Previsão de Preço LA - Projeção LA
Previsão de Preço LA até $0.005824 até 2026
| Ano | Preço Mínimo | Preço Máximo |
|---|---|---|
| 2026 | $0.001951 | $0.005824 |
| 2027 | $0.001878 | $0.004934 |
| 2028 | $0.00339 | $0.0083037 |
| 2029 | $0.007447 | $0.024498 |
| 2030 | $0.006333 | $0.018312 |
| 2031 | $0.007488 | $0.016717 |
| 2032 | $0.01143 | $0.0310095 |
| 2033 | $0.026561 | $0.082598 |
| 2034 | $0.021354 | $0.047836 |
| 2035 | $0.025247 | $0.056363 |
Calculadora de lucro do investimento
Se você abrir um short de $10,000.00 em LA hoje e fechar em Apr 06, 2026, nossa previsão mostra que pode lucrar cerca de $3,955.38, com um retorno de 39.55% nos próximos 90 dias.
Previsão de preço de longo prazo de LATOKEN para os anos 2027, 2028, 2029, 2030, 2031, 2032 e 2037
[
'name' => 'LA'
'name_with_ticker' => 'LA <small>LA</small>'
'name_lang' => 'LATOKEN'
'name_lang_with_ticker' => 'LATOKEN <small>LA</small>'
'name_with_lang' => 'LATOKEN/LA'
'name_with_lang_with_ticker' => 'LATOKEN/LA <small>LA</small>'
'image' => '/uploads/coins/latoken.png?1717117733'
'price_for_sd' => 0.005648
'ticker' => 'LA'
'marketcap' => '$342.72K'
'low24h' => '$0.003878'
'high24h' => '$0.005648'
'volume24h' => '$95.41'
'current_supply' => '60.68M'
'max_supply' => '400M'
'algo' => null
'proof' => null
'ico_price_and_roi' => '0.3 USD 0.02x'
'price' => '$0.005648'
'change_24h_pct' => '1.4361%'
'ath_price' => '$1.82'
'ath_days' => 2921
'ath_exchange' => null
'ath_pair' => null
'ath_date' => '7 de jan. de 2018'
'ath_pct' => '-99.69%'
'fdv' => '$2.26M'
'new_prediction' => true
'change_24h_pct_is_increased' => true
'change_30d_pct' => null
'change_30d_pct_is_increased' => false
'max_price' => '$0.278485'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.005696'
'next_week_prediction_price_date' => '13 de janeiro de 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.004991'
'next_month_prediction_price_date' => '5 de fevereiro de 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.001951'
'current_year_max_price_prediction' => '$0.005824'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.006333'
'grand_prediction_max_price' => '$0.018312'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.005755026629152
107 => 0.0057765138095106
108 => 0.0058249255240211
109 => 0.0054112527240312
110 => 0.0055969796664313
111 => 0.0057060768448303
112 => 0.0052131718238344
113 => 0.0056963336973757
114 => 0.0054040516009223
115 => 0.0053048466674562
116 => 0.0054384130411121
117 => 0.0053863620954008
118 => 0.0053416117488124
119 => 0.0053166402865075
120 => 0.0054147166901376
121 => 0.0054101413086816
122 => 0.005249669276533
123 => 0.005040340052272
124 => 0.0051105978109315
125 => 0.0050850725085405
126 => 0.0049925655198459
127 => 0.0050549040608897
128 => 0.0047803966749466
129 => 0.004308120985084
130 => 0.0046201207720028
131 => 0.0046081091195969
201 => 0.0046020522997688
202 => 0.0048365115165976
203 => 0.004813973672794
204 => 0.0047730672655992
205 => 0.0049918142415986
206 => 0.0049119686527968
207 => 0.0051580339434972
208 => 0.0053201084584577
209 => 0.0052790011189024
210 => 0.0054314329835969
211 => 0.0051122164077903
212 => 0.0052182473495272
213 => 0.0052401001796666
214 => 0.00498911493787
215 => 0.0048176611427705
216 => 0.0048062271293537
217 => 0.0045089498764395
218 => 0.0046677529854081
219 => 0.0048074931495813
220 => 0.0047405684552172
221 => 0.0047193820962999
222 => 0.0048276186092478
223 => 0.0048360295132869
224 => 0.0046442600098478
225 => 0.0046841349621631
226 => 0.0048504201419775
227 => 0.0046799450022756
228 => 0.0043487396527909
301 => 0.0042665961468465
302 => 0.0042556366889483
303 => 0.0040328569859434
304 => 0.0042720853686981
305 => 0.0041676557687036
306 => 0.0044975476238276
307 => 0.0043091151654263
308 => 0.0043009922187598
309 => 0.0042887131934962
310 => 0.0040969575002062
311 => 0.0041389398103266
312 => 0.0042784954032534
313 => 0.0043282904110159
314 => 0.0043230963837478
315 => 0.0042778115047138
316 => 0.0042985426904395
317 => 0.0042317603179931
318 => 0.0042081780723274
319 => 0.0041337460181987
320 => 0.0040243514610094
321 => 0.0040395634451424
322 => 0.0038228242027073
323 => 0.0037047331602065
324 => 0.0036720471160571
325 => 0.0036283379717769
326 => 0.0036769841802092
327 => 0.0038222102076653
328 => 0.0036470368071328
329 => 0.003346714298905
330 => 0.0033647641933742
331 => 0.0034053169471846
401 => 0.0033297471587422
402 => 0.0032582266960731
403 => 0.0033204079357253
404 => 0.0031931573299076
405 => 0.0034206945749507
406 => 0.003414540330138
407 => 0.0034993521442813
408 => 0.0035523867121787
409 => 0.0034301592033204
410 => 0.0033994193153809
411 => 0.0034169301526013
412 => 0.0031275150192206
413 => 0.003475700753398
414 => 0.0034787118780859
415 => 0.0034529288004013
416 => 0.0036383269548223
417 => 0.004029574887785
418 => 0.0038823716774928
419 => 0.0038253701452271
420 => 0.003717010190722
421 => 0.0038613933963225
422 => 0.0038503070188613
423 => 0.0038001702155978
424 => 0.0037698473205476
425 => 0.0038257181844282
426 => 0.0037629243022173
427 => 0.0037516447955118
428 => 0.0036833032571004
429 => 0.0036589084372295
430 => 0.0036408474837827
501 => 0.0036209641486706
502 => 0.0036648218313097
503 => 0.0035654345524908
504 => 0.0034455832372903
505 => 0.0034356188972406
506 => 0.0034631313161916
507 => 0.0034509591188645
508 => 0.0034355606214428
509 => 0.0034061606963335
510 => 0.0033974383665836
511 => 0.003425781706798
512 => 0.0033937837282153
513 => 0.0034409984886342
514 => 0.0034281586863121
515 => 0.0033564365942836
516 => 0.0032670443126967
517 => 0.0032662485338839
518 => 0.0032469891134487
519 => 0.0032224593458513
520 => 0.0032156357256707
521 => 0.0033151712051594
522 => 0.0035212066688548
523 => 0.0034807569773206
524 => 0.0035099860249051
525 => 0.0036537640099696
526 => 0.0036994667078667
527 => 0.0036670280154271
528 => 0.0036226239324843
529 => 0.0036245774867792
530 => 0.0037763196802248
531 => 0.0037857836546993
601 => 0.0038096960650023
602 => 0.003840430269888
603 => 0.0036722621834176
604 => 0.0036166567850296
605 => 0.0035903078624033
606 => 0.0035091633790306
607 => 0.0035966707475458
608 => 0.0035456839513511
609 => 0.0035525638121148
610 => 0.003548083293767
611 => 0.0035505299597562
612 => 0.0034206309736535
613 => 0.0034679593368996
614 => 0.0033892667535159
615 => 0.0032839062180222
616 => 0.0032835530125631
617 => 0.003309339854361
618 => 0.0032940008318204
619 => 0.0032527239165659
620 => 0.0032585871075562
621 => 0.0032072193849412
622 => 0.0032648240791243
623 => 0.003266475975634
624 => 0.0032442950306246
625 => 0.0033330430099296
626 => 0.0033694031294623
627 => 0.0033548031562953
628 => 0.0033683787564244
629 => 0.0034824378446232
630 => 0.0035010344527465
701 => 0.003509293837652
702 => 0.0034982273560375
703 => 0.0033704635471754
704 => 0.0033761304153921
705 => 0.0033345506964441
706 => 0.0032994202154959
707 => 0.0033008252504987
708 => 0.003318886884349
709 => 0.0033977630986738
710 => 0.0035637534417136
711 => 0.0035700526538946
712 => 0.0035776874828189
713 => 0.003546632796626
714 => 0.0035372664061169
715 => 0.0035496230928689
716 => 0.003611960338357
717 => 0.0037723086581496
718 => 0.0037156308526307
719 => 0.0036695509145013
720 => 0.0037099754433029
721 => 0.0037037524039518
722 => 0.0036512236891832
723 => 0.003649749383112
724 => 0.0035489299850251
725 => 0.003511659349099
726 => 0.0034805132160604
727 => 0.0034465024518726
728 => 0.003426339730811
729 => 0.0034573188341545
730 => 0.0034644041216231
731 => 0.0033966677707405
801 => 0.0033874355564096
802 => 0.003442750522731
803 => 0.0034184084684028
804 => 0.0034434448749333
805 => 0.0034492535360067
806 => 0.0034483182077891
807 => 0.0034229023074032
808 => 0.0034391016443961
809 => 0.0034007853831531
810 => 0.0033591222039678
811 => 0.0033325436913553
812 => 0.0033093504139728
813 => 0.0033222193922658
814 => 0.0032763438344338
815 => 0.0032616673201908
816 => 0.0034336136735195
817 => 0.0035606322934583
818 => 0.0035587853924195
819 => 0.0035475428573301
820 => 0.0035308387306523
821 => 0.003610738327447
822 => 0.0035829029055666
823 => 0.0036031555007119
824 => 0.0036083106361751
825 => 0.0036239136785948
826 => 0.0036294904251331
827 => 0.003612633623795
828 => 0.0035560601396196
829 => 0.0034150843959001
830 => 0.0033494598066419
831 => 0.0033278025991227
901 => 0.0033285897974831
902 => 0.0033068753524942
903 => 0.0033132712297166
904 => 0.0033046511274103
905 => 0.0032883267390687
906 => 0.0033212114072866
907 => 0.0033250010589569
908 => 0.0033173253844523
909 => 0.0033191332836616
910 => 0.0032555819770872
911 => 0.0032604136448998
912 => 0.0032335103045402
913 => 0.0032284662525474
914 => 0.0031604569508602
915 => 0.0030399686148153
916 => 0.0031067308490699
917 => 0.003026091458281
918 => 0.0029955520991031
919 => 0.0031401206756066
920 => 0.0031256100002338
921 => 0.0031007740316345
922 => 0.0030640364578067
923 => 0.0030504101343139
924 => 0.0029676209063411
925 => 0.0029627292770891
926 => 0.0030037618539696
927 => 0.002984826731584
928 => 0.0029582346484631
929 => 0.0028619208189951
930 => 0.00275363218626
1001 => 0.0027569007394042
1002 => 0.0027913453386956
1003 => 0.0028914976566224
1004 => 0.0028523664133557
1005 => 0.0028239762473864
1006 => 0.0028186596227056
1007 => 0.0028852083116934
1008 => 0.0029793886489924
1009 => 0.0030235759560869
1010 => 0.0029797876767447
1011 => 0.0029294860591649
1012 => 0.0029325476855518
1013 => 0.0029529153142706
1014 => 0.0029550556640661
1015 => 0.0029223144821115
1016 => 0.0029315309330492
1017 => 0.0029175303013049
1018 => 0.0028316084501337
1019 => 0.0028300543963071
1020 => 0.0028089677883527
1021 => 0.0028083292942442
1022 => 0.0027724557138128
1023 => 0.0027674367519281
1024 => 0.0026962075806109
1025 => 0.0027430908368737
1026 => 0.0027116440100541
1027 => 0.0026642462244804
1028 => 0.0026560748283821
1029 => 0.0026558291863482
1030 => 0.0027044961141815
1031 => 0.0027425221354867
1101 => 0.0027121910410702
1102 => 0.0027052852388151
1103 => 0.0027790211398474
1104 => 0.0027696375743234
1105 => 0.0027615114670971
1106 => 0.0029709558327663
1107 => 0.0028051642741914
1108 => 0.0027328696916015
1109 => 0.0026433914172775
1110 => 0.002672525994586
1111 => 0.0026786650781009
1112 => 0.002463485958023
1113 => 0.0023761878158063
1114 => 0.0023462303831586
1115 => 0.0023289894571339
1116 => 0.0023368463636213
1117 => 0.0022582677965754
1118 => 0.0023110738931998
1119 => 0.002243031496219
1120 => 0.002231623966936
1121 => 0.0023532922015732
1122 => 0.0023702216256475
1123 => 0.0022979954429869
1124 => 0.0023443763446118
1125 => 0.0023275579849399
1126 => 0.0022441978878217
1127 => 0.0022410141452671
1128 => 0.0021991869787823
1129 => 0.002133735562569
1130 => 0.0021038225090635
1201 => 0.0020882435310809
1202 => 0.0020946717210247
1203 => 0.0020914214314833
1204 => 0.0020702110936445
1205 => 0.0020926371832203
1206 => 0.0020353477914543
1207 => 0.002012534694041
1208 => 0.0020022305471993
1209 => 0.0019513829145526
1210 => 0.0020323041101384
1211 => 0.0020482466050871
1212 => 0.0020642205116758
1213 => 0.0022032624626811
1214 => 0.0021963163197374
1215 => 0.0022591060690401
1216 => 0.0022566661748451
1217 => 0.0022387575212175
1218 => 0.0021632038573931
1219 => 0.0021933182011789
1220 => 0.0021006309318141
1221 => 0.0021700785361439
1222 => 0.0021383855497291
1223 => 0.0021593631055568
1224 => 0.0021216435687087
1225 => 0.0021425191178019
1226 => 0.0020520271620671
1227 => 0.001967527047058
1228 => 0.0020015323600498
1229 => 0.0020385000242511
1230 => 0.0021186553394252
1231 => 0.0020709154949745
]
'min_raw' => 0.0019513829145526
'max_raw' => 0.0058249255240211
'avg_raw' => 0.0038881542192869
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.001951'
'max' => '$0.005824'
'avg' => '$0.003888'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.0036966170854474
'max_diff' => 0.00017692552402111
'year' => 2026
]
1 => [
'items' => [
101 => 0.0020880845482823
102 => 0.0020305710937658
103 => 0.0019119044091923
104 => 0.0019125760497398
105 => 0.0018943217656124
106 => 0.0018785473989572
107 => 0.0020763989903916
108 => 0.0020517930174259
109 => 0.0020125866198552
110 => 0.0020650659410039
111 => 0.0020789423064744
112 => 0.0020793373470915
113 => 0.0021176249051142
114 => 0.0021380589816943
115 => 0.0021416605762579
116 => 0.0022019068760641
117 => 0.0022221006410913
118 => 0.0023052759013094
119 => 0.0021363252930615
120 => 0.0021328458664656
121 => 0.0020658044326741
122 => 0.0020232856954804
123 => 0.0020687157269861
124 => 0.0021089605330825
125 => 0.0020670549509815
126 => 0.0020725269353287
127 => 0.00201627211517
128 => 0.0020363805663414
129 => 0.0020537006733912
130 => 0.0020441375283071
131 => 0.0020298210372549
201 => 0.0021056609179283
202 => 0.0021013817346418
203 => 0.0021720055750762
204 => 0.0022270619090541
205 => 0.0023257327020394
206 => 0.0022227645857345
207 => 0.0022190120183151
208 => 0.00225569396677
209 => 0.0022220950252761
210 => 0.0022433283965042
211 => 0.0023223116776679
212 => 0.0023239804699387
213 => 0.002296026049286
214 => 0.0022943250202488
215 => 0.002299693972523
216 => 0.0023311400936892
217 => 0.002320151852712
218 => 0.002332867723359
219 => 0.0023487691143154
220 => 0.0024145440093612
221 => 0.0024304021138768
222 => 0.0023918751413882
223 => 0.0023953536956357
224 => 0.002380943550336
225 => 0.002367023530535
226 => 0.002398313702192
227 => 0.002455497105905
228 => 0.0024551413709183
301 => 0.0024684068090932
302 => 0.0024766710671793
303 => 0.002441194821667
304 => 0.0024181010903362
305 => 0.0024269566964207
306 => 0.0024411170033999
307 => 0.0024223646997152
308 => 0.0023066167944612
309 => 0.0023417273149104
310 => 0.0023358832074909
311 => 0.0023275604878578
312 => 0.0023628643876712
313 => 0.0023594592404097
314 => 0.0022574618597948
315 => 0.002263991401172
316 => 0.0022578589428324
317 => 0.0022776741703106
318 => 0.0022210249379642
319 => 0.0022384498602956
320 => 0.0022493786082333
321 => 0.0022558157247272
322 => 0.0022790710034753
323 => 0.0022763422649257
324 => 0.0022789013812558
325 => 0.0023133828204733
326 => 0.0024877781074344
327 => 0.0024972700581222
328 => 0.0024505282214177
329 => 0.0024692006632392
330 => 0.0024333536581561
331 => 0.0024574179928224
401 => 0.0024738821994333
402 => 0.0023994836156435
403 => 0.0023950782143543
404 => 0.0023590832559297
405 => 0.0023784249077285
406 => 0.0023476509490027
407 => 0.0023552018020466
408 => 0.0023340889586643
409 => 0.0023720878732273
410 => 0.0024145765641431
411 => 0.0024253108853977
412 => 0.0023970735075928
413 => 0.0023766277851281
414 => 0.0023407318317198
415 => 0.0024004276022313
416 => 0.0024178844647245
417 => 0.0024003359087642
418 => 0.0023962695249047
419 => 0.0023885637348387
420 => 0.0023979043446948
421 => 0.0024177893909023
422 => 0.00240841197033
423 => 0.0024146059218269
424 => 0.0023910009658958
425 => 0.0024412065657804
426 => 0.0025209451410328
427 => 0.0025212015135908
428 => 0.0025118240424707
429 => 0.0025079869833288
430 => 0.0025176088377705
501 => 0.0025228282990961
502 => 0.0025539436120143
503 => 0.0025873315824643
504 => 0.0027431386722416
505 => 0.0026993886649043
506 => 0.00283762998396
507 => 0.0029469609189444
508 => 0.0029797444858839
509 => 0.0029495851468856
510 => 0.002846411677348
511 => 0.0028413494947174
512 => 0.0029955342169219
513 => 0.0029519699707915
514 => 0.0029467881423346
515 => 0.0028916622423901
516 => 0.0029242484767328
517 => 0.0029171213892709
518 => 0.0029058709330431
519 => 0.0029680431981922
520 => 0.0030844241283949
521 => 0.0030662850690094
522 => 0.0030527451026248
523 => 0.0029934169113526
524 => 0.0030291457339297
525 => 0.0030164233845505
526 => 0.0030710866712859
527 => 0.003038705351164
528 => 0.0029516399287804
529 => 0.0029655053842664
530 => 0.0029634096485631
531 => 0.0030065397408312
601 => 0.002993593157687
602 => 0.002960881620419
603 => 0.0030840263510277
604 => 0.0030760300171889
605 => 0.0030873669903559
606 => 0.0030923578765515
607 => 0.0031673139040195
608 => 0.0031980209901477
609 => 0.0032049920363021
610 => 0.0032341613931526
611 => 0.0032042662761309
612 => 0.003323868059075
613 => 0.0034033962657752
614 => 0.0034957723703417
615 => 0.0036307586874694
616 => 0.0036815147914026
617 => 0.0036723461555274
618 => 0.0037746912405961
619 => 0.0039586030834611
620 => 0.0037095199972112
621 => 0.0039718050918533
622 => 0.0038887686591167
623 => 0.0036918907708597
624 => 0.0036792141558938
625 => 0.0038125421476207
626 => 0.0041082508009273
627 => 0.0040341791371738
628 => 0.0041083719556337
629 => 0.0040218220919166
630 => 0.0040175241616835
701 => 0.0041041684219359
702 => 0.0043066174587484
703 => 0.0042104415100475
704 => 0.0040725497042745
705 => 0.0041743668678231
706 => 0.0040861634180237
707 => 0.0038874163590344
708 => 0.0040341224959685
709 => 0.0039360242801509
710 => 0.0039646545547144
711 => 0.0041708424133547
712 => 0.0041460333446977
713 => 0.0041781385767978
714 => 0.0041214736824814
715 => 0.0040685397359562
716 => 0.0039697345938404
717 => 0.0039404832622946
718 => 0.0039485672779812
719 => 0.0039404792562579
720 => 0.0038851986873103
721 => 0.0038732608537093
722 => 0.003853363941366
723 => 0.0038595308264841
724 => 0.0038221188102315
725 => 0.0038927230146171
726 => 0.0039058277771132
727 => 0.003957207629163
728 => 0.0039625420558489
