Previsão de Preço kazonomics - Projeção KAZONOMICS
Previsão de Preço kazonomics até $0.00114 até 2026
| Ano | Preço Mínimo | Preço Máximo |
|---|---|---|
| 2026 | $0.000382 | $0.00114 |
| 2027 | $0.000367 | $0.000966 |
| 2028 | $0.000663 | $0.001626 |
| 2029 | $0.001458 | $0.004797 |
| 2030 | $0.00124 | $0.003585 |
| 2031 | $0.001466 | $0.003273 |
| 2032 | $0.002238 | $0.006072 |
| 2033 | $0.0052012 | $0.016174 |
| 2034 | $0.004181 | $0.009367 |
| 2035 | $0.004943 | $0.011036 |
Calculadora de lucro do investimento
Se você abrir um short de $10,000.00 em kazonomics hoje e fechar em Apr 06, 2026, nossa previsão mostra que pode lucrar cerca de $3,960.11, com um retorno de 39.6% nos próximos 90 dias.
Previsão de preço de longo prazo de kazonomics para os anos 2027, 2028, 2029, 2030, 2031, 2032 e 2037
[
'name' => 'kazonomics'
'name_with_ticker' => 'kazonomics <small>KAZONOMICS</small>'
'name_lang' => 'kazonomics'
'name_lang_with_ticker' => 'kazonomics <small>KAZONOMICS</small>'
'name_with_lang' => 'kazonomics'
'name_with_lang_with_ticker' => 'kazonomics <small>KAZONOMICS</small>'
'image' => '/uploads/coins/kazonomics.jpeg?1756685804'
'price_for_sd' => 0.001105
'ticker' => 'KAZONOMICS'
'marketcap' => '$1.11M'
'low24h' => '$0.001105'
'high24h' => '$0.001257'
'volume24h' => '$2.45K'
'current_supply' => '1B'
'max_supply' => '1B'
'algo' => null
'proof' => null
'ico_price_and_roi' => '—'
'price' => '$0.001105'
'change_24h_pct' => '-6.0621%'
'ath_price' => '$0.05201'
'ath_days' => 120
'ath_exchange' => null
'ath_pair' => null
'ath_date' => '8 de set. de 2025'
'ath_pct' => '-97.87%'
'fdv' => '$1.11M'
'new_prediction' => true
'change_24h_pct_is_increased' => false
'change_30d_pct' => null
'change_30d_pct_is_increased' => false
'max_price' => '$0.054532'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.001115'
'next_week_prediction_price_date' => '13 de janeiro de 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.000977'
'next_month_prediction_price_date' => '5 de fevereiro de 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.000382'
'current_year_max_price_prediction' => '$0.00114'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.00124'
'grand_prediction_max_price' => '$0.003585'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.0011269377392545
107 => 0.0011311453156945
108 => 0.0011406252002579
109 => 0.001059620624597
110 => 0.0010959893008994
111 => 0.0011173524909429
112 => 0.0010208328211268
113 => 0.001115444607405
114 => 0.0010582105151537
115 => 0.0010387844046164
116 => 0.0010649391032594
117 => 0.0010547465917619
118 => 0.0010459836689008
119 => 0.0010410938073781
120 => 0.0010602989314728
121 => 0.0010594029894787
122 => 0.0010279796789058
123 => 0.00098698925124146
124 => 0.0010007469842305
125 => 0.00099574867085617
126 => 0.00097763413839221
127 => 0.00098984114611592
128 => 0.0009360876619259
129 => 0.00084360758623994
130 => 0.00090470275697941
131 => 0.0009023506593647
201 => 0.00090116462508823
202 => 0.00094707595735245
203 => 0.00094266264210989
204 => 0.00093465243172935
205 => 0.00097748702459688
206 => 0.00096185182199366
207 => 0.0010100358322998
208 => 0.0010417729378338
209 => 0.0010337233812825
210 => 0.001063572282436
211 => 0.0010010639346119
212 => 0.0010218267003594
213 => 0.001026105877604
214 => 0.00097695845236994
215 => 0.00094338471506397
216 => 0.00094114572955428
217 => 0.00088293349581172
218 => 0.00091403000120426
219 => 0.00094139363908888
220 => 0.00092828858004623
221 => 0.00092413990985583
222 => 0.0009453345661218
223 => 0.00094698157243362
224 => 0.00090942965398219
225 => 0.00091723788694284
226 => 0.00094979951639948
227 => 0.00091641741742507
228 => 0.0008515614520527
301 => 0.00083547627593648
302 => 0.00083333021693396
303 => 0.00078970594357536
304 => 0.00083655116431883
305 => 0.00081610197009044
306 => 0.00088070072963895
307 => 0.00084380226463494
308 => 0.00084221164555664
309 => 0.00083980719152671
310 => 0.00080225797735093
311 => 0.00081047886887837
312 => 0.00083780636439274
313 => 0.00084755712265854
314 => 0.00084654003868581
315 => 0.00083767244475626
316 => 0.00084173198384778
317 => 0.00082865479399681
318 => 0.00082403696608226
319 => 0.00080946183095032
320 => 0.00078804040879022
321 => 0.0007910191889268
322 => 0.00074857774640762
323 => 0.00072545339598533
324 => 0.00071905288056248
325 => 0.00071049384384309
326 => 0.00072001964653466
327 => 0.00074845751513345
328 => 0.00071415541217293
329 => 0.00065534686265988
330 => 0.00065888135669051
331 => 0.00066682231537663
401 => 0.00065202439139974
402 => 0.00063801939825123
403 => 0.00065019560353285
404 => 0.00062527764584476
405 => 0.00066983353151628
406 => 0.00066862841967529
407 => 0.00068523609853615
408 => 0.00069562122095173
409 => 0.00067168687600714
410 => 0.00066566745297893
411 => 0.00066909638990332
412 => 0.00061242370059448
413 => 0.00068060473074418
414 => 0.00068119436312419
415 => 0.00067614557271032
416 => 0.00071244986641189
417 => 0.00078906324971538
418 => 0.0007602382131504
419 => 0.0007490762877511
420 => 0.00072785745940771
421 => 0.00075613028832592
422 => 0.00075395937618984
423 => 0.0007441416882165
424 => 0.00073820391989718
425 => 0.00074914444008745
426 => 0.00073684826837223
427 => 0.00073463953805597
428 => 0.00072125703546175
429 => 0.00071648009090068
430 => 0.00071294343132331
501 => 0.00070904991663361
502 => 0.00071763803983567
503 => 0.00069817622279812
504 => 0.00067470717931628
505 => 0.00067275598228934
506 => 0.00067814340883173
507 => 0.00067575987363346
508 => 0.00067274457083982
509 => 0.00066698753663792
510 => 0.00066527954756978
511 => 0.00067082968344272
512 => 0.0006645639036352
513 => 0.00067380940305588
514 => 0.00067129513879027
515 => 0.00065725066298616
516 => 0.00063974604620331
517 => 0.00063959021839677
518 => 0.00063581887742423
519 => 0.00063101550767079
520 => 0.0006296793200916
521 => 0.00064917015748623
522 => 0.00068951560758144
523 => 0.00068159483034295
524 => 0.00068731840365166
525 => 0.0007154727195018
526 => 0.00072442212988075
527 => 0.00071807005037217
528 => 0.00070937493216164
529 => 0.00070975747323443
530 => 0.00073947132435111
531 => 0.0007413245407975
601 => 0.00074600702088726
602 => 0.00075202533107131
603 => 0.00071909499462043
604 => 0.00070820645734897
605 => 0.0007030468643167
606 => 0.00068715731479113
607 => 0.00070429283168744
608 => 0.00069430869980795
609 => 0.00069565590030501
610 => 0.00069477853421395
611 => 0.0006952576354269
612 => 0.00066982107723819
613 => 0.00067908882213601
614 => 0.00066367939873469
615 => 0.00064304791058927
616 => 0.00064297874660667
617 => 0.00064802827410166
618 => 0.00064502461755961
619 => 0.00063694185503603
620 => 0.00063808997330294
621 => 0.00062803124917799
622 => 0.00063931128453079
623 => 0.0006396347555828
624 => 0.0006352913275443
625 => 0.0006526697783502
626 => 0.00065978974382485
627 => 0.00065693080644466
628 => 0.00065958915315691
629 => 0.00068192397439738
630 => 0.00068556552479614
701 => 0.00068718286093596
702 => 0.00068501584476459
703 => 0.00065999739268858
704 => 0.00066110706742482
705 => 0.00065296501049102
706 => 0.00064608583037078
707 => 0.00064636096149904
708 => 0.00064989775431166
709 => 0.00066534313595454
710 => 0.00069784703106699
711 => 0.00069908053012647
712 => 0.00070057556697027
713 => 0.00069449450078123
714 => 0.00069266039303066
715 => 0.00069508005457705
716 => 0.00070728680860767
717 => 0.00073868589407582
718 => 0.00072758736019697
719 => 0.00071856407939449
720 => 0.0007264799293173
721 => 0.00072526134626817
722 => 0.00071497527899484
723 => 0.00071468658334529
724 => 0.00069494433159314
725 => 0.00068764607062969
726 => 0.00068154709750327
727 => 0.00067488717806694
728 => 0.00067093895458256
729 => 0.00067700522029005
730 => 0.0006783926470313
731 => 0.0006651286510417
801 => 0.00066332081740047
802 => 0.00067415248284881
803 => 0.00066938587073019
804 => 0.00067428844950048
805 => 0.00067542588982874
806 => 0.00067524273573841
807 => 0.00067026584524465
808 => 0.00067343796683237
809 => 0.00066593495362247
810 => 0.00065777655367285
811 => 0.00065257200279127
812 => 0.0006480303418636
813 => 0.00065055031930916
814 => 0.00064156705984545
815 => 0.00063869313434572
816 => 0.00067236332341344
817 => 0.0006972358540933
818 => 0.00069687419764661
819 => 0.00069467270703788
820 => 0.00069140173854938
821 => 0.00070704751688913
822 => 0.00070159684056277
823 => 0.00070556266300945
824 => 0.00070657213126717
825 => 0.0007096274876509
826 => 0.00071071951494134
827 => 0.00070741865000793
828 => 0.00069634054412474
829 => 0.00066873495753852
830 => 0.00065588448246278
831 => 0.00065164361164619
901 => 0.00065179775924581
902 => 0.00064754568030304
903 => 0.0006487981081165
904 => 0.00064711013702075
905 => 0.00064391352812947
906 => 0.00065035293771793
907 => 0.00065109501968575
908 => 0.00064959198454259
909 => 0.00064994600372947
910 => 0.00063750151469881
911 => 0.0006384476421718
912 => 0.00063317948417411
913 => 0.00063219176805814
914 => 0.00061887432339099
915 => 0.00059528053976866
916 => 0.00060835378619942
917 => 0.00059256314288769
918 => 0.00058658298699824
919 => 0.00061489211487382
920 => 0.0006120506636081
921 => 0.00060718733419035
922 => 0.00059999345637484
923 => 0.00059732517711552
924 => 0.00058111355701047
925 => 0.00058015568800904
926 => 0.00058819060468366
927 => 0.00058448276710292
928 => 0.00057927555887167
929 => 0.00056041557850428
930 => 0.00053921071624643
1001 => 0.00053985075774899
1002 => 0.00054659562990272
1003 => 0.00056620725535963
1004 => 0.00055854465400905
1005 => 0.00055298534881099
1006 => 0.00055194425805949
1007 => 0.0005649756884856
1008 => 0.00058341789270762
1009 => 0.00059207056230753
1010 => 0.0005834960295195
1011 => 0.00057364606793825
1012 => 0.00057424558945937
1013 => 0.00057823393754903
1014 => 0.00057865305654105
1015 => 0.00057224174414407
1016 => 0.00057404649102934
1017 => 0.00057130491548109
1018 => 0.00055447987140206
1019 => 0.00055417555970746
1020 => 0.00055004642254998
1021 => 0.00054992139391788
1022 => 0.00054289670155147
1023 => 0.00054191389853
1024 => 0.00052796594546815
1025 => 0.00053714653041175
1026 => 0.00053098867603392
1027 => 0.00052170733699553
1028 => 0.00052010723064697
1029 => 0.00052005912951795
1030 => 0.00052958898944094
1031 => 0.00053703516844999
1101 => 0.00053109579454723
1102 => 0.0005297435142395
1103 => 0.00054418233007231
1104 => 0.00054234485914486
1105 => 0.0005407536211721
1106 => 0.0005817665955954
1107 => 0.00054930162605705
1108 => 0.00053514504630266
1109 => 0.00051762359059501
1110 => 0.00052332866492426
1111 => 0.00052453080791042
1112 => 0.0004823948654133
1113 => 0.00046530031878991
1114 => 0.00045943411458317
1115 => 0.00045605803112623
1116 => 0.00045759655475175
1117 => 0.00044220945780037
1118 => 0.00045254984143079
1119 => 0.00043922591610982
1120 => 0.00043699211666996
1121 => 0.00046081694566146
1122 => 0.000464132031433
1123 => 0.00044998884561521
1124 => 0.00045907106048403
1125 => 0.00045577772312036
1126 => 0.00043945431656746
1127 => 0.00043883088250399
1128 => 0.00043064037089123
1129 => 0.00041782380621283
1130 => 0.00041196629224046
1201 => 0.00040891564810638
1202 => 0.00041017440333197
1203 => 0.00040953793817136
1204 => 0.0004053845724768
1205 => 0.00040977600423122
1206 => 0.00039855771076356
1207 => 0.0003940904959128
1208 => 0.00039207275860331
1209 => 0.00038211587744988
1210 => 0.00039796170321014
1211 => 0.00040108353050536
1212 => 0.00040421150876473
1213 => 0.00043143842395115
1214 => 0.0004300782442109
1215 => 0.00044237360662835
1216 => 0.00044189583145453
1217 => 0.00043838899492141
1218 => 0.00042359422843477
1219 => 0.00042949115866499
1220 => 0.0004113413240028
1221 => 0.0004249404142005
1222 => 0.00041873435734585
1223 => 0.00042284214013521
1224 => 0.0004154559762961
1225 => 0.0004195437843319
1226 => 0.00040182383156921
1227 => 0.00038527718900588
1228 => 0.00039193604099998
1229 => 0.00039917497464965
1230 => 0.00041487082724813
1231 => 0.00040552250692845
]
'min_raw' => 0.00038211587744988
'max_raw' => 0.0011406252002579
'avg_raw' => 0.00076137053885391
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.000382'
'max' => '$0.00114'
'avg' => '$0.000761'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.00072386412255012
'max_diff' => 3.4645200257945E-5
'year' => 2026
]
1 => [
'items' => [
101 => 0.00040888451641453
102 => 0.00039762234742974
103 => 0.00037438527593457
104 => 0.0003745167952357
105 => 0.00037094227803329
106 => 0.00036785337328235
107 => 0.00040659627397189
108 => 0.00040177798183653
109 => 0.0003941006639213
110 => 0.00040437705903532
111 => 0.00040709430101178
112 => 0.00040717165707086
113 => 0.0004146690496739
114 => 0.00041867040945012
115 => 0.00041937566645357
116 => 0.00043117297570634
117 => 0.0004351272781576
118 => 0.0004514144903205
119 => 0.00041833092202906
120 => 0.00041764958771134
121 => 0.00040452166898883
122 => 0.00039619573539082
123 => 0.00040509175278543
124 => 0.00041297240976957
125 => 0.00040476654296857
126 => 0.00040583805593748
127 => 0.00039482235020108
128 => 0.00039875994666471
129 => 0.00040215153519072
130 => 0.00040027889935502
131 => 0.00039747547287237
201 => 0.0004123262857667
202 => 0.0004114883447024
203 => 0.00042531776308831
204 => 0.00043609878367133
205 => 0.00045542029989404
206 => 0.00043525729046222
207 => 0.00043452247025782
208 => 0.00044170545562469
209 => 0.00043512617847996
210 => 0.0004392840545265
211 => 0.00045475040178243
212 => 0.0004550771813284
213 => 0.00044960320290179
214 => 0.00044927011081705
215 => 0.00045032144825264
216 => 0.00045647916445084
217 => 0.00045432746920368
218 => 0.00045681746541795
219 => 0.00045993124381207
220 => 0.00047281115146481
221 => 0.00047591645359516
222 => 0.00046837217933296
223 => 0.00046905334282918
224 => 0.00046623157716016
225 => 0.0004635057868805
226 => 0.00046963296535947
227 => 0.00048083050445977
228 => 0.00048076084515018
301 => 0.00048335845657239
302 => 0.00048497674696866
303 => 0.00047802985992692
304 => 0.00047350769190687
305 => 0.00047524177887878
306 => 0.00047801462171038
307 => 0.00047434258331994
308 => 0.00045167706132049
309 => 0.00045855233281597
310 => 0.00045740795145552
311 => 0.00045577821323672
312 => 0.00046269135189033
313 => 0.00046202456280247
314 => 0.00044205164088098
315 => 0.00044333024254041
316 => 0.00044212939688275
317 => 0.00044600957487255
318 => 0.00043491663613486
319 => 0.00043832874937849
320 => 0.00044046879481832
321 => 0.00044172929802298
322 => 0.00044628309993337
323 => 0.00044574876383897
324 => 0.0004462498848515
325 => 0.00045300197092547
326 => 0.00048715170525147
327 => 0.00048901039994369
328 => 0.00047985750749354
329 => 0.00048351390749456
330 => 0.00047649441905939
331 => 0.0004812066486724
401 => 0.00048443063649597
402 => 0.00046986205545847
403 => 0.00046899939863874
404 => 0.00046195093827783
405 => 0.00046573838163058
406 => 0.00045971228692954
407 => 0.00046119087978533
408 => 0.00045705660525913
409 => 0.00046449747628044
410 => 0.00047281752627673
411 => 0.00047491949947453
412 => 0.00046939011294749
413 => 0.00046538647269759
414 => 0.00045835739929984
415 => 0.00047004690501341
416 => 0.00047346527271529
417 => 0.00047002894978312
418 => 0.00046923267867459
419 => 0.00046772374636277
420 => 0.00046955280579773
421 => 0.00047344665555065
422 => 0.00047161038791529
423 => 0.00047282327503932
424 => 0.00046820100004629
425 => 0.00047803215963559
426 => 0.00049364640706081
427 => 0.00049369660941947
428 => 0.00049186033188593
429 => 0.00049110896668236
430 => 0.00049299309886641
501 => 0.0004940151632851
502 => 0.00050010810127754
503 => 0.00050664606649678
504 => 0.00053715589743729
505 => 0.00052858885899625
506 => 0.00055565899604463
507 => 0.00057706795983254
508 => 0.000583487571972
509 => 0.00057758183086978
510 => 0.00055737860958096
511 => 0.00055638734315998
512 => 0.00058657948534549
513 => 0.00057804882229037
514 => 0.0005770341270643
515 => 0.00056623948421364
516 => 0.00057262045508091
517 => 0.00057122484314904
518 => 0.00056902180143892
519 => 0.00058119624935138
520 => 0.00060398572902305
521 => 0.00060043377489783
522 => 0.00059778240591377
523 => 0.00058616487882751
524 => 0.00059316122500205
525 => 0.00059066996013548
526 => 0.00060137401499802
527 => 0.0005950331700213
528 => 0.00057798419412758
529 => 0.00058069929973282
530 => 0.00058028891698262
531 => 0.00058873456490164
601 => 0.00058619939103022
602 => 0.00057979388359614
603 => 0.00060390783705907
604 => 0.00060234201105004
605 => 0.00060456199433318
606 => 0.00060553929962968
607 => 0.00062021703816704
608 => 0.00062623003801055
609 => 0.00062759509424741
610 => 0.00063330697903664
611 => 0.00062745297735044
612 => 0.00065087315792771
613 => 0.00066644621140617
614 => 0.00068453511440341
615 => 0.00071096786352113
616 => 0.000720906821706
617 => 0.00071911143787007
618 => 0.00073915244657833
619 => 0.00077516569374049
620 => 0.00072639074477968
621 => 0.00077775088447024
622 => 0.00076149085722554
623 => 0.00072293862513375
624 => 0.00072045631588799
625 => 0.00074656433506117
626 => 0.00080446940878356
627 => 0.00078996484457001
628 => 0.0008044931330545
629 => 0.00078754511282187
630 => 0.00078670350076819
701 => 0.00080367000554049
702 => 0.000843313168737
703 => 0.00082448018790409
704 => 0.00079747849184376
705 => 0.00081741612402178
706 => 0.00080014430188842
707 => 0.00076122605254335
708 => 0.00078995375320312
709 => 0.00077074435788974
710 => 0.0007763506806698
711 => 0.00081672597243662
712 => 0.00081186791051146
713 => 0.00081815469248703
714 => 0.00080705868685388
715 => 0.00079669326791303
716 => 0.00077734544371382
717 => 0.00077161750680463
718 => 0.00077320050249675
719 => 0.00077161672235058
720 => 0.00076079179252681
721 => 0.00075845414996201
722 => 0.00075455797660622
723 => 0.0007557655636464
724 => 0.00074843961787179
