Previsão de Preço Popsicle Finance - Projeção ICE
Previsão de Preço Popsicle Finance até $0.023863 até 2026
| Ano | Preço Mínimo | Preço Máximo |
|---|---|---|
| 2026 | $0.007994 | $0.023863 |
| 2027 | $0.007696 | $0.020217 |
| 2028 | $0.013889 | $0.034019 |
| 2029 | $0.03051 | $0.100366 |
| 2030 | $0.025948 | $0.075023 |
| 2031 | $0.030678 | $0.068487 |
| 2032 | $0.046828 | $0.127041 |
| 2033 | $0.108819 | $0.338392 |
| 2034 | $0.087485 | $0.195978 |
| 2035 | $0.103435 | $0.230911 |
Calculadora de lucro do investimento
Se você abrir um short de $10,000.00 em Popsicle Finance hoje e fechar em Apr 06, 2026, nossa previsão mostra que pode lucrar cerca de $3,954.81, com um retorno de 39.55% nos próximos 90 dias.
Previsão de preço de longo prazo de ICE Token para os anos 2027, 2028, 2029, 2030, 2031, 2032 e 2037
[
'name' => 'Popsicle Finance'
'name_with_ticker' => 'Popsicle Finance <small>ICE</small>'
'name_lang' => 'ICE Token'
'name_lang_with_ticker' => 'ICE Token <small>ICE</small>'
'name_with_lang' => 'ICE Token/Popsicle Finance'
'name_with_lang_with_ticker' => 'ICE Token/Popsicle Finance <small>ICE</small>'
'image' => '/uploads/coins/ice-token.png?1717219735'
'price_for_sd' => 0.02313
'ticker' => 'ICE'
'marketcap' => '$156.18K'
'low24h' => '$0.01717'
'high24h' => '$0.1907'
'volume24h' => '$10.13'
'current_supply' => '6.75M'
'max_supply' => '24.16M'
'algo' => null
'proof' => null
'ico_price_and_roi' => '—'
'price' => '$0.02313'
'change_24h_pct' => '34.4524%'
'ath_price' => '$66.04'
'ath_days' => 1522
'ath_exchange' => null
'ath_pair' => null
'ath_date' => '6 de nov. de 2021'
'ath_pct' => '-99.96%'
'fdv' => '$559.05K'
'new_prediction' => true
'change_24h_pct_is_increased' => true
'change_30d_pct' => null
'change_30d_pct_is_increased' => false
'max_price' => '$1.14'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.023337'
'next_week_prediction_price_date' => '13 de janeiro de 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.02045'
'next_month_prediction_price_date' => '5 de fevereiro de 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.007994'
'current_year_max_price_prediction' => '$0.023863'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.025948'
'grand_prediction_max_price' => '$0.075023'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.023577512636865
107 => 0.023665542510414
108 => 0.023863878310437
109 => 0.022169120614636
110 => 0.022930017064579
111 => 0.023376972442564
112 => 0.02135761178445
113 => 0.023337056175093
114 => 0.022139618653648
115 => 0.021733190373962
116 => 0.022280392509705
117 => 0.022067147305234
118 => 0.021883811600609
119 => 0.021781507127321
120 => 0.022183311983315
121 => 0.022164567306522
122 => 0.021507136575154
123 => 0.020649544986389
124 => 0.020937380873062
125 => 0.020832807396958
126 => 0.020453819629309
127 => 0.020709211625547
128 => 0.019584594525045
129 => 0.017649749256143
130 => 0.018927967306693
131 => 0.018878757302181
201 => 0.01885394338641
202 => 0.019814488924046
203 => 0.019722154634158
204 => 0.019554566993872
205 => 0.020450741750871
206 => 0.020123625909315
207 => 0.021131719854805
208 => 0.021795715726734
209 => 0.021627304895596
210 => 0.022251796222515
211 => 0.020944012030545
212 => 0.021378405479923
213 => 0.021467933367796
214 => 0.020439683093479
215 => 0.019737261665901
216 => 0.019690418164873
217 => 0.018472516209088
218 => 0.019123109603307
219 => 0.019695604866836
220 => 0.019421424063033
221 => 0.019334626611467
222 => 0.019778055967445
223 => 0.01981251422612
224 => 0.019026862276605
225 => 0.019190224195271
226 => 0.019871470552766
227 => 0.01917305853496
228 => 0.017816158069319
301 => 0.017479627993223
302 => 0.017434728677592
303 => 0.016522032420684
304 => 0.017502116542089
305 => 0.017074283558474
306 => 0.018425802827488
307 => 0.017653822269371
308 => 0.017620543730448
309 => 0.017570238337967
310 => 0.016784642966638
311 => 0.016956638425769
312 => 0.017528377527567
313 => 0.01773238048019
314 => 0.017711101300885
315 => 0.017525575694057
316 => 0.017610508366818
317 => 0.01733691063535
318 => 0.017240297581924
319 => 0.016935360209798
320 => 0.016487186513873
321 => 0.0165495078151
322 => 0.015661558452446
323 => 0.015177756512632
324 => 0.015043846512098
325 => 0.014864776462901
326 => 0.015064072950642
327 => 0.015659043003466
328 => 0.014941382889823
329 => 0.013711004962984
330 => 0.013784952772849
331 => 0.013951091546314
401 => 0.01364149304108
402 => 0.01334848403851
403 => 0.013603231593673
404 => 0.013081904246286
405 => 0.014014091465575
406 => 0.013988878413718
407 => 0.014336340162998
408 => 0.014553615125455
409 => 0.014052866680595
410 => 0.01392692980088
411 => 0.013998669171078
412 => 0.012812977183135
413 => 0.014239443831605
414 => 0.014251779974417
415 => 0.014146150430177
416 => 0.01490569988327
417 => 0.016508586138713
418 => 0.015905515853465
419 => 0.015671988811122
420 => 0.015228053732919
421 => 0.015819570866367
422 => 0.015774151579623
423 => 0.015568748340213
424 => 0.015444519820121
425 => 0.015673414677445
426 => 0.015416157214231
427 => 0.015369946704876
428 => 0.015089961295711
429 => 0.014990019243164
430 => 0.014916026126266
501 => 0.014834566974974
502 => 0.015014245564367
503 => 0.014607070242115
504 => 0.014116056719368
505 => 0.014075234257792
506 => 0.014187948663352
507 => 0.014138080929492
508 => 0.014074995510267
509 => 0.013954548264676
510 => 0.013918814139857
511 => 0.014034932709785
512 => 0.01390384161447
513 => 0.014097273666509
514 => 0.014044670851438
515 => 0.013750835802513
516 => 0.013384608539883
517 => 0.013381348349058
518 => 0.013302445286058
519 => 0.013201950372172
520 => 0.013173994986141
521 => 0.013581777465126
522 => 0.014425874992723
523 => 0.014260158450513
524 => 0.014379905635574
525 => 0.014968943267926
526 => 0.015156180618271
527 => 0.015023283981956
528 => 0.01484136686946
529 => 0.014849370299165
530 => 0.015471036142619
531 => 0.015509808678724
601 => 0.015607774368968
602 => 0.015733687966032
603 => 0.015044727612002
604 => 0.014816920328447
605 => 0.014708972599232
606 => 0.014376535374278
607 => 0.014735040420377
608 => 0.014526154882732
609 => 0.014554340678307
610 => 0.014535984641963
611 => 0.014546008279036
612 => 0.014013830900249
613 => 0.01420772836666
614 => 0.01388533622172
615 => 0.013453689329863
616 => 0.013452242298126
617 => 0.013557887263395
618 => 0.013495045504165
619 => 0.013325939945888
620 => 0.013349960592285
621 => 0.013139514454131
622 => 0.013375512563708
623 => 0.013382280145048
624 => 0.013291408017957
625 => 0.013654995667224
626 => 0.013803957823788
627 => 0.013744143843067
628 => 0.013799761115449
629 => 0.014267044721008
630 => 0.014343232337727
701 => 0.014377069844402
702 => 0.014331732068068
703 => 0.013808302201954
704 => 0.013831518542311
705 => 0.01366117244105
706 => 0.013517247936113
707 => 0.013523004161526
708 => 0.013597000065939
709 => 0.013920144520315
710 => 0.014600182974141
711 => 0.014625989936362
712 => 0.014657268727416
713 => 0.014530042164738
714 => 0.01449166941604
715 => 0.01454229297642
716 => 0.014797679664953
717 => 0.015454603564672
718 => 0.01522240278404
719 => 0.015033619934965
720 => 0.015199233389094
721 => 0.015173738495952
722 => 0.01495853594068
723 => 0.014952495921707
724 => 0.014539453413721
725 => 0.014386761003041
726 => 0.014259159795848
727 => 0.014119822608707
728 => 0.014037218853545
729 => 0.014164135764209
730 => 0.014193163163315
731 => 0.01391565712002
801 => 0.013877834071739
802 => 0.014104451497078
803 => 0.014004725617335
804 => 0.014107296157733
805 => 0.014131093402939
806 => 0.014127261498364
807 => 0.014023136226469
808 => 0.014089502569714
809 => 0.013932526383179
810 => 0.013761838357383
811 => 0.013652950031165
812 => 0.013557930524599
813 => 0.013610652869408
814 => 0.013422707336883
815 => 0.013362579778433
816 => 0.014067019145913
817 => 0.01458739608067
818 => 0.014579829593946
819 => 0.014533770551961
820 => 0.014465336158306
821 => 0.014792673262806
822 => 0.01467863556091
823 => 0.014761607517208
824 => 0.014782727362408
825 => 0.014846650772938
826 => 0.014869497897799
827 => 0.014800438018119
828 => 0.014568664626959
829 => 0.01399110737254
830 => 0.013722252911522
831 => 0.013633526461261
901 => 0.013636751499213
902 => 0.013547790555308
903 => 0.013573993540238
904 => 0.013538678226486
905 => 0.013471799565932
906 => 0.013606523300577
907 => 0.013622048955957
908 => 0.013590602826462
909 => 0.013598009528324
910 => 0.013337649006923
911 => 0.013357443651891
912 => 0.013247224553323
913 => 0.013226559801053
914 => 0.012947935517746
915 => 0.012454312212634
916 => 0.01272782744084
917 => 0.012397459507228
918 => 0.012272344164878
919 => 0.012864620736134
920 => 0.012805172595575
921 => 0.012703423220423
922 => 0.012552914688146
923 => 0.012497089609471
924 => 0.012157914103517
925 => 0.012137873805194
926 => 0.012305978344454
927 => 0.01222840388371
928 => 0.012119459961079
929 => 0.011724876116778
930 => 0.011281233233562
1001 => 0.011294624023567
1002 => 0.011435738570448
1003 => 0.011846048147396
1004 => 0.011685733097255
1005 => 0.011569422688974
1006 => 0.011547641245781
1007 => 0.011820281609881
1008 => 0.012206124845004
1009 => 0.012387153858168
1010 => 0.012207759604055
1011 => 0.012001681144203
1012 => 0.012014224185179
1013 => 0.012097667417408
1014 => 0.012106436121291
1015 => 0.011972300229136
1016 => 0.012010058697072
1017 => 0.01195270013157
1018 => 0.01160069072096
1019 => 0.011594323986956
1020 => 0.011507935200674
1021 => 0.011505319382558
1022 => 0.011358350506399
1023 => 0.011337788544677
1024 => 0.01104597292069
1025 => 0.011238046848097
1026 => 0.011109213741927
1027 => 0.01091503186227
1028 => 0.010881554833025
1029 => 0.010880548473102
1030 => 0.011079929845235
1031 => 0.011235716960678
1101 => 0.011111454848967
1102 => 0.01108316277485
1103 => 0.011385248108317
1104 => 0.011346804996064
1105 => 0.011313513508785
1106 => 0.012171576815264
1107 => 0.011492352752671
1108 => 0.011196172292626
1109 => 0.010829592730177
1110 => 0.010948952884165
1111 => 0.010974103822376
1112 => 0.010092546055618
1113 => 0.009734898179436
1114 => 0.009612166906006
1115 => 0.0095415333229816
1116 => 0.0095737219337265
1117 => 0.0092517968972504
1118 => 0.009468135845911
1119 => 0.0091893759759686
1120 => 0.0091426409766097
1121 => 0.009641098155788
1122 => 0.0097104555603261
1123 => 0.0094145553249101
1124 => 0.0096045711779439
1125 => 0.0095356687882159
1126 => 0.0091941545138494
1127 => 0.0091811111805776
1128 => 0.0090097513225077
1129 => 0.0087416063264353
1130 => 0.0086190568679394
1201 => 0.0085552320459315
1202 => 0.008581567411413
1203 => 0.0085682514447501
1204 => 0.0084813557550078
1205 => 0.0085732322039697
1206 => 0.008338525842842
1207 => 0.0082450638786833
1208 => 0.0082028492777739
1209 => 0.007994533873079
1210 => 0.0083260563202295
1211 => 0.0083913704187279
1212 => 0.0084568132061769
1213 => 0.0090264479912318
1214 => 0.0089979906471416
1215 => 0.0092552311784279
1216 => 0.0092452352844171
1217 => 0.0091718661178739
1218 => 0.0088623336728704
1219 => 0.0089857077885635
1220 => 0.0086059814370547
1221 => 0.0088904982384871
1222 => 0.008760656652019
1223 => 0.0088465986674934
1224 => 0.0086920671745914
1225 => 0.0087775912832123
1226 => 0.0084068588144752
1227 => 0.0080606740515151
1228 => 0.0081999889058935
1229 => 0.0083514400851889
1230 => 0.0086798248309441
1231 => 0.0084842415854876
]
'min_raw' => 0.007994533873079
'max_raw' => 0.023863878310437
'avg_raw' => 0.015929206091758
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.007994'
'max' => '$0.023863'
'avg' => '$0.015929'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.015144506126921
'max_diff' => 0.00072483831043653
'year' => 2026
]
1 => [
'items' => [
101 => 0.0085545807163751
102 => 0.0083189564025304
103 => 0.007832796140311
104 => 0.0078355477545983
105 => 0.0077607625898329
106 => 0.0076961372886627
107 => 0.0085067066739784
108 => 0.0084058995577087
109 => 0.008245276611242
110 => 0.0084602768079898
111 => 0.0085171262725218
112 => 0.0085187446968561
113 => 0.008675603290445
114 => 0.0087593187499619
115 => 0.0087740739625453
116 => 0.0090208943487116
117 => 0.0091036252865149
118 => 0.0094443823108063
119 => 0.0087522160781092
120 => 0.0087379613700395
121 => 0.0084633023016684
122 => 0.0082891091783194
123 => 0.0084752294538528
124 => 0.0086401066100242
125 => 0.0084684254945039
126 => 0.0084908434238047
127 => 0.0082603755530812
128 => 0.0083427569723437
129 => 0.0084137149485881
130 => 0.008374536124823
131 => 0.0083158835293701
201 => 0.0086265885634525
202 => 0.0086090573677667
203 => 0.0088983930385821
204 => 0.009123950884575
205 => 0.0095281908678821
206 => 0.0091063453717942
207 => 0.0090909716452327
208 => 0.009241252288394
209 => 0.0091036022793315
210 => 0.0091905923335422
211 => 0.0095141754252877
212 => 0.0095210122261207
213 => 0.0094064870034472
214 => 0.0093995181332395
215 => 0.0094215139550226
216 => 0.0095503441702332
217 => 0.009505326934486
218 => 0.0095574220193897
219 => 0.0096225677207699
220 => 0.0098920379628839
221 => 0.0099570063259703
222 => 0.0097991668859044
223 => 0.0098134180200891
224 => 0.0097543817367149
225 => 0.009697353426698
226 => 0.0098255447393003
227 => 0.010059816882688
228 => 0.010058359487842
301 => 0.010112706071508
302 => 0.010146563542901
303 => 0.0100012224905
304 => 0.0099066108097259
305 => 0.0099428909484324
306 => 0.010000903680303
307 => 0.0099240782013629
308 => 0.0094498757563223
309 => 0.0095937184859782
310 => 0.0095697760222133
311 => 0.0095356790423091
312 => 0.0096803140192809
313 => 0.0096663636229126
314 => 0.0092484950906985
315 => 0.0092752456783597
316 => 0.0092501218825349
317 => 0.0093313020066899
318 => 0.0090992182862166
319 => 0.0091706056755265
320 => 0.0092153791768864
321 => 0.0092417511131537
322 => 0.009337024630357
323 => 0.009325845382756
324 => 0.0093363297126297
325 => 0.0094775951873662
326 => 0.010192067482126
327 => 0.010230954632736
328 => 0.010039460080827
329 => 0.010115958377252
330 => 0.0099690983764553
331 => 0.010067686478866
401 => 0.01013513795467
402 => 0.009830337705687
403 => 0.0098122894130795
404 => 0.0096648232688188
405 => 0.0097440632218352
406 => 0.0096179867590318
407 => 0.0096489215130363
408 => 0.0095624252439964
409 => 0.0097181013070329
410 => 0.0098921713351222
411 => 0.0099361482984512
412 => 0.0098204638412056
413 => 0.0097367006701825
414 => 0.0095896401351697
415 => 0.0098342050823537
416 => 0.009905723325892
417 => 0.0098338294274666
418 => 0.0098171700402887
419 => 0.0097856005316896
420 => 0.0098238676607768
421 => 0.0099053338221783
422 => 0.0098669158849051
423 => 0.009892291609311
424 => 0.0097955855152092
425 => 0.010001270604436
426 => 0.010327948026941
427 => 0.010328998348272
428 => 0.010290580203911
429 => 0.01027486032697
430 => 0.010314279674491
501 => 0.010335663053455
502 => 0.010463137995068
503 => 0.010599923686244
504 => 0.011238242822689
505 => 0.01105900536345
506 => 0.01162536007508
507 => 0.012073273120023
508 => 0.012207582657338
509 => 0.012084024202761
510 => 0.011661337404147
511 => 0.011640598373273
512 => 0.012272270904165
513 => 0.012093794481753
514 => 0.012072565279215
515 => 0.011846722431508
516 => 0.011980223525683
517 => 0.011951024878044
518 => 0.011904933384299
519 => 0.01215964417222
520 => 0.012636440029018
521 => 0.012562126923373
522 => 0.012506655637294
523 => 0.012263596609147
524 => 0.012409972433291
525 => 0.012357850805958
526 => 0.012581798394184
527 => 0.012449136803965
528 => 0.012092442347317
529 => 0.012149247115219
530 => 0.012140661188826
531 => 0.012317358945588
601 => 0.012264318664916
602 => 0.012130304222758
603 => 0.012634810392614
604 => 0.012602050568154
605 => 0.0126484965093
606 => 0.01266894344898
607 => 0.012976027464175
608 => 0.013101829959608
609 => 0.013130389328554
610 => 0.013249891969301
611 => 0.013127415993988
612 => 0.013617407219132
613 => 0.013943222792072
614 => 0.014321674346358
615 => 0.014874693785358
616 => 0.015082634210138
617 => 0.015045071633604
618 => 0.01546436466073
619 => 0.016217824910115
620 => 0.015197367492257
621 => 0.016271911631126
622 => 0.015931723362969
623 => 0.015125143098894
624 => 0.015073208838844
625 => 0.015619434358265
626 => 0.016830909988082
627 => 0.016527449083256
628 => 0.016831406341411
629 => 0.016476824054133
630 => 0.016459216054915
701 => 0.01681418507116
702 => 0.01764358952597
703 => 0.017249570559251
704 => 0.016684647753045
705 => 0.017101777961975
706 => 0.016740421171421
707 => 0.015926183184906
708 => 0.016527217032421
709 => 0.016125322815046
710 => 0.016242616913548
711 => 0.017087338781216
712 => 0.016985699611242
713 => 0.017117230108723
714 => 0.016885082223421
715 => 0.016668219492188
716 => 0.016263429099904
717 => 0.016143590620674
718 => 0.016176709664996
719 => 0.01614357420852
720 => 0.015917097704253
721 => 0.015868190124719
722 => 0.015786675349473
723 => 0.015811940186836
724 => 0.015658668561384
725 => 0.015947923786145
726 => 0.016001612104769
727 => 0.016212107935465