729 => 0.0041056342124611
730 => 0.0040268214571651
731 => 0.0040796958577836
801 => 0.0040749662737191
802 => 0.0036961577116842
803 => 0.0037483541892764
804 => 0.0038295555282528
805 => 0.0037929744351097
806 => 0.0037412573280629
807 => 0.0036994929912268
808 => 0.0036362157502974
809 => 0.0037252772517738
810 => 0.0038423836555805
811 => 0.0039655120675044
812 => 0.0041134427867379
813 => 0.0040804263723084
814 => 0.0039627466056068
815 => 0.0039680256339759
816 => 0.0040006585101327
817 => 0.0039583959705002
818 => 0.0039459319224999
819 => 0.0039989461413359
820 => 0.0039993112211249
821 => 0.0039506830616793
822 => 0.0038966417613147
823 => 0.0038964153262929
824 => 0.0038867991988701
825 => 0.0040235327796228
826 => 0.0040987224237125
827 => 0.0041073427952332
828 => 0.0040981422040256
829 => 0.004101683146423
830 => 0.004057931949218
831 => 0.0041579342120142
901 => 0.0042497061775547
902 => 0.0042251093303678
903 => 0.0041882351597867
904 => 0.0041588631068182
905 => 0.0042181902081457
906 => 0.0042155484657131
907 => 0.0042489046294958
908 => 0.0042473914012321
909 => 0.0042361749779407
910 => 0.0042251097309416
911 => 0.0042689821845345
912 => 0.0042563476224698
913 => 0.0042436934354404
914 => 0.0042183135260939
915 => 0.0042217630772898
916 => 0.0041848952735541
917 => 0.0041678385405901
918 => 0.0039113462016359
919 => 0.0038428030675384
920 => 0.0038643681328496
921 => 0.0038714679122867
922 => 0.0038416378524871
923 => 0.0038844064955262
924 => 0.0038777410478117
925 => 0.0039036724057121
926 => 0.0038874716191046
927 => 0.0038881365050381
928 => 0.0039357795640788
929 => 0.0039496105468063
930 => 0.0039425759973614
1001 => 0.0039475027546624
1002 => 0.0040610377972099
1003 => 0.0040448967448059
1004 => 0.0040363221324194
1005 => 0.0040386973586504
1006 => 0.00406770799624
1007 => 0.0040758293908431
1008 => 0.0040414184712298
1009 => 0.0040576468598466
1010 => 0.0041267452788876
1011 => 0.0041509258149201
1012 => 0.0042280984786202
1013 => 0.0041953141594457
1014 => 0.0042554911961626
1015 => 0.0044404548911669
1016 => 0.0045882166892505
1017 => 0.0044523288332182
1018 => 0.0047236745580472
1019 => 0.004934956127059
1020 => 0.0049268467885324
1021 => 0.0048900049599445
1022 => 0.0046494665108357
1023 => 0.0044281194437396
1024 => 0.0046132856642584
1025 => 0.0046137576910343
1026 => 0.0045978517484759
1027 => 0.0044990613053156
1028 => 0.0045944140551947
1029 => 0.0046019828102097
1030 => 0.0045977463200957
1031 => 0.0045220039189511
1101 => 0.004406359271939
1102 => 0.004428955959151
1103 => 0.0044659697937642
1104 => 0.0043958948829467
1105 => 0.0043735017029519
1106 => 0.004415134885039
1107 => 0.0045492856723416
1108 => 0.0045239252430846
1109 => 0.0045232629797872
1110 => 0.0046317656506442
1111 => 0.0045541011546525
1112 => 0.0044292409757414
1113 => 0.0043977121338629
1114 => 0.0042858059855671
1115 => 0.004363099960791
1116 => 0.0043658816333555
1117 => 0.0043235485130506
1118 => 0.004432676075143
1119 => 0.0044316704454468
1120 => 0.0045352708241594
1121 => 0.0047333158377325
1122 => 0.0046747441820157
1123 => 0.004606631718995
1124 => 0.0046140374322791
1125 => 0.0046952598281477
1126 => 0.0046461509134786
1127 => 0.0046638108215931
1128 => 0.0046952330977616
1129 => 0.0047141909371453
1130 => 0.0046113096909364
1201 => 0.0045873231510662
1202 => 0.0045382551086233
1203 => 0.0045254541722484
1204 => 0.0045654190689798
1205 => 0.0045548897306717
1206 => 0.0043656478445476
1207 => 0.0043458710145158
1208 => 0.004346477541658
1209 => 0.0042967477622059
1210 => 0.0042208979120267
1211 => 0.0044202267895383
1212 => 0.0044042178910683
1213 => 0.0043865453061477
1214 => 0.0043887100969621
1215 => 0.0044752320068074
1216 => 0.004425044929636
1217 => 0.0045584754997965
1218 => 0.0045310461858616
1219 => 0.0045029134135245
1220 => 0.0044990246074423
1221 => 0.0044881958902679
1222 => 0.0044510601898886
1223 => 0.0044062166001709
1224 => 0.0043766069779541
1225 => 0.0040371885905931
1226 => 0.0041001826689814
1227 => 0.0041726516140762
1228 => 0.0041976676035218
1229 => 0.0041548760225213
1230 => 0.0044527498623242
1231 => 0.00450717428324
]
'min_raw' => 0.0018785473989572
'max_raw' => 0.004934956127059
'avg_raw' => 0.0034067517630081
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.001878'
'max' => '$0.004934'
'avg' => '$0.0034067'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -7.2835515595431E-5
'max_diff' => -0.00088996939696215
'year' => 2027
]
2 => [
'items' => [
101 => 0.0043423191622691
102 => 0.0043114815001256
103 => 0.0044547715743205
104 => 0.0043683501430818
105 => 0.0044072657082769
106 => 0.0043231515420012
107 => 0.0044940650339744
108 => 0.004492762959524
109 => 0.0044262737508901
110 => 0.004482469974729
111 => 0.0044727044979159
112 => 0.0043976383451239
113 => 0.004496444764911
114 => 0.0044964937716625
115 => 0.0044324993539525
116 => 0.0043577678842465
117 => 0.0043444076625416
118 => 0.0043343425301802
119 => 0.0044047903027198
120 => 0.0044679535552944
121 => 0.0045854847088374
122 => 0.0046150348333095
123 => 0.0047303709363871
124 => 0.0046616939026173
125 => 0.004692137542171
126 => 0.0047251884194222
127 => 0.0047410342253822
128 => 0.0047152143349032
129 => 0.0048943787772167
130 => 0.0049095057456046
131 => 0.0049145776872573
201 => 0.0048541644453666
202 => 0.0049078255440609
203 => 0.0048827192930506
204 => 0.0049480387834619
205 => 0.0049582817135995
206 => 0.0049496063161757
207 => 0.0049528575838751
208 => 0.004799972339134
209 => 0.0047920444326602
210 => 0.0046839468653522
211 => 0.0047279974230471
212 => 0.0046456470168347
213 => 0.0046717611789478
214 => 0.0046832720527824
215 => 0.0046772594255275
216 => 0.0047304879754862
217 => 0.004685232834147
218 => 0.0045657970755187
219 => 0.0044463287766979
220 => 0.0044448289495229
221 => 0.004413375055234
222 => 0.0043906396507312
223 => 0.0043950192962203
224 => 0.0044104537381698
225 => 0.0043897425729068
226 => 0.0043941623500984
227 => 0.0044675601003001
228 => 0.0044822794956542
229 => 0.0044322572390019
301 => 0.0042314106603653
302 => 0.0041821224061824
303 => 0.0042175498258605
304 => 0.0042006178010724
305 => 0.0033902264102428
306 => 0.0035806158468128
307 => 0.0034674929086173
308 => 0.0035196251630739
309 => 0.0034041559362191
310 => 0.0034592639035349
311 => 0.0034490874741925
312 => 0.003755228054164
313 => 0.0037504480900904
314 => 0.0037527360059423
315 => 0.0036435278211939
316 => 0.0038174994248236
317 => 0.0039032040925881
318 => 0.0038873424395407
319 => 0.0038913344758868
320 => 0.0038227380652114
321 => 0.003753400169142
322 => 0.0036764937713754
323 => 0.0038193763525077
324 => 0.0038034902485728
325 => 0.0038399272553597
326 => 0.0039325968226819
327 => 0.0039462427684876
328 => 0.0039645830580339
329 => 0.0039580093697822
330 => 0.0041146212935771
331 => 0.0040956545562468
401 => 0.0041413589361101
402 => 0.0040473415591317
403 => 0.0039409519728692
404 => 0.0039611731550801
405 => 0.0039592256926247
406 => 0.0039344322603743
407 => 0.0039120498583279
408 => 0.0038747894651233
409 => 0.0039926868627233
410 => 0.0039879004436866
411 => 0.0040653870042861
412 => 0.0040516905020359
413 => 0.003960221907906
414 => 0.0039634887266396
415 => 0.0039854596526027
416 => 0.0040615012782204
417 => 0.0040840756100124
418 => 0.0040736182800948
419 => 0.0040983700043473
420 => 0.0041179327579874
421 => 0.0041008267850111
422 => 0.004343011289052
423 => 0.0042424393979295
424 => 0.0042914574378879
425 => 0.0043031479515869
426 => 0.0042732029465719
427 => 0.0042796969459094
428 => 0.0042895335853968
429 => 0.0043492597341531
430 => 0.0045059984303899
501 => 0.0045754169319968
502 => 0.0047842659191297
503 => 0.0045696526917906
504 => 0.0045569184310381
505 => 0.0045945384402559
506 => 0.0047171549046134
507 => 0.0048165240321963
508 => 0.004849490504558
509 => 0.0048538475680978
510 => 0.004915694861818
511 => 0.0049511445771947
512 => 0.0049081849736151
513 => 0.0048717812076393
514 => 0.0047413874365158
515 => 0.0047564808705738
516 => 0.004860459663795
517 => 0.0050073358335403
518 => 0.0051333708670427
519 => 0.0050892377910746
520 => 0.0054259420076155
521 => 0.0054593248553721
522 => 0.0054547124252088
523 => 0.0055307635204323
524 => 0.0053798175839499
525 => 0.0053152852716639
526 => 0.0048796521150435
527 => 0.0050020472628083
528 => 0.0051799557980994
529 => 0.0051564089363309
530 => 0.0050272070024937
531 => 0.0051332728557901
601 => 0.0050982041677044
602 => 0.00507054403841
603 => 0.0051972604528875
604 => 0.0050579305499461
605 => 0.0051785658757358
606 => 0.0050238498225979
607 => 0.0050894393872481
608 => 0.0050522075781424
609 => 0.0050763011215927
610 => 0.0049354507588941
611 => 0.005011450195657
612 => 0.0049322889324618
613 => 0.004932251399716
614 => 0.0049305039104434
615 => 0.0050236367855377
616 => 0.005026673845251
617 => 0.0049578485098403
618 => 0.0049479297037538
619 => 0.0049846047285123
620 => 0.0049416678797243
621 => 0.0049617577610309
622 => 0.0049422763817632
623 => 0.0049378907129494
624 => 0.0049029449576812
625 => 0.0048878893654581
626 => 0.0048937930511036
627 => 0.0048736407284369
628 => 0.0048614982250889
629 => 0.0049280884609051
630 => 0.004892511984151
701 => 0.004922635855604
702 => 0.0048883059021476
703 => 0.0047693033266188
704 => 0.0047008636870029
705 => 0.0044760788533736
706 => 0.0045398275533462
707 => 0.0045820930073808
708 => 0.0045681242750745
709 => 0.0045981345172502
710 => 0.0045999769023867
711 => 0.0045902202667372
712 => 0.0045789233325574
713 => 0.0045734246097584
714 => 0.0046144075844834
715 => 0.0046381995807348
716 => 0.004586334911132
717 => 0.0045741837447079
718 => 0.0046266217892032
719 => 0.0046586089660529
720 => 0.0048947843078689
721 => 0.0048772876757109
722 => 0.0049212007888869
723 => 0.0049162568462449
724 => 0.0049622847847609
725 => 0.0050375210113764
726 => 0.0048845447262873
727 => 0.0049110961198569
728 => 0.0049045863313148
729 => 0.0049756584956585
730 => 0.0049758803751978
731 => 0.0049332690623558
801 => 0.004956369346337
802 => 0.0049434754015419
803 => 0.0049667765025079
804 => 0.0048770539975212
805 => 0.0049863263236491
806 => 0.0050482766912104
807 => 0.0050491368721241
808 => 0.0050785008546796
809 => 0.0051083363616033
810 => 0.0051656030190182
811 => 0.0051067392256095
812 => 0.0050008489915421
813 => 0.0050084939244184
814 => 0.0049464105189284
815 => 0.004947454152191
816 => 0.0049418831560444
817 => 0.0049586021348454
818 => 0.0048807228731783
819 => 0.0048990009802287
820 => 0.0048734115233217
821 => 0.0049110404933751
822 => 0.0048705579418892
823 => 0.0049045831920977
824 => 0.0049192673621328
825 => 0.0049734522656897
826 => 0.0048625547875774
827 => 0.0046364273226073
828 => 0.0046839620572745
829 => 0.0046136544509288
830 => 0.0046201616875761
831 => 0.0046333073412225
901 => 0.0045906979767642
902 => 0.0045988265007274
903 => 0.0045985360926519
904 => 0.0045960335127483
905 => 0.004584949171401
906 => 0.0045688746834772
907 => 0.004632910495899
908 => 0.0046437914282491
909 => 0.0046679783930011
910 => 0.0047399423939283
911 => 0.0047327514932077
912 => 0.0047444801506307
913 => 0.00471887655733
914 => 0.0046213493648364
915 => 0.0046266455606063
916 => 0.0045606019144901
917 => 0.0046662895084836
918 => 0.0046412612912179
919 => 0.0046251254367285
920 => 0.0046207226193334
921 => 0.0046928650050995
922 => 0.004714451137614
923 => 0.0047010001084224
924 => 0.0046734116551212
925 => 0.0047263896412535
926 => 0.0047405643153808
927 => 0.004743737502176
928 => 0.0048376043360812
929 => 0.0047489836154608
930 => 0.0047703155037284
1001 => 0.0049367408065356
1002 => 0.0047858160220114
1003 => 0.0048657642463982
1004 => 0.0048618511968449
1005 => 0.0049027500031408
1006 => 0.0048584963009819
1007 => 0.0048590448786578
1008 => 0.0048953602479234
1009 => 0.0048443618613012
1010 => 0.0048317339435816
1011 => 0.0048142885656949
1012 => 0.0048523799100842
1013 => 0.0048752139483223
1014 => 0.0050592395267681
1015 => 0.0051781284430301
1016 => 0.0051729671616279
1017 => 0.0052201316121296
1018 => 0.0051988835952017
1019 => 0.0051302681435981
1020 => 0.0052473863527226
1021 => 0.0052103252509216
1022 => 0.0052133805231248
1023 => 0.0052132668057408
1024 => 0.0052379091985008
1025 => 0.0052204478047882
1026 => 0.0051860296054055
1027 => 0.0052088780123859
1028 => 0.0052767296126625
1029 => 0.0054873430618626
1030 => 0.005605205138292
1031 => 0.0054802476168695
1101 => 0.0055664416418988
1102 => 0.0055147559409526
1103 => 0.0055053631115743
1104 => 0.0055594993289811
1105 => 0.0056137303046701
1106 => 0.0056102760259656
1107 => 0.0055709071224069
1108 => 0.0055486686277355
1109 => 0.0057170659598296
1110 => 0.0058411382455428
1111 => 0.0058326773474483
1112 => 0.0058700210000059
1113 => 0.0059796631189107
1114 => 0.0059896874201836
1115 => 0.0059884245886291
1116 => 0.0059635783119966
1117 => 0.0060715352168867
1118 => 0.006161594766267
1119 => 0.0059578271168341
1120 => 0.0060354191702238
1121 => 0.0060702527428502
1122 => 0.0061213987621211
1123 => 0.0062076906696992
1124 => 0.0063014265691271
1125 => 0.006314681853068
1126 => 0.0063052765947882
1127 => 0.0062434552493593
1128 => 0.0063460221890151
1129 => 0.0064061034967748
1130 => 0.0064418805406095
1201 => 0.0065326051710416
1202 => 0.006070467863136
1203 => 0.0057433441068858
1204 => 0.0056922590086231
1205 => 0.0057961425647627
1206 => 0.0058235358300608
1207 => 0.0058124936391674
1208 => 0.0054442861107171
1209 => 0.0056903204721881
1210 => 0.0059550327579742
1211 => 0.0059652014349459
1212 => 0.0060977219400833
1213 => 0.0061408760487551
1214 => 0.0062475724252503
1215 => 0.0062408985378503
1216 => 0.0062668774076167
1217 => 0.0062609053153487
1218 => 0.0064585378852334
1219 => 0.0066765559585369
1220 => 0.0066690066859134
1221 => 0.0066376640084033
1222 => 0.0066842132292265
1223 => 0.0069092312451123
1224 => 0.0068885151920497
1225 => 0.0069086390730108
1226 => 0.0071739479951998
1227 => 0.0075188873337996
1228 => 0.0073586283796766
1229 => 0.0077063441968517
1230 => 0.0079252128721399
1231 => 0.0083037236146075
]
'min_raw' => 0.0033902264102428
'max_raw' => 0.0083037236146075
'avg_raw' => 0.0058469750124252
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.00339'
'max' => '$0.0083037'
'avg' => '$0.005846'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 0.0015116790112856
'max_diff' => 0.0033687674875485
'year' => 2028
]
3 => [
'items' => [
101 => 0.0082563322054458
102 => 0.0084036836598483
103 => 0.0081714916921609
104 => 0.0076383320006117
105 => 0.0075539574385707
106 => 0.0077228774484809
107 => 0.0081381508098718
108 => 0.0077097990124983
109 => 0.0077964540232204
110 => 0.0077714973743029
111 => 0.007770167540541
112 => 0.0078209218864074
113 => 0.0077473000605595
114 => 0.0074473514977415
115 => 0.007584816156473
116 => 0.0075317344501417
117 => 0.0075906325608196
118 => 0.0079084813727201
119 => 0.0077679528364096
120 => 0.0076199174390178
121 => 0.0078055866790316
122 => 0.0080420074244422
123 => 0.0080272126390833
124 => 0.0079985045717466
125 => 0.0081603304442182
126 => 0.0084276193750095
127 => 0.0084998664989485
128 => 0.0085531978488129
129 => 0.0085605513409186
130 => 0.0086362968797777
131 => 0.0082289940269986
201 => 0.0088753941146382
202 => 0.0089870095533315
203 => 0.0089660304768431
204 => 0.0090900863394551
205 => 0.0090535859576811
206 => 0.0090007026312252
207 => 0.0091973575609038
208 => 0.0089719085532618
209 => 0.0086519120701547
210 => 0.0084763556707094
211 => 0.0087075424992298
212 => 0.0088487202280987
213 => 0.0089420297262911
214 => 0.008970265124065
215 => 0.0082606117880173
216 => 0.007878147999066
217 => 0.0081233029028276
218 => 0.0084224088051043
219 => 0.0082273324786092
220 => 0.0082349791012795
221 => 0.0079568515248544
222 => 0.0084470169241878
223 => 0.0083756039484448
224 => 0.0087460945929267
225 => 0.0086576740272479
226 => 0.0089597947654589
227 => 0.0088802362499194
228 => 0.0092104791998671
301 => 0.0093422220535722
302 => 0.0095634388090809
303 => 0.0097261667549473
304 => 0.0098217237172496
305 => 0.0098159868356581
306 => 0.01019463112659
307 => 0.0099713578170512
308 => 0.0096908739187924
309 => 0.0096858008499882
310 => 0.009831067435384
311 => 0.010135506346432
312 => 0.010214442926661
313 => 0.010258557706283
314 => 0.010190994385646
315 => 0.0099486472102841
316 => 0.009844002928691
317 => 0.009933162888445
318 => 0.0098241279192685
319 => 0.010012352865876
320 => 0.010270825920247
321 => 0.010217452256633
322 => 0.010395872411869
323 => 0.010580518502191
324 => 0.010844570704326
325 => 0.010913603727789
326 => 0.011027712690482
327 => 0.011145168295935
328 => 0.011182891870889
329 => 0.011254917880415
330 => 0.011254538267792
331 => 0.011471593495406
401 => 0.011711012133105
402 => 0.011801387126283
403 => 0.012009199439788
404 => 0.011653328135522
405 => 0.011923260607763
406 => 0.012166746454571
407 => 0.011876452590263
408 => 0.012276555052417
409 => 0.01229209012437
410 => 0.012526651266785
411 => 0.01228887861247
412 => 0.012147689969335
413 => 0.012555296291796
414 => 0.012752524151757
415 => 0.012693117515243
416 => 0.012241030078107
417 => 0.011977895798752
418 => 0.011289222634867
419 => 0.012104985745956
420 => 0.01250232016123
421 => 0.012240001077961
422 => 0.012372299565372
423 => 0.01309407721476
424 => 0.013368883412005
425 => 0.013311725644018
426 => 0.013321384365911
427 => 0.013469664801859
