => 0.043059124420768
1030 => 0.040849736448474
1031 => 0.040099836986784
1101 => 0.041109477820208
1102 => 0.040716019805515
1103 => 0.040377747709111
1104 => 0.040188986067066
1105 => 0.04093035486514
1106 => 0.040895769124583
1107 => 0.03968274587745
1108 => 0.038100406500719
1109 => 0.038631491534069
1110 => 0.038438543362504
1111 => 0.037739274297943
1112 => 0.038210497217389
1113 => 0.036135469960613
1114 => 0.032565493415864
1115 => 0.034923929272664
1116 => 0.034833132057662
1117 => 0.034787347984532
1118 => 0.036559647348538
1119 => 0.036389281658592
1120 => 0.036080066263115
1121 => 0.037733595314716
1122 => 0.037130034967777
1123 => 0.038990065740339
1124 => 0.040215202306397
1125 => 0.039904468044228
1126 => 0.041056714906204
1127 => 0.038643726660597
1128 => 0.039445224563502
1129 => 0.039610412170463
1130 => 0.03771319102289
1201 => 0.036417155592416
1202 => 0.036330724805089
1203 => 0.03408357797333
1204 => 0.03528398567252
1205 => 0.036340294771561
1206 => 0.035834404686018
1207 => 0.035674254997971
1208 => 0.036492425021972
1209 => 0.036556003839989
1210 => 0.035106400051415
1211 => 0.035407818582042
1212 => 0.036664783961415
1213 => 0.035376146279522
1214 => 0.032872533761376
1215 => 0.032251603241725
1216 => 0.032168759664383
1217 => 0.030484746848468
1218 => 0.032293096788143
1219 => 0.031503703578709
1220 => 0.033997387268927
1221 => 0.032573008518968
1222 => 0.032511606397928
1223 => 0.032418788086241
1224 => 0.03096928868989
1225 => 0.031286636937198
1226 => 0.032341550844755
1227 => 0.032717956011427
1228 => 0.032678693868747
1229 => 0.032336381191102
1230 => 0.032493090182003
1231 => 0.031988275921279
]
'min_raw' => 0.017662889399306
'max_raw' => 0.054925694171272
'avg_raw' => 0.036294291785289
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.017662'
'max' => '$0.054925'
'avg' => '$0.036294'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.010061966678659
'max_diff' => 0.034305123272709
'year' => 2033
]
8 => [
'items' => [
101 => 0.031810015499016
102 => 0.031247376571965
103 => 0.03042045278217
104 => 0.030535441606959
105 => 0.028897089202996
106 => 0.028004427859373
107 => 0.027757350964546
108 => 0.027426949414728
109 => 0.027794670698763
110 => 0.028892447956483
111 => 0.027568295677235
112 => 0.025298129472946
113 => 0.025434570329998
114 => 0.025741112426142
115 => 0.025169873257957
116 => 0.02462924332574
117 => 0.02509927718911
118 => 0.024137377841281
119 => 0.025857353366799
120 => 0.025810832849009
121 => 0.026451933362349
122 => 0.026852826670048
123 => 0.025928897386552
124 => 0.025696531670324
125 => 0.025828897742721
126 => 0.023641181415071
127 => 0.026273150264857
128 => 0.026295911640765
129 => 0.02610101492141
130 => 0.027502457080999
131 => 0.030459937158504
201 => 0.029347214188986
202 => 0.028916334222959
203 => 0.02809723109257
204 => 0.029188637380282
205 => 0.029104834405976
206 => 0.028725845574831
207 => 0.028496631947237
208 => 0.028918965084152
209 => 0.028444300197819
210 => 0.028359037341315
211 => 0.027842437197802
212 => 0.027658034450377
213 => 0.027521509997468
214 => 0.027371209989431
215 => 0.027702734354732
216 => 0.026951456527298
217 => 0.026045489116086
218 => 0.025970167728547
219 => 0.026178136701867
220 => 0.026086125912642
221 => 0.025969727216288
222 => 0.025747490405649
223 => 0.02568155749127
224 => 0.025895807476898
225 => 0.025653931734674
226 => 0.026010832567978
227 => 0.025913775289543
228 => 0.025371621221955
301 => 0.024695896522596
302 => 0.024689881155391
303 => 0.024544297377325
304 => 0.02435887454729
305 => 0.024307294157874
306 => 0.025059692248168
307 => 0.026617133777697
308 => 0.026311370739033
309 => 0.026532315870325
310 => 0.027619147238843
311 => 0.027964618248736
312 => 0.027719411108843
313 => 0.027383756452041
314 => 0.027398523553464
315 => 0.028545557125332
316 => 0.02861709620223
317 => 0.028797852370169
318 => 0.029030175127657
319 => 0.027758976679036
320 => 0.027338650220851
321 => 0.027139476226139
322 => 0.026526097412462
323 => 0.027187573875887
324 => 0.026802159867896
325 => 0.026854165385191
326 => 0.026820296723828
327 => 0.026838791303121
328 => 0.025856872598586
329 => 0.026214632166391
330 => 0.025619787496306
331 => 0.02482335725751
401 => 0.024820687344085
402 => 0.025015612516729
403 => 0.024899663396617
404 => 0.024587647295723
405 => 0.024631967710181
406 => 0.024243674243401
407 => 0.024679113567328
408 => 0.024691600409061
409 => 0.024523932550809
410 => 0.025194786908366
411 => 0.025469636486023
412 => 0.025359273909928
413 => 0.02546189315348
414 => 0.026324076573727
415 => 0.026464650090928
416 => 0.026527083561503
417 => 0.026443430981782
418 => 0.02547765228367
419 => 0.025520488675739
420 => 0.025206183653126
421 => 0.024940629029666
422 => 0.024951249821954
423 => 0.025087779418097
424 => 0.02568401217181
425 => 0.026938748852157
426 => 0.026986365191976
427 => 0.027044077584902
428 => 0.026809332278944
429 => 0.026738530848458
430 => 0.02683193621067
501 => 0.027303149336888
502 => 0.028515237430636
503 => 0.028086804545663
504 => 0.027738481941226
505 => 0.028044054772417
506 => 0.027997014230214
507 => 0.027599944714093
508 => 0.027588800295257
509 => 0.026826696943016
510 => 0.026544964685946
511 => 0.026309528124645
512 => 0.026052437545931
513 => 0.025900025633115
514 => 0.026134199601176
515 => 0.026187757958336
516 => 0.025675732484511
517 => 0.025605945304428
518 => 0.026024076359191
519 => 0.025840072471487
520 => 0.026029325033068
521 => 0.026073233250733
522 => 0.026066163016397
523 => 0.025874041824921
524 => 0.025996494143231
525 => 0.025706857905635
526 => 0.025391921999206
527 => 0.025191012512104
528 => 0.025015692337832
529 => 0.025112970160186
530 => 0.02476619248572
531 => 0.024655251328403
601 => 0.025955010053052
602 => 0.026915155797712
603 => 0.026901194898325
604 => 0.02681621151376
605 => 0.026689943442546
606 => 0.027293912041003
607 => 0.027083501458034
608 => 0.027236592737536
609 => 0.027275560893391
610 => 0.027393505764704
611 => 0.027435660918494
612 => 0.027308238765103
613 => 0.026880594455019
614 => 0.02581494549349
615 => 0.025318883025234
616 => 0.025155174148135
617 => 0.02516112465489
618 => 0.024996983114353
619 => 0.025045330154349
620 => 0.024980169986871
621 => 0.024856772393606
622 => 0.025105350706527
623 => 0.025133997041424
624 => 0.025075975892899
625 => 0.025089641973773
626 => 0.024609251645139
627 => 0.024645774678472
628 => 0.024442409787751
629 => 0.024404281322341
630 => 0.023890192587605
701 => 0.022979409875665
702 => 0.023484071909897
703 => 0.022874511138765
704 => 0.022643661238385
705 => 0.02373646876226
706 => 0.023626781196625
707 => 0.023439043764298
708 => 0.023161340973976
709 => 0.023058338307727
710 => 0.022432526714276
711 => 0.02239555042676
712 => 0.022705719550809
713 => 0.022562587172328
714 => 0.022361575104471
715 => 0.021633529770959
716 => 0.020814965768565
717 => 0.020839673070488
718 => 0.021100043049724
719 => 0.021857103880031
720 => 0.021561307116345
721 => 0.021346703170414
722 => 0.021306514302312
723 => 0.021809562127702
724 => 0.022521480192407
725 => 0.022855496220098
726 => 0.022524496480874
727 => 0.022144261802745
728 => 0.022167404925765
729 => 0.022321365754914
730 => 0.022337544861169
731 => 0.022090051174464
801 => 0.022159719197569
802 => 0.022053887099894
803 => 0.02140439571182
804 => 0.021392648472169
805 => 0.021233252811072
806 => 0.021228426373802
807 => 0.020957254591165
808 => 0.020919315784252
809 => 0.020380887750875
810 => 0.020735282712954
811 => 0.020497573178962
812 => 0.020139288841226
813 => 0.020077520486355
814 => 0.02007566365502
815 => 0.020443541558963
816 => 0.020730983845457
