Previsão de Preço Ket - Projeção KET
Previsão de Preço Ket até $0.009759 até 2026
| Ano | Preço Mínimo | Preço Máximo |
|---|---|---|
| 2026 | $0.003269 | $0.009759 |
| 2027 | $0.003147 | $0.008268 |
| 2028 | $0.00568 | $0.013912 |
| 2029 | $0.012478 | $0.041047 |
| 2030 | $0.010612 | $0.030682 |
| 2031 | $0.012546 | $0.0280097 |
| 2032 | $0.019151 | $0.051956 |
| 2033 | $0.0445042 | $0.138393 |
| 2034 | $0.035779 | $0.08015 |
| 2035 | $0.0423021 | $0.094436 |
Calculadora de lucro do investimento
Se você abrir um short de $10,000.00 em Ket hoje e fechar em Apr 06, 2026, nossa previsão mostra que pode lucrar cerca de $3,954.50, com um retorno de 39.55% nos próximos 90 dias.
Previsão de preço de longo prazo de Ket para os anos 2027, 2028, 2029, 2030, 2031, 2032 e 2037
[
'name' => 'Ket'
'name_with_ticker' => 'Ket <small>KET</small>'
'name_lang' => 'Ket'
'name_lang_with_ticker' => 'Ket <small>KET</small>'
'name_with_lang' => 'Ket'
'name_with_lang_with_ticker' => 'Ket <small>KET</small>'
'image' => '/uploads/coins/ket.jpg?1737474148'
'price_for_sd' => 0.009463
'ticker' => 'KET'
'marketcap' => '$9.46M'
'low24h' => '$0.009176'
'high24h' => '$0.009699'
'volume24h' => '$182.99K'
'current_supply' => '1B'
'max_supply' => '1B'
'algo' => null
'proof' => null
'ico_price_and_roi' => '—'
'price' => '$0.009463'
'change_24h_pct' => '1.4625%'
'ath_price' => '$0.6166'
'ath_days' => 222
'ath_exchange' => null
'ath_pair' => null
'ath_date' => '29 de mai. de 2025'
'ath_pct' => '-98.47%'
'fdv' => '$9.46M'
'new_prediction' => true
'change_24h_pct_is_increased' => true
'change_30d_pct' => null
'change_30d_pct_is_increased' => false
'max_price' => '$0.4666028'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.009544'
'next_week_prediction_price_date' => '13 de janeiro de 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.008363'
'next_month_prediction_price_date' => '5 de fevereiro de 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.003269'
'current_year_max_price_prediction' => '$0.009759'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.010612'
'grand_prediction_max_price' => '$0.030682'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.0096425634203358
107 => 0.0096785652518968
108 => 0.0097596792167028
109 => 0.0090665692684421
110 => 0.0093777552865722
111 => 0.0095605479180368
112 => 0.0087346841590266
113 => 0.0095442232468757
114 => 0.0090545037662733
115 => 0.0088882856192171
116 => 0.0091120764566526
117 => 0.0090248649496602
118 => 0.0089498856171797
119 => 0.0089080458613472
120 => 0.0090723731534664
121 => 0.0090647070888754
122 => 0.0087958357444154
123 => 0.0084451040361654
124 => 0.00856282110983
125 => 0.0085200533933642
126 => 0.0083650576717469
127 => 0.0084695060738622
128 => 0.0080095681710733
129 => 0.0072182689148169
130 => 0.0077410254416516
131 => 0.0077208998840181
201 => 0.007710751665238
202 => 0.008103588747225
203 => 0.0080658265260855
204 => 0.0079972877249484
205 => 0.0083637989029153
206 => 0.0082300173926864
207 => 0.0086423004843238
208 => 0.0089138567932747
209 => 0.0088449813293984
210 => 0.0091003813505123
211 => 0.0085655330734521
212 => 0.0087431882167031
213 => 0.0087798026955078
214 => 0.0083592762118712
215 => 0.0080720048924772
216 => 0.0080528471706064
217 => 0.0075547582912035
218 => 0.0078208333501476
219 => 0.0080549683910843
220 => 0.0079428358760888
221 => 0.0079073380717048
222 => 0.0080886886557681
223 => 0.0081027811493126
224 => 0.0077814708030439
225 => 0.0078482813986085
226 => 0.0081268926884503
227 => 0.0078412611089474
228 => 0.0072863256076269
301 => 0.0071486939307159
302 => 0.0071303313279609
303 => 0.0067570633044721
304 => 0.0071578911374785
305 => 0.0069829190468532
306 => 0.0075356537846512
307 => 0.0072199346667968
308 => 0.0072063246466459
309 => 0.007185751105032
310 => 0.0068644638977074
311 => 0.0069348053772442
312 => 0.0071686311685346
313 => 0.0072520628451031
314 => 0.0072433602377015
315 => 0.0071674852945941
316 => 0.0072022204550061
317 => 0.007090326400787
318 => 0.0070508142813689
319 => 0.0069261031638206
320 => 0.0067428122733503
321 => 0.0067682999958585
322 => 0.0064051527811664
323 => 0.0062072909049207
324 => 0.0061525253453535
325 => 0.00607929055029
326 => 0.0061607974103263
327 => 0.0064041240307342
328 => 0.0061106205019
329 => 0.0056074292885924
330 => 0.0056376719379083
331 => 0.005705618191798
401 => 0.0055790007971841
402 => 0.0054591680593745
403 => 0.0055633529025626
404 => 0.0053501441520316
405 => 0.0057313834506828
406 => 0.0057210719960651
407 => 0.0058631744309221
408 => 0.0059520339996738
409 => 0.0057472414623282
410 => 0.0056957366930037
411 => 0.0057250761503722
412 => 0.0052401602745201
413 => 0.0058235464584961
414 => 0.0058285916064408
415 => 0.0057853919867404
416 => 0.00609602711968
417 => 0.0067515641397101
418 => 0.0065049247438592
419 => 0.0064094185150706
420 => 0.0062278611043287
421 => 0.0064697755743299
422 => 0.0064512003174874
423 => 0.0063671959615888
424 => 0.0063163898650317
425 => 0.006410001655738
426 => 0.0063047903282074
427 => 0.0062858914827689
428 => 0.0061713850415586
429 => 0.0061305114517577
430 => 0.0061002502730935
501 => 0.0060669356887863
502 => 0.0061404193602909
503 => 0.0059738956930795
504 => 0.005773084474939
505 => 0.0057563891949581
506 => 0.0058024863308494
507 => 0.0057820917797456
508 => 0.0057562915536938
509 => 0.0057070318958873
510 => 0.0056924176076821
511 => 0.0057399069545041
512 => 0.005686294250743
513 => 0.0057654027155776
514 => 0.0057438895904136
515 => 0.0056237190220412
516 => 0.0054739420010064
517 => 0.0054726086713512
518 => 0.0054403394578528
519 => 0.0053992397627539
520 => 0.005387806767811
521 => 0.0055545787456644
522 => 0.0058997917487559
523 => 0.005832018176002
524 => 0.0058809915280318
525 => 0.0061218919493103
526 => 0.0061984669491064
527 => 0.0061441158280294
528 => 0.0060697166612681
529 => 0.0060729898470234
530 => 0.0063272343220062
531 => 0.0063430912380482
601 => 0.0063831565492515
602 => 0.0064346517966033
603 => 0.0061528856913252
604 => 0.0060597186888037
605 => 0.0060155709943005
606 => 0.0058796131825385
607 => 0.0060262320263819
608 => 0.0059408035049193
609 => 0.0059523307311184
610 => 0.005944823609934
611 => 0.00594892300573
612 => 0.0057312768865291
613 => 0.0058105756932227
614 => 0.0056787260468382
615 => 0.0055021941711467
616 => 0.0055016023743993
617 => 0.0055448083008823
618 => 0.0055191077251621
619 => 0.0054499481367215
620 => 0.0054597719298354
621 => 0.0053737051650764
622 => 0.0054702219933662
623 => 0.0054729897506478
624 => 0.005435825514449
625 => 0.0055845230051852
626 => 0.0056454444884655
627 => 0.0056209821920644
628 => 0.0056437281485385
629 => 0.0058348344739292
630 => 0.0058659931435215
701 => 0.0058798317663282
702 => 0.0058612898450334
703 => 0.0056472212213478
704 => 0.0056567160750983
705 => 0.0055870491382114
706 => 0.0055281879178628
707 => 0.0055305420579903
708 => 0.0055608043766725
709 => 0.0056929616972191
710 => 0.0059710789872099
711 => 0.0059816333350639
712 => 0.0059944255125551
713 => 0.0059423932978653
714 => 0.0059266998840336
715 => 0.0059474035476914
716 => 0.0060518497790995
717 => 0.0063205138431564
718 => 0.0062255500194492
719 => 0.0061483429525752
720 => 0.0062160743650994
721 => 0.0062056476450377
722 => 0.0061176356346364
723 => 0.0061151654306375
724 => 0.0059462422435356
725 => 0.0058837951874588
726 => 0.00583160975332
727 => 0.0057746246215756
728 => 0.0057408419253186
729 => 0.0057927475007302
730 => 0.0058046189199555
731 => 0.0056911264721639
801 => 0.0056756578708989
802 => 0.0057683382536702
803 => 0.0057275530726855
804 => 0.0057695016427521
805 => 0.0057792340708357
806 => 0.0057776669257574
807 => 0.0057350825126612
808 => 0.0057622245476832
809 => 0.005698025543426
810 => 0.0056282187686749
811 => 0.0055836863954995
812 => 0.0055448259935417
813 => 0.0055663880031277
814 => 0.0054895233760212
815 => 0.0054649328348305
816 => 0.0057530294369329
817 => 0.0059658494944663
818 => 0.0059627550065438
819 => 0.0059439181071531
820 => 0.005915930295584
821 => 0.0060498022963579
822 => 0.0060031639681434
823 => 0.0060370972486822
824 => 0.0060457346927546
825 => 0.0060718776345301
826 => 0.006081221489153
827 => 0.0060529778707581
828 => 0.0059581888377575
829 => 0.0057219835797906
830 => 0.0056120293945831
831 => 0.0055757426820329
901 => 0.0055770616351158
902 => 0.0055406790210229
903 => 0.0055513953314276
904 => 0.0055369523255938
905 => 0.0055096007666829
906 => 0.0055646991214396
907 => 0.0055710486935487
908 => 0.0055581880791721
909 => 0.0055612172194188
910 => 0.0054547368252214
911 => 0.0054628322983289
912 => 0.005417755675343
913 => 0.0054093043519399
914 => 0.005295354574302
915 => 0.0050934760259321
916 => 0.0052053363385539
917 => 0.0050702248108469
918 => 0.0050190560280306
919 => 0.0052612810875048
920 => 0.0052369684098109
921 => 0.005195355674066
922 => 0.0051338017650451
923 => 0.0051109708214314
924 => 0.0049722572354326
925 => 0.0049640612967636
926 => 0.0050328114955665
927 => 0.0050010856443689
928 => 0.004956530533768
929 => 0.0047951564396507
930 => 0.0046137185287364
1001 => 0.0046191949987889
1002 => 0.0046769070224784
1003 => 0.0048447125148823
1004 => 0.0047791480059356
1005 => 0.0047315802024287
1006 => 0.0047226721827148
1007 => 0.0048341746996369
1008 => 0.0049919741215813
1009 => 0.0050660100797945
1010 => 0.0049926426937107
1011 => 0.0049083621909582
1012 => 0.0049134919546425
1013 => 0.0049476179742595
1014 => 0.0049512041364053
1015 => 0.0048963461932891
1016 => 0.0049117883829441
1017 => 0.0048883302847948
1018 => 0.0047443679797527
1019 => 0.0047417641581639
1020 => 0.0047064334868008
1021 => 0.0047053636881132
1022 => 0.0046452574024756
1023 => 0.0046368481176197
1024 => 0.0045175034392954
1025 => 0.0045960564679775
1026 => 0.0045433672205567
1027 => 0.0044639520965566
1028 => 0.0044502608992456
1029 => 0.0044498493253218
1030 => 0.0045313909007731
1031 => 0.0045951036071925
1101 => 0.0045442837725738
1102 => 0.0045327130813322
1103 => 0.0046562577923954
1104 => 0.0046405356017776
1105 => 0.0046269202860998
1106 => 0.0049778449141054
1107 => 0.0047000606880487
1108 => 0.0045789309101188
1109 => 0.0044290098080094
1110 => 0.0044778248748241
1111 => 0.0044881109266444
1112 => 0.0041275777013814
1113 => 0.0039813094167937
1114 => 0.0039311156535272
1115 => 0.0039022284331317
1116 => 0.0039153927022088
1117 => 0.0037837340905213
1118 => 0.0038722108550078
1119 => 0.0037582056261118
1120 => 0.0037390922784823
1121 => 0.0039429477502861
1122 => 0.0039713130482812
1123 => 0.0038502978746267
1124 => 0.0039280092066899
1125 => 0.0038998299974155
1126 => 0.0037601599185463
1127 => 0.0037548255488771
1128 => 0.0036847440129412
1129 => 0.003575079979661
1130 => 0.0035249605737731
1201 => 0.00349885795203
1202 => 0.0035096284024912
1203 => 0.0035041825331568
1204 => 0.003468644552022
1205 => 0.0035062195286362
1206 => 0.0034102309904394
1207 => 0.0033720075810972
1208 => 0.0033547429538737
1209 => 0.0032695476013299
1210 => 0.0034051312937723
1211 => 0.0034318429892218
1212 => 0.003458607314963
1213 => 0.003691572497759
1214 => 0.0036799342155792
1215 => 0.0037851386184105
1216 => 0.003781050568775
1217 => 0.0037510445688892
1218 => 0.0036244541911183
1219 => 0.0036749108594413
1220 => 0.0035196130770504
1221 => 0.0036359727348404
1222 => 0.0035828710463205
1223 => 0.0036180190005363
1224 => 0.0035548198096931
1225 => 0.0035897968513364
1226 => 0.0034381773231515
1227 => 0.0032965971410767
1228 => 0.0033535731393268
1229 => 0.0034155125654203
1230 => 0.0035498130230633
1231 => 0.0034698247784459
]
'min_raw' => 0.0032695476013299
'max_raw' => 0.0097596792167028
'avg_raw' => 0.0065146134090164
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.003269'
'max' => '$0.009759'
'avg' => '$0.006514'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.0061936923986701
'max_diff' => 0.00029643921670283
'year' => 2026
]
1 => [
'items' => [
101 => 0.0034985915759007
102 => 0.0034022276199307
103 => 0.0032034012537615
104 => 0.0032045265894015
105 => 0.0031739414846342
106 => 0.0031475114886168
107 => 0.0034790123905512
108 => 0.0034377850131419
109 => 0.003372094582946
110 => 0.0034600238341972
111 => 0.0034832737238528
112 => 0.0034839356155258
113 => 0.0035480865274562
114 => 0.0035823238806532
115 => 0.0035883583625473
116 => 0.003689301208542
117 => 0.0037231359190511
118 => 0.0038624963031705
119 => 0.0035794190804375
120 => 0.0035735892913194
121 => 0.0034612611790826
122 => 0.0033900209144649
123 => 0.0034661390609497
124 => 0.0035335693475721
125 => 0.0034633564260492
126 => 0.0034725247513244
127 => 0.0033782696407863
128 => 0.0034119614076885
129 => 0.0034409812961158
130 => 0.0034249582194365
131 => 0.0034009708981218
201 => 0.003528040833034
202 => 0.0035208710493151
203 => 0.0036392014940305
204 => 0.0037314485375774
205 => 0.0038967717307449
206 => 0.0037242483601816
207 => 0.00371796092284
208 => 0.003779421631391
209 => 0.0037231265097368
210 => 0.0037587030833807
211 => 0.0038910397947192
212 => 0.0038938358608963
213 => 0.0038469981499017
214 => 0.0038441480709311
215 => 0.003853143765676
216 => 0.0039058318307725
217 => 0.0038874210018871
218 => 0.0039087264791784
219 => 0.0039353693047723
220 => 0.0040455753277526
221 => 0.0040721456267925
222 => 0.0040075935752463
223 => 0.0040134219027422
224 => 0.0039892776634705
225 => 0.0039659546308605
226 => 0.0040183814021125
227 => 0.0041141923570262
228 => 0.0041135963220483
301 => 0.0041358226012895
302 => 0.0041496693891243
303 => 0.0040902288392691
304 => 0.004051535227003
305 => 0.0040663728200843
306 => 0.0040900984545421
307 => 0.0040586789165958
308 => 0.0038647429734449
309 => 0.0039235707499208
310 => 0.0039137789313839
311 => 0.0038998341910615
312 => 0.0039589859752099
313 => 0.003953280641327
314 => 0.0037823837411622
315 => 0.0037933240062371
316 => 0.0037830490549167
317 => 0.0038162495246902
318 => 0.0037213335754144
319 => 0.003750529082143
320 => 0.0037688402302723
321 => 0.0037796256371933
322 => 0.0038185899226147
323 => 0.0038140179134446
324 => 0.0038183057201053
325 => 0.0038760794691954
326 => 0.0041682792665364
327 => 0.0041841830568032
328 => 0.0041058669769916
329 => 0.00413715270616
330 => 0.0040770909475936
331 => 0.004117410808498
401 => 0.0041449966333154
402 => 0.0040203415954148
403 => 0.0040129603330748
404 => 0.0039526506782657
405 => 0.0039850576706466
406 => 0.0039334958156233
407 => 0.0039461472912889
408 => 0.0039107726623921
409 => 0.003974439951388
410 => 0.004045629873382
411 => 0.0040636152590529
412 => 0.0040163034525482
413 => 0.0039820465866388
414 => 0.003921902815015
415 => 0.0040219232476167
416 => 0.0040511722701769
417 => 0.0040217696149529
418 => 0.0040149563772768
419 => 0.0040020453041918
420 => 0.0040176955224663
421 => 0.0040510129737185
422 => 0.0040353010789847
423 => 0.0040456790622643
424 => 0.0040061288917322
425 => 0.0040902485165644
426 => 0.0042238507252881
427 => 0.0042242802782353
428 => 0.0042085682988085
429 => 0.0042021392953464
430 => 0.0042182607397209
501 => 0.0042270059619578
502 => 0.0042791397568976
503 => 0.0043350813959701
504 => 0.0045961366162719
505 => 0.0045228333550405
506 => 0.0047544570767368
507 => 0.0049376413680226
508 => 0.004992570327301
509 => 0.0049420382693721
510 => 0.0047691708288857
511 => 0.0047606891275477
512 => 0.0050190260663853
513 => 0.0049460340485823
514 => 0.0049373518803233
515 => 0.0048449882788024
516 => 0.0048995866067559
517 => 0.0048876451515233
518 => 0.0048687949802427
519 => 0.0049729647866254
520 => 0.0051679613648711
521 => 0.0051375693194852
522 => 0.005114883067451
523 => 0.0050154785149059
524 => 0.0050753422583486
525 => 0.0050540259259232
526 => 0.0051456144177018
527 => 0.0050913594241057
528 => 0.0049454810622578
529 => 0.0049687126722035
530 => 0.0049652012610957
531 => 0.0050374658528723
601 => 0.0050157738161384
602 => 0.0049609655427787
603 => 0.0051672948877655
604 => 0.0051538970077661
605 => 0.0051728921384234
606 => 0.0051812543823827
607 => 0.0053068434187452
608 => 0.0053582932285421
609 => 0.0053699732361217
610 => 0.0054188465761575
611 => 0.005368757222899
612 => 0.0055691503490369
613 => 0.0057024000846556
614 => 0.0058571765095453
615 => 0.0060833464662903
616 => 0.0061683884622155
617 => 0.006153026386833
618 => 0.006324505866795
619 => 0.0066326506805121
620 => 0.0062153112638826
621 => 0.0066547706829727
622 => 0.0065156429046918
623 => 0.0061857734451895
624 => 0.006164533740903
625 => 0.0063879251687411
626 => 0.0068833858550579
627 => 0.0067592785726042
628 => 0.0068835888501118
629 => 0.00673857430827
630 => 0.006731373113989
701 => 0.0068765458174931
702 => 0.0072157497521824
703 => 0.0070546066776809
704 => 0.00682356856648
705 => 0.0069941635124396
706 => 0.0068463783824324
707 => 0.006513377122073
708 => 0.0067591836701042
709 => 0.0065948198316032
710 => 0.00664278993774
711 => 0.0069882582789934
712 => 0.0069466906141779
713 => 0.0070004830215112
714 => 0.0069055408305603
715 => 0.0068168498532029
716 => 0.0066513015576867
717 => 0.0066022908688167
718 => 0.0066158356600005
719 => 0.0066022841566909
720 => 0.0065096614068169
721 => 0.0064896595328003
722 => 0.0064563221998038
723 => 0.0064666548332892
724 => 0.006403970894075
725 => 0.0065222684385349
726 => 0.006544225505221
727 => 0.0066303125928825