428 => 0.01412722191438
429 => 0.013733198450503
430 => 0.014034414624859
501 => 0.014194178597622
502 => 0.014342576279268
503 => 0.013978158474716
504 => 0.013504056265355
505 => 0.013353888194193
506 => 0.012213918614874
507 => 0.012154578247633
508 => 0.012121268701304
509 => 0.011911256723427
510 => 0.011746244835937
511 => 0.011615021256507
512 => 0.011270651397405
513 => 0.011386866115769
514 => 0.010838012435935
515 => 0.011189149570112
516 => 0.010313165844562
517 => 0.011042711121197
518 => 0.010645652795478
519 => 0.010912266782349
520 => 0.010911336591265
521 => 0.010420415711394
522 => 0.010137262793142
523 => 0.010317698853129
524 => 0.010511140632467
525 => 0.010542525910348
526 => 0.010793328226607
527 => 0.010863321762097
528 => 0.010651238081876
529 => 0.01029501302891
530 => 0.010377755984085
531 => 0.010135586009796
601 => 0.0097111924447879
602 => 0.010015999312378
603 => 0.010120073778385
604 => 0.010166038991565
605 => 0.0097486966623096
606 => 0.0096175586415148
607 => 0.0095477418595982
608 => 0.010241139374963
609 => 0.010279125256111
610 => 0.010084784117495
611 => 0.010963224492222
612 => 0.010764406380974
613 => 0.010986534922858
614 => 0.010370247928174
615 => 0.010393790921311
616 => 0.01010203078159
617 => 0.010265396964414
618 => 0.010149935011932
619 => 0.010252198591258
620 => 0.010313494959058
621 => 0.010605207223811
622 => 0.011046042006677
623 => 0.010561635139203
624 => 0.010350572130211
625 => 0.010481514433926
626 => 0.010830231044096
627 => 0.011358554558977
628 => 0.011045776404665
629 => 0.011184582038231
630 => 0.011214904894133
701 => 0.01098427386282
702 => 0.01136705825407
703 => 0.011572195519075
704 => 0.011782623905795
705 => 0.011965332977914
706 => 0.01169857418072
707 => 0.01198404433209
708 => 0.011754005782351
709 => 0.011547637422287
710 => 0.011547950397904
711 => 0.011418492511075
712 => 0.011167651542601
713 => 0.011121392619424
714 => 0.011362037379651
715 => 0.01155501168821
716 => 0.011570905976548
717 => 0.011677746469144
718 => 0.011740973572118
719 => 0.012360685134339
720 => 0.012609938251188
721 => 0.01291472024435
722 => 0.013033450007259
723 => 0.013390784026638
724 => 0.013102207784739
725 => 0.013039772499575
726 => 0.012172997051628
727 => 0.012314931482671
728 => 0.012542182201408
729 => 0.012176744332278
730 => 0.012408530548038
731 => 0.012454290056933
801 => 0.012164326893321
802 => 0.012319208747575
803 => 0.011907888461947
804 => 0.011055007664895
805 => 0.011368007754206
806 => 0.011598481174629
807 => 0.011269567186517
808 => 0.011859132779479
809 => 0.011514720731175
810 => 0.011405558646556
811 => 0.010979678435366
812 => 0.011180677501415
813 => 0.011452531616276
814 => 0.011284557379725
815 => 0.011633129142027
816 => 0.01212679971814
817 => 0.012478618769269
818 => 0.01250562706746
819 => 0.01227943098763
820 => 0.012641911649122
821 => 0.012644551925012
822 => 0.012235672258072
823 => 0.011985235738723
824 => 0.011928336034604
825 => 0.012070482651337
826 => 0.012243074885765
827 => 0.01251520473529
828 => 0.012679647103995
829 => 0.013108425588086
830 => 0.013224440751838
831 => 0.013351906243202
901 => 0.013522239448566
902 => 0.013726768134143
903 => 0.013279271013925
904 => 0.01329705090875
905 => 0.012880347786423
906 => 0.012435040738944
907 => 0.012772973279674
908 => 0.013214775123396
909 => 0.013113425292298
910 => 0.01310202136591
911 => 0.013121199606909
912 => 0.013044785144038
913 => 0.012699165360522
914 => 0.012525597268935
915 => 0.012749544389025
916 => 0.012868562316613
917 => 0.013053148742849
918 => 0.013030394569668
919 => 0.013505869380516
920 => 0.013690624514399
921 => 0.013643356245034
922 => 0.013652054744172
923 => 0.013986545089012
924 => 0.014358567145661
925 => 0.014707014894346
926 => 0.015061470910488
927 => 0.014634160348375
928 => 0.014417198397786
929 => 0.014641047749569
930 => 0.014522270132605
1001 => 0.015204801551409
1002 => 0.01525205854598
1003 => 0.015934540609994
1004 => 0.016582297357196
1005 => 0.016175452950046
1006 => 0.016559088901314
1007 => 0.016974022460908
1008 => 0.017774496617909
1009 => 0.017504925082851
1010 => 0.017298437511722
1011 => 0.017103307754745
1012 => 0.017509341803037
1013 => 0.018031698119612
1014 => 0.018144208667136
1015 => 0.018326518736462
1016 => 0.01813484199038
1017 => 0.018365695518534
1018 => 0.019180709915097
1019 => 0.018960485830815
1020 => 0.018647732228346
1021 => 0.019291107819618
1022 => 0.01952394294504
1023 => 0.021158101791953
1024 => 0.023221294839917
1025 => 0.022367119370404
1026 => 0.021836905092407
1027 => 0.021961518024587
1028 => 0.022714926282211
1029 => 0.022956897102578
1030 => 0.022299137000479
1031 => 0.022531468988392
1101 => 0.023811641084172
1102 => 0.024498412340719
1103 => 0.023565684728642
1104 => 0.020992326239436
1105 => 0.018619572188355
1106 => 0.019248933409209
1107 => 0.019177583378116
1108 => 0.02055296859031
1109 => 0.018955233559238
1110 => 0.018982135319541
1111 => 0.020385962041365
1112 => 0.020011445139665
1113 => 0.019404775723412
1114 => 0.018624001546474
1115 => 0.017180668267533
1116 => 0.015902267732049
1117 => 0.018409505580193
1118 => 0.018301388925065
1119 => 0.018144819986449
1120 => 0.018493247216811
1121 => 0.020185110944652
1122 => 0.020146108009697
1123 => 0.019897991236984
1124 => 0.020086185622286
1125 => 0.019371784337762
1126 => 0.019555901815399
1127 => 0.01861919633199
1128 => 0.019042626330767
1129 => 0.019403474083314
1130 => 0.01947591961208
1201 => 0.01963914308755
1202 => 0.018244416360672
1203 => 0.018870607714015
1204 => 0.019238436467909
1205 => 0.017576572776091
1206 => 0.019205586766021
1207 => 0.018220137271344
1208 => 0.017885660911895
1209 => 0.018335989265983
1210 => 0.018160495868436
1211 => 0.018009616950544
1212 => 0.017925423921931
1213 => 0.018256095364246
1214 => 0.018240669146224
1215 => 0.017699626486036
1216 => 0.01699385839154
1217 => 0.0172307373301
1218 => 0.017144676990969
1219 => 0.016832783219954
1220 => 0.017042961963421
1221 => 0.01611744114622
1222 => 0.014525130684613
1223 => 0.015577059749339
1224 => 0.015536561624626
1225 => 0.015516140633702
1226 => 0.01630663625266
1227 => 0.016230648338734
1228 => 0.016092729530882
1229 => 0.01683025023289
1230 => 0.016561045255604
1231 => 0.017390671562931
]
'min_raw' => 0.0074473514977415
'max_raw' => 0.024498412340719
'avg_raw' => 0.01597288191923
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.007447'
'max' => '$0.024498'
'avg' => '$0.015972'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072435
'min_diff' => 0.0040571250874987
'max_diff' => 0.016194688726111
'year' => 2029
]
4 => [
'items' => [
101 => 0.017937117105801
102 => 0.017798520840468
103 => 0.018312455514738
104 => 0.017236194542417
105 => 0.017593685265326
106 => 0.017667363607857
107 => 0.01682114934191
108 => 0.01624308090121
109 => 0.016204530326678
110 => 0.015202239313243
111 => 0.01573765508241
112 => 0.016208798802267
113 => 0.015983157522685
114 => 0.015911726234411
115 => 0.016276653194647
116 => 0.016305011144845
117 => 0.015658446875081
118 => 0.015792888060793
119 => 0.016353530154197
120 => 0.015778761318498
121 => 0.014662079358691
122 => 0.014385126793323
123 => 0.014348176215855
124 => 0.013597058893191
125 => 0.014403634088041
126 => 0.014051542400618
127 => 0.015163795822482
128 => 0.014528482633048
129 => 0.014501095551236
130 => 0.014459695960266
131 => 0.013813178252383
201 => 0.013954724542066
202 => 0.014425245967079
203 => 0.014593133312327
204 => 0.014575621286757
205 => 0.014422940155404
206 => 0.014492836795483
207 => 0.014267675364184
208 => 0.014188166176462
209 => 0.013937213309288
210 => 0.01356838192204
211 => 0.013619670188611
212 => 0.01288891870049
213 => 0.012490766505845
214 => 0.012380563225929
215 => 0.012233194794313
216 => 0.012397208882413
217 => 0.012886848573339
218 => 0.012296239223227
219 => 0.011283680918889
220 => 0.011344537398295
221 => 0.01148126383907
222 => 0.011226475021222
223 => 0.010985338787934
224 => 0.011194987178777
225 => 0.010765952876909
226 => 0.011533110584715
227 => 0.011512361118653
228 => 0.011798310071409
301 => 0.01197711981983
302 => 0.011565021240063
303 => 0.011461379561684
304 => 0.01152041857194
305 => 0.010544635243428
306 => 0.011718567755759
307 => 0.011728719972874
308 => 0.011641790526343
309 => 0.01226687334806
310 => 0.013585993070102
311 => 0.013089687169202
312 => 0.012897502523448
313 => 0.012532159371384
314 => 0.013018957429579
315 => 0.012981578933942
316 => 0.0128125392013
317 => 0.012710303443561
318 => 0.012898675961914
319 => 0.012686962003911
320 => 0.012648932359543
321 => 0.012418514091335
322 => 0.012336265252948
323 => 0.012275371487427
324 => 0.012208333434886
325 => 0.01235620267395
326 => 0.012021111524414
327 => 0.011617024447464
328 => 0.011583428979298
329 => 0.011676189020647
330 => 0.011635149607523
331 => 0.011583232498377
401 => 0.011484108598234
402 => 0.011454700654509
403 => 0.01155026220491
404 => 0.011442378786091
405 => 0.011601566647273
406 => 0.011558276357297
407 => 0.011316460316547
408 => 0.011015067998007
409 => 0.01101238497418
410 => 0.010947450493533
411 => 0.010864746669465
412 => 0.010841740357616
413 => 0.011177331176057
414 => 0.011871994126843
415 => 0.011735615167728
416 => 0.011834162942366
417 => 0.012318920457269
418 => 0.01247301029409
419 => 0.012363640977733
420 => 0.012213929511897
421 => 0.012220516056595
422 => 0.012732125456099
423 => 0.012764033906793
424 => 0.012844656267641
425 => 0.012948278785207
426 => 0.01238128834055
427 => 0.01219381085764
428 => 0.012104973625383
429 => 0.011831389334365
430 => 0.012126426536883
501 => 0.011954520993728
502 => 0.01197771692463
503 => 0.0119626105442
504 => 0.011970859649404
505 => 0.011532896148501
506 => 0.011692467029546
507 => 0.011427149490527
508 => 0.011071919089072
509 => 0.011070728232207
510 => 0.011157670369708
511 => 0.011105953784276
512 => 0.010966785782634
513 => 0.010986553940412
514 => 0.010813364077236
515 => 0.011007582325506
516 => 0.01101315180992
517 => 0.010938367205197
518 => 0.011237587213609
519 => 0.011360177895196
520 => 0.011310953066326
521 => 0.01135672414998
522 => 0.011741282329193
523 => 0.011803982091855
524 => 0.011831829184715
525 => 0.011794517769315
526 => 0.011363753167552
527 => 0.011382859409393
528 => 0.011242670483956
529 => 0.011124225614708
530 => 0.011128962788316
531 => 0.011189858847865
601 => 0.011455795511423
602 => 0.012015443542057
603 => 0.012036681775722
604 => 0.012062423134487
605 => 0.011957720091819
606 => 0.011926140652277
607 => 0.011967802084378
608 => 0.012177976459789
609 => 0.012718602015131
610 => 0.012527508836706
611 => 0.012372147108104
612 => 0.01250844122931
613 => 0.012487459817659
614 => 0.012310355588379
615 => 0.012305384862527
616 => 0.011965465222891
617 => 0.011839804671714
618 => 0.01173479330962
619 => 0.011620123643606
620 => 0.01155214362183
621 => 0.011656591831645
622 => 0.011680480373024
623 => 0.011452102536822
624 => 0.011420975481633
625 => 0.011607473752553
626 => 0.011525402816878
627 => 0.011609814809481
628 => 0.011629399115838
629 => 0.01162624559145
630 => 0.011540554108817
701 => 0.011595171304491
702 => 0.011465985354554
703 => 0.0113255150371
704 => 0.011235903726175
705 => 0.011157705972177
706 => 0.011201094630975
707 => 0.011046421984815
708 => 0.010996939092364
709 => 0.011576668227522
710 => 0.012004920372803
711 => 0.011998693417004
712 => 0.011960788425021
713 => 0.011904469295682
714 => 0.012173856364687
715 => 0.01208000729641
716 => 0.012148290334934
717 => 0.012165671234068
718 => 0.012218277980956
719 => 0.012237080371265
720 => 0.01218024648865
721 => 0.011989505036918
722 => 0.011514195474356
723 => 0.011292937589909
724 => 0.0112199188027
725 => 0.011222572896933
726 => 0.011149361129598
727 => 0.0111709252762
728 => 0.011141861999437
729 => 0.011086823184412
730 => 0.011197696139242
731 => 0.011210473214434
801 => 0.011184594141943
802 => 0.011190689600351
803 => 0.010976421933225
804 => 0.010992712238591
805 => 0.010902005748238
806 => 0.010884999374779
807 => 0.010655701265883
808 => 0.010249466428681
809 => 0.01047455996266
810 => 0.010202678626553
811 => 0.010099713044895
812 => 0.010587136094032
813 => 0.01053821233891
814 => 0.010454476136785
815 => 0.010330612841689
816 => 0.010284670740674
817 => 0.010005541078404
818 => 0.0099890486088586
819 => 0.010127392806614
820 => 0.010063551719483
821 => 0.0099738946546408
822 => 0.0096491658541727
823 => 0.0092840631684355
824 => 0.0092950833235643
825 => 0.0094112156949203
826 => 0.009748886227222
827 => 0.0096169525084922
828 => 0.0095212330817888
829 => 0.0095033077104826
830 => 0.0097276812616859
831 => 0.010045216844351
901 => 0.010194197435279
902 => 0.010046562194277
903 => 0.0098769667786597
904 => 0.0098872892657789
905 => 0.0099559601480267
906 => 0.009963176486797
907 => 0.0098527873059206
908 => 0.009883861213729
909 => 0.0098366571063104
910 => 0.0095469655862145
911 => 0.0095417259852377
912 => 0.0094706310142993
913 => 0.0094684782868342
914 => 0.0093475280057965
915 => 0.0093306062253895
916 => 0.0090904521012317
917 => 0.009248522273006
918 => 0.0091424971008363
919 => 0.0089826921575668
920 => 0.008955141725113
921 => 0.0089543135258454
922 => 0.0091183974708517
923 => 0.0092466048565743
924 => 0.0091443414540995
925 => 0.0091210580596488
926 => 0.0093696637980555
927 => 0.0093380264517516
928 => 0.0093106287138914
929 => 0.010016785015684
930 => 0.0094578072007518
1001 => 0.0092140609681032
1002 => 0.0089123787190463
1003 => 0.0090106079805532
1004 => 0.0090313063292408
1005 => 0.0083058149025718
1006 => 0.0080114831211263
1007 => 0.0079104795453935
1008 => 0.0078523505595783
1009 => 0.0078788406683521
1010 => 0.0076139075433766
1011 => 0.0077919469849496
1012 => 0.0075625372929604
1013 => 0.0075240760115347
1014 => 0.0079342889592188
1015 => 0.0079913676944598
1016 => 0.0077478520769488
1017 => 0.0079042285249882
1018 => 0.0078475242511339
1019 => 0.0075664698636838
1020 => 0.0075557356533793
1021 => 0.0074147124412963
1022 => 0.0071940384218611
1023 => 0.0070931844735047
1024 => 0.0070406588615466
1025 => 0.0070623319527443
1026 => 0.0070513733746272
1027 => 0.0069798612397454
1028 => 0.0070554723664896
1029 => 0.0068623171823329
1030 => 0.0067854012316446
1031 => 0.0067506600811553
1101 => 0.0065792237376186
1102 => 0.0068520551982734
1103 => 0.0069058064330626
1104 => 0.0069596635743889
1105 => 0.0074284532198023
1106 => 0.0074050338139032
1107 => 0.0076167338375175
1108 => 0.0076085075638912
1109 => 0.0075481272878434
1110 => 0.007293392835271
1111 => 0.0073949254478614
1112 => 0.0070824238479796
1113 => 0.0073165712946543
1114 => 0.0072097161782231
1115 => 0.0072804434723023
1116 => 0.0071532694203249
1117 => 0.0072236527915771
1118 => 0.0069185528448704
1119 => 0.0066336548075078
1120 => 0.0067483060944347
1121 => 0.0068729451552893
1122 => 0.0071431943966641
1123 => 0.0069822361780091
1124 => 0.0070401228399415
1125 => 0.0068462122125781
1126 => 0.0064461192004949
1127 => 0.0064483836834933
1128 => 0.0063868380900844
1129 => 0.0063336537115753
1130 => 0.0070007241656532
1201 => 0.0069177634098653
1202 => 0.0067855763031525
1203 => 0.0069625139983944
1204 => 0.0070092991333952
1205 => 0.0070106310404165
1206 => 0.007139720215442
1207 => 0.0072086151312936
1208 => 0.0072207581588202
1209 => 0.0074238827648791
1210 => 0.0074919674535517
1211 => 0.0077723986504883
1212 => 0.0072027698790256
1213 => 0.007191038749332
1214 => 0.0069650038746204
1215 => 0.0068216489836083
1216 => 0.0069748195066534
1217 => 0.00711050768021
1218 => 0.0069692200844021
1219 => 0.0069876692616707
1220 => 0.0067980022079193
1221 => 0.006865799254971
1222 => 0.0069241952051405
1223 => 0.0068919523938122
1224 => 0.0068436833446841
1225 => 0.0070993827973459
1226 => 0.0070849552321324
1227 => 0.0073230684409561
1228 => 0.0075086947148731
1229 => 0.0078413701823978
1230 => 0.0074942059892714
1231 => 0.0074815539462212
]
'min_raw' => 0.0063336537115753
'max_raw' => 0.018312455514738
'avg_raw' => 0.012323054613157
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.006333'
'max' => '$0.018312'
'avg' => '$0.012323'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -0.0011136977861662
'max_diff' => -0.0061859568259808
'year' => 2030
]
5 => [
'items' => [
101 => 0.0076052296964886
102 => 0.0074919485194387
103 => 0.0075635383130009
104 => 0.007829835959881
105 => 0.0078354624095332
106 => 0.0077412121285873
107 => 0.0077354769904263
108 => 0.007753578787867
109 => 0.0078596015808769
110 => 0.0078225539592479
111 => 0.0078654264049281
112 => 0.0079190390547372
113 => 0.0081408037056405
114 => 0.0081942704121926
115 => 0.00806437403458
116 => 0.0080761022230904
117 => 0.008027517412128
118 => 0.0079805850935042
119 => 0.0080860820918557
120 => 0.0082788799298919
121 => 0.0082776805445477
122 => 0.0083224058955176
123 => 0.0083502694186471
124 => 0.0082306587800299
125 => 0.0081527966524952
126 => 0.0081826539466879
127 => 0.0082303964103093
128 => 0.0081671717091923
129 => 0.0077769195653676
130 => 0.0078952971364006
131 => 0.0078755933202132
201 => 0.0078475326898965
202 => 0.0079665622529568
203 => 0.0079550815612251
204 => 0.0076111902712519
205 => 0.0076332050758834
206 => 0.0076125290644369
207 => 0.0076793374873347
208 => 0.0074883406453556
209 => 0.007547089987565
210 => 0.0075839370242579
211 => 0.0076056402119422
