Previsão de Preço 哈基米 (Hajimi) - Projeção 哈基米
Previsão de Preço 哈基米 (Hajimi) até $0.042417 até 2026
| Ano | Preço Mínimo | Preço Máximo |
|---|---|---|
| 2026 | $0.01421 | $0.042417 |
| 2027 | $0.013679 | $0.035936 |
| 2028 | $0.024687 | $0.060467 |
| 2029 | $0.054231 | $0.178397 |
| 2030 | $0.046121 | $0.133351 |
| 2031 | $0.05453 | $0.121734 |
| 2032 | $0.083236 | $0.225811 |
| 2033 | $0.193422 | $0.60148 |
| 2034 | $0.1555027 | $0.348345 |
| 2035 | $0.183852 | $0.410437 |
Calculadora de lucro do investimento
Se você abrir um short de $10,000.00 em 哈基米 (Hajimi) hoje e fechar em Apr 06, 2026, nossa previsão mostra que pode lucrar cerca de $3,954.61, com um retorno de 39.55% nos próximos 90 dias.
Previsão de preço de longo prazo de 哈基米 (Hajimi) para os anos 2027, 2028, 2029, 2030, 2031, 2032 e 2037
[
'name' => '哈基米 (Hajimi)'
'name_with_ticker' => '哈基米 (Hajimi) <small>哈基米</small>'
'name_lang' => '哈基米 (Hajimi)'
'name_lang_with_ticker' => '哈基米 (Hajimi) <small>哈基米</small>'
'name_with_lang' => '哈基米 (Hajimi)'
'name_with_lang_with_ticker' => '哈基米 (Hajimi) <small>哈基米</small>'
'image' => '/uploads/coins/hakimi.?1760332156'
'price_for_sd' => 0.04112
'ticker' => '哈基米'
'marketcap' => '$41.13M'
'low24h' => '$0.03878'
'high24h' => '$0.04638'
'volume24h' => '$6.51M'
'current_supply' => '1B'
'max_supply' => '1B'
'algo' => null
'proof' => null
'ico_price_and_roi' => '—'
'price' => '$0.04112'
'change_24h_pct' => '-10.2941%'
'ath_price' => '$0.081'
'ath_days' => 87
'ath_exchange' => null
'ath_pair' => null
'ath_date' => '11 de out. de 2025'
'ath_pct' => '-48.76%'
'fdv' => '$41.13M'
'new_prediction' => true
'change_24h_pct_is_increased' => false
'change_30d_pct' => null
'change_30d_pct_is_increased' => false
'max_price' => '$2.02'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.04148'
'next_week_prediction_price_date' => '13 de janeiro de 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.03635'
'next_month_prediction_price_date' => '5 de fevereiro de 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.01421'
'current_year_max_price_prediction' => '$0.042417'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.046121'
'grand_prediction_max_price' => '$0.133351'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.041908199694735
107 => 0.042064669699719
108 => 0.042417204610504
109 => 0.039404832396196
110 => 0.040757299081819
111 => 0.041551746550631
112 => 0.037962403984291
113 => 0.041480796788711
114 => 0.039352393697868
115 => 0.038629981721295
116 => 0.03960261427721
117 => 0.039223578424254
118 => 0.038897705655614
119 => 0.038715863051508
120 => 0.039430057055034
121 => 0.039396739051123
122 => 0.038228179042271
123 => 0.036703840147324
124 => 0.037215458315187
125 => 0.037029582638356
126 => 0.036355945207083
127 => 0.036809895500467
128 => 0.034810928147388
129 => 0.031371808713695
130 => 0.03364379635467
131 => 0.033556327301939
201 => 0.033512221439147
202 => 0.035219557358213
203 => 0.035055436404536
204 => 0.034757555266536
205 => 0.036350474386382
206 => 0.035769037479853
207 => 0.037560889022013
208 => 0.038741118337371
209 => 0.038441774006577
210 => 0.039551785382215
211 => 0.037227244964451
212 => 0.037999364046858
213 => 0.038158496719631
214 => 0.036330818011706
215 => 0.035082288622276
216 => 0.034999025946278
217 => 0.032834248042954
218 => 0.033990654925433
219 => 0.035008245126646
220 => 0.034520898388454
221 => 0.034366618970213
222 => 0.035154799058886
223 => 0.035216047402082
224 => 0.033819578686407
225 => 0.034109948752809
226 => 0.035320840199711
227 => 0.034079437395174
228 => 0.031667594527956
301 => 0.031069424150549
302 => 0.030989617195736
303 => 0.029367331690718
304 => 0.031109396755431
305 => 0.030348938670243
306 => 0.032751216649665
307 => 0.031379048351494
308 => 0.031319896918678
309 => 0.031230480852348
310 => 0.029834112702409
311 => 0.03013982858342
312 => 0.031156074733745
313 => 0.031518682809013
314 => 0.031480859816002
315 => 0.031151094573197
316 => 0.031302059412682
317 => 0.030815749065064
318 => 0.030644022759646
319 => 0.030102007302704
320 => 0.029305394316591
321 => 0.029416168238221
322 => 0.027837869467605
323 => 0.026977928530718
324 => 0.026739908213227
325 => 0.026421617497124
326 => 0.02677585999655
327 => 0.027833398345491
328 => 0.026557782727391
329 => 0.024370829224192
330 => 0.024502268856121
331 => 0.024797574684291
401 => 0.024247274227141
402 => 0.023726461027665
403 => 0.024179265849699
404 => 0.023252624820294
405 => 0.024909554825614
406 => 0.024864739512463
407 => 0.025482340554582
408 => 0.025868539160668
409 => 0.024978476406923
410 => 0.024754628031342
411 => 0.024882142239414
412 => 0.022774616421383
413 => 0.025310110732539
414 => 0.02533203779263
415 => 0.025144284991822
416 => 0.026494357437908
417 => 0.029343431397305
418 => 0.028271495170045
419 => 0.027856409063406
420 => 0.02706733007126
421 => 0.028118730977421
422 => 0.028037999792237
423 => 0.027672902756442
424 => 0.027452090930021
425 => 0.027858943490662
426 => 0.02740167739532
427 => 0.027319539839764
428 => 0.026821875619641
429 => 0.026644232135336
430 => 0.026512711971747
501 => 0.026367921194541
502 => 0.026687293569445
503 => 0.025963553750977
504 => 0.025090794478995
505 => 0.025018233988916
506 => 0.025218579881608
507 => 0.025129941738089
508 => 0.025017809623586
509 => 0.024803718879636
510 => 0.024740202729231
511 => 0.024946599404392
512 => 0.024713589591809
513 => 0.025057408262977
514 => 0.024963908608774
515 => 0.024441627140947
516 => 0.02379067105867
517 => 0.023784876184111
518 => 0.023644628763967
519 => 0.023466002588072
520 => 0.023416312872351
521 => 0.024141131890562
522 => 0.025641485566252
523 => 0.025346930239294
524 => 0.025559776650266
525 => 0.02660677033041
526 => 0.02693957813713
527 => 0.026703359038905
528 => 0.026380007767896
529 => 0.026394233582785
530 => 0.02749922276091
531 => 0.027568139580543
601 => 0.027742270150345
602 => 0.027966077141834
603 => 0.026741474337325
604 => 0.026336554900819
605 => 0.026144681607728
606 => 0.025553786129316
607 => 0.026191016243234
608 => 0.025819729544768
609 => 0.025869828805351
610 => 0.025837201596172
611 => 0.025855018258626
612 => 0.024909091679909
613 => 0.025253737608756
614 => 0.024680696906871
615 => 0.023913459733884
616 => 0.023910887685852
617 => 0.024098667896997
618 => 0.023986968879568
619 => 0.02368638969571
620 => 0.023729085550084
621 => 0.023355024939085
622 => 0.023774503280845
623 => 0.023786532418721
624 => 0.023625010408004
625 => 0.02427127467034
626 => 0.024536049665921
627 => 0.024429732418331
628 => 0.02452859016441
629 => 0.025359170342967
630 => 0.025494591152825
701 => 0.025554736131168
702 => 0.025474149827871
703 => 0.024543771645357
704 => 0.024585037874025
705 => 0.024282253668632
706 => 0.024026432921688
707 => 0.024036664409963
708 => 0.024168189528261
709 => 0.024742567433716
710 => 0.025951311874319
711 => 0.025997182842259
712 => 0.026052779793553
713 => 0.025826639051851
714 => 0.025758432840278
715 => 0.02584841443886
716 => 0.026302355297987
717 => 0.027470014431403
718 => 0.027057285708322
719 => 0.026721730831952
720 => 0.027016102923474
721 => 0.026970786647349
722 => 0.026588271672165
723 => 0.026577535750818
724 => 0.025843367216006
725 => 0.025571961824894
726 => 0.02534515516574
727 => 0.025097488214882
728 => 0.024950662944542
729 => 0.025176253290676
730 => 0.025227848471944
731 => 0.024734591237476
801 => 0.024667362099066
802 => 0.025070166604429
803 => 0.024892907359684
804 => 0.025075222888722
805 => 0.025117521655333
806 => 0.025110710579685
807 => 0.024925631570077
808 => 0.025043595411666
809 => 0.024764575759595
810 => 0.024461183795364
811 => 0.024267638624172
812 => 0.024098744792266
813 => 0.024192456906374
814 => 0.023858390330733
815 => 0.023751515709753
816 => 0.025003631916406
817 => 0.025928583620778
818 => 0.025915134456675
819 => 0.025833266129045
820 => 0.025711626400569
821 => 0.026293456594202
822 => 0.026090758588802
823 => 0.026238238323715
824 => 0.026275778105956
825 => 0.026389399720539
826 => 0.026430009681644
827 => 0.026307258173752
828 => 0.025895289120431
829 => 0.024868701408397
830 => 0.024390822057225
831 => 0.024233113911628
901 => 0.02423884630319
902 => 0.024080721353386
903 => 0.024127296237767
904 => 0.024064524509307
905 => 0.023945650041716
906 => 0.02418511674298
907 => 0.024212713049514
908 => 0.024156818660025
909 => 0.024169983812156
910 => 0.023707202139993
911 => 0.023742386425419
912 => 0.023546475853166
913 => 0.023509744982606
914 => 0.023014500115837
915 => 0.022137102047463
916 => 0.022623265748433
917 => 0.022036048362623
918 => 0.021813660240821
919 => 0.022866411020982
920 => 0.022760744041415
921 => 0.022579888104729
922 => 0.02231236448069
923 => 0.022213137366231
924 => 0.021610264830267
925 => 0.021574643904643
926 => 0.021873443812394
927 => 0.021735557936044
928 => 0.021541913944183
929 => 0.020840555035041
930 => 0.02005199540921
1001 => 0.020075797067605
1002 => 0.020326623212908
1003 => 0.021055934058892
1004 => 0.02077097969416
1005 => 0.020564242033073
1006 => 0.020525526283662
1007 => 0.021010134944445
1008 => 0.021695957728105
1009 => 0.022017730433779
1010 => 0.021698863454839
1011 => 0.02133256623845
1012 => 0.021354861052753
1013 => 0.021503178464063
1014 => 0.021518764526897
1015 => 0.02128034269499
1016 => 0.021347457044108
1017 => 0.021245504210733
1018 => 0.020619819860501
1019 => 0.020608503214672
1020 => 0.020454950184602
1021 => 0.020450300659878
1022 => 0.02018906865013
1023 => 0.020152520486155
1024 => 0.019633828475152
1025 => 0.019975233127538
1026 => 0.019746236811266
1027 => 0.019401085347874
1028 => 0.01934158110549
1029 => 0.019339792336111
1030 => 0.019694185714559
1031 => 0.019971091834573
1101 => 0.01975022030023
1102 => 0.019699932133274
1103 => 0.020236878191783
1104 => 0.020168546911466
1105 => 0.0201093724634
1106 => 0.021634549819999
1107 => 0.020427252931178
1108 => 0.019900802577555
1109 => 0.019249220294736
1110 => 0.019461378771585
1111 => 0.019506083679913
1112 => 0.017939145746267
1113 => 0.017303439221737
1114 => 0.017085288698613
1115 => 0.016959739988359
1116 => 0.017016954112163
1117 => 0.016444743679147
1118 => 0.016829278553621
1119 => 0.016333792686373
1120 => 0.016250722868279
1121 => 0.017136712977838
1122 => 0.017259993325704
1123 => 0.016734041061506
1124 => 0.017071787559058
1125 => 0.016949315984018
1126 => 0.016342286369437
1127 => 0.016319102303167
1128 => 0.016014516180693
1129 => 0.015537897878515
1130 => 0.015320070525044
1201 => 0.015206624148092
1202 => 0.015253434334248
1203 => 0.015229765671712
1204 => 0.015075311638566
1205 => 0.015238618796095
1206 => 0.014821436491784
1207 => 0.014655311136741
1208 => 0.014580276167948
1209 => 0.014210002860754
1210 => 0.014799272353786
1211 => 0.014915365867335
1212 => 0.015031688120968
1213 => 0.016044193922272
1214 => 0.015993611993751
1215 => 0.016450847993186
1216 => 0.016433080643051
1217 => 0.01630266952928
1218 => 0.015752486491867
1219 => 0.01597177964451
1220 => 0.015296829406396
1221 => 0.015802548016946
1222 => 0.015571759162405
1223 => 0.015724518073073
1224 => 0.015449843777977
1225 => 0.015601859873907
1226 => 0.014942895946182
1227 => 0.014327564702346
1228 => 0.014575191957505
1229 => 0.014844391103474
1230 => 0.015428083442601
1231 => 0.015080441100774
]
'min_raw' => 0.014210002860754
'max_raw' => 0.042417204610504
'avg_raw' => 0.028313603735629
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.01421'
'max' => '$0.042417'
'avg' => '$0.028313'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.026918827139246
'max_diff' => 0.0012883746105038
'year' => 2026
]
1 => [
'items' => [
101 => 0.015205466432707
102 => 0.014786652499718
103 => 0.013922519727677
104 => 0.013927410625322
105 => 0.013794482624499
106 => 0.013679613423983
107 => 0.015120372005663
108 => 0.014941190901009
109 => 0.014655689261385
110 => 0.015037844551406
111 => 0.015138892475707
112 => 0.015141769168055
113 => 0.015420579802799
114 => 0.015569381088541
115 => 0.015595607960095
116 => 0.016034322517966
117 => 0.01618137385098
118 => 0.016787057480179
119 => 0.015556756339063
120 => 0.015531419096683
121 => 0.015043222260039
122 => 0.014733600108152
123 => 0.015064422353672
124 => 0.015357485701462
125 => 0.015052328555166
126 => 0.015092175636253
127 => 0.014682527099605
128 => 0.014828957175701
129 => 0.014955082483497
130 => 0.014885443501835
131 => 0.014781190575722
201 => 0.015333457848994
202 => 0.015302296765083
203 => 0.015816580746523
204 => 0.016217501886856
205 => 0.016936024243559
206 => 0.016186208706922
207 => 0.01615888244852
208 => 0.016426001007668
209 => 0.01618133295652
210 => 0.016335954719191
211 => 0.016911112287149
212 => 0.016923264460239
213 => 0.016719699903799
214 => 0.016707312982039
215 => 0.016746409781856
216 => 0.016975400959548
217 => 0.016895384405874
218 => 0.016987981587557
219 => 0.017103775781149
220 => 0.017582749661568
221 => 0.017698228642578
222 => 0.017417674587709
223 => 0.017443005477634
224 => 0.017338070559732
225 => 0.017236704743869
226 => 0.01746456029464
227 => 0.017880970792184
228 => 0.017878380324091
301 => 0.017974979465658
302 => 0.018035159930584
303 => 0.01777682132033
304 => 0.017608652384428
305 => 0.01767313905532
306 => 0.017776254646414
307 => 0.017639700058886
308 => 0.016796821886427
309 => 0.017052497280685
310 => 0.017009940393192
311 => 0.016949334210308
312 => 0.017206417796314
313 => 0.017181621457284
314 => 0.016438874834097
315 => 0.016486423063078
316 => 0.016441766399386
317 => 0.016586061215669
318 => 0.016173540562906
319 => 0.016300429137327
320 => 0.016380012461697
321 => 0.016426887651139
322 => 0.016596232978022
323 => 0.016576362258488
324 => 0.016594997786196
325 => 0.016846092200454
326 => 0.018116041582576
327 => 0.01818516212546
328 => 0.017844787292651
329 => 0.017980760324761
330 => 0.017719721837142
331 => 0.017894958722687
401 => 0.018014851349242
402 => 0.017473079623865
403 => 0.017440999418357
404 => 0.017178883532043
405 => 0.017319729762346
406 => 0.017095633282732
407 => 0.017150618720267
408 => 0.016996874643375
409 => 0.017273583371641
410 => 0.017582986726032
411 => 0.017661154232059
412 => 0.017455529176927
413 => 0.01730664308566
414 => 0.017045248155523
415 => 0.017479953749908
416 => 0.017607074913118
417 => 0.017479286036554
418 => 0.017449674561612
419 => 0.017393560870104
420 => 0.017461579346532
421 => 0.017606382583963
422 => 0.017538096051287
423 => 0.017583200509173
424 => 0.017411308827224
425 => 0.017776906841159
426 => 0.018357564473241
427 => 0.018359431382475
428 => 0.018291144481709
429 => 0.018263202953177
430 => 0.018333269457359
501 => 0.018371277661599
502 => 0.018597859888123
503 => 0.018840991644618
504 => 0.019975581465484
505 => 0.019656993183919
506 => 0.020663668770041
507 => 0.021459818458199
508 => 0.021698548938271
509 => 0.021478928129742
510 => 0.020727617207447
511 => 0.020690754309281
512 => 0.02181353002248
513 => 0.021496294457116
514 => 0.021458560296051
515 => 0.021057132575192
516 => 0.02129442607601
517 => 0.021242526506495
518 => 0.021160600497003
519 => 0.021613339966555
520 => 0.022460827837226
521 => 0.022328738904891
522 => 0.022230140644332
523 => 0.021798111768086
524 => 0.022058289648729
525 => 0.021965645288811
526 => 0.022363704252582
527 => 0.02212790294053
528 => 0.021493891085698
529 => 0.021594859563311
530 => 0.02157959838104
531 => 0.021893672430752
601 => 0.021799395196826
602 => 0.02156118923802
603 => 0.022457931215818
604 => 0.02239970177972
605 => 0.022482257807004
606 => 0.022518601523344
607 => 0.023064432562863
608 => 0.023288042075109
609 => 0.023338805349225
610 => 0.023551217091278
611 => 0.02333352035158
612 => 0.024204462525518
613 => 0.024783588250302
614 => 0.025456272581175
615 => 0.026439245189085
616 => 0.026808851982664
617 => 0.026742085823626
618 => 0.027487364436431
619 => 0.02882661353703
620 => 0.027012786357454
621 => 0.028922750781864
622 => 0.028318078096696
623 => 0.026884410037758
624 => 0.026792098716599
625 => 0.027762995371339
626 => 0.029916350706215
627 => 0.029376959617983
628 => 0.029917232956804
629 => 0.029286975408761
630 => 0.029255677809273
701 => 0.029886622754457
702 => 0.031360860009897
703 => 0.030660505150794
704 => 0.029656374726214
705 => 0.030397809005724
706 => 0.029755510016309
707 => 0.02830823062499
708 => 0.029376547155783
709 => 0.028662194315545
710 => 0.028870680451412
711 => 0.030372143869627
712 => 0.030191483818768
713 => 0.03042527465325
714 => 0.030012639949761
715 => 0.029627174070182
716 => 0.028907673380875
717 => 0.028694664697727
718 => 0.028753532634499
719 => 0.028694635525701
720 => 0.028292081502586
721 => 0.028205149999622
722 => 0.028060260352792
723 => 0.028105167712858
724 => 0.027832732787857
725 => 0.028346873779262
726 => 0.028442302877862
727 => 0.028816451815607
