Previsão de Preço Kryptokrona - Projeção XKR
Previsão de Preço Kryptokrona até $0.000555 até 2026
| Ano | Preço Mínimo | Preço Máximo |
|---|---|---|
| 2026 | $0.000186 | $0.000555 |
| 2027 | $0.000179 | $0.00047 |
| 2028 | $0.000323 | $0.000792 |
| 2029 | $0.00071 | $0.002337 |
| 2030 | $0.0006043 | $0.001747 |
| 2031 | $0.000714 | $0.001595 |
| 2032 | $0.00109 | $0.002958 |
| 2033 | $0.002534 | $0.007881 |
| 2034 | $0.002037 | $0.004564 |
| 2035 | $0.0024091 | $0.005378 |
Calculadora de lucro do investimento
Se você abrir um short de $10,000.00 em Kryptokrona hoje e fechar em Apr 06, 2026, nossa previsão mostra que pode lucrar cerca de $3,969.64, com um retorno de 39.7% nos próximos 90 dias.
Previsão de preço de longo prazo de Kryptokrona para os anos 2027, 2028, 2029, 2030, 2031, 2032 e 2037
[
'name' => 'Kryptokrona'
'name_with_ticker' => 'Kryptokrona <small>XKR</small>'
'name_lang' => 'Kryptokrona'
'name_lang_with_ticker' => 'Kryptokrona <small>XKR</small>'
'name_with_lang' => 'Kryptokrona'
'name_with_lang_with_ticker' => 'Kryptokrona <small>XKR</small>'
'image' => '/uploads/coins/kryptokrona.png?1717232444'
'price_for_sd' => 0.0005389
'ticker' => 'XKR'
'marketcap' => '$327.42K'
'low24h' => '$0.0005109'
'high24h' => '$0.0007584'
'volume24h' => '$16.65K'
'current_supply' => '608.96M'
'max_supply' => '1B'
'algo' => 'Cryptonight'
'proof' => null
'ico_price_and_roi' => '—'
'price' => '$0.0005389'
'change_24h_pct' => '-24.5971%'
'ath_price' => '$0.2927'
'ath_days' => 1870
'ath_exchange' => null
'ath_pair' => null
'ath_date' => '23 de nov. de 2020'
'ath_pct' => '-99.82%'
'fdv' => '$537.68K'
'new_prediction' => true
'change_24h_pct_is_increased' => false
'change_30d_pct' => null
'change_30d_pct_is_increased' => false
'max_price' => '$0.026573'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.000543'
'next_week_prediction_price_date' => '13 de janeiro de 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.000476'
'next_month_prediction_price_date' => '5 de fevereiro de 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.000186'
'current_year_max_price_prediction' => '$0.000555'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.0006043'
'grand_prediction_max_price' => '$0.001747'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.00054915262951756
107 => 0.00055120296609377
108 => 0.00055582247909277
109 => 0.00051634924629769
110 => 0.00053407156894945
111 => 0.00054448177315029
112 => 0.00049744809184442
113 => 0.00054355206849569
114 => 0.00051566210513474
115 => 0.00050619583267685
116 => 0.00051894092145484
117 => 0.00051397414796305
118 => 0.00050970400777354
119 => 0.00050732119617747
120 => 0.00051667978275191
121 => 0.00051624319350228
122 => 0.00050093072944311
123 => 0.00048095624429381
124 => 0.00048766033715004
125 => 0.00048522467736417
126 => 0.0004763975320938
127 => 0.00048234596221244
128 => 0.00045615208640151
129 => 0.00041108688450799
130 => 0.00044085833726332
131 => 0.00043971216871735
201 => 0.00043913421856186
202 => 0.00046150664248497
203 => 0.0004593560501444
204 => 0.00045545270398761
205 => 0.00047632584408058
206 => 0.0004687068671633
207 => 0.00049218675876565
208 => 0.00050765213395914
209 => 0.00050372961455759
210 => 0.00051827487467771
211 => 0.00048781478590908
212 => 0.00049793240555137
213 => 0.00050001763293724
214 => 0.00047606827277189
215 => 0.00045970791364814
216 => 0.00045861686421634
217 => 0.00043025025609212
218 => 0.00044540346918482
219 => 0.00045873766962383
220 => 0.0004523516223893
221 => 0.00045032999061258
222 => 0.00046065806892139
223 => 0.00046146064906
224 => 0.0004431617368462
225 => 0.00044696666014664
226 => 0.00046283382282531
227 => 0.00044656684835808
228 => 0.00041496277416344
301 => 0.00040712452680266
302 => 0.00040607876011717
303 => 0.0003848208116155
304 => 0.00040764831597135
305 => 0.00039768349858094
306 => 0.0004291622373204
307 => 0.00041118175057628
308 => 0.00041040664772988
309 => 0.00040923496609469
310 => 0.00039093737166451
311 => 0.00039494338197193
312 => 0.00040825997036639
313 => 0.00041301147912764
314 => 0.00041251585783588
315 => 0.00040819471181842
316 => 0.00041017291033737
317 => 0.00040380044365779
318 => 0.00040155019304181
319 => 0.00039444778311757
320 => 0.00038400920261976
321 => 0.00038546075126151
322 => 0.00036477919189219
323 => 0.00035351078069435
324 => 0.00035039183299006
325 => 0.00034622104577008
326 => 0.00035086293450459
327 => 0.000364720603633
328 => 0.00034800531459563
329 => 0.00031934812398227
330 => 0.00032107046996761
331 => 0.00032494007002756
401 => 0.00031772909591582
402 => 0.00031090451409023
403 => 0.00031683793429175
404 => 0.0003046955048478
405 => 0.00032640742461472
406 => 0.00032582017803197
407 => 0.00033391303906497
408 => 0.00033897367115113
409 => 0.00032731055259163
410 => 0.00032437730981434
411 => 0.00032604821820873
412 => 0.00029843182444383
413 => 0.00033165619051635
414 => 0.00033194351621381
415 => 0.00032948325915161
416 => 0.000347174208398
417 => 0.00038450762925334
418 => 0.00037046129459419
419 => 0.00036502212926145
420 => 0.00035468227198791
421 => 0.00036845951788493
422 => 0.00036740164035855
423 => 0.00036261751699615
424 => 0.0003597240642592
425 => 0.00036505533964514
426 => 0.00035906346024026
427 => 0.00035798715405331
428 => 0.00035146590959308
429 => 0.00034913812201849
430 => 0.00034741472077016
501 => 0.00034551742533366
502 => 0.00034970238629002
503 => 0.00034021871418544
504 => 0.00032878233532317
505 => 0.0003278315241641
506 => 0.00033045679737045
507 => 0.00032929530940525
508 => 0.00032782596340658
509 => 0.00032502058174256
510 => 0.00032418828493034
511 => 0.00032689284579705
512 => 0.00032383955426423
513 => 0.0003283448522423
514 => 0.00032711966048177
515 => 0.00032027583890284
516 => 0.00031174590330821
517 => 0.00031166996898927
518 => 0.00030983220835731
519 => 0.00030749154388334
520 => 0.00030684042457383
521 => 0.00031633823819204
522 => 0.00033599842813608
523 => 0.00033213866242159
524 => 0.00033492773871501
525 => 0.00034864723362837
526 => 0.00035300824850172
527 => 0.00034991290344091
528 => 0.00034567580420911
529 => 0.00034586221507167
530 => 0.00036034166580389
531 => 0.0003612447313852
601 => 0.00036352648676918
602 => 0.00036645918726159
603 => 0.00035041235501612
604 => 0.00034510641071597
605 => 0.00034259215994398
606 => 0.00033484924070375
607 => 0.00034319931527661
608 => 0.00033833408440885
609 => 0.00033899057027286
610 => 0.0003385630329927
611 => 0.00033879649725761
612 => 0.00032640135569065
613 => 0.00033091749380819
614 => 0.00032340853826839
615 => 0.00031335488972041
616 => 0.00031332118636522
617 => 0.00031578180260434
618 => 0.00031431813178138
619 => 0.00031037943123123
620 => 0.00031093890505424
621 => 0.00030603732565868
622 => 0.00031153404553882
623 => 0.00031169167179677
624 => 0.00030957513523456
625 => 0.00031804359061109
626 => 0.00032151312368846
627 => 0.00032011997398261
628 => 0.00032141537659124
629 => 0.00033229905311283
630 => 0.00033407356727394
701 => 0.00033486168924648
702 => 0.00033380571020943
703 => 0.00032161431021861
704 => 0.00032215505065004
705 => 0.00031818745615113
706 => 0.00031483525689436
707 => 0.00031496932728466
708 => 0.00031669279345804
709 => 0.00032421927131715
710 => 0.00034005830026153
711 => 0.00034065937983179
712 => 0.00034138790580567
713 => 0.00033842462454207
714 => 0.00033753087055819
715 => 0.00033870996276041
716 => 0.00034465826925534
717 => 0.00035995892850976
718 => 0.00035455065363258
719 => 0.00035015364197261
720 => 0.00035401100662423
721 => 0.00035341719557114
722 => 0.00034840483269271
723 => 0.0003482641523609
724 => 0.00033864382544784
725 => 0.00033508740963233
726 => 0.00033211540238378
727 => 0.00032887004805457
728 => 0.00032694609322296
729 => 0.00032990216226615
730 => 0.00033057825023151
731 => 0.00032411475360532
801 => 0.00032323380289861
802 => 0.00032851203376782
803 => 0.00032618928115457
804 => 0.00032857828981879
805 => 0.00032913256032143
806 => 0.00032904331000458
807 => 0.0003266180895099
808 => 0.00032816385273209
809 => 0.00032450766189741
810 => 0.0003205321035068
811 => 0.00031799594493963
812 => 0.00031578281021716
813 => 0.00031701078598933
814 => 0.00031263327658105
815 => 0.00031123282321948
816 => 0.00032764018293318
817 => 0.00033976047596253
818 => 0.00033958424210172
819 => 0.00033851146379772
820 => 0.00033691753284309
821 => 0.00034454166327802
822 => 0.00034188556868379
823 => 0.00034381809942523
824 => 0.00034431000960698
825 => 0.00034579887357328
826 => 0.00034633101446905
827 => 0.00034472251508642
828 => 0.00033932419469664
829 => 0.00032587209354221
830 => 0.00031961010414157
831 => 0.00031754354333767
901 => 0.00031761865889794
902 => 0.00031554663641523
903 => 0.00031615693989792
904 => 0.00031533439777027
905 => 0.00031377670197481
906 => 0.00031691460266343
907 => 0.00031727621648623
908 => 0.00031654379297038
909 => 0.00031671630522248
910 => 0.00031065215133346
911 => 0.00031111319578299
912 => 0.00030854604170129
913 => 0.00030806473125848
914 => 0.00030157518928764
915 => 0.00029007802501213
916 => 0.0002964485700775
917 => 0.00028875384747273
918 => 0.00028583973942823
919 => 0.00029963467367411
920 => 0.00029825004488774
921 => 0.00029588016228914
922 => 0.000292374611999
923 => 0.00029107436929659
924 => 0.00028317450624353
925 => 0.00028270774019023
926 => 0.00028662312563357
927 => 0.00028481630997165
928 => 0.00028227885648773
929 => 0.00027308845718647
930 => 0.00026275540553523
1001 => 0.00026306729541333
1002 => 0.00026635404689033
1003 => 0.00027591072008854
1004 => 0.00027217676253787
1005 => 0.00026946773349264
1006 => 0.00026896041378558
1007 => 0.00027531058206516
1008 => 0.00028429740058215
1009 => 0.00028851381476159
1010 => 0.00028433547636417
1011 => 0.00027953562619092
1012 => 0.00027982777083061
1013 => 0.0002817712782353
1014 => 0.00028197551338382
1015 => 0.00027885130435361
1016 => 0.00027973075089545
1017 => 0.00027839479118011
1018 => 0.00027019600887306
1019 => 0.00027004771889975
1020 => 0.00026803560549837
1021 => 0.00026797467950424
1022 => 0.00026455157266329
1023 => 0.00026407265635342
1024 => 0.00025727586995298
1025 => 0.00026174953534432
1026 => 0.00025874883547779
1027 => 0.00025422607298538
1028 => 0.00025344634702696
1029 => 0.0002534229075231
1030 => 0.00025806677333161
1031 => 0.00026169526906855
1101 => 0.00025880103393668
1102 => 0.00025814207269954
1103 => 0.00026517805472899
1104 => 0.00026428266188134
1105 => 0.00026350725744995
1106 => 0.00028349272955224
1107 => 0.00026767266889744
1108 => 0.00026077421947445
1109 => 0.00025223607833349
1110 => 0.00025501614014203
1111 => 0.0002556019400127
1112 => 0.0002350692496843
1113 => 0.00022673913977525
1114 => 0.00022388055996804
1115 => 0.0002222354068746
1116 => 0.00022298512379781
1117 => 0.00021548704785523
1118 => 0.00022052587889538
1119 => 0.00021403317892568
1120 => 0.00021294465664669
1121 => 0.00022455440848369
1122 => 0.00022616983762862
1123 => 0.00021927791502184
1124 => 0.00022370364503631
1125 => 0.00022209881381082
1126 => 0.00021414447763148
1127 => 0.00021384068049757
1128 => 0.00020984947421122
1129 => 0.0002036040092229
1130 => 0.00020074966413504
1201 => 0.00019926309643072
1202 => 0.00019987648323815
1203 => 0.00019956633609837
1204 => 0.00019754241621968
1205 => 0.0001996823448167
1206 => 0.00019421571153087
1207 => 0.0001920388541088
1208 => 0.00019105561811395
1209 => 0.00018620366642511
1210 => 0.00019392527923477
1211 => 0.00019544653423259
1212 => 0.00019697078657269
1213 => 0.00021023836254203
1214 => 0.00020957555194038
1215 => 0.00021556703697742
1216 => 0.00021533421888651
1217 => 0.00021362535029833
1218 => 0.00020641591482001
1219 => 0.00020928946730584
1220 => 0.00020044511940367
1221 => 0.00020707190620917
1222 => 0.00020404771745237
1223 => 0.00020604942494844
1224 => 0.00020245017438382
1225 => 0.00020444214825569
1226 => 0.00019580728022741
1227 => 0.00018774416195847
1228 => 0.00019098899612699
1229 => 0.00019451650195996
1230 => 0.00020216503339763
1231 => 0.00019760963117237
]
'min_raw' => 0.00018620366642511
'max_raw' => 0.00055582247909277
'avg_raw' => 0.00037101307275894
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.000186'
'max' => '$0.000555'
'avg' => '$0.000371'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.00035273633357489
'max_diff' => 1.6882479092765E-5
'year' => 2026
]
1 => [
'items' => [
101 => 0.0001992479260714
102 => 0.0001937599124069
103 => 0.00018243657264343
104 => 0.00018250066151678
105 => 0.00018075881238654
106 => 0.00017925360042387
107 => 0.00019813287391672
108 => 0.00019578493782074
109 => 0.00019204380894206
110 => 0.00019705145861272
111 => 0.00019837556066773
112 => 0.00019841325599176
113 => 0.00020206670792533
114 => 0.00020401655587719
115 => 0.00020436022502983
116 => 0.00021010901058534
117 => 0.00021203592767523
118 => 0.00021997262646099
119 => 0.0002038511249013
120 => 0.00020351911318573
121 => 0.00019712192651299
122 => 0.00019306472958962
123 => 0.00019739972625742
124 => 0.00020123994151903
125 => 0.00019724125270573
126 => 0.00019776339704782
127 => 0.00019239548402084
128 => 0.0001943142603442
129 => 0.00019596696900096
130 => 0.00019505444042242
131 => 0.00019368834097347
201 => 0.00020092508766081
202 => 0.00020051676205167
203 => 0.00020725578693902
204 => 0.000212509338751
205 => 0.00022192464278278
206 => 0.00021209928219471
207 => 0.00021174120700261
208 => 0.00021524144944246
209 => 0.00021203539180635
210 => 0.00021406150956302
211 => 0.00022159820388852
212 => 0.00022175744236345
213 => 0.00021908999274118
214 => 0.00021892767818925
215 => 0.0002194399910679
216 => 0.00022244062360001
217 => 0.00022139211039317
218 => 0.00022260547642123
219 => 0.00022412280921904
220 => 0.00023039914100657
221 => 0.00023191234335212
222 => 0.00022823604615789
223 => 0.00022856797463278
224 => 0.00022719293856552
225 => 0.0002258646709537
226 => 0.00022885042256716
227 => 0.00023430694232585
228 => 0.00023427299759963
301 => 0.00023553880412406
302 => 0.00023632739110227
303 => 0.00023294219851084
304 => 0.00023073856261079
305 => 0.00023158357683587
306 => 0.00023293477298377
307 => 0.00023114540213607
308 => 0.00022010057634683
309 => 0.00022345087094508
310 => 0.0002228932181029
311 => 0.00022209905264272
312 => 0.00022546779976833
313 => 0.00022514287588995
314 => 0.0002154101442489
315 => 0.00021603320215079
316 => 0.00021544803446354
317 => 0.00021733883097507
318 => 0.00021193328258967
319 => 0.00021359599286609
320 => 0.00021463882916453
321 => 0.00021525306775575
322 => 0.0002174721187346
323 => 0.00021721173871442
324 => 0.00021745593314695
325 => 0.00022074619994084
326 => 0.00023738724030112
327 => 0.00023829297541154
328 => 0.00023383280447076
329 => 0.00023561455478862
330 => 0.00023219398380429
331 => 0.0002344902360219
401 => 0.00023606127347071
402 => 0.00022896205733267
403 => 0.00022854168782651
404 => 0.00022510699892896
405 => 0.00022695260619178
406 => 0.00022401611233278
407 => 0.00022473662521158
408 => 0.00022272200838926
409 => 0.00022634791756323
410 => 0.00023040224742905
411 => 0.0002314265312635
412 => 0.00022873208147699
413 => 0.00022678112225867
414 => 0.0002233558805572
415 => 0.00022905213384322
416 => 0.00023071789189423
417 => 0.00022904338432532
418 => 0.00022865536433289
419 => 0.00022792006714837
420 => 0.00022881136110656
421 => 0.00023070881981814
422 => 0.00022981401333032
423 => 0.00023040504877999
424 => 0.00022815263111896
425 => 0.00023294331915044
426 => 0.0002405520846863
427 => 0.00024057654811165
428 => 0.00023968173680049
429 => 0.00023931559929094
430 => 0.00024023372999789
501 => 0.00024073177824271
502 => 0.00024370084459259
503 => 0.00024688677107884
504 => 0.00026175409986153
505 => 0.00025757941343193
506 => 0.00027077059198927
507 => 0.00028120310156797
508 => 0.00028433135503227
509 => 0.00028145350904082
510 => 0.00027160855336224
511 => 0.0002711255128688
512 => 0.00028583803308568
513 => 0.0002816810722483
514 => 0.00028118661498403
515 => 0.00027592642509096
516 => 0.00027903584880496
517 => 0.00027835577222621
518 => 0.00027728223807618
519 => 0.00028321480191815
520 => 0.00029432003182669
521 => 0.00029258917760126
522 => 0.00029129717521399
523 => 0.00028563599684922
524 => 0.00028904529069477
525 => 0.00028783130645709
526 => 0.0002930473531556
527 => 0.00028995748264099
528 => 0.00028164957918147
529 => 0.00028297264019061
530 => 0.0002827726621807
531 => 0.00028688819545389
601 => 0.00028565281451909
602 => 0.00028253143422603
603 => 0.00029428207535816
604 => 0.00029351905408354
605 => 0.0002946008438
606 => 0.00029507708108865
607 => 0.00030222948927625
608 => 0.00030515960205918
609 => 0.00030582478895974
610 => 0.00030860816948047
611 => 0.00030575553591679
612 => 0.00031716810406478
613 => 0.00032475679594138
614 => 0.00033357145206656
615 => 0.00034645203382166
616 => 0.00035129525171362
617 => 0.0003504203677514
618 => 0.00036018627783407
619 => 0.00037773540116865
620 => 0.00035396754732596
621 => 0.00037899515513517
622 => 0.0003710717034604
623 => 0.00035228534207633
624 => 0.00035107572187985
625 => 0.00036379806392328
626 => 0.00039201499409557
627 => 0.00038494697312118
628 => 0.00039202655484583
629 => 0.0003837678467099
630 => 0.0003833577322411
701 => 0.00039162544782545
702 => 0.00041094341593801
703 => 0.00040176617341094
704 => 0.0003886083458962
705 => 0.00039832388097461
706 => 0.00038990738535936
707 => 0.00037094266510942
708 => 0.00038494156833875
709 => 0.0003755809004151
710 => 0.0003783128409557
711 => 0.00039798757263693
712 => 0.00039562025686816
713 => 0.00039868378268048
714 => 0.00039327673980816
715 => 0.00038822570915301
716 => 0.00037879758534072
717 => 0.00037600638268078
718 => 0.00037677777067904
719 => 0.0003760060004192
720 => 0.00037073105179515
721 => 0.00036959192714202
722 => 0.00036769333614727
723 => 0.00036828178888551
724 => 0.00036471188236299
725 => 0.0003714490335513
726 => 0.00037269950817942
727 => 0.00037760224498249
728 => 0.00037811126338159
729 => 0.00039176531559203