728 => 0.016233962310901
729 => 0.01682019020317
730 => 0.016497305731268
731 => 0.016713924511524
801 => 0.016694548088923
802 => 0.015142624138982
803 => 0.015356465566543
804 => 0.015689135720691
805 => 0.015539268267171
806 => 0.015327390751477
807 => 0.0151562882974
808 => 0.01489705058335
809 => 0.015261922687656
810 => 0.015741690704997
811 => 0.016246130019559
812 => 0.016852180803831
813 => 0.016716917323991
814 => 0.016234800321707
815 => 0.016256427738243
816 => 0.016390119917192
817 => 0.016216976398237
818 => 0.016165912994334
819 => 0.016383104589628
820 => 0.016384600268778
821 => 0.016185377725127
822 => 0.0159639783252
823 => 0.015963050653631
824 => 0.015923654768878
825 => 0.016483832494512
826 => 0.016791873603254
827 => 0.016827190019938
828 => 0.016789496527025
829 => 0.016804003256446
830 => 0.016624760922491
831 => 0.017034455745249
901 => 0.017410432229229
902 => 0.017309662499956
903 => 0.017158594350515
904 => 0.017038261293058
905 => 0.017281315855859
906 => 0.017270493018781
907 => 0.017407148402636
908 => 0.017400948925065
909 => 0.017354996859343
910 => 0.017309664141049
911 => 0.017489403244906
912 => 0.017437641269517
913 => 0.017385798893483
914 => 0.017281821071676
915 => 0.017295953384549
916 => 0.017144911319154
917 => 0.017075032348487
918 => 0.016024220292759
919 => 0.015743408975194
920 => 0.015831757932141
921 => 0.015860844702748
922 => 0.015738635257474
923 => 0.015913852208966
924 => 0.015886544832677
925 => 0.015992781859538
926 => 0.01592640957743
927 => 0.01592913351904
928 => 0.016124320248655
929 => 0.016180983786645
930 => 0.016152164253892
1001 => 0.016172348466757
1002 => 0.016637485132994
1003 => 0.016571357573288
1004 => 0.016536228625166
1005 => 0.016545959583871
1006 => 0.016664811974738
1007 => 0.01669808415508
1008 => 0.016557107588974
1009 => 0.016623592952526
1010 => 0.016906679192279
1011 => 0.017005743354899
1012 => 0.017321908608487
1013 => 0.017187595989373
1014 => 0.01743413261467
1015 => 0.018191902150302
1016 => 0.018797260889029
1017 => 0.018240547975388
1018 => 0.019352212207089
1019 => 0.020217802270231
1020 => 0.020184579481891
1021 => 0.020033643832924
1022 => 0.019048192558939
1023 => 0.018141365604368
1024 => 0.018899964857773
1025 => 0.018901898683277
1026 => 0.018836734334641
1027 => 0.018432004161854
1028 => 0.018822650601932
1029 => 0.018853658697726
1030 => 0.018836302409799
1031 => 0.018525996735263
1101 => 0.018052217324322
1102 => 0.018144792687152
1103 => 0.018296433019954
1104 => 0.018009346234472
1105 => 0.017917604611309
1106 => 0.018088169743327
1107 => 0.018637766137348
1108 => 0.018533868122653
1109 => 0.018531154925605
1110 => 0.018975674692082
1111 => 0.018657494472654
1112 => 0.018145960358945
1113 => 0.018016791248927
1114 => 0.017558327927103
1115 => 0.017874990176477
1116 => 0.017886386287089
1117 => 0.017712953609316
1118 => 0.018160033464904
1119 => 0.018155913545328
1120 => 0.018580349329153
1121 => 0.019391711137027
1122 => 0.019151751525749
1123 => 0.018872704605364
1124 => 0.018903044742741
1125 => 0.019235801163934
1126 => 0.019034609035591
1127 => 0.019106959127705
1128 => 0.019235691653405
1129 => 0.019313359182409
1130 => 0.018891869580553
1201 => 0.018793600192183
1202 => 0.018592575511445
1203 => 0.018540131924543
1204 => 0.018703862332487
1205 => 0.018660725154675
1206 => 0.01788542848812
1207 => 0.017804405672755
1208 => 0.017806890526828
1209 => 0.017603154805169
1210 => 0.017292408927461
1211 => 0.018109030540404
1212 => 0.018043444396272
1213 => 0.017971042369115
1214 => 0.017979911204322
1215 => 0.018334378968626
1216 => 0.018128769764278
1217 => 0.018675415532722
1218 => 0.018563041596406
1219 => 0.018447785692649
1220 => 0.018431853815969
1221 => 0.018387490126194
1222 => 0.018235350526954
1223 => 0.0180516328187
1224 => 0.017930326474355
1225 => 0.016539778379121
1226 => 0.016797856017151
1227 => 0.017094750815186
1228 => 0.017197237709737
1229 => 0.017021926784731
1230 => 0.018242272870806
1231 => 0.01846524186028
]
'min_raw' => 0.0076961372886627
'max_raw' => 0.020217802270231
'avg_raw' => 0.013956969779447
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.007696'
'max' => '$0.020217'
'avg' => '$0.013956'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -0.00029839658441631
'max_diff' => -0.003646076040206
'year' => 2027
]
2 => [
'items' => [
101 => 0.017789854247257
102 => 0.017663516800755
103 => 0.018250555532766
104 => 0.017896499414797
105 => 0.01805593086304
106 => 0.01771132727628
107 => 0.01841153516001
108 => 0.018406200749105
109 => 0.018133804067422
110 => 0.018364031877488
111 => 0.018324024129861
112 => 0.018016488947124
113 => 0.018421284573843
114 => 0.018421485347424
115 => 0.018159309463718
116 => 0.017853145429231
117 => 0.017798410531136
118 => 0.017757175138021
119 => 0.018045789484109
120 => 0.018304560204338
121 => 0.018786068359982
122 => 0.018907130950662
123 => 0.019379646301682
124 => 0.019098286416505
125 => 0.019223009609383
126 => 0.019358414278425
127 => 0.019423332256106
128 => 0.019317551895166
129 => 0.020051562730377
130 => 0.020113535734379
131 => 0.020134314746557
201 => 0.019886810422789
202 => 0.020106652191403
203 => 0.020003795508263
204 => 0.020271400023384
205 => 0.020313363828301
206 => 0.020277821978442
207 => 0.020291141952477
208 => 0.019664793193009
209 => 0.019632313705578
210 => 0.019189453589812
211 => 0.019369922360443
212 => 0.019032544643842
213 => 0.019139530593152
214 => 0.019186688980208
215 => 0.019162056115025
216 => 0.019380125793962
217 => 0.019194722018173
218 => 0.018705410970664
219 => 0.018215966610687
220 => 0.018209822035441
221 => 0.018080959974869
222 => 0.01798781630734
223 => 0.018005759082155
224 => 0.018068991760917
225 => 0.0179841411091
226 => 0.018002248297702
227 => 0.018302948276071
228 => 0.018363251512239
229 => 0.018158317553745
301 => 0.017335478138566
302 => 0.017133551282144
303 => 0.017278692302156
304 => 0.017209324242869
305 => 0.013889267796683
306 => 0.014669265811621
307 => 0.014205817477375
308 => 0.014419395792028
309 => 0.013946335052127
310 => 0.014172104432445
311 => 0.014130413071678
312 => 0.015384626797879
313 => 0.015365043975659
314 => 0.015374417236356
315 => 0.014927007081395
316 => 0.015639743606758
317 => 0.015990863248328
318 => 0.01592588034742
319 => 0.015942235143577
320 => 0.01566120555957
321 => 0.01537713821703
322 => 0.015062063816502
323 => 0.015647433108309
324 => 0.015582350035647
325 => 0.015731627188183
326 => 0.016111281016981
327 => 0.016167186485436
328 => 0.016242324001977
329 => 0.01621539255095
330 => 0.016857008976086
331 => 0.01677930499348
401 => 0.016966549234598
402 => 0.016581373624364
403 => 0.016145510860181
404 => 0.016228354122225
405 => 0.016220375649906
406 => 0.01611880054003
407 => 0.016027103072564
408 => 0.015874452624835
409 => 0.016357461229467
410 => 0.016337851962196
411 => 0.01665530320603
412 => 0.016599190615125
413 => 0.016224456999985
414 => 0.01623784068436
415 => 0.016327852393761
416 => 0.016639383947732
417 => 0.016731867723637
418 => 0.016689025553797
419 => 0.016790429792031
420 => 0.016870575567348
421 => 0.016800494867465
422 => 0.017792689790691
423 => 0.017380661282979
424 => 0.017581481110762
425 => 0.017629375456389
426 => 0.017506695097175
427 => 0.017533300074234
428 => 0.017573599365057
429 => 0.017818288767521
430 => 0.018460424561036
501 => 0.018744822132817
502 => 0.019600446259451
503 => 0.018721206873486
504 => 0.018669036446977
505 => 0.018823160189557
506 => 0.019325502128903
507 => 0.019732603088164
508 => 0.019867661962569
509 => 0.0198855122224
510 => 0.020138891649327
511 => 0.020284124011596
512 => 0.020108124722358
513 => 0.019958983752623
514 => 0.01942477931109
515 => 0.019486614929788
516 => 0.019912601023183
517 => 0.02051433147056
518 => 0.021030678793792
519 => 0.020849871957717
520 => 0.022229300487233
521 => 0.022366065191475
522 => 0.022347168731481
523 => 0.022658739081059
524 => 0.022040335387344
525 => 0.021775955827274
526 => 0.019991229723101
527 => 0.020492664960342
528 => 0.02122153052593
529 => 0.021125062435219
530 => 0.020595740778857
531 => 0.02103027725585
601 => 0.020886605907344
602 => 0.020773286353848
603 => 0.021292425196491
604 => 0.020721610713956
605 => 0.021215836214817
606 => 0.020581986897855
607 => 0.020850697868114
608 => 0.020698164525308
609 => 0.020796872291887
610 => 0.020219828705397
611 => 0.020531187417726
612 => 0.020206875159311
613 => 0.020206721393074
614 => 0.020199562181995
615 => 0.020581114115798
616 => 0.020593556510661
617 => 0.020311589055088
618 => 0.02027095313958
619 => 0.020421205417357
620 => 0.020245299351214
621 => 0.020327604692423
622 => 0.020247792296153
623 => 0.020229824844647
624 => 0.020086657134133
625 => 0.020024976547965
626 => 0.020049163095115
627 => 0.019966601940675
628 => 0.019916855858757
629 => 0.020189666434211
630 => 0.020043914748893
701 => 0.020167327898062
702 => 0.020026683038603
703 => 0.019539146679668
704 => 0.019258759364041
705 => 0.018337848376658
706 => 0.018599017590294
707 => 0.018772173049133
708 => 0.01871494517102
709 => 0.018837892797456
710 => 0.01884544078318
711 => 0.018805469256523
712 => 0.018759187349324
713 => 0.018736659876449
714 => 0.018904561202844
715 => 0.019002033574116
716 => 0.018789551515949
717 => 0.01873976994266
718 => 0.018954601034923
719 => 0.019085647877099
720 => 0.02005322413087
721 => 0.01998154295676
722 => 0.020161448637055
723 => 0.020141194018331
724 => 0.020329763832503
725 => 0.020637995783123
726 => 0.020011274044503
727 => 0.02012005126792
728 => 0.020093381604771
729 => 0.02038455399387
730 => 0.020385463002287
731 => 0.020210890609882
801 => 0.020305529135918
802 => 0.020252704506957
803 => 0.020348165751167
804 => 0.019980585610978
805 => 0.020428258543904
806 => 0.020682060249466
807 => 0.020685584286394
808 => 0.020805884280536
809 => 0.02092811604189
810 => 0.021162729263665
811 => 0.020921572806471
812 => 0.020487755816086
813 => 0.020519076001571
814 => 0.020264729258836
815 => 0.020269004873533
816 => 0.020246181307195
817 => 0.020314676547853
818 => 0.019995616464481
819 => 0.02007049922832
820 => 0.019965662920432
821 => 0.020119823374261
822 => 0.019953972209577
823 => 0.020093368743852
824 => 0.020153527666977
825 => 0.020375515388436
826 => 0.019921184442625
827 => 0.018994772888616
828 => 0.019189515828923
829 => 0.018901475723481
830 => 0.018928134931886
831 => 0.018981990775645
901 => 0.018807426365486
902 => 0.018840727753787
903 => 0.018839537993859
904 => 0.018829285285557
905 => 0.018783874340477
906 => 0.01871801948583
907 => 0.018980364957689
908 => 0.019024942565494
909 => 0.01912403306565
910 => 0.019418859180383
911 => 0.019389399099043
912 => 0.019437449713996
913 => 0.019332555491346
914 => 0.01893300067403
915 => 0.018954698422927
916 => 0.018684127146505
917 => 0.019117113949784
918 => 0.019014576959621
919 => 0.018948470695021
920 => 0.018930432988254
921 => 0.0192259899199
922 => 0.019314425186136
923 => 0.019259318262888
924 => 0.01914629235558
925 => 0.019363335510721
926 => 0.019421407102721
927 => 0.019434407190572
928 => 0.019818966047584
929 => 0.019455899758763
930 => 0.019543293423051
1001 => 0.020225113844203
1002 => 0.019606796807004
1003 => 0.019934333131724
1004 => 0.019918301933046
1005 => 0.020085858433547
1006 => 0.019904557409397
1007 => 0.019906804852878
1008 => 0.020055583674063
1009 => 0.019846650652111
1010 => 0.019794915897644
1011 => 0.019723444704879
1012 => 0.01987949943956
1013 => 0.019973047195253
1014 => 0.02072697340288
1015 => 0.02121404411622
1016 => 0.021192899091996
1017 => 0.021386125031574
1018 => 0.021299074976047
1019 => 0.021017967384108
1020 => 0.02149778376613
1021 => 0.021345949786488
1022 => 0.021358466795291
1023 => 0.021358000911599
1024 => 0.021458957234504
1025 => 0.021387420427214
1026 => 0.021246414036944
1027 => 0.021340020659298
1028 => 0.021617998862709
1029 => 0.02248085173551
1030 => 0.022963715634409
1031 => 0.022451782722494
1101 => 0.022804907190078
1102 => 0.022593158340641
1103 => 0.022554677275716
1104 => 0.022776465537052
1105 => 0.022998642009379
1106 => 0.022984490328587
1107 => 0.022823201618565
1108 => 0.022732093718824
1109 => 0.023421993259054
1110 => 0.023930299488163
1111 => 0.023895636411066
1112 => 0.024048627960336
1113 => 0.024497815880843
1114 => 0.024538883994887
1115 => 0.024533710356458
1116 => 0.024431918750783
1117 => 0.024874202592944
1118 => 0.025243163555319
1119 => 0.024408356935111
1120 => 0.024726240367665
1121 => 0.024868948482103
1122 => 0.025078486333688
1123 => 0.025432011811933
1124 => 0.025816034249308
1125 => 0.025870339232545
1126 => 0.025831807248206
1127 => 0.025578534127679
1128 => 0.025998736060996
1129 => 0.026244880498586
1130 => 0.026391453878255
1201 => 0.026763139581611
1202 => 0.024869829798834
1203 => 0.023529651030984
1204 => 0.023320362763968
1205 => 0.023745958684799
1206 => 0.023858184935059
1207 => 0.023812946674299
1208 => 0.02230445362736
1209 => 0.023312420860265
1210 => 0.02439690885058
1211 => 0.024438568451004
1212 => 0.02498148581453
1213 => 0.025158281963029
1214 => 0.025595401602472
1215 => 0.02556805965001
1216 => 0.025674491326122
1217 => 0.025650024526924
1218 => 0.026459696612594
1219 => 0.027352885160556
1220 => 0.027321956881306
1221 => 0.027193550459809
1222 => 0.02738425589228
1223 => 0.02830612219368
1224 => 0.028221251517253
1225 => 0.028303696150134
1226 => 0.029390628473592
1227 => 0.030803795108407
1228 => 0.030147237326925
1229 => 0.031571778793328
1230 => 0.032468452134731
1231 => 0.034019155960932
]
'min_raw' => 0.013889267796683
'max_raw' => 0.034019155960932
'avg_raw' => 0.023954211878808
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.013889'
'max' => '$0.034019'
'avg' => '$0.023954'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 0.0061931305080202
'max_diff' => 0.013801353690702
'year' => 2028
]
3 => [
'items' => [
101 => 0.033825000204515
102 => 0.034428677824465
103 => 0.033477420878998
104 => 0.031293142651458
105 => 0.030947472260868
106 => 0.031639513136597
107 => 0.033340828101214
108 => 0.031585932673895
109 => 0.031940945733261
110 => 0.03183870194828
111 => 0.031833253811487
112 => 0.032041187033721
113 => 0.031739569049803
114 => 0.030510723123283
115 => 0.031073895969772
116 => 0.030856427887961
117 => 0.03109772493805
118 => 0.032399905598907
119 => 0.031824180488632
120 => 0.031217700853068
121 => 0.03197836090467
122 => 0.032946942541513
123 => 0.032886330443388
124 => 0.032768717639133
125 => 0.033431694858708
126 => 0.034526738991346
127 => 0.034822725020154
128 => 0.035041215855452
129 => 0.035071342050207
130 => 0.035381660579506
131 => 0.033712999637125
201 => 0.036361207406936
202 => 0.03681847973352
203 => 0.036732531488118
204 => 0.037240770434154
205 => 0.037091233643453
206 => 0.03687457829533
207 => 0.037680245130321
208 => 0.036756613117965
209 => 0.035445633758462
210 => 0.034726404553607
211 => 0.035673543589125
212 => 0.036251928347519
213 => 0.036634203880637
214 => 0.036749880225982
215 => 0.033842533036013
216 => 0.032275634149488
217 => 0.033279998371219
218 => 0.034505392039246
219 => 0.033706192513427
220 => 0.033737519621755
221 => 0.032598071123878
222 => 0.03460620794785
223 => 0.034313639303686
224 => 0.035831485947152
225 => 0.035469239664208
226 => 0.036706984679487
227 => 0.036381044935612
228 => 0.037734002589393
301 => 0.038273734027353
302 => 0.039180027114177
303 => 0.039846699998122
304 => 0.040238183066995
305 => 0.040214679891956
306 => 0.041765930846919
307 => 0.040851212355358
308 => 0.03970211034736
309 => 0.039681326717406
310 => 0.040276462930249
311 => 0.041523705164722
312 => 0.041847096929484
313 => 0.04202782880807
314 => 0.041751031644694
315 => 0.040758170280568
316 => 0.04032945777746
317 => 0.040694733251105
318 => 0.040248032735317
319 => 0.041019163147596
320 => 0.042078089908223
321 => 0.041859425719604
322 => 0.042590387318191
323 => 0.043346855673325
324 => 0.044428639396287
325 => 0.044711457719805
326 => 0.045178945653962
327 => 0.045660144299996
328 => 0.045814692336435
329 => 0.046109772491437
330 => 0.046108217273364
331 => 0.046997461181646
401 => 0.047978324750073
402 => 0.04834857804011
403 => 0.049199955064665
404 => 0.047742001745924
405 => 0.048847876085949
406 => 0.049845402422483
407 => 0.048656110400884
408 => 0.050295272383156
409 => 0.050358917328507
410 => 0.051319880440543
411 => 0.050345760228238
412 => 0.049767330755673
413 => 0.051437234969499
414 => 0.052245249017079
415 => 0.052001868610111
416 => 0.050149731695915
417 => 0.049071708569964
418 => 0.046250314114218
419 => 0.049592377722219
420 => 0.051220199416345
421 => 0.05014551603098
422 => 0.050687523819959
423 => 0.05364454257001
424 => 0.054770383857244
425 => 0.054536216739724
426 => 0.054575787127866
427 => 0.055183270650992
428 => 0.057877187139822
429 => 0.05626292993522
430 => 0.057496969083075
501 => 0.058151498997438
502 => 0.058759462859247
503 => 0.057266495763596
504 => 0.055324167508197
505 => 0.054708950616318
