Previsão de Preço Hyperlane - Projeção HYPER
Previsão de Preço Hyperlane até $0.135248 até 2026
| Ano | Preço Mínimo | Preço Máximo |
|---|---|---|
| 2026 | $0.0453088 | $0.135248 |
| 2027 | $0.043617 | $0.114583 |
| 2028 | $0.078717 | $0.1928028 |
| 2029 | $0.172918 | $0.568824 |
| 2030 | $0.14706 | $0.425193 |
| 2031 | $0.17387 | $0.388153 |
| 2032 | $0.26540026 | $0.7200053 |
| 2033 | $0.616732 | $1.91 |
| 2034 | $0.495823 | $1.11 |
| 2035 | $0.586216 | $1.30 |
Calculadora de lucro do investimento
Se você abrir um short de $10,000.00 em Hyperlane hoje e fechar em Apr 06, 2026, nossa previsão mostra que pode lucrar cerca de $3,954.48, com um retorno de 39.54% nos próximos 90 dias.
Previsão de preço de longo prazo de Hyperlane para os anos 2027, 2028, 2029, 2030, 2031, 2032 e 2037
[
'name' => 'Hyperlane'
'name_with_ticker' => 'Hyperlane <small>HYPER</small>'
'name_lang' => 'Hyperlane'
'name_lang_with_ticker' => 'Hyperlane <small>HYPER</small>'
'name_with_lang' => 'Hyperlane'
'name_with_lang_with_ticker' => 'Hyperlane <small>HYPER</small>'
'image' => '/uploads/coins/hyperlane.png?1745307604'
'price_for_sd' => 0.1311
'ticker' => 'HYPER'
'marketcap' => '$28.83M'
'low24h' => '$0.1263'
'high24h' => '$0.1316'
'volume24h' => '$7.08M'
'current_supply' => '219.97M'
'max_supply' => '804.67M'
'algo' => null
'proof' => null
'ico_price_and_roi' => '—'
'price' => '$0.1311'
'change_24h_pct' => '2.6403%'
'ath_price' => '$0.664'
'ath_days' => 179
'ath_exchange' => null
'ath_pair' => null
'ath_date' => '11 de jul. de 2025'
'ath_pct' => '-80.24%'
'fdv' => '$105.46M'
'new_prediction' => true
'change_24h_pct_is_increased' => true
'change_30d_pct' => null
'change_30d_pct_is_increased' => false
'max_price' => '$6.46'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.132262'
'next_week_prediction_price_date' => '13 de janeiro de 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.115904'
'next_month_prediction_price_date' => '5 de fevereiro de 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.0453088'
'current_year_max_price_prediction' => '$0.135248'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.14706'
'grand_prediction_max_price' => '$0.425193'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.13362503402036
107 => 0.1341239413915
108 => 0.13524800517354
109 => 0.12564300322759
110 => 0.12995536711328
111 => 0.13248847688227
112 => 0.12104379479066
113 => 0.13226225231478
114 => 0.12547580151292
115 => 0.12317237818169
116 => 0.12627363424424
117 => 0.12506507174059
118 => 0.12402602066913
119 => 0.12344621231809
120 => 0.12572343249728
121 => 0.12561719745406
122 => 0.12189122325151
123 => 0.11703084179443
124 => 0.11866214534801
125 => 0.11806947747344
126 => 0.11592157264033
127 => 0.11736900115883
128 => 0.11099525849017
129 => 0.10002956550707
130 => 0.10727383817997
131 => 0.10699494156231
201 => 0.10685430924074
202 => 0.11229817993743
203 => 0.11177487738141
204 => 0.11082507811804
205 => 0.11590412883202
206 => 0.11405020699854
207 => 0.11976355725039
208 => 0.12352673924259
209 => 0.12257227456318
210 => 0.12611156541588
211 => 0.11869972728711
212 => 0.12116164260216
213 => 0.12166903993652
214 => 0.11584145413461
215 => 0.11186049615137
216 => 0.11159501164013
217 => 0.10469257910699
218 => 0.1083798028517
219 => 0.11162440715937
220 => 0.11007049348746
221 => 0.10957857084079
222 => 0.11209169695764
223 => 0.11228698838039
224 => 0.10783432324565
225 => 0.10876017332473
226 => 0.11262112206426
227 => 0.10866288732267
228 => 0.10097268379373
301 => 0.099065406993174
302 => 0.098810941109893
303 => 0.093638255158749
304 => 0.099192860348986
305 => 0.096768126329283
306 => 0.10442783204475
307 => 0.1000526492199
308 => 0.099864043832889
309 => 0.099578939128025
310 => 0.095126594648909
311 => 0.096101375128583
312 => 0.099341693906277
313 => 0.10049787615096
314 => 0.10037727687052
315 => 0.099325814576516
316 => 0.099807168630352
317 => 0.098256559508076
318 => 0.097709007153862
319 => 0.095980781307822
320 => 0.09344076674872
321 => 0.093793971351978
322 => 0.088761537879433
323 => 0.086019601032131
324 => 0.085260669050945
325 => 0.084245793487751
326 => 0.085375301946288
327 => 0.088747281627697
328 => 0.084679958726521
329 => 0.077706818901984
330 => 0.078125916487091
331 => 0.079067504329636
401 => 0.07731286161428
402 => 0.075652239540196
403 => 0.077096015703085
404 => 0.07414140443415
405 => 0.079424554985665
406 => 0.079281660569104
407 => 0.081250892386871
408 => 0.082482293455225
409 => 0.079644312663499
410 => 0.078930568169096
411 => 0.079337149470986
412 => 0.072617266221777
413 => 0.080701734561015
414 => 0.080771649378928
415 => 0.080172996261443
416 => 0.084477726072131
417 => 0.09356204865158
418 => 0.090144161081162
419 => 0.088820651707698
420 => 0.086304659421262
421 => 0.089657069758098
422 => 0.089399656949977
423 => 0.088235538610745
424 => 0.087531476206908
425 => 0.08882873277371
426 => 0.087370731762178
427 => 0.087108834717319
428 => 0.085522023572265
429 => 0.084955604188788
430 => 0.084536249827066
501 => 0.08407458187972
502 => 0.085092906331082
503 => 0.082785249152557
504 => 0.08000244081768
505 => 0.079771080415038
506 => 0.080409886828146
507 => 0.08012726254389
508 => 0.079769727318698
509 => 0.079087095204883
510 => 0.078884572838841
511 => 0.079542672278593
512 => 0.078799716380694
513 => 0.079895988278945
514 => 0.079597862982112
515 => 0.077932559308491
516 => 0.075856974356772
517 => 0.075838497297014
518 => 0.075391315923808
519 => 0.07482176321086
520 => 0.074663326675719
521 => 0.076974424901665
522 => 0.081758329064025
523 => 0.080819134207829
524 => 0.081497798743991
525 => 0.084836156562927
526 => 0.085897320125645
527 => 0.085144131363864
528 => 0.084113120132079
529 => 0.084158479393808
530 => 0.087681756881141
531 => 0.087901499376286
601 => 0.088456717769901
602 => 0.089170330310396
603 => 0.085265662665259
604 => 0.083974569898862
605 => 0.083362778519044
606 => 0.081478697862265
607 => 0.083510517321734
608 => 0.082326663133886
609 => 0.082486405510044
610 => 0.08238237307801
611 => 0.082439181820543
612 => 0.079423078237414
613 => 0.080521987861369
614 => 0.078694837474518
615 => 0.07624848821378
616 => 0.076240287193258
617 => 0.076839027709083
618 => 0.076482873421551
619 => 0.075524471391368
620 => 0.075660607876226
621 => 0.074467909019333
622 => 0.075805423111962
623 => 0.075843778230283
624 => 0.075328762449736
625 => 0.077389387450809
626 => 0.078233627195058
627 => 0.077894632775595
628 => 0.078209842442899
629 => 0.080858161994315
630 => 0.081289953635478
701 => 0.081481726959929
702 => 0.081224776110262
703 => 0.07825824886271
704 => 0.078389826960787
705 => 0.077424394180539
706 => 0.076608705216029
707 => 0.076641328496884
708 => 0.077060698656785
709 => 0.078892112740807
710 => 0.082746215712875
711 => 0.082892476103352
712 => 0.083069747963327
713 => 0.08234869421911
714 => 0.082131217510299
715 => 0.082418125424722
716 => 0.083865523861923
717 => 0.087588625607248
718 => 0.086272632792845
719 => 0.085202710150088
720 => 0.086141320756859
721 => 0.08599682901102
722 => 0.084777173264782
723 => 0.084742941590175
724 => 0.082402032265614
725 => 0.081536651388251
726 => 0.08081347435449
727 => 0.080023783912637
728 => 0.079555628948044
729 => 0.080274927746286
730 => 0.080439439891937
731 => 0.07886668049839
801 => 0.078652319204595
802 => 0.079936668475735
803 => 0.079371474246873
804 => 0.0799527905274
805 => 0.080087660890921
806 => 0.080065943656066
807 => 0.07947581596899
808 => 0.079851945758871
809 => 0.078962286676116
810 => 0.077994916046093
811 => 0.077377793853458
812 => 0.076839272891004
813 => 0.077138075619996
814 => 0.076072898450363
815 => 0.075732126836017
816 => 0.079724521449248
817 => 0.082673746275516
818 => 0.082630863378521
819 => 0.082369824771649
820 => 0.081981974351584
821 => 0.083837150187924
822 => 0.083190844021955
823 => 0.083661085758385
824 => 0.08378078201629
825 => 0.084143066538762
826 => 0.084272552116139
827 => 0.08388115676779
828 => 0.082567586173817
829 => 0.079294293144181
830 => 0.0777705664028
831 => 0.077267711198468
901 => 0.077285989030087
902 => 0.076781804838189
903 => 0.076930309678654
904 => 0.076730160915117
905 => 0.076351127578165
906 => 0.077114671379527
907 => 0.077202662689731
908 => 0.077024442442824
909 => 0.077066419762638
910 => 0.075590832237112
911 => 0.07570301795187
912 => 0.075078353636226
913 => 0.074961236607484
914 => 0.073382139613279
915 => 0.070584540394276
916 => 0.072134681931131
917 => 0.070262328937496
918 => 0.069553240488028
919 => 0.072909954921927
920 => 0.072573033893529
921 => 0.071996371548963
922 => 0.071143367754387
923 => 0.070826980349491
924 => 0.068904710633423
925 => 0.068791132683688
926 => 0.069743861460619
927 => 0.069304209911461
928 => 0.068686772627381
929 => 0.066450477373055
930 => 0.06393614109528
1001 => 0.064012033102951
1002 => 0.064811796692022
1003 => 0.06713721719006
1004 => 0.066228635171294
1005 => 0.065569448491901
1006 => 0.06544600264193
1007 => 0.066991185905714
1008 => 0.06917794394987
1009 => 0.070203921898235
1010 => 0.069187208910819
1011 => 0.068019263774591
1012 => 0.068090351183296
1013 => 0.068563263865694
1014 => 0.068612960301989
1015 => 0.067852748085004
1016 => 0.068066743371117
1017 => 0.067741664963372
1018 => 0.065746659375094
1019 => 0.065710576050233
1020 => 0.065220969505059
1021 => 0.065206144413453
1022 => 0.064373201542035
1023 => 0.064256667076461
1024 => 0.062602808449242
1025 => 0.063691383206023
1026 => 0.062961224411914
1027 => 0.061860702882145
1028 => 0.061670972555601
1029 => 0.061665269032879
1030 => 0.062795258571841
1031 => 0.063678178620348
1101 => 0.062973925836746
1102 => 0.062813581129286
1103 => 0.064525643108992
1104 => 0.064307767616283
1105 => 0.064119088844743
1106 => 0.068982143751588
1107 => 0.065132656323914
1108 => 0.063454060084387
1109 => 0.061376478481192
1110 => 0.062052949527268
1111 => 0.062195491916104
1112 => 0.057199282672652
1113 => 0.055172321204822
1114 => 0.054476744413495
1115 => 0.054076430136073
1116 => 0.054258858379124
1117 => 0.05243435531921
1118 => 0.053660451549968
1119 => 0.052080586121487
1120 => 0.051815716541075
1121 => 0.05464071163497
1122 => 0.055033793198904
1123 => 0.053356785126294
1124 => 0.054433695791855
1125 => 0.054043193014344
1126 => 0.052107668379769
1127 => 0.052033745575484
1128 => 0.051062567350835
1129 => 0.04954286148642
1130 => 0.04884831512723
1201 => 0.048486589353036
1202 => 0.048635844457363
1203 => 0.048560376509333
1204 => 0.048067897099954
1205 => 0.048588604852603
1206 => 0.047258411715884
1207 => 0.046728718090747
1208 => 0.046489467769072
1209 => 0.045308844797173
1210 => 0.047187740970883
1211 => 0.047557907186814
1212 => 0.047928802744541
1213 => 0.0511571953534
1214 => 0.050995913982004
1215 => 0.052453819032209
1216 => 0.052397167522873
1217 => 0.051981349386059
1218 => 0.050227081065603
1219 => 0.05092630115131
1220 => 0.04877421041043
1221 => 0.050386703121443
1222 => 0.049650828787442
1223 => 0.050137903268895
1224 => 0.049262099433508
1225 => 0.049746805437065
1226 => 0.047645687328873
1227 => 0.045683692802973
1228 => 0.046473256674386
1229 => 0.047331602900193
1230 => 0.049192716220293
1231 => 0.048084252480693
]
'min_raw' => 0.045308844797173
'max_raw' => 0.13524800517354
'avg_raw' => 0.090278424985354
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.0453088'
'max' => '$0.135248'
'avg' => '$0.090278'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.085831155202827
'max_diff' => 0.0041080051735356
'year' => 2026
]
1 => [
'items' => [
101 => 0.048482897957108
102 => 0.047147502343565
103 => 0.044392199755927
104 => 0.044407794469348
105 => 0.04398395119377
106 => 0.043617688721539
107 => 0.048211572875345
108 => 0.047640250762258
109 => 0.046729923747843
110 => 0.047948432631595
111 => 0.048270625720795
112 => 0.048279798105095
113 => 0.049168790732414
114 => 0.049643246256975
115 => 0.049726871099587
116 => 0.051125720206631
117 => 0.051594595976046
118 => 0.053525828912485
119 => 0.049602992020553
120 => 0.049522203776258
121 => 0.047965579550439
122 => 0.04697834385717
123 => 0.048033176422974
124 => 0.048967614077273
125 => 0.047994615133093
126 => 0.048121668254074
127 => 0.046815496668448
128 => 0.047282391549224
129 => 0.047684544318081
130 => 0.047462499196565
131 => 0.047130086902551
201 => 0.048891000845807
202 => 0.048791643180051
203 => 0.050431446727248
204 => 0.051709790855764
205 => 0.054000812065412
206 => 0.051610011999508
207 => 0.051522881742537
208 => 0.052374593980562
209 => 0.05159446558334
210 => 0.052087479801268
211 => 0.053921379852934
212 => 0.053960127271204
213 => 0.053311058091955
214 => 0.05327156217341
215 => 0.053396223009324
216 => 0.05412636541898
217 => 0.053871231226036
218 => 0.054166478973318
219 => 0.054535690802288
220 => 0.05606290746948
221 => 0.056431114237572
222 => 0.055536562684429
223 => 0.055617330673809
224 => 0.055282743836944
225 => 0.054959537144893
226 => 0.055686058588076
227 => 0.057013790805308
228 => 0.057005531052094
301 => 0.057313539119065
302 => 0.057505425593112
303 => 0.05668170837702
304 => 0.056145498758265
305 => 0.056351115646
306 => 0.056679901527242
307 => 0.056244494815979
308 => 0.053556962894057
309 => 0.054372188398965
310 => 0.054236495012457
311 => 0.054043251129192
312 => 0.054862966678328
313 => 0.054783903113905
314 => 0.052415642403237
315 => 0.052567250770131
316 => 0.052424862210171
317 => 0.052884948777361
318 => 0.051569619398836
319 => 0.051974205856792
320 => 0.052227958690459
321 => 0.052377421058911
322 => 0.052917381621062
323 => 0.052854023481295
324 => 0.052913443190135
325 => 0.053714062159502
326 => 0.057763318167307
327 => 0.057983710237632
328 => 0.056898419078739
329 => 0.057331971490295
330 => 0.056499645667597
331 => 0.057058391568472
401 => 0.057440671323244
402 => 0.055713222619599
403 => 0.055610934318418
404 => 0.054775173190975
405 => 0.055224263880933
406 => 0.054509728302446
407 => 0.054685050340013
408 => 0.054194834638675
409 => 0.055077125300112
410 => 0.056063663353705
411 => 0.056312901825612
412 => 0.055657262709935
413 => 0.055182536781462
414 => 0.054349074435507
415 => 0.055735140891751
416 => 0.056140468963167
417 => 0.055733011875945
418 => 0.055638595165723
419 => 0.055459675670459
420 => 0.05567655378245
421 => 0.056138261459441
422 => 0.055920528645374
423 => 0.056064345005024
424 => 0.055516265344825
425 => 0.056681981061693
426 => 0.058533418164844
427 => 0.058539370837871
428 => 0.058321636850143
429 => 0.058232544793509
430 => 0.058455953078121
501 => 0.058577142907836
502 => 0.059299604334198
503 => 0.060074834228818
504 => 0.063692493887707
505 => 0.06267666953179
506 => 0.065886472396692
507 => 0.068425009722092
508 => 0.069186206069195
509 => 0.068485941246916
510 => 0.066090373117459
511 => 0.065972835116367
512 => 0.069552825284551
513 => 0.068541314088102
514 => 0.068420998049886
515 => 0.067141038680426
516 => 0.067897653193829
517 => 0.067732170500882
518 => 0.067470947974376
519 => 0.068914515759725
520 => 0.071616745785713
521 => 0.07119557789481
522 => 0.070881195601667
523 => 0.069503663908425
524 => 0.070333245670599
525 => 0.070037847494681
526 => 0.071307065522741
527 => 0.07055520887954
528 => 0.06853365089594
529 => 0.06885559066797
530 => 0.068806930119081
531 => 0.069808360767103
601 => 0.069507756143604
602 => 0.068748232241811
603 => 0.071607509857254
604 => 0.071421844273045
605 => 0.071685075622392
606 => 0.071800958203074
607 => 0.073541350101472
608 => 0.074254332975916
609 => 0.074416192570937
610 => 0.075093471157585
611 => 0.074399341262715
612 => 0.077176355748422
613 => 0.079022908338131
614 => 0.081167774193804
615 => 0.084301999694535
616 => 0.085480497476017
617 => 0.085267612400117
618 => 0.08764394640435
619 => 0.09191416578702
620 => 0.086130745827599
621 => 0.09222070108811
622 => 0.090292691564547
623 => 0.085721415667589
624 => 0.085427079391627
625 => 0.088522800502651
626 => 0.095388811974789
627 => 0.093668953974676
628 => 0.095391625046354
629 => 0.09338203773618
630 => 0.093282244788098
701 => 0.095294023876182
702 => 0.09999465537186
703 => 0.0977615615488
704 => 0.094559873976374
705 => 0.096923950256078
706 => 0.094875968597667
707 => 0.090261292727296
708 => 0.093667638831676
709 => 0.091389912198829
710 => 0.092054673920901
711 => 0.096842116516879
712 => 0.096266078757729
713 => 0.09701152495773
714 => 0.095695831926453
715 => 0.094466767169492
716 => 0.092172626529078
717 => 0.091493444585218
718 => 0.091681146040095
