Previsão de Preço Kryptokrona - Projeção XKR
Previsão de Preço Kryptokrona até $0.000545 até 2026
| Ano | Preço Mínimo | Preço Máximo |
|---|---|---|
| 2026 | $0.000182 | $0.000545 |
| 2027 | $0.000176 | $0.000462 |
| 2028 | $0.000317 | $0.000778 |
| 2029 | $0.000697 | $0.002295 |
| 2030 | $0.000593 | $0.001716 |
| 2031 | $0.0007017 | $0.001566 |
| 2032 | $0.001071 | $0.002906 |
| 2033 | $0.002489 | $0.00774 |
| 2034 | $0.0020012 | $0.004482 |
| 2035 | $0.002366 | $0.005282 |
Calculadora de lucro do investimento
Se você abrir um short de $10,000.00 em Kryptokrona hoje e fechar em Apr 06, 2026, nossa previsão mostra que pode lucrar cerca de $3,973.17, com um retorno de 39.73% nos próximos 90 dias.
Previsão de preço de longo prazo de Kryptokrona para os anos 2027, 2028, 2029, 2030, 2031, 2032 e 2037
[
'name' => 'Kryptokrona'
'name_with_ticker' => 'Kryptokrona <small>XKR</small>'
'name_lang' => 'Kryptokrona'
'name_lang_with_ticker' => 'Kryptokrona <small>XKR</small>'
'name_with_lang' => 'Kryptokrona'
'name_with_lang_with_ticker' => 'Kryptokrona <small>XKR</small>'
'image' => '/uploads/coins/kryptokrona.png?1717232444'
'price_for_sd' => 0.0005293
'ticker' => 'XKR'
'marketcap' => '$322.32K'
'low24h' => '$0.0005109'
'high24h' => '$0.0009593'
'volume24h' => '$21.56K'
'current_supply' => '608.96M'
'max_supply' => '1B'
'algo' => 'Cryptonight'
'proof' => null
'ico_price_and_roi' => '—'
'price' => '$0.0005293'
'change_24h_pct' => '-35.9178%'
'ath_price' => '$0.2927'
'ath_days' => 1870
'ath_exchange' => null
'ath_pair' => null
'ath_date' => '23 de nov. de 2020'
'ath_pct' => '-99.82%'
'fdv' => '$529.3K'
'new_prediction' => true
'change_24h_pct_is_increased' => false
'change_30d_pct' => null
'change_30d_pct_is_increased' => false
'max_price' => '$0.026098'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.000533'
'next_week_prediction_price_date' => '13 de janeiro de 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.000467'
'next_month_prediction_price_date' => '5 de fevereiro de 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.000182'
'current_year_max_price_prediction' => '$0.000545'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.000593'
'grand_prediction_max_price' => '$0.001716'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.0005393299565882
107 => 0.00054134361886933
108 => 0.00054588050280885
109 => 0.00050711332628005
110 => 0.00052451865039697
111 => 0.00053474264765735
112 => 0.00048855025608278
113 => 0.00053382957259578
114 => 0.00050643847598586
115 => 0.00049714152639599
116 => 0.00050965864423878
117 => 0.00050478071124215
118 => 0.00050058695089348
119 => 0.00049824676056098
120 => 0.00050743795044084
121 => 0.00050700917044709
122 => 0.00049197059987056
123 => 0.00047235339760403
124 => 0.00047893757459739
125 => 0.00047654548136871
126 => 0.00046787622692182
127 => 0.00047371825768925
128 => 0.00044799291077359
129 => 0.00040373378849238
130 => 0.00043297272036493
131 => 0.00043184705329367
201 => 0.00043127944091141
202 => 0.00045325169010891
203 => 0.0004511395653346
204 => 0.00044730603818726
205 => 0.00046780582118947
206 => 0.00046032312463267
207 => 0.00048338303227569
208 => 0.00049857177887069
209 => 0.00049471942142972
210 => 0.0005090045110159
211 => 0.00047908926073715
212 => 0.00048902590688823
213 => 0.00049107383588837
214 => 0.00046755285704932
215 => 0.00045148513506877
216 => 0.00045041360119811
217 => 0.00042255438555231
218 => 0.00043743655367856
219 => 0.0004505322457637
220 => 0.00044426042552168
221 => 0.00044227495459836
222 => 0.00045241829494952
223 => 0.00045320651936664
224 => 0.00043523491912401
225 => 0.00043897178390102
226 => 0.00045455513122321
227 => 0.00043857912353125
228 => 0.00040754035025181
301 => 0.00039984230533389
302 => 0.00039881524423873
303 => 0.0003779375358817
304 => 0.00040035672550494
305 => 0.00039057014843747
306 => 0.00042148582813242
307 => 0.00040382695769478
308 => 0.00040306571908455
309 => 0.00040191499527576
310 => 0.0003839446892456
311 => 0.00038787904419368
312 => 0.00040095743926027
313 => 0.0004056239579587
314 => 0.00040513720182679
315 => 0.00040089334798955
316 => 0.00040283616254419
317 => 0.00039657767994223
318 => 0.00039436767947643
319 => 0.00038739231009784
320 => 0.00037714044410628
321 => 0.00037856602895075
322 => 0.00035825439987482
323 => 0.0003471875463345
324 => 0.00034412438713333
325 => 0.00034002820263128
326 => 0.00034458706207237
327 => 0.00035819685958167
328 => 0.00034178055630584
329 => 0.00031363595580921
330 => 0.00031532749425513
331 => 0.00031912787892082
401 => 0.00031204588723836
402 => 0.00030534337645742
403 => 0.00031117066578956
404 => 0.00029924542753543
405 => 0.00032056898699033
406 => 0.00031999224446566
407 => 0.00032794034879038
408 => 0.00033291046153615
409 => 0.00032145596075026
410 => 0.00031857518477888
411 => 0.00032021620569615
412 => 0.00029309378535295
413 => 0.00032572386840892
414 => 0.00032600605472218
415 => 0.00032358980418775
416 => 0.00034096431607426
417 => 0.00037762995540096
418 => 0.00036383486701433
419 => 0.00035849299183227
420 => 0.0003483380832063
421 => 0.0003618688960116
422 => 0.00036082994070171
423 => 0.00035613139077831
424 => 0.00035328969312427
425 => 0.00035852560818305
426 => 0.00035264090530518
427 => 0.00035158385096749
428 => 0.00034517925176757
429 => 0.0003428931012439
430 => 0.00034120052641045
501 => 0.00033933716782778
502 => 0.00034344727254111
503 => 0.00033413323453141
504 => 0.0003229014177581
505 => 0.00032196761372335
506 => 0.0003245459287642
507 => 0.0003234052162916
508 => 0.00032196215243089
509 => 0.00031920695052573
510 => 0.00031838954097604
511 => 0.00032104572546179
512 => 0.00031804704804256
513 => 0.00032247175992104
514 => 0.00032126848312057
515 => 0.00031454707672704
516 => 0.00030616971577733
517 => 0.00030609513969277
518 => 0.00030429025101778
519 => 0.00030199145392335
520 => 0.00030135198116103
521 => 0.00031067990773564
522 => 0.00032998843658371
523 => 0.0003261977103569
524 => 0.00032893689854502
525 => 0.00034241099335639
526 => 0.00034669400291676
527 => 0.00034365402417945
528 => 0.0003394927137861
529 => 0.0003396757903244
530 => 0.0003538962476528
531 => 0.0003547831601332
601 => 0.00035702410184237
602 => 0.00035990434522871
603 => 0.00034414454208267
604 => 0.00033893350501348
605 => 0.00033646422655277
606 => 0.00032885980462481
607 => 0.00033706052172025
608 => 0.00033228231505845
609 => 0.00033292705838391
610 => 0.00033250716844739
611 => 0.00033273645674556
612 => 0.00032056302662089
613 => 0.00032499838474167
614 => 0.00031762374161402
615 => 0.00030774992230863
616 => 0.00030771682180411
617 => 0.00031013342509088
618 => 0.00030869593489421
619 => 0.00030482768573625
620 => 0.00030537715227151
621 => 0.00030056324724671
622 => 0.00030596164750009
623 => 0.00030611645430295
624 => 0.00030403777615255
625 => 0.00031235475657856
626 => 0.00031576223024511
627 => 0.00031439399975692
628 => 0.00031566623154664
629 => 0.00032635523214573
630 => 0.00032809800563717
701 => 0.00032887203050092
702 => 0.00032783493972214
703 => 0.00031586160685552
704 => 0.00031639267508269
705 => 0.00031249604880097
706 => 0.00030920381020927
707 => 0.00030933548248742
708 => 0.00031102812108461
709 => 0.00031841997311049
710 => 0.00033397568992546
711 => 0.00033456601800751
712 => 0.00033528151286403
713 => 0.00033237123570364
714 => 0.00033149346826446
715 => 0.00033265147008773
716 => 0.0003384933794427
717 => 0.0003535203563666
718 => 0.00034820881910365
719 => 0.00034389045662987
720 => 0.00034767882474154
721 => 0.00034709563516496
722 => 0.00034217292823737
723 => 0.0003420347642495
724 => 0.00033258651577085
725 => 0.00032909371343451
726 => 0.00032617486637053
727 => 0.0003229875615751
728 => 0.00032109802045295
729 => 0.00032400121439766
730 => 0.00032466520920239
731 => 0.00031831732490314
801 => 0.00031745213172939
802 => 0.00032263595107676
803 => 0.00032035474545425
804 => 0.00032270102200818
805 => 0.00032324537829468
806 => 0.00032315772439496
807 => 0.00032077588373026
808 => 0.00032229399794243
809 => 0.00031870320525902
810 => 0.00031479875753544
811 => 0.00031230796314348
812 => 0.00031013441468056
813 => 0.00031134042569516
814 => 0.00030704121663701
815 => 0.00030566581313332
816 => 0.000321779695006
817 => 0.00033368319279877
818 => 0.00033351011122656
819 => 0.0003324565216687
820 => 0.00033089110129856
821 => 0.00033837885919223
822 => 0.00033577027406452
823 => 0.00033766823769951
824 => 0.00033815134910189
825 => 0.00033961358181307
826 => 0.00034013620432417
827 => 0.00033855647611096
828 => 0.00033325471527986
829 => 0.00032004323136507
830 => 0.00031389324993901
831 => 0.00031186365363237
901 => 0.00031193742560337
902 => 0.00030990246531076
903 => 0.00031050185231746
904 => 0.00030969402297065
905 => 0.00030816418962271
906 => 0.00031124596279689
907 => 0.00031160110844651
908 => 0.00031088178576321
909 => 0.00031105121229498
910 => 0.00030509552770401
911 => 0.00030554832546839
912 => 0.00030302708997754
913 => 0.00030255438871695
914 => 0.00029618092494516
915 => 0.00028488941002509
916 => 0.00029114600538469
917 => 0.00028358891800074
918 => 0.00028072693449987
919 => 0.0002942751192632
920 => 0.00029291525728111
921 => 0.00029058776468557
922 => 0.00028714491804481
923 => 0.0002858679327359
924 => 0.00027810937424333
925 => 0.00027765095721729
926 => 0.00028149630830491
927 => 0.00027972181108843
928 => 0.00027722974494184
929 => 0.00026820373397558
930 => 0.00025805550923998
1001 => 0.00025836182035529
1002 => 0.00026158978182925
1003 => 0.0002709755151647
1004 => 0.0002673083467757
1005 => 0.00026464777403358
1006 => 0.0002641495287355
1007 => 0.00027038611178812
1008 => 0.00027921218341213
1009 => 0.00028335317874589
1010 => 0.00027924957813403
1011 => 0.00027453558270467
1012 => 0.00027482250176391
1013 => 0.00027673124572298
1014 => 0.00027693182772489
1015 => 0.00027386350130694
1016 => 0.00027472721722077
1017 => 0.00027341515376783
1018 => 0.00026536302277899
1019 => 0.00026521738526299
1020 => 0.00026324126246018
1021 => 0.00026318142624707
1022 => 0.00025981954839255
1023 => 0.00025934919844114
1024 => 0.00025267398590959
1025 => 0.00025706763101226
1026 => 0.00025412060455411
1027 => 0.00024967874054842
1028 => 0.00024891296151959
1029 => 0.00024888994127728
1030 => 0.00025345074242851
1031 => 0.00025701433539538
1101 => 0.00025417186934108
1102 => 0.00025352469491941
1103 => 0.00026043482459653
1104 => 0.00025955544760789
1105 => 0.0002587939128071
1106 => 0.0002784219055034
1107 => 0.0002628848176929
1108 => 0.00025610976058156
1109 => 0.00024772434085782
1110 => 0.00025045467580283
1111 => 0.00025102999749271
1112 => 0.00023086457464263
1113 => 0.0002226834651038
1114 => 0.00021987601660868
1115 => 0.00021826029030825
1116 => 0.00021899659707237
1117 => 0.00021163263893898
1118 => 0.00021658134059324
1119 => 0.00021020477530962
1120 => 0.00020913572338868
1121 => 0.00022053781202066
1122 => 0.00022212434604377
1123 => 0.00021535569900372
1124 => 0.00021970226614785
1125 => 0.00021812614047958
1126 => 0.00021031408321955
1127 => 0.00021001572009382
1128 => 0.00020609590436783
1129 => 0.00019996215178254
1130 => 0.00019715886226051
1201 => 0.00019569888473816
1202 => 0.00019630129991827
1203 => 0.000195996700369
1204 => 0.0001940089822709
1205 => 0.00019611063404364
1206 => 0.00019074178222676
1207 => 0.0001886038621735
1208 => 0.00018763821328481
1209 => 0.00018287304827775
1210 => 0.00019045654488248
1211 => 0.00019195058924799
1212 => 0.00019344757734242
1213 => 0.00020647783666734
1214 => 0.0002058268817346
1215 => 0.00021171119729867
1216 => 0.00021148254361641
1217 => 0.00020980424149795
1218 => 0.00020272376092743
1219 => 0.00020554591428541
1220 => 0.00019685976490957
1221 => 0.00020336801862269
1222 => 0.00020039792341919
1223 => 0.00020236382644674
1224 => 0.00019882895554488
1225 => 0.00020078529905321
1226 => 0.00019230488259244
1227 => 0.00018438598902405
1228 => 0.00018757278296288
1229 => 0.00019103719242849
1230 => 0.00019854891486504
1231 => 0.00019407499495219
]
'min_raw' => 0.00018287304827775
'max_raw' => 0.00054588050280885
'avg_raw' => 0.0003643767755433
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.000182'
'max' => '$0.000545'
'avg' => '$0.000364'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.00034642695172225
'max_diff' => 1.6580502808848E-5
'year' => 2026
]
1 => [
'items' => [
101 => 0.00019568398573049
102 => 0.00019029413596499
103 => 0.00017917333636428
104 => 0.00017923627888231
105 => 0.00017752558614353
106 => 0.00017604729785199
107 => 0.00019458887847278
108 => 0.00019228293982357
109 => 0.00018860872837985
110 => 0.00019352680640463
111 => 0.00019482722429478
112 => 0.00019486424536394
113 => 0.00019845234813685
114 => 0.00020036731922996
115 => 0.00020070484118508
116 => 0.00020635079842435
117 => 0.00020824324881898
118 => 0.00021603798416485
119 => 0.00020020484731187
120 => 0.00019987877427767
121 => 0.00019359601384816
122 => 0.00018961138785725
123 => 0.00019386884459875
124 => 0.00019764037007092
125 => 0.00019371320565766
126 => 0.00019422601042307
127 => 0.0001889541130594
128 => 0.00019083856830108
129 => 0.00019246171501876
130 => 0.00019156550880541
131 => 0.00019022384472716
201 => 0.00019733114799211
202 => 0.00019693012608816
203 => 0.00020354861028467
204 => 0.0002087081920082
205 => 0.00021795508484233
206 => 0.00020830547011849
207 => 0.00020795379980421
208 => 0.000211391433536
209 => 0.00020824272253517
210 => 0.00021023259919789
211 => 0.00021763448494859
212 => 0.00021779087513076
213 => 0.00021517113808199
214 => 0.00021501172684449
215 => 0.00021551487600149
216 => 0.00021846183632962
217 => 0.00021743207784002
218 => 0.00021862374043448
219 => 0.00022011393275622
220 => 0.00022627800002742
221 => 0.00022776413577815
222 => 0.00022415359637691
223 => 0.00022447958765935
224 => 0.00022312914681176
225 => 0.00022182463787397
226 => 0.0002247569834579
227 => 0.00023011590264793
228 => 0.00023008256508978
301 => 0.00023132573017936
302 => 0.00023210021173123
303 => 0.00022877556995544
304 => 0.00022661135040987
305 => 0.00022744124989651
306 => 0.00022876827724851
307 => 0.00022701091281148
308 => 0.00021616364541577
309 => 0.00021945401341751
310 => 0.00021890633529124
311 => 0.00021812637503951
312 => 0.00022143486550892
313 => 0.00022111575353203
314 => 0.00021155711090463
315 => 0.0002121690241927
316 => 0.0002115943233784
317 => 0.00021345129928212
318 => 0.00020814243974229
319 => 0.00020977540918103
320 => 0.00021079959230487
321 => 0.00021140284403295
322 => 0.00021358220292838
323 => 0.00021332648031607
324 => 0.00021356630685175
325 => 0.00021679772076425
326 => 0.00023314110344636
327 => 0.0002340306377061
328 => 0.00022965024567925
329 => 0.00023140012589456
330 => 0.00022804073853789
331 => 0.00023029591777636
401 => 0.00023183885413599
402 => 0.00022486662141645
403 => 0.00022445377104422
404 => 0.00022108051830092
405 => 0.00022289311325437
406 => 0.00022000914435325
407 => 0.00022071676944463
408 => 0.00021873818799947
409 => 0.00022229924066912
410 => 0.00022628105088544
411 => 0.00022728701339253
412 => 0.00022464075913046
413 => 0.00022272469664807
414 => 0.00021936072211921
415 => 0.00022495508673177
416 => 0.00022659104942965
417 => 0.00022494649371616
418 => 0.0002245654142231
419 => 0.00022384326927233
420 => 0.0002247186206882
421 => 0.00022658213962546
422 => 0.00022570333850844
423 => 0.00022628380212871
424 => 0.00022407167337972
425 => 0.00022877667055021
426 => 0.00023624933837618
427 => 0.00023627336422514
428 => 0.00023539455837106
429 => 0.00023503496994971
430 => 0.00023593667808639
501 => 0.00023642581776054
502 => 0.00023934177652959
503 => 0.00024247071646571
504 => 0.00025707211388412
505 => 0.00025297209991746
506 => 0.00026592732834809
507 => 0.00027617323201085
508 => 0.00027924553052025
509 => 0.00027641916045442
510 => 0.00026675030113673
511 => 0.00026627590077088
512 => 0.00028072525867861
513 => 0.00027664265324716
514 => 0.00027615704032183
515 => 0.00027099093925232
516 => 0.00027404474481846
517 => 0.00027337683274452
518 => 0.00027232250086043
519 => 0.0002781489491507
520 => 0.00028905554021944
521 => 0.00028735564572002
522 => 0.00028608675333203
523 => 0.0002805268362569
524 => 0.00028387514818856
525 => 0.00028268287844239
526 => 0.00028780562590504
527 => 0.00028477102379091
528 => 0.00027661172349566
529 => 0.00027791111896109
530 => 0.00027771471795051
531 => 0.00028175663683108
601 => 0.00028054335310972
602 => 0.0002774778048314
603 => 0.00028901826267687
604 => 0.00028826888953578
605 => 0.00028933132931929
606 => 0.00028979904816904
607 => 0.00029682352149389
608 => 0.00029970122345701
609 => 0.0003003545121839
610 => 0.00030308810647941
611 => 0.00030028649786758
612 => 0.00031149492982797
613 => 0.00031894788305149
614 => 0.00032760487174608
615 => 0.00034025505900806
616 => 0.00034501164643934
617 => 0.00034415241149445
618 => 0.00035374363910189
619 => 0.00037097886191146
620 => 0.00034763614279814
621 => 0.00037221608270502
622 => 0.00036443435751956
623 => 0.00034598402709207
624 => 0.00034479604332765
625 => 0.00035729082130588
626 => 0.00038500303628378
627 => 0.00037806144074116
628 => 0.00038501439024733
629 => 0.00037690340532073
630 => 0.00037650062655437
701 => 0.00038462045781351
702 => 0.00040359288613944
703 => 0.00039457979661263
704 => 0.00038165732267573
705 => 0.00039119907633477
706 => 0.00038293312626769
707 => 0.00036430762727282
708 => 0.00037805613263387
709 => 0.00036886289863383
710 => 0.00037154597305424
711 => 0.00039086878353198
712 => 0.00038854381185348
713 => 0.00039155254049204
714 => 0.00038624221319713
715 => 0.00038128153014193
716 => 0.00037202204683423
717 => 0.00036928077031383
718 => 0.00037003836052327
719 => 0.00036928039488975
720 => 0.00036409979907814
721 => 0.00036298104990587
722 => 0.00036111641893856
723 => 0.00036169434604427
724 => 0.0003581882943087
725 => 0.00036480493832097
726 => 0.00036603304575531
727 => 0.00037084808748512
728 => 0.0003713480010908
729 => 0.00038475782377048
