Previsão de Preço Limoverse - Projeção LIMO
Previsão de Preço Limoverse até $0.0046036 até 2026
| Ano | Preço Mínimo | Preço Máximo |
|---|---|---|
| 2026 | $0.001542 | $0.0046036 |
| 2027 | $0.001484 | $0.00390024 |
| 2028 | $0.002679 | $0.006562 |
| 2029 | $0.005885 | $0.019361 |
| 2030 | $0.0050056 | $0.014472 |
| 2031 | $0.005918 | $0.013212 |
| 2032 | $0.009033 | $0.0245077 |
| 2033 | $0.020992 | $0.065279 |
| 2034 | $0.016876 | $0.0378065 |
| 2035 | $0.019953 | $0.044545 |
Calculadora de lucro do investimento
Se você abrir um short de $10,000.00 em Limoverse hoje e fechar em Apr 06, 2026, nossa previsão mostra que pode lucrar cerca de $3,955.80, com um retorno de 39.56% nos próximos 90 dias.
Previsão de preço de longo prazo de Limoverse para os anos 2027, 2028, 2029, 2030, 2031, 2032 e 2037
[
'name' => 'Limoverse'
'name_with_ticker' => 'Limoverse <small>LIMO</small>'
'name_lang' => 'Limoverse'
'name_lang_with_ticker' => 'Limoverse <small>LIMO</small>'
'name_with_lang' => 'Limoverse'
'name_with_lang_with_ticker' => 'Limoverse <small>LIMO</small>'
'image' => '/uploads/coins/limoverse.png?1728398870'
'price_for_sd' => 0.004463
'ticker' => 'LIMO'
'marketcap' => '$568.35K'
'low24h' => '$0.004017'
'high24h' => '$0.004493'
'volume24h' => '$44.04K'
'current_supply' => '127.26M'
'max_supply' => '10B'
'algo' => null
'proof' => null
'ico_price_and_roi' => '—'
'price' => '$0.004463'
'change_24h_pct' => '3.3608%'
'ath_price' => '$0.1545'
'ath_days' => 1002
'ath_exchange' => null
'ath_pair' => null
'ath_date' => '10 de abr. de 2023'
'ath_pct' => '-97.12%'
'fdv' => '$44.66M'
'new_prediction' => true
'change_24h_pct_is_increased' => true
'change_30d_pct' => null
'change_30d_pct_is_increased' => false
'max_price' => '$0.220095'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.004501'
'next_week_prediction_price_date' => '13 de janeiro de 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.003945'
'next_month_prediction_price_date' => '5 de fevereiro de 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.001542'
'current_year_max_price_prediction' => '$0.0046036'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.0050056'
'grand_prediction_max_price' => '$0.014472'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.0045483662830517
107 => 0.0045653482316957
108 => 0.0046036094291103
109 => 0.0042766716863449
110 => 0.0044234571344587
111 => 0.0045096798332891
112 => 0.0041201225431649
113 => 0.0045019795381855
114 => 0.0042709804276142
115 => 0.004192575859996
116 => 0.0042981372812775
117 => 0.0042569998927423
118 => 0.0042216323817482
119 => 0.0042018967029225
120 => 0.0042794093603227
121 => 0.0042757933022073
122 => 0.0041489675501421
123 => 0.003983528526652
124 => 0.0040390552932861
125 => 0.0040188818984017
126 => 0.003945770912921
127 => 0.003995038889681
128 => 0.0037780876539825
129 => 0.0034048343291073
130 => 0.0036514169085784
131 => 0.003641923747499
201 => 0.0036371368652022
202 => 0.0038224368586328
203 => 0.0038046245398627
204 => 0.0037722950068761
205 => 0.0039451771556946
206 => 0.0038820728457828
207 => 0.0040765454596856
208 => 0.004204637700902
209 => 0.0041721493651796
210 => 0.0042926207371671
211 => 0.004040334517841
212 => 0.0041241338799349
213 => 0.0041414048123215
214 => 0.0039430438168139
215 => 0.0038075388555021
216 => 0.0037985022194523
217 => 0.0035635552902715
218 => 0.0036890620434145
219 => 0.003799502792358
220 => 0.0037466102441624
221 => 0.0037298660435236
222 => 0.0038154085332132
223 => 0.003822055917284
224 => 0.0036704948560124
225 => 0.0037020091999654
226 => 0.003833429253073
227 => 0.0036986977518162
228 => 0.00343693645314
301 => 0.0033720160319352
302 => 0.0033633544510258
303 => 0.0031872851198148
304 => 0.0033763543249092
305 => 0.0032938205501459
306 => 0.0035545437557169
307 => 0.0034056200589813
308 => 0.0033992002560651
309 => 0.0033894957823768
310 => 0.0032379456356711
311 => 0.0032711254862854
312 => 0.0033814203631612
313 => 0.0034207748177912
314 => 0.0034166698257518
315 => 0.0033808798580933
316 => 0.0033972643220131
317 => 0.003344484255002
318 => 0.0033258465148183
319 => 0.0032670206800841
320 => 0.0031805629540766
321 => 0.003192585431154
322 => 0.0030212900530384
323 => 0.0029279592397072
324 => 0.0029021265006575
325 => 0.0028675818823757
326 => 0.0029060284072122
327 => 0.0030208047947543
328 => 0.0028823601202095
329 => 0.0026450064364671
330 => 0.002659271797291
331 => 0.0026913218276387
401 => 0.002631596808118
402 => 0.0025750720894825
403 => 0.0026242157463407
404 => 0.0025236458615607
405 => 0.0027034752177361
406 => 0.0026986113376175
407 => 0.0027656406010269
408 => 0.0028075553750157
409 => 0.0027109553910407
410 => 0.0026866607563051
411 => 0.00270050008438
412 => 0.0024717668187848
413 => 0.0027469482133504
414 => 0.0027493279934777
415 => 0.0027289508712209
416 => 0.0028754764685546
417 => 0.0031846911814088
418 => 0.0030683521683001
419 => 0.0030233021860591
420 => 0.0029376621368876
421 => 0.0030517724176056
422 => 0.0030430105284442
423 => 0.0030033859428082
424 => 0.0029794208697794
425 => 0.0030235772516443
426 => 0.0029739494054093
427 => 0.0029650348805435
428 => 0.0029110225589553
429 => 0.0028917426175524
430 => 0.0028774685164943
501 => 0.0028617541337735
502 => 0.0028964161462754
503 => 0.0028178674657786
504 => 0.0027231454573215
505 => 0.0027152703472246
506 => 0.0027370142185889
507 => 0.002727394174151
508 => 0.002715224290153
509 => 0.00269198866733
510 => 0.0026850951543889
511 => 0.0027074957271903
512 => 0.0026822067865321
513 => 0.0027195219960332
514 => 0.0027093743237936
515 => 0.0026526902515636
516 => 0.0025820409104337
517 => 0.0025814119831056
518 => 0.0025661906984473
519 => 0.0025468041038995
520 => 0.0025414111968014
521 => 0.0026200770046329
522 => 0.0027829128725744
523 => 0.0027509442953654
524 => 0.0027740448686705
525 => 0.0028876768258538
526 => 0.0029237970080102
527 => 0.002898159758269
528 => 0.0028630659095865
529 => 0.0028646098608242
530 => 0.0029845361654026
531 => 0.0029920158219146
601 => 0.0030109145008916
602 => 0.0030352046441432
603 => 0.0029022964746982
604 => 0.0028583498979956
605 => 0.0028375255718906
606 => 0.0027733947075158
607 => 0.0028425543465793
608 => 0.002802257986608
609 => 0.0028076953422878
610 => 0.0028041542572683
611 => 0.0028060879291361
612 => 0.0027034249517661
613 => 0.0027408299449125
614 => 0.0026786368889889
615 => 0.0025953673686054
616 => 0.002595088219975
617 => 0.002615468317121
618 => 0.0026033454378653
619 => 0.0025707230814958
620 => 0.0025753569332449
621 => 0.0025347595159549
622 => 0.0025802861947439
623 => 0.0025815917369893
624 => 0.0025640614858005
625 => 0.0026342016159461
626 => 0.0026629380844956
627 => 0.0026513992976288
628 => 0.002662128492449
629 => 0.0027522727340779
630 => 0.0027669701787325
701 => 0.0027734978127893
702 => 0.0027647516478989
703 => 0.0026637761637059
704 => 0.0026682548558107
705 => 0.0026353931848041
706 => 0.002607628535681
707 => 0.0026087389760395
708 => 0.0026230136148405
709 => 0.002685351799681
710 => 0.002816538834641
711 => 0.0028215172867212
712 => 0.0028275513158742
713 => 0.002803007886849
714 => 0.002795605353806
715 => 0.0028053712056456
716 => 0.00285463815849
717 => 0.0029813661370529
718 => 0.0029365720055517
719 => 0.002900153679379
720 => 0.0029321023697427
721 => 0.0029271841192833
722 => 0.0028856691358538
723 => 0.0028845039485389
724 => 0.0028048234221946
725 => 0.002775367345843
726 => 0.0027507516436944
727 => 0.0027238719395574
728 => 0.0027079367499291
729 => 0.0027324204436123
730 => 0.0027380201540402
731 => 0.0026844861299001
801 => 0.0026771896402248
802 => 0.0027209066799498
803 => 0.0027016684407024
804 => 0.0027214554468537
805 => 0.0027260462020106
806 => 0.0027253069846963
807 => 0.0027052200534243
808 => 0.0027180228644162
809 => 0.0026877403997187
810 => 0.0026548127676394
811 => 0.0026338069898367
812 => 0.0026154766626918
813 => 0.0026256473935567
814 => 0.0025893905951255
815 => 0.0025777913156022
816 => 0.0027136855601245
817 => 0.0028140720996624
818 => 0.0028126124396201
819 => 0.0028037271345066
820 => 0.0027905253734262
821 => 0.0028536723674383
822 => 0.0028316732173885
823 => 0.0028476794371402
824 => 0.0028517536918459
825 => 0.0028640852337532
826 => 0.0028684927000532
827 => 0.0028551702757124
828 => 0.0028104585924276
829 => 0.0026990413287413
830 => 0.0026471762917301
831 => 0.0026300599656359
901 => 0.0026306821115809
902 => 0.0026135205490362
903 => 0.0026185753983329
904 => 0.0026117626787378
905 => 0.0025988610359986
906 => 0.0026248507534734
907 => 0.0026278458263014
908 => 0.0026217795156888
909 => 0.0026232083514417
910 => 0.0025729818905245
911 => 0.0025768004992619
912 => 0.0025555380005667
913 => 0.0025515515383846
914 => 0.0024978017932207
915 => 0.0024025763285128
916 => 0.0024553404797205
917 => 0.002391608804824
918 => 0.0023674726538482
919 => 0.0024817294386259
920 => 0.0024702612264241
921 => 0.0024506326322467
922 => 0.0024215978505008
923 => 0.0024108285675191
924 => 0.0023453978132626
925 => 0.0023415318152417
926 => 0.0023739610638301
927 => 0.0023589960814289
928 => 0.0023379795784555
929 => 0.0022618599350945
930 => 0.002176276253609
1001 => 0.0021788594869932
1002 => 0.0022060820637328
1003 => 0.0022852353770676
1004 => 0.0022543088081815
1005 => 0.0022318712276131
1006 => 0.0022276693432438
1007 => 0.0022802647233659
1008 => 0.0023546982053115
1009 => 0.0023896207296851
1010 => 0.0023550135686437
1011 => 0.0023152587254212
1012 => 0.002317678418522
1013 => 0.0023337755526796
1014 => 0.0023354671338784
1015 => 0.0023095908178045
1016 => 0.0023168748492079
1017 => 0.0023058097394403
1018 => 0.0022379031812213
1019 => 0.0022366749669171
1020 => 0.002220009602389
1021 => 0.0022195049817743
1022 => 0.0021911530393419
1023 => 0.0021871864066079
1024 => 0.0021308919040686
1025 => 0.0021679451161155
1026 => 0.0021430917668554
1027 => 0.002105631907208
1028 => 0.0020991738132853
1029 => 0.0020989796751837
1030 => 0.0021374425751701
1031 => 0.0021674956547349
1101 => 0.0021435241015064
1102 => 0.0021380662435053
1103 => 0.0021963418880361
1104 => 0.0021889257810753
1105 => 0.0021825034802759
1106 => 0.0023480335033969
1107 => 0.0022170035736279
1108 => 0.0021598670453217
1109 => 0.0020891497416103
1110 => 0.0021121756522863
1111 => 0.0021170275499868
1112 => 0.001946965182313
1113 => 0.0018779709009277
1114 => 0.0018542946635509
1115 => 0.0018406686542077
1116 => 0.0018468781977701
1117 => 0.0017847752523012
1118 => 0.0018265094587442
1119 => 0.0017727335573995
1120 => 0.0017637178525371
1121 => 0.0018598758256973
1122 => 0.0018732556459158
1123 => 0.0018161731760794
1124 => 0.0018528293625268
1125 => 0.0018395373197619
1126 => 0.0017736553908819
1127 => 0.0017711391857933
1128 => 0.0017380819497431
1129 => 0.0016863537764668
1130 => 0.0016627126132273
1201 => 0.0016504000901502
1202 => 0.0016554804771381
1203 => 0.0016529116780146
1204 => 0.0016361485261311
1205 => 0.0016538725222583
1206 => 0.0016085950362142
1207 => 0.0015905651764459
1208 => 0.0015824215070782
1209 => 0.0015422351321391
1210 => 0.0016061895256292
1211 => 0.0016187893468229
1212 => 0.0016314139935567
1213 => 0.001741302924162
1214 => 0.0017358131837318
1215 => 0.0017854377636083
1216 => 0.001783509443688
1217 => 0.0017693557096424
1218 => 0.0017096434338799
1219 => 0.0017334436827299
1220 => 0.0016601902161497
1221 => 0.0017150766940631
1222 => 0.0016900287976575
1223 => 0.0017066079750925
1224 => 0.0016767971191803
1225 => 0.0016932956777022
1226 => 0.0016217772318505
1227 => 0.0015549943134059
1228 => 0.0015818697093029
1229 => 0.0016110863382173
1230 => 0.0016744354339623
1231 => 0.0016367052351553
]
'min_raw' => 0.0015422351321391
'max_raw' => 0.0046036094291103
'avg_raw' => 0.0030729222806247
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.001542'
'max' => '$0.0046036'
'avg' => '$0.003072'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.0029215448678609
'max_diff' => 0.0001398294291103
'year' => 2026
]
1 => [
'items' => [
101 => 0.0016502744413831
102 => 0.0016048198719777
103 => 0.0015110341118386
104 => 0.0015115649290559
105 => 0.0014971380330923
106 => 0.0014846710886185
107 => 0.0016410390023601
108 => 0.0016215921804755
109 => 0.0015906062149393
110 => 0.0016320821611428
111 => 0.0016430490596307
112 => 0.001643361271813
113 => 0.0016736210515139
114 => 0.0016897707013647
115 => 0.0016926171471474
116 => 0.0017402315643126
117 => 0.001756191288897
118 => 0.0018219271357555
119 => 0.0016884005164061
120 => 0.0016856506235503
121 => 0.0016326658127624
122 => 0.001599062008104
123 => 0.0016349666940167
124 => 0.0016667733442569
125 => 0.001633654134046
126 => 0.0016379788037149
127 => 0.0015935189699457
128 => 0.0016094112684886
129 => 0.0016230998569175
130 => 0.0016155418229651
131 => 0.0016042270803254
201 => 0.0016641655616554
202 => 0.001660783597638
203 => 0.0017165996894323
204 => 0.001760112324433
205 => 0.0018380947451681
206 => 0.0017567160238155
207 => 0.0017537502597583
208 => 0.001782741079141
209 => 0.0017561868505536
210 => 0.0017729682064
211 => 0.0018353910093025
212 => 0.0018367099047633
213 => 0.0018146167064946
214 => 0.0018132723333722
215 => 0.0018175155737728
216 => 0.0018423683653342
217 => 0.0018336840363135
218 => 0.0018437337617166
219 => 0.00185630109722
220 => 0.0019082849253021
221 => 0.0019208180502622
222 => 0.0018903690542893
223 => 0.0018931182577027
224 => 0.0018817294973652
225 => 0.0018707280975799
226 => 0.0018954576376718
227 => 0.0019406513582501
228 => 0.0019403702104599
301 => 0.0019508542751937
302 => 0.0019573857606681
303 => 0.0019293478436722
304 => 0.0019110961906906
305 => 0.0019180950358266
306 => 0.0019292863416141
307 => 0.0019144658461924
308 => 0.0018229868829284
309 => 0.0018507357566839
310 => 0.0018461169872404
311 => 0.0018395392978913
312 => 0.0018674410050281
313 => 0.0018647498173081
314 => 0.0017841382968333
315 => 0.0017892987848307
316 => 0.0017844521232005
317 => 0.0018001126784613
318 => 0.001755341129176
319 => 0.0017691125561951
320 => 0.0017777498661225
321 => 0.0017828373080246
322 => 0.0018012166366666
323 => 0.0017990600345839
324 => 0.0018010825792532
325 => 0.0018283342716665
326 => 0.0019661639802414
327 => 0.001973665747175
328 => 0.0019367243031515
329 => 0.0019514816814012
330 => 0.0019231507422457
331 => 0.0019421694915016
401 => 0.0019551816367186
402 => 0.0018963822545746
403 => 0.0018929005367689
404 => 0.0018644526657497
405 => 0.0018797389402656
406 => 0.0018554173783887
407 => 0.0018613850389412
408 => 0.0018446989397852
409 => 0.0018747305960968
410 => 0.0019083106543008
411 => 0.0019167943031198
412 => 0.0018944774755174
413 => 0.0018783186215827
414 => 0.0018499489971307
415 => 0.0018971283148527
416 => 0.0019109249851182
417 => 0.0018970558468172
418 => 0.0018938420644262
419 => 0.0018877519526024
420 => 0.0018951341104394
421 => 0.001910849845489
422 => 0.0019034385950637
423 => 0.001908333856539
424 => 0.0018896781677667
425 => 0.0019293571253894
426 => 0.0019923768593554
427 => 0.0019925794781049
428 => 0.0019851681877302
429 => 0.0019821356473873
430 => 0.0019897400810665
501 => 0.0019938651743872
502 => 0.002018456518491
503 => 0.0020448440104767
504 => 0.0021679829218093
505 => 0.0021334060082554
506 => 0.0022426621759563
507 => 0.0023290696194699
508 => 0.00235497943364
509 => 0.0023311436237544
510 => 0.002249602605721
511 => 0.0022456018143643
512 => 0.0023674585210361
513 => 0.0023330284200106
514 => 0.0023289330690493
515 => 0.0022853654540255
516 => 0.0023111193104587
517 => 0.0023054865642705
518 => 0.002296594998849
519 => 0.0023457315628942
520 => 0.0024377108243354
521 => 0.0024233749938638
522 => 0.0024126739614367
523 => 0.002365785152365
524 => 0.0023940226884208
525 => 0.0023839678426857
526 => 0.0024271698409265
527 => 0.0024015779342101
528 => 0.0023327675781324
529 => 0.0023437258541396
530 => 0.0023420695327661
531 => 0.0023761565092647
601 => 0.0023659244450106
602 => 0.0023400715580018
603 => 0.0024373964492193
604 => 0.0024310767121331
605 => 0.0024400366544283
606 => 0.002443981098122
607 => 0.0025032210443492
608 => 0.0025274897548516
609 => 0.0025329991770192
610 => 0.0025560525749871
611 => 0.0025324255874766
612 => 0.0026269503832751
613 => 0.0026898038568063
614 => 0.002762811400723
615 => 0.0028694950449632
616 => 0.0029096090820764
617 => 0.0029023628403187
618 => 0.002983249161818
619 => 0.0031286000835503
620 => 0.0029317424173427
621 => 0.003139034017867
622 => 0.0030734078904376
623 => 0.0029178095228662
624 => 0.0029077908223788
625 => 0.0030131638434324
626 => 0.0032468710623518
627 => 0.0031883300546979
628 => 0.0032469668144686
629 => 0.0031785639195212
630 => 0.0031751671392421
701 => 0.0032436446385392
702 => 0.0034036460481608
703 => 0.0033276353760127
704 => 0.003218655438907
705 => 0.0032991245285502
706 => 0.0032294147560386
707 => 0.003072339128033
708 => 0.0031882852894926
709 => 0.0031107553932811
710 => 0.0031333827387116
711 => 0.0032963390488464
712 => 0.003276731714482
713 => 0.0033021054207398
714 => 0.0032573214933404
715 => 0.0032154862433722
716 => 0.0031373976425802
717 => 0.0031142794576072
718 => 0.0031206684922286
719 => 0.0031142762915189
720 => 0.0030705864370471
721 => 0.0030611516171336
722 => 0.0030454265039289
723 => 0.0030503003740515
724 => 0.0030207325606826
725 => 0.0030765331335318
726 => 0.0030868902115656
727 => 0.0031274972151036
728 => 0.0031317131689195
729 => 0.0032448030957684