212 => 0.0076840470078733
213 => 0.0076748468753386
214 => 0.0076834751147174
215 => 0.0077997316944564
216 => 0.0083877175803359
217 => 0.0084197203547866
218 => 0.0082621269889266
219 => 0.008325082430196
220 => 0.0082042217498003
221 => 0.0082853563342461
222 => 0.0083408665563289
223 => 0.0080900265367385
224 => 0.0080751734187166
225 => 0.0079538139033003
226 => 0.0080190256327307
227 => 0.0079152690823177
228 => 0.007940727310539
301 => 0.0078695438850238
302 => 0.0079976598784725
303 => 0.0081409134663608
304 => 0.008177104979917
305 => 0.0080819006891769
306 => 0.0080129665084125
307 => 0.0078919407953212
308 => 0.008093209253426
309 => 0.008152066284121
310 => 0.0080929001025
311 => 0.0080791900054118
312 => 0.0080532093962033
313 => 0.0080847019144737
314 => 0.0081517457360917
315 => 0.0081201291079216
316 => 0.0081410124478412
317 => 0.0080614266908742
318 => 0.0082306983761283
319 => 0.0084995425497612
320 => 0.0085004069277399
321 => 0.0084687901291444
322 => 0.0084558532163526
323 => 0.0084882939703793
324 => 0.0085058917486494
325 => 0.0086107991985549
326 => 0.0087233690720008
327 => 0.0092486835532888
328 => 0.0091011773490229
329 => 0.00956726760792
330 => 0.0099358844884621
331 => 0.010046416573274
401 => 0.0099447322561835
402 => 0.0095968757002957
403 => 0.0095798081981265
404 => 0.010099652753873
405 => 0.0099527728564853
406 => 0.0099353019600591
407 => 0.009749441139629
408 => 0.0098593079038136
409 => 0.0098352784308382
410 => 0.0097973467321846
411 => 0.010006964864864
412 => 0.010399351296499
413 => 0.010338194191352
414 => 0.010292543249356
415 => 0.01009251411032
416 => 0.010212976330146
417 => 0.010170082040968
418 => 0.010354383128665
419 => 0.010245207247082
420 => 0.0099516600968022
421 => 0.0099984084480284
422 => 0.0099913425287851
423 => 0.010136758646114
424 => 0.010093108337142
425 => 0.0099828191053959
426 => 0.010398010162334
427 => 0.01037104996451
428 => 0.010409273361065
429 => 0.010426100482326
430 => 0.010678819962197
501 => 0.010782351046978
502 => 0.010805854415791
503 => 0.010904200938952
504 => 0.010803407464703
505 => 0.011206653226228
506 => 0.0114747881276
507 => 0.01178624061364
508 => 0.01224135640628
509 => 0.012412484154369
510 => 0.012381571458381
511 => 0.012726635058196
512 => 0.01334670667673
513 => 0.012506905661013
514 => 0.01339121816976
515 => 0.013111255039369
516 => 0.012447467493536
517 => 0.012404727401125
518 => 0.012854252033896
519 => 0.013851254404238
520 => 0.013601516618374
521 => 0.013851662885789
522 => 0.013559853977548
523 => 0.013545363205696
524 => 0.013837490378446
525 => 0.014520061440599
526 => 0.014195797514764
527 => 0.013730885664302
528 => 0.014074169339853
529 => 0.013776785250686
530 => 0.013106695665227
531 => 0.013601325648596
601 => 0.013270580664968
602 => 0.013367109634561
603 => 0.014062286395543
604 => 0.013978640888453
605 => 0.014086885919994
606 => 0.013895836272589
607 => 0.01371736577615
608 => 0.013384237341152
609 => 0.013285614434582
610 => 0.013312870257877
611 => 0.01328560092795
612 => 0.013099218630177
613 => 0.013058969390718
614 => 0.012991885561594
615 => 0.013012677645328
616 => 0.012886540420509
617 => 0.013124587425023
618 => 0.013168771046724
619 => 0.013342001805137
620 => 0.013359987197146
621 => 0.01384243239354
622 => 0.013576709686528
623 => 0.013754979419786
624 => 0.013739033296904
625 => 0.012461853782434
626 => 0.012637837850878
627 => 0.012911613834533
628 => 0.012788278124991
629 => 0.012613910287809
630 => 0.012473098910274
701 => 0.012259755274604
702 => 0.012560032344907
703 => 0.01295486476145
704 => 0.013370000798802
705 => 0.013868759546891
706 => 0.01375744240051
707 => 0.013360676850936
708 => 0.013378475463653
709 => 0.01348849948397
710 => 0.013346008380923
711 => 0.013303984972877
712 => 0.013482726113018
713 => 0.013483957005015
714 => 0.013320003770335
715 => 0.013137799753112
716 => 0.013137036311627
717 => 0.013104614866645
718 => 0.013565621680586
719 => 0.013819128815208
720 => 0.013848192999645
721 => 0.013817172564024
722 => 0.013829111098537
723 => 0.01368160088255
724 => 0.014018765493502
725 => 0.014328181082636
726 => 0.014245251095048
727 => 0.014120927254462
728 => 0.014021897327187
729 => 0.014221922791399
730 => 0.014213015972347
731 => 0.014325478607393
801 => 0.014320376652652
802 => 0.014282559698419
803 => 0.014245252445611
804 => 0.014393171485976
805 => 0.014350573177858
806 => 0.014307908702801
807 => 0.014222338566471
808 => 0.014233968969168
809 => 0.014109666594845
810 => 0.014052158628794
811 => 0.013187376800287
812 => 0.012956278838148
813 => 0.01302898696147
814 => 0.013052924363533
815 => 0.01295235023425
816 => 0.013096547700267
817 => 0.013074074677932
818 => 0.013161504061562
819 => 0.013106881978412
820 => 0.013109123687758
821 => 0.013269755587646
822 => 0.01331638771156
823 => 0.01329267023697
824 => 0.013309281143185
825 => 0.013692072465898
826 => 0.013637651780785
827 => 0.013608741876464
828 => 0.013616750117535
829 => 0.013714561507626
830 => 0.013741943356548
831 => 0.013625924538578
901 => 0.01368063968383
902 => 0.013913609827924
903 => 0.013995136193389
904 => 0.014255329217077
905 => 0.014144794596052
906 => 0.01434768567677
907 => 0.014971303688229
908 => 0.015469492906867
909 => 0.015011337512868
910 => 0.015926198568882
911 => 0.016638549130013
912 => 0.016611207928995
913 => 0.016486993131697
914 => 0.015676000956668
915 => 0.014929713865995
916 => 0.015554014706367
917 => 0.015555606177598
918 => 0.015501978181745
919 => 0.015168899305301
920 => 0.015490387758835
921 => 0.015515906344802
922 => 0.0155016227226
923 => 0.015246251928975
924 => 0.014856347927523
925 => 0.014932534236108
926 => 0.01505732896373
927 => 0.014821066509434
928 => 0.01474556633964
929 => 0.014885935519783
930 => 0.015338234265283
1001 => 0.015252729807434
1002 => 0.015250496940489
1003 => 0.015616321270698
1004 => 0.0153544700001
1005 => 0.014933495189442
1006 => 0.014827193497775
1007 => 0.014449894105758
1008 => 0.014710496139718
1009 => 0.01471987474298
1010 => 0.014577145672268
1011 => 0.014945076866905
1012 => 0.014941686316174
1013 => 0.015290982226151
1014 => 0.015958704816474
1015 => 0.015761226389882
1016 => 0.015531580465348
1017 => 0.015556549344735
1018 => 0.015830396323173
1019 => 0.015664822188691
1020 => 0.015724363801874
1021 => 0.01583030619981
1022 => 0.015894223878886
1023 => 0.015547352574353
1024 => 0.015466480280494
1025 => 0.015301043949577
1026 => 0.015257884698856
1027 => 0.015392629138446
1028 => 0.015357128739205
1029 => 0.014719086507691
1030 => 0.014652407544465
1031 => 0.014654452493071
1101 => 0.014486785069626
1102 => 0.014231052004079
1103 => 0.014903103231308
1104 => 0.01484912811241
1105 => 0.01478954375849
1106 => 0.014796842501862
1107 => 0.015088557161672
1108 => 0.014919347927039
1109 => 0.01536921841016
1110 => 0.015276738563175
1111 => 0.015181886957073
1112 => 0.015168775575859
1113 => 0.015132265799869
1114 => 0.015007060193308
1115 => 0.014855866899695
1116 => 0.014756035991114
1117 => 0.013611663200691
1118 => 0.013824052134083
1119 => 0.01406838624209
1120 => 0.014152729397067
1121 => 0.014008454594111
1122 => 0.015012757041894
1123 => 0.015196252776803
1124 => 0.014640432226633
1125 => 0.014536460895699
1126 => 0.015019573385041
1127 => 0.014728197495868
1128 => 0.014859404040921
1129 => 0.014575807256659
1130 => 0.015152054027646
1201 => 0.015147663992728
1202 => 0.014923490983691
1203 => 0.015112960475859
1204 => 0.015080035488979
1205 => 0.01482694471389
1206 => 0.015160077456646
1207 => 0.01516024268633
1208 => 0.014944481039073
1209 => 0.014692518671375
1210 => 0.014647473751116
1211 => 0.014613538454634
1212 => 0.014851058038258
1213 => 0.015064017354231
1214 => 0.015460281844164
1215 => 0.015559912151946
1216 => 0.015948775875981
1217 => 0.015717226461749
1218 => 0.015819869318011
1219 => 0.015931302658202
1220 => 0.015984727899315
1221 => 0.015897674335878
1222 => 0.016501739762
1223 => 0.016552741392051
1224 => 0.016569841797445
1225 => 0.016366154334492
1226 => 0.016547076475238
1227 => 0.016462428997095
1228 => 0.016682658219478
1229 => 0.016717192973575
1230 => 0.016687943265464
1231 => 0.016698905141509
]
'min_raw' => 0.0074883406453556
'max_raw' => 0.016717192973575
'avg_raw' => 0.012102766809465
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.007488'
'max' => '$0.016717'
'avg' => '$0.0121027'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 0.0011546869337803
'max_diff' => -0.001595262541163
'year' => 2031
]
6 => [
'items' => [
101 => 0.016183441864757
102 => 0.016156712374572
103 => 0.015792253879262
104 => 0.015940773410042
105 => 0.015663123265975
106 => 0.015751168986772
107 => 0.015789978701569
108 => 0.015769706708991
109 => 0.015949170481475
110 => 0.015796589612837
111 => 0.015393903613883
112 => 0.014991107903399
113 => 0.014986051131364
114 => 0.014880002130728
115 => 0.014803348127112
116 => 0.014818114407655
117 => 0.014870152706286
118 => 0.014800323566595
119 => 0.014815225153975
120 => 0.015062690793247
121 => 0.015112318262359
122 => 0.014943664731613
123 => 0.01426649646908
124 => 0.014100317678906
125 => 0.014219763697814
126 => 0.014162676194085
127 => 0.011430385040183
128 => 0.012072296318145
129 => 0.011690894434027
130 => 0.011866661969685
131 => 0.01147734940954
201 => 0.011663149768861
202 => 0.011628839226837
203 => 0.012661013566264
204 => 0.012644897583663
205 => 0.012652611451696
206 => 0.012284408432144
207 => 0.012870965840091
208 => 0.013159925111168
209 => 0.013106446440494
210 => 0.01311990586975
211 => 0.012888628281909
212 => 0.012654850724294
213 => 0.01239555543479
214 => 0.012877294032821
215 => 0.012823732924272
216 => 0.012946582836605
217 => 0.013259024752814
218 => 0.013305033011828
219 => 0.013366868578511
220 => 0.01334470492961
221 => 0.01387273296498
222 => 0.013808785285856
223 => 0.013962880793543
224 => 0.013645894642976
225 => 0.013287194725009
226 => 0.013355371852631
227 => 0.013348805846995
228 => 0.01326521305914
229 => 0.013189749227952
301 => 0.013064123210825
302 => 0.013461622518166
303 => 0.013445484772207
304 => 0.013706736121207
305 => 0.013660557407611
306 => 0.013352164656369
307 => 0.013363178963812
308 => 0.013437255474657
309 => 0.013693635124484
310 => 0.01376974606021
311 => 0.013734488442285
312 => 0.013817940608713
313 => 0.013883897798439
314 => 0.013826223816248
315 => 0.014642765780404
316 => 0.014303680627779
317 => 0.014468948371829
318 => 0.014508363754971
319 => 0.014407402079869
320 => 0.014429297052032
321 => 0.014462461968837
322 => 0.014663832849315
323 => 0.015192288306824
324 => 0.015426337631636
325 => 0.016130486573126
326 => 0.015406903093335
327 => 0.01536396864413
328 => 0.015490807131753
329 => 0.015904217102142
330 => 0.016239247053519
331 => 0.016350395816732
401 => 0.016365085960657
402 => 0.016573608429475
403 => 0.016693129619888
404 => 0.016548288317075
405 => 0.016425550478458
406 => 0.015985918775313
407 => 0.016036807342029
408 => 0.016387379102942
409 => 0.016882582363805
410 => 0.017307518278743
411 => 0.017158720531844
412 => 0.018293942305849
413 => 0.018406494907777
414 => 0.018390943777451
415 => 0.018647355354715
416 => 0.018138430591156
417 => 0.017920855394782
418 => 0.016452087792301
419 => 0.016864751578346
420 => 0.017464582626257
421 => 0.017385192737815
422 => 0.016949579397292
423 => 0.017307187826962
424 => 0.017188951296664
425 => 0.017095693239579
426 => 0.017522926478047
427 => 0.017053165982577
428 => 0.017459896405967
429 => 0.016938260430882
430 => 0.017159400227418
501 => 0.017033870583576
502 => 0.017115103647476
503 => 0.01664021681578
504 => 0.016896454222937
505 => 0.016629556497211
506 => 0.016629429952938
507 => 0.01662353817085
508 => 0.01693754216156
509 => 0.016947781820424
510 => 0.016715732396856
511 => 0.016682290449626
512 => 0.016805942856168
513 => 0.016661178272724
514 => 0.01672891271018
515 => 0.016663229879833
516 => 0.016648443291229
517 => 0.016530621237508
518 => 0.01647986025718
519 => 0.016499764945516
520 => 0.016431819982655
521 => 0.016390880684854
522 => 0.01661539431409
523 => 0.016495445738844
524 => 0.016597010474629
525 => 0.01648126463971
526 => 0.01608003914782
527 => 0.015849290124552
528 => 0.015091412363995
529 => 0.015306345556745
530 => 0.015448846485902
531 => 0.015401749929666
601 => 0.015502931556409
602 => 0.015509143286528
603 => 0.015476248108249
604 => 0.015438159705935
605 => 0.01541962037811
606 => 0.015557797338735
607 => 0.015638013715201
608 => 0.015463148360559
609 => 0.015422179854593
610 => 0.015598978382717
611 => 0.015706825382739
612 => 0.016503107036907
613 => 0.016444115920011
614 => 0.016592172046999
615 => 0.016575503199207
616 => 0.016730689607481
617 => 0.016984353798341
618 => 0.0164685835727
619 => 0.016558103449879
620 => 0.016536155243311
621 => 0.016775780007495
622 => 0.016776528089853
623 => 0.01663286107358
624 => 0.016710745293833
625 => 0.016667272458729
626 => 0.016745833747467
627 => 0.016443328057679
628 => 0.016811747334369
629 => 0.017020617323839
630 => 0.017023517483845
701 => 0.017122520201159
702 => 0.017223112695801
703 => 0.017416191229505
704 => 0.017217727840289
705 => 0.016860711523111
706 => 0.016886486948056
707 => 0.016677168411921
708 => 0.01668068709433
709 => 0.016661904091867
710 => 0.016718273296177
711 => 0.01645569792811
712 => 0.016517323842167
713 => 0.016431047201606
714 => 0.016557915901312
715 => 0.016421426152576
716 => 0.016536144659221
717 => 0.01658565336371
718 => 0.016768341549122
719 => 0.016394442959051
720 => 0.015632038423189
721 => 0.015792305099889
722 => 0.015555258096374
723 => 0.015577197699051
724 => 0.01562151918812
725 => 0.015477858740958
726 => 0.015505264627016
727 => 0.015504285495913
728 => 0.015495847873044
729 => 0.015458476242307
730 => 0.015404279983987
731 => 0.015620181196405
801 => 0.015656867019506
802 => 0.015738415059847
803 => 0.015981046713339
804 => 0.015956802089507
805 => 0.015996346076877
806 => 0.015910021774478
807 => 0.015581202035855
808 => 0.015599058529662
809 => 0.015376387765761
810 => 0.015732720867782
811 => 0.015648336485856
812 => 0.015593933325876
813 => 0.015579088919634
814 => 0.015822322010064
815 => 0.015895101162933
816 => 0.015849750078893
817 => 0.015756733682423
818 => 0.015935352661473
819 => 0.015983143564937
820 => 0.015993842185762
821 => 0.016310320769847
822 => 0.016011529822974
823 => 0.016083451773613
824 => 0.016644566301471
825 => 0.016135712853216
826 => 0.016405263873543
827 => 0.016392070753773
828 => 0.016529963934663
829 => 0.01638075948814
830 => 0.016382609056075
831 => 0.016505048859012
901 => 0.016333104237921
902 => 0.016290528331677
903 => 0.016231710022134
904 => 0.016360137649196
905 => 0.016437124203337
906 => 0.017057579289323
907 => 0.017458421571059
908 => 0.017441019950462
909 => 0.017600038188245
910 => 0.017528399015684
911 => 0.017297057230024
912 => 0.01769192944902
913 => 0.017566975356774
914 => 0.01757727642032
915 => 0.01757689301422
916 => 0.017659976561887
917 => 0.01760110425387
918 => 0.017485060891649
919 => 0.017562095891008
920 => 0.017790862298588
921 => 0.018500960247128
922 => 0.018898340466677
923 => 0.018477037458946
924 => 0.018767646632207
925 => 0.018593384682886
926 => 0.018561716102851
927 => 0.018744240139508
928 => 0.018927083660329
929 => 0.018915437318507
930 => 0.018782702311509
1001 => 0.018707723674083
1002 => 0.019275487036364
1003 => 0.019693805410097
1004 => 0.01966527890145
1005 => 0.019791185633299
1006 => 0.020160851692154
1007 => 0.02019464932377
1008 => 0.020190391599016
1009 => 0.020106620642638
1010 => 0.020470604884785
1011 => 0.020774246943278
1012 => 0.020087230086612
1013 => 0.02034883711192
1014 => 0.020466280934032
1015 => 0.020638723308905
1016 => 0.020929662500013
1017 => 0.021245699629366
1018 => 0.021290390744627
1019 => 0.021258680259682
1020 => 0.02105024527734
1021 => 0.021396056875385
1022 => 0.02159862519924
1023 => 0.021719250000402
1024 => 0.022025134426095
1025 => 0.020467006227095
1026 => 0.019364085643846
1027 => 0.019191848668405
1028 => 0.019542099330848
1029 => 0.019634457637338
1030 => 0.019597228119799
1031 => 0.018355790730201
1101 => 0.019185312757471
1102 => 0.02007780871062
1103 => 0.020112093114985
1104 => 0.020558895250341
1105 => 0.020704392340652
1106 => 0.021064126623309
1107 => 0.021041625145984
1108 => 0.021129214719188
1109 => 0.021109079393148
1110 => 0.02177541140078
1111 => 0.022510474556458
1112 => 0.022485021656735
1113 => 0.022379347631234
1114 => 0.022536291579202
1115 => 0.023294955530017
1116 => 0.023225109910768
1117 => 0.023292958980433
1118 => 0.02418746653487
1119 => 0.025350453597855
1120 => 0.024810129345107
1121 => 0.025982477499455
1122 => 0.026720408519113
1123 => 0.027996583914118
1124 => 0.027836800469367
1125 => 0.028333606185635
1126 => 0.027550754755452
1127 => 0.025753169631372
1128 => 0.025468694904607
1129 => 0.026038220511638
1130 => 0.027438343643028
1201 => 0.025994125651616
1202 => 0.026286289070325
1203 => 0.026202145986082
1204 => 0.026197662358707
1205 => 0.026368784179351
1206 => 0.026120563053393
1207 => 0.025109265532113
1208 => 0.025572737226502
1209 => 0.02539376854756
1210 => 0.025592347639845
1211 => 0.026663997100663
1212 => 0.026190195329103
1213 => 0.025691083651295
1214 => 0.026317080457014
1215 => 0.027114189506535
1216 => 0.027064307854759
1217 => 0.0269675166014