730 => 0.00038424489308155
731 => 0.00038929024178362
801 => 0.00038883893830704
802 => 0.00035269249949275
803 => 0.00035767315983863
804 => 0.0003654215043195
805 => 0.0003619308856335
806 => 0.00035699596749048
807 => 0.00035301075649642
808 => 0.00034697275433167
809 => 0.00035547112642899
810 => 0.00036664558203586
811 => 0.00037839466601644
812 => 0.00039251042058862
813 => 0.00038935994849361
814 => 0.00037813078180342
815 => 0.00037863451401823
816 => 0.00038174838835887
817 => 0.00037771563816243
818 => 0.00037652630140086
819 => 0.00038158499175134
820 => 0.00038161982817158
821 => 0.00037697966169643
822 => 0.0003718229658008
823 => 0.00037180135905671
824 => 0.00037088377482986
825 => 0.00038393108290544
826 => 0.00039110578311537
827 => 0.00039192835093183
828 => 0.00039105041774744
829 => 0.00039138829938619
830 => 0.00038721349941776
831 => 0.00039675585414712
901 => 0.00040551286248784
902 => 0.00040316579718633
903 => 0.00039964721264438
904 => 0.00039684449057871
905 => 0.00040250556493945
906 => 0.00040225348620952
907 => 0.00040543637765943
908 => 0.00040529198331799
909 => 0.00040422169663799
910 => 0.00040316583540964
911 => 0.00040735220583091
912 => 0.00040614659838064
913 => 0.000404939118289
914 => 0.00040251733210925
915 => 0.00040284649307269
916 => 0.00039932851606396
917 => 0.00039770093892805
918 => 0.00037322608390752
919 => 0.00036668560290707
920 => 0.00036874337137358
921 => 0.00036942084218269
922 => 0.00036657441646944
923 => 0.00037065545975547
924 => 0.00037001943348223
925 => 0.00037249383964846
926 => 0.00037094793810203
927 => 0.00037101138244072
928 => 0.00037555754926781
929 => 0.00037687732083849
930 => 0.00037620607436578
1001 => 0.00037667619238629
1002 => 0.00038750986374439
1003 => 0.00038596966211857
1004 => 0.00038515146070221
1005 => 0.00038537810808623
1006 => 0.00038814634339476
1007 => 0.0003889212981411
1008 => 0.00038563776042574
1009 => 0.00038718629579421
1010 => 0.00039377976285476
1011 => 0.00039608710316803
1012 => 0.00040345102586182
1013 => 0.00040032270061821
1014 => 0.00040606487699361
1015 => 0.00042371436951938
1016 => 0.00043781400540096
1017 => 0.00042484739755217
1018 => 0.00045073958327089
1019 => 0.00047090036386635
1020 => 0.00047012655952756
1021 => 0.00046661106110348
1022 => 0.00044365854839763
1023 => 0.00042253730400301
1024 => 0.00044020612179452
1025 => 0.00044025116324469
1026 => 0.0004387333961267
1027 => 0.00042930667490914
1028 => 0.00043840536666194
1029 => 0.00043912758777168
1030 => 0.00043872333600432
1031 => 0.00043149589094893
1101 => 0.00042046091820447
1102 => 0.00042261712546474
1103 => 0.00042614903694251
1104 => 0.00041946239168117
1105 => 0.00041732560336206
1106 => 0.00042129829938791
1107 => 0.0004340991537273
1108 => 0.00043167922636474
1109 => 0.00043161603228161
1110 => 0.00044196950774755
1111 => 0.00043455865373379
1112 => 0.00042264432214342
1113 => 0.00041963579628613
1114 => 0.0004089575562786
1115 => 0.00041633305468639
1116 => 0.00041659848574374
1117 => 0.00041255900064156
1118 => 0.00042297210409659
1119 => 0.00042287614551506
1120 => 0.00043276183745971
1121 => 0.00045165956756154
1122 => 0.00044607057886961
1123 => 0.00043957119310113
1124 => 0.00044027785654258
1125 => 0.00044802821030133
1126 => 0.00044334216949542
1127 => 0.00044502730244146
1128 => 0.00044802565965079
1129 => 0.0004498346430002
1130 => 0.00044001757167728
1201 => 0.0004377287427471
1202 => 0.00043304660202575
1203 => 0.00043182511890785
1204 => 0.00043563862482932
1205 => 0.00043463390075216
1206 => 0.00041657617729117
1207 => 0.00041468904471727
1208 => 0.0004147469203791
1209 => 0.00041000163579377
1210 => 0.00040276393780235
1211 => 0.00042178417598332
1212 => 0.00042025658466933
1213 => 0.00041857024208485
1214 => 0.00041877680942931
1215 => 0.00042703285016799
1216 => 0.00042224392959951
1217 => 0.00043497605981947
1218 => 0.00043235871660911
1219 => 0.00042967424842155
1220 => 0.00042930317314713
1221 => 0.00042826988192298
1222 => 0.00042472634184464
1223 => 0.00042044730426631
1224 => 0.00041762191301321
1225 => 0.00038523413934389
1226 => 0.0003912451217459
1227 => 0.00039816020908113
1228 => 0.00040054726951878
1229 => 0.00039646403746063
1230 => 0.00042488757273389
1231 => 0.00043008082652432
]
'min_raw' => 0.00017925360042387
'max_raw' => 0.00047090036386635
'avg_raw' => 0.00032507698214511
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.000179'
'max' => '$0.00047'
'avg' => '$0.000325'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -6.9500660012396E-6
'max_diff' => -8.4922115226413E-5
'year' => 2027
]
2 => [
'items' => [
101 => 0.00041435012204555
102 => 0.00041140754951801
103 => 0.00042508048729891
104 => 0.00041683403436836
105 => 0.00042054741161805
106 => 0.00041252112111298
107 => 0.00042882992376243
108 => 0.00042870567801096
109 => 0.00042236118542931
110 => 0.00042772350711411
111 => 0.00042679167176112
112 => 0.00041962875526223
113 => 0.00042905700099171
114 => 0.00042906167728396
115 => 0.00042295524111529
116 => 0.00041582426054104
117 => 0.00041454940964061
118 => 0.00041358898073926
119 => 0.00042031120498368
120 => 0.00042633833022138
121 => 0.00043755331603769
122 => 0.0004403730299334
123 => 0.00045137856098733
124 => 0.00044482530309429
125 => 0.00044773027743938
126 => 0.00045088403802468
127 => 0.00045239606682498
128 => 0.00044993229703483
129 => 0.0004670284168189
130 => 0.00046847185314025
131 => 0.00046895582485312
201 => 0.00046319110945217
202 => 0.00046831152597666
203 => 0.00046591585265522
204 => 0.00047214872910038
205 => 0.00047312612371234
206 => 0.00047229830524783
207 => 0.00047260854572479
208 => 0.00045802002345129
209 => 0.00045726353161082
210 => 0.00044694871168784
211 => 0.00045115207704975
212 => 0.0004432940869782
213 => 0.00044578593657616
214 => 0.00044688432013572
215 => 0.00044631058689692
216 => 0.00045138972902064
217 => 0.0004470714206153
218 => 0.00043567469473797
219 => 0.0004242748638303
220 => 0.00042413174823936
221 => 0.0004211303739851
222 => 0.00041896093012838
223 => 0.00041937884198034
224 => 0.00042085161785574
225 => 0.00041887532971714
226 => 0.00041929707099186
227 => 0.00042630078619967
228 => 0.00042770533133639
229 => 0.00042293213817062
301 => 0.00040376707884159
302 => 0.00039906392521033
303 => 0.00040244445877289
304 => 0.00040082878146423
305 => 0.00032350011004537
306 => 0.00034166733436284
307 => 0.00033087298657405
308 => 0.00033584751865918
309 => 0.00032482928474963
310 => 0.00033008776348639
311 => 0.00032911671447261
312 => 0.00035832907356784
313 => 0.00035787296276085
314 => 0.00035809127886731
315 => 0.00034767048228651
316 => 0.00036427109419519
317 => 0.00037244915256009
318 => 0.00037093561160873
319 => 0.00037131653725823
320 => 0.00036477097253276
321 => 0.00035815465424175
322 => 0.00035081613901293
323 => 0.00036445019324018
324 => 0.00036293431915118
325 => 0.00036641118891707
326 => 0.00037525384766576
327 => 0.0003765559627565
328 => 0.0003783060186432
329 => 0.00037767874818528
330 => 0.0003926228753471
331 => 0.00039081304294328
401 => 0.00039517421831218
402 => 0.00038620294969519
403 => 0.00037605110769443
404 => 0.00037798064097005
405 => 0.00037779481139929
406 => 0.00037542898767814
407 => 0.00037329322780582
408 => 0.00036973778936501
409 => 0.00038098772269761
410 => 0.00038053099594909
411 => 0.00038792487112075
412 => 0.00038661793186389
413 => 0.00037788987164428
414 => 0.00037820159602252
415 => 0.0003802980922758
416 => 0.00038755408974577
417 => 0.00038970816382084
418 => 0.00038871031088426
419 => 0.00039107215477035
420 => 0.00039293885987779
421 => 0.00039130658419155
422 => 0.00041441616574392
423 => 0.00040481945628897
424 => 0.00040949682570384
425 => 0.00041061235074863
426 => 0.00040775495680337
427 => 0.00040837462323449
428 => 0.00040931324902864
429 => 0.00041501240104895
430 => 0.00042996862501316
501 => 0.00043659263479645
502 => 0.00045652129505237
503 => 0.00043604260299462
504 => 0.00043482748215716
505 => 0.00043841723565714
506 => 0.00045011746889029
507 => 0.00045959940897873
508 => 0.00046274511553231
509 => 0.00046316087258332
510 => 0.00046906242720046
511 => 0.00047244508824953
512 => 0.00046834582324365
513 => 0.0004648721253621
514 => 0.00045242977072164
515 => 0.00045387000715068
516 => 0.00046379180793302
517 => 0.00047780693592922
518 => 0.0004898333737755
519 => 0.0004856221344054
520 => 0.00051775091812753
521 => 0.00052093635579926
522 => 0.00052049623131056
523 => 0.00052775313238346
524 => 0.00051334966159596
525 => 0.0005071918987802
526 => 0.00046562317827223
527 => 0.0004773022931689
528 => 0.00049427857256156
529 => 0.00049203169832616
530 => 0.00047970307045396
531 => 0.00048982402140572
601 => 0.00048647771850967
602 => 0.00048383835057732
603 => 0.00049592980674206
604 => 0.00048263475399929
605 => 0.00049414594424027
606 => 0.00047938272368819
607 => 0.00048564137099212
608 => 0.0004820886600857
609 => 0.00048438769944603
610 => 0.00047094756232266
611 => 0.00047819953407354
612 => 0.00047064585645555
613 => 0.00047064227502885
614 => 0.00047047552717677
615 => 0.0004793623953962
616 => 0.00047965219584978
617 => 0.00047308478680831
618 => 0.00047213832056322
619 => 0.00047563790233435
620 => 0.00047154080862228
621 => 0.00047345781298336
622 => 0.00047159887273149
623 => 0.00047118038612553
624 => 0.00046784581364956
625 => 0.00046640918814093
626 => 0.00046697252602014
627 => 0.00046504956341781
628 => 0.00046389090889331
629 => 0.00047024504162893
630 => 0.00046685028483327
701 => 0.00046972474646233
702 => 0.00046644893465004
703 => 0.00045509354370538
704 => 0.00044856293829202
705 => 0.00042711365744285
706 => 0.00043319664688392
707 => 0.00043722967517666
708 => 0.00043589675934997
709 => 0.00043876037831566
710 => 0.0004389361812628
711 => 0.00043800518954591
712 => 0.00043692722040519
713 => 0.00043640252464291
714 => 0.00044031317697973
715 => 0.00044258344228775
716 => 0.0004376344435208
717 => 0.00043647496235355
718 => 0.00044147867334865
719 => 0.00044453093416511
720 => 0.00046706711311666
721 => 0.00046539756018903
722 => 0.00046958781040416
723 => 0.00046911605253457
724 => 0.00047350810231924
725 => 0.00048068724749844
726 => 0.00046609003802856
727 => 0.000468623608859
728 => 0.00046800243580007
729 => 0.00047478424037716
730 => 0.00047480541243079
731 => 0.00047073938181056
801 => 0.0004729436429736
802 => 0.00047171328486313
803 => 0.00047393670826162
804 => 0.0004653752622918
805 => 0.00047580217933205
806 => 0.00048171356939818
807 => 0.00048179564905499
808 => 0.00048459760103064
809 => 0.00048744454651602
810 => 0.00049290901045851
811 => 0.0004872921455825
812 => 0.00047718795246135
813 => 0.00047791744256835
814 => 0.0004719933578384
815 => 0.00047209294277299
816 => 0.00047156135058757
817 => 0.0004731566987524
818 => 0.00046572535149977
819 => 0.0004674694738464
820 => 0.00046502769234756
821 => 0.0004686183009029
822 => 0.00046475539964621
823 => 0.00046800213625162
824 => 0.00046940332013949
825 => 0.00047457371885107
826 => 0.00046399172755258
827 => 0.00044241433095715
828 => 0.00044695016132215
829 => 0.00044024131193052
830 => 0.00044086224148411
831 => 0.00044211661800256
901 => 0.0004380507732998
902 => 0.0004388264083396
903 => 0.00043879869719792
904 => 0.00043855989754968
905 => 0.00043750221431212
906 => 0.00043596836436141
907 => 0.00044207875047093
908 => 0.00044311702413962
909 => 0.00044542497789023
910 => 0.00045229188275208
911 => 0.00045160571702361
912 => 0.00045272488179548
913 => 0.00045028175138233
914 => 0.00044097557129691
915 => 0.00044148094164893
916 => 0.00043517896526121
917 => 0.00044526382218523
918 => 0.00044287559495201
919 => 0.00044133588931842
920 => 0.00044091576637102
921 => 0.00044779969296181
922 => 0.0004498594716901
923 => 0.00044857595581324
924 => 0.00044594342730365
925 => 0.00045099866027925
926 => 0.00045235122736036
927 => 0.00045265401724907
928 => 0.00046161092083704
929 => 0.00045315460866085
930 => 0.00045519012705017
1001 => 0.00047107066045933
1002 => 0.00045666920802104
1003 => 0.00046429797856831
1004 => 0.00046392458994823
1005 => 0.0004678272108167
1006 => 0.00046360446112805
1007 => 0.00046365680717136
1008 => 0.00046712207011612
1009 => 0.00046225573327367
1010 => 0.00046105075983603
1011 => 0.00045938609766211
1012 => 0.00046302082661841
1013 => 0.00046519968224306
1014 => 0.00048275965838463
1015 => 0.00049410420380429
1016 => 0.00049361170716851
1017 => 0.00049811220450445
1018 => 0.00049608468923478
1019 => 0.00048953730759751
1020 => 0.00050071288968419
1021 => 0.00049717646790575
1022 => 0.00049746800622041
1023 => 0.00049745715514978
1024 => 0.00049980856647309
1025 => 0.00049814237604684
1026 => 0.00049485814368578
1027 => 0.00049703837039576
1028 => 0.0005035128642791
1029 => 0.00052360989195471
1030 => 0.00053485645489219
1031 => 0.00052293283474427
1101 => 0.00053115758825867
1102 => 0.00052622566692936
1103 => 0.00052532939011187
1104 => 0.00053049514312342
1105 => 0.00053566993810179
1106 => 0.00053534032603292
1107 => 0.00053158369060729
1108 => 0.00052946166257645
1109 => 0.00054553036975754
1110 => 0.00055736951948528
1111 => 0.00055656216884451
1112 => 0.00056012555200835
1113 => 0.00057058775518869
1114 => 0.0005715442879309
1115 => 0.00057142378679104
1116 => 0.0005690529205856
1117 => 0.0005793543183054
1118 => 0.00058794792551911
1119 => 0.00056850413355995
1120 => 0.00057590807500007
1121 => 0.00057923194285263
1122 => 0.00058411236700735
1123 => 0.00059234646061042
1124 => 0.00060129087024882
1125 => 0.00060255570784215
1126 => 0.00060165824504163
1127 => 0.00059575916644647
1128 => 0.00060554624620181
1129 => 0.00061127928798722
1130 => 0.00061469318317211
1201 => 0.00062335025334298
1202 => 0.00057925246992891
1203 => 0.00054803786702639
1204 => 0.00054316325603883
1205 => 0.00055307596916664
1206 => 0.00055568987256604
1207 => 0.0005546362113833
1208 => 0.00051950133790897
1209 => 0.00054297827820132
1210 => 0.00056823749195867
1211 => 0.00056920780123048
1212 => 0.00058185309178267
1213 => 0.00058597091673443
1214 => 0.00059615203308506
1215 => 0.00059551520148531
1216 => 0.00059799414129974
1217 => 0.00059742427596566
1218 => 0.00061628265011822
1219 => 0.00063708623730415
1220 => 0.00063636587523126
1221 => 0.00063337511343641
1222 => 0.00063781690470243
1223 => 0.00065928843612621
1224 => 0.00065731168158698
1225 => 0.00065923193024229
1226 => 0.0006845480758734
1227 => 0.00071746266637357
1228 => 0.00070217053451539
1229 => 0.00073535006045525
1230 => 0.00075623481326329
1231 => 0.00079235283372106
]
'min_raw' => 0.00032350011004537
'max_raw' => 0.00079235283372106
'avg_raw' => 0.00055792647188322
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.000323'
'max' => '$0.000792'
'avg' => '$0.000557'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 0.00014424650962151
'max_diff' => 0.00032145246985471
'year' => 2028
]
3 => [
'items' => [
101 => 0.00078783067967475
102 => 0.00080189115999268
103 => 0.00077973508012982
104 => 0.00072886024228216
105 => 0.00072080910445172
106 => 0.00073692768627555
107 => 0.00077655364686124
108 => 0.00073567972375989
109 => 0.00074394846516898
110 => 0.0007415670670869
111 => 0.00074144017250339
112 => 0.00074628322263817
113 => 0.00073925812582116
114 => 0.00071063661759788
115 => 0.000723753686149
116 => 0.00071868855604805
117 => 0.00072430869552552
118 => 0.00075463827036363
119 => 0.00074122884236094
120 => 0.00072710309925358
121 => 0.00074481991586354
122 => 0.00076737951156672
123 => 0.00076596777261111
124 => 0.00076322840897611
125 => 0.00077867005835817
126 => 0.00080417513915858
127 => 0.00081106906001121
128 => 0.00081615801144462
129 => 0.00081685969186875
130 => 0.00082408743632922
131 => 0.00078522203273914
201 => 0.00084690242637095
202 => 0.00085755292646468
203 => 0.00085555107386506
204 => 0.00086738865647768
205 => 0.00086390573938256
206 => 0.00085885953896468
207 => 0.00087762462533171
208 => 0.00085611196807629
209 => 0.00082557745947047
210 => 0.00080882562414521
211 => 0.00083088579223352
212 => 0.00084435716709128
213 => 0.0008532608889319
214 => 0.00085595514978109
215 => 0.00078823904338422
216 => 0.00075174381774374
217 => 0.00077513683896068
218 => 0.00080367793934542
219 => 0.00078506348548542
220 => 0.00078579313683491
221 => 0.00075925381742298
222 => 0.00080602608022694
223 => 0.00079921175495305
224 => 0.00083456448652831
225 => 0.00082612727341448
226 => 0.00085495605362897
227 => 0.00084736446964086
228 => 0.00087887671033576
301 => 0.00089144779630881
302 => 0.00091255660619087
303 => 0.00092808433266843
304 => 0.00093720251065413
305 => 0.00093665508944929
306 => 0.00097278585328686
307 => 0.00095148080416459
308 => 0.00092471664125247
309 => 0.00092423256198524
310 => 0.00093809410120855
311 => 0.00096714408469303
312 => 0.00097467632275048
313 => 0.00097888581625779
314 => 0.00097243883041783
315 => 0.00094931372654223
316 => 0.00093932842393568
317 => 0.00094783619105852
318 => 0.00093743192294805
319 => 0.00095539260862877
320 => 0.00098005646626384
321 => 0.00097496347719367
322 => 0.00099198857607168
323 => 0.0010096077623178
324 => 0.0010348039899769
325 => 0.0010413912169006
326 => 0.0010522796525157
327 => 0.0010634874294284
328 => 0.0010670870653147
329 => 0.001073959887123
330 => 0.0010739236639596
331 => 0.0010946353750733
401 => 0.0011174810338201
402 => 0.0011261047411188
403 => 0.0011459344805381
404 => 0.0011119767466994
405 => 0.0011377340778944
406 => 0.0011609678353801
407 => 0.0011332675918903
408 => 0.001171445924212
409 => 0.0011729283023421
410 => 0.0011953104521461
411 => 0.0011726218554187
412 => 0.0011591494391065
413 => 0.0011980438001949
414 => 0.0012168635563647
415 => 0.0012111948926461
416 => 0.0011680560818511
417 => 0.0011429474436578
418 => 0.0010772332944114
419 => 0.0011550745428338
420 => 0.00119298874428
421 => 0.0011679578932288
422 => 0.0011805819985414
423 => 0.0012494550237469
424 => 0.0012756774125471
425 => 0.001270223338985
426 => 0.0012711449876353
427 => 0.0012852941126618
428 => 0.0013480391250949