817 => 0.020501708238078
818 => 0.020449506626599
819 => 0.021006883266646
820 => 0.020935952008599
821 => 0.020874525996588
822 => 0.022457735738098
823 => 0.021204501688296
824 => 0.020658020110484
825 => 0.019981645383904
826 => 0.020201876405455
827 => 0.020248282317563
828 => 0.018621723025847
829 => 0.017961828123772
830 => 0.017735377060995
831 => 0.017605051272819
901 => 0.017664442371019
902 => 0.0170704595612
903 => 0.017469625832967
904 => 0.016955286927781
905 => 0.016869056336523
906 => 0.01778875801336
907 => 0.017916729128872
908 => 0.017370764592587
909 => 0.017721362208512
910 => 0.017594230639306
911 => 0.016964103792068
912 => 0.016940037581403
913 => 0.016623862079489
914 => 0.016129108642635
915 => 0.015902993045985
916 => 0.015785230080025
917 => 0.015833821374935
918 => 0.01580925212931
919 => 0.015648921182332
920 => 0.015818442111514
921 => 0.015385386188337
922 => 0.015212939830359
923 => 0.015135049811186
924 => 0.014750687753597
925 => 0.015362378713803
926 => 0.015482889538844
927 => 0.015603637807437
928 => 0.016654669047198
929 => 0.016602162496643
930 => 0.017076796141933
1001 => 0.017058352751272
1002 => 0.01692297954708
1003 => 0.016351862266405
1004 => 0.016579499435296
1005 => 0.015878867612122
1006 => 0.016403828612377
1007 => 0.016164258334756
1008 => 0.016322829660527
1009 => 0.016037704118991
1010 => 0.016195504366222
1011 => 0.015511467126118
1012 => 0.014872722775972
1013 => 0.015129772148581
1014 => 0.015409214213768
1015 => 0.016015115811607
1016 => 0.015654245818514
1017 => 0.015784028314035
1018 => 0.015349278679365
1019 => 0.014452266002947
1020 => 0.01445734299728
1021 => 0.014319357139497
1022 => 0.014200117212107
1023 => 0.015695696078272
1024 => 0.015509697204661
1025 => 0.015213332342493
1026 => 0.015610028487576
1027 => 0.015714921244751
1028 => 0.015717907394086
1029 => 0.016007326661329
1030 => 0.016161789776138
1031 => 0.016189014569604
1101 => 0.016644422039929
1102 => 0.016797068617012
1103 => 0.017425798264664
1104 => 0.01614868466002
1105 => 0.01612238334576
1106 => 0.01561561081586
1107 => 0.01529420766564
1108 => 0.015637617564528
1109 => 0.015941831854816
1110 => 0.015625063601853
1111 => 0.015666426848347
1112 => 0.015241191349662
1113 => 0.015393193031252
1114 => 0.015524117356275
1115 => 0.015451828639373
1116 => 0.015343608931358
1117 => 0.015916889752227
1118 => 0.015884543001607
1119 => 0.016418395281669
1120 => 0.01683457131012
1121 => 0.017580433153468
1122 => 0.016802087437277
1123 => 0.016773721425735
1124 => 0.01705100373861
1125 => 0.016797026166534
1126 => 0.016957531225078
1127 => 0.017554573307138
1128 => 0.017567187865526
1129 => 0.017355877759597
1130 => 0.017343019520448
1201 => 0.017383603937771
1202 => 0.017621308137661
1203 => 0.017538246986307
1204 => 0.017634367453505
1205 => 0.017754567569585
1206 => 0.018251766213486
1207 => 0.018371639123272
1208 => 0.018080410099469
1209 => 0.018106704819565
1210 => 0.017997777170248
1211 => 0.017892554425866
1212 => 0.018129079788688
1213 => 0.018561334538162
1214 => 0.0185586455038
1215 => 0.018658920203846
1216 => 0.018721390511255
1217 => 0.018453222220798
1218 => 0.018278654524532
1219 => 0.018345594887311
1220 => 0.018452633985167
1221 => 0.018310883550513
1222 => 0.017435934202642
1223 => 0.017701337942805
1224 => 0.017657161782862
1225 => 0.017594249559099
1226 => 0.01786111507214
1227 => 0.017835375242384
1228 => 0.017064367408957
1229 => 0.017113724828924
1230 => 0.017067368997142
1231 => 0.017217154173141
]
'min_raw' => 0.014200117212107
'max_raw' => 0.031810015499016
'avg_raw' => 0.023005066355562
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.01420011'
'max' => '$0.03181'
'avg' => '$0.023005'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.0034627721871996
'max_diff' => -0.023115678672256
'year' => 2034
]
9 => [
'items' => [
101 => 0.016788937275477
102 => 0.016920653909114
103 => 0.017003265346964
104 => 0.017051924118508
105 => 0.01722771296696
106 => 0.017207086174541
107 => 0.017226430776582
108 => 0.017487079232299
109 => 0.018805349677571
110 => 0.018877100229307
111 => 0.018523774271026
112 => 0.018664921022313
113 => 0.018393950125243
114 => 0.018575854703793
115 => 0.018700309196562
116 => 0.018137923274963
117 => 0.018104622430541
118 => 0.017832533140189
119 => 0.017978738512899
120 => 0.017746115252379
121 => 0.017803192863695
122 => 0.01764359888652
123 => 0.01793083627059
124 => 0.018252012298157
125 => 0.018333154046346
126 => 0.01811970504058
127 => 0.01796515389343
128 => 0.017693812991347
129 => 0.018145058958737
130 => 0.018277017031073
131 => 0.018144365839159
201 => 0.018113627659507
202 => 0.018055378864608
203 => 0.018125985416704
204 => 0.018276298359072
205 => 0.018205413551295
206 => 0.018252234215661
207 => 0.018073802124358
208 => 0.01845331099566
209 => 0.019056062417072
210 => 0.019058000361451
211 => 0.01898711517158
212 => 0.018958110479127
213 => 0.019030842985608
214 => 0.019070297386731
215 => 0.019305500975831
216 => 0.01955788379786
217 => 0.020735644305018
218 => 0.020404933867493
219 => 0.02144991305473
220 => 0.022276355918269
221 => 0.022524169997077
222 => 0.022296192705127
223 => 0.021516294704455
224 => 0.021478029187842
225 => 0.022643526065289
226 => 0.022314219814271
227 => 0.022275049883556
228 => 0.021858347999394
301 => 0.022104670422466
302 => 0.022050796095208
303 => 0.02196575283401
304 => 0.022435718858263
305 => 0.023315453301509
306 => 0.023178338438431
307 => 0.02307598855372
308 => 0.022627521152517
309 => 0.022897598696861
310 => 0.022801429256315
311 => 0.023214634203538
312 => 0.022969860746413
313 => 0.022311724995538
314 => 0.022416535283109
315 => 0.022400693418991
316 => 0.022726717859958
317 => 0.022628853415204
318 => 0.022381583815485
319 => 0.023312446464821
320 => 0.023252001422103
321 => 0.023337698673017
322 => 0.023375425253144
323 => 0.023942024944155
324 => 0.024174142708395
325 => 0.02422683750467
326 => 0.024447331428066
327 => 0.024221351414991
328 => 0.025125432588309
329 => 0.025726593813966
330 => 0.02642487351304
331 => 0.027445247833278
401 => 0.027828918016677
402 => 0.027759611432144
403 => 0.028533247596377
404 => 0.029923454586537
405 => 0.028040612012395
406 => 0.030023249814866
407 => 0.029395569577258
408 => 0.027907351025374
409 => 0.027811527295577
410 => 0.028819366177485
411 => 0.03105465581666
412 => 0.030494741114492
413 => 0.031055571636529
414 => 0.030401333042306
415 => 0.030368844581747
416 => 0.031023796728296
417 => 0.032554128118289
418 => 0.031827125038518
419 => 0.030784787855196
420 => 0.031554433410798
421 => 0.030887695203202
422 => 0.029385347413215
423 => 0.030494312958272
424 => 0.029752779279813
425 => 0.029969198229285
426 => 0.031527791726596
427 => 0.031340257633473
428 => 0.031582944115164
429 => 0.03115460882719
430 => 0.030754476125948
501 => 0.030007598724834
502 => 0.029786485146975
503 => 0.029847592985062
504 => 0.029786454864965
505 => 0.0293685838232
506 => 0.029278344611516
507 => 0.029127941971907
508 => 0.029174558038959
509 => 0.028891757074649
510 => 0.029425460923963
511 => 0.029524521061378
512 => 0.029912906215701
513 => 0.029953229650841
514 => 0.031034876777315
515 => 0.030439123716395
516 => 0.030838806304505
517 => 0.030803054931866
518 => 0.027939605234067
519 => 0.028334163337993
520 => 0.028947971928548
521 => 0.028671451990501
522 => 0.028280517493803
523 => 0.027964816927137
524 => 0.027486498286598
525 => 0.028159722587861
526 => 0.029044940954598
527 => 0.029975680249455
528 => 0.031093902527771
529 => 0.030844328332793
530 => 0.029954775861781
531 => 0.029994680535812
601 => 0.030241355528762
602 => 0.029921889000105
603 => 0.029827672084077