730 => 0.00037737191878143
731 => 0.00038232702151644
801 => 0.00038188379048859
802 => 0.00034638390169873
803 => 0.0003512754731558
804 => 0.00035888522328332
805 => 0.00035545704116565
806 => 0.00035061039372233
807 => 0.00034669646605105
808 => 0.00034076646540942
809 => 0.00034911282743694
810 => 0.00036008740596649
811 => 0.00037162633451312
812 => 0.00038548960110134
813 => 0.00038239548138506
814 => 0.00037136717038734
815 => 0.00037186189236251
816 => 0.0003749200689471
817 => 0.00037095945240541
818 => 0.00036979138926685
819 => 0.00037475959500869
820 => 0.00037479380831116
821 => 0.00037023664032345
822 => 0.00036517218205805
823 => 0.000365150961793
824 => 0.00036424979036153
825 => 0.00037706372171642
826 => 0.00038411008832702
827 => 0.00038491794290314
828 => 0.0003840557132774
829 => 0.00038438755123968
830 => 0.00038028742576506
831 => 0.00038965909674559
901 => 0.00039825946879952
902 => 0.00039595438536892
903 => 0.00039249873761953
904 => 0.00038974614774059
905 => 0.00039530596267201
906 => 0.00039505839286507
907 => 0.00039818435205243
908 => 0.00039804254048728
909 => 0.00039699139798584
910 => 0.00039595442290853
911 => 0.00040006591187572
912 => 0.00039888186908167
913 => 0.0003976959871421
914 => 0.00039531751936287
915 => 0.00039564079263624
916 => 0.00039218574155315
917 => 0.00039058727682973
918 => 0.00036655020264268
919 => 0.00036012671098585
920 => 0.00036214767222332
921 => 0.00036281302513693
922 => 0.00036001751333594
923 => 0.0003640255591505
924 => 0.00036340090945587
925 => 0.00036583105600981
926 => 0.00036431280594761
927 => 0.00036437511545975
928 => 0.00036883996516765
929 => 0.00037013613003268
930 => 0.00036947689012099
1001 => 0.00036993859915772
1002 => 0.00038057848903385
1003 => 0.00037906583693799
1004 => 0.00037826227066034
1005 => 0.00037848486401092
1006 => 0.00038120358399608
1007 => 0.00038196467715532
1008 => 0.00037873987195856
1009 => 0.00038026070873173
1010 => 0.00038673623868895
1011 => 0.00038900230769073
1012 => 0.00039623451216956
1013 => 0.00039316214316477
1014 => 0.00039880160944208
1015 => 0.00041613540614282
1016 => 0.00042998284235486
1017 => 0.00041724816774476
1018 => 0.00044267722088782
1019 => 0.00046247738634071
1020 => 0.00046171742301172
1021 => 0.00045826480617893
1022 => 0.00043572284422545
1023 => 0.00041497939475414
1024 => 0.00043233217105028
1025 => 0.00043237640684569
1026 => 0.00043088578797244
1027 => 0.00042162768217131
1028 => 0.00043056362595866
1029 => 0.00043127292872592
1030 => 0.00043087590779509
1031 => 0.00042377773978414
1101 => 0.00041294014919216
1102 => 0.00041505778845231
1103 => 0.0004185265247591
1104 => 0.00041195948327615
1105 => 0.00040986091561127
1106 => 0.00041376255216911
1107 => 0.00042633443809675
1108 => 0.0004239577958861
1109 => 0.00042389573215322
1110 => 0.00043406401538349
1111 => 0.00042678571904348
1112 => 0.000415084498665
1113 => 0.0004121297861993
1114 => 0.00040164254747887
1115 => 0.00040888612061733
1116 => 0.0004091468039191
1117 => 0.00040517957293869
1118 => 0.0004154064175944
1119 => 0.0004153121754205
1120 => 0.00042502104235615
1121 => 0.00044358074945323
1122 => 0.0004380917307969
1123 => 0.00043170859930313
1124 => 0.00043240262268154
1125 => 0.00044001434614705
1126 => 0.00043541212438106
1127 => 0.00043706711541594
1128 => 0.00044001184111991
1129 => 0.00044178846725054
1130 => 0.00043214699352207
1201 => 0.00042989910479096
1202 => 0.00042530071334885
1203 => 0.00042410107885465
1204 => 0.00042784637273566
1205 => 0.0004268596201212
1206 => 0.000409124894497
1207 => 0.00040727151699419
1208 => 0.00040732835743619
1209 => 0.00040266795158208
1210 => 0.00039555971402899
1211 => 0.00041423973790769
1212 => 0.00041273947056347
1213 => 0.00041108329152691
1214 => 0.00041128616400886
1215 => 0.00041939452924986
1216 => 0.00041469126792782
1217 => 0.00042719565900182
1218 => 0.00042462513211341
1219 => 0.0004219886809098
1220 => 0.00042162424304519
1221 => 0.00042060943426324
1222 => 0.00041712927735624
1223 => 0.00041292677876602
1224 => 0.00041015192518256
1225 => 0.00037834347043218
1226 => 0.00038424693461258
1227 => 0.00039103833203444
1228 => 0.00039338269520965
1229 => 0.00038937249977346
1230 => 0.00041728762431449
1231 => 0.00042238798656496
]
'min_raw' => 0.00017604729785199
'max_raw' => 0.00046247738634071
'avg_raw' => 0.00031926234209635
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.000176'
'max' => '$0.000462'
'avg' => '$0.000319'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -6.8257504257545E-6
'max_diff' => -8.3403116468142E-5
'year' => 2027
]
2 => [
'items' => [
101 => 0.00040693865661987
102 => 0.00040404871777913
103 => 0.00041747708822376
104 => 0.00040937813929412
105 => 0.00041302509550123
106 => 0.00040514237095985
107 => 0.00042115945865486
108 => 0.00042103743528259
109 => 0.0004148064264069
110 => 0.00042007283244053
111 => 0.00041915766479229
112 => 0.00041212287111793
113 => 0.00042138247416208
114 => 0.00042138706680966
115 => 0.00041538985624062
116 => 0.00040838642725419
117 => 0.00040713437956503
118 => 0.00040619112982018
119 => 0.00041279311388626
120 => 0.00041871243215604
121 => 0.00042972681593266
122 => 0.0004324960937094
123 => 0.0004433047692333
124 => 0.00043686872922368
125 => 0.00043972174239927
126 => 0.00044281909178473
127 => 0.00044430407498137
128 => 0.00044188437455104
129 => 0.00045867469666799
130 => 0.00046009231429683
131 => 0.00046056762922544
201 => 0.00045490602707729
202 => 0.00045993485489933
203 => 0.00045758203289867
204 => 0.00046370342211161
205 => 0.00046466333410202
206 => 0.000463850322796
207 => 0.00046415501401294
208 => 0.00044982743610192
209 => 0.00044908447560323
210 => 0.00043895415648564
211 => 0.0004430823364056
212 => 0.00043536490191406
213 => 0.00043781217988971
214 => 0.00043889091670286
215 => 0.00043832744580944
216 => 0.0004433157375044
217 => 0.00043907467052302
218 => 0.00042788179746318
219 => 0.00041668587491257
220 => 0.00041654531922494
221 => 0.00041359763044181
222 => 0.00041146699134774
223 => 0.00041187742802574
224 => 0.00041332386041312
225 => 0.00041138292206792
226 => 0.00041179711967194
227 => 0.00041867555968287
228 => 0.00042005498177227
229 => 0.00041536716653748
301 => 0.00039654491192127
302 => 0.00039192588342641
303 => 0.0003952459495092
304 => 0.00039365917176127
305 => 0.00031771367544999
306 => 0.00033555594329285
307 => 0.00032495467360679
308 => 0.00032984022641909
309 => 0.0003190190752551
310 => 0.00032418349577568
311 => 0.00032322981587997
312 => 0.00035191965458021
313 => 0.00035147170221049
314 => 0.00035168611330476
315 => 0.00034145171312994
316 => 0.00035775539050267
317 => 0.00036578716823776
318 => 0.00036430069993784
319 => 0.00036467481198423
320 => 0.00035824632753477
321 => 0.0003517483550862
322 => 0.00034454110360995
323 => 0.00035793128600962
324 => 0.00035644252630481
325 => 0.00035985720542881
326 => 0.000368541695865
327 => 0.0003698205200709
328 => 0.00037153927277219
329 => 0.00037092322227793
330 => 0.00038560004438569
331 => 0.00038382258438765
401 => 0.00038810575157278
402 => 0.00037929495170828
403 => 0.0003693246953328
404 => 0.00037121971511754
405 => 0.00037103720947349
406 => 0.00036871370315441
407 => 0.00036661614554054
408 => 0.00036312430309663
409 => 0.0003741730092846
410 => 0.00037372445199068
411 => 0.0003809860731885
412 => 0.00037970251110616
413 => 0.00037113056937937
414 => 0.00037143671795509
415 => 0.00037349571425683
416 => 0.00038062192396637
417 => 0.00038273746819752
418 => 0.00038175746381979
419 => 0.00038407706149098
420 => 0.00038591037691267
421 => 0.00038430729768172
422 => 0.00040700351899703
423 => 0.00039757846553188
424 => 0.00040217217101169
425 => 0.00040326774270094
426 => 0.00040046145885632
427 => 0.00040107004133673
428 => 0.00040199187796575
429 => 0.00040758908946304
430 => 0.00042227779199812
501 => 0.00042878331836153
502 => 0.00044835551540286
503 => 0.00042824312495835
504 => 0.00042704973894271
505 => 0.00043057528265359
506 => 0.00044206623424431
507 => 0.00045137857121839
508 => 0.0004544680106343
509 => 0.0004548763310542
510 => 0.0004606723247805
511 => 0.00046399448029553
512 => 0.00045996853869236
513 => 0.00045655697471733
514 => 0.00044433717601767
515 => 0.00044575165099056
516 => 0.00045549598088645
517 => 0.00046926042080257
518 => 0.00048107174219648
519 => 0.00047693582911044
520 => 0.00050848992645731
521 => 0.00051161838632232
522 => 0.00051118613432419
523 => 0.00051831323147394
524 => 0.00050416739503978
525 => 0.00049811977590151
526 => 0.00045729459357163
527 => 0.00046876480456878
528 => 0.00048543742987501
529 => 0.00048323074539659
530 => 0.00047112263923865
531 => 0.0004810625571122
601 => 0.00047777610941323
602 => 0.00047518395175822
603 => 0.00048705912849032
604 => 0.000474001883868
605 => 0.00048530717387163
606 => 0.00047080802250373
607 => 0.00047695472161303
608 => 0.00047346555791621
609 => 0.00047572347444387
610 => 0.00046252374055996
611 => 0.00046964599655829
612 => 0.00046222743129462
613 => 0.00046222391392876
614 => 0.00046206014868939
615 => 0.00047078805782315
616 => 0.00047107267462665
617 => 0.00046462273658967
618 => 0.00046369319975158
619 => 0.000467130184632
620 => 0.00046310637548479
621 => 0.00046498909045922
622 => 0.00046316340100341
623 => 0.00046275239985201
624 => 0.00045947747275153
625 => 0.00045806654411065
626 => 0.00045861980558589
627 => 0.00045673123894505
628 => 0.00045559330923151
629 => 0.00046183378582809
630 => 0.00045849975092265
701 => 0.00046132279716204
702 => 0.00045810557967541
703 => 0.00044695330219181
704 => 0.0004405395094778
705 => 0.00041947389112795
706 => 0.00042544807436015
707 => 0.00042940896402384
708 => 0.00042809989001362
709 => 0.00043091228753196
710 => 0.00043108494589824
711 => 0.00043017060679603
712 => 0.00042911191924976
713 => 0.00042859660870133
714 => 0.00043243731134332
715 => 0.0004346669684991
716 => 0.00042980649229146
717 => 0.00042866775072129
718 => 0.00043358196052147
719 => 0.00043657962566073
720 => 0.00045871270080648
721 => 0.0004570730111108
722 => 0.00046118831047412
723 => 0.00046072499092023
724 => 0.00046503848027159
725 => 0.00047208921234446
726 => 0.00045775310262463
727 => 0.00046024135556661
728 => 0.00045963129340739
729 => 0.0004662917920949
730 => 0.00046631258544479
731 => 0.00046231928376504
801 => 0.00046448411738955
802 => 0.00046327576664945
803 => 0.00046545941975521
804 => 0.00045705111205524
805 => 0.00046729152321308
806 => 0.00047309717646205
807 => 0.00047317778796305
808 => 0.00047592962152655
809 => 0.00047872564380252
810 => 0.00048409236507902
811 => 0.00047857596885891
812 => 0.00046865250906927
813 => 0.0004693689508135
814 => 0.00046355082996969
815 => 0.00046364863363221
816 => 0.0004631265500167
817 => 0.00046469336224746
818 => 0.0004573949392304
819 => 0.00045910786452462
820 => 0.00045670975908183
821 => 0.00046023614255372
822 => 0.00045644233687004
823 => 0.00045963099921695
824 => 0.00046100712018004
825 => 0.00046608503615963
826 => 0.00045569232455112
827 => 0.00043450088205666
828 => 0.0004389555801904
829 => 0.00043236673174161
830 => 0.00043297655475106
831 => 0.00043420849428277
901 => 0.00043021537519499
902 => 0.00043097713647929
903 => 0.00043094992100578
904 => 0.00043071539275809
905 => 0.00042967662826178
906 => 0.00042817021422884
907 => 0.00043417130408628
908 => 0.00043519100619197
909 => 0.00043745767765855
910 => 0.00044420175444516
911 => 0.0004435278621379
912 => 0.00044462700845057
913 => 0.00044222757822145
914 => 0.00043308785743766
915 => 0.00043358418824874
916 => 0.00042739493508138
917 => 0.00043729940453973
918 => 0.00043495389543938
919 => 0.00043344173046395
920 => 0.00043302912224029
921 => 0.0004397899162888
922 => 0.00044181285183058
923 => 0.0004405522941551
924 => 0.00043796685358634
925 => 0.00044293166379524
926 => 0.00044426003755861
927 => 0.00044455741145569
928 => 0.00045335410323792
929 => 0.00044504904880726
930 => 0.00044704815795386
1001 => 0.00046264463684477
1002 => 0.00044850078265769
1003 => 0.00045599309766617
1004 => 0.00045562638783463
1005 => 0.00045945920266686
1006 => 0.00045531198514691
1007 => 0.00045536339487846
1008 => 0.00045876667479212
1009 => 0.00045398738193816
1010 => 0.00045280396181617
1011 => 0.00045116907539347
1012 => 0.00045473879008633
1013 => 0.00045687867260039
1014 => 0.00047412455409319
1015 => 0.00048526618004529
1016 => 0.00048478249267876
1017 => 0.00048920248978403
1018 => 0.00048721124060557
1019 => 0.00048078097174335
1020 => 0.00049175665660341
1021 => 0.00048828349067153
1022 => 0.00048856981425106
1023 => 0.00048855915727313
1024 => 0.00049086850898839
1025 => 0.00048923212164915
1026 => 0.00048600663423179
1027 => 0.00048814786330663
1028 => 0.0004945065481555
1029 => 0.00051424410103468
1030 => 0.00052528949711366
1031 => 0.00051357915432171
1101 => 0.00052165679197186
1102 => 0.00051681308773836
1103 => 0.00051593284259141
1104 => 0.00052100619596843
1105 => 0.00052608842957894
1106 => 0.00052576471326905
1107 => 0.00052207527264341
1108 => 0.00051999120125007
1109 => 0.00053577248805556
1110 => 0.00054739987134664
1111 => 0.00054660696175715
1112 => 0.00055010660681713
1113 => 0.00056038167295316
1114 => 0.00056132109622931
1115 => 0.00056120275048892
1116 => 0.00055887429188028
1117 => 0.00056899142887714
1118 => 0.00057743132255402
1119 => 0.00055833532098802
1120 => 0.00056560682839933
1121 => 0.00056887124234961
1122 => 0.00057366437053659
1123 => 0.00058175118120959
1124 => 0.00059053560252106
1125 => 0.00059177781601078
1126 => 0.00059089640609444
1127 => 0.0005851028441016
1128 => 0.00059471486272056
1129 => 0.00060034535779797
1130 => 0.00060369818876498
1201 => 0.00061220041023943
1202 => 0.00056889140225883
1203 => 0.0005382351338128
1204 => 0.00053344771481306
1205 => 0.00054318311960497
1206 => 0.0005457502682102
1207 => 0.00054471545382636
1208 => 0.00051020903654436
1209 => 0.00053326604566734
1210 => 0.00055807344879528
1211 => 0.00055902640218075
1212 => 0.00057144550688493
1213 => 0.00057548967645291
1214 => 0.00058548868354904
1215 => 0.00058486324293275
1216 => 0.0005872978420417
1217 => 0.00058673816986793
1218 => 0.00060525922497416
1219 => 0.00062569069915963
1220 => 0.00062498322217669
1221 => 0.0006220459560283
1222 => 0.00062640829713696
1223 => 0.0006474957680662
1224 => 0.00064555437166288
1225 => 0.00064744027290096
1226 => 0.00067230358956431
1227 => 0.00070462943799223
1228 => 0.00068961083593534
1229 => 0.00072219688091246
1230 => 0.00074270806891354
1231 => 0.00077818004766497
]
'min_raw' => 0.00031771367544999
'max_raw' => 0.00077818004766497
'avg_raw' => 0.00054794686155748
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.000317'
'max' => '$0.000778'
'avg' => '$0.000547'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 0.000141666377598
'max_diff' => 0.00031570266132426
'year' => 2028
]
3 => [
'items' => [
101 => 0.00077373878122211
102 => 0.00078754776224464
103 => 0.00076578798736912
104 => 0.00071582314587885
105 => 0.00070791601845529
106 => 0.00072374628779762
107 => 0.00076266346028065
108 => 0.00072252064754167
109 => 0.00073064148627666
110 => 0.00072830268417466
111 => 0.00072817805934992
112 => 0.00073293448202469
113 => 0.00072603504285661
114 => 0.00069792548650046
115 => 0.00071080793052783
116 => 0.00070583340022309
117 => 0.000711353012472
118 => 0.00074114008331812
119 => 0.00072797050926197
120 => 0.00071409743280313
121 => 0.00073149734936463
122 => 0.00075365342240744
123 => 0.00075226693517471
124 => 0.00074957657043652
125 => 0.00076474201560281
126 => 0.00078979088795902
127 => 0.00079656149750238
128 => 0.00080155942304827
129 => 0.00080224855254041
130 => 0.00080934701460098
131 => 0.00077117679505849
201 => 0.00083175391375319
202 => 0.00084221390874263
203 => 0.00084024786320699
204 => 0.00085187370741387
205 => 0.00084845308912901
206 => 0.0008434971499128
207 => 0.00086192658586869
208 => 0.00084079872472405
209 => 0.00081081038575299
210 => 0.00079435818989137
211 => 0.00081602376856273
212 => 0.00082925418143284
213 => 0.00083799864272767
214 => 0.00084064471143194
215 => 0.0007741398405449
216 => 0.00073829740366601
217 => 0.000761271994771
218 => 0.00078930258154067
219 => 0.00077102108373369
220 => 0.00077173768383627
221 => 0.00074567307225662
222 => 0.00079160872131243
223 => 0.00078491628362461
224 => 0.00081963666218769
225 => 0.00081135036519517
226 => 0.00083966348607602
227 => 0.00083220769247208
228 => 0.00086315627487423
301 => 0.00087550250229386
302 => 0.00089623373966829
303 => 0.00091148372227224
304 => 0.00092043880374296
305 => 0.00091990117424112
306 => 0.00095538566843198
307 => 0.00093446170194143
308 => 0.00090817626862903
309 => 0.00090770084806989
310 => 0.00092131444644985
311 => 0.00094984481394593
312 => 0.00095724232313769
313 => 0.00096137652158913
314 => 0.00095504485274827
315 => 0.00093233338675697
316 => 0.00092252669089167
317 => 0.00093088227989623
318 => 0.0009206641125476
319 => 0.00093830353610273
320 => 0.00096252623222149
321 => 0.00095752434125989
322 => 0.00097424491281913
323 => 0.00099154894532751
324 => 0.0010162944889872
325 => 0.0010227638904247
326 => 0.0010334575649916
327 => 0.0010444648688099
328 => 0.0010480001181413
329 => 0.0010547500060382
330 => 0.0010547144307971
331 => 0.0010750556722943
401 => 0.0010974926915816
402 => 0.0011059621469443
403 => 0.0011254371925424
404 => 0.0010920868594426
405 => 0.0011173834701999
406 => 0.0011402016463181
407 => 0.0011129968760669
408 => 0.0011504923139596
409 => 0.0011519481768465
410 => 0.0011739299779584
411 => 0.001151647211328
412 => 0.0011384157756319
413 => 0.001176614434711
414 => 0.0011950975625929
415 => 0.0011895302940542
416 => 0.0011471631055847
417 => 0.0011225035846812
418 => 0.0010579648620105
419 => 0.0011344137668793
420 => 0.0011716497983958
421 => 0.0011470666732586
422 => 0.0011594649716628
423 => 0.0012271060675943
424 => 0.0012528594174883
425 => 0.0012475029007399
426 => 0.0012484080638946
427 => 0.0012623041040411
428 => 0.0013239267987396