719 => 0.091493351569699
720 => 0.090209800965628
721 => 0.089932618334887
722 => 0.089470635140002
723 => 0.089613823049774
724 => 0.08874515948544
725 => 0.090384507106389
726 => 0.090688784470719
727 => 0.091881764959
728 => 0.092005624150854
729 => 0.095328057829702
730 => 0.093498117190622
731 => 0.09472579936079
801 => 0.094615983912097
802 => 0.085820489077596
803 => 0.087032430662483
804 => 0.088917831440345
805 => 0.088068460945519
806 => 0.08686764978792
807 => 0.085897930394739
808 => 0.08442870635517
809 => 0.086496610976914
810 => 0.089215685657369
811 => 0.092074584371907
812 => 0.09550936385496
813 => 0.094742761059583
814 => 0.092010373558654
815 => 0.092132946465935
816 => 0.092890643948087
817 => 0.091909356864625
818 => 0.091619956146712
819 => 0.092850884733496
820 => 0.092859361462167
821 => 0.091730272080138
822 => 0.090475495853188
823 => 0.090470238294982
824 => 0.090246962985096
825 => 0.093421757917799
826 => 0.095167574122814
827 => 0.095367729137195
828 => 0.095154102095594
829 => 0.095236318665352
830 => 0.09422046668209
831 => 0.096542403074281
901 => 0.098673241523464
902 => 0.098102131300359
903 => 0.097245955887823
904 => 0.096563970932743
905 => 0.097941477318736
906 => 0.097880139127764
907 => 0.098654630508513
908 => 0.098619495105804
909 => 0.098359062784552
910 => 0.098102140601218
911 => 0.099120808016971
912 => 0.098827448160532
913 => 0.098533632635208
914 => 0.097944340618264
915 => 0.098024435190471
916 => 0.097168407608691
917 => 0.096772370080203
918 => 0.090816915878635
919 => 0.089225423915897
920 => 0.08972613968518
921 => 0.089890988317508
922 => 0.089198368975771
923 => 0.090191407192511
924 => 0.09003664323832
925 => 0.090638739250192
926 => 0.090262575801944
927 => 0.090278013681071
928 => 0.091384230175866
929 => 0.091705369530486
930 => 0.091542035462814
1001 => 0.091656429045047
1002 => 0.094292580865103
1003 => 0.093917804375681
1004 => 0.093718711835248
1005 => 0.09377386182957
1006 => 0.094447455139327
1007 => 0.094636024489228
1008 => 0.093837042903166
1009 => 0.09421384723801
1010 => 0.095818232272188
1011 => 0.096379676233822
1012 => 0.098171535850966
1013 => 0.097410322037838
1014 => 0.098807562936397
1015 => 0.10310220510404
1016 => 0.10653306243419
1017 => 0.10337790424721
1018 => 0.10967823681698
1019 => 0.11458394945158
1020 => 0.11439566002977
1021 => 0.11354023556075
1022 => 0.10795521215138
1023 => 0.10281579034207
1024 => 0.10711513491694
1025 => 0.10712609483042
1026 => 0.10675677731854
1027 => 0.1044629779708
1028 => 0.10667695807334
1029 => 0.10685269577389
1030 => 0.10675432939401
1031 => 0.10499567881219
1101 => 0.10231054442671
1102 => 0.10283521325833
1103 => 0.10369463150748
1104 => 0.10206757346842
1105 => 0.10154762983802
1106 => 0.10251430397026
1107 => 0.1056291294389
1108 => 0.105040289727
1109 => 0.10502491274244
1110 => 0.10754421873681
1111 => 0.1057409393451
1112 => 0.10284183101252
1113 => 0.10210976792401
1114 => 0.099511437136556
1115 => 0.10130611346638
1116 => 0.10137070067249
1117 => 0.10038777478779
1118 => 0.10292159003085
1119 => 0.10289824047732
1120 => 0.10530372094197
1121 => 0.10990209613319
1122 => 0.10854213031684
1123 => 0.1069606380363
1124 => 0.10713259009722
1125 => 0.10901847979166
1126 => 0.10787822783173
1127 => 0.10828827038664
1128 => 0.10901785914314
1129 => 0.10945803815461
1130 => 0.10706925511144
1201 => 0.10651231551537
1202 => 0.10537301256106
1203 => 0.10507578968638
1204 => 0.10600372817033
1205 => 0.10575924916436
1206 => 0.10136527236791
1207 => 0.10090607734483
1208 => 0.10092016020061
1209 => 0.099765492481529
1210 => 0.098004347057928
1211 => 0.10263253207862
1212 => 0.10226082405005
1213 => 0.10185048715443
1214 => 0.10190075108279
1215 => 0.10390968933653
1216 => 0.10274440369555
1217 => 0.10584250655866
1218 => 0.1052056297475
1219 => 0.10455241944929
1220 => 0.10446212588881
1221 => 0.10421069565328
1222 => 0.10334844782259
1223 => 0.10230723175397
1224 => 0.10161973071687
1225 => 0.093738829987674
1226 => 0.095201479321923
1227 => 0.096884124056295
1228 => 0.097464966275824
1229 => 0.096471395466261
1230 => 0.10338768005404
1231 => 0.1046513518952
]
'min_raw' => 0.043617688721539
'max_raw' => 0.11458394945158
'avg_raw' => 0.079100819086558
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.043617'
'max' => '$0.114583'
'avg' => '$0.07910081'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -0.0016911560756347
'max_diff' => -0.020664055721958
'year' => 2027
]
2 => [
'items' => [
101 => 0.10082360746104
102 => 0.10010759276319
103 => 0.10343462185843
104 => 0.10142801660123
105 => 0.10233159082568
106 => 0.1003785575811
107 => 0.10434697035329
108 => 0.10431673769688
109 => 0.10277293549783
110 => 0.10407774654497
111 => 0.1038510035157
112 => 0.10210805463519
113 => 0.10440222494165
114 => 0.1044033628215
115 => 0.10291748677006
116 => 0.10118230884208
117 => 0.10087210001163
118 => 0.10063839932858
119 => 0.10227411478376
120 => 0.10374069214612
121 => 0.10646962902212
122 => 0.10715574859069
123 => 0.10983371894437
124 => 0.10823911798676
125 => 0.10894598393773
126 => 0.1097133869198
127 => 0.11008130812971
128 => 0.1094818002619
129 => 0.11364179051774
130 => 0.11399302115414
131 => 0.11411078574839
201 => 0.11270806044004
202 => 0.1139540088258
203 => 0.11337107083758
204 => 0.1148877135381
205 => 0.11512554247901
206 => 0.11492410982707
207 => 0.11499960048679
208 => 0.111449782676
209 => 0.11126570589573
210 => 0.10875580593525
211 => 0.10977860872139
212 => 0.10786652793692
213 => 0.10847286845029
214 => 0.10874013757116
215 => 0.1086005313498
216 => 0.10983643645631
217 => 0.10878566463705
218 => 0.10601250504312
219 => 0.10323858990371
220 => 0.10320376565872
221 => 0.10247344276618
222 => 0.10194555308019
223 => 0.1020472433616
224 => 0.10240561317698
225 => 0.10192472397504
226 => 0.10202734606797
227 => 0.10373155657814
228 => 0.10407332384209
229 => 0.10291186514212
301 => 0.098248440864077
302 => 0.097104024848931
303 => 0.097926608385862
304 => 0.097533466436373
305 => 0.078717119589102
306 => 0.08313774117405
307 => 0.080511157938398
308 => 0.081721608336671
309 => 0.079040547003502
310 => 0.080320089998154
311 => 0.08008380512847
312 => 0.087192033821365
313 => 0.087081048607374
314 => 0.087134171356105
315 => 0.084598484148612
316 => 0.088637902721558
317 => 0.090627865563385
318 => 0.090259576402509
319 => 0.090352266849823
320 => 0.088759537866824
321 => 0.087149592454193
322 => 0.085363915222763
323 => 0.088681482802384
324 => 0.088312625920297
325 => 0.089158650897287
326 => 0.0913103306173
327 => 0.091627173629508
328 => 0.09205301385102
329 => 0.091900380444979
330 => 0.095536727414961
331 => 0.095096341803507
401 => 0.096157544419525
402 => 0.093974570124739
403 => 0.091504327500367
404 => 0.091973839864944
405 => 0.091928622048655
406 => 0.091352947348705
407 => 0.090833253969745
408 => 0.089968110916479
409 => 0.092705551554095
410 => 0.092594416463361
411 => 0.094393564401927
412 => 0.094075547527795
413 => 0.09195175301041
414 => 0.092027604747083
415 => 0.092537744129305
416 => 0.094303342355847
417 => 0.094827492120579
418 => 0.094584685065798
419 => 0.095159391354481
420 => 0.095613615772393
421 => 0.095216434948008
422 => 0.10083967784105
423 => 0.098504515340735
424 => 0.099642657295435
425 => 0.099914097445309
426 => 0.099218809209178
427 => 0.099369592331189
428 => 0.099597987675096
429 => 0.1009847594789
430 => 0.10462404995774
501 => 0.10623586693733
502 => 0.11108509784608
503 => 0.10610202797475
504 => 0.10580635323058
505 => 0.10667984614999
506 => 0.10952685803665
507 => 0.11183409376456
508 => 0.11259953696313
509 => 0.11270070291791
510 => 0.11413672524412
511 => 0.11495982646128
512 => 0.11396235436259
513 => 0.11311710119862
514 => 0.11008950928199
515 => 0.1104399612902
516 => 0.11285422810023
517 => 0.11626452216899
518 => 0.11919090926062
519 => 0.11816619049602
520 => 0.12598407133121
521 => 0.12675918228284
522 => 0.12665208701167
523 => 0.12841790511145
524 => 0.12491311578598
525 => 0.12341475044724
526 => 0.1132998545267
527 => 0.11614172769913
528 => 0.12027255725261
529 => 0.11972582647139
530 => 0.11672590763226
531 => 0.11918863355317
601 => 0.11837437934716
602 => 0.11773214327144
603 => 0.1206743512379
604 => 0.11743927271954
605 => 0.12024028486969
606 => 0.11664795781436
607 => 0.11817087132502
608 => 0.11730639196133
609 => 0.11786581605624
610 => 0.11459543422829
611 => 0.11636005287862
612 => 0.11452202029091
613 => 0.11452114882414
614 => 0.11448057415289
615 => 0.11664301134126
616 => 0.11671352834034
617 => 0.11511548399087
618 => 0.11488518083397
619 => 0.11573673231181
620 => 0.11473978855295
621 => 0.11520625226303
622 => 0.11475391726353
623 => 0.11465208712751
624 => 0.11384068727874
625 => 0.11349111391398
626 => 0.1136281906377
627 => 0.11316027711176
628 => 0.11287834228721
629 => 0.1144244902201
630 => 0.11359844575098
701 => 0.11429788705806
702 => 0.11350078541212
703 => 0.11073768382663
704 => 0.10914859488554
705 => 0.10392935213021
706 => 0.10540952290117
707 => 0.10639087765367
708 => 0.10606653991382
709 => 0.10676334288105
710 => 0.10680612092404
711 => 0.10657958317633
712 => 0.10631728148576
713 => 0.10618960752899
714 => 0.10714118460148
715 => 0.10769360712067
716 => 0.10648936973191
717 => 0.1062072337608
718 => 0.1074247842486
719 => 0.10816748934281
720 => 0.11365120646847
721 => 0.11324495499163
722 => 0.11426456647568
723 => 0.11414977386979
724 => 0.11521848914192
725 => 0.11696538693908
726 => 0.11341345527715
727 => 0.1140299477971
728 => 0.1138787980681
729 => 0.11552901117575
730 => 0.11553416296095
731 => 0.11454477776865
801 => 0.11508113953234
802 => 0.11478175711016
803 => 0.11532278161099
804 => 0.11323952925548
805 => 0.1157767057513
806 => 0.11721512133239
807 => 0.11723509373413
808 => 0.11791689130359
809 => 0.11860963712122
810 => 0.11993930239271
811 => 0.11857255347848
812 => 0.11611390523209
813 => 0.11629141169409
814 => 0.11484990712682
815 => 0.11487413907902
816 => 0.11474478701906
817 => 0.11513298228818
818 => 0.11332471628693
819 => 0.11374911270312
820 => 0.1131549552352
821 => 0.1140286562148
822 => 0.1130886983887
823 => 0.11387872517912
824 => 0.11421967455207
825 => 0.11547778507836
826 => 0.11290287444102
827 => 0.10765245734538
828 => 0.10875615867404
829 => 0.10712369771509
830 => 0.10727478819205
831 => 0.1075800150014
901 => 0.10659067504831
902 => 0.10677940993368
903 => 0.10677266699546
904 => 0.10671455999678
905 => 0.10645719446486
906 => 0.10608396352535
907 => 0.10757080071391
908 => 0.10782344332517
909 => 0.10838503655421
910 => 0.11005595707149
911 => 0.10988899270879
912 => 0.11016131851163
913 => 0.10956683281308
914 => 0.10730236467858
915 => 0.10742533619297
916 => 0.10589187943807
917 => 0.10834582261731
918 => 0.107764696482
919 => 0.10739004068211
920 => 0.10728781237595
921 => 0.108962874782
922 => 0.10946407970728
923 => 0.10915176243246
924 => 0.10851119059005
925 => 0.10974127789554
926 => 0.11007039736527
927 => 0.11014407507708
928 => 0.11232355393656
929 => 0.11026588373434
930 => 0.11076118540349
1001 => 0.11462538763617
1002 => 0.11112108943459
1003 => 0.11297739434714
1004 => 0.11288653788142
1005 => 0.11383616066074
1006 => 0.1128086410961
1007 => 0.11282137843257
1008 => 0.1136645791276
1009 => 0.11248045582348
1010 => 0.11218725024102
1011 => 0.11178218882883
1012 => 0.11266662560348
1013 => 0.11319680545025
1014 => 0.117469665641
1015 => 0.12023012819033
1016 => 0.12011028923086
1017 => 0.12120539299127
1018 => 0.1207120387172
1019 => 0.11911886762597
1020 => 0.12183821641219
1021 => 0.12097770067384
1022 => 0.12104864054578
1023 => 0.12104600016021
1024 => 0.12161816789862
1025 => 0.12121273461755
1026 => 0.1204135840037
1027 => 0.12094409747597
1028 => 0.12251953282659
1029 => 0.12740973249516
1030 => 0.13014635301622
1031 => 0.12724498450359
1101 => 0.12924630965273
1102 => 0.12804622770831
1103 => 0.12782813711966
1104 => 0.12908511721009
1105 => 0.13034429747777
1106 => 0.1302640931383
1107 => 0.12934999292359
1108 => 0.12883364090673
1109 => 0.13274363136899
1110 => 0.13562444573663
1111 => 0.13542799350998
1112 => 0.13629506974872
1113 => 0.13884083240332
1114 => 0.13907358503592
1115 => 0.13904426355397
1116 => 0.13846736186885
1117 => 0.14097399581135
1118 => 0.14306507394622
1119 => 0.13833382579703
1120 => 0.14013542315566
1121 => 0.14094421825378
1122 => 0.14213176941653
1123 => 0.14413536728476
1124 => 0.14631180599776
1125 => 0.14661957829521
1126 => 0.14640119912191
1127 => 0.14496577928488
1128 => 0.14734726449494
1129 => 0.1487422826783
1130 => 0.14957298408207
1201 => 0.15167950462649
1202 => 0.14094921309696
1203 => 0.13335377942227
1204 => 0.13216764277458
1205 => 0.13457969829019
1206 => 0.13521573809387
1207 => 0.13495935124653
1208 => 0.12641000009905
1209 => 0.13212263221012
1210 => 0.13826894402987
1211 => 0.13850504889851
1212 => 0.1415820211088
1213 => 0.14258400938983
1214 => 0.14506137532708
1215 => 0.14490641541319
1216 => 0.14550961459541
1217 => 0.14537094954937
1218 => 0.14995974827718
1219 => 0.15502187471716
1220 => 0.15484658937512
1221 => 0.15411884880701
1222 => 0.15519966764886
1223 => 0.16042432462536
1224 => 0.15994332193438
1225 => 0.16041057507695
1226 => 0.16657074010101
1227 => 0.17457983090554
1228 => 0.17085880412726
1229 => 0.17893236153951
1230 => 0.18401423796962
1231 => 0.19280281777968
]
'min_raw' => 0.078717119589102
'max_raw' => 0.19280281777968
'avg_raw' => 0.13575996868439
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.078717'
'max' => '$0.1928028'
'avg' => '$0.135759'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 0.035099430867563
'max_diff' => 0.078218868328101
'year' => 2028
]
3 => [
'items' => [
101 => 0.19170244430279
102 => 0.19512377392927
103 => 0.18973254612429
104 => 0.17735319733715
105 => 0.17539411800534
106 => 0.17931624443941
107 => 0.18895840956207
108 => 0.17901257834615
109 => 0.18102460704765
110 => 0.18044514264626
111 => 0.18041426545087
112 => 0.18159272241209
113 => 0.17988330912567
114 => 0.17291885187922
115 => 0.17611062159346
116 => 0.17487812602542
117 => 0.17624567174679
118 => 0.18362575198628
119 => 0.18036284259326
120 => 0.17692563260496
121 => 0.18123665670825
122 => 0.18672607182035
123 => 0.18638255408806
124 => 0.18571598610815
125 => 0.18947339491055
126 => 0.19567953343462
127 => 0.1973570277394
128 => 0.19859531974032
129 => 0.19876605928613
130 => 0.20052478272203
131 => 0.19106768355181
201 => 0.20607634281049
202 => 0.20866792365862
203 => 0.20818081386919
204 => 0.2110612469115
205 => 0.21021375044092
206 => 0.20898586102317
207 => 0.2135519600809
208 => 0.20831729597641
209 => 0.20088734930596
210 => 0.19681113361488
211 => 0.20217902325584
212 => 0.20545700614605
213 => 0.2076235443176
214 => 0.20827913745926
215 => 0.19180181123948
216 => 0.18292144628143
217 => 0.18861365840595
218 => 0.19555855005336
219 => 0.19102910432805
220 => 0.19120665002511
221 => 0.18474885073821
222 => 0.19612992199681
223 => 0.19447179564431
224 => 0.20307415809426
225 => 0.20102113525731
226 => 0.20803602789346
227 => 0.20618877156771
228 => 0.2138566292972
301 => 0.21691554534445
302 => 0.22205194147005
303 => 0.22583029536894
304 => 0.22804901704676
305 => 0.22791581331944
306 => 0.23670749396972
307 => 0.23152334704818
308 => 0.2250108367051
309 => 0.2248930459397
310 => 0.22826596732937
311 => 0.2353346852463
312 => 0.2371675009565
313 => 0.23819179490119
314 => 0.23662305306898
315 => 0.2309960331368
316 => 0.22856631445973
317 => 0.23063650516832
318 => 0.22810483982523
319 => 0.23247520446724
320 => 0.23847664858025
321 => 0.2372373741032
322 => 0.24138008287757
323 => 0.24566735063338
324 => 0.25179833607743
325 => 0.25340120270224
326 => 0.25605068028149
327 => 0.25877786301858
328 => 0.2596537606141
329 => 0.26132612089901
330 => 0.26131730673481
331 => 0.26635707701621
401 => 0.27191609970528
402 => 0.27401450207874
403 => 0.27883966262992
404 => 0.27057674427982
405 => 0.27684426276593
406 => 0.28249772132657
407 => 0.27575743496584
408 => 0.28504734942881
409 => 0.28540805575601
410 => 0.29085429304642
411 => 0.28533348817977
412 => 0.28205525187298
413 => 0.29151939725676
414 => 0.29609879909018
415 => 0.29471944598955
416 => 0.28422250078665
417 => 0.2781128284434
418 => 0.26212263745335
419 => 0.28106370940591
420 => 0.29028935303537
421 => 0.2841986085984
422 => 0.28727042581496
423 => 0.30402926450843
424 => 0.31040994522845
425 => 0.30908280824301
426 => 0.30930707254702
427 => 0.31274997204599