728 => 0.0066392504399064
729 => 0.0068790017536705
730 => 0.0067469507589064
731 => 0.0068355419669285
801 => 0.0068276175354302
802 => 0.0061929227166286
803 => 0.0062803780626997
804 => 0.0064164311361868
805 => 0.0063551394109964
806 => 0.0062684872516321
807 => 0.0061985109869506
808 => 0.0060924897905177
809 => 0.0062417125885403
810 => 0.0064379246998646
811 => 0.0066442267028489
812 => 0.0068920850419918
813 => 0.0068367659460842
814 => 0.0066395931636053
815 => 0.0066484381905925
816 => 0.0067031146670375
817 => 0.0066323036621595
818 => 0.0066114201144259
819 => 0.0067002455882676
820 => 0.0067008572804883
821 => 0.0066193806615803
822 => 0.006528834309728
823 => 0.0065284549172076
824 => 0.0065123430684694
825 => 0.0067414405703678
826 => 0.0068674210320419
827 => 0.0068818644889452
828 => 0.0068664488723129
829 => 0.0068723817313307
830 => 0.0067990764764726
831 => 0.0069666305510802
901 => 0.0071203947393206
902 => 0.0070791826521794
903 => 0.0070173998749114
904 => 0.0069681869169557
905 => 0.0070675896432954
906 => 0.0070631633963659
907 => 0.0071190517432773
908 => 0.0071165163250347
909 => 0.0070977231760354
910 => 0.007079183323342
911 => 0.0071526917436214
912 => 0.0071315224990901
913 => 0.0071103203728748
914 => 0.007067796262867
915 => 0.0070735759956678
916 => 0.0070118038860673
917 => 0.0069832252816667
918 => 0.0065534716411418
919 => 0.0064386274257882
920 => 0.006474759753808
921 => 0.0064866554543676
922 => 0.0064366751046689
923 => 0.0065083340872385
924 => 0.0064971661107107
925 => 0.0065406141743327
926 => 0.0065134697104773
927 => 0.0065145837287423
928 => 0.0065944098091311
929 => 0.0066175836598725
930 => 0.0066057972523495
1001 => 0.0066140520481642
1002 => 0.0068042803335815
1003 => 0.0067772359545533
1004 => 0.006762869167209
1005 => 0.0067668488654877
1006 => 0.0068154562709523
1007 => 0.0068290636906164
1008 => 0.0067714080973231
1009 => 0.0067985988084233
1010 => 0.0069143734052727
1011 => 0.0069548879618953
1012 => 0.0070841909785443
1013 => 0.0070292607588939
1014 => 0.0071300875543863
1015 => 0.0074399947493424
1016 => 0.0076875700606201
1017 => 0.0074598895728867
1018 => 0.0079145301035224
1019 => 0.008268532970933
1020 => 0.0082549457512591
1021 => 0.0081932171630922
1022 => 0.0077901943101985
1023 => 0.0074193266722334
1024 => 0.0077295731992629
1025 => 0.0077303640814631
1026 => 0.0077037136296472
1027 => 0.0075381899622725
1028 => 0.0076979537648159
1029 => 0.0077106352352849
1030 => 0.0077035369840975
1031 => 0.007576630376412
1101 => 0.007382867442738
1102 => 0.007420728256175
1103 => 0.0074827450409244
1104 => 0.0073653343293371
1105 => 0.0073278144928191
1106 => 0.0073975710073471
1107 => 0.0076223410315032
1108 => 0.0075798495604406
1109 => 0.0075787399364096
1110 => 0.0077605364688035
1111 => 0.0076304093857567
1112 => 0.0074212058022795
1113 => 0.0073683791383953
1114 => 0.0071808800699111
1115 => 0.0073103863443619
1116 => 0.0073150470446238
1117 => 0.0072441177816291
1118 => 0.0074269613210581
1119 => 0.0074252763856533
1120 => 0.0075988591136717
1121 => 0.0079306840949476
1122 => 0.0078325471198686
1123 => 0.0077184244951244
1124 => 0.0077308327887112
1125 => 0.0078669211430807
1126 => 0.007784639017434
1127 => 0.0078142282435079
1128 => 0.0078668763562432
1129 => 0.0078986402698356
1130 => 0.0077262624503642
1201 => 0.0076860729348612
1202 => 0.0076038592907451
1203 => 0.0075824112855856
1204 => 0.0076493725832742
1205 => 0.0076317306471108
1206 => 0.0073146553308139
1207 => 0.0072815191960705
1208 => 0.0072825354340156
1209 => 0.0071992130476659
1210 => 0.0070721264088186
1211 => 0.0074061025077604
1212 => 0.0073792795530229
1213 => 0.0073496690869244
1214 => 0.0073532962000665
1215 => 0.0074982639051169
1216 => 0.0074141753151431
1217 => 0.0076377386134374
1218 => 0.007591780720236
1219 => 0.007544644180489
1220 => 0.0075381284748818
1221 => 0.0075199849285798
1222 => 0.007457763957394
1223 => 0.0073826283957864
1224 => 0.0073330173898822
1225 => 0.0067643209203337
1226 => 0.0068698676771267
1227 => 0.0069912895999275
1228 => 0.0070332039611105
1229 => 0.0069615065459214
1230 => 0.0074605950083465
1231 => 0.0075517832797677
]
'min_raw' => 0.0031475114886168
'max_raw' => 0.008268532970933
'avg_raw' => 0.0057080222297749
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.003147'
'max' => '$0.008268'
'avg' => '$0.005708'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -0.00012203611271305
'max_diff' => -0.0014911462457699
'year' => 2027
]
2 => [
'items' => [
101 => 0.0072755680575692
102 => 0.0072238994672891
103 => 0.0074639823925234
104 => 0.0073191830396632
105 => 0.0073843861793899
106 => 0.0072434526555112
107 => 0.0075298186954866
108 => 0.0075276370660563
109 => 0.0074162342086356
110 => 0.0075103911408737
111 => 0.007494029056809
112 => 0.0073682555051541
113 => 0.0075338059414123
114 => 0.0075338880523632
115 => 0.0074266652242027
116 => 0.0073014524350065
117 => 0.0072790673456923
118 => 0.0072622031879077
119 => 0.0073802386303666
120 => 0.007486068838988
121 => 0.0076829926196988
122 => 0.0077325039369631
123 => 0.0079257499044008
124 => 0.007810681339767
125 => 0.0078616897440818
126 => 0.0079170665825448
127 => 0.0079436162753197
128 => 0.007900354975678
129 => 0.0082005455063222
130 => 0.0082258907847088
131 => 0.008234388837316
201 => 0.0081331662793857
202 => 0.0082230756022625
203 => 0.0081810100075722
204 => 0.0082904529987974
205 => 0.0083076150572598
206 => 0.0082930794043001
207 => 0.0082985269125407
208 => 0.0080423672518743
209 => 0.0080290840221189
210 => 0.0078479662418689
211 => 0.0079217730760758
212 => 0.0077837947371796
213 => 0.007827549089778
214 => 0.0078468355914965
215 => 0.0078367614174981
216 => 0.007925946003743
217 => 0.0078501208862276
218 => 0.0076500059343009
219 => 0.0074498364611895
220 => 0.0074473234965091
221 => 0.0073946224075235
222 => 0.0073565291728728
223 => 0.0073638672812967
224 => 0.0073897277325067
225 => 0.0073550261164368
226 => 0.0073624314656419
227 => 0.0074854096040304
228 => 0.0075100719926443
229 => 0.0074262595599171
301 => 0.0070897405484411
302 => 0.0070071579389309
303 => 0.0070665166809625
304 => 0.007038147025464
305 => 0.0056803339544027
306 => 0.0059993319947226
307 => 0.0058097941913144
308 => 0.0058971419313399
309 => 0.0057036729146364
310 => 0.0057960064699872
311 => 0.0057789558337955
312 => 0.0062918952427916
313 => 0.0062838863994452
314 => 0.0062877198089366
315 => 0.0061047411860188
316 => 0.0063962311007378
317 => 0.0065398295143667
318 => 0.006513253269752
319 => 0.0065199419379588
320 => 0.006405008457548
321 => 0.0062888326162591
322 => 0.0061599757289359
323 => 0.0063993758983898
324 => 0.0063727586862437
325 => 0.0064338089943361
326 => 0.0065890771169045
327 => 0.0066119409377589
328 => 0.0066426701448492
329 => 0.0066316559115612
330 => 0.0068940596335394
331 => 0.0068622808114123
401 => 0.0069388586293475
402 => 0.0067813322478819
403 => 0.0066030761947123
404 => 0.0066369568427904
405 => 0.0066336938639295
406 => 0.0065921523979576
407 => 0.0065546506199226
408 => 0.0064922207255548
409 => 0.0066897581492205
410 => 0.0066817384905653
411 => 0.0068115674423585
412 => 0.0067886189140379
413 => 0.0066353630254555
414 => 0.0066408365894981
415 => 0.0066776489381898
416 => 0.0068050568973276
417 => 0.0068428802541951
418 => 0.0068253589682939
419 => 0.0068668305523972
420 => 0.0068996080015398
421 => 0.0068709468953591
422 => 0.0072767277179547
423 => 0.0071082192294727
424 => 0.0071903490942843
425 => 0.0072099365831046
426 => 0.007159763642372
427 => 0.0071706443566586
428 => 0.0071871256739856
429 => 0.0072871970054226
430 => 0.0075498131349864
501 => 0.0076661240310817
502 => 0.0080160511006631
503 => 0.0076564660302868
504 => 0.0076351297403217
505 => 0.0076981621723384
506 => 0.0079036064057248
507 => 0.0080700996604888
508 => 0.0081253350783204
509 => 0.0081326353506242
510 => 0.0082362606664573
511 => 0.0082956567649951
512 => 0.0082236778274988
513 => 0.0081626832144795
514 => 0.0079442080815747
515 => 0.0079694971730964
516 => 0.0081437139356961
517 => 0.0083898053741841
518 => 0.0086009774298572
519 => 0.0085270323360496
520 => 0.0090911812047002
521 => 0.0091471142606855
522 => 0.0091393861208805
523 => 0.0092668099463696
524 => 0.0090138996021845
525 => 0.0089057755301383
526 => 0.0081758709421326
527 => 0.0083809443589409
528 => 0.0086790306138113
529 => 0.0086395777802132
530 => 0.0084230995740578
531 => 0.0086008132117257
601 => 0.0085420555254935
602 => 0.0084957109005034
603 => 0.0087080246119304
604 => 0.0084745769648499
605 => 0.0086767017949536
606 => 0.0084174746096319
607 => 0.0085273701110095
608 => 0.0084649881093803
609 => 0.0085053569096849
610 => 0.008269361727974
611 => 0.008396698999566
612 => 0.0082640640788297
613 => 0.0082640011926076
614 => 0.0082610732693811
615 => 0.0084171176654342
616 => 0.0084222062675873
617 => 0.0083068892231341
618 => 0.0082902702354376
619 => 0.0083517193433156
620 => 0.0082797785315373
621 => 0.0083134391845783
622 => 0.0082807980784272
623 => 0.0082734498779058
624 => 0.0082148981659573
625 => 0.0081896724785371
626 => 0.0081995641205605
627 => 0.0081657988468437
628 => 0.0081454540480861
629 => 0.0082570261768371
630 => 0.0081974176892523
701 => 0.0082478903212086
702 => 0.0081903703869404
703 => 0.0079909812345242
704 => 0.0078763104244676
705 => 0.0074996827989376
706 => 0.0076064939263328
707 => 0.0076773098142999
708 => 0.0076539051637492
709 => 0.0077041874095295
710 => 0.0077072743310449
711 => 0.007690927060375
712 => 0.0076719990151542
713 => 0.0076627858895272
714 => 0.0077314529797781
715 => 0.0077713165368967
716 => 0.0076844171360518
717 => 0.0076640578222856
718 => 0.0077519179143873
719 => 0.0078055125198142
720 => 0.0082012249740789
721 => 0.0081719093173326
722 => 0.0082454858628587
723 => 0.0082372022729566
724 => 0.0083143222143309
725 => 0.0084403807251589
726 => 0.0081840685261316
727 => 0.0082285554612738
728 => 0.0082176482921303
729 => 0.0083367299048256
730 => 0.0083371016646222
731 => 0.0082657062892437
801 => 0.0083044108804941
802 => 0.008282807039463
803 => 0.0083218481001404
804 => 0.0081715177888638
805 => 0.0083546038808443
806 => 0.0084584018971901
807 => 0.0084598431327478
808 => 0.0085090425687037
809 => 0.0085590320450741
810 => 0.0086549824918012
811 => 0.0085563560391921
812 => 0.0083789366520398
813 => 0.0083917457587311
814 => 0.008287724836959
815 => 0.0082894734474469
816 => 0.0082801392276214
817 => 0.008308151923965
818 => 0.0081776650004206
819 => 0.008208290020563
820 => 0.0081654148130238
821 => 0.0082284622589459
822 => 0.0081606336292499
823 => 0.008217643032363
824 => 0.008242246400855
825 => 0.008333033360263
826 => 0.0081472243215287
827 => 0.0077683471133835
828 => 0.0078479916959778
829 => 0.0077301911023739
830 => 0.0077410939958104
831 => 0.0077631195757348
901 => 0.0076917274648785
902 => 0.0077053468298059
903 => 0.0077048602502527
904 => 0.0077006671705347
905 => 0.0076820953252069
906 => 0.0076551624751539
907 => 0.007762454660271
908 => 0.0077806856932479
909 => 0.0078212110212082
910 => 0.0079417869086258
911 => 0.0079297385340975
912 => 0.0079493899328353
913 => 0.0079064910397286
914 => 0.0077430839524246
915 => 0.0077519577434405
916 => 0.0076413014272804
917 => 0.0078183812904147
918 => 0.0077764464414845
919 => 0.0077494107715769
920 => 0.0077420338385589
921 => 0.0078629086102793
922 => 0.0078990762364579
923 => 0.0078765389989425
924 => 0.0078303144672821
925 => 0.0079190792331261
926 => 0.0079428289397811
927 => 0.0079481456232457
928 => 0.0081054197693656
929 => 0.007956935500916
930 => 0.0079926771401385
1001 => 0.0082715232064518
1002 => 0.0080186483024325
1003 => 0.0081526017788748
1004 => 0.0081460454532632
1005 => 0.0082145715190726
1006 => 0.0081404243157409
1007 => 0.0081413434591908
1008 => 0.0082021899632717
1009 => 0.0081167420220149
1010 => 0.0080955839101026
1011 => 0.008066354130033
1012 => 0.0081301762854648
1013 => 0.0081684347812184
1014 => 0.0084767701592233
1015 => 0.008675968875216
1016 => 0.0086673211336055
1017 => 0.0087463453040313
1018 => 0.008710744191476
1019 => 0.0085957788079361
1020 => 0.0087920106991039
1021 => 0.0087299147180473
1022 => 0.008735033835279
1023 => 0.00873484330148
1024 => 0.0087761317003577
1025 => 0.0087468750857266
1026 => 0.0086892072951589
1027 => 0.0087274898657809
1028 => 0.0088411754142586
1029 => 0.0091940588450319
1030 => 0.0093915370879763
1031 => 0.0091821704068457
1101 => 0.009326588739958
1102 => 0.0092399892016042
1103 => 0.0092242514893722
1104 => 0.0093149568749978
1105 => 0.0094058210283934
1106 => 0.0094000333746387
1107 => 0.0093340706651993
1108 => 0.0092968100043788
1109 => 0.0095789602113487
1110 => 0.0097868436775408
1111 => 0.0097726674188149
1112 => 0.0098352368144646
1113 => 0.01001894249529
1114 => 0.010035738240471
1115 => 0.010033622362624
1116 => 0.0099919923557399
1117 => 0.01017287445571
1118 => 0.010323769485823
1119 => 0.0099823562119528
1120 => 0.010112361917215
1121 => 0.010170725666829
1122 => 0.010256420967007
1123 => 0.010401003302607
1124 => 0.010558058067639
1125 => 0.010580267333433
1126 => 0.010564508796541
1127 => 0.010460926957144
1128 => 0.010632778155095
1129 => 0.010733444556448
1130 => 0.010793389094744
1201 => 0.010945398470044
1202 => 0.010171086101477
1203 => 0.0096229893211838
1204 => 0.0095373960943276
1205 => 0.0097114532869272
1206 => 0.0097573507805356
1207 => 0.0097388495584126
1208 => 0.0091219168014134
1209 => 0.0095341480710391
1210 => 0.0099776742557669
1211 => 0.0099947119028395
1212 => 0.010216750384609
1213 => 0.010289055215939
1214 => 0.010467825297012
1215 => 0.010456643179767
1216 => 0.010500170849656
1217 => 0.010490164592142
1218 => 0.01082129852285
1219 => 0.011186588422285
1220 => 0.011173939594618
1221 => 0.01112142484966
1222 => 0.011199418201017
1223 => 0.011576436524079
1224 => 0.011541726718487
1225 => 0.011575444338045
1226 => 0.012019970188756
1227 => 0.012597917027745
1228 => 0.012329402696121
1229 => 0.012912001532828
1230 => 0.013278716618298
1231 => 0.013912912439571
]
'min_raw' => 0.0056803339544027
'max_raw' => 0.013912912439571
'avg_raw' => 0.0097966231969869
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.00568'
'max' => '$0.013912'
'avg' => '$0.009796'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 0.0025328224657859
'max_diff' => 0.0056443794686382
'year' => 2028
]
3 => [
'items' => [
101 => 0.013833507999268
102 => 0.014080395778545
103 => 0.013691357478917
104 => 0.012798046905359
105 => 0.012656677087638
106 => 0.01293970304277
107 => 0.013635494736192
108 => 0.012917790086231
109 => 0.013062980802178
110 => 0.013021165866218
111 => 0.013018937725982
112 => 0.013103976776262
113 => 0.012980623198493
114 => 0.012478058531779
115 => 0.012708380956902
116 => 0.012619442407571
117 => 0.012718126358862
118 => 0.013250682943622
119 => 0.013015226982936
120 => 0.012767193255243
121 => 0.013078282592861
122 => 0.013474406221544
123 => 0.013449617516763
124 => 0.013401517068615
125 => 0.013672656776371
126 => 0.014120500137104
127 => 0.01424155039793
128 => 0.014330907225708
129 => 0.014343228022563
130 => 0.014470139887498
131 => 0.013787702803834
201 => 0.014870747981836
202 => 0.015057759965557
203 => 0.01502260946347
204 => 0.01523046541271
205 => 0.015169308919647
206 => 0.015080702756359
207 => 0.015410198648132
208 => 0.015032458197162
209 => 0.01449630318321
210 => 0.014202157938613
211 => 0.014589512124719
212 => 0.014826055809376
213 => 0.01498239613793
214 => 0.015029704626887
215 => 0.01384067845199
216 => 0.013199859290135
217 => 0.013610617025877
218 => 0.014111769812467
219 => 0.013784918874801
220 => 0.013797730812747
221 => 0.013331727270549
222 => 0.014153000785703
223 => 0.014033348142543
224 => 0.014654106266921
225 => 0.014505957358643
226 => 0.015012161511381
227 => 0.014878860993217
228 => 0.015432183991386
301 => 0.015652919515978
302 => 0.01602356881651
303 => 0.016296219950794
304 => 0.016456325911832
305 => 0.016446713750473
306 => 0.017081133332576
307 => 0.016707038269942
308 => 0.016237086703837
309 => 0.016228586762685
310 => 0.016471981338035
311 => 0.01698206959593
312 => 0.01711432805972
313 => 0.017188242497947
314 => 0.017075039962822
315 => 0.016668986583967
316 => 0.016493654793716
317 => 0.016643042558861
318 => 0.016460354159125
319 => 0.016775725590381
320 => 0.017208797925199
321 => 0.017119370200613
322 => 0.017418313676151
323 => 0.017727688723562
324 => 0.018170108936262
325 => 0.018285773962635
326 => 0.018476963852882
327 => 0.018673761052554
328 => 0.018736967009256
329 => 0.018857646792255
330 => 0.01885701075023
331 => 0.019220687398985
401 => 0.01962183400469
402 => 0.019773257561778
403 => 0.020121447681759
404 => 0.019525184303329
405 => 0.019977456925249
406 => 0.020385418151338
407 => 0.019899029959327
408 => 0.0205694027681
409 => 0.020595431825167
410 => 0.020988439683763
411 => 0.020590050927881
412 => 0.02035348895634
413 => 0.021036434504316
414 => 0.021366890342399
415 => 0.02126735435463
416 => 0.020509880573008
417 => 0.020068998342525
418 => 0.018915124505521
419 => 0.020281937909093
420 => 0.020947672847479
421 => 0.020508156480347
422 => 0.020729822970788
423 => 0.021939163467033
424 => 0.022399602029005
425 => 0.022303834026823
426 => 0.022320017242716