429 => 0.0012870010516734
430 => 0.0013152294017242
501 => 0.0013302016168062
502 => 0.0013441086445851
503 => 0.0013099573797215
504 => 0.0012655270859158
505 => 0.0012514541468106
506 => 0.0011446223659442
507 => 0.0011390613078032
508 => 0.0011359397173513
509 => 0.0011162585311101
510 => 0.0011007945098551
511 => 0.0010884969460108
512 => 0.0010562244661201
513 => 0.0010671154807146
514 => 0.0010156798835588
515 => 0.0010485865558535
516 => 0.00096649410083685
517 => 0.0010348631367652
518 => 0.000997652978868
519 => 0.001022638599132
520 => 0.0010225514266566
521 => 0.00097654497805257
522 => 0.00095000941862783
523 => 0.0009669189098727
524 => 0.00098504722676428
525 => 0.00098798848518896
526 => 0.0010114923212364
527 => 0.001018051736664
528 => 0.00099817640168859
529 => 0.00096479291717454
530 => 0.00097254713923094
531 => 0.00094985227956535
601 => 0.00091008041094658
602 => 0.00093864526133879
603 => 0.0009483985571705
604 => 0.00095270616824279
605 => 0.0009135951032862
606 => 0.00090130555753431
607 => 0.00089476270649528
608 => 0.00095974416982436
609 => 0.00096330400107289
610 => 0.00094509140109601
611 => 0.0010274140799811
612 => 0.0010087819223529
613 => 0.001029598607413
614 => 0.00097184352485523
615 => 0.00097404984678647
616 => 0.00094670766513735
617 => 0.00096201745985562
618 => 0.00095119699040646
619 => 0.00096078057973672
620 => 0.00096652494366666
621 => 0.00099386263873283
622 => 0.0010351752893297
623 => 0.00098977929872173
624 => 0.00096999961553129
625 => 0.00098227081973748
626 => 0.0010149506536189
627 => 0.0010644622747993
628 => 0.0010351503985463
629 => 0.0010481585114794
630 => 0.0010510002054646
701 => 0.0010293867131003
702 => 0.0010652591950919
703 => 0.0010844835496187
704 => 0.0011042037594436
705 => 0.0011213262650868
706 => 0.0010963270739828
707 => 0.0011230797919573
708 => 0.0011015218237603
709 => 0.0010821820976658
710 => 0.0010822114280472
711 => 0.0010700793353598
712 => 0.0010465718770359
713 => 0.0010422367410519
714 => 0.0010647886659082
715 => 0.0010828731739677
716 => 0.0010843627006704
717 => 0.0010943752135478
718 => 0.0011003005155315
719 => 0.0011583765300294
720 => 0.0011817351834904
721 => 0.0012102977027858
722 => 0.0012214244137468
723 => 0.0012549118245927
724 => 0.0012278680206201
725 => 0.0012220169235171
726 => 0.0011407874184537
727 => 0.0011540887453573
728 => 0.0011753854531171
729 => 0.0011411385933206
730 => 0.0011628603433209
731 => 0.0011671486769006
801 => 0.0011399748981294
802 => 0.0011544895874808
803 => 0.0011159428758691
804 => 0.0010360155023068
805 => 0.0010653481771071
806 => 0.0010869468990318
807 => 0.0010561228597421
808 => 0.0011113737571137
809 => 0.0010790973234793
810 => 0.0010688672435592
811 => 0.0010289560545041
812 => 0.0010477925994156
813 => 0.0010732692961216
814 => 0.0010575276595412
815 => 0.0010901939190643
816 => 0.0011364580543221
817 => 0.0011694286321838
818 => 0.0011719597037547
819 => 0.0011507618310468
820 => 0.0011847315573443
821 => 0.0011849789897147
822 => 0.0011466609996809
823 => 0.0011231914441406
824 => 0.0011178591117414
825 => 0.0011311803235398
826 => 0.0011473547338943
827 => 0.0011728572709612
828 => 0.0011882679199973
829 => 0.0012284507195067
830 => 0.0012393230329228
831 => 0.0012512684090876
901 => 0.0012672311154614
902 => 0.001286398437217
903 => 0.0012444614284119
904 => 0.0012461276639521
905 => 0.0012070765020102
906 => 0.0011653447349722
907 => 0.0011970139442159
908 => 0.0012384172225236
909 => 0.0012289192647332
910 => 0.0012278505504562
911 => 0.0012296478314336
912 => 0.001222486681434
913 => 0.0011900970653903
914 => 0.0011738312029829
915 => 0.0011948183153525
916 => 0.0012059720315481
917 => 0.0012232704726611
918 => 0.0012211380746681
919 => 0.0012656970012583
920 => 0.0012830112527393
921 => 0.0012785815262919
922 => 0.0012793967025655
923 => 0.0013107433278353
924 => 0.0013456072220606
925 => 0.0013782618596985
926 => 0.0014114795596532
927 => 0.001371434325849
928 => 0.0013511018257698
929 => 0.0013720797758227
930 => 0.0013609485802386
1001 => 0.0014249117317919
1002 => 0.0014293404016266
1003 => 0.001493298927916
1004 => 0.0015540031854043
1005 => 0.0015158759289057
1006 => 0.0015518282144946
1007 => 0.0015907135425918
1008 => 0.0016657296494085
1009 => 0.0016404668637311
1010 => 0.0016211159658205
1011 => 0.0016028294607979
1012 => 0.0016408807748491
1013 => 0.0016898331824913
1014 => 0.0017003770622371
1015 => 0.0017174621754974
1016 => 0.0016994992679724
1017 => 0.0017211336115369
1018 => 0.0017975123509315
1019 => 0.0017768741413333
1020 => 0.0017475645659461
1021 => 0.001807858245206
1022 => 0.0018296782933445
1023 => 0.0019828228184279
1024 => 0.0021761741074306
1025 => 0.0020961254041705
1026 => 0.0020464365909014
1027 => 0.0020581146406541
1028 => 0.0021287199860436
1029 => 0.0021513961820811
1030 => 0.0020897544642977
1031 => 0.0021115273611112
1101 => 0.0022314981632174
1102 => 0.0022958586494232
1103 => 0.0022084484643892
1104 => 0.0019672872306185
1105 => 0.0017449255593655
1106 => 0.0018039058876583
1107 => 0.0017972193488026
1108 => 0.0019261130090034
1109 => 0.0017763819268599
1110 => 0.0017789030142764
1111 => 0.0019104620588694
1112 => 0.001875364361265
1113 => 0.0018185105861194
1114 => 0.0017453406548422
1115 => 0.0016100792694769
1116 => 0.001490274488416
1117 => 0.0017252392534696
1118 => 0.0017151071455448
1119 => 0.0017004343517754
1120 => 0.0017330870665471
1121 => 0.0018916393808436
1122 => 0.0018879842368153
1123 => 0.0018647320753781
1124 => 0.001882368634893
1125 => 0.0018154188119649
1126 => 0.0018326733057526
1127 => 0.0017448903361407
1128 => 0.0017845719045459
1129 => 0.0018183886034522
1130 => 0.0018251778064224
1201 => 0.0018404742273797
1202 => 0.001709767985075
1203 => 0.0017684512505361
1204 => 0.0018029221711162
1205 => 0.0016471812978727
1206 => 0.0017998436747972
1207 => 0.0017074926801916
1208 => 0.0016761473655571
1209 => 0.0017183497022813
1210 => 0.0017019034106167
1211 => 0.0016877638548022
1212 => 0.0016798737397093
1213 => 0.0017108624780976
1214 => 0.0017094168164123
1215 => 0.001658713225754
1216 => 0.0015925724586831
1217 => 0.0016147714711087
1218 => 0.0016067063617776
1219 => 0.0015774773651419
1220 => 0.0015971741797519
1221 => 0.0015104393765394
1222 => 0.001361216655695
1223 => 0.0014597977559004
1224 => 0.001456002490778
1225 => 0.0014540887460018
1226 => 0.0015281697182246
1227 => 0.0015210485420842
1228 => 0.0015081235376586
1229 => 0.0015772399872997
1230 => 0.0015520115534333
1231 => 0.0016297596420431
]
'min_raw' => 0.00069792548650046
'max_raw' => 0.0022958586494232
'avg_raw' => 0.0014968920679619
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.000697'
'max' => '$0.002295'
'avg' => '$0.001496'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072435
'min_diff' => 0.00038021181105047
'max_diff' => 0.0015176786017583
'year' => 2029
]
4 => [
'items' => [
101 => 0.0016809695616325
102 => 0.0016679810695573
103 => 0.0017161442464502
104 => 0.0016152828915193
105 => 0.0016487849877722
106 => 0.001655689723378
107 => 0.0015763871010398
108 => 0.0015222136545699
109 => 0.0015186009033128
110 => 0.0014246716126947
111 => 0.0014748478815722
112 => 0.0015190009217492
113 => 0.0014978550419188
114 => 0.0014911608880796
115 => 0.001525359868259
116 => 0.0015280174219134
117 => 0.0014674249169583
118 => 0.0014800240174535
119 => 0.0015325643609449
120 => 0.0014787001356022
121 => 0.0013740507444326
122 => 0.0013480962485315
123 => 0.001344633440342
124 => 0.0012742427889813
125 => 0.0013498306520539
126 => 0.0013168345241939
127 => 0.0014210688967493
128 => 0.0013615307821658
129 => 0.0013589642130434
130 => 0.0013550844673811
131 => 0.0012944963259537
201 => 0.0013077612783491
202 => 0.0013518560004205
203 => 0.0013675894940181
204 => 0.0013659483617352
205 => 0.0013516399122265
206 => 0.0013581902471405
207 => 0.0013370893360947
208 => 0.0013296381652269
209 => 0.0013061202203622
210 => 0.0012715553384093
211 => 0.0012763617972436
212 => 0.0012078797217014
213 => 0.0011705670523272
214 => 0.0011602393972175
215 => 0.0011464288251824
216 => 0.0011617993380774
217 => 0.0012076857205857
218 => 0.0011523370079416
219 => 0.0010574455223739
220 => 0.0010631486623438
221 => 0.0010759619245785
222 => 0.0010520844951723
223 => 0.00102948651212
224 => 0.0010491336249516
225 => 0.0010089268515843
226 => 0.0010808207210499
227 => 0.001078876193361
228 => 0.0011056737820108
301 => 0.0011224308641353
302 => 0.001083811215008
303 => 0.0010740984776911
304 => 0.0010796312942861
305 => 0.00098818616047211
306 => 0.0010982007636549
307 => 0.0010991521745117
308 => 0.0010910056171377
309 => 0.0011495849970127
310 => 0.0012732057599159
311 => 0.001226694656278
312 => 0.0012086841511439
313 => 0.0011744461677184
314 => 0.0012200662477826
315 => 0.0012165633374178
316 => 0.0012007218483088
317 => 0.0011911408662672
318 => 0.0012087941194478
319 => 0.0011889534328382
320 => 0.0011853895003375
321 => 0.0011637959469801
322 => 0.0011560880308756
323 => 0.0011503813966529
324 => 0.0011440989530959
325 => 0.0011579564580952
326 => 0.0011265535286601
327 => 0.0010886846742285
328 => 0.0010855362887292
329 => 0.0010942292579017
330 => 0.0010903832661583
331 => 0.0010855178756004
401 => 0.0010762285200151
402 => 0.0010734725666486
403 => 0.0010824280780912
404 => 0.0010723178278113
405 => 0.0010872360528331
406 => 0.0010831791210902
407 => 0.0010605174301608
408 => 0.0010322725728302
409 => 0.0010320211343544
410 => 0.0010259358261733
411 => 0.0010181852712726
412 => 0.0010160292442079
413 => 0.0010474789999092
414 => 0.0011125790529989
415 => 0.0010997983548652
416 => 0.0011090337190854
417 => 0.0011544625704732
418 => 0.0011689030362362
419 => 0.0011586535356788
420 => 0.0011446233871542
421 => 0.0011452406424851
422 => 0.0011931859072084
423 => 0.0011961761945583
424 => 0.0012037316859883
425 => 0.0012134426276575
426 => 0.0011603073510364
427 => 0.0011427379757346
428 => 0.0011344126310048
429 => 0.0011087737915509
430 => 0.001136423081794
501 => 0.00112031302443
502 => 0.0011224868215663
503 => 0.0011210711333295
504 => 0.0011218441948352
505 => 0.0010808006252481
506 => 0.0010957547448192
507 => 0.0010708906206331
508 => 0.001037600349477
509 => 0.001037488748815
510 => 0.0010456364955182
511 => 0.0010407898969578
512 => 0.0010277478248491
513 => 0.0010296003896353
514 => 0.0010133699727481
515 => 0.0010315710561066
516 => 0.0010320929980507
517 => 0.001025084589538
518 => 0.0010531258697173
519 => 0.0010646144050863
520 => 0.0010600013204686
521 => 0.001064290738772
522 => 0.001100329450574
523 => 0.001106205333077
524 => 0.0011088150119458
525 => 0.0011053183879778
526 => 0.0010649494602665
527 => 0.0010667399938725
528 => 0.0010536022463099
529 => 0.0010425022340412
530 => 0.0010429461763201
531 => 0.0010486530255267
601 => 0.0010735751707146
602 => 0.0011260223560217
603 => 0.0011280126883657
604 => 0.0011304250292288
605 => 0.0011206128265934
606 => 0.0011176533723885
607 => 0.0011215576563848
608 => 0.0011412540616441
609 => 0.0011919185634931
610 => 0.0011740103447714
611 => 0.0011594506841926
612 => 0.0011722234317765
613 => 0.001170257167402
614 => 0.0011536599173033
615 => 0.0011531940877718
616 => 0.0011213386583704
617 => 0.0011095624314338
618 => 0.0010997213347702
619 => 0.0010889751141219
620 => 0.001082604394305
621 => 0.0010923927153841
622 => 0.0010946314202269
623 => 0.0010732290851168
624 => 0.0010703120259257
625 => 0.0010877896347781
626 => 0.0010800983907531
627 => 0.0010880090259665
628 => 0.0010898443611921
629 => 0.0010895488299494
630 => 0.0010815182878536
701 => 0.0010866367159113
702 => 0.001074530107678
703 => 0.0010613659895781
704 => 0.0010529681023839
705 => 0.0010456398319889
706 => 0.0010497059823256
707 => 0.0010352108988249
708 => 0.0010305736298846
709 => 0.0010849027076536
710 => 0.0011250361815376
711 => 0.0011244526249327
712 => 0.0011209003741791
713 => 0.0011156224501071
714 => 0.0011408679486241
715 => 0.0011320729217404
716 => 0.0011384720386474
717 => 0.0011401008824703
718 => 0.0011450309021459
719 => 0.0011467929604304
720 => 0.0011414667964664
721 => 0.0011235915396673
722 => 0.0010790480992522
723 => 0.0010583130074962
724 => 0.0010514700818465
725 => 0.0010517188091973
726 => 0.0010448577984944
727 => 0.0010468786736354
728 => 0.0010441550205918
729 => 0.0010389970806496
730 => 0.0010493874940689
731 => 0.0010505848924221
801 => 0.0010481596457738
802 => 0.0010487308791547
803 => 0.0010286508727436
804 => 0.0010301775120195
805 => 0.0010216769905351
806 => 0.0010200832452321
807 => 0.00099859466714444
808 => 0.00096052453624303
809 => 0.00098161908431944
810 => 0.00095613983658546
811 => 0.00094649045939499
812 => 0.0009921691102286
813 => 0.00098758424061346
814 => 0.00097973693682726
815 => 0.00096812913900606
816 => 0.00096382369388078
817 => 0.00093766517223785
818 => 0.0009361195872289
819 => 0.00094908445689463
820 => 0.00094310161563783
821 => 0.0009346994406341
822 => 0.00090426761448541
823 => 0.00087005216626291
824 => 0.00087108491557411
825 => 0.00088196821305264
826 => 0.0009136128682841
827 => 0.00090124875402707
828 => 0.00089227844727174
829 => 0.0008905985784629
830 => 0.00091162565364914
831 => 0.00094138337034611
901 => 0.00095534502522895
902 => 0.00094150944926182
903 => 0.0009256158845511
904 => 0.00092658325219135
905 => 0.00093301871571362
906 => 0.00093369499193726
907 => 0.00092334991519543
908 => 0.00092626199370162
909 => 0.00092183828016468
910 => 0.00089468995835399
911 => 0.00089419893130069
912 => 0.00088753629530252
913 => 0.00088733455333239
914 => 0.00087599974742707
915 => 0.0008744139297271
916 => 0.00085190798462853
917 => 0.00086672146584669
918 => 0.00085678536038822
919 => 0.00084180930577198
920 => 0.00083922742831132
921 => 0.00083914981395714
922 => 0.00085452687346349
923 => 0.00086654177595339
924 => 0.00085695820319668
925 => 0.00085477620944974
926 => 0.00087807419410601
927 => 0.00087510931319266
928 => 0.00087254174544312
929 => 0.00093871889320139
930 => 0.00088633451688348
1001 => 0.00086349193881321
1002 => 0.00083521991076332
1003 => 0.0008444254256563
1004 => 0.00084636516290141
1005 => 0.00077837603185751
1006 => 0.00075079284986051
1007 => 0.00074132734124943
1008 => 0.0007358798072211
1009 => 0.00073836231688364
1010 => 0.00071353421790178
1011 => 0.00073021911103644
1012 => 0.00070872007598512
1013 => 0.00070511569279485
1014 => 0.000743558630686
1015 => 0.00074890774091317
1016 => 0.00072608677484578
1017 => 0.00074074152943985
1018 => 0.00073542751170772
1019 => 0.0007090886152351
1020 => 0.00070808266312565
1021 => 0.00069486673073267
1022 => 0.00067418635564644
1023 => 0.00066473486930348
1024 => 0.0006598124531545
1025 => 0.00066184353799355
1026 => 0.00066081655934671
1027 => 0.00065411482900093
1028 => 0.00066120069468536
1029 => 0.00064309923594348
1030 => 0.00063589108921911
1031 => 0.00063263533657144
1101 => 0.00061656925005693
1102 => 0.00064213753832261
1103 => 0.00064717481321176
1104 => 0.00065222201308853
1105 => 0.00069615444214613
1106 => 0.00069395970214217
1107 => 0.00071379908289625
1108 => 0.00071302816104243
1109 => 0.0007073696482747
1110 => 0.00068349731368784
1111 => 0.00069301240077072
1112 => 0.00066372644170248
1113 => 0.00068566947348805
1114 => 0.00067565559014403
1115 => 0.00068228376945638
1116 => 0.00067036570541394
1117 => 0.00067696165413983
1118 => 0.00064836933795856
1119 => 0.00062167023541323
1120 => 0.00063241473367286
1121 => 0.00064409523206349
1122 => 0.00066942152871004
1123 => 0.00065433739536477
1124 => 0.00065976222010996
1125 => 0.00064158996531827
1126 => 0.00060409541303505
1127 => 0.00060430762812908
1128 => 0.00059853990812353
1129 => 0.00059355575593782
1130 => 0.00065606998953262
1201 => 0.00064829535638132
1202 => 0.00063590749597356
1203 => 0.00065248913940336
1204 => 0.00065687358911226
1205 => 0.00065699840823167
1206 => 0.00066909594724388
1207 => 0.00067555240598331
1208 => 0.00067669038482003
1209 => 0.00069572612384038
1210 => 0.00070210665247254
1211 => 0.00072838714690217
1212 => 0.00067500462056804
1213 => 0.00067390524256753
1214 => 0.00065272247713112
1215 => 0.00063928803240507
1216 => 0.00065364234505518
1217 => 0.0006663583065041
1218 => 0.00065311759749894
1219 => 0.00065484655456839
1220 => 0.00063707198453465
1221 => 0.00064342555695046
1222 => 0.00064889810943358
1223 => 0.00064587648761417
1224 => 0.00064135297350235
1225 => 0.0006653157426762
1226 => 0.00066396366932856
1227 => 0.00068627835088493
1228 => 0.0007036742408963
1229 => 0.00073485078568398
1230 => 0.000702316435928
1231 => 0.00070113075491056
]
'min_raw' => 0.00059355575593782
'max_raw' => 0.0017161442464502
'avg_raw' => 0.001154850001194
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.000593'
'max' => '$0.001716'
'avg' => '$0.001154'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -0.00010436973056263
'max_diff' => -0.00057971440297302
'year' => 2030
]
5 => [
'items' => [
101 => 0.00071272097704522
102 => 0.00070210487806992
103 => 0.00070881388616703
104 => 0.00073376986075868
105 => 0.00073429714117669
106 => 0.00072546451481254
107 => 0.00072492704869558
108 => 0.00072662345120716
109 => 0.00073655933370364
110 => 0.00073308743106054
111 => 0.00073710520469696
112 => 0.00074212949215163
113 => 0.0007629120753179
114 => 0.00076792268576019
115 => 0.00075574950008909
116 => 0.00075684860245781
117 => 0.00075229549685541
118 => 0.00074789725389373
119 => 0.00075778386175978
120 => 0.00077585183195676
121 => 0.00077573943205189
122 => 0.00077993084994644
123 => 0.00078254206857116
124 => 0.000771332806705
125 => 0.00076403598940611
126 => 0.00076683405346705
127 => 0.00077130821883441
128 => 0.00076538314193971
129 => 0.00072881082258305
130 => 0.00073990452802706
131 => 0.00073805799298669
201 => 0.00073542830254288
202 => 0.00074658310915192
203 => 0.00074550720084214
204 => 0.00071327956986077
205 => 0.00071534267823391
206 => 0.00071340503431417
207 => 0.00071966595822348
208 => 0.00070176676763221
209 => 0.0007072724381052
210 => 0.0007107255430134