429 => 0.001310440859227
430 => 0.0013391833247029
501 => 0.0013544282247526
502 => 0.0013685885375263
503 => 0.0013338152847669
504 => 0.0012885757938474
505 => 0.0012742465480486
506 => 0.0011654690683959
507 => 0.0011598067281833
508 => 0.0011566282850355
509 => 0.0011365886505885
510 => 0.0011208429872309
511 => 0.00110832145113
512 => 0.0010754612011539
513 => 0.0010865505708981
514 => 0.0010341781909034
515 => 0.0010676841836608
516 => 0.00098409660061404
517 => 0.0010537108235938
518 => 0.0010158229669963
519 => 0.0010412636437109
520 => 0.0010411748835865
521 => 0.00099433053178094
522 => 0.00096731168727618
523 => 0.00098452914658378
524 => 0.0010029876296851
525 => 0.0010059824564665
526 => 0.0010299143616232
527 => 0.0010365932419378
528 => 0.0010163559227773
529 => 0.00098236443374655
530 => 0.00099025988138508
531 => 0.00096715168628179
601 => 0.00092665546320716
602 => 0.00095574055761558
603 => 0.00096567148762794
604 => 0.00097005755207401
605 => 0.00093023416770275
606 => 0.00091772079572556
607 => 0.00091105878148227
608 => 0.00097722373490486
609 => 0.00098084840041229
610 => 0.00096230409920024
611 => 0.0010461260991215
612 => 0.0010271545989663
613 => 0.0010483504127701
614 => 0.00098954345226805
615 => 0.0009917899573533
616 => 0.00096394979982831
617 => 0.00097953842776231
618 => 0.00096852088798349
619 => 0.00097827902067506
620 => 0.0009841280051761
621 => 0.0010119635944052
622 => 0.0010540286613099
623 => 0.0010078058856095
624 => 0.00098766596031444
625 => 0.0010001606566962
626 => 0.0010334356796928
627 => 0.0010838490428497
628 => 0.0010540033171973
629 => 0.0010672483434285
630 => 0.0010701417924298
701 => 0.0010481346592826
702 => 0.0010846604772394
703 => 0.0011042349598177
704 => 0.0011243143285746
705 => 0.001141748681855
706 => 0.0011162941871383
707 => 0.0011435341452437
708 => 0.0011215835475107
709 => 0.001101891592133
710 => 0.0011019214567009
711 => 0.0010895684054389
712 => 0.0010656328120343
713 => 0.0010612187213726
714 => 0.001084181378433
715 => 0.0011025952548237
716 => 0.0011041119098797
717 => 0.0011143067779887
718 => 0.0011203399959202
719 => 0.0011794737334102
720 => 0.0012032578118086
721 => 0.0012323405326647
722 => 0.0012436698914504
723 => 0.0012777671995956
724 => 0.0012502308540204
725 => 0.0012442731924435
726 => 0.0011615642760277
727 => 0.0011751078564573
728 => 0.0011967924354863
729 => 0.0011619218467489
730 => 0.0011840392091997
731 => 0.0011884056450572
801 => 0.001160736957487
802 => 0.0011755159990117
803 => 0.0011362672464026
804 => 0.0010548841768623
805 => 0.0010847510798604
806 => 0.0011067431735579
807 => 0.001075357744246
808 => 0.0011316149115036
809 => 0.0010987506357754
810 => 0.001088334238133
811 => 0.001047696157216
812 => 0.0010668757671056
813 => 0.0010928164641069
814 => 0.0010767881292898
815 => 0.0011100493307019
816 => 0.0011571560623397
817 => 0.0011907271245591
818 => 0.0011933042938628
819 => 0.0011717203499422
820 => 0.0012063087578219
821 => 0.0012065606966122
822 => 0.0011675448312261
823 => 0.0011436478309184
824 => 0.0011382183821688
825 => 0.0011517822096515
826 => 0.0011682512002362
827 => 0.0011942182082219
828 => 0.0012099095273065
829 => 0.0012508241654467
830 => 0.0012618944934128
831 => 0.0012740574275339
901 => 0.0012903108584295
902 => 0.001309827269514
903 => 0.0012671264731312
904 => 0.0012688230553757
905 => 0.0012290606650168
906 => 0.0011865688484147
907 => 0.001218814840536
908 => 0.00126097218573
909 => 0.0012513012441627
910 => 0.001250213065677
911 => 0.0012520430800545
912 => 0.0012447515059362
913 => 0.0012117719864376
914 => 0.0011952098782082
915 => 0.0012165792232686
916 => 0.0012279360791281
917 => 0.0012455495721443
918 => 0.0012433783373543
919 => 0.0012887488038129
920 => 0.001306378395147
921 => 0.001301867991271
922 => 0.0013026980141331
923 => 0.0013346155471445
924 => 0.0013701144081945
925 => 0.001403363776055
926 => 0.0014371864611364
927 => 0.001396411894149
928 => 0.0013757090836584
929 => 0.0013970690995313
930 => 0.0013857351744451
1001 => 0.0014508632698507
1002 => 0.0014553725978701
1003 => 0.001520495983773
1004 => 0.0015823058317435
1005 => 0.0015434841736717
1006 => 0.0015800912486675
1007 => 0.0016196847848941
1008 => 0.0016960671400949
1009 => 0.0016703442500269
1010 => 0.0016506409193639
1011 => 0.0016320213670932
1012 => 0.0016707656995979
1013 => 0.0017206096644093
1014 => 0.0017313455770302
1015 => 0.0017487418569102
1016 => 0.0017304517957322
1017 => 0.0017524801598369
1018 => 0.0018302499648801
1019 => 0.0018092358770644
1020 => 0.0017793924941828
1021 => 0.0018407842861729
1022 => 0.0018630017370396
1023 => 0.0020189354425913
1024 => 0.0022158081871503
1025 => 0.0021343015781667
1026 => 0.0020837077957688
1027 => 0.0020955985347329
1028 => 0.0021674897964828
1029 => 0.0021905789880423
1030 => 0.002127814606062
1031 => 0.0021499840468492
1101 => 0.0022721398452379
1102 => 0.0023376725118462
1103 => 0.0022486703483807
1104 => 0.0020031169092567
1105 => 0.0017767054240779
1106 => 0.0018367599453894
1107 => 0.0018299516263814
1108 => 0.0019611927925038
1109 => 0.0018087346980198
1110 => 0.0018113017013303
1111 => 0.0019452567957813
1112 => 0.0019095198731535
1113 => 0.0018516306353357
1114 => 0.001777128079578
1115 => 0.0016394032146077
1116 => 0.0015174164609615
1117 => 0.0017566605767333
1118 => 0.001746343935424
1119 => 0.0017314039099676
1120 => 0.0017646513199412
1121 => 0.0019260913053312
1122 => 0.0019223695911378
1123 => 0.0018986939442741
1124 => 0.0019166517137526
1125 => 0.0018484825515215
1126 => 0.0018660512968115
1127 => 0.0017766695593419
1128 => 0.0018170738375892
1129 => 0.0018515064310307
1130 => 0.0018584192839473
1201 => 0.0018739942945475
1202 => 0.0017409075342458
1203 => 0.0018006595823993
1204 => 0.0018357583126797
1205 => 0.0016771809723702
1206 => 0.0018326237485268
1207 => 0.0017385907898403
1208 => 0.0017066745913344
1209 => 0.0017496455479831
1210 => 0.0017328997243865
1211 => 0.0017185026486059
1212 => 0.0017104688329471
1213 => 0.0017420219609785
1214 => 0.0017405499698417
1215 => 0.0016889229281841
1216 => 0.0016215775569292
1217 => 0.0016441808740588
1218 => 0.0016359688770384
1219 => 0.0016062075404678
1220 => 0.0016262630879189
1221 => 0.0015379486068244
1222 => 0.0013860081322884
1223 => 0.0014863846638295
1224 => 0.0014825202765538
1225 => 0.0014805716772534
1226 => 0.0015560018665029
1227 => 0.0015487509942771
1228 => 0.0015355905901866
1229 => 0.0016059658393261
1230 => 0.0015802779267095
1231 => 0.0016594420205605
]
'min_raw' => 0.00071063661759788
'max_raw' => 0.0023376725118462
'avg_raw' => 0.001524154564722
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.00071'
'max' => '$0.002337'
'avg' => '$0.001524'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072434
'min_diff' => 0.0003871365075525
'max_diff' => 0.0015453196781251
'year' => 2029
]
4 => [
'items' => [
101 => 0.0017115846127834
102 => 0.0016983595647595
103 => 0.0017473999247721
104 => 0.0016447016088332
105 => 0.0016788138698469
106 => 0.0016858443595642
107 => 0.0016050974196758
108 => 0.0015499373266463
109 => 0.0015462587773123
110 => 0.0014506187775282
111 => 0.0015017088934338
112 => 0.001546666081178
113 => 0.0015251350770672
114 => 0.0015183190043862
115 => 0.0015531408414878
116 => 0.0015558467964594
117 => 0.0014941507363414
118 => 0.0015069793009001
119 => 0.0015604765476811
120 => 0.001505631307541
121 => 0.0013990759648678
122 => 0.0013726487666419
123 => 0.0013691228912487
124 => 0.0012974502336927
125 => 0.0013744147583939
126 => 0.0013408176808408
127 => 0.0014469504462763
128 => 0.001386327979861
129 => 0.0013837146664984
130 => 0.0013797642600612
131 => 0.0013180726429426
201 => 0.0013315791863847
202 => 0.0013764769938912
203 => 0.0013924970374195
204 => 0.0013908260156311
205 => 0.0013762569701405
206 => 0.0013829266045605
207 => 0.0013614413882389
208 => 0.0013538545111796
209 => 0.0013299082402457
210 => 0.0012947138372989
211 => 0.0012996078348884
212 => 0.0012298785135344
213 => 0.0011918862784455
214 => 0.0011813705285025
215 => 0.0011673084281953
216 => 0.0011829588801501
217 => 0.001229680979128
218 => 0.0011733242151143
219 => 0.0010767044961802
220 => 0.0010825115059202
221 => 0.0010955581326891
222 => 0.0010712458300173
223 => 0.0010482362759152
224 => 0.0010682412163828
225 => 0.0010273021677552
226 => 0.0011005054211272
227 => 0.0010985254782732
228 => 0.0011258111242715
301 => 0.001142873398672
302 => 0.0011035503801557
303 => 0.0010936607473396
304 => 0.0010992943316504
305 => 0.001006183731957
306 => 0.0011182020018216
307 => 0.0011191707404711
308 => 0.0011108758120162
309 => 0.0011705220825431
310 => 0.001296394317493
311 => 0.0012490361195059
312 => 0.0012306975938362
313 => 0.0011958360431327
314 => 0.0012422869895711
315 => 0.0012387202816322
316 => 0.0012225902756991
317 => 0.001212834797782
318 => 0.0012308095649635
319 => 0.0012106075252103
320 => 0.0012069786837557
321 => 0.0011849918527593
322 => 0.0011771435544306
323 => 0.0011713329867978
324 => 0.0011649361227687
325 => 0.0011790460108177
326 => 0.0011470711481883
327 => 0.0011085125983917
328 => 0.0011053068721854
329 => 0.0011141581640913
330 => 0.0011102421263241
331 => 0.0011052881237032
401 => 0.0010958295835574
402 => 0.0010930234367459
403 => 0.0011021420525344
404 => 0.0010918476669575
405 => 0.0011070375936404
406 => 0.0011029067740797
407 => 0.0010798323518059
408 => 0.0010510730784075
409 => 0.0010508170605497
410 => 0.0010446209222707
411 => 0.0010367292085767
412 => 0.001034533914365
413 => 0.0010665564560949
414 => 0.0011328421591219
415 => 0.0011198286895353
416 => 0.0011292322549856
417 => 0.0011754884899506
418 => 0.0011901919560724
419 => 0.0011797557840898
420 => 0.001165470108205
421 => 0.0011660986054429
422 => 0.0012149170845095
423 => 0.0012179618331669
424 => 0.0012256549307511
425 => 0.0012355427352159
426 => 0.0011814397199462
427 => 0.0011635503582891
428 => 0.0011550733862719
429 => 0.0011289675934601
430 => 0.0011571204528661
501 => 0.0011407169873159
502 => 0.0011429303752408
503 => 0.001141488903451
504 => 0.0011422760445201
505 => 0.001100484959326
506 => 0.0011157114342959
507 => 0.001090394466435
508 => 0.0010564978884321
509 => 0.001056384255217
510 => 0.0010646803946619
511 => 0.0010597455262921
512 => 0.001046465922396
513 => 0.0010483522274515
514 => 0.001031826210302
515 => 0.0010503587851466
516 => 0.0010508902330804
517 => 0.0010437541822891
518 => 0.0010723061708397
519 => 0.0010840039438451
520 => 0.0010793068423452
521 => 0.0010836743826824
522 => 0.0011203694579489
523 => 0.0011263523563357
524 => 0.0011290095645911
525 => 0.0011254492575415
526 => 0.0010843451012961
527 => 0.001086168245414
528 => 0.0010727912235523
529 => 0.001061489049715
530 => 0.0010619410773964
531 => 0.0010677518639285
601 => 0.0010931279095124
602 => 0.0011465303014441
603 => 0.0011485568831813
604 => 0.0011510131593663
605 => 0.0011410222496963
606 => 0.0011380088957398
607 => 0.0011419842874211
608 => 0.0011620394180663
609 => 0.0012136266590005
610 => 0.0011953922826584
611 => 0.0011805674508573
612 => 0.0011935728250928
613 => 0.0011915707496687
614 => 0.0011746712182721
615 => 0.0011741969047114
616 => 0.0011417613008543
617 => 0.0011297705966313
618 => 0.0011197502666938
619 => 0.0011088083279895
620 => 0.0011023215799485
621 => 0.0011122881731138
622 => 0.0011145676508919
623 => 0.0010927755207498
624 => 0.0010898053339361
625 => 0.001107601257826
626 => 0.001099769935221
627 => 0.0011078246447277
628 => 0.0011096934064253
629 => 0.0011093924927507
630 => 0.0011012156925294
701 => 0.0011064273411548
702 => 0.0010941002384886
703 => 0.00108069636581
704 => 0.0010721455301318
705 => 0.0010646837918989
706 => 0.0010688239979493
707 => 0.0010540649193513
708 => 0.0010493431930663
709 => 0.0011046617518663
710 => 0.0011455261660266
711 => 0.0011449319812606
712 => 0.0011413150343097
713 => 0.0011359409848114
714 => 0.0011616462728726
715 => 0.0011526910645056
716 => 0.0011592067268253
717 => 0.0011608652363471
718 => 0.0011658850451587
719 => 0.0011676791953417
720 => 0.0011622560273713
721 => 0.0011440552132784
722 => 0.0010987005150406
723 => 0.0010775877805782
724 => 0.0010706202265452
725 => 0.001070873483901
726 => 0.0010638875154366
727 => 0.0010659451962385
728 => 0.0010631719380271
729 => 0.0010579200578978
730 => 0.0010684997091507
731 => 0.0010697189154014
801 => 0.0010672494983815
802 => 0.0010678311354839
803 => 0.0010473854172613
804 => 0.001048939860812
805 => 0.0010402845215926
806 => 0.0010386617498307
807 => 0.0010167818059906
808 => 0.00097801831392938
809 => 0.00099949705139452
810 => 0.00097355375690415
811 => 0.00096372863817559
812 => 0.0010102392221171
813 => 0.0010055708494922
814 => 0.0009975806248511
815 => 0.00098576141729818
816 => 0.00098137755824694
817 => 0.00095474261841275
818 => 0.00095316888407547
819 => 0.00096636987946117
820 => 0.00096027807430918
821 => 0.00095172287272877
822 => 0.00092073679983141
823 => 0.00088589819475861
824 => 0.0008869497532581
825 => 0.00089803126533647
826 => 0.00093025225624983
827 => 0.00091766295767117
828 => 0.0009085292771068
829 => 0.00090681881329453
830 => 0.00092822884900371
831 => 0.00095852853507337
901 => 0.00097274446985998
902 => 0.00095865691023081
903 => 0.00094247388025688
904 => 0.00094345886630646
905 => 0.00095001153721274
906 => 0.00095070013027521
907 => 0.00094016664140454
908 => 0.00094313175682137
909 => 0.00093862747536737
910 => 0.00091098470839845
911 => 0.00091048473840014
912 => 0.00090370075758613
913 => 0.00090349534134321
914 => 0.00089195409763526
915 => 0.00089033939785967
916 => 0.00086742355797412
917 => 0.00088250683318234
918 => 0.00087238976408016
919 => 0.00085714095456782
920 => 0.00085451205406027
921 => 0.00085443302613653
922 => 0.00087009014393428
923 => 0.00088232387064486
924 => 0.00087256575482868
925 => 0.00087034402101047
926 => 0.00089406632565935
927 => 0.00089104744615917
928 => 0.0008884331159817
929 => 0.0009558155305157
930 => 0.00090247709149667
1001 => 0.00087921848763271
1002 => 0.00085043154866198
1003 => 0.00085980472114719
1004 => 0.00086177978631038
1005 => 0.00079255238732154
1006 => 0.00076446684017348
1007 => 0.00075482893877379
1008 => 0.00074928219025834
1009 => 0.00075180991320852
1010 => 0.00072652962666916
1011 => 0.00074351839732095
1012 => 0.00072162780606729
1013 => 0.00071795777720547
1014 => 0.0007571008660909
1015 => 0.0007625473982387
1016 => 0.00073931079999129
1017 => 0.00075423245772967
1018 => 0.00074882165720717
1019 => 0.00072200305742453
1020 => 0.0007209787841771
1021 => 0.00070752215352554
1022 => 0.00068646513227298
1023 => 0.00067684150852526
1024 => 0.00067182944172131
1025 => 0.00067389751816785
1026 => 0.0006728518354323
1027 => 0.00066602804825573
1028 => 0.00067324296692562
1029 => 0.00065481183113429
1030 => 0.00064747240435244
1031 => 0.00064415735554848
1101 => 0.00062779866167709
1102 => 0.00065383261837066
1103 => 0.00065896163580644
1104 => 0.000664100758991
1105 => 0.00070883331768418
1106 => 0.00070659860546477
1107 => 0.00072679931557927
1108 => 0.00072601435313094
1109 => 0.00072025278337648
1110 => 0.00069594566831462
1111 => 0.00070563405114561
1112 => 0.0006758147147008
1113 => 0.00069815738908303
1114 => 0.00068796112554737
1115 => 0.00069471002212511
1116 => 0.00068257489755487
1117 => 0.00068929097653905
1118 => 0.00066017791611446
1119 => 0.00063299254992179
1120 => 0.00064393273486803
1121 => 0.0006558259670665
1122 => 0.00068161352481199
1123 => 0.00066625466816151
1124 => 0.00067177829379569
1125 => 0.00065327507256495
1126 => 0.00061509764198207
1127 => 0.00061531372209311
1128 => 0.00060944095613847
1129 => 0.0006043660289158
1130 => 0.00066801881760573
1201 => 0.00066010258713046
1202 => 0.00064748910991874
1203 => 0.00066437275040628
1204 => 0.00066883705293059
1205 => 0.00066896414534739
1206 => 0.00068128201361727
1207 => 0.000687856062121
1208 => 0.00068901476666334
1209 => 0.00070839719853115
1210 => 0.00071489393403278
1211 => 0.00074165306811158
1212 => 0.00068729830003578
1213 => 0.00068617889935641
1214 => 0.00066461033785197
1215 => 0.00065093121516038
1216 => 0.00066554695908566
1217 => 0.00067849451295545
1218 => 0.00066501265444187
1219 => 0.00066677310054617
1220 => 0.000648674807
1221 => 0.0006551440953389
1222 => 0.0006607163179636
1223 => 0.00065763966415035
1224 => 0.00065303376448018
1225 => 0.00067743296119008
1226 => 0.00067605626289048
1227 => 0.00069877735580186
1228 => 0.00071649007252721
1229 => 0.0007482344274259
1230 => 0.00071510753821847
1231 => 0.00071390026270829
]
'min_raw' => 0.0006043660289158
'max_raw' => 0.0017473999247721
'avg_raw' => 0.001175882976844
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.0006043'
'max' => '$0.001747'
'avg' => '$0.001175'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -0.00010627058868208
'max_diff' => -0.00059027258707403
'year' => 2030
]
5 => [
'items' => [
101 => 0.00072570157447336
102 => 0.00071489212731344
103 => 0.00072172332478908
104 => 0.00074713381590267
105 => 0.00074767069953857
106 => 0.00073867720690171
107 => 0.00073812995205742
108 => 0.00073985725069636
109 => 0.00074997409277582
110 => 0.0007464389572941
111 => 0.00075052990557223
112 => 0.00075564569903684
113 => 0.00077680678985799
114 => 0.00078190865721443
115 => 0.00076951376455322
116 => 0.00077063288458079
117 => 0.00076599685447809
118 => 0.00076151850748816
119 => 0.00077158517751146
120 => 0.00078998221483993
121 => 0.00078986776782552
122 => 0.00079413552289842
123 => 0.00079679429895285
124 => 0.00078538088578423
125 => 0.00077795117349429
126 => 0.00078080019795113
127 => 0.00078535585010129
128 => 0.00077932286135838
129 => 0.00074208446008485
130 => 0.00075338021223295
131 => 0.00075150004674145
201 => 0.00074882246244561
202 => 0.000760180428578
203 => 0.00075908492503659
204 => 0.00072627034079117
205 => 0.0007283710240079
206 => 0.00072639809029526
207 => 0.00073277304274507
208 => 0.00071454785896034
209 => 0.00072015380274403
210 => 0.00072366979813271