427 => 0.022568461533205
428 => 0.023670200338002
429 => 0.023010012908062
430 => 0.0235147014615
501 => 0.023782386450454
502 => 0.024031027186441
503 => 0.023420444122569
504 => 0.022626084527719
505 => 0.022374477499082
506 => 0.020464455239557
507 => 0.020365030286142
508 => 0.020309220046906
509 => 0.019957344383038
510 => 0.019680866498094
511 => 0.019461001019021
512 => 0.018884008344542
513 => 0.019078726434381
514 => 0.018159120538993
515 => 0.018747451802031
516 => 0.01727973858833
517 => 0.018502093766034
518 => 0.01783682141648
519 => 0.018283533906763
520 => 0.018281975368967
521 => 0.017459436044032
522 => 0.016985012527367
523 => 0.017287333657026
524 => 0.0176114459063
525 => 0.017664032028301
526 => 0.018084252019681
527 => 0.018201526386676
528 => 0.017846179579663
529 => 0.017249323494281
530 => 0.017387959550077
531 => 0.016982203072122
601 => 0.016271130451702
602 => 0.016781835221824
603 => 0.016956212284448
604 => 0.017033227129344
605 => 0.016333968874404
606 => 0.016114246749067
607 => 0.015997268533184
608 => 0.017159058034477
609 => 0.017222703485949
610 => 0.016897084357657
611 => 0.018368913694012
612 => 0.01803579338539
613 => 0.018407970386577
614 => 0.017375379781128
615 => 0.017414826132824
616 => 0.016925981192205
617 => 0.017199701694321
618 => 0.017006244865849
619 => 0.017177587782709
620 => 0.017280290020601
621 => 0.017769054746575
622 => 0.018507674674091
623 => 0.017696049595382
624 => 0.017342412925903
625 => 0.017561807126719
626 => 0.018146082794923
627 => 0.019031290340774
628 => 0.018507229657168
629 => 0.018739798889425
630 => 0.018790604920388
701 => 0.018404181974078
702 => 0.019045538305992
703 => 0.019389246374634
704 => 0.019741819732698
705 => 0.020047949300623
706 => 0.019600994180233
707 => 0.02007930022755
708 => 0.019693869985796
709 => 0.019348099213896
710 => 0.019348623605429
711 => 0.019131716549311
712 => 0.018711431796035
713 => 0.018633924839206
714 => 0.019037125816681
715 => 0.01936045481734
716 => 0.019387085742476
717 => 0.019566097290485
718 => 0.019672034480631
719 => 0.020710362958691
720 => 0.02112798726207
721 => 0.021638650355018
722 => 0.021837582409117
723 => 0.022436296570864
724 => 0.021952786260066
725 => 0.021848175762903
726 => 0.020395891044413
727 => 0.020633702585707
728 => 0.02101446180872
729 => 0.020402169623758
730 => 0.020790528084883
731 => 0.020867198271666
801 => 0.02038136416961
802 => 0.02064086915517
803 => 0.019951700851388
804 => 0.018522696659833
805 => 0.01904712919616
806 => 0.019433288064979
807 => 0.018882191746129
808 => 0.019870010567295
809 => 0.019292947204689
810 => 0.01911004582267
811 => 0.01839648232236
812 => 0.018733256826928
813 => 0.019188749166503
814 => 0.018907307857314
815 => 0.019491340832506
816 => 0.020318487281284
817 => 0.020907961098105
818 => 0.020953213578235
819 => 0.020574221405698
820 => 0.021181558780885
821 => 0.021185982570618
822 => 0.020500903530361
823 => 0.020081296432739
824 => 0.019985960817298
825 => 0.020224127876317
826 => 0.020513306654031
827 => 0.020969260987816
828 => 0.021244784642425
829 => 0.021963204207188
830 => 0.02215758794271
831 => 0.022371156734582
901 => 0.022656550502699
902 => 0.022999238894785
903 => 0.022249456202163
904 => 0.022279246466311
905 => 0.021581059204389
906 => 0.020834945984845
907 => 0.021401152914153
908 => 0.022141393154873
909 => 0.021971581225759
910 => 0.021952473914791
911 => 0.021984607111913
912 => 0.0218565744629
913 => 0.021277487536528
914 => 0.020986673707379
915 => 0.021361897741501
916 => 0.021561312616336
917 => 0.021870587696402
918 => 0.021832463014779
919 => 0.022629122407308
920 => 0.022938680157515
921 => 0.022859482038289
922 => 0.022874056398236
923 => 0.02343449591858
924 => 0.024057819928382
925 => 0.024641645118409
926 => 0.025235537177579
927 => 0.024519577120247
928 => 0.024156056757412
929 => 0.024531116980459
930 => 0.024332104746755
1001 => 0.025475688072478
1002 => 0.025554867300754
1003 => 0.026698367932387
1004 => 0.027783686197328
1005 => 0.027102017240615
1006 => 0.027744800363751
1007 => 0.0284400227183
1008 => 0.029781219435988
1009 => 0.02932955156534
1010 => 0.028983581054962
1011 => 0.028656640594372
1012 => 0.029336951792523
1013 => 0.030212161280708
1014 => 0.030400673021811
1015 => 0.030706134059425
1016 => 0.030384979128373
1017 => 0.03077177486877
1018 => 0.032137333799035
1019 => 0.031768347721955
1020 => 0.03124432817503
1021 => 0.0323223058008
1022 => 0.032712421713034
1023 => 0.035450459490383
1024 => 0.038907345286986
1025 => 0.037476171868057
1026 => 0.036587796343249
1027 => 0.036796585664128
1028 => 0.038058923334078
1029 => 0.038464346129071
1030 => 0.037362267214662
1031 => 0.037751540118575
1101 => 0.039896472091603
1102 => 0.041047159277476
1103 => 0.039484371521154
1104 => 0.035172702082521
1105 => 0.031197145948252
1106 => 0.032251642456686
1107 => 0.032132095277466
1108 => 0.034436557096771
1109 => 0.031759547526048
1110 => 0.031804621501646
1111 => 0.034156737150907
1112 => 0.033529233021155
1113 => 0.032512756695613
1114 => 0.031204567350328
1115 => 0.0287862583527
1116 => 0.026644294633966
1117 => 0.030845178751188
1118 => 0.030664028989241
1119 => 0.030401697289052
1120 => 0.030985488100569
1121 => 0.033820210569382
1122 => 0.033754861041375
1123 => 0.033339140685814
1124 => 0.033654460911516
1125 => 0.032457479535497
1126 => 0.032765968890856
1127 => 0.031196516199848
1128 => 0.031905974362318
1129 => 0.032510575793941
1130 => 0.032631958482617
1201 => 0.032905439878157
1202 => 0.030568571296204
1203 => 0.031617756682644
1204 => 0.032234054801801
1205 => 0.029449597478332
1206 => 0.032179015033229
1207 => 0.030527891613256
1208 => 0.029967475525475
1209 => 0.030722001958466
1210 => 0.030427962273729
1211 => 0.030175164219381
1212 => 0.030034098561433
1213 => 0.030588139499778
1214 => 0.030562292827782
1215 => 0.029655774317937
1216 => 0.028473257876267
1217 => 0.02887014920887
1218 => 0.028725954866859
1219 => 0.028203375969971
1220 => 0.028555531050057
1221 => 0.027004818298966
1222 => 0.024336897609747
1223 => 0.026099407737666
1224 => 0.026031553014983
1225 => 0.02599733758684
1226 => 0.027321815235768
1227 => 0.027194497270722
1228 => 0.026963413917462
1229 => 0.028199131942971
1230 => 0.027748078240907
1231 => 0.029138119469049
]
'min_raw' => 0.012478058531779
'max_raw' => 0.041047159277476
'avg_raw' => 0.026762608904627
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.012478'
'max' => '$0.041047'
'avg' => '$0.026762'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072435
'min_diff' => 0.0067977245773762
'max_diff' => 0.027134246837905
'year' => 2029
]
4 => [
'items' => [
101 => 0.030053690524133
102 => 0.029821472088943
103 => 0.030682571091588
104 => 0.028879292783566
105 => 0.029478269502523
106 => 0.029601717774154
107 => 0.028183883374351
108 => 0.027215328064371
109 => 0.027150736467535
110 => 0.025471395035173
111 => 0.02636848567317
112 => 0.027157888310475
113 => 0.026779825707325
114 => 0.026660142381467
115 => 0.02727157853713
116 => 0.027319092363022
117 => 0.026235772097405
118 => 0.026461028684918
119 => 0.027400386100638
120 => 0.026437359288184
121 => 0.024566355501123
122 => 0.02410232069328
123 => 0.024040409896056
124 => 0.022781910694123
125 => 0.024133329718009
126 => 0.023543399098305
127 => 0.025406982857498
128 => 0.024342513808847
129 => 0.024296626675687
130 => 0.024227261543736
131 => 0.023144019292685
201 => 0.023381180502029
202 => 0.02416954048256
203 => 0.024450836205124
204 => 0.024421494756673
205 => 0.024165677088567
206 => 0.024282789107027
207 => 0.023905530491034
208 => 0.023772312621768
209 => 0.023351840381902
210 => 0.02273386234772
211 => 0.022819795983653
212 => 0.021595419795189
213 => 0.020928314665152
214 => 0.020743668757462
215 => 0.020496752532815
216 => 0.020771558602054
217 => 0.021591951291282
218 => 0.020602383652055
219 => 0.0189058393447
220 => 0.019007804548343
221 => 0.019236890087188
222 => 0.018809990701103
223 => 0.018405966259123
224 => 0.018757232731886
225 => 0.018038384543711
226 => 0.019323759456391
227 => 0.019288993667225
228 => 0.01976810194762
301 => 0.020067698187644
302 => 0.019377225849825
303 => 0.019203573924099
304 => 0.019302493953032
305 => 0.017667566221852
306 => 0.01963449347185
307 => 0.019651503540386
308 => 0.019505853006465
309 => 0.020553181045023
310 => 0.022763369876188
311 => 0.021931807933264
312 => 0.021609802014871
313 => 0.020997668528621
314 => 0.021813300054159
315 => 0.021750672278832
316 => 0.021467445727923
317 => 0.021296149426212
318 => 0.021611768114345
319 => 0.021257040777955
320 => 0.021193322001084
321 => 0.020807255539959
322 => 0.020669447378242
323 => 0.020567419701608
324 => 0.020455097254666
325 => 0.02070285258361
326 => 0.020141406413296
327 => 0.019464357371143
328 => 0.019408068069061
329 => 0.019563487781117
330 => 0.019494726128169
331 => 0.019407738864721
401 => 0.019241656489227
402 => 0.019192383396206
403 => 0.019352497044617
404 => 0.019171738070767
405 => 0.019438457783133
406 => 0.019365924779644
407 => 0.018960761318336
408 => 0.018455777634819
409 => 0.018451282220797
410 => 0.018342484314522
411 => 0.018203913823007
412 => 0.018165366682331
413 => 0.018727650049311
414 => 0.019891559791236
415 => 0.019663056458897
416 => 0.019828173534476
417 => 0.020640386123947
418 => 0.020898564082055
419 => 0.02071531548267
420 => 0.02046447349755
421 => 0.020475509271851
422 => 0.021332712270037
423 => 0.021386174969568
424 => 0.02152125796356
425 => 0.02169487778529
426 => 0.020744883689064
427 => 0.02043076463535
428 => 0.020281917601039
429 => 0.019823526346412
430 => 0.020317862015031
501 => 0.020029833790491
502 => 0.020068698638426
503 => 0.020043387855223
504 => 0.02005720925436
505 => 0.019323400167907
506 => 0.01959076163114
507 => 0.019146221342906
508 => 0.018551031798951
509 => 0.018549036514899
510 => 0.018694708312578
511 => 0.01860805702718
512 => 0.018374880646184
513 => 0.018408002250543
514 => 0.018117822144169
515 => 0.018443235369338
516 => 0.018452567056251
517 => 0.018327265239183
518 => 0.018828609210927
519 => 0.019034010245209
520 => 0.018951533904989
521 => 0.019028223485314
522 => 0.019672551803986
523 => 0.019777605433945
524 => 0.01982426331692
525 => 0.019761747934719
526 => 0.019040000624169
527 => 0.019072013186498
528 => 0.018837126244794
529 => 0.01863867153083
530 => 0.01864660867863
531 => 0.018748640198915
601 => 0.019194217832067
602 => 0.0201319096928
603 => 0.020167494413471
604 => 0.020210624133004
605 => 0.020035193888404
606 => 0.019982282447991
607 => 0.020052086295497
608 => 0.020404234056893
609 => 0.021310053706386
610 => 0.020989876544595
611 => 0.020729567528204
612 => 0.020957928714386
613 => 0.020922774299727
614 => 0.020626035661857
615 => 0.020617707196611
616 => 0.020048170877456
617 => 0.019837626267979
618 => 0.019661679433309
619 => 0.019469550083058
620 => 0.019355649363995
621 => 0.019530652635427
622 => 0.019570677954181
623 => 0.019188030242662
624 => 0.019135876773514
625 => 0.019448355154765
626 => 0.019310845069545
627 => 0.01945227760228
628 => 0.01948509116306
629 => 0.019479807424014
630 => 0.019336231102112
701 => 0.019427742368185
702 => 0.0192112909431
703 => 0.018975932528274
704 => 0.018825788522961
705 => 0.018694767964614
706 => 0.018767465785345
707 => 0.018508311328538
708 => 0.018425402602057
709 => 0.019396740410308
710 => 0.020114278092904
711 => 0.020103844810823
712 => 0.020040334889377
713 => 0.019945972028625
714 => 0.020397330825879
715 => 0.020240086446119
716 => 0.020354494870602
717 => 0.020383616616339
718 => 0.020471759369777
719 => 0.020503262828005
720 => 0.020408037496681
721 => 0.02008844965396
722 => 0.0192920671354
723 => 0.018921348923217
724 => 0.018799005738396
725 => 0.018803452680802
726 => 0.018680786157235
727 => 0.018716916945953
728 => 0.018668221343406
729 => 0.018576003652913
730 => 0.01876177160282
731 => 0.018783179628498
801 => 0.018739819169228
802 => 0.018750032127058
803 => 0.018391026043797
804 => 0.018418320496587
805 => 0.018266341515041
806 => 0.018237847288135
807 => 0.017853657657109
808 => 0.01717301003657
809 => 0.017550154890412
810 => 0.017094616941562
811 => 0.016922097817807
812 => 0.017738776517438
813 => 0.017656804627136
814 => 0.017516504383263
815 => 0.017308971081443
816 => 0.017231994961044
817 => 0.016764312421175
818 => 0.016736679241731
819 => 0.01696847533698
820 => 0.016861509414639
821 => 0.01671128874851
822 => 0.016167204723414
823 => 0.015555474139176
824 => 0.015573938440313
825 => 0.015768518557507
826 => 0.016334286490952
827 => 0.01611323117147
828 => 0.015952853000869
829 => 0.015922818990465
830 => 0.016298757511125
831 => 0.016830789279415
901 => 0.017080406681556
902 => 0.016833043417027
903 => 0.01654888581772
904 => 0.016566181174131
905 => 0.016681239431872
906 => 0.016693330427924
907 => 0.016508373042649
908 => 0.01656043746321
909 => 0.016481346847507
910 => 0.015995967884931
911 => 0.015987188918651
912 => 0.015868069093442
913 => 0.015864462192475
914 => 0.015661809653961
915 => 0.015633457162952
916 => 0.015231078247603
917 => 0.015495925268201
918 => 0.015318279791876
919 => 0.015050526156723
920 => 0.0150043653291
921 => 0.015002977678881
922 => 0.015277900793566
923 => 0.015492712631538
924 => 0.015321370010994
925 => 0.015282358617633
926 => 0.015698898236599
927 => 0.015645889773243
928 => 0.015599984785844
929 => 0.01678315166994
930 => 0.015846582757515
1001 => 0.015438185254213
1002 => 0.014932715791294
1003 => 0.015097299197218
1004 => 0.01513197933908
1005 => 0.01391641639848
1006 => 0.013423262664867
1007 => 0.013254030887597
1008 => 0.013156635607193
1009 => 0.013201019859486
1010 => 0.012757123658071
1011 => 0.013055429246787
1012 => 0.012671052657974
1013 => 0.012606610671989
1014 => 0.01329392362791
1015 => 0.013389559210503
1016 => 0.012981548103517
1017 => 0.0132435572852
1018 => 0.013148549113722
1019 => 0.012677641691361
1020 => 0.012659656491587
1021 => 0.012423371700243
1022 => 0.01205363175554
1023 => 0.011884650679364
1024 => 0.011796643867731
1025 => 0.011832957193429
1026 => 0.01181459606475
1027 => 0.011694777280171
1028 => 0.011821463937227
1029 => 0.011497831878991
1030 => 0.01136895898572
1031 => 0.011310750089659
1101 => 0.011023508010408
1102 => 0.011480637895628
1103 => 0.011570698241787
1104 => 0.011660936034649
1105 => 0.012446394413556
1106 => 0.012407155132628
1107 => 0.01276185912191
1108 => 0.012748075977146
1109 => 0.012646908653579
1110 => 0.012220100356666
1111 => 0.012390218536689
1112 => 0.011866621220813
1113 => 0.012258935931024
1114 => 0.012079899880738
1115 => 0.012198403662328
1116 => 0.011985323177974
1117 => 0.012103250715893
1118 => 0.01159205489088
1119 => 0.011114707422203
1120 => 0.01130680597824
1121 => 0.011515639077787
1122 => 0.011968442447289
1123 => 0.01169875649596
1124 => 0.011795745762013
1125 => 0.011470847956543
1126 => 0.01080049098139
1127 => 0.010804285129069
1128 => 0.010701165312962
1129 => 0.010612054736106
1130 => 0.011729733171632
1201 => 0.011590732190293
1202 => 0.011369252318528
1203 => 0.011665711928146
1204 => 0.011744100554375
1205 => 0.011746332168362
1206 => 0.011962621446809
1207 => 0.012078055073489
1208 => 0.012098400750509
1209 => 0.012438736603384
1210 => 0.01255281269213
1211 => 0.01302267595702
1212 => 0.012068261336755
1213 => 0.01204860579572
1214 => 0.011669883722816
1215 => 0.01142969219682
1216 => 0.011686329842093
1217 => 0.011913675761273
1218 => 0.011676947994249
1219 => 0.011707859643026
1220 => 0.011390071957165
1221 => 0.01150366610156
1222 => 0.011601508681497
1223 => 0.011547485759777
1224 => 0.011466610831223
1225 => 0.011895035988519
1226 => 0.011870862562133
1227 => 0.012269821918058
1228 => 0.01258083926586
1229 => 0.013138237954121
1230 => 0.01255656336507
1231 => 0.012535364831097
]
'min_raw' => 0.010612054736106
'max_raw' => 0.030682571091588
'avg_raw' => 0.020647312913847
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.010612'
'max' => '$0.030682'
'avg' => '$0.020647'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -0.0018660037956727
'max_diff' => -0.010364588185888
'year' => 2030
]
5 => [
'items' => [
101 => 0.012742583901027
102 => 0.01255278096797
103 => 0.012672729869887
104 => 0.013118912331619
105 => 0.01312833946395
106 => 0.012970422851227
107 => 0.012960813610992
108 => 0.012991143223884
109 => 0.01316878471392
110 => 0.013106711318929
111 => 0.013178544223118
112 => 0.013268372369751
113 => 0.013639939670568
114 => 0.013729523288859
115 => 0.013511881540191
116 => 0.013531532153264
117 => 0.013450128164863
118 => 0.013371492932056
119 => 0.013548253451652
120 => 0.013871286775452
121 => 0.01386927720191
122 => 0.01394421465416
123 => 0.013990900066097
124 => 0.013790492102254
125 => 0.013660033886997
126 => 0.013710059867998
127 => 0.013790052501044
128 => 0.013684119335215
129 => 0.013030250762707
130 => 0.01322859271832
131 => 0.01319557891848
201 => 0.013148563252892
202 => 0.013347997622994
203 => 0.013328761691474
204 => 0.012752570860928
205 => 0.012789456728453
206 => 0.012754814012702
207 => 0.012866751714526
208 => 0.012546735964723
209 => 0.012645170654024
210 => 0.012706907968385
211 => 0.012743271720832
212 => 0.01287464252953
213 => 0.012859227681406
214 => 0.012873684320927
215 => 0.013068472549619