211 => 0.00071275944833233
212 => 0.00072010730900625
213 => 0.00071924512236486
214 => 0.00072005371427406
215 => 0.00073094865189018
216 => 0.00078605150766144
217 => 0.00078905063452347
218 => 0.00077428183697571
219 => 0.00078018168029439
220 => 0.00076885527127643
221 => 0.00077645876553053
222 => 0.00078166088319138
223 => 0.00075815351379172
224 => 0.00075676155993744
225 => 0.00074538840280044
226 => 0.00075149969323732
227 => 0.00074177619073491
228 => 0.00074416199813532
301 => 0.00073749107265282
302 => 0.00074949741035331
303 => 0.00076292236149872
304 => 0.00076631403432543
305 => 0.0007573920033253
306 => 0.00075093186489071
307 => 0.00073958998990147
308 => 0.00075845178077875
309 => 0.00076396754323393
310 => 0.00075842280882671
311 => 0.00075713797270971
312 => 0.00075470321058966
313 => 0.00075765451900335
314 => 0.00076393750320703
315 => 0.00076097456388508
316 => 0.0007629316375075
317 => 0.00075547329098437
318 => 0.00077133651743709
319 => 0.00079653113873736
320 => 0.00079661214356457
321 => 0.00079364918827127
322 => 0.00079243681080301
323 => 0.0007954769827411
324 => 0.00079712615130314
325 => 0.00080695750987874
326 => 0.00081750694932897
327 => 0.00086673658016214
328 => 0.00085291309681973
329 => 0.00089659255397876
330 => 0.0009311373335239
331 => 0.00094149580244936
401 => 0.00093196649844156
402 => 0.00089936726419379
403 => 0.00089776779023873
404 => 0.0009464848092466
405 => 0.00093272001999605
406 => 0.00093108274211389
407 => 0.00091366487167239
408 => 0.00092396099034854
409 => 0.00092170907815911
410 => 0.0009181543246008
411 => 0.00093779860180105
412 => 0.00097457093506321
413 => 0.00096883962207554
414 => 0.00096456146279821
415 => 0.00094581581419838
416 => 0.00095710488164767
417 => 0.00095308506095682
418 => 0.00097035676168595
419 => 0.00096012538878903
420 => 0.00093261573817943
421 => 0.00093699674071201
422 => 0.00093633456099256
423 => 0.00094996217269617
424 => 0.00094587150192086
425 => 0.00093553579187076
426 => 0.00097444525122578
427 => 0.00097191868736105
428 => 0.00097550077726833
429 => 0.00097707772402532
430 => 0.0010007612262731
501 => 0.0010104635993565
502 => 0.0010126662079104
503 => 0.0010218827119312
504 => 0.0010124368928943
505 => 0.0010502269037965
506 => 0.0010753550559382
507 => 0.0011045426977336
508 => 0.0011471936872953
509 => 0.0011632308539142
510 => 0.0011603338833076
511 => 0.0011926713768242
512 => 0.0012507811338515
513 => 0.0011720795266243
514 => 0.001254952510137
515 => 0.0012287158803715
516 => 0.0011665093031743
517 => 0.0011625039329702
518 => 0.0012046309492813
519 => 0.0012980646168844
520 => 0.0012746605428657
521 => 0.0012981028975652
522 => 0.0012707561455943
523 => 0.0012693981488624
524 => 0.0012967747268611
525 => 0.0013607415935746
526 => 0.0013303533329611
527 => 0.0012867843098646
528 => 0.00131895499851
529 => 0.0012910857707486
530 => 0.0012282886004966
531 => 0.0012746426462114
601 => 0.0012436470159291
602 => 0.0012526931886638
603 => 0.0013178413932651
604 => 0.0013100025889267
605 => 0.0013201467275943
606 => 0.0013022425883643
607 => 0.0012855172990998
608 => 0.0012542983046515
609 => 0.0012450558994731
610 => 0.0012476101677575
611 => 0.0012450546337046
612 => 0.0012275878932281
613 => 0.0012238159522853
614 => 0.0012175292187946
615 => 0.0012194777403811
616 => 0.0012076568421699
617 => 0.0012299653194166
618 => 0.0012341059693752
619 => 0.0012503402187427
620 => 0.0012520257123671
621 => 0.0012972378657756
622 => 0.0012723357714376
623 => 0.0012890422462629
624 => 0.0012875478619071
625 => 0.001167857508329
626 => 0.0011843497830151
627 => 0.0012100065868659
628 => 0.0011984482315081
629 => 0.0011821074212708
630 => 0.0011689113408654
701 => 0.0011489179296827
702 => 0.0011770582719829
703 => 0.0012140598297159
704 => 0.0012529641329331
705 => 0.0012997051041377
706 => 0.0012892730634897
707 => 0.0012520903429888
708 => 0.0012537583326684
709 => 0.0012640691885385
710 => 0.0012507156933467
711 => 0.0012467774869235
712 => 0.0012635281394512
713 => 0.0012636434919891
714 => 0.0012482786819473
715 => 0.0012312035073163
716 => 0.0012311319617111
717 => 0.0012280935993122
718 => 0.0012712966635153
719 => 0.0012950539805045
720 => 0.0012977777186105
721 => 0.0012948706512284
722 => 0.0012959894660864
723 => 0.0012821656067871
724 => 0.0013137628498071
725 => 0.0013427596046458
726 => 0.0013349878549237
727 => 0.001323336897271
728 => 0.0013140563483145
729 => 0.0013328016525296
730 => 0.0013319669536408
731 => 0.0013425063432885
801 => 0.0013420282156956
802 => 0.0013384842153636
803 => 0.0013349879814911
804 => 0.001348850153599
805 => 0.0013448580706516
806 => 0.0013408597868967
807 => 0.0013328406167198
808 => 0.0013339305551311
809 => 0.0013222816091805
810 => 0.0013168922737643
811 => 0.0012358495999277
812 => 0.0012141923493328
813 => 0.001221006161244
814 => 0.0012232494450457
815 => 0.0012138241818322
816 => 0.0012273375881288
817 => 0.0012252315380717
818 => 0.0012334249468458
819 => 0.0012283060607602
820 => 0.0012285161416307
821 => 0.0012435696941468
822 => 0.0012479398044846
823 => 0.0012457171310956
824 => 0.0012472738153484
825 => 0.0012831469469192
826 => 0.001278046934768
827 => 0.0012753376549597
828 => 0.0012760881439822
829 => 0.0012852544982271
830 => 0.0012878205769513
831 => 0.0012769479210817
901 => 0.0012820755284439
902 => 0.0013039082298017
903 => 0.0013115484396531
904 => 0.0013359323219899
905 => 0.0013255736153843
906 => 0.0013445874696732
907 => 0.0014030295754568
908 => 0.0014497171734428
909 => 0.0014067813288883
910 => 0.0014925171569599
911 => 0.0015592747971877
912 => 0.0015567125277651
913 => 0.0015450717890593
914 => 0.0014690699905036
915 => 0.0013991320023497
916 => 0.0014576380991643
917 => 0.001457787243237
918 => 0.0014527615176341
919 => 0.0014215471675453
920 => 0.001451675325912
921 => 0.0014540667897138
922 => 0.0014527282059264
923 => 0.0014287962368992
924 => 0.0013922565435619
925 => 0.0013993963121764
926 => 0.0014110913988141
927 => 0.0013889501599582
928 => 0.0013818746925587
929 => 0.001395029332617
930 => 0.0014374163237631
1001 => 0.0014294033086181
1002 => 0.0014291940564095
1003 => 0.0014634771332472
1004 => 0.0014389378489824
1005 => 0.0013994863675233
1006 => 0.0013895243481537
1007 => 0.0013541658906122
1008 => 0.0013785881031786
1009 => 0.0013794670151309
1010 => 0.0013660912188972
1011 => 0.0014005717396694
1012 => 0.0014002539956003
1013 => 0.0014329881183253
1014 => 0.0014955634666005
1015 => 0.0014770568569696
1016 => 0.0014555356834824
1017 => 0.0014578756317579
1018 => 0.0014835390888554
1019 => 0.0014680223768545
1020 => 0.0014736022946764
1021 => 0.0014835306429815
1022 => 0.001489520662021
1023 => 0.0014570137601992
1024 => 0.0014494348463997
1025 => 0.0014339310486032
1026 => 0.0014298863971502
1027 => 0.0014425139169581
1028 => 0.0014391870116256
1029 => 0.0013793931459846
1030 => 0.0013731443543352
1031 => 0.0013733359958539
1101 => 0.0013576231121376
1102 => 0.001333657192946
1103 => 0.0013966381976507
1104 => 0.0013915799415543
1105 => 0.0013859960183019
1106 => 0.0013866800170389
1107 => 0.0014140179365569
1108 => 0.0013981605626384
1109 => 0.0014403199901731
1110 => 0.0014316532793004
1111 => 0.0014227642999962
1112 => 0.0014215355722915
1113 => 0.0014181140736314
1114 => 0.0014063804816427
1115 => 0.0013922114642367
1116 => 0.001382855851646
1117 => 0.0012756114256597
1118 => 0.0012955153673106
1119 => 0.0013184130378786
1120 => 0.001326317222002
1121 => 0.001312796568106
1122 => 0.0014069143594679
1123 => 0.0014241105868913
1124 => 0.0013720220923436
1125 => 0.0013622784617729
1126 => 0.0014075531502659
1127 => 0.0013802469784991
1128 => 0.0013925429459737
1129 => 0.0013659657898282
1130 => 0.0014199685192693
1201 => 0.0014195571089503
1202 => 0.0013985488274907
1203 => 0.0014163048831218
1204 => 0.0014132193315008
1205 => 0.0013895010334741
1206 => 0.0014207204316223
1207 => 0.0014207359160543
1208 => 0.0014005159019089
1209 => 0.0013769033521173
1210 => 0.0013726819859181
1211 => 0.0013695017535478
1212 => 0.0013917608037624
1213 => 0.0014117181985826
1214 => 0.0014488539624851
1215 => 0.0014581907758542
1216 => 0.0014946329800207
1217 => 0.0014729334217783
1218 => 0.0014825525548908
1219 => 0.0014929954845939
1220 => 0.0014980022091196
1221 => 0.0014898440201806
1222 => 0.0015464537634608
1223 => 0.0015512333602714
1224 => 0.0015528359177386
1225 => 0.0015337474308156
1226 => 0.0015507024749192
1227 => 0.0015427697712752
1228 => 0.0015634084623884
1229 => 0.001566644872683
1230 => 0.0015639037483021
1231 => 0.0015649310360128
]
'min_raw' => 0.00070176676763221
'max_raw' => 0.001566644872683
'avg_raw' => 0.0011342058201576
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.0007017'
'max' => '$0.001566'
'avg' => '$0.001134'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 0.00010821101169439
'max_diff' => -0.00014949937376727
'year' => 2031
]
6 => [
'items' => [
101 => 0.0015166246067663
102 => 0.0015141196635731
103 => 0.0014799645853919
104 => 0.0014938830322123
105 => 0.00146786316301
106 => 0.0014761143315684
107 => 0.0014797513680489
108 => 0.0014778515865915
109 => 0.0014946699603125
110 => 0.0014803709068829
111 => 0.0014426333539002
112 => 0.0014048855193465
113 => 0.0014044116260324
114 => 0.001394473287499
115 => 0.0013872896890369
116 => 0.0013886735049525
117 => 0.0013935502527332
118 => 0.0013870062435904
119 => 0.0013884027397307
120 => 0.0014115938804649
121 => 0.0014162446983475
122 => 0.0014004394019906
123 => 0.0013369788564242
124 => 0.0013214054793635
125 => 0.0013325993139612
126 => 0.0013272493819988
127 => 0.0010711938388401
128 => 0.0011313502905797
129 => 0.0010956073696761
130 => 0.0011120793520812
131 => 0.0010755950854231
201 => 0.0010930072897766
202 => 0.0010897918914244
203 => 0.0011865216856628
204 => 0.0011850113829733
205 => 0.0011857342849473
206 => 0.0011512282902149
207 => 0.0012061972767635
208 => 0.0012332769761581
209 => 0.0012282652445031
210 => 0.0012295265893871
211 => 0.0012078525052433
212 => 0.001185944137459
213 => 0.0011616443859126
214 => 0.0012067903207458
215 => 0.0012017708634592
216 => 0.001213283692531
217 => 0.0012425640583684
218 => 0.0012468757034632
219 => 0.0012526705981951
220 => 0.0012505935409424
221 => 0.0013000774713817
222 => 0.0012940846409
223 => 0.0013085256381059
224 => 0.0012788194112123
225 => 0.0012452039957413
226 => 0.0012515931872517
227 => 0.0012509778567306
228 => 0.0012431439929538
229 => 0.0012360719310118
301 => 0.0012242989404195
302 => 0.0012615504247283
303 => 0.0012600380824946
304 => 0.0012845211453532
305 => 0.0012801935261772
306 => 0.0012512926261714
307 => 0.0012523248274691
308 => 0.001259266877255
309 => 0.0012832933908267
310 => 0.0012904260959046
311 => 0.0012871219427234
312 => 0.0012949426282209
313 => 0.0013011237791632
314 => 0.0012957188856126
315 => 0.0013722407803767
316 => 0.0013404635545828
317 => 0.0013559515533302
318 => 0.0013596453497709
319 => 0.0013501837678603
320 => 0.0013522356461829
321 => 0.0013553436827382
322 => 0.0013742150720861
323 => 0.0014237390582156
324 => 0.0014456728945512
325 => 0.0015116619233632
326 => 0.0014438515947773
327 => 0.001439828010506
328 => 0.0014517146272728
329 => 0.0014904571728336
330 => 0.0015218543671083
331 => 0.0015322706277968
401 => 0.0015336473086005
402 => 0.0015531889061121
403 => 0.0015643897853765
404 => 0.0015508160421791
405 => 0.0015393137160495
406 => 0.0014981138115745
407 => 0.0015028828127011
408 => 0.0015357365012725
409 => 0.0015821442714522
410 => 0.0016219669661719
411 => 0.0016080224464421
412 => 0.0017144092886838
413 => 0.0017249571095407
414 => 0.0017234997417502
415 => 0.0017475292473886
416 => 0.0016998355722201
417 => 0.0016794456020641
418 => 0.0015418006495157
419 => 0.0015804732667171
420 => 0.0016366861869826
421 => 0.0016292461961979
422 => 0.0015884228709254
423 => 0.001621935998019
424 => 0.0016108555101494
425 => 0.0016021158696369
426 => 0.0016421538570875
427 => 0.0015981304452157
428 => 0.001636247019773
429 => 0.0015873621186378
430 => 0.0016080861438336
501 => 0.0015963221848241
502 => 0.0016039349080399
503 => 0.0015594310836742
504 => 0.0015834442670327
505 => 0.0015584320562985
506 => 0.0015584201972539
507 => 0.0015578680513157
508 => 0.0015872948063233
509 => 0.0015882544117476
510 => 0.0015665079953356
511 => 0.0015633739969878
512 => 0.0015749620314748
513 => 0.0015613954780016
514 => 0.0015677431829848
515 => 0.001561587743519
516 => 0.0015602020244419
517 => 0.0015491603790745
518 => 0.0015444033346539
519 => 0.0015462686943451
520 => 0.00153990126006
521 => 0.0015360646505831
522 => 0.0015571048531247
523 => 0.0015458639216661
524 => 0.001555382019161
525 => 0.0015445349457858
526 => 0.0015069342636227
527 => 0.0014853097136907
528 => 0.0014142855106697
529 => 0.0014344278865412
530 => 0.0014477823025828
531 => 0.0014433686681608
601 => 0.0014528508627492
602 => 0.0014534329924857
603 => 0.0014503502343655
604 => 0.001446780795388
605 => 0.0014450433898962
606 => 0.0014579925870029
607 => 0.0014655100317733
608 => 0.0014491225968917
609 => 0.0014452832501835
610 => 0.0014618518516239
611 => 0.0014719586889312
612 => 0.0015465818970671
613 => 0.0015410535687786
614 => 0.0015549285879031
615 => 0.0015533664736792
616 => 0.0015679097041855
617 => 0.0015916817396356
618 => 0.0015433465448
619 => 0.0015517358633181
620 => 0.0015496789961551
621 => 0.0015721353325013
622 => 0.0015722054387322
623 => 0.0015587417433155
624 => 0.0015660406310244
625 => 0.0015619665921398
626 => 0.0015693289310436
627 => 0.0015409797345839
628 => 0.0015755059957652
629 => 0.0015950801610319
630 => 0.0015953519483356
701 => 0.0016046299473218
702 => 0.0016140569316373
703 => 0.0016321512071135
704 => 0.0016135522921149
705 => 0.0015800946546003
706 => 0.0015825101879614
707 => 0.0015628939873283
708 => 0.0015632237392048
709 => 0.0015614634978444
710 => 0.0015667461146718
711 => 0.0015421389719101
712 => 0.0015479142191323
713 => 0.0015398288392015
714 => 0.0015517182872812
715 => 0.0015389272065436
716 => 0.0015496780042715
717 => 0.0015543176921763
718 => 0.0015714382404302
719 => 0.0015363984876462
720 => 0.0014649500597369
721 => 0.0014799693855119
722 => 0.0014577546229481
723 => 0.0014598106838009
724 => 0.0014639642539433
725 => 0.0014505011741482
726 => 0.0014530695055027
727 => 0.0014529777466337
728 => 0.0014521870182723
729 => 0.0014486847512488
730 => 0.0014436057711623
731 => 0.0014638388645993
801 => 0.001467276861442
802 => 0.0014749191025455
803 => 0.001497657228288
804 => 0.0014953851533244
805 => 0.0014990910018575
806 => 0.0014910011553172
807 => 0.0014601859485797
808 => 0.001461859362562
809 => 0.0014409918633883
810 => 0.0014743854736751
811 => 0.0014664774259851
812 => 0.0014613790561944
813 => 0.001459987918761
814 => 0.0014827824079191
815 => 0.0014896028763351
816 => 0.0014853528181228
817 => 0.0014766358247356
818 => 0.0014933750289869
819 => 0.0014978537338742
820 => 0.0014988563507302
821 => 0.0015285150112394
822 => 0.001500513940386
823 => 0.0015072540764471
824 => 0.0015598386939392
825 => 0.0015121517020551
826 => 0.0015374125652029
827 => 0.001536176177403
828 => 0.0015490987802085
829 => 0.0015351161467905
830 => 0.0015352894782897
831 => 0.001546763874128
901 => 0.0015306501545913
902 => 0.0015266601710263
903 => 0.001521148037308
904 => 0.0015331835796245
905 => 0.0015403983429225
906 => 0.0015985440364445
907 => 0.0016361088062255
908 => 0.0016344780204992
909 => 0.001649380349334
910 => 0.0016426667137042
911 => 0.0016209866132882
912 => 0.0016579919010918
913 => 0.0016462818796637
914 => 0.0016472472396026
915 => 0.0016472113088574
916 => 0.0016549974493992
917 => 0.0016494802552361
918 => 0.0016386052992121
919 => 0.0016458246025338
920 => 0.0016672633524509
921 => 0.001733809890015
922 => 0.0017710502140602
923 => 0.0017315679757472
924 => 0.0017588022950473
925 => 0.0017424714080474
926 => 0.0017395036000777
927 => 0.0017566087651986
928 => 0.0017737438706466
929 => 0.0017726524385067
930 => 0.0017602132318488
1001 => 0.0017531866396409
1002 => 0.0018063943499199
1003 => 0.0018455968844837
1004 => 0.0018429235344436
1005 => 0.0018547228321007
1006 => 0.0018893659349606
1007 => 0.0018925332661246
1008 => 0.0018921342551982
1009 => 0.0018842836944314
1010 => 0.0019183943281723
1011 => 0.0019468500189584
1012 => 0.0018824665164384
1013 => 0.0019069829113561
1014 => 0.0019179891109035
1015 => 0.0019341494772315
1016 => 0.0019614147240186
1017 => 0.0019910320137789
1018 => 0.0019952202232881
1019 => 0.001992248488217
1020 => 0.0019727150894646
1021 => 0.0020051226813281
1022 => 0.0020241062885902
1023 => 0.0020354105922827
1024 => 0.00206407642559
1025 => 0.001918057081445
1026 => 0.0018146973320269
1027 => 0.0017985562146223
1028 => 0.0018313798115825
1029 => 0.0018400351323376
1030 => 0.0018365461833941
1031 => 0.0017202053883667
1101 => 0.0017979437044138
1102 => 0.0018815835960572
1103 => 0.0018847965449294
1104 => 0.0019266684235138
1105 => 0.0019403036235671
1106 => 0.0019740159741001
1107 => 0.0019719072573954
1108 => 0.0019801156782695
1109 => 0.0019782287044606
1110 => 0.00204067373485
1111 => 0.0021095598765463
1112 => 0.0021071745685039
1113 => 0.0020972713706112
1114 => 0.002111979308228
1115 => 0.0021830771887461
1116 => 0.0021765316352283
1117 => 0.0021828900829219
1118 => 0.0022667184909538
1119 => 0.0023757073458472
1120 => 0.002325071080447
1121 => 0.0024349372061724
1122 => 0.0025040921085634
1123 => 0.0026236883614984
1124 => 0.002608714321607
1125 => 0.0026552722652367
1126 => 0.0025819076650249
1127 => 0.0024134477135066
1128 => 0.0023867882813401
1129 => 0.0024401611396619
1130 => 0.0025713731037986
1201 => 0.0024360288079675
1202 => 0.0024634087827413
1203 => 0.0024555233481645
1204 => 0.0024551031668668
1205 => 0.0024711397779976
1206 => 0.002447877837139
1207 => 0.0023531045053377
1208 => 0.0023965385647995
1209 => 0.0023797665885664
1210 => 0.0023983763466307
1211 => 0.0024988055356552
1212 => 0.0024544033972546
1213 => 0.0024076293513864
1214 => 0.0024662943848969