428 => 0.32801768446385
429 => 0.31886891728027
430 => 0.32586280699435
501 => 0.32957234088035
502 => 0.33301796268824
503 => 0.32455660452802
504 => 0.31354850188361
505 => 0.31006177368741
506 => 0.2835930040996
507 => 0.28221518969451
508 => 0.28144178071689
509 => 0.27656554651384
510 => 0.27273416214321
511 => 0.26968730304149
512 => 0.26169143488946
513 => 0.2643898056696
514 => 0.25164606070263
515 => 0.25979905712191
516 => 0.23945973244614
517 => 0.25639892642241
518 => 0.24717969327177
519 => 0.25337016038195
520 => 0.25334856242538
521 => 0.24194994978616
522 => 0.23537546789884
523 => 0.2395649836401
524 => 0.24405647707891
525 => 0.24478520677816
526 => 0.25060854526155
527 => 0.25223371386003
528 => 0.24730937713479
529 => 0.23903824515071
530 => 0.24095944046617
531 => 0.23533653493709
601 => 0.2254826092793
602 => 0.23255987071976
603 => 0.23497635894075
604 => 0.23604361780344
605 => 0.22635341365001
606 => 0.22330854112044
607 => 0.22168747653465
608 => 0.23778736147887
609 => 0.23866934951955
610 => 0.23415697400289
611 => 0.2545533392192
612 => 0.24993701359789
613 => 0.25509458034413
614 => 0.24078511212831
615 => 0.24133175308441
616 => 0.23455742151164
617 => 0.23835059453139
618 => 0.23566970210071
619 => 0.23804414363626
620 => 0.23946737410249
621 => 0.2462405940741
622 => 0.25647626571452
623 => 0.24522890087732
624 => 0.24032826295253
625 => 0.24336859115884
626 => 0.25146538582201
627 => 0.263732444204
628 => 0.2564700987443
629 => 0.25969300433669
630 => 0.26039706583154
701 => 0.2550420811562
702 => 0.26392989012725
703 => 0.26869293915926
704 => 0.27357884189199
705 => 0.27782113433493
706 => 0.27162730489724
707 => 0.27825559024614
708 => 0.2729143623048
709 => 0.26812272867541
710 => 0.26812999560573
711 => 0.26512413383542
712 => 0.25929989789248
713 => 0.2582258194248
714 => 0.26381331125487
715 => 0.26829395056514
716 => 0.26866299747954
717 => 0.27114370962527
718 => 0.27261176951974
719 => 0.28700075221623
720 => 0.29278812008866
721 => 0.29986480397381
722 => 0.30262157116712
723 => 0.31091845206326
724 => 0.30421804689991
725 => 0.30276837209529
726 => 0.28264285293032
727 => 0.28593840556613
728 => 0.2912149033096
729 => 0.28272986043466
730 => 0.28811166715116
731 => 0.28917414979925
801 => 0.28244154192461
802 => 0.28603771868927
803 => 0.27648733939443
804 => 0.25668443788497
805 => 0.26395193641759
806 => 0.26930326155115
807 => 0.26166626077193
808 => 0.27535528907594
809 => 0.26735844133964
810 => 0.26482382452362
811 => 0.25493538066818
812 => 0.25960234552684
813 => 0.26591448232267
814 => 0.26201431564751
815 => 0.27010774711144
816 => 0.2815702045037
817 => 0.28973903424256
818 => 0.29036613555714
819 => 0.28511412530414
820 => 0.29353050525246
821 => 0.29359180939201
822 => 0.28409809842839
823 => 0.27828325332438
824 => 0.27696210828221
825 => 0.28026258762329
826 => 0.28426997884547
827 => 0.29058851787995
828 => 0.2944066786859
829 => 0.30436241707181
830 => 0.30705615442564
831 => 0.31001575508738
901 => 0.31397069427849
902 => 0.31871961280302
903 => 0.30832924942743
904 => 0.3087420779344
905 => 0.29906671542343
906 => 0.28872720299312
907 => 0.29657360408931
908 => 0.30683172975958
909 => 0.30447850439659
910 => 0.30421371847123
911 => 0.3046590149522
912 => 0.30288475987767
913 => 0.29485986993252
914 => 0.29082982044053
915 => 0.29602961246047
916 => 0.29879307050295
917 => 0.30307895292797
918 => 0.30255062745509
919 => 0.31359060031177
920 => 0.31788039993242
921 => 0.31678288561858
922 => 0.31698485466549
923 => 0.32475133197115
924 => 0.33338925203292
925 => 0.34147980404471
926 => 0.34970986104841
927 => 0.33978820610586
928 => 0.33475060160865
929 => 0.33994812356205
930 => 0.33719024525316
1001 => 0.35303783205592
1002 => 0.35413508458212
1003 => 0.36998152542397
1004 => 0.38502168474197
1005 => 0.37557523014678
1006 => 0.38448281135239
1007 => 0.394117086672
1008 => 0.41270316686837
1009 => 0.40644402892442
1010 => 0.40164962735255
1011 => 0.39711894103351
1012 => 0.40654658003723
1013 => 0.41867508700531
1014 => 0.42128745124083
1015 => 0.42552047930233
1016 => 0.42106996788571
1017 => 0.42643011867928
1018 => 0.44535380635019
1019 => 0.4402404588975
1020 => 0.43297868350306
1021 => 0.44791711746896
1022 => 0.45332327864952
1023 => 0.49126654904334
1024 => 0.53917149527385
1025 => 0.51933853297358
1026 => 0.50702757326811
1027 => 0.50992094081877
1028 => 0.52741420549738
1029 => 0.53303248690369
1030 => 0.51776006130361
1031 => 0.52315454021561
1101 => 0.55287864939417
1102 => 0.56882468030487
1103 => 0.54716782849046
1104 => 0.48741743325772
1105 => 0.43232484008159
1106 => 0.44693787664371
1107 => 0.44528121179288
1108 => 0.4772160589471
1109 => 0.44011850725185
1110 => 0.44074313488042
1111 => 0.4733383608542
1112 => 0.46464251338804
1113 => 0.45055635417286
1114 => 0.43242768463254
1115 => 0.3989151622883
1116 => 0.36923218668218
1117 => 0.4274473374268
1118 => 0.42493699426931
1119 => 0.42130164536525
1120 => 0.4293917209654
1121 => 0.46867483167169
1122 => 0.46776922882289
1123 => 0.46200824554145
1124 => 0.46637790058544
1125 => 0.44979033251667
1126 => 0.4540653264999
1127 => 0.43231611313336
1128 => 0.44214766590242
1129 => 0.4505261316016
1130 => 0.45220823263601
1201 => 0.45599809215675
1202 => 0.42361415749619
1203 => 0.43815359341641
1204 => 0.44669414985863
1205 => 0.40810760514458
1206 => 0.44593141793484
1207 => 0.4230504252415
1208 => 0.4152842726604
1209 => 0.42574037399805
1210 => 0.42166562113788
1211 => 0.41816238790622
1212 => 0.41620752356976
1213 => 0.42388533039434
1214 => 0.42352715152901
1215 => 0.41096476936592
1216 => 0.39457765394237
1217 => 0.40007770776724
1218 => 0.39807948664939
1219 => 0.39083767554263
1220 => 0.39571778184897
1221 => 0.3742282634411
1222 => 0.33725666394832
1223 => 0.36168123504397
1224 => 0.36074091562561
1225 => 0.36026676393478
1226 => 0.3786211540676
1227 => 0.37685680296415
1228 => 0.37365448843483
1229 => 0.39077886252501
1230 => 0.38452823562676
1231 => 0.40379119489425
]
'min_raw' => 0.17291885187922
'max_raw' => 0.56882468030487
'avg_raw' => 0.37087176609204
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.172918'
'max' => '$0.568824'
'avg' => '$0.370871'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072434
'min_diff' => 0.094201732290116
'max_diff' => 0.37602186252519
'year' => 2029
]
4 => [
'items' => [
101 => 0.41647902571791
102 => 0.4132609814127
103 => 0.42519394762797
104 => 0.40020441789882
105 => 0.40850493726893
106 => 0.41021566280708
107 => 0.39056755040688
108 => 0.37714547262478
109 => 0.3762503730596
110 => 0.35297833986167
111 => 0.36541007215072
112 => 0.37634948210504
113 => 0.37111035366942
114 => 0.36945180212122
115 => 0.37792498228506
116 => 0.37858342095167
117 => 0.36357094957474
118 => 0.36669251775714
119 => 0.37970997599529
120 => 0.3663645112089
121 => 0.34043645309823
122 => 0.33400593620333
123 => 0.33314798671161
124 => 0.31570791488193
125 => 0.33443565409096
126 => 0.32626049405401
127 => 0.35208572665728
128 => 0.33733449229779
129 => 0.33669859606747
130 => 0.33573734564965
131 => 0.32072595538555
201 => 0.32401249582977
202 => 0.33493745682059
203 => 0.33883560598061
204 => 0.33842899708663
205 => 0.33488391855165
206 => 0.33650683735122
207 => 0.33127885043539
208 => 0.32943273944428
209 => 0.32360590534348
210 => 0.31504206891931
211 => 0.31623292289915
212 => 0.29926572209318
213 => 0.29002109057659
214 => 0.28746229841508
215 => 0.28404057459742
216 => 0.28784879122514
217 => 0.29921765614512
218 => 0.28550439301239
219 => 0.26199396524488
220 => 0.26340698201353
221 => 0.26658161116424
222 => 0.26066571074417
223 => 0.25506680748047
224 => 0.25993459961488
225 => 0.24997292143729
226 => 0.26778543237952
227 => 0.26730365387751
228 => 0.27394305643849
301 => 0.27809481111412
302 => 0.26852636073332
303 => 0.2661199213384
304 => 0.26749073858432
305 => 0.24483418304234
306 => 0.27209153248764
307 => 0.27232725517753
308 => 0.27030885439531
309 => 0.28482255149868
310 => 0.31545097932244
311 => 0.30392733274948
312 => 0.29946502849238
313 => 0.29098218483769
314 => 0.30228507034614
315 => 0.30141718509157
316 => 0.29749227883471
317 => 0.2951184832841
318 => 0.29949227437064
319 => 0.29457652216588
320 => 0.29369351799407
321 => 0.2883434734309
322 => 0.28643375093337
323 => 0.28501986842444
324 => 0.28346332270733
325 => 0.28689667469224
326 => 0.27911624739937
327 => 0.26973381480886
328 => 0.26895376705828
329 => 0.27110754748012
330 => 0.27015465997355
331 => 0.2689492049995
401 => 0.26664766316792
402 => 0.26596484487115
403 => 0.26818367307931
404 => 0.26567874539802
405 => 0.26937490264223
406 => 0.26836975238952
407 => 0.26275506478611
408 => 0.25575708520868
409 => 0.25569478851168
410 => 0.25418708529071
411 => 0.2522667985541
412 => 0.25173261871419
413 => 0.25952464773869
414 => 0.27565391462361
415 => 0.27248735359346
416 => 0.27477551845997
417 => 0.28603102492321
418 => 0.28960881196299
419 => 0.28706938346669
420 => 0.28359325711582
421 => 0.28374618903362
422 => 0.29562516506954
423 => 0.29636604223385
424 => 0.29823799981204
425 => 0.30064399431515
426 => 0.28747913473438
427 => 0.28312612533126
428 => 0.28106342798029
429 => 0.27471111850365
430 => 0.28156153966835
501 => 0.27757009261996
502 => 0.27810867519404
503 => 0.27775792258612
504 => 0.27794945722783
505 => 0.26778045341969
506 => 0.27148550394027
507 => 0.26532513884344
508 => 0.25707710151221
509 => 0.25704945119894
510 => 0.25906814665077
511 => 0.25786734760446
512 => 0.2546360282462
513 => 0.25509502190965
514 => 0.25107375444206
515 => 0.25558327658761
516 => 0.2557125935469
517 => 0.25397618188553
518 => 0.26092372294489
519 => 0.26377013618556
520 => 0.26262719283251
521 => 0.26368994423306
522 => 0.27261893850042
523 => 0.27407475416534
524 => 0.27472133131791
525 => 0.27385500358852
526 => 0.26385314985708
527 => 0.26429677460124
528 => 0.26104175057827
529 => 0.25829159828484
530 => 0.25840158995392
531 => 0.25981552572752
601 => 0.26599026617705
602 => 0.27898464343225
603 => 0.27947777055032
604 => 0.28007545500295
605 => 0.27764437196196
606 => 0.27691113405446
607 => 0.27787846411921
608 => 0.28275846900437
609 => 0.29531116647739
610 => 0.29087420482395
611 => 0.28726688593428
612 => 0.29043147712671
613 => 0.28994431311752
614 => 0.28583215861543
615 => 0.28571674413452
616 => 0.27782420490969
617 => 0.2749065128627
618 => 0.27246827100276
619 => 0.26980577454363
620 => 0.26822735739497
621 => 0.27065252351308
622 => 0.27120718769801
623 => 0.26590451959612
624 => 0.26518178552786
625 => 0.26951205876591
626 => 0.2676064669627
627 => 0.2695664153887
628 => 0.27002114023566
629 => 0.2699479190621
630 => 0.26795826236373
701 => 0.26922641021085
702 => 0.26622686249933
703 => 0.26296530488055
704 => 0.26088463432198
705 => 0.25906897329874
706 => 0.26007640756127
707 => 0.25648508836556
708 => 0.25533615307588
709 => 0.26879679025448
710 => 0.27874030766454
711 => 0.27859572498334
712 => 0.27771561509513
713 => 0.27640795032503
714 => 0.28266280518149
715 => 0.28048373881927
716 => 0.28206919166488
717 => 0.28247275595533
718 => 0.28369422351674
719 => 0.28413079318126
720 => 0.28281117643795
721 => 0.2783823814698
722 => 0.26734624548636
723 => 0.26220889439459
724 => 0.26051348296496
725 => 0.26057510795038
726 => 0.25887521574638
727 => 0.25937591018428
728 => 0.25870109465408
729 => 0.25742315729528
730 => 0.2599974985305
731 => 0.26029416737621
801 => 0.25969328537082
802 => 0.25983481483534
803 => 0.2548597684708
804 => 0.25523801044066
805 => 0.2531319110878
806 => 0.25273704284854
807 => 0.24741300708355
808 => 0.23798070599454
809 => 0.24320711641347
810 => 0.23689434757192
811 => 0.23450360635757
812 => 0.24582100342977
813 => 0.24468505065946
814 => 0.24274079330347
815 => 0.23986483145523
816 => 0.23879810923016
817 => 0.23231704267386
818 => 0.23193410668656
819 => 0.23514629827539
820 => 0.23366398238191
821 => 0.23158224947054
822 => 0.22404242388743
823 => 0.21556516358156
824 => 0.21582103878403
825 => 0.2185174975623
826 => 0.22635781512711
827 => 0.22329446741566
828 => 0.22107197350315
829 => 0.22065576720126
830 => 0.22586546045635
831 => 0.2332382678768
901 => 0.2366974241612
902 => 0.2332695053395
903 => 0.22933169676938
904 => 0.22957137293099
905 => 0.23116583105741
906 => 0.23133338606207
907 => 0.22877027749618
908 => 0.22949177754398
909 => 0.22839575299602
910 => 0.2216694523683
911 => 0.22154779491928
912 => 0.21989705226898
913 => 0.21984706843758
914 => 0.21703874339238
915 => 0.21664583930552
916 => 0.21106973947513
917 => 0.21473994526948
918 => 0.21227816391708
919 => 0.2085676787435
920 => 0.20792798970101
921 => 0.20790875987595
922 => 0.21171859849991
923 => 0.21469542508696
924 => 0.21232098765769
925 => 0.21178037428158
926 => 0.2175527107785
927 => 0.21681812834326
928 => 0.21618198469188
929 => 0.23257811383796
930 => 0.21959929821292
1001 => 0.21393979379551
1002 => 0.20693508236823
1003 => 0.20921585172977
1004 => 0.20969644334572
1005 => 0.19285137505723
1006 => 0.18601733295052
1007 => 0.18367214723493
1008 => 0.18232245969956
1009 => 0.18293752925774
1010 => 0.1767860898085
1011 => 0.18091995885381
1012 => 0.175593332259
1013 => 0.17470030597604
1014 => 0.18422497416996
1015 => 0.18555027610684
1016 => 0.17989612630508
1017 => 0.18352700580152
1018 => 0.18221039842311
1019 => 0.17568464198362
1020 => 0.17543540608785
1021 => 0.17216101089795
1022 => 0.16703721647359
1023 => 0.16469550493191
1024 => 0.16347592122932
1025 => 0.16397914523422
1026 => 0.16372469977844
1027 => 0.1620642710659
1028 => 0.16381987360861
1029 => 0.15933503457704
1030 => 0.15754913553787
1031 => 0.15674248637442
1101 => 0.15276193359619
1102 => 0.1590967632262
1103 => 0.16034480446739
1104 => 0.16159530473537
1105 => 0.17248005581531
1106 => 0.17193628441134
1107 => 0.17685171307579
1108 => 0.17666070855678
1109 => 0.17525874867702
1110 => 0.1693441105555
1111 => 0.17170157989245
1112 => 0.16444565570539
1113 => 0.16988228746122
1114 => 0.16740123576703
1115 => 0.1690434413877
1116 => 0.16609060761002
1117 => 0.16772482774211
1118 => 0.16064076134496
1119 => 0.1540257598188
1120 => 0.15668782953686
1121 => 0.15958180376499
1122 => 0.16585667726249
1123 => 0.16211941437396
1124 => 0.16346347543023
1125 => 0.15896109588482
1126 => 0.14967140084152
1127 => 0.14972397950661
1128 => 0.1482949623112
1129 => 0.14706008281445
1130 => 0.16254868397375
1201 => 0.16062243158104
1202 => 0.15755320049494
1203 => 0.16166148827009
1204 => 0.16274778476513
1205 => 0.16277871009919
1206 => 0.16577601080968
1207 => 0.16737567073616
1208 => 0.16765761773153
1209 => 0.17237393516045
1210 => 0.1739547825529
1211 => 0.18046606923248
1212 => 0.1672399507676
1213 => 0.16696756756151
1214 => 0.16171930030413
1215 => 0.15839076623768
1216 => 0.16194720787934
1217 => 0.16509772967116
1218 => 0.16181719579825
1219 => 0.1622455642662
1220 => 0.15784171557127
1221 => 0.15941588425937
1222 => 0.16077177039698
1223 => 0.16002312976709
1224 => 0.15890237850954
1225 => 0.16483942281231
1226 => 0.16450443150528
1227 => 0.17003314365209
1228 => 0.17434317013252
1229 => 0.18206750809484
1230 => 0.17400675875231
1231 => 0.17371299300769
]
'min_raw' => 0.14706008281445
'max_raw' => 0.42519394762797
'avg_raw' => 0.28612701522121
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.14706'
'max' => '$0.425193'
'avg' => '$0.286127'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -0.025858769064772
'max_diff' => -0.1436307326769
'year' => 2030
]
5 => [
'items' => [
101 => 0.17658460028285
102 => 0.17395434292479
103 => 0.17561657478168
104 => 0.18179969684469
105 => 0.18193033647064
106 => 0.17974195441624
107 => 0.17960879116935
108 => 0.18002909388118
109 => 0.18249081999225
110 => 0.18163061724784
111 => 0.18262606564134
112 => 0.18387088910026
113 => 0.18902000672056
114 => 0.19026144154655
115 => 0.18724539852954
116 => 0.18751771344477
117 => 0.18638963056418
118 => 0.18529991663636
119 => 0.18774943440616
120 => 0.19222597627585
121 => 0.19219812794122
122 => 0.19323659864345
123 => 0.19388355728778
124 => 0.19110633718363
125 => 0.18929846901704
126 => 0.18999172070975
127 => 0.19110024526345
128 => 0.1896322411373
129 => 0.18057103962506
130 => 0.18331962933208
131 => 0.18286212960566
201 => 0.18221059436137
202 => 0.184974322566
203 => 0.1847077542385
204 => 0.1767229979058
205 => 0.17723415609974
206 => 0.17675408312859
207 => 0.17830529711209
208 => 0.17387057227903
209 => 0.17523466376935
210 => 0.17609020916451
