Previsão de Preço Impermax - Projeção IBEX
Previsão de Preço Impermax até $0.0022072 até 2026
| Ano | Preço Mínimo | Preço Máximo |
|---|---|---|
| 2026 | $0.000739 | $0.0022072 |
| 2027 | $0.000711 | $0.00187 |
| 2028 | $0.001284 | $0.003146 |
| 2029 | $0.002822 | $0.009283 |
| 2030 | $0.002400026 | $0.006939 |
| 2031 | $0.002837 | $0.006334 |
| 2032 | $0.004331 | $0.01175 |
| 2033 | $0.010065 | $0.031299 |
| 2034 | $0.008091 | $0.018126 |
| 2035 | $0.009567 | $0.021357 |
Calculadora de lucro do investimento
Se você abrir um short de $10,000.00 em Impermax hoje e fechar em Apr 06, 2026, nossa previsão mostra que pode lucrar cerca de $3,958.54, com um retorno de 39.59% nos próximos 90 dias.
Previsão de preço de longo prazo de Impermax para os anos 2027, 2028, 2029, 2030, 2031, 2032 e 2037
[
'name' => 'Impermax'
'name_with_ticker' => 'Impermax <small>IBEX</small>'
'name_lang' => 'Impermax'
'name_lang_with_ticker' => 'Impermax <small>IBEX</small>'
'name_with_lang' => 'Impermax'
'name_with_lang_with_ticker' => 'Impermax <small>IBEX</small>'
'image' => '/uploads/coins/impermax-2.jpeg?1717300764'
'price_for_sd' => 0.00214
'ticker' => 'IBEX'
'marketcap' => '$154.63K'
'low24h' => '$0.0485'
'high24h' => '$0.04927'
'volume24h' => '$1.55'
'current_supply' => '72.25M'
'max_supply' => '72.25M'
'algo' => null
'proof' => null
'ico_price_and_roi' => '—'
'price' => '$0.00214'
'change_24h_pct' => '0.2373%'
'ath_price' => '$0.1061'
'ath_days' => 351
'ath_exchange' => null
'ath_pair' => null
'ath_date' => '20 de jan. de 2025'
'ath_pct' => '-97.98%'
'fdv' => '$154.63K'
'new_prediction' => true
'change_24h_pct_is_increased' => true
'change_30d_pct' => null
'change_30d_pct_is_increased' => false
'max_price' => '$0.105527'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.002158'
'next_week_prediction_price_date' => '13 de janeiro de 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.001891'
'next_month_prediction_price_date' => '5 de fevereiro de 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.000739'
'current_year_max_price_prediction' => '$0.0022072'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.002400026'
'grand_prediction_max_price' => '$0.006939'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.0021807658537495
107 => 0.0021889080418294
108 => 0.0022072528073239
109 => 0.0020504987947059
110 => 0.0021208767443153
111 => 0.0021622171961888
112 => 0.001975439530646
113 => 0.002158525202277
114 => 0.0020477700560924
115 => 0.0020101780959909
116 => 0.0020607907179034
117 => 0.0020410669299217
118 => 0.0020241095752347
119 => 0.0020146470799551
120 => 0.0020518114035764
121 => 0.0020500776434585
122 => 0.0019892695967296
123 => 0.0019099479786248
124 => 0.0019365709173041
125 => 0.0019268985540906
126 => 0.0018918446620449
127 => 0.0019154667528606
128 => 0.0018114470197747
129 => 0.0016324864754757
130 => 0.0017507132927493
131 => 0.0017461616888903
201 => 0.0017438665638258
202 => 0.0018327107494577
203 => 0.0018241704309933
204 => 0.0018086696693534
205 => 0.0018915599784015
206 => 0.001861303900567
207 => 0.0019545460032245
208 => 0.0020159612825559
209 => 0.0020003843811413
210 => 0.0020581457481983
211 => 0.0019371842560405
212 => 0.0019773628116026
213 => 0.0019856435562189
214 => 0.0018905371248546
215 => 0.001825567732714
216 => 0.0018212350149635
217 => 0.0017085870423255
218 => 0.0017687626800461
219 => 0.0018217147510031
220 => 0.0017963548182614
221 => 0.0017883266211618
222 => 0.0018293409390401
223 => 0.0018325281028031
224 => 0.0017598604312458
225 => 0.0017749703412484
226 => 0.001837981177773
227 => 0.0017733826298372
228 => 0.0016478782033108
301 => 0.0016167513702978
302 => 0.0016125984769926
303 => 0.0015281800371611
304 => 0.0016188314141185
305 => 0.0015792596587707
306 => 0.001704266359772
307 => 0.0016328632025844
308 => 0.0016297851551898
309 => 0.0016251322351013
310 => 0.0015524697966566
311 => 0.0015683782527371
312 => 0.0016212603836751
313 => 0.0016401293237536
314 => 0.0016381611387148
315 => 0.0016210012323838
316 => 0.0016288569496291
317 => 0.0016035509472684
318 => 0.0015946148711359
319 => 0.0015664101568005
320 => 0.0015249570184786
321 => 0.0015307213316091
322 => 0.0014485918177897
323 => 0.0014038432997177
324 => 0.0013914574996913
325 => 0.0013748946902579
326 => 0.0013933283130888
327 => 0.0014483591551961
328 => 0.0013819802841703
329 => 0.0012681783657329
330 => 0.00127501805494
331 => 0.0012903848058665
401 => 0.0012617489671763
402 => 0.0012346475490798
403 => 0.0012582100333071
404 => 0.0012099906602411
405 => 0.0012962118867307
406 => 0.0012938798441864
407 => 0.0013260177855369
408 => 0.0013461142998003
409 => 0.0012997983407469
410 => 0.0012881500022966
411 => 0.0012947854252654
412 => 0.0011851166641796
413 => 0.0013170555080435
414 => 0.0013181965206442
415 => 0.0013084264780289
416 => 0.0013786798392316
417 => 0.0015269363439423
418 => 0.0014711562832661
419 => 0.001449556557811
420 => 0.0014084954639315
421 => 0.0014632069335594
422 => 0.0014590059463238
423 => 0.0014400074888676
424 => 0.0014285171625193
425 => 0.0014496884411287
426 => 0.0014258938068075
427 => 0.0014216196366505
428 => 0.0013957228158426
429 => 0.0013864788290444
430 => 0.0013796349492328
501 => 0.0013721005100259
502 => 0.001388719605451
503 => 0.0013510585487936
504 => 0.0013056430064237
505 => 0.0013018671954786
506 => 0.0013122925414707
507 => 0.0013076801019449
508 => 0.0013018451128927
509 => 0.0012907045297273
510 => 0.0012873993566831
511 => 0.0012981395656349
512 => 0.0012860144959213
513 => 0.0013039056967705
514 => 0.0012990402801048
515 => 0.0012718624581182
516 => 0.0012379888294045
517 => 0.0012376872830566
518 => 0.0012303892653141
519 => 0.0012210941424547
520 => 0.0012185084519189
521 => 0.0012562256666066
522 => 0.001334299172229
523 => 0.0013189714749347
524 => 0.0013300473070755
525 => 0.001384529439054
526 => 0.0014018476704751
527 => 0.0013895556000172
528 => 0.0013727294558325
529 => 0.0013734697207825
530 => 0.0014309697490818
531 => 0.0014345559553159
601 => 0.0014436171415153
602 => 0.0014552633264726
603 => 0.001391538995675
604 => 0.0013704683105326
605 => 0.001360483850955
606 => 0.0013297355799283
607 => 0.0013628949540731
608 => 0.0013435744067849
609 => 0.001346181408698
610 => 0.001344483595282
611 => 0.0013454107162128
612 => 0.0012961877861407
613 => 0.001314122034778
614 => 0.0012843028680139
615 => 0.0012443783510753
616 => 0.0012442445100952
617 => 0.0012540159790549
618 => 0.00124820352696
619 => 0.0012325623678246
620 => 0.0012347841206556
621 => 0.0012153192280179
622 => 0.0012371475110451
623 => 0.001237773468097
624 => 0.0012293683901369
625 => 0.0012629978718629
626 => 0.001276775897965
627 => 0.0012712434955975
628 => 0.0012763877298667
629 => 0.0013196084099577
630 => 0.001326655266663
701 => 0.0013297850149223
702 => 0.001325591566867
703 => 0.0012771777245574
704 => 0.0012793250843354
705 => 0.0012635691830801
706 => 0.0012502571068354
707 => 0.0012507895200726
708 => 0.0012576336577111
709 => 0.0012875224081821
710 => 0.0013504215215102
711 => 0.0013528084968824
712 => 0.0013557015806664
713 => 0.0013439339549694
714 => 0.0013403847264581
715 => 0.001345067074998
716 => 0.0013686886748858
717 => 0.001429449842999
718 => 0.0014079727880858
719 => 0.0013905116081311
720 => 0.0014058297704517
721 => 0.0014034716594302
722 => 0.0013835668292895
723 => 0.0013830081670025
724 => 0.0013448044340033
725 => 0.0013306813837704
726 => 0.0013188791059038
727 => 0.0013059913265797
728 => 0.0012983510189941
729 => 0.0013100900039033
730 => 0.0013127748486436
731 => 0.0012871073529774
801 => 0.0012836089681628
802 => 0.0013045695991952
803 => 0.0012953456069689
804 => 0.0013048327117176
805 => 0.0013070338013982
806 => 0.0013066793752642
807 => 0.0012970484680112
808 => 0.0013031869210965
809 => 0.0012886676495889
810 => 0.0012728801225485
811 => 0.0012628086638944
812 => 0.0012540199804336
813 => 0.0012588964528189
814 => 0.0012415127191738
815 => 0.0012359513129153
816 => 0.0013011073513108
817 => 0.001349238817419
818 => 0.0013485389668396
819 => 0.0013442788064247
820 => 0.0013379490721901
821 => 0.0013682256154011
822 => 0.001357677873145
823 => 0.0013653522369296
824 => 0.0013673056846049
825 => 0.001373218182377
826 => 0.0013753313921342
827 => 0.0013689438045294
828 => 0.0013475062803497
829 => 0.0012940860083126
830 => 0.001269218727474
831 => 0.0012610121105999
901 => 0.0012613104055367
902 => 0.0012530820995329
903 => 0.0012555057044178
904 => 0.0012522392686605
905 => 0.0012460534295719
906 => 0.0012585144946864
907 => 0.001259950516358
908 => 0.0012570419548617
909 => 0.0012577270263855
910 => 0.0012336453794585
911 => 0.0012354762547718
912 => 0.0012252817083711
913 => 0.0012233703538181
914 => 0.0011975994282579
915 => 0.0011519424980726
916 => 0.0011772408694207
917 => 0.0011466839943215
918 => 0.0011351116427092
919 => 0.0011898933553718
920 => 0.0011843947908287
921 => 0.0011749836384994
922 => 0.0011610625827483
923 => 0.0011558991277549
924 => 0.0011245276097663
925 => 0.001122674013123
926 => 0.0011382225845404
927 => 0.001131047453825
928 => 0.001120970852866
929 => 0.0010844744256412
930 => 0.0010434403578887
1001 => 0.0010446789184632
1002 => 0.0010577310919493
1003 => 0.0010956820466855
1004 => 0.0010808539521119
1005 => 0.001070095999366
1006 => 0.0010680813581995
1007 => 0.0010932988103345
1008 => 0.0011289867883251
1009 => 0.0011457307891248
1010 => 0.0011291379928551
1011 => 0.0011100770819202
1012 => 0.0011112372312491
1013 => 0.0011189551849779
1014 => 0.0011197662327888
1015 => 0.0011073595392634
1016 => 0.0011108519508182
1017 => 0.0011055466583137
1018 => 0.0010729880880065
1019 => 0.001072399206714
1020 => 0.0010644088084827
1021 => 0.0010641668623998
1022 => 0.0010505732017102
1023 => 0.0010486713546112
1024 => 0.0010216803162357
1025 => 0.0010394458994309
1026 => 0.0010275296789585
1027 => 0.0010095691239545
1028 => 0.0010064727175021
1029 => 0.0010063796357851
1030 => 0.0010248211098676
1031 => 0.001039230400069
1101 => 0.0010277369667154
1102 => 0.0010251201347317
1103 => 0.0010530610541276
1104 => 0.0010495053174473
1105 => 0.0010464260724143
1106 => 0.0011257913213252
1107 => 0.0010629675338646
1108 => 0.0010355727766754
1109 => 0.0010016665625304
1110 => 0.0010127065968259
1111 => 0.0010150328942639
1112 => 0.00093349456129966
1113 => 0.00090041446977103
1114 => 0.00088906262895535
1115 => 0.00088252948407446
1116 => 0.00088550672023476
1117 => 0.00085573075795125
1118 => 0.00087574069705473
1119 => 0.00084995723061665
1120 => 0.00084563454856165
1121 => 0.00089173858051151
1122 => 0.00089815368722149
1123 => 0.0008707848489793
1124 => 0.00088836007374322
1125 => 0.00088198705292992
1126 => 0.00085039921414569
1127 => 0.00084919279104855
1128 => 0.00083334312391284
1129 => 0.00080854146394579
1130 => 0.00079720643982346
1201 => 0.00079130306084536
1202 => 0.00079373891006629
1203 => 0.00079250727016197
1204 => 0.00078446998667297
1205 => 0.00079296795784345
1206 => 0.000771259153107
1207 => 0.00076261453214121
1208 => 0.00075870995740465
1209 => 0.00073944214368887
1210 => 0.00077010580374633
1211 => 0.00077614693106826
1212 => 0.00078219996127722
1213 => 0.00083488745666692
1214 => 0.00083225533829057
1215 => 0.00085604840651916
1216 => 0.00085512385164045
1217 => 0.0008483376831595
1218 => 0.00081970795460892
1219 => 0.00083111925413334
1220 => 0.00079599704790686
1221 => 0.00082231299288962
1222 => 0.00081030349457962
1223 => 0.00081825256943054
1224 => 0.00080395941610941
1225 => 0.00081186983730716
1226 => 0.00077757950646734
1227 => 0.00074555967800709
1228 => 0.00075844539169656
1229 => 0.00077245363613711
1230 => 0.00080282707931854
1231 => 0.00078473690713515
]
'min_raw' => 0.00073944214368887
'max_raw' => 0.0022072528073239
'avg_raw' => 0.0014733474755064
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.000739'
'max' => '$0.0022072'
'avg' => '$0.001473'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.0014007678563111
'max_diff' => 6.7042807323872E-5
'year' => 2026
]
1 => [
'items' => [
101 => 0.00079124281711744
102 => 0.00076944910775294
103 => 0.00072448246026866
104 => 0.00072473696661006
105 => 0.00071781982754627
106 => 0.00071184240947632
107 => 0.00078681478102442
108 => 0.00077749078148461
109 => 0.00076263420851281
110 => 0.00078252032181231
111 => 0.00078777852580375
112 => 0.00078792821947922
113 => 0.00080243661440766
114 => 0.00081017974738174
115 => 0.00081154450812908
116 => 0.00083437378102359
117 => 0.00084202585217244
118 => 0.00087354365027291
119 => 0.00080952279664715
120 => 0.00080820432929682
121 => 0.00078280016020776
122 => 0.00076668843454746
123 => 0.0007839033438479
124 => 0.00079915340341864
125 => 0.000783274022068
126 => 0.00078534753404035
127 => 0.00076403076197025
128 => 0.00077165050493796
129 => 0.00077821365407198
130 => 0.00077458986888425
131 => 0.00076916488706503
201 => 0.00079790307244322
202 => 0.00079628155139833
203 => 0.00082304321031053
204 => 0.00084390583717718
205 => 0.00088129539416285
206 => 0.00084227744228661
207 => 0.00084085547303793
208 => 0.00085475545053484
209 => 0.00084202372415831
210 => 0.00085006973574402
211 => 0.00087999905730553
212 => 0.00088063141670812
213 => 0.00087003858196571
214 => 0.00086939400700896
215 => 0.00087142847679415
216 => 0.00088334442987154
217 => 0.00087918062972605
218 => 0.00088399908466894
219 => 0.00089002463635782
220 => 0.00091494887292402
221 => 0.00092095802197952
222 => 0.00090635890516121
223 => 0.00090767704195053
224 => 0.00090221657150576
225 => 0.00089694182547562
226 => 0.00090879868423659
227 => 0.00093046732666942
228 => 0.00093033252716945
301 => 0.00093535923103565
302 => 0.00093849082590082
303 => 0.00092504772827194
304 => 0.00091629676603193
305 => 0.00091965244179294
306 => 0.00092501824041191
307 => 0.00091791238561924
308 => 0.0008740517580867
309 => 0.00088735627065234
310 => 0.00088514174920399
311 => 0.00088198800136653
312 => 0.00089536579163203
313 => 0.00089407547112559
314 => 0.00085542536242056
315 => 0.00085789961697988
316 => 0.0008555758300353
317 => 0.00086308446105533
318 => 0.000841618233442
319 => 0.00084822110047861
320 => 0.00085236235678594
321 => 0.00085480158856559
322 => 0.00086361376635056
323 => 0.00086257975899727
324 => 0.00086354949100167
325 => 0.0008766156243281
326 => 0.00094269964293771
327 => 0.00094629645026446
328 => 0.00092858445551706
329 => 0.000935660048065
330 => 0.00092207645763495
331 => 0.00093119521289279
401 => 0.00093743403364893
402 => 0.00090924200230815
403 => 0.00090757265317692
404 => 0.00089393299843721
405 => 0.0009012621763048
406 => 0.00088960092733093
407 => 0.00089246218993595
408 => 0.00088446185025194
409 => 0.00089886086883141
410 => 0.00091496120898455
411 => 0.00091902879072893
412 => 0.00090832873436351
413 => 0.00090058118838687
414 => 0.00088697904985218
415 => 0.00090959970937879
416 => 0.00091621467957648
417 => 0.00090956496375642
418 => 0.00090802407930175
419 => 0.00090510410604447
420 => 0.00090864356543189
421 => 0.00091617865302814
422 => 0.00091262524486897
423 => 0.0009149723335611
424 => 0.00090602765177405
425 => 0.00092505217849662
426 => 0.00095526770543374
427 => 0.00095536485329358
428 => 0.00095181142598021
429 => 0.00095035744008324
430 => 0.00095400347214676
501 => 0.00095598129497315
502 => 0.00096777189409863
503 => 0.00098042367671846
504 => 0.0010394640258
505 => 0.0010228857320317
506 => 0.0010752698420629
507 => 0.0011166988718722
508 => 0.0011291216264401
509 => 0.0011176932767734
510 => 0.0010785975099109
511 => 0.0010766792850724
512 => 0.001135104866572
513 => 0.0011185969637372
514 => 0.0011166334012227
515 => 0.0010957444135598
516 => 0.00110809239242
517 => 0.0011053917083094
518 => 0.0011011285463187
519 => 0.0011246876298164
520 => 0.0011687881309901
521 => 0.0011619146543103
522 => 0.0011567839228202
523 => 0.0011343025509642
524 => 0.0011478413582177
525 => 0.0011430204482735
526 => 0.0011637341368189
527 => 0.001151463806589
528 => 0.0011184719001373
529 => 0.0011237259699824
530 => 0.0011229318278951
531 => 0.0011392752157798
601 => 0.0011343693364046
602 => 0.0011219738762105
603 => 0.0011686374002714
604 => 0.0011656073305751
605 => 0.0011699032766341
606 => 0.0011717944849459
607 => 0.0012001977497382
608 => 0.0012118336585206
609 => 0.0012144752135294
610 => 0.0012255284269191
611 => 0.001214200199511
612 => 0.0012595211860327
613 => 0.0012896569975168
614 => 0.0013246612933302
615 => 0.0013758119777813
616 => 0.0013950451083052
617 => 0.0013915708154251
618 => 0.0014303526806013
619 => 0.0015000428302504
620 => 0.0014056571871869
621 => 0.001505045498519
622 => 0.0014735803066445
623 => 0.0013989769027446
624 => 0.0013941733230498
625 => 0.0014446956143341
626 => 0.0015567491938124
627 => 0.0015286810430543
628 => 0.0015567951032519
629 => 0.0015239985586652
630 => 0.0015223699337954
701 => 0.0015552022482846
702 => 0.0016319167406848
703 => 0.0015954725609452
704 => 0.001543220892809
705 => 0.0015818027114348
706 => 0.0015483795695624
707 => 0.0014730678763755
708 => 0.0015286595798684
709 => 0.0014914869909033
710 => 0.0015023359285668
711 => 0.0015804671815662
712 => 0.0015710662224956
713 => 0.0015832319340383
714 => 0.0015617597715976
715 => 0.0015417013860288
716 => 0.0015042609198094
717 => 0.0014931766435544
718 => 0.0014962399387408
719 => 0.0014931751255375
720 => 0.0014722275287833
721 => 0.0014677038972587
722 => 0.0014601643131995
723 => 0.0014625011455647
724 => 0.0014483245217503
725 => 0.0014750787399281
726 => 0.0014800445585792
727 => 0.0014995140474523
728 => 0.0015015354343747
729 => 0.0015557576837556
730 => 0.0015258929799645