506 => 0.050038659948
507 => 0.04979555103667
508 => 0.049659086637786
509 => 0.048798697906097
510 => 0.048122668043298
511 => 0.04758506399702
512 => 0.04617423043743
513 => 0.046650345348338
514 => 0.044401771118199
515 => 0.045840329226064
516 => 0.042251550461039
517 => 0.045240392057689
518 => 0.043613701462584
519 => 0.044705980447493
520 => 0.044702169589014
521 => 0.042690937670428
522 => 0.041530901073127
523 => 0.042270121542227
524 => 0.043062624564496
525 => 0.043191205513559
526 => 0.044218706368376
527 => 0.044505459770899
528 => 0.043636583574019
529 => 0.042177180997956
530 => 0.042516166930947
531 => 0.041524031534014
601 => 0.039785352412827
602 => 0.041034102112089
603 => 0.041460480163065
604 => 0.041648793000598
605 => 0.039939001773557
606 => 0.039401748248647
607 => 0.039115718979978
608 => 0.041956468421184
609 => 0.042112091088203
610 => 0.041315903520908
611 => 0.044914746822682
612 => 0.044100217745326
613 => 0.045010246289202
614 => 0.042485407510611
615 => 0.042581859752099
616 => 0.041386560611977
617 => 0.042055848260528
618 => 0.04158281732268
619 => 0.042001776432555
620 => 0.04225289879558
621 => 0.043448001798875
622 => 0.045254038214266
623 => 0.043269493263355
624 => 0.042404798609037
625 => 0.042941250309349
626 => 0.044369891880058
627 => 0.046534356990499
628 => 0.045252950081198
629 => 0.045821616707846
630 => 0.045945845067551
701 => 0.045000983052894
702 => 0.046569195400717
703 => 0.047409613138049
704 => 0.048271707836605
705 => 0.049020240508017
706 => 0.047927368256133
707 => 0.049096898222732
708 => 0.048154463519484
709 => 0.047309002163562
710 => 0.047310284379447
711 => 0.046779914120658
712 => 0.0457522549133
713 => 0.045562738788342
714 => 0.04654862560362
715 => 0.047339213465645
716 => 0.047404330068622
717 => 0.04784204013091
718 => 0.048101072436999
719 => 0.050639941174023
720 => 0.051661095182678
721 => 0.052909742975004
722 => 0.053396161660049
723 => 0.054860107511284
724 => 0.053677852340543
725 => 0.053422063997619
726 => 0.049871010215562
727 => 0.05045249507344
728 => 0.051383508435846
729 => 0.049886362282994
730 => 0.050835956921437
731 => 0.051023427018231
801 => 0.049835489829611
802 => 0.050470018409788
803 => 0.048784898625449
804 => 0.045290769220663
805 => 0.046573085365594
806 => 0.047517301671211
807 => 0.046169788582065
808 => 0.0485851536384
809 => 0.047174147235745
810 => 0.046726925946355
811 => 0.044982156250543
812 => 0.045805620384622
813 => 0.046919367416834
814 => 0.046231201237917
815 => 0.047659249387841
816 => 0.049681746414665
817 => 0.05112309823776
818 => 0.051233747333401
819 => 0.050307054674223
820 => 0.051792085574629
821 => 0.051802902403493
822 => 0.050127781481306
823 => 0.049101779243579
824 => 0.04886866937644
825 => 0.049451023528434
826 => 0.050158108977462
827 => 0.051272985654757
828 => 0.05194668228138
829 => 0.053703325782532
830 => 0.054178623147027
831 => 0.054700830849451
901 => 0.05539866138278
902 => 0.056236585858118
903 => 0.054403254809145
904 => 0.054476096469478
905 => 0.05276892398087
906 => 0.050944565343494
907 => 0.052329026139748
908 => 0.054139024463749
909 => 0.053723808848353
910 => 0.053677088609535
911 => 0.053755659092112
912 => 0.053442600077778
913 => 0.052026645758452
914 => 0.051315562363629
915 => 0.052233041359672
916 => 0.052720640613776
917 => 0.053476864533769
918 => 0.053383643973679
919 => 0.05533159557906
920 => 0.056088510669912
921 => 0.055894859399449
922 => 0.055930495893693
923 => 0.057300854510703
924 => 0.058824975128563
925 => 0.060252515212619
926 => 0.061704670300393
927 => 0.059954040663503
928 => 0.059065178897716
929 => 0.05998225735113
930 => 0.059495642614935
1001 => 0.062291875228421
1002 => 0.062485480307679
1003 => 0.06528151072172
1004 => 0.067935276529753
1005 => 0.06626849377288
1006 => 0.067840194839067
1007 => 0.069540117684816
1008 => 0.072819544656809
1009 => 0.071715149024274
1010 => 0.070869199277838
1011 => 0.070069780855055
1012 => 0.071733243688765
1013 => 0.073873262049864
1014 => 0.074334201508004
1015 => 0.075081099522616
1016 => 0.074295827586596
1017 => 0.075241601138666
1018 => 0.07858059737143
1019 => 0.077678371115202
1020 => 0.07639706479125
1021 => 0.07903288163641
1022 => 0.079986773506195
1023 => 0.086681686205397
1024 => 0.095134290041188
1025 => 0.091634856550381
1026 => 0.089462645256625
1027 => 0.089973166436198
1028 => 0.093059771218332
1029 => 0.094051090710415
1030 => 0.091356342602614
1031 => 0.092308173190716
1101 => 0.097552853313082
1102 => 0.10036645592925
1103 => 0.096545205659249
1104 => 0.086002527717308
1105 => 0.076281697175854
1106 => 0.078860099170152
1107 => 0.078567788401128
1108 => 0.08420254290544
1109 => 0.077656853317377
1110 => 0.077767065942683
1111 => 0.083518341202836
1112 => 0.081983999565246
1113 => 0.079498562615982
1114 => 0.076299843616133
1115 => 0.070386715699218
1116 => 0.065149293403435
1117 => 0.075421084631785
1118 => 0.074978146315978
1119 => 0.074336705994909
1120 => 0.075764162018356
1121 => 0.082695483277752
1122 => 0.082535693888225
1123 => 0.08151919531732
1124 => 0.082290200524344
1125 => 0.079363401675435
1126 => 0.08011770438077
1127 => 0.076280157346631
1128 => 0.078014888876183
1129 => 0.079493229984555
1130 => 0.079790028849275
1201 => 0.080458731846414
1202 => 0.07474473795082
1203 => 0.077310153455895
1204 => 0.078817094718201
1205 => 0.072008679272111
1206 => 0.078682514235556
1207 => 0.074645270029587
1208 => 0.073274968708708
1209 => 0.0751198989138
1210 => 0.074400927818622
1211 => 0.073782798690388
1212 => 0.073437872016026
1213 => 0.07479258514113
1214 => 0.074729386154611
1215 => 0.072512812543455
1216 => 0.069621382626801
1217 => 0.070591841414782
1218 => 0.070239264639008
1219 => 0.068961480920298
1220 => 0.069822552866514
1221 => 0.066030827793916
1222 => 0.059507361883229
1223 => 0.063816963282993
1224 => 0.063651048317047
1225 => 0.063567386467572
1226 => 0.066805932810861
1227 => 0.06649462130593
1228 => 0.065929587876109
1229 => 0.068951103638254
1230 => 0.067848209739949
1231 => 0.071247068860042
]
'min_raw' => 0.030510723123283
'max_raw' => 0.10036645592925
'avg_raw' => 0.065438589526265
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.03051'
'max' => '$0.100366'
'avg' => '$0.065438'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072435
'min_diff' => 0.0166214553266
'max_diff' => 0.066347299968315
'year' => 2029
]
4 => [
'items' => [
101 => 0.073485777300959
102 => 0.072917968425711
103 => 0.075023484535011
104 => 0.070614198825205
105 => 0.072078786668165
106 => 0.072380636192768
107 => 0.068913818602767
108 => 0.066545555718191
109 => 0.066387619583963
110 => 0.062281378108836
111 => 0.064474899160426
112 => 0.066405106911756
113 => 0.065480687189041
114 => 0.065188043521084
115 => 0.066683096554012
116 => 0.066799274978934
117 => 0.064150394578678
118 => 0.064701180693024
119 => 0.06699805035042
120 => 0.064643305470818
121 => 0.060068420815144
122 => 0.058933786167807
123 => 0.058782404990387
124 => 0.055705185837803
125 => 0.059009607880409
126 => 0.057567139105806
127 => 0.062123880681347
128 => 0.059521094331693
129 => 0.059408893414283
130 => 0.059239285271321
131 => 0.056590595628369
201 => 0.057170490327168
202 => 0.059098148626429
203 => 0.059785958824231
204 => 0.059714214585537
205 => 0.059088702049133
206 => 0.059375058485156
207 => 0.058452604631528
208 => 0.058126866976595
209 => 0.057098749336427
210 => 0.055587700430126
211 => 0.055797821048349
212 => 0.052804037777513
213 => 0.051172865759458
214 => 0.050721378843362
215 => 0.050117631670221
216 => 0.050789573693078
217 => 0.052795556765656
218 => 0.050375915587077
219 => 0.046227610504499
220 => 0.04647693070833
221 => 0.047037079182505
222 => 0.045993246206632
223 => 0.04500534589723
224 => 0.04586424506537
225 => 0.044106553515742
226 => 0.047249487808807
227 => 0.047164480244151
228 => 0.048335971790853
301 => 0.049068529496432
302 => 0.047380221153445
303 => 0.046955616170855
304 => 0.047197490466159
305 => 0.04319984714644
306 => 0.048009279044478
307 => 0.048050871211248
308 => 0.047694733828024
309 => 0.050255607839179
310 => 0.055659850759349
311 => 0.053626557187613
312 => 0.052839204460014
313 => 0.051342446349295
314 => 0.053336787663125
315 => 0.053183653366794
316 => 0.052491122004327
317 => 0.052072276875478
318 => 0.052844011867875
319 => 0.051976650369507
320 => 0.0518208484109
321 => 0.050876858055944
322 => 0.05053989644805
323 => 0.050290423488393
324 => 0.050015778272517
325 => 0.050621577181415
326 => 0.049248757154368
327 => 0.047593270780957
328 => 0.047455635001618
329 => 0.047835659489433
330 => 0.047667526943071
331 => 0.047454830047672
401 => 0.047048733749802
402 => 0.046928253653099
403 => 0.047319755518751
404 => 0.046877772738406
405 => 0.047529942406853
406 => 0.047352588343229
407 => 0.04636190296087
408 => 0.045127142175743
409 => 0.045116150214757
410 => 0.044850123029015
411 => 0.044511297410518
412 => 0.044417043874732
413 => 0.045791910973094
414 => 0.048637844720393
415 => 0.048079119828375
416 => 0.048482855823288
417 => 0.050468837326058
418 => 0.051100121125241
419 => 0.050652050837357
420 => 0.05003870459153
421 => 0.050065688713561
422 => 0.052161678508088
423 => 0.05229240282058
424 => 0.052622700984983
425 => 0.053047227468492
426 => 0.050724349533203
427 => 0.049956281371702
428 => 0.049592328065984
429 => 0.048471492752026
430 => 0.049680217544972
501 => 0.048975945370879
502 => 0.049070975748527
503 => 0.049009087090416
504 => 0.049042882482638
505 => 0.047248609294618
506 => 0.04790234814011
507 => 0.046815380514746
508 => 0.045360052882225
509 => 0.045355174113697
510 => 0.045711363489996
511 => 0.045499488111282
512 => 0.044929336914977
513 => 0.045010324201374
514 => 0.044300790353706
515 => 0.045096474457006
516 => 0.045119291829994
517 => 0.044812910109017
518 => 0.046038771253399
519 => 0.046541007564459
520 => 0.04633934055238
521 => 0.046526858069289
522 => 0.04810233737013
523 => 0.048359209239148
524 => 0.048473294755363
525 => 0.04832043527707
526 => 0.04655565493876
527 => 0.046633930451189
528 => 0.0460595966776
529 => 0.045574345160719
530 => 0.045593752676586
531 => 0.045843235034544
601 => 0.046932739123695
602 => 0.049225536249539
603 => 0.049312546224452
604 => 0.049418004852307
605 => 0.048989051613563
606 => 0.048859675212228
607 => 0.049030356080471
608 => 0.049891410131392
609 => 0.052106274924257
610 => 0.051323393780613
611 => 0.050686899224559
612 => 0.051245276547918
613 => 0.051159318735693
614 => 0.05043374829563
615 => 0.050413383949964
616 => 0.04902078229658
617 => 0.04850596917333
618 => 0.048075752794447
619 => 0.04760596773979
620 => 0.047327463412052
621 => 0.047755372637411
622 => 0.047853240540124
623 => 0.046917609540303
624 => 0.046790086492302
625 => 0.047554142963754
626 => 0.047217910197564
627 => 0.047563733935762
628 => 0.047643968009445
629 => 0.047631048475634
630 => 0.047279982851645
701 => 0.047503741611448
702 => 0.046974485438817
703 => 0.046398998842788
704 => 0.046031874248602
705 => 0.045711509348165
706 => 0.045889266414645
707 => 0.045255594929802
708 => 0.045052870668514
709 => 0.047427937178358
710 => 0.049182424345449
711 => 0.049156913407186
712 => 0.049001622131393
713 => 0.048770890795249
714 => 0.049874530697017
715 => 0.049490044623217
716 => 0.049769790366793
717 => 0.049840997399425
718 => 0.050056519641015
719 => 0.050133550317621
720 => 0.049900710111673
721 => 0.049119269941475
722 => 0.047171995334442
723 => 0.046265533748301
724 => 0.045966386326563
725 => 0.045977259767181
726 => 0.045677321733751
727 => 0.045765666926876
728 => 0.045646598880925
729 => 0.045421112807548
730 => 0.045875343285017
731 => 0.045927689116096
801 => 0.045821666295004
802 => 0.045846638507454
803 => 0.044968814831756
804 => 0.045035553859287
805 => 0.044663942473211
806 => 0.044594269818164
807 => 0.043654868594071
808 => 0.041990583157205
809 => 0.042912758845325
810 => 0.041798900291601
811 => 0.041377065179594
812 => 0.043373966991015
813 => 0.043173533434582
814 => 0.042830478312344
815 => 0.0423230282876
816 => 0.042134810137266
817 => 0.040991256238463
818 => 0.040923688973499
819 => 0.041490465164298
820 => 0.041228917453822
821 => 0.04086160541245
822 => 0.039531238432425
823 => 0.038035465477506
824 => 0.038080613460922
825 => 0.038556391008036
826 => 0.039939778393615
827 => 0.039399265009225
828 => 0.039007116347173
829 => 0.038933678690716
830 => 0.03985290471342
831 => 0.041153802119353
901 => 0.041764154076277
902 => 0.04115931382363
903 => 0.0404645059083
904 => 0.040506795646676
905 => 0.040788130329957
906 => 0.040817694627311
907 => 0.040365446101839
908 => 0.040492751412699
909 => 0.040299363004462
910 => 0.039112538700078
911 => 0.039091072811872
912 => 0.038799806987449
913 => 0.038790987574042
914 => 0.038295471747033
915 => 0.038226145657496
916 => 0.03724226890731
917 => 0.037889859563735
918 => 0.03745548975144
919 => 0.036800791986832
920 => 0.036687921845442
921 => 0.036684528832698
922 => 0.037356757049209
923 => 0.037882004185635
924 => 0.037463045800295
925 => 0.03736765709712
926 => 0.038386158889829
927 => 0.038256545252857
928 => 0.038144300679158
929 => 0.041037321025019
930 => 0.038747269676077
1001 => 0.037748676576377
1002 => 0.036512727987812
1003 => 0.036915159080442
1004 => 0.036999957224603
1005 => 0.034027723665581
1006 => 0.032821888880855
1007 => 0.032408091823662
1008 => 0.032169945767015
1009 => 0.032278471915479
1010 => 0.031193079178912
1011 => 0.031922481048624
1012 => 0.030982622684721
1013 => 0.030825052371449
1014 => 0.032505635552217
1015 => 0.032739478883997
1016 => 0.031741830581197
1017 => 0.032382482296183
1018 => 0.032150173078604
1019 => 0.030998733858813
1020 => 0.03095475735003
1021 => 0.030377005624584
1022 => 0.02947293604904
1023 => 0.029059751993591
1024 => 0.028844562150085
1025 => 0.028933353673482
1026 => 0.028888457962187
1027 => 0.028595483077358
1028 => 0.028905250939642
1029 => 0.028113922056425
1030 => 0.027798808518958
1031 => 0.027656479044663
1101 => 0.026954129113617
1102 => 0.028071880190343
1103 => 0.028292091233515
1104 => 0.028512736160469
1105 => 0.030433299608912
1106 => 0.030337353686483
1107 => 0.031204658097675
1108 => 0.031170956243127
1109 => 0.030923586975655
1110 => 0.029879976726461
1111 => 0.030295941171225
1112 => 0.029015667265466
1113 => 0.029974935525824
1114 => 0.029537165551797
1115 => 0.029826925057249
1116 => 0.029305911339886
1117 => 0.029594261843204
1118 => 0.028344311441142
1119 => 0.027177125342974
1120 => 0.027646835101163
1121 => 0.028157463326141
1122 => 0.029264635423546
1123 => 0.028605212856303
1124 => 0.028842366147011
1125 => 0.02804794232212
1126 => 0.026408819055421
1127 => 0.026418096315103
1128 => 0.026165952910762
1129 => 0.025948064195873
1130 => 0.028680955470612
1201 => 0.02834107723998
1202 => 0.027799525761632
1203 => 0.028524413935802
1204 => 0.028716085874574
1205 => 0.028721542505212
1206 => 0.029250402205014
1207 => 0.029532654721602
1208 => 0.029582402951003
1209 => 0.030414575115412
1210 => 0.030693508248306
1211 => 0.0318423943466
1212 => 0.029508707567558
1213 => 0.029460646824069
1214 => 0.028534614598972
1215 => 0.027947310321826
1216 => 0.028574827825289
1217 => 0.029130722668677
1218 => 0.028551887801307
1219 => 0.028627471415115
1220 => 0.027850432898217
1221 => 0.028128187604948
1222 => 0.028367427375983
1223 => 0.028235333236281
1224 => 0.028037581915719
1225 => 0.02908514563086
1226 => 0.029026037980616
1227 => 0.030001553395542
1228 => 0.030762037421253
1229 => 0.032124960748107
1230 => 0.030702679205735
1231 => 0.030650845613274
]
'min_raw' => 0.025948064195873
'max_raw' => 0.075023484535011
'avg_raw' => 0.050485774365442
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.025948'
'max' => '$0.075023'
'avg' => '$0.050485'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -0.0045626589274097
'max_diff' => -0.025342971394236
'year' => 2030
]
5 => [
'items' => [
101 => 0.031157527293951
102 => 0.03069343067798
103 => 0.030986723719203
104 => 0.032077706704873
105 => 0.032100757456212
106 => 0.031714627672073
107 => 0.031691131639616
108 => 0.031765292088457
109 => 0.032199652153678
110 => 0.032047873400353
111 => 0.032223515616269
112 => 0.0324431588968
113 => 0.033351696631899
114 => 0.033570742003991
115 => 0.033038575311811
116 => 0.033086624005697
117 => 0.032887579054519
118 => 0.032695304125708
119 => 0.033127510086178
120 => 0.033917374973967
121 => 0.033912461265494
122 => 0.034095694566682
123 => 0.034209847395335
124 => 0.033719819889777
125 => 0.03340083000247
126 => 0.033523151023118
127 => 0.033718744998938
128 => 0.033459722532909
129 => 0.031860915881697
130 => 0.03234589168751
131 => 0.032265167999318
201 => 0.032150207650995
202 => 0.032637854573948
203 => 0.032590819838606
204 => 0.031181946907597
205 => 0.031272138381563
206 => 0.031187431749852
207 => 0.031461136206256
208 => 0.030678649739113
209 => 0.030919337306279
210 => 0.031070294292101
211 => 0.031159209116455
