Previsão de Preço Grin - Projeção GRIN
Previsão de Preço Grin até $0.037182 até 2026
| Ano | Preço Mínimo | Preço Máximo |
|---|---|---|
| 2026 | $0.012456 | $0.037182 |
| 2027 | $0.011991 | $0.0315015 |
| 2028 | $0.021641 | $0.0530055 |
| 2029 | $0.047539 | $0.156381 |
| 2030 | $0.040429 | $0.116894 |
| 2031 | $0.04780071 | $0.106711 |
| 2032 | $0.072964 | $0.197944 |
| 2033 | $0.169552 | $0.527252 |
| 2034 | $0.136312 | $0.305356 |
| 2035 | $0.161163 | $0.359786 |
Calculadora de lucro do investimento
Se você abrir um short de $10,000.00 em Grin hoje e fechar em Apr 06, 2026, nossa previsão mostra que pode lucrar cerca de $3,954.48, com um retorno de 39.54% nos próximos 90 dias.
Previsão de preço de longo prazo de Grin para os anos 2027, 2028, 2029, 2030, 2031, 2032 e 2037
[
'name' => 'Grin'
'name_with_ticker' => 'Grin <small>GRIN</small>'
'name_lang' => 'Grin'
'name_lang_with_ticker' => 'Grin <small>GRIN</small>'
'name_with_lang' => 'Grin'
'name_with_lang_with_ticker' => 'Grin <small>GRIN</small>'
'image' => '/uploads/coins/grin.png?1717244297'
'price_for_sd' => 0.03605
'ticker' => 'GRIN'
'marketcap' => '$7.89M'
'low24h' => '$0.0353'
'high24h' => '$0.03715'
'volume24h' => '$20.47K'
'current_supply' => '218.7M'
'max_supply' => '218.7M'
'algo' => null
'proof' => null
'ico_price_and_roi' => '—'
'price' => '$0.03605'
'change_24h_pct' => '1.8752%'
'ath_price' => '$25.09'
'ath_days' => 2546
'ath_exchange' => null
'ath_pair' => null
'ath_date' => '17 de jan. de 2019'
'ath_pct' => '-99.86%'
'fdv' => '$7.89M'
'new_prediction' => true
'change_24h_pct_is_increased' => true
'change_30d_pct' => null
'change_30d_pct_is_increased' => false
'max_price' => '$1.77'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.036361'
'next_week_prediction_price_date' => '13 de janeiro de 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.031864'
'next_month_prediction_price_date' => '5 de fevereiro de 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.012456'
'current_year_max_price_prediction' => '$0.037182'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.040429'
'grand_prediction_max_price' => '$0.116894'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.036736358607533
107 => 0.036873518835275
108 => 0.037182547831953
109 => 0.034541928890308
110 => 0.035727489270608
111 => 0.036423894922049
112 => 0.033277508853383
113 => 0.036361700985874
114 => 0.034495961589381
115 => 0.033862701615746
116 => 0.034715302744588
117 => 0.034383043255496
118 => 0.034097386057707
119 => 0.033937984433127
120 => 0.034564040603996
121 => 0.034534834335326
122 => 0.033510484927518
123 => 0.032174262882856
124 => 0.032622742861038
125 => 0.032459805880442
126 => 0.031869301243474
127 => 0.032267230070989
128 => 0.030514952901786
129 => 0.027500251107613
130 => 0.029491855455657
131 => 0.029415180854706
201 => 0.02937651804399
202 => 0.030873153667644
203 => 0.030729286685688
204 => 0.030468166704689
205 => 0.03186450557025
206 => 0.031354823100912
207 => 0.03292554437512
208 => 0.033960122994195
209 => 0.033697720391285
210 => 0.034670746583078
211 => 0.032633074933933
212 => 0.033309907718582
213 => 0.033449402017449
214 => 0.031847274965398
215 => 0.030752825103169
216 => 0.030679837775
217 => 0.028782212538377
218 => 0.029795908622685
219 => 0.030687919227282
220 => 0.0302607153705
221 => 0.030125475391794
222 => 0.030816387113027
223 => 0.030870076871025
224 => 0.029645944698874
225 => 0.029900480540689
226 => 0.030961937314118
227 => 0.029873734553416
228 => 0.027759534346284
301 => 0.02723518346381
302 => 0.027165225390384
303 => 0.025743144210323
304 => 0.027270223097058
305 => 0.026603612239829
306 => 0.028709427950593
307 => 0.027506597310321
308 => 0.027454745685486
309 => 0.027376364349568
310 => 0.026152320332456
311 => 0.026420308180148
312 => 0.027311140601578
313 => 0.02762899964549
314 => 0.027595844343068
315 => 0.027306775036721
316 => 0.027439109484892
317 => 0.027012814118955
318 => 0.026862280352672
319 => 0.026387154378708
320 => 0.025688850453881
321 => 0.025785953897575
322 => 0.024402431101332
323 => 0.023648614452826
324 => 0.023439967939663
325 => 0.023160957102324
326 => 0.02347148295616
327 => 0.02439851175508
328 => 0.023280318343452
329 => 0.021363254171362
330 => 0.021478472994623
331 => 0.021737335481715
401 => 0.021254946949566
402 => 0.020798406687688
403 => 0.021195331405109
404 => 0.020383046043184
405 => 0.021835496286964
406 => 0.021796211578315
407 => 0.022337595210276
408 => 0.022676133505651
409 => 0.021895912337885
410 => 0.021699688824134
411 => 0.021811466655428
412 => 0.019964028092336
413 => 0.022186620065755
414 => 0.022205841133437
415 => 0.022041258682501
416 => 0.023224720293518
417 => 0.025722193423697
418 => 0.0247825435715
419 => 0.024418682747662
420 => 0.023726983055566
421 => 0.02464863182622
422 => 0.024577863580595
423 => 0.024257822735815
424 => 0.024064261034304
425 => 0.024420904404264
426 => 0.024020068973968
427 => 0.023948067916466
428 => 0.023511819845927
429 => 0.023356099132767
430 => 0.023240809716164
501 => 0.023113887396587
502 => 0.023393846406501
503 => 0.022759422458361
504 => 0.021994369370251
505 => 0.021930763483964
506 => 0.02210638492829
507 => 0.022028685512654
508 => 0.021930391489055
509 => 0.021742721429219
510 => 0.021687043731402
511 => 0.021867969238328
512 => 0.021663714889621
513 => 0.021965103307449
514 => 0.021883142334381
515 => 0.021425315001404
516 => 0.020854692635125
517 => 0.020849612899144
518 => 0.020726673246338
519 => 0.020570091114388
520 => 0.020526533547394
521 => 0.021161903512521
522 => 0.022477100325311
523 => 0.022218895720968
524 => 0.022405475009478
525 => 0.023323260444638
526 => 0.023614996835705
527 => 0.023407929255481
528 => 0.023124482380298
529 => 0.023136952604289
530 => 0.024105576381992
531 => 0.024165988258869
601 => 0.024318629582128
602 => 0.024514816818948
603 => 0.023441340790249
604 => 0.023086391979873
605 => 0.022918197541707
606 => 0.022400223771594
607 => 0.022958814074946
608 => 0.022633347426405
609 => 0.022677263996817
610 => 0.022648663272723
611 => 0.022664281202051
612 => 0.02183509029752
613 => 0.02213720388214
614 => 0.021634881451816
615 => 0.020962328105951
616 => 0.020960073471308
617 => 0.021124679949903
618 => 0.021026765575383
619 => 0.020763280511157
620 => 0.020800707320916
621 => 0.020472809085089
622 => 0.020840520103534
623 => 0.02085106473981
624 => 0.020709475968354
625 => 0.021275985526612
626 => 0.021508084954858
627 => 0.02141488819236
628 => 0.021501546021557
629 => 0.022229625288002
630 => 0.022348333976758
701 => 0.022401056534847
702 => 0.022330415291408
703 => 0.021514853973994
704 => 0.021551027586456
705 => 0.02128560961978
706 => 0.021061359406995
707 => 0.021070328239469
708 => 0.021185621999328
709 => 0.021689116610519
710 => 0.022748691337143
711 => 0.022788901423479
712 => 0.02283763722113
713 => 0.022639404239436
714 => 0.022579615275322
715 => 0.022658492351829
716 => 0.023056412909356
717 => 0.024079972617694
718 => 0.023718178255513
719 => 0.023424033807395
720 => 0.023682077789169
721 => 0.02364235394079
722 => 0.023307044683808
723 => 0.023297633669747
724 => 0.022654068000745
725 => 0.022416156426196
726 => 0.02221733970713
727 => 0.022000237040152
728 => 0.021871531301821
729 => 0.02206928181161
730 => 0.022114509692914
731 => 0.021682124747172
801 => 0.021623192276784
802 => 0.021976287157155
803 => 0.021820903265008
804 => 0.021980719451416
805 => 0.022017798177541
806 => 0.022011827648639
807 => 0.021849589019511
808 => 0.021952995083692
809 => 0.021708408915074
810 => 0.021442458192356
811 => 0.021272798200577
812 => 0.021124747355618
813 => 0.021206894569167
814 => 0.020914054752354
815 => 0.020820369401254
816 => 0.021917963435858
817 => 0.022728767950344
818 => 0.022716978531589
819 => 0.022645213476914
820 => 0.022538585162676
821 => 0.023048612384023
822 => 0.022870929098422
823 => 0.023000208534632
824 => 0.023033115576988
825 => 0.023132715283234
826 => 0.023168313617333
827 => 0.023060710727053
828 => 0.02269958228469
829 => 0.021799684541383
830 => 0.021380779712646
831 => 0.021242534141751
901 => 0.021247559105688
902 => 0.021108948167897
903 => 0.021149775301183
904 => 0.021094750157085
905 => 0.020990545846174
906 => 0.021200460246608
907 => 0.02122465092577
908 => 0.021175654396419
909 => 0.021187194852781
910 => 0.020781524516441
911 => 0.020812366751043
912 => 0.020640633269536
913 => 0.020608435312032
914 => 0.020174308025326
915 => 0.019405188609171
916 => 0.019831355425949
917 => 0.019316605839404
918 => 0.01912166237125
919 => 0.020044494429561
920 => 0.019951867686283
921 => 0.01979333096567
922 => 0.019558822113935
923 => 0.019471840499671
924 => 0.018943367746436
925 => 0.018912142756882
926 => 0.01917406812335
927 => 0.019053198579027
928 => 0.018883451961921
929 => 0.018268646921701
930 => 0.017577402501541
1001 => 0.017598266825578
1002 => 0.017818138814572
1003 => 0.018457446276347
1004 => 0.0182076577909
1005 => 0.018026433378716
1006 => 0.017992495493899
1007 => 0.01841729917615
1008 => 0.019018485385658
1009 => 0.019300548504375
1010 => 0.01902103252011
1011 => 0.018699939607596
1012 => 0.01871948304538
1013 => 0.018849496781338
1014 => 0.018863159386693
1015 => 0.01865416090953
1016 => 0.018712992756636
1017 => 0.018623621801186
1018 => 0.018075152412554
1019 => 0.018065232340529
1020 => 0.017930629107295
1021 => 0.017926553374888
1022 => 0.017697559696807
1023 => 0.017665521898285
1024 => 0.017210841051532
1025 => 0.017510113361765
1026 => 0.017309377208563
1027 => 0.017006820476815
1028 => 0.016954659582221
1029 => 0.016953091562743
1030 => 0.017263749675801
1031 => 0.01750648314084
1101 => 0.01731286909989
1102 => 0.017268786935816
1103 => 0.017739469119779
1104 => 0.017679570521506
1105 => 0.017627698721707
1106 => 0.018964655754464
1107 => 0.017906349938978
1108 => 0.017444868197443
1109 => 0.016873696909286
1110 => 0.017059673160805
1111 => 0.01709886108956
1112 => 0.015725297102907
1113 => 0.015168042364588
1114 => 0.014976813538099
1115 => 0.014866758644875
1116 => 0.0149169120417
1117 => 0.014415317417751
1118 => 0.014752397300654
1119 => 0.014318058755053
1120 => 0.014245240484423
1121 => 0.015021891608179
1122 => 0.015129958074919
1123 => 0.014668912954184
1124 => 0.014964978558121
1125 => 0.014857621054514
1126 => 0.01432550424279
1127 => 0.014305181294568
1128 => 0.014038183783255
1129 => 0.013620384378956
1130 => 0.013429438840137
1201 => 0.013329992745655
1202 => 0.013371026142404
1203 => 0.013350278401365
1204 => 0.013214885356773
1205 => 0.013358038972196
1206 => 0.012992340639948
1207 => 0.012846716617415
1208 => 0.012780941624889
1209 => 0.012456363306208
1210 => 0.012972911751862
1211 => 0.013074678302962
1212 => 0.013176645365605
1213 => 0.014064199030039
1214 => 0.014019859357165
1215 => 0.014420668405654
1216 => 0.01440509370307
1217 => 0.014290776469765
1218 => 0.013808490866722
1219 => 0.014000721312181
1220 => 0.013409065880303
1221 => 0.013852374358525
1222 => 0.013650066882069
1223 => 0.013783973997232
1224 => 0.013543196930251
1225 => 0.01367645290056
1226 => 0.013098810927518
1227 => 0.012559416980733
1228 => 0.01277648485081
1229 => 0.013012462450306
1230 => 0.013524122011987
1231 => 0.01321938179815
]
'min_raw' => 0.012456363306208
'max_raw' => 0.037182547831953
'avg_raw' => 0.024819455569081
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.012456'
'max' => '$0.037182'
'avg' => '$0.024819'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.023596806693792
'max_diff' => 0.0011293778319533
'year' => 2026
]
1 => [
'items' => [
101 => 0.013328977902549
102 => 0.012961849298978
103 => 0.012204358124709
104 => 0.012208645442492
105 => 0.012092121928174
106 => 0.01199142859909
107 => 0.013254384877552
108 => 0.013097316299941
109 => 0.012847048078146
110 => 0.013182042038283
111 => 0.013270619758412
112 => 0.013273141441579
113 => 0.01351754438745
114 => 0.013647982283473
115 => 0.013670972527997
116 => 0.014055545844
117 => 0.014184449746879
118 => 0.014715386679676
119 => 0.013636915539314
120 => 0.013614705135886
121 => 0.013186756090289
122 => 0.012915344039965
123 => 0.013205339905578
124 => 0.013462236654128
125 => 0.013194738588363
126 => 0.01322966818856
127 => 0.012870573890666
128 => 0.012998933205206
129 => 0.013109493538755
130 => 0.013048448621005
131 => 0.012957061424527
201 => 0.013441174050359
202 => 0.013413858518756
203 => 0.013864675325632
204 => 0.014216119264811
205 => 0.014845969631938
206 => 0.014188687938999
207 => 0.01416473398165
208 => 0.01439888775707
209 => 0.014184413899156
210 => 0.014319953973972
211 => 0.014824132030444
212 => 0.014834784518304
213 => 0.014656341621695
214 => 0.01464548335522
215 => 0.014679755265465
216 => 0.014880486914234
217 => 0.014810345108293
218 => 0.014891514981901
219 => 0.014993019151764
220 => 0.015412883435195
221 => 0.015514111292486
222 => 0.015268180079895
223 => 0.015290384914817
224 => 0.015198399890345
225 => 0.015109543509274
226 => 0.015309279677489
227 => 0.015674301450726
228 => 0.015672030669219
301 => 0.015756708625601
302 => 0.015809462290917
303 => 0.015583004941338
304 => 0.015435589533831
305 => 0.015492117981355
306 => 0.015582508199976
307 => 0.015462805651705
308 => 0.014723946072161
309 => 0.014948068870062
310 => 0.014910763877446
311 => 0.014857637031519
312 => 0.015082994237899
313 => 0.015061257985581
314 => 0.01441017283989
315 => 0.014451853198476
316 => 0.014412707560545
317 => 0.014539195125145
318 => 0.014177583155571
319 => 0.014288812561918
320 => 0.014358574602868
321 => 0.014399664980925
322 => 0.014548111602402
323 => 0.014530693104736
324 => 0.014547028844131
325 => 0.014767135995326
326 => 0.015880362434421
327 => 0.015940952893305
328 => 0.01564258331384
329 => 0.015761776075757
330 => 0.015532952037469
331 => 0.015686563147359
401 => 0.015791659967447
402 => 0.015316747646425
403 => 0.01528862642093
404 => 0.015058857944438
405 => 0.015182322508953
406 => 0.014985881509394
407 => 0.015034081259471
408 => 0.014899310556276
409 => 0.015141870989448
410 => 0.015413091243815
411 => 0.015481612190881
412 => 0.015301363079274
413 => 0.015170850843475
414 => 0.014941714350816
415 => 0.015322773444748
416 => 0.015434206736379
417 => 0.015322188133106
418 => 0.015296230975072
419 => 0.015247042207503
420 => 0.015306666604642
421 => 0.015433599846741
422 => 0.015373740473857
423 => 0.015413278644233
424 => 0.015262599910341
425 => 0.015583079908144
426 => 0.016092079272367
427 => 0.016093715788553
428 => 0.016033856093004
429 => 0.01600936279528
430 => 0.016070782475504
501 => 0.016104100132458
502 => 0.016302720115858
503 => 0.016515847271415
504 => 0.017510418711739
505 => 0.017231147031138
506 => 0.018113589980313
507 => 0.018811487782234
508 => 0.019020756817658
509 => 0.018828239151937
510 => 0.018169646617105
511 => 0.018137332925365
512 => 0.019121548223
513 => 0.018843462321502
514 => 0.01881038488838
515 => 0.018458496885176
516 => 0.018666506277247
517 => 0.018621011571887
518 => 0.0185491959538
519 => 0.018946063383811
520 => 0.019688963784193
521 => 0.019573175789918
522 => 0.019486745423442
523 => 0.019108032717045
524 => 0.019336102354841
525 => 0.019254891125208
526 => 0.019603826105631
527 => 0.019397124753085
528 => 0.018841355547293
529 => 0.018929863625154
530 => 0.018916485807239
531 => 0.019191800351973
601 => 0.019109157759371
602 => 0.018900348514667
603 => 0.019686424631388
604 => 0.019635381220754
605 => 0.019707749106885
606 => 0.019739607688412
607 => 0.020218078368445
608 => 0.020414092496701
609 => 0.020458591135525
610 => 0.020644789397091
611 => 0.020453958353154
612 => 0.021217418589129
613 => 0.021725075096912
614 => 0.022314744254467
615 => 0.023176409381783
616 => 0.023500403440502
617 => 0.023441876813753
618 => 0.024095181479235
619 => 0.025269155440961
620 => 0.023679170516617
621 => 0.025353428502736
622 => 0.024823377754569
623 => 0.02356663696587
624 => 0.023485717675079
625 => 0.024336797128246
626 => 0.026224409442009
627 => 0.025751583966533
628 => 0.026225182815102
629 => 0.025672704601562
630 => 0.025645269401608
701 => 0.026198350181425
702 => 0.02749065357033
703 => 0.026876728671529
704 => 0.025996516788537
705 => 0.026646451545325
706 => 0.026083417910373
707 => 0.024814745547636
708 => 0.025751222405803
709 => 0.025125027000072
710 => 0.025307784109843
711 => 0.026623953713153
712 => 0.02646558870433
713 => 0.026670527689952
714 => 0.026308815744516
715 => 0.025970919750741
716 => 0.025340211785873
717 => 0.025153490251002
718 => 0.025205093365704
719 => 0.025153464679062
720 => 0.024800589369223
721 => 0.024724385979661
722 => 0.024597376991844
723 => 0.024636742388008
724 => 0.024397928333122
725 => 0.024848619796194
726 => 0.024932272103219
727 => 0.025260247765494
728 => 0.025294299286769
729 => 0.026207706837762
730 => 0.025704617307865
731 => 0.02604213319918
801 => 0.026011942601038