211 => 0.17659413197488
212 => 0.17841464670901
213 => 0.17820103031726
214 => 0.17840136801417
215 => 0.18110071076682
216 => 0.19475306010716
217 => 0.19549612735955
218 => 0.19183699244473
219 => 0.19329874466995
220 => 0.19049250004759
221 => 0.19237635086279
222 => 0.19366523374592
223 => 0.18784101983497
224 => 0.18749614768599
225 => 0.18467832069384
226 => 0.18619246130954
227 => 0.1837833547194
228 => 0.18437446520965
301 => 0.18272166874682
302 => 0.18569637331142
303 => 0.189022555237
304 => 0.1898628801463
305 => 0.18765234709254
306 => 0.18605177548039
307 => 0.18324169899051
308 => 0.18791491881981
309 => 0.18928151071169
310 => 0.18790774069438
311 => 0.1875894081639
312 => 0.18698616859386
313 => 0.18771738829038
314 => 0.18927406795876
315 => 0.18853996657451
316 => 0.18902485347201
317 => 0.18717696463195
318 => 0.19110725655904
319 => 0.19734950601553
320 => 0.19736957586824
321 => 0.19663547052691
322 => 0.19633509043776
323 => 0.1970883270672
324 => 0.19749692703929
325 => 0.19993275617891
326 => 0.20254649789345
327 => 0.21474369001032
328 => 0.21131876727175
329 => 0.22214084173205
330 => 0.23069969755965
331 => 0.23326612418895
401 => 0.2309051324497
402 => 0.22282830724801
403 => 0.22243201967109
404 => 0.23450220647005
405 => 0.23109182584977
406 => 0.23068617192673
407 => 0.22637069954868
408 => 0.22892167820576
409 => 0.22836374175286
410 => 0.22748301176677
411 => 0.23235010134175
412 => 0.24146085853805
413 => 0.24004086158887
414 => 0.23898089973806
415 => 0.23433645545811
416 => 0.23713344828883
417 => 0.23613749271468
418 => 0.24041674991025
419 => 0.23788181274475
420 => 0.23106598886237
421 => 0.23215143128089
422 => 0.23198736884293
423 => 0.2353637621904
424 => 0.23435025271472
425 => 0.23178946485156
426 => 0.24142971896042
427 => 0.2408037344805
428 => 0.24169123735305
429 => 0.24208194356448
430 => 0.24794979636021
501 => 0.25035366790028
502 => 0.25089938882556
503 => 0.25318288086653
504 => 0.25084257346337
505 => 0.2602054716869
506 => 0.26643125266528
507 => 0.27366281764744
508 => 0.28423007774779
509 => 0.28820346529814
510 => 0.28748570840158
511 => 0.2954976844072
512 => 0.30989502719306
513 => 0.29039582301439
514 => 0.3109285323623
515 => 0.30442811364428
516 => 0.2890157378014
517 => 0.28802336249709
518 => 0.29846080235925
519 => 0.32161003940718
520 => 0.31581141808315
521 => 0.32161952387436
522 => 0.3148440599532
523 => 0.31450760106143
524 => 0.32129045471483
525 => 0.33713896199012
526 => 0.32960993025604
527 => 0.31881521707092
528 => 0.32678586530248
529 => 0.31988095215563
530 => 0.30432225027229
531 => 0.3158069839867
601 => 0.30812746961826
602 => 0.31036876017641
603 => 0.32650995713732
604 => 0.32456780561467
605 => 0.32708112952337
606 => 0.32264517860966
607 => 0.31850130097101
608 => 0.31076644563007
609 => 0.30847653628738
610 => 0.30910938484739
611 => 0.30847622267906
612 => 0.30414864220279
613 => 0.30321410161098
614 => 0.30165649301478
615 => 0.30213926104964
616 => 0.29921050119433
617 => 0.30473767615396
618 => 0.30576356853177
619 => 0.30978578553924
620 => 0.31020338545215
621 => 0.3214052025653
622 => 0.31523542993827
623 => 0.31937464608902
624 => 0.31900439563668
625 => 0.28934977072032
626 => 0.29343591638883
627 => 0.29979267674587
628 => 0.29692896482141
629 => 0.29288034616561
630 => 0.28961086952785
701 => 0.28465727810049
702 => 0.2916293629092
703 => 0.30079691303408
704 => 0.31043588965208
705 => 0.32201648848784
706 => 0.31943183364073
707 => 0.31021939841214
708 => 0.31063266152681
709 => 0.31318729148863
710 => 0.30987881357546
711 => 0.30890307884971
712 => 0.31305324052074
713 => 0.31308182040328
714 => 0.30927501672126
715 => 0.30504445106643
716 => 0.30502672484186
717 => 0.304273936546
718 => 0.31497797931871
719 => 0.32086412054291
720 => 0.32153895714827
721 => 0.32081869866255
722 => 0.32109589756767
723 => 0.31767088168158
724 => 0.32549945234027
725 => 0.33268372294209
726 => 0.33075818495124
727 => 0.32787152977162
728 => 0.3255721698809
729 => 0.3302165288357
730 => 0.33000972284234
731 => 0.3326209746058
801 => 0.33250251314249
802 => 0.33162444738858
803 => 0.33075821630974
804 => 0.33419272462304
805 => 0.33320364138532
806 => 0.33221302182815
807 => 0.33022618264997
808 => 0.33049622709219
809 => 0.32761007033428
810 => 0.32627480215652
811 => 0.3061955725194
812 => 0.30082974625261
813 => 0.30251794442761
814 => 0.30307374310087
815 => 0.30073852863306
816 => 0.30408662631251
817 => 0.30356482883568
818 => 0.30559483757671
819 => 0.30432657624805
820 => 0.30437862613537
821 => 0.30810831228114
822 => 0.30919105603647
823 => 0.30864036382369
824 => 0.3090260497729
825 => 0.31791401968446
826 => 0.31665043458431
827 => 0.31597918018405
828 => 0.31616512224036
829 => 0.31843618911298
830 => 0.31907196384167
831 => 0.31637814164114
901 => 0.31764856376371
902 => 0.32305785992103
903 => 0.32495080743644
904 => 0.33099218723929
905 => 0.32842570172207
906 => 0.33313659696381
907 => 0.34761628287436
908 => 0.35918365789777
909 => 0.34854582178426
910 => 0.36978783291841
911 => 0.38632778557187
912 => 0.3856929546403
913 => 0.38280883131917
914 => 0.3639785349606
915 => 0.34665061550754
916 => 0.36114615591235
917 => 0.36118310802587
918 => 0.35993792824964
919 => 0.35220422360078
920 => 0.35966881209164
921 => 0.36026132401864
922 => 0.35992967490116
923 => 0.3540002616795
924 => 0.34494714362877
925 => 0.34671610122578
926 => 0.34961368985544
927 => 0.34412795007919
928 => 0.34237492382798
929 => 0.34563413315586
930 => 0.35613598469355
1001 => 0.35415067049343
1002 => 0.35409882591638
1003 => 0.36259284196872
1004 => 0.35651295959864
1005 => 0.34673841344607
1006 => 0.34427021163212
1007 => 0.33550975797257
1008 => 0.34156063451889
1009 => 0.34177839479362
1010 => 0.33846439154766
1011 => 0.34700732654496
1012 => 0.34692860189501
1013 => 0.35503884722687
1014 => 0.37054259023236
1015 => 0.36595737053278
1016 => 0.36062525889265
1017 => 0.36120500727135
1018 => 0.36756341604477
1019 => 0.36371897695201
1020 => 0.36510146405415
1021 => 0.36756132348496
1022 => 0.36904541775445
1023 => 0.36099146894489
1024 => 0.35911370821247
1025 => 0.35527246875841
1026 => 0.35427036108498
1027 => 0.35739897047022
1028 => 0.35657469243261
1029 => 0.34176009288574
1030 => 0.34021188480544
1031 => 0.34025936613693
1101 => 0.33636632330573
1102 => 0.33042849855081
1103 => 0.34603274747764
1104 => 0.34477950790749
1105 => 0.34339602841509
1106 => 0.34356549675888
1107 => 0.35033877234095
1108 => 0.34640993044474
1109 => 0.35685540055035
1110 => 0.35470812591621
1111 => 0.35250578179011
1112 => 0.35220135074684
1113 => 0.35135363615346
1114 => 0.34844650739207
1115 => 0.34493597472133
1116 => 0.34261801697497
1117 => 0.31604700993956
1118 => 0.32097843428889
1119 => 0.32665158848933
1120 => 0.32860993858558
1121 => 0.32526004523224
1122 => 0.3485787815995
1123 => 0.35283933943873
1124 => 0.33993383183438
1125 => 0.33751973829001
1126 => 0.34873704917036
1127 => 0.34197163944903
1128 => 0.34501810303229
1129 => 0.33843331509176
1130 => 0.35181309581896
1201 => 0.35171116430708
1202 => 0.34650612740815
1203 => 0.35090538895257
1204 => 0.35014090899872
1205 => 0.34426443515926
1206 => 0.35199939052134
1207 => 0.3520032269627
1208 => 0.34699349211474
1209 => 0.3411432185843
1210 => 0.34009732785435
1211 => 0.33930938968498
1212 => 0.34482431854412
1213 => 0.34976898651449
1214 => 0.3589697877202
1215 => 0.36128308774896
1216 => 0.37031205176632
1217 => 0.36493574330626
1218 => 0.36731899121175
1219 => 0.36990634394417
1220 => 0.37114681599083
1221 => 0.36912553335819
1222 => 0.383151230947
1223 => 0.38433542955977
1224 => 0.38473248111135
1225 => 0.3800030947991
1226 => 0.38420389677103
1227 => 0.3822384806443
1228 => 0.38735194739772
1229 => 0.38815380427667
1230 => 0.38747466002708
1231 => 0.38772918205691
]
'min_raw' => 0.17387057227903
'max_raw' => 0.38815380427667
'avg_raw' => 0.28101218827785
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.17387'
'max' => '$0.388153'
'avg' => '$0.281012'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 0.026810489464581
'max_diff' => -0.037040143351294
'year' => 2031
]
6 => [
'items' => [
101 => 0.37576072346747
102 => 0.37514009575095
103 => 0.36667779279859
104 => 0.37012624380186
105 => 0.3636795299398
106 => 0.36572384931397
107 => 0.36662496581511
108 => 0.36615427369283
109 => 0.37032121404757
110 => 0.36677846349636
111 => 0.35742856230961
112 => 0.34807611374853
113 => 0.34795870137519
114 => 0.34549636675348
115 => 0.34371654982107
116 => 0.34405940570465
117 => 0.34526767455778
118 => 0.34364632303882
119 => 0.34399232059
120 => 0.34973818530922
121 => 0.35089047750102
122 => 0.34697453840364
123 => 0.33125147786033
124 => 0.32739299936469
125 => 0.3301663971904
126 => 0.3288408916594
127 => 0.26540026454844
128 => 0.28030469886004
129 => 0.27144899009885
130 => 0.27553010812758
131 => 0.26649072265707
201 => 0.27080479119838
202 => 0.27000814026336
203 => 0.29397402958213
204 => 0.29359983518442
205 => 0.29377894224068
206 => 0.28522969578459
207 => 0.29884887752648
208 => 0.30555817618247
209 => 0.30431646356345
210 => 0.30462897587801
211 => 0.29925897891104
212 => 0.29383093554955
213 => 0.28781040009178
214 => 0.29899581081165
215 => 0.29775218408093
216 => 0.30060461635843
217 => 0.30785915475993
218 => 0.30892741309686
219 => 0.31036316313491
220 => 0.30984854894991
221 => 0.32210874664085
222 => 0.32062395580509
223 => 0.32420187451579
224 => 0.31684182427052
225 => 0.30851322879562
226 => 0.3100962225131
227 => 0.30994376748847
228 => 0.30800284004527
229 => 0.30625065753427
301 => 0.30333376732782
302 => 0.31256323955955
303 => 0.31218853984194
304 => 0.31825449272931
305 => 0.31718227663494
306 => 0.31002175514098
307 => 0.31027749456697
308 => 0.31199746511093
309 => 0.31795030280185
310 => 0.31971751032861
311 => 0.31889886939117
312 => 0.32083653176817
313 => 0.3223679811061
314 => 0.32102885822641
315 => 0.33998801424259
316 => 0.33211485083693
317 => 0.33595217589973
318 => 0.33686735531638
319 => 0.33452314248479
320 => 0.33503151830799
321 => 0.33580156915603
322 => 0.34047716711387
323 => 0.35274728905043
324 => 0.35818164253059
325 => 0.37453116310193
326 => 0.35773039512392
327 => 0.35673350708059
328 => 0.35967854944371
329 => 0.3692774487916
330 => 0.37705645513429
331 => 0.3796372003198
401 => 0.37997828839953
402 => 0.38481993793225
403 => 0.38759508115298
404 => 0.38423203433095
405 => 0.38138220427496
406 => 0.37117446674832
407 => 0.37235604016177
408 => 0.3804959092705
409 => 0.39199395382248
410 => 0.40186047221572
411 => 0.39840556135729
412 => 0.42476409242016
413 => 0.4273774331101
414 => 0.42701635392617
415 => 0.43296993293509
416 => 0.42115329102766
417 => 0.41610144767558
418 => 0.38199836988001
419 => 0.3915799436941
420 => 0.40550732393898
421 => 0.40366398293857
422 => 0.3935495471248
423 => 0.40185279950917
424 => 0.39910748460419
425 => 0.39694214083541
426 => 0.40686200041273
427 => 0.3959547073221
428 => 0.40539851534676
429 => 0.39328673387145
430 => 0.39842134309907
501 => 0.39550669056837
502 => 0.39739282796211
503 => 0.3863665072984
504 => 0.39231604227973
505 => 0.38611898708292
506 => 0.38611604887187
507 => 0.38597924853493
508 => 0.39327005649204
509 => 0.39350780947777
510 => 0.38811989138167
511 => 0.38734340820892
512 => 0.39021447346987
513 => 0.38685320798248
514 => 0.38842592294848
515 => 0.38690084391665
516 => 0.38655751650351
517 => 0.38382182526324
518 => 0.38264321425753
519 => 0.38310537800193
520 => 0.38152777488055
521 => 0.38057721193552
522 => 0.38579015763984
523 => 0.38300509103965
524 => 0.38536330623988
525 => 0.38267582238873
526 => 0.37335983247967
527 => 0.36800210816816
528 => 0.35040506682265
529 => 0.35539556591917
530 => 0.35870427198321
531 => 0.35761074464879
601 => 0.35996006450204
602 => 0.36010429366064
603 => 0.35934050582787
604 => 0.3584561373648
605 => 0.35802567570562
606 => 0.36123398424252
607 => 0.36309651533489
608 => 0.35903634490152
609 => 0.3580851037768
610 => 0.36219016025309
611 => 0.36469424233222
612 => 0.3831829774823
613 => 0.38181327226455
614 => 0.38525096357002
615 => 0.3848639322847
616 => 0.38846718044
617 => 0.39435696832763
618 => 0.38238138274148
619 => 0.38445993031465
620 => 0.38395031845038
621 => 0.38951412715703
622 => 0.3895314967605
623 => 0.38619571550801
624 => 0.38800409664186
625 => 0.38699470790328
626 => 0.38881880978095
627 => 0.3817949790163
628 => 0.39034924671197
629 => 0.39519896527058
630 => 0.39526630361747
701 => 0.39756503172451
702 => 0.39990067261461
703 => 0.40438373191171
704 => 0.399775642524
705 => 0.39148613830397
706 => 0.39208461373372
707 => 0.38722448044252
708 => 0.3873061801612
709 => 0.38687006065997
710 => 0.38817888811272
711 => 0.38208219304043
712 => 0.38351307518799
713 => 0.38150983180216
714 => 0.38445557565475
715 => 0.38128644221827
716 => 0.38395007270011
717 => 0.38509960731532
718 => 0.38934141479317
719 => 0.38065992380488
720 => 0.36295777599451
721 => 0.36667898208205
722 => 0.36117502598415
723 => 0.36168443807605
724 => 0.36271353157402
725 => 0.35937790284866
726 => 0.36001423569172
727 => 0.35999150140476
728 => 0.3597955896018
729 => 0.35892786374224
730 => 0.35766948957155
731 => 0.36268246496043
801 => 0.36353426716324
802 => 0.36542771794412
803 => 0.37106134312807
804 => 0.37049841112216
805 => 0.37141657657962
806 => 0.36941222654127
807 => 0.36177741412571
808 => 0.36219202117207
809 => 0.35702186466039
810 => 0.36529550541802
811 => 0.36333619807989
812 => 0.36207301989295
813 => 0.36172835002138
814 => 0.3673759398725
815 => 0.36906578727107
816 => 0.36801278777372
817 => 0.36585305508375
818 => 0.37000038031615
819 => 0.37111002958674
820 => 0.37135843913613
821 => 0.37870670427722
822 => 0.37176912552847
823 => 0.3734390696869
824 => 0.38646749730434
825 => 0.37465251125544
826 => 0.38091117287117
827 => 0.38060484395359
828 => 0.38380656345463
829 => 0.38034220950331
830 => 0.38038515432253
831 => 0.38322806433619
901 => 0.37923570994352
902 => 0.37824714685129
903 => 0.3768814540196
904 => 0.37986339435473
905 => 0.38165093272408
906 => 0.39605717917878
907 => 0.40536427139318
908 => 0.40496022597444
909 => 0.40865244476036
910 => 0.40698906638045
911 => 0.4016175788147
912 => 0.41078605310632
913 => 0.40788476421519
914 => 0.40812394294631
915 => 0.40811504070199
916 => 0.41004414417952
917 => 0.40867719756595
918 => 0.40598280547643
919 => 0.40777146868747
920 => 0.41308315896546
921 => 0.42957080857088
922 => 0.43879751572238
923 => 0.42901534921497
924 => 0.43576295668336
925 => 0.4317167966207
926 => 0.43098148897448
927 => 0.4352194851089
928 => 0.43946489929454
929 => 0.43919448476434
930 => 0.43611253207
1001 => 0.43437161519462
1002 => 0.44755442102493
1003 => 0.45726728779747
1004 => 0.45660493539946
1005 => 0.4595283434757
1006 => 0.46811156000516
1007 => 0.46889630175624
1008 => 0.46879744233269
1009 => 0.4668523780233
1010 => 0.47530366936805
1011 => 0.48235388529417
1012 => 0.46640215183398
1013 => 0.4724763631121
1014 => 0.47520327225371
1015 => 0.47920718391108
1016 => 0.48596245401057
1017 => 0.49330046908552
1018 => 0.49433814487436
1019 => 0.49360186424482
1020 => 0.48876224604646
1021 => 0.49679158970219
1022 => 0.50149499090444
1023 => 0.50429575868496
1024 => 0.51139803977303
1025 => 0.47522011271622
1026 => 0.44961157778576
1027 => 0.44561243526464
1028 => 0.45374484883985
1029 => 0.45588930144485
1030 => 0.45502487528869
1031 => 0.42620014099832
1101 => 0.44546067900402
1102 => 0.46618339842612
1103 => 0.46697944247505
1104 => 0.47735366910938
1105 => 0.48073194255544
1106 => 0.48908455477704
1107 => 0.48856209660841
1108 => 0.49059582476528
1109 => 0.49012830588128
1110 => 0.50559976117179
1111 => 0.52266707389057
1112 => 0.52207608712185
1113 => 0.51962245898725
1114 => 0.5232665151729
1115 => 0.54088181094307
1116 => 0.53926007678791
1117 => 0.54083545338066
1118 => 0.56160487984825
1119 => 0.58860808867258
1120 => 0.57606238709584
1121 => 0.60328294958899
1122 => 0.62041685077841
1123 => 0.65004816120706
1124 => 0.64633817520411
1125 => 0.65787342690939
1126 => 0.63969652596139
1127 => 0.59795868722702
1128 => 0.59135351448127
1129 => 0.60457723758787
1130 => 0.63708647049339
1201 => 0.60355340615313
1202 => 0.61033710139561
1203 => 0.60838339670941
1204 => 0.6082792920894
1205 => 0.61225254201136
1206 => 0.60648913576877
1207 => 0.58300798191949
1208 => 0.59376925635331
1209 => 0.58961381149557
1210 => 0.59422458737417
1211 => 0.61910704316234