725 => 0.00076226519116611
726 => 0.00076483133940007
727 => 0.00077489243868655
728 => 0.00077593701539089
729 => 0.00080395703369295
730 => 0.00078852407846945
731 => 0.00079887783725062
801 => 0.00079795169961188
802 => 0.00072377416890377
803 => 0.00073399517816145
804 => 0.00074989586103701
805 => 0.00074273262495444
806 => 0.00073260548507278
807 => 0.00072442727663545
808 => 0.00071203645458815
809 => 0.00072947629867506
810 => 0.00075240783912869
811 => 0.0007765185970996
812 => 0.0008054860930022
813 => 0.00079902088513556
814 => 0.00077597706991307
815 => 0.00077701079863043
816 => 0.00078340090280392
817 => 0.00077512513729707
818 => 0.00077268445248697
819 => 0.00078306559019027
820 => 0.00078313707938026
821 => 0.00077361481100496
822 => 0.00076303255226254
823 => 0.00076298821221202
824 => 0.00076110520148129
825 => 0.00078788009624773
826 => 0.00080260358112208
827 => 0.00080429160493484
828 => 0.00080248996367001
829 => 0.00080318334388826
830 => 0.00079461607244973
831 => 0.00081419831441278
901 => 0.0008321689161211
902 => 0.00082735241097736
903 => 0.00082013178506035
904 => 0.00081438020872499
905 => 0.00082599752238048
906 => 0.00082548022169074
907 => 0.00083201195859239
908 => 0.00083171564127739
909 => 0.00082951926382841
910 => 0.00082735248941692
911 => 0.00083594350503743
912 => 0.00083346943050621
913 => 0.00083099151305389
914 => 0.00082602167025307
915 => 0.00082669715443005
916 => 0.00081947777525591
917 => 0.00081613776011364
918 => 0.00076591194619073
919 => 0.00075248996753472
920 => 0.00075671279524947
921 => 0.00075810305977884
922 => 0.00075226179746701
923 => 0.000760636667125
924 => 0.00075933145255999
925 => 0.00076440927890748
926 => 0.00076123687345916
927 => 0.00076136707008534
928 => 0.00077069643808071
929 => 0.00077340479329973
930 => 0.00077202730197623
1001 => 0.00077299204968157
1002 => 0.00079522425335662
1003 => 0.00079206354493988
1004 => 0.00079038448158874
1005 => 0.00079084959361193
1006 => 0.00079653039831472
1007 => 0.00079812071347107
1008 => 0.00079138243640417
1009 => 0.00079456024682244
1010 => 0.00080809096025922
1011 => 0.00081282594419004
1012 => 0.00082793773997599
1013 => 0.00082151798053537
1014 => 0.00083330172682931
1015 => 0.00086952094556175
1016 => 0.00089845536366452
1017 => 0.00087184607701181
1018 => 0.00092498045108163
1019 => 0.00096635318296825
1020 => 0.00096476522860855
1021 => 0.00095755093583559
1022 => 0.00091044918053365
1023 => 0.00086710544305721
1024 => 0.00090336431992856
1025 => 0.00090345675126241
1026 => 0.00090034208158276
1027 => 0.00088099713570343
1028 => 0.00089966891939876
1029 => 0.00090115101778253
1030 => 0.00090032143680939
1031 => 0.00088548971216034
1101 => 0.00086284440998214
1102 => 0.00086726924782256
1103 => 0.00087451722246943
1104 => 0.00086079529437701
1105 => 0.00085641030691054
1106 => 0.00086456283288871
1107 => 0.00089083197023661
1108 => 0.00088586594198774
1109 => 0.00088573625892087
1110 => 0.00090698303369325
1111 => 0.0008917749282972
1112 => 0.00086732505919803
1113 => 0.00086115114479633
1114 => 0.0008392379079174
1115 => 0.00085437345868195
1116 => 0.00085491816020866
1117 => 0.0008466285737365
1118 => 0.00086799771345372
1119 => 0.00086780079306927
1120 => 0.00088808761085406
1121 => 0.0009268683870778
1122 => 0.00091539900326234
1123 => 0.00090206135775037
1124 => 0.00090351152963032
1125 => 0.00091941633582414
1126 => 0.00090979992692795
1127 => 0.000913258054615
1128 => 0.00091941110153371
1129 => 0.00092312338751133
1130 => 0.00090297738880698
1201 => 0.00089828039281448
1202 => 0.00088867198743541
1203 => 0.00088616533382139
1204 => 0.00089399117951669
1205 => 0.00089192934566719
1206 => 0.00085487238015453
1207 => 0.00085099972107545
1208 => 0.00085111849000052
1209 => 0.00084138050461127
1210 => 0.00082652773950837
1211 => 0.00086555991938626
1212 => 0.00086242508908706
1213 => 0.00085896447905333
1214 => 0.0008593883840365
1215 => 0.00087633093039817
1216 => 0.0008665033978893
1217 => 0.00089263150376504
1218 => 0.00088726035067974
1219 => 0.00088175144778503
1220 => 0.00088098994959969
1221 => 0.00087886949198273
1222 => 0.00087159765382666
1223 => 0.00086281647228347
1224 => 0.00085701837561574
1225 => 0.00079055414968559
1226 => 0.00080288952341361
1227 => 0.000817080246483
1228 => 0.0008219788272208
1229 => 0.00081359946589732
1230 => 0.00087192852208452
1231 => 0.00088258580272269
]
'min_raw' => 0.00036785337328235
'max_raw' => 0.00096635318296825
'avg_raw' => 0.0006671032781253
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.000367'
'max' => '$0.000966'
'avg' => '$0.000667'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -1.4262504167535E-5
'max_diff' => -0.0001742720172897
'year' => 2027
]
2 => [
'items' => [
101 => 0.00085030420451245
102 => 0.00084426563553629
103 => 0.00087232440966128
104 => 0.00085540153881828
105 => 0.00086302190652268
106 => 0.00084655083966404
107 => 0.00088001877589856
108 => 0.00087976380629858
109 => 0.00086674402319573
110 => 0.00087774825471863
111 => 0.00087583599869069
112 => 0.00086113669563388
113 => 0.00088048477002413
114 => 0.00088049436642764
115 => 0.00086796310826564
116 => 0.00085332934217757
117 => 0.00085071317043515
118 => 0.00084874223646046
119 => 0.00086253717758536
120 => 0.00087490567866227
121 => 0.00089792039275496
122 => 0.00090370683869398
123 => 0.0009262917224195
124 => 0.00091284352379899
125 => 0.00091880493606413
126 => 0.0009252768923712
127 => 0.00092837978622312
128 => 0.00092332378720188
129 => 0.00095840740793663
130 => 0.000961369540461
131 => 0.00096236271787408
201 => 0.00095053271835809
202 => 0.00096104052677415
203 => 0.00095612427119832
204 => 0.00096891500243151
205 => 0.00097092075240913
206 => 0.00096922195353471
207 => 0.00096985861023622
208 => 0.00093992092911392
209 => 0.00093836850241387
210 => 0.00091720105420365
211 => 0.00092582694581119
212 => 0.00090970125490063
213 => 0.0009148148776014
214 => 0.0009170689137635
215 => 0.00091589153318785
216 => 0.0009263146407805
217 => 0.00091745287002654
218 => 0.00089406519999685
219 => 0.00087067115801209
220 => 0.00087037746487134
221 => 0.0008642182265559
222 => 0.0008597662253746
223 => 0.00086062383874534
224 => 0.00086364618012412
225 => 0.00085959056139935
226 => 0.00086045603327937
227 => 0.00087482863309665
228 => 0.00087771095548932
229 => 0.00086791569780299
301 => 0.00082858632474342
302 => 0.00081893479794433
303 => 0.00082587212400942
304 => 0.00082255652897133
305 => 0.00066386731678477
306 => 0.00070114899331764
307 => 0.00067899748708792
308 => 0.00068920592030037
309 => 0.00066659496854455
310 => 0.00067738609986395
311 => 0.00067539337193827
312 => 0.00073534120455813
313 => 0.00073440520160732
314 => 0.0007348532166877
315 => 0.0007134682896041
316 => 0.00074753505911231
317 => 0.00076431757477347
318 => 0.00076121157777678
319 => 0.00076199329030477
320 => 0.00074856087913642
321 => 0.0007349832717896
322 => 0.00071992361566319
323 => 0.00074790259531631
324 => 0.00074479181039599
325 => 0.00075192683177811
326 => 0.00077007320006192
327 => 0.00077274532172306
328 => 0.00077633668033362
329 => 0.00077504943392205
330 => 0.00080571686584108
331 => 0.00080200283748545
401 => 0.00081095257722362
402 => 0.00079254228356382
403 => 0.00077170928876662
404 => 0.00077566895999566
405 => 0.00077528761181464
406 => 0.00077043261177917
407 => 0.00076604973482888
408 => 0.00075875347957455
409 => 0.00078183991084183
410 => 0.00078090264389315
411 => 0.00079607590633859
412 => 0.00079339388481616
413 => 0.00077548268868731
414 => 0.00077612239056107
415 => 0.00078042469309234
416 => 0.00079531501127589
417 => 0.00079973547152293
418 => 0.00079768773821162
419 => 0.00080253457107083
420 => 0.00080636531014145
421 => 0.000803015652919
422 => 0.00085043973538699
423 => 0.00083074594995078
424 => 0.00084034456394391
425 => 0.00084263377682296
426 => 0.00083677000617025
427 => 0.00083804164805893
428 => 0.00083996783901862
429 => 0.00085166329333899
430 => 0.00088235554958262
501 => 0.00089594894094367
502 => 0.0009368453295395
503 => 0.00089482019902028
504 => 0.00089232660169254
505 => 0.00089969327623127
506 => 0.0009237037856594
507 => 0.00094316204835843
508 => 0.0009496174766698
509 => 0.00095047066808866
510 => 0.00096258148074955
511 => 0.0009695231727135
512 => 0.00096111090954653
513 => 0.00095398239731319
514 => 0.00092844895131688
515 => 0.00093140451721622
516 => 0.00095176543536898
517 => 0.00098052643151185
518 => 0.0010052063582741
519 => 0.00099656430810422
520 => 0.0010624970505635
521 => 0.0010690340126672
522 => 0.0010681308158698
523 => 0.0010830229883725
524 => 0.0010534650586928
525 => 0.0010408284710968
526 => 0.00095552366257009
527 => 0.00097949083422818
528 => 0.0010143285257759
529 => 0.0010097176266649
530 => 0.00098441756384879
531 => 0.0010051871659077
601 => 0.00099832008594152
602 => 0.00099290373505678
603 => 0.001017717088471
604 => 0.00099043378711569
605 => 0.0010140563539742
606 => 0.00098376016763399
607 => 0.00099660378426144
608 => 0.00098931312628787
609 => 0.00099403107550621
610 => 0.00096645004077934
611 => 0.00098133209762619
612 => 0.00096583089828685
613 => 0.00096582354870004
614 => 0.00096548135886547
615 => 0.00098371845114537
616 => 0.00098431316206988
617 => 0.00097083592332032
618 => 0.00096889364266247
619 => 0.00097607527224504
620 => 0.00096766746487562
621 => 0.00097160142502566
622 => 0.00096778662052098
623 => 0.0009669278276749
624 => 0.00096008482016577
625 => 0.00095713666437842
626 => 0.00095829271222725
627 => 0.00095434652493567
628 => 0.00095196880435266
629 => 0.00096500837039515
630 => 0.00095804185627324
701 => 0.00096394065219209
702 => 0.00095721822975517
703 => 0.00093391538476875
704 => 0.00092051367219395
705 => 0.00087649675818948
706 => 0.00088897990039833
707 => 0.00089725623659755
708 => 0.00089452090753308
709 => 0.00090039745279539
710 => 0.00090075822494717
711 => 0.00089884770017811
712 => 0.00089663555724891
713 => 0.00089555880841016
714 => 0.00090358401209046
715 => 0.00090824291294282
716 => 0.00089808687765823
717 => 0.00089570746068909
718 => 0.00090597577309188
719 => 0.00091223943772577
720 => 0.0009584868181333
721 => 0.00095506066281564
722 => 0.00096365964031394
723 => 0.0009626915274097
724 => 0.00097170462575246
725 => 0.00098643723232331
726 => 0.00095648172386318
727 => 0.00096168096434831
728 => 0.00096040623064936
729 => 0.00097432343892145
730 => 0.00097436688692656
731 => 0.00096602282535133
801 => 0.0009705462764982
802 => 0.00096802141016241
803 => 0.00097258418488734
804 => 0.00095501490442254
805 => 0.00097641239154203
806 => 0.00098854338791517
807 => 0.00098871182681158
808 => 0.0009944618228149
809 => 0.0010003041517716
810 => 0.0010115179934443
811 => 0.00099999140381367
812 => 0.00097925619115895
813 => 0.00098075320653829
814 => 0.00096859615894555
815 => 0.00096880052111193
816 => 0.00096770961985162
817 => 0.00097098349665303
818 => 0.00095573333627439
819 => 0.00095931251843367
820 => 0.00095430164245101
821 => 0.00096167007168253
822 => 0.0009537428598744
823 => 0.00096040561593417
824 => 0.0009632810405757
825 => 0.00097389141940643
826 => 0.00095217569829407
827 => 0.00090789587292089
828 => 0.00091720402905532
829 => 0.00090343653499261
830 => 0.00090471076898466
831 => 0.00090728492444144
901 => 0.00089894124439477
902 => 0.0009005329556081
903 => 0.00090047608848286
904 => 0.00089998603831965
905 => 0.0008978155248913
906 => 0.00089466785099719
907 => 0.00090720721498837
908 => 0.00090933789727602
909 => 0.00091407414006576
910 => 0.00092816598598386
911 => 0.00092675787826803
912 => 0.00092905456037438
913 => 0.00092404091623155
914 => 0.00090494333755697
915 => 0.00090598042796022
916 => 0.00089304789401342
917 => 0.00091374342609644
918 => 0.0009088424509315
919 => 0.00090568276035994
920 => 0.00090482060951316
921 => 0.00091894738639162
922 => 0.00092317433944376
923 => 0.00092054038596193
924 => 0.00091513807052602
925 => 0.00092551211321416
926 => 0.00092828776939179
927 => 0.0009289091364477
928 => 0.0009472899510657
929 => 0.00092993641979946
930 => 0.00093411358725451
1001 => 0.00096670265531378
1002 => 0.00093714886756801
1003 => 0.00095280416806506
1004 => 0.00095203792257198
1005 => 0.00096004664455978
1006 => 0.0009513809736119
1007 => 0.00095148839498901
1008 => 0.00095859959755636
1009 => 0.00094861319606266
1010 => 0.00094614042261374
1011 => 0.00094272430380439
1012 => 0.00095018327424839
1013 => 0.00095465458968935
1014 => 0.00099069010832418
1015 => 0.0010139706967816
1016 => 0.0010129600250385
1017 => 0.0010221956728724
1018 => 0.0010180349289343
1019 => 0.0010045987892097
1020 => 0.001027532641357
1021 => 0.0010202754109445
1022 => 0.0010208736882021
1023 => 0.0010208514202927
1024 => 0.0010256768440789
1025 => 0.0010222575890828
1026 => 0.0010155178865061
1027 => 0.0010199920156053
1028 => 0.0010332785794994
1029 => 0.0010745204815083
1030 => 0.001097599996255
1031 => 0.001073131065741
1101 => 0.0010900094063575
1102 => 0.0010798884163553
1103 => 0.0010780491313985
1104 => 0.0010886499766053
1105 => 0.0010992693771882
1106 => 0.00109859296728
1107 => 0.001090883827769
1108 => 0.0010865291304715
1109 => 0.0011195043573393
1110 => 0.0011437999427772
1111 => 0.00114214314673
1112 => 0.0011494557056633
1113 => 0.0011709256048606
1114 => 0.0011728885433737
1115 => 0.0011726412582387
1116 => 0.0011677759103226
1117 => 0.001188915814301
1118 => 0.0012065510941211
1119 => 0.0011666497228534
1120 => 0.0011818436426849
1121 => 0.0011886646828147
1122 => 0.0011986799934367
1123 => 0.001215577501217
1124 => 0.0012339326765091
1125 => 0.0012365282995496
1126 => 0.0012346865807903
1127 => 0.0012225808492717
1128 => 0.001242665301099
1129 => 0.001254430301941
1130 => 0.0012614360907052
1201 => 0.0012792016053592
1202 => 0.0011887068072364
1203 => 0.0011246500912418
1204 => 0.001114646710049
1205 => 0.001134988979068
1206 => 0.0011403530731818
1207 => 0.0011381908135705
1208 => 0.0010660891559368
1209 => 0.0011142671097434
1210 => 0.0011661025371219
1211 => 0.0011680937469939
1212 => 0.0011940436457672
1213 => 0.0012024939965301
1214 => 0.0012233870663736
1215 => 0.0012220801991664
1216 => 0.0012271673291919
1217 => 0.0012259978860958
1218 => 0.0012646978984261
1219 => 0.0013073897590337
1220 => 0.0013059114756527
1221 => 0.0012997740155832
1222 => 0.0013088891903789
1223 => 0.0013529517656638
1224 => 0.00134889518982
1225 => 0.001352835807714
1226 => 0.0014047880672328
1227 => 0.0014723333947301
1228 => 0.0014409518086676
1229 => 0.0015090408206151
1230 => 0.0015518992443926
1231 => 0.001626018456672
]
'min_raw' => 0.00066386731678477
'max_raw' => 0.001626018456672
'avg_raw' => 0.0011449428867284
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.000663'
'max' => '$0.001626'
'avg' => '$0.001144'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 0.00029601394350242
'max_diff' => 0.00065966527370377
'year' => 2028
]
3 => [
'items' => [
101 => 0.0016167383662498
102 => 0.0016455924316783
103 => 0.0016001250675808
104 => 0.0014957228091424
105 => 0.0014792007521088
106 => 0.0015122783286953
107 => 0.0015935963230705
108 => 0.0015097173356662
109 => 0.0015266859455739
110 => 0.0015217989847789
111 => 0.0015215385794064
112 => 0.0015314771933302
113 => 0.0015170607154705
114 => 0.0014583253911955
115 => 0.0014852434441813
116 => 0.0014748490912124
117 => 0.0014863824007817
118 => 0.0015486229158288
119 => 0.0015211049004979
120 => 0.0014921169067289
121 => 0.001528474283866
122 => 0.0015747697187118
123 => 0.0015718726336001
124 => 0.0015662510775956
125 => 0.0015979394944576
126 => 0.0016502794752785
127 => 0.0016644267617753
128 => 0.0016748699994387
129 => 0.0016763099454726
130 => 0.0016911422845426
131 => 0.0016113850591324
201 => 0.0017379618241692
202 => 0.0017598181348785
203 => 0.0017557100543164
204 => 0.0017800024238156
205 => 0.001772854992471
206 => 0.0017624994858503
207 => 0.0018010080586417
208 => 0.0017568610874179
209 => 0.0016942000197149
210 => 0.0016598229186776
211 => 0.0017050934584451
212 => 0.001732738597357
213 => 0.0017510102756168
214 => 0.0017565392744181
215 => 0.0016175763855013
216 => 0.0015426830956103
217 => 0.0015906888357771
218 => 0.0016492591519598
219 => 0.0016110596980687
220 => 0.0016125570443401
221 => 0.0015580946617313
222 => 0.0016540778643437
223 => 0.0016400939190689
224 => 0.0017126426518918
225 => 0.0016953283145637
226 => 0.0017544889898552
227 => 0.0017389100013608
228 => 0.0018035775115915
301 => 0.0018293751322255
302 => 0.001872693352349
303 => 0.0019045584114087
304 => 0.0019232701835701
305 => 0.0019221467989556
306 => 0.0019962921624266
307 => 0.0019525712320294
308 => 0.0018976474392185
309 => 0.0018966540410889
310 => 0.0019250998516618
311 => 0.0019847144668957
312 => 0.0020001716692685
313 => 0.0020088101366846
314 => 0.0019955800231297
315 => 0.0019481240866909
316 => 0.0019276328539436
317 => 0.0019450919779324
318 => 0.0019237409695738
319 => 0.0019605988000357
320 => 0.0020112124736677
321 => 0.0020007609502109
322 => 0.0020356988261472
323 => 0.0020718558521695
324 => 0.0021235620232951
325 => 0.0021370799311013
326 => 0.002159424518665
327 => 0.0021824244390826
328 => 0.0021898113936555
329 => 0.0022039153819726
330 => 0.0022038410469922
331 => 0.0022463443650937
401 => 0.0022932268411777
402 => 0.0023109238905677
403 => 0.0023516172798188
404 => 0.0022819312767927
405 => 0.0023347889105831
406 => 0.0023824678193744
407 => 0.0023256230587427
408 => 0.002403970318143
409 => 0.0024070123646868
410 => 0.0024529436558142
411 => 0.0024063834928859
412 => 0.0023787362167644
413 => 0.0024585528669973
414 => 0.0024971736298441
415 => 0.0024855407417685
416 => 0.0023970138891263
417 => 0.0023454874637932
418 => 0.0022106328699913
419 => 0.0023703739616345
420 => 0.0024481791876624
421 => 0.0023968123923872
422 => 0.002422718816096
423 => 0.002564055863665
424 => 0.0026178678604832