802 => 0.023593874349533
803 => 0.023927062819793
804 => 0.024445399519217
805 => 0.024211889538715
806 => 0.023881761059207
807 => 0.023615164611634
808 => 0.023211243732675
809 => 0.023779754613196
810 => 0.02452728596669
811 => 0.025313257915508
812 => 0.026257551713091
813 => 0.026046796330262
814 => 0.025295604999799
815 => 0.025329302894138
816 => 0.025537610017309
817 => 0.025267833366105
818 => 0.025188270964999
819 => 0.025526679365161
820 => 0.025529009797827
821 => 0.025218599157019
822 => 0.024873634534309
823 => 0.024872189119944
824 => 0.024810805997296
825 => 0.025683624522718
826 => 0.026163586459794
827 => 0.026218613322383
828 => 0.026159882713511
829 => 0.026182485793931
830 => 0.025903206517986
831 => 0.0265415561251
901 => 0.02712736885082
902 => 0.026970358526263
903 => 0.02673497772942
904 => 0.02654748558726
905 => 0.026926191336156
906 => 0.026909328165296
907 => 0.027122252287713
908 => 0.02711259281961
909 => 0.027040994445723
910 => 0.026970361083267
911 => 0.027250414381373
912 => 0.027169763529037
913 => 0.02708898740365
914 => 0.026926978517982
915 => 0.026948998216227
916 => 0.026713658061197
917 => 0.026604778937048
918 => 0.024967498147386
919 => 0.024529963220695
920 => 0.024667620615476
921 => 0.024712941004111
922 => 0.024522525243299
923 => 0.024795532530508
924 => 0.024752984633983
925 => 0.024918513609676
926 => 0.024815098292095
927 => 0.024819342492802
928 => 0.025123464891335
929 => 0.025211752917458
930 => 0.0251668489148
1001 => 0.025198298139042
1002 => 0.025923032237825
1003 => 0.02581999822467
1004 => 0.025765263458725
1005 => 0.025780425362956
1006 => 0.025965610463669
1007 => 0.026017452181137
1008 => 0.025797795181372
1009 => 0.025901386692283
1010 => 0.026342466198023
1011 => 0.026496819062093
1012 => 0.02698943931063
1013 => 0.026780165473425
1014 => 0.027164296658774
1015 => 0.028344984962566
1016 => 0.029288200477051
1017 => 0.028420780509901
1018 => 0.030152875684481
1019 => 0.031501560232188
1020 => 0.031449795472895
1021 => 0.031214621126367
1022 => 0.029679179625437
1023 => 0.028266243464138
1024 => 0.029448224559503
1025 => 0.029451237672392
1026 => 0.029349704448052
1027 => 0.028719090311786
1028 => 0.029327760443046
1029 => 0.0293760744677
1030 => 0.02934903146163
1031 => 0.028865541081907
1101 => 0.028127340636029
1102 => 0.028271583236152
1103 => 0.028507855557622
1104 => 0.02806054276151
1105 => 0.027917599219514
1106 => 0.028183358460206
1107 => 0.029039690106851
1108 => 0.028877805569444
1109 => 0.028873578109946
1110 => 0.0295661888107
1111 => 0.029070429023705
1112 => 0.028273402597268
1113 => 0.028072142913106
1114 => 0.027357806619098
1115 => 0.027851201241748
1116 => 0.027868957635844
1117 => 0.027598730443389
1118 => 0.028295330044629
1119 => 0.028288910756669
1120 => 0.028950228402878
1121 => 0.030214419362865
1122 => 0.029840535888938
1123 => 0.029405750087167
1124 => 0.029453023359122
1125 => 0.029971494472093
1126 => 0.029658015001646
1127 => 0.029770744404875
1128 => 0.029971323842639
1129 => 0.03009233839755
1130 => 0.029435611226979
1201 => 0.029282496708627
1202 => 0.028969278139973
1203 => 0.028887565261912
1204 => 0.029142675250561
1205 => 0.029075462781721
1206 => 0.027867465279676
1207 => 0.027741222819478
1208 => 0.027745094495499
1209 => 0.027427651826829
1210 => 0.026943475562136
1211 => 0.028215861877086
1212 => 0.02811367144896
1213 => 0.028000861125221
1214 => 0.028014679746192
1215 => 0.028566979520338
1216 => 0.028246617759526
1217 => 0.029098352006905
1218 => 0.028923261051119
1219 => 0.028743679672996
1220 => 0.028718856056357
1221 => 0.028649732546942
1222 => 0.028412682313436
1223 => 0.028126429911966
1224 => 0.027937421281757
1225 => 0.02577079436592
1226 => 0.02617290771881
1227 => 0.026635502477525
1228 => 0.026795188334502
1229 => 0.026522034626219
1230 => 0.02842346808673
1231 => 0.028770878302634
]
'min_raw' => 0.01199142859909
'max_raw' => 0.031501560232188
'avg_raw' => 0.021746494415639
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.011991'
'max' => '$0.0315015'
'avg' => '$0.021746'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -0.00046493470711752
'max_diff' => -0.0056809875997652
'year' => 2027
]
2 => [
'items' => [
101 => 0.027718550097653
102 => 0.027521702456778
103 => 0.028436373385294
104 => 0.027884715001426
105 => 0.028133126737903
106 => 0.027596196437594
107 => 0.028687197354982
108 => 0.028678885755918
109 => 0.028254461757681
110 => 0.02861318201466
111 => 0.028550845542338
112 => 0.028071671893639
113 => 0.028702388014332
114 => 0.028702700841659
115 => 0.028294201971129
116 => 0.027817164722252
117 => 0.02773188172927
118 => 0.027667632450216
119 => 0.028117325353808
120 => 0.028520518605017
121 => 0.029270761285431
122 => 0.029459390120614
123 => 0.030195621022065
124 => 0.029757231366683
125 => 0.029951563822817
126 => 0.030162539193955
127 => 0.030263688545241
128 => 0.030098871105294
129 => 0.031242540739976
130 => 0.031339101498275
131 => 0.031371477485286
201 => 0.030985838519256
202 => 0.031328376181014
203 => 0.031168114152732
204 => 0.031585071428248
205 => 0.031650455653027
206 => 0.03159507754075
207 => 0.031615831525715
208 => 0.030639911249663
209 => 0.03058930463496
210 => 0.029899279852604
211 => 0.03018047005182
212 => 0.029654798452184
213 => 0.029821494331446
214 => 0.029894972286688
215 => 0.029856591572707
216 => 0.030196368123789
217 => 0.029907488643606
218 => 0.029145088199217
219 => 0.028382480039338
220 => 0.028372906115098
221 => 0.028172124847753
222 => 0.028026996766387
223 => 0.028054953583554
224 => 0.028153477053713
225 => 0.028021270403195
226 => 0.028049483395131
227 => 0.028518007043438
228 => 0.028611966119748
229 => 0.028292656466265
301 => 0.027010582131367
302 => 0.026695957873743
303 => 0.026922103550853
304 => 0.026814020482842
305 => 0.021641007278147
306 => 0.022856329998201
307 => 0.022134226506405
308 => 0.022467005017808
309 => 0.021729924340478
310 => 0.022081697873408
311 => 0.022016738146588
312 => 0.023970941116421
313 => 0.023940428924965
314 => 0.023955033496346
315 => 0.023257919252343
316 => 0.024368441171754
317 => 0.024915524202332
318 => 0.024814273693516
319 => 0.024839756265228
320 => 0.024401881255407
321 => 0.023959273083588
322 => 0.023468352504132
323 => 0.024380422261144
324 => 0.024279015673714
325 => 0.02451160590034
326 => 0.025103148333855
327 => 0.025190255204241
328 => 0.025307327721391
329 => 0.025265365557782
330 => 0.026265074536642
331 => 0.02614400318301
401 => 0.026435750310658
402 => 0.025835604334178
403 => 0.025156482195412
404 => 0.025285561111816
405 => 0.02527312977418
406 => 0.025114864578038
407 => 0.024971989835477
408 => 0.024734143643821
409 => 0.025486724188833
410 => 0.025456170793079
411 => 0.025950794755899
412 => 0.02586336516595
413 => 0.025279488966618
414 => 0.025300342219303
415 => 0.025440590365337
416 => 0.025925990800088
417 => 0.026070090697704
418 => 0.02600333788374
419 => 0.026161336843066
420 => 0.02628621277838
421 => 0.026177019337917
422 => 0.02772296818628
423 => 0.027080982441262
424 => 0.027393881826476
425 => 0.027468506486139
426 => 0.027277356989599
427 => 0.027318810470848
428 => 0.027381601199544
429 => 0.027762854208494
430 => 0.028763372420429
501 => 0.029206495125737
502 => 0.030539651647944
503 => 0.029169699953627
504 => 0.029088412689509
505 => 0.029328554436629
506 => 0.030111258444115
507 => 0.030745566526533
508 => 0.030956003111582
509 => 0.030983815780226
510 => 0.031378608803338
511 => 0.031604896801732
512 => 0.031330670546245
513 => 0.031098292507405
514 => 0.030265943216106
515 => 0.030362289912986
516 => 0.031026023112065
517 => 0.031963585349455
518 => 0.03276811128586
519 => 0.032486394343491
520 => 0.034635695752603
521 => 0.034848790208207
522 => 0.034819347444612
523 => 0.035304808327186
524 => 0.034341267337666
525 => 0.033929334896919
526 => 0.031148535277005
527 => 0.031929826542858
528 => 0.033065479281403
529 => 0.032915171382977
530 => 0.032090430008162
531 => 0.032767485645571
601 => 0.032543629878356
602 => 0.032367065546969
603 => 0.033175940977732
604 => 0.032286549214837
605 => 0.033056606918219
606 => 0.032068999948405
607 => 0.032487681202753
608 => 0.032250017473452
609 => 0.032403815033281
610 => 0.031504717641119
611 => 0.031989848769574
612 => 0.031484534591212
613 => 0.031484295006497
614 => 0.031473140168003
615 => 0.03206764005794
616 => 0.032087026678008
617 => 0.031647690361105
618 => 0.031584375134116
619 => 0.031818484713147
620 => 0.031544403709497
621 => 0.03167264448606
622 => 0.031548287991978
623 => 0.031520292725812
624 => 0.031297221681998
625 => 0.031201116542856
626 => 0.031238801844238
627 => 0.031110162482518
628 => 0.031032652613992
629 => 0.031457721504258
630 => 0.031230624343419
701 => 0.031422915607328
702 => 0.031203775443012
703 => 0.030444140158668
704 => 0.030007265873644
705 => 0.028572385239746
706 => 0.028979315607556
707 => 0.029249110862413
708 => 0.029159943532292
709 => 0.029351509460568
710 => 0.02936327005273
711 => 0.029300990016664
712 => 0.029228877713467
713 => 0.02919377743233
714 => 0.029455386170798
715 => 0.029607258848824
716 => 0.029276188425633
717 => 0.029198623257647
718 => 0.029533353734392
719 => 0.029737539131839
720 => 0.031245129384726
721 => 0.03113344222934
722 => 0.031413755071862
723 => 0.031382196147545
724 => 0.031676008663846
725 => 0.032156267953563
726 => 0.031179766534958
727 => 0.031349253416349
728 => 0.031307699147056
729 => 0.031761377763088
730 => 0.031762794098206
731 => 0.031490791104967
801 => 0.031638248340347
802 => 0.031555941756836
803 => 0.031704680877642
804 => 0.031131950579287
805 => 0.031829474260268
806 => 0.032224925239952
807 => 0.032230416077188
808 => 0.032417856703065
809 => 0.032608307234785
810 => 0.032973860445675
811 => 0.032598112154137
812 => 0.031922177556019
813 => 0.031970977850748
814 => 0.031574677643186
815 => 0.031581339521273
816 => 0.031545777893946
817 => 0.031652501014508
818 => 0.031155370302689
819 => 0.031272045887102
820 => 0.031108699385672
821 => 0.031348898332956
822 => 0.031090483971987
823 => 0.031307679108329
824 => 0.031401413329041
825 => 0.031747294621423
826 => 0.031039397023875
827 => 0.029595945902019
828 => 0.029899376827986
829 => 0.029450578654496
830 => 0.029492116634148
831 => 0.029576029963765
901 => 0.029304039407743
902 => 0.029355926634425
903 => 0.029354072857563
904 => 0.029338098010059
905 => 0.029267342761664
906 => 0.029164733652992
907 => 0.029573496760522
908 => 0.029642953577763
909 => 0.029797347478611
910 => 0.030256719001152
911 => 0.030210816953324
912 => 0.030285685097789
913 => 0.030122248358787
914 => 0.029499697995722
915 => 0.029533505475617
916 => 0.029111925659603
917 => 0.029786566734875
918 => 0.029626802823424
919 => 0.029523801990385
920 => 0.029495697258795
921 => 0.029956207474487
922 => 0.030093999348635
923 => 0.030008136699535
924 => 0.029832029901216
925 => 0.030170207015289
926 => 0.030260688944468
927 => 0.030280944511566
928 => 0.030880129518674
929 => 0.030314432297348
930 => 0.030450601241068
1001 => 0.031512952468832
1002 => 0.030549546499699
1003 => 0.031059884128066
1004 => 0.031034905756826
1005 => 0.031295977218615
1006 => 0.031013490276854
1007 => 0.031016992041055
1008 => 0.031248805812611
1009 => 0.030923265178295
1010 => 0.03084265673915
1011 => 0.0307312967578
1012 => 0.030974447203054
1013 => 0.031120204898236
1014 => 0.032294904874166
1015 => 0.033053814631444
1016 => 0.033020868357399
1017 => 0.033321935629334
1018 => 0.033186302065867
1019 => 0.032748305511106
1020 => 0.033495912222094
1021 => 0.033259338177544
1022 => 0.033278841054339
1023 => 0.033278115156291
1024 => 0.033435416214255
1025 => 0.033323953998257
1026 => 0.033104250529164
1027 => 0.03325009994508
1028 => 0.033683220568229
1029 => 0.035027640272247
1030 => 0.035779995349808
1031 => 0.034982347551893
1101 => 0.035532554321965
1102 => 0.035202626318639
1103 => 0.035142668585927
1104 => 0.035488239097493
1105 => 0.035834414484494
1106 => 0.035812364608899
1107 => 0.03556105905424
1108 => 0.035419102923055
1109 => 0.036494042307179
1110 => 0.037286039334288
1111 => 0.037232030446654
1112 => 0.037470408112037
1113 => 0.038170292310343
1114 => 0.038234280950202
1115 => 0.038226219852342
1116 => 0.038067617331928
1117 => 0.038756744216608
1118 => 0.039331625987842
1119 => 0.038030905430919
1120 => 0.038526202791313
1121 => 0.038748557733878
1122 => 0.039075040759302
1123 => 0.039625872348102
1124 => 0.040224221554401
1125 => 0.040308834692737
1126 => 0.040248797621976
1127 => 0.039854170235932
1128 => 0.040508891077255
1129 => 0.040892411191009
1130 => 0.041120788642048
1201 => 0.041699915859497
1202 => 0.038749930922305
1203 => 0.036661784959995
1204 => 0.036335690814787
1205 => 0.036998816082086
1206 => 0.037173676926748
1207 => 0.037103190739522
1208 => 0.034752792613018
1209 => 0.036323316455077
1210 => 0.038013068055739
1211 => 0.03807797829645
1212 => 0.038923903278781
1213 => 0.039199371128664
1214 => 0.039880451617362
1215 => 0.039837849847356
1216 => 0.040003682107996
1217 => 0.03996556014309
1218 => 0.041227118329986
1219 => 0.042618804353336
1220 => 0.042570614691638
1221 => 0.0423705433601
1222 => 0.042667683404666
1223 => 0.044104052522901
1224 => 0.04397181467184
1225 => 0.044100272480152
1226 => 0.045793832620768
1227 => 0.047995701709689
1228 => 0.046972712453843
1229 => 0.0491923047818
1230 => 0.050589420496715
1231 => 0.0530055876612
]
'min_raw' => 0.021641007278147
'max_raw' => 0.0530055876612
'avg_raw' => 0.037323297469674
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.021641'
'max' => '$0.0530055'
'avg' => '$0.037323'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 0.0096495786790567
'max_diff' => 0.021504027429012
'year' => 2028
]
3 => [
'items' => [
101 => 0.052703071632332
102 => 0.053643667778813
103 => 0.052161504803659
104 => 0.048758159018147
105 => 0.048219566520105
106 => 0.049297842340519
107 => 0.05194867822839
108 => 0.049214358084886
109 => 0.04976750748873
110 => 0.049608200423211
111 => 0.049599711626701
112 => 0.049923694463061
113 => 0.049453740461112
114 => 0.047539063314063
115 => 0.048416548567293
116 => 0.048077709370718
117 => 0.048453676721453
118 => 0.05048261745264
119 => 0.049585574391476
120 => 0.048640612396401
121 => 0.049825804442079
122 => 0.0513349611924
123 => 0.05124052087518
124 => 0.051057267186784
125 => 0.052090258633423
126 => 0.053796457865176
127 => 0.054257636661455
128 => 0.054598069420482
129 => 0.054645009346294
130 => 0.055128519755152
131 => 0.05252856242641
201 => 0.056654761478763
202 => 0.057367242071155
203 => 0.05723332524908
204 => 0.058025217441758
205 => 0.057792222670306
206 => 0.057454649802232
207 => 0.058709967367927
208 => 0.057270847077762
209 => 0.05522819700608
210 => 0.054107558777718
211 => 0.055583305596132
212 => 0.056484492681672
213 => 0.05708012001895
214 => 0.057260356491322
215 => 0.052730389712711
216 => 0.050288988862515
217 => 0.051853898816773
218 => 0.053763196965284
219 => 0.052517956178793
220 => 0.05256676726007
221 => 0.050791381142056
222 => 0.053920279242319
223 => 0.053464425107286
224 => 0.05582939716623
225 => 0.055264977604276
226 => 0.057193520510658
227 => 0.056685670530897
228 => 0.058793727403377
301 => 0.05963468836317
302 => 0.061046792699786
303 => 0.062085542398099
304 => 0.062695516089064
305 => 0.062658895556612
306 => 0.065075915207901
307 => 0.063650683163771
308 => 0.061860255814941
309 => 0.061827872632927
310 => 0.062755160327437
311 => 0.064698500946176
312 => 0.065202380894159
313 => 0.065483981044514
314 => 0.065052700611673
315 => 0.06350571337507
316 => 0.062837732129709
317 => 0.063406871504036
318 => 0.062710862955937
319 => 0.063912368975464
320 => 0.065562293368111
321 => 0.065221590505537
322 => 0.066360509094093
323 => 0.067539170015518
324 => 0.06922470807013
325 => 0.069665370132899
326 => 0.070393767765779
327 => 0.07114352819617
328 => 0.071384331039801
329 => 0.071844098385028
330 => 0.071841675184171
331 => 0.073227215024923
401 => 0.07475550837587
402 => 0.07533240373578
403 => 0.076658942805697
404 => 0.074387291135937
405 => 0.076110365022303
406 => 0.077664620799143
407 => 0.07581157298755
408 => 0.078365567691064
409 => 0.078464733517925
410 => 0.079962019768434
411 => 0.078444233308206
412 => 0.077542976553069
413 => 0.0801448710355
414 => 0.081403845816641
415 => 0.081024632366685
416 => 0.078138799288442
417 => 0.076459120657701
418 => 0.072063077695241
419 => 0.077270380479198
420 => 0.079806705766159
421 => 0.07813223081868
422 => 0.078976738583797
423 => 0.083584099117716
424 => 0.08533828370453
425 => 0.084973425573148
426 => 0.085035080591276
427 => 0.085981606753618
428 => 0.090179025018922
429 => 0.087663834698958
430 => 0.089586603456187
501 => 0.090606433071962
502 => 0.091553707654817
503 => 0.089227500668533
504 => 0.086201139558145
505 => 0.085242563956488
506 => 0.077965737285447