1218 => 0.027513123828759
1219 => 0.02841430712044
1220 => 0.028657893342933
1221 => 0.028837703712477
1222 => 0.028862496524515
1223 => 0.029117877897164
1224 => 0.027744627892042
1225 => 0.029924010917732
1226 => 0.030300330162027
1227 => 0.030229597740934
1228 => 0.030647860743034
1229 => 0.030524797157508
1230 => 0.030346497330166
1231 => 0.031009533155586
]
'min_raw' => 0.011430385040183
'max_raw' => 0.031009533155586
'avg_raw' => 0.021219959097885
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.01143'
'max' => '$0.0310095'
'avg' => '$0.021219'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.0039420443948273
'max_diff' => 0.014292340182011
'year' => 2032
]
7 => [
'items' => [
101 => 0.030249416085974
102 => 0.029170525601737
103 => 0.028578624944051
104 => 0.029358087477357
105 => 0.029834078046952
106 => 0.030148677534769
107 => 0.030243875149696
108 => 0.027851229380798
109 => 0.02656172601358
110 => 0.02738828288778
111 => 0.028396739320214
112 => 0.027739025865641
113 => 0.027764806987844
114 => 0.02682708044568
115 => 0.028479707311788
116 => 0.028238933478175
117 => 0.029488068552877
118 => 0.029189952442364
119 => 0.030208573604639
120 => 0.029940336514899
121 => 0.031053773677474
122 => 0.031497953906733
123 => 0.032243801642792
124 => 0.032792450273583
125 => 0.033114627243559
126 => 0.033095284946737
127 => 0.034371910609712
128 => 0.033619129058159
129 => 0.032673458012419
130 => 0.032656353806756
131 => 0.033146130241607
201 => 0.034172567285452
202 => 0.034438707476869
203 => 0.034587443536359
204 => 0.034359649083711
205 => 0.03354255866184
206 => 0.033189743160418
207 => 0.033490352189679
208 => 0.033122733178522
209 => 0.033757346727455
210 => 0.034628806676281
211 => 0.034448853642974
212 => 0.035050409653251
213 => 0.035672956838349
214 => 0.036563227273384
215 => 0.036795976931721
216 => 0.037180703266274
217 => 0.037576713040548
218 => 0.037703900707281
219 => 0.037946741427092
220 => 0.037945461536629
221 => 0.038677278390843
222 => 0.039484495043522
223 => 0.0397892006428
224 => 0.040489854366774
225 => 0.039290009418302
226 => 0.040200105594544
227 => 0.041021035126698
228 => 0.040042289095512
301 => 0.041391262480925
302 => 0.041443640060641
303 => 0.042234479328828
304 => 0.041432812224049
305 => 0.040956784856243
306 => 0.042331058030586
307 => 0.042996025530451
308 => 0.042795731907807
309 => 0.041271487549767
310 => 0.040384311955472
311 => 0.03806240230181
312 => 0.040812804585605
313 => 0.042152445307707
314 => 0.04126801820393
315 => 0.041714071791023
316 => 0.04414759552884
317 => 0.045074123809207
318 => 0.044881412403812
319 => 0.044913977459024
320 => 0.045413915301432
321 => 0.047630915015469
322 => 0.046302437397167
323 => 0.047318008759252
324 => 0.047856664147787
325 => 0.048356997292249
326 => 0.047128337221364
327 => 0.045529868521744
328 => 0.045023566385423
329 => 0.041180079358613
330 => 0.040980009167449
331 => 0.040867703706402
401 => 0.040159633660421
402 => 0.039603284560988
403 => 0.039160855101202
404 => 0.037999788078102
405 => 0.038391614114918
406 => 0.036541115613618
407 => 0.03772499897711
408 => 0.034771558687185
409 => 0.037231271522586
410 => 0.035892561655697
411 => 0.036791469326827
412 => 0.036788333122644
413 => 0.035133159101157
414 => 0.034178489268164
415 => 0.034786842042053
416 => 0.035439044506766
417 => 0.035544862162393
418 => 0.036390459682118
419 => 0.036626447773816
420 => 0.035911392838742
421 => 0.034710355201825
422 => 0.034989328852129
423 => 0.034172835876045
424 => 0.032741963341407
425 => 0.033769640976422
426 => 0.034120535304812
427 => 0.034275510230238
428 => 0.032868411429242
429 => 0.032426270436369
430 => 0.032190878281685
501 => 0.034528716416206
502 => 0.034656788466587
503 => 0.034001553749278
504 => 0.036963276803418
505 => 0.036292947660306
506 => 0.03704186954779
507 => 0.034964014917427
508 => 0.035043391762509
509 => 0.034059702081398
510 => 0.034610502572652
511 => 0.034221214538562
512 => 0.034566003336075
513 => 0.034772668319687
514 => 0.035756196587001
515 => 0.037242501835536
516 => 0.035609290261642
517 => 0.034897676590876
518 => 0.035339157709952
519 => 0.036514880107753
520 => 0.038296159724544
521 => 0.037241606339811
522 => 0.037709599224478
523 => 0.037811834850223
524 => 0.037034246226009
525 => 0.03832483052626
526 => 0.039016465137452
527 => 0.039725939134919
528 => 0.040341955527909
529 => 0.039442559618663
530 => 0.040405042164896
531 => 0.039629451133673
601 => 0.03893366579954
602 => 0.038934721018684
603 => 0.03849824471478
604 => 0.037652516876413
605 => 0.037496551687225
606 => 0.038307902297612
607 => 0.038958528651954
608 => 0.039012117354788
609 => 0.039372337534941
610 => 0.039585512126992
611 => 0.041674912925902
612 => 0.042515287211654
613 => 0.043542880980799
614 => 0.043943186665893
615 => 0.045147963260495
616 => 0.044175008313183
617 => 0.043964503390159
618 => 0.041042109451076
619 => 0.041520651294886
620 => 0.042286842959244
621 => 0.041054743669416
622 => 0.041836227078648
623 => 0.041990508457713
624 => 0.041012877407016
625 => 0.041535072392137
626 => 0.040148277331678
627 => 0.03727273017818
628 => 0.038328031832261
629 => 0.039105089060359
630 => 0.037996132585397
701 => 0.039983894144225
702 => 0.038822684877285
703 => 0.03845463728754
704 => 0.037018752421505
705 => 0.037696434805996
706 => 0.038613009934498
707 => 0.03804667306838
708 => 0.039221907101484
709 => 0.040886351915828
710 => 0.042072534409932
711 => 0.042163594772942
712 => 0.041400958897289
713 => 0.042623087755101
714 => 0.042631989629601
715 => 0.041253423285446
716 => 0.040409059075541
717 => 0.040217217750493
718 => 0.04069647499317
719 => 0.041278381761548
720 => 0.042195886548722
721 => 0.042750315475812
722 => 0.04419597207128
723 => 0.04458712529579
724 => 0.04501688409928
725 => 0.045591174393449
726 => 0.046280757136608
727 => 0.044771989352544
728 => 0.0448319355093
729 => 0.043426991839091
730 => 0.04192560803817
731 => 0.043064971192936
801 => 0.044554536954664
802 => 0.0442128289231
803 => 0.044174379789087
804 => 0.044239040567596
805 => 0.043981403870937
806 => 0.042816122640412
807 => 0.042230925701489
808 => 0.042985979052362
809 => 0.043387256304792
810 => 0.044009602328257
811 => 0.043932885044734
812 => 0.045535981566097
813 => 0.046158896399177
814 => 0.045999528128846
815 => 0.046028855725999
816 => 0.047156613276998
817 => 0.04841091161474
818 => 0.049585727527278
819 => 0.050780800733029
820 => 0.049340093338995
821 => 0.048608590974783
822 => 0.049363314692982
823 => 0.0489628476646
824 => 0.051264049995921
825 => 0.051423380252494
826 => 0.053724416180693
827 => 0.055908373278816
828 => 0.054536668955141
829 => 0.055830124349447
830 => 0.057229101815354
831 => 0.059927956323004
901 => 0.059019077071674
902 => 0.058322889809109
903 => 0.057664996209937
904 => 0.059033968352146
905 => 0.060795129143233
906 => 0.061174466309445
907 => 0.061789137436659
908 => 0.061142885904803
909 => 0.061921224692652
910 => 0.064669102633153
911 => 0.06392660175744
912 => 0.062872131150956
913 => 0.065041316875979
914 => 0.065826336757368
915 => 0.071336017403065
916 => 0.078292216811813
917 => 0.075412304579723
918 => 0.073624650123078
919 => 0.074044791324121
920 => 0.076584959865985
921 => 0.077400781380712
922 => 0.075183097273143
923 => 0.075966420791294
924 => 0.080282610390975
925 => 0.082598107631263
926 => 0.079453351366184
927 => 0.070777093553673
928 => 0.062777187610055
929 => 0.064899122906762
930 => 0.064658561295434
1001 => 0.069295768564673
1002 => 0.063908893357116
1003 => 0.063999594520199
1004 => 0.068732694324879
1005 => 0.067469984442863
1006 => 0.065424556149661
1007 => 0.062792121500202
1008 => 0.057925822579941
1009 => 0.053615605919482
1010 => 0.062068933374257
1011 => 0.061704410523029
1012 => 0.06117652741519
1013 => 0.062351274148767
1014 => 0.068055510829337
1015 => 0.067924009711038
1016 => 0.067087466688877
1017 => 0.067721977198234
1018 => 0.065313323389558
1019 => 0.065934088320081
1020 => 0.06277592038408
1021 => 0.064203544187896
1022 => 0.065420167579193
1023 => 0.065664422737413
1024 => 0.06621474208086
1025 => 0.061512323544478
1026 => 0.063623571411558
1027 => 0.064863731736295
1028 => 0.059260642271715
1029 => 0.064752976672887
1030 => 0.061430464899696
1031 => 0.060302754501423
1101 => 0.06182106798815
1102 => 0.061229379745765
1103 => 0.060720680940061
1104 => 0.060436818265923
1105 => 0.061551700120431
1106 => 0.061499689549346
1107 => 0.059675526446128
1108 => 0.05729598004038
1109 => 0.058094633920097
1110 => 0.057804475478176
1111 => 0.056752903853469
1112 => 0.057461536161279
1113 => 0.054341078108288
1114 => 0.048972492215411
1115 => 0.052519144500479
1116 => 0.052382602245519
1117 => 0.05231375144887
1118 => 0.054978962618829
1119 => 0.054722764061721
1120 => 0.054257761171866
1121 => 0.056744363710737
1122 => 0.055836720334525
1123 => 0.058633863352336
1124 => 0.060476242651734
1125 => 0.06000895566668
1126 => 0.061741722302755
1127 => 0.058113033292432
1128 => 0.059318338223927
1129 => 0.059566749899828
1130 => 0.056713679421393
1201 => 0.054764681314125
1202 => 0.054634705360575
1203 => 0.051255411231054
1204 => 0.053060602878335
1205 => 0.054649096824036
1206 => 0.053888331496155
1207 => 0.053647495920566
1208 => 0.054877872645389
1209 => 0.054973483454371
1210 => 0.052793546877185
1211 => 0.053246824721195
1212 => 0.05513706868189
1213 => 0.053199195423252
1214 => 0.049434224231519
1215 => 0.048500459321169
1216 => 0.048375877869427
1217 => 0.045843433374731
1218 => 0.04856285795745
1219 => 0.047375756251045
1220 => 0.051125796317915
1221 => 0.048983793543587
1222 => 0.048891456085153
1223 => 0.048751874473769
1224 => 0.046572094883219
1225 => 0.04704932808133
1226 => 0.048635723916518
1227 => 0.049201767822541
1228 => 0.049142724805682
1229 => 0.04862794971147
1230 => 0.048863611113525
1231 => 0.04810446362763
]
'min_raw' => 0.02656172601358
'max_raw' => 0.082598107631263
'avg_raw' => 0.054579916822421
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.026561'
'max' => '$0.082598'
'avg' => '$0.054579'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.015131340973397
'max_diff' => 0.051588574475677
'year' => 2033
]
8 => [
'items' => [
101 => 0.047836392850072
102 => 0.046990287737423
103 => 0.045746746964331
104 => 0.045919668935908
105 => 0.04345588927427
106 => 0.042113491351927
107 => 0.041741933299542
108 => 0.041245070343413
109 => 0.041798055292539
110 => 0.043448909696047
111 => 0.041457629037117
112 => 0.038043718019478
113 => 0.03824889988866
114 => 0.038709882629667
115 => 0.037850844341506
116 => 0.037037836695381
117 => 0.037744680882292
118 => 0.036298161779325
119 => 0.038884687552434
120 => 0.038814729278926
121 => 0.03977882613746
122 => 0.04038169568836
123 => 0.038992276554869
124 => 0.038642841400185
125 => 0.038841895545236
126 => 0.035551973926141
127 => 0.039509969352814
128 => 0.039544198261623
129 => 0.039251109563426
130 => 0.04135861993873
131 => 0.045806124179593
201 => 0.044132794183737
202 => 0.043484830232674
203 => 0.042253050288046
204 => 0.043894323928407
205 => 0.043768299720685
206 => 0.043198370460102
207 => 0.042853675465015
208 => 0.043488786562389
209 => 0.042774978171587
210 => 0.042646758570456
211 => 0.041869887291903
212 => 0.041592579590851
213 => 0.04138727200893
214 => 0.041161248534341
215 => 0.041659799997744
216 => 0.040530016791766
217 => 0.039167608999371
218 => 0.03905433953289
219 => 0.039367086488597
220 => 0.039228719241969
221 => 0.039053677083746
222 => 0.038719473933804
223 => 0.038620322998337
224 => 0.03894251543741
225 => 0.038578778958682
226 => 0.039115491946797
227 => 0.038969535711714
228 => 0.038154236047267
301 => 0.037138070802769
302 => 0.037129024800614
303 => 0.036910093665532
304 => 0.036631251948489
305 => 0.036553684561841
306 => 0.037685152436419
307 => 0.040027257074811
308 => 0.03956744589248
309 => 0.03989970659506
310 => 0.041534100401244
311 => 0.042053625044294
312 => 0.041684878758273
313 => 0.041180116098687
314 => 0.041202323093995
315 => 0.042927249903849
316 => 0.043034831473141
317 => 0.043306655391613
318 => 0.04365602594428
319 => 0.041744378074113
320 => 0.041112284651222
321 => 0.040812763720248
322 => 0.039890355182036
323 => 0.040885093709166
324 => 0.040305502168358
325 => 0.04038370886888
326 => 0.040332776652568
327 => 0.040360589086696
328 => 0.038883964565766
329 => 0.039421968932093
330 => 0.038527432325412
331 => 0.037329748225513
401 => 0.037325733168448
402 => 0.03761886465514
403 => 0.037444498576619
404 => 0.036975283942681
405 => 0.037041933666802
406 => 0.036458011951373
407 => 0.037112832335299
408 => 0.03713161024085
409 => 0.036879468724731
410 => 0.037888309873969
411 => 0.038301632915947
412 => 0.038135667968643
413 => 0.038289988372816
414 => 0.039586553123029
415 => 0.0397979497504
416 => 0.039891838168201
417 => 0.03976604012618
418 => 0.038313687196312
419 => 0.038378105224633
420 => 0.037905448474846
421 => 0.037506103328617
422 => 0.037522075040177
423 => 0.037727390356574
424 => 0.038624014384863
425 => 0.040510906793524
426 => 0.040582512981133
427 => 0.040669301769414
428 => 0.040316288150924
429 => 0.040209815865702
430 => 0.040350280292738
501 => 0.041058897873342
502 => 0.042881654678451
503 => 0.042237370685692
504 => 0.041713557770701
505 => 0.042173082916096
506 => 0.042102342621839
507 => 0.041505223347799
508 => 0.041488464198544
509 => 0.040342401401082
510 => 0.039918728079447
511 => 0.03956467494049
512 => 0.039178058155541
513 => 0.038948858765911
514 => 0.039301013197642
515 => 0.039381555082748
516 => 0.038611563263162
517 => 0.03850661622337
518 => 0.039135408164672
519 => 0.038858700275031
520 => 0.039143301201552
521 => 0.039209331057766
522 => 0.039198698730119
523 => 0.038909783913636
524 => 0.039093929602099
525 => 0.038658370152412
526 => 0.038184764669793
527 => 0.037882633878545
528 => 0.037618984691348
529 => 0.037765272583786
530 => 0.03724378295836
531 => 0.037076947931673
601 => 0.039031545186257
602 => 0.040475427193679
603 => 0.040454432577451
604 => 0.04032663325054
605 => 0.040136749373898
606 => 0.041045006685052
607 => 0.040728587999024
608 => 0.040958809030775
609 => 0.041017409945702
610 => 0.04119477726572
611 => 0.04125817083739
612 => 0.041066551434137
613 => 0.04042345331248
614 => 0.038820913937246
615 => 0.038074927532102
616 => 0.037828739593019
617 => 0.037837688057027
618 => 0.037590849471977
619 => 0.037663554497804
620 => 0.037565565631067
621 => 0.03737999842352
622 => 0.037753814331635
623 => 0.037796893132709
624 => 0.037709640032987
625 => 0.03773019129658
626 => 0.037007772897173
627 => 0.03706269679907
628 => 0.036756873533918
629 => 0.036699535358456
630 => 0.035926440775229
701 => 0.034556791659191
702 => 0.035315710224533
703 => 0.034399043317699
704 => 0.03405188767031
705 => 0.035695268511266
706 => 0.035530318655124
707 => 0.035247996203386
708 => 0.034830382456112
709 => 0.034675485454963
710 => 0.03373438031041
711 => 0.033678774797869
712 => 0.034145211919486
713 => 0.033929967236981
714 => 0.033627682183209
715 => 0.03253283636059
716 => 0.031301867164972
717 => 0.031339022387391
718 => 0.031730570785521
719 => 0.03286905056058
720 => 0.032424226816564
721 => 0.032101502086516
722 => 0.032041065445648
723 => 0.032797556538791
724 => 0.033868149925372
725 => 0.034370448389179
726 => 0.033872685866578
727 => 0.033300883082051
728 => 0.033335686068066
729 => 0.033567214742012
730 => 0.033591545132005
731 => 0.033219360301554
801 => 0.033324128151241
802 => 0.033164976207393
803 => 0.032188261021774
804 => 0.032170595341263
805 => 0.031930893683052
806 => 0.031923635612105
807 => 0.031515843295107
808 => 0.031458790331024
809 => 0.030649093934401
810 => 0.031182038554645
811 => 0.030824567284234
812 => 0.030285773760776
813 => 0.030192885554248
814 => 0.030190093222594
815 => 0.030743313699158
816 => 0.031175573851275
817 => 0.030830785650029
818 => 0.030752284060044
819 => 0.03159047566418
820 => 0.031483808142268
821 => 0.031391434756223
822 => 0.033772290029975
823 => 0.031887657300347
824 => 0.031065849859153
825 => 0.030048707093676
826 => 0.030379893906995
827 => 0.030449679834707
828 => 0.028003634837499
829 => 0.027011274686767
830 => 0.026670734079339
831 => 0.026474748145227
901 => 0.026564061396438
902 => 0.025670820868543
903 => 0.026271093276124
904 => 0.025497622482709
905 => 0.025367947587101
906 => 0.026751009180371
907 => 0.026943454121346
908 => 0.026122424215191
909 => 0.026649658327611
910 => 0.026458475909345
911 => 0.025510881419466
912 => 0.025474690279986
913 => 0.024999220674522
914 => 0.024255202811028
915 => 0.023915166682747
916 => 0.023738072914809
917 => 0.023811145254949
918 => 0.023774197643723
919 => 0.023533089488151
920 => 0.02378801768097
921 => 0.023136781491921
922 => 0.022877453994075
923 => 0.022760321779651
924 => 0.022182312178114
925 => 0.023102182496196
926 => 0.023283408537079
927 => 0.023464991649246
928 => 0.025045548668605
929 => 0.024966588506526
930 => 0.025680349916565
1001 => 0.025652614460694
1002 => 0.025449038144382
1003 => 0.024590183152543
1004 => 0.024932507444672
1005 => 0.023878886482506
1006 => 0.024668330946622
1007 => 0.024308061461188
1008 => 0.024546523471198
1009 => 0.024117747275948
1010 => 0.024355049726135
1011 => 0.023326383954415
1012 => 0.022365830330501
1013 => 0.022752385149072
1014 => 0.023172614444765