425 => 0.0026066753413192
426 => 0.0026085666928134
427 => 0.0026376026695396
428 => 0.0027663641807482
429 => 0.0026892072985636
430 => 0.0027481908439805
501 => 0.0027794755037887
502 => 0.0028085344393315
503 => 0.0027371748778092
504 => 0.0026443371367488
505 => 0.0026149315270917
506 => 0.002391704976926
507 => 0.0023800850655661
508 => 0.0023735624572004
509 => 0.0023324383340962
510 => 0.0023001260381816
511 => 0.0022744301007918
512 => 0.0022069962876242
513 => 0.0022297532200279
514 => 0.0021222777963695
515 => 0.002191036763731
516 => 0.0020195033924873
517 => 0.0021623614812007
518 => 0.0020846103184743
519 => 0.0021368181331343
520 => 0.0021366359849872
521 => 0.0020405048456954
522 => 0.0019850584107576
523 => 0.0020203910371075
524 => 0.002058270417262
525 => 0.0020644162192505
526 => 0.0021135278243737
527 => 0.0021272338177132
528 => 0.0020857040180229
529 => 0.0020159487446376
530 => 0.0020321513036966
531 => 0.0019847300664154
601 => 0.0019016261721116
602 => 0.0019613128398554
603 => 0.0019816924924607
604 => 0.0019906933080543
605 => 0.0019089701725533
606 => 0.0018832909890833
607 => 0.0018696196072731
608 => 0.0020053993140796
609 => 0.0020128376329239
610 => 0.0019747821420445
611 => 0.0021467965693888
612 => 0.0021078644067332
613 => 0.0021513611710309
614 => 0.0020306810912892
615 => 0.0020352912328526
616 => 0.0019781593491188
617 => 0.0020101493864559
618 => 0.0019875398591531
619 => 0.0020075649075708
620 => 0.002019567839026
621 => 0.0020766903479798
622 => 0.0021630137284958
623 => 0.0020681581500099
624 => 0.0020268282161067
625 => 0.0020524690746519
626 => 0.0021207540598705
627 => 0.0022242093079208
628 => 0.0021629617188442
629 => 0.0021901423588249
630 => 0.0021960801194782
701 => 0.002150918414802
702 => 0.0022258744843902
703 => 0.0022660440510246
704 => 0.0023072497144708
705 => 0.0023430274374847
706 => 0.0022907912663584
707 => 0.0023466914572246
708 => 0.0023016457710985
709 => 0.002261235133906
710 => 0.0022612964201618
711 => 0.0022359462371458
712 => 0.0021868270632235
713 => 0.0021777687339289
714 => 0.0022248913068603
715 => 0.002262679147827
716 => 0.0022657915354005
717 => 0.0022867128257691
718 => 0.0022990938299027
719 => 0.0024204445015716
720 => 0.0024692527455823
721 => 0.0025289345424657
722 => 0.0025521839658335
723 => 0.0026221563947912
724 => 0.0025656479755251
725 => 0.0025534220235622
726 => 0.002383691798718
727 => 0.0024114851135278
728 => 0.0024559848921942
729 => 0.0023844255836779
730 => 0.0024298134942492
731 => 0.0024387740292433
801 => 0.002381994025757
802 => 0.0024123226789382
803 => 0.002331778767908
804 => 0.0021647693656552
805 => 0.0022260604135971
806 => 0.002271191255226
807 => 0.0022067839796289
808 => 0.002322231528231
809 => 0.0022547894536588
810 => 0.0022334135538099
811 => 0.0021500185474409
812 => 0.0021893777802789
813 => 0.0022426117062622
814 => 0.0022097193291127
815 => 0.0022779759505133
816 => 0.0023746455297926
817 => 0.00244353802876
818 => 0.0024488267393891
819 => 0.002404533477992
820 => 0.0024755137120567
821 => 0.0024760307255709
822 => 0.0023959647315833
823 => 0.0023469247560751
824 => 0.0023357827704587
825 => 0.0023636176350435
826 => 0.002397414299249
827 => 0.0024507022190397
828 => 0.0024829029929315
829 => 0.0025668655332704
830 => 0.0025895833892914
831 => 0.0026145434254349
901 => 0.0026478977311127
902 => 0.0026879481269474
903 => 0.0026003201409315
904 => 0.0026038017641749
905 => 0.0025222037968889
906 => 0.0024350046665116
907 => 0.0025011779369429
908 => 0.0025876906853706
909 => 0.0025678445652932
910 => 0.002565611471365
911 => 0.0025693669159436
912 => 0.0025544035895189
913 => 0.0024867250186668
914 => 0.0024527372640752
915 => 0.0024965901386994
916 => 0.0025198959898952
917 => 0.0025560413326161
918 => 0.0025515856561901
919 => 0.0026446921773128
920 => 0.0026808705560261
921 => 0.0026716145785911
922 => 0.0026733179011967
923 => 0.0027388171277524
924 => 0.0028116657386256
925 => 0.0028798980759293
926 => 0.0029493069400817
927 => 0.0028656318452719
928 => 0.0028231467924899
929 => 0.0028669805223209
930 => 0.0028437217282681
1001 => 0.0029773736579015
1002 => 0.0029866274275288
1003 => 0.0031202696926064
1004 => 0.00324711211599
1005 => 0.0031674446624808
1006 => 0.003242567482839
1007 => 0.0033238189379098
1008 => 0.0034805661773149
1009 => 0.0034277792215177
1010 => 0.003387345240654
1011 => 0.0033491353241134
1012 => 0.0034286440947809
1013 => 0.0035309308580611
1014 => 0.0035529624471811
1015 => 0.0035886620382705
1016 => 0.0035511282833784
1017 => 0.0035963335569385
1018 => 0.0037559280368094
1019 => 0.0037128041995688
1020 => 0.0036515614181845
1021 => 0.0037775459324258
1022 => 0.0038231392383773
1023 => 0.0041431369369449
1024 => 0.004547147249832
1025 => 0.004379884327422
1026 => 0.0042760588339413
1027 => 0.0043004602876829
1028 => 0.0044479911773371
1029 => 0.0044953734166977
1030 => 0.0043665721564783
1031 => 0.0044120669390549
1101 => 0.004662747664
1102 => 0.0047972298301325
1103 => 0.00461458498516
1104 => 0.0041106751016805
1105 => 0.0036460471757926
1106 => 0.0037692874242062
1107 => 0.0037553158046263
1108 => 0.0040246409705225
1109 => 0.0037117757103126
1110 => 0.0037170435589069
1111 => 0.0039919380840135
1112 => 0.0039186009376003
1113 => 0.003799804152723
1114 => 0.0036469145237906
1115 => 0.00336428390413
1116 => 0.0031139500825588
1117 => 0.003604912355096
1118 => 0.0035837411691473
1119 => 0.0035530821544995
1120 => 0.0036213104739462
1121 => 0.0039526078262334
1122 => 0.0039449703499583
1123 => 0.0038963846225708
1124 => 0.0039332364685793
1125 => 0.0037933438459416
1126 => 0.0038293973600912
1127 => 0.0036459735763553
1128 => 0.0037288887870578
1129 => 0.003799549268177
1130 => 0.003813735405908
1201 => 0.003845697498578
1202 => 0.0035725849161784
1203 => 0.0036952044475117
1204 => 0.0037672319342737
1205 => 0.0034418091287007
1206 => 0.0037607993717216
1207 => 0.0035678306337395
1208 => 0.0035023341457752
1209 => 0.003590516538313
1210 => 0.0035561517741808
1211 => 0.0035266069679466
1212 => 0.0035101204584237
1213 => 0.003574871875168
1214 => 0.0035718511441822
1215 => 0.0034659052586802
1216 => 0.0033277031699495
1217 => 0.0033740883272565
1218 => 0.0033572361647437
1219 => 0.0032961617538252
1220 => 0.0033373185326318
1221 => 0.0031560849077367
1222 => 0.0028442818758087
1223 => 0.0030502685094855
1224 => 0.0030423382481593
1225 => 0.0030383394507899
1226 => 0.0031931327129456
1227 => 0.0031782529124775
1228 => 0.0031512459289244
1229 => 0.0032956657493931
1230 => 0.0032429505722013
1231 => 0.0034054063270485
]
'min_raw' => 0.0014583253911955
'max_raw' => 0.0047972298301325
'avg_raw' => 0.003127777610664
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.001458'
'max' => '$0.004797'
'avg' => '$0.003127'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072435
'min_diff' => 0.00079445807441072
'max_diff' => 0.0031712113734605
'year' => 2029
]
4 => [
'items' => [
101 => 0.0035124101941703
102 => 0.0034852705522558
103 => 0.0035859082064784
104 => 0.003375156947596
105 => 0.0034451600619238
106 => 0.0034595876067666
107 => 0.0032938836312262
108 => 0.0031806874318556
109 => 0.0031731385358888
110 => 0.0029768719255773
111 => 0.003081715964597
112 => 0.0031739743801931
113 => 0.0031297897586648
114 => 0.003115802227467
115 => 0.0031872614908314
116 => 0.003192814487602
117 => 0.0030662055727518
118 => 0.003092531575332
119 => 0.0032023153824255
120 => 0.0030897653050695
121 => 0.0028710988897177
122 => 0.0028168665954107
123 => 0.0028096310076506
124 => 0.0026625487242726
125 => 0.0028204906566381
126 => 0.0027515447705799
127 => 0.0029693439985391
128 => 0.0028449382476095
129 => 0.0028395753643336
130 => 0.002831468579698
131 => 0.002704868782502
201 => 0.0027325860922511
202 => 0.0028247226513225
203 => 0.0028575980135919
204 => 0.0028541688439673
205 => 0.0028242711319182
206 => 0.0028379581513932
207 => 0.0027938674927904
208 => 0.0027782981635701
209 => 0.0027291570778693
210 => 0.0026569332574606
211 => 0.0026669764226628
212 => 0.0025238821360425
213 => 0.0024459167741032
214 => 0.0024243369894853
215 => 0.0023954795996131
216 => 0.002427596508458
217 => 0.0025234767679074
218 => 0.0024078248328797
219 => 0.0022095477023146
220 => 0.0022214644957093
221 => 0.0022482379923396
222 => 0.0021983457584935
223 => 0.0021511269462959
224 => 0.0021921798725184
225 => 0.0021081672384567
226 => 0.0022583905177909
227 => 0.0022543273990808
228 => 0.0023103213478713
301 => 0.0023453355131615
302 => 0.0022646391981382
303 => 0.0022443442931359
304 => 0.0022559051933772
305 => 0.0020648292646116
306 => 0.0022947063680088
307 => 0.0022966943547449
308 => 0.0022796720053692
309 => 0.0024020744662689
310 => 0.0026603818370522
311 => 0.0025631962137736
312 => 0.0025255630029891
313 => 0.0024540222417781
314 => 0.0025493460584217
315 => 0.0025420266765867
316 => 0.0025089256561355
317 => 0.0024889060556851
318 => 0.0025257927833494
319 => 0.0024843353819202
320 => 0.0024768884934503
321 => 0.0024317684516174
322 => 0.0024156626495142
323 => 0.0024037385548274
324 => 0.0023906112982145
325 => 0.0024195667551939
326 => 0.0023539498802711
327 => 0.0022748223616158
328 => 0.0022682437646112
329 => 0.002286407849337
330 => 0.0022783715940029
331 => 0.0022682052901125
401 => 0.0022487950473575
402 => 0.0022430364429663
403 => 0.00226174911356
404 => 0.0022406235994761
405 => 0.0022717954462731
406 => 0.0022633184287613
407 => 0.0022159664980337
408 => 0.0021569484604171
409 => 0.0021564230760877
410 => 0.0021437077366922
411 => 0.0021275128402079
412 => 0.002123007790495
413 => 0.0021887225095778
414 => 0.0023247500114032
415 => 0.0022980445579327
416 => 0.0023173419849501
417 => 0.0024122662265104
418 => 0.0024424397884309
419 => 0.0024210233088797
420 => 0.0023917071107591
421 => 0.0023929968746942
422 => 0.0024931791982889
423 => 0.0024994274469254
424 => 0.0025152147554683
425 => 0.0025355059084389
426 => 0.002424478979972
427 => 0.0023877675163479
428 => 0.0023703715882084
429 => 0.0023167988626099
430 => 0.0023745724541895
501 => 0.0023409102564879
502 => 0.0023454524370223
503 => 0.0023424943359905
504 => 0.0023441096591798
505 => 0.0022583485273227
506 => 0.0022895953762991
507 => 0.0022376414294499
508 => 0.0021680809267231
509 => 0.0021678477355269
510 => 0.002184872570023
511 => 0.0021747455322829
512 => 0.0021474939341142
513 => 0.0021513648950102
514 => 0.0021174512043452
515 => 0.0021554826310841
516 => 0.00215657323632
517 => 0.0021419290654397
518 => 0.0022005217256565
519 => 0.0022245271863543
520 => 0.0022148880793724
521 => 0.0022238508809126
522 => 0.0022991542900923
523 => 0.0023114320315066
524 => 0.0023168849932208
525 => 0.0023095787469028
526 => 0.002225227288996
527 => 0.0022289686348442
528 => 0.0022015171214317
529 => 0.0021783234853673
530 => 0.0021792511091752
531 => 0.002191175653074
601 => 0.0022432508356451
602 => 0.0023528399873662
603 => 0.0023569988155654
604 => 0.0023620394366644
605 => 0.0023415366974416
606 => 0.0023353528751072
607 => 0.0023435109329462
608 => 0.0023846668564088
609 => 0.0024905310652788
610 => 0.0024531115834314
611 => 0.0024226889622205
612 => 0.0024493778029022
613 => 0.0024452692650733
614 => 0.002410589071111
615 => 0.0024096157135725
616 => 0.0023430533334301
617 => 0.0023184467370435
618 => 0.0022978836233311
619 => 0.0022754292399708
620 => 0.002262117528837
621 => 0.002282570367203
622 => 0.0022872481733281
623 => 0.0022425276847866
624 => 0.0022364324474462
625 => 0.0022729521637481
626 => 0.0022568811981959
627 => 0.0022734105848071
628 => 0.0022772455442873
629 => 0.0022766280274844
630 => 0.0022598480937093
701 => 0.0022705431231127
702 => 0.0022452461902319
703 => 0.0022177395752004
704 => 0.0022001920685331
705 => 0.0021848795416268
706 => 0.0021933758215237
707 => 0.0021630881350507
708 => 0.0021533984945772
709 => 0.0022669198877966
710 => 0.0023507793615284
711 => 0.0023495600115683
712 => 0.0023421375322778
713 => 0.0023311092336471
714 => 0.0023838600676729
715 => 0.0023654827318845
716 => 0.0023788537791484
717 => 0.0023822572718581
718 => 0.0023925586192241
719 => 0.0023962404654767
720 => 0.0023851113688947
721 => 0.0023477607614608
722 => 0.0022546865989249
723 => 0.0022113603250155
724 => 0.0021970619329692
725 => 0.0021975816523636
726 => 0.0021832454713373
727 => 0.0021874681191521
728 => 0.0021817770067525
729 => 0.0021709994166954
730 => 0.0021927103357081
731 => 0.0021952123168731
801 => 0.0021901447289494
802 => 0.0021913383293548
803 => 0.0021493808657414
804 => 0.0021525708005731
805 => 0.0021348088380729
806 => 0.0021314786842278
807 => 0.0020865779897382
808 => 0.0020070299009901
809 => 0.0020511072640763
810 => 0.0019978680076833
811 => 0.0019777054945809
812 => 0.0020731516956936
813 => 0.0020635715443674
814 => 0.0020471744896887
815 => 0.0020229198283732
816 => 0.0020139235385571
817 => 0.0019592649295137
818 => 0.0019560354072991
819 => 0.0019831256898476
820 => 0.0019706244565712
821 => 0.0019530679904638
822 => 0.0018894802498934
823 => 0.0018179865763149
824 => 0.001820144520927
825 => 0.0018428853283052
826 => 0.0019090072927732
827 => 0.001883172297334
828 => 0.0018644287117204
829 => 0.0018609186015651
830 => 0.0019048549790721
831 => 0.0019670341582002
901 => 0.0019962072378664
902 => 0.0019672976019168
903 => 0.0019340877687433
904 => 0.001936109097409
905 => 0.0019495560914509
906 => 0.0019509691803944
907 => 0.0019293529930244
908 => 0.0019354378231516
909 => 0.0019261944097799
910 => 0.0018694675989804
911 => 0.0018684415908557
912 => 0.0018545199166421
913 => 0.0018540983738798
914 => 0.0018304141331181
915 => 0.0018271005441141
916 => 0.001780074046551
917 => 0.0018110270296564
918 => 0.0017902653936939
919 => 0.0017589727111235
920 => 0.0017535778408535
921 => 0.0017534156645387
922 => 0.0017855462526226
923 => 0.0018106515650273
924 => 0.0017906265512403
925 => 0.0017860672437695
926 => 0.0018347487194358
927 => 0.0018285535579158
928 => 0.0018231885879939
929 => 0.0019614666946965
930 => 0.0018520087832662
1001 => 0.0018042788862434
1002 => 0.0017452040750161
1003 => 0.0017644391314328
1004 => 0.0017684922404415
1005 => 0.0016264279684749
1006 => 0.001568792511031
1007 => 0.0015490141939827
1008 => 0.001537631492897
1009 => 0.0015428187327167
1010 => 0.0014909400610523
1011 => 0.0015258033864048
1012 => 0.0014808808419384
1013 => 0.001473349431168
1014 => 0.0015536765055094
1015 => 0.00156485354864
1016 => 0.0015171688102096
1017 => 0.0015477901317398
1018 => 0.0015366864148848
1019 => 0.0014816509100278
1020 => 0.001479548958556
1021 => 0.0014519340768104
1022 => 0.0014087221341731
1023 => 0.0013889731168567
1024 => 0.0013786876571695
1025 => 0.0013829316382961
1026 => 0.0013807857515705
1027 => 0.0013667823891526
1028 => 0.0013815884079126
1029 => 0.0013437651482501
1030 => 0.0013287036214898
1031 => 0.0013219006792769
1101 => 0.0012883303593009
1102 => 0.0013417556671718
1103 => 0.0013522811258567
1104 => 0.0013628273229466
1105 => 0.0014546247684201
1106 => 0.0014500388274612
1107 => 0.0014914935002864
1108 => 0.0014898826479307
1109 => 0.0014780591037197
1110 => 0.0014281775155724
1111 => 0.0014480594275541
1112 => 0.0013868659928096
1113 => 0.0014327162748693
1114 => 0.0014117921208908
1115 => 0.0014256417973613
1116 => 0.0014007388302923
1117 => 0.0014145211604866
1118 => 0.0013547771025796
1119 => 0.0012989889419277
1120 => 0.001321439726332
1121 => 0.001345846296538
1122 => 0.0013987659594232
1123 => 0.0013672474447866
1124 => 0.0013785826944969
1125 => 0.0013406115054651
1126 => 0.0012622660965587
1127 => 0.0012627095230648
1128 => 0.001250657788752
1129 => 0.0012402433307238
1130 => 0.0013708677253416
1201 => 0.0013546225170047
1202 => 0.0013287379036403
1203 => 0.0013633854872422
1204 => 0.0013725468582777
1205 => 0.0013728076696317
1206 => 0.0013980856522441
1207 => 0.0014115765160956
1208 => 0.0014139543393222
1209 => 0.0014537297911298
1210 => 0.0014670619979248
1211 => 0.0015219754708688
1212 => 0.0014104319105533
1213 => 0.0014081347443318
1214 => 0.0013638730497969
1215 => 0.0013358015833731
1216 => 0.0013657951271191
1217 => 0.001392365312351
1218 => 0.0013646986595161
1219 => 0.0013683113403014
1220 => 0.0013311711193191
1221 => 0.0013444470007105
1222 => 0.0013558819782191
1223 => 0.0013495682557557
1224 => 0.0013401163076405
1225 => 0.0013901868601644
1226 => 0.0013873616833629
1227 => 0.0014339885329902
1228 => 0.0014703374965926
1229 => 0.0015354813375227
1230 => 0.001467500343487
1231 => 0.0014650228458643
]
'min_raw' => 0.0012402433307238
'max_raw' => 0.0035859082064784
'avg_raw' => 0.0024130757686011
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.00124'
'max' => '$0.003585'
'avg' => '$0.002413'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -0.00021808206047168
'max_diff' => -0.0012113216236541
'year' => 2030
]
5 => [
'items' => [
101 => 0.0014892407825288
102 => 0.0014670582902848
103 => 0.0014810768596694
104 => 0.0015332227292686
105 => 0.0015343244893229
106 => 0.0015158685888766
107 => 0.0015147455456572
108 => 0.0015182902032233
109 => 0.0015390513733035
110 => 0.0015317967825512
111 => 0.0015401919786336
112 => 0.0015506902998864
113 => 0.001594115807784
114 => 0.0016045855507218
115 => 0.0015791495033224
116 => 0.0015814460936072
117 => 0.0015719323136447
118 => 0.0015627421214082
119 => 0.001583400331436
120 => 0.0016211536162999
121 => 0.0016209187550742
122 => 0.0016296767833436
123 => 0.0016351329624
124 => 0.0016117110477226
125 => 0.0015964642425153
126 => 0.0016023108378112
127 => 0.0016116596710117
128 => 0.0015992791372048
129 => 0.0015228607473274
130 => 0.0015460412051906
131 => 0.0015421828435357
201 => 0.0015366880673463
202 => 0.0015599961969768
203 => 0.0015577480710134
204 => 0.0014904079702902
205 => 0.0014947188650541
206 => 0.0014906701300789
207 => 0.0015037524210769
208 => 0.0014663518036385
209 => 0.0014778559816656