507 => 0.077586946855563
508 => 0.077374320308744
509 => 0.076033740007674
510 => 0.074980411106882
511 => 0.074142764857378
512 => 0.071944530956333
513 => 0.072686370368103
514 => 0.069182844336909
515 => 0.071424276134328
516 => 0.065832563992949
517 => 0.070489508022913
518 => 0.067954945112666
519 => 0.069656835940046
520 => 0.069650898203277
521 => 0.066517177605093
522 => 0.06470971296314
523 => 0.065861499780569
524 => 0.067096306677803
525 => 0.06729664994249
526 => 0.068897609316512
527 => 0.069344402665295
528 => 0.067990597959696
529 => 0.065716688187587
530 => 0.066244865565288
531 => 0.064699009465439
601 => 0.061989956110952
602 => 0.063935645525679
603 => 0.064599989437791
604 => 0.064893401556218
605 => 0.062229358718959
606 => 0.061392258620308
607 => 0.060946593551737
608 => 0.065372793710914
609 => 0.065615270947216
610 => 0.06437472312347
611 => 0.069982116920371
612 => 0.068712991006077
613 => 0.070130915595741
614 => 0.066196939004355
615 => 0.066347222207948
616 => 0.064484814644814
617 => 0.06552763843405
618 => 0.064790604191597
619 => 0.065443388577265
620 => 0.065834664846504
621 => 0.067696766806883
622 => 0.070510770236165
623 => 0.06741863086963
624 => 0.06607134146738
625 => 0.066907192235093
626 => 0.069133172976639
627 => 0.072505647745938
628 => 0.070509074805133
629 => 0.071395119972255
630 => 0.071588681423865
701 => 0.070116482454463
702 => 0.072559929821862
703 => 0.073869393116583
704 => 0.075212631501716
705 => 0.076378927754843
706 => 0.074676112552249
707 => 0.076498368907996
708 => 0.075029951956813
709 => 0.073712630149447
710 => 0.073714627982862
711 => 0.072888252770101
712 => 0.071287046665399
713 => 0.070991759692783
714 => 0.072527879814966
715 => 0.073759702681839
716 => 0.073861161513189
717 => 0.074543161945634
718 => 0.074946762776392
719 => 0.078902599586545
720 => 0.080493669875987
721 => 0.082439200508497
722 => 0.083197094333958
723 => 0.085478083028622
724 => 0.083635999404837
725 => 0.083237453025582
726 => 0.077704520558044
727 => 0.078610537939642
728 => 0.080061159185256
729 => 0.077728440768087
730 => 0.079208013686016
731 => 0.079500112721654
801 => 0.077649175888897
802 => 0.078637841225532
803 => 0.076012239210273
804 => 0.070568001185155
805 => 0.072565990815102
806 => 0.074037183698781
807 => 0.071937610056997
808 => 0.075701014545174
809 => 0.073502511335619
810 => 0.072805691364955
811 => 0.070087148225138
812 => 0.07137019594081
813 => 0.07310553634773
814 => 0.072033297731229
815 => 0.074258353857906
816 => 0.077409626734074
817 => 0.079655411447176
818 => 0.079827814911428
819 => 0.078383925796794
820 => 0.080697767317773
821 => 0.080714621127175
822 => 0.078104598439191
823 => 0.076505974075468
824 => 0.076142763256495
825 => 0.077050135093964
826 => 0.078151852014732
827 => 0.079888952532971
828 => 0.080938645995105
829 => 0.083675689829958
830 => 0.084416255414473
831 => 0.085229912466398
901 => 0.086317209210313
902 => 0.087622787728546
903 => 0.084766256257279
904 => 0.084879751577874
905 => 0.082219789023201
906 => 0.079377237556316
907 => 0.081534379790639
908 => 0.08435455630941
909 => 0.083707604699986
910 => 0.083634809427904
911 => 0.083757230883821
912 => 0.08326945049778
913 => 0.081063237889698
914 => 0.079955291729541
915 => 0.081384824943355
916 => 0.082144558225293
917 => 0.083322838289875
918 => 0.08317759040144
919 => 0.086212713309762
920 => 0.087392070294583
921 => 0.087090340310335
922 => 0.087145865888974
923 => 0.08928103537656
924 => 0.091655782977853
925 => 0.09388004748201
926 => 0.096142664870021
927 => 0.093414991297314
928 => 0.092030046876611
929 => 0.093458956000943
930 => 0.09270075670622
1001 => 0.097057594750216
1002 => 0.097359252763486
1003 => 0.1017157757585
1004 => 0.10585063484588
1005 => 0.10325360393679
1006 => 0.10570248711122
1007 => 0.10835115392474
1008 => 0.11346086193872
1009 => 0.11174009204131
1010 => 0.11042200926779
1011 => 0.10917642741575
1012 => 0.1117682855193
1013 => 0.11510266956357
1014 => 0.11582086395038
1015 => 0.11698461322837
1016 => 0.11576107315905
1017 => 0.11723469240403
1018 => 0.1224372158799
1019 => 0.12103144811278
1020 => 0.11903503189501
1021 => 0.12314192452355
1022 => 0.12462819300068
1023 => 0.135059603538
1024 => 0.14822969024144
1025 => 0.14277718786676
1026 => 0.13939264369165
1027 => 0.14018809185526
1028 => 0.14499736168379
1029 => 0.14654194651412
1030 => 0.14234323249496
1031 => 0.14382628926845
1101 => 0.15199807790131
1102 => 0.15638198032047
1103 => 0.15042805199861
1104 => 0.1340013998948
1105 => 0.11885527645787
1106 => 0.12287271043217
1107 => 0.12241725809497
1108 => 0.13119682552959
1109 => 0.12099792101645
1110 => 0.1211696444119
1111 => 0.13013076400334
1112 => 0.12774009092883
1113 => 0.12386750672239
1114 => 0.11888355060823
1115 => 0.10967024677107
1116 => 0.1015097666305
1117 => 0.11751434743248
1118 => 0.11682420080586
1119 => 0.11582476621651
1120 => 0.11804889974499
1121 => 0.12884866082798
1122 => 0.1285996913796
1123 => 0.12701587477434
1124 => 0.12821718571031
1125 => 0.12365691110706
1126 => 0.12483219770784
1127 => 0.11885287723453
1128 => 0.12155577980695
1129 => 0.12385919789595
1130 => 0.12432164318
1201 => 0.12536355601802
1202 => 0.11646052489413
1203 => 0.1204577244895
1204 => 0.12280570476482
1205 => 0.11219744446066
1206 => 0.12259601356677
1207 => 0.11630554292972
1208 => 0.11417046271581
1209 => 0.11704506694842
1210 => 0.11592483088333
1211 => 0.11496171769703
1212 => 0.11442428399069
1213 => 0.11653507608063
1214 => 0.11643660510669
1215 => 0.11298293956047
1216 => 0.10847777364485
1217 => 0.10998985520316
1218 => 0.10944050179719
1219 => 0.10744957418593
1220 => 0.1087912190104
1221 => 0.10288329419435
1222 => 0.092719016615537
1223 => 0.099433849724341
1224 => 0.099175335953985
1225 => 0.099044981588306
1226 => 0.10409099308522
1227 => 0.10360593551108
1228 => 0.10272555126433
1229 => 0.10743340523883
1230 => 0.10571497520857
1231 => 0.11101077164881
]
'min_raw' => 0.047539063314063
'max_raw' => 0.15638198032047
'avg_raw' => 0.10196052181727
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.047539'
'max' => '$0.156381'
'avg' => '$0.10196'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072435
'min_diff' => 0.025898056035916
'max_diff' => 0.10337639265927
'year' => 2029
]
4 => [
'items' => [
101 => 0.114498925695
102 => 0.11361421699892
103 => 0.11689484273907
104 => 0.11002469050829
105 => 0.11230667949669
106 => 0.1127769942645
107 => 0.10737531105157
108 => 0.10368529692902
109 => 0.10343921505628
110 => 0.097041239083046
111 => 0.10045898620529
112 => 0.10346646223688
113 => 0.10202611460732
114 => 0.10157014357696
115 => 0.10389960068301
116 => 0.1040806194506
117 => 0.099953372366017
118 => 0.10081155772782
119 => 0.10439033334798
120 => 0.10072138176438
121 => 0.093593208157292
122 => 0.091825322548023
123 => 0.09158945401915
124 => 0.086794808034037
125 => 0.091943461117909
126 => 0.089695936071474
127 => 0.096795840763676
128 => 0.092740413281043
129 => 0.092565591907747
130 => 0.09230132376129
131 => 0.088174373897571
201 => 0.08907791363638
202 => 0.092081417341166
203 => 0.093153101299924
204 => 0.093041315882978
205 => 0.092066698534457
206 => 0.092512873365761
207 => 0.091075588776512
208 => 0.090568053673557
209 => 0.088966133280101
210 => 0.086611752843524
211 => 0.086939143883484
212 => 0.082274500181473
213 => 0.079732954721238
214 => 0.079029488434876
215 => 0.078088783916872
216 => 0.079135743513303
217 => 0.082261285831946
218 => 0.078491218674869
219 => 0.072027702973524
220 => 0.072416171280469
221 => 0.073288944228901
222 => 0.071662537613469
223 => 0.070123280245924
224 => 0.071461539643107
225 => 0.068722862833425
226 => 0.073619900237168
227 => 0.073487449099185
228 => 0.075312761812539
301 => 0.076454167311387
302 => 0.073823597170961
303 => 0.073162015894462
304 => 0.073538882656749
305 => 0.067310114557242
306 => 0.074803738572041
307 => 0.0748685437437
308 => 0.074313642519591
309 => 0.078303765967787
310 => 0.086724170994192
311 => 0.083556075913251
312 => 0.08232929374173
313 => 0.079997179936896
314 => 0.083104583114621
315 => 0.082865983033613
316 => 0.081786942980899
317 => 0.081134336190208
318 => 0.082336784212073
319 => 0.080985339573396
320 => 0.080742582981075
321 => 0.079271742153384
322 => 0.078746718896892
323 => 0.078358012579563
324 => 0.077930085117678
325 => 0.078873986465717
326 => 0.076734981830498
327 => 0.074155551929634
328 => 0.073941100243195
329 => 0.074533220204237
330 => 0.074271251199623
331 => 0.073939846036388
401 => 0.073307103326947
402 => 0.073119382081464
403 => 0.073729385059881
404 => 0.073040727262632
405 => 0.074056879355604
406 => 0.073780542212575
407 => 0.072236945394957
408 => 0.070313052247468
409 => 0.070295925562953
410 => 0.069881425940143
411 => 0.06935349835006
412 => 0.069206640971846
413 => 0.071348835169385
414 => 0.075783113047815
415 => 0.074912558197003
416 => 0.075541623294765
417 => 0.078636000967141
418 => 0.079619610578006
419 => 0.078921467774284
420 => 0.077965806844977
421 => 0.078007851075806
422 => 0.081273633769485
423 => 0.081477316630199
424 => 0.081991957508642
425 => 0.082653416474937
426 => 0.079034117096474
427 => 0.077837382400558
428 => 0.07727030310932
429 => 0.075523918379612
430 => 0.077407244586891
501 => 0.076309911057978
502 => 0.07645797884128
503 => 0.076361549503159
504 => 0.076414206442296
505 => 0.073618531415411
506 => 0.074637128458855
507 => 0.072943513313985
508 => 0.070675952752226
509 => 0.070668351094113
510 => 0.071223333329153
511 => 0.070893208179294
512 => 0.070004849889318
513 => 0.070131036991477
514 => 0.069025505196262
515 => 0.070265268567715
516 => 0.070300820545122
517 => 0.069823444116745
518 => 0.071733470644845
519 => 0.072516010071841
520 => 0.07220179068029
521 => 0.072493963601685
522 => 0.074948733681374
523 => 0.07534896831349
524 => 0.075526726099061
525 => 0.07528855421479
526 => 0.072538832292457
527 => 0.072660794152433
528 => 0.071765918946895
529 => 0.071009843697841
530 => 0.071040082742711
531 => 0.071428803703627
601 => 0.07312637093813
602 => 0.076698801106088
603 => 0.076834372219549
604 => 0.076998688363953
605 => 0.076330332025985
606 => 0.076128749359146
607 => 0.076394688929608
608 => 0.077736305871238
609 => 0.081187308890557
610 => 0.079967493938788
611 => 0.078975765395449
612 => 0.079845778696053
613 => 0.079711846967814
614 => 0.078581328397356
615 => 0.078549598506392
616 => 0.076379771921031
617 => 0.075577636436983
618 => 0.074907311987713
619 => 0.074175335188373
620 => 0.07374139480564
621 => 0.074408124455895
622 => 0.074560613415422
623 => 0.073102797382698
624 => 0.072904102444253
625 => 0.07409458648572
626 => 0.073570698844789
627 => 0.074109530275275
628 => 0.074234543789158
629 => 0.074214413734117
630 => 0.073667414868873
701 => 0.074016055633839
702 => 0.073191416289881
703 => 0.072294744860151
704 => 0.071722724352587
705 => 0.071223560592228
706 => 0.071500525658043
707 => 0.070513195770235
708 => 0.0701973290681
709 => 0.073897943987334
710 => 0.076631628016487
711 => 0.076591879168045
712 => 0.076349918275731
713 => 0.075990413469727
714 => 0.077710005855462
715 => 0.077110934252607
716 => 0.077546808897791
717 => 0.077657757288592
718 => 0.077993564652028
719 => 0.078113586920839
720 => 0.077750796263668
721 => 0.076533226507058
722 => 0.073499158436645
723 => 0.072086791559557
724 => 0.071620686965287
725 => 0.07163762898203
726 => 0.071170292527763
727 => 0.071307944058095
728 => 0.071122422943035
729 => 0.070771090833487
730 => 0.071478831890307
731 => 0.071560392454041
801 => 0.071395197234504
802 => 0.071434106688859
803 => 0.070066360826889
804 => 0.070170347574187
805 => 0.069591336151237
806 => 0.06948277848952
807 => 0.068019088032594
808 => 0.065425948222825
809 => 0.066862799399609
810 => 0.065127285229903
811 => 0.064470019716504
812 => 0.067581412431174
813 => 0.067269114899222
814 => 0.066734597276993
815 => 0.065943934310484
816 => 0.065650669725131
817 => 0.06386888694081
818 => 0.06376360970847
819 => 0.064646709368562
820 => 0.064239189261034
821 => 0.06366687669013
822 => 0.061594018572713
823 => 0.059263439748999
824 => 0.05933378527419
825 => 0.060075099036053
826 => 0.062230568778451
827 => 0.061388389460091
828 => 0.060777378701727
829 => 0.060662954753601
830 => 0.062095210027155
831 => 0.064122151305991
901 => 0.065073146803766
902 => 0.064130739147634
903 => 0.063048151975101
904 => 0.063114044040067
905 => 0.063552394428122
906 => 0.063598458855966
907 => 0.062893805898406
908 => 0.063092161578431
909 => 0.06279084116245
910 => 0.060941638325768
911 => 0.060908192110338
912 => 0.060454367911793
913 => 0.060440626295422
914 => 0.059668558121944
915 => 0.059560540447419
916 => 0.058027552227791
917 => 0.059036569716266
918 => 0.058359773760793
919 => 0.057339682615868
920 => 0.057163818517987
921 => 0.057158531830843
922 => 0.058205937348475
923 => 0.059024330172963
924 => 0.0583715469162
925 => 0.058222920822307
926 => 0.059809858667517
927 => 0.059607906361455
928 => 0.059433016966857
929 => 0.063940660946158
930 => 0.060372509000695
1001 => 0.058816591089481
1002 => 0.056890847213555
1003 => 0.05751787913
1004 => 0.05765000396781
1005 => 0.053018937087633
1006 => 0.051140113831108
1007 => 0.050495372491429
1008 => 0.05012431473514
1009 => 0.050293410414131
1010 => 0.04860224911927
1011 => 0.049738737478643
1012 => 0.048274334747599
1013 => 0.048028822864161
1014 => 0.050647356351955
1015 => 0.05101170998953
1016 => 0.04945726417583
1017 => 0.050455470030143
1018 => 0.05009350671127
1019 => 0.048299437729332
1020 => 0.0482309174905
1021 => 0.047330716739938
1022 => 0.045922076878521
1023 => 0.045278290663
1024 => 0.044943001212349
1025 => 0.045081348174349
1026 => 0.045011395716875
1027 => 0.044554908614191
1028 => 0.045037561023256
1029 => 0.04380458356384
1030 => 0.043313602004726
1031 => 0.04309183702516
1101 => 0.041997498562394
1102 => 0.043739077711178
1103 => 0.044082190743325
1104 => 0.044425979814138
1105 => 0.047418428960796
1106 => 0.047268934658003
1107 => 0.048620290348578
1108 => 0.048567779151426
1109 => 0.048182350617963
1110 => 0.0465562910352
1111 => 0.047204409403164
1112 => 0.045209601806527
1113 => 0.046704247291659
1114 => 0.046022153510132
1115 => 0.046473630698
1116 => 0.045661834006157
1117 => 0.046111115813687
1118 => 0.044163555571901
1119 => 0.042344951221033
1120 => 0.043076810700193
1121 => 0.043872425652323
1122 => 0.04559752158746
1123 => 0.044570068680225
1124 => 0.044939579597963
1125 => 0.043701779878922
1126 => 0.041147845498532
1127 => 0.041162300489768
1128 => 0.04076943332583
1129 => 0.040429938736642
1130 => 0.044688084006268
1201 => 0.044158516330675
1202 => 0.043314719547721
1203 => 0.044444175072856
1204 => 0.044742821040572
1205 => 0.044751323071426
1206 => 0.045575344667098
1207 => 0.046015125140422
1208 => 0.046092638354963
1209 => 0.047389254139918
1210 => 0.047823862648259
1211 => 0.049613953586017
1212 => 0.045977812839835
1213 => 0.045902928913997
1214 => 0.044460068828319
1215 => 0.043544984151267
1216 => 0.044522725459046
1217 => 0.04538887078274
1218 => 0.044486982377897
1219 => 0.044604749963666
1220 => 0.043394038467155
1221 => 0.043826810857887
1222 => 0.044199572741522
1223 => 0.043993755539309
1224 => 0.043685637225932
1225 => 0.045317856743588
1226 => 0.045225760521682
1227 => 0.046745720861088
1228 => 0.047930638639062
1229 => 0.050054223126579
1230 => 0.047838152008891
1231 => 0.047757389569278
]
'min_raw' => 0.040429938736642
'max_raw' => 0.11689484273907
'avg_raw' => 0.078662390737858
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.040429'
'max' => '$0.116894'
'avg' => '$0.078662'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -0.0071091245774209
'max_diff' => -0.0394871375814
'year' => 2030
]
5 => [
'items' => [
101 => 0.048546855371202
102 => 0.047823741785158
103 => 0.048280724610505
104 => 0.049980596128488
105 => 0.050016511735041
106 => 0.049414879050641
107 => 0.049378269647119
108 => 0.049493819785298
109 => 0.050170600553758
110 => 0.049934112557886
111 => 0.050207782453853
112 => 0.050550010849341
113 => 0.051965612594916
114 => 0.052306909383277
115 => 0.051477735129656
116 => 0.051552600280888
117 => 0.051242466348691
118 => 0.050942880856156
119 => 0.051616305292427
120 => 0.052847001685903
121 => 0.052839345587512
122 => 0.053124843229479
123 => 0.053302705895235
124 => 0.052539189130384
125 => 0.052042167791756
126 => 0.052232757399276
127 => 0.052537514332201
128 => 0.052133928833339
129 => 0.049642812175376
130 => 0.050398457836254
131 => 0.050272681449099
201 => 0.050093560578859
202 => 0.050853368134106
203 => 0.05078008284184
204 => 0.048584903815827
205 => 0.048725432054831
206 => 0.048593449803485
207 => 0.049019911458614
208 => 0.047800711456253
209 => 0.048175729165542
210 => 0.048410936757235
211 => 0.048549475835692
212 => 0.049049973984215