728 => 0.028855297199515
729 => 0.029897296665456
730 => 0.029323380869705
731 => 0.029708413135001
801 => 0.029673972225129
802 => 0.026915481971857
803 => 0.027295577590392
804 => 0.027886887092257
805 => 0.027620502963168
806 => 0.027243898128923
807 => 0.026939769532996
808 => 0.026478983611421
809 => 0.027127530947428
810 => 0.027980301728957
811 => 0.02887692487382
812 => 0.029954158833299
813 => 0.029713732753929
814 => 0.028856786734256
815 => 0.028895228706699
816 => 0.029132861853984
817 => 0.028825105337002
818 => 0.028734341932024
819 => 0.029120392355906
820 => 0.029123050873006
821 => 0.028768939806602
822 => 0.028375410157934
823 => 0.028373761254337
824 => 0.028303736454402
825 => 0.029299432665108
826 => 0.029846964904755
827 => 0.029909738593638
828 => 0.029842739735339
829 => 0.029868524936809
830 => 0.029549927990608
831 => 0.030278146132634
901 => 0.030946431113066
902 => 0.030767316462484
903 => 0.030498798138613
904 => 0.030284910360056
905 => 0.030716931299307
906 => 0.030697694086946
907 => 0.030940594226761
908 => 0.03092957487336
909 => 0.030847896692277
910 => 0.030767319379469
911 => 0.031086799316704
912 => 0.030994794225471
913 => 0.030902646224919
914 => 0.030717829302659
915 => 0.030742948991878
916 => 0.030474477031482
917 => 0.030350269618162
918 => 0.02848248813708
919 => 0.027983355893815
920 => 0.02814039305832
921 => 0.028192093770343
922 => 0.027974870778418
923 => 0.02828631274883
924 => 0.02823777484764
925 => 0.028426607427448
926 => 0.028308633029741
927 => 0.028313474740174
928 => 0.028660412289035
929 => 0.028761129735447
930 => 0.028709904029312
1001 => 0.028745780757975
1002 => 0.029572544827376
1003 => 0.029455005415134
1004 => 0.029392564945027
1005 => 0.029409861381973
1006 => 0.029621117327726
1007 => 0.02968025745839
1008 => 0.029429676569064
1009 => 0.029547851965061
1010 => 0.030051027802526
1011 => 0.030227110868354
1012 => 0.030789083489807
1013 => 0.030550347531947
1014 => 0.030988557714849
1015 => 0.032335466420232
1016 => 0.033411470293085
1017 => 0.032421932663869
1018 => 0.034397876748096
1019 => 0.035936432650012
1020 => 0.035877380311897
1021 => 0.035609097502959
1022 => 0.033857492513253
1023 => 0.032245639486767
1024 => 0.033594022986318
1025 => 0.033597460293155
1026 => 0.033481632954722
1027 => 0.032762239303453
1028 => 0.033456599615034
1029 => 0.033511715415021
1030 => 0.033480865223502
1031 => 0.032929307797782
1101 => 0.032087181553559
1102 => 0.032251731005915
1103 => 0.032521266365592
1104 => 0.032010979698758
1105 => 0.031847912189345
1106 => 0.032151085714206
1107 => 0.033127973980024
1108 => 0.032943298912099
1109 => 0.032938476299745
1110 => 0.033728594554742
1111 => 0.033163040402356
1112 => 0.03225380650147
1113 => 0.032024212950174
1114 => 0.031209310515823
1115 => 0.031772166529812
1116 => 0.031792422715723
1117 => 0.03148415222911
1118 => 0.032278820952483
1119 => 0.032271497940298
1120 => 0.033025917622311
1121 => 0.034468084707225
1122 => 0.034041564935484
1123 => 0.033545568846168
1124 => 0.033599497373556
1125 => 0.03419096021206
1126 => 0.033833348278117
1127 => 0.033961948022922
1128 => 0.034190765560944
1129 => 0.034328816862853
1130 => 0.0335796339157
1201 => 0.033404963533156
1202 => 0.033047649231445
1203 => 0.032954432599716
1204 => 0.033245457642852
1205 => 0.033168782826052
1206 => 0.031790720261733
1207 => 0.031646705056294
1208 => 0.031651121797038
1209 => 0.031288988715412
1210 => 0.030736648844033
1211 => 0.032188165047516
1212 => 0.03207158798242
1213 => 0.031942895924902
1214 => 0.031958659967641
1215 => 0.032588713955124
1216 => 0.032223250823895
1217 => 0.033194894456497
1218 => 0.032995153735915
1219 => 0.032790290419541
1220 => 0.032761972068929
1221 => 0.032683117170242
1222 => 0.032412694382028
1223 => 0.03208614261537
1224 => 0.031870524853592
1225 => 0.029398874507869
1226 => 0.029857598435107
1227 => 0.030385318499392
1228 => 0.030567485350878
1229 => 0.030255876345849
1230 => 0.032424998604826
1231 => 0.032821318143723
]
'min_raw' => 0.013679613423983
'max_raw' => 0.035936432650012
'avg_raw' => 0.024808023036997
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.013679'
'max' => '$0.035936'
'avg' => '$0.024808'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -0.00053038943677175
'max_diff' => -0.0064807719604921
'year' => 2027
]
2 => [
'items' => [
101 => 0.031620840409119
102 => 0.031396280040158
103 => 0.03243972074523
104 => 0.031810398444633
105 => 0.032093782238058
106 => 0.031481261479321
107 => 0.032725856372394
108 => 0.032716374644575
109 => 0.032232199120719
110 => 0.032641420957991
111 => 0.032570308593311
112 => 0.032023675619349
113 => 0.03274318561268
114 => 0.03274354248066
115 => 0.032277534065832
116 => 0.031733338259673
117 => 0.031636048902863
118 => 0.031562754441493
119 => 0.032075756293593
120 => 0.032535712150071
121 => 0.033391575966249
122 => 0.033606760464459
123 => 0.034446639886615
124 => 0.033946532583708
125 => 0.034168223673613
126 => 0.034408900711824
127 => 0.034524290134548
128 => 0.034336269262358
129 => 0.035640947713129
130 => 0.035751102548689
131 => 0.035788036512216
201 => 0.035348106279307
202 => 0.035738867293084
203 => 0.035556043155382
204 => 0.036031700771673
205 => 0.036106289959409
206 => 0.036043115570984
207 => 0.036066791356482
208 => 0.034953478459799
209 => 0.034895747312912
210 => 0.034108579028701
211 => 0.034429355922971
212 => 0.03382967889437
213 => 0.034019842657497
214 => 0.034103665032337
215 => 0.034059880980598
216 => 0.034447492167284
217 => 0.034117943474867
218 => 0.03324821029276
219 => 0.032378240152428
220 => 0.032367318385979
221 => 0.032138270604278
222 => 0.031972711010302
223 => 0.032004603661644
224 => 0.032116997524796
225 => 0.031966178474654
226 => 0.031998363365722
227 => 0.032532847004254
228 => 0.032640033886199
229 => 0.032275770980732
301 => 0.030813202852399
302 => 0.030454284965132
303 => 0.030712268024849
304 => 0.030588968738541
305 => 0.024687685143128
306 => 0.026074104188894
307 => 0.025250341070242
308 => 0.025629969014835
309 => 0.024789120183117
310 => 0.025190417318276
311 => 0.025116312390437
312 => 0.027345633188906
313 => 0.027310825410969
314 => 0.027327486052281
315 => 0.026532230233384
316 => 0.027799094346435
317 => 0.028423197163484
318 => 0.028307692342007
319 => 0.028336762417119
320 => 0.027837242212926
321 => 0.027332322499754
322 => 0.02677228883126
323 => 0.027812762165069
324 => 0.027697079291822
325 => 0.027962414181667
326 => 0.028637235513213
327 => 0.02873660551768
328 => 0.028870159811394
329 => 0.02882229010414
330 => 0.029962740739715
331 => 0.029824624642812
401 => 0.030157444697637
402 => 0.029472808593743
403 => 0.028698077855932
404 => 0.028845328841334
405 => 0.028831147387322
406 => 0.028650601201036
407 => 0.028487612176822
408 => 0.02821628137338
409 => 0.029074812184876
410 => 0.02903995740179
411 => 0.029604215825689
412 => 0.029504477668351
413 => 0.028838401843581
414 => 0.028862190871969
415 => 0.029022183520495
416 => 0.029575919903808
417 => 0.029740306563624
418 => 0.029664156113122
419 => 0.029844398581073
420 => 0.029986854878664
421 => 0.029862288898755
422 => 0.031625880487872
423 => 0.030893514302894
424 => 0.031250464485681
425 => 0.031335595001003
426 => 0.031117534976107
427 => 0.031164824387363
428 => 0.031236454959822
429 => 0.031671381769091
430 => 0.032812755563699
501 => 0.033318262247737
502 => 0.034839104047925
503 => 0.03327628695462
504 => 0.033183555855884
505 => 0.03345750538912
506 => 0.034350400523284
507 => 0.035074008164149
508 => 0.03531407056455
509 => 0.035345798773762
510 => 0.035796171795961
511 => 0.036054317213326
512 => 0.035741484665079
513 => 0.035476391835374
514 => 0.034526862223901
515 => 0.034636772861912
516 => 0.035393948164674
517 => 0.036463502877229
518 => 0.037381292088802
519 => 0.037059914295092
520 => 0.039511800003731
521 => 0.039754894456688
522 => 0.039721306663474
523 => 0.040275112004614
524 => 0.039175921182947
525 => 0.038705995810866
526 => 0.035533707914087
527 => 0.03642499141714
528 => 0.037720524332073
529 => 0.037549055692782
530 => 0.036608205060264
531 => 0.037380578369229
601 => 0.037125207598939
602 => 0.036923786077068
603 => 0.037846537116241
604 => 0.036831934444147
605 => 0.037710402894288
606 => 0.036583758020389
607 => 0.037061382321783
608 => 0.036790259668224
609 => 0.036965709252619
610 => 0.035940034567267
611 => 0.036493463730638
612 => 0.035917010094565
613 => 0.035916736780485
614 => 0.035904011534519
615 => 0.036582206680972
616 => 0.036604322600349
617 => 0.036103135362425
618 => 0.036030906451424
619 => 0.036297974592099
620 => 0.035985307744625
621 => 0.036131602594657
622 => 0.0359897388666
623 => 0.035957802353307
624 => 0.035703326781839
625 => 0.035593691708699
626 => 0.035636682445825
627 => 0.03548993289677
628 => 0.035401510985302
629 => 0.03588642219078
630 => 0.035627353694955
701 => 0.03584671622823
702 => 0.035596724935805
703 => 0.034730146200237
704 => 0.034231767605509
705 => 0.032594880705913
706 => 0.033059099800087
707 => 0.033366877539793
708 => 0.033265156998656
709 => 0.033483692081642
710 => 0.033497108360869
711 => 0.033426060377689
712 => 0.033343795914977
713 => 0.033303754124038
714 => 0.033602192828068
715 => 0.033775446540742
716 => 0.033397767153508
717 => 0.033309282157375
718 => 0.033691136870119
719 => 0.033924068024303
720 => 0.035643900794088
721 => 0.035516490027516
722 => 0.035836266048512
723 => 0.035800264175911
724 => 0.03613544039023
725 => 0.036683311844605
726 => 0.035569335990593
727 => 0.035762683680462
728 => 0.035715279291957
729 => 0.036232827975565
730 => 0.036234443706063
731 => 0.035924147416766
801 => 0.036092364069176
802 => 0.035998470148583
803 => 0.036168149153619
804 => 0.035514788379049
805 => 0.036310511276538
806 => 0.036761634884163
807 => 0.036767898735893
808 => 0.036981727745569
809 => 0.037198990403541
810 => 0.037616007155928
811 => 0.037187360032653
812 => 0.036416265585837
813 => 0.036471936114277
814 => 0.036019843722241
815 => 0.036027443477029
816 => 0.035986875390371
817 => 0.036108623272254
818 => 0.035541505192645
819 => 0.03567460667239
820 => 0.035488263821306
821 => 0.035762278607496
822 => 0.035467483993823
823 => 0.035715256432125
824 => 0.03582218680271
825 => 0.036216762172214
826 => 0.035409204890928
827 => 0.033762540927562
828 => 0.034108689656532
829 => 0.033596708496989
830 => 0.033644094302555
831 => 0.033739821171192
901 => 0.033429539070056
902 => 0.03348873111684
903 => 0.033486616360401
904 => 0.033468392531892
905 => 0.033387676173724
906 => 0.033270621485134
907 => 0.033736931336941
908 => 0.033816166467407
909 => 0.033992296347276
910 => 0.034516339399729
911 => 0.034463975141003
912 => 0.034549383419558
913 => 0.03436293762702
914 => 0.033652742988131
915 => 0.033691309973872
916 => 0.033210379043686
917 => 0.033979997862111
918 => 0.033797741967436
919 => 0.033680240406494
920 => 0.033648179016947
921 => 0.034173521070766
922 => 0.034330711646996
923 => 0.034232761028556
924 => 0.034031861452461
925 => 0.034417648029192
926 => 0.034520868242097
927 => 0.034543975441151
928 => 0.03522751528788
929 => 0.034582177725403
930 => 0.034737516890795
1001 => 0.035949428715663
1002 => 0.034850391922907
1003 => 0.035432576223475
1004 => 0.035404081331503
1005 => 0.035701907119631
1006 => 0.035379650923993
1007 => 0.035383645675759
1008 => 0.03564809479915
1009 => 0.035276723698998
1010 => 0.035184766991997
1011 => 0.035057729459881
1012 => 0.035335111263681
1013 => 0.035501389110159
1014 => 0.03684146643515
1015 => 0.037707217502045
1016 => 0.037669632964975
1017 => 0.038013085278488
1018 => 0.037858356865588
1019 => 0.037358698005039
1020 => 0.038211554753089
1021 => 0.037941675192964
1022 => 0.037963923735997
1023 => 0.037963095644114
1024 => 0.038142541958317
1025 => 0.038015387798691
1026 => 0.037764753897962
1027 => 0.03793113637786
1028 => 0.038425232860333
1029 => 0.03995892350266
1030 => 0.040817197104805
1031 => 0.039907254354131
1101 => 0.040534920678927
1102 => 0.040158544544428
1103 => 0.04009014580457
1104 => 0.040484366640719
1105 => 0.040879277508255
1106 => 0.040854123393239
1107 => 0.040567438382306
1108 => 0.040405497293992
1109 => 0.041631769468948
1110 => 0.042535265918454
1111 => 0.042473653517715
1112 => 0.042745590617152
1113 => 0.043544006351797
1114 => 0.043617003480501
1115 => 0.043607807520104
1116 => 0.043426876520148
1117 => 0.04421302049829
1118 => 0.044868835635744
1119 => 0.043384996221257
1120 => 0.04395002284541
1121 => 0.044203681501012
1122 => 0.044576127664569
1123 => 0.045204506771714
1124 => 0.045887093151401
1125 => 0.045983618349667
1126 => 0.045915129102341
1127 => 0.045464945036031
1128 => 0.046211839197633
1129 => 0.046649352280676
1130 => 0.046909881309319
1201 => 0.047570539578061
1202 => 0.044205248010514
1203 => 0.04182312737316
1204 => 0.041451124837398
1205 => 0.042207606622147
1206 => 0.042407084835956
1207 => 0.042326675418094
1208 => 0.03964538206782
1209 => 0.041437008382816
1210 => 0.043364647653532
1211 => 0.043438696128478
1212 => 0.044403712652435
1213 => 0.04471796159
1214 => 0.045494926379392
1215 => 0.045446327020271
1216 => 0.045635505582278
1217 => 0.045592016706989
1218 => 0.0470311803701
1219 => 0.048618791608383
1220 => 0.048563817679496
1221 => 0.048335579780229
1222 => 0.048674551980986
1223 => 0.050313136917654
1224 => 0.050162282274474
1225 => 0.050308824710556
1226 => 0.052240808697488
1227 => 0.054752662702018
1228 => 0.053585654330895
1229 => 0.056117726698619
1230 => 0.057711532034712
1231 => 0.060467853560938
]
'min_raw' => 0.024687685143128
'max_raw' => 0.060467853560938
'avg_raw' => 0.042577769352033
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.024687'
'max' => '$0.060467'
'avg' => '$0.042577'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 0.011008071719146
'max_diff' => 0.024531420910926
'year' => 2028
]
3 => [
'items' => [
101 => 0.060122748530685
102 => 0.061195764274023
103 => 0.059504938500938
104 => 0.055622460753668
105 => 0.055008043788635
106 => 0.056238122112147
107 => 0.059262149641214
108 => 0.056142884723656
109 => 0.056773907953939
110 => 0.056592173221166
111 => 0.05658248934958
112 => 0.056952083340887
113 => 0.05641596797977
114 => 0.054231737553268
115 => 0.055232757485983
116 => 0.054846215617036
117 => 0.055275112639238
118 => 0.057589692977473
119 => 0.056566361837236
120 => 0.055488365609667
121 => 0.056840412105552
122 => 0.058562031908396
123 => 0.058454296035182
124 => 0.058245243411046
125 => 0.059423662107662
126 => 0.06137006455019
127 => 0.061896169309127
128 => 0.062284529086436
129 => 0.062338077338334
130 => 0.062889657612944
131 => 0.059923671460241
201 => 0.064630767656508
202 => 0.065443553138695
203 => 0.06529078315455
204 => 0.066194160010759
205 => 0.065928363623204
206 => 0.065543266359811
207 => 0.06697531083067
208 => 0.06533358740486
209 => 0.063003367689154
210 => 0.061724963066597
211 => 0.063408469399539
212 => 0.064436527970792
213 => 0.065116009289585
214 => 0.065321619926097
215 => 0.060153912522196
216 => 0.057368804845684
217 => 0.059154026935004
218 => 0.06133212109342
219 => 0.059911572037216
220 => 0.059967254870764
221 => 0.057941925230343
222 => 0.06151131782614
223 => 0.06099128734825
224 => 0.063689206387464
225 => 0.063045326356603
226 => 0.065245374600469
227 => 0.064666028166213
228 => 0.067070862823985
301 => 0.06803021647727
302 => 0.069641120572608
303 => 0.070826108182698
304 => 0.071521955572544
305 => 0.071480179505315
306 => 0.074237473533677
307 => 0.072611593577668
308 => 0.070569105162437
309 => 0.070532162990974
310 => 0.071589996683507
311 => 0.073806925900555
312 => 0.074381743391527
313 => 0.074702987950936
314 => 0.074210990725597
315 => 0.072446214561216
316 => 0.071684193161054
317 => 0.072333457471877
318 => 0.071539463011659
319 => 0.072910120205494
320 => 0.074792325289209
321 => 0.074403657382467
322 => 0.075702915922355
323 => 0.077047511825155
324 => 0.078970344355739
325 => 0.079473043981516
326 => 0.080303987346971
327 => 0.0811593010207
328 => 0.081434004721352
329 => 0.081958499321449
330 => 0.081955734976009
331 => 0.083536334755959
401 => 0.085279785260345
402 => 0.085937897464779
403 => 0.087451190190355
404 => 0.084859729429907
405 => 0.086825382185263
406 => 0.088598450174073
407 => 0.0864845254228
408 => 0.089398078211133
409 => 0.089511204863651
410 => 0.091219283006531
411 => 0.089487818580545
412 => 0.088459680531425
413 => 0.091427876555404
414 => 0.09286409311411
415 => 0.09243149299831
416 => 0.089139384756969
417 => 0.087223236555345
418 => 0.082208307114308
419 => 0.088148707666046
420 => 0.091042103490937
421 => 0.089131891560776
422 => 0.090095291347957
423 => 0.095351288203387
424 => 0.09735243150534
425 => 0.096936207687581
426 => 0.097006542661155
427 => 0.098086323263569
428 => 0.10287466510071