210 => 0.0014850712942792
211 => 0.0014893211688392
212 => 0.0015046746299164
213 => 0.001502873078468
214 => 0.0015045626429488
215 => 0.0015273277725628
216 => 0.0016424659861013
217 => 0.001648732705026
218 => 0.0016178730890958
219 => 0.0016302008969809
220 => 0.0016065342016367
221 => 0.0016224218127743
222 => 0.0016332917128131
223 => 0.0015841727246994
224 => 0.0015812642170029
225 => 0.0015574998407883
226 => 0.0015702694704829
227 => 0.0015499520714698
228 => 0.0015549372505152
301 => 0.0015409982553043
302 => 0.0015660856714577
303 => 0.0015941373009075
304 => 0.001601224250299
305 => 0.0015825815375736
306 => 0.0015690829849458
307 => 0.0015453839732311
308 => 0.0015847959578796
309 => 0.0015963212232493
310 => 0.0015847354205671
311 => 0.0015820507369308
312 => 0.0015769632662912
313 => 0.001583130067877
314 => 0.0015962584541789
315 => 0.0015900673496422
316 => 0.0015941566832619
317 => 0.001578572360406
318 => 0.001611718801351
319 => 0.001664363326697
320 => 0.0016645325874543
321 => 0.0016583414495452
322 => 0.0016558081693027
323 => 0.0016621606525071
324 => 0.001665606614053
325 => 0.0016861493798898
326 => 0.0017081925860927
327 => 0.0018110586112369
328 => 0.0017821742430015
329 => 0.0018734431000367
330 => 0.0019456249161737
331 => 0.001967269086705
401 => 0.0019473574682532
402 => 0.001879240897134
403 => 0.0018758987731877
404 => 0.0019776936885142
405 => 0.0019489319624319
406 => 0.0019455108466335
407 => 0.0019091159546046
408 => 0.0019306298433888
409 => 0.001925924440322
410 => 0.0019184967313848
411 => 0.0019595437325145
412 => 0.0020363800543382
413 => 0.0020244043930155
414 => 0.0020154651173731
415 => 0.0019762958136919
416 => 0.0019998844832887
417 => 0.0019914850098565
418 => 0.0020275744781588
419 => 0.0020061958766161
420 => 0.0019487140640689
421 => 0.0019578682321796
422 => 0.0019564845980853
423 => 0.0019849596897006
424 => 0.0019764121739929
425 => 0.0019548155584607
426 => 0.0020361174361434
427 => 0.0020308381444315
428 => 0.0020383229730649
429 => 0.0020416180261053
430 => 0.002091105046351
501 => 0.0021113782951376
502 => 0.0021159806775454
503 => 0.0021352386959033
504 => 0.002115501520505
505 => 0.002194464294466
506 => 0.0022469699315445
507 => 0.0023079579309266
508 => 0.0023970777900526
509 => 0.0024305876814888
510 => 0.0024245344195362
511 => 0.0024921040796147
512 => 0.0026135252567865
513 => 0.002449077111007
514 => 0.0026222414078241
515 => 0.0025674195907298
516 => 0.0024374380486014
517 => 0.0024290687696701
518 => 0.0025170937791161
519 => 0.0027123247779743
520 => 0.002663421627052
521 => 0.0027124047660101
522 => 0.0026552633325228
523 => 0.0026524257787244
524 => 0.0027096295341277
525 => 0.002843289226642
526 => 0.0027797925168871
527 => 0.0026887544134215
528 => 0.0027559755323107
529 => 0.002697742378108
530 => 0.0025665267832557
531 => 0.0026633842317341
601 => 0.0025986184142779
602 => 0.0026175205229519
603 => 0.0027536486380565
604 => 0.0027372693430968
605 => 0.0027584656674565
606 => 0.002721054709766
607 => 0.0026861069761165
608 => 0.0026208744360069
609 => 0.0026015622968058
610 => 0.002606899477303
611 => 0.0026015596519642
612 => 0.0025650626452909
613 => 0.0025571811201747
614 => 0.0025440448996835
615 => 0.0025481163637005
616 => 0.0025234164260402
617 => 0.0025700303116727
618 => 0.0025786822596062
619 => 0.0026126039582941
620 => 0.0026161258215828
621 => 0.0027105972695834
622 => 0.0026585639835529
623 => 0.0026934724041599
624 => 0.00269034986645
625 => 0.0024402551427578
626 => 0.0024747159890782
627 => 0.0025283262515434
628 => 0.0025041749009698
629 => 0.0024700305418044
630 => 0.0024424571410737
701 => 0.0024006806194417
702 => 0.0024594802713917
703 => 0.0025367955610602
704 => 0.0026180866649185
705 => 0.0027157525998
706 => 0.0026939547000913
707 => 0.0026162608682008
708 => 0.0026197461567441
709 => 0.0026412908391078
710 => 0.002613388517906
711 => 0.0026051595786655
712 => 0.0026401603092201
713 => 0.0026404013400154
714 => 0.0026082963473645
715 => 0.0025726175231847
716 => 0.0025724680276087
717 => 0.0025661193254624
718 => 0.0026563927525309
719 => 0.0027060340097457
720 => 0.0027117252998845
721 => 0.0027056509405735
722 => 0.0027079887203896
723 => 0.0026791035665868
724 => 0.0027451264625537
725 => 0.0028057156008806
726 => 0.0027894764175109
727 => 0.0027651315731037
728 => 0.0027457397319268
729 => 0.0027849083160112
730 => 0.002783164200619
731 => 0.0028051864076142
801 => 0.0028041873530984
802 => 0.002796782113183
803 => 0.0027894766819753
804 => 0.0028184418909454
805 => 0.0028101003759291
806 => 0.0028017459042359
807 => 0.0027849897322496
808 => 0.0027872671743131
809 => 0.0027629265333865
810 => 0.0027516654391419
811 => 0.0025823256008465
812 => 0.0025370724627151
813 => 0.0025513100211838
814 => 0.0025559973951098
815 => 0.0025363031714015
816 => 0.0025645396291682
817 => 0.002560139007135
818 => 0.0025772592531881
819 => 0.0025665632667288
820 => 0.002567002233744
821 => 0.0025984568492961
822 => 0.0026075882580084
823 => 0.0026029439498378
824 => 0.0026061966640829
825 => 0.0026811540909762
826 => 0.0026704975418756
827 => 0.0026648364625587
828 => 0.002666404620218
829 => 0.0026855578498946
830 => 0.0026909197084765
831 => 0.0026682011368939
901 => 0.0026789153465868
902 => 0.0027245350916231
903 => 0.0027404994205319
904 => 0.0027914498950961
905 => 0.0027698052279288
906 => 0.0028095349512737
907 => 0.0029316505759752
908 => 0.0030292049867453
909 => 0.0029394899189946
910 => 0.0031186361708945
911 => 0.0032581272250021
912 => 0.003252773326011
913 => 0.0032284498342411
914 => 0.0030696429777011
915 => 0.0029235065406362
916 => 0.0030457558755219
917 => 0.0030460675142173
918 => 0.003035566187933
919 => 0.0029703433522799
920 => 0.003033296574631
921 => 0.0030382935728087
922 => 0.0030354965826383
923 => 0.002985490387466
924 => 0.0029091401701277
925 => 0.002924058819839
926 => 0.0029484958723984
927 => 0.0029022314338003
928 => 0.0028874471424071
929 => 0.0029149339529337
930 => 0.0030035021835547
1001 => 0.0029867588725966
1002 => 0.0029863216370825
1003 => 0.00305795662163
1004 => 0.0030066814324912
1005 => 0.002924246991788
1006 => 0.0029034312083338
1007 => 0.0028295492002631
1008 => 0.0028805797663962
1009 => 0.0028824162656234
1010 => 0.002854467346072
1011 => 0.0029265148925743
1012 => 0.0029258509617496
1013 => 0.0029942493842914
1014 => 0.0031250014789171
1015 => 0.0030863316506165
1016 => 0.0030413628475682
1017 => 0.0030462522033092
1018 => 0.0030998763678298
1019 => 0.00306745397384
1020 => 0.0030791132927757
1021 => 0.0030998587200541
1022 => 0.0031123749514112
1023 => 0.0030444513102308
1024 => 0.0030286150603083
1025 => 0.0029962196507353
1026 => 0.0029877682930667
1027 => 0.0030141536782115
1028 => 0.0030072020614352
1029 => 0.0028822619149746
1030 => 0.0028692049745091
1031 => 0.0028696054122321
1101 => 0.0028367731146078
1102 => 0.0027866959800764
1103 => 0.0029182956996745
1104 => 0.0029077264004539
1105 => 0.0028960587121131
1106 => 0.00289748793736
1107 => 0.0029546109153092
1108 => 0.0029214767033191
1109 => 0.0030095694364853
1110 => 0.0029914602188562
1111 => 0.0029728865681274
1112 => 0.0029703191238294
1113 => 0.0029631698529282
1114 => 0.0029386523428815
1115 => 0.0029090459762261
1116 => 0.0028894972885007
1117 => 0.0026654085103931
1118 => 0.0027069980841454
1119 => 0.0027548430977385
1120 => 0.002771359004704
1121 => 0.0027431074029736
1122 => 0.0029397678883133
1123 => 0.0029756996540525
1124 => 0.0028668599918575
1125 => 0.0028465005349549
1126 => 0.0029411026509184
1127 => 0.0028840460103541
1128 => 0.0029097386121066
1129 => 0.0028542052602195
1130 => 0.0029670447438909
1201 => 0.0029661850960831
1202 => 0.0029222879883396
1203 => 0.00295938952321
1204 => 0.0029529422185024
1205 => 0.0029033824919738
1206 => 0.0029686158756199
1207 => 0.0029686482305643
1208 => 0.0029263982187666
1209 => 0.0028770594547038
1210 => 0.002868238849019
1211 => 0.0028615937075171
1212 => 0.0029081043146517
1213 => 0.0029498055795737
1214 => 0.0030274012949732
1215 => 0.0030469107014534
1216 => 0.0031230572137602
1217 => 0.0030777156731879
1218 => 0.0030978149908523
1219 => 0.0031196356433992
1220 => 0.0031300972666581
1221 => 0.0031130506129594
1222 => 0.0032313374897267
1223 => 0.0032413245263422
1224 => 0.0032446730933318
1225 => 0.0032047874240194
1226 => 0.0032402152337259
1227 => 0.00322363973481
1228 => 0.0032667645781831
1229 => 0.0032735271042696
1230 => 0.0032677994852581
1231 => 0.0032699460177772
]
'min_raw' => 0.0014663518036385
'max_raw' => 0.0032735271042696
'avg_raw' => 0.0023699394539541
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.001466'
'max' => '$0.003273'
'avg' => '$0.002369'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 0.00022610847291472
'max_diff' => -0.00031238110220882
'year' => 2031
]
6 => [
'items' => [
101 => 0.0031690090356912
102 => 0.0031637749206851
103 => 0.0030924073911803
104 => 0.0031214901869756
105 => 0.0030671212942109
106 => 0.0030843622301682
107 => 0.0030919618704606
108 => 0.0030879922496476
109 => 0.0031231344846144
110 => 0.0030932564058084
111 => 0.0030144032434283
112 => 0.0029355285975568
113 => 0.0029345383906278
114 => 0.002913772088623
115 => 0.0028987618558114
116 => 0.0029016533591675
117 => 0.0029118433941392
118 => 0.0028981695924544
119 => 0.0029010875913232
120 => 0.0029495458150701
121 => 0.0029592637662542
122 => 0.0029262383710817
123 => 0.0027936366439222
124 => 0.0027610958474711
125 => 0.0027844855266481
126 => 0.0027733067664898
127 => 0.0022382750082758
128 => 0.0023639727836299
129 => 0.0022892874338076
130 => 0.0023237058791134
131 => 0.0022474714766224
201 => 0.0022838545292785
202 => 0.0022771359079493
203 => 0.0024792542110512
204 => 0.0024760984117529
205 => 0.0024776089258758
206 => 0.0024055081511655
207 => 0.0025203666430283
208 => 0.0025769500662977
209 => 0.0025664779805696
210 => 0.0025691135789351
211 => 0.0025238252668601
212 => 0.002478047415732
213 => 0.0024272727336702
214 => 0.0025216058170006
215 => 0.0025111175884537
216 => 0.0025351738111948
217 => 0.0025963555588027
218 => 0.0026053648035448
219 => 0.0026174733198409
220 => 0.0026131332786917
221 => 0.0027165306665384
222 => 0.0027040085606322
223 => 0.0027341832330103
224 => 0.0026721116425706
225 => 0.0026018717460986
226 => 0.0026152220541027
227 => 0.0026139363120856
228 => 0.0025975673405007
229 => 0.0025827901648601
301 => 0.0025581903308619
302 => 0.0026360278457227
303 => 0.0026328677847673
304 => 0.0026840254984655
305 => 0.0026749828756498
306 => 0.0026145940273816
307 => 0.0026167508269115
308 => 0.0026312563402729
309 => 0.0026814600876375
310 => 0.0026963639779871
311 => 0.0026894599021599
312 => 0.0027058013375398
313 => 0.00271871694177
314 => 0.0027074233385789
315 => 0.0028673169436634
316 => 0.0028009179710891
317 => 0.0028332803683208
318 => 0.0028409986093702
319 => 0.0028212284972192
320 => 0.0028255159266301
321 => 0.0028320102139331
322 => 0.0028714422547247
323 => 0.002974923339515
324 => 0.0030207544075491
325 => 0.0031586394369946
326 => 0.0030169487753481
327 => 0.0030085414378602
328 => 0.0030333786953924
329 => 0.0031143318042895
330 => 0.0031799366955118
331 => 0.0032017016227672
401 => 0.0032045782172038
402 => 0.00324541066764
403 => 0.0032688150667499
404 => 0.003240452534157
405 => 0.0032164182574654
406 => 0.0031303304616006
407 => 0.0031402953583812
408 => 0.0032089436154872
409 => 0.0033059133220115
410 => 0.0033891234181878
411 => 0.0033599861426715
412 => 0.0035822829871499
413 => 0.0036043228112788
414 => 0.003601277620217
415 => 0.0036514876195482
416 => 0.0035518309959644
417 => 0.0035092258586262
418 => 0.0032216147408868
419 => 0.0033024217334665
420 => 0.0034198794428094
421 => 0.0034043334745341
422 => 0.0033190325463557
423 => 0.0033890587097846
424 => 0.0033659058702344
425 => 0.003347644265069
426 => 0.0034313042185182
427 => 0.0033393166631393
428 => 0.0034189617965777
429 => 0.0033168160891196
430 => 0.0033601192392917
501 => 0.0033355382769163
502 => 0.0033514451721026
503 => 0.0032584537878746
504 => 0.0033086296815658
505 => 0.003256366305734
506 => 0.003256341526089
507 => 0.0032551878091708
508 => 0.0033166754390656
509 => 0.003318680548469
510 => 0.0032732410970741
511 => 0.0032666925622305
512 => 0.0032909059277734
513 => 0.0032625584182131
514 => 0.0032758220395193
515 => 0.0032629601597906
516 => 0.003260064679751
517 => 0.0032369930021705
518 => 0.0032270530890998
519 => 0.0032309507851348
520 => 0.0032176459391672
521 => 0.0032096292882144
522 => 0.0032535930955201
523 => 0.0032301050067716
524 => 0.0032499932090528
525 => 0.0032273280924622
526 => 0.0031487609236378
527 => 0.0031035761140141
528 => 0.0029551700152853
529 => 0.0029972578007876
530 => 0.0030251620461186
531 => 0.0030159396932032
601 => 0.0030357528758423
602 => 0.0030369692443404
603 => 0.0030305277766929
604 => 0.0030230693823602
605 => 0.0030194390484741
606 => 0.0030464965829841
607 => 0.0030622043924819
608 => 0.0030279626104482
609 => 0.0030199402400111
610 => 0.0030545605721878
611 => 0.0030756789548161
612 => 0.0032316052267491
613 => 0.003220053704889
614 => 0.003249045757886
615 => 0.0032457816976379
616 => 0.0032761699879749
617 => 0.0033258419996263
618 => 0.0032248449114262
619 => 0.0032423745137211
620 => 0.003238076660056
621 => 0.0032849994994139
622 => 0.0032851459873965
623 => 0.0032570134012319
624 => 0.0032722645325908
625 => 0.0032637517694592
626 => 0.003279135483007
627 => 0.003219899427272
628 => 0.0032920425490202
629 => 0.0033329430502513
630 => 0.0033335109537506
701 => 0.0033528974667277
702 => 0.0033725952867036
703 => 0.0034104035368287
704 => 0.003371540835128
705 => 0.0033016306179764
706 => 0.0033066779098461
707 => 0.0032656895751092
708 => 0.0032663785964213
709 => 0.0032627005466578
710 => 0.0032737386508686
711 => 0.0032223216704198
712 => 0.0032343891329603
713 => 0.0032174946147366
714 => 0.003242337788338
715 => 0.0032156106402666
716 => 0.0032380745875009
717 => 0.0032477692824355
718 => 0.0032835429154563
719 => 0.0032103268455828
720 => 0.0030610343228184
721 => 0.0030924174211004
722 => 0.0030459993536522
723 => 0.0030502955225206
724 => 0.0030589744673649
725 => 0.0030308431675504
726 => 0.0030362097330359
727 => 0.0030360180015528
728 => 0.0030343657632133
729 => 0.0030270477256492
730 => 0.0030164351233517
731 => 0.0030587124645184
801 => 0.0030658962086107
802 => 0.0030818647818502
803 => 0.0031293764242243
804 => 0.0031246288907495
805 => 0.0031323723148202
806 => 0.0031154684635512
807 => 0.0030510796436995
808 => 0.0030545762664014
809 => 0.0030109733252791
810 => 0.0030807497566129
811 => 0.0030642257766692
812 => 0.0030535726593046
813 => 0.0030506658575312
814 => 0.003098295272077
815 => 0.0031125467394087
816 => 0.003103666181348
817 => 0.0030854518976782
818 => 0.0031204287068938
819 => 0.0031297870254868
820 => 0.0031318820078983
821 => 0.0031938542076904
822 => 0.0031353455654414
823 => 0.0031494291771566
824 => 0.0032593054954145
825 => 0.00315966283665
826 => 0.003212445775294
827 => 0.0032098623251166
828 => 0.0032368642904495
829 => 0.0032076473758309
830 => 0.0032080095545038
831 => 0.0032319854704479
901 => 0.0031983156205836
902 => 0.003189978492257
903 => 0.0031784608091855
904 => 0.0032036092488062
905 => 0.0032186846009927
906 => 0.0033401808679895
907 => 0.0034186729973725
908 => 0.0034152654470277
909 => 0.003446404078512
910 => 0.0034323758398311
911 => 0.0033870749566683
912 => 0.0034643980403731
913 => 0.0034399297813536
914 => 0.0034419469148983
915 => 0.003441871837087
916 => 0.0034581410902826
917 => 0.0034466128333384
918 => 0.00342388945555
919 => 0.0034389742941815
920 => 0.0034837708719888
921 => 0.0036228208240295
922 => 0.0037006350193583
923 => 0.0036181363117643
924 => 0.0036750428155609
925 => 0.0036409191911435
926 => 0.003634717913497
927 => 0.0036704594032388
928 => 0.0037062634537271
929 => 0.0037039828904961
930 => 0.0036779909884
1001 => 0.003663308822426
1002 => 0.0037744871020676
1003 => 0.003856401364635
1004 => 0.0038508153610881
1005 => 0.0038754701640785
1006 => 0.0039478574282027
1007 => 0.0039544756124475
1008 => 0.0039536418733499
1009 => 0.0039372380131631
1010 => 0.0040085126753674
1011 => 0.0040679712525366
1012 => 0.0039334409934829
1013 => 0.0039846683550001
1014 => 0.0040076659680277
1015 => 0.0040414332870365
1016 => 0.0040984044142642
1017 => 0.0041602901692786
1018 => 0.0041690414935805
1019 => 0.0041628320101989
1020 => 0.0041220166911885
1021 => 0.0041897328227759
1022 => 0.0042293993445211
1023 => 0.0042530198504681
1024 => 0.0043129175234725
1025 => 0.0040078079934565
1026 => 0.0037918363031836
1027 => 0.0037581092050784
1028 => 0.0038266945853278
1029 => 0.0038447800031415
1030 => 0.003837489793898
1031 => 0.0035943940212088
1101 => 0.0037568293561451
1102 => 0.0039315961185856
1103 => 0.003938309621691
1104 => 0.0040258015171694
1105 => 0.0040542924647511
1106 => 0.0041247349084361
1107 => 0.0041203287144042
1108 => 0.0041374803284574
1109 => 0.0041335374694111
1110 => 0.004264017262931
1111 => 0.0044079558516204
1112 => 0.0044029717159907
1113 => 0.0043822788408626
1114 => 0.0044130112890874
1115 => 0.0045615713380114
1116 => 0.0045478943093327
1117 => 0.0045611803776875
1118 => 0.0047363410478463
1119 => 0.0049640748353675
1120 => 0.0048582696269655
1121 => 0.0050878364845694
1122 => 0.0052323366526148
1123 => 0.0054822347516531
1124 => 0.0054509462788794
1125 => 0.005548229774998
1126 => 0.0053949333825132
1127 => 0.0050429338790555
1128 => 0.0049872286102333
1129 => 0.0050987519690973
1130 => 0.0053729212645743
1201 => 0.0050901174022971
1202 => 0.0051473282553112
1203 => 0.0051308515257944
1204 => 0.0051299735509
1205 => 0.0051634822816358
1206 => 0.0051148761200057
1207 => 0.004916845873443
1208 => 0.0050076019684431
1209 => 0.0049725566816979
1210 => 0.0050114420401409
1211 => 0.005221290282116