216 => 0.014053644567092
217 => 0.014107265306344
218 => 0.013843217175405
219 => 0.013948699195596
220 => 0.013746196783212
221 => 0.013882138009294
222 => 0.013975145543646
223 => 0.013554862380227
224 => 0.013529975938905
225 => 0.01332663772703
226 => 0.013435900164427
227 => 0.013262055770282
228 => 0.013304711103786
301 => 0.013185443072683
302 => 0.013400101782641
303 => 0.013640123574965
304 => 0.013700762558454
305 => 0.013541247499619
306 => 0.013425748084467
307 => 0.013222969159333
308 => 0.013560195031054
309 => 0.013658810152717
310 => 0.013559677047801
311 => 0.013536705741291
312 => 0.013493175156963
313 => 0.013545940960539
314 => 0.013658273073586
315 => 0.013605299323521
316 => 0.013640289418716
317 => 0.013506943257463
318 => 0.013790558445629
319 => 0.014241007620149
320 => 0.014242455887901
321 => 0.014189481852288
322 => 0.014167806018257
323 => 0.014222160593529
324 => 0.014251645720873
325 => 0.014427418450378
326 => 0.014616029592231
327 => 0.015496195493772
328 => 0.01524904843066
329 => 0.016029983979811
330 => 0.0166476026074
331 => 0.016832799428624
401 => 0.016662427067282
402 => 0.016079592422462
403 => 0.016050995774228
404 => 0.016921996800028
405 => 0.016675899115865
406 => 0.01664662657941
407 => 0.016335216248262
408 => 0.01651929832289
409 => 0.016479036872848
410 => 0.016415482204299
411 => 0.016766697979421
412 => 0.017424142557203
413 => 0.01732167365428
414 => 0.017245185371643
415 => 0.016910035982533
416 => 0.017111870773103
417 => 0.017040001270072
418 => 0.017348798264608
419 => 0.017165873765736
420 => 0.016674034683864
421 => 0.016752361678775
422 => 0.016740522711066
423 => 0.016984167827594
424 => 0.016911031611256
425 => 0.016726241691032
426 => 0.01742189548311
427 => 0.017376723595282
428 => 0.01744076700449
429 => 0.017468960893832
430 => 0.017892393098275
501 => 0.018065859724116
502 => 0.018105239685143
503 => 0.018270019563302
504 => 0.018101139811663
505 => 0.018776779227439
506 => 0.019226040014276
507 => 0.019747879536937
508 => 0.020510427336785
509 => 0.020797152363489
510 => 0.020745358053791
511 => 0.021323513092798
512 => 0.022362444846229
513 => 0.020955355865355
514 => 0.022437023978894
515 => 0.021967944960829
516 => 0.020855767047367
517 => 0.020784155901456
518 => 0.021537335697104
519 => 0.023207815992981
520 => 0.022789379625295
521 => 0.023208500404978
522 => 0.022719573752566
523 => 0.022695294423277
524 => 0.023184754328775
525 => 0.024328404077043
526 => 0.023785098950711
527 => 0.023006137828231
528 => 0.023581310599093
529 => 0.023083042715245
530 => 0.021960305716538
531 => 0.02278905965489
601 => 0.022234895497867
602 => 0.022396630059873
603 => 0.023561400692239
604 => 0.023421252408151
605 => 0.023602617265142
606 => 0.023282513039699
607 => 0.022983485217332
608 => 0.022425327580786
609 => 0.022260084621444
610 => 0.022305751830587
611 => 0.022260061991043
612 => 0.021947777923129
613 => 0.021880340208396
614 => 0.02176794106266
615 => 0.021802778257857
616 => 0.021591434980344
617 => 0.021990283410761
618 => 0.022064313194087
619 => 0.022354561820546
620 => 0.022384696395808
621 => 0.023193034689065
622 => 0.022747815540712
623 => 0.023046506983799
624 => 0.023019789209737
625 => 0.02087987131517
626 => 0.021174733120386
627 => 0.02163344555657
628 => 0.021426796225839
629 => 0.021134642420682
630 => 0.020898712558721
701 => 0.020541254692784
702 => 0.02104436977472
703 => 0.021705912607142
704 => 0.02240147421375
705 => 0.023237145909087
706 => 0.023050633714978
707 => 0.022385851912687
708 => 0.022415673538714
709 => 0.022600019096438
710 => 0.022361274849625
711 => 0.022290864510399
712 => 0.022590345797053
713 => 0.022592408160082
714 => 0.022317704050918
715 => 0.022012420703903
716 => 0.022011141555532
717 => 0.021956819332618
718 => 0.022729237555345
719 => 0.023153989477554
720 => 0.023202686600914
721 => 0.023150711773154
722 => 0.023170714821552
723 => 0.022923561036788
724 => 0.023488481297579
725 => 0.024006907993705
726 => 0.023867958564572
727 => 0.023659653617477
728 => 0.023493728693791
729 => 0.023828871925722
730 => 0.023813948525168
731 => 0.02400237998878
801 => 0.023993831649157
802 => 0.023930469235211
803 => 0.023867960827444
804 => 0.02411579959861
805 => 0.024044426012683
806 => 0.023972941563863
807 => 0.023829568558033
808 => 0.023849055330699
809 => 0.02364078635039
810 => 0.023544431590359
811 => 0.022095487186888
812 => 0.021708281896657
813 => 0.021830104563254
814 => 0.021870211748222
815 => 0.021701699509696
816 => 0.0219433027725
817 => 0.021905649159913
818 => 0.022052137339862
819 => 0.021960617884807
820 => 0.021964373875166
821 => 0.022233513078476
822 => 0.022311645334197
823 => 0.022271906638333
824 => 0.022299738258753
825 => 0.022941106204352
826 => 0.022849924192281
827 => 0.022801485565692
828 => 0.022814903396293
829 => 0.022978786657477
830 => 0.023024665022914
831 => 0.022830275164741
901 => 0.02292195054561
902 => 0.023312292682012
903 => 0.023448890338301
904 => 0.023884844486582
905 => 0.023699643415925
906 => 0.02403958799643
907 => 0.025084461741254
908 => 0.025919179188383
909 => 0.025151538527845
910 => 0.026684390818872
911 => 0.027877936202037
912 => 0.027832125942278
913 => 0.027624003697521
914 => 0.026265184010832
915 => 0.025014777876281
916 => 0.026060795702882
917 => 0.026063462217438
918 => 0.025973608358465
919 => 0.025415533757418
920 => 0.025954188572046
921 => 0.025996945035124
922 => 0.025973012785661
923 => 0.025545138297514
924 => 0.024891853038536
925 => 0.025019503414396
926 => 0.025228597334052
927 => 0.024832738922582
928 => 0.02470623817421
929 => 0.024941427133185
930 => 0.025699254962569
1001 => 0.025555992001222
1002 => 0.02555225082633
1003 => 0.026165190527925
1004 => 0.02572645798225
1005 => 0.025021113494429
1006 => 0.024843004708903
1007 => 0.024210838508741
1008 => 0.024647477954892
1009 => 0.024663191831225
1010 => 0.024424048868915
1011 => 0.025040518627828
1012 => 0.025034837750472
1013 => 0.025620084037145
1014 => 0.026738855128797
1015 => 0.026407979465614
1016 => 0.026023207068501
1017 => 0.026065042496649
1018 => 0.026523873884791
1019 => 0.026246453953419
1020 => 0.026346216094981
1021 => 0.026523722882842
1022 => 0.026630817135204
1023 => 0.026049633281821
1024 => 0.02591413152436
1025 => 0.02563694248325
1026 => 0.025564629036403
1027 => 0.025790393726648
1028 => 0.025730912707152
1029 => 0.024661871140766
1030 => 0.024550150348987
1031 => 0.024553576666171
1101 => 0.02427264942321
1102 => 0.02384416794743
1103 => 0.024970191682479
1104 => 0.024879756217863
1105 => 0.024779922464075
1106 => 0.02479215152927
1107 => 0.02528092026817
1108 => 0.024997409716195
1109 => 0.025751168985085
1110 => 0.025596218739479
1111 => 0.025437294604754
1112 => 0.025415326448387
1113 => 0.025354154215288
1114 => 0.025144371866806
1115 => 0.024891047075048
1116 => 0.024723780104913
1117 => 0.02280638025271
1118 => 0.023162238512277
1119 => 0.023571621002408
1120 => 0.023712938197504
1121 => 0.02347120535644
1122 => 0.02515391695275
1123 => 0.025461364576408
1124 => 0.024530085670035
1125 => 0.02435588141052
1126 => 0.025165337755002
1127 => 0.024677136627266
1128 => 0.024896973565192
1129 => 0.024421806349771
1130 => 0.025387309446986
1201 => 0.025379953931046
1202 => 0.025004351419352
1203 => 0.02532180809022
1204 => 0.025266642181432
1205 => 0.024842587870799
1206 => 0.025400752725005
1207 => 0.025401029567809
1208 => 0.025039520316607
1209 => 0.024617356655755
1210 => 0.024541883764255
1211 => 0.024485025078866
1212 => 0.024882989814087
1213 => 0.025239803751284
1214 => 0.02590374602673
1215 => 0.026070676889656
1216 => 0.026722219160875
1217 => 0.026334257461381
1218 => 0.026506235857822
1219 => 0.026692942734987
1220 => 0.026782456877818
1221 => 0.026636598385668
1222 => 0.027648711718369
1223 => 0.027734165094
1224 => 0.02776281687168
1225 => 0.027421537950485
1226 => 0.027724673509833
1227 => 0.027582846420409
1228 => 0.02795184110639
1229 => 0.028009704184712
1230 => 0.027960696215912
1231 => 0.027979062870278
]
'min_raw' => 0.012546735964723
'max_raw' => 0.028009704184712
'avg_raw' => 0.020278220074718
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.012546'
'max' => '$0.0280097'
'avg' => '$0.020278'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 0.0019346812286167
'max_diff' => -0.0026728669068759
'year' => 2031
]
6 => [
'items' => [
101 => 0.027115402689845
102 => 0.027070617353319
103 => 0.026459966111967
104 => 0.026708811006524
105 => 0.026243607403595
106 => 0.026391128258212
107 => 0.026456154045297
108 => 0.026422188264305
109 => 0.026722880323498
110 => 0.026467230645854
111 => 0.025792529113854
112 => 0.025117643759872
113 => 0.025109171124003
114 => 0.024931485723015
115 => 0.024803051722806
116 => 0.024827792667687
117 => 0.024914982984461
118 => 0.024797984063092
119 => 0.024822951714962
120 => 0.025237581094598
121 => 0.025320732059683
122 => 0.025038152591146
123 => 0.023903555248947
124 => 0.02362512221525
125 => 0.023825254358305
126 => 0.023729604084085
127 => 0.019151642515521
128 => 0.020227166680191
129 => 0.019588126742894
130 => 0.019882625746814
131 => 0.019230331449423
201 => 0.019541640477811
202 => 0.019484153067453
203 => 0.02121356409717
204 => 0.021186561722668
205 => 0.021199486330408
206 => 0.020582561128081
207 => 0.021565339726732
208 => 0.022049491804003
209 => 0.021959888139791
210 => 0.021982439451638
211 => 0.021594933198033
212 => 0.02120323823799
213 => 0.020768788245879
214 => 0.021575942631579
215 => 0.021486200842474
216 => 0.021692036218604
217 => 0.022215533534317
218 => 0.022292620502629
219 => 0.022396226169779
220 => 0.022359090913259
221 => 0.023243803382351
222 => 0.023136658864823
223 => 0.023394846324484
224 => 0.022863735131232
225 => 0.02226273240253
226 => 0.022376963372997
227 => 0.022365962011954
228 => 0.022225902059097
229 => 0.022099462196161
301 => 0.021888975448584
302 => 0.022554986664096
303 => 0.022527947825025
304 => 0.022965675200364
305 => 0.022888302634916
306 => 0.022371589706576
307 => 0.022390044209897
308 => 0.022514159613667
309 => 0.02294372444324
310 => 0.023071248531662
311 => 0.023012174292949
312 => 0.023151998634207
313 => 0.023262510092439
314 => 0.023165877171896
315 => 0.02453399554599
316 => 0.023965857412186
317 => 0.024242763985522
318 => 0.024308804571635
319 => 0.024139642998991
320 => 0.024176328086876
321 => 0.024231895998933
322 => 0.02456929347963
323 => 0.025454722095727
324 => 0.02584687240248
325 => 0.027026675948701
326 => 0.0258143097785
327 => 0.02574237298723
328 => 0.025954891232558
329 => 0.026647560809079
330 => 0.027208904441704
331 => 0.027395134509336
401 => 0.027419747887097
402 => 0.027769127874317
403 => 0.027969385967441
404 => 0.027726703954263
405 => 0.027521056357961
406 => 0.026784452193925
407 => 0.026869716131619
408 => 0.027457100110149
409 => 0.028286814576568
410 => 0.028998795905831
411 => 0.028749484859378
412 => 0.030651552157649
413 => 0.030840134361025
414 => 0.030814078398111
415 => 0.031243696722195
416 => 0.030390991839138
417 => 0.030026443981253
418 => 0.027565519702481
419 => 0.028256939045019
420 => 0.029261957665032
421 => 0.029128939682047
422 => 0.028399068295968
423 => 0.028998242232936
424 => 0.028800136591473
425 => 0.028643882452641
426 => 0.029359712953987
427 => 0.02857262791306
428 => 0.02925410588966
429 => 0.028380103335684
430 => 0.028750623691237
501 => 0.028540298417372
502 => 0.028676404646059
503 => 0.027880730414263
504 => 0.02831005691584
505 => 0.027862869020303
506 => 0.027862656995015
507 => 0.027852785297436
508 => 0.0283788998734
509 => 0.028396056450834
510 => 0.028007256984281
511 => 0.027951224906962
512 => 0.028158404864412
513 => 0.027915851394755
514 => 0.028029340636594
515 => 0.027919288868277
516 => 0.027894513897184
517 => 0.0276971027124
518 => 0.027612052546061
519 => 0.027645402907755
520 => 0.027531560930003
521 => 0.027462967020563
522 => 0.027839140242364
523 => 0.02763816606474
524 => 0.027808338067268
525 => 0.027614405592969
526 => 0.026942151144692
527 => 0.026555530502526
528 => 0.02528570416775
529 => 0.025645825341078
530 => 0.025884586051566
531 => 0.025805675638174
601 => 0.025975205740417
602 => 0.025985613511828
603 => 0.025930497547434
604 => 0.025866680321458
605 => 0.025835617625167
606 => 0.026067133514131
607 => 0.026201536280141
608 => 0.02590854888307
609 => 0.025839906035266
610 => 0.026136132469982
611 => 0.026316830424035
612 => 0.02765100259135
613 => 0.027552162807876
614 => 0.027800231268067
615 => 0.027772302566371
616 => 0.028032317833056
617 => 0.028457332903437
618 => 0.02759315842927
619 => 0.027743149237081
620 => 0.027706374954799
621 => 0.028107866926014
622 => 0.028109120340124
623 => 0.027868405847369
624 => 0.027998901079038
625 => 0.02792606222067
626 => 0.028057691882504
627 => 0.027550842742307
628 => 0.028168130284083
629 => 0.028518092543139
630 => 0.028522951769445
701 => 0.028688831102765
702 => 0.028857374112502
703 => 0.029180877742689
704 => 0.028848351771838
705 => 0.028250169921028
706 => 0.028293356718541
707 => 0.027942642918277
708 => 0.027948538480621
709 => 0.027917067506785
710 => 0.028011514268292
711 => 0.027571568495256
712 => 0.027674822888836
713 => 0.027530266133167
714 => 0.027742834998925
715 => 0.027514146038262
716 => 0.027706357221127
717 => 0.02778930919575
718 => 0.028095403767937
719 => 0.027468935621072
720 => 0.026191524661448
721 => 0.026460051932272
722 => 0.026062879006361
723 => 0.026099638872798
724 => 0.02617389965329
725 => 0.0259331961671
726 => 0.025979114806827
727 => 0.025977474269891
728 => 0.025963337008871
729 => 0.025900720735703
730 => 0.025809914751358
731 => 0.026171657844381
801 => 0.026233125044913
802 => 0.026369759017519
803 => 0.026776289040287
804 => 0.026735667104374
805 => 0.026801923167236
806 => 0.026657286554021
807 => 0.026106348150458
808 => 0.026136266756416
809 => 0.025763181260705
810 => 0.026360218382583
811 => 0.026218832111618
812 => 0.026127679462954
813 => 0.026102807618242
814 => 0.026510345350305
815 => 0.026632287027109
816 => 0.026556301157326
817 => 0.02640045192154
818 => 0.026699728526941
819 => 0.02677980232108
820 => 0.026797727890579
821 => 0.027327988654753
822 => 0.026827363576834
823 => 0.026947869008875
824 => 0.027888017989861
825 => 0.027035432595798
826 => 0.027487066093956
827 => 0.027464960984408
828 => 0.027696001399622
829 => 0.027446008926796
830 => 0.02744910788311
831 => 0.027654256119787
901 => 0.027366162420054
902 => 0.02729482636853
903 => 0.027196276124267
904 => 0.027411456977226
905 => 0.027540448166782
906 => 0.028580022421014
907 => 0.029251634799594
908 => 0.029222478334988
909 => 0.02948891384287
910 => 0.0293688822063
911 => 0.028981268389068
912 => 0.029642877910613
913 => 0.029433516975078
914 => 0.02945077643623
915 => 0.029450134038224
916 => 0.029589340757704
917 => 0.029490700038844
918 => 0.029296269056709
919 => 0.029425341416364
920 => 0.029808640180328
921 => 0.030998411304715
922 => 0.031664222988293
923 => 0.030958328605346
924 => 0.0314452450984
925 => 0.031153268708654
926 => 0.031100207913091
927 => 0.031406027453576
928 => 0.031712382290682
929 => 0.031692868811966
930 => 0.031470470931722
1001 => 0.03134484401231
1002 => 0.032296133134207
1003 => 0.032997026754434
1004 => 0.032949230508385
1005 => 0.033160187594273
1006 => 0.033779564123099
1007 => 0.033836192150615
1008 => 0.033829058320729
1009 => 0.033688699846005
1010 => 0.03429855647484
1011 => 0.03480730960402
1012 => 0.033656210914453
1013 => 0.034094534226452
1014 => 0.034291311683103
1015 => 0.034580239370708
1016 => 0.0350677088096
1017 => 0.03559722991512
1018 => 0.035672110005344
1019 => 0.035618978997988
1020 => 0.035269745594606
1021 => 0.035849153906767
1022 => 0.036188557707233
1023 => 0.036390664903293
1024 => 0.036903175125071
1025 => 0.034292526913685
1026 => 0.032444580352031
1027 => 0.032155996811757
1028 => 0.032742842788891
1029 => 0.032897589393053
1030 => 0.032835211230951
1031 => 0.030755179367858
1101 => 0.03214504587447
1102 => 0.033640425372289
1103 => 0.033697868988925
1104 => 0.034446487232444
1105 => 0.034690268019432
1106 => 0.035293003829101
1107 => 0.035255302540099
1108 => 0.035402059118132
1109 => 0.035368322322312
1110 => 0.036484763488725
1111 => 0.037716363888396
1112 => 0.037673717482804
1113 => 0.037496660353717
1114 => 0.037759620383139
1115 => 0.039030763981919
1116 => 0.038913737449004
1117 => 0.039027418757434
1118 => 0.04052616869891
1119 => 0.042474756817522
1120 => 0.041569442001379
1121 => 0.04353371465509
1122 => 0.044770120168982
1123 => 0.046908355658541
1124 => 0.046640638044216
1125 => 0.047473037429205
1126 => 0.046161367640223
1127 => 0.043149508672519
1128 => 0.042672870461947
1129 => 0.043627112229914
1130 => 0.045973022502912
1201 => 0.043553231167032
1202 => 0.044042751802737
1203 => 0.043901769826722
1204 => 0.043894257496355
1205 => 0.044180972591609
1206 => 0.04376507739189
1207 => 0.042070645530119
1208 => 0.042847193667019
1209 => 0.042547331138457
1210 => 0.042880050970129
1211 => 0.044675602677563
1212 => 0.0438817464671
1213 => 0.043045483437018
1214 => 0.044094342858363
1215 => 0.045429901328934
1216 => 0.045346324480075
1217 => 0.045184150460876
1218 => 0.046098316915947
1219 => 0.047608252074084
1220 => 0.048016381479918