212 => 0.031480430431491
213 => 0.031442738817694
214 => 0.031478087467856
215 => 0.03195437387877
216 => 0.034363267103416
217 => 0.034494377846711
218 => 0.033848740595229
219 => 0.034106659942564
220 => 0.033611511196441
221 => 0.033943907866922
222 => 0.034171325226904
223 => 0.033143669906985
224 => 0.033082818828367
225 => 0.032585626427235
226 => 0.032852789461186
227 => 0.032427713864467
228 => 0.032532012547389
301 => 0.032240384337344
302 => 0.032765257052828
303 => 0.033352146305712
304 => 0.033500417707949
305 => 0.033110379483515
306 => 0.032827966104252
307 => 0.032332141243018
308 => 0.033156709037428
309 => 0.033397837788762
310 => 0.033155442490749
311 => 0.033099274203758
312 => 0.032992835401403
313 => 0.033121855698846
314 => 0.033396524549797
315 => 0.033266995792026
316 => 0.033352551818537
317 => 0.033026500470469
318 => 0.033719982109272
319 => 0.034821397847136
320 => 0.034824939078833
321 => 0.034695409622854
322 => 0.034642408960218
323 => 0.034775314042558
324 => 0.034847409597675
325 => 0.035277200263337
326 => 0.035738382771209
327 => 0.037890520305753
328 => 0.03728620869797
329 => 0.039195713149852
330 => 0.04070588325317
331 => 0.04115871723542
401 => 0.040742131279235
402 => 0.039317013226659
403 => 0.039247090136115
404 => 0.041376818175986
405 => 0.040775072456999
406 => 0.040703496718464
407 => 0.039942051789575
408 => 0.040392160049338
409 => 0.040293714770238
410 => 0.040138314081071
411 => 0.040997089285884
412 => 0.042604639805904
413 => 0.042354087981846
414 => 0.042167062667951
415 => 0.041347572184713
416 => 0.041841088495448
417 => 0.041665356789878
418 => 0.042420411719104
419 => 0.041973133905545
420 => 0.040770513641344
421 => 0.040962034882306
422 => 0.040933086832022
423 => 0.04152883565559
424 => 0.04135000664615
425 => 0.040898167597826
426 => 0.04259914537299
427 => 0.042488693337606
428 => 0.042645289070929
429 => 0.042714227355622
430 => 0.043749582552774
501 => 0.044173734449376
502 => 0.044270024355729
503 => 0.044672935852416
504 => 0.044259999550647
505 => 0.045912039176315
506 => 0.047010549128199
507 => 0.048286524966118
508 => 0.05015106861529
509 => 0.050852154275372
510 => 0.050725509426053
511 => 0.052139185141112
512 => 0.054679528976829
513 => 0.051238985546461
514 => 0.054861886132931
515 => 0.053714917635653
516 => 0.05099547596169
517 => 0.050820375977998
518 => 0.052662013452973
519 => 0.056746588121429
520 => 0.055723448493843
521 => 0.05674826161133
522 => 0.055552762673628
523 => 0.055493396074915
524 => 0.05669019889633
525 => 0.059486593922891
526 => 0.058158131467072
527 => 0.056253454784297
528 => 0.057659838406806
529 => 0.056441498758329
530 => 0.053696238538513
531 => 0.055722666118252
601 => 0.054367651705016
602 => 0.054763116947326
603 => 0.057611155700768
604 => 0.057268472142978
605 => 0.057711936398401
606 => 0.056929233595059
607 => 0.056198065755835
608 => 0.054833286686686
609 => 0.054429242887105
610 => 0.054540906057336
611 => 0.054429187552384
612 => 0.053665606206162
613 => 0.053500710887147
614 => 0.053225878131225
615 => 0.053311060294327
616 => 0.052794294308035
617 => 0.053769538493469
618 => 0.053950552408108
619 => 0.054660253797651
620 => 0.054733937350257
621 => 0.056710445618168
622 => 0.055621818078075
623 => 0.056352163419549
624 => 0.05628683445793
625 => 0.051054414508833
626 => 0.051775395811787
627 => 0.052897016462786
628 => 0.052391727879831
629 => 0.051677368042853
630 => 0.051100484172942
701 => 0.050226446120623
702 => 0.051456637894848
703 => 0.053074209261645
704 => 0.054774961629518
705 => 0.056818304161809
706 => 0.056362253895731
707 => 0.054736762762197
708 => 0.054809681107025
709 => 0.055260433622443
710 => 0.054676668159792
711 => 0.054504504328401
712 => 0.055236780955765
713 => 0.055241823742445
714 => 0.054570131027253
715 => 0.053823667492787
716 => 0.053820539783322
717 => 0.053687713807346
718 => 0.05557639211968
719 => 0.056614974224548
720 => 0.056734045989112
721 => 0.056606959746079
722 => 0.05665587019715
723 => 0.056051542153922
724 => 0.057432856852826
725 => 0.058700487818406
726 => 0.058360735640645
727 => 0.057851398827564
728 => 0.057445687522959
729 => 0.058265162950971
730 => 0.058228673000136
731 => 0.058689416167779
801 => 0.058668514196313
802 => 0.058513583598462
803 => 0.058360741173705
804 => 0.058966744111342
805 => 0.058792224997412
806 => 0.058617434807095
807 => 0.058266866321373
808 => 0.058314514400909
809 => 0.057805265532009
810 => 0.057569663703613
811 => 0.05402677749237
812 => 0.053080002529579
813 => 0.053377877206254
814 => 0.053475945284129
815 => 0.053063907606997
816 => 0.053654663792209
817 => 0.053562595066509
818 => 0.053920780619804
819 => 0.053697001836714
820 => 0.053706185796029
821 => 0.054364271482429
822 => 0.054555316556887
823 => 0.054458149490095
824 => 0.054526201972984
825 => 0.056094442718008
826 => 0.055871489033581
827 => 0.055753049332361
828 => 0.055785857939031
829 => 0.056186577072845
830 => 0.056298756551859
831 => 0.055823444216563
901 => 0.056047604261637
902 => 0.057002049283415
903 => 0.057336051024127
904 => 0.058402024250551
905 => 0.057949179877803
906 => 0.058780395322628
907 => 0.061335268217792
908 => 0.063376277470206
909 => 0.061499281013411
910 => 0.065247334584509
911 => 0.06816573191596
912 => 0.068053718965534
913 => 0.067544828887049
914 => 0.064222311114799
915 => 0.061164880724825
916 => 0.06372255107139
917 => 0.063729071099093
918 => 0.063509364948037
919 => 0.062144788913126
920 => 0.063461880659912
921 => 0.063566426619798
922 => 0.063507908683276
923 => 0.062461691436728
924 => 0.060864311074515
925 => 0.061176435373703
926 => 0.061687701342936
927 => 0.060719768201924
928 => 0.060410454914233
929 => 0.060985527165311
930 => 0.062838529779345
1001 => 0.062488230368875
1002 => 0.062479082635597
1003 => 0.063977812063656
1004 => 0.062905045239219
1005 => 0.061180372260676
1006 => 0.060744869587952
1007 => 0.059199128489535
1008 => 0.060266777371953
1009 => 0.060305200154532
1010 => 0.059720459772739
1011 => 0.061227820719971
1012 => 0.061213930123476
1013 => 0.062644945001804
1014 => 0.065380507984522
1015 => 0.064571467401653
1016 => 0.063630641227142
1017 => 0.063732935118591
1018 => 0.064854846624955
1019 => 0.064176513317459
1020 => 0.064420446704342
1021 => 0.064854477402559
1022 => 0.065116338899168
1023 => 0.063695257279049
1024 => 0.063363935175208
1025 => 0.062686166429005
1026 => 0.062509349214273
1027 => 0.063061377715947
1028 => 0.06291593770921
1029 => 0.060301970868437
1030 => 0.060028796789602
1031 => 0.060037174648597
1101 => 0.059350265438647
1102 => 0.058302564016373
1103 => 0.061055860799108
1104 => 0.06083473253509
1105 => 0.060590624045583
1106 => 0.060620525942684
1107 => 0.061815638758183
1108 => 0.06112241297055
1109 => 0.062965467344446
1110 => 0.062586590772458
1111 => 0.062197997446032
1112 => 0.062144282011478
1113 => 0.061994706734028
1114 => 0.061481757453144
1115 => 0.060862340373004
1116 => 0.060453347563707
1117 => 0.055765017575658
1118 => 0.056635144350679
1119 => 0.05763614589079
1120 => 0.057981687611174
1121 => 0.057390614587697
1122 => 0.061505096618744
1123 => 0.062256852133951
1124 => 0.059979735642589
1125 => 0.059553780121108
1126 => 0.061533022191818
1127 => 0.060339297270677
1128 => 0.060876831529574
1129 => 0.059714976477359
1130 => 0.062075776244309
1201 => 0.062057790905506
1202 => 0.061139386475081
1203 => 0.061915615610714
1204 => 0.061780726696337
1205 => 0.060743850356318
1206 => 0.06210864707373
1207 => 0.062109323995875
1208 => 0.061225379699425
1209 => 0.060193126281461
1210 => 0.060008583751066
1211 => 0.059869555744214
1212 => 0.060842639162461
1213 => 0.061715102712507
1214 => 0.063338541077087
1215 => 0.063746712053887
1216 => 0.065339830549816
1217 => 0.064391206053022
1218 => 0.064811719005707
1219 => 0.065268245301036
1220 => 0.065487120795215
1221 => 0.065130474922956
1222 => 0.067605243700869
1223 => 0.067814190010681
1224 => 0.067884247900982
1225 => 0.067049769793199
1226 => 0.067790981664943
1227 => 0.067444193176511
1228 => 0.068346440482794
1229 => 0.068487924380891
1230 => 0.068368092552639
1231 => 0.068413001775066
]
'min_raw' => 0.030678649739113
'max_raw' => 0.068487924380891
'avg_raw' => 0.049583287060002
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.030678'
'max' => '$0.068487'
'avg' => '$0.049583'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 0.0047305855432401
'max_diff' => -0.0065355601541202
'year' => 2031
]
6 => [
'items' => [
101 => 0.066301223202247
102 => 0.066191716342727
103 => 0.064698582542917
104 => 0.065307045603027
105 => 0.064169553076545
106 => 0.064530263674164
107 => 0.064689261468618
108 => 0.06460621004384
109 => 0.065341447191515
110 => 0.064716345416966
111 => 0.063066599057683
112 => 0.061416403226108
113 => 0.061395686361663
114 => 0.060961218927585
115 => 0.060647178549426
116 => 0.060707673867441
117 => 0.060920867258651
118 => 0.060634787361965
119 => 0.060695837012542
120 => 0.061709667983814
121 => 0.061912984554791
122 => 0.061222035405699
123 => 0.058447774868607
124 => 0.0577669643741
125 => 0.058256317456493
126 => 0.058022438201484
127 => 0.046828636094227
128 => 0.049458453859314
129 => 0.047895905443472
130 => 0.048615999642888
131 => 0.047021042330264
201 => 0.047782239558723
202 => 0.047641674225099
203 => 0.051870343369393
204 => 0.051804318517049
205 => 0.051835921119908
206 => 0.050327446545276
207 => 0.052730487502213
208 => 0.053914311888159
209 => 0.053695217500786
210 => 0.053750358837885
211 => 0.052802847974543
212 => 0.051845095096222
213 => 0.050782799757052
214 => 0.052756413193557
215 => 0.052536981070123
216 => 0.053040279412096
217 => 0.054320308802472
218 => 0.054508797992563
219 => 0.054762129375515
220 => 0.054671328108083
221 => 0.056834582681656
222 => 0.056572598279183
223 => 0.057203905311086
224 => 0.055905258849082
225 => 0.05443571710867
226 => 0.054715028950583
227 => 0.054688128974123
228 => 0.054345661399428
229 => 0.054036496985754
301 => 0.05352182534352
302 => 0.05515032257662
303 => 0.055084208562941
304 => 0.056154517595266
305 => 0.055965330077375
306 => 0.054701889530863
307 => 0.054747013557152
308 => 0.055050494319814
309 => 0.056100844704469
310 => 0.056412660211942
311 => 0.056268214845181
312 => 0.056610106314206
313 => 0.056880323391286
314 => 0.056644041418752
315 => 0.059989295875247
316 => 0.058600112994584
317 => 0.059277191064747
318 => 0.059438670194905
319 => 0.059025044798545
320 => 0.0591147453362
321 => 0.059250617208815
322 => 0.060075604612891
323 => 0.062240610273216
324 => 0.063199476542482
325 => 0.066084273023197
326 => 0.063119856046882
327 => 0.062943959811485
328 => 0.063463598770169
329 => 0.065157279691068
330 => 0.066529848998098
331 => 0.066985209422662
401 => 0.06704539281995
402 => 0.067899679248222
403 => 0.068389340297408
404 => 0.067795946405866
405 => 0.067293107213714
406 => 0.065491999642123
407 => 0.065700482747787
408 => 0.067136724603069
409 => 0.069165500817878
410 => 0.070906401868373
411 => 0.070296798997017
412 => 0.074947638592906
413 => 0.075408750341862
414 => 0.075345039607684
415 => 0.076395520794435
416 => 0.074310529565508
417 => 0.073419155420339
418 => 0.067401826754524
419 => 0.069092450665971
420 => 0.071549871808121
421 => 0.071224622905101
422 => 0.069439977984617
423 => 0.070905048055168
424 => 0.070420650072867
425 => 0.070038585286535
426 => 0.071788898139624
427 => 0.069864357258764
428 => 0.071530673040637
429 => 0.069393605814555
430 => 0.070299583611584
501 => 0.069785306796775
502 => 0.070118106923352
503 => 0.068172564183604
504 => 0.069222331820592
505 => 0.06812889039859
506 => 0.068128371964985
507 => 0.068104234184991
508 => 0.069390663168915
509 => 0.069432613571896
510 => 0.06848194060909
511 => 0.068344933782847
512 => 0.068851519827652
513 => 0.068258440244281
514 => 0.068535938448542
515 => 0.068266845382196
516 => 0.068206266864994
517 => 0.067723566933346
518 => 0.067515606530681
519 => 0.067597153163046
520 => 0.067318792466616
521 => 0.06715107007827
522 => 0.068070869980438
523 => 0.067579457997332
524 => 0.067995554046187
525 => 0.067521360083009
526 => 0.065877597210159
527 => 0.064932251799506
528 => 0.061827336109592
529 => 0.062707886347616
530 => 0.063291692066421
531 => 0.063098744279838
601 => 0.063513270786299
602 => 0.063538719347151
603 => 0.063403952554303
604 => 0.06324790987288
605 => 0.063171956925266
606 => 0.063738047969704
607 => 0.064066682874749
608 => 0.063350284780616
609 => 0.063182442730635
610 => 0.063906760757226
611 => 0.064348594335022
612 => 0.067610845228626
613 => 0.067369167145496
614 => 0.067975731707223
615 => 0.067907441846064
616 => 0.068543218140067
617 => 0.069582443681651
618 => 0.067469407583579
619 => 0.067836157586913
620 => 0.06774623895559
621 => 0.068727946994446
622 => 0.068731011779786
623 => 0.068142428770539
624 => 0.06846150916852
625 => 0.06828340724388
626 => 0.068605261493624
627 => 0.067365939387352
628 => 0.068875299936237
629 => 0.06973101010641
630 => 0.069742891642953
701 => 0.070148491472279
702 => 0.070560604389632
703 => 0.071351619247021
704 => 0.070538543414584
705 => 0.069075899143366
706 => 0.069181497335436
707 => 0.068323949534381
708 => 0.068338365067845
709 => 0.068261413820447
710 => 0.06849235030651
711 => 0.067416616959357
712 => 0.067669089425789
713 => 0.067315626494308
714 => 0.06783538922753
715 => 0.067276210446441
716 => 0.067746195594103
717 => 0.06794902560358
718 => 0.068697472705167
719 => 0.067165664200993
720 => 0.064042202966662
721 => 0.064698792386425
722 => 0.063727645060609
723 => 0.063817528443032
724 => 0.06399910718036
725 => 0.063410551083813
726 => 0.0635228290395
727 => 0.063518817680835
728 => 0.063484249958972
729 => 0.063331143787145
730 => 0.063109109546863
731 => 0.063993625621611
801 => 0.064143922138637
802 => 0.064478012678188
803 => 0.065472039508114
804 => 0.065372712787037
805 => 0.065534718790139
806 => 0.065181060594993
807 => 0.063833933632388
808 => 0.063907089107681
809 => 0.062994839158543
810 => 0.064454684395971
811 => 0.064108973774733
812 => 0.06388609188824
813 => 0.063825276500524
814 => 0.064821767330694
815 => 0.065119933005161
816 => 0.064934136165988
817 => 0.064553061428282
818 => 0.065284837579309
819 => 0.065480630006166
820 => 0.065524460709993
821 => 0.066821027745452
822 => 0.065596924404212
823 => 0.065891578244989
824 => 0.068190383398086
825 => 0.066105684337654
826 => 0.067209995924302
827 => 0.067155945618696
828 => 0.067720874058558
829 => 0.067109604997601
830 => 0.067117182410211
831 => 0.067618800593242
901 => 0.066914368322491
902 => 0.0667399409858
903 => 0.066498970869434
904 => 0.067025120302805
905 => 0.067340523092418
906 => 0.069882437938882
907 => 0.071524630855098
908 => 0.071453338929629
909 => 0.07210481367552
910 => 0.071811318335671
911 => 0.070863544463142
912 => 0.072481278894839
913 => 0.071969360031767
914 => 0.072011562000857
915 => 0.07200999124146
916 => 0.072350372532679
917 => 0.072109181192363
918 => 0.071633768302816
919 => 0.071949369565488
920 => 0.072886592486106
921 => 0.075795761189217
922 => 0.077423770536837
923 => 0.075697752982302
924 => 0.076888336779124
925 => 0.076174410749414
926 => 0.076044669152356
927 => 0.076792443760212
928 => 0.07754152724853
929 => 0.077493813868701
930 => 0.076950017722045
1001 => 0.076642841077115
1002 => 0.078968885544248
1003 => 0.080682675484498
1004 => 0.080565806499966
1005 => 0.081081628189858
1006 => 0.082596096625146
1007 => 0.082734560638933
1008 => 0.082717117355755
1009 => 0.082373919850359
1010 => 0.083865110703478
1011 => 0.085109088348156
1012 => 0.08229447954379
1013 => 0.083366245730558
1014 => 0.083847396101948
1015 => 0.084553867598031
1016 => 0.085745803430294
1017 => 0.087040561889496
1018 => 0.087223654931932
1019 => 0.087093741656515
1020 => 0.086239813647695
1021 => 0.087656553803436
1022 => 0.088486446960024
1023 => 0.088980629343005
1024 => 0.090233793642137
1025 => 0.083850367522838
1026 => 0.079331861238735
1027 => 0.078626231234451
1028 => 0.080061157595693
1029 => 0.080439536233829
1030 => 0.080287012279243
1031 => 0.075201022651866
1101 => 0.078599454551633
1102 => 0.082255881527511
1103 => 0.082396339778922
1104 => 0.084226823575329
1105 => 0.084822904133506
1106 => 0.086296683516609
1107 => 0.086204498214929
1108 => 0.086563340041763
1109 => 0.086480848520048
1110 => 0.089210714486385
1111 => 0.092222162036273
1112 => 0.092117885183437
1113 => 0.091684953968311
1114 => 0.092327930648515
1115 => 0.095436067246332
1116 => 0.095149919835279
1117 => 0.095427887671139
1118 => 0.099092555886867
1119 => 0.10385714586029
1120 => 0.10164351546062
1121 => 0.10644645647291
1122 => 0.10946965324718
1123 => 0.11469795946391
1124 => 0.11404334977562
1125 => 0.11607869101871
1126 => 0.11287146181243
1127 => 0.10550701526684
1128 => 0.10434156341103
1129 => 0.1066748275403
1130 => 0.11241092972552
1201 => 0.10649417726943
1202 => 0.10769112858531
1203 => 0.10734640652581
1204 => 0.10732803775224
1205 => 0.10802909912843
