Previsão de Preço GRELF - Projeção GRELF
Previsão de Preço GRELF até $0.142822 até 2026
| Ano | Preço Mínimo | Preço Máximo |
|---|---|---|
| 2026 | $0.047846 | $0.142822 |
| 2027 | $0.04606 | $0.12100079 |
| 2028 | $0.083125 | $0.20360001 |
| 2029 | $0.1826025 | $0.600679 |
| 2030 | $0.155295 | $0.4490053 |
| 2031 | $0.1836075 | $0.40989 |
| 2032 | $0.280263 | $0.760326 |
| 2033 | $0.65127 | $2.02 |
| 2034 | $0.52359 | $1.17 |
| 2035 | $0.619045 | $1.38 |
Calculadora de lucro do investimento
Se você abrir um short de $10,000.00 em GRELF hoje e fechar em Apr 06, 2026, nossa previsão mostra que pode lucrar cerca de $3,954.46, com um retorno de 39.54% nos próximos 90 dias.
Previsão de preço de longo prazo de GRELF para os anos 2027, 2028, 2029, 2030, 2031, 2032 e 2037
[
'name' => 'GRELF'
'name_with_ticker' => 'GRELF <small>GRELF</small>'
'name_lang' => 'GRELF'
'name_lang_with_ticker' => 'GRELF <small>GRELF</small>'
'name_with_lang' => 'GRELF'
'name_with_lang_with_ticker' => 'GRELF <small>GRELF</small>'
'image' => '/uploads/coins/grelf.png?1717108095'
'price_for_sd' => 0.1384
'ticker' => 'GRELF'
'marketcap' => '$923.44K'
'low24h' => '$0.1323'
'high24h' => '$0.1419'
'volume24h' => '$1.17K'
'current_supply' => '6.67M'
'max_supply' => '6.67M'
'algo' => null
'proof' => null
'ico_price_and_roi' => '—'
'price' => '$0.1384'
'change_24h_pct' => '2.5853%'
'ath_price' => '$1.74'
'ath_days' => 668
'ath_exchange' => null
'ath_pair' => null
'ath_date' => '9 de mar. de 2024'
'ath_pct' => '-92.08%'
'fdv' => '$923.44K'
'new_prediction' => true
'change_24h_pct_is_increased' => true
'change_30d_pct' => null
'change_30d_pct_is_increased' => false
'max_price' => '$6.82'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.139669'
'next_week_prediction_price_date' => '13 de janeiro de 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.122394'
'next_month_prediction_price_date' => '5 de fevereiro de 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.047846'
'current_year_max_price_prediction' => '$0.142822'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.155295'
'grand_prediction_max_price' => '$0.4490053'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.14110819895742
107 => 0.14163504575005
108 => 0.14282205847531
109 => 0.13267916470162
110 => 0.13723302622629
111 => 0.13990799323291
112 => 0.12782239498086
113 => 0.13966909981363
114 => 0.13250259948692
115 => 0.13007018163881
116 => 0.1333451118246
117 => 0.13206886834623
118 => 0.13097162914705
119 => 0.13035935082095
120 => 0.13276409810854
121 => 0.13265191377328
122 => 0.12871728046944
123 => 0.12358471172076
124 => 0.12530737026364
125 => 0.124681512265
126 => 0.12241332214064
127 => 0.12394180842214
128 => 0.11721112838763
129 => 0.10563134321855
130 => 0.11328130399965
131 => 0.11298678883114
201 => 0.11283828092797
202 => 0.11858701502558
203 => 0.11803440688796
204 => 0.11703141770702
205 => 0.12239490145778
206 => 0.12043715773971
207 => 0.12647046257636
208 => 0.13044438735146
209 => 0.1294364714855
210 => 0.13317396694413
211 => 0.12534705683719
212 => 0.12794684241358
213 => 0.12848265461773
214 => 0.12232871690085
215 => 0.1181248204135
216 => 0.11784446844572
217 => 0.11055549126927
218 => 0.11444920404236
219 => 0.1178755101499
220 => 0.11623457541648
221 => 0.11571510450141
222 => 0.118368968747
223 => 0.1185751967277
224 => 0.11387317691285
225 => 0.11485087572596
226 => 0.11892804230553
227 => 0.11474814158908
228 => 0.10662727727994
301 => 0.10461319065154
302 => 0.10434447436833
303 => 0.098882111692879
304 => 0.10474778155078
305 => 0.10218725946763
306 => 0.11027591804854
307 => 0.10565571964747
308 => 0.10545655212867
309 => 0.10515548121249
310 => 0.10045380001037
311 => 0.1014831693862
312 => 0.10490494996886
313 => 0.10612587982987
314 => 0.10599852684259
315 => 0.10488818137726
316 => 0.1053964918454
317 => 0.10375904672042
318 => 0.10318083076632
319 => 0.10135582216435
320 => 0.098673563690939
321 => 0.099046548182914
322 => 0.093732292295984
323 => 0.090836803639878
324 => 0.090035370541795
325 => 0.088963660708844
326 => 0.090156423019138
327 => 0.093717237676758
328 => 0.089422139730697
329 => 0.082058495568266
330 => 0.082501063129467
331 => 0.083495381039998
401 => 0.081642476191795
402 => 0.079888857255487
403 => 0.081413486645005
404 => 0.078293413540177
405 => 0.083872426968391
406 => 0.083721530290162
407 => 0.085801041492324
408 => 0.087101402522902
409 => 0.084104491344303
410 => 0.083350776287395
411 => 0.08378012663825
412 => 0.076683921728355
413 => 0.08522113015821
414 => 0.085294960291227
415 => 0.084662781868764
416 => 0.089208581800923
417 => 0.098801637528332
418 => 0.095192344083908
419 => 0.093794716570755
420 => 0.091137825646592
421 => 0.094677975052466
422 => 0.094406146813029
423 => 0.093176836426494
424 => 0.092433345669036
425 => 0.093803250186324
426 => 0.092263599339282
427 => 0.091987035740378
428 => 0.09031136123518
429 => 0.089713221675157
430 => 0.089270382957537
501 => 0.088782861041872
502 => 0.089858212904937
503 => 0.087421324108912
504 => 0.08448267511206
505 => 0.084238358244594
506 => 0.084912938596225
507 => 0.08461448700723
508 => 0.084236929373209
509 => 0.083516069028161
510 => 0.083302205162529
511 => 0.083997158973834
512 => 0.083212596639195
513 => 0.084370261101277
514 => 0.084055440424087
515 => 0.082296877712956
516 => 0.080105057471581
517 => 0.080085545673934
518 => 0.079613321598236
519 => 0.079011873238469
520 => 0.078844564064056
521 => 0.081285086610357
522 => 0.086336895242507
523 => 0.085345104328481
524 => 0.086061774906686
525 => 0.089587084836514
526 => 0.090707674853438
527 => 0.089912306602054
528 => 0.088823557483383
529 => 0.08887145691911
530 => 0.09259204224438
531 => 0.092824090587354
601 => 0.093410401888417
602 => 0.094163977601837
603 => 0.090040643804603
604 => 0.088677248268065
605 => 0.088031195824549
606 => 0.08604160435228
607 => 0.088187208180441
608 => 0.086937056713688
609 => 0.087105744857808
610 => 0.086995886482653
611 => 0.087055876584078
612 => 0.083870867520437
613 => 0.08503131742408
614 => 0.083101844386313
615 => 0.080518496582257
616 => 0.080509836294579
617 => 0.081142107009796
618 => 0.080766007647629
619 => 0.079753933934438
620 => 0.079897694228544
621 => 0.078638202780489
622 => 0.080050619294167
623 => 0.08009112234591
624 => 0.079547265053296
625 => 0.081723287568536
626 => 0.082614805768495
627 => 0.082256827247945
628 => 0.082589689041195
629 => 0.085386317718626
630 => 0.085842290218511
701 => 0.086044803083108
702 => 0.085773462672362
703 => 0.082640806279575
704 => 0.082779752911679
705 => 0.081760254717841
706 => 0.080898886176121
707 => 0.080933336400507
708 => 0.081376191801024
709 => 0.083310167308205
710 => 0.087380104748984
711 => 0.087534555899776
712 => 0.087721755200194
713 => 0.086960321566564
714 => 0.086730665896723
715 => 0.087033641004401
716 => 0.088562095520014
717 => 0.092493695505521
718 => 0.091104005487909
719 => 0.089974165871776
720 => 0.090965339817698
721 => 0.090812756357801
722 => 0.089524798401709
723 => 0.089488649711558
724 => 0.087016646608749
725 => 0.086102803346428
726 => 0.085339127516449
727 => 0.084505213446375
728 => 0.084010841232583
729 => 0.084770421641121
730 => 0.084944146667645
731 => 0.083283310829182
801 => 0.083056945041399
802 => 0.084413219438719
803 => 0.083816373643465
804 => 0.084430244344947
805 => 0.084572667613377
806 => 0.084549734186874
807 => 0.083926558629325
808 => 0.084323752146344
809 => 0.083384271069508
810 => 0.082362726503943
811 => 0.081711044715589
812 => 0.081142365922204
813 => 0.081457901968579
814 => 0.080333073577857
815 => 0.079973218337342
816 => 0.084189191919915
817 => 0.087303576934716
818 => 0.087258292543168
819 => 0.086982635455826
820 => 0.086573064939033
821 => 0.088532132885653
822 => 0.087849632785851
823 => 0.088346208633248
824 => 0.088472608027634
825 => 0.088855180925376
826 => 0.088991917853068
827 => 0.088578603887682
828 => 0.087191471737799
829 => 0.083734870304856
830 => 0.082125813006904
831 => 0.08159479729761
901 => 0.081614098710101
902 => 0.081081679588316
903 => 0.081238500881033
904 => 0.081027143542543
905 => 0.080626883876274
906 => 0.081433187062089
907 => 0.081526105993021
908 => 0.081337905194846
909 => 0.081382233295784
910 => 0.079824011068509
911 => 0.079942479320168
912 => 0.079282833040713
913 => 0.07915915731547
914 => 0.077491628962981
915 => 0.074537360774447
916 => 0.076174312128647
917 => 0.074197105082966
918 => 0.073448306815191
919 => 0.076993001352815
920 => 0.07663721233576
921 => 0.076028256196329
922 => 0.075127483148532
923 => 0.074793377662947
924 => 0.072763458497476
925 => 0.072643520043982
926 => 0.073649602794818
927 => 0.073185330222501
928 => 0.072533315697195
929 => 0.07017178518019
930 => 0.067516643003193
1001 => 0.067596785055888
1002 => 0.068441336381714
1003 => 0.070896983264818
1004 => 0.069937519544467
1005 => 0.069241417606775
1006 => 0.069111058638592
1007 => 0.07074277405038
1008 => 0.073051993213008
1009 => 0.074135427178246
1010 => 0.073061777023073
1011 => 0.071828425534241
1012 => 0.071903493924566
1013 => 0.072402890294165
1014 => 0.072455369791525
1015 => 0.071652584762877
1016 => 0.071878564046101
1017 => 0.071535280850905
1018 => 0.069428552515636
1019 => 0.069390448480559
1020 => 0.0688734233715
1021 => 0.068857768056677
1022 => 0.067978179368211
1023 => 0.067855118830385
1024 => 0.066108642102218
1025 => 0.067258178373516
1026 => 0.066487129796092
1027 => 0.065324977717942
1028 => 0.065124622261628
1029 => 0.065118599334674
1030 => 0.066311869666485
1031 => 0.067244234314933
1101 => 0.066500542516211
1102 => 0.066331218309502
1103 => 0.068139157848907
1104 => 0.067909081062783
1105 => 0.067709836049835
1106 => 0.072845227964732
1107 => 0.068780164544463
1108 => 0.067007564867518
1109 => 0.064813636159749
1110 => 0.065527990409747
1111 => 0.065678515346269
1112 => 0.060402512289458
1113 => 0.058262038506395
1114 => 0.0575275085661
1115 => 0.057104776200732
1116 => 0.057297420647969
1117 => 0.055370743190678
1118 => 0.056665502306281
1119 => 0.054997162486259
1120 => 0.054717459886185
1121 => 0.05770065815203
1122 => 0.058115752763131
1123 => 0.056344830192387
1124 => 0.057482049169126
1125 => 0.057069677759634
1126 => 0.055025761384047
1127 => 0.054947698812531
1128 => 0.053922133422396
1129 => 0.052317322175426
1130 => 0.051583880372726
1201 => 0.051201897513846
1202 => 0.051359511086117
1203 => 0.051279816840922
1204 => 0.050759757983758
1205 => 0.051309626005856
1206 => 0.049904940430551
1207 => 0.049345583316144
1208 => 0.049092934684552
1209 => 0.047846195385784
1210 => 0.049830312037607
1211 => 0.050221208013259
1212 => 0.050612874174737
1213 => 0.054022060708558
1214 => 0.053851747383589
1215 => 0.055391296895351
1216 => 0.055331472832374
1217 => 0.054892368372571
1218 => 0.053039858885839
1219 => 0.053778236149444
1220 => 0.051505625701372
1221 => 0.053208419971557
1222 => 0.052431335777033
1223 => 0.052945687023712
1224 => 0.052020837105002
1225 => 0.052532687236133
1226 => 0.050313903950371
1227 => 0.048242035337249
1228 => 0.049075815748785
1229 => 0.049982230410479
1230 => 0.051947568347194
1231 => 0.050777029285773
]
'min_raw' => 0.047846195385784
'max_raw' => 0.14282205847531
'avg_raw' => 0.095334126930546
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.047846'
'max' => '$0.142822'
'avg' => '$0.095334'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.090637804614216
'max_diff' => 0.0043380584753081
'year' => 2026
]
1 => [
'items' => [
101 => 0.051197999395242
102 => 0.049787819998065
103 => 0.046878217103857
104 => 0.046894685140256
105 => 0.046447106124127
106 => 0.046060332506585
107 => 0.050911479777866
108 => 0.050308162929392
109 => 0.049346856491507
110 => 0.050633603359416
111 => 0.05097383965471
112 => 0.050983525703721
113 => 0.051922303002803
114 => 0.052423328615609
115 => 0.052511636551435
116 => 0.053988822915168
117 => 0.054483956299731
118 => 0.05652334063685
119 => 0.052380820092834
120 => 0.052295507608291
121 => 0.050651710526636
122 => 0.049609188430046
123 => 0.050723092906506
124 => 0.051709860209524
125 => 0.050682372137344
126 => 0.050816540388113
127 => 0.049437221600071
128 => 0.049930263163815
129 => 0.050354936978382
130 => 0.050120457059151
131 => 0.049769429271106
201 => 0.051628956543623
202 => 0.051524034727361
203 => 0.053255669273876
204 => 0.054605602233259
205 => 0.057024923425854
206 => 0.054500235639315
207 => 0.054408225981649
208 => 0.055307635144153
209 => 0.054483818604875
210 => 0.055004442220518
211 => 0.056941042912564
212 => 0.056981960233532
213 => 0.056296542388335
214 => 0.056254834650164
215 => 0.056386476644984
216 => 0.057157507920405
217 => 0.056888085901375
218 => 0.057199867882728
219 => 0.057589756024585
220 => 0.059202498688451
221 => 0.059591325484794
222 => 0.05864667795326
223 => 0.058731969048587
224 => 0.058378644940639
225 => 0.058037338279498
226 => 0.058804545809907
227 => 0.06020663265123
228 => 0.060197910341758
301 => 0.060523167236271
302 => 0.06072579958698
303 => 0.059855953201794
304 => 0.059289715190176
305 => 0.059506846874491
306 => 0.059854045166224
307 => 0.059394255147904
308 => 0.056556218159376
309 => 0.057417097287191
310 => 0.057273804905484
311 => 0.057069739128984
312 => 0.057935359748983
313 => 0.057851868528488
314 => 0.055350982328579
315 => 0.055511080948992
316 => 0.05536071845595
317 => 0.055846570432241
318 => 0.054457581003725
319 => 0.05488482479695
320 => 0.055152788098899
321 => 0.055310620542338
322 => 0.055880819554759
323 => 0.055813913281864
324 => 0.055876660566895
325 => 0.056722115175358
326 => 0.060998134459976
327 => 0.061230868755133
328 => 0.060084799967211
329 => 0.060542631842779
330 => 0.059663694758513
331 => 0.060253731111547
401 => 0.060657418998995
402 => 0.058833231060336
403 => 0.058725214489491
404 => 0.057842649719223
405 => 0.058316890035741
406 => 0.057562339593076
407 => 0.057747479878652
408 => 0.057229811499941
409 => 0.058161511514875
410 => 0.059203296903115
411 => 0.059466493033537
412 => 0.058774137327457
413 => 0.05827282616779
414 => 0.057392688913578
415 => 0.058856376782471
416 => 0.059284403720415
417 => 0.058854128539183
418 => 0.058754424377993
419 => 0.058565485172699
420 => 0.058794508723569
421 => 0.059282072593787
422 => 0.059052146476483
423 => 0.059204016727739
424 => 0.058625243937874
425 => 0.059856241157141
426 => 0.061811360996952
427 => 0.061817647026931
428 => 0.06158771967024
429 => 0.061493638349736
430 => 0.06172955777086
501 => 0.061857534378898
502 => 0.062620454526591
503 => 0.063439098241144
504 => 0.067259351254729
505 => 0.066186639495504
506 => 0.069576195237025
507 => 0.072256893749841
508 => 0.073060718021095
509 => 0.072321237514396
510 => 0.069791514646929
511 => 0.069667394374371
512 => 0.073447868359812
513 => 0.072379711302247
514 => 0.072252657419097
515 => 0.070901018763307
516 => 0.071700004612583
517 => 0.071525254686931
518 => 0.071249403380231
519 => 0.072773812722813
520 => 0.075627370927167
521 => 0.075182617120519
522 => 0.074850629035392
523 => 0.073395953886642
524 => 0.074271993239647
525 => 0.07396005240547
526 => 0.075300348191637
527 => 0.074506386659099
528 => 0.072371618961974
529 => 0.072711587754028
530 => 0.072660202155031
531 => 0.073717714141158
601 => 0.073400275291984
602 => 0.072598217125018
603 => 0.075617617775446
604 => 0.075421554691996
605 => 0.075699527318067
606 => 0.075821899464653
607 => 0.077659755432761
608 => 0.078412666218063
609 => 0.078583590147885
610 => 0.079298797161712
611 => 0.078565795145842
612 => 0.081498325830902
613 => 0.083448287618558
614 => 0.085713268579036
615 => 0.089023014531783
616 => 0.090267509626877
617 => 0.090042702726992
618 => 0.092552114334757
619 => 0.097061471212823
620 => 0.090954172679497
621 => 0.097385172864769
622 => 0.095349192455579
623 => 0.090521919531114
624 => 0.090211100064588
625 => 0.093480185334827
626 => 0.10073070182642
627 => 0.098914529679953
628 => 0.10073367243342
629 => 0.098611545782043
630 => 0.098506164307114
701 => 0.10063060547864
702 => 0.10559447807318
703 => 0.1032363282715
704 => 0.099855342288731
705 => 0.10235180972444
706 => 0.10018913859447
707 => 0.095316035245134
708 => 0.09891314088734
709 => 0.096507858784067
710 => 0.097209847973632
711 => 0.102265393196
712 => 0.10165709661953
713 => 0.10244428871623
714 => 0.10105491526996
715 => 0.099757021387067
716 => 0.097334406071777
717 => 0.096617189110412
718 => 0.09681540207577
719 => 0.09661709088591