1212 => 0.60810591633473
1213 => 0.59651712288081
1214 => 0.61105204163117
1215 => 0.62955998794033
1216 => 0.62840179392228
1217 => 0.62615441343972
1218 => 0.63882277955091
1219 => 0.65974720888358
1220 => 0.66540299805103
1221 => 0.66957798598693
1222 => 0.67015364628629
1223 => 0.67608330514059
1224 => 0.64419803501458
1225 => 0.69480077757637
1226 => 0.70353847334424
1227 => 0.70189614868026
1228 => 0.7116077297878
1229 => 0.70875033626693
1230 => 0.70461042136649
1231 => 0.72000534313448
]
'min_raw' => 0.26540026454844
'max_raw' => 0.72000534313448
'avg_raw' => 0.49270280384146
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.26540026'
'max' => '$0.7200053'
'avg' => '$0.4927028'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.091529692269415
'max_diff' => 0.33185153885781
'year' => 2032
]
7 => [
'items' => [
101 => 0.70235630763361
102 => 0.6773057236919
103 => 0.66356247789711
104 => 0.68166069259571
105 => 0.69271264077149
106 => 0.70001727547975
107 => 0.7022276535289
108 => 0.64667319776874
109 => 0.61673242730539
110 => 0.63592411790077
111 => 0.65933930496686
112 => 0.64406796246817
113 => 0.64466657018164
114 => 0.62289364901672
115 => 0.66126572536612
116 => 0.65567523660197
117 => 0.68467870219976
118 => 0.6777567923675
119 => 0.70140799265445
120 => 0.69517983898086
121 => 0.72103255666855
122 => 0.73134590568856
123 => 0.74866362383777
124 => 0.76140260780411
125 => 0.76888318284708
126 => 0.76843407718043
127 => 0.79807584230837
128 => 0.78059712901682
129 => 0.7586397457062
130 => 0.75824260591677
131 => 0.76961464587187
201 => 0.79344732185095
202 => 0.79962678798099
203 => 0.80308026652941
204 => 0.79779114391605
205 => 0.77881925334874
206 => 0.77062728719144
207 => 0.77760707970157
208 => 0.76907139324209
209 => 0.78380638276177
210 => 0.80404067059622
211 => 0.79986237017346
212 => 0.81382980204096
213 => 0.82828462460715
214 => 0.84895567008349
215 => 0.85435984681761
216 => 0.86329274545666
217 => 0.87248763246059
218 => 0.8754407823571
219 => 0.88107926181813
220 => 0.88104954424814
221 => 0.8980414816174
222 => 0.9167841147322
223 => 0.92385902484008
224 => 0.94012739052033
225 => 0.91226838440442
226 => 0.93339976056453
227 => 0.9524607908136
228 => 0.92973544475662
301 => 0.96105703996963
302 => 0.96227318653549
303 => 0.98063555580428
304 => 0.96202177674607
305 => 0.95096897415859
306 => 0.98287800108553
307 => 0.99831777409054
308 => 0.99366718880839
309 => 0.95827600518351
310 => 0.93767681831455
311 => 0.8837647729921
312 => 0.94762591950359
313 => 0.97873082111415
314 => 0.95819545100273
315 => 0.96855229721579
316 => 1.0250558919356
317 => 1.046568802468
318 => 1.0420942674639
319 => 1.0428503902225
320 => 1.0544583662588
321 => 1.1059345246333
322 => 1.0750888173273
323 => 1.0986692047961
324 => 1.1111761572841
325 => 1.1227933117751
326 => 1.0942652519847
327 => 1.0571506653579
328 => 1.0453949178089
329 => 0.95615361315306
330 => 0.95150821569038
331 => 0.94890061332463
401 => 0.93246004926126
402 => 0.91954226935694
403 => 0.90926957117061
404 => 0.88231094344233
405 => 0.89140868892181
406 => 0.84844226302582
407 => 0.87593065967744
408 => 0.80735520648681
409 => 0.86446688163456
410 => 0.83338359340087
411 => 0.85425518546743
412 => 0.85418236644894
413 => 0.81575114811009
414 => 0.79358482341131
415 => 0.80771006823564
416 => 0.82285345195065
417 => 0.82531041500995
418 => 0.84494420727921
419 => 0.85042357667461
420 => 0.83382083159925
421 => 0.80593413264294
422 => 0.81241157678261
423 => 0.79345355821256
424 => 0.76023035987822
425 => 0.78409184094334
426 => 0.79223919969423
427 => 0.79583753746342
428 => 0.7631663376117
429 => 0.75290033729203
430 => 0.74743480486192
501 => 0.80171669100944
502 => 0.80469037526703
503 => 0.78947658616861
504 => 0.85824435552413
505 => 0.84268009139032
506 => 0.86006918776508
507 => 0.81182381662029
508 => 0.81366685476903
509 => 0.79082672290271
510 => 0.80361567056969
511 => 0.79457685456569
512 => 0.80258244998104
513 => 0.80738097086469
514 => 0.83021735489011
515 => 0.86472763645754
516 => 0.82680636064301
517 => 0.81028351772795
518 => 0.82053419654446
519 => 0.84783310505148
520 => 0.88919234884503
521 => 0.8647068440869
522 => 0.87557309530772
523 => 0.8779468877936
524 => 0.85989218308761
525 => 0.88985805156051
526 => 0.90591700391741
527 => 0.92239016610363
528 => 0.9366933512624
529 => 0.91581042287386
530 => 0.9381581496998
531 => 0.92014982678292
601 => 0.90399449946028
602 => 0.90401900042319
603 => 0.89388452760203
604 => 0.87424770948526
605 => 0.87062637894169
606 => 0.88946499775299
607 => 0.90457178601581
608 => 0.90581605345377
609 => 0.91417994765087
610 => 0.91912961408176
611 => 0.96764307384965
612 => 0.98715558869268
613 => 1.0110151224897
614 => 1.0203097555533
615 => 1.0482832687644
616 => 1.0256923849488
617 => 1.020804705132
618 => 0.9529501121484
619 => 0.96406129794818
620 => 0.98185137848358
621 => 0.95324346402394
622 => 0.97138860111437
623 => 0.97497083554257
624 => 0.95227137803755
625 => 0.96439613907664
626 => 0.93219636849792
627 => 0.86542950346434
628 => 0.88993238216761
629 => 0.90797474847301
630 => 0.88222606714748
701 => 0.9283795818119
702 => 0.90141765134688
703 => 0.89287201379037
704 => 0.85953243494266
705 => 0.8752674328007
706 => 0.89654924270718
707 => 0.88339955846093
708 => 0.91068712770691
709 => 0.94933360308812
710 => 0.97687538288216
711 => 0.97898969874711
712 => 0.96128217949547
713 => 0.98965859210409
714 => 0.98986528329071
715 => 0.95785657394714
716 => 0.93825141769944
717 => 0.93379708495036
718 => 0.94492488148094
719 => 0.95843608077362
720 => 0.97973947627468
721 => 0.99261267200742
722 => 1.026179139063
723 => 1.0352612626222
724 => 1.0452397628859
725 => 1.0585741164938
726 => 1.0745854268581
727 => 1.0395535913053
728 => 1.0409454714394
729 => 1.0083243112214
730 => 0.97346392318087
731 => 0.9999186122949
801 => 1.0345045991917
802 => 1.0265705355834
803 => 1.0256777913493
804 => 1.0271791395245
805 => 1.0211971146662
806 => 0.99414063793621
807 => 0.98055304470491
808 => 0.99808450653801
809 => 1.0074016982667
810 => 1.0218518500934
811 => 1.0200705638751
812 => 1.0572926031477
813 => 1.071755962073
814 => 1.0680556159378
815 => 1.0687365686805
816 => 1.0949217891547
817 => 1.1240451397233
818 => 1.1513230006953
819 => 1.1790712124875
820 => 1.1456196601409
821 => 1.1286350248642
822 => 1.1461588330095
823 => 1.1368604537422
824 => 1.1902916990908
825 => 1.1939911625907
826 => 1.2474185442521
827 => 1.2981274914632
828 => 1.2662781102651
829 => 1.2963106422072
830 => 1.3287932740909
831 => 1.3914575411117
901 => 1.3703544205346
902 => 1.3541897609006
903 => 1.3389142356535
904 => 1.3707001787713
905 => 1.4115922867995
906 => 1.420400055209
907 => 1.434672004859
908 => 1.419666794893
909 => 1.4377389175273
910 => 1.5015414517195
911 => 1.4843014437802
912 => 1.4598178610369
913 => 1.5101838341211
914 => 1.5284110839875
915 => 1.6563394692348
916 => 1.8178543400675
917 => 1.7509861229789
918 => 1.7094788628082
919 => 1.7192340535137
920 => 1.7782138167184
921 => 1.7971562447356
922 => 1.7456641955382
923 => 1.7638520578205
924 => 1.8640689671871
925 => 1.9178321237188
926 => 1.8448145357934
927 => 1.6433619066269
928 => 1.4576133822915
929 => 1.5068822553103
930 => 1.5012966941011
1001 => 1.6089672609014
1002 => 1.4838902752925
1003 => 1.4859962509524
1004 => 1.595893331049
1005 => 1.5665746741921
1006 => 1.5190822049339
1007 => 1.4579601298754
1008 => 1.3449703210222
1009 => 1.244892096367
1010 => 1.4411685415545
1011 => 1.4327047443325
1012 => 1.4204479116905
1013 => 1.4477241664075
1014 => 1.5801699168129
1015 => 1.577116613581
1016 => 1.5576930562286
1017 => 1.572425653289
1018 => 1.5164995094381
1019 => 1.5309129501231
1020 => 1.4575839587763
1021 => 1.4907317253542
1022 => 1.5189803074248
1023 => 1.5246516285029
1024 => 1.5374294044766
1025 => 1.4282447077944
1026 => 1.4772654311104
1027 => 1.506060513438
1028 => 1.3759632839081
1029 => 1.5034889095047
1030 => 1.4263440451392
1031 => 1.4001599194966
1101 => 1.4354133951781
1102 => 1.4216750814199
1103 => 1.4098636859914
1104 => 1.4032727243968
1105 => 1.4291589861532
1106 => 1.4279513611015
1107 => 1.3855964125611
1108 => 1.3303461087988
1109 => 1.3488899242708
1110 => 1.3421527822606
1111 => 1.3177365105071
1112 => 1.3341901296371
1113 => 1.2617367179747
1114 => 1.1370843890101
1115 => 1.2194335357282
1116 => 1.2162631831582
1117 => 1.2146645476283
1118 => 1.2765476554237
1119 => 1.2705990224954
1120 => 1.2598021954813
1121 => 1.317538218312
1122 => 1.2964637933197
1123 => 1.3614102053869
1124 => 1.404188112845
1125 => 1.3933382517933
1126 => 1.4335710805211
1127 => 1.349317136326
1128 => 1.3773029169061
1129 => 1.3830707474971
1130 => 1.3168257647524
1201 => 1.2715722924105
1202 => 1.2685544017326
1203 => 1.1900911170043
1204 => 1.2320055703727
1205 => 1.2688885547989
1206 => 1.2512244674939
1207 => 1.2456325451528
1208 => 1.2742004636537
1209 => 1.2764204355889
1210 => 1.2258048402043
1211 => 1.2363294252722
1212 => 1.2802186945721
1213 => 1.2352235282941
1214 => 1.1478052701348
1215 => 1.1261243334593
1216 => 1.1232316968479
1217 => 1.0644312770471
1218 => 1.1275731573194
1219 => 1.1000100344834
1220 => 1.1870816092655
1221 => 1.1373467927242
1222 => 1.1352028241868
1223 => 1.1319619012907
1224 => 1.0813499509535
1225 => 1.0924307515201
1226 => 1.1292650202571
1227 => 1.1424079023102
1228 => 1.1410369920356
1229 => 1.1290845122454
1230 => 1.1345562962868
1231 => 1.1169297733937
]
'min_raw' => 0.61673242730539
'max_raw' => 1.9178321237188
'avg_raw' => 1.2672822755121
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.616732'
'max' => '$1.91'
'avg' => '$1.26'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.35133216275695
'max_diff' => 1.1978267805843
'year' => 2033
]
8 => [
'items' => [
101 => 1.1107054812958
102 => 1.0910599033084
103 => 1.0621863308963
104 => 1.0662013782321
105 => 1.0089952761027
106 => 0.9778263555049
107 => 0.96919920908321
108 => 0.95766262833485
109 => 0.9705022965764
110 => 1.0088332184029
111 => 0.96259799432144
112 => 0.88333094565765
113 => 0.88809503034682
114 => 0.89879851417395
115 => 0.87885264287273
116 => 0.85997554961621
117 => 0.87638765065577
118 => 0.84280115717788
119 => 0.90285728144939
120 => 0.90123293159319
121 => 0.92361814087579
122 => 0.93761607163094
123 => 0.90535537312422
124 => 0.89724189469198
125 => 0.90186370074402
126 => 0.82547554190405
127 => 0.91737559860624
128 => 0.91817035411283
129 => 0.91136517495532
130 => 0.96029911805331
131 => 1.0635650008697
201 => 1.0247122218936
202 => 1.0096672515427
203 => 0.98106675190764
204 => 1.0191752195417
205 => 1.0162490838121
206 => 1.0030159883389
207 => 0.99501257090687
208 => 1.0097591129235
209 => 0.99318531115826
210 => 0.99020820094362
211 => 0.97217015217072
212 => 0.96573138943773
213 => 0.96096438584474
214 => 0.95571638328497
215 => 0.96729216921107
216 => 0.94105991538106
217 => 0.90942638884162
218 => 0.90679640338937
219 => 0.91405802445373
220 => 0.91084529769686
221 => 0.90678102208968
222 => 0.89902121311598
223 => 0.89671904355557
224 => 0.90419997777302
225 => 0.89575443920708
226 => 0.90821629141341
227 => 0.90482735715902
228 => 0.88589704589918
301 => 0.86230286917052
302 => 0.86209283150718
303 => 0.8570095048332
304 => 0.8505351240306
305 => 0.84873409940508
306 => 0.87500546928329
307 => 0.92938641869524
308 => 0.91871013709984
309 => 0.92642484470186
310 => 0.96437357057706
311 => 0.97643632937478
312 => 0.96787446890226
313 => 0.95615446621491
314 => 0.95667008685314
315 => 0.99672088392187
316 => 0.99921880300774
317 => 1.0055302386785
318 => 1.0136422171269
319 => 0.96925597390921
320 => 0.95457949878917
321 => 0.94762497065745
322 => 0.92620771575288
323 => 0.9493043889908
324 => 0.93584694659322
325 => 0.93766281534435
326 => 0.936480228438
327 => 0.93712600085504
328 => 0.90284049453871
329 => 0.91533233104722
330 => 0.89456223002028
331 => 0.86675339629847
401 => 0.8666601713368
402 => 0.87346634399347
403 => 0.86941776617172
404 => 0.85852314735185
405 => 0.86007067653406
406 => 0.84651269251116
407 => 0.86171686126967
408 => 0.86215286242653
409 => 0.85629842927783
410 => 0.87972254902129
411 => 0.88931942999245
412 => 0.88546591667987
413 => 0.88904905722576
414 => 0.91915378480065
415 => 0.92406216895671
416 => 0.92624214896918
417 => 0.92332126454448
418 => 0.8895993163818
419 => 0.89109502817961
420 => 0.88012048742764
421 => 0.87084815696085
422 => 0.87121900155255
423 => 0.87598618473107
424 => 0.89680475326327
425 => 0.94061620341763
426 => 0.94227881592524
427 => 0.94429395078628
428 => 0.93609738458077
429 => 0.93362522178262
430 => 0.93688664263274
501 => 0.95333991981411
502 => 0.99566221574576
503 => 0.98070268975241
504 => 0.96854036226092
505 => 0.9792100024109
506 => 0.97756749494122
507 => 0.96370307893598
508 => 0.96331395095558
509 => 0.93670370391959
510 => 0.9268665014764
511 => 0.91864579881302
512 => 0.90966900611149
513 => 0.90434726249321
514 => 0.91252387938011
515 => 0.91439396840503
516 => 0.89651565267901
517 => 0.8940789043082
518 => 0.90867872286032
519 => 0.90225388705163
520 => 0.90886199000913
521 => 0.91039512657852
522 => 0.91014825627972
523 => 0.90343998980776
524 => 0.9077156388136
525 => 0.89760245428247
526 => 0.88660588505606
527 => 0.87959075900008
528 => 0.8734691310948
529 => 0.87686576604775
530 => 0.86475738264152
531 => 0.86088366709625
601 => 0.90626714513557
602 => 0.93979240831782
603 => 0.93930493771369
604 => 0.9363375857783
605 => 0.93192870270767
606 => 0.95301738255626
607 => 0.94567050817847
608 => 0.95101597314021
609 => 0.95237661832142
610 => 0.95649488148486
611 => 0.95796680658911
612 => 0.95351762660635
613 => 0.93858563516265
614 => 0.90137653217607
615 => 0.88405559429177
616 => 0.87833939628691
617 => 0.87854716922778
618 => 0.87281586397931
619 => 0.87450399023407
620 => 0.87222880255987
621 => 0.86792014753195
622 => 0.87659971874125
623 => 0.87759995846732
624 => 0.87557404283392
625 => 0.8760512193048
626 => 0.85927750314011
627 => 0.86055277234951
628 => 0.85345191133817
629 => 0.8521205855007
630 => 0.83417022720672
701 => 0.8023685655429
702 => 0.81998977316665
703 => 0.79870583227391
704 => 0.79064528135349
705 => 0.82880267573787
706 => 0.82497273166305
707 => 0.81841753224364
708 => 0.80872102607906
709 => 0.80512449762107
710 => 0.78327312923286
711 => 0.78198203381597
712 => 0.79281216202574
713 => 0.78781443049889
714 => 0.78079572264625
715 => 0.75537467427899
716 => 0.72679299929433
717 => 0.72765570040411
718 => 0.73674699943577
719 => 0.76318117749901
720 => 0.75285288681378
721 => 0.74535959341816
722 => 0.74395632481273
723 => 0.76152116935147
724 => 0.78637910432247
725 => 0.79804189124592
726 => 0.78648442360889
727 => 0.77320782708571
728 => 0.77401591199826
729 => 0.77939173889297
730 => 0.77995666228951
731 => 0.7713149628091
801 => 0.77374755059379
802 => 0.77005222730835
803 => 0.74737403512667
804 => 0.74696385854343
805 => 0.74139826444679
806 => 0.74122974046945
807 => 0.73176127650857
808 => 0.73043657294804
809 => 0.71163636305902
810 => 0.72401071814025
811 => 0.71571065043456
812 => 0.70320049061404
813 => 0.70104373434562
814 => 0.70097889964784
815 => 0.71382403656296
816 => 0.72386061523659
817 => 0.71585503366587
818 => 0.71403231792389
819 => 0.73349415343495
820 => 0.7310174574676
821 => 0.72887265473285
822 => 0.78415334889004
823 => 0.74039436585826
824 => 0.72131295158098
825 => 0.69769607795055
826 => 0.70538585109123
827 => 0.70700619927825
828 => 0.6502118754585
829 => 0.62717042535811
830 => 0.61926346798239
831 => 0.61471290222469
901 => 0.61678665218289
902 => 0.5960466446
903 => 0.60998427270376
904 => 0.59202517924618
905 => 0.58901427878407
906 => 0.62112736259099
907 => 0.62559571060081
908 => 0.60653234978401
909 => 0.61877411350617
910 => 0.61433507980727
911 => 0.59233303635779
912 => 0.59149272013409
913 => 0.58045286814036
914 => 0.56317763750676
915 => 0.55528239355088
916 => 0.55117048194901
917 => 0.5528671368155
918 => 0.55200925619651
919 => 0.54641100486476
920 => 0.55233014140977
921 => 0.53720919349337
922 => 0.5311879101953
923 => 0.52846823622228
924 => 0.51504752461718
925 => 0.53640584499843
926 => 0.54061370317856
927 => 0.54482985213918
928 => 0.58152855035426
929 => 0.57969518710088
930 => 0.59626789802733
1001 => 0.59562391295598
1002 => 0.59089710733964
1003 => 0.57095549196609
1004 => 0.57890386442888
1005 => 0.55444000943977
1006 => 0.57276999297805
1007 => 0.56440495396959
1008 => 0.56994176487482