211 => 0.00072574074642779
212 => 0.00073322243173216
213 => 0.00073234454231498
214 => 0.00073316786089337
215 => 0.00074426122510806
216 => 0.00080036765452306
217 => 0.00080342140368426
218 => 0.00078838362595823
219 => 0.00079439092155273
220 => 0.00078285822766242
221 => 0.00079060020233332
222 => 0.00079589706477831
223 => 0.00077196156191746
224 => 0.00077054425677817
225 => 0.00075896396335777
226 => 0.00076518655710055
227 => 0.00075528596303546
228 => 0.00075771522251096
301 => 0.00075092280123845
302 => 0.00076314780717138
303 => 0.00077681726337827
304 => 0.00078027070783932
305 => 0.00077118618226363
306 => 0.00076460838704743
307 => 0.00075305994550821
308 => 0.00077226526116173
309 => 0.0007778814807302
310 => 0.00077223576155123
311 => 0.00077092752505606
312 => 0.00076844841926165
313 => 0.00077145347906984
314 => 0.00077785089359229
315 => 0.0007748339910452
316 => 0.00077682670832853
317 => 0.0007692325249256
318 => 0.0007853846640989
319 => 0.00081103814833008
320 => 0.00081112062847665
321 => 0.00080810370966733
322 => 0.00080686925149098
323 => 0.00080996479327129
324 => 0.00081164399770133
325 => 0.00082165441219356
326 => 0.00083239598577622
327 => 0.0008825222227708
328 => 0.0008684469760061
329 => 0.00091292195549087
330 => 0.00094809588991002
331 => 0.00095864301487258
401 => 0.0009489401561876
402 => 0.00091574720076441
403 => 0.00091411859601599
404 => 0.00096372288512254
405 => 0.00094970740142957
406 => 0.00094804030424119
407 => 0.00093030520676198
408 => 0.00094078884590675
409 => 0.00093849592024008
410 => 0.00093487642490148
411 => 0.00095487847809307
412 => 0.00099232053607211
413 => 0.00098648484020668
414 => 0.00098212876395328
415 => 0.0009630417058456
416 => 0.00097453637807519
417 => 0.00097044334546018
418 => 0.00098802961107695
419 => 0.00097761189690905
420 => 0.00094960122035599
421 => 0.00095406201292146
422 => 0.00095338777309906
423 => 0.00096726358086695
424 => 0.00096309840779375
425 => 0.00095257445620788
426 => 0.00099219256318841
427 => 0.00098961998368858
428 => 0.00099326731324578
429 => 0.00099487298051428
430 => 0.001018987824084
501 => 0.0010288669039056
502 => 0.0010311096279827
503 => 0.0010404939897377
504 => 0.0010308761365133
505 => 0.0010693544068243
506 => 0.0010949402113118
507 => 0.0011246594398575
508 => 0.0011680872205383
509 => 0.0011844164678037
510 => 0.0011814667354426
511 => 0.0012143931831204
512 => 0.0012735612776836
513 => 0.0011934262990344
514 => 0.001277808626135
515 => 0.0012510941556157
516 => 0.0011877546265875
517 => 0.0011836763076421
518 => 0.0012265705720871
519 => 0.0013217059222061
520 => 0.0012978755960175
521 => 0.0013217449000827
522 => 0.0012939000889979
523 => 0.001292517359433
524 => 0.0013203925397591
525 => 0.0013855244179881
526 => 0.0013545827040734
527 => 0.0013102201699573
528 => 0.0013429767747912
529 => 0.0013145999722034
530 => 0.0012506590938062
531 => 0.0012978573734161
601 => 0.0012662972279706
602 => 0.0012755081562412
603 => 0.0013418428877504
604 => 0.0013338613173553
605 => 0.0013441902085201
606 => 0.0013259599859684
607 => 0.0013089300834628
608 => 0.0012771425057791
609 => 0.0012677317711356
610 => 0.0012703325596283
611 => 0.001267730482314
612 => 0.0012499456247428
613 => 0.0012461049864436
614 => 0.0012397037543495
615 => 0.0012416877638409
616 => 0.0012296515747573
617 => 0.0012523663503616
618 => 0.0012565824128756
619 => 0.0012731123323053
620 => 0.0012748285233764
621 => 0.0013208641136994
622 => 0.0012955084841462
623 => 0.0013125192295502
624 => 0.0013109976283699
625 => 0.0011891273862438
626 => 0.0012059200303385
627 => 0.0012320441147279
628 => 0.0012202752501209
629 => 0.0012036368290567
630 => 0.0011902004119516
701 => 0.0011698428660933
702 => 0.0011984957209569
703 => 0.001236171178211
704 => 0.0012757840351463
705 => 0.001323376287217
706 => 0.0013127542505897
707 => 0.0012748943310984
708 => 0.0012765926994301
709 => 0.0012870913441733
710 => 0.0012734946453283
711 => 0.0012694847133999
712 => 0.001286540441103
713 => 0.001286657894526
714 => 0.001271013249289
715 => 0.0012536270890479
716 => 0.0012535542404016
717 => 0.0012504605411171
718 => 0.0012944504512279
719 => 0.0013186404539072
720 => 0.0013214137987303
721 => 0.0013184537857038
722 => 0.001319592977239
723 => 0.0013055173476702
724 => 0.0013376900628661
725 => 0.0013672149278817
726 => 0.0013593016333508
727 => 0.0013474384799079
728 => 0.0013379889067837
729 => 0.0013570756142345
730 => 0.001356225713197
731 => 0.0013669570539427
801 => 0.0013664702183393
802 => 0.0013628616720726
803 => 0.0013593017622234
804 => 0.0013734164023817
805 => 0.0013693516126903
806 => 0.0013652805092578
807 => 0.001357115288069
808 => 0.0013582250772386
809 => 0.0013463639721363
810 => 0.0013408764821888
811 => 0.0012583577997072
812 => 0.0012363061113724
813 => 0.0012432440214261
814 => 0.0012455281615585
815 => 0.0012359312385352
816 => 0.0012496907609034
817 => 0.0012475463539172
818 => 0.0012558889870642
819 => 0.001250676872069
820 => 0.0012508907790864
821 => 0.0012662184979472
822 => 0.0012706681999413
823 => 0.0012684050455936
824 => 0.0012699900813223
825 => 0.0013065165606889
826 => 0.001301323663374
827 => 0.0012985650401738
828 => 0.001299329197653
829 => 0.0013086624962677
830 => 0.0013112753103007
831 => 0.001300204633644
901 => 0.0013054256287541
902 => 0.0013276559632899
903 => 0.0013354353222495
904 => 0.0013602633017443
905 => 0.0013497159347727
906 => 0.0013690760833283
907 => 0.0014285825796272
908 => 0.0014761204864071
909 => 0.0014324026627452
910 => 0.0015196999746305
911 => 0.0015876734539889
912 => 0.0015850645186354
913 => 0.0015732117702543
914 => 0.0014958257711733
915 => 0.0014246140210587
916 => 0.0014841856738402
917 => 0.0014843375342341
918 => 0.0014792202764287
919 => 0.001447437427691
920 => 0.001478114302186
921 => 0.0014805493210813
922 => 0.0014791863580237
923 => 0.0014548185224154
924 => 0.0014176133413702
925 => 0.0014248831446898
926 => 0.0014367912308273
927 => 0.0014142467394821
928 => 0.0014070424084783
929 => 0.0014204366304943
930 => 0.0014635956046267
1001 => 0.0014554366505698
1002 => 0.0014552235873065
1003 => 0.0014901310526965
1004 => 0.0014651448409798
1005 => 0.0014249748401908
1006 => 0.0014148313852144
1007 => 0.0013788289534981
1008 => 0.0014036959613208
1009 => 0.0014045908806625
1010 => 0.0013909714746126
1011 => 0.0014260799799309
1012 => 0.0014257564488737
1013 => 0.001459086749462
1014 => 0.0015228017658977
1015 => 0.0015039581003122
1016 => 0.0014820449674211
1017 => 0.0014844275325516
1018 => 0.0015105583913617
1019 => 0.0014947590776156
1020 => 0.0015004406209954
1021 => 0.0015105497916653
1022 => 0.001516648905327
1023 => 0.0014835499639557
1024 => 0.0014758330174167
1025 => 0.0014600468530781
1026 => 0.0014559285374648
1027 => 0.0014687860389295
1028 => 0.0014653985415558
1029 => 0.0014045156661571
1030 => 0.0013981530669288
1031 => 0.0013983481987634
1101 => 0.0013823491404788
1102 => 0.0013579467363808
1103 => 0.0014220747973585
1104 => 0.0014169244165904
1105 => 0.0014112387948302
1106 => 0.0014119352510541
1107 => 0.0014397710688229
1108 => 0.0014236248887745
1109 => 0.00146655215474
1110 => 0.0014577275993692
1111 => 0.0014486767274513
1112 => 0.0014474256212559
1113 => 0.0014439418077516
1114 => 0.0014319945149755
1115 => 0.0014175674410272
1116 => 0.0014080414371549
1117 => 0.0012988437969866
1118 => 0.0013191102438284
1119 => 0.0013424249435751
1120 => 0.0013504730844999
1121 => 0.0013367061825337
1122 => 0.0014325381161753
1123 => 0.0014500475339112
1124 => 0.0013970103654783
1125 => 0.0013870892767578
1126 => 0.0014331885411002
1127 => 0.0014053850492959
1128 => 0.0014179049599529
1129 => 0.0013908437611374
1130 => 0.0014458300279142
1201 => 0.0014454111246886
1202 => 0.0014240202249912
1203 => 0.0014420996669368
1204 => 0.0014389579189856
1205 => 0.0014148076459107
1206 => 0.0014465956346467
1207 => 0.0014466114010926
1208 => 0.0014260231252121
1209 => 0.0014019805263369
1210 => 0.0013976822775188
1211 => 0.0013944441244229
1212 => 0.0014171085727937
1213 => 0.0014374294463331
1214 => 0.001475241554018
1215 => 0.0014847484162836
1216 => 0.0015218543326135
1217 => 0.0014997595660933
1218 => 0.0015095538899166
1219 => 0.0015201870139185
1220 => 0.0015252849245852
1221 => 0.0015169781527228
1222 => 0.0015746189141877
1223 => 0.0015794855605227
1224 => 0.0015811173049424
1225 => 0.0015616811644885
1226 => 0.0015789450062969
1227 => 0.0015708678264331
1228 => 0.0015918824045335
1229 => 0.0015951777587073
1230 => 0.0015923867109577
1231 => 0.0015934327083861
]
'min_raw' => 0.00071454785896034
'max_raw' => 0.0015951777587073
'avg_raw' => 0.0011548628088338
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.000714'
'max' => '$0.001595'
'avg' => '$0.001154'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 0.00011018183004454
'max_diff' => -0.00015222216606487
'year' => 2031
]
6 => [
'items' => [
101 => 0.0015442464870029
102 => 0.0015416959219462
103 => 0.0015069187864181
104 => 0.0015210907262054
105 => 0.0014945969640518
106 => 0.0015029984089467
107 => 0.0015067016858045
108 => 0.0015047673041331
109 => 0.0015218919864176
110 => 0.0015073325081343
111 => 0.0014689076511449
112 => 0.0014304723253289
113 => 0.001429989801122
114 => 0.0014198704582745
115 => 0.0014125560268459
116 => 0.0014139650458324
117 => 0.0014189306125223
118 => 0.001412267419083
119 => 0.0014136893492357
120 => 0.0014373028640426
121 => 0.0014420383860333
122 => 0.0014259452320212
123 => 0.0013613288964316
124 => 0.0013454718856002
125 => 0.0013568695905276
126 => 0.0013514222216785
127 => 0.0010907032070744
128 => 0.0011519552722558
129 => 0.0011155613750486
130 => 0.0011323333572844
131 => 0.0010951846123898
201 => 0.0011129139405861
202 => 0.0011096399810396
203 => 0.001208131489271
204 => 0.0012065936798406
205 => 0.0012073297478358
206 => 0.0011721953046069
207 => 0.0012281654266747
208 => 0.0012557383214258
209 => 0.0012506353124362
210 => 0.0012519196298589
211 => 0.0012298508013902
212 => 0.0012075434223355
213 => 0.0011828011058828
214 => 0.0012287692716092
215 => 0.0012236583962832
216 => 0.0012353809054462
217 => 0.0012651945467921
218 => 0.0012695847187313
219 => 0.0012754851543383
220 => 0.0012733702681948
221 => 0.0013237554362865
222 => 0.0013176534599786
223 => 0.0013323574672224
224 => 0.0013021102087262
225 => 0.0012678825646417
226 => 0.0012743881207962
227 => 0.0012737615834241
228 => 0.0012657850435717
229 => 0.0012585841800482
301 => 0.0012465967711122
302 => 0.0012845267067883
303 => 0.0012829868206681
304 => 0.0013079157870332
305 => 0.0013035093500811
306 => 0.001274082085677
307 => 0.0012751330861821
308 => 0.0012822015696728
309 => 0.0013066656717403
310 => 0.0013139282828771
311 => 0.0013105639520335
312 => 0.0013185270735942
313 => 0.0013248208001931
314 => 0.0013193174687551
315 => 0.0013972330364184
316 => 0.0013648770604701
317 => 0.0013806471380159
318 => 0.0013844082085878
319 => 0.0013747743054045
320 => 0.0013768635540408
321 => 0.0013800281964385
322 => 0.0013992432853771
323 => 0.0014496692386826
324 => 0.0014720025501406
325 => 0.001539193419568
326 => 0.0014701480795187
327 => 0.0014660512147782
328 => 0.001478154319332
329 => 0.0015176024725617
330 => 0.0015495714955778
331 => 0.0015601774648494
401 => 0.0015615792187742
402 => 0.0015814767221992
403 => 0.001592881600096
404 => 0.0015790606419271
405 => 0.0015673488269936
406 => 0.0015253985596259
407 => 0.0015302544173005
408 => 0.0015637064613561
409 => 0.0016109594439003
410 => 0.0016515074187581
411 => 0.0016373089312025
412 => 0.0017456333686817
413 => 0.0017563732941921
414 => 0.00175488938375
415 => 0.0017793565323779
416 => 0.0017307942249996
417 => 0.001710032897745
418 => 0.001569881054317
419 => 0.0016092580056009
420 => 0.0016664947168192
421 => 0.0016589192234628
422 => 0.0016173523938344
423 => 0.0016514758865905
424 => 0.001640193592745
425 => 0.0016312947794863
426 => 0.0016720619681443
427 => 0.0016272367695911
428 => 0.0016660475511742
429 => 0.0016162723223477
430 => 0.0016373737886977
501 => 0.0016253955758343
502 => 0.0016331469475515
503 => 0.0015878325868797
504 => 0.0016122831159542
505 => 0.0015868153644843
506 => 0.0015868032894541
507 => 0.0015862410874288
508 => 0.001616203784092
509 => 0.0016171808665544
510 => 0.0015950383884493
511 => 0.0015918473114238
512 => 0.0016036463956981
513 => 0.0015898327581979
514 => 0.0015962960722423
515 => 0.0015900285253961
516 => 0.0015886175685863
517 => 0.0015773748246711
518 => 0.0015725311414668
519 => 0.0015744304744575
520 => 0.0015679470717868
521 => 0.0015640405871628
522 => 0.0015854639893123
523 => 0.0015740183297614
524 => 0.0015837097778323
525 => 0.0015726651495973
526 => 0.0015343796562192
527 => 0.0015123612641158
528 => 0.0014400435161918
529 => 0.0014605527397932
530 => 0.0014741503762592
531 => 0.0014696563574883
601 => 0.0014793112487626
602 => 0.0014799039806731
603 => 0.0014767650770998
604 => 0.0014731306288805
605 => 0.0014713615804849
606 => 0.0014845466178715
607 => 0.0014922009758623
608 => 0.0014755150809915
609 => 0.0014716058092837
610 => 0.0014884761702516
611 => 0.0014987670806964
612 => 0.0015747493814573
613 => 0.0015691203671973
614 => 0.0015832480883516
615 => 0.0015816575237572
616 => 0.0015964656262493
617 => 0.0016206706154529
618 => 0.0015714551045806
619 => 0.0015799972155237
620 => 0.0015779028871866
621 => 0.0016007682148087
622 => 0.0016008395978657
623 => 0.0015871306917484
624 => 0.0015945625121562
625 => 0.0015904142738859
626 => 0.0015979107011083
627 => 0.00156904518828
628 => 0.0016042002670653
629 => 0.0016241309313934
630 => 0.0016244076686869
701 => 0.0016338546453989
702 => 0.0016434533208702
703 => 0.001661877142569
704 => 0.0016429394904826
705 => 0.0016088724979224
706 => 0.0016113320247495
707 => 0.0015913585594761
708 => 0.0015916943170358
709 => 0.0015899020168681
710 => 0.0015952808445895
711 => 0.0015702255384872
712 => 0.0015761059687496
713 => 0.0015678733319465
714 => 0.0015799793193791
715 => 0.001566955278093
716 => 0.001577901877238
717 => 0.0015826260665435
718 => 0.0016000584267853
719 => 0.0015643805043115
720 => 0.0014916308052042
721 => 0.0015069236739614
722 => 0.0014843043198406
723 => 0.0014863978271824
724 => 0.0014906270451922
725 => 0.0014769187659086
726 => 0.0014795338735984
727 => 0.0014794404435495
728 => 0.001478635313863
729 => 0.0014750692609825
730 => 0.0014698977787837
731 => 0.0014904993721654
801 => 0.0014939999843294
802 => 0.0015017814115358
803 => 0.0015249336607095
804 => 0.0015226202050494
805 => 0.0015263935472153
806 => 0.0015181563624535
807 => 0.0014867799265587
808 => 0.0014884838179844
809 => 0.0014672362646033
810 => 0.0015012380638248
811 => 0.0014931859889673
812 => 0.0014879947639249
813 => 0.0014865782900757
814 => 0.0015097879291969
815 => 0.0015167326169885
816 => 0.0015124051535974
817 => 0.0015035293999301
818 => 0.0015205734708524
819 => 0.0015251337451996
820 => 0.0015261546224495
821 => 0.0015563534482474
822 => 0.0015278424013445
823 => 0.0015347052937095
824 => 0.0015882476208419
825 => 0.0015396921184689
826 => 0.0015654130509928
827 => 0.001564154145191
828 => 0.0015773121039213
829 => 0.0015630748085231
830 => 0.0015632512968628
831 => 0.001574934672818
901 => 0.0015585274783968
902 => 0.0015544648263233
903 => 0.0015488523015809
904 => 0.0015611070440258
905 => 0.0015684532078871
906 => 0.0016276578934468
907 => 0.00166590682038
908 => 0.0016642463335875
909 => 0.0016794200745703
910 => 0.001672584165282
911 => 0.0016505092109684
912 => 0.0016881884662278
913 => 0.0016762651732967
914 => 0.0016772481150792
915 => 0.001677211529937
916 => 0.0016851394773838
917 => 0.001679521800032
918 => 0.0016684487813289
919 => 0.0016757995679001
920 => 0.0016976287760625
921 => 0.0017653873080005
922 => 0.0018033058801542
923 => 0.0017631045623449
924 => 0.0017908348930527
925 => 0.0017742065759551
926 => 0.0017711847160889
927 => 0.0017886014130287
928 => 0.0018060485955909
929 => 0.001804937285488
930 => 0.0017922715268706
1001 => 0.0017851169612093
1002 => 0.0018392937293517
1003 => 0.0018792102492418
1004 => 0.001876488210189
1005 => 0.0018885024053134
1006 => 0.0019237764537836
1007 => 0.0019270014707069
1008 => 0.0019265951927008
1009 => 0.0019186016517605
1010 => 0.0019533335333935
1011 => 0.001982307480101
1012 => 0.0019167513779885
1013 => 0.0019417142834805
1014 => 0.0019529209360105
1015 => 0.0019693756267884
1016 => 0.0019971374482573
1017 => 0.0020272941498319
1018 => 0.0020315586380859
1019 => 0.0020285327795951
1020 => 0.002008643624251
1021 => 0.0020416414469582
1022 => 0.0020609707976059
1023 => 0.0020724809835723
1024 => 0.0021016689000708
1025 => 0.0019529901444813
1026 => 0.0018477479314615
1027 => 0.0018313128401824
1028 => 0.0018647342445764
1029 => 0.0018735472023844
1030 => 0.0018699947101425
1031 => 0.0017515350311853
1101 => 0.0018306891744885
1102 => 0.0019158523772134
1103 => 0.0019191238426682
1104 => 0.0019617583226309
1105 => 0.0019756418569531
1106 => 0.0020099682015521
1107 => 0.0020078210793514
1108 => 0.0020161789980098
1109 => 0.0020142576572492
1110 => 0.0020778399823542
1111 => 0.0021479807290116
1112 => 0.0021455519779888
1113 => 0.0021354684157891
1114 => 0.0021504442251585
1115 => 0.0022228369924482
1116 => 0.0022161722265066
1117 => 0.0022226464789154
1118 => 0.0023080016314276
1119 => 0.0024189754713223
1120 => 0.0023674169810998
1121 => 0.0024792840693266
1122 => 0.0025496984715458
1123 => 0.0026714728991988
1124 => 0.002656226141105
1125 => 0.0027036320321683
1126 => 0.0026289312620225
1127 => 0.0024574031942514
1128 => 0.0024302582209436
1129 => 0.0024846031449261
1130 => 0.0026182048376369
1201 => 0.0024803955521745
1202 => 0.0025082741911404
1203 => 0.0025002451412427
1204 => 0.0024998173072949
1205 => 0.0025161459889553
1206 => 0.0024924603845602
1207 => 0.0023959609712955
1208 => 0.0024401860837201
1209 => 0.0024231086439486
1210 => 0.0024420573365825
1211 => 0.0025443156156925
1212 => 0.0024991047929651
1213 => 0.0024514788638507
1214 => 0.0025112123479998