604 => 0.030228411571299
605 => 0.030231171243905
606 => 0.029863586393866
607 => 0.029455083100364
608 => 0.029453371456649
609 => 0.029380682241244
610 => 0.030414264292246
611 => 0.030982629913366
612 => 0.03104779211586
613 => 0.030978243977952
614 => 0.031005010295966
615 => 0.030674290864119
616 => 0.031430217413521
617 => 0.03212393036864
618 => 0.031938000477652
619 => 0.031659265139571
620 => 0.031437239017076
621 => 0.031885698179284
622 => 0.031865728998731
623 => 0.032117871391159
624 => 0.032106432755793
625 => 0.032021646752775
626 => 0.031938003505627
627 => 0.032269639525963
628 => 0.032174133678018
629 => 0.032078479483111
630 => 0.031886630351302
701 => 0.031912705834592
702 => 0.031634018624096
703 => 0.031505085168662
704 => 0.029566235353545
705 => 0.0290481113292
706 => 0.029211123694646
707 => 0.029264791597965
708 => 0.029039303358576
709 => 0.029362595570683
710 => 0.029312210821878
711 => 0.029508228405389
712 => 0.029385765129305
713 => 0.029390791064873
714 => 0.029750929447911
715 => 0.029855479152645
716 => 0.029802304328998
717 => 0.029839546152754
718 => 0.030697768262428
719 => 0.030575756522831
720 => 0.030510940217954
721 => 0.030528894777367
722 => 0.030748188926878
723 => 0.030809579315725
724 => 0.030549463924356
725 => 0.030672135846635
726 => 0.031194457322312
727 => 0.031377240277964
728 => 0.031960595731609
729 => 0.031712775966584
730 => 0.032167659870675
731 => 0.0335658179105
801 => 0.03468276329789
802 => 0.033655574159926
803 => 0.03570670212173
804 => 0.037303799456826
805 => 0.037242500201
806 => 0.036964009339099
807 => 0.035145756484122
808 => 0.03347257309835
809 => 0.034872262047668
810 => 0.034875830142648
811 => 0.034755595620579
812 => 0.034008829330258
813 => 0.034729609772386
814 => 0.034786822706392
815 => 0.034754798677496
816 => 0.034182254713592
817 => 0.033308085904524
818 => 0.033478896397352
819 => 0.033758687469043
820 => 0.033228984599799
821 => 0.033059712437248
822 => 0.033374421592778
823 => 0.034388480064154
824 => 0.034196778184181
825 => 0.034191772073367
826 => 0.035011954010139
827 => 0.03442488074975
828 => 0.033481050864677
829 => 0.033242721371109
830 => 0.032396812226928
831 => 0.032981084685839
901 => 0.033002111611475
902 => 0.032682111556849
903 => 0.033507017105489
904 => 0.033499415455637
905 => 0.034282540503082
906 => 0.035779581465463
907 => 0.035336832787975
908 => 0.034821964246976
909 => 0.034877944733139
910 => 0.03549191249473
911 => 0.035120693570551
912 => 0.035254186483916
913 => 0.035491710437218
914 => 0.035635014535632
915 => 0.034857325478702
916 => 0.034676008958363
917 => 0.034305098991202
918 => 0.034208335504133
919 => 0.034510433933095
920 => 0.034430841670358
921 => 0.033000344379796
922 => 0.03285084945372
923 => 0.032855434249673
924 => 0.03247952214996
925 => 0.031906165968656
926 => 0.033412911779804
927 => 0.033291899004275
928 => 0.033158310265736
929 => 0.03317467412396
930 => 0.033828701412226
1001 => 0.033449332555862
1002 => 0.034457946837838
1003 => 0.034250606063185
1004 => 0.034037947780029
1005 => 0.034008551927567
1006 => 0.033926696631705
1007 => 0.033645984365178
1008 => 0.033307007435154
1009 => 0.033083185504274
1010 => 0.030517489857123
1011 => 0.030993668045269
1012 => 0.031541467645724
1013 => 0.031730565872632
1014 => 0.031407100270307
1015 => 0.033658756758703
1016 => 0.034070156096635
1017 => 0.032824000667125
1018 => 0.032590895866455
1019 => 0.033674039070628
1020 => 0.03302077130964
1021 => 0.033314937742412
1022 => 0.032679110815194
1023 => 0.033971062043306
1024 => 0.033961219539558
1025 => 0.033458621331781
1026 => 0.03388341389535
1027 => 0.033809595733799
1028 => 0.033242163595062
1029 => 0.033989050654215
1030 => 0.033989421100878
1031 => 0.033505681253319
1101 => 0.03294077901564
1102 => 0.032839787837938
1103 => 0.032763704551795
1104 => 0.033296225918012
1105 => 0.03377368290981
1106 => 0.034662111999921
1107 => 0.034885484181729
1108 => 0.035757320678055
1109 => 0.035238184493441
1110 => 0.035468310840141
1111 => 0.035718145542844
1112 => 0.035837925486686
1113 => 0.035642750495941
1114 => 0.036997071436954
1115 => 0.037111417619697
1116 => 0.03714975690568
1117 => 0.036693087504371
1118 => 0.037098716817538
1119 => 0.036908936294938
1120 => 0.037402692492194
1121 => 0.03748011976852
1122 => 0.037414541620027
1123 => 0.03743911825964
1124 => 0.036283444255071
1125 => 0.036223516461268
1126 => 0.035406396740483
1127 => 0.035739379066547
1128 => 0.035116884568228
1129 => 0.035314283986049
1130 => 0.035401295768533
1201 => 0.035355845751239
1202 => 0.03575820538766
1203 => 0.035416117500059
1204 => 0.034513291320224
1205 => 0.033610219166001
1206 => 0.033598881830731
1207 => 0.033361118873071
1208 => 0.033189259803141
1209 => 0.033222365957038
1210 => 0.033339036361473
1211 => 0.03318247870714
1212 => 0.033215888220367
1213 => 0.033770708746347
1214 => 0.033881974046034
1215 => 0.03350385108354
1216 => 0.031985632826246
1217 => 0.031613058257744
1218 => 0.031880857469108
1219 => 0.031752866694554
1220 => 0.025627041632142
1221 => 0.027066213364908
1222 => 0.026211106390952
1223 => 0.026605179026131
1224 => 0.0257323362346
1225 => 0.026148902564329
1226 => 0.026071977973795
1227 => 0.028386123531895
1228 => 0.028349991332009
1229 => 0.028367285904021
1230 => 0.027541770921109
1231 => 0.028856838704062
]
'min_raw' => 0.016788937275477
'max_raw' => 0.03748011976852
'avg_raw' => 0.027134528521999
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.016788'
'max' => '$0.03748'
'avg' => '$0.027134'
'bar_min_pct' => 61.631153054958
'bar_max_pct' => 60.119598047091
'min_diff' => 0.0025888200633707
'max_diff' => 0.0056701042695035
'year' => 2035
]
10 => [
'items' => [
101 => 0.029504688382253
102 => 0.029384788648781
103 => 0.029414964828558
104 => 0.028896438081529
105 => 0.028372306376376
106 => 0.02779096365207
107 => 0.028871026577698
108 => 0.028750942017657
109 => 0.029026372793329
110 => 0.029726870805091
111 => 0.029830021798256
112 => 0.029968657779125
113 => 0.029918966648764
114 => 0.031102810972275
115 => 0.030959439613441
116 => 0.031304923337475
117 => 0.030594237105225
118 => 0.029790028174477
119 => 0.029942882000641
120 => 0.029928160948009
121 => 0.02974074505196
122 => 0.029571554360938
123 => 0.029289899529568
124 => 0.030181097093095
125 => 0.030144916099534
126 => 0.030730644329488
127 => 0.030627111175383
128 => 0.02993569143341
129 => 0.029960385624759
130 => 0.030126465929204
131 => 0.030701271759161
201 => 0.030871913265258
202 => 0.030792865320745
203 => 0.030979965942099
204 => 0.031127842644511
205 => 0.030998536979173
206 => 0.032829232518846
207 => 0.032069000095126
208 => 0.032439532088784
209 => 0.03252790178597
210 => 0.032301544664843
211 => 0.032350633419174
212 => 0.032424989506102
213 => 0.032876465105513
214 => 0.034061267713886
215 => 0.03458600872391
216 => 0.036164717942832
217 => 0.034542436287775
218 => 0.034446176808033
219 => 0.034730550010812
220 => 0.035657419445662
221 => 0.036408560066188
222 => 0.036657756744359
223 => 0.036690692199168
224 => 0.037158201733698
225 => 0.037426169480354
226 => 0.037101433779485
227 => 0.036826254274243
228 => 0.035840595443005
229 => 0.03595468813658
301 => 0.036740673655037
302 => 0.037850924494173
303 => 0.038803635216063
304 => 0.038470029126578
305 => 0.041015208100154
306 => 0.04126755219926
307 => 0.041232686404025
308 => 0.041807563815626
309 => 0.040666549225347
310 => 0.040178743381886
311 => 0.036885751206696
312 => 0.037810947688519
313 => 0.039155775109734
314 => 0.038977782157692
315 => 0.038001132537066
316 => 0.038802894339748
317 => 0.038537806814372
318 => 0.038328721284616
319 => 0.039286582629651