1009 => 0.55998607963311
1010 => 0.56549596690604
1011 => 0.54161154245432
1012 => 0.51930860296422
1013 => 0.52828395687843
1014 => 0.53804119303939
1015 => 0.5591973671339
1016 => 0.54659692437786
1017 => 0.55112852006842
1018 => 0.53594843308499
1019 => 0.50462757766069
1020 => 0.50480485030096
1021 => 0.49998681905586
1022 => 0.49582333661601
1023 => 0.54804423680422
1024 => 0.54154974237555
1025 => 0.53120161548188
1026 => 0.54505299454727
1027 => 0.54871551902311
1028 => 0.54881978594603
1029 => 0.5589253945563
1030 => 0.56431875968313
1031 => 0.56526936366292
1101 => 0.58117075715731
1102 => 0.58650069451217
1103 => 0.6084539521559
1104 => 0.56386117033347
1105 => 0.56294281133693
1106 => 0.54524791185635
1107 => 0.53402552686048
1108 => 0.54601631815819
1109 => 0.55663852234172
1110 => 0.54557797334962
1111 => 0.54702224754705
1112 => 0.5321743642052
1113 => 0.53748178384207
1114 => 0.54205324861997
1115 => 0.53952915446789
1116 => 0.53575046335469
1117 => 0.55576762273269
1118 => 0.5546381761527
1119 => 0.573278615158
1120 => 0.58781017035321
1121 => 0.61385331508923
1122 => 0.58667593589736
1123 => 0.58568548417931
1124 => 0.5953673085967
1125 => 0.5864992122753
1126 => 0.59210354303414
1127 => 0.61295037076137
1128 => 0.61339083138124
1129 => 0.60601254849688
1130 => 0.60556357931282
1201 => 0.60698065925034
1202 => 0.61528054070604
1203 => 0.61238030709582
1204 => 0.61573653085449
1205 => 0.61993354005704
1206 => 0.63729414961379
1207 => 0.64147973380386
1208 => 0.63131093419859
1209 => 0.63222906294772
1210 => 0.62842565275556
1211 => 0.62475160616652
1212 => 0.63301032634727
1213 => 0.64810329980313
1214 => 0.64800940719859
1215 => 0.65151068367487
1216 => 0.65369194991345
1217 => 0.64432835843298
1218 => 0.63823300468799
1219 => 0.64057035117126
1220 => 0.64430781909878
1221 => 0.6393583406947
1222 => 0.60880786716327
1223 => 0.6180749292609
1224 => 0.61653243699167
1225 => 0.61433574042681
1226 => 0.62365384302605
1227 => 0.62275508929869
1228 => 0.59583392584512
1229 => 0.59755733138391
1230 => 0.59593873184403
1231 => 0.60116875809171
]
'min_raw' => 0.49582333661601
'max_raw' => 1.1107054812958
'avg_raw' => 0.80326440895589
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.495823'
'max' => '$1.11'
'avg' => '$0.803264'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.12090909068938
'max_diff' => -0.80712664242305
'year' => 2034
]
9 => [
'items' => [
101 => 0.58621677369444
102 => 0.59081590339189
103 => 0.59370043442396
104 => 0.59539944536187
105 => 0.60153743789229
106 => 0.60081721531329
107 => 0.60149266784554
108 => 0.61059369039819
109 => 0.65662353937574
110 => 0.65912884249646
111 => 0.64679181365851
112 => 0.65172021334213
113 => 0.6422587636721
114 => 0.6486102982218
115 => 0.65295585684921
116 => 0.63331911301479
117 => 0.63215635248633
118 => 0.62265585204788
119 => 0.62776088284765
120 => 0.61963841178051
121 => 0.62163138206841
122 => 0.61605886339942
123 => 0.62608828752621
124 => 0.6373027421149
125 => 0.64013595621624
126 => 0.63268298969099
127 => 0.62728655075227
128 => 0.61781218167339
129 => 0.63356826860166
130 => 0.63817582857753
131 => 0.6335440670506
201 => 0.63247078669883
202 => 0.63043692237158
203 => 0.63290228063055
204 => 0.63815073481638
205 => 0.63567566074607
206 => 0.6373104907747
207 => 0.63108020453497
208 => 0.64433145817138
209 => 0.66537763803385
210 => 0.66544530494351
211 => 0.66297021753163
212 => 0.66195746508919
213 => 0.66449705497464
214 => 0.66587467830807
215 => 0.67408724631648
216 => 0.68289965899265
217 => 0.72402334379545
218 => 0.71247597766191
219 => 0.74896335727791
220 => 0.7778201372609
221 => 0.78647302382374
222 => 0.7785127753357
223 => 0.75128119526228
224 => 0.74994508402877
225 => 0.79064056153501
226 => 0.77914222516854
227 => 0.77777453464516
228 => 0.76322461822592
301 => 0.77182542087189
302 => 0.76994429916705
303 => 0.76697485652835
304 => 0.78338458883976
305 => 0.81410214281983
306 => 0.80931452396464
307 => 0.80574078858049
308 => 0.79008172042586
309 => 0.79951197703444
310 => 0.79615404328079
311 => 0.81058185768387
312 => 0.80203514004671
313 => 0.77905511396164
314 => 0.78271475885884
315 => 0.78216161089481
316 => 0.79354535679804
317 => 0.79012823883983
318 => 0.78149436377069
319 => 0.81399715355975
320 => 0.81188660318086
321 => 0.81487888107913
322 => 0.81619617434922
323 => 0.83598004973042
324 => 0.8440848704607
325 => 0.84592480666133
326 => 0.85362375950576
327 => 0.84573324970097
328 => 0.87730091475826
329 => 0.89829156999704
330 => 0.92267329622611
331 => 0.95830155143699
401 => 0.97169810497607
402 => 0.96927813748713
403 => 0.99629107396836
404 => 1.0448327203613
405 => 0.97908979208193
406 => 1.0483172551964
407 => 1.0264006396439
408 => 0.97443673843185
409 => 0.97109087580795
410 => 1.006281433022
411 => 1.0843307019572
412 => 1.0647802453164
413 => 1.0843626795005
414 => 1.0615187298425
415 => 1.0603843351981
416 => 1.0832531998543
417 => 1.1366875486404
418 => 1.1113028924887
419 => 1.0749077633223
420 => 1.1017813603278
421 => 1.0785009635676
422 => 1.0260437138941
423 => 1.0647652954507
424 => 1.0388732765909
425 => 1.0464299441896
426 => 1.1008511166857
427 => 1.0943030172304
428 => 1.1027768642632
429 => 1.0878207460495
430 => 1.0738493732745
501 => 1.0477707684621
502 => 1.0400501792369
503 => 1.042183872341
504 => 1.0400491218845
505 => 1.0254583821668
506 => 1.0223075133139
507 => 1.0170559271831
508 => 1.0186836133184
509 => 1.0088090949868
510 => 1.0274443512582
511 => 1.0309032190355
512 => 1.0444644044984
513 => 1.0458723717607
514 => 1.0836400802436
515 => 1.0628382610717
516 => 1.0767939173149
517 => 1.0755455920647
518 => 0.97556295373944
519 => 0.98933967914638
520 => 1.010771940505
521 => 1.0011167358137
522 => 0.98746653535012
523 => 0.97644326659835
524 => 0.95974188725231
525 => 0.98324875796027
526 => 1.0141577932642
527 => 1.0466562759037
528 => 1.08570107341
529 => 1.0769867291381
530 => 1.0459263605733
531 => 1.0473197060175
601 => 1.0559328192923
602 => 1.0447780550175
603 => 1.041488297266
604 => 1.055480857095
605 => 1.0555772161643
606 => 1.0427423117679
607 => 1.0284786642939
608 => 1.0284188990902
609 => 1.0258808207927
610 => 1.0619702483333
611 => 1.0818157844279
612 => 1.0840910431585
613 => 1.0816626413871
614 => 1.0825972368491
615 => 1.0710495566621
616 => 1.0974441292113
617 => 1.121666399135
618 => 1.1151743133622
619 => 1.1054417538842
620 => 1.0976893014765
621 => 1.1133480819514
622 => 1.112650821106
623 => 1.1214548387383
624 => 1.121055437644
625 => 1.1180949776502
626 => 1.1151744190895
627 => 1.1267541036575
628 => 1.123419340466
629 => 1.1200793974661
630 => 1.1133806304602
701 => 1.114291104151
702 => 1.1045602251367
703 => 1.10005827525
704 => 1.0323597506414
705 => 1.0142684927528
706 => 1.0199603707661
707 => 1.0218342847976
708 => 1.0139609461799
709 => 1.0252492912629
710 => 1.023490014639
711 => 1.0303343308401
712 => 1.0260582992234
713 => 1.0262337890524
714 => 1.0388086862913
715 => 1.0424592324571
716 => 1.0406025352137
717 => 1.0419029023191
718 => 1.0718693134142
719 => 1.0676090480284
720 => 1.0653458669524
721 => 1.0659727835773
722 => 1.0736298440992
723 => 1.0757734029853
724 => 1.0666909933596
725 => 1.0709743102439
726 => 1.0892121299032
727 => 1.0955943346128
728 => 1.1159632684138
729 => 1.1073101833062
730 => 1.1231932955179
731 => 1.1720125675048
801 => 1.2110127800045
802 => 1.1751465728378
803 => 1.2467654964465
804 => 1.3025311016002
805 => 1.3003907247919
806 => 1.2906667016517
807 => 1.2271790427895
808 => 1.1687567525568
809 => 1.2176294790779
810 => 1.2177540657086
811 => 1.2135558551573
812 => 1.1874811299837
813 => 1.2126485112415
814 => 1.2146462065713
815 => 1.2135280284167
816 => 1.1935365977615
817 => 1.1630133781849
818 => 1.1689775422279
819 => 1.178746964596
820 => 1.1602514099382
821 => 1.1543409595399
822 => 1.1653296113396
823 => 1.2007373370147
824 => 1.1940437115788
825 => 1.1938689139676
826 => 1.2225070821213
827 => 1.2020083342268
828 => 1.1690527694364
829 => 1.1607310546963
830 => 1.1311945735478
831 => 1.1515955262824
901 => 1.1523297202522
902 => 1.1411563269321
903 => 1.1699594287242
904 => 1.1696940030705
905 => 1.1970382614461
906 => 1.2493102134259
907 => 1.233850825079
908 => 1.2158732384081
909 => 1.2178279005436
910 => 1.2392657196532
911 => 1.2263039248417
912 => 1.2309650766288
913 => 1.2392586644417
914 => 1.2442623918874
915 => 1.2171079411672
916 => 1.2107769397568
917 => 1.1978259327507
918 => 1.1944472567648
919 => 1.2049955817396
920 => 1.2022164707866
921 => 1.152268014092
922 => 1.1470481224568
923 => 1.147208209081
924 => 1.134082543372
925 => 1.1140627526451
926 => 1.1666735673558
927 => 1.1624481826466
928 => 1.1577836849466
929 => 1.1583550592996
930 => 1.1811916308195
1001 => 1.1679452660634
1002 => 1.2031628978039
1003 => 1.195923211457
1004 => 1.1884978544731
1005 => 1.187471443956
1006 => 1.1846133150189
1007 => 1.1748117274306
1008 => 1.1629757214337
1009 => 1.1551605650572
1010 => 1.0655745597088
1011 => 1.0822012012036
1012 => 1.1013286366774
1013 => 1.1079313507546
1014 => 1.0966369514317
1015 => 1.1752576991561
1016 => 1.1896224673737
1017 => 1.1461106474519
1018 => 1.1379713625204
1019 => 1.1757913093211
1020 => 1.1529812580998
1021 => 1.1632526227681
1022 => 1.1410515504914
1023 => 1.1861624153596
1024 => 1.1858187461506
1025 => 1.1682696008418
1026 => 1.1831020182855
1027 => 1.1805245207468
1028 => 1.1607115789148
1029 => 1.1867905209554
1030 => 1.1868034557852
1031 => 1.1699127849768
1101 => 1.1501881793159
1102 => 1.1466618856981
1103 => 1.144005297148
1104 => 1.1625992648366
1105 => 1.1792705581244
1106 => 1.2102917017689
1107 => 1.2180911543253
1108 => 1.248532936892
1109 => 1.230406337557
1110 => 1.2384416242634
1111 => 1.247165064644
1112 => 1.2513474027563
1113 => 1.2445325072389
1114 => 1.2918211259025
1115 => 1.2958137342036
1116 => 1.297152421231
1117 => 1.281206965084
1118 => 1.295370262223
1119 => 1.2887437245308
1120 => 1.3059841347007
1121 => 1.308687651152
1122 => 1.3063978688982
1123 => 1.3072560076919
1124 => 1.2669035139465
1125 => 1.2648110242694
1126 => 1.2362797790464
1127 => 1.2479064723671
1128 => 1.226170926486
1129 => 1.2330634919858
1130 => 1.2361016691834
1201 => 1.2345146978304
1202 => 1.2485638281629
1203 => 1.2366191973326
1204 => 1.2050953526922
1205 => 1.1735629194014
1206 => 1.1731670553872
1207 => 1.1648651222954
1208 => 1.1588643452449
1209 => 1.1600203077938
1210 => 1.1640940705908
1211 => 1.1586275707455
1212 => 1.159794125646
1213 => 1.1791667097104
1214 => 1.1830517432855
1215 => 1.1698488812165
1216 => 1.1168374848457
1217 => 1.1038283552073
1218 => 1.1131790596092
1219 => 1.1087100251676
1220 => 0.89481552157982
1221 => 0.94506686245574
1222 => 0.91520922208156
1223 => 0.92896899644997
1224 => 0.89849207722642
1225 => 0.91303726051209
1226 => 0.91035129626427
1227 => 0.99115396534748
1228 => 0.98989234281018
1229 => 0.99049621475521
1230 => 0.96167183343918
1231 => 1.0075898555429
]
'min_raw' => 0.58621677369444
'max_raw' => 1.308687651152
'avg_raw' => 0.94745221242322
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.586216'
'max' => '$1.30'
'avg' => '$0.947452'
'bar_min_pct' => 61.631153054958
'bar_max_pct' => 60.119598047091
'min_diff' => 0.090393437078433
'max_diff' => 0.19798216985624
'year' => 2035
]
10 => [
'items' => [
101 => 1.0302107243898
102 => 1.0260242036012
103 => 1.0270778606886
104 => 1.0089725409933
105 => 0.99067151382613
106 => 0.97037285818989
107 => 1.0080852513724
108 => 1.0038922770225
109 => 1.0135094515965
110 => 1.0379686343129
111 => 1.0415703418793
112 => 1.0464110733734
113 => 1.0446760157195
114 => 1.0860121282141
115 => 1.0810060522466
116 => 1.093069254982
117 => 1.0682543317178
118 => 1.0401738905902
119 => 1.0455110644298
120 => 1.0449970516702
121 => 1.0384530792842
122 => 1.0325454736149
123 => 1.0227109746331
124 => 1.0538287846435
125 => 1.0525654583849
126 => 1.073017242056
127 => 1.0694021906341
128 => 1.0452599924856
129 => 1.0461222358154
130 => 1.0519212365889
131 => 1.0719916444777
201 => 1.0779499080366
202 => 1.0751898029604
203 => 1.0817227669477
204 => 1.0868861553129
205 => 1.0823712090295
206 => 1.146293327224
207 => 1.1197484071151
208 => 1.1326862164778
209 => 1.1357718077769
210 => 1.1278681305474
211 => 1.129582155129
212 => 1.1321784353264
213 => 1.1479425402811
214 => 1.1893121130628
215 => 1.2076344152356
216 => 1.2627579653289
217 => 1.2061130030989
218 => 1.2027519254603
219 => 1.2126813414039
220 => 1.245044700729
221 => 1.2712721637263
222 => 1.2799733263011
223 => 1.2811233285759
224 => 1.2974472880087
225 => 1.3068038771317
226 => 1.2954651299708
227 => 1.2858567289682
228 => 1.2514406292157
229 => 1.255424386474
301 => 1.2828685234816
302 => 1.3216349834564
303 => 1.3549006390775
304 => 1.3432521659041
305 => 1.4321217936765
306 => 1.4409328542702
307 => 1.4397154505918
308 => 1.459788357886
309 => 1.4199477246836
310 => 1.4029150821136
311 => 1.287934174325
312 => 1.3202391194033
313 => 1.3671962542775
314 => 1.3609813013967
315 => 1.3268797748832
316 => 1.3548747700117
317 => 1.3456187491378
318 => 1.3383181414419
319 => 1.3717636405893
320 => 1.3349889404113
321 => 1.3668293985121
322 => 1.3259936816505
323 => 1.3433053751484
324 => 1.3334784206466
325 => 1.3398376645555
326 => 1.3026616546047
327 => 1.3227209271775
328 => 1.3018271229169
329 => 1.3018172165332
330 => 1.3013559846461
331 => 1.3259374527014
401 => 1.3267390534922
402 => 1.3085733114588
403 => 1.3059553442295
404 => 1.3156353412082
405 => 1.3043025999414
406 => 1.3096051182527
407 => 1.3044632078193
408 => 1.3033056554755
409 => 1.2940820814591
410 => 1.2901083121654
411 => 1.2916665294969
412 => 1.2863475304284
413 => 1.283142641093
414 => 1.3007184514914
415 => 1.2913284050017
416 => 1.2992792921946
417 => 1.2902182527563
418 => 1.2588087423563
419 => 1.2407448007756
420 => 1.1814151472931
421 => 1.1982409634225
422 => 1.2093964969239
423 => 1.2057095931683
424 => 1.2136304890778
425 => 1.2141167677558
426 => 1.2115416037516
427 => 1.2085598937337
428 => 1.2071085621959
429 => 1.217925598425
430 => 1.2242052520407
501 => 1.2105161039526
502 => 1.2073089280871
503 => 1.2211494126028
504 => 1.229592100162
505 => 1.2919281615627
506 => 1.2873101047913
507 => 1.2989005210397
508 => 1.2975956180395
509 => 1.3097442207659
510 => 1.3296020518409
511 => 1.2892255289285
512 => 1.296233497191
513 => 1.2945153052107
514 => 1.3132740747178
515 => 1.3133326375487
516 => 1.3020858181591
517 => 1.308182901409
518 => 1.3047796768036
519 => 1.3109297636389
520 => 1.2872484278277
521 => 1.3160897386035
522 => 1.3324409033204
523 => 1.3326679392584
524 => 1.3404182615633
525 => 1.3482930378935
526 => 1.3634079853109
527 => 1.3478714902137
528 => 1.3199228479812
529 => 1.3219406496768
530 => 1.3055543709619
531 => 1.3058298272675
601 => 1.3043594199202
602 => 1.3087722230565
603 => 1.2882167899626
604 => 1.2930411090242
605 => 1.2862870340869
606 => 1.2962188151511
607 => 1.2855338605082
608 => 1.2945144766465
609 => 1.2983902128596
610 => 1.3126917629247
611 => 1.2834215099353
612 => 1.2237374826682
613 => 1.2362837887986
614 => 1.2177268165406
615 => 1.2194443349745
616 => 1.2229139955519
617 => 1.2116676904182
618 => 1.2138131310259
619 => 1.2137364807901
620 => 1.2130759504683
621 => 1.2101503521502
622 => 1.2059076557768
623 => 1.2228092522952
624 => 1.2256811628929
625 => 1.2320650643971
626 => 1.251059225032
627 => 1.2491612604714
628 => 1.2522569194155
629 => 1.2454991133219
630 => 1.2197578102173
701 => 1.221155686821
702 => 1.2037241431731
703 => 1.2316193006346
704 => 1.2250133591496
705 => 1.2207544657001
706 => 1.219592387164
707 => 1.2386336306492
708 => 1.2443310691348
709 => 1.2407808078114
710 => 1.2334991182595
711 => 1.2474821148375
712 => 1.2512233748265
713 => 1.2520609049657
714 => 1.2768360939284
715 => 1.2534455628107
716 => 1.2590758961326
717 => 1.3030021494606
718 => 1.2631670991007
719 => 1.284268613704
720 => 1.2832358043711
721 => 1.2940306252058
722 => 1.2823503139855
723 => 1.2824951054418
724 => 1.2920801750385
725 => 1.2786196734663
726 => 1.2752866639816
727 => 1.2706821352499
728 => 1.2807359552822
729 => 1.2867627656964
730 => 1.3353344314305
731 => 1.3667139426317
801 => 1.3653516752929
802 => 1.3778002487121
803 => 1.3721920523709
804 => 1.3540817070177
805 => 1.3849938582143
806 => 1.3752119601564
807 => 1.3760183679472
808 => 1.375988353409
809 => 1.3824924604692
810 => 1.3778837045244
811 => 1.3687993734781
812 => 1.3748299763746
813 => 1.3927387109972
