Previsão de Preço Grin - Projeção GRIN
Previsão de Preço Grin até $0.037234 até 2026
| Ano | Preço Mínimo | Preço Máximo |
|---|---|---|
| 2026 | $0.012473 | $0.037234 |
| 2027 | $0.012008 | $0.031545 |
| 2028 | $0.021671 | $0.053079 |
| 2029 | $0.0476051 | $0.156599 |
| 2030 | $0.040486 | $0.117057 |
| 2031 | $0.047867 | $0.10686 |
| 2032 | $0.073065 | $0.198219 |
| 2033 | $0.169788 | $0.527985 |
| 2034 | $0.1365018 | $0.30578 |
| 2035 | $0.161387 | $0.360286 |
Calculadora de lucro do investimento
Se você abrir um short de $10,000.00 em Grin hoje e fechar em Apr 06, 2026, nossa previsão mostra que pode lucrar cerca de $3,954.57, com um retorno de 39.55% nos próximos 90 dias.
Previsão de preço de longo prazo de Grin para os anos 2027, 2028, 2029, 2030, 2031, 2032 e 2037
[
'name' => 'Grin'
'name_with_ticker' => 'Grin <small>GRIN</small>'
'name_lang' => 'Grin'
'name_lang_with_ticker' => 'Grin <small>GRIN</small>'
'name_with_lang' => 'Grin'
'name_with_lang_with_ticker' => 'Grin <small>GRIN</small>'
'image' => '/uploads/coins/grin.png?1717244297'
'price_for_sd' => 0.0361
'ticker' => 'GRIN'
'marketcap' => '$7.9M'
'low24h' => '$0.0353'
'high24h' => '$0.03715'
'volume24h' => '$20.33K'
'current_supply' => '218.7M'
'max_supply' => '218.7M'
'algo' => null
'proof' => null
'ico_price_and_roi' => '—'
'price' => '$0.0361'
'change_24h_pct' => '1.1861%'
'ath_price' => '$25.09'
'ath_days' => 2546
'ath_exchange' => null
'ath_pair' => null
'ath_date' => '17 de jan. de 2019'
'ath_pct' => '-99.86%'
'fdv' => '$7.9M'
'new_prediction' => true
'change_24h_pct_is_increased' => true
'change_30d_pct' => null
'change_30d_pct_is_increased' => false
'max_price' => '$1.78'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.036412'
'next_week_prediction_price_date' => '13 de janeiro de 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.031908'
'next_month_prediction_price_date' => '5 de fevereiro de 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.012473'
'current_year_max_price_prediction' => '$0.037234'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.040486'
'grand_prediction_max_price' => '$0.117057'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.036787418165675
107 => 0.036924769031273
108 => 0.037234227544774
109 => 0.034589938428906
110 => 0.035777146609681
111 => 0.036474520189523
112 => 0.033323760985128
113 => 0.036412239810515
114 => 0.034543907238411
115 => 0.033909767102025
116 => 0.034763553254058
117 => 0.034430831960277
118 => 0.034144777729933
119 => 0.033985154554366
120 => 0.03461208087548
121 => 0.034582834013261
122 => 0.033557060870763
123 => 0.032218981622236
124 => 0.032668084938996
125 => 0.032504921493651
126 => 0.031913596119218
127 => 0.032312078024688
128 => 0.030557365380076
129 => 0.027538473477047
130 => 0.029532845939348
131 => 0.029456064769009
201 => 0.029417348221175
202 => 0.030916064006188
203 => 0.030771997064715
204 => 0.030510514155234
205 => 0.031908793780528
206 => 0.031398402907781
207 => 0.032971307314374
208 => 0.034007323885635
209 => 0.033744556571538
210 => 0.034718935164312
211 => 0.032678431372353
212 => 0.033356204881239
213 => 0.033495893062067
214 => 0.031891539227001
215 => 0.030795568198046
216 => 0.030722479425399
217 => 0.028822216695301
218 => 0.029837321707335
219 => 0.030730572110024
220 => 0.030302774486167
221 => 0.030167346538545
222 => 0.030859218552211
223 => 0.030912982933155
224 => 0.029687149349918
225 => 0.029942038968974
226 => 0.031004971052311
227 => 0.029915255807677
228 => 0.027798117091327
301 => 0.027273037417939
302 => 0.027202982110371
303 => 0.025778924391549
304 => 0.027308125752481
305 => 0.026640588378386
306 => 0.028749330944827
307 => 0.027544828500289
308 => 0.027492904807313
309 => 0.027414414529831
310 => 0.026188669224158
311 => 0.026457029545922
312 => 0.027349100127898
313 => 0.027667400961442
314 => 0.027634199576741
315 => 0.027344728495379
316 => 0.027477246874095
317 => 0.027050359003788
318 => 0.02689961601188
319 => 0.026423829664291
320 => 0.025724555172668
321 => 0.025821793579628
322 => 0.0244363478366
323 => 0.023681483464628
324 => 0.023472546955419
325 => 0.023193148323246
326 => 0.023504105774374
327 => 0.024432423042882
328 => 0.023312675463566
329 => 0.021392946779988
330 => 0.02150832574493
331 => 0.021767548022831
401 => 0.021284489022889
402 => 0.020827314219512
403 => 0.021224790619284
404 => 0.020411376268716
405 => 0.021865845260964
406 => 0.021826505950826
407 => 0.022368642047377
408 => 0.022707650874303
409 => 0.02192634528365
410 => 0.021729849040475
411 => 0.021841782230844
412 => 0.019991775928316
413 => 0.022217457063764
414 => 0.022236704846647
415 => 0.022071893643937
416 => 0.023257000138367
417 => 0.0257579444856
418 => 0.024816988621918
419 => 0.024452622070958
420 => 0.023759960991234
421 => 0.024682890753821
422 => 0.024612024148002
423 => 0.024291538481124
424 => 0.024097707749819
425 => 0.024454846815422
426 => 0.024053454267308
427 => 0.023981353136138
428 => 0.023544498728047
429 => 0.023388561579968
430 => 0.023273111923567
501 => 0.023146013195718
502 => 0.023426361318322
503 => 0.022791055589633
504 => 0.022024939160623
505 => 0.021961244869046
506 => 0.022137110408151
507 => 0.022059302998746
508 => 0.021960872357104
509 => 0.021772941456219
510 => 0.021717186372435
511 => 0.021898363346212
512 => 0.021693825106091
513 => 0.021995632421164
514 => 0.021913557531225
515 => 0.021455093867859
516 => 0.020883678398317
517 => 0.020878591602054
518 => 0.02075548107645
519 => 0.020598681312303
520 => 0.02055506320501
521 => 0.021191316265547
522 => 0.022508341059407
523 => 0.02224977757864
524 => 0.022436616192145
525 => 0.02335567724962
526 => 0.023647819122661
527 => 0.023440463740936
528 => 0.023156622905308
529 => 0.023169110461559
530 => 0.024139080521365
531 => 0.024199576364205
601 => 0.024352429842365
602 => 0.024548889758188
603 => 0.023473921714118
604 => 0.023118479563354
605 => 0.022950051353142
606 => 0.022431357655611
607 => 0.022990724338961
608 => 0.022664805327042
609 => 0.022708782936729
610 => 0.022680142460728
611 => 0.022695782097285
612 => 0.021865438707239
613 => 0.022167972197008
614 => 0.021664951592931
615 => 0.020991463470785
616 => 0.020989205702445
617 => 0.02115404096621
618 => 0.021055990501318
619 => 0.020792139221401
620 => 0.02082961805037
621 => 0.020501264071523
622 => 0.020869486168443
623 => 0.020880045460621
624 => 0.020738259896113
625 => 0.021305556841277
626 => 0.02153797886258
627 => 0.02144465256668
628 => 0.021531430840871
629 => 0.02226052205861
630 => 0.022379395739581
701 => 0.022432191576314
702 => 0.0223614521492
703 => 0.02154475728992
704 => 0.021580981179784
705 => 0.021315194310892
706 => 0.021090632414608
707 => 0.021099613712788
708 => 0.021215067718481
709 => 0.021719262132629
710 => 0.022780309553319
711 => 0.022820575527319
712 => 0.022869379062448
713 => 0.022670870558387
714 => 0.022610998494092
715 => 0.022689985201188
716 => 0.023088458825177
717 => 0.024113441170609
718 => 0.023751143953464
719 => 0.023456590676433
720 => 0.023714993311383
721 => 0.023675214251159
722 => 0.02333943895064
723 => 0.023330014856289
724 => 0.022685554700736
725 => 0.022447312454876
726 => 0.022248219402112
727 => 0.02203081498595
728 => 0.021901930360587
729 => 0.022099955722159
730 => 0.022145246465318
731 => 0.021712260551349
801 => 0.021653246171213
802 => 0.02200683181521
803 => 0.021851231956288
804 => 0.02201127026988
805 => 0.022048400531416
806 => 0.022042421704127
807 => 0.021879957580882
808 => 0.021983507368288
809 => 0.021738581251396
810 => 0.021472260885989
811 => 0.021302365085204
812 => 0.021154108465612
813 => 0.021236369854887
814 => 0.020943123022457
815 => 0.02084930745887
816 => 0.021948427030259
817 => 0.022760358475171
818 => 0.022748552670402
819 => 0.022676687870076
820 => 0.022569911354034
821 => 0.023080647457959
822 => 0.022902717211842
823 => 0.023032176332461
824 => 0.023065129112041
825 => 0.023164867251087
826 => 0.023200515063013
827 => 0.023092762616375
828 => 0.022731132244605
829 => 0.021829983740937
830 => 0.021410496679876
831 => 0.021272058962616
901 => 0.021277090910707
902 => 0.021138287318732
903 => 0.021179171197309
904 => 0.021124069574222
905 => 0.02101972043061
906 => 0.021229926589317
907 => 0.021254150890902
908 => 0.021205086261683
909 => 0.02121664275803
910 => 0.020810408583876
911 => 0.020841293685843
912 => 0.020669321513403
913 => 0.020637078804226
914 => 0.020202348127629
915 => 0.019432159718819
916 => 0.019858918861298
917 => 0.019343453828599
918 => 0.019148239410147
919 => 0.020072354105031
920 => 0.019979598620616
921 => 0.019820841551138
922 => 0.019586006757508
923 => 0.019498904248224
924 => 0.018969696975122
925 => 0.018938428586216
926 => 0.019200718000564
927 => 0.01907968046067
928 => 0.018909697914158
929 => 0.018294038361545
930 => 0.017601833186536
1001 => 0.017622726509723
1002 => 0.017842904096959
1003 => 0.018483100126838
1004 => 0.01823296446246
1005 => 0.018051488167978
1006 => 0.018017503113179
1007 => 0.018442897226522
1008 => 0.019044919019723
1009 => 0.019327374175615
1010 => 0.019047469694417
1011 => 0.018725930497544
1012 => 0.018745501098588
1013 => 0.018875695539553
1014 => 0.018889377134449
1015 => 0.018680088172048
1016 => 0.018739001789047
1017 => 0.018649506617652
1018 => 0.018100274915995
1019 => 0.018090341056145
1020 => 0.017955550739001
1021 => 0.017951469341767
1022 => 0.017722157387285
1023 => 0.017690075059694
1024 => 0.017234762255828
1025 => 0.017534450522147
1026 => 0.017333435367441
1027 => 0.017030458114617
1028 => 0.016978224722031
1029 => 0.016976654523176
1030 => 0.017287744417352
1031 => 0.017530815255608
1101 => 0.017336932112119
1102 => 0.017292788678613
1103 => 0.017764125059814
1104 => 0.01770414320898
1105 => 0.017652199312999
1106 => 0.018991014571175
1107 => 0.017931237825271
1108 => 0.017469114674115
1109 => 0.016897149519753
1110 => 0.017083384258112
1111 => 0.017122626653842
1112 => 0.01574715356207
1113 => 0.015189124300043
1114 => 0.014997629686204
1115 => 0.014887421828604
1116 => 0.014937644933215
1117 => 0.014435353147087
1118 => 0.014772901534505
1119 => 0.014337959305385
1120 => 0.014265039825248
1121 => 0.015042770409918
1122 => 0.015150987077338
1123 => 0.014689301153839
1124 => 0.014985778256887
1125 => 0.014878271537982
1126 => 0.014345415141543
1127 => 0.014325063946625
1128 => 0.014057695337701
1129 => 0.013639315237498
1130 => 0.013448104305068
1201 => 0.013348519991289
1202 => 0.013389610420014
1203 => 0.013368833841863
1204 => 0.013233252615608
1205 => 0.013376605199046
1206 => 0.013010398585739
1207 => 0.012864572161593
1208 => 0.012798705748954
1209 => 0.012473676301578
1210 => 0.012990942693604
1211 => 0.013092850689184
1212 => 0.013194959474996
1213 => 0.014083746742859
1214 => 0.014039345442643
1215 => 0.014440711572283
1216 => 0.01442511522255
1217 => 0.014310639100676
1218 => 0.0138276831729
1219 => 0.01402018079785
1220 => 0.013427703029027
1221 => 0.013871627658002
1222 => 0.013669038996074
1223 => 0.013803132227618
1224 => 0.013562020506602
1225 => 0.013695461688271
1226 => 0.013117016855473
1227 => 0.012576873209545
1228 => 0.012794242780442
1229 => 0.013030548363234
1230 => 0.013542919076268
1231 => 0.013237755306551
]
'min_raw' => 0.012473676301578
'max_raw' => 0.037234227544774
'avg_raw' => 0.024853951923176
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.012473'
'max' => '$0.037234'
'avg' => '$0.024853'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.023629603698422
'max_diff' => 0.0011309475447735
'year' => 2026
]
1 => [
'items' => [
101 => 0.013347503737661
102 => 0.012979864865109
103 => 0.012221320860181
104 => 0.012225614136871
105 => 0.012108928667493
106 => 0.012008095385592
107 => 0.013272807036442
108 => 0.013115520150526
109 => 0.012864904083018
110 => 0.013200363648464
111 => 0.013289064482027
112 => 0.01329158967006
113 => 0.013536332309545
114 => 0.013666951500111
115 => 0.013689973698584
116 => 0.014075081529828
117 => 0.014204164595166
118 => 0.014735839472774
119 => 0.013655869374377
120 => 0.013633628100894
121 => 0.013205084252492
122 => 0.012933294968825
123 => 0.01322369389727
124 => 0.013480947704466
125 => 0.013213077845374
126 => 0.01324805599393
127 => 0.012888462593869
128 => 0.013017000313949
129 => 0.013127714314382
130 => 0.013066584550811
131 => 0.012975070336031
201 => 0.01345985582596
202 => 0.013432502328729
203 => 0.013883945722121
204 => 0.014235878130297
205 => 0.014866603921191
206 => 0.014208408677914
207 => 0.014184421427159
208 => 0.014418900650957
209 => 0.014204128697618
210 => 0.014339857158453
211 => 0.014844735967796
212 => 0.01485540326146
213 => 0.01467671234856
214 => 0.01466583899027
215 => 0.014700158534757
216 => 0.014901169178769
217 => 0.014830929883318
218 => 0.014912212574255
219 => 0.015013857823917
220 => 0.01543430567321
221 => 0.015535674226255
222 => 0.015289401195924
223 => 0.015311636893161
224 => 0.015219524019471
225 => 0.015130544137658
226 => 0.015330557917506
227 => 0.015696087031458
228 => 0.015693813093812
301 => 0.015778608743378
302 => 0.015831435730573
303 => 0.015604663629815
304 => 0.015457043330863
305 => 0.015513650346804
306 => 0.015604166198036
307 => 0.015484297276192
308 => 0.014744410761886
309 => 0.014968845066193
310 => 0.01493148822368
311 => 0.014878287537193
312 => 0.015103957965673
313 => 0.015082191502319
314 => 0.014430201418819
315 => 0.014471939708588
316 => 0.014432739662462
317 => 0.014559403031072
318 => 0.01419728846004
319 => 0.01430867246321
320 => 0.014378531465839
321 => 0.014419678955069
322 => 0.014568331901266
323 => 0.014550889193776
324 => 0.014567247638078
325 => 0.014787660714366
326 => 0.015902434417595
327 => 0.015963109090652
328 => 0.015664324809799
329 => 0.01578368323674
330 => 0.015554541157832
331 => 0.015708365770522
401 => 0.015813608663803
402 => 0.01533803626611
403 => 0.015309875955158
404 => 0.015079788125379
405 => 0.015203424292262
406 => 0.015006710260997
407 => 0.015054977003505
408 => 0.014920018983634
409 => 0.015162916549527
410 => 0.015434513770662
411 => 0.015503129954419
412 => 0.015322630316077
413 => 0.015191936682411
414 => 0.014962481714854
415 => 0.01534407043964
416 => 0.015455658611473
417 => 0.015343484314477
418 => 0.015317491078807
419 => 0.01526823394418
420 => 0.015327941212772
421 => 0.015455050878324
422 => 0.015395108307396
423 => 0.015434701431546
424 => 0.015283813270539
425 => 0.015604738700816
426 => 0.016114445519006
427 => 0.016116084309772
428 => 0.016056141415732
429 => 0.016031614074978
430 => 0.016093119121902
501 => 0.01612648308679
502 => 0.016325379130447
503 => 0.016538802509658
504 => 0.017534756296524
505 => 0.017255096458546
506 => 0.018138765907809
507 => 0.018837633712059
508 => 0.019047193608768
509 => 0.018854408364351
510 => 0.018194900457253
511 => 0.018162541852982
512 => 0.019148125103243
513 => 0.018869652692471
514 => 0.018836529285302
515 => 0.018484152195899
516 => 0.018692450698488
517 => 0.018646892760417
518 => 0.018574977326402
519 => 0.018972396359141
520 => 0.019716329310587
521 => 0.019600380383545
522 => 0.019513829888225
523 => 0.019134590812199
524 => 0.01936297744208
525 => 0.019281653337637
526 => 0.019631073299877
527 => 0.019424084654846
528 => 0.018867542990074
529 => 0.018956174084575
530 => 0.018942777672942
531 => 0.019218474875063
601 => 0.019135717418211
602 => 0.018926617951282
603 => 0.019713786628635
604 => 0.01966267227319
605 => 0.019735140742843
606 => 0.019767043604346
607 => 0.020246179306783
608 => 0.020442465873439
609 => 0.020487026360549
610 => 0.020673483417525
611 => 0.020482387139113
612 => 0.021246908502096
613 => 0.021755270597422
614 => 0.022345759331216
615 => 0.023208622079699
616 => 0.023533066455055
617 => 0.023474458482636
618 => 0.024128671170819
619 => 0.025304276829154
620 => 0.023712081998037
621 => 0.025388667021354
622 => 0.024857879560077
623 => 0.023599392037848
624 => 0.023518360278009
625 => 0.024370622639403
626 => 0.026260858529763
627 => 0.025787375878106
628 => 0.026261632977761
629 => 0.025708386879365
630 => 0.025680913547455
701 => 0.02623476304963
702 => 0.027528862600227
703 => 0.026914084412335
704 => 0.026032649130195
705 => 0.026683487225875
706 => 0.026119671035175
707 => 0.024849235355311
708 => 0.025787013814846
709 => 0.025159948065348
710 => 0.0253429591877
711 => 0.026660958124154
712 => 0.026502373005127
713 => 0.026707596833734
714 => 0.026345382147885
715 => 0.026007016515289
716 => 0.025375431934686
717 => 0.025188450877113
718 => 0.025240125714553
719 => 0.02518842526963
720 => 0.024835059501345
721 => 0.024758750197328
722 => 0.024631564680779
723 => 0.024670984790578
724 => 0.024431838810031
725 => 0.024883156685405
726 => 0.024966925260073
727 => 0.025295356772983
728 => 0.025329455622183
729 => 0.026244132710705
730 => 0.025740343940871
731 => 0.026078328942706
801 => 0.026048096382903