320 => 0.03823337473401
321 => 0.039145268555312
322 => 0.037975755297158
323 => 0.038471553011094
324 => 0.038190114249627
325 => 0.038372239620133
326 => 0.037307538425584
327 => 0.037882025346002
328 => 0.037283637880957
329 => 0.037283354167386
330 => 0.03727014473093
331 => 0.037974144929899
401 => 0.037997102351113
402 => 0.037476845140389
403 => 0.037401867948379
404 => 0.037679097924378
405 => 0.037354534229129
406 => 0.037506395539357
407 => 0.037359133953512
408 => 0.037325982268735
409 => 0.037061824004136
410 => 0.036948017360565
411 => 0.036992643877945
412 => 0.036840310567579
413 => 0.036748524237947
414 => 0.037251886119737
415 => 0.036982960171857
416 => 0.037210669361284
417 => 0.036951166000741
418 => 0.036051614292869
419 => 0.035534272593085
420 => 0.033835102805402
421 => 0.034316985249375
422 => 0.034636473808273
423 => 0.034530882841463
424 => 0.034757733096451
425 => 0.034771659859705
426 => 0.034697908529344
427 => 0.034612513936917
428 => 0.03457094857194
429 => 0.034880742748611
430 => 0.03506058869536
501 => 0.034668538759364
502 => 0.034576686944722
503 => 0.034973071075684
504 => 0.035214865166588
505 => 0.037000136881456
506 => 0.036867878186466
507 => 0.037199821556431
508 => 0.037162449827059
509 => 0.037510379361508
510 => 0.038079097104339
511 => 0.036922734917181
512 => 0.037123439408876
513 => 0.037074231302456
514 => 0.037611472505291
515 => 0.037613149713684
516 => 0.037291046775396
517 => 0.037465664003765
518 => 0.037368197457263
519 => 0.037544332680187
520 => 0.036866111790961
521 => 0.037692111624617
522 => 0.038160400304047
523 => 0.038166902492815
524 => 0.038388867610296
525 => 0.03861439702501
526 => 0.039047281097079
527 => 0.038602324123188
528 => 0.037801889842845
529 => 0.037859678612499
530 => 0.037390384286801
531 => 0.037398273209201
601 => 0.037356161523164
602 => 0.03748254186298
603 => 0.036893845168567
604 => 0.037032011106076
605 => 0.036838577984465
606 => 0.037123018923046
607 => 0.036817007492904
608 => 0.037074207572817
609 => 0.03718520660099
610 => 0.037594795404585
611 => 0.036756510893587
612 => 0.03504719202879
613 => 0.035406511577658
614 => 0.03487504974094
615 => 0.034924238557347
616 => 0.035023607794829
617 => 0.034701519584557
618 => 0.034762963864911
619 => 0.03476076864284
620 => 0.034741851404987
621 => 0.034658063821858
622 => 0.034536555249454
623 => 0.035020608003548
624 => 0.035102857998855
625 => 0.035285689549805
626 => 0.035829672229606
627 => 0.035775315531899
628 => 0.035863973561097
629 => 0.035670433581151
630 => 0.03493321632193
701 => 0.034973250765965
702 => 0.034474020607341
703 => 0.035272923112226
704 => 0.035083732454072
705 => 0.034961760006001
706 => 0.034928478693479
707 => 0.035473809801125
708 => 0.03563698141555
709 => 0.03553530381548
710 => 0.035326760091326
711 => 0.035727225692119
712 => 0.035834373392604
713 => 0.035858359811287
714 => 0.036567908074229
715 => 0.035898015677087
716 => 0.036059265435237
717 => 0.037317290017547
718 => 0.036176435316918
719 => 0.036780771495937
720 => 0.036751192384788
721 => 0.037060350324353
722 => 0.036725832410099
723 => 0.036729979160562
724 => 0.037004490466723
725 => 0.036618988845595
726 => 0.036523533222882
727 => 0.036391661963771
728 => 0.036679598033628
729 => 0.036852202685278
730 => 0.038243269413436
731 => 0.039141961960176
801 => 0.039102947346589
802 => 0.039459467882477
803 => 0.039298852115706
804 => 0.038780181436502
805 => 0.039665489040752
806 => 0.039385340671924
807 => 0.039408435763069
808 => 0.039407576162624
809 => 0.039593850336899
810 => 0.039461858012647
811 => 0.039201687592814
812 => 0.039374400859144
813 => 0.039887297514024
814 => 0.04147934446836
815 => 0.042370275035824
816 => 0.041425709329514
817 => 0.042077258105488
818 => 0.04168656101047
819 => 0.041615559726073
820 => 0.042024780506461
821 => 0.042434717573653
822 => 0.04240860635468
823 => 0.0421110130944
824 => 0.041942910212817
825 => 0.043215841550759
826 => 0.044153715676735
827 => 0.044089758948931
828 => 0.044372043145614
829 => 0.045200838277798
830 => 0.045276612917886
831 => 0.045267067054895
901 => 0.045079251703171
902 => 0.045895308143453
903 => 0.046576076783084
904 => 0.045035777875754
905 => 0.045622303535672
906 => 0.045885613801086
907 => 0.046272231391348
908 => 0.046924520070753
909 => 0.047633078587614
910 => 0.047733276530847
911 => 0.047662181295211
912 => 0.047194867906265
913 => 0.047970181090276
914 => 0.048424341370138
915 => 0.048694783423523
916 => 0.049380579473639
917 => 0.045887239915643
918 => 0.043414480546252
919 => 0.043028323463644
920 => 0.043813589076006
921 => 0.044020657355609
922 => 0.043937188391743
923 => 0.041153872908047
924 => 0.043013669883642
925 => 0.045014655053212
926 => 0.045091521042844
927 => 0.046093256057357
928 => 0.046419462040588
929 => 0.047225990027681
930 => 0.047175541482495
1001 => 0.047371918212689
1002 => 0.047326774603188
1003 => 0.048820697864773
1004 => 0.050468717072053
1005 => 0.050411651407285
1006 => 0.05017472914776
1007 => 0.050526599104403
1008 => 0.052227531538787
1009 => 0.052070936937116
1010 => 0.052223055253943
1011 => 0.054228550454433
1012 => 0.056835979493435
1013 => 0.055624566923223
1014 => 0.058252983626006
1015 => 0.059907432614026
1016 => 0.062768631065587
1017 => 0.062410394927752
1018 => 0.063524238488501
1019 => 0.06176907747489
1020 => 0.057738873011072
1021 => 0.05710107772767
1022 => 0.05837796003659
1023 => 0.061517050596716
1024 => 0.058279098903777
1025 => 0.058934132314141
1026 => 0.05874548264789
1027 => 0.058735430308885
1028 => 0.059119087202891
1029 => 0.058562572867937
1030 => 0.056295233352319
1031 => 0.057334341690811
1101 => 0.056933092059238
1102 => 0.05737830844061
1103 => 0.05978095762967
1104 => 0.058718689151183
1105 => 0.057599675600782
1106 => 0.059003166921971
1107 => 0.060790293665788
1108 => 0.060678458485935
1109 => 0.060461451493542
1110 => 0.061684708547543
1111 => 0.063705170820064
1112 => 0.064251293653452
1113 => 0.064654430364068
1114 => 0.064710016105412
1115 => 0.065282583787596
1116 => 0.062203743054858
1117 => 0.067089942367951
1118 => 0.06793365401079
1119 => 0.067775071190201
1120 => 0.068712821172404
1121 => 0.068436911339219
1122 => 0.068037161279861
1123 => 0.069523694466793
1124 => 0.067819504125017
1125 => 0.065400620486465
1126 => 0.064073573082262
1127 => 0.065821136153977
1128 => 0.066888311940328
1129 => 0.067593647249977
1130 => 0.067807081288502
1201 => 0.062442744696605
1202 => 0.059551664793319
1203 => 0.061404813865027
1204 => 0.063665783630027
1205 => 0.062191183253654
1206 => 0.06224898479662
1207 => 0.060146592178074
1208 => 0.063851798726345
1209 => 0.063311981297954
1210 => 0.066112555071366
1211 => 0.065444175664333
1212 => 0.067727934858903
1213 => 0.067126544525867
1214 => 0.069622882175017
1215 => 0.070618738848907
1216 => 0.072290937197082
1217 => 0.073521013109072
1218 => 0.074243337212195
1219 => 0.074199971582413
1220 => 0.077062179539426
1221 => 0.075374435505105
1222 => 0.07325423122727
1223 => 0.073215883421043
1224 => 0.07431396726006
1225 => 0.076615249742052
1226 => 0.077211938807334
1227 => 0.077545406593007
1228 => 0.077034689071152
1229 => 0.075202763883601
1230 => 0.074411747875688
1231 => 0.075085716432369
]
'min_raw' => 0.02779096365207
'max_raw' => 0.077545406593007
'avg_raw' => 0.052668185122539
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$0.02779'
'max' => '$0.077545'
'avg' => '$0.052668'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.011002026376592
'max_diff' => 0.040065286824487
'year' => 2036
]
11 => [
'items' => [
101 => 0.074261510802326
102 => 0.075684320951037
103 => 0.077638143181065
104 => 0.077234686616815
