Previsão de Preço Kinto - Projeção K
Previsão de Preço Kinto até $0.009828 até 2026
| Ano | Preço Mínimo | Preço Máximo |
|---|---|---|
| 2026 | $0.003292 | $0.009828 |
| 2027 | $0.003169 | $0.008327 |
| 2028 | $0.00572 | $0.014011 |
| 2029 | $0.012566 | $0.041337 |
| 2030 | $0.010687 | $0.030899 |
| 2031 | $0.012635 | $0.028208 |
| 2032 | $0.019287 | $0.052324 |
| 2033 | $0.044819 | $0.139373 |
| 2034 | $0.036032 | $0.080717 |
| 2035 | $0.0426016 | $0.0951052 |
Calculadora de lucro do investimento
Se você abrir um short de $10,000.00 em Kinto hoje e fechar em Apr 06, 2026, nossa previsão mostra que pode lucrar cerca de $3,955.03, com um retorno de 39.55% nos próximos 90 dias.
Previsão de preço de longo prazo de Kinto para os anos 2027, 2028, 2029, 2030, 2031, 2032 e 2037
[
'name' => 'Kinto'
'name_with_ticker' => 'Kinto <small>K</small>'
'name_lang' => 'Kinto'
'name_lang_with_ticker' => 'Kinto <small>K</small>'
'name_with_lang' => 'Kinto'
'name_with_lang_with_ticker' => 'Kinto <small>K</small>'
'image' => '/uploads/coins/kinto.png?1742902194'
'price_for_sd' => 0.00953
'ticker' => 'K'
'marketcap' => '$18.96K'
'low24h' => '$0'
'high24h' => '$0'
'volume24h' => '$1.56'
'current_supply' => '1.99M'
'max_supply' => '10M'
'algo' => null
'proof' => null
'ico_price_and_roi' => '—'
'price' => '$0.00953'
'change_24h_pct' => '0%'
'ath_price' => '$11.89'
'ath_days' => 281
'ath_exchange' => null
'ath_pair' => null
'ath_date' => '31 de mar. de 2025'
'ath_pct' => '-99.92%'
'fdv' => '$95.3K'
'new_prediction' => true
'change_24h_pct_is_increased' => false
'change_30d_pct' => null
'change_30d_pct_is_increased' => false
'max_price' => '$0.4699064'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.009611'
'next_week_prediction_price_date' => '13 de janeiro de 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.008423'
'next_month_prediction_price_date' => '5 de fevereiro de 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.003292'
'current_year_max_price_prediction' => '$0.009828'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.010687'
'grand_prediction_max_price' => '$0.030899'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.0097108330350938
107 => 0.0097470897606144
108 => 0.0098287780145267
109 => 0.0091307608287307
110 => 0.0094441500524452
111 => 0.0096282368607783
112 => 0.008796525963594
113 => 0.0096117966104954
114 => 0.009118609902474
115 => 0.0089512149263558
116 => 0.0091765902090879
117 => 0.0090887612422225
118 => 0.0090132510540017
119 => 0.0089711150715448
120 => 0.0091366058054209
121 => 0.0091288854648814
122 => 0.0088581105038927
123 => 0.0085048956054823
124 => 0.0086234461192727
125 => 0.0085803756061957
126 => 0.0084242825105978
127 => 0.0085294704102785
128 => 0.0080662761344623
129 => 0.0072693744576641
130 => 0.0077958321151155
131 => 0.0077755640679794
201 => 0.0077653439995306
202 => 0.0081609623788844
203 => 0.0081229328001785
204 => 0.0080539087424405
205 => 0.0084230148296481
206 => 0.0082882861426399
207 => 0.0087034882099283
208 => 0.0089769671450305
209 => 0.0089076040409718
210 => 0.0091648123012738
211 => 0.008626177283672
212 => 0.0088050902302333
213 => 0.0088419639405569
214 => 0.0084184601178268
215 => 0.0081291549095745
216 => 0.0081098615505049
217 => 0.0076082461881089
218 => 0.0078762050658031
219 => 0.0081119977892822
220 => 0.0079990713729902
221 => 0.0079633222431729
222 => 0.0081459567943693
223 => 0.0081601490631565
224 => 0.0078365638307811
225 => 0.0079038474472035
226 => 0.0081844313126557
227 => 0.0078967774536982
228 => 0.0073379129937347
301 => 0.0071993068807581
302 => 0.0071808142702696
303 => 0.0068049034988876
304 => 0.0072085692039982
305 => 0.0070323583061491
306 => 0.0075890064211237
307 => 0.0072710520032139
308 => 0.0072573456237452
309 => 0.0072366264208897
310 => 0.0069130644912828
311 => 0.0069839039904333
312 => 0.0072193852747701
313 => 0.007303407649908
314 => 0.0072946434278061
315 => 0.0072182312880105
316 => 0.0072532123743155
317 => 0.0071405261071088
318 => 0.0071007342407963
319 => 0.0069751401650988
320 => 0.0067905515700726
321 => 0.0068162197463586
322 => 0.0064505014393784
323 => 0.006251238695596
324 => 0.0061960853943577
325 => 0.0061223320949268
326 => 0.0062044160257785
327 => 0.0064494654053648
328 => 0.0061538838634577
329 => 0.0056471300424923
330 => 0.0056775868105989
331 => 0.0057460141258386
401 => 0.0056185002765813
402 => 0.0054978191196855
403 => 0.0056027415944347
404 => 0.0053880233200741
405 => 0.0057719618034664
406 => 0.0057615773434658
407 => 0.0059046858674779
408 => 0.0059941745644252
409 => 0.0057879320902713
410 => 0.0057360626657606
411 => 0.0057656098472958
412 => 0.0052772607536787
413 => 0.005864777327915
414 => 0.0058698581956461
415 => 0.0058263527214477
416 => 0.0061391871596894
417 => 0.0067993653998874
418 => 0.0065509797903167
419 => 0.0064547973747962
420 => 0.0062719545325827
421 => 0.0065155817636984
422 => 0.0064968749935256
423 => 0.0064122758844721
424 => 0.0063611100793512
425 => 0.0064553846441156
426 => 0.0063494284174865
427 => 0.0063303957677015
428 => 0.0062150786177317
429 => 0.0061739156417885
430 => 0.0061434402131455
501 => 0.0061098897606632
502 => 0.0061838936985872
503 => 0.0060161910392227
504 => 0.0058139580721236
505 => 0.0057971445891003
506 => 0.0058435680939841
507 => 0.0058230291488965
508 => 0.0057970462565331
509 => 0.0057474378389918
510 => 0.0057327200812234
511 => 0.0057805456539296
512 => 0.0057265533707484
513 => 0.0058062219256942
514 => 0.0057845564870112
515 => 0.0056635351077028
516 => 0.0055126976612313
517 => 0.0055113548915655
518 => 0.0054788572111462
519 => 0.0054374665290733
520 => 0.0054259525882111
521 => 0.0055939053162639
522 => 0.005941562436931
523 => 0.0058733090254142
524 => 0.0059226291101261
525 => 0.0061652351130263
526 => 0.0062423522659313
527 => 0.0061876163374192
528 => 0.0061126904225069
529 => 0.0061159867825075
530 => 0.0063720313153799
531 => 0.0063880004988246
601 => 0.0064283494735353
602 => 0.0064802093086575
603 => 0.0061964482915888
604 => 0.0061026216641218
605 => 0.0060581614027249
606 => 0.0059212410059088
607 => 0.0060688979152073
608 => 0.0059828645574583
609 => 0.0059944733967366
610 => 0.0059869131249274
611 => 0.0059910415445586
612 => 0.0057718544848356
613 => 0.0058517147292659
614 => 0.0057189315837513
615 => 0.0055411498575148
616 => 0.0055405538708302
617 => 0.0055840656964634
618 => 0.0055581831599589
619 => 0.005488533919726
620 => 0.005498427265566
621 => 0.0054117511457405
622 => 0.0055089513158346
623 => 0.005511738668914
624 => 0.0054743113088987
625 => 0.0056240615819673
626 => 0.0056854143910281
627 => 0.0056607789008943
628 => 0.0056836858993672
629 => 0.0058761452628084
630 => 0.0059075245366401
701 => 0.0059214611372776
702 => 0.0059027879386691
703 => 0.0056872037032282
704 => 0.005696765780805
705 => 0.0056266056000849
706 => 0.0055673276406741
707 => 0.0055696984481786
708 => 0.0056001750249111
709 => 0.0057332680229293
710 => 0.0060133543909979
711 => 0.0060239834639257
712 => 0.006036866210386
713 => 0.0059844656061822
714 => 0.0059686610825481
715 => 0.0059895113287151
716 => 0.0060946970423201
717 => 0.0063652632553547
718 => 0.0062696270851585
719 => 0.0061918733901233
720 => 0.0062600843429148
721 => 0.0062495838013877
722 => 0.0061609486635272
723 => 0.0061584609704159
724 => 0.0059883418024939
725 => 0.0059254526195391
726 => 0.0058728977110884
727 => 0.0058155091230408
728 => 0.0057814872443633
729 => 0.0058337603126793
730 => 0.0058457157818799
731 => 0.0057314198044302
801 => 0.0057158416850419
802 => 0.0058091782474774
803 => 0.0057681043062873
804 => 0.005810349873386
805 => 0.0058201512073287
806 => 0.0058185729668201
807 => 0.0057756870549055
808 => 0.0058030212562836
809 => 0.0057383677213069
810 => 0.0056680667126667
811 => 0.0056232190490619
812 => 0.0055840835143874
813 => 0.0056057981835955
814 => 0.0055283893528107
815 => 0.0055036247099107
816 => 0.0057937610438957
817 => 0.0060080878733016
818 => 0.0060049714763193
819 => 0.0059860012111618
820 => 0.0059578152451155
821 => 0.0060926350633443
822 => 0.0060456665344807
823 => 0.0060798400635808
824 => 0.0060885386609953
825 => 0.0061148666955191
826 => 0.0061242767048903
827 => 0.0060958331208988
828 => 0.0060003729789321
829 => 0.0057624953812292
830 => 0.0056517627173602
831 => 0.0056152190938851
901 => 0.0056165473851922
902 => 0.0055799071811888
903 => 0.0055906993633666
904 => 0.0055761541006534
905 => 0.0055486088919516
906 => 0.0056040973445785
907 => 0.005610491871833
908 => 0.0055975402039523
909 => 0.0056005907905954
910 => 0.0054933565122725
911 => 0.0055015093015528
912 => 0.0054561135348338
913 => 0.0054476023758282
914 => 0.0053328458306242
915 => 0.0051295379765682
916 => 0.0052421902632861
917 => 0.0051061221422394
918 => 0.0050545910830306
919 => 0.0052985311026014
920 => 0.0052740462904794
921 => 0.0052321389354186
922 => 0.0051701492230255
923 => 0.0051471566357018
924 => 0.0050074609536913
925 => 0.0049992069875506
926 => 0.0050684439396557
927 => 0.0050364934685573
928 => 0.0049916229065454
929 => 0.0048291062793944
930 => 0.0046463837830706
1001 => 0.004651899026682
1002 => 0.0047100196530897
1003 => 0.0048790132130044
1004 => 0.0048129845055274
1005 => 0.0047650799206608
1006 => 0.0047561088319218
1007 => 0.0048684007897367
1008 => 0.0050273174359372
1009 => 0.005101877570775
1010 => 0.0050279907415758
1011 => 0.0049431135305411
1012 => 0.0049482796130936
1013 => 0.00498264724587
1014 => 0.0049862587981426
1015 => 0.0049310124592773
1016 => 0.0049465639800606
1017 => 0.0049229397979299
1018 => 0.0047779582358006
1019 => 0.0047753359790832
1020 => 0.0047397551655932
1021 => 0.0047386777927014
1022 => 0.004678145952905
1023 => 0.0046696771300806
1024 => 0.0045494874881448
1025 => 0.0046285966744347
1026 => 0.0045755343856901
1027 => 0.0044955570004235
1028 => 0.0044817688690582
1029 => 0.0044813543811797
1030 => 0.0045634732732324
1031 => 0.0046276370673691
1101 => 0.0045764574269208
1102 => 0.0045648048148663
1103 => 0.0046892242258887
1104 => 0.004673390721728
1105 => 0.0046596790092399
1106 => 0.005013088193283
1107 => 0.0047333372472504
1108 => 0.0046113498671544
1109 => 0.0044603673195104
1110 => 0.0045095279983434
1111 => 0.0045198868756941
1112 => 0.0041568010652602
1113 => 0.0040094971971866
1114 => 0.0039589480606929
1115 => 0.0039298563179809
1116 => 0.0039431137904458
1117 => 0.0038105230321591
1118 => 0.0038996262145765
1119 => 0.0037848138255181
1120 => 0.0037655651548606
1121 => 0.0039708639290229
1122 => 0.0039994300541095
1123 => 0.0038775580896905
1124 => 0.0039558196201263
1125 => 0.0039274409012736
1126 => 0.0037867819543969
1127 => 0.0037814098172434
1128 => 0.0037108321021017
1129 => 0.0036003916444436
1130 => 0.0035499173917808
1201 => 0.0035236299627564
1202 => 0.0035344766683036
1203 => 0.0035289922420643
1204 => 0.0034932026510437
1205 => 0.0035310436595278
1206 => 0.0034343755198352
1207 => 0.0033958814877014
1208 => 0.0033784946264414
1209 => 0.0032926960884537
1210 => 0.0034292397171752
1211 => 0.0034561405321646
1212 => 0.0034830943500697
1213 => 0.0037177089327801
1214 => 0.0037059882512418
1215 => 0.0038119375041445
1216 => 0.0038078205110049
1217 => 0.003777602067813
1218 => 0.0036501154266787
1219 => 0.003700929329604
1220 => 0.0035445320346339
1221 => 0.0036617155220078
1222 => 0.0036082378720698
1223 => 0.0036436346747701
1224 => 0.003579988031914
1225 => 0.003615212711976
1226 => 0.003462519713353
1227 => 0.0033199371396874
1228 => 0.0033773165295752
1229 => 0.0034396944885125
1230 => 0.0035749457970969
1231 => 0.0034943912335031
]
'min_raw' => 0.0032926960884537
'max_raw' => 0.0098287780145267
'avg_raw' => 0.0065607370514902
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.003292'
'max' => '$0.009828'
'avg' => '$0.00656'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.0062375439115463
'max_diff' => 0.00029853801452673
'year' => 2026
]
1 => [
'items' => [
101 => 0.0035233617006767
102 => 0.0034263154852428
103 => 0.0032260814229215
104 => 0.0032272147259689
105 => 0.0031964130778169
106 => 0.0031697959566994
107 => 0.0035036438941553
108 => 0.0034621246257778
109 => 0.0033959691055257
110 => 0.003484520898299
111 => 0.0035079353978142
112 => 0.0035086019756985
113 => 0.0035732070778533
114 => 0.0036076868324544
115 => 0.0036137640386467
116 => 0.0037154215627729
117 => 0.0037494958239649
118 => 0.0038898428834446
119 => 0.0036047614661732
120 => 0.0035988904019875
121 => 0.0034857670036204
122 => 0.0034140223559658
123 => 0.0034906794210255
124 => 0.0035585871159356
125 => 0.0034878770849932
126 => 0.0034971103222641
127 => 0.0034021878829457
128 => 0.0034361181884861
129 => 0.0034653435385233
130 => 0.0034492070180195
131 => 0.0034250498658088
201 => 0.0035530194593621
202 => 0.0035457989133769
203 => 0.003664967140902
204 => 0.0037578672960595
205 => 0.0039243609819908
206 => 0.0037506161412093
207 => 0.003744284188638
208 => 0.0038061800406994
209 => 0.0037494863480324
210 => 0.0037853148047982
211 => 0.0039185884637001
212 => 0.0039214043261028
213 => 0.0038742350028235
214 => 0.0038713647452152
215 => 0.0038804241297268
216 => 0.0039334852277762
217 => 0.0039149440497149
218 => 0.0039364003703727
219 => 0.003963231827906
220 => 0.0040742181125662
221 => 0.0041009765300555
222 => 0.0040359674482054
223 => 0.0040418370404206
224 => 0.0040175218592695
225 => 0.0039940336989458
226 => 0.0040468316531831
227 => 0.0041433209522981
228 => 0.0041427206973761
301 => 0.0041651043392869
302 => 0.0041790491627612
303 => 0.0041191877721749
304 => 0.0040802202080675
305 => 0.0040951628517168
306 => 0.0041190564643204
307 => 0.0040874144751795
308 => 0.0038921054602064
309 => 0.003951349738961
310 => 0.003941488594079
311 => 0.0039274451246109
312 => 0.0039870157050211
313 => 0.0039812699772172
314 => 0.0038091631222894
315 => 0.0038201808447425
316 => 0.0038098331464836
317 => 0.0038432686764981
318 => 0.0037476807196856
319 => 0.0037770829314064
320 => 0.0037955237229691
321 => 0.0038063854908683
322 => 0.0038456256445044
323 => 0.0038410212653834
324 => 0.0038453394298334
325 => 0.0039035222186592
326 => 0.0041977907986182
327 => 0.0042138071881584
328 => 0.0041349366283434
329 => 0.0041664438613365
330 => 0.0041059568638642
331 => 0.004146562190495
401 => 0.0041743433237123
402 => 0.004048805724708
403 => 0.0040413722028272
404 => 0.003980635554
405 => 0.0040132719887801
406 => 0.0039613450744022
407 => 0.0039740861228642
408 => 0.0039384610406199
409 => 0.0040025790957765
410 => 0.0040742730443802
411 => 0.0040923857670773
412 => 0.0040447389916786
413 => 0.0040102395862145
414 => 0.0039496699950301
415 => 0.0040503985750511
416 => 0.0040798546814971
417 => 0.0040502438546638
418 => 0.0040433823790772
419 => 0.0040303798952389
420 => 0.0040461409174901
421 => 0.0040796942572154
422 => 0.0040638711218338
423 => 0.0040743225815211
424 => 0.0040344923946917
425 => 0.004119207588786
426 => 0.0042537557048294
427 => 0.0042541882990233
428 => 0.0042383650783492
429 => 0.0042318905573654
430 => 0.0042481261420103
501 => 0.0042569332806617
502 => 0.0043094361843065
503 => 0.0043657738917253
504 => 0.0046286773901813
505 => 0.0045548551398402
506 => 0.0047881187638695
507 => 0.004972600004986
508 => 0.0050279178628099
509 => 0.0049770280365183
510 => 0.004802936689789
511 => 0.0047943949377719
512 => 0.0050545609092561
513 => 0.0049810521059554
514 => 0.0049723084677058
515 => 0.0048792909293407
516 => 0.0049342758149607
517 => 0.004922249813896
518 => 0.0049032661828833
519 => 0.005008173514366
520 => 0.0052045506737596
521 => 0.0051739434518548
522 => 0.005151096580531
523 => 0.0050509882410144
524 => 0.0051112758214105
525 => 0.005089808568764
526 => 0.0051820455095886
527 => 0.0051274063891425
528 => 0.0049804952044725
529 => 0.0050038912948568
530 => 0.0050003550228616
531 => 0.0050731312499396
601 => 0.0050512856329878
602 => 0.0049960893155421
603 => 0.0052038794779777
604 => 0.0051903867406188
605 => 0.0052095163573246
606 => 0.0052179378062015
607 => 0.0053444160164027
608 => 0.0053962300922708
609 => 0.005407992794626
610 => 0.0054572121592562
611 => 0.0054067681719961
612 => 0.0056085800869898
613 => 0.0057427732344089
614 => 0.0058986454806524
615 => 0.0061264167269242
616 => 0.0062120608225243
617 => 0.0061965899832247
618 => 0.0063692835426307
619 => 0.0066796100301211
620 => 0.0062593158389204
621 => 0.0067018866428088
622 => 0.0065617738360234
623 => 0.0062295688916568
624 => 0.0062081788096787
625 => 0.0064331518549824
626 => 0.0069321204166128
627 => 0.006807134451179
628 => 0.0069323248488773
629 => 0.0067862836000827
630 => 0.0067790314211478
701 => 0.0069252319513935
702 => 0.0072668374592887
703 => 0.0071045534873787
704 => 0.0068718796199832
705 => 0.0070436823828617
706 => 0.0068948509300613
707 => 0.0065594920116012
708 => 0.0068070388767667
709 => 0.0066415113377594
710 => 0.0066898210735697
711 => 0.0070377353402
712 => 0.006995873375172
713 => 0.0070500466342318
714 => 0.0069544322499524
715 => 0.006865113338031
716 => 0.0066983929560202
717 => 0.0066490352701222
718 => 0.0066626759588009
719 => 0.0066490285104744
720 => 0.0065557499889787
721 => 0.0065356065011429
722 => 0.00650203313891
723 => 0.0065124389277252
724 => 0.0064493111844938
725 => 0.0065684462788287
726 => 0.0065905588021521