1206 => 0.10701217303736
1207 => 0.10286903320081
1208 => 0.10476780977222
1209 => 0.10403460095126
1210 => 0.10484815080246
1211 => 0.10923854381589
1212 => 0.10729744641075
1213 => 0.10525265797639
1214 => 0.10781727644796
1215 => 0.11108291706078
1216 => 0.11087855914015
1217 => 0.11048201935914
1218 => 0.11271729334253
1219 => 0.11640931108926
1220 => 0.11740724865047
1221 => 0.11814390575622
1222 => 0.11824547832518
1223 => 0.11929173891246
1224 => 0.11366573204304
1225 => 0.12259434943092
1226 => 0.12413607500573
1227 => 0.12384629449564
1228 => 0.12555985758631
1229 => 0.12505568385614
1230 => 0.12432521522355
1231 => 0.12704157720758
]
'min_raw' => 0.046828636094227
'max_raw' => 0.12704157720758
'avg_raw' => 0.086935106650905
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.046828'
'max' => '$0.127041'
'avg' => '$0.086935'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.016149986355114
'max_diff' => 0.058553652826692
'year' => 2032
]
7 => [
'items' => [
101 => 0.123927487392
102 => 0.11950742895177
103 => 0.11708249747263
104 => 0.12027584285801
105 => 0.12222590745247
106 => 0.12351477610201
107 => 0.1239047869766
108 => 0.11410246294112
109 => 0.10881955394781
110 => 0.11220583804385
111 => 0.11633733834986
112 => 0.11364278135023
113 => 0.11374840288315
114 => 0.1099066727188
115 => 0.11667724622446
116 => 0.11569083061417
117 => 0.12080835654528
118 => 0.11958701791111
119 => 0.12376016164672
120 => 0.12266123304386
121 => 0.12722282423407
122 => 0.12904256646
123 => 0.13209819687759
124 => 0.13434593105142
125 => 0.1356658435506
126 => 0.13558660095502
127 => 0.14081675185456
128 => 0.13773271459665
129 => 0.13385843694895
130 => 0.13378836348949
131 => 0.13579490678218
201 => 0.14000007105538
202 => 0.14109040896876
203 => 0.14169975911571
204 => 0.14076651815403
205 => 0.13741901674551
206 => 0.13597358260953
207 => 0.13720513437165
208 => 0.13569905239503
209 => 0.13829897241864
210 => 0.141869217924
211 => 0.14113197634542
212 => 0.14359646440916
213 => 0.14614695028343
214 => 0.14979425963313
215 => 0.15074780135661
216 => 0.15232396956559
217 => 0.15394636439691
218 => 0.15446743389196
219 => 0.15546231723639
220 => 0.15545707371008
221 => 0.15845522163188
222 => 0.16176227163453
223 => 0.16301060645215
224 => 0.16588108353169
225 => 0.1609654921265
226 => 0.16469402467358
227 => 0.16805725436227
228 => 0.16404747327773
301 => 0.16957402234359
302 => 0.16978860572039
303 => 0.17302855994492
304 => 0.16974424563824
305 => 0.16779403028683
306 => 0.17342422893273
307 => 0.17614850470788
308 => 0.17532793067352
309 => 0.16908332175523
310 => 0.16544869152092
311 => 0.1559361631299
312 => 0.16720416391971
313 => 0.17269247841233
314 => 0.16906910834658
315 => 0.17089652544889
316 => 0.18086632061715
317 => 0.18466217312078
318 => 0.18387266233504
319 => 0.18400607666138
320 => 0.18605424977274
321 => 0.19513697729808
322 => 0.18969439642892
323 => 0.19385504557378
324 => 0.19606183887787
325 => 0.19811163148464
326 => 0.19307798868602
327 => 0.18652929336391
328 => 0.18445504665987
329 => 0.16870883560236
330 => 0.16788917693448
331 => 0.16742907768601
401 => 0.1645282170067
402 => 0.16224893512537
403 => 0.16043636554903
404 => 0.15567964170161
405 => 0.15728489636502
406 => 0.14970367135767
407 => 0.15455387045526
408 => 0.14245405228844
409 => 0.1525311404058
410 => 0.1470466394925
411 => 0.1507293343506
412 => 0.15071648577518
413 => 0.14393547694193
414 => 0.14002433256296
415 => 0.14251666598526
416 => 0.14518864525564
417 => 0.14562216490264
418 => 0.14908645577247
419 => 0.15005326488956
420 => 0.14712378812878
421 => 0.14220331045135
422 => 0.14334622519167
423 => 0.14000117143223
424 => 0.13413909338445
425 => 0.13834934018043
426 => 0.13978690354806
427 => 0.14042181342739
428 => 0.1346571329316
429 => 0.13284574516253
430 => 0.13188137751328
501 => 0.1414591625891
502 => 0.14198385527618
503 => 0.13929945330501
504 => 0.15143320476016
505 => 0.14868696310725
506 => 0.15175518787909
507 => 0.14324251765845
508 => 0.14356771312471
509 => 0.13953767862067
510 => 0.14179422865593
511 => 0.14019937182301
512 => 0.14161192171274
513 => 0.14245859829249
514 => 0.14648797150752
515 => 0.15257714937545
516 => 0.14588611751695
517 => 0.14297073911886
518 => 0.14477942348033
519 => 0.14959618828054
520 => 0.15689383351852
521 => 0.15257348065884
522 => 0.15449077989362
523 => 0.15490962448171
524 => 0.15172395623114
525 => 0.15701129365091
526 => 0.15984482072842
527 => 0.16275143319413
528 => 0.16527516335668
529 => 0.16159046825755
530 => 0.16553362019391
531 => 0.16235613579322
601 => 0.1595056038035
602 => 0.15950992688388
603 => 0.1577217465271
604 => 0.15425692176062
605 => 0.15361795491373
606 => 0.15694194114386
607 => 0.15960746331776
608 => 0.15982700849099
609 => 0.16130277852594
610 => 0.16217612403098
611 => 0.17073609723601
612 => 0.17417898927088
613 => 0.17838889248052
614 => 0.18002888703781
615 => 0.18496468268469
616 => 0.18097862683411
617 => 0.18011621857738
618 => 0.16814359282451
619 => 0.17010410962082
620 => 0.17324308617345
621 => 0.16819535339171
622 => 0.1713969780138
623 => 0.17202904653388
624 => 0.16802383336332
625 => 0.17016319077276
626 => 0.16448169176855
627 => 0.152700990528
628 => 0.15702440893908
629 => 0.16020790013655
630 => 0.15566466567613
701 => 0.16380823759897
702 => 0.1590509309991
703 => 0.15754309319792
704 => 0.15166048035257
705 => 0.15443684717304
706 => 0.15819192305148
707 => 0.15587172273303
708 => 0.16068648677364
709 => 0.16750547670581
710 => 0.17236509500935
711 => 0.17273815616057
712 => 0.16961374716054
713 => 0.1746206325228
714 => 0.17465710221652
715 => 0.16900931507416
716 => 0.16555007689648
717 => 0.16476413070421
718 => 0.16672757838632
719 => 0.16911156634485
720 => 0.17287045090056
721 => 0.17514186611321
722 => 0.18106451232228
723 => 0.18266701057088
724 => 0.18442767029897
725 => 0.18678045466307
726 => 0.18960557553369
727 => 0.18342437190299
728 => 0.18366996264644
729 => 0.17791411141013
730 => 0.17176315889156
731 => 0.1764309651261
801 => 0.18253350084551
802 => 0.18113357240877
803 => 0.1809760518617
804 => 0.18124095772932
805 => 0.18018545740541
806 => 0.17541146855903
807 => 0.17301400124713
808 => 0.17610734573862
809 => 0.17775132066693
810 => 0.18030098241105
811 => 0.17998668278426
812 => 0.18655433762344
813 => 0.18910632969837
814 => 0.18845342091971
815 => 0.18857357184811
816 => 0.19319383160074
817 => 0.19833251067456
818 => 0.20314556173562
819 => 0.20804160400028
820 => 0.20213923395445
821 => 0.19914237445275
822 => 0.20223436848681
823 => 0.20059371292937
824 => 0.21002140641247
825 => 0.21067415945426
826 => 0.22010117120781
827 => 0.2290485279096
828 => 0.22342885347375
829 => 0.22872795335107
830 => 0.23445936191033
831 => 0.24551617890868
901 => 0.24179263192715
902 => 0.23894045329472
903 => 0.23624515826869
904 => 0.24185363935181
905 => 0.24906886066757
906 => 0.25062295023245
907 => 0.25314116903547
908 => 0.25049356987724
909 => 0.25368231143985
910 => 0.26493997035988
911 => 0.26189805154559
912 => 0.25757803781643
913 => 0.26646487833675
914 => 0.26968099137433
915 => 0.29225335696357
916 => 0.32075190093789
917 => 0.30895331660099
918 => 0.30162955456514
919 => 0.30335081236552
920 => 0.31375751588835
921 => 0.31709981876763
922 => 0.30801428738087
923 => 0.31122345066335
924 => 0.32890625586777
925 => 0.33839251352764
926 => 0.32550890145116
927 => 0.28996352670364
928 => 0.25718906784642
929 => 0.26588233018847
930 => 0.26489678402222
1001 => 0.2838947522395
1002 => 0.2618255027879
1003 => 0.26219709234892
1004 => 0.28158791842973
1005 => 0.27641477847429
1006 => 0.26803495427218
1007 => 0.25725024983676
1008 => 0.23731372622347
1009 => 0.21965539128809
1010 => 0.25428745256804
1011 => 0.25279405511133
1012 => 0.25063139428491
1013 => 0.25544416192976
1014 => 0.27881359548521
1015 => 0.27827485440228
1016 => 0.27484765850081
1017 => 0.27744715638616
1018 => 0.26757924972449
1019 => 0.27012243395926
1020 => 0.25718387620468
1021 => 0.26303264467165
1022 => 0.26801697493301
1023 => 0.26901765302725
1024 => 0.27127223186946
1025 => 0.25200710251215
1026 => 0.2606565799991
1027 => 0.26573733767624
1028 => 0.24278228965136
1029 => 0.26528359018289
1030 => 0.25167173947108
1031 => 0.24705167289635
1101 => 0.25327198389174
1102 => 0.25084792264739
1103 => 0.24876385713514
1104 => 0.24760091277052
1105 => 0.25216842265486
1106 => 0.2519553428594
1107 => 0.24448201017316
1108 => 0.23473335233597
1109 => 0.23800532189492
1110 => 0.23681658467927
1111 => 0.23250844765963
1112 => 0.23541161184442
1113 => 0.22262754603236
1114 => 0.20063322526064
1115 => 0.21516334726671
1116 => 0.2146039533752
1117 => 0.21432188160861
1118 => 0.2252408667131
1119 => 0.22419125823915
1120 => 0.22228620858113
1121 => 0.2324734599287
1122 => 0.22875497614897
1123 => 0.24021446697313
1124 => 0.24776242878332
1125 => 0.24584802151727
1126 => 0.25294691608221
1127 => 0.2380807014651
1128 => 0.2430186616319
1129 => 0.24403636837856
1130 => 0.2323477508284
1201 => 0.22436298716621
1202 => 0.22383049446292
1203 => 0.2099860146409
1204 => 0.21738162401309
1205 => 0.2238894542095
1206 => 0.22077270857344
1207 => 0.21978604001519
1208 => 0.22482671569698
1209 => 0.22521841936792
1210 => 0.21628753415954
1211 => 0.21814454799871
1212 => 0.22588860441094
1213 => 0.21794941764633
1214 => 0.20252487462147
1215 => 0.19869937469032
1216 => 0.19818898248155
1217 => 0.18781392326403
1218 => 0.19895501288806
1219 => 0.19409162870453
1220 => 0.209455001068
1221 => 0.20067952516941
1222 => 0.20030123194274
1223 => 0.19972938624708
1224 => 0.19079914419026
1225 => 0.19275429965422
1226 => 0.19925353419498
1227 => 0.20157253429824
1228 => 0.20133064358847
1229 => 0.19922168440009
1230 => 0.20018715511691
1231 => 0.19707703754573
]
'min_raw' => 0.10881955394781
'max_raw' => 0.33839251352764
'avg_raw' => 0.22360603373773
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.108819'
'max' => '$0.338392'
'avg' => '$0.223606'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.061990917853587
'max_diff' => 0.21135093632005
'year' => 2033
]
8 => [
'items' => [
101 => 0.19597879029985
102 => 0.19251241989514
103 => 0.18741781300948
104 => 0.18812624934397
105 => 0.17803250002707
106 => 0.17253288968341
107 => 0.17101067002398
108 => 0.16897509427745
109 => 0.17124059372101
110 => 0.17800390570347
111 => 0.16984591653594
112 => 0.15585961632462
113 => 0.15670021679881
114 => 0.15858879648781
115 => 0.15506944073157
116 => 0.15173866586542
117 => 0.15463450437723
118 => 0.14870832459955
119 => 0.15930494700129
120 => 0.15901833806201
121 => 0.16296810360264
122 => 0.16543797305255
123 => 0.15974572360024
124 => 0.15831413825647
125 => 0.15912963433021
126 => 0.14565130077123
127 => 0.16186663619928
128 => 0.16200686709342
129 => 0.16080612504116
130 => 0.16944029056428
131 => 0.18766107288183
201 => 0.1808056816447
202 => 0.17815106695238
203 => 0.17310464248178
204 => 0.17982870346182
205 => 0.17931240049025
206 => 0.1769774826507
207 => 0.17556531705595
208 => 0.17816727546363
209 => 0.17524290561464
210 => 0.17471760843345
211 => 0.17153487904441
212 => 0.17039878945749
213 => 0.16955767395636
214 => 0.16863168843592
215 => 0.1706741817528
216 => 0.16604562318437
217 => 0.16046403529405
218 => 0.15999998665459
219 => 0.16128126574772
220 => 0.16071439512902
221 => 0.15999727269616
222 => 0.15862809067515
223 => 0.15822188361746
224 => 0.1595418594913
225 => 0.15805168368911
226 => 0.16025051925931
227 => 0.15965255765134
228 => 0.15631239271727
301 => 0.15214931052197
302 => 0.15211225035807
303 => 0.15121532112792
304 => 0.15007294689911
305 => 0.14975516452263
306 => 0.15439062493491
307 => 0.16398588926068
308 => 0.16210210927832
309 => 0.16346333337311
310 => 0.1701592086665
311 => 0.17228762607028
312 => 0.17077692581141
313 => 0.16870898612113
314 => 0.16879996497253
315 => 0.17586674090212
316 => 0.17630748704856
317 => 0.17742111037053
318 => 0.17885243104917
319 => 0.17102068591219
320 => 0.16843109048088
321 => 0.16720399650024
322 => 0.16342502198501
323 => 0.1675003220149
324 => 0.16512581920923
325 => 0.16544622076228
326 => 0.16523755883053
327 => 0.16535150235492
328 => 0.15930198502936
329 => 0.16150611118953
330 => 0.15784132395096
331 => 0.15293458523018
401 => 0.15291813612147
402 => 0.154119053472
403 => 0.15340470084
404 => 0.15148239627497
405 => 0.15175545056542
406 => 0.14936320765993
407 => 0.1520459121671
408 => 0.15212284253318
409 => 0.15108985517002
410 => 0.1552229316052
411 => 0.15691625639296
412 => 0.15623632198179
413 => 0.1568685503821
414 => 0.16218038884134
415 => 0.16304645028196
416 => 0.16343109756507
417 => 0.1629157211617
418 => 0.15696564103806
419 => 0.15722955239324
420 => 0.15529314597688
421 => 0.15365708660853
422 => 0.15372252040327
423 => 0.15456366759143
424 => 0.15823700669474
425 => 0.16596733228251
426 => 0.16626069248777
427 => 0.16661625361447
428 => 0.16517000782149
429 => 0.16473380625161
430 => 0.16530926871545
501 => 0.16821237256501
502 => 0.17567994385107
503 => 0.17304040541626
504 => 0.1708944195819
505 => 0.17277702771226
506 => 0.17248721494696
507 => 0.17004090355058
508 => 0.16997224373737
509 => 0.16527699003465
510 => 0.1635412616465
511 => 0.16209075708835
512 => 0.16050684397723
513 => 0.15956784719171
514 => 0.16101057302068
515 => 0.16134054148759
516 => 0.15818599624802
517 => 0.15775604338831
518 => 0.16033211312653
519 => 0.1591984808803
520 => 0.16036444975828
521 => 0.16063496453946
522 => 0.16059140542921
523 => 0.15940776316731
524 => 0.16016218144833
525 => 0.15837775731081
526 => 0.15643746407311
527 => 0.15519967787199
528 => 0.15411954524301
529 => 0.15471886560324
530 => 0.15258239795057
531 => 0.15189889894988
601 => 0.15990660150967
602 => 0.16582197748789
603 => 0.16573596557842
604 => 0.1652123902
605 => 0.16443446339104
606 => 0.16815546237353
607 => 0.16685914073175
608 => 0.16780232303744
609 => 0.16804240251948
610 => 0.16876905080428
611 => 0.16902876510857
612 => 0.16824372809783
613 => 0.1656090480056
614 => 0.15904367571361
615 => 0.15598747718881
616 => 0.15497888077062
617 => 0.15501554133482
618 => 0.1540042793141
619 => 0.15430214130079
620 => 0.1539006950708
621 => 0.15314045303147
622 => 0.15467192279962
623 => 0.15484841042377
624 => 0.15449094708019
625 => 0.15457514263796
626 => 0.15161549882766
627 => 0.15184051411855
628 => 0.15058760038532
629 => 0.15035269416443
630 => 0.14718543735051
701 => 0.14157418280341
702 => 0.14468336252016
703 => 0.14092791063916
704 => 0.13950566410744
705 => 0.14623835798388
706 => 0.14556258225454
707 => 0.14440594795857
708 => 0.14269504477112
709 => 0.1420604541363
710 => 0.1382048823261
711 => 0.13797707457487
712 => 0.1398880000732
713 => 0.13900617370666
714 => 0.13776775551426
715 => 0.13328233035785
716 => 0.12823922740881
717 => 0.12839144698703
718 => 0.12999556420485
719 => 0.13465975136035
720 => 0.13283737274744
721 => 0.13151521615439
722 => 0.13126761596839
723 => 0.13436685068225
724 => 0.13875291711211
725 => 0.14081076134829
726 => 0.13877150020789
727 => 0.13642890681142
728 => 0.13657148961693
729 => 0.13752002914377
730 => 0.13761970723641
731 => 0.1360949197578
801 => 0.13652413850154
802 => 0.13587211598122
803 => 0.13187065497756
804 => 0.13179828123677
805 => 0.1308162581742
806 => 0.13078652290615
807 => 0.12911585669958
808 => 0.12888211894851
809 => 0.12556490979318
810 => 0.12774830690465
811 => 0.12628379875577
812 => 0.12407643953285
813 => 0.12369588997081
814 => 0.12368445019145
815 => 0.1259509145569
816 => 0.12772182194894
817 => 0.12630927450203
818 => 0.12598766482945
819 => 0.12942161473309
820 => 0.1289846133067
821 => 0.12860617288981
822 => 0.13836019297011
823 => 0.13063912496087
824 => 0.12727229860569
825 => 0.12310521164817
826 => 0.12446203617381
827 => 0.12474793903727
828 => 0.11472684607831
829 => 0.1106612899129
830 => 0.10926614424419
831 => 0.10846321818738
901 => 0.10882912167398
902 => 0.10516964428294
903 => 0.10762887361189
904 => 0.10446007551917
905 => 0.10392881620677
906 => 0.1095950197353
907 => 0.11038343885482
908 => 0.10701979794835
909 => 0.1091797999343
910 => 0.10839655318792
911 => 0.10451439546747
912 => 0.10436612559777
913 => 0.10241819531809
914 => 0.099370061624023
915 => 0.097976982733488
916 => 0.097251455152031
917 => 0.097550821972391
918 => 0.097399452947241
919 => 0.096411667668186
920 => 0.097456071643177
921 => 0.094788051064593
922 => 0.093725623772498
923 => 0.093245750012785
924 => 0.090877728183758
925 => 0.094646303977828
926 => 0.095388760884526
927 => 0.096132680660688
928 => 0.10260799441657
929 => 0.10228450604037
930 => 0.10520868341597
1001 => 0.10509505526037
1002 => 0.10426103250432
1003 => 0.10074242768662
1004 => 0.10214488085385
1005 => 0.097828347994716
1006 => 0.10106258790848
1007 => 0.099586615876929
1008 => 0.10056356027992
1009 => 0.098806926155815
1010 => 0.099779120009741
1011 => 0.09556482496044
1012 => 0.091629575540135
1013 => 0.093213234783958