1015 => 0.02408377863026
1016 => 0.02354109675832
1017 => 0.023736265680543
1018 => 0.02308248246198
1019 => 0.021733540938139
1020 => 0.02174117580067
1021 => 0.021533670535515
1022 => 0.021354355690157
1023 => 0.023603430299453
1024 => 0.023323722319179
1025 => 0.022878044259887
1026 => 0.023474602052791
1027 => 0.02363234140188
1028 => 0.023636832019393
1029 => 0.02407206518571
1030 => 0.024304349204593
1031 => 0.024345290269698
1101 => 0.025030139060732
1102 => 0.025259691342113
1103 => 0.026205184701666
1104 => 0.024284641528469
1105 => 0.024245089205665
1106 => 0.023482996844324
1107 => 0.022999665820558
1108 => 0.023516090933029
1109 => 0.023973573083621
1110 => 0.02349721208997
1111 => 0.023559414779211
1112 => 0.022919939065358
1113 => 0.023148521542931
1114 => 0.023345407566003
1115 => 0.023236698676488
1116 => 0.023073956207315
1117 => 0.02393606476433
1118 => 0.023887421220913
1119 => 0.024690236528995
1120 => 0.025316088471518
1121 => 0.026437727036937
1122 => 0.025267238721582
1123 => 0.025224581475101
1124 => 0.025641562901892
1125 => 0.025259627504429
1126 => 0.025500997491664
1127 => 0.026398838600428
1128 => 0.026417808568257
1129 => 0.026100037165703
1130 => 0.026080700746979
1201 => 0.026141732220878
1202 => 0.026499195469786
1203 => 0.026374286826881
1204 => 0.02651883427075
1205 => 0.026699593062697
1206 => 0.027447288066331
1207 => 0.027627554800398
1208 => 0.027189600094202
1209 => 0.0272291425006
1210 => 0.027065335418357
1211 => 0.026907099829407
1212 => 0.027262790324915
1213 => 0.027912821696569
1214 => 0.027908777885143
1215 => 0.028059572528562
1216 => 0.028153516342162
1217 => 0.027750240723116
1218 => 0.027487723123973
1219 => 0.027588389075913
1220 => 0.027749356125285
1221 => 0.027536189631261
1222 => 0.026220427281822
1223 => 0.026619545527418
1224 => 0.026553112735465
1225 => 0.026458504361222
1226 => 0.026859820843458
1227 => 0.026821112889729
1228 => 0.025661659395861
1229 => 0.025735883846701
1230 => 0.025666173230556
1231 => 0.025891422492771
]
'min_raw' => 0.021354355690157
'max_raw' => 0.047836392850072
'avg_raw' => 0.034595374270115
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.021354'
'max' => '$0.047836'
'avg' => '$0.034595'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.0052073703234224
'max_diff' => -0.034761714781191
'year' => 2034
]
9 => [
'items' => [
101 => 0.025247463305065
102 => 0.025445540814072
103 => 0.02556977317086
104 => 0.025642946983406
105 => 0.025907300970075
106 => 0.025876282080902
107 => 0.025905372792371
108 => 0.026297339967737
109 => 0.028279775433843
110 => 0.028387675022266
111 => 0.027856337986451
112 => 0.0280685966521
113 => 0.027661106429922
114 => 0.027934657346017
115 => 0.028121813935369
116 => 0.027276089296229
117 => 0.027226010971807
118 => 0.02681683889253
119 => 0.027036704791242
120 => 0.026686882337474
121 => 0.026772716531359
122 => 0.026532716642366
123 => 0.026964668659052
124 => 0.027447658132263
125 => 0.027569680347029
126 => 0.027248692433847
127 => 0.027016276030569
128 => 0.026608229389136
129 => 0.027286820047752
130 => 0.027485260636007
131 => 0.02728577772382
201 => 0.027239553174279
202 => 0.027151957736424
203 => 0.02725813696051
204 => 0.027484179885946
205 => 0.027377582216668
206 => 0.027447991855235
207 => 0.027179662919121
208 => 0.027750374224126
209 => 0.028656801125631
210 => 0.028659715436335
211 => 0.028553117192456
212 => 0.028509499487751
213 => 0.028618875754894
214 => 0.028678207892969
215 => 0.02903191068473
216 => 0.02941144787243
217 => 0.031182582322378
218 => 0.030685254856142
219 => 0.032256710705396
220 => 0.033499528254152
221 => 0.0338721948952
222 => 0.033529359120757
223 => 0.032356536456012
224 => 0.032298992180833
225 => 0.034051684394919
226 => 0.033556468566051
227 => 0.033497564218971
228 => 0.032870921486503
301 => 0.033241344952604
302 => 0.033160327906783
303 => 0.033032438536465
304 => 0.033739180705864
305 => 0.035062138955668
306 => 0.034855943505813
307 => 0.034702028167627
308 => 0.034027615959778
309 => 0.034433762744323
310 => 0.034289141653576
311 => 0.034910525638238
312 => 0.034542431531064
313 => 0.033552716819089
314 => 0.033710332149113
315 => 0.033686508909058
316 => 0.034176789501261
317 => 0.034029619436994
318 => 0.033657771592015
319 => 0.035057617228195
320 => 0.034966719038932
321 => 0.035095591889088
322 => 0.035152325703251
323 => 0.036004387073947
324 => 0.036353449354598
325 => 0.036432692603501
326 => 0.036764274772674
327 => 0.036424442537068
328 => 0.037784013775771
329 => 0.038688049316328
330 => 0.039738133117928
331 => 0.041272587787983
401 => 0.041849556938423
402 => 0.041745332625647
403 => 0.042908738643993
404 => 0.0449993533979
405 => 0.042167905640375
406 => 0.045149427004341
407 => 0.044205511763828
408 => 0.041967505708884
409 => 0.041823404503304
410 => 0.043339008187497
411 => 0.046700471287588
412 => 0.045858462906414
413 => 0.046701848511658
414 => 0.045717994404077
415 => 0.045669137755062
416 => 0.046654064913656
417 => 0.048955400905297
418 => 0.047862122439959
419 => 0.046294639677017
420 => 0.04745204455644
421 => 0.046449393337119
422 => 0.044190139515583
423 => 0.045857819038473
424 => 0.044742689234295
425 => 0.045068143394715
426 => 0.047411980380058
427 => 0.047129963712958
428 => 0.047494919394226
429 => 0.046850782169342
430 => 0.046249056430183
501 => 0.045125890653303
502 => 0.044793376638172
503 => 0.044885271549353
504 => 0.044793331099618
505 => 0.04416493016988
506 => 0.044029227048934
507 => 0.0438030492354
508 => 0.043873151197365
509 => 0.043447870737268
510 => 0.044250462832898
511 => 0.044399430998265
512 => 0.044983490594838
513 => 0.045044129599698
514 => 0.046670727262586
515 => 0.045774824603731
516 => 0.046375873455805
517 => 0.046322109989184
518 => 0.042016010086323
519 => 0.042609352659896
520 => 0.043532407503219
521 => 0.043116572547473
522 => 0.042528679210443
523 => 0.042053923819944
524 => 0.041334620857107
525 => 0.04234702596431
526 => 0.043678231023001
527 => 0.045077891156809
528 => 0.046759491098214
529 => 0.046384177567274
530 => 0.045046454815601
531 => 0.045106464081034
601 => 0.045477417747165
602 => 0.044996999044831
603 => 0.044855314190625
604 => 0.045457952423916
605 => 0.045462102462224
606 => 0.044909322684649
607 => 0.044295009119506
608 => 0.044292435123238
609 => 0.044183123957885
610 => 0.045737440617557
611 => 0.046592157621237
612 => 0.046690149548263
613 => 0.046585561983789
614 => 0.046625813586423
615 => 0.046128472594386
616 => 0.047265246620293
617 => 0.048308462881765
618 => 0.048028858638626
619 => 0.047609692130075
620 => 0.04727580581622
621 => 0.047950205634142
622 => 0.047920175671853
623 => 0.048299351297803
624 => 0.048282149701186
625 => 0.048154647199695
626 => 0.048028863192142
627 => 0.048527582564111
628 => 0.048383959394172
629 => 0.04824011313778
630 => 0.047951607448827
701 => 0.047990820163527
702 => 0.047571726029984
703 => 0.047377833907364
704 => 0.044462161595413
705 => 0.043682998681318
706 => 0.043928139195416
707 => 0.044008845817728
708 => 0.043669753118989
709 => 0.044155924943213
710 => 0.044080155579391
711 => 0.044374929850426
712 => 0.044190767683495
713 => 0.044198325763064
714 => 0.044739907428497
715 => 0.044897130890025
716 => 0.044817165768543
717 => 0.044873170598585
718 => 0.046163778268747
719 => 0.04598029512936
720 => 0.045882823368515
721 => 0.045909823712403
722 => 0.04623960164307
723 => 0.046331921458449
724 => 0.045940755913489
725 => 0.046125231845793
726 => 0.046910706952063
727 => 0.047185578785217
728 => 0.048062837730678
729 => 0.047690162538612
730 => 0.048374223982654
731 => 0.05047679564791
801 => 0.052156475381008
802 => 0.05061177248275
803 => 0.053696290406662
804 => 0.056098030058244
805 => 0.056005847290109
806 => 0.055587048428617
807 => 0.052852731688843
808 => 0.050336572658537
809 => 0.052441446529144
810 => 0.052446812285511
811 => 0.052266001753306
812 => 0.051143003066552
813 => 0.052226923833248
814 => 0.052312961527486
815 => 0.052264803297982
816 => 0.051403802837858
817 => 0.050089214274732
818 => 0.050346081733286
819 => 0.050766835870353
820 => 0.049970260510378
821 => 0.049715706416663
822 => 0.050188970907777
823 => 0.051713927706719
824 => 0.051425643457352
825 => 0.051418115190553
826 => 0.052651517460891
827 => 0.051768667620199
828 => 0.050349321654542
829 => 0.04999091807934
830 => 0.048718826836952
831 => 0.049597464789103
901 => 0.049629085404792
902 => 0.049147864377861
903 => 0.050388370088717
904 => 0.050376938610205
905 => 0.051554614157754
906 => 0.053805887489931
907 => 0.053140075187173
908 => 0.052365807919239
909 => 0.052449992239366
910 => 0.053373286446553
911 => 0.052815041692131
912 => 0.053015790398042
913 => 0.053372982589344
914 => 0.053588485506939
915 => 0.052418984685926
916 => 0.052146318100857
917 => 0.051588537960773
918 => 0.051443023533684
919 => 0.051897323819318
920 => 0.05177763174472
921 => 0.049626427814485
922 => 0.049401615034589
923 => 0.04940850972159
924 => 0.048843207297279
925 => 0.047980985412076
926 => 0.050246853045795
927 => 0.05006487216401
928 => 0.049863979354721
929 => 0.04988858757758
930 => 0.050872123919998
1001 => 0.05030162317162
1002 => 0.051818392914417
1003 => 0.05150659065357
1004 => 0.05118679184127
1005 => 0.0511425859041
1006 => 0.051019490645317
1007 => 0.050597351201221
1008 => 0.050087592455828
1009 => 0.049751005577573
1010 => 0.045892672817106
1011 => 0.04660875693456
1012 => 0.047432546438569
1013 => 0.047716915274224
1014 => 0.047230482703112
1015 => 0.05061655852397
1016 => 0.051235227205479
1017 => 0.049361239414428
1018 => 0.04901069281314
1019 => 0.050639540300791
1020 => 0.04965714614723
1021 => 0.050099518174426
1022 => 0.049143351816191
1023 => 0.051086208036838
1024 => 0.051071406727611
1025 => 0.050315591776381
1026 => 0.050954401397563
1027 => 0.05084339250555
1028 => 0.049990079287102
1029 => 0.05111325958789
1030 => 0.051113816671306
1031 => 0.050386361213582
1101 => 0.049536852499436
1102 => 0.049384980405847
1103 => 0.049270565184473
1104 => 0.050071379043748
1105 => 0.050789386245895
1106 => 0.052125419640008
1107 => 0.052461330178659
1108 => 0.053772411373843
1109 => 0.052991726357496
1110 => 0.053337793913679
1111 => 0.053713499200161
1112 => 0.053893626130605
1113 => 0.053600118963591
1114 => 0.055636767722261
1115 => 0.055808723278799
1116 => 0.055866378489496
1117 => 0.055179631987147
1118 => 0.055789623616253
1119 => 0.055504228733794
1120 => 0.056246746932971
1121 => 0.05636318326755
1122 => 0.056264565834504
1123 => 0.056301524564922
1124 => 0.054563604138858
1125 => 0.054473483796506
1126 => 0.053244686533888
1127 => 0.053745430501215
1128 => 0.052809313655579
1129 => 0.053106165950403
1130 => 0.053237015613448
1201 => 0.053168667175126
1202 => 0.053773741813818
1203 => 0.053259304762348
1204 => 0.051901620802237
1205 => 0.050543566942039
1206 => 0.050526517682071
1207 => 0.050168966072322
1208 => 0.049910521747318
1209 => 0.049960307293119
1210 => 0.050135758050152
1211 => 0.049900324230367
1212 => 0.049950565972616
1213 => 0.050784913652922
1214 => 0.050952236129911
1215 => 0.050383608975988
1216 => 0.048100488900478
1217 => 0.047540205507175
1218 => 0.047942926099379
1219 => 0.047750451594833
1220 => 0.038538341206976
1221 => 0.040702589897438
1222 => 0.039416666816506
1223 => 0.040009279334676
1224 => 0.038696684857212
1225 => 0.039323123740829
1226 => 0.03920744335291
1227 => 0.042687491202399
1228 => 0.042633155041878
1229 => 0.042659162886514
1230 => 0.041417740698982
1231 => 0.043395359952006
]
'min_raw' => 0.025247463305065
'max_raw' => 0.05636318326755
'avg_raw' => 0.040805323286307
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.025247'
'max' => '$0.056363'
'avg' => '$0.0408053'
'bar_min_pct' => 61.631153054958
'bar_max_pct' => 60.119598047091
'min_diff' => 0.0038931076149076
'max_diff' => 0.008526790417478
'year' => 2035
]
10 => [
'items' => [
101 => 0.044369606308933
102 => 0.044189299236993
103 => 0.044234678642437
104 => 0.043454910107747
105 => 0.042666712750419
106 => 0.041792480578439
107 => 0.043416695895616
108 => 0.043236110878626
109 => 0.043650307935162
110 => 0.04470372766966
111 => 0.044858847727117
112 => 0.045067330657412
113 => 0.044992604367727
114 => 0.046772887754716
115 => 0.046557283689864
116 => 0.047076827452635
117 => 0.046008086514734
118 => 0.044798704697678
119 => 0.04502856864343
120 => 0.045006430897005
121 => 0.044724591976492
122 => 0.044470160400922
123 => 0.044046603513251
124 => 0.045386800180468
125 => 0.045332390643266
126 => 0.046213217806407
127 => 0.046057523049423
128 => 0.045017755357316
129 => 0.045054890863852
130 => 0.045304644992025
131 => 0.046169046881272
201 => 0.046425660214968
202 => 0.046306786694527
203 => 0.046588151500082
204 => 0.046810530770225
205 => 0.0466160789126
206 => 0.049369107153892
207 => 0.048225857887648
208 => 0.048783069625338
209 => 0.048915961341495
210 => 0.048575562004971
211 => 0.048649382432277
212 => 0.048761200264782
213 => 0.049440136247581
214 => 0.051221860718153
215 => 0.052010974357561
216 => 0.054385061675901
217 => 0.051945449454801
218 => 0.05180069296172
219 => 0.052228337778321
220 => 0.053622178356852
221 => 0.054751755228962
222 => 0.055126501044294
223 => 0.055176029890169
224 => 0.055879077952363
225 => 0.056282051990543
226 => 0.055793709425613
227 => 0.055379890233433
228 => 0.053897641252174
229 => 0.054069215607785
301 => 0.055251192775841
302 => 0.056920805143828
303 => 0.058353506249121
304 => 0.057851824256722
305 => 0.061679303726435
306 => 0.062058782682005
307 => 0.062006350960369
308 => 0.062870860495198
309 => 0.061154985122867
310 => 0.060421415157675
311 => 0.05546936263983
312 => 0.056860687405747
313 => 0.058883059662646
314 => 0.058615391110939
315 => 0.057146690319814
316 => 0.05835239210787
317 => 0.057953749390957
318 => 0.057639323340427
319 => 0.059079770032395
320 => 0.057495939724288
321 => 0.058867259743756
322 => 0.057108527634299
323 => 0.057854115897805
324 => 0.057430883939392
325 => 0.057704766885843
326 => 0.056103652777239
327 => 0.056967575085394
328 => 0.056067710768907
329 => 0.056067284116055
330 => 0.056047419561393
331 => 0.057106105939131
401 => 0.057140629663901
402 => 0.056358258831166
403 => 0.05624550697124
404 => 0.05666240969303
405 => 0.05617432579281
406 => 0.056402697177759
407 => 0.056181242929414
408 => 0.056131388913572
409 => 0.055734143633376
410 => 0.055562999444181
411 => 0.055630109490607
412 => 0.055401028304556
413 => 0.055262998603732
414 => 0.056019961979742
415 => 0.055615546983755
416 => 0.05595797958148
417 => 0.055567734417933
418 => 0.054214974659358
419 => 0.053436988217026
420 => 0.050881750433974
421 => 0.051606412699485
422 => 0.052086864531236
423 => 0.051928075203708
424 => 0.05226921612255
425 => 0.052290159404335
426 => 0.0521792510141
427 => 0.052050833306452
428 => 0.051988326668313
429 => 0.052454199938269
430 => 0.052724655052052
501 => 0.052135084300169
502 => 0.051996956121974
503 => 0.052593044703221
504 => 0.052956658393433
505 => 0.055641377585072
506 => 0.055442484915826
507 => 0.055941666484917
508 => 0.055885466300803
509 => 0.05640868811107
510 => 0.057263934640822
511 => 0.055524979315146
512 => 0.055826801831132
513 => 0.055752801920312
514 => 0.056560713542827
515 => 0.056563235754727
516 => 0.05607885237885
517 => 0.056341444465135
518 => 0.056194872766408
519 => 0.056459747636362
520 => 0.055439828582969
521 => 0.056681979896543
522 => 0.057386199648876
523 => 0.057395977740821
524 => 0.057729772314393
525 => 0.058068926933221
526 => 0.058719904689919
527 => 0.058050771516906
528 => 0.056847066077456
529 => 0.056933969722239
530 => 0.056228237663509
531 => 0.056240101146917
601 => 0.056176772942726
602 => 0.056366825650627
603 => 0.055481534464763
604 => 0.05568931053659
605 => 0.055398422819297
606 => 0.055826169498044
607 => 0.055365984780771
608 => 0.055752766235315
609 => 0.055919688289088
610 => 0.056535634261084
611 => 0.055275009059897
612 => 0.052704508937852
613 => 0.053244859227807
614 => 0.052445638705364
615 => 0.052519609607563
616 => 0.052669042602387
617 => 0.052184681374728
618 => 0.052277082232989
619 => 0.052273781024117
620 => 0.052245332989516
621 => 0.052119331927284
622 => 0.051936605458497
623 => 0.052664531469904
624 => 0.052788220283811
625 => 0.053063165195325
626 => 0.053881214755075
627 => 0.053799472313118
628 => 0.05393279762741
629 => 0.053641749214901
630 => 0.052533110508672
701 => 0.052593314924242
702 => 0.051842564897374
703 => 0.053043966829222
704 => 0.05275945899403
705 => 0.052576034941848
706 => 0.052525985989799
707 => 0.053346063336178
708 => 0.053591443331353
709 => 0.053438538985199
710 => 0.053124927710305
711 => 0.053727154068951
712 => 0.053888284436635
713 => 0.0539243555837
714 => 0.05499138522577
715 => 0.053983990687471
716 => 0.05422648056548
717 => 0.056118317371919
718 => 0.054402682444113
719 => 0.055311492528596
720 => 0.05526701100418
721 => 0.055731927490945
722 => 0.05522887428237
723 => 0.055235110229794
724 => 0.055647924573871
725 => 0.055068201279074
726 => 0.054924653638616
727 => 0.05472634360143
728 => 0.055159346312598
729 => 0.055418911854915
730 => 0.057510819496106
731 => 0.058862287234894
801 => 0.058803616456111
802 => 0.059339757547095
803 => 0.059098221075117
804 => 0.058318236092998
805 => 0.05964957534844
806 => 0.059228283902418
807 => 0.059263014657359