727 => 0.0066772553887667
728 => 0.0066862565159939
729 => 0.0069277052756667
730 => 0.0067947193562205
731 => 0.0068839377924369
801 => 0.0068759572557452
802 => 0.0062367687801348
803 => 0.0063248433124662
804 => 0.0064618596454632
805 => 0.0064001339731693
806 => 0.0063128683141286
807 => 0.0062423966155647
808 => 0.0061356247861392
809 => 0.0062859040856842
810 => 0.0064835053841641
811 => 0.0066912680110151
812 => 0.00694088119403
813 => 0.0068851704373988
814 => 0.006686601666186
815 => 0.006695509316208
816 => 0.0067505729036131
817 => 0.006679260554869
818 => 0.006658229151042
819 => 0.0067476835116864
820 => 0.0067482995347049
821 => 0.0066662460590896
822 => 0.0065750586365708
823 => 0.0065746765579409
824 => 0.0065584506368697
825 => 0.0067891701553952
826 => 0.0069160425622099
827 => 0.0069305882791861
828 => 0.0069150635195632
829 => 0.0069210383833864
830 => 0.0068472141253036
831 => 0.0070159544873771
901 => 0.0071708073303079
902 => 0.007129303460454
903 => 0.0070670832594202
904 => 0.0070175218723659
905 => 0.0071176283727475
906 => 0.0071131707878678
907 => 0.0071694548258156
908 => 0.0071669014567419
909 => 0.0071479752517298
910 => 0.0071293041363684
911 => 0.0072033329982893
912 => 0.0071820138749232
913 => 0.00716066163707
914 => 0.0071178364551915
915 => 0.0071236571086597
916 => 0.0070614476508209
917 => 0.0070326667091135
918 => 0.00659987040097
919 => 0.0064842130854067
920 => 0.0065206012313047
921 => 0.0065325811537521
922 => 0.0064822469418
923 => 0.0065544132719411
924 => 0.0065431662258317
925 => 0.0065869219029415
926 => 0.0065595852555339
927 => 0.006560707161079
928 => 0.0066410984123169
929 => 0.0066644363345601
930 => 0.0066525664789471
1001 => 0.0066608797189436
1002 => 0.0068524548258643
1003 => 0.0068252189718872
1004 => 0.0068107504672926
1005 => 0.0068147583419448
1006 => 0.0068637098891797
1007 => 0.00687741364975
1008 => 0.0068193498532672
1009 => 0.0068467330753513
1010 => 0.0069633273595371
1011 => 0.0070041287603372
1012 => 0.0071343472459075
1013 => 0.0070790281187882
1014 => 0.0071805687707714
1015 => 0.0074926701172086
1016 => 0.0077419982685132
1017 => 0.0075127057966519
1018 => 0.007970565194774
1019 => 0.0083270744122419
1020 => 0.0083133909946783
1021 => 0.008251225366406
1022 => 0.0078453491006068
1023 => 0.0074718557095441
1024 => 0.0077842987905351
1025 => 0.007785095272203
1026 => 0.0077582561344539
1027 => 0.0075915605549524
1028 => 0.0077524554896208
1029 => 0.0077652267452502
1030 => 0.0077580782382487
1031 => 0.0076302731282835
1101 => 0.0074351383476991
1102 => 0.0074732672167386
1103 => 0.0075357230820332
1104 => 0.0074174810993721
1105 => 0.0073796956213775
1106 => 0.0074499460139508
1107 => 0.0076763074160724
1108 => 0.0076335151042236
1109 => 0.007632397624024
1110 => 0.0078154812808774
1111 => 0.0076844328944964
1112 => 0.0074737481438827
1113 => 0.0074205474657623
1114 => 0.0072317208987059
1115 => 0.0073621440811489
1116 => 0.0073668377792971
1117 => 0.0072954063351657
1118 => 0.0074795444118928
1119 => 0.0074778475470989
1120 => 0.0076526592456155
1121 => 0.0079868335569037
1122 => 0.0078880017693366
1123 => 0.007773071153264
1124 => 0.0077855672979114
1125 => 0.0079226191615804
1126 => 0.0078397544762164
1127 => 0.0078695531948264
1128 => 0.0079225740576508
1129 => 0.0079545628606268
1130 => 0.0077809646014429
1201 => 0.0077404905430626
1202 => 0.0076576948240805
1203 => 0.0076360949664533
1204 => 0.0077035303519749
1205 => 0.0076857635104173
1206 => 0.0073664432921427
1207 => 0.0073330725526521
1208 => 0.0073340959855898
1209 => 0.0072501836744485
1210 => 0.0071221972586957
1211 => 0.0074585379176222
1212 => 0.0074315250556259
1213 => 0.0074017049466114
1214 => 0.0074053577398145
1215 => 0.0075513518202119
1216 => 0.0074666678807036
1217 => 0.0076918140133111
1218 => 0.0076455307369592
1219 => 0.0075980604692117
1220 => 0.0075914986322293
1221 => 0.0075732266291195
1222 => 0.0075105651317429
1223 => 0.0074348976082884
1224 => 0.0073849353550952
1225 => 0.0068122124988694
1226 => 0.0069185065296093
1227 => 0.0070407881229698
1228 => 0.0070829992389851
1229 => 0.0070107942041206
1230 => 0.0075134162266142
1231 => 0.0076052501135101
]
'min_raw' => 0.0031697959566994
'max_raw' => 0.0083270744122419
'avg_raw' => 0.0057484351844707
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.003169'
'max' => '$0.008327'
'avg' => '$0.005748'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -0.00012290013175429
'max_diff' => -0.0015017036022848
'year' => 2027
]
2 => [
'items' => [
101 => 0.0073270792799262
102 => 0.0072750448746029
103 => 0.0075168275935644
104 => 0.0073710030572953
105 => 0.0074366678370483
106 => 0.0072947364999365
107 => 0.007583130019367
108 => 0.0075809329439402
109 => 0.0074687413512187
110 => 0.0075635649171321
111 => 0.0075470869890613
112 => 0.0074204229571944
113 => 0.0075871454951037
114 => 0.0075872281874025
115 => 0.0074792462186636
116 => 0.0073531469194691
117 => 0.0073306033431056
118 => 0.0073136197866191
119 => 0.0074324909232636
120 => 0.0075390704126787
121 => 0.007737388419184
122 => 0.007787250277939
123 => 0.0079818644321518
124 => 0.0078659811789093
125 => 0.0079173507241323
126 => 0.0079731196321378
127 => 0.0079998572974693
128 => 0.0079562897066338
129 => 0.008258605594508
130 => 0.0082841303181641
131 => 0.008292688537218
201 => 0.0081907493207879
202 => 0.0082812952041485
203 => 0.0082389317838885
204 => 0.0083491496345078
205 => 0.008366433200817
206 => 0.0083517946350338
207 => 0.0083572807117829
208 => 0.0080993074336594
209 => 0.0080859301582712
210 => 0.0079035300591456
211 => 0.0079778594477727
212 => 0.0078389042184346
213 => 0.0078829683530552
214 => 0.0079023914037374
215 => 0.0078922459043094
216 => 0.0079820619198828
217 => 0.0079056999584457
218 => 0.0077041681871444
219 => 0.0075025815086468
220 => 0.0075000507521072
221 => 0.0074469765379592
222 => 0.0074086136021574
223 => 0.0074160036645911
224 => 0.0074420472085084
225 => 0.0074070999040403
226 => 0.0074145576833219
227 => 0.0075384065103194
228 => 0.0075632435093244
229 => 0.0074788376822637
301 => 0.0071399361069122
302 => 0.0070567688102507
303 => 0.0071165478138118
304 => 0.0070879773003705
305 => 0.0057205508753457
306 => 0.0060418074305824
307 => 0.0058509276943026
308 => 0.0059388938587347
309 => 0.0057440550760611
310 => 0.0058370423555285
311 => 0.0058198710003626
312 => 0.0063364420345106
313 => 0.0063283764883327
314 => 0.0063322370384688
315 => 0.0061479629218581
316 => 0.0064415165932065
317 => 0.0065861316875614
318 => 0.0065593672824024
319 => 0.0065661033065644
320 => 0.0064503560939448
321 => 0.0063333577244979
322 => 0.0062035885268613
323 => 0.0064446836561125
324 => 0.0064178779933709
325 => 0.0064793605393271
326 => 0.0066357279644823
327 => 0.0066587536618185
328 => 0.0066897004325419
329 => 0.0066786082181787
330 => 0.0069428697657401
331 => 0.0069108659486766
401 => 0.0069879859396731
402 => 0.0068293442670855
403 => 0.0066498261561468
404 => 0.0066839466801471
405 => 0.0066806605993059
406 => 0.0066388250186101
407 => 0.0066010577269531
408 => 0.0065381858272126
409 => 0.0067371218212818
410 => 0.0067290453832224
411 => 0.0068597935275722
412 => 0.0068366825230387
413 => 0.0066823415785415
414 => 0.0066878538955684
415 => 0.0067249268767033
416 => 0.0068532368877031
417 => 0.0068913280349796
418 => 0.0068736826978914
419 => 0.0069154479019531
420 => 0.0069484574163389
421 => 0.0069195933887365
422 => 0.0073282471507392
423 => 0.0071585456175148
424 => 0.0072412569640327
425 => 0.0072609831328136
426 => 0.0072104549662778
427 => 0.0072214127163214
428 => 0.0072380107218294
429 => 0.0073387905610508
430 => 0.0076032660200494
501 => 0.0077204004004946
502 => 0.0080728049633723
503 => 0.0077106740207879
504 => 0.0076891866693018
505 => 0.0077526653726743
506 => 0.007959564156895
507 => 0.0081272361884912
508 => 0.0081828626746032
509 => 0.0081902146330361
510 => 0.0082945736189612
511 => 0.0083543902435135
512 => 0.008281901693156
513 => 0.0082204752365957
514 => 0.0080004532937288
515 => 0.0080259214327155
516 => 0.0082013716547956
517 => 0.0084492054274503
518 => 0.0086618725870973
519 => 0.0085874039599877
520 => 0.0091555470181759
521 => 0.0092118760817389
522 => 0.0092040932264912
523 => 0.0093324192161765
524 => 0.0090777182597845
525 => 0.0089688286663283
526 => 0.0082337563337239
527 => 0.0084402816759749
528 => 0.0087404783897449
529 => 0.0087007462289975
530 => 0.0084827353511766
531 => 0.0086617072062969
601 => 0.0086025335140268
602 => 0.0085558607678146
603 => 0.0087696776661697
604 => 0.0085345772033142
605 => 0.0087381330827854
606 => 0.0084770705618476
607 => 0.0085877441264036
608 => 0.0085249204584836
609 => 0.008565575071007
610 => 0.0083279090369056
611 => 0.0084561478598899
612 => 0.0083225738802594
613 => 0.0083225105488012
614 => 0.0083195618957975
615 => 0.0084767110904751
616 => 0.0084818357200717
617 => 0.0083657022277657
618 => 0.0083489655771783
619 => 0.0084108497464336
620 => 0.0083383995917252
621 => 0.0083722985631174
622 => 0.0083394263570353
623 => 0.0083320261310516
624 => 0.0082730598713689
625 => 0.0082476555853866
626 => 0.0082576172605081
627 => 0.0082236129277229
628 => 0.0082031240872294
629 => 0.0083154861497267
630 => 0.008255455632407
701 => 0.0083062856119886
702 => 0.0082483584350006
703 => 0.0080475576018902
704 => 0.0079320749193382
705 => 0.0075527807598399
706 => 0.0076603481129607
707 => 0.0077316653793662
708 => 0.0077080950232446
709 => 0.0077587332687108
710 => 0.0077618420457156
711 => 0.0077453790359188
712 => 0.0077263169796162
713 => 0.0077170386248059
714 => 0.0077861918799481
715 => 0.0078263376721498
716 => 0.007738823021152
717 => 0.0077183195628833
718 => 0.0078068017068583
719 => 0.0078607757635687
720 => 0.0082592898729152
721 => 0.0082297666605112
722 => 0.0083038641300074
723 => 0.0082955218920604
724 => 0.0083731878447451
725 => 0.0085001388533038
726 => 0.0082420119568436
727 => 0.0082868138607126
728 => 0.008275829468511
729 => 0.008395754182306
730 => 0.0083961285741722
731 => 0.0083242277175684
801 => 0.0083632063383915
802 => 0.0083414495415705
803 => 0.0083807670140334
804 => 0.00822937236001
805 => 0.0084137547065675
806 => 0.0085182876157297
807 => 0.0085197390552748
808 => 0.0085692868245932
809 => 0.0086196302278339
810 => 0.0087162600063682
811 => 0.0086169352757565
812 => 0.0084382597544537
813 => 0.0084511595499733
814 => 0.0083464021572083
815 => 0.0083481631479067
816 => 0.0083387628415476
817 => 0.0083669738685533
818 => 0.0082355630939941
819 => 0.0082664049401231
820 => 0.008223226174933
821 => 0.0082867199985097
822 => 0.0082184111402462
823 => 0.0082758241715045
824 => 0.0083006017325234
825 => 0.008392031466106
826 => 0.0082049068942568
827 => 0.0078233472250362
828 => 0.0079035556934702
829 => 0.0077849210684172
830 => 0.0077959011546397
831 => 0.007818082676277
901 => 0.0077461851073083
902 => 0.0077599008977147
903 => 0.0077594108731649
904 => 0.0077551881063269
905 => 0.0077364847718223
906 => 0.0077093612364487
907 => 0.0078174130531934
908 => 0.0078357731623861
909 => 0.0078765854107853
910 => 0.0079980149788087
911 => 0.0079858813014568
912 => 0.0080056718326392
913 => 0.007962469214187
914 => 0.0077979052002016
915 => 0.0078068418179023
916 => 0.0076954020519742
917 => 0.0078737356454198
918 => 0.0078315038966034
919 => 0.0078042768134078
920 => 0.0077968476515007
921 => 0.0079185782199361
922 => 0.0079550019139049
923 => 0.0079323051121267
924 => 0.0078857533095082
925 => 0.0079751465323407
926 => 0.0079990643875734
927 => 0.0080044187133034
928 => 0.0081628063647122
929 => 0.0080132708235498
930 => 0.0080492655145631
1001 => 0.0083300858187106
1002 => 0.0080754205534018
1003 => 0.008210322424149
1004 => 0.0082037196795714
1005 => 0.0082727309118153
1006 => 0.0081980587442405
1007 => 0.0081989843952513
1008 => 0.0082602616942581
1009 => 0.0081742087792222
1010 => 0.0081529008672945
1011 => 0.0081234641395765
1012 => 0.0081877381576276
1013 => 0.0082262675245855
1014 => 0.0085367859255642
1015 => 0.0087373949739559
1016 => 0.0087286860060965
1017 => 0.0088082696698268
1018 => 0.0087724165004135
1019 => 0.0086566371587897
1020 => 0.0088542583771549
1021 => 0.0087917227548412
1022 => 0.008796878115564
1023 => 0.0087966862327804
1024 => 0.00883826695466
1025 => 0.0088088032023911
1026 => 0.0087507271222769
1027 => 0.0087892807345539
1028 => 0.0089037711798479
1029 => 0.0092591530350363
1030 => 0.0094580294293831
1031 => 0.0092471804263801
1101 => 0.0093926212452709
1102 => 0.009305408579799
1103 => 0.0092895594441307
1104 => 0.0093809070263862
1105 => 0.009472414500492
1106 => 0.0094665858699892
1107 => 0.0094001561427491
1108 => 0.0093626316754231
1109 => 0.0096467795136343
1110 => 0.0098561348004961
1111 => 0.0098418581734678
1112 => 0.0099048705621629
1113 => 0.010089876884272
1114 => 0.010106791543791
1115 => 0.01010466068547
1116 => 0.010062735936991
1117 => 0.010244898687214
1118 => 0.010396862058298
1119 => 0.01005303156904
1120 => 0.010183957718278
1121 => 0.010242734684848
1122 => 0.010329036710113
1123 => 0.010474642692633
1124 => 0.01063280940973
1125 => 0.010655175917738
1126 => 0.010639305809971
1127 => 0.010534990608296
1128 => 0.010708058517465
1129 => 0.010809437639714
1130 => 0.010869806586993
1201 => 0.011022892192859
1202 => 0.010243097671383
1203 => 0.0096911203507804
1204 => 0.0096049211215191
1205 => 0.0097802106438392
1206 => 0.0098264330929673
1207 => 0.0098078008816818
1208 => 0.0091865002237608
1209 => 0.0096016501021363
1210 => 0.010048316464475
1211 => 0.010065474738559
1212 => 0.010289085258899
1213 => 0.010361902010426
1214 => 0.010541937788601
1215 => 0.010530676501658
1216 => 0.010574512348648
1217 => 0.010564435246556
1218 => 0.010897913614619
1219 => 0.011265789776609
1220 => 0.011253051394894
1221 => 0.011200164844094
1222 => 0.011278710390528
1223 => 0.011658398013707
1224 => 0.011623442461735
1225 => 0.011657398802969
1226 => 0.012105071908954
1227 => 0.012687110627491
1228 => 0.012416695206999
1229 => 0.013003418859526
1230 => 0.013372730297908
1231 => 0.014011416243073
]
'min_raw' => 0.0057205508753457
'max_raw' => 0.014011416243073
'avg_raw' => 0.0098659835592094
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.00572'
'max' => '$0.014011'
'avg' => '$0.009865'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 0.0025507549186464
'max_diff' => 0.0056843418308312
'year' => 2028
]
3 => [
'items' => [
101 => 0.013931449617144
102 => 0.014180085368703
103 => 0.013788292667192
104 => 0.012888657430154
105 => 0.012746286710227
106 => 0.013031316496921
107 => 0.013732034414708
108 => 0.013009248396047
109 => 0.013155467066263
110 => 0.013113356079404
111 => 0.013111112163875
112 => 0.013196753292974
113 => 0.013072526368475
114 => 0.01256640353007
115 => 0.01279835664431
116 => 0.012708788407599
117 => 0.012808171043985
118 => 0.013344498144042
119 => 0.013107375148666
120 => 0.012857585335344
121 => 0.013170877194046
122 => 0.013569805388937
123 => 0.013544841179444
124 => 0.013496400178796
125 => 0.013769459563156
126 => 0.014220473667226
127 => 0.014342380967234
128 => 0.014432370443816
129 => 0.014444778472251
130 => 0.014572588876688
131 => 0.013885320119664
201 => 0.014976033287374
202 => 0.015164369321095
203 => 0.015128969952484
204 => 0.015338297527572
205 => 0.015276708044853
206 => 0.015187474547487
207 => 0.015519303279254
208 => 0.015138888415481
209 => 0.014598937409255
210 => 0.014302709608219
211 => 0.014692806272638
212 => 0.014931024693101
213 => 0.01508847191549
214 => 0.015136115349853
215 => 0.013938670836869
216 => 0.013293314657687
217 => 0.013706980569519
218 => 0.01421168153165
219 => 0.013882516480337
220 => 0.013895419127156
221 => 0.013426116267038
222 => 0.014253204421312
223 => 0.014132704634141
224 => 0.014757857743147
225 => 0.014608659936515
226 => 0.015118448028606
227 => 0.014984203739099
228 => 0.015541444279345
301 => 0.015763742617535
302 => 0.016137016125328
303 => 0.016411597637158
304 => 0.016572837152812
305 => 0.016563156937086
306 => 0.017202068227314
307 => 0.016825324561327
308 => 0.016352045725183
309 => 0.016343485604212
310 => 0.016588603419864
311 => 0.017102303116682
312 => 0.017235497974041
313 => 0.017309935728527
314 => 0.017195931716334
315 => 0.016787003468367
316 => 0.016610430324208
317 => 0.016760875758848
318 => 0.016576893920207
319 => 0.016894498189888
320 => 0.017330636688771
321 => 0.01724057581343
322 => 0.017541635817014
323 => 0.017853201248287
324 => 0.018298753808286
325 => 0.018415237746233
326 => 0.018607781266173
327 => 0.018805971795442
328 => 0.018869625252058
329 => 0.018991159451247
330 => 0.018990518906027
331 => 0.019356770395478
401 => 0.019760757130207
402 => 0.019913252770252
403 => 0.020263908085879
404 => 0.019663423146296
405 => 0.020118897870843
406 => 0.020529747473657
407 => 0.020039915639842
408 => 0.020715034706576
409 => 0.020741248050085
410 => 0.02113703841515
411 => 0.020735829055897
412 => 0.020497592219079
413 => 0.021185373040356
414 => 0.021518168514879
415 => 0.021417927809573
416 => 0.020655091092702
417 => 0.020211087403877
418 => 0.019049044108307
419 => 0.020425534588445
420 => 0.021095982948542
421 => 0.020653354793418
422 => 0.02087659068872
423 => 0.022094493349007
424 => 0.022558191828687
425 => 0.022461745786411