720 => 0.095261659881989
721 => 0.094968954685744
722 => 0.094481099868294
723 => 0.094632306475712
724 => 0.093714996691944
725 => 0.095446149779786
726 => 0.095767467047759
727 => 0.097027255898903
728 => 0.097158051356618
729 => 0.10066654537508
730 => 0.098734125827559
731 => 0.10003055969711
801 => 0.099914594449313
802 => 0.090626541172959
803 => 0.091906352965253
804 => 0.093897338486997
805 => 0.093000402208168
806 => 0.091732344160671
807 => 0.090708319298345
808 => 0.089156816920004
809 => 0.091340526723555
810 => 0.094211872903577
811 => 0.097230873434186
812 => 0.10085800475896
813 => 0.10004847127173
814 => 0.097163066737049
815 => 0.097292503876686
816 => 0.098092633342282
817 => 0.097056392984907
818 => 0.096750785473702
819 => 0.098050647563165
820 => 0.098059598998984
821 => 0.096867279233993
822 => 0.095542234007419
823 => 0.095536682019538
824 => 0.095300903019888
825 => 0.098653490342295
826 => 0.10049707438481
827 => 0.1007084383242
828 => 0.10048284790763
829 => 0.1005696687056
830 => 0.099496927771866
831 => 0.10194889543494
901 => 0.10419906343706
902 => 0.10359597034466
903 => 0.10269184806443
904 => 0.1019716711198
905 => 0.10342631954406
906 => 0.10336154633956
907 => 0.10417941018256
908 => 0.10414230715443
909 => 0.10386729030544
910 => 0.10359598016638
911 => 0.10467169420026
912 => 0.10436190583394
913 => 0.10405163628072
914 => 0.10342934319185
915 => 0.10351392315783
916 => 0.10260995698705
917 => 0.10219174087377
918 => 0.095902773970847
919 => 0.094222156516463
920 => 0.094750912979735
921 => 0.0949249933366
922 => 0.094193586466682
923 => 0.095242236035135
924 => 0.095078805110687
925 => 0.095714619233823
926 => 0.095317390173528
927 => 0.095333692592721
928 => 0.096501858560886
929 => 0.096840982111177
930 => 0.096668501136436
1001 => 0.096789300898843
1002 => 0.099573080437112
1003 => 0.099177316007029
1004 => 0.098967074041425
1005 => 0.099025312502716
1006 => 0.099736627859651
1007 => 0.099935757323214
1008 => 0.099092031793518
1009 => 0.099489937630842
1010 => 0.1011841701844
1011 => 0.10177705569288
1012 => 0.10366926163478
1013 => 0.10286541891938
1014 => 0.10434090701299
1015 => 0.10887605438179
1016 => 0.11249904390831
1017 => 0.10916719301335
1018 => 0.11582035189388
1019 => 0.12100079042132
1020 => 0.12080195656217
1021 => 0.11989862727921
1022 => 0.11400083574479
1023 => 0.1085736000437
1024 => 0.11311371316026
1025 => 0.11312528684228
1026 => 0.11273528709914
1027 => 0.11031303218933
1028 => 0.11265099787882
1029 => 0.11283657710501
1030 => 0.11273270208784
1031 => 0.11087556492777
1101 => 0.10804005974065
1102 => 0.10859411066697
1103 => 0.10950165738662
1104 => 0.10778348211225
1105 => 0.10723442100418
1106 => 0.10825523006723
1107 => 0.11154448956242
1108 => 0.11092267410824
1109 => 0.11090643599378
1110 => 0.11356682619756
1111 => 0.11166256095979
1112 => 0.10860109902347
1113 => 0.10782803950883
1114 => 0.10508419902714
1115 => 0.10697937942107
1116 => 0.10704758358952
1117 => 0.10600961265604
1118 => 0.10868532464414
1119 => 0.10866066748712
1120 => 0.11120085779265
1121 => 0.11605674760491
1122 => 0.1146206220436
1123 => 0.11295056426581
1124 => 0.11313214585194
1125 => 0.11512364767018
1126 => 0.11391954020931
1127 => 0.11435254564757
1128 => 0.11512299226459
1129 => 0.11558782183775
1130 => 0.11306526402968
1201 => 0.11247713513673
1202 => 0.11127402982695
1203 => 0.11096016210865
1204 => 0.11194006627985
1205 => 0.11168189615126
1206 => 0.10704185129326
1207 => 0.10655694078863
1208 => 0.10657181230152
1209 => 0.10535248178139
1210 => 0.10349271006535
1211 => 0.10838007909391
1212 => 0.10798755496223
1213 => 0.10755423869982
1214 => 0.10760731746949
1215 => 0.10972875871649
1216 => 0.10849821565788
1217 => 0.11176981606123
1218 => 0.11109727337161
1219 => 0.11040748249974
1220 => 0.1103121323897
1221 => 0.11004662175422
1222 => 0.10913608699301
1223 => 0.10803656155419
1224 => 0.10731055962022
1225 => 0.098988318834933
1226 => 0.10053287831643
1227 => 0.10230975320888
1228 => 0.10292312330137
1229 => 0.10187391131424
1230 => 0.10917751627729
1231 => 0.11051195528332
]
'min_raw' => 0.046060332506585
'max_raw' => 0.12100079042132
'avg_raw' => 0.083530561463954
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.04606'
'max' => '$0.12100079'
'avg' => '$0.08353'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -0.0017858628791993
'max_diff' => -0.021821268053985
'year' => 2027
]
2 => [
'items' => [
101 => 0.10646985249073
102 => 0.10571374009621
103 => 0.10922708687999
104 => 0.1071081092802
105 => 0.10806228476364
106 => 0.10599987927452
107 => 0.1101905280037
108 => 0.11015860228164
109 => 0.1085283452759
110 => 0.10990622733364
111 => 0.10966678641809
112 => 0.10782623027375
113 => 0.11024887691642
114 => 0.11025007851893
115 => 0.10868099159574
116 => 0.10684864158676
117 => 0.10652106068332
118 => 0.10627427247689
119 => 0.10800158999325
120 => 0.10955029747723
121 => 0.11243205814778
122 => 0.1131566012493
123 => 0.1159845412101
124 => 0.11430064065334
125 => 0.11504709195999
126 => 0.11585747044534
127 => 0.1162459956919
128 => 0.11561291465204
129 => 0.12000586943769
130 => 0.12037676941826
131 => 0.12050112897347
201 => 0.11901984933643
202 => 0.12033557235193
203 => 0.11971998912514
204 => 0.1213215656673
205 => 0.12157271331907
206 => 0.12136000019286
207 => 0.12143971842163
208 => 0.11769110648241
209 => 0.11749672117785
210 => 0.11484626375734
211 => 0.11592634474739
212 => 0.11390718510611
213 => 0.11454748142801
214 => 0.11482971794574
215 => 0.11468229360566
216 => 0.11598741090603
217 => 0.11487779458286
218 => 0.11194933466822
219 => 0.10902007689664
220 => 0.10898330245144
221 => 0.10821208058588
222 => 0.1076546284334
223 => 0.10776201349465
224 => 0.10814045245692
225 => 0.10763263287295
226 => 0.1077410019283
227 => 0.1095406503063
228 => 0.109901556954
229 => 0.10867505514978
301 => 0.10375047342246
302 => 0.10254196871419
303 => 0.1034106179328
304 => 0.10299545955448
305 => 0.083125374326499
306 => 0.087793556113674
307 => 0.085019881012209
308 => 0.086298118109619
309 => 0.08346691407071
310 => 0.084818113034195
311 => 0.084568595923525
312 => 0.09207489409576
313 => 0.091957693574376
314 => 0.092013791261848
315 => 0.08933610247702
316 => 0.093601733418425
317 => 0.095703136607289
318 => 0.095314222804065
319 => 0.095412104029517
320 => 0.093730180280229
321 => 0.092030075960245
322 => 0.090144398625203
323 => 0.093647754036948
324 => 0.093258240719433
325 => 0.094151644127344
326 => 0.096423820536877
327 => 0.09675840714434
328 => 0.097208094937812
329 => 0.097046913874809
330 => 0.10088690071171
331 => 0.10042185296871
401 => 0.10154248422597
402 => 0.099237260707293
403 => 0.096628681482086
404 => 0.097124487111918
405 => 0.097076737042748
406 => 0.096468823857237
407 => 0.095920027014993
408 => 0.095006434895208
409 => 0.097897175548401
410 => 0.097779816756993
411 => 0.099679719175206
412 => 0.099343892968119
413 => 0.097101163366583
414 => 0.097181262893053
415 => 0.097719970703086
416 => 0.099584444584468
417 => 0.10013794737552
418 => 0.099881542829434
419 => 0.10048843337146
420 => 0.10096809491097
421 => 0.10054867147583
422 => 0.10648682283163
423 => 0.10402088838224
424 => 0.10522276767501
425 => 0.10550940880445
426 => 0.1047751835788
427 => 0.10493441073961
428 => 0.10517559650143
429 => 0.10664002921821
430 => 0.11048312440406
501 => 0.11218520510104
502 => 0.11730599885707
503 => 0.11204387099326
504 => 0.11173163810267
505 => 0.11265404769129
506 => 0.11566049571715
507 => 0.11809693946081
508 => 0.1189052484124
509 => 0.11901207978407
510 => 0.12052852111261
511 => 0.12139771700217
512 => 0.12034438524896
513 => 0.11945179687654
514 => 0.11625465611871
515 => 0.11662473386695
516 => 0.11917420256391
517 => 0.12277547726133
518 => 0.12586574560049
519 => 0.12478364133484
520 => 0.13303933303517
521 => 0.13385785114578
522 => 0.13374475840875
523 => 0.13560946447655
524 => 0.13190840267276
525 => 0.13032612704694
526 => 0.11964478461397
527 => 0.12264580615134
528 => 0.12700796719972
529 => 0.1264306188277
530 => 0.12326270087347
531 => 0.12586334245064
601 => 0.12500348901565
602 => 0.12432528693611
603 => 0.1274322621384
604 => 0.12401601527598
605 => 0.12697388752397
606 => 0.12318038577065
607 => 0.12478858429597
608 => 0.12387569303319
609 => 0.12446644555996
610 => 0.12101291835954
611 => 0.12287635780725
612 => 0.1209353931521
613 => 0.12093447288213
614 => 0.12089162597979
615 => 0.12317516228902
616 => 0.12324962832609
617 => 0.12156209154333
618 => 0.12131889112866
619 => 0.1222181305282
620 => 0.1211653567025
621 => 0.12165794294947
622 => 0.12118027663812
623 => 0.12107274389024
624 => 0.12021590465997
625 => 0.11984675476029
626 => 0.11999150794777
627 => 0.11949739069349
628 => 0.11919966717479
629 => 0.12083240127833
630 => 0.11996009731111
701 => 0.12069870818475
702 => 0.11985696787412
703 => 0.11693912922866
704 => 0.11526104936808
705 => 0.1097495226506
706 => 0.11131258479065
707 => 0.11234889660661
708 => 0.11200639555762
709 => 0.11274222034116
710 => 0.11278739400675
711 => 0.11254816986877
712 => 0.11227117896351
713 => 0.11213635510938
714 => 0.11314122165892
715 => 0.11372458051319
716 => 0.1124529043614
717 => 0.11215496843168
718 => 0.1134407032323
719 => 0.11422500071793
720 => 0.12001581269315
721 => 0.11958681063795
722 => 0.1206635216091
723 => 0.12054230047723
724 => 0.1216708651085
725 => 0.12351559131364
726 => 0.11976474714504
727 => 0.12041576399827
728 => 0.12025614970004
729 => 0.12199877675509
730 => 0.12200421704654
731 => 0.12095942507636
801 => 0.12152582375321
802 => 0.12120967555013
803 => 0.12178099808309
804 => 0.11958108105395
805 => 0.12226034252908
806 => 0.12377931113767
807 => 0.12380040201828
808 => 0.12452038108347
809 => 0.12525192151209
810 => 0.12665604966107
811 => 0.1252127611401
812 => 0.1226164255922
813 => 0.12280387263264
814 => 0.12128164205087
815 => 0.12130723102196
816 => 0.12117063508882
817 => 0.12158056976663
818 => 0.11967103866311
819 => 0.12011920179639
820 => 0.11949177078535
821 => 0.12041440008579
822 => 0.11942180347461
823 => 0.12025607272919
824 => 0.120616115683
825 => 0.12194468193374
826 => 0.11922557315915
827 => 0.11368112630027
828 => 0.11484663624993
829 => 0.11312275548556
830 => 0.11328230721358
831 => 0.11360462709665
901 => 0.11255988289912
902 => 0.11275918716833
903 => 0.11275206661735
904 => 0.11269070555585
905 => 0.11241892724014
906 => 0.11202479491265
907 => 0.11359489679782
908 => 0.11386168770355
909 => 0.11445473083859
910 => 0.11621922494348
911 => 0.11604291037276
912 => 0.11633048675282
913 => 0.11570270912983
914 => 0.113311428017
915 => 0.11344128608623
916 => 0.11182195388213
917 => 0.11441332087338
918 => 0.11379965096548
919 => 0.11340401398369
920 => 0.11329606076766
921 => 0.11506492871214
922 => 0.11559420172474
923 => 0.11526439430148
924 => 0.11458794965436
925 => 0.11588692334974
926 => 0.11623447391133
927 => 0.1163122776649
928 => 0.11861380999962
929 => 0.11644090775557
930 => 0.11696394692251
1001 => 0.12104454919481
1002 => 0.11734400601845
1003 => 0.11930426627093
1004 => 0.11920832173227
1005 => 0.12021112454585
1006 => 0.11912606263194
1007 => 0.1191395132748
1008 => 0.1200299342375
1009 => 0.11877949858365
1010 => 0.11846987313083
1011 => 0.11804212778536
1012 => 0.11897609409846
1013 => 0.1195359646635
1014 => 0.12404811023813
1015 => 0.12696316205818
1016 => 0.12683661197077
1017 => 0.12799304287786
1018 => 0.12747206016252
1019 => 0.12578966954639
1020 => 0.12866130518244
1021 => 0.12775259951286
1022 => 0.12782751210418
1023 => 0.12782472385379
1024 => 0.12842893368364
1025 => 0.12800079564417
1026 => 0.12715689162092
1027 => 0.12771711449491
1028 => 0.1293807761473
1029 => 0.1345448329637
1030 => 0.13743470757281
1031 => 0.1343708588836
1101 => 0.13648426068285
1102 => 0.13521697268536
1103 => 0.13498666875766
1104 => 0.13631404126675
1105 => 0.13764373716571
1106 => 0.13755904128538
1107 => 0.13659375034338
1108 => 0.13604848198359
1109 => 0.1401774366822
1110 => 0.14321958016922
1111 => 0.14301212637819
1112 => 0.1439277599442
1113 => 0.14661608841346
1114 => 0.14686187547746
1115 => 0.14683091195675
1116 => 0.1462217030734
1117 => 0.14886871157495
1118 => 0.15107689263663
1119 => 0.14608068881864
1120 => 0.14798317782742
1121 => 0.14883726643783
1122 => 0.15009132191458
1123 => 0.15220712370797
1124 => 0.1545054456443
1125 => 0.15483045356591
1126 => 0.15459984489247
1127 => 0.15308403979325
1128 => 0.15559889108066
1129 => 0.15707203198431
1130 => 0.1579492536802
1201 => 0.16017374194521
1202 => 0.14884254099832
1203 => 0.14082175377089
1204 => 0.13956919202375
1205 => 0.14211632559111
1206 => 0.14278798439981
1207 => 0.14251723957621
1208 => 0.13348911433367
1209 => 0.13952166081276
1210 => 0.14601217359336
1211 => 0.14626150062271
1212 => 0.1495107870309
1213 => 0.15056888787815
1214 => 0.15318498933045
1215 => 0.15302135147232
1216 => 0.15365833054469
1217 => 0.15351190008689
1218 => 0.15835767714211
1219 => 0.16370328883888
1220 => 0.16351818730383
1221 => 0.16274969237601
1222 => 0.16389103839168
1223 => 0.16940828253331
1224 => 0.16890034310478
1225 => 0.16939376299342
1226 => 0.17589890477465
1227 => 0.18435651443589
1228 => 0.18042710561812
1229 => 0.18895279209575
1230 => 0.1943192598062
1231 => 0.2036000108083
]
'min_raw' => 0.083125374326499
'max_raw' => 0.2036000108083
'avg_raw' => 0.1433626925674
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.083125'
'max' => '$0.20360001'
'avg' => '$0.143362'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 0.037065041819915
'max_diff' => 0.082599220386981
'year' => 2028
]
3 => [
'items' => [
101 => 0.20243801507418
102 => 0.206050943334
103 => 0.20035780019427
104 => 0.18728519277137
105 => 0.18521640260677
106 => 0.18935817290642
107 => 0.19954031104006
108 => 0.18903750114143
109 => 0.19116220590504
110 => 0.19055029079018
111 => 0.19051768443418
112 => 0.19176213642302
113 => 0.18995699390696
114 => 0.18260251855758
115 => 0.18597303127001
116 => 0.18467151444643
117 => 0.1861156443967
118 => 0.19390901813381
119 => 0.19046338183381
120 => 0.18683368389252
121 => 0.19138613060535
122 => 0.1971829596612
123 => 0.19682020451679
124 => 0.19611630791674
125 => 0.20008413619637
126 => 0.20663782604972
127 => 0.20840926208222
128 => 0.209716899946
129 => 0.20989720111469
130 => 0.21175441520877
131 => 0.20176770694668
201 => 0.21761686943547
202 => 0.22035358197301
203 => 0.21983919344107
204 => 0.22288093424807
205 => 0.22198597694113
206 => 0.22068932421788
207 => 0.2255111303938
208 => 0.2199833187128
209 => 0.21213728596376
210 => 0.2078327972207
211 => 0.21350129523076
212 => 0.21696284916219
213 => 0.21925071611468
214 => 0.21994302327214
215 => 0.20254294668056
216 => 0.19316527045019
217 => 0.19917625339858
218 => 0.2065100674515
219 => 0.20172696723933
220 => 0.20191445571204
221 => 0.19509501178611
222 => 0.2071134369209
223 => 0.20536245346962
224 => 0.21444655871226
225 => 0.21227856409161
226 => 0.21968629927405
227 => 0.21773559434027
228 => 0.22583286145793
301 => 0.22906308053592
302 => 0.23448712111132
303 => 0.23847706743841
304 => 0.24082004023718
305 => 0.24067937693861
306 => 0.24996340243177
307 => 0.2444889369576
308 => 0.2376117180896
309 => 0.23748733089762
310 => 0.24104914000031
311 => 0.24851371474492
312 => 0.25044917037106
313 => 0.25153082602635
314 => 0.24987423273756
315 => 0.24393209282383
316 => 0.24136630693641
317 => 0.24355243085046
318 => 0.24087898915935
319 => 0.24549409955347
320 => 0.25183163185899
321 => 0.25052295649922
322 => 0.25489766201935
323 => 0.25942502200026
324 => 0.2658993501094
325 => 0.26759197922081
326 => 0.27038983077705
327 => 0.27326973907477
328 => 0.2741946880043
329 => 0.27596070250555
330 => 0.2759513947374
331 => 0.28127339830344
401 => 0.2871437330455
402 => 0.28935964851206
403 => 0.29445502394114
404 => 0.2857293720821
405 => 0.29234787925025
406 => 0.2983179383879
407 => 0.29120018776734
408 => 0.30101034877458
409 => 0.30139125509619
410 => 0.30714248831966
411 => 0.30131251164471
412 => 0.29785069010506
413 => 0.30784483917725
414 => 0.31268069310054
415 => 0.31122409454336
416 => 0.30013930760209
417 => 0.2936874861534
418 => 0.27680182495874
419 => 0.29680362005009
420 => 0.30654591097872
421 => 0.30011407742215
422 => 0.30335792015067
423 => 0.32105527425793
424 => 0.32779328088315
425 => 0.32639182260733
426 => 0.32662864598598
427 => 0.33026435205748
428 => 0.34638707499841