1215 => 0.0025872735999738
1216 => 0.0025825138235205
1217 => 0.0025732778677688
1218 => 0.002625340466762
1219 => 0.0027113326273884
1220 => 0.0027345759628612
1221 => 0.0027517337179182
1222 => 0.0027540994824579
1223 => 0.0027784683275314
1224 => 0.0026474309058316
1225 => 0.0028553906593488
1226 => 0.002891299564009
1227 => 0.0028845501782045
1228 => 0.0029244614144566
1229 => 0.0029127185163009
1230 => 0.0028957048992776
1231 => 0.0029589726981005
]
'min_raw' => 0.0010907032070744
'max_raw' => 0.0029589726981005
'avg_raw' => 0.0020248379525874
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.00109'
'max' => '$0.002958'
'avg' => '$0.002024'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.00037615534811407
'max_diff' => 0.0013637949393932
'year' => 2032
]
7 => [
'items' => [
101 => 0.0028864412721981
102 => 0.0027834920445822
103 => 0.0027270120622073
104 => 0.0028013894591088
105 => 0.0028468091399831
106 => 0.0028768286598068
107 => 0.0028859125483671
108 => 0.0026576029678625
109 => 0.0025345567666003
110 => 0.0026134279708818
111 => 0.0027096562835049
112 => 0.0026468963526963
113 => 0.0026493564231638
114 => 0.0025598772548503
115 => 0.002717573204429
116 => 0.0026945982310071
117 => 0.0028137924337619
118 => 0.0027853457806812
119 => 0.0028825440259356
120 => 0.0028569484704922
121 => 0.0029631941901094
122 => 0.0030055784841528
123 => 0.0030767483104402
124 => 0.0031291011243705
125 => 0.0031598436980601
126 => 0.0031579980292483
127 => 0.003279815422096
128 => 0.0032079839615093
129 => 0.0031177467176369
130 => 0.0031161146105901
131 => 0.0031628497578632
201 => 0.0032607938053862
202 => 0.003286189271881
203 => 0.0033003818731383
204 => 0.0032786454102647
205 => 0.003200677508005
206 => 0.0031670113631154
207 => 0.0031956958939634
208 => 0.0031606171776262
209 => 0.0032211728833737
210 => 0.0033043288013659
211 => 0.0032871574331347
212 => 0.0033445587426564
213 => 0.0034039630592174
214 => 0.0034889138999146
215 => 0.0035111231953933
216 => 0.0035478343162758
217 => 0.0035856221186389
218 => 0.0035977585423481
219 => 0.0036209307409201
220 => 0.0036208086119955
221 => 0.003690639592061
222 => 0.0037676653255587
223 => 0.0037967407568043
224 => 0.0038635981077248
225 => 0.0037491072372344
226 => 0.0038359498776777
227 => 0.0039142841131698
228 => 0.0038208908082746
301 => 0.0039496117212234
302 => 0.0039546096625853
303 => 0.0040300726433213
304 => 0.0039535764553876
305 => 0.003908153263177
306 => 0.0040392883171041
307 => 0.004102740438984
308 => 0.0040836281434833
309 => 0.0039381826310325
310 => 0.0038535271043346
311 => 0.0036319672621348
312 => 0.0038944144658934
313 => 0.0040222448431543
314 => 0.0039378515812369
315 => 0.0039804146336852
316 => 0.0042126248467268
317 => 0.0043010354613552
318 => 0.0042826466715493
319 => 0.0042857540743213
320 => 0.0043334588372086
321 => 0.0045450080273436
322 => 0.0044182428489429
323 => 0.0045151500780296
324 => 0.0045665493229123
325 => 0.0046142918060703
326 => 0.0044970513566009
327 => 0.0043445232544456
328 => 0.0042962112017989
329 => 0.0039294603345486
330 => 0.00391036935919
331 => 0.0038996530162054
401 => 0.0038320879895445
402 => 0.0037790003862073
403 => 0.0037367831530173
404 => 0.0036259925259937
405 => 0.0036633811103212
406 => 0.0034868039746465
407 => 0.0035997717685417
408 => 0.0033179503964008
409 => 0.003552659609487
410 => 0.0034249180557226
411 => 0.0035106930734773
412 => 0.0035103938125209
413 => 0.0033524548098403
414 => 0.003261358889197
415 => 0.0033194087553372
416 => 0.0033816428198435
417 => 0.0033917400874292
418 => 0.003472428176537
419 => 0.0034949464878223
420 => 0.0034267149533483
421 => 0.003312110274871
422 => 0.0033387303278269
423 => 0.0032608194346735
424 => 0.0031242835912213
425 => 0.0032223460176758
426 => 0.0032558288415679
427 => 0.003270616764073
428 => 0.0031363494432854
429 => 0.0030941597360086
430 => 0.0030716982898603
501 => 0.0032947780498141
502 => 0.0033069988626385
503 => 0.0032444754563803
504 => 0.00352708718138
505 => 0.003463123444059
506 => 0.0035345866101427
507 => 0.0033363148370393
508 => 0.0033438890857802
509 => 0.003250024050947
510 => 0.0033025821983897
511 => 0.0032654357938054
512 => 0.0032983360194661
513 => 0.0033180562790744
514 => 0.0034119059115791
515 => 0.0035537312215375
516 => 0.0033978879060923
517 => 0.0033299847418354
518 => 0.0033721114830385
519 => 0.0034843005462593
520 => 0.0036542727198913
521 => 0.0035536457720924
522 => 0.0035983023027691
523 => 0.0036080577680912
524 => 0.0035338591821964
525 => 0.003657008527589
526 => 0.0037230052622484
527 => 0.0037907042559089
528 => 0.0038494853952216
529 => 0.0037636637891081
530 => 0.0038555052096935
531 => 0.0037814972368948
601 => 0.0037151044344908
602 => 0.0037152051249663
603 => 0.0036735559501741
604 => 0.0035928554258806
605 => 0.0035779730110327
606 => 0.0036553932125133
607 => 0.0037174768823804
608 => 0.0037225903907913
609 => 0.0037569631004039
610 => 0.0037773045158855
611 => 0.0039766780404189
612 => 0.0040568677212905
613 => 0.0041549221451473
614 => 0.0041931198692841
615 => 0.0043080813242937
616 => 0.0042152406126606
617 => 0.0041951539407033
618 => 0.0039162950544552
619 => 0.0039619581814564
620 => 0.0040350692536216
621 => 0.0039175006291068
622 => 0.0039920708607944
623 => 0.004006792604143
624 => 0.0039135056922339
625 => 0.0039633342625741
626 => 0.0038310043528921
627 => 0.0035566156519526
628 => 0.0036573140006513
629 => 0.0037314618799912
630 => 0.0036256437138056
701 => 0.0038153186809647
702 => 0.0037045144808364
703 => 0.0036693948689353
704 => 0.0035323807418636
705 => 0.0035970461356841
706 => 0.0036845070067455
707 => 0.0036304663568471
708 => 0.0037426088196306
709 => 0.0039014324542345
710 => 0.0040146196343641
711 => 0.0040233087406037
712 => 0.0039505369667324
713 => 0.0040671541987844
714 => 0.0040680036280059
715 => 0.003936458913856
716 => 0.0038558885088831
717 => 0.0038375827433517
718 => 0.0038833141347059
719 => 0.0039388404862905
720 => 0.0040263900666729
721 => 0.0040792944444996
722 => 0.004217241003558
723 => 0.0042545653872014
724 => 0.0042955735687794
725 => 0.0043503731458225
726 => 0.0044161740883859
727 => 0.0042722053721069
728 => 0.004277925517596
729 => 0.0041438638423795
730 => 0.0040005997160218
731 => 0.0041093193298019
801 => 0.0042514557624551
802 => 0.0042188495077577
803 => 0.0042151806380189
804 => 0.0042213506592599
805 => 0.0041967666080388
806 => 0.0040855738554929
807 => 0.0040297335512678
808 => 0.0041017817900991
809 => 0.0041400722225398
810 => 0.0041994573439786
811 => 0.0041921368742934
812 => 0.0043451065696233
813 => 0.0044045459676651
814 => 0.0043893388260907
815 => 0.0043921373061207
816 => 0.0044997494970796
817 => 0.0046194363855609
818 => 0.0047315389506996
819 => 0.0048455744948758
820 => 0.0047081001954883
821 => 0.0046382992244953
822 => 0.0047103160093194
823 => 0.0046721028895821
824 => 0.0048916868103402
825 => 0.0049068903245891
826 => 0.0051264583669304
827 => 0.0053348545847884
828 => 0.0052039646541578
829 => 0.0053273879633305
830 => 0.0054608803350508
831 => 0.0057184087784561
901 => 0.0056316822586771
902 => 0.0055652511037042
903 => 0.0055024739832478
904 => 0.0056331032053303
905 => 0.0058011556126866
906 => 0.0058373524916452
907 => 0.0058960052638302
908 => 0.0058343390455975
909 => 0.0059086092131477
910 => 0.0061708155405651
911 => 0.0060999650763376
912 => 0.0059993460273541
913 => 0.0062063327402868
914 => 0.0062812404270567
915 => 0.0068069818022677
916 => 0.0074707520057646
917 => 0.0071959467829667
918 => 0.007025366313267
919 => 0.0070654567698693
920 => 0.007307843178147
921 => 0.0073856899995257
922 => 0.0071740755036097
923 => 0.0072488213210446
924 => 0.0076606781239576
925 => 0.0078816260847721
926 => 0.0075815490767159
927 => 0.0067536485127154
928 => 0.00599028638289
929 => 0.0061927643943644
930 => 0.0061698096714875
1001 => 0.0066122984260349
1002 => 0.0060982753161976
1003 => 0.0061069301470815
1004 => 0.0065585691004692
1005 => 0.0064380795707572
1006 => 0.0062429019637568
1007 => 0.0059917113954176
1008 => 0.0055273623975272
1009 => 0.0051160755407659
1010 => 0.0059227037805811
1011 => 0.005887920504122
1012 => 0.0058375491652165
1013 => 0.0059496451292026
1014 => 0.0064939513113249
1015 => 0.0064814032920798
1016 => 0.0064015791956982
1017 => 0.0064621250692663
1018 => 0.0062322879793853
1019 => 0.0062915222307409
1020 => 0.0059901654624285
1021 => 0.0061263913074761
1022 => 0.0062424832002709
1023 => 0.0062657903665193
1024 => 0.0063183026021704
1025 => 0.0058695912979924
1026 => 0.0060710495000966
1027 => 0.006189387319752
1028 => 0.0056547327453821
1029 => 0.0061788189178622
1030 => 0.0058617802324792
1031 => 0.0057541725408989
1101 => 0.0058990521213764
1102 => 0.0058425924079643
1103 => 0.0057940516617982
1104 => 0.0057669650914016
1105 => 0.0058733486655285
1106 => 0.0058683857446396
1107 => 0.0056943215692061
1108 => 0.0054672619481166
1109 => 0.0055434706099322
1110 => 0.0055157832886346
1111 => 0.0054154408645164
1112 => 0.0054830595429816
1113 => 0.0051853011040511
1114 => 0.0046730231860081
1115 => 0.0050114496701643
1116 => 0.0049984206186615
1117 => 0.0049918507800733
1118 => 0.0052461689294957
1119 => 0.0052217221075467
1120 => 0.0051773508863253
1121 => 0.0054146259522424
1122 => 0.0053280173613826
1123 => 0.0055949246308619
1124 => 0.0057707270210208
1125 => 0.0057261378482649
1126 => 0.005891480845936
1127 => 0.0055452263035806
1128 => 0.00566023817323
1129 => 0.0056839419601652
1130 => 0.0054116980147602
1201 => 0.0052257219099565
1202 => 0.0052133194240489
1203 => 0.0048908624874052
1204 => 0.0050631163801788
1205 => 0.0052146926774692
1206 => 0.0051420993938629
1207 => 0.0051191185289359
1208 => 0.0052365227839068
1209 => 0.0052456461000175
1210 => 0.0050376335258481
1211 => 0.0050808859269194
1212 => 0.0052612556295003
1213 => 0.0050763410731954
1214 => 0.0047170822959162
1215 => 0.0046279811520098
1216 => 0.0046160934169527
1217 => 0.0043744440479776
1218 => 0.0046339353164993
1219 => 0.0045206604238559
1220 => 0.0048784944524747
1221 => 0.00467410157443
1222 => 0.0046652906059724
1223 => 0.0046519715348606
1224 => 0.004443973940574
1225 => 0.0044895121947861
1226 => 0.0046408882874589
1227 => 0.0046949009826983
1228 => 0.0046892670160719
1229 => 0.0046401464620219
1230 => 0.004662633600128
1231 => 0.0045901946932498
]
'min_raw' => 0.0025345567666003
'max_raw' => 0.0078816260847721
'avg_raw' => 0.0052080914256862
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.002534'
'max' => '$0.007881'
'avg' => '$0.005208'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.0014438535595259
'max_diff' => 0.0049226533866716
'year' => 2033
]
8 => [
'items' => [
101 => 0.0045646150075457
102 => 0.0044838784832165
103 => 0.0043652180964866
104 => 0.0043817185510479
105 => 0.004146621275757
106 => 0.0040185278026217
107 => 0.0039830732175027
108 => 0.0039356618645324
109 => 0.0039884284559775
110 => 0.0041459552747145
111 => 0.0039559445101387
112 => 0.0036301843819791
113 => 0.0036497631207497
114 => 0.0036937507337876
115 => 0.0036117801078986
116 => 0.0035342017897679
117 => 0.0036016498432547
118 => 0.0034636209825335
119 => 0.0037104308621651
120 => 0.0037037553465978
121 => 0.0037957508071039
122 => 0.0038532774564952
123 => 0.003720697154122
124 => 0.0036873535666105
125 => 0.0037063475894386
126 => 0.0033924187017978
127 => 0.0037700961195123
128 => 0.0037733622895041
129 => 0.0037453953590851
130 => 0.003946496924536
131 => 0.0043708839527886
201 => 0.0042112124818313
202 => 0.0041493828621809
203 => 0.0040318447100283
204 => 0.0041884573190467
205 => 0.0041764319142114
206 => 0.0041220484730467
207 => 0.0040891571981436
208 => 0.0041497603806541
209 => 0.0040816477931648
210 => 0.004069412900843
211 => 0.003995282765067
212 => 0.0039688216793013
213 => 0.0039492309448465
214 => 0.0039276634711575
215 => 0.0039752359438357
216 => 0.003867430462067
217 => 0.0037374276193557
218 => 0.0037266192896345
219 => 0.0037564620382728
220 => 0.0037432588435317
221 => 0.0037265560778177
222 => 0.0036946659493421
223 => 0.0036852048294482
224 => 0.0037159488792206
225 => 0.003681240639517
226 => 0.0037324545378553
227 => 0.0037185271913015
228 => 0.0036407301656009
301 => 0.0035437662674299
302 => 0.0035429030853476
303 => 0.0035220123725393
304 => 0.0034954049088383
305 => 0.0034880033211329
306 => 0.0035959695563179
307 => 0.0038194564319934
308 => 0.0037755806107106
309 => 0.0038072853881624
310 => 0.0039632415138539
311 => 0.0040128152764469
312 => 0.0039776289939773
313 => 0.0039294638403375
314 => 0.0039315828626554
315 => 0.004096177773226
316 => 0.004106443355902
317 => 0.004132381171522
318 => 0.0041657185946194
319 => 0.0039833065012859
320 => 0.0039229912694634
321 => 0.0038944105664643
322 => 0.003806393063351
323 => 0.0039013123944083
324 => 0.0038460069650522
325 => 0.0038534695569749
326 => 0.0038486095341953
327 => 0.0038512634352662
328 => 0.0037103618737738
329 => 0.0037616989972136
330 => 0.003676341072496
331 => 0.003562056393176
401 => 0.0035616732708575
402 => 0.0035896442842141
403 => 0.0035730060309637
404 => 0.0035282329192756
405 => 0.0035345927284678
406 => 0.0034788741078387
407 => 0.0035413579778304
408 => 0.0035431497916437
409 => 0.0035190900981775
410 => 0.0036153551210122
411 => 0.0036547949794123
412 => 0.0036389583737643
413 => 0.0036536838409429
414 => 0.0037774038491724
415 => 0.0037975756087962
416 => 0.0038065345719494
417 => 0.0037945307481592
418 => 0.0036559452155773
419 => 0.0036620920732585
420 => 0.003616990510098
421 => 0.0035788844419131
422 => 0.0035804084848005
423 => 0.0035999999572896
424 => 0.0036855570666746
425 => 0.0038656069595081
426 => 0.0038724397213264
427 => 0.0038807212279759
428 => 0.0038470361784807
429 => 0.0038368764452305
430 => 0.0038502797558372
501 => 0.0039178970290119
502 => 0.0040918270135277
503 => 0.0040303485406067
504 => 0.0039803655851525
505 => 0.0040242141123939
506 => 0.0040174639753212
507 => 0.0039604860253298
508 => 0.0039588868440445
509 => 0.0038495279410586
510 => 0.0038091004446064
511 => 0.0037753162026253
512 => 0.003738424692342
513 => 0.0037165541684314
514 => 0.0037501572331334
515 => 0.0037578426516105
516 => 0.0036843689633585
517 => 0.0036743547711443
518 => 0.0037343549710107
519 => 0.0037079511200824
520 => 0.0037351081355461
521 => 0.0037414087960823
522 => 0.0037403942446194
523 => 0.0037128255917873
524 => 0.0037303970289935
525 => 0.0036888353417035
526 => 0.0036436432491392
527 => 0.00361481350965
528 => 0.0035896557382357
529 => 0.0036036147319946
530 => 0.0035538534680557
531 => 0.0035379338382252
601 => 0.0037244442214379
602 => 0.0038622214468416
603 => 0.0038602181114185
604 => 0.0038480233222461
605 => 0.0038299043391587
606 => 0.0039165715125428
607 => 0.0038863784023006
608 => 0.0039083464127206
609 => 0.003913938193367
610 => 0.003930862829247
611 => 0.0039369119318525
612 => 0.0039186273424068
613 => 0.0038572620269525
614 => 0.0037043454952796
615 => 0.0036331624369956
616 => 0.0036096708421143
617 => 0.0036105247169713
618 => 0.0035869710365488
619 => 0.0035939086510351
620 => 0.0035845584173526
621 => 0.0035668513368222
622 => 0.0036025213696691
623 => 0.0036066320086654
624 => 0.0035983061967738
625 => 0.003600267226873
626 => 0.0035313330604112
627 => 0.0035365739753702
628 => 0.0035073918948955
629 => 0.0035019206066017
630 => 0.0034281508483361
701 => 0.003297457028471
702 => 0.0033698740914323
703 => 0.0032824044627551
704 => 0.0032492783889938
705 => 0.0034060920700181
706 => 0.0033903523257777
707 => 0.0033634127255405
708 => 0.0033235634420852
709 => 0.0033087829552227
710 => 0.0032189813959796
711 => 0.0032136754407868
712 => 0.0032581835183937
713 => 0.0032376445720076
714 => 0.0032088001125741
715 => 0.0031043284044221
716 => 0.0029868676150655
717 => 0.002990413017964
718 => 0.0030277751096226
719 => 0.0031364104300848
720 => 0.0030939647309701
721 => 0.0030631698892541
722 => 0.0030574029410902
723 => 0.0031295883712847
724 => 0.0032317458783251
725 => 0.003279675894983
726 => 0.0032321787041313
727 => 0.0031776164887111
728 => 0.0031809374379468
729 => 0.0032030302254002
730 => 0.0032053518649863
731 => 0.0031698374718342
801 => 0.0031798345654798
802 => 0.0031646480660787
803 => 0.0030714485472866
804 => 0.0030697628635305
805 => 0.0030468901985737
806 => 0.003046197623369
807 => 0.0030072855144237
808 => 0.0030018414413956
809 => 0.0029245790872886
810 => 0.0029754334027338
811 => 0.0029413229979045
812 => 0.0028899105719958
813 => 0.0028810470503907
814 => 0.0028807806022282
815 => 0.0029335696680284
816 => 0.0029748165317646
817 => 0.0029419163630005
818 => 0.0029344256323159
819 => 0.003014407038678
820 => 0.0030042286756717
821 => 0.0029954142789517
822 => 0.003222598794043
823 => 0.0030427645229194
824 => 0.0029643465161282
825 => 0.0028672893415485
826 => 0.0028988916469964
827 => 0.0029055507170887
828 => 0.0026721457080952
829 => 0.0025774533250153
830 => 0.0025449584675494
831 => 0.002526257217668
901 => 0.0025347796120745
902 => 0.0024495453609938
903 => 0.0025068241873644
904 => 0.0024330185306004
905 => 0.0024206447720595
906 => 0.0025526184291199
907 => 0.002570981792521
908 => 0.0024926379792023
909 => 0.0025429473900642
910 => 0.0025247044983326
911 => 0.0024342837167505
912 => 0.0024308303079844
913 => 0.0023854603382306
914 => 0.0023144651209234
915 => 0.002282018401558
916 => 0.0022651198683971
917 => 0.0022720925325251
918 => 0.002268566940175
919 => 0.0022455600652876
920 => 0.0022698856673126
921 => 0.0022077438061714
922 => 0.0021829984163539
923 => 0.0021718214978621
924 => 0.0021166670193472
925 => 0.0022044423219723
926 => 0.0022217351623536
927 => 0.0022390620749725
928 => 0.0023898810197341
929 => 0.0023823465314637
930 => 0.0024504546359833
1001 => 0.0024478080802844
1002 => 0.0024283825455973
1003 => 0.0023464294100977
1004 => 0.0023790944692336
1005 => 0.0022785564944904
1006 => 0.0023538863810858
1007 => 0.0023195089666949
1008 => 0.0023422633426997
1009 => 0.0023013489229638
1010 => 0.0023239926521606