731 => 0.001545928801662
801 => 0.0015441366091849
802 => 0.0014005937847244
803 => 0.001420372719446
804 => 0.0014511425349012
805 => 0.0014372807747461
806 => 0.0014176834890392
807 => 0.0014018576300909
808 => 0.0013778798355071
809 => 0.0014116281209311
810 => 0.0014560035275336
811 => 0.0015026608679167
812 => 0.001558716605277
813 => 0.0015462056172589
814 => 0.0015016129448983
815 => 0.0015036133396055
816 => 0.0015159789925586
817 => 0.0014999643484462
818 => 0.0014952413172545
819 => 0.0015153301205999
820 => 0.001515468461148
821 => 0.0014970416776623
822 => 0.0014765636798837
823 => 0.0014764778763253
824 => 0.0014728340144146
825 => 0.0015246467936042
826 => 0.0015531385832956
827 => 0.0015564051210669
828 => 0.0015529187192772
829 => 0.0015542604969557
830 => 0.001537681752308
831 => 0.0015755758462987
901 => 0.0016103512142819
902 => 0.001601030672795
903 => 0.0015870578561131
904 => 0.001575927834604
905 => 0.0015984087934447
906 => 0.0015974077517358
907 => 0.00161004748178
908 => 0.0016094740706145
909 => 0.001605223804805
910 => 0.0016010308245854
911 => 0.001617655517203
912 => 0.0016128678727135
913 => 0.0016080727916898
914 => 0.0015984555226065
915 => 0.0015997626692008
916 => 0.0015857922651227
917 => 0.001579328916954
918 => 0.0014821356682371
919 => 0.0014561624562989
920 => 0.0014643341575082
921 => 0.0014670244937244
922 => 0.0014557209186033
923 => 0.0014719273416767
924 => 0.0014694015878076
925 => 0.0014792278185958
926 => 0.0014730888162047
927 => 0.0014733407630042
928 => 0.0014913942600632
929 => 0.0014966352670645
930 => 0.0014939696486035
1001 => 0.0014958365564016
1002 => 0.0015388586586343
1003 => 0.0015327422914662
1004 => 0.0015294930933118
1005 => 0.001530393143406
1006 => 0.0015413862129308
1007 => 0.0015444636721983
1008 => 0.0015314242610324
1009 => 0.0015375737227182
1010 => 0.0015637573500935
1011 => 0.0015729201378099
1012 => 0.001602163357813
1013 => 0.0015897403181989
1014 => 0.0016125433450671
1015 => 0.0016826320755355
1016 => 0.0017386238032048
1017 => 0.0016871314964841
1018 => 0.0017899531738453
1019 => 0.0018700145985646
1020 => 0.0018669417077346
1021 => 0.0018529811464807
1022 => 0.0017618333429808
1023 => 0.0016779577752631
1024 => 0.0017481232492037
1025 => 0.0017483021154264
1026 => 0.0017422748389883
1027 => 0.0017048399426788
1028 => 0.0017409721857415
1029 => 0.0017438402319828
1030 => 0.0017422348887628
1031 => 0.001713533641533
1101 => 0.0016697121418903
1102 => 0.0016782747580267
1103 => 0.0016923004979306
1104 => 0.0016657468462166
1105 => 0.0016572613455515
1106 => 0.0016730375057205
1107 => 0.0017238715808786
1108 => 0.0017142616934317
1109 => 0.0017140107404339
1110 => 0.0017551259141581
1111 => 0.0017256963229814
1112 => 0.0016783827600374
1113 => 0.0016664354614049
1114 => 0.001624030599924
1115 => 0.0016533197887898
1116 => 0.0016543738545545
1117 => 0.001638332465141
1118 => 0.0016796844303792
1119 => 0.0016793033647397
1120 => 0.0017185609013056
1121 => 0.0017936065667623
1122 => 0.0017714118707138
1123 => 0.0017456018539855
1124 => 0.001748408118438
1125 => 0.0017791859130311
1126 => 0.0017605769558314
1127 => 0.0017672688665867
1128 => 0.0017791757840227
1129 => 0.001786359522944
1130 => 0.0017473744889587
1201 => 0.001738285212667
1202 => 0.0017196917432767
1203 => 0.0017148410541763
1204 => 0.0017299850470293
1205 => 0.0017259951399577
1206 => 0.0016542852644085
1207 => 0.0016467911834237
1208 => 0.0016470210161884
1209 => 0.0016281767932278
1210 => 0.0015994348300812
1211 => 0.001674966993137
1212 => 0.0016689007033717
1213 => 0.0016622039889643
1214 => 0.0016630242982683
1215 => 0.0016958102502283
1216 => 0.0016767927423612
1217 => 0.0017273539039341
1218 => 0.0017169600491223
1219 => 0.0017062996311543
1220 => 0.0017048260366668
1221 => 0.0017007226852532
1222 => 0.0016866507664663
1223 => 0.0016696580789398
1224 => 0.0016584380347534
1225 => 0.0015298214223572
1226 => 0.0015536919174895
1227 => 0.0015811527462751
1228 => 0.0015906321143296
1229 => 0.0015744169993202
1230 => 0.0016872910380391
1231 => 0.0017079142125944
]
'min_raw' => 0.00071184240947632
'max_raw' => 0.0018700145985646
'avg_raw' => 0.0012909285040205
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.000711'
'max' => '$0.00187'
'avg' => '$0.00129'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -2.7599734212553E-5
'max_diff' => -0.00033723820875927
'year' => 2027
]
2 => [
'items' => [
101 => 0.0016454452716501
102 => 0.0016337598833895
103 => 0.0016880571301481
104 => 0.0016553092527842
105 => 0.001670055619956
106 => 0.0016381820399622
107 => 0.0017029466937611
108 => 0.0017024532956096
109 => 0.0016772583825058
110 => 0.0016985529505338
111 => 0.0016948524953053
112 => 0.0016664075004635
113 => 0.001703848450834
114 => 0.0017038670210782
115 => 0.0016796174650005
116 => 0.001651299292412
117 => 0.0016462366719986
118 => 0.0016424226675845
119 => 0.0016691176086728
120 => 0.0016930522093797
121 => 0.0017375885674046
122 => 0.0017487860659698
123 => 0.0017924906483295
124 => 0.0017664666974718
125 => 0.0017780027778204
126 => 0.0017905268249171
127 => 0.0017965313136518
128 => 0.0017867473214772
129 => 0.0018546385274056
130 => 0.0018603706253188
131 => 0.0018622925481666
201 => 0.0018394000155131
202 => 0.0018597339425734
203 => 0.0018502203714908
204 => 0.0018749720405016
205 => 0.0018788534182477
206 => 0.0018755660293808
207 => 0.0018767980399407
208 => 0.0018188648725103
209 => 0.0018158607321572
210 => 0.0017748990652789
211 => 0.0017915912473052
212 => 0.0017603860130842
213 => 0.0017702815143052
214 => 0.0017746433569556
215 => 0.0017723649778874
216 => 0.0017925349982322
217 => 0.0017753863604762
218 => 0.0017301282859412
219 => 0.001684857880874
220 => 0.0016842895478149
221 => 0.0016723706492497
222 => 0.0016637554686423
223 => 0.0016654150580672
224 => 0.0016712636676644
225 => 0.0016634155368203
226 => 0.0016650903334462
227 => 0.001692903116548
228 => 0.0016984807718474
229 => 0.0016795257198095
301 => 0.0016034184506764
302 => 0.0015847415359305
303 => 0.0015981661318706
304 => 0.0015917500396659
305 => 0.0012846665130074
306 => 0.0013568112325615
307 => 0.0013139452900056
308 => 0.0013336998885026
309 => 0.001289944861235
310 => 0.0013108270536446
311 => 0.0013069708752021
312 => 0.0014229774493276
313 => 0.0014211661662345
314 => 0.0014220331316002
315 => 0.0013806506158281
316 => 0.0014465740871108
317 => 0.0014790503595959
318 => 0.0014730398658869
319 => 0.0014745525776625
320 => 0.0014485591775046
321 => 0.0014222848045325
322 => 0.0013931424813094
323 => 0.0014472853157579
324 => 0.0014412655568162
325 => 0.0014550727179875
326 => 0.0014901882163371
327 => 0.0014953591068599
328 => 0.0015023088361605
329 => 0.0014998178529217
330 => 0.0015591631796612
331 => 0.00155197606902
401 => 0.0015692949377925
402 => 0.0015336687107417
403 => 0.0014933542531612
404 => 0.0015010167135683
405 => 0.0015002787570135
406 => 0.0014908837230835
407 => 0.0014824023065319
408 => 0.0014682831375977
409 => 0.0015129582773493
410 => 0.0015111445482618
411 => 0.0015405067139595
412 => 0.0015353166659636
413 => 0.0015006562552266
414 => 0.0015018941585767
415 => 0.0015102196535228
416 => 0.00153903428659
417 => 0.0015475884315341
418 => 0.0015436258107722
419 => 0.001553005040192
420 => 0.0015604180007033
421 => 0.0015539359939002
422 => 0.0016457075408892
423 => 0.0016075975962894
424 => 0.00162617211812
425 => 0.0016306020321292
426 => 0.0016192549005458
427 => 0.0016217156870759
428 => 0.0016254431081449
429 => 0.0016480752789716
430 => 0.0017074686438925
501 => 0.0017337735609116
502 => 0.0018129132016255
503 => 0.0017315893037353
504 => 0.0017267638801863
505 => 0.001741019319267
506 => 0.0017874826661478
507 => 0.0018251368447144
508 => 0.0018376289080666
509 => 0.0018392799404601
510 => 0.0018627158817655
511 => 0.0018761489262673
512 => 0.0018598701420646
513 => 0.0018460755769125
514 => 0.0017966651567821
515 => 0.0018023845474523
516 => 0.0018417854775231
517 => 0.0018974416119514
518 => 0.0019452003653246
519 => 0.0019284769144539
520 => 0.0020560650396811
521 => 0.0020687148811466
522 => 0.0020669670820744
523 => 0.0020957853034817
524 => 0.002038587002717
525 => 0.0020141336209752
526 => 0.0018490581184733
527 => 0.0018954376013341
528 => 0.0019628529034438
529 => 0.0019539302354151
530 => 0.0019049714410069
531 => 0.0019451632256888
601 => 0.0019318745647597
602 => 0.0019213932465378
603 => 0.0019694101972157
604 => 0.0019166135875177
605 => 0.0019623262168747
606 => 0.0019036992968878
607 => 0.0019285533057688
608 => 0.0019144449682748
609 => 0.0019235747916862
610 => 0.0018702020305759
611 => 0.0018990006769205
612 => 0.0018690039122068
613 => 0.0018689896898346
614 => 0.001868327509591
615 => 0.0019036185702507
616 => 0.0019047694104718
617 => 0.0018786892633225
618 => 0.0018749307066698
619 => 0.001888828060554
620 => 0.0018725578988783
621 => 0.0018801706051232
622 => 0.0018727884799953
623 => 0.0018711266081377
624 => 0.0018578845304318
625 => 0.0018521794792576
626 => 0.0018544165768241
627 => 0.0018467802095269
628 => 0.0018421790220109
629 => 0.0018674122175839
630 => 0.0018539311390934
701 => 0.0018653460489593
702 => 0.0018523373184907
703 => 0.0018072433910522
704 => 0.0017813093965227
705 => 0.0016961311478008
706 => 0.001720287593475
707 => 0.0017363033419487
708 => 0.0017310101371737
709 => 0.0017423819892288
710 => 0.0017430801285866
711 => 0.0017393830235612
712 => 0.0017351022495702
713 => 0.0017330186055331
714 => 0.0017485483810884
715 => 0.0017575639385064
716 => 0.0017379107365711
717 => 0.0017333062663352
718 => 0.0017531767385748
719 => 0.0017652977151622
720 => 0.0018547921960949
721 => 0.0018481621558841
722 => 0.0018648022557336
723 => 0.0018629288358537
724 => 0.0018803703114719
725 => 0.00190887975279
726 => 0.0018509120872251
727 => 0.0018609732695961
728 => 0.0018585065000254
729 => 0.001885438043377
730 => 0.0018855221207157
731 => 0.001869375315146
801 => 0.0018781287603973
802 => 0.0018732428273962
803 => 0.0018820723687026
804 => 0.0018480736076549
805 => 0.0018894804286716
806 => 0.0019129554279914
807 => 0.0019132813783797
808 => 0.0019244083417482
809 => 0.0019357139809609
810 => 0.0019574141709159
811 => 0.0019351087744408
812 => 0.0018949835375688
813 => 0.0018978804500672
814 => 0.0018743550383704
815 => 0.0018747505047912
816 => 0.0018726394740435
817 => 0.0018789748362283
818 => 0.0018494638633861
819 => 0.0018563900297265
820 => 0.0018466933562904
821 => 0.0018609521909218
822 => 0.0018456120419282
823 => 0.0018585053104744
824 => 0.0018640696177603
825 => 0.0018846020314362
826 => 0.0018425793877339
827 => 0.001756892372542
828 => 0.00177490482199
829 => 0.0017482629944091
830 => 0.0017507287969843
831 => 0.0017557101106158
901 => 0.0017395640433517
902 => 0.0017426442041646
903 => 0.0017425341591456
904 => 0.0017415858506231
905 => 0.001737385634937
906 => 0.0017312944912048
907 => 0.0017555597330786
908 => 0.0017596828705122
909 => 0.0017688480942785
910 => 0.0017961175833763
911 => 0.0017933927183566
912 => 0.0017978370862573
913 => 0.0017881350560841
914 => 0.0017511788463379
915 => 0.0017531857463288
916 => 0.0017281596712838
917 => 0.0017682081212733
918 => 0.0017587241197021
919 => 0.001752609722192
920 => 0.0017509413521819
921 => 0.0017782784370687
922 => 0.0017864581213231
923 => 0.0017813610910139
924 => 0.0017709069331457
925 => 0.001790982006747
926 => 0.0017963532495434
927 => 0.0017975556727217
928 => 0.0018331248541297
929 => 0.0017995435948381
930 => 0.0018076269377186
1001 => 0.0018706908713802
1002 => 0.0018135005857771
1003 => 0.0018437955555566
1004 => 0.0018423127744333
1005 => 0.0018578106558467
1006 => 0.0018410414958082
1007 => 0.0018412493696445
1008 => 0.0018550104384221
1009 => 0.0018356854991458
1010 => 0.0018309003724137
1011 => 0.0018242897541051
1012 => 0.0018387237973373
1013 => 0.0018473763534594
1014 => 0.0019171096012012
1015 => 0.0019621604594648
1016 => 0.0019602046828944
1017 => 0.0019780768196876
1018 => 0.0019700252583723
1019 => 0.0019440246429904
1020 => 0.00198840452301
1021 => 0.0019743608720388
1022 => 0.0019755186135618
1023 => 0.0019754755223645
1024 => 0.0019848133225431
1025 => 0.0019781966353197
1026 => 0.0019651544656135
1027 => 0.0019738124665171
1028 => 0.0019995236339087
1029 => 0.0020793318864074
1030 => 0.0021239936418243
1031 => 0.0020766431926523
1101 => 0.0021093048984434
1102 => 0.0020897195135245
1103 => 0.00208616026647
1104 => 0.0021066742313879
1105 => 0.0021272241032858
1106 => 0.0021259151652854
1107 => 0.0021109970135351
1108 => 0.0021025701281455
1109 => 0.0021663813275295
1110 => 0.0022133963322403
1111 => 0.0022101902241116
1112 => 0.0022243409427094
1113 => 0.0022658878901777
1114 => 0.0022696864223709
1115 => 0.0022692078946229
1116 => 0.0022597928362462
1117 => 0.0023007012015816
1118 => 0.0023348276796587
1119 => 0.0022576135222591
1120 => 0.0022870156625893
1121 => 0.0023002152306614
1122 => 0.0023195961127265
1123 => 0.0023522949093833
1124 => 0.0023878144754801
1125 => 0.0023928373315784
1126 => 0.0023892733748108
1127 => 0.0023658472661528
1128 => 0.0024047131992125
1129 => 0.0024274799512805
1130 => 0.0024410370311292
1201 => 0.0024754155299424
1202 => 0.0023002967467001
1203 => 0.0021763389679529
1204 => 0.0021569811708295
1205 => 0.0021963460124877
1206 => 0.0022067262073043
1207 => 0.0022025419637894
1208 => 0.0020630162140612
1209 => 0.0021562465966327
1210 => 0.0022565546492464
1211 => 0.0022604078900647
1212 => 0.0023106241985456
1213 => 0.002326976687023
1214 => 0.0023674073973522
1215 => 0.002364878445413
1216 => 0.002374722679985
1217 => 0.0023724596609353
1218 => 0.0024473490381295
1219 => 0.0025299631423549
1220 => 0.0025271024786223
1221 => 0.0025152257236942
1222 => 0.0025328647300501
1223 => 0.0026181313390761
1224 => 0.0026102813560865
1225 => 0.0026179069459009
1226 => 0.0027184410833581
1227 => 0.0028491497628667
1228 => 0.0027884224582981
1229 => 0.0029201832354008
1230 => 0.0030031196602483
1231 => 0.0031465496312357
]
'min_raw' => 0.0012846665130074
'max_raw' => 0.0031465496312357
'avg_raw' => 0.0022156080721215
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.001284'
'max' => '$0.003146'
'avg' => '$0.002215'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 0.00057282410353109
'max_diff' => 0.0012765350326711
'year' => 2028
]
3 => [
'items' => [
101 => 0.0031285914924606
102 => 0.0031844277276282
103 => 0.0030964426760764
104 => 0.0028944112130009
105 => 0.0028624389606238
106 => 0.0029264482195491
107 => 0.0030838087366848
108 => 0.002921492376866
109 => 0.002954328765056
110 => 0.0029448718830483
111 => 0.0029443679659952
112 => 0.0029636004303307
113 => 0.0029357027377142
114 => 0.0028220425192956
115 => 0.002874132327593
116 => 0.0028540179510513
117 => 0.0028763363514504
118 => 0.0029967795535958
119 => 0.00294352874292
120 => 0.0028874333396176
121 => 0.0029577894239253
122 => 0.0030473768962226
123 => 0.0030417706732104
124 => 0.0030308922573473
125 => 0.0030922133179923
126 => 0.0031934977447927
127 => 0.0032208745183631
128 => 0.0032410834929192
129 => 0.0032438699690771
130 => 0.0032725724052884
131 => 0.0031182321718348
201 => 0.0033631740860641
202 => 0.0034054687882676
203 => 0.0033975191371892
204 => 0.0034445279186553
205 => 0.0034306967426503
206 => 0.003410657538664
207 => 0.0034851764563424
208 => 0.0033997465305907
209 => 0.0032784895063148
210 => 0.003211965504605
211 => 0.0032995696763946
212 => 0.0033530664871422
213 => 0.0033884244760102
214 => 0.0033991237820778
215 => 0.0031302131648075
216 => 0.0029852852565653
217 => 0.0030781823841467
218 => 0.0031915232912132
219 => 0.0031176025573733
220 => 0.0031205001101893
221 => 0.0030151085697607
222 => 0.0032008481039865
223 => 0.0031737874161652
224 => 0.0033141783124518
225 => 0.0032806728983456
226 => 0.0033951562243241
227 => 0.0033650089278399
228 => 0.0034901486700332
301 => 0.0035400703012174
302 => 0.003623896489657
303 => 0.0036855593751072
304 => 0.0037217690008666
305 => 0.0037195951107549
306 => 0.0038630756875776
307 => 0.0037784702042548
308 => 0.00367218577722
309 => 0.003670263427258
310 => 0.0037253096380813
311 => 0.0038406713947765
312 => 0.0038705830198423
313 => 0.0038872995376351
314 => 0.0038616976087292
315 => 0.003769864420312
316 => 0.0037302113151582
317 => 0.0037639969096103
318 => 0.0037226800308247
319 => 0.0037940045550773
320 => 0.0038919483609725
321 => 0.003871723352367
322 => 0.0039393325238327
323 => 0.0040093009036074
324 => 0.0041093588291618
325 => 0.004135517676036
326 => 0.0041787572551872
327 => 0.0042232649855956
328 => 0.0042375596690858
329 => 0.0042648526552484
330 => 0.0042647088077391
331 => 0.0043469580585699
401 => 0.0044376815292836
402 => 0.0044719275392248
403 => 0.0045506743507486
404 => 0.0044158231956314
405 => 0.0045181093458463
406 => 0.0046103740137284
407 => 0.0045003722730535
408 => 0.0046519840454554
409 => 0.0046578707870182
410 => 0.0047467535955535
411 => 0.0046566538412172
412 => 0.0046031528947009
413 => 0.0047576081226391
414 => 0.0048323441421443
415 => 0.0048098330448474
416 => 0.0046385224829083
417 => 0.0045388123880041
418 => 0.0042778518369989
419 => 0.0045869708823214
420 => 0.0047375337521719
421 => 0.0046381325614487
422 => 0.0046882647402275
423 => 0.0049617696522311
424 => 0.0050659026145904
425 => 0.005044243686364
426 => 0.005047903688698
427 => 0.0051040919450401
428 => 0.005353261617099
429 => 0.0052039533738935
430 => 0.005318093931351
501 => 0.005378633671462
502 => 0.0054348663559935
503 => 0.0052967766553066
504 => 0.0051171239836535
505 => 0.0050602204412349
506 => 0.0046282490720147
507 => 0.0046057630862902