429 => 0.33672596569041
430 => 0.34411152176151
501 => 0.34802879407102
502 => 0.35166737490406
503 => 0.34273217036341
504 => 0.33110760054026
505 => 0.32742561131102
506 => 0.29947455833254
507 => 0.29801958463974
508 => 0.29720286381575
509 => 0.29205355454799
510 => 0.28800760797804
511 => 0.28479012104925
512 => 0.27634647452518
513 => 0.27919595736121
514 => 0.26573854712783
515 => 0.27434812129381
516 => 0.2528697696208
517 => 0.27075757912675
518 => 0.26102205767156
519 => 0.26755919849271
520 => 0.26753639102422
521 => 0.2554994421701
522 => 0.24855678127575
523 => 0.25298091501003
524 => 0.25772393756135
525 => 0.25849347701286
526 => 0.26464292955621
527 => 0.26635910957901
528 => 0.26115900398912
529 => 0.25242467852258
530 => 0.2544534631197
531 => 0.24851566802065
601 => 0.23810991050354
602 => 0.24558350721942
603 => 0.24813532172908
604 => 0.2492623483902
605 => 0.23902948098146
606 => 0.23581409187527
607 => 0.23410224569486
608 => 0.25110374383895
609 => 0.252035124286
610 => 0.24727005023499
611 => 0.26880863678841
612 => 0.26393379130006
613 => 0.26938018807668
614 => 0.25426937218223
615 => 0.25484662569881
616 => 0.2476929232928
617 => 0.2516985186296
618 => 0.24886749295191
619 => 0.25137490611045
620 => 0.25287783921922
621 => 0.26003036777305
622 => 0.27083924951357
623 => 0.25896201852292
624 => 0.25378693889521
625 => 0.25699752919049
626 => 0.26554775423345
627 => 0.27850178285151
628 => 0.2708327371855
629 => 0.27423612942323
630 => 0.27497961922079
701 => 0.26932474887018
702 => 0.27871028598736
703 => 0.28374007157642
704 => 0.28889959082332
705 => 0.29337945681896
706 => 0.28683876537585
707 => 0.29383824279127
708 => 0.28819789956853
709 => 0.28313792860977
710 => 0.28314560249705
711 => 0.27997140880024
712 => 0.27382100853853
713 => 0.2726867803662
714 => 0.27858717855589
715 => 0.28331873913422
716 => 0.2837084531261
717 => 0.28632808817863
718 => 0.28787836121833
719 => 0.30307314450139
720 => 0.30918461203567
721 => 0.31665759885244
722 => 0.31956874837203
723 => 0.32833026472112
724 => 0.32125462869366
725 => 0.31972377033128
726 => 0.29847119753853
727 => 0.30195130514275
728 => 0.30752329319755
729 => 0.29856307756926
730 => 0.30424627202807
731 => 0.30536825500075
801 => 0.29825861287088
802 => 0.30205617992195
803 => 0.29197096773447
804 => 0.27105907957955
805 => 0.27873356689685
806 => 0.28438457276689
807 => 0.27631989062635
808 => 0.29077552121696
809 => 0.28233084025071
810 => 0.27965428180058
811 => 0.26921207302465
812 => 0.27414039360941
813 => 0.28080601776706
814 => 0.27668743699962
815 => 0.28523411050008
816 => 0.29733847949131
817 => 0.30596477366209
818 => 0.3066269934154
819 => 0.30108086418041
820 => 0.3099685716744
821 => 0.31003330892057
822 => 0.30000793855999
823 => 0.29386745503563
824 => 0.29247232425921
825 => 0.29595763447021
826 => 0.30018944449013
827 => 0.3068618294196
828 => 0.31089381188911
829 => 0.32140708377133
830 => 0.32425167370353
831 => 0.32737701561324
901 => 0.33155343622436
902 => 0.33656829998028
903 => 0.32559606357868
904 => 0.32603201098573
905 => 0.31581481636952
906 => 0.30489627862817
907 => 0.31318208775891
908 => 0.32401468098235
909 => 0.32152967212794
910 => 0.32125005786769
911 => 0.3217202914949
912 => 0.31984667597148
913 => 0.31137238239847
914 => 0.30711664521799
915 => 0.31260763193515
916 => 0.31552584699963
917 => 0.32005174406952
918 => 0.31949383172556
919 => 0.33115205653176
920 => 0.33568209016503
921 => 0.33452311371057
922 => 0.33473639327051
923 => 0.34293780278094
924 => 0.35205945690504
925 => 0.36060308970054
926 => 0.36929403993768
927 => 0.35881676021324
928 => 0.35349704371795
929 => 0.35898563324209
930 => 0.35607331038309
1001 => 0.37280838138197
1002 => 0.37396708138836
1003 => 0.39070094225113
1004 => 0.40658336884099
1005 => 0.39660790126313
1006 => 0.40601431788412
1007 => 0.41618812437613
1008 => 0.43581504773982
1009 => 0.42920539043441
1010 => 0.42414249652501
1011 => 0.41935808624435
1012 => 0.42931368453466
1013 => 0.44212140269058
1014 => 0.44488006251057
1015 => 0.4493501453081
1016 => 0.44465039982221
1017 => 0.45031072559998
1018 => 0.47029416286869
1019 => 0.46489446172
1020 => 0.4572260180436
1021 => 0.47300102253753
1022 => 0.4787099353401
1023 => 0.51877807516942
1024 => 0.56936575683624
1025 => 0.54842212444955
1026 => 0.53542173598034
1027 => 0.53847713564394
1028 => 0.55695004448757
1029 => 0.56288295650732
1030 => 0.54675525644021
1031 => 0.55245183275292
1101 => 0.58384052831098
1102 => 0.60067955640795
1103 => 0.57780989446906
1104 => 0.51471340420362
1105 => 0.4565355585928
1106 => 0.47196694303132
1107 => 0.4702175029276
1108 => 0.50394074048521
1109 => 0.46476568063341
1110 => 0.46542528817127
1111 => 0.49984588656805
1112 => 0.49066306103424
1113 => 0.4757880597169
1114 => 0.45664416256407
1115 => 0.42125489808093
1116 => 0.38990963962555
1117 => 0.45138490983844
1118 => 0.44873398440134
1119 => 0.44489505152327
1120 => 0.45343818122748
1121 => 0.49492119406147
1122 => 0.49396487634824
1123 => 0.48788127097424
1124 => 0.49249563203198
1125 => 0.47497913991336
1126 => 0.47949353877544
1127 => 0.45652634292481
1128 => 0.46690847464412
1129 => 0.47575614464477
1130 => 0.47753244538939
1201 => 0.48153454166719
1202 => 0.44733706715497
1203 => 0.46269072922585
1204 => 0.47170956724892
1205 => 0.43096212895259
1206 => 0.4709041214068
1207 => 0.44674176520622
1208 => 0.43854069860533
1209 => 0.44958235437506
1210 => 0.44527941038324
1211 => 0.44157999181641
1212 => 0.43951565269205
1213 => 0.44762342606626
1214 => 0.44724518874747
1215 => 0.43397929785626
1216 => 0.41667448397556
1217 => 0.42248254752508
1218 => 0.42037242358665
1219 => 0.4127250622224
1220 => 0.41787846043597
1221 => 0.39518550277853
1222 => 0.35614344860621
1223 => 0.38193582548291
1224 => 0.38094284702986
1225 => 0.38044214226585
1226 => 0.39982440063975
1227 => 0.39796124372188
1228 => 0.39457959567187
1229 => 0.41266295560404
1230 => 0.40606228597328
1231 => 0.42640399446191
]
'min_raw' => 0.18260251855758
'max_raw' => 0.60067955640795
'avg_raw' => 0.39164103748277
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.1826025'
'max' => '$0.600679'
'avg' => '$0.391641'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072435
'min_diff' => 0.099477144231085
'max_diff' => 0.39707954559965
'year' => 2029
]
4 => [
'items' => [
101 => 0.43980235929175
102 => 0.4364041005792
103 => 0.44900532746158
104 => 0.42261635357862
105 => 0.43138171216067
106 => 0.43318824041617
107 => 0.41243980974948
108 => 0.3982660792357
109 => 0.39732085300279
110 => 0.37274555755226
111 => 0.38587348201708
112 => 0.39742551227569
113 => 0.39189298625558
114 => 0.39014155379712
115 => 0.39908924238801
116 => 0.39978455442329
117 => 0.38393136633299
118 => 0.38722774614214
119 => 0.40097419792384
120 => 0.386881370827
121 => 0.35950130982808
122 => 0.35271067614139
123 => 0.35180468043137
124 => 0.33338794330112
125 => 0.35316445875501
126 => 0.34453147978172
127 => 0.37180295691937
128 => 0.35622563543821
129 => 0.35555412824316
130 => 0.35453904662915
131 => 0.3386870001953
201 => 0.34215759091421
202 => 0.35369436304974
203 => 0.35781081331874
204 => 0.3573814338306
205 => 0.35363782657241
206 => 0.35535163080484
207 => 0.34983087024321
208 => 0.34788137478421
209 => 0.34172823086462
210 => 0.33268480915222
211 => 0.33394235240786
212 => 0.31602496765558
213 => 0.30626262549495
214 => 0.30356053785049
215 => 0.29994719332431
216 => 0.30396867472947
217 => 0.31597420995578
218 => 0.30149298735647
219 => 0.27666594694961
220 => 0.27815809438129
221 => 0.2815105066377
222 => 0.2752633085763
223 => 0.26935085989877
224 => 0.27449125433176
225 => 0.26397171002228
226 => 0.28278174330978
227 => 0.28227298462386
228 => 0.28928420182879
301 => 0.29366845983169
302 => 0.28356416455539
303 => 0.28102296161832
304 => 0.28247054630251
305 => 0.25854519600759
306 => 0.28732899027771
307 => 0.28757791372583
308 => 0.28544648003721
309 => 0.3007729618861
310 => 0.33311661903682
311 => 0.32094763419612
312 => 0.31623543545629
313 => 0.30727754220727
314 => 0.31921340309452
315 => 0.31829691520681
316 => 0.3141522094109
317 => 0.31164547841327
318 => 0.31626420713698
319 => 0.31107316681119
320 => 0.31014071332843
321 => 0.3044910597423
322 => 0.30247439045491
323 => 0.30098132880044
324 => 0.29933761462408
325 => 0.30296323850908
326 => 0.29474709779514
327 => 0.28483923753233
328 => 0.28401550615601
329 => 0.28628990090923
330 => 0.2852836505397
331 => 0.28401068861637
401 => 0.28158025763418
402 => 0.2808592006797
403 => 0.28320228597465
404 => 0.28055707928702
405 => 0.28446022584648
406 => 0.28339878595325
407 => 0.27746966899375
408 => 0.27007979402195
409 => 0.27001400863391
410 => 0.26842187219306
411 => 0.26639404705633
412 => 0.26582995249364
413 => 0.27405834465034
414 => 0.29109087015965
415 => 0.28774697784838
416 => 0.29016328273914
417 => 0.30204911129683
418 => 0.30582725877599
419 => 0.30314561918561
420 => 0.29947482551797
421 => 0.29963632180976
422 => 0.31218053499688
423 => 0.31296290218631
424 => 0.31493969167279
425 => 0.31748042480357
426 => 0.30357831702422
427 => 0.29898153378355
428 => 0.29680332286429
429 => 0.29009527630669
430 => 0.29732932941461
501 => 0.29311435646167
502 => 0.293683100317
503 => 0.2933127051351
504 => 0.29351496595043
505 => 0.28277648552213
506 => 0.28668902339229
507 => 0.28018367033395
508 => 0.27147373284899
509 => 0.27144453408444
510 => 0.27357627894453
511 => 0.27230823368656
512 => 0.26889595650181
513 => 0.26938065437041
514 => 0.26513419101841
515 => 0.26989625190604
516 => 0.27003281077283
517 => 0.26819915793988
518 => 0.27553576977505
519 => 0.27854158563003
520 => 0.27733463605473
521 => 0.27845690283034
522 => 0.28788593167068
523 => 0.28942327478902
524 => 0.29010606105101
525 => 0.2891912179118
526 => 0.27862924816843
527 => 0.27909771643951
528 => 0.2756604070999
529 => 0.27275624292266
530 => 0.27287239425941
531 => 0.27436551216143
601 => 0.28088604560975
602 => 0.29460812384529
603 => 0.29512886668362
604 => 0.29576002219482
605 => 0.29319279553744
606 => 0.29241849541252
607 => 0.29343999714111
608 => 0.29859328825378
609 => 0.31184895210047
610 => 0.30716351518103
611 => 0.30335418203235
612 => 0.30669599419258
613 => 0.3061815484045
614 => 0.30183910823318
615 => 0.30171723040052
616 => 0.29338269934966
617 => 0.29030161298824
618 => 0.28772682660932
619 => 0.28491522710005
620 => 0.28324841666528
621 => 0.28580939504488
622 => 0.2863951211009
623 => 0.28079549711567
624 => 0.2800322890578
625 => 0.28460506288042
626 => 0.28259275561128
627 => 0.28466246354041
628 => 0.28514265353359
629 => 0.28506533188498
630 => 0.28296425198397
701 => 0.28430341765777
702 => 0.28113589161474
703 => 0.27769168278998
704 => 0.27549449214157
705 => 0.27357715188579
706 => 0.27464100369617
707 => 0.27084856624383
708 => 0.26963528917615
709 => 0.28384973845967
710 => 0.29435010497649
711 => 0.29419742548873
712 => 0.29326802837299
713 => 0.29188713278032
714 => 0.29849226714011
715 => 0.29619117040299
716 => 0.29786541054231
717 => 0.29829157492541
718 => 0.29958144616053
719 => 0.30004246425891
720 => 0.29864894736795
721 => 0.29397213447815
722 => 0.28231796141477
723 => 0.27689291239394
724 => 0.27510255585572
725 => 0.27516763191551
726 => 0.2733725436741
727 => 0.27390127761141
728 => 0.27318867158819
729 => 0.27183916817813
730 => 0.2745576756634
731 => 0.27487095832642
801 => 0.27423642619562
802 => 0.27438588148282
803 => 0.26913222645196
804 => 0.26953165043362
805 => 0.2673076069474
806 => 0.26689062560498
807 => 0.26126843734145
808 => 0.25130791588339
809 => 0.25682701166237
810 => 0.25016072006367
811 => 0.24763609442444
812 => 0.25958727954071
813 => 0.25838771202931
814 => 0.25633457388926
815 => 0.25329755466865
816 => 0.2521710946975
817 => 0.24532708050668
818 => 0.24492269963689
819 => 0.24831477787379
820 => 0.24674945048175
821 => 0.24455113798748
822 => 0.2365890729726
823 => 0.22763707574675
824 => 0.22790728027275
825 => 0.23075474403246
826 => 0.23903412894664
827 => 0.23579923002586
828 => 0.23345227374264
829 => 0.23301275938004
830 => 0.23851420181362
831 => 0.24629989544495
901 => 0.24995276870169
902 => 0.24633288224367
903 => 0.24217455158922
904 => 0.24242764990831
905 => 0.24411139963515
906 => 0.2442883379245
907 => 0.24158169215176
908 => 0.24234359708252
909 => 0.24118619382264
910 => 0.23408321215321
911 => 0.23395474173861
912 => 0.23221155548588
913 => 0.23215877249893
914 => 0.22919317782484
915 => 0.22877827062975
916 => 0.22288990240563
917 => 0.22676564420237
918 => 0.22416600009069
919 => 0.22024772322034
920 => 0.219572210811
921 => 0.21955190409228
922 => 0.22357509832745
923 => 0.22671863083531
924 => 0.22421122201302
925 => 0.22364033362826
926 => 0.22973592801167
927 => 0.2289602080638
928 => 0.22828843959181
929 => 0.2456027719745
930 => 0.2318971268394
1001 => 0.22592068326962
1002 => 0.21852369945616
1003 => 0.22093219468465
1004 => 0.22143970001745
1005 => 0.20365128735265
1006 => 0.19643453054994
1007 => 0.19395801157299
1008 => 0.19253273988892
1009 => 0.19318225409279
1010 => 0.18668632652921
1011 => 0.19105169728466
1012 => 0.18542677310169
1013 => 0.18448373625732
1014 => 0.19454179749087
1015 => 0.19594131795318
1016 => 0.18997052886405
1017 => 0.19380474204222
1018 => 0.19241440304427
1019 => 0.18552319628229
1020 => 0.18526000287227
1021 => 0.18180223755674
1022 => 0.17639150439324
1023 => 0.17391865414816
1024 => 0.17263077227026
1025 => 0.1731621774334
1026 => 0.17289348272165
1027 => 0.17114006797537
1028 => 0.17299398640243
1029 => 0.16825799091328
1030 => 0.16637207934899
1031 => 0.16552025684821
1101 => 0.16131678825786
1102 => 0.16800637607608
1103 => 0.16932430914948
1104 => 0.17064483895816
1105 => 0.18213914937874
1106 => 0.18156492611271
1107 => 0.18675562477953
1108 => 0.18655392377442
1109 => 0.1850734524309
1110 => 0.1788275873583
1111 => 0.1813170778544
1112 => 0.17365481306013
1113 => 0.17939590282735
1114 => 0.17677590921123
1115 => 0.17851008035027
1116 => 0.17539188427838
1117 => 0.17711762273172
1118 => 0.16963683997327
1119 => 0.16265139029088
1120 => 0.16546253916107
1121 => 0.16851857947682
1122 => 0.17514485354597
1123 => 0.17119829937596
1124 => 0.17261762949123
1125 => 0.16786311119806
1126 => 0.15805318189825
1127 => 0.15810870503274
1128 => 0.15659966113089
1129 => 0.15529562687567
1130 => 0.17165160859708
1201 => 0.16961748372022
1202 => 0.16637637194861
1203 => 0.17071472885157
1204 => 0.17186185927569
1205 => 0.17189451646619
1206 => 0.17505966967338
1207 => 0.17674891250745
1208 => 0.17704664887855
1209 => 0.18202708583773
1210 => 0.1836964626129
1211 => 0.19057238929076
1212 => 0.17660559205506
1213 => 0.1763179550571
1214 => 0.17077577843005
1215 => 0.16726084239483
1216 => 0.17101644910754
1217 => 0.17434340396356
1218 => 0.17087915619128
1219 => 0.17133151381608
1220 => 0.16668104422123
1221 => 0.16834336827645
1222 => 0.16977518569205
1223 => 0.16898462027349
1224 => 0.16780110557812
1225 => 0.17407063160546
1226 => 0.17371688037653
1227 => 0.17955520714897
1228 => 0.18410660037084
1229 => 0.19226351068328
1230 => 0.18375134954289
1231 => 0.18344113255816
]
'min_raw' => 0.15529562687567
'max_raw' => 0.44900532746158
'avg_raw' => 0.30215047716863
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.155295'
'max' => '$0.4490053'
'avg' => '$0.30215'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -0.027306891681912
'max_diff' => -0.15167422894638
'year' => 2030
]
5 => [
'items' => [
101 => 0.18647355334428
102 => 0.18369599836508
103 => 0.185451317234
104 => 0.19198070167637
105 => 0.19211865728077
106 => 0.18980772316135
107 => 0.18966710261016
108 => 0.19011094278665
109 => 0.19271052856341
110 => 0.19180215341581
111 => 0.19285334813386
112 => 0.19416788322525
113 => 0.19960535771458
114 => 0.20091631440547
115 => 0.19773136929971
116 => 0.19801893418244
117 => 0.19682767728419
118 => 0.19567693804689
119 => 0.19826363180038
120 => 0.20299086547648
121 => 0.20296145760112
122 => 0.20405808392969
123 => 0.20474127304744
124 => 0.20180852522905
125 => 0.1998994142394
126 => 0.20063148887272
127 => 0.20180209215391
128 => 0.20025187800563
129 => 0.19068323815339
130 => 0.19358575223748
131 => 0.1931026319682
201 => 0.19241460995532
202 => 0.19533311031134
203 => 0.19505161383228
204 => 0.18661970140298
205 => 0.18715948507943
206 => 0.18665252743617
207 => 0.18829061129534
208 => 0.18360753646095
209 => 0.18504801873901
210 => 0.18595147572014