1215 => 0.0025409951320483
1216 => 0.0025363204935417
1217 => 0.0025272497409916
1218 => 0.0025783810981874
1219 => 0.0026628351201927
1220 => 0.0026856627029771
1221 => 0.002702513557899
1222 => 0.0027048370060953
1223 => 0.0027287699665313
1224 => 0.0026000764063842
1225 => 0.0028043163914227
1226 => 0.0028395829948231
1227 => 0.0028329543350348
1228 => 0.0028721516804688
1229 => 0.0028606188271015
1230 => 0.0028439095320214
1231 => 0.0029060456620488
]
'min_raw' => 0.0010711938388401
'max_raw' => 0.0029060456620488
'avg_raw' => 0.0019886197504445
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.001071'
'max' => '$0.002906'
'avg' => '$0.001988'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.00036942707120788
'max_diff' => 0.0013394007893659
'year' => 2032
]
7 => [
'items' => [
101 => 0.0028348116030995
102 => 0.0027337038245396
103 => 0.0026782340975365
104 => 0.0027512811086694
105 => 0.0027958883693789
106 => 0.0028253709311532
107 => 0.0028342923365323
108 => 0.0026100665211148
109 => 0.0024892212427386
110 => 0.0025666816806838
111 => 0.0026611887610108
112 => 0.0025995514147812
113 => 0.0026019674820584
114 => 0.0025140888243446
115 => 0.0026689640722608
116 => 0.0026464000513453
117 => 0.0027634622317701
118 => 0.002735524402929
119 => 0.0028309840667378
120 => 0.0028058463380553
121 => 0.0029101916443851
122 => 0.0029518178121165
123 => 0.0030217146263331
124 => 0.0030731310074021
125 => 0.0031033236898045
126 => 0.0031015110344029
127 => 0.0032211494840157
128 => 0.0031506028701281
129 => 0.003061979696525
130 => 0.0030603767829171
131 => 0.0031062759803262
201 => 0.0032024681062659
202 => 0.0032274093249835
203 => 0.003241348063703
204 => 0.0032200004001431
205 => 0.0031434271068895
206 => 0.003110363147098
207 => 0.0031385345987955
208 => 0.0031040833341699
209 => 0.0031635558822312
210 => 0.0032452243933703
211 => 0.0032283601687724
212 => 0.0032847347431774
213 => 0.0033430764969084
214 => 0.0034265078250358
215 => 0.0034483198636614
216 => 0.0034843743340721
217 => 0.0035214862274012
218 => 0.0035334055673449
219 => 0.0035561632856515
220 => 0.0035560433412425
221 => 0.0036246252571305
222 => 0.0037002732341601
223 => 0.003728828594234
224 => 0.0037944900701724
225 => 0.0036820470936805
226 => 0.0037673363830014
227 => 0.0038442694568983
228 => 0.0037525466746201
301 => 0.0038789651613232
302 => 0.0038838737046914
303 => 0.0039579868818606
304 => 0.0038828589784329
305 => 0.0038382482691943
306 => 0.0039670377152247
307 => 0.0040293548713293
308 => 0.0040105844367568
309 => 0.0038677405028491
310 => 0.0037845992064503
311 => 0.0035670023970163
312 => 0.0038247552172735
313 => 0.0039502990972679
314 => 0.0038674153745291
315 => 0.0039092171032203
316 => 0.0041372737807038
317 => 0.0042241029979131
318 => 0.0042060431277156
319 => 0.0042090949484882
320 => 0.0042559464180326
321 => 0.0044637116355679
322 => 0.0043392139012607
323 => 0.0044343877542975
324 => 0.0044848676227733
325 => 0.0045317561378873
326 => 0.0044166127640347
327 => 0.0042668129264446
328 => 0.0042193650297104
329 => 0.0038591742217623
330 => 0.0038404247259792
331 => 0.0038299000658283
401 => 0.0037635435723195
402 => 0.0037114055449949
403 => 0.0036699434499055
404 => 0.0035611345307612
405 => 0.0035978543468531
406 => 0.0034244356399235
407 => 0.0035353827830354
408 => 0.0032586023394347
409 => 0.0034891133174407
410 => 0.0033636566721601
411 => 0.0034478974353204
412 => 0.0034476035272336
413 => 0.0032924895736973
414 => 0.0032030230824432
415 => 0.0032600346127583
416 => 0.0033211554988369
417 => 0.0033310721569678
418 => 0.0034103169811872
419 => 0.003432432508265
420 => 0.003365421428744
421 => 0.0032528666799444
422 => 0.00327901058099
423 => 0.003202493277123
424 => 0.0030683996452916
425 => 0.0031647080327231
426 => 0.0031975919505731
427 => 0.0032121153620511
428 => 0.0030802496759026
429 => 0.0030388146143714
430 => 0.0030167549352861
501 => 0.003235844475761
502 => 0.0032478466953549
503 => 0.0031864416429697
504 => 0.0034639983024167
505 => 0.0034011786821175
506 => 0.0034713635891723
507 => 0.0032766382959975
508 => 0.0032840770644292
509 => 0.003191890990029
510 => 0.0032435090318174
511 => 0.0032070270636085
512 => 0.0032393388041403
513 => 0.0032587063281888
514 => 0.0033508772757613
515 => 0.0034901657616057
516 => 0.0033371100098242
517 => 0.0032704214269742
518 => 0.0033117946487035
519 => 0.003421976990268
520 => 0.0035889088778685
521 => 0.0034900818405917
522 => 0.0035339396015432
523 => 0.0035435205712151
524 => 0.003470649172703
525 => 0.0035915957502743
526 => 0.003656412003763
527 => 0.0037229000680086
528 => 0.0037806297912398
529 => 0.0036963432730451
530 => 0.0037865419295112
531 => 0.0037138577346057
601 => 0.0036486524978216
602 => 0.0036487513872502
603 => 0.003607847189719
604 => 0.0035285901527417
605 => 0.003513973939102
606 => 0.0035900093282801
607 => 0.0036509825098228
608 => 0.0036560045530965
609 => 0.0036897624393138
610 => 0.0037097400086432
611 => 0.0039055473462606
612 => 0.0039843026772536
613 => 0.0040806032052297
614 => 0.0041181176880767
615 => 0.0042310228317599
616 => 0.0041398427585283
617 => 0.0041201153761351
618 => 0.0038462444285508
619 => 0.0038910907808752
620 => 0.0039628941179759
621 => 0.0038474284391327
622 => 0.003920664835823
623 => 0.0039351232518887
624 => 0.0038435049595491
625 => 0.0038924422480804
626 => 0.0037624793186362
627 => 0.0034929985983199
628 => 0.0035918957593512
629 => 0.0036647173582947
630 => 0.0035607919577639
701 => 0.0037470742157468
702 => 0.0036382519662796
703 => 0.0036037605375876
704 => 0.0034691971771782
705 => 0.0035327059034727
706 => 0.0036186023651434
707 => 0.0035655283383664
708 => 0.0036756649130339
709 => 0.0038316476751147
710 => 0.0039428102803075
711 => 0.0039513439648227
712 => 0.0038798738569998
713 => 0.0039944051609021
714 => 0.0039952393964143
715 => 0.0038660476177384
716 => 0.0037869183726423
717 => 0.0037689400416671
718 => 0.0038138534373026
719 => 0.0038683865910742
720 => 0.0039543701753255
721 => 0.0040063282544878
722 => 0.0041418073685071
723 => 0.0041784641322702
724 => 0.0042187388020094
725 => 0.0042725581810292
726 => 0.0043371821445479
727 => 0.0041957885914131
728 => 0.0042014064208697
729 => 0.0040697427019176
730 => 0.00392904113573
731 => 0.0040358160857686
801 => 0.0041754101292676
802 => 0.0041433871014512
803 => 0.0041397838566508
804 => 0.0041458435149484
805 => 0.0041216991977491
806 => 0.0040124953458871
807 => 0.0039576538551343
808 => 0.0040284133697619
809 => 0.0040660189026428
810 => 0.0041243418045939
811 => 0.0041171522758813
812 => 0.0042673858078851
813 => 0.0043257620155956
814 => 0.0043108268836045
815 => 0.0043135753073249
816 => 0.0044192626429736
817 => 0.0045368086964734
818 => 0.0046469060871438
819 => 0.0047589018817267
820 => 0.0046238865800867
821 => 0.0045553341365001
822 => 0.0046260627597372
823 => 0.0045885331566701
824 => 0.0048041893878967
825 => 0.0048191209574442
826 => 0.0050347615942707
827 => 0.0052394302366284
828 => 0.0051108815293831
829 => 0.0052320971703545
830 => 0.0053632017689212
831 => 0.005616123810511
901 => 0.0055309485648083
902 => 0.0054657056614662
903 => 0.0054040514330594
904 => 0.0055323440950408
905 => 0.0056973905551546
906 => 0.0057329399818678
907 => 0.0057905436340693
908 => 0.0057299804372189
909 => 0.0058029221370079
910 => 0.0060604383894702
911 => 0.0059908552248961
912 => 0.0058920359451489
913 => 0.0060953202943441
914 => 0.0061688881100699
915 => 0.0066852255685981
916 => 0.0073371229388266
917 => 0.0070672331469631
918 => 0.0068997038438643
919 => 0.0069390772039407
920 => 0.0071771280554295
921 => 0.0072535824335713
922 => 0.0070457530783772
923 => 0.007119161920119
924 => 0.007523651855514
925 => 0.0077406477282626
926 => 0.0074459381866362
927 => 0.0066328462496386
928 => 0.0058831383502128
929 => 0.0060819946449272
930 => 0.0060594505123359
1001 => 0.0064940244867708
1002 => 0.0059891956894337
1003 => 0.0059976957116752
1004 => 0.0064412562156796
1005 => 0.0063229218777634
1006 => 0.0061312354054561
1007 => 0.0058845378735936
1008 => 0.0054284946691861
1009 => 0.0050245644853368
1010 => 0.005816764595431
1011 => 0.0057826034861613
1012 => 0.005733133137546
1013 => 0.0058432240451385
1014 => 0.0063777942425581
1015 => 0.0063654706692727
1016 => 0.0062870743835734
1017 => 0.0063465372753232
1018 => 0.0061208112730335
1019 => 0.006178986003509
1020 => 0.0058830195926512
1021 => 0.0060168087710081
1022 => 0.0061308241323773
1023 => 0.0061537144041984
1024 => 0.0062052873554177
1025 => 0.005764602133869
1026 => 0.005962456860506
1027 => 0.0060786779759244
1028 => 0.0055535867483036
1029 => 0.0060682986106514
1030 => 0.0057569307845979
1031 => 0.0056512478678476
1101 => 0.0057935359925864
1102 => 0.0057380861719959
1103 => 0.005690413672375
1104 => 0.005663811598469
1105 => 0.0057682922935099
1106 => 0.0057634181442048
1107 => 0.0055924674482888
1108 => 0.0053694692343083
1109 => 0.005444314754587
1110 => 0.0054171226753892
1111 => 0.0053185750725286
1112 => 0.0053849842581737
1113 => 0.0050925518135122
1114 => 0.0045894369917877
1115 => 0.0049218100538426
1116 => 0.0049090140525059
1117 => 0.0049025617283794
1118 => 0.0051523308983969
1119 => 0.0051283213558549
1120 => 0.0050847438010391
1121 => 0.0053177747365604
1122 => 0.0052327153103867
1123 => 0.0054948484193327
1124 => 0.0056675062385911
1125 => 0.0056237146307318
1126 => 0.005786100144272
1127 => 0.0054460390442075
1128 => 0.0055589937007657
1129 => 0.0055822734989339
1130 => 0.0053148991709885
1201 => 0.0051322496139458
1202 => 0.0051200689708485
1203 => 0.0048033798095958
1204 => 0.0049725526033114
1205 => 0.0051214176609352
1206 => 0.0050501228507285
1207 => 0.005027553043689
1208 => 0.0051428572930602
1209 => 0.0051518174207505
1210 => 0.0049475255598608
1211 => 0.0049900043068216
1212 => 0.0051671477431523
1213 => 0.0049855407467294
1214 => 0.0046327080180139
1215 => 0.0045452006229984
1216 => 0.004533525523422
1217 => 0.0042961985278409
1218 => 0.0045510482855662
1219 => 0.0044397995367702
1220 => 0.0047912330012522
1221 => 0.0045904960911155
1222 => 0.0045818427241273
1223 => 0.0045687618907517
1224 => 0.0043644847418003
1225 => 0.0044092084549306
1226 => 0.0045578768889895
1227 => 0.0046109234611315
1228 => 0.0046053902690593
1229 => 0.0045571483325568
1230 => 0.004579233244049
1231 => 0.0045080900492395
]
'min_raw' => 0.0024892212427386
'max_raw' => 0.0077406477282626
'avg_raw' => 0.0051149344855006
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.002489'
'max' => '$0.00774'
'avg' => '$0.005114'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.0014180274038985
'max_diff' => 0.0048346020662138
'year' => 2033
]
8 => [
'items' => [
101 => 0.0044829679064347
102 => 0.004403675513353
103 => 0.0042871376006056
104 => 0.0043033429121417
105 => 0.0040724508131854
106 => 0.0039466485433029
107 => 0.0039118281330467
108 => 0.0038652648252069
109 => 0.0039170875825674
110 => 0.0040717967248791
111 => 0.0038851846758757
112 => 0.0035652514071724
113 => 0.0035844799417613
114 => 0.0036276807499792
115 => 0.003547176329667
116 => 0.0034709856520654
117 => 0.0035372272646949
118 => 0.0034016673211396
119 => 0.0036440625215126
120 => 0.0036375064106472
121 => 0.0037278563517276
122 => 0.0037843540240526
123 => 0.0036541451806821
124 => 0.0036213980086965
125 => 0.0036400522861355
126 => 0.0033317386329862
127 => 0.0037026605485914
128 => 0.0037058682967205
129 => 0.0036784016097594
130 => 0.0038759060788898
131 => 0.0042927021119438
201 => 0.0041358866787273
202 => 0.0040751630032143
203 => 0.0039597272516754
204 => 0.0041135385367043
205 => 0.0041017282298439
206 => 0.0040483175432954
207 => 0.0040160145934193
208 => 0.0040755337690284
209 => 0.0040086395088918
210 => 0.0039966234616399
211 => 0.0039238192888818
212 => 0.003897831511586
213 => 0.0038785911958794
214 => 0.0038574094988008
215 => 0.0039041310444061
216 => 0.0037982538753332
217 => 0.0036705763886981
218 => 0.0036599613871739
219 => 0.0036892703396626
220 => 0.0036763033099813
221 => 0.0036598993060246
222 => 0.0036285795951067
223 => 0.0036192877059171
224 => 0.0036494818379995
225 => 0.0036153944233057
226 => 0.003665692260524
227 => 0.0036520140319069
228 => 0.0035756085587497
301 => 0.0034803790502666
302 => 0.0034795313078904
303 => 0.0034590142664954
304 => 0.0034328827295211
305 => 0.0034256135337434
306 => 0.0035316485808422
307 => 0.0037511379549747
308 => 0.0037080469388969
309 => 0.0037391846141581
310 => 0.0038923511583532
311 => 0.0039410381968741
312 => 0.0039064812901476
313 => 0.0038591776648433
314 => 0.0038612587842867
315 => 0.0040229095917328
316 => 0.0040329915543083
317 => 0.0040584654211722
318 => 0.0040912065390062
319 => 0.0039120572440914
320 => 0.0038528208686069
321 => 0.0038247513875933
322 => 0.0037383082503278
323 => 0.0038315297627942
324 => 0.0037772135796232
325 => 0.003784542688438
326 => 0.0037797695967075
327 => 0.0037823760275474
328 => 0.003643994767114
329 => 0.003694413625311
330 => 0.0036105824946602
331 => 0.0034983420212046
401 => 0.003497965751781
402 => 0.0035254364486483
403 => 0.0035090958032232
404 => 0.0034651235465406
405 => 0.0034713695980591
406 => 0.0034166476143522
407 => 0.0034780138376547
408 => 0.0034797736013601
409 => 0.0034561442627479
410 => 0.0035506873966522
411 => 0.0035894217957526
412 => 0.0035738684588886
413 => 0.0035883305321762
414 => 0.0037098375651592
415 => 0.003729648513259
416 => 0.0037384472277671
417 => 0.0037266581159325
418 => 0.0035905514576856
419 => 0.003596588366749
420 => 0.0035522935335935
421 => 0.0035148690672516
422 => 0.0035163658496398
423 => 0.0035356068901796
424 => 0.0036196336426891
425 => 0.0037964629896976
426 => 0.0038031735341561
427 => 0.0038113069098
428 => 0.0037782243835489
429 => 0.0037682463770744
430 => 0.0037814099431562
501 => 0.0038478177486473
502 => 0.0040186366539136
503 => 0.0039582578441814
504 => 0.003909168932017
505 => 0.0039522331422609
506 => 0.0039456037446422
507 => 0.0038896449571512
508 => 0.0038880743803629
509 => 0.003780671576061
510 => 0.0037409672047541
511 => 0.0037077872602694
512 => 0.0036715556270765
513 => 0.0036500763004244
514 => 0.0036830783083414
515 => 0.0036906262580203
516 => 0.0036184667909334
517 => 0.0036086317222078
518 => 0.0036675587007013
519 => 0.0036416271344855
520 => 0.0036682983934103
521 => 0.0036744863542627
522 => 0.0036734899500446
523 => 0.0036464144166939
524 => 0.0036636715542476
525 => 0.0036228532793328
526 => 0.0035784695360696
527 => 0.0035501554730726
528 => 0.0035254476977922
529 => 0.0035391570075421
530 => 0.0034902858215049
531 => 0.0034746509455089
601 => 0.0036578252243423
602 => 0.0037931380335719
603 => 0.003791170531736
604 => 0.00377919387031
605 => 0.0037613989808081
606 => 0.0038465159416427
607 => 0.0038168628944553
608 => 0.0038384379638791
609 => 0.0038439297245503
610 => 0.0038605516300895
611 => 0.0038664925326187
612 => 0.0038485349989533
613 => 0.0037882673226444
614 => 0.0036380860033612
615 => 0.0035681761938282
616 => 0.0035451047922423
617 => 0.0035459433938712
618 => 0.0035228110172659
619 => 0.0035296245388965
620 => 0.0035204415525006
621 => 0.0035030511978699
622 => 0.0035380832021484
623 => 0.0035421203142958
624 => 0.0035339434258959
625 => 0.0035358693791218
626 => 0.0034681682355655
627 => 0.0034733154064709
628 => 0.0034446553047986
629 => 0.0034392818812377
630 => 0.0033668316399307
701 => 0.0032384755356249
702 => 0.0033095972772389
703 => 0.0032236922145995
704 => 0.0031911586657038
705 => 0.0033451674261709
706 => 0.0033297092181581
707 => 0.0033032514855617
708 => 0.0032641149847769
709 => 0.0032495988759404
710 => 0.0031614035938917
711 => 0.0031561925461247
712 => 0.003199904509381
713 => 0.003179732942375
714 => 0.0031514044227288
715 => 0.0030488013961863
716 => 0.0029334416236578
717 => 0.0029369236100648
718 => 0.0029736174073612
719 => 0.0030803095718333
720 => 0.0030386230973809
721 => 0.0030083790818685
722 => 0.0030027152868948
723 => 0.0030736095389487
724 => 0.00317393975841
725 => 0.0032210124526191
726 => 0.0031743648422768
727 => 0.0031207785792014
728 => 0.0031240401267399
729 => 0.003145737741315
730 => 0.0031480178538191
731 => 0.0031131387053138
801 => 0.0031229569813123
802 => 0.0031080421222686
803 => 0.0030165096598486
804 => 0.003014854127856
805 => 0.0029923905854178
806 => 0.0029917103982803
807 => 0.0029534943087996
808 => 0.0029481476137059
809 => 0.0028722672484912
810 => 0.0029222119346624
811 => 0.0028887116613925
812 => 0.0028382188476591
813 => 0.0028295138675396
814 => 0.0028292521853256
815 => 0.0028810970150432
816 => 0.0029216060976417
817 => 0.0028892944129887
818 => 0.002881937668729
819 => 0.0029604884506109
820 => 0.0029504921476102
821 => 0.0029418354136808
822 => 0.0031649562876887
823 => 0.0029883387055725
824 => 0.0029113233587907
825 => 0.0028160022423305
826 => 0.0028470392785007
827 => 0.0028535792380507
828 => 0.0026243491358867
829 => 0.0025313505119876
830 => 0.0024994368888446
831 => 0.0024810701475334
901 => 0.0024894401021839
902 => 0.0024057304330241
903 => 0.0024619847151296
904 => 0.0023894992174394
905 => 0.0023773467878634
906 => 0.0025069598369636
907 => 0.0025249947355575
908 => 0.0024480522551523
909 => 0.0024974617834285
910 => 0.0024795452016318
911 => 0.0023907417732513
912 => 0.002387350135481
913 => 0.0023427916967111
914 => 0.0022730663682502
915 => 0.0022412000221632
916 => 0.0022246037524448
917 => 0.0022314516967855
918 => 0.0022279891665763
919 => 0.0022053938148156
920 => 0.00222928430569
921 => 0.0021682539737383
922 => 0.0021439512038003
923 => 0.0021329742064393
924 => 0.0020788062740573
925 => 0.0021650115430659
926 => 0.002181995067046
927 => 0.0021990120538148
928 => 0.0023471333056467
929 => 0.0023397335864915
930 => 0.0024066234438452
1001 => 0.002404024226991
1002 => 0.0023849461561299
1003 => 0.0023044589133571
1004 => 0.0023365396937792
1005 => 0.0022378000381002
1006 => 0.0023117825017789
1007 => 0.0022780199949375
1008 => 0.0023003673642538
1009 => 0.002260184779242
1010 => 0.0022824234808858