808 => 0.059261721976925
809 => 0.059541843958593
810 => 0.059343351861779
811 => 0.058952103564163
812 => 0.059211832442914
813 => 0.059983134358031
814 => 0.062377279168987
815 => 0.063717074323398
816 => 0.062296621818395
817 => 0.063276430935729
818 => 0.062688894607014
819 => 0.062582121778395
820 => 0.063197514311406
821 => 0.063813984007581
822 => 0.063774717553006
823 => 0.063327192209652
824 => 0.063074396498727
825 => 0.064988650314631
826 => 0.066399039917726
827 => 0.066302860802167
828 => 0.066727364139122
829 => 0.067973719065814
830 => 0.068087670140482
831 => 0.068073314924209
901 => 0.067790875296079
902 => 0.069018073581047
903 => 0.070041823980866
904 => 0.067725498682632
905 => 0.068607525033275
906 => 0.069003495079193
907 => 0.069584896585619
908 => 0.070565818381166
909 => 0.071631359627786
910 => 0.071782038843123
911 => 0.071675124729177
912 => 0.070972371633745
913 => 0.072138299580348
914 => 0.072821272827093
915 => 0.073227967765965
916 => 0.074259278463359
917 => 0.069005940455392
918 => 0.065287366705513
919 => 0.064706657717614
920 => 0.06588755227976
921 => 0.066198944758341
922 => 0.066073422840678
923 => 0.061887830007255
924 => 0.064684621437574
925 => 0.067693733855695
926 => 0.067809326118671
927 => 0.069315750712755
928 => 0.06980630431102
929 => 0.071019173560843
930 => 0.070943308259038
1001 => 0.071238622620405
1002 => 0.071170734962859
1003 => 0.073417319848404
1004 => 0.075895636598244
1005 => 0.075809820369762
1006 => 0.07545353301486
1007 => 0.075982680492911
1008 => 0.07854056897131
1009 => 0.078305079589547
1010 => 0.078533837464992
1011 => 0.081549732137302
1012 => 0.085470824217319
1013 => 0.083649083274942
1014 => 0.087601736928064
1015 => 0.090089722881537
1016 => 0.094392437325519
1017 => 0.093853716285817
1018 => 0.095528731444082
1019 => 0.092889293190276
1020 => 0.086828609441058
1021 => 0.085869483038378
1022 => 0.087789678385491
1023 => 0.092510291276446
1024 => 0.08764100948632
1025 => 0.088626058850696
1026 => 0.088342364567488
1027 => 0.088327247704759
1028 => 0.088904196870404
1029 => 0.088067302013991
1030 => 0.084657641814455
1031 => 0.086220268990649
1101 => 0.0856168635944
1102 => 0.08628638686839
1103 => 0.089899527845713
1104 => 0.088302072093116
1105 => 0.086619282224522
1106 => 0.088729874160705
1107 => 0.091417382973541
1108 => 0.091249203501952
1109 => 0.090922865033502
1110 => 0.092762417893626
1111 => 0.095800820280134
1112 => 0.096622088235917
1113 => 0.097228331450792
1114 => 0.097311922147561
1115 => 0.098172958275602
1116 => 0.09354295000608
1117 => 0.10089089203686
1118 => 0.10215967864277
1119 => 0.10192119934668
1120 => 0.10333140226045
1121 => 0.10291648478982
1122 => 0.10231533447344
1123 => 0.10455080605053
1124 => 0.10198801828065
1125 => 0.098350463687318
1126 => 0.096354829294744
1127 => 0.09898284164612
1128 => 0.10058767708411
1129 => 0.10164837122192
1130 => 0.10196933662713
1201 => 0.0939023643681
1202 => 0.089554713735273
1203 => 0.092341507944999
1204 => 0.095741589215127
1205 => 0.09352406238295
1206 => 0.093610985236438
1207 => 0.090449374729553
1208 => 0.096021321591359
1209 => 0.095209535801043
1210 => 0.099421081917225
1211 => 0.098415962636829
1212 => 0.1018503150033
1213 => 0.10094593492752
1214 => 0.10469996605885
1215 => 0.10619755071347
1216 => 0.10871222842901
1217 => 0.11056203559315
1218 => 0.1116482777411
1219 => 0.11158306383693
1220 => 0.11588729639081
1221 => 0.11334924083222
1222 => 0.11016084487686
1223 => 0.11010317685329
1224 => 0.11175449229849
1225 => 0.11521519645536
1226 => 0.11611250669204
1227 => 0.11661398070103
1228 => 0.11584595579982
1229 => 0.11309107839505
1230 => 0.11190153629922
1231 => 0.11291506062922
]
'min_raw' => 0.041792480578439
'max_raw' => 0.11661398070103
'avg_raw' => 0.079203230639733
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$0.041792'
'max' => '$0.116613'
'avg' => '$0.0792032'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.016545017273374
'max_diff' => 0.060250797433477
'year' => 2036
]
11 => [
'items' => [
101 => 0.11167560746677
102 => 0.1138152513543
103 => 0.11675343941516
104 => 0.11614671519944
105 => 0.11817490328739
106 => 0.12027386458681
107 => 0.12327547351522
108 => 0.12406020523837
109 => 0.12535733693605
110 => 0.12669251153853
111 => 0.12712133363688
112 => 0.12794008807832
113 => 0.12793577283827
114 => 0.13040314445607
115 => 0.13312473175864
116 => 0.13415206796048
117 => 0.13651437090894
118 => 0.13246900989466
119 => 0.13553746269375
120 => 0.13830528392688
121 => 0.13500537334887
122 => 0.1395535313001
123 => 0.139730125967
124 => 0.14239649577433
125 => 0.13969361915995
126 => 0.13808865965423
127 => 0.14272211761021
128 => 0.14496410196256
129 => 0.14428879802976
130 => 0.13914970175728
131 => 0.1361585273005
201 => 0.12833004679262
202 => 0.13760322011939
203 => 0.14211991234468
204 => 0.13913800461557
205 => 0.14064190542692
206 => 0.14884670061217
207 => 0.15197055539757
208 => 0.1513208154396
209 => 0.15143061079687
210 => 0.15311618613709
211 => 0.16059095545894
212 => 0.15611190041749
213 => 0.15953597016969
214 => 0.16135208441986
215 => 0.16303899254855
216 => 0.15889647933726
217 => 0.15350713051497
218 => 0.15180009751348
219 => 0.13884151265889
220 => 0.13816696204093
221 => 0.13778831633809
222 => 0.13540100874219
223 => 0.1335252389104
224 => 0.13203355709729
225 => 0.1281189385658
226 => 0.12944000740535
227 => 0.12320092251053
228 => 0.12719246792664
301 => 0.11723473778655
302 => 0.12552783134277
303 => 0.12101427756081
304 => 0.12404500753376
305 => 0.12403443360239
306 => 0.11845389882839
307 => 0.11523516283353
308 => 0.11728626668453
309 => 0.11948521282963
310 => 0.11984198444353
311 => 0.12269297551902
312 => 0.12348862584634
313 => 0.1210777682092
314 => 0.11702838596256
315 => 0.11796896510188
316 => 0.1152161020273
317 => 0.11039181537644
318 => 0.11385670227305
319 => 0.11503976699987
320 => 0.11556227578095
321 => 0.1108181439329
322 => 0.10932743470612
323 => 0.10853379362205
324 => 0.11641597811524
325 => 0.1168477819748
326 => 0.11463861237837
327 => 0.1246242684363
328 => 0.12236420692941
329 => 0.12488924936112
330 => 0.11788361740367
331 => 0.11815124197878
401 => 0.11483466353989
402 => 0.11669172585182
403 => 0.11537921406566
404 => 0.11654169356886
405 => 0.11723847899
406 => 0.120554513211
407 => 0.12556569512695
408 => 0.12005920827838
409 => 0.11765995310411
410 => 0.1191484375203
411 => 0.12311246767081
412 => 0.12911817626379
413 => 0.12556267590059
414 => 0.12714054658547
415 => 0.12748524113553
416 => 0.12486354679949
417 => 0.12921484187351
418 => 0.13154673625353
419 => 0.13393877736988
420 => 0.13601571964774
421 => 0.1329833435459
422 => 0.13622842064891
423 => 0.1336134613371
424 => 0.13126757250489
425 => 0.13127113024991
426 => 0.12979951991749
427 => 0.1269480894636
428 => 0.12642224193912
429 => 0.12915776716873
430 => 0.13135139934767
501 => 0.13153207740072
502 => 0.13274658488788
503 => 0.13346531790835
504 => 0.14050987857918
505 => 0.14334325915665
506 => 0.14680786329363
507 => 0.14815752185938
508 => 0.15221951026289
509 => 0.14893912472849
510 => 0.14822939268353
511 => 0.13837633748288
512 => 0.13998977472001
513 => 0.14257304341019
514 => 0.1384189346321
515 => 0.14105376050776
516 => 0.14157393094886
517 => 0.13827777960541
518 => 0.14003839645624
519 => 0.13536272008696
520 => 0.12566761209465
521 => 0.12922563530019
522 => 0.13184553799713
523 => 0.12810661381693
524 => 0.1348084906936
525 => 0.13089339257707
526 => 0.12965249443198
527 => 0.12481130835586
528 => 0.12709616182945
529 => 0.13018645886842
530 => 0.12827701458393
531 => 0.13223939817876
601 => 0.13785119007815
602 => 0.14185048717363
603 => 0.14215750354516
604 => 0.13958622344485
605 => 0.14370671621528
606 => 0.14373672950667
607 => 0.13908879682892
608 => 0.1362419639436
609 => 0.13559515752226
610 => 0.13721100677662
611 => 0.13917294607364
612 => 0.14226637752174
613 => 0.14413567335841
614 => 0.14900980550255
615 => 0.15032860590844
616 => 0.1517775677192
617 => 0.15371382754166
618 => 0.15603880390535
619 => 0.15095188798258
620 => 0.15115400063539
621 => 0.14641713496124
622 => 0.14135511465317
623 => 0.14519655707726
624 => 0.15021873204108
625 => 0.14906663955537
626 => 0.14893700561561
627 => 0.14915501394483
628 => 0.14828637383442
629 => 0.14435754680837
630 => 0.14238451447165
701 => 0.14493022956025
702 => 0.14628316383311
703 => 0.14838144690203
704 => 0.1481227892244
705 => 0.15352774107081
706 => 0.15562794192106
707 => 0.1550906206709
708 => 0.15518950071229
709 => 0.158991814033
710 => 0.16322076845101
711 => 0.16718174232316
712 => 0.1712110150737
713 => 0.16635356950773
714 => 0.16388725821493
715 => 0.16643186192396
716 => 0.16508165937806
717 => 0.17284032370292
718 => 0.17337751678704
719 => 0.18113562007216
720 => 0.1884989839075
721 => 0.18387418701089
722 => 0.18823516217896
723 => 0.19295191237876
724 => 0.20205128877931
725 => 0.19898693892752
726 => 0.19663969496554
727 => 0.19442156076327
728 => 0.19903714591931
729 => 0.20497502248678
730 => 0.20625398422714
731 => 0.20832639084751
801 => 0.20614750868802
802 => 0.20877173225313
803 => 0.21803639458024
804 => 0.21553300103802
805 => 0.21197777976747
806 => 0.21929134088709
807 => 0.22193809022554
808 => 0.24051436319612
809 => 0.26396767516905
810 => 0.25425785000951
811 => 0.24823064819888
812 => 0.24964718359152
813 => 0.25821153917932
814 => 0.26096213837506
815 => 0.25348506157263
816 => 0.25612609150398
817 => 0.27067842608604
818 => 0.27848528669452
819 => 0.26788252138694
820 => 0.23862991241508
821 => 0.21165767099057
822 => 0.21881192399221
823 => 0.21800085372414
824 => 0.23363552179186
825 => 0.21547329592996
826 => 0.21577910123385
827 => 0.2317370776798
828 => 0.227479763153
829 => 0.22058345885523
830 => 0.21170802164385
831 => 0.19530095508006
901 => 0.1807687586796
902 => 0.20926974238585
903 => 0.20804072814276
904 => 0.20626093338906
905 => 0.21022167401951
906 => 0.22945390624514
907 => 0.22901054104368
908 => 0.2261900778389
909 => 0.2283293743213
910 => 0.22020842983851
911 => 0.2223013821422
912 => 0.21165339844973
913 => 0.2164667317778
914 => 0.22056866248349
915 => 0.22139218580278
916 => 0.22324762589128
917 => 0.20739309348349
918 => 0.21451131306997
919 => 0.21869260019005
920 => 0.199801392865
921 => 0.2183191817611
922 => 0.20711710134742
923 => 0.20331494700542
924 => 0.20843404693118
925 => 0.20643912871162
926 => 0.20472401517198
927 => 0.20376695234746
928 => 0.2075258543585
929 => 0.20735049708683
930 => 0.20120020382533
1001 => 0.19317739698372
1002 => 0.19587011429942
1003 => 0.19489182485427
1004 => 0.19134637770318
1005 => 0.19373558100409
1006 => 0.18321473881501
1007 => 0.16511417665448
1008 => 0.17707196245294
1009 => 0.17661160070727
1010 => 0.17637946543935
1011 => 0.18536541097797
1012 => 0.18450161965547
1013 => 0.18293382994686
1014 => 0.19131758401571
1015 => 0.18825740100318
1016 => 0.19768816397801
1017 => 0.20389987441675
1018 => 0.2023243837217
1019 => 0.20816652741313
1020 => 0.19593214906785
1021 => 0.19999591879609
1022 => 0.20083345610494
1023 => 0.19121412979188
1024 => 0.18464294659852
1025 => 0.18420472359649
1026 => 0.17281119750403
1027 => 0.1788975271773
1028 => 0.18425324542033
1029 => 0.18168827200244
1030 => 0.18087627804474
1031 => 0.18502457907464
1101 => 0.18534693759246
1102 => 0.17799712922417
1103 => 0.1795253871221
1104 => 0.1858984766082
1105 => 0.17936480161871
1106 => 0.16667093838388
1107 => 0.16352268479526
1108 => 0.16310264973271
1109 => 0.15456433630921
1110 => 0.16373306615401
1111 => 0.15973066987007
1112 => 0.17237419177496
1113 => 0.16515227987146
1114 => 0.16484095768355
1115 => 0.16437034853549
1116 => 0.1570210694586
1117 => 0.15863009450539
1118 => 0.16397873882235
1119 => 0.16588719537143
1120 => 0.16568812771783
1121 => 0.16395252754725
1122 => 0.16474707641763
1123 => 0.16218755766695
1124 => 0.16128373832431
1125 => 0.15843103586384
1126 => 0.15423835132612
1127 => 0.15482136982632
1128 => 0.1465145646815
1129 => 0.14198857636309
1130 => 0.14073584244812
1201 => 0.13906063430167
1202 => 0.14092506166582
1203 => 0.14649103254622
1204 => 0.13977729077787
1205 => 0.12826705143024
1206 => 0.12895883642753
1207 => 0.13051307192362
1208 => 0.12761676435895
1209 => 0.12487565231766
1210 => 0.12725882684411
1211 => 0.12238178669572
1212 => 0.13110243892522
1213 => 0.13086656972176
1214 => 0.1341170895914
1215 => 0.13614970637327
1216 => 0.13146518275856
1217 => 0.13028703773775
1218 => 0.13095816268531
1219 => 0.11986596225154
1220 => 0.13321062017098
1221 => 0.13332602532682
1222 => 0.13233785631805
1223 => 0.13944347469006
1224 => 0.15443854575296
1225 => 0.14879679684376
1226 => 0.14661214114336
1227 => 0.14245910905991
1228 => 0.14799277772846
1229 => 0.14756787831339
1230 => 0.14564632202015
1231 => 0.14448415877837
]
'min_raw' => 0.10853379362205
'max_raw' => 0.27848528669452
'avg_raw' => 0.19350954015829
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$0.108533'
'max' => '$0.278485'
'avg' => '$0.1935095'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 0.066741313043611
'max_diff' => 0.16187130599349
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.0034067517630081
]
1 => [
'year' => 2028
'avg' => 0.0058469750124252
]
2 => [
'year' => 2029
'avg' => 0.01597288191923
]
3 => [
'year' => 2030
'avg' => 0.012323054613157
]
4 => [
'year' => 2031
'avg' => 0.012102766809465
]
5 => [
'year' => 2032
'avg' => 0.021219959097885
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.0034067517630081
'min' => '$0.0034067'
'max_raw' => 0.021219959097885
'max' => '$0.021219'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.021219959097885
]
1 => [
'year' => 2033
'avg' => 0.054579916822421
]
2 => [
'year' => 2034
'avg' => 0.034595374270115
]
3 => [
'year' => 2035
'avg' => 0.040805323286307
]
4 => [
'year' => 2036
'avg' => 0.079203230639733
]
5 => [
'year' => 2037
'avg' => 0.19350954015829
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.021219959097885
'min' => '$0.021219'
'max_raw' => 0.19350954015829
'max' => '$0.1935095'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 0.19350954015829
]
]
]
]
'prediction_2025_max_price' => '$0.005824'
'last_price' => 0.005648
'sma_50day_nextmonth' => '$0.005325'
'sma_200day_nextmonth' => '$0.0090097'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'increase'
'sma_200day_direction_label' => 'aumentar'
'sma_200day_date_nextmonth' => '4 de fev. de 2026'
'sma_50day_date_nextmonth' => '4 de fev. de 2026'
'daily_sma3' => '$0.005584'
'daily_sma3_action' => 'BUY'
'daily_sma5' => '$0.005844'
'daily_sma5_action' => 'SELL'
'daily_sma10' => '$0.005684'
'daily_sma10_action' => 'SELL'
'daily_sma21' => '$0.00545'
'daily_sma21_action' => 'BUY'
'daily_sma50' => '$0.005197'
'daily_sma50_action' => 'BUY'
'daily_sma100' => '$0.006153'
'daily_sma100_action' => 'SELL'
'daily_sma200' => '$0.010968'
'daily_sma200_action' => 'SELL'
'daily_ema3' => '$0.00564'
'daily_ema3_action' => 'BUY'
'daily_ema5' => '$0.005661'
'daily_ema5_action' => 'SELL'
'daily_ema10' => '$0.005615'
'daily_ema10_action' => 'BUY'
'daily_ema21' => '$0.00547'
'daily_ema21_action' => 'BUY'
'daily_ema50' => '$0.005552'
'daily_ema50_action' => 'BUY'
'daily_ema100' => '$0.006846'
'daily_ema100_action' => 'SELL'
'daily_ema200' => '$0.009691'
'daily_ema200_action' => 'SELL'
'weekly_sma21' => '$0.00732'
'weekly_sma21_action' => 'SELL'
'weekly_sma50' => '$0.012789'
'weekly_sma50_action' => 'SELL'
'weekly_sma100' => '$0.019943'
'weekly_sma100_action' => 'SELL'
'weekly_sma200' => '$0.035442'
'weekly_sma200_action' => 'SELL'
'weekly_ema3' => '$0.005468'
'weekly_ema3_action' => 'BUY'
'weekly_ema5' => '$0.005368'
'weekly_ema5_action' => 'BUY'
'weekly_ema10' => '$0.005689'
'weekly_ema10_action' => 'SELL'
'weekly_ema21' => '$0.007592'
'weekly_ema21_action' => 'SELL'
'weekly_ema50' => '$0.012312'
'weekly_ema50_action' => 'SELL'
'weekly_ema100' => '$0.020085'
'weekly_ema100_action' => 'SELL'
'weekly_ema200' => '$0.0374078'
'weekly_ema200_action' => 'SELL'
'rsi_14' => '51.58'
'rsi_14_action' => 'NEUTRAL'
'stoch_rsi_14' => 26.5
'stoch_rsi_14_action' => 'NEUTRAL'
'momentum_10' => 0
'momentum_10_action' => 'SELL'
'vwma_10' => '0.005512'
'vwma_10_action' => 'BUY'
'hma_9' => '0.005574'
'hma_9_action' => 'SELL'
'stochastic_fast_14' => 38.51
'stochastic_fast_14_action' => 'NEUTRAL'
'cci_20' => 19.7
'cci_20_action' => 'NEUTRAL'
'adx_14' => 6.84
'adx_14_action' => 'NEUTRAL'
'ao_5_34' => '0.000547'
'ao_5_34_action' => 'BUY'
'macd_12_26' => 0
'macd_12_26_action' => 'NEUTRAL'
'williams_percent_r_14' => -61.49
'williams_percent_r_14_action' => 'NEUTRAL'
'ultimate_oscillator' => 41.86
'ultimate_oscillator_action' => 'NEUTRAL'
'ichimoku_cloud' => '-0.0005080'
'ichimoku_cloud_action' => 'NEUTRAL'
'sell_signals' => 20
'buy_signals' => 13
'sell_pct' => 60.61
'buy_pct' => 39.39
'overall_action' => 'bearish'
'overall_action_label' => 'Baixista'
'overall_action_dir' => -1
'last_updated' => 1767715227
'last_updated_date' => '6 de janeiro de 2026'
]
Previsão de preço de LATOKEN para 2026
A previsão de preço para LATOKEN em 2026 sugere que o preço médio poderia variar entre $0.001951 na extremidade inferior e $0.005824 na extremidade superior. No mercado de criptomoedas, comparado ao preço médio de hoje, LATOKEN poderia potencialmente ganhar 3.13% até 2026 se LA atingir a meta de preço prevista.