211 => 0.1864836188227
212 => 0.1884060846031
213 => 0.18818050543279
214 => 0.18839206228515
215 => 0.19124257152534
216 => 0.20565946908556
217 => 0.20644414901067
218 => 0.20258009807622
219 => 0.2041237102095
220 => 0.20116031246447
221 => 0.20314966122375
222 => 0.20451072312087
223 => 0.19836034612494
224 => 0.19799616071486
225 => 0.1950205319732
226 => 0.19661946631074
227 => 0.19407544681227
228 => 0.19469966021117
301 => 0.19295430512989
302 => 0.19609559677946
303 => 0.19960804895105
304 => 0.20049543308053
305 => 0.19816110747875
306 => 0.19647090190351
307 => 0.19350345770171
308 => 0.1984383835431
309 => 0.19988150624827
310 => 0.19843080343389
311 => 0.19809464389332
312 => 0.19745762217136
313 => 0.19822979106303
314 => 0.19987364669209
315 => 0.19909843473467
316 => 0.19961047589002
317 => 0.19765910302037
318 => 0.20180949609061
319 => 0.20840131913264
320 => 0.20842251292159
321 => 0.20764729678549
322 => 0.20733009504486
323 => 0.20812551384455
324 => 0.20855699591359
325 => 0.21112923445692
326 => 0.21388934889641
327 => 0.22676959865326
328 => 0.22315287606269
329 => 0.23458099989646
330 => 0.24361916209281
331 => 0.24632931174456
401 => 0.24383610158734
402 => 0.23530696432007
403 => 0.23488848415534
404 => 0.24763461614152
405 => 0.24403325004559
406 => 0.24360487900794
407 => 0.23904773491154
408 => 0.24174157148579
409 => 0.2411523899108
410 => 0.24022233797094
411 => 0.24536199050032
412 => 0.25498296121537
413 => 0.25348344270453
414 => 0.25236412169686
415 => 0.24745958287067
416 => 0.25041321071244
417 => 0.249361480411
418 => 0.25388038123053
419 => 0.25120348449095
420 => 0.24400596615538
421 => 0.24515219467365
422 => 0.244978944539
423 => 0.24854442003336
424 => 0.24747415279049
425 => 0.24476995768266
426 => 0.2549500777834
427 => 0.25428903740886
428 => 0.25522624152508
429 => 0.25563882776105
430 => 0.26183528747253
501 => 0.26437377875173
502 => 0.26495006071465
503 => 0.26736143109593
504 => 0.26489006362286
505 => 0.27477729557029
506 => 0.28135172787936
507 => 0.28898826932353
508 => 0.3001473088823
509 => 0.30434321098328
510 => 0.3035852588248
511 => 0.3120459152619
512 => 0.32724952680955
513 => 0.30665834340647
514 => 0.32834090952921
515 => 0.32147645943202
516 => 0.30520097173775
517 => 0.30415302220563
518 => 0.31517497143449
519 => 0.33962059400079
520 => 0.33349724280789
521 => 0.33963060960971
522 => 0.33247571144242
523 => 0.3321204104422
524 => 0.33928311217576
525 => 0.35601915519475
526 => 0.34806848849762
527 => 0.33666925820382
528 => 0.34508627246109
529 => 0.33779467575355
530 => 0.32136466758204
531 => 0.33349256039663
601 => 0.32538298385401
602 => 0.32774978941795
603 => 0.34479491310206
604 => 0.34274399872459
605 => 0.3453980718386
606 => 0.34071370226155
607 => 0.33633776241932
608 => 0.32816974574222
609 => 0.32575159868248
610 => 0.32641988753398
611 => 0.32575126751172
612 => 0.32118133724883
613 => 0.32019446124366
614 => 0.31854962466569
615 => 0.31905942829951
616 => 0.31596665431902
617 => 0.32180335781992
618 => 0.32288670142255
619 => 0.32713416748983
620 => 0.32757515350736
621 => 0.33940428604585
622 => 0.33288899862415
623 => 0.33726001592948
624 => 0.33686903100008
625 => 0.30555371090768
626 => 0.309868685719
627 => 0.31658143241173
628 => 0.31355734912557
629 => 0.30928200288545
630 => 0.30582943156698
701 => 0.30059843297597
702 => 0.30796096304039
703 => 0.31764190715733
704 => 0.32782067822616
705 => 0.34004980472586
706 => 0.33732040605385
707 => 0.32759206321265
708 => 0.32802846956595
709 => 0.33072616192246
710 => 0.32723240520958
711 => 0.32620202814872
712 => 0.33058460393682
713 => 0.33061478432765
714 => 0.32659479499487
715 => 0.32212731250177
716 => 0.32210859358701
717 => 0.32131364822812
718 => 0.33261713045579
719 => 0.33883290277005
720 => 0.33954553104866
721 => 0.33878493720897
722 => 0.33907765959098
723 => 0.33546083863651
724 => 0.34372781880349
725 => 0.35131441732432
726 => 0.3492810468567
727 => 0.3462327354651
728 => 0.34380460861512
729 => 0.34870905733783
730 => 0.34849066995652
731 => 0.35124815500465
801 => 0.35112305955486
802 => 0.35019582104743
803 => 0.34928107997131
804 => 0.3529079249405
805 => 0.35186345183472
806 => 0.35081735637372
807 => 0.34871925177748
808 => 0.34900441903793
809 => 0.34595663398027
810 => 0.34454658915544
811 => 0.32334289816057
812 => 0.31767657907615
813 => 0.31945931840867
814 => 0.32004624248574
815 => 0.31758025315862
816 => 0.32111584839303
817 => 0.32056482962087
818 => 0.32270852132815
819 => 0.32136923581772
820 => 0.32142420056223
821 => 0.32536275368263
822 => 0.32650613240929
823 => 0.32592460076072
824 => 0.32633188559364
825 => 0.3357175926642
826 => 0.33438324525678
827 => 0.33367439979112
828 => 0.33387075482944
829 => 0.3362690042178
830 => 0.33694038310698
831 => 0.33409570357658
901 => 0.33543727088801
902 => 0.34114949422986
903 => 0.34314844911566
904 => 0.34952815355837
905 => 0.34681794172091
906 => 0.3517926528438
907 => 0.36708321883158
908 => 0.3792983809693
909 => 0.36806481305453
910 => 0.39049640272894
911 => 0.4079626129109
912 => 0.40729223067262
913 => 0.40424659292668
914 => 0.38436177699774
915 => 0.36606347291403
916 => 0.38137078126708
917 => 0.38140980274405
918 => 0.38009489138115
919 => 0.37192808983628
920 => 0.37981070438995
921 => 0.38043639770777
922 => 0.38008617583508
923 => 0.37382470823871
924 => 0.3642646045317
925 => 0.36613262591239
926 => 0.36919248304058
927 => 0.36339953514386
928 => 0.36154833728377
929 => 0.36499006631048
930 => 0.37608003434727
1001 => 0.37398354012973
1002 => 0.37392879219311
1003 => 0.38289848350767
1004 => 0.37647812030698
1005 => 0.36615618764424
1006 => 0.36354976351733
1007 => 0.35429871376448
1008 => 0.36068844677988
1009 => 0.36091840189568
1010 => 0.35741881042463
1011 => 0.36644016020476
1012 => 0.36635702687836
1013 => 0.37492145584388
1014 => 0.39129342737333
1015 => 0.38645142977628
1016 => 0.38082071337875
1017 => 0.381432928374
1018 => 0.38814741579643
1019 => 0.38408768342399
1020 => 0.38554759149058
1021 => 0.38814520605072
1022 => 0.38971241141
1023 => 0.38120743164072
1024 => 0.37922451401629
1025 => 0.37516816046622
1026 => 0.37410993354043
1027 => 0.37741374886837
1028 => 0.37654331025498
1029 => 0.36089907505863
1030 => 0.35926416543691
1031 => 0.35931430578089
1101 => 0.35520324780136
1102 => 0.34893289761561
1103 => 0.36541100352061
1104 => 0.3640875810055
1105 => 0.36262662497358
1106 => 0.36280558375139
1107 => 0.36995817102992
1108 => 0.36580930919406
1109 => 0.37683973836979
1110 => 0.37457221373631
1111 => 0.37224653565214
1112 => 0.37192505609902
1113 => 0.37102986845414
1114 => 0.36795993693521
1115 => 0.36425281015181
1116 => 0.36180504394359
1117 => 0.3337460280957
1118 => 0.33895361822528
1119 => 0.34494447598259
1120 => 0.34701249607355
1121 => 0.34347500460532
1122 => 0.36809961865964
1123 => 0.37259877293605
1124 => 0.35897054116023
1125 => 0.35642125543201
1126 => 0.36826674940757
1127 => 0.36112246848756
1128 => 0.36433953774839
1129 => 0.35738599364929
1130 => 0.37151505842148
1201 => 0.37140741862057
1202 => 0.36591089330479
1203 => 0.3705565188631
1204 => 0.36974922709912
1205 => 0.36354366355494
1206 => 0.37171178585449
1207 => 0.37171583714124
1208 => 0.36642555102957
1209 => 0.36024765504367
1210 => 0.35914319315679
1211 => 0.3583111294886
1212 => 0.36413490109245
1213 => 0.369356476502
1214 => 0.37907253380086
1215 => 0.38151538145362
1216 => 0.39104997847191
1217 => 0.38537259017862
1218 => 0.38788930287455
1219 => 0.39062155051673
1220 => 0.39193149051147
1221 => 0.3897970135853
1222 => 0.40460816735142
1223 => 0.4058586825313
1224 => 0.4062779694542
1225 => 0.40128373173828
1226 => 0.40571978374591
1227 => 0.40364430191814
1228 => 0.40904412904854
1229 => 0.40989089089104
1230 => 0.40917371373487
1231 => 0.4094424893089
]
'min_raw' => 0.18360753646095
'max_raw' => 0.40989089089104
'avg_raw' => 0.29674921367599
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.1836075'
'max' => '$0.40989'
'avg' => '$0.296749'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 0.028311909585275
'max_diff' => -0.039114436570541
'year' => 2031
]
6 => [
'items' => [
101 => 0.39680378243609
102 => 0.39614839881024
103 => 0.38721219656794
104 => 0.39085376503475
105 => 0.38404602733096
106 => 0.3862048310843
107 => 0.38715641120894
108 => 0.38665935975352
109 => 0.3910596538521
110 => 0.38731850494762
111 => 0.37744499788687
112 => 0.36756880079573
113 => 0.36744481318622
114 => 0.36484458482148
115 => 0.36296509596936
116 => 0.36332715220072
117 => 0.3646030855838
118 => 0.36289093640161
119 => 0.3632563102378
120 => 0.36932395039165
121 => 0.37054077235208
122 => 0.36640553588752
123 => 0.34980196477055
124 => 0.34572740677153
125 => 0.34865611825923
126 => 0.34725638280129
127 => 0.2802630031701
128 => 0.2960021039876
129 => 0.2866504647312
130 => 0.29096013034878
131 => 0.28141452826324
201 => 0.28597018990633
202 => 0.28512892554698
203 => 0.31043693390767
204 => 0.31004178416715
205 => 0.31023092143708
206 => 0.30120290674877
207 => 0.31558477928456
208 => 0.3226698068511
209 => 0.32135855681043
210 => 0.32168857019589
211 => 0.316017846847
212 => 0.31028582643468
213 => 0.3039281336458
214 => 0.31573994101296
215 => 0.31442666966801
216 => 0.31743884163322
217 => 0.32509964303625
218 => 0.3262277251434
219 => 0.32774387893529
220 => 0.32720044572807
221 => 0.340147229448
222 => 0.33857928851389
223 => 0.34235757503771
224 => 0.33458535299892
225 => 0.32579034601595
226 => 0.32746198931298
227 => 0.32730099662097
228 => 0.32525137487287
229 => 0.32340106800348
301 => 0.32032082838666
302 => 0.33006716232396
303 => 0.329671478965
304 => 0.33607713261496
305 => 0.33494487111113
306 => 0.32738335167717
307 => 0.32765341282303
308 => 0.32946970381594
309 => 0.33575590768043
310 => 0.3376220809848
311 => 0.33675759515607
312 => 0.33880376899027
313 => 0.34042098135959
314 => 0.33900686596481
315 => 0.35902775784941
316 => 0.35071368768721
317 => 0.35476590763534
318 => 0.3557323382159
319 => 0.35325684660564
320 => 0.35379369209519
321 => 0.35460686673023
322 => 0.35954430387828
323 => 0.3725015676137
324 => 0.37824025151904
325 => 0.39550536518993
326 => 0.37776373370704
327 => 0.37671101871701
328 => 0.37982098704562
329 => 0.38995743646832
330 => 0.39817207665714
331 => 0.40089734672173
401 => 0.40125753615007
402 => 0.40637032396377
403 => 0.40930087859074
404 => 0.40574949704352
405 => 0.4027400730274
406 => 0.39196068974511
407 => 0.39320843271132
408 => 0.40180414442135
409 => 0.41394609349666
410 => 0.42436514895777
411 => 0.42071675887603
412 => 0.44855139983768
413 => 0.45131109079471
414 => 0.45092979073594
415 => 0.45721677743314
416 => 0.44473838916177
417 => 0.43940363641837
418 => 0.4033907446581
419 => 0.41350889829597
420 => 0.42821622882694
421 => 0.42626965848151
422 => 0.41558880192185
423 => 0.42435704657029
424 => 0.42145799068116
425 => 0.41917138501945
426 => 0.42964676883603
427 => 0.41812865402465
428 => 0.4281013268208
429 => 0.41531127080565
430 => 0.42073342441461
501 => 0.4176555477861
502 => 0.41964731117512
503 => 0.40800350310135
504 => 0.41428621930049
505 => 0.40774212145181
506 => 0.40773901869736
507 => 0.40759455737465
508 => 0.41529365947265
509 => 0.41554472691566
510 => 0.40985507883254
511 => 0.40903511165475
512 => 0.41206696007322
513 => 0.40851745961755
514 => 0.41017824854047
515 => 0.40856776322216
516 => 0.40820520905499
517 => 0.40531631576753
518 => 0.40407170110752
519 => 0.40455974658548
520 => 0.40289379576451
521 => 0.4018900001348
522 => 0.40739487715873
523 => 0.40445384343095
524 => 0.40694412155959
525 => 0.40410613533385
526 => 0.39426843862371
527 => 0.38861067521396
528 => 0.37002817808348
529 => 0.37529815121817
530 => 0.37879214885865
531 => 0.37763738265931
601 => 0.38011826729068
602 => 0.38027057345814
603 => 0.37946401257485
604 => 0.37853011839886
605 => 0.37807555036157
606 => 0.3814635280909
607 => 0.38343036319686
608 => 0.37914281826553
609 => 0.37813830647725
610 => 0.38247325112467
611 => 0.38511756485538
612 => 0.40464169173142
613 => 0.40319528135034
614 => 0.40682548756314
615 => 0.40641678205364
616 => 0.41022181650185
617 => 0.41644143969714
618 => 0.40379520670712
619 => 0.40599015548035
620 => 0.40545200472992
621 => 0.41132739351239
622 => 0.41134573583484
623 => 0.40782314676232
624 => 0.40973279944602
625 => 0.40866688370656
626 => 0.41059313751491
627 => 0.40317596365787
628 => 0.41220928078131
629 => 0.4173305894962
630 => 0.41740169887267
701 => 0.41982915855831
702 => 0.4222955981879
703 => 0.42702971427529
704 => 0.42216356625967
705 => 0.41340983968954
706 => 0.41404183047354
707 => 0.40890952378833
708 => 0.40899579879094
709 => 0.40853525606554
710 => 0.4099173794525
711 => 0.40347926201777
712 => 0.40499027531138
713 => 0.40287484785184
714 => 0.40598555695419
715 => 0.4026389481787
716 => 0.40545174521734
717 => 0.40666565517352
718 => 0.41114500904542
719 => 0.40197734396977
720 => 0.38328385428415
721 => 0.38721345245272
722 => 0.38140126809813
723 => 0.38193920788869
724 => 0.38302593187812
725 => 0.37950350387444
726 => 0.38017547213308
727 => 0.38015146469831
728 => 0.37994458159536
729 => 0.37902826202898
730 => 0.37769941736942
731 => 0.38299312549627
801 => 0.38389262966169
802 => 0.38589211599644
803 => 0.39184123106411
804 => 0.39124677417905
805 => 0.39221635802236
806 => 0.39009976193641
807 => 0.38203739071058
808 => 0.38247521625738
809 => 0.3770155246731
810 => 0.38575249940757
811 => 0.38368346846801
812 => 0.38234955076144
813 => 0.38198557895654
814 => 0.38794944072977
815 => 0.38973392164441
816 => 0.38862195289047
817 => 0.38634127253483
818 => 0.39072085304027
819 => 0.39189264402386
820 => 0.3921549648111
821 => 0.39991474176549
822 => 0.39258865014248
823 => 0.39435211321123
824 => 0.40811014867084
825 => 0.39563350898809
826 => 0.40224266329031
827 => 0.4019191795796
828 => 0.40530019927902
829 => 0.40164183727967
830 => 0.40168718706116
831 => 0.40468930350414
901 => 0.40047337239453
902 => 0.39942944856302
903 => 0.39798727526651
904 => 0.40113620789858
905 => 0.40302385059754
906 => 0.41823686443034
907 => 0.42806516516404
908 => 0.42763849270889
909 => 0.43153748025159
910 => 0.42978095065297
911 => 0.42410865322994
912 => 0.43379057326808
913 => 0.43072680865927
914 => 0.43097938169115
915 => 0.43096998091028
916 => 0.43300711653619
917 => 0.4315636192445
918 => 0.42871833791061
919 => 0.43060716844377
920 => 0.43621631985795
921 => 0.45362729795737
922 => 0.46337071196659
923 => 0.45304073219983
924 => 0.460166213919
925 => 0.45589346395623
926 => 0.4551169781847
927 => 0.4595923072733
928 => 0.46407546983304
929 => 0.46378991175922
930 => 0.4605353659538
1001 => 0.45869695560936
1002 => 0.47261801465012
1003 => 0.48287481381229
1004 => 0.48217536887189
1005 => 0.48526249136716
1006 => 0.49432637849439
1007 => 0.49515506674097
1008 => 0.49505067106908
1009 => 0.49299668078525
1010 => 0.50192125475648
1011 => 0.50936629137622
1012 => 0.49252124138003
1013 => 0.49893561590068
1014 => 0.50181523528125
1015 => 0.50604337087648
1016 => 0.51317694434345
1017 => 0.52092589721549
1018 => 0.52202168411454
1019 => 0.52124417087143
1020 => 0.51613352814929
1021 => 0.52461252484611
1022 => 0.52957932225416
1023 => 0.53253693644752
1024 => 0.54003695394181
1025 => 0.5018330188302
1026 => 0.47479037469943
1027 => 0.47056727531789
1028 => 0.47915511397543
1029 => 0.48141965854269
1030 => 0.48050682346712
1031 => 0.4500678688883
1101 => 0.47040702052152
1102 => 0.49229023751443
1103 => 0.49313086100133
1104 => 0.50408605698447
1105 => 0.50765351786524
1106 => 0.51647388656202
1107 => 0.51592217009851
1108 => 0.51806978951346
1109 => 0.51757608900155
1110 => 0.53391396466459
1111 => 0.55193706771894
1112 => 0.55131298497013
1113 => 0.54872195066639
1114 => 0.55257007844444
1115 => 0.57117185226963
1116 => 0.56945929902316
1117 => 0.57112289862717
1118 => 0.5930554383171
1119 => 0.6215708597814
1120 => 0.60832258360973
1121 => 0.63706753081349
1122 => 0.65516095137408
1123 => 0.68645165133901
1124 => 0.68253390159346
1125 => 0.69471514146804
1126 => 0.67552031188987
1127 => 0.63144510326327
1128 => 0.624470032785
1129 => 0.63843430051943
1130 => 0.67276409013121
1201 => 0.6373531332752
1202 => 0.64451672372784
1203 => 0.64245360919556
1204 => 0.64234367458981
1205 => 0.64653943135505
1206 => 0.64045326733111
1207 => 0.61565714021762
1208 => 0.62702105914924
1209 => 0.62263290430953
1210 => 0.6275018892628