802 => 0.023626667278522
803 => 0.023960318844656
804 => 0.024479375975931
805 => 0.024245541441857
806 => 0.02391495411953
807 => 0.023647987131781
808 => 0.023243504846564
809 => 0.023812805895612
810 => 0.024561376236693
811 => 0.025348440601362
812 => 0.026294046865011
813 => 0.026082998555035
814 => 0.025330763150013
815 => 0.025364507880774
816 => 0.025573104528276
817 => 0.025302952916757
818 => 0.025223279932534
819 => 0.025562158683706
820 => 0.02556449235542
821 => 0.025253650277455
822 => 0.024908206191296
823 => 0.024906758767961
824 => 0.024845290329423
825 => 0.025719321978028
826 => 0.026199951010193
827 => 0.026255054354158
828 => 0.026196242116104
829 => 0.026218876612357
830 => 0.025939209168478
831 => 0.026578446012381
901 => 0.027165072954318
902 => 0.027007844402422
903 => 0.026772136451775
904 => 0.026584383715851
905 => 0.026963615824706
906 => 0.026946729215866
907 => 0.027159949279742
908 => 0.027150276386026
909 => 0.027078578498157
910 => 0.027007846962979
911 => 0.027288289504826
912 => 0.027207526556544
913 => 0.027126638161095
914 => 0.02696440410063
915 => 0.026986454403869
916 => 0.026750787151523
917 => 0.026641756697188
918 => 0.025002200264624
919 => 0.024564057211791
920 => 0.024701905935437
921 => 0.024747289314501
922 => 0.024556608896413
923 => 0.024829995634171
924 => 0.02478738860068
925 => 0.024953147643714
926 => 0.024849588590047
927 => 0.024853838689733
928 => 0.025158383785449
929 => 0.025246794522362
930 => 0.025201828108006
1001 => 0.025233321043263
1002 => 0.025959062443918
1003 => 0.025855885224649
1004 => 0.02580107438331
1005 => 0.025816257360945
1006 => 0.026001699848883
1007 => 0.026053613620722
1008 => 0.025833651321527
1009 => 0.025937386813414
1010 => 0.026379079371876
1011 => 0.026533646769704
1012 => 0.027026951707011
1013 => 0.026817387001847
1014 => 0.027202052087924
1015 => 0.028384381420533
1016 => 0.029328907902387
1017 => 0.028460282315466
1018 => 0.03019478491467
1019 => 0.03154534398777
1020 => 0.031493507281071
1021 => 0.031258006067681
1022 => 0.029720430469427
1023 => 0.028305530479953
1024 => 0.029489154400975
1025 => 0.029492171701764
1026 => 0.029390497357244
1027 => 0.028759006735654
1028 => 0.029368522852448
1029 => 0.029416904028362
1030 => 0.029389823435443
1031 => 0.028905661056479
1101 => 0.028166434591964
1102 => 0.028310877673672
1103 => 0.028547478388069
1104 => 0.028099543875636
1105 => 0.027956401657604
1106 => 0.028222530274846
1107 => 0.029080052129699
1108 => 0.028917942590325
1109 => 0.028913709255115
1110 => 0.029607282609701
1111 => 0.029110833770316
1112 => 0.028312699563503
1113 => 0.028111160150186
1114 => 0.027395831006127
1115 => 0.027889911393843
1116 => 0.027907692467403
1117 => 0.02763708968843
1118 => 0.02833465748764
1119 => 0.028328229277565
1120 => 0.02899046608365
1121 => 0.030256414132098
1122 => 0.029882011000652
1123 => 0.029446620893725
1124 => 0.029493959870406
1125 => 0.030013151602048
1126 => 0.029699236429103
1127 => 0.029812122513988
1128 => 0.030012980735438
1129 => 0.030134163487468
1130 => 0.029476523537286
1201 => 0.029323196206343
1202 => 0.029009542297815
1203 => 0.028927715847707
1204 => 0.0291831804116
1205 => 0.029115874524711
1206 => 0.027906198037022
1207 => 0.027779780113482
1208 => 0.027783657170714
1209 => 0.027465773291128
1210 => 0.026980924073887
1211 => 0.028255078867954
1212 => 0.028152746406205
1213 => 0.028039779288339
1214 => 0.028053617115696
1215 => 0.028606684526688
1216 => 0.028285877497739
1217 => 0.029138795563437
1218 => 0.028963461250194
1219 => 0.028783630273412
1220 => 0.028758772154635
1221 => 0.028689552571032
1222 => 0.028452172863385
1223 => 0.028165522602093
1224 => 0.027976251270367
1225 => 0.025806612977866
1226 => 0.026209285224749
1227 => 0.026672522940057
1228 => 0.026832430743073
1229 => 0.026558897380732
1230 => 0.028462973627736
1231 => 0.028810866706199
]
'min_raw' => 0.012008095385592
'max_raw' => 0.03154534398777
'avg_raw' => 0.021776719686681
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.012008'
'max' => '$0.031545'
'avg' => '$0.021776'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -0.00046558091598552
'max_diff' => -0.0056888835570035
'year' => 2027
]
2 => [
'items' => [
101 => 0.027757075879031
102 => 0.027559954641263
103 => 0.028475896863267
104 => 0.027923471734016
105 => 0.028172228735892
106 => 0.027634552160641
107 => 0.028727069451096
108 => 0.02871874629981
109 => 0.028293732398201
110 => 0.028652951237471
111 => 0.028590528124206
112 => 0.028110688476053
113 => 0.028742281223817
114 => 0.02874259448594
115 => 0.02833352784624
116 => 0.027855827567273
117 => 0.027770426040171
118 => 0.02770608746158
119 => 0.028156405389586
120 => 0.028560159035728
121 => 0.029311444472181
122 => 0.029500335481007
123 => 0.030237589663641
124 => 0.029798590694137
125 => 0.02999319325133
126 => 0.030204461855375
127 => 0.0303057517933
128 => 0.030140705274969
129 => 0.031285964486528
130 => 0.031382659453819
131 => 0.031415080439944
201 => 0.031028905477534
202 => 0.031371919229529
203 => 0.031211434454392
204 => 0.031628971255344
205 => 0.031694446357111
206 => 0.031638991275259
207 => 0.031659774106014
208 => 0.030682497406517
209 => 0.030631820454103
210 => 0.029940836612063
211 => 0.030222417635189
212 => 0.029696015408985
213 => 0.029862942977458
214 => 0.029936523059097
215 => 0.029898089000081
216 => 0.030238337803756
217 => 0.029949056812394
218 => 0.029185596713993
219 => 0.028421928611399
220 => 0.028412341380441
221 => 0.02821128104889
222 => 0.028065951255215
223 => 0.028093946929328
224 => 0.028192607336436
225 => 0.028060216932999
226 => 0.028088469137936
227 => 0.02855764398335
228 => 0.028651733652596
229 => 0.028331980193292
301 => 0.027048123913979
302 => 0.026733062362726
303 => 0.026959522357825
304 => 0.026851289066059
305 => 0.021671085933497
306 => 0.022888097820453
307 => 0.022164990683043
308 => 0.022498231720521
309 => 0.02176012658091
310 => 0.022112389040937
311 => 0.022047339027136
312 => 0.024004258127362
313 => 0.023973703527266
314 => 0.023988328397418
315 => 0.023290245240147
316 => 0.024402310664703
317 => 0.024950154081419
318 => 0.024848762845365
319 => 0.024874280835091
320 => 0.024435797226449
321 => 0.023992573877228
322 => 0.023500970971356
323 => 0.024414308406509
324 => 0.02431276087491
325 => 0.02454567437675
326 => 0.025138038990155
327 => 0.025225266929653
328 => 0.025342502164917
329 => 0.025300481678447
330 => 0.026301580144472
331 => 0.026180340514776
401 => 0.026472493139321
402 => 0.025871513024959
403 => 0.025191446980002
404 => 0.025320705302114
405 => 0.025308256686265
406 => 0.025149771518649
407 => 0.025006698195675
408 => 0.024768521423583
409 => 0.025522147974012
410 => 0.025491552112348
411 => 0.025986863548885
412 => 0.025899312441279
413 => 0.025314624717292
414 => 0.025335506953738
415 => 0.0254759500295
416 => 0.025962025118263
417 => 0.026106325299123
418 => 0.026039479705981
419 => 0.026197698266741
420 => 0.026322747766075
421 => 0.026213402558561
422 => 0.027761500108322
423 => 0.027118622072677
424 => 0.027431956354134
425 => 0.027506684733989
426 => 0.027315269560359
427 => 0.027356780657456
428 => 0.027419658658461
429 => 0.027801441567786
430 => 0.02880335039163
501 => 0.029247088989487
502 => 0.030582098454815
503 => 0.029210242676074
504 => 0.029128842431467
505 => 0.029369317949597
506 => 0.030153109830848
507 => 0.030788299532775
508 => 0.030999028601877
509 => 0.031026879927116
510 => 0.031422221669755
511 => 0.031648824183949
512 => 0.031374216783679
513 => 0.031141515764543
514 => 0.030308009597913
515 => 0.030404490206262
516 => 0.031069145922574
517 => 0.03200801126989
518 => 0.032813655410178
519 => 0.032531546911782
520 => 0.03468383561698
521 => 0.034897226250789
522 => 0.034867742564942
523 => 0.035353878185544
524 => 0.034388997978447
525 => 0.033976492996239
526 => 0.031191828366149
527 => 0.03197420554221
528 => 0.033111436715015
529 => 0.032960919904897
530 => 0.032135032228929
531 => 0.032813028900317
601 => 0.03258886199784
602 => 0.032412052261163
603 => 0.033222051941134
604 => 0.032331424020053
605 => 0.033102552020208
606 => 0.032113572383711
607 => 0.03253283555964
608 => 0.032294841503505
609 => 0.032448852825279
610 => 0.031548505785157
611 => 0.032034311193318
612 => 0.031528294682997
613 => 0.031528054765286
614 => 0.031516884422775
615 => 0.032112210603146
616 => 0.032131624168515
617 => 0.031691677221733
618 => 0.031628273993439
619 => 0.03186270895942
620 => 0.031588247012871
621 => 0.031716666030218
622 => 0.031592136694084
623 => 0.031564102517531
624 => 0.031340721429135
625 => 0.031244482714263
626 => 0.03128222039413
627 => 0.031153402237635
628 => 0.03107578463879
629 => 0.031501444328758
630 => 0.031274031527471
701 => 0.031466590055402
702 => 0.031247145310001
703 => 0.030486454214917
704 => 0.030048972721972
705 => 0.02861209775946
706 => 0.02901959371639
707 => 0.02928976395742
708 => 0.029200472694371
709 => 0.029392304878532
710 => 0.029404081816643
711 => 0.029341715218075
712 => 0.029269502686589
713 => 0.029234353619865
714 => 0.029496325966135
715 => 0.029648409730728
716 => 0.029316879155519
717 => 0.029239206180353
718 => 0.029574401896194
719 => 0.029778871089221
720 => 0.031288556729214
721 => 0.031176714340782
722 => 0.031457416787784
723 => 0.031425813999982
724 => 0.031720034883846
725 => 0.032200961681942
726 => 0.031223103032166
727 => 0.031392825481959
728 => 0.031351213456734
729 => 0.031805522636887
730 => 0.031806940940558
731 => 0.031534559892629
801 => 0.031682222077589
802 => 0.031599801096845
803 => 0.031748746948913
804 => 0.031175220617498
805 => 0.03187371378082
806 => 0.032269714394519
807 => 0.032275212863424
808 => 0.032462914011462
809 => 0.032653629248786
810 => 0.033019690539033
811 => 0.032643419998081
812 => 0.031966545924108
813 => 0.032015414045959
814 => 0.031618563024047
815 => 0.031625234161423
816 => 0.031589623107287
817 => 0.031696494561424
818 => 0.031198672891778
819 => 0.031315510642612
820 => 0.031151937107243
821 => 0.031392469905039
822 => 0.031133696376107
823 => 0.031351193390155
824 => 0.031445057891278
825 => 0.031791419921181
826 => 0.031082538422672
827 => 0.029637081060152
828 => 0.02994093372223
829 => 0.029491511767905
830 => 0.029533107480848
831 => 0.029617137440901
901 => 0.029344768847477
902 => 0.029396728191782
903 => 0.029394871838371
904 => 0.029378874787559
905 => 0.029308021197036
906 => 0.02920526947282
907 => 0.029614600716781
908 => 0.029684154071473
909 => 0.029838762563114
910 => 0.030298772562299
911 => 0.030252806715598
912 => 0.030327778918672
913 => 0.030164115020311
914 => 0.029540699379694
915 => 0.029574553848323
916 => 0.029152388082042
917 => 0.029827966835313
918 => 0.029667980869334
919 => 0.029564836876298
920 => 0.029536693082175
921 => 0.029997843357172
922 => 0.030135826747096
923 => 0.030049844758216
924 => 0.029873493190528
925 => 0.030212140334149
926 => 0.030302748023406
927 => 0.030323031743548
928 => 0.030923049552895
929 => 0.030356566073724
930 => 0.030492924277522
1001 => 0.031556752058389
1002 => 0.030592007059342
1003 => 0.031103054001718
1004 => 0.031078040913248
1005 => 0.031339475236082
1006 => 0.03105659566808
1007 => 0.031060102299353
1008 => 0.031292238266935
1009 => 0.030966245166409
1010 => 0.030885524690268
1011 => 0.030774009930609
1012 => 0.031017498328638
1013 => 0.031163458611223
1014 => 0.032339791292843
1015 => 0.033099755852457
1016 => 0.03306676378666
1017 => 0.033368249509484
1018 => 0.033232427430059
1019 => 0.032793822107543
1020 => 0.033542467910857
1021 => 0.033305565054018
1022 => 0.033325095037699
1023 => 0.033324368130731
1024 => 0.033481887820122
1025 => 0.033370270683721
1026 => 0.03315026185061
1027 => 0.033296313981411
1028 => 0.033730036595299
1029 => 0.03507632489704
1030 => 0.035829725666642
1031 => 0.035030969224712
1101 => 0.03558194072258
1102 => 0.035251554155077
1103 => 0.035191513087613
1104 => 0.035537563904748
1105 => 0.035884220438029
1106 => 0.035862139915497
1107 => 0.035610485073345
1108 => 0.035468331638518
1109 => 0.036544765071919
1110 => 0.037337862889083
1111 => 0.037283778934948
1112 => 0.037522487919457
1113 => 0.038223344880968
1114 => 0.038287422458103
1115 => 0.03827935015619
1116 => 0.038120527195457
1117 => 0.038810611891841
1118 => 0.03938629268645
1119 => 0.038083764268884
1120 => 0.038579750038944
1121 => 0.038802414030788
1122 => 0.039129350832243
1123 => 0.039680948017269
1124 => 0.040280128864135
1125 => 0.040364859605565
1126 => 0.040304739089781
1127 => 0.039909563214428
1128 => 0.040565194046782
1129 => 0.040949247211941
1130 => 0.041177942082892
1201 => 0.041757874224427
1202 => 0.038803789127797
1203 => 0.036712740868847
1204 => 0.036386193488109
1205 => 0.037050240427681
1206 => 0.037225344309971
1207 => 0.037154760154582
1208 => 0.034801095229343
1209 => 0.03637380192938
1210 => 0.038065902101684
1211 => 0.038130902560597
1212 => 0.038978003286999
1213 => 0.039253854007347
1214 => 0.039935881124131
1215 => 0.03989322014228
1216 => 0.040059282891795
1217 => 0.040021107941488
1218 => 0.041284419557576
1219 => 0.042678039873712
1220 => 0.042629783233605
1221 => 0.042429433824594
1222 => 0.042726986861627
1223 => 0.044165352377308
1224 => 0.044032930729962
1225 => 0.04416156708071
1226 => 0.045857481086426
1227 => 0.048062410534812
1228 => 0.04703799943474
1229 => 0.049260676755544
1230 => 0.050659734309928
1231 => 0.053079259684983
]
'min_raw' => 0.021671085933497
'max_raw' => 0.053079259684983
'avg_raw' => 0.03737517280924
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.021671'
'max' => '$0.053079'
'avg' => '$0.037375'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 0.0096629905479051
'max_diff' => 0.021533915697213
'year' => 2028
]
3 => [
'items' => [
101 => 0.052776323191613
102 => 0.053718226664825
103 => 0.052234003643725
104 => 0.048825927576318
105 => 0.04828658649306
106 => 0.049366361000034
107 => 0.052020881262576
108 => 0.049282760710331
109 => 0.049836678931914
110 => 0.049677150446834
111 => 0.049668649851817
112 => 0.049993082989216
113 => 0.049522475802124
114 => 0.047605137461293
115 => 0.04848384232395
116 => 0.048144532177605
117 => 0.048521022082222
118 => 0.050552782821193
119 => 0.049654492967367
120 => 0.048708217577504
121 => 0.049895056911712
122 => 0.051406311226401
123 => 0.051311739647373
124 => 0.051128231256205
125 => 0.052162658449032
126 => 0.053871229112853
127 => 0.054333048897691
128 => 0.054673954821368
129 => 0.054720959988591
130 => 0.055205142424529
131 => 0.052601571436802
201 => 0.05673350545877
202 => 0.05744697632199
203 => 0.057312873370043
204 => 0.058105866207068
205 => 0.057872547598129
206 => 0.057534505540343
207 => 0.058791567861442
208 => 0.057350447350001
209 => 0.055304958216037
210 => 0.054182762421956
211 => 0.055660560368554
212 => 0.0565630000065
213 => 0.057159455201242
214 => 0.057339942182782
215 => 0.052803679241163
216 => 0.050358885108307
217 => 0.051925970117846
218 => 0.053837921983914
219 => 0.052590950447649
220 => 0.052639829371041
221 => 0.050861975658683
222 => 0.053995222588295
223 => 0.053538734865405
224 => 0.05590699397927
225 => 0.055341789935279
226 => 0.057273013307347
227 => 0.056764457471138
228 => 0.058875444314266
301 => 0.059717574118677
302 => 0.061131641127322
303 => 0.062171834575169
304 => 0.062782656063474
305 => 0.06274598463245
306 => 0.065166363679175
307 => 0.063739150716924
308 => 0.06194623486807
309 => 0.061913806676941
310 => 0.062842383200877
311 => 0.064788424852518
312 => 0.065293005139034
313 => 0.065574996683088
314 => 0.065143116817173
315 => 0.063593979435925
316 => 0.062925069769007
317 => 0.0634950001854
318 => 0.06279802426083
319 => 0.064001200243542
320 => 0.065653417852329
321 => 0.065312241449691
322 => 0.066452743011684
323 => 0.067633042144084
324 => 0.069320922913967
325 => 0.069762197449258
326 => 0.070491607475927
327 => 0.071242409992081
328 => 0.071483547525575
329 => 0.071943953897596
330 => 0.071941527328753
331 => 0.073328992919763
401 => 0.074859410432879
402 => 0.075437107614834
403 => 0.07676549043033
404 => 0.074490681410879
405 => 0.076216150183255
406 => 0.077772566207223
407 => 0.075916942859947
408 => 0.078474487339378
409 => 0.078573790995994
410 => 0.080073158312163
411 => 0.078553262293205
412 => 0.077650752888827
413 => 0.080256263722678
414 => 0.081516988342357
415 => 0.081137247826792
416 => 0.078247403753246
417 => 0.076565390551199
418 => 0.072163237565325
419 => 0.077377777935949
420 => 0.079917628440252
421 => 0.078240826154022
422 => 0.079086507693433
423 => 0.083700271959294
424 => 0.08545689467262
425 => 0.085091529427968
426 => 0.08515327013989
427 => 0.086101111871044
428 => 0.090304364092953
429 => 0.087785677930961
430 => 0.089711119128434
501 => 0.090732366196879
502 => 0.091680957388768
503 => 0.089351517226813
504 => 0.086320949802383
505 => 0.0853610418845