Previsão de preço de LATOKEN 2027-2032
A previsão de preço de LA para 2027-2032 está atualmente dentro de uma faixa de preço entre $0.0034067 na extremidade inferior e $0.021219 na extremidade superior. Considerando a volatilidade de preços no mercado, se LATOKEN atingir a meta de preço superior, poderia ganhar 275.71% até 2032 em comparação com o preço de hoje.
| Previsão de Preço de LATOKEN | Potencial Mínimo ($) | Preço Médio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2027 | $0.001878 | $0.0034067 | $0.004934 |
| 2028 | $0.00339 | $0.005846 | $0.0083037 |
| 2029 | $0.007447 | $0.015972 | $0.024498 |
| 2030 | $0.006333 | $0.012323 | $0.018312 |
| 2031 | $0.007488 | $0.0121027 | $0.016717 |
| 2032 | $0.01143 | $0.021219 | $0.0310095 |
Previsão de preço de LATOKEN 2032-2037
A previsão de preço de LATOKEN para 2032-2037 é atualmente estimada entre $0.021219 na extremidade inferior e $0.1935095 na extremidade superior. Comparado ao preço atual, LATOKEN poderia potencialmente ganhar 3326.16% até 2037 se atingir a meta de preço superior. Por favor, note que esta informação é apenas para fins gerais e não deve ser considerada como aconselhamento de investimento a longo prazo.
| Previsão de Preço de LATOKEN | Potencial Mínimo ($) | Preço Médio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2032 | $0.01143 | $0.021219 | $0.0310095 |
| 2033 | $0.026561 | $0.054579 | $0.082598 |
| 2034 | $0.021354 | $0.034595 | $0.047836 |
| 2035 | $0.025247 | $0.0408053 | $0.056363 |
| 2036 | $0.041792 | $0.0792032 | $0.116613 |
| 2037 | $0.108533 | $0.1935095 | $0.278485 |
LATOKEN Histograma de preços potenciais
Previsão de preço de LATOKEN baseada na análise técnica
Em 6 de janeiro de 2026, o sentimento geral de previsão de preço para LATOKEN é Baixista, com 13 indicadores técnicos mostrando sinais de alta e 20 indicando sinais de baixa. A previsão de preço de LA foi atualizada pela última vez em 6 de janeiro de 2026.
Médias Móveis Simples de 50 e 200 dias e Índice de Força Relativa de 14 dias - RSI (14) de LATOKEN
De acordo com nossos indicadores técnicos, o SMA de 200 dias de LATOKEN está projetado para aumentar no próximo mês, alcançando $0.0090097 até 4 de fev. de 2026. O SMA de 50 dias de curto prazo para LATOKEN é esperado para alcançar $0.005325 até 4 de fev. de 2026.
O oscilador de momentum Índice de Força Relativa (RSI) é uma ferramenta comumente usada para identificar se uma criptomoeda está sobrevendida (abaixo de 30) ou sobrecomprada (acima de 70). No momento, o RSI está em 51.58, sugerindo que o mercado de LA está em um estado NEUTRAL.
Médias Móveis e Osciladores Populares de LA para Sábado, 19 de Outubro de 2024
Médias móveis (MA) são indicadores amplamente utilizados nos mercados financeiros, projetados para suavizar movimentos de preços ao longo de um período definido. Como indicadores atrasados, eles se baseiam em dados históricos de preços. A tabela abaixo destaca dois tipos: a média móvel simples (SMA) e a média móvel exponencial (EMA).
Média Móvel Simples Diária (SMA)
| Período | Valor | Ação |
|---|---|---|
| SMA 3 | $0.005584 | BUY |
| SMA 5 | $0.005844 | SELL |
| SMA 10 | $0.005684 | SELL |
| SMA 21 | $0.00545 | BUY |
| SMA 50 | $0.005197 | BUY |
| SMA 100 | $0.006153 | SELL |
| SMA 200 | $0.010968 | SELL |
Média Móvel Exponencial Diária (EMA)
| Período | Valor | Ação |
|---|---|---|
| EMA 3 | $0.00564 | BUY |
| EMA 5 | $0.005661 | SELL |
| EMA 10 | $0.005615 | BUY |
| EMA 21 | $0.00547 | BUY |
| EMA 50 | $0.005552 | BUY |
| EMA 100 | $0.006846 | SELL |
| EMA 200 | $0.009691 | SELL |
Média Móvel Simples Semanal (SMA)
| Período | Valor | Ação |
|---|---|---|
| SMA 21 | $0.00732 | SELL |
| SMA 50 | $0.012789 | SELL |
| SMA 100 | $0.019943 | SELL |
| SMA 200 | $0.035442 | SELL |
Média Móvel Exponencial Semanal (EMA)
| Período | Valor | Ação |
|---|---|---|
| EMA 21 | $0.007592 | SELL |
| EMA 50 | $0.012312 | SELL |
| EMA 100 | $0.020085 | SELL |
| EMA 200 | $0.0374078 | SELL |
Osciladores de LATOKEN
Um oscilador é uma ferramenta de análise técnica que define limites altos e baixos entre dois extremos, criando um indicador de tendência que flutua dentro desses limites. Os traders usam esse indicador para identificar condições de sobrecompra ou sobrevenda de curto prazo.
| Período | Valor | Ação |
|---|---|---|
| RSI (14) | 51.58 | NEUTRAL |
| Stoch RSI (14) | 26.5 | NEUTRAL |
| Estocástico Rápido (14) | 38.51 | NEUTRAL |
| Índice de Canal de Commodities (20) | 19.7 | NEUTRAL |
| Índice Direcional Médio (14) | 6.84 | NEUTRAL |
| Oscilador Impressionante (5, 34) | 0.000547 | BUY |
| Momentum (10) | 0 | SELL |
| MACD (12, 26) | 0 | NEUTRAL |
| Williams Percent Range (14) | -61.49 | NEUTRAL |
| Oscilador Ultimate (7, 14, 28) | 41.86 | NEUTRAL |
| VWMA (10) | 0.005512 | BUY |
| Média Móvel de Hull (9) | 0.005574 | SELL |
| Nuvem Ichimoku B/L (9, 26, 52, 26) | -0.0005080 | NEUTRAL |
Previsão do preço de LATOKEN com base nos fluxos financeiros mundiais
Definições dos fluxos financeiros mundiais, usadas na previsão do preço do LATOKEN
M0: o total de todas as moedas físicas, mais as contas no Banco Central que podem ser trocadas por moedas físicas.
M1: o valor de M0, mais o valor em contas de demanda, incluindo contas 'correntes'.
M2: o valor de M1, mais a maioria das contas de poupança, do mercado de moedas e de certificados de depósito (CD) de menos de US$ 100.000.
Previsões de preço de LATOKEN por empresas de Internet ou nichos tecnológicos
| Comparação | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Facebook stock | $0.007936 | $0.011151 | $0.01567 | $0.022019 | $0.030941 | $0.043477 |
| Amazon.com stock | $0.011784 | $0.024589 | $0.0513082 | $0.107057 | $0.223382 | $0.46610016 |
| Apple stock | $0.008011 | $0.011363 | $0.016118 | $0.022862 | $0.032428 | $0.045997 |
| Netflix stock | $0.008911 | $0.014061 | $0.022186 | $0.0350066 | $0.055234 | $0.087152 |
| Google stock | $0.007314 | $0.009471 | $0.012265 | $0.015884 | $0.02057 | $0.026638 |
| Tesla stock | $0.0128035 | $0.029024 | $0.065796 | $0.149156 | $0.338127 | $0.7665083 |
| Kodak stock | $0.004235 | $0.003176 | $0.002381 | $0.001786 | $0.001339 | $0.0010043 |
| Nokia stock | $0.003741 | $0.002478 | $0.001641 | $0.001087 | $0.00072 | $0.000477 |
Este cálculo mostra quanto a criptomoeda pode custar, se assumirmos que sua capitalização se comportará da mesma forma que a de algumas empresas de Internet ou nichos tecnológicos. Se você extrapolar os dados, poderá obter uma imagem em potencial do preço futuro para 2024, 2025, 2026, 2027, 2028, 2029 e 2030.
Visão geral da previsão para LATOKEN
Você pode fazer perguntas como: 'Devo investir em LATOKEN agora?', 'Devo comprar LA hoje?', 'LATOKEN será um bom ou mau investimento no curto ou no longo prazo?'.
Atualizamos a previsão para LATOKEN/LA regularmente com novos valores. Veja nossas previsões semelhantes. Fazemos previsões de preços futuros para uma enorme quantidade de moedas digitais, como LATOKEN, com métodos de análise técnica.
Se você estiver tentando encontrar criptomoedas com bom retorno, você deve explorar o máximo de fontes de informações disponíveis sobre LATOKEN para poder tomar sozinho uma decisão de tão grande responsabilidade sobre o seu investimento.
O preço de LATOKEN é de $0.005648 USD hoje, mas o preço pode tanto subir quanto descer e seu investimento pode ser perdido, porque criptomoedas são ativos de alto risco
Previsão de curto prazo para LATOKEN
com base no histórico de preços de 4 horas
Previsão de longo prazo para LATOKEN
com base no histórico de preços de 1 mês
Previsão do preço de LATOKEN com base no padrão de crescimento do Bitcoin
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| Se LATOKEN tiver 1% da média anterior do crescimento anual do Bitcoin | $0.005794 | $0.005945 | $0.006099 | $0.006258 |
| Se LATOKEN tiver 2% da média anterior do crescimento anual do Bitcoin | $0.005941 | $0.00625 | $0.006575 | $0.006917 |
| Se LATOKEN tiver 5% da média anterior do crescimento anual do Bitcoin | $0.006382 | $0.007211 | $0.008148 | $0.0092078 |
| Se LATOKEN tiver 10% da média anterior do crescimento anual do Bitcoin | $0.007116 | $0.008965 | $0.011296 | $0.014232 |
| Se LATOKEN tiver 20% da média anterior do crescimento anual do Bitcoin | $0.008584 | $0.013046 | $0.019829 | $0.030137 |
| Se LATOKEN tiver 50% da média anterior do crescimento anual do Bitcoin | $0.012988 | $0.029869 | $0.068688 | $0.15796 |
| Se LATOKEN tiver 100% da média anterior do crescimento anual do Bitcoin | $0.020328 | $0.07317 | $0.263364 | $0.947931 |
Perguntas Frequentes sobre LATOKEN
LA é um bom investimento?
A decisão de adquirir LATOKEN depende inteiramente da sua tolerância individual ao risco. Como você pode perceber, o valor de LATOKEN experimentou uma escalada de 1.4361% nas últimas 24 horas, e LATOKEN registrou um declínio de durante os últimos 30 dias. Consequentemente, a decisão de investir ou não em LATOKEN dependerá de quão alinhado esse investimento está com suas aspirações de negociação.
LATOKEN pode subir?
Parece que o valor médio de LATOKEN pode potencialmente subir para $0.005824 até o final deste ano. Observando as perspectivas de LATOKEN em um horizonte de cinco anos mais longo, a moeda digital poderia potencialmente crescer até $0.018312. No entanto, dada a imprevisibilidade do mercado, é vital conduzir uma pesquisa aprofundada antes de investir quaisquer fundos em um projeto, rede ou ativo específico.
Qual será o preço de LATOKEN na próxima semana?
Com base na nossa nova previsão experimental de LATOKEN, o preço de LATOKEN aumentará 0.86% na próxima semana e atingirá $0.005696 até 13 de janeiro de 2026.
Qual será o preço de LATOKEN no próximo mês?
Com base na nossa nova previsão experimental de LATOKEN, o preço de LATOKEN diminuirá -11.62% no próximo mês e atingirá $0.004991 até 5 de fevereiro de 2026.
Até onde o preço de LATOKEN pode subir este ano em 2026?
De acordo com nossa previsão mais recente sobre o valor de LATOKEN em 2026, espera-se que LA fluctue dentro do intervalo de $0.001951 e $0.005824. No entanto, é crucial lembrar que o mercado de criptomoedas é excepcionalmente instável, e essa previsão de preço de LATOKEN não considera flutuações repentinas e extremas de preço.
Onde estará LATOKEN em 5 anos?
O futuro de LATOKEN parece seguir uma tendência de alta, com um preço máximo de $0.018312 projetada após um período de cinco anos. Com base na previsão de LATOKEN para 2030, o valor de LATOKEN pode potencialmente atingir seu pico mais alto de aproximadamente $0.018312, enquanto seu pico mais baixo está previsto para cerca de $0.006333.
Quanto será LATOKEN em 2026?
Com base na nossa nova simulação experimental de previsão de preços de LATOKEN, espera-se que o valor de LA em 2026 aumente 3.13% para $0.005824 se o melhor cenário ocorrer. O preço ficará entre $0.005824 e $0.001951 durante 2026.
Quanto será LATOKEN em 2027?
De acordo com nossa última simulação experimental para previsão de preços de LATOKEN, o valor de LA pode diminuir -12.62% para $0.004934 em 2027, assumindo as condições mais favoráveis. O preço está projetado para flutuar entre $0.004934 e $0.001878 ao longo do ano.
Quanto será LATOKEN em 2028?
Nosso novo modelo experimental de previsão de preços de LATOKEN sugere que o valor de LA em 2028 pode aumentar 47.02%, alcançando $0.0083037 no melhor cenário. O preço é esperado para variar entre $0.0083037 e $0.00339 durante o ano.
Quanto será LATOKEN em 2029?
Com base no nosso modelo de previsão experimental, o valor de LATOKEN pode experimentar um 333.75% crescimento em 2029, potencialmente alcançando $0.024498 sob condições ótimas. A faixa de preço prevista para 2029 está entre $0.024498 e $0.007447.
Quanto será LATOKEN em 2030?
Usando nossa nova simulação experimental para previsões de preços de LATOKEN, espera-se que o valor de LA em 2030 aumente 224.23%, alcançando $0.018312 no melhor cenário. O preço está previsto para variar entre $0.018312 e $0.006333 ao longo de 2030.
Quanto será LATOKEN em 2031?
Nossa simulação experimental indica que o preço de LATOKEN poderia aumentar 195.98% em 2031, potencialmente atingindo $0.016717 sob condições ideais. O preço provavelmente oscilará entre $0.016717 e $0.007488 durante o ano.
Quanto será LATOKEN em 2032?
Com base nos achados da nossa mais recente previsão experimental de preços de LATOKEN, LA poderia ver um 449.04% aumento em valor, atingindo $0.0310095 se o cenário mais positivo se desenrolar em 2032. O preço é esperado para permanecer dentro de uma faixa de $0.0310095 e $0.01143 ao longo do ano.
Quanto será LATOKEN em 2033?
De acordo com nossa previsão experimental de preços de LATOKEN, espera-se que o valor de LA seja aumentar 1362.43% em 2033, com o preço potencial mais alto sendo $0.082598. Ao longo do ano, o preço de LA poderia variar entre $0.082598 e $0.026561.
Quanto será LATOKEN em 2034?
Os resultados da nossa nova simulação de previsão de preços de LATOKEN sugerem que LA pode aumentar 746.96% em 2034, atingindo potencialmente $0.047836 nas melhores circunstâncias. A faixa de preço prevista para o ano é entre $0.047836 e $0.021354.
Quanto será LATOKEN em 2035?
Com base em nossa previsão experimental para o preço de LATOKEN, LA poderia aumentar 897.93%, com o valor potencialmente atingindo $0.056363 em 2035. A faixa de preço esperada para o ano está entre $0.056363 e $0.025247.
Quanto será LATOKEN em 2036?
Nossa recente simulação de previsão de preços de LATOKEN sugere que o valor de LA pode aumentar 1964.7% em 2036, possivelmente atingindo $0.116613 se as condições forem ideais. A faixa de preço esperada para 2036 está entre $0.116613 e $0.041792.
Quanto será LATOKEN em 2037?
De acordo com a simulação experimental, o valor de LATOKEN poderia aumentar 4830.69% em 2037, com um pico de $0.278485 sob condições favoráveis. O preço é esperado para cair entre $0.278485 e $0.108533 ao longo do ano.
Previsões relacionadas
Previsão de Preço do K21 Kanon
Previsão de Preço do Elmo
Previsão de Preço do KEK
Previsão de Preço do Generaitiv
Previsão de Preço do Zaibot
Previsão de Preço do Hawksight
Previsão de Preço do Rubidium
Previsão de Preço do VFOX
Previsão de Preço do Web3Shot
Previsão de Preço do Tomb Shares
Previsão de Preço do Long Mao
Previsão de Preço do Gyoza
Previsão de Preço do Perpy Finance
Previsão de Preço do Cope
Previsão de Preço do WOOF Token
Previsão de Preço do Happycoin
Previsão de Preço do Memetic
Previsão de Preço do Belt
Previsão de Preço do Mogul Productions
Previsão de Preço do Ideaology
Previsão de Preço do RadioShack
Previsão de Preço do Hara Token
Previsão de Preço do 42-coin
Previsão de Preço do Nuritopia
Previsão de Preço do MAPS
Como ler e prever os movimentos de preço de LATOKEN?
Traders de LATOKEN utilizam indicadores e padrões de gráfico para prever a direção do mercado. Eles também identificam níveis-chave de suporte e resistência para avaliar quando uma tendência de baixa pode desacelerar ou uma tendência de alta pode estagnar.
Indicadores de Previsão de Preço de LATOKEN
Médias móveis são ferramentas populares para a previsão de preço de LATOKEN. Uma média móvel simples (SMA) calcula o preço médio de fechamento de LA em um período específico, como uma SMA de 12 dias. Uma média móvel exponencial (EMA) dá mais peso aos preços recentes, reagindo mais rapidamente às mudanças de preço.
Médias móveis comumente usadas no mercado de criptomoedas incluem as de 50 dias, 100 dias e 200 dias, que ajudam a identificar níveis-chave de resistência e suporte. Um movimento de preço de LA acima dessas médias é visto como altista, enquanto uma queda abaixo indica fraqueza.
Traders também usam RSI e níveis de retração de Fibonacci para avaliar a direção futura de LA.
Como ler gráficos de LATOKEN e prever movimentos de preço?
A maioria dos traders prefere gráficos de velas em vez de gráficos de linha simples porque eles fornecem informações mais detalhadas. Velas podem representar a ação de preço de LATOKEN em diferentes períodos de tempo, como 5 minutos para tendências de curto prazo e semanal para tendências de longo prazo. Opções populares incluem gráficos de 1 hora, 4 horas e 1 dia.
Por exemplo, um gráfico de velas de 1 hora mostra os preços de abertura, fechamento, máximo e mínimo de LA dentro de cada hora. A cor da vela é crucial: verde indica que o preço fechou mais alto do que abriu, enquanto vermelho significa o oposto. Alguns gráficos usam velas vazias e preenchidas para transmitir a mesma informação.
O que afeta o preço de LATOKEN?
A ação de preço de LATOKEN é impulsionada pela oferta e demanda, influenciada por fatores como reduções pela metade das recompensas de bloco, hard forks e atualizações de protocolo. Eventos do mundo real, como regulamentações, adoção por empresas e governos e hacks de exchanges de criptomoedas, também impactam o preço de LA. A capitalização de mercado de LATOKEN pode mudar rapidamente.
Traders frequentemente monitoram a atividade de "baleias" de LA, grandes detentores de LATOKEN, pois suas ações podem influenciar significativamente os movimentos de preço no relativamente pequeno mercado de LATOKEN.
Padrões de previsão de preço altistas e baixistas
Traders frequentemente identificam padrões de velas para ganhar vantagem em previsões de preço de criptomoedas. Certas formações indicam tendências altistas, enquanto outras sugerem movimentos baixistas.
Padrões de velas altistas comumente seguidos:
- Martelo
- Engolfo de Alta
- Linha de Perfuração
- Estrela da Manhã
- Três Soldados Brancos
Padrões de velas baixistas comuns:
- Harami de Baixa
- Nuvem Negra
- Estrela da Noite
- Estrela Cadente
- Homem Enforcado