429 => 0.100005379679
430 => 0.10219884087382
501 => 0.10336224478245
502 => 0.10444287916998
503 => 0.1017891826522
504 => 0.098336762473125
505 => 0.097243236079671
506 => 0.088941958630484
507 => 0.088509841088633
508 => 0.088267280417891
509 => 0.086737969699747
510 => 0.085536350388747
511 => 0.084580778099375
512 => 0.082073071054022
513 => 0.082919348567317
514 => 0.078922586936161
515 => 0.081479573391239
516 => 0.075100645322731
517 => 0.080413206169056
518 => 0.077521820832903
519 => 0.07946330832257
520 => 0.079456534655618
521 => 0.075881640637971
522 => 0.073819716374726
523 => 0.075133654766559
524 => 0.076542301023162
525 => 0.076770849139041
526 => 0.078597195780156
527 => 0.079106889870502
528 => 0.077562492981413
529 => 0.074968456217033
530 => 0.075570991793719
531 => 0.073807506010496
601 => 0.070717065006899
602 => 0.072936673689606
603 => 0.073694545683187
604 => 0.074029265130567
605 => 0.070990171343077
606 => 0.070035222093111
607 => 0.06952681512523
608 => 0.074576147372374
609 => 0.074852761191095
610 => 0.073437565785263
611 => 0.07983438321396
612 => 0.078386586418905
613 => 0.080004130157808
614 => 0.075516318005614
615 => 0.075687758473468
616 => 0.07356315628024
617 => 0.074752791542478
618 => 0.073911995682862
619 => 0.074656680769494
620 => 0.075103041939969
621 => 0.077227295506884
622 => 0.080437461732554
623 => 0.076910002861601
624 => 0.075373038517385
625 => 0.076326562552321
626 => 0.078865922711283
627 => 0.082713183339566
628 => 0.080435527614287
629 => 0.081446312548064
630 => 0.081667124089402
701 => 0.079987665080979
702 => 0.082775107388762
703 => 0.084268920366644
704 => 0.08580126338091
705 => 0.087131753884921
706 => 0.085189211884067
707 => 0.087268010277438
708 => 0.085592865729696
709 => 0.084090087897111
710 => 0.084092366990763
711 => 0.083149652504302
712 => 0.081323024397113
713 => 0.080986166148644
714 => 0.082738545297685
715 => 0.084143787424293
716 => 0.084259529896497
717 => 0.085037544141734
718 => 0.085497964957882
719 => 0.090010714867877
720 => 0.091825780213102
721 => 0.094045207759814
722 => 0.094909799869341
723 => 0.097511912145592
724 => 0.095410495149293
725 => 0.094955840363611
726 => 0.088643967125866
727 => 0.089677536014949
728 => 0.091332379530935
729 => 0.088671254885928
730 => 0.090359125966726
731 => 0.090692347472074
801 => 0.088580830888783
802 => 0.089708683129164
803 => 0.086713441963595
804 => 0.080502749804914
805 => 0.082782021664556
806 => 0.084460332947864
807 => 0.082065175812294
808 => 0.086358402272421
809 => 0.083850388004598
810 => 0.083055467887614
811 => 0.079954201101776
812 => 0.081417879645986
813 => 0.083397525834888
814 => 0.082174334648718
815 => 0.084712640023101
816 => 0.088307557374544
817 => 0.090869509560212
818 => 0.091066184437141
819 => 0.089419020819222
820 => 0.092058611028995
821 => 0.092077837561967
822 => 0.089100369022301
823 => 0.087276686120369
824 => 0.086862341527989
825 => 0.087897455556798
826 => 0.089154275080363
827 => 0.09113592917368
828 => 0.092333401239416
829 => 0.095455773296747
830 => 0.096300597650038
831 => 0.097228803479566
901 => 0.098469172715891
902 => 0.099958554008245
903 => 0.0966998725311
904 => 0.096829346021129
905 => 0.093794906949128
906 => 0.090552173618113
907 => 0.093013004003937
908 => 0.096230212382855
909 => 0.095492181226031
910 => 0.09540913764428
911 => 0.095548793914417
912 => 0.094992342524017
913 => 0.092475533508287
914 => 0.091211607776645
915 => 0.092842394432306
916 => 0.093709084961827
917 => 0.095053246389756
918 => 0.094887550121958
919 => 0.098349965607904
920 => 0.099695355567733
921 => 0.099351147243527
922 => 0.099414489859017
923 => 0.10185025411709
924 => 0.10455932492519
925 => 0.10709672723035
926 => 0.10967788183913
927 => 0.10656619921407
928 => 0.10498627867897
929 => 0.10661635338419
930 => 0.10575141280064
1001 => 0.11072161795178
1002 => 0.11106574417274
1003 => 0.11603558992148
1004 => 0.12075256533526
1005 => 0.11778991759126
1006 => 0.12058356097327
1007 => 0.12360511406
1008 => 0.12943418019362
1009 => 0.12747115578883
1010 => 0.12596750985928
1011 => 0.12454657172142
1012 => 0.12750331841873
1013 => 0.13130712580964
1014 => 0.13212642948923
1015 => 0.13345401444826
1016 => 0.1320582211932
1017 => 0.13373930042733
1018 => 0.13967424882744
1019 => 0.13807057338049
1020 => 0.13579309644213
1021 => 0.14047816820551
1022 => 0.14217367746392
1023 => 0.15407364938455
1024 => 0.16909785549767
1025 => 0.16287773551258
1026 => 0.15901670631582
1027 => 0.1599241397619
1028 => 0.16541047123293
1029 => 0.16717250677397
1030 => 0.16238268676335
1031 => 0.16407453216605
1101 => 0.1733967666735
1102 => 0.17839784639365
1103 => 0.17160570839906
1104 => 0.15286646905211
1105 => 0.13558803456225
1106 => 0.140171053447
1107 => 0.13965148133311
1108 => 0.14966705933892
1109 => 0.13803232625145
1110 => 0.13822822531771
1111 => 0.14845091487
1112 => 0.14572367655871
1113 => 0.14130589977272
1114 => 0.13562028922179
1115 => 0.12510991226306
1116 => 0.11580057828717
1117 => 0.13405832602547
1118 => 0.13327101874343
1119 => 0.13213088112664
1120 => 0.13466813401703
1121 => 0.14698831384096
1122 => 0.14670429381949
1123 => 0.14489750335117
1124 => 0.14626793799707
1125 => 0.14106565595334
1126 => 0.14240640248977
1127 => 0.13558529756994
1128 => 0.13866872186821
1129 => 0.14129642120787
1130 => 0.14182397075406
1201 => 0.14301256681897
1202 => 0.13285614358132
1203 => 0.1374160794381
1204 => 0.14009461454575
1205 => 0.12799289548344
1206 => 0.13985540246989
1207 => 0.13267934284875
1208 => 0.13024368043254
1209 => 0.13352297900185
1210 => 0.13224503316017
1211 => 0.13114633036899
1212 => 0.1305332353334
1213 => 0.13294119027972
1214 => 0.13282885630335
1215 => 0.12888897464725
1216 => 0.12374955963699
1217 => 0.12547451600998
1218 => 0.12484782318812
1219 => 0.12257660755672
1220 => 0.12410713266466
1221 => 0.11736747467031
1222 => 0.10577224338796
1223 => 0.11343240834462
1224 => 0.11313750032644
1225 => 0.11298879433067
1226 => 0.11874519658418
1227 => 0.1181918513303
1228 => 0.11718752427614
1229 => 0.12255816230276
1230 => 0.12059780717777
1231 => 0.12663915975524
]
'min_raw' => 0.054231737553268
'max_raw' => 0.17839784639365
'avg_raw' => 0.11631479197346
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.054231'
'max' => '$0.178397'
'avg' => '$0.116314'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072435
'min_diff' => 0.029544052410139
'max_diff' => 0.11792999283271
'year' => 2029
]
4 => [
'items' => [
101 => 0.13061838529295
102 => 0.12960912498213
103 => 0.13335160583361
104 => 0.12551425552089
105 => 0.12811750891486
106 => 0.1286540358314
107 => 0.12249188946318
108 => 0.11828238545718
109 => 0.11800165953183
110 => 0.11070295969081
111 => 0.11460186623284
112 => 0.11803274264211
113 => 0.11638961908883
114 => 0.11586945525879
115 => 0.11852685945673
116 => 0.11873336252203
117 => 0.1140250707488
118 => 0.11500407370067
119 => 0.11908667875564
120 => 0.11490120252817
121 => 0.10676950591185
122 => 0.1047527327215
123 => 0.1044836580014
124 => 0.099014009156879
125 => 0.10488750314966
126 => 0.10232356562196
127 => 0.11042301355127
128 => 0.10579665233226
129 => 0.1055972191467
130 => 0.10529574663623
131 => 0.1005877939274
201 => 0.10161853636463
202 => 0.10504488121249
203 => 0.10626743965475
204 => 0.10613991679309
205 => 0.1050280902535
206 => 0.10553707874986
207 => 0.10389744945976
208 => 0.10331846223149
209 => 0.1014910192761
210 => 0.09880518297568
211 => 0.099178664986445
212 => 0.093857320488011
213 => 0.090957969580136
214 => 0.090155467461667
215 => 0.089082328089978
216 => 0.090276681409215
217 => 0.093842245787639
218 => 0.089541418670578
219 => 0.082167952246322
220 => 0.082611110142196
221 => 0.083606754359463
222 => 0.081751377947431
223 => 0.079995419883383
224 => 0.081522082954692
225 => 0.078397848028045
226 => 0.083984303224139
227 => 0.083833205266944
228 => 0.085915490299977
301 => 0.087217585863922
302 => 0.084216677147473
303 => 0.083461956720606
304 => 0.08389187977588
305 => 0.076786209337635
306 => 0.085334805430255
307 => 0.085408734044252
308 => 0.084775712367845
309 => 0.089327575878872
310 => 0.098933427648971
311 => 0.095319319818567
312 => 0.093919828029648
313 => 0.091259393115889
314 => 0.094804264677478
315 => 0.094532073850159
316 => 0.093301123703716
317 => 0.092556641214349
318 => 0.093928373028087
319 => 0.092386668462343
320 => 0.092109735959127
321 => 0.090431826295173
322 => 0.089832888885167
323 => 0.089389459471184
324 => 0.088901287256863
325 => 0.089978073516719
326 => 0.087537934188856
327 => 0.084595365369261
328 => 0.084350722610947
329 => 0.085026202775862
330 => 0.084727353086471
331 => 0.08434929183361
401 => 0.083627469943043
402 => 0.083413320807396
403 => 0.084109201607858
404 => 0.083323592756508
405 => 0.084482801411003
406 => 0.084167560798921
407 => 0.082406652365617
408 => 0.080211908485917
409 => 0.080192370661757
410 => 0.079719516692977
411 => 0.079117266069666
412 => 0.078949733723888
413 => 0.081393511649036
414 => 0.086452058817973
415 => 0.085458944967936
416 => 0.086176571502989
417 => 0.089706583794362
418 => 0.090828668550616
419 => 0.090032239368661
420 => 0.088942037982788
421 => 0.088990001310901
422 => 0.092715549472831
423 => 0.09294790734184
424 => 0.093535000715337
425 => 0.094289581612848
426 => 0.090160747758407
427 => 0.088795533607656
428 => 0.088148619403833
429 => 0.086156374043362
430 => 0.088304839862422
501 => 0.087053020836135
502 => 0.087221933991008
503 => 0.087111929077305
504 => 0.087171999198687
505 => 0.083982741696059
506 => 0.085144739507577
507 => 0.083212692772747
508 => 0.080625899077233
509 => 0.080617227237719
510 => 0.081250341329988
511 => 0.080873740294149
512 => 0.079860316590006
513 => 0.080004268643954
514 => 0.078743097177895
515 => 0.08015739769418
516 => 0.080197954772377
517 => 0.079653372036137
518 => 0.081832297117336
519 => 0.082725004500937
520 => 0.082366548477851
521 => 0.082699854270787
522 => 0.085500213332045
523 => 0.085956794047262
524 => 0.086159577040933
525 => 0.085887874693013
526 => 0.082751039693735
527 => 0.082890171664805
528 => 0.081869313576604
529 => 0.081006796067449
530 => 0.081041292244507
531 => 0.08148473836364
601 => 0.083421293573666
602 => 0.087496659847001
603 => 0.08765131701802
604 => 0.087838766020963
605 => 0.087076316721673
606 => 0.08684635471735
607 => 0.087149733959281
608 => 0.088680227258967
609 => 0.092617071550635
610 => 0.09122552784497
611 => 0.090094181151596
612 => 0.091086677210564
613 => 0.090933890221727
614 => 0.089644214276553
615 => 0.089608017368172
616 => 0.087132716895043
617 => 0.086217654669991
618 => 0.085452960183518
619 => 0.084617933767145
620 => 0.08412290211718
621 => 0.084883495719387
622 => 0.085057452475291
623 => 0.083394401271163
624 => 0.083167733537225
625 => 0.08452581704997
626 => 0.083928175130468
627 => 0.084542864665482
628 => 0.084685477910315
629 => 0.084662513893235
630 => 0.084038507090538
701 => 0.084436230418426
702 => 0.083495496180939
703 => 0.082472588991385
704 => 0.081820037933819
705 => 0.081250600587755
706 => 0.081566557523244
707 => 0.080440228739684
708 => 0.080079893493303
709 => 0.084301490703996
710 => 0.087420029953353
711 => 0.08737468515759
712 => 0.087098660375119
713 => 0.086688543537949
714 => 0.088650224657868
715 => 0.08796681418074
716 => 0.088464052403707
717 => 0.088590620400474
718 => 0.088973703606847
719 => 0.089110622926012
720 => 0.088696757646916
721 => 0.087307775220883
722 => 0.083846563075697
723 => 0.082235359478749
724 => 0.081703635455038
725 => 0.081722962613412
726 => 0.081189833305217
727 => 0.08134686377966
728 => 0.081135224514576
729 => 0.080734430947544
730 => 0.081541809649887
731 => 0.081634852524079
801 => 0.081446400687495
802 => 0.081490787917066
803 => 0.079930487198984
804 => 0.080049113473785
805 => 0.079388587301396
806 => 0.079264746606835
807 => 0.077594993961629
808 => 0.074636785116131
809 => 0.076275919976818
810 => 0.074296075562348
811 => 0.07354627848305
812 => 0.077095701239077
813 => 0.076739437640034
814 => 0.076129669222538
815 => 0.075227694646187
816 => 0.074893143501973
817 => 0.072860516655755
818 => 0.072740418218038
819 => 0.073747842968565
820 => 0.073282951109566
821 => 0.072630066871216
822 => 0.070265386341727
823 => 0.067606702507763
824 => 0.06768695146082
825 => 0.068532629321832
826 => 0.070991551757924
827 => 0.070030808222353
828 => 0.069333777764034
829 => 0.06920324491185
830 => 0.070837136845974
831 => 0.073149436243703
901 => 0.074234315386335
902 => 0.073159233104256
903 => 0.071924236465146
904 => 0.071999404988145
905 => 0.072499467495568
906 => 0.072552016994595
907 => 0.071748161142239
908 => 0.071974441856065
909 => 0.071630700760222
910 => 0.06952116228953
911 => 0.069483007428014
912 => 0.068965292666403
913 => 0.068949616469174
914 => 0.068068854509675
915 => 0.067945629823121
916 => 0.066196823494104
917 => 0.067347893115736
918 => 0.066575816047413
919 => 0.065412113790882
920 => 0.06521149108323
921 => 0.065205460122379
922 => 0.066400322140773
923 => 0.067333930457369
924 => 0.066589246658571
925 => 0.066419696592674
926 => 0.068230047717312
927 => 0.067999664034985
928 => 0.067800153251905
929 => 0.072942395194159
930 => 0.068871909442722
1001 => 0.067096945319892
1002 => 0.064900090161345
1003 => 0.065615397278473
1004 => 0.0657661229981
1005 => 0.060483082354699
1006 => 0.058339753423632
1007 => 0.057604243704137
1008 => 0.057180947461986
1009 => 0.057373848874954
1010 => 0.055444601449585
1011 => 0.05674108762624
1012 => 0.055070522431096
1013 => 0.05479044673964
1014 => 0.057777624251875
1015 => 0.058193272551864
1016 => 0.056419987772304
1017 => 0.05755872366951
1018 => 0.05714580220357
1019 => 0.055099159476553
1020 => 0.055020992778466
1021 => 0.05399405940102
1022 => 0.052387107518802
1023 => 0.051652687388353
1024 => 0.051270195007887
1025 => 0.051428018818695
1026 => 0.051348218270462
1027 => 0.050827465714072
1028 => 0.051378067197423
1029 => 0.049971507931701
1030 => 0.049411404698673
1031 => 0.04915841906261
1101 => 0.047910016755751
1102 => 0.049896779992989
1103 => 0.050288197379309
1104 => 0.050680385978795
1105 => 0.054094119978789
1106 => 0.053923579475261
1107 => 0.055465182570557
1108 => 0.0554052787091
1109 => 0.054965588534007
1110 => 0.053110608010814
1111 => 0.05384997018551
1112 => 0.051574328334189
1113 => 0.053279393937804
1114 => 0.052501273201556
1115 => 0.053016310534159
1116 => 0.052090226971094
1117 => 0.052602759851947
1118 => 0.050381016962233
1119 => 0.048306384712584
1120 => 0.049141277292133
1121 => 0.050048901007652
1122 => 0.052016860481117
1123 => 0.050844760054034
1124 => 0.051266291689637
1125 => 0.04985423127391
1126 => 0.046940747301149
1127 => 0.046957237304032
1128 => 0.046509061268521
1129 => 0.046121771739067
1130 => 0.050979389887756
1201 => 0.050375268283387
1202 => 0.049412679572307
1203 => 0.050701142813843
1204 => 0.051041832945566
1205 => 0.051051531914662
1206 => 0.051991561435637
1207 => 0.052493255359491
1208 => 0.052581681088036
1209 => 0.054060837849972
1210 => 0.054556631686023
1211 => 0.056598736329349
1212 => 0.052450690135192
1213 => 0.052365263853521
1214 => 0.050719274133959
1215 => 0.049675361431745
1216 => 0.050790751729786
1217 => 0.051778835267891
1218 => 0.05074997664376
1219 => 0.050884323859681
1220 => 0.049503165217623
1221 => 0.049996864442605
1222 => 0.050422104723626
1223 => 0.050187312034914
1224 => 0.049835816015818
1225 => 0.051697823685723
1226 => 0.05159276191572
1227 => 0.053326706265306
1228 => 0.054678439881358
1229 => 0.057100988172611
1230 => 0.05457293274039
1231 => 0.05448080035233
]
'min_raw' => 0.046121771739067
'max_raw' => 0.13335160583361
'avg_raw' => 0.089736688786338
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.046121'
'max' => '$0.133351'
'avg' => '$0.089736'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -0.0081099658142006
'max_diff' => -0.04504624056004
'year' => 2030
]
5 => [
'items' => [
101 => 0.05538140922412
102 => 0.054556493807497
103 => 0.05507781187569
104 => 0.057016995772279
105 => 0.057057967672288
106 => 0.056371635557827
107 => 0.056329872186288
108 => 0.056461689776521
109 => 0.057233749519763
110 => 0.056963968122474
111 => 0.057276165985446
112 => 0.057666574193635
113 => 0.059281468072354
114 => 0.059670813519316
115 => 0.058724905935668
116 => 0.058810310799594
117 => 0.058456515397566
118 => 0.05811475347225
119 => 0.058882984370039
120 => 0.060286941435364
121 => 0.060278207491326
122 => 0.060603898241456
123 => 0.060806800880619
124 => 0.059935794219521
125 => 0.05936880091095
126 => 0.059586222224178
127 => 0.059933883638849
128 => 0.059473480313063
129 => 0.056631657706742
130 => 0.057493685149169
131 => 0.057350201631761
201 => 0.057145863654779
202 => 0.058012638914001
203 => 0.057929036325737
204 => 0.055424814228749