506 => 0.078074101212818
507 => 0.077694784305278
508 => 0.077481862230597
509 => 0.076139418668158
510 => 0.07508462575432
511 => 0.074245815267286
512 => 0.072044526059294
513 => 0.072787396547469
514 => 0.069279000994693
515 => 0.071523548139455
516 => 0.065924064124052
517 => 0.070587480801646
518 => 0.068049395123569
519 => 0.069753651394802
520 => 0.069747705405222
521 => 0.06660962927494
522 => 0.064799652452971
523 => 0.065953040129282
524 => 0.067189563274314
525 => 0.067390184994432
526 => 0.068993369528523
527 => 0.069440783871651
528 => 0.068085097524194
529 => 0.065808027263875
530 => 0.066336938750904
531 => 0.064788934078568
601 => 0.062076115433439
602 => 0.06402450914564
603 => 0.06468977642381
604 => 0.06498359635329
605 => 0.062315850785132
606 => 0.061477587208043
607 => 0.061031302713313
608 => 0.06546365481114
609 => 0.065706469064528
610 => 0.064464197013719
611 => 0.070079384480446
612 => 0.068808494618639
613 => 0.070228389969853
614 => 0.066288945577244
615 => 0.066439437658207
616 => 0.064574441550349
617 => 0.065618714751665
618 => 0.064880656111471
619 => 0.065534347796707
620 => 0.065926167897566
621 => 0.067790857977914
622 => 0.07060877256707
623 => 0.067512335461845
624 => 0.066163173473301
625 => 0.067000185983019
626 => 0.069229260596614
627 => 0.07260642274044
628 => 0.070607074779573
629 => 0.071494351453476
630 => 0.071688181934532
701 => 0.070213936768073
702 => 0.072660780262569
703 => 0.073972063569391
704 => 0.075317168910342
705 => 0.076485086188894
706 => 0.074779904257666
707 => 0.076604693352309
708 => 0.075134235460664
709 => 0.073815082718716
710 => 0.073817083328903
711 => 0.072989559544132
712 => 0.071386127936433
713 => 0.071090430546918
714 => 0.072628685709635
715 => 0.073862220676828
716 => 0.07396382052496
717 => 0.074646768864113
718 => 0.075050930656296
719 => 0.079012265651007
720 => 0.080605547355761
721 => 0.082553782065056
722 => 0.083312729280818
723 => 0.085596888302626
724 => 0.08375224438219
725 => 0.08335314406665
726 => 0.077812521422466
727 => 0.078719798070059
728 => 0.080172435522032
729 => 0.077836474879009
730 => 0.079318104242985
731 => 0.079610609264634
801 => 0.077757099830226
802 => 0.078747139304558
803 => 0.076117887986977
804 => 0.070666083060879
805 => 0.072666849679933
806 => 0.074140087362319
807 => 0.072037595540658
808 => 0.075806230753315
809 => 0.073604671862502
810 => 0.072906883387578
811 => 0.070184561767347
812 => 0.071469392780328
813 => 0.073207145122392
814 => 0.07213341621039
815 => 0.074361564924001
816 => 0.077517217728033
817 => 0.079766123838559
818 => 0.079938766924946
819 => 0.078492870960886
820 => 0.080809928470878
821 => 0.080826805705249
822 => 0.07821315536852
823 => 0.07661230909014
824 => 0.076248593447482
825 => 0.077157226433493
826 => 0.078260474621412
827 => 0.079999989521159
828 => 0.081051141943473
829 => 0.083791989972702
830 => 0.08453358486314
831 => 0.08534837281021
901 => 0.086437180778792
902 => 0.087744573909707
903 => 0.084884072169196
904 => 0.084997725235989
905 => 0.082334065621568
906 => 0.07948756331613
907 => 0.081647703744436
908 => 0.084471800003007
909 => 0.083823949200941
910 => 0.083751052751318
911 => 0.083873644359796
912 => 0.083385186011867
913 => 0.0811759070073
914 => 0.080066420922025
915 => 0.081497941032118
916 => 0.082258730261002
917 => 0.083438648007209
918 => 0.083293198239947
919 => 0.08633253964026
920 => 0.087513535803509
921 => 0.087211386447275
922 => 0.087266989200452
923 => 0.089405126342285
924 => 0.091783174585443
925 => 0.094010530576265
926 => 0.096276292757295
927 => 0.093544828013861
928 => 0.092157958670469
929 => 0.093588853823664
930 => 0.092829600714072
1001 => 0.097192494290893
1002 => 0.097494571576116
1003 => 0.10185714966607
1004 => 0.10599775575958
1005 => 0.10339711525891
1006 => 0.10584940211562
1007 => 0.10850175028903
1008 => 0.11361856024352
1009 => 0.11189539866239
1010 => 0.11057548389663
1011 => 0.10932817082077
1012 => 0.11192363132627
1013 => 0.11526264980309
1014 => 0.11598184240227
1015 => 0.11714720916567
1016 => 0.11592196850823
1017 => 0.11739763592429
1018 => 0.12260739034411
1019 => 0.1211996687121
1020 => 0.1192004776921
1021 => 0.12331307845642
1022 => 0.12480141268569
1023 => 0.13524732175343
1024 => 0.14843571345044
1025 => 0.14297563268823
1026 => 0.13958638436342
1027 => 0.1403829381138
1028 => 0.14519889230631
1029 => 0.1467456239422
1030 => 0.14254107416548
1031 => 0.1440261922272
1101 => 0.15220933876086
1102 => 0.1565993343294
1103 => 0.15063713069226
1104 => 0.13418764732183
1105 => 0.11902047241437
1106 => 0.12304349018662
1107 => 0.12258740482002
1108 => 0.13137917490212
1109 => 0.12116609501674
1110 => 0.12133805708911
1111 => 0.13031163166586
1112 => 0.1279176358148
1113 => 0.1240396691359
1114 => 0.11904878586274
1115 => 0.10982267653149
1116 => 0.10165085420771
1117 => 0.11767767964293
1118 => 0.11698657378728
1119 => 0.11598575009213
1120 => 0.11821297492524
1121 => 0.12902774650599
1122 => 0.12877843101706
1123 => 0.12719241307833
1124 => 0.12839539370633
1125 => 0.12382878081548
1126 => 0.1250057009373
1127 => 0.11901806985638
1128 => 0.12172472917052
1129 => 0.12403134876109
1130 => 0.12449443679398
1201 => 0.12553779777796
1202 => 0.11662239240544
1203 => 0.12062514767515
1204 => 0.12297639138865
1205 => 0.11235338675205
1206 => 0.12276640874255
1207 => 0.11646719503289
1208 => 0.11432914728881
1209 => 0.11720774690984
1210 => 0.116085953838
1211 => 0.11512150202872
1212 => 0.11458332134776
1213 => 0.11669704721
1214 => 0.11659843937208
1215 => 0.11313997360495
1216 => 0.10862854599683
1217 => 0.11014272918468
1218 => 0.10959261223699
1219 => 0.10759891745207
1220 => 0.10894242701748
1221 => 0.10302629082605
1222 => 0.092847886002684
1223 => 0.099572052001969
1224 => 0.099313178925481
1225 => 0.099182643381357
1226 => 0.10423566828752
1227 => 0.10374993653591
1228 => 0.10286832865044
1229 => 0.10758272603189
1230 => 0.10586190757007
1231 => 0.11116506459358
]
'min_raw' => 0.047605137461293
'max_raw' => 0.1565993343294
'avg_raw' => 0.10210223589534
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.0476051'
'max' => '$0.156599'
'avg' => '$0.1021022'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072434
'min_diff' => 0.025934051527795
'max_diff' => 0.10352007464441
'year' => 2029
]
4 => [
'items' => [
101 => 0.11465806679595
102 => 0.11377212845065
103 => 0.11705731390512
104 => 0.11017761290711
105 => 0.11246277361295
106 => 0.11293374206733
107 => 0.1075245511
108 => 0.10382940825762
109 => 0.10358298435775
110 => 0.097176115891117
111 => 0.10059861331156
112 => 0.10361026940898
113 => 0.10216791985227
114 => 0.10171131507158
115 => 0.10404400987061
116 => 0.10422528023468
117 => 0.10009229672383
118 => 0.1009516748703
119 => 0.10453542460082
120 => 0.10086137357204
121 => 0.093723292575965
122 => 0.091952949797247
123 => 0.091716753436675
124 => 0.086915443413133
125 => 0.092071252566944
126 => 0.089820603704211
127 => 0.096930376494672
128 => 0.092869312407237
129 => 0.092694248051173
130 => 0.092429612600626
131 => 0.088296926723745
201 => 0.089201722284893
202 => 0.092209400534404
203 => 0.09328257401775
204 => 0.093170633231186
205 => 0.092194661270148
206 => 0.092641456236126
207 => 0.091202173977026
208 => 0.090693933455268
209 => 0.08908978656603
210 => 0.086732133795739
211 => 0.087059979873773
212 => 0.082388852822422
213 => 0.07984377488937
214 => 0.079139330861089
215 => 0.078197318865729
216 => 0.079245733622563
217 => 0.082375620106382
218 => 0.078600312964437
219 => 0.072127813676577
220 => 0.07251682191238
221 => 0.073390807920646
222 => 0.071762140776237
223 => 0.070220744007727
224 => 0.071560863440474
225 => 0.068818380166758
226 => 0.073722223921906
227 => 0.073589588691192
228 => 0.075417438391448
301 => 0.07656043032027
302 => 0.073926203972367
303 => 0.073263703169575
304 => 0.073641093735828
305 => 0.067403668323539
306 => 0.074907707663797
307 => 0.074972602907624
308 => 0.074416930430936
309 => 0.078412599718401
310 => 0.086844708195457
311 => 0.083672209805611
312 => 0.082443722539791
313 => 0.080108367349449
314 => 0.083220089480909
315 => 0.08298115777164
316 => 0.081900617970166
317 => 0.081247104126744
318 => 0.082451223421076
319 => 0.081097900420778
320 => 0.080854806423096
321 => 0.079381921286018
322 => 0.078856168304085
323 => 0.078466921727091
324 => 0.078038399492399
325 => 0.078983612761041
326 => 0.076841635141137
327 => 0.074258620112187
328 => 0.07404387036114
329 => 0.074636813304773
330 => 0.074374480191626
331 => 0.074042614411121
401 => 0.07340899225787
402 => 0.073221010100196
403 => 0.07383186091666
404 => 0.073142245959687
405 => 0.074159810393971
406 => 0.073883089172254
407 => 0.072337346922306
408 => 0.070410779771792
409 => 0.070393629283041
410 => 0.069978553550666
411 => 0.069449892198432
412 => 0.069302830704374
413 => 0.071448002319745
414 => 0.07588844336398
415 => 0.075016678536248
416 => 0.075646617966337
417 => 0.078745296488407
418 => 0.079730273210059
419 => 0.079031160063483
420 => 0.078074170869029
421 => 0.078116273536782
422 => 0.081386595314563
423 => 0.081590561272385
424 => 0.082105917445889
425 => 0.082768295768479
426 => 0.079143965956025
427 => 0.077945567928546
428 => 0.077377700458535
429 => 0.075628888443271
430 => 0.077514832269923
501 => 0.076415973566299
502 => 0.076564247147777
503 => 0.076467683783324
504 => 0.076520413909901
505 => 0.073720853197636
506 => 0.074740865980606
507 => 0.073044896894185
508 => 0.070774184668931
509 => 0.070766572445338
510 => 0.071322326045553
511 => 0.070991742057504
512 => 0.070102149045757
513 => 0.070228511534316
514 => 0.069121443169688
515 => 0.070362929677901
516 => 0.070398531068704
517 => 0.069920491138815
518 => 0.071833172396841
519 => 0.072616799468854
520 => 0.072302143346393
521 => 0.072594722356493
522 => 0.075052904300622
523 => 0.075453695215513
524 => 0.075631700065146
525 => 0.075393197147761
526 => 0.072639653409884
527 => 0.072761784783631
528 => 0.071865665798515
529 => 0.071108539686785
530 => 0.071138820760651
531 => 0.071528082001585
601 => 0.073228008670616
602 => 0.07680540412944
603 => 0.07694116367206
604 => 0.077105708198101
605 => 0.076436422917239
606 => 0.076234560072334
607 => 0.076500869269985
608 => 0.077844350913802
609 => 0.081300150453408
610 => 0.08007864009102
611 => 0.079085533152458
612 => 0.079956755677285
613 => 0.079822637798456
614 => 0.078690547929674
615 => 0.0786587739376
616 => 0.076485931528382
617 => 0.075682681162922
618 => 0.075011425035295
619 => 0.074278430867513
620 => 0.073843887354664
621 => 0.074511543686894
622 => 0.074664244589553
623 => 0.073204402350496
624 => 0.073005431247615
625 => 0.074197569932912
626 => 0.073672954144923
627 => 0.074212534492715
628 => 0.074337721761838
629 => 0.074317563728202
630 => 0.073769804593801
701 => 0.074118929931655
702 => 0.073293144428358
703 => 0.072395226722493
704 => 0.071822411168401
705 => 0.071322553624499
706 => 0.071599903641747
707 => 0.07061120147237
708 => 0.070294895749743
709 => 0.074000654122759
710 => 0.076738137676522
711 => 0.076698333581488
712 => 0.07645603638975
713 => 0.076096031911017
714 => 0.077818014343853
715 => 0.077218110096379
716 => 0.077654590560094
717 => 0.077765693157136
718 => 0.078101967256424
719 => 0.078222156343184
720 => 0.077858861446308
721 => 0.076639599399658
722 => 0.073601314303362
723 => 0.072186984389343
724 => 0.071720231960188
725 => 0.071737197524499
726 => 0.071269211523196
727 => 0.071407054374241
728 => 0.071221275404931
729 => 0.070869454981818
730 => 0.071578179722024
731 => 0.071659853646105
801 => 0.071494428823111
802 => 0.071533392357392
803 => 0.070163745476867
804 => 0.070267876754477
805 => 0.069688060568383
806 => 0.069579352023279
807 => 0.068113627195206
808 => 0.065516883202063
809 => 0.066955731446303
810 => 0.065217805099941
811 => 0.064559626058693
812 => 0.067675343272122
813 => 0.067362611680437
814 => 0.066827351136627
815 => 0.066035589234262
816 => 0.065741917042909
817 => 0.063957657773572
818 => 0.063852234217286
819 => 0.064736561290223
820 => 0.064328474773899
821 => 0.063755366750531
822 => 0.061679627584921
823 => 0.059345809509156
824 => 0.059416252807006
825 => 0.060158596914678
826 => 0.062317062526476
827 => 0.061473712670113
828 => 0.060861852672996
829 => 0.06074726968798
830 => 0.062181515641182
831 => 0.06421127414878
901 => 0.065163591427258
902 => 0.064219873926592
903 => 0.063135782075186
904 => 0.063201765722983
905 => 0.063640725370583
906 => 0.06368685382299
907 => 0.062981221474167
908 => 0.063179852847096
909 => 0.062878113628384
910 => 0.061026340600118
911 => 0.060992847898072
912 => 0.060538392933062
913 => 0.060524632217333
914 => 0.059751490952746
915 => 0.059643323145358
916 => 0.058108204238201
917 => 0.05911862415166
918 => 0.058440887523138
919 => 0.057419378562047
920 => 0.057243270032124
921 => 0.057237975997058
922 => 0.058286837294874
923 => 0.059106367596718
924 => 0.058452677041955
925 => 0.058303844373895
926 => 0.059892987890768
927 => 0.059690754892881
928 => 0.059515622420974
929 => 0.064029531537011
930 => 0.060456420246947
1001 => 0.058898339778417
1002 => 0.056969919327155
1003 => 0.057597822750026
1004 => 0.057730131227045
1005 => 0.053092627665673
1006 => 0.051211193048389
1007 => 0.050565555588104
1008 => 0.050193982101737
1009 => 0.050363312805401
1010 => 0.048669800979575
1011 => 0.04980786893463
1012 => 0.048341430842456
1013 => 0.048095577724101
1014 => 0.050717750689728
1015 => 0.051082610739383
1016 => 0.049526004414423
1017 => 0.050525597666721
1018 => 0.050163131258052
1019 => 0.048366568714614
1020 => 0.048297953240074
1021 => 0.047396501308003
1022 => 0.045985903589803
1023 => 0.045341222581196
1024 => 0.045005467114536
1025 => 0.045144006363823
1026 => 0.045073956680013
1027 => 0.044616835109716
1028 => 0.045100158353335
1029 => 0.043865467188841
1030 => 0.043373803218557
1031 => 0.043151730009697
1101 => 0.042055870535038
1102 => 0.043799870290142
1103 => 0.044143460212227
1104 => 0.0444877271126
1105 => 0.047484335439345
1106 => 0.047334633355668
1107 => 0.048687867284237
1108 => 0.04863528310221
1109 => 0.048249318864846
1110 => 0.046620999235443
1111 => 0.047270018417717
1112 => 0.045272438254654
1113 => 0.046769161135068
1114 => 0.046086119317089
1115 => 0.046538224009331
1116 => 0.045725299008043
1117 => 0.046175205268606
1118 => 0.044224938129099
1119 => 0.042403806115227
1120 => 0.043136682799767
1121 => 0.043933403570477
1122 => 0.045660897202053
1123 => 0.044632016246599
1124 => 0.045002040744476
1125 => 0.04376252061794
1126 => 0.041205036545475
1127 => 0.041219511627583
1128 => 0.040826098420854
1129 => 0.040486131970971
1130 => 0.044750195601159
1201 => 0.044219891883874
1202 => 0.043374922314816
1203 => 0.044505947660756
1204 => 0.044805008714009
1205 => 0.044813522561765
1206 => 0.045638689458173
1207 => 0.046079081178706
1208 => 0.046156702128217
1209 => 0.047455120068627
1210 => 0.047890332635705
1211 => 0.049682911605914
1212 => 0.046041717018065
1213 => 0.045966729011682
1214 => 0.044521863506817
1215 => 0.043605506961212
1216 => 0.044584607223472
1217 => 0.045451956395321
1218 => 0.044548814463313
1219 => 0.044666745733266
1220 => 0.043454351478953
1221 => 0.043887725376418
1222 => 0.044261005358684
1223 => 0.04405490209286
1224 => 0.043746355528411
1225 => 0.045380843654349
1226 => 0.045288619428672
1227 => 0.046810692348265
1228 => 0.047997257033566
1229 => 0.050123793073434
1230 => 0.047904641857001
1231 => 0.047823767166347
]
'min_raw' => 0.040486131970971
'max_raw' => 0.11705731390512
'avg_raw' => 0.078771722938047
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.040486'
'max' => '$0.117057'
'avg' => '$0.078771'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -0.0071190054903218
'max_diff' => -0.039542020424273
'year' => 2030
]
5 => [
'items' => [
101 => 0.048614330240198
102 => 0.047890211604618
103 => 0.048347829586579
104 => 0.050050063741794
105 => 0.050086029267148
106 => 0.049483560378503
107 => 0.049446900091876
108 => 0.049562610832228
109 => 0.050240332252628
110 => 0.050003515564064
111 => 0.050277565831535
112 => 0.050620269887414
113 => 0.052037839166037
114 => 0.052379610319955
115 => 0.051549283603961
116 => 0.051624252809641
117 => 0.051313687824882
118 => 0.051013685940972
119 => 0.051688046364245
120 => 0.052920453292363
121 => 0.052912786552825
122 => 0.053198681005581
123 => 0.053376790881171
124 => 0.052612212910743
125 => 0.052114500766306
126 => 0.05230535527273
127 => 0.052610535784772
128 => 0.052206389345795
129 => 0.049711810305585
130 => 0.050468506232059
131 => 0.050342555029353
201 => 0.050163185200511
202 => 0.050924048805936
203 => 0.050850661655054
204 => 0.048652431568039
205 => 0.048793155126069
206 => 0.048660989433694
207 => 0.049088043824316
208 => 0.047867149266051
209 => 0.048242688209323
210 => 0.048478222714084