1212 => 0.0051285113721815
1213 => 0.0050307763273122
1214 => 0.005153357762721
1215 => 0.0053094460535477
1216 => 0.0052996783288254
1217 => 0.0052807248602719
1218 => 0.0053875645701366
1219 => 0.0055640324697351
1220 => 0.0056117310338911
1221 => 0.0056469411387969
1222 => 0.0056517960173838
1223 => 0.0057018042841192
1224 => 0.0054328972301771
1225 => 0.0058596596308061
1226 => 0.0059333497083213
1227 => 0.0059194990278892
1228 => 0.0060014024476949
1229 => 0.0059773043838989
1230 => 0.0059423900703288
1231 => 0.0060722244120777
]
'min_raw' => 0.0022382750082758
'max_raw' => 0.0060722244120777
'avg_raw' => 0.0041552497101768
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.002238'
'max' => '$0.006072'
'avg' => '$0.004155'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.00077192320463724
'max_diff' => 0.0027986973078082
'year' => 2032
]
7 => [
'items' => [
101 => 0.0059233798163536
102 => 0.0057121136517368
103 => 0.0055962088554571
104 => 0.0057488416409715
105 => 0.0058420491569349
106 => 0.0059036533958754
107 => 0.0059222948013565
108 => 0.0054537717192944
109 => 0.0052012637635444
110 => 0.0053631184681706
111 => 0.0055605923784295
112 => 0.0054318002526349
113 => 0.0054368486601303
114 => 0.0052532249347225
115 => 0.0055768390036634
116 => 0.0055296911558414
117 => 0.0057742942737448
118 => 0.0057159177765945
119 => 0.0059153821238064
120 => 0.0058628564764073
121 => 0.0060808875020915
122 => 0.0061678659811914
123 => 0.0063139163847193
124 => 0.0064213516560865
125 => 0.0064844397023426
126 => 0.0064806521326827
127 => 0.0067306384022893
128 => 0.0065832302329573
129 => 0.0063980508308384
130 => 0.0063947015196876
131 => 0.0064906085560574
201 => 0.006691603393478
202 => 0.0067437184304653
203 => 0.006772843626477
204 => 0.0067282373749296
205 => 0.0065682363719585
206 => 0.0064991487500991
207 => 0.0065580134055844
208 => 0.0064860269902233
209 => 0.0066102957389573
210 => 0.0067809432733415
211 => 0.0067457052323047
212 => 0.0068635007203085
213 => 0.0069854066579458
214 => 0.0071597376239053
215 => 0.0072053141938641
216 => 0.0072806505308842
217 => 0.0073581963683755
218 => 0.0073831020014588
219 => 0.0074306545827788
220 => 0.0074304039572027
221 => 0.0075737068616686
222 => 0.007731774403016
223 => 0.0077914412406026
224 => 0.0079286418435845
225 => 0.0076936906190606
226 => 0.0078719038217871
227 => 0.0080326565916122
228 => 0.0078410005123679
301 => 0.0081051537674669
302 => 0.0081154102397783
303 => 0.0082702707946348
304 => 0.0081132899545952
305 => 0.0080200752328802
306 => 0.0082891826417612
307 => 0.0084193952401148
308 => 0.0083801741457854
309 => 0.0080816996813547
310 => 0.007907974740884
311 => 0.0074533030626338
312 => 0.007991881305876
313 => 0.0082542070576165
314 => 0.0080810203210309
315 => 0.0081683656372938
316 => 0.0086448933610103
317 => 0.0088263242653163
318 => 0.0087885879055184
319 => 0.0087949647291309
320 => 0.0088928615518906
321 => 0.009326989976772
322 => 0.009066850161565
323 => 0.0092657173030378
324 => 0.0093711957178062
325 => 0.009469169947819
326 => 0.009228576203981
327 => 0.0089155672782717
328 => 0.0088164242122787
329 => 0.008063800313215
330 => 0.0080246229707888
331 => 0.00800263154129
401 => 0.0078639786890496
402 => 0.0077550355274012
403 => 0.0076683998804581
404 => 0.0074410420712853
405 => 0.0075177686577226
406 => 0.0071554077631638
407 => 0.0073872334222209
408 => 0.0068088966849953
409 => 0.0072905527051257
410 => 0.0070284092315806
411 => 0.00720443152374
412 => 0.007203817398545
413 => 0.006879704550761
414 => 0.0066927630242217
415 => 0.0068118894408056
416 => 0.0069396024156502
417 => 0.0069603234161407
418 => 0.0071259066216765
419 => 0.0071721173351424
420 => 0.0070320967159687
421 => 0.0067969119415924
422 => 0.0068515400006865
423 => 0.0066916559883478
424 => 0.006411465406574
425 => 0.0066127031740621
426 => 0.0066814145956827
427 => 0.0067117614738736
428 => 0.0064362262168048
429 => 0.0063496470568723
430 => 0.0063035530385938
501 => 0.0067613437999284
502 => 0.0067864226112386
503 => 0.0066581158667894
504 => 0.0072380745182444
505 => 0.0071068120136942
506 => 0.0072534643913712
507 => 0.0068465830769079
508 => 0.0068621264910588
509 => 0.0066695023562295
510 => 0.0067773590005846
511 => 0.0067011294007363
512 => 0.0067686452495808
513 => 0.0068091139709999
514 => 0.007001706498104
515 => 0.0072927518024196
516 => 0.0069729395969495
517 => 0.006833592839231
518 => 0.0069200427840036
519 => 0.0071502703791736
520 => 0.00749907697099
521 => 0.0072925764482478
522 => 0.0073842178736345
523 => 0.0074042374482383
524 => 0.0072519716078331
525 => 0.0075046912297155
526 => 0.0076401257281727
527 => 0.0077790534993693
528 => 0.0078996805904315
529 => 0.0077235626924662
530 => 0.0079120340887981
531 => 0.0077601594130347
601 => 0.0076239121283596
602 => 0.00762411875925
603 => 0.007538648847318
604 => 0.0073730401230479
605 => 0.0073424993333988
606 => 0.0075013763780299
607 => 0.0076287807221119
608 => 0.0076392743541162
609 => 0.0077098119452715
610 => 0.0077515553651223
611 => 0.0081606976270873
612 => 0.0083252580294519
613 => 0.0085264793744944
614 => 0.0086048664286021
615 => 0.0088407833581519
616 => 0.0086502612773042
617 => 0.0086090406266727
618 => 0.0080367833234245
619 => 0.0081304904247729
620 => 0.0082805245354222
621 => 0.0080392573306481
622 => 0.0081922858400218
623 => 0.0082224969093592
624 => 0.0080310591633519
625 => 0.0081333143350311
626 => 0.0078617549155965
627 => 0.007298671055677
628 => 0.0075053181030176
629 => 0.0076574798865043
630 => 0.0074403262600562
701 => 0.0078295657304585
702 => 0.0076021800673831
703 => 0.0075301097286249
704 => 0.0072489376421982
705 => 0.0073816400436855
706 => 0.0075611219418124
707 => 0.0074502229957802
708 => 0.0076803549603575
709 => 0.0080062831961521
710 => 0.0082385590663414
711 => 0.0082563903234736
712 => 0.0081070525002166
713 => 0.0083463673150471
714 => 0.0083481104622073
715 => 0.0080781623734486
716 => 0.0079128206721612
717 => 0.0078752546897468
718 => 0.0079691018790627
719 => 0.0080830496920391
720 => 0.0082627136340573
721 => 0.0083712807914196
722 => 0.0086543663582496
723 => 0.0087309611959345
724 => 0.0088151157004465
725 => 0.0089275720707626
726 => 0.0090626047765485
727 => 0.0087671609037051
728 => 0.0087788994395494
729 => 0.0085037861958565
730 => 0.0082097882397406
731 => 0.00843289604107
801 => 0.0087245798125211
802 => 0.0086576672330683
803 => 0.0086501382009799
804 => 0.0086627999445732
805 => 0.0086123500448263
806 => 0.0083841670180317
807 => 0.0082695749304768
808 => 0.0084174279589821
809 => 0.0084960052634514
810 => 0.0086178718100223
811 => 0.0086028491858667
812 => 0.0089167643223216
813 => 0.009038742252047
814 => 0.0090075350778933
815 => 0.0090132779489802
816 => 0.0092341131643227
817 => 0.0094797273420095
818 => 0.0097097774310585
819 => 0.0099437942625204
820 => 0.0096616778383607
821 => 0.0095184365166945
822 => 0.0096662249971927
823 => 0.0095878063491669
824 => 0.010038423161205
825 => 0.010069622891582
826 => 0.010520207118896
827 => 0.010947865205188
828 => 0.010679260823478
829 => 0.010932542657224
830 => 0.011206487610791
831 => 0.011734971872188
901 => 0.01155699696525
902 => 0.011420670975757
903 => 0.01129184357441
904 => 0.01155991294584
905 => 0.011904779909673
906 => 0.011979060950588
907 => 0.012099424614411
908 => 0.011972876939269
909 => 0.012125289675209
910 => 0.012663373606624
911 => 0.012517978578558
912 => 0.012311494265286
913 => 0.012736259851008
914 => 0.012889980865247
915 => 0.013968875447493
916 => 0.015331024424492
917 => 0.014767085803662
918 => 0.014417030903527
919 => 0.014499302108472
920 => 0.014996712803219
921 => 0.015156465331346
922 => 0.014722202889899
923 => 0.0148755917257
924 => 0.015720779291822
925 => 0.016174195304183
926 => 0.015558395457502
927 => 0.013859428103486
928 => 0.012292902612069
929 => 0.012708415713955
930 => 0.012661309423074
1001 => 0.013569358023576
1002 => 0.012514510955224
1003 => 0.012532271874549
1004 => 0.013459097958468
1005 => 0.0132118366491
1006 => 0.01281130499476
1007 => 0.012295826936401
1008 => 0.011342918069576
1009 => 0.010498900112399
1010 => 0.01215421369215
1011 => 0.012082833560598
1012 => 0.011979464552169
1013 => 0.012209501094733
1014 => 0.013326493248412
1015 => 0.013300742963919
1016 => 0.013136932791884
1017 => 0.013261181363616
1018 => 0.012789523619402
1019 => 0.012911080559533
1020 => 0.012292654466428
1021 => 0.012572208888267
1022 => 0.012810445633717
1023 => 0.012858275187522
1024 => 0.012966037614481
1025 => 0.012045219474809
1026 => 0.012458639785722
1027 => 0.012701485486138
1028 => 0.011604299776854
1029 => 0.012679797652387
1030 => 0.012029190079633
1031 => 0.011808364097642
1101 => 0.012105677190782
1102 => 0.011989813989239
1103 => 0.011890201612268
1104 => 0.01183461619436
1105 => 0.012052930116713
1106 => 0.012042745511293
1107 => 0.011685541561418
1108 => 0.011219583570301
1109 => 0.011375974366669
1110 => 0.011319156124177
1111 => 0.011113239483686
1112 => 0.011252002436907
1113 => 0.010640960617246
1114 => 0.0095896949257083
1115 => 0.010284193242677
1116 => 0.010257455812942
1117 => 0.010243973588424
1118 => 0.010765869879103
1119 => 0.01071570159295
1120 => 0.010624645662334
1121 => 0.011111567170114
1122 => 0.010933834269755
1123 => 0.011481565189521
1124 => 0.011842336198294
1125 => 0.01175083300075
1126 => 0.012090139878258
1127 => 0.011379577294753
1128 => 0.01161559768217
1129 => 0.011664241156907
1130 => 0.01110555863429
1201 => 0.010723909745006
1202 => 0.010698458115207
1203 => 0.010036731535645
1204 => 0.010390220533176
1205 => 0.010701276222636
1206 => 0.010552304686281
1207 => 0.01050514474827
1208 => 0.010746074643829
1209 => 0.010764796960139
1210 => 0.010337926164169
1211 => 0.010426686119892
1212 => 0.010796829890368
1213 => 0.010417359446567
1214 => 0.0096801103604063
1215 => 0.0094972623937725
1216 => 0.0094728671044669
1217 => 0.0089769689171008
1218 => 0.0095094811692245
1219 => 0.0092770253007314
1220 => 0.010011350604052
1221 => 0.009591907929061
1222 => 0.0095738265936715
1223 => 0.0095464940032752
1224 => 0.0091196539481131
1225 => 0.0092131047930929
1226 => 0.0095237496347716
1227 => 0.0096345912139471
1228 => 0.0096230295291408
1229 => 0.0095222273055757
1230 => 0.0095683740473329
1231 => 0.0094197193135422
]
'min_raw' => 0.0052012637635444
'max_raw' => 0.016174195304183
'avg_raw' => 0.010687729533864
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.0052012'
'max' => '$0.016174'
'avg' => '$0.010687'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.0029629887552686
'max_diff' => 0.010101970892105
'year' => 2033
]
8 => [
'items' => [
101 => 0.00936722623306
102 => 0.0092015436316988
103 => 0.0089580359786846
104 => 0.0089918972113554
105 => 0.008509444833491
106 => 0.0082465791723448
107 => 0.0081738214218533
108 => 0.0080765267171403
109 => 0.0081848111176419
110 => 0.0085080781065215
111 => 0.0081181495330152
112 => 0.0074496443440479
113 => 0.0074898226449823
114 => 0.0075800913581371
115 => 0.0074118762083603
116 => 0.007252674686324
117 => 0.0073910874933068
118 => 0.0071078330319932
119 => 0.0076143213065227
120 => 0.0076006222181137
121 => 0.0077894097258335
122 => 0.0079074624287203
123 => 0.0076353891685826
124 => 0.0075669634794222
125 => 0.0076059418617421
126 => 0.0069617160274137
127 => 0.0077367627310243
128 => 0.0077434653671016
129 => 0.0076860733277191
130 => 0.0080987617705093
131 => 0.00896966310555
201 => 0.0086419949913826
202 => 0.0085151119937559
203 => 0.0082739073225165
204 => 0.0085952982256267
205 => 0.008570620418747
206 => 0.0084590180172564
207 => 0.0083915205366141
208 => 0.0085158867142832
209 => 0.0083761101909014
210 => 0.0083510024865
211 => 0.0081988771152796
212 => 0.0081445752790173
213 => 0.0081043723612671
214 => 0.0080601128990812
215 => 0.0081577382438925
216 => 0.0079365063688664
217 => 0.0076697224152131
218 => 0.0076475422161092
219 => 0.0077087836959381
220 => 0.0076816889000058
221 => 0.0076474124966504
222 => 0.007581969508022
223 => 0.0075625539712642
224 => 0.0076256450466478
225 => 0.0075544189009779
226 => 0.0076595169588028
227 => 0.0076309361024152
228 => 0.007471285761961
301 => 0.0072723023276286
302 => 0.0072705309576811
303 => 0.0072276603031525
304 => 0.0071730580789641
305 => 0.0071578689893246
306 => 0.0073794307527675
307 => 0.0078380569723086
308 => 0.0077480176714174
309 => 0.00781308029391
310 => 0.0081331240017295
311 => 0.0082348562723952
312 => 0.0081626491163376
313 => 0.0080638075075824
314 => 0.008068156036738
315 => 0.0084059277352441
316 => 0.0084269941417607
317 => 0.0084802221547479
318 => 0.0085486351936711
319 => 0.0081743001526926
320 => 0.0080505248899713
321 => 0.0079918733037039
322 => 0.0078112491190206
323 => 0.0080060368166543
324 => 0.007892542366884
325 => 0.0079078566456805
326 => 0.0078978832015239
327 => 0.0079033293764347
328 => 0.0076141797327277
329 => 0.0077195306656367
330 => 0.007544364306526
331 => 0.0073098362150235
401 => 0.0073090499946246
402 => 0.0073664504127641
403 => 0.0073323063979761
404 => 0.0072404257321046
405 => 0.0072534769470271
406 => 0.0071391345711719
407 => 0.0072673601816915
408 => 0.0072710372333879
409 => 0.0072216633888416
410 => 0.0074192126335715
411 => 0.0075001487203221
412 => 0.0074676497981515
413 => 0.0074978685093071
414 => 0.0077517592108725
415 => 0.0077931544732556
416 => 0.0078115395143886
417 => 0.0077869059948216
418 => 0.007502509165258
419 => 0.0075151233739979
420 => 0.0074225686799239
421 => 0.0073443697166048
422 => 0.007347497265038
423 => 0.0073877016973377
424 => 0.0075632768111492
425 => 0.0079327642874472
426 => 0.0079467860670809
427 => 0.0079637808730411
428 => 0.0078946544562958
429 => 0.0078738052675548
430 => 0.0079013107291365
501 => 0.0080400707985054
502 => 0.0083969993699137
503 => 0.0082708369743203
504 => 0.0081682649828682
505 => 0.008258248272582
506 => 0.0082443960504429
507 => 0.0081274693552052
508 => 0.0081241876123063
509 => 0.0078997679004193
510 => 0.0078168050427242
511 => 0.007747475069172
512 => 0.0076717685479577
513 => 0.0076268871844764
514 => 0.0076958453569987
515 => 0.0077116169069436
516 => 0.007560838657541
517 => 0.0075402881392922
518 => 0.007663416912529
519 => 0.0076092325301308
520 => 0.0076649625111353
521 => 0.0076778923447713
522 => 0.0076758103437566
523 => 0.0076192356254962
524 => 0.007655294663833
525 => 0.0075700042884499
526 => 0.0074772638154209
527 => 0.007418101171564
528 => 0.007366473918013
529 => 0.0073951197188767
530 => 0.0072930026693141
531 => 0.0072603333699489
601 => 0.0076430786729986
602 => 0.0079258167435667
603 => 0.0079217056200441
604 => 0.0078966802128952
605 => 0.0078594975340905
606 => 0.0080373506539543
607 => 0.0079753901832791
608 => 0.0080204716026658
609 => 0.008031946715961
610 => 0.0080666784278224
611 => 0.0080790920295213
612 => 0.0080415695033864
613 => 0.007915639322687
614 => 0.0076018332854666
615 => 0.0074557557280373
616 => 0.0074075477009714
617 => 0.0074092999711952
618 => 0.007360964535945
619 => 0.0073752014878684
620 => 0.0073560135050721
621 => 0.0073196761077275
622 => 0.0073928759869867
623 => 0.0074013115911673
624 => 0.0073842258646748
625 => 0.0073882501717761
626 => 0.0072467876538271
627 => 0.0072575427418264
628 => 0.0071976570451562
629 => 0.0071864291989634
630 => 0.0070350433726253
701 => 0.006766841437541
702 => 0.0069154513445695
703 => 0.0067359514745942
704 => 0.0066679721539677
705 => 0.0069897756848602
706 => 0.0069574755357991
707 => 0.0069021917211439
708 => 0.0068204154371124
709 => 0.0067900838178965
710 => 0.0066057985013646
711 => 0.00659490994174
712 => 0.0066862467207353
713 => 0.0066440979399356
714 => 0.0065849050887014
715 => 0.0063705145818139
716 => 0.006129468669815
717 => 0.0061367443307377
718 => 0.0062134165505259
719 => 0.0064363513702177
720 => 0.0063492468793526
721 => 0.0062860515718211
722 => 0.0062742169903644
723 => 0.0064223515546693
724 => 0.0066319929983114
725 => 0.0067303520732054
726 => 0.006632881217195
727 => 0.0065209119460138
728 => 0.006527726996735
729 => 0.0065730644759863
730 => 0.0065778288040182
731 => 0.0065049483191063
801 => 0.0065254637487091
802 => 0.0064942989351722
803 => 0.0063030405320222
804 => 0.0062995812739961
805 => 0.0062526433774048
806 => 0.0062512221165503
807 => 0.0061713690452413
808 => 0.0061601970485669
809 => 0.006001643928748
810 => 0.0061060040723559
811 => 0.0060360047671771
812 => 0.005930499303106
813 => 0.0059123101213327
814 => 0.0059117633325645
815 => 0.0060200938535755
816 => 0.0061047381671448
817 => 0.00603722243506
818 => 0.0060218504116018
819 => 0.0061859834056427
820 => 0.0061650959860455
821 => 0.0061470076153838
822 => 0.0066132219064008
823 => 0.006244176915906
824 => 0.0060832522356987
825 => 0.0058840773851742
826 => 0.0059489297208318
827 => 0.0059625950608339
828 => 0.0054836154492877
829 => 0.0052892934805366
830 => 0.0052226095037301
831 => 0.0051842319323049
901 => 0.0052017210735186
902 => 0.0050268085099489
903 => 0.0051443526454545
904 => 0.0049928931503941
905 => 0.0049675004731554
906 => 0.0052383288125544
907 => 0.0052760129938255
908 => 0.0051152405689654
909 => 0.0052184824924169
910 => 0.0051810455358033
911 => 0.0049954894887218
912 => 0.0049884026125812
913 => 0.0048952971107662
914 => 0.0047496050292033
915 => 0.0046830198384887
916 => 0.0046483416930453
917 => 0.0046626505717188
918 => 0.0046554155648026
919 => 0.0046082022507269
920 => 0.0046581217766995
921 => 0.0045305980160118
922 => 0.0044798170269773
923 => 0.0044568804323403
924 => 0.0043436957547362
925 => 0.0045238229102589
926 => 0.004559310229079
927 => 0.0045948674688798
928 => 0.0049043689653866
929 => 0.0048889071452633
930 => 0.0050286744689664
1001 => 0.0050232433677829
1002 => 0.0049833794629823
1003 => 0.0048152002059223
1004 => 0.0048822334602794
1005 => 0.004675915522649
1006 => 0.0048305029497778
1007 => 0.0047599557037615