205 => 0.055585126402469
206 => 0.055434563343003
207 => 0.055921063390442
208 => 0.054530221208379
209 => 0.054958034896116
210 => 0.055226355630561
211 => 0.055384398604486
212 => 0.055955358197385
213 => 0.055888362679149
214 => 0.055951193661905
215 => 0.05679777601043
216 => 0.061079499017289
217 => 0.061312543753463
218 => 0.060164946240434
219 => 0.060623388811529
220 => 0.059743279325396
221 => 0.060334102719658
222 => 0.060738329080725
223 => 0.058911707883322
224 => 0.058803547230686
225 => 0.057919805219631
226 => 0.058394678118666
227 => 0.057639121191732
228 => 0.057824508433342
301 => 0.05730614954403
302 => 0.058239092340566
303 => 0.059282267351746
304 => 0.0595458145558
305 => 0.05885253532614
306 => 0.058350555474538
307 => 0.057469244217569
308 => 0.058934884479211
309 => 0.059363482356293
310 => 0.058932633237023
311 => 0.058832796081849
312 => 0.058643604853195
313 => 0.058872933895372
314 => 0.059361148120209
315 => 0.059130915307677
316 => 0.059282988136534
317 => 0.05870344332975
318 => 0.059936082558969
319 => 0.061893810305753
320 => 0.06190010472058
321 => 0.061669870667007
322 => 0.061575663852747
323 => 0.061811897963483
324 => 0.061940045277727
325 => 0.06270398307392
326 => 0.06352371876586
327 => 0.067349067561439
328 => 0.066274924927021
329 => 0.069669001949477
330 => 0.072353276208498
331 => 0.07315817268969
401 => 0.072417705800299
402 => 0.069884608570926
403 => 0.069760322736075
404 => 0.073545839442822
405 => 0.072476257585517
406 => 0.072349034226972
407 => 0.070995592639307
408 => 0.071795644244619
409 => 0.071620661222488
410 => 0.071344441961593
411 => 0.072870884692449
412 => 0.075728249218129
413 => 0.075282902160607
414 => 0.074950471241222
415 => 0.073493855721664
416 => 0.074371063611293
417 => 0.074058706683606
418 => 0.075400790271551
419 => 0.074605769684844
420 => 0.072468154450985
421 => 0.072808576722649
422 => 0.072757122581121
423 => 0.073816045167677
424 => 0.073498182891267
425 => 0.072695054870145
426 => 0.075718483056816
427 => 0.075522158447564
428 => 0.075800501857429
429 => 0.075923037234507
430 => 0.077763344692952
501 => 0.078517259775407
502 => 0.078688411698265
503 => 0.079404572716712
504 => 0.078670592959719
505 => 0.081607035306391
506 => 0.083559598120767
507 => 0.085827600307628
508 => 0.089141761084151
509 => 0.090387916193824
510 => 0.090162809427164
511 => 0.092675568303929
512 => 0.097190940149984
513 => 0.091075495176673
514 => 0.09751507358303
515 => 0.095476377408085
516 => 0.09064266545187
517 => 0.09033143138761
518 => 0.093604877244909
519 => 0.10086506509891
520 => 0.099046470385852
521 => 0.10086803966837
522 => 0.098743082341964
523 => 0.098637560300161
524 => 0.10076483523402
525 => 0.10573532906869
526 => 0.10337403376401
527 => 0.099988537931394
528 => 0.10248833537005
529 => 0.10032277948335
530 => 0.095443175969701
531 => 0.099045079740748
601 => 0.096636589265362
602 => 0.097339514828476
603 => 0.10240180357182
604 => 0.10179269559706
605 => 0.10258093771827
606 => 0.10118971100623
607 => 0.099890085880856
608 => 0.097464239072924
609 => 0.096746065425898
610 => 0.096944542784755
611 => 0.096745967070376
612 => 0.095388728076021
613 => 0.095095632444414
614 => 0.094607126884255
615 => 0.094758535184049
616 => 0.093840001813607
617 => 0.095573464062309
618 => 0.095895209930885
619 => 0.097156679196736
620 => 0.09728764912068
621 => 0.10080082307018
622 => 0.098865825895286
623 => 0.10016398905982
624 => 0.1000478691276
625 => 0.090747426647057
626 => 0.092028945562378
627 => 0.094022586831827
628 => 0.093124454142257
629 => 0.091854704649888
630 => 0.09082931385514
701 => 0.089275741949504
702 => 0.09146236457298
703 => 0.09433754080146
704 => 0.097360568334597
705 => 0.10099253783905
706 => 0.10018192452644
707 => 0.097292671191057
708 => 0.097422280985082
709 => 0.098223477732167
710 => 0.097185855148291
711 => 0.096879839991507
712 => 0.098181435948807
713 => 0.098190399324821
714 => 0.096996489141193
715 => 0.095669676455348
716 => 0.095664117061748
717 => 0.095428023559792
718 => 0.098785082851477
719 => 0.10063112602493
720 => 0.10084277189972
721 => 0.10061688057125
722 => 0.10070381717827
723 => 0.099629645330424
724 => 0.10208488363883
725 => 0.10433805310853
726 => 0.1037341555587
727 => 0.10282882728242
728 => 0.10210768970385
729 => 0.10356427846327
730 => 0.1034994188587
731 => 0.10431837363883
801 => 0.10428122111949
802 => 0.10400583742938
803 => 0.10373416539352
804 => 0.10481131430729
805 => 0.10450111271861
806 => 0.10419042930118
807 => 0.10356730614427
808 => 0.10365199893027
809 => 0.10274682697168
810 => 0.10232805300579
811 => 0.096030697337984
812 => 0.094347838131514
813 => 0.094877299895627
814 => 0.095051612455842
815 => 0.094319229972543
816 => 0.09536927831997
817 => 0.0952056293973
818 => 0.095842291623991
819 => 0.095444532705415
820 => 0.095460856870177
821 => 0.096630581038567
822 => 0.096970156941013
823 => 0.096797445896316
824 => 0.096918406791834
825 => 0.099705899574644
826 => 0.09930960723993
827 => 0.099099084835512
828 => 0.099157400980271
829 => 0.099869665150799
830 => 0.10006906023036
831 => 0.099224209267001
901 => 0.099622645865348
902 => 0.10131913833198
903 => 0.10191281468214
904 => 0.10380754461105
905 => 0.10300262966111
906 => 0.10448008588762
907 => 0.10902128262598
908 => 0.1126491048075
909 => 0.10931280960329
910 => 0.11597484303927
911 => 0.12116219168112
912 => 0.12096309260026
913 => 0.12005855837902
914 => 0.11415289986307
915 => 0.10871842484829
916 => 0.11326459395815
917 => 0.11327618307814
918 => 0.11288566311981
919 => 0.1104601771981
920 => 0.11280126146728
921 => 0.112987088235
922 => 0.1128830746604
923 => 0.11102346029108
924 => 0.1081841728633
925 => 0.1087389628304
926 => 0.1096477201139
927 => 0.10792725298959
928 => 0.1073774594966
929 => 0.10839963020257
930 => 0.11169327719493
1001 => 0.11107063230982
1002 => 0.11105437253557
1003 => 0.11371831139659
1004 => 0.11181150608608
1005 => 0.10874596050856
1006 => 0.10797186982066
1007 => 0.10522436936858
1008 => 0.10712207771709
1009 => 0.10719037286213
1010 => 0.10615101739376
1011 => 0.10883029847661
1012 => 0.10880560842975
1013 => 0.11134918705956
1014 => 0.11621155407524
1015 => 0.11477351288615
1016 => 0.11310122744168
1017 => 0.11328305123694
1018 => 0.11527720949157
1019 => 0.11407149588862
1020 => 0.11450507890677
1021 => 0.11527655321174
1022 => 0.11574200281456
1023 => 0.11321608020196
1024 => 0.11262716681211
1025 => 0.111422456697
1026 => 0.11110817031495
1027 => 0.11208938156661
1028 => 0.1118308670685
1029 => 0.10718463291964
1030 => 0.10669907559968
1031 => 0.10671396694947
1101 => 0.10549300998144
1102 => 0.10363075754195
1103 => 0.10852464576362
1104 => 0.1081315980495
1105 => 0.10769770379258
1106 => 0.10775085336329
1107 => 0.10987512437105
1108 => 0.10864293990829
1109 => 0.1119189042536
1110 => 0.11124546446871
1111 => 0.11055475349445
1112 => 0.11045927619824
1113 => 0.11019341140184
1114 => 0.10928166209106
1115 => 0.10818067001066
1116 => 0.10745369967287
1117 => 0.099120357967152
1118 => 0.10066697771492
1119 => 0.10244622275589
1120 => 0.10306041101416
1121 => 0.10200979949786
1122 => 0.10932314663728
1123 => 0.11065936563282
1124 => 0.10661187113592
1125 => 0.10585475017367
1126 => 0.10937278336152
1127 => 0.10725097928718
1128 => 0.10820642753193
1129 => 0.10614127102902
1130 => 0.11033750960585
1201 => 0.11030554129852
1202 => 0.10867310971578
1203 => 0.1100528297111
1204 => 0.10981306940867
1205 => 0.10797005817227
1206 => 0.11039593634937
1207 => 0.11039713955468
1208 => 0.10882595964842
1209 => 0.10699116549341
1210 => 0.1066631476344
1211 => 0.10641603024064
1212 => 0.10814565180164
1213 => 0.10969642508485
1214 => 0.11258202969559
1215 => 0.11330753925501
1216 => 0.11613925136532
1217 => 0.11445310467719
1218 => 0.11520055166478
1219 => 0.11601201110265
1220 => 0.11640105459759
1221 => 0.1157671290998
1222 => 0.12016594358632
1223 => 0.12053733830518
1224 => 0.12066186374186
1225 => 0.11917860824665
1226 => 0.12049608628666
1227 => 0.11987968194203
1228 => 0.12148339480471
1229 => 0.12173487745881
1230 => 0.12152188059754
1231 => 0.12160170516134
]
'min_raw' => 0.054530221208379
'max_raw' => 0.12173487745881
'avg_raw' => 0.088132549333595
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.05453'
'max' => '$0.121734'
'avg' => '$0.088132'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 0.0084084494693116
'max_diff' => -0.011616728374798
'year' => 2031
]
6 => [
'items' => [
101 => 0.11784809300115
102 => 0.11765344840876
103 => 0.11499945558021
104 => 0.11608097727517
105 => 0.11405912430512
106 => 0.11470027470932
107 => 0.11498288769838
108 => 0.11483526671104
109 => 0.1161421248891
110 => 0.11503102846426
111 => 0.11209866231795
112 => 0.10916549725045
113 => 0.10912867375233
114 => 0.10835642316472
115 => 0.10779822743463
116 => 0.1079057557353
117 => 0.10828469949201
118 => 0.10777620253461
119 => 0.10788471614192
120 => 0.10968676504569
121 => 0.11004815310171
122 => 0.10882001528391
123 => 0.10388886472599
124 => 0.10267874801022
125 => 0.10354855590786
126 => 0.10313284375559
127 => 0.083236254099191
128 => 0.087910662708676
129 => 0.085133287840837
130 => 0.08641322996081
131 => 0.083578249418483
201 => 0.084931250727342
202 => 0.084681400789293
203 => 0.092197711507538
204 => 0.09208035465402
205 => 0.092136527169412
206 => 0.089455266653013
207 => 0.093726587459794
208 => 0.095830793680942
209 => 0.095441361111042
210 => 0.095539372898891
211 => 0.093855205655068
212 => 0.09215283358974
213 => 0.090264640976109
214 => 0.093772669464575
215 => 0.093382636580701
216 => 0.094277231686906
217 => 0.096552438920731
218 => 0.096887471828584
219 => 0.097337759454306
220 => 0.097176363394141
221 => 0.10102147233571
222 => 0.10055580427204
223 => 0.10167793032363
224 => 0.09936963189959
225 => 0.096757573127086
226 => 0.097254040105104
227 => 0.097206226342786
228 => 0.09659750227039
229 => 0.096047973395724
301 => 0.095133162648205
302 => 0.098027759219871
303 => 0.097910243885216
304 => 0.099812680556657
305 => 0.099476406395696
306 => 0.097230685248552
307 => 0.097310891618659
308 => 0.097850318003495
309 => 0.099717278880476
310 => 0.10027151998115
311 => 0.10001477342063
312 => 0.10062247348546
313 => 0.10110277483877
314 => 0.10068279194058
315 => 0.10662886411332
316 => 0.1041596403885
317 => 0.10536312285123
318 => 0.10565014632726
319 => 0.10491494172886
320 => 0.10507438128055
321 => 0.10531588875668
322 => 0.10678227485975
323 => 0.11063049629645
324 => 0.11233484737503
325 => 0.11746247168615
326 => 0.11219332474367
327 => 0.11188067537
328 => 0.11280431534785
329 => 0.11581477363263
330 => 0.11825446731448
331 => 0.11906385445805
401 => 0.1191708283306
402 => 0.12068929241899
403 => 0.12155964771677
404 => 0.12050491093909
405 => 0.11961113195554
406 => 0.11640972657642
407 => 0.11678029796619
408 => 0.11933316736375
409 => 0.12293924575105
410 => 0.12603363615587
411 => 0.12495008848649
412 => 0.13321679233836
413 => 0.13403640225882
414 => 0.13392315866897
415 => 0.13579035204208
416 => 0.13208435344378
417 => 0.13049996724266
418 => 0.11980437711661
419 => 0.12280940167458
420 => 0.12717738134849
421 => 0.12659926285957
422 => 0.12342711926394
423 => 0.12603122980049
424 => 0.12517022941904
425 => 0.12449112269525
426 => 0.12760224224825
427 => 0.12418143850198
428 => 0.12714325621434
429 => 0.12334469436216
430 => 0.12495503804097
501 => 0.12404092908532
502 => 0.12463246960861
503 => 0.12117433579663
504 => 0.12304026086012
505 => 0.12109670717939
506 => 0.12109578568189
507 => 0.12105288162667
508 => 0.123339463913
509 => 0.12341402927927
510 => 0.12172424151483
511 => 0.12148071669853
512 => 0.12238115558092
513 => 0.12132697747496
514 => 0.12182022077582
515 => 0.12134191731207
516 => 0.12123424112776
517 => 0.12037625897164
518 => 0.12000661666808
519 => 0.12015156293981
520 => 0.11965678658945
521 => 0.11935866594151
522 => 0.1209935779262
523 => 0.12012011040494
524 => 0.12085970650128
525 => 0.12001684340504
526 => 0.11709511269548
527 => 0.11541479446767
528 => 0.10989591600189
529 => 0.11146106308863
530 => 0.11249875722641
531 => 0.11215579932006
601 => 0.11289260560998
602 => 0.11293783953209
603 => 0.11269829629639
604 => 0.11242093591683
605 => 0.11228593222306
606 => 0.11329213915002
607 => 0.11387627613849
608 => 0.11260290371569
609 => 0.1123045703734
610 => 0.11359202019767
611 => 0.11437736384673
612 => 0.12017590010495
613 => 0.11974632580992
614 => 0.12082447299075
615 => 0.12070309016371
616 => 0.12183316017154
617 => 0.12368034703113
618 => 0.11992449966402
619 => 0.12057638489952
620 => 0.120416557694
621 => 0.12216150921488
622 => 0.12216695676306
623 => 0.1211207711595
624 => 0.12168792534762
625 => 0.12137135543887
626 => 0.12194344005096
627 => 0.11974058858331
628 => 0.12242342388779
629 => 0.12394441862734
630 => 0.12396553764078
701 => 0.12468647707596
702 => 0.12541899329611
703 => 0.12682499439197
704 => 0.12537978068866
705 => 0.12277998192512
706 => 0.12296767899855
707 => 0.12144341793472
708 => 0.12146904103858
709 => 0.12133226290204
710 => 0.12174274438598
711 => 0.11983066618566
712 => 0.12027942711746
713 => 0.11965115918499
714 => 0.12057501916773
715 => 0.11958109854583
716 => 0.12041648062048
717 => 0.12077700383055
718 => 0.12210734223721
719 => 0.1193846064815
720 => 0.11383276396261
721 => 0.11499982856966
722 => 0.11327364834488
723 => 0.11343341289672
724 => 0.11375616271776
725 => 0.11271002495058
726 => 0.11290959506897
727 => 0.11290246501999
728 => 0.11284102210982
729 => 0.11256888127282
730 => 0.11217422321774
731 => 0.11374641943982
801 => 0.11401356621421
802 => 0.11460740040119
803 => 0.11637424814005
804 => 0.1161976983858
805 => 0.11648565835996
806 => 0.11585704335319
807 => 0.11346257254397
808 => 0.11359260382906
809 => 0.11197111162041
810 => 0.1145659351998
811 => 0.1139514467262
812 => 0.11355528200979
813 => 0.11344718479648
814 => 0.11521841220914
815 => 0.11574839121159
816 => 0.11541814386283
817 => 0.11474079691566
818 => 0.11604150329387
819 => 0.11638951744828
820 => 0.11646742498319
821 => 0.11877202729966
822 => 0.11659622665174
823 => 0.11711996349329
824 => 0.12120600882382
825 => 0.11750052954475
826 => 0.11946340456092
827 => 0.11936733204319
828 => 0.12037147248139
829 => 0.11928496321859
830 => 0.11929843180307
831 => 0.12019004048583
901 => 0.11893793689337
902 => 0.1186278984355
903 => 0.1181995825265
904 => 0.11913479464419
905 => 0.11969541201274
906 => 0.12421357627515
907 => 0.127132516442
908 => 0.1270057975512
909 => 0.12816377100529
910 => 0.1276420933584
911 => 0.12595745862499
912 => 0.1288329246956
913 => 0.12792300691625
914 => 0.12799801943243
915 => 0.12799522746283
916 => 0.1286002432397
917 => 0.12817153411291
918 => 0.1273265044179
919 => 0.12788747456533
920 => 0.1295533553527
921 => 0.13472430043217
922 => 0.13761802980455
923 => 0.13455009429048
924 => 0.13666631512679
925 => 0.13539733671158
926 => 0.1351667255847
927 => 0.1364958686574
928 => 0.13782733821909
929 => 0.13774252936412
930 => 0.13677595083404
1001 => 0.13622995514843
1002 => 0.14036441740188
1003 => 0.1434106187615
1004 => 0.14320288825077
1005 => 0.14411974316756
1006 => 0.14681165756052
1007 => 0.14705777247644
1008 => 0.14702676765393
1009 => 0.14641674615537
1010 => 0.1490672854645
1011 => 0.15127841198798
1012 => 0.14627554380368
1013 => 0.1481805705159
1014 => 0.14903579838315
1015 => 0.15029152662694
1016 => 0.15241015065871
1017 => 0.15471153829448
1018 => 0.15503697973961
1019 => 0.15480606346049
1020 => 0.15328823645008
1021 => 0.1558064422624
1022 => 0.15728154816807
1023 => 0.15815993997769
1024 => 0.16038739545645
1025 => 0.14904107997931
1026 => 0.14100959393612
1027 => 0.13975536141441
1028 => 0.14230589256756
1029 => 0.14297844729254
1030 => 0.14270734132621
1031 => 0.13366717359384
1101 => 0.1397077668022
1102 => 0.1462069371869
1103 => 0.14645659679008
1104 => 0.1497102173759
1105 => 0.15076972960906
1106 => 0.15338932064245
1107 => 0.15322546451007
1108 => 0.1538632932399
1109 => 0.15371666746057
1110 => 0.15856890822995
1111 => 0.1639216503633
1112 => 0.1637363019239
1113 => 0.16296678191146
1114 => 0.16410965035259
1115 => 0.16963425386891
1116 => 0.1691256369071
1117 => 0.16961971496161
1118 => 0.17613353386037
1119 => 0.18460242500869
1120 => 0.18066777480752
1121 => 0.18920483357895
1122 => 0.19457845954553
1123 => 0.20387159001142
1124 => 0.20270804430746
1125 => 0.20632579180169
1126 => 0.20062505465805
1127 => 0.18753500986719
1128 => 0.18546346017236
1129 => 0.1896107551214
1130 => 0.19980647506651
1201 => 0.18928965561685
1202 => 0.19141719449438
1203 => 0.19080446315452
1204 => 0.19077181330536
1205 => 0.19201792525128
1206 => 0.1902103748809
1207 => 0.18284608949985
1208 => 0.18622109809197
1209 => 0.18491784519333
1210 => 0.18636390144832