426 => 0.022478043579918
427 => 0.022728246862831
428 => 0.023837786008729
429 => 0.023172924433591
430 => 0.023681186195896
501 => 0.023950766401949
502 => 0.024201167521198
503 => 0.023586261512407
504 => 0.022786277829734
505 => 0.0225328894164
506 => 0.020609344146638
507 => 0.020509215261814
508 => 0.020453009884546
509 => 0.02009864293128
510 => 0.019820207575291
511 => 0.019598785442566
512 => 0.019017707644051
513 => 0.019213804343333
514 => 0.018287687612861
515 => 0.018880184277455
516 => 0.017402079613753
517 => 0.018633089099801
518 => 0.017963106603678
519 => 0.018412981830704
520 => 0.018411412258417
521 => 0.017583049332393
522 => 0.017105266884156
523 => 0.017409728455744
524 => 0.017736135428676
525 => 0.017789093861869
526 => 0.018212289022369
527 => 0.018330393695115
528 => 0.017972531022915
529 => 0.017371449179999
530 => 0.017511066782891
531 => 0.017102437537889
601 => 0.016386330503721
602 => 0.01690065107769
603 => 0.017076262734722
604 => 0.017153822846843
605 => 0.016449613824187
606 => 0.016228336060147
607 => 0.016110529635272
608 => 0.017280544638252
609 => 0.017344640701275
610 => 0.017016716180581
611 => 0.018498966109199
612 => 0.018163487299612
613 => 0.018538299324225
614 => 0.017498397948831
615 => 0.017538123581784
616 => 0.017045817605514
617 => 0.017321476056328
618 => 0.017126649548179
619 => 0.017299205577612
620 => 0.017402634950179
621 => 0.017894860143883
622 => 0.018638709520841
623 => 0.017821338114207
624 => 0.017465197687362
625 => 0.017686145205167
626 => 0.018274557561204
627 => 0.019166032400875
628 => 0.018638261353187
629 => 0.018872477182017
630 => 0.01892364292108
701 => 0.018534484089661
702 => 0.01918038124208
703 => 0.01952652277332
704 => 0.019881592360475
705 => 0.020189889334178
706 => 0.019739769759218
707 => 0.020221462226532
708 => 0.019833303128044
709 => 0.01948508428955
710 => 0.019485612393789
711 => 0.019267169629737
712 => 0.018843909248825
713 => 0.018765853540605
714 => 0.019171909192112
715 => 0.019497527371007
716 => 0.019524346843827
717 => 0.019704625798529
718 => 0.019811313026901
719 => 0.020856992899201
720 => 0.021277573994157
721 => 0.021791852595877
722 => 0.021992193094401
723 => 0.022595146168914
724 => 0.02210821259179
725 => 0.022002861449424
726 => 0.020540294515103
727 => 0.020779789768664
728 => 0.021163244777469
729 => 0.020546617546963
730 => 0.020937725596695
731 => 0.021014938610514
801 => 0.020525664789626
802 => 0.020787007077636
803 => 0.02009295944327
804 => 0.018653837862657
805 => 0.019181983395794
806 => 0.019570876280046
807 => 0.019015878184071
808 => 0.020010690789714
809 => 0.019429541802598
810 => 0.019245345473753
811 => 0.018526729924196
812 => 0.018865888801538
813 => 0.01932460603943
814 => 0.019041172118015
815 => 0.019629340062768
816 => 0.020462342731198
817 => 0.021055990038888
818 => 0.021101562907825
819 => 0.020719887460261
820 => 0.021331524800802
821 => 0.021335979911088
822 => 0.020646050492345
823 => 0.020223472564909
824 => 0.020127461970683
825 => 0.020367315259044
826 => 0.020658541430473
827 => 0.021117723933508
828 => 0.021395198303184
829 => 0.022118704298265
830 => 0.022314464275991
831 => 0.022529545140795
901 => 0.022816959504656
902 => 0.023162074140002
903 => 0.022406982965253
904 => 0.022436984145292
905 => 0.021733853698315
906 => 0.020982457976614
907 => 0.021552673666586
908 => 0.02229815482861
909 => 0.022127140626358
910 => 0.022107898035102
911 => 0.022140258736145
912 => 0.022011319612449
913 => 0.021428132734678
914 => 0.021135259935605
915 => 0.021513140566229
916 => 0.021713967303874
917 => 0.02202543206003
918 => 0.02198703745461
919 => 0.022789337217593
920 => 0.023101086645203
921 => 0.023021327801111
922 => 0.023036005347927
923 => 0.023600412795522
924 => 0.024228149956491
925 => 0.024816108644953
926 => 0.025414205476269
927 => 0.024693176402001
928 => 0.024327082304978
929 => 0.02470479796474
930 => 0.024504376718937
1001 => 0.025656056646123
1002 => 0.025735796465517
1003 => 0.026887393113135
1004 => 0.027980395461303
1005 => 0.02729390026959
1006 => 0.027941234314953
1007 => 0.028641378862932
1008 => 0.029992071290343
1009 => 0.029537205598724
1010 => 0.029188785607597
1011 => 0.028859530399536
1012 => 0.029544658219719
1013 => 0.030426064215201
1014 => 0.030615910624626
1015 => 0.030923534334805
1016 => 0.030600105617989
1017 => 0.030989639882889
1018 => 0.032364867008013
1019 => 0.031993268499339
1020 => 0.03146553887958
1021 => 0.032551148616649
1022 => 0.032944026560293
1023 => 0.035701449720564
1024 => 0.039182810363876
1025 => 0.037741504197698
1026 => 0.036846838949693
1027 => 0.037057106504717
1028 => 0.03832838156016
1029 => 0.038736674759715
1030 => 0.037626793096219
1031 => 0.03801882206302
1101 => 0.04017894021353
1102 => 0.04133777429639
1103 => 0.039763921959684
1104 => 0.0354217257826
1105 => 0.031418022601336
1106 => 0.032479984974111
1107 => 0.032359591397567
1108 => 0.034680368870063
1109 => 0.031984405997803
1110 => 0.03202979909839
1111 => 0.03439856779127
1112 => 0.033766620914986
1113 => 0.032742947909046
1114 => 0.031425496547144
1115 => 0.028990065855166
1116 => 0.026832936974272
1117 => 0.031063563466817
1118 => 0.030881131159564
1119 => 0.030616942143707
1120 => 0.031204866210258
1121 => 0.034059658592274
1122 => 0.033993846387807
1123 => 0.033575182720672
1124 => 0.033892735422262
1125 => 0.032687279385113
1126 => 0.03299795285361
1127 => 0.031417388394297
1128 => 0.032131869540109
1129 => 0.03274075156653
1130 => 0.032862993647987
1201 => 0.033138411299344
1202 => 0.030784997623429
1203 => 0.031841611271319
1204 => 0.032462272798145
1205 => 0.029658101440088
1206 => 0.032406843346494
1207 => 0.030744029927204
1208 => 0.030179646078078
1209 => 0.030939514579008
1210 => 0.030643393085199
1211 => 0.03038880521366
1212 => 0.030246740806966
1213 => 0.030804704370423
1214 => 0.030778674703277
1215 => 0.0298657380174
1216 => 0.028674849326733
1217 => 0.029074550660909
1218 => 0.028929335418983
1219 => 0.028403056649103
1220 => 0.028757704996861
1221 => 0.027196013156755
1222 => 0.024509203515532
1223 => 0.026284192263729
1224 => 0.02621585712774
1225 => 0.026181399453422
1226 => 0.027515254440607
1227 => 0.027387035060859
1228 => 0.02715431563109
1229 => 0.028398782574274
1230 => 0.02794453539957
1231 => 0.029344418157915
]
'min_raw' => 0.01256640353007
'max_raw' => 0.04133777429639
'avg_raw' => 0.02695208891323
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.012566'
'max' => '$0.041337'
'avg' => '$0.026952'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072435
'min_diff' => 0.0068458526547244
'max_diff' => 0.027326358053317
'year' => 2029
]
4 => [
'items' => [
101 => 0.030266471481302
102 => 0.030032608933191
103 => 0.030899804540506
104 => 0.029083758972366
105 => 0.029686976463
106 => 0.029811298751796
107 => 0.028383426045369
108 => 0.027408013337102
109 => 0.027342964429979
110 => 0.025651733213995
111 => 0.026555175278432
112 => 0.027350166908165
113 => 0.026969427611366
114 => 0.026848896924262
115 => 0.027464662064758
116 => 0.027512512289846
117 => 0.026421522086893
118 => 0.026648373497253
119 => 0.027594381589365
120 => 0.026624536520539
121 => 0.024740285975102
122 => 0.024272965788031
123 => 0.024210616660656
124 => 0.02294320724969
125 => 0.02430419435751
126 => 0.023710087012759
127 => 0.025586864996327
128 => 0.024514859477475
129 => 0.024468647462148
130 => 0.024398791223152
131 => 0.02330787958711
201 => 0.023546719904352
202 => 0.024340661495271
203 => 0.024623948799304
204 => 0.024594399612589
205 => 0.024336770748343
206 => 0.024454711923121
207 => 0.02407478230573
208 => 0.023940621250278
209 => 0.023517172055366
210 => 0.02289481871967
211 => 0.022981360768114
212 => 0.021748315962493
213 => 0.02107648770975
214 => 0.020890534503945
215 => 0.020641870105623
216 => 0.020918621809406
217 => 0.021744822901483
218 => 0.020748249096099
219 => 0.019039693208292
220 => 0.019142380328387
221 => 0.01937308779916
222 => 0.018943165953657
223 => 0.018536281007493
224 => 0.018890034456563
225 => 0.018166096803405
226 => 0.019460572205891
227 => 0.019425560273979
228 => 0.019908060654204
301 => 0.020209778043863
302 => 0.019514417142864
303 => 0.019339535756718
304 => 0.019439156142183
305 => 0.017792653077608
306 => 0.019773506226743
307 => 0.019790636727033
308 => 0.019643954983318
309 => 0.020698698133253
310 => 0.022924535162253
311 => 0.022087085737856
312 => 0.021762800008687
313 => 0.021146332600484
314 => 0.021967738819701
315 => 0.021904667637998
316 => 0.021619435835303
317 => 0.021446926751056
318 => 0.021764780028199
319 => 0.021407541212492
320 => 0.021343371304924
321 => 0.020954571482615
322 => 0.020815787635315
323 => 0.020713037599919
324 => 0.020599919906957
325 => 0.020849429350457
326 => 0.020284008125784
327 => 0.019602165557755
328 => 0.019545477725862
329 => 0.019701997813763
330 => 0.019632749326417
331 => 0.019545146190746
401 => 0.019377887947456
402 => 0.019328265999579
403 => 0.019489513257033
404 => 0.019307474504667
405 => 0.019576082599948
406 => 0.019503036060795
407 => 0.019095004031014
408 => 0.018586445049101
409 => 0.018581917807424
410 => 0.018472349608975
411 => 0.018332798034561
412 => 0.018293977979066
413 => 0.018860242327781
414 => 0.020032392582755
415 => 0.019802271440525
416 => 0.01996855754955
417 => 0.020786520626538
418 => 0.021046526491705
419 => 0.020861980487186
420 => 0.020609362533899
421 => 0.020620476441785
422 => 0.021483748460823
423 => 0.021537589677739
424 => 0.021673629063052
425 => 0.021848478117905
426 => 0.020891758037296
427 => 0.020575415012025
428 => 0.020425514136609
429 => 0.019963877459267
430 => 0.020461713038043
501 => 0.020171645565735
502 => 0.020210785577865
503 => 0.020185295593619
504 => 0.020199214848643
505 => 0.019460210373635
506 => 0.019729464763396
507 => 0.01928177711767
508 => 0.01868237361534
509 => 0.018680364204622
510 => 0.018827067362643
511 => 0.018739802583757
512 => 0.018504975307558
513 => 0.018538331413788
514 => 0.018246096824263
515 => 0.018573813984035
516 => 0.018583211739549
517 => 0.018457022782162
518 => 0.018961916283043
519 => 0.019168771562308
520 => 0.019085711287327
521 => 0.019162943831994
522 => 0.01981183401292
523 => 0.019917631425474
524 => 0.019964619647546
525 => 0.019901661654716
526 => 0.019174804353317
527 => 0.01920704356547
528 => 0.018970493617744
529 => 0.018770633838936
530 => 0.018778627181962
531 => 0.018881381088222
601 => 0.019330113423297
602 => 0.020274444168246
603 => 0.02031028082972
604 => 0.020353715908856
605 => 0.020177043613289
606 => 0.02012375755842
607 => 0.02019405561909
608 => 0.020548696596341
609 => 0.021460929473917
610 => 0.021138485448996
611 => 0.020876333437596
612 => 0.021106311427269
613 => 0.021070908118386
614 => 0.020772068562781
615 => 0.020763681131772
616 => 0.020190112479782
617 => 0.019978077208667
618 => 0.019800884665559
619 => 0.019607395034213
620 => 0.01949268789492
621 => 0.019668930194337
622 => 0.019709238893451
623 => 0.019323882025589
624 => 0.019271359308441
625 => 0.019586050045243
626 => 0.01944756638483
627 => 0.019590000263795
628 => 0.01962304614549
629 => 0.019617724997426
630 => 0.019473132151207
701 => 0.019565291319566
702 => 0.019347307412427
703 => 0.019110282653537
704 => 0.018959075624529
705 => 0.018827127437018
706 => 0.018900339960323
707 => 0.01863935068282
708 => 0.01855585496027
709 => 0.019534069866973
710 => 0.020256687736136
711 => 0.020246180586131
712 => 0.02018222101269
713 => 0.020087190060284
714 => 0.020541744490261
715 => 0.02038338681596
716 => 0.020498605255241
717 => 0.02052793318374
718 => 0.020616699990302
719 => 0.020648426493883
720 => 0.020552526964588
721 => 0.020230676431133
722 => 0.019428655502394
723 => 0.019055312595052
724 => 0.018932103217111
725 => 0.018936581643991
726 => 0.018813046638057
727 => 0.018849433233755
728 => 0.018800392865
729 => 0.018707522270717
730 => 0.018894605462828
731 => 0.018916165057919
801 => 0.018872497605402
802 => 0.018882782871255
803 => 0.018521235015031
804 => 0.018548722713299
805 => 0.018395667716375
806 => 0.018366971749557
807 => 0.017980062045356
808 => 0.017294595420905
809 => 0.017674410470706
810 => 0.017215647300624
811 => 0.017041906736717
812 => 0.017864367544049
813 => 0.017781815290505
814 => 0.017640521717039
815 => 0.017431519073722
816 => 0.017353997960269
817 => 0.01688300421513
818 => 0.016855175392013
819 => 0.017088612610005
820 => 0.016980889365986
821 => 0.0168296051334
822 => 0.016281668978412
823 => 0.015665607324779
824 => 0.015684202353677
825 => 0.015880160103463
826 => 0.016449933689469
827 => 0.016227313292233
828 => 0.016065799639764
829 => 0.016035552987739
830 => 0.016414153163486
831 => 0.016949951731357
901 => 0.017201336431585
902 => 0.016952221828326
903 => 0.016666052385385
904 => 0.016683470193395
905 => 0.016799343066772
906 => 0.01681151966741
907 => 0.016625252778749
908 => 0.016677685816843
909 => 0.016598035237401
910 => 0.016109219778393
911 => 0.01610037865679
912 => 0.015980415459936
913 => 0.015976783022011
914 => 0.015772695697939
915 => 0.015744142470513
916 => 0.015338914701353
917 => 0.015605636846157
918 => 0.015426733634964
919 => 0.015157084296694
920 => 0.01511059664914
921 => 0.015109199174319
922 => 0.015386068752233
923 => 0.015602401463937
924 => 0.015429845732917
925 => 0.015390558137816
926 => 0.015810046868764
927 => 0.015756663104026
928 => 0.015710433108052
929 => 0.016901976846294
930 => 0.015958777000158
1001 => 0.015547488031278
1002 => 0.015038439830631
1003 => 0.015204188491605
1004 => 0.015239114169827
1005 => 0.014014945010107
1006 => 0.013518299734469
1007 => 0.013347869791553
1008 => 0.013249784949879
1009 => 0.013294483443902
1010 => 0.012847444445147
1011 => 0.013147862045653
1012 => 0.012760764059997
1013 => 0.012695865822976
1014 => 0.013388044973567
1015 => 0.01348435765872
1016 => 0.013073457821852
1017 => 0.013337322035762
1018 => 0.013241641203811
1019 => 0.012767399743922
1020 => 0.012749287208439
1021 => 0.01251132951426
1022 => 0.012138971800559
1023 => 0.011968794333706
1024 => 0.011880164431421
1025 => 0.011916734856466
1026 => 0.01189824373049
1027 => 0.011777576625615
1028 => 0.011905160227694
1029 => 0.011579236845566
1030 => 0.01144945152866
1031 => 0.011390830512009
1101 => 0.011101554750921
1102 => 0.011561921128327
1103 => 0.011652619104219
1104 => 0.011743495783142
1105 => 0.012534515229017
1106 => 0.012494998132899
1107 => 0.012852213436201
1108 => 0.012838332706391
1109 => 0.012736449115385
1110 => 0.012306619003968
1111 => 0.012477941625394
1112 => 0.011950637226092
1113 => 0.012345729535263
1114 => 0.012165425904807
1115 => 0.012284768696437
1116 => 0.01207017959638
1117 => 0.012188942064518
1118 => 0.011674126958976
1119 => 0.011193399857065
1120 => 0.011386858476173
1121 => 0.01159717011982
1122 => 0.012053179349657
1123 => 0.011781584014361
1124 => 0.01187925996709
1125 => 0.011552061876204
1126 => 0.010876958755192
1127 => 0.010880779765541
1128 => 0.010776929858294
1129 => 0.010687188376098
1130 => 0.01181278000575
1201 => 0.011672794893632
1202 => 0.011449746938271
1203 => 0.011748305490095
1204 => 0.011827249109959
1205 => 0.011829496523835
1206 => 0.012047317136334
1207 => 0.012163568036271
1208 => 0.012184057761245
1209 => 0.012526803201339
1210 => 0.012641686951936
1211 => 0.013114876861691
1212 => 0.012153704959611
1213 => 0.012133910256805
1214 => 0.011752506821187
1215 => 0.011510614732568
1216 => 0.011769069379442
1217 => 0.011998024913995
1218 => 0.011759621107856
1219 => 0.011790751611959
1220 => 0.011470713980524
1221 => 0.011585112374592
1222 => 0.011683647682691
1223 => 0.011629242277196
1224 => 0.01154779475192
1225 => 0.011979253171136
1226 => 0.011954908596225
1227 => 0.012356692595386
1228 => 0.012669911954581
1229 => 0.013231257040916
1230 => 0.012645464179744
1231 => 0.012624115559567
]
'min_raw' => 0.010687188376098
'max_raw' => 0.030899804540506
'avg_raw' => 0.020793496458302
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.010687'
'max' => '$0.030899'
'avg' => '$0.020793'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -0.0018792151539717
'max_diff' => -0.010437969755884
'year' => 2030
]
5 => [
'items' => [
101 => 0.012832801746222
102 => 0.012641655003168
103 => 0.012762453146617
104 => 0.013211794592475
105 => 0.013221288469163
106 => 0.01306225380247
107 => 0.013052576528548
108 => 0.013083120875935
109 => 0.013262020072616
110 => 0.013199507196279
111 => 0.013271848679409
112 => 0.013362312811795
113 => 0.013736510819342
114 => 0.01382672869212
115 => 0.013607546033873
116 => 0.013627335773829
117 => 0.013545355442946
118 => 0.013466163470524
119 => 0.01364417545947
120 => 0.013969495868104
121 => 0.013967472066726
122 => 0.014042940078204
123 => 0.014089956024144
124 => 0.013888129166394
125 => 0.013756747303377
126 => 0.013807127469703
127 => 0.013887686452795
128 => 0.013781003277233
129 => 0.013122505297211
130 => 0.013322251519336
131 => 0.013289003980883
201 => 0.013241655443088
202 => 0.013442501814026
203 => 0.013423129691581
204 => 0.012842859414075
205 => 0.012880006434559
206 => 0.012845118447425
207 => 0.012957848671264
208 => 0.012635567201132
209 => 0.012734698810746
210 => 0.012796873226994
211 => 0.012833494435811
212 => 0.012965795353455
213 => 0.012950271367781
214 => 0.012964830360709