1008 => 0.0048066508549355
1009 => 0.0047226887627926
1010 => 0.0047691568512943
1011 => 0.004567725588864
1012 => 0.0043796319102209
1013 => 0.0044553262973037
1014 => 0.0045376147527658
1015 => 0.0047160370909161
1016 => 0.0046097702182661
1017 => 0.0046479878040664
1018 => 0.004519965289182
1019 => 0.0042558182731521
1020 => 0.0042573133165766
1021 => 0.0042166800529159
1022 => 0.0041815669805595
1023 => 0.0046219762469172
1024 => 0.0045672043928054
1025 => 0.0044799326116413
1026 => 0.0045967493587722
1027 => 0.0046276375608447
1028 => 0.004628516904534
1029 => 0.004713743387764
1030 => 0.0047592287771416
1031 => 0.0047672457741643
1101 => 0.0049013514869669
1102 => 0.0049463019530011
1103 => 0.0051314465609682
1104 => 0.0047553696596416
1105 => 0.0047476246033431
1106 => 0.0045983932099656
1107 => 0.0045037483010306
1108 => 0.0046048736278526
1109 => 0.0046944568624332
1110 => 0.0046011768107763
1111 => 0.0046133572162733
1112 => 0.0044881363681841
1113 => 0.0045328969291875
1114 => 0.0045714507542223
1115 => 0.0045501635981272
1116 => 0.0045182956951428
1117 => 0.0046871120587914
1118 => 0.0046775867779576
1119 => 0.0048347924568586
1120 => 0.0049573455254479
1121 => 0.0051769825333414
1122 => 0.0049477798656684
1123 => 0.0049394268094603
1124 => 0.0050210792737668
1125 => 0.0049462894524343
1126 => 0.0049935540378595
1127 => 0.0051693674779217
1128 => 0.005173082138867
1129 => 0.0051108567819626
1130 => 0.0051070703633399
1201 => 0.0051190214238042
1202 => 0.0051890191582283
1203 => 0.0051645597990074
1204 => 0.005192864788733
1205 => 0.0052282606118063
1206 => 0.0053746727435554
1207 => 0.0054099722128442
1208 => 0.0053242128031489
1209 => 0.005331955917637
1210 => 0.0052998795442625
1211 => 0.0052688941694986
1212 => 0.0053385447669174
1213 => 0.0054658326026861
1214 => 0.0054650407516661
1215 => 0.0054945690554425
1216 => 0.0055129649440695
1217 => 0.0054339963234688
1218 => 0.0053825906552145
1219 => 0.0054023028594508
1220 => 0.0054338231033008
1221 => 0.0053920812691895
1222 => 0.0051344313323565
1223 => 0.0052125858644499
1224 => 0.0051995771287482
1225 => 0.0051810511071927
1226 => 0.0052596360935637
1227 => 0.0052520563799189
1228 => 0.005025014528795
1229 => 0.0050395490114685
1230 => 0.0050258984188261
1231 => 0.0050700062763021
]
'min_raw' => 0.0041815669805595
'max_raw' => 0.00936722623306
'avg_raw' => 0.0067743966068097
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.004181'
'max' => '$0.009367'
'avg' => '$0.006774'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.0010196967829849
'max_diff' => -0.0068069690711227
'year' => 2034
]
9 => [
'items' => [
101 => 0.0049439074833809
102 => 0.0049826946227952
103 => 0.0050070215530289
104 => 0.0050213503018249
105 => 0.005073115567791
106 => 0.0050670415113023
107 => 0.0050727379959113
108 => 0.0051494922198154
109 => 0.0055376887454536
110 => 0.0055588174258367
111 => 0.0054547720761784
112 => 0.0054963361411631
113 => 0.0054165422254542
114 => 0.0054701084156424
115 => 0.0055067570425354
116 => 0.0053411489447315
117 => 0.0053313427079672
118 => 0.005251219454384
119 => 0.0052942731524466
120 => 0.0052257716231585
121 => 0.005242579502364
122 => 0.0051955832068209
123 => 0.0052801671819295
124 => 0.0053747452091218
125 => 0.0053986393537901
126 => 0.005335784146244
127 => 0.0052902728336205
128 => 0.0052103699610122
129 => 0.0053432502189115
130 => 0.0053821084557738
131 => 0.0053430461131358
201 => 0.0053339945148175
202 => 0.0053168417523602
203 => 0.0053376335544591
204 => 0.0053818968254706
205 => 0.0053610230842759
206 => 0.005374810558083
207 => 0.0053222669255115
208 => 0.0054340224653681
209 => 0.0056115171580957
210 => 0.0056120878325562
211 => 0.0055912139788442
212 => 0.0055826728476387
213 => 0.0056040906882785
214 => 0.0056157089882199
215 => 0.0056849703574889
216 => 0.0057592905662093
217 => 0.0061061105518598
218 => 0.0060087248877117
219 => 0.0063164442113941
220 => 0.0065598102440735
221 => 0.0066327850761673
222 => 0.0065656516643722
223 => 0.006335991889097
224 => 0.0063247236848721
225 => 0.0066679323489895
226 => 0.0065709601814237
227 => 0.0065594256506546
228 => 0.0064367177311689
301 => 0.0065092533092564
302 => 0.006493388714296
303 => 0.0064683456750283
304 => 0.0066067385051471
305 => 0.0068657975287164
306 => 0.006825420750453
307 => 0.0067952813585042
308 => 0.0066632193164297
309 => 0.0067427501628835
310 => 0.0067144307517743
311 => 0.0068361089138417
312 => 0.0067640294661343
313 => 0.0065702255218796
314 => 0.0066010894387883
315 => 0.0065964244198371
316 => 0.0066924301792854
317 => 0.0066636116333085
318 => 0.006590797136214
319 => 0.0068649120931371
320 => 0.0068471125925421
321 => 0.0068723482148536
322 => 0.0068834577162326
323 => 0.0070503066600644
324 => 0.0071186593337816
325 => 0.0071341765873974
326 => 0.0071991063408432
327 => 0.007132561075982
328 => 0.0073987895813965
329 => 0.0075758160026332
330 => 0.0077814413005959
331 => 0.0080819151277892
401 => 0.0081948960663522
402 => 0.0081744870710539
403 => 0.0084023028975715
404 => 0.0088116828737622
405 => 0.0082572344688635
406 => 0.0088410699855277
407 => 0.008656234401657
408 => 0.0082179925573498
409 => 0.0081897749491083
410 => 0.0084865574141656
411 => 0.009144792357409
412 => 0.0089799119697655
413 => 0.0091450620426564
414 => 0.0089524057101665
415 => 0.0089428386994234
416 => 0.0091357051546044
417 => 0.0095863481397381
418 => 0.0093722645496008
419 => 0.009065323227689
420 => 0.0092919639232527
421 => 0.0090956267781492
422 => 0.0086532242389243
423 => 0.0089797858888404
424 => 0.0087614234134819
425 => 0.0088251531925792
426 => 0.009284118636816
427 => 0.0092288947002935
428 => 0.0093003595877525
429 => 0.0091742259319491
430 => 0.0090563972079769
501 => 0.0088364611446069
502 => 0.0087713489189599
503 => 0.0087893435956363
504 => 0.0087713400016918
505 => 0.0086482877955531
506 => 0.0086217146833533
507 => 0.0085774249988256
508 => 0.0085911522240195
509 => 0.0085078746597032
510 => 0.0086650366295908
511 => 0.0086942072761085
512 => 0.008808576651572
513 => 0.0088204508595385
514 => 0.0091389679422584
515 => 0.0089635340855584
516 => 0.0090812302628632
517 => 0.0090707024089657
518 => 0.0082274905869814
519 => 0.0083436777363299
520 => 0.0085244284791802
521 => 0.008443000514528
522 => 0.008327880423719
523 => 0.008234914778042
524 => 0.0080940623186161
525 => 0.0082923094504262
526 => 0.0085529833475246
527 => 0.0088270619797463
528 => 0.0091563494980174
529 => 0.0090828563572686
530 => 0.0088209061786399
531 => 0.0088326570722984
601 => 0.0089052964730894
602 => 0.0088112218490796
603 => 0.0087834774059043
604 => 0.008901484812642
605 => 0.0089022974647965
606 => 0.0087940532405751
607 => 0.0086737595938369
608 => 0.0086732555590648
609 => 0.0086518504665265
610 => 0.0089562136285774
611 => 0.0091235825931188
612 => 0.0091427711751749
613 => 0.0091222910486598
614 => 0.0091301730365284
615 => 0.0090327847237852
616 => 0.009255385527109
617 => 0.0094596660371768
618 => 0.0094049144966621
619 => 0.0093228341540404
620 => 0.0092574532076174
621 => 0.0093895128235212
622 => 0.0093836324167061
623 => 0.0094578818251318
624 => 0.0094545134430802
625 => 0.0094295461596882
626 => 0.0094049153883224
627 => 0.0095025736126515
628 => 0.0094744496123878
629 => 0.0094462819277837
630 => 0.0093897873240533
701 => 0.0093974658789763
702 => 0.009315399708683
703 => 0.0092774321432129
704 => 0.00870649105547
705 => 0.0085539169407868
706 => 0.0086019198631986
707 => 0.0086177236716519
708 => 0.0085513232214128
709 => 0.0086465244101796
710 => 0.0086316874057533
711 => 0.0086894095106187
712 => 0.0086533472455013
713 => 0.0086548272534407
714 => 0.0087608786858656
715 => 0.0087916658678736
716 => 0.0087760072586213
717 => 0.0087869740117959
718 => 0.0090396982099271
719 => 0.0090037689106178
720 => 0.0089846821864572
721 => 0.0089899693394906
722 => 0.0090545457905811
723 => 0.0090726236711429
724 => 0.0089960264208924
725 => 0.009032150126914
726 => 0.0091859602823729
727 => 0.0092397851318827
728 => 0.0094115682141245
729 => 0.0093385917075874
730 => 0.0094725432436855
731 => 0.0098842645982073
801 => 0.01021317610515
802 => 0.0099106954905226
803 => 0.010514699586395
804 => 0.010985003414273
805 => 0.010966952370027
806 => 0.010884944019313
807 => 0.010349515614948
808 => 0.0098568064144633
809 => 0.010268978582207
810 => 0.010270029293826
811 => 0.01023462333908
812 => 0.010014719994962
813 => 0.010226971179372
814 => 0.010243818907608
815 => 0.010234388659968
816 => 0.010065789281624
817 => 0.0098083691932662
818 => 0.0098586684623547
819 => 0.0099410596911991
820 => 0.0097850759063859
821 => 0.0097352296357473
822 => 0.0098279033365055
823 => 0.010126517309681
824 => 0.010070066067805
825 => 0.010068591897742
826 => 0.010310114249539
827 => 0.010137236369438
828 => 0.0098593028972185
829 => 0.0097891210299909
830 => 0.0095400226815036
831 => 0.0097120757980617
901 => 0.0097182676834263
902 => 0.0096240359498277
903 => 0.0098669492830593
904 => 0.0098647107939295
905 => 0.010095320850955
906 => 0.010536160666805
907 => 0.010405782640848
908 => 0.010254167181749
909 => 0.010270651985994
910 => 0.010451449600595
911 => 0.010342135235599
912 => 0.010381445443418
913 => 0.010451390099887
914 => 0.010493589447763
915 => 0.010264580149246
916 => 0.01021118712698
917 => 0.01010196374183
918 => 0.010073469399395
919 => 0.01016242956758
920 => 0.010138991706272
921 => 0.0097177472794376
922 => 0.0096737248930515
923 => 0.0096750749967925
924 => 0.0095643786130744
925 => 0.009395540057728
926 => 0.009839237700352
927 => 0.0098036025701047
928 => 0.0097642641442518
929 => 0.0097690828769568
930 => 0.0099616769853115
1001 => 0.0098499626762302
1002 => 0.010146973476538
1003 => 0.010085916984957
1004 => 0.010023294624753
1005 => 0.01001463830705
1006 => 0.0099905340410601
1007 => 0.0099078715441796
1008 => 0.0098080516119505
1009 => 0.0097421418464384
1010 => 0.0089866108856698
1011 => 0.0091268330372671
1012 => 0.0092881458410284
1013 => 0.0093438303744663
1014 => 0.0092485781267683
1015 => 0.009911632683488
1016 => 0.010032779140353
1017 => 0.0096658186203203
1018 => 0.0095971752899214
1019 => 0.0099161329288011
1020 => 0.0097237624815711
1021 => 0.0098103868821798
1022 => 0.0096231523090777
1023 => 0.010003598506477
1024 => 0.010000700143874
1025 => 0.009852697980319
1026 => 0.009977788395481
1027 => 0.0099560508575226
1028 => 0.0097889567793819
1029 => 0.010008895686794
1030 => 0.010009004773748
1031 => 0.0098665559091708
1101 => 0.0097002068214105
1102 => 0.009670467533509
1103 => 0.0096480629749864
1104 => 0.0098048767342076
1105 => 0.0099454754603815
1106 => 0.010207094832411
1107 => 0.010272872158462
1108 => 0.010529605441084
1109 => 0.010376733271399
1110 => 0.010444499524195
1111 => 0.010518069377726
1112 => 0.01055334147095
1113 => 0.010495867487846
1114 => 0.010894679951393
1115 => 0.010928351942614
1116 => 0.010939641870009
1117 => 0.010805164551194
1118 => 0.01092461188511
1119 => 0.010868726433251
1120 => 0.011014124853564
1121 => 0.011036925182409
1122 => 0.011017614115022
1123 => 0.011024851299276
1124 => 0.010684535216978
1125 => 0.010666888032801
1126 => 0.010426267424354
1127 => 0.010524322100874
1128 => 0.010341013583002
1129 => 0.010399142602306
1130 => 0.010424765320142
1201 => 0.010411381466421
1202 => 0.010529865965164
1203 => 0.010429129936449
1204 => 0.010163270994132
1205 => 0.0098973396187245
1206 => 0.0098940010669293
1207 => 0.0098239860298631
1208 => 0.009773377981958
1209 => 0.0097831268874015
1210 => 0.009817483301754
1211 => 0.0097713811246993
1212 => 0.0097812193616136
1213 => 0.0099445996462213
1214 => 0.0099773643971245
1215 => 0.0098660169715409
1216 => 0.0094189409904657
1217 => 0.0093092274233047
1218 => 0.0093880873596655
1219 => 0.0093503973893154
1220 => 0.0075465004617725
1221 => 0.0079702992873173
1222 => 0.0077184924160268
1223 => 0.0078345366073946
1224 => 0.0075775069968802
1225 => 0.0077001749990938
1226 => 0.0076775226982031
1227 => 0.0083589786685603
1228 => 0.0083483386708952
1229 => 0.0083534314747214
1230 => 0.0081103386788703
1231 => 0.0084975921033497
]
'min_raw' => 0.0049439074833809
'max_raw' => 0.011036925182409
'avg_raw' => 0.0079904163328949
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.004943'
'max' => '$0.011036'
'avg' => '$0.00799'
'bar_min_pct' => 61.631153054958
'bar_max_pct' => 60.119598047091
'min_diff' => 0.00076234050282145
'max_diff' => 0.0016696989493488
'year' => 2035
]
10 => [
'items' => [
101 => 0.008688367065431
102 => 0.0086530596972609
103 => 0.0086619458011619
104 => 0.0085092530950718
105 => 0.008354909873886
106 => 0.0081837194883396
107 => 0.0085017700649137
108 => 0.0084664082701031
109 => 0.0085475155046266
110 => 0.0087537940382596
111 => 0.0087841693359131
112 => 0.0088249940439951
113 => 0.0088103612922483
114 => 0.0091589728043486
115 => 0.0091167536500204
116 => 0.0092184896646716
117 => 0.0090092109638041
118 => 0.0087723922488559
119 => 0.0088174037443804
120 => 0.0088130687754019
121 => 0.0087578796448585
122 => 0.0087080573654766
123 => 0.0086251173076461
124 => 0.0088875519234409
125 => 0.0088768975573015
126 => 0.0090493793607524
127 => 0.0090188915265936
128 => 0.0088152863084427
129 => 0.0088225581086408
130 => 0.0088714644596812
131 => 0.0090407298990348
201 => 0.0090909794059049
202 => 0.009067701832226
203 => 0.0091227981225319
204 => 0.009166343983933
205 => 0.00912826681228
206 => 0.0096673592652375
207 => 0.0094434904933748
208 => 0.0095526025751118
209 => 0.0095786251636803
210 => 0.0095119688502581
211 => 0.0095264242178557
212 => 0.0095483201609143
213 => 0.0096812680395006
214 => 0.01003016174169
215 => 0.010184684387389
216 => 0.01064957339099
217 => 0.010171853432723
218 => 0.010143507507401
219 => 0.010227248055253
220 => 0.010500187113865
221 => 0.010721378585008
222 => 0.010794760556829
223 => 0.010804459195809
224 => 0.010942128653285
225 => 0.011021038218927
226 => 0.010925411960081
227 => 0.010844378718196
228 => 0.01055412770398
229 => 0.010587725049203
301 => 0.010819177440904
302 => 0.011146117576659
303 => 0.011426666225461
304 => 0.011328427866758
305 => 0.012077917198187
306 => 0.012152226004009
307 => 0.012141958929736
308 => 0.012311245448031
309 => 0.011975246183815
310 => 0.011831599988684
311 => 0.010861899024858
312 => 0.011134345442105
313 => 0.01153036230979
314 => 0.011477947992365
315 => 0.011190349957491
316 => 0.011426448056562
317 => 0.011348386641539
318 => 0.011286816364739
319 => 0.011568881738744
320 => 0.011258739273418
321 => 0.011527268401452
322 => 0.011182877017171
323 => 0.011328876611306
324 => 0.011246000180469
325 => 0.011299631388174
326 => 0.010986104443798
327 => 0.011155275972547
328 => 0.010979066352018
329 => 0.010978982805714
330 => 0.010975092968575
331 => 0.011182402805694
401 => 0.01118916317204
402 => 0.011035960889181
403 => 0.011013882046751
404 => 0.011095519099203
405 => 0.01099994349156
406 => 0.01104466271683
407 => 0.011001297991337
408 => 0.010991535678228
409 => 0.010913747906452
410 => 0.010880234795552
411 => 0.010893376149862
412 => 0.010848517932768
413 => 0.010821489234376
414 => 0.010969716280162
415 => 0.01089052454906
416 => 0.010957579011601
417 => 0.010881161988588
418 => 0.010616267293512
419 => 0.010463923553163
420 => 0.0099635620299161
421 => 0.010105463937212
422 => 0.010199545048558
423 => 0.01016845124182
424 => 0.0102352527704
425 => 0.010239353841715
426 => 0.010217635983813
427 => 0.010192489486592
428 => 0.010180249562433
429 => 0.01027147592913
430 => 0.010324435905536
501 => 0.010208987346725
502 => 0.010181939364692
503 => 0.01029866423174
504 => 0.01036986633321
505 => 0.010895582645456
506 => 0.010856635883004
507 => 0.010954384613844
508 => 0.010943379606828
509 => 0.011045835849342
510 => 0.011213308504613
511 => 0.010872789770355
512 => 0.01093189204837
513 => 0.010917401534672
514 => 0.011075605163615
515 => 0.011076099058076
516 => 0.010981248079667
517 => 0.011032668333844
518 => 0.011003966958603
519 => 0.011055834222887
520 => 0.010856115725247
521 => 0.011099351297092
522 => 0.011237250192575
523 => 0.011239164918873
524 => 0.011304527900898
525 => 0.011370940476205
526 => 0.011498413631189
527 => 0.011367385319098
528 => 0.011131678140996
529 => 0.011148695437925
530 => 0.011010500405646
531 => 0.011012823489105
601 => 0.011000422687535
602 => 0.011037638426537
603 => 0.010864282487135
604 => 0.010904968779614
605 => 0.010848007731885
606 => 0.010931768226177
607 => 0.010841655780424
608 => 0.010917394546907
609 => 0.010950080887742
610 => 0.011070694189107
611 => 0.010823841097745
612 => 0.010320490933974
613 => 0.010426301240929
614 => 0.010269799485722
615 => 0.010284284319011
616 => 0.010313545987498
617 => 0.010218699346109
618 => 0.010236793096325
619 => 0.010236146660243
620 => 0.010230576023326
621 => 0.01020590274875
622 => 0.010170121619155
623 => 0.010312662626608
624 => 0.010336883121369
625 => 0.010390722280936
626 => 0.010550911100357
627 => 0.010534904459784
628 => 0.010561011954668
629 => 0.010504019439925
630 => 0.010286928038311
701 => 0.010298717145877
702 => 0.010151706785623
703 => 0.0103869628955
704 => 0.010331251143452
705 => 0.01029533341448
706 => 0.010285532929355
707 => 0.010446118825876
708 => 0.01049416864299
709 => 0.010464227221468
710 => 0.010402816492394
711 => 0.010520743246668
712 => 0.010552295471181
713 => 0.010559358850648
714 => 0.010768302449008
715 => 0.010571036476723
716 => 0.010618520356907
717 => 0.010988976035233
718 => 0.01065302385438
719 => 0.010830985217205
720 => 0.010822274934561
721 => 0.010913313945899
722 => 0.010814807078402
723 => 0.010816028189084
724 => 0.010896864663635
725 => 0.010783344414063
726 => 0.010755235203831
727 => 0.010716402531216
728 => 0.010801192251205
729 => 0.010852019853629
730 => 0.011261653000408
731 => 0.011526294694768
801 => 0.011514805900873
802 => 0.011619791970952