1211 => 0.65377779293346
1212 => 0.64216058958135
1213 => 0.62992280955487
1214 => 0.64527170148887
1215 => 0.66481611537234
1216 => 0.6635930610762
1217 => 0.66121982454466
1218 => 0.67459763461436
1219 => 0.69669385751893
1220 => 0.70266637778023
1221 => 0.70707517013431
1222 => 0.70768306811278
1223 => 0.71394479509752
1224 => 0.68027391094219
1225 => 0.73371046882633
1226 => 0.7429374862178
1227 => 0.7412031893689
1228 => 0.75145863086727
1229 => 0.74844121982301
1230 => 0.74406946463716
1231 => 0.76032652080704
]
'min_raw' => 0.2802630031701
'max_raw' => 0.76032652080704
'avg_raw' => 0.52029476198857
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.280263'
'max' => '$0.760326'
'avg' => '$0.520294'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.096655466709148
'max_diff' => 0.350435629916
'year' => 2032
]
7 => [
'items' => [
101 => 0.74168911778506
102 => 0.71523567057914
103 => 0.70072278625212
104 => 0.71983452305493
105 => 0.7315053938127
106 => 0.7392190969768
107 => 0.74155325889351
108 => 0.68288768583046
109 => 0.65127019569131
110 => 0.67153664437524
111 => 0.69626311048521
112 => 0.68013655417448
113 => 0.68076868465025
114 => 0.6577764533356
115 => 0.69829741277719
116 => 0.69239384982146
117 => 0.723021544879
118 => 0.71571199965091
119 => 0.74068769601005
120 => 0.73411075813196
121 => 0.76141125955229
122 => 0.77230216870043
123 => 0.79058970019482
124 => 0.80404208280574
125 => 0.81194157917794
126 => 0.81146732304602
127 => 0.84276906318616
128 => 0.82431152062502
129 => 0.80112449705946
130 => 0.80070511695728
131 => 0.81271400502455
201 => 0.83788133993599
202 => 0.8444068637087
203 => 0.84805374126932
204 => 0.84246842133651
205 => 0.82243408175039
206 => 0.81378335549351
207 => 0.82115402490004
208 => 0.8121403295847
209 => 0.8277004964952
210 => 0.84906792913563
211 => 0.84465563879137
212 => 0.8594052638847
213 => 0.87466957415049
214 => 0.89649822339364
215 => 0.90220504061834
216 => 0.91163819247995
217 => 0.9213480043745
218 => 0.92446653426826
219 => 0.93042077545846
220 => 0.93038939366829
221 => 0.94833290026158
222 => 0.96812514369813
223 => 0.97559625740394
224 => 0.99277567141083
225 => 0.9633565269625
226 => 0.98567128596933
227 => 1.0057997571681
228 => 0.98180176400546
301 => 1.0148774067649
302 => 1.0161616590223
303 => 1.0355523433735
304 => 1.0158961699779
305 => 1.0042243969603
306 => 1.0379203683264
307 => 1.0542247874573
308 => 1.0493137637253
309 => 1.0119406306377
310 => 0.99018786417166
311 => 0.93325667853467
312 => 1.0006941271659
313 => 1.0335409412168
314 => 1.0118555653245
315 => 1.0227924075616
316 => 1.0824602725241
317 => 1.1051779322936
318 => 1.10045281787
319 => 1.1012512844255
320 => 1.1135093212825
321 => 1.1678682073304
322 => 1.1352951027814
323 => 1.1601960207182
324 => 1.1734033778049
325 => 1.1856711071211
326 => 1.1555454411762
327 => 1.1163523924159
328 => 1.1039383086613
329 => 1.0096993820641
330 => 1.0047938366758
331 => 1.0020402053961
401 => 0.98467894968656
402 => 0.97103775834701
403 => 0.96018977652883
404 => 0.93172143275635
405 => 0.94132866308256
406 => 0.89595606491435
407 => 0.92498384531622
408 => 0.85256808308006
409 => 0.91287808171633
410 => 0.88005409141776
411 => 0.90209451810486
412 => 0.90201762113248
413 => 0.86143420767788
414 => 0.8380265417515
415 => 0.85294281751978
416 => 0.86893424919882
417 => 0.8715288051871
418 => 0.89226211377805
419 => 0.89804833454481
420 => 0.88051581548872
421 => 0.85106742736712
422 => 0.85790761628155
423 => 0.83788792554147
424 => 0.80280418756577
425 => 0.82800194068321
426 => 0.83660556146451
427 => 0.84040541053899
428 => 0.80590458363442
429 => 0.79506367477161
430 => 0.78929206585709
501 => 0.84661380385657
502 => 0.84975401806069
503 => 0.83368823821087
504 => 0.9063070865518
505 => 0.889871204637
506 => 0.90823411162467
507 => 0.85728694083303
508 => 0.85923319136673
509 => 0.83511398424934
510 => 0.84861912858908
511 => 0.83907412786087
512 => 0.84752804638687
513 => 0.85259529029453
514 => 0.87671053968737
515 => 0.91315343912754
516 => 0.87310852560078
517 => 0.85566038332344
518 => 0.86648511266023
519 => 0.89531279335023
520 => 0.9389882052574
521 => 0.91313148235877
522 => 0.92460625690555
523 => 0.92711298466684
524 => 0.9080471944693
525 => 0.93969118813714
526 => 0.95664946141908
527 => 0.97404514078614
528 => 0.9891493217647
529 => 0.96709692390775
530 => 0.99069615070174
531 => 0.9716793397301
601 => 0.95461929436675
602 => 0.95464516741349
603 => 0.94394315174957
604 => 0.92320664785997
605 => 0.91938251838768
606 => 0.93927612283685
607 => 0.95522890967373
608 => 0.95654285760631
609 => 0.96537514008299
610 => 0.97060199387294
611 => 1.0218322665777
612 => 1.0424375060585
613 => 1.0676332028585
614 => 1.0774483467138
615 => 1.1069884107943
616 => 1.0831324099226
617 => 1.0779710140727
618 => 1.0063164810947
619 => 1.0180499068557
620 => 1.0368362536062
621 => 1.0066262610332
622 => 1.025787547939
623 => 1.0295703918658
624 => 1.0055997370455
625 => 1.0184034994959
626 => 0.98440050247877
627 => 0.91389461154304
628 => 0.93976968134893
629 => 0.95882244218038
630 => 0.93163180328543
701 => 0.98036997108159
702 => 0.95189813961507
703 => 0.94287393592912
704 => 0.90766729998931
705 => 0.92428347692521
706 => 0.94675709415175
707 => 0.93287101154418
708 => 0.96168671796068
709 => 1.0024974431146
710 => 1.0315815961801
711 => 1.0338143163131
712 => 1.0151151543789
713 => 1.0450806807148
714 => 1.0452989468601
715 => 1.0114977107404
716 => 0.99079464182316
717 => 0.98609086100553
718 => 0.99784182771851
719 => 1.0121096706562
720 => 1.034606082297
721 => 1.0482001926969
722 => 1.083646422861
723 => 1.0932371564204
724 => 1.1037744648734
725 => 1.1178555585521
726 => 1.1347635218318
727 => 1.0977698607468
728 => 1.0992396878665
729 => 1.0647917028762
730 => 1.0279790905733
731 => 1.0559152745543
801 => 1.0924381189146
802 => 1.0840597380642
803 => 1.0831169990637
804 => 1.0847024245685
805 => 1.0783853990196
806 => 1.049813726582
807 => 1.0354652115519
808 => 1.0539784566373
809 => 1.0638174224704
810 => 1.0790768004296
811 => 1.0771957600097
812 => 1.1165022788951
813 => 1.1317756035665
814 => 1.1278680335331
815 => 1.1285871204602
816 => 1.1562387452287
817 => 1.1869930389617
818 => 1.2157984934291
819 => 1.2451006389364
820 => 1.2097757588451
821 => 1.1918399632705
822 => 1.2103451260522
823 => 1.2005260262012
824 => 1.2569494864793
825 => 1.2608561244487
826 => 1.3172755046684
827 => 1.3708242147917
828 => 1.337191229388
829 => 1.3689056197608
830 => 1.403207318661
831 => 1.4693808610897
901 => 1.447095940013
902 => 1.4300260397175
903 => 1.4138950664194
904 => 1.4474610611329
905 => 1.4906431771019
906 => 1.4999441912884
907 => 1.5150153875316
908 => 1.4991698675001
909 => 1.5182540510512
910 => 1.5856296050017
911 => 1.5674241355838
912 => 1.5415694423352
913 => 1.5947559713621
914 => 1.6140039694595
915 => 1.7490965003623
916 => 1.9196564010211
917 => 1.8490434821916
918 => 1.8052117648096
919 => 1.8155132580966
920 => 1.8777959600002
921 => 1.8977991870975
922 => 1.8434235203212
923 => 1.8626299250817
924 => 1.9684591036444
925 => 2.0252330625368
926 => 1.948126400601
927 => 1.7353921784148
928 => 1.5392415100904
929 => 1.5912695001098
930 => 1.5853711406581
1001 => 1.6990713905648
1002 => 1.5669899411591
1003 => 1.5692138540254
1004 => 1.6852653046895
1005 => 1.6543047672779
1006 => 1.604152661797
1007 => 1.5396076759621
1008 => 1.4202902999576
1009 => 1.3146075726193
1010 => 1.5218757382083
1011 => 1.5129379580154
1012 => 1.4999947277913
1013 => 1.5287984860513
1014 => 1.6686613600726
1015 => 1.6654370681344
1016 => 1.6449257678722
1017 => 1.6604834083428
1018 => 1.6014253322025
1019 => 1.6166459431512
1020 => 1.5392104388224
1021 => 1.5742145207714
1022 => 1.6040450579031
1023 => 1.610033979881
1024 => 1.623527326899
1025 => 1.5082281539896
1026 => 1.5599940976201
1027 => 1.59040173969
1028 => 1.4530189065786
1029 => 1.5876861227989
1030 => 1.5062210519068
1031 => 1.4785705832817
1101 => 1.5157982966131
1102 => 1.5012906205227
1103 => 1.4888177725395
1104 => 1.4818577090542
1105 => 1.509193633052
1106 => 1.507918379524
1107 => 1.4631915021894
1108 => 1.4048471140071
1109 => 1.4244294057703
1110 => 1.4173149755878
1111 => 1.3915313628265
1112 => 1.4089064047023
1113 => 1.3323955135885
1114 => 1.2007625021174
1115 => 1.2877233015234
1116 => 1.2843754053414
1117 => 1.2826872442715
1118 => 1.3480358816051
1119 => 1.3417541179751
1120 => 1.3303526554753
1121 => 1.3913219660265
1122 => 1.3690673475224
1123 => 1.4376508379045
1124 => 1.4828243603723
1125 => 1.4713668938641
1126 => 1.5138528100876
1127 => 1.4248805422219
1128 => 1.454433560659
1129 => 1.4605243968002
1130 => 1.3905696141983
1201 => 1.3427818921928
1202 => 1.339594995955
1203 => 1.2567376715512
1204 => 1.3009993854468
1205 => 1.3399478620007
1206 => 1.3212945642552
1207 => 1.3153894874404
1208 => 1.3455572442323
1209 => 1.3479015373044
1210 => 1.2944514068237
1211 => 1.3055653814961
1212 => 1.3519125034247
1213 => 1.304397552938
1214 => 1.2120837656653
1215 => 1.1891886700837
1216 => 1.1861340422928
1217 => 1.1240407272426
1218 => 1.1907186298476
1219 => 1.1616119385038
1220 => 1.2535596277072
1221 => 1.2010396007596
1222 => 1.1987755673683
1223 => 1.1953531488359
1224 => 1.1419068675297
1225 => 1.1536082064474
1226 => 1.192505239174
1227 => 1.2063841386573
1228 => 1.2049364557348
1229 => 1.1923146224935
1230 => 1.1980928331171
1231 => 1.1794792034364
]
'min_raw' => 0.65127019569131
'max_raw' => 2.0252330625368
'avg_raw' => 1.3382516291141
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.65127'
'max' => '$2.02'
'avg' => '$1.33'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.37100719252122
'max_diff' => 1.2649065417297
'year' => 2033
]
8 => [
'items' => [
101 => 1.1729063433869
102 => 1.1521605890632
103 => 1.1216700613683
104 => 1.1259099562536
105 => 1.0655002426094
106 => 1.0325858244299
107 => 1.0234755472829
108 => 1.0112929039372
109 => 1.0248516092656
110 => 1.0653291094808
111 => 1.0165046564405
112 => 0.9327985563402
113 => 0.93782943558448
114 => 0.94913232756493
115 => 0.92806946313547
116 => 0.90813522962521
117 => 0.9254664283469
118 => 0.88999905025638
119 => 0.95341839075977
120 => 0.9517030753298
121 => 0.97534188364376
122 => 0.99012371559966
123 => 0.95605637861624
124 => 0.94748853549278
125 => 0.95236916832266
126 => 0.87170317938874
127 => 0.96874975139077
128 => 0.96958901417539
129 => 0.96240273668226
130 => 1.0140770402966
131 => 1.1231259385423
201 => 1.0820973565405
202 => 1.0662098494939
203 => 1.0360076869847
204 => 1.0762502753013
205 => 1.0731602724007
206 => 1.0591861074357
207 => 1.0507344888628
208 => 1.0663068552241
209 => 1.0488049003389
210 => 1.0456610683199
211 => 1.0266128668081
212 => 1.0198135255063
213 => 1.014779563896
214 => 1.00923766679
215 => 1.0214617108512
216 => 0.99376041880151
217 => 0.96035537618074
218 => 0.95757810833439
219 => 0.96524638903805
220 => 0.96185374566304
221 => 0.95756186566316
222 => 0.94936749791942
223 => 0.94693640405482
224 => 0.95483627971571
225 => 0.94591778068593
226 => 0.95907751182015
227 => 0.95549879311278
228 => 0.93550836132607
301 => 0.91059288191406
302 => 0.91037108188531
303 => 0.90500308271557
304 => 0.89816612868883
305 => 0.8962642444869
306 => 0.9240068431312
307 => 0.9814331920588
308 => 0.97015902566825
309 => 0.97830576630847
310 => 1.0183796671328
311 => 1.0311179551406
312 => 1.0220766200355
313 => 1.0097002828985
314 => 1.0102447789215
315 => 1.0525384694909
316 => 1.0551762750932
317 => 1.0618411588619
318 => 1.0704074180006
319 => 1.0235354910084
320 => 1.0080371153753
321 => 1.0006931251832
322 => 0.97807647787342
323 => 1.0024665929922
324 => 0.98825551740136
325 => 0.99017307701804
326 => 0.98892426380209
327 => 0.98960620026238
328 => 0.95340066376161
329 => 0.96659205835551
330 => 0.94465880633009
331 => 0.91529264399113
401 => 0.91519419831787
402 => 0.92238152494731
403 => 0.918106221828
404 => 0.90660149106202
405 => 0.90823568376653
406 => 0.89391843609665
407 => 0.90997405685579
408 => 0.91043447460939
409 => 0.90425218606155
410 => 0.9289880850897
411 => 0.93912240310411
412 => 0.93505308834447
413 => 0.93883688913261
414 => 0.97062751818158
415 => 0.97581077783896
416 => 0.97811283939185
417 => 0.97502838187568
418 => 0.93941796347275
419 => 0.94099743695611
420 => 0.92940830853233
421 => 0.91961671624649
422 => 0.92000832858779
423 => 0.92504247984061
424 => 0.94702691361072
425 => 0.99329185842677
426 => 0.9950475792633
427 => 0.99717556413517
428 => 0.98851998022177
429 => 0.98590937329071
430 => 0.9893534376876
501 => 1.0067281184653
502 => 1.0514205146053
503 => 1.0356232369046
504 => 1.0227798042347
505 => 1.0340469572508
506 => 1.0323124673588
507 => 1.0176716271418
508 => 1.0172607075197
509 => 0.98916025418332
510 => 0.97877215640122
511 => 0.97009108435886
512 => 0.96061158031373
513 => 0.95499181255993
514 => 0.96362632996854
515 => 0.9656011462605
516 => 0.94672162304103
517 => 0.94414841378845
518 => 0.95956583999228
519 => 0.95278120553956
520 => 0.95975937032502
521 => 0.96137836441284
522 => 0.9611176690761
523 => 0.95403373149715
524 => 0.95854882206392
525 => 0.94786928686024
526 => 0.93625689634057
527 => 0.92884891466651
528 => 0.92238446812972
529 => 0.92597131878417
530 => 0.91318485113411
531 => 0.9090942027921
601 => 0.95701921097265
602 => 0.99242192979629
603 => 0.99190716024357
604 => 0.98877363297943
605 => 0.9841178470777
606 => 1.0063875187275
607 => 0.99862921042083
608 => 1.0042740279423
609 => 1.0057108709137
610 => 1.0100597618389
611 => 1.0116141165448
612 => 1.0069157770547
613 => 0.99114757587207
614 => 0.95185471772054
615 => 0.93356378618195
616 => 0.92752747411466
617 => 0.92774688259371
618 => 0.92169461725873
619 => 0.92347728064339
620 => 0.92107467968354
621 => 0.9165247347172
622 => 0.92569037250391
623 => 0.926746626875
624 => 0.92460725749437
625 => 0.92511115642981
626 => 0.90739809169478
627 => 0.90874477753583
628 => 0.90124625964431
629 => 0.89984037793563
630 => 0.88088477767649
701 => 0.84730218415924
702 => 0.86591020090903
703 => 0.84343433335839
704 => 0.83492238175199
705 => 0.8752166367766
706 => 0.87117221116079
707 => 0.86424991257608
708 => 0.85401039023587
709 => 0.85021245179622
710 => 0.82713738011807
711 => 0.8257739817826
712 => 0.83721061038564
713 => 0.8319329997957
714 => 0.82452123574
715 => 0.79767657764871
716 => 0.76749429399326
717 => 0.76840530741774
718 => 0.77800573028719
719 => 0.80592025457353
720 => 0.79501356700869
721 => 0.78710064004057
722 => 0.78561878668115
723 => 0.8041672839444
724 => 0.8304172936022
725 => 0.84273321082278
726 => 0.83052851089715
727 => 0.8165084087703
728 => 0.81736174742387
729 => 0.82303862718357
730 => 0.82363518697956
731 => 0.81450954178477
801 => 0.81707835745333
802 => 0.81317609155535
803 => 0.78922789294251
804 => 0.78879474597017
805 => 0.78291747181371
806 => 0.78273951028802
807 => 0.77274080079314
808 => 0.77134191221699
809 => 0.75148886763661
810 => 0.76455620169997
811 => 0.7557913200761
812 => 0.74258057604236
813 => 0.74030303879151
814 => 0.74023457327155
815 => 0.75379905352588
816 => 0.76439769285057
817 => 0.75594378894451
818 => 0.75401899889715
819 => 0.77457072094163
820 => 0.77195532697836
821 => 0.76969041267366
822 => 0.82806689314997
823 => 0.78185735367939
824 => 0.76170735692192
825 => 0.73676790955394
826 => 0.74488831937256
827 => 0.74659940903499
828 => 0.68662453378828
829 => 0.66229273437008
830 => 0.65394297773428
831 => 0.64913757474214
901 => 0.65132745722811
902 => 0.62942598391632
903 => 0.64414413619878
904 => 0.62517931159622
905 => 0.62199979703472
906 => 0.65591125271504
907 => 0.66062983366511
908 => 0.64049890138393
909 => 0.65342621881034
910 => 0.64873859380837
911 => 0.62550440908168
912 => 0.62461703412421
913 => 0.61295893694944
914 => 0.59471627232336
915 => 0.58637888507321
916 => 0.58203670140481
917 => 0.58382837101386
918 => 0.58292244803353
919 => 0.57701068779695
920 => 0.58326130321023
921 => 0.5672935637619
922 => 0.56093508125275
923 => 0.55806310221905
924 => 0.54389081438986
925 => 0.5664452267711
926 => 0.5708887301432
927 => 0.57534098858962
928 => 0.61409485867973
929 => 0.61215882484732
930 => 0.62965962780552
1001 => 0.62897957878448
1002 => 0.62398806628659
1003 => 0.60292969612195
1004 => 0.61132318714022
1005 => 0.5854893264241
1006 => 0.60484581140439
1007 => 0.59601232000552
1008 => 0.60185919907674
1009 => 0.59134598331486
1010 => 0.59716443099752