730 => 0.003182515064459
731 => 0.0032243032535512
801 => 0.0032205653245931
802 => 0.002921181811307
803 => 0.0029624342179547
804 => 0.0030266100169802
805 => 0.0029976989065075
806 => 0.0029568253604569
807 => 0.0029238177805203
808 => 0.0028738079217178
809 => 0.002944195837628
810 => 0.0030367484621294
811 => 0.0031340604562119
812 => 0.0032509744409676
813 => 0.0032248806005989
814 => 0.0031318748305906
815 => 0.0031360470014924
816 => 0.0031618377203187
817 => 0.0031284363961047
818 => 0.0031185856935227
819 => 0.0031604843850518
820 => 0.0031607729183132
821 => 0.0031223406581202
822 => 0.003079630233945
823 => 0.0030794512757082
824 => 0.00307185136826
825 => 0.0031799159261729
826 => 0.0032393405064659
827 => 0.003246153438829
828 => 0.0032388819418352
829 => 0.0032416804524327
830 => 0.0032071025984915
831 => 0.003286137318857
901 => 0.0033586673939882
902 => 0.003339227784474
903 => 0.0033100850463089
904 => 0.0032868714516559
905 => 0.0033337593993124
906 => 0.0033316715528117
907 => 0.0033580339070558
908 => 0.0033568379583909
909 => 0.0033479732901969
910 => 0.0033392281010592
911 => 0.003373901787479
912 => 0.0033639163226324
913 => 0.003353915347601
914 => 0.0033338568611026
915 => 0.0033365831425539
916 => 0.0033074454362935
917 => 0.0032939650001266
918 => 0.0030912515842667
919 => 0.003037079935697
920 => 0.0030541234391026
921 => 0.0030597346029581
922 => 0.0030361590320777
923 => 0.0030699603446529
924 => 0.0030646924458925
925 => 0.0030851867583516
926 => 0.0030723828016868
927 => 0.0030729082805345
928 => 0.0031105619869942
929 => 0.0031214930181698
930 => 0.0031159334074897
1001 => 0.0031198271682378
1002 => 0.0032095572412233
1003 => 0.003196800494251
1004 => 0.0031900237266733
1005 => 0.0031919009376056
1006 => 0.0032148288950879
1007 => 0.0032212474713629
1008 => 0.0031940515126605
1009 => 0.0032068772840025
1010 => 0.0032614877905441
1011 => 0.0032805983771466
1012 => 0.0033415901959801
1013 => 0.0033156797872965
1014 => 0.0033632394638114
1015 => 0.0035094216951298
1016 => 0.0036262021765479
1017 => 0.0035188060196783
1018 => 0.003733258501898
1019 => 0.0039002405206875
1020 => 0.0038938314726833
1021 => 0.0038647142953437
1022 => 0.0036746097063984
1023 => 0.0034996726293513
1024 => 0.0036460149225219
1025 => 0.0036463879791227
1026 => 0.0036338170463548
1027 => 0.0035557400625782
1028 => 0.0036311001365611
1029 => 0.0036370819455662
1030 => 0.0036337337232147
1031 => 0.0035738722828144
1101 => 0.0034824749275666
1102 => 0.0035003337520076
1103 => 0.0035295868707523
1104 => 0.0034742046141288
1105 => 0.0034565066274084
1106 => 0.0034894105519014
1107 => 0.003595433852423
1108 => 0.0035753907616106
1109 => 0.003574867355509
1110 => 0.0036606201975978
1111 => 0.0035992396692838
1112 => 0.0035005590089757
1113 => 0.0034756408408099
1114 => 0.0033871981307108
1115 => 0.0034482858255984
1116 => 0.0034504842629851
1117 => 0.0034170271567962
1118 => 0.0035032738687503
1119 => 0.0035024790901162
1120 => 0.0035843575069876
1121 => 0.0037408782879167
1122 => 0.0036945873910761
1123 => 0.0036407561144858
1124 => 0.0036466090668305
1125 => 0.0037108015077353
1126 => 0.0036719892925934
1127 => 0.0036859464357668
1128 => 0.0037107803819275
1129 => 0.0037257633182384
1130 => 0.0036444532528697
1201 => 0.0036254959871222
1202 => 0.0035867160744991
1203 => 0.003576599119157
1204 => 0.0036081845488192
1205 => 0.0035998629040329
1206 => 0.0034502994928355
1207 => 0.0034346692842024
1208 => 0.0034351486403864
1209 => 0.0033958457376026
1210 => 0.0033358993770798
1211 => 0.0034934348333225
1212 => 0.0034807825314789
1213 => 0.003466815369454
1214 => 0.0034685262671065
1215 => 0.0035369070692895
1216 => 0.0034972427507101
1217 => 0.0036026968425074
1218 => 0.003581018651474
1219 => 0.00355878449664
1220 => 0.003555711059173
1221 => 0.0035471528064908
1222 => 0.0035178033736581
1223 => 0.0034823621698851
1224 => 0.0034589608172897
1225 => 0.0031907085139727
1226 => 0.0032404945811165
1227 => 0.0032977689132226
1228 => 0.0033175397831531
1229 => 0.0032837203420344
1230 => 0.0035191387713254
1231 => 0.0035621519869053
]
'min_raw' => 0.0014846710886185
'max_raw' => 0.0039002405206875
'avg_raw' => 0.002692455804653
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.001484'
'max' => '$0.00390024'
'avg' => '$0.002692'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -5.756404352064E-5
'max_diff' => -0.00070336890842275
'year' => 2027
]
2 => [
'items' => [
101 => 0.0034318621512311
102 => 0.0034074902426754
103 => 0.0035207365895928
104 => 0.0034524351985988
105 => 0.0034831913107812
106 => 0.0034167134189366
107 => 0.003551791362846
108 => 0.0035507622952309
109 => 0.0034982139241764
110 => 0.003542627447556
111 => 0.0035349095049056
112 => 0.003475582523406
113 => 0.0035536721339792
114 => 0.0035537108654518
115 => 0.003503134200812
116 => 0.0034440717291682
117 => 0.0034335127542316
118 => 0.0034255579850156
119 => 0.0034812349251903
120 => 0.0035311546956537
121 => 0.0036240430123255
122 => 0.0036473973421087
123 => 0.0037385508460386
124 => 0.0036842733726319
125 => 0.0037083338735821
126 => 0.0037344549509293
127 => 0.0037469783559803
128 => 0.0037265721394926
129 => 0.0038681710513747
130 => 0.0038801263380161
131 => 0.0038841348422141
201 => 0.0038363884858248
202 => 0.0038787984254724
203 => 0.0038589562191808
204 => 0.0039105801276277
205 => 0.0039186754156394
206 => 0.0039118189946917
207 => 0.0039143885668821
208 => 0.0037935588753505
209 => 0.0037872932184172
210 => 0.0037018605415407
211 => 0.0037366749888543
212 => 0.0036715910483014
213 => 0.0036922298362896
214 => 0.0037013272173812
215 => 0.0036965752617708
216 => 0.0037386433454703
217 => 0.003702876880384
218 => 0.0036084832984701
219 => 0.0035140639990879
220 => 0.0035128786416964
221 => 0.0034880197068082
222 => 0.003470051250025
223 => 0.0034735126122667
224 => 0.003485710904279
225 => 0.0034693422631179
226 => 0.0034728353426208
227 => 0.0035308437366356
228 => 0.0035424769063583
229 => 0.0035029428502677
301 => 0.0033442079103267
302 => 0.0033052539579088
303 => 0.0033332532864164
304 => 0.0033198714107774
305 => 0.0026793953338374
306 => 0.0028298656877985
307 => 0.0027404613129653
308 => 0.0027816629621859
309 => 0.0026904042466318
310 => 0.0027339576889733
311 => 0.0027259149584899
312 => 0.0029678668349179
313 => 0.0029640890891614
314 => 0.0029658972961412
315 => 0.0028795868657381
316 => 0.0030170817249538
317 => 0.0030848166367586
318 => 0.0030722807072899
319 => 0.0030754357306612
320 => 0.0030212219760498
321 => 0.0029664222037912
322 => 0.0029056408227319
323 => 0.0030185651159343
324 => 0.0030060098622122
325 => 0.0030348070970131
326 => 0.00310804657315
327 => 0.0031188313642209
328 => 0.0031333262327887
329 => 0.0031281308542221
330 => 0.0032519058494766
331 => 0.0032369158808575
401 => 0.0032730373923211
402 => 0.0031987327026949
403 => 0.003114649893317
404 => 0.0031306312865056
405 => 0.0031290921498273
406 => 0.0031094971733735
407 => 0.0030918077047817
408 => 0.0030623597235531
409 => 0.0031555374936414
410 => 0.0031517546463384
411 => 0.003212994547095
412 => 0.0032021697997836
413 => 0.0031298794879732
414 => 0.0031324613506019
415 => 0.0031498256175805
416 => 0.0032099235438553
417 => 0.0032277647001525
418 => 0.0032194999657085
419 => 0.0032390619791086
420 => 0.0032545229968926
421 => 0.0032410036449003
422 => 0.0034324091593209
423 => 0.0033529242449875
424 => 0.0033916646391811
425 => 0.0034009039949247
426 => 0.0033772375794704
427 => 0.0033823699775516
428 => 0.0033901441621499
429 => 0.0034373474886894
430 => 0.0035612226759217
501 => 0.0036160861531
502 => 0.0037811456311071
503 => 0.0036115305050568
504 => 0.0036014662454142
505 => 0.0036311984417219
506 => 0.0037281058286323
507 => 0.0038066401636751
508 => 0.0038326945333633
509 => 0.0038361380484284
510 => 0.0038850177780252
511 => 0.003913034727477
512 => 0.0038790824931876
513 => 0.0038503115295744
514 => 0.0037472575090953
515 => 0.0037591862925726
516 => 0.0038413637815253
517 => 0.003957444324901
518 => 0.0040570535072394
519 => 0.0040221738433149
520 => 0.004288281057853
521 => 0.004314664501224
522 => 0.0043110191624289
523 => 0.0043711245728108
524 => 0.0042518275734568
525 => 0.0042008257949625
526 => 0.0038565321384719
527 => 0.00395326461239
528 => 0.004093870944129
529 => 0.0040752611688766
530 => 0.0039731490923497
531 => 0.0040569760460727
601 => 0.0040292602336607
602 => 0.0040073996224812
603 => 0.0041075473201824
604 => 0.0039974308127193
605 => 0.0040927724477323
606 => 0.0039704958146452
607 => 0.0040223331706817
608 => 0.0039929077803046
609 => 0.0040119496141188
610 => 0.0039006314427295
611 => 0.0039606960259153
612 => 0.003898132558595
613 => 0.0038981028953655
614 => 0.0038967218033568
615 => 0.0039703274452103
616 => 0.0039727277225486
617 => 0.0039183330420069
618 => 0.0039104939187362
619 => 0.0039394792661187
620 => 0.0039055450156083
621 => 0.0039214226378425
622 => 0.003906025932611
623 => 0.0039025598099592
624 => 0.0038749411549572
625 => 0.0038630422789916
626 => 0.003867708134854
627 => 0.0038517811633821
628 => 0.0038421845869666
629 => 0.0038948128027654
630 => 0.0038666956700803
701 => 0.003890503448925
702 => 0.0038633714801502
703 => 0.0037693202555408
704 => 0.0037152304016943
705 => 0.0035375763569604
706 => 0.0035879588236678
707 => 0.0036213624512192
708 => 0.0036103225525127
709 => 0.0036340405268079
710 => 0.0036354966178002
711 => 0.0036277856625807
712 => 0.0036188573642711
713 => 0.0036145115624198
714 => 0.0036469016089705
715 => 0.003665705121192
716 => 0.0036247149521269
717 => 0.0036151115290283
718 => 0.0036565548530824
719 => 0.0036818352568144
720 => 0.0038684915541394
721 => 0.0038546634527416
722 => 0.0038893692736221
723 => 0.0038854619307952
724 => 0.0039218391601488
725 => 0.0039813005559777
726 => 0.0038603989125897
727 => 0.0038813832574176
728 => 0.0038762383806651
729 => 0.0039324087959898
730 => 0.0039325841538952
731 => 0.0038989071839877
801 => 0.003917164015721
802 => 0.0039069735530975
803 => 0.0039253890963819
804 => 0.0038544787700169
805 => 0.0039408398932327
806 => 0.0039898010851082
807 => 0.0039904809113049
808 => 0.0040136881276739
809 => 0.004037268003576
810 => 0.0040825275219959
811 => 0.004036005740172
812 => 0.0039523175834748
813 => 0.0039583595980773
814 => 0.0039092932624261
815 => 0.0039101180763929
816 => 0.003905715154796
817 => 0.0039189286539448
818 => 0.0038573783900205
819 => 0.0038718241139386
820 => 0.0038516000158592
821 => 0.0038813392941781
822 => 0.0038493447467858
823 => 0.0038762358996498
824 => 0.00388784122977
825 => 0.0039306651477586
826 => 0.0038430196192798
827 => 0.003664304453631
828 => 0.0037018725481623
829 => 0.0036463063854404
830 => 0.0036514492453556
831 => 0.0036618386408644
901 => 0.0036281632108216
902 => 0.003634587421639
903 => 0.0036343579036221
904 => 0.0036323800413484
905 => 0.0036236197613874
906 => 0.0036109156222755
907 => 0.0036615250023697
908 => 0.0036701245222362
909 => 0.0036892401896442
910 => 0.0037461154495697
911 => 0.0037404322698921
912 => 0.003749701771739
913 => 0.0037294665012532
914 => 0.0036523879015172
915 => 0.0036565736403192
916 => 0.0036043774103865
917 => 0.0036879054146917
918 => 0.0036681248807565
919 => 0.0036553722418484
920 => 0.00365189256617
921 => 0.0037089088088638
922 => 0.0037259689622979
923 => 0.0037153382195421
924 => 0.0036935342560016
925 => 0.0037354043117625
926 => 0.0037466069723283
927 => 0.0037491148348908
928 => 0.0038233005459123
929 => 0.0037532609920364
930 => 0.0037701202087876
1001 => 0.0039016510052049
1002 => 0.0037823707228636
1003 => 0.0038455561486875
1004 => 0.0038424635508945
1005 => 0.0038747870766678
1006 => 0.0038398120783281
1007 => 0.0038402456353497
1008 => 0.0038689467364511
1009 => 0.003828641216225
1010 => 0.0038186610025993
1011 => 0.0038048734089549
1012 => 0.0038349781152684
1013 => 0.0038530245251845
1014 => 0.0039984653354811
1015 => 0.0040924267318394
1016 => 0.0040883476198179
1017 => 0.0041256230679164
1018 => 0.004108830137144
1019 => 0.0040546013339289
1020 => 0.0041471632885191
1021 => 0.0041178728131301
1022 => 0.0041202874843332
1023 => 0.0041201976101505
1024 => 0.0041396732156664
1025 => 0.0041258729642453
1026 => 0.0040986712521277
1027 => 0.0041167290180821
1028 => 0.0041703541271974
1029 => 0.0043368081113103
1030 => 0.0044299579660419
1031 => 0.0043312003730931
1101 => 0.0043993220382924
1102 => 0.004358473313404
1103 => 0.0043510498849474
1104 => 0.0043938353248441
1105 => 0.0044366956549894
1106 => 0.0044339656372495
1107 => 0.0044028512384663
1108 => 0.0043852755040923
1109 => 0.0045183648530751
1110 => 0.0046164228182877
1111 => 0.0046097359224492
1112 => 0.0046392497059855
1113 => 0.0047259030872754
1114 => 0.004733825586485
1115 => 0.0047328275336811
1116 => 0.0047131907927628
1117 => 0.0047985123000061
1118 => 0.0048696890024375
1119 => 0.0047086454546002
1120 => 0.0047699687294018
1121 => 0.0047974987231728
1122 => 0.0048379209218096
1123 => 0.0049061199464571
1124 => 0.0049802021761222
1125 => 0.0049906782156671
1126 => 0.0049832449642853
1127 => 0.004934385742384
1128 => 0.0050154474020683
1129 => 0.0050629314211816
1130 => 0.0050912070679111
1201 => 0.005162909403398
1202 => 0.004797668739042
1203 => 0.0045391332431719
1204 => 0.004498759192194
1205 => 0.0045808614124887
1206 => 0.0046025111132275
1207 => 0.0045937841460061
1208 => 0.0043027789403854
1209 => 0.0044972271100113
1210 => 0.0047064369908622
1211 => 0.0047144735944198
1212 => 0.0048192084351461
1213 => 0.0048533143925127
1214 => 0.0049376396672068
1215 => 0.0049323650983154
1216 => 0.0049528969607952
1217 => 0.0049481770411734
1218 => 0.0051043718557626
1219 => 0.0052766779314089
1220 => 0.0052707115199091
1221 => 0.005245940482902
1222 => 0.005282729696947
1223 => 0.0054605680324553
1224 => 0.0054441955283229
1225 => 0.0054601000214809
1226 => 0.0056697814415745
1227 => 0.0059423971145304
1228 => 0.0058157397642763
1229 => 0.006090549769657
1230 => 0.0062635281009916
1231 => 0.0065626762387416
]
'min_raw' => 0.0026793953338374
'max_raw' => 0.0065626762387416
'avg_raw' => 0.0046210357862895
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.002679'
'max' => '$0.006562'
'avg' => '$0.004621'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 0.0011947242452189
'max_diff' => 0.0026624357180541
'year' => 2028
]
3 => [
'items' => [
101 => 0.0065252214185597
102 => 0.0066416775933353
103 => 0.0064581694733771
104 => 0.0060367977368432
105 => 0.0059701140465905
106 => 0.0061036164831764
107 => 0.0064318191965456
108 => 0.0060932802117581
109 => 0.0061617662074665
110 => 0.0061420422360952
111 => 0.0061409912294823
112 => 0.0061811038771437
113 => 0.0061229183895758
114 => 0.0058858602458549
115 => 0.0059945025961298
116 => 0.0059525505672545
117 => 0.0059990994710226
118 => 0.0062503047064307
119 => 0.0061392408838719
120 => 0.0060222441688985
121 => 0.0061689840131246
122 => 0.0063558342601056
123 => 0.0063441415074517
124 => 0.0063214526801117
125 => 0.006449348411879
126 => 0.0066605946908251
127 => 0.0067176937111679
128 => 0.0067598430406469
129 => 0.0067656547210633
130 => 0.0068255186412915
131 => 0.0065036152545743
201 => 0.0070144841963597
202 => 0.0071026971501364
203 => 0.0070861167708787
204 => 0.0071841617564328
205 => 0.0071553144345216
206 => 0.0071135191910783
207 => 0.0072689413479482
208 => 0.0070907623870182
209 => 0.0068378597840856
210 => 0.0066991124142704
211 => 0.0068818261432741
212 => 0.0069934030417462
213 => 0.0070671482740127
214 => 0.0070894635367385
215 => 0.0065286036981438
216 => 0.0062263313518539
217 => 0.0064200844602662
218 => 0.0066564766246545
219 => 0.0065023020841654
220 => 0.0065083454342616
221 => 0.0062885330558807
222 => 0.006675925142679
223 => 0.0066194853741128
224 => 0.0069122949932745
225 => 0.0068424136277175
226 => 0.00708118850534
227 => 0.0070183110778444
228 => 0.0072793117639488
301 => 0.0073834320039473
302 => 0.0075582660919262
303 => 0.0076868747587462
304 => 0.0077623962277947
305 => 0.0077578622020669
306 => 0.0080571158870836
307 => 0.0078806564441567
308 => 0.007658981795543
309 => 0.0076549724005242
310 => 0.0077697808421952
311 => 0.00801038783978
312 => 0.0080727737335643
313 => 0.0081076389373496
314 => 0.008054241664086
315 => 0.007862707585751
316 => 0.0077800041418258
317 => 0.0078504698721995
318 => 0.0077642963391417
319 => 0.0079130560332225
320 => 0.0081173348665514
321 => 0.0080751520952751
322 => 0.0082161627752575
323 => 0.0083620939942831
324 => 0.0085707821916709
325 => 0.0086253410141697
326 => 0.0087155246730739
327 => 0.008808353281875
328 => 0.0088381673292208
329 => 0.0088950915963595
330 => 0.0088947915773731
331 => 0.0090663366878405
401 => 0.009255556256996
402 => 0.0093269822639091
403 => 0.0094912224283527
404 => 0.0092099669024048
405 => 0.0094233024496669
406 => 0.0096157364534325
407 => 0.0093863087010204
408 => 0.00970252140791
409 => 0.0097147992307652
410 => 0.0099001797789748
411 => 0.0097122610787486
412 => 0.0096006755544119
413 => 0.0099228187821167
414 => 0.010078693742586
415 => 0.01003174293594
416 => 0.0096744449791172
417 => 0.0094664822430159
418 => 0.0089222036496226
419 => 0.0095669251545824
420 => 0.0098809501928642
421 => 0.009673631730131
422 => 0.0097781911037388
423 => 0.010348633142652
424 => 0.010565820537684
425 => 0.010520647077772
426 => 0.010528280648878
427 => 0.010645471025007
428 => 0.011165157690682
429 => 0.010853749394367
430 => 0.011091809368654