803 => 0.011572494784819
804 => 0.011419759694429
805 => 0.011680459869665
806 => 0.011597963426062
807 => 0.011604764332639
808 => 0.011604511202557
809 => 0.011659364125589
810 => 0.011620495802424
811 => 0.011543882347715
812 => 0.011594741934351
813 => 0.011745776724025
814 => 0.012214593345488
815 => 0.012476949337853
816 => 0.012198799185324
817 => 0.012390663435959
818 => 0.012275613253801
819 => 0.012254705213256
820 => 0.012375210141312
821 => 0.012495925997292
822 => 0.012488236919135
823 => 0.012400603406521
824 => 0.012351101458864
825 => 0.012725946790895
826 => 0.013002126446212
827 => 0.012983292845252
828 => 0.013066418234877
829 => 0.013310476949789
830 => 0.013332790620037
831 => 0.01332997961046
901 => 0.013274672850559
902 => 0.013514980350419
903 => 0.01371544909461
904 => 0.013261870933608
905 => 0.013434587559543
906 => 0.013512125617508
907 => 0.013625974491105
908 => 0.01381805662415
909 => 0.014026708767907
910 => 0.014056214468788
911 => 0.014035278762035
912 => 0.013897667064357
913 => 0.014125976729793
914 => 0.014259715177285
915 => 0.014339353362217
916 => 0.014541302548673
917 => 0.013512604466157
918 => 0.01278444083374
919 => 0.012670727567728
920 => 0.012901967965717
921 => 0.012962944214559
922 => 0.012938364765108
923 => 0.012118750395082
924 => 0.012666412467693
925 => 0.013255650809087
926 => 0.013278285853528
927 => 0.013573270887623
928 => 0.013669330106569
929 => 0.013906831723587
930 => 0.013891975932778
1001 => 0.013949803797046
1002 => 0.01393651017249
1003 => 0.01437643190615
1004 => 0.014861730907388
1005 => 0.014844926546131
1006 => 0.014775159072906
1007 => 0.014878775667767
1008 => 0.015379656244846
1009 => 0.015333543187756
1010 => 0.015378338094818
1011 => 0.015968904523586
1012 => 0.016736724888079
1013 => 0.016379995240868
1014 => 0.017153995929125
1015 => 0.01764118833437
1016 => 0.018483737222606
1017 => 0.018378245952158
1018 => 0.018706244051439
1019 => 0.018189394561364
1020 => 0.017002603659635
1021 => 0.016814789456584
1022 => 0.017190798247306
1023 => 0.018115179168896
1024 => 0.017161686202493
1025 => 0.017354576587764
1026 => 0.01729902414383
1027 => 0.017296063990175
1028 => 0.017409041015356
1029 => 0.017245161947846
1030 => 0.01657748914553
1031 => 0.016883479656211
1101 => 0.016765322025165
1102 => 0.016896426726045
1103 => 0.017603944725
1104 => 0.01729113415254
1105 => 0.01696161362512
1106 => 0.017374905492963
1107 => 0.017901168063222
1108 => 0.01786823549736
1109 => 0.017804332554843
1110 => 0.018164550095962
1111 => 0.018759523940053
1112 => 0.018920342979313
1113 => 0.019039056306294
1114 => 0.019055424868406
1115 => 0.01922403123117
1116 => 0.018317392324314
1117 => 0.019756251553634
1118 => 0.020004702794853
1119 => 0.019958004258753
1120 => 0.020234147356942
1121 => 0.02015289905238
1122 => 0.020035183006539
1123 => 0.02047292855449
1124 => 0.019971088608009
1125 => 0.01925878998387
1126 => 0.018868008870999
1127 => 0.019382620963841
1128 => 0.019696876611453
1129 => 0.019904579604111
1130 => 0.019967430404192
1201 => 0.018387772121783
1202 => 0.017536423919429
1203 => 0.018082128356411
1204 => 0.018747925432037
1205 => 0.018313693787942
1206 => 0.018330714846281
1207 => 0.01771161463587
1208 => 0.018802702063316
1209 => 0.018643739802627
1210 => 0.019468436292283
1211 => 0.019271615856424
1212 => 0.019944123829204
1213 => 0.019767029941775
1214 => 0.020502136767309
1215 => 0.020795390782238
1216 => 0.021287809914646
1217 => 0.021650035432952
1218 => 0.021862741185571
1219 => 0.021849971130023
1220 => 0.022692817291485
1221 => 0.022195820356873
1222 => 0.021571475073816
1223 => 0.021560182637429
1224 => 0.021883539906566
1225 => 0.022561208033941
1226 => 0.022736917519699
1227 => 0.022835115151509
1228 => 0.022684722060108
1229 => 0.022145267507677
1230 => 0.021912333767034
1231 => 0.022110800062802
]
'min_raw' => 0.0081837194883396
'max_raw' => 0.022835115151509
'avg_raw' => 0.015509417319924
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$0.008183'
'max' => '$0.022835'
'avg' => '$0.0155094'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.0032398120049587
'max_diff' => 0.0117981899691
'year' => 2036
]
11 => [
'items' => [
101 => 0.021868092837481
102 => 0.022287073600005
103 => 0.022862423676412
104 => 0.022743616160815
105 => 0.023140771872838
106 => 0.023551786252783
107 => 0.024139555275914
108 => 0.024293219863585
109 => 0.024547221583664
110 => 0.024808672788843
111 => 0.024892643869639
112 => 0.025052970717575
113 => 0.025052125715947
114 => 0.025535281463443
115 => 0.026068217215019
116 => 0.026269388123748
117 => 0.026731969535741
118 => 0.025939815078488
119 => 0.026540673333929
120 => 0.027082662520794
121 => 0.026436480668622
122 => 0.02732709181078
123 => 0.027361672223262
124 => 0.027883795395979
125 => 0.027354523533733
126 => 0.027040243591427
127 => 0.027947558008949
128 => 0.028386578875451
129 => 0.02825434221759
130 => 0.02724801472194
131 => 0.026662288956055
201 => 0.025129331648672
202 => 0.026945185798095
203 => 0.027829635385087
204 => 0.027245724211177
205 => 0.027540215043213
206 => 0.029146861533826
207 => 0.029758568494795
208 => 0.029631337723068
209 => 0.029652837629093
210 => 0.029982903601965
211 => 0.031446597896332
212 => 0.030569518346979
213 => 0.031240012798916
214 => 0.031595640638575
215 => 0.031925967595405
216 => 0.031114788990337
217 => 0.030059457543723
218 => 0.029725189774779
219 => 0.027187665752563
220 => 0.027055576607299
221 => 0.026981430967351
222 => 0.026513953195589
223 => 0.026146643719923
224 => 0.025854545587547
225 => 0.025087992860305
226 => 0.025346681903358
227 => 0.024124956848123
228 => 0.024906573243185
301 => 0.022956670555447
302 => 0.024580607455466
303 => 0.023696772432136
304 => 0.024290243879636
305 => 0.024288173313664
306 => 0.023195404218524
307 => 0.022565117809956
308 => 0.022966760840609
309 => 0.023397354051933
310 => 0.023467216351781
311 => 0.024025491689895
312 => 0.024181294336674
313 => 0.023709205043203
314 => 0.022916263156317
315 => 0.023100445471561
316 => 0.022561385361216
317 => 0.021616703252484
318 => 0.022295190435543
319 => 0.022526855790815
320 => 0.022629172409387
321 => 0.021700186052922
322 => 0.021408278370446
323 => 0.021252869169638
324 => 0.022796342683408
325 => 0.022880897646687
326 => 0.022448302499686
327 => 0.024403673584486
328 => 0.02396111288594
329 => 0.02445556161622
330 => 0.023083732856961
331 => 0.023136138562977
401 => 0.022486692843812
402 => 0.022850339050566
403 => 0.022593325632497
404 => 0.022820960030682
405 => 0.022957403150382
406 => 0.023606742301895
407 => 0.024588021865529
408 => 0.023509752686211
409 => 0.023039935363683
410 => 0.023331407388227
411 => 0.02410763579932
412 => 0.025283661576527
413 => 0.024587430646696
414 => 0.024896406110587
415 => 0.024963903504086
416 => 0.024450528592298
417 => 0.025302590441795
418 => 0.025759217309079
419 => 0.026227621989295
420 => 0.026634324648726
421 => 0.026040530859577
422 => 0.026675975330962
423 => 0.026163919258075
424 => 0.025704552025311
425 => 0.025705248695785
426 => 0.025417080920387
427 => 0.024858719544079
428 => 0.024755749139487
429 => 0.025291414187902
430 => 0.025720966829062
501 => 0.025756346842006
502 => 0.025994169255363
503 => 0.026134910109823
504 => 0.027514361811438
505 => 0.028069188697251
506 => 0.028747620510888
507 => 0.029011907936621
508 => 0.029807318335792
509 => 0.029164959838387
510 => 0.029025981536849
511 => 0.027096576085219
512 => 0.027412516119836
513 => 0.027918366598937
514 => 0.027104917373303
515 => 0.027620863676766
516 => 0.027722722406306
517 => 0.027077276679886
518 => 0.027422037130431
519 => 0.026506455588134
520 => 0.024607979041155
521 => 0.0253047039889
522 => 0.025817728065522
523 => 0.02508557945277
524 => 0.026397927503064
525 => 0.025631280864445
526 => 0.025388290685531
527 => 0.024440299365336
528 => 0.024887714776936
529 => 0.025492850527496
530 => 0.025118946988232
531 => 0.025894852974105
601 => 0.026993742776669
602 => 0.027776877089996
603 => 0.027836996418355
604 => 0.02733349352081
605 => 0.028140360127439
606 => 0.028146237269792
607 => 0.027236088441368
608 => 0.026678627351689
609 => 0.026551971019205
610 => 0.026868383370185
611 => 0.027252566377217
612 => 0.027858315901468
613 => 0.028224357652432
614 => 0.029178800405402
615 => 0.029437045248338
616 => 0.02972077803578
617 => 0.030099932539753
618 => 0.030555204734993
619 => 0.029559095090469
620 => 0.029598672383627
621 => 0.028671108874723
622 => 0.027679874239396
623 => 0.028432097768467
624 => 0.029415529968625
625 => 0.029189929535313
626 => 0.029164544877967
627 => 0.029207234830506
628 => 0.02903713947121
629 => 0.028267804465142
630 => 0.027881449241387
701 => 0.028379946049761
702 => 0.028644874917872
703 => 0.029055756488086
704 => 0.029005106661899
705 => 0.030063493461312
706 => 0.030474750567608
707 => 0.030369533401134
708 => 0.030388895891957
709 => 0.031133457238707
710 => 0.031961562587012
711 => 0.032737192523825
712 => 0.033526196609633
713 => 0.032575021388838
714 => 0.032092073272051
715 => 0.032590352452313
716 => 0.032325958505479
717 => 0.033845244548328
718 => 0.033950436617587
719 => 0.035469612798762
720 => 0.036911491894833
721 => 0.036005873468538
722 => 0.036859830854584
723 => 0.03778345539176
724 => 0.039565276976653
725 => 0.0389652221521
726 => 0.038505589560551
727 => 0.038071238982465
728 => 0.038975053584249
729 => 0.040137796630653
730 => 0.040388240346234
731 => 0.040794054842338
801 => 0.040367390520321
802 => 0.040881260700657
803 => 0.042695448243245
804 => 0.042205238754962
805 => 0.041509062476491
806 => 0.042941189304941
807 => 0.043459470436905
808 => 0.047097038846963
809 => 0.051689619225117
810 => 0.049788260792053
811 => 0.048608026256196
812 => 0.04888540936766
813 => 0.050562464253105
814 => 0.051101081055249
815 => 0.049636934914677
816 => 0.050154096083847
817 => 0.053003704972138
818 => 0.054532428714307
819 => 0.052456216537451
820 => 0.046728029485274
821 => 0.041446379419645
822 => 0.042847310852852
823 => 0.04268848870429
824 => 0.04575003795881
825 => 0.042193547420789
826 => 0.042253429600321
827 => 0.045378288451188
828 => 0.04454462968342
829 => 0.043194209246583
830 => 0.041456238983298
831 => 0.038243440208824
901 => 0.035397774738751
902 => 0.040978780043184
903 => 0.040738116946057
904 => 0.040389601117145
905 => 0.041165185381037
906 => 0.044931202413067
907 => 0.044844383531071
908 => 0.044292086099196
909 => 0.044710998833547
910 => 0.043120771818838
911 => 0.043530609529325
912 => 0.041445542779289
913 => 0.042388080030385
914 => 0.04319131185083
915 => 0.043352572530835
916 => 0.043715901077061
917 => 0.040611298429687
918 => 0.042005173872013
919 => 0.042823945105912
920 => 0.039124706884001
921 => 0.042750823060223
922 => 0.040557254204713
923 => 0.039812723988855
924 => 0.040815135840111
925 => 0.040424494966799
926 => 0.040088644883127
927 => 0.039901234765801
928 => 0.040637295397205
929 => 0.040602957288967
930 => 0.039398619232779
1001 => 0.03782760933358
1002 => 0.038354891822393
1003 => 0.038163325150907
1004 => 0.037469062820851
1005 => 0.037936911805756
1006 => 0.03587674164919
1007 => 0.032332325973144
1008 => 0.034673875537128
1009 => 0.034583728426031
1010 => 0.034538272164769
1011 => 0.036297881946426
1012 => 0.036128736067025
1013 => 0.03582173463963
1014 => 0.037463424498884
1015 => 0.036864185616411
1016 => 0.038710898653754
1017 => 0.039927263298058
1018 => 0.039618753878988
1019 => 0.040762750706157
1020 => 0.038367039345974
1021 => 0.03916279856057
1022 => 0.039326803431824
1023 => 0.037443166300853
1024 => 0.036156410424757
1025 => 0.036070598477913
1026 => 0.033839541114644
1027 => 0.035031353949636
1028 => 0.036080099923863
1029 => 0.035577831988184
1030 => 0.035418828964576
1031 => 0.036231140928642
1101 => 0.036294264525232
1102 => 0.034855039833453
1103 => 0.035154300221192
1104 => 0.036402265785965
1105 => 0.03512285469091
1106 => 0.032637167923833
1107 => 0.032020683238289
1108 => 0.031938432817171
1109 => 0.03026647745596
1110 => 0.032061879692814
1111 => 0.031278138502639
1112 => 0.03375396753174
1113 => 0.032339787268455
1114 => 0.032278824783791
1115 => 0.032186671046969
1116 => 0.030747549999969
1117 => 0.031062626048348
1118 => 0.032109986820598
1119 => 0.0324836969435
1120 => 0.032444715915965
1121 => 0.032104854181428
1122 => 0.032260441143126
1123 => 0.031759241329408
1124 => 0.031582257243612
1125 => 0.031023646785533
1126 => 0.030202643732235
1127 => 0.0303168092423
1128 => 0.028690187366581
1129 => 0.027803917437332
1130 => 0.027558609601766
1201 => 0.027230573711927
1202 => 0.027595662128393
1203 => 0.028685579351181
1204 => 0.027370907941661
1205 => 0.025116996023516
1206 => 0.025252459970276
1207 => 0.025556807239038
1208 => 0.024989658117159
1209 => 0.024452899070518
1210 => 0.024919567512934
1211 => 0.02396455532042
1212 => 0.025672215899878
1213 => 0.025626028466867
1214 => 0.026262538729868
1215 => 0.026660561659827
1216 => 0.025743247667724
1217 => 0.025512545679391
1218 => 0.025643964016766
1219 => 0.023471911637917
1220 => 0.026085035711173
1221 => 0.026107634116671
1222 => 0.025914132848908
1223 => 0.027305540746762
1224 => 0.030241845402241
1225 => 0.029137089478269
1226 => 0.028709294593082
1227 => 0.027896056203626
1228 => 0.028979648072259
1229 => 0.028896445123414
1230 => 0.028520169834958
1231 => 0.028292597366449
]
'min_raw' => 0.021252869169638
'max_raw' => 0.054532428714307
'avg_raw' => 0.037892648941972
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$0.021252'
'max' => '$0.054532'
'avg' => '$0.037892'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 0.013069149681298
'max_diff' => 0.031697313562798
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.0006671032781253
]
1 => [
'year' => 2028
'avg' => 0.0011449428867284
]
2 => [
'year' => 2029
'avg' => 0.003127777610664
]
3 => [
'year' => 2030
'avg' => 0.0024130757686011
]
4 => [
'year' => 2031
'avg' => 0.0023699394539541
]
5 => [
'year' => 2032
'avg' => 0.0041552497101768
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.0006671032781253
'min' => '$0.000667'
'max_raw' => 0.0041552497101768
'max' => '$0.004155'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.0041552497101768
]
1 => [
'year' => 2033
'avg' => 0.010687729533864
]
2 => [
'year' => 2034
'avg' => 0.0067743966068097
]
3 => [
'year' => 2035
'avg' => 0.0079904163328949
]
4 => [
'year' => 2036
'avg' => 0.015509417319924
]
5 => [
'year' => 2037
'avg' => 0.037892648941972
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.0041552497101768
'min' => '$0.004155'
'max_raw' => 0.037892648941972
'max' => '$0.037892'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 0.037892648941972
]
]
]
]
'prediction_2025_max_price' => '$0.00114'
'last_price' => 0.00110598
'sma_50day_nextmonth' => '$0.001032'
'sma_200day_nextmonth' => '—'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'decrease'
'sma_200day_direction_label' => 'diminuir'
'sma_200day_date_nextmonth' => '4 de fev. de 2026'
'sma_50day_date_nextmonth' => '4 de fev. de 2026'
'daily_sma3' => '$0.001283'
'daily_sma3_action' => 'SELL'
'daily_sma5' => '$0.001251'
'daily_sma5_action' => 'SELL'
'daily_sma10' => '$0.001149'
'daily_sma10_action' => 'SELL'
'daily_sma21' => '$0.001059'
'daily_sma21_action' => 'BUY'
'daily_sma50' => '$0.00125'
'daily_sma50_action' => 'SELL'
'daily_sma100' => '$0.001841'
'daily_sma100_action' => 'SELL'
'daily_sma200' => '—'
'daily_sma200_action' => '—'
'daily_ema3' => '$0.001213'
'daily_ema3_action' => 'SELL'
'daily_ema5' => '$0.001212'
'daily_ema5_action' => 'SELL'
'daily_ema10' => '$0.001166'
'daily_ema10_action' => 'SELL'
'daily_ema21' => '$0.001134'
'daily_ema21_action' => 'SELL'
'daily_ema50' => '$0.001637'
'daily_ema50_action' => 'SELL'
'daily_ema100' => '$0.004051'
'daily_ema100_action' => 'SELL'
'daily_ema200' => '$0.00329'
'daily_ema200_action' => 'SELL'
'weekly_sma21' => '—'
'weekly_sma21_action' => '—'
'weekly_sma50' => '—'
'weekly_sma50_action' => '—'
'weekly_sma100' => '—'
'weekly_sma100_action' => '—'
'weekly_sma200' => '—'
'weekly_sma200_action' => '—'
'weekly_ema3' => '$0.001173'
'weekly_ema3_action' => 'SELL'
'weekly_ema5' => '$0.001212'
'weekly_ema5_action' => 'SELL'
'weekly_ema10' => '$0.002036'
'weekly_ema10_action' => 'SELL'
'weekly_ema21' => '$0.004126'
'weekly_ema21_action' => 'SELL'
'weekly_ema50' => '$0.001733'
'weekly_ema50_action' => 'SELL'
'weekly_ema100' => '$0.000866'
'weekly_ema100_action' => 'BUY'
'weekly_ema200' => '$0.000433'
'weekly_ema200_action' => 'BUY'
'rsi_14' => '48.18'
'rsi_14_action' => 'NEUTRAL'
'stoch_rsi_14' => 85.69
'stoch_rsi_14_action' => 'SELL'
'momentum_10' => 0
'momentum_10_action' => 'SELL'
'vwma_10' => '0.001149'
'vwma_10_action' => 'SELL'
'hma_9' => '0.001355'
'hma_9_action' => 'SELL'
'stochastic_fast_14' => 40.14
'stochastic_fast_14_action' => 'NEUTRAL'
'cci_20' => 30.61
'cci_20_action' => 'NEUTRAL'
'adx_14' => 13.07
'adx_14_action' => 'NEUTRAL'
'ao_5_34' => '0.000148'
'ao_5_34_action' => 'BUY'
'macd_12_26' => 0
'macd_12_26_action' => 'NEUTRAL'
'williams_percent_r_14' => -59.86
'williams_percent_r_14_action' => 'NEUTRAL'
'ultimate_oscillator' => 51.42
'ultimate_oscillator_action' => 'NEUTRAL'
'ichimoku_cloud' => '-0.000661'
'ichimoku_cloud_action' => 'SELL'
'sell_signals' => 25
'buy_signals' => 4
'sell_pct' => 86.21
'buy_pct' => 13.79
'overall_action' => 'bearish'
'overall_action_label' => 'Baixista'
'overall_action_dir' => -1
'last_updated' => 1767697167
'last_updated_date' => '6 de janeiro de 2026'
]
Previsão de preço de kazonomics para 2026
A previsão de preço para kazonomics em 2026 sugere que o preço médio poderia variar entre $0.000382 na extremidade inferior e $0.00114 na extremidade superior. No mercado de criptomoedas, comparado ao preço médio de hoje, kazonomics poderia potencialmente ganhar 3.13% até 2026 se KAZONOMICS atingir a meta de preço prevista.