508 => 0.0045931410211079
509 => 0.0045135606855604
510 => 0.0044510323407085
511 => 0.0044013074793536
512 => 0.004270814594058
513 => 0.0043148521121864
514 => 0.004106873689007
515 => 0.0042399309138545
516 => 0.0039079923286454
517 => 0.0041844406460158
518 => 0.0040339823954337
519 => 0.0041350110641379
520 => 0.0041346585846303
521 => 0.0039486327743773
522 => 0.0038413369692829
523 => 0.0039097100323043
524 => 0.0039830113833236
525 => 0.0039949042809111
526 => 0.0040899413958687
527 => 0.0041164642118375
528 => 0.0040360988412204
529 => 0.003901113639271
530 => 0.0039324676229992
531 => 0.0038407015818034
601 => 0.0036798851243378
602 => 0.0037953863116756
603 => 0.0038348234952614
604 => 0.0038522412022197
605 => 0.0036940966861972
606 => 0.0036444042457784
607 => 0.0036179484074594
608 => 0.0038806991681462
609 => 0.003895093247943
610 => 0.0038214511005851
611 => 0.0041543205896776
612 => 0.00407898197249
613 => 0.0041631536662979
614 => 0.0039296225776127
615 => 0.0039385437796918
616 => 0.0038279864198065
617 => 0.0038898911538968
618 => 0.0038461388831245
619 => 0.0038848898631368
620 => 0.00390811704078
621 => 0.0040186562592903
622 => 0.0041857028263296
623 => 0.004002145386203
624 => 0.0039221667809488
625 => 0.0039717850578318
626 => 0.004103925067791
627 => 0.004304123947002
628 => 0.0041856021811312
629 => 0.0042382001281945
630 => 0.0042496904397081
701 => 0.0041622968774692
702 => 0.0043073462722986
703 => 0.0043850794213669
704 => 0.0044648175477021
705 => 0.0045340519285875
706 => 0.0044329683865649
707 => 0.0045411422662856
708 => 0.004453973214491
709 => 0.0043757735636602
710 => 0.0043758921602511
711 => 0.0043268363769704
712 => 0.0042317846154375
713 => 0.0042142556122552
714 => 0.0043054437004787
715 => 0.0043785679116899
716 => 0.0043845907719666
717 => 0.0044250760925507
718 => 0.0044490348882404
719 => 0.004683863656403
720 => 0.0047783137295635
721 => 0.0048938054911757
722 => 0.0049387960410827
723 => 0.0050742014662979
724 => 0.0049648505883457
725 => 0.0049411918380514
726 => 0.0046127425672564
727 => 0.004666526116949
728 => 0.0047526387693475
729 => 0.0046141625331772
730 => 0.0047019938321914
731 => 0.0047193335911381
801 => 0.0046094571636607
802 => 0.0046681469110565
803 => 0.0045122843422705
804 => 0.0041891002044059
805 => 0.0043077060686311
806 => 0.0043950399070031
807 => 0.0042704037514617
808 => 0.0044938092361844
809 => 0.0043633003640347
810 => 0.0043219353170939
811 => 0.0041605555212738
812 => 0.0042367205728229
813 => 0.0043397348956215
814 => 0.0042760840208324
815 => 0.0044081691432468
816 => 0.0045952369024009
817 => 0.0047285525276518
818 => 0.0047387868459719
819 => 0.0046530738303888
820 => 0.0047904294848739
821 => 0.0047914299708622
822 => 0.0046364922314887
823 => 0.0045415937288193
824 => 0.0045200325893447
825 => 0.0045738965430627
826 => 0.0046392973267108
827 => 0.004742416134298
828 => 0.00480472867005
829 => 0.0049672067152757
830 => 0.0050111686157031
831 => 0.0050594694158575
901 => 0.0051240141802789
902 => 0.0052015167189046
903 => 0.0050319455766134
904 => 0.0050386829542168
905 => 0.0048807806543875
906 => 0.0047120394015396
907 => 0.0048400929785571
908 => 0.005007505996254
909 => 0.0049691012650193
910 => 0.004964779948218
911 => 0.0049720472044445
912 => 0.0049430912912749
913 => 0.0048121247691649
914 => 0.004746354201655
915 => 0.004831215013604
916 => 0.0048763147584347
917 => 0.004946260529556
918 => 0.0049376382368892
919 => 0.0051178110316703
920 => 0.0051878207315797
921 => 0.0051699092544589
922 => 0.0051732053973129
923 => 0.0052999546148998
924 => 0.0054409258128212
925 => 0.0055729639424626
926 => 0.0057072787991033
927 => 0.0055453569970248
928 => 0.0054631430918777
929 => 0.0055479668562509
930 => 0.0055029581728935
1001 => 0.0057615914179075
1002 => 0.0057794986226437
1003 => 0.0060381131655303
1004 => 0.0062835691619766
1005 => 0.0061294026484096
1006 => 0.006274774726891
1007 => 0.0064320064821281
1008 => 0.0067353320479133
1009 => 0.0066331826684789
1010 => 0.006554937844717
1011 => 0.0064809968643383
1012 => 0.0066348563067064
1013 => 0.0068327940213484
1014 => 0.0068754279092584
1015 => 0.0069445110950713
1016 => 0.0068718785722791
1017 => 0.0069593564457723
1018 => 0.007268191778929
1019 => 0.0071847417457452
1020 => 0.0070662292833619
1021 => 0.0073100251180283
1022 => 0.0073982538828618
1023 => 0.0080174895602261
1024 => 0.0087993001822484
1025 => 0.0084756254510858
1026 => 0.0082747101005349
1027 => 0.0083219299736902
1028 => 0.008607420746893
1029 => 0.0086991113222216
1030 => 0.0084498647308419
1031 => 0.0085379028405891
1101 => 0.0090230014810118
1102 => 0.0092832413377709
1103 => 0.0089298006574163
1104 => 0.0079546718379786
1105 => 0.0070555585327972
1106 => 0.0072940438689311
1107 => 0.0072670070328751
1108 => 0.0077881850047215
1109 => 0.0071827514900525
1110 => 0.0071929454377187
1111 => 0.0077249008180859
1112 => 0.0075829842426279
1113 => 0.0073530975656877
1114 => 0.0070572369599467
1115 => 0.0065103112664407
1116 => 0.0060258839275512
1117 => 0.0069759574960669
1118 => 0.0069349885961958
1119 => 0.0068756595579317
1120 => 0.0070076899125161
1121 => 0.0076487918369076
1122 => 0.0076340123625059
1123 => 0.0075399928869168
1124 => 0.0076113058305015
1125 => 0.0073405960618843
1126 => 0.0074103641332038
1127 => 0.007055416108656
1128 => 0.0072158674396905
1129 => 0.0073526043321264
1130 => 0.0073800562877071
1201 => 0.0074419069453623
1202 => 0.006913399847605
1203 => 0.0071506840183448
1204 => 0.0072900662381344
1205 => 0.0066603322983566
1206 => 0.007277618422894
1207 => 0.0069041997148552
1208 => 0.0067774557967861
1209 => 0.0069480997852247
1210 => 0.0068815996569734
1211 => 0.0068244267517216
1212 => 0.0067925232882358
1213 => 0.0069178254000554
1214 => 0.0069119799067706
1215 => 0.0067069613317419
1216 => 0.0064395229582431
1217 => 0.0065292840547546
1218 => 0.0064966730068772
1219 => 0.0063784863624606
1220 => 0.0064581298908876
1221 => 0.0061074200983626
1222 => 0.0055040421286322
1223 => 0.0059026520974032
1224 => 0.0058873060472097
1225 => 0.0058795678728142
1226 => 0.0061791122475752
1227 => 0.0061503179676065
1228 => 0.0060980560675088
1229 => 0.006377526531681
1230 => 0.00627551605285
1231 => 0.0065898883119157
]
'min_raw' => 0.0028220425192956
'max_raw' => 0.0092832413377709
'avg_raw' => 0.0060526419285332
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.002822'
'max' => '$0.009283'
'avg' => '$0.006052'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072435
'min_diff' => 0.0015373760062882
'max_diff' => 0.0061366917065352
'year' => 2029
]
4 => [
'items' => [
101 => 0.0067969542140593
102 => 0.0067444356033955
103 => 0.0069391820851979
104 => 0.0065313519691263
105 => 0.0066668167743811
106 => 0.0066947358829979
107 => 0.0063740779095342
108 => 0.0061550290679142
109 => 0.0061404210075178
110 => 0.0057606205029385
111 => 0.0059635068668422
112 => 0.0061420384710692
113 => 0.0060565356872566
114 => 0.0060294680602246
115 => 0.0061677506964793
116 => 0.006178496441627
117 => 0.0059334923134768
118 => 0.0059844364299909
119 => 0.0061968818646095
120 => 0.0059790833501174
121 => 0.0055559364136446
122 => 0.0054509901229352
123 => 0.0054369883532107
124 => 0.0051523656894117
125 => 0.0054580031359007
126 => 0.0053245841999339
127 => 0.0057460530200486
128 => 0.0055053122903817
129 => 0.0054949344386882
130 => 0.0054792467937535
131 => 0.0052342603094075
201 => 0.005287896779776
202 => 0.0054661925763459
203 => 0.0055298105252079
204 => 0.0055231746519351
205 => 0.0054653188296738
206 => 0.0054918049288353
207 => 0.0054064839750674
208 => 0.0053763553704898
209 => 0.0052812612069176
210 => 0.0051414990568995
211 => 0.0051609338410706
212 => 0.004884028451129
213 => 0.0047331556982074
214 => 0.0046913961086696
215 => 0.0046355534402864
216 => 0.0046977036866552
217 => 0.0048832440129506
218 => 0.0046594430148623
219 => 0.0042757519014546
220 => 0.0042988123911482
221 => 0.004350622464769
222 => 0.0042540747353346
223 => 0.0041627004120617
224 => 0.0042421429727143
225 => 0.0040795679898529
226 => 0.0043702688747366
227 => 0.0043624062304804
228 => 0.0044707615435429
301 => 0.0045385183444758
302 => 0.0043823608548503
303 => 0.0043430876685042
304 => 0.0043654594603138
305 => 0.0039957035754846
306 => 0.0044405445992479
307 => 0.0044443916028939
308 => 0.0044114512220938
309 => 0.004648315334322
310 => 0.0051481724908927
311 => 0.0049601061218833
312 => 0.0048872811394667
313 => 0.0047488407946581
314 => 0.0049333043343413
315 => 0.0049191404125731
316 => 0.0048550857868296
317 => 0.0048163453493173
318 => 0.0048877257932803
319 => 0.0048075005223779
320 => 0.0047930898592808
321 => 0.0047057769198684
322 => 0.0046746101729839
323 => 0.0046515355543745
324 => 0.0046261326665507
325 => 0.0046821651070847
326 => 0.0045551882251533
327 => 0.0044020665532413
328 => 0.0043893361430212
329 => 0.0044244859249079
330 => 0.0044089347630165
331 => 0.0043892616900411
401 => 0.0043517004360883
402 => 0.0043405568144097
403 => 0.0043767681787484
404 => 0.0043358876596637
405 => 0.0043962090924503
406 => 0.0043798050004695
407 => 0.0042881730761468
408 => 0.0041739657719572
409 => 0.004172949087392
410 => 0.0041483433110418
411 => 0.0041170041553567
412 => 0.0041082863191879
413 => 0.0042354525418395
414 => 0.0044986828169635
415 => 0.00444700441539
416 => 0.0044843473567425
417 => 0.0046680376685291
418 => 0.0047264272948857
419 => 0.0046849837211319
420 => 0.0046282532012494
421 => 0.004630749056212
422 => 0.0048246144161467
423 => 0.0048367055608458
424 => 0.0048672559827491
425 => 0.0049065219084431
426 => 0.0046916708780683
427 => 0.0046206295920026
428 => 0.0045869662894441
429 => 0.0044832963469018
430 => 0.0045950954919445
501 => 0.0045299549178448
502 => 0.0045387446068098
503 => 0.0045330203103404
504 => 0.0045361461632879
505 => 0.0043701876179148
506 => 0.0044306541893244
507 => 0.0043301167866716
508 => 0.0041955084903724
509 => 0.0041950572361635
510 => 0.0042280024259833
511 => 0.0042084053379331
512 => 0.0041556700778772
513 => 0.0041631608726647
514 => 0.0040975336281412
515 => 0.0041711292083695
516 => 0.0041732396662728
517 => 0.0041449013591065
518 => 0.0042582855046811
519 => 0.0043047390816357
520 => 0.0042860862007935
521 => 0.004303430345791
522 => 0.0044491518862894
523 => 0.0044729108556672
524 => 0.0044834630204354
525 => 0.00446932451754
526 => 0.0043060938680465
527 => 0.0043133338414619
528 => 0.0042602117203379
529 => 0.0042153291258593
530 => 0.0042171241942603
531 => 0.0042401996821511
601 => 0.00434097169113
602 => 0.0045530404431915
603 => 0.004561088297312
604 => 0.0045708425312785
605 => 0.0045311671596515
606 => 0.0045192006879267
607 => 0.0045349875529402
608 => 0.0046146294261693
609 => 0.0048194899466721
610 => 0.0047470785565523
611 => 0.0046882069692344
612 => 0.0047398532229782
613 => 0.004731902687031
614 => 0.0046647921625007
615 => 0.0046629085935957
616 => 0.0045341020404893
617 => 0.0044864851905892
618 => 0.0044466929867533
619 => 0.0044032409389662
620 => 0.0043774811085122
621 => 0.0044170599157231
622 => 0.0044261120572149
623 => 0.0043395723035291
624 => 0.0043277772548771
625 => 0.0043984474858273
626 => 0.0043673481520378
627 => 0.0043993345880666
628 => 0.0044067557155999
629 => 0.004405560743144
630 => 0.0043730894669321
701 => 0.0043937856900821
702 => 0.0043448329524912
703 => 0.0042916042028244
704 => 0.0042576475768053
705 => 0.0042280159169108
706 => 0.0042444572840225
707 => 0.0041858468123445
708 => 0.004167096142859
709 => 0.0043867742753587
710 => 0.0045490528737741
711 => 0.0045466932786837
712 => 0.0045323298504099
713 => 0.00451098870951
714 => 0.0046130681887867
715 => 0.0045775057393503
716 => 0.0046033803926573
717 => 0.0046099665778798
718 => 0.004629900976916
719 => 0.0046370258111519
720 => 0.0046154896135753
721 => 0.0045432115040833
722 => 0.0043631013272256
723 => 0.0042792595537003
724 => 0.0042515903719417
725 => 0.0042525960941474
726 => 0.0042248537859734
727 => 0.0042330251390537
728 => 0.0042220121228428
729 => 0.0042011561344741
730 => 0.0042431694855114
731 => 0.004248011132837
801 => 0.0042382047146827
802 => 0.0042405144811555
803 => 0.0041593215272143
804 => 0.0041654944511606
805 => 0.0041311228262103
806 => 0.0041246785608882
807 => 0.0040377900860934
808 => 0.0038838545583085
809 => 0.0039691497835845
810 => 0.0038661251457747
811 => 0.0038271081543581
812 => 0.0040118085233372
813 => 0.0039932697290825
814 => 0.0039615393719386
815 => 0.0039146035605369
816 => 0.0038971946115258
817 => 0.0037914233483378
818 => 0.0037851738178409
819 => 0.0038375969119412
820 => 0.0038134054577824
821 => 0.0037794314941234
822 => 0.0036563812416358
823 => 0.0035180320173012
824 => 0.0035222079107517
825 => 0.0035662142249337
826 => 0.0036941685184778
827 => 0.0036441745623584
828 => 0.0036079033735792
829 => 0.0036011108702287
830 => 0.0036861332707282
831 => 0.0038064577801784
901 => 0.0038629113479034
902 => 0.0038069675768083
903 => 0.0037427023848009
904 => 0.0037466139092621
905 => 0.0037726355291091
906 => 0.0037753700334291
907 => 0.0037335400000008
908 => 0.00374531490939
909 => 0.0037274277453075
910 => 0.0036176542523499
911 => 0.0036156687979578
912 => 0.0035887286124493
913 => 0.0035879128743388
914 => 0.0035420808982446
915 => 0.0035356686879676
916 => 0.0034446665176305
917 => 0.0035045644217263
918 => 0.00346438805244
919 => 0.003403832787278
920 => 0.0033933930367394
921 => 0.0033930792052319
922 => 0.0034552559226437
923 => 0.0035038378505823
924 => 0.0034650869375847
925 => 0.00345626410585
926 => 0.0035504688663662
927 => 0.0035384804518951
928 => 0.00352809856228
929 => 0.0037956840400879
930 => 0.0035838692544478
1001 => 0.0034915059179434
1002 => 0.0033771887496973
1003 => 0.0034144109961154
1004 => 0.0034222542703443
1005 => 0.0031473420879308
1006 => 0.0030358102497638
1007 => 0.0029975367258935
1008 => 0.002975509771798
1009 => 0.0029855477313764
1010 => 0.0028851559956463
1011 => 0.002952620902383
1012 => 0.0028656901451428
1013 => 0.0028511159207944
1014 => 0.0030065588833941
1015 => 0.0030281878635552
1016 => 0.0029359119145904
1017 => 0.002995168011945
1018 => 0.0029736809273228
1019 => 0.0028671803234693
1020 => 0.0028631127837675
1021 => 0.0028096745244311
1022 => 0.0027260539962555
1023 => 0.002687837171041
1024 => 0.0026679335166556
1025 => 0.0026761461523695
1026 => 0.0026719935924417
1027 => 0.0026448953300134
1028 => 0.002673546833124
1029 => 0.0026003540822947
1030 => 0.0025712081391604
1031 => 0.0025580435928274
1101 => 0.0024930808136489
1102 => 0.002596465484401
1103 => 0.0026168335669449
1104 => 0.0026372417809035
1105 => 0.0028148813501333
1106 => 0.0028060069792588
1107 => 0.0028862269699705
1108 => 0.0028831097686465
1109 => 0.0028602297278179
1110 => 0.0027637025991458
1111 => 0.0028021765922039
1112 => 0.0026837596217572
1113 => 0.0027724856675871
1114 => 0.0027319948055586
1115 => 0.0027587956664051
1116 => 0.0027106053020668
1117 => 0.002737275839423
1118 => 0.0026216635949221
1119 => 0.0025137065077154
1120 => 0.0025571515910712
1121 => 0.0026043813652269
1122 => 0.0027067875495192
1123 => 0.0026457952709874
1124 => 0.0026677304007208
1125 => 0.0025942513880102
1126 => 0.0024426431965459
1127 => 0.002443501282445
1128 => 0.0024201796651522
1129 => 0.0024000263827993
1130 => 0.0026528009678776
1201 => 0.0026213644524483
1202 => 0.0025712744794211
1203 => 0.0026383218988144
1204 => 0.0026560503006876
1205 => 0.0026565550033658
1206 => 0.0027054710698108
1207 => 0.0027315775832411
1208 => 0.0027361789693854
1209 => 0.0028131494568381
1210 => 0.002838948948967
1211 => 0.0029452134057652
1212 => 0.0027293626279726
1213 => 0.0027249173232485
1214 => 0.0026392653935023
1215 => 0.0025849435855539
1216 => 0.0026429848541669
1217 => 0.0026944014947348
1218 => 0.0026408630518481
1219 => 0.0026478540422309
1220 => 0.002575983056907
1221 => 0.0026016735523161
1222 => 0.0026238016678459
1223 => 0.0026115838230809
1224 => 0.0025932931181173
1225 => 0.0026901859165559
1226 => 0.002684718845142
1227 => 0.0027749476466039
1228 => 0.0028452874496669
1229 => 0.0029713489514996
1230 => 0.0028397972026024
1231 => 0.0028350029340018
]
'min_raw' => 0.0024000263827993
'max_raw' => 0.0069391820851979
'avg_raw' => 0.0046696042339986
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.002400026'
'max' => '$0.006939'
'avg' => '$0.004669'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -0.00042201613649623
'max_diff' => -0.002344059252573
'year' => 2030
]
5 => [
'items' => [
101 => 0.002881867678598
102 => 0.0028389417742188
103 => 0.0028660694640346
104 => 0.0029669782612778
105 => 0.0029691103051535
106 => 0.0029333958232514
107 => 0.0029312225937819
108 => 0.0029380819507048
109 => 0.0029782574184505
110 => 0.0029642188755528
111 => 0.0029804646328065
112 => 0.0030007802010161
113 => 0.0030848140047537
114 => 0.0031050742703397
115 => 0.003055852328709
116 => 0.0030602965189236
117 => 0.0030418861615812
118 => 0.0030241019870695
119 => 0.0030640782142016
120 => 0.0031371355550202
121 => 0.0031366810690946
122 => 0.0031536289521328
123 => 0.0031641873428617
124 => 0.0031188630006388
125 => 0.0030893585204739
126 => 0.003100672415588
127 => 0.0031187635802599
128 => 0.0030948056947115
129 => 0.0029469265267343
130 => 0.0029917836197408
131 => 0.0029843172060647
201 => 0.0029736841250431
202 => 0.0030187882789307
203 => 0.0030144378732559
204 => 0.0028841263332925
205 => 0.0028924684552862
206 => 0.0028846336453609
207 => 0.0029099495190808
208 => 0.0028375746339583
209 => 0.0028598366611697
210 => 0.0028737991959432
211 => 0.00288202323619
212 => 0.0029117341088386
213 => 0.0029082478808549