1011 => 0.0022258359363301
1012 => 0.0021341785761899
1013 => 0.0021710641735554
1014 => 0.0022111630362715
1015 => 0.0022981075876402
1016 => 0.002246324130122
1017 => 0.0022649474195949
1018 => 0.0022025625173618
1019 => 0.0020738446446885
1020 => 0.0020745731738691
1021 => 0.0020547727334296
1022 => 0.0020376622619783
1023 => 0.0022522720831422
1024 => 0.0022255819594012
1025 => 0.0021830547403371
1026 => 0.002239979113019
1027 => 0.0022550308206673
1028 => 0.0022554593216239
1029 => 0.0022969898745019
1030 => 0.0023191547380176
1031 => 0.0023230613912803
1101 => 0.0023884106135608
1102 => 0.0024103148108921
1103 => 0.0025005350997018
1104 => 0.0023172742042056
1105 => 0.002313500066661
1106 => 0.0022407801556799
1107 => 0.0021946600384794
1108 => 0.0022439380395621
1109 => 0.0022875916214034
1110 => 0.0022421365941516
1111 => 0.0022480720611027
1112 => 0.0021870524008293
1113 => 0.0022088640581352
1114 => 0.0022276511957545
1115 => 0.002217278042618
1116 => 0.0022017489303064
1117 => 0.0022840125255113
1118 => 0.0022793708910762
1119 => 0.002355976642163
1120 => 0.0024156963032649
1121 => 0.0025227246121259
1122 => 0.0024110349923175
1123 => 0.0024069645786457
1124 => 0.0024467535252029
1125 => 0.0024103087194117
1126 => 0.0024333405786398
1127 => 0.0025190138235331
1128 => 0.0025208239641956
1129 => 0.0024905017758648
1130 => 0.0024886566679492
1201 => 0.0024944803759065
1202 => 0.0025285900153127
1203 => 0.0025166710592208
1204 => 0.0025304639769614
1205 => 0.0025477122318007
1206 => 0.0026190583269243
1207 => 0.0026362596289176
1208 => 0.0025944693829265
1209 => 0.002598242574234
1210 => 0.0025826118750654
1211 => 0.0025675128155207
1212 => 0.0026014532963367
1213 => 0.0026634801921298
1214 => 0.0026630943260302
1215 => 0.0026774833602237
1216 => 0.002686447609321
1217 => 0.0026479664899639
1218 => 0.0026229166962525
1219 => 0.0026325223811212
1220 => 0.002647882080411
1221 => 0.0026275414376544
1222 => 0.0025019895678586
1223 => 0.0025400739848701
1224 => 0.0025337348756466
1225 => 0.0025247072132502
1226 => 0.0025630013890534
1227 => 0.0025593078223779
1228 => 0.0024486711605534
1229 => 0.0024557537606836
1230 => 0.0024491018769256
1231 => 0.0024705954741951
]
'min_raw' => 0.0020376622619783
'max_raw' => 0.0045646150075457
'avg_raw' => 0.003301138634762
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.002037'
'max' => '$0.004564'
'avg' => '$0.0033011'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.00049689450462204
'max_diff' => -0.0033170110772264
'year' => 2034
]
9 => [
'items' => [
101 => 0.0024091479946232
102 => 0.0024280488254844
103 => 0.0024399032494163
104 => 0.0024468855961821
105 => 0.0024721106205404
106 => 0.0024691507550781
107 => 0.0024719266311474
108 => 0.0025093286831112
109 => 0.0026984954271097
110 => 0.0027087913556126
111 => 0.0026580904381052
112 => 0.002678344454618
113 => 0.0026394611719799
114 => 0.0026655637801102
115 => 0.0026834225216586
116 => 0.0026027223026399
117 => 0.0025979437594096
118 => 0.0025588999916325
119 => 0.0025798799008839
120 => 0.0025464993567561
121 => 0.0025546897746832
122 => 0.0025317886521312
123 => 0.0025730061131567
124 => 0.0026190936391292
125 => 0.0026307371682414
126 => 0.0026001080560017
127 => 0.0025779305601832
128 => 0.0025389941832474
129 => 0.0026037462458455
130 => 0.0026226817222325
131 => 0.0026036467858491
201 => 0.0025992359751675
202 => 0.002590877496896
203 => 0.0026010092658459
204 => 0.0026225785955615
205 => 0.0026124068979906
206 => 0.0026191254834385
207 => 0.0025935211638865
208 => 0.0026479792288156
209 => 0.0027344717419701
210 => 0.0027347498295429
211 => 0.0027245780771427
212 => 0.002720416015214
213 => 0.0027308528504501
214 => 0.0027365144054244
215 => 0.0027702652167897
216 => 0.0028064811820764
217 => 0.0029754852898057
218 => 0.0029280296126362
219 => 0.003077980111113
220 => 0.0031965714867728
221 => 0.0032321318549609
222 => 0.0031994179894725
223 => 0.0030875056228051
224 => 0.0030820146681902
225 => 0.0032492589921738
226 => 0.0032020048103731
227 => 0.0031963840758095
228 => 0.0031365889564334
301 => 0.0031719352777543
302 => 0.0031642045187822
303 => 0.003152001137543
304 => 0.0032194394563772
305 => 0.0033456779689745
306 => 0.0033260025129289
307 => 0.0033113156977091
308 => 0.0032469623486832
309 => 0.0032857174386376
310 => 0.0032719174934097
311 => 0.0033312108157705
312 => 0.0032960867651119
313 => 0.0032016468134702
314 => 0.0032166866870473
315 => 0.0032144134404122
316 => 0.0032611966950796
317 => 0.0032471535232602
318 => 0.0032116712857296
319 => 0.0033452464994623
320 => 0.0033365728680669
321 => 0.0033488700943174
322 => 0.0033542837136173
323 => 0.0034355885923571
324 => 0.0034688965997109
325 => 0.0034764581005189
326 => 0.0035080981313713
327 => 0.0034756708677279
328 => 0.0036054030425486
329 => 0.003691667368722
330 => 0.0037918678226941
331 => 0.0039382876172903
401 => 0.0039933428145173
402 => 0.0039833975859182
403 => 0.0040944114031151
404 => 0.0042939007649193
405 => 0.004023720089558
406 => 0.0043082209967633
407 => 0.0042181512942631
408 => 0.0040045976499196
409 => 0.003990847312856
410 => 0.0041354683202141
411 => 0.0044562237952784
412 => 0.0043758781867533
413 => 0.004456355211911
414 => 0.0043624744872757
415 => 0.0043578125180087
416 => 0.0044517956346611
417 => 0.0046713923094726
418 => 0.0045670701607279
419 => 0.0044174987796621
420 => 0.0045279399598527
421 => 0.0044322655887229
422 => 0.0042166844529973
423 => 0.0043758167479807
424 => 0.0042694095141521
425 => 0.004300464801903
426 => 0.0045241169805292
427 => 0.0044972065586866
428 => 0.0045320311363888
429 => 0.0044705666682622
430 => 0.004413149162975
501 => 0.0043059751254765
502 => 0.0042742461765893
503 => 0.0042830149165738
504 => 0.0042742418312373
505 => 0.0042142789422371
506 => 0.0042013299620666
507 => 0.0041797477611413
508 => 0.0041864369876608
509 => 0.0041458561358256
510 => 0.0042224405876704
511 => 0.0042366553367926
512 => 0.0042923871142319
513 => 0.0042981733722488
514 => 0.0044533855791251
515 => 0.0043678973038128
516 => 0.0044252502195948
517 => 0.0044201200349807
518 => 0.0040092260049438
519 => 0.0040658435769342
520 => 0.0041539227513783
521 => 0.0041142432026798
522 => 0.0040581456044044
523 => 0.0040128437860341
524 => 0.0039442068988544
525 => 0.0040408119995052
526 => 0.0041678374340539
527 => 0.0043013949468928
528 => 0.0044618555475339
529 => 0.0044260426094381
530 => 0.0042983952475779
531 => 0.0043041214149845
601 => 0.0043395183287282
602 => 0.0042936761092813
603 => 0.00428015634382
604 => 0.004337660920564
605 => 0.00433805692298
606 => 0.0042853099092891
607 => 0.0042266912561733
608 => 0.0042264456418764
609 => 0.0042160150187434
610 => 0.0043643300719593
611 => 0.0044458883548848
612 => 0.0044552388805845
613 => 0.0044452589900041
614 => 0.0044490998538008
615 => 0.0044016428859806
616 => 0.004510115441491
617 => 0.0046096605852512
618 => 0.0045829803602516
619 => 0.0045429829101598
620 => 0.0045111230146235
621 => 0.0045754751813853
622 => 0.0045726096806991
623 => 0.0046087911452617
624 => 0.0046071497450349
625 => 0.0045949832793562
626 => 0.0045829807947544
627 => 0.0046305692895011
628 => 0.0046168645672619
629 => 0.0046031385578037
630 => 0.0045756089444884
701 => 0.0045793506761564
702 => 0.0045393601321883
703 => 0.0045208586767059
704 => 0.004242641177449
705 => 0.0041682923706285
706 => 0.0041916840187637
707 => 0.0041993851566937
708 => 0.0041670284606848
709 => 0.0042134196510083
710 => 0.0042061896331369
711 => 0.0042343174032558
712 => 0.0042167443936513
713 => 0.0042174655960952
714 => 0.0042691440703814
715 => 0.0042841465513226
716 => 0.0042765161684311
717 => 0.0042818602270541
718 => 0.004405011802436
719 => 0.0043875035865824
720 => 0.0043782026958618
721 => 0.0043807791061548
722 => 0.0044122469740644
723 => 0.0044210562589973
724 => 0.0043837306997195
725 => 0.0044013336492514
726 => 0.0044762847742112
727 => 0.0045025134260809
728 => 0.0045862226923817
729 => 0.0045506615082435
730 => 0.0046159356007811
731 => 0.0048165659076637
801 => 0.0049768432793627
802 => 0.0048294455846058
803 => 0.0051237745665309
804 => 0.0053529518979444
805 => 0.0053441556902499
806 => 0.0053041933215508
807 => 0.0050432810227311
808 => 0.004803185635374
809 => 0.0050040356218868
810 => 0.0050045476298076
811 => 0.0049872944378411
812 => 0.0048801363443144
813 => 0.004983565568465
814 => 0.0049917754046784
815 => 0.0049871800795706
816 => 0.0049050222205091
817 => 0.0047795823550326
818 => 0.0048040930044861
819 => 0.0048442419482946
820 => 0.004768231621718
821 => 0.0047439417167486
822 => 0.0047891012714301
823 => 0.0049346147659807
824 => 0.0049071062827382
825 => 0.0049063879250703
826 => 0.0050240808817941
827 => 0.0049398381245095
828 => 0.0048044021622696
829 => 0.0047702027956232
830 => 0.0046488180834821
831 => 0.0047326589365155
901 => 0.0047356762195572
902 => 0.0046897574411835
903 => 0.0048081282180618
904 => 0.0048070374105141
905 => 0.004919412845995
906 => 0.0051342324723483
907 => 0.0050706997382038
908 => 0.0049968180807356
909 => 0.0050048510654186
910 => 0.0050929530802949
911 => 0.0050396845909273
912 => 0.005058840311105
913 => 0.0050929240858182
914 => 0.0051134876733551
915 => 0.0050018922816276
916 => 0.0049758740575913
917 => 0.0049226499023688
918 => 0.0049087647137471
919 => 0.0049521146776175
920 => 0.0049406934937145
921 => 0.004735422628601
922 => 0.0047139706810803
923 => 0.0047146285816845
924 => 0.0046606866396592
925 => 0.0045784122305213
926 => 0.0047946244653861
927 => 0.0047772595970382
928 => 0.0047580901263161
929 => 0.0047604382771001
930 => 0.0048542886801423
1001 => 0.0047998507068189
1002 => 0.0049445829811077
1003 => 0.0049148303765643
1004 => 0.0048843147299812
1005 => 0.0048800965380941
1006 => 0.0048683506176323
1007 => 0.0048280694859041
1008 => 0.0047794275988215
1009 => 0.0047473100116815
1010 => 0.0043791425439185
1011 => 0.0044474722844036
1012 => 0.00452607942238
1013 => 0.0045532142914112
1014 => 0.0045067982202577
1015 => 0.0048299022753025
1016 => 0.0048889364996673
1017 => 0.0047101179833591
1018 => 0.0046766683400697
1019 => 0.0048320952283478
1020 => 0.0047383538145518
1021 => 0.0047805655674443
1022 => 0.0046893268462851
1023 => 0.0048747168837417
1024 => 0.0048733045222696
1025 => 0.004801183610475
1026 => 0.0048621397112611
1027 => 0.0048515470886935
1028 => 0.0047701227569035
1029 => 0.0048772981802934
1030 => 0.0048773513379663
1031 => 0.0048079365284079
1101 => 0.0047268752276994
1102 => 0.0047123833817152
1103 => 0.0047014657224717
1104 => 0.004777880492535
1105 => 0.0048463937364311
1106 => 0.004973879897448
1107 => 0.0050059329473241
1108 => 0.005131038134883
1109 => 0.0050565440869527
1110 => 0.0050895663335408
1111 => 0.0051254166534941
1112 => 0.0051426046152316
1113 => 0.0051145977539373
1114 => 0.0053089376055658
1115 => 0.0053253458434624
1116 => 0.0053308473836985
1117 => 0.0052653170791702
1118 => 0.0053235233271501
1119 => 0.0052962905513086
1120 => 0.0053671426685651
1121 => 0.0053782531852361
1122 => 0.0053688429728838
1123 => 0.0053723696262428
1124 => 0.0052065348467769
1125 => 0.0051979354386135
1126 => 0.0050806818981186
1127 => 0.0051284635825646
1128 => 0.0050391380137284
1129 => 0.0050674640717617
1130 => 0.0050799499282422
1201 => 0.0050734280253829
1202 => 0.0051311650873122
1203 => 0.0050820767897698
1204 => 0.0049525247016922
1205 => 0.0048229373172349
1206 => 0.0048213104531826
1207 => 0.0047871923822623
1208 => 0.0047625312660233
1209 => 0.0047672818719111
1210 => 0.0047840236266907
1211 => 0.0047615582048007
1212 => 0.0047663523415867
1213 => 0.0048459669554011
1214 => 0.0048619330984162
1215 => 0.0048076739060763
1216 => 0.0045898154192677
1217 => 0.0045363524001482
1218 => 0.0045747805580735
1219 => 0.0045564143736755
1220 => 0.0036773820131175
1221 => 0.0038838976273593
1222 => 0.0037611930619844
1223 => 0.0038177409710748
1224 => 0.0036924913840202
1225 => 0.0037522670518559
1226 => 0.0037412286686645
1227 => 0.0040732996651241
1228 => 0.0040681148332631
1229 => 0.0040705965378997
1230 => 0.0039521383095449
1231 => 0.0041408454838056
]
'min_raw' => 0.0024091479946232
'max_raw' => 0.0053782531852361
'avg_raw' => 0.0038937005899296
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.0024091'
'max' => '$0.005378'
'avg' => '$0.003893'
'bar_min_pct' => 61.631153054957
'bar_max_pct' => 60.119598047091
'min_diff' => 0.00037148573264489
'max_diff' => 0.00081363817769045
'year' => 2035
]
10 => [
'items' => [
101 => 0.0042338094235369
102 => 0.0042166042724478
103 => 0.0042209344383065
104 => 0.0041465278423281
105 => 0.0040713169563936
106 => 0.0039878965090198
107 => 0.0041428813891613
108 => 0.0041256497161697
109 => 0.0041651729742522
110 => 0.004265691747572
111 => 0.004280493518777
112 => 0.0043003872493813
113 => 0.0042932567630919
114 => 0.0044631338750933
115 => 0.0044425606359446
116 => 0.004492136222968
117 => 0.0043901554791521
118 => 0.0042747545874233
119 => 0.0042966885242015
120 => 0.0042945761097082
121 => 0.0042676826486917
122 => 0.0042434044345739
123 => 0.0042029880484121
124 => 0.0043308714747277
125 => 0.0043256796411618
126 => 0.0044097293917466
127 => 0.004394872781915
128 => 0.0042956567054306
129 => 0.0042992002270121
130 => 0.0043230321126066
131 => 0.0044055145407565
201 => 0.0044300009412633
202 => 0.0044186578649342
203 => 0.0044455060852433
204 => 0.0044667258238855
205 => 0.0044481709577119
206 => 0.0047108687339799
207 => 0.0046017783020484
208 => 0.0046549482195255
209 => 0.0046676289315484
210 => 0.0046351475543483
211 => 0.0046421916019921
212 => 0.0046528614147843
213 => 0.0047176464286953
214 => 0.0048876610508927
215 => 0.0049629593697352
216 => 0.0051894980771265
217 => 0.0049567068925585
218 => 0.0049428940270519
219 => 0.0049837004890667
220 => 0.0051167026918629
221 => 0.0052244884849676
222 => 0.005260247250852
223 => 0.0052649733620765
224 => 0.0053320591840734
225 => 0.0053705115261656
226 => 0.0053239132007507
227 => 0.0052844259990097
228 => 0.0051429877437052
229 => 0.0051593596068802
301 => 0.005272145508961
302 => 0.0054314622387066
303 => 0.0055681725669089
304 => 0.0055203013748084
305 => 0.0058855247787402
306 => 0.0059217351874362
307 => 0.0059167320797771
308 => 0.005999224779618
309 => 0.0058354935697801
310 => 0.0057654953054316
311 => 0.0052929635802249
312 => 0.0054257257206894
313 => 0.0056187032887016
314 => 0.0055931619839465
315 => 0.0054530165157508
316 => 0.0055680662540041
317 => 0.0055300272125996
318 => 0.0055000242424026
319 => 0.0056374736652371
320 => 0.0054863423787195
321 => 0.0056171956385092
322 => 0.0054493749793253
323 => 0.0055205200463816
324 => 0.0054801346654207
325 => 0.0055062689563485
326 => 0.0053534884255958
327 => 0.0054359250914522
328 => 0.0053500587892696
329 => 0.0053500180774622
330 => 0.0053481225740824
331 => 0.0054491438978108
401 => 0.0054524381995508
402 => 0.0053777832886808
403 => 0.0053670243496955
404 => 0.0054068057861122
405 => 0.005360232142843
406 => 0.0053820236573976
407 => 0.0053608921856194
408 => 0.0053561350462253
409 => 0.0053182293501721
410 => 0.0053018985340735
411 => 0.0053083022678591
412 => 0.005286443023098
413 => 0.005273272037446
414 => 0.0053455025335273
415 => 0.005306912693241
416 => 0.0053395880870472
417 => 0.0053023503518416
418 => 0.0051732681379098
419 => 0.005099031591658
420 => 0.0048552072554685
421 => 0.0049243555347487
422 => 0.0049702009154505
423 => 0.004955049017402
424 => 0.0049876011574163
425 => 0.0049895995944357
426 => 0.0049790165618872
427 => 0.0049667627659666
428 => 0.0049607982957898
429 => 0.0050052525698886
430 => 0.005031059772265
501 => 0.004974802112736
502 => 0.0049616217302367
503 => 0.005018501330091
504 => 0.0050531978531439
505 => 0.0053093774850741
506 => 0.0052903988704914
507 => 0.005338031468729
508 => 0.0053326687691492
509 => 0.0053825953205702
510 => 0.0054642041316085
511 => 0.0052982706005852
512 => 0.005327070924021
513 => 0.0053200097498111
514 => 0.0053971017982952
515 => 0.0053973424712557
516 => 0.0053511219371561
517 => 0.005376178838534
518 => 0.005362192763585
519 => 0.0053874674913493
520 => 0.0052901453995229
521 => 0.0054086732020968
522 => 0.0054758708283933
523 => 0.0054768038674997
524 => 0.0055086550090509
525 => 0.0055410176135606
526 => 0.0056031348147282
527 => 0.0055392851985342
528 => 0.005424425954636
529 => 0.0054327184210524
530 => 0.0053653764883802
531 => 0.0053665085184348
601 => 0.0053604656532849
602 => 0.0053786007464853
603 => 0.0052941250326557
604 => 0.0053139513138439
605 => 0.0052861944040779
606 => 0.00532701058592
607 => 0.0052830991214144
608 => 0.0053200063446991
609 => 0.005335934278775
610 => 0.0053947086984187
611 => 0.005274418091845
612 => 0.0050291374020832
613 => 0.005080698376812
614 => 0.0050044356451609
615 => 0.0050114940513279
616 => 0.0050257531551223
617 => 0.0049795347344363
618 => 0.0049883517525934
619 => 0.0049880367466604
620 => 0.00498532219571
621 => 0.0049732989994495
622 => 0.0049558629861548
623 => 0.0050253226965988
624 => 0.0050371252549145
625 => 0.0050633608800227
626 => 0.0051414203045503
627 => 0.005133620327272
628 => 0.0051463424138308
629 => 0.0051185701703043
630 => 0.0050127823260524
701 => 0.0050185271149559
702 => 0.0049468895052746
703 => 0.0050615289452799
704 => 0.00503438081272
705 => 0.0050168782350495
706 => 0.0050121024945719
707 => 0.0050903554133145
708 => 0.0051137699130664
709 => 0.0050991795681096
710 => 0.0050692543449349
711 => 0.0051267196200285
712 => 0.0051420949033782
713 => 0.0051455368623016
714 => 0.0052473543118939
715 => 0.005151227326683
716 => 0.0051743660474433
717 => 0.0053548877415762
718 => 0.0051911794752886
719 => 0.0052778993950711
720 => 0.0052736549062665
721 => 0.0053180178827851
722 => 0.0052700158473337
723 => 0.005270610890093
724 => 0.0053100022078332
725 => 0.0052546842063287
726 => 0.0052409866912173
727 => 0.0052220636721945
728 => 0.0052633813919461
729 => 0.0052881494962974
730 => 0.0054877622272011
731 => 0.0056167211548113
801 => 0.0056111227076587
802 => 0.005662282034779