1011 => 0.57194244963584
1012 => 0.54839051832315
1013 => 0.55786850300711
1014 => 0.5681721562976
1015 => 0.59051310195341
1016 => 0.57720701902961
1017 => 0.58199238960771
1018 => 0.56596219923243
1019 => 0.53288733769073
1020 => 0.53307453781514
1021 => 0.52798669094198
1022 => 0.52359004840576
1023 => 0.57873538271767
1024 => 0.57187718867726
1025 => 0.5609495540521
1026 => 0.57557662724481
1027 => 0.57944425755983
1028 => 0.57955436355765
1029 => 0.59022589857965
1030 => 0.59592129873386
1031 => 0.59692513769632
1101 => 0.61371702862721
1102 => 0.61934544897684
1103 => 0.64252811583313
1104 => 0.59543808382232
1105 => 0.59446829560152
1106 => 0.57578246016101
1107 => 0.56393160791327
1108 => 0.57659389815326
1109 => 0.5878109587309
1110 => 0.57613100550059
1111 => 0.5776561608152
1112 => 0.56197677789075
1113 => 0.56758141950271
1114 => 0.57240889188568
1115 => 0.56974344538151
1116 => 0.56575314295571
1117 => 0.58689128768121
1118 => 0.58569859071474
1119 => 0.60538291704698
1120 => 0.62072825706264
1121 => 0.64822984967834
1122 => 0.6195305040934
1123 => 0.61848458587072
1124 => 0.628708604268
1125 => 0.6193438837329
1126 => 0.62526206385192
1127 => 0.64727633936645
1128 => 0.64774146631844
1129 => 0.63994999059052
1130 => 0.63947587858439
1201 => 0.64097231672734
1202 => 0.649737001671
1203 => 0.64667435144012
1204 => 0.65021852782411
1205 => 0.65465057466264
1206 => 0.67298339953573
1207 => 0.67740338154715
1208 => 0.66666511675733
1209 => 0.6676346618366
1210 => 0.66361825603325
1211 => 0.65973845835263
1212 => 0.66845967693972
1213 => 0.6843978753236
1214 => 0.68429872461864
1215 => 0.6879960768494
1216 => 0.69029949665864
1217 => 0.68041153263102
1218 => 0.67397483163956
1219 => 0.67644307237761
1220 => 0.68038984306905
1221 => 0.67516318783563
1222 => 0.64290185051272
1223 => 0.65268787939428
1224 => 0.65105900567603
1225 => 0.64873929142342
1226 => 0.65857921913695
1227 => 0.65763013410432
1228 => 0.62920135265163
1229 => 0.63102127100328
1230 => 0.62931202791435
1231 => 0.6348349420129
]
'min_raw' => 0.52359004840576
'max_raw' => 1.1729063433869
'avg_raw' => 0.84824819589634
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.52359'
'max' => '$1.17'
'avg' => '$0.848248'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.12768014728556
'max_diff' => -0.85232671914986
'year' => 2034
]
9 => [
'items' => [
101 => 0.61904562824692
102 => 0.62390231481868
103 => 0.62694838310788
104 => 0.62874254073122
105 => 0.63522426833213
106 => 0.63446371240998
107 => 0.63517699110814
108 => 0.64478768202763
109 => 0.69339525870757
110 => 0.69604086185968
111 => 0.68301294435477
112 => 0.68821734043367
113 => 0.67822603803849
114 => 0.68493326627228
115 => 0.68952218148472
116 => 0.66878575603736
117 => 0.66755787950066
118 => 0.65752533944638
119 => 0.66291625819944
120 => 0.65433891884255
121 => 0.65644349789814
122 => 0.65055891138482
123 => 0.66114999549931
124 => 0.67299247322739
125 => 0.67598435077512
126 => 0.66811400903131
127 => 0.662415362928
128 => 0.6524104176213
129 => 0.66904886464109
130 => 0.67391445359715
131 => 0.66902330777364
201 => 0.66788992241269
202 => 0.66574215920166
203 => 0.66834558053104
204 => 0.67388795455476
205 => 0.67127427331675
206 => 0.67300065582159
207 => 0.66642146595104
208 => 0.68041480595855
209 => 0.70263959757114
210 => 0.7027110539103
211 => 0.70009735858357
212 => 0.69902789076873
213 => 0.70170970078624
214 => 0.70316447270714
215 => 0.71183695454393
216 => 0.72114287308173
217 => 0.76456953440727
218 => 0.75237550168165
219 => 0.79090621907331
220 => 0.82137901394264
221 => 0.83051647271013
222 => 0.8221104405947
223 => 0.79335385881273
224 => 0.79194292371999
225 => 0.83491739761792
226 => 0.82277514038615
227 => 0.82133085752478
228 => 0.80596612803414
301 => 0.81504858612188
302 => 0.81306211930647
303 => 0.80992638425706
304 => 0.82725508159894
305 => 0.85969285607946
306 => 0.85463712472715
307 => 0.85086325580128
308 => 0.83432726072483
309 => 0.84428562320906
310 => 0.8407396410683
311 => 0.8559754306809
312 => 0.84695008642846
313 => 0.82268315084538
314 => 0.82654774032185
315 => 0.82596361539696
316 => 0.83798486495973
317 => 0.83437638422675
318 => 0.8252590016198
319 => 0.85958198729272
320 => 0.8573532435176
321 => 0.86051309262897
322 => 0.86190415592937
323 => 0.88279595246963
324 => 0.89135465304925
325 => 0.89329762792197
326 => 0.90142773151895
327 => 0.89309534353812
328 => 0.92643083635338
329 => 0.9485969938956
330 => 0.97434412654092
331 => 1.0119676075126
401 => 1.0261143843946
402 => 1.0235588957737
403 => 1.0520845896556
404 => 1.1033446274707
405 => 1.0339200149967
406 => 1.107024300508
407 => 1.0838803277447
408 => 1.0290063846652
409 => 1.0254731496522
410 => 1.0626344210052
411 => 1.1450545442263
412 => 1.1244092381607
413 => 1.1450883125511
414 => 1.120965073841
415 => 1.1197671517125
416 => 1.143916700691
417 => 1.2003434382028
418 => 1.1735372103356
419 => 1.1351039095312
420 => 1.1634824607567
421 => 1.1388983333742
422 => 1.0835034137174
423 => 1.1243934510843
424 => 1.0970514475783
425 => 1.1050312977822
426 => 1.1625001223357
427 => 1.1555853213218
428 => 1.1645337141271
429 => 1.1487400350459
430 => 1.1339862483494
501 => 1.1064472098499
502 => 1.0982942582083
503 => 1.1005474407296
504 => 1.098293141643
505 => 1.0828853026993
506 => 1.0795579813464
507 => 1.074012299985
508 => 1.0757311385297
509 => 1.0653036351239
510 => 1.0849824884828
511 => 1.0886350570757
512 => 1.1029556854702
513 => 1.1044425006169
514 => 1.1443252468541
515 => 1.122358500429
516 => 1.1370956904486
517 => 1.1357774574614
518 => 1.0301956694041
519 => 1.0447439082424
520 => 1.0673764023859
521 => 1.0571804944519
522 => 1.0427658661082
523 => 1.0311252808571
524 => 1.0134886038909
525 => 1.0383118880385
526 => 1.0709518670307
527 => 1.1052703043484
528 => 1.1465016581525
529 => 1.1372992999692
530 => 1.1044995128689
531 => 1.105970887358
601 => 1.1150663454848
602 => 1.103286900801
603 => 1.0998129126017
604 => 1.114589072853
605 => 1.1146908281478
606 => 1.1011371534456
607 => 1.0860747243105
608 => 1.0860116121824
609 => 1.0833313984036
610 => 1.1214418779182
611 => 1.142398788247
612 => 1.1448014642425
613 => 1.142237069009
614 => 1.1432240029572
615 => 1.1310296385908
616 => 1.1589023394059
617 => 1.1844810859983
618 => 1.1776254355013
619 => 1.1673478408182
620 => 1.1591612416171
621 => 1.1756969329034
622 => 1.1749606246
623 => 1.1842576779612
624 => 1.1838359099184
625 => 1.1807096605529
626 => 1.1776255471495
627 => 1.1898537081814
628 => 1.1863321941825
629 => 1.1828052102996
630 => 1.1757313041684
701 => 1.1766927654968
702 => 1.1664169453853
703 => 1.1616628808122
704 => 1.0901731562286
705 => 1.0710687658257
706 => 1.0770793959522
707 => 1.0790582514558
708 => 1.0707439962695
709 => 1.0826645024497
710 => 1.0808067041884
711 => 1.0880343104473
712 => 1.083518815843
713 => 1.0837041333166
714 => 1.0969832401431
715 => 1.1008382213481
716 => 1.0988775467937
717 => 1.1002507360436
718 => 1.1318953027212
719 => 1.1273964572759
720 => 1.1250065352984
721 => 1.1256685600192
722 => 1.1337544252725
723 => 1.1360180260715
724 => 1.1264269904256
725 => 1.1309501782813
726 => 1.150209338093
727 => 1.1569489540531
728 => 1.1784585729985
729 => 1.1693209045675
730 => 1.1860934904416
731 => 1.2376467012226
801 => 1.2788309732053
802 => 1.240956214678
803 => 1.3165858853888
804 => 1.3754744324692
805 => 1.3732141919482
806 => 1.3629456116481
807 => 1.2959025664302
808 => 1.2342085566652
809 => 1.2858182154996
810 => 1.2859497791336
811 => 1.2815164636694
812 => 1.253981522073
813 => 1.2805583073873
814 => 1.2826678760928
815 => 1.2814870785973
816 => 1.2603761034345
817 => 1.2281435463212
818 => 1.2344417108273
819 => 1.2447582327673
820 => 1.2252269044829
821 => 1.218985461651
822 => 1.2305894913585
823 => 1.2679800928713
824 => 1.2609116162443
825 => 1.2607270297536
826 => 1.2909689702645
827 => 1.269322267478
828 => 1.2345211508512
829 => 1.2257334099326
830 => 1.1945428498032
831 => 1.2160862807815
901 => 1.2168615905094
902 => 1.2050624735311
903 => 1.2354785841653
904 => 1.2351982943512
905 => 1.2640738645578
906 => 1.3192731096239
907 => 1.3029479766679
908 => 1.2839636232096
909 => 1.2860277488096
910 => 1.3086661119448
911 => 1.2949784408097
912 => 1.2999006227837
913 => 1.3086586616329
914 => 1.3139426039205
915 => 1.2852674708296
916 => 1.278581925616
917 => 1.2649056464164
918 => 1.261337760453
919 => 1.2724768044962
920 => 1.269542059939
921 => 1.2167964287289
922 => 1.2112842167936
923 => 1.211453268464
924 => 1.1975925494611
925 => 1.176451626028
926 => 1.2320087105513
927 => 1.2275466991432
928 => 1.2226209838809
929 => 1.2232243558948
930 => 1.2473398032821
1001 => 1.2333516259381
1002 => 1.2705414880241
1003 => 1.2628963704088
1004 => 1.2550551843744
1005 => 1.253971293616
1006 => 1.2509531059713
1007 => 1.2406026175195
1008 => 1.2281037807459
1009 => 1.2198509660773
1010 => 1.1252480351282
1011 => 1.1428057888324
1012 => 1.1630043840295
1013 => 1.1699768581508
1014 => 1.1580499586859
1015 => 1.2410735642056
1016 => 1.2562427769695
1017 => 1.2102942420446
1018 => 1.2016991472264
1019 => 1.241637057191
1020 => 1.2175496152714
1021 => 1.2283961888929
1022 => 1.2049518294818
1023 => 1.2525889578211
1024 => 1.2522260427171
1025 => 1.2336941238598
1026 => 1.2493571747769
1027 => 1.2466353342313
1028 => 1.2257128434835
1029 => 1.2532522380965
1030 => 1.2532658972927
1031 => 1.2354293283112
1101 => 1.2146001206678
1102 => 1.2108763503051
1103 => 1.208070989555
1104 => 1.2277062421201
1105 => 1.2453111481722
1106 => 1.2780695137087
1107 => 1.2863057451242
1108 => 1.3184523046557
1109 => 1.2993105936423
1110 => 1.3077958662079
1111 => 1.3170078298929
1112 => 1.3214243840423
1113 => 1.3142278460612
1114 => 1.3641646850654
1115 => 1.3683808843026
1116 => 1.3697945394369
1117 => 1.3529561182911
1118 => 1.3679125773501
1119 => 1.3609149454622
1120 => 1.3791208396363
1121 => 1.3819757563073
1122 => 1.3795577434535
1123 => 1.3804639390667
1124 => 1.3378516564387
1125 => 1.3356419847867
1126 => 1.3055129550211
1127 => 1.3177907573531
1128 => 1.2948379943837
1129 => 1.302116551961
1130 => 1.3053248707884
1201 => 1.3036490271034
1202 => 1.3184849258755
1203 => 1.3058713811454
1204 => 1.2725821627438
1205 => 1.2392838747169
1206 => 1.238865841835
1207 => 1.2300989903611
1208 => 1.2237621624744
1209 => 1.2249828603365
1210 => 1.2292847588203
1211 => 1.2235121283141
1212 => 1.2247440117124
1213 => 1.2452014841203
1214 => 1.2493040843156
1215 => 1.2353618458624
1216 => 1.1793817466172
1217 => 1.165644089847
1218 => 1.1755184451038
1219 => 1.170799139281
1220 => 0.944926282526
1221 => 0.99799175980113
1222 => 0.96646205513758
1223 => 0.98099239365851
1224 => 0.94880872977446
1225 => 0.96416846107028
1226 => 0.96133207954752
1227 => 1.0466597966843
1228 => 1.0453275217457
1229 => 1.0459652112564
1230 => 1.0155266294189
1231 => 1.0640161167836
]
'min_raw' => 0.61904562824692
'max_raw' => 1.3819757563073
'avg_raw' => 1.0005106922771
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.619045'
'max' => '$1.38'
'avg' => '$1.00'
'bar_min_pct' => 61.631153054957
'bar_max_pct' => 60.119598047091
'min_diff' => 0.095455579841159
'max_diff' => 0.20906941292033
'year' => 2035
]
10 => [
'items' => [
101 => 1.087903781885
102 => 1.0834828108243
103 => 1.0845954739942
104 => 1.0654762343062
105 => 1.0461503272891
106 => 1.0247149221715
107 => 1.0645392553839
108 => 1.0601114693547
109 => 1.0702672174386
110 => 1.096096144229
111 => 1.0998995518134
112 => 1.1050113701772
113 => 1.1031791471778
114 => 1.1468301324051
115 => 1.1415437100756
116 => 1.1542824668822
117 => 1.1280778776392
118 => 1.0984248975484
119 => 1.1040609596347
120 => 1.1035181615334
121 => 1.0966077187097
122 => 1.0903692799153
123 => 1.0799840369917
124 => 1.1128444823286
125 => 1.1115104082582
126 => 1.1331075167674
127 => 1.1292900180553
128 => 1.1037958273553
129 => 1.1047063573636
130 => 1.1108301092556
131 => 1.1320244844734
201 => 1.1383164180612
202 => 1.1354017437332
203 => 1.1423005616745
204 => 1.1477531060878
205 => 1.1429853173039
206 => 1.2104871521069
207 => 1.1824556840852
208 => 1.1961180265572
209 => 1.1993764147336
210 => 1.1910301219363
211 => 1.1928401339857
212 => 1.1955818090418
213 => 1.2122287231073
214 => 1.2559150424385
215 => 1.2752634158875
216 => 1.3334739520406
217 => 1.2736568028149
218 => 1.2701075007278
219 => 1.2805929760788
220 => 1.3147687230117
221 => 1.3424649559362
222 => 1.3516533942312
223 => 1.3528677980365
224 => 1.3701059191139
225 => 1.3799864886435
226 => 1.3680127578075
227 => 1.3578662746258
228 => 1.3215228312971
229 => 1.3257296838223
301 => 1.3547107259861
302 => 1.3956481550173
303 => 1.4307767279397
304 => 1.4184759260566
305 => 1.5123223614114
306 => 1.5216268521485
307 => 1.5203412723788
308 => 1.5415382869719
309 => 1.4994665297017
310 => 1.4814800383668
311 => 1.3600600594572
312 => 1.3941741208742
313 => 1.4437609125924
314 => 1.4371979147676
315 => 1.4011866611631
316 => 1.4307494101746
317 => 1.4209750408388
318 => 1.4132655902046
319 => 1.4485840781102
320 => 1.4097499498545
321 => 1.4433735124565
322 => 1.4002509456282
323 => 1.4185321150835
324 => 1.40815483914
325 => 1.4148702084666
326 => 1.3756122966011
327 => 1.3967949129118
328 => 1.3747310301206
329 => 1.3747205689674
330 => 1.3742335075319
331 => 1.4001915677894
401 => 1.4010380592025
402 => 1.3818550134517
403 => 1.3790904368635
404 => 1.3893125254833
405 => 1.3773451368788
406 => 1.382944602685
407 => 1.3775147389938
408 => 1.3762923623065
409 => 1.3665522568917
410 => 1.3623559516693
411 => 1.3640014310725
412 => 1.3583845615666
413 => 1.3550001945183
414 => 1.3735602717427
415 => 1.363644371193
416 => 1.3720405177694
417 => 1.3624720490675
418 => 1.3293035677632
419 => 1.3102280234148
420 => 1.2475758369509
421 => 1.2653439193122
422 => 1.2771241763002
423 => 1.273230801436
424 => 1.2815952771805
425 => 1.2821087880577
426 => 1.2793894117274
427 => 1.2762407223107
428 => 1.274708114436
429 => 1.2861309178915
430 => 1.2927622397713
501 => 1.2783064826885
502 => 1.2749197010615
503 => 1.2895352695965
504 => 1.2984507579597
505 => 1.3642777148532
506 => 1.3594010412683
507 => 1.3716405349676
508 => 1.3702625558074
509 => 1.3830914951086
510 => 1.4040613889518
511 => 1.3614237314941
512 => 1.3688241545295
513 => 1.3670097417019
514 => 1.3868190251885
515 => 1.3868808676093
516 => 1.375004212612
517 => 1.3814427399628
518 => 1.3778489306273
519 => 1.384343429829
520 => 1.3593359103194
521 => 1.3897923696871
522 => 1.4070592195777
523 => 1.4072989698052
524 => 1.4154833196152
525 => 1.4237990930277
526 => 1.4397604959417
527 => 1.4233539381634
528 => 1.3938401378666
529 => 1.395970938919
530 => 1.3786670086036
531 => 1.3789578907984
601 => 1.3774051388457
602 => 1.3820650643416
603 => 1.3603585019154
604 => 1.3654529887304
605 => 1.3583206773561
606 => 1.3688086502775
607 => 1.3575253251381
608 => 1.3670088667371
609 => 1.3711016489069
610 => 1.3862041032245
611 => 1.355294680356
612 => 1.2922682747432
613 => 1.3055171893243
614 => 1.285921003979
615 => 1.2877347055407
616 => 1.2913986713437
617 => 1.2795225594012
618 => 1.2817881473005
619 => 1.281707204558
620 => 1.2810096837323
621 => 1.2779202483389
622 => 1.2734399557922
623 => 1.2912880623368
624 => 1.2943208034319
625 => 1.3010622112092
626 => 1.3211200680138
627 => 1.3191158151221
628 => 1.322384834744
629 => 1.3152485832642
630 => 1.2880657357796
701 => 1.2895418951786
702 => 1.2711341638187
703 => 1.3005914841321
704 => 1.2936156018642
705 => 1.2891182051854
706 => 1.2878910488334
707 => 1.3079986251854
708 => 1.3140151271776
709 => 1.3102660468885
710 => 1.3025765738375
711 => 1.3173426352841
712 => 1.3212934103971
713 => 1.3221778432459
714 => 1.348340473018
715 => 1.3236400436196
716 => 1.329585682477
717 => 1.3759718595844
718 => 1.3339059978029
719 => 1.3561892229692
720 => 1.3550985750536
721 => 1.3664979190255
722 => 1.354163496126
723 => 1.3543163960805
724 => 1.3644382412691
725 => 1.3502239351861
726 => 1.3467042731038
727 => 1.3418418851453
728 => 1.3524587313658
729 => 1.3588230505163
730 => 1.4101147887923
731 => 1.443251590906
801 => 1.4418130349342
802 => 1.454958743653
803 => 1.4490364814742
804 => 1.4299119346853
805 => 1.462555204064
806 => 1.4522255077802
807 => 1.4530770753912
808 => 1.4530453800022
809 => 1.4599137249932
810 => 1.4550468730925
811 => 1.4454538084241
812 => 1.4518221324406
813 => 1.470733778052
814 => 1.5294361063098
815 => 1.5622867069054