211 => 0.04861695434685
212 => 0.049118148133571
213 => 0.049059338827457
214 => 0.049114492464531
215 => 0.049857630539985
216 => 0.053616167911436
217 => 0.053820736807819
218 => 0.052813364744471
219 => 0.053215790014243
220 => 0.052443221497013
221 => 0.052961851918389
222 => 0.05331668568091
223 => 0.051713260138686
224 => 0.051618315684221
225 => 0.050842558501902
226 => 0.051259406470548
227 => 0.050596171380003
228 => 0.050758906072244
301 => 0.050303885685783
302 => 0.051122831787758
303 => 0.052038540781125
304 => 0.052269885035293
305 => 0.05166131790254
306 => 0.051220675191898
307 => 0.050447051748743
308 => 0.051733604776032
309 => 0.052109832088205
310 => 0.051731628614126
311 => 0.051643990605273
312 => 0.051477916736855
313 => 0.05167922396154
314 => 0.052107783073464
315 => 0.051905682510525
316 => 0.0520391734929
317 => 0.05153044352339
318 => 0.052612466017865
319 => 0.054330978141987
320 => 0.054336503439471
321 => 0.054134401787135
322 => 0.054051706145339
323 => 0.05425907470519
324 => 0.054371563642206
325 => 0.055042155539873
326 => 0.05576172736363
327 => 0.059119655091321
328 => 0.05817676242235
329 => 0.061156115666371
330 => 0.063512397261792
331 => 0.064218943084553
401 => 0.063568954173163
402 => 0.06134537721901
403 => 0.061236277925506
404 => 0.064559240664985
405 => 0.063620351489747
406 => 0.063508673609873
407 => 0.062320609650769
408 => 0.063022902595183
409 => 0.062869300826224
410 => 0.062626832919466
411 => 0.063966758935258
412 => 0.066474980820799
413 => 0.066084050917981
414 => 0.065792239880244
415 => 0.064513608857797
416 => 0.065283630325888
417 => 0.065009440429891
418 => 0.066187534228304
419 => 0.065489657560097
420 => 0.063613238480821
421 => 0.063912064403954
422 => 0.063866897466827
423 => 0.064796429832341
424 => 0.064517407288625
425 => 0.063812413837015
426 => 0.066466407991073
427 => 0.066294072372999
428 => 0.06653840487802
429 => 0.066645967602964
430 => 0.068261407075916
501 => 0.068923200939688
502 => 0.069073439733096
503 => 0.069702092718704
504 => 0.069057798274124
505 => 0.071635435426598
506 => 0.073349413723695
507 => 0.07534028771629
508 => 0.078249489715953
509 => 0.07934337657945
510 => 0.079145775708561
511 => 0.081351499462442
512 => 0.085315136017682
513 => 0.079946939981081
514 => 0.08559966344262
515 => 0.083810076458527
516 => 0.079566997912539
517 => 0.079293793676787
518 => 0.082167255731286
519 => 0.088540318007689
520 => 0.086943938190124
521 => 0.088542929113183
522 => 0.086677621266031
523 => 0.086584993009371
524 => 0.088452335274492
525 => 0.092815482260475
526 => 0.090742714677554
527 => 0.087770894083973
528 => 0.089965240163623
529 => 0.088064294512287
530 => 0.083780931918642
531 => 0.086942717468563
601 => 0.084828521513799
602 => 0.085445556290238
603 => 0.089889281724238
604 => 0.08935460092338
605 => 0.0900465273898
606 => 0.088825295287438
607 => 0.087684471933205
608 => 0.085555040423876
609 => 0.084924620733668
610 => 0.085098846055917
611 => 0.084924534396251
612 => 0.083733137037267
613 => 0.083475854891028
614 => 0.083047040042174
615 => 0.083179947694588
616 => 0.082373650324533
617 => 0.083895300051363
618 => 0.084177731649394
619 => 0.085285061425524
620 => 0.085400028076307
621 => 0.088483925740976
622 => 0.086785366730071
623 => 0.087924906761116
624 => 0.087822975574972
625 => 0.07965895829077
626 => 0.080783887840799
627 => 0.082533925198304
628 => 0.081745535740867
629 => 0.080630937502774
630 => 0.079730839664537
701 => 0.078367099399878
702 => 0.080286537634073
703 => 0.08281039480254
704 => 0.085464037259098
705 => 0.088652214797111
706 => 0.087940650685104
707 => 0.085404436497675
708 => 0.085518209213417
709 => 0.086221507374224
710 => 0.085310672354603
711 => 0.085042049325706
712 => 0.08618460269504
713 => 0.086192470832159
714 => 0.085144445063996
715 => 0.083979756209375
716 => 0.083974876120548
717 => 0.083767630988427
718 => 0.086714489714637
719 => 0.088334964053031
720 => 0.088520748824402
721 => 0.088322459257662
722 => 0.088398773042069
723 => 0.087455854729273
724 => 0.089611086378584
725 => 0.09158894007031
726 => 0.091058833030247
727 => 0.090264127218035
728 => 0.089631105760391
729 => 0.090909713292537
730 => 0.090852778911845
731 => 0.091571665243755
801 => 0.091539052407251
802 => 0.091297317972512
803 => 0.091058841663345
804 => 0.092004373273054
805 => 0.091732075354231
806 => 0.091459354481529
807 => 0.090912371019848
808 => 0.090986715156724
809 => 0.090192146561676
810 => 0.089824542772621
811 => 0.084296663790059
812 => 0.082819433897262
813 => 0.083284200493323
814 => 0.083437213724406
815 => 0.082794321381939
816 => 0.083716063855544
817 => 0.083572411267399
818 => 0.084131279453916
819 => 0.083782122874216
820 => 0.083796452382038
821 => 0.084823247434904
822 => 0.085121330407049
823 => 0.084969723001591
824 => 0.085075903631576
825 => 0.087522791433533
826 => 0.087174922235162
827 => 0.086990123656818
828 => 0.087041314125955
829 => 0.087666546421221
830 => 0.087841577327478
831 => 0.087099959078465
901 => 0.087449710531943
902 => 0.088938907830788
903 => 0.089460042604117
904 => 0.091123254641699
905 => 0.090416692606897
906 => 0.091713617801064
907 => 0.095699923693551
908 => 0.098884460671857
909 => 0.095955828860051
910 => 0.10180382547237
911 => 0.10635732968035
912 => 0.10618255860459
913 => 0.10538854982148
914 => 0.10020450634187
915 => 0.095434072242191
916 => 0.0994247429299
917 => 0.099434915970172
918 => 0.099092113818947
919 => 0.096962999098989
920 => 0.099018025241816
921 => 0.099181145754275
922 => 0.099089841644544
923 => 0.097457454380725
924 => 0.09496510074447
925 => 0.095452100679143
926 => 0.096249816506666
927 => 0.09473957402421
928 => 0.094256960042246
929 => 0.095154231255783
930 => 0.098045426059683
1001 => 0.097498862429557
1002 => 0.097484589444337
1003 => 0.099823020433066
1004 => 0.098149208510128
1005 => 0.095458243307909
1006 => 0.094778739104878
1007 => 0.092366956952997
1008 => 0.094032783475774
1009 => 0.094092733606715
1010 => 0.093180377444524
1011 => 0.095532275982189
1012 => 0.095510602823121
1013 => 0.097743380450732
1014 => 0.10201161268175
1015 => 0.10074928638408
1016 => 0.099281338240612
1017 => 0.099440944905594
1018 => 0.10119143607763
1019 => 0.10013304915519
1020 => 0.10051365247184
1021 => 0.10119085998893
1022 => 0.10159943609811
1023 => 0.099382157091113
1024 => 0.098865203289867
1025 => 0.097807697238648
1026 => 0.09753181364917
1027 => 0.0983931302623
1028 => 0.098166203765505
1029 => 0.094087695030348
1030 => 0.093661468174916
1031 => 0.09367453994406
1101 => 0.092602772250093
1102 => 0.090968069263074
1103 => 0.095263971109917
1104 => 0.094918950070508
1105 => 0.094538073545507
1106 => 0.094584728746568
1107 => 0.09644943413666
1108 => 0.095367810840528
1109 => 0.098243483647868
1110 => 0.097652331769316
1111 => 0.0970460190757
1112 => 0.096962208192705
1113 => 0.096728829533831
1114 => 0.095928487276177
1115 => 0.094962025906946
1116 => 0.09432388439753
1117 => 0.087008797415057
1118 => 0.088366435009101
1119 => 0.089928273308487
1120 => 0.090467413630762
1121 => 0.089545176802137
1122 => 0.095964902807271
1123 => 0.097137848610428
1124 => 0.093584919263304
1125 => 0.092920311247606
1126 => 0.096008474398135
1127 => 0.094145934505775
1128 => 0.09498463610526
1129 => 0.093171821992421
1130 => 0.09685532031431
1201 => 0.096827258228644
1202 => 0.095394294185847
1203 => 0.096605425582305
1204 => 0.096394961697691
1205 => 0.094777148822607
1206 => 0.096906607868091
1207 => 0.09690766405321
1208 => 0.095528467317342
1209 => 0.093917867474836
1210 => 0.093629930263666
1211 => 0.093413008253972
1212 => 0.094931286588436
1213 => 0.096292570195583
1214 => 0.098825581497659
1215 => 0.099462440721864
1216 => 0.10194814467206
1217 => 0.10046802899645
1218 => 0.10112414510474
1219 => 0.10183645195358
1220 => 0.10217795805113
1221 => 0.1016214921914
1222 => 0.10548281358262
1223 => 0.10580882741587
1224 => 0.10591813703414
1225 => 0.10461612118651
1226 => 0.10577261599981
1227 => 0.10523153037575
1228 => 0.10663928485165
1229 => 0.10686003872858
1230 => 0.10667306804836
1231 => 0.10674313881327
]
'min_raw' => 0.047867149266051
'max_raw' => 0.10686003872858
'avg_raw' => 0.077363593997315
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.047867'
'max' => '$0.10686'
'avg' => '$0.077363'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 0.00738101729508
'max_diff' => -0.010197275176544
'year' => 2031
]
6 => [
'items' => [
101 => 0.10344818218963
102 => 0.10327732130642
103 => 0.10094762104003
104 => 0.10189699111886
105 => 0.10012218926098
106 => 0.1006849972126
107 => 0.10093307759504
108 => 0.10080349448169
109 => 0.10195066707869
110 => 0.10097533601936
111 => 0.09840127699452
112 => 0.095826516669018
113 => 0.095794192650486
114 => 0.095116303705076
115 => 0.094626314159098
116 => 0.094720703528966
117 => 0.095053343979781
118 => 0.094606980491389
119 => 0.094702234772841
120 => 0.096284090520898
121 => 0.096601320409891
122 => 0.095523249297372
123 => 0.091194638215686
124 => 0.090132386198742
125 => 0.090895911883149
126 => 0.090530995783354
127 => 0.073065579251689
128 => 0.077168819797618
129 => 0.07473081359811
130 => 0.075854359022115
131 => 0.073365786011061
201 => 0.074553463489223
202 => 0.074334142826043
203 => 0.080932032200183
204 => 0.080829015232706
205 => 0.080878324003501
206 => 0.078524687900152
207 => 0.082274094120971
208 => 0.084121186449633
209 => 0.083779338818368
210 => 0.08386537450234
211 => 0.082386996401855
212 => 0.080892637935088
213 => 0.079235164415324
214 => 0.082314545345127
215 => 0.081972170752518
216 => 0.082757454885472
217 => 0.084754653537143
218 => 0.085048748625222
219 => 0.085444015406017
220 => 0.085302340402107
221 => 0.088677613774771
222 => 0.088268845898571
223 => 0.089253858869669
224 => 0.087227612455006
225 => 0.084934722303738
226 => 0.085370525761268
227 => 0.085328554383797
228 => 0.084794210576098
229 => 0.084311828878633
301 => 0.083508799262553
302 => 0.08604970379385
303 => 0.085946547710115
304 => 0.08761652479994
305 => 0.087321340128022
306 => 0.085350024645008
307 => 0.085420430563138
308 => 0.085893944198491
309 => 0.087532780296933
310 => 0.088019298431421
311 => 0.087793923847131
312 => 0.0883273687712
313 => 0.088748981888883
314 => 0.088380316887512
315 => 0.09359983586125
316 => 0.091432327679761
317 => 0.092488756085994
318 => 0.092740708036043
319 => 0.092095338413971
320 => 0.092235295976045
321 => 0.092447293546434
322 => 0.093734501280455
323 => 0.097112506831087
324 => 0.0986086024946
325 => 0.10310968011434
326 => 0.098484372576403
327 => 0.098209925968527
328 => 0.099020705967364
329 => 0.1016633150176
330 => 0.10380490144518
331 => 0.10451538921429
401 => 0.10460929190185
402 => 0.10594221418904
403 => 0.10670622038653
404 => 0.10578036236404
405 => 0.10499579463136
406 => 0.10218557039702
407 => 0.10251086150413
408 => 0.10475179465646
409 => 0.10791724472442
410 => 0.11063353019168
411 => 0.10968238169315
412 => 0.11693897333072
413 => 0.11765843475107
414 => 0.11755902844575
415 => 0.11919806863151
416 => 0.1159449076475
417 => 0.11455411829981
418 => 0.10516542708038
419 => 0.1078032663533
420 => 0.11163752065136
421 => 0.1111300427173
422 => 0.10834550475614
423 => 0.11063141786994
424 => 0.1098756235074
425 => 0.10927949713574
426 => 0.11201046760913
427 => 0.10900765339155
428 => 0.11160756528251
429 => 0.10827315138971
430 => 0.10968672645937
501 => 0.1088843128829
502 => 0.10940357280698
503 => 0.10636798990099
504 => 0.10800591675246
505 => 0.10629984675897
506 => 0.10629903785965
507 => 0.10626137626999
508 => 0.10826856005146
509 => 0.10833401424251
510 => 0.10685070239532
511 => 0.10663693398445
512 => 0.10742734783998
513 => 0.10650198022487
514 => 0.10693495390779
515 => 0.10651509455665
516 => 0.10642057537312
517 => 0.10566743043762
518 => 0.10534295489126
519 => 0.10547019011369
520 => 0.10503587070527
521 => 0.10477417755168
522 => 0.10620931891502
523 => 0.10544258077802
524 => 0.10609180529895
525 => 0.10535193201869
526 => 0.10278720888185
527 => 0.10131220948441
528 => 0.096467685228891
529 => 0.097841586298142
530 => 0.098752484128459
531 => 0.098451432400973
601 => 0.099098208003165
602 => 0.099137914772246
603 => 0.098927641430876
604 => 0.098684171839254
605 => 0.098565664306765
606 => 0.099448922362538
607 => 0.099961683393013
608 => 0.098843904911972
609 => 0.098582025053247
610 => 0.099712160811821
611 => 0.10040154297169
612 => 0.10549155350981
613 => 0.10511446908863
614 => 0.10606087698672
615 => 0.10595432598121
616 => 0.106946312233
617 => 0.10856779051002
618 => 0.10527087180039
619 => 0.10584310288951
620 => 0.1057028050412
621 => 0.10723454016094
622 => 0.10723932207079
623 => 0.10632097035066
624 => 0.1068188237167
625 => 0.10654093562567
626 => 0.10704311696499
627 => 0.10510943289629
628 => 0.10746445136367
629 => 0.10879959508063
630 => 0.10881813355244
701 => 0.10945098107792
702 => 0.11009399081587
703 => 0.11132819201352
704 => 0.11005956961433
705 => 0.1077774414161
706 => 0.10794220370078
707 => 0.10660419277315
708 => 0.10662668497857
709 => 0.10650661982327
710 => 0.10686694439242
711 => 0.10518850387641
712 => 0.1055824305107
713 => 0.10503093091586
714 => 0.1058419040371
715 => 0.10496943101731
716 => 0.10570273738533
717 => 0.10601920810428
718 => 0.10718699187032
719 => 0.10479694840557
720 => 0.099923487989226
721 => 0.10094794845374
722 => 0.099432690957092
723 => 0.099572933807398
724 => 0.099856246684502
725 => 0.098937936955604
726 => 0.099113121512613
727 => 0.099106862687481
728 => 0.099052927513792
729 => 0.098814039686502
730 => 0.098467605074414
731 => 0.099847693942021
801 => 0.10008219793342
802 => 0.10060347125742
803 => 0.10215442708654
804 => 0.10199945002515
805 => 0.10225222404221
806 => 0.10170041978224
807 => 0.099598530424406
808 => 0.099712673129031
809 => 0.098289311773343
810 => 0.1005670727074
811 => 0.10002766885324
812 => 0.099679911679432
813 => 0.099585022912611
814 => 0.10113982326125
815 => 0.10160504389407
816 => 0.10131514961549
817 => 0.10072056799256
818 => 0.10186234048086
819 => 0.10216783063122
820 => 0.10223621860984
821 => 0.10425922054596
822 => 0.10234928194532
823 => 0.10280902314965
824 => 0.10639579278693
825 => 0.1031430876663
826 => 0.10486611811268
827 => 0.10478178473854
828 => 0.10566322881074
829 => 0.1047094805972
830 => 0.10472130344936
831 => 0.10550396607128
901 => 0.10440485757274
902 => 0.10413270285171
903 => 0.10375672305381
904 => 0.10457766118758
905 => 0.10506977647094
906 => 0.10903586423594
907 => 0.11159813780772
908 => 0.11148690275445
909 => 0.11250338291801
910 => 0.11204544929443
911 => 0.11056666082712
912 => 0.11309077242178
913 => 0.11229203789992
914 => 0.11235788460344
915 => 0.11235543378584
916 => 0.1128865224163
917 => 0.11251019744806
918 => 0.1117684223067
919 => 0.11226084726273
920 => 0.113723173337
921 => 0.11826227834117
922 => 0.12080242163664
923 => 0.11810935852528
924 => 0.11996699739795
925 => 0.11885307601876
926 => 0.11865064336787
927 => 0.11981737785834
928 => 0.12098615456308
929 => 0.12091170853975
930 => 0.12006323666945
1001 => 0.1195839564391
1002 => 0.12321322691399
1003 => 0.12588721157688
1004 => 0.12570486374949
1005 => 0.1265096877569
1006 => 0.1288726759349
1007 => 0.12908871795997
1008 => 0.12906150163048
1009 => 0.1285260189297
1010 => 0.13085268766373
1011 => 0.13279363565551
1012 => 0.12840207015605
1013 => 0.13007432080843
1014 => 0.13082504800284
1015 => 0.13192733825494
1016 => 0.13378708667554
1017 => 0.13580726673422
1018 => 0.13609294234467
1019 => 0.13589024182822
1020 => 0.13455787877417
1021 => 0.13676838390013
1022 => 0.1380632459602
1023 => 0.13883430668458
1024 => 0.14078958838933
1025 => 0.13082968423841
1026 => 0.12377956904103
1027 => 0.12267859174806
1028 => 0.12491747236711
1029 => 0.12550784733161
1030 => 0.12526986792369
1031 => 0.11733432230061
1101 => 0.12263681274266
1102 => 0.12834184661224
1103 => 0.12856100019766
1104 => 0.1314170594394
1105 => 0.13234710940234
1106 => 0.13464661144419
1107 => 0.13450277696538
1108 => 0.1350626691195
1109 => 0.13493395960925
1110 => 0.1391933029245
1111 => 0.14389199111981
1112 => 0.14372929048852
1113 => 0.14305379846809
1114 => 0.14405701930693
1115 => 0.14890656906653
1116 => 0.14846010023712
1117 => 0.14889380667477
1118 => 0.15461169914997
1119 => 0.16204577272847
1120 => 0.15859189918247
1121 => 0.16608581095194
1122 => 0.17080283117562
1123 => 0.17896042990349
1124 => 0.17793905836574
1125 => 0.18111475168727
1126 => 0.17611059014649
1127 => 0.16462002374096
1128 => 0.16280159762316
1129 => 0.16644213276088
1130 => 0.17539203315872
1201 => 0.16616026854736
1202 => 0.16802784250476
1203 => 0.16748998107939
1204 => 0.16746132072979
1205 => 0.16855516970373
1206 => 0.16696848471571
1207 => 0.16050404463531
1208 => 0.16346665942897
1209 => 0.16232265158069
1210 => 0.16359201357979