1011 => 0.0021860224906289
1012 => 0.0020960046023255
1013 => 0.0021322304283647
1014 => 0.0021716120441951
1015 => 0.0022570014215645
1016 => 0.0022061442128504
1017 => 0.0022244343882279
1018 => 0.0021631653624514
1019 => 0.0020367498616425
1020 => 0.0020374653596484
1021 => 0.0020180190889604
1022 => 0.0020012146718839
1023 => 0.0022119857750532
1024 => 0.002185773056576
1025 => 0.0021440065203184
1026 => 0.0021999126888354
1027 => 0.0022146951671414
1028 => 0.0022151160035171
1029 => 0.00225590370092
1030 => 0.0022776721023355
1031 => 0.0022815088774347
1101 => 0.0023456892005747
1102 => 0.0023672015983322
1103 => 0.0024558081201473
1104 => 0.0022758252055628
1105 => 0.002272118575878
1106 => 0.0022006994032756
1107 => 0.0021554042349188
1108 => 0.0022038008022047
1109 => 0.0022466735540298
1110 => 0.0022020315791822
1111 => 0.0022078608786538
1112 => 0.0021479326748041
1113 => 0.0021693541877963
1114 => 0.0021878052805746
1115 => 0.0021776176716475
1116 => 0.0021623663279979
1117 => 0.0022431584772946
1118 => 0.0022385998676043
1119 => 0.0023138353744329
1120 => 0.0023724868321485
1121 => 0.002477600729577
1122 => 0.002367908897899
1123 => 0.0023639112915671
1124 => 0.0024029885346975
1125 => 0.0023671956158099
1126 => 0.0023898155050173
1127 => 0.0024739563157236
1128 => 0.0024757340784664
1129 => 0.0024459542620055
1130 => 0.0024441421574674
1201 => 0.0024498616969742
1202 => 0.0024833612185123
1203 => 0.0024716554563506
1204 => 0.0024852016606778
1205 => 0.0025021413966157
1206 => 0.0025722113267545
1207 => 0.0025891049496903
1208 => 0.0025480622042955
1209 => 0.0025517679046685
1210 => 0.0025364167912423
1211 => 0.0025215878080215
1212 => 0.0025549211967028
1213 => 0.0026158386196873
1214 => 0.0026154596555606
1215 => 0.0026295913136275
1216 => 0.0026383952195302
1217 => 0.0026006024105427
1218 => 0.002576000681572
1219 => 0.0025854345499081
1220 => 0.0026005195108204
1221 => 0.0025805427003942
1222 => 0.0024572365722855
1223 => 0.0024946397747277
1224 => 0.0024884140529182
1225 => 0.0024795478679877
1226 => 0.0025171570772738
1227 => 0.0025135295772899
1228 => 0.0024048718693749
1229 => 0.0024118277832965
1230 => 0.0024052948815391
1231 => 0.0024264040236231
]
'min_raw' => 0.0020012146718839
'max_raw' => 0.0044829679064347
'avg_raw' => 0.0032420912891593
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.0020012'
'max' => '$0.004482'
'avg' => '$0.003242'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.00048800657085473
'max_diff' => -0.0032576798218279
'year' => 2034
]
9 => [
'items' => [
101 => 0.0023660556528631
102 => 0.0023846184052564
103 => 0.0023962607895425
104 => 0.002403118243328
105 => 0.0024278920686014
106 => 0.002424985146144
107 => 0.0024277113702199
108 => 0.0024644444130529
109 => 0.0026502275384443
110 => 0.0026603393040519
111 => 0.0026105452719952
112 => 0.002630437005658
113 => 0.0025922492268693
114 => 0.002617884938606
115 => 0.0026354242414998
116 => 0.0025561675043368
117 => 0.002551474434734
118 => 0.0025131290413981
119 => 0.0025337336837827
120 => 0.0025009502162225
121 => 0.0025089941324448
122 => 0.0024865026414314
123 => 0.0025269828472443
124 => 0.0025722460073312
125 => 0.0025836812690655
126 => 0.0025536000186323
127 => 0.0025318192108676
128 => 0.0024935792874769
129 => 0.0025571731323079
130 => 0.0025757699105238
131 => 0.0025570754513488
201 => 0.002552743536676
202 => 0.0025445345661985
203 => 0.0025544851085691
204 => 0.0025756686284757
205 => 0.0025656788716859
206 => 0.0025722772820425
207 => 0.0025471309460146
208 => 0.0026006149215351
209 => 0.0026855603462812
210 => 0.0026858334597117
211 => 0.0026758436490734
212 => 0.0026717560337937
213 => 0.002682006185741
214 => 0.0026875664726892
215 => 0.0027207135845304
216 => 0.0027562817561751
217 => 0.0029222628936322
218 => 0.0028756560544185
219 => 0.0030229243938325
220 => 0.0031393945299084
221 => 0.0031743188310958
222 => 0.0031421901173188
223 => 0.0030322795230466
224 => 0.0030268867849354
225 => 0.003191139615834
226 => 0.0031447306678489
227 => 0.0031392104711581
228 => 0.0030804849048877
301 => 0.0031151989878564
302 => 0.0031076065086863
303 => 0.0030956214088795
304 => 0.0031618534609797
305 => 0.0032858339499354
306 => 0.00326651042805
307 => 0.003252086315355
308 => 0.0031888840523212
309 => 0.003226945931404
310 => 0.0032133928252899
311 => 0.0032716255701698
312 => 0.0032371297821162
313 => 0.0031443790744235
314 => 0.0031591499303339
315 => 0.0031569173451779
316 => 0.003202863789486
317 => 0.0031890718073656
318 => 0.0031542242393154
319 => 0.0032854101981026
320 => 0.0032768917116336
321 => 0.0032889689778495
322 => 0.0032942857639396
323 => 0.0033741363452975
324 => 0.0034068485735462
325 => 0.0034142748220668
326 => 0.0034453489088485
327 => 0.0034135016704798
328 => 0.0035409133306508
329 => 0.003625634649988
330 => 0.0037240428221174
331 => 0.0038678436112216
401 => 0.0039219140381564
402 => 0.0039121466994962
403 => 0.0040211748166193
404 => 0.0042170959195305
405 => 0.0039517479559933
406 => 0.0042311600059131
407 => 0.0041427013768758
408 => 0.0039329675587309
409 => 0.0039194631734417
410 => 0.0040614973501491
411 => 0.0043765154838032
412 => 0.0042976070142289
413 => 0.0043766445497912
414 => 0.0042844430662319
415 => 0.0042798644854381
416 => 0.0043721665295323
417 => 0.0045878352866809
418 => 0.0044853791443821
419 => 0.0043384831411199
420 => 0.0044469488639737
421 => 0.004352985816809
422 => 0.0041412607729459
423 => 0.0042975466744093
424 => 0.0041930427428669
425 => 0.0042235425458256
426 => 0.0044431942661411
427 => 0.0044167651900264
428 => 0.0044509668617854
429 => 0.0043906018063443
430 => 0.0043342113258668
501 => 0.0042289543064436
502 => 0.0041977928921007
503 => 0.0042064047859548
504 => 0.0041977886244738
505 => 0.0041388982894684
506 => 0.004126180927231
507 => 0.0041049847663415
508 => 0.0041115543429117
509 => 0.004071699359284
510 => 0.0041469139478493
511 => 0.0041608744382758
512 => 0.0042156093434575
513 => 0.0042212921028895
514 => 0.0043737280347179
515 => 0.0042897688850486
516 => 0.004346095931331
517 => 0.0043410575101408
518 => 0.0039375131265387
519 => 0.0039931179820968
520 => 0.0040796216875803
521 => 0.004040651885513
522 => 0.0039855577029191
523 => 0.0039410661965114
524 => 0.0038736570148135
525 => 0.0039685341435746
526 => 0.0040932874788376
527 => 0.0042244560533461
528 => 0.0043820465011127
529 => 0.0043468741477262
530 => 0.0042215100095428
531 => 0.0042271337532031
601 => 0.0042618975236498
602 => 0.0042168752822997
603 => 0.004203597344387
604 => 0.0042600733388772
605 => 0.0042604622580126
606 => 0.0042086587282197
607 => 0.0041510885848007
608 => 0.0041508473637977
609 => 0.0041406033128379
610 => 0.0042862654601404
611 => 0.0043663649130525
612 => 0.0043755481862422
613 => 0.0043657468055983
614 => 0.0043695189680053
615 => 0.0043229108612267
616 => 0.0044294431721178
617 => 0.004527207755545
618 => 0.0045010047587508
619 => 0.0044617227415809
620 => 0.0044304327228267
621 => 0.0044936338247435
622 => 0.0044908195791629
623 => 0.0045263538671968
624 => 0.0045247418266355
625 => 0.0045127929820819
626 => 0.0045010051854817
627 => 0.0045477424665694
628 => 0.0045342828801939
629 => 0.0045208023873632
630 => 0.0044937651952309
701 => 0.0044974399986819
702 => 0.004458164764106
703 => 0.0044399942434787
704 => 0.00416675321042
705 => 0.0040937342779783
706 => 0.0041167075205619
707 => 0.0041242709085204
708 => 0.0040924929755455
709 => 0.0041380543683503
710 => 0.0041309536735431
711 => 0.0041585783232703
712 => 0.0041413196414436
713 => 0.0041420279437659
714 => 0.0041927820470792
715 => 0.0042075161791945
716 => 0.0042000222806816
717 => 0.0042052707503242
718 => 0.0043262195179971
719 => 0.0043090244709579
720 => 0.0042998899449283
721 => 0.0043024202710649
722 => 0.0043333252743762
723 => 0.0043419769879527
724 => 0.0043053190695839
725 => 0.0043226071558035
726 => 0.004396217632742
727 => 0.0044219771336783
728 => 0.0045041890954051
729 => 0.0044692639928625
730 => 0.0045333705301025
731 => 0.0047304121700493
801 => 0.0048878226662832
802 => 0.0047430614686826
803 => 0.0050321257989104
804 => 0.0052572038438081
805 => 0.0052485649735579
806 => 0.005209317410281
807 => 0.0049530720401743
808 => 0.004717271230199
809 => 0.0049145286203746
810 => 0.0049150314700285
811 => 0.0048980868852735
812 => 0.0047928455246328
813 => 0.0048944247140471
814 => 0.0049024877012214
815 => 0.0048979745725251
816 => 0.0048172862680733
817 => 0.0046940901408668
818 => 0.0047181623692331
819 => 0.0047575931703572
820 => 0.0046829424377024
821 => 0.0046590870053717
822 => 0.0047034387927561
823 => 0.0048463494927702
824 => 0.0048193330527579
825 => 0.0048186275443272
826 => 0.0049342153314536
827 => 0.0048514794212768
828 => 0.0047184659971227
829 => 0.0046848783532923
830 => 0.0045656648450423
831 => 0.0046480060398145
901 => 0.0046509693528252
902 => 0.004605871921955
903 => 0.0047221254050917
904 => 0.0047210541087786
905 => 0.0048314194889694
906 => 0.0050423966445504
907 => 0.0049800003180897
908 => 0.0049074401791171
909 => 0.0049153294780978
910 => 0.0050018556154675
911 => 0.0049495399376142
912 => 0.0049683530201281
913 => 0.005001827139614
914 => 0.0050220229070154
915 => 0.004912423617964
916 => 0.0048868707809461
917 => 0.0048345986442346
918 => 0.0048209618194722
919 => 0.0048635363841298
920 => 0.0048523194905241
921 => 0.0046507202978411
922 => 0.0046296520605184
923 => 0.0046302981932786
924 => 0.0045773211087906
925 => 0.0044965183389893
926 => 0.0047088631935445
927 => 0.0046918089299593
928 => 0.0046729823428565
929 => 0.0046752884923536
930 => 0.0047674601966811
1001 => 0.0047139959533885
1002 => 0.0048561394067991
1003 => 0.0048269189860012
1004 => 0.0047969491716686
1005 => 0.0047928064304249
1006 => 0.0047812706088113
1007 => 0.0047417099842079
1008 => 0.0046939381527744
1009 => 0.0046623950517368
1010 => 0.0043008129819572
1011 => 0.0043679205108822
1012 => 0.0044451216058666
1013 => 0.0044717711144913
1014 => 0.0044261852858989
1015 => 0.0047435099905696
1016 => 0.0048014882719299
1017 => 0.0046258682758599
1018 => 0.0045930169451124
1019 => 0.0047456637183443
1020 => 0.0046535990537764
1021 => 0.0046950557665941
1022 => 0.0046054490290917
1023 => 0.0047875230017525
1024 => 0.0047861359031381
1025 => 0.0047153050154459
1026 => 0.0047751707966944
1027 => 0.004764767643978
1028 => 0.0046847997462222
1029 => 0.0047900581267475
1030 => 0.004790110333591
1031 => 0.0047219371441836
1101 => 0.0046423257839858
1102 => 0.0046280931531188
1103 => 0.0046173707776455
1104 => 0.0046924187195212
1105 => 0.0047597064695383
1106 => 0.004884912290272
1107 => 0.0049163920084214
1108 => 0.005039259444082
1109 => 0.004966097868453
1110 => 0.0049985294473283
1111 => 0.0050337385139244
1112 => 0.0050506190352211
1113 => 0.0050231131316269
1114 => 0.0052139768334619
1115 => 0.0052300915778095
1116 => 0.0052354947121973
1117 => 0.005171136545821
1118 => 0.0052283016607795
1119 => 0.0052015559966
1120 => 0.0052711407846355
1121 => 0.0052820525679027
1122 => 0.0052728106756734
1123 => 0.0052762742479131
1124 => 0.0051134057490612
1125 => 0.0051049601581959
1126 => 0.0049898039274764
1127 => 0.0050367309426865
1128 => 0.0049490031370216
1129 => 0.0049768225278945
1130 => 0.0049890850503184
1201 => 0.0049826798044961
1202 => 0.0050393841257177
1203 => 0.0049911738687519
1204 => 0.004863939074119
1205 => 0.0047366696144513
1206 => 0.0047350718500567
1207 => 0.0047015640478187
1208 => 0.0046773440440608
1209 => 0.0046820096760354
1210 => 0.0046984519716617
1211 => 0.0046763883879485
1212 => 0.0046810967721858
1213 => 0.004759287322325
1214 => 0.0047749678795259
1215 => 0.004721679219368
1216 => 0.0045077175593171
1217 => 0.0044552108312584
1218 => 0.0044929516261333
1219 => 0.0044749139570016
1220 => 0.0036116048160149
1221 => 0.0038144264930442
1222 => 0.0036939167397268
1223 => 0.0037494531784426
1224 => 0.0036264439261548
1225 => 0.0036851503888138
1226 => 0.0036743094487775
1227 => 0.0040004407035109
1228 => 0.0039953486125471
1229 => 0.003997785927024
1230 => 0.0038814465566521
1231 => 0.0040667783326127
]
'min_raw' => 0.0023660556528631
'max_raw' => 0.0052820525679027
'avg_raw' => 0.0038240541103829
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.002366'
'max' => '$0.005282'
'avg' => '$0.003824'
'bar_min_pct' => 61.631153054958
'bar_max_pct' => 60.119598047091
'min_diff' => 0.00036484098097921
'max_diff' => 0.00079908466146797
'year' => 2035
]
10 => [
'items' => [
101 => 0.004158079429766
102 => 0.0041411820265829
103 => 0.0041454347389239
104 => 0.0040723590509969
105 => 0.0039984934594187
106 => 0.0039165651505255
107 => 0.0040687778218041
108 => 0.0040518543711148
109 => 0.0040906706781306
110 => 0.0041893914758412
111 => 0.0042039284883079
112 => 0.004223466380483
113 => 0.0042164634369401
114 => 0.0043833019632739
115 => 0.0043630967168989
116 => 0.0044117855472167
117 => 0.0043116289292225
118 => 0.0041982922090087
119 => 0.0042198338142648
120 => 0.004217759184452
121 => 0.0041913467657856
122 => 0.0041675028151927
123 => 0.0041278093554468
124 => 0.0042534053356094
125 => 0.00424830636818
126 => 0.0043308527239609
127 => 0.0043162618537641
128 => 0.0042188204515983
129 => 0.0042223005903394
130 => 0.0042457061958709
131 => 0.0043267132638557
201 => 0.0043507616770154
202 => 0.0043396214938762
203 => 0.004365989481054
204 => 0.0043868296630099
205 => 0.0043686066870466
206 => 0.004626605597832
207 => 0.0045194664624526
208 => 0.0045716853315672
209 => 0.0045841392241596
210 => 0.0045522388401613
211 => 0.0045591568911834
212 => 0.0045696358534259
213 => 0.0046332620601708
214 => 0.0048002356370607
215 => 0.0048741870976376
216 => 0.0050966737154842
217 => 0.0048680464582907
218 => 0.0048544806630025
219 => 0.0048945572213289
220 => 0.0050251804186051
221 => 0.0051310382511844
222 => 0.0051661574013359
223 => 0.0051707989767823
224 => 0.0052366848371434
225 => 0.0052744493836038
226 => 0.0052286845607254
227 => 0.0051899036651127
228 => 0.0050509953106897
229 => 0.0050670743309491
301 => 0.0051778428357388
302 => 0.0053343098729866
303 => 0.0054685748685658
304 => 0.0054215599467215
305 => 0.0057802506130315
306 => 0.0058158133274761
307 => 0.0058108997102201
308 => 0.0058919168661665
309 => 0.0057311143104698
310 => 0.0056623681025066
311 => 0.005198288534926
312 => 0.0053286759638566
313 => 0.0055182017491924
314 => 0.005493117300818
315 => 0.0053554786094684
316 => 0.0054684704572761
317 => 0.0054311118188091
318 => 0.0054016455106388
319 => 0.0055366363806917
320 => 0.0053882083739493
321 => 0.0055167210662836
322 => 0.0053519022090712
323 => 0.0054217747069242
324 => 0.0053821116977904
325 => 0.0054077785256156
326 => 0.0052577307746091
327 => 0.005338692898849
328 => 0.005254362484062
329 => 0.0052543225004652
330 => 0.0052524609018848
331 => 0.0053516752609034
401 => 0.005354910637589
402 => 0.0052815910763698
403 => 0.0052710245821312
404 => 0.0053100944494548
405 => 0.0052643538672334
406 => 0.005285755597767
407 => 0.005265002103849
408 => 0.0052603300552325
409 => 0.0052231023769734
410 => 0.0052070636695831
411 => 0.0052133528600174
412 => 0.0051918846107651
413 => 0.0051789492140501
414 => 0.005249887725899
415 => 0.0052119881406695
416 => 0.005244079070906
417 => 0.0052075074057033
418 => 0.0050807340805946
419 => 0.005007825400721
420 => 0.0047683623414841
421 => 0.0048362737680307
422 => 0.0048812991140905
423 => 0.0048664182374863
424 => 0.0048983881185669
425 => 0.0049003508096166
426 => 0.004889957075383
427 => 0.0048779224626602
428 => 0.0048720646787426
429 => 0.0049157238008721
430 => 0.0049410693907668
501 => 0.004885818009929
502 => 0.0048728733844477
503 => 0.004928735580987
504 => 0.0049628114886055
505 => 0.0052144088448616
506 => 0.0051957697000614
507 => 0.0052425502957625
508 => 0.0052372835185933
509 => 0.0052863170356214
510 => 0.0053664661128518
511 => 0.0052035006288079
512 => 0.0052317858019154
513 => 0.0052248509306695
514 => 0.0053005640365118
515 => 0.0053008004045639
516 => 0.0052554066154613
517 => 0.0052800153249639
518 => 0.0052662794184242
519 => 0.0052911020580606
520 => 0.0051955207629188
521 => 0.0053119284630383
522 => 0.0053779241278595
523 => 0.0053788404777295
524 => 0.0054101218990808
525 => 0.0054419056348714
526 => 0.0055029117479416
527 => 0.005440204207489
528 => 0.0053273994466709
529 => 0.0053355435860448
530 => 0.0052694061960508
531 => 0.0052705179775253
601 => 0.0052645832008826
602 => 0.0052823939123366
603 => 0.0051994292124998
604 => 0.005218900861724
605 => 0.0051916404387843
606 => 0.0052317265430798
607 => 0.0051886005213282
608 => 0.0052248475864646
609 => 0.0052404906181682
610 => 0.0052982137419249
611 => 0.0051800747690161
612 => 0.0049391814059499
613 => 0.0049898201114161
614 => 0.0049149214884471
615 => 0.004921853641162
616 => 0.0049358576928901
617 => 0.0048904659793987
618 => 0.0048991252878756
619 => 0.0048988159164421
620 => 0.004896149920565
621 => 0.0048843417827747
622 => 0.0048672176468099
623 => 0.0049354349339625
624 => 0.0049470263803508
625 => 0.0049727927297956
626 => 0.0050494559082615
627 => 0.0050417954488905
628 => 0.005054289975954
629 => 0.0050270144935282
630 => 0.0049231188725638
701 => 0.004928760904639
702 => 0.0048584046742529
703 => 0.0049709935628022
704 => 0.004944331027893
705 => 0.004927141518187
706 => 0.004922451201204
707 => 0.004999304412861
708 => 0.0050223000983153
709 => 0.0050079707303233
710 => 0.0049785807785171
711 => 0.0050350181743442
712 => 0.0050501184405649
713 => 0.0050534988332954
714 => 0.0051534950779037
715 => 0.0050590875125493
716 => 0.0050818123518606
717 => 0.0052591050610759
718 => 0.0050983250385391
719 => 0.0051834938022992
720 => 0.00517932523451
721 => 0.0052228946920958
722 => 0.0051757512672908
723 => 0.0051763356665421
724 => 0.0052150223932276
725 => 0.0051606938627858
726 => 0.0051472413546245
727 => 0.0051286568109484
728 => 0.0051692354821632
729 => 0.0051935605603411
730 => 0.0053896028256532
731 => 0.0055162550696582
801 => 0.0055107567617244
802 => 0.0055610010038381