213 => 0.048991246303214
214 => 0.049046323389107
215 => 0.049788430016753
216 => 0.05354175067915
217 => 0.053746035641569
218 => 0.052740061772903
219 => 0.053141928491478
220 => 0.052370432270405
221 => 0.052888342852187
222 => 0.053242684118739
223 => 0.051641484071095
224 => 0.051546671395975
225 => 0.050771990935561
226 => 0.051188260334844
227 => 0.050525945789756
228 => 0.050688454612341
301 => 0.050234065777129
302 => 0.051051875212597
303 => 0.051966313236189
304 => 0.0521973363932
305 => 0.051589613928826
306 => 0.051149582813758
307 => 0.050377033130958
308 => 0.051661800470847
309 => 0.052037505593605
310 => 0.051659827051779
311 => 0.051572310681199
312 => 0.051406467317088
313 => 0.051607495134887
314 => 0.05203545942282
315 => 0.051833639367891
316 => 0.051966945069783
317 => 0.051458921198411
318 => 0.052539441886203
319 => 0.054255568779882
320 => 0.05426108640846
321 => 0.054059265265645
322 => 0.053976684402303
323 => 0.054183765142362
324 => 0.054296097948947
325 => 0.054965759090185
326 => 0.05568433217521
327 => 0.059037599225022
328 => 0.058096015255749
329 => 0.061071233269092
330 => 0.063424244433939
331 => 0.064129809597569
401 => 0.063480722846436
402 => 0.061260232133787
403 => 0.061151284266014
404 => 0.064469634857709
405 => 0.063532048825469
406 => 0.063420525950309
407 => 0.062234110979468
408 => 0.062935429167588
409 => 0.062782040592129
410 => 0.062539909221741
411 => 0.063877975470424
412 => 0.066382716037961
413 => 0.065992328731202
414 => 0.065700922716253
415 => 0.06442406638576
416 => 0.065193019092903
417 => 0.064919209762208
418 => 0.066095668410567
419 => 0.065398760369029
420 => 0.063524945689134
421 => 0.063823356853081
422 => 0.06377825260597
423 => 0.064706494815387
424 => 0.064427859544508
425 => 0.063723844597395
426 => 0.066374155107001
427 => 0.066202058684309
428 => 0.066446052064967
429 => 0.066553465496879
430 => 0.068166662800367
501 => 0.06882753811905
502 => 0.068977568386641
503 => 0.069605348825459
504 => 0.068961948637429
505 => 0.071536008126108
506 => 0.073247607485545
507 => 0.075235718219628
508 => 0.078140882355911
509 => 0.079233250945424
510 => 0.079035924337141
511 => 0.081238586629091
512 => 0.085196721805293
513 => 0.079835976623667
514 => 0.085480854316826
515 => 0.083693751212419
516 => 0.079456561900481
517 => 0.079183736861973
518 => 0.082053210658796
519 => 0.088417427363532
520 => 0.086823263261344
521 => 0.08842003484491
522 => 0.086557315975164
523 => 0.086464816283054
524 => 0.088329566747073
525 => 0.092686657848508
526 => 0.090616767189334
527 => 0.087649071371395
528 => 0.0898403717809
529 => 0.087942064570908
530 => 0.083664647124062
531 => 0.086822044234099
601 => 0.08471078270411
602 => 0.085326961059397
603 => 0.089764518768983
604 => 0.089230580085044
605 => 0.089921546183452
606 => 0.088702009105494
607 => 0.087562769171335
608 => 0.08543629323316
609 => 0.084806748541863
610 => 0.084980732045892
611 => 0.084806662324279
612 => 0.083616918580192
613 => 0.083359993531933
614 => 0.082931773862024
615 => 0.083064497043595
616 => 0.082259318784082
617 => 0.0837788565181
618 => 0.084060896111655
619 => 0.085166688955542
620 => 0.085281496036922
621 => 0.088361113367173
622 => 0.086664911892537
623 => 0.087802870284713
624 => 0.087701080575237
625 => 0.079548394641153
626 => 0.080671762831113
627 => 0.082419371202332
628 => 0.081632075999925
629 => 0.080519024782426
630 => 0.079620176246266
701 => 0.078258328802001
702 => 0.08017510292784
703 => 0.082695457077116
704 => 0.085345416377365
705 => 0.088529168844403
706 => 0.087818592356724
707 => 0.085285898339566
708 => 0.085399513143041
709 => 0.08610183515235
710 => 0.085192264337612
711 => 0.084924014147414
712 => 0.086064981695479
713 => 0.086072838911918
714 => 0.085026267764256
715 => 0.083863195454129
716 => 0.083858322138682
717 => 0.083651364655041
718 => 0.086594133251745
719 => 0.088212358432469
720 => 0.088397885341539
721 => 0.088199870993288
722 => 0.088276078857021
723 => 0.087334469279517
724 => 0.089486709548046
725 => 0.09146181805295
726 => 0.090932446781597
727 => 0.090138843991279
728 => 0.089506701143701
729 => 0.090783534016496
730 => 0.090726678658592
731 => 0.091444567203207
801 => 0.091411999632098
802 => 0.091170600715698
803 => 0.090932455402713
804 => 0.091876674649973
805 => 0.09160475467046
806 => 0.091332412324111
807 => 0.090786188054982
808 => 0.090860429004981
809 => 0.090066963241373
810 => 0.089699869672605
811 => 0.084179663178964
812 => 0.082704483625913
813 => 0.083168605143352
814 => 0.083321405997802
815 => 0.08267940596582
816 => 0.083599869095406
817 => 0.083456415891671
818 => 0.084014508390084
819 => 0.083665836426635
820 => 0.083680146045637
821 => 0.084705515945439
822 => 0.085003185189587
823 => 0.084851788209528
824 => 0.084957821464776
825 => 0.087401313078139
826 => 0.087053926709182
827 => 0.086869384624341
828 => 0.086920504043025
829 => 0.08754486853929
830 => 0.087719656509207
831 => 0.086979067598538
901 => 0.087328333610103
902 => 0.088815463958891
903 => 0.089335875416679
904 => 0.090996778978266
905 => 0.090291197625097
906 => 0.091586322735684
907 => 0.095567095784944
908 => 0.098747212745235
909 => 0.095822645764659
910 => 0.10166252557678
911 => 0.10620970969152
912 => 0.10603518119147
913 => 0.1052422744628
914 => 0.10006542624131
915 => 0.095301613325437
916 => 0.099286745111746
917 => 0.099296904032219
918 => 0.098954577677537
919 => 0.096828418089041
920 => 0.098880591932575
921 => 0.099043486039874
922 => 0.098952308656826
923 => 0.097322187085371
924 => 0.094833292742585
925 => 0.095319616739594
926 => 0.096116225367436
927 => 0.094608079044962
928 => 0.094126134913124
929 => 0.095022160747834
930 => 0.097909342681667
1001 => 0.097363537661382
1002 => 0.097349284486531
1003 => 0.099684469820659
1004 => 0.09801298108596
1005 => 0.095325750842621
1006 => 0.094647189765966
1007 => 0.092238755077352
1008 => 0.093902269495328
1009 => 0.093962136417733
1010 => 0.093051046571713
1011 => 0.095399680762323
1012 => 0.095378037684788
1013 => 0.097607716300705
1014 => 0.1018700243853
1015 => 0.10060945014924
1016 => 0.099143539462793
1017 => 0.099302924599704
1018 => 0.10105098615558
1019 => 0.099994068234534
1020 => 0.10037414328804
1021 => 0.10105041086647
1022 => 0.10145841988731
1023 => 0.099244218380507
1024 => 0.098727982091769
1025 => 0.097671943819329
1026 => 0.097396443145937
1027 => 0.098256564283878
1028 => 0.098029952752559
1029 => 0.093957104834721
1030 => 0.093531469566195
1031 => 0.093544523192214
1101 => 0.092474243071651
1102 => 0.090841808991133
1103 => 0.095131748287162
1104 => 0.094787206124029
1105 => 0.094406858241375
1106 => 0.094453448686765
1107 => 0.096315565935638
1108 => 0.095235443892117
1109 => 0.098107125373341
1110 => 0.097516793991448
1111 => 0.096911322837134
1112 => 0.096827628280505
1113 => 0.096594573542466
1114 => 0.09579534212988
1115 => 0.09483022217282
1116 => 0.094192966379911
1117 => 0.086888032464104
1118 => 0.088243785708032
1119 => 0.089803456234374
1120 => 0.09034184825008
1121 => 0.089420891451622
1122 => 0.095831707117581
1123 => 0.097003024915908
1124 => 0.093455026901605
1125 => 0.092791341336933
1126 => 0.095875218232709
1127 => 0.094015263475938
1128 => 0.094852800989025
1129 => 0.093042502994256
1130 => 0.09672088875848
1201 => 0.096692865621938
1202 => 0.095261890479545
1203 => 0.096471340871001
1204 => 0.096261169102373
1205 => 0.094645601690947
1206 => 0.096772105127058
1207 => 0.096773159846232
1208 => 0.09539587738376
1209 => 0.093787512993494
1210 => 0.093499975428385
1211 => 0.093283354498313
1212 => 0.094799525519332
1213 => 0.096158919715834
1214 => 0.098688415293124
1215 => 0.099324390580587
1216 => 0.10180664446683
1217 => 0.10032858313632
1218 => 0.10098378858004
1219 => 0.10169510677366
1220 => 0.10203613887354
1221 => 0.10148044536757
1222 => 0.10533640738937
1223 => 0.10566196872763
1224 => 0.10577112662825
1225 => 0.10447091792983
1226 => 0.10562580757167
1227 => 0.10508547295418
1228 => 0.1064912735196
1229 => 0.10671172099843
1230 => 0.10652500982651
1231 => 0.10659498333582
]
'min_raw' => 0.047800711456253
'max_raw' => 0.10671172099843
'avg_raw' => 0.077256216227339
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.04780071'
'max' => '$0.106711'
'avg' => '$0.077256'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 0.0073707727196106
'max_diff' => -0.010183121740648
'year' => 2031
]
6 => [
'items' => [
101 => 0.10330459998853
102 => 0.10313397625382
103 => 0.10080750952411
104 => 0.10175556191284
105 => 0.099983223413448
106 => 0.10054525020871
107 => 0.10079298626488
108 => 0.10066358300804
109 => 0.10180916337245
110 => 0.10083518603609
111 => 0.098264699708738
112 => 0.095693513054103
113 => 0.095661233900098
114 => 0.094984285839146
115 => 0.0944949763803
116 => 0.09458923474126
117 => 0.094921413499592
118 => 0.094475669546998
119 => 0.094570791619076
120 => 0.09615045181062
121 => 0.096467241396413
122 => 0.095390666606207
123 => 0.091068063474528
124 => 0.090007285823585
125 => 0.090769751762947
126 => 0.090405342153027
127 => 0.072964166965151
128 => 0.077061712366934
129 => 0.074627090028689
130 => 0.07574907601374
131 => 0.073263957048789
201 => 0.074449986075108
202 => 0.074230969820792
203 => 0.080819701571677
204 => 0.080716827587891
205 => 0.080766067919959
206 => 0.078415698575341
207 => 0.0821599007608
208 => 0.084004429394513
209 => 0.083663056234952
210 => 0.083748972504618
211 => 0.082272646337548
212 => 0.080780361984345
213 => 0.079125188975729
214 => 0.082200295840172
215 => 0.08185839645067
216 => 0.082642590638669
217 => 0.084637017253439
218 => 0.084930704148553
219 => 0.085325422313866
220 => 0.085183943949554
221 => 0.088554532569234
222 => 0.088146332047531
223 => 0.08912997785753
224 => 0.087106543796975
225 => 0.084816836091332
226 => 0.08525203466999
227 => 0.085210121547219
228 => 0.084676519388705
229 => 0.084194807218963
301 => 0.083392892177905
302 => 0.085930270028909
303 => 0.085827257121954
304 => 0.087494916346145
305 => 0.087200141379492
306 => 0.085231562008511
307 => 0.085301870205865
308 => 0.085774726622033
309 => 0.087411288077371
310 => 0.087897130942916
311 => 0.087672069170105
312 => 0.088204773692606
313 => 0.088625801627077
314 => 0.088257648318915
315 => 0.093469922795872
316 => 0.091305423034531
317 => 0.092360385157716
318 => 0.092611987407898
319 => 0.091967513534682
320 => 0.092107276840904
321 => 0.092318980166608
322 => 0.093604401304521
323 => 0.096977718310008
324 => 0.098471737448793
325 => 0.10296656774143
326 => 0.098347679957067
327 => 0.098073614270801
328 => 0.098883268937376
329 => 0.10152221014526
330 => 0.10366082413111
331 => 0.10437032576982
401 => 0.10446409812397
402 => 0.10579517036496
403 => 0.10655811615047
404 => 0.10563354318423
405 => 0.10485006440216
406 => 0.10204374065378
407 => 0.10236858026902
408 => 0.10460640309009
409 => 0.10776745963195
410 => 0.11047997499675
411 => 0.1095301466567
412 => 0.11677666641696
413 => 0.11749512925181
414 => 0.11739586091871
415 => 0.11903262617811
416 => 0.11578398045966
417 => 0.11439512147548
418 => 0.10501946140771
419 => 0.10765363945855
420 => 0.11148257195529
421 => 0.11097579838159
422 => 0.10819512525479
423 => 0.11047786560683
424 => 0.10972312025856
425 => 0.10912782128796
426 => 0.11185500127665
427 => 0.10885635485271
428 => 0.11145265816337
429 => 0.10812287231212
430 => 0.10953448539255
501 => 0.10873318553606
502 => 0.10925172474683
503 => 0.10622035511618
504 => 0.10785600858654
505 => 0.10615230655428
506 => 0.10615149877769
507 => 0.1061138894609
508 => 0.10811828734648
509 => 0.10818365068957
510 => 0.10670239762365
511 => 0.10648892591532
512 => 0.10727824270604
513 => 0.10635415946651
514 => 0.10678653219817
515 => 0.10636725559608
516 => 0.10627286760164
517 => 0.10552076800309
518 => 0.10519674281663
519 => 0.10532380144134
520 => 0.10489008485199
521 => 0.10462875491869
522 => 0.10606190435959
523 => 0.1052962304264
524 => 0.10594455384801
525 => 0.10520570748415
526 => 0.10264454408694
527 => 0.10117159193339
528 => 0.096333791696037
529 => 0.097705785842078
530 => 0.098615419380334
531 => 0.098314785501367
601 => 0.098960663403255
602 => 0.099000315060828
603 => 0.098790333570978
604 => 0.098547201906027
605 => 0.098428858857553
606 => 0.099310890984237
607 => 0.099822940321613
608 => 0.098706713275225
609 => 0.098445196895932
610 => 0.099573764068415
611 => 0.10026218939168
612 => 0.10534513518587
613 => 0.10496857414374
614 => 0.10591366846312
615 => 0.10580726534641
616 => 0.10679787475846
617 => 0.10841710248437
618 => 0.10512475977439
619 => 0.1056961966282
620 => 0.10555609350805
621 => 0.10708570263683
622 => 0.10709047790957
623 => 0.10617340082722
624 => 0.10667056319144
625 => 0.10639306079867
626 => 0.1068945451291
627 => 0.10496354494144
628 => 0.10731529473142
629 => 0.10864858531893
630 => 0.10866709806003
701 => 0.10929906721686
702 => 0.10994118448139
703 => 0.11117367265401
704 => 0.10990681105519
705 => 0.10762785036538
706 => 0.10779238396619
707 => 0.1064562301476
708 => 0.10647869113468
709 => 0.10635879262532
710 => 0.10671861707746
711 => 0.10504250617401
712 => 0.10543588605289
713 => 0.10488515191883
714 => 0.10569499943975
715 => 0.10482373737983
716 => 0.10555602594608
717 => 0.10587205741553
718 => 0.10703822034146
719 => 0.10465149416749
720 => 0.099784797931615
721 => 0.10080783648338
722 => 0.099294682107373
723 => 0.099434730305858
724 => 0.099717649955303
725 => 0.098800614805904
726 => 0.09897555621331
727 => 0.098969306075194
728 => 0.098915445761505
729 => 0.098676889501569
730 => 0.098330935727743
731 => 0.099709109083709
801 => 0.099943287592357
802 => 0.1004638374085
803 => 0.10201264056904
804 => 0.10185787861001
805 => 0.10211030178621
806 => 0.10155926340987
807 => 0.09946029139572
808 => 0.099574275674548
809 => 0.098152889891094
810 => 0.10042748937831
811 => 0.099888834196492
812 => 0.099541559696613
813 => 0.099446802631846
814 => 0.10099944497585
815 => 0.10146401989986
816 => 0.10117452798368
817 => 0.10058077161776
818 => 0.10172095936863
819 => 0.10202602551011
820 => 0.10209431856878
821 => 0.104114512654
822 => 0.10220722497659
823 => 0.10266632807735
824 => 0.10624811941275
825 => 0.10299992892496
826 => 0.10472056786963
827 => 0.10463635154706
828 => 0.10551657220791
829 => 0.10456414776116
830 => 0.10457595420365
831 => 0.10535753051917
901 => 0.10425994754205
902 => 0.10398817056157
903 => 0.10361271260954
904 => 0.10443251131194
905 => 0.10492394355772
906 => 0.10888452654151
907 => 0.11144324377356
908 => 0.11133216311038
909 => 0.11234723243755
910 => 0.11188993440869
911 => 0.11041319844437
912 => 0.1129338066667
913 => 0.11213618075843
914 => 0.11220193606919
915 => 0.11219948865324
916 => 0.11272984015257
917 => 0.11235403750929
918 => 0.11161329192404
919 => 0.11210503341268
920 => 0.11356532983314
921 => 0.11809813472963
922 => 0.12063475240138
923 => 0.11794542716072
924 => 0.11980048770023
925 => 0.11868811240218
926 => 0.11848596072022
927 => 0.11965107582693
928 => 0.1208182303134
929 => 0.12074388761836
930 => 0.11989659339523
1001 => 0.11941797838788
1002 => 0.12304221157132
1003 => 0.12571248484369
1004 => 0.12553039010825
1005 => 0.12633409705008
1006 => 0.12869380548903
1007 => 0.12890954765586
1008 => 0.12888236910161
1009 => 0.12834762963076
1010 => 0.13067106903576
1011 => 0.13260932306444
1012 => 0.12822385289337
1013 => 0.12989378252449
1014 => 0.13064346773768
1015 => 0.13174422805221
1016 => 0.13360139521168
1017 => 0.13561877133613
1018 => 0.13590405043953
1019 => 0.1357016312638
1020 => 0.13437111747975
1021 => 0.13657855450742
1022 => 0.13787161934746
1023 => 0.13864160986844
1024 => 0.14059417771545
1025 => 0.13064809753833
1026 => 0.12360776763671
1027 => 0.12250831845898
1028 => 0.1247440915956
1029 => 0.12533364714177
1030 => 0.12509599804035
1031 => 0.11717146665729
1101 => 0.12246659744126
1102 => 0.12816371293758
1103 => 0.12838256234603
1104 => 0.13123465748455
1105 => 0.13216341657299
1106 => 0.13445972699215
1107 => 0.13431609215022
1108 => 0.134875207195
1109 => 0.13474667632873
1110 => 0.13900010783503
1111 => 0.14369227442717
1112 => 0.14352979961826
1113 => 0.14285524515545
1114 => 0.14385707356136
1115 => 0.14869989232757
1116 => 0.14825404318017
1117 => 0.14868714764953
1118 => 0.15439710390421
1119 => 0.1618208592671
1120 => 0.15837177956819
1121 => 0.16585529006888
1122 => 0.17056576324522
1123 => 0.17871203953169
1124 => 0.17769208561937
1125 => 0.18086337119755
1126 => 0.1758661552455
1127 => 0.16439153731564
1128 => 0.16257563510516
1129 => 0.1662111173165
1130 => 0.17514859558791
1201 => 0.16592964431995
1202 => 0.16779462615467
1203 => 0.1672575112608
1204 => 0.1672288906907
1205 => 0.16832122144325
1206 => 0.16673673871454
1207 => 0.16028127103477
1208 => 0.1632397738301
1209 => 0.16209735382185
1210 => 0.16336495399406