814 => 1.4483279727728
815 => 1.4794364601222
816 => 1.4464552027734
817 => 1.469205232456
818 => 1.4555633213109
819 => 1.4530841802441
820 => 1.4673728800988
821 => 1.481686590431
822 => 1.4807748689627
823 => 1.4703838502787
824 => 1.4645142274864
825 => 1.5089609777374
826 => 1.5417085861917
827 => 1.5394754188379
828 => 1.5493318932727
829 => 1.5782708070628
830 => 1.5809166186655
831 => 1.5805833072169
901 => 1.5740253870977
902 => 1.6025195059169
903 => 1.6262898011421
904 => 1.5725074180666
905 => 1.5929870454787
906 => 1.6021810100364
907 => 1.6156804777334
908 => 1.6384563425117
909 => 1.6631969726607
910 => 1.666695569031
911 => 1.6642131474831
912 => 1.6478960368359
913 => 1.6749675295621
914 => 1.6908253750965
915 => 1.7002683592119
916 => 1.7242141957657
917 => 1.6022377888315
918 => 1.5158968253826
919 => 1.5024134371615
920 => 1.5298324373172
921 => 1.5370626089959
922 => 1.5341481358581
923 => 1.4369635317194
924 => 1.5019017803335
925 => 1.5717698756791
926 => 1.5744537937681
927 => 1.6094312231712
928 => 1.6208213079581
929 => 1.648982723224
930 => 1.6472212190316
1001 => 1.6540780755028
1002 => 1.6525018029443
1003 => 1.7046648946388
1004 => 1.7622085310718
1005 => 1.7602159779197
1006 => 1.7519433993571
1007 => 1.7642295892069
1008 => 1.8236207887567
1009 => 1.8181529988267
1010 => 1.8234644909984
1011 => 1.8934900624089
1012 => 1.984533266264
1013 => 1.9422345574851
1014 => 2.0340105844098
1015 => 2.0917787285207
1016 => 2.1916827604229
1017 => 2.179174283591
1018 => 2.2180661900809
1019 => 2.156781499464
1020 => 2.0160594621282
1021 => 1.9937896610575
1022 => 2.0383743667623
1023 => 2.1479815152254
1024 => 2.0349224475984
1025 => 2.0577941497309
1026 => 2.0512070979781
1027 => 2.0508561019834
1028 => 2.0642521914987
1029 => 2.0448204649637
1030 => 1.965652115359
1031 => 2.0019345034408
1101 => 1.987924130979
1102 => 2.0034696837678
1103 => 2.0873626206953
1104 => 2.0502715535218
1105 => 2.0111991272882
1106 => 2.0602046206506
1107 => 2.1226054538156
1108 => 2.1187005218212
1109 => 2.1111233216171
1110 => 2.1538356024381
1111 => 2.2243837768302
1112 => 2.2434526648828
1113 => 2.2575289281971
1114 => 2.2594698070877
1115 => 2.2794620659105
1116 => 2.1719586515222
1117 => 2.3425693310399
1118 => 2.3720290823677
1119 => 2.3664918700997
1120 => 2.3992351438447
1121 => 2.3896012420922
1122 => 2.3756432299658
1123 => 2.4275482835457
1124 => 2.3680433281382
1125 => 2.2835835354028
1126 => 2.2372472226829
1127 => 2.2982666171162
1128 => 2.3355290320132
1129 => 2.3601571179254
1130 => 2.3676095618418
1201 => 2.1803038355582
1202 => 2.0793564375432
1203 => 2.1440625623065
1204 => 2.223008500296
1205 => 2.1715201028506
1206 => 2.17353835055
1207 => 2.1001294267057
1208 => 2.2295035611705
1209 => 2.2106548379867
1210 => 2.308442047207
1211 => 2.2851043449352
1212 => 2.3648460179767
1213 => 2.3438473630304
1214 => 2.4310116056936
1215 => 2.4657837819696
1216 => 2.5241716777941
1217 => 2.567122051644
1218 => 2.5923433326785
1219 => 2.5908291415678
1220 => 2.6907684222186
1221 => 2.6318377200314
1222 => 2.5578068691841
1223 => 2.5564678846566
1224 => 2.5948095113357
1225 => 2.6751630423435
1226 => 2.6959975438374
1227 => 2.7076411878776
1228 => 2.6898085417119
1229 => 2.6258434880891
1230 => 2.598223702245
1231 => 2.6217565600064
]
'min_raw' => 0.97037285818989
'max_raw' => 2.7076411878776
'avg_raw' => 1.8390070230338
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$0.970372'
'max' => '$2.70'
'avg' => '$1.83'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.38415608449545
'max_diff' => 1.3989535367256
'year' => 2036
]
11 => [
'items' => [
101 => 2.5929778971657
102 => 2.6426579430954
103 => 2.7108792572421
104 => 2.6967918256472
105 => 2.7438839973634
106 => 2.7926194408488
107 => 2.8623133138786
108 => 2.8805338730452
109 => 2.9106517644819
110 => 2.9416529679821
111 => 2.9516097190405
112 => 2.9706202462095
113 => 2.9705200513474
114 => 3.0278095545271
115 => 3.0910016506425
116 => 3.1148552040256
117 => 3.1697051347376
118 => 3.0757765505642
119 => 3.1470224606335
120 => 3.2112880549169
121 => 3.1346679640528
122 => 3.2402709091174
123 => 3.2443712321729
124 => 3.3062812421822
125 => 3.2435235865149
126 => 3.2062582909092
127 => 3.3138418030105
128 => 3.3658980756675
129 => 3.3502183026952
130 => 3.2308944561704
131 => 3.1614428594524
201 => 2.9796746346289
202 => 3.1949869487353
203 => 3.2998592961902
204 => 3.2306228621257
205 => 3.265541692225
206 => 3.4560475067777
207 => 3.5285797866214
208 => 3.5134935794528
209 => 3.5160429001242
210 => 3.5551800017738
211 => 3.7287354636838
212 => 3.6247370079232
213 => 3.7042399306044
214 => 3.7464079941253
215 => 3.7855760415753
216 => 3.6893916962267
217 => 3.5642572761567
218 => 3.5246219525349
219 => 3.223738663259
220 => 3.2080763813823
221 => 3.1992846679492
222 => 3.143854158366
223 => 3.100300961528
224 => 3.0656658423759
225 => 2.9747729467987
226 => 3.0054466308671
227 => 2.8605823261387
228 => 2.9532613746282
301 => 2.7220544464108
302 => 2.9146104465812
303 => 2.8098109701354
304 => 2.8801809999959
305 => 2.879935485591
306 => 2.7503619497796
307 => 2.6756266384543
308 => 2.7232508875726
309 => 2.774307863045
310 => 2.7825916855391
311 => 2.8487883869626
312 => 2.8672624634365
313 => 2.8112851492483
314 => 2.7172631967299
315 => 2.7391023518875
316 => 2.675184068672
317 => 2.5631697359182
318 => 2.6436203852846
319 => 2.6710897741437
320 => 2.6832218211604
321 => 2.57306858983
322 => 2.538456053003
323 => 2.5200286288236
324 => 2.7030437978102
325 => 2.7130697819007
326 => 2.6617754297625
327 => 2.893630765357
328 => 2.8411547621676
329 => 2.8997833146631
330 => 2.7371206774642
331 => 2.7433346092595
401 => 2.6663275100251
402 => 2.7094463399801
403 => 2.6789713407527
404 => 2.7059627646283
405 => 2.7221413128096
406 => 2.7991357759367
407 => 2.9154895996722
408 => 2.7876353706846
409 => 2.7319274522084
410 => 2.7664883315178
411 => 2.8585285074982
412 => 2.9979740855583
413 => 2.9154194967429
414 => 2.9520558213914
415 => 2.9600592284904
416 => 2.8991865310349
417 => 3.0002185487414
418 => 3.054362427813
419 => 3.1099028442433
420 => 3.1581270316226
421 => 3.0877187805611
422 => 3.1630657018232
423 => 3.102349383808
424 => 3.0478805698108
425 => 3.0479631765178
426 => 3.013794093835
427 => 2.9475871905555
428 => 2.9353776217946
429 => 2.9988933403872
430 => 3.0498269317376
501 => 3.0540220662767
502 => 3.0822215195107
503 => 3.0989096654571
504 => 3.2624761821661
505 => 3.3282639882797
506 => 3.4087080722959
507 => 3.4400455766004
508 => 3.5343602294398
509 => 3.4581934874104
510 => 3.441714333661
511 => 3.2129378359605
512 => 3.2503999746427
513 => 3.3103804732315
514 => 3.21392689229
515 => 3.2751044888435
516 => 3.2871822423218
517 => 3.2106494365181
518 => 3.2515289148852
519 => 3.1429651402628
520 => 2.9178559932884
521 => 3.0004691595729
522 => 3.0613002572493
523 => 2.9744867804448
524 => 3.1300965774714
525 => 3.0391925464867
526 => 3.0103803328275
527 => 2.8979736150474
528 => 2.9510252589083
529 => 3.0227783668565
530 => 2.9784432883386
531 => 3.0704452332087
601 => 3.2007445231672
602 => 3.2936035566484
603 => 3.3007321202039
604 => 3.2410299827475
605 => 3.3367030390354
606 => 3.3373999128018
607 => 3.2294803144732
608 => 3.1633801613958
609 => 3.1483620675407
610 => 3.1858802104614
611 => 3.2314341621985
612 => 3.3032600474859
613 => 3.3466629256767
614 => 3.4598346128903
615 => 3.4904556265638
616 => 3.5240988368797
617 => 3.5690565410435
618 => 3.6230397918109
619 => 3.5049275124
620 => 3.5096203334498
621 => 3.3996358142382
622 => 3.282101582085
623 => 3.3712954134404
624 => 3.4879044829794
625 => 3.4611542335856
626 => 3.4581442840708
627 => 3.4632061842643
628 => 3.4430373698028
629 => 3.3518145694848
630 => 3.30600305025
701 => 3.3651115978279
702 => 3.3965251602467
703 => 3.4452448560079
704 => 3.4392391251573
705 => 3.5647358293246
706 => 3.6135000537407
707 => 3.6010240783962
708 => 3.6033199581107
709 => 3.6916052571331
710 => 3.7897966669025
711 => 3.8817658796493
712 => 3.9753209130249
713 => 3.8625366687755
714 => 3.8052717851108
715 => 3.8643545277459
716 => 3.8330043928539
717 => 4.0131515669974
718 => 4.0256245664753
719 => 4.2057587139277
720 => 4.3767274698352
721 => 4.2693450574731
722 => 4.3706018357205
723 => 4.4801192969814
724 => 4.6913962483212
725 => 4.6202456039227
726 => 4.5657453253862
727 => 4.5142428255127
728 => 4.6214113519579
729 => 4.7592819491708
730 => 4.7889779553023
731 => 4.8370968299827
801 => 4.7865057169523
802 => 4.8474371401691
803 => 5.0625518387487
804 => 5.0044259483225
805 => 4.9218778397142
806 => 5.0916902344075
807 => 5.153144679918
808 => 5.5844641624539
809 => 6.1290228260745
810 => 5.9035719635706
811 => 5.7636273379606
812 => 5.7965176445098
813 => 5.99537203399
814 => 6.0592377525682
815 => 5.8856287136393
816 => 5.94695036116
817 => 6.2848386680104
818 => 6.4661049038809
819 => 6.2199210082654
820 => 5.5407094040569
821 => 4.9144452857124
822 => 5.0805587309382
823 => 5.0617266213499
824 => 5.424745454636
825 => 5.0030396650594
826 => 5.010140109031
827 => 5.3806657873459
828 => 5.2818158887897
829 => 5.1216917128673
830 => 4.9156143694007
831 => 4.5346613401556
901 => 4.197240618492
902 => 4.8590003570256
903 => 4.830464073768
904 => 4.7891393067708
905 => 4.8811031039162
906 => 5.3276531984752
907 => 5.317358773454
908 => 5.251870893731
909 => 5.3015428733172
910 => 5.1129839746853
911 => 5.1615798962691
912 => 4.9143460822764
913 => 5.0261060915972
914 => 5.1213481583012
915 => 5.1404694132749
916 => 5.1835505770862
917 => 4.81542674919
918 => 4.9807035403676
919 => 5.0777881708434
920 => 4.6391562783847
921 => 5.0691178286386
922 => 4.8090185323479
923 => 4.7207369246265
924 => 4.839596479206
925 => 4.7932767951917
926 => 4.7534538508593
927 => 4.7312319636768
928 => 4.8185093025095
929 => 4.814437710334
930 => 4.6716350442021
1001 => 4.4853547876143
1002 => 4.5478765561661
1003 => 4.5251618115065
1004 => 4.4428406465998
1005 => 4.4983151722516
1006 => 4.2540334362961
1007 => 3.8337594062444
1008 => 4.1114053038382
1009 => 4.1007162388015
1010 => 4.0953263274995
1011 => 4.3039695459723
1012 => 4.2839133147341
1013 => 4.2475110586458
1014 => 4.4421720906198
1015 => 4.3711181953889
1016 => 4.5900895580872
1017 => 4.7343182597401
1018 => 4.6977371956912
1019 => 4.8333849867136
1020 => 4.5493169314373
1021 => 4.6436729445679
1022 => 4.6631195881023
1023 => 4.4397700037016
1024 => 4.2871947622043
1025 => 4.2770197330815
1026 => 4.0124752904885
1027 => 4.1537927963936
1028 => 4.2781463534743
1029 => 4.2185906498585
1030 => 4.1997370932697
1031 => 4.296055825044
1101 => 4.303540615417
1102 => 4.1328866017098
1103 => 4.1683709750693
1104 => 4.3163467107647
1105 => 4.1646423661964
1106 => 3.8699056054644
1107 => 3.7968068137483
1108 => 3.7870540874553
1109 => 3.588804366783
1110 => 3.8016916245462
1111 => 3.7087606315088
1112 => 4.0023285250298
1113 => 3.8346441186868
1114 => 3.8274155790759
1115 => 3.8164885812579
1116 => 3.6458468570824
1117 => 3.6832065498295
1118 => 3.8073958585628
1119 => 3.8517080030115
1120 => 3.8470858833068
1121 => 3.8067872631987
1122 => 3.8252357651219
1123 => 3.7658067125433
1124 => 3.744821077169
1125 => 3.678584639374
1126 => 3.5812353740983
1127 => 3.5947723865127
1128 => 3.4018980191807
1129 => 3.2968098272408
1130 => 3.2677228007519
1201 => 3.2288264133005
1202 => 3.2721162512139
1203 => 3.4013516303314
1204 => 3.2454663443005
1205 => 2.978211955482
1206 => 2.9942743996293
1207 => 3.0303619426458
1208 => 2.9631130449775
1209 => 2.8994676071065
1210 => 2.9548021516177
1211 => 2.8415629439229
1212 => 3.044046359889
1213 => 3.0385697509404
1214 => 3.1140430469221
1215 => 3.1612380477674
1216 => 3.0524688503819
1217 => 3.0251136913826
1218 => 3.0406964331713
1219 => 2.7831484223914
1220 => 3.0929958798199
1221 => 3.0956754534984
1222 => 3.0727313168464
1223 => 3.2377155224601
1224 => 3.5858836561691
1225 => 3.4548887992371
1226 => 3.4041636312925
1227 => 3.3077350499499
1228 => 3.4362204092263
1229 => 3.4263547383177
1230 => 3.3817384330245
1231 => 3.3547543523718
]
'min_raw' => 2.5200286288236
'max_raw' => 6.4661049038809
'avg_raw' => 4.4930667663523
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$2.52'
'max' => '$6.46'
'avg' => '$4.49'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 1.5496557706337
'max_diff' => 3.7584637160033
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.079100819086558
]
1 => [
'year' => 2028
'avg' => 0.13575996868439
]
2 => [
'year' => 2029
'avg' => 0.37087176609204
]
3 => [
'year' => 2030
'avg' => 0.28612701522121
]
4 => [
'year' => 2031
'avg' => 0.28101218827785
]
5 => [
'year' => 2032
'avg' => 0.49270280384146
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.079100819086558
'min' => '$0.07910081'
'max_raw' => 0.49270280384146
'max' => '$0.4927028'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.49270280384146
]
1 => [
'year' => 2033
'avg' => 1.2672822755121
]
2 => [
'year' => 2034
'avg' => 0.80326440895589
]
3 => [
'year' => 2035
'avg' => 0.94745221242322
]
4 => [
'year' => 2036
'avg' => 1.8390070230338
]
5 => [
'year' => 2037
'avg' => 4.4930667663523
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.49270280384146
'min' => '$0.4927028'
'max_raw' => 4.4930667663523
'max' => '$4.49'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 4.4930667663523
]
]
]
]
'prediction_2025_max_price' => '$0.135248'
'last_price' => 0.13114
'sma_50day_nextmonth' => '$0.122069'
'sma_200day_nextmonth' => '$0.2297016'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'increase'
'sma_200day_direction_label' => 'aumentar'
'sma_200day_date_nextmonth' => '4 de fev. de 2026'
'sma_50day_date_nextmonth' => '4 de fev. de 2026'
'daily_sma3' => '$0.129564'
'daily_sma3_action' => 'BUY'
'daily_sma5' => '$0.127489'
'daily_sma5_action' => 'BUY'
'daily_sma10' => '$0.125141'
'daily_sma10_action' => 'BUY'
'daily_sma21' => '$0.124676'
'daily_sma21_action' => 'BUY'
'daily_sma50' => '$0.133499'
'daily_sma50_action' => 'SELL'
'daily_sma100' => '$0.168576'
'daily_sma100_action' => 'SELL'
'daily_sma200' => '$0.243488'
'daily_sma200_action' => 'SELL'
'daily_ema3' => '$0.129486'
'daily_ema3_action' => 'BUY'
'daily_ema5' => '$0.128041'
'daily_ema5_action' => 'BUY'
'daily_ema10' => '$0.126476'
'daily_ema10_action' => 'BUY'
'daily_ema21' => '$0.127647'
'daily_ema21_action' => 'BUY'
'daily_ema50' => '$0.139989'
'daily_ema50_action' => 'SELL'
'daily_ema100' => '$0.167811'
'daily_ema100_action' => 'SELL'
'daily_ema200' => '$0.1984091'
'daily_ema200_action' => 'SELL'
'weekly_sma21' => '$0.195152'
'weekly_sma21_action' => 'SELL'
'weekly_sma50' => '—'
'weekly_sma50_action' => '—'
'weekly_sma100' => '—'
'weekly_sma100_action' => '—'
'weekly_sma200' => '—'
'weekly_sma200_action' => '—'
'weekly_ema3' => '$0.129368'
'weekly_ema3_action' => 'BUY'
'weekly_ema5' => '$0.131139'
'weekly_ema5_action' => 'BUY'
'weekly_ema10' => '$0.145022'
'weekly_ema10_action' => 'SELL'
'weekly_ema21' => '$0.171532'
'weekly_ema21_action' => 'SELL'
'weekly_ema50' => '$0.168394'
'weekly_ema50_action' => 'SELL'
'weekly_ema100' => '$0.084197'
'weekly_ema100_action' => 'BUY'
'weekly_ema200' => '$0.042098'
'weekly_ema200_action' => 'BUY'
'rsi_14' => '51.94'
'rsi_14_action' => 'NEUTRAL'
'stoch_rsi_14' => 119.27
'stoch_rsi_14_action' => 'SELL'
'momentum_10' => 0.01
'momentum_10_action' => 'BUY'
'vwma_10' => '0.1251096'
'vwma_10_action' => 'BUY'
'hma_9' => '0.130778'
'hma_9_action' => 'BUY'
'stochastic_fast_14' => 100
'stochastic_fast_14_action' => 'SELL'
'cci_20' => 171.11
'cci_20_action' => 'SELL'
'adx_14' => 13.38
'adx_14_action' => 'NEUTRAL'
'ao_5_34' => '-0.003946'
'ao_5_34_action' => 'NEUTRAL'
'macd_12_26' => 0
'macd_12_26_action' => 'BUY'
'williams_percent_r_14' => -0
'williams_percent_r_14_action' => 'SELL'
'ultimate_oscillator' => 67.9
'ultimate_oscillator_action' => 'NEUTRAL'
'ichimoku_cloud' => '-0.021639'
'ichimoku_cloud_action' => 'SELL'
'sell_signals' => 11
'buy_signals' => 20
'sell_pct' => 35.48
'buy_pct' => 64.52
'overall_action' => 'bullish'
'overall_action_label' => 'Altista'
'overall_action_dir' => 1
'last_updated' => 1767675693
'last_updated_date' => '6 de janeiro de 2026'
]
Previsão de preço de Hyperlane para 2026
A previsão de preço para Hyperlane em 2026 sugere que o preço médio poderia variar entre $0.0453088 na extremidade inferior e $0.135248 na extremidade superior. No mercado de criptomoedas, comparado ao preço médio de hoje, Hyperlane poderia potencialmente ganhar 3.13% até 2026 se HYPER atingir a meta de preço prevista.