Previsão de preço de kazonomics 2027-2032
A previsão de preço de KAZONOMICS para 2027-2032 está atualmente dentro de uma faixa de preço entre $0.000667 na extremidade inferior e $0.004155 na extremidade superior. Considerando a volatilidade de preços no mercado, se kazonomics atingir a meta de preço superior, poderia ganhar 275.71% até 2032 em comparação com o preço de hoje.
| Previsão de Preço de kazonomics | Potencial Mínimo ($) | Preço Médio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2027 | $0.000367 | $0.000667 | $0.000966 |
| 2028 | $0.000663 | $0.001144 | $0.001626 |
| 2029 | $0.001458 | $0.003127 | $0.004797 |
| 2030 | $0.00124 | $0.002413 | $0.003585 |
| 2031 | $0.001466 | $0.002369 | $0.003273 |
| 2032 | $0.002238 | $0.004155 | $0.006072 |
Previsão de preço de kazonomics 2032-2037
A previsão de preço de kazonomics para 2032-2037 é atualmente estimada entre $0.004155 na extremidade inferior e $0.037892 na extremidade superior. Comparado ao preço atual, kazonomics poderia potencialmente ganhar 3326.16% até 2037 se atingir a meta de preço superior. Por favor, note que esta informação é apenas para fins gerais e não deve ser considerada como aconselhamento de investimento a longo prazo.
| Previsão de Preço de kazonomics | Potencial Mínimo ($) | Preço Médio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2032 | $0.002238 | $0.004155 | $0.006072 |
| 2033 | $0.0052012 | $0.010687 | $0.016174 |
| 2034 | $0.004181 | $0.006774 | $0.009367 |
| 2035 | $0.004943 | $0.00799 | $0.011036 |
| 2036 | $0.008183 | $0.0155094 | $0.022835 |
| 2037 | $0.021252 | $0.037892 | $0.054532 |
kazonomics Histograma de preços potenciais
Previsão de preço de kazonomics baseada na análise técnica
Em 6 de janeiro de 2026, o sentimento geral de previsão de preço para kazonomics é Baixista, com 4 indicadores técnicos mostrando sinais de alta e 25 indicando sinais de baixa. A previsão de preço de KAZONOMICS foi atualizada pela última vez em 6 de janeiro de 2026.
Médias Móveis Simples de 50 e 200 dias e Índice de Força Relativa de 14 dias - RSI (14) de kazonomics
De acordo com nossos indicadores técnicos, o SMA de 200 dias de kazonomics está projetado para diminuir no próximo mês, alcançando — até 4 de fev. de 2026. O SMA de 50 dias de curto prazo para kazonomics é esperado para alcançar $0.001032 até 4 de fev. de 2026.
O oscilador de momentum Índice de Força Relativa (RSI) é uma ferramenta comumente usada para identificar se uma criptomoeda está sobrevendida (abaixo de 30) ou sobrecomprada (acima de 70). No momento, o RSI está em 48.18, sugerindo que o mercado de KAZONOMICS está em um estado NEUTRAL.
Médias Móveis e Osciladores Populares de KAZONOMICS para Sábado, 19 de Outubro de 2024
Médias móveis (MA) são indicadores amplamente utilizados nos mercados financeiros, projetados para suavizar movimentos de preços ao longo de um período definido. Como indicadores atrasados, eles se baseiam em dados históricos de preços. A tabela abaixo destaca dois tipos: a média móvel simples (SMA) e a média móvel exponencial (EMA).
Média Móvel Simples Diária (SMA)
| Período | Valor | Ação |
|---|---|---|
| SMA 3 | $0.001283 | SELL |
| SMA 5 | $0.001251 | SELL |
| SMA 10 | $0.001149 | SELL |
| SMA 21 | $0.001059 | BUY |
| SMA 50 | $0.00125 | SELL |
| SMA 100 | $0.001841 | SELL |
| SMA 200 | — | — |
Média Móvel Exponencial Diária (EMA)
| Período | Valor | Ação |
|---|---|---|
| EMA 3 | $0.001213 | SELL |
| EMA 5 | $0.001212 | SELL |
| EMA 10 | $0.001166 | SELL |
| EMA 21 | $0.001134 | SELL |
| EMA 50 | $0.001637 | SELL |
| EMA 100 | $0.004051 | SELL |
| EMA 200 | $0.00329 | SELL |
Média Móvel Simples Semanal (SMA)
| Período | Valor | Ação |
|---|---|---|
| SMA 21 | — | — |
| SMA 50 | — | — |
| SMA 100 | — | — |
| SMA 200 | — | — |
Média Móvel Exponencial Semanal (EMA)
| Período | Valor | Ação |
|---|---|---|
| EMA 21 | $0.004126 | SELL |
| EMA 50 | $0.001733 | SELL |
| EMA 100 | $0.000866 | BUY |
| EMA 200 | $0.000433 | BUY |
Osciladores de kazonomics
Um oscilador é uma ferramenta de análise técnica que define limites altos e baixos entre dois extremos, criando um indicador de tendência que flutua dentro desses limites. Os traders usam esse indicador para identificar condições de sobrecompra ou sobrevenda de curto prazo.
| Período | Valor | Ação |
|---|---|---|
| RSI (14) | 48.18 | NEUTRAL |
| Stoch RSI (14) | 85.69 | SELL |
| Estocástico Rápido (14) | 40.14 | NEUTRAL |
| Índice de Canal de Commodities (20) | 30.61 | NEUTRAL |
| Índice Direcional Médio (14) | 13.07 | NEUTRAL |
| Oscilador Impressionante (5, 34) | 0.000148 | BUY |
| Momentum (10) | 0 | SELL |
| MACD (12, 26) | 0 | NEUTRAL |
| Williams Percent Range (14) | -59.86 | NEUTRAL |
| Oscilador Ultimate (7, 14, 28) | 51.42 | NEUTRAL |
| VWMA (10) | 0.001149 | SELL |
| Média Móvel de Hull (9) | 0.001355 | SELL |
| Nuvem Ichimoku B/L (9, 26, 52, 26) | -0.000661 | SELL |
Previsão do preço de kazonomics com base nos fluxos financeiros mundiais
Definições dos fluxos financeiros mundiais, usadas na previsão do preço do kazonomics
M0: o total de todas as moedas físicas, mais as contas no Banco Central que podem ser trocadas por moedas físicas.
M1: o valor de M0, mais o valor em contas de demanda, incluindo contas 'correntes'.
M2: o valor de M1, mais a maioria das contas de poupança, do mercado de moedas e de certificados de depósito (CD) de menos de US$ 100.000.
Previsões de preço de kazonomics por empresas de Internet ou nichos tecnológicos
| Comparação | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Facebook stock | $0.001554 | $0.002183 | $0.003068 | $0.004311 | $0.006058 | $0.008513 |
| Amazon.com stock | $0.0023076 | $0.004815 | $0.010047 | $0.020963 | $0.043742 | $0.09127 |
| Apple stock | $0.001568 | $0.002225 | $0.003156 | $0.004476 | $0.00635 | $0.009007 |
| Netflix stock | $0.001745 | $0.002753 | $0.004344 | $0.006854 | $0.010815 | $0.017065 |
| Google stock | $0.001432 | $0.001854 | $0.0024018 | $0.00311 | $0.004027 | $0.005216 |
| Tesla stock | $0.0025071 | $0.005683 | $0.012884 | $0.0292075 | $0.066211 | $0.150096 |
| Kodak stock | $0.000829 | $0.000621 | $0.000466 | $0.000349 | $0.000262 | $0.000196 |
| Nokia stock | $0.000732 | $0.000485 | $0.000321 | $0.000213 | $0.000141 | $0.000093 |
Este cálculo mostra quanto a criptomoeda pode custar, se assumirmos que sua capitalização se comportará da mesma forma que a de algumas empresas de Internet ou nichos tecnológicos. Se você extrapolar os dados, poderá obter uma imagem em potencial do preço futuro para 2024, 2025, 2026, 2027, 2028, 2029 e 2030.
Visão geral da previsão para kazonomics
Você pode fazer perguntas como: 'Devo investir em kazonomics agora?', 'Devo comprar KAZONOMICS hoje?', 'kazonomics será um bom ou mau investimento no curto ou no longo prazo?'.
Atualizamos a previsão para kazonomics regularmente com novos valores. Veja nossas previsões semelhantes. Fazemos previsões de preços futuros para uma enorme quantidade de moedas digitais, como kazonomics, com métodos de análise técnica.
Se você estiver tentando encontrar criptomoedas com bom retorno, você deve explorar o máximo de fontes de informações disponíveis sobre kazonomics para poder tomar sozinho uma decisão de tão grande responsabilidade sobre o seu investimento.
O preço de kazonomics é de $0.001105 USD hoje, mas o preço pode tanto subir quanto descer e seu investimento pode ser perdido, porque criptomoedas são ativos de alto risco
Previsão do preço de kazonomics com base no padrão de crescimento do Bitcoin
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| Se kazonomics tiver 1% da média anterior do crescimento anual do Bitcoin | $0.001134 | $0.001164 | $0.001194 | $0.001225 |
| Se kazonomics tiver 2% da média anterior do crescimento anual do Bitcoin | $0.001163 | $0.001223 | $0.001287 | $0.001354 |
| Se kazonomics tiver 5% da média anterior do crescimento anual do Bitcoin | $0.001249 | $0.001412 | $0.001595 | $0.001803 |
| Se kazonomics tiver 10% da média anterior do crescimento anual do Bitcoin | $0.001393 | $0.001755 | $0.002212 | $0.002786 |
| Se kazonomics tiver 20% da média anterior do crescimento anual do Bitcoin | $0.00168 | $0.002554 | $0.003882 | $0.0059015 |
| Se kazonomics tiver 50% da média anterior do crescimento anual do Bitcoin | $0.002543 | $0.005848 | $0.01345 | $0.030931 |
| Se kazonomics tiver 100% da média anterior do crescimento anual do Bitcoin | $0.00398 | $0.014328 | $0.051571 | $0.185622 |
Perguntas Frequentes sobre kazonomics
KAZONOMICS é um bom investimento?
A decisão de adquirir kazonomics depende inteiramente da sua tolerância individual ao risco. Como você pode perceber, o valor de kazonomics experimentou uma queda de -6.0621% nas últimas 24 horas, e kazonomics registrou um declínio de durante os últimos 30 dias. Consequentemente, a decisão de investir ou não em kazonomics dependerá de quão alinhado esse investimento está com suas aspirações de negociação.
kazonomics pode subir?
Parece que o valor médio de kazonomics pode potencialmente subir para $0.00114 até o final deste ano. Observando as perspectivas de kazonomics em um horizonte de cinco anos mais longo, a moeda digital poderia potencialmente crescer até $0.003585. No entanto, dada a imprevisibilidade do mercado, é vital conduzir uma pesquisa aprofundada antes de investir quaisquer fundos em um projeto, rede ou ativo específico.
Qual será o preço de kazonomics na próxima semana?
Com base na nossa nova previsão experimental de kazonomics, o preço de kazonomics aumentará 0.86% na próxima semana e atingirá $0.001115 até 13 de janeiro de 2026.
Qual será o preço de kazonomics no próximo mês?
Com base na nossa nova previsão experimental de kazonomics, o preço de kazonomics diminuirá -11.62% no próximo mês e atingirá $0.000977 até 5 de fevereiro de 2026.
Até onde o preço de kazonomics pode subir este ano em 2026?
De acordo com nossa previsão mais recente sobre o valor de kazonomics em 2026, espera-se que KAZONOMICS fluctue dentro do intervalo de $0.000382 e $0.00114. No entanto, é crucial lembrar que o mercado de criptomoedas é excepcionalmente instável, e essa previsão de preço de kazonomics não considera flutuações repentinas e extremas de preço.
Onde estará kazonomics em 5 anos?
O futuro de kazonomics parece seguir uma tendência de alta, com um preço máximo de $0.003585 projetada após um período de cinco anos. Com base na previsão de kazonomics para 2030, o valor de kazonomics pode potencialmente atingir seu pico mais alto de aproximadamente $0.003585, enquanto seu pico mais baixo está previsto para cerca de $0.00124.
Quanto será kazonomics em 2026?
Com base na nossa nova simulação experimental de previsão de preços de kazonomics, espera-se que o valor de KAZONOMICS em 2026 aumente 3.13% para $0.00114 se o melhor cenário ocorrer. O preço ficará entre $0.00114 e $0.000382 durante 2026.
Quanto será kazonomics em 2027?
De acordo com nossa última simulação experimental para previsão de preços de kazonomics, o valor de KAZONOMICS pode diminuir -12.62% para $0.000966 em 2027, assumindo as condições mais favoráveis. O preço está projetado para flutuar entre $0.000966 e $0.000367 ao longo do ano.
Quanto será kazonomics em 2028?
Nosso novo modelo experimental de previsão de preços de kazonomics sugere que o valor de KAZONOMICS em 2028 pode aumentar 47.02%, alcançando $0.001626 no melhor cenário. O preço é esperado para variar entre $0.001626 e $0.000663 durante o ano.
Quanto será kazonomics em 2029?
Com base no nosso modelo de previsão experimental, o valor de kazonomics pode experimentar um 333.75% crescimento em 2029, potencialmente alcançando $0.004797 sob condições ótimas. A faixa de preço prevista para 2029 está entre $0.004797 e $0.001458.
Quanto será kazonomics em 2030?
Usando nossa nova simulação experimental para previsões de preços de kazonomics, espera-se que o valor de KAZONOMICS em 2030 aumente 224.23%, alcançando $0.003585 no melhor cenário. O preço está previsto para variar entre $0.003585 e $0.00124 ao longo de 2030.
Quanto será kazonomics em 2031?
Nossa simulação experimental indica que o preço de kazonomics poderia aumentar 195.98% em 2031, potencialmente atingindo $0.003273 sob condições ideais. O preço provavelmente oscilará entre $0.003273 e $0.001466 durante o ano.
Quanto será kazonomics em 2032?
Com base nos achados da nossa mais recente previsão experimental de preços de kazonomics, KAZONOMICS poderia ver um 449.04% aumento em valor, atingindo $0.006072 se o cenário mais positivo se desenrolar em 2032. O preço é esperado para permanecer dentro de uma faixa de $0.006072 e $0.002238 ao longo do ano.
Quanto será kazonomics em 2033?
De acordo com nossa previsão experimental de preços de kazonomics, espera-se que o valor de KAZONOMICS seja aumentar 1362.43% em 2033, com o preço potencial mais alto sendo $0.016174. Ao longo do ano, o preço de KAZONOMICS poderia variar entre $0.016174 e $0.0052012.
Quanto será kazonomics em 2034?
Os resultados da nossa nova simulação de previsão de preços de kazonomics sugerem que KAZONOMICS pode aumentar 746.96% em 2034, atingindo potencialmente $0.009367 nas melhores circunstâncias. A faixa de preço prevista para o ano é entre $0.009367 e $0.004181.
Quanto será kazonomics em 2035?
Com base em nossa previsão experimental para o preço de kazonomics, KAZONOMICS poderia aumentar 897.93%, com o valor potencialmente atingindo $0.011036 em 2035. A faixa de preço esperada para o ano está entre $0.011036 e $0.004943.
Quanto será kazonomics em 2036?
Nossa recente simulação de previsão de preços de kazonomics sugere que o valor de KAZONOMICS pode aumentar 1964.7% em 2036, possivelmente atingindo $0.022835 se as condições forem ideais. A faixa de preço esperada para 2036 está entre $0.022835 e $0.008183.
Quanto será kazonomics em 2037?
De acordo com a simulação experimental, o valor de kazonomics poderia aumentar 4830.69% em 2037, com um pico de $0.054532 sob condições favoráveis. O preço é esperado para cair entre $0.054532 e $0.021252 ao longo do ano.
Previsões relacionadas
Como ler e prever os movimentos de preço de kazonomics?
Traders de kazonomics utilizam indicadores e padrões de gráfico para prever a direção do mercado. Eles também identificam níveis-chave de suporte e resistência para avaliar quando uma tendência de baixa pode desacelerar ou uma tendência de alta pode estagnar.
Indicadores de Previsão de Preço de kazonomics
Médias móveis são ferramentas populares para a previsão de preço de kazonomics. Uma média móvel simples (SMA) calcula o preço médio de fechamento de KAZONOMICS em um período específico, como uma SMA de 12 dias. Uma média móvel exponencial (EMA) dá mais peso aos preços recentes, reagindo mais rapidamente às mudanças de preço.
Médias móveis comumente usadas no mercado de criptomoedas incluem as de 50 dias, 100 dias e 200 dias, que ajudam a identificar níveis-chave de resistência e suporte. Um movimento de preço de KAZONOMICS acima dessas médias é visto como altista, enquanto uma queda abaixo indica fraqueza.
Traders também usam RSI e níveis de retração de Fibonacci para avaliar a direção futura de KAZONOMICS.
Como ler gráficos de kazonomics e prever movimentos de preço?
A maioria dos traders prefere gráficos de velas em vez de gráficos de linha simples porque eles fornecem informações mais detalhadas. Velas podem representar a ação de preço de kazonomics em diferentes períodos de tempo, como 5 minutos para tendências de curto prazo e semanal para tendências de longo prazo. Opções populares incluem gráficos de 1 hora, 4 horas e 1 dia.
Por exemplo, um gráfico de velas de 1 hora mostra os preços de abertura, fechamento, máximo e mínimo de KAZONOMICS dentro de cada hora. A cor da vela é crucial: verde indica que o preço fechou mais alto do que abriu, enquanto vermelho significa o oposto. Alguns gráficos usam velas vazias e preenchidas para transmitir a mesma informação.
O que afeta o preço de kazonomics?
A ação de preço de kazonomics é impulsionada pela oferta e demanda, influenciada por fatores como reduções pela metade das recompensas de bloco, hard forks e atualizações de protocolo. Eventos do mundo real, como regulamentações, adoção por empresas e governos e hacks de exchanges de criptomoedas, também impactam o preço de KAZONOMICS. A capitalização de mercado de kazonomics pode mudar rapidamente.
Traders frequentemente monitoram a atividade de "baleias" de KAZONOMICS, grandes detentores de kazonomics, pois suas ações podem influenciar significativamente os movimentos de preço no relativamente pequeno mercado de kazonomics.
Padrões de previsão de preço altistas e baixistas
Traders frequentemente identificam padrões de velas para ganhar vantagem em previsões de preço de criptomoedas. Certas formações indicam tendências altistas, enquanto outras sugerem movimentos baixistas.
Padrões de velas altistas comumente seguidos:
- Martelo
- Engolfo de Alta
- Linha de Perfuração
- Estrela da Manhã
- Três Soldados Brancos
Padrões de velas baixistas comuns:
- Harami de Baixa
- Nuvem Negra
- Estrela da Noite
- Estrela Cadente
- Homem Enforcado