214 => 0.0029115174000123
215 => 0.0029555707807706
216 => 0.0031783776633518
217 => 0.003190504550375
218 => 0.0031307873234721
219 => 0.0031546431777496
220 => 0.0031088451542387
221 => 0.0031395896742416
222 => 0.0031606242940015
223 => 0.0030655728920313
224 => 0.0030599445648852
225 => 0.0030139575166399
226 => 0.0030386683515274
227 => 0.0029993516364496
228 => 0.0030089985830894
301 => 0.0029820248792788
302 => 0.0030305721757269
303 => 0.0030848555966431
304 => 0.0030985697324837
305 => 0.0030624937453936
306 => 0.003036372353217
307 => 0.0029905117934763
308 => 0.0030667789263943
309 => 0.0030890817602583
310 => 0.0030666617791026
311 => 0.0030614665795826
312 => 0.0030516216858796
313 => 0.0030635552203215
314 => 0.0030889602942353
315 => 0.0030769797305356
316 => 0.0030848931039296
317 => 0.0030547354847868
318 => 0.003118878004882
319 => 0.0032207517635312
320 => 0.0032210793043233
321 => 0.0032090986760439
322 => 0.0032041964610782
323 => 0.0032164893127382
324 => 0.0032231576804846
325 => 0.0032629105086295
326 => 0.0033055668770515
327 => 0.0035046255360454
328 => 0.003448730661146
329 => 0.0036253473454579
330 => 0.0037650282119425
331 => 0.0038069123962973
401 => 0.0037683809174941
402 => 0.003636566809938
403 => 0.0036300993809689
404 => 0.0038270853081384
405 => 0.003771427761186
406 => 0.0037648074730768
407 => 0.0036943787927488
408 => 0.0037360108655844
409 => 0.0037269053205496
410 => 0.0037125317722537
411 => 0.0037919628671087
412 => 0.0039406507858145
413 => 0.0039174763792978
414 => 0.0039001777598628
415 => 0.003824380245051
416 => 0.0038700272789555
417 => 0.0038537732444935
418 => 0.0039236108916076
419 => 0.0038822406165505
420 => 0.0037710061005271
421 => 0.0037887205638376
422 => 0.0037860430583448
423 => 0.003841145931657
424 => 0.0038246054168261
425 => 0.0037828132573583
426 => 0.0039401425866728
427 => 0.0039299264951389
428 => 0.0039444105772104
429 => 0.0039507869180734
430 => 0.0040465505083734
501 => 0.0040857817872262
502 => 0.004094687974366
503 => 0.0041319546550202
504 => 0.0040937607454022
505 => 0.0042465636156704
506 => 0.004348168608104
507 => 0.0044661880353608
508 => 0.0046386461392145
509 => 0.0047034919815902
510 => 0.0046917781605776
511 => 0.0048225339266824
512 => 0.0050574991318352
513 => 0.0047392713464513
514 => 0.005074365977178
515 => 0.0049682788859435
516 => 0.0047167483010517
517 => 0.0047005526967355
518 => 0.0048708921291543
519 => 0.0052486885956965
520 => 0.0051540548657597
521 => 0.005248843382577
522 => 0.0051382675427211
523 => 0.0051327765202659
524 => 0.0052434729608451
525 => 0.0055021212280073
526 => 0.0053792471315639
527 => 0.0052030769843477
528 => 0.005333158279541
529 => 0.005220469823189
530 => 0.0049665511915149
531 => 0.0051539825011299
601 => 0.0050286525221267
602 => 0.005065230472908
603 => 0.0053286554473453
604 => 0.005296959457485
605 => 0.0053379770033339
606 => 0.0052655821085266
607 => 0.0051979538611496
608 => 0.0050717207152808
609 => 0.0050343493040079
610 => 0.0050446774176013
611 => 0.0050343441859078
612 => 0.0049637179009367
613 => 0.0049484661614216
614 => 0.004923045927369
615 => 0.0049309247208407
616 => 0.0048831272438701
617 => 0.0049733309583763
618 => 0.004990073562661
619 => 0.0050557163037131
620 => 0.0050625315508506
621 => 0.0052453456503147
622 => 0.005144654716396
623 => 0.0052122068881057
624 => 0.0052061643860423
625 => 0.0047221997315338
626 => 0.0047888857908688
627 => 0.0048926283719557
628 => 0.0048458924797958
629 => 0.0047798188627962
630 => 0.0047264608744258
701 => 0.0046456180659102
702 => 0.0047594027664472
703 => 0.0049090175479996
704 => 0.0050663260286128
705 => 0.0052553218608095
706 => 0.0052131401912172
707 => 0.0050627928829926
708 => 0.0050695373534108
709 => 0.0051112290156847
710 => 0.005057234524953
711 => 0.0050413104955386
712 => 0.0051090412985732
713 => 0.0051095077233895
714 => 0.0050473805363506
715 => 0.004978337537112
716 => 0.0049780482444243
717 => 0.004965762709586
718 => 0.0051404531120764
719 => 0.0052365151702543
720 => 0.0052475285304126
721 => 0.0052357738833657
722 => 0.0052402977804888
723 => 0.0051844013854181
724 => 0.0053121639689887
725 => 0.005429411550083
726 => 0.0053979866937205
727 => 0.0053508763667265
728 => 0.0053133507221351
729 => 0.0053891468444369
730 => 0.0053857717624249
731 => 0.0054283874947467
801 => 0.0054264541989682
802 => 0.0054121241310471
803 => 0.0053979872054923
804 => 0.0054540385173515
805 => 0.0054378966396926
806 => 0.0054217296892391
807 => 0.0053893043950685
808 => 0.0053937115310734
809 => 0.0053466093383417
810 => 0.0053248177087343
811 => 0.0049971238848693
812 => 0.0049095533874279
813 => 0.0049371048485848
814 => 0.004946175504971
815 => 0.0049080647122599
816 => 0.0049627057991483
817 => 0.004954190043636
818 => 0.004987319866784
819 => 0.0049666217916108
820 => 0.0049674712478357
821 => 0.0050283398736252
822 => 0.0050460102946455
823 => 0.0050370229758968
824 => 0.0050433173858812
825 => 0.0051883694072661
826 => 0.0051677476483277
827 => 0.0051567927498986
828 => 0.0051598273316306
829 => 0.0051968912330448
830 => 0.0052072671018268
831 => 0.0051633038166981
901 => 0.0051840371561135
902 => 0.0052723170838919
903 => 0.0053032100624031
904 => 0.00540180562034
905 => 0.0053599204749321
906 => 0.005436802472075
907 => 0.0056731115202878
908 => 0.0058618915393426
909 => 0.0056882816321556
910 => 0.0060349520961592
911 => 0.0063048847793105
912 => 0.0062945243133348
913 => 0.0062474553063719
914 => 0.0059401441231358
915 => 0.0056573517905703
916 => 0.005893919584758
917 => 0.005894522644716
918 => 0.0058742012613937
919 => 0.0057479868948652
920 => 0.005869809275024
921 => 0.0058794790931671
922 => 0.0058740665664191
923 => 0.005777298307527
924 => 0.0056295510619623
925 => 0.0056584205200887
926 => 0.0057057092814208
927 => 0.0056161817907501
928 => 0.0055875723328189
929 => 0.0056407627582851
930 => 0.0058121533918025
1001 => 0.0057797529853343
1002 => 0.0057789068797811
1003 => 0.0059175295585624
1004 => 0.0058183056372015
1005 => 0.0056587846564085
1006 => 0.005618503504935
1007 => 0.0054755325538392
1008 => 0.0055742830990062
1009 => 0.0055778369553245
1010 => 0.0055237522909427
1011 => 0.0056631733288455
1012 => 0.0056618885394366
1013 => 0.0057942480648424
1014 => 0.0060472697654507
1015 => 0.0059724387981391
1016 => 0.0058854185247418
1017 => 0.0058948800412705
1018 => 0.0059986495245782
1019 => 0.0059359081261435
1020 => 0.0059584703704692
1021 => 0.0059986153739191
1022 => 0.0060228358512449
1023 => 0.0058913950873154
1024 => 0.0058607499577049
1025 => 0.0057980607775007
1026 => 0.0057817063405344
1027 => 0.005832765369758
1028 => 0.0058193131194997
1029 => 0.0055775382674622
1030 => 0.0055522714502017
1031 => 0.0055530463474143
1101 => 0.0054895117340411
1102 => 0.0053926061985926
1103 => 0.0056472681598225
1104 => 0.0056268152403439
1105 => 0.0056042368001697
1106 => 0.0056070025302602
1107 => 0.0057175426563354
1108 => 0.0056534238008016
1109 => 0.005823894287112
1110 => 0.0057888506799385
1111 => 0.0057529083364726
1112 => 0.005747940009775
1113 => 0.0057341052739973
1114 => 0.005686660817337
1115 => 0.0056293687849499
1116 => 0.0055915396226171
1117 => 0.0051578997341981
1118 => 0.0052383807751215
1119 => 0.0053309668766261
1120 => 0.00536292722785
1121 => 0.0053082568354926
1122 => 0.0056888195376473
1123 => 0.0057583520105244
1124 => 0.0055477336146886
1125 => 0.0055083355123202
1126 => 0.0056914024706795
1127 => 0.0055809907157633
1128 => 0.0056307091222415
1129 => 0.0055232451219501
1130 => 0.0057416036739568
1201 => 0.0057399401476411
1202 => 0.0056549937390589
1203 => 0.0057267898619047
1204 => 0.0057143135187444
1205 => 0.0056184092326689
1206 => 0.0057446440108867
1207 => 0.0057447066217618
1208 => 0.0056629475503957
1209 => 0.0055674708544021
1210 => 0.0055504018762174
1211 => 0.0055375426940498
1212 => 0.0056275465517104
1213 => 0.0057082437290542
1214 => 0.0058584011695642
1215 => 0.0058961543177612
1216 => 0.0060435073685435
1217 => 0.0059557658012925
1218 => 0.0059946605016113
1219 => 0.0060368862007987
1220 => 0.0060571307537878
1221 => 0.0060241433410747
1222 => 0.006253043281875
1223 => 0.0062723694501915
1224 => 0.0062788493472573
1225 => 0.0062016655751104
1226 => 0.0062702228298637
1227 => 0.0062381471607423
1228 => 0.0063215991409186
1229 => 0.0063346854769786
1230 => 0.0063236018158957
1231 => 0.0063277556255149
]
'min_raw' => 0.0028375746339583
'max_raw' => 0.0063346854769786
'avg_raw' => 0.0045861300554685
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.002837'
'max' => '$0.006334'
'avg' => '$0.004586'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 0.00043754825115899
'max_diff' => -0.00060449660821925
'year' => 2031
]
6 => [
'items' => [
101 => 0.0061324299067585
102 => 0.0061223012378157
103 => 0.0059841961180834
104 => 0.0060404749751958
105 => 0.00593526434934
106 => 0.0059686277225884
107 => 0.0059833339796184
108 => 0.0059756522655187
109 => 0.0060436568973369
110 => 0.005985839067863
111 => 0.0058332483097503
112 => 0.0056806159783876
113 => 0.0056786998037989
114 => 0.0056385144051355
115 => 0.0056094677222248
116 => 0.0056150631438398
117 => 0.0056347821394336
118 => 0.0056083216183537
119 => 0.0056139683121086
120 => 0.0057077410521629
121 => 0.0057265465064242
122 => 0.005662638225079
123 => 0.0054060372535569
124 => 0.0053430667315106
125 => 0.0053883286939977
126 => 0.0053666963911726
127 => 0.0043313428411562
128 => 0.0045745838001162
129 => 0.0044300582819846
130 => 0.004496662290039
131 => 0.0043491391607282
201 => 0.004419544930385
202 => 0.0044065435555364
203 => 0.004797667819521
204 => 0.0047915609521127
205 => 0.0047944839863728
206 => 0.0046549599452123
207 => 0.0048772255312715
208 => 0.0049867215513762
209 => 0.0049664567521971
210 => 0.0049715569655625
211 => 0.004883918402129
212 => 0.0047953325192352
213 => 0.0046970771418365
214 => 0.0048796234883117
215 => 0.0048593274507537
216 => 0.0049058792586279
217 => 0.0050242736129994
218 => 0.005041707631417
219 => 0.0050651391289687
220 => 0.005056740605064
221 => 0.0052568275175248
222 => 0.0052325956722099
223 => 0.0052909874474412
224 => 0.0051708711355957
225 => 0.0050349481271974
226 => 0.005060782647436
227 => 0.0050582945753889
228 => 0.0050266185625536
229 => 0.0049980228744961
301 => 0.0049504191106656
302 => 0.0051010444634569
303 => 0.0050949293492078
304 => 0.0051939259408586
305 => 0.0051764273316827
306 => 0.0050595673369703
307 => 0.0050637410145431
308 => 0.0050918110020212
309 => 0.0051889615491806
310 => 0.0052178024460911
311 => 0.0052044421935311
312 => 0.0052360649203566
313 => 0.005261058234277
314 => 0.0052392036957812
315 => 0.0055486178737391
316 => 0.0054201275347697
317 => 0.0054827528319534
318 => 0.005497688596322
319 => 0.0054594309499571
320 => 0.00546772766355
321 => 0.0054802949239242
322 => 0.0055566008679944
323 => 0.0057568497445374
324 => 0.0058455386088181
325 => 0.006112363432838
326 => 0.0058381742332481
327 => 0.0058219049808522
328 => 0.0058699681889959
329 => 0.0060266226069717
330 => 0.0061535762989398
331 => 0.0061956941626998
401 => 0.0062012607336858
402 => 0.0062802766460422
403 => 0.0063255670934454
404 => 0.0062706820359573
405 => 0.0062241726964413
406 => 0.0060575820152464
407 => 0.0060768653402061
408 => 0.0062097083268249
409 => 0.0063973568698369
410 => 0.0065583788412446
411 => 0.0065019945590399
412 => 0.0069321668311617
413 => 0.0069748166548464
414 => 0.0069689238282471
415 => 0.0070660864737456
416 => 0.0068732384092597
417 => 0.0067907921254366
418 => 0.0062342285435481
419 => 0.0063906002081253
420 => 0.0066178956059741
421 => 0.0065878122077548
422 => 0.0064227442142136
423 => 0.0065582536223695
424 => 0.0065134499742621
425 => 0.0064781114780948
426 => 0.0066400039797418
427 => 0.0064619965240035
428 => 0.0066161198454345
429 => 0.0064184550914977
430 => 0.0065022521176915
501 => 0.0064546848728178
502 => 0.0064854667098734
503 => 0.0063055167194228
504 => 0.0064026133662308
505 => 0.0063014771796914
506 => 0.0063014292279706
507 => 0.0062991966410473
508 => 0.0064181829160045
509 => 0.0064220630541591
510 => 0.0063341320171874
511 => 0.0063214597810189
512 => 0.0063683156799219
513 => 0.0063134596938858
514 => 0.0063391264644927
515 => 0.0063142371142204
516 => 0.0063086339972241
517 => 0.0062639874077065
518 => 0.0062447524293588
519 => 0.0062522949599933
520 => 0.0062265484144967
521 => 0.0062110351895418
522 => 0.0062961106701416
523 => 0.0062506582727922
524 => 0.0062891444383686
525 => 0.006245284595353
526 => 0.0060932472706368
527 => 0.0060058089974269
528 => 0.0057186245849055
529 => 0.0058000697280454
530 => 0.0058540679422083
531 => 0.0058362215327496
601 => 0.0058745625259105
602 => 0.005876916351498
603 => 0.0058644513037812
604 => 0.0058500183753966
605 => 0.00584299322405
606 => 0.005895352946589
607 => 0.0059257495278701
608 => 0.0058594873854024
609 => 0.0058439630925281
610 => 0.0059109577769961
611 => 0.00595182449582
612 => 0.0062535613865898
613 => 0.0062312077431243
614 => 0.0062873110015418
615 => 0.0062809946356187
616 => 0.0063397997883902
617 => 0.0064359213602599
618 => 0.0062404793286347
619 => 0.0062744013074478
620 => 0.0062660844216157
621 => 0.006356886000326
622 => 0.0063571694729434
623 => 0.0063027293906314
624 => 0.0063322422424422
625 => 0.0063157689782041
626 => 0.0063455383931775
627 => 0.0062309091965874
628 => 0.006370515184577
629 => 0.006449662783756
630 => 0.0064507617482473
701 => 0.006488277082104
702 => 0.0065263948340439
703 => 0.0065995585395361
704 => 0.0065243543380074
705 => 0.0063890693004387
706 => 0.0063988364431832
707 => 0.0063195188751555
708 => 0.0063208522178039
709 => 0.0063137347302506
710 => 0.0063350948461775
711 => 0.0062355965408499
712 => 0.0062589485942359
713 => 0.006226255582746
714 => 0.0062743302392257
715 => 0.006222609855879
716 => 0.0062660804109616
717 => 0.0062848408614635
718 => 0.0063540673276993
719 => 0.0062123850505296
720 => 0.0059234852963338
721 => 0.0059842155272367
722 => 0.0058943907454746
723 => 0.0059027043710137
724 => 0.0059194992177065
725 => 0.0058650616246434
726 => 0.0058754466018741
727 => 0.0058750755774094
728 => 0.0058718782890168
729 => 0.0058577169685815
730 => 0.0058371802522184
731 => 0.0059189922093409
801 => 0.0059328936550667
802 => 0.0059637948468902
803 => 0.0060557358332783
804 => 0.0060465487606204
805 => 0.0060615332572935
806 => 0.0060288221851905
807 => 0.005904221743831
808 => 0.0059109881472676
809 => 0.0058266109879886
810 => 0.0059616371332217
811 => 0.0059296611597725
812 => 0.0059090460416737
813 => 0.0059034210157027
814 => 0.0059955899060128
815 => 0.0060231682825639
816 => 0.0060059832890132
817 => 0.0059707363658745
818 => 0.0060384208781183
819 => 0.0060565303982144
820 => 0.0060605844519105
821 => 0.0061805084303884
822 => 0.0060672868701182
823 => 0.0060945404250008
824 => 0.0063071648803243
825 => 0.006114343839515
826 => 0.006216485445254
827 => 0.0062114861451723
828 => 0.0062637383343849
829 => 0.0062071999405298
830 => 0.0062079008016823
831 => 0.0062542972058332
901 => 0.0061891418238388
902 => 0.0061730084349748
903 => 0.0061507202738088
904 => 0.0061993856583189
905 => 0.0062285583553866
906 => 0.0064636688687679
907 => 0.0066155609827542
908 => 0.0066089669454991
909 => 0.0066692241024902
910 => 0.0066420777013734
911 => 0.0065544148113085
912 => 0.0067040446752987
913 => 0.0066566955255528
914 => 0.0066605989319287
915 => 0.0066604536469484
916 => 0.0066919366921949
917 => 0.006669628069259
918 => 0.0066256554835192
919 => 0.006654846538048
920 => 0.0067415335340053
921 => 0.0070106126293388
922 => 0.0071611928559113
923 => 0.007001547510625
924 => 0.0071116687320671
925 => 0.0070456352394051
926 => 0.0070336349894621
927 => 0.0071027992544221
928 => 0.0071720845822721
929 => 0.0071676714064167
930 => 0.0071173738162386
1001 => 0.0070889619838011
1002 => 0.0073041058976801
1003 => 0.0074626202685452
1004 => 0.007451810651146
1005 => 0.00749952078687
1006 => 0.0076395992209748
1007 => 0.0076524062374693
1008 => 0.0076507928477569
1009 => 0.0076190493211014
1010 => 0.0077569747309608
1011 => 0.0078720345344322
1012 => 0.0076117016118393
1013 => 0.0077108329807545
1014 => 0.0077553362460737
1015 => 0.0078206802430862
1016 => 0.0079309265189718
1017 => 0.008050683215964
1018 => 0.0080676181259841
1019 => 0.0080556019969148
1020 => 0.0079766192360156
1021 => 0.008107658442859
1022 => 0.0081844181369803
1023 => 0.0082301267782152
1024 => 0.0083460362871942
1025 => 0.0077556110830896
1026 => 0.0073376787775878
1027 => 0.007272412613068
1028 => 0.0074051339250841
1029 => 0.0074401314766301
1030 => 0.0074260240074851
1031 => 0.0069556032008999
1101 => 0.0072699359448772
1102 => 0.0076081315475489
1103 => 0.0076211230179924
1104 => 0.0077904308080264
1105 => 0.0078455643646223
1106 => 0.007981879327279
1107 => 0.0079733527892503
1108 => 0.0080065433134124
1109 => 0.0079989133866873
1110 => 0.008251408150507
1111 => 0.0085299473708353
1112 => 0.0085203024433358
1113 => 0.0084802591348871
1114 => 0.0085397302763321
1115 => 0.0088272126017879
1116 => 0.0088007458360703
1117 => 0.0088264560445312
1118 => 0.0091654139080373
1119 => 0.0096061073467892
1120 => 0.0094013609995911
1121 => 0.0098456016588367
1122 => 0.010125227605646
1123 => 0.010608811766791
1124 => 0.010548264648113
1125 => 0.010736520413343
1126 => 0.010439872669116
1127 => 0.0097587094859702
1128 => 0.0096509128048495
1129 => 0.0098667244902999
1130 => 0.010397276460383
1201 => 0.0098500155206878
1202 => 0.009960725696034
1203 => 0.0099288411580864
1204 => 0.0099271421665597
1205 => 0.0099919857628346
1206 => 0.0098979267444234