215 => 0.013160997695428
216 => 0.014153144757936
217 => 0.014207145133499
218 => 0.013941227534516
219 => 0.014047456370317
220 => 0.013843520235272
221 => 0.013980423928981
222 => 0.01407408995924
223 => 0.013650831179442
224 => 0.013625768541429
225 => 0.01342099068941
226 => 0.013531026707875
227 => 0.013355951490628
228 => 0.013398908825069
301 => 0.013278796373019
302 => 0.013494974872559
303 => 0.013736696025788
304 => 0.013797764334951
305 => 0.013637119905103
306 => 0.013520802750909
307 => 0.013316588145397
308 => 0.013656201585583
309 => 0.013755514905025
310 => 0.013655679934995
311 => 0.013632545991001
312 => 0.013588707208936
313 => 0.013641846595856
314 => 0.013754974023359
315 => 0.013701625217684
316 => 0.013736863043717
317 => 0.013602572787967
318 => 0.013888195979482
319 => 0.014341834346572
320 => 0.014343292868099
321 => 0.014289943774854
322 => 0.014268114475321
323 => 0.014322853882484
324 => 0.014352547765341
325 => 0.014529564970615
326 => 0.014719511484551
327 => 0.015605908984932
328 => 0.015357012113802
329 => 0.016143476708163
330 => 0.016765468092656
331 => 0.016951976112479
401 => 0.016780397510122
402 => 0.016193436379955
403 => 0.016164637266663
404 => 0.01704180500373
405 => 0.016793964941181
406 => 0.016764485154361
407 => 0.016450870029486
408 => 0.016636255410276
409 => 0.016595708908058
410 => 0.016531704270704
411 => 0.016885406663194
412 => 0.017547505966705
413 => 0.017444311581125
414 => 0.017367281759339
415 => 0.017029759503318
416 => 0.017233023289767
417 => 0.017160644948674
418 => 0.017471628234442
419 => 0.017287408625076
420 => 0.01679208730895
421 => 0.016870968861143
422 => 0.016859046073217
423 => 0.017104416203884
424 => 0.017030762181119
425 => 0.016844663943167
426 => 0.017545242983265
427 => 0.017499751277226
428 => 0.017564248115537
429 => 0.017592641618392
430 => 0.018019071734512
501 => 0.018193766508845
502 => 0.018233425281081
503 => 0.018399371805318
504 => 0.018229296380384
505 => 0.018909719341843
506 => 0.019362160907433
507 => 0.019887695068296
508 => 0.020655641727582
509 => 0.020944396775377
510 => 0.020892235760539
511 => 0.021474484153156
512 => 0.022520771572033
513 => 0.021103720362396
514 => 0.022595878727013
515 => 0.022123478616572
516 => 0.021003426452832
517 => 0.020931308298035
518 => 0.021689820627393
519 => 0.023372127969802
520 => 0.0229507290611
521 => 0.023372817227455
522 => 0.022880428960869
523 => 0.022855977733259
524 => 0.023348903028378
525 => 0.024500649848381
526 => 0.023953498106782
527 => 0.023169021918087
528 => 0.023748266928018
529 => 0.023246471293821
530 => 0.022115785286221
531 => 0.022950406825297
601 => 0.02239231917077
602 => 0.022555198817932
603 => 0.023728216058475
604 => 0.023587075520674
605 => 0.02376972444585
606 => 0.023447353873669
607 => 0.023146208926079
608 => 0.022584099518084
609 => 0.022417686634035
610 => 0.022463677168278
611 => 0.022417663843411
612 => 0.02210316879569
613 => 0.022035253620078
614 => 0.021922058685292
615 => 0.021957142528791
616 => 0.021744302935049
617 => 0.022145975223345
618 => 0.022220529139577
619 => 0.022512832734311
620 => 0.022543180663196
621 => 0.023357242013847
622 => 0.022908870701654
623 => 0.02320967688839
624 => 0.02318276995175
625 => 0.021027701379515
626 => 0.021324650814438
627 => 0.021786610947312
628 => 0.021578498533625
629 => 0.021284276271476
630 => 0.02104667601959
701 => 0.020686687342111
702 => 0.021193364492693
703 => 0.0218595910666
704 => 0.022560077268551
705 => 0.023401665542522
706 => 0.023213832836939
707 => 0.022544344361166
708 => 0.022574377125128
709 => 0.022760027854481
710 => 0.022519593291821
711 => 0.022448684445452
712 => 0.022750286067869
713 => 0.022752363032486
714 => 0.022475714010658
715 => 0.022168269249133
716 => 0.022166981044356
717 => 0.022112274218607
718 => 0.022890161183638
719 => 0.023317920361163
720 => 0.023366962261497
721 => 0.023314619450525
722 => 0.023334764121056
723 => 0.023085860480685
724 => 0.023654780392492
725 => 0.024176877563913
726 => 0.024036944368993
727 => 0.023827164617132
728 => 0.023660064940413
729 => 0.023997580995662
730 => 0.023982551937021
731 => 0.024172317500588
801 => 0.024163708638486
802 => 0.024099897616902
803 => 0.024036946647886
804 => 0.024286540124382
805 => 0.0242146612115
806 => 0.024142670650812
807 => 0.02399828256015
808 => 0.024017907299703
809 => 0.023808163769274
810 => 0.023711126814886
811 => 0.022251923845107
812 => 0.021861977130749
813 => 0.021984662305184
814 => 0.022025053450126
815 => 0.021855348140308
816 => 0.022098661960871
817 => 0.022060741759669
818 => 0.022208267079969
819 => 0.02211609966465
820 => 0.022119882247524
821 => 0.022390926963811
822 => 0.022469612398056
823 => 0.02242959235113
824 => 0.02245762102019
825 => 0.023103529868519
826 => 0.023011702285289
827 => 0.02296292071189
828 => 0.022976433541101
829 => 0.023141477100291
830 => 0.02318768028582
831 => 0.022991914142093
901 => 0.023084238587185
902 => 0.02347734435667
903 => 0.023614909128131
904 => 0.024053949843795
905 => 0.023867437544455
906 => 0.024209788941958
907 => 0.025262060421691
908 => 0.02610268769135
909 => 0.025329612113781
910 => 0.026873317041272
911 => 0.028075312758643
912 => 0.028029178160982
913 => 0.027819582404996
914 => 0.026451142237478
915 => 0.025191883193035
916 => 0.026245306854675
917 => 0.026247992248227
918 => 0.026157502221457
919 => 0.025595476436854
920 => 0.026137944942414
921 => 0.026181004122429
922 => 0.026156902431981
923 => 0.025725998580665
924 => 0.02506808804405
925 => 0.025196642188089
926 => 0.025407216498459
927 => 0.025008555398526
928 => 0.024881159021369
929 => 0.025118013124656
930 => 0.025881206395957
1001 => 0.025736929128895
1002 => 0.025733161466382
1003 => 0.026350440797956
1004 => 0.025908602013766
1005 => 0.025198263667533
1006 => 0.025018893866897
1007 => 0.024382251912616
1008 => 0.024821982778079
1009 => 0.024837807909089
1010 => 0.024596971808016
1011 => 0.025217806189811
1012 => 0.025212085091687
1013 => 0.025801474938199
1014 => 0.026928166960013
1015 => 0.026594948688015
1016 => 0.026207452091727
1017 => 0.026249583715859
1018 => 0.026711663642874
1019 => 0.026432279570742
1020 => 0.026532748031016
1021 => 0.026711511571827
1022 => 0.026819364054447
1023 => 0.026234065403365
1024 => 0.026097604289727
1025 => 0.025818452742567
1026 => 0.025745627314523
1027 => 0.025972990424997
1028 => 0.025913088278244
1029 => 0.024836477868106
1030 => 0.024723966090043
1031 => 0.024727416665646
1101 => 0.024444500450062
1102 => 0.024012985313626
1103 => 0.025146981327751
1104 => 0.025055905577553
1105 => 0.024955364998037
1106 => 0.024967680645351
1107 => 0.025459909880392
1108 => 0.025174392065896
1109 => 0.025933487971183
1110 => 0.025777440673568
1111 => 0.025617391351589
1112 => 0.02559526766007
1113 => 0.025533662325875
1114 => 0.025322394712583
1115 => 0.025067276374319
1116 => 0.024898825149425
1117 => 0.022967850053427
1118 => 0.023326227799278
1119 => 0.023738508728722
1120 => 0.023880826453453
1121 => 0.023637382137213
1122 => 0.025332007377999
1123 => 0.025641631739306
1124 => 0.02470375935261
1125 => 0.024528321722137
1126 => 0.025343509039846
1127 => 0.024851851434671
1128 => 0.025073244824176
1129 => 0.024594713411774
1130 => 0.025567052297527
1201 => 0.02555964470433
1202 => 0.025181382916503
1203 => 0.02550108718935
1204 => 0.025445530704407
1205 => 0.025018474077567
1206 => 0.025580590754325
1207 => 0.025580869557183
1208 => 0.02521680081052
1209 => 0.024791648219314
1210 => 0.024715640977662
1211 => 0.024658379731214
1212 => 0.025059162067728
1213 => 0.025418502257434
1214 => 0.026087145262487
1215 => 0.026255258000524
1216 => 0.026911413208978
1217 => 0.026520704729961
1218 => 0.026693900738188
1219 => 0.026881929505189
1220 => 0.026972077410618
1221 => 0.026825186236324
1222 => 0.027844465359313
1223 => 0.027930523747199
1224 => 0.027959378380255
1225 => 0.027615683194892
1226 => 0.027920964962354
1227 => 0.027778133733228
1228 => 0.028149740911755
1229 => 0.028208013662267
1230 => 0.028158658715697
1231 => 0.028177155406482
]
'min_raw' => 0.012635567201132
'max_raw' => 0.028208013662267
'avg_raw' => 0.0204217904317
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.012635'
'max' => '$0.028208'
'avg' => '$0.020421'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 0.0019483788250337
'max_diff' => -0.0026917908782388
'year' => 2031
]
6 => [
'items' => [
101 => 0.02730738048817
102 => 0.027262278070227
103 => 0.026647303401257
104 => 0.026897910124525
105 => 0.026429412867267
106 => 0.0265779781736
107 => 0.02664346434505
108 => 0.026609258085392
109 => 0.026912079052652
110 => 0.026654619368245
111 => 0.025975140930803
112 => 0.025295477369916
113 => 0.025286944747551
114 => 0.025108001329028
115 => 0.024978658012557
116 => 0.02500357412401
117 => 0.02509138175063
118 => 0.024973554473673
119 => 0.024998698897206
120 => 0.025416263864277
121 => 0.025500003540486
122 => 0.025215423401524
123 => 0.024072793078874
124 => 0.023792388731625
125 => 0.023993937815768
126 => 0.023897610334971
127 => 0.019287236672336
128 => 0.020370375577733
129 => 0.019726811220068
130 => 0.020023395285052
131 => 0.019366482726059
201 => 0.019679995830948
202 => 0.01962210140814
203 => 0.021363756715608
204 => 0.02133656316355
205 => 0.02134957927787
206 => 0.020728286228109
207 => 0.021718022926323
208 => 0.022205602813643
209 => 0.022115364753019
210 => 0.022138075728775
211 => 0.021747825920216
212 => 0.02135335774906
213 => 0.020915831839032
214 => 0.021728700900027
215 => 0.021638323736582
216 => 0.021845616432848
217 => 0.022372820123984
218 => 0.022450452870156
219 => 0.022554792068284
220 => 0.022517393893125
221 => 0.02340837015088
222 => 0.023300467047216
223 => 0.023560482481206
224 => 0.023025611006069
225 => 0.022420353161485
226 => 0.022535392890371
227 => 0.022524313639388
228 => 0.022383262058205
229 => 0.022255926997555
301 => 0.022043949998005
302 => 0.022714676591276
303 => 0.02268744631648
304 => 0.0231282728137
305 => 0.023050352448356
306 => 0.022529981178243
307 => 0.022548566339957
308 => 0.022673560484206
309 => 0.023106166644611
310 => 0.023234593607093
311 => 0.023175101121141
312 => 0.023315915422589
313 => 0.023427209304991
314 => 0.023329892220708
315 => 0.024707696910594
316 => 0.024135536343146
317 => 0.024414403422653
318 => 0.024480911577935
319 => 0.024310552336695
320 => 0.024347497156013
321 => 0.024403458490419
322 => 0.024743244754578
323 => 0.025634942229678
324 => 0.02602986897141
325 => 0.027218025559254
326 => 0.025997075803155
327 => 0.025924629697421
328 => 0.026138652577783
329 => 0.026836226273994
330 => 0.027401544235009
331 => 0.027589092816653
401 => 0.027613880457806
402 => 0.027965734064964
403 => 0.028167409990906
404 => 0.027923009782387
405 => 0.027715906195435
406 => 0.026974086853618
407 => 0.02705995446234
408 => 0.027651497135627
409 => 0.028487086003334
410 => 0.02920410818003
411 => 0.028953032004497
412 => 0.03086856599166
413 => 0.031058483362232
414 => 0.031032242922383
415 => 0.031464902956041
416 => 0.030606160898913
417 => 0.030239032032147
418 => 0.02776068434166
419 => 0.028456998952198
420 => 0.029469133131739
421 => 0.029335173377768
422 => 0.028600134482162
423 => 0.029203550587115
424 => 0.029004042352251
425 => 0.02884668192981
426 => 0.029567580530833
427 => 0.028774922906126
428 => 0.029461225765581
429 => 0.028581035249436
430 => 0.028954178899318
501 => 0.028742364516717
502 => 0.028879434381254
503 => 0.028078126753969
504 => 0.028510492899009
505 => 0.028060138900847
506 => 0.028059925374414
507 => 0.028049983784944
508 => 0.028579823266606
509 => 0.028597101313081
510 => 0.02820554913559
511 => 0.028149120349619
512 => 0.028357767146878
513 => 0.02811349639197
514 => 0.02822778914077
515 => 0.028116958202899
516 => 0.028092007824328
517 => 0.027893198962915
518 => 0.027807546639055
519 => 0.027841133122229
520 => 0.027726485140137
521 => 0.027657405583928
522 => 0.028036242122507
523 => 0.027833845042167
524 => 0.028005221867162
525 => 0.0278099163456
526 => 0.027132902317302
527 => 0.026743544390335
528 => 0.025464727650113
529 => 0.025827398491273
530 => 0.026067849634172
531 => 0.025988380532878
601 => 0.026159110912917
602 => 0.026169592371636
603 => 0.026114086184696
604 => 0.026049817131001
605 => 0.026018534509964
606 => 0.026251689537802
607 => 0.0263870438791
608 => 0.026091982123183
609 => 0.026022853282124
610 => 0.026321177008162
611 => 0.02650315430871
612 => 0.027846772451738
613 => 0.027747232879873
614 => 0.027997057671599
615 => 0.027968931233925
616 => 0.028230787415865
617 => 0.028658811604657
618 => 0.027788518751397
619 => 0.02793957149826
620 => 0.027902536853047
621 => 0.028306871398483
622 => 0.028308133686799
623 => 0.028065714928802
624 => 0.028197134070307
625 => 0.028123779510814
626 => 0.028256341114281
627 => 0.027745903468204
628 => 0.028367561422787
629 => 0.028720001424282
630 => 0.028724895054045
701 => 0.028891948817616
702 => 0.029061685116507
703 => 0.029387479161311
704 => 0.029052598897422
705 => 0.028450181902623
706 => 0.028493674463853
707 => 0.028140477600218
708 => 0.028146414903306
709 => 0.028114721114107
710 => 0.028209836561288
711 => 0.027766775960055
712 => 0.027870761397587
713 => 0.027725181176104
714 => 0.02793925503529
715 => 0.027708946950482
716 => 0.027902518993819
717 => 0.027986058270709
718 => 0.028294320000903
719 => 0.027663416442293
720 => 0.02637696137787
721 => 0.026647389829172
722 => 0.026247404908001
723 => 0.026284425035305
724 => 0.026359211584169
725 => 0.026116803910663
726 => 0.026163047655625
727 => 0.026161395503642
728 => 0.026147158150424
729 => 0.026084098552317
730 => 0.0259926496591
731 => 0.026356953903191
801 => 0.026418856293197
802 => 0.026556457638095
803 => 0.026965865904627
804 => 0.026924956364289
805 => 0.026991681521901
806 => 0.026846020877479
807 => 0.026291181814835
808 => 0.026321312245348
809 => 0.025945585294045
810 => 0.026546849455201
811 => 0.02640446216554
812 => 0.026312664153611
813 => 0.026287616215554
814 => 0.026698039325991
815 => 0.026820844353228
816 => 0.026744320501393
817 => 0.026587367848721
818 => 0.026888763340737
819 => 0.026969404059545
820 => 0.026987456542571
821 => 0.027521471567568
822 => 0.027017302050301
823 => 0.027138660664121
824 => 0.028085465925802
825 => 0.027226844203653
826 => 0.027681675279425
827 => 0.027659413665092
828 => 0.027892089852813
829 => 0.02764032742639
830 => 0.0276434483234
831 => 0.027850049015246
901 => 0.02755991560418
902 => 0.027488074491445
903 => 0.027388826508737
904 => 0.027605530848065
905 => 0.027735435298798
906 => 0.0287823697674
907 => 0.029458737180129
908 => 0.02942937428695
909 => 0.029697696165571
910 => 0.029576814701705
911 => 0.029186456567965
912 => 0.029852750303157
913 => 0.029641907086428
914 => 0.029659288745041
915 => 0.029658641798839
916 => 0.02979883410573
917 => 0.029699495007861
918 => 0.029503687449014
919 => 0.029633673644533
920 => 0.030019686174309
921 => 0.031217880911046
922 => 0.031888406559693
923 => 0.031177514425061
924 => 0.031667878300305
925 => 0.031373834709672
926 => 0.031320398242215
927 => 0.031628382993474
928 => 0.03193690683127
929 => 0.031917255196588
930 => 0.031693282733222
1001 => 0.031566766371758
1002 => 0.032524790646856
1003 => 0.03323064661323
1004 => 0.033182511968441
1005 => 0.033394962636312
1006 => 0.034018724368031
1007 => 0.034075753323543
1008 => 0.034068568985944
1009 => 0.033927216769351
1010 => 0.034541391199925
1011 => 0.035053746315281
1012 => 0.033894497815268
1013 => 0.034335924468396
1014 => 0.034534095114863
1015 => 0.034825068418459
1016 => 0.035315989154413
1017 => 0.035849259283953
1018 => 0.035924669527279
1019 => 0.035871162350927
1020 => 0.035519456365425
1021 => 0.036102966904403
1022 => 0.036444773693131
1023 => 0.036648311813709
1024 => 0.037164450621981
1025 => 0.034535318949311
1026 => 0.032674288875072
1027 => 0.03238366215538
1028 => 0.032974663018206
1029 => 0.033130505232589
1030 => 0.033067685431381
1031 => 0.030972926885373
1101 => 0.032372633685155
1102 => 0.03387860051103
1103 => 0.033936450830055
1104 => 0.034690369311369
1105 => 0.034935876073048
1106 => 0.03554287926886
1107 => 0.035504911053693
1108 => 0.035652706672343
1109 => 0.035618731019079
1110 => 0.036743076619718
1111 => 0.037983396784161
1112 => 0.037940448440843
1113 => 0.037762137742402
1114 => 0.038026959536079
1115 => 0.03930710286657
1116 => 0.039189247782578
1117 => 0.039303733957804
1118 => 0.04081309509017
1119 => 0.042775479266364
1120 => 0.041863754796372
1121 => 0.043841934554605
1122 => 0.04508709385361
1123 => 0.047240468109364
1124 => 0.046970855046952
1125 => 0.047809147842526
1126 => 0.04648819139529
1127 => 0.04345500838309
1128 => 0.042974995560851
1129 => 0.043935993386834
1130 => 0.046298512769216
1201 => 0.04386158924399
1202 => 0.044354575699287
1203 => 0.044212595566996
1204 => 0.044205030049123
1205 => 0.044493775095153
1206 => 0.044074935345958
1207 => 0.042368506859908
1208 => 0.043150552979019
1209 => 0.042848567415491
1210 => 0.04318364291274
1211 => 0.044991907175747
1212 => 0.044192430441436
1213 => 0.043350246646055
1214 => 0.044406532021008
1215 => 0.045751546282358
1216 => 0.045667377707106
1217 => 0.045504055491381
1218 => 0.046424694270148
1219 => 0.047945319810818