816 => 1.5274584589056
817 => 1.551482518007
818 => 1.5370766431937
819 => 1.5344586672024
820 => 1.5495475516821
821 => 1.5646628472567
822 => 1.5637000682738
823 => 1.5527271398657
824 => 1.5465288110357
825 => 1.5934646335289
826 => 1.6280461480111
827 => 1.6256879205608
828 => 1.6360963695896
829 => 1.6666558978594
830 => 1.66944987814
831 => 1.6690979008435
901 => 1.6621727291966
902 => 1.6922625534344
903 => 1.7173640141937
904 => 1.6605697520477
905 => 1.6821962635815
906 => 1.6919051013716
907 => 1.70616055573
908 => 1.730211896724
909 => 1.7563380323467
910 => 1.7600325543823
911 => 1.7574111141989
912 => 1.7401802254475
913 => 1.7687677547955
914 => 1.7855136590275
915 => 1.7954854617744
916 => 1.8207722943909
917 => 1.6919650598485
918 => 1.6007888971045
919 => 1.5865504226923
920 => 1.6155049203099
921 => 1.6231399904239
922 => 1.6200623032345
923 => 1.5174352426921
924 => 1.5860101124577
925 => 1.6597909063867
926 => 1.6626251271632
927 => 1.6995613352878
928 => 1.7115892787194
929 => 1.7413277675991
930 => 1.7394676170228
1001 => 1.7467084658223
1002 => 1.7450439200773
1003 => 1.8001282085493
1004 => 1.8608943588299
1005 => 1.8587902202702
1006 => 1.8500543672149
1007 => 1.8630285986863
1008 => 1.9257457778723
1009 => 1.9199717850352
1010 => 1.9255807272489
1011 => 1.9995278160946
1012 => 2.0956695504446
1013 => 2.0510020623667
1014 => 2.1479176587723
1015 => 2.2089208894346
1016 => 2.3144196690133
1017 => 2.3012107022176
1018 => 2.3422806029218
1019 => 2.2775638948588
1020 => 2.1289612517414
1021 => 2.10544431464
1022 => 2.1525258182607
1023 => 2.2682711007662
1024 => 2.1488805874121
1025 => 2.1730331327691
1026 => 2.1660771980815
1027 => 2.1657065458828
1028 => 2.1798528327551
1029 => 2.1593329058261
1030 => 2.0757310320526
1031 => 2.114045278134
1101 => 2.0992503077208
1102 => 2.1156664304324
1103 => 2.204257474183
1104 => 2.1650892619942
1105 => 2.1238287322204
1106 => 2.1755785930012
1107 => 2.2414739489568
1108 => 2.2373503360064
1109 => 2.2293488033462
1110 => 2.2744530240051
1111 => 2.3489519822369
1112 => 2.3690887512859
1113 => 2.3839533025198
1114 => 2.3860028729962
1115 => 2.4071147227051
1116 => 2.2935909859494
1117 => 2.4737560716771
1118 => 2.5048656050222
1119 => 2.4990183021114
1120 => 2.5335952391352
1121 => 2.5234218271305
1122 => 2.5086821492953
1123 => 2.5634939492034
1124 => 2.5006566436929
1125 => 2.4114669995174
1126 => 2.3625357967517
1127 => 2.4269723517212
1128 => 2.4663215073152
1129 => 2.4923287960865
1130 => 2.5001985859547
1201 => 2.3024035104731
1202 => 2.1958029350063
1203 => 2.2641326817024
1204 => 2.3474996885389
1205 => 2.2931278780171
1206 => 2.2952591500501
1207 => 2.2177392369064
1208 => 2.3543584807468
1209 => 2.3344542060679
1210 => 2.4377176183118
1211 => 2.4130729762391
1212 => 2.4972802802614
1213 => 2.4751056750183
1214 => 2.5671512216171
1215 => 2.603870682189
1216 => 2.665528371417
1217 => 2.7108840186051
1218 => 2.7375177221492
1219 => 2.7359187344889
1220 => 2.8414547367891
1221 => 2.7792238433798
1222 => 2.7010471745622
1223 => 2.6996332052675
1224 => 2.7401220098201
1225 => 2.8249754366013
1226 => 2.8469766955985
1227 => 2.859272397911
1228 => 2.8404411018029
1229 => 2.7728939271354
1230 => 2.7437273995859
1231 => 2.7685781260937
]
'min_raw' => 1.0247149221715
'max_raw' => 2.859272397911
'avg_raw' => 1.9419936600412
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$1.02'
'max' => '$2.85'
'avg' => '$1.94'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.40566929392457
'max_diff' => 1.4772966416037
'year' => 2036
]
11 => [
'items' => [
101 => 2.7381878230219
102 => 2.7906500121368
103 => 2.8626918031106
104 => 2.8478154581586
105 => 2.8975448489467
106 => 2.9490095367279
107 => 3.0226063516788
108 => 3.0418472843892
109 => 3.0736518144922
110 => 3.1063891232121
111 => 3.1169034644777
112 => 3.1369786043623
113 => 3.1368727984658
114 => 3.1973705837207
115 => 3.2641015143173
116 => 3.2892908957929
117 => 3.3472124895455
118 => 3.2480237900589
119 => 3.3232595580172
120 => 3.391124103989
121 => 3.3102131945546
122 => 3.4217300333858
123 => 3.426059979535
124 => 3.4914370256395
125 => 3.4251648646861
126 => 3.3858126670602
127 => 3.4994209870986
128 => 3.5543924745366
129 => 3.5378346151475
130 => 3.4118284876338
131 => 3.3384875167638
201 => 3.1465400495802
202 => 3.3739101159726
203 => 3.4846554428366
204 => 3.4115416839913
205 => 3.4484160111795
206 => 3.6495903837777
207 => 3.726184559787
208 => 3.7102535066108
209 => 3.7129455923501
210 => 3.7542744194421
211 => 3.9375491989689
212 => 3.8277267028003
213 => 3.9116818861508
214 => 3.9562114126769
215 => 3.9975729185719
216 => 3.8960021325321
217 => 3.7638600322654
218 => 3.7220050821629
219 => 3.4042719615888
220 => 3.3877325728179
221 => 3.3784485127061
222 => 3.3199138269571
223 => 3.2739215979582
224 => 3.2373468698764
225 => 3.1413638612511
226 => 3.1737553090514
227 => 3.0207784265136
228 => 3.1186476147934
301 => 2.8744928165071
302 => 3.077832187619
303 => 2.9671638126295
304 => 3.0414746500185
305 => 3.0412153865074
306 => 2.9043855746018
307 => 2.8254649946599
308 => 2.8757562598338
309 => 2.9296724882258
310 => 2.9384202148864
311 => 3.0083240123541
312 => 3.0278326596503
313 => 2.9687205475713
314 => 2.8694332509985
315 => 2.8924954254903
316 => 2.8249976404299
317 => 2.7067103683765
318 => 2.7916663522629
319 => 2.8206740604126
320 => 2.8334855168643
321 => 2.7171635701847
322 => 2.6806126890656
323 => 2.6611533066494
324 => 2.8544175483906
325 => 2.8650049998226
326 => 2.810838101382
327 => 3.0556776186495
328 => 3.0002628952572
329 => 3.0621747182233
330 => 2.8904027748814
331 => 2.8969646944387
401 => 2.8156451036931
402 => 2.8611786407336
403 => 2.8289970043678
404 => 2.8574999809119
405 => 2.8745845475303
406 => 2.9558907945312
407 => 3.0787605743557
408 => 2.9437463525536
409 => 2.8849187226752
410 => 2.9214150533926
411 => 3.0186095915234
412 => 3.1658642920883
413 => 3.0786865455768
414 => 3.1173745491045
415 => 3.1258261567658
416 => 3.0615445139838
417 => 3.168234447948
418 => 3.2254104503069
419 => 3.2840611978205
420 => 3.33498599853
421 => 3.260634799506
422 => 3.3402012402874
423 => 3.2760847343851
424 => 3.2185656003483
425 => 3.2186528331317
426 => 3.18257024013
427 => 3.1126556694897
428 => 3.0997623499817
429 => 3.1668350263092
430 => 3.2206209609177
501 => 3.2250510281093
502 => 3.2548296851297
503 => 3.2724523876098
504 => 3.4451788288172
505 => 3.5146508323389
506 => 3.5995998832074
507 => 3.6326923259869
508 => 3.7322887144558
509 => 3.651856541944
510 => 3.634454535479
511 => 3.3928662747839
512 => 3.4324263389387
513 => 3.4957658186289
514 => 3.3939107194746
515 => 3.4585143360759
516 => 3.4712684584847
517 => 3.3904497221806
518 => 3.4336185012121
519 => 3.3189750227555
520 => 3.0812594889016
521 => 3.1684990932918
522 => 3.2327368066563
523 => 3.1410616692322
524 => 3.3053858047472
525 => 3.209391037118
526 => 3.1789653043411
527 => 3.0602636732212
528 => 3.116286273865
529 => 3.1920576434021
530 => 3.1452397463953
531 => 3.2423939124269
601 => 3.3799901215974
602 => 3.4780493742481
603 => 3.4855771460601
604 => 3.4225316160653
605 => 3.5235624802331
606 => 3.5242983797807
607 => 3.4103351522762
608 => 3.3405333099796
609 => 3.3246741845455
610 => 3.3642933892446
611 => 3.412398417858
612 => 3.4882466403542
613 => 3.5340801326781
614 => 3.6535895724531
615 => 3.6859254002521
616 => 3.7214526713927
617 => 3.7689280618413
618 => 3.825934440515
619 => 3.7012077293518
620 => 3.706163354106
621 => 3.5900195676297
622 => 3.465903275076
623 => 3.56009206981
624 => 3.6832313895144
625 => 3.6549830935174
626 => 3.6518045831574
627 => 3.6571499559376
628 => 3.6358516632589
629 => 3.5395202748248
630 => 3.4911432546196
701 => 3.5535619529785
702 => 3.5867347132195
703 => 3.6381827713847
704 => 3.6318407122791
705 => 3.7643653849946
706 => 3.8158604654737
707 => 3.8026858202884
708 => 3.8051102720681
709 => 3.8983396555499
710 => 4.0020299040668
711 => 4.0991495049363
712 => 4.1979437343247
713 => 4.0788434347926
714 => 4.0183716477755
715 => 4.0807630960833
716 => 4.0476573153879
717 => 4.2378929510757
718 => 4.2510644537423
719 => 4.4412863332283
720 => 4.6218295480606
721 => 4.5084335895921
722 => 4.6153608709617
723 => 4.7310114436721
724 => 4.9541201620597
725 => 4.8789849947662
726 => 4.8214326341374
727 => 4.7670459314343
728 => 4.8802160261136
729 => 5.0258075449822
730 => 5.0571665636882
731 => 5.1079801540592
801 => 5.0545558769744
802 => 5.118899534232
803 => 5.346060918387
804 => 5.2846799071793
805 => 5.1975090037744
806 => 5.3768310997536
807 => 5.4417270691914
808 => 5.8972009689893
809 => 6.4722555821725
810 => 6.2341791963025
811 => 6.086397500916
812 => 6.1211297047605
813 => 6.3311201826679
814 => 6.3985624594071
815 => 6.215231102483
816 => 6.2799868370816
817 => 6.6367973013631
818 => 6.8282146675999
819 => 6.5682441734682
820 => 5.8509958907383
821 => 5.1896602176803
822 => 5.3650762185088
823 => 5.3451894878071
824 => 5.7285378186656
825 => 5.283215990362
826 => 5.2907140678592
827 => 5.681989636227
828 => 5.5776040227479
829 => 5.408512697611
830 => 5.1908947714815
831 => 4.7886079078092
901 => 4.4322912140556
902 => 5.1311103053403
903 => 5.100975955404
904 => 5.0573369510359
905 => 5.1544508330237
906 => 5.6260082777005
907 => 5.6151373523182
908 => 5.5459820714309
909 => 5.5984357424772
910 => 5.3993173154668
911 => 5.4506346679497
912 => 5.1895554587309
913 => 5.3075741649287
914 => 5.4081499035701
915 => 5.4283419721516
916 => 5.4738357336983
917 => 5.0850965223031
918 => 5.2596290154359
919 => 5.3621505036684
920 => 4.8989546900704
921 => 5.3529946117217
922 => 5.0783294374994
923 => 4.9851039520358
924 => 5.1106197866887
925 => 5.0617061438563
926 => 5.0196530660545
927 => 4.9961867260775
928 => 5.0883517023695
929 => 5.0840520960645
930 => 4.9332523063999
1001 => 4.7365401281682
1002 => 4.8025631920399
1003 => 4.7785763939658
1004 => 4.6916451433867
1005 => 4.7502263101578
1006 => 4.4922644989479
1007 => 4.0484546104495
1008 => 4.3416490170561
1009 => 4.3303613513359
1010 => 4.3246695984248
1011 => 4.5449970916915
1012 => 4.523817687034
1013 => 4.4853768601914
1014 => 4.690939147456
1015 => 4.6159061474015
1016 => 4.8471401735714
1017 => 4.999445858486
1018 => 4.9608162102189
1019 => 5.1040604430383
1020 => 4.8040842300836
1021 => 4.9037242950704
1022 => 4.9242599743691
1023 => 4.6884025407398
1024 => 4.5272828995661
1025 => 4.5165380563982
1026 => 4.2371788022572
1027 => 4.3864102609102
1028 => 4.5177277689075
1029 => 4.4548368732271
1030 => 4.4349274944667
1031 => 4.536640192736
1101 => 4.5445441405018
1102 => 4.3643332938172
1103 => 4.4018048353782
1104 => 4.5580673928133
1105 => 4.3978674198593
1106 => 4.0866250409267
1107 => 4.0094326276888
1108 => 3.9991337368245
1109 => 3.7897817899159
1110 => 4.0145909938513
1111 => 3.9164557518214
1112 => 4.226463805553
1113 => 4.0493888678681
1114 => 4.0417555212197
1115 => 4.0302165981921
1116 => 3.8500187292679
1117 => 3.8894706103903
1118 => 4.0206146719323
1119 => 4.0674083505341
1120 => 4.0625273864867
1121 => 4.0199719944854
1122 => 4.0394536350247
1123 => 3.9766964829941
1124 => 3.9545356264349
1125 => 3.8845898673103
1126 => 3.7817889244062
1127 => 3.7960840260319
1128 => 3.592408458809
1129 => 3.4814351999055
1130 => 3.4507192644451
1201 => 3.4096446318401
1202 => 3.4553587534932
1203 => 3.5918314715176
1204 => 3.427216419278
1205 => 3.1449954586165
1206 => 3.1619574192333
1207 => 3.2000659086881
1208 => 3.129050990702
1209 => 3.0618413306584
1210 => 3.1202746771742
1211 => 3.0006939356888
1212 => 3.2145166699929
1213 => 3.2087333642613
1214 => 3.2884332569007
1215 => 3.3382712353745
1216 => 3.2234108302294
1217 => 3.194523748951
1218 => 3.2109791432918
1219 => 2.9390081296816
1220 => 3.2662074227618
1221 => 3.2690370558356
1222 => 3.2448080195376
1223 => 3.4190315419579
1224 => 3.7866975159442
1225 => 3.6483667872011
1226 => 3.5948009479633
1227 => 3.4929722484159
1228 => 3.6286529445729
1229 => 3.6182347840566
1230 => 3.571119911232
1231 => 3.5426246891403
]
'min_raw' => 2.6611533066494
'max_raw' => 6.8282146675999
'avg_raw' => 4.7446839871246
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$2.66'
'max' => '$6.82'
'avg' => '$4.74'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 1.636438384478
'max_diff' => 3.9689422696889
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.083530561463954
]
1 => [
'year' => 2028
'avg' => 0.1433626925674
]
2 => [
'year' => 2029
'avg' => 0.39164103748277
]
3 => [
'year' => 2030
'avg' => 0.30215047716863
]
4 => [
'year' => 2031
'avg' => 0.29674921367599
]
5 => [
'year' => 2032
'avg' => 0.52029476198857
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.083530561463954
'min' => '$0.08353'
'max_raw' => 0.52029476198857
'max' => '$0.520294'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.52029476198857
]
1 => [
'year' => 2033
'avg' => 1.3382516291141
]
2 => [
'year' => 2034
'avg' => 0.84824819589634
]
3 => [
'year' => 2035
'avg' => 1.0005106922771
]
4 => [
'year' => 2036
'avg' => 1.9419936600412
]
5 => [
'year' => 2037
'avg' => 4.7446839871246
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.52029476198857
'min' => '$0.520294'
'max_raw' => 4.7446839871246
'max' => '$4.74'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 4.7446839871246
]
]
]
]
'prediction_2025_max_price' => '$0.142822'
'last_price' => 0.138484
'sma_50day_nextmonth' => '$0.125255'
'sma_200day_nextmonth' => '$0.235261'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'increase'
'sma_200day_direction_label' => 'aumentar'
'sma_200day_date_nextmonth' => '4 de fev. de 2026'
'sma_50day_date_nextmonth' => '4 de fev. de 2026'
'daily_sma3' => '$0.13335'
'daily_sma3_action' => 'BUY'
'daily_sma5' => '$0.130311'
'daily_sma5_action' => 'BUY'
'daily_sma10' => '$0.125123'
'daily_sma10_action' => 'BUY'
'daily_sma21' => '$0.122056'
'daily_sma21_action' => 'BUY'
'daily_sma50' => '$0.13686'
'daily_sma50_action' => 'BUY'
'daily_sma100' => '$0.179734'
'daily_sma100_action' => 'SELL'
'daily_sma200' => '$0.279231'
'daily_sma200_action' => 'SELL'
'daily_ema3' => '$0.134151'
'daily_ema3_action' => 'BUY'
'daily_ema5' => '$0.131167'
'daily_ema5_action' => 'BUY'
'daily_ema10' => '$0.127356'
'daily_ema10_action' => 'BUY'
'daily_ema21' => '$0.127197'
'daily_ema21_action' => 'BUY'
'daily_ema50' => '$0.143095'
'daily_ema50_action' => 'SELL'
'daily_ema100' => '$0.181797'
'daily_ema100_action' => 'SELL'
'daily_ema200' => '$0.241583'
'daily_ema200_action' => 'SELL'
'weekly_sma21' => '$0.222248'
'weekly_sma21_action' => 'SELL'
'weekly_sma50' => '$0.319541'
'weekly_sma50_action' => 'SELL'
'weekly_sma100' => '$0.386443'
'weekly_sma100_action' => 'SELL'
'weekly_sma200' => '—'
'weekly_sma200_action' => '—'
'weekly_ema3' => '$0.133193'
'weekly_ema3_action' => 'BUY'
'weekly_ema5' => '$0.135749'
'weekly_ema5_action' => 'BUY'
'weekly_ema10' => '$0.158424'
'weekly_ema10_action' => 'SELL'
'weekly_ema21' => '$0.214032'
'weekly_ema21_action' => 'SELL'
'weekly_ema50' => '$0.284832'
'weekly_ema50_action' => 'SELL'
'weekly_ema100' => '$0.288282'
'weekly_ema100_action' => 'SELL'
'weekly_ema200' => '$0.21370056'
'weekly_ema200_action' => 'SELL'
'rsi_14' => '58.08'
'rsi_14_action' => 'NEUTRAL'
'stoch_rsi_14' => 107.46
'stoch_rsi_14_action' => 'SELL'
'momentum_10' => 0.02
'momentum_10_action' => 'BUY'
'vwma_10' => '0.1211058'
'vwma_10_action' => 'BUY'
'hma_9' => '0.136260'
'hma_9_action' => 'BUY'
'stochastic_fast_14' => 100
'stochastic_fast_14_action' => 'SELL'
'cci_20' => 244.87
'cci_20_action' => 'SELL'
'adx_14' => 19.59
'adx_14_action' => 'NEUTRAL'
'ao_5_34' => '0.001243'
'ao_5_34_action' => 'BUY'
'macd_12_26' => 0
'macd_12_26_action' => 'BUY'
'williams_percent_r_14' => -0
'williams_percent_r_14_action' => 'SELL'
'ultimate_oscillator' => 66.99
'ultimate_oscillator_action' => 'NEUTRAL'
'ichimoku_cloud' => '-0.031452'
'ichimoku_cloud_action' => 'SELL'
'sell_signals' => 14
'buy_signals' => 20
'sell_pct' => 41.18
'buy_pct' => 58.82
'overall_action' => 'bullish'
'overall_action_label' => 'Altista'
'overall_action_dir' => 1
'last_updated' => 1767688835
'last_updated_date' => '6 de janeiro de 2026'
]
Previsão de preço de GRELF para 2026
A previsão de preço para GRELF em 2026 sugere que o preço médio poderia variar entre $0.047846 na extremidade inferior e $0.142822 na extremidade superior. No mercado de criptomoedas, comparado ao preço médio de hoje, GRELF poderia potencialmente ganhar 3.13% até 2026 se GRELF atingir a meta de preço prevista.