803 => 0.0055383655125814
804 => 0.0054652695403725
805 => 0.0055900354518288
806 => 0.0055505542970166
807 => 0.0055538090754497
808 => 0.0055536879324339
809 => 0.0055799394488816
810 => 0.0055613378435622
811 => 0.0055246721700622
812 => 0.0055490125552469
813 => 0.0056212947973983
814 => 0.0058456610949265
815 => 0.0059712194474813
816 => 0.005838102324447
817 => 0.0059299247334068
818 => 0.0058748640077005
819 => 0.005864857835925
820 => 0.0059225290943745
821 => 0.0059803012987274
822 => 0.0059766214590663
823 => 0.0059346818053415
824 => 0.0059109911591317
825 => 0.006090384669181
826 => 0.0062225587514966
827 => 0.0062135453651889
828 => 0.0062533275210405
829 => 0.0063701291610367
830 => 0.0063808080391921
831 => 0.0063794627459957
901 => 0.0063529940322618
902 => 0.0064680004154476
903 => 0.0065639407636459
904 => 0.006346867289787
905 => 0.0064295260269321
906 => 0.0064666341971347
907 => 0.0065211200004901
908 => 0.0066130466836315
909 => 0.0067129034438716
910 => 0.0067270242846432
911 => 0.0067170048723713
912 => 0.0066511466546992
913 => 0.0067604111132928
914 => 0.0068244156705701
915 => 0.0068625289197105
916 => 0.0069591777780906
917 => 0.0064668633645607
918 => 0.0061183787530503
919 => 0.0060639578487841
920 => 0.0061746248976057
921 => 0.0062038069158268
922 => 0.006192043680873
923 => 0.0057997925677833
924 => 0.006061892727852
925 => 0.0063438904620785
926 => 0.006354723143522
927 => 0.0064958971055704
928 => 0.0065418691345295
929 => 0.0066555326780726
930 => 0.0066484229924768
1001 => 0.0066760982565475
1002 => 0.0066697361926064
1003 => 0.0068802739723371
1004 => 0.007112528408543
1005 => 0.007104486175941
1006 => 0.0070710968528267
1007 => 0.0071206856913771
1008 => 0.0073603971594395
1009 => 0.0073383283687583
1010 => 0.00735976631909
1011 => 0.0076423996494819
1012 => 0.0080098631831138
1013 => 0.0078391394790062
1014 => 0.0082095607924972
1015 => 0.0084427213741497
1016 => 0.0088459484908635
1017 => 0.0087954624699155
1018 => 0.0089524358274349
1019 => 0.0087050819556681
1020 => 0.008137107467626
1021 => 0.0080472233307744
1022 => 0.0082271736489802
1023 => 0.0086695639469941
1024 => 0.0082132412041624
1025 => 0.0083055547007212
1026 => 0.008278968407502
1027 => 0.0082775517369208
1028 => 0.0083316202909888
1029 => 0.0082531910332871
1030 => 0.0079336561282562
1031 => 0.0080800970922008
1101 => 0.0080235492033491
1102 => 0.0080862933019545
1103 => 0.0084248973244929
1104 => 0.0082751924148169
1105 => 0.0081174904535126
1106 => 0.008315283709855
1107 => 0.0085671424943157
1108 => 0.008551381624218
1109 => 0.0085207989486956
1110 => 0.0086931918893584
1111 => 0.008977934520941
1112 => 0.0090548993100692
1113 => 0.0091117131439278
1114 => 0.0091195468117393
1115 => 0.0092002384587953
1116 => 0.0087663391356618
1117 => 0.0094549485047996
1118 => 0.0095738523203998
1119 => 0.0095515033311252
1120 => 0.0096836599179273
1121 => 0.0096447760976011
1122 => 0.0095884395426329
1123 => 0.0097979358432265
1124 => 0.0095577652400757
1125 => 0.0092168733055413
1126 => 0.0090298532481778
1127 => 0.0092761363461917
1128 => 0.0094265328400532
1129 => 0.0095259353554821
1130 => 0.0095560144965903
1201 => 0.0088000215049637
1202 => 0.0083925832117705
1203 => 0.0086537464864178
1204 => 0.0089723837060139
1205 => 0.0087645690898186
1206 => 0.0087727150293283
1207 => 0.0084764259993542
1208 => 0.0089985987107483
1209 => 0.0089225225388619
1210 => 0.0093172058531847
1211 => 0.0092230115126901
1212 => 0.0095448604340023
1213 => 0.0094601068266888
1214 => 0.0098119143121366
1215 => 0.0099522598428891
1216 => 0.01018792183206
1217 => 0.010361275750611
1218 => 0.010463072487317
1219 => 0.010456960993075
1220 => 0.010860330378834
1221 => 0.010622477544705
1222 => 0.01032367832743
1223 => 0.010318273992289
1224 => 0.010473026340933
1225 => 0.010797344809458
1226 => 0.010881435869705
1227 => 0.01092843130047
1228 => 0.010856456162331
1229 => 0.01059828395795
1230 => 0.010486806509061
1231 => 0.010581788525327
]
'min_raw' => 0.0039165651505255
'max_raw' => 0.01092843130047
'avg_raw' => 0.0074224982254976
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$0.003916'
'max' => '$0.010928'
'avg' => '$0.007422'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.0015505094976624
'max_diff' => 0.0056463787325671
'year' => 2036
]
11 => [
'items' => [
101 => 0.010465633681331
102 => 0.010666149529361
103 => 0.01094150061658
104 => 0.010884641705925
105 => 0.011074712519479
106 => 0.011271415815474
107 => 0.011552710363245
108 => 0.011626251174339
109 => 0.011747811338571
110 => 0.011872936678
111 => 0.011913123564802
112 => 0.011989852800966
113 => 0.011989448400017
114 => 0.01222067711767
115 => 0.012475729553798
116 => 0.012572005943959
117 => 0.012793388194423
118 => 0.012414278848663
119 => 0.012701837642316
120 => 0.012961222872255
121 => 0.012651973107924
122 => 0.0130782018621
123 => 0.01309475135877
124 => 0.013344629110013
125 => 0.013091330138343
126 => 0.012940922017525
127 => 0.013375144626609
128 => 0.01358525126926
129 => 0.013521965438589
130 => 0.013040357142374
131 => 0.012760040456826
201 => 0.012026397621695
202 => 0.012895429250919
203 => 0.013318709207514
204 => 0.013039260949544
205 => 0.01318019839633
206 => 0.013949107406874
207 => 0.014241858174917
208 => 0.014180968061647
209 => 0.014191257488453
210 => 0.014349220489087
211 => 0.015049715425712
212 => 0.014629962622341
213 => 0.01495084791268
214 => 0.015121044313638
215 => 0.015279132215997
216 => 0.014890918291999
217 => 0.014385857680873
218 => 0.014225883784328
219 => 0.013011475327612
220 => 0.012948260093531
221 => 0.012912775467024
222 => 0.012689049916296
223 => 0.012513262917011
224 => 0.012373470568626
225 => 0.012006613700935
226 => 0.012130417124584
227 => 0.011545723846463
228 => 0.011919789885547
301 => 0.010986605295754
302 => 0.011763789151864
303 => 0.011340803313197
304 => 0.011624826927694
305 => 0.01162383599606
306 => 0.011100858472002
307 => 0.010799215950388
308 => 0.010991434305263
309 => 0.011197507640001
310 => 0.011230942345248
311 => 0.011498121802801
312 => 0.0115726858464
313 => 0.011346753313231
314 => 0.010967267119332
315 => 0.011055413107016
316 => 0.010797429674761
317 => 0.010345323632923
318 => 0.010670034085185
319 => 0.010780904510098
320 => 0.010829871205888
321 => 0.01038527683847
322 => 0.010245575635614
323 => 0.010171199887421
324 => 0.010909875569475
325 => 0.010950341890804
326 => 0.010743310469523
327 => 0.011679112125236
328 => 0.011467311389472
329 => 0.011703944703761
330 => 0.011047414782536
331 => 0.011072495109662
401 => 0.010761683323595
402 => 0.010935717155341
403 => 0.010812715652435
404 => 0.010921656941572
405 => 0.010986955901099
406 => 0.01129771668601
407 => 0.011767337540846
408 => 0.011251299387703
409 => 0.011026454174576
410 => 0.011165946880222
411 => 0.011537434337493
412 => 0.01210025685135
413 => 0.011767054595288
414 => 0.011914924098387
415 => 0.011947227006558
416 => 0.011701535998755
417 => 0.012109315829257
418 => 0.012327848353221
419 => 0.012552017503873
420 => 0.012746657296308
421 => 0.012462479415518
422 => 0.012766590483262
423 => 0.01252153064549
424 => 0.012301686637188
425 => 0.012302020049801
426 => 0.012164108691985
427 => 0.011896888058266
428 => 0.011847608473508
429 => 0.012103967096744
430 => 0.012309542435326
501 => 0.012326474604852
502 => 0.012440291675133
503 => 0.012507647444917
504 => 0.013167825554526
505 => 0.01343335465149
506 => 0.01375803860505
507 => 0.013884521303146
508 => 0.014265188877859
509 => 0.013957768894969
510 => 0.013891256647909
511 => 0.012967881627069
512 => 0.013119084235003
513 => 0.013361174199187
514 => 0.012971873601412
515 => 0.013218795226055
516 => 0.013267542785275
517 => 0.012958645316067
518 => 0.013123640801042
519 => 0.012685461710699
520 => 0.01177688864761
521 => 0.012110327330806
522 => 0.012355850435886
523 => 0.012005458692157
524 => 0.012633522330758
525 => 0.012266620518952
526 => 0.012150330259003
527 => 0.011696640494468
528 => 0.011910764599208
529 => 0.01220037051683
530 => 0.012021427730041
531 => 0.012392760881023
601 => 0.012918667653747
602 => 0.01329346013828
603 => 0.013322232051425
604 => 0.013081265593017
605 => 0.013467415880444
606 => 0.013470228563718
607 => 0.01303464946203
608 => 0.012767859687561
609 => 0.012707244489471
610 => 0.012858673138609
611 => 0.013042535473934
612 => 0.013332435131419
613 => 0.013507615422912
614 => 0.013964392714678
615 => 0.014087983552998
616 => 0.014223772413912
617 => 0.014405228207826
618 => 0.014623112412731
619 => 0.014146394176554
620 => 0.014165335080791
621 => 0.013721421659877
622 => 0.013247036506006
623 => 0.01360703570485
624 => 0.014077686768652
625 => 0.013969718894592
626 => 0.013957570303177
627 => 0.013978000864199
628 => 0.01389659661306
629 => 0.013528408202137
630 => 0.013343506287153
701 => 0.013582076930992
702 => 0.013708866610634
703 => 0.013905506346538
704 => 0.013881266348526
705 => 0.014387789190647
706 => 0.01458460865064
707 => 0.014534253810394
708 => 0.014543520312857
709 => 0.01489985254385
710 => 0.015296167270028
711 => 0.015667368309428
712 => 0.016044969950161
713 => 0.015589756434214
714 => 0.015358627084483
715 => 0.015597093575842
716 => 0.015470559898868
717 => 0.016197659939086
718 => 0.016248002768304
719 => 0.016975050230913
720 => 0.01766510484813
721 => 0.017231693906669
722 => 0.017640380903209
723 => 0.018082409210708
724 => 0.018935153532381
725 => 0.018647979244748
726 => 0.018428008241017
727 => 0.018220136705382
728 => 0.01865268437236
729 => 0.01920915003581
730 => 0.019329007409955
731 => 0.019523222145111
801 => 0.019319029098542
802 => 0.019564957132008
803 => 0.020433191156395
804 => 0.020198586658892
805 => 0.019865410557882
806 => 0.020550797934054
807 => 0.020798836961115
808 => 0.022539704752073
809 => 0.024737622249819
810 => 0.023827669973447
811 => 0.023262833231527
812 => 0.023395583263985
813 => 0.024198188329959
814 => 0.024455959603739
815 => 0.02375524842252
816 => 0.024002751457694
817 => 0.025366517515464
818 => 0.026098134250604
819 => 0.025104500455047
820 => 0.022363104221193
821 => 0.019835411695345
822 => 0.020505869576678
823 => 0.020429860459665
824 => 0.021895056955459
825 => 0.020192991419215
826 => 0.020221649837655
827 => 0.021717145045311
828 => 0.021318172563187
829 => 0.020671888238681
830 => 0.019840130286135
831 => 0.018302548782555
901 => 0.016940669966203
902 => 0.019611627947031
903 => 0.019496451382076
904 => 0.01932965864781
905 => 0.019700837829059
906 => 0.021503178572159
907 => 0.021461628784423
908 => 0.021197310233734
909 => 0.021397793524835
910 => 0.020636742548429
911 => 0.020832882713857
912 => 0.019835011295935
913 => 0.020286090851627
914 => 0.020670501602782
915 => 0.020747677752374
916 => 0.020921559558119
917 => 0.019435758566008
918 => 0.02010283959064
919 => 0.020494687195573
920 => 0.01872430546095
921 => 0.02045969244089
922 => 0.019409894076344
923 => 0.019053576743974
924 => 0.019533311090771
925 => 0.019346358149267
926 => 0.019185626988408
927 => 0.019095936238936
928 => 0.019448200196876
929 => 0.019431766662191
930 => 0.018855394455514
1001 => 0.018103540407841
1002 => 0.018355887305008
1003 => 0.018264207311502
1004 => 0.017931947188083
1005 => 0.018155850394027
1006 => 0.01716989398987
1007 => 0.015473607242071
1008 => 0.016594226226335
1009 => 0.01655108361444
1010 => 0.01652932915316
1011 => 0.017371443348201
1012 => 0.017290493499228
1013 => 0.017143568730679
1014 => 0.017929248799489
1015 => 0.017642465005485
1016 => 0.018526265083846
1017 => 0.019108392976059
1018 => 0.018960746512729
1019 => 0.019508240609025
1020 => 0.018361700867849
1021 => 0.018742535378678
1022 => 0.018821024843545
1023 => 0.017919553629398
1024 => 0.017303737895644
1025 => 0.017262670007016
1026 => 0.016194930389321
1027 => 0.0167653082746
1028 => 0.017267217209806
1029 => 0.017026841779549
1030 => 0.016950746099342
1031 => 0.017339502426382
1101 => 0.017369712122466
1102 => 0.016680927850275
1103 => 0.016824147911424
1104 => 0.017421399374773
1105 => 0.016809098706937
1106 => 0.015619498528079
1107 => 0.015324461236213
1108 => 0.015285097822862
1109 => 0.014484933287618
1110 => 0.015344177038831
1111 => 0.014969094115126
1112 => 0.016153976576927
1113 => 0.015477178069398
1114 => 0.015448002638439
1115 => 0.015403899695438
1116 => 0.014715165025573
1117 => 0.014865954146902
1118 => 0.01536720015203
1119 => 0.015546050373601
1120 => 0.015527394830214
1121 => 0.015364743773151
1122 => 0.015439204594167
1123 => 0.015199340345807
1124 => 0.015114639287369
1125 => 0.014847299448076
1126 => 0.014454383738831
1127 => 0.014509021078093
1128 => 0.013730552246091
1129 => 0.013306401109948
1130 => 0.013189001665685
1201 => 0.013032010222357
1202 => 0.013206734266948
1203 => 0.013728346941699
1204 => 0.013099171389647
1205 => 0.012020494037186
1206 => 0.012085324384046
1207 => 0.012230978925137
1208 => 0.011959552651415
1209 => 0.011702670462418
1210 => 0.01192600868424
1211 => 0.01146895887005
1212 => 0.0122862112116
1213 => 0.012264106826085
1214 => 0.012568727960469
1215 => 0.012759213807254
1216 => 0.012320205600939
1217 => 0.012209796224255
1218 => 0.012272690423041
1219 => 0.011233189415676
1220 => 0.01248377855108
1221 => 0.012494593697855
1222 => 0.012401987845103
1223 => 0.013067887952098
1224 => 0.014473144877309
1225 => 0.013944430695716
1226 => 0.013739696584132
1227 => 0.013350496888352
1228 => 0.013869082374588
1229 => 0.013829263100439
1230 => 0.013649185241725
1231 => 0.013540273590898
]
'min_raw' => 0.010171199887421
'max_raw' => 0.026098134250604
'avg_raw' => 0.018134667069012
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$0.010171'
'max' => '$0.026098'
'avg' => '$0.018134'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 0.0062546347368951
'max_diff' => 0.015169702950134
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.00031926234209635
]
1 => [
'year' => 2028
'avg' => 0.00054794686155748
]
2 => [
'year' => 2029
'avg' => 0.0014968920679619
]
3 => [
'year' => 2030
'avg' => 0.001154850001194
]
4 => [
'year' => 2031
'avg' => 0.0011342058201576
]
5 => [
'year' => 2032
'avg' => 0.0019886197504445
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.00031926234209635
'min' => '$0.000319'
'max_raw' => 0.0019886197504445
'max' => '$0.001988'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.0019886197504445
]
1 => [
'year' => 2033
'avg' => 0.0051149344855006
]
2 => [
'year' => 2034
'avg' => 0.0032420912891593
]
3 => [
'year' => 2035
'avg' => 0.0038240541103829
]
4 => [
'year' => 2036
'avg' => 0.0074224982254976
]
5 => [
'year' => 2037
'avg' => 0.018134667069012
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.0019886197504445
'min' => '$0.001988'
'max_raw' => 0.018134667069012
'max' => '$0.018134'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 0.018134667069012
]
]
]
]
'prediction_2025_max_price' => '$0.000545'
'last_price' => 0.0005293
'sma_50day_nextmonth' => '$0.000472'
'sma_200day_nextmonth' => '$0.000667'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'increase'
'sma_200day_direction_label' => 'aumentar'
'sma_200day_date_nextmonth' => '4 de fev. de 2026'
'sma_50day_date_nextmonth' => '4 de fev. de 2026'
'daily_sma3' => '$0.000586'
'daily_sma3_action' => 'SELL'
'daily_sma5' => '$0.000514'
'daily_sma5_action' => 'BUY'
'daily_sma10' => '$0.000468'
'daily_sma10_action' => 'BUY'
'daily_sma21' => '$0.000452'
'daily_sma21_action' => 'BUY'
'daily_sma50' => '$0.000484'
'daily_sma50_action' => 'BUY'
'daily_sma100' => '$0.0006094'
'daily_sma100_action' => 'SELL'
'daily_sma200' => '$0.000741'
'daily_sma200_action' => 'SELL'
'daily_ema3' => '$0.000572'
'daily_ema3_action' => 'SELL'
'daily_ema5' => '$0.000542'
'daily_ema5_action' => 'SELL'
'daily_ema10' => '$0.000497'
'daily_ema10_action' => 'BUY'
'daily_ema21' => '$0.000474'
'daily_ema21_action' => 'BUY'
'daily_ema50' => '$0.0005059'
'daily_ema50_action' => 'BUY'
'daily_ema100' => '$0.000598'
'daily_ema100_action' => 'SELL'
'daily_ema200' => '$0.000847'
'daily_ema200_action' => 'SELL'
'weekly_sma21' => '$0.000656'
'weekly_sma21_action' => 'SELL'
'weekly_sma50' => '$0.001193'
'weekly_sma50_action' => 'SELL'
'weekly_sma100' => '$0.002571'
'weekly_sma100_action' => 'SELL'
'weekly_sma200' => '—'
'weekly_sma200_action' => '—'
'weekly_ema3' => '$0.000478'
'weekly_ema3_action' => 'BUY'
'weekly_ema5' => '$0.000478'
'weekly_ema5_action' => 'BUY'
'weekly_ema10' => '$0.000521'
'weekly_ema10_action' => 'BUY'
'weekly_ema21' => '$0.000669'
'weekly_ema21_action' => 'SELL'
'weekly_ema50' => '$0.001186'
'weekly_ema50_action' => 'SELL'
'weekly_ema100' => '$0.001623'
'weekly_ema100_action' => 'SELL'
'weekly_ema200' => '$0.001536'
'weekly_ema200_action' => 'SELL'
'rsi_14' => '53.59'
'rsi_14_action' => 'NEUTRAL'
'stoch_rsi_14' => 216.67
'stoch_rsi_14_action' => 'SELL'
'momentum_10' => 0
'momentum_10_action' => 'SELL'
'vwma_10' => '0.000590'
'vwma_10_action' => 'SELL'
'hma_9' => '0.0006098'
'hma_9_action' => 'BUY'
'stochastic_fast_14' => 30.54
'stochastic_fast_14_action' => 'NEUTRAL'
'cci_20' => 106.39
'cci_20_action' => 'SELL'
'adx_14' => 30.52
'adx_14_action' => 'SELL'
'ao_5_34' => '0.000051'
'ao_5_34_action' => 'BUY'
'macd_12_26' => 0
'macd_12_26_action' => 'NEUTRAL'
'williams_percent_r_14' => -69.46
'williams_percent_r_14_action' => 'NEUTRAL'
'ultimate_oscillator' => 55.79
'ultimate_oscillator_action' => 'NEUTRAL'
'ichimoku_cloud' => '-0.000059'
'ichimoku_cloud_action' => 'SELL'
'sell_signals' => 20
'buy_signals' => 13
'sell_pct' => 60.61
'buy_pct' => 39.39
'overall_action' => 'bearish'
'overall_action_label' => 'Baixista'
'overall_action_dir' => -1
'last_updated' => 1767696260
'last_updated_date' => '6 de janeiro de 2026'
]
Previsão de preço de Kryptokrona para 2026
A previsão de preço para Kryptokrona em 2026 sugere que o preço médio poderia variar entre $0.000182 na extremidade inferior e $0.000545 na extremidade superior. No mercado de criptomoedas, comparado ao preço médio de hoje, Kryptokrona poderia potencialmente ganhar 3.13% até 2026 se XKR atingir a meta de preço prevista.