501 => 0.011218075520626
502 => 0.011335358559467
503 => 0.011047348483758
504 => 0.01067265160697
505 => 0.010553969377386
506 => 0.0096530179948125
507 => 0.009606119562716
508 => 0.0095797940516123
509 => 0.009413815427921
510 => 0.0092834016950709
511 => 0.0091796918527571
512 => 0.008907526256145
513 => 0.0089993741554967
514 => 0.0085655989998718
515 => 0.008843112972393
516 => 0.0081507973501483
517 => 0.0087273783726235
518 => 0.0084135715360124
519 => 0.008624284386989
520 => 0.0086235492297022
521 => 0.0082355600644842
522 => 0.0080117760111138
523 => 0.0081543799197271
524 => 0.0083072626296729
525 => 0.0083320673350024
526 => 0.0085302837590942
527 => 0.0085856017024104
528 => 0.0084179857516144
529 => 0.0081364506476958
530 => 0.008201844831204
531 => 0.0080104508000722
601 => 0.0076750401223788
602 => 0.0079159379268068
603 => 0.0079981910287673
604 => 0.0080345186844489
605 => 0.0077046808051141
606 => 0.0076010385822983
607 => 0.0075458603325137
608 => 0.0080938727194004
609 => 0.008123894075022
610 => 0.0079703005750696
611 => 0.0086645577591877
612 => 0.0085074259764982
613 => 0.0086829806759838
614 => 0.0081959109944801
615 => 0.0082145177122398
616 => 0.007983931119378
617 => 0.0081130442035789
618 => 0.0080217912371747
619 => 0.0081026131422958
620 => 0.0081510574589843
621 => 0.0083816062148551
622 => 0.00873001086908
623 => 0.0083471699188515
624 => 0.0081803606344536
625 => 0.008283848176323
626 => 0.0085594491377502
627 => 0.0089769987020659
628 => 0.0087298009560229
629 => 0.0088395031180269
630 => 0.0088634681601152
701 => 0.0086811936939411
702 => 0.0089837194216274
703 => 0.0091458454168091
704 => 0.0093121531406179
705 => 0.0094565534773645
706 => 0.0092457261785435
707 => 0.0094713416091881
708 => 0.0092895353985733
709 => 0.0091264364328712
710 => 0.0091266837866779
711 => 0.0090243694229973
712 => 0.0088261224509266
713 => 0.0087895626676226
714 => 0.0089797512773619
715 => 0.0091322645314446
716 => 0.00914482625354
717 => 0.0092292654274141
718 => 0.0092792356607201
719 => 0.0097690118783571
720 => 0.0099660039247321
721 => 0.010206882070171
722 => 0.010300717682968
723 => 0.010583129235557
724 => 0.010355058970496
725 => 0.010305714534021
726 => 0.0096206764835543
727 => 0.0097328514259417
728 => 0.0099124543319759
729 => 0.0096236380693229
730 => 0.0098068255116364
731 => 0.0098429905931896
801 => 0.0096138242032349
802 => 0.0097362318738049
803 => 0.0094111533921159
804 => 0.0087370966916438
805 => 0.0089844698394243
806 => 0.009166619741092
807 => 0.0089066693724913
808 => 0.0093726203467394
809 => 0.0091004214067642
810 => 0.0090141474106454
811 => 0.0086775617928856
812 => 0.0088364172480997
813 => 0.0090512715258678
814 => 0.0089185165616978
815 => 0.0091940030456086
816 => 0.0095841653763879
817 => 0.0098622182878697
818 => 0.0098835637378166
819 => 0.009704794343832
820 => 0.0099912734385833
821 => 0.0099933601260322
822 => 0.0096702105368513
823 => 0.0094722832127825
824 => 0.0094273137083114
825 => 0.0095396563472708
826 => 0.0096760610505629
827 => 0.0098911332495208
828 => 0.010021096874977
829 => 0.010359973082788
830 => 0.010451663268279
831 => 0.010552402983406
901 => 0.010687022309794
902 => 0.01084866732681
903 => 0.010494997232036
904 => 0.010509049204225
905 => 0.010179716508867
906 => 0.009827777292791
907 => 0.01009485528795
908 => 0.010444024238724
909 => 0.010363924495619
910 => 0.01035491163823
911 => 0.0103700687644
912 => 0.010309676173911
913 => 0.010036522725388
914 => 0.0098993467735706
915 => 0.010076338748733
916 => 0.010170402106525
917 => 0.010316286171274
918 => 0.010298302881054
919 => 0.010674084565042
920 => 0.010820101964392
921 => 0.010782744465201
922 => 0.010789619144111
923 => 0.011053976670933
924 => 0.011347996610031
925 => 0.011623385082345
926 => 0.011903522064592
927 => 0.011565805998561
928 => 0.011394334607661
929 => 0.011571249313663
930 => 0.011477375880404
1001 => 0.012016800472583
1002 => 0.012054149060973
1003 => 0.012593534646615
1004 => 0.013105475796229
1005 => 0.012783934732535
1006 => 0.013087133473071
1007 => 0.013415067631117
1008 => 0.014047705827388
1009 => 0.013834655539364
1010 => 0.013671462357662
1011 => 0.013517245589496
1012 => 0.013838146202826
1013 => 0.014250979715362
1014 => 0.014339900099892
1015 => 0.014483985093032
1016 => 0.01433249734062
1017 => 0.014514947652571
1018 => 0.01515907742649
1019 => 0.014985027875686
1020 => 0.014737849533684
1021 => 0.015246328127311
1022 => 0.015430344553684
1023 => 0.016721868204123
1024 => 0.018352470162982
1025 => 0.017677390244905
1026 => 0.017258346355061
1027 => 0.017356831609028
1028 => 0.017952272245044
1029 => 0.018143508878991
1030 => 0.017623661784702
1031 => 0.01780728056675
1101 => 0.018819038108836
1102 => 0.019361813569096
1103 => 0.018624651589592
1104 => 0.01659085092441
1105 => 0.014715593828423
1106 => 0.015212996454207
1107 => 0.015156606432643
1108 => 0.01624361369229
1109 => 0.014980876851462
1110 => 0.015002138101392
1111 => 0.016111623520007
1112 => 0.015815631831716
1113 => 0.015336163204436
1114 => 0.014719094480014
1115 => 0.013578385870972
1116 => 0.01256802844493
1117 => 0.014549572028817
1118 => 0.014464124266276
1119 => 0.014340383243469
1120 => 0.01461575549955
1121 => 0.015952885009299
1122 => 0.015922059846233
1123 => 0.015725965885946
1124 => 0.015874701426531
1125 => 0.015310089145045
1126 => 0.015455602585967
1127 => 0.014715296778118
1128 => 0.015049945921167
1129 => 0.015335134480102
1130 => 0.015392390305597
1201 => 0.015521390603992
1202 => 0.014419097178194
1203 => 0.014913994564742
1204 => 0.015204700413726
1205 => 0.01389128081205
1206 => 0.015178738331166
1207 => 0.014399908702032
1208 => 0.014135562228276
1209 => 0.014491469930189
1210 => 0.014352772352622
1211 => 0.014233528320025
1212 => 0.014166988100963
1213 => 0.014428327437148
1214 => 0.014416135644747
1215 => 0.013988533766968
1216 => 0.013430744548687
1217 => 0.013617956919149
1218 => 0.013549940909835
1219 => 0.013303442117841
1220 => 0.013469552541267
1221 => 0.012738086303059
1222 => 0.011479636658527
1223 => 0.01231100704106
1224 => 0.012279000185689
1225 => 0.012262860877816
1226 => 0.0128876127429
1227 => 0.01282755726655
1228 => 0.01271855598891
1229 => 0.013301440223897
1230 => 0.013088679637227
1231 => 0.013744357632645
]
'min_raw' => 0.0058858602458549
'max_raw' => 0.019361813569096
'avg_raw' => 0.012623836907475
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.005885'
'max' => '$0.019361'
'avg' => '$0.012623'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072435
'min_diff' => 0.0032064649120175
'max_diff' => 0.012799137330354
'year' => 2029
]
4 => [
'items' => [
101 => 0.014176229567021
102 => 0.01406669287487
103 => 0.014472870516568
104 => 0.013622269914049
105 => 0.013904805314033
106 => 0.013963035468393
107 => 0.013294247522916
108 => 0.012837383085199
109 => 0.012806915435839
110 => 0.012014775460635
111 => 0.012437930241459
112 => 0.012810288937249
113 => 0.012631958018168
114 => 0.012575503776671
115 => 0.012863916253046
116 => 0.012886328372546
117 => 0.012375329672813
118 => 0.012481582483712
119 => 0.012924674368219
120 => 0.012470417705079
121 => 0.011587871211002
122 => 0.011368987478311
123 => 0.011339784353542
124 => 0.010746154310597
125 => 0.011383614335963
126 => 0.011105345952024
127 => 0.011984392442719
128 => 0.011482285801655
129 => 0.011460640987907
130 => 0.011427921677322
131 => 0.01091695977681
201 => 0.011028827959699
202 => 0.011400694837629
203 => 0.011533381129054
204 => 0.011519540861792
205 => 0.011398872487056
206 => 0.011454113851088
207 => 0.011276162170173
208 => 0.011213323727898
209 => 0.011014988319004
210 => 0.010723490059483
211 => 0.010764024680332
212 => 0.010186490353554
213 => 0.009871819000259
214 => 0.0097847221169686
215 => 0.0096682525246034
216 => 0.00979787766734
217 => 0.01018485427137
218 => 0.0097180783852435
219 => 0.0089178238690011
220 => 0.0089659205289946
221 => 0.0090739794439735
222 => 0.0088726123707916
223 => 0.0086820353354823
224 => 0.0088477266056802
225 => 0.0085086482175794
226 => 0.0091149554472094
227 => 0.0090985565358043
228 => 0.0093245503772228
301 => 0.0094658689641222
302 => 0.0091401753737548
303 => 0.0090582643165465
304 => 0.0091049245773823
305 => 0.0083337344027814
306 => 0.0092615276871106
307 => 0.0092695512819609
308 => 0.0092008483915867
309 => 0.009694869673088
310 => 0.010737408666158
311 => 0.010345163560931
312 => 0.010193274400516
313 => 0.0099045329955373
314 => 0.010289263773903
315 => 0.01025972245286
316 => 0.010126125395888
317 => 0.010045325478984
318 => 0.010194201803341
319 => 0.010026878054854
320 => 0.009996822111877
321 => 0.0098147157986227
322 => 0.0097497121301003
323 => 0.0097015860017969
324 => 0.0096486038633105
325 => 0.0097654692584851
326 => 0.0095006368980963
327 => 0.0091812750333039
328 => 0.0091547235497897
329 => 0.0092280345302028
330 => 0.0091955998787306
331 => 0.0091545682651569
401 => 0.0090762277405498
402 => 0.0090529857803793
403 => 0.0091285108755373
404 => 0.0090432474464906
405 => 0.0091690582805883
406 => 0.0091348446951447
407 => 0.0089437303880658
408 => 0.0087055312018666
409 => 0.0087034107294698
410 => 0.0086520911055281
411 => 0.0085867278484813
412 => 0.0085685452856796
413 => 0.0088337725490546
414 => 0.0093827850466569
415 => 0.0092750007566219
416 => 0.0093528859523505
417 => 0.0097360040295237
418 => 0.0098577857454946
419 => 0.0097713479680565
420 => 0.0096530266070493
421 => 0.0096582321464426
422 => 0.010062572055316
423 => 0.010087790239459
424 => 0.010151508455094
425 => 0.01023340436895
426 => 0.0097852951963142
427 => 0.0096371262447092
428 => 0.0095669155753383
429 => 0.0093506938886246
430 => 0.0095838704402989
501 => 0.0094480084492538
502 => 0.0094663408735523
503 => 0.0094544018581782
504 => 0.0094609213678851
505 => 0.0091147859719821
506 => 0.0092408995179083
507 => 0.0090312112876815
508 => 0.0087504622860162
509 => 0.0087495211169193
510 => 0.00881823403734
511 => 0.0087773609035369
512 => 0.0086673723514171
513 => 0.0086829957061144
514 => 0.0085461186792998
515 => 0.0086996150554083
516 => 0.0087040167822387
517 => 0.0086449123164328
518 => 0.008881394662246
519 => 0.0089782816722769
520 => 0.0089393778467431
521 => 0.0089755520761678
522 => 0.0092794796804897
523 => 0.0093290331412853
524 => 0.0093510415152528
525 => 0.0093215532096871
526 => 0.008981107314847
527 => 0.0089962075379709
528 => 0.0088854121198433
529 => 0.008791801666859
530 => 0.0087955455940562
531 => 0.0088436735353972
601 => 0.0090538510778999
602 => 0.0094961573254538
603 => 0.0095129425242268
604 => 0.0095332866747985
605 => 0.0094505367902726
606 => 0.0094255786332899
607 => 0.009458504884597
608 => 0.0096246118558206
609 => 0.01005188408341
610 => 0.0099008575416276
611 => 0.00977807061229
612 => 0.0098857878524376
613 => 0.0098692056276325
614 => 0.0097292349625164
615 => 0.0097253064521334
616 => 0.009456657994447
617 => 0.0093573447764698
618 => 0.0092743512180625
619 => 0.0091837244188834
620 => 0.0091299978144923
621 => 0.0092125462971421
622 => 0.0092314261118091
623 => 0.0090509324117946
624 => 0.0090263317874298
625 => 0.0091737268390887
626 => 0.009108863772295
627 => 0.009175577045019
628 => 0.0091910550965468
629 => 0.009188562773761
630 => 0.0091208382825527
701 => 0.0091640038536755
702 => 0.0090619044096939
703 => 0.0089508865992046
704 => 0.0088800641527664
705 => 0.0088182621750147
706 => 0.0088525535042234
707 => 0.0087303111769439
708 => 0.0086912033961953
709 => 0.0091493803294352
710 => 0.0094878405562516
711 => 0.0094829192105087
712 => 0.0094529617839663
713 => 0.0094084511247665
714 => 0.0096213556238604
715 => 0.0095471839535359
716 => 0.0096011500409474
717 => 0.0096148866751432
718 => 0.0096564633296443
719 => 0.0096713234099942
720 => 0.0096264059261873
721 => 0.0094756573643227
722 => 0.0091000062808992
723 => 0.0089251396875148
724 => 0.0088674307990645
725 => 0.0088695284075549
726 => 0.0088116670012534
727 => 0.0088287097785755
728 => 0.0088057402188118
729 => 0.0087622414295526
730 => 0.008849867576563
731 => 0.0088599656737119
801 => 0.0088395126839452
802 => 0.0088443301034443
803 => 0.0086749880837622
804 => 0.0086878627897271
805 => 0.008616174790876
806 => 0.0086027341553032
807 => 0.0084215131367958
808 => 0.0081004538341034
809 => 0.0082783518537756
810 => 0.0080634760622585
811 => 0.0079820993441114
812 => 0.0083673240711435
813 => 0.0083286581930202
814 => 0.0082624790173263
815 => 0.0081645862235263
816 => 0.008128276834066
817 => 0.0079076724778611
818 => 0.0078946379956181
819 => 0.0080039754713719
820 => 0.0079535199883843
821 => 0.0078826613812841
822 => 0.0076260186891889
823 => 0.0073374673317987
824 => 0.0073461768835092
825 => 0.0074379597016061
826 => 0.0077048306238224
827 => 0.0076005595375987
828 => 0.0075249096681705
829 => 0.0075107427216533
830 => 0.0076880717178272
831 => 0.0079390293989865
901 => 0.0080567731281248
902 => 0.007940092668479
903 => 0.0078060564389599
904 => 0.0078142146031867
905 => 0.0078684872148652
906 => 0.0078741904989792
907 => 0.0077869466927093
908 => 0.0078115053131408
909 => 0.0077741985230181
910 => 0.0075452468208981
911 => 0.0075411058106204
912 => 0.0074849173705753
913 => 0.0074832160069414
914 => 0.0073876254535613
915 => 0.0073742516743571
916 => 0.0071844508286891
917 => 0.0073093783200777
918 => 0.0072255835178419
919 => 0.007099284985677
920 => 0.007077511071127
921 => 0.0070768565209628
922 => 0.0072065368736612
923 => 0.0073078629296528
924 => 0.0072270411643025
925 => 0.0072086396149963
926 => 0.0074051200192075
927 => 0.007380116096813
928 => 0.0073584628612773
929 => 0.0079165588911666
930 => 0.007474782334733
1001 => 0.0072821425404036
1002 => 0.0070437142136163
1003 => 0.0071213476790782
1004 => 0.0071377061909239
1005 => 0.0065643290449366
1006 => 0.0063317100082191
1007 => 0.0062518839208811
1008 => 0.0062059428790429
1009 => 0.0062268787886999
1010 => 0.0060174943721625
1011 => 0.0061582041629742
1012 => 0.005976894957077
1013 => 0.0059464978786771
1014 => 0.006270701198722
1015 => 0.0063158121967379
1016 => 0.0061233546643135
1017 => 0.0062469435561742
1018 => 0.0062021285059714
1019 => 0.0059800029830231
1020 => 0.0059715194218912
1021 => 0.0058600646425654
1022 => 0.0056856594948185
1023 => 0.0056059516623833
1024 => 0.0055644391311959
1025 => 0.0055815680106269
1026 => 0.0055729071250343
1027 => 0.0055163889880933
1028 => 0.005576146678486
1029 => 0.0054234904731151
1030 => 0.0053627015421018
1031 => 0.0053352445922555
1101 => 0.0051997534234255
1102 => 0.0054153801262303
1103 => 0.0054578613030765
1104 => 0.0055004261809642
1105 => 0.0058709243826999
1106 => 0.0058524153395582
1107 => 0.0060197280752893
1108 => 0.0060132266100472
1109 => 0.00596550630753
1110 => 0.0057641822008191
1111 => 0.0058444264014969
1112 => 0.005597447224528
1113 => 0.0057825008168647
1114 => 0.005698050085345
1115 => 0.0057539479395881
1116 => 0.0056534385575527
1117 => 0.0057090645995018
1118 => 0.0054679351660545
1119 => 0.0052427718938841
1120 => 0.0053333841675311
1121 => 0.0054318900717559
1122 => 0.0056454759709527
1123 => 0.0055182659714365
1124 => 0.0055640154976052
1125 => 0.0054107622433183
1126 => 0.0050945570050965
1127 => 0.0050963466924051
1128 => 0.0050477054054102
1129 => 0.0050056722317025
1130 => 0.0055328775701416
1201 => 0.0054673112524236
1202 => 0.0053628399062476
1203 => 0.0055026789546305
1204 => 0.005539654618567
1205 => 0.0055407072637377
1206 => 0.0056427302236696
1207 => 0.0056971798956739
1208 => 0.005706776886363
1209 => 0.0058673122181678
1210 => 0.0059211215438766
1211 => 0.0061427545410901
1212 => 0.005692560221423
1213 => 0.005683288765668
1214 => 0.0055046467768153
1215 => 0.0053913492032668
1216 => 0.0055124043586065
1217 => 0.0056196427005608
1218 => 0.0055079789710256
1219 => 0.0055225598967529
1220 => 0.0053726604631137
1221 => 0.0054262424572158
1222 => 0.0054723944888106
1223 => 0.005446912049655
1224 => 0.005408763604875
1225 => 0.0056108503794505
1226 => 0.0055994478516445
1227 => 0.0057876357020841
1228 => 0.0059343415889441
1229 => 0.0061972647650112
1230 => 0.00592289072429
1231 => 0.0059128914437081
]
'min_raw' => 0.0050056722317025
'max_raw' => 0.014472870516568
'avg_raw' => 0.0097392713741354
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.0050056'
'max' => '$0.014472'
'avg' => '$0.009739'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -0.00088018801415242
'max_diff' => -0.0048889430525277
'year' => 2030
]
5 => [
'items' => [
101 => 0.0060106360153314
102 => 0.0059211065796919
103 => 0.005977686092565
104 => 0.0061881489307715
105 => 0.0061925956788998
106 => 0.0061181069184393
107 => 0.0061135742705958
108 => 0.00612788065186
109 => 0.006211673573776
110 => 0.0061823937521621
111 => 0.0062162771030081
112 => 0.0062586487520813
113 => 0.0064339158578548
114 => 0.0064761721636928
115 => 0.0063735112478891
116 => 0.0063827803791406
117 => 0.0063443823785249
118 => 0.0063072903910556
119 => 0.0063906677620368
120 => 0.0065430415462912
121 => 0.0065420936368876
122 => 0.0065774413931115
123 => 0.0065994627524024
124 => 0.0065049309577057
125 => 0.0064433942353886
126 => 0.0064669913304084
127 => 0.0065047235992228
128 => 0.0064547552641747
129 => 0.0061463275526729
130 => 0.0062398848179041
131 => 0.0062243123142531
201 => 0.0062021351753729
202 => 0.0062962077290197
203 => 0.006287134201729
204 => 0.0060153468323316
205 => 0.0060327457779084
206 => 0.0060164049198392