1220 => 0.048356338784092
1221 => 0.048659744587251
1222 => 0.048701579121423
1223 => 0.049132500823418
1224 => 0.04681532622554
1225 => 0.050492741821636
1226 => 0.051127729908527
1227 => 0.051008378465751
1228 => 0.051714140999946
1229 => 0.051506487758918
1230 => 0.051205630792465
1231 => 0.05232441452916
]
'min_raw' => 0.019287236672336
'max_raw' => 0.05232441452916
'avg_raw' => 0.035805825600748
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.019287'
'max' => '$0.052324'
'avg' => '$0.0358058'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.0066516694712038
'max_diff' => 0.024116400866892
'year' => 2032
]
7 => [
'items' => [
101 => 0.051041819256231
102 => 0.049221336740563
103 => 0.048222584027407
104 => 0.049537822167175
105 => 0.050340992203645
106 => 0.050871836506544
107 => 0.051032469671856
108 => 0.046995201893424
109 => 0.044819338477985
110 => 0.046214041980956
111 => 0.047915676511876
112 => 0.046805873559804
113 => 0.04684937573439
114 => 0.045267088375821
115 => 0.048055673833408
116 => 0.047649400387933
117 => 0.049757147741744
118 => 0.049254116920028
119 => 0.050972903064779
120 => 0.05052028907007
121 => 0.052399064456801
122 => 0.053148558824381
123 => 0.054407076517032
124 => 0.055332847254835
125 => 0.055876477539245
126 => 0.055843840016075
127 => 0.05799797403844
128 => 0.056727756465161
129 => 0.055132063825828
130 => 0.055103202780328
131 => 0.055929634609379
201 => 0.057661609002568
202 => 0.05811068476352
203 => 0.058361656849849
204 => 0.057977284363234
205 => 0.056598554224754
206 => 0.056003225541279
207 => 0.056510462827932
208 => 0.055890155213753
209 => 0.056960980183404
210 => 0.058431451582606
211 => 0.058127805053545
212 => 0.059142849874965
213 => 0.060193314479305
214 => 0.061695526042828
215 => 0.062088259772266
216 => 0.062737433692702
217 => 0.063405646899354
218 => 0.063620258972479
219 => 0.064030020010292
220 => 0.064027860367359
221 => 0.065262702834905
222 => 0.066624772316497
223 => 0.067138922013816
224 => 0.068321180892423
225 => 0.066296603994101
226 => 0.067832268828142
227 => 0.069217476948631
228 => 0.067565974721956
301 => 0.069842185790759
302 => 0.069930565908556
303 => 0.071265000757573
304 => 0.06991229539131
305 => 0.069109063262812
306 => 0.071427964321072
307 => 0.072550007498465
308 => 0.072212038961944
309 => 0.069640081711454
310 => 0.068143092275233
311 => 0.064225182172946
312 => 0.068866115930226
313 => 0.071126579385503
314 => 0.069634227657193
315 => 0.070386883064037
316 => 0.074493126914442
317 => 0.076056518713077
318 => 0.075731344147894
319 => 0.075786293296581
320 => 0.076629871133556
321 => 0.080370759829501
322 => 0.07812913260977
323 => 0.079842772627085
324 => 0.08075168111328
325 => 0.081595925969279
326 => 0.079522727429273
327 => 0.076825526590061
328 => 0.075971209863494
329 => 0.06948584268885
330 => 0.069148251162888
331 => 0.068958750809295
401 => 0.067763977885249
402 => 0.066825213642796
403 => 0.066078673463116
404 => 0.064119529095866
405 => 0.064780682808527
406 => 0.061658215592338
407 => 0.063655859463812
408 => 0.058672326392167
409 => 0.062822760820718
410 => 0.060563868058355
411 => 0.062080653795555
412 => 0.062075361873008
413 => 0.059282478433466
414 => 0.057671601551528
415 => 0.058698114996965
416 => 0.059798618895212
417 => 0.059977171950163
418 => 0.061404003980331
419 => 0.061802202130299
420 => 0.060595643145802
421 => 0.058569053746218
422 => 0.059039784242158
423 => 0.057662062213052
424 => 0.055247657350357
425 => 0.056981725074209
426 => 0.057573812036709
427 => 0.057835311369798
428 => 0.055461021483609
429 => 0.054714968053027
430 => 0.05431777546658
501 => 0.058262562736967
502 => 0.058478667088492
503 => 0.057373046672011
504 => 0.062370555793734
505 => 0.061239465564829
506 => 0.06250317047435
507 => 0.058997070383615
508 => 0.059131008128671
509 => 0.057471164157971
510 => 0.058400565870749
511 => 0.057743694696173
512 => 0.058325479396883
513 => 0.058674198747701
514 => 0.060333770354338
515 => 0.062841710462659
516 => 0.060085885698143
517 => 0.058885133384105
518 => 0.059630073366447
519 => 0.061613946706465
520 => 0.0646196163692
521 => 0.062840199434121
522 => 0.06362987445345
523 => 0.063802383314977
524 => 0.062490307144646
525 => 0.064667994489126
526 => 0.065835034828533
527 => 0.067032176731794
528 => 0.068071621503241
529 => 0.066554011929917
530 => 0.06817807171416
531 => 0.066869366213204
601 => 0.065695322087359
602 => 0.065697102627674
603 => 0.064960607597483
604 => 0.063533555672143
605 => 0.063270385402205
606 => 0.064639430381161
607 => 0.065737274805241
608 => 0.065827698530328
609 => 0.066435521612782
610 => 0.066795225051903
611 => 0.070320807748398
612 => 0.071738826274078
613 => 0.073472752485562
614 => 0.074148214463662
615 => 0.076181112851221
616 => 0.074539382299332
617 => 0.074184183567462
618 => 0.069253037035238
619 => 0.070060512003642
620 => 0.071353357337802
621 => 0.069274355578614
622 => 0.070593003674578
623 => 0.070853332741507
624 => 0.069203711894377
625 => 0.070084845664738
626 => 0.067744815608614
627 => 0.062892716723318
628 => 0.064673396262231
629 => 0.065984575773123
630 => 0.064113360943813
701 => 0.067467441099337
702 => 0.065508056714748
703 => 0.064887025931871
704 => 0.062464163434405
705 => 0.063607661268679
706 => 0.065154258462846
707 => 0.064198641208073
708 => 0.06618169049838
709 => 0.068990217153382
710 => 0.07099174049839
711 => 0.071145392607806
712 => 0.069858547188615
713 => 0.071920725185406
714 => 0.071935745900781
715 => 0.069609600696157
716 => 0.068184849710355
717 => 0.067861143288679
718 => 0.068669825396407
719 => 0.069651714766143
720 => 0.071199880634223
721 => 0.072135404844228
722 => 0.074574755820218
723 => 0.075234774252648
724 => 0.075959934404803
725 => 0.07692897199919
726 => 0.078092550087392
727 => 0.075546707472944
728 => 0.07564785854606
729 => 0.073277205153077
730 => 0.070743822016587
731 => 0.072666344026517
801 => 0.075179785812114
802 => 0.074603199489391
803 => 0.074538321749495
804 => 0.074647428112416
805 => 0.074212700854632
806 => 0.07224644557942
807 => 0.071259004489618
808 => 0.072533055418551
809 => 0.073210156785797
810 => 0.074260281956949
811 => 0.074130831864152
812 => 0.076835841529831
813 => 0.077886926490667
814 => 0.077618013979224
815 => 0.077667500353071
816 => 0.079570439468304
817 => 0.081686899133721
818 => 0.083669242901835
819 => 0.085685768126406
820 => 0.083254768261866
821 => 0.08202045645388
822 => 0.083293951172034
823 => 0.082618216948846
824 => 0.086501186231077
825 => 0.08677003459942
826 => 0.090652723098776
827 => 0.094337856826612
828 => 0.092023290358187
829 => 0.094205822287548
830 => 0.096566408513591
831 => 0.10112036233494
901 => 0.099586750897938
902 => 0.098412028571948
903 => 0.097301921650105
904 => 0.099611877929949
905 => 0.10258359978152
906 => 0.10322368020555
907 => 0.10426085502202
908 => 0.1031703925222
909 => 0.10448373449272
910 => 0.10912040876037
911 => 0.1078675384442
912 => 0.10608826118628
913 => 0.10974847020965
914 => 0.11107308562651
915 => 0.1203699303285
916 => 0.13210758079827
917 => 0.12724811643022
918 => 0.12423169008303
919 => 0.12494062182521
920 => 0.12922681443222
921 => 0.13060340346064
922 => 0.12686135994271
923 => 0.12818311297486
924 => 0.13546610213394
925 => 0.13937319215152
926 => 0.13406683911545
927 => 0.11942682154195
928 => 0.10592805673669
929 => 0.10950853702035
930 => 0.10910262167142
1001 => 0.11692728495145
1002 => 0.10783765790151
1003 => 0.10799070390938
1004 => 0.11597717293958
1005 => 0.11384651992506
1006 => 0.11039513491497
1007 => 0.1059532556668
1008 => 0.097742031052454
1009 => 0.090469120424591
1010 => 0.10473297301712
1011 => 0.10411788975619
1012 => 0.10322715804415
1013 => 0.10520938508207
1014 => 0.11483451691328
1015 => 0.11461262647106
1016 => 0.11320107268715
1017 => 0.11427172379138
1018 => 0.11020744459988
1019 => 0.11125490188944
1020 => 0.10592591846338
1021 => 0.10833484152997
1022 => 0.11038772979283
1023 => 0.11079987750513
1024 => 0.11172846734573
1025 => 0.10379376882729
1026 => 0.10735621551156
1027 => 0.10944881918246
1028 => 0.099994359667774
1029 => 0.10926193491626
1030 => 0.10365564337919
1031 => 0.10175278382784
1101 => 0.10431473353105
1102 => 0.10331633924013
1103 => 0.10245797845648
1104 => 0.10197899839069
1105 => 0.10386021150066
1106 => 0.10377245066054
1107 => 0.10069442088491
1108 => 0.096679256519128
1109 => 0.09802687747356
1110 => 0.097537274146801
1111 => 0.09576288853054
1112 => 0.096958610195763
1113 => 0.091693257123004
1114 => 0.08263449083056
1115 => 0.088618989320864
1116 => 0.088388592638869
1117 => 0.08827241618415
1118 => 0.092769601400224
1119 => 0.092337300809414
1120 => 0.091552671003995
1121 => 0.095748478188849
1122 => 0.094216952124807
1123 => 0.098936754581262
1124 => 0.10204552173677
1125 => 0.10125703782805
1126 => 0.10418084836378
1127 => 0.098057923938538
1128 => 0.10009171382351
1129 => 0.10051087510009
1130 => 0.095696702579486
1201 => 0.092408030532422
1202 => 0.092188713600489
1203 => 0.086486609477805
1204 => 0.089532627474367
1205 => 0.092212997258552
1206 => 0.090929308137025
1207 => 0.090522930510271
1208 => 0.092599025672802
1209 => 0.092760356047484
1210 => 0.089082006407724
1211 => 0.089846851776014
1212 => 0.093036384106745
1213 => 0.089766483744776
1214 => 0.083413601476662
1215 => 0.081837998838701
1216 => 0.081627784402679
1217 => 0.077354625085906
1218 => 0.081943288141007
1219 => 0.079940213748931
1220 => 0.086267901752982
1221 => 0.08265356030114
1222 => 0.082497753265043
1223 => 0.082262228078061
1224 => 0.078584143332127
1225 => 0.079389410137006
1226 => 0.082066239642024
1227 => 0.083021362566057
1228 => 0.082921735419989
1229 => 0.08205312171711
1230 => 0.082450768622266
1231 => 0.081169809391393
]
'min_raw' => 0.044819338477985
'max_raw' => 0.13937319215152
'avg_raw' => 0.092096265314751
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.044819'
'max' => '$0.139373'
'avg' => '$0.092096'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.025532101805649
'max_diff' => 0.087048777622357
'year' => 2033
]
8 => [
'items' => [
101 => 0.08071747602611
102 => 0.079289787501185
103 => 0.077191479778567
104 => 0.077483262337066
105 => 0.073325965686477
106 => 0.071060849826803
107 => 0.070433895610593
108 => 0.069595506230455
109 => 0.070528593921948
110 => 0.073314188587403
111 => 0.069954170423989
112 => 0.064193654960686
113 => 0.064539871755471
114 => 0.065317718100665
115 => 0.063868206582365
116 => 0.062496365578575
117 => 0.063689070030392
118 => 0.061248263689057
119 => 0.065612677885925
120 => 0.065494632713029
121 => 0.067121416432058
122 => 0.068138677676529
123 => 0.065794219850262
124 => 0.065204595047044
125 => 0.06554047213191
126 => 0.059989172094522
127 => 0.066667756785581
128 => 0.066725513463324
129 => 0.066230965723396
130 => 0.069787105893216
131 => 0.07729167083947
201 => 0.074468151636264
202 => 0.073374799659462
203 => 0.071296336752328
204 => 0.074065765169169
205 => 0.073853116276569
206 => 0.072891437339534
207 => 0.072309810917794
208 => 0.073381475433489
209 => 0.072177019824713
210 => 0.071960666501151
211 => 0.070649800755097
212 => 0.070181881324348
213 => 0.06983545240623
214 => 0.069454068206785
215 => 0.07029530671574
216 => 0.068388949580305
217 => 0.066090069757465
218 => 0.06589894277442
219 => 0.066426661178663
220 => 0.0661931850688
221 => 0.065897824980631
222 => 0.065333902135782
223 => 0.065166598274021
224 => 0.065710254660451
225 => 0.065096498297308
226 => 0.066002129244164
227 => 0.065755847737465
228 => 0.064380139261173
301 => 0.062665497147199
302 => 0.062650233235801
303 => 0.062280816404922
304 => 0.061810308528606
305 => 0.061679424001176
306 => 0.063588623788183
307 => 0.067540610209746
308 => 0.066764740712173
309 => 0.067325385938474
310 => 0.070083205560899
311 => 0.070959833488338
312 => 0.070337623749512
313 => 0.069485904682782
314 => 0.06952337599917
315 => 0.072433957883084
316 => 0.072615487304991
317 => 0.073074153590539
318 => 0.073663669386546
319 => 0.07043802083871
320 => 0.069371448242645
321 => 0.068866046975435
322 => 0.067309606687332
323 => 0.068988094098945
324 => 0.068010111364195
325 => 0.06814207464776
326 => 0.06805613338622
327 => 0.068103063126344
328 => 0.06561145794321
329 => 0.066519267917031
330 => 0.065009857762913
331 => 0.062988927005792
401 => 0.062982152137264
402 => 0.063476772077019
403 => 0.063182552782373
404 => 0.062390816225549
405 => 0.062503278666555
406 => 0.061517989344803
407 => 0.062622910629454
408 => 0.062654595818299
409 => 0.06222914093824
410 => 0.063931424626999
411 => 0.064628851643215
412 => 0.064348808127033
413 => 0.064609203043581
414 => 0.066796981592638
415 => 0.067153684955605
416 => 0.067312109026933
417 => 0.06709984175852
418 => 0.064649191619296
419 => 0.06475788837394
420 => 0.063960343709794
421 => 0.063286502511778
422 => 0.063313452625867
423 => 0.063659894594871
424 => 0.065172826992067
425 => 0.06835670402973
426 => 0.068477529835926
427 => 0.068623974237772
428 => 0.068028311258404
429 => 0.067848653604099
430 => 0.068085668423702
501 => 0.069281365238746
502 => 0.072357022075559
503 => 0.071269879533216
504 => 0.07038601572391
505 => 0.071161402572644
506 => 0.071042037844964
507 => 0.070034479418932
508 => 0.070006200609691
509 => 0.068072373854222
510 => 0.067357482133829
511 => 0.066760065103552
512 => 0.066107701302455
513 => 0.065720958173732
514 => 0.066315171391059
515 => 0.066451074984386
516 => 0.065151817399631
517 => 0.064974733391751
518 => 0.066035735181884
519 => 0.06556882785218
520 => 0.066049053619525
521 => 0.06616047011685
522 => 0.066142529494641
523 => 0.065655024618465
524 => 0.065965745688935
525 => 0.065230797726864
526 => 0.064431652203726
527 => 0.06392184714849
528 => 0.063476974621968
529 => 0.063723815755825
530 => 0.062843872185035
531 => 0.062562360526974
601 => 0.065860480381705
602 => 0.068296836979158
603 => 0.068261411389328
604 => 0.06804576722196
605 => 0.067725363731072
606 => 0.069257925727718
607 => 0.068724011772631
608 => 0.06911247878496
609 => 0.069211359943507
610 => 0.06951064342933
611 => 0.069617611551226
612 => 0.069294279592717
613 => 0.068209138048288
614 => 0.065505068491732
615 => 0.064246316813659
616 => 0.063830907793727
617 => 0.063846007122627
618 => 0.06342950022518
619 => 0.063552180173008
620 => 0.06338683714586
621 => 0.063073717453217
622 => 0.063704481497153
623 => 0.063777171177243
624 => 0.063629943312319
625 => 0.063664620804235
626 => 0.062445636964511
627 => 0.062538313658351
628 => 0.062022278050263
629 => 0.061925527594648
630 => 0.060621034513761
701 => 0.058309935931673
702 => 0.059590508889917
703 => 0.058043756832165
704 => 0.057457978390775
705 => 0.060230962425073
706 => 0.059952631738634
707 => 0.059476250590892
708 => 0.058771583586851
709 => 0.058510215740493
710 => 0.056922227445022
711 => 0.056828400624938
712 => 0.057615450503464
713 => 0.057252254065257
714 => 0.056742188712767
715 => 0.054894783710543
716 => 0.052817688833268
717 => 0.05288038327146
718 => 0.053541068506197
719 => 0.055462099931738
720 => 0.054711519719598
721 => 0.054166965163775
722 => 0.054064986464719
723 => 0.055341463390271
724 => 0.05714794567011
725 => 0.057995506738047
726 => 0.057155599460533
727 => 0.056190759203945
728 => 0.056249484559724
729 => 0.056640158042301
730 => 0.056681212301494
731 => 0.056053200481636
801 => 0.056229982130326
802 => 0.055961434640713
803 => 0.054313359192661
804 => 0.05428355073391
805 => 0.053879086440151
806 => 0.05386683942208
807 => 0.05317874476005
808 => 0.053082475560259
809 => 0.051716221844438
810 => 0.052615494177588
811 => 0.052012309510427
812 => 0.051103167940137
813 => 0.050946431590743
814 => 0.050941719906815
815 => 0.051875205019168
816 => 0.052604585860549
817 => 0.052022802165958
818 => 0.051890341296103
819 => 0.053304676840261
820 => 0.053124689750313
821 => 0.052968822091209
822 => 0.056986194995621
823 => 0.053806130862262
824 => 0.052419441388403
825 => 0.050703149839313
826 => 0.051261983021989
827 => 0.051379737384547
828 => 0.04725236559379
829 => 0.045577891372311
830 => 0.04500327492073
831 => 0.04467257502896
901 => 0.044823279122308
902 => 0.04331605592674
903 => 0.044328934841332
904 => 0.043023806956376
905 => 0.042804998019209
906 => 0.045138728351831
907 => 0.045463453294161
908 => 0.044078075806051
909 => 0.04496771242566
910 => 0.044645117820516
911 => 0.043046179628019
912 => 0.042985111950059
913 => 0.042182820970459
914 => 0.040927390941531
915 => 0.040353625730627
916 => 0.040054803827129
917 => 0.040178103568435
918 => 0.040115759446197
919 => 0.039708921877401
920 => 0.040139078899413
921 => 0.039040205461326
922 => 0.038602625204054
923 => 0.03840498035363
924 => 0.037429666928532
925 => 0.038981824311711
926 => 0.039287618869761
927 => 0.039594015937555
928 => 0.042260993226538
929 => 0.04212775857798
930 => 0.043332134913039
1001 => 0.043285335063365
1002 => 0.042941827423003
1003 => 0.04149262519258
1004 => 0.042070251372081
1005 => 0.040292407774617
1006 => 0.04162448907945
1007 => 0.041016582800969
1008 => 0.041418955355197
1009 => 0.040695453222225
1010 => 0.041095869175283
1011 => 0.039360134103705
1012 => 0.037739329116317
1013 => 0.038391588357489
1014 => 0.039100668747535
1015 => 0.040638135703478