1211 => 0.17044223676424
1212 => 0.16741358980547
1213 => 0.16422315626171
1214 => 0.16822466793947
1215 => 0.17331996737385
1216 => 0.17300111269238
1217 => 0.17238240133941
1218 => 0.17587004484143
1219 => 0.18163061012309
1220 => 0.1831876677709
1221 => 0.18433705589387
1222 => 0.18449553709696
1223 => 0.18612799198426
1224 => 0.17734987062362
1225 => 0.1912809746611
1226 => 0.1936864914894
1227 => 0.19323435402413
1228 => 0.19590798473916
1229 => 0.19512133475933
1230 => 0.19398160236017
1231 => 0.19821987574104
]
'min_raw' => 0.073065579251689
'max_raw' => 0.19821987574104
'avg_raw' => 0.13564272749637
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.073065'
'max' => '$0.198219'
'avg' => '$0.135642'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.025198429985638
'max_diff' => 0.091359837012463
'year' => 2032
]
7 => [
'items' => [
101 => 0.1933610373209
102 => 0.18646452789424
103 => 0.18268096642529
104 => 0.18766346537881
105 => 0.19070610362446
106 => 0.19271709395671
107 => 0.19332561841617
108 => 0.17803129119674
109 => 0.16978849708774
110 => 0.17507203360778
111 => 0.18151831281244
112 => 0.17731406121716
113 => 0.17747885991999
114 => 0.17148470200299
115 => 0.18204866278249
116 => 0.18050958255381
117 => 0.18849433350278
118 => 0.18658870860718
119 => 0.19309996303982
120 => 0.1913853315318
121 => 0.19850267105781
122 => 0.201341970489
123 => 0.20610959613565
124 => 0.20961668096906
125 => 0.21167610826307
126 => 0.21155246797306
127 => 0.21971294491456
128 => 0.2149009967675
129 => 0.2088560558057
130 => 0.20874672189525
131 => 0.21187748247684
201 => 0.21843869777364
202 => 0.2201399254383
203 => 0.2210906796171
204 => 0.21963456649627
205 => 0.21441154165808
206 => 0.21215626601428
207 => 0.21407782620442
208 => 0.21172792321343
209 => 0.21578451504221
210 => 0.22135508206438
211 => 0.22020478200271
212 => 0.22405006264625
213 => 0.22802952357699
214 => 0.23372033143672
215 => 0.23520811934126
216 => 0.23766737617196
217 => 0.24019875927453
218 => 0.24101177130439
219 => 0.2425640635322
220 => 0.24255588218593
221 => 0.24723381929577
222 => 0.25239372879159
223 => 0.25434147517407
224 => 0.25882021058125
225 => 0.25115053315007
226 => 0.25696807158452
227 => 0.26221563687483
228 => 0.255959273204
301 => 0.26458221297846
302 => 0.2649170221899
303 => 0.26997224377884
304 => 0.26484780823517
305 => 0.26180493476712
306 => 0.27058959645441
307 => 0.27484021753064
308 => 0.27355989586977
309 => 0.26381658481334
310 => 0.25814555986823
311 => 0.24330339372785
312 => 0.26088458065499
313 => 0.26944786395695
314 => 0.26379440797833
315 => 0.26664568233205
316 => 0.28220131067713
317 => 0.28812388679859
318 => 0.28689203236726
319 => 0.28710019548811
320 => 0.29029591006089
321 => 0.30446746838875
322 => 0.29597554214455
323 => 0.30246730157184
324 => 0.30591050736429
325 => 0.30910874879627
326 => 0.30125487865392
327 => 0.29103710899499
328 => 0.28780071243122
329 => 0.26323228319869
330 => 0.26195338976186
331 => 0.26123550812133
401 => 0.25670936592415
402 => 0.25315305797185
403 => 0.25032494985094
404 => 0.24290314959709
405 => 0.24540778931353
406 => 0.233578988759
407 => 0.24114663616684
408 => 0.22226758486542
409 => 0.23799061978328
410 => 0.22943328671616
411 => 0.235179305722
412 => 0.23515925840299
413 => 0.22457901563627
414 => 0.21847655241245
415 => 0.22236527949009
416 => 0.22653430360485
417 => 0.22721071374119
418 => 0.23261596232865
419 => 0.23412445102398
420 => 0.22955365985253
421 => 0.2218763584899
422 => 0.22365962049584
423 => 0.21844041466482
424 => 0.20929395719982
425 => 0.21586310263301
426 => 0.21810609770884
427 => 0.21909673211493
428 => 0.21010224167584
429 => 0.20727597749999
430 => 0.20577129816742
501 => 0.22071528272218
502 => 0.22153394793023
503 => 0.21734554097826
504 => 0.2362775375622
505 => 0.23199264366242
506 => 0.23677991997297
507 => 0.22349780816006
508 => 0.22400520271805
509 => 0.21771723813054
510 => 0.2212380781376
511 => 0.21874966190258
512 => 0.22095362905865
513 => 0.2222746778847
514 => 0.2285616106791
515 => 0.23806240645695
516 => 0.22762255257035
517 => 0.22307375873049
518 => 0.22589580484535
519 => 0.23341128553411
520 => 0.24479762348795
521 => 0.23805668224787
522 => 0.24104819750161
523 => 0.2417017105013
524 => 0.23673118999408
525 => 0.24498089366893
526 => 0.24940197688875
527 => 0.25393709345803
528 => 0.25787480810405
529 => 0.25212566817091
530 => 0.2582780720062
531 => 0.25332032056043
601 => 0.24887270499065
602 => 0.24887945018757
603 => 0.24608939597136
604 => 0.24068331435798
605 => 0.2396863499643
606 => 0.24487268464294
607 => 0.24903163390749
608 => 0.24937418488895
609 => 0.25167679289633
610 => 0.25303945259635
611 => 0.2663953701026
612 => 0.27176723060955
613 => 0.27833583995334
614 => 0.28089468347929
615 => 0.2885958850962
616 => 0.28237653932953
617 => 0.28103094475139
618 => 0.2623503486726
619 => 0.265409295234
620 => 0.27030696382323
621 => 0.26243110942371
622 => 0.26742652626842
623 => 0.26841272737096
624 => 0.26216349090495
625 => 0.26550147811501
626 => 0.25663677372932
627 => 0.23825563278812
628 => 0.24500135713332
629 => 0.24996848083766
630 => 0.24287978286964
701 => 0.25558599960682
702 => 0.24816329009851
703 => 0.24581064753727
704 => 0.23663215012823
705 => 0.24096404759253
706 => 0.2468230009398
707 => 0.24320284894762
708 => 0.25071520789994
709 => 0.26135471164937
710 => 0.26893705561462
711 => 0.26951913383394
712 => 0.26464419464187
713 => 0.2724563158086
714 => 0.27251321858261
715 => 0.26370111399309
716 => 0.25830374899802
717 => 0.25707745631498
718 => 0.26014097586604
719 => 0.26386065415794
720 => 0.26972555009149
721 => 0.27326958387244
722 => 0.28251054436289
723 => 0.2850108833125
724 => 0.28775799776272
725 => 0.29142898984694
726 => 0.2958369570671
727 => 0.28619257573511
728 => 0.28657576498481
729 => 0.27759505062401
730 => 0.26799786936478
731 => 0.275280933635
801 => 0.28480257134288
802 => 0.28261829713222
803 => 0.28237252166284
804 => 0.2827858478299
805 => 0.28113897640679
806 => 0.27369023799595
807 => 0.2699495281976
808 => 0.27477599819432
809 => 0.27734105219612
810 => 0.28131922725668
811 => 0.28082883321138
812 => 0.29107618494257
813 => 0.29505799596148
814 => 0.29403927831155
815 => 0.29422674687594
816 => 0.3014356255296
817 => 0.30945338121144
818 => 0.31696306744352
819 => 0.32460224282733
820 => 0.31539291874006
821 => 0.31071699192069
822 => 0.3155413548316
823 => 0.31298147996324
824 => 0.327691280265
825 => 0.32870975492249
826 => 0.34341849153826
827 => 0.3573788340704
828 => 0.34861059305148
829 => 0.35687864940207
830 => 0.36582122644976
831 => 0.38307290845559
901 => 0.37726314887752
902 => 0.37281296409125
903 => 0.36860756097137
904 => 0.3773583372749
905 => 0.38861607119233
906 => 0.39104087925291
907 => 0.39496999465902
908 => 0.39083901023887
909 => 0.39581432595994
910 => 0.4133793767198
911 => 0.4086331449535
912 => 0.40189273285051
913 => 0.41575865346002
914 => 0.4207766762262
915 => 0.45599578795817
916 => 0.50046137134872
917 => 0.48205232784827
918 => 0.47062524049142
919 => 0.47331087707441
920 => 0.48954820287366
921 => 0.49476311657341
922 => 0.48058718344892
923 => 0.48559436268164
924 => 0.51318441254892
925 => 0.52798558910793
926 => 0.50788360327757
927 => 0.45242302162791
928 => 0.40128583248908
929 => 0.41484971778634
930 => 0.41331199412999
1001 => 0.44295406078357
1002 => 0.40851994889555
1003 => 0.40909973102854
1004 => 0.43935476422902
1005 => 0.43128324007371
1006 => 0.41820840466483
1007 => 0.40138129325704
1008 => 0.37027482150034
1009 => 0.3427229519973
1010 => 0.39675851290937
1011 => 0.39442840126555
1012 => 0.3910540543021
1013 => 0.39856329832678
1014 => 0.43502605577454
1015 => 0.43418547119694
1016 => 0.42883810098427
1017 => 0.43289403416102
1018 => 0.41749737996879
1019 => 0.42146544832943
1020 => 0.40127773209705
1021 => 0.41040342294759
1022 => 0.41818035194025
1023 => 0.41974168557492
1024 => 0.42325944997752
1025 => 0.39320053831035
1026 => 0.40669610716563
1027 => 0.41462348950431
1028 => 0.37880728769751
1029 => 0.41391551835246
1030 => 0.39267727953327
1031 => 0.38546870229039
1101 => 0.39517410189009
1102 => 0.39139189822728
1103 => 0.38814018161644
1104 => 0.38632566787601
1105 => 0.39345224219616
1106 => 0.39311977898603
1107 => 0.38145932018979
1108 => 0.36624872703121
1109 => 0.37135390136593
1110 => 0.36949914366886
1111 => 0.36277726250617
1112 => 0.3673069988068
1113 => 0.34736033258594
1114 => 0.31304313009044
1115 => 0.33571412522331
1116 => 0.33484131657199
1117 => 0.33440120687127
1118 => 0.35143783313334
1119 => 0.34980015462008
1120 => 0.34682775208233
1121 => 0.36272267200258
1122 => 0.35692081241485
1123 => 0.37480077657421
1124 => 0.38657767737314
1125 => 0.3835906743877
1126 => 0.39466690651179
1127 => 0.3714715142716
1128 => 0.37917609313618
1129 => 0.38076399616208
1130 => 0.36252653115807
1201 => 0.35006809907836
1202 => 0.34923726369517
1203 => 0.32763605934665
1204 => 0.3391752483508
1205 => 0.34932925715037
1206 => 0.34446627491829
1207 => 0.34292680002108
1208 => 0.35079164339957
1209 => 0.35140280908791
1210 => 0.33746816662538
1211 => 0.34036562004607
1212 => 0.35244848247194
1213 => 0.34006116291437
1214 => 0.31599462447119
1215 => 0.31002579019136
1216 => 0.30922943767099
1217 => 0.29304148570985
1218 => 0.31042465623903
1219 => 0.30283643646304
1220 => 0.32680753181456
1221 => 0.31311537070933
1222 => 0.31252512901026
1223 => 0.31163289211248
1224 => 0.29769925314367
1225 => 0.30074983454889
1226 => 0.3108904317565
1227 => 0.31450871108218
1228 => 0.31413129490483
1229 => 0.310840737298
1230 => 0.31234713772002
1231 => 0.30749449709599
]
'min_raw' => 0.16978849708774
'max_raw' => 0.52798558910793
'avg_raw' => 0.34888704309784
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.169788'
'max' => '$0.527985'
'avg' => '$0.348887'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.09672291783605
'max_diff' => 0.32976571336689
'year' => 2033
]
8 => [
'items' => [
101 => 0.30578092869266
102 => 0.30037243545764
103 => 0.29242344453654
104 => 0.29352880047811
105 => 0.27777976949681
106 => 0.26919886155386
107 => 0.26682377932979
108 => 0.26364772011826
109 => 0.26718252366891
110 => 0.2777351544708
111 => 0.26500644285821
112 => 0.24318395961372
113 => 0.24449552804041
114 => 0.24744223288704
115 => 0.24195106789976
116 => 0.23675414107784
117 => 0.24127244730949
118 => 0.23202597347809
119 => 0.24855962507401
120 => 0.24811243613336
121 => 0.25427515901417
122 => 0.25812883610334
123 => 0.24924735805557
124 => 0.24701369034463
125 => 0.24828608898732
126 => 0.22725617372665
127 => 0.25255656627763
128 => 0.25277536512303
129 => 0.25090187657207
130 => 0.26437355454348
131 => 0.29280299698488
201 => 0.28210669716675
202 => 0.2779647665798
203 => 0.27009095350627
204 => 0.28058234192599
205 => 0.27977676698651
206 => 0.27613365160496
207 => 0.27393028405498
208 => 0.27799005632475
209 => 0.27342723334325
210 => 0.27260762495778
211 => 0.26764168988457
212 => 0.26586907699908
213 => 0.26455670498841
214 => 0.26311191235568
215 => 0.26629876488359
216 => 0.25907693778998
217 => 0.25036812227953
218 => 0.24964407850053
219 => 0.25164322703294
220 => 0.25075875262645
221 => 0.24963984397735
222 => 0.24750354264958
223 => 0.24686974768049
224 => 0.24892927385643
225 => 0.24660418888162
226 => 0.25003497841589
227 => 0.24910199349681
228 => 0.24389041558084
301 => 0.23739485992425
302 => 0.23733703585402
303 => 0.23593757904266
304 => 0.23415516038364
305 => 0.23365933228892
306 => 0.24089192816125
307 => 0.25586318516358
308 => 0.2529239691822
309 => 0.25504785395171
310 => 0.2654952649317
311 => 0.26881618271763
312 => 0.26645907393342
313 => 0.26323251804947
314 => 0.26337447013331
315 => 0.27440058833368
316 => 0.27508827380092
317 => 0.27682583312091
318 => 0.2790590878813
319 => 0.26683940687599
320 => 0.26279892425686
321 => 0.26088431943448
322 => 0.25498807762686
323 => 0.26134666891081
324 => 0.25764179007168
325 => 0.25814170480376
326 => 0.25781613467867
327 => 0.25799391798192
328 => 0.24855500358143
329 => 0.25199404789424
330 => 0.24627596971059
331 => 0.23862010490708
401 => 0.23859443976377
402 => 0.24046820182837
403 => 0.23935361483203
404 => 0.23635428988352
405 => 0.23678032983604
406 => 0.23304777155166
407 => 0.23723352999192
408 => 0.23735356256662
409 => 0.23574181756732
410 => 0.24219055596789
411 => 0.24483260935228
412 => 0.24377172426681
413 => 0.24475817482658
414 => 0.25304610687599
415 => 0.25439740142787
416 => 0.25499755720631
417 => 0.25419342796861
418 => 0.24490966301007
419 => 0.2453214374636
420 => 0.24230010974025
421 => 0.2397474061937
422 => 0.23984950094839
423 => 0.24116192239955
424 => 0.24689334384928
425 => 0.25895478240448
426 => 0.25941250518085
427 => 0.25996727853853
428 => 0.2577107364861
429 => 0.25703014181089
430 => 0.25792802186388
501 => 0.26245766402491
502 => 0.27410913344891
503 => 0.26999072597899
504 => 0.26664239659911
505 => 0.26957978416838
506 => 0.2691275963761
507 => 0.26531067634351
508 => 0.26520354811084
509 => 0.25787765822515
510 => 0.25516944353685
511 => 0.25290625663695
512 => 0.25043491562425
513 => 0.24896982183183
514 => 0.25122087177022
515 => 0.25173571352477
516 => 0.24681375349286
517 => 0.24614290852777
518 => 0.25016228733772
519 => 0.24839350858101
520 => 0.25021274139589
521 => 0.25063481901403
522 => 0.25056685479624
523 => 0.24872004663128
524 => 0.24989714708301
525 => 0.24711295360414
526 => 0.24408556136821
527 => 0.24215427373488
528 => 0.24046896912667
529 => 0.24140407407379
530 => 0.23807059568075
531 => 0.23700414885315
601 => 0.24949837193556
602 => 0.25872798886208
603 => 0.25859378657663
604 => 0.25777686467804
605 => 0.25656308444328
606 => 0.26236886844056
607 => 0.26034624938623
608 => 0.26181787374373
609 => 0.2621924639066
610 => 0.26332623551025
611 => 0.2637314614076
612 => 0.26250658729834
613 => 0.2583957601819
614 => 0.24815196985345
615 => 0.24338345780297
616 => 0.24180976940047
617 => 0.24186696998504
618 => 0.24028912250791
619 => 0.24075386930408
620 => 0.24012750253838
621 => 0.23894131541854
622 => 0.24133083036172
623 => 0.24160619969905
624 => 0.24104845835874
625 => 0.24117982663491
626 => 0.23656196655153
627 => 0.23691305242421
628 => 0.23495816167132
629 => 0.23459164322171
630 => 0.22964984963023
701 => 0.22089474595847
702 => 0.2257459232711
703 => 0.2198863832562
704 => 0.21766728666603
705 => 0.22817214478354
706 => 0.22711774838795
707 => 0.2253130800938
708 => 0.22264359956092
709 => 0.22165346326424
710 => 0.21563770856467
711 => 0.21528226568421
712 => 0.21826383615236
713 => 0.21688794397089
714 => 0.21495567025698
715 => 0.20795717073664
716 => 0.20008854015223
717 => 0.20032604464912
718 => 0.20282890963695
719 => 0.21010632714638
720 => 0.20726291422484
721 => 0.20519998552587
722 => 0.20481366099196
723 => 0.20964932135903
724 => 0.21649279388061
725 => 0.21970359807367
726 => 0.21652178863192
727 => 0.21286669726603
728 => 0.21308916574141
729 => 0.21456914884047
730 => 0.21472467413835
731 => 0.21234558540862
801 => 0.21301528495045
802 => 0.2119979501078
803 => 0.20575456805634
804 => 0.205641645073
805 => 0.20410941842944
806 => 0.20406302321562
807 => 0.20145632346306
808 => 0.20109162814842
809 => 0.19591586757436
810 => 0.19932256885785
811 => 0.19703753249673
812 => 0.19359344371493
813 => 0.19299968151079
814 => 0.19298183230195
815 => 0.19651814139669
816 => 0.19928124502714
817 => 0.19707728168254
818 => 0.19657548195101
819 => 0.20193339026861
820 => 0.20125154759677
821 => 0.20066107624038
822 => 0.21588003597617
823 => 0.20383304179505
824 => 0.1985798647137
825 => 0.19207806052425
826 => 0.19419508075328
827 => 0.19464116802103
828 => 0.17900550098371
829 => 0.17266211281396
830 => 0.17048530103965
831 => 0.16923251508793
901 => 0.16980342537762
902 => 0.16409363201963
903 => 0.16793070758747
904 => 0.16298650917626
905 => 0.16215759822281
906 => 0.17099843745069
907 => 0.17222858858182
908 => 0.16698038167844
909 => 0.17035058011793
910 => 0.16912849931451
911 => 0.16307126326731
912 => 0.16283992140432
913 => 0.15980061327798
914 => 0.15504468458628
915 => 0.15287109755557
916 => 0.15173907455803
917 => 0.1522061693095
918 => 0.15196999190982
919 => 0.15042877462036
920 => 0.15205833268077
921 => 0.1478954852163
922 => 0.1462378058136
923 => 0.14548907048528
924 => 0.14179430375599
925 => 0.1476743206925
926 => 0.1488327581035
927 => 0.14999347799405
928 => 0.16009675218418
929 => 0.1595920211572
930 => 0.16415454382715
1001 => 0.16397725258613
1002 => 0.1626759472127
1003 => 0.15718595389652
1004 => 0.15937416738263
1005 => 0.15263918639627
1006 => 0.15768549208544
1007 => 0.15538256890766
1008 => 0.1569068714425
1009 => 0.15416603804405
1010 => 0.15568292841299
1011 => 0.14910746658884
1012 => 0.14296739285669
1013 => 0.14543833776643
1014 => 0.14812453747015