1207 => 0.0095147133825218
1208 => 0.0096903378079908
1209 => 0.0096225207831396
1210 => 0.0096977688283061
1211 => 0.010103851493415
1212 => 0.0099243126673689
1213 => 0.0097351830986788
1214 => 0.0099723935490273
1215 => 0.010274443966675
1216 => 0.010255542194376
1217 => 0.010218864855786
1218 => 0.01042561309305
1219 => 0.010767100609461
1220 => 0.010859403312939
1221 => 0.0109275392816
1222 => 0.010936934080512
1223 => 0.011033706348139
1224 => 0.010513337475359
1225 => 0.011339176240481
1226 => 0.011481775781882
1227 => 0.011454972978244
1228 => 0.011613466367006
1229 => 0.011566833591443
1230 => 0.011499270016111
1231 => 0.011750515749808
]
'min_raw' => 0.0043313428411562
'max_raw' => 0.011750515749808
'avg_raw' => 0.0080409292954822
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.004331'
'max' => '$0.01175'
'avg' => '$0.00804'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.0014937682071978
'max_diff' => 0.0054158302728296
'year' => 2032
]
7 => [
'items' => [
101 => 0.011462482790609
102 => 0.011053656267368
103 => 0.010829365951046
104 => 0.011124729532563
105 => 0.011305097765026
106 => 0.011424309693111
107 => 0.011460383150519
108 => 0.010553732229653
109 => 0.010065097668471
110 => 0.010378306819982
111 => 0.010760443601366
112 => 0.010511214686244
113 => 0.010520983987864
114 => 0.010165649051106
115 => 0.010791882858669
116 => 0.010700645860362
117 => 0.011173983568972
118 => 0.01106101772604
119 => 0.011447006252547
120 => 0.011345362537633
121 => 0.011767279915416
122 => 0.01193559418037
123 => 0.012218220027252
124 => 0.012426120750712
125 => 0.012548204032036
126 => 0.012540874609748
127 => 0.013024629391999
128 => 0.01273937609801
129 => 0.012381030731721
130 => 0.01237454939461
131 => 0.012560141537604
201 => 0.012949091754603
202 => 0.013049940886875
203 => 0.013106301793724
204 => 0.013019983102948
205 => 0.012710361096611
206 => 0.012576667884093
207 => 0.012690578374623
208 => 0.012551275633145
209 => 0.012791751246382
210 => 0.013121975626176
211 => 0.013053785597597
212 => 0.013281734639516
213 => 0.013517637916962
214 => 0.013854990198791
215 => 0.013943186577379
216 => 0.014088971837378
217 => 0.014239032757881
218 => 0.014287228281291
219 => 0.014379248489673
220 => 0.014378763497753
221 => 0.014656072589388
222 => 0.01496195310501
223 => 0.015077415918507
224 => 0.015342916291486
225 => 0.014888256207002
226 => 0.015233121103842
227 => 0.01554419787332
228 => 0.015173319324558
301 => 0.015684489000407
302 => 0.015704336560585
303 => 0.016004011155161
304 => 0.015700233542853
305 => 0.015519851366356
306 => 0.016040607951069
307 => 0.016292585658734
308 => 0.016216687922523
309 => 0.015639102402423
310 => 0.015302922855917
311 => 0.014423076138519
312 => 0.015465292581827
313 => 0.015972925809491
314 => 0.015637787754999
315 => 0.015806811895869
316 => 0.016728952802192
317 => 0.017080044355117
318 => 0.017007019766424
319 => 0.017019359719826
320 => 0.017208802349022
321 => 0.01804889529484
322 => 0.017545492128504
323 => 0.017930324987011
324 => 0.018134438947545
325 => 0.018324031369484
326 => 0.017858452302503
327 => 0.017252740777075
328 => 0.017060886510932
329 => 0.015604464880329
330 => 0.015528651809537
331 => 0.015486095635531
401 => 0.015217784978111
402 => 0.015006966297853
403 => 0.014839315456116
404 => 0.014399349582619
405 => 0.014547825149591
406 => 0.013846611375252
407 => 0.014295223098584
408 => 0.013176068983339
409 => 0.014108133786359
410 => 0.013600853289862
411 => 0.013941478499994
412 => 0.013940290090725
413 => 0.01331309108355
414 => 0.01295133578552
415 => 0.013181860341151
416 => 0.01342900096385
417 => 0.013469098698402
418 => 0.013789522966761
419 => 0.013878946492563
420 => 0.013607989034597
421 => 0.013152877001859
422 => 0.013258589147063
423 => 0.012949193532272
424 => 0.01240698961808
425 => 0.012796409935224
426 => 0.0129293751531
427 => 0.012988100168176
428 => 0.012454904891108
429 => 0.012287363358821
430 => 0.012198165652841
501 => 0.013084048187169
502 => 0.013132578832166
503 => 0.012884289190818
504 => 0.014006581913499
505 => 0.013752572505677
506 => 0.01403636324803
507 => 0.013248996877908
508 => 0.013279075333576
509 => 0.012906323475855
510 => 0.013115039608891
511 => 0.012967525773296
512 => 0.013098177407915
513 => 0.013176489459008
514 => 0.013549180151818
515 => 0.014112389315409
516 => 0.013493512590451
517 => 0.013223859138909
518 => 0.013391150623657
519 => 0.013836669892956
520 => 0.014511654391655
521 => 0.014112049983096
522 => 0.014289387633892
523 => 0.014328128021387
524 => 0.014033474524675
525 => 0.014522518686368
526 => 0.014784601425607
527 => 0.015053444085684
528 => 0.015286872634629
529 => 0.014946062415273
530 => 0.01531077820321
531 => 0.015016881659136
601 => 0.014753226076635
602 => 0.014753625933321
603 => 0.014588230935025
604 => 0.014267757284714
605 => 0.014208657026649
606 => 0.014516104032644
607 => 0.014762647416112
608 => 0.014782953910037
609 => 0.014919452994981
610 => 0.015000231747399
611 => 0.01579197333448
612 => 0.016110418350434
613 => 0.016499806888087
614 => 0.016651495668239
615 => 0.017108024513056
616 => 0.016739340393406
617 => 0.016659573264988
618 => 0.015552183616907
619 => 0.015733518609743
620 => 0.016023853429498
621 => 0.015556971131147
622 => 0.015853100487959
623 => 0.015911562695871
624 => 0.015541106649304
625 => 0.015738983230237
626 => 0.015213481697598
627 => 0.014123843812791
628 => 0.014523731764823
629 => 0.014818183898348
630 => 0.014397964398122
701 => 0.015151191587537
702 => 0.014711171813246
703 => 0.01457170666947
704 => 0.014027603420685
705 => 0.014284399209657
706 => 0.014631719191203
707 => 0.014417115822889
708 => 0.014862450034998
709 => 0.01549316204564
710 => 0.015942644983973
711 => 0.015977150702726
712 => 0.015688163286396
713 => 0.016151267465358
714 => 0.01615464067372
715 => 0.015632257268014
716 => 0.015312300340663
717 => 0.015239605453573
718 => 0.015421211534195
719 => 0.015641714842401
720 => 0.015989387101707
721 => 0.016199478166517
722 => 0.01674728423985
723 => 0.016895504856463
724 => 0.017058354376438
725 => 0.017275971556056
726 => 0.017537276776087
727 => 0.016965555830773
728 => 0.016988271369752
729 => 0.016455892741491
730 => 0.015886969826376
731 => 0.016318711401706
801 => 0.016883156079274
802 => 0.016753671846584
803 => 0.016739102225284
804 => 0.016763604287035
805 => 0.016665977404146
806 => 0.016224414631062
807 => 0.016002664570748
808 => 0.016288778723027
809 => 0.016440835661487
810 => 0.01667666271228
811 => 0.016647592050565
812 => 0.017255057207432
813 => 0.017491099798598
814 => 0.017430710002946
815 => 0.017441823178707
816 => 0.017869167015149
817 => 0.018344461251236
818 => 0.01878963702393
819 => 0.019242488940658
820 => 0.018696558279931
821 => 0.018419368358736
822 => 0.018705357602526
823 => 0.018553607684181
824 => 0.019425607726942
825 => 0.019485983117951
826 => 0.020357920105184
827 => 0.021185492134394
828 => 0.02066570897034
829 => 0.021155841082495
830 => 0.021685958922847
831 => 0.022708642245407
901 => 0.022364238480802
902 => 0.022100430594609
903 => 0.021851133416868
904 => 0.022369881268935
905 => 0.02303724209342
906 => 0.023180985223112
907 => 0.023413904007314
908 => 0.02316901838568
909 => 0.023463956143672
910 => 0.024505216031604
911 => 0.02422385841843
912 => 0.023824285377229
913 => 0.024646260055088
914 => 0.02494372949566
915 => 0.027031525815548
916 => 0.029667454911971
917 => 0.028576162957608
918 => 0.027898762825764
919 => 0.028057967924893
920 => 0.029020519999076
921 => 0.029329661175427
922 => 0.02848930889075
923 => 0.028786135524387
924 => 0.030421679459077
925 => 0.031299096305507
926 => 0.030107446375251
927 => 0.026819731479197
928 => 0.023788308196692
929 => 0.024592378157982
930 => 0.024501221577567
1001 => 0.026258409497132
1002 => 0.024217148132407
1003 => 0.024251517738682
1004 => 0.026045042443528
1005 => 0.025566560801073
1006 => 0.024791481819594
1007 => 0.02379396713101
1008 => 0.021949968970222
1009 => 0.02031668837552
1010 => 0.023519927743789
1011 => 0.023381798237516
1012 => 0.023181766242787
1013 => 0.023626915801334
1014 => 0.025788435699727
1015 => 0.025738605669911
1016 => 0.025421612443732
1017 => 0.025662049011939
1018 => 0.024749332126694
1019 => 0.024984560050199
1020 => 0.023787828003756
1021 => 0.024328800868693
1022 => 0.024789818848205
1023 => 0.02488237503308
1024 => 0.02509090884364
1025 => 0.023309010264364
1026 => 0.024109030412665
1027 => 0.024578967298041
1028 => 0.022455775353461
1029 => 0.024536998619879
1030 => 0.023277991374465
1031 => 0.022850665405717
1101 => 0.023426003526721
1102 => 0.023201793701431
1103 => 0.02300903125969
1104 => 0.022901466505119
1105 => 0.023323931323432
1106 => 0.023304222834704
1107 => 0.022612988395054
1108 => 0.021711301246852
1109 => 0.022013937050661
1110 => 0.021903986625911
1111 => 0.021505512102733
1112 => 0.021774035819358
1113 => 0.020591593268084
1114 => 0.018557262316633
1115 => 0.019901203656404
1116 => 0.01984946337675
1117 => 0.019823373581513
1118 => 0.02083330835454
1119 => 0.020736226429273
1120 => 0.020560021784285
1121 => 0.021502275966246
1122 => 0.021158340514723
1123 => 0.022218268534933
1124 => 0.02291640568089
1125 => 0.022739335518305
1126 => 0.023395936878467
1127 => 0.022020909168342
1128 => 0.022477638217109
1129 => 0.022571769441061
1130 => 0.021490648695903
1201 => 0.020752110232879
1202 => 0.020702858137351
1203 => 0.019422334219337
1204 => 0.020106379760312
1205 => 0.020708311528642
1206 => 0.020420032923404
1207 => 0.020328772529064
1208 => 0.020795002091782
1209 => 0.020831232121792
1210 => 0.020005183598091
1211 => 0.020176945243723
1212 => 0.020893219859006
1213 => 0.02015889696119
1214 => 0.018732227521696
1215 => 0.018378393775453
1216 => 0.018331185831255
1217 => 0.017371560648536
1218 => 0.018402038638299
1219 => 0.017952207380674
1220 => 0.019373218933705
1221 => 0.018561544755652
1222 => 0.018526555104108
1223 => 0.018473663113935
1224 => 0.017647674077552
1225 => 0.017828513182178
1226 => 0.018429649908529
1227 => 0.01864414226478
1228 => 0.018621768954739
1229 => 0.018426704010621
1230 => 0.018516003743144
1231 => 0.018228338190597
]
'min_raw' => 0.010065097668471
'max_raw' => 0.031299096305507
'avg_raw' => 0.020682096986989
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.010065'
'max' => '$0.031299'
'avg' => '$0.020682'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.0057337548273146
'max_diff' => 0.019548580555699
'year' => 2033
]
8 => [
'items' => [
101 => 0.018126757496752
102 => 0.017806140885005
103 => 0.017334923038338
104 => 0.017400448770064
105 => 0.016466842914959
106 => 0.015958164894884
107 => 0.015817369523196
108 => 0.015629092067931
109 => 0.015838635962756
110 => 0.016464198126872
111 => 0.015709637436531
112 => 0.014415996059219
113 => 0.014493746110253
114 => 0.014668427390729
115 => 0.014342909980194
116 => 0.014034835069728
117 => 0.014302681209471
118 => 0.01375454830413
119 => 0.014734666633604
120 => 0.014708157179541
121 => 0.015073484682658
122 => 0.015301931467632
123 => 0.014775435588792
124 => 0.01464302329906
125 => 0.014718451357094
126 => 0.013471793575861
127 => 0.014971606145288
128 => 0.014984576586669
129 => 0.014873515792978
130 => 0.015672119684679
131 => 0.01735742298697
201 => 0.01672334409348
202 => 0.016477809580785
203 => 0.016011048292666
204 => 0.016632979995541
205 => 0.016585225344406
206 => 0.016369260701561
207 => 0.016238644611717
208 => 0.016479308762162
209 => 0.016208823660165
210 => 0.016160237103413
211 => 0.015865855432189
212 => 0.015760774569075
213 => 0.015682976881415
214 => 0.015597329271544
215 => 0.015786246556865
216 => 0.01535813513419
217 => 0.014841874726725
218 => 0.014798953259859
219 => 0.014917463203569
220 => 0.014865031375505
221 => 0.014798702236439
222 => 0.014672061846294
223 => 0.014634490347782
224 => 0.014756579490846
225 => 0.014618747966565
226 => 0.014822125888713
227 => 0.014766818347303
228 => 0.014457874916912
301 => 0.014072817017138
302 => 0.014069389194143
303 => 0.013986429101259
304 => 0.013880766949836
305 => 0.013851374156533
306 => 0.014280123954665
307 => 0.015167623205397
308 => 0.014993385866421
309 => 0.015119290200392
310 => 0.015738614911428
311 => 0.015935479613323
312 => 0.015795749710914
313 => 0.015604478802332
314 => 0.015612893751593
315 => 0.01626652434786
316 => 0.01630729048639
317 => 0.0164102933668
318 => 0.016542681176736
319 => 0.015818295927408
320 => 0.015578775271493
321 => 0.01546527709662
322 => 0.015115746647335
323 => 0.015492685270413
324 => 0.015273059276866
325 => 0.015302694326888
326 => 0.015283394461684
327 => 0.015293933493137
328 => 0.014734392670556
329 => 0.014938259937704
330 => 0.014599291065363
331 => 0.014145449796339
401 => 0.014143928361268
402 => 0.014255005368905
403 => 0.014188932418319
404 => 0.014011131807182
405 => 0.014036387544799
406 => 0.01381512070794
407 => 0.014063253344959
408 => 0.014070368901128
409 => 0.013974824319999
410 => 0.014357106883032
411 => 0.01451372836102
412 => 0.014450838870958
413 => 0.014509315866746
414 => 0.01500062621449
415 => 0.015080731238545
416 => 0.01511630859879
417 => 0.015068639649159
418 => 0.014518296117992
419 => 0.014542706193841
420 => 0.014363601253603
421 => 0.014212276452716
422 => 0.014218328651157
423 => 0.014296129269661
424 => 0.01463588913361
425 => 0.015350893737353
426 => 0.015378027639403
427 => 0.01541091472024
428 => 0.015277146434754
429 => 0.015236800639861
430 => 0.015290027157458
501 => 0.015558545293468
502 => 0.016249246841248
503 => 0.016005106783857
504 => 0.015806617116932
505 => 0.015980746067255
506 => 0.015953940280221
507 => 0.015727672461259
508 => 0.01572132187719
509 => 0.015287041590405
510 => 0.015126498056465
511 => 0.014992335863029
512 => 0.01484583425019
513 => 0.01475898318332
514 => 0.014892425895136
515 => 0.014922945822176
516 => 0.014631171000611
517 => 0.014591403170577
518 => 0.014829672788263
519 => 0.014724819213106
520 => 0.014832663715399
521 => 0.014857684565004
522 => 0.014853655631938
523 => 0.014744176457118
524 => 0.014813955218433
525 => 0.014648907645874
526 => 0.01446944320006
527 => 0.01435495606466
528 => 0.01425505085451
529 => 0.014310484071626
530 => 0.014112874774311
531 => 0.014049655583011
601 => 0.014790315744171
602 => 0.015337449368659
603 => 0.01532949382907
604 => 0.015281066527822
605 => 0.015209113381287
606 => 0.01555328147263
607 => 0.015433380191464
608 => 0.0155206183916
609 => 0.01554282417491
610 => 0.015610034393036
611 => 0.015634056269102
612 => 0.015561445475364
613 => 0.015317754782915
614 => 0.014710500746748
615 => 0.014427822353662
616 => 0.014334533775562
617 => 0.014337924638196
618 => 0.014244389509281
619 => 0.014271939796697
620 => 0.014234808643638
621 => 0.014164491222734
622 => 0.014306142169035
623 => 0.014322466121026
624 => 0.014289403097557
625 => 0.014297190636483
626 => 0.014023442923559
627 => 0.014044255367623
628 => 0.013928369034353
629 => 0.013906641743895
630 => 0.013613691184765
701 => 0.013094686805403
702 => 0.013382265612544
703 => 0.013034910853217
704 => 0.012903362342577
705 => 0.013526092531958
706 => 0.013463587692791
707 => 0.013356606578337
708 => 0.013198359213243
709 => 0.013139663726198
710 => 0.012783048527646
711 => 0.012761977799247
712 => 0.01293872592107
713 => 0.01285716274438
714 => 0.012742617153917
715 => 0.012327744636561
716 => 0.011861290567483
717 => 0.011875369883803
718 => 0.01202374024449
719 => 0.012455147078658
720 => 0.012286588965134
721 => 0.012164298119792
722 => 0.012141396720508
723 => 0.012428055679867
724 => 0.012833738164267
725 => 0.013024075309314
726 => 0.012835456979198
727 => 0.012618782397492
728 => 0.012631970375307
729 => 0.012719704083393
730 => 0.012728923655625
731 => 0.012587890777441
801 => 0.012627590706545
802 => 0.012567282883999
803 => 0.012197173888352
804 => 0.012190479790249
805 => 0.012099649073903
806 => 0.012096898755911
807 => 0.011942373048623
808 => 0.011920753833987
809 => 0.011613933663127
810 => 0.011815883628725
811 => 0.011680426194651
812 => 0.011476259890324
813 => 0.011441061542503
814 => 0.011440003437664
815 => 0.011649636581458
816 => 0.011813433943385
817 => 0.011682782534711
818 => 0.011653035741527
819 => 0.011970653668774
820 => 0.01193023389238
821 => 0.011895230626703
822 => 0.012797413747353
823 => 0.012083265409132
824 => 0.011771855971505
825 => 0.011386427657393
826 => 0.011511925059966
827 => 0.011538369206629
828 => 0.010611483589866
829 => 0.010235446210582
830 => 0.010106404352681
831 => 0.010032138939075
901 => 0.010065982620622
902 => 0.0097275048744804
903 => 0.0099549675177925
904 => 0.0096618744004458
905 => 0.0096127363855151
906 => 0.010136823186601
907 => 0.010209746803301
908 => 0.0098986319988656
909 => 0.010098418068225
910 => 0.010025972862241
911 => 0.0096668986407145
912 => 0.0096531846466233
913 => 0.0094730138243304
914 => 0.0091910813753877
915 => 0.0090622306809633
916 => 0.0089951241205741
917 => 0.0090228135952715
918 => 0.0090088129495526
919 => 0.0089174492658351
920 => 0.0090140498089568
921 => 0.0087672753393811
922 => 0.0086690077571991
923 => 0.008624622570118
924 => 0.0084055960245611
925 => 0.008754164660089
926 => 0.00882283707244
927 => 0.0088916447906573
928 => 0.0094905690007144
929 => 0.0094606484397222
930 => 0.0097311157391876
1001 => 0.0097206058772878
1002 => 0.0096434642222005
1003 => 0.0093180162685736
1004 => 0.0094477340223373
1005 => 0.0090484829388674
1006 => 0.0093476289970378
1007 => 0.0092111112287269
1008 => 0.0093014722022474
1009 => 0.0091389950243371
1010 => 0.0092289166031109
1011 => 0.008839121848987