207 => 0.0060692055752859
208 => 0.0059182551710208
209 => 0.0059646864987063
210 => 0.0059938077921639
211 => 0.0060109604577308
212 => 0.0060729276474512
213 => 0.0060656565129602
214 => 0.0060724756635221
215 => 0.006164356647146
216 => 0.0066290591325694
217 => 0.0066543518635427
218 => 0.0065298012058482
219 => 0.0065795567369441
220 => 0.0064840369975785
221 => 0.0065481600385412
222 => 0.0065920313946193
223 => 0.0063937851724792
224 => 0.0063820463178114
225 => 0.0062861323345032
226 => 0.0063376710762873
227 => 0.0062556692323421
228 => 0.0062757896165435
301 => 0.0062195312682528
302 => 0.0063207850942507
303 => 0.0064340026049702
304 => 0.006462605819273
305 => 0.0063873630769005
306 => 0.0063328823726844
307 => 0.0062372322031407
308 => 0.006396300566795
309 => 0.006442817003848
310 => 0.0063960562357538
311 => 0.0063852207440434
312 => 0.0063646875068315
313 => 0.0063895769673848
314 => 0.0064425636653419
315 => 0.006417576117096
316 => 0.0064340808329364
317 => 0.006371181875742
318 => 0.0065049622516632
319 => 0.006717437684627
320 => 0.0067181208278872
321 => 0.0066931331449491
322 => 0.0066829087234579
323 => 0.0067085476025318
324 => 0.0067224556426675
325 => 0.0068053670762262
326 => 0.0068943343477719
327 => 0.0073095057846139
328 => 0.007192927306484
329 => 0.0075612921039096
330 => 0.0078526208324907
331 => 0.0079399775799308
401 => 0.0078596134827385
402 => 0.0075846922474267
403 => 0.0075712033000413
404 => 0.0079820516943487
405 => 0.0078659682049083
406 => 0.007852160443214
407 => 0.0077052691873678
408 => 0.0077921001124088
409 => 0.0077731089153695
410 => 0.0077431303817619
411 => 0.0079087977380455
412 => 0.0082189122397817
413 => 0.0081705779864507
414 => 0.0081344987085007
415 => 0.0079764098150433
416 => 0.0080716146393373
417 => 0.0080377140249345
418 => 0.0081833725782704
419 => 0.0080970876780063
420 => 0.0078650887583045
421 => 0.0079020353509455
422 => 0.007896450947794
423 => 0.0080113775689358
424 => 0.0079768794499231
425 => 0.0078897146363818
426 => 0.0082178523021285
427 => 0.0081965448673125
428 => 0.0082267539383239
429 => 0.0082400529056296
430 => 0.0084397845203354
501 => 0.0085216081721816
502 => 0.0085401835736753
503 => 0.0086179097144608
504 => 0.0085382496764857
505 => 0.0088569466250307
506 => 0.0090688614993307
507 => 0.0093150115308698
508 => 0.0096747028858397
509 => 0.0098099501626394
510 => 0.009785518952637
511 => 0.010058232832874
512 => 0.010548293613572
513 => 0.00988457424779
514 => 0.010583472351595
515 => 0.010362209281097
516 => 0.0098375985212987
517 => 0.0098038197731223
518 => 0.010159092270514
519 => 0.010947052476018
520 => 0.01074967738151
521 => 0.010947375310965
522 => 0.010716750174912
523 => 0.010705297693045
524 => 0.010936174362872
525 => 0.011475630286352
526 => 0.01121935499831
527 => 0.010851921531621
528 => 0.011123228685526
529 => 0.010888197320522
530 => 0.010358605874031
531 => 0.010749526452495
601 => 0.010488128994453
602 => 0.010564418669363
603 => 0.011113837246229
604 => 0.011047729749479
605 => 0.011133278971662
606 => 0.010982286833721
607 => 0.01084123636761
608 => 0.010577955198068
609 => 0.010500010623371
610 => 0.010521551699665
611 => 0.010499999948683
612 => 0.010352696554003
613 => 0.010320886399947
614 => 0.010267868082885
615 => 0.010284300676286
616 => 0.010184610729154
617 => 0.010372746256386
618 => 0.010407665868085
619 => 0.010544575215604
620 => 0.010558789598243
621 => 0.010940080182301
622 => 0.01073007173593
623 => 0.010870963533012
624 => 0.010858360844556
625 => 0.0098489684272225
626 => 0.0099880537963864
627 => 0.010204426983412
628 => 0.010106951155944
629 => 0.0099691431417348
630 => 0.0098578557814627
701 => 0.0096892440509335
702 => 0.0099265618237518
703 => 0.010238609459076
704 => 0.010566703641232
705 => 0.01096088730351
706 => 0.010872910098893
707 => 0.010559334651854
708 => 0.010573401417341
709 => 0.010660356626515
710 => 0.010547741729921
711 => 0.010514529398412
712 => 0.010655793762175
713 => 0.010656766572211
714 => 0.010527189523715
715 => 0.010383188346662
716 => 0.010382584976472
717 => 0.010356961357902
718 => 0.010721308559732
719 => 0.010921662681082
720 => 0.010944632958207
721 => 0.010920116598413
722 => 0.010929551972279
723 => 0.010812970323567
724 => 0.011079441401307
725 => 0.0113239816135
726 => 0.011258439612793
727 => 0.011160182836388
728 => 0.011081916581294
729 => 0.01124000257043
730 => 0.011232963250184
731 => 0.011321845768079
801 => 0.011317813543657
802 => 0.01128792569593
803 => 0.011258440680182
804 => 0.011375345434786
805 => 0.011341678742893
806 => 0.011307959757328
807 => 0.01124033116966
808 => 0.011249523017916
809 => 0.01115128320693
810 => 0.011105832975219
811 => 0.010422370540649
812 => 0.010239727045352
813 => 0.010297190407024
814 => 0.010316108837721
815 => 0.010236622154504
816 => 0.010350585639784
817 => 0.01033282455132
818 => 0.010401922556643
819 => 0.010358753122804
820 => 0.010360524811427
821 => 0.010487476911654
822 => 0.010524331646443
823 => 0.010505587030875
824 => 0.010518715117091
825 => 0.010821246322915
826 => 0.01077823605985
827 => 0.010755387714823
828 => 0.010761716862544
829 => 0.010839020071975
830 => 0.010860660750016
831 => 0.01076896767649
901 => 0.010812210660036
902 => 0.010996333795625
903 => 0.011060766472614
904 => 0.011266404648124
905 => 0.01117904589624
906 => 0.011339396666121
907 => 0.011832260265128
908 => 0.012225993811582
909 => 0.011863900170536
910 => 0.012586941686934
911 => 0.013149933221595
912 => 0.013128324668784
913 => 0.013030154072487
914 => 0.012389203178179
915 => 0.011799390609198
916 => 0.012292793867915
917 => 0.012294051654291
918 => 0.01225166787679
919 => 0.011988425874826
920 => 0.012242507625731
921 => 0.012262675712429
922 => 0.012251386947005
923 => 0.012049559921303
924 => 0.011741407356926
925 => 0.011801619630392
926 => 0.011900248562627
927 => 0.011713523417756
928 => 0.011653853419894
929 => 0.011764791298601
930 => 0.012122256258619
1001 => 0.012054679578581
1002 => 0.012052914878367
1003 => 0.012342036572542
1004 => 0.012135087835879
1005 => 0.011802379099987
1006 => 0.011718365756285
1007 => 0.011420174984313
1008 => 0.011626136412633
1009 => 0.011633548597772
1010 => 0.011520745628356
1011 => 0.011811532439262
1012 => 0.011808852787608
1013 => 0.012084911586658
1014 => 0.012612632327493
1015 => 0.012456559336868
1016 => 0.012275063429463
1017 => 0.012294797066934
1018 => 0.012511226363217
1019 => 0.012380368270084
1020 => 0.01242742575275
1021 => 0.012511155136081
1022 => 0.012561671151929
1023 => 0.012287528589651
1024 => 0.012223612844629
1025 => 0.012092863661693
1026 => 0.012058753640414
1027 => 0.012165246121744
1028 => 0.012137189115349
1029 => 0.011632925632313
1030 => 0.01158022729264
1031 => 0.011581843475482
1101 => 0.011449330994705
1102 => 0.011247217654881
1103 => 0.011778359444378
1104 => 0.011735701325357
1105 => 0.011688610063434
1106 => 0.01169437847432
1107 => 0.011924929123075
1108 => 0.011791198103711
1109 => 0.012146743936775
1110 => 0.012073654402183
1111 => 0.011998690396821
1112 => 0.01198832808782
1113 => 0.011959473341384
1114 => 0.011860519679477
1115 => 0.01174102718653
1116 => 0.011662127892424
1117 => 0.010757696523014
1118 => 0.010925553724341
1119 => 0.011118658133803
1120 => 0.011185317002132
1121 => 0.011071292395202
1122 => 0.011865022065946
1123 => 0.012010044125361
1124 => 0.01157076284784
1125 => 0.011488591256552
1126 => 0.011870409221791
1127 => 0.011640126313404
1128 => 0.01174382269295
1129 => 0.011519687839258
1130 => 0.011975112557989
1201 => 0.011971642984678
1202 => 0.011794472482858
1203 => 0.011944215777785
1204 => 0.01191819419529
1205 => 0.011718169135086
1206 => 0.011981453709176
1207 => 0.01198158429504
1208 => 0.011811061539057
1209 => 0.0116119282923
1210 => 0.011576327971097
1211 => 0.011549507911301
1212 => 0.01173722660234
1213 => 0.011905534593744
1214 => 0.012218714038659
1215 => 0.01229745479207
1216 => 0.012604785194704
1217 => 0.012421784903581
1218 => 0.012502906562385
1219 => 0.012590975598376
1220 => 0.012633199132862
1221 => 0.012564398149257
1222 => 0.013041808766788
1223 => 0.013082116850391
1224 => 0.01309563180216
1225 => 0.012934651628049
1226 => 0.013077639700538
1227 => 0.013010740316688
1228 => 0.013184793928283
1229 => 0.013212087757009
1230 => 0.013188970855084
1231 => 0.013197634347125
]
'min_raw' => 0.0059182551710208
'max_raw' => 0.013212087757009
'avg_raw' => 0.0095651714640148
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.005918'
'max' => '$0.013212'
'avg' => '$0.009565'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 0.00091258293931832
'max_diff' => -0.0012607827595596
'year' => 2031
]
6 => [
'items' => [
101 => 0.012790248606067
102 => 0.012769123506262
103 => 0.012481081271454
104 => 0.012598460611239
105 => 0.012379025561649
106 => 0.012448610676305
107 => 0.012479283131815
108 => 0.012463261581703
109 => 0.012605097062996
110 => 0.012484507928823
111 => 0.01216625337705
112 => 0.011847912117038
113 => 0.011843915601834
114 => 0.011760101967263
115 => 0.011699520060701
116 => 0.011711190285163
117 => 0.01175231767834
118 => 0.011697129661844
119 => 0.011708906823267
120 => 0.011904486173704
121 => 0.011943708217626
122 => 0.011810416387337
123 => 0.011275230454807
124 => 0.011143894484552
125 => 0.011238296175466
126 => 0.011193178247456
127 => 0.0090337684374412
128 => 0.0095410897413258
129 => 0.0092396566495612
130 => 0.009378570886516
131 => 0.0090708857555451
201 => 0.0092177292272038
202 => 0.0091906125998534
203 => 0.010006370243771
204 => 0.0099936333101992
205 => 0.0099997298062765
206 => 0.0097087281641707
207 => 0.010172301681601
208 => 0.010400674665852
209 => 0.010358408904417
210 => 0.01036904628599
211 => 0.010186260827234
212 => 0.010001499569067
213 => 0.0097965708992046
214 => 0.010177303037859
215 => 0.010134972123355
216 => 0.010232064011045
217 => 0.010478996018257
218 => 0.010515357694323
219 => 0.010564228155699
220 => 0.010546711574132
221 => 0.010964027612326
222 => 0.010913487886561
223 => 0.011035274084384
224 => 0.010784750635521
225 => 0.010501259573229
226 => 0.01055514195615
227 => 0.01054995264938
228 => 0.010483886818189
229 => 0.010424245539792
301 => 0.010324959615088
302 => 0.010639114972404
303 => 0.010626360838612
304 => 0.010832835439646
305 => 0.010796339048326
306 => 0.010552607214909
307 => 0.010561312145022
308 => 0.010619856983475
309 => 0.010822481337813
310 => 0.010882634041899
311 => 0.010854768912696
312 => 0.01092072360665
313 => 0.010972851507563
314 => 0.01092727006843
315 => 0.011572607123805
316 => 0.011304618185671
317 => 0.011435234129462
318 => 0.011466385262423
319 => 0.011386592290382
320 => 0.011403896528846
321 => 0.011430107734995
322 => 0.011589257046054
323 => 0.012006910888497
324 => 0.01219188693225
325 => 0.012748396486435
326 => 0.012176527246807
327 => 0.012142594892757
328 => 0.012242839068445
329 => 0.012569569089271
330 => 0.01283435308296
331 => 0.012922197209421
401 => 0.012933807260882
402 => 0.013098608681891
403 => 0.013193069783049
404 => 0.013078597454673
405 => 0.012981594142127
406 => 0.012634140317079
407 => 0.012674359043414
408 => 0.012951426184867
409 => 0.013342799841343
410 => 0.013678639154088
411 => 0.013561039931946
412 => 0.014458238984774
413 => 0.014547192606132
414 => 0.014534902091875
415 => 0.014737551679404
416 => 0.014335333517031
417 => 0.014163377460007
418 => 0.013002567359333
419 => 0.013328707648794
420 => 0.013802771713073
421 => 0.013740027556516
422 => 0.013395749561268
423 => 0.013678377988356
424 => 0.013584932191753
425 => 0.013511227614902
426 => 0.013848882569791
427 => 0.01347761707679
428 => 0.013799068055777
429 => 0.013386803850242
430 => 0.013561577115287
501 => 0.013462367357216
502 => 0.013526568229379
503 => 0.013151251242553
504 => 0.013353763178339
505 => 0.013142826080227
506 => 0.013142726068578
507 => 0.013138069620446
508 => 0.013386236180937
509 => 0.013394328883565
510 => 0.013210933420403
511 => 0.013184503268986
512 => 0.013282229391378
513 => 0.013167817696569
514 => 0.013221350208472
515 => 0.01316943914182
516 => 0.013157752867302
517 => 0.01306463464369
518 => 0.013024516752619
519 => 0.013040248011419
520 => 0.012986549115116
521 => 0.012954193587719
522 => 0.01313163329167
523 => 0.013036834415746
524 => 0.013117104004327
525 => 0.01302562667731
526 => 0.012708526407092
527 => 0.012526158688416
528 => 0.011927185673186
529 => 0.012097053677281
530 => 0.012209676339738
531 => 0.012172454550468
601 => 0.01225242135674
602 => 0.012257330669182
603 => 0.012231332645298
604 => 0.012201230264193
605 => 0.012186578089837
606 => 0.012295783393183
607 => 0.012359180747457
608 => 0.012220979530612
609 => 0.012188600919146
610 => 0.012328329979675
611 => 0.012413564625878
612 => 0.013042889364236
613 => 0.012996266954926
614 => 0.013113280053108
615 => 0.013100106173965
616 => 0.013222754542508
617 => 0.013423232790007
618 => 0.013015604458241
619 => 0.013086354641909
620 => 0.013069008330734
621 => 0.013258390807694
622 => 0.013258982039115
623 => 0.013145437783821
624 => 0.013206991966661
625 => 0.013172634110451
626 => 0.013234723400366
627 => 0.012995644284226
628 => 0.013286816840689
629 => 0.013451892917459
630 => 0.013454184998945
701 => 0.013532429749209
702 => 0.013611930947107
703 => 0.013764526573379
704 => 0.013607675137912
705 => 0.013325514674687
706 => 0.013345885748759
707 => 0.013180455172409
708 => 0.013183236090285
709 => 0.013168391332719
710 => 0.013212941567636
711 => 0.013005420555513
712 => 0.013054125322271
713 => 0.012985938363595
714 => 0.013086206416777
715 => 0.012978334566456
716 => 0.013068999965817
717 => 0.013108128146576
718 => 0.013252511975945
719 => 0.012957008957464
720 => 0.012354458298984
721 => 0.012481121752617
722 => 0.012293776555494
723 => 0.012311116066761
724 => 0.012346144639084
725 => 0.012232605575551
726 => 0.012254265250846
727 => 0.012253491414828
728 => 0.012246822914082
729 => 0.01221728701857
730 => 0.01217445412658
731 => 0.012345087185001
801 => 0.012374081066631
802 => 0.01243853087391
803 => 0.012630289783653
804 => 0.012611128546583
805 => 0.012642381319236
806 => 0.012574156692011
807 => 0.012314280811545
808 => 0.012328393322155
809 => 0.012152410088713
810 => 0.012434030586967
811 => 0.012367339135771
812 => 0.012324342723332
813 => 0.012312610753839
814 => 0.012504844996828
815 => 0.012562364495233
816 => 0.012526522203817
817 => 0.012453008618436
818 => 0.012594176434708
819 => 0.01263194698695
820 => 0.012640402420673
821 => 0.012890524724863
822 => 0.012654381478965
823 => 0.012711223505315
824 => 0.013154688768623
825 => 0.012752526968826
826 => 0.012965561043456
827 => 0.012955134134079
828 => 0.01306411515798
829 => 0.012946194509201
830 => 0.01294765627697
831 => 0.01304442404318
901 => 0.012908531167696
902 => 0.012874882180661
903 => 0.01282839634607
904 => 0.012929896465249
905 => 0.012990741196241
906 => 0.013481105042509
907 => 0.013797902450507
908 => 0.013784149439532
909 => 0.013909826215284
910 => 0.01385320767674
911 => 0.013670371480566
912 => 0.013982450572937
913 => 0.013883695690167
914 => 0.013891836922715
915 => 0.013891533905633
916 => 0.013957197269373
917 => 0.013910668758205
918 => 0.013818956286637
919 => 0.013879839305305
920 => 0.014060640104673
921 => 0.014621851333556
922 => 0.014935912572299
923 => 0.014602944452637
924 => 0.014832621402959
925 => 0.014694897075031
926 => 0.014669868467702
927 => 0.014814122565498
928 => 0.014958629160996
929 => 0.014949424715582
930 => 0.014844520347746
1001 => 0.014785262532206
1002 => 0.015233982564303
1003 => 0.015564591840206
1004 => 0.015542046504022
1005 => 0.015641554285801
1006 => 0.015933712210766
1007 => 0.015960423469982
1008 => 0.015957058465272
1009 => 0.015890851822273
1010 => 0.016178519240901
1011 => 0.016418496462547
1012 => 0.015875526897312
1013 => 0.01608228259976
1014 => 0.016175101895842
1015 => 0.016311388160733
1016 => 0.016541325933836
1017 => 0.016791099343408
1018 => 0.016826420042148
1019 => 0.016801358316141
1020 => 0.016636626038259
1021 => 0.016909931083429
1022 => 0.017070026769097
1023 => 0.017165360086188
1024 => 0.01740710951638
1025 => 0.016175675116215
1026 => 0.015304004641517
1027 => 0.015167880709818
1028 => 0.015444694077736
1029 => 0.015517687555311
1030 => 0.015488263976027
1031 => 0.014507119607942
1101 => 0.015162715187773
1102 => 0.015868080907629
1103 => 0.015895176877621
1104 => 0.016248297705483
1105 => 0.016363288321947
1106 => 0.016647596872981
1107 => 0.016629813295704
1108 => 0.016699037903544
1109 => 0.016683124365005
1110 => 0.017209746087566
1111 => 0.017790688051634
1112 => 0.0177705718787
1113 => 0.017687054597972
1114 => 0.017811092001666
1115 => 0.018410686366108
1116 => 0.018355485325334
1117 => 0.018409108434433
1118 => 0.019116063981768
1119 => 0.020035206756557
1120 => 0.019608172657242
1121 => 0.020534713777004
1122 => 0.02111792229806
1123 => 0.02212652113034
1124 => 0.022000239589085
1125 => 0.022392879713052
1126 => 0.021774169274485
1127 => 0.020353485045525
1128 => 0.020128656328132
1129 => 0.020578769113924
1130 => 0.02168532747643
1201 => 0.020543919653182
1202 => 0.020774824969252
1203 => 0.02070832422269
1204 => 0.020704780680515
1205 => 0.020840023272682
1206 => 0.020643846838965
1207 => 0.019844588756539
1208 => 0.020210884025658
1209 => 0.020069439831308
1210 => 0.020226382710302
1211 => 0.02107333870007
1212 => 0.020698879268085
1213 => 0.020304416675102