1016 => 0.039722433068345
1017 => 0.040051754362489
1018 => 0.038948583154826
1019 => 0.03667242584814
1020 => 0.036685308651305
1021 => 0.036335171438454
1022 => 0.036032601765681
1023 => 0.039827612531348
1024 => 0.039355642952395
1025 => 0.038603621198185
1026 => 0.039610232200352
1027 => 0.03987639612639
1028 => 0.039883973439182
1029 => 0.040618370841972
1030 => 0.04101031886749
1031 => 0.041079401405787
1101 => 0.042234991586784
1102 => 0.042622330172851
1103 => 0.044217722990653
1104 => 0.040977064815913
1105 => 0.040910325593378
1106 => 0.039624397281454
1107 => 0.038808841216309
1108 => 0.039680239102973
1109 => 0.040452178672884
1110 => 0.039648383595664
1111 => 0.039753342263709
1112 => 0.038674313045013
1113 => 0.039060015217653
1114 => 0.039392233888424
1115 => 0.039208802265335
1116 => 0.03893419624738
1117 => 0.040388888431234
1118 => 0.040306808997236
1119 => 0.041661451802069
1120 => 0.042717492739873
1121 => 0.044610106890316
1122 => 0.042635065360122
1123 => 0.042563086996683
1124 => 0.043266687044995
1125 => 0.042622222455349
1126 => 0.043029501829844
1127 => 0.04454448788657
1128 => 0.044576497154665
1129 => 0.044040300672464
1130 => 0.044007673067792
1201 => 0.044110655467546
1202 => 0.044713826599499
1203 => 0.044503060072418
1204 => 0.044746964433512
1205 => 0.045051970571856
1206 => 0.046313605279971
1207 => 0.046617781136853
1208 => 0.045878791501729
1209 => 0.045945513991665
1210 => 0.045669111582409
1211 => 0.04540211031838
1212 => 0.046002290167514
1213 => 0.047099130638369
1214 => 0.047092307250726
1215 => 0.047346752920433
1216 => 0.047505270464718
1217 => 0.046824797122711
1218 => 0.046381833998762
1219 => 0.04655169424696
1220 => 0.046823304482903
1221 => 0.046463614708115
1222 => 0.04424344279361
1223 => 0.04491690112734
1224 => 0.044804804730177
1225 => 0.04464516582923
1226 => 0.045322333391495
1227 => 0.045257018928153
1228 => 0.043300597174365
1229 => 0.043425840947447
1230 => 0.043308213663026
1231 => 0.043688291483269
]
'min_raw' => 0.036032601765681
'max_raw' => 0.08071747602611
'avg_raw' => 0.058375038895896
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.036032'
'max' => '$0.080717'
'avg' => '$0.058375'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.008786736712304
'max_diff' => -0.058655716125406
'year' => 2034
]
9 => [
'items' => [
101 => 0.042601697005747
102 => 0.042935926148707
103 => 0.043145551533969
104 => 0.043269022496305
105 => 0.043715084277098
106 => 0.043662744075547
107 => 0.04371183073668
108 => 0.044373222601651
109 => 0.047718315692392
110 => 0.047900381728789
111 => 0.047003821978045
112 => 0.047361979914608
113 => 0.046674394996938
114 => 0.047135975358589
115 => 0.04745177691916
116 => 0.046024730392085
117 => 0.045940229958207
118 => 0.045249807132994
119 => 0.045620801251716
120 => 0.045030522933408
121 => 0.045175356585662
122 => 0.044770389067589
123 => 0.045499249971891
124 => 0.046314229716434
125 => 0.046520125784431
126 => 0.045978501873362
127 => 0.045586330466992
128 => 0.0448978066667
129 => 0.04604283709134
130 => 0.046377678881674
131 => 0.046041078309961
201 => 0.045963080602628
202 => 0.04581527508817
203 => 0.045994438241242
204 => 0.046375855261373
205 => 0.046195986038346
206 => 0.046314792829043
207 => 0.045862023855935
208 => 0.046825022387702
209 => 0.048354495814364
210 => 0.048359413321525
211 => 0.048179543128936
212 => 0.048105944121485
213 => 0.048290501854518
214 => 0.048390616853734
215 => 0.048987442720262
216 => 0.049627860653638
217 => 0.052616411712469
218 => 0.051777238534029
219 => 0.054428858823122
220 => 0.056525946201993
221 => 0.057154771012399
222 => 0.056576281775319
223 => 0.054597301344642
224 => 0.054500203123489
225 => 0.057457635390906
226 => 0.056622025316381
227 => 0.056522632156906
228 => 0.05546525686748
301 => 0.056090296622008
302 => 0.055953591258913
303 => 0.055737795155412
304 => 0.056930327466404
305 => 0.059162641494488
306 => 0.058814714418703
307 => 0.058555002996502
308 => 0.057417023145275
309 => 0.058102341192715
310 => 0.057858312562424
311 => 0.05890681442255
312 => 0.058285705147771
313 => 0.056615694748222
314 => 0.056881649408776
315 => 0.05684145089686
316 => 0.0576687334236
317 => 0.057420403743487
318 => 0.056792960541269
319 => 0.059155011687824
320 => 0.059001633224786
321 => 0.059219088818176
322 => 0.059314819495424
323 => 0.060752558404322
324 => 0.061341554032784
325 => 0.061475266352265
326 => 0.062034766644747
327 => 0.061461345475295
328 => 0.063755438995469
329 => 0.065280877322316
330 => 0.067052752437288
331 => 0.069641938215395
401 => 0.07061549601927
402 => 0.070439631515978
403 => 0.07240272262297
404 => 0.07593035370517
405 => 0.071152666616523
406 => 0.076183582721999
407 => 0.074590852767725
408 => 0.07081451869813
409 => 0.070571367304102
410 => 0.073128744580172
411 => 0.078800761240053
412 => 0.077379985398233
413 => 0.078803085120352
414 => 0.077142963702108
415 => 0.077060524681091
416 => 0.078722456728528
417 => 0.082605651544565
418 => 0.080760891246847
419 => 0.078115975006285
420 => 0.080068939998861
421 => 0.078377100983914
422 => 0.074564914167315
423 => 0.077378898957723
424 => 0.07549726746605
425 => 0.076046427568352
426 => 0.080001337092289
427 => 0.079525471914976
428 => 0.080141285518348
429 => 0.079054390627045
430 => 0.078039059410975
501 => 0.076143868296695
502 => 0.075582795639549
503 => 0.075737855936705
504 => 0.075582718799367
505 => 0.074522376788633
506 => 0.074293396032371
507 => 0.073911751406723
508 => 0.074030039034557
509 => 0.073312435484267
510 => 0.074666701648123
511 => 0.074918065381888
512 => 0.075903587359516
513 => 0.076005907520578
514 => 0.078750572200246
515 => 0.077238857016901
516 => 0.078253046077099
517 => 0.078162327461637
518 => 0.070896363308264
519 => 0.071897549060454
520 => 0.073455079901466
521 => 0.072753414368773
522 => 0.071761423469994
523 => 0.070960337632044
524 => 0.069746610672316
525 => 0.071454908060571
526 => 0.073701137468953
527 => 0.076062875605217
528 => 0.078900349228726
529 => 0.078267058147793
530 => 0.076009831009531
531 => 0.076111088570048
601 => 0.076737022965782
602 => 0.07592638105117
603 => 0.07568730692494
604 => 0.076704177852071
605 => 0.076711180483284
606 => 0.075778438991174
607 => 0.074741867512585
608 => 0.074737524240241
609 => 0.074553076357719
610 => 0.077175776570656
611 => 0.078617996502871
612 => 0.078783344693846
613 => 0.078606867252193
614 => 0.078674786415346
615 => 0.077835590413938
616 => 0.079753743617313
617 => 0.081514030682421
618 => 0.081042236145924
619 => 0.08033494906617
620 => 0.079771560839585
621 => 0.080909519784476
622 => 0.080858848263974
623 => 0.081498656110548
624 => 0.081469630730919
625 => 0.081254487416506
626 => 0.08104224382937
627 => 0.081883765661437
628 => 0.081641420888229
629 => 0.08139869968665
630 => 0.080911885158128
701 => 0.080978051337687
702 => 0.080270886381019
703 => 0.079943719514398
704 => 0.075023914823489
705 => 0.073709182250822
706 => 0.074122823882033
707 => 0.074259005447227
708 => 0.073686832146727
709 => 0.074507181680383
710 => 0.074379331074528
711 => 0.074876722991808
712 => 0.074565974116138
713 => 0.074578727358389
714 => 0.075492573543088
715 => 0.075757866978285
716 => 0.075622936595963
717 => 0.075717437210599
718 => 0.077895163988658
719 => 0.0775855608806
720 => 0.077421090400063
721 => 0.077466649847183
722 => 0.078023105729966
723 => 0.078178882995781
724 => 0.077518843774251
725 => 0.077830122086765
726 => 0.079155505634354
727 => 0.079619314865797
728 => 0.081099571291505
729 => 0.080470732052404
730 => 0.081624993691298
731 => 0.085172800452467
801 => 0.088007033982844
802 => 0.085400555698655
803 => 0.090605264639728
804 => 0.094657877121508
805 => 0.094502331104478
806 => 0.093795664379664
807 => 0.089181872813435
808 => 0.084936193026434
809 => 0.088487884449346
810 => 0.088496938441195
811 => 0.088191844998128
812 => 0.086296935825953
813 => 0.08812590626639
814 => 0.088271083298107
815 => 0.088189822766034
816 => 0.086737000346577
817 => 0.08451880903853
818 => 0.084952238310523
819 => 0.085662204299764
820 => 0.084318090567709
821 => 0.083888564787595
822 => 0.084687134933451
823 => 0.087260294332097
824 => 0.08677385345308
825 => 0.086761150515867
826 => 0.088842350879335
827 => 0.087352660570241
828 => 0.084957705241675
829 => 0.084352947435633
830 => 0.082206464637853
831 => 0.083689047951789
901 => 0.083742403485865
902 => 0.082930407756457
903 => 0.085023594219953
904 => 0.085004305138194
905 => 0.086991474155593
906 => 0.090790194970262
907 => 0.089666726301666
908 => 0.088360254473132
909 => 0.088502304185428
910 => 0.090060238920751
911 => 0.089118276015584
912 => 0.089457012443881
913 => 0.090059726202597
914 => 0.090423358377771
915 => 0.088449983111402
916 => 0.087989894939361
917 => 0.08704871600837
918 => 0.086803179993211
919 => 0.087569750594161
920 => 0.08736778632415
921 => 0.083737919159829
922 => 0.083358577844767
923 => 0.083370211701326
924 => 0.082416339927907
925 => 0.080961456517986
926 => 0.084784803252683
927 => 0.084477735002184
928 => 0.084138755418827
929 => 0.084180278483598
930 => 0.085839863715886
1001 => 0.084877220470096
1002 => 0.087436565313155
1003 => 0.08691044095437
1004 => 0.086370823491031
1005 => 0.086296231920448
1006 => 0.086088525235061
1007 => 0.085376221726616
1008 => 0.084516072437364
1009 => 0.083948127371744
1010 => 0.077437710019211
1011 => 0.078646005610485
1012 => 0.080036039548638
1013 => 0.080515873693877
1014 => 0.079695084184934
1015 => 0.0854086314992
1016 => 0.086452551650628
1017 => 0.083290449418725
1018 => 0.08269894919892
1019 => 0.085447410155137
1020 => 0.083789752212851
1021 => 0.084536195482762
1022 => 0.082922793415853
1023 => 0.0862011018557
1024 => 0.086176126638057
1025 => 0.084900790611002
1026 => 0.085978695887944
1027 => 0.08579138332013
1028 => 0.084351532086599
1029 => 0.086246747708019
1030 => 0.086247687711322
1031 => 0.085020204513478
1101 => 0.083586772869021
1102 => 0.083330509147136
1103 => 0.083137448856883
1104 => 0.084488714486171
1105 => 0.085700255024093
1106 => 0.087954631598795
1107 => 0.088521435432341
1108 => 0.090733708528941
1109 => 0.089416407613538
1110 => 0.090000350047433
1111 => 0.090634302163127
1112 => 0.090938242120208
1113 => 0.090442988270462
1114 => 0.093879558997416
1115 => 0.094169710860577
1116 => 0.094266996270491
1117 => 0.09310820395701
1118 => 0.094137482750099
1119 => 0.093655917288943
1120 => 0.094908816836133
1121 => 0.095105287482956
1122 => 0.094938883834743
1123 => 0.095001246719123
1124 => 0.092068739856287
1125 => 0.091916673905243
1126 => 0.089843243872649
1127 => 0.090688181936952
1128 => 0.089108610724672
1129 => 0.089609509027473
1130 => 0.089830300226613
1201 => 0.089714971433972
1202 => 0.090735953467373
1203 => 0.089867910166133
1204 => 0.08757700117463
1205 => 0.085285468026505
1206 => 0.085256699694472
1207 => 0.08465337946549
1208 => 0.084217289443548
1209 => 0.084301295852899
1210 => 0.084597345396579
1211 => 0.084200082505881
1212 => 0.084284858685351
1213 => 0.085692708125287
1214 => 0.085975042290143
1215 => 0.085015560482882
1216 => 0.081163102574166
1217 => 0.080217699740209
1218 => 0.080897236549104
1219 => 0.080572461722228
1220 => 0.065028265032643
1221 => 0.068680143474533
1222 => 0.066510321310436
1223 => 0.067510275192369
1224 => 0.065295448635552
1225 => 0.066352479957471
1226 => 0.066157284868916
1227 => 0.072029397336535
1228 => 0.071937712377179
1229 => 0.071981597115363
1230 => 0.069886864220798
1231 => 0.073223830600036
]
'min_raw' => 0.042601697005747
'max_raw' => 0.095105287482956
'avg_raw' => 0.068853492244352
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.0426016'
'max' => '$0.0951052'
'avg' => '$0.068853'
'bar_min_pct' => 61.631153054958
'bar_max_pct' => 60.119598047091
'min_diff' => 0.0065690952400668
'max_diff' => 0.014387811456846
'year' => 2035
]
10 => [
'items' => [
101 => 0.074867740231879
102 => 0.074563496310263
103 => 0.074640067950655
104 => 0.073324313474726
105 => 0.071994336494786
106 => 0.070519187342044
107 => 0.073259832133894
108 => 0.072955119217407
109 => 0.073654021015581
110 => 0.075431525068431
111 => 0.075693269292295
112 => 0.076045056183515
113 => 0.075918965624909
114 => 0.078922954283907
115 => 0.078559151436347
116 => 0.079435811625744
117 => 0.077632455103786
118 => 0.075591786023017
119 => 0.075979650500773
120 => 0.075942296032556
121 => 0.075466730778691
122 => 0.07503741173146
123 => 0.074322716477713
124 => 0.076584118015564
125 => 0.076492309242932
126 => 0.07797858655583
127 => 0.077715872603848
128 => 0.075961404535501
129 => 0.076024065705793
130 => 0.076445492189942
131 => 0.077904054063344
201 => 0.078337054533835
202 => 0.078136471463819
203 => 0.078611236712489
204 => 0.0789864718073
205 => 0.078658360463177
206 => 0.08330372517038
207 => 0.081374645870252
208 => 0.082314865698687
209 => 0.082539102587672
210 => 0.081964724511731
211 => 0.082089286549465
212 => 0.08227796409551
213 => 0.083423577208241
214 => 0.086429997501872
215 => 0.087761520584527
216 => 0.091767473474884
217 => 0.087650956128208
218 => 0.087406699024699
219 => 0.08812829210844
220 => 0.090480210528258
221 => 0.092386219503057
222 => 0.093018552640293
223 => 0.093102125903061
224 => 0.094288424905229
225 => 0.094968389370104
226 => 0.094144377003604
227 => 0.093446112800686
228 => 0.090945017097578
229 => 0.09123452573547
301 => 0.093228953158646
302 => 0.096046199365071
303 => 0.098463689694693
304 => 0.097617168839303
305 => 0.10407552541534
306 => 0.10471584508983
307 => 0.10462737361483
308 => 0.10608611712567
309 => 0.1031908083246
310 => 0.10195300771818
311 => 0.093597085446993
312 => 0.095944758771556
313 => 0.099357239822829
314 => 0.098905585159546
315 => 0.096427350204232
316 => 0.098461809731251
317 => 0.097789153788187
318 => 0.097258602137371
319 => 0.099689162102254
320 => 0.097016661578965
321 => 0.099330579585753
322 => 0.096362955807631
323 => 0.097621035675265
324 => 0.09690688869592
325 => 0.097369029314118
326 => 0.094667364703214
327 => 0.096125117348057
328 => 0.094606717400542
329 => 0.094605997481266
330 => 0.094572478718267
331 => 0.096358869522901
401 => 0.096417123662907
402 => 0.095096978159195
403 => 0.094906724567562
404 => 0.095610191811775
405 => 0.094786615907165
406 => 0.095171961889407
407 => 0.094798287644409
408 => 0.094714165701076
409 => 0.094043867744431
410 => 0.093755084954482
411 => 0.093868324127437
412 => 0.093481780451348
413 => 0.093248873904608
414 => 0.094526147743948
415 => 0.093843751856668
416 => 0.094421560787287
417 => 0.093763074585546
418 => 0.09148047452153
419 => 0.090167727086656
420 => 0.085856107162867
421 => 0.087078877224706
422 => 0.087889575040752
423 => 0.087621639417385
424 => 0.088197268813699
425 => 0.088232607783565
426 => 0.088045464798976
427 => 0.087828777197323
428 => 0.087723305656414
429 => 0.088509404111135
430 => 0.088965760722958
501 => 0.08797093941233
502 => 0.087737866698279
503 => 0.088743685968914
504 => 0.089357235142958
505 => 0.093887337520601
506 => 0.093551732904427
507 => 0.094394034631943
508 => 0.094299204383598
509 => 0.095182070783223
510 => 0.096625184219431
511 => 0.093690931102758
512 => 0.094200215984974
513 => 0.09407535109296
514 => 0.095438593242634
515 => 0.095442849135822
516 => 0.094625517368097
517 => 0.095068606179074
518 => 0.094821286160293
519 => 0.095268226861537
520 => 0.09354725070017
521 => 0.095643213896818
522 => 0.096831489968433
523 => 0.09684798918284
524 => 0.097411222610043
525 => 0.097983500392362
526 => 0.099081937760633
527 => 0.097952865570339
528 => 0.095921774612963
529 => 0.096068412819702
530 => 0.094877584934539
531 => 0.094897602966429
601 => 0.094790745143358
602 => 0.095111433514277
603 => 0.093617623763715
604 => 0.093968217926387
605 => 0.093477384045569
606 => 0.094199149007975
607 => 0.093422649220449
608 => 0.094075290879328
609 => 0.094356949383887
610 => 0.095396275329383
611 => 0.093269139933249
612 => 0.088931766866124
613 => 0.089843535270399
614 => 0.088494958182614
615 => 0.088619774126484
616 => 0.08887192219741
617 => 0.088054627801822
618 => 0.088210541816594
619 => 0.088204971470836
620 => 0.088156969240441
621 => 0.087944359402741
622 => 0.087636033074502
623 => 0.088864310268367
624 => 0.089073018498157
625 => 0.089536951039499
626 => 0.090917299594087
627 => 0.090779370222623
628 => 0.091004338750115
629 => 0.090513233717744
630 => 0.088642555080412
701 => 0.088744141930526
702 => 0.087477352281791
703 => 0.08950455638005
704 => 0.089024487691795
705 => 0.088714984285446
706 => 0.088630533413495
707 => 0.090014303585159
708 => 0.090428349308461
709 => 0.090170343799274
710 => 0.089641166972709
711 => 0.0906573429168
712 => 0.090929228730417
713 => 0.090990093937323
714 => 0.09279056287784
715 => 0.091090720150383
716 => 0.091499889189865
717 => 0.094692109233455
718 => 0.091797206150174
719 => 0.093330700877431
720 => 0.093255644290453
721 => 0.094040128302285
722 => 0.09319129370411
723 => 0.093201816026273
724 => 0.093898384683231
725 => 0.092920179631354
726 => 0.09267796230398
727 => 0.092343340801007
728 => 0.093073974610866
729 => 0.093511956536151
730 => 0.097041769191674
731 => 0.099322189146154
801 => 0.099223190101751
802 => 0.10012785604916
803 => 0.099720295754059
804 => 0.09840417605222