1015 => 0.15394890285876
1016 => 0.15047995888327
1017 => 0.15172752231215
1018 => 0.147548393665
1019 => 0.13892565755685
1020 => 0.1389744613068
1021 => 0.13764804121308
1022 => 0.1365018205916
1023 => 0.15087840882819
1024 => 0.14909045282074
1025 => 0.14624157892477
1026 => 0.15005490984428
1027 => 0.15106321506509
1028 => 0.15109192009722
1029 => 0.15387402789978
1030 => 0.15535883933272
1031 => 0.15562054378332
1101 => 0.15999825052205
1102 => 0.16146560007753
1103 => 0.16750940522946
1104 => 0.15523286345643
1105 => 0.15498003615742
1106 => 0.15010857123048
1107 => 0.147019011159
1108 => 0.15032011605181
1109 => 0.15324444434108
1110 => 0.15019943826196
1111 => 0.15059705177231
1112 => 0.14650937989723
1113 => 0.14797053024973
1114 => 0.14922906977151
1115 => 0.14853417822112
1116 => 0.14749389193705
1117 => 0.15300468276996
1118 => 0.1526937423542
1119 => 0.15782551747035
1120 => 0.16182610315014
1121 => 0.16899586787856
1122 => 0.16151384461617
1123 => 0.16124116995014
1124 => 0.16390660854898
1125 => 0.16146519201277
1126 => 0.16300808298882
1127 => 0.16874728428932
1128 => 0.16886854456908
1129 => 0.16683727864798
1130 => 0.16671367593208
1201 => 0.16710380277184
1202 => 0.16938878785772
1203 => 0.16859034385821
1204 => 0.16951432346857
1205 => 0.1706697741198
1206 => 0.1754492079142
1207 => 0.17660151322134
1208 => 0.1738020087268
1209 => 0.17405477263794
1210 => 0.17300768110887
1211 => 0.1719962038118
1212 => 0.17426985706121
1213 => 0.17842500306326
1214 => 0.17839915411564
1215 => 0.17936306722362
1216 => 0.1799635771044
1217 => 0.17738574909597
1218 => 0.17570767785185
1219 => 0.1763511571453
1220 => 0.17738009454867
1221 => 0.17601748661305
1222 => 0.16760683921304
1223 => 0.17015809235997
1224 => 0.16973343908642
1225 => 0.16912868118527
1226 => 0.17169398595276
1227 => 0.17144655604984
1228 => 0.16403506983594
1229 => 0.16450952913685
1230 => 0.16406392327749
1231 => 0.16550376697146
]
'min_raw' => 0.1365018205916
'max_raw' => 0.30578092869266
'avg_raw' => 0.22114137464213
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.1365018'
'max' => '$0.30578'
'avg' => '$0.221141'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.033286676496142
'max_diff' => -0.22220466041527
'year' => 2034
]
9 => [
'items' => [
101 => 0.16138743572813
102 => 0.16265359149466
103 => 0.16344771252196
104 => 0.16391545590776
105 => 0.16560526575193
106 => 0.16540698607043
107 => 0.16559294040853
108 => 0.16809848231416
109 => 0.18077065347471
110 => 0.18146037179141
111 => 0.17806394654736
112 => 0.17942075144083
113 => 0.17681598274598
114 => 0.17856458142127
115 => 0.17976092822531
116 => 0.17435486706211
117 => 0.17403475520507
118 => 0.17141923570324
119 => 0.17282466773293
120 => 0.17058852431956
121 => 0.17113719569622
122 => 0.16960306269476
123 => 0.17236419665456
124 => 0.17545157345846
125 => 0.17623156676333
126 => 0.17417974018645
127 => 0.17269408252283
128 => 0.17008575707157
129 => 0.17442346042734
130 => 0.17569193707768
131 => 0.1744167976595
201 => 0.17412131999396
202 => 0.17356139035168
203 => 0.17424011171453
204 => 0.17568502868142
205 => 0.17500363252326
206 => 0.17545370669038
207 => 0.17373848807979
208 => 0.17738660246431
209 => 0.18318068607347
210 => 0.1831993149997
211 => 0.18251791516856
212 => 0.18223910103862
213 => 0.18293825861617
214 => 0.18331752292105
215 => 0.18557847032326
216 => 0.18800455696596
217 => 0.1993260447429
218 => 0.1961470162788
219 => 0.20619211375282
220 => 0.21413648166211
221 => 0.216518650233
222 => 0.21432716723747
223 => 0.20683022229136
224 => 0.20646238640624
225 => 0.21766598728424
226 => 0.21450045687878
227 => 0.21412392710968
228 => 0.21011828652359
301 => 0.21248611621821
302 => 0.21196823713003
303 => 0.21115073965383
304 => 0.21566839376671
305 => 0.22412503897227
306 => 0.22280699151107
307 => 0.22182313022375
308 => 0.2175121364604
309 => 0.22010831760125
310 => 0.21918386722357
311 => 0.2231558927168
312 => 0.22080295280575
313 => 0.21447647487257
314 => 0.21548398733577
315 => 0.21533170385379
316 => 0.218465687122
317 => 0.21752494313513
318 => 0.21514800849196
319 => 0.22409613507832
320 => 0.22351509350989
321 => 0.22433887760932
322 => 0.22470153284626
323 => 0.2301480998157
324 => 0.23237938403238
325 => 0.23288592461369
326 => 0.23500547204582
327 => 0.23283318834272
328 => 0.24152387196716
329 => 0.24730266946197
330 => 0.25401504012639
331 => 0.26382361778225
401 => 0.26751173371527
402 => 0.26684550858301
403 => 0.27428226021794
404 => 0.2876459375962
405 => 0.26954668986332
406 => 0.28860524167445
407 => 0.28257152421261
408 => 0.26826568865252
409 => 0.26734456149717
410 => 0.27703263943263
411 => 0.29851986385052
412 => 0.29313755783992
413 => 0.298528667375
414 => 0.29223965173669
415 => 0.29192734910226
416 => 0.29822322392279
417 => 0.31293387861123
418 => 0.3059453979894
419 => 0.29592569737225
420 => 0.30332408838414
421 => 0.29691491740088
422 => 0.28247326136157
423 => 0.29313344209195
424 => 0.28600528282202
425 => 0.28808565865077
426 => 0.30306798920251
427 => 0.30126527555219
428 => 0.30359815394249
429 => 0.29948068464567
430 => 0.29563431905714
501 => 0.28845479205127
502 => 0.28632928805124
503 => 0.28691670088922
504 => 0.28632899695861
505 => 0.28231211758209
506 => 0.28144467286318
507 => 0.27999889366137
508 => 0.2804470010908
509 => 0.27772851321377
510 => 0.28285886150597
511 => 0.28381109935748
512 => 0.287544539009
513 => 0.28793215709883
514 => 0.29832973338612
515 => 0.29260292309125
516 => 0.29644496186606
517 => 0.29610129375537
518 => 0.2685757394882
519 => 0.27236851800619
520 => 0.27826889114073
521 => 0.27561078104138
522 => 0.27185283526289
523 => 0.26881809255845
524 => 0.26422014704284
525 => 0.27069166706033
526 => 0.2792010277139
527 => 0.28814796852758
528 => 0.29889713168844
529 => 0.29649804360499
530 => 0.28794702039925
531 => 0.28833061305374
601 => 0.29070183190561
602 => 0.28763088804449
603 => 0.2867252067479
604 => 0.29057740520314
605 => 0.29060393317677
606 => 0.28707044112858
607 => 0.28314361133925
608 => 0.28312715777905
609 => 0.28242841634671
610 => 0.29236395628524
611 => 0.29782749865504
612 => 0.29845388498279
613 => 0.29778533786439
614 => 0.29804263511658
615 => 0.29486352019254
616 => 0.30213003417166
617 => 0.30879850598265
618 => 0.30701121308618
619 => 0.30433180695572
620 => 0.30219753091512
621 => 0.30650844547928
622 => 0.30631648723975
623 => 0.30874026269882
624 => 0.3086303062436
625 => 0.30781528171951
626 => 0.30701124219327
627 => 0.31019916803032
628 => 0.30928109658577
629 => 0.30836159912269
630 => 0.30651740619247
701 => 0.30676806264049
702 => 0.30408911914728
703 => 0.3028497173072
704 => 0.28421208737331
705 => 0.27923150365284
706 => 0.28079849668043
707 => 0.28131439147207
708 => 0.27914683505413
709 => 0.2822545541579
710 => 0.28177021942746
711 => 0.28365448253724
712 => 0.28247727675144
713 => 0.28252558968752
714 => 0.2859875008968
715 => 0.28699250844887
716 => 0.28648135349648
717 => 0.28683934890377
718 => 0.29508920196432
719 => 0.29391633667456
720 => 0.29329327536545
721 => 0.29346586760615
722 => 0.29557388194196
723 => 0.29616401086268
724 => 0.29366359315799
725 => 0.29484280460226
726 => 0.29986373726775
727 => 0.3016207795405
728 => 0.30722841504696
729 => 0.30484619181604
730 => 0.3092188656566
731 => 0.32265897428811
801 => 0.33339586304774
802 => 0.32352177642369
803 => 0.34323870529622
804 => 0.35859116264894
805 => 0.35800190976488
806 => 0.3553248537167
807 => 0.33784648918682
808 => 0.3217626375587
809 => 0.33521746240204
810 => 0.33525176151757
811 => 0.33409598013104
812 => 0.32691752120266
813 => 0.33384618532054
814 => 0.33439615751701
815 => 0.3340883193364
816 => 0.32858461170679
817 => 0.32018146741159
818 => 0.32182342169258
819 => 0.32451297629982
820 => 0.31942108832846
821 => 0.31779392159323
822 => 0.32081913413515
823 => 0.33056699927327
824 => 0.32872422183445
825 => 0.32867609946827
826 => 0.33656028281081
827 => 0.33091690905081
828 => 0.32184413199433
829 => 0.31955313613235
830 => 0.31142164422203
831 => 0.31703809464787
901 => 0.31724022069992
902 => 0.31416414820042
903 => 0.32209373832447
904 => 0.3220206657555
905 => 0.32954863141454
906 => 0.34393927437986
907 => 0.33968325313449
908 => 0.33473396347991
909 => 0.33527208849428
910 => 0.3411739916962
911 => 0.33760556629297
912 => 0.33888879694792
913 => 0.34117204937291
914 => 0.34254959225088
915 => 0.33507388127332
916 => 0.33333093543986
917 => 0.32976547995546
918 => 0.32883531917195
919 => 0.33173930826833
920 => 0.33097420974088
921 => 0.31722323278791
922 => 0.31578617918661
923 => 0.31583025156893
924 => 0.31221671196029
925 => 0.30670519670823
926 => 0.32118912971515
927 => 0.32002586719218
928 => 0.3187417153962
929 => 0.31889901666394
930 => 0.3251860010762
1001 => 0.32153923261677
1002 => 0.33123476425978
1003 => 0.32924165442833
1004 => 0.3271974288504
1005 => 0.3269148546069
1006 => 0.32612800216453
1007 => 0.32342959236474
1008 => 0.3201711003822
1009 => 0.31801956172958
1010 => 0.29335623524511
1011 => 0.29793360518066
1012 => 0.30319945205111
1013 => 0.30501720128923
1014 => 0.301907815433
1015 => 0.32355236987027
1016 => 0.32750703853807
1017 => 0.31552808918664
1018 => 0.31328731686027
1019 => 0.32369927453094
1020 => 0.31741959124546
1021 => 0.3202473322444
1022 => 0.31413530289633
1023 => 0.32655447466222
1024 => 0.32645986138116
1025 => 0.32162852306452
1026 => 0.32571193712617
1027 => 0.32500234344507
1028 => 0.31954777438464
1029 => 0.32672739423057
1030 => 0.32673095523244
1031 => 0.32208089714502
1101 => 0.31665064732752
1102 => 0.31567984691693
1103 => 0.31494847921623
1104 => 0.32006746062369
1105 => 0.32465712334697
1106 => 0.33319734780112
1107 => 0.33534456313962
1108 => 0.34372528755401
1109 => 0.33873497421531
1110 => 0.34094711548298
1111 => 0.34334870775552
1112 => 0.34450011940661
1113 => 0.34262395590932
1114 => 0.35564267056866
1115 => 0.35674184896901
1116 => 0.3571103939788
1117 => 0.35272055664464
1118 => 0.35661975965159
1119 => 0.35479545169267
1120 => 0.35954179419444
1121 => 0.36028608130306
1122 => 0.35965569660084
1123 => 0.35989194507689
1124 => 0.34878276877379
1125 => 0.3482066993769
1126 => 0.34035195227429
1127 => 0.34355281977796
1128 => 0.33756895140142
1129 => 0.33946649770429
1130 => 0.34030291803412
1201 => 0.33986601952025
1202 => 0.34373379202408
1203 => 0.34044539526211
1204 => 0.33176677554479
1205 => 0.32308579134334
1206 => 0.32297680865807
1207 => 0.32069125874992
1208 => 0.31903922478568
1209 => 0.31935746513625
1210 => 0.32047898564038
1211 => 0.31897403997517
1212 => 0.31929519643552
1213 => 0.32462853353174
1214 => 0.32569809625076
1215 => 0.32206330422638
1216 => 0.30746908975051
1217 => 0.30388763291131
1218 => 0.30646191306395
1219 => 0.30523157295586
1220 => 0.24634570172291
1221 => 0.26018006370262
1222 => 0.25196015558482
1223 => 0.25574826742529
1224 => 0.2473578697719
1225 => 0.25136220731052
1226 => 0.25062275238213
1227 => 0.27286799705697
1228 => 0.2725206681587
1229 => 0.27268691612206
1230 => 0.264751467674
1231 => 0.27739285252267
]
'min_raw' => 0.16138743572813
'max_raw' => 0.36028608130306
'avg_raw' => 0.2608367585156
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.161387'
'max' => '$0.360286'
'avg' => '$0.260836'
'bar_min_pct' => 61.631153054957
'bar_max_pct' => 60.119598047091
'min_diff' => 0.024885615136534
'max_diff' => 0.054505152610399
'year' => 2035
]
10 => [
'items' => [
101 => 0.28362045326863
102 => 0.28246789011278
103 => 0.28275796542811
104 => 0.27777351044526
105 => 0.27273517654178
106 => 0.26714688884879
107 => 0.27752923664913
108 => 0.27637489680632
109 => 0.27902253708736
110 => 0.28575623178142
111 => 0.28674779390394
112 => 0.28808046345204
113 => 0.28760279628493
114 => 0.29898276611492
115 => 0.29760457668105
116 => 0.30092561668452
117 => 0.29409398542948
118 => 0.2863633462
119 => 0.28783268798389
120 => 0.2876911785544
121 => 0.28588960110004
122 => 0.28426321752823
123 => 0.28155574711188
124 => 0.29012258413943
125 => 0.28977478620099
126 => 0.29540523055342
127 => 0.29440999482291
128 => 0.28776356703907
129 => 0.28800094550763
130 => 0.28959742978889
131 => 0.29512288011467
201 => 0.29676320997271
202 => 0.29600334382663
203 => 0.29780189063206
204 => 0.29922338869442
205 => 0.29798040890292
206 => 0.31557838153806
207 => 0.30827047637358
208 => 0.31183229850267
209 => 0.31268177209298
210 => 0.3105058633539
211 => 0.31097774004596
212 => 0.31169250465572
213 => 0.31603241540095
214 => 0.32742159695972
215 => 0.33246578794332
216 => 0.34764148539347
217 => 0.33204693810066
218 => 0.33112162220096
219 => 0.33385522357389
220 => 0.34276496448785
221 => 0.3499854726492
222 => 0.35238093176743
223 => 0.35269753123463
224 => 0.35719157178754
225 => 0.35976747202357
226 => 0.35664587705941
227 => 0.3540006521719
228 => 0.34452578496225
229 => 0.34562252664097
301 => 0.35317798922099
302 => 0.36385052512979
303 => 0.37300867122765
304 => 0.3698018076578
305 => 0.39426791300292
306 => 0.39669362741281
307 => 0.3963584721141
308 => 0.40188461053454
309 => 0.39091635114849
310 => 0.38622720776094
311 => 0.35457257981716
312 => 0.36346623909387
313 => 0.37639369515886
314 => 0.37468269787319
315 => 0.3652944337269
316 => 0.37300154938743
317 => 0.37045333592627
318 => 0.36844345424398
319 => 0.37765111186529
320 => 0.36752691408093
321 => 0.37629269854135
322 => 0.36505048930043
323 => 0.36981645634046
324 => 0.36711106294465
325 => 0.36886178403228
326 => 0.35862710432709
327 => 0.36414948906321
328 => 0.35839735496616
329 => 0.35839462770564
330 => 0.35826764902664
331 => 0.36503500928295
401 => 0.36525569265796
402 => 0.36025460320363
403 => 0.35953386808156
404 => 0.36219880358042
405 => 0.35907886205897
406 => 0.36053866306017
407 => 0.35912307794417
408 => 0.35880439991777
409 => 0.35626511918484
410 => 0.35517112722612
411 => 0.35560010966184
412 => 0.35413577145314
413 => 0.35325345471497
414 => 0.35809213401983
415 => 0.35550702285901
416 => 0.35769592865872
417 => 0.35520139423801
418 => 0.34655425111893
419 => 0.34158118766927
420 => 0.32524753590791
421 => 0.3298797392856
422 => 0.33295089491737
423 => 0.33193587799939
424 => 0.33411652709861
425 => 0.3342504012428
426 => 0.33354144999156
427 => 0.3327205752649
428 => 0.33232101884518
429 => 0.33529898504733
430 => 0.33702779466141
501 => 0.33325912647178
502 => 0.33237618024422
503 => 0.33618651185781
504 => 0.33851081194094
505 => 0.35567213784341
506 => 0.3544007713902
507 => 0.35759165169468
508 => 0.35723240754045
509 => 0.36057695844664
510 => 0.3660438856656
511 => 0.35492809405257
512 => 0.35685741112144
513 => 0.35638438713059
514 => 0.36154873902912
515 => 0.36156486157204
516 => 0.35846857463036
517 => 0.36014712201297
518 => 0.35921020291254
519 => 0.36090334235923
520 => 0.3543837915161
521 => 0.362323900701
522 => 0.36682543095951
523 => 0.36688793471151
524 => 0.36902162432769
525 => 0.3711895765527
526 => 0.37535077205975
527 => 0.3710735230685
528 => 0.36337916851503
529 => 0.36393467606118
530 => 0.35942347880174
531 => 0.35949931284268
601 => 0.35909450478889
602 => 0.36030936423084
603 => 0.35465038484614
604 => 0.35597853599672
605 => 0.35411911660826
606 => 0.35685336910683
607 => 0.3539117654065
608 => 0.3563841590241
609 => 0.35745116214831
610 => 0.36138842664758
611 => 0.35333022823867
612 => 0.33689901619082
613 => 0.34035305617247
614 => 0.33524425973063
615 => 0.33571709829188
616 => 0.33667230743731
617 => 0.33357616207199
618 => 0.33416680903694
619 => 0.33414570697103
620 => 0.33396386076731
621 => 0.33315843377898
622 => 0.33199040529703
623 => 0.3366434712689
624 => 0.33743411784846
625 => 0.33919162725444
626 => 0.34442078311661
627 => 0.34389826713399
628 => 0.34475051238062
629 => 0.34289006579238
630 => 0.33580339907322
701 => 0.33618823917105
702 => 0.33138927698443
703 => 0.33906890700179
704 => 0.33725026924752
705 => 0.3360777816564
706 => 0.33575785755414
707 => 0.34099997548226
708 => 0.34256849932648
709 => 0.34159110052648
710 => 0.3395864270724
711 => 0.34343599273274
712 => 0.34446597410331
713 => 0.34469654894793
714 => 0.35151724121704
715 => 0.34507774987733
716 => 0.34662779944584
717 => 0.35872084369817
718 => 0.34775412128734
719 => 0.35356343873545
720 => 0.35327910287659
721 => 0.35625095310646
722 => 0.35303532441594
723 => 0.35307518598745
724 => 0.355713987661
725 => 0.35200826662089
726 => 0.35109067797768
727 => 0.34982303583899
728 => 0.35259088607307
729 => 0.3542500871093
730 => 0.36762202891243
731 => 0.37626091315188
801 => 0.37588587640361
802 => 0.37931301024343
803 => 0.37776905505964
804 => 0.37278321649639
805 => 0.38129343496562
806 => 0.37860044575929
807 => 0.37882245251748
808 => 0.37881418941485
809 => 0.38060479181186
810 => 0.37933598590728
811 => 0.3768350392291
812 => 0.37849528434837
813 => 0.38342561880411
814 => 0.39872952823586