1214 => 0.020799160304959
1215 => 0.021429138958123
1216 => 0.021389716026189
1217 => 0.021313219060729
1218 => 0.021744428449777
1219 => 0.022456660027988
1220 => 0.0226491733616
1221 => 0.022791282768711
1222 => 0.022810877254993
1223 => 0.023012712641608
1224 => 0.021927392898714
1225 => 0.023649823203674
1226 => 0.023947239336164
1227 => 0.023891337429891
1228 => 0.02422190294397
1229 => 0.02412464218409
1230 => 0.02398372660277
1231 => 0.024507743255886
]
'min_raw' => 0.0090337684374412
'max_raw' => 0.024507743255886
'avg_raw' => 0.016770755846663
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.009033'
'max' => '$0.0245077'
'avg' => '$0.01677'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.0031155132664204
'max_diff' => 0.011295655498877
'year' => 2032
]
7 => [
'items' => [
101 => 0.023907000449052
102 => 0.023054321666169
103 => 0.022586525221805
104 => 0.023202557315806
105 => 0.023578746619055
106 => 0.02382738381837
107 => 0.023902621284652
108 => 0.022011643180846
109 => 0.020992510861348
110 => 0.021645762993771
111 => 0.022442775680379
112 => 0.021922965452998
113 => 0.02194334102978
114 => 0.021202228249259
115 => 0.022508347716751
116 => 0.022318057096531
117 => 0.02330528517085
118 => 0.023069675267914
119 => 0.023874721438547
120 => 0.023662725801784
121 => 0.024542707837471
122 => 0.024893756496069
123 => 0.025483221830216
124 => 0.02591683492957
125 => 0.026171460835208
126 => 0.026156174050911
127 => 0.02716512874317
128 => 0.026570183411337
129 => 0.025822791856706
130 => 0.025809273901473
131 => 0.026196358578236
201 => 0.027007581869238
202 => 0.027217920265775
203 => 0.027335470734548
204 => 0.027155438099661
205 => 0.026509667582073
206 => 0.026230827146709
207 => 0.026468407276424
208 => 0.026177867193276
209 => 0.026679420887939
210 => 0.0273681612368
211 => 0.027225939078335
212 => 0.027701366430947
213 => 0.028193383724484
214 => 0.028896990552122
215 => 0.029080939431352
216 => 0.02938499993377
217 => 0.029697978069429
218 => 0.029798498211606
219 => 0.029990422352589
220 => 0.02998941081763
221 => 0.030567787134468
222 => 0.031205754122764
223 => 0.031446571891876
224 => 0.03200031907318
225 => 0.031052046430813
226 => 0.031771322123019
227 => 0.032420126802028
228 => 0.031646595116636
301 => 0.032712728335181
302 => 0.032754123872147
303 => 0.033379147333293
304 => 0.032745566315415
305 => 0.032369347929462
306 => 0.03345547631299
307 => 0.033981019625056
308 => 0.033822721702449
309 => 0.032618066695272
310 => 0.031916905811012
311 => 0.030081832533069
312 => 0.032255556100059
313 => 0.033314313441154
314 => 0.032615324769536
315 => 0.032967853997757
316 => 0.034891139158946
317 => 0.035623401624834
318 => 0.03547109615083
319 => 0.035496833268775
320 => 0.035891948803865
321 => 0.037644108680551
322 => 0.036594173867692
323 => 0.037396809691816
324 => 0.037822524838812
325 => 0.038217952792705
326 => 0.037246906714232
327 => 0.035983590033639
328 => 0.035583444610468
329 => 0.032545824121705
330 => 0.032387702783547
331 => 0.032298944484873
401 => 0.03173933596684
402 => 0.03129963696134
403 => 0.030949971987189
404 => 0.030032346676216
405 => 0.030342018281496
406 => 0.028879515059093
407 => 0.029815172792855
408 => 0.027480982336523
409 => 0.0294249655094
410 => 0.028366943850472
411 => 0.029077376939041
412 => 0.029074898304922
413 => 0.027766765745851
414 => 0.027012262185809
415 => 0.027493061219985
416 => 0.028008515950498
417 => 0.028092146746325
418 => 0.028760447259179
419 => 0.028946955567246
420 => 0.028381826686565
421 => 0.02743261142755
422 => 0.027653092482924
423 => 0.027007794144259
424 => 0.02587693362679
425 => 0.026689137393366
426 => 0.026966459469354
427 => 0.027088940696801
428 => 0.025976869258078
429 => 0.025627432267786
430 => 0.025441394946214
501 => 0.027289056969606
502 => 0.027390276066108
503 => 0.026872424857463
504 => 0.029213161425206
505 => 0.028683380649278
506 => 0.029275275575431
507 => 0.027633086138122
508 => 0.027695819986128
509 => 0.026918381189253
510 => 0.027353694967024
511 => 0.027046029219714
512 => 0.027318525915635
513 => 0.027481859311624
514 => 0.028259170538443
515 => 0.029433841154998
516 => 0.028143066162201
517 => 0.027580657013601
518 => 0.027929572486283
519 => 0.02885878036958
520 => 0.03026657787805
521 => 0.02943313341847
522 => 0.029803001916827
523 => 0.029883801729414
524 => 0.029269250640711
525 => 0.030289237253277
526 => 0.030835856365308
527 => 0.031396574467364
528 => 0.031883430284414
529 => 0.031172611326947
530 => 0.031933289503332
531 => 0.03132031717094
601 => 0.030770417620869
602 => 0.030771251591498
603 => 0.030426291570988
604 => 0.02975788806349
605 => 0.029634624201558
606 => 0.030275858377839
607 => 0.030790067462114
608 => 0.03083242018519
609 => 0.031117112755262
610 => 0.031285590885663
611 => 0.03293690559851
612 => 0.033601078036408
613 => 0.03441321552133
614 => 0.034729588841268
615 => 0.035681759108168
616 => 0.034912804286158
617 => 0.034746436073464
618 => 0.032436782458485
619 => 0.032814988108549
620 => 0.033420531845718
621 => 0.032446767651676
622 => 0.033064396903174
623 => 0.033186330000596
624 => 0.032413679516978
625 => 0.032826385524535
626 => 0.031730360727266
627 => 0.029457731500488
628 => 0.030291767339272
629 => 0.030905898450044
630 => 0.030029457633152
701 => 0.031600443874488
702 => 0.030682706144038
703 => 0.030391827342666
704 => 0.029257005432731
705 => 0.029792597690919
706 => 0.030516993889061
707 => 0.030069401258706
708 => 0.030998223173063
709 => 0.03231368271155
710 => 0.033251157515645
711 => 0.033323125190433
712 => 0.032720391697333
713 => 0.033686275966619
714 => 0.033693311379041
715 => 0.032603789977534
716 => 0.031936464185591
717 => 0.031784846361596
718 => 0.032163617412361
719 => 0.032623515392982
720 => 0.03334864632763
721 => 0.033786827764628
722 => 0.034929372558841
723 => 0.035238512420829
724 => 0.035578163403804
725 => 0.036032041861542
726 => 0.036577039322105
727 => 0.035384615905116
728 => 0.035431993110429
729 => 0.034321624934755
730 => 0.033135037296144
731 => 0.034035509403612
801 => 0.035212756899343
802 => 0.03494269502308
803 => 0.034912307545136
804 => 0.034963410854253
805 => 0.034759793018947
806 => 0.033838837096285
807 => 0.033376338797414
808 => 0.033973079598858
809 => 0.034290220776948
810 => 0.034782079086549
811 => 0.034721447168021
812 => 0.035988421351826
813 => 0.036480729208342
814 => 0.036354775791604
815 => 0.036377954251522
816 => 0.037269254110056
817 => 0.038260562862543
818 => 0.039189054323957
819 => 0.040133555718144
820 => 0.038994922422935
821 => 0.038416794656766
822 => 0.039013274939844
823 => 0.038696774105575
824 => 0.040515481779531
825 => 0.040641405152882
826 => 0.042459981313572
827 => 0.044186026642088
828 => 0.043101928496561
829 => 0.04412418421894
830 => 0.045229837128425
831 => 0.04736282097654
901 => 0.046644507055771
902 => 0.046094289849877
903 => 0.045574337248936
904 => 0.046656276071342
905 => 0.048048173081972
906 => 0.048347974366638
907 => 0.048833766980703
908 => 0.048323015446909
909 => 0.048938159411927
910 => 0.051109887916398
911 => 0.050523067704112
912 => 0.04968968866661
913 => 0.051404059745867
914 => 0.052024483975001
915 => 0.056378946133756
916 => 0.061876634483044
917 => 0.059600555406671
918 => 0.058187719675353
919 => 0.058519769585124
920 => 0.060527339261789
921 => 0.061172106924857
922 => 0.059419406151896
923 => 0.060038489695425
924 => 0.063449700887222
925 => 0.065279706246862
926 => 0.06279431316596
927 => 0.055937212227871
928 => 0.04961465200248
929 => 0.051291679682851
930 => 0.051101556788125
1001 => 0.054766477656447
1002 => 0.050509072236124
1003 => 0.050580756024677
1004 => 0.054321463575338
1005 => 0.053323506932784
1006 => 0.051706944980477
1007 => 0.049626454693727
1008 => 0.045780475976609
1009 => 0.042373985373808
1010 => 0.049054897913835
1011 => 0.048766804816658
1012 => 0.048349603318941
1013 => 0.049278040106194
1014 => 0.053786265603714
1015 => 0.053682336414294
1016 => 0.053021191936344
1017 => 0.053522664195809
1018 => 0.05161903446881
1019 => 0.052109643194301
1020 => 0.049613650476638
1021 => 0.050741943426885
1022 => 0.051703476564562
1023 => 0.051896518577693
1024 => 0.052331452090244
1025 => 0.048614992845497
1026 => 0.050283573936878
1027 => 0.051263709003159
1028 => 0.046835423116083
1029 => 0.051176176029196
1030 => 0.048550297558422
1031 => 0.04765903496607
1101 => 0.048859002631754
1102 => 0.04839137406543
1103 => 0.047989334484175
1104 => 0.047764989489919
1105 => 0.048646113307998
1106 => 0.048605007828714
1107 => 0.047163318243572
1108 => 0.04528269295054
1109 => 0.045913892528302
1110 => 0.045684571804173
1111 => 0.044853483916969
1112 => 0.04541353680701
1113 => 0.042947347315547
1114 => 0.03870439647686
1115 => 0.041507419765996
1116 => 0.041399506418467
1117 => 0.041345091615162
1118 => 0.043451486147074
1119 => 0.043249004915621
1120 => 0.042881499497831
1121 => 0.04484673439177
1122 => 0.044129397219343
1123 => 0.046340061358869
1124 => 0.047796147737952
1125 => 0.047426837132757
1126 => 0.048796293410161
1127 => 0.04592843409173
1128 => 0.046881021918768
1129 => 0.047077348949691
1130 => 0.044822483698234
1201 => 0.043282133349214
1202 => 0.043179409542214
1203 => 0.040508654310367
1204 => 0.041935350197637
1205 => 0.043190783537747
1206 => 0.042589528393397
1207 => 0.042399188976682
1208 => 0.043371591777095
1209 => 0.043447155802754
1210 => 0.041724288009816
1211 => 0.042082526780095
1212 => 0.043576442004399
1213 => 0.042044883949434
1214 => 0.039069316827225
1215 => 0.038331335040483
1216 => 0.038232874666429
1217 => 0.036231409530711
1218 => 0.038380650512271
1219 => 0.037442449227743
1220 => 0.040406215844189
1221 => 0.038713328247874
1222 => 0.038640351247128
1223 => 0.038530035807103
1224 => 0.036807292085307
1225 => 0.037184463474306
1226 => 0.03843823861616
1227 => 0.038885599711562
1228 => 0.03883893628419
1229 => 0.03843209443397
1230 => 0.038618344549633
1231 => 0.038018368033241
]
'min_raw' => 0.020992510861348
'max_raw' => 0.065279706246862
'avg_raw' => 0.043136108554105
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.020992'
'max' => '$0.065279'
'avg' => '$0.043136'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.011958742423907
'max_diff' => 0.040771962990977
'year' => 2033
]
8 => [
'items' => [
101 => 0.037806503837871
102 => 0.037137802159446
103 => 0.036154995425715
104 => 0.036291660729945
105 => 0.034344463425053
106 => 0.033283526987766
107 => 0.032989873764842
108 => 0.032597188402536
109 => 0.033034228621411
110 => 0.034338947259741
111 => 0.032765179770414
112 => 0.030067065796917
113 => 0.030229227044087
114 => 0.030593555220371
115 => 0.029914632074138
116 => 0.029272088293929
117 => 0.029830727979596
118 => 0.028687501520417
119 => 0.030731708676133
120 => 0.030676418601396
121 => 0.031438372616124
122 => 0.031914838098404
123 => 0.03081673941928
124 => 0.030540570571055
125 => 0.030697888898178
126 => 0.028097767381733
127 => 0.031225887216307
128 => 0.031252939326535
129 => 0.031021302734955
130 => 0.032686929977001
131 => 0.036201922979884
201 => 0.034879441221934
202 => 0.034367336313032
203 => 0.033393824506865
204 => 0.034690971187172
205 => 0.034591370560765
206 => 0.034140938755736
207 => 0.033868516194621
208 => 0.034370463116406
209 => 0.033806319416212
210 => 0.033704983706025
211 => 0.033090999556631
212 => 0.032871835149796
213 => 0.032709574548162
214 => 0.032530941569161
215 => 0.032924961408273
216 => 0.032032060615218
217 => 0.030955309790937
218 => 0.030865789610503
219 => 0.031112962699375
220 => 0.031003607007421
221 => 0.030865266057522
222 => 0.030601135509248
223 => 0.030522773617832
224 => 0.030777411749151
225 => 0.030489940145217
226 => 0.03091412015621
227 => 0.03079876666417
228 => 0.030154411434679
301 => 0.029351306247872
302 => 0.02934415692714
303 => 0.029171129231999
304 => 0.028950752447348
305 => 0.028889448667397
306 => 0.029783680903442
307 => 0.031634714869936
308 => 0.031271312610824
309 => 0.031533907985994
310 => 0.032825617331634
311 => 0.033236212889557
312 => 0.032944781888032
313 => 0.032545853158463
314 => 0.032563403997966
315 => 0.033926664230843
316 => 0.034011689099359
317 => 0.034226519512035
318 => 0.034502637303392
319 => 0.032991805941867
320 => 0.032492243976705
321 => 0.032255523802969
322 => 0.031526517290097
323 => 0.032312688313934
324 => 0.031854620125544
325 => 0.031916429173995
326 => 0.031876175950106
327 => 0.031898156932261
328 => 0.030731137278572
329 => 0.031156337903629
330 => 0.030449359395455
331 => 0.029502794535071
401 => 0.02949962131775
402 => 0.029731291726332
403 => 0.029593485102043
404 => 0.029222651019416
405 => 0.029275326250566
406 => 0.028813835798211
407 => 0.029331359547036
408 => 0.029346200276363
409 => 0.029146925443357
410 => 0.029944242182936
411 => 0.03027090350169
412 => 0.030139736537725
413 => 0.030261700477834
414 => 0.031286413615353
415 => 0.031453486568138
416 => 0.031527689337545
417 => 0.031428267456522
418 => 0.030280430352896
419 => 0.030331341809422
420 => 0.029957787321715
421 => 0.029642173143806
422 => 0.029654796055744
423 => 0.02981706277016
424 => 0.030525691028836
425 => 0.0320169574233
426 => 0.032073549892868
427 => 0.032142141616904
428 => 0.031863144603812
429 => 0.031778996435022
430 => 0.031890009590142
501 => 0.03245005084084
502 => 0.033890628987354
503 => 0.033381432457397
504 => 0.032967447752425
505 => 0.03333062394816
506 => 0.033274715819496
507 => 0.032802794949617
508 => 0.032789549702581
509 => 0.031883782671055
510 => 0.031548941222817
511 => 0.031269122646222
512 => 0.030963568065429
513 => 0.030782425067652
514 => 0.031060743040257
515 => 0.031124397653553
516 => 0.030515850542287
517 => 0.03043290781968
518 => 0.030929860527142
519 => 0.030711170168852
520 => 0.030936098625613
521 => 0.030988283956982
522 => 0.030979880916702
523 => 0.03075154306622
524 => 0.030897078802984
525 => 0.030552843399245
526 => 0.030178539100164
527 => 0.029939756277332
528 => 0.029731386594466
529 => 0.029847002205037
530 => 0.029434853663928
531 => 0.029302999050716
601 => 0.030847774570026
602 => 0.031988916855276
603 => 0.031972324194507
604 => 0.031871320639358
605 => 0.031721249844231
606 => 0.032439072227444
607 => 0.032188997262444
608 => 0.032370947693944
609 => 0.032417261715196
610 => 0.032557440308636
611 => 0.032607542107033
612 => 0.03245609967434
613 => 0.031947840373085
614 => 0.030681306518201
615 => 0.03009173158981
616 => 0.029897162043294
617 => 0.02990423427677
618 => 0.02970915050567
619 => 0.0297666114193
620 => 0.029689167944873
621 => 0.029542508739897
622 => 0.029837946412405
623 => 0.029871992851969
624 => 0.029803034168989
625 => 0.029819276435171
626 => 0.029248327992731
627 => 0.029291735962775
628 => 0.029050034869552
629 => 0.029004718828323
630 => 0.028393719511978
701 => 0.027311245657306
702 => 0.027911041251074
703 => 0.027186572517825
704 => 0.026912205231051
705 => 0.028211017293771
706 => 0.028080652586113
707 => 0.027857524874779
708 => 0.027527472485826
709 => 0.02740505284422
710 => 0.02666126985517
711 => 0.02661732318825
712 => 0.026985962121452
713 => 0.02681584793787
714 => 0.026576943196842
715 => 0.025711654442223
716 => 0.024738783394769
717 => 0.024768148256442
718 => 0.025077600435728
719 => 0.025977374382313
720 => 0.025625817135135
721 => 0.025370758318653
722 => 0.025322993469365
723 => 0.025920870560681
724 => 0.026766991904015
725 => 0.02716397310741
726 => 0.026770576791344
727 => 0.02631866428541
728 => 0.026346170105685
729 => 0.026529154005152
730 => 0.026548383025733
731 => 0.026254234441726
801 => 0.026337035545139
802 => 0.026211253097563
803 => 0.025439326448968
804 => 0.025425364743701
805 => 0.025235921495137
806 => 0.02523018522886
807 => 0.02490789500422
808 => 0.024862804373906
809 => 0.024222877571264
810 => 0.02464407933064
811 => 0.024361559304535
812 => 0.023935734985459
813 => 0.023862322712348
814 => 0.02386011585077
815 => 0.024297342213886
816 => 0.024638970086021
817 => 0.024366473861347
818 => 0.024304431753106
819 => 0.024966879153728
820 => 0.024882576683656
821 => 0.024809571288267
822 => 0.02669123101806
823 => 0.025201750514189
824 => 0.024552251997927
825 => 0.023748374247629
826 => 0.02401012089663
827 => 0.024065274761432
828 => 0.022132093681822
829 => 0.021347802358586
830 => 0.021078663131847
831 => 0.020923769701788
901 => 0.020994356582895
902 => 0.020288402403786
903 => 0.020762815287552
904 => 0.020151518641265
905 => 0.020049032769184
906 => 0.021142106897868
907 => 0.021294201777228
908 => 0.020645317769703
909 => 0.021062006347313
910 => 0.020910909276667
911 => 0.020161997567738
912 => 0.020133394649078
913 => 0.019757617079057
914 => 0.01916959794685
915 => 0.018900857424772
916 => 0.018760895027561
917 => 0.018818646240463
918 => 0.018789445460003
919 => 0.018598890615336
920 => 0.018800367840644
921 => 0.01828567678612
922 => 0.018080722661061
923 => 0.017988149637672
924 => 0.01753133170227
925 => 0.018258332185352
926 => 0.01840156043903
927 => 0.018545070896613
928 => 0.019794231451123
929 => 0.019731826919911
930 => 0.020295933489831
1001 => 0.020274013345849
1002 => 0.020113121014187
1003 => 0.019434342732411
1004 => 0.019704891657468
1005 => 0.018872184118782
1006 => 0.019496105225374
1007 => 0.019211373687894
1008 => 0.019399837206138
1009 => 0.019060962807264
1010 => 0.019248509891382
1011 => 0.018435525171395
1012 => 0.017676371478875
1013 => 0.017981877085823