805 => 0.10065063189956
806 => 0.099939759273757
807 => 0.099998362749318
808 => 0.099996181525031
809 => 0.10046884967563
810 => 0.10013392097153
811 => 0.099473742116028
812 => 0.099911999649567
813 => 0.10121346784424
814 => 0.10525326505443
815 => 0.10751398909345
816 => 0.10511716662864
817 => 0.10677046267014
818 => 0.10577907417485
819 => 0.105598909394
820 => 0.10663730148568
821 => 0.10767751114526
822 => 0.10761125428689
823 => 0.1068561154894
824 => 0.10642955674363
825 => 0.10965960247424
826 => 0.11203944514616
827 => 0.1118771558306
828 => 0.11259344809016
829 => 0.1146965043183
830 => 0.11488878142345
831 => 0.11486455892764
901 => 0.1143879800605
902 => 0.11645871203347
903 => 0.11818615307638
904 => 0.11427766582245
905 => 0.11576596660289
906 => 0.11643411277329
907 => 0.11741514958147
908 => 0.11907032311773
909 => 0.1208682805912
910 => 0.12112253149155
911 => 0.12094212831073
912 => 0.11975632702528
913 => 0.12172367354685
914 => 0.12287609899923
915 => 0.12356234198334
916 => 0.12530254001109
917 => 0.11643823901657
918 => 0.11016364618831
919 => 0.10918377791195
920 => 0.11117637858333
921 => 0.11170181148968
922 => 0.11149001014397
923 => 0.10442738545473
924 => 0.10914659465461
925 => 0.11422406695129
926 => 0.11441911334086
927 => 0.11696100213752
928 => 0.11778874532526
929 => 0.11983529897955
930 => 0.11970728649126
1001 => 0.12020558973829
1002 => 0.12009103845121
1003 => 0.12388184814307
1004 => 0.12806367417388
1005 => 0.12791887083582
1006 => 0.12731768386677
1007 => 0.12821054903342
1008 => 0.13252664164893
1009 => 0.13212928500487
1010 => 0.13251528313781
1011 => 0.13760419957581
1012 => 0.14422051483514
1013 => 0.14114657212999
1014 => 0.14781614329697
1015 => 0.15201428480781
1016 => 0.15927453645488
1017 => 0.15836551719117
1018 => 0.16119187987919
1019 => 0.15673818299109
1020 => 0.14651159469539
1021 => 0.14489319795178
1022 => 0.14813326921681
1023 => 0.15609866826035
1024 => 0.14788241045448
1025 => 0.14954454870773
1026 => 0.14906585277898
1027 => 0.14904034510726
1028 => 0.15001386918948
1029 => 0.14860172173262
1030 => 0.14284837895287
1031 => 0.14548510204416
1101 => 0.14446693663277
1102 => 0.14559666706597
1103 => 0.15169335627768
1104 => 0.14899786465026
1105 => 0.14615838318474
1106 => 0.14971972307389
1107 => 0.15425453256193
1108 => 0.153970752334
1109 => 0.15342010008089
1110 => 0.15652409800045
1111 => 0.1616509931775
1112 => 0.16303677234233
1113 => 0.16405972619079
1114 => 0.16420077424355
1115 => 0.16565365684782
1116 => 0.15784114091111
1117 => 0.1702398043423
1118 => 0.17238071101071
1119 => 0.17197830928854
1120 => 0.17435783694734
1121 => 0.17365771954733
1122 => 0.17264335927977
1123 => 0.17641541675902
1124 => 0.1720910572484
1125 => 0.1659531733448
1126 => 0.1625858088417
1127 => 0.16702022605693
1128 => 0.16972816991043
1129 => 0.17151794854002
1130 => 0.17205953447192
1201 => 0.1584476042839
1202 => 0.15111152886481
1203 => 0.15581386910017
1204 => 0.16155104872549
1205 => 0.15780927058861
1206 => 0.15795594120746
1207 => 0.15262114890626
1208 => 0.16202305946934
1209 => 0.16065328018281
1210 => 0.16775969754441
1211 => 0.1660636940085
1212 => 0.17185870149735
1213 => 0.17033268181368
1214 => 0.17666710420196
1215 => 0.17919407679028
1216 => 0.18343725705795
1217 => 0.1865585577357
1218 => 0.18839144519465
1219 => 0.1882814055066
1220 => 0.19554421875984
1221 => 0.19126159152777
1222 => 0.18588160238656
1223 => 0.18578429535664
1224 => 0.18857066796791
1225 => 0.19441014055714
1226 => 0.19592423083866
1227 => 0.19677040075003
1228 => 0.19547446207537
1229 => 0.19082597715363
1230 => 0.18881878493277
1231 => 0.1905289708589
]
'min_raw' => 0.070519187342044
'max_raw' => 0.19677040075003
'avg_raw' => 0.13364479404604
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$0.070519'
'max' => '$0.19677'
'avg' => '$0.133644'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.027917490336297
'max_diff' => 0.10166511326707
'year' => 2036
]
11 => [
'items' => [
101 => 0.18843756042919
102 => 0.19204792157698
103 => 0.19700571856443
104 => 0.19598195309178
105 => 0.19940424757536
106 => 0.20294596232999
107 => 0.20801077349747
108 => 0.20933490268606
109 => 0.21152363788269
110 => 0.21377656536207
111 => 0.21450014495035
112 => 0.21588168289794
113 => 0.21587440151101
114 => 0.22003775910429
115 => 0.22463007145813
116 => 0.22636356305943
117 => 0.23034963141133
118 => 0.22352362904719
119 => 0.22870123025185
120 => 0.23337155614222
121 => 0.22780340108079
122 => 0.23547780561924
123 => 0.23577578535689
124 => 0.24027492561762
125 => 0.23571418503239
126 => 0.23300603183128
127 => 0.24082436864971
128 => 0.24460741556084
129 => 0.24346793104375
130 => 0.2347963976054
131 => 0.22974919320472
201 => 0.21653968575511
202 => 0.23218691793743
203 => 0.23980822829742
204 => 0.23477666025275
205 => 0.23731429050564
206 => 0.25115877833608
207 => 0.2564298629377
208 => 0.25533351418823
209 => 0.25551877907945
210 => 0.25836296065353
211 => 0.27097562807242
212 => 0.26341782539568
213 => 0.26919548235659
214 => 0.27225993077576
215 => 0.27510636125105
216 => 0.26811642762732
217 => 0.25902262668537
218 => 0.25614223819526
219 => 0.23427636997207
220 => 0.2331381565724
221 => 0.23249924289977
222 => 0.22847098256997
223 => 0.22530587338411
224 => 0.22278886104655
225 => 0.21618346902927
226 => 0.21841259493179
227 => 0.20788497870871
228 => 0.21462017449242
301 => 0.19781784480221
302 => 0.21181132425214
303 => 0.20419530959298
304 => 0.20930925860455
305 => 0.20929141651821
306 => 0.1998750150089
307 => 0.19444383113362
308 => 0.19790479288379
309 => 0.20161521861145
310 => 0.2022172227024
311 => 0.20702788651034
312 => 0.20837043937426
313 => 0.20430244151877
314 => 0.19746965386612
315 => 0.19905675459854
316 => 0.19441166858793
317 => 0.18627133402499
318 => 0.1921178644247
319 => 0.19411412695695
320 => 0.19499579021577
321 => 0.18699070609685
322 => 0.18447533486786
323 => 0.18313617233155
324 => 0.19643629802991
325 => 0.19716490893901
326 => 0.19343723251289
327 => 0.21028668343172
328 => 0.20647313375477
329 => 0.21073380308628
330 => 0.19891274184228
331 => 0.19936432230097
401 => 0.19376804246715
402 => 0.19690158523053
403 => 0.19468689820417
404 => 0.19664842594152
405 => 0.19782415757961
406 => 0.20341951911898
407 => 0.21187521429297
408 => 0.20258375869386
409 => 0.19853533843324
410 => 0.20104695559375
411 => 0.20773572306923
412 => 0.2178695481863
413 => 0.21187011975476
414 => 0.21453256421577
415 => 0.2151141898866
416 => 0.21069043347209
417 => 0.21803265839528
418 => 0.22196741637975
419 => 0.22600366388837
420 => 0.22950822450702
421 => 0.22439149787444
422 => 0.22986712882525
423 => 0.22545473685788
424 => 0.22149636511845
425 => 0.22150236833443
426 => 0.2190192239197
427 => 0.21420781871983
428 => 0.21332052178078
429 => 0.21793635251099
430 => 0.22163781163583
501 => 0.22194268153815
502 => 0.22399199949749
503 => 0.22520476475618
504 => 0.23709151296573
505 => 0.24187246142796
506 => 0.24771851470884
507 => 0.24999588192725
508 => 0.25684994077334
509 => 0.25131473159568
510 => 0.250117154272
511 => 0.23349144945695
512 => 0.23621390768902
513 => 0.24057282599672
514 => 0.23356332641435
515 => 0.23800924053497
516 => 0.23888695815971
517 => 0.23332514630076
518 => 0.23629595032633
519 => 0.22840637561643
520 => 0.21204718546193
521 => 0.21805087085045
522 => 0.22247160411505
523 => 0.21616267267398
524 => 0.22747118809273
525 => 0.22086498684024
526 => 0.21877113819678
527 => 0.21060228812772
528 => 0.21445767091244
529 => 0.21967213133255
530 => 0.21645020103901
531 => 0.22313619017336
601 => 0.23260533387577
602 => 0.23935360957536
603 => 0.23987165838991
604 => 0.23553296921443
605 => 0.24248574630728
606 => 0.24253638969788
607 => 0.23469362873421
608 => 0.22988998131264
609 => 0.2287985825115
610 => 0.23152511069809
611 => 0.23483561926148
612 => 0.24005536857521
613 => 0.24320955376545
614 => 0.25143399589105
615 => 0.253659294117
616 => 0.25610422219905
617 => 0.25937140010458
618 => 0.26329448486738
619 => 0.25471099874771
620 => 0.25505203665286
621 => 0.24705921322469
622 => 0.23851773510485
623 => 0.24499965228753
624 => 0.25347389675057
625 => 0.25152989570754
626 => 0.25131115587786
627 => 0.25167901559801
628 => 0.2502133022967
629 => 0.24358393535677
630 => 0.24025470878156
701 => 0.24455026043986
702 => 0.24683315497323
703 => 0.25037372530517
704 => 0.24993727527939
705 => 0.25905740422497
706 => 0.26260121055484
707 => 0.26169455324764
708 => 0.26186140001209
709 => 0.26827729209806
710 => 0.27541308362651
711 => 0.28209669404353
712 => 0.28889554962747
713 => 0.28069926385718
714 => 0.27653769541966
715 => 0.28083137177448
716 => 0.27855308666274
717 => 0.29164478869804
718 => 0.2925512297423
719 => 0.30564198509854
720 => 0.31806667074975
721 => 0.31026294830359
722 => 0.31762150708294
723 => 0.32558038835491
724 => 0.3409343616105
725 => 0.33576368357731
726 => 0.33180302523874
727 => 0.32806022224656
728 => 0.33584840112005
729 => 0.3458677688216
730 => 0.34802584466021
731 => 0.35152275196717
801 => 0.34784618151538
802 => 0.35227420566361
803 => 0.36790707667924
804 => 0.36368293693565
805 => 0.35768397943539
806 => 0.37002462970535
807 => 0.37449066306498
808 => 0.40583562406271
809 => 0.44540993211811
810 => 0.42902590872426
811 => 0.41885581669456
812 => 0.42124602955935
813 => 0.43569722718631
814 => 0.440338493206
815 => 0.42772193222414
816 => 0.4321783148539
817 => 0.4567334212858
818 => 0.46990644806437
819 => 0.45201570832554
820 => 0.40265586694311
821 => 0.35714383894851
822 => 0.36921567820601
823 => 0.367847106267
824 => 0.39422850481615
825 => 0.36358219259978
826 => 0.36409819790065
827 => 0.39102513583342
828 => 0.38384149043754
829 => 0.37220490490801
830 => 0.35722879890069
831 => 0.32954408182404
901 => 0.30502295586379
902 => 0.35311453074988
903 => 0.35104073459194
904 => 0.34803757043586
905 => 0.3547207872889
906 => 0.38717259126305
907 => 0.38642447214521
908 => 0.38166532001122
909 => 0.38527509495961
910 => 0.37157209390655
911 => 0.37510366928946
912 => 0.35713662961075
913 => 0.36525848191538
914 => 0.37217993802172
915 => 0.37356952280897
916 => 0.37670032828862
917 => 0.34994793825073
918 => 0.36195897596883
919 => 0.36901433534618
920 => 0.33713796500315
921 => 0.36838424199485
922 => 0.34948223865886
923 => 0.34306661482807
924 => 0.35170440712207
925 => 0.34833825106457
926 => 0.34544422775364
927 => 0.34382931302052
928 => 0.35017195436288
929 => 0.34987606256317
930 => 0.33949827027342
1001 => 0.32596086328438
1002 => 0.33050446142014
1003 => 0.32885372962095
1004 => 0.32287126463208
1005 => 0.326902723709
1006 => 0.30915021820899
1007 => 0.27860795519114
1008 => 0.29878510967555
1009 => 0.29800831117642
1010 => 0.29761661414815
1011 => 0.31277918808759
1012 => 0.31132165646341
1013 => 0.30867622229334
1014 => 0.32282267915897
1015 => 0.31765903210632
1016 => 0.33357217561434
1017 => 0.34405360112632
1018 => 0.34139517257789
1019 => 0.35125300393303
1020 => 0.33060913674441
1021 => 0.33746620133627
1022 => 0.33887943284517
1023 => 0.32264811407715
1024 => 0.31156012666272
1025 => 0.31082068431449
1026 => 0.29159564215667
1027 => 0.30186550449826
1028 => 0.31090255836308
1029 => 0.30657451086554
1030 => 0.30520438032456
1031 => 0.31220408011337
1101 => 0.31274801673534
1102 => 0.30034620411071
1103 => 0.3029249336697
1104 => 0.3136786646088
1105 => 0.30265396724127
1106 => 0.28123478113025
1107 => 0.2759225268313
1108 => 0.27521377418354
1109 => 0.26080651920459
1110 => 0.27627751706508
1111 => 0.26952401190201
1112 => 0.29085825379274
1113 => 0.27867224924259
1114 => 0.27814693494229
1115 => 0.27735284533054
1116 => 0.26495192581394
1117 => 0.26766693906853
1118 => 0.27669205663496
1119 => 0.27991232025789
1120 => 0.27957642037918
1121 => 0.27664782863525
1122 => 0.27798852293881
1123 => 0.2736696794582
1124 => 0.27214460593624
1125 => 0.26733105439643
1126 => 0.26025646341045
1127 => 0.26124022867804
1128 => 0.2472236127674
1129 => 0.23958661650117
1130 => 0.23747279658867
1201 => 0.23464610825906
1202 => 0.23779207855703
1203 => 0.24718390545562
1204 => 0.23585536962869
1205 => 0.21643338955782
1206 => 0.21760068365352
1207 => 0.22022324691384
1208 => 0.21533611762823
1209 => 0.21071085990507
1210 => 0.21473214623634
1211 => 0.20650279724487
1212 => 0.22121772442328
1213 => 0.22081972688121
1214 => 0.22630454176833
1215 => 0.22973430907697
1216 => 0.2218298058309
1217 => 0.21984184464056
1218 => 0.22097427768237
1219 => 0.20225768202693
1220 => 0.22477499659673
1221 => 0.22496972726818
1222 => 0.22330232503479
1223 => 0.23529209989912
1224 => 0.2605942645674
1225 => 0.25107457244198
1226 => 0.2473882599168
1227 => 0.24038057711175
1228 => 0.24971789837444
1229 => 0.24900093778637
1230 => 0.24575857010788
1231 => 0.24379757601912
]
'min_raw' => 0.18313617233155
'max_raw' => 0.46990644806437
'avg_raw' => 0.32652131019796
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$0.183136'
'max' => '$0.4699064'
'avg' => '$0.326521'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 0.11261698498951
'max_diff' => 0.27313604731435
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.0057484351844707
]
1 => [
'year' => 2028
'avg' => 0.0098659835592094
]
2 => [
'year' => 2029
'avg' => 0.02695208891323
]
3 => [
'year' => 2030
'avg' => 0.020793496458302
]
4 => [
'year' => 2031
'avg' => 0.0204217904317
]
5 => [
'year' => 2032
'avg' => 0.035805825600748
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.0057484351844707
'min' => '$0.005748'
'max_raw' => 0.035805825600748
'max' => '$0.0358058'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.035805825600748
]
1 => [
'year' => 2033
'avg' => 0.092096265314751
]
2 => [
'year' => 2034
'avg' => 0.058375038895896
]
3 => [
'year' => 2035
'avg' => 0.068853492244352
]
4 => [
'year' => 2036
'avg' => 0.13364479404604
]
5 => [
'year' => 2037
'avg' => 0.32652131019796
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.035805825600748
'min' => '$0.0358058'
'max_raw' => 0.32652131019796
'max' => '$0.326521'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 0.32652131019796
]
]
]
]
'prediction_2025_max_price' => '$0.009828'
'last_price' => 0.00953024
'sma_50day_nextmonth' => '$0.011249'
'sma_200day_nextmonth' => '$0.954058'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'increase'
'sma_200day_direction_label' => 'aumentar'
'sma_200day_date_nextmonth' => '4 de fev. de 2026'
'sma_50day_date_nextmonth' => '4 de fev. de 2026'
'daily_sma3' => '$0.009431'
'daily_sma3_action' => 'BUY'
'daily_sma5' => '$0.010011'
'daily_sma5_action' => 'SELL'
'daily_sma10' => '$0.011455'
'daily_sma10_action' => 'SELL'
'daily_sma21' => '$0.0149013'
'daily_sma21_action' => 'SELL'
'daily_sma50' => '$0.017559'
'daily_sma50_action' => 'SELL'
'daily_sma100' => '$0.034714'
'daily_sma100_action' => 'SELL'
'daily_sma200' => '$1.66'
'daily_sma200_action' => 'SELL'
'daily_ema3' => '$0.009676'
'daily_ema3_action' => 'SELL'
'daily_ema5' => '$0.010124'
'daily_ema5_action' => 'SELL'
'daily_ema10' => '$0.011453'
'daily_ema10_action' => 'SELL'
'daily_ema21' => '$0.013776'
'daily_ema21_action' => 'SELL'
'daily_ema50' => '$0.068933'
'daily_ema50_action' => 'SELL'
'daily_ema100' => '$0.469251'
'daily_ema100_action' => 'SELL'
'daily_ema200' => '$1.69'
'daily_ema200_action' => 'SELL'
'weekly_sma21' => '$0.62541'
'weekly_sma21_action' => 'SELL'
'weekly_sma50' => '—'
'weekly_sma50_action' => '—'
'weekly_sma100' => '—'
'weekly_sma100_action' => '—'
'weekly_sma200' => '—'
'weekly_sma200_action' => '—'
'weekly_ema3' => '$0.010344'
'weekly_ema3_action' => 'SELL'
'weekly_ema5' => '$0.0144023'
'weekly_ema5_action' => 'SELL'
'weekly_ema10' => '$0.1177079'
'weekly_ema10_action' => 'SELL'
'weekly_ema21' => '$0.73097'
'weekly_ema21_action' => 'SELL'
'weekly_ema50' => '$1.87'
'weekly_ema50_action' => 'SELL'
'weekly_ema100' => '$0.935638'
'weekly_ema100_action' => 'SELL'
'weekly_ema200' => '$0.467819'
'weekly_ema200_action' => 'SELL'
'rsi_14' => '35.86'
'rsi_14_action' => 'NEUTRAL'
'stoch_rsi_14' => -4.37
'stoch_rsi_14_action' => 'BUY'
'momentum_10' => -0.01
'momentum_10_action' => 'BUY'
'vwma_10' => '0.011415'
'vwma_10_action' => 'SELL'
'hma_9' => '0.008916'
'hma_9_action' => 'SELL'
'stochastic_fast_14' => 1.75
'stochastic_fast_14_action' => 'BUY'
'cci_20' => -92.82
'cci_20_action' => 'NEUTRAL'
'adx_14' => 23.39
'adx_14_action' => 'NEUTRAL'
'ao_5_34' => '-0.005932'
'ao_5_34_action' => 'NEUTRAL'
'macd_12_26' => 0
'macd_12_26_action' => 'BUY'
'williams_percent_r_14' => -98.25
'williams_percent_r_14_action' => 'BUY'
'ultimate_oscillator' => 24.63
'ultimate_oscillator_action' => 'BUY'
'ichimoku_cloud' => '-0.015694'
'ichimoku_cloud_action' => 'SELL'
'sell_signals' => 26
'buy_signals' => 5
'sell_pct' => 83.87
'buy_pct' => 16.13
'overall_action' => 'bearish'
'overall_action_label' => 'Baixista'
'overall_action_dir' => -1
'last_updated' => 1767712194
'last_updated_date' => '6 de janeiro de 2026'
]
Previsão de preço de Kinto para 2026
A previsão de preço para Kinto em 2026 sugere que o preço médio poderia variar entre $0.003292 na extremidade inferior e $0.009828 na extremidade superior. No mercado de criptomoedas, comparado ao preço médio de hoje, Kinto poderia potencialmente ganhar 3.13% até 2026 se K atingir a meta de preço prevista.