1014 => 0.094934853495395
1015 => 0.098667761522082
1016 => 0.09644447229721
1017 => 0.097244051174347
1018 => 0.094565595783825
1019 => 0.08903917725022
1020 => 0.089070456178952
1021 => 0.088220337087129
1022 => 0.087485710072375
1023 => 0.096699843809534
1024 => 0.095553920625419
1025 => 0.093728042006251
1026 => 0.09617205309554
1027 => 0.096818288419219
1028 => 0.096836685830384
1029 => 0.098619773232073
1030 => 0.09957140729799
1031 => 0.099739136926726
1101 => 0.10254486347944
1102 => 0.10348530601148
1103 => 0.10735885570454
1104 => 0.099490667796194
1105 => 0.099328627644026
1106 => 0.096206445343607
1107 => 0.094226307968932
1108 => 0.096342027043732
1109 => 0.098216265319551
1110 => 0.096264683151255
1111 => 0.096519518582287
1112 => 0.093899678971471
1113 => 0.094836148357427
1114 => 0.095642761948661
1115 => 0.095197397334137
1116 => 0.094530664950303
1117 => 0.098062599154466
1118 => 0.097863313584905
1119 => 0.10115233191464
1120 => 0.10371635690262
1121 => 0.10831154805538
1122 => 0.10351622653474
1123 => 0.10334146595886
1124 => 0.10504977862064
1125 => 0.10348504447771
1126 => 0.10447390244326
1127 => 0.10815222774944
1128 => 0.10822994496693
1129 => 0.10692808144099
1130 => 0.10684886292712
1201 => 0.1070989000581
1202 => 0.10856337534405
1203 => 0.10805164268036
1204 => 0.10864383267427
1205 => 0.10938437532958
1206 => 0.11244757373555
1207 => 0.11318610050081
1208 => 0.11139186334344
1209 => 0.11155386286953
1210 => 0.11088276891976
1211 => 0.11023450057306
1212 => 0.11169171314444
1213 => 0.11435479776023
1214 => 0.11433823084905
1215 => 0.11495601471694
1216 => 0.11534088894864
1217 => 0.11368872700103
1218 => 0.11261323032481
1219 => 0.1130256441861
1220 => 0.11368510293152
1221 => 0.11281179060293
1222 => 0.10742130235325
1223 => 0.10905643214248
1224 => 0.10878426659179
1225 => 0.10839666975115
1226 => 0.1100408053983
1227 => 0.10988222450424
1228 => 0.10513211105297
1229 => 0.10543619790442
1230 => 0.10515060358158
1231 => 0.10607341726578
]
'min_raw' => 0.087485710072375
'max_raw' => 0.19597879029985
'avg_raw' => 0.14173225018611
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.087485'
'max' => '$0.195978'
'avg' => '$0.141732'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.02133384387544
'max_diff' => -0.14241372322779
'year' => 2034
]
9 => [
'items' => [
101 => 0.10343520951034
102 => 0.10424670444732
103 => 0.10475566646449
104 => 0.10505544900264
105 => 0.10613846909324
106 => 0.10601138918578
107 => 0.10613056962776
108 => 0.10773640251541
109 => 0.11585815420586
110 => 0.11630020323074
111 => 0.11412339216041
112 => 0.11499298524731
113 => 0.11332355667957
114 => 0.11444425526129
115 => 0.11521100876825
116 => 0.11174619710854
117 => 0.11154103344849
118 => 0.10986471455521
119 => 0.1107654733769
120 => 0.10933230132473
121 => 0.10968395161611
122 => 0.10870070674511
123 => 0.1104703517508
124 => 0.1124490898422
125 => 0.11294899722682
126 => 0.11163395612154
127 => 0.11068177969589
128 => 0.10901007155885
129 => 0.11179015944719
130 => 0.11260314186738
131 => 0.11178588919663
201 => 0.1115965138955
202 => 0.11123764804204
203 => 0.11167264898278
204 => 0.11259871419053
205 => 0.11216199894029
206 => 0.112450457057
207 => 0.11135115217281
208 => 0.11368927393538
209 => 0.11740277399398
210 => 0.11741471350389
211 => 0.1169779958996
212 => 0.11679930046513
213 => 0.11724739922938
214 => 0.117490474427
215 => 0.11893954366331
216 => 0.12049445268734
217 => 0.12775053464249
218 => 0.12571305586517
219 => 0.13215108344203
220 => 0.13724272738208
221 => 0.13876948876909
222 => 0.13736494013271
223 => 0.13256005511988
224 => 0.13232430453824
225 => 0.13950483131753
226 => 0.13747600361342
227 => 0.13723468101369
228 => 0.13466741627356
301 => 0.1361849876969
302 => 0.13585307256518
303 => 0.13532912829193
304 => 0.13822454885273
305 => 0.14364451766657
306 => 0.14279976469878
307 => 0.1421691957953
308 => 0.13940622641606
309 => 0.14107015111392
310 => 0.14047765939939
311 => 0.14302337980953
312 => 0.14151535143317
313 => 0.13746063324815
314 => 0.13810636048364
315 => 0.13800876011102
316 => 0.14001736886354
317 => 0.13941443437277
318 => 0.13789102747495
319 => 0.14362599280239
320 => 0.14325359605358
321 => 0.14378156950164
322 => 0.1440139997416
323 => 0.14750477207499
324 => 0.14893482980772
325 => 0.14925947794974
326 => 0.1506179221912
327 => 0.1492256786195
328 => 0.15479564555916
329 => 0.15849934855745
330 => 0.16280139018078
331 => 0.16908782927225
401 => 0.17145158852345
402 => 0.17102459657191
403 => 0.17579090294492
404 => 0.18435584954818
405 => 0.17275581716162
406 => 0.18497067943175
407 => 0.18110359506439
408 => 0.17193480759527
409 => 0.17134444577516
410 => 0.17755365510106
411 => 0.19132508377166
412 => 0.18787549708393
413 => 0.1913307260597
414 => 0.18730001792417
415 => 0.18709985929176
416 => 0.19113496356227
417 => 0.20056320463239
418 => 0.1960842007123
419 => 0.18966245029605
420 => 0.19440417086991
421 => 0.19029645368331
422 => 0.18104061718425
423 => 0.18787285925
424 => 0.18330433355169
425 => 0.18463767222664
426 => 0.19424003372758
427 => 0.19308465218709
428 => 0.19457982288594
429 => 0.19194088573791
430 => 0.18947570231945
501 => 0.18487425440198
502 => 0.18351199252226
503 => 0.18388847269677
504 => 0.18351180595738
505 => 0.18093733813705
506 => 0.18038138205637
507 => 0.17945476423156
508 => 0.17974196184169
509 => 0.17799964923946
510 => 0.18128775310003
511 => 0.18189805415122
512 => 0.18429086193583
513 => 0.18453929117787
514 => 0.19120322679853
515 => 0.18753284304155
516 => 0.18999525335142
517 => 0.1897749921962
518 => 0.17213352302192
519 => 0.17456436182214
520 => 0.17834598415603
521 => 0.17664236842048
522 => 0.1742338543551
523 => 0.17228885011095
524 => 0.16934196979416
525 => 0.17348964725021
526 => 0.17894340204859
527 => 0.18467760739962
528 => 0.19156687940886
529 => 0.19002927409636
530 => 0.18454881725148
531 => 0.18479466654207
601 => 0.18631441011833
602 => 0.18434620410381
603 => 0.18376574172618
604 => 0.18623466350125
605 => 0.18625166560862
606 => 0.18398700672327
607 => 0.18147025280039
608 => 0.18145970750956
609 => 0.18101187545794
610 => 0.18737968625129
611 => 0.19088133832934
612 => 0.19128279709689
613 => 0.19085431695563
614 => 0.19101922195623
615 => 0.18898168776565
616 => 0.19363888671332
617 => 0.19791279301694
618 => 0.19676729482888
619 => 0.19505003020281
620 => 0.19368214621348
621 => 0.19644506483297
622 => 0.19632203641608
623 => 0.19787546417385
624 => 0.19780499171773
625 => 0.19728263239016
626 => 0.19676731348398
627 => 0.19881049469799
628 => 0.19822209132084
629 => 0.19763277399073
630 => 0.19645080786521
701 => 0.19661145669204
702 => 0.19489448857593
703 => 0.1941001405623
704 => 0.18215505234467
705 => 0.17896293445591
706 => 0.17996723972526
707 => 0.18029788309671
708 => 0.17890866930071
709 => 0.18090044502443
710 => 0.1805900288877
711 => 0.18179767648835
712 => 0.18104319069743
713 => 0.18107415505746
714 => 0.18329293689523
715 => 0.18393705870211
716 => 0.18360945315243
717 => 0.18383889684977
718 => 0.18912633001269
719 => 0.18837462609951
720 => 0.18797529837766
721 => 0.18808591488567
722 => 0.18943696742264
723 => 0.18981518836826
724 => 0.18821263964456
725 => 0.18896841088688
726 => 0.19218638891502
727 => 0.19331249910309
728 => 0.19690650225986
729 => 0.19537970584055
730 => 0.19818220674639
731 => 0.20679613908796
801 => 0.21367754428119
802 => 0.2073491196794
803 => 0.2199859439751
804 => 0.22982552433408
805 => 0.22944786485123
806 => 0.22773210642204
807 => 0.21653000578212
808 => 0.20622166575935
809 => 0.21484502990363
810 => 0.21486701263225
811 => 0.21412625800457
812 => 0.20952549463121
813 => 0.21396616141191
814 => 0.21431864541483
815 => 0.21412134810626
816 => 0.21059395361496
817 => 0.20520827419823
818 => 0.20626062306476
819 => 0.20798439197548
820 => 0.20472093781162
821 => 0.20367806646661
822 => 0.20561696271138
823 => 0.21186449039711
824 => 0.21068343147759
825 => 0.21065258925616
826 => 0.21570566016081
827 => 0.21208875191404
828 => 0.20627389655406
829 => 0.20480556888714
830 => 0.19959399485363
831 => 0.20319364760157
901 => 0.20332319269563
902 => 0.20135169967314
903 => 0.20643387234731
904 => 0.20638703923142
905 => 0.21121180580397
906 => 0.22043494739111
907 => 0.21770721058056
908 => 0.21453514944681
909 => 0.21488004044376
910 => 0.21866264341683
911 => 0.21637559531089
912 => 0.21719803375565
913 => 0.21866139855774
914 => 0.21954428287615
915 => 0.21475300697716
916 => 0.21363593137189
917 => 0.21135078672377
918 => 0.21075463513932
919 => 0.21261583777411
920 => 0.2121254766371
921 => 0.20331230493209
922 => 0.2023912794529
923 => 0.20241952598942
924 => 0.20010356362961
925 => 0.19657116513623
926 => 0.20585409746827
927 => 0.20510854808745
928 => 0.20428551927197
929 => 0.20438633560572
930 => 0.20841574190329
1001 => 0.20607848276081
1002 => 0.21229246926034
1003 => 0.21101506044557
1004 => 0.2097048909148
1005 => 0.20952378557691
1006 => 0.20901948208598
1007 => 0.2072900377725
1008 => 0.20520162984049
1009 => 0.20382268202898
1010 => 0.18801565014553
1011 => 0.19094934331782
1012 => 0.194324289898
1013 => 0.19548930793323
1014 => 0.19349646396718
1015 => 0.20736872739881
1016 => 0.20990332360423
1017 => 0.2022258663704
1018 => 0.20078972759047
1019 => 0.20746288041813
1020 => 0.20343815350329
1021 => 0.20525048778661
1022 => 0.20133321235994
1023 => 0.20929281359998
1024 => 0.20923217477451
1025 => 0.20613571011639
1026 => 0.20875282084176
1027 => 0.20829803344929
1028 => 0.20480213247653
1029 => 0.20940363989635
1030 => 0.20940592218662
1031 => 0.20642564227612
1101 => 0.20294532780782
1102 => 0.20232312978224
1103 => 0.20185438715052
1104 => 0.20513520583365
1105 => 0.20807677760609
1106 => 0.21355031339712
1107 => 0.21492649034299
1108 => 0.22029780058
1109 => 0.21709944685821
1110 => 0.21851723563746
1111 => 0.22005644591581
1112 => 0.22079439992583
1113 => 0.21959194346729
1114 => 0.22793579918486
1115 => 0.22864027625656
1116 => 0.228876481325
1117 => 0.22606298012321
1118 => 0.22856202769855
1119 => 0.22739280609781
1120 => 0.23043479588383
1121 => 0.23091181872436
1122 => 0.23050779734901
1123 => 0.23065921192789
1124 => 0.22353920302996
1125 => 0.22316999300756
1126 => 0.21813578815423
1127 => 0.22018726384293
1128 => 0.2163521283727
1129 => 0.21756828933658
1130 => 0.21810436150145
1201 => 0.21782434782435
1202 => 0.22030325120035
1203 => 0.21819567692425
1204 => 0.21263344189231
1205 => 0.20706969143316
1206 => 0.20699984307828
1207 => 0.20553500579074
1208 => 0.20447619673018
1209 => 0.20468016091851
1210 => 0.20539895732167
1211 => 0.20443441897653
1212 => 0.2046402521358
1213 => 0.20805845403886
1214 => 0.20874395005302
1215 => 0.20641436675633
1216 => 0.19706075366284
1217 => 0.19476535354793
1218 => 0.19641524163077
1219 => 0.19562670139357
1220 => 0.15788601606265
1221 => 0.16675263026565
1222 => 0.161484389188
1223 => 0.1639122370567
1224 => 0.15853472712083
1225 => 0.16110115672167
1226 => 0.1606272308854
1227 => 0.17488448414163
1228 => 0.17466187674225
1229 => 0.17476842712421
1230 => 0.16968249977751
1231 => 0.17778452013878
]
'min_raw' => 0.10343520951034
'max_raw' => 0.23091181872436
'avg_raw' => 0.16717351411735
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.103435'
'max' => '$0.230911'
'avg' => '$0.167173'
'bar_min_pct' => 61.631153054958
'bar_max_pct' => 60.119598047091
'min_diff' => 0.01594949943797
'max_diff' => 0.034933028424512
'year' => 2035
]
10 => [
'items' => [
101 => 0.18177586670798
102 => 0.18103717468427
103 => 0.18122308755214
104 => 0.17802848852329
105 => 0.17479935782586
106 => 0.17121775492276
107 => 0.17787193041722
108 => 0.1771320996928
109 => 0.17882900519193
110 => 0.18314471365038
111 => 0.18378021811467
112 => 0.18463434255933
113 => 0.18432819974664
114 => 0.19162176357505
115 => 0.19073846487095
116 => 0.19286696060546
117 => 0.18848848339021
118 => 0.18353382081228
119 => 0.18447554018822
120 => 0.18438484503949
121 => 0.18323019170109
122 => 0.18218782229521
123 => 0.18045257092019
124 => 0.18594316303964
125 => 0.18572025502659
126 => 0.18932887665566
127 => 0.18869101773044
128 => 0.18443123971727
129 => 0.18458337852236
130 => 0.18560658510203
131 => 0.18914791475701
201 => 0.19019922251072
202 => 0.18971221487183
203 => 0.19086492582975
204 => 0.19177598157108
205 => 0.190979340404
206 => 0.20225809936229
207 => 0.19757437229048
208 => 0.19985718827611
209 => 0.20040162643755
210 => 0.19900705953532
211 => 0.19930949116072
212 => 0.19976759266551
213 => 0.20254909529714
214 => 0.20984856303679
215 => 0.21308144760952
216 => 0.22280774035431
217 => 0.21281300154968
218 => 0.21221995511136
219 => 0.2139719541406
220 => 0.21968231761443
221 => 0.22431003086281
222 => 0.22584531032648
223 => 0.22604822285231
224 => 0.2289285091896
225 => 0.23057943560397
226 => 0.2285787666692
227 => 0.22688340922575
228 => 0.22081084929881
229 => 0.22151376464539
301 => 0.22635615433568
302 => 0.23319631498854
303 => 0.23906588442611
304 => 0.23701056578422
305 => 0.25269119619301
306 => 0.25424586664841
307 => 0.25403106145999
308 => 0.25757283212337
309 => 0.2505431386256
310 => 0.24753780846141
311 => 0.22724996474815
312 => 0.23295002130118
313 => 0.24123538825361
314 => 0.24013878886892
315 => 0.23412173391958
316 => 0.23906131995037
317 => 0.23742813833345
318 => 0.23613998023142
319 => 0.24204128221855
320 => 0.23555255827158
321 => 0.24117065826862
322 => 0.23396538691061
323 => 0.23701995430665
324 => 0.23528603411986
325 => 0.23640809298198
326 => 0.22984855980146
327 => 0.233387924682
328 => 0.22970131058608
329 => 0.22969956265098
330 => 0.22961818044049
331 => 0.23395546557539
401 => 0.23409690428792
402 => 0.23089164401996
403 => 0.23042971593977
404 => 0.23213770615854
405 => 0.2301380969357
406 => 0.23107370150568
407 => 0.23016643544501
408 => 0.22996219074481
409 => 0.22833473422423
410 => 0.22763358120731
411 => 0.22790852137173
412 => 0.22697000884919
413 => 0.22640452110688
414 => 0.22950569069542
415 => 0.22784886088509
416 => 0.2292517577647
417 => 0.22765297971068
418 => 0.22211091842101
419 => 0.21892362036709
420 => 0.20845518034025
421 => 0.2114240169458
422 => 0.21339235868677
423 => 0.21274182175312
424 => 0.21413942681097
425 => 0.21422522841064
426 => 0.21377085275944
427 => 0.21324474396447
428 => 0.21298866329872
429 => 0.21489727877826
430 => 0.21600529430517
501 => 0.21358990811349
502 => 0.21302401692362
503 => 0.21546610572054
504 => 0.21695577847592
505 => 0.22795468512678
506 => 0.22713985059609
507 => 0.22918492536493
508 => 0.22895468133019
509 => 0.23109824549391
510 => 0.23460206696377
511 => 0.22747781823165
512 => 0.22871434147356
513 => 0.22841117453013
514 => 0.2317210717238
515 => 0.23173140486155
516 => 0.22974695615232
517 => 0.2308227579916
518 => 0.23022227491799
519 => 0.23130742899215
520 => 0.22712896798415
521 => 0.2322178824549
522 => 0.23510296903742
523 => 0.23514302846742
524 => 0.23651053661006
525 => 0.23790000408373
526 => 0.24056696590231
527 => 0.2378256239661
528 => 0.23289421668713
529 => 0.23325024836432
530 => 0.23035896608099
531 => 0.23040756905853
601 => 0.23014812255536
602 => 0.23092674104159
603 => 0.22729983095636
604 => 0.228151059504
605 => 0.22695933455252
606 => 0.22871175089625
607 => 0.22682644059519
608 => 0.22841102833385
609 => 0.22909488387194
610 => 0.23161832552985
611 => 0.22645372621057
612 => 0.21592275858592
613 => 0.21813649565627
614 => 0.21486220464394
615 => 0.21516525274323
616 => 0.21577745813356
617 => 0.21379310016237
618 => 0.21417165312897
619 => 0.21415812855317
620 => 0.21404158106546
621 => 0.21352537291762
622 => 0.21277676897457
623 => 0.21575897667552
624 => 0.21626571187605
625 => 0.2173921214556
626 => 0.22074355231343
627 => 0.22040866533855
628 => 0.22095487988891
629 => 0.21976249659235
630 => 0.21522056398452
701 => 0.21546721277702
702 => 0.21239149838225
703 => 0.21731346852338
704 => 0.21614788102713
705 => 0.2153964191857
706 => 0.21519137586002
707 => 0.21855111426671
708 => 0.21955640065544
709 => 0.21892997364024
710 => 0.21764515355628
711 => 0.22011238794044
712 => 0.22077251577738
713 => 0.2209202940555
714 => 0.22529176033897
715 => 0.22116461045981
716 => 0.22215805645607
717 => 0.22990863852718
718 => 0.2228799300959
719 => 0.22660319371085
720 => 0.22642095933183
721 => 0.22832565500887
722 => 0.22626471869241
723 => 0.22629026646806
724 => 0.22798150719401
725 => 0.22560646461129
726 => 0.22501837066751
727 => 0.22420592309618
728 => 0.22597987264537
729 => 0.22704327517127
730 => 0.23561351854695
731 => 0.24115028661822
801 => 0.24090992091406
802 => 0.24310641350435
803 => 0.24211687347486
804 => 0.23892138769216
805 => 0.24437569227524
806 => 0.24264972208736
807 => 0.24279200897259
808 => 0.24278671304762
809 => 0.24393433233563
810 => 0.24312113889231
811 => 0.24151825114294
812 => 0.24258232283461
813 => 0.24574223534629
814 => 0.2555507007405
815 => 0.26103964791999
816 => 0.25522025922817