1014 => 0.018313996619379
1015 => 0.019034116390613
1016 => 0.018605218995725
1017 => 0.018759466717333
1018 => 0.018242762670704
1019 => 0.017176654633294
1020 => 0.017182688689007
1021 => 0.017018691193878
1022 => 0.01687697341406
1023 => 0.018654483020908
1024 => 0.018433421603028
1025 => 0.018081189165439
1026 => 0.018552666280313
1027 => 0.018677332312833
1028 => 0.018680881379519
1029 => 0.019024858911945
1030 => 0.019208439782663
1031 => 0.019240796706811
1101 => 0.01978205278621
1102 => 0.019963474684685
1103 => 0.020710725808712
1104 => 0.01919286422839
1105 => 0.019161604868
1106 => 0.018559300930198
1107 => 0.018177310250795
1108 => 0.018585456158824
1109 => 0.018947017715865
1110 => 0.018570535655624
1111 => 0.018619696264721
1112 => 0.018114299858563
1113 => 0.018294955292653
1114 => 0.018450560089407
1115 => 0.018364644266667
1116 => 0.018236024121652
1117 => 0.018917373791381
1118 => 0.018878929372784
1119 => 0.019513417849397
1120 => 0.020008046989624
1121 => 0.020894510834444
1122 => 0.019969439599969
1123 => 0.019935726327359
1124 => 0.020265278974895
1125 => 0.019963424231891
1126 => 0.020154186009798
1127 => 0.020863776162858
1128 => 0.020878768684634
1129 => 0.020627624628103
1130 => 0.020612342489439
1201 => 0.02066057745271
1202 => 0.020943091139185
1203 => 0.020844372176362
1204 => 0.0209586122594
1205 => 0.021101471232544
1206 => 0.021692396516418
1207 => 0.021834866601792
1208 => 0.021488738156603
1209 => 0.021519989679768
1210 => 0.021390528139829
1211 => 0.021265469914397
1212 => 0.021546582541882
1213 => 0.022060321393894
1214 => 0.022057125451158
1215 => 0.022176302879169
1216 => 0.0222505494295
1217 => 0.021931828883681
1218 => 0.021724353528032
1219 => 0.021803912781388
1220 => 0.021931129760079
1221 => 0.021762658029786
1222 => 0.020722772466723
1223 => 0.021038207318409
1224 => 0.020985703535112
1225 => 0.02091093176302
1226 => 0.021228103945576
1227 => 0.021197511914822
1228 => 0.02028116182331
1229 => 0.020339823583078
1230 => 0.020284729239215
1231 => 0.020462750335478
]
'min_raw' => 0.01687697341406
'max_raw' => 0.037806503837871
'avg_raw' => 0.027341738625965
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.016876'
'max' => '$0.0378065'
'avg' => '$0.027341'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.0041155374472887
'max_diff' => -0.027473202408991
'year' => 2034
]
9 => [
'items' => [
101 => 0.019953810508478
102 => 0.020110356971501
103 => 0.020208541445577
104 => 0.020266372855097
105 => 0.02047529956165
106 => 0.020450784424059
107 => 0.020473775666277
108 => 0.02078355881749
109 => 0.022350335691586
110 => 0.022435611899945
111 => 0.022015680661679
112 => 0.022183434908589
113 => 0.021861383438343
114 => 0.022077578747876
115 => 0.022225494087894
116 => 0.021557093108839
117 => 0.021517514740746
118 => 0.021194134049522
119 => 0.021367900515767
120 => 0.02109142557372
121 => 0.021159262853815
122 => 0.02096958390472
123 => 0.021310968248389
124 => 0.021692688990374
125 => 0.021789126724408
126 => 0.021535440565219
127 => 0.021351755067233
128 => 0.021029263842535
129 => 0.021565573936394
130 => 0.021722407351592
131 => 0.02156475015723
201 => 0.021528217540418
202 => 0.021458988297574
203 => 0.021542904851556
204 => 0.021721553203131
205 => 0.021637305939645
206 => 0.021692952741424
207 => 0.021480884515778
208 => 0.021931934393444
209 => 0.022648310150242
210 => 0.022650613415439
211 => 0.022566365697829
212 => 0.022531893346925
213 => 0.022618336617772
214 => 0.022665228546118
215 => 0.022944770233053
216 => 0.023244729600566
217 => 0.024644509086223
218 => 0.024251456607958
219 => 0.025493424240887
220 => 0.026475659389221
221 => 0.026770188762269
222 => 0.026499235597743
223 => 0.025572319458501
224 => 0.025526840530623
225 => 0.02691204457655
226 => 0.026520660987211
227 => 0.026474107154631
228 => 0.025978853029926
301 => 0.026271609556043
302 => 0.026207579409302
303 => 0.02610650469021
304 => 0.026665063748445
305 => 0.027710636442552
306 => 0.027547674132857
307 => 0.027426030328273
308 => 0.026893022586568
309 => 0.027214012298664
310 => 0.027099714010339
311 => 0.027590811992467
312 => 0.027299896427007
313 => 0.026517695871585
314 => 0.026642263888203
315 => 0.026623435683087
316 => 0.027010918810187
317 => 0.026894605993354
318 => 0.026600723738846
319 => 0.027707062788752
320 => 0.027635223284632
321 => 0.027737075276677
322 => 0.027781913673452
323 => 0.028455322757249
324 => 0.028731196912193
325 => 0.028793825175222
326 => 0.029055884285547
327 => 0.028787304905827
328 => 0.029861813918557
329 => 0.030576299712684
330 => 0.031406211729664
331 => 0.032618936245794
401 => 0.033074931882187
402 => 0.032992560351931
403 => 0.033912034239427
404 => 0.035564308376501
405 => 0.03332653219536
406 => 0.035682915947846
407 => 0.034936912057568
408 => 0.033168150253754
409 => 0.03305426284592
410 => 0.03425208887521
411 => 0.036908751721691
412 => 0.036243287810268
413 => 0.036909840182254
414 => 0.036132271434318
415 => 0.036093658592119
416 => 0.036872075403732
417 => 0.038690888713358
418 => 0.037826838687153
419 => 0.036588011100828
420 => 0.037502742112278
421 => 0.036710317455801
422 => 0.034924762919063
423 => 0.036242778942556
424 => 0.035361459162582
425 => 0.035618675127915
426 => 0.037471078218997
427 => 0.037248192178228
428 => 0.037536627353675
429 => 0.037027546818673
430 => 0.036551985324349
501 => 0.035664314479533
502 => 0.035401518904026
503 => 0.035474146146702
504 => 0.035401482913572
505 => 0.034904839234013
506 => 0.034797589078698
507 => 0.034618834121103
508 => 0.034674237757042
509 => 0.034338126140156
510 => 0.034972438205424
511 => 0.035090172114276
512 => 0.035551771538142
513 => 0.035599696321625
514 => 0.036885244146634
515 => 0.036177186007372
516 => 0.036652212537987
517 => 0.036609721693966
518 => 0.033206484685397
519 => 0.033675420718164
520 => 0.034404938024915
521 => 0.034076291467061
522 => 0.033611662125706
523 => 0.033236449020713
524 => 0.032667962799139
525 => 0.033468096239194
526 => 0.034520186628161
527 => 0.035626379070103
528 => 0.036955396808496
529 => 0.036658775520758
530 => 0.035601534007929
531 => 0.035648961089879
601 => 0.035942136648626
602 => 0.03556244766224
603 => 0.035450469967746
604 => 0.035926752632937
605 => 0.035930032529892
606 => 0.035493154464108
607 => 0.035007644441832
608 => 0.035005610137111
609 => 0.034919218318118
610 => 0.036147640346997
611 => 0.036823148255404
612 => 0.036900594148468
613 => 0.036817935529744
614 => 0.036849747551488
615 => 0.036456684383386
616 => 0.037355110226404
617 => 0.038179594625065
618 => 0.037958615193684
619 => 0.037627335611966
620 => 0.037363455468542
621 => 0.037896453418125
622 => 0.037872719858446
623 => 0.038172393473107
624 => 0.038158798546947
625 => 0.038058029581632
626 => 0.037958618792461
627 => 0.038352771334637
628 => 0.038239261732386
629 => 0.038125575818371
630 => 0.037897561313372
701 => 0.037928552271521
702 => 0.037597329889894
703 => 0.037444091260449
704 => 0.035139749944471
705 => 0.034523954648317
706 => 0.034717696384156
707 => 0.034781481194096
708 => 0.034513486292047
709 => 0.034897722139344
710 => 0.034837839389549
711 => 0.035070808138764
712 => 0.034925259378582
713 => 0.034931232750469
714 => 0.035359260619896
715 => 0.035483518931352
716 => 0.035420320151258
717 => 0.035464582410509
718 => 0.036484587493
719 => 0.036339575388196
720 => 0.036262540597718
721 => 0.036283879761145
722 => 0.036544512928878
723 => 0.036617475985799
724 => 0.036308326386599
725 => 0.036454123124755
726 => 0.037074907131459
727 => 0.037292146400473
728 => 0.037985469866403
729 => 0.037690933735234
730 => 0.03823156755122
731 => 0.039893291585911
801 => 0.041220791727379
802 => 0.039999967736022
803 => 0.042437752689704
804 => 0.044335917955628
805 => 0.044263063211162
806 => 0.043932074191695
807 => 0.041771063501775
808 => 0.039782469246056
809 => 0.041446012781137
810 => 0.041450253495719
811 => 0.041307353630731
812 => 0.040419814842141
813 => 0.04127646920474
814 => 0.041344467317132
815 => 0.04130640645635
816 => 0.040625932548083
817 => 0.039586974662759
818 => 0.039789984546637
819 => 0.04012251887772
820 => 0.039492962015052
821 => 0.039291780451234
822 => 0.03966581525473
823 => 0.04087103332484
824 => 0.040643193830039
825 => 0.040637244020058
826 => 0.041612037997801
827 => 0.040914295883444
828 => 0.039792545151401
829 => 0.039509288297485
830 => 0.038503917290767
831 => 0.039198330626116
901 => 0.039223321325815
902 => 0.038842998238776
903 => 0.039823406273834
904 => 0.039814371641193
905 => 0.040745123156002
906 => 0.04252437047801
907 => 0.041998159493449
908 => 0.041386233369997
909 => 0.041452766706487
910 => 0.042182473189518
911 => 0.041741275992298
912 => 0.041899933580555
913 => 0.042182233042256
914 => 0.042352551316601
915 => 0.041428260527858
916 => 0.041212764131063
917 => 0.040771934132177
918 => 0.04065692981395
919 => 0.041015976649822
920 => 0.040921380493882
921 => 0.039221220954274
922 => 0.039043544822787
923 => 0.039048993896076
924 => 0.038602218815412
925 => 0.037920779579093
926 => 0.039711561205516
927 => 0.039567736378942
928 => 0.039408964901561
929 => 0.039428413501603
930 => 0.040205731110412
1001 => 0.039754847641823
1002 => 0.040953595241416
1003 => 0.040707168772591
1004 => 0.040454422394692
1005 => 0.040419485146424
1006 => 0.040322199354241
1007 => 0.039988570174396
1008 => 0.039585692891727
1009 => 0.039319678413077
1010 => 0.036270324905726
1011 => 0.036836267179417
1012 => 0.037487332178037
1013 => 0.037712077206582
1014 => 0.037327635283374
1015 => 0.040003750284725
1016 => 0.040492702283158
1017 => 0.039011634786356
1018 => 0.038734587529291
1019 => 0.040021913456775
1020 => 0.039245498553308
1021 => 0.039595118136799
1022 => 0.03883943182898
1023 => 0.040374928064921
1024 => 0.040363230156263
1025 => 0.039765887439726
1026 => 0.040270757413317
1027 => 0.040183023831166
1028 => 0.039508625375386
1029 => 0.040396307698872
1030 => 0.04039674797823
1031 => 0.039821818600914
1101 => 0.039150426956433
1102 => 0.039030397987963
1103 => 0.038939972283843
1104 => 0.039572878956782
1105 => 0.040140341100691
1106 => 0.041196247464709
1107 => 0.04146172741234
1108 => 0.042497913321943
1109 => 0.041880915063751
1110 => 0.042154422400142
1111 => 0.04245135330377
1112 => 0.042593712898242
1113 => 0.042361745578487
1114 => 0.043971368807237
1115 => 0.044107270325325
1116 => 0.044152836928796
1117 => 0.043610081032505
1118 => 0.044092175302011
1119 => 0.043866619358593
1120 => 0.044453453262121
1121 => 0.044545476311265
1122 => 0.044467536062455
1123 => 0.044496745630738
1124 => 0.043123216161995
1125 => 0.043051991413096
1126 => 0.042080836907974
1127 => 0.042476589547223
1128 => 0.041736748957065
1129 => 0.041971360029407
1130 => 0.042074774354638
1201 => 0.042020756579849
1202 => 0.042498964807664
1203 => 0.042092390122534
1204 => 0.041019372681411
1205 => 0.039946062897403
1206 => 0.039932588367364
1207 => 0.039650004846726
1208 => 0.039445748719059
1209 => 0.039485095695623
1210 => 0.039623759573142
1211 => 0.03943768932242
1212 => 0.039477396844413
1213 => 0.040136806279327
1214 => 0.040269046138806
1215 => 0.039819643426848
1216 => 0.038015226689833
1217 => 0.037572418296533
1218 => 0.037890700188365
1219 => 0.037738581944048
1220 => 0.030457981004404
1221 => 0.032168450200493
1222 => 0.031152147486223
1223 => 0.031620506534798
1224 => 0.03058312463384
1225 => 0.031078217650821
1226 => 0.030986792048487
1227 => 0.033737175899335
1228 => 0.033694232438533
1229 => 0.033714787200701
1230 => 0.032733654847256
1231 => 0.034296625326941
]
'min_raw' => 0.019953810508478
'max_raw' => 0.044545476311265
'avg_raw' => 0.032249643409871
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.019953'
'max' => '$0.044545'
'avg' => '$0.032249'
'bar_min_pct' => 61.631153054957
'bar_max_pct' => 60.119598047091
'min_diff' => 0.0030768370944179
'max_diff' => 0.0067389724733941
'year' => 2035
]
10 => [
'items' => [
101 => 0.035066600787835
102 => 0.034924098822257
103 => 0.034959963496908
104 => 0.034343689561041
105 => 0.033720754079509
106 => 0.033029822761407
107 => 0.034313487748748
108 => 0.034170766115048
109 => 0.034498118193134
110 => 0.035330666695693
111 => 0.035453262625239
112 => 0.035618032797794
113 => 0.035558974420073
114 => 0.036965984578921
115 => 0.036795586364933
116 => 0.037206197033733
117 => 0.036361539734904
118 => 0.035405729825673
119 => 0.035587398041638
120 => 0.035569901931557
121 => 0.035347156369126
122 => 0.035146071634991
123 => 0.034811322207928
124 => 0.035870518928748
125 => 0.035827517476204
126 => 0.036523661009186
127 => 0.036400610877754
128 => 0.035578851984575
129 => 0.035608201264208
130 => 0.035805589274522
131 => 0.036488751431955
201 => 0.036691560473508
202 => 0.036597611244918
203 => 0.036819982100396
204 => 0.036995734957775
205 => 0.036842053953344
206 => 0.039017852891537
207 => 0.038114309476226
208 => 0.038554690250034
209 => 0.038659718469713
210 => 0.038390690893511
211 => 0.038449033341634
212 => 0.038537406253175
213 => 0.03907398926686
214 => 0.040482138356317
215 => 0.041105798002443
216 => 0.042982108818636
217 => 0.041054011750593
218 => 0.040939606449834
219 => 0.041277586686989
220 => 0.042379179763765
221 => 0.043271917485116
222 => 0.043568090090563
223 => 0.04360723418965
224 => 0.04416287368665
225 => 0.044481355884268
226 => 0.044095404436945
227 => 0.043768350996139
228 => 0.042596886166542
229 => 0.042732486410361
301 => 0.04366663762198
302 => 0.044986181229624
303 => 0.046118486920096
304 => 0.04572199293213
305 => 0.048746962179176
306 => 0.049046875524129
307 => 0.049005437197216
308 => 0.049688684430109
309 => 0.048332577813695
310 => 0.04775281596185
311 => 0.043839063662256
312 => 0.04493866841856
313 => 0.046537008509371
314 => 0.046325462204884
315 => 0.045164704907184
316 => 0.046117606381598
317 => 0.045802547354173
318 => 0.045554047227431
319 => 0.046692474482154
320 => 0.045440726951572
321 => 0.046524521370217
322 => 0.045134543817888
323 => 0.045723804083269
324 => 0.045389311457327
325 => 0.045605769180186
326 => 0.044340361755308
327 => 0.045023144885743
328 => 0.0443119557323
329 => 0.044311618536041
330 => 0.044295918996062
331 => 0.045132629881193
401 => 0.045159914993118
402 => 0.044541584384806
403 => 0.044452473284009
404 => 0.044781963728675
405 => 0.044396216711655
406 => 0.044576705313056
407 => 0.044401683527525
408 => 0.044362282437079
409 => 0.044048327844864
410 => 0.043913067574176
411 => 0.043966106611541
412 => 0.043785057033518
413 => 0.04367596811391
414 => 0.044274218464223
415 => 0.043954597435401
416 => 0.044225231957545
417 => 0.043916809762762
418 => 0.042847684062491
419 => 0.042232818566466
420 => 0.040213339226658
421 => 0.040786061062271
422 => 0.041165776231806
423 => 0.04104028037054
424 => 0.041309894040991
425 => 0.041326446130645
426 => 0.041238791977996
427 => 0.04113729969842
428 => 0.041087898869597
429 => 0.0414560921743
430 => 0.041669840780497
501 => 0.041203885729002
502 => 0.041094718979841
503 => 0.041565825262986
504 => 0.041853199823555
505 => 0.043975012116978
506 => 0.043817821408918
507 => 0.04421233923903
508 => 0.044167922585729
509 => 0.044581440123306
510 => 0.045257366531694
511 => 0.043883019151445
512 => 0.0441215583353
513 => 0.044063074036093
514 => 0.044701590279427
515 => 0.044703583657442
516 => 0.044320761273311
517 => 0.044528295498333
518 => 0.044412455587329
519 => 0.044621793963215
520 => 0.043815722031177
521 => 0.044797430634311
522 => 0.045353996152383
523 => 0.045361724065142
524 => 0.045625531703531
525 => 0.045893575542842
526 => 0.046408062350702
527 => 0.045879226785009
528 => 0.044927903083432
529 => 0.044996585581929
530 => 0.044438824843771
531 => 0.044448200902547
601 => 0.044398150765985
602 => 0.044548354993406
603 => 0.043848683412379
604 => 0.044012894933963
605 => 0.043782997842125
606 => 0.04412105858392
607 => 0.043757361109191
608 => 0.044063045833193
609 => 0.044194969226463
610 => 0.044681769387738
611 => 0.043685460329565
612 => 0.041653918715758
613 => 0.042080973393042
614 => 0.041449325980919
615 => 0.041507787353762
616 => 0.041625888630964
617 => 0.041243083751219
618 => 0.041316110858706
619 => 0.041313501816543
620 => 0.041291018500698
621 => 0.041191436166851
622 => 0.041047022081007
623 => 0.041622323350695
624 => 0.041720078246896
625 => 0.041937375271882
626 => 0.042583903824257
627 => 0.042519300375682
628 => 0.04262467128068
629 => 0.042394647186702
630 => 0.041518457511756
701 => 0.041566038826582
702 => 0.040972699068272
703 => 0.041922202240252
704 => 0.041697347356298
705 => 0.041552381949845
706 => 0.041512826795599
707 => 0.042160957967204
708 => 0.042354888971959
709 => 0.042234044184021
710 => 0.041986187998355
711 => 0.042462145146938
712 => 0.042589491200878
713 => 0.042617999286014
714 => 0.043461304097572
715 => 0.042665130657032
716 => 0.042856777517454
717 => 0.044351951614452
718 => 0.042996035028396
719 => 0.043714294284578
720 => 0.043679139231629
721 => 0.044046576362523
722 => 0.043648998662209
723 => 0.043653927114297
724 => 0.043980186394184
725 => 0.043522014076754
726 => 0.043408564167666
727 => 0.043251833930806
728 => 0.04359404866913
729 => 0.043799190927714
730 => 0.045452486871517
731 => 0.046520591450669
801 => 0.046474222213962
802 => 0.046897950237885
803 => 0.046707056882204
804 => 0.046090611881587
805 => 0.047142808330181
806 => 0.046809849348076
807 => 0.046837298082016