105 => 0.078583381421515
106 => 0.079979138657549
107 => 0.081975134192458
108 => 0.082496961336784
109 => 0.083359521763045
110 => 0.084247379778008
111 => 0.084532535843969
112 => 0.08507698725262
113 => 0.085074117724948
114 => 0.086714858690726
115 => 0.088524646785496
116 => 0.089207799894581
117 => 0.09077867279964
118 => 0.088088607999679
119 => 0.090129053051687
120 => 0.091969585564251
121 => 0.089775226826523
122 => 0.092799639126468
123 => 0.092917070202609
124 => 0.094690140031746
125 => 0.092892794080838
126 => 0.09182553579252
127 => 0.094906670481248
128 => 0.09639753450229
129 => 0.095948474126098
130 => 0.092531102490434
131 => 0.090542045620513
201 => 0.085336300131512
202 => 0.091502730534703
203 => 0.094506218906856
204 => 0.092523324181139
205 => 0.093523380942693
206 => 0.098979366364234
207 => 0.10105665236386
208 => 0.10062459139726
209 => 0.10069760258829
210 => 0.10181846840828
211 => 0.1067890047262
212 => 0.10381054414837
213 => 0.10608746565934
214 => 0.1072951366187
215 => 0.10841688870999
216 => 0.10566222010717
217 => 0.10207843672902
218 => 0.10094330209617
219 => 0.092326164379251
220 => 0.091877604938753
221 => 0.091625814932059
222 => 0.090038314556259
223 => 0.08879097411383
224 => 0.087799042683229
225 => 0.085195918393532
226 => 0.08607439642579
227 => 0.081925559622276
228 => 0.084579838383416
301 => 0.07795819466784
302 => 0.083472896317377
303 => 0.08047149493225
304 => 0.082486855239931
305 => 0.082479823837676
306 => 0.078768906540667
307 => 0.076628526888621
308 => 0.077992460107727
309 => 0.079454704787763
310 => 0.079691949067517
311 => 0.081587787463674
312 => 0.082116875209132
313 => 0.080513714639651
314 => 0.077820975819844
315 => 0.078446437632852
316 => 0.076615851924944
317 => 0.073407820884297
318 => 0.075711884784538
319 => 0.076498593502618
320 => 0.07684604889033
321 => 0.073691318806708
322 => 0.072700034121912
323 => 0.072172282473411
324 => 0.077413739781452
325 => 0.077700878644708
326 => 0.076231835622949
327 => 0.082872049381673
328 => 0.081369164500946
329 => 0.083048255128453
330 => 0.078389683529102
331 => 0.078567647237796
401 => 0.076362204785741
402 => 0.077597105191174
403 => 0.076724317387312
404 => 0.077497337441938
405 => 0.0779606824754
406 => 0.08016576303605
407 => 0.08349807479531
408 => 0.079836397533245
409 => 0.07824095231398
410 => 0.079230757554888
411 => 0.081866739346435
412 => 0.085860386694054
413 => 0.08349606708462
414 => 0.084545311978536
415 => 0.084774525310201
416 => 0.083031163562074
417 => 0.085924666928413
418 => 0.087475318889213
419 => 0.089065966938783
420 => 0.090447082071278
421 => 0.088430627128685
422 => 0.090588522964721
423 => 0.088849639840769
424 => 0.08728968191615
425 => 0.087292047728399
426 => 0.086313463334936
427 => 0.084417332763035
428 => 0.084067657193714
429 => 0.085886713664477
430 => 0.087345424688741
501 => 0.087465571115454
502 => 0.088273188489764
503 => 0.088751128132761
504 => 0.093435586361566
505 => 0.095319714213062
506 => 0.097623590085157
507 => 0.098521079576667
508 => 0.10122220117832
509 => 0.099040826110615
510 => 0.098568871893224
511 => 0.09201683441775
512 => 0.093089730187307
513 => 0.094807539833411
514 => 0.092045160466106
515 => 0.093797254362578
516 => 0.094143154812165
517 => 0.091951295872242
518 => 0.093122062436689
519 => 0.090012853549613
520 => 0.083565847052561
521 => 0.085931844289618
522 => 0.087674014642152
523 => 0.085187722741031
524 => 0.089644304741005
525 => 0.087040861539146
526 => 0.08621569503147
527 => 0.082996426291923
528 => 0.084515797215972
529 => 0.086570768146044
530 => 0.085301035027272
531 => 0.087935921900111
601 => 0.091667624410712
602 => 0.094327057846493
603 => 0.094531216123376
604 => 0.092821378592371
605 => 0.095561404147844
606 => 0.095581362242661
607 => 0.092490602222755
608 => 0.090597528919986
609 => 0.090167418682537
610 => 0.091241918383764
611 => 0.092546559384642
612 => 0.094603614619085
613 => 0.095846650015236
614 => 0.099087827073367
615 => 0.099964796653468
616 => 0.10092832034144
617 => 0.10221588512826
618 => 0.10376193677968
619 => 0.10037926378314
620 => 0.10051366368739
621 => 0.097363765429308
622 => 0.093997647399446
623 => 0.096552111391576
624 => 0.099891733255181
625 => 0.099125620309715
626 => 0.099039416953083
627 => 0.099184387088121
628 => 0.09860676294615
629 => 0.095994190359764
630 => 0.094682172762451
701 => 0.096375010194372
702 => 0.097274677949912
703 => 0.098669984179482
704 => 0.098497983235346
705 => 0.10209214223777
706 => 0.10348872374438
707 => 0.1031314184319
708 => 0.10319717120843
709 => 0.10572561531672
710 => 0.10853776517934
711 => 0.11117171462154
712 => 0.11385108112491
713 => 0.11062100022765
714 => 0.10898096435171
715 => 0.11067306274377
716 => 0.10977521151893
717 => 0.1149345309768
718 => 0.11529175106205
719 => 0.12045069744239
720 => 0.12534715187325
721 => 0.12227177657432
722 => 0.12517171696326
723 => 0.12830823892952
724 => 0.13435909868476
725 => 0.13232138199101
726 => 0.13076052293868
727 => 0.12928551867625
728 => 0.13235476839604
729 => 0.13630330912808
730 => 0.13715378698311
731 => 0.1385318860158
801 => 0.13708298338886
802 => 0.13882802701162
803 => 0.14498879781101
804 => 0.14332410315839
805 => 0.14095996913864
806 => 0.14582330599804
807 => 0.14758332870171
808 => 0.15993608976713
809 => 0.17553196087932
810 => 0.16907516783086
811 => 0.16506722802627
812 => 0.16600918894995
813 => 0.17170427312657
814 => 0.17353335341117
815 => 0.16856128267586
816 => 0.17031750211558
817 => 0.17999444389614
818 => 0.18518581268795
819 => 0.17813523657483
820 => 0.15868297670862
821 => 0.14074710473672
822 => 0.14550450564651
823 => 0.14496516402268
824 => 0.15536183074282
825 => 0.14328440074147
826 => 0.1434877536884
827 => 0.15409941246605
828 => 0.15126840383406
829 => 0.14668253241843
830 => 0.14078058667308
831 => 0.1298702940989
901 => 0.12020674370993
902 => 0.13915919140544
903 => 0.13834192739802
904 => 0.13715840800354
905 => 0.13979220234579
906 => 0.15258116005619
907 => 0.15228633318715
908 => 0.1504107950683
909 => 0.15183337420122
910 => 0.14643314741836
911 => 0.14782490882118
912 => 0.14074426360296
913 => 0.14394501095546
914 => 0.14667269319799
915 => 0.1472203157922
916 => 0.14845413745927
917 => 0.13791126640287
918 => 0.14264470598476
919 => 0.14542515827581
920 => 0.13286297367113
921 => 0.14517684427668
922 => 0.13772773847355
923 => 0.13519940008216
924 => 0.13860347464292
925 => 0.13727690347602
926 => 0.13613639548559
927 => 0.13549997243052
928 => 0.13799954909394
929 => 0.13788294085495
930 => 0.13379314828667
1001 => 0.12845818060261
1002 => 0.13024877087172
1003 => 0.12959823264008
1004 => 0.12724059816751
1005 => 0.12882935914015
1006 => 0.12183325987015
1007 => 0.10979683470173
1008 => 0.11774846585366
1009 => 0.11744233670403
1010 => 0.11728797250493
1011 => 0.12326340354866
1012 => 0.12268900373046
1013 => 0.12164646243587
1014 => 0.12722145107906
1015 => 0.12518650523012
1016 => 0.13145772884301
1017 => 0.13558836231178
1018 => 0.13454070005211
1019 => 0.13842558079456
1020 => 0.13029002245504
1021 => 0.13299232859348
1022 => 0.13354927014338
1023 => 0.12715265658459
1024 => 0.12278298264444
1025 => 0.12249157521056
1026 => 0.11491516277651
1027 => 0.11896242114411
1028 => 0.12252384102068
1029 => 0.12081819727715
1030 => 0.12027824142261
1031 => 0.12303675878133
1101 => 0.12325111920521
1102 => 0.11836367882393
1103 => 0.1193799324443
1104 => 0.12361787897938
1105 => 0.11927314706507
1106 => 0.1108320426635
1107 => 0.10873853206451
1108 => 0.10845921915955
1109 => 0.10278145237667
1110 => 0.10887843045324
1111 => 0.10621693613396
1112 => 0.11462456479897
1113 => 0.10982217239653