1211 => 0.17020566932537
1212 => 0.16718122601511
1213 => 0.16399522067358
1214 => 0.16799117840305
1215 => 0.17307940575271
1216 => 0.17276099362959
1217 => 0.1721431410248
1218 => 0.17562594380831
1219 => 0.18137851364119
1220 => 0.18293341015132
1221 => 0.18408120296663
1222 => 0.18423946420375
1223 => 0.18586965330483
1224 => 0.17710371564776
1225 => 0.19101548383478
1226 => 0.19341766189584
1227 => 0.19296615198044
1228 => 0.1956360717962
1229 => 0.19485051365707
1230 => 0.19371236316378
1231 => 0.19794475397999
]
'min_raw' => 0.072964166965151
'max_raw' => 0.19794475397999
'avg_raw' => 0.13545446047257
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.072964'
'max' => '$0.197944'
'avg' => '$0.135454'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.025163455508898
'max_diff' => 0.091233032981564
'year' => 2032
]
7 => [
'items' => [
101 => 0.19309265944553
102 => 0.18620572211558
103 => 0.18242741208819
104 => 0.18740299551983
105 => 0.1904414106976
106 => 0.19244960985061
107 => 0.19305728970092
108 => 0.17778419043465
109 => 0.16955283701505
110 => 0.17482904018436
111 => 0.181266372195
112 => 0.17706795594341
113 => 0.17723252591182
114 => 0.17124668766143
115 => 0.18179598605916
116 => 0.18025904201617
117 => 0.18823271042998
118 => 0.18632973047034
119 => 0.19283194752577
120 => 0.19111969586205
121 => 0.19822715678745
122 => 0.20106251537741
123 => 0.20582352373829
124 => 0.20932574086934
125 => 0.21138230975543
126 => 0.2112588410735
127 => 0.21940799157875
128 => 0.21460272223544
129 => 0.20856617142521
130 => 0.20845698926613
131 => 0.21158340446933
201 => 0.21813551304512
202 => 0.21983437946952
203 => 0.22078381403714
204 => 0.21932972194677
205 => 0.21411394647137
206 => 0.21186180106567
207 => 0.21378069420226
208 => 0.21143405278858
209 => 0.21548501421988
210 => 0.22104784950373
211 => 0.21989914601545
212 => 0.22373908955352
213 => 0.22771302714159
214 => 0.23339593637322
215 => 0.23488165928389
216 => 0.23733750275824
217 => 0.23986537239591
218 => 0.24067725599553
219 => 0.24222739369989
220 => 0.24221922370902
221 => 0.24689066801742
222 => 0.25204341575217
223 => 0.25398845873565
224 => 0.25846097782588
225 => 0.25080194561963
226 => 0.25661140952869
227 => 0.26185169139498
228 => 0.25560401132253
301 => 0.26421498277964
302 => 0.26454932728844
303 => 0.26959753241922
304 => 0.26448020940009
305 => 0.26144155932641
306 => 0.2702140282324
307 => 0.27445874960582
308 => 0.27318020498346
309 => 0.26345041727773
310 => 0.25778726350277
311 => 0.24296569773292
312 => 0.2605224826313
313 => 0.26907388041687
314 => 0.26342827122333
315 => 0.26627558811508
316 => 0.28180962583083
317 => 0.28772398163852
318 => 0.28649383697499
319 => 0.28670171117322
320 => 0.28989299021391
321 => 0.30404487894976
322 => 0.29556473918102
323 => 0.30204748828945
324 => 0.30548591504127
325 => 0.30867971743396
326 => 0.30083674816912
327 => 0.29063316039166
328 => 0.28740125582506
329 => 0.26286692665183
330 => 0.26158980827117
331 => 0.26087292302346
401 => 0.25635306294208
402 => 0.25280169101198
403 => 0.24997750819918
404 => 0.24256600912602
405 => 0.24506717249638
406 => 0.23325478987383
407 => 0.2408119336706
408 => 0.22195908578507
409 => 0.23766029771954
410 => 0.22911484191011
411 => 0.23485288565685
412 => 0.23483286616277
413 => 0.22426730837661
414 => 0.21817331514311
415 => 0.22205664481326
416 => 0.22621988247875
417 => 0.22689535378316
418 => 0.23229310008809
419 => 0.23379949505763
420 => 0.22923504797308
421 => 0.2215684024171
422 => 0.22334918932218
423 => 0.21813722755332
424 => 0.2090034650286
425 => 0.21556349273405
426 => 0.21780337461675
427 => 0.2187926340594
428 => 0.20981062763605
429 => 0.20698828620899
430 => 0.20548569531496
501 => 0.22040893817905
502 => 0.22122646711046
503 => 0.21704387351042
504 => 0.2359495931924
505 => 0.23167064656482
506 => 0.23645127831521
507 => 0.22318760157587
508 => 0.22369429188922
509 => 0.21741505476097
510 => 0.22093100797402
511 => 0.2184460455675
512 => 0.22064695369973
513 => 0.22196616895951
514 => 0.22824437572673
515 => 0.237731984756
516 => 0.22730662099545
517 => 0.22276414071102
518 => 0.2255822699316
519 => 0.23308731941474
520 => 0.2444578535581
521 => 0.2377262684919
522 => 0.24071363163455
523 => 0.24136623758269
524 => 0.2364026159717
525 => 0.24464086936693
526 => 0.24905581628889
527 => 0.25358463828628
528 => 0.2575168875319
529 => 0.25177572718959
530 => 0.25791959171887
531 => 0.25296872144636
601 => 0.24852727900035
602 => 0.24853401483519
603 => 0.2457478331097
604 => 0.24034925493505
605 => 0.2393536742906
606 => 0.24453281053102
607 => 0.24868598732981
608 => 0.24902806286333
609 => 0.25132747493707
610 => 0.25268824331649
611 => 0.26602562330962
612 => 0.27139002787546
613 => 0.27794952023557
614 => 0.28050481218257
615 => 0.28819532482018
616 => 0.28198461127241
617 => 0.28064088432914
618 => 0.26198621621782
619 => 0.265040917076
620 => 0.26993178788472
621 => 0.26206686487604
622 => 0.26705534826932
623 => 0.26804018056168
624 => 0.26179961780175
625 => 0.26513297201063
626 => 0.2562805715025
627 => 0.23792494289626
628 => 0.24466130442881
629 => 0.24962153395154
630 => 0.24254267483071
701 => 0.25523125581511
702 => 0.2478188487495
703 => 0.24546947156799
704 => 0.23630371356948
705 => 0.2406295985224
706 => 0.24648041986193
707 => 0.24286529250508
708 => 0.25036722458463
709 => 0.26099196110148
710 => 0.26856378105739
711 => 0.26914505137394
712 => 0.26427687841483
713 => 0.27207815665006
714 => 0.27213498044516
715 => 0.26333510672666
716 => 0.25794523307197
717 => 0.25672064243724
718 => 0.25977990993794
719 => 0.26349442545573
720 => 0.26935118113346
721 => 0.2728902959283
722 => 0.28211843031181
723 => 0.28461529888464
724 => 0.28735860044293
725 => 0.29102449732767
726 => 0.29542634645447
727 => 0.28579535116244
728 => 0.28617800855981
729 => 0.27720975909408
730 => 0.26762589836287
731 => 0.27489885401275
801 => 0.28440727604422
802 => 0.28222603352433
803 => 0.2819805991821
804 => 0.28239335166792
805 => 0.28074876604064
806 => 0.27331036619965
807 => 0.26957484836635
808 => 0.27439461940355
809 => 0.27695611320649
810 => 0.28092876670911
811 => 0.28043905331237
812 => 0.29067218210329
813 => 0.29464846651769
814 => 0.29363116280968
815 => 0.29381837117474
816 => 0.30101724417491
817 => 0.30902387151225
818 => 0.3165231345812
819 => 0.32415170707578
820 => 0.31495516518531
821 => 0.31028572837718
822 => 0.31510339525311
823 => 0.31254707339517
824 => 0.32723645704522
825 => 0.32825351809805
826 => 0.34294183953847
827 => 0.35688280563821
828 => 0.34812673460931
829 => 0.35638331520746
830 => 0.36531348029325
831 => 0.38254121761081
901 => 0.37673952176136
902 => 0.37229551366485
903 => 0.36809594748694
904 => 0.37683457804082
905 => 0.38807668664535
906 => 0.39049812916319
907 => 0.39442179110432
908 => 0.39029654033578
909 => 0.39526495050502
910 => 0.41280562163253
911 => 0.40806597745809
912 => 0.40133492079456
913 => 0.41518159602576
914 => 0.42019265396435
915 => 0.45536288288875
916 => 0.4997667497155
917 => 0.48138325727772
918 => 0.46997203028999
919 => 0.47265393931003
920 => 0.48886872830941
921 => 0.49407640390433
922 => 0.4799201464439
923 => 0.48492037589944
924 => 0.51247213181119
925 => 0.52725276489168
926 => 0.50717867986451
927 => 0.4517950754243
928 => 0.4007288627881
929 => 0.41427392192075
930 => 0.41273833256723
1001 => 0.44233925714285
1002 => 0.40795293851203
1003 => 0.40853191592915
1004 => 0.43874495627707
1005 => 0.43068463509488
1006 => 0.41762794706769
1007 => 0.4008241910601
1008 => 0.36976089392076
1009 => 0.34224726538033
1010 => 0.39620782695835
1011 => 0.39388094942219
1012 => 0.3905112859259
1013 => 0.39801010740122
1014 => 0.43442225590774
1015 => 0.43358283803004
1016 => 0.42824288976689
1017 => 0.43229319346035
1018 => 0.41691790924729
1019 => 0.42088047007771
1020 => 0.40072077363911
1021 => 0.40983379837265
1022 => 0.41759993327924
1023 => 0.41915909984132
1024 => 0.42267198171873
1025 => 0.39265479069477
1026 => 0.4061316282061
1027 => 0.4140480076351
1028 => 0.37828151737453
1029 => 0.41334101912068
1030 => 0.39213225818126
1031 => 0.38493368617353
1101 => 0.3946256150422
1102 => 0.39084866093637
1103 => 0.38760145758636
1104 => 0.38578946232302
1105 => 0.39290614522502
1106 => 0.39257414346136
1107 => 0.38092986894507
1108 => 0.36574038751991
1109 => 0.37083847606392
1110 => 0.36898629270105
1111 => 0.36227374125757
1112 => 0.36679719045392
1113 => 0.34687820945846
1114 => 0.3126086379543
1115 => 0.33524816659531
1116 => 0.3343765693697
1117 => 0.33393707052476
1118 => 0.35095005058787
1119 => 0.34931464511103
1120 => 0.34634636815664
1121 => 0.36221922652356
1122 => 0.35642541969956
1123 => 0.37428056713855
1124 => 0.3860411220404
1125 => 0.3830582649032
1126 => 0.39411912363208
1127 => 0.37095592572728
1128 => 0.37864981092506
1129 => 0.38023551000106
1130 => 0.36202335791519
1201 => 0.34958221767244
1202 => 0.34875253545763
1203 => 0.32718131277144
1204 => 0.33870448581358
1205 => 0.34884440122936
1206 => 0.34398816863442
1207 => 0.34245083047069
1208 => 0.35030475774124
1209 => 0.3509150751545
1210 => 0.33699977345363
1211 => 0.33989320531754
1212 => 0.35195929718305
1213 => 0.33958917076093
1214 => 0.31555603577143
1215 => 0.30959548600995
1216 => 0.30880023879704
1217 => 0.29263475510674
1218 => 0.30999379844649
1219 => 0.30241611083525
1220 => 0.32635393520452
1221 => 0.31268077830592
1222 => 0.31209135584022
1223 => 0.31120035733382
1224 => 0.29728605773386
1225 => 0.30033240504638
1226 => 0.310458927485
1227 => 0.31407218477454
1228 => 0.31369529243669
1229 => 0.31040930200054
1230 => 0.31191361159522
1231 => 0.30706770625456
]
'min_raw' => 0.16955283701505
'max_raw' => 0.52725276489168
'avg_raw' => 0.34840280095337
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.169552'
'max' => '$0.527252'
'avg' => '$0.3484028'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.096588670049899
'max_diff' => 0.32930801091169
'year' => 2033
]
8 => [
'items' => [
101 => 0.30535651621998
102 => 0.29995552977093
103 => 0.29201757175142
104 => 0.29312139350036
105 => 0.277394221584
106 => 0.26882522361978
107 => 0.26645343792086
108 => 0.26328178696052
109 => 0.26681168433628
110 => 0.27734966848198
111 => 0.26463862384421
112 => 0.24284642938887
113 => 0.24415617740773
114 => 0.24709879233842
115 => 0.24161524888241
116 => 0.23642553520022
117 => 0.24093757019211
118 => 0.23170393011995
119 => 0.24821463362691
120 => 0.24776806536775
121 => 0.25392223462009
122 => 0.25777056294984
123 => 0.24890141206086
124 => 0.24667084459701
125 => 0.24794147719806
126 => 0.22694075067187
127 => 0.25220602722588
128 => 0.25242452238669
129 => 0.25055363416764
130 => 0.26400661395475
131 => 0.29239659739518
201 => 0.28171514364045
202 => 0.27757896189797
203 => 0.26971607738199
204 => 0.28019290414765
205 => 0.27938844731601
206 => 0.27575038844211
207 => 0.27355007908375
208 => 0.2776042165417
209 => 0.27304772658755
210 => 0.27222925578782
211 => 0.26727021324643
212 => 0.26550006068121
213 => 0.26418951019373
214 => 0.26274672287905
215 => 0.26592915217505
216 => 0.25871734870687
217 => 0.25002062070606
218 => 0.2492975818727
219 => 0.25129395566184
220 => 0.25041070887269
221 => 0.24929335322688
222 => 0.24716001700531
223 => 0.24652710171989
224 => 0.24858376935067
225 => 0.24626191150669
226 => 0.24968793923362
227 => 0.24875624926266
228 => 0.24355190482157
301 => 0.23706536475288
302 => 0.23700762094029
303 => 0.23561010652255
304 => 0.23383016179385
305 => 0.23333502188995
306 => 0.24055757919018
307 => 0.2555080566487
308 => 0.25257292018899
309 => 0.25469385708601
310 => 0.26512676745098
311 => 0.26844307592744
312 => 0.26608923872192
313 => 0.26286716117665
314 => 0.26300891623632
315 => 0.27401973059772
316 => 0.2747064615833
317 => 0.27644160923606
318 => 0.27867176432251
319 => 0.26646904377661
320 => 0.26243416919598
321 => 0.26052222177336
322 => 0.25463416372846
323 => 0.26098392952594
324 => 0.25728419291983
325 => 0.25778341378899
326 => 0.25745829554304
327 => 0.25763583208973
328 => 0.24821001854879
329 => 0.25164428959693
330 => 0.24593414789157
331 => 0.23828890914157
401 => 0.23826327962052
402 => 0.24013444097358
403 => 0.23902140098223
404 => 0.23602623898438
405 => 0.23645168760941
406 => 0.23272430997607
407 => 0.23690425874044
408 => 0.23702412471443
409 => 0.2354146167568
410 => 0.24185440455008
411 => 0.24449279086336
412 => 0.24343337824664
413 => 0.24441845964999
414 => 0.25269488836023
415 => 0.25404430736591
416 => 0.25464363015061
417 => 0.25384061701416
418 => 0.24456973757356
419 => 0.24498094049957
420 => 0.24196380626591
421 => 0.23941464577624
422 => 0.23951659882724
423 => 0.2408271986866
424 => 0.24655066513809
425 => 0.25859536286846
426 => 0.25905245034277
427 => 0.25960645369582
428 => 0.25735304363921
429 => 0.25667339360391
430 => 0.25757002743303
501 => 0.26209338262044
502 => 0.27372868024141
503 => 0.26961598896676
504 => 0.26627230694261
505 => 0.26920561752799
506 => 0.26875405735542
507 => 0.26494243506483
508 => 0.26483545552214
509 => 0.25751973369714
510 => 0.25481527790936
511 => 0.25255523222809
512 => 0.25008732134412
513 => 0.24862426104699
514 => 0.2508721866124
515 => 0.25138631378589
516 => 0.24647118525009
517 => 0.24580127139269
518 => 0.24981507145544
519 => 0.24804874769737
520 => 0.24986545548526
521 => 0.25028694727548
522 => 0.25021907738948
523 => 0.24837483252507
524 => 0.24955029920547
525 => 0.24676997008283
526 => 0.2437467797539
527 => 0.24181817267545
528 => 0.2401352072069
529 => 0.24106901426338
530 => 0.23774016261346
531 => 0.23667519597411
601 => 0.24915207754299
602 => 0.258368884107
603 => 0.2582348680893
604 => 0.25741908004769
605 => 0.25620698449443
606 => 0.26200471028104
607 => 0.25998489854617
608 => 0.26145448034421
609 => 0.26182855058996
610 => 0.26296074856111
611 => 0.26336541202009
612 => 0.2621422379902
613 => 0.25803711654779
614 => 0.24780754421652
615 => 0.24304565068211
616 => 0.24147414650015
617 => 0.24153126769245
618 => 0.2399556102085
619 => 0.24041971195354
620 => 0.23979421456144
621 => 0.23860967382488
622 => 0.24099587221085
623 => 0.24127085934585
624 => 0.24071389212962
625 => 0.24084507807155
626 => 0.23623362740495
627 => 0.23658422598359
628 => 0.23463204854583
629 => 0.2342660388101
630 => 0.22933110424296
701 => 0.22058815232709
702 => 0.22543259638736
703 => 0.21958118919447
704 => 0.21736517262723
705 => 0.22785545039524
706 => 0.22680251746235
707 => 0.22500035398018
708 => 0.22233457858626
709 => 0.22134581656167
710 => 0.21533841150423
711 => 0.21498346196517
712 => 0.21796089412522
713 => 0.21658691163054
714 => 0.21465731984016
715 => 0.20766853397495
716 => 0.19981082475498
717 => 0.20004799960453
718 => 0.20254739070953
719 => 0.20981470743611
720 => 0.20697524106518
721 => 0.20491517563395
722 => 0.20452938730402
723 => 0.20935833595567
724 => 0.21619230999379
725 => 0.21939865771092
726 => 0.21622126450147
727 => 0.21257124626545
728 => 0.21279340596293
729 => 0.2142713349009
730 => 0.21442664433549
731 => 0.21205085769178
801 => 0.21271962771573
802 => 0.21170370489573
803 => 0.20546898842464
804 => 0.20535622217418
805 => 0.20382612220379
806 => 0.20377979138479
807 => 0.20117670963383
808 => 0.20081252050262
809 => 0.19564394369032
810 => 0.19904591660006
811 => 0.1967640517838
812 => 0.1933247432682
813 => 0.19273180518375
814 => 0.19271398074894
815 => 0.19624538157915
816 => 0.19900465012528
817 => 0.19680374579923
818 => 0.19630264254693
819 => 0.20165311428852
820 => 0.20097221798877
821 => 0.20038256618449
822 => 0.21558040257436
823 => 0.20355012916982
824 => 0.19830424330144
825 => 0.19181146337261
826 => 0.19392554525688
827 => 0.19437101337222
828 => 0.17875704805493
829 => 0.17242246427031
830 => 0.17024867382918
831 => 0.16899762669742
901 => 0.16956774458503
902 => 0.16386587620629
903 => 0.167697626057
904 => 0.16276029000795
905 => 0.16193252955185
906 => 0.17076109802611
907 => 0.17198954175356
908 => 0.16674861916473
909 => 0.17011413989505
910 => 0.168893755294
911 => 0.1628449264635
912 => 0.16261390569435
913 => 0.15957881601382
914 => 0.15482948837296
915 => 0.15265891819961
916 => 0.15152846640758
917 => 0.15199491284904
918 => 0.15175906325474
919 => 0.15021998511713
920 => 0.151847281412
921 => 0.14769021182385
922 => 0.14603483321806
923 => 0.14528713710631
924 => 0.14159749857482
925 => 0.14746935426812
926 => 0.14862618381139
927 => 0.14978529266623
928 => 0.15987454389031
929 => 0.15937051341109
930 => 0.1639267034705
1001 => 0.16374965830309
1002 => 0.16245015909276
1003 => 0.15696778568162
1004 => 0.15915296200939
1005 => 0.15242732892431
1006 => 0.15746663053024
1007 => 0.15516690372356
1008 => 0.15668909058359
1009 => 0.1539520613592
1010 => 0.15546684634114
1011 => 0.14890051101165
1012 => 0.1427689594718
1013 => 0.14523647480258
1014 => 0.14791894616175