1012 => 0.0084751369921463
1013 => 0.0086216151239193
1014 => 0.0087808536049629
1015 => 0.0091261232050757
1016 => 0.0089204834796609
1017 => 0.008994439301019
1018 => 0.0087466996795243
1019 => 0.0082355420770565
1020 => 0.0082384351735749
1021 => 0.0081598047126089
1022 => 0.008091856514099
1023 => 0.0089441036758483
1024 => 0.0088381132692509
1025 => 0.0086692314280194
1026 => 0.0088952864836054
1027 => 0.0089550590282785
1028 => 0.008956760668595
1029 => 0.0091216846018251
1030 => 0.0092097045345542
1031 => 0.0092252184291979
1101 => 0.0094847298015528
1102 => 0.0095717145905284
1103 => 0.0099299926257707
1104 => 0.0092022366582232
1105 => 0.0091872490029846
1106 => 0.0088984675418185
1107 => 0.0087153177736927
1108 => 0.0089110079631336
1109 => 0.0090843627566034
1110 => 0.0089038541584763
1111 => 0.0089274247706472
1112 => 0.0086851067257558
1113 => 0.0087717240246807
1114 => 0.0088463305111251
1115 => 0.0088051371944771
1116 => 0.008743468805676
1117 => 0.0090701496404509
1118 => 0.0090517170274804
1119 => 0.0093559297311827
1120 => 0.0095930852881779
1121 => 0.01001811044294
1122 => 0.0095745745368833
1123 => 0.009558410325571
1124 => 0.0097164180839694
1125 => 0.0095716904003638
1126 => 0.0096631533005727
1127 => 0.010003374355705
1128 => 0.010010562690487
1129 => 0.0098901488212483
1130 => 0.0098828216263619
1201 => 0.0099059484271325
1202 => 0.010041402821599
1203 => 0.0099940708940791
1204 => 0.010048844598903
1205 => 0.010117339955509
1206 => 0.010400665791863
1207 => 0.010468974691813
1208 => 0.010303019479039
1209 => 0.010318003376631
1210 => 0.010255931571481
1211 => 0.010195970985463
1212 => 0.01033075362629
1213 => 0.010577071551561
1214 => 0.010575539220531
1215 => 0.010632680191458
1216 => 0.010668278542964
1217 => 0.010515464358715
1218 => 0.010415987943902
1219 => 0.01045413353119
1220 => 0.010515129155966
1221 => 0.010434353472153
1222 => 0.0099357685327245
1223 => 0.010087007353618
1224 => 0.010061833818621
1225 => 0.010025983643578
1226 => 0.010178055447482
1227 => 0.010163387751014
1228 => 0.0097240332959659
1229 => 0.0097521593426961
1230 => 0.009725743734024
1231 => 0.0098110979697686
]
'min_raw' => 0.008091856514099
'max_raw' => 0.018126757496752
'avg_raw' => 0.013109307005425
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.008091'
'max' => '$0.018126'
'avg' => '$0.0131093'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.0019732411543718
'max_diff' => -0.013172338808756
'year' => 2034
]
9 => [
'items' => [
101 => 0.0095670809915249
102 => 0.0096421389705532
103 => 0.0096892146313749
104 => 0.0097169425572512
105 => 0.009817114838733
106 => 0.0098053607776852
107 => 0.0098163841897948
108 => 0.0099649132387305
109 => 0.010716122199233
110 => 0.010757008845504
111 => 0.010555668045677
112 => 0.010636099723936
113 => 0.010481688490153
114 => 0.010585345785857
115 => 0.010656265474968
116 => 0.010335793036948
117 => 0.010316816739018
118 => 0.010161768195146
119 => 0.010245082500224
120 => 0.010112523450334
121 => 0.010145048804458
122 => 0.010054105078817
123 => 0.010217785678256
124 => 0.010400806021822
125 => 0.010447044188299
126 => 0.01032541147908
127 => 0.010237341381619
128 => 0.010082719302571
129 => 0.010339859266005
130 => 0.010415054827512
131 => 0.010339464295733
201 => 0.010321948317834
202 => 0.010288755571366
203 => 0.010328990315909
204 => 0.010414645296335
205 => 0.010374251989365
206 => 0.010400932480257
207 => 0.01029925396178
208 => 0.010515514946568
209 => 0.010858989436453
210 => 0.010860093763102
211 => 0.010819700238397
212 => 0.010803172078378
213 => 0.010844618286009
214 => 0.010867101153437
215 => 0.011001130588981
216 => 0.011144949513288
217 => 0.011816089679918
218 => 0.011627636206739
219 => 0.01222311168888
220 => 0.01269405548244
221 => 0.012835270934252
222 => 0.012705359363285
223 => 0.012260938896693
224 => 0.012239133508382
225 => 0.012903285314952
226 => 0.012715632009516
227 => 0.012693311245943
228 => 0.012455856033043
301 => 0.012596221473267
302 => 0.012565521492453
303 => 0.012517060070844
304 => 0.01278486755285
305 => 0.013286179251826
306 => 0.013208045122269
307 => 0.013149721619093
308 => 0.012894165005892
309 => 0.013048067167675
310 => 0.012993265555666
311 => 0.01322872805882
312 => 0.013089245288084
313 => 0.012714210351165
314 => 0.012773935901001
315 => 0.012764908504295
316 => 0.012950691688827
317 => 0.012894924188252
318 => 0.012754019004771
319 => 0.013284465822938
320 => 0.013250021557067
321 => 0.013298855651017
322 => 0.013320353929419
323 => 0.013643227560115
324 => 0.013775498555808
325 => 0.01380552638756
326 => 0.013931173603262
327 => 0.013802400170371
328 => 0.014317585715836
329 => 0.01466015404166
330 => 0.01505806478051
331 => 0.015639519318293
401 => 0.015858151603255
402 => 0.015818657637878
403 => 0.016259509832376
404 => 0.017051711426296
405 => 0.01597878422992
406 => 0.017108579172974
407 => 0.016750899138113
408 => 0.015902846209846
409 => 0.015848241599153
410 => 0.016422552888272
411 => 0.017696320052126
412 => 0.017377255824528
413 => 0.017696841926901
414 => 0.017324027762668
415 => 0.017305514397089
416 => 0.017678735175081
417 => 0.018550785866064
418 => 0.018136507271109
419 => 0.017542537319963
420 => 0.017981115488693
421 => 0.017601178490445
422 => 0.016745074095724
423 => 0.017377011842127
424 => 0.016954453067658
425 => 0.017077778182508
426 => 0.017965933875567
427 => 0.01785906863281
428 => 0.017997362152393
429 => 0.0177532777101
430 => 0.017525264352415
501 => 0.017099660487802
502 => 0.016973660165507
503 => 0.017008482121573
504 => 0.016973642909475
505 => 0.016735521458725
506 => 0.016684099154107
507 => 0.016598393060215
508 => 0.016624956962485
509 => 0.016463804431765
510 => 0.016767932553045
511 => 0.016824381412322
512 => 0.017045700496809
513 => 0.017068678578358
514 => 0.017685049078375
515 => 0.017345562564651
516 => 0.017573319427912
517 => 0.017552946710332
518 => 0.015921226088323
519 => 0.016146062793243
520 => 0.016495838148453
521 => 0.01633826482504
522 => 0.016115493012213
523 => 0.015935592829087
524 => 0.015663025655912
525 => 0.016046658717967
526 => 0.016551095399741
527 => 0.017081471925056
528 => 0.017718684568574
529 => 0.017576466124514
530 => 0.017069559677921
531 => 0.01709229913082
601 => 0.017232865480995
602 => 0.017050819285718
603 => 0.016997130308767
604 => 0.017225489440012
605 => 0.017227062023845
606 => 0.017017595875162
607 => 0.016784812582801
608 => 0.016783837212306
609 => 0.01674241567385
610 => 0.017331396562341
611 => 0.017655276498326
612 => 0.017692408811028
613 => 0.017652777197827
614 => 0.017668029832826
615 => 0.017479571234283
616 => 0.01791033170489
617 => 0.018305640110514
618 => 0.018199689013274
619 => 0.018040853256676
620 => 0.01791433292598
621 => 0.018169884844236
622 => 0.018158505519592
623 => 0.01830218743645
624 => 0.018295669194755
625 => 0.018247354370266
626 => 0.018199690738749
627 => 0.01838867165006
628 => 0.018334248182543
629 => 0.018279740180349
630 => 0.018170416037191
701 => 0.018185275003928
702 => 0.018026466672562
703 => 0.017952994671898
704 => 0.016848152065885
705 => 0.016552902019785
706 => 0.016645793694657
707 => 0.016676376045956
708 => 0.01654788284752
709 => 0.016732109086883
710 => 0.016703397622622
711 => 0.016815097134416
712 => 0.016745312128876
713 => 0.016748176129845
714 => 0.016953398951406
715 => 0.017012976009586
716 => 0.01698267463695
717 => 0.017003896679674
718 => 0.017492949696982
719 => 0.017423421996956
720 => 0.017386486792055
721 => 0.017396718096233
722 => 0.01752168162757
723 => 0.017556664593588
724 => 0.017408439308358
725 => 0.017478343209753
726 => 0.017775985149765
727 => 0.017880142983695
728 => 0.018212564791001
729 => 0.018071346098931
730 => 0.018330559120028
731 => 0.019127291574648
801 => 0.019763776589091
802 => 0.019178438665954
803 => 0.020347262339101
804 => 0.021257359226444
805 => 0.021222428192062
806 => 0.021063731748833
807 => 0.020027610638771
808 => 0.019074156545596
809 => 0.019871761380336
810 => 0.019873794639089
811 => 0.019805279676424
812 => 0.019379739127667
813 => 0.01979047178774
814 => 0.019823074254735
815 => 0.019804825542913
816 => 0.019478564601914
817 => 0.01898042444811
818 => 0.019077759841784
819 => 0.019237197202211
820 => 0.018935349016805
821 => 0.018838890231942
822 => 0.019018225465038
823 => 0.019596080952053
824 => 0.019486840719522
825 => 0.019483988015576
826 => 0.019951364055413
827 => 0.019616823676952
828 => 0.019078987552809
829 => 0.018943176838276
830 => 0.018461140294744
831 => 0.018794084652317
901 => 0.018806066727017
902 => 0.018623716504983
903 => 0.019093784268338
904 => 0.019089452511145
905 => 0.019535711892097
906 => 0.020388792221109
907 => 0.020136494390287
908 => 0.019843099462966
909 => 0.019874999626525
910 => 0.020224865684451
911 => 0.020013328679164
912 => 0.020089398861153
913 => 0.02022475054312
914 => 0.020306411573443
915 => 0.019863249860953
916 => 0.019759927666897
917 => 0.01954856671902
918 => 0.019493426592958
919 => 0.019665575674813
920 => 0.019620220473861
921 => 0.018805059680035
922 => 0.018719870841568
923 => 0.018722483461623
924 => 0.01850827207679
925 => 0.018181548298297
926 => 0.019040158880513
927 => 0.018971200434514
928 => 0.018895075647091
929 => 0.018904400499188
930 => 0.019277094251916
1001 => 0.019060913053848
1002 => 0.019635666200313
1003 => 0.01951751423206
1004 => 0.019396332111651
1005 => 0.019379581051313
1006 => 0.019332936273728
1007 => 0.019172973975631
1008 => 0.018979809888436
1009 => 0.018852266226483
1010 => 0.017390219066909
1011 => 0.017661566515389
1012 => 0.017973727020767
1013 => 0.018081483576318
1014 => 0.01789715853152
1015 => 0.019180252251874
1016 => 0.019414685838782
1017 => 0.018704571212315
1018 => 0.018571737759492
1019 => 0.019188960790927
1020 => 0.018816699850525
1021 => 0.018984328929194
1022 => 0.018622006549315
1023 => 0.019358217652712
1024 => 0.019352608957596
1025 => 0.019066206210292
1026 => 0.019308271851112
1027 => 0.019266206989076
1028 => 0.018942858992749
1029 => 0.019368468360941
1030 => 0.019368679457878
1031 => 0.019093023040531
1101 => 0.018771116694019
1102 => 0.018713567442351
1103 => 0.018670211811873
1104 => 0.018973666101845
1105 => 0.019245742269357
1106 => 0.019752008563694
1107 => 0.019879295938681
1108 => 0.020376107037254
1109 => 0.020080280217347
1110 => 0.020211416415013
1111 => 0.020353783307928
1112 => 0.02042203923176
1113 => 0.02031081986669
1114 => 0.021082571998382
1115 => 0.021147731524171
1116 => 0.02116957894954
1117 => 0.020909348472948
1118 => 0.021140494043863
1119 => 0.021032348685969
1120 => 0.021313712863565
1121 => 0.02135783435925
1122 => 0.021320465022072
1123 => 0.021334469881213
1124 => 0.02067591558322
1125 => 0.020641766068718
1126 => 0.020176135015349
1127 => 0.020365883111368
1128 => 0.020011158140724
1129 => 0.020123645082987
1130 => 0.020173228255322
1201 => 0.020147328819914
1202 => 0.020376611184021
1203 => 0.020181674335238
1204 => 0.019667203940714
1205 => 0.019152593379076
1206 => 0.019146132862667
1207 => 0.019010644985419
1208 => 0.018912712066011
1209 => 0.018931577420646
1210 => 0.018998061391026
1211 => 0.018908847896791
1212 => 0.018927886119025
1213 => 0.019244047459122
1214 => 0.019307451361119
1215 => 0.019091980128629
1216 => 0.018226832037835
1217 => 0.018014522526294
1218 => 0.018167126392909
1219 => 0.018094191573615
1220 => 0.014603424793658
1221 => 0.015423528669334
1222 => 0.014936250794503
1223 => 0.015160810857802
1224 => 0.014663426327595
1225 => 0.014900804295566
1226 => 0.014856969252537
1227 => 0.016175672015985
1228 => 0.016155082286151
1229 => 0.016164937500238
1230 => 0.015694522454208
1231 => 0.016443906395694
]
'min_raw' => 0.0095670809915249
'max_raw' => 0.02135783435925
'avg_raw' => 0.015462457675387
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.009567'
'max' => '$0.021357'
'avg' => '$0.015462'
'bar_min_pct' => 61.631153054958
'bar_max_pct' => 60.119598047091
'min_diff' => 0.0014752244774259
'max_diff' => 0.0032310768624983
'year' => 2035
]
10 => [
'items' => [
101 => 0.016813079872245
102 => 0.01674475568697
103 => 0.016761951412417
104 => 0.016466471877072
105 => 0.016167798388027
106 => 0.015836523523155
107 => 0.016451991275275
108 => 0.016383561767625
109 => 0.016540514438016
110 => 0.016939689269809
111 => 0.016998469280109
112 => 0.017077470210039
113 => 0.017049154000328
114 => 0.017723760995312
115 => 0.017642061637019
116 => 0.017838933583995
117 => 0.017433953052355
118 => 0.016975679139699
119 => 0.017062782028392
120 => 0.017054393319773
121 => 0.01694759543095
122 => 0.016851183072177
123 => 0.016690683658834
124 => 0.017198527552096
125 => 0.017177910017462
126 => 0.017511683937934
127 => 0.017452686155383
128 => 0.017058684524306
129 => 0.01707275636964
130 => 0.017167396292206
131 => 0.017494946144789
201 => 0.01759218524233
202 => 0.017547140218041
203 => 0.017653758449361
204 => 0.017738025152221
205 => 0.017664341049847
206 => 0.01870755255344
207 => 0.018274338404696
208 => 0.018485483966509
209 => 0.01853584093886
210 => 0.018406852613077
211 => 0.018434825562214
212 => 0.018477196957983
213 => 0.018734467775927
214 => 0.019409620844122
215 => 0.019708641542103
216 => 0.0206082600654
217 => 0.019683812035705
218 => 0.019628959115369
219 => 0.019791007577291
220 => 0.020319178884759
221 => 0.020747212120853
222 => 0.020889215439095
223 => 0.02090798352182
224 => 0.021174391187045
225 => 0.021327091092542
226 => 0.021142042289269
227 => 0.020985232803912
228 => 0.020423560691274
229 => 0.020488575767694
301 => 0.020936465171881
302 => 0.021569135335849
303 => 0.022112032154644
304 => 0.021921928610566
305 => 0.023372284459694
306 => 0.023516081317963
307 => 0.023496213241659
308 => 0.023823803884637
309 => 0.023173603171
310 => 0.022895629768875
311 => 0.02101913679451
312 => 0.021546354779153
313 => 0.022312697082258
314 => 0.022211268804806
315 => 0.021654730539902
316 => 0.022111609970465
317 => 0.02196055134278
318 => 0.021841405135697
319 => 0.022387237007973
320 => 0.021787072442868
321 => 0.022306709981619
322 => 0.021640269463209
323 => 0.021922796987543
324 => 0.021762420700412
325 => 0.021866203813164
326 => 0.021259489856653
327 => 0.021586857980437
328 => 0.021245870266417
329 => 0.021245708593842
330 => 0.021238181271156
331 => 0.02163935180453
401 => 0.021652433961221
402 => 0.021355968330923
403 => 0.021313243001933
404 => 0.021471220936459
405 => 0.021286270149616
406 => 0.021372807458713
407 => 0.021288891276551
408 => 0.021269999976401
409 => 0.021119470882717
410 => 0.021054618810275
411 => 0.021080048978912
412 => 0.020993242703204
413 => 0.020940938782169
414 => 0.021227776704792
415 => 0.021074530773743
416 => 0.021204289568003
417 => 0.021056413045079
418 => 0.020543808589891
419 => 0.020249004347019
420 => 0.019280742049627
421 => 0.019555340036042
422 => 0.019737398785127
423 => 0.01967722836964
424 => 0.019806497704965
425 => 0.019814433792272
426 => 0.019772407013613
427 => 0.01972374538789
428 => 0.019700059599644
429 => 0.019876594059823
430 => 0.019979078255834
501 => 0.019755670816229
502 => 0.019703329578932
503 => 0.019929206835035
504 => 0.020066991830773
505 => 0.021084318824601
506 => 0.021008951954975
507 => 0.021198108007734
508 => 0.02117681193903
509 => 0.021375077617244
510 => 0.021699158207796
511 => 0.021040211752845
512 => 0.021154582072771
513 => 0.021126541111521
514 => 0.021432684973707
515 => 0.021433640721428
516 => 0.021250092183027
517 => 0.021349596823429
518 => 0.021294056062924
519 => 0.021394425723941
520 => 0.021007945384482
521 => 0.021478636719968
522 => 0.021745488376509
523 => 0.021749193612019
524 => 0.021875679179353
525 => 0.022004195841315
526 => 0.022250872382509
527 => 0.021997316166465
528 => 0.021541193217003
529 => 0.021574123820686
530 => 0.021306699102305
531 => 0.021311194560135
601 => 0.021287197453922
602 => 0.021359214576085
603 => 0.021023749092923
604 => 0.021102482171302
605 => 0.020992255400511
606 => 0.021154342461298
607 => 0.020979963577842
608 => 0.021126527589321
609 => 0.021189779758001
610 => 0.021423181622152
611 => 0.020945489932734
612 => 0.019971444241126
613 => 0.020176200454664
614 => 0.019873349931588
615 => 0.019901379900532
616 => 0.019958004898735
617 => 0.019774464753011
618 => 0.019809478428801
619 => 0.019808227493914
620 => 0.019797447612871
621 => 0.019749701732311
622 => 0.019680460759265
623 => 0.019956295484632
624 => 0.020003165179464
625 => 0.02010735070515
626 => 0.020417336159872
627 => 0.020386361302985
628 => 0.020436882579702
629 => 0.020326594916293
630 => 0.019906495828924
701 => 0.019929309230526
702 => 0.019644825746992
703 => 0.02010007582287
704 => 0.019992266595894
705 => 0.019922761285923
706 => 0.019903796118135
707 => 0.020214549966842
708 => 0.020307532388845
709 => 0.020249591983271
710 => 0.020130754521047
711 => 0.020358957579658
712 => 0.020420015091029
713 => 0.02043368361611
714 => 0.020838015682373
715 => 0.020456281287045
716 => 0.020548168550114
717 => 0.021265046746203
718 => 0.020614937144779
719 => 0.020959314699828
720 => 0.020942459210562
721 => 0.021118631114624
722 => 0.020928007972357
723 => 0.020930370974665
724 => 0.021086799690553
725 => 0.020867123771156
726 => 0.020812728924203
727 => 0.020737582832722
728 => 0.020901661574307
729 => 0.021000019359243
730 => 0.02179271087
731 => 0.022304825737074
801 => 0.022282593480087
802 => 0.022485754691903
803 => 0.022394228705237
804 => 0.022098667150955
805 => 0.022603154684222
806 => 0.022443513720041
807 => 0.022456674327165
808 => 0.02245618448871
809 => 0.022562331773835
810 => 0.022487116694068
811 => 0.022338860051179
812 => 0.022437279729577