815 => 0.40729379870369
816 => 0.39821394840008
817 => 0.40447710755547
818 => 0.40072144385402
819 => 0.40003892803816
820 => 0.40397265483157
821 => 0.40791326709299
822 => 0.40766226712768
823 => 0.40480158497856
824 => 0.40318565821965
825 => 0.41542199701332
826 => 0.4244375229959
827 => 0.42382272456474
828 => 0.42653624489672
829 => 0.43450322451743
830 => 0.4352316252885
831 => 0.43513986353345
901 => 0.43333444622157
902 => 0.44117897230119
903 => 0.44772301396812
904 => 0.43291654427739
905 => 0.4385546541047
906 => 0.44108578325473
907 => 0.44480223179916
908 => 0.4510725034427
909 => 0.457883681555
910 => 0.45884685682085
911 => 0.45816343787755
912 => 0.45367128281819
913 => 0.46112415518293
914 => 0.46548987302283
915 => 0.46808955808881
916 => 0.4746819268698
917 => 0.44110141464666
918 => 0.41733145903538
919 => 0.41361943722436
920 => 0.42116797954512
921 => 0.42315846995661
922 => 0.4223561057676
923 => 0.39560085965728
924 => 0.41347857639071
925 => 0.43271349639477
926 => 0.4334523880088
927 => 0.44308179114604
928 => 0.44621751953009
929 => 0.45397045121029
930 => 0.4534855032228
1001 => 0.45537321871084
1002 => 0.45493926561082
1003 => 0.46929993897601
1004 => 0.48514189427845
1005 => 0.48459333774066
1006 => 0.48231586923242
1007 => 0.48569829833324
1008 => 0.50204889393246
1009 => 0.50054359310264
1010 => 0.50200586463759
1011 => 0.52128413832826
1012 => 0.54634863642858
1013 => 0.53470366062652
1014 => 0.55996990736548
1015 => 0.57587367038147
1016 => 0.60337758403783
1017 => 0.59993395858842
1018 => 0.6106410303418
1019 => 0.59376915032767
1020 => 0.55502790344567
1021 => 0.54889695283106
1022 => 0.56117127122191
1023 => 0.59134648527534
1024 => 0.5602209463469
1025 => 0.56651760233413
1026 => 0.56470416498621
1027 => 0.56460753461655
1028 => 0.56829552280229
1029 => 0.56294590358635
1030 => 0.54115059252248
1031 => 0.55113925514248
1101 => 0.54728215280992
1102 => 0.55156189541392
1103 => 0.57465790114759
1104 => 0.56444660647273
1105 => 0.55368983703097
1106 => 0.56718121302916
1107 => 0.58436037081463
1108 => 0.58328532999433
1109 => 0.58119930147074
1110 => 0.59295813503729
1111 => 0.61238028307425
1112 => 0.61763001164413
1113 => 0.62150525394844
1114 => 0.62203958438945
1115 => 0.62754352001636
1116 => 0.59794747098008
1117 => 0.6449171608811
1118 => 0.6530275288155
1119 => 0.65150311578414
1120 => 0.66051744840678
1121 => 0.65786520307765
1122 => 0.65402251572029
1123 => 0.66831215033071
1124 => 0.65193023736392
1125 => 0.62867817433305
1126 => 0.61592163268066
1127 => 0.63272047576939
1128 => 0.64297894304485
1129 => 0.64975913735287
1130 => 0.65181082005377
1201 => 0.60024492801762
1202 => 0.57245377218563
1203 => 0.59026758444769
1204 => 0.61200166485105
1205 => 0.59782673706606
1206 => 0.59838236739855
1207 => 0.57817264548265
1208 => 0.61378977680292
1209 => 0.60860066035678
1210 => 0.63552180565873
1211 => 0.62909685827673
1212 => 0.65105000719763
1213 => 0.64526900735662
1214 => 0.66926561448531
1215 => 0.67883851075115
1216 => 0.69491289348382
1217 => 0.70673727485649
1218 => 0.71368077776289
1219 => 0.71326391589281
1220 => 0.74077753364738
1221 => 0.7245537145101
1222 => 0.70417277401309
1223 => 0.70380414710054
1224 => 0.7143597249841
1225 => 0.73648132044668
1226 => 0.742217128294
1227 => 0.74542266238736
1228 => 0.74051327533794
1229 => 0.72290348243601
1230 => 0.71529966314463
1231 => 0.72177833748474
]
'min_raw' => 0.26714688884879
'max_raw' => 0.74542266238736
'avg_raw' => 0.50628477561807
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$0.267146'
'max' => '$0.745422'
'avg' => '$0.506284'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.10575945312066
'max_diff' => 0.3851365810843
'year' => 2036
]
11 => [
'items' => [
101 => 0.71385547548562
102 => 0.72753255805855
103 => 0.74631411369837
104 => 0.74243579672907
105 => 0.75540042888768
106 => 0.76881745925276
107 => 0.78800441527136
108 => 0.79302059606555
109 => 0.80131215217007
110 => 0.80984688703591
111 => 0.81258801385727
112 => 0.81782167548093
113 => 0.81779409150077
114 => 0.83356608306975
115 => 0.85096307818825
116 => 0.85753004110412
117 => 0.87263041022472
118 => 0.84677155728574
119 => 0.86638579428505
120 => 0.88407832703462
121 => 0.86298456011307
122 => 0.89205740359708
123 => 0.89318623622908
124 => 0.91023026876051
125 => 0.89295287654837
126 => 0.88269361620419
127 => 0.91231171640837
128 => 0.92664298213576
129 => 0.92232628826696
130 => 0.88947603478394
131 => 0.87035577824317
201 => 0.82031437885393
202 => 0.87959057805806
203 => 0.90846228557996
204 => 0.88940126403635
205 => 0.89901453458954
206 => 0.95146142161429
207 => 0.97142980050885
208 => 0.96727651728829
209 => 0.9679783537837
210 => 0.97875292858349
211 => 1.0265333269125
212 => 0.9979022046928
213 => 1.0197896248421
214 => 1.0313986335683
215 => 1.0421817278503
216 => 1.0157018563257
217 => 0.98125193253868
218 => 0.97034019556593
219 => 0.88750602109551
220 => 0.88319414258374
221 => 0.88077375451179
222 => 0.86551355008885
223 => 0.8535232095342
224 => 0.84398804555234
225 => 0.81896492782294
226 => 0.82740949549528
227 => 0.78752786856518
228 => 0.81304272015698
301 => 0.74939068060098
302 => 0.80240199057379
303 => 0.77355034468409
304 => 0.79292344893649
305 => 0.79285585800081
306 => 0.75718383082384
307 => 0.73660895000437
308 => 0.74972006484887
309 => 0.76377622072378
310 => 0.76605678472389
311 => 0.78428095771891
312 => 0.78936693267453
313 => 0.77395619111753
314 => 0.74807163356135
315 => 0.75408402591775
316 => 0.73648710906517
317 => 0.70564918913664
318 => 0.72779752160774
319 => 0.7353599361068
320 => 0.73869992917084
321 => 0.70837437668017
322 => 0.69884542968783
323 => 0.69377229826471
324 => 0.74415698554679
325 => 0.7469171724531
326 => 0.73279566598931
327 => 0.79662621426185
328 => 0.782179395317
329 => 0.79832003163497
330 => 0.75353846433032
331 => 0.75524918050774
401 => 0.73404886888927
402 => 0.74591962679028
403 => 0.73752975771823
404 => 0.74496058686099
405 => 0.74941459521071
406 => 0.77061142806665
407 => 0.80264402435606
408 => 0.76744532809005
409 => 0.75210875207234
410 => 0.76162347757755
411 => 0.7869624454338
412 => 0.82535227881391
413 => 0.80262472478548
414 => 0.8127108273244
415 => 0.81491419202969
416 => 0.79815573510891
417 => 0.82597018702459
418 => 0.84087617777041
419 => 0.85616663991544
420 => 0.86944291976695
421 => 0.85005929309025
422 => 0.87080255216806
423 => 0.85408714702949
424 => 0.83909170061337
425 => 0.83911444251573
426 => 0.82970757993038
427 => 0.81148059833031
428 => 0.80811926327119
429 => 0.82560535273856
430 => 0.83962754055257
501 => 0.84078247510268
502 => 0.84854587876253
503 => 0.85314018107902
504 => 0.8981705894317
505 => 0.91628219218223
506 => 0.93842871719047
507 => 0.94705603679095
508 => 0.9730211757231
509 => 0.95205221724991
510 => 0.9475154511833
511 => 0.8845325172661
512 => 0.89484596916667
513 => 0.91135880075958
514 => 0.88480480777701
515 => 0.90164720443779
516 => 0.90497225030937
517 => 0.88390251325648
518 => 0.89515677018602
519 => 0.86526880043578
520 => 0.80329550042222
521 => 0.82603918102351
522 => 0.84278618538618
523 => 0.81888614526991
524 => 0.86172604211904
525 => 0.83669985877475
526 => 0.82876776012327
527 => 0.79782181528648
528 => 0.81242711003079
529 => 0.83218098030015
530 => 0.81997538510759
531 => 0.84530382781149
601 => 0.88117565752913
602 => 0.90674005959032
603 => 0.90870257694613
604 => 0.89226637910271
605 => 0.91860549104121
606 => 0.91879734271662
607 => 0.88908671685156
608 => 0.87088912393866
609 => 0.86675459254079
610 => 0.8770834625953
611 => 0.88962461765608
612 => 0.90939852377
613 => 0.92134748109902
614 => 0.95250402457581
615 => 0.96093409191252
616 => 0.97019618007886
617 => 0.98257318619128
618 => 0.99743495542848
619 => 0.96491825041848
620 => 0.96621019972725
621 => 0.93593109424637
622 => 0.90357352757708
623 => 0.92812888725145
624 => 0.96023175356307
625 => 0.95286732056067
626 => 0.95203867140618
627 => 0.95343222943592
628 => 0.947879687452
629 => 0.92276574584557
630 => 0.91015368159241
701 => 0.92642646215973
702 => 0.93507472081312
703 => 0.94848741577712
704 => 0.94683401801517
705 => 0.98138367982415
706 => 0.99480863367558
707 => 0.99137395599422
708 => 0.99200601934772
709 => 1.0163112570364
710 => 1.0433436800995
711 => 1.0686631115405
712 => 1.0944191246972
713 => 1.0633692455625
714 => 1.0476040318282
715 => 1.0638697082086
716 => 1.0552389113652
717 => 1.104834030088
718 => 1.1082678885034
719 => 1.1578594209347
720 => 1.2049276904617
721 => 1.1753649536874
722 => 1.2032412829307
723 => 1.2333918057978
724 => 1.2915570561544
725 => 1.2719690461125
726 => 1.2569649374036
727 => 1.2427861271731
728 => 1.2722899804401
729 => 1.3102462163326
730 => 1.3184216260035
731 => 1.3316689129173
801 => 1.3177410105287
802 => 1.3345156348477
803 => 1.3937374298373
804 => 1.3777351780658
805 => 1.3550094080601
806 => 1.4017593274827
807 => 1.418677941586
808 => 1.5374216357102
809 => 1.6873404545994
810 => 1.6252730791592
811 => 1.5867458563218
812 => 1.5958006675666
813 => 1.6505459451526
814 => 1.668128390785
815 => 1.6203332425237
816 => 1.6372152968969
817 => 1.7302370763002
818 => 1.7801402764541
819 => 1.7123650277512
820 => 1.5253758045852
821 => 1.3529632011191
822 => 1.398694787399
823 => 1.3935102447312
824 => 1.4934505419967
825 => 1.3773535296534
826 => 1.3793083055939
827 => 1.4813152623682
828 => 1.4541015551428
829 => 1.4100188347059
830 => 1.3532850537631
831 => 1.2484074124509
901 => 1.1555143608113
902 => 1.3376990270687
903 => 1.3298428929784
904 => 1.3184660466017
905 => 1.3437839871096
906 => 1.4667207195932
907 => 1.463886630002
908 => 1.4458575979886
909 => 1.4595324598702
910 => 1.407621565301
911 => 1.4210001848206
912 => 1.3529358900818
913 => 1.3837037939198
914 => 1.4099242529864
915 => 1.4151883983445
916 => 1.4270487866303
917 => 1.3257030672983
918 => 1.3712043199244
919 => 1.3979320429514
920 => 1.2771752179524
921 => 1.395545068784
922 => 1.3239388637986
923 => 1.2996346423374
924 => 1.3323570746972
925 => 1.319605110983
926 => 1.3086417214019
927 => 1.3025239616408
928 => 1.3265517045227
929 => 1.3254307815979
930 => 1.2861167306591
1001 => 1.2348331538553
1002 => 1.2520456055567
1003 => 1.245792160486
1004 => 1.2231288688392
1005 => 1.2384011910328
1006 => 1.1711496132375
1007 => 1.0554467690733
1008 => 1.1318836120021
1009 => 1.1289408766966
1010 => 1.1274570161132
1011 => 1.184897191015
1012 => 1.1793756435685
1013 => 1.169353980886
1014 => 1.222944813145
1015 => 1.203383438472
1016 => 1.2636669859745
1017 => 1.3033736292551
1018 => 1.2933027401438
1019 => 1.330647030068
1020 => 1.2524421456796
1021 => 1.2784186712381
1022 => 1.2837723971537
1023 => 1.2222835105936
1024 => 1.1802790370169
1025 => 1.1774778175154
1026 => 1.1046478489064
1027 => 1.1435530302744
1028 => 1.1777879798724
1029 => 1.1613920957543
1030 => 1.1562016486557
1031 => 1.1827185172121
1101 => 1.1847791050006
1102 => 1.1377974850525
1103 => 1.1475664515541
1104 => 1.1883046658214
1105 => 1.146539953078
1106 => 1.0653979384448
1107 => 1.0452735969396
1108 => 1.0425886388176
1109 => 0.98800982857396
1110 => 1.0466184016673
1111 => 1.0210341888999
1112 => 1.101854410486
1113 => 1.0556903333636
1114 => 1.0537002922658
1115 => 1.050692053271
1116 => 1.003713816672
1117 => 1.0139990648645
1118 => 1.0481887963438
1119 => 1.0603880777106
1120 => 1.0591155927183
1121 => 1.0480212480075
1122 => 1.0531001822038
1123 => 1.0367391655393
1124 => 1.03096175003
1125 => 1.0127266374792
1126 => 0.98592605960788
1127 => 0.98965284433838
1128 => 0.93655388682267
1129 => 0.90762275659315
1130 => 0.89961500105178
1201 => 0.88890669567473
1202 => 0.90082453263783
1203 => 0.93640346414756
1204 => 0.89348772425544
1205 => 0.81991169839952
1206 => 0.82433374292091
1207 => 0.83426876404366
1208 => 0.81575491790815
1209 => 0.7982331162902
1210 => 0.8134669012083
1211 => 0.78229176911754
1212 => 0.83803612981588
1213 => 0.83652840108075
1214 => 0.85730645154095
1215 => 0.87029939290223
1216 => 0.8403548695792
1217 => 0.83282390294206
1218 => 0.83711388380192
1219 => 0.76621005623879
1220 => 0.8515120961414
1221 => 0.85224979172473
1222 => 0.84593319427234
1223 => 0.89135389711547
1224 => 0.98720574718696
1225 => 0.95114242555833
1226 => 0.93717761740406
1227 => 0.91063050689458
1228 => 0.94600295543701
1229 => 0.94328690328511
1230 => 0.93100388542202
1231 => 0.92357507789307
]
'min_raw' => 0.69377229826471
'max_raw' => 1.7801402764541
'avg_raw' => 1.2369562873594
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$0.693772'
'max' => '$1.78'
'avg' => '$1.23'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 0.42662540941593
'max_diff' => 1.0347176140667
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.021776719686681
]
1 => [
'year' => 2028
'avg' => 0.03737517280924
]
2 => [
'year' => 2029
'avg' => 0.10210223589534
]
3 => [
'year' => 2030
'avg' => 0.078771722938047
]
4 => [
'year' => 2031
'avg' => 0.077363593997315
]
5 => [
'year' => 2032
'avg' => 0.13564272749637
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.021776719686681
'min' => '$0.021776'
'max_raw' => 0.13564272749637
'max' => '$0.135642'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.13564272749637
]
1 => [
'year' => 2033
'avg' => 0.34888704309784
]
2 => [
'year' => 2034
'avg' => 0.22114137464213
]
3 => [
'year' => 2035
'avg' => 0.2608367585156
]
4 => [
'year' => 2036
'avg' => 0.50628477561807
]
5 => [
'year' => 2037
'avg' => 1.2369562873594
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.13564272749637
'min' => '$0.135642'
'max_raw' => 1.2369562873594
'max' => '$1.23'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 1.2369562873594
]
]
]
]
'prediction_2025_max_price' => '$0.037234'
'last_price' => 0.03610328
'sma_50day_nextmonth' => '$0.033994'
'sma_200day_nextmonth' => '$0.03866'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'increase'
'sma_200day_direction_label' => 'aumentar'
'sma_200day_date_nextmonth' => '4 de fev. de 2026'
'sma_50day_date_nextmonth' => '4 de fev. de 2026'
'daily_sma3' => '$0.035900082'
'daily_sma3_action' => 'BUY'
'daily_sma5' => '$0.035567'
'daily_sma5_action' => 'BUY'
'daily_sma10' => '$0.03562'
'daily_sma10_action' => 'BUY'
'daily_sma21' => '$0.035176'
'daily_sma21_action' => 'BUY'
'daily_sma50' => '$0.036256'
'daily_sma50_action' => 'SELL'
'daily_sma100' => '$0.037538'
'daily_sma100_action' => 'SELL'
'daily_sma200' => '$0.041143'
'daily_sma200_action' => 'SELL'
'daily_ema3' => '$0.035843'
'daily_ema3_action' => 'BUY'
'daily_ema5' => '$0.03571'
'daily_ema5_action' => 'BUY'
'daily_ema10' => '$0.035543'
'daily_ema10_action' => 'BUY'
'daily_ema21' => '$0.035494'
'daily_ema21_action' => 'BUY'
'daily_ema50' => '$0.036196'
'daily_ema50_action' => 'SELL'
'daily_ema100' => '$0.037012'
'daily_ema100_action' => 'SELL'
'daily_ema200' => '$0.036469'
'daily_ema200_action' => 'SELL'
'weekly_sma21' => '$0.036913'
'weekly_sma21_action' => 'SELL'
'weekly_sma50' => '$0.0317017'
'weekly_sma50_action' => 'BUY'
'weekly_sma100' => '$0.035387'
'weekly_sma100_action' => 'BUY'
'weekly_sma200' => '$0.048499'
'weekly_sma200_action' => 'SELL'
'weekly_ema3' => '$0.035991'
'weekly_ema3_action' => 'BUY'
'weekly_ema5' => '$0.03611'
'weekly_ema5_action' => 'SELL'
'weekly_ema10' => '$0.036636'
'weekly_ema10_action' => 'SELL'
'weekly_ema21' => '$0.03685'
'weekly_ema21_action' => 'SELL'
'weekly_ema50' => '$0.035496'
'weekly_ema50_action' => 'BUY'
'weekly_ema100' => '$0.0487033'
'weekly_ema100_action' => 'SELL'
'weekly_ema200' => '$0.2144073'
'weekly_ema200_action' => 'SELL'
'rsi_14' => '53.16'
'rsi_14_action' => 'NEUTRAL'
'stoch_rsi_14' => 87.65
'stoch_rsi_14_action' => 'NEUTRAL'
'momentum_10' => 0
'momentum_10_action' => 'BUY'
'vwma_10' => '0.035663'
'vwma_10_action' => 'BUY'
'hma_9' => '0.035817'
'hma_9_action' => 'BUY'
'stochastic_fast_14' => 90.5
'stochastic_fast_14_action' => 'SELL'
'cci_20' => 104.1
'cci_20_action' => 'SELL'
'adx_14' => 7.19
'adx_14_action' => 'NEUTRAL'
'ao_5_34' => '0.000275'
'ao_5_34_action' => 'BUY'
'macd_12_26' => 0
'macd_12_26_action' => 'BUY'
'williams_percent_r_14' => -9.5
'williams_percent_r_14_action' => 'SELL'
'ultimate_oscillator' => 53.55
'ultimate_oscillator_action' => 'NEUTRAL'
'ichimoku_cloud' => '-0.0023038'
'ichimoku_cloud_action' => 'SELL'
'sell_signals' => 13
'buy_signals' => 21
'sell_pct' => 38.24
'buy_pct' => 61.76
'overall_action' => 'bullish'
'overall_action_label' => 'Altista'
'overall_action_dir' => 1
'last_updated' => 1767690776
'last_updated_date' => '6 de janeiro de 2026'
]
Previsão de preço de Grin para 2026
A previsão de preço para Grin em 2026 sugere que o preço médio poderia variar entre $0.012473 na extremidade inferior e $0.037234 na extremidade superior. No mercado de criptomoedas, comparado ao preço médio de hoje, Grin poderia potencialmente ganhar 3.13% até 2026 se GRIN atingir a meta de preço prevista.