1211 => 0.19416767065752
1212 => 0.19071743827151
1213 => 0.18708289872696
1214 => 0.19164141788471
1215 => 0.19744597924966
1216 => 0.19708274023124
1217 => 0.19637790471337
1218 => 0.20035102562358
1219 => 0.20691345735204
1220 => 0.20868725627826
1221 => 0.20999663838187
1222 => 0.21017718005177
1223 => 0.21203687145772
1224 => 0.20203684206534
1225 => 0.21790714553002
1226 => 0.22064750853008
1227 => 0.22013243386248
1228 => 0.22317823200494
1229 => 0.22228208092699
1230 => 0.22098369861683
1231 => 0.22581193653248
]
'min_raw' => 0.083236254099191
'max_raw' => 0.22581193653248
'avg_raw' => 0.15452409531584
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.083236'
'max' => '$0.225811'
'avg' => '$0.154524'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.028706032890812
'max_diff' => 0.10407705907367
'year' => 2032
]
7 => [
'items' => [
101 => 0.22027675138089
102 => 0.21242025291864
103 => 0.20811002247834
104 => 0.21378608161851
105 => 0.21725225286824
106 => 0.21954317157442
107 => 0.2202364021907
108 => 0.20281311588064
109 => 0.19342293089927
110 => 0.19944193181364
111 => 0.20678552833842
112 => 0.20199604801586
113 => 0.20218378657682
114 => 0.19535524629013
115 => 0.2073897026339
116 => 0.20563638357032
117 => 0.21473260597373
118 => 0.21256171949541
119 => 0.21997933575207
120 => 0.2180260288003
121 => 0.22613409674917
122 => 0.22936862457115
123 => 0.23479990019832
124 => 0.23879516865893
125 => 0.24114126671631
126 => 0.24100041578893
127 => 0.25029682511368
128 => 0.24481505732668
129 => 0.23792866503274
130 => 0.23780411192243
131 => 0.2413706720724
201 => 0.24884520370873
202 => 0.25078324101202
203 => 0.25186633947265
204 => 0.25020753647727
205 => 0.24425747042632
206 => 0.24168826207304
207 => 0.24387730202716
208 => 0.24120029426961
209 => 0.24582156069486
210 => 0.25216754654597
211 => 0.25085712556246
212 => 0.25523766644103
213 => 0.259771065404
214 => 0.26625402952875
215 => 0.26794891641442
216 => 0.27075049998567
217 => 0.27363424975274
218 => 0.27456043245869
219 => 0.27632880262196
220 => 0.2763194824383
221 => 0.28164858495036
222 => 0.28752675004972
223 => 0.2897456212949
224 => 0.29484779337391
225 => 0.28611050249004
226 => 0.29273783799222
227 => 0.29871586050814
228 => 0.29158861561971
301 => 0.30141186226334
302 => 0.30179327667055
303 => 0.30755218138348
304 => 0.30171442818428
305 => 0.29824798896937
306 => 0.30825546909704
307 => 0.31309777349816
308 => 0.31163923200456
309 => 0.30053965922123
310 => 0.29407923177825
311 => 0.27717104703661
312 => 0.29719952224231
313 => 0.30695480827638
314 => 0.3005143953871
315 => 0.30376256503201
316 => 0.32148352539207
317 => 0.32823051974997
318 => 0.32682719208858
319 => 0.32706433136261
320 => 0.33070488705152
321 => 0.3468491158668
322 => 0.33717511974039
323 => 0.34457052730131
324 => 0.34849302480549
325 => 0.35213645909054
326 => 0.34318933600569
327 => 0.33154926033165
328 => 0.32786235974854
329 => 0.29987402325193
330 => 0.29841710879009
331 => 0.29759929855364
401 => 0.29244312069436
402 => 0.28839177729294
403 => 0.28516999860339
404 => 0.27671508921747
405 => 0.27956837293875
406 => 0.26609301205432
407 => 0.27471407041071
408 => 0.2532070690652
409 => 0.27111873886974
410 => 0.26137023133882
411 => 0.26791609196056
412 => 0.26789325406951
413 => 0.25584024929788
414 => 0.2488883276854
415 => 0.25331836270971
416 => 0.25806771191239
417 => 0.2588382778418
418 => 0.26499593305377
419 => 0.26671440226507
420 => 0.26150736032716
421 => 0.25276138426619
422 => 0.25479287503068
423 => 0.2488471595899
424 => 0.23842752197857
425 => 0.24591108762045
426 => 0.24846630595974
427 => 0.24959483594595
428 => 0.23934831905867
429 => 0.23612864098998
430 => 0.23441451140193
501 => 0.2514386876063
502 => 0.25237131040868
503 => 0.24759988029212
504 => 0.26916719686451
505 => 0.26428584888803
506 => 0.26973951053704
507 => 0.25460853853688
508 => 0.25518656204385
509 => 0.24802331741439
510 => 0.2520342557587
511 => 0.24919945381552
512 => 0.25171021157735
513 => 0.25321514942755
514 => 0.26037721863905
515 => 0.27120051819555
516 => 0.25930744433281
517 => 0.25412546173886
518 => 0.25734033459557
519 => 0.26590196466398
520 => 0.2788732724794
521 => 0.27119399718077
522 => 0.27460192915575
523 => 0.27534641068394
524 => 0.26968399738096
525 => 0.27908205373466
526 => 0.28411854848428
527 => 0.28928494994165
528 => 0.2937707915678
529 => 0.28722137558797
530 => 0.29423018950829
531 => 0.28858232271072
601 => 0.28351560232756
602 => 0.28352328645093
603 => 0.2803448587416
604 => 0.27418625454711
605 => 0.27305051344371
606 => 0.27895878209191
607 => 0.28369665403264
608 => 0.28408688785855
609 => 0.28671001720559
610 => 0.28826235813279
611 => 0.30347740952447
612 => 0.30959702905972
613 => 0.31707998398894
614 => 0.3199950166501
615 => 0.32876821986316
616 => 0.32168314574389
617 => 0.32015024539098
618 => 0.29886932408901
619 => 0.30235407376003
620 => 0.30793349421166
621 => 0.29896132667723
622 => 0.30465210186953
623 => 0.30577558143959
624 => 0.29865645585765
625 => 0.30245908843022
626 => 0.29236042371945
627 => 0.27142064148977
628 => 0.27910536569823
629 => 0.28476390936586
630 => 0.27668846985876
701 => 0.29116338261257
702 => 0.28270743740464
703 => 0.28002730873068
704 => 0.2695711712387
705 => 0.27450606564127
706 => 0.28118058098164
707 => 0.27705650649698
708 => 0.28561458028554
709 => 0.29773509512505
710 => 0.30637289578881
711 => 0.30703599886778
712 => 0.30148247172868
713 => 0.31038203441123
714 => 0.3104468580095
715 => 0.3004081149478
716 => 0.29425944071846
717 => 0.29286244899664
718 => 0.29635240821412
719 => 0.30058986298615
720 => 0.30727114811644
721 => 0.3113085087909
722 => 0.32183580417925
723 => 0.32468418847012
724 => 0.32781369922964
725 => 0.33199569070972
726 => 0.33701724372217
727 => 0.3260303716081
728 => 0.32646690051929
729 => 0.31623607733027
730 => 0.30530297550434
731 => 0.31359983695984
801 => 0.32444687962767
802 => 0.32195855605475
803 => 0.32167856882096
804 => 0.32214942968622
805 => 0.32027331497329
806 => 0.31178771765876
807 => 0.30752630381005
808 => 0.3130246148775
809 => 0.31594672250818
810 => 0.3204786566088
811 => 0.31992000007337
812 => 0.33159377562237
813 => 0.33612985180406
814 => 0.33496932940714
815 => 0.33518289345771
816 => 0.34339524271342
817 => 0.35252906408421
818 => 0.36108409311185
819 => 0.3697866360858
820 => 0.35929538086467
821 => 0.35396856847404
822 => 0.35946447915088
823 => 0.3565482715852
824 => 0.37330566526093
825 => 0.37446591084103
826 => 0.39122209276646
827 => 0.40712570470272
828 => 0.39713693098836
829 => 0.40655589469675
830 => 0.41674327188676
831 => 0.43639637532866
901 => 0.42977790149394
902 => 0.42470825426125
903 => 0.41991746212272
904 => 0.42988634004617
905 => 0.44271114223797
906 => 0.44547348179566
907 => 0.44994952717404
908 => 0.44524351276346
909 => 0.45091138877052
910 => 0.47092148166634
911 => 0.46551457793191
912 => 0.45783590542588
913 => 0.47363195197738
914 => 0.47934847981879
915 => 0.5194700659787
916 => 0.57012522584564
917 => 0.54915365704101
918 => 0.53613592753569
919 => 0.53919540275411
920 => 0.55769295235214
921 => 0.56363377820015
922 => 0.54748456561979
923 => 0.55318874051586
924 => 0.58461930501534
925 => 0.60148079445607
926 => 0.5785806269954
927 => 0.51539997320522
928 => 0.45714452498088
929 => 0.472596493127
930 => 0.47084471946963
1001 => 0.50461293998155
1002 => 0.46538562506603
1003 => 0.46604611244515
1004 => 0.50051262399609
1005 => 0.49131754961989
1006 => 0.47642270674661
1007 => 0.45725327381748
1008 => 0.42181680409004
1009 => 0.39042973463339
1010 => 0.45198700584829
1011 => 0.44933254437887
1012 => 0.445488490802
1013 => 0.45404301606728
1014 => 0.49558136251115
1015 => 0.49462376917911
1016 => 0.4885320489691
1017 => 0.49315256505843
1018 => 0.47561270793629
1019 => 0.48013312849179
1020 => 0.45713529702025
1021 => 0.46753127731967
1022 => 0.47639074910342
1023 => 0.47816941923073
1024 => 0.48217685384871
1025 => 0.44793376380415
1026 => 0.46330790590985
1027 => 0.47233877403465
1028 => 0.43153698330102
1029 => 0.4715322538196
1030 => 0.44733766779047
1031 => 0.43912566190169
1101 => 0.45018204598142
1102 => 0.44587336235287
1103 => 0.44216900918342
1104 => 0.44010191646601
1105 => 0.44822050468558
1106 => 0.44784176284133
1107 => 0.43455817676404
1108 => 0.41723028023445
1109 => 0.42304609107859
1110 => 0.4209331524754
1111 => 0.41327559040292
1112 => 0.4184358626622
1113 => 0.39571263518635
1114 => 0.35661850336472
1115 => 0.38244528433173
1116 => 0.38145098135863
1117 => 0.38094960871155
1118 => 0.40035772080845
1119 => 0.39849207865167
1120 => 0.39510591986867
1121 => 0.41321340094141
1122 => 0.40660392676987
1123 => 0.42697276877858
1124 => 0.44038900549963
1125 => 0.43698621389738
1126 => 0.44960424937982
1127 => 0.42318007561416
1128 => 0.43195712618527
1129 => 0.43376606414351
1130 => 0.41298995743572
1201 => 0.3987973207813
1202 => 0.39785083372436
1203 => 0.37324275763139
1204 => 0.3863881932508
1205 => 0.3979556326008
1206 => 0.39241572682171
1207 => 0.39066195815202
1208 => 0.39962158193942
1209 => 0.40031782144169
1210 => 0.3844434870058
1211 => 0.38774426380981
1212 => 0.40150905179104
1213 => 0.3873974264695
1214 => 0.35998084359065
1215 => 0.35318115197278
1216 => 0.35227394776778
1217 => 0.33383264480978
1218 => 0.35363553988068
1219 => 0.34499104549764
1220 => 0.37229889967672
1221 => 0.35670079982459
1222 => 0.35602839691549
1223 => 0.35501196129833
1224 => 0.33913877004175
1225 => 0.34261399013301
1226 => 0.35416615100733
1227 => 0.35828809215169
1228 => 0.35785813992026
1229 => 0.35410953911678
1230 => 0.35582562936867
1231 => 0.35029750474185
]
'min_raw' => 0.19342293089927
'max_raw' => 0.60148079445607
'avg_raw' => 0.39745186267767
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.193422'
'max' => '$0.60148'
'avg' => '$0.397451'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.11018667680008
'max_diff' => 0.37566885792359
'year' => 2033
]
8 => [
'items' => [
101 => 0.34834540887816
102 => 0.34218405736606
103 => 0.33312857276009
104 => 0.33438779343506
105 => 0.31644650893419
106 => 0.30667114492207
107 => 0.30396545300074
108 => 0.30034728868489
109 => 0.30437413428779
110 => 0.3163956835294
111 => 0.30189514463007
112 => 0.2770349877817
113 => 0.27852912556794
114 => 0.28188600956011
115 => 0.2756304784487
116 => 0.26971014323869
117 => 0.27485739437182
118 => 0.26432381818951
119 => 0.28315894191699
120 => 0.28264950460498
121 => 0.28967007397435
122 => 0.2940601800776
123 => 0.28394240682334
124 => 0.28139781421126
125 => 0.28284732980838
126 => 0.25889006582377
127 => 0.28771225439396
128 => 0.28796150987758
129 => 0.28582723309942
130 => 0.3011741587278
131 => 0.33356095862985
201 => 0.32137574175069
202 => 0.31665725747495
203 => 0.30768741541758
204 => 0.31963919738251
205 => 0.31872148700444
206 => 0.31457125264351
207 => 0.3120611779525
208 => 0.31668606753378
209 => 0.311488102952
210 => 0.3105544056826
211 => 0.30489721610266
212 => 0.30287785680836
213 => 0.30138280357986
214 => 0.29973689687618
215 => 0.3033673569301
216 => 0.29514025682112
217 => 0.28521918060226
218 => 0.2843943504622
219 => 0.28667177899873
220 => 0.28566418640593
221 => 0.28438952649651
222 => 0.28195585359647
223 => 0.28123383483422
224 => 0.28358004553782
225 => 0.28093131044604
226 => 0.28483966335803
227 => 0.283776807625
228 => 0.27783978189941
301 => 0.27044004967688
302 => 0.27037417653864
303 => 0.26877991636929
304 => 0.266749386345
305 => 0.26618453934447
306 => 0.27442390723824
307 => 0.29147915219479
308 => 0.2881307995124
309 => 0.29055032747841
310 => 0.30245201037636
311 => 0.30623519747353
312 => 0.30354998088166
313 => 0.29987429079376
314 => 0.30003600250318
315 => 0.3125969482406
316 => 0.31338035901867
317 => 0.31535978531697
318 => 0.31790390749608
319 => 0.30398325588986
320 => 0.29938034106439
321 => 0.2971992246601
322 => 0.29048223033314
323 => 0.29772593284319
324 => 0.29350533759685
325 => 0.29407484009165
326 => 0.2937039508448
327 => 0.293906481453
328 => 0.28315367711604
329 => 0.28707143386567
330 => 0.280557403408
331 => 0.2718358478594
401 => 0.27180661014703
402 => 0.27394119851173
403 => 0.27267146182596
404 => 0.26925463305245
405 => 0.26973997745275
406 => 0.26548784980276
407 => 0.27025626273672
408 => 0.27039300375746
409 => 0.26855690504068
410 => 0.27590330307963
411 => 0.27891312835028
412 => 0.27770456884185
413 => 0.2788283325934
414 => 0.28826993868326
415 => 0.28980933244206
416 => 0.29049302946307
417 => 0.28957696602741
418 => 0.27900090782052
419 => 0.27947000097487
420 => 0.27602810665646
421 => 0.2731200686553
422 => 0.27323637492469
423 => 0.27473148447577
424 => 0.28126071557234
425 => 0.29500109749587
426 => 0.29552253494578
427 => 0.29615453234648
428 => 0.29358388130141
429 => 0.2928085483484
430 => 0.29383141264384
501 => 0.29899157765936
502 => 0.31226492305041
503 => 0.30757323629228
504 => 0.30375882192746
505 => 0.30710509168413
506 => 0.30658995968402
507 => 0.30224172719257
508 => 0.30211968678878
509 => 0.29377403842366
510 => 0.2906888422443
511 => 0.28811062139389
512 => 0.2852952715314
513 => 0.28362623776154
514 => 0.28619063219433
515 => 0.28677713954214
516 => 0.28117004629689
517 => 0.28040582020648
518 => 0.28498469358807
519 => 0.28296970213044
520 => 0.28504217081399
521 => 0.28552300132588
522 => 0.285445576539
523 => 0.28334169403694
524 => 0.28468264600508
525 => 0.28151089484342
526 => 0.27806209183674
527 => 0.2758619703865
528 => 0.2739420726174
529 => 0.27500734348481
530 => 0.27120984735327
531 => 0.26999495191229
601 => 0.28422836165065
602 => 0.29474273445931
603 => 0.29458985131452
604 => 0.29365921448899
605 => 0.29227647693903
606 => 0.29889042179504
607 => 0.2965862556572
608 => 0.298262729042
609 => 0.2986894618798
610 => 0.2999810536561
611 => 0.30044268670006
612 => 0.29904731101644
613 => 0.29436425979142
614 => 0.2826945413898
615 => 0.27726225597205
616 => 0.27546951130232
617 => 0.27553467416616
618 => 0.27373719148168
619 => 0.27426663068978
620 => 0.27355307413137
621 => 0.27220177063761
622 => 0.27492390430194
623 => 0.27523760484832
624 => 0.27460222632399
625 => 0.27475188096751
626 => 0.26949121815978
627 => 0.26989117492749
628 => 0.26766416482082
629 => 0.26724662727283
630 => 0.26161693965111
701 => 0.25164313199297
702 => 0.25716958961651
703 => 0.25049440594481
704 => 0.24796641274279
705 => 0.25993353937752
706 => 0.25873237177982
707 => 0.25667649498755
708 => 0.25363542472953
709 => 0.2525074621892
710 => 0.24565431886371
711 => 0.24524939859594
712 => 0.24864600147849
713 => 0.24707858611816
714 => 0.24487734132564
715 => 0.23690465582374
716 => 0.22794071765416
717 => 0.22821128260219
718 => 0.23106254455394
719 => 0.2393529732237
720 => 0.23611375931655
721 => 0.23376367246122
722 => 0.23332357183657
723 => 0.23883235256716
724 => 0.24662843142619
725 => 0.25028617719942
726 => 0.24666146222554
727 => 0.24249758483207
728 => 0.24275102075546
729 => 0.24443701641248
730 => 0.24461419071734
731 => 0.2419039345877
801 => 0.24266685581278
802 => 0.24150790870891
803 => 0.2343954524717
804 => 0.23426681069221
805 => 0.23252129922775
806 => 0.23246844583432
807 => 0.22949889539503
808 => 0.22908343476104
809 => 0.223187212125
810 => 0.22706812371945
811 => 0.22446501197889
812 => 0.2205415085739
813 => 0.21986509510802
814 => 0.21984476130245
815 => 0.22387332202007
816 => 0.22702104764192
817 => 0.22451029422211
818 => 0.22393864433733
819 => 0.23004236954873
820 => 0.22926561487888
821 => 0.22859295034433
822 => 0.24593037807251
823 => 0.2322064511693
824 => 0.22622203570514
825 => 0.21881518515857
826 => 0.22122689304512
827 => 0.22173507533217
828 => 0.20392293495283
829 => 0.19669655181929
830 => 0.19421672944836
831 => 0.19278955661435
901 => 0.19343993719612
902 => 0.18693534480573
903 => 0.1913065384681
904 => 0.18567411127753
905 => 0.18472981652953
906 => 0.1948012940701
907 => 0.19620268133315
908 => 0.19022392789208
909 => 0.19406325547351
910 => 0.19267106192184
911 => 0.18577066307567
912 => 0.18550711859564
913 => 0.18204474101538
914 => 0.17662679055069
915 => 0.1741506418053
916 => 0.1728610420398
917 => 0.17339315603684
918 => 0.17312410291698
919 => 0.17136834931533
920 => 0.17322474065821
921 => 0.168482427891
922 => 0.16659400073568
923 => 0.16574104200081
924 => 0.16153196646257
925 => 0.16823047742829
926 => 0.16955016847416
927 => 0.17087245971906
928 => 0.18238210223934
929 => 0.18180711302494
930 => 0.18700473549202
1001 => 0.18680276544076
1002 => 0.18532031931725
1003 => 0.1790661229727
1004 => 0.18155893416531
1005 => 0.17388644878333
1006 => 0.1796351965098
1007 => 0.17701170812089
1008 => 0.17874819244652
1009 => 0.17562583705655
1010 => 0.17735387744825
1011 => 0.16986311617845
1012 => 0.16286834870255
1013 => 0.16568324732484