813 => 0.02272955098874
814 => 0.023636769945159
815 => 0.024144461692224
816 => 0.023606206264509
817 => 0.023977487651019
818 => 0.023754851120198
819 => 0.023714391439685
820 => 0.023947583587892
821 => 0.024181183908085
822 => 0.024166304577571
823 => 0.02399672274062
824 => 0.023900930263906
825 => 0.024626302990417
826 => 0.025160745258909
827 => 0.025124299879144
828 => 0.025285157932753
829 => 0.025757442153301
830 => 0.02580062190357
831 => 0.025795182247511
901 => 0.02568815673113
902 => 0.026153181880115
903 => 0.026541114040738
904 => 0.025663383416352
905 => 0.025997611747781
906 => 0.026147657613923
907 => 0.026367969462023
908 => 0.02673967247832
909 => 0.027143440543375
910 => 0.027200537774866
911 => 0.027160024556769
912 => 0.026893728663997
913 => 0.027335536498735
914 => 0.027594337166656
915 => 0.027748447041855
916 => 0.028139244043921
917 => 0.026148584246111
918 => 0.02473949629901
919 => 0.024519446868593
920 => 0.024966926038362
921 => 0.02508492272685
922 => 0.025037358409676
923 => 0.023451301816542
924 => 0.024511096608872
925 => 0.025651346695343
926 => 0.025695148344979
927 => 0.026265981379771
928 => 0.026451868015136
929 => 0.02691146342894
930 => 0.026882715610672
1001 => 0.026994619780173
1002 => 0.026968894949515
1003 => 0.027820198674354
1004 => 0.028759313102679
1005 => 0.028726794556227
1006 => 0.028591785746057
1007 => 0.028792296851582
1008 => 0.029761563583231
1009 => 0.029672329034763
1010 => 0.029759012797619
1011 => 0.030901832899712
1012 => 0.032387661596697
1013 => 0.031697344992186
1014 => 0.033195133390724
1015 => 0.034137911793253
1016 => 0.03576834955532
1017 => 0.035564210717434
1018 => 0.036198928173502
1019 => 0.035198759592557
1020 => 0.032902170363287
1021 => 0.032538726326765
1022 => 0.033266350491751
1023 => 0.035055143500843
1024 => 0.033210015034121
1025 => 0.033583282119839
1026 => 0.033475781174041
1027 => 0.033470052905489
1028 => 0.033688677617565
1029 => 0.033371551070001
1030 => 0.032079520465247
1031 => 0.032671650477421
1101 => 0.032443000643302
1102 => 0.032696704681232
1103 => 0.034065840738434
1104 => 0.033460513051418
1105 => 0.032822849505974
1106 => 0.033622621100829
1107 => 0.034641005172416
1108 => 0.034577276527428
1109 => 0.034453616319644
1110 => 0.035150682436281
1111 => 0.036302031439757
1112 => 0.036613236448901
1113 => 0.036842961624345
1114 => 0.0368746368448
1115 => 0.037200911301527
1116 => 0.035446451315955
1117 => 0.038230824370786
1118 => 0.038711608680602
1119 => 0.038621241156825
1120 => 0.039155612682689
1121 => 0.038998387024083
1122 => 0.038770591712712
1123 => 0.03961768424529
1124 => 0.038646561013532
1125 => 0.037268173847067
1126 => 0.036511963386137
1127 => 0.037507802322847
1128 => 0.038115926411506
1129 => 0.038517857750154
1130 => 0.038639481930375
1201 => 0.035582645050328
1202 => 0.033935179511928
1203 => 0.034991186033811
1204 => 0.036279586872186
1205 => 0.035439294184245
1206 => 0.035472232066727
1207 => 0.034274195518757
1208 => 0.036385586523202
1209 => 0.036077974613447
1210 => 0.037673865745408
1211 => 0.037292993518939
1212 => 0.038594380784916
1213 => 0.038251681903548
1214 => 0.039674205800072
1215 => 0.040241689095692
1216 => 0.041194581870761
1217 => 0.041895533675073
1218 => 0.042307145981637
1219 => 0.042282434322669
1220 => 0.043913447345711
1221 => 0.042951695949278
1222 => 0.041743509527958
1223 => 0.041721657247376
1224 => 0.042347394115111
1225 => 0.043658766927359
1226 => 0.043998786817876
1227 => 0.044188811550309
1228 => 0.04389778205778
1229 => 0.042853869846296
1230 => 0.042403113846132
1231 => 0.04278717101793
]
'min_raw' => 0.015836523523155
'max_raw' => 0.044188811550309
'avg_raw' => 0.030012667536732
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$0.015836'
'max' => '$0.044188'
'avg' => '$0.030012'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.0062694425316304
'max_diff' => 0.022830977191059
'year' => 2036
]
11 => [
'items' => [
101 => 0.04231750209923
102 => 0.04312828241873
103 => 0.044241656970735
104 => 0.044011749528506
105 => 0.044780295638227
106 => 0.04557566000838
107 => 0.046713066779747
108 => 0.047010427027834
109 => 0.047501952210323
110 => 0.048007893080715
111 => 0.048170387652797
112 => 0.048480640210004
113 => 0.048479005025883
114 => 0.049413971989434
115 => 0.050445269503748
116 => 0.050834560440809
117 => 0.051729713484953
118 => 0.05019679526676
119 => 0.051359531344155
120 => 0.052408348391137
121 => 0.051157905470074
122 => 0.052881349720926
123 => 0.052948267155777
124 => 0.053958640974004
125 => 0.052934433545029
126 => 0.05232626244309
127 => 0.054082029626514
128 => 0.054931590060426
129 => 0.054675695543779
130 => 0.052728325637032
131 => 0.05159487282468
201 => 0.048628408188036
202 => 0.052142313691876
203 => 0.053853834560768
204 => 0.052723893211454
205 => 0.053293769903285
206 => 0.056402832350776
207 => 0.057586562033894
208 => 0.0573403545347
209 => 0.057381959549144
210 => 0.058020678599941
211 => 0.060853110620182
212 => 0.059155851698393
213 => 0.060453342549022
214 => 0.061141527017744
215 => 0.061780751105231
216 => 0.060211018775212
217 => 0.058168820077805
218 => 0.057521970024667
219 => 0.052611542812975
220 => 0.052355933751702
221 => 0.052212452639862
222 => 0.051307824525518
223 => 0.050597034626139
224 => 0.050031788108215
225 => 0.048548412448285
226 => 0.049049008188562
227 => 0.046684816991195
228 => 0.048197342737479
301 => 0.044424036501088
302 => 0.047566558059155
303 => 0.045856226448021
304 => 0.047004668125676
305 => 0.047000661320853
306 => 0.044886016078525
307 => 0.04366633283427
308 => 0.044443562468291
309 => 0.045276814332527
310 => 0.045412006644103
311 => 0.046492339436184
312 => 0.046793837096778
313 => 0.045880285109598
314 => 0.044345843116313
315 => 0.044702258994458
316 => 0.043659110077875
317 => 0.041831031725708
318 => 0.043143989513421
319 => 0.043592291028824
320 => 0.043790286517201
321 => 0.041992581414062
322 => 0.041427703440579
323 => 0.041126967147282
324 => 0.044113781962112
325 => 0.044277406420022
326 => 0.043440280559189
327 => 0.047224168829684
328 => 0.04636775837684
329 => 0.047324578678321
330 => 0.044669917989291
331 => 0.044771329602586
401 => 0.043514570689574
402 => 0.0442182717042
403 => 0.043720918508405
404 => 0.044161419616327
405 => 0.044425454164162
406 => 0.045682006855403
407 => 0.04758090587246
408 => 0.045494319785671
409 => 0.044585164347193
410 => 0.045149199267941
411 => 0.046651298589543
412 => 0.04892705595282
413 => 0.047579761789874
414 => 0.048177668060851
415 => 0.048308283982061
416 => 0.047314839145846
417 => 0.048963685680966
418 => 0.049847315934342
419 => 0.050753737732788
420 => 0.051540758383018
421 => 0.050391692933846
422 => 0.051621357676522
423 => 0.050630464958973
424 => 0.049741531754725
425 => 0.04974287989946
426 => 0.049185239115194
427 => 0.048104739828417
428 => 0.047905479182103
429 => 0.048942058228078
430 => 0.049773296458549
501 => 0.049841761220573
502 => 0.050301977415524
503 => 0.050574328619093
504 => 0.05324374065757
505 => 0.05431740026198
506 => 0.055630250902916
507 => 0.056141680215768
508 => 0.057680899089898
509 => 0.056437854839794
510 => 0.056168914397168
511 => 0.052435272883186
512 => 0.053046656471938
513 => 0.054025540587272
514 => 0.052451414321702
515 => 0.053449835123285
516 => 0.053646944538962
517 => 0.052397926113545
518 => 0.053065080821461
519 => 0.051293315714823
520 => 0.04761952551011
521 => 0.048967775659672
522 => 0.049960541585843
523 => 0.048543742202041
524 => 0.051083300259798
525 => 0.049599742869576
526 => 0.049129526400189
527 => 0.047295044308835
528 => 0.048160849240263
529 => 0.049331862807152
530 => 0.048608312567753
531 => 0.05010978795612
601 => 0.052236277534906
602 => 0.053751740643393
603 => 0.053868079083282
604 => 0.052893737832668
605 => 0.05445512590494
606 => 0.05446649891244
607 => 0.05270524678846
608 => 0.051626489669215
609 => 0.051381393781998
610 => 0.051993691362145
611 => 0.052737133660812
612 => 0.053909334956763
613 => 0.054617671649859
614 => 0.056464638072701
615 => 0.056964374230045
616 => 0.05751343275643
617 => 0.058247144271059
618 => 0.059128153064142
619 => 0.057200555980735
620 => 0.057277143006349
621 => 0.055482191291678
622 => 0.053564027962439
623 => 0.055019674826897
624 => 0.056922739465589
625 => 0.056486174334773
626 => 0.05643705183934
627 => 0.056519662251215
628 => 0.056190506399464
629 => 0.054701746681081
630 => 0.053954100870638
701 => 0.054918754710898
702 => 0.055431425295193
703 => 0.056226532661862
704 => 0.05612851889624
705 => 0.058176630084481
706 => 0.058972464160564
707 => 0.058768855748242
708 => 0.058806324596219
709 => 0.060247144176977
710 => 0.061849631877927
711 => 0.063350573076743
712 => 0.064877394931104
713 => 0.063036751592801
714 => 0.06210218642071
715 => 0.06306641912328
716 => 0.062554783678738
717 => 0.065494792704007
718 => 0.065698352550069
719 => 0.068638148979222
720 => 0.071428365854934
721 => 0.069675880627227
722 => 0.071328395263287
723 => 0.07311572457368
724 => 0.07656377279716
725 => 0.075402591459291
726 => 0.074513144752515
727 => 0.073672621912387
728 => 0.07542161651345
729 => 0.077671670126847
730 => 0.078156310124427
731 => 0.078941612067235
801 => 0.078115963096526
802 => 0.079110366339495
803 => 0.082621046750101
804 => 0.081672429913522
805 => 0.080325241507814
806 => 0.083096586522657
807 => 0.084099525510197
808 => 0.091138676567984
809 => 0.10002589555127
810 => 0.096346528535561
811 => 0.094062626696481
812 => 0.094599397803541
813 => 0.097844709324887
814 => 0.098887000384505
815 => 0.09605369398519
816 => 0.097054465704271
817 => 0.10256881627011
818 => 0.10552708842714
819 => 0.10150935748894
820 => 0.090424597175969
821 => 0.080203941931787
822 => 0.082914919944648
823 => 0.082607579169432
824 => 0.088532060923185
825 => 0.081649805715698
826 => 0.081765685242865
827 => 0.087812679005151
828 => 0.086199444741091
829 => 0.083586211840748
830 => 0.080223021423936
831 => 0.074005852881
901 => 0.06849913332395
902 => 0.0792990784971
903 => 0.078833365222807
904 => 0.078158943386792
905 => 0.07965979620278
906 => 0.086947511452712
907 => 0.086779506028169
908 => 0.085710741234346
909 => 0.0865213899108
910 => 0.083444101208337
911 => 0.084237188575523
912 => 0.080202322927778
913 => 0.082026250711432
914 => 0.083580605016606
915 => 0.083892664655979
916 => 0.084595750957645
917 => 0.07858795548943
918 => 0.081285279275051
919 => 0.082869704294042
920 => 0.075711214416362
921 => 0.08272820396546
922 => 0.078483373136467
923 => 0.077042613797887
924 => 0.078982406441676
925 => 0.078226467361881
926 => 0.077576555331306
927 => 0.077213893251339
928 => 0.078638262881836
929 => 0.078571814336083
930 => 0.076241269162359
1001 => 0.073201167988409
1002 => 0.074221525730306
1003 => 0.07385082019677
1004 => 0.07250733552127
1005 => 0.073412681979599
1006 => 0.069425994362477
1007 => 0.06256710552721
1008 => 0.067098297585234
1009 => 0.066923851619989
1010 => 0.066835888053817
1011 => 0.070240953652473
1012 => 0.069913635163391
1013 => 0.069319548900597
1014 => 0.072496424661166
1015 => 0.071336822273549
1016 => 0.0749104435955
1017 => 0.077264261725472
1018 => 0.076667257309671
1019 => 0.0788810346379
1020 => 0.074245032711846
1021 => 0.075784926587568
1022 => 0.076102296581153
1023 => 0.072457222507414
1024 => 0.069967188516221
1025 => 0.069801131637474
1026 => 0.065483755844566
1027 => 0.067790063144498
1028 => 0.069819518126957
1029 => 0.068847566682428
1030 => 0.068539875891313
1031 => 0.070111801413127
1101 => 0.070233953488803
1102 => 0.067448873218281
1103 => 0.068027979598544
1104 => 0.070442949472668
1105 => 0.067967128553891
1106 => 0.063157012931759
1107 => 0.061964037752418
1108 => 0.061804872872599
1109 => 0.058569429570174
1110 => 0.062043758058335
1111 => 0.060527120567038
1112 => 0.065318160229937
1113 => 0.06258154406935
1114 => 0.062463574016273
1115 => 0.062285244978602
1116 => 0.059500365273725
1117 => 0.060110076940755
1118 => 0.062136851383671
1119 => 0.062860027338152
1120 => 0.062784594161294
1121 => 0.062126919083198
1122 => 0.062427999366109
1123 => 0.061458114871528
1124 => 0.061115628470092
1125 => 0.060034647178852
1126 => 0.058445903309432
1127 => 0.058666827888808
1128 => 0.055519110566041
1129 => 0.053804067106596
1130 => 0.053329365680931
1201 => 0.052694575095393
1202 => 0.05340106696668
1203 => 0.055510193478356
1204 => 0.052966139429125
1205 => 0.04860453720636
1206 => 0.048866676931757
1207 => 0.04945562706474
1208 => 0.04835812238822
1209 => 0.04731942631848
1210 => 0.048222488279043
1211 => 0.046374419919272
1212 => 0.049678957296767
1213 => 0.049589578821565
1214 => 0.050821306004675
1215 => 0.05159153028986
1216 => 0.049816412675582
1217 => 0.04936997539602
1218 => 0.049624286359902
1219 => 0.045421092611608
1220 => 0.050477815402999
1221 => 0.050521546151684
1222 => 0.050147096931736
1223 => 0.052839645709351
1224 => 0.058521763457143
1225 => 0.056383922197767
1226 => 0.055556085445542
1227 => 0.053982367174418
1228 => 0.056079253332546
1229 => 0.055918245192122
1230 => 0.055190105320598
1231 => 0.054749724054366
]
'min_raw' => 0.041126967147282
'max_raw' => 0.10552708842714
'avg_raw' => 0.07332702778721
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$0.041126'
'max' => '$0.105527'
'avg' => '$0.073327'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 0.025290443624127
'max_diff' => 0.06133827687683
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.0012909285040205
]
1 => [
'year' => 2028
'avg' => 0.0022156080721215
]
2 => [
'year' => 2029
'avg' => 0.0060526419285332
]
3 => [
'year' => 2030
'avg' => 0.0046696042339986
]
4 => [
'year' => 2031
'avg' => 0.0045861300554685
]
5 => [
'year' => 2032
'avg' => 0.0080409292954822
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.0012909285040205
'min' => '$0.00129'
'max_raw' => 0.0080409292954822
'max' => '$0.00804'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.0080409292954822
]
1 => [
'year' => 2033
'avg' => 0.020682096986989
]
2 => [
'year' => 2034
'avg' => 0.013109307005425
]
3 => [
'year' => 2035
'avg' => 0.015462457675387
]
4 => [
'year' => 2036
'avg' => 0.030012667536732
]
5 => [
'year' => 2037
'avg' => 0.07332702778721
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.0080409292954822
'min' => '$0.00804'
'max_raw' => 0.07332702778721
'max' => '$0.073327'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 0.07332702778721
]
]
]
]
'prediction_2025_max_price' => '$0.0022072'
'last_price' => 0.0021402094675677
'sma_50day_nextmonth' => '$0.002091'
'sma_200day_nextmonth' => '$0.029939'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'increase'
'sma_200day_direction_label' => 'aumentar'
'sma_200day_date_nextmonth' => '4 de fev. de 2026'
'sma_50day_date_nextmonth' => '4 de fev. de 2026'
'daily_sma3' => '$0.002097'
'daily_sma3_action' => 'BUY'
'daily_sma5' => '$0.002098'
'daily_sma5_action' => 'BUY'
'daily_sma10' => '$0.002124'
'daily_sma10_action' => 'BUY'
'daily_sma21' => '$0.002282'
'daily_sma21_action' => 'SELL'
'daily_sma50' => '$0.008499'
'daily_sma50_action' => 'SELL'
'daily_sma100' => '$0.024873'
'daily_sma100_action' => 'SELL'
'daily_sma200' => '$0.033824'
'daily_sma200_action' => 'SELL'
'daily_ema3' => '$0.002116'
'daily_ema3_action' => 'BUY'
'daily_ema5' => '$0.002116'
'daily_ema5_action' => 'BUY'
'daily_ema10' => '$0.002168'
'daily_ema10_action' => 'SELL'
'daily_ema21' => '$0.0030033'
'daily_ema21_action' => 'SELL'
'daily_ema50' => '$0.009553'
'daily_ema50_action' => 'SELL'
'daily_ema100' => '$0.019765'
'daily_ema100_action' => 'SELL'
'daily_ema200' => '$0.029911'
'daily_ema200_action' => 'SELL'
'weekly_sma21' => '$0.02946'
'weekly_sma21_action' => 'SELL'
'weekly_sma50' => '$0.0377079'
'weekly_sma50_action' => 'SELL'
'weekly_sma100' => '$0.042862'
'weekly_sma100_action' => 'SELL'
'weekly_sma200' => '—'
'weekly_sma200_action' => '—'
'weekly_ema3' => '$0.002273'
'weekly_ema3_action' => 'SELL'
'weekly_ema5' => '$0.003357'
'weekly_ema5_action' => 'SELL'
'weekly_ema10' => '$0.009183'
'weekly_ema10_action' => 'SELL'
'weekly_ema21' => '$0.020097'
'weekly_ema21_action' => 'SELL'
'weekly_ema50' => '$0.032517'
'weekly_ema50_action' => 'SELL'
'weekly_ema100' => '$0.037665'
'weekly_ema100_action' => 'SELL'
'weekly_ema200' => '$0.033585'
'weekly_ema200_action' => 'SELL'
'rsi_14' => '25.60'
'rsi_14_action' => 'BUY'
'stoch_rsi_14' => 84.05
'stoch_rsi_14_action' => 'NEUTRAL'
'momentum_10' => -0
'momentum_10_action' => 'BUY'
'vwma_10' => '0.002066'
'vwma_10_action' => 'BUY'
'hma_9' => '0.002069'
'hma_9_action' => 'BUY'
'stochastic_fast_14' => 19
'stochastic_fast_14_action' => 'BUY'
'cci_20' => -56.13
'cci_20_action' => 'NEUTRAL'
'adx_14' => 51.6
'adx_14_action' => 'SELL'
'ao_5_34' => '-0.000432'
'ao_5_34_action' => 'NEUTRAL'
'macd_12_26' => 0
'macd_12_26_action' => 'NEUTRAL'
'williams_percent_r_14' => -81
'williams_percent_r_14_action' => 'BUY'
'ultimate_oscillator' => 45.5
'ultimate_oscillator_action' => 'NEUTRAL'
'ichimoku_cloud' => '-0.013538'
'ichimoku_cloud_action' => 'SELL'
'sell_signals' => 19
'buy_signals' => 13
'sell_pct' => 59.38
'buy_pct' => 40.63
'overall_action' => 'bearish'
'overall_action_label' => 'Baixista'
'overall_action_dir' => -1
'last_updated' => 1767702861
'last_updated_date' => '6 de janeiro de 2026'
]
Previsão de preço de Impermax para 2026
A previsão de preço para Impermax em 2026 sugere que o preço médio poderia variar entre $0.000739 na extremidade inferior e $0.0022072 na extremidade superior. No mercado de criptomoedas, comparado ao preço médio de hoje, Impermax poderia potencialmente ganhar 3.13% até 2026 se IBEX atingir a meta de preço prevista.