817 => 0.25923439562307
818 => 0.25682734416917
819 => 0.25638991131642
820 => 0.25891108561476
821 => 0.26143667289497
822 => 0.26127580390363
823 => 0.25944235722855
824 => 0.25840668972378
825 => 0.26624911104396
826 => 0.2720272734805
827 => 0.27163324153962
828 => 0.27337237038061
829 => 0.278478506447
830 => 0.27894534753672
831 => 0.27888653628964
901 => 0.27772942193891
902 => 0.28275707601182
903 => 0.2869512334926
904 => 0.27746158339897
905 => 0.28107511792598
906 => 0.28269734999597
907 => 0.28507926796928
908 => 0.28909796284606
909 => 0.29346333138841
910 => 0.29408064236413
911 => 0.2936426306858
912 => 0.29076355278472
913 => 0.29554019113344
914 => 0.29833823385216
915 => 0.30000440425909
916 => 0.30422953518675
917 => 0.28270736834896
918 => 0.26747290894007
919 => 0.26509382811512
920 => 0.2699317825254
921 => 0.27120751252143
922 => 0.27069326735966
923 => 0.2535454982385
924 => 0.2650035486595
925 => 0.27733144749226
926 => 0.27780501229337
927 => 0.28397661621326
928 => 0.28598634343216
929 => 0.29095529351829
930 => 0.2906444843375
1001 => 0.29185434461021
1002 => 0.29157621868537
1003 => 0.30078015238403
1004 => 0.31093345805103
1005 => 0.31058188136132
1006 => 0.30912222354323
1007 => 0.31129006431174
1008 => 0.32176936385444
1009 => 0.32080459787991
1010 => 0.3217417858456
1011 => 0.33409747059389
1012 => 0.35016161834233
1013 => 0.34269820889912
1014 => 0.35889165985268
1015 => 0.36908457885
1016 => 0.38671217828836
1017 => 0.38450511602092
1018 => 0.39136741112498
1019 => 0.38055401393441
1020 => 0.35572426823672
1021 => 0.35179486593562
1022 => 0.35966162885075
1023 => 0.37900129785009
1024 => 0.35905255384992
1025 => 0.36308815877985
1026 => 0.36192590428854
1027 => 0.36186397268596
1028 => 0.36422765006235
1029 => 0.36079901274678
1030 => 0.34683012752308
1031 => 0.35323198530194
1101 => 0.35075992057106
1102 => 0.35350286069461
1103 => 0.36830537726683
1104 => 0.36176083184233
1105 => 0.35486668487332
1106 => 0.36351347510615
1107 => 0.37452381043203
1108 => 0.37383480343481
1109 => 0.37249784187762
1110 => 0.38003422417446
1111 => 0.392482119776
1112 => 0.3958467359374
1113 => 0.39833042680119
1114 => 0.39867288580901
1115 => 0.40220042642661
1116 => 0.38323195147108
1117 => 0.41333540837049
1118 => 0.4185334437858
1119 => 0.41755642856422
1120 => 0.42333382616157
1121 => 0.42163396923
1122 => 0.41917114323553
1123 => 0.42832954731504
1124 => 0.41783017608298
1125 => 0.40292764045315
1126 => 0.39475181466789
1127 => 0.40551840158697
1128 => 0.41209318051635
1129 => 0.4164386911542
1130 => 0.41775364004758
1201 => 0.38470442018556
1202 => 0.36689272367369
1203 => 0.37830981692628
1204 => 0.39223945866013
1205 => 0.38315457160793
1206 => 0.38351068198041
1207 => 0.37055802051029
1208 => 0.39338548179096
1209 => 0.39005971269153
1210 => 0.40731380866253
1211 => 0.40319598018628
1212 => 0.41726602565048
1213 => 0.41356091114118
1214 => 0.4289406343191
1215 => 0.43507602228416
1216 => 0.44537829357437
1217 => 0.45295668627325
1218 => 0.45740686341758
1219 => 0.45713969147402
1220 => 0.47477351038931
1221 => 0.46437546345367
1222 => 0.45131306587102
1223 => 0.45107680831008
1224 => 0.45784200911375
1225 => 0.47202001405602
1226 => 0.47569616445597
1227 => 0.47775063101988
1228 => 0.47460414396076
1229 => 0.46331780924686
1230 => 0.45844442714042
1231 => 0.46259668989058
]
'min_raw' => 0.17121775492276
'max_raw' => 0.47775063101988
'avg_raw' => 0.32448419297132
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$0.171217'
'max' => '$0.47775'
'avg' => '$0.324484'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.067782545412411
'max_diff' => 0.24683881229552
'year' => 2036
]
11 => [
'items' => [
101 => 0.45751882935514
102 => 0.46628464123534
103 => 0.47832197322324
104 => 0.47583631176851
105 => 0.48414550534049
106 => 0.49274464653483
107 => 0.50504180465433
108 => 0.50825673714922
109 => 0.51357089831033
110 => 0.51904091575611
111 => 0.5207977379386
112 => 0.52415205659487
113 => 0.52413437767981
114 => 0.53424284272216
115 => 0.54539279269698
116 => 0.54960164069054
117 => 0.55927965457449
118 => 0.54270639495628
119 => 0.55527740275658
120 => 0.56661676646518
121 => 0.55309750958469
122 => 0.57173065561159
123 => 0.5724541384482
124 => 0.58337787032259
125 => 0.57230457533409
126 => 0.56572928811713
127 => 0.5847118959397
128 => 0.5938969819185
129 => 0.59113035927097
130 => 0.57007622431831
131 => 0.55782181472154
201 => 0.5257496611077
202 => 0.56374051247722
203 => 0.58224474797099
204 => 0.57002830281868
205 => 0.57618956716533
206 => 0.60980342764396
207 => 0.62260140937794
208 => 0.61993951864192
209 => 0.62038933435785
210 => 0.6272948930017
211 => 0.65791794298915
212 => 0.63956790159993
213 => 0.65359582067905
214 => 0.6610361783772
215 => 0.66794719726287
216 => 0.65097591912961
217 => 0.62889653563581
218 => 0.62190306805387
219 => 0.5688136181081
220 => 0.56605008168263
221 => 0.56449882494329
222 => 0.55471837063136
223 => 0.54703361263409
224 => 0.54092240775789
225 => 0.52488478120248
226 => 0.53029700937547
227 => 0.50473637995895
228 => 0.52108916484655
301 => 0.48029378311481
302 => 0.51426938926232
303 => 0.49577801151748
304 => 0.50819447434913
305 => 0.50815115448001
306 => 0.48528850976382
307 => 0.47210181342274
308 => 0.48050488956518
309 => 0.48951365422688
310 => 0.49097529598412
311 => 0.50265539452083
312 => 0.50591505895955
313 => 0.49603812353105
314 => 0.47944838950482
315 => 0.48330180634756
316 => 0.47202372405342
317 => 0.45225931863809
318 => 0.46645445966079
319 => 0.47130130492223
320 => 0.47344194790837
321 => 0.4540059251397
322 => 0.4478987048092
323 => 0.44464727194978
324 => 0.4769394430325
325 => 0.47870848105987
326 => 0.46965783239509
327 => 0.5105676225776
328 => 0.50130847710834
329 => 0.51165321114322
330 => 0.48295214915869
331 => 0.4840485683776
401 => 0.4704610256792
402 => 0.47806914167038
403 => 0.47269197050884
404 => 0.47745448108316
405 => 0.48030911028483
406 => 0.49389442340118
407 => 0.51442451171572
408 => 0.49186523065186
409 => 0.48203582883749
410 => 0.48813393444047
411 => 0.50437399326018
412 => 0.52897851368535
413 => 0.51441214238153
414 => 0.52087645061314
415 => 0.52228861438469
416 => 0.51154791146163
417 => 0.5293745387225
418 => 0.53892797309487
419 => 0.54872781995622
420 => 0.55723675240045
421 => 0.54481354561654
422 => 0.55810815767207
423 => 0.54739504717026
424 => 0.53778427954914
425 => 0.53779885511646
426 => 0.53176988019682
427 => 0.52008798159028
428 => 0.51793366025476
429 => 0.52914071190295
430 => 0.53812770601307
501 => 0.53886791789277
502 => 0.54384357960056
503 => 0.54678812494584
504 => 0.57564867224484
505 => 0.58725662311547
506 => 0.6014506057128
507 => 0.60697996186349
508 => 0.62362134149318
509 => 0.61018207589544
510 => 0.60727440624642
511 => 0.5669078626186
512 => 0.57351788187628
513 => 0.58410116047982
514 => 0.56708237698471
515 => 0.57787687792838
516 => 0.58000794107345
517 => 0.56650408523386
518 => 0.57371707810496
519 => 0.55456150754268
520 => 0.51484205080784
521 => 0.52941875783226
522 => 0.54015212066876
523 => 0.52483428848698
524 => 0.55229090979085
525 => 0.53625131844484
526 => 0.53116753802432
527 => 0.51133389810528
528 => 0.52069461268025
529 => 0.53335511317543
530 => 0.52553239581057
531 => 0.54176570892958
601 => 0.56475640957256
602 => 0.58114095197064
603 => 0.5823987536883
604 => 0.57186459060541
605 => 0.58874565417386
606 => 0.58886861429248
607 => 0.5698267056261
608 => 0.55816364259374
609 => 0.55551377013349
610 => 0.56213367107729
611 => 0.57017145292419
612 => 0.58284479464068
613 => 0.5905030296153
614 => 0.61047164481511
615 => 0.61587457954312
616 => 0.62181076674174
617 => 0.62974334349143
618 => 0.63926843575037
619 => 0.61842807615162
620 => 0.61925610248977
621 => 0.59984984818583
622 => 0.57911148232369
623 => 0.59484931693925
624 => 0.6154244421827
625 => 0.61070448571836
626 => 0.61017339419616
627 => 0.611066542824
628 => 0.60750784978925
629 => 0.59141201308442
630 => 0.58332878465652
701 => 0.59375821158001
702 => 0.59930098782946
703 => 0.60789735041147
704 => 0.60683766727604
705 => 0.62898097410535
706 => 0.63758519356038
707 => 0.63538386602847
708 => 0.63578896327225
709 => 0.65136649160449
710 => 0.66869190687298
711 => 0.68491944456184
712 => 0.7014267928879
713 => 0.68152654018806
714 => 0.67142241914404
715 => 0.681847292906
716 => 0.67631570814718
717 => 0.70810183494597
718 => 0.71030263740014
719 => 0.74208646570017
720 => 0.77225310350477
721 => 0.75330597879116
722 => 0.77117226399886
723 => 0.79049610811059
724 => 0.82777493858284
725 => 0.81522073996486
726 => 0.80560442057286
727 => 0.79651704521313
728 => 0.81542643075651
729 => 0.83975305317325
730 => 0.84499277464432
731 => 0.85348312515512
801 => 0.84455655974368
802 => 0.85530762455283
803 => 0.89326360758638
804 => 0.88300756592399
805 => 0.86844233802242
806 => 0.89840494129604
807 => 0.9092482909441
808 => 0.98535259748045
809 => 1.0814374281947
810 => 1.041657677352
811 => 1.0169651023194
812 => 1.0227684431677
813 => 1.0578553706678
814 => 1.0691241781774
815 => 1.0384916747754
816 => 1.0493115928389
817 => 1.1089304051597
818 => 1.1409139851693
819 => 1.0974759875484
820 => 0.97763227488827
821 => 0.86713089861149
822 => 0.89644083954192
823 => 0.89311800183377
824 => 0.95717097807412
825 => 0.88276296272224
826 => 0.88401580287077
827 => 0.9493933268265
828 => 0.93195172428962
829 => 0.90369856193156
830 => 0.86733717796353
831 => 0.80011979667769
901 => 0.74058348757748
902 => 0.85734790011612
903 => 0.85231280632515
904 => 0.84502124435673
905 => 0.86124782648804
906 => 0.94003950332199
907 => 0.9382231001472
908 => 0.92666806988621
909 => 0.9354324584978
910 => 0.90216212223275
911 => 0.91073664543973
912 => 0.86711339462892
913 => 0.88683292586328
914 => 0.90363794333427
915 => 0.90701179939411
916 => 0.91461326937029
917 => 0.84965954069374
918 => 0.87882185792822
919 => 0.89595198716388
920 => 0.81855744007774
921 => 0.89442214581043
922 => 0.84852884078648
923 => 0.83295196376704
924 => 0.85392417657622
925 => 0.84575128484834
926 => 0.83872471246901
927 => 0.83480376434951
928 => 0.8502034428179
929 => 0.84948502941076
930 => 0.82428816648767
1001 => 0.79141988596003
1002 => 0.80245155976963
1003 => 0.79844364925211
1004 => 0.78391846450586
1005 => 0.79370668524734
1006 => 0.75060431480702
1007 => 0.67644892673071
1008 => 0.72543824753488
1009 => 0.72355221197405
1010 => 0.72260118731937
1011 => 0.75941530793834
1012 => 0.75587647968709
1013 => 0.74945347175878
1014 => 0.78380050092827
1015 => 0.77126337324867
1016 => 0.80989984663842
1017 => 0.83534832686332
1018 => 0.82889376910619
1019 => 0.8528281877609
1020 => 0.80270570725336
1021 => 0.81935438471308
1022 => 0.82278565406346
1023 => 0.78337666391987
1024 => 0.75645547575442
1025 => 0.7546601394278
1026 => 0.70798250911717
1027 => 0.73291732246044
1028 => 0.75485892632984
1029 => 0.74435060081364
1030 => 0.74102397888251
1031 => 0.7580189688724
1101 => 0.75933962514686
1102 => 0.72922852213228
1103 => 0.73548957394363
1104 => 0.76159920081022
1105 => 0.734831678337
1106 => 0.6828267546215
1107 => 0.66992881451573
1108 => 0.66820799154942
1109 => 0.63322775503405
1110 => 0.6707907165475
1111 => 0.6543934772221
1112 => 0.70619215978195
1113 => 0.67660503010567
1114 => 0.67532958808037
1115 => 0.67340157039247
1116 => 0.64329263580832
1117 => 0.64988457895963
1118 => 0.67179720197589
1119 => 0.67961587273146
1120 => 0.67880032131517
1121 => 0.67168981816872
1122 => 0.6749449700975
1123 => 0.66445899156479
1124 => 0.66075617429812
1125 => 0.64906906446439
1126 => 0.6318922416553
1127 => 0.63428078421848
1128 => 0.6002490036735
1129 => 0.58170668342929
1130 => 0.57657441356955
1201 => 0.56971132782078
1202 => 0.57734961736684
1203 => 0.60015259591508
1204 => 0.57264736586414
1205 => 0.52549157820936
1206 => 0.52832572139696
1207 => 0.53469319967484
1208 => 0.52282744602909
1209 => 0.51159750602061
1210 => 0.52136102774415
1211 => 0.50138049887106
1212 => 0.53710775113105
1213 => 0.53614142908189
1214 => 0.54945833936595
1215 => 0.55778567665709
1216 => 0.53859386020848
1217 => 0.53376717027185
1218 => 0.53651667222058
1219 => 0.49107352959929
1220 => 0.54574466511352
1221 => 0.54621746336372
1222 => 0.5421690777014
1223 => 0.57127976958079
1224 => 0.63271240929879
1225 => 0.60959897911467
1226 => 0.60064876034026
1227 => 0.58363438790752
1228 => 0.60630502896067
1229 => 0.60456427744488
1230 => 0.59669193893008
1231 => 0.59193072403313
]
'min_raw' => 0.44464727194978
'max_raw' => 1.1409139851693
'avg_raw' => 0.79278062855952
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$0.444647'
'max' => '$1.14'
'avg' => '$0.79278'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 0.27342951702703
'max_diff' => 0.66316335414937
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.013956969779447
]
1 => [
'year' => 2028
'avg' => 0.023954211878808
]
2 => [
'year' => 2029
'avg' => 0.065438589526265
]
3 => [
'year' => 2030
'avg' => 0.050485774365442
]
4 => [
'year' => 2031
'avg' => 0.049583287060002
]
5 => [
'year' => 2032
'avg' => 0.086935106650905
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.013956969779447
'min' => '$0.013956'
'max_raw' => 0.086935106650905
'max' => '$0.086935'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.086935106650905
]
1 => [
'year' => 2033
'avg' => 0.22360603373773
]
2 => [
'year' => 2034
'avg' => 0.14173225018611
]
3 => [
'year' => 2035
'avg' => 0.16717351411735
]
4 => [
'year' => 2036
'avg' => 0.32448419297132
]
5 => [
'year' => 2037
'avg' => 0.79278062855952
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.086935106650905
'min' => '$0.086935'
'max_raw' => 0.79278062855952
'max' => '$0.79278'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 0.79278062855952
]
]
]
]
'prediction_2025_max_price' => '$0.023863'
'last_price' => 0.02313904
'sma_50day_nextmonth' => '$0.02428'
'sma_200day_nextmonth' => '$0.091046'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'increase'
'sma_200day_direction_label' => 'aumentar'
'sma_200day_date_nextmonth' => '4 de fev. de 2026'
'sma_50day_date_nextmonth' => '4 de fev. de 2026'
'daily_sma3' => '$0.017944'
'daily_sma3_action' => 'BUY'
'daily_sma5' => '$0.018651'
'daily_sma5_action' => 'BUY'
'daily_sma10' => '$0.023487'
'daily_sma10_action' => 'SELL'
'daily_sma21' => '$0.027515'
'daily_sma21_action' => 'SELL'
'daily_sma50' => '$0.055557'
'daily_sma50_action' => 'SELL'
'daily_sma100' => '$0.095572'
'daily_sma100_action' => 'SELL'
'daily_sma200' => '$0.10627'
'daily_sma200_action' => 'SELL'
'daily_ema3' => '$0.0208067'
'daily_ema3_action' => 'BUY'
'daily_ema5' => '$0.021447'
'daily_ema5_action' => 'BUY'
'daily_ema10' => '$0.02362'
'daily_ema10_action' => 'SELL'
'daily_ema21' => '$0.0320015'
'daily_ema21_action' => 'SELL'
'daily_ema50' => '$0.05427'
'daily_ema50_action' => 'SELL'
'daily_ema100' => '$0.076918'
'daily_ema100_action' => 'SELL'
'daily_ema200' => '$0.10856'
'daily_ema200_action' => 'SELL'
'weekly_sma21' => '$0.085372'
'weekly_sma21_action' => 'SELL'
'weekly_sma50' => '$0.129065'
'weekly_sma50_action' => 'SELL'
'weekly_sma100' => '$0.282939'
'weekly_sma100_action' => 'SELL'
'weekly_sma200' => '$0.540741'
'weekly_sma200_action' => 'SELL'
'weekly_ema3' => '$0.02323'
'weekly_ema3_action' => 'SELL'
'weekly_ema5' => '$0.030066'
'weekly_ema5_action' => 'SELL'
'weekly_ema10' => '$0.046335'
'weekly_ema10_action' => 'SELL'
'weekly_ema21' => '$0.073112'
'weekly_ema21_action' => 'SELL'
'weekly_ema50' => '$0.148031'
'weekly_ema50_action' => 'SELL'
'weekly_ema100' => '$0.495257'
'weekly_ema100_action' => 'SELL'
'weekly_ema200' => '$1.78'
'weekly_ema200_action' => 'SELL'
'rsi_14' => '48.34'
'rsi_14_action' => 'NEUTRAL'
'stoch_rsi_14' => 18.52
'stoch_rsi_14_action' => 'BUY'
'momentum_10' => 0.02
'momentum_10_action' => 'BUY'
'vwma_10' => '0.018286'
'vwma_10_action' => 'BUY'
'hma_9' => '0.014896'
'hma_9_action' => 'SELL'
'stochastic_fast_14' => 33.83
'stochastic_fast_14_action' => 'NEUTRAL'
'cci_20' => -15.88
'cci_20_action' => 'NEUTRAL'
'adx_14' => 6.24
'adx_14_action' => 'NEUTRAL'
'ao_5_34' => '-0.040256'
'ao_5_34_action' => 'NEUTRAL'
'macd_12_26' => 0
'macd_12_26_action' => 'BUY'
'williams_percent_r_14' => -66.17
'williams_percent_r_14_action' => 'NEUTRAL'
'ultimate_oscillator' => 49.2
'ultimate_oscillator_action' => 'NEUTRAL'
'ichimoku_cloud' => '-0.033375'
'ichimoku_cloud_action' => 'SELL'
'sell_signals' => 22
'buy_signals' => 12
'sell_pct' => 64.71
'buy_pct' => 35.29
'overall_action' => 'bearish'
'overall_action_label' => 'Baixista'
'overall_action_dir' => -1
'last_updated' => 1767704101
'last_updated_date' => '6 de janeiro de 2026'
]
Previsão de preço de ICE Token para 2026
A previsão de preço para ICE Token em 2026 sugere que o preço médio poderia variar entre $0.007994 na extremidade inferior e $0.023863 na extremidade superior. No mercado de criptomoedas, comparado ao preço médio de hoje, ICE Token poderia potencialmente ganhar 3.13% até 2026 se ICE atingir a meta de preço prevista.