1221 => 0.048317654263466
1222 => 0.048359194690272
1223 => 0.048787086903604
1224 => 0.046486202629796
1225 => 0.050137765063228
1226 => 0.050768289023106
1227 => 0.050649776651189
1228 => 0.051350577496089
1229 => 0.051144384109918
1230 => 0.050845642244107
1231 => 0.051956560647887
]
'min_raw' => 0.019151642515521
'max_raw' => 0.051956560647887
'avg_raw' => 0.035554101581704
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.019151'
'max' => '$0.051956'
'avg' => '$0.035554'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.0066049065507978
'max_diff' => 0.023946856463175
'year' => 2032
]
7 => [
'items' => [
101 => 0.050682982344446
102 => 0.048875298281761
103 => 0.047883567053035
104 => 0.049189558735697
105 => 0.049987082283471
106 => 0.050514194616524
107 => 0.050673698490017
108 => 0.046664813726194
109 => 0.044504247181435
110 => 0.04588914556568
111 => 0.047578817175039
112 => 0.046476816418692
113 => 0.046520012761977
114 => 0.044948849284131
115 => 0.047717830279958
116 => 0.047314413039661
117 => 0.04940734239595
118 => 0.048907848008264
119 => 0.050614550651268
120 => 0.050165118647531
121 => 0.052030685767638
122 => 0.052774911000063
123 => 0.054024580994712
124 => 0.054943843329847
125 => 0.055483651755725
126 => 0.055451243682606
127 => 0.057590233597425
128 => 0.056328945975272
129 => 0.054744471459179
130 => 0.054715813314136
131 => 0.055536435118198
201 => 0.057256233292914
202 => 0.057702151937572
203 => 0.057951359626596
204 => 0.057569689375874
205 => 0.056200652059325
206 => 0.055609508687216
207 => 0.056113179967325
208 => 0.055497233272718
209 => 0.056560530071729
210 => 0.058020663684711
211 => 0.057719151867624
212 => 0.058727060666967
213 => 0.059770140239189
214 => 0.061261790875102
215 => 0.061651763586993
216 => 0.062296373650414
217 => 0.062959889149049
218 => 0.063172992444967
219 => 0.063579872758943
220 => 0.063577728298847
221 => 0.064803889511217
222 => 0.066156383299514
223 => 0.066666918394293
224 => 0.067840865693667
225 => 0.065830522083508
226 => 0.067355390804977
227 => 0.068730860561681
228 => 0.067090968813776
301 => 0.069351177542491
302 => 0.069438936325683
303 => 0.070763989759869
304 => 0.0694207942548
305 => 0.068623209051521
306 => 0.070925807648258
307 => 0.072039962578043
308 => 0.071704370045898
309 => 0.06915049430603
310 => 0.067664029084543
311 => 0.063773662882185
312 => 0.068381969700191
313 => 0.07062654152509
314 => 0.069144681407252
315 => 0.069892045456034
316 => 0.073969421372581
317 => 0.075521822131062
318 => 0.075198933625398
319 => 0.075253496467658
320 => 0.076091143738868
321 => 0.079805733040189
322 => 0.077579865027331
323 => 0.079281457721477
324 => 0.080183976350904
325 => 0.081022285951825
326 => 0.078963662522433
327 => 0.07628542368798
328 => 0.07543711302429
329 => 0.068997339622804
330 => 0.068662121450738
331 => 0.068473953332608
401 => 0.067287579964702
402 => 0.066355415472544
403 => 0.06561412365933
404 => 0.063668752572985
405 => 0.064325258207659
406 => 0.061224742726525
407 => 0.063208342655833
408 => 0.058259845083378
409 => 0.062381100907118
410 => 0.060138088732765
411 => 0.061644211082224
412 => 0.061638956363232
413 => 0.058865707601352
414 => 0.057266155591725
415 => 0.058285452387755
416 => 0.059378219464979
417 => 0.059555517246749
418 => 0.06097231828651
419 => 0.06136771700267
420 => 0.060169640433303
421 => 0.058157298470276
422 => 0.058624719611653
423 => 0.057256683317214
424 => 0.054859252331965
425 => 0.0565811291207
426 => 0.057169053561952
427 => 0.057428714488526
428 => 0.055071116461343
429 => 0.054330307975258
430 => 0.053935907753252
501 => 0.057852962170414
502 => 0.058067547253637
503 => 0.056969699628597
504 => 0.06193207499596
505 => 0.060808936617725
506 => 0.062063757361797
507 => 0.05858230604235
508 => 0.058715302171149
509 => 0.05706712732379
510 => 0.057989995107228
511 => 0.057337741903311
512 => 0.057915436510283
513 => 0.058261704275778
514 => 0.059909608673862
515 => 0.062399917328278
516 => 0.059663466709557
517 => 0.058471155988286
518 => 0.059210858853953
519 => 0.061180785062127
520 => 0.064165324106178
521 => 0.062398416922654
522 => 0.063182540326672
523 => 0.063353836407228
524 => 0.062050984464557
525 => 0.064213362115673
526 => 0.065372197866031
527 => 0.066560923558628
528 => 0.067593060770172
529 => 0.066086120376367
530 => 0.067698762609159
531 => 0.066399257639204
601 => 0.065233467340799
602 => 0.065235235363465
603 => 0.064503918079797
604 => 0.063086898690783
605 => 0.062825578574471
606 => 0.064184998820619
607 => 0.065275125120453
608 => 0.06536491314386
609 => 0.06596846307616
610 => 0.066325637709036
611 => 0.069826434666592
612 => 0.071234484163033
613 => 0.072956220434267
614 => 0.073626933743652
615 => 0.075645540340872
616 => 0.074015351570405
617 => 0.073662649975546
618 => 0.068766170651877
619 => 0.069567968866822
620 => 0.070851725170969
621 => 0.068787339320496
622 => 0.070096716986499
623 => 0.070355215874179
624 => 0.068717192279244
625 => 0.06959213145612
626 => 0.067268552403723
627 => 0.062450565002012
628 => 0.064218725912946
629 => 0.065520687499921
630 => 0.063662627784602
701 => 0.06699312790747
702 => 0.065047518491168
703 => 0.064430853711923
704 => 0.062025024551218
705 => 0.063160483306214
706 => 0.064696207530549
707 => 0.063747308507014
708 => 0.065716416458755
709 => 0.068505198460329
710 => 0.07049265058949
711 => 0.070645222485676
712 => 0.069367423915577
713 => 0.071415104278962
714 => 0.071430019394906
715 => 0.069120227579987
716 => 0.067705492954324
717 => 0.067384062270746
718 => 0.068187059138521
719 => 0.069162045577399
720 => 0.070699327447473
721 => 0.071628274685432
722 => 0.074050476406483
723 => 0.074705854742234
724 => 0.075425916834928
725 => 0.076388141849693
726 => 0.077543539689348
727 => 0.075015594993018
728 => 0.075116034948482
729 => 0.072762047849036
730 => 0.070246475037381
731 => 0.07215548123085
801 => 0.074651252884358
802 => 0.074078720109461
803 => 0.074014298476501
804 => 0.074122637794068
805 => 0.073690966778968
806 => 0.071738534776143
807 => 0.070758035647196
808 => 0.072023129675543
809 => 0.072695470848753
810 => 0.073738213374089
811 => 0.073609673348217
812 => 0.076295666111111
813 => 0.077339361678567
814 => 0.07707233969016
815 => 0.07712147816227
816 => 0.07901103913375
817 => 0.081112619551889
818 => 0.083081026941437
819 => 0.085083375483149
820 => 0.082669466163121
821 => 0.08144383187964
822 => 0.08270837360751
823 => 0.082037389966989
824 => 0.085893060992103
825 => 0.086160019288351
826 => 0.090015411504565
827 => 0.093674637809317
828 => 0.091376343329151
829 => 0.09354353150649
830 => 0.095887522213728
831 => 0.10040946058677
901 => 0.098886630826443
902 => 0.097720167095813
903 => 0.096617864506679
904 => 0.098911581209058
905 => 0.10186241110365
906 => 0.10249799160025
907 => 0.10352787481517
908 => 0.10244507854281
909 => 0.10374918738677
910 => 0.10835326466044
911 => 0.10710920233978
912 => 0.10534243385145
913 => 0.10897691067872
914 => 0.11029221371385
915 => 0.11952369924387
916 => 0.13117883105917
917 => 0.12635352995592
918 => 0.12335830984963
919 => 0.12406225762218
920 => 0.12831831721002
921 => 0.12968522846905
922 => 0.12596949246443
923 => 0.12728195323814
924 => 0.13451374113957
925 => 0.13839336332515
926 => 0.13312431529436
927 => 0.11858722075086
928 => 0.1051833556797
929 => 0.10873866428049
930 => 0.10833560261923
1001 => 0.1161052565354
1002 => 0.10707953186487
1003 => 0.10723150192056
1004 => 0.11516182405152
1005 => 0.11304615006712
1006 => 0.10961902916744
1007 => 0.10520837745495
1008 => 0.097054879828506
1009 => 0.089833099603662
1010 => 0.10399667370124
1011 => 0.10338591463136
1012 => 0.10250144498876
1013 => 0.10446973646876
1014 => 0.11402720118637
1015 => 0.11380687069013
1016 => 0.11240524048669
1017 => 0.1134683646426
1018 => 0.10943265836278
1019 => 0.11047275176242
1020 => 0.105181232439
1021 => 0.10757322016655
1022 => 0.10961167610519
1023 => 0.11002092631473
1024 => 0.11094298793365
1025 => 0.10306407235465
1026 => 0.10660147413681
1027 => 0.10867936627411
1028 => 0.099291374003432
1029 => 0.10849379585162
1030 => 0.10292691796342
1031 => 0.10103743599647
1101 => 0.10358137454465
1102 => 0.10258999921836
1103 => 0.10173767292833
1104 => 0.10126206021367
1105 => 0.1031300479192
1106 => 0.10304290406001
1107 => 0.09998651361297
1108 => 0.095999576869215
1109 => 0.097337723707156
1110 => 0.096851562415739
1111 => 0.095089651179587
1112 => 0.096276966618779
1113 => 0.091048630311167
1114 => 0.082053549439194
1115 => 0.087995975389998
1116 => 0.087767198455008
1117 => 0.087651838750177
1118 => 0.092117407615617
1119 => 0.091688146207407
1120 => 0.090909032548167
1121 => 0.095075342146246
1122 => 0.093554583098175
1123 => 0.098241204148435
1124 => 0.10132811588378
1125 => 0.10054517521656
1126 => 0.10344843062399
1127 => 0.097368551907626
1128 => 0.099388043734808
1129 => 0.099804258201495
1130 => 0.095023930532525
1201 => 0.091758378682556
1202 => 0.091540603604179
1203 => 0.085878586717097
1204 => 0.088903190435973
1205 => 0.091564716541978
1206 => 0.090290052079971
1207 => 0.089886531390817
1208 => 0.091948031078744
1209 => 0.092108227260047
1210 => 0.088455737349513
1211 => 0.089215205661226
1212 => 0.092382314772169
1213 => 0.089135402637595
1214 => 0.082827182740205
1215 => 0.081262656987688
1216 => 0.081053920412372
1217 => 0.076810802487445
1218 => 0.081367206079542
1219 => 0.079378213807567
1220 => 0.08566141656295
1221 => 0.082072484846568
1222 => 0.081917773173381
1223 => 0.081683903788092
1224 => 0.078031676909114
1225 => 0.078831282484483
1226 => 0.08148929320038
1227 => 0.082437701368445
1228 => 0.082338774626437
1229 => 0.081476267497799
1230 => 0.081871118844538
1231 => 0.080599165081362
]
'min_raw' => 0.044504247181435
'max_raw' => 0.13839336332515
'avg_raw' => 0.091448805253295
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.0445042'
'max' => '$0.138393'
'avg' => '$0.091448'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.025352604665915
'max_diff' => 0.086436802677267
'year' => 2033
]
8 => [
'items' => [
101 => 0.080150011734157
102 => 0.078732360221014
103 => 0.07664880413292
104 => 0.076938535386162
105 => 0.072810465583542
106 => 0.070561274061828
107 => 0.069938727492485
108 => 0.069106232201948
109 => 0.070032760050737
110 => 0.072798771280456
111 => 0.069462374895397
112 => 0.063742357314208
113 => 0.064086140117274
114 => 0.064858518005731
115 => 0.063419196920382
116 => 0.062057000306162
117 => 0.063241319743722
118 => 0.060817672888913
119 => 0.065151404149024
120 => 0.06503418886358
121 => 0.066649535881206
122 => 0.067659645521586
123 => 0.06533166982739
124 => 0.064746190235816
125 => 0.065079706019741
126 => 0.059567433027056
127 => 0.066199065576899
128 => 0.066256416210574
129 => 0.065765345266464
130 => 0.069296484870572
131 => 0.0767482908253
201 => 0.073944621676931
202 => 0.072858956241334
203 => 0.070795105454647
204 => 0.073545064088573
205 => 0.073333910171525
206 => 0.072378992080889
207 => 0.071801454640146
208 => 0.072865585082979
209 => 0.071669597102069
210 => 0.071454764797145
211 => 0.070153114769163
212 => 0.069688484930476
213 => 0.069344491495359
214 => 0.068965788523392
215 => 0.06980111291265
216 => 0.067908157950516
217 => 0.065625439834845
218 => 0.065435656522879
219 => 0.065959664933136
220 => 0.065727830219435
221 => 0.065434546587463
222 => 0.064874588262984
223 => 0.064708460589727
224 => 0.065248294934121
225 => 0.064638853433598
226 => 0.065538117565617
227 => 0.065293567480262
228 => 0.06392753058285
301 => 0.062224942837039
302 => 0.062209786234802
303 => 0.061842966497771
304 => 0.061375766410945
305 => 0.06124580203488
306 => 0.063141579664026
307 => 0.067065782620509
308 => 0.066295367681933
309 => 0.066852071430353
310 => 0.069590502882626
311 => 0.070460967893797
312 => 0.069843132446962
313 => 0.068997401180903
314 => 0.06903460906445
315 => 0.071924728820839
316 => 0.072104982044952
317 => 0.072560423790391
318 => 0.073145795141102
319 => 0.069942823719205
320 => 0.068883749398517
321 => 0.068381901230169
322 => 0.066836403111341
323 => 0.068503090331503
324 => 0.067531983062977
325 => 0.067663018611249
326 => 0.067577681538535
327 => 0.067624281350705
328 => 0.065150192782815
329 => 0.066051620622687
330 => 0.064552822004096
331 => 0.062546098901841
401 => 0.062539371662355
402 => 0.063030514298709
403 => 0.062738363440192
404 => 0.061952192991809
405 => 0.062063864793382
406 => 0.061085502305012
407 => 0.062182655713295
408 => 0.062214118147241
409 => 0.061791654322702
410 => 0.063481970526157
411 => 0.064174494453879
412 => 0.063896419714515
413 => 0.064154983988875
414 => 0.066327381900846
415 => 0.066681577548863
416 => 0.066838887858861
417 => 0.066628112883086
418 => 0.064194691434779
419 => 0.064302624023718
420 => 0.063510686300478
421 => 0.062841582376682
422 => 0.062868343024646
423 => 0.063212349418899
424 => 0.064714645518309
425 => 0.067876139094325
426 => 0.067996115464513
427 => 0.068141530325139
428 => 0.067550055007321
429 => 0.067371660391811
430 => 0.067607008937226
501 => 0.068794299700943
502 => 0.071848333891519
503 => 0.070768834236484
504 => 0.069891184213528
505 => 0.070661119896408
506 => 0.070542594332984
507 => 0.069542119297774
508 => 0.069514039295721
509 => 0.067593807831935
510 => 0.066883941981329
511 => 0.066290724944024
512 => 0.06564294742561
513 => 0.065258923198995
514 => 0.065848958946965
515 => 0.065983907103623
516 => 0.064693783628627
517 => 0.064517944566155
518 => 0.065571487245086
519 => 0.065107862392119
520 => 0.065584712050739
521 => 0.06569534526188
522 => 0.065677530766787
523 => 0.065193453173313
524 => 0.065501989795992
525 => 0.064772208704163
526 => 0.063978681376375
527 => 0.063472460379746
528 => 0.063030715419716
529 => 0.063275821197908
530 => 0.062402063853199
531 => 0.062122531293365
601 => 0.065397464530522
602 => 0.067816692924276
603 => 0.067781516385311
604 => 0.067567388251034
605 => 0.067249237277805
606 => 0.068771024975611
607 => 0.068240864570801
608 => 0.068626600561684
609 => 0.068724786560653
610 => 0.069021966007799
611 => 0.069128182116717
612 => 0.068807123263736
613 => 0.067729610539092
614 => 0.065044551276116
615 => 0.063794648941022
616 => 0.063382160351671
617 => 0.063397153528466
618 => 0.062983574779956
619 => 0.063105392256692
620 => 0.062941211632885
621 => 0.062630293250955
622 => 0.063256622863969
623 => 0.063328801517205
624 => 0.063182608701446
625 => 0.063217042401814
626 => 0.062006628327097
627 => 0.062098653480317
628 => 0.061586245733199
629 => 0.061490175457782
630 => 0.060194853293516
701 => 0.057900002319568
702 => 0.059171572525709
703 => 0.057635694526519
704 => 0.057054034255876
705 => 0.059807523510368
706 => 0.05953114955912
707 => 0.059058117491454
708 => 0.058358404474854
709 => 0.058098874110627
710 => 0.056522049774909
711 => 0.056428882581124
712 => 0.057210399299744
713 => 0.056849756224449
714 => 0.056343276760522
715 => 0.054508859483178
716 => 0.052446367108754
717 => 0.052508620789173
718 => 0.053164661239443
719 => 0.055072187327709
720 => 0.054326883884487
721 => 0.053786157685058
722 => 0.053684895922074
723 => 0.05495239889167
724 => 0.056746181143729
725 => 0.057587783642779
726 => 0.056753781126068
727 => 0.055795723940755
728 => 0.055854036442415
729 => 0.056241963391501
730 => 0.056282729028859
731 => 0.05565913229109
801 => 0.055834671120033
802 => 0.055568011587261
803 => 0.053931522526857
804 => 0.053901923629118
805 => 0.053500302821744
806 => 0.05348814190331
807 => 0.052804884720962
808 => 0.052709292318017
809 => 0.051352643711717
810 => 0.052245593932694
811 => 0.051646649806454
812 => 0.050743899731573
813 => 0.050588265278396
814 => 0.050583586718799
815 => 0.051510509194479
816 => 0.052234762303885
817 => 0.05165706869596
818 => 0.051525539059555
819 => 0.052929931466766
820 => 0.052751209731628
821 => 0.052596437861629
822 => 0.056585567617433
823 => 0.053427860140038
824 => 0.052050919444252
825 => 0.050346693859271
826 => 0.050901598303192
827 => 0.051018524822768
828 => 0.04692016950064
829 => 0.04525746725687
830 => 0.04468689050442
831 => 0.044358515516614
901 => 0.044508160122031
902 => 0.043011533087116
903 => 0.044017291206505
904 => 0.042721338701003
905 => 0.042504068046062
906 => 0.044821391663608
907 => 0.045143833707381
908 => 0.043768195773753
909 => 0.044651578022694
910 => 0.044331251339297
911 => 0.042743554087101
912 => 0.042682915730378
913 => 0.041886265059483
914 => 0.0406396610215
915 => 0.040069929525289
916 => 0.039773208415427
917 => 0.039895641328336
918 => 0.03983373550106
919 => 0.039429758103373
920 => 0.039856891012617
921 => 0.038765742933004
922 => 0.038331238975725
923 => 0.038134983618637
924 => 0.037166526893841
925 => 0.038707772217652
926 => 0.03901141696254
927 => 0.039315659981376
928 => 0.04196388774481
929 => 0.041831589769563
930 => 0.043027499034071
1001 => 0.042981028199188
1002 => 0.042639935504505
1003 => 0.041200921532661
1004 => 0.04177448685388
1005 => 0.040009141947009
1006 => 0.041331858383022
1007 => 0.040728225839585
1008 => 0.041127769612886
1009 => 0.04040935388308
1010 => 0.040806954810614
1011 => 0.03908342239603
1012 => 0.037474012078048
1013 => 0.03812168577162
1014 => 0.038825781147004
1015 => 0.040352439321002