Previsão de preço de Grin 2027-2032
A previsão de preço de GRIN para 2027-2032 está atualmente dentro de uma faixa de preço entre $0.021776 na extremidade inferior e $0.135642 na extremidade superior. Considerando a volatilidade de preços no mercado, se Grin atingir a meta de preço superior, poderia ganhar 275.71% até 2032 em comparação com o preço de hoje.
| Previsão de Preço de Grin | Potencial Mínimo ($) | Preço Médio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2027 | $0.012008 | $0.021776 | $0.031545 |
| 2028 | $0.021671 | $0.037375 | $0.053079 |
| 2029 | $0.0476051 | $0.1021022 | $0.156599 |
| 2030 | $0.040486 | $0.078771 | $0.117057 |
| 2031 | $0.047867 | $0.077363 | $0.10686 |
| 2032 | $0.073065 | $0.135642 | $0.198219 |
Previsão de preço de Grin 2032-2037
A previsão de preço de Grin para 2032-2037 é atualmente estimada entre $0.135642 na extremidade inferior e $1.23 na extremidade superior. Comparado ao preço atual, Grin poderia potencialmente ganhar 3326.16% até 2037 se atingir a meta de preço superior. Por favor, note que esta informação é apenas para fins gerais e não deve ser considerada como aconselhamento de investimento a longo prazo.
| Previsão de Preço de Grin | Potencial Mínimo ($) | Preço Médio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2032 | $0.073065 | $0.135642 | $0.198219 |
| 2033 | $0.169788 | $0.348887 | $0.527985 |
| 2034 | $0.1365018 | $0.221141 | $0.30578 |
| 2035 | $0.161387 | $0.260836 | $0.360286 |
| 2036 | $0.267146 | $0.506284 | $0.745422 |
| 2037 | $0.693772 | $1.23 | $1.78 |
Grin Histograma de preços potenciais
Previsão de preço de Grin baseada na análise técnica
Em 6 de janeiro de 2026, o sentimento geral de previsão de preço para Grin é Altista, com 21 indicadores técnicos mostrando sinais de alta e 13 indicando sinais de baixa. A previsão de preço de GRIN foi atualizada pela última vez em 6 de janeiro de 2026.
Médias Móveis Simples de 50 e 200 dias e Índice de Força Relativa de 14 dias - RSI (14) de Grin
De acordo com nossos indicadores técnicos, o SMA de 200 dias de Grin está projetado para aumentar no próximo mês, alcançando $0.03866 até 4 de fev. de 2026. O SMA de 50 dias de curto prazo para Grin é esperado para alcançar $0.033994 até 4 de fev. de 2026.
O oscilador de momentum Índice de Força Relativa (RSI) é uma ferramenta comumente usada para identificar se uma criptomoeda está sobrevendida (abaixo de 30) ou sobrecomprada (acima de 70). No momento, o RSI está em 53.16, sugerindo que o mercado de GRIN está em um estado NEUTRAL.
Médias Móveis e Osciladores Populares de GRIN para Sábado, 19 de Outubro de 2024
Médias móveis (MA) são indicadores amplamente utilizados nos mercados financeiros, projetados para suavizar movimentos de preços ao longo de um período definido. Como indicadores atrasados, eles se baseiam em dados históricos de preços. A tabela abaixo destaca dois tipos: a média móvel simples (SMA) e a média móvel exponencial (EMA).
Média Móvel Simples Diária (SMA)
| Período | Valor | Ação |
|---|---|---|
| SMA 3 | $0.035900082 | BUY |
| SMA 5 | $0.035567 | BUY |
| SMA 10 | $0.03562 | BUY |
| SMA 21 | $0.035176 | BUY |
| SMA 50 | $0.036256 | SELL |
| SMA 100 | $0.037538 | SELL |
| SMA 200 | $0.041143 | SELL |
Média Móvel Exponencial Diária (EMA)
| Período | Valor | Ação |
|---|---|---|
| EMA 3 | $0.035843 | BUY |
| EMA 5 | $0.03571 | BUY |
| EMA 10 | $0.035543 | BUY |
| EMA 21 | $0.035494 | BUY |
| EMA 50 | $0.036196 | SELL |
| EMA 100 | $0.037012 | SELL |
| EMA 200 | $0.036469 | SELL |
Média Móvel Simples Semanal (SMA)
| Período | Valor | Ação |
|---|---|---|
| SMA 21 | $0.036913 | SELL |
| SMA 50 | $0.0317017 | BUY |
| SMA 100 | $0.035387 | BUY |
| SMA 200 | $0.048499 | SELL |
Média Móvel Exponencial Semanal (EMA)
| Período | Valor | Ação |
|---|---|---|
| EMA 21 | $0.03685 | SELL |
| EMA 50 | $0.035496 | BUY |
| EMA 100 | $0.0487033 | SELL |
| EMA 200 | $0.2144073 | SELL |
Osciladores de Grin
Um oscilador é uma ferramenta de análise técnica que define limites altos e baixos entre dois extremos, criando um indicador de tendência que flutua dentro desses limites. Os traders usam esse indicador para identificar condições de sobrecompra ou sobrevenda de curto prazo.
| Período | Valor | Ação |
|---|---|---|
| RSI (14) | 53.16 | NEUTRAL |
| Stoch RSI (14) | 87.65 | NEUTRAL |
| Estocástico Rápido (14) | 90.5 | SELL |
| Índice de Canal de Commodities (20) | 104.1 | SELL |
| Índice Direcional Médio (14) | 7.19 | NEUTRAL |
| Oscilador Impressionante (5, 34) | 0.000275 | BUY |
| Momentum (10) | 0 | BUY |
| MACD (12, 26) | 0 | BUY |
| Williams Percent Range (14) | -9.5 | SELL |
| Oscilador Ultimate (7, 14, 28) | 53.55 | NEUTRAL |
| VWMA (10) | 0.035663 | BUY |
| Média Móvel de Hull (9) | 0.035817 | BUY |
| Nuvem Ichimoku B/L (9, 26, 52, 26) | -0.0023038 | SELL |
Previsão do preço de Grin com base nos fluxos financeiros mundiais
Definições dos fluxos financeiros mundiais, usadas na previsão do preço do Grin
M0: o total de todas as moedas físicas, mais as contas no Banco Central que podem ser trocadas por moedas físicas.
M1: o valor de M0, mais o valor em contas de demanda, incluindo contas 'correntes'.
M2: o valor de M1, mais a maioria das contas de poupança, do mercado de moedas e de certificados de depósito (CD) de menos de US$ 100.000.
Previsões de preço de Grin por empresas de Internet ou nichos tecnológicos
| Comparação | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Facebook stock | $0.050731 | $0.071285 | $0.100168 | $0.140753 | $0.197781 | $0.277916 |
| Amazon.com stock | $0.075331 | $0.157183 | $0.327973 | $0.684336 | $1.42 | $2.97 |
| Apple stock | $0.0512097 | $0.072637 | $0.10303 | $0.14614 | $0.207289 | $0.294023 |
| Netflix stock | $0.056965 | $0.089882 | $0.14182 | $0.22377 | $0.353074 | $0.557095 |
| Google stock | $0.046753 | $0.060545 | $0.0784063 | $0.101535 | $0.131488 | $0.170277 |
| Tesla stock | $0.081843 | $0.185532 | $0.420588 | $0.953443 | $2.16 | $4.89 |
| Kodak stock | $0.027073 | $0.0203023 | $0.015224 | $0.011416 | $0.008561 | $0.00642 |
| Nokia stock | $0.023916 | $0.015843 | $0.010495 | $0.006953 | $0.0046061 | $0.003051 |
Este cálculo mostra quanto a criptomoeda pode custar, se assumirmos que sua capitalização se comportará da mesma forma que a de algumas empresas de Internet ou nichos tecnológicos. Se você extrapolar os dados, poderá obter uma imagem em potencial do preço futuro para 2024, 2025, 2026, 2027, 2028, 2029 e 2030.
Visão geral da previsão para Grin
Você pode fazer perguntas como: 'Devo investir em Grin agora?', 'Devo comprar GRIN hoje?', 'Grin será um bom ou mau investimento no curto ou no longo prazo?'.
Atualizamos a previsão para Grin regularmente com novos valores. Veja nossas previsões semelhantes. Fazemos previsões de preços futuros para uma enorme quantidade de moedas digitais, como Grin, com métodos de análise técnica.
Se você estiver tentando encontrar criptomoedas com bom retorno, você deve explorar o máximo de fontes de informações disponíveis sobre Grin para poder tomar sozinho uma decisão de tão grande responsabilidade sobre o seu investimento.
O preço de Grin é de $0.0361 USD hoje, mas o preço pode tanto subir quanto descer e seu investimento pode ser perdido, porque criptomoedas são ativos de alto risco
Previsão de curto prazo para Grin
com base no histórico de preços de 4 horas
Previsão de longo prazo para Grin
com base no histórico de preços de 1 mês
Previsão do preço de Grin com base no padrão de crescimento do Bitcoin
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| Se Grin tiver 1% da média anterior do crescimento anual do Bitcoin | $0.037041 | $0.0380045 | $0.038992 | $0.0400059 |
| Se Grin tiver 2% da média anterior do crescimento anual do Bitcoin | $0.03798 | $0.039954 | $0.042031 | $0.044216 |
| Se Grin tiver 5% da média anterior do crescimento anual do Bitcoin | $0.040795 | $0.046097 | $0.052088 | $0.058858 |
| Se Grin tiver 10% da média anterior do crescimento anual do Bitcoin | $0.045487 | $0.057311 | $0.0722084 | $0.090977 |
| Se Grin tiver 20% da média anterior do crescimento anual do Bitcoin | $0.054872 | $0.083398 | $0.126753 | $0.192648 |
| Se Grin tiver 50% da média anterior do crescimento anual do Bitcoin | $0.083025 | $0.190929 | $0.439074 | $1.00 |
| Se Grin tiver 100% da média anterior do crescimento anual do Bitcoin | $0.129947 | $0.467722 | $1.68 | $6.05 |
Perguntas Frequentes sobre Grin
GRIN é um bom investimento?
A decisão de adquirir Grin depende inteiramente da sua tolerância individual ao risco. Como você pode perceber, o valor de Grin experimentou uma escalada de 1.1861% nas últimas 24 horas, e Grin registrou um declínio de durante os últimos 30 dias. Consequentemente, a decisão de investir ou não em Grin dependerá de quão alinhado esse investimento está com suas aspirações de negociação.
Grin pode subir?
Parece que o valor médio de Grin pode potencialmente subir para $0.037234 até o final deste ano. Observando as perspectivas de Grin em um horizonte de cinco anos mais longo, a moeda digital poderia potencialmente crescer até $0.117057. No entanto, dada a imprevisibilidade do mercado, é vital conduzir uma pesquisa aprofundada antes de investir quaisquer fundos em um projeto, rede ou ativo específico.
Qual será o preço de Grin na próxima semana?
Com base na nossa nova previsão experimental de Grin, o preço de Grin aumentará 0.86% na próxima semana e atingirá $0.036412 até 13 de janeiro de 2026.
Qual será o preço de Grin no próximo mês?
Com base na nossa nova previsão experimental de Grin, o preço de Grin diminuirá -11.62% no próximo mês e atingirá $0.031908 até 5 de fevereiro de 2026.
Até onde o preço de Grin pode subir este ano em 2026?
De acordo com nossa previsão mais recente sobre o valor de Grin em 2026, espera-se que GRIN fluctue dentro do intervalo de $0.012473 e $0.037234. No entanto, é crucial lembrar que o mercado de criptomoedas é excepcionalmente instável, e essa previsão de preço de Grin não considera flutuações repentinas e extremas de preço.
Onde estará Grin em 5 anos?
O futuro de Grin parece seguir uma tendência de alta, com um preço máximo de $0.117057 projetada após um período de cinco anos. Com base na previsão de Grin para 2030, o valor de Grin pode potencialmente atingir seu pico mais alto de aproximadamente $0.117057, enquanto seu pico mais baixo está previsto para cerca de $0.040486.
Quanto será Grin em 2026?
Com base na nossa nova simulação experimental de previsão de preços de Grin, espera-se que o valor de GRIN em 2026 aumente 3.13% para $0.037234 se o melhor cenário ocorrer. O preço ficará entre $0.037234 e $0.012473 durante 2026.
Quanto será Grin em 2027?
De acordo com nossa última simulação experimental para previsão de preços de Grin, o valor de GRIN pode diminuir -12.62% para $0.031545 em 2027, assumindo as condições mais favoráveis. O preço está projetado para flutuar entre $0.031545 e $0.012008 ao longo do ano.
Quanto será Grin em 2028?
Nosso novo modelo experimental de previsão de preços de Grin sugere que o valor de GRIN em 2028 pode aumentar 47.02%, alcançando $0.053079 no melhor cenário. O preço é esperado para variar entre $0.053079 e $0.021671 durante o ano.
Quanto será Grin em 2029?
Com base no nosso modelo de previsão experimental, o valor de Grin pode experimentar um 333.75% crescimento em 2029, potencialmente alcançando $0.156599 sob condições ótimas. A faixa de preço prevista para 2029 está entre $0.156599 e $0.0476051.
Quanto será Grin em 2030?
Usando nossa nova simulação experimental para previsões de preços de Grin, espera-se que o valor de GRIN em 2030 aumente 224.23%, alcançando $0.117057 no melhor cenário. O preço está previsto para variar entre $0.117057 e $0.040486 ao longo de 2030.
Quanto será Grin em 2031?
Nossa simulação experimental indica que o preço de Grin poderia aumentar 195.98% em 2031, potencialmente atingindo $0.10686 sob condições ideais. O preço provavelmente oscilará entre $0.10686 e $0.047867 durante o ano.
Quanto será Grin em 2032?
Com base nos achados da nossa mais recente previsão experimental de preços de Grin, GRIN poderia ver um 449.04% aumento em valor, atingindo $0.198219 se o cenário mais positivo se desenrolar em 2032. O preço é esperado para permanecer dentro de uma faixa de $0.198219 e $0.073065 ao longo do ano.
Quanto será Grin em 2033?
De acordo com nossa previsão experimental de preços de Grin, espera-se que o valor de GRIN seja aumentar 1362.43% em 2033, com o preço potencial mais alto sendo $0.527985. Ao longo do ano, o preço de GRIN poderia variar entre $0.527985 e $0.169788.
Quanto será Grin em 2034?
Os resultados da nossa nova simulação de previsão de preços de Grin sugerem que GRIN pode aumentar 746.96% em 2034, atingindo potencialmente $0.30578 nas melhores circunstâncias. A faixa de preço prevista para o ano é entre $0.30578 e $0.1365018.
Quanto será Grin em 2035?
Com base em nossa previsão experimental para o preço de Grin, GRIN poderia aumentar 897.93%, com o valor potencialmente atingindo $0.360286 em 2035. A faixa de preço esperada para o ano está entre $0.360286 e $0.161387.
Quanto será Grin em 2036?
Nossa recente simulação de previsão de preços de Grin sugere que o valor de GRIN pode aumentar 1964.7% em 2036, possivelmente atingindo $0.745422 se as condições forem ideais. A faixa de preço esperada para 2036 está entre $0.745422 e $0.267146.
Quanto será Grin em 2037?
De acordo com a simulação experimental, o valor de Grin poderia aumentar 4830.69% em 2037, com um pico de $1.78 sob condições favoráveis. O preço é esperado para cair entre $1.78 e $0.693772 ao longo do ano.
Previsões relacionadas
Previsão de Preço do Obortech
Previsão de Preço do Kepple [OLD]
Previsão de Preço do BTU Protocol
Previsão de Preço do Pika Protocol
Previsão de Preço do Oggy Inu
Previsão de Preço do Smilek
Previsão de Preço do Wasder
Previsão de Preço do Comtech Gold
Previsão de Preço do BABB
Previsão de Preço do Ferro
Previsão de Preço do PLEARN
Previsão de Preço do Comsats
Previsão de Preço do r/FortNiteBR Bricks
Previsão de Preço do Script Network
Previsão de Preço do BitSharesPrevisão de Preço do Ispolink
Previsão de Preço do Increment Staked FLOW
Previsão de Preço do Goldcoin
Previsão de Preço do Chappyz
Previsão de Preço do SIX Network
Previsão de Preço do MindAI
Previsão de Preço do EML Protocol
Previsão de Preço do OpenOcean
Previsão de Preço do Unisocks
Previsão de Preço do Argentine Football Association Fan Token
Como ler e prever os movimentos de preço de Grin?
Traders de Grin utilizam indicadores e padrões de gráfico para prever a direção do mercado. Eles também identificam níveis-chave de suporte e resistência para avaliar quando uma tendência de baixa pode desacelerar ou uma tendência de alta pode estagnar.
Indicadores de Previsão de Preço de Grin
Médias móveis são ferramentas populares para a previsão de preço de Grin. Uma média móvel simples (SMA) calcula o preço médio de fechamento de GRIN em um período específico, como uma SMA de 12 dias. Uma média móvel exponencial (EMA) dá mais peso aos preços recentes, reagindo mais rapidamente às mudanças de preço.
Médias móveis comumente usadas no mercado de criptomoedas incluem as de 50 dias, 100 dias e 200 dias, que ajudam a identificar níveis-chave de resistência e suporte. Um movimento de preço de GRIN acima dessas médias é visto como altista, enquanto uma queda abaixo indica fraqueza.
Traders também usam RSI e níveis de retração de Fibonacci para avaliar a direção futura de GRIN.
Como ler gráficos de Grin e prever movimentos de preço?
A maioria dos traders prefere gráficos de velas em vez de gráficos de linha simples porque eles fornecem informações mais detalhadas. Velas podem representar a ação de preço de Grin em diferentes períodos de tempo, como 5 minutos para tendências de curto prazo e semanal para tendências de longo prazo. Opções populares incluem gráficos de 1 hora, 4 horas e 1 dia.
Por exemplo, um gráfico de velas de 1 hora mostra os preços de abertura, fechamento, máximo e mínimo de GRIN dentro de cada hora. A cor da vela é crucial: verde indica que o preço fechou mais alto do que abriu, enquanto vermelho significa o oposto. Alguns gráficos usam velas vazias e preenchidas para transmitir a mesma informação.
O que afeta o preço de Grin?
A ação de preço de Grin é impulsionada pela oferta e demanda, influenciada por fatores como reduções pela metade das recompensas de bloco, hard forks e atualizações de protocolo. Eventos do mundo real, como regulamentações, adoção por empresas e governos e hacks de exchanges de criptomoedas, também impactam o preço de GRIN. A capitalização de mercado de Grin pode mudar rapidamente.
Traders frequentemente monitoram a atividade de "baleias" de GRIN, grandes detentores de Grin, pois suas ações podem influenciar significativamente os movimentos de preço no relativamente pequeno mercado de Grin.
Padrões de previsão de preço altistas e baixistas
Traders frequentemente identificam padrões de velas para ganhar vantagem em previsões de preço de criptomoedas. Certas formações indicam tendências altistas, enquanto outras sugerem movimentos baixistas.
Padrões de velas altistas comumente seguidos:
- Martelo
- Engolfo de Alta
- Linha de Perfuração
- Estrela da Manhã
- Três Soldados Brancos
Padrões de velas baixistas comuns:
- Harami de Baixa
- Nuvem Negra
- Estrela da Noite
- Estrela Cadente
- Homem Enforcado