803 => 0.0056392342893456
804 => 0.0055648070396531
805 => 0.005691845279442
806 => 0.0056516450648671
807 => 0.0056549591217134
808 => 0.005654835772352
809 => 0.0056815654006806
810 => 0.0056626250092754
811 => 0.0056252915536243
812 => 0.0056500752437649
813 => 0.0057236739431511
814 => 0.0059521265643297
815 => 0.0060799716777359
816 => 0.0059444301279756
817 => 0.0060379248740266
818 => 0.0059818613419802
819 => 0.0059716729304618
820 => 0.0060303945401893
821 => 0.0060892189343212
822 => 0.0060854720747198
823 => 0.0060427685852461
824 => 0.0060186464676034
825 => 0.0062013072238965
826 => 0.0063358885575885
827 => 0.0063267110128754
828 => 0.0063672177105415
829 => 0.0064861466277142
830 => 0.0064970199974348
831 => 0.0064956502027715
901 => 0.0064686994214003
902 => 0.0065858003852283
903 => 0.006683488069449
904 => 0.0064624610941958
905 => 0.0065466252729167
906 => 0.006584409284345
907 => 0.0066398874231327
908 => 0.0067334883424833
909 => 0.0068351637673157
910 => 0.0068495417872013
911 => 0.0068393398940409
912 => 0.0067722822181818
913 => 0.0068835366812735
914 => 0.0069487069365144
915 => 0.0069875143321156
916 => 0.0070859234304254
917 => 0.0065846426255363
918 => 0.0062298111565633
919 => 0.0061743990988546
920 => 0.0062870816971767
921 => 0.0063167951997274
922 => 0.0063048177241068
923 => 0.0059054226459119
924 => 0.0061722963664246
925 => 0.0064594300503166
926 => 0.0064704600245036
927 => 0.0066142051503422
928 => 0.006661014455627
929 => 0.0067767481230313
930 => 0.0067695089506243
1001 => 0.0067976882569124
1002 => 0.0067912103223943
1003 => 0.007005582570662
1004 => 0.0072420669950882
1005 => 0.0072338782914447
1006 => 0.0071998808574767
1007 => 0.0072503728443431
1008 => 0.007494450113562
1009 => 0.0074719793898708
1010 => 0.0074938077838851
1011 => 0.0077815886398862
1012 => 0.0081557446890372
1013 => 0.0079819116395534
1014 => 0.0083590793378206
1015 => 0.0085964864110792
1016 => 0.0090070573959305
1017 => 0.0089556518865224
1018 => 0.0091154841580159
1019 => 0.0088636252960283
1020 => 0.0082853064398307
1021 => 0.0081937852671218
1022 => 0.0083770129725703
1023 => 0.0088274604073173
1024 => 0.0083628267798438
1025 => 0.0084568215575415
1026 => 0.0084297510552412
1027 => 0.0084283085832158
1028 => 0.008483361873466
1029 => 0.0084035042045716
1030 => 0.0080781496953758
1031 => 0.0082272577496141
1101 => 0.0081696799691158
1102 => 0.0082335668092866
1103 => 0.0085783377367509
1104 => 0.0084259062914065
1105 => 0.0082653321462613
1106 => 0.0084667277585288
1107 => 0.0087231735799859
1108 => 0.0087071256613566
1109 => 0.0086759859917061
1110 => 0.008851518679106
1111 => 0.009141447252439
1112 => 0.0092198137807835
1113 => 0.0092776623498743
1114 => 0.0092856386901924
1115 => 0.009367799952736
1116 => 0.0089259981367346
1117 => 0.0096271489650042
1118 => 0.0097482183441457
1119 => 0.0097254623186787
1120 => 0.0098600258382161
1121 => 0.0098204338372212
1122 => 0.0097630712395742
1123 => 0.0099763830405224
1124 => 0.00973183827411
1125 => 0.0093847377655176
1126 => 0.0091943115616342
1127 => 0.0094450801481516
1128 => 0.0095982157733201
1129 => 0.0096994286803015
1130 => 0.0097300556447996
1201 => 0.0089602939540623
1202 => 0.0085454350956955
1203 => 0.0088113548675422
1204 => 0.0091357953419973
1205 => 0.0089241958535176
1206 => 0.0089324901528552
1207 => 0.0086308048896504
1208 => 0.0091624877936344
1209 => 0.009085026066681
1210 => 0.0094868976431426
1211 => 0.0093909877661992
1212 => 0.0097186984362389
1213 => 0.0096324012340369
1214 => 0.0099906160955657
1215 => 0.01013351770211
1216 => 0.010373471740356
1217 => 0.010549982907679
1218 => 0.010653633641252
1219 => 0.010647410839992
1220 => 0.011058126684997
1221 => 0.010815941900516
1222 => 0.010511700732637
1223 => 0.010506197969779
1224 => 0.010663768781754
1225 => 0.010993993976213
1226 => 0.011079616564555
1227 => 0.01112746791059
1228 => 0.01105418190842
1229 => 0.010791307682406
1230 => 0.010677799924416
1231 => 0.01077451182286
]
'min_raw' => 0.0039878965090198
'max_raw' => 0.01112746791059
'avg_raw' => 0.0075576822098049
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$0.003987'
'max' => '$0.011127'
'avg' => '$0.007557'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.0015787485143967
'max_diff' => 0.0057492147253538
'year' => 2036
]
11 => [
'items' => [
101 => 0.010656241481611
102 => 0.010860409271403
103 => 0.011140775254675
104 => 0.011082880787817
105 => 0.011276413310501
106 => 0.011476699111263
107 => 0.011763116801752
108 => 0.011837996992062
109 => 0.011961771099206
110 => 0.012089175313133
111 => 0.012130094113007
112 => 0.012208220798323
113 => 0.012207809032127
114 => 0.012443249056862
115 => 0.012702946695114
116 => 0.01280097654154
117 => 0.013026390768
118 => 0.012640376804644
119 => 0.012933172830058
120 => 0.013197282174142
121 => 0.012882400126175
122 => 0.013316391671189
123 => 0.013333242579436
124 => 0.013587671287645
125 => 0.013329759049233
126 => 0.013176611585349
127 => 0.013618742575221
128 => 0.013832675834225
129 => 0.013768237395566
130 => 0.013277857695657
131 => 0.012992435676935
201 => 0.012245431200144
202 => 0.013130290271095
203 => 0.013561279312862
204 => 0.013276741538158
205 => 0.013420245841145
206 => 0.014203158786814
207 => 0.014501241346666
208 => 0.014439242257971
209 => 0.014449719083368
210 => 0.014610559022083
211 => 0.015323811886516
212 => 0.014896414237076
213 => 0.015223143725789
214 => 0.015396439868491
215 => 0.015557406983732
216 => 0.015162122622879
217 => 0.014647863477291
218 => 0.014484976018752
219 => 0.01324844986409
220 => 0.013184083307779
221 => 0.013147952409216
222 => 0.012920152204589
223 => 0.01274116364348
224 => 0.012598825294266
225 => 0.012225286960102
226 => 0.012351345182549
227 => 0.0117560030414
228 => 0.012136881845677
301 => 0.011186701413364
302 => 0.011978039912159
303 => 0.011547350345011
304 => 0.011836546805992
305 => 0.011835537826784
306 => 0.011303035452297
307 => 0.010995899195734
308 => 0.011191618372338
309 => 0.011401444865865
310 => 0.011435488508498
311 => 0.011707534034388
312 => 0.011783456093064
313 => 0.011553408710812
314 => 0.011167011035883
315 => 0.011256762402976
316 => 0.010994080387144
317 => 0.010533740258317
318 => 0.010864364575608
319 => 0.010977254254057
320 => 0.011027112767243
321 => 0.010574421120962
322 => 0.010432175577287
323 => 0.01035644524339
324 => 0.011108574229006
325 => 0.011149777552673
326 => 0.010938975523229
327 => 0.011891820685386
328 => 0.011676162479203
329 => 0.011917105533053
330 => 0.011248618407142
331 => 0.011274155515589
401 => 0.010957682997201
402 => 0.011134886460797
403 => 0.011009644764261
404 => 0.011120570172097
405 => 0.011187058404191
406 => 0.011503478992553
407 => 0.011981652927004
408 => 0.011456216308348
409 => 0.011227276049208
410 => 0.01136930929837
411 => 0.011747562557809
412 => 0.012320635608287
413 => 0.011981364828234
414 => 0.01213192743923
415 => 0.012164818671669
416 => 0.011914652958944
417 => 0.012329859574948
418 => 0.012552372173597
419 => 0.012780624057316
420 => 0.012978808772477
421 => 0.012689455235592
422 => 0.012999104997259
423 => 0.012749581949897
424 => 0.012525733981194
425 => 0.012526073466162
426 => 0.012385650365498
427 => 0.012113562913512
428 => 0.012063385812795
429 => 0.012324413427393
430 => 0.012533732854893
501 => 0.012550973405514
502 => 0.012666863395799
503 => 0.012735445898288
504 => 0.013407647656067
505 => 0.01367801276379
506 => 0.014008610099765
507 => 0.014137396393572
508 => 0.014524996965489
509 => 0.014211978024287
510 => 0.014144254407376
511 => 0.013204062203085
512 => 0.013358018623867
513 => 0.013604517708124
514 => 0.013208126882193
515 => 0.013459545624655
516 => 0.013509181010194
517 => 0.013194657673609
518 => 0.01336265817743
519 => 0.012916498647958
520 => 0.011991377985534
521 => 0.012330889498705
522 => 0.012580884250739
523 => 0.012224110915456
524 => 0.012863613309916
525 => 0.012490029213082
526 => 0.012371620989584
527 => 0.011909668294141
528 => 0.0121276921842
529 => 0.012422572617307
530 => 0.012240370793177
531 => 0.012618466935988
601 => 0.013153951908767
602 => 0.013535570389051
603 => 0.013564866317391
604 => 0.013319511201021
605 => 0.01371269434084
606 => 0.013715558250765
607 => 0.01327204606285
608 => 0.013000397317238
609 => 0.012938678150681
610 => 0.013092864729496
611 => 0.013280075700589
612 => 0.013575255223365
613 => 0.013753626026874
614 => 0.01421872248186
615 => 0.014344564247219
616 => 0.014482826194509
617 => 0.014667586794494
618 => 0.014889439266422
619 => 0.014404038687913
620 => 0.014423324557797
621 => 0.013971326259917
622 => 0.01348830125552
623 => 0.013854857023941
624 => 0.01433407993028
625 => 0.014224145666072
626 => 0.014211775815595
627 => 0.014232578472986
628 => 0.01414969162789
629 => 0.013774797499452
630 => 0.013586528015112
701 => 0.013829443682579
702 => 0.013958542548905
703 => 0.014158763631973
704 => 0.01413408215733
705 => 0.014649830165138
706 => 0.014850234245562
707 => 0.014798962306016
708 => 0.01480839757682
709 => 0.015171219591881
710 => 0.015574752292668
711 => 0.015952713917784
712 => 0.016337192716682
713 => 0.015873688518147
714 => 0.015638349671097
715 => 0.015881159289182
716 => 0.015752321088033
717 => 0.016492663607729
718 => 0.016543923317494
719 => 0.017284212301999
720 => 0.017986834700267
721 => 0.017545530160703
722 => 0.017961660464719
723 => 0.018411739316114
724 => 0.019280014443116
725 => 0.018987609926629
726 => 0.018763632649563
727 => 0.018551975204985
728 => 0.018992400747478
729 => 0.019559001171924
730 => 0.019681041476518
731 => 0.019878793392946
801 => 0.019670881432776
802 => 0.019921288488049
803 => 0.020805335427598
804 => 0.020566458140834
805 => 0.020227213992188
806 => 0.020925084146192
807 => 0.021177640642024
808 => 0.022950214394639
809 => 0.025188161978684
810 => 0.024261636983733
811 => 0.023686513020592
812 => 0.023821680794053
813 => 0.02463890349244
814 => 0.02490136948581
815 => 0.024187896438377
816 => 0.024439907180445
817 => 0.02582851114639
818 => 0.02657345262237
819 => 0.025561722039001
820 => 0.022770397485301
821 => 0.020196668768353
822 => 0.020879337520603
823 => 0.020801944069775
824 => 0.02229382579931
825 => 0.020560760996546
826 => 0.020589941363132
827 => 0.022112673626904
828 => 0.02170643476517
829 => 0.021048379836302
830 => 0.020201473297581
831 => 0.018635888231382
901 => 0.01724920587868
902 => 0.019968809306202
903 => 0.01985153506113
904 => 0.019681704575195
905 => 0.020059643944065
906 => 0.021894810239334
907 => 0.021852503716374
908 => 0.021583371202283
909 => 0.021787505842196
910 => 0.021012594046949
911 => 0.021212306460998
912 => 0.020196261076575
913 => 0.020655556024138
914 => 0.021046967945973
915 => 0.021125549684233
916 => 0.021302598353018
917 => 0.019789736862959
918 => 0.020468967256716
919 => 0.020867951477767
920 => 0.019065326251889
921 => 0.020832319372933
922 => 0.01976340131023
923 => 0.019400594465138
924 => 0.019889066085887
925 => 0.019698708220227
926 => 0.019535049705522
927 => 0.019443725442306
928 => 0.019802405089938
929 => 0.019785672255661
930 => 0.019198802735415
1001 => 0.018433255370115
1002 => 0.018690198194145
1003 => 0.018596848457323
1004 => 0.018258536968724
1005 => 0.018486518064155
1006 => 0.01748260469847
1007 => 0.015755423931686
1008 => 0.016896452451202
1009 => 0.016852524094401
1010 => 0.016830373424909
1011 => 0.017687824821613
1012 => 0.017605400654589
1013 => 0.017455799984342
1014 => 0.018255789435097
1015 => 0.017963782524195
1016 => 0.018863679018114
1017 => 0.019456409050666
1018 => 0.019306073541603
1019 => 0.019863539002131
1020 => 0.018696117637859
1021 => 0.019083888186255
1022 => 0.019163807158852
1023 => 0.018245917689454
1024 => 0.017618886267671
1025 => 0.01757707042052
1026 => 0.016489884345401
1027 => 0.01707065037127
1028 => 0.017581700440304
1029 => 0.017336947116324
1030 => 0.01725946552575
1031 => 0.017655302168288
1101 => 0.017686062065524
1102 => 0.016984733148738
1103 => 0.017130561638736
1104 => 0.017738690683998
1105 => 0.017115238347094
1106 => 0.01590397229685
1107 => 0.015603561569327
1108 => 0.015563481240607
1109 => 0.014748743521687
1110 => 0.01562363645061
1111 => 0.015241722241462
1112 => 0.016448184652124
1113 => 0.015759059793542
1114 => 0.015729352998225
1115 => 0.015684446820063
1116 => 0.014983168408998
1117 => 0.015136703812453
1118 => 0.015647078877641
1119 => 0.015829186450687
1120 => 0.015810191138854
1121 => 0.015644577761387
1122 => 0.015720394717514
1123 => 0.015476161885451
1124 => 0.015389918189183
1125 => 0.015117709360563
1126 => 0.0147176375821
1127 => 0.014773270016678
1128 => 0.013980623139067
1129 => 0.013548747051191
1130 => 0.013429209442102
1201 => 0.013269358755408
1202 => 0.01344726500251
1203 => 0.013978377670054
1204 => 0.013337743111158
1205 => 0.012239420095222
1206 => 0.012305431179931
1207 => 0.012453738488406
1208 => 0.012177368800215
1209 => 0.011915808084292
1210 => 0.012143213905695
1211 => 0.011677839964906
1212 => 0.0125099767058
1213 => 0.012487469738995
1214 => 0.012797638857009
1215 => 0.012991593971814
1216 => 0.012544590225902
1217 => 0.012432169992632
1218 => 0.012496209666718
1219 => 0.011437776504222
1220 => 0.012711142286641
1221 => 0.012722154406805
1222 => 0.012627861948309
1223 => 0.013305889916689
1224 => 0.014736740412199
1225 => 0.014198396899961
1226 => 0.013989934020503
1227 => 0.013593645934269
1228 => 0.014121676279918
1229 => 0.014081131787928
1230 => 0.013897774219111
1231 => 0.01378687898938
]
'min_raw' => 0.01035644524339
'max_raw' => 0.02657345262237
'avg_raw' => 0.01846494893288
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$0.010356'
'max' => '$0.026573'
'avg' => '$0.018464'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 0.0063685487343704
'max_diff' => 0.01544598471178
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.00032507698214511
]
1 => [
'year' => 2028
'avg' => 0.00055792647188322
]
2 => [
'year' => 2029
'avg' => 0.001524154564722
]
3 => [
'year' => 2030
'avg' => 0.001175882976844
]
4 => [
'year' => 2031
'avg' => 0.0011548628088338
]
5 => [
'year' => 2032
'avg' => 0.0020248379525874
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.00032507698214511
'min' => '$0.000325'
'max_raw' => 0.0020248379525874
'max' => '$0.002024'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.0020248379525874
]
1 => [
'year' => 2033
'avg' => 0.0052080914256862
]
2 => [
'year' => 2034
'avg' => 0.003301138634762
]
3 => [
'year' => 2035
'avg' => 0.0038937005899296
]
4 => [
'year' => 2036
'avg' => 0.0075576822098049
]
5 => [
'year' => 2037
'avg' => 0.01846494893288
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.0020248379525874
'min' => '$0.002024'
'max_raw' => 0.01846494893288
'max' => '$0.018464'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 0.01846494893288
]
]
]
]
'prediction_2025_max_price' => '$0.000555'
'last_price' => 0.00053894
'sma_50day_nextmonth' => '$0.000478'
'sma_200day_nextmonth' => '$0.000668'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'increase'
'sma_200day_direction_label' => 'aumentar'
'sma_200day_date_nextmonth' => '4 de fev. de 2026'
'sma_50day_date_nextmonth' => '4 de fev. de 2026'
'daily_sma3' => '$0.00059'
'daily_sma3_action' => 'SELL'
'daily_sma5' => '$0.000516'
'daily_sma5_action' => 'BUY'
'daily_sma10' => '$0.000469'
'daily_sma10_action' => 'BUY'
'daily_sma21' => '$0.000453'
'daily_sma21_action' => 'BUY'
'daily_sma50' => '$0.000484'
'daily_sma50_action' => 'BUY'
'daily_sma100' => '$0.0006095'
'daily_sma100_action' => 'SELL'
'daily_sma200' => '$0.000741'
'daily_sma200_action' => 'SELL'
'daily_ema3' => '$0.000577'
'daily_ema3_action' => 'SELL'
'daily_ema5' => '$0.000545'
'daily_ema5_action' => 'SELL'
'daily_ema10' => '$0.000499'
'daily_ema10_action' => 'BUY'
'daily_ema21' => '$0.000475'
'daily_ema21_action' => 'BUY'
'daily_ema50' => '$0.0005063'
'daily_ema50_action' => 'BUY'
'daily_ema100' => '$0.000598'
'daily_ema100_action' => 'SELL'
'daily_ema200' => '$0.000847'
'daily_ema200_action' => 'SELL'
'weekly_sma21' => '$0.000657'
'weekly_sma21_action' => 'SELL'
'weekly_sma50' => '$0.001194'
'weekly_sma50_action' => 'SELL'
'weekly_sma100' => '$0.002571'
'weekly_sma100_action' => 'SELL'
'weekly_sma200' => '—'
'weekly_sma200_action' => '—'
'weekly_ema3' => '$0.000483'
'weekly_ema3_action' => 'BUY'
'weekly_ema5' => '$0.000481'
'weekly_ema5_action' => 'BUY'
'weekly_ema10' => '$0.000523'
'weekly_ema10_action' => 'BUY'
'weekly_ema21' => '$0.00067'
'weekly_ema21_action' => 'SELL'
'weekly_ema50' => '$0.001186'
'weekly_ema50_action' => 'SELL'
'weekly_ema100' => '$0.001624'
'weekly_ema100_action' => 'SELL'
'weekly_ema200' => '$0.001536'
'weekly_ema200_action' => 'SELL'
'rsi_14' => '54.25'
'rsi_14_action' => 'NEUTRAL'
'stoch_rsi_14' => 217.05
'stoch_rsi_14_action' => 'SELL'
'momentum_10' => 0
'momentum_10_action' => 'SELL'
'vwma_10' => '0.000596'
'vwma_10_action' => 'SELL'
'hma_9' => '0.000612'
'hma_9_action' => 'BUY'
'stochastic_fast_14' => 32.82
'stochastic_fast_14_action' => 'NEUTRAL'
'cci_20' => 117.33
'cci_20_action' => 'SELL'
'adx_14' => 30.62
'adx_14_action' => 'SELL'
'ao_5_34' => '0.000053'
'ao_5_34_action' => 'BUY'
'macd_12_26' => 0
'macd_12_26_action' => 'NEUTRAL'
'williams_percent_r_14' => -67.18
'williams_percent_r_14_action' => 'NEUTRAL'
'ultimate_oscillator' => 56.49
'ultimate_oscillator_action' => 'NEUTRAL'
'ichimoku_cloud' => '-0.000059'
'ichimoku_cloud_action' => 'NEUTRAL'
'sell_signals' => 20
'buy_signals' => 13
'sell_pct' => 60.61
'buy_pct' => 39.39
'overall_action' => 'bearish'
'overall_action_label' => 'Baixista'
'overall_action_dir' => -1
'last_updated' => 1767706714
'last_updated_date' => '6 de janeiro de 2026'
]
Previsão de preço de Kryptokrona para 2026
A previsão de preço para Kryptokrona em 2026 sugere que o preço médio poderia variar entre $0.000186 na extremidade inferior e $0.000555 na extremidade superior. No mercado de criptomoedas, comparado ao preço médio de hoje, Kryptokrona poderia potencialmente ganhar 3.13% até 2026 se XKR atingir a meta de preço prevista.