1114 => 0.10961515085848
1115 => 0.10930220744027
1116 => 0.10441511902465
1117 => 0.105485080797
1118 => 0.10904179668807
1119 => 0.11031087298727
1120 => 0.11017849793203
1121 => 0.10902436683984
1122 => 0.10955272214374
1123 => 0.1078507056187
1124 => 0.10724968815929
1125 => 0.10535271173454
1126 => 0.10256468044327
1127 => 0.10295237329432
1128 => 0.09742855377824
1129 => 0.094418883734592
1130 => 0.093585846733323
1201 => 0.092471874840215
1202 => 0.093711672822816
1203 => 0.097412905491583
1204 => 0.092948433632736
1205 => 0.085294409777032
1206 => 0.085754429652582
1207 => 0.086787957731816
1208 => 0.084861984993636
1209 => 0.083039213431589
1210 => 0.084623965418658
1211 => 0.081380854609783
1212 => 0.087179872178923
1213 => 0.087023025005237
1214 => 0.089184540146172
1215 => 0.090536179922554
1216 => 0.087421087836567
1217 => 0.086637650601046
1218 => 0.087083932055636
1219 => 0.079707893715488
1220 => 0.088581760450739
1221 => 0.088658502018761
1222 => 0.088001394122201
1223 => 0.092726454208824
1224 => 0.1026978047748
1225 => 0.098946181595231
1226 => 0.097493439706692
1227 => 0.094731776314632
1228 => 0.098411528813206
1229 => 0.098128981234396
1230 => 0.096851193930034
1231 => 0.096078384181416
]
'min_raw' => 0.072172282473411
'max_raw' => 0.18518581268795
'avg_raw' => 0.12867904758068
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$0.072172'
'max' => '$0.185185'
'avg' => '$0.128679'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 0.044381318821341
'max_diff' => 0.10764040609494
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.0022654054774204
]
1 => [
'year' => 2028
'avg' => 0.0038880934511626
]
2 => [
'year' => 2029
'avg' => 0.010621570547912
]
3 => [
'year' => 2030
'avg' => 0.0081945258595966
]
4 => [
'year' => 2031
'avg' => 0.0080480399305336
]
5 => [
'year' => 2032
'avg' => 0.014110746809606
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.0022654054774204
'min' => '$0.002265'
'max_raw' => 0.014110746809606
'max' => '$0.01411'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.014110746809606
]
1 => [
'year' => 2033
'avg' => 0.036294291785289
]
2 => [
'year' => 2034
'avg' => 0.023005066355562
]
3 => [
'year' => 2035
'avg' => 0.027134528521999
]
4 => [
'year' => 2036
'avg' => 0.052668185122539
]
5 => [
'year' => 2037
'avg' => 0.12867904758068
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.014110746809606
'min' => '$0.01411'
'max_raw' => 0.12867904758068
'max' => '$0.128679'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 0.12867904758068
]
]
]
]
'prediction_2025_max_price' => '$0.003873'
'last_price' => 0.00375578
'sma_50day_nextmonth' => '$0.004866'
'sma_200day_nextmonth' => '$0.009015'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'increase'
'sma_200day_direction_label' => 'aumentar'
'sma_200day_date_nextmonth' => '4 de fev. de 2026'
'sma_50day_date_nextmonth' => '4 de fev. de 2026'
'daily_sma3' => '$0.0046018'
'daily_sma3_action' => 'SELL'
'daily_sma5' => '$0.004836'
'daily_sma5_action' => 'SELL'
'daily_sma10' => '$0.005292'
'daily_sma10_action' => 'SELL'
'daily_sma21' => '$0.007129'
'daily_sma21_action' => 'SELL'
'daily_sma50' => '$0.0084095'
'daily_sma50_action' => 'SELL'
'daily_sma100' => '$0.007839'
'daily_sma100_action' => 'SELL'
'daily_sma200' => '$0.010174'
'daily_sma200_action' => 'SELL'
'daily_ema3' => '$0.004425'
'daily_ema3_action' => 'SELL'
'daily_ema5' => '$0.004741'
'daily_ema5_action' => 'SELL'
'daily_ema10' => '$0.005413'
'daily_ema10_action' => 'SELL'
'daily_ema21' => '$0.006597'
'daily_ema21_action' => 'SELL'
'daily_ema50' => '$0.0077095'
'daily_ema50_action' => 'SELL'
'daily_ema100' => '$0.008417'
'daily_ema100_action' => 'SELL'
'daily_ema200' => '$0.009534'
'daily_ema200_action' => 'SELL'
'weekly_sma21' => '$0.007484'
'weekly_sma21_action' => 'SELL'
'weekly_sma50' => '$0.009374'
'weekly_sma50_action' => 'SELL'
'weekly_sma100' => '$0.010858'
'weekly_sma100_action' => 'SELL'
'weekly_sma200' => '$0.054779'
'weekly_sma200_action' => 'SELL'
'weekly_ema3' => '$0.004594'
'weekly_ema3_action' => 'SELL'
'weekly_ema5' => '$0.005254'
'weekly_ema5_action' => 'SELL'
'weekly_ema10' => '$0.006339'
'weekly_ema10_action' => 'SELL'
'weekly_ema21' => '$0.007296'
'weekly_ema21_action' => 'SELL'
'weekly_ema50' => '$0.009138'
'weekly_ema50_action' => 'SELL'
'weekly_ema100' => '$0.024125'
'weekly_ema100_action' => 'SELL'
'weekly_ema200' => '$0.064322'
'weekly_ema200_action' => 'SELL'
'rsi_14' => '17.31'
'rsi_14_action' => 'BUY'
'stoch_rsi_14' => -5.78
'stoch_rsi_14_action' => 'BUY'
'momentum_10' => -0
'momentum_10_action' => 'SELL'
'vwma_10' => '0.003793'
'vwma_10_action' => 'SELL'
'hma_9' => '0.004518'
'hma_9_action' => 'SELL'
'stochastic_fast_14' => 0
'stochastic_fast_14_action' => 'BUY'
'cci_20' => -124.32
'cci_20_action' => 'BUY'
'adx_14' => 40.78
'adx_14_action' => 'SELL'
'ao_5_34' => '-0.003568'
'ao_5_34_action' => 'SELL'
'macd_12_26' => -0
'macd_12_26_action' => 'SELL'
'williams_percent_r_14' => -100
'williams_percent_r_14_action' => 'BUY'
'ultimate_oscillator' => 13.71
'ultimate_oscillator_action' => 'BUY'
'ichimoku_cloud' => '0.001094'
'ichimoku_cloud_action' => 'NEUTRAL'
'sell_signals' => 34
'buy_signals' => 2
'sell_pct' => 94.44
'buy_pct' => 5.56
'overall_action' => 'bearish'
'overall_action_label' => 'Baixista'
'overall_action_dir' => -1
'last_updated' => 1767711672
'last_updated_date' => '6 de janeiro de 2026'
]
Previsão de preço de Maximus para 2026
A previsão de preço para Maximus em 2026 sugere que o preço médio poderia variar entre $0.001297 na extremidade inferior e $0.003873 na extremidade superior. No mercado de criptomoedas, comparado ao preço médio de hoje, Maximus poderia potencialmente ganhar 3.13% até 2026 se MAXI atingir a meta de preço prevista.
Previsão de preço de Maximus 2027-2032
A previsão de preço de MAXI para 2027-2032 está atualmente dentro de uma faixa de preço entre $0.002265 na extremidade inferior e $0.01411 na extremidade superior. Considerando a volatilidade de preços no mercado, se Maximus atingir a meta de preço superior, poderia ganhar 275.71% até 2032 em comparação com o preço de hoje.
| Previsão de Preço de Maximus | Potencial Mínimo ($) | Preço Médio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2027 | $0.001249 | $0.002265 | $0.003281 |
| 2028 | $0.002254 | $0.003888 | $0.005521 |
| 2029 | $0.004952 | $0.010621 | $0.01629 |
| 2030 | $0.004211 | $0.008194 | $0.012177 |
| 2031 | $0.004979 | $0.008048 | $0.011116 |
| 2032 | $0.00760092 | $0.01411 | $0.02062 |
Previsão de preço de Maximus 2032-2037
A previsão de preço de Maximus para 2032-2037 é atualmente estimada entre $0.01411 na extremidade inferior e $0.128679 na extremidade superior. Comparado ao preço atual, Maximus poderia potencialmente ganhar 3326.16% até 2037 se atingir a meta de preço superior. Por favor, note que esta informação é apenas para fins gerais e não deve ser considerada como aconselhamento de investimento a longo prazo.
| Previsão de Preço de Maximus | Potencial Mínimo ($) | Preço Médio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2032 | $0.00760092 | $0.01411 | $0.02062 |
| 2033 | $0.017662 | $0.036294 | $0.054925 |
| 2034 | $0.01420011 | $0.023005 | $0.03181 |
| 2035 | $0.016788 | $0.027134 | $0.03748 |
| 2036 | $0.02779 | $0.052668 | $0.077545 |
| 2037 | $0.072172 | $0.128679 | $0.185185 |
Maximus Histograma de preços potenciais
Previsão de preço de Maximus baseada na análise técnica
Em 6 de janeiro de 2026, o sentimento geral de previsão de preço para Maximus é Baixista, com 2 indicadores técnicos mostrando sinais de alta e 34 indicando sinais de baixa. A previsão de preço de MAXI foi atualizada pela última vez em 6 de janeiro de 2026.