1016 => 0.039443174307225
1017 => 0.039770180389296
1018 => 0.038674764754515
1019 => 0.036414609409957
1020 => 0.036427401643755
1021 => 0.036079725984155
1022 => 0.035779283452784
1023 => 0.039547614331974
1024 => 0.039078962818652
1025 => 0.038332227967765
1026 => 0.03933176223974
1027 => 0.039596054965992
1028 => 0.039603579008357
1029 => 0.040332813411476
1030 => 0.040722005943143
1031 => 0.040790602813706
1101 => 0.041938068903167
1102 => 0.04232268440091
1103 => 0.043906861203292
1104 => 0.040688985675968
1105 => 0.040622715647065
1106 => 0.039345827736736
1107 => 0.038536005237206
1108 => 0.039401276976112
1109 => 0.040167789615411
1110 => 0.039369645421084
1111 => 0.03947386620312
1112 => 0.038402422833012
1113 => 0.038785413421729
1114 => 0.039115296511136
1115 => 0.038933154458798
1116 => 0.038660478990671
1117 => 0.040104944320184
1118 => 0.040023441925387
1119 => 0.041368561248344
1120 => 0.042417177950994
1121 => 0.0442964865448
1122 => 0.04233533005659
1123 => 0.042263857719269
1124 => 0.042962511281109
1125 => 0.04232257744069
1126 => 0.042726993538069
1127 => 0.044231328859263
1128 => 0.044263113094099
1129 => 0.043730686208918
1130 => 0.043698287984568
1201 => 0.043800546391979
1202 => 0.044399477078168
1203 => 0.044190192293133
1204 => 0.044432381944818
1205 => 0.044735243812791
1206 => 0.045988008909495
1207 => 0.046290046333095
1208 => 0.045556251982198
1209 => 0.045622505396137
1210 => 0.045348046165796
1211 => 0.045082921988251
1212 => 0.045678882421096
1213 => 0.046768011825751
1214 => 0.04676123640825
1215 => 0.04701389326048
1216 => 0.047171296386296
1217 => 0.046495606944161
1218 => 0.04605575796312
1219 => 0.046224424050769
1220 => 0.046494124797989
1221 => 0.046136963733381
1222 => 0.043932400189523
1223 => 0.044601123940666
1224 => 0.044489815609555
1225 => 0.044331299010497
1226 => 0.045003705913358
1227 => 0.04493885062723
1228 => 0.042996183013684
1229 => 0.043120546291334
1230 => 0.043003745956502
1231 => 0.043381151733443
]
'min_raw' => 0.035779283452784
'max_raw' => 0.080150011734157
'avg_raw' => 0.05796464759347
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.035779'
'max' => '$0.08015'
'avg' => '$0.057964'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.0087249637286516
'max_diff' => -0.058243351590998
'year' => 2034
]
9 => [
'items' => [
101 => 0.042302196290195
102 => 0.042634075717662
103 => 0.042842227383393
104 => 0.042964830313605
105 => 0.043407756167148
106 => 0.043355783930466
107 => 0.043404525499943
108 => 0.044061267612657
109 => 0.047382843852082
110 => 0.04756362991815
111 => 0.046673373209438
112 => 0.047029013205031
113 => 0.04634626218341
114 => 0.046804597518259
115 => 0.047118178913907
116 => 0.045701164885207
117 => 0.045617258510772
118 => 0.044931689532817
119 => 0.045300075468958
120 => 0.044713946956671
121 => 0.044857762391681
122 => 0.044455641897788
123 => 0.045179378725404
124 => 0.045988628956012
125 => 0.046193077522524
126 => 0.045655261364674
127 => 0.045265847022578
128 => 0.044582163718918
129 => 0.045719144289781
130 => 0.046051632057557
131 => 0.045717397873082
201 => 0.045639948509378
202 => 0.045493182105106
203 => 0.045671085695853
204 => 0.046049821257768
205 => 0.045871216560917
206 => 0.045989188109797
207 => 0.045539602217199
208 => 0.046495830625482
209 => 0.048014551466734
210 => 0.048019434402574
211 => 0.047840828742977
212 => 0.047767747155182
213 => 0.047951007400627
214 => 0.048050418566052
215 => 0.048643048595638
216 => 0.049278964228805
217 => 0.052246505017072
218 => 0.051413231438533
219 => 0.054046210165675
220 => 0.056128554489346
221 => 0.056752958502133
222 => 0.056178536190848
223 => 0.054213468493624
224 => 0.054117052897547
225 => 0.057053693667382
226 => 0.056223958143236
227 => 0.056125263742835
228 => 0.055075322069393
301 => 0.055695967636203
302 => 0.055560223346421
303 => 0.055345944344161
304 => 0.05653009285109
305 => 0.058746713146395
306 => 0.058401232086038
307 => 0.058143346500887
308 => 0.05701336693612
309 => 0.057693867024183
310 => 0.057451553976944
311 => 0.05849268460354
312 => 0.057875941884212
313 => 0.056217672080573
314 => 0.056481757012531
315 => 0.056441841106331
316 => 0.057263307627463
317 => 0.057016723767871
318 => 0.056393691650216
319 => 0.058739136979203
320 => 0.058586836805591
321 => 0.058802763631106
322 => 0.058897821297457
323 => 0.060325452537829
324 => 0.060910307377905
325 => 0.061043079665927
326 => 0.061598646529703
327 => 0.061029256656247
328 => 0.063307222118171
329 => 0.064821936227381
330 => 0.066581354611703
331 => 0.069152337758278
401 => 0.070119051204313
402 => 0.069944423073004
403 => 0.071893713152511
404 => 0.075396544095102
405 => 0.070652445356271
406 => 0.075647992847832
407 => 0.074066460188373
408 => 0.070316674703353
409 => 0.070075232725185
410 => 0.072614630991545
411 => 0.078246771938306
412 => 0.076835984510356
413 => 0.078249079481137
414 => 0.076600629136762
415 => 0.076518769682934
416 => 0.078169017927321
417 => 0.082024912900681
418 => 0.080193121734899
419 => 0.07756679992513
420 => 0.079506035079371
421 => 0.077826090121027
422 => 0.074040703942891
423 => 0.076834905707798
424 => 0.074966502561889
425 => 0.07551180192964
426 => 0.079438907438347
427 => 0.078966387713707
428 => 0.079577871991539
429 => 0.078498618246495
430 => 0.077490425065929
501 => 0.075608557624993
502 => 0.075051429450676
503 => 0.075205399634685
504 => 0.075051353150699
505 => 0.07399846561275
506 => 0.073771094649177
507 => 0.07339213308187
508 => 0.073509589117733
509 => 0.072797030502079
510 => 0.07414177583194
511 => 0.074391372415017
512 => 0.075369965923636
513 => 0.07547156674806
514 => 0.078196935740155
515 => 0.076695848297274
516 => 0.077702907351613
517 => 0.077612826510986
518 => 0.070397943925158
519 => 0.071392091088037
520 => 0.072938672092911
521 => 0.072241939446556
522 => 0.071256922494941
523 => 0.070461468493245
524 => 0.069256274341326
525 => 0.070952561966448
526 => 0.073182999813404
527 => 0.075528134332641
528 => 0.078345659798205
529 => 0.077716820913903
530 => 0.075475462653893
531 => 0.075576008348123
601 => 0.076197542266586
602 => 0.075392599369866
603 => 0.075155205995271
604 => 0.07616492806234
605 => 0.076171881463282
606 => 0.075245697380007
607 => 0.074216413261344
608 => 0.074212100523305
609 => 0.074028949356094
610 => 0.076633211322537
611 => 0.078065292083497
612 => 0.078229477834828
613 => 0.078054241074269
614 => 0.07812168274851
615 => 0.077288386507453
616 => 0.079193054608184
617 => 0.080940966409567
618 => 0.080472488708108
619 => 0.07977017403559
620 => 0.079210746570872
621 => 0.080340705376281
622 => 0.080290390089396
623 => 0.080925699924827
624 => 0.080896878600964
625 => 0.08068324779852
626 => 0.080472496337536
627 => 0.081308102058074
628 => 0.081067461029976
629 => 0.080826446219895
630 => 0.080343054120757
701 => 0.080408755135322
702 => 0.079706561727335
703 => 0.079381694926616
704 => 0.074496477708246
705 => 0.07319098803842
706 => 0.07360172166424
707 => 0.073736945838554
708 => 0.073168795061215
709 => 0.073983377329959
710 => 0.073856425546231
711 => 0.074350320672406
712 => 0.074041756440006
713 => 0.074054420023735
714 => 0.074961841638394
715 => 0.075225269993577
716 => 0.075091288206003
717 => 0.075185124457393
718 => 0.077347541264861
719 => 0.077040114745036
720 => 0.076876800533616
721 => 0.076922039686289
722 => 0.077474583543336
723 => 0.077629265655533
724 => 0.076973866676835
725 => 0.077282956624005
726 => 0.078599022389702
727 => 0.079059570924825
728 => 0.080529420773099
729 => 0.079905002433054
730 => 0.081051149320399
731 => 0.084574014101828
801 => 0.087388322252934
802 => 0.084800168170974
803 => 0.089968286690499
804 => 0.093992408280519
805 => 0.093837955791369
806 => 0.093136257112539
807 => 0.088554901669109
808 => 0.084339070085902
809 => 0.087865792218919
810 => 0.087874782558913
811 => 0.087571833999992
812 => 0.085690246519037
813 => 0.087506358834232
814 => 0.087650515234661
815 => 0.087569825984701
816 => 0.086127217274669
817 => 0.083924620413104
818 => 0.084355002567582
819 => 0.085059977316175
820 => 0.083725313043949
821 => 0.083298806938813
822 => 0.084091762934368
823 => 0.086646832370986
824 => 0.086163811294503
825 => 0.086151197662155
826 => 0.088217766660164
827 => 0.086738549251092
828 => 0.084360431064824
829 => 0.083759924859266
830 => 0.081628532378987
831 => 0.083100692756875
901 => 0.083153673188039
902 => 0.082347385994184
903 => 0.084425856826903
904 => 0.084406703352272
905 => 0.086379902068382
906 => 0.090151916913989
907 => 0.089036346514565
908 => 0.08773905951375
909 => 0.087880110580605
910 => 0.089427092640312
911 => 0.088491751972848
912 => 0.088828106998294
913 => 0.089426583526696
914 => 0.089787659275617
915 => 0.087828157336976
916 => 0.087371303701266
917 => 0.086436741496441
918 => 0.086192931661632
919 => 0.086954113077182
920 => 0.086753568667121
921 => 0.08314922038795
922 => 0.082772545938372
923 => 0.082784098005974
924 => 0.081836932192616
925 => 0.080392276981404
926 => 0.084188744620589
927 => 0.083883835137632
928 => 0.083547238666567
929 => 0.083588469813679
930 => 0.085236387741622
1001 => 0.084280512121565
1002 => 0.08682186412242
1003 => 0.086299438551078
1004 => 0.085763614735124
1005 => 0.085689547562166
1006 => 0.085483301107363
1007 => 0.084776005272918
1008 => 0.083921903050936
1009 => 0.083357950782916
1010 => 0.076893303312633
1011 => 0.078093104279994
1012 => 0.079473365927642
1013 => 0.079949826717359
1014 => 0.079134807566465
1015 => 0.084808187196596
1016 => 0.085844768325067
1017 => 0.082704896472414
1018 => 0.082117554648905
1019 => 0.084846693228764
1020 => 0.083200689041486
1021 => 0.083941884626231
1022 => 0.082339825184322
1023 => 0.085595086285857
1024 => 0.085570286650317
1025 => 0.084303916558414
1026 => 0.085374243888363
1027 => 0.085188248175322
1028 => 0.083758519460495
1029 => 0.085640411236278
1030 => 0.08564134463112
1031 => 0.084422490950923
1101 => 0.082999136693832
1102 => 0.082744674570791
1103 => 0.082552971543256
1104 => 0.083894737433067
1105 => 0.085097760534278
1106 => 0.087336288270912
1107 => 0.087899107330009
1108 => 0.090095827586652
1109 => 0.088787787630189
1110 => 0.089367624800936
1111 => 0.089997120072757
1112 => 0.09029892325499
1113 => 0.089807151165193
1114 => 0.093219561929889
1115 => 0.093507673951993
1116 => 0.093604275420846
1117 => 0.092453629710703
1118 => 0.093475672413291
1119 => 0.092997492479247
1120 => 0.094241583825419
1121 => 0.094436673233854
1122 => 0.094271439445417
1123 => 0.094333363902931
1124 => 0.091421473305773
1125 => 0.091270476416863
1126 => 0.089211623122335
1127 => 0.09005062105813
1128 => 0.088482154631378
1129 => 0.088979531492296
1130 => 0.089198770473408
1201 => 0.089084252471377
1202 => 0.090098056742598
1203 => 0.089236116005531
1204 => 0.086961312684235
1205 => 0.084685889594295
1206 => 0.08465732351092
1207 => 0.084058244775893
1208 => 0.083625220577211
1209 => 0.083708636400236
1210 => 0.084002604640672
1211 => 0.083608134608672
1212 => 0.083692314790138
1213 => 0.085090266692081
1214 => 0.085370615976279
1215 => 0.084417879569038
1216 => 0.080592505414759
1217 => 0.079653749002074
1218 => 0.080328508495163
1219 => 0.080006016917544
1220 => 0.064571099866059
1221 => 0.068197304677944
1222 => 0.066042736913002
1223 => 0.067035660865984
1224 => 0.064836405100596
1225 => 0.065886005224709
1226 => 0.065692182407045
1227 => 0.071523012437356
1228 => 0.071431972046477
1229 => 0.07147554826384
1230 => 0.069395541871854
1231 => 0.072709048532616
]
'min_raw' => 0.042302196290195
'max_raw' => 0.094436673233854
'avg_raw' => 0.068369434762025
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.0423021'
'max' => '$0.094436'
'avg' => '$0.068369'
'bar_min_pct' => 61.631153054958
'bar_max_pct' => 60.119598047091
'min_diff' => 0.0065229128374112
'max_diff' => 0.014286661499698
'year' => 2035
]
10 => [
'items' => [
101 => 0.074341401063554
102 => 0.074039296053733
103 => 0.074115329376108
104 => 0.072808824987258
105 => 0.071488198082202
106 => 0.070023419601471
107 => 0.072744796966577
108 => 0.072442226259038
109 => 0.073136214600628
110 => 0.07490122234997
111 => 0.075161126445673
112 => 0.075510440185986
113 => 0.075385236075929
114 => 0.078368105934125
115 => 0.078006860712689
116 => 0.078877357759008
117 => 0.07708667928996
118 => 0.075060356629472
119 => 0.075445494321752
120 => 0.075408402464903
121 => 0.074936180555173
122 => 0.074509879729537
123 => 0.073800208964365
124 => 0.07604571227688
125 => 0.075954548943162
126 => 0.077430377350265
127 => 0.077169510343878
128 => 0.075427376630235
129 => 0.075489597276636
130 => 0.075908061025908
131 => 0.077356368840071
201 => 0.077786325207631
202 => 0.077587152287378
203 => 0.078058579816153
204 => 0.078431176913248
205 => 0.078105372274943
206 => 0.082718078892173
207 => 0.080802561507916
208 => 0.081736171352919
209 => 0.081958831799803
210 => 0.081388491747153
211 => 0.081512178082227
212 => 0.081699529177355
213 => 0.082837088339865
214 => 0.085822372737687
215 => 0.087144534875965
216 => 0.091122324903303
217 => 0.087034747715766
218 => 0.086792207801534
219 => 0.087508727903208
220 => 0.089844111741093
221 => 0.091736720990248
222 => 0.09236460866544
223 => 0.092447594387012
224 => 0.093625553406856
225 => 0.094300737549395
226 => 0.093482518198449
227 => 0.092789162969659
228 => 0.090305650602553
229 => 0.090593123921425
301 => 0.092573530014881
302 => 0.095370970267224
303 => 0.097771465027786
304 => 0.096930895428326
305 => 0.10334384812255
306 => 0.10397966618762
307 => 0.10389181668948
308 => 0.10534030486413
309 => 0.10246535081695
310 => 0.10123625226217
311 => 0.09293907424004
312 => 0.095270242826764
313 => 0.098658733272298
314 => 0.098210253855645
315 => 0.095749441519488
316 => 0.097769598280962
317 => 0.097101671279476
318 => 0.096574849541088
319 => 0.098988322054065
320 => 0.09633460988606
321 => 0.098632260463438
322 => 0.095685499831799
323 => 0.096934735079452
324 => 0.096225608734174
325 => 0.096684500386825
326 => 0.094001829162124
327 => 0.09544933343681
328 => 0.093941608225344
329 => 0.093940893367283
330 => 0.093907610249674
331 => 0.095681442274686
401 => 0.095739286873338
402 => 0.094428422326743
403 => 0.094239506266026
404 => 0.094938027957413
405 => 0.09412024199992
406 => 0.094502878902348
407 => 0.094131831681896
408 => 0.094048301137122
409 => 0.093382715544814
410 => 0.09309596297099
411 => 0.09320840604389
412 => 0.092824579867706
413 => 0.092593310712956
414 => 0.093861604993834
415 => 0.093184006522406
416 => 0.093757753309957
417 => 0.093103896432925
418 => 0.090837343625252
419 => 0.089533825137198
420 => 0.085252516993059
421 => 0.08646669067179
422 => 0.087271689076943
423 => 0.087005637108842
424 => 0.087577219684767
425 => 0.087612310212727
426 => 0.087426482890699
427 => 0.087211318657745
428 => 0.087106588608472
429 => 0.087887160592037
430 => 0.088340308901341
501 => 0.087352481436389
502 => 0.087121047282526
503 => 0.088119795389042
504 => 0.088729031157058
505 => 0.093227285768086
506 => 0.09289404053733
507 => 0.093730420670454
508 => 0.093636257102764
509 => 0.094512916728081
510 => 0.095945884711475
511 => 0.093032260137086
512 => 0.093537964617642
513 => 0.093413977557432
514 => 0.094767635769657
515 => 0.094771861742839
516 => 0.093960276024367
517 => 0.094400249808826
518 => 0.09415466851239
519 => 0.094598467107352
520 => 0.092889589844104
521 => 0.094970817888838
522 => 0.09615074007883
523 => 0.096167123299583
524 => 0.096726397053197
525 => 0.097294651577821
526 => 0.098385366653298
527 => 0.097264232126353
528 => 0.095247420252625
529 => 0.095393027555645
530 => 0.094210571492001
531 => 0.094230448792059
601 => 0.094124342206537
602 => 0.094442776057019
603 => 0.092959468167195
604 => 0.093307597564143
605 => 0.092820214369773
606 => 0.093536905141762
607 => 0.092765864344331
608 => 0.093413917767117
609 => 0.093693596141081
610 => 0.09472561536205
611 => 0.092613434266284
612 => 0.088306554029928
613 => 0.089211912471486
614 => 0.087872816222051
615 => 0.087996754678235
616 => 0.088247130084386
617 => 0.087435581475316
618 => 0.08759039937509
619 => 0.087584868190274
620 => 0.087537203427711
621 => 0.087326088290997
622 => 0.087019929574906
623 => 0.088239571669131
624 => 0.088446812627226
625 => 0.088907483605348
626 => 0.090278127960129
627 => 0.090141168267067
628 => 0.090364555208855
629 => 0.089876902769196
630 => 0.08801937547629
701 => 0.088120248145128
702 => 0.086862364348341
703 => 0.088875316688556
704 => 0.08839862300472
705 => 0.088091295485675
706 => 0.088007438324735
707 => 0.089381480241759
708 => 0.089792615118801
709 => 0.089536423453664
710 => 0.089010966874162
711 => 0.090019998844097
712 => 0.090289973231611
713 => 0.090350410540703
714 => 0.092138221728738
715 => 0.090450329326009
716 => 0.090856621803554
717 => 0.094026399732053
718 => 0.091151848550358
719 => 0.092674562421443
720 => 0.092600033501274
721 => 0.093379002391893
722 => 0.092536135315845
723 => 0.09254658366342
724 => 0.093238255266366
725 => 0.092266927243659
726 => 0.09202641276542
727 => 0.09169414373633
728 => 0.092419641005529
729 => 0.092854543806994
730 => 0.096359540985894
731 => 0.098623929010754
801 => 0.098525625954697
802 => 0.099423931871454
803 => 0.099019236828416
804 => 0.097712369781286