Previsão de preço de Kryptokrona 2027-2032
A previsão de preço de XKR para 2027-2032 está atualmente dentro de uma faixa de preço entre $0.000325 na extremidade inferior e $0.002024 na extremidade superior. Considerando a volatilidade de preços no mercado, se Kryptokrona atingir a meta de preço superior, poderia ganhar 275.71% até 2032 em comparação com o preço de hoje.
| Previsão de Preço de Kryptokrona | Potencial Mínimo ($) | Preço Médio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2027 | $0.000179 | $0.000325 | $0.00047 |
| 2028 | $0.000323 | $0.000557 | $0.000792 |
| 2029 | $0.00071 | $0.001524 | $0.002337 |
| 2030 | $0.0006043 | $0.001175 | $0.001747 |
| 2031 | $0.000714 | $0.001154 | $0.001595 |
| 2032 | $0.00109 | $0.002024 | $0.002958 |
Previsão de preço de Kryptokrona 2032-2037
A previsão de preço de Kryptokrona para 2032-2037 é atualmente estimada entre $0.002024 na extremidade inferior e $0.018464 na extremidade superior. Comparado ao preço atual, Kryptokrona poderia potencialmente ganhar 3326.16% até 2037 se atingir a meta de preço superior. Por favor, note que esta informação é apenas para fins gerais e não deve ser considerada como aconselhamento de investimento a longo prazo.
| Previsão de Preço de Kryptokrona | Potencial Mínimo ($) | Preço Médio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2032 | $0.00109 | $0.002024 | $0.002958 |
| 2033 | $0.002534 | $0.005208 | $0.007881 |
| 2034 | $0.002037 | $0.0033011 | $0.004564 |
| 2035 | $0.0024091 | $0.003893 | $0.005378 |
| 2036 | $0.003987 | $0.007557 | $0.011127 |
| 2037 | $0.010356 | $0.018464 | $0.026573 |
Kryptokrona Histograma de preços potenciais
Previsão de preço de Kryptokrona baseada na análise técnica
Em 6 de janeiro de 2026, o sentimento geral de previsão de preço para Kryptokrona é Baixista, com 13 indicadores técnicos mostrando sinais de alta e 20 indicando sinais de baixa. A previsão de preço de XKR foi atualizada pela última vez em 6 de janeiro de 2026.
Médias Móveis Simples de 50 e 200 dias e Índice de Força Relativa de 14 dias - RSI (14) de Kryptokrona
De acordo com nossos indicadores técnicos, o SMA de 200 dias de Kryptokrona está projetado para aumentar no próximo mês, alcançando $0.000668 até 4 de fev. de 2026. O SMA de 50 dias de curto prazo para Kryptokrona é esperado para alcançar $0.000478 até 4 de fev. de 2026.
O oscilador de momentum Índice de Força Relativa (RSI) é uma ferramenta comumente usada para identificar se uma criptomoeda está sobrevendida (abaixo de 30) ou sobrecomprada (acima de 70). No momento, o RSI está em 54.25, sugerindo que o mercado de XKR está em um estado NEUTRAL.
Médias Móveis e Osciladores Populares de XKR para Sábado, 19 de Outubro de 2024
Médias móveis (MA) são indicadores amplamente utilizados nos mercados financeiros, projetados para suavizar movimentos de preços ao longo de um período definido. Como indicadores atrasados, eles se baseiam em dados históricos de preços. A tabela abaixo destaca dois tipos: a média móvel simples (SMA) e a média móvel exponencial (EMA).
Média Móvel Simples Diária (SMA)
| Período | Valor | Ação |
|---|---|---|
| SMA 3 | $0.00059 | SELL |
| SMA 5 | $0.000516 | BUY |
| SMA 10 | $0.000469 | BUY |
| SMA 21 | $0.000453 | BUY |
| SMA 50 | $0.000484 | BUY |
| SMA 100 | $0.0006095 | SELL |
| SMA 200 | $0.000741 | SELL |
Média Móvel Exponencial Diária (EMA)
| Período | Valor | Ação |
|---|---|---|
| EMA 3 | $0.000577 | SELL |
| EMA 5 | $0.000545 | SELL |
| EMA 10 | $0.000499 | BUY |
| EMA 21 | $0.000475 | BUY |
| EMA 50 | $0.0005063 | BUY |
| EMA 100 | $0.000598 | SELL |
| EMA 200 | $0.000847 | SELL |
Média Móvel Simples Semanal (SMA)
| Período | Valor | Ação |
|---|---|---|
| SMA 21 | $0.000657 | SELL |
| SMA 50 | $0.001194 | SELL |
| SMA 100 | $0.002571 | SELL |
| SMA 200 | — | — |
Média Móvel Exponencial Semanal (EMA)
| Período | Valor | Ação |
|---|---|---|
| EMA 21 | $0.00067 | SELL |
| EMA 50 | $0.001186 | SELL |
| EMA 100 | $0.001624 | SELL |
| EMA 200 | $0.001536 | SELL |
Osciladores de Kryptokrona
Um oscilador é uma ferramenta de análise técnica que define limites altos e baixos entre dois extremos, criando um indicador de tendência que flutua dentro desses limites. Os traders usam esse indicador para identificar condições de sobrecompra ou sobrevenda de curto prazo.
| Período | Valor | Ação |
|---|---|---|
| RSI (14) | 54.25 | NEUTRAL |
| Stoch RSI (14) | 217.05 | SELL |
| Estocástico Rápido (14) | 32.82 | NEUTRAL |
| Índice de Canal de Commodities (20) | 117.33 | SELL |
| Índice Direcional Médio (14) | 30.62 | SELL |
| Oscilador Impressionante (5, 34) | 0.000053 | BUY |
| Momentum (10) | 0 | SELL |
| MACD (12, 26) | 0 | NEUTRAL |
| Williams Percent Range (14) | -67.18 | NEUTRAL |
| Oscilador Ultimate (7, 14, 28) | 56.49 | NEUTRAL |
| VWMA (10) | 0.000596 | SELL |
| Média Móvel de Hull (9) | 0.000612 | BUY |
| Nuvem Ichimoku B/L (9, 26, 52, 26) | -0.000059 | NEUTRAL |
Previsão do preço de Kryptokrona com base nos fluxos financeiros mundiais
Definições dos fluxos financeiros mundiais, usadas na previsão do preço do Kryptokrona
M0: o total de todas as moedas físicas, mais as contas no Banco Central que podem ser trocadas por moedas físicas.
M1: o valor de M0, mais o valor em contas de demanda, incluindo contas 'correntes'.
M2: o valor de M1, mais a maioria das contas de poupança, do mercado de moedas e de certificados de depósito (CD) de menos de US$ 100.000.
Previsões de preço de Kryptokrona por empresas de Internet ou nichos tecnológicos
| Comparação | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Facebook stock | $0.000757 | $0.001064 | $0.001495 | $0.0021011 | $0.002952 | $0.004148 |
| Amazon.com stock | $0.001124 | $0.002346 | $0.004895 | $0.010215 | $0.021315 | $0.044475 |
| Apple stock | $0.000764 | $0.001084 | $0.001538 | $0.002181 | $0.003094 | $0.004389 |
| Netflix stock | $0.00085 | $0.001341 | $0.002117 | $0.00334 | $0.00527 | $0.008316 |
| Google stock | $0.000697 | $0.0009038 | $0.00117 | $0.001515 | $0.001962 | $0.002541 |
| Tesla stock | $0.001221 | $0.002769 | $0.006278 | $0.014232 | $0.032264 | $0.073141 |
| Kodak stock | $0.0004041 | $0.000303 | $0.000227 | $0.00017 | $0.000127 | $0.000095 |
| Nokia stock | $0.000357 | $0.000236 | $0.000156 | $0.0001037 | $0.000068 | $0.000045 |
Este cálculo mostra quanto a criptomoeda pode custar, se assumirmos que sua capitalização se comportará da mesma forma que a de algumas empresas de Internet ou nichos tecnológicos. Se você extrapolar os dados, poderá obter uma imagem em potencial do preço futuro para 2024, 2025, 2026, 2027, 2028, 2029 e 2030.
Visão geral da previsão para Kryptokrona
Você pode fazer perguntas como: 'Devo investir em Kryptokrona agora?', 'Devo comprar XKR hoje?', 'Kryptokrona será um bom ou mau investimento no curto ou no longo prazo?'.
Atualizamos a previsão para Kryptokrona regularmente com novos valores. Veja nossas previsões semelhantes. Fazemos previsões de preços futuros para uma enorme quantidade de moedas digitais, como Kryptokrona, com métodos de análise técnica.
Se você estiver tentando encontrar criptomoedas com bom retorno, você deve explorar o máximo de fontes de informações disponíveis sobre Kryptokrona para poder tomar sozinho uma decisão de tão grande responsabilidade sobre o seu investimento.
O preço de Kryptokrona é de $0.0005389 USD hoje, mas o preço pode tanto subir quanto descer e seu investimento pode ser perdido, porque criptomoedas são ativos de alto risco
Previsão do preço de Kryptokrona com base no padrão de crescimento do Bitcoin
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| Se Kryptokrona tiver 1% da média anterior do crescimento anual do Bitcoin | $0.000552 | $0.000567 | $0.000582 | $0.000597 |
| Se Kryptokrona tiver 2% da média anterior do crescimento anual do Bitcoin | $0.000566 | $0.000596 | $0.000627 | $0.00066 |
| Se Kryptokrona tiver 5% da média anterior do crescimento anual do Bitcoin | $0.0006089 | $0.000688 | $0.000777 | $0.000878 |
| Se Kryptokrona tiver 10% da média anterior do crescimento anual do Bitcoin | $0.000679 | $0.000855 | $0.001077 | $0.001358 |
| Se Kryptokrona tiver 20% da média anterior do crescimento anual do Bitcoin | $0.000819 | $0.001244 | $0.001892 | $0.002875 |
| Se Kryptokrona tiver 50% da média anterior do crescimento anual do Bitcoin | $0.001239 | $0.00285 | $0.006554 | $0.015072 |
| Se Kryptokrona tiver 100% da média anterior do crescimento anual do Bitcoin | $0.001939 | $0.006982 | $0.02513 | $0.090452 |
Perguntas Frequentes sobre Kryptokrona
XKR é um bom investimento?
A decisão de adquirir Kryptokrona depende inteiramente da sua tolerância individual ao risco. Como você pode perceber, o valor de Kryptokrona experimentou uma queda de -24.5971% nas últimas 24 horas, e Kryptokrona registrou um declínio de durante os últimos 30 dias. Consequentemente, a decisão de investir ou não em Kryptokrona dependerá de quão alinhado esse investimento está com suas aspirações de negociação.
Kryptokrona pode subir?
Parece que o valor médio de Kryptokrona pode potencialmente subir para $0.000555 até o final deste ano. Observando as perspectivas de Kryptokrona em um horizonte de cinco anos mais longo, a moeda digital poderia potencialmente crescer até $0.001747. No entanto, dada a imprevisibilidade do mercado, é vital conduzir uma pesquisa aprofundada antes de investir quaisquer fundos em um projeto, rede ou ativo específico.
Qual será o preço de Kryptokrona na próxima semana?
Com base na nossa nova previsão experimental de Kryptokrona, o preço de Kryptokrona aumentará 0.86% na próxima semana e atingirá $0.000543 até 13 de janeiro de 2026.
Qual será o preço de Kryptokrona no próximo mês?
Com base na nossa nova previsão experimental de Kryptokrona, o preço de Kryptokrona diminuirá -11.62% no próximo mês e atingirá $0.000476 até 5 de fevereiro de 2026.
Até onde o preço de Kryptokrona pode subir este ano em 2026?
De acordo com nossa previsão mais recente sobre o valor de Kryptokrona em 2026, espera-se que XKR fluctue dentro do intervalo de $0.000186 e $0.000555. No entanto, é crucial lembrar que o mercado de criptomoedas é excepcionalmente instável, e essa previsão de preço de Kryptokrona não considera flutuações repentinas e extremas de preço.
Onde estará Kryptokrona em 5 anos?
O futuro de Kryptokrona parece seguir uma tendência de alta, com um preço máximo de $0.001747 projetada após um período de cinco anos. Com base na previsão de Kryptokrona para 2030, o valor de Kryptokrona pode potencialmente atingir seu pico mais alto de aproximadamente $0.001747, enquanto seu pico mais baixo está previsto para cerca de $0.0006043.
Quanto será Kryptokrona em 2026?
Com base na nossa nova simulação experimental de previsão de preços de Kryptokrona, espera-se que o valor de XKR em 2026 aumente 3.13% para $0.000555 se o melhor cenário ocorrer. O preço ficará entre $0.000555 e $0.000186 durante 2026.
Quanto será Kryptokrona em 2027?
De acordo com nossa última simulação experimental para previsão de preços de Kryptokrona, o valor de XKR pode diminuir -12.62% para $0.00047 em 2027, assumindo as condições mais favoráveis. O preço está projetado para flutuar entre $0.00047 e $0.000179 ao longo do ano.
Quanto será Kryptokrona em 2028?
Nosso novo modelo experimental de previsão de preços de Kryptokrona sugere que o valor de XKR em 2028 pode aumentar 47.02%, alcançando $0.000792 no melhor cenário. O preço é esperado para variar entre $0.000792 e $0.000323 durante o ano.
Quanto será Kryptokrona em 2029?
Com base no nosso modelo de previsão experimental, o valor de Kryptokrona pode experimentar um 333.75% crescimento em 2029, potencialmente alcançando $0.002337 sob condições ótimas. A faixa de preço prevista para 2029 está entre $0.002337 e $0.00071.
Quanto será Kryptokrona em 2030?
Usando nossa nova simulação experimental para previsões de preços de Kryptokrona, espera-se que o valor de XKR em 2030 aumente 224.23%, alcançando $0.001747 no melhor cenário. O preço está previsto para variar entre $0.001747 e $0.0006043 ao longo de 2030.
Quanto será Kryptokrona em 2031?
Nossa simulação experimental indica que o preço de Kryptokrona poderia aumentar 195.98% em 2031, potencialmente atingindo $0.001595 sob condições ideais. O preço provavelmente oscilará entre $0.001595 e $0.000714 durante o ano.
Quanto será Kryptokrona em 2032?
Com base nos achados da nossa mais recente previsão experimental de preços de Kryptokrona, XKR poderia ver um 449.04% aumento em valor, atingindo $0.002958 se o cenário mais positivo se desenrolar em 2032. O preço é esperado para permanecer dentro de uma faixa de $0.002958 e $0.00109 ao longo do ano.
Quanto será Kryptokrona em 2033?
De acordo com nossa previsão experimental de preços de Kryptokrona, espera-se que o valor de XKR seja aumentar 1362.43% em 2033, com o preço potencial mais alto sendo $0.007881. Ao longo do ano, o preço de XKR poderia variar entre $0.007881 e $0.002534.
Quanto será Kryptokrona em 2034?
Os resultados da nossa nova simulação de previsão de preços de Kryptokrona sugerem que XKR pode aumentar 746.96% em 2034, atingindo potencialmente $0.004564 nas melhores circunstâncias. A faixa de preço prevista para o ano é entre $0.004564 e $0.002037.
Quanto será Kryptokrona em 2035?
Com base em nossa previsão experimental para o preço de Kryptokrona, XKR poderia aumentar 897.93%, com o valor potencialmente atingindo $0.005378 em 2035. A faixa de preço esperada para o ano está entre $0.005378 e $0.0024091.
Quanto será Kryptokrona em 2036?
Nossa recente simulação de previsão de preços de Kryptokrona sugere que o valor de XKR pode aumentar 1964.7% em 2036, possivelmente atingindo $0.011127 se as condições forem ideais. A faixa de preço esperada para 2036 está entre $0.011127 e $0.003987.
Quanto será Kryptokrona em 2037?
De acordo com a simulação experimental, o valor de Kryptokrona poderia aumentar 4830.69% em 2037, com um pico de $0.026573 sob condições favoráveis. O preço é esperado para cair entre $0.026573 e $0.010356 ao longo do ano.
Previsões relacionadas
Previsão de Preço do Petcoin
Previsão de Preço do Amepay
Previsão de Preço do FlatQube
Previsão de Preço do VNX EURO
Previsão de Preço do BMX
Previsão de Preço do Unique Network
Previsão de Preço do Gym Network
Previsão de Preço do Base Protocol
Previsão de Preço do BLOX
Previsão de Preço do Idena
Previsão de Preço do Minu
Previsão de Preço do Shibwifhatcoin
Previsão de Preço do IMO
Previsão de Preço do Solordi
Previsão de Preço do Navigator Exchange
Previsão de Preço do Deri Protocol
Previsão de Preço do Magicaltux
Previsão de Preço do WoofWork.io
Previsão de Preço do Sora
Previsão de Preço do Shockwaves
Previsão de Preço do Joe Coin
Previsão de Preço do UCX
Previsão de Preço do FAYA
Previsão de Preço do TrustPad
Previsão de Preço do ZELIX
Como ler e prever os movimentos de preço de Kryptokrona?
Traders de Kryptokrona utilizam indicadores e padrões de gráfico para prever a direção do mercado. Eles também identificam níveis-chave de suporte e resistência para avaliar quando uma tendência de baixa pode desacelerar ou uma tendência de alta pode estagnar.
Indicadores de Previsão de Preço de Kryptokrona
Médias móveis são ferramentas populares para a previsão de preço de Kryptokrona. Uma média móvel simples (SMA) calcula o preço médio de fechamento de XKR em um período específico, como uma SMA de 12 dias. Uma média móvel exponencial (EMA) dá mais peso aos preços recentes, reagindo mais rapidamente às mudanças de preço.
Médias móveis comumente usadas no mercado de criptomoedas incluem as de 50 dias, 100 dias e 200 dias, que ajudam a identificar níveis-chave de resistência e suporte. Um movimento de preço de XKR acima dessas médias é visto como altista, enquanto uma queda abaixo indica fraqueza.
Traders também usam RSI e níveis de retração de Fibonacci para avaliar a direção futura de XKR.
Como ler gráficos de Kryptokrona e prever movimentos de preço?
A maioria dos traders prefere gráficos de velas em vez de gráficos de linha simples porque eles fornecem informações mais detalhadas. Velas podem representar a ação de preço de Kryptokrona em diferentes períodos de tempo, como 5 minutos para tendências de curto prazo e semanal para tendências de longo prazo. Opções populares incluem gráficos de 1 hora, 4 horas e 1 dia.
Por exemplo, um gráfico de velas de 1 hora mostra os preços de abertura, fechamento, máximo e mínimo de XKR dentro de cada hora. A cor da vela é crucial: verde indica que o preço fechou mais alto do que abriu, enquanto vermelho significa o oposto. Alguns gráficos usam velas vazias e preenchidas para transmitir a mesma informação.
O que afeta o preço de Kryptokrona?
A ação de preço de Kryptokrona é impulsionada pela oferta e demanda, influenciada por fatores como reduções pela metade das recompensas de bloco, hard forks e atualizações de protocolo. Eventos do mundo real, como regulamentações, adoção por empresas e governos e hacks de exchanges de criptomoedas, também impactam o preço de XKR. A capitalização de mercado de Kryptokrona pode mudar rapidamente.
Traders frequentemente monitoram a atividade de "baleias" de XKR, grandes detentores de Kryptokrona, pois suas ações podem influenciar significativamente os movimentos de preço no relativamente pequeno mercado de Kryptokrona.
Padrões de previsão de preço altistas e baixistas
Traders frequentemente identificam padrões de velas para ganhar vantagem em previsões de preço de criptomoedas. Certas formações indicam tendências altistas, enquanto outras sugerem movimentos baixistas.
Padrões de velas altistas comumente seguidos:
- Martelo
- Engolfo de Alta
- Linha de Perfuração
- Estrela da Manhã
- Três Soldados Brancos
Padrões de velas baixistas comuns:
- Harami de Baixa
- Nuvem Negra
- Estrela da Noite
- Estrela Cadente
- Homem Enforcado