808 => 0.046836276438768
809 => 0.047057665054088
810 => 0.046900790930165
811 => 0.046591575929115
812 => 0.046796847277272
813 => 0.047406429795448
814 => 0.049298592636144
815 => 0.050357472029621
816 => 0.049234846767088
817 => 0.050009218640632
818 => 0.049544871453417
819 => 0.049460485756368
820 => 0.049946848518585
821 => 0.050434062594434
822 => 0.050403029164086
823 => 0.05004933676374
824 => 0.049849544901396
825 => 0.051362435818244
826 => 0.052477108074354
827 => 0.052401094899344
828 => 0.052736592333025
829 => 0.053721623174858
830 => 0.053811682050227
831 => 0.05380033670191
901 => 0.053577116382637
902 => 0.054547007168839
903 => 0.055356107126294
904 => 0.05352544732818
905 => 0.054222538614205
906 => 0.054535485351381
907 => 0.054994984008667
908 => 0.055770235264426
909 => 0.05661236375342
910 => 0.056731449955233
911 => 0.056646952596247
912 => 0.056091546220127
913 => 0.057013013261467
914 => 0.057552787043222
915 => 0.057874209977755
916 => 0.058689285060051
917 => 0.05453741800389
918 => 0.051598520140357
919 => 0.051139568800767
920 => 0.052072864397193
921 => 0.052318967003078
922 => 0.052219763351233
923 => 0.048911766612922
924 => 0.051122152882545
925 => 0.053500342654103
926 => 0.053591698608711
927 => 0.054782270133956
928 => 0.055169969025752
929 => 0.056128535155351
930 => 0.056068576582955
1001 => 0.056301972181394
1002 => 0.056248318575161
1003 => 0.058023860480331
1004 => 0.059982546872258
1005 => 0.059914723790747
1006 => 0.059633139447782
1007 => 0.06005134021435
1008 => 0.062072914476408
1009 => 0.061886800313425
1010 => 0.062067594369597
1011 => 0.064451144355496
1012 => 0.067550098393198
1013 => 0.066110323112787
1014 => 0.069234221187102
1015 => 0.071200549434162
1016 => 0.074601110815316
1017 => 0.074175343782277
1018 => 0.075499157373489
1019 => 0.073413131932877
1020 => 0.068623195865936
1021 => 0.067865170148203
1022 => 0.069382756831372
1023 => 0.073113595607998
1024 => 0.069265259441368
1025 => 0.070043772835794
1026 => 0.069819560925826
1027 => 0.069807613625983
1028 => 0.070263593467807
1029 => 0.069602170924932
1030 => 0.066907416497615
1031 => 0.068142406571367
1101 => 0.067665517594797
1102 => 0.068194661468729
1103 => 0.07105023272081
1104 => 0.069787716601949
1105 => 0.06845775842921
1106 => 0.07012582111917
1107 => 0.072249838132017
1108 => 0.072116920964579
1109 => 0.071859006104682
1110 => 0.073312858665936
1111 => 0.075714197158296
1112 => 0.076363269303421
1113 => 0.076842401091257
1114 => 0.076908465269801
1115 => 0.077588967367469
1116 => 0.073929736079699
1117 => 0.079737030109115
1118 => 0.080739789364735
1119 => 0.080551312184791
1120 => 0.081665836894853
1121 => 0.08133791545239
1122 => 0.080862808731559
1123 => 0.082629567463211
1124 => 0.08060412114745
1125 => 0.077729255098827
1126 => 0.07615204672615
1127 => 0.078229041941062
1128 => 0.079497390441664
1129 => 0.080335688118447
1130 => 0.080589356488929
1201 => 0.074213791788073
1202 => 0.070777716019341
1203 => 0.072980201192409
1204 => 0.07566738511096
1205 => 0.073914808637352
1206 => 0.073983506317052
1207 => 0.071484792834682
1208 => 0.075888465809681
1209 => 0.075246887697943
1210 => 0.078575396076571
1211 => 0.077781020839062
1212 => 0.080495290209883
1213 => 0.079780532119473
1214 => 0.082747452991175
1215 => 0.083931038053073
1216 => 0.085918461582305
1217 => 0.087380418420677
1218 => 0.088238907438948
1219 => 0.088187366978402
1220 => 0.091589128166319
1221 => 0.089583228442288
1222 => 0.087063345634639
1223 => 0.087017768904777
1224 => 0.088322851917874
1225 => 0.091057947881286
1226 => 0.091767118470571
1227 => 0.09216344808315
1228 => 0.091556455485152
1229 => 0.089379195098844
1230 => 0.088439065102997
1231 => 0.089240083097647
]
'min_raw' => 0.033029822761407
'max_raw' => 0.09216344808315
'avg_raw' => 0.062596635422278
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$0.033029'
'max' => '$0.092163'
'avg' => '$0.062596'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.013076012252929
'max_diff' => 0.047617971771885
'year' => 2036
]
11 => [
'items' => [
101 => 0.088260506922452
102 => 0.08995153022137
103 => 0.092273666393871
104 => 0.091794154456971
105 => 0.09339709096958
106 => 0.095055961626292
107 => 0.097428221169932
108 => 0.098048417659156
109 => 0.099073578871884
110 => 0.1001288065077
111 => 0.10046771718514
112 => 0.10111480282618
113 => 0.10111139236544
114 => 0.1030614284986
115 => 0.10521237874108
116 => 0.106024312663
117 => 0.10789130994616
118 => 0.10469414252613
119 => 0.10711923074063
120 => 0.10930672101401
121 => 0.10669870493045
122 => 0.11029324751182
123 => 0.11043281545485
124 => 0.11254012569184
125 => 0.11040396305485
126 => 0.10913551649988
127 => 0.11279747417601
128 => 0.1145693801449
129 => 0.11403566764683
130 => 0.1099740891838
131 => 0.10761007630903
201 => 0.10142299863172
202 => 0.10875185940236
203 => 0.11232153369794
204 => 0.10996484458975
205 => 0.1111534214955
206 => 0.11763791169593
207 => 0.1201067857246
208 => 0.11959327718537
209 => 0.11968005167543
210 => 0.12101221128807
211 => 0.12691974064421
212 => 0.12337981211856
213 => 0.12608595483783
214 => 0.12752128317841
215 => 0.12885449613286
216 => 0.12558054648302
217 => 0.12132118609244
218 => 0.11997206786096
219 => 0.1097305183032
220 => 0.10919740117193
221 => 0.10889814637104
222 => 0.10701138718187
223 => 0.10552891128603
224 => 0.10434999141285
225 => 0.10125615361035
226 => 0.10230023304813
227 => 0.097369301325083
228 => 0.1005239367
301 => 0.092654050608505
302 => 0.099208325600429
303 => 0.09564113170864
304 => 0.098036406467604
305 => 0.098028049579619
306 => 0.093617589325812
307 => 0.091073727895374
308 => 0.092694775407417
309 => 0.094432667019239
310 => 0.094714634086288
311 => 0.096967855924628
312 => 0.097596681706867
313 => 0.095691310229614
314 => 0.092490964711752
315 => 0.093234331983441
316 => 0.09105866358134
317 => 0.087245888392533
318 => 0.089984290097802
319 => 0.090919300839005
320 => 0.091332254848707
321 => 0.087582828350704
322 => 0.086404677141022
323 => 0.085777439322634
324 => 0.092006960834141
325 => 0.092348228084891
326 => 0.090602256579727
327 => 0.09849421334288
328 => 0.096708020468725
329 => 0.098703635537035
330 => 0.093166879195143
331 => 0.093378390743634
401 => 0.090757201560926
402 => 0.092224892355318
403 => 0.091187575807724
404 => 0.092106317443134
405 => 0.092657007391285
406 => 0.095277766462641
407 => 0.099238250459241
408 => 0.094886312451994
409 => 0.092990110741336
410 => 0.094166503617985
411 => 0.097299392871741
412 => 0.10204588046083
413 => 0.099235864276125
414 => 0.10048290174173
415 => 0.10075532395113
416 => 0.098683322048979
417 => 0.10212227812644
418 => 0.10396524262638
419 => 0.10585574285555
420 => 0.10749721123392
421 => 0.10510063549102
422 => 0.10766531507156
423 => 0.10559863605654
424 => 0.10374461133071
425 => 0.10374742312092
426 => 0.10258436632743
427 => 0.10033079723546
428 => 0.099915204518943
429 => 0.10207717031381
430 => 0.10381086214238
501 => 0.1039536573052
502 => 0.1049135181818
503 => 0.10548155396122
504 => 0.11104907680669
505 => 0.1132883805521
506 => 0.11602655878415
507 => 0.1170932335208
508 => 0.12030354205405
509 => 0.11771095718494
510 => 0.11715003514038
511 => 0.10936287672262
512 => 0.11063802347728
513 => 0.11267965646486
514 => 0.1093965424986
515 => 0.11147892264153
516 => 0.11189002859258
517 => 0.10928498354233
518 => 0.11067645066102
519 => 0.10698112653502
520 => 0.099318798427032
521 => 0.10213080848801
522 => 0.10420139440525
523 => 0.10124641299995
524 => 0.10654310279537
525 => 0.10344888596276
526 => 0.10246816777542
527 => 0.098642036475342
528 => 0.10044782316768
529 => 0.10289017552544
530 => 0.10138108572228
531 => 0.10451267365481
601 => 0.10894783733127
602 => 0.11210859908568
603 => 0.11235124312585
604 => 0.11031908507236
605 => 0.11357563132214
606 => 0.11359935170632
607 => 0.10992595423318
608 => 0.10767601873445
609 => 0.10716482865523
610 => 0.10844188169783
611 => 0.10999245984855
612 => 0.11243728942174
613 => 0.11391464872943
614 => 0.11776681827305
615 => 0.1188091049012
616 => 0.11995426190397
617 => 0.12148454481302
618 => 0.12332204180181
619 => 0.11930170299909
620 => 0.11946143855457
621 => 0.11571775472686
622 => 0.11171709165838
623 => 0.11475309623766
624 => 0.11872226836231
625 => 0.11781173589137
626 => 0.1177092823879
627 => 0.11788158076251
628 => 0.11719506901463
629 => 0.11409000182229
630 => 0.11253065651704
701 => 0.11454260979222
702 => 0.11561187341624
703 => 0.11727020804751
704 => 0.11706578330101
705 => 0.12133747521902
706 => 0.1229973255291
707 => 0.12257266479079
708 => 0.12265081258667
709 => 0.12565589228828
710 => 0.12899815895826
711 => 0.13212863274562
712 => 0.1353130851391
713 => 0.13147410348747
714 => 0.12952490536024
715 => 0.13153598027956
716 => 0.13046887561944
717 => 0.1366007755203
718 => 0.13702533496524
719 => 0.14315679145994
720 => 0.14897627379366
721 => 0.14532116120671
722 => 0.14876776774632
723 => 0.15249555372487
724 => 0.15968705768897
725 => 0.15726521215402
726 => 0.15541011642941
727 => 0.15365705993341
728 => 0.1573048922117
729 => 0.16199777016219
730 => 0.1630085711249
731 => 0.16464645484017
801 => 0.16292442038445
802 => 0.16499842121049
803 => 0.17232055548856
804 => 0.17034205017236
805 => 0.16753225456275
806 => 0.17331237635003
807 => 0.1754041799552
808 => 0.19008555314228
809 => 0.20862139324825
810 => 0.20094743373149
811 => 0.19618395942231
812 => 0.19730348887609
813 => 0.204072150205
814 => 0.20624602939728
815 => 0.20033667637158
816 => 0.20242395976162
817 => 0.21392509645792
818 => 0.22009508729484
819 => 0.21171541099798
820 => 0.18859621643771
821 => 0.16727926321075
822 => 0.17293347912145
823 => 0.17229246650793
824 => 0.18464900309208
825 => 0.1702948634749
826 => 0.17053655037281
827 => 0.18314860704772
828 => 0.17978392655225
829 => 0.17433357506529
830 => 0.16731905680832
831 => 0.1543520710459
901 => 0.14286685014498
902 => 0.1653920132201
903 => 0.16442068722895
904 => 0.16301406325131
905 => 0.16614435270092
906 => 0.18134414972007
907 => 0.18099374520183
908 => 0.17876465043479
909 => 0.18045539916925
910 => 0.17403717863749
911 => 0.17569130020869
912 => 0.16727588649644
913 => 0.1710800049531
914 => 0.17432188105888
915 => 0.17497273568391
916 => 0.17643914438757
917 => 0.163908842569
918 => 0.16953458021521
919 => 0.17283917402202
920 => 0.15790889898069
921 => 0.17254405048894
922 => 0.16369071789175
923 => 0.16068576383567
924 => 0.16473153859959
925 => 0.16315489623944
926 => 0.16179939172174
927 => 0.16104299691033
928 => 0.16401376738109
929 => 0.16387517738779
930 => 0.15901442029593
1001 => 0.15267376081941
1002 => 0.15480189426478
1003 => 0.15402872343272
1004 => 0.1512266525963
1005 => 0.15311491001672
1006 => 0.1447999799624
1007 => 0.1304945749764
1008 => 0.13994516369656
1009 => 0.1395813263111
1010 => 0.13939786300263
1011 => 0.14649971923075
1012 => 0.14581703962211
1013 => 0.14457796944763
1014 => 0.15120389610086
1015 => 0.14878534374114
1016 => 0.15623875223119
1017 => 0.16114804911898
1018 => 0.15990289262912
1019 => 0.16452011008077
1020 => 0.15485092216114
1021 => 0.15806263852755
1022 => 0.15872456881942
1023 => 0.15112213319447
1024 => 0.14592873444893
1025 => 0.14558239396168
1026 => 0.13657775623133
1027 => 0.14138796102399
1028 => 0.14562074218172
1029 => 0.14359356848425
1030 => 0.14295182585173
1031 => 0.14623034978431
1101 => 0.14648511917253
1102 => 0.14067635012186
1103 => 0.14188417714729
1104 => 0.14692101662786
1105 => 0.14175726171557
1106 => 0.13172492941558
1107 => 0.12923677229734
1108 => 0.12890480627193
1109 => 0.12215672682903
1110 => 0.12940304285357
1111 => 0.12623983171966
1112 => 0.13623237779059
1113 => 0.13052468906597
1114 => 0.13027864201287
1115 => 0.12990670580484
1116 => 0.12409835506868
1117 => 0.12537001473996
1118 => 0.1295972051665
1119 => 0.1311055143334
1120 => 0.13094818533008
1121 => 0.12957648962728
1122 => 0.1302044448958
1123 => 0.12818158218176
1124 => 0.12746726725519
1125 => 0.12521269285912
1126 => 0.12189909133897
1127 => 0.12235986795385
1128 => 0.11579475629143
1129 => 0.1122177350209
1130 => 0.1112276626776
1201 => 0.10990369656217
1202 => 0.11137720817328
1203 => 0.11577615815495
1204 => 0.11047009118775
1205 => 0.1013732115498
1206 => 0.10191994951637
1207 => 0.10314830739929
1208 => 0.10085927061087
1209 => 0.098692889394922
1210 => 0.10057638209813
1211 => 0.096721914273481
1212 => 0.10361410142097
1213 => 0.10342768707376
1214 => 0.10599666823235
1215 => 0.10760310487161
1216 => 0.10390078850814
1217 => 0.10296966595486
1218 => 0.10350007567837
1219 => 0.094733584450986
1220 => 0.10528025887161
1221 => 0.10537146694996
1222 => 0.1045904880091
1223 => 0.11020626654603
1224 => 0.12205731086423
1225 => 0.11759847128457
1226 => 0.11587187383019
1227 => 0.11258961080727
1228 => 0.11696303140381
1229 => 0.11662722093799
1230 => 0.11510855865919
1231 => 0.11419006697446
]
'min_raw' => 0.085777439322634
'max_raw' => 0.22009508729484
'avg_raw' => 0.15293626330874
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$0.085777'
'max' => '$0.220095'
'avg' => '$0.152936'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 0.052747616561227
'max_diff' => 0.12793163921169
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.002692455804653
]
1 => [
'year' => 2028
'avg' => 0.0046210357862895
]
2 => [
'year' => 2029
'avg' => 0.012623836907475
]
3 => [
'year' => 2030
'avg' => 0.0097392713741354
]
4 => [
'year' => 2031
'avg' => 0.0095651714640148
]
5 => [
'year' => 2032
'avg' => 0.016770755846663
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.002692455804653
'min' => '$0.002692'
'max_raw' => 0.016770755846663
'max' => '$0.01677'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.016770755846663
]
1 => [
'year' => 2033
'avg' => 0.043136108554105
]
2 => [
'year' => 2034
'avg' => 0.027341738625965
]
3 => [
'year' => 2035
'avg' => 0.032249643409871
]
4 => [
'year' => 2036
'avg' => 0.062596635422278
]
5 => [
'year' => 2037
'avg' => 0.15293626330874
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.016770755846663
'min' => '$0.01677'
'max_raw' => 0.15293626330874
'max' => '$0.152936'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 0.15293626330874
]
]
]
]
'prediction_2025_max_price' => '$0.0046036'
'last_price' => 0.00446378
'sma_50day_nextmonth' => '$0.004235'
'sma_200day_nextmonth' => '$0.00458'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'increase'
'sma_200day_direction_label' => 'aumentar'
'sma_200day_date_nextmonth' => '4 de fev. de 2026'
'sma_50day_date_nextmonth' => '4 de fev. de 2026'
'daily_sma3' => '$0.004439'
'daily_sma3_action' => 'BUY'
'daily_sma5' => '$0.004234'
'daily_sma5_action' => 'BUY'
'daily_sma10' => '$0.00426'
'daily_sma10_action' => 'BUY'
'daily_sma21' => '$0.004426'
'daily_sma21_action' => 'BUY'
'daily_sma50' => '$0.003922'
'daily_sma50_action' => 'BUY'
'daily_sma100' => '$0.003688'
'daily_sma100_action' => 'BUY'
'daily_sma200' => '$0.004974'
'daily_sma200_action' => 'SELL'
'daily_ema3' => '$0.004417'
'daily_ema3_action' => 'BUY'
'daily_ema5' => '$0.00435'
'daily_ema5_action' => 'BUY'
'daily_ema10' => '$0.00433'
'daily_ema10_action' => 'BUY'
'daily_ema21' => '$0.00432'
'daily_ema21_action' => 'BUY'
'daily_ema50' => '$0.004127'
'daily_ema50_action' => 'BUY'
'daily_ema100' => '$0.004255'
'daily_ema100_action' => 'BUY'
'daily_ema200' => '$0.005039'
'daily_ema200_action' => 'SELL'
'weekly_sma21' => '$0.004515'
'weekly_sma21_action' => 'SELL'
'weekly_sma50' => '$0.006728'
'weekly_sma50_action' => 'SELL'
'weekly_sma100' => '$0.006253'
'weekly_sma100_action' => 'SELL'
'weekly_sma200' => '—'
'weekly_sma200_action' => '—'
'weekly_ema3' => '$0.00442'
'weekly_ema3_action' => 'BUY'
'weekly_ema5' => '$0.004348'
'weekly_ema5_action' => 'BUY'
'weekly_ema10' => '$0.004225'
'weekly_ema10_action' => 'BUY'
'weekly_ema21' => '$0.00461'
'weekly_ema21_action' => 'SELL'
'weekly_ema50' => '$0.00641'
'weekly_ema50_action' => 'SELL'
'weekly_ema100' => '$0.013551'
'weekly_ema100_action' => 'SELL'
'weekly_ema200' => '$0.0136021'
'weekly_ema200_action' => 'SELL'
'rsi_14' => '53.88'
'rsi_14_action' => 'NEUTRAL'
'stoch_rsi_14' => 58.41
'stoch_rsi_14_action' => 'NEUTRAL'
'momentum_10' => -0
'momentum_10_action' => 'SELL'
'vwma_10' => '0.004252'
'vwma_10_action' => 'BUY'
'hma_9' => '0.004400063'
'hma_9_action' => 'BUY'
'stochastic_fast_14' => 72.55
'stochastic_fast_14_action' => 'NEUTRAL'
'cci_20' => 7.95
'cci_20_action' => 'NEUTRAL'
'adx_14' => 15.49
'adx_14_action' => 'NEUTRAL'
'ao_5_34' => '-0.000098'
'ao_5_34_action' => 'NEUTRAL'
'macd_12_26' => -0
'macd_12_26_action' => 'NEUTRAL'
'williams_percent_r_14' => -27.45
'williams_percent_r_14_action' => 'NEUTRAL'
'ultimate_oscillator' => 53.49
'ultimate_oscillator_action' => 'NEUTRAL'
'ichimoku_cloud' => '0.000128'
'ichimoku_cloud_action' => 'BUY'
'sell_signals' => 10
'buy_signals' => 21
'sell_pct' => 32.26
'buy_pct' => 67.74
'overall_action' => 'bullish'
'overall_action_label' => 'Altista'
'overall_action_dir' => 1
'last_updated' => 1767715067
'last_updated_date' => '6 de janeiro de 2026'
]
Previsão de preço de Limoverse para 2026
A previsão de preço para Limoverse em 2026 sugere que o preço médio poderia variar entre $0.001542 na extremidade inferior e $0.0046036 na extremidade superior. No mercado de criptomoedas, comparado ao preço médio de hoje, Limoverse poderia potencialmente ganhar 3.13% até 2026 se LIMO atingir a meta de preço prevista.