1014 => 0.16874336404998
1015 => 0.17537847681331
1016 => 0.17142665838996
1017 => 0.1728478817298
1018 => 0.16808702145126
1019 => 0.15826400682414
1020 => 0.15831960402016
1021 => 0.15680854722578
1022 => 0.15550277353754
1023 => 0.17188057227391
1024 => 0.16984373410636
1025 => 0.16659829906115
1026 => 0.17094244283762
1027 => 0.17209110340295
1028 => 0.17212380415442
1029 => 0.17529317931515
1030 => 0.17698467540658
1031 => 0.17728280892405
1101 => 0.18226988921835
1102 => 0.18394149275181
1103 => 0.19082659113198
1104 => 0.17684116378104
1105 => 0.17655314310812
1106 => 0.17100357384928
1107 => 0.16748394929011
1108 => 0.17124456555402
1109 => 0.17457595818853
1110 => 0.17110708950466
1111 => 0.17156005052296
1112 => 0.16690337773184
1113 => 0.16856791913785
1114 => 0.17000164643464
1115 => 0.16921002649194
1116 => 0.16802493312289
1117 => 0.1743028219832
1118 => 0.17394859889046
1119 => 0.17979471332522
1120 => 0.18435217758676
1121 => 0.19251996828764
1122 => 0.18399645289472
1123 => 0.18368582211589
1124 => 0.18672228780564
1125 => 0.18394102788474
1126 => 0.18569868814892
1127 => 0.19223678204576
1128 => 0.19237492166721
1129 => 0.19006090502512
1130 => 0.18992009690215
1201 => 0.19036452911083
1202 => 0.19296758243866
1203 => 0.19205799562217
1204 => 0.19311059251414
1205 => 0.19442688104548
1206 => 0.19987160850587
1207 => 0.20118431386354
1208 => 0.19799512040411
1209 => 0.19828306886561
1210 => 0.19709022296647
1211 => 0.19593794877421
1212 => 0.19852809288227
1213 => 0.20326163214917
1214 => 0.20323218504706
1215 => 0.20433027415012
1216 => 0.20501437456427
1217 => 0.20207771479464
1218 => 0.20016605726858
1219 => 0.200899108406
1220 => 0.20207127313851
1221 => 0.20051899118129
1222 => 0.19093758785436
1223 => 0.19384397356133
1224 => 0.19336020886469
1225 => 0.19267126910888
1226 => 0.19559366241166
1227 => 0.19531179044838
1228 => 0.18686863080918
1229 => 0.18740913449552
1230 => 0.18690150062855
1231 => 0.18854176950484
]
'min_raw' => 0.15550277353754
'max_raw' => 0.34834540887816
'avg_raw' => 0.25192409120785
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.1555027'
'max' => '$0.348345'
'avg' => '$0.251924'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.037920157361736
'max_diff' => -0.25313538557792
'year' => 2034
]
9 => [
'items' => [
101 => 0.18385244798251
102 => 0.18529485169972
103 => 0.18619951378946
104 => 0.18673236671025
105 => 0.18865739684084
106 => 0.18843151677363
107 => 0.18864335581871
108 => 0.19149766731325
109 => 0.20593379537123
110 => 0.2067195219699
111 => 0.20285031683203
112 => 0.20439598796791
113 => 0.20142863738813
114 => 0.20342063971186
115 => 0.20478351711038
116 => 0.19862493621272
117 => 0.19826026502082
118 => 0.19528066712965
119 => 0.19688173426331
120 => 0.19433432133285
121 => 0.19495936736127
122 => 0.19321168417529
123 => 0.1963571659498
124 => 0.19987430333215
125 => 0.20076287113089
126 => 0.19842543180488
127 => 0.19673297168809
128 => 0.19376156925403
129 => 0.1987030777239
130 => 0.20014812539023
131 => 0.19869548750368
201 => 0.1983588795646
202 => 0.19772100812829
203 => 0.19849420700523
204 => 0.2001402553503
205 => 0.1993640093485
206 => 0.19987673350838
207 => 0.19792275772978
208 => 0.20207868695122
209 => 0.20867930273369
210 => 0.20870052479274
211 => 0.20792427460669
212 => 0.2076066497551
213 => 0.20840312955279
214 => 0.20883518716972
215 => 0.21141085678602
216 => 0.21417465290351
217 => 0.22707208344513
218 => 0.22345053655895
219 => 0.23489390420705
220 => 0.24394412228138
221 => 0.2466578869638
222 => 0.24416135114847
223 => 0.23562083698444
224 => 0.23520179861488
225 => 0.24796493248801
226 => 0.24435876258028
227 => 0.2439298201445
228 => 0.23936659733741
301 => 0.24206402718254
302 => 0.2414740597065
303 => 0.24054276718338
304 => 0.24568927542329
305 => 0.25532307941644
306 => 0.25382156071887
307 => 0.25270074666458
308 => 0.24778966574274
309 => 0.25074723338732
310 => 0.24969410019756
311 => 0.2542190287156
312 => 0.25153856130095
313 => 0.24433144229647
314 => 0.24547919975291
315 => 0.24530571852233
316 => 0.24887594995452
317 => 0.24780425509717
318 => 0.24509645290135
319 => 0.25529015212172
320 => 0.25462822999468
321 => 0.25556668423436
322 => 0.25597982081332
323 => 0.26218454589564
324 => 0.2647264232328
325 => 0.26530347389017
326 => 0.26771806076463
327 => 0.26524339676909
328 => 0.27514381715675
329 => 0.28172701900901
330 => 0.28937374672886
331 => 0.30054767117423
401 => 0.30474917013026
402 => 0.30399020695001
403 => 0.31246214893825
404 => 0.32768604037042
405 => 0.30706739067617
406 => 0.32877887887021
407 => 0.32190527237916
408 => 0.30560807503979
409 => 0.30455872766247
410 => 0.31559537891504
411 => 0.34007360915494
412 => 0.33394209010963
413 => 0.34008363812354
414 => 0.33291919613779
415 => 0.33256342120654
416 => 0.33973567716762
417 => 0.35649404416002
418 => 0.34853277217993
419 => 0.33711833661248
420 => 0.3455465782072
421 => 0.33824525534092
422 => 0.3217933314116
423 => 0.33393740145257
424 => 0.32581700765937
425 => 0.32818697027211
426 => 0.34525483020799
427 => 0.34320118014455
428 => 0.34585879348952
429 => 0.3411681754975
430 => 0.33678639865039
501 => 0.32860748677023
502 => 0.326186114178
503 => 0.32685529445064
504 => 0.32618578256549
505 => 0.32160975653663
506 => 0.32062156415138
507 => 0.31897453354893
508 => 0.31948501720268
509 => 0.31638811781428
510 => 0.32223260681225
511 => 0.32331739547173
512 => 0.32757052717452
513 => 0.32801210141713
514 => 0.33985701266984
515 => 0.33333303459749
516 => 0.33770988234159
517 => 0.33731837588287
518 => 0.30596128472356
519 => 0.31028201521935
520 => 0.31700371595089
521 => 0.31397559888238
522 => 0.30969454981778
523 => 0.30623737316279
524 => 0.30099939701601
525 => 0.30837174785618
526 => 0.31806560524889
527 => 0.32825795363791
528 => 0.34050339239818
529 => 0.33777035301951
530 => 0.32802903367803
531 => 0.32846602214765
601 => 0.33116731291822
602 => 0.32766889593219
603 => 0.32663714446579
604 => 0.33102556611036
605 => 0.33105578675839
606 => 0.32703043521814
607 => 0.32255699361271
608 => 0.32253824972905
609 => 0.32174224400368
610 => 0.33306080378799
611 => 0.3392848672339
612 => 0.33999844607739
613 => 0.33923683769223
614 => 0.33952995053252
615 => 0.33590830515123
616 => 0.34418631252729
617 => 0.35178303070564
618 => 0.34974694795363
619 => 0.34669457046215
620 => 0.34426320476776
621 => 0.34917419546594
622 => 0.34895551678077
623 => 0.35171667999958
624 => 0.35159141768672
625 => 0.35066294234884
626 => 0.3497469811124
627 => 0.3533786638793
628 => 0.35233279756548
629 => 0.35128530673239
630 => 0.34918440350381
701 => 0.34946995114488
702 => 0.34641810068941
703 => 0.34500617502553
704 => 0.32377420072419
705 => 0.3181003234161
706 => 0.31988544071965
707 => 0.32047314768653
708 => 0.31800386901078
709 => 0.32154418032616
710 => 0.32099242655777
711 => 0.3231389777054
712 => 0.32179790574078
713 => 0.32185294380199
714 => 0.32579675050325
715 => 0.32694165436678
716 => 0.32635934702129
717 => 0.32676717512574
718 => 0.33616540165952
719 => 0.33482927438478
720 => 0.33411948340008
721 => 0.33431610035364
722 => 0.33671754873327
723 => 0.33738982316535
724 => 0.33454134915676
725 => 0.33588470596604
726 => 0.34160454876261
727 => 0.34360617002634
728 => 0.34999438426747
729 => 0.34728055731638
730 => 0.35226190413678
731 => 0.36757286599639
801 => 0.37980432176782
802 => 0.36855576955413
803 => 0.39101728041186
804 => 0.40850678852698
805 => 0.40783551207522
806 => 0.40478581179574
807 => 0.38487447178931
808 => 0.36655175985404
809 => 0.38187948641134
810 => 0.38191855993851
811 => 0.38060189463375
812 => 0.37242419950668
813 => 0.38031732856951
814 => 0.38094385649088
815 => 0.38059316746213
816 => 0.37432334778183
817 => 0.36475049198637
818 => 0.36662100509462
819 => 0.36968494372338
820 => 0.36388426869459
821 => 0.3620306015476
822 => 0.36547692144846
823 => 0.3765816822383
824 => 0.37448239153648
825 => 0.37442757057236
826 => 0.38340922643255
827 => 0.3769802991993
828 => 0.36664459825513
829 => 0.36403469745558
830 => 0.35477130785702
831 => 0.36116956404781
901 => 0.36139982589752
902 => 0.35789556637042
903 => 0.36692894960268
904 => 0.3668457053859
905 => 0.37542155832327
906 => 0.39181536819626
907 => 0.38696691192643
908 => 0.38132868479515
909 => 0.38194171641541
910 => 0.38866516019858
911 => 0.38460001260598
912 => 0.3860618680235
913 => 0.38866294750532
914 => 0.39023224333788
915 => 0.38171591889519
916 => 0.37973035628471
917 => 0.37566859202145
918 => 0.37460895354159
919 => 0.37791717578252
920 => 0.37704557610325
921 => 0.36138047328067
922 => 0.3597433828759
923 => 0.35979359010138
924 => 0.35567704843919
925 => 0.34939833432113
926 => 0.36589842014084
927 => 0.36457323233096
928 => 0.36311032755025
929 => 0.36328952503867
930 => 0.37045165305321
1001 => 0.36629725710864
1002 => 0.37734239961938
1003 => 0.37507185036655
1004 => 0.37274307009295
1005 => 0.37242116172275
1006 => 0.37152477999961
1007 => 0.36845075354202
1008 => 0.36473868187412
1009 => 0.36228765062483
1010 => 0.33419120724865
1011 => 0.33940574370978
1012 => 0.34540459258835
1013 => 0.34747537118236
1014 => 0.34393316110379
1015 => 0.36859062158594
1016 => 0.37309577722123
1017 => 0.35944936693791
1018 => 0.35689668075316
1019 => 0.36875797526724
1020 => 0.36160416469097
1021 => 0.36482552515543
1022 => 0.35786270582123
1023 => 0.37201061715505
1024 => 0.37190283377492
1025 => 0.36639897672099
1026 => 0.37105079901419
1027 => 0.37024243041502
1028 => 0.36402858935654
1029 => 0.37220760700003
1030 => 0.37221166369074
1031 => 0.36691432094051
1101 => 0.36072818434568
1102 => 0.35962224923255
1103 => 0.35878907568628
1104 => 0.36462061553751
1105 => 0.36984915593338
1106 => 0.379578173345
1107 => 0.38202427947803
1108 => 0.39157159456177
1109 => 0.38588663327974
1110 => 0.38840670298349
1111 => 0.39114259513253
1112 => 0.39245428243789
1113 => 0.39031695836283
1114 => 0.40514786851954
1115 => 0.40640005174411
1116 => 0.40681989794797
1117 => 0.4018189984883
1118 => 0.40626096768358
1119 => 0.40418271739967
1120 => 0.40958974728385
1121 => 0.41043763861011
1122 => 0.40971950482138
1123 => 0.40998863891139
1124 => 0.39733307344447
1125 => 0.39667681561158
1126 => 0.38772869349426
1127 => 0.39137511939825
1128 => 0.38455830094848
1129 => 0.38671998429991
1130 => 0.38767283372395
1201 => 0.38717511925856
1202 => 0.39158128284781
1203 => 0.38783514367719
1204 => 0.37794846648365
1205 => 0.36805909567152
1206 => 0.36793494267668
1207 => 0.36533124590374
1208 => 0.36344925002775
1209 => 0.36381178920086
1210 => 0.36508942453361
1211 => 0.3633749915396
1212 => 0.36374085274283
1213 => 0.36981658643691
1214 => 0.37103503149911
1215 => 0.36689427910054
1216 => 0.35026856071258
1217 => 0.34618856771771
1218 => 0.34912118577264
1219 => 0.34771958322718
1220 => 0.2806368420651
1221 => 0.29639693704877
1222 => 0.28703282377173
1223 => 0.29134823799192
1224 => 0.28178990316145
1225 => 0.2863516415378
1226 => 0.2855092550277
1227 => 0.31085102138632
1228 => 0.31045534456109
1229 => 0.31064473411858
1230 => 0.30160467708791
1231 => 0.31600573340206
]
'min_raw' => 0.18385244798251
'max_raw' => 0.41043763861011
'avg_raw' => 0.29714504329631
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.183852'
'max' => '$0.410437'
'avg' => '$0.297145'
'bar_min_pct' => 61.631153054957
'bar_max_pct' => 60.119598047091
'min_diff' => 0.028349674444979
'max_diff' => 0.062092229731955
'year' => 2035
]
10 => [
'items' => [
101 => 0.32310021158765
102 => 0.32178721248892
103 => 0.32211766607462
104 => 0.31643937862726
105 => 0.31069971235319
106 => 0.30433353912693
107 => 0.31616110209852
108 => 0.31484607899932
109 => 0.31786226885852
110 => 0.32553328889726
111 => 0.32666287573734
112 => 0.32818105190554
113 => 0.32763689382038
114 => 0.3406009470738
115 => 0.33903091468523
116 => 0.34281424101253
117 => 0.33503165171561
118 => 0.326224913196
119 => 0.3278987862746
120 => 0.3277375788367
121 => 0.32568522312686
122 => 0.32383244815904
123 => 0.32074809985373
124 => 0.33050743428939
125 => 0.33011122313394
126 => 0.33652542119559
127 => 0.33539164938399
128 => 0.32782004374515
129 => 0.3280904651218
130 => 0.32990917883982
131 => 0.33620376778361
201 => 0.33807243035042
202 => 0.33720679139615
203 => 0.33925569459297
204 => 0.34087506413923
205 => 0.33945906247573
206 => 0.35950665994763
207 => 0.35118149976368
208 => 0.35523912491124
209 => 0.35620684460002
210 => 0.35372805096617
211 => 0.3542656125464
212 => 0.3550798718637
213 => 0.36002389499001
214 => 0.37299844223807
215 => 0.3787447808935
216 => 0.39603292425773
217 => 0.37826762746106
218 => 0.37721350826926
219 => 0.38032762494107
220 => 0.3904775952317
221 => 0.39870319281402
222 => 0.40143209807819
223 => 0.40179276795816
224 => 0.40691237564793
225 => 0.40984683930067
226 => 0.40629072061534
227 => 0.40327728237067
228 => 0.39248352061998
229 => 0.39373292793306
301 => 0.40234010534256
302 => 0.4144982503937
303 => 0.42493120368698
304 => 0.4212779470688
305 => 0.44914971626822
306 => 0.45191308833837
307 => 0.45153127966879
308 => 0.4578266524895
309 => 0.44533161947077
310 => 0.4399897507754
311 => 0.40392882192314
312 => 0.41406047202445
313 => 0.42878742045766
314 => 0.4268382536093
315 => 0.41614315000465
316 => 0.42492309049184
317 => 0.42202016759265
318 => 0.41973051185968
319 => 0.43021986864403
320 => 0.41868638998061
321 => 0.42867236518534
322 => 0.41586524869358
323 => 0.42129463483731
324 => 0.41821265267227
325 => 0.42020707284658
326 => 0.40854773326028
327 => 0.41483882988658
328 => 0.40828600295742
329 => 0.40828289606425
330 => 0.4081382420466
331 => 0.41584761386907
401 => 0.41609901620743
402 => 0.41040177878241
403 => 0.40958071786189
404 => 0.4126166104205
405 => 0.40906237533589
406 => 0.41072537956189
407 => 0.40911274603976
408 => 0.40874970826667
409 => 0.40585696152491
410 => 0.40461068669083
411 => 0.40509938316582
412 => 0.40343121015638
413 => 0.40242607557775
414 => 0.40793829548004
415 => 0.40499333874856
416 => 0.40748693862432
417 => 0.4046451668485
418 => 0.39479434777249
419 => 0.38912903755136
420 => 0.37052175348819
421 => 0.37579875616624
422 => 0.37929741440125
423 => 0.37814110787545
424 => 0.38062530172408
425 => 0.3807778110506
426 => 0.37997017430705
427 => 0.3790350344227
428 => 0.37857986004347
429 => 0.38197235694885
430 => 0.38394181558861
501 => 0.37964855156114
502 => 0.37864269986865
503 => 0.38298342683803
504 => 0.38563126778179
505 => 0.40518143761725
506 => 0.40373309788962
507 => 0.40736814638365
508 => 0.40695889570759
509 => 0.41076900563796
510 => 0.41699692510153
511 => 0.40433382347843
512 => 0.40653170006309
513 => 0.40599283148091
514 => 0.41187605736219
515 => 0.41189442415122
516 => 0.40836713634646
517 => 0.41027933628913
518 => 0.40921199873959
519 => 0.41114082195092
520 => 0.40371375442955
521 => 0.41275912096819
522 => 0.41788726092505
523 => 0.41795846515333
524 => 0.42038916279345
525 => 0.42285889237232
526 => 0.42759932323086
527 => 0.42272668432855
528 => 0.41396128128514
529 => 0.41459411507279
530 => 0.40945496247557
531 => 0.4095413525592
601 => 0.4090801955223
602 => 0.4104641625043
603 => 0.40401745735488
604 => 0.40553048616796
605 => 0.40341223696936
606 => 0.40652709540302
607 => 0.40317602263295
608 => 0.40599257162217
609 => 0.40720810079583
610 => 0.41169342961514
611 => 0.40251353591943
612 => 0.38379511124971
613 => 0.38772995105425
614 => 0.38191001390834
615 => 0.38244867124926
616 => 0.38353684480459
617 => 0.38000971828353
618 => 0.38068258287122
619 => 0.38065854341327
620 => 0.38045138435184
621 => 0.37953384251962
622 => 0.37820322533279
623 => 0.38350399466277
624 => 0.3844046986642
625 => 0.38640685208577
626 => 0.39236390259471
627 => 0.39176865277195
628 => 0.39273952992956
629 => 0.39062011054573
630 => 0.38254698503583
701 => 0.382985394592
702 => 0.37751842040157
703 => 0.38626704926429
704 => 0.38419525847334
705 => 0.38285956147262
706 => 0.38249510417082
707 => 0.38846692105576
708 => 0.39025378226449
709 => 0.389140330271
710 => 0.38685660774778
711 => 0.39124203011432
712 => 0.3924153841335
713 => 0.39267805482676
714 => 0.40044818243895
715 => 0.39311231864493
716 => 0.39487813397237
717 => 0.40865452108281
718 => 0.39616123898511
719 => 0.4027792091457
720 => 0.40245529394459
721 => 0.40584082353885
722 => 0.40217758170166
723 => 0.40222299197458
724 => 0.40522911289865
725 => 0.40100755821757
726 => 0.39996224191068
727 => 0.3985181449194
728 => 0.40167127786862
729 => 0.40356143846773
730 => 0.41879474472664
731 => 0.42863615529305
801 => 0.42820891370549
802 => 0.43211310205306
803 => 0.43035422944421
804 => 0.42467436582309
805 => 0.43436920043877
806 => 0.43130134911726
807 => 0.43155425905277
808 => 0.43154484573233
809 => 0.43358469866492
810 => 0.43213927591241
811 => 0.4292901992976