805 => 0.099943032475278
806 => 0.099237157464008
807 => 0.099295348942299
808 => 0.099293183052571
809 => 0.099762528226401
810 => 0.099429954155889
811 => 0.098774416524881
812 => 0.099209592997004
813 => 0.10050191154077
814 => 0.10451330795381
815 => 0.10675813853048
816 => 0.1043781663344
817 => 0.10601983928616
818 => 0.10503542050299
819 => 0.10485652232616
820 => 0.10588761425855
821 => 0.10692051098086
822 => 0.10685471992498
823 => 0.10610488994442
824 => 0.10568133001463
825 => 0.10888866770599
826 => 0.11125177948141
827 => 0.11109063110083
828 => 0.11180188764446
829 => 0.11389015885488
830 => 0.1140810842033
831 => 0.11405703199776
901 => 0.11358380360072
902 => 0.11563997780367
903 => 0.11735527449871
904 => 0.11347426489969
905 => 0.11495210254885
906 => 0.11561555148251
907 => 0.11658969135356
908 => 0.11823322860081
909 => 0.12001854597805
910 => 0.1202710094302
911 => 0.12009187452941
912 => 0.11891440972722
913 => 0.12086792530466
914 => 0.12201224891435
915 => 0.12269366743654
916 => 0.12442163143158
917 => 0.11561964871726
918 => 0.10938916786513
919 => 0.10841618831084
920 => 0.11039478049503
921 => 0.11091651947502
922 => 0.11070620714639
923 => 0.10369323449679
924 => 0.10837926646121
925 => 0.11342104284217
926 => 0.11361471800624
927 => 0.11613873668112
928 => 0.11696066062468
929 => 0.11899282648865
930 => 0.11886571396056
1001 => 0.11936051400962
1002 => 0.11924676804708
1003 => 0.12301092738708
1004 => 0.12716335412216
1005 => 0.12701956878823
1006 => 0.12642260831578
1007 => 0.12730919641426
1008 => 0.13159494580596
1009 => 0.13120038267971
1010 => 0.13158366714805
1011 => 0.13663680721512
1012 => 0.1432066081031
1013 => 0.14015427599341
1014 => 0.14677695838653
1015 => 0.15094558589969
1016 => 0.15815479613958
1017 => 0.15725216751144
1018 => 0.16005866015419
1019 => 0.15563627388278
1020 => 0.14548158109189
1021 => 0.14387456208713
1022 => 0.14709185483086
1023 => 0.1550012551025
1024 => 0.14684275966914
1025 => 0.14849321266966
1026 => 0.14801788209448
1027 => 0.14799255374816
1028 => 0.14895923370961
1029 => 0.14755701400688
1030 => 0.14184411868347
1031 => 0.14446230494389
1101 => 0.14345129749311
1102 => 0.14457308563534
1103 => 0.15062691357838
1104 => 0.14795037193953
1105 => 0.14513085274759
1106 => 0.14866715551568
1107 => 0.15317008414492
1108 => 0.15288829896385
1109 => 0.15234151793549
1110 => 0.15542369396382
1111 => 0.16051454576979
1112 => 0.16189058255624
1113 => 0.16290634478017
1114 => 0.1630464012294
1115 => 0.16448906970113
1116 => 0.15673147772938
1117 => 0.16904297541765
1118 => 0.17116883097015
1119 => 0.17076925823396
1120 => 0.17313205721089
1121 => 0.17243686181346
1122 => 0.17142963275539
1123 => 0.17517517171558
1124 => 0.17088121354713
1125 => 0.16478648052131
1126 => 0.1614427894432
1127 => 0.16584603158272
1128 => 0.16853493790536
1129 => 0.17031213393806
1130 => 0.17084991238374
1201 => 0.15733367751111
1202 => 0.15004917655952
1203 => 0.15471845815252
1204 => 0.16041530395258
1205 => 0.15669983146332
1206 => 0.15684547095058
1207 => 0.15154818358989
1208 => 0.1608839963414
1209 => 0.15952384695005
1210 => 0.16658030439843
1211 => 0.16489622419677
1212 => 0.17065049131583
1213 => 0.16913519993689
1214 => 0.17542508973207
1215 => 0.17793429706333
1216 => 0.18214764669946
1217 => 0.18524700384322
1218 => 0.18706700563929
1219 => 0.18695773955811
1220 => 0.19416949339543
1221 => 0.18991697411705
1222 => 0.18457480766156
1223 => 0.1844781847247
1224 => 0.18724496843108
1225 => 0.19304338804961
1226 => 0.19454683389312
1227 => 0.19538705501579
1228 => 0.19410022711812
1229 => 0.18948442222224
1230 => 0.18749134107086
1231 => 0.18918950395695
]
'min_raw' => 0.070023419601471
'max_raw' => 0.19538705501579
'avg_raw' => 0.13270523730863
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$0.070023'
'max' => '$0.195387'
'avg' => '$0.1327052'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.027721223311276
'max_diff' => 0.10095038178194
'year' => 2036
]
11 => [
'items' => [
101 => 0.18711279667206
102 => 0.19069777606694
103 => 0.19562071848638
104 => 0.19460415034419
105 => 0.19800238523112
106 => 0.20151920083436
107 => 0.20654840509706
108 => 0.20786322532222
109 => 0.21003657315629
110 => 0.21227366198511
111 => 0.21299215462569
112 => 0.21436398001174
113 => 0.2143567498148
114 => 0.21849083795015
115 => 0.22305086518549
116 => 0.22477216990196
117 => 0.22873021518419
118 => 0.22195220134483
119 => 0.22709340270219
120 => 0.23173089501915
121 => 0.22620188549751
122 => 0.2338223370291
123 => 0.23411822189376
124 => 0.23858573205939
125 => 0.23405705463513
126 => 0.23136794043666
127 => 0.23913131236786
128 => 0.24288776350144
129 => 0.24175628984899
130 => 0.23314571948612
131 => 0.22813399821019
201 => 0.21501735694224
202 => 0.23055458512086
203 => 0.2381223157395
204 => 0.23312612089204
205 => 0.2356459109618
206 => 0.24939306853774
207 => 0.25462709608012
208 => 0.25353845493992
209 => 0.25372241737205
210 => 0.2565466036296
211 => 0.26907060080335
212 => 0.26156593139285
213 => 0.26730296996258
214 => 0.27034587453353
215 => 0.27317229388194
216 => 0.26623150126125
217 => 0.25720163204222
218 => 0.25434149341243
219 => 0.2326293477787
220 => 0.2314991363074
221 => 0.23086471435964
222 => 0.22686477371981
223 => 0.22372191605285
224 => 0.22122259894926
225 => 0.21466364451017
226 => 0.21687709909323
227 => 0.20642349467751
228 => 0.2131113403297
301 => 0.1964271352711
302 => 0.21032223701773
303 => 0.20275976486979
304 => 0.2078377615251
305 => 0.20782004487314
306 => 0.19846984305042
307 => 0.19307684177281
308 => 0.19651347208565
309 => 0.20019781258107
310 => 0.20079558443085
311 => 0.20557242805429
312 => 0.20690554243168
313 => 0.20286614363102
314 => 0.19608139220545
315 => 0.1976573352179
316 => 0.19304490533796
317 => 0.18496179938791
318 => 0.19076722719872
319 => 0.19274945549998
320 => 0.19362492044287
321 => 0.18567611409198
322 => 0.18317842655955
323 => 0.18184867867492
324 => 0.19505530112238
325 => 0.19577878971232
326 => 0.19207731979523
327 => 0.20880831480827
328 => 0.20502157535104
329 => 0.20925229109846
330 => 0.19751433490778
331 => 0.19796274064152
401 => 0.19240580407175
402 => 0.19551731723618
403 => 0.19331820002032
404 => 0.19526593772107
405 => 0.19643340366808
406 => 0.20198942839923
407 => 0.21038567789539
408 => 0.20115954358149
409 => 0.19713958474025
410 => 0.19963354459625
411 => 0.20627528834297
412 => 0.21633787010385
413 => 0.21038061917308
414 => 0.21302434597547
415 => 0.21360188267058
416 => 0.20920922638364
417 => 0.21649983360677
418 => 0.22040692924643
419 => 0.2244148009132
420 => 0.22789472358344
421 => 0.2228139688345
422 => 0.22825110471345
423 => 0.2238697329787
424 => 0.21993918959475
425 => 0.21994515060661
426 => 0.21747946332578
427 => 0.21270188352259
428 => 0.21182082450565
429 => 0.21640420477723
430 => 0.22007964170731
501 => 0.22038236829703
502 => 0.22241727903228
503 => 0.22362151824416
504 => 0.2354246996044
505 => 0.24017203678853
506 => 0.24597699083478
507 => 0.24823834758508
508 => 0.25504422066222
509 => 0.24954792540644
510 => 0.24835876735454
511 => 0.23184994545352
512 => 0.23455326411497
513 => 0.23888153812341
514 => 0.23192131709772
515 => 0.23633597531648
516 => 0.23720752236411
517 => 0.23168481145063
518 => 0.23463472997177
519 => 0.2268006209695
520 => 0.21055644006349
521 => 0.21651791802376
522 => 0.2209075724143
523 => 0.21464299435852
524 => 0.22587200805086
525 => 0.21931225006569
526 => 0.2172331217083
527 => 0.20912170072336
528 => 0.21294997919102
529 => 0.21812778063421
530 => 0.21492850132635
531 => 0.22156748626437
601 => 0.23097005948922
602 => 0.23767089310216
603 => 0.23818529990238
604 => 0.23387711281025
605 => 0.24078101011988
606 => 0.24083129747462
607 => 0.23304367310611
608 => 0.22827379654207
609 => 0.22719007055081
610 => 0.22989743055396
611 => 0.23318466540402
612 => 0.23836771855857
613 => 0.24149972902837
614 => 0.24966635124362
615 => 0.25187600505966
616 => 0.25430374467831
617 => 0.25754795349599
618 => 0.26144345797969
619 => 0.25292031594055
620 => 0.25325895626289
621 => 0.24532232440698
622 => 0.2368408950408
623 => 0.24327724270463
624 => 0.25169191108365
625 => 0.24976157686012
626 => 0.24954437482682
627 => 0.24990964840001
628 => 0.24845423943429
629 => 0.24187147862232
630 => 0.23856565735281
701 => 0.24283101019543
702 => 0.24509785540227
703 => 0.2486135346284
704 => 0.24818015295679
705 => 0.25723616508691
706 => 0.26075505756109
707 => 0.25985477428429
708 => 0.26002044807375
709 => 0.26639123481403
710 => 0.27347685992144
711 => 0.28011348286512
712 => 0.28686454077302
713 => 0.27872587696677
714 => 0.27459356540896
715 => 0.27885705613196
716 => 0.27659478794136
717 => 0.28959445199689
718 => 0.29049452053112
719 => 0.30349324456298
720 => 0.31583058152847
721 => 0.30808172122679
722 => 0.31538854747494
723 => 0.3232914757966
724 => 0.33853750673298
725 => 0.33340317987544
726 => 0.32947036596773
727 => 0.32575387582815
728 => 0.33348730183241
729 => 0.34343623084239
730 => 0.34557913486148
731 => 0.34905145802475
801 => 0.34540073479405
802 => 0.34979762881145
803 => 0.36532059678603
804 => 0.36112615381427
805 => 0.35516937050402
806 => 0.36742326287825
807 => 0.37185789889269
808 => 0.40298249687891
809 => 0.44227858752952
810 => 0.42600974796812
811 => 0.41591115426019
812 => 0.4182845633234
813 => 0.43263416537239
814 => 0.43724280211692
815 => 0.42471493875293
816 => 0.42913999188458
817 => 0.45352246970156
818 => 0.46660288676683
819 => 0.44883792345781
820 => 0.39982509425688
821 => 0.35463302734151
822 => 0.36661999851276
823 => 0.36526104798096
824 => 0.39145697861926
825 => 0.36102611773659
826 => 0.36153849538956
827 => 0.38827613013148
828 => 0.38114298758144
829 => 0.36958821019425
830 => 0.35471739000371
831 => 0.32722730349713
901 => 0.30287856726047
902 => 0.35063204619962
903 => 0.3485728293537
904 => 0.34559077820196
905 => 0.35222701034851
906 => 0.3844506699248
907 => 0.38370781027376
908 => 0.37898211618416
909 => 0.38256651350077
910 => 0.36895984801434
911 => 0.37246659552821
912 => 0.35462586868721
913 => 0.36269062231391
914 => 0.36956341883149
915 => 0.37094323448589
916 => 0.37405202961038
917 => 0.34748771564743
918 => 0.35941431272951
919 => 0.36642007114421
920 => 0.33476779975493
921 => 0.36579440750866
922 => 0.3470252900416
923 => 0.3406547696706
924 => 0.34923183609792
925 => 0.34588934496972
926 => 0.34301566737536
927 => 0.34141210590166
928 => 0.34771015686961
929 => 0.34741634526415
930 => 0.33711151148158
1001 => 0.32366927589098
1002 => 0.32818093138153
1003 => 0.32654180464481
1004 => 0.32060139789941
1005 => 0.32460451479837
1006 => 0.30697681390647
1007 => 0.27664927073012
1008 => 0.29668457471019
1009 => 0.29591323730117
1010 => 0.29552429400218
1011 => 0.31058027120807
1012 => 0.30913298640022
1013 => 0.30650615030211
1014 => 0.32055315399448
1015 => 0.3154258086879
1016 => 0.33122707876829
1017 => 0.3416348172053
1018 => 0.3389950780826
1019 => 0.34878360638758
1020 => 0.32828487081177
1021 => 0.33509372850353
1022 => 0.33649702463713
1023 => 0.32037981614938
1024 => 0.30936978009366
1025 => 0.30863553621234
1026 => 0.28954565096814
1027 => 0.29974331357742
1028 => 0.30871683466564
1029 => 0.30441921443775
1030 => 0.30305871626135
1031 => 0.31000920638851
1101 => 0.31054931899831
1102 => 0.29823469425625
1103 => 0.30079529469357
1104 => 0.31147342418161
1105 => 0.30052623322773
1106 => 0.27925762941783
1107 => 0.27398272161152
1108 => 0.27327895167432
1109 => 0.2589729833454
1110 => 0.27433521617409
1111 => 0.26762918986212
1112 => 0.2888134466311
1113 => 0.27671311277811
1114 => 0.27619149157034
1115 => 0.2754029846096
1116 => 0.26308924669678
1117 => 0.26578517272082
1118 => 0.27474684142585
1119 => 0.27794446578022
1120 => 0.2776109273627
1121 => 0.27470292436017
1122 => 0.27603419324334
1123 => 0.27174571232582
1124 => 0.27023136045683
1125 => 0.265451649403
1126 => 0.25842679458275
1127 => 0.25940364373145
1128 => 0.24548556817928
1129 => 0.23790226193029
1130 => 0.23580330270694
1201 => 0.23299648671192
1202 => 0.23612034004222
1203 => 0.24544614001996
1204 => 0.23419724666798
1205 => 0.21491180803412
1206 => 0.21607089575681
1207 => 0.21867502173344
1208 => 0.213822250204
1209 => 0.20922950921363
1210 => 0.2132225248839
1211 => 0.20505103029929
1212 => 0.21966250781421
1213 => 0.21926730829563
1214 => 0.22471356354548
1215 => 0.22811921872163
1216 => 0.22027028613457
1217 => 0.2182963008147
1218 => 0.21942077256553
1219 => 0.20083575931608
1220 => 0.22319477146368
1221 => 0.22338813312921
1222 => 0.22173245315566
1223 => 0.2336379368672
1224 => 0.25876222091205
1225 => 0.24930945463239
1226 => 0.24564905781754
1227 => 0.23869064079676
1228 => 0.24796231832703
1229 => 0.2472503981534
1230 => 0.24403082514057
1231 => 0.24208361733673
]
'min_raw' => 0.18184867867492
'max_raw' => 0.46660288676683
'avg_raw' => 0.32422578272087
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$0.181848'
'max' => '$0.4666028'
'avg' => '$0.324225'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 0.11182525907345
'max_diff' => 0.27121583175104
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.0057080222297749
]
1 => [
'year' => 2028
'avg' => 0.0097966231969869
]
2 => [
'year' => 2029
'avg' => 0.026762608904627
]
3 => [
'year' => 2030
'avg' => 0.020647312913847
]
4 => [
'year' => 2031
'avg' => 0.020278220074718
]
5 => [
'year' => 2032
'avg' => 0.035554101581704
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.0057080222297749
'min' => '$0.005708'
'max_raw' => 0.035554101581704
'max' => '$0.035554'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.035554101581704
]
1 => [
'year' => 2033
'avg' => 0.091448805253295
]
2 => [
'year' => 2034
'avg' => 0.05796464759347
]
3 => [
'year' => 2035
'avg' => 0.068369434762025
]
4 => [
'year' => 2036
'avg' => 0.13270523730863
]
5 => [
'year' => 2037
'avg' => 0.32422578272087
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.035554101581704
'min' => '$0.035554'
'max_raw' => 0.32422578272087
'max' => '$0.324225'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 0.32422578272087
]
]
]
]
'prediction_2025_max_price' => '$0.009759'
'last_price' => 0.00946324
'sma_50day_nextmonth' => '$0.008659'
'sma_200day_nextmonth' => '$0.059282'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'increase'
'sma_200day_direction_label' => 'aumentar'
'sma_200day_date_nextmonth' => '4 de fev. de 2026'
'sma_50day_date_nextmonth' => '4 de fev. de 2026'
'daily_sma3' => '$0.009214'
'daily_sma3_action' => 'BUY'
'daily_sma5' => '$0.009024'
'daily_sma5_action' => 'BUY'
'daily_sma10' => '$0.008675'
'daily_sma10_action' => 'BUY'
'daily_sma21' => '$0.008634'
'daily_sma21_action' => 'BUY'
'daily_sma50' => '$0.011079'
'daily_sma50_action' => 'SELL'
'daily_sma100' => '$0.02447'
'daily_sma100_action' => 'SELL'
'daily_sma200' => '$0.110345'
'daily_sma200_action' => 'SELL'
'daily_ema3' => '$0.009239'
'daily_ema3_action' => 'BUY'
'daily_ema5' => '$0.009065'
'daily_ema5_action' => 'BUY'
'daily_ema10' => '$0.008875'
'daily_ema10_action' => 'BUY'
'daily_ema21' => '$0.009281'
'daily_ema21_action' => 'BUY'
'daily_ema50' => '$0.01425'
'daily_ema50_action' => 'SELL'
'daily_ema100' => '$0.037459'
'daily_ema100_action' => 'SELL'
'daily_ema200' => '$0.0914019'
'daily_ema200_action' => 'SELL'
'weekly_sma21' => '$0.032977'
'weekly_sma21_action' => 'SELL'
'weekly_sma50' => '$0.191535'
'weekly_sma50_action' => 'SELL'
'weekly_sma100' => '—'
'weekly_sma100_action' => '—'
'weekly_sma200' => '—'
'weekly_sma200_action' => '—'
'weekly_ema3' => '$0.009197'
'weekly_ema3_action' => 'BUY'
'weekly_ema5' => '$0.009863'
'weekly_ema5_action' => 'SELL'
'weekly_ema10' => '$0.01724'
'weekly_ema10_action' => 'SELL'
'weekly_ema21' => '$0.053945'
'weekly_ema21_action' => 'SELL'
'weekly_ema50' => '$0.180586'
'weekly_ema50_action' => 'SELL'
'weekly_ema100' => '$0.097615'
'weekly_ema100_action' => 'SELL'
'weekly_ema200' => '$0.0488076'
'weekly_ema200_action' => 'SELL'
'rsi_14' => '45.07'
'rsi_14_action' => 'NEUTRAL'
'stoch_rsi_14' => 124.18
'stoch_rsi_14_action' => 'SELL'
'momentum_10' => 0
'momentum_10_action' => 'BUY'
'vwma_10' => '0.008694'
'vwma_10_action' => 'BUY'
'hma_9' => '0.009361'
'hma_9_action' => 'BUY'
'stochastic_fast_14' => 100
'stochastic_fast_14_action' => 'SELL'
'cci_20' => 203.8
'cci_20_action' => 'SELL'
'adx_14' => 39.21
'adx_14_action' => 'SELL'
'ao_5_34' => '-0.000945'
'ao_5_34_action' => 'NEUTRAL'
'macd_12_26' => 0
'macd_12_26_action' => 'BUY'
'williams_percent_r_14' => -0
'williams_percent_r_14_action' => 'SELL'
'ultimate_oscillator' => 78.32
'ultimate_oscillator_action' => 'SELL'
'ichimoku_cloud' => '-0.013520'
'ichimoku_cloud_action' => 'SELL'
'sell_signals' => 15
'buy_signals' => 17
'sell_pct' => 46.88
'buy_pct' => 53.13
'overall_action' => 'bullish'
'overall_action_label' => 'Altista'
'overall_action_dir' => 1
'last_updated' => 1767685933
'last_updated_date' => '6 de janeiro de 2026'
]
Previsão de preço de Ket para 2026
A previsão de preço para Ket em 2026 sugere que o preço médio poderia variar entre $0.003269 na extremidade inferior e $0.009759 na extremidade superior. No mercado de criptomoedas, comparado ao preço médio de hoje, Ket poderia potencialmente ganhar 3.13% até 2026 se KET atingir a meta de preço prevista.