Previsão de preço de Kinto 2027-2032
A previsão de preço de K para 2027-2032 está atualmente dentro de uma faixa de preço entre $0.005748 na extremidade inferior e $0.0358058 na extremidade superior. Considerando a volatilidade de preços no mercado, se Kinto atingir a meta de preço superior, poderia ganhar 275.71% até 2032 em comparação com o preço de hoje.
| Previsão de Preço de Kinto | Potencial Mínimo ($) | Preço Médio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2027 | $0.003169 | $0.005748 | $0.008327 |
| 2028 | $0.00572 | $0.009865 | $0.014011 |
| 2029 | $0.012566 | $0.026952 | $0.041337 |
| 2030 | $0.010687 | $0.020793 | $0.030899 |
| 2031 | $0.012635 | $0.020421 | $0.028208 |
| 2032 | $0.019287 | $0.0358058 | $0.052324 |
Previsão de preço de Kinto 2032-2037
A previsão de preço de Kinto para 2032-2037 é atualmente estimada entre $0.0358058 na extremidade inferior e $0.326521 na extremidade superior. Comparado ao preço atual, Kinto poderia potencialmente ganhar 3326.16% até 2037 se atingir a meta de preço superior. Por favor, note que esta informação é apenas para fins gerais e não deve ser considerada como aconselhamento de investimento a longo prazo.
| Previsão de Preço de Kinto | Potencial Mínimo ($) | Preço Médio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2032 | $0.019287 | $0.0358058 | $0.052324 |
| 2033 | $0.044819 | $0.092096 | $0.139373 |
| 2034 | $0.036032 | $0.058375 | $0.080717 |
| 2035 | $0.0426016 | $0.068853 | $0.0951052 |
| 2036 | $0.070519 | $0.133644 | $0.19677 |
| 2037 | $0.183136 | $0.326521 | $0.4699064 |
Kinto Histograma de preços potenciais
Previsão de preço de Kinto baseada na análise técnica
Em 6 de janeiro de 2026, o sentimento geral de previsão de preço para Kinto é Baixista, com 5 indicadores técnicos mostrando sinais de alta e 26 indicando sinais de baixa. A previsão de preço de K foi atualizada pela última vez em 6 de janeiro de 2026.
Médias Móveis Simples de 50 e 200 dias e Índice de Força Relativa de 14 dias - RSI (14) de Kinto
De acordo com nossos indicadores técnicos, o SMA de 200 dias de Kinto está projetado para aumentar no próximo mês, alcançando $0.954058 até 4 de fev. de 2026. O SMA de 50 dias de curto prazo para Kinto é esperado para alcançar $0.011249 até 4 de fev. de 2026.
O oscilador de momentum Índice de Força Relativa (RSI) é uma ferramenta comumente usada para identificar se uma criptomoeda está sobrevendida (abaixo de 30) ou sobrecomprada (acima de 70). No momento, o RSI está em 35.86, sugerindo que o mercado de K está em um estado NEUTRAL.
Médias Móveis e Osciladores Populares de K para Sábado, 19 de Outubro de 2024
Médias móveis (MA) são indicadores amplamente utilizados nos mercados financeiros, projetados para suavizar movimentos de preços ao longo de um período definido. Como indicadores atrasados, eles se baseiam em dados históricos de preços. A tabela abaixo destaca dois tipos: a média móvel simples (SMA) e a média móvel exponencial (EMA).
Média Móvel Simples Diária (SMA)
| Período | Valor | Ação |
|---|---|---|
| SMA 3 | $0.009431 | BUY |
| SMA 5 | $0.010011 | SELL |
| SMA 10 | $0.011455 | SELL |
| SMA 21 | $0.0149013 | SELL |
| SMA 50 | $0.017559 | SELL |
| SMA 100 | $0.034714 | SELL |
| SMA 200 | $1.66 | SELL |
Média Móvel Exponencial Diária (EMA)
| Período | Valor | Ação |
|---|---|---|
| EMA 3 | $0.009676 | SELL |
| EMA 5 | $0.010124 | SELL |
| EMA 10 | $0.011453 | SELL |
| EMA 21 | $0.013776 | SELL |
| EMA 50 | $0.068933 | SELL |
| EMA 100 | $0.469251 | SELL |
| EMA 200 | $1.69 | SELL |
Média Móvel Simples Semanal (SMA)
| Período | Valor | Ação |
|---|---|---|
| SMA 21 | $0.62541 | SELL |
| SMA 50 | — | — |
| SMA 100 | — | — |
| SMA 200 | — | — |
Média Móvel Exponencial Semanal (EMA)
| Período | Valor | Ação |
|---|---|---|
| EMA 21 | $0.73097 | SELL |
| EMA 50 | $1.87 | SELL |
| EMA 100 | $0.935638 | SELL |
| EMA 200 | $0.467819 | SELL |
Osciladores de Kinto
Um oscilador é uma ferramenta de análise técnica que define limites altos e baixos entre dois extremos, criando um indicador de tendência que flutua dentro desses limites. Os traders usam esse indicador para identificar condições de sobrecompra ou sobrevenda de curto prazo.
| Período | Valor | Ação |
|---|---|---|
| RSI (14) | 35.86 | NEUTRAL |
| Stoch RSI (14) | -4.37 | BUY |
| Estocástico Rápido (14) | 1.75 | BUY |
| Índice de Canal de Commodities (20) | -92.82 | NEUTRAL |
| Índice Direcional Médio (14) | 23.39 | NEUTRAL |
| Oscilador Impressionante (5, 34) | -0.005932 | NEUTRAL |
| Momentum (10) | -0.01 | BUY |
| MACD (12, 26) | 0 | BUY |
| Williams Percent Range (14) | -98.25 | BUY |
| Oscilador Ultimate (7, 14, 28) | 24.63 | BUY |
| VWMA (10) | 0.011415 | SELL |
| Média Móvel de Hull (9) | 0.008916 | SELL |
| Nuvem Ichimoku B/L (9, 26, 52, 26) | -0.015694 | SELL |
Previsão do preço de Kinto com base nos fluxos financeiros mundiais
Definições dos fluxos financeiros mundiais, usadas na previsão do preço do Kinto
M0: o total de todas as moedas físicas, mais as contas no Banco Central que podem ser trocadas por moedas físicas.
M1: o valor de M0, mais o valor em contas de demanda, incluindo contas 'correntes'.
M2: o valor de M1, mais a maioria das contas de poupança, do mercado de moedas e de certificados de depósito (CD) de menos de US$ 100.000.
Previsões de preço de Kinto por empresas de Internet ou nichos tecnológicos
| Comparação | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Facebook stock | $0.013391 | $0.018817 | $0.026441 | $0.037154 | $0.0522087 | $0.073362 |
| Amazon.com stock | $0.019885 | $0.041492 | $0.086575 | $0.180645 | $0.376927 | $0.786481 |
| Apple stock | $0.013517 | $0.019174 | $0.027197 | $0.038576 | $0.054718 | $0.077613 |
| Netflix stock | $0.015037 | $0.023726 | $0.037436 | $0.059068 | $0.0932015 | $0.147057 |
| Google stock | $0.012341 | $0.015982 | $0.020697 | $0.0268026 | $0.0347092 | $0.044948 |
| Tesla stock | $0.0216043 | $0.048975 | $0.111023 | $0.251681 | $0.570543 | $1.29 |
| Kodak stock | $0.007146 | $0.005359 | $0.004018 | $0.003013 | $0.002259 | $0.001694 |
| Nokia stock | $0.006313 | $0.004182 | $0.00277 | $0.001835 | $0.001215 | $0.0008054 |
Este cálculo mostra quanto a criptomoeda pode custar, se assumirmos que sua capitalização se comportará da mesma forma que a de algumas empresas de Internet ou nichos tecnológicos. Se você extrapolar os dados, poderá obter uma imagem em potencial do preço futuro para 2024, 2025, 2026, 2027, 2028, 2029 e 2030.
Visão geral da previsão para Kinto
Você pode fazer perguntas como: 'Devo investir em Kinto agora?', 'Devo comprar K hoje?', 'Kinto será um bom ou mau investimento no curto ou no longo prazo?'.
Atualizamos a previsão para Kinto regularmente com novos valores. Veja nossas previsões semelhantes. Fazemos previsões de preços futuros para uma enorme quantidade de moedas digitais, como Kinto, com métodos de análise técnica.
Se você estiver tentando encontrar criptomoedas com bom retorno, você deve explorar o máximo de fontes de informações disponíveis sobre Kinto para poder tomar sozinho uma decisão de tão grande responsabilidade sobre o seu investimento.
O preço de Kinto é de $0.00953 USD hoje, mas o preço pode tanto subir quanto descer e seu investimento pode ser perdido, porque criptomoedas são ativos de alto risco
Previsão do preço de Kinto com base no padrão de crescimento do Bitcoin
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| Se Kinto tiver 1% da média anterior do crescimento anual do Bitcoin | $0.009777 | $0.010032 | $0.010292 | $0.01056 |
| Se Kinto tiver 2% da média anterior do crescimento anual do Bitcoin | $0.010025 | $0.010546 | $0.011095 | $0.011671 |
| Se Kinto tiver 5% da média anterior do crescimento anual do Bitcoin | $0.010768 | $0.012168 | $0.013749 | $0.015536 |
| Se Kinto tiver 10% da média anterior do crescimento anual do Bitcoin | $0.0120074 | $0.015128 | $0.01906 | $0.024015 |
| Se Kinto tiver 20% da média anterior do crescimento anual do Bitcoin | $0.014484 | $0.022014 | $0.033459 | $0.050853 |
| Se Kinto tiver 50% da média anterior do crescimento anual do Bitcoin | $0.021916 | $0.050400093 | $0.1159031 | $0.266537 |
| Se Kinto tiver 100% da média anterior do crescimento anual do Bitcoin | $0.0343023 | $0.123465 | $0.444391 | $1.59 |
Perguntas Frequentes sobre Kinto
K é um bom investimento?
A decisão de adquirir Kinto depende inteiramente da sua tolerância individual ao risco. Como você pode perceber, o valor de Kinto experimentou uma queda de 0% nas últimas 24 horas, e Kinto registrou um declínio de durante os últimos 30 dias. Consequentemente, a decisão de investir ou não em Kinto dependerá de quão alinhado esse investimento está com suas aspirações de negociação.
Kinto pode subir?
Parece que o valor médio de Kinto pode potencialmente subir para $0.009828 até o final deste ano. Observando as perspectivas de Kinto em um horizonte de cinco anos mais longo, a moeda digital poderia potencialmente crescer até $0.030899. No entanto, dada a imprevisibilidade do mercado, é vital conduzir uma pesquisa aprofundada antes de investir quaisquer fundos em um projeto, rede ou ativo específico.
Qual será o preço de Kinto na próxima semana?
Com base na nossa nova previsão experimental de Kinto, o preço de Kinto aumentará 0.86% na próxima semana e atingirá $0.009611 até 13 de janeiro de 2026.
Qual será o preço de Kinto no próximo mês?
Com base na nossa nova previsão experimental de Kinto, o preço de Kinto diminuirá -11.62% no próximo mês e atingirá $0.008423 até 5 de fevereiro de 2026.
Até onde o preço de Kinto pode subir este ano em 2026?
De acordo com nossa previsão mais recente sobre o valor de Kinto em 2026, espera-se que K fluctue dentro do intervalo de $0.003292 e $0.009828. No entanto, é crucial lembrar que o mercado de criptomoedas é excepcionalmente instável, e essa previsão de preço de Kinto não considera flutuações repentinas e extremas de preço.
Onde estará Kinto em 5 anos?
O futuro de Kinto parece seguir uma tendência de alta, com um preço máximo de $0.030899 projetada após um período de cinco anos. Com base na previsão de Kinto para 2030, o valor de Kinto pode potencialmente atingir seu pico mais alto de aproximadamente $0.030899, enquanto seu pico mais baixo está previsto para cerca de $0.010687.
Quanto será Kinto em 2026?
Com base na nossa nova simulação experimental de previsão de preços de Kinto, espera-se que o valor de K em 2026 aumente 3.13% para $0.009828 se o melhor cenário ocorrer. O preço ficará entre $0.009828 e $0.003292 durante 2026.
Quanto será Kinto em 2027?
De acordo com nossa última simulação experimental para previsão de preços de Kinto, o valor de K pode diminuir -12.62% para $0.008327 em 2027, assumindo as condições mais favoráveis. O preço está projetado para flutuar entre $0.008327 e $0.003169 ao longo do ano.
Quanto será Kinto em 2028?
Nosso novo modelo experimental de previsão de preços de Kinto sugere que o valor de K em 2028 pode aumentar 47.02%, alcançando $0.014011 no melhor cenário. O preço é esperado para variar entre $0.014011 e $0.00572 durante o ano.
Quanto será Kinto em 2029?
Com base no nosso modelo de previsão experimental, o valor de Kinto pode experimentar um 333.75% crescimento em 2029, potencialmente alcançando $0.041337 sob condições ótimas. A faixa de preço prevista para 2029 está entre $0.041337 e $0.012566.
Quanto será Kinto em 2030?
Usando nossa nova simulação experimental para previsões de preços de Kinto, espera-se que o valor de K em 2030 aumente 224.23%, alcançando $0.030899 no melhor cenário. O preço está previsto para variar entre $0.030899 e $0.010687 ao longo de 2030.
Quanto será Kinto em 2031?
Nossa simulação experimental indica que o preço de Kinto poderia aumentar 195.98% em 2031, potencialmente atingindo $0.028208 sob condições ideais. O preço provavelmente oscilará entre $0.028208 e $0.012635 durante o ano.
Quanto será Kinto em 2032?
Com base nos achados da nossa mais recente previsão experimental de preços de Kinto, K poderia ver um 449.04% aumento em valor, atingindo $0.052324 se o cenário mais positivo se desenrolar em 2032. O preço é esperado para permanecer dentro de uma faixa de $0.052324 e $0.019287 ao longo do ano.
Quanto será Kinto em 2033?
De acordo com nossa previsão experimental de preços de Kinto, espera-se que o valor de K seja aumentar 1362.43% em 2033, com o preço potencial mais alto sendo $0.139373. Ao longo do ano, o preço de K poderia variar entre $0.139373 e $0.044819.
Quanto será Kinto em 2034?
Os resultados da nossa nova simulação de previsão de preços de Kinto sugerem que K pode aumentar 746.96% em 2034, atingindo potencialmente $0.080717 nas melhores circunstâncias. A faixa de preço prevista para o ano é entre $0.080717 e $0.036032.
Quanto será Kinto em 2035?
Com base em nossa previsão experimental para o preço de Kinto, K poderia aumentar 897.93%, com o valor potencialmente atingindo $0.0951052 em 2035. A faixa de preço esperada para o ano está entre $0.0951052 e $0.0426016.
Quanto será Kinto em 2036?
Nossa recente simulação de previsão de preços de Kinto sugere que o valor de K pode aumentar 1964.7% em 2036, possivelmente atingindo $0.19677 se as condições forem ideais. A faixa de preço esperada para 2036 está entre $0.19677 e $0.070519.
Quanto será Kinto em 2037?
De acordo com a simulação experimental, o valor de Kinto poderia aumentar 4830.69% em 2037, com um pico de $0.4699064 sob condições favoráveis. O preço é esperado para cair entre $0.4699064 e $0.183136 ao longo do ano.
Previsões relacionadas
Como ler e prever os movimentos de preço de Kinto?
Traders de Kinto utilizam indicadores e padrões de gráfico para prever a direção do mercado. Eles também identificam níveis-chave de suporte e resistência para avaliar quando uma tendência de baixa pode desacelerar ou uma tendência de alta pode estagnar.
Indicadores de Previsão de Preço de Kinto
Médias móveis são ferramentas populares para a previsão de preço de Kinto. Uma média móvel simples (SMA) calcula o preço médio de fechamento de K em um período específico, como uma SMA de 12 dias. Uma média móvel exponencial (EMA) dá mais peso aos preços recentes, reagindo mais rapidamente às mudanças de preço.
Médias móveis comumente usadas no mercado de criptomoedas incluem as de 50 dias, 100 dias e 200 dias, que ajudam a identificar níveis-chave de resistência e suporte. Um movimento de preço de K acima dessas médias é visto como altista, enquanto uma queda abaixo indica fraqueza.
Traders também usam RSI e níveis de retração de Fibonacci para avaliar a direção futura de K.
Como ler gráficos de Kinto e prever movimentos de preço?
A maioria dos traders prefere gráficos de velas em vez de gráficos de linha simples porque eles fornecem informações mais detalhadas. Velas podem representar a ação de preço de Kinto em diferentes períodos de tempo, como 5 minutos para tendências de curto prazo e semanal para tendências de longo prazo. Opções populares incluem gráficos de 1 hora, 4 horas e 1 dia.
Por exemplo, um gráfico de velas de 1 hora mostra os preços de abertura, fechamento, máximo e mínimo de K dentro de cada hora. A cor da vela é crucial: verde indica que o preço fechou mais alto do que abriu, enquanto vermelho significa o oposto. Alguns gráficos usam velas vazias e preenchidas para transmitir a mesma informação.
O que afeta o preço de Kinto?
A ação de preço de Kinto é impulsionada pela oferta e demanda, influenciada por fatores como reduções pela metade das recompensas de bloco, hard forks e atualizações de protocolo. Eventos do mundo real, como regulamentações, adoção por empresas e governos e hacks de exchanges de criptomoedas, também impactam o preço de K. A capitalização de mercado de Kinto pode mudar rapidamente.
Traders frequentemente monitoram a atividade de "baleias" de K, grandes detentores de Kinto, pois suas ações podem influenciar significativamente os movimentos de preço no relativamente pequeno mercado de Kinto.
Padrões de previsão de preço altistas e baixistas
Traders frequentemente identificam padrões de velas para ganhar vantagem em previsões de preço de criptomoedas. Certas formações indicam tendências altistas, enquanto outras sugerem movimentos baixistas.
Padrões de velas altistas comumente seguidos:
- Martelo
- Engolfo de Alta
- Linha de Perfuração
- Estrela da Manhã
- Três Soldados Brancos
Padrões de velas baixistas comuns:
- Harami de Baixa
- Nuvem Negra
- Estrela da Noite
- Estrela Cadente
- Homem Enforcado