Previsão de preço de Limoverse 2027-2032
A previsão de preço de LIMO para 2027-2032 está atualmente dentro de uma faixa de preço entre $0.002692 na extremidade inferior e $0.01677 na extremidade superior. Considerando a volatilidade de preços no mercado, se Limoverse atingir a meta de preço superior, poderia ganhar 275.71% até 2032 em comparação com o preço de hoje.
| Previsão de Preço de Limoverse | Potencial Mínimo ($) | Preço Médio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2027 | $0.001484 | $0.002692 | $0.00390024 |
| 2028 | $0.002679 | $0.004621 | $0.006562 |
| 2029 | $0.005885 | $0.012623 | $0.019361 |
| 2030 | $0.0050056 | $0.009739 | $0.014472 |
| 2031 | $0.005918 | $0.009565 | $0.013212 |
| 2032 | $0.009033 | $0.01677 | $0.0245077 |
Previsão de preço de Limoverse 2032-2037
A previsão de preço de Limoverse para 2032-2037 é atualmente estimada entre $0.01677 na extremidade inferior e $0.152936 na extremidade superior. Comparado ao preço atual, Limoverse poderia potencialmente ganhar 3326.16% até 2037 se atingir a meta de preço superior. Por favor, note que esta informação é apenas para fins gerais e não deve ser considerada como aconselhamento de investimento a longo prazo.
| Previsão de Preço de Limoverse | Potencial Mínimo ($) | Preço Médio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2032 | $0.009033 | $0.01677 | $0.0245077 |
| 2033 | $0.020992 | $0.043136 | $0.065279 |
| 2034 | $0.016876 | $0.027341 | $0.0378065 |
| 2035 | $0.019953 | $0.032249 | $0.044545 |
| 2036 | $0.033029 | $0.062596 | $0.092163 |
| 2037 | $0.085777 | $0.152936 | $0.220095 |
Limoverse Histograma de preços potenciais
Previsão de preço de Limoverse baseada na análise técnica
Em 6 de janeiro de 2026, o sentimento geral de previsão de preço para Limoverse é Altista, com 21 indicadores técnicos mostrando sinais de alta e 10 indicando sinais de baixa. A previsão de preço de LIMO foi atualizada pela última vez em 6 de janeiro de 2026.
Médias Móveis Simples de 50 e 200 dias e Índice de Força Relativa de 14 dias - RSI (14) de Limoverse
De acordo com nossos indicadores técnicos, o SMA de 200 dias de Limoverse está projetado para aumentar no próximo mês, alcançando $0.00458 até 4 de fev. de 2026. O SMA de 50 dias de curto prazo para Limoverse é esperado para alcançar $0.004235 até 4 de fev. de 2026.
O oscilador de momentum Índice de Força Relativa (RSI) é uma ferramenta comumente usada para identificar se uma criptomoeda está sobrevendida (abaixo de 30) ou sobrecomprada (acima de 70). No momento, o RSI está em 53.88, sugerindo que o mercado de LIMO está em um estado NEUTRAL.
Médias Móveis e Osciladores Populares de LIMO para Sábado, 19 de Outubro de 2024
Médias móveis (MA) são indicadores amplamente utilizados nos mercados financeiros, projetados para suavizar movimentos de preços ao longo de um período definido. Como indicadores atrasados, eles se baseiam em dados históricos de preços. A tabela abaixo destaca dois tipos: a média móvel simples (SMA) e a média móvel exponencial (EMA).
Média Móvel Simples Diária (SMA)
| Período | Valor | Ação |
|---|---|---|
| SMA 3 | $0.004439 | BUY |
| SMA 5 | $0.004234 | BUY |
| SMA 10 | $0.00426 | BUY |
| SMA 21 | $0.004426 | BUY |
| SMA 50 | $0.003922 | BUY |
| SMA 100 | $0.003688 | BUY |
| SMA 200 | $0.004974 | SELL |
Média Móvel Exponencial Diária (EMA)
| Período | Valor | Ação |
|---|---|---|
| EMA 3 | $0.004417 | BUY |
| EMA 5 | $0.00435 | BUY |
| EMA 10 | $0.00433 | BUY |
| EMA 21 | $0.00432 | BUY |
| EMA 50 | $0.004127 | BUY |
| EMA 100 | $0.004255 | BUY |
| EMA 200 | $0.005039 | SELL |
Média Móvel Simples Semanal (SMA)
| Período | Valor | Ação |
|---|---|---|
| SMA 21 | $0.004515 | SELL |
| SMA 50 | $0.006728 | SELL |
| SMA 100 | $0.006253 | SELL |
| SMA 200 | — | — |
Média Móvel Exponencial Semanal (EMA)
| Período | Valor | Ação |
|---|---|---|
| EMA 21 | $0.00461 | SELL |
| EMA 50 | $0.00641 | SELL |
| EMA 100 | $0.013551 | SELL |
| EMA 200 | $0.0136021 | SELL |
Osciladores de Limoverse
Um oscilador é uma ferramenta de análise técnica que define limites altos e baixos entre dois extremos, criando um indicador de tendência que flutua dentro desses limites. Os traders usam esse indicador para identificar condições de sobrecompra ou sobrevenda de curto prazo.
| Período | Valor | Ação |
|---|---|---|
| RSI (14) | 53.88 | NEUTRAL |
| Stoch RSI (14) | 58.41 | NEUTRAL |
| Estocástico Rápido (14) | 72.55 | NEUTRAL |
| Índice de Canal de Commodities (20) | 7.95 | NEUTRAL |
| Índice Direcional Médio (14) | 15.49 | NEUTRAL |
| Oscilador Impressionante (5, 34) | -0.000098 | NEUTRAL |
| Momentum (10) | -0 | SELL |
| MACD (12, 26) | -0 | NEUTRAL |
| Williams Percent Range (14) | -27.45 | NEUTRAL |
| Oscilador Ultimate (7, 14, 28) | 53.49 | NEUTRAL |
| VWMA (10) | 0.004252 | BUY |
| Média Móvel de Hull (9) | 0.004400063 | BUY |
| Nuvem Ichimoku B/L (9, 26, 52, 26) | 0.000128 | BUY |
Previsão do preço de Limoverse com base nos fluxos financeiros mundiais
Definições dos fluxos financeiros mundiais, usadas na previsão do preço do Limoverse
M0: o total de todas as moedas físicas, mais as contas no Banco Central que podem ser trocadas por moedas físicas.
M1: o valor de M0, mais o valor em contas de demanda, incluindo contas 'correntes'.
M2: o valor de M1, mais a maioria das contas de poupança, do mercado de moedas e de certificados de depósito (CD) de menos de US$ 100.000.
Previsões de preço de Limoverse por empresas de Internet ou nichos tecnológicos
| Comparação | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Facebook stock | $0.006272 | $0.008813 | $0.012384 | $0.0174026 | $0.024453 | $0.034361 |
| Amazon.com stock | $0.009313 | $0.019434 | $0.04055 | $0.08461 | $0.176545 | $0.368372 |
| Apple stock | $0.006331 | $0.00898 | $0.012738 | $0.018068 | $0.025629 | $0.036352 |
| Netflix stock | $0.007043 | $0.011112 | $0.017534 | $0.027666 | $0.043653 | $0.068878 |
| Google stock | $0.00578 | $0.007485 | $0.009694 | $0.012553 | $0.016257 | $0.021052 |
| Tesla stock | $0.010119 | $0.022939 | $0.0520012 | $0.117882 | $0.267231 | $0.605794 |
| Kodak stock | $0.003347 | $0.00251 | $0.001882 | $0.001411 | $0.001058 | $0.000793 |
| Nokia stock | $0.002957 | $0.001958 | $0.001297 | $0.000859 | $0.000569 | $0.000377 |
Este cálculo mostra quanto a criptomoeda pode custar, se assumirmos que sua capitalização se comportará da mesma forma que a de algumas empresas de Internet ou nichos tecnológicos. Se você extrapolar os dados, poderá obter uma imagem em potencial do preço futuro para 2024, 2025, 2026, 2027, 2028, 2029 e 2030.
Visão geral da previsão para Limoverse
Você pode fazer perguntas como: 'Devo investir em Limoverse agora?', 'Devo comprar LIMO hoje?', 'Limoverse será um bom ou mau investimento no curto ou no longo prazo?'.
Atualizamos a previsão para Limoverse regularmente com novos valores. Veja nossas previsões semelhantes. Fazemos previsões de preços futuros para uma enorme quantidade de moedas digitais, como Limoverse, com métodos de análise técnica.
Se você estiver tentando encontrar criptomoedas com bom retorno, você deve explorar o máximo de fontes de informações disponíveis sobre Limoverse para poder tomar sozinho uma decisão de tão grande responsabilidade sobre o seu investimento.
O preço de Limoverse é de $0.004463 USD hoje, mas o preço pode tanto subir quanto descer e seu investimento pode ser perdido, porque criptomoedas são ativos de alto risco
Previsão do preço de Limoverse com base no padrão de crescimento do Bitcoin
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| Se Limoverse tiver 1% da média anterior do crescimento anual do Bitcoin | $0.004579 | $0.004698 | $0.00482 | $0.004946 |
| Se Limoverse tiver 2% da média anterior do crescimento anual do Bitcoin | $0.004695 | $0.004939 | $0.005196 | $0.005466 |
| Se Limoverse tiver 5% da média anterior do crescimento anual do Bitcoin | $0.005043 | $0.005699 | $0.00644 | $0.007277 |
| Se Limoverse tiver 10% da média anterior do crescimento anual do Bitcoin | $0.005624 | $0.007085 | $0.008927 | $0.011248 |
| Se Limoverse tiver 20% da média anterior do crescimento anual do Bitcoin | $0.006784 | $0.010311 | $0.015671 | $0.023818 |
| Se Limoverse tiver 50% da média anterior do crescimento anual do Bitcoin | $0.010265 | $0.0236064 | $0.054286 | $0.124841 |
| Se Limoverse tiver 100% da média anterior do crescimento anual do Bitcoin | $0.016066 | $0.057828 | $0.208144 | $0.749178 |
Perguntas Frequentes sobre Limoverse
LIMO é um bom investimento?
A decisão de adquirir Limoverse depende inteiramente da sua tolerância individual ao risco. Como você pode perceber, o valor de Limoverse experimentou uma escalada de 3.3608% nas últimas 24 horas, e Limoverse registrou um declínio de durante os últimos 30 dias. Consequentemente, a decisão de investir ou não em Limoverse dependerá de quão alinhado esse investimento está com suas aspirações de negociação.
Limoverse pode subir?
Parece que o valor médio de Limoverse pode potencialmente subir para $0.0046036 até o final deste ano. Observando as perspectivas de Limoverse em um horizonte de cinco anos mais longo, a moeda digital poderia potencialmente crescer até $0.014472. No entanto, dada a imprevisibilidade do mercado, é vital conduzir uma pesquisa aprofundada antes de investir quaisquer fundos em um projeto, rede ou ativo específico.
Qual será o preço de Limoverse na próxima semana?
Com base na nossa nova previsão experimental de Limoverse, o preço de Limoverse aumentará 0.86% na próxima semana e atingirá $0.004501 até 13 de janeiro de 2026.
Qual será o preço de Limoverse no próximo mês?
Com base na nossa nova previsão experimental de Limoverse, o preço de Limoverse diminuirá -11.62% no próximo mês e atingirá $0.003945 até 5 de fevereiro de 2026.
Até onde o preço de Limoverse pode subir este ano em 2026?
De acordo com nossa previsão mais recente sobre o valor de Limoverse em 2026, espera-se que LIMO fluctue dentro do intervalo de $0.001542 e $0.0046036. No entanto, é crucial lembrar que o mercado de criptomoedas é excepcionalmente instável, e essa previsão de preço de Limoverse não considera flutuações repentinas e extremas de preço.
Onde estará Limoverse em 5 anos?
O futuro de Limoverse parece seguir uma tendência de alta, com um preço máximo de $0.014472 projetada após um período de cinco anos. Com base na previsão de Limoverse para 2030, o valor de Limoverse pode potencialmente atingir seu pico mais alto de aproximadamente $0.014472, enquanto seu pico mais baixo está previsto para cerca de $0.0050056.
Quanto será Limoverse em 2026?
Com base na nossa nova simulação experimental de previsão de preços de Limoverse, espera-se que o valor de LIMO em 2026 aumente 3.13% para $0.0046036 se o melhor cenário ocorrer. O preço ficará entre $0.0046036 e $0.001542 durante 2026.
Quanto será Limoverse em 2027?
De acordo com nossa última simulação experimental para previsão de preços de Limoverse, o valor de LIMO pode diminuir -12.62% para $0.00390024 em 2027, assumindo as condições mais favoráveis. O preço está projetado para flutuar entre $0.00390024 e $0.001484 ao longo do ano.
Quanto será Limoverse em 2028?
Nosso novo modelo experimental de previsão de preços de Limoverse sugere que o valor de LIMO em 2028 pode aumentar 47.02%, alcançando $0.006562 no melhor cenário. O preço é esperado para variar entre $0.006562 e $0.002679 durante o ano.
Quanto será Limoverse em 2029?
Com base no nosso modelo de previsão experimental, o valor de Limoverse pode experimentar um 333.75% crescimento em 2029, potencialmente alcançando $0.019361 sob condições ótimas. A faixa de preço prevista para 2029 está entre $0.019361 e $0.005885.
Quanto será Limoverse em 2030?
Usando nossa nova simulação experimental para previsões de preços de Limoverse, espera-se que o valor de LIMO em 2030 aumente 224.23%, alcançando $0.014472 no melhor cenário. O preço está previsto para variar entre $0.014472 e $0.0050056 ao longo de 2030.
Quanto será Limoverse em 2031?
Nossa simulação experimental indica que o preço de Limoverse poderia aumentar 195.98% em 2031, potencialmente atingindo $0.013212 sob condições ideais. O preço provavelmente oscilará entre $0.013212 e $0.005918 durante o ano.
Quanto será Limoverse em 2032?
Com base nos achados da nossa mais recente previsão experimental de preços de Limoverse, LIMO poderia ver um 449.04% aumento em valor, atingindo $0.0245077 se o cenário mais positivo se desenrolar em 2032. O preço é esperado para permanecer dentro de uma faixa de $0.0245077 e $0.009033 ao longo do ano.
Quanto será Limoverse em 2033?
De acordo com nossa previsão experimental de preços de Limoverse, espera-se que o valor de LIMO seja aumentar 1362.43% em 2033, com o preço potencial mais alto sendo $0.065279. Ao longo do ano, o preço de LIMO poderia variar entre $0.065279 e $0.020992.
Quanto será Limoverse em 2034?
Os resultados da nossa nova simulação de previsão de preços de Limoverse sugerem que LIMO pode aumentar 746.96% em 2034, atingindo potencialmente $0.0378065 nas melhores circunstâncias. A faixa de preço prevista para o ano é entre $0.0378065 e $0.016876.
Quanto será Limoverse em 2035?
Com base em nossa previsão experimental para o preço de Limoverse, LIMO poderia aumentar 897.93%, com o valor potencialmente atingindo $0.044545 em 2035. A faixa de preço esperada para o ano está entre $0.044545 e $0.019953.
Quanto será Limoverse em 2036?
Nossa recente simulação de previsão de preços de Limoverse sugere que o valor de LIMO pode aumentar 1964.7% em 2036, possivelmente atingindo $0.092163 se as condições forem ideais. A faixa de preço esperada para 2036 está entre $0.092163 e $0.033029.
Quanto será Limoverse em 2037?
De acordo com a simulação experimental, o valor de Limoverse poderia aumentar 4830.69% em 2037, com um pico de $0.220095 sob condições favoráveis. O preço é esperado para cair entre $0.220095 e $0.085777 ao longo do ano.
Previsões relacionadas
Previsão de Preço do SolPod
Previsão de Preço do zuzalu
Previsão de Preço do SOFT COQ INU
Previsão de Preço do All Street Bets
Previsão de Preço do MagicRing
Previsão de Preço do AI INU
Previsão de Preço do Wall Street Baby On Solana
Previsão de Preço do Meta Masters Guild Games
Previsão de Preço do Morfey
Previsão de Preço do PANTIESPrevisão de Preço do Celer Bridged BUSD (zkSync)
Previsão de Preço do Bridged BUSD
Previsão de Preço do Multichain Bridged BUSD (Moonriver)
Previsão de Preço do tooker kurlson
Previsão de Preço do dogwifsaudihatPrevisão de Preço do Harmony Horizen Bridged BUSD (Harmony)
Previsão de Preço do IoTeX Bridged BUSD (IoTeX)
Previsão de Preço do MIMANY
Previsão de Preço do The Open League MEME
Previsão de Preço do Sandwich Cat
Previsão de Preço do Hege
Previsão de Preço do DexNet
Previsão de Preço do SolDocs
Previsão de Preço do Secret Society
Previsão de Preço do duk
Como ler e prever os movimentos de preço de Limoverse?
Traders de Limoverse utilizam indicadores e padrões de gráfico para prever a direção do mercado. Eles também identificam níveis-chave de suporte e resistência para avaliar quando uma tendência de baixa pode desacelerar ou uma tendência de alta pode estagnar.
Indicadores de Previsão de Preço de Limoverse
Médias móveis são ferramentas populares para a previsão de preço de Limoverse. Uma média móvel simples (SMA) calcula o preço médio de fechamento de LIMO em um período específico, como uma SMA de 12 dias. Uma média móvel exponencial (EMA) dá mais peso aos preços recentes, reagindo mais rapidamente às mudanças de preço.
Médias móveis comumente usadas no mercado de criptomoedas incluem as de 50 dias, 100 dias e 200 dias, que ajudam a identificar níveis-chave de resistência e suporte. Um movimento de preço de LIMO acima dessas médias é visto como altista, enquanto uma queda abaixo indica fraqueza.
Traders também usam RSI e níveis de retração de Fibonacci para avaliar a direção futura de LIMO.
Como ler gráficos de Limoverse e prever movimentos de preço?
A maioria dos traders prefere gráficos de velas em vez de gráficos de linha simples porque eles fornecem informações mais detalhadas. Velas podem representar a ação de preço de Limoverse em diferentes períodos de tempo, como 5 minutos para tendências de curto prazo e semanal para tendências de longo prazo. Opções populares incluem gráficos de 1 hora, 4 horas e 1 dia.
Por exemplo, um gráfico de velas de 1 hora mostra os preços de abertura, fechamento, máximo e mínimo de LIMO dentro de cada hora. A cor da vela é crucial: verde indica que o preço fechou mais alto do que abriu, enquanto vermelho significa o oposto. Alguns gráficos usam velas vazias e preenchidas para transmitir a mesma informação.
O que afeta o preço de Limoverse?
A ação de preço de Limoverse é impulsionada pela oferta e demanda, influenciada por fatores como reduções pela metade das recompensas de bloco, hard forks e atualizações de protocolo. Eventos do mundo real, como regulamentações, adoção por empresas e governos e hacks de exchanges de criptomoedas, também impactam o preço de LIMO. A capitalização de mercado de Limoverse pode mudar rapidamente.
Traders frequentemente monitoram a atividade de "baleias" de LIMO, grandes detentores de Limoverse, pois suas ações podem influenciar significativamente os movimentos de preço no relativamente pequeno mercado de Limoverse.
Padrões de previsão de preço altistas e baixistas
Traders frequentemente identificam padrões de velas para ganhar vantagem em previsões de preço de criptomoedas. Certas formações indicam tendências altistas, enquanto outras sugerem movimentos baixistas.
Padrões de velas altistas comumente seguidos:
- Martelo
- Engolfo de Alta
- Linha de Perfuração
- Estrela da Manhã
- Três Soldados Brancos
Padrões de velas baixistas comuns:
- Harami de Baixa
- Nuvem Negra
- Estrela da Noite
- Estrela Cadente
- Homem Enforcado