Previsão de preço de Ket 2027-2032
A previsão de preço de KET para 2027-2032 está atualmente dentro de uma faixa de preço entre $0.005708 na extremidade inferior e $0.035554 na extremidade superior. Considerando a volatilidade de preços no mercado, se Ket atingir a meta de preço superior, poderia ganhar 275.71% até 2032 em comparação com o preço de hoje.
| Previsão de Preço de Ket | Potencial Mínimo ($) | Preço Médio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2027 | $0.003147 | $0.005708 | $0.008268 |
| 2028 | $0.00568 | $0.009796 | $0.013912 |
| 2029 | $0.012478 | $0.026762 | $0.041047 |
| 2030 | $0.010612 | $0.020647 | $0.030682 |
| 2031 | $0.012546 | $0.020278 | $0.0280097 |
| 2032 | $0.019151 | $0.035554 | $0.051956 |
Previsão de preço de Ket 2032-2037
A previsão de preço de Ket para 2032-2037 é atualmente estimada entre $0.035554 na extremidade inferior e $0.324225 na extremidade superior. Comparado ao preço atual, Ket poderia potencialmente ganhar 3326.16% até 2037 se atingir a meta de preço superior. Por favor, note que esta informação é apenas para fins gerais e não deve ser considerada como aconselhamento de investimento a longo prazo.
| Previsão de Preço de Ket | Potencial Mínimo ($) | Preço Médio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2032 | $0.019151 | $0.035554 | $0.051956 |
| 2033 | $0.0445042 | $0.091448 | $0.138393 |
| 2034 | $0.035779 | $0.057964 | $0.08015 |
| 2035 | $0.0423021 | $0.068369 | $0.094436 |
| 2036 | $0.070023 | $0.1327052 | $0.195387 |
| 2037 | $0.181848 | $0.324225 | $0.4666028 |
Ket Histograma de preços potenciais
Previsão de preço de Ket baseada na análise técnica
Em 6 de janeiro de 2026, o sentimento geral de previsão de preço para Ket é Altista, com 17 indicadores técnicos mostrando sinais de alta e 15 indicando sinais de baixa. A previsão de preço de KET foi atualizada pela última vez em 6 de janeiro de 2026.
Médias Móveis Simples de 50 e 200 dias e Índice de Força Relativa de 14 dias - RSI (14) de Ket
De acordo com nossos indicadores técnicos, o SMA de 200 dias de Ket está projetado para aumentar no próximo mês, alcançando $0.059282 até 4 de fev. de 2026. O SMA de 50 dias de curto prazo para Ket é esperado para alcançar $0.008659 até 4 de fev. de 2026.
O oscilador de momentum Índice de Força Relativa (RSI) é uma ferramenta comumente usada para identificar se uma criptomoeda está sobrevendida (abaixo de 30) ou sobrecomprada (acima de 70). No momento, o RSI está em 45.07, sugerindo que o mercado de KET está em um estado NEUTRAL.
Médias Móveis e Osciladores Populares de KET para Sábado, 19 de Outubro de 2024
Médias móveis (MA) são indicadores amplamente utilizados nos mercados financeiros, projetados para suavizar movimentos de preços ao longo de um período definido. Como indicadores atrasados, eles se baseiam em dados históricos de preços. A tabela abaixo destaca dois tipos: a média móvel simples (SMA) e a média móvel exponencial (EMA).
Média Móvel Simples Diária (SMA)
| Período | Valor | Ação |
|---|---|---|
| SMA 3 | $0.009214 | BUY |
| SMA 5 | $0.009024 | BUY |
| SMA 10 | $0.008675 | BUY |
| SMA 21 | $0.008634 | BUY |
| SMA 50 | $0.011079 | SELL |
| SMA 100 | $0.02447 | SELL |
| SMA 200 | $0.110345 | SELL |
Média Móvel Exponencial Diária (EMA)
| Período | Valor | Ação |
|---|---|---|
| EMA 3 | $0.009239 | BUY |
| EMA 5 | $0.009065 | BUY |
| EMA 10 | $0.008875 | BUY |
| EMA 21 | $0.009281 | BUY |
| EMA 50 | $0.01425 | SELL |
| EMA 100 | $0.037459 | SELL |
| EMA 200 | $0.0914019 | SELL |
Média Móvel Simples Semanal (SMA)
| Período | Valor | Ação |
|---|---|---|
| SMA 21 | $0.032977 | SELL |
| SMA 50 | $0.191535 | SELL |
| SMA 100 | — | — |
| SMA 200 | — | — |
Média Móvel Exponencial Semanal (EMA)
| Período | Valor | Ação |
|---|---|---|
| EMA 21 | $0.053945 | SELL |
| EMA 50 | $0.180586 | SELL |
| EMA 100 | $0.097615 | SELL |
| EMA 200 | $0.0488076 | SELL |
Osciladores de Ket
Um oscilador é uma ferramenta de análise técnica que define limites altos e baixos entre dois extremos, criando um indicador de tendência que flutua dentro desses limites. Os traders usam esse indicador para identificar condições de sobrecompra ou sobrevenda de curto prazo.
| Período | Valor | Ação |
|---|---|---|
| RSI (14) | 45.07 | NEUTRAL |
| Stoch RSI (14) | 124.18 | SELL |
| Estocástico Rápido (14) | 100 | SELL |
| Índice de Canal de Commodities (20) | 203.8 | SELL |
| Índice Direcional Médio (14) | 39.21 | SELL |
| Oscilador Impressionante (5, 34) | -0.000945 | NEUTRAL |
| Momentum (10) | 0 | BUY |
| MACD (12, 26) | 0 | BUY |
| Williams Percent Range (14) | -0 | SELL |
| Oscilador Ultimate (7, 14, 28) | 78.32 | SELL |
| VWMA (10) | 0.008694 | BUY |
| Média Móvel de Hull (9) | 0.009361 | BUY |
| Nuvem Ichimoku B/L (9, 26, 52, 26) | -0.013520 | SELL |
Previsão do preço de Ket com base nos fluxos financeiros mundiais
Definições dos fluxos financeiros mundiais, usadas na previsão do preço do Ket
M0: o total de todas as moedas físicas, mais as contas no Banco Central que podem ser trocadas por moedas físicas.
M1: o valor de M0, mais o valor em contas de demanda, incluindo contas 'correntes'.
M2: o valor de M1, mais a maioria das contas de poupança, do mercado de moedas e de certificados de depósito (CD) de menos de US$ 100.000.
Previsões de preço de Ket por empresas de Internet ou nichos tecnológicos
| Comparação | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Facebook stock | $0.013297 | $0.018685 | $0.026255 | $0.036893 | $0.051841 | $0.072846 |
| Amazon.com stock | $0.019745 | $0.04120039 | $0.085967 | $0.179375 | $0.374277 | $0.780952 |
| Apple stock | $0.013422 | $0.019039 | $0.0270058 | $0.0383057 | $0.054333 | $0.077068 |
| Netflix stock | $0.014931 | $0.023559 | $0.037173 | $0.058653 | $0.092546 | $0.146023 |
| Google stock | $0.012254 | $0.015869 | $0.020551 | $0.026614 | $0.034465 | $0.044632 |
| Tesla stock | $0.021452 | $0.048631 | $0.110242 | $0.249912 | $0.566532 | $1.28 |
| Kodak stock | $0.007096 | $0.005321 | $0.00399 | $0.002992 | $0.002244 | $0.001682 |
| Nokia stock | $0.006269 | $0.004152 | $0.002751 | $0.001822 | $0.0012073 | $0.000799 |
Este cálculo mostra quanto a criptomoeda pode custar, se assumirmos que sua capitalização se comportará da mesma forma que a de algumas empresas de Internet ou nichos tecnológicos. Se você extrapolar os dados, poderá obter uma imagem em potencial do preço futuro para 2024, 2025, 2026, 2027, 2028, 2029 e 2030.
Visão geral da previsão para Ket
Você pode fazer perguntas como: 'Devo investir em Ket agora?', 'Devo comprar KET hoje?', 'Ket será um bom ou mau investimento no curto ou no longo prazo?'.
Atualizamos a previsão para Ket regularmente com novos valores. Veja nossas previsões semelhantes. Fazemos previsões de preços futuros para uma enorme quantidade de moedas digitais, como Ket, com métodos de análise técnica.
Se você estiver tentando encontrar criptomoedas com bom retorno, você deve explorar o máximo de fontes de informações disponíveis sobre Ket para poder tomar sozinho uma decisão de tão grande responsabilidade sobre o seu investimento.
O preço de Ket é de $0.009463 USD hoje, mas o preço pode tanto subir quanto descer e seu investimento pode ser perdido, porque criptomoedas são ativos de alto risco
Previsão do preço de Ket com base no padrão de crescimento do Bitcoin
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| Se Ket tiver 1% da média anterior do crescimento anual do Bitcoin | $0.0097092 | $0.009961 | $0.01022 | $0.010486 |
| Se Ket tiver 2% da média anterior do crescimento anual do Bitcoin | $0.009955 | $0.010472 | $0.011017 | $0.011589 |
| Se Ket tiver 5% da média anterior do crescimento anual do Bitcoin | $0.010693 | $0.012082 | $0.013653 | $0.015427 |
| Se Ket tiver 10% da média anterior do crescimento anual do Bitcoin | $0.011923 | $0.015022 | $0.018926 | $0.023846 |
| Se Ket tiver 20% da média anterior do crescimento anual do Bitcoin | $0.014382 | $0.021859 | $0.033224 | $0.050496 |
| Se Ket tiver 50% da média anterior do crescimento anual do Bitcoin | $0.021762 | $0.050045 | $0.115088 | $0.264663 |
| Se Ket tiver 100% da média anterior do crescimento anual do Bitcoin | $0.034061 | $0.122597 | $0.441267 | $1.58 |
Perguntas Frequentes sobre Ket
KET é um bom investimento?
A decisão de adquirir Ket depende inteiramente da sua tolerância individual ao risco. Como você pode perceber, o valor de Ket experimentou uma escalada de 1.4625% nas últimas 24 horas, e Ket registrou um declínio de durante os últimos 30 dias. Consequentemente, a decisão de investir ou não em Ket dependerá de quão alinhado esse investimento está com suas aspirações de negociação.
Ket pode subir?
Parece que o valor médio de Ket pode potencialmente subir para $0.009759 até o final deste ano. Observando as perspectivas de Ket em um horizonte de cinco anos mais longo, a moeda digital poderia potencialmente crescer até $0.030682. No entanto, dada a imprevisibilidade do mercado, é vital conduzir uma pesquisa aprofundada antes de investir quaisquer fundos em um projeto, rede ou ativo específico.
Qual será o preço de Ket na próxima semana?
Com base na nossa nova previsão experimental de Ket, o preço de Ket aumentará 0.86% na próxima semana e atingirá $0.009544 até 13 de janeiro de 2026.
Qual será o preço de Ket no próximo mês?
Com base na nossa nova previsão experimental de Ket, o preço de Ket diminuirá -11.62% no próximo mês e atingirá $0.008363 até 5 de fevereiro de 2026.
Até onde o preço de Ket pode subir este ano em 2026?
De acordo com nossa previsão mais recente sobre o valor de Ket em 2026, espera-se que KET fluctue dentro do intervalo de $0.003269 e $0.009759. No entanto, é crucial lembrar que o mercado de criptomoedas é excepcionalmente instável, e essa previsão de preço de Ket não considera flutuações repentinas e extremas de preço.
Onde estará Ket em 5 anos?
O futuro de Ket parece seguir uma tendência de alta, com um preço máximo de $0.030682 projetada após um período de cinco anos. Com base na previsão de Ket para 2030, o valor de Ket pode potencialmente atingir seu pico mais alto de aproximadamente $0.030682, enquanto seu pico mais baixo está previsto para cerca de $0.010612.
Quanto será Ket em 2026?
Com base na nossa nova simulação experimental de previsão de preços de Ket, espera-se que o valor de KET em 2026 aumente 3.13% para $0.009759 se o melhor cenário ocorrer. O preço ficará entre $0.009759 e $0.003269 durante 2026.
Quanto será Ket em 2027?
De acordo com nossa última simulação experimental para previsão de preços de Ket, o valor de KET pode diminuir -12.62% para $0.008268 em 2027, assumindo as condições mais favoráveis. O preço está projetado para flutuar entre $0.008268 e $0.003147 ao longo do ano.
Quanto será Ket em 2028?
Nosso novo modelo experimental de previsão de preços de Ket sugere que o valor de KET em 2028 pode aumentar 47.02%, alcançando $0.013912 no melhor cenário. O preço é esperado para variar entre $0.013912 e $0.00568 durante o ano.
Quanto será Ket em 2029?
Com base no nosso modelo de previsão experimental, o valor de Ket pode experimentar um 333.75% crescimento em 2029, potencialmente alcançando $0.041047 sob condições ótimas. A faixa de preço prevista para 2029 está entre $0.041047 e $0.012478.
Quanto será Ket em 2030?
Usando nossa nova simulação experimental para previsões de preços de Ket, espera-se que o valor de KET em 2030 aumente 224.23%, alcançando $0.030682 no melhor cenário. O preço está previsto para variar entre $0.030682 e $0.010612 ao longo de 2030.
Quanto será Ket em 2031?
Nossa simulação experimental indica que o preço de Ket poderia aumentar 195.98% em 2031, potencialmente atingindo $0.0280097 sob condições ideais. O preço provavelmente oscilará entre $0.0280097 e $0.012546 durante o ano.
Quanto será Ket em 2032?
Com base nos achados da nossa mais recente previsão experimental de preços de Ket, KET poderia ver um 449.04% aumento em valor, atingindo $0.051956 se o cenário mais positivo se desenrolar em 2032. O preço é esperado para permanecer dentro de uma faixa de $0.051956 e $0.019151 ao longo do ano.
Quanto será Ket em 2033?
De acordo com nossa previsão experimental de preços de Ket, espera-se que o valor de KET seja aumentar 1362.43% em 2033, com o preço potencial mais alto sendo $0.138393. Ao longo do ano, o preço de KET poderia variar entre $0.138393 e $0.0445042.
Quanto será Ket em 2034?
Os resultados da nossa nova simulação de previsão de preços de Ket sugerem que KET pode aumentar 746.96% em 2034, atingindo potencialmente $0.08015 nas melhores circunstâncias. A faixa de preço prevista para o ano é entre $0.08015 e $0.035779.
Quanto será Ket em 2035?
Com base em nossa previsão experimental para o preço de Ket, KET poderia aumentar 897.93%, com o valor potencialmente atingindo $0.094436 em 2035. A faixa de preço esperada para o ano está entre $0.094436 e $0.0423021.
Quanto será Ket em 2036?
Nossa recente simulação de previsão de preços de Ket sugere que o valor de KET pode aumentar 1964.7% em 2036, possivelmente atingindo $0.195387 se as condições forem ideais. A faixa de preço esperada para 2036 está entre $0.195387 e $0.070023.
Quanto será Ket em 2037?
De acordo com a simulação experimental, o valor de Ket poderia aumentar 4830.69% em 2037, com um pico de $0.4666028 sob condições favoráveis. O preço é esperado para cair entre $0.4666028 e $0.181848 ao longo do ano.
Previsões relacionadas
Como ler e prever os movimentos de preço de Ket?
Traders de Ket utilizam indicadores e padrões de gráfico para prever a direção do mercado. Eles também identificam níveis-chave de suporte e resistência para avaliar quando uma tendência de baixa pode desacelerar ou uma tendência de alta pode estagnar.
Indicadores de Previsão de Preço de Ket
Médias móveis são ferramentas populares para a previsão de preço de Ket. Uma média móvel simples (SMA) calcula o preço médio de fechamento de KET em um período específico, como uma SMA de 12 dias. Uma média móvel exponencial (EMA) dá mais peso aos preços recentes, reagindo mais rapidamente às mudanças de preço.
Médias móveis comumente usadas no mercado de criptomoedas incluem as de 50 dias, 100 dias e 200 dias, que ajudam a identificar níveis-chave de resistência e suporte. Um movimento de preço de KET acima dessas médias é visto como altista, enquanto uma queda abaixo indica fraqueza.
Traders também usam RSI e níveis de retração de Fibonacci para avaliar a direção futura de KET.
Como ler gráficos de Ket e prever movimentos de preço?
A maioria dos traders prefere gráficos de velas em vez de gráficos de linha simples porque eles fornecem informações mais detalhadas. Velas podem representar a ação de preço de Ket em diferentes períodos de tempo, como 5 minutos para tendências de curto prazo e semanal para tendências de longo prazo. Opções populares incluem gráficos de 1 hora, 4 horas e 1 dia.
Por exemplo, um gráfico de velas de 1 hora mostra os preços de abertura, fechamento, máximo e mínimo de KET dentro de cada hora. A cor da vela é crucial: verde indica que o preço fechou mais alto do que abriu, enquanto vermelho significa o oposto. Alguns gráficos usam velas vazias e preenchidas para transmitir a mesma informação.
O que afeta o preço de Ket?
A ação de preço de Ket é impulsionada pela oferta e demanda, influenciada por fatores como reduções pela metade das recompensas de bloco, hard forks e atualizações de protocolo. Eventos do mundo real, como regulamentações, adoção por empresas e governos e hacks de exchanges de criptomoedas, também impactam o preço de KET. A capitalização de mercado de Ket pode mudar rapidamente.
Traders frequentemente monitoram a atividade de "baleias" de KET, grandes detentores de Ket, pois suas ações podem influenciar significativamente os movimentos de preço no relativamente pequeno mercado de Ket.
Padrões de previsão de preço altistas e baixistas
Traders frequentemente identificam padrões de velas para ganhar vantagem em previsões de preço de criptomoedas. Certas formações indicam tendências altistas, enquanto outras sugerem movimentos baixistas.
Padrões de velas altistas comumente seguidos:
- Martelo
- Engolfo de Alta
- Linha de Perfuração
- Estrela da Manhã
- Três Soldados Brancos
Padrões de velas baixistas comuns:
- Harami de Baixa
- Nuvem Negra
- Estrela da Noite
- Estrela Cadente
- Homem Enforcado