Médias Móveis Simples de 50 e 200 dias e Índice de Força Relativa de 14 dias - RSI (14) de Maximus
De acordo com nossos indicadores técnicos, o SMA de 200 dias de Maximus está projetado para aumentar no próximo mês, alcançando $0.009015 até 4 de fev. de 2026. O SMA de 50 dias de curto prazo para Maximus é esperado para alcançar $0.004866 até 4 de fev. de 2026.
O oscilador de momentum Índice de Força Relativa (RSI) é uma ferramenta comumente usada para identificar se uma criptomoeda está sobrevendida (abaixo de 30) ou sobrecomprada (acima de 70). No momento, o RSI está em 17.31, sugerindo que o mercado de MAXI está em um estado BUY.
Médias Móveis e Osciladores Populares de MAXI para Sábado, 19 de Outubro de 2024
Médias móveis (MA) são indicadores amplamente utilizados nos mercados financeiros, projetados para suavizar movimentos de preços ao longo de um período definido. Como indicadores atrasados, eles se baseiam em dados históricos de preços. A tabela abaixo destaca dois tipos: a média móvel simples (SMA) e a média móvel exponencial (EMA).
Média Móvel Simples Diária (SMA)
| Período | Valor | Ação |
|---|---|---|
| SMA 3 | $0.0046018 | SELL |
| SMA 5 | $0.004836 | SELL |
| SMA 10 | $0.005292 | SELL |
| SMA 21 | $0.007129 | SELL |
| SMA 50 | $0.0084095 | SELL |
| SMA 100 | $0.007839 | SELL |
| SMA 200 | $0.010174 | SELL |
Média Móvel Exponencial Diária (EMA)
| Período | Valor | Ação |
|---|---|---|
| EMA 3 | $0.004425 | SELL |
| EMA 5 | $0.004741 | SELL |
| EMA 10 | $0.005413 | SELL |
| EMA 21 | $0.006597 | SELL |
| EMA 50 | $0.0077095 | SELL |
| EMA 100 | $0.008417 | SELL |
| EMA 200 | $0.009534 | SELL |
Média Móvel Simples Semanal (SMA)
| Período | Valor | Ação |
|---|---|---|
| SMA 21 | $0.007484 | SELL |
| SMA 50 | $0.009374 | SELL |
| SMA 100 | $0.010858 | SELL |
| SMA 200 | $0.054779 | SELL |
Média Móvel Exponencial Semanal (EMA)
| Período | Valor | Ação |
|---|---|---|
| EMA 21 | $0.007296 | SELL |
| EMA 50 | $0.009138 | SELL |
| EMA 100 | $0.024125 | SELL |
| EMA 200 | $0.064322 | SELL |
Osciladores de Maximus
Um oscilador é uma ferramenta de análise técnica que define limites altos e baixos entre dois extremos, criando um indicador de tendência que flutua dentro desses limites. Os traders usam esse indicador para identificar condições de sobrecompra ou sobrevenda de curto prazo.
| Período | Valor | Ação |
|---|---|---|
| RSI (14) | 17.31 | BUY |
| Stoch RSI (14) | -5.78 | BUY |
| Estocástico Rápido (14) | 0 | BUY |
| Índice de Canal de Commodities (20) | -124.32 | BUY |
| Índice Direcional Médio (14) | 40.78 | SELL |
| Oscilador Impressionante (5, 34) | -0.003568 | SELL |
| Momentum (10) | -0 | SELL |
| MACD (12, 26) | -0 | SELL |
| Williams Percent Range (14) | -100 | BUY |
| Oscilador Ultimate (7, 14, 28) | 13.71 | BUY |
| VWMA (10) | 0.003793 | SELL |
| Média Móvel de Hull (9) | 0.004518 | SELL |
| Nuvem Ichimoku B/L (9, 26, 52, 26) | 0.001094 | NEUTRAL |
Previsão do preço de Maximus com base nos fluxos financeiros mundiais
Definições dos fluxos financeiros mundiais, usadas na previsão do preço do Maximus
M0: o total de todas as moedas físicas, mais as contas no Banco Central que podem ser trocadas por moedas físicas.
M1: o valor de M0, mais o valor em contas de demanda, incluindo contas 'correntes'.
M2: o valor de M1, mais a maioria das contas de poupança, do mercado de moedas e de certificados de depósito (CD) de menos de US$ 100.000.
Previsões de preço de Maximus por empresas de Internet ou nichos tecnológicos
| Comparação | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Facebook stock | $0.005277 | $0.007415 | $0.01042 | $0.014642 | $0.020575 | $0.028911 |
| Amazon.com stock | $0.007836 | $0.016351 | $0.034118 | $0.07119 | $0.148543 | $0.309945 |
| Apple stock | $0.005327 | $0.007556 | $0.010718 | $0.0152028 | $0.021564 | $0.030586 |
| Netflix stock | $0.005926 | $0.00935 | $0.014753 | $0.023278 | $0.036729 | $0.057953 |
| Google stock | $0.004863 | $0.006298 | $0.008156 | $0.010562 | $0.013678 | $0.017713 |
| Tesla stock | $0.008514 | $0.01930075 | $0.043753 | $0.099185 | $0.224846 | $0.509709 |
| Kodak stock | $0.002816 | $0.002112 | $0.001583 | $0.001187 | $0.00089 | $0.000667 |
| Nokia stock | $0.002488 | $0.001648 | $0.001091 | $0.000723 | $0.000479 | $0.000317 |
Este cálculo mostra quanto a criptomoeda pode custar, se assumirmos que sua capitalização se comportará da mesma forma que a de algumas empresas de Internet ou nichos tecnológicos. Se você extrapolar os dados, poderá obter uma imagem em potencial do preço futuro para 2024, 2025, 2026, 2027, 2028, 2029 e 2030.
Visão geral da previsão para Maximus
Você pode fazer perguntas como: 'Devo investir em Maximus agora?', 'Devo comprar MAXI hoje?', 'Maximus será um bom ou mau investimento no curto ou no longo prazo?'.
Atualizamos a previsão para Maximus regularmente com novos valores. Veja nossas previsões semelhantes. Fazemos previsões de preços futuros para uma enorme quantidade de moedas digitais, como Maximus, com métodos de análise técnica.
Se você estiver tentando encontrar criptomoedas com bom retorno, você deve explorar o máximo de fontes de informações disponíveis sobre Maximus para poder tomar sozinho uma decisão de tão grande responsabilidade sobre o seu investimento.
O preço de Maximus é de $0.003755 USD hoje, mas o preço pode tanto subir quanto descer e seu investimento pode ser perdido, porque criptomoedas são ativos de alto risco
Previsão do preço de Maximus com base no padrão de crescimento do Bitcoin
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| Se Maximus tiver 1% da média anterior do crescimento anual do Bitcoin | $0.003853 | $0.003953 | $0.004056 | $0.004161 |
| Se Maximus tiver 2% da média anterior do crescimento anual do Bitcoin | $0.003951 | $0.004156 | $0.004372 | $0.004599 |
| Se Maximus tiver 5% da média anterior do crescimento anual do Bitcoin | $0.004243 | $0.004795 | $0.005418 | $0.006122 |
| Se Maximus tiver 10% da média anterior do crescimento anual do Bitcoin | $0.004732 | $0.005962 | $0.007511 | $0.009464 |
| Se Maximus tiver 20% da média anterior do crescimento anual do Bitcoin | $0.0057082 | $0.008675 | $0.013186 | $0.02004 |
| Se Maximus tiver 50% da média anterior do crescimento anual do Bitcoin | $0.008637 | $0.019862 | $0.045676 | $0.10504 |
| Se Maximus tiver 100% da média anterior do crescimento anual do Bitcoin | $0.013518 | $0.048656 | $0.17513 | $0.630351 |
Perguntas Frequentes sobre Maximus
MAXI é um bom investimento?
A decisão de adquirir Maximus depende inteiramente da sua tolerância individual ao risco. Como você pode perceber, o valor de Maximus experimentou uma queda de 0% nas últimas 24 horas, e Maximus registrou um declínio de durante os últimos 30 dias. Consequentemente, a decisão de investir ou não em Maximus dependerá de quão alinhado esse investimento está com suas aspirações de negociação.
Maximus pode subir?
Parece que o valor médio de Maximus pode potencialmente subir para $0.003873 até o final deste ano. Observando as perspectivas de Maximus em um horizonte de cinco anos mais longo, a moeda digital poderia potencialmente crescer até $0.012177. No entanto, dada a imprevisibilidade do mercado, é vital conduzir uma pesquisa aprofundada antes de investir quaisquer fundos em um projeto, rede ou ativo específico.