Previsão de preço de GRELF 2027-2032
A previsão de preço de GRELF para 2027-2032 está atualmente dentro de uma faixa de preço entre $0.08353 na extremidade inferior e $0.520294 na extremidade superior. Considerando a volatilidade de preços no mercado, se GRELF atingir a meta de preço superior, poderia ganhar 275.71% até 2032 em comparação com o preço de hoje.
| Previsão de Preço de GRELF | Potencial Mínimo ($) | Preço Médio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2027 | $0.04606 | $0.08353 | $0.12100079 |
| 2028 | $0.083125 | $0.143362 | $0.20360001 |
| 2029 | $0.1826025 | $0.391641 | $0.600679 |
| 2030 | $0.155295 | $0.30215 | $0.4490053 |
| 2031 | $0.1836075 | $0.296749 | $0.40989 |
| 2032 | $0.280263 | $0.520294 | $0.760326 |
Previsão de preço de GRELF 2032-2037
A previsão de preço de GRELF para 2032-2037 é atualmente estimada entre $0.520294 na extremidade inferior e $4.74 na extremidade superior. Comparado ao preço atual, GRELF poderia potencialmente ganhar 3326.16% até 2037 se atingir a meta de preço superior. Por favor, note que esta informação é apenas para fins gerais e não deve ser considerada como aconselhamento de investimento a longo prazo.
| Previsão de Preço de GRELF | Potencial Mínimo ($) | Preço Médio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2032 | $0.280263 | $0.520294 | $0.760326 |
| 2033 | $0.65127 | $1.33 | $2.02 |
| 2034 | $0.52359 | $0.848248 | $1.17 |
| 2035 | $0.619045 | $1.00 | $1.38 |
| 2036 | $1.02 | $1.94 | $2.85 |
| 2037 | $2.66 | $4.74 | $6.82 |
GRELF Histograma de preços potenciais
Previsão de preço de GRELF baseada na análise técnica
Em 6 de janeiro de 2026, o sentimento geral de previsão de preço para GRELF é Altista, com 20 indicadores técnicos mostrando sinais de alta e 14 indicando sinais de baixa. A previsão de preço de GRELF foi atualizada pela última vez em 6 de janeiro de 2026.
Médias Móveis Simples de 50 e 200 dias e Índice de Força Relativa de 14 dias - RSI (14) de GRELF
De acordo com nossos indicadores técnicos, o SMA de 200 dias de GRELF está projetado para aumentar no próximo mês, alcançando $0.235261 até 4 de fev. de 2026. O SMA de 50 dias de curto prazo para GRELF é esperado para alcançar $0.125255 até 4 de fev. de 2026.
O oscilador de momentum Índice de Força Relativa (RSI) é uma ferramenta comumente usada para identificar se uma criptomoeda está sobrevendida (abaixo de 30) ou sobrecomprada (acima de 70). No momento, o RSI está em 58.08, sugerindo que o mercado de GRELF está em um estado NEUTRAL.
Médias Móveis e Osciladores Populares de GRELF para Sábado, 19 de Outubro de 2024
Médias móveis (MA) são indicadores amplamente utilizados nos mercados financeiros, projetados para suavizar movimentos de preços ao longo de um período definido. Como indicadores atrasados, eles se baseiam em dados históricos de preços. A tabela abaixo destaca dois tipos: a média móvel simples (SMA) e a média móvel exponencial (EMA).
Média Móvel Simples Diária (SMA)
| Período | Valor | Ação |
|---|---|---|
| SMA 3 | $0.13335 | BUY |
| SMA 5 | $0.130311 | BUY |
| SMA 10 | $0.125123 | BUY |
| SMA 21 | $0.122056 | BUY |
| SMA 50 | $0.13686 | BUY |
| SMA 100 | $0.179734 | SELL |
| SMA 200 | $0.279231 | SELL |
Média Móvel Exponencial Diária (EMA)
| Período | Valor | Ação |
|---|---|---|
| EMA 3 | $0.134151 | BUY |
| EMA 5 | $0.131167 | BUY |
| EMA 10 | $0.127356 | BUY |
| EMA 21 | $0.127197 | BUY |
| EMA 50 | $0.143095 | SELL |
| EMA 100 | $0.181797 | SELL |
| EMA 200 | $0.241583 | SELL |
Média Móvel Simples Semanal (SMA)
| Período | Valor | Ação |
|---|---|---|
| SMA 21 | $0.222248 | SELL |
| SMA 50 | $0.319541 | SELL |
| SMA 100 | $0.386443 | SELL |
| SMA 200 | — | — |
Média Móvel Exponencial Semanal (EMA)
| Período | Valor | Ação |
|---|---|---|
| EMA 21 | $0.214032 | SELL |
| EMA 50 | $0.284832 | SELL |
| EMA 100 | $0.288282 | SELL |
| EMA 200 | $0.21370056 | SELL |
Osciladores de GRELF
Um oscilador é uma ferramenta de análise técnica que define limites altos e baixos entre dois extremos, criando um indicador de tendência que flutua dentro desses limites. Os traders usam esse indicador para identificar condições de sobrecompra ou sobrevenda de curto prazo.
| Período | Valor | Ação |
|---|---|---|
| RSI (14) | 58.08 | NEUTRAL |
| Stoch RSI (14) | 107.46 | SELL |
| Estocástico Rápido (14) | 100 | SELL |
| Índice de Canal de Commodities (20) | 244.87 | SELL |
| Índice Direcional Médio (14) | 19.59 | NEUTRAL |
| Oscilador Impressionante (5, 34) | 0.001243 | BUY |
| Momentum (10) | 0.02 | BUY |
| MACD (12, 26) | 0 | BUY |
| Williams Percent Range (14) | -0 | SELL |
| Oscilador Ultimate (7, 14, 28) | 66.99 | NEUTRAL |
| VWMA (10) | 0.1211058 | BUY |
| Média Móvel de Hull (9) | 0.136260 | BUY |
| Nuvem Ichimoku B/L (9, 26, 52, 26) | -0.031452 | SELL |
Previsão do preço de GRELF com base nos fluxos financeiros mundiais
Definições dos fluxos financeiros mundiais, usadas na previsão do preço do GRELF
M0: o total de todas as moedas físicas, mais as contas no Banco Central que podem ser trocadas por moedas físicas.
M1: o valor de M0, mais o valor em contas de demanda, incluindo contas 'correntes'.
M2: o valor de M1, mais a maioria das contas de poupança, do mercado de moedas e de certificados de depósito (CD) de menos de US$ 100.000.
Previsões de preço de GRELF por empresas de Internet ou nichos tecnológicos
| Comparação | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Facebook stock | $0.194593 | $0.273435 | $0.384223 | $0.539897 | $0.758646 | $1.06 |
| Amazon.com stock | $0.288955 | $0.602921 | $1.25 | $2.62 | $5.47 | $11.42 |
| Apple stock | $0.196428 | $0.278619 | $0.39520052 | $0.560561 | $0.795114 | $1.12 |
| Netflix stock | $0.218506 | $0.344768 | $0.54399 | $0.858331 | $1.35 | $2.13 |
| Google stock | $0.179336 | $0.232239 | $0.300749 | $0.389468 | $0.50436 | $0.653144 |
| Tesla stock | $0.313932 | $0.711661 | $1.61 | $3.65 | $8.29 | $18.79 |
| Kodak stock | $0.103848 | $0.077875 | $0.058398 | $0.043792 | $0.032839 | $0.024626 |
| Nokia stock | $0.091739 | $0.060773 | $0.04026 | $0.02667 | $0.017668 | $0.0117044 |
Este cálculo mostra quanto a criptomoeda pode custar, se assumirmos que sua capitalização se comportará da mesma forma que a de algumas empresas de Internet ou nichos tecnológicos. Se você extrapolar os dados, poderá obter uma imagem em potencial do preço futuro para 2024, 2025, 2026, 2027, 2028, 2029 e 2030.
Visão geral da previsão para GRELF
Você pode fazer perguntas como: 'Devo investir em GRELF agora?', 'Devo comprar GRELF hoje?', 'GRELF será um bom ou mau investimento no curto ou no longo prazo?'.
Atualizamos a previsão para GRELF regularmente com novos valores. Veja nossas previsões semelhantes. Fazemos previsões de preços futuros para uma enorme quantidade de moedas digitais, como GRELF, com métodos de análise técnica.
Se você estiver tentando encontrar criptomoedas com bom retorno, você deve explorar o máximo de fontes de informações disponíveis sobre GRELF para poder tomar sozinho uma decisão de tão grande responsabilidade sobre o seu investimento.
O preço de GRELF é de $0.1384 USD hoje, mas o preço pode tanto subir quanto descer e seu investimento pode ser perdido, porque criptomoedas são ativos de alto risco
Previsão do preço de GRELF com base no padrão de crescimento do Bitcoin
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| Se GRELF tiver 1% da média anterior do crescimento anual do Bitcoin | $0.142083 | $0.145776 | $0.149566 | $0.153453 |
| Se GRELF tiver 2% da média anterior do crescimento anual do Bitcoin | $0.145683 | $0.153256 | $0.161224 | $0.1696055 |
| Se GRELF tiver 5% da média anterior do crescimento anual do Bitcoin | $0.156482 | $0.176819 | $0.19980014 | $0.225767 |
| Se GRELF tiver 10% da média anterior do crescimento anual do Bitcoin | $0.17448 | $0.219833 | $0.276975 | $0.34897 |
| Se GRELF tiver 20% da média anterior do crescimento anual do Bitcoin | $0.210476 | $0.319896 | $0.486198 | $0.738956 |
| Se GRELF tiver 50% da média anterior do crescimento anual do Bitcoin | $0.318466 | $0.732364 | $1.68 | $3.87 |
| Se GRELF tiver 100% da média anterior do crescimento anual do Bitcoin | $0.498448 | $1.79 | $6.45 | $23.24 |
Perguntas Frequentes sobre GRELF
GRELF é um bom investimento?
A decisão de adquirir GRELF depende inteiramente da sua tolerância individual ao risco. Como você pode perceber, o valor de GRELF experimentou uma escalada de 2.5853% nas últimas 24 horas, e GRELF registrou um declínio de durante os últimos 30 dias. Consequentemente, a decisão de investir ou não em GRELF dependerá de quão alinhado esse investimento está com suas aspirações de negociação.
GRELF pode subir?
Parece que o valor médio de GRELF pode potencialmente subir para $0.142822 até o final deste ano. Observando as perspectivas de GRELF em um horizonte de cinco anos mais longo, a moeda digital poderia potencialmente crescer até $0.4490053. No entanto, dada a imprevisibilidade do mercado, é vital conduzir uma pesquisa aprofundada antes de investir quaisquer fundos em um projeto, rede ou ativo específico.
Qual será o preço de GRELF na próxima semana?
Com base na nossa nova previsão experimental de GRELF, o preço de GRELF aumentará 0.86% na próxima semana e atingirá $0.139669 até 13 de janeiro de 2026.
Qual será o preço de GRELF no próximo mês?
Com base na nossa nova previsão experimental de GRELF, o preço de GRELF diminuirá -11.62% no próximo mês e atingirá $0.122394 até 5 de fevereiro de 2026.
Até onde o preço de GRELF pode subir este ano em 2026?
De acordo com nossa previsão mais recente sobre o valor de GRELF em 2026, espera-se que GRELF fluctue dentro do intervalo de $0.047846 e $0.142822. No entanto, é crucial lembrar que o mercado de criptomoedas é excepcionalmente instável, e essa previsão de preço de GRELF não considera flutuações repentinas e extremas de preço.
Onde estará GRELF em 5 anos?
O futuro de GRELF parece seguir uma tendência de alta, com um preço máximo de $0.4490053 projetada após um período de cinco anos. Com base na previsão de GRELF para 2030, o valor de GRELF pode potencialmente atingir seu pico mais alto de aproximadamente $0.4490053, enquanto seu pico mais baixo está previsto para cerca de $0.155295.
Quanto será GRELF em 2026?
Com base na nossa nova simulação experimental de previsão de preços de GRELF, espera-se que o valor de GRELF em 2026 aumente 3.13% para $0.142822 se o melhor cenário ocorrer. O preço ficará entre $0.142822 e $0.047846 durante 2026.
Quanto será GRELF em 2027?
De acordo com nossa última simulação experimental para previsão de preços de GRELF, o valor de GRELF pode diminuir -12.62% para $0.12100079 em 2027, assumindo as condições mais favoráveis. O preço está projetado para flutuar entre $0.12100079 e $0.04606 ao longo do ano.
Quanto será GRELF em 2028?
Nosso novo modelo experimental de previsão de preços de GRELF sugere que o valor de GRELF em 2028 pode aumentar 47.02%, alcançando $0.20360001 no melhor cenário. O preço é esperado para variar entre $0.20360001 e $0.083125 durante o ano.
Quanto será GRELF em 2029?
Com base no nosso modelo de previsão experimental, o valor de GRELF pode experimentar um 333.75% crescimento em 2029, potencialmente alcançando $0.600679 sob condições ótimas. A faixa de preço prevista para 2029 está entre $0.600679 e $0.1826025.
Quanto será GRELF em 2030?
Usando nossa nova simulação experimental para previsões de preços de GRELF, espera-se que o valor de GRELF em 2030 aumente 224.23%, alcançando $0.4490053 no melhor cenário. O preço está previsto para variar entre $0.4490053 e $0.155295 ao longo de 2030.
Quanto será GRELF em 2031?
Nossa simulação experimental indica que o preço de GRELF poderia aumentar 195.98% em 2031, potencialmente atingindo $0.40989 sob condições ideais. O preço provavelmente oscilará entre $0.40989 e $0.1836075 durante o ano.
Quanto será GRELF em 2032?
Com base nos achados da nossa mais recente previsão experimental de preços de GRELF, GRELF poderia ver um 449.04% aumento em valor, atingindo $0.760326 se o cenário mais positivo se desenrolar em 2032. O preço é esperado para permanecer dentro de uma faixa de $0.760326 e $0.280263 ao longo do ano.
Quanto será GRELF em 2033?
De acordo com nossa previsão experimental de preços de GRELF, espera-se que o valor de GRELF seja aumentar 1362.43% em 2033, com o preço potencial mais alto sendo $2.02. Ao longo do ano, o preço de GRELF poderia variar entre $2.02 e $0.65127.
Quanto será GRELF em 2034?
Os resultados da nossa nova simulação de previsão de preços de GRELF sugerem que GRELF pode aumentar 746.96% em 2034, atingindo potencialmente $1.17 nas melhores circunstâncias. A faixa de preço prevista para o ano é entre $1.17 e $0.52359.
Quanto será GRELF em 2035?
Com base em nossa previsão experimental para o preço de GRELF, GRELF poderia aumentar 897.93%, com o valor potencialmente atingindo $1.38 em 2035. A faixa de preço esperada para o ano está entre $1.38 e $0.619045.
Quanto será GRELF em 2036?
Nossa recente simulação de previsão de preços de GRELF sugere que o valor de GRELF pode aumentar 1964.7% em 2036, possivelmente atingindo $2.85 se as condições forem ideais. A faixa de preço esperada para 2036 está entre $2.85 e $1.02.
Quanto será GRELF em 2037?
De acordo com a simulação experimental, o valor de GRELF poderia aumentar 4830.69% em 2037, com um pico de $6.82 sob condições favoráveis. O preço é esperado para cair entre $6.82 e $2.66 ao longo do ano.
Previsões relacionadas
Previsão de Preço do SolPod
Previsão de Preço do zuzalu
Previsão de Preço do SOFT COQ INU
Previsão de Preço do All Street Bets
Previsão de Preço do MagicRing
Previsão de Preço do AI INU
Previsão de Preço do Wall Street Baby On Solana
Previsão de Preço do Meta Masters Guild Games
Previsão de Preço do Morfey
Previsão de Preço do PANTIESPrevisão de Preço do Celer Bridged BUSD (zkSync)
Previsão de Preço do Bridged BUSD
Previsão de Preço do Multichain Bridged BUSD (Moonriver)
Previsão de Preço do tooker kurlson
Previsão de Preço do dogwifsaudihatPrevisão de Preço do Harmony Horizen Bridged BUSD (Harmony)
Previsão de Preço do IoTeX Bridged BUSD (IoTeX)
Previsão de Preço do MIMANY
Previsão de Preço do The Open League MEME
Previsão de Preço do Sandwich Cat
Previsão de Preço do Hege
Previsão de Preço do DexNet
Previsão de Preço do SolDocs
Previsão de Preço do Secret Society
Previsão de Preço do duk
Como ler e prever os movimentos de preço de GRELF?
Traders de GRELF utilizam indicadores e padrões de gráfico para prever a direção do mercado. Eles também identificam níveis-chave de suporte e resistência para avaliar quando uma tendência de baixa pode desacelerar ou uma tendência de alta pode estagnar.
Indicadores de Previsão de Preço de GRELF
Médias móveis são ferramentas populares para a previsão de preço de GRELF. Uma média móvel simples (SMA) calcula o preço médio de fechamento de GRELF em um período específico, como uma SMA de 12 dias. Uma média móvel exponencial (EMA) dá mais peso aos preços recentes, reagindo mais rapidamente às mudanças de preço.
Médias móveis comumente usadas no mercado de criptomoedas incluem as de 50 dias, 100 dias e 200 dias, que ajudam a identificar níveis-chave de resistência e suporte. Um movimento de preço de GRELF acima dessas médias é visto como altista, enquanto uma queda abaixo indica fraqueza.
Traders também usam RSI e níveis de retração de Fibonacci para avaliar a direção futura de GRELF.
Como ler gráficos de GRELF e prever movimentos de preço?
A maioria dos traders prefere gráficos de velas em vez de gráficos de linha simples porque eles fornecem informações mais detalhadas. Velas podem representar a ação de preço de GRELF em diferentes períodos de tempo, como 5 minutos para tendências de curto prazo e semanal para tendências de longo prazo. Opções populares incluem gráficos de 1 hora, 4 horas e 1 dia.
Por exemplo, um gráfico de velas de 1 hora mostra os preços de abertura, fechamento, máximo e mínimo de GRELF dentro de cada hora. A cor da vela é crucial: verde indica que o preço fechou mais alto do que abriu, enquanto vermelho significa o oposto. Alguns gráficos usam velas vazias e preenchidas para transmitir a mesma informação.
O que afeta o preço de GRELF?
A ação de preço de GRELF é impulsionada pela oferta e demanda, influenciada por fatores como reduções pela metade das recompensas de bloco, hard forks e atualizações de protocolo. Eventos do mundo real, como regulamentações, adoção por empresas e governos e hacks de exchanges de criptomoedas, também impactam o preço de GRELF. A capitalização de mercado de GRELF pode mudar rapidamente.
Traders frequentemente monitoram a atividade de "baleias" de GRELF, grandes detentores de GRELF, pois suas ações podem influenciar significativamente os movimentos de preço no relativamente pequeno mercado de GRELF.
Padrões de previsão de preço altistas e baixistas
Traders frequentemente identificam padrões de velas para ganhar vantagem em previsões de preço de criptomoedas. Certas formações indicam tendências altistas, enquanto outras sugerem movimentos baixistas.
Padrões de velas altistas comumente seguidos:
- Martelo
- Engolfo de Alta
- Linha de Perfuração
- Estrela da Manhã
- Três Soldados Brancos
Padrões de velas baixistas comuns:
- Harami de Baixa
- Nuvem Negra
- Estrela da Noite
- Estrela Cadente
- Homem Enforcado