1015 => 0.15373522754942
1016 => 0.1502710983382
1017 => 0.15151693019578
1018 => 0.14734360202262
1019 => 0.13873283394913
1020 => 0.1387815699613
1021 => 0.13745699088897
1022 => 0.13631236117877
1023 => 0.15066899524952
1024 => 0.14888352085803
1025 => 0.14603860109229
1026 => 0.14984663925135
1027 => 0.1508535449823
1028 => 0.15088221017291
1029 => 0.15366045651407
1030 => 0.15514320708438
1031 => 0.155404548299
1101 => 0.1597761789448
1102 => 0.16124149187407
1103 => 0.16727690845088
1104 => 0.15501740605789
1105 => 0.15476492967369
1106 => 0.14990022615756
1107 => 0.1468149542797
1108 => 0.1501114773626
1109 => 0.15303174679377
1110 => 0.149990967069
1111 => 0.15038802870669
1112 => 0.14630603036703
1113 => 0.14776515269758
1114 => 0.14902194541366
1115 => 0.14832801834671
1116 => 0.14728917594102
1117 => 0.15279231800273
1118 => 0.15248180916062
1119 => 0.15760646156517
1120 => 0.16160149458192
1121 => 0.16876130794552
1122 => 0.16128966945109
1123 => 0.16101737324728
1124 => 0.16367911231721
1125 => 0.16124108437568
1126 => 0.16278183387687
1127 => 0.16851306938099
1128 => 0.16863416135603
1129 => 0.16660571475592
1130 => 0.16648228359596
1201 => 0.16687186895428
1202 => 0.16915368256647
1203 => 0.16835634677732
1204 => 0.16927904393859
1205 => 0.17043289086761
1206 => 0.17520569098697
1207 => 0.17635639693751
1208 => 0.17356077805033
1209 => 0.17381319113463
1210 => 0.17276755292937
1211 => 0.17175747952489
1212 => 0.17402797702877
1213 => 0.17817735584385
1214 => 0.1781515427736
1215 => 0.1791141180063
1216 => 0.17971379440187
1217 => 0.17713954432214
1218 => 0.17546380217803
1219 => 0.17610638834632
1220 => 0.17713389762313
1221 => 0.17577318093628
1222 => 0.16737420719975
1223 => 0.16992191930289
1224 => 0.16949785543217
1225 => 0.16889393691234
1226 => 0.17145568113292
1227 => 0.17120859465343
1228 => 0.16380739530472
1229 => 0.16428119607389
1230 => 0.16383620869877
1231 => 0.16527405394364
]
'min_raw' => 0.13631236117877
'max_raw' => 0.30535651621998
'avg_raw' => 0.22083443869937
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.136312'
'max' => '$0.305356'
'avg' => '$0.220834'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.033240475836279
'max_diff' => -0.2218962486717
'year' => 2034
]
9 => [
'items' => [
101 => 0.16116343601386
102 => 0.16242783440362
103 => 0.16322085322069
104 => 0.1636879473962
105 => 0.1653754118476
106 => 0.16517740737087
107 => 0.16536310361132
108 => 0.16786516791866
109 => 0.18051975058041
110 => 0.18120851159393
111 => 0.17781680046087
112 => 0.17917172215998
113 => 0.17657056878649
114 => 0.17831674047233
115 => 0.17951142679183
116 => 0.17411286903898
117 => 0.1737932014852
118 => 0.17118131222645
119 => 0.17258479356914
120 => 0.17035175383905
121 => 0.1708996636804
122 => 0.16936765999806
123 => 0.17212496160738
124 => 0.17520805324794
125 => 0.17598696395132
126 => 0.17393798523286
127 => 0.17245438960642
128 => 0.16984968441316
129 => 0.17418136719919
130 => 0.17544808325146
131 => 0.17417471367902
201 => 0.17387964612541
202 => 0.1733204936445
203 => 0.17399827296752
204 => 0.1754411844438
205 => 0.17476073403798
206 => 0.17521018351902
207 => 0.17349734556759
208 => 0.17714039650603
209 => 0.18292643814422
210 => 0.1829450412142
211 => 0.1822645871405
212 => 0.18198615999412
213 => 0.18268434716715
214 => 0.18306308506738
215 => 0.18532089435931
216 => 0.18774361368464
217 => 0.19904938766071
218 => 0.19587477156902
219 => 0.20590592682409
220 => 0.21383926824836
221 => 0.21621813045853
222 => 0.21402968915929
223 => 0.20654314969189
224 => 0.20617582434919
225 => 0.21736387504893
226 => 0.21420273828107
227 => 0.21382673112119
228 => 0.20982665021415
301 => 0.21219119344987
302 => 0.21167403315846
303 => 0.21085767033813
304 => 0.21536905411636
305 => 0.22381396181522
306 => 0.22249774375451
307 => 0.22151524802979
308 => 0.21721023776427
309 => 0.21980281550296
310 => 0.21887964822777
311 => 0.22284616069843
312 => 0.22049648657982
313 => 0.21417878956099
314 => 0.21518490363464
315 => 0.21503283151643
316 => 0.21816246493328
317 => 0.21722302666382
318 => 0.21484939111687
319 => 0.22378509803878
320 => 0.22320486293428
321 => 0.22402750365225
322 => 0.2243896555373
323 => 0.22982866287585
324 => 0.23205685015363
325 => 0.2325626876756
326 => 0.2346792932553
327 => 0.23251002460059
328 => 0.24118864588177
329 => 0.24695942262216
330 => 0.25366247676758
331 => 0.26345744048514
401 => 0.26714043745142
402 => 0.26647513701469
403 => 0.27390156671697
404 => 0.28724669581171
405 => 0.26917256915658
406 => 0.28820466841184
407 => 0.28217932552378
408 => 0.26789334592747
409 => 0.26697349726211
410 => 0.27664812850836
411 => 0.2981055294638
412 => 0.29273069389229
413 => 0.29811432076931
414 => 0.29183403404908
415 => 0.29152216487901
416 => 0.29780930126117
417 => 0.31249953811205
418 => 0.30552075723949
419 => 0.2955149635914
420 => 0.30290308591376
421 => 0.29650281061969
422 => 0.2820811990579
423 => 0.29272658385682
424 => 0.28560831820489
425 => 0.28768580654994
426 => 0.30264734218819
427 => 0.30084713063688
428 => 0.30317677107938
429 => 0.29906501667568
430 => 0.29522398969847
501 => 0.28805442760711
502 => 0.28593187372699
503 => 0.28651847125797
504 => 0.28593158303839
505 => 0.28192027893995
506 => 0.28105403820181
507 => 0.27961026568736
508 => 0.28005775116047
509 => 0.27734303644277
510 => 0.28246626400375
511 => 0.28341718018479
512 => 0.28714543796195
513 => 0.28753251805239
514 => 0.29791566289335
515 => 0.29219680119661
516 => 0.29603350736555
517 => 0.29569031625332
518 => 0.2682029664242
519 => 0.27199048070772
520 => 0.2778826643454
521 => 0.27522824360329
522 => 0.27147551371274
523 => 0.26844498311747
524 => 0.26385341937798
525 => 0.27031595716814
526 => 0.27881350714793
527 => 0.28774802994298
528 => 0.29848227366809
529 => 0.29608651542902
530 => 0.28754736072312
531 => 0.28793042096537
601 => 0.29029834865431
602 => 0.28723166714821
603 => 0.28632724290333
604 => 0.29017409465144
605 => 0.29020058580524
606 => 0.28667199811164
607 => 0.28275061861493
608 => 0.28273418789165
609 => 0.28203641628625
610 => 0.29195816606758
611 => 0.29741412524526
612 => 0.29803964217227
613 => 0.29737202297222
614 => 0.29762896310546
615 => 0.29445426067382
616 => 0.30171068900378
617 => 0.30836990522574
618 => 0.30658509302485
619 => 0.30390940580971
620 => 0.3017780920643
621 => 0.30608302324056
622 => 0.30589133143187
623 => 0.30831174278141
624 => 0.30820193894162
625 => 0.30738804564105
626 => 0.30658512209154
627 => 0.30976862320697
628 => 0.30885182601119
629 => 0.30793360477614
630 => 0.30609197151661
701 => 0.30634228006287
702 => 0.30366705484285
703 => 0.3024293732461
704 => 0.28381761164428
705 => 0.27884394078742
706 => 0.28040875888739
707 => 0.28092393763639
708 => 0.27875938970555
709 => 0.28186279541163
710 => 0.28137913291966
711 => 0.28326078074283
712 => 0.28208520887456
713 => 0.28213345475409
714 => 0.28559056096032
715 => 0.28659417359956
716 => 0.28608372811109
717 => 0.28644122663417
718 => 0.29467962920776
719 => 0.29350839181108
720 => 0.29288619528772
721 => 0.29305854797686
722 => 0.29516363646775
723 => 0.29575294631163
724 => 0.29325599909304
725 => 0.29443357383601
726 => 0.29944753763508
727 => 0.30120214119897
728 => 0.30680199351745
729 => 0.30442307672312
730 => 0.30878968145622
731 => 0.32221113572049
801 => 0.33293312208079
802 => 0.32307274031903
803 => 0.34276230283299
804 => 0.3580934515501
805 => 0.35750501652697
806 => 0.35483167613229
807 => 0.33737757091754
808 => 0.32131604307287
809 => 0.33475219312343
810 => 0.33478644463308
811 => 0.3336322674278
812 => 0.32646377193147
813 => 0.33338281932315
814 => 0.33393202817881
815 => 0.33362461726606
816 => 0.32812854857645
817 => 0.31973706753069
818 => 0.32137674284066
819 => 0.32406256444687
820 => 0.31897774382524
821 => 0.31735283553648
822 => 0.32037384919673
823 => 0.33010818466325
824 => 0.32826796493047
825 => 0.32821990935634
826 => 0.33609314974778
827 => 0.33045760877913
828 => 0.32139742439729
829 => 0.31910960835172
830 => 0.31098940264752
831 => 0.31659805765059
901 => 0.31679990315926
902 => 0.31372810013314
903 => 0.32164668428318
904 => 0.3215737131362
905 => 0.32909123026096
906 => 0.343461899553
907 => 0.33921178550566
908 => 0.33426936527969
909 => 0.3348067433967
910 => 0.3407004549781
911 => 0.33713698241563
912 => 0.33841843199451
913 => 0.34069851535068
914 => 0.34207414625075
915 => 0.33460881127994
916 => 0.33286828458999
917 => 0.32930777782422
918 => 0.32837890806904
919 => 0.33127886653735
920 => 0.33051482993799
921 => 0.31678293882584
922 => 0.3153478798011
923 => 0.3153918910126
924 => 0.31178336686155
925 => 0.30627950138617
926 => 0.32074333123673
927 => 0.31958168327856
928 => 0.31829931383715
929 => 0.31845639677663
930 => 0.32473465509008
1001 => 0.32109294820863
1002 => 0.33077502281698
1003 => 0.3287846793473
1004 => 0.32674329107789
1005 => 0.32646110903685
1006 => 0.32567534871619
1007 => 0.3229806842081
1008 => 0.31972671489035
1009 => 0.31757816249277
1010 => 0.29294906778143
1011 => 0.297520084499
1012 => 0.30277862257129
1013 => 0.30459384884157
1014 => 0.30148877869642
1015 => 0.32310329130305
1016 => 0.32705247103891
1017 => 0.31509014802038
1018 => 0.31285248580204
1019 => 0.32324999206556
1020 => 0.31697902474521
1021 => 0.31980284094559
1022 => 0.31369929486525
1023 => 0.32610122928603
1024 => 0.32600674732466
1025 => 0.32118211472459
1026 => 0.32525986116051
1027 => 0.32455125236886
1028 => 0.31910425404592
1029 => 0.3262739088485
1030 => 0.32627746490783
1031 => 0.32163386092682
1101 => 0.31621114809262
1102 => 0.31524169511662
1103 => 0.31451134252689
1104 => 0.31962321897994
1105 => 0.32420651142332
1106 => 0.33273488236589
1107 => 0.33487911744995
1108 => 0.34324820973284
1109 => 0.33826482276209
1110 => 0.34047389366056
1111 => 0.34287215261301
1112 => 0.34402196614786
1113 => 0.34214840669521
1114 => 0.35514905186636
1115 => 0.35624670464828
1116 => 0.3566147381314
1117 => 0.35223099372699
1118 => 0.35612478478626
1119 => 0.35430300889843
1120 => 0.35904276365463
1121 => 0.35978601772063
1122 => 0.35915650796876
1123 => 0.35939242854078
1124 => 0.34829867135817
1125 => 0.34772340152402
1126 => 0.33987955651611
1127 => 0.34307598133561
1128 => 0.33710041834418
1129 => 0.33899533092388
1130 => 0.33983059033362
1201 => 0.33939429821853
1202 => 0.34325670239902
1203 => 0.33997286980856
1204 => 0.33130629569026
1205 => 0.32263736036964
1206 => 0.32252852894825
1207 => 0.32024615129775
1208 => 0.31859641029475
1209 => 0.31891420893963
1210 => 0.32003417281533
1211 => 0.31853131595831
1212 => 0.31885202666553
1213 => 0.32417796128968
1214 => 0.32524603949572
1215 => 0.32161629242649
1216 => 0.30704233417352
1217 => 0.30346584826224
1218 => 0.30603655541047
1219 => 0.30480792296836
1220 => 0.24600378311847
1221 => 0.25981894352206
1222 => 0.25161044432876
1223 => 0.25539329841193
1224 => 0.24701454631613
1225 => 0.25101332598427
1226 => 0.25027489739161
1227 => 0.27248926650028
1228 => 0.27214241968151
1229 => 0.27230843689893
1230 => 0.264384002556
1231 => 0.27700784163613
]
'min_raw' => 0.16116343601386
'max_raw' => 0.35978601772063
'avg_raw' => 0.26047472686725
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.161163'
'max' => '$0.359786'
'avg' => '$0.260474'
'bar_min_pct' => 61.631153054958
'bar_max_pct' => 60.119598047091
'min_diff' => 0.024851074835085
'max_diff' => 0.054429501500656
'year' => 2035
]
10 => [
'items' => [
101 => 0.28322679870557
102 => 0.2820758352642
103 => 0.28236550796586
104 => 0.27738797121978
105 => 0.27235663033499
106 => 0.26677609897595
107 => 0.27714403646652
108 => 0.27599129880417
109 => 0.27863526425969
110 => 0.28535961283781
111 => 0.28634979870925
112 => 0.28768061856195
113 => 0.28720361437897
114 => 0.2985677892372
115 => 0.29719151267863
116 => 0.300507943203
117 => 0.29368579399618
118 => 0.28596588460432
119 => 0.28743318699686
120 => 0.28729187397716
121 => 0.28549279704481
122 => 0.28386867083246
123 => 0.28116495828361
124 => 0.28971990486233
125 => 0.2893725896544
126 => 0.29499521916101
127 => 0.29400136478041
128 => 0.28736416198933
129 => 0.28760121098547
130 => 0.28919547940636
131 => 0.2947132606141
201 => 0.29635131375575
202 => 0.29559250227541
203 => 0.29738855276526
204 => 0.29880807784156
205 => 0.29756682325945
206 => 0.3151403705679
207 => 0.30784260850199
208 => 0.31139948695541
209 => 0.31224778150821
210 => 0.31007489284893
211 => 0.31054611459382
212 => 0.31125988713708
213 => 0.31559377424879
214 => 0.32696714805027
215 => 0.33200433788576
216 => 0.34715897203643
217 => 0.33158606939099
218 => 0.33066203779509
219 => 0.33339184503173
220 => 0.34228921955912
221 => 0.34949970592567
222 => 0.35189184023639
223 => 0.35220800027538
224 => 0.35669580326838
225 => 0.35926812825139
226 => 0.35615086594409
227 => 0.35350931252962
228 => 0.34404759608067
229 => 0.34514281552304
301 => 0.35268779140407
302 => 0.36334551423288
303 => 0.37249094916707
304 => 0.36928853660371
305 => 0.39372068391126
306 => 0.39614303152043
307 => 0.39580834140471
308 => 0.40132680975207
309 => 0.39037377389911
310 => 0.3856911388669
311 => 0.35408044636074
312 => 0.36296176157158
313 => 0.37587127481189
314 => 0.37416265232634
315 => 0.36478741873895
316 => 0.3724838372117
317 => 0.36993916057535
318 => 0.36793206853353
319 => 0.37712694627104
320 => 0.36701680049389
321 => 0.3757704183739
322 => 0.36454381289821
323 => 0.36930316495454
324 => 0.36660152654341
325 => 0.36834981769576
326 => 0.35812934334256
327 => 0.36364406321556
328 => 0.35789991286512
329 => 0.35789718938995
330 => 0.35777038695259
331 => 0.36452835436641
401 => 0.36474873144116
402 => 0.35975458331162
403 => 0.3590348485429
404 => 0.36169608521113
405 => 0.35858047405162
406 => 0.36003824890373
407 => 0.35862462856683
408 => 0.3583063928536
409 => 0.35577063654719
410 => 0.35467816300832
411 => 0.35510655003248
412 => 0.35364424427035
413 => 0.35276315215476
414 => 0.35759511555403
415 => 0.35501359243065
416 => 0.35719946011112
417 => 0.35470838801073
418 => 0.34607324680232
419 => 0.34110708577841
420 => 0.32479610451374
421 => 0.32942187856669
422 => 0.33248877154951
423 => 0.33147516343698
424 => 0.33365278587696
425 => 0.33378647420885
426 => 0.33307850695538
427 => 0.33225877157209
428 => 0.33185976972171
429 => 0.33483360261834
430 => 0.33656001270945
501 => 0.33279657529007
502 => 0.33191485455879
503 => 0.33571989757486
504 => 0.33804097161656
505 => 0.35517847824164
506 => 0.35390887639744
507 => 0.35709532787961
508 => 0.3567365823428
509 => 0.36007649113764
510 => 0.36553583046644
511 => 0.35443546715571
512 => 0.35636210640477
513 => 0.3558897389535
514 => 0.36104692292508
515 => 0.36106302309052
516 => 0.3579710336791
517 => 0.35964725130083
518 => 0.35871163260901
519 => 0.36040242204158
520 => 0.35389192009077
521 => 0.3618210087016
522 => 0.36631629100476
523 => 0.3663787080039
524 => 0.36850943613883
525 => 0.37067437932737
526 => 0.37482979925096
527 => 0.37055848692106
528 => 0.36287481184344
529 => 0.36342954836593
530 => 0.35892461247926
531 => 0.3590003412654
601 => 0.35859609507003
602 => 0.35980926833258
603 => 0.35415814339925
604 => 0.35548445112579
605 => 0.35362761254178
606 => 0.35635807000032
607 => 0.35342054913572
608 => 0.35588951116361
609 => 0.35695503332746
610 => 0.36088683305111
611 => 0.35283981911969
612 => 0.33643141297856
613 => 0.33988065888212
614 => 0.33477895325833
615 => 0.33525113553738
616 => 0.3362050188883
617 => 0.33311317085675
618 => 0.33370299802584
619 => 0.33368192524881
620 => 0.3335003314408
621 => 0.33269602235496
622 => 0.33152961505278
623 => 0.33617622274341
624 => 0.33696577193514
625 => 0.33872084198391
626 => 0.34394273997366
627 => 0.34342094922365
628 => 0.3442720115858
629 => 0.34241414722773
630 => 0.33533731653646
701 => 0.33572162249066
702 => 0.33092932108376
703 => 0.33859829206237
704 => 0.33678217850917
705 => 0.3356113182869
706 => 0.33529183822731
707 => 0.34052668029214
708 => 0.34209302708403
709 => 0.34111698487695
710 => 0.33911509383452
711 => 0.34295931644194
712 => 0.34398786823696
713 => 0.34421812305233
714 => 0.35102934845612
715 => 0.34459879488913
716 => 0.34614669304691
717 => 0.3582229526069
718 => 0.34727145159589
719 => 0.35307270592904
720 => 0.3527887647177
721 => 0.35575649013079
722 => 0.35254532461241
723 => 0.35258513085756
724 => 0.35522026997325
725 => 0.35151969233511
726 => 0.35060337727056
727 => 0.34933749457166
728 => 0.35210150313331
729 => 0.35375840126067
730 => 0.36711178330957
731 => 0.37573867710136
801 => 0.37536416089004
802 => 0.3787865379965
803 => 0.37724472576466
804 => 0.37226580735854
805 => 0.38076421396337
806 => 0.37807496252517
807 => 0.37829666114629
808 => 0.37828840951254
809 => 0.38007652662051
810 => 0.37880948177099
811 => 0.3763120063131
812 => 0.37796994707434
813 => 0.38289343841058
814 => 0.3981761065894