812 => 0.43118154931535
813 => 0.43679818269805
814 => 0.45423238505733
815 => 0.46398879567004
816 => 0.45364503688794
817 => 0.46078002318738
818 => 0.45650157386328
819 => 0.45572405234825
820 => 0.46020535101565
821 => 0.46469449360314
822 => 0.46440855462741
823 => 0.46114966762892
824 => 0.45930880505466
825 => 0.47324843320112
826 => 0.48351891376405
827 => 0.48281853584384
828 => 0.48590977620857
829 => 0.49498575352791
830 => 0.49581554715013
831 => 0.49571101222632
901 => 0.49365428215362
902 => 0.50259076048909
903 => 0.51004572793891
904 => 0.49317820856643
905 => 0.49960113913143
906 => 0.50248459959595
907 => 0.50671837504205
908 => 0.51386146388276
909 => 0.52162075297452
910 => 0.52271800152837
911 => 0.52193945117123
912 => 0.51682199143433
913 => 0.5253122981461
914 => 0.53028572069566
915 => 0.53324728000918
916 => 0.54075730167177
917 => 0.50250240686614
918 => 0.47542369093107
919 => 0.47119495841642
920 => 0.47979425227167
921 => 0.48206181748321
922 => 0.48114776478972
923 => 0.45066820811567
924 => 0.47103448985842
925 => 0.49294689656801
926 => 0.49378864135081
927 => 0.50475845031645
928 => 0.50833066978332
929 => 0.51716280384639
930 => 0.51661035145601
1001 => 0.51876083555042
1002 => 0.51826647649831
1003 => 0.5346261450249
1004 => 0.55267328884401
1005 => 0.55204837363996
1006 => 0.54945388319185
1007 => 0.55330714393365
1008 => 0.57193373040444
1009 => 0.57021889280718
1010 => 0.5718847114634
1011 => 0.59384650666087
1012 => 0.62239996444652
1013 => 0.6091340165848
1014 => 0.63791730627108
1015 => 0.65603486139197
1016 => 0.68736729958338
1017 => 0.6834443240063
1018 => 0.69564181226616
1019 => 0.67642137897362
1020 => 0.63228737904349
1021 => 0.62530300461639
1022 => 0.63928589909199
1023 => 0.67366148072936
1024 => 0.63820328969392
1025 => 0.64537643555954
1026 => 0.64331056906768
1027 => 0.64320048782169
1028 => 0.64740184124812
1029 => 0.64130755897523
1030 => 0.61647835665503
1031 => 0.62785743375897
1101 => 0.62346342562097
1102 => 0.62833890524509
1103 => 0.65464985797567
1104 => 0.64301715859871
1105 => 0.63076305476883
1106 => 0.64613242037483
1107 => 0.66570290427827
1108 => 0.66447821856713
1109 => 0.66210181640861
1110 => 0.67549747095182
1111 => 0.69762316769868
1112 => 0.70360365462111
1113 => 0.70801832780157
1114 => 0.70862703664664
1115 => 0.71489711606132
1116 => 0.68118131878516
1117 => 0.73468915494551
1118 => 0.74392848012626
1119 => 0.74219186992307
1120 => 0.75246099101124
1121 => 0.74943955508464
1122 => 0.74506196847578
1123 => 0.76134070970521
1124 => 0.74267844651234
1125 => 0.71618971342367
1126 => 0.70165747056348
1127 => 0.72079470024436
1128 => 0.7324811386132
1129 => 0.74020513097792
1130 => 0.74254240640053
1201 => 0.68379858015114
1202 => 0.65213891588468
1203 => 0.67243239770069
1204 => 0.69719184609752
1205 => 0.68104377879918
1206 => 0.68167675246494
1207 => 0.65865385213493
1208 => 0.69922886191684
1209 => 0.69331742428117
1210 => 0.72398597319221
1211 => 0.71666667786411
1212 => 0.74167568895486
1213 => 0.73508997819143
1214 => 0.76242689536828
1215 => 0.77333233174762
1216 => 0.79164425672416
1217 => 0.80511458327984
1218 => 0.81302461667963
1219 => 0.8125497279441
1220 => 0.84389322103705
1221 => 0.82541105821837
1222 => 0.8021931058068
1223 => 0.80177316629938
1224 => 0.81379807285426
1225 => 0.83899897812129
1226 => 0.84553320619877
1227 => 0.8491849482783
1228 => 0.84359217816545
1229 => 0.82353111505433
1230 => 0.81486884971484
1231 => 0.82224935075407
]
'min_raw' => 0.30433353912693
'max_raw' => 0.8491849482783
'avg_raw' => 0.57675924370261
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$0.304333'
'max' => '$0.849184'
'avg' => '$0.576759'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.12048109114442
'max_diff' => 0.43874730966819
'year' => 2036
]
11 => [
'items' => [
101 => 0.81322363219678
102 => 0.82880455459601
103 => 0.8502004889556
104 => 0.84578231311904
105 => 0.86055161253073
106 => 0.87583628364621
107 => 0.89769404981888
108 => 0.90340847928716
109 => 0.91285421389793
110 => 0.92257697757459
111 => 0.9256996672317
112 => 0.93166185070083
113 => 0.93163042705094
114 => 0.94959786823639
115 => 0.96941651226928
116 => 0.97689759158903
117 => 0.99409992097567
118 => 0.96464153474256
119 => 0.98698605909393
120 => 1.0071413793786
121 => 0.9831113756289
122 => 1.0162311375251
123 => 1.0175171028285
124 => 1.036933652142
125 => 1.017251259652
126 => 1.0055639178199
127 => 1.0393048357703
128 => 1.0556310031375
129 => 1.0507134286597
130 => 1.0132904440733
131 => 0.99150866189667
201 => 0.93450153654845
202 => 1.002028939048
203 => 1.0349195670041
204 => 1.0132052652927
205 => 1.0241566960304
206 => 1.0839041511223
207 => 1.1066521136601
208 => 1.1019206964725
209 => 1.1027202280915
210 => 1.1149946157721
211 => 1.1694260103769
212 => 1.1368094570198
213 => 1.1617435899423
214 => 1.1749685641377
215 => 1.1872526572062
216 => 1.1570868070575
217 => 1.1178414792383
218 => 1.1054108365112
219 => 1.0110462059296
220 => 1.006134117103
221 => 1.0033768127931
222 => 0.98599239914769
223 => 0.97233301201404
224 => 0.96147056022484
225 => 0.93296424292728
226 => 0.94258428820349
227 => 0.89715116816199
228 => 0.92621766831363
301 => 0.85370531170635
302 => 0.9140957570052
303 => 0.88122798324565
304 => 0.90329780934925
305 => 0.90322080980508
306 => 0.86258326270361
307 => 0.83914437361946
308 => 0.85408054599909
309 => 0.8700933084249
310 => 0.87269132525509
311 => 0.893452289716
312 => 0.89924622864161
313 => 0.88169032320388
314 => 0.85220265428978
315 => 0.8590519672364
316 => 0.83900557251121
317 => 0.80387503682875
318 => 0.8291064008762
319 => 0.83772149790677
320 => 0.84152641554672
321 => 0.8069795684723
322 => 0.79612419907298
323 => 0.79034489149015
324 => 0.8477430901532
325 => 0.85088749304507
326 => 0.8348002832765
327 => 0.90751599688225
328 => 0.89105819137474
329 => 0.90944559238687
330 => 0.8584304638776
331 => 0.86037931048763
401 => 0.83622793109764
402 => 0.84975108976028
403 => 0.84019335708928
404 => 0.8486585521788
405 => 0.85373255521215
406 => 0.87787997159843
407 => 0.91437148171181
408 => 0.8742731528357
409 => 0.85680173672573
410 => 0.86764090501738
411 => 0.89650703854694
412 => 0.9402407084744
413 => 0.91434949565521
414 => 0.92583957624306
415 => 0.9283496476934
416 => 0.90925842590533
417 => 0.94094462905316
418 => 0.95792552273834
419 => 0.9753444059585
420 => 0.99046873419253
421 => 0.96838692095092
422 => 0.99201762642304
423 => 0.97297544919356
424 => 0.95589264767462
425 => 0.95591855523305
426 => 0.94520226430031
427 => 0.92443810027857
428 => 0.92060886985354
429 => 0.94052901010308
430 => 0.95650307613891
501 => 0.95781877672824
502 => 0.96666284046282
503 => 0.97189666627985
504 => 1.0231952743279
505 => 1.0438279988491
506 => 1.0690573038362
507 => 1.0788855399744
508 => 1.1084650071327
509 => 1.0845771850755
510 => 1.079408904512
511 => 1.0076587925559
512 => 1.0194078693692
513 => 1.0382192749646
514 => 1.0079689857055
515 => 1.0271558315836
516 => 1.0309437213929
517 => 1.0069410924519
518 => 1.0197619336617
519 => 0.98571358052307
520 => 0.91511364276682
521 => 0.94102322696595
522 => 0.96010140200825
523 => 0.93287449390087
524 => 0.9816776728565
525 => 0.95316786321272
526 => 0.94413162226785
527 => 0.90887802468941
528 => 0.92551636571103
529 => 0.94801996018085
530 => 0.93411535512215
531 => 0.9629694984059
601 => 1.0038346604146
602 => 1.0329576084245
603 => 1.0351933067516
604 => 1.0164692022672
605 => 1.0464746991991
606 => 1.0466932564865
607 => 1.0128469333713
608 => 0.99211624892038
609 => 0.98740619379539
610 => 0.99917283495831
611 => 1.0134597095719
612 => 1.0359861288611
613 => 1.0495983722545
614 => 1.0850918836486
615 => 1.0946954101532
616 => 1.1052467741743
617 => 1.1193466504268
618 => 1.1362771670019
619 => 1.0992341605904
620 => 1.1007059482919
621 => 1.0662120136168
622 => 1.0293502974859
623 => 1.0573237451515
624 => 1.0938953068225
625 => 1.0855057501672
626 => 1.0845617536603
627 => 1.086149293942
628 => 1.0798238422012
629 => 1.0512140584098
630 => 1.0368464040965
701 => 1.0553843437402
702 => 1.0652364336321
703 => 1.0805161658618
704 => 1.0786326163485
705 => 1.1179915656489
706 => 1.1332852631942
707 => 1.1293724809079
708 => 1.130092527015
709 => 1.1577810358985
710 => 1.1885763523532
711 => 1.2174202300129
712 => 1.2467614612418
713 => 1.2113894617876
714 => 1.1934297419065
715 => 1.2119595884657
716 => 1.2021273910549
717 => 1.2586261137965
718 => 1.2625379627756
719 => 1.3190326000164
720 => 1.3726527380142
721 => 1.3389748900423
722 => 1.3707315837962
723 => 1.4050790372523
724 => 1.4713408476425
725 => 1.4490262010217
726 => 1.4319335314252
727 => 1.4157810412477
728 => 1.4493918091715
729 => 1.4926315251602
730 => 1.5019449458394
731 => 1.5170362453401
801 => 1.5011695891914
802 => 1.5202792288676
803 => 1.587744654126
804 => 1.5695149006874
805 => 1.5436257202255
806 => 1.5968831940186
807 => 1.6161568667512
808 => 1.751429595689
809 => 1.9222170038107
810 => 1.8515098953977
811 => 1.8076197115017
812 => 1.8179349458063
813 => 1.8803007257338
814 => 1.9003306348556
815 => 1.8458824371388
816 => 1.8651144610537
817 => 1.9710848036757
818 => 2.0279344925567
819 => 1.9507249791244
820 => 1.7377069937384
821 => 1.5412946827846
822 => 1.5933920722112
823 => 1.5874858450204
824 => 1.7013377580982
825 => 1.5690801270969
826 => 1.5713070064093
827 => 1.6875132564783
828 => 1.6565114212394
829 => 1.6062924185674
830 => 1.5416613370797
831 => 1.4221848052984
901 => 1.3163611092501
902 => 1.5239057469425
903 => 1.5149560447698
904 => 1.5019955497521
905 => 1.5308377289419
906 => 1.6708871640921
907 => 1.6676585713161
908 => 1.6471199113178
909 => 1.6626983039071
910 => 1.6035614510261
911 => 1.6188023645346
912 => 1.541263570071
913 => 1.5763143434747
914 => 1.6061846711422
915 => 1.6121815816592
916 => 1.6256929272638
917 => 1.5102399584024
918 => 1.5620749519001
919 => 1.5925231542979
920 => 1.4549570681494
921 => 1.5898039150834
922 => 1.5082301790742
923 => 1.4805428278762
924 => 1.5178201987331
925 => 1.5032931710567
926 => 1.4908036857163
927 => 1.4838343382997
928 => 1.5112067253037
929 => 1.5099297707329
930 => 1.465143232843
1001 => 1.4067210198984
1002 => 1.4263294322064
1003 => 1.419205512185
1004 => 1.3933875070237
1005 => 1.4107857252246
1006 => 1.3341727773047
1007 => 1.202364182403
1008 => 1.2894409776015
1009 => 1.2860886157077
1010 => 1.2843982028233
1011 => 1.3498340077892
1012 => 1.3435438650026
1013 => 1.3321271942516
1014 => 1.3931778309123
1015 => 1.3708935272842
1016 => 1.4395685002238
1017 => 1.4848022790205
1018 => 1.4733295295582
1019 => 1.5158721171503
1020 => 1.4267811704225
1021 => 1.4563736092171
1022 => 1.4624725698393
1023 => 1.3924244755326
1024 => 1.344573010154
1025 => 1.3413818629598
1026 => 1.2584140163314
1027 => 1.3027347703073
1028 => 1.3417351996886
1029 => 1.3230570205705
1030 => 1.3171440670565
1031 => 1.3473520641966
1101 => 1.3496994842884
1102 => 1.2961780574272
1103 => 1.3073068568748
1104 => 1.3537158005803
1105 => 1.3061374705665
1106 => 1.2137005472258
1107 => 1.1907749121968
1108 => 1.1877162098807
1109 => 1.1255400694271
1110 => 1.1923069127527
1111 => 1.1631613964009
1112 => 1.2552317333392
1113 => 1.2026416506632
1114 => 1.2003745973095
1115 => 1.1969476136609
1116 => 1.1434300411085
1117 => 1.1551469882784
1118 => 1.1940959052122
1119 => 1.2079933175652
1120 => 1.2065437035986
1121 => 1.1939050342707
1122 => 1.1996909523686
1123 => 1.1810524942279
1124 => 1.1744708667325
1125 => 1.1536974399377
1126 => 1.1231662413549
1127 => 1.1274117917765
1128 => 1.0669214984613
1129 => 1.0339631762004
1130 => 1.0248407469822
1201 => 1.0126418533792
1202 => 1.0262186444747
1203 => 1.0667501370606
1204 => 1.0178605577662
1205 => 0.9340428032712
1206 => 0.93908039313485
1207 => 0.95039836188462
1208 => 0.92930740199528
1209 => 0.9093465784901
1210 => 0.92670089505505
1211 => 0.89118620752559
1212 => 0.95469014219913
1213 => 0.95297253873393
1214 => 0.97664287852325
1215 => 0.99144442775778
1216 => 0.95733164883066
1217 => 0.94875237718125
1218 => 0.95363952021891
1219 => 0.87286593205203
1220 => 0.97004195311737
1221 => 0.97088233538287
1222 => 0.96368647221483
1223 => 1.0154297034591
1224 => 1.124624060503
1225 => 1.0835407510502
1226 => 1.0676320518805
1227 => 1.0373896031297
1228 => 1.0776858704712
1229 => 1.0745917458591
1230 => 1.0605989409511
1231 => 1.0521360488826
]
'min_raw' => 0.79034489149015
'max_raw' => 2.0279344925567
'avg_raw' => 1.4091396920234
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$0.790344'
'max' => '$2.02'
'avg' => '$1.40'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 0.48601135236322
'max_diff' => 1.1787495442784
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.024808023036997
]
1 => [
'year' => 2028
'avg' => 0.042577769352033
]
2 => [
'year' => 2029
'avg' => 0.11631479197346
]
3 => [
'year' => 2030
'avg' => 0.089736688786338
]
4 => [
'year' => 2031
'avg' => 0.088132549333595
]
5 => [
'year' => 2032
'avg' => 0.15452409531584
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.024808023036997
'min' => '$0.024808'
'max_raw' => 0.15452409531584
'max' => '$0.154524'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.15452409531584
]
1 => [
'year' => 2033
'avg' => 0.39745186267767
]
2 => [
'year' => 2034
'avg' => 0.25192409120785
]
3 => [
'year' => 2035
'avg' => 0.29714504329631
]
4 => [
'year' => 2036
'avg' => 0.57675924370261
]
5 => [
'year' => 2037
'avg' => 1.4091396920234
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.15452409531584
'min' => '$0.154524'
'max_raw' => 1.4091396920234
'max' => '$1.40'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 1.4091396920234
]
]
]
]
'prediction_2025_max_price' => '$0.042417'
'last_price' => 0.04112883
'sma_50day_nextmonth' => '$0.035786'
'sma_200day_nextmonth' => '—'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'decrease'
'sma_200day_direction_label' => 'diminuir'
'sma_200day_date_nextmonth' => '4 de fev. de 2026'
'sma_50day_date_nextmonth' => '4 de fev. de 2026'
'daily_sma3' => '$0.039881'
'daily_sma3_action' => 'BUY'
'daily_sma5' => '$0.035864'
'daily_sma5_action' => 'BUY'
'daily_sma10' => '$0.03224'
'daily_sma10_action' => 'BUY'
'daily_sma21' => '$0.032481'
'daily_sma21_action' => 'BUY'
'daily_sma50' => '$0.02795'
'daily_sma50_action' => 'BUY'
'daily_sma100' => '—'
'daily_sma100_action' => '—'
'daily_sma200' => '—'
'daily_sma200_action' => '—'
'daily_ema3' => '$0.039338'
'daily_ema3_action' => 'BUY'
'daily_ema5' => '$0.0372031'
'daily_ema5_action' => 'BUY'
'daily_ema10' => '$0.0345041'
'daily_ema10_action' => 'BUY'
'daily_ema21' => '$0.032267'
'daily_ema21_action' => 'BUY'
'daily_ema50' => '$0.030638'
'daily_ema50_action' => 'BUY'
'daily_ema100' => '$0.0264044'
'daily_ema100_action' => 'BUY'
'daily_ema200' => '$0.0132022'
'daily_ema200_action' => 'BUY'
'weekly_sma21' => '—'
'weekly_sma21_action' => '—'
'weekly_sma50' => '—'
'weekly_sma50_action' => '—'
'weekly_sma100' => '—'
'weekly_sma100_action' => '—'
'weekly_sma200' => '—'
'weekly_sma200_action' => '—'
'weekly_ema3' => '$0.037038'
'weekly_ema3_action' => 'BUY'
'weekly_ema5' => '$0.035082'
'weekly_ema5_action' => 'BUY'
'weekly_ema10' => '$0.0348097'
'weekly_ema10_action' => 'BUY'
'weekly_ema21' => '$0.024494'
'weekly_ema21_action' => 'BUY'
'weekly_ema50' => '$0.010287'
'weekly_ema50_action' => 'BUY'
'weekly_ema100' => '$0.005143'
'weekly_ema100_action' => 'BUY'
'weekly_ema200' => '$0.002571'
'weekly_ema200_action' => 'BUY'
'rsi_14' => '67.88'
'rsi_14_action' => 'NEUTRAL'
'stoch_rsi_14' => 98.09
'stoch_rsi_14_action' => 'NEUTRAL'
'momentum_10' => 0.01
'momentum_10_action' => 'BUY'
'vwma_10' => '0.033855'
'vwma_10_action' => 'BUY'
'hma_9' => '0.041430'
'hma_9_action' => 'BUY'
'stochastic_fast_14' => 96.03
'stochastic_fast_14_action' => 'SELL'
'cci_20' => 182.09
'cci_20_action' => 'SELL'
'adx_14' => 14.59
'adx_14_action' => 'NEUTRAL'
'ao_5_34' => '0.006047'
'ao_5_34_action' => 'NEUTRAL'
'macd_12_26' => 0
'macd_12_26_action' => 'BUY'
'williams_percent_r_14' => -3.97
'williams_percent_r_14_action' => 'SELL'
'ultimate_oscillator' => 79.09
'ultimate_oscillator_action' => 'SELL'
'ichimoku_cloud' => '-0.009619'
'ichimoku_cloud_action' => 'NEUTRAL'
'sell_signals' => 0
'buy_signals' => 27
'sell_pct' => 0
'buy_pct' => 100
'overall_action' => 'bullish'
'overall_action_label' => 'Altista'
'overall_action_dir' => 1
'last_updated' => 1767690770
'last_updated_date' => '6 de janeiro de 2026'
]
Previsão de preço de 哈基米 (Hajimi) para 2026
A previsão de preço para 哈基米 (Hajimi) em 2026 sugere que o preço médio poderia variar entre $0.01421 na extremidade inferior e $0.042417 na extremidade superior. No mercado de criptomoedas, comparado ao preço médio de hoje, 哈基米 (Hajimi) poderia potencialmente ganhar 3.13% até 2026 se 哈基米 atingir a meta de preço prevista.