Previsão de preço de Kryptokrona 2027-2032
A previsão de preço de XKR para 2027-2032 está atualmente dentro de uma faixa de preço entre $0.000319 na extremidade inferior e $0.001988 na extremidade superior. Considerando a volatilidade de preços no mercado, se Kryptokrona atingir a meta de preço superior, poderia ganhar 275.71% até 2032 em comparação com o preço de hoje.
| Previsão de Preço de Kryptokrona | Potencial Mínimo ($) | Preço Médio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2027 | $0.000176 | $0.000319 | $0.000462 |
| 2028 | $0.000317 | $0.000547 | $0.000778 |
| 2029 | $0.000697 | $0.001496 | $0.002295 |
| 2030 | $0.000593 | $0.001154 | $0.001716 |
| 2031 | $0.0007017 | $0.001134 | $0.001566 |
| 2032 | $0.001071 | $0.001988 | $0.002906 |
Previsão de preço de Kryptokrona 2032-2037
A previsão de preço de Kryptokrona para 2032-2037 é atualmente estimada entre $0.001988 na extremidade inferior e $0.018134 na extremidade superior. Comparado ao preço atual, Kryptokrona poderia potencialmente ganhar 3326.16% até 2037 se atingir a meta de preço superior. Por favor, note que esta informação é apenas para fins gerais e não deve ser considerada como aconselhamento de investimento a longo prazo.
| Previsão de Preço de Kryptokrona | Potencial Mínimo ($) | Preço Médio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2032 | $0.001071 | $0.001988 | $0.002906 |
| 2033 | $0.002489 | $0.005114 | $0.00774 |
| 2034 | $0.0020012 | $0.003242 | $0.004482 |
| 2035 | $0.002366 | $0.003824 | $0.005282 |
| 2036 | $0.003916 | $0.007422 | $0.010928 |
| 2037 | $0.010171 | $0.018134 | $0.026098 |
Kryptokrona Histograma de preços potenciais
Previsão de preço de Kryptokrona baseada na análise técnica
Em 6 de janeiro de 2026, o sentimento geral de previsão de preço para Kryptokrona é Baixista, com 13 indicadores técnicos mostrando sinais de alta e 20 indicando sinais de baixa. A previsão de preço de XKR foi atualizada pela última vez em 6 de janeiro de 2026.
Médias Móveis Simples de 50 e 200 dias e Índice de Força Relativa de 14 dias - RSI (14) de Kryptokrona
De acordo com nossos indicadores técnicos, o SMA de 200 dias de Kryptokrona está projetado para aumentar no próximo mês, alcançando $0.000667 até 4 de fev. de 2026. O SMA de 50 dias de curto prazo para Kryptokrona é esperado para alcançar $0.000472 até 4 de fev. de 2026.
O oscilador de momentum Índice de Força Relativa (RSI) é uma ferramenta comumente usada para identificar se uma criptomoeda está sobrevendida (abaixo de 30) ou sobrecomprada (acima de 70). No momento, o RSI está em 53.59, sugerindo que o mercado de XKR está em um estado NEUTRAL.
Médias Móveis e Osciladores Populares de XKR para Sábado, 19 de Outubro de 2024
Médias móveis (MA) são indicadores amplamente utilizados nos mercados financeiros, projetados para suavizar movimentos de preços ao longo de um período definido. Como indicadores atrasados, eles se baseiam em dados históricos de preços. A tabela abaixo destaca dois tipos: a média móvel simples (SMA) e a média móvel exponencial (EMA).
Média Móvel Simples Diária (SMA)
| Período | Valor | Ação |
|---|---|---|
| SMA 3 | $0.000586 | SELL |
| SMA 5 | $0.000514 | BUY |
| SMA 10 | $0.000468 | BUY |
| SMA 21 | $0.000452 | BUY |
| SMA 50 | $0.000484 | BUY |
| SMA 100 | $0.0006094 | SELL |
| SMA 200 | $0.000741 | SELL |
Média Móvel Exponencial Diária (EMA)
| Período | Valor | Ação |
|---|---|---|
| EMA 3 | $0.000572 | SELL |
| EMA 5 | $0.000542 | SELL |
| EMA 10 | $0.000497 | BUY |
| EMA 21 | $0.000474 | BUY |
| EMA 50 | $0.0005059 | BUY |
| EMA 100 | $0.000598 | SELL |
| EMA 200 | $0.000847 | SELL |
Média Móvel Simples Semanal (SMA)
| Período | Valor | Ação |
|---|---|---|
| SMA 21 | $0.000656 | SELL |
| SMA 50 | $0.001193 | SELL |
| SMA 100 | $0.002571 | SELL |
| SMA 200 | — | — |
Média Móvel Exponencial Semanal (EMA)
| Período | Valor | Ação |
|---|---|---|
| EMA 21 | $0.000669 | SELL |
| EMA 50 | $0.001186 | SELL |
| EMA 100 | $0.001623 | SELL |
| EMA 200 | $0.001536 | SELL |
Osciladores de Kryptokrona
Um oscilador é uma ferramenta de análise técnica que define limites altos e baixos entre dois extremos, criando um indicador de tendência que flutua dentro desses limites. Os traders usam esse indicador para identificar condições de sobrecompra ou sobrevenda de curto prazo.
| Período | Valor | Ação |
|---|---|---|
| RSI (14) | 53.59 | NEUTRAL |
| Stoch RSI (14) | 216.67 | SELL |
| Estocástico Rápido (14) | 30.54 | NEUTRAL |
| Índice de Canal de Commodities (20) | 106.39 | SELL |
| Índice Direcional Médio (14) | 30.52 | SELL |
| Oscilador Impressionante (5, 34) | 0.000051 | BUY |
| Momentum (10) | 0 | SELL |
| MACD (12, 26) | 0 | NEUTRAL |
| Williams Percent Range (14) | -69.46 | NEUTRAL |
| Oscilador Ultimate (7, 14, 28) | 55.79 | NEUTRAL |
| VWMA (10) | 0.000590 | SELL |
| Média Móvel de Hull (9) | 0.0006098 | BUY |
| Nuvem Ichimoku B/L (9, 26, 52, 26) | -0.000059 | SELL |
Previsão do preço de Kryptokrona com base nos fluxos financeiros mundiais
Definições dos fluxos financeiros mundiais, usadas na previsão do preço do Kryptokrona
M0: o total de todas as moedas físicas, mais as contas no Banco Central que podem ser trocadas por moedas físicas.
M1: o valor de M0, mais o valor em contas de demanda, incluindo contas 'correntes'.
M2: o valor de M1, mais a maioria das contas de poupança, do mercado de moedas e de certificados de depósito (CD) de menos de US$ 100.000.
Previsões de preço de Kryptokrona por empresas de Internet ou nichos tecnológicos
| Comparação | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Facebook stock | $0.000743 | $0.001045 | $0.001468 | $0.002063 | $0.002899 | $0.004074 |
| Amazon.com stock | $0.0011044 | $0.0023044 | $0.0048083 | $0.010032 | $0.020934 | $0.04368 |
| Apple stock | $0.00075 | $0.001064 | $0.00151 | $0.002142 | $0.003039 | $0.00431 |
| Netflix stock | $0.000835 | $0.001317 | $0.002079 | $0.00328 | $0.005176 | $0.008167 |
| Google stock | $0.000685 | $0.000887 | $0.001149 | $0.001488 | $0.001927 | $0.002496 |
| Tesla stock | $0.001199 | $0.00272 | $0.006166 | $0.013978 | $0.031687 | $0.071833 |
| Kodak stock | $0.000396 | $0.000297 | $0.000223 | $0.000167 | $0.000125 | $0.000094 |
| Nokia stock | $0.00035 | $0.000232 | $0.000153 | $0.0001019 | $0.000067 | $0.000044 |
Este cálculo mostra quanto a criptomoeda pode custar, se assumirmos que sua capitalização se comportará da mesma forma que a de algumas empresas de Internet ou nichos tecnológicos. Se você extrapolar os dados, poderá obter uma imagem em potencial do preço futuro para 2024, 2025, 2026, 2027, 2028, 2029 e 2030.
Visão geral da previsão para Kryptokrona
Você pode fazer perguntas como: 'Devo investir em Kryptokrona agora?', 'Devo comprar XKR hoje?', 'Kryptokrona será um bom ou mau investimento no curto ou no longo prazo?'.
Atualizamos a previsão para Kryptokrona regularmente com novos valores. Veja nossas previsões semelhantes. Fazemos previsões de preços futuros para uma enorme quantidade de moedas digitais, como Kryptokrona, com métodos de análise técnica.
Se você estiver tentando encontrar criptomoedas com bom retorno, você deve explorar o máximo de fontes de informações disponíveis sobre Kryptokrona para poder tomar sozinho uma decisão de tão grande responsabilidade sobre o seu investimento.
O preço de Kryptokrona é de $0.0005293 USD hoje, mas o preço pode tanto subir quanto descer e seu investimento pode ser perdido, porque criptomoedas são ativos de alto risco
Previsão do preço de Kryptokrona com base no padrão de crescimento do Bitcoin
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| Se Kryptokrona tiver 1% da média anterior do crescimento anual do Bitcoin | $0.000543 | $0.000557 | $0.000571 | $0.000586 |
| Se Kryptokrona tiver 2% da média anterior do crescimento anual do Bitcoin | $0.000556 | $0.000585 | $0.000616 | $0.000648 |
| Se Kryptokrona tiver 5% da média anterior do crescimento anual do Bitcoin | $0.000598 | $0.000675 | $0.000763 | $0.000862 |
| Se Kryptokrona tiver 10% da média anterior do crescimento anual do Bitcoin | $0.000666 | $0.00084 | $0.001058 | $0.001333 |
| Se Kryptokrona tiver 20% da média anterior do crescimento anual do Bitcoin | $0.0008044 | $0.001222 | $0.001858 | $0.002824 |
| Se Kryptokrona tiver 50% da média anterior do crescimento anual do Bitcoin | $0.001217 | $0.002799 | $0.006437 | $0.0148032 |
| Se Kryptokrona tiver 100% da média anterior do crescimento anual do Bitcoin | $0.0019051 | $0.006857 | $0.024681 | $0.088835 |
Perguntas Frequentes sobre Kryptokrona
XKR é um bom investimento?
A decisão de adquirir Kryptokrona depende inteiramente da sua tolerância individual ao risco. Como você pode perceber, o valor de Kryptokrona experimentou uma queda de -35.9178% nas últimas 24 horas, e Kryptokrona registrou um declínio de durante os últimos 30 dias. Consequentemente, a decisão de investir ou não em Kryptokrona dependerá de quão alinhado esse investimento está com suas aspirações de negociação.
Kryptokrona pode subir?
Parece que o valor médio de Kryptokrona pode potencialmente subir para $0.000545 até o final deste ano. Observando as perspectivas de Kryptokrona em um horizonte de cinco anos mais longo, a moeda digital poderia potencialmente crescer até $0.001716. No entanto, dada a imprevisibilidade do mercado, é vital conduzir uma pesquisa aprofundada antes de investir quaisquer fundos em um projeto, rede ou ativo específico.
Qual será o preço de Kryptokrona na próxima semana?
Com base na nossa nova previsão experimental de Kryptokrona, o preço de Kryptokrona aumentará 0.86% na próxima semana e atingirá $0.000533 até 13 de janeiro de 2026.
Qual será o preço de Kryptokrona no próximo mês?
Com base na nossa nova previsão experimental de Kryptokrona, o preço de Kryptokrona diminuirá -11.62% no próximo mês e atingirá $0.000467 até 5 de fevereiro de 2026.
Até onde o preço de Kryptokrona pode subir este ano em 2026?
De acordo com nossa previsão mais recente sobre o valor de Kryptokrona em 2026, espera-se que XKR fluctue dentro do intervalo de $0.000182 e $0.000545. No entanto, é crucial lembrar que o mercado de criptomoedas é excepcionalmente instável, e essa previsão de preço de Kryptokrona não considera flutuações repentinas e extremas de preço.
Onde estará Kryptokrona em 5 anos?
O futuro de Kryptokrona parece seguir uma tendência de alta, com um preço máximo de $0.001716 projetada após um período de cinco anos. Com base na previsão de Kryptokrona para 2030, o valor de Kryptokrona pode potencialmente atingir seu pico mais alto de aproximadamente $0.001716, enquanto seu pico mais baixo está previsto para cerca de $0.000593.
Quanto será Kryptokrona em 2026?
Com base na nossa nova simulação experimental de previsão de preços de Kryptokrona, espera-se que o valor de XKR em 2026 aumente 3.13% para $0.000545 se o melhor cenário ocorrer. O preço ficará entre $0.000545 e $0.000182 durante 2026.
Quanto será Kryptokrona em 2027?
De acordo com nossa última simulação experimental para previsão de preços de Kryptokrona, o valor de XKR pode diminuir -12.62% para $0.000462 em 2027, assumindo as condições mais favoráveis. O preço está projetado para flutuar entre $0.000462 e $0.000176 ao longo do ano.
Quanto será Kryptokrona em 2028?
Nosso novo modelo experimental de previsão de preços de Kryptokrona sugere que o valor de XKR em 2028 pode aumentar 47.02%, alcançando $0.000778 no melhor cenário. O preço é esperado para variar entre $0.000778 e $0.000317 durante o ano.
Quanto será Kryptokrona em 2029?
Com base no nosso modelo de previsão experimental, o valor de Kryptokrona pode experimentar um 333.75% crescimento em 2029, potencialmente alcançando $0.002295 sob condições ótimas. A faixa de preço prevista para 2029 está entre $0.002295 e $0.000697.
Quanto será Kryptokrona em 2030?
Usando nossa nova simulação experimental para previsões de preços de Kryptokrona, espera-se que o valor de XKR em 2030 aumente 224.23%, alcançando $0.001716 no melhor cenário. O preço está previsto para variar entre $0.001716 e $0.000593 ao longo de 2030.
Quanto será Kryptokrona em 2031?
Nossa simulação experimental indica que o preço de Kryptokrona poderia aumentar 195.98% em 2031, potencialmente atingindo $0.001566 sob condições ideais. O preço provavelmente oscilará entre $0.001566 e $0.0007017 durante o ano.
Quanto será Kryptokrona em 2032?
Com base nos achados da nossa mais recente previsão experimental de preços de Kryptokrona, XKR poderia ver um 449.04% aumento em valor, atingindo $0.002906 se o cenário mais positivo se desenrolar em 2032. O preço é esperado para permanecer dentro de uma faixa de $0.002906 e $0.001071 ao longo do ano.
Quanto será Kryptokrona em 2033?
De acordo com nossa previsão experimental de preços de Kryptokrona, espera-se que o valor de XKR seja aumentar 1362.43% em 2033, com o preço potencial mais alto sendo $0.00774. Ao longo do ano, o preço de XKR poderia variar entre $0.00774 e $0.002489.
Quanto será Kryptokrona em 2034?
Os resultados da nossa nova simulação de previsão de preços de Kryptokrona sugerem que XKR pode aumentar 746.96% em 2034, atingindo potencialmente $0.004482 nas melhores circunstâncias. A faixa de preço prevista para o ano é entre $0.004482 e $0.0020012.
Quanto será Kryptokrona em 2035?
Com base em nossa previsão experimental para o preço de Kryptokrona, XKR poderia aumentar 897.93%, com o valor potencialmente atingindo $0.005282 em 2035. A faixa de preço esperada para o ano está entre $0.005282 e $0.002366.
Quanto será Kryptokrona em 2036?
Nossa recente simulação de previsão de preços de Kryptokrona sugere que o valor de XKR pode aumentar 1964.7% em 2036, possivelmente atingindo $0.010928 se as condições forem ideais. A faixa de preço esperada para 2036 está entre $0.010928 e $0.003916.
Quanto será Kryptokrona em 2037?
De acordo com a simulação experimental, o valor de Kryptokrona poderia aumentar 4830.69% em 2037, com um pico de $0.026098 sob condições favoráveis. O preço é esperado para cair entre $0.026098 e $0.010171 ao longo do ano.
Previsões relacionadas
Previsão de Preço do Petcoin
Previsão de Preço do Amepay
Previsão de Preço do FlatQube
Previsão de Preço do VNX EURO
Previsão de Preço do BMX
Previsão de Preço do Unique Network
Previsão de Preço do Gym Network
Previsão de Preço do Base Protocol
Previsão de Preço do BLOX
Previsão de Preço do Idena
Previsão de Preço do Minu
Previsão de Preço do Shibwifhatcoin
Previsão de Preço do IMO
Previsão de Preço do Solordi
Previsão de Preço do Navigator Exchange
Previsão de Preço do Deri Protocol
Previsão de Preço do Magicaltux
Previsão de Preço do WoofWork.io
Previsão de Preço do Sora
Previsão de Preço do Shockwaves
Previsão de Preço do Joe Coin
Previsão de Preço do UCX
Previsão de Preço do FAYA
Previsão de Preço do TrustPad
Previsão de Preço do ZELIX
Como ler e prever os movimentos de preço de Kryptokrona?
Traders de Kryptokrona utilizam indicadores e padrões de gráfico para prever a direção do mercado. Eles também identificam níveis-chave de suporte e resistência para avaliar quando uma tendência de baixa pode desacelerar ou uma tendência de alta pode estagnar.
Indicadores de Previsão de Preço de Kryptokrona
Médias móveis são ferramentas populares para a previsão de preço de Kryptokrona. Uma média móvel simples (SMA) calcula o preço médio de fechamento de XKR em um período específico, como uma SMA de 12 dias. Uma média móvel exponencial (EMA) dá mais peso aos preços recentes, reagindo mais rapidamente às mudanças de preço.
Médias móveis comumente usadas no mercado de criptomoedas incluem as de 50 dias, 100 dias e 200 dias, que ajudam a identificar níveis-chave de resistência e suporte. Um movimento de preço de XKR acima dessas médias é visto como altista, enquanto uma queda abaixo indica fraqueza.
Traders também usam RSI e níveis de retração de Fibonacci para avaliar a direção futura de XKR.
Como ler gráficos de Kryptokrona e prever movimentos de preço?
A maioria dos traders prefere gráficos de velas em vez de gráficos de linha simples porque eles fornecem informações mais detalhadas. Velas podem representar a ação de preço de Kryptokrona em diferentes períodos de tempo, como 5 minutos para tendências de curto prazo e semanal para tendências de longo prazo. Opções populares incluem gráficos de 1 hora, 4 horas e 1 dia.
Por exemplo, um gráfico de velas de 1 hora mostra os preços de abertura, fechamento, máximo e mínimo de XKR dentro de cada hora. A cor da vela é crucial: verde indica que o preço fechou mais alto do que abriu, enquanto vermelho significa o oposto. Alguns gráficos usam velas vazias e preenchidas para transmitir a mesma informação.
O que afeta o preço de Kryptokrona?
A ação de preço de Kryptokrona é impulsionada pela oferta e demanda, influenciada por fatores como reduções pela metade das recompensas de bloco, hard forks e atualizações de protocolo. Eventos do mundo real, como regulamentações, adoção por empresas e governos e hacks de exchanges de criptomoedas, também impactam o preço de XKR. A capitalização de mercado de Kryptokrona pode mudar rapidamente.
Traders frequentemente monitoram a atividade de "baleias" de XKR, grandes detentores de Kryptokrona, pois suas ações podem influenciar significativamente os movimentos de preço no relativamente pequeno mercado de Kryptokrona.
Padrões de previsão de preço altistas e baixistas
Traders frequentemente identificam padrões de velas para ganhar vantagem em previsões de preço de criptomoedas. Certas formações indicam tendências altistas, enquanto outras sugerem movimentos baixistas.
Padrões de velas altistas comumente seguidos:
- Martelo
- Engolfo de Alta
- Linha de Perfuração
- Estrela da Manhã
- Três Soldados Brancos
Padrões de velas baixistas comuns:
- Harami de Baixa
- Nuvem Negra
- Estrela da Noite
- Estrela Cadente
- Homem Enforcado