815 => 0.4067284901707
816 => 0.39766124235912
817 => 0.40391570848426
818 => 0.40016525750332
819 => 0.39948368899383
820 => 0.40341195592184
821 => 0.40734709876108
822 => 0.40709644717431
823 => 0.40423973554484
824 => 0.40262605163173
825 => 0.4148454068456
826 => 0.42384841961589
827 => 0.42323447450192
828 => 0.42594422856934
829 => 0.43390015032083
830 => 0.43462754009892
831 => 0.43453590570575
901 => 0.43273299424546
902 => 0.44056663241678
903 => 0.44710159119905
904 => 0.43231567233352
905 => 0.43794595667562
906 => 0.44047357271323
907 => 0.44418486296631
908 => 0.45044643170773
909 => 0.45724815616
910 => 0.45820999457467
911 => 0.45752752419126
912 => 0.45304160407482
913 => 0.46048413213194
914 => 0.46484379051904
915 => 0.46743986731955
916 => 0.47402308613966
917 => 0.44048918240937
918 => 0.41675221860591
919 => 0.41304534894209
920 => 0.42058341416892
921 => 0.4225711418543
922 => 0.42176989131672
923 => 0.3950517804856
924 => 0.41290468361801
925 => 0.43211290627375
926 => 0.4328507723339
927 => 0.44246681022036
928 => 0.4455981863309
929 => 0.4533403572324
930 => 0.45285608233454
1001 => 0.45474117774421
1002 => 0.45430782695483
1003 => 0.46864856824343
1004 => 0.48446853550544
1005 => 0.48392074034357
1006 => 0.4816464328763
1007 => 0.48502416729225
1008 => 0.50135206887737
1009 => 0.4998488573487
1010 => 0.50130909930555
1011 => 0.52056061547461
1012 => 0.54559032499063
1013 => 0.53396151197869
1014 => 0.5591926901138
1015 => 0.57507437930257
1016 => 0.60254011855724
1017 => 0.59910127273093
1018 => 0.60979348346987
1019 => 0.59294502099307
1020 => 0.55425754551028
1021 => 0.54813510442542
1022 => 0.56039238652221
1023 => 0.59052571850907
1024 => 0.55944338066252
1025 => 0.56573129712715
1026 => 0.56392037676233
1027 => 0.563823880512
1028 => 0.56750674990831
1029 => 0.56216455576341
1030 => 0.54039949577473
1031 => 0.55037429450524
1101 => 0.54652254568621
1102 => 0.55079634816782
1103 => 0.57386029751084
1104 => 0.56366317573041
1105 => 0.55292133628163
1106 => 0.5663939867554
1107 => 0.58354930051349
1108 => 0.58247575180957
1109 => 0.58039261861542
1110 => 0.59213513136153
1111 => 0.61153032218469
1112 => 0.616772764328
1113 => 0.62064262794118
1114 => 0.62117621675155
1115 => 0.62667251312202
1116 => 0.59711754229297
1117 => 0.64402204002416
1118 => 0.65212115107173
1119 => 0.65059885386855
1120 => 0.65960067493524
1121 => 0.65695211082326
1122 => 0.65311475697198
1123 => 0.66738455810493
1124 => 0.65102538261957
1125 => 0.62780559258104
1126 => 0.61506675653052
1127 => 0.63184228345443
1128 => 0.64208651236165
1129 => 0.648857296014
1130 => 0.65090613105618
1201 => 0.59941181054622
1202 => 0.5716592277973
1203 => 0.58944831515535
1204 => 0.6111522294694
1205 => 0.5969969759531
1206 => 0.5975518350915
1207 => 0.57737016351244
1208 => 0.61293785958887
1209 => 0.60775594544194
1210 => 0.63463972520284
1211 => 0.62822369540709
1212 => 0.65014637417978
1213 => 0.64437339814996
1214 => 0.66833669888701
1215 => 0.67789630833149
1216 => 0.69394838042317
1217 => 0.70575634999749
1218 => 0.71269021558201
1219 => 0.71227393230059
1220 => 0.73974936218454
1221 => 0.72354806110038
1222 => 0.70319540858519
1223 => 0.70282729331298
1224 => 0.71336822044992
1225 => 0.73545911196679
1226 => 0.74118695872772
1227 => 0.74438804365985
1228 => 0.73948547065572
1229 => 0.72190011948658
1230 => 0.7143068540115
1231 => 0.72077653619435
]
'min_raw' => 0.26677609897595
'max_raw' => 0.74438804365985
'avg_raw' => 0.5055820713179
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$0.266776'
'max' => '$0.744388'
'avg' => '$0.505582'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.10561266296209
'max_diff' => 0.38460202593922
'year' => 2036
]
11 => [
'items' => [
101 => 0.71286467083085
102 => 0.72652277012559
103 => 0.74527825766985
104 => 0.7414053236592
105 => 0.7543519613941
106 => 0.76775036942371
107 => 0.78691069466622
108 => 0.7919199131894
109 => 0.8001999609247
110 => 0.80872284989831
111 => 0.81146017213833
112 => 0.81668656963575
113 => 0.81665902394111
114 => 0.83240912457671
115 => 0.84978197331778
116 => 0.85633982153516
117 => 0.87141923190916
118 => 0.84559627008924
119 => 0.86518328326246
120 => 0.88285125943944
121 => 0.86178676987608
122 => 0.89081926134257
123 => 0.89194652719717
124 => 0.90896690325002
125 => 0.89171349141095
126 => 0.88146847053576
127 => 0.91104546192652
128 => 0.92535683639401
129 => 0.92104613393458
130 => 0.88824147537263
131 => 0.86914775703158
201 => 0.81917581322986
202 => 0.87836973929032
203 => 0.90720137396388
204 => 0.88816680840404
205 => 0.89776673609787
206 => 0.95014082880839
207 => 0.97008149234118
208 => 0.96593397372212
209 => 0.96663483609478
210 => 0.97739445618843
211 => 1.0251085371147
212 => 0.99651715381993
213 => 1.0183741950501
214 => 1.0299670909071
215 => 1.0407352186582
216 => 1.0142921002032
217 => 0.97988999161975
218 => 0.9689933997291
219 => 0.8862741959894
220 => 0.88196830220345
221 => 0.87955127353947
222 => 0.86431224970852
223 => 0.85233855129733
224 => 0.84281662176584
225 => 0.81782823518633
226 => 0.82626108211513
227 => 0.786434809389
228 => 0.81191424732274
301 => 0.74835055441286
302 => 0.80128828667354
303 => 0.77247668578738
304 => 0.79182290089692
305 => 0.79175540377492
306 => 0.75613288803518
307 => 0.73558656437944
308 => 0.74867948148776
309 => 0.76271612794493
310 => 0.76499352660766
311 => 0.78319240513334
312 => 0.78827132094628
313 => 0.77288196892118
314 => 0.74703333816111
315 => 0.75303738554217
316 => 0.7354648925509
317 => 0.70466977449987
318 => 0.72678736591529
319 => 0.73433928406637
320 => 0.73767464134517
321 => 0.70739117958519
322 => 0.69787545841426
323 => 0.69280936830749
324 => 0.74312412353132
325 => 0.74588047940162
326 => 0.73177857305972
327 => 0.79552052692272
328 => 0.78109375962131
329 => 0.79721199334079
330 => 0.75249258117379
331 => 0.75420092294124
401 => 0.73303003656101
402 => 0.7448843182948
403 => 0.73650609404669
404 => 0.74392660947701
405 => 0.74837443583
406 => 0.7695418482761
407 => 0.80152998452199
408 => 0.76638014272765
409 => 0.75106485330285
410 => 0.76056637272554
411 => 0.78587017104375
412 => 0.82420672077344
413 => 0.8015107117385
414 => 0.81158281514498
415 => 0.8137831216626
416 => 0.79704792485216
417 => 0.82482377135067
418 => 0.8397090731398
419 => 0.85497831269625
420 => 0.86823616556873
421 => 0.84887944263963
422 => 0.86959391085101
423 => 0.85290170606851
424 => 0.8379270727702
425 => 0.83794978310765
426 => 0.82855597689514
427 => 0.81035429366263
428 => 0.80699762401064
429 => 0.82445944344096
430 => 0.83846216898363
501 => 0.83961550052786
502 => 0.8473681288743
503 => 0.8519560544713
504 => 0.89692396230429
505 => 0.91501042682876
506 => 0.93712621329004
507 => 0.94574155849413
508 => 0.97167065878626
509 => 0.9507308044418
510 => 0.94620033523652
511 => 0.88330481927189
512 => 0.89360395648763
513 => 0.91009386888895
514 => 0.88357673185378
515 => 0.90039575189901
516 => 0.90371618273149
517 => 0.88267568968423
518 => 0.89391432612681
519 => 0.8640678397588
520 => 0.80218055636378
521 => 0.82489266958851
522 => 0.84161642973656
523 => 0.81774956198054
524 => 0.86052999865787
525 => 0.83553855071844
526 => 0.8276174615227
527 => 0.79671446849793
528 => 0.81129949164034
529 => 0.83102594427786
530 => 0.81883728999413
531 => 0.8441305777685
601 => 0.87995261873047
602 => 0.90548153835939
603 => 0.90744133181464
604 => 0.89102794679803
605 => 0.91733050103598
606 => 0.91752208642845
607 => 0.88785269779895
608 => 0.86968036246323
609 => 0.86555156964004
610 => 0.87586610360989
611 => 0.88838985201731
612 => 0.9081363126904
613 => 0.92006868531431
614 => 0.95118198467607
615 => 0.95960035139516
616 => 0.96884958413013
617 => 0.98120941142178
618 => 0.99605055308009
619 => 0.96357898003838
620 => 0.96486913616991
621 => 0.93463205695301
622 => 0.90231940137395
623 => 0.92684067912907
624 => 0.95889898786502
625 => 0.95154477641971
626 => 0.9507172773992
627 => 0.9521089012226
628 => 0.94656406595893
629 => 0.92148498156253
630 => 0.90889042238204
701 => 0.9251406169396
702 => 0.933776872134
703 => 0.94717095077991
704 => 0.9455198478721
705 => 0.98002155604492
706 => 0.99342787656338
707 => 0.98999796608596
708 => 0.99062915215921
709 => 1.0149006550885
710 => 1.0418955581613
711 => 1.0671798471801
712 => 1.0929001119555
713 => 1.0618933288897
714 => 1.0461499966814
715 => 1.0623930969124
716 => 1.0537742792916
717 => 1.1033005618478
718 => 1.1067296541964
719 => 1.1562523554386
720 => 1.203255295971
721 => 1.1737335911677
722 => 1.2015712291104
723 => 1.2316799041814
724 => 1.2897644233498
725 => 1.2702036007319
726 => 1.2552203171637
727 => 1.2410611865906
728 => 1.2705240896147
729 => 1.3084276436738
730 => 1.3165917061824
731 => 1.3298206063583
801 => 1.3159120353763
802 => 1.3326633771453
803 => 1.3918029745022
804 => 1.3758229332567
805 => 1.3531287057682
806 => 1.3998137380542
807 => 1.4167088697551
808 => 1.5352877520806
809 => 1.684998489266
810 => 1.6230172610176
811 => 1.584543512522
812 => 1.593585756028
813 => 1.6482550492198
814 => 1.6658130910764
815 => 1.6180842806902
816 => 1.6349429034045
817 => 1.7278355720631
818 => 1.7776695084448
819 => 1.7099883292478
820 => 1.5232586401179
821 => 1.3510853388858
822 => 1.3967534514374
823 => 1.3915761047206
824 => 1.4913776885978
825 => 1.3754418145579
826 => 1.3773938773426
827 => 1.4792592522828
828 => 1.4520833166634
829 => 1.4080617813908
830 => 1.3514067448105
831 => 1.2466746697351
901 => 1.1539105501708
902 => 1.3358423509372
903 => 1.3279971208666
904 => 1.3166360651265
905 => 1.3419188652815
906 => 1.4646849661863
907 => 1.4618548102053
908 => 1.4438508018128
909 => 1.4575066834985
910 => 1.4056678393061
911 => 1.419027889803
912 => 1.3510580657553
913 => 1.3817832648955
914 => 1.4079673309472
915 => 1.4132241698688
916 => 1.4250680963801
917 => 1.3238630411095
918 => 1.3693011397017
919 => 1.3959917656505
920 => 1.2754025466004
921 => 1.3936081045138
922 => 1.3221012862581
923 => 1.2978307981458
924 => 1.3305078129954
925 => 1.317773548529
926 => 1.306825375722
927 => 1.3007161071822
928 => 1.3247105004572
929 => 1.3235911333314
930 => 1.2843316488224
1001 => 1.2331192517018
1002 => 1.2503078131651
1003 => 1.2440630476419
1004 => 1.2214312117948
1005 => 1.2366823365774
1006 => 1.1695241014524
1007 => 1.053981848501
1008 => 1.1303125999556
1009 => 1.1273739490565
1010 => 1.125892148016
1011 => 1.1832525981071
1012 => 1.1777387143615
1013 => 1.1677309613713
1014 => 1.221247411563
1015 => 1.2017131873452
1016 => 1.2619130635423
1017 => 1.3015645954897
1018 => 1.2915076843951
1019 => 1.3288001418441
1020 => 1.2507038029052
1021 => 1.2766442740194
1022 => 1.2819905691641
1023 => 1.2205870268748
1024 => 1.1786408539337
1025 => 1.1758435224199
1026 => 1.1031146390787
1027 => 1.1419658215125
1028 => 1.1761532542831
1029 => 1.159780127038
1030 => 1.1545968840854
1031 => 1.1810769482218
1101 => 1.1831346759916
1102 => 1.1362182647717
1103 => 1.1459736723139
1104 => 1.1866553434661
1105 => 1.1449485985792
1106 => 1.0639192060223
1107 => 1.0438227963491
1108 => 1.0411415648484
1109 => 0.98663850794852
1110 => 1.0451657345382
1111 => 1.0196170316997
1112 => 1.1003250778462
1113 => 1.0542250747332
1114 => 1.0522377957379
1115 => 1.0492337320661
1116 => 1.0023206994994
1117 => 1.0125916721528
1118 => 1.0467339495658
1119 => 1.0589162987871
1120 => 1.0576455799562
1121 => 1.0465666337802
1122 => 1.0516385186062
1123 => 1.0353002104199
1124 => 1.0295308137468
1125 => 1.011321010849
1126 => 0.98455763117569
1127 => 0.98827924326861
1128 => 0.93525398511655
1129 => 0.90636301021185
1130 => 0.89836636913516
1201 => 0.88767292648477
1202 => 0.89957422193668
1203 => 0.93510377122247
1204 => 0.89224759676944
1205 => 0.81877369168082
1206 => 0.82318959857009
1207 => 0.83311083025575
1208 => 0.81462268064504
1209 => 0.79712519863127
1210 => 0.81233783962665
1211 => 0.78120597745123
1212 => 0.83687296706542
1213 => 0.8353673310013
1214 => 0.85611654230592
1215 => 0.86909144995139
1216 => 0.83918848850483
1217 => 0.83166797456722
1218 => 0.83595200109438
1219 => 0.76514658538744
1220 => 0.85033022925458
1221 => 0.85106690094407
1222 => 0.8447590706923
1223 => 0.89011673130161
1224 => 0.98583554259637
1225 => 0.94982227550701
1226 => 0.93587684998326
1227 => 0.90936658586855
1228 => 0.94468993877767
1229 => 0.94197765640439
1230 => 0.9297116869099
1231 => 0.92229319028747
]
'min_raw' => 0.69280936830749
'max_raw' => 1.7776695084448
'avg_raw' => 1.2352394383761
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$0.6928093'
'max' => '$1.77'
'avg' => '$1.23'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 0.42603326933154
'max_diff' => 1.033281464785
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.021746494415639
]
1 => [
'year' => 2028
'avg' => 0.037323297469674
]
2 => [
'year' => 2029
'avg' => 0.10196052181727
]
3 => [
'year' => 2030
'avg' => 0.078662390737858
]
4 => [
'year' => 2031
'avg' => 0.077256216227339
]
5 => [
'year' => 2032
'avg' => 0.13545446047257
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.021746494415639
'min' => '$0.021746'
'max_raw' => 0.13545446047257
'max' => '$0.135454'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.13545446047257
]
1 => [
'year' => 2033
'avg' => 0.34840280095337
]
2 => [
'year' => 2034
'avg' => 0.22083443869937
]
3 => [
'year' => 2035
'avg' => 0.26047472686725
]
4 => [
'year' => 2036
'avg' => 0.5055820713179
]
5 => [
'year' => 2037
'avg' => 1.2352394383761
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.13545446047257
'min' => '$0.135454'
'max_raw' => 1.2352394383761
'max' => '$1.23'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 1.2352394383761
]
]
]
]
'prediction_2025_max_price' => '$0.037182'
'last_price' => 0.03605317
'sma_50day_nextmonth' => '$0.033966'
'sma_200day_nextmonth' => '$0.038653'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'increase'
'sma_200day_direction_label' => 'aumentar'
'sma_200day_date_nextmonth' => '4 de fev. de 2026'
'sma_50day_date_nextmonth' => '4 de fev. de 2026'
'daily_sma3' => '$0.035883'
'daily_sma3_action' => 'BUY'
'daily_sma5' => '$0.035557'
'daily_sma5_action' => 'BUY'
'daily_sma10' => '$0.035615'
'daily_sma10_action' => 'BUY'
'daily_sma21' => '$0.035173'
'daily_sma21_action' => 'BUY'
'daily_sma50' => '$0.036255'
'daily_sma50_action' => 'SELL'
'daily_sma100' => '$0.037538'
'daily_sma100_action' => 'SELL'
'daily_sma200' => '$0.041142'
'daily_sma200_action' => 'SELL'
'daily_ema3' => '$0.035818'
'daily_ema3_action' => 'BUY'
'daily_ema5' => '$0.035693'
'daily_ema5_action' => 'BUY'
'daily_ema10' => '$0.035534'
'daily_ema10_action' => 'BUY'
'daily_ema21' => '$0.03549'
'daily_ema21_action' => 'BUY'
'daily_ema50' => '$0.036194'
'daily_ema50_action' => 'SELL'
'daily_ema100' => '$0.037011'
'daily_ema100_action' => 'SELL'
'daily_ema200' => '$0.036469'
'daily_ema200_action' => 'SELL'
'weekly_sma21' => '$0.036911'
'weekly_sma21_action' => 'SELL'
'weekly_sma50' => '$0.03170078'
'weekly_sma50_action' => 'BUY'
'weekly_sma100' => '$0.035386'
'weekly_sma100_action' => 'BUY'
'weekly_sma200' => '$0.048499'
'weekly_sma200_action' => 'SELL'
'weekly_ema3' => '$0.035966'
'weekly_ema3_action' => 'BUY'
'weekly_ema5' => '$0.036093'
'weekly_ema5_action' => 'SELL'
'weekly_ema10' => '$0.036626'
'weekly_ema10_action' => 'SELL'
'weekly_ema21' => '$0.036846'
'weekly_ema21_action' => 'SELL'
'weekly_ema50' => '$0.035494'
'weekly_ema50_action' => 'BUY'
'weekly_ema100' => '$0.0487023'
'weekly_ema100_action' => 'SELL'
'weekly_ema200' => '$0.2144068'
'weekly_ema200_action' => 'SELL'
'rsi_14' => '52.88'
'rsi_14_action' => 'NEUTRAL'
'stoch_rsi_14' => 86.57
'stoch_rsi_14_action' => 'NEUTRAL'
'momentum_10' => 0
'momentum_10_action' => 'BUY'
'vwma_10' => '0.035657'
'vwma_10_action' => 'BUY'
'hma_9' => '0.0358022'
'hma_9_action' => 'BUY'
'stochastic_fast_14' => 87.68
'stochastic_fast_14_action' => 'SELL'
'cci_20' => 99.17
'cci_20_action' => 'NEUTRAL'
'adx_14' => 7.15
'adx_14_action' => 'NEUTRAL'
'ao_5_34' => '0.000267'
'ao_5_34_action' => 'BUY'
'macd_12_26' => 0
'macd_12_26_action' => 'BUY'
'williams_percent_r_14' => -12.32
'williams_percent_r_14_action' => 'SELL'
'ultimate_oscillator' => 52.93
'ultimate_oscillator_action' => 'NEUTRAL'
'ichimoku_cloud' => '-0.0023038'
'ichimoku_cloud_action' => 'SELL'
'sell_signals' => 13
'buy_signals' => 21
'sell_pct' => 38.24
'buy_pct' => 61.76
'overall_action' => 'bullish'
'overall_action_label' => 'Altista'
'overall_action_dir' => 1
'last_updated' => 1767705829
'last_updated_date' => '6 de janeiro de 2026'
]
Previsão de preço de Grin para 2026
A previsão de preço para Grin em 2026 sugere que o preço médio poderia variar entre $0.012456 na extremidade inferior e $0.037182 na extremidade superior. No mercado de criptomoedas, comparado ao preço médio de hoje, Grin poderia potencialmente ganhar 3.13% até 2026 se GRIN atingir a meta de preço prevista.