Previsão de preço de ICE Token 2027-2032
A previsão de preço de ICE para 2027-2032 está atualmente dentro de uma faixa de preço entre $0.013956 na extremidade inferior e $0.086935 na extremidade superior. Considerando a volatilidade de preços no mercado, se ICE Token atingir a meta de preço superior, poderia ganhar 275.71% até 2032 em comparação com o preço de hoje.
| Previsão de Preço de ICE Token | Potencial Mínimo ($) | Preço Médio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2027 | $0.007696 | $0.013956 | $0.020217 |
| 2028 | $0.013889 | $0.023954 | $0.034019 |
| 2029 | $0.03051 | $0.065438 | $0.100366 |
| 2030 | $0.025948 | $0.050485 | $0.075023 |
| 2031 | $0.030678 | $0.049583 | $0.068487 |
| 2032 | $0.046828 | $0.086935 | $0.127041 |
Previsão de preço de ICE Token 2032-2037
A previsão de preço de ICE Token para 2032-2037 é atualmente estimada entre $0.086935 na extremidade inferior e $0.79278 na extremidade superior. Comparado ao preço atual, ICE Token poderia potencialmente ganhar 3326.16% até 2037 se atingir a meta de preço superior. Por favor, note que esta informação é apenas para fins gerais e não deve ser considerada como aconselhamento de investimento a longo prazo.
| Previsão de Preço de ICE Token | Potencial Mínimo ($) | Preço Médio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2032 | $0.046828 | $0.086935 | $0.127041 |
| 2033 | $0.108819 | $0.223606 | $0.338392 |
| 2034 | $0.087485 | $0.141732 | $0.195978 |
| 2035 | $0.103435 | $0.167173 | $0.230911 |
| 2036 | $0.171217 | $0.324484 | $0.47775 |
| 2037 | $0.444647 | $0.79278 | $1.14 |
ICE Token Histograma de preços potenciais
Previsão de preço de ICE Token baseada na análise técnica
Em 6 de janeiro de 2026, o sentimento geral de previsão de preço para ICE Token é Baixista, com 12 indicadores técnicos mostrando sinais de alta e 22 indicando sinais de baixa. A previsão de preço de ICE foi atualizada pela última vez em 6 de janeiro de 2026.
Médias Móveis Simples de 50 e 200 dias e Índice de Força Relativa de 14 dias - RSI (14) de ICE Token
De acordo com nossos indicadores técnicos, o SMA de 200 dias de ICE Token está projetado para aumentar no próximo mês, alcançando $0.091046 até 4 de fev. de 2026. O SMA de 50 dias de curto prazo para ICE Token é esperado para alcançar $0.02428 até 4 de fev. de 2026.
O oscilador de momentum Índice de Força Relativa (RSI) é uma ferramenta comumente usada para identificar se uma criptomoeda está sobrevendida (abaixo de 30) ou sobrecomprada (acima de 70). No momento, o RSI está em 48.34, sugerindo que o mercado de ICE está em um estado NEUTRAL.
Médias Móveis e Osciladores Populares de ICE para Sábado, 19 de Outubro de 2024
Médias móveis (MA) são indicadores amplamente utilizados nos mercados financeiros, projetados para suavizar movimentos de preços ao longo de um período definido. Como indicadores atrasados, eles se baseiam em dados históricos de preços. A tabela abaixo destaca dois tipos: a média móvel simples (SMA) e a média móvel exponencial (EMA).
Média Móvel Simples Diária (SMA)
| Período | Valor | Ação |
|---|---|---|
| SMA 3 | $0.017944 | BUY |
| SMA 5 | $0.018651 | BUY |
| SMA 10 | $0.023487 | SELL |
| SMA 21 | $0.027515 | SELL |
| SMA 50 | $0.055557 | SELL |
| SMA 100 | $0.095572 | SELL |
| SMA 200 | $0.10627 | SELL |
Média Móvel Exponencial Diária (EMA)
| Período | Valor | Ação |
|---|---|---|
| EMA 3 | $0.0208067 | BUY |
| EMA 5 | $0.021447 | BUY |
| EMA 10 | $0.02362 | SELL |
| EMA 21 | $0.0320015 | SELL |
| EMA 50 | $0.05427 | SELL |
| EMA 100 | $0.076918 | SELL |
| EMA 200 | $0.10856 | SELL |
Média Móvel Simples Semanal (SMA)
| Período | Valor | Ação |
|---|---|---|
| SMA 21 | $0.085372 | SELL |
| SMA 50 | $0.129065 | SELL |
| SMA 100 | $0.282939 | SELL |
| SMA 200 | $0.540741 | SELL |
Média Móvel Exponencial Semanal (EMA)
| Período | Valor | Ação |
|---|---|---|
| EMA 21 | $0.073112 | SELL |
| EMA 50 | $0.148031 | SELL |
| EMA 100 | $0.495257 | SELL |
| EMA 200 | $1.78 | SELL |
Osciladores de ICE Token
Um oscilador é uma ferramenta de análise técnica que define limites altos e baixos entre dois extremos, criando um indicador de tendência que flutua dentro desses limites. Os traders usam esse indicador para identificar condições de sobrecompra ou sobrevenda de curto prazo.
| Período | Valor | Ação |
|---|---|---|
| RSI (14) | 48.34 | NEUTRAL |
| Stoch RSI (14) | 18.52 | BUY |
| Estocástico Rápido (14) | 33.83 | NEUTRAL |
| Índice de Canal de Commodities (20) | -15.88 | NEUTRAL |
| Índice Direcional Médio (14) | 6.24 | NEUTRAL |
| Oscilador Impressionante (5, 34) | -0.040256 | NEUTRAL |
| Momentum (10) | 0.02 | BUY |
| MACD (12, 26) | 0 | BUY |
| Williams Percent Range (14) | -66.17 | NEUTRAL |
| Oscilador Ultimate (7, 14, 28) | 49.2 | NEUTRAL |
| VWMA (10) | 0.018286 | BUY |
| Média Móvel de Hull (9) | 0.014896 | SELL |
| Nuvem Ichimoku B/L (9, 26, 52, 26) | -0.033375 | SELL |
Previsão do preço de ICE Token com base nos fluxos financeiros mundiais
Definições dos fluxos financeiros mundiais, usadas na previsão do preço do ICE Token
M0: o total de todas as moedas físicas, mais as contas no Banco Central que podem ser trocadas por moedas físicas.
M1: o valor de M0, mais o valor em contas de demanda, incluindo contas 'correntes'.
M2: o valor de M1, mais a maioria das contas de poupança, do mercado de moedas e de certificados de depósito (CD) de menos de US$ 100.000.
Previsões de preço de ICE Token por empresas de Internet ou nichos tecnológicos
| Comparação | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Facebook stock | $0.032514 | $0.045687 | $0.064199 | $0.09021 | $0.12676 | $0.17812 |
| Amazon.com stock | $0.04828 | $0.100741 | $0.2102023 | $0.438599 | $0.915164 | $1.90 |
| Apple stock | $0.03282 | $0.046554 | $0.066033 | $0.093663 | $0.132854 | $0.188443 |
| Netflix stock | $0.0365097 | $0.0576067 | $0.090894 | $0.143417 | $0.226289 | $0.357049 |
| Google stock | $0.029964 | $0.0388044 | $0.050251 | $0.065075 | $0.084272 | $0.109132 |
| Tesla stock | $0.052454 | $0.11891 | $0.26956 | $0.611073 | $1.38 | $3.14 |
| Kodak stock | $0.017351 | $0.013012 | $0.009757 | $0.007317 | $0.005487 | $0.004114 |
| Nokia stock | $0.015328 | $0.010154 | $0.006726 | $0.004456 | $0.002952 | $0.001955 |
Este cálculo mostra quanto a criptomoeda pode custar, se assumirmos que sua capitalização se comportará da mesma forma que a de algumas empresas de Internet ou nichos tecnológicos. Se você extrapolar os dados, poderá obter uma imagem em potencial do preço futuro para 2024, 2025, 2026, 2027, 2028, 2029 e 2030.
Visão geral da previsão para ICE Token
Você pode fazer perguntas como: 'Devo investir em ICE Token agora?', 'Devo comprar ICE hoje?', 'ICE Token será um bom ou mau investimento no curto ou no longo prazo?'.
Atualizamos a previsão para ICE Token/Popsicle Finance regularmente com novos valores. Veja nossas previsões semelhantes. Fazemos previsões de preços futuros para uma enorme quantidade de moedas digitais, como ICE Token, com métodos de análise técnica.
Se você estiver tentando encontrar criptomoedas com bom retorno, você deve explorar o máximo de fontes de informações disponíveis sobre ICE Token para poder tomar sozinho uma decisão de tão grande responsabilidade sobre o seu investimento.
O preço de ICE Token é de $0.02313 USD hoje, mas o preço pode tanto subir quanto descer e seu investimento pode ser perdido, porque criptomoedas são ativos de alto risco
Previsão de curto prazo para ICE Token
com base no histórico de preços de 4 horas
Previsão de longo prazo para ICE Token
com base no histórico de preços de 1 mês
Previsão do preço de ICE Token com base no padrão de crescimento do Bitcoin
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| Se ICE Token tiver 1% da média anterior do crescimento anual do Bitcoin | $0.02374 | $0.024357 | $0.02499 | $0.02564 |
| Se ICE Token tiver 2% da média anterior do crescimento anual do Bitcoin | $0.024341 | $0.0256074 | $0.026938 | $0.028339 |
| Se ICE Token tiver 5% da média anterior do crescimento anual do Bitcoin | $0.026146 | $0.029544 | $0.033384 | $0.037723 |
| Se ICE Token tiver 10% da média anterior do crescimento anual do Bitcoin | $0.029153 | $0.036731 | $0.046279 | $0.0583087 |
| Se ICE Token tiver 20% da média anterior do crescimento anual do Bitcoin | $0.035168 | $0.05345 | $0.081238 | $0.12347 |
| Se ICE Token tiver 50% da média anterior do crescimento anual do Bitcoin | $0.053211 | $0.122369 | $0.281408 | $0.647143 |
| Se ICE Token tiver 100% da média anterior do crescimento anual do Bitcoin | $0.083284 | $0.299768 | $1.07 | $3.88 |
Perguntas Frequentes sobre ICE Token
ICE é um bom investimento?
A decisão de adquirir ICE Token depende inteiramente da sua tolerância individual ao risco. Como você pode perceber, o valor de ICE Token experimentou uma escalada de 34.4524% nas últimas 24 horas, e ICE Token registrou um declínio de durante os últimos 30 dias. Consequentemente, a decisão de investir ou não em ICE Token dependerá de quão alinhado esse investimento está com suas aspirações de negociação.
ICE Token pode subir?
Parece que o valor médio de ICE Token pode potencialmente subir para $0.023863 até o final deste ano. Observando as perspectivas de ICE Token em um horizonte de cinco anos mais longo, a moeda digital poderia potencialmente crescer até $0.075023. No entanto, dada a imprevisibilidade do mercado, é vital conduzir uma pesquisa aprofundada antes de investir quaisquer fundos em um projeto, rede ou ativo específico.
Qual será o preço de ICE Token na próxima semana?
Com base na nossa nova previsão experimental de ICE Token, o preço de ICE Token aumentará 0.86% na próxima semana e atingirá $0.023337 até 13 de janeiro de 2026.
Qual será o preço de ICE Token no próximo mês?
Com base na nossa nova previsão experimental de ICE Token, o preço de ICE Token diminuirá -11.62% no próximo mês e atingirá $0.02045 até 5 de fevereiro de 2026.
Até onde o preço de ICE Token pode subir este ano em 2026?
De acordo com nossa previsão mais recente sobre o valor de ICE Token em 2026, espera-se que ICE fluctue dentro do intervalo de $0.007994 e $0.023863. No entanto, é crucial lembrar que o mercado de criptomoedas é excepcionalmente instável, e essa previsão de preço de ICE Token não considera flutuações repentinas e extremas de preço.
Onde estará ICE Token em 5 anos?
O futuro de ICE Token parece seguir uma tendência de alta, com um preço máximo de $0.075023 projetada após um período de cinco anos. Com base na previsão de ICE Token para 2030, o valor de ICE Token pode potencialmente atingir seu pico mais alto de aproximadamente $0.075023, enquanto seu pico mais baixo está previsto para cerca de $0.025948.
Quanto será ICE Token em 2026?
Com base na nossa nova simulação experimental de previsão de preços de ICE Token, espera-se que o valor de ICE em 2026 aumente 3.13% para $0.023863 se o melhor cenário ocorrer. O preço ficará entre $0.023863 e $0.007994 durante 2026.
Quanto será ICE Token em 2027?
De acordo com nossa última simulação experimental para previsão de preços de ICE Token, o valor de ICE pode diminuir -12.62% para $0.020217 em 2027, assumindo as condições mais favoráveis. O preço está projetado para flutuar entre $0.020217 e $0.007696 ao longo do ano.
Quanto será ICE Token em 2028?
Nosso novo modelo experimental de previsão de preços de ICE Token sugere que o valor de ICE em 2028 pode aumentar 47.02%, alcançando $0.034019 no melhor cenário. O preço é esperado para variar entre $0.034019 e $0.013889 durante o ano.
Quanto será ICE Token em 2029?
Com base no nosso modelo de previsão experimental, o valor de ICE Token pode experimentar um 333.75% crescimento em 2029, potencialmente alcançando $0.100366 sob condições ótimas. A faixa de preço prevista para 2029 está entre $0.100366 e $0.03051.
Quanto será ICE Token em 2030?
Usando nossa nova simulação experimental para previsões de preços de ICE Token, espera-se que o valor de ICE em 2030 aumente 224.23%, alcançando $0.075023 no melhor cenário. O preço está previsto para variar entre $0.075023 e $0.025948 ao longo de 2030.
Quanto será ICE Token em 2031?
Nossa simulação experimental indica que o preço de ICE Token poderia aumentar 195.98% em 2031, potencialmente atingindo $0.068487 sob condições ideais. O preço provavelmente oscilará entre $0.068487 e $0.030678 durante o ano.
Quanto será ICE Token em 2032?
Com base nos achados da nossa mais recente previsão experimental de preços de ICE Token, ICE poderia ver um 449.04% aumento em valor, atingindo $0.127041 se o cenário mais positivo se desenrolar em 2032. O preço é esperado para permanecer dentro de uma faixa de $0.127041 e $0.046828 ao longo do ano.
Quanto será ICE Token em 2033?
De acordo com nossa previsão experimental de preços de ICE Token, espera-se que o valor de ICE seja aumentar 1362.43% em 2033, com o preço potencial mais alto sendo $0.338392. Ao longo do ano, o preço de ICE poderia variar entre $0.338392 e $0.108819.
Quanto será ICE Token em 2034?
Os resultados da nossa nova simulação de previsão de preços de ICE Token sugerem que ICE pode aumentar 746.96% em 2034, atingindo potencialmente $0.195978 nas melhores circunstâncias. A faixa de preço prevista para o ano é entre $0.195978 e $0.087485.
Quanto será ICE Token em 2035?
Com base em nossa previsão experimental para o preço de ICE Token, ICE poderia aumentar 897.93%, com o valor potencialmente atingindo $0.230911 em 2035. A faixa de preço esperada para o ano está entre $0.230911 e $0.103435.
Quanto será ICE Token em 2036?
Nossa recente simulação de previsão de preços de ICE Token sugere que o valor de ICE pode aumentar 1964.7% em 2036, possivelmente atingindo $0.47775 se as condições forem ideais. A faixa de preço esperada para 2036 está entre $0.47775 e $0.171217.
Quanto será ICE Token em 2037?
De acordo com a simulação experimental, o valor de ICE Token poderia aumentar 4830.69% em 2037, com um pico de $1.14 sob condições favoráveis. O preço é esperado para cair entre $1.14 e $0.444647 ao longo do ano.
Previsões relacionadas
Previsão de Preço do Silly GoosePrevisão de Preço do DeHub
Previsão de Preço do Crowny Token
Previsão de Preço do 5ire
Previsão de Preço do Giddy
Previsão de Preço do Dope Wars Paper
Previsão de Preço do Chumbi ValleyPrevisão de Preço do OccamFi
Previsão de Preço do NMKR
Previsão de Preço do Dypius
Previsão de Preço do COMDEX
Previsão de Preço do Effect Network
Previsão de Preço do Sin City
Previsão de Preço do Parex
Previsão de Preço do Grai
Previsão de Preço do MIMO Parallel Governance Token
Previsão de Preço do Good Person Coin
Previsão de Preço do LilAI
Previsão de Preço do SavePlanetEarth
Previsão de Preço do MBD Financials
Previsão de Preço do RepubliK
Previsão de Preço do Dogebonk
Previsão de Preço do Raptoreum
Previsão de Preço do Litecoin Cash
Previsão de Preço do Uno Re
Como ler e prever os movimentos de preço de ICE Token?
Traders de ICE Token utilizam indicadores e padrões de gráfico para prever a direção do mercado. Eles também identificam níveis-chave de suporte e resistência para avaliar quando uma tendência de baixa pode desacelerar ou uma tendência de alta pode estagnar.
Indicadores de Previsão de Preço de ICE Token
Médias móveis são ferramentas populares para a previsão de preço de ICE Token. Uma média móvel simples (SMA) calcula o preço médio de fechamento de ICE em um período específico, como uma SMA de 12 dias. Uma média móvel exponencial (EMA) dá mais peso aos preços recentes, reagindo mais rapidamente às mudanças de preço.
Médias móveis comumente usadas no mercado de criptomoedas incluem as de 50 dias, 100 dias e 200 dias, que ajudam a identificar níveis-chave de resistência e suporte. Um movimento de preço de ICE acima dessas médias é visto como altista, enquanto uma queda abaixo indica fraqueza.
Traders também usam RSI e níveis de retração de Fibonacci para avaliar a direção futura de ICE.
Como ler gráficos de ICE Token e prever movimentos de preço?
A maioria dos traders prefere gráficos de velas em vez de gráficos de linha simples porque eles fornecem informações mais detalhadas. Velas podem representar a ação de preço de ICE Token em diferentes períodos de tempo, como 5 minutos para tendências de curto prazo e semanal para tendências de longo prazo. Opções populares incluem gráficos de 1 hora, 4 horas e 1 dia.
Por exemplo, um gráfico de velas de 1 hora mostra os preços de abertura, fechamento, máximo e mínimo de ICE dentro de cada hora. A cor da vela é crucial: verde indica que o preço fechou mais alto do que abriu, enquanto vermelho significa o oposto. Alguns gráficos usam velas vazias e preenchidas para transmitir a mesma informação.
O que afeta o preço de ICE Token?
A ação de preço de ICE Token é impulsionada pela oferta e demanda, influenciada por fatores como reduções pela metade das recompensas de bloco, hard forks e atualizações de protocolo. Eventos do mundo real, como regulamentações, adoção por empresas e governos e hacks de exchanges de criptomoedas, também impactam o preço de ICE. A capitalização de mercado de ICE Token pode mudar rapidamente.
Traders frequentemente monitoram a atividade de "baleias" de ICE, grandes detentores de ICE Token, pois suas ações podem influenciar significativamente os movimentos de preço no relativamente pequeno mercado de ICE Token.
Padrões de previsão de preço altistas e baixistas
Traders frequentemente identificam padrões de velas para ganhar vantagem em previsões de preço de criptomoedas. Certas formações indicam tendências altistas, enquanto outras sugerem movimentos baixistas.
Padrões de velas altistas comumente seguidos:
- Martelo
- Engolfo de Alta
- Linha de Perfuração
- Estrela da Manhã
- Três Soldados Brancos
Padrões de velas baixistas comuns:
- Harami de Baixa
- Nuvem Negra
- Estrela da Noite
- Estrela Cadente
- Homem Enforcado