Previsão de preço de Impermax 2027-2032
A previsão de preço de IBEX para 2027-2032 está atualmente dentro de uma faixa de preço entre $0.00129 na extremidade inferior e $0.00804 na extremidade superior. Considerando a volatilidade de preços no mercado, se Impermax atingir a meta de preço superior, poderia ganhar 275.71% até 2032 em comparação com o preço de hoje.
| Previsão de Preço de Impermax | Potencial Mínimo ($) | Preço Médio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2027 | $0.000711 | $0.00129 | $0.00187 |
| 2028 | $0.001284 | $0.002215 | $0.003146 |
| 2029 | $0.002822 | $0.006052 | $0.009283 |
| 2030 | $0.002400026 | $0.004669 | $0.006939 |
| 2031 | $0.002837 | $0.004586 | $0.006334 |
| 2032 | $0.004331 | $0.00804 | $0.01175 |
Previsão de preço de Impermax 2032-2037
A previsão de preço de Impermax para 2032-2037 é atualmente estimada entre $0.00804 na extremidade inferior e $0.073327 na extremidade superior. Comparado ao preço atual, Impermax poderia potencialmente ganhar 3326.16% até 2037 se atingir a meta de preço superior. Por favor, note que esta informação é apenas para fins gerais e não deve ser considerada como aconselhamento de investimento a longo prazo.
| Previsão de Preço de Impermax | Potencial Mínimo ($) | Preço Médio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2032 | $0.004331 | $0.00804 | $0.01175 |
| 2033 | $0.010065 | $0.020682 | $0.031299 |
| 2034 | $0.008091 | $0.0131093 | $0.018126 |
| 2035 | $0.009567 | $0.015462 | $0.021357 |
| 2036 | $0.015836 | $0.030012 | $0.044188 |
| 2037 | $0.041126 | $0.073327 | $0.105527 |
Impermax Histograma de preços potenciais
Previsão de preço de Impermax baseada na análise técnica
Em 6 de janeiro de 2026, o sentimento geral de previsão de preço para Impermax é Baixista, com 13 indicadores técnicos mostrando sinais de alta e 19 indicando sinais de baixa. A previsão de preço de IBEX foi atualizada pela última vez em 6 de janeiro de 2026.
Médias Móveis Simples de 50 e 200 dias e Índice de Força Relativa de 14 dias - RSI (14) de Impermax
De acordo com nossos indicadores técnicos, o SMA de 200 dias de Impermax está projetado para aumentar no próximo mês, alcançando $0.029939 até 4 de fev. de 2026. O SMA de 50 dias de curto prazo para Impermax é esperado para alcançar $0.002091 até 4 de fev. de 2026.
O oscilador de momentum Índice de Força Relativa (RSI) é uma ferramenta comumente usada para identificar se uma criptomoeda está sobrevendida (abaixo de 30) ou sobrecomprada (acima de 70). No momento, o RSI está em 25.60, sugerindo que o mercado de IBEX está em um estado BUY.
Médias Móveis e Osciladores Populares de IBEX para Sábado, 19 de Outubro de 2024
Médias móveis (MA) são indicadores amplamente utilizados nos mercados financeiros, projetados para suavizar movimentos de preços ao longo de um período definido. Como indicadores atrasados, eles se baseiam em dados históricos de preços. A tabela abaixo destaca dois tipos: a média móvel simples (SMA) e a média móvel exponencial (EMA).
Média Móvel Simples Diária (SMA)
| Período | Valor | Ação |
|---|---|---|
| SMA 3 | $0.002097 | BUY |
| SMA 5 | $0.002098 | BUY |
| SMA 10 | $0.002124 | BUY |
| SMA 21 | $0.002282 | SELL |
| SMA 50 | $0.008499 | SELL |
| SMA 100 | $0.024873 | SELL |
| SMA 200 | $0.033824 | SELL |
Média Móvel Exponencial Diária (EMA)
| Período | Valor | Ação |
|---|---|---|
| EMA 3 | $0.002116 | BUY |
| EMA 5 | $0.002116 | BUY |
| EMA 10 | $0.002168 | SELL |
| EMA 21 | $0.0030033 | SELL |
| EMA 50 | $0.009553 | SELL |
| EMA 100 | $0.019765 | SELL |
| EMA 200 | $0.029911 | SELL |
Média Móvel Simples Semanal (SMA)
| Período | Valor | Ação |
|---|---|---|
| SMA 21 | $0.02946 | SELL |
| SMA 50 | $0.0377079 | SELL |
| SMA 100 | $0.042862 | SELL |
| SMA 200 | — | — |
Média Móvel Exponencial Semanal (EMA)
| Período | Valor | Ação |
|---|---|---|
| EMA 21 | $0.020097 | SELL |
| EMA 50 | $0.032517 | SELL |
| EMA 100 | $0.037665 | SELL |
| EMA 200 | $0.033585 | SELL |
Osciladores de Impermax
Um oscilador é uma ferramenta de análise técnica que define limites altos e baixos entre dois extremos, criando um indicador de tendência que flutua dentro desses limites. Os traders usam esse indicador para identificar condições de sobrecompra ou sobrevenda de curto prazo.
| Período | Valor | Ação |
|---|---|---|
| RSI (14) | 25.60 | BUY |
| Stoch RSI (14) | 84.05 | NEUTRAL |
| Estocástico Rápido (14) | 19 | BUY |
| Índice de Canal de Commodities (20) | -56.13 | NEUTRAL |
| Índice Direcional Médio (14) | 51.6 | SELL |
| Oscilador Impressionante (5, 34) | -0.000432 | NEUTRAL |
| Momentum (10) | -0 | BUY |
| MACD (12, 26) | 0 | NEUTRAL |
| Williams Percent Range (14) | -81 | BUY |
| Oscilador Ultimate (7, 14, 28) | 45.5 | NEUTRAL |
| VWMA (10) | 0.002066 | BUY |
| Média Móvel de Hull (9) | 0.002069 | BUY |
| Nuvem Ichimoku B/L (9, 26, 52, 26) | -0.013538 | SELL |
Previsão do preço de Impermax com base nos fluxos financeiros mundiais
Definições dos fluxos financeiros mundiais, usadas na previsão do preço do Impermax
M0: o total de todas as moedas físicas, mais as contas no Banco Central que podem ser trocadas por moedas físicas.
M1: o valor de M0, mais o valor em contas de demanda, incluindo contas 'correntes'.
M2: o valor de M1, mais a maioria das contas de poupança, do mercado de moedas e de certificados de depósito (CD) de menos de US$ 100.000.
Previsões de preço de Impermax por empresas de Internet ou nichos tecnológicos
| Comparação | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Facebook stock | $0.0030073 | $0.004225 | $0.005938 | $0.008343 | $0.011724 | $0.016474 |
| Amazon.com stock | $0.004465 | $0.009317 | $0.019442 | $0.040567 | $0.084646 | $0.17662 |
| Apple stock | $0.003035 | $0.0043059 | $0.0061076 | $0.008663 | $0.012288 | $0.017429 |
| Netflix stock | $0.003376 | $0.005328 | $0.0084071 | $0.013265 | $0.02093 | $0.033024 |
| Google stock | $0.002771 | $0.003589 | $0.004647 | $0.006019 | $0.007794 | $0.010094 |
| Tesla stock | $0.004851 | $0.010998 | $0.024932 | $0.05652 | $0.128127 | $0.290454 |
| Kodak stock | $0.0016049 | $0.0012035 | $0.0009025 | $0.000676 | $0.0005075 | $0.00038 |
| Nokia stock | $0.001417 | $0.000939 | $0.000622 | $0.000412 | $0.000273 | $0.00018 |
Este cálculo mostra quanto a criptomoeda pode custar, se assumirmos que sua capitalização se comportará da mesma forma que a de algumas empresas de Internet ou nichos tecnológicos. Se você extrapolar os dados, poderá obter uma imagem em potencial do preço futuro para 2024, 2025, 2026, 2027, 2028, 2029 e 2030.
Visão geral da previsão para Impermax
Você pode fazer perguntas como: 'Devo investir em Impermax agora?', 'Devo comprar IBEX hoje?', 'Impermax será um bom ou mau investimento no curto ou no longo prazo?'.
Atualizamos a previsão para Impermax regularmente com novos valores. Veja nossas previsões semelhantes. Fazemos previsões de preços futuros para uma enorme quantidade de moedas digitais, como Impermax, com métodos de análise técnica.
Se você estiver tentando encontrar criptomoedas com bom retorno, você deve explorar o máximo de fontes de informações disponíveis sobre Impermax para poder tomar sozinho uma decisão de tão grande responsabilidade sobre o seu investimento.
O preço de Impermax é de $0.00214 USD hoje, mas o preço pode tanto subir quanto descer e seu investimento pode ser perdido, porque criptomoedas são ativos de alto risco
Previsão do preço de Impermax com base no padrão de crescimento do Bitcoin
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| Se Impermax tiver 1% da média anterior do crescimento anual do Bitcoin | $0.002195 | $0.002252 | $0.002311 | $0.002371 |
| Se Impermax tiver 2% da média anterior do crescimento anual do Bitcoin | $0.002251 | $0.002368 | $0.002491 | $0.002621 |
| Se Impermax tiver 5% da média anterior do crescimento anual do Bitcoin | $0.002418 | $0.002732 | $0.003087 | $0.003489 |
| Se Impermax tiver 10% da média anterior do crescimento anual do Bitcoin | $0.002696 | $0.003397 | $0.00428 | $0.005393 |
| Se Impermax tiver 20% da média anterior do crescimento anual do Bitcoin | $0.003252 | $0.004943 | $0.007513 | $0.01142 |
| Se Impermax tiver 50% da média anterior do crescimento anual do Bitcoin | $0.004921 | $0.011318 | $0.026028 | $0.059856 |
| Se Impermax tiver 100% da média anterior do crescimento anual do Bitcoin | $0.0077033 | $0.027726 | $0.099797 | $0.359202 |
Perguntas Frequentes sobre Impermax
IBEX é um bom investimento?
A decisão de adquirir Impermax depende inteiramente da sua tolerância individual ao risco. Como você pode perceber, o valor de Impermax experimentou uma escalada de 0.2373% nas últimas 24 horas, e Impermax registrou um declínio de durante os últimos 30 dias. Consequentemente, a decisão de investir ou não em Impermax dependerá de quão alinhado esse investimento está com suas aspirações de negociação.
Impermax pode subir?
Parece que o valor médio de Impermax pode potencialmente subir para $0.0022072 até o final deste ano. Observando as perspectivas de Impermax em um horizonte de cinco anos mais longo, a moeda digital poderia potencialmente crescer até $0.006939. No entanto, dada a imprevisibilidade do mercado, é vital conduzir uma pesquisa aprofundada antes de investir quaisquer fundos em um projeto, rede ou ativo específico.
Qual será o preço de Impermax na próxima semana?
Com base na nossa nova previsão experimental de Impermax, o preço de Impermax aumentará 0.86% na próxima semana e atingirá $0.002158 até 13 de janeiro de 2026.
Qual será o preço de Impermax no próximo mês?
Com base na nossa nova previsão experimental de Impermax, o preço de Impermax diminuirá -11.62% no próximo mês e atingirá $0.001891 até 5 de fevereiro de 2026.
Até onde o preço de Impermax pode subir este ano em 2026?
De acordo com nossa previsão mais recente sobre o valor de Impermax em 2026, espera-se que IBEX fluctue dentro do intervalo de $0.000739 e $0.0022072. No entanto, é crucial lembrar que o mercado de criptomoedas é excepcionalmente instável, e essa previsão de preço de Impermax não considera flutuações repentinas e extremas de preço.
Onde estará Impermax em 5 anos?
O futuro de Impermax parece seguir uma tendência de alta, com um preço máximo de $0.006939 projetada após um período de cinco anos. Com base na previsão de Impermax para 2030, o valor de Impermax pode potencialmente atingir seu pico mais alto de aproximadamente $0.006939, enquanto seu pico mais baixo está previsto para cerca de $0.002400026.
Quanto será Impermax em 2026?
Com base na nossa nova simulação experimental de previsão de preços de Impermax, espera-se que o valor de IBEX em 2026 aumente 3.13% para $0.0022072 se o melhor cenário ocorrer. O preço ficará entre $0.0022072 e $0.000739 durante 2026.
Quanto será Impermax em 2027?
De acordo com nossa última simulação experimental para previsão de preços de Impermax, o valor de IBEX pode diminuir -12.62% para $0.00187 em 2027, assumindo as condições mais favoráveis. O preço está projetado para flutuar entre $0.00187 e $0.000711 ao longo do ano.
Quanto será Impermax em 2028?
Nosso novo modelo experimental de previsão de preços de Impermax sugere que o valor de IBEX em 2028 pode aumentar 47.02%, alcançando $0.003146 no melhor cenário. O preço é esperado para variar entre $0.003146 e $0.001284 durante o ano.
Quanto será Impermax em 2029?
Com base no nosso modelo de previsão experimental, o valor de Impermax pode experimentar um 333.75% crescimento em 2029, potencialmente alcançando $0.009283 sob condições ótimas. A faixa de preço prevista para 2029 está entre $0.009283 e $0.002822.
Quanto será Impermax em 2030?
Usando nossa nova simulação experimental para previsões de preços de Impermax, espera-se que o valor de IBEX em 2030 aumente 224.23%, alcançando $0.006939 no melhor cenário. O preço está previsto para variar entre $0.006939 e $0.002400026 ao longo de 2030.
Quanto será Impermax em 2031?
Nossa simulação experimental indica que o preço de Impermax poderia aumentar 195.98% em 2031, potencialmente atingindo $0.006334 sob condições ideais. O preço provavelmente oscilará entre $0.006334 e $0.002837 durante o ano.
Quanto será Impermax em 2032?
Com base nos achados da nossa mais recente previsão experimental de preços de Impermax, IBEX poderia ver um 449.04% aumento em valor, atingindo $0.01175 se o cenário mais positivo se desenrolar em 2032. O preço é esperado para permanecer dentro de uma faixa de $0.01175 e $0.004331 ao longo do ano.
Quanto será Impermax em 2033?
De acordo com nossa previsão experimental de preços de Impermax, espera-se que o valor de IBEX seja aumentar 1362.43% em 2033, com o preço potencial mais alto sendo $0.031299. Ao longo do ano, o preço de IBEX poderia variar entre $0.031299 e $0.010065.
Quanto será Impermax em 2034?
Os resultados da nossa nova simulação de previsão de preços de Impermax sugerem que IBEX pode aumentar 746.96% em 2034, atingindo potencialmente $0.018126 nas melhores circunstâncias. A faixa de preço prevista para o ano é entre $0.018126 e $0.008091.
Quanto será Impermax em 2035?
Com base em nossa previsão experimental para o preço de Impermax, IBEX poderia aumentar 897.93%, com o valor potencialmente atingindo $0.021357 em 2035. A faixa de preço esperada para o ano está entre $0.021357 e $0.009567.
Quanto será Impermax em 2036?
Nossa recente simulação de previsão de preços de Impermax sugere que o valor de IBEX pode aumentar 1964.7% em 2036, possivelmente atingindo $0.044188 se as condições forem ideais. A faixa de preço esperada para 2036 está entre $0.044188 e $0.015836.
Quanto será Impermax em 2037?
De acordo com a simulação experimental, o valor de Impermax poderia aumentar 4830.69% em 2037, com um pico de $0.105527 sob condições favoráveis. O preço é esperado para cair entre $0.105527 e $0.041126 ao longo do ano.
Previsões relacionadas
Previsão de Preço do SolPod
Previsão de Preço do zuzalu
Previsão de Preço do SOFT COQ INU
Previsão de Preço do All Street Bets
Previsão de Preço do MagicRing
Previsão de Preço do AI INU
Previsão de Preço do Wall Street Baby On Solana
Previsão de Preço do Meta Masters Guild Games
Previsão de Preço do Morfey
Previsão de Preço do PANTIESPrevisão de Preço do Celer Bridged BUSD (zkSync)
Previsão de Preço do Bridged BUSD
Previsão de Preço do Multichain Bridged BUSD (Moonriver)
Previsão de Preço do tooker kurlson
Previsão de Preço do dogwifsaudihatPrevisão de Preço do Harmony Horizen Bridged BUSD (Harmony)
Previsão de Preço do IoTeX Bridged BUSD (IoTeX)
Previsão de Preço do MIMANY
Previsão de Preço do The Open League MEME
Previsão de Preço do Sandwich Cat
Previsão de Preço do Hege
Previsão de Preço do DexNet
Previsão de Preço do SolDocs
Previsão de Preço do Secret Society
Previsão de Preço do duk
Como ler e prever os movimentos de preço de Impermax?
Traders de Impermax utilizam indicadores e padrões de gráfico para prever a direção do mercado. Eles também identificam níveis-chave de suporte e resistência para avaliar quando uma tendência de baixa pode desacelerar ou uma tendência de alta pode estagnar.
Indicadores de Previsão de Preço de Impermax
Médias móveis são ferramentas populares para a previsão de preço de Impermax. Uma média móvel simples (SMA) calcula o preço médio de fechamento de IBEX em um período específico, como uma SMA de 12 dias. Uma média móvel exponencial (EMA) dá mais peso aos preços recentes, reagindo mais rapidamente às mudanças de preço.
Médias móveis comumente usadas no mercado de criptomoedas incluem as de 50 dias, 100 dias e 200 dias, que ajudam a identificar níveis-chave de resistência e suporte. Um movimento de preço de IBEX acima dessas médias é visto como altista, enquanto uma queda abaixo indica fraqueza.
Traders também usam RSI e níveis de retração de Fibonacci para avaliar a direção futura de IBEX.
Como ler gráficos de Impermax e prever movimentos de preço?
A maioria dos traders prefere gráficos de velas em vez de gráficos de linha simples porque eles fornecem informações mais detalhadas. Velas podem representar a ação de preço de Impermax em diferentes períodos de tempo, como 5 minutos para tendências de curto prazo e semanal para tendências de longo prazo. Opções populares incluem gráficos de 1 hora, 4 horas e 1 dia.
Por exemplo, um gráfico de velas de 1 hora mostra os preços de abertura, fechamento, máximo e mínimo de IBEX dentro de cada hora. A cor da vela é crucial: verde indica que o preço fechou mais alto do que abriu, enquanto vermelho significa o oposto. Alguns gráficos usam velas vazias e preenchidas para transmitir a mesma informação.
O que afeta o preço de Impermax?
A ação de preço de Impermax é impulsionada pela oferta e demanda, influenciada por fatores como reduções pela metade das recompensas de bloco, hard forks e atualizações de protocolo. Eventos do mundo real, como regulamentações, adoção por empresas e governos e hacks de exchanges de criptomoedas, também impactam o preço de IBEX. A capitalização de mercado de Impermax pode mudar rapidamente.
Traders frequentemente monitoram a atividade de "baleias" de IBEX, grandes detentores de Impermax, pois suas ações podem influenciar significativamente os movimentos de preço no relativamente pequeno mercado de Impermax.
Padrões de previsão de preço altistas e baixistas
Traders frequentemente identificam padrões de velas para ganhar vantagem em previsões de preço de criptomoedas. Certas formações indicam tendências altistas, enquanto outras sugerem movimentos baixistas.
Padrões de velas altistas comumente seguidos:
- Martelo
- Engolfo de Alta
- Linha de Perfuração
- Estrela da Manhã
- Três Soldados Brancos
Padrões de velas baixistas comuns:
- Harami de Baixa
- Nuvem Negra
- Estrela da Noite
- Estrela Cadente
- Homem Enforcado