Previsão de preço de 哈基米 (Hajimi) 2027-2032
A previsão de preço de 哈基米 para 2027-2032 está atualmente dentro de uma faixa de preço entre $0.024808 na extremidade inferior e $0.154524 na extremidade superior. Considerando a volatilidade de preços no mercado, se 哈基米 (Hajimi) atingir a meta de preço superior, poderia ganhar 275.71% até 2032 em comparação com o preço de hoje.
| Previsão de Preço de 哈基米 (Hajimi) | Potencial Mínimo ($) | Preço Médio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2027 | $0.013679 | $0.024808 | $0.035936 |
| 2028 | $0.024687 | $0.042577 | $0.060467 |
| 2029 | $0.054231 | $0.116314 | $0.178397 |
| 2030 | $0.046121 | $0.089736 | $0.133351 |
| 2031 | $0.05453 | $0.088132 | $0.121734 |
| 2032 | $0.083236 | $0.154524 | $0.225811 |
Previsão de preço de 哈基米 (Hajimi) 2032-2037
A previsão de preço de 哈基米 (Hajimi) para 2032-2037 é atualmente estimada entre $0.154524 na extremidade inferior e $1.40 na extremidade superior. Comparado ao preço atual, 哈基米 (Hajimi) poderia potencialmente ganhar 3326.16% até 2037 se atingir a meta de preço superior. Por favor, note que esta informação é apenas para fins gerais e não deve ser considerada como aconselhamento de investimento a longo prazo.
| Previsão de Preço de 哈基米 (Hajimi) | Potencial Mínimo ($) | Preço Médio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2032 | $0.083236 | $0.154524 | $0.225811 |
| 2033 | $0.193422 | $0.397451 | $0.60148 |
| 2034 | $0.1555027 | $0.251924 | $0.348345 |
| 2035 | $0.183852 | $0.297145 | $0.410437 |
| 2036 | $0.304333 | $0.576759 | $0.849184 |
| 2037 | $0.790344 | $1.40 | $2.02 |
哈基米 (Hajimi) Histograma de preços potenciais
Previsão de preço de 哈基米 (Hajimi) baseada na análise técnica
Em 6 de janeiro de 2026, o sentimento geral de previsão de preço para 哈基米 (Hajimi) é Altista, com 27 indicadores técnicos mostrando sinais de alta e 0 indicando sinais de baixa. A previsão de preço de 哈基米 foi atualizada pela última vez em 6 de janeiro de 2026.
Médias Móveis Simples de 50 e 200 dias e Índice de Força Relativa de 14 dias - RSI (14) de 哈基米 (Hajimi)
De acordo com nossos indicadores técnicos, o SMA de 200 dias de 哈基米 (Hajimi) está projetado para diminuir no próximo mês, alcançando — até 4 de fev. de 2026. O SMA de 50 dias de curto prazo para 哈基米 (Hajimi) é esperado para alcançar $0.035786 até 4 de fev. de 2026.
O oscilador de momentum Índice de Força Relativa (RSI) é uma ferramenta comumente usada para identificar se uma criptomoeda está sobrevendida (abaixo de 30) ou sobrecomprada (acima de 70). No momento, o RSI está em 67.88, sugerindo que o mercado de 哈基米 está em um estado NEUTRAL.
Médias Móveis e Osciladores Populares de 哈基米 para Sábado, 19 de Outubro de 2024
Médias móveis (MA) são indicadores amplamente utilizados nos mercados financeiros, projetados para suavizar movimentos de preços ao longo de um período definido. Como indicadores atrasados, eles se baseiam em dados históricos de preços. A tabela abaixo destaca dois tipos: a média móvel simples (SMA) e a média móvel exponencial (EMA).
Média Móvel Simples Diária (SMA)
| Período | Valor | Ação |
|---|---|---|
| SMA 3 | $0.039881 | BUY |
| SMA 5 | $0.035864 | BUY |
| SMA 10 | $0.03224 | BUY |
| SMA 21 | $0.032481 | BUY |
| SMA 50 | $0.02795 | BUY |
| SMA 100 | — | — |
| SMA 200 | — | — |
Média Móvel Exponencial Diária (EMA)
| Período | Valor | Ação |
|---|---|---|
| EMA 3 | $0.039338 | BUY |
| EMA 5 | $0.0372031 | BUY |
| EMA 10 | $0.0345041 | BUY |
| EMA 21 | $0.032267 | BUY |
| EMA 50 | $0.030638 | BUY |
| EMA 100 | $0.0264044 | BUY |
| EMA 200 | $0.0132022 | BUY |
Média Móvel Simples Semanal (SMA)
| Período | Valor | Ação |
|---|---|---|
| SMA 21 | — | — |
| SMA 50 | — | — |
| SMA 100 | — | — |
| SMA 200 | — | — |
Média Móvel Exponencial Semanal (EMA)
| Período | Valor | Ação |
|---|---|---|
| EMA 21 | $0.024494 | BUY |
| EMA 50 | $0.010287 | BUY |
| EMA 100 | $0.005143 | BUY |
| EMA 200 | $0.002571 | BUY |
Osciladores de 哈基米 (Hajimi)
Um oscilador é uma ferramenta de análise técnica que define limites altos e baixos entre dois extremos, criando um indicador de tendência que flutua dentro desses limites. Os traders usam esse indicador para identificar condições de sobrecompra ou sobrevenda de curto prazo.
| Período | Valor | Ação |
|---|---|---|
| RSI (14) | 67.88 | NEUTRAL |
| Stoch RSI (14) | 98.09 | NEUTRAL |
| Estocástico Rápido (14) | 96.03 | SELL |
| Índice de Canal de Commodities (20) | 182.09 | SELL |
| Índice Direcional Médio (14) | 14.59 | NEUTRAL |
| Oscilador Impressionante (5, 34) | 0.006047 | NEUTRAL |
| Momentum (10) | 0.01 | BUY |
| MACD (12, 26) | 0 | BUY |
| Williams Percent Range (14) | -3.97 | SELL |
| Oscilador Ultimate (7, 14, 28) | 79.09 | SELL |
| VWMA (10) | 0.033855 | BUY |
| Média Móvel de Hull (9) | 0.041430 | BUY |
| Nuvem Ichimoku B/L (9, 26, 52, 26) | -0.009619 | NEUTRAL |
Previsão do preço de 哈基米 (Hajimi) com base nos fluxos financeiros mundiais
Definições dos fluxos financeiros mundiais, usadas na previsão do preço do 哈基米 (Hajimi)
M0: o total de todas as moedas físicas, mais as contas no Banco Central que podem ser trocadas por moedas físicas.
M1: o valor de M0, mais o valor em contas de demanda, incluindo contas 'correntes'.
M2: o valor de M1, mais a maioria das contas de poupança, do mercado de moedas e de certificados de depósito (CD) de menos de US$ 100.000.
Previsões de preço de 哈基米 (Hajimi) por empresas de Internet ou nichos tecnológicos
| Comparação | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Facebook stock | $0.057792 | $0.0812086 | $0.114111 | $0.160345 | $0.225312 | $0.3166022 |
| Amazon.com stock | $0.085817 | $0.179063 | $0.373627 | $0.779595 | $1.62 | $3.39 |
| Apple stock | $0.058338 | $0.082748 | $0.117371 | $0.166483 | $0.236143 | $0.334951 |
| Netflix stock | $0.064894 | $0.102393 | $0.161561 | $0.254918 | $0.402221 | $0.634643 |
| Google stock | $0.053261 | $0.068973 | $0.08932 | $0.115669 | $0.149791 | $0.193979 |
| Tesla stock | $0.093235 | $0.211358 | $0.479134 | $1.08 | $2.46 | $5.58 |
| Kodak stock | $0.030842 | $0.023128 | $0.017343 | $0.013006 | $0.009753 | $0.007313 |
| Nokia stock | $0.027246 | $0.018049 | $0.011956 | $0.007921 | $0.005247 | $0.003476 |
Este cálculo mostra quanto a criptomoeda pode custar, se assumirmos que sua capitalização se comportará da mesma forma que a de algumas empresas de Internet ou nichos tecnológicos. Se você extrapolar os dados, poderá obter uma imagem em potencial do preço futuro para 2024, 2025, 2026, 2027, 2028, 2029 e 2030.
Visão geral da previsão para 哈基米 (Hajimi)
Você pode fazer perguntas como: 'Devo investir em 哈基米 (Hajimi) agora?', 'Devo comprar 哈基米 hoje?', '哈基米 (Hajimi) será um bom ou mau investimento no curto ou no longo prazo?'.
Atualizamos a previsão para 哈基米 (Hajimi) regularmente com novos valores. Veja nossas previsões semelhantes. Fazemos previsões de preços futuros para uma enorme quantidade de moedas digitais, como 哈基米 (Hajimi), com métodos de análise técnica.
Se você estiver tentando encontrar criptomoedas com bom retorno, você deve explorar o máximo de fontes de informações disponíveis sobre 哈基米 (Hajimi) para poder tomar sozinho uma decisão de tão grande responsabilidade sobre o seu investimento.
O preço de 哈基米 (Hajimi) é de $0.04112 USD hoje, mas o preço pode tanto subir quanto descer e seu investimento pode ser perdido, porque criptomoedas são ativos de alto risco
Previsão do preço de 哈基米 (Hajimi) com base no padrão de crescimento do Bitcoin
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| Se 哈基米 (Hajimi) tiver 1% da média anterior do crescimento anual do Bitcoin | $0.042197 | $0.043294 | $0.04442 | $0.045574 |
| Se 哈基米 (Hajimi) tiver 2% da média anterior do crescimento anual do Bitcoin | $0.043266 | $0.045516 | $0.047882 | $0.050371 |
| Se 哈基米 (Hajimi) tiver 5% da média anterior do crescimento anual do Bitcoin | $0.046474 | $0.052514 | $0.059339 | $0.067051 |
| Se 哈基米 (Hajimi) tiver 10% da média anterior do crescimento anual do Bitcoin | $0.051819 | $0.065289 | $0.082259 | $0.103641 |
| Se 哈基米 (Hajimi) tiver 20% da média anterior do crescimento anual do Bitcoin | $0.06251 | $0.095007 | $0.144397 | $0.219465 |
| Se 哈基米 (Hajimi) tiver 50% da média anterior do crescimento anual do Bitcoin | $0.094582 | $0.2175073 | $0.500192 | $1.15 |
| Se 哈基米 (Hajimi) tiver 100% da média anterior do crescimento anual do Bitcoin | $0.148035 | $0.532828 | $1.91 | $6.90 |
Perguntas Frequentes sobre 哈基米 (Hajimi)
哈基米 é um bom investimento?
A decisão de adquirir 哈基米 (Hajimi) depende inteiramente da sua tolerância individual ao risco. Como você pode perceber, o valor de 哈基米 (Hajimi) experimentou uma queda de -10.2941% nas últimas 24 horas, e 哈基米 (Hajimi) registrou um declínio de durante os últimos 30 dias. Consequentemente, a decisão de investir ou não em 哈基米 (Hajimi) dependerá de quão alinhado esse investimento está com suas aspirações de negociação.
哈基米 (Hajimi) pode subir?
Parece que o valor médio de 哈基米 (Hajimi) pode potencialmente subir para $0.042417 até o final deste ano. Observando as perspectivas de 哈基米 (Hajimi) em um horizonte de cinco anos mais longo, a moeda digital poderia potencialmente crescer até $0.133351. No entanto, dada a imprevisibilidade do mercado, é vital conduzir uma pesquisa aprofundada antes de investir quaisquer fundos em um projeto, rede ou ativo específico.
Qual será o preço de 哈基米 (Hajimi) na próxima semana?
Com base na nossa nova previsão experimental de 哈基米 (Hajimi), o preço de 哈基米 (Hajimi) aumentará 0.86% na próxima semana e atingirá $0.04148 até 13 de janeiro de 2026.
Qual será o preço de 哈基米 (Hajimi) no próximo mês?
Com base na nossa nova previsão experimental de 哈基米 (Hajimi), o preço de 哈基米 (Hajimi) diminuirá -11.62% no próximo mês e atingirá $0.03635 até 5 de fevereiro de 2026.
Até onde o preço de 哈基米 (Hajimi) pode subir este ano em 2026?
De acordo com nossa previsão mais recente sobre o valor de 哈基米 (Hajimi) em 2026, espera-se que 哈基米 fluctue dentro do intervalo de $0.01421 e $0.042417. No entanto, é crucial lembrar que o mercado de criptomoedas é excepcionalmente instável, e essa previsão de preço de 哈基米 (Hajimi) não considera flutuações repentinas e extremas de preço.
Onde estará 哈基米 (Hajimi) em 5 anos?
O futuro de 哈基米 (Hajimi) parece seguir uma tendência de alta, com um preço máximo de $0.133351 projetada após um período de cinco anos. Com base na previsão de 哈基米 (Hajimi) para 2030, o valor de 哈基米 (Hajimi) pode potencialmente atingir seu pico mais alto de aproximadamente $0.133351, enquanto seu pico mais baixo está previsto para cerca de $0.046121.
Quanto será 哈基米 (Hajimi) em 2026?
Com base na nossa nova simulação experimental de previsão de preços de 哈基米 (Hajimi), espera-se que o valor de 哈基米 em 2026 aumente 3.13% para $0.042417 se o melhor cenário ocorrer. O preço ficará entre $0.042417 e $0.01421 durante 2026.
Quanto será 哈基米 (Hajimi) em 2027?
De acordo com nossa última simulação experimental para previsão de preços de 哈基米 (Hajimi), o valor de 哈基米 pode diminuir -12.62% para $0.035936 em 2027, assumindo as condições mais favoráveis. O preço está projetado para flutuar entre $0.035936 e $0.013679 ao longo do ano.
Quanto será 哈基米 (Hajimi) em 2028?
Nosso novo modelo experimental de previsão de preços de 哈基米 (Hajimi) sugere que o valor de 哈基米 em 2028 pode aumentar 47.02%, alcançando $0.060467 no melhor cenário. O preço é esperado para variar entre $0.060467 e $0.024687 durante o ano.
Quanto será 哈基米 (Hajimi) em 2029?
Com base no nosso modelo de previsão experimental, o valor de 哈基米 (Hajimi) pode experimentar um 333.75% crescimento em 2029, potencialmente alcançando $0.178397 sob condições ótimas. A faixa de preço prevista para 2029 está entre $0.178397 e $0.054231.
Quanto será 哈基米 (Hajimi) em 2030?
Usando nossa nova simulação experimental para previsões de preços de 哈基米 (Hajimi), espera-se que o valor de 哈基米 em 2030 aumente 224.23%, alcançando $0.133351 no melhor cenário. O preço está previsto para variar entre $0.133351 e $0.046121 ao longo de 2030.
Quanto será 哈基米 (Hajimi) em 2031?
Nossa simulação experimental indica que o preço de 哈基米 (Hajimi) poderia aumentar 195.98% em 2031, potencialmente atingindo $0.121734 sob condições ideais. O preço provavelmente oscilará entre $0.121734 e $0.05453 durante o ano.
Quanto será 哈基米 (Hajimi) em 2032?
Com base nos achados da nossa mais recente previsão experimental de preços de 哈基米 (Hajimi), 哈基米 poderia ver um 449.04% aumento em valor, atingindo $0.225811 se o cenário mais positivo se desenrolar em 2032. O preço é esperado para permanecer dentro de uma faixa de $0.225811 e $0.083236 ao longo do ano.
Quanto será 哈基米 (Hajimi) em 2033?
De acordo com nossa previsão experimental de preços de 哈基米 (Hajimi), espera-se que o valor de 哈基米 seja aumentar 1362.43% em 2033, com o preço potencial mais alto sendo $0.60148. Ao longo do ano, o preço de 哈基米 poderia variar entre $0.60148 e $0.193422.
Quanto será 哈基米 (Hajimi) em 2034?
Os resultados da nossa nova simulação de previsão de preços de 哈基米 (Hajimi) sugerem que 哈基米 pode aumentar 746.96% em 2034, atingindo potencialmente $0.348345 nas melhores circunstâncias. A faixa de preço prevista para o ano é entre $0.348345 e $0.1555027.
Quanto será 哈基米 (Hajimi) em 2035?
Com base em nossa previsão experimental para o preço de 哈基米 (Hajimi), 哈基米 poderia aumentar 897.93%, com o valor potencialmente atingindo $0.410437 em 2035. A faixa de preço esperada para o ano está entre $0.410437 e $0.183852.
Quanto será 哈基米 (Hajimi) em 2036?
Nossa recente simulação de previsão de preços de 哈基米 (Hajimi) sugere que o valor de 哈基米 pode aumentar 1964.7% em 2036, possivelmente atingindo $0.849184 se as condições forem ideais. A faixa de preço esperada para 2036 está entre $0.849184 e $0.304333.
Quanto será 哈基米 (Hajimi) em 2037?
De acordo com a simulação experimental, o valor de 哈基米 (Hajimi) poderia aumentar 4830.69% em 2037, com um pico de $2.02 sob condições favoráveis. O preço é esperado para cair entre $2.02 e $0.790344 ao longo do ano.
Previsões relacionadas
Como ler e prever os movimentos de preço de 哈基米 (Hajimi)?
Traders de 哈基米 (Hajimi) utilizam indicadores e padrões de gráfico para prever a direção do mercado. Eles também identificam níveis-chave de suporte e resistência para avaliar quando uma tendência de baixa pode desacelerar ou uma tendência de alta pode estagnar.
Indicadores de Previsão de Preço de 哈基米 (Hajimi)
Médias móveis são ferramentas populares para a previsão de preço de 哈基米 (Hajimi). Uma média móvel simples (SMA) calcula o preço médio de fechamento de 哈基米 em um período específico, como uma SMA de 12 dias. Uma média móvel exponencial (EMA) dá mais peso aos preços recentes, reagindo mais rapidamente às mudanças de preço.
Médias móveis comumente usadas no mercado de criptomoedas incluem as de 50 dias, 100 dias e 200 dias, que ajudam a identificar níveis-chave de resistência e suporte. Um movimento de preço de 哈基米 acima dessas médias é visto como altista, enquanto uma queda abaixo indica fraqueza.
Traders também usam RSI e níveis de retração de Fibonacci para avaliar a direção futura de 哈基米.
Como ler gráficos de 哈基米 (Hajimi) e prever movimentos de preço?
A maioria dos traders prefere gráficos de velas em vez de gráficos de linha simples porque eles fornecem informações mais detalhadas. Velas podem representar a ação de preço de 哈基米 (Hajimi) em diferentes períodos de tempo, como 5 minutos para tendências de curto prazo e semanal para tendências de longo prazo. Opções populares incluem gráficos de 1 hora, 4 horas e 1 dia.
Por exemplo, um gráfico de velas de 1 hora mostra os preços de abertura, fechamento, máximo e mínimo de 哈基米 dentro de cada hora. A cor da vela é crucial: verde indica que o preço fechou mais alto do que abriu, enquanto vermelho significa o oposto. Alguns gráficos usam velas vazias e preenchidas para transmitir a mesma informação.
O que afeta o preço de 哈基米 (Hajimi)?
A ação de preço de 哈基米 (Hajimi) é impulsionada pela oferta e demanda, influenciada por fatores como reduções pela metade das recompensas de bloco, hard forks e atualizações de protocolo. Eventos do mundo real, como regulamentações, adoção por empresas e governos e hacks de exchanges de criptomoedas, também impactam o preço de 哈基米. A capitalização de mercado de 哈基米 (Hajimi) pode mudar rapidamente.
Traders frequentemente monitoram a atividade de "baleias" de 哈基米, grandes detentores de 哈基米 (Hajimi), pois suas ações podem influenciar significativamente os movimentos de preço no relativamente pequeno mercado de 哈基米 (Hajimi).
Padrões de previsão de preço altistas e baixistas
Traders frequentemente identificam padrões de velas para ganhar vantagem em previsões de preço de criptomoedas. Certas formações indicam tendências altistas, enquanto outras sugerem movimentos baixistas.
Padrões de velas altistas comumente seguidos:
- Martelo
- Engolfo de Alta
- Linha de Perfuração
- Estrela da Manhã
- Três Soldados Brancos
Padrões de velas baixistas comuns:
- Harami de Baixa
- Nuvem Negra
- Estrela da Noite
- Estrela Cadente
- Homem Enforcado