Previsão de preço de Hyperlane 2027-2032
A previsão de preço de HYPER para 2027-2032 está atualmente dentro de uma faixa de preço entre $0.07910081 na extremidade inferior e $0.4927028 na extremidade superior. Considerando a volatilidade de preços no mercado, se Hyperlane atingir a meta de preço superior, poderia ganhar 275.71% até 2032 em comparação com o preço de hoje.
| Previsão de Preço de Hyperlane | Potencial Mínimo ($) | Preço Médio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2027 | $0.043617 | $0.07910081 | $0.114583 |
| 2028 | $0.078717 | $0.135759 | $0.1928028 |
| 2029 | $0.172918 | $0.370871 | $0.568824 |
| 2030 | $0.14706 | $0.286127 | $0.425193 |
| 2031 | $0.17387 | $0.281012 | $0.388153 |
| 2032 | $0.26540026 | $0.4927028 | $0.7200053 |
Previsão de preço de Hyperlane 2032-2037
A previsão de preço de Hyperlane para 2032-2037 é atualmente estimada entre $0.4927028 na extremidade inferior e $4.49 na extremidade superior. Comparado ao preço atual, Hyperlane poderia potencialmente ganhar 3326.16% até 2037 se atingir a meta de preço superior. Por favor, note que esta informação é apenas para fins gerais e não deve ser considerada como aconselhamento de investimento a longo prazo.
| Previsão de Preço de Hyperlane | Potencial Mínimo ($) | Preço Médio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2032 | $0.26540026 | $0.4927028 | $0.7200053 |
| 2033 | $0.616732 | $1.26 | $1.91 |
| 2034 | $0.495823 | $0.803264 | $1.11 |
| 2035 | $0.586216 | $0.947452 | $1.30 |
| 2036 | $0.970372 | $1.83 | $2.70 |
| 2037 | $2.52 | $4.49 | $6.46 |
Hyperlane Histograma de preços potenciais
Previsão de preço de Hyperlane baseada na análise técnica
Em 6 de janeiro de 2026, o sentimento geral de previsão de preço para Hyperlane é Altista, com 20 indicadores técnicos mostrando sinais de alta e 11 indicando sinais de baixa. A previsão de preço de HYPER foi atualizada pela última vez em 6 de janeiro de 2026.
Médias Móveis Simples de 50 e 200 dias e Índice de Força Relativa de 14 dias - RSI (14) de Hyperlane
De acordo com nossos indicadores técnicos, o SMA de 200 dias de Hyperlane está projetado para aumentar no próximo mês, alcançando $0.2297016 até 4 de fev. de 2026. O SMA de 50 dias de curto prazo para Hyperlane é esperado para alcançar $0.122069 até 4 de fev. de 2026.
O oscilador de momentum Índice de Força Relativa (RSI) é uma ferramenta comumente usada para identificar se uma criptomoeda está sobrevendida (abaixo de 30) ou sobrecomprada (acima de 70). No momento, o RSI está em 51.94, sugerindo que o mercado de HYPER está em um estado NEUTRAL.
Médias Móveis e Osciladores Populares de HYPER para Sábado, 19 de Outubro de 2024
Médias móveis (MA) são indicadores amplamente utilizados nos mercados financeiros, projetados para suavizar movimentos de preços ao longo de um período definido. Como indicadores atrasados, eles se baseiam em dados históricos de preços. A tabela abaixo destaca dois tipos: a média móvel simples (SMA) e a média móvel exponencial (EMA).
Média Móvel Simples Diária (SMA)
| Período | Valor | Ação |
|---|---|---|
| SMA 3 | $0.129564 | BUY |
| SMA 5 | $0.127489 | BUY |
| SMA 10 | $0.125141 | BUY |
| SMA 21 | $0.124676 | BUY |
| SMA 50 | $0.133499 | SELL |
| SMA 100 | $0.168576 | SELL |
| SMA 200 | $0.243488 | SELL |
Média Móvel Exponencial Diária (EMA)
| Período | Valor | Ação |
|---|---|---|
| EMA 3 | $0.129486 | BUY |
| EMA 5 | $0.128041 | BUY |
| EMA 10 | $0.126476 | BUY |
| EMA 21 | $0.127647 | BUY |
| EMA 50 | $0.139989 | SELL |
| EMA 100 | $0.167811 | SELL |
| EMA 200 | $0.1984091 | SELL |
Média Móvel Simples Semanal (SMA)
| Período | Valor | Ação |
|---|---|---|
| SMA 21 | $0.195152 | SELL |
| SMA 50 | — | — |
| SMA 100 | — | — |
| SMA 200 | — | — |
Média Móvel Exponencial Semanal (EMA)
| Período | Valor | Ação |
|---|---|---|
| EMA 21 | $0.171532 | SELL |
| EMA 50 | $0.168394 | SELL |
| EMA 100 | $0.084197 | BUY |
| EMA 200 | $0.042098 | BUY |
Osciladores de Hyperlane
Um oscilador é uma ferramenta de análise técnica que define limites altos e baixos entre dois extremos, criando um indicador de tendência que flutua dentro desses limites. Os traders usam esse indicador para identificar condições de sobrecompra ou sobrevenda de curto prazo.
| Período | Valor | Ação |
|---|---|---|
| RSI (14) | 51.94 | NEUTRAL |
| Stoch RSI (14) | 119.27 | SELL |
| Estocástico Rápido (14) | 100 | SELL |
| Índice de Canal de Commodities (20) | 171.11 | SELL |
| Índice Direcional Médio (14) | 13.38 | NEUTRAL |
| Oscilador Impressionante (5, 34) | -0.003946 | NEUTRAL |
| Momentum (10) | 0.01 | BUY |
| MACD (12, 26) | 0 | BUY |
| Williams Percent Range (14) | -0 | SELL |
| Oscilador Ultimate (7, 14, 28) | 67.9 | NEUTRAL |
| VWMA (10) | 0.1251096 | BUY |
| Média Móvel de Hull (9) | 0.130778 | BUY |
| Nuvem Ichimoku B/L (9, 26, 52, 26) | -0.021639 | SELL |
Previsão do preço de Hyperlane com base nos fluxos financeiros mundiais
Definições dos fluxos financeiros mundiais, usadas na previsão do preço do Hyperlane
M0: o total de todas as moedas físicas, mais as contas no Banco Central que podem ser trocadas por moedas físicas.
M1: o valor de M0, mais o valor em contas de demanda, incluindo contas 'correntes'.
M2: o valor de M1, mais a maioria das contas de poupança, do mercado de moedas e de certificados de depósito (CD) de menos de US$ 100.000.
Previsões de preço de Hyperlane por empresas de Internet ou nichos tecnológicos
| Comparação | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Facebook stock | $0.184273 | $0.258935 | $0.363847 | $0.511266 | $0.718414 | $1.00 |
| Amazon.com stock | $0.273631 | $0.570948 | $1.19 | $2.48 | $5.18 | $10.82 |
| Apple stock | $0.186012 | $0.263843 | $0.374242 | $0.530834 | $0.752948 | $1.06 |
| Netflix stock | $0.206918 | $0.326484 | $0.515141 | $0.812812 | $1.28 | $2.02 |
| Google stock | $0.169825 | $0.219923 | $0.2848000089 | $0.368814 | $0.477613 | $0.6185072 |
| Tesla stock | $0.297284 | $0.673921 | $1.52 | $3.46 | $7.85 | $17.79 |
| Kodak stock | $0.098341 | $0.073745 | $0.0553011 | $0.041469 | $0.031098 | $0.02332 |
| Nokia stock | $0.086874 | $0.05755 | $0.038125 | $0.025256 | $0.016731 | $0.011083 |
Este cálculo mostra quanto a criptomoeda pode custar, se assumirmos que sua capitalização se comportará da mesma forma que a de algumas empresas de Internet ou nichos tecnológicos. Se você extrapolar os dados, poderá obter uma imagem em potencial do preço futuro para 2024, 2025, 2026, 2027, 2028, 2029 e 2030.
Visão geral da previsão para Hyperlane
Você pode fazer perguntas como: 'Devo investir em Hyperlane agora?', 'Devo comprar HYPER hoje?', 'Hyperlane será um bom ou mau investimento no curto ou no longo prazo?'.
Atualizamos a previsão para Hyperlane regularmente com novos valores. Veja nossas previsões semelhantes. Fazemos previsões de preços futuros para uma enorme quantidade de moedas digitais, como Hyperlane, com métodos de análise técnica.
Se você estiver tentando encontrar criptomoedas com bom retorno, você deve explorar o máximo de fontes de informações disponíveis sobre Hyperlane para poder tomar sozinho uma decisão de tão grande responsabilidade sobre o seu investimento.
O preço de Hyperlane é de $0.1311 USD hoje, mas o preço pode tanto subir quanto descer e seu investimento pode ser perdido, porque criptomoedas são ativos de alto risco
Previsão de curto prazo para Hyperlane
com base no histórico de preços de 4 horas
Previsão de longo prazo para Hyperlane
com base no histórico de preços de 1 mês
Previsão do preço de Hyperlane com base no padrão de crescimento do Bitcoin
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| Se Hyperlane tiver 1% da média anterior do crescimento anual do Bitcoin | $0.134548 | $0.138046 | $0.141634 | $0.145315 |
| Se Hyperlane tiver 2% da média anterior do crescimento anual do Bitcoin | $0.137957 | $0.145129 | $0.152674 | $0.160611 |
| Se Hyperlane tiver 5% da média anterior do crescimento anual do Bitcoin | $0.148183 | $0.167442 | $0.1892044 | $0.213794 |
| Se Hyperlane tiver 10% da média anterior do crescimento anual do Bitcoin | $0.165227 | $0.208175 | $0.262286 | $0.330463 |
| Se Hyperlane tiver 20% da média anterior do crescimento anual do Bitcoin | $0.199314 | $0.302931 | $0.460415 | $0.699768 |
| Se Hyperlane tiver 50% da média anterior do crescimento anual do Bitcoin | $0.301577 | $0.693525 | $1.59 | $3.66 |
| Se Hyperlane tiver 100% da média anterior do crescimento anual do Bitcoin | $0.472014 | $1.69 | $6.11 | $22.00 |
Perguntas Frequentes sobre Hyperlane
HYPER é um bom investimento?
A decisão de adquirir Hyperlane depende inteiramente da sua tolerância individual ao risco. Como você pode perceber, o valor de Hyperlane experimentou uma escalada de 2.6403% nas últimas 24 horas, e Hyperlane registrou um declínio de durante os últimos 30 dias. Consequentemente, a decisão de investir ou não em Hyperlane dependerá de quão alinhado esse investimento está com suas aspirações de negociação.
Hyperlane pode subir?
Parece que o valor médio de Hyperlane pode potencialmente subir para $0.135248 até o final deste ano. Observando as perspectivas de Hyperlane em um horizonte de cinco anos mais longo, a moeda digital poderia potencialmente crescer até $0.425193. No entanto, dada a imprevisibilidade do mercado, é vital conduzir uma pesquisa aprofundada antes de investir quaisquer fundos em um projeto, rede ou ativo específico.
Qual será o preço de Hyperlane na próxima semana?
Com base na nossa nova previsão experimental de Hyperlane, o preço de Hyperlane aumentará 0.86% na próxima semana e atingirá $0.132262 até 13 de janeiro de 2026.
Qual será o preço de Hyperlane no próximo mês?
Com base na nossa nova previsão experimental de Hyperlane, o preço de Hyperlane diminuirá -11.62% no próximo mês e atingirá $0.115904 até 5 de fevereiro de 2026.
Até onde o preço de Hyperlane pode subir este ano em 2026?
De acordo com nossa previsão mais recente sobre o valor de Hyperlane em 2026, espera-se que HYPER fluctue dentro do intervalo de $0.0453088 e $0.135248. No entanto, é crucial lembrar que o mercado de criptomoedas é excepcionalmente instável, e essa previsão de preço de Hyperlane não considera flutuações repentinas e extremas de preço.
Onde estará Hyperlane em 5 anos?
O futuro de Hyperlane parece seguir uma tendência de alta, com um preço máximo de $0.425193 projetada após um período de cinco anos. Com base na previsão de Hyperlane para 2030, o valor de Hyperlane pode potencialmente atingir seu pico mais alto de aproximadamente $0.425193, enquanto seu pico mais baixo está previsto para cerca de $0.14706.
Quanto será Hyperlane em 2026?
Com base na nossa nova simulação experimental de previsão de preços de Hyperlane, espera-se que o valor de HYPER em 2026 aumente 3.13% para $0.135248 se o melhor cenário ocorrer. O preço ficará entre $0.135248 e $0.0453088 durante 2026.
Quanto será Hyperlane em 2027?
De acordo com nossa última simulação experimental para previsão de preços de Hyperlane, o valor de HYPER pode diminuir -12.62% para $0.114583 em 2027, assumindo as condições mais favoráveis. O preço está projetado para flutuar entre $0.114583 e $0.043617 ao longo do ano.
Quanto será Hyperlane em 2028?
Nosso novo modelo experimental de previsão de preços de Hyperlane sugere que o valor de HYPER em 2028 pode aumentar 47.02%, alcançando $0.1928028 no melhor cenário. O preço é esperado para variar entre $0.1928028 e $0.078717 durante o ano.
Quanto será Hyperlane em 2029?
Com base no nosso modelo de previsão experimental, o valor de Hyperlane pode experimentar um 333.75% crescimento em 2029, potencialmente alcançando $0.568824 sob condições ótimas. A faixa de preço prevista para 2029 está entre $0.568824 e $0.172918.
Quanto será Hyperlane em 2030?
Usando nossa nova simulação experimental para previsões de preços de Hyperlane, espera-se que o valor de HYPER em 2030 aumente 224.23%, alcançando $0.425193 no melhor cenário. O preço está previsto para variar entre $0.425193 e $0.14706 ao longo de 2030.
Quanto será Hyperlane em 2031?
Nossa simulação experimental indica que o preço de Hyperlane poderia aumentar 195.98% em 2031, potencialmente atingindo $0.388153 sob condições ideais. O preço provavelmente oscilará entre $0.388153 e $0.17387 durante o ano.
Quanto será Hyperlane em 2032?
Com base nos achados da nossa mais recente previsão experimental de preços de Hyperlane, HYPER poderia ver um 449.04% aumento em valor, atingindo $0.7200053 se o cenário mais positivo se desenrolar em 2032. O preço é esperado para permanecer dentro de uma faixa de $0.7200053 e $0.26540026 ao longo do ano.
Quanto será Hyperlane em 2033?
De acordo com nossa previsão experimental de preços de Hyperlane, espera-se que o valor de HYPER seja aumentar 1362.43% em 2033, com o preço potencial mais alto sendo $1.91. Ao longo do ano, o preço de HYPER poderia variar entre $1.91 e $0.616732.
Quanto será Hyperlane em 2034?
Os resultados da nossa nova simulação de previsão de preços de Hyperlane sugerem que HYPER pode aumentar 746.96% em 2034, atingindo potencialmente $1.11 nas melhores circunstâncias. A faixa de preço prevista para o ano é entre $1.11 e $0.495823.
Quanto será Hyperlane em 2035?
Com base em nossa previsão experimental para o preço de Hyperlane, HYPER poderia aumentar 897.93%, com o valor potencialmente atingindo $1.30 em 2035. A faixa de preço esperada para o ano está entre $1.30 e $0.586216.
Quanto será Hyperlane em 2036?
Nossa recente simulação de previsão de preços de Hyperlane sugere que o valor de HYPER pode aumentar 1964.7% em 2036, possivelmente atingindo $2.70 se as condições forem ideais. A faixa de preço esperada para 2036 está entre $2.70 e $0.970372.
Quanto será Hyperlane em 2037?
De acordo com a simulação experimental, o valor de Hyperlane poderia aumentar 4830.69% em 2037, com um pico de $6.46 sob condições favoráveis. O preço é esperado para cair entre $6.46 e $2.52 ao longo do ano.
Previsões relacionadas
Como ler e prever os movimentos de preço de Hyperlane?
Traders de Hyperlane utilizam indicadores e padrões de gráfico para prever a direção do mercado. Eles também identificam níveis-chave de suporte e resistência para avaliar quando uma tendência de baixa pode desacelerar ou uma tendência de alta pode estagnar.
Indicadores de Previsão de Preço de Hyperlane
Médias móveis são ferramentas populares para a previsão de preço de Hyperlane. Uma média móvel simples (SMA) calcula o preço médio de fechamento de HYPER em um período específico, como uma SMA de 12 dias. Uma média móvel exponencial (EMA) dá mais peso aos preços recentes, reagindo mais rapidamente às mudanças de preço.
Médias móveis comumente usadas no mercado de criptomoedas incluem as de 50 dias, 100 dias e 200 dias, que ajudam a identificar níveis-chave de resistência e suporte. Um movimento de preço de HYPER acima dessas médias é visto como altista, enquanto uma queda abaixo indica fraqueza.
Traders também usam RSI e níveis de retração de Fibonacci para avaliar a direção futura de HYPER.
Como ler gráficos de Hyperlane e prever movimentos de preço?
A maioria dos traders prefere gráficos de velas em vez de gráficos de linha simples porque eles fornecem informações mais detalhadas. Velas podem representar a ação de preço de Hyperlane em diferentes períodos de tempo, como 5 minutos para tendências de curto prazo e semanal para tendências de longo prazo. Opções populares incluem gráficos de 1 hora, 4 horas e 1 dia.
Por exemplo, um gráfico de velas de 1 hora mostra os preços de abertura, fechamento, máximo e mínimo de HYPER dentro de cada hora. A cor da vela é crucial: verde indica que o preço fechou mais alto do que abriu, enquanto vermelho significa o oposto. Alguns gráficos usam velas vazias e preenchidas para transmitir a mesma informação.
O que afeta o preço de Hyperlane?
A ação de preço de Hyperlane é impulsionada pela oferta e demanda, influenciada por fatores como reduções pela metade das recompensas de bloco, hard forks e atualizações de protocolo. Eventos do mundo real, como regulamentações, adoção por empresas e governos e hacks de exchanges de criptomoedas, também impactam o preço de HYPER. A capitalização de mercado de Hyperlane pode mudar rapidamente.
Traders frequentemente monitoram a atividade de "baleias" de HYPER, grandes detentores de Hyperlane, pois suas ações podem influenciar significativamente os movimentos de preço no relativamente pequeno mercado de Hyperlane.
Padrões de previsão de preço altistas e baixistas
Traders frequentemente identificam padrões de velas para ganhar vantagem em previsões de preço de criptomoedas. Certas formações indicam tendências altistas, enquanto outras sugerem movimentos baixistas.
Padrões de velas altistas comumente seguidos:
- Martelo
- Engolfo de Alta
- Linha de Perfuração
- Estrela da Manhã
- Três Soldados Brancos
Padrões de velas baixistas comuns:
- Harami de Baixa
- Nuvem Negra
- Estrela da Noite
- Estrela Cadente
- Homem Enforcado