Previsão de preço de Grin 2027-2032
A previsão de preço de GRIN para 2027-2032 está atualmente dentro de uma faixa de preço entre $0.021746 na extremidade inferior e $0.135454 na extremidade superior. Considerando a volatilidade de preços no mercado, se Grin atingir a meta de preço superior, poderia ganhar 275.71% até 2032 em comparação com o preço de hoje.
| Previsão de Preço de Grin | Potencial Mínimo ($) | Preço Médio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2027 | $0.011991 | $0.021746 | $0.0315015 |
| 2028 | $0.021641 | $0.037323 | $0.0530055 |
| 2029 | $0.047539 | $0.10196 | $0.156381 |
| 2030 | $0.040429 | $0.078662 | $0.116894 |
| 2031 | $0.04780071 | $0.077256 | $0.106711 |
| 2032 | $0.072964 | $0.135454 | $0.197944 |
Previsão de preço de Grin 2032-2037
A previsão de preço de Grin para 2032-2037 é atualmente estimada entre $0.135454 na extremidade inferior e $1.23 na extremidade superior. Comparado ao preço atual, Grin poderia potencialmente ganhar 3326.16% até 2037 se atingir a meta de preço superior. Por favor, note que esta informação é apenas para fins gerais e não deve ser considerada como aconselhamento de investimento a longo prazo.
| Previsão de Preço de Grin | Potencial Mínimo ($) | Preço Médio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2032 | $0.072964 | $0.135454 | $0.197944 |
| 2033 | $0.169552 | $0.3484028 | $0.527252 |
| 2034 | $0.136312 | $0.220834 | $0.305356 |
| 2035 | $0.161163 | $0.260474 | $0.359786 |
| 2036 | $0.266776 | $0.505582 | $0.744388 |
| 2037 | $0.6928093 | $1.23 | $1.77 |
Grin Histograma de preços potenciais
Previsão de preço de Grin baseada na análise técnica
Em 6 de janeiro de 2026, o sentimento geral de previsão de preço para Grin é Altista, com 21 indicadores técnicos mostrando sinais de alta e 13 indicando sinais de baixa. A previsão de preço de GRIN foi atualizada pela última vez em 6 de janeiro de 2026.
Médias Móveis Simples de 50 e 200 dias e Índice de Força Relativa de 14 dias - RSI (14) de Grin
De acordo com nossos indicadores técnicos, o SMA de 200 dias de Grin está projetado para aumentar no próximo mês, alcançando $0.038653 até 4 de fev. de 2026. O SMA de 50 dias de curto prazo para Grin é esperado para alcançar $0.033966 até 4 de fev. de 2026.
O oscilador de momentum Índice de Força Relativa (RSI) é uma ferramenta comumente usada para identificar se uma criptomoeda está sobrevendida (abaixo de 30) ou sobrecomprada (acima de 70). No momento, o RSI está em 52.88, sugerindo que o mercado de GRIN está em um estado NEUTRAL.
Médias Móveis e Osciladores Populares de GRIN para Sábado, 19 de Outubro de 2024
Médias móveis (MA) são indicadores amplamente utilizados nos mercados financeiros, projetados para suavizar movimentos de preços ao longo de um período definido. Como indicadores atrasados, eles se baseiam em dados históricos de preços. A tabela abaixo destaca dois tipos: a média móvel simples (SMA) e a média móvel exponencial (EMA).
Média Móvel Simples Diária (SMA)
| Período | Valor | Ação |
|---|---|---|
| SMA 3 | $0.035883 | BUY |
| SMA 5 | $0.035557 | BUY |
| SMA 10 | $0.035615 | BUY |
| SMA 21 | $0.035173 | BUY |
| SMA 50 | $0.036255 | SELL |
| SMA 100 | $0.037538 | SELL |
| SMA 200 | $0.041142 | SELL |
Média Móvel Exponencial Diária (EMA)
| Período | Valor | Ação |
|---|---|---|
| EMA 3 | $0.035818 | BUY |
| EMA 5 | $0.035693 | BUY |
| EMA 10 | $0.035534 | BUY |
| EMA 21 | $0.03549 | BUY |
| EMA 50 | $0.036194 | SELL |
| EMA 100 | $0.037011 | SELL |
| EMA 200 | $0.036469 | SELL |
Média Móvel Simples Semanal (SMA)
| Período | Valor | Ação |
|---|---|---|
| SMA 21 | $0.036911 | SELL |
| SMA 50 | $0.03170078 | BUY |
| SMA 100 | $0.035386 | BUY |
| SMA 200 | $0.048499 | SELL |
Média Móvel Exponencial Semanal (EMA)
| Período | Valor | Ação |
|---|---|---|
| EMA 21 | $0.036846 | SELL |
| EMA 50 | $0.035494 | BUY |
| EMA 100 | $0.0487023 | SELL |
| EMA 200 | $0.2144068 | SELL |
Osciladores de Grin
Um oscilador é uma ferramenta de análise técnica que define limites altos e baixos entre dois extremos, criando um indicador de tendência que flutua dentro desses limites. Os traders usam esse indicador para identificar condições de sobrecompra ou sobrevenda de curto prazo.
| Período | Valor | Ação |
|---|---|---|
| RSI (14) | 52.88 | NEUTRAL |
| Stoch RSI (14) | 86.57 | NEUTRAL |
| Estocástico Rápido (14) | 87.68 | SELL |
| Índice de Canal de Commodities (20) | 99.17 | NEUTRAL |
| Índice Direcional Médio (14) | 7.15 | NEUTRAL |
| Oscilador Impressionante (5, 34) | 0.000267 | BUY |
| Momentum (10) | 0 | BUY |
| MACD (12, 26) | 0 | BUY |
| Williams Percent Range (14) | -12.32 | SELL |
| Oscilador Ultimate (7, 14, 28) | 52.93 | NEUTRAL |
| VWMA (10) | 0.035657 | BUY |
| Média Móvel de Hull (9) | 0.0358022 | BUY |
| Nuvem Ichimoku B/L (9, 26, 52, 26) | -0.0023038 | SELL |
Previsão do preço de Grin com base nos fluxos financeiros mundiais
Definições dos fluxos financeiros mundiais, usadas na previsão do preço do Grin
M0: o total de todas as moedas físicas, mais as contas no Banco Central que podem ser trocadas por moedas físicas.
M1: o valor de M0, mais o valor em contas de demanda, incluindo contas 'correntes'.
M2: o valor de M1, mais a maioria das contas de poupança, do mercado de moedas e de certificados de depósito (CD) de menos de US$ 100.000.
Previsões de preço de Grin por empresas de Internet ou nichos tecnológicos
| Comparação | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Facebook stock | $0.05066 | $0.071186 | $0.100029 | $0.140557 | $0.1975073 | $0.27753 |
| Amazon.com stock | $0.075227 | $0.156965 | $0.327518 | $0.683386 | $1.42 | $2.97 |
| Apple stock | $0.051138 | $0.072536 | $0.102887 | $0.145937 | $0.2070014 | $0.293615 |
| Netflix stock | $0.056886 | $0.089757 | $0.141623 | $0.223459 | $0.352584 | $0.556322 |
| Google stock | $0.046688 | $0.060461 | $0.078297 | $0.101395 | $0.131306 | $0.17004 |
| Tesla stock | $0.081729 | $0.185275 | $0.4200051 | $0.952119 | $2.15 | $4.89 |
| Kodak stock | $0.027036 | $0.020274 | $0.0152034 | $0.01140098 | $0.008549 | $0.006411 |
| Nokia stock | $0.023883 | $0.015821 | $0.010481 | $0.006943 | $0.004599 | $0.003047 |
Este cálculo mostra quanto a criptomoeda pode custar, se assumirmos que sua capitalização se comportará da mesma forma que a de algumas empresas de Internet ou nichos tecnológicos. Se você extrapolar os dados, poderá obter uma imagem em potencial do preço futuro para 2024, 2025, 2026, 2027, 2028, 2029 e 2030.
Visão geral da previsão para Grin
Você pode fazer perguntas como: 'Devo investir em Grin agora?', 'Devo comprar GRIN hoje?', 'Grin será um bom ou mau investimento no curto ou no longo prazo?'.
Atualizamos a previsão para Grin regularmente com novos valores. Veja nossas previsões semelhantes. Fazemos previsões de preços futuros para uma enorme quantidade de moedas digitais, como Grin, com métodos de análise técnica.
Se você estiver tentando encontrar criptomoedas com bom retorno, você deve explorar o máximo de fontes de informações disponíveis sobre Grin para poder tomar sozinho uma decisão de tão grande responsabilidade sobre o seu investimento.
O preço de Grin é de $0.03605 USD hoje, mas o preço pode tanto subir quanto descer e seu investimento pode ser perdido, porque criptomoedas são ativos de alto risco
Previsão de curto prazo para Grin
com base no histórico de preços de 4 horas
Previsão de longo prazo para Grin
com base no histórico de preços de 1 mês
Previsão do preço de Grin com base no padrão de crescimento do Bitcoin
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| Se Grin tiver 1% da média anterior do crescimento anual do Bitcoin | $0.03699 | $0.037951 | $0.038938 | $0.03995 |
| Se Grin tiver 2% da média anterior do crescimento anual do Bitcoin | $0.037927 | $0.039899 | $0.041973 | $0.044155 |
| Se Grin tiver 5% da média anterior do crescimento anual do Bitcoin | $0.040738 | $0.046033 | $0.052016 | $0.058776 |
| Se Grin tiver 10% da média anterior do crescimento anual do Bitcoin | $0.045424 | $0.057231 | $0.0721082 | $0.090851 |
| Se Grin tiver 20% da média anterior do crescimento anual do Bitcoin | $0.054795 | $0.083282 | $0.126577 | $0.192381 |
| Se Grin tiver 50% da média anterior do crescimento anual do Bitcoin | $0.08291 | $0.190664 | $0.438464 | $1.00 |
| Se Grin tiver 100% da média anterior do crescimento anual do Bitcoin | $0.129766 | $0.467072 | $1.68 | $6.05 |
Perguntas Frequentes sobre Grin
GRIN é um bom investimento?
A decisão de adquirir Grin depende inteiramente da sua tolerância individual ao risco. Como você pode perceber, o valor de Grin experimentou uma escalada de 1.8752% nas últimas 24 horas, e Grin registrou um declínio de durante os últimos 30 dias. Consequentemente, a decisão de investir ou não em Grin dependerá de quão alinhado esse investimento está com suas aspirações de negociação.
Grin pode subir?
Parece que o valor médio de Grin pode potencialmente subir para $0.037182 até o final deste ano. Observando as perspectivas de Grin em um horizonte de cinco anos mais longo, a moeda digital poderia potencialmente crescer até $0.116894. No entanto, dada a imprevisibilidade do mercado, é vital conduzir uma pesquisa aprofundada antes de investir quaisquer fundos em um projeto, rede ou ativo específico.
Qual será o preço de Grin na próxima semana?
Com base na nossa nova previsão experimental de Grin, o preço de Grin aumentará 0.86% na próxima semana e atingirá $0.036361 até 13 de janeiro de 2026.
Qual será o preço de Grin no próximo mês?
Com base na nossa nova previsão experimental de Grin, o preço de Grin diminuirá -11.62% no próximo mês e atingirá $0.031864 até 5 de fevereiro de 2026.
Até onde o preço de Grin pode subir este ano em 2026?
De acordo com nossa previsão mais recente sobre o valor de Grin em 2026, espera-se que GRIN fluctue dentro do intervalo de $0.012456 e $0.037182. No entanto, é crucial lembrar que o mercado de criptomoedas é excepcionalmente instável, e essa previsão de preço de Grin não considera flutuações repentinas e extremas de preço.
Onde estará Grin em 5 anos?
O futuro de Grin parece seguir uma tendência de alta, com um preço máximo de $0.116894 projetada após um período de cinco anos. Com base na previsão de Grin para 2030, o valor de Grin pode potencialmente atingir seu pico mais alto de aproximadamente $0.116894, enquanto seu pico mais baixo está previsto para cerca de $0.040429.
Quanto será Grin em 2026?
Com base na nossa nova simulação experimental de previsão de preços de Grin, espera-se que o valor de GRIN em 2026 aumente 3.13% para $0.037182 se o melhor cenário ocorrer. O preço ficará entre $0.037182 e $0.012456 durante 2026.
Quanto será Grin em 2027?
De acordo com nossa última simulação experimental para previsão de preços de Grin, o valor de GRIN pode diminuir -12.62% para $0.0315015 em 2027, assumindo as condições mais favoráveis. O preço está projetado para flutuar entre $0.0315015 e $0.011991 ao longo do ano.
Quanto será Grin em 2028?
Nosso novo modelo experimental de previsão de preços de Grin sugere que o valor de GRIN em 2028 pode aumentar 47.02%, alcançando $0.0530055 no melhor cenário. O preço é esperado para variar entre $0.0530055 e $0.021641 durante o ano.
Quanto será Grin em 2029?
Com base no nosso modelo de previsão experimental, o valor de Grin pode experimentar um 333.75% crescimento em 2029, potencialmente alcançando $0.156381 sob condições ótimas. A faixa de preço prevista para 2029 está entre $0.156381 e $0.047539.
Quanto será Grin em 2030?
Usando nossa nova simulação experimental para previsões de preços de Grin, espera-se que o valor de GRIN em 2030 aumente 224.23%, alcançando $0.116894 no melhor cenário. O preço está previsto para variar entre $0.116894 e $0.040429 ao longo de 2030.
Quanto será Grin em 2031?
Nossa simulação experimental indica que o preço de Grin poderia aumentar 195.98% em 2031, potencialmente atingindo $0.106711 sob condições ideais. O preço provavelmente oscilará entre $0.106711 e $0.04780071 durante o ano.
Quanto será Grin em 2032?
Com base nos achados da nossa mais recente previsão experimental de preços de Grin, GRIN poderia ver um 449.04% aumento em valor, atingindo $0.197944 se o cenário mais positivo se desenrolar em 2032. O preço é esperado para permanecer dentro de uma faixa de $0.197944 e $0.072964 ao longo do ano.
Quanto será Grin em 2033?
De acordo com nossa previsão experimental de preços de Grin, espera-se que o valor de GRIN seja aumentar 1362.43% em 2033, com o preço potencial mais alto sendo $0.527252. Ao longo do ano, o preço de GRIN poderia variar entre $0.527252 e $0.169552.
Quanto será Grin em 2034?
Os resultados da nossa nova simulação de previsão de preços de Grin sugerem que GRIN pode aumentar 746.96% em 2034, atingindo potencialmente $0.305356 nas melhores circunstâncias. A faixa de preço prevista para o ano é entre $0.305356 e $0.136312.
Quanto será Grin em 2035?
Com base em nossa previsão experimental para o preço de Grin, GRIN poderia aumentar 897.93%, com o valor potencialmente atingindo $0.359786 em 2035. A faixa de preço esperada para o ano está entre $0.359786 e $0.161163.
Quanto será Grin em 2036?
Nossa recente simulação de previsão de preços de Grin sugere que o valor de GRIN pode aumentar 1964.7% em 2036, possivelmente atingindo $0.744388 se as condições forem ideais. A faixa de preço esperada para 2036 está entre $0.744388 e $0.266776.
Quanto será Grin em 2037?
De acordo com a simulação experimental, o valor de Grin poderia aumentar 4830.69% em 2037, com um pico de $1.77 sob condições favoráveis. O preço é esperado para cair entre $1.77 e $0.6928093 ao longo do ano.
Previsões relacionadas
Previsão de Preço do Obortech
Previsão de Preço do Kepple [OLD]
Previsão de Preço do BTU Protocol
Previsão de Preço do Pika Protocol
Previsão de Preço do Oggy Inu
Previsão de Preço do Smilek
Previsão de Preço do Wasder
Previsão de Preço do Comtech Gold
Previsão de Preço do BABB
Previsão de Preço do Ferro
Previsão de Preço do PLEARN
Previsão de Preço do Comsats
Previsão de Preço do r/FortNiteBR Bricks
Previsão de Preço do Script Network
Previsão de Preço do BitSharesPrevisão de Preço do Ispolink
Previsão de Preço do Increment Staked FLOW
Previsão de Preço do Goldcoin
Previsão de Preço do Chappyz
Previsão de Preço do SIX Network
Previsão de Preço do MindAI
Previsão de Preço do EML Protocol
Previsão de Preço do OpenOcean
Previsão de Preço do Unisocks
Previsão de Preço do Argentine Football Association Fan Token
Como ler e prever os movimentos de preço de Grin?
Traders de Grin utilizam indicadores e padrões de gráfico para prever a direção do mercado. Eles também identificam níveis-chave de suporte e resistência para avaliar quando uma tendência de baixa pode desacelerar ou uma tendência de alta pode estagnar.
Indicadores de Previsão de Preço de Grin
Médias móveis são ferramentas populares para a previsão de preço de Grin. Uma média móvel simples (SMA) calcula o preço médio de fechamento de GRIN em um período específico, como uma SMA de 12 dias. Uma média móvel exponencial (EMA) dá mais peso aos preços recentes, reagindo mais rapidamente às mudanças de preço.
Médias móveis comumente usadas no mercado de criptomoedas incluem as de 50 dias, 100 dias e 200 dias, que ajudam a identificar níveis-chave de resistência e suporte. Um movimento de preço de GRIN acima dessas médias é visto como altista, enquanto uma queda abaixo indica fraqueza.
Traders também usam RSI e níveis de retração de Fibonacci para avaliar a direção futura de GRIN.
Como ler gráficos de Grin e prever movimentos de preço?
A maioria dos traders prefere gráficos de velas em vez de gráficos de linha simples porque eles fornecem informações mais detalhadas. Velas podem representar a ação de preço de Grin em diferentes períodos de tempo, como 5 minutos para tendências de curto prazo e semanal para tendências de longo prazo. Opções populares incluem gráficos de 1 hora, 4 horas e 1 dia.
Por exemplo, um gráfico de velas de 1 hora mostra os preços de abertura, fechamento, máximo e mínimo de GRIN dentro de cada hora. A cor da vela é crucial: verde indica que o preço fechou mais alto do que abriu, enquanto vermelho significa o oposto. Alguns gráficos usam velas vazias e preenchidas para transmitir a mesma informação.
O que afeta o preço de Grin?
A ação de preço de Grin é impulsionada pela oferta e demanda, influenciada por fatores como reduções pela metade das recompensas de bloco, hard forks e atualizações de protocolo. Eventos do mundo real, como regulamentações, adoção por empresas e governos e hacks de exchanges de criptomoedas, também impactam o preço de GRIN. A capitalização de mercado de Grin pode mudar rapidamente.
Traders frequentemente monitoram a atividade de "baleias" de GRIN, grandes detentores de Grin, pois suas ações podem influenciar significativamente os movimentos de preço no relativamente pequeno mercado de Grin.
Padrões de previsão de preço altistas e baixistas
Traders frequentemente identificam padrões de velas para ganhar vantagem em previsões de preço de criptomoedas. Certas formações indicam tendências altistas, enquanto outras sugerem movimentos baixistas.
Padrões de velas altistas comumente seguidos:
- Martelo
- Engolfo de Alta
- Linha de Perfuração
- Estrela da Manhã
- Três Soldados Brancos
Padrões de velas baixistas comuns:
- Harami de Baixa
- Nuvem Negra
- Estrela da Noite
- Estrela Cadente
- Homem Enforcado