Qual será o preço de Maximus na próxima semana?
Com base na nossa nova previsão experimental de Maximus, o preço de Maximus aumentará 0.86% na próxima semana e atingirá $0.003787 até 13 de janeiro de 2026.
Qual será o preço de Maximus no próximo mês?
Com base na nossa nova previsão experimental de Maximus, o preço de Maximus diminuirá -11.62% no próximo mês e atingirá $0.003319 até 5 de fevereiro de 2026.
Até onde o preço de Maximus pode subir este ano em 2026?
De acordo com nossa previsão mais recente sobre o valor de Maximus em 2026, espera-se que MAXI fluctue dentro do intervalo de $0.001297 e $0.003873. No entanto, é crucial lembrar que o mercado de criptomoedas é excepcionalmente instável, e essa previsão de preço de Maximus não considera flutuações repentinas e extremas de preço.
Onde estará Maximus em 5 anos?
O futuro de Maximus parece seguir uma tendência de alta, com um preço máximo de $0.012177 projetada após um período de cinco anos. Com base na previsão de Maximus para 2030, o valor de Maximus pode potencialmente atingir seu pico mais alto de aproximadamente $0.012177, enquanto seu pico mais baixo está previsto para cerca de $0.004211.
Quanto será Maximus em 2026?
Com base na nossa nova simulação experimental de previsão de preços de Maximus, espera-se que o valor de MAXI em 2026 aumente 3.13% para $0.003873 se o melhor cenário ocorrer. O preço ficará entre $0.003873 e $0.001297 durante 2026.
Quanto será Maximus em 2027?
De acordo com nossa última simulação experimental para previsão de preços de Maximus, o valor de MAXI pode diminuir -12.62% para $0.003281 em 2027, assumindo as condições mais favoráveis. O preço está projetado para flutuar entre $0.003281 e $0.001249 ao longo do ano.
Quanto será Maximus em 2028?
Nosso novo modelo experimental de previsão de preços de Maximus sugere que o valor de MAXI em 2028 pode aumentar 47.02%, alcançando $0.005521 no melhor cenário. O preço é esperado para variar entre $0.005521 e $0.002254 durante o ano.
Quanto será Maximus em 2029?
Com base no nosso modelo de previsão experimental, o valor de Maximus pode experimentar um 333.75% crescimento em 2029, potencialmente alcançando $0.01629 sob condições ótimas. A faixa de preço prevista para 2029 está entre $0.01629 e $0.004952.
Quanto será Maximus em 2030?
Usando nossa nova simulação experimental para previsões de preços de Maximus, espera-se que o valor de MAXI em 2030 aumente 224.23%, alcançando $0.012177 no melhor cenário. O preço está previsto para variar entre $0.012177 e $0.004211 ao longo de 2030.
Quanto será Maximus em 2031?
Nossa simulação experimental indica que o preço de Maximus poderia aumentar 195.98% em 2031, potencialmente atingindo $0.011116 sob condições ideais. O preço provavelmente oscilará entre $0.011116 e $0.004979 durante o ano.
Quanto será Maximus em 2032?
Com base nos achados da nossa mais recente previsão experimental de preços de Maximus, MAXI poderia ver um 449.04% aumento em valor, atingindo $0.02062 se o cenário mais positivo se desenrolar em 2032. O preço é esperado para permanecer dentro de uma faixa de $0.02062 e $0.00760092 ao longo do ano.
Quanto será Maximus em 2033?
De acordo com nossa previsão experimental de preços de Maximus, espera-se que o valor de MAXI seja aumentar 1362.43% em 2033, com o preço potencial mais alto sendo $0.054925. Ao longo do ano, o preço de MAXI poderia variar entre $0.054925 e $0.017662.
Quanto será Maximus em 2034?
Os resultados da nossa nova simulação de previsão de preços de Maximus sugerem que MAXI pode aumentar 746.96% em 2034, atingindo potencialmente $0.03181 nas melhores circunstâncias. A faixa de preço prevista para o ano é entre $0.03181 e $0.01420011.
Quanto será Maximus em 2035?
Com base em nossa previsão experimental para o preço de Maximus, MAXI poderia aumentar 897.93%, com o valor potencialmente atingindo $0.03748 em 2035. A faixa de preço esperada para o ano está entre $0.03748 e $0.016788.
Quanto será Maximus em 2036?
Nossa recente simulação de previsão de preços de Maximus sugere que o valor de MAXI pode aumentar 1964.7% em 2036, possivelmente atingindo $0.077545 se as condições forem ideais. A faixa de preço esperada para 2036 está entre $0.077545 e $0.02779.
Quanto será Maximus em 2037?
De acordo com a simulação experimental, o valor de Maximus poderia aumentar 4830.69% em 2037, com um pico de $0.185185 sob condições favoráveis. O preço é esperado para cair entre $0.185185 e $0.072172 ao longo do ano.
Previsões relacionadas
Previsão de Preço do SolPod
Previsão de Preço do zuzalu
Previsão de Preço do SOFT COQ INU
Previsão de Preço do All Street Bets
Previsão de Preço do MagicRing
Previsão de Preço do AI INU
Previsão de Preço do Wall Street Baby On Solana
Previsão de Preço do Meta Masters Guild Games
Previsão de Preço do Morfey
Previsão de Preço do PANTIESPrevisão de Preço do Celer Bridged BUSD (zkSync)
Previsão de Preço do Bridged BUSD
Previsão de Preço do Multichain Bridged BUSD (Moonriver)
Previsão de Preço do tooker kurlson
Previsão de Preço do dogwifsaudihatPrevisão de Preço do Harmony Horizen Bridged BUSD (Harmony)
Previsão de Preço do IoTeX Bridged BUSD (IoTeX)
Previsão de Preço do MIMANY
Previsão de Preço do The Open League MEME
Previsão de Preço do Sandwich Cat
Previsão de Preço do Hege
Previsão de Preço do DexNet
Previsão de Preço do SolDocs
Previsão de Preço do Secret Society
Previsão de Preço do duk
Como ler e prever os movimentos de preço de Maximus?
Traders de Maximus utilizam indicadores e padrões de gráfico para prever a direção do mercado. Eles também identificam níveis-chave de suporte e resistência para avaliar quando uma tendência de baixa pode desacelerar ou uma tendência de alta pode estagnar.
Indicadores de Previsão de Preço de Maximus
Médias móveis são ferramentas populares para a previsão de preço de Maximus. Uma média móvel simples (SMA) calcula o preço médio de fechamento de MAXI em um período específico, como uma SMA de 12 dias. Uma média móvel exponencial (EMA) dá mais peso aos preços recentes, reagindo mais rapidamente às mudanças de preço.
Médias móveis comumente usadas no mercado de criptomoedas incluem as de 50 dias, 100 dias e 200 dias, que ajudam a identificar níveis-chave de resistência e suporte. Um movimento de preço de MAXI acima dessas médias é visto como altista, enquanto uma queda abaixo indica fraqueza.
Traders também usam RSI e níveis de retração de Fibonacci para avaliar a direção futura de MAXI.
Como ler gráficos de Maximus e prever movimentos de preço?
A maioria dos traders prefere gráficos de velas em vez de gráficos de linha simples porque eles fornecem informações mais detalhadas. Velas podem representar a ação de preço de Maximus em diferentes períodos de tempo, como 5 minutos para tendências de curto prazo e semanal para tendências de longo prazo. Opções populares incluem gráficos de 1 hora, 4 horas e 1 dia.
Por exemplo, um gráfico de velas de 1 hora mostra os preços de abertura, fechamento, máximo e mínimo de MAXI dentro de cada hora. A cor da vela é crucial: verde indica que o preço fechou mais alto do que abriu, enquanto vermelho significa o oposto. Alguns gráficos usam velas vazias e preenchidas para transmitir a mesma informação.
O que afeta o preço de Maximus?
A ação de preço de Maximus é impulsionada pela oferta e demanda, influenciada por fatores como reduções pela metade das recompensas de bloco, hard forks e atualizações de protocolo. Eventos do mundo real, como regulamentações, adoção por empresas e governos e hacks de exchanges de criptomoedas, também impactam o preço de MAXI. A capitalização de mercado de Maximus pode mudar rapidamente.
Traders frequentemente monitoram a atividade de "baleias" de MAXI, grandes detentores de Maximus, pois suas ações podem influenciar significativamente os movimentos de preço no relativamente pequeno mercado de Maximus.
Padrões de previsão de preço altistas e baixistas
Traders frequentemente identificam padrões de velas para ganhar vantagem em previsões de preço de criptomoedas. Certas formações indicam tendências altistas, enquanto outras sugerem movimentos baixistas.
Padrões de velas altistas comumente seguidos:
- Martelo
- Engolfo de Alta
- Linha de Perfuração
- Estrela da Manhã
- Três Soldados Brancos
Padrões de velas baixistas comuns:
- Harami de Baixa
- Nuvem Negra
- Estrela da Noite
- Estrela Cadente
- Homem Enforcado


